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Preface

This book grew out of my lecture notes for a graduate course onmultivariate statistics

for imaging science students. There is a growing need for statistical analysis of data in

imaging, optics, and photonics applications. Although there is a vast literature

explaining statistical methods needed for such applications, there are two major

difficulties for practitioners using these statistical resources. The first difficulty is that

most statistical books are written in a formal statistical and mathematical language,

which an occasional user of statistics may find difficult to understand. The second

difficulty is that the needed material is scattered among many statistical books.

The purpose of this book is to bridge the gap between imaging, optics, and

photonics, and statistics and data analysis. The statistical techniques are explained in

the context of real examples from remote sensing, color science, printing, astronomy,

and other related disciplines.While it is important to have somevariety of examples, I

also want to limit the amount of time needed by a reader to understand the examples’

background information. Hence, I repeatedly use the same or very similar examples,

or data sets, for a discussion of various methods.

I emphasize intuitive and geometric understanding of concepts and provide many

graphs for their illustration. The scope of the material is very broad. It starts with

rudimentary data analysis and ends with sophisticated multivariate statistical meth-

ods. Necessarily, the presentation is brief and does not cover all aspects of the

discussed methods. I concentrate on teaching the skills of statistical thinking, and

providing the tools needed the most in imaging, optics, and photonics.

Some of the coveredmaterial is unique to this book. Due to applications of kurtosis

in image analysis, I included Section 2.8, where a new perspective and additional new

results are shown. In order to enhance interpretation of principal components, I

introduced impact plots in Section 7.2.3. The traditional stopping rules in principal

component analysis do not work well in imaging application, so I discuss a new set of

stopping rules in Section 7.3. There are many other details that you will not find in

most statistical textbooks. They enhance the reader’s understanding and answer the

usual questions asked by students of the subject.

Specific suggestions about the audience for this book, its organization, and other

practical information are given in Chapter 1.
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C H A P T E R 1

Introduction

Things vary. If they were all the same, we would not need to collect data and analyze

them. Some of that variability is not desirable, but we have tools to recognize that and

constructively deal with it. A typical example is an imaging system, startingwith your

everyday camera or a printer. Manufacturers put a lot of effort into minimizing noise

and maximizing consistency of those devices. How is that done? The best way is to

start with understanding the system and then measuring its variability. Once you have

your measurements, or data, you will need statistical methods to understand and

analyze them, so that proper conclusions can be drawn. This is where this book

becomes handy. Wewill show you how to deal with data, how to distinguish between

different types of variability, and how to separate the real information from noise.

Statistics is the science of the collection, modeling, and interpretation of data. In

this book, we are going to demonstrate how to use statistics in the fields of imaging,

optics, and photonics. These are very broad fields—not easy to define. They deal with

various aspects of the generation, transmission, processing, detection, and interpre-

tation of electromagnetic radiation. Common applications include the visible, infra-

red, and ultraviolet ranges of the electromagnetic spectrum, although other wave-

lengths are also used. This plethora of different measurements makes it difficult to

extract useful information from data. The strength of statistics is in describing large

amounts of data in a concise way and then drawing general conclusions, while

minimizing the impact of data noise on our decisions.

Here are some examples of real, practical problems we are going to deal with in

this book.

Example 1.1 (Eye Tracker Data). Eye tracking devices are used to examine

people’s eye movements as they perform certain tasks (see pelr et al. (2000)). This

information is used in research on the human visual system, in psychology, in product

design, and in many other applications. In eye tracking experiments, a lot of data are

collected. In a study of 30 shoppers, lasting 20min per shopper, over onemillionvideo

frames are generated. In order to reduce the amount of data, fixation periods are

identified when a shopper fixes her gaze at one spot. This reduces the number of

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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frames to under 100,000, but those images still need to be labeled in order to describe

what the shoppers are looking at. Many of those images are fixations on the same

product, but possibly from a different angle. The image frame might also be slightly

shifted. Our goal is to find the groups of images of the same product. One approach

could be to compare the images pixel by pixel, but that would not work well when the

image is shifted. One could also try to segment the image into identifiable objects and

then compare the objects from different images, but that would require a lot of

computations. Another approach is to ignore the spatial structure of the image and

describe the image by how the three primary colors mix in the image.

Figure 1.1 shows a sample fixation image used in a paper byKinsman et al. (2010).

The cross in the image shows the spot the shopper is looking at. This 128 by 128 pixel

imagewas recordedwith a camcorder in theRGB (red, green, and blue) channels. This

means that each pixel is represented by a mixture of the three colors. Mathematically,

we can describe the pixelwith three numbers, each representing the intensity of one of

the colors. For educational purposes, we select here a small subset of all pixels and use

only the red and green values. Figure 1.2a shows a scatter plot of this small subset.We

can see some clusters, or concentrations, of points. Each cluster corresponds to a

group of pixels with a givenmix of color. The group in the top right corner of the graph

is a mix of a large amount of red with a large amount of green.

Our goal is to find those clusters automatically and describe them in a concise

way. This is called unsupervised learning because we learn about the clusters

without prior information (supervision) about the groups. One possible solution is

shown in Figure 1.2b, where five clusters are identified and described by the

elliptical shapes. This provides a general structure for the data. In a real implemen-

tation, this needs to be done on all 16,384 pixels in a three-dimensional space of the

red, green, and blue intensity values. Methods for efficient execution of such tasks

will be shown in this book.

Figure 1.1 Shampoo bottles on a store shelf. The cross shows the spot the shopper is looking at.
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Example 1.2 (Printing Data). Printer manufacturers want to ensure high consis-

tency of printing by their devices. There are various types of calibrations and tests that

can be done on a printer. One of them is to print a page of random color patches such as

those shown in Figure 1.3. The patches are in four basic colors of the CMYK color

model used in printing: cyan, magenta, yellow, and black. In a given color, there are

several gradations, from themaximumamount of ink to less ink, where the patch has a

lighter color if printed on awhite background. For a given gradation of color, there are

several patches across the page printed in the same color. Our goal is to measure the

consistency of the color in all those patches. We also want to monitor printing quality

over time, including possible changes in quality after the printer’s idle time. An

experiment was performed to study these issues, and the resulting data set is used

throughout this book. Methods for exploratory analysis of such data and then for

statistical inference will be discussed.
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Figure 1.2 Understanding structure of data. Original data are shown in panel (a) and clusters of the same

data with elliptical descriptors are shown in panel (b).

Figure 1.3 Random color patches for printing-quality testing.
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Example 1.3 (Remote Sensing Data). Remote sensing is a broad concept of taking

measurements, or making observations, from a distance. Here, we concentrate on

spectral images of the Earth from high altitudes by way of aircraft or satellite. Digital

images consist of pixels, each pixel representing a small area in the image. In a

standard color photograph, a pixel can be represented by a mixture of three primary

colors—red, green, and blue. Each color represents a certain wavelength range of the

visible light. Different materials reflect light in different ways, which is why they have

different colors. Colors provide a lot of information about our environment. A color

photograph is more informative than a black-and-white one. Even more information

can be gathered when the visible spectrum is divided into, let’s say, 31 spectral bands

and the reflectance is measured separately in each band. Now we can see a difference

between two materials that look the same to a human eye. In the same way, we can

measure reflectance of electromagnetic waves in other (invisible) wavelengths,

including infrared, ultraviolet, and so on. The amount of information increases

considerably, but this also creates many challenges when analyzing such data. Each

pixel is now represented by a spectral curve describing reflectance as a function of

wavelength. The spectral curves are often very spiky with not much smoothness in

them. It is then convenient to represent them in their original digitized format, that is,

as p-dimensional vectors, where p is the number of spectral wavelengths. The number

p is often very large, sometimes several hundred or even over a thousand. This creates

major difficulties with visualization and analysis of such data. In Figure 1.2, we saw a

scatter plot of two-dimensional data, but what do we do with 200-dimensional data?

This bookwill show you how towork invery high dimensional spaces and still be able

to extract the most important information.

Remote sensing images are used in awide range of applications. In agriculture, one

can detect crop diseases from aerial images covering large areas. One example that we

are going to use in this book is an image of grass area, where a part of the image was

identified as representing diseased grass. Our goal is to learn how to recognize

diseased grass based on a 42-dimensional spectral vector representing a pixel in the

image. We can then use this information to classify spectra in future images into

healthy or diseased grass. This learning process is called supervised learning because

we have prior information from the image on how the healthy grass and the diseased

grass look in terms of their spectrum. Once we know how to differentiate the two

groups based on the spectra, we can apply the method to large areas of grass.

The diseased grass does not look much different from the healthy grass, if you are

assessing it visually or looking at a color photograph. However, there is more

information in 42 dimensions, but how can we find it and see it? In this book, we

will show you methodologies for finding the most relevant information in 42

dimensions. We will also find the most informative low-dimensional views of the

data. Figure 1.4 shows an optimal way of using two dimensions for distinguishing

between three types of grass pixels—the healthy grass (Group 1), less severely

diseased grass (Group 2), and severely diseased grass (Group 3). The straight lines

show the optimum separation between the groups for the purpose of classification, and

the ellipses show an attempt to describe the variability within the groups. In this book,

we will show you how to construct such separations, how to evaluate their efficiency,
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how to describe the variability within groups, and then check how reliable such

descriptions are.

Example 1.4 (Statistical Thinking).Even before any data are collected, we need to
utilize statistical thinking so that our study is scientifically valid and the conclusions

are representative of the intended scope of the study.Whenever we use data and try to

analyze them, we need to take the following three steps:

1. Formulate the practical problem at hand as a statistical problem.

2. Solve the problem using statistics. This usually involves the collection and

analysis of data.

3. Translate the problem solution back to the real-world application.

The purpose of this book is to show you how to solve practical problems by using this

statistical approach. Let’s say you are a quality engineer at Acme Labs producing

plastic injectionmolding parts. You are part of a team assigned to provide a sensor for

automatically detecting whether the produced parts have an acceptable shade of a

chosen color. Many steps are needed to accomplish the task, but here we give an

example of two steps where statistics would be useful:

1. Define what it means that a color shade is acceptable or not.

2. Find and test an instrument that would measure the color with sufficient

precision at a reasonable cost.

The color shade acceptability is somewhat subjective and will depend on the observer

and viewing conditionswhen thematerial is compared visually. SeeBerns (2000) for a

more detailed discussion of color and color measurement. In this book, we will focus

on instrumental color measurement. The produced parts of nominally the same color

Figure 1.4 A two-dimensional representation of a 42-dimensional set of image pixels representing

healthy grass (Group 1), less severely diseased grass (Group 2), and severely diseased grass (Group 3).
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will vary slightly in the color shade, possibly due to variation in the production

process. Instrumental measurements of the color will also vary. All those sources of

variability can be measured and described using statistical methods. It would be best

to know the variability of all produced parts, all possible measurements made with a

given instrument, and all possible observers. However, it is either impossible or

impractical to gather all that knowledge. Consequently, in statistics we deal with

samples, and we determine to what extent a sample represents the whole population

that it is attempting to describe.

Throughout this book,we are going to use the examples described above, aswell as

many others, to illustrate real-world applications of the discussed statistical methods.

1.1 WHO SHOULD READ THIS BOOK

This book is primarily intended for students and professionals working in the fields of

imaging, optics, and photonics. Hence, all examples are from these fields. Those are

vast areas of research and practical applications, which is why the examples are

written in a simplified format, so that nonexperts can relate to the problem at hand.

Nevertheless, this book is about statistics, and the presented tools can be potentially

useful in any type of data analysis. So, practitioners in other fields will also find this

book useful.

The reader is expected to have some prior experience with quantitative analysis of

data. We provide a gentle and brief introduction to data analysis and concentrate on

explaining the associated concepts. If a reader needs more practice with those tools, it

is recommended that other books, with a more thorough coverage of fundamentals,

are studied first.

Some experiencewith vector and matrix algebra is also expected. Familiarity with

linear algebra and some intuition about multidimensional spaces are very helpful.

Some of that intuition can be developed by working slowly through Chapter 5.

This book is not written for statisticians, although theymay find it interesting to see

how statistical methods are applied in this book.

1.2 HOW THIS BOOK IS ORGANIZED

This chapter is followed by two chapters that review the fundamentals needed in

subsequent chapters. Chapter 2 covers the tools needed for exploratory data analysis

as well as the probability theory needed for statistical inference. In Chapter 3, we

briefly introduce the fundamental concepts of statistical inference. The regression

models covered in Chapter 4 are very useful in statistical analysis, but that material is

not necessary for understanding the remaining chapters. On the other hand, two

supplements to that chapter provide the fundamental information about vector and

matrix algebra as well as random vectors, all needed in the following chapters.

Starting with Chapter 5, this book is about multivariate statistics dealing with

various structures of data on multiple variables. We lay the foundation for the

6 INTRODUCTION



multidimensional considerations in Chapter 5. This is where a reader comfortable

with univariate statistics could start reading the book. Chapter 6 covers basic

multivariate statistical inference that is needed in specific scenarios but is not

necessary for understanding the remaining parts of the book. Principal component

analysis (PCA) discussed in Chapter 7 is a very popular tool in the fields of imaging,

optics, and photonics. Most professionals in those fields are familiar with PCA.

Nevertheless, we recommend reading that chapter, even for those who believe they

are familiar with this methodology. We are aware of many popular misconceptions,

and we clarified them in that chapter. Each of the remaining chapters moves

somewhat separately in three different directions, and they can be read indepen-

dently. Chapter 8 covering canonical correlation analysis is difficult technically. In

Chapter 9, we describe classification, also called supervised learning, which is

used to classify objects into populations. Clustering, or unsupervised learning, is

discussed in Chapter 10, which can be read independently of the majority of the

book material.

1.3 HOW TO READ THIS BOOK AND LEARN FROM IT

Statistics is a branch of mathematics, and it requires some of the same approaches to

learning it as does mathematics. First, it is important to know definitions of the terms

used and to follow the proper terminology. Knowing the proper terminology will not

only make it easier to use other books on statistics, but also enable easier communi-

cation with statisticians when their help is needed. Second, one should learn statistics

in a sequential fashion. For instance, the reader should have a good grasp of the

material in Chapters 2 and 3 before reading most of the other parts of this book.

Finally, when reading mathematical formulas, it is important to understand all

notation. You should be able to identify which objects are numbers, or vectors, or

matrices—which are known, which are unknown, which are random or fixed

(nonrandom), and so on. The meaning of the notation used is usually described, but

many details can also be guessed from the context, similar to everyday language.

When writing your own formulas, you need to make sure that a reader will be able to

identify all of the features in your formulas.

As with all areas of mathematics and related fields, it is critical to understand the

basics before the more advanced material can be fully mastered. The particular

difficulty formany nonstatisticians is the full appreciation of the interplay between the

population, the model, and the sample. Once this is fully understood, everything else

starts to fall into place.

Each chapter has a brief list of problems to practice the material. The more

difficult problems are marked by a star. We recommend that the readers’ main

exercise be the recreation of the results shown in the book examples. Once the

readers can match their results with ours, they would most likely master the

mechanics of the covered methodologies, which is a prerequisite for their deeper

understanding. Most concepts introduced in this book have very specific geometric

interpretations that help in their understanding. We use many figures to illustrate the
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concepts and elicit the geometric interpretation. However, readers are encouraged to

sketch their own graphs when reading this book, especially some representations of

vectors and other geometric figures.

Real-world applications are usually complex and require a considerable amount of

time to even understand the problem. For educational purposes, we show simplified

versions of those real problems with smaller data sets and straightforward descrip-

tions, so that nonexperts can easily relate to them.

We often provide references where the proofs of theorems can be found. This is not

meant as a recommendation to read those proofs, but simply as potential further

reading for more theoretically inclined readers. We provide derivations and brief

proofs only in cases when they are simple and provide helpful insight and illustration

of the introduced concepts.

In this book, we try to keep the mathematical rigor at an intermediate level. For

example, the main statistical theme of distinguishing between the population and the

sample quantities is emphasized, but only in places where it is necessary. In other

places, readers will need to keep track of those subtleties on their own, using their

statistical thinking skills, hopefully developed by that time.

We usemathematical notation and formulas generously, so readers are encouraged

to overcome their fear of formulas. We treat mathematical language as an indispens-

able tool to describe things precisely. As with any other language learning, it becomes

easier with practice. And once you know it, you find it useful, and you cannot resist

using it.

We abstain from a mathematical tradition of reminding the reader that the

introduced objects must exist before one can use them. We usually skip the assump-

tions that sets are nonempty and the numbers we use are finite. For example, if we

write a definite integral, we implicitly assume that it exists and is a finite number.

1.4 NOTE FOR INSTRUCTORS

The author has used the multivariate material of this book in a 10-week graduate

course on multivariate statistics for imaging science students. With the additional

material developed for this book and the review of the univariate statistics, the book

is also suitable for a similar 15-week course. The author’s experience is that some

review of the material in Chapters 2, 3 and 4 is very helpful for students for a better

understanding of the multivariate material. The computational results and graphs in

this book were created with the powerful statistical programming language R (see

R Development Core Team (2010)). However, students would usually use their

preferred software, such as ENVI/IDL or MATLAB. It is our belief that students

benefit from implementing statistical techniques in their own computational

environment rather than using a statistical package that is chosen for the purpose

of the course and possibly never again used by the students. This is especially true

for students dealing with complex data such as those used in imaging, optics, and

photonics.

8 INTRODUCTION



1.5 BOOK WEB SITE

The web site for this book is located at

http://people.rit.edu/�pxbeqa/ImagingStat

It contains data sets used in this book, color versions of some of the book figures

(if the color is relevant), and many other resources.
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C H A P T E R 2

Fundamentals of Statistics

This chapter is a brief review for readers with some prior experience with quantita-

tive analysis of data. Readers without such experience, or those who prefer more

thorough coverage of the material, may refer to the textbooks by Devore (2004) or

Mendenhall et al. (2006).

2.1 STATISTICAL THINKING

Statistics is a branch of mathematics, but it is not an axiomatic science as are many

other of its branches (where facts are concluded from predetermined axioms). In

statistics, the translation of reality to a statistical problem is a mix of art and science,

and there are often many possible solutions, each with a variety of possible

interpretations.

The science of statistics can be divided into two major branches—descriptive

statistics and inferential statistics. Descriptive statistics describes samples or popula-

tions by using numerical summaries or graphs. No probabilisticmodels are needed for

descriptive statistics. On the other hand, in inferential statistics, we draw conclusions

about a population based on a sample. Here we build a probabilistic model describing

the population of interest, and then draw information about the model from the

sample. When analyzing data, we often start with descriptive statistics, but most

practical applications will require the use of inferential statistics. This book is

primarily about inferential statistics.

In Chapter 1, we emphasized that variability is everywhere, and we need to utilize

statistical thinking to deal with it. In order to assess the variability, we first need to

define precisely what we are trying to measure, or observe. We can then collect the

data and analyze them. Let us describe that process, and on the way, introduce

definitions of some important concepts in statistics.

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Definition 2.1. A measurement is a value that is observed or measured.

Definition 2.2. An experimental unit is an object on which a measurement is

obtained.

Definition 2.3. A population is often defined as a set of experimental units of interest

to the investigator. Sometimes, we take repeated measurements of one characteristic

of a single experimental unit. In that case, a population would be a set of all such

possible measurements of that experimental unit, both the actual measurements taken

and those that can be taken hypothetically in the future.

Definition 2.4. A sample is a subset selected from the population of interest.

When designing a study, one should specify the population that addresses the

question of interest. For example, when investigating the color of nominally red

plastic part #ACME-454, we could define a population of experimental units as all

parts #ACME-454 produced in the past and those that will be produced in the future

at a given plant of ACME Labs.

We can say that this population is hypothetical because it includes objects not

existing at the time. It is often convenient to think that the population is infinite. This

approach is especially useful when dealing with repeated measurements of the same

object. Infinite populations are also used as approximations of populations consisting

of a large number of experimental units. As you can see, defining a population is not

always exact science.

Once we know the population of interest, we can identify a suitable sampling

method, which describes how the sample will be selected from the population. Our

goal is tomake the sample to be representative of the population, that is, it should look

like the population, except for being smaller. The closer we get to this ideal, the more

precise are our conclusions from the sample to the population. There are whole books

describing how to select samples (see Thompson (2002), Lohr (2009), Scheaffer et al.

(2011), and Levy and Lemeshow (2009)).

If a data set was given to you, you need to find out how the data were collected, so

that you can identify the population it represents. The less we know about the

sampling procedure used, the less useful the sample is. In extreme cases, it might be

prudent to use the old adage “garbage in–garbage out,” and try to collect new data

instead of using unreliable data.

Let’s say, you were given data on color measurements of 10 parts #ACME-454

that were taken from the current production process. However, there is no

information about the process of selecting the 10 parts. They all might have

been taken from one batch produced within 1 h or each part might have been

produced on a different day. They could also be rejects from the process. In this

case, it would be more productive to design a new study of those parts in order to

collect new data.

The purpose of this section is to give the reader a general overview of the principles

of statistical thinking and a sense of the nuances associatedwith statistics. If reading it
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led you to having even more questions than you started with, then continue to the

following sections and chapters, where you will find many answers.

2.2 DATA FORMAT

Data are often organized in a way that is convenient for data collection. In order to

implement statistical thinking and better understand the data, we usually find it

convenient to organize the data into the format of a traditional statistical database. The

format consists of a spreadsheet, where observations are placed in rows and variables

are placed in columns. Example 2.1 illustrates this traditional formatting technique.

Example 2.1 Optical fibers permit transmission of signals over longer distances and

at higher bandwidths than other forms of communication. An experiment was

performed in order to find out how much power is lost when sending signals through

optical fiber. Five pieces of 100m length of optical fiber were tested. A laser light

signal was sent from one end through each piece of optical fiber, and the output power

was measured at the other end. The power of the laser source was 80mW. The results

are shown in Table 2.1, where each row represents a set of results for a single piece of

optical fiber. Each unique optical fiber is identified by a number recorded in the first

column of the table. The remaining columns contain the variables from the experi-

ment. The Input Power Pinð Þ is the nominal value of 80mW, which is the same for all

observations. The Output Power Poutð Þ given in the next column is a quantity that was

measured in the experiment. The Power Loss Lpower
� �

in the last column was

calculated in decibels (dB) according to the following formula:

Power Loss dBð Þ ¼ 10 log10
Output Power

Input Power
: ð2:1Þ

Organized in this way, the data are easily analyzed. For a small data set like this

one, we can often draw some conclusions directly from the table, but for larger data

sets, we will need some summary statistics and graphs to understand the data.

Since the Power Loss is calculated from the Output Power (with constant Input

Power), the two variables convey the same information (within this data set). So, if we

Table 2.1 Experimental Results on Five Pieces of Optical Fiber

Optical Fiber

Number

Input

Power (mW)

Output

Power (mW)

Power

Loss (dB)

1 80 72.8 �0.4096

2 80 70.0 �0.5799

3 80 72.0 �0.4576

4 80 68.8 �0.6550

5 80 73.6 �0.3621

Negative dB means that there is loss of power.
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are trying to characterize a typical fiber based on the five pieces, which of the two

variables should we use? This question will be addressed in the next section on

descriptive statistics. &

The data are not always as neatly organized as those in Table 2.1. At the same time,

it is not always necessary to have an actual statistical database in the Table 2.1 format.

However, in the process of statistical thinking, we want to identify what the

observations and variables are in a given context, since this will be crucial in our

statistical analysis.

2.3 DESCRIPTIVE STATISTICS

When dealing with data, especially with large amounts of data, we find it useful to

summarize them with some appropriately chosen summary (or descriptive) statistics.

We will now concentrate on the values of one variable and will denote the n

observations of that variable by x1; x2; . . . ; xn. Note that the subscript index does

not imply any particular order in those values. The first step in understanding the data

is to describe themagnitude of the observations.Whenwe think of data as numbers on

the number axis, themagnitudewill tell us a general location of the data on the axis. In

the following subsection, we discuss various statistics for describing the data location.

2.3.1 Measures of Location

The most popular descriptive statistic is the sample mean defined by

x ¼ 1

n

Xn
i¼1

xi; ð2:2Þ

which describes the general (on average) location of the data. One appealing

property of the sample mean is a physical property that it is the balance point for

a system of equal weights placed at the points xi; i ¼ 1; . . . ; n, on the number axis.

Figure 2.1 shows an example of five data points with equal weights, which are

balanced at the x point.

Example 2.1 (cont.) For the data in Table 2.1, we can calculate the sample means of

all three variables. For the Input Power variable, we get its sample mean

Pin ¼ 80 mW, of course. For Output Power, we obtain Pout ¼ 71:44 mW, and for

the Power Loss, Lpower ¼ �0:4928. The means are supposed to represent a typical or

an average optical fiber. Let us assume that an optical fiber regarded as average has the

x = 71.44

69 70 71 72 73

Figure 2.1 Five Output Power values balanced at the sample mean point (see Example 2.1).

14 FUNDAMENTALS OF STATISTICS



Output Power value ofPout ¼ 71:44 mW, that is, the same as the previously calculated

mean. According to formula (2.1), its power loss would be described as �0:4915 dB,
which is different from the previously calculated average Power Loss of

Lpower ¼ �0:4928. The question is which of the two values should be regarded as

a typical power loss value. There is an easy mathematical explanation for why the two

numbers differ. Let us say that a variable y is calculated as a function of another variable

x, that is, y ¼ f xð Þ. In this case, PowerLoss is calculated as a function ofOutput Power.
This means that for observations xi; i ¼ 1; . . . ; n, we have yi ¼ f xið Þ; i ¼ 1; . . . ; n.
What we have just observed in our calculations simply means that y 6¼ f xð Þ. In other
words, a transformation of the mean is not necessarily the same as the mean of the

transformed values. A special case is when the function f is linear, and we do get an

equality y ¼ f xð Þ, that is, for yi ¼ axi þ b, we have y ¼ ax þ b.

Despite the above explanation, we still do not know which of the two power loss

values we should regard as typical for the type of optical fiber used in the experiment.

The answer will depend on how such a number would be used. Here we give two

possible interpretations. If the five measurements were performed on the same piece

of optical fiber, then the sample mean Pout would estimate the “true” output power of

the fiber. The true power loss for that fiber should then be calculated as

10 log10 Pout=80
� � ¼ �0:4915 dB. An alternative scenario would be when the five

different pieces tested in the experiment represent an optical fiber used in an existing

communication network, and we are trying to characterize a typical network power

loss (over 100m). In this case, it would be more appropriate to use the value of

Lpower ¼ �0:4928. To understand this point, imagine the five pieces being connected

into one 500m optical fiber. Its power loss would then be calculated as the sum of the

five power loss values in Table 2.1, resulting in the total power loss of �2:4642 dB.
The same value (up to the round-off error) can be obtained by multiplying the typical

value of Lpower ¼ �0:4928 by 5.

We now need to introduce the concept of ordered statistics. Let’s say we have n

observations xi; i ¼ 1; . . . ; n, of a given variable. We order those numbers from the

smallest to the largest, and call the smallest one the value of the first-order statistic

denoted by x 1ð Þ. The second smallest value becomes the second-order statistic denoted

byx 2ð Þ, and so on until the largest value becomes the nth-order statistic denoted byx nð Þ.
We can now introduce the sample median, which is the middle value in the data set

defined as

~x ¼
x kð Þ for odd n ¼ 2k�1;

x kð Þ þ x k þ 1ð Þ
� �

=2 for even n ¼ 2k:

(
ð2:3Þ

In Example 2.1, n ¼ 5 is odd, hence k ¼ 3, and for the Output Power variable, we

have ~x ¼ x 3ð Þ ¼ 72. The sample median is called a robust statistic because it is not

impacted by unusual observations called outliers. It is also useful for skewed data,

where the mean is pulled away from the bulk of data because of being influenced by a

few large values. Figure 2.2 shows an example where the bulk of the data is in the

range between 0 and 2, but the sample mean is above 2 because of two outliers.
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The samplemedian canbe regardedas too robust in the sense that it dependsonly on

the ordered statistics in themiddle of the data. As a compromise between themean and

the median, we can define a trimmed mean, where a certain percent of the lowest and

highestvaluesare removed, and themean iscalculated fromthe remainingvalues.Note

that themedian is an extreme case of the trimmedmean, where the same number of the

lowest and highest values are removed until only one or two observations are left.

The sample median divides the data set into two halves. For a more detailed

description of the data distribution, we can divide data into one hundred parts and

describe the position (or location) of each part. To this end, we can define a

sample 100pð Þth percentile, where p is a fraction 0 � p � 1ð Þ, as a number x such

that approximately 100pð Þ% of data is below x and the remaining 100 1�pð Þð Þ% of

data is above x. A 100pð Þth percentile is also called a pth quantile. Percentiles are

often used in reporting results of standardized tests, because they tell us how a person

performed in relation to all other test takers. Of course, it is not always possible to

divide the data into an arbitrary fraction, sowe need amore formal definition.We first

assign the kth-order statisticx kð Þ as the k�1ð Þ= n�1ð Þ quantile.When a different-level

quantile is needed, it is interpolated from the two nearest quantiles previously

calculated as the ordered statistics. The sample percentiles are best calculated for

large samples, but herewe give an educational example for the five observations of the

Output Power variable in Example 2.1. For n ¼ 5, the five ordered statistics are

assigned as 0th, 25th, 50th, 75th, and 100th percentiles. A 90th percentile is calculated

by a linear interpolation as the weighted average of the two ordered statistics, that is,

100�90

100�75
x 4ð Þ þ 90�75

100�75
x 5ð Þ; ð2:4Þ

which gives 73.28 for the Output Power variable (given as Problem 2.1). There are

many other ways of calculating percentiles, and the best way may depend on the

context of data. For large n, all methods give similar results.

It is easy to see that the samplemedian is the 50th percentile.We also define the first

and third quartiles as the 25th and 75th percentiles, respectively. The two quartiles

together with the median, which is also the second quartile, divide the data set into

four parts with approximately even counts of points.

2.3.2 Measures of Variability

In the previous subsection, we discussed the location aspect of data. Another

important feature of data is their variability. The simplest measure of variability is

xx~

0 2 4 6 8 10

Figure 2.2 Adata set skewed to the right due to two outliers. The samplemean does not represent the bulk

of data as well as the sample median does.
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the range, which is defined as the difference between the maximum and minimum

values, that is, x nð Þ�x 1ð Þ for a sample of size n. A significant disadvantage of the range

is its dependence on the two most extreme observations, which makes it sensitive

to outliers.

A differentway to describevariability is to use deviations from a central point, such

as the mean. The deviations from the mean, defined as di ¼ xi�x, have the property

that they sum up to zero (see Problem 2.2). Hence, the measures of variability

typically consider magnitudes of deviations and ignore their signs. The most popular

measures of variability are the sample variance defined as

s2 ¼ 1

n�1

Xn
i¼1

d2
i ¼ 1

n�1

Xn
i¼1

xi�xð Þ2 ð2:5Þ

and the associated sample standard deviation defined as s ¼
ffiffiffiffi
s2

p
. They both convey

the equivalent information, but the advantage of the standard deviation is that it is

expressed in the units of the original observations, while the variance is in squared

units, which are difficult to interpret.

Let us now consider a linear transformation of xi defined as yi ¼ axi þ b for

i ¼ 1; . . . ; n. Using some algebra, one can check that the sample variance of the

transformed data is equal to s2y ¼ a2s2x and the sample standard deviation is sy ¼ ajsxj
(see Problem 2.3). This means that both statistics are not impacted by a shift in data,

and scaling of data by a positive constant results in the same scaling of the sample

standard deviation.

Another measure of variability is the interquartile range (IQR), defined as the

difference between the third and first quartiles, which is the range covering themiddle

50% of the data.

2.4 DATA VISUALIZATION

We all know that a picture is worth a thousand words. In the statistical context, it

means that valuable information can be extracted from graphs representing data—

information thatmight be difficult to notice and conveywhen reporting only numbers.

For an efficient graphical presentation, it is important that the maximum amount of

information is conveyed with the minimum amount of ink. This allows representa-

tions of large data sets and at the same time keeps the graphs clear and easy to

interpret. This concept has been popularized by Tufte (2001), who used the informa-

tion-to-ink ratio as a measure of graph efficiency. In those terms, bar charts and pie

charts are very inefficient, and indeed they are of very little value in data analysis.

2.4.1 Dot Plots

One of the simplest graphs is a dot plot, where one dot represents one observation, and

one axis (such as the horizontal axis as in Figure 2.3) is devoted to showing the range
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of values. The second axis may not be used at all (with all dots lined up along a

horizontal line), or it can be used to show additional information such as grouping of

observations, or their order. One advantage of a dot plot is that it can be created in any

software program capable of plotting dots in a system of coordinates.

Example 2.2 As part of a printing experiment described in Appendix B, three

pages were printed with an identical pattern of color patches, such as the one shown in

Figure 1.3 in the context of Example 1.2. On each page, there were eight patches of

cyan (at maximum gradation, or amount, of the cyan ink). For each patch, Visual

Densitywasmeasured as a quality controlmetric. Figure 2.3 shows a dot plot ofVisual

Density for the three pages as three groups. The horizontal lines within each group

represent eight patches. The three groups of data (as pages) seem to be somewhat

different, but it is unclear if the differences could have happened by chance or if they

manifest a real difference. No real difference would be good news because it would

mean consistent printing from page to page. This questionwould need to be addressed

by statistical inference discussed in Chapters 3 and 4.

In Figure 2.3, we may have an impression of a slanted shape of points within each

group, where the patches with a higher identification number tend to give lower

densities. This suggests a possible pattern from patch to patch. In order to test this

hypothesis, we can group data into eight groups (for eight patches) of three

observations each and create a dot plot with patches as groups. In that case, the

number of groups is fairly large, and it makes sense to use a different version of a dot

plot, where each group is plotted along one horizontal line as in Figure 2.4. We can
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Figure 2.3 Dot plot for Visual Density of eight patches of cyan printed on three different pages (groups).
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now see that Patches 5, 7, and 8 tend to have lower Visual Density values than some

other patches, especially Patch 2. Sincewe have only three observations per patch, it is

unclear if this effect is incidental, or if there is a real systematic difference among

patches. Again, this question needs to be answered with some formal statistical

methods that will be discussed in Chapter 3. &

2.4.2 Histograms

Dot plots are convenient for small to medium-sized data sets. For large data sets, we

start getting significant overlap of dots, which can be dealt with by stacking the points,

but this requires extra programming or a specialized function. Also, it becomes

difficult to assess the shape of the distributionwith toomany points. In those cases, we

can use a histogram, which resembles a bar chart, except that the bars represent

adjacent bins or subintervals of equal length defined within the range of given data.

For example, the histogram in Figure 2.5 uses bins of width 0.05. The tallest bar

represents the bin from 0 to 0.05, the next bin to the right is from 0.05 to 0.1, and so on.

The height of the bar shows the number of points (frequency) in the bins. In this
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Figure 2.4 Dot plot for Visual Density of eight patches of cyan (as groups) printed on three different

pages.
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Figure 2.5 A histogram of the Light Intensity values from an image of a fish as used in Example 2.3.
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example, there are almost 40,000 observations in the bin from 0 to 0.05. The bins in a

histogram are adjacent with no gaps between them. Consequently, there are usually no

gaps between the bars. If there is a gap in the bars, it means that the respective bin had

zero frequency and was not plotted (or had zero height). In very large data sets, the

height of a bar might be larger than zero but still be so small (in relation to the vertical

scale of frequencies) that the bar is not visible.

Example 2.3 Consider Fish Image data set representing an image of a fish on a

conveyer belt as explained in Appendix B. The average transflected Light Intensity

over 15 image channels was calculated for each image pixel and plotted in Figure 2.6.

We use a convention that higher values are shown in darker colors. This produces

better displays in most cases than the traditional approach in imaging to usewhite for

the highest values. Using white for largest values may seem logical from the point of

view of color management, but it usually produces poor quality displays.

There are 45 pixels along the width of the conveyer belt and 1194 pixels along its

length, for a total of 53,730 pixels. In a paper byWold et al. (2006), a threshold on the

Light Intensity was used to distinguish between the fish and non-fish pixels, but no

details were provided as to the process of selecting the threshold. In order to

determine the threshold, it is helpful to perform exploratory analysis of the data.

To this end, we can create a histogram of all 53,730 Light Intensity values as shown

in Figure 2.5, so that we can look for a natural cutoff point between the two sets of

pixels. Unfortunately, that histogram is not very useful because the majority of

observations fall into one bin, and then not much can be seen in the remaining bins.

This is partially because of the scaling of the vertical axis being dictated by the very

high frequency for that one bin. It turns out that the largest Light Intensity is above

0.82, and as many as 33 values are above 0.7. Yet, one cannot see any frequency bars

above 0.7. The reason has been discussed earlier. The resulting height of the bar is

too small to be seen. It also turns out that 182 values are exactly zero, and they were

included in the first (tiny) bar on the left.

Oneway to improve the histogram inFigure 2.5 is to use a logarithmic scale. To this

end,we calculated a logarithm to base 10 of all positivevalues and created a histogram

shown in Figure 2.7. A larger number of bins were used, so that finer details of the

Figure 2.6 Light Intensity values from an image of a fish as used in Example 2.3.
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distribution could be seen. The computer software for creating histograms usually has

a built-in algorithm for a default number of bins, but users often have an option to

specify their own preference. Some experimentation may be needed to find a suitable

number of bins.

Based on the data in Figure 2.6,we know that there aremore pixels representing the

conveyer belt than those representing the fish. We also know that the higher values

represent the fish. This information, together with Figure 2.7, suggests the threshold

value identifying the fish pixels to be somewhere between �1:5 and �1 for

log10 Light Intensityð Þ, which corresponds to 0:0316 < Light Intensity < 0:1. How-
ever, it is unclear which exact value would be best. In order to find a good threshold

value, we can look at spatial patterns of pixels identified as fish. Since each image

pixel represents an areawithin the viewing scene, it is often represented as a rectangle,

like those in Figure 2.8. We could require that the set of selected pixels forms a

connected set because the image represents a fish in one piece. In the context of a

pixilated image, we define a set A of pixels as a connected set, if for any pair of pixels

from A, one can find a path connecting the pixels. The path can directly connect two

pixels only when they are neighbors touching at the sides (but not if they only touch at
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Figure 2.7 Ahistogramof a base 10 logarithmof the Light Intensity values from an image of a fish as used

in Example 2.3.

Figure 2.8 The darker shaded area is a connected set, but when the lighter shaded pixel is added, the set of

pixels is not connected.
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corners). The darker shaded area in Figure 2.8 is a connected set, but when the lighter

shaded pixel is added, the set of pixels is not connected.

When selecting all pixels with Light Intensity above 0.08104, one obtains a

connected set of pixels shown as the black area in Figure 2.9a. Reducing the threshold

below 0.08104 adds additional pixels that are not connected with the main connected

set. An algorithmwas used, where the threshold valuewas lowered, and the number of

Figure 2.9 Dark areas show connected sets of pixels with Light Intensity above 0.08104 (a) and above

0.03809 (b), based on Fish data from Example 2.3.
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Figure 2.10 The number of pixels not connected to the main connected set shown as a function of the

threshold value (for Fish data from Example 2.3).
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pixels not connected to themain connected set was recorded and shown in Figure 2.10

as a function of the threshold value.We can see that for thresholds slightly above 0.07,

the selected pixels again form a connected set (because the number of pixels not

connected equals zero). This happens again at several ranges of the smaller threshold

value until the smallest such value at 0.03809 (the place most to the left in Figure 2.10

where the function value is still zero). Below that value, the number of pixels not

connected goes to very high values (beyond the range shown in Figure 2.10). Clearly, a

good choice for the threshold value would be the one for which the number of pixels

not connected is zero. However, Figure 2.10 still leaves us with a number of possible

choices. Further investigation could be performed by looking at the type of graphs

shown in Figure 2.9 and assessing the smoothness of the boundary lines. &

2.4.3 Box Plots

Another useful graph for showing the distribution of data is a box plot (sometimes

called a box-and-whisker plot). An example of a box plot is shown in Figure 2.11,

where a vertical axis is used for showing the numerical values. The box is plotted so

that its top edge is at the level of the third quartile, and the bottom edge is at the level of

the first quartile. A horizontal line inside the box is drawn at the level of themedian. In

the simplest version of a box plot, vertical lines (called whiskers) extend from the box

to theminimum andmaximumvalues. Some box plotsmay show outliers with special

symbols (stars, here), and thewhiskers extending only to the highest and lowest values

that are not outliers (called upper and lower adjacent values). Clearly, this requires an

automated decision as to which observations are outliers. Computer software often

uses some simplified rules based on the interquartile range. For example, an

observation might be considered an outlier when it is above the third quartile or

below the first quartile by more than 1:5 � IQR. However such rules are potentially

misleading because any serious treatment of outliers should also take into account the

sample size. We discuss outliers and their detection in Section 3.6.

Example 2.4 In Example 2.2, we discussed the Visual Density of cyan patches on

three pages printed immediately after the printer calibration. In the experiment

described in Appendix B, the printer was then idle for 14 h, and a set of 30 pages
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Figure 2.11 An example of a box plot.
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was printed, of which 18 pages were measured by a scanning spectrophotometer.

This gives us a total of 21 pageswith eightmeasurements of cyanpatches in each page.

Figure 2.12 shows the data in 21 groups using the dot plots (panel (a)) and the box plots

(panel (b)). The box plots are somewhat easier to interpret, and this advantage

increases with the increased number of groups and observations per group.

In Figure 2.12, we cannot see any specific patterns in Visual Density changes from

page to page, which means that the idle time and subsequent printing of 30 pages

had no significant impact on the quality of print as measured by the Visual Density of

cyan patches.

2.4.4 Scatter Plots

When two characteristics, or variables, are recorded for each observation, or row, in

the statistical database, we can create a two-dimensional scatter plot (as shown in

Figure 2.13), where each observation is represented as a point with the two

coordinates equal to the values of the two variables. A specific application of a

scatter plot is best illustrated by the following example.

Example 2.5 This is a follow-up on Example 1.1, where you can find some

background information about eye tracking. Here we want to consider an RGB

image obtained in an Eye Tracking experiment as explained in Appendix B. This is a

128 by 128 pixel image (shown in Figure 2.14). The image consists of 16,384 pixels,

which are treated as observations here. For each pixel, we have the intensity values

(ranging from0 to 1) for the three colors: Red, Green, andBlue, which can be regarded

as three variables.

Figure 2.13 shows a scatter plot of Red versus Green values for that image. The

pixels (observations) are represented as very small dots, so that thousands of them can
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Figure 2.12 Visual Density of cyan printed on 21 pages shown as groups in the dot plots (a) and the box

plots (b).
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be seen as separate dots in the graph. A scatter plot is intended for continuous

variables, and a primary color intensity is a continuous variable in principle. However,

the three colors in the RGB image were recorded using 8 bits, which means that there

are only 256 gradations of each color. This causes some discreteness of values, which

can be seen as a pattern of dots lining up horizontally and vertically in Figure 2.13. It

also turns out that there are many pixels in this image with exactly the same

combination of gradations for the two colors. That is, some dots in the scatter plot

represent more than one pixel. In order to deal with this issue, a technique of random

jitter can be used, which amounts to adding a small random number to each point

coordinate, before the points are plotted. This way, the dots do not print on the top of

Figure 2.13 Ascatter plot of intensities from theEyeTracking image discussed inExample 2.5 and shown

in Figure 2.14.

Figure 2.14 An RGB image from the Eye Tracking data set.
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each other. In Figure 2.15, a jitter in the amount equal to U�0:5ð Þ=256 was used,

whereU is a random variable with the uniform distribution on the interval 0; 1ð Þ. The
jitter improved the image, which no longer exhibits granulation, and we can better

see where the larger concentrations of dots are. The use of jitter becomes even more

important for highly discrete data.

The scatter plot shown in Figure 2.15 tells us that many pixels have high values

both inRed and inGreen. There is also a largegroup of pixelswith approximately 50%

of red and a small amount of green and then another group of pixels with approxi-

mately 50% of green and a small amount of red. There are no pixels with a very large

value in one color and a low value in the other color, which is why the top left corner

and the bottom right corner are both empty. &

2.5 PROBABILITY AND PROBABILITY DISTRIBUTIONS

2.5.1 Probability and Its Properties

In statistics, we typically assume that there is some randomness in the process we are

trying to describe. For example, when tossing a coin, the outcome is considered

random, and onewould expect to obtain heads or tailswith the same probability of 0.5.

On the other hand, a physicist may say that there is nothing random about tossing a

coin. Assuming full knowledge about the force applied to the coin, one should be able

to calculate the coin trajectory as well as its spin, and ultimately predict heads or tails.

However, it is usually not practical to collect that type of detailed information about

the coin toss, and the assumption of 50–50 chances for heads or tails is regarded as

sufficient, given lack of additional information. In general, one can say that random-

ness is a way of dealing with insufficient information. This would explain why, for a

Figure 2.15 A scatter plot of color intensities from the Eye Tracking image shown in Figure 2.14. A small

amount of random jitter was added to each dot.
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given process, one can build many models depending on the available information.

Also, the more information we have, the more likely we are to reduce the randomness

in our model.

In order to calculate a probability of an event, we need to assume a certain

probabilistic model, which involves a description of basic random events we are

dealing with and a specification of their probabilities. For example, when assuming

50–50 chances for heads or tails, we are saying that each of the two events, heads and

tails, has the same probability of 0.5.We can call this simple model a fair-coin model.

Assuming this model, one can then calculate the probability of getting 45 tails and 55

heads in 100 tosses of the coin.

In statistics, we use this information in order to deal with an inverse problem. That

is, let’s assumewe observe 45 tails and 55 heads in 100 tosses of a coin, but we do not

know if the coin is fair with the same chances of heads or tails. Statistics would tell us,

with certain confidence, what the probabilities are for heads or tails in one toss. It

would also tell us if it is reasonable to assume the same probability of 0.5 for both

events. If you think we can safely conclude, based on these 100 tosses, that the coin is

fair, you are correct. What would be your answer if you observed 450 tails in 1000

tosses? If you are not sure, you can continue reading about the tools that will allow you

to do the calculations needed to answer this question.

Before we introduce a formal definition of probability, we need to define a sample

space as follows.

Definition 2.5. A sample space is the set of all possible outcomes of interest in a given

situation under consideration.

The outcomes in a sample space are mutually exclusive, that is, only one outcome can

occur in a given situation under consideration. For example, when a coin is tossed

three times, the outcome is a three-element sequence of heads and tails.Whenwe take

10 measurements, the outcome is a sequence of 10 numbers.

Definition 2.6. An event is a subset of a sample space.

When a coin is tossed three times, observing heads in the first toss is an event

consisting of four outcomes: H;H;Hð Þ, H;H; Tð Þ, H; T ;Hð Þ, and H; T ; Tð Þ, whereH
stands for heads and T stands for tails. In a different example, when we take 10

measurements on a continuous scale, we can define an event that all of those

measurements are between 20 and 25 units.

Definition 2.7. Probability is a function assigning a number between 0 and 1 to all

events in a sample space such that these two conditions are fulfilled:

1. The probability of thewhole sample space is always 1, which acknowledges the

fact that one of the outcomes always has to happen.

2. For a set of mutually exclusive events Ai, we have P
Sk

i¼1 Ai

� �
¼ Pk

i¼1 P Aið Þ,
where k is the number of events, which may also be infinity.

PROBABILITY AND PROBABILITY DISTRIBUTIONS 27



We can say that probability behaves like the area of a geometric object on a plane. The

sample space can be thought of as a rectanglewith an area equal to 1, and all events as

subsets of that square. Many properties of probability can be better understood

through such geometric representation. Figure 2.16 discussed below shows an

example of such representation called a Venn diagram.

When the sample space is finite, we often try to construct it so that all outcomes are

equally likely. In this way, the calculation of probability is reduced to the task of

counting the number of cases, such as permutations, combinations, and other

combinatorial calculations. More on these rudimentary topics in probability can be

found in most books on the fundamentals of statistics such as Devore (2004) or

Mendenhall et al. (2006).

Definition 2.8. For any two events A and B, where P Bð Þ > 0, the conditional

probability of A given that B has occurred is defined by

P A Bjð Þ ¼ P A \ Bð Þ
P Bð Þ : ð2:6Þ

Without any information aboutB, wewould use the unconditional probabilityP Að Þ as
a description of the probability of A. However, once we find out that B has happened,

we should use the conditional probabilityP A Bjð Þ to describe the probability ofA. One
can think of the conditional probability as probability defined on the subset B as the

whole sample space, and consequently, we consider only that part of A that also

belongs to B as shown in Figure 2.16.

IfA and B are disjoint events, then P A Bjð Þ ¼ 0, which means that A cannot happen

ifB has already occurred. A different concept is that of independence of events, which

can be defined as follows.

Definition 2.9. Two events A and B are independent if and only if

P A \ Bð Þ ¼ P Að Þ �P Bð Þ.

When P Bð Þ > 0, the events A and B are independent if and only if P A Bjð Þ ¼ P Að Þ,
which means that the probability of A does not change once we find out that B has

occurred. Some people confuse independent events with disjoint events, but the two

Figure 2.16 AVenn diagram showing two intersecting events. The probabilityP A Bjð Þ equalsP A \ Bð Þ as
a fraction of P Bð Þ.
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concepts are very different. If the events A and B are both independent and disjoint,

then 0 ¼ P A Bjð Þ ¼ P Að Þ, which means that this can happen only for an uninteresting

case when one of the sets has probability zero.

The event thatB has not occurred is denoted as a complement setBc ¼ S \B, where
S is the whole sample space. When P Bcð Þ > 0, the events A and B are independent if

and only if P A Bcjð Þ ¼ P Að Þ, which means that knowing that B has not occurred also

does not change the probability of A happening. We can say that knowing whether B

has occurred or not is not helpful in predicting A. The following theorem is often

useful for calculating conditional probabilities.

Theorem 2.1 (Bayes’ Theorem). Let A1; . . . ;Ak be a set of mutually exclusive

events such that P Aið Þ > 0 for i ¼ 1; . . . ; k and
Sk

i¼1 Ai is equal to the whole sample

space. For any event B such that P Bð Þ > 0, we have

P Ai Bjð Þ ¼ P Ai \ Bð Þ
P Bð Þ ¼ P B Aijð Þ �P Aið ÞPk

j¼1 P B Aj

��� � �P Aj

� � for i ¼ 1; . . . ; k: ð2:7Þ

This theorem is often used to calculate the probabilities P Ai Bjð Þ, when we know

the conditional probabilities P B Aijð Þ. The following example illustrates such an

application.

Example 2.6 Medical imaging is often used to diagnose a disease. Consider a

diagnostic method based onmagnetic resonance imaging (MRI), which was tested on

a large sample of patients having a particular disease. This method confirmed the

disease in 99% of cases of the disease. Consider a randomly chosen person from the

general population, and define A as the event that the person has the disease and B as

the event that the person tested positive. Based on the above testing, we say that the

probabilityP B Ajð Þ can be estimated as 0.99. This probability is called the sensitivity

of the diagnostic method. The high sensitivity may seem like a proof of the test’s

good performance. However, we also need to know how the test would perform on

peoplewithout the disease. So, theMRI diagnosticmethodwas also tested on a large

sample of people not having the disease. Based on the results, the probability

P Bc Acjð Þ of testing negative for a healthy person was estimated as 0.9. This

probability is called the specificity of the diagnostic method. Again, this may seem

like a well performing method.

In practice, when using MRI on a patient, we do not know if the patient has the

disease, sowe are interested in calculating the probabilityP A Bjð Þ that a person testing
positive has the disease. In order to apply Bayes’ theorem, we also need to knowP Að Þ,
that is, the prevalence of the disease in the general population. In our example, it turns

out that approximately 0.1% of the population has the disease, that is, P Að Þ ¼ 0:001.
Under these assumptions, the probabilityP A Bjð Þ can be calculated as 0.0098,which is
surprisingly low (see Problem 2.4). The key to understanding why this happens is to

consider all people not having the disease. They constitute 99.9% of the general

population, and about 10% of themmay test positive. On the other hand, only 0.1% of
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all people have the disease, which is a very small fraction (approximately 1%) of all

people testing positive. This explainswhymost people testing positive do not have the

disease. Table 2.2 shows some other interesting scenarios on how the probability

P A Bjð Þ that a person with positive test result has the disease depends on sensitivity,

specificity, and disease prevalence. &

2.5.2 Probability Distributions

We can now precisely define a random variable as a function assigning a number to

each outcome in the sample space S, that is, X : S!R, where R is the set of real

numbers. A value of the random variable is called a realization of X. For example,

when a coin is tossed three times, define X as the number of times we observe

heads. For each possible outcome, that is, a three-element sequence of heads and

tails, we can count the number of heads. This will be the value of the random

variable X.

Each random variable defines a probability measure on the set of real numbers R.

For each subsetA � R, we defineP Að Þ ¼ PS X�1 Að Þð Þ, wherePS �ð Þ is the probability
defined on the sample space S and X�1 Að Þ is the set of those outcomes in S that are
assigned a value belonging to the setA (note that X�1 �ð Þ is the inverse function). This
probability measure is called the probability distribution of X. Continuing our

example with X being the number of heads in three tosses, and taking A consisting

of one number, say A ¼ 2f g, we obtain P Að Þ ¼ PS H;H; Tð Þ;ð H; T ;Hð Þ; T ;H;Hð ÞÞ,
which is equal to 3/8. This probability is more conveniently denoted by P X ¼ 2ð Þ.

In scientific applications, it is often impractical to list all possible events leading to

a given value of X. For example, let X be the reflectance of a ceramic tile as measured

in the spectral wavelength band between 400 and 410mm. The random variableXwill

be subject to variability due to many factors such as the condition of the instrument,

the process followed by the instrument operator, and so on. It would be difficult to

describe all possible events that can happen during such measurements. For all

practical purposes, it is sufficient to deal with the probability distribution ofX without

explicitly defining sample space and probability on it.

Table 2.2 Examples of Probabilities of Disease if Tested Positive as a Function of

Sensitivity, Specificity, and Disease Prevalence

Disease

Prevalence P Að Þ
Sensitivity

P B Ajð Þ
Specificity

P Bc Acjð Þ

Probability of

Disease if Tested

Positive P A Bjð Þ
0.5 0.9 0.9 0.9

0.01 0.99 0.9 0.0909

0.001 0.99 0.9 0.0098

0.001 0.99 0.99 0.0902

0.001 0.99 0.999 0.4977

0.001 0.99 0.9999 0.9083

0.001 0.99 0.99999 0.9900
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Wenowneed to introduce somemathematical tools in order to describe probability

distributions. It is convenient to distinguish two types of distributions: discrete

distributions for discrete random variables, and continuous distributions for continu-

ous random variables.

Definition 2.10. A random variable is discrete when all of its possible values can be

counted using whole numbers.

Definition 2.11. A random variable is continuous when all of its possible values

consist of an interval or a union of intervals on the real line R.

A discrete probability distribution is described by a probability mass function pðxÞ ¼
P X ¼ xð Þ defined for each possible value x of the random variable X. For example, if

X is the number of heads in three tosses,

p xð Þ ¼
1=8 for x ¼ 0 or 3;

3=8 for x ¼ 1 or 2:

(
ð2:8Þ

Property 2.1 A function defined on a discrete setD is a probabilitymass function of a

certain distribution if and only if pðxÞ � 0 and
P

x2DpðxÞ ¼ 1.

The set D in the above definition is the set of all possible values of X. Examples of

some useful discrete distributions are shown in Appendix A.

A continuous probability distribution is described by a probability density function

f xð Þ such that for any two numbers a and b with a � b

P a � X � bð Þ ¼
ðb
a

f xð Þdx: ð2:9Þ

An example of a probability density function is plotted in Figure 2.17 as a bold bell-

shaped curve. This is a density function of a normal distribution that approximates the

distribution of data from two different samples. Each samplewas generated randomly

from the normal distribution. For the sample size of n ¼ 40 in the left panel, the

sampling variability is fairly large, and the histogram is not verywell approximated by

the density function. For the large sample size of n ¼ 400, the approximation is much

better, and it gets even better with larger samples. One can think of a density function

as an idealized histogram for a very large or infinite sample size.

Property 2.2 A function f : R!R is a probability density function of a certain

distribution if and only if f ðxÞ � 0 and
Ð1
�1 f ðxÞdx ¼ 1.

Examples of some useful continuous distributions and their density functions are

shown in Appendix A. For continuous random variables, P X ¼ xð Þ is always equal

PROBABILITY AND PROBABILITY DISTRIBUTIONS 31



to zero, so a probability mass function would not be useful for describing such

distributions.

Anotherway to describe anydistribution (including a discrete or continuous one) is

to use a cumulative distribution function (CDF) defined as

F xð Þ ¼ P X � xð Þ: ð2:10Þ
For any continuous distribution, the derivative of the CDF is equal to the density

function, that is, F0 xð Þ ¼ f xð Þ for any point x such that the derivative F0 xð Þ exists.
We can calculate probabilities of events associated with a given random variable X

with the help of the CDF.Often,we also need to solve a reverse problem, that is, to find

x such that F xð Þ is equal to a given probability.

Definition 2.12. Let p be a number between 0 and 1. The 100pð Þth percentile of the
distribution defined by F xð Þ is a number Zp such that p ¼ F

�
Zp
�
.

Often, it is convenient to define the upper percentile as follows.

Definition 2.13. Let p be a number between 0 and 1. The 100pð Þth upper percentile of
the distribution defined by F xð Þ is a number tp such that p ¼ 1�F tp

� �
.

It is easy to see that the 100pð Þth percentile Zp is equal to the 100 1�pð Þð Þth upper

percentile t1�p of the same distribution. For continuous distributions, the percentile Zp
exists for any value p 2 0; 1ð Þ. Tables of percentiles for some important statistical

distributions can usually be found in statistical textbooks. These days, one can often

obtain percentiles from computer software, but we still provide some percentile

values in Appendix A for added convenience. Appendix A shows the notation used

throughout this book for percentiles of a wide range of distributions.

Even though a distribution is precisely defined by its cumulative distribution

function or by a density or mass function (for continuous or discrete distributions,

respectively), it is often beneficial to characterize distributions by using single

numbers or parameters. Some important characteristics are the first and the third
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Figure 2.17 Histograms of two samples approximated by the normal density function describing the

model from which the data were generated.
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quartile (the 25th and 75th percentiles, respectively) and the median (the 50th

percentile). Other characteristics of distributions are defined in the next section.

2.5.3 Expected Value and Moments

The expected or mean value of a random variable X is defined as

E Xð Þ ¼

ð1
�1

x � f xð Þdx if X is continuous;

P
x2D x � pðxÞ if X is discrete:

8>>><
>>>:

ð2:11Þ

The expected value describes an average outcome based on a theoretical distribu-

tion. It is different from the sample mean x calculated from data. If data are generated

from the distribution of X, the sample mean x should be close to E Xð Þ and it will get
closer, on average, as the sample size increases. The expected value E Xð Þ is often
denoted by m, but a subtlety here is that m should be considered as a parameter, while

E Xð Þ is an operation on the distribution of X that produces a number.

Based on the linear property of integrals and summations, one can show (see

Problem 2.5) that for any constants a and b

E aX þ bYð Þ ¼ aE Xð Þ þ bE Yð Þ: ð2:12Þ

For any natural number k, the kth moment of X is defined as the expectation of Xk

E Xk
� � ¼

ð1
�1

xk � f xð Þdx if X is continuous;

P
x2D xk � pðxÞ if X is discrete;

8>>><
>>>:

ð2:13Þ

and the central moments are defined as moments centered around the mean, that is,

E X�E Xð Þð Þk
h i

. The mean value is interpreted as a position parameter or a “central”

point, because it is an average of possiblevalues ofXweighted by their probabilities or

by density. The second central moment, called variance, is denoted by

Var Xð Þ ¼ E X�E Xð Þð Þ2
h i

¼ E X2
� �� E Xð Þ½ �2: ð2:14Þ

The variance measures variability around the mean value, while the noncentral

moment E X2ð Þ measures variability of X around zero. By using property (2.12), one

can show that for any constants a and b

Var aX þ bð Þ ¼ a2 Var Xð Þ; ð2:15Þ
which means that the variance is not affected by a shift (adding a constant). This

makes sense because a simple shift does not impact variability. Since the variance is
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expressed in the squared units of X, it is convenient to introduce the concept of

standard deviation defined as the square root of variance and denoted by

StDev Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þ

p
: ð2:16Þ

The standard deviation is a measure of variability expressed in the units of X, and its

interpretation is further explained in Section 2.5. From equation (2.15), we obtain

StDev aX þ bð Þ ¼ aj � StDev Xð Þ;j ð2:17Þ

which means that multiplying X by a positive constant results in the same multipli-

cation of the standard deviation. The standard deviation is often denoted by s, but
again we have a subtlety here, where s should be thought of as a parameter, while

StDev Xð Þ is an operation on the distribution of X that produces a number.

The standard deviation as a parameter is often considered a scale parameter. We

can use the standard deviation s and the mean (expected value) m ¼ E Xð Þ to

standardize X, that is, we define the standardized variable Z ¼ X�mð Þ=s. It is easy
to see that E Zð Þ ¼ 0 and Var Zð Þ ¼ 1. Since X�mð Þ and s are in the same units, the

variable Z has no units.

2.5.4 Joint Distributions and Independence

Consider two random variables X and Y . We can study their relationship by

considering a random vector X; Yð Þ. This random vector can also be treated as a

random point X; Yð Þ on the plane R2. Assume that we observe a large number of

values, or realizations, of X; Yð Þ. Each realization or data point can be plotted in the

system of x and y coordinates as a point. Figure 2.18a shows a scatter plot of such

points as an example. The relationship between X and Y is fully described by the joint

Figure 2.18 Panel (a) shows a scatter plot of (x, y) values generated as realizations of a random vector (X,

Y) with the joint density function shown in panel (b).

34 FUNDAMENTALS OF STATISTICS



distribution of these variables on the plane R2. The joint distribution, in turn, can be

fully described by the cumulative bivariate distribution function defined as

F x; yð Þ ¼ P X � x and Y � yð Þ: ð2:18Þ

For a continuous bivariate distribution, there exists a bivariate density function f � ; �ð Þ
such that

P X;Yð Þ 2 Að Þ ¼
ðð
A

f s; tð Þds dt for any A � R2: ð2:19Þ

In particular, we have this property of the cumulative distribution function

F x; yð Þ ¼
ðy

�1

ðx
�1

f s; tð Þds dt: ð2:20Þ

Figure 2.18b shows a density function of the form f s; tð Þ ¼ f1 sð Þf2 tð Þ, where f1 is
the density function of the normal distribution N 20; 2ð Þ with the mean of 20 and

standard deviation of 2, and f2 is the density function ofN 20; 6ð Þ (see Appendix A for

the specific formula). The points in Figure 2.18a are values or realizations generated

from the distribution defined by f s; tð Þ. The higher concentration of points around the
center 20; 20ð Þ corresponds to the higher value of the joint density function shown in
Figure 2.18b. The range of x coordinates is smaller than the one for the y coordinates

because of the smaller standard deviation in the x direction as seen in the elongated

shape of the density in panel (b).

In the context of the bivariate distribution of X; Yð Þ, the distributions ofX and Y are

called marginal distributions. For a continuous bivariate distribution of X; Yð Þ, the
marginal density function of one of the variables, let’s say X, can be calculated by

“summing up” the probabilities associated with the other variable, say Y, that is,

fX xð Þ ¼
ð1

�1
f x; yð Þdy: ð2:21Þ

As another example, define a bivariate density function

f0 x; yð Þ ¼
0:5 if �1 � y þ x � 1 and�1 � y�x � 1;

0 otherwise;

(
ð2:22Þ

which is positive inside of a rotated square shown in Figure 2.19b.

Themarginal distributions are obtained by “projecting” the bivariate density on the

x or y axes, respectively. This is best understood by projecting the points in

Figure 2.19a on one of the axes. Figure 2.20a shows a histogram of projections of
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those points onto the x-axis. Figure 2.20b shows a theoretical distribution ofX derived

from (2.21) and (2.22) and given by the formula

fX xð Þ ¼
1�jxj if jxj � 1;

0 otherwise:

(
ð2:23Þ

When dealing with a bivariate distribution of X; Yð Þ, we might be interested in

knowing the distribution of Y given an observed value of X ¼ x, which represents a

new piece of information. That distribution is called a conditional distribution of Y
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Figure 2.19 Panel (a) shows a scatter plot of (x, y) values generated as realizations of a random vector (X,

Y) with the joint density function equal to 0.5 inside of the rotated square shown in panel (b) and zero outside
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Figure 2.20 Panel (a) shows a histogram of projections of points from Figure 2.19a onto the x-axis. Panel

(b) shows a theoretical distribution of the projection on the x-axis, that is, the marginal distribution of X.
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given X ¼ x. While values of the random vector X; Yð Þ lie on the plane R2, the

conditional distribution of Y given X ¼ x is concentrated on the subset of the plane,

namely, vertical line crossing x-axis at x.

For a continuous bivariate distribution of X; Yð Þ, the conditional probability

density function of Y given X ¼ x is defined as

fY jX yjxð Þ ¼ f x; yð Þ
fX xð Þ for�1 < y < 1; ð2:24Þ

where fX is the marginal density function defined in (2.21) and x is any value such

that fX xð Þ > 0.

Intuitively, the conditional distribution is obtained by taking a cross section of the

distribution of X; Yð Þ, such as the one depicted in Figure 2.19b, along the line X ¼ x.

Dividing by fX xð Þ in formula (2.24) reflects the fact that the conditional distribution is

a probability measure defined on a smaller space determined by X ¼ x. This also

makes the resulting function a density function, but it does not change the shape of the

function.

Consider the bivariate density function f0 x; yð Þ defined by (2.22). From

Figure 2.19b, we can see that that for any xj � 1j , f0 x; yð Þ as a function of y is

positive and constant on the interval � 1� xjj Þ; 1� xjj �ð½ and zero outside this interval.

Therefore, for any xj � 1j , the conditional distribution ofY givenX ¼ x is the uniform

distribution concentrated on the interval � 1� xjj Þ; 1� xjj �ð½ . Since the length of this

interval is 2 1� xjj Þð , the conditional density function is given by the formula

fY jX yjxð Þ ¼
(
1= 2 1� xjj Þð Þ if � 1� xjj Þ � y � 1� xj;jðð
0 otherwise: ð2:25Þ

This formula can also be deriveddirectly fromdefinition (2.24) and formulas (2.22)

and (2.23). Notice that in this example, the conditional distribution of Y depends on

the observed value X ¼ x. This information changes the range of possible values

of Y from the general range �1; 1½ �, without any knowledge of X, to the narrower

range � 1� xjj Þ; 1� xjj �ð½ when the value of X ¼ x is already known. This means

that Y is dependent on X.

We now extend the definition of independence from random events to random

variables.

Definition 2.14. The random variables X and Y are called independent when the

events associated with those variables are independent, that is, for any sets A;B � R

P X 2 A and Y 2 Bð Þ ¼ P X 2 Að Þ �P Y 2 Bð Þ: ð2:26Þ

For a continuous bivariate distribution of X; Yð Þ,X andY are independent if and only if

f x; yð Þ ¼ fX xð ÞfY yð Þ for all pairs of x and y values: ð2:27Þ
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As expected, independence of random variables is closely related to the condi-

tional distributions. For a continuous bivariate distribution of X; Yð Þ, X and Y are

independent if and only if

fY jX yjxð Þ ¼ fY yð Þ for all pairs of x and y values such that fX xð Þ > 0: ð2:28Þ

Wecan say thatX and Y are independent if and only if information contained inX is

not helpful in predicting Y. For example, the random variables X and Y with the joint

distribution shown in Figure 2.19b are not independent because the conditional

distribution shown in formula (2.25) depends on x, as we discussed previously. In

Figure 2.18b, we depicted the joint distribution of two independent variables X and Y.

We can imagine that although the cross sections of the surface taken at various values

of x are different, smaller for x farther from the mean value of 20, they have the same

bell shape and after normalizing by themarginal density f1 xð Þ, they all are identical to
f2 yð Þ, the marginal density function of Y.

2.5.5 Covariance and Correlation

In order to capture an important property of the joint distribution, it is useful to define

covariance of the random variables X and Y as

Cov X; Yð Þ ¼ E X�E Xð Þð Þ Y�E Yð Þð Þ½ �: ð2:29Þ

With some algebra, one can show that

Cov X; Yð Þ ¼ E XYð Þ�E Xð ÞE Yð Þ: ð2:30Þ

Using equation (2.12), one can show that for any constants a and b

Cov aX þ bY; Zð Þ ¼ a Cov X; Zð Þ þ b Cov Y ; Zð Þ ð2:31Þ

for any randomvariable Z, whichmeans that the covariance is linear with respect to its

first argument. From symmetry, the same property holds for the second argument of

the covariance. Since Var Xð Þ ¼ Cov X;Xð Þ, we obtain

Var aX þ bYð Þ ¼ a2 Var Xð Þ þ b2 Var Yð Þ þ 2abCov X; Yð Þ: ð2:32Þ

Let us now take Y � 1, that is, a random variable equal to a constant 1. Then

Y ¼ E Yð Þ and Var Yð Þ ¼ 0. We can also see from (2.29) that the covariance of a

constant variable Ywith an arbitrary randomvariableZ is zero, that is, Cov Y ; Zð Þ ¼ 0.

We can now write formula (2.31) as

Cov aX þ b; Zð Þ ¼ a Cov X; Zð Þ; ð2:33Þ

whichmeans that the covariance is not affected by a shift ofX (adding a constant), but

it is affected by the scale, that is, when X is multiplied by a constant. In the sameway,

we could obtain property (2.15) as a special case of (2.32).
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The covariance Cov X; Yð Þmeasures a degree of linear association between X and

Y. Unfortunately, that measure is distorted by the impact of a scale change. To make

themeasure scale independent, we introduce the correlation coefficient defined by the

covariance scaled by the standard deviations of the variables as follows:

Corr X; Yð Þ ¼ Cov X; Yð Þ
StDev Xð ÞStDev Yð Þ ; ð2:34Þ

where StDev Xð Þ > 0 and StDev Yð Þ > 0. It can be proven that Corr X; Yð Þj � 1j , and

the equality holds if and only if there exist constants a 6¼ 0 and b such that

Y ¼ aX þ b with probability 1, which means that X and Y are perfectly collinear.

The correlation coefficient Corr X; Yð Þ is often denoted by rX;Y or simply r.

Definition 2.15. The random variables X and Y are called uncorrelated when

Corr X; Yð Þ ¼ 0.

From (2.32), we conclude that the random variables X and Y are uncorrelated, if and

only if

Var X þ Yð Þ ¼ Var Xð Þ þ Var Yð Þ: ð2:35Þ

From (2.30), we conclude that the random variables X and Y are uncorrelated, if and

only if

E XYð Þ ¼ E Xð ÞE Yð Þ: ð2:36Þ

When two random variables are independent, they are also uncorrelated. However,

in general, the reverse implication is not true. We have already discussed the random

variables X and Ywith the joint distribution shown in Figure 2.19 as being dependent.

One can show that they are also uncorrelated. Another example of uncorrelated

dependent variables is shown in Figure 2.21, whereY clearly depends onX, but not in a
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Figure 2.21 An example of uncorrelated and dependent random variables X and Y. The joint density

function of the randomvariablesX and Y is equal to a positive constantwithin theU-shaped area shown here

and is equal to zero outside of that area.
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linear fashion. In both cases, the lack of correlation can be concluded from the

following property (see Problem 2.10 for an outline of the proof).

Property 2.3 If the joint distribution ofX andY is symmetric with respect to a vertical

or horizontal straight line, and the correlation Corr X; Yð Þ exists, then Corr X; Yð Þ ¼ 0.

2.6 RULES OF TWO AND THREE SIGMA

In Section 2.2, we introduced the sample standard deviation as a measure of sample

variability. In Section 2.4, we discussed the population standard deviation s as a

measure of variability in a randomvariable, sayX, wheres ¼ StDev Xð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð Þp

.

We now want to provide interpretation of the standard deviation s by describing

what the knowledge of s can tell us about the variability in X. We will start by

assuming that X follows the normal (Gaussian) distribution N m; sð Þ defined in

Appendix A. The normal distribution is the most important distribution in proba-

bility and statistics, because data distributions and some theoretical distributions are

often well approximated by the normal distribution. The reasons for that will be

discussed in Section 2.7.

Property 2.4 If X follows the normal (Gaussian) distribution, then for any

constants a 6¼ 0 and b, the variable aX þ b also follows the normal distribution.

(See Problem 2.11 for a hint on the proof.)

We standardize X by defining Z ¼ X�mð Þ=s. It is easy to see (from (2.12) and (2.15))

thatE Zð Þ ¼ 0 andVar Zð Þ ¼ 1. FromProperty 2.4, the standardized variable Z has the

normal distribution N 0; 1ð Þ, which is called the standard normal distribution.

P X�mj � ksj Þ ¼ P m�ks � X � m þ ksð Þ ¼ P �k � Z � kð Þð

¼ F kð Þ�F �kð Þ ¼ 2F kð Þ�1; ð2:37Þ

where k > 0 and F is the CDF of the standard normal distribution. For some specific

values of k, we get

P m�s � X � m þ sð Þ ¼ P �1 � Z � 1ð Þ 	 0:68; ð2:38Þ

P m�2s � X � m þ 2sð Þ ¼ P �2 � Z � 2ð Þ 	 0:95; ð2:39Þ

P m�3s � X � m þ 3sð Þ ¼ P �3 � Z � 3ð Þ 	 0:997: ð2:40Þ

The properties (2.38), (2.39), and (2.40) are called the one-, two-, and three-sigma

rules, respectively, and are illustrated in Figure 2.22. Since many distributions are well

approximated by the normal distribution, these rules are widely used, especially for a
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quick and intuitive understanding of the amount of variability associated with a given

value of the standard deviation s. For example, the two-sigma rule tells us that appro-

ximately 95% of the distribution lies within two standard deviations from the mean.

Even though the approximation by the normal distribution works quite well in

many contexts, it would be good to know the significance of s in other types of

distributions. The following theorem addresses this issue in a general context.

Theorem 2.2 (Chebyshev’s Inequality). For a random variableXwith a finitemean

m and standard deviation s, we have

P m�ks < X < m þ ksð Þ � 1� 1

k2
; ð2:41Þ

where k > 0 is an arbitrary constant.

The proof can be found in Ross (2002). When applying (2.41) with k ¼ 2, we can

see that at least 75% of the distribution lies within two standard deviations from the

mean, compared to the 95% based on normality.With k ¼ 3, we obtain 8=9 or at least
88.8% of the distribution being within three standard deviations from the mean,

compared to the 99.7% based on normality.

2.7 SAMPLING DISTRIBUTIONS AND THE LAWS OF LARGE

NUMBERS

In Section 2.2, we discussed a sample x1; x2; . . . ; xn of n measurements or

observations as a set of specific numbers. However, before the observations are

collected, there is uncertainty about their values. Also, if another set of observations

were collected from the same unchanged process, the values would be somewhat

different due to natural variability. This is why we often treat observations as

random variables, so that we can study their properties in repeated sampling. For

example, if we want to measure reflectance of a given surface as a single number
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Figure 2.22 One-, two-, and three-sigma rules shown as areas under the normal density curve.
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(let’s say, in a narrow spectral band), it is convenient to consider this measurement

as a random variable, say X. Each time the measurement is taken, we may get a

somewhat different number, which will be regarded as a (random) value of that

variable. If we measure that surface three times, we can introduce three random

variables X1;X2; and X3 representing the three measurements. Each time we repeat

the experiment, we will obtain three numbers as values of those three variables.

It often makes sense to assume that the measurements are independent, that is, a

measurement does not change the process under investigation, and the subsequent

measurements are not impacted by the previous ones.

Definition 2.16. The random variables X1;X2; . . . ;Xn are said to form a (simple)

random sample, if they are independent, and each has the same distribution. They are

called i.i.d. (independent, identically distributed) random variables.

For each sample, we can calculate a statistic, such as the sample mean, which can be

treated as a random variable X, since its values will vary in repeated samples. The

distribution ofX is called its sampling distribution in order to emphasize the fact that it

describes the behavior of X over repeated samples.

Consider a random sample X1;X2; . . . ;Xn from an arbitrary distribution G with a

finite mean m. The law of large numbers tells us that X approaches m as n tends to

infinity. Technical details about this convergence can be found in Ross (2002) and

Bickel and Doksum (2001). The convergence means that we can draw conclusions

about the population (represented by the distribution G) based on the sample

X1;X2; . . . ;Xn, and there is a benefit from having larger samples. For very large n,

the mean X will be very close to m. Another far-reaching consequence can be

concluded from the following construction. Let A be an arbitrary probabilistic event

with a certain probability P Að Þ. The eventA could be “obtaining heads in a single toss

of a coin.” Consider repeated independent trials (coin tosses), where the event A can

happen with probability P Að Þ. For the ith trial, define Yi as equal to 1 when A happens

and 0 otherwise. Note thatP Yi ¼ 1ð Þ ¼ P Að Þ ¼ E Yið Þ ¼ m. The samplemean Y is the

relative frequency of the event A in n trials (fraction of heads in n tosses). The law of

large numbers tells us that the fraction of trials whenA happens (fraction of heads) in n

trials approaches the probability P Að Þ of the event (heads) as n tends to infinity. This
may seem intuitively obvious, but it is good to have a confirmation of this fact as a

basis for this interpretation of probability.

The law of large numbers tells us that X approaches m as n tends to infinity, but it

does not tell us how fast it is approaching. This informationwould be very useful from

a practical point of view, so that we know the consequences of using a specific sample

size n. From properties (2.15) and (2.35), one can show that

StDev X
� � ¼ sffiffiffi

n
p ; ð2:42Þ

where s ¼ StDev Xið Þ; i ¼ 1; . . . ; n. This means that we can standardize X by

defining Zn ¼ X�m
� �

= s=
ffiffiffi
n

pð Þ ¼ ffiffiffi
n

p
X�m
� �

=s, such that Var Znð Þ ¼ 1. We

know that X�m
� �

converges to 0. When it is multiplied by
ffiffiffi
n

p
, it no longer converges
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to 0, nor does it go to infinity (since Var Znð Þ ¼ 1). We could say that
ffiffiffi
n

p
is just the

right multiplier to make Zn “stable.” For example, if we used the multiplier na,

then na X�m
� �

=s would approach infinity for a > 0:5, and it would approach 0 for

a < 0:5.
If the random sample X1;X2; . . . ;Xn comes from the normal distribution N m; sð Þ,

the distribution of Z is standard normal N 0; 1ð Þ (see Property 2.4). This allows us to

tell how close X is to m with the probability given by

P jX�mj < k
sffiffiffi
n

p
� 	

¼ P Zj < kj Þ ¼ 2F kð Þ�1:ð ð2:43Þ

When the distribution G of the sample is not normal, the distribution of Z often is

not easy to calculate, and it also depends on n. Fortunately, the following theorem

allows an approximation of the distribution of Z for large n.

Theorem 2.3 (TheCentral Limit Theorem,CLT). LetX1;X2; . . . be a sequence of
independent, identically distributed randomvariables, each having a finitemeanm and
standard deviation s. Then the distribution of Z approaches the standard normal

distribution as n tends to infinity, that is,

lim
n!1P

X�m
s=

ffiffiffi
n

p < k

� 	
¼ F kð Þ: ð2:44Þ

The proof can be found in Ross (2002).

The CLTallows us to use equation (2.43) as an approximation in cases of samples

from non-normal distributions. Various sources give some rules of thumb (e.g.,

n � 30) as to how large n is needed for the normal approximation. This could be

potentially misleading. The precision of the normal approximation depends on the

shape of the Xi’s distribution. For example, the convergence is generally slower for

nonsymmetric distributions. Figure 2.23 shows an example of the density functions of

Z, when the distribution of Xi’s is chi-squared with one degree of freedom and n is

equal to 3, 10, and 30, respectively. The density of the standard normal distribution is

also shown for comparison. The CLT approximation using (2.44) can be better

assessed based on Figure 2.24, where the CDFs of the same distributions are shown.

Precision of the normal approximation is further discussed in Chapter 3.

The CLT explains why real data often follow the normal distribution (approxi-

mately). Many characteristics are sums of a large number of small independent

factors. For example, height in a large population depends on influences of particular

genes, elements in the diet, and other factors. Hence, the height distribution is

typically well approximated by the normal distribution. Another example is when we

take multiple measurements of the same object. The measurement error usually

depends on many independent small factors (environmental conditions, gauge

conditions, operators’ impact, etc.) that add up to the final result. Again, the

measurement error is typically well approximated by the normal distribution.
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2.8 SKEWNESS AND KURTOSIS1

The first two moments characterize the location and variability in a distribution. In

order to characterize the shape of a distribution, it is convenient to consider the

standardized variable Z ¼ X�mð Þ=s. Since the first two moments of Z are already
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Figure 2.23 The density functions of Z, when the distribution of Xi’s is chi-squared with one degree of

freedom and n is equal to 3, 10, and 30, respectively. The solid line is the density of the standard normal

distribution intended as the approximation.
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Figure 2.24 TheCDFofZ, when the distributionofXi’s is chi-squaredwith one degree of freedomandn is

equal to 3, 10, and 30, respectively. The solid line is the density of the standard normal distribution intended

as the approximation.

1 This section is more technical and is not needed in the remaining part of this book.
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determined (E Zð Þ ¼ 0 andVar Zð Þ ¼ 1), wewill use higher ordermoments in order to

elicit the information about the distribution shape.

The lack of symmetry around the mean value in a distribution, that is, skewness, is

measured by the coefficient of skewness defined as

g1 ¼ E Z3
� � ¼ E X�E Xð Þð Þ3

h i
Var Xð Þ½ �3=2

: ð2:45Þ

For any symmetric distribution, g1 ¼ 0. The fourth moment of Z is defined as

kurtosis of X, that is,

Kurt Xð Þ ¼ E Z4
� � ¼ E X�E Xð Þð Þ4

h i
Var Xð Þ½ �2 : ð2:46Þ

For a normal distribution, Kurt Xð Þ ¼ 3, which is why an excess kurtosis is often

defined as g2 ¼ Kurt Xð Þ�3. Since for a normal (Gaussian) distribution, g1 ¼ 0 and

g2 ¼ 0, the skewness and kurtosis are sometimes used for checking normality.

This approach is utilized in independent component analysis, an advanced multi-

variatemethod.A lack of symmetry in a distribution is fairly easy to recognize, but the

interpretation of kurtosis is much less obvious. This is why we will detail more

information about kurtosis and some related terminology.

A positive value of g2 indicates a super-Gaussian distribution (also called

leptokurtic), which is often characterized by “fat tails,” that is, the density function

decreases slowly for large x values. A negative value of g2 indicates a sub-Gaussian
distribution (also called platykurtic), which is often characterized by “thin tails,” that

is, the density function decreases rapidly for large x values. The kurtosis is also

described as a measure of “peakedness” of a distribution at the center E Xð Þ. These
interpretations are true only to some extent. We will now discuss a different

interpretation that clarifies the matter.

SinceZ is a standardized variable,we haveVar Zð Þ ¼ E Z2ð Þ ¼ 1, and itmight be of

interest to know how far Z2 is from 1. This can be measured by the mean square

E Z2�1ð Þ2, which is equal to E Z4ð Þ�1 ¼ Kurt Xð Þ�1. We can also write

Kurt Xð Þ ¼ E Z2�1
� �2 þ 1: ð2:47Þ

If Z2 is close to 1 (i.e., X is concentrated around m�s or m þ s), then Kurt Xð Þ is
small. If Z2 � 1 (which happens for the Bernoulli distribution with only two possible

values, each with the same probability p ¼ 0:5), then Kurt Xð Þ ¼ 1, which is its

smallest possible value (i.e., the excess kurtosis g2 is always at least �2). If Z2 is far

from1, thenKurt Xð Þ is large. ThevariableZ2 can be far from1when it is concentrated

around 0 (high “peakedness”) or concentrated on very large values (“fat tails” in the

sense of large probabilities for X much larger than m þ s in units of s). Hence, in
general, one of these conditions is sufficient to produce large kurtosis, but both of them
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give an even larger kurtosis. At the same time, the “peakedness” has small direct

impact on the kurtosis because values close to 0 can never be really far from 1.

The impact of “peakedness” is indirect. Sincewe always have E Z2ð Þ ¼ 1, values of Z

close to 0 allow some other Z values to be very large (and create “fat tails” in the sense

described above).

Example 2.7 Consider the family of exponential power distributions defined in

Appendix A. Its excess kurtosis is given by the formula

g2 ¼
G 5=að ÞG 1=að Þ

G 3=að Þ2 �3; ð2:48Þ

where a > 0 is the shape parameter. Figure 2.25 shows g2 as a function of a on the

interval 1; 10½ �. The value a ¼ 1 corresponds to the Laplace distribution with g2 ¼ 3,

the value a ¼ 2 corresponds to the normal distribution with g2 ¼ 0, and with a
approaching infinity, the exponential power distribution approaches the uniform

distribution having g2 ¼ �1:2. When a approaches 0, the excess kurtosis g2 ap-

proaches infinity. The exponential power distributions with a < 2 are super-Gaussian

with “fat tails,” while those with a > 2 are sub-Gaussian with “thin tails.” We

illustrate this point in Figure 2.26, where we show densities of the exponential power

distributions with a ¼ 1 (Laplace), a ¼ 2 (normal), and a ¼ 10.

Example 2.8 The interpretation of kurtosis as an indication of “fat” versus “thin”

tails is not always as clear-cut as shown in Example 2.7. As discussed earlier, a sub-

Gaussian distribution is often associated with “thin tails,” but here we construct a

sub-Gaussian distributionwith “fat tails.”ConsiderX following a chi-squared random

variable with n degrees of freedom. The excess kurtosis of X is equal to 12=n, so it is

2 4 6 8 10

–1
0

1
2

3

β

γ 2
=

E
xc

es
s 

K
ur

to
si

s
 

Figure 2.25 Excess kurtosis g2 as a function of the shape parameter 1 � a � 10 for the exponential power

distribution.
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considered super-Gaussian with “fat tails.” We define a new variable Y ¼ D X þ að Þ,
where a is a positive constant and D is a random variable independent of X such that

P D ¼ 1ð Þ ¼ P D ¼ �1ð Þ ¼ 0:5. The density of the Y variable is symmetric with

respect to zero, and it consists of two symmetric shapes of the density of the chi-

squared distribution with a gap in between (zero density on the interval �a; að Þ). We

call this distribution double chi-squared. Figure 2.27 shows an example of such

density for n ¼ 4 and a ¼ 0:41. If we move the two pieces of the density function

farther apart (by increasing a), its general shape does not change. This means that the

density of Y has tails that are “fatter” than those of the normal density. However, for

a ¼ 0:41, one can calculate that g2 ¼ 0. This tells us that the double chi-squared
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Figure 2.26 The densities of the exponential power distributions with a ¼ 1 (Laplace), a ¼ 2 (normal),

and a ¼ 10, chosen so that the mean is 0 and the variance is 1.
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Figure 2.27 Density function of the randomvariableY ¼ D X þ að Þwith zero excess kurtosis (a 	 0:41),

where X is a chi-squared random variable with four degrees of freedom and D is a random variable

independent of X such that P D ¼ 1ð Þ ¼ P D ¼ �1ð Þ ¼ 0:5.
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distribution shown in Figure 2.27 is an example of a “fat-tailed” distribution with the

kurtosis equal to that of the Gaussian (normal) distribution.

Figure 2.28 shows how the excess kurtosis g2 of Y depends on a for n ¼ 4. Clearly,

the distribution becomes highly sub-Gaussian for large a. See Problem 2.12 for

directions on how to perform the calculations for this example. &

The excess kurtosis is sometimes used to measure how far a distribution is from the

normal distribution. This can be potentially misleading. The double chi-squared

distribution introduced in the above example shows an example of a distribution with

g2 ¼ 0 (for a 	 0:41), which is far from normal. The density function of that

distribution is shown in Figure 2.27.

The construction used in Example 2.8 is more general and can be applied to many

other distributions. For example, we can take any symmetric distribution and modify

it to become a highly sub-Gaussian distribution. Notice that any random variableW

with a distribution symmetric around zero can be represented as DX, where D is a

random variable independent of X such that P D ¼ 1ð Þ ¼ P D ¼ �1ð Þ ¼ 0:5 and X

describes the distribution of W on the positive numbers. Specifically, we can take

X ¼ W jj . We now define a new variable

Y ¼ D X þ að Þ; ð2:49Þ

where a > 0. The distribution of Y consists of two symmetric halves with the

distribution of the same shape as that of X. With increasing a, the two halves move

farther apart. As a tends to infinity, the distribution ofY becomes highly sub-Gaussian,

approaching the most extreme case of g2 ¼ �2 as shown by the following property

(see Problem 2.13 for a sketch of the proof).

Property 2.5 For the excess kurtosis g2 of Y defined by (2.49), we have

lima!1 g2 ¼ �2.
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Figure 2.28 The excess kurtosis g2 of Y ¼ D X þ að Þ as a function of a, where X is a chi-squared random

variable with four degrees of freedom and D is a random variable independent of X such that

P D ¼ 1ð Þ ¼ P D ¼ �1ð Þ ¼ 0:5.
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PROBLEMS

2.1. For the five observations of the Output Power variable in Example 2.1, find the

90th percentile calculated by a linear extrapolation using formula (2.4).

2.2. Prove that the deviations from the mean, defined as di ¼ xi�x, have the

property that they sum up to zero, that is,
Pn

i¼1 di ¼ 0.

2.3. Consider n observations xi; i ¼ 1; . . . ; n, and their linear transformations

defined as yi ¼ axi þ b for i ¼ 1; . . . ; n. Prove that s2y ¼ a2s2x and sy ¼ ajsxj .

2.4. In the context of Example 2.6, develop a formula for the probability of having

the disease if testing positive as a function of sensitivity, specificity, and disease

prevalence. Verify the numbers shown in Table 2.2.

2.5. Prove that for any constants a and b and random variables X and Y, we have

(formula (2.12))

E aX þ bYð Þ ¼ aE Xð Þ þ bE Yð Þ:

2.6. Prove formula (2.15).

2.7. Prove that for any constants a and b and random variables X, Y, and Z, we have

(formula (2.31))

Cov aX þ bY; Zð Þ ¼ a Cov X; Zð Þ þ b Cov Y ; Zð Þ:

2.8. Prove that for any constants a and b and random variables X and Y, we have

(formula (2.32))

Var aX þ bYð Þ ¼ a2 Var Xð Þ þ b2 Var Yð Þ þ 2ab Cov X; Yð Þ:

2.9. Prove formula (2.33).

2.10. 
 Prove Property 2.3.Hint: Assume that the joint distribution is symmetric with

respect to the line x ¼ m. Define

d þ x; yð Þ ¼
1 for x > m;

0 otherwise;

(
d� x; yð Þ ¼

1 for x < m;

0 otherwise:

(

From the symmetry assumption, we have

E d þ X; Yð Þ X�mð Þ Y�E Yð Þð Þ½ � ¼ �E d� X; Yð Þ X�mð Þ Y�E Yð Þð Þ½ �:
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Since

Cov X; Yð Þ ¼ E d þ X; Yð Þ X�mð Þ Y�E Yð Þð Þ½ � þ E d� X;Yð Þ X�mð Þ Y�E Yð Þð Þ½ �;

we have Cov X; Yð Þ ¼ 0.

2.11. Let X be a random variable following the normal (Gaussian) distribution

N m; sð Þ defined in Appendix A. Show that for any constants a 6¼ 0 and b, the

variable aX þ b also follows the normal distribution (and the distribution is

N am þ b; ajsj Þð ). Hint: Find the CDF of aX þ b from definition and perform

integration by substitution.

2.12. 
 Consider the random variable X following a chi-squared distribution with n

degrees of freedom. As in Section 2.8, define Y ¼ D X þ að Þ, where a is a

positive constant and D is a random variable independent of X such that

P D ¼ 1ð Þ ¼ P D ¼ �1ð Þ ¼ 0:5. Find the formula for the kurtosis g2 of Y as it

depends on a and n. Confirm that g2 ¼ 0 for n ¼ 4 and a 	 0:41. Confirm the

plots obtained in Figures 2.27 and 2.28. Hint: E Yk
� � ¼ E Dk

� �
E X�að Þk
h i

¼
E X�að Þk
h i

for k even and E Yk
� � ¼ E Dk

� �
E X�að Þk
h i

¼ 0 for k odd because

E Dk
� � ¼ 1 for k even and E Dk

� � ¼ 0 for k odd. The formula for the moments

of the chi-squared distribution can be found in Appendix A.

2.13. 
 Prove Property 2.5. Hint: Clearly, E Yð Þ ¼ 0. Show that E Yk
� � ¼

E X þ að Þk
h i

for k even. Then show that E X þ að Þ4
h i

and

E X þ að Þ2
h in o2

are four-degree polynomials with respect to a, having the

coefficient 1 by the term a4. This leads to lima!1 Kurt Xð Þ ¼ 1.
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C H A P T E R 3

Statistical Inference

This chapter is a brief review for readers with some prior experience with inferential

statistics. Readers without such experience, or those who prefer more thorough

coverage of thematerial, may refer to the textbooks byDevore (2004) orMendenhall

et al. (2006). Amore engineering oriented approch in the context of signal processing

can be found is Schart (1991).

3.1 INTRODUCTION

In Chapter 2, we introduced probability as a way of describing how likely various

outcomes are in a given scenario. In Section 2.7, we discussed an example of a sample

consisting of three measurements of reflectance of a surface, which were described as

values of three random variables X1; X2; and X3. The distribution of these variables

describes probabilities of obtaining various measurement values. It is reasonable to

assume that suchmeasurements are independent, and each of them follows the normal

distribution (as is usually the case formeasurement errors) denoted byN m; s2ð Þ, where
the mean m represents the “true” reflectance as measured by the spectrometer and the

standard deviation s describes the precision of the measurements. This means that a

single measurement is considered as unbiased in the statistical sense. If one suspects

that the spectrometer might give readings that are biased with respect to a standard,

one can test this hypothesis by comparing m to the value given by the standard.

A readermight be concerned that our three-element sample is too small to drawany

meaningful conclusions. Note that in practice, people often measure the same item

only once, and they still obtain useful information. If the measurement error is small,

these three measurements of the same object should be sufficient for most practical

purposes. A different scenario would be that of a sample describing different objects

from a population (onemeasurement per object). In such cases, we usually need larger

samples that can describe the population variability, which is usually larger than the

measurement error variability. Ultimately, the proper sample size will depend on the

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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population variability and on how much information we expect from the sample.

These issues will be discussed throughout this chapter.

If we knew the values of m and s, we could tell what to expect from future

measurements. The set of all possiblemeasurements, both in the past and in the future,

forms a population in this context. The sample consists of the three measurements

“selected” from the population. We used “selected” in quotation marks because all

elements of the population in this example do not really exist as specific objects. This

is an example of an abstract population that exists only in the conceptual sense. Since

we assumed earlier that the measurements follow the normal distribution, we can say

that the population from which the measurements come is described by the normal

distribution model N m; s2ð Þ.
In inferential statistics, we draw conclusions about a population and its model

based on a sample drawn from that population. An example of statistical inference is

the estimation of the parameters m and s, as well as the assessment of the estimation

precision, based on the three measurements of reflectance. In this chapter, we discuss

statistical inference in the context of some simple scenarios.

Consider a sample of independent measurements X1;X2; . . . ;Xn, where all

variables Xi follow the same arbitrary distribution described by the cumulative

distribution function (CDF) denoted by F. Such variables were referred to as

independent and identically distributed in Section 2.7. When we take those mea-

surements, we obtain the values taken on by those variables, and we can denote them

with the lowercase letters xi; i ¼ 1; . . . ; n. It makes intuitive sense that the distribu-

tion of the points xi should be somewhat similar to the theoretical distribution of Xi,

which describes an infinite population of all possible measurements. To be more

precise, we can define an empirical distribution as a discrete distribution on the set

of points xi; i ¼ 1; . . . ; n, such that each point is assigned the same probability 1=n.
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Figure 3.1 The solid line step function shows a realization of the empirical distribution function Fn xð Þ
based on 10 data points simulated from the standard normal distribution. There are 10 steps in this step

function, but 2 of them look like one step of double height (around �0:36), because two observations

were very close to each other. The dashed line is the theoretical CDF F xð Þ of the standard normal

distribution.
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The CDF Fn of this distribution is called the empirical distribution function, and it is

defined as a step function

Fn xð Þ ¼ Number of elements in the sample � x

n
: ð3:1Þ

It can be proven that Fn gets closer to F, as n tends to infinity. Figure 3.1 shows a

realization of the empirical distribution function Fn xð Þ based on data simulated from

the standard normal distribution. The dashed line shows the theoretical CDF F xð Þ of
the standard normal distribution. The distribution of a random variable is fully

described by its CDF, so in further discussion when referring to a distribution, wewill

use the name of its CDF.

Since the empirical distribution Fn is a good approximation of the theoretical

distribution F, the characteristics of Fn should be close to those of F. This often leads

to important statistical results. For example, this approach gives reasonable estimators

of the parameters of F, as will be discussed in Section 3.2.2.

3.2 POINT ESTIMATION OF PARAMETERS

As discussed in the previous section, the empirical distribution Fn is a good

approximation of the theoretical distribution F. Consequently, the mean of the

empirical distribution Fn, which is equal to the sample mean X, should be a good

approximation of m, the mean of the distribution F, that is, the population

mean. Hence, X, treated as a random variable, is called an estimator of m. In
this section, we discuss various methods for finding good estimators and studying

their properties.

3.2.1 Definition and Properties of Estimators

Definition 3.1 A random variable that is a function of sample measurements

X1;X2; . . . ;Xn is called a statistic. This function cannot depend on unknown para-

meters so that its value can be calculated once the measurements’ values are known.

Definition 3.2 An estimator is a statistic that is used to estimate a parameter of a

model describing the population of interest.

An estimator is sometimes called a point estimator to emphasize that its value is a

single number or a point on the number line. An estimator is regarded as a random

variable, and its value is called an estimate. Estimators are often denoted by capital

letters and their values (the estimates) by lowercase letters. However, there are

exceptions, and in general, one needs to understand from the context whether the

random variables or their values are discussed.

We argued earlier that the samplemeanX, as themean of the empirical distribution

Fn, is an estimator of the population mean m. However, such construction does not
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guarantee good properties of the resulting estimators. We will now examine what are

some good properties of estimators, and how we may check those properties.

As discussed in Section 2.7, the changing values of X in repeated sampling form a

distribution of X, which is called the sampling distribution. The properties of the

sampling distribution of an estimator tell us howwell the estimatorworks, such as how

often its values are close to the truevalue of the estimated parameter. The first property

that is often checked is whether the estimation is correct on average, that is, we

calculate the expected value of the sampling distribution and compare it to the true

value of the estimated parameter.

Definition 3.3 An estimator is called unbiased if the expected value of its sampling

distribution is equal to the true value of the estimated parameter.

Since E Xið Þ ¼ m for all i ¼ 1; . . . ; n, it is easy to see that E X
� � ¼ m, that is, X is an

unbiased estimator of m. This is a good property to have. However, each observation
Xi is also an unbiased estimator of m. So, is the sample mean a better estimator than

a single observation? To answer this question, we need to study the variability of

the estimators around m—the smaller the variability, the better the unbiased

estimator. Since all measurements X1;X2; . . . ;Xn follow the same distribution, we

can denote the variance of a single measurement by Var Xið Þ ¼ s2; i ¼ 1; . . . ; n.
Recall property (2.42), written again as

StDev X
� � ¼ sX ¼ sffiffiffi

n
p : ð3:2Þ

Based on the two-sigma rule discussed in Section 2.6,we can tell thatX is not further

than 2s=
ffiffiffi
n

p
from m with probability of at least 0.75 (Chebyshev’s inequality), or

perhaps even 0.95, if the normal approximation can be used based on the central limit

theorem from Section 2.7. We can also say that increasing the sample size four times

increases the precision of X two times. Formula (3.2) is clearly useful for assessing the

precision of estimation when using X. However, in order to calculate sX , we need to

estimate the value of s. To this end, we can use the sample standard deviation

introduced in Chapter 2 and calculate the estimated standard deviation of X as s=
ffiffiffi
n

p
.

Definition 3.4 The standard deviation of an estimator is called a standard error.

In statistical inference, the estimates of standard errors are used in addition to the

values of estimators.

The sample mean with its variance inversely proportional to the sample size seems

like a reliable estimator. However, it would be good to know if there are estimators

with even smaller variances.Within the class of unbiased estimators, we can define the

following subclass of optimal estimators.

Definition 3.5 An estimator of parameter y, a function of the sample X1;X2; . . . ;Xn,

is called the minimum variance unbiased (MVU) estimator if it has the minimum

variance among all unbiased estimators of y based on such sample.
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The sample mean X is an MVU estimator of the population mean for a large class of

distributions. Specialized statistical books such as Bickel andDoksum (2001) provide

more information onMVU estimators and how they can be constructed in the context

of specific distributions and statistical models.

Many useful estimators are not unbiased. For example, the sample standard

deviation s is a biased estimator of the population standard deviation s, even though
the sample variance s2 is an unbiased estimator of s2, as will be shown in the next

section. The bias of s varies with the distribution of the underlying sample, and hence

there is no easy way to eliminate that bias.

There are also situations when a biased estimator might be better than an unbiased

one. Consider a parameter y and its estimator by, following the traditional statistical

notation where an estimator is denoted by adding a “hat” symbol over the parameter

symbol. A sampling distribution of an unbiased estimator, say by1, is shown in

Figure 3.2. Its probability density function shown as a dashed line is rather flat,

indicating largevariability.Another estimator, say by2, is biased (the density shown as a
solid line), but it has much lower variability.Wemay prefer by2 because it gives values
close to y more often than the estimator by1. This can be formalized by defining the

mean squared error as follows.

We want to address the ultimate goal of estimation, which is to have values of by
close to the true parameter value y. A useful way to describe the closeness is to

calculate the mean squared error

MSE by� � ¼ E by� y
� �2h i

; ð3:3Þ

which can also be expressed as

MSE by� � ¼ Var by� �þ Bias by� �� �2
; ð3:4Þ

where Bias by� � ¼ E by� �� y. See Problem 3.7 for a hint on proving equation (3.4).

For unbiased estimators, the second term in (3.4) vanishes, and minimization of

the variance is equivalent to the minimization of the MSE. Sometimes we are able

to introduce some bias deliberately in a way that reduces the variance signifi-

cantly, as shown in Figure 3.2, resulting in an overall reduction in the MSE.
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Figure 3.2 A probability density function of a sampling distribution of an unbiased estimator (dashed

line) and that of a biased one (solid line) with much lower variability.
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3.2.2 The Method of the Moments and Plug-In Principle

We argued earlier that since the empirical distribution Fn is an approximation of

distribution F, it is reasonable to use the first moment of Fn, that is, X, as an

approximation of the first moment of F, that is, m. This reasoning is called themethod

of moments, and it can be used to find estimators of various parameters. For example,

to estimate the second centralmoment ofF, the populationvariance s2, we can use the
second central moment of the empirical distribution function Fn that is equal to

bs2n ¼ 1

n

Xn
i¼1

ðXi � XÞ2: ð3:5Þ

The resulting estimator bs2n is not unbiased. One can show that E bs2n� � ¼
½ðn� 1Þ=n�s2, which leads to an unbiased estimator

s2 ¼ n

n� 1
bs2n ¼ 1

n� 1

Xn
i¼1

ðXi � XÞ2; ð3:6Þ

which is the sample variance introduced in Chapter 2.

The above-described method of moments can also be used for higher order

moments. A more general method, called a plug-in principle, allows estimation of

any characteristic of F, by using the same characteristic of Fn. For example, the

median of F can be estimated by the median of Fn. The advantage of the plug-in

principle (including the method of moments) is that it can be used for any distribution

F without any additional assumptions.

When we want to assume that F belongs to a certain family of distributions, the

plug-in principle can be further generalized as shown in the following example. Let’s

assume that F belongs to the family of the exponential power distributions defined

in Appendix A. That family is parameterized by three parameters m; a; and b. If X
follows the exponential power distributions, then

E Xð Þ ¼ m; Var Xð Þ ¼ b2G 3=að Þ
G 1=að Þ ; EjX � E Xð Þj ¼ b G 2=að Þ

G 1=að Þ ; ð3:7Þ

where E X � E Xð Þjj is called the mean absolute deviation from the mean and G �ð Þ is
the gamma function (see Appendix A). We can now estimate the left-hand-side

expressions by using the plug-in principle, and then solve this system of three

equations with respect to the unknown three parameters m; a; and b. Since only

the first equation involves m, its plug-in estimator is bm ¼ X. For Var Xð Þ, we can use a
bias-adjusted version of the plug-in estimator, that is, s2. For the mean absolute

deviation, we use the plug-in estimator 1=nð ÞPn
i¼1 Xi � Xj�� , and the estimators for a

and b are the solutions of the following system of two equations:

s2 ¼
bb2G 3=ba� �
G 1=ba� � ;

1

n

Xn
i¼1

jXi � Xj ¼
bbG 2=ba� �
G 1=ba� � ; ð3:8Þ
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which would need to be solved numerically. We are presenting this approach as an

example only, rather than advocating it as a reliablemethod of estimation. Themethod

of moments and the plug-in principle sometimes give poor estimators. A method

that is often more successful is based on the likelihood principle as discussed in the

next section.

3.2.3 The Maximum Likelihood Estimation

So far, the estimation process involved finding a function of data that would get us

close to the true value of a parameter. An equivalent, although somewhat reversed,

approach would be to try to find the value of a parameter that is most consistent with

the data. Here we need to assume that the unknown distribution of our data belongs

to a certain family of distributions defined by a set of parameters. Typical examples of

such families are the normal (Gaussian), gamma, or the exponential families

of distributions (see Appendix A).

For the sake of simplicity, let us assume that our observations come from a normal

distribution N m; 1ð Þ with an unknown mean m and the known variance 1. Let us start

with the simplest case, when we have only one observation X1. When deciding what

the value of m should be, we are faced with a choice of one of the density functions (as
shown in Figure 3.3). We want to find the value that is the most likely explanation for

observing X1 ¼ x, where x is the value that was observed. Since the height of the

density function at a point x is proportional to the probability of observing a value

close to x, it makes sense to pick the density function, which has the largest value at

point x. This results in picking N x; 1ð Þ as our most likely distribution, that is, x is the

estimate for m, and it is called the maximum likelihood estimate (MLE), or estimator

if treated as a random variable.

Things get a little bit more complex when we have two observations X1 and X2. In

this case, we need to consider all possible pairs of values that the vector X1;X2ð Þ can
take on, and their associated probabilities. This is the same as considering the joint

distribution of X1 and X2. Since the observations in the sample are assumed to be

independent, the joint density is given by

f x1; mð Þ � f x2; mð Þ; ð3:9Þ

x

Figure 3.3 Density functions of the normal distributionsN m; 1ð Þwith varying m. The solid line shows the
density that is most consistent with the observed value x.
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where f x; mð Þ is the normal density function of N m; 1ð Þ. Figure 3.4 shows symboli-

cally the joint densities given by (3.9) for several choices of m. Note that the peaks are
at the line x1 ¼ x2. Again, our goal is to find the value of m such that the joint density

(3.9) is the most likely distribution that could generate our pair of observations

x1; x2ð Þ.Note that the two-dimensional bell-shaped joint densities shown inFigure 3.4

have contour lines in the form of circles with centers at the line x1 ¼ x2. Smaller

circles correspond to higher density.

The smallest circle including point x1; x2ð Þ is the one with the center at the point

ð x1 þ x2ð Þ=2; x1 þ x2ð Þ=2Þ. Consequently, the joint density with the largest value at
point x1; x2ð Þ is the one with parameter m ¼ x1 þ x2ð Þ=2. This fact can also be

demonstrated algebraically by writing (3.9) as

1ffiffiffiffiffiffi
2p

p exp � x1 � mð Þ2
2

" #
� 1ffiffiffiffiffiffi

2p
p exp � x2 � mð Þ2

2

" #
¼ 1

2p
exp � x1 � mð Þ2 þ x2 � mð Þ2

2

" #

ð3:10Þ

and showing that the minimum of x1 � mð Þ2 þ x2 � mð Þ2 with respect to m is

realized when m¼ x1 þ x2ð Þ=2. The estimate bm¼ x1 þ x2ð Þ=2 is then called the

MLE. For samples with n> 2, we will rely on the algebraic approach only.

Here, we write the joint density of all n elements of the sample as the product of

the normal densities

Yn
i¼1

f xi;mð Þ: ð3:11Þ

Figure 3.4 Joint density functions (shown symbolically) of the bivariate normal distributions of the form

(3.9) with varying m.
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Again, we want to find the most appropriate value of m. Hence, we want to think

about (3.11) as a function of m, and we call that function a likelihood function

L m; x1; . . . ; xnð Þ ¼
Yn
i¼1

f xi; mð Þ: ð3:12Þ

TheMLE of m is that value of m that gives the largest value of the likelihood, which
at the same time is the largest value of the joint density, indicating that this is the most

likely model for our observed data. It is often convenient to maximize a natural

logarithm of the likelihood (called log-likelihood), which gives the same solution for

m because a logarithm is a strictly increasing function.

In our example of the size n sample from the normal distribution, the log-likelihood

is equal to

log L m; x1; . . . ; xnð Þ ¼ � n

2
ln 2pð Þ � 1

2

Xn
i¼1

xi � mð Þ2: ð3:13Þ

In order to find the maximum, we can equate the derivative of the log-likelihood

with respect to m to zero to obtain the equation

Xn
i¼1

xi � mð Þ ¼ 0; ð3:14Þ

which has the solution bm ¼ x. This is the MLE of m.
In a more general setting, once we assume the form of the joint distribution for the

variables X1;X2; . . . ;Xn, we can treat it as a function of parameters, say y1; . . . ; yk,
written in the form

L y1; . . . ; yk; x1; . . . ; xnð Þ: ð3:15Þ

The values by1; . . . ; byk that maximize this likelihood are called the MLEs. For a

random sample from the normal distribution N m; s2ð Þ (i.e., a set of i.i.d. variables)

with both parameters unknown, the MLEs turn out to be

bm ¼ x and bs2n ¼ 1

n

Xn
i¼1

ðxi � xÞ2: ð3:16Þ

As discussed in Section 3.2.2, bs2n is a biased estimator of s2, which demonstrates

that the MLEs are not always the best estimators.

In this case, it was possible to obtain explicit formulas for the MLEs, but in most

other cases, the maximization can only be obtained by numerical methods, and no

explicit formulas exist. This makes it difficult to study properties of the MLEs,

especially for small sample sizes. However, it can be proven (under very general
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conditions) that for a large sample (when n tends to infinity), an MLE is asymptoti-

cally unbiased and has nearly the smallest possible variance.

3.3 INTERVAL ESTIMATION

A disadvantage of point estimators is that they give us only a single value as the

best guess of the unknown parameter. Of course, knowing the standard error of

the point estimator tells us how far the estimate might be from the true value of

the parameter, especially for the unbiased estimators. However, this issue can be

addressed more directly by constructing an interval that would contain the

unknown parameter with a given confidence. This is often done by considering

the difference between the estimator by and the parameter y, and then standardiz-

ing it by dividing by the known standard error (SE by� �
) or the estimated standard

error as follows:

Q ¼
by� ybSE by� � : ð3:17Þ

The random variable Q (called a pivot) measures how far the estimate is from the

true value in standard error units. IfQ has a distribution, sayG, which does not depend

on any unknown parameters, it can be used to construct a confidence interval (CI).

We can write that

P Za=2 < Q < Z1�a=2

� 	
¼ 1� a; ð3:18Þ

where Za is the 100að Þth percentile of the distribution G, that is, G Zað Þ ¼ a (where G
also denotes the CDF of that distribution). We can express (3.18) equivalently as

P Za=2 � bSE by� �
< by� y < Z1�a=2 � bSE by� �� 	

¼ 1� a ð3:19Þ

or

P by� Z1�a=2 � bSE by� �
< y < by� Za=2 � bSE by� �� 	

¼ 1� a: ð3:20Þ

The random interval

by� Z1�a=2 � bSE by� �
; by� Za=2 � bSE by� �� 	

ð3:21Þ

from the last equation is called a confidence interval at the 100 1� að Þð Þ% confidence

level because it captures the unknown parameter with probability 1� a. When the
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distributionG is symmetric around zero, we have Za=2 ¼ �Z1�a=2, and the confidence

interval can be written in the form

by � Z1�a=2 � bSE by� �
: ð3:22Þ

The point estimator by is the random center of the interval, and its length is equal to

2Z1�a=2 � bSE by� �
. If the standard error is estimated (as in (3.22)), rather than known, the

length of the interval is also random.

When the sample values are observed (taking on specific values), this random

interval becomes the observed confidence interval, which either contains or does not

contain the estimated parameter. Hence, no probability statement can be associated

with a single observed confidence interval. Instead, we say that we have a

100 1� að Þð Þ% confidence in the obtained interval in the sense that when repeating

the same procedure in repeated samples from the same distribution, we would cover

the estimated parameter 100 1� að Þð Þ% of the time. Figure 3.5 shows an example of

20 observed confidence intervals of the parameter y generated from 20 samples from

the normal distribution with the mean y. Only 1 out of the 20 intervals does not cover
the parameter, which matches the 95% confidence level used here. In practice, the

value of y is unknown, and we do not know whether or not a given interval covers

the parameter.

Consider now a sample consisting of independent measurements described by

random variables Xi; i ¼ 1; . . . ; n, all having the same normal distribution N m; s2ð Þ.
In order to construct a confidence interval for m, we can use the pivot L of the form

shown in formula (3.17), that is,

Q ¼ X � mbSE X
� � ; ð3:23Þ

θ

Figure 3.5 Anexample of 20 observed confidence intervals (at the 95%confidence level) of the parameter

y generated from 20 samples from the normal distribution with the mean y.
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where bSE X
� � ¼ s=

ffiffiffi
n

p
. It is known that the pivot Q follows the t-distribution with

n� 1ð Þ degrees of freedom when the observations follow the normal distribution, as

is the case here. Since the t-distribution is symmetric around zero, we can use

property (3.18) written in the form

P �tn�1ða=2Þ < Q < tn�1ða=2Þð Þ ¼ 1� a; ð3:24Þ

where tn�1ða=2Þ is the upper 100a=2ð Þth percentile of the t-distribution with n� 1ð Þ
degrees of freedom. Note that here we use upper percentiles, while in (3.18) we used

more general notation with the classic percentile. The resulting confidence interval,

called the one-sample t confidence interval, is of the form analogous to (3.22), that is,

it can be written as

X � tn�1ða=2Þ � s=
ffiffiffi
n

p
: ð3:25Þ

An implementation of this confidence interval is demonstrated in the following

example.

Example 3.1 Consider Small Image data describing an 8 by 13 pixel image of a

monochromatic, highly uniform tile in threewide spectral bands (in reflectance units).

Our goal is to estimate the “true” tile reflectances m1; m2; and m3 in the three spectral
bands, respectively. First, we are going to concentrate on the reflectances in Band 1.

Since the tile surface is highly uniform, it makes sense to assume that reflectances

in Band 1 for all pixels are independent random variables Xi; i ¼ 1; . . . ; n ¼ 104,

all having the same distribution with the mean E Xið Þ ¼ m1 (assuming that the

measurements are unbiased). We expect the data to follow the normal distribution

because the variability is largely due to the measurement error. For a ¼ 0:05,
we obtain tn�1ða=2Þ ¼ 1:98. For Band 1 data, we have x ¼ 25:0245, s ¼ 0:2586,
and the resulting half of the length of the confidence interval is equal to

h ¼ tn�1ða=2Þ � s=
ffiffiffi
n

p ¼ 0:0503. The confidence interval can now be written as

25:0245 � 0:0503 or 24:9742; 25:0748ð Þ. &

When the standard deviation s of Xi’s is known, the pivot random variable L is

normally distributed and the confidence interval written in (3.25) can be replacedwith

a z confidence interval defined as

X � zða=2Þ � s= ffiffiffi
n

p
; ð3:26Þ

where zða=2Þ is the upper 100a=2ð Þth percentile of the normal distribution. The

parameter s can be known from prior information based on a number of observations

much larger than the current sample size n. Without prior information, the z

confidence interval (with estimate s replacing s) can also be used based on the

approximation of the t-distribution by the normal distribution. Some authors suggest

this approximation for sample sizes as small as n ¼ 40. We suggest that much larger

samples are required. Figure 3.6 shows the percent difference between the two

percentiles calculated as 100 tðaÞ � zðaÞð Þ=zðaÞ. For n ¼ 200, the percent difference
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ranges between 0.5% and 1%. This means that the t confidence interval is wider than

its normal-based approximation by the same percentage.

The above considerations assume normality of observations. It is often argued that

without the normality assumption, a z confidence interval can be used for large

samples since the numerator of the pivot L is approximately normal based on the

central limit theorem and s is close to s by the law of large numbers (see Section 2.7).

We argue that it is a better practice to use the t confidence intervals, even for non-

normal samples, unless the sample size is so large that the difference between the

two results is not important, or if the resulting simplification is sufficiently beneficial.

Note that a z confidence interval is always shorter than the respective t confidence

interval. This means that by having less information (potential non-normality), we

would be “rewarded” with a shorter interval, which does not seem logical.

3.4 HYPOTHESIS TESTING

Another tool for statistical inference is hypothesis testing. In many instances, it is

important to know if a certain statement or hypothesis about a population, or a model,

is true or not. Here are some examples of statistical hypotheses:

. The population mean value is equal to 20.

. The sample comes from a normal distribution.

. The population standard deviation is not larger than 5.

Clearly, a hypothesis may refer to a parameter such as the population mean, or it may

be a statement about the correct model for the sample (for instance, that the

observations come from the normal distribution). In any hypothesis testing problem,

we consider two contradictory hypotheses, of which only one can be true. One of the

twohypotheses is often a claim that is initially assumed to be true, and it is called a null
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Figure 3.6 Percent difference between the t-distribution and normal distribution kth upper percentile

points for a range of degrees of freedom. The four solid lines are for k ¼ 0:5; 1; 2:5; and 5 from the top to

the bottom, respectively.
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hypothesis denoted byH0. It can reflect our prior belief, or information, or simply the

chosen initial claim that we will reject only if we see strong evidence against it.

Otherwise, we will continue to believe inH0, even though we have not proven it to be

true. The null hypothesis is like the presumption of innocence, and accepting it is like

acquitting a defendant. If we do not prove the defendant’s guilt, we have to acquit him,

even without proving his innocence. The other hypothesis is called an alternative

hypothesis and is denoted by H1.

Example 3.2 As a continuation of Example 3.1, consider n ¼ 104 pixels or

observations from the Small Image data set. For each pixel, we have reflectance

values in three wide spectral bands. Additionally, we were told the tile specification

claiming that the reflectances should be 25.05%, 37.53%, and 74.99% for Bands 1, 2,

and 3, respectively. Wewill first concentrate on Band 1 and consider the specification

value m0 ¼ 25:05. As in Example 3.1, we assume that the reflectances in Band 1

denoted as Xi; i ¼ 1; . . . ; n, are independent and follow the same normal distribution

with E Xið Þ ¼ m, where m is interpreted as the true value.Wewould like to check if the

tile indeed conforms to the specification, which can be written as the null hypothesis

H0 : m ¼ m0 stating that the true value is equal to m0. The alternative hypothesis is that
the tile does not conform to the specification, that is,H1 : m 6¼ m0. Wewill not be able

to proveH0 : m ¼ m0, because even if the sample mean xwas equal to m0 ¼ 25:05, it
could be that the true mean is very close to 25:05, for example, m ¼ 25:0501. This
would explain why x ¼ 25:05, even if m 6¼ m0. On the other hand, if x is far from

m0 ¼ 25:05, then we can easily claim that H0 : m ¼ m0 is not true (but only with

limited confidence due to a possible sampling error). &

In a general setting, when testing the null hypothesis H0 : m ¼ m0 versus the

alternative H1 : m 6¼ m0, we want to know how far x is from m0. Hence, we can use

the pivot L given by (3.23) with m ¼ m0. The resulting random variable given by

t ¼ X � m0bSE X
� � ð3:27Þ

is called the t-statistic. It is called a statistic because its value does not depend on any

unknown parameters. On the other hand, the pivot L given by (3.23) is not a statistic

because it depends on the unknown parameter m.When the sample comes for a normal

distribution, t has t-distribution with n � 1 degrees of freedom.

Since the departure in anydirection fromm0 is an evidence againstH0 : m ¼ m0, we
decide to reject H0 when tjj is large enough. Our decision about H0 versus H1 will

typically be based on a sample that is a representative, though imperfect, reflection of

the population. Hence, we might make an incorrect decision.

Table 3.1 shows four possible events. IfH0 is true, and we accept it (do not reject),

we are OK. On the other hand, if we reject a true H0, we make an error, which is

traditionally called a Type I error or false alarm. The probability of this error is often

called the alpha risk or false alarm rate and can bewritten asPH0
RejectH0f g. IfH0 is

not true, and we reject it, we are OK again. However, if H0 is not true, and we do not
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reject it, we again make an error, which is traditionally called a Type II error. The

probability of this error is often called the beta risk and can be written as

PHa
Do not rejectH0f g. Clearly, it would be best to minimize both alpha and beta

risks. We will discuss later on how this can be done.

Definition 3.6 A test procedure is a rule, usually based on sample data, for deciding

whether to reject the null hypothesis H0.

Definition 3.7 A test statistic is a function of sample data, which is used to decide

whether to reject the null hypothesis H0.

Definition 3.8 A rejection region is the set of all values of the test statistic for which

the null hypothesis H0 will be rejected.

We earlier decided to use large tjj as evidence against H0 : m ¼ m0. We can now

formalize it by selecting a threshold ccritical, called a critical value, and defining a test

procedure, which rejectsH0, when tj � ccriticalj . The resulting test is called two-sided

because it tests against a two-sided alternative H1 : m 6¼ m0 located on both sides of
m0. One could also test against a one-sided alternative, for example, H1 : m > m0,
when the other side (m < m0) is either impossible or consistent with our initial claim.

In the latter case, we would consider the null hypothesis H0 : m � m0 versus the

alternative H1 : m > m0. For example, if we measure a quality characteristic of a

tile produced by a new method, with larger m indicative of higher quality, the

alternativeH1 : m > m0 means that the new method is better than the current method

with m ¼ m0. If the new method is as good as the current method (m ¼ m0) or is worse
(m < m0), we would not want to implement the new method. Only when the null

hypothesis H0 : m � m0 is rejected in favor of the one-sided alternative H1 : m > m0
would we be interested in implementing the new method.

We will now concentrate on two-sided tests and discuss how to select the

threshold c2 indexed with 2 to emphasize the two-sided alternative. Before selecting

the threshold, we need to consider the consequences of picking a specific value. In

order to calculate the alpha risk written as Pm¼m0 tj � c2j gf , we will assume that the

observations follow the normal distribution. Consequently, the statistic t given by

(3.27) follows the t-distribution when m ¼ m0. Let G be a cumulative distribution

function of the t-distribution. From the symmetry of the t-distribution around zero,

we obtain Pm¼m0 tj � c2j g ¼ 1� G c2ð Þ þ G �c2ð Þ ¼ 2 1� G c2ð Þ½ �f . It is now clear

that by varying the critical value c2, we can obtain any value a 2 0; 1ð Þ for the

alpha risk equal to 2 1� G c2ð Þ½ �. More specifically, we should take c2 ¼ tn�1ða=2Þ

Table 3.1 The Four Scenarios when Testing a Null Hypothesis

Decision H0 H0 Is True H0 Is Not True

Do not reject H0 OK Type II error (probability¼ beta risk)

Reject H0 Type I error (probability¼
alpha risk or false alarm rate)

OK (probability¼ power)
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(upper (100a/2)th percentile) for a two-sided alternative. Similar calculations for

the one-sided alternativeH1 : m > m0 lead to a test procedure rejectingH0 : m � m0,
when t � c1, where c1 ¼ tn�1ðaÞ.

In general, once the a value is determined, the test procedure is defined through the

appropriate choice of the threshold ccritical. We say that the test is at the significance

level a, or we call it “a-level test.” It is up to the data analyst to choose the suitable

value of a. Traditionally, the largest value that is usually used is a ¼ 0:05, but it can
also be much smaller if it is important to avoid rejecting H0 that is in fact true. For

example, if investigating the toxicity of a potential pharmaceutical, we should set up

H0 as “the substance is toxic” and use a very small value of a.

Example 3.2 (cont.) For checking the tile specification, as discussed earlier in

Example 3.2, we can use a ¼ 0:05. With the sample size of n ¼ 104, we obtain

c2 ¼ tn�1ða=2Þ ¼ t103ð0:025Þ ¼ 1:98. For Band 1 data, we have x ¼ 25:0245,
m0 ¼ 25:05, and s ¼ 0:2586. Hence, the resulting t-test statistic calculated from the

formula (3.27) is equal to t ¼ �1:006. Since tj ¼ 1:006 < 1:98 ¼ c2j , we do not

reject the null hypothesis H0 : m ¼ m0. There is no evidence against the tile con-

forming to the specification. &

We can now address the Type II error and its probability. The alternative hypothesis is

typically composite, that is, it consists of many possible choices for the parameter,

such as m in this case. This means that the beta risk is in fact a function of m, which can
bewritten as b ¼ Pm tj < c2j gf for the two-sided alternative. The beta risk is shown in

Figure 3.7 as the area shaded by the slanted lines. The two tails colored in gray

represent the alpha risk in that figure. Note that themean of the t-statistic depends on n.

It is convenient to define the power of the test as Pm tj � c2j gf equal to one minus beta

risk.Hence, the test power is the probability thatwewill detect the unknownm as being
different from m0. The probabilities of the four events in hypothesis testing are

summarized in Table 3.2. Note that the probabilities in columns always sum up to 1

because they represent the only two possible events that can happen. When rejecting

H0 : m ¼ m0, we can say that we identified the difference to be statistically significant.
For a given value of a, a test with smaller b, that is, larger power, is better.

− c2 0 c2 nΔ

Figure 3.7 The approximate distribution of the t-statistic under the null hypothesis (on the left) and under

the alternative (on the right) D ¼ m� m0ð Þ=sð Þ. The two tails colored in gray represent the probability of

Type I error, and the area shaded by the slanted lines represents the probability of Type II error.
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In order to calculate the power of the two-sided t-test, we are going to make a

simplified assumption that n is large enough to justify the normal approximation for

the resulting t-distribution. We will also assume a related approximation s � s. We

can write

Power mð Þ ¼ Pm tj � c2j g ¼ Pm t � c2f g þ Pm t � �c2f g
 ð3:28Þ

and calculate the first term as follows:

Pm t � c2f g ¼ Pm
X � m0
SE X

� � � c2

( )
¼ Pm

X � mþ m� m0
SE X

� � � c2

( )

¼ Pm
X � m
SE X

� � � c2 � m� m0
SE X

� �
( )

� P Z � c2 � m� m0
s=

ffiffiffi
n

p
� �

¼ 1� F c2 �
ffiffiffi
n

p
Dð Þ; ð3:29Þ

where Z follows the standard normal distribution N 0; 1ð Þ and D ¼ m� m0ð Þ=s
measures (in standard deviation units) how far the alternative m is from the null

hypothesis m0 (the sign ofD indicates the direction). The second term in (3.28) can be

calculated the same way, leading to the following formula for power:

Power mð Þ ¼ 1� F c2 �
ffiffiffi
n

p
D

� �þ F �c2 �
ffiffiffi
n

p
D

� �
: ð3:30Þ

We can see both algebraically and from Figure 3.7 that larger values of
ffiffiffi
n

p
D lead to

smaller beta risk and larger power. Formula (3.30) can be interpreted as an approxi-

mate formula for the t-test or an exact formula for a z-test defined by the z-statistic

z ¼ X � m0
s=

ffiffiffi
n

p : ð3:31Þ

The z-test can be used when the s value is known very precisely from prior

experience rather than being estimated from the current sample. A two-sided z-test at

level a will reject H0 : m ¼ m0, when zj � c2 ¼ zða=2Þj .

From formula (3.30), we can see that the test power depends on three quantities—a
(through c2), n; and D. We can fix values of two of those three quantities and plot the

test power as a function of the third one. When fixing n and D, we obtain a receiver

operating characteristic (ROC) curve. This is a plot of the test power as a function of

the level a. Figure 3.8 shows the ROC curves for the two-sided z-test for various

Table 3.2 The Probabilities of the Four Scenarios When Testing a Null Hypothesis

Decision H0 H0 Is True H0 Is Not True

Do not reject H0 1� a b
Reject H0 a Power ¼ 1� b
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sample sizes andD ¼ 0:6.We can see that a larger sample size gives a larger power for

all 0 < a < 1 levels. One disadvantage of the ROC curve is that the value ofD is fixed,

so that the power can be shown as a function of a. In practice, we are typically

interested in small values of a, especially a � 0:05. This is whywe often plot the ROC
curve only in the range of 0 � a � 0:05 as shown in Figure 3.9.

It is often more informative to fix the a level and plot power as a function ofD. The
resulting curve is called a power curve. Figure 3.10 shows power curves of the level

a ¼ 0:05 two-sided z-test as a function ofD for various sample sizes. Note thatD ¼ 0

corresponds to the null hypothesis H0 : m ¼ m0, and the resulting power Power m0ð Þ
is equal to a. This is why all functions in Figure 3.10 go down to a ¼ 0:05 at D ¼ 0.

The steeper the function rises from that point, the better the test because of the higher

probability (power) of detecting m as different from m0. For the case of the sample size

n ¼ 5 (the solid line in Figure 3.10), the value D ¼ 1 will be detected as significant

with probability of only about 0.6. The situation is better for n ¼ 10 (dashed line) with
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Figure 3.8 The ROC curves for the two-sided z-test for various sample sizes and D ¼ 0:6.

0.050.040.030.020.010.00

1.
0

0.
8

0.
6

0.
4

0.
2

0.
0

α

P
ow

er

n = 5
n = 10
n = 50

Figure 3.9 A small section of the ROC curve from Figure 3.8 for 0 � a � 0:05.
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the probability going way above 0.8, and even better for n ¼ 50 (dotted line) with the

probability of detection equal to almost 1.

Table 3.3 shows some numerical values of the test power, in percent, calculated

from formula (3.30). Again, we can clearly see the benefits of larger sample sizes.We

can also see that it is easier to detect significance of a largerD. The power of the z-test
never gets to 1 exactly (the numbers were rounded off to the nearest 0.1% in the table,

which explains the resulting values of 100%).

Since we are usually interested in large values of power, we can also fix the power

value (together with a) and investigate the relationship between the sample size n and

the value of D. This approach is especially valuable at the stage of planning a study,

so that we can plan how large a sample size nwe need in order to achieve the goal of

detecting the difference D with sufficient probability (power). In order to solve

equation (3.30) for n, we assume for simplicity of presentation that D > 0 and we

eliminate the last term on the right-hand side, which is usually very small (for

a � 0:05,D > 0, and Power � 0:8, the last term is smaller than 10�6).We then obtain

the formula for the minimum required sample size as

n ¼ zða=2Þ þ zð1� PowerÞ
D

 �2

ð3:32Þ
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Figure 3.10 Thepower of the levela ¼ 0:05 two-sided z-test givenby formula (3.30) as a functionofD for

various sample sizes.

Table 3.3 Some Numerical Values (Rounded Off to the Nearest 0.1%) of the Power

(in Percent) of the Level a ¼ 0:05 Two-Sided z-Test

Sample Size D¼ 0.2 D¼ 0.4 D¼ 0.6 D¼ 0.8 D¼ 1

5 7.3 14.5 26.9 43.2 60.9

10 9.7 24.4 47.5 71.6 88.5

50 29.3 80.7 98.9 100.0 100.0

The values were calculated from formula (3.30).
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rounded up to the nearest integer. Similar reasoning gives the same formula forD < 0.

Figure 3.11 shows the required sample size (on the logarithmic scale) of the level

a ¼ 0:05 two-sided z-test as a function of D for various power levels.

Example 3.2 (cont.) When rejecting the null hypothesis H0 : m ¼ m0 that the tile
conforms to the specification, wemay call the tile a defect. Calling a tile incorrectly as

a defect is a loss for the tile producer. Hence, the alpha risk is sometimes called the

producer’s risk. On the other hand, incorrectly accepting a nonconforming tile as a

good one creates a potential loss for a consumer. Hence, the beta risk is sometimes

called the consumer’s risk. By increasing the threshold c2, we reduce the producer’s

risk but increase the consumer’s risk.On the other hand, reducing the threshold has the

opposite effect of increasing the producer’s risk and reducing the consumer’s risk.

This means that we need to balance the two types of risk and identify their best

combination in a given context. In order to reduce both risks (i.e., get smaller a and

larger power), wewould need to increase the sample size n, as can be clearly seen from

Figures 3.8–3.10. &

When a value of the test statistic is calculated for a given sample, it would be good to

know how extreme or unusual the value is, given the null hypothesis is true. This can

be assessed by calculating the probability of such a result or amore extreme result. For

the two-sided t-test, we would calculate

Pm¼m0 tj � t*
�� �

;

 ð3:33Þ

where t* is the specific value of the t-statistic calculated from the sample. This

probability is called a p-value. A very small p-value indicates that the t* value

is unusual in the light of the null hypothesis H0, which is evidence against H0. This

would prompt us to reject H0. In order to test H0 at the a level, we would reject H0

when the p-value is smaller than or equal to a.

Δ

S
am

pl
e 

S
iz

e 
n

2.01.51.00.50.1

10
00

10
0

10
2

Power = 0.8
Power = 0.9
Power = 0.99

Figure 3.11 The required sample size (on the logarithmic scale) of the level a ¼ 0:05 two-sided z-test as a

function of D for various power levels.
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For many statistical tests, one can establish a relationship between the test and the

confidence interval. For a t confidence interval given as X � tn�1ða=2Þ � s=
ffiffiffi
n

p
, a

value m0 is within the confidence interval if and only if

X � m0j < tn�1ða=2Þ � s=
ffiffiffi
n

p�� ð3:34Þ

or

jX � m0j
s=

ffiffiffi
n

p < tn�1ða=2Þ: ð3:35Þ

The left-hand side of (3.35) is the absolute value of the t-statistic used by the two-

sided a-level t-test for testing H0 : m ¼ m0. This means that condition (3.35) is

equivalent to acceptance ofH0.We have shown that the t confidence interval is the set

of values m0 of the parameter that would be accepted when tested as H0 : m ¼ m0. At
the same time, the values outside of the confidence interval would be rejected as the

true values of the parameter.

3.5 SAMPLES FROM TWO POPULATIONS

In previous sections, we introduced the basic concepts of statistical inference using

examples based on one-sample problems, where the whole sample is drawn from one

population. There aremany other types of statistical problems, where various types of

assumptions are made depending on the type of data being analyzed. A broader

treatment of those cases is beyond the scope of this chapter, and the reader can find

details in other statistical books. Our goal here is to provide a solid foundation for

understanding those other types of statistical problems. In this section, we provide a

very brief example of another type of statistical problem. Let us first show an example

of data, where such a different approach is needed.

Example 3.3 Consider infrared astronomy data on two types of objects (stars),

carbon-rich asymptotic giant branch (C AGB) stars and the so-called “H II regions.”

The former are dying, sun-like stars (red giants), while the latter are plasmas ionized

by hot, massive young stars that are still deeply embedded in the molecular clouds out

of which theywere formed. Here, we use a subset of data used in Kastner et al. (2008),

consisting of 126 such objects located in the Large Magellanic Cloud. Sixty-seven of

those objects are C AGB stars and 59 are H II (regions). For each star, we have J

(1.25mm), H (1.65mm), and K (2.17mm) bandmagnitudes from the Two-MicronAll-

Sky Survey. See Appendix B for more details. Let’s concentrate on the J band

magnitudes. Our goal is to see if there is any difference between the two types of stars

in terms of their J band magnitudes. Statistically, we can describe it as two samples

coming from two different populations. Each population is characterized by the

distribution of its J band magnitudes. We want to test if the two distributions can be

assumed to be the same, or they are different. Figure 3.12 shows a box plot of the two
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samples. There is a substantial overlap of values in the two samples, but there are also

some differences. We need to test if the differences are statistically significant or if

they could have happened by chance. &

The scenario described in Example 3.3 is called a two-sample problem. In order to

show statistical inference in this scenario, we need to start with introducing mathe-

matical notation and formulating our assumptions. We assume that the first sample

X1;X2; . . . ;Xn comes from the normal distribution N m1; s
2
1

� �
and the second

sample Y1; Y2; . . . ; Ym comes from a potentially different normal distribution

N m2; s
2
2

� �
. The sample sizes n and m might also be different. We first want to test

if the variances in the two populations are the same. The null hypothesis can bewritten

as H0 : s21 ¼ s22, which will be tested against the alternativeH1 : s21 6¼ s22. It is clear
that the test should be based on a comparison of the sample variances from the two

samples. However, instead of considering a difference between them, we should be

using their ratio called an F-statistic defined as

F ¼ s21
s22
: ð3:36Þ

It is known that s22=s
2
1

� �
F follows the F-distribution with n� 1ð Þ and m� 1ð Þ

degrees of freedom (seeAppendixA).Under the null hypothesisH0,we haves21 ¼ s22;
hence, the F-statistic follows the same F-distribution. The null hypothesis is rejected

when either F � Fn�1;m�1ða=2Þ or F � Fn�1;m�1ð1� a=2Þ, where Fn�1;m�1ða=2Þ is
the 100að Þth upper percentile from the F-distribution with n� 1ð Þ and m� 1ð Þ
degrees of freedom.

In order to test the equality of the means, we formulate the null hypothesis

H0 : m1 ¼ m2, which will be tested against the alternative H1 : m1 6¼ m2. We can say

that we are testingH0 : y ¼ 0, where y ¼ m1 � m2, and we can use the pivotQ of the

form given in equation (3.17), where by ¼ X � Y and

bSE by� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n
þ s22

m

r
: ð3:37Þ
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Figure 3.12 A box plot of the two samples of J magnitudes from the two types of stars—“C AGB” and

“H II” as discussed in Example 3.3.
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The pivotQ has approximately a t-distributionwith n degrees of freedom estimated

from the data by

n¼ se1ð Þ2þ se2ð Þ2

se1ð Þ4=ðn� 1Þ
h i

þ se2ð Þ4=ðm� 1Þ
h i ; where se1ð Þ2 ¼ s21

n
and se2ð Þ2 ¼ s22

m
:

ð3:38Þ

The t-statistic for testing a difference D0 between the two samples, that is, for

testing H0 : m1 � m2 ¼ D0, is defined as

t ¼ X � Y � D0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs21=nÞ þ ðs22=mÞ

p : ð3:39Þ

The null hypothesisH0 : m1 � m2 ¼ D0 against the alternativeH1 : m1 � m2 6¼ D0

is rejectedwhen tj � tnða=2Þj , where tnða=2Þ is the upper 100a=2ð Þth percentile of the
t-distribution with n degrees of freedom calculated from equation (3.38).

There is also a simpler test that could be used under the assumption that the

variances in the two populations are the same. However, that test is sensitive to

the departures from the model assumptions, including outliers, and we recommend

the test given here.

The two-sample t confidence interval for m1 � m2 at the confidence level 1� að Þ
can be found based on the pivotQ in a way analogous to our previous considerations

leading to equation (3.22). The interval is given by

X � Y � tnða=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n
þ s22

m

r
: ð3:40Þ

The numerical calculations on the Example 3.3 data are relegated to the problems

at the end of this chapter.

3.6 PROBABILITY PLOTS AND TESTING FOR POPULATION

DISTRIBUTIONS

Many statistical methods make some assumptions regarding the population distribu-

tion from which the data are drawn. This is why it is important to find a suitable

distribution or a family of distributions for our model and then to be able to verify the

distributional assumption. In some situations, we might be able to identify the proper

distribution based on the physical nature of the data. For example, when modeling a

measurement error, we find that the normal distribution is the most likely candidate.

In other situations, wemay want to start with a probability plot as an exploratory tool.

Once a proper distribution is identified, it can be further confirmed by formal

hypothesis testing.
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3.6.1 Probability Plots

Let us start with discussing probability plots as an informal, but efficient, way to check

the population distribution from which a given data set was obtained. The idea is to

sort the data, and then compare them to what we would expect to see if the data were

coming from a given distribution. For example, for a data set of n ¼ 10 observations,

we would expect the smallest observation to represent the smallest 10% of the

population distribution, the second smallest observation to represent the next 10% of

the population, and so on. In order to represent the smallest 10% of the population, we

might use the 5th percentile of the hypothesized population distribution, which could

be thought of as the median of the lowest 10% of the population. This means that the

10 observationswould be compared to the 5th, 15th, and so on until 95th percentiles of

the hypothesized population distribution. In general, the percentiles can be calculated

as F�1 i � 0:5ð Þ=nð Þ; i ¼ 1; . . . ; n, where F�1 is the inverse function of the cumula-

tive distribution function of the hypothesized distribution.We can do this comparison

by creating a scatter plot with percentiles on one axis and the observations on the other

axis. If the observations were to conform ideally to our expectations, the scatter plot

points would line up along the straight line y ¼ x. In practice, the points will not line

up exactly due to natural variability, but as long as they line up approximately along

that line, we have reasons to believe that the hypothesized distribution is the true

population distribution or at least its reasonable approximation. If the pattern of points

is nonlinear, it may give us a hint about a more appropriate distribution as the model

for the data.

The above method works when we hypothesize one specific population distribu-

tion. More typically, we are dealing with a whole family of distributions with some

unknown parameters. In that case, we first need to estimate the parameters and then

create a probability plot of the distribution with estimated parameters. For the family

of normal distributions, we do not need to estimate the parameters but can simply plot

the data versus the percentiles from the standard normal distribution. In order to see

why this would work, let us assume that the horizontal axis x represents percentiles

from the normal distribution N m; sð Þ. Define z ¼ x� mð Þ=s, which represents

percentiles from the standard normal distribution N 0; 1ð Þ. When plotting the sorted

normal data on y versus x, the percentiles from N m; sð Þ, we would expect to see the

points to be close to the straight line y ¼ x. That line is equivalent to y ¼ szþ mwhen
plotting versus z (we substituted x ¼ szþ m). This means that when plotting the

sorted data versus percentiles from the standard normal distribution, we would still

expect to see a straight line, but this time, the linewould have slope s and the intercept
m. The percentiles from the standard normal distribution can be calculated based on

the previously discussed formula F�1 i � 0:5ð Þ=nð Þ; i ¼ 1; . . . ; n, where F is the

cumulative distribution function of the standard normal distribution. A more precise

method is to modify the previous percentiles and use the expected values of

the ordered statistics that can be approximated by the following percentiles:

zi ¼ F�1 i � 3=8ð Þ
nþ 1=4ð Þ

� �
; i ¼ 1; . . . ; n: ð3:41Þ
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In the normal probability plot, we then plot the sorted data (in the increasing order)

denoted as y1; y2; . . . ; yn versus the theoretical percentiles z1; z2; . . . ; zn. This concept
was used in the following example.

Example 3.4 In Examples 3.1 and 3.2, we assumed that the data in each band were

normally distributed. This is confirmed in Band 1 by the normal probability plot

shown in Figure 3.13 (with percentiles defined in (3.41)), where the points line up

along a straight line. Similar plots for the other two bands also confirm their

normality. &

Many statistical methods using the assumption of normality are not very sensitive to

that assumption. This is why we can often rely on the normal probability plot as a

crude assessment of approximate normality. In other cases, we may need to perform

formal statistical inference and test the null hypothesis H0 : F ¼ F0 that the true

distribution F of the sample is equal to a given distribution F0. One such test is

discussed in the next subsection.

3.6.2 Kolmogorov–Smirnov Statistic

A natural way to construct a test of the null hypothesis H0 : F ¼ F0 is to use the

empirical distribution Fn defined in Section 3.1 and check how far it is from a

hypothesized CDF F0. For continuous distributions, the distance between Fn and F0

can be measured by the Kolmogorov–Smirnov statistic defined by

Dn ¼ supremum
x2R

Fn xð Þ � F0 xð Þj:j ð3:42Þ

The limiting distribution ofDn under the null hypothesisH0 : F ¼ F0, as n tends to

infinity, is known, and it is used to set up the critical value for the test.When testing for

a family of distributions, the parameters need to be estimated, and those critical values
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Figure 3.13 A normal probability plot for Band 1 data used in Example 3.4.
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are no longer valid. However, available software procedures often do not take this

issue into account. Hence, the Kolmogorov–Smirnov statistic is not easy to use for the

composite null hypothesis of a family of distributions. Some easier approaches are

shown in the next two subsections.

3.6.3 Chi-Squared Test

A different approach to testing H0 : F ¼ F0 is based on a chi-squared statistic. This

concept is best suited for discrete distributions, but it can also be used for continuous

distributions, where the distribution is discretized by dividing the range of values into

bins. Assume that we want to test for a discrete distribution F0 with probabilities pi
concentrated at points xi; i ¼ 1; . . . ; k. Based on our sample, we need to calculate the

frequencies (counts) Ni of xi values in the sample. If the null hypothesisH0 : F ¼ F0

is true, the expected value of those frequencies is npi, where n is the sample size. In

order to assess how far the actual counts are from their expected values, we can

calculate the chi-square statistic

w2 ¼
Xk
i¼1

Ni � npið Þ2
npi

: ð3:43Þ

Under the null hypothesisH0 : F ¼ F0, the distribution of w2 is approximately the

chi-squared distributionwith k � 1ð Þ degrees of freedom.When testing for a family of

distributions, the distribution parameters need to be estimated. Assuming that m

different parameters are estimated using the maximum likelihood estimators, the w2

statistic is approximated by a chi-squared distribution with k � 1�mð Þ degrees of
freedom (under some general regularity conditions). We can now construct an

approximate a-level test of the null hypothesis that F belongs to the given family

of distributions. The test rejects H0 when w2 � w2k�1�mðaÞ, where w2k�1�mðaÞ is the
upper 100að Þth percentile from the chi-squared distributionwith k � 1�mð Þ degrees
of freedom. The test can be used only if npi � 5 for every i.

3.6.4 Ryan–Joiner Test for Normality

In order to test the composite null hypothesis that the distribution of the sample is

normal with unknownmean and standard deviation, we can use the Ryan–Joiner test.

Let’s denote by y1; y2; . . . ; yn the observations sorted in the increasing order as we did
in Section 3.6.1 when creating probability plots. For the normal probability plot, we

calculated the theoretical percentiles z1; z2; . . . ; zn according to formula (3.41).

The idea of a probability plot was that the points yi; zið Þ; i ¼ 1; . . . ; n, are supposed
to line up along a straight line. In order to verify how strong this linear relationship is,

we can calculate the sample correlation coefficient

r ¼
Pn

i¼1 yi � yð Þ zi � zð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � yð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 zi � zð Þ2

q ; ð3:44Þ
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which is a sample equivalent of the population correlation coefficient defined in

equation (2.34). The Ryan–Joiner test rejects the composite null hypothesis of the

normal distribution when r � ca, where the critical value ca can be found in the table

in Appendix C.

3.7 OUTLIER DETECTION

An outlier is an observation that does not fit the model assumed for a given data set.

More precisely, an outlier is very unlikely to be a realization from a distribution

assumed by the model. Since the model is usually based on the given data set, the

outlier is an observation that is different from the majority of the data. There are two

important considerations when detecting outliers:

1. The assumed model.

2. The sample size.

The second consideration is often ignored by many authors and many software

implementations. For example, a direct use of a two- or three-sigma rule is entirely

misleadingwithout considering the sample size.We know fromSection 2.6 that under

the assumption of the normal distribution, we can expect 1 in 20 observations to be

outside of two-sigma limits and 3 out of 1000 observations to be outside of three-

sigma limits. This means that in a sample of size n ¼ 1000, an observation as far as

three standard deviations from the mean cannot be considered unusual. However,

these guidelines are only approximate because they do not take into account the fact

that the standard deviation is estimated from the data. For more precise results, we

should use formal tests such as the Grubbs (1969) test. The test works for one

suspected outlier, either minimum or maximum denoted here as M, in normally

distributed data. The Grubbs test statistic is

G ¼ jM � Xj
s

; ð3:45Þ

where X is the sample mean and s is the standard deviation, both calculated from the

whole sample including the outlier. The formal null hypothesis here is that all

observations in the sample follow the same normal distribution (i.e., there is no

outlier). We call M an outlier with the confidence of 1� að Þ if

G >
n� 1ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2n�2ða= 2nð ÞÞ

n� 2þ t2n�2ða= 2nð ÞÞ

s
; ð3:46Þ

where tn�2ða= 2nð ÞÞ is the upper 100a= 2nð Þð Þ percentile from the t-distribution with

n� 2ð Þ degrees of freedom. Figure 3.14 shows the critical values for the Grubbs test
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(the right-hand side of (3.46)) for values of n from 3 to 19. Note that for very small

sample sizes, the critical values are below 2. If we used a simple rule of two sigma,

we would be missing some of the outliers that could be detected with the

Grubbs test.

The critical values for larger sample sizes are shown in Figure 3.15, where n is

shown on the horizontal axis on the logarithmic scale. For n � 37, the critical values

are above 3. If we used a simple rule of three sigma, we would be identifying some

observations incorrectly as outliers.
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Figure 3.14 Critical values for the Grubbs test (the right-hand side of (3.46)) for small sample sizes n for

various levels a.
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Figure 3.15 Critical values for the Grubbs test (the right-hand side of (3.46)) for large sample sizes n for

various levels a.
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3.8 MONTE CARLO SIMULATIONS

The method of Monte Carlo simulation is used to approximate probabilities of more

complex events that are difficult to calculate analytically through mathematical

calculations. In particular, we can approximate distributions of some statistics that

would be difficult to calculate otherwise.

Consider a sample X1;X2; . . . ;Xn of independent observations from the normal

distribution N m; s2ð Þ. If we were unsure what the distribution of s2 ¼Pn
i¼1 ðXi � XÞ2= n� 1ð Þ was, we could use the Monte Carlo simulation to approxi-

mate it. We know from theory that s2=s2 follows the chi-squared distribution with

n� 1ð Þ degrees of freedom. For more complex estimators and other distributional

assumptions about the sample, wemay not knowwhat the sampling distribution of the

estimator is.

Let us assume a general context of a sample X1;X2; . . . ;Xn drawn from a

distribution F. Let’s say we want to use a statistic by, and we want to find out what

its distribution is. The statistic by depends on the available sample, which we will

emphasize by writing by ¼ by X1;X2; . . . ;Xnð Þ. The Monte Carlo simulation is per-

formed in the following steps:

1. Select a random number x*1 from the distribution F. Repeat the process in an

independent way in order to obtain the whole sample x*1; x
*
2; . . . ; x

*
n of size n

from the distribution F.

2. Calculate the value of the estimator by* ¼ by x*1; x
*
2; . . . ; x

*
n

� �
for the simulated

sample. This value is the simulated value of by.
3. Repeat N times Steps 1 and 2, and obtain N simulated replicationsby*1; by*2; . . . ; by*N .

The distribution of all numbers by*1; by*2; . . . ; by*N is the empirical distribution of by and as
such is an approximation of the true distribution of by. An example of a Monte Carlo

simulation study is shown in Section 7.6.2.

3.9 BOOTSTRAP

Earlier in this chapter, we investigated some theoretical properties of estimators

and constructed confidence intervals based on the model assumptions and algebra

calculations on the estimators. For example, in the context of a one-sample

problem, equation (3.2) tells us that the standard error of X is equal to s=
ffiffiffi
n

p
,

which can then be estimated using s=
ffiffiffi
n

p
. This information can be used to

construct confidence intervals. Unfortunately, for some more complex estimators,

it might be difficult or impossible to prove similar general properties. This is

where bootstrap can be used. This methodology can be used to investigate

properties of estimators and to construct confidence intervals based on some

computer-intensive calculations.
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Let us assume a general context of a sample of numbers x1; x2; . . . ; xn drawn from
a distribution F having a parameter y. Let’s say wewant to estimate y by using by. The
estimator by depends on the available sample, which we emphasize by writingby ¼ by x1; x2; . . . ; xnð Þ. The bootstrap is performed in the following steps:

1. Select a sample x*1; x
*
2; . . . ; x

*
n of size n drawn with replacement from the set of

values x1; x2; . . . ; xn from our original sample. This is equivalent to sampling

from the empirical distributionFn defined in equation (3.1). Note that some of

the original sample values might be repeated and some might not be present

at all in the selected sample. The sample x*1; x
*
2; . . . ; x

*
n is called a bootstrap

sample.

2. Calculate the value of the estimator by* ¼ by x*1; x
*
2; . . . ; x

*
n

� �
for the bootstrap

sample. This value is called a bootstrap replication of by.
3. Repeat N times Steps 1 and 2, and obtain N bootstrap replicationsby*1; by*2; . . . ; by*N .

Note that the process of bootstrapping is very similar toMonte Carlo simulations. The

difference is that in simulations we generate random numbers from a theoretical

distribution serving as ourmodel.On the other hand, in bootstrap, wegenerate random

numbers from the sample, or more precisely, from the empirical distribution. In

Monte Carlo simulations, we need to assume a specific population distribution from

which to draw the sample. The bootstrap does not require this assumption. If we

assume that the population distribution belongs to a certain family of distributions

such as normal, we would still need to assume a specific value of the parameters in

order to perform simulations. In bootstrap, we could use the parameter values

estimated from the sample and draw the bootstrap samples from that distribution.

This approach is called parametric bootstrap as opposed to the classic nonparametric

bootstrap that we introduced earlier.

It can be proven (under some very mild assumptions) that the distribution of the

bootstrap replications by*1; by*2; . . . ; by*N approximates the sampling distribution of by
(under F). This approximation can then be used for finding the estimator’s bias or for

constructing confidence intervals as will be shown here.

It is important to understand that the bootstrap replications are used to study the

properties of the estimator by, but they are not necessarily any closer to the true value of
the parameter y. In fact, the opposite can be true. For example, assume that by has a bias
of 10. This means that its value is, on average, 10 units to the right of y.When creating

the bootstrap samples, the resulting bootstrap values by*1; by*2; . . . ; by*N might be the

additional 10 units to the right (on average) for a total bias of 20with respect to the true

parameter value (this might not be precisely so, but the bias will be amplified here).

This is why we need to use the logic of somewhat counterintuitive reversal as

explained below.

For better understanding of bootstrap, it is important to think in terms of the

following three concepts: the Population, the Sample, and the Bootstrap Sample. We

know that statistical inference is based on the relationship between the Population and
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the Sample. The main principle of bootstrap is that “the Bootstrap Sample is to the

Sample as the Sample is to the Population.” A simple application of this principle is

the estimation of bias of by by using the bootstrap mean y
* ¼ PN

i¼1
by*i =N. Let’s say

wewant to approximate the estimator’s bias E by� �� y. The expected value E by� �
can

be replaced with y
*
, and y replaced with by, leading to the bootstrap estimator of bias

given by y
* � by. The bias-adjusted estimate can now be defined as

byadj ¼ by� y*� by� 	
¼ 2by� y

*
: ð3:47Þ

This approach works best for the estimators constructed by the plug-in principle

discussed in Section 3.2.2. For other estimators, one should make an adjustment for

the difference between a given estimator and the plug-in estimator.

We can also use bootstrap for constructing a confidence interval for y. A popular

method is the so-called bootstrap percentile method producing a confidence interval

given as

by*a=2; by*1�a=2

h i
; ð3:48Þ

where the lower and upper limits are the 100 a=2ð Þ and 100 1� a=2ð Þ percentiles from
the bootstrap distribution by*1; by*2; . . . ; by*N , respectively. The problem with the percen-

tile method is that it is “theoretically backward” as discussed, for example, in

Hamilton (1992) with further references there. The method could lead to the

approximate bias of 20, as explained earlier. Here we explain a percentile-reversal

method, also called hybrid method, which is based on the main principle of bootstrap.

There are also some other, potentially more precise, methods discussed in books such

as Efron and Tibshirani (1994), Good (2005), and Davison and Hinkley (1997), where

more information about bootstrap can be found. The most popular ones are the

t-method and the bias-corrected method. However, those methods are even more

computationally intensive, and they have their own issues. Having access to statistical

softwarewith a bootstrapmethod already available for a givenmodel would be helpful

here.Without such software, people often use the percentilemethod.We suggest using

the percentile-reversal method instead, which does not involve any additional calcula-

tions. The percentile method works reasonably well for symmetric and unbiased

sampling distributions, but the percentile-reversal method gives very similar results in

those cases, and it works better in other cases.

We believe that the method shown here presents a reasonable balance between

simplicity and good properties. Another reason for showing it here is that the

explanation of the method is a good educational tool for understanding the concept

of bootstrap.

In order to find a confidence interval, wewant to findL andU (usually dependent on

data) such that

P L < y� by < U
� 	

¼ 1� a: ð3:49Þ
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In the bootstrap context, the distribution of y� by should be well approximated by

the distribution of by� by*. If we find L* and U* such that

Pbootstrap L* < by� by* < U*
� 	

¼ 1� a; ð3:50Þ

we should have P L* < y� by < U*
� � � 1� a, and the approximate bootstrap

CI can be defined as byþ L*; byþ U*
� �

. Note that (3.50) can be written as

Pbootstrap

�by� U* < by* < by� L*Þ ¼ 1� a. Hence, we can take by� L* ¼ by*1�a=2 andby� U* ¼ by*a=2. Finally, the approximate percentile-reversal bootstrap CI for y is

given by

2by� by*1�a=2; 2by� by*a=2� 	
: ð3:51Þ

It is worth noting that the percentile-reversal bootstrap CI will adjust for

possible lack of symmetry of the sampling distribution and for possible bias in

estimation of y. A disadvantage of the percentile-reversal bootstrap method is that

it underestimates the variability and consequently tends to produce too short

confidence intervals. An example of bootstrap is shown in Section 7.6.2.

PROBLEMS

3.1. Show that for bs2n defined in (3.5), we have E bs2n� � ¼ ½ðn� 1Þ=n�s2.

3.2. Show that for a random sample (i.e., a set of i.i.d. variables) from the normal

distributions N m; s2ð Þ with both parameters unknown, the MLEs are given as

follows:

bm ¼ x and bs2n ¼ 1

n

Xn
i¼1

ðxi � xÞ2:

3.3. As a follow-up to Example 3.1, calculate the one-sample t confidence intervals

for the means in Bands 2 and 3.

3.4. Verify the results shown in Figure 3.6 by calculating 100 tnðaÞ � zðaÞð Þ=zðaÞ
for various values of a and n.

3.5. As a follow-up to Example 3.2, test whether the tile conforms to the specifica-

tion of 37.53% and 74.99% of reflectance in Bands 2 and 3, respectively.

3.6. As a follow-up to Example 3.4, create normal probability plots of Band 2 and 3

data from the tile image.
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3.7. Prove that MSE by� � ¼ Var by� �þ Bias by� �� �2
(see equation (3.4)). Hint: Use

definition (3.3) and add and subtract E by� �
to obtain MSE by� � ¼

E by� E by� �þ E by� �� y
� 	2

� �
.

3.8. For the H band magnitude variable introduced in Example 3.3, create a box

plot analogous to the one shown in Figure 3.12. Repeat this for the K band

magnitude variable. Are there differences between the two groups in the

plots?

3.9. Use the Ryan–Joiner test for testing normality of the two samples for “C AGB”

and “H II” objects (stars) discussed in Example 3.3. Base your calculations on

a. the J band magnitudes.

b. the H band magnitudes.

c. the K band magnitudes.

3.10. Test the equality of the population variances for the two groups (C AGB stars

and H II regions) discussed in Example 3.3. Base your calculations on

a. the J band magnitudes.

b. the H band magnitudes.

c. the K band magnitudes.

d. Which band would be more appropriate for distinguishing between the two

samples?

3.11. Explain how the t-statistic given in equation (3.39) can be derived based on

the pivot Q discussed in Section 3.5. Hint: This is analogous to the derivation

of the t-statistic given in equation (3.27).

3.12. Test the equality of the populationmeans for the two groups (C AGB stars and

H II regions) discussed in Example 3.3. Base your calculations on

a. the J band magnitudes.

b. the H band magnitudes.

c. the K band magnitudes.

d. Which band would be more appropriate for distinguishing between the two

samples?

3.13. Explain how the confidence interval given in equation (3.40) can be derived

based on the pivot Q discussed in Section 3.5. Hint: This is analogous to the

derivation of the confidence interval given in equation (3.25).

3.14. Construct the two-sample t confidence interval for the difference in the

population means for the two groups (C AGB stars and H II regions) discussed
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in Example 3.3. Use the confidence level 1� að Þ ¼ 0:95. Base your calcula-
tions on

a. the J band magnitudes.

b. the H band magnitudes.

c. the K band magnitudes.

84 STATISTICAL INFERENCE



C H A P T E R 4

Statistical Models

4.1 INTRODUCTION

InChapter 3,we discussed statistical inference in the context of simple scenarios, such

as a sample of measurements from the same distribution. We considered a sample of

independent measurements X1;X2; . . . ;Xn, where all variables Xi followed the same

distribution F. This is the simplest example of a statistical model. A slightly more

complex model, considered in Section 3.5, is where one sample of n measurements

comes from one population described by a distribution F, and another sample of m

measurements comes from a different population described by a distribution G. The

usual purpose here is to see if the two distributions are indeed different. In this chapter,

we discuss even more complex models describing more intricate structures of the

data. In Section 4.2, we introduce regression models for describing relationships

among variables and predicting values of one variable based on values of other

variables. In Section 4.3, we discuss ways to design and analyze controlled experi-

ments, where values of factors can be deliberately varied in a systematic fashion.

Supplements 4A and 4B provide basic properties of vectors and matrices that will be

needed throughout this and subsequent chapters.

4.2 REGRESSION MODELS

In regression models, we are trying to establish a relationship between a response

variable y and one or more predictors, also called x-variables.Wewould like to know

if the response variable y responds to changes in x, or if y can be predicted from the

predictor x. In some fields, the response variable y is called a dependent variable and

the predictor x is called an independent variable. In statistics, this terminology is

avoided so as not to be confused with stochastic independence or independence

among multiple predictors.

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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In the following subsection, we will start with the simplest case of a linear

regression model with one predictor, and then we will discuss more complex models

in subsequent sections.

4.2.1 Simple Linear Regression Model

Example 4.1 The Landsat Program is a series of Earth-observing satellite missions

jointly managed by NASA and the U.S. Geological Survey since 1972. Due to the

long-term nature of the program, there is a significant interest in the long-term

calibration of the results, so that measurements taken at different times can be

meaningfully compared. One approach to this calibration problem is discussed by

Anderson (2010). As part of the approach, Landsatmeasurements of a fixed desert site

were collected. The desert site was confirmed to be sufficiently stable over time, so

that the changes in measurements can be attributed to a drift of the measuring

instrument, except for some factors such as the Sun position in the sky. In this

example, we consider the surface reflectance measurements of the desert site

performed at 76 different times (different days and times of the day). The reflectance

measurements are from one spectral band (Band 2) of the instrument. For each time of

the measurement, we also know the solar elevation angle. See Appendix B for more

details about the data. In order to investigate a relationship between reflectance in

Band 2 and the solar elevation angle, we can create a scatter plot of the twovariables as

shown in Figure 4.1. Based on the pattern in the scatter plot, we expect a linear

relationship between the two variables. The line drawn in Figure 4.1 seems to be a

reasonable general description of that pattern. The observation points are scattered

around the line, reflecting the fact that the linear relationship is not perfect and the

reflectance may also depend on factors other than the solar elevation angle.

A measurement error may also contribute to this variability. We can say that for a

given solar elevation angle, the line shows an average reflectance value, with

approximately the same number of observations above and below the line.

This example will be continued later on in this subsection. &
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Figure 4.1 A scatter plot of reflectance in Band 2 versus the solar elevation angle for Landsat data

discussed in Example 4.1.
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In the simplest scenario of a linear relationship between the response Y and a single

predictor x, as seen in Figure 4.1, we can describe this relationship using a population

linear regression model written as

Y ¼ b0 þ b1x þ e; ð4:1Þ

where b0 and b1 are the unknown coefficients called intercept and slope, respectively.
This is called a populationmodel because it establishes a general relationship between

the two variables that governs all elements of the population. We can also say that the

model (4.1) describes a general property of the output variable (Y) reacting to changes

in an input variable (x) of a process under consideration. For instance, the observed

reflectance of a given surface (Y) depends on the solar elevation angle (x). If the

relationship were perfectly linear, we could use the model (4.1) without the e term.

In practice, there are always some imperfections, which might be due to factors other

than x or due to a measurement error. Given the lack of information about those

additional sources of variability, we assume that e is a random variable, and

consequently, Y is also a random variable (which is why we use a capital letter to

denote the response). The e term is often called an error term. For mathematical

reasons, we assume that x is nonrandom. This means that in practical applications

we need to make sure that x is known rather precisely with a small measurement

error. If themeasurement error in x is large, we need to usemore complexmodels than

those discussed here (see Section 15.2 in Montgomery et al. (2006) or Section 4.5 in

Kutner et al. (2005)).

We usually assume that E eð Þ ¼ 0, which means that E Yð Þ ¼ b0 þ b1x, that is, the
population average of Y is a linear function of x. This function is called a regression

function. The line y ¼ b0 þ b1x is a regression line. The regression function

b0 þ b1x can be regarded as the deterministic part of the model.

We often make the assumption that the error term e follows a specific distribution,
often a normal distribution with the mean zero. Under this assumption, the distribu-

tion of Y is also normal and centered at its expected value E Yð Þ ¼ b0 þ b1x.
Figure 4.2 illustrates the normal distribution of Y by drawing a normal density curve

x1 x2 x3

y 2y
3

y 1

y = β
0 + β

1x

Figure 4.2 Conditional distributions of Y given x are shown here as normal distributions centered at their

expected values E Yð Þ ¼ b0 þ b1x, which depend on x in a linear fashion.
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in a vertical direction for a fixed value of x. The distribution changes with varying x,

but only in terms of its expected value. According to the model, the observations

are equally likely to be above or below the line, andmost observations should be close

to the line where the density function has large values. Only a small fraction of

observations is expected to be far away from the line where the density function

has very small values (recall that the probability is equal to the area under the curve).

The variability around the regression line is assumed here to be the same for all x,

which is expressed as Var eð Þ ¼ s2, where s2 is a constant that does not depend on x.
The assumption of normality has been discussed here only for illustration

purposes. For the remaining part of Section 4.2, up until Section 4.2.4, we are not

going to use this assumption. The normality assumption will be needed in Sec-

tion 4.2.5 in order to investigate the distributional properties of estimators and

perform statistical inference.

We nowwant to describe another example that will be used throughout this chapter

to demonstrate regression methods.

Example 4.2 An experiment was performed in order to find out howmuch power is

lost when sending signals through optical fiber. This was similar to the experiment

described in Example 2.1, except that only one piece of optical fiber was tested

this time. The input power of a laser light signal sent from one end of the fiber was set

at four different levels: 80, 82, 84, and 86mW, and the corresponding output

power was measured at the other end of the fiber. The purpose was to see how the

power loss might depend on the power input. The advantages of using only one piece

of fiber are that fewer measurements need to be taken and we do not need to deal with

fiber-to-fiber variability. An important disadvantage is that we would not know if our

findings apply to other pieces of optical fiber as well.

Five repeated runs were performed at each input power level. The resulting 20 runs

were done in a random order. Figure 4.3 shows a scatter plot of the output power (Y)

versus the input power (x). The straight line in the plot shows the estimated regression

line.For thetwocasesofxequal to84and86mW,thelinegoesalmostperfectly through

themiddleof thegroupoffivedatapoints.Theother twocasesofxarenotasperfect, but
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Figure 4.3 The input and output power in a laser light experiment as described in Example 4.2.
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it might be due to the natural variability in the data since we have only five repeats for

each x value. The variability of points around the line is similar in all four groups in

Figure 4.3, confirming the assumption of constant variance Var eð Þ ¼ s2. It is difficult
to tell if the observations are consistent with the normality assumption illustrated in

Figure 4.2. However, we can see a general tendency of points to concentrate around

the estimated regression line. This example will be further discussed at the end of the

subsection, once we learn how to estimate the regression line. &

In controlled experiments, such as the one described in Example 4.2, we can expect

repeated values, and it is then easier to observe the distribution of Y for a fixed value

ofx. For data fromobservational studies, such as those inExample 4.1, there is usually

only one value of Y for a given value of x. In such cases, we can look at a range of x

values that captures several data points. Thevertical dashed lines in Figure 4.4 identify

six of such ranges or sections. Within each section, we can see a balance of points

above and below the estimated regression line, which is consistent with the assump-

tion that E Yð Þ ¼ b0 þ b1x. The variability in each section is similar, which is

consistent with the assumption of constant variance Var eð Þ ¼ s2.
In order to estimate the model parameters and to check if the model is correct, we

need some data on both variables. Let’s assume that we have n pairs

xi; yið Þ; i ¼ 1; . . . ; n, of values of both variables. If these paired observations come

from a process following the model (4.1), then each yi is a realization of a random

variable Yi such that Yi ¼ b0 þ b1xi þ ei, where ei is a random variable describing an

observation-specific error term. If two x values are the same, for example, x1 ¼ x2,

then the random variables Y1 and Y2 are still different random variables, and their

realizations y1 and y2 will usually not be the same (e.g., as seen in Figure 4.3).

This leads to the following sample regression model:

Yi ¼ b0 þ b1xi þ ei; i ¼ 1; . . . ; n; ð4:2Þ

consisting of n equalities. The sample and the population regression models

described by equations (4.1) and (4.2) are really two different ways of looking at
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Figure 4.4 The range of x (solar elevation angle) values is divided into smaller sections, so that the

distributional assumption is checked separately within each section.
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the same model. The sample model is used to fit the model to the data, that is, to

estimate the values of the coefficients b0 and b1 and to study properties of estimators.

The population model is used as a general description of the relationship and can

be used for prediction of the future values of Y at a given point x (once the coefficients

are estimated).

Throughout the whole Section 4.2 on regression models, we will make the

following assumption.

Assumption 4.1 The error terms ei; i ¼ 1; . . . ; n, are uncorrelated and identically

distributed random variables such that E eið Þ ¼ 0 and Var eið Þ ¼ s2 for i ¼ 1; . . . ; n,
where s2 is a constant that does not depend on x.

It is important to understand that even though the error terms ei all have the same

distribution, the responses Yi have generally different distributions, each having its

own mean E Yið Þ ¼ b0 þ b1xi.
When the variable Yi takes on a specific value yi that we observe, the error term

variable ei also takes on a value, call it e*i , that is not directly observed. Thismeans that

we obtain a system of n equations

yi ¼ b0 þ b1xi þ e*i ; i ¼ 1; . . . ; n; ð4:3Þ

with n þ 2ð Þ unknowns, that is, n values of the error terms and two coefficients.

Clearly, the system cannot be solved in general, but it is reasonable to require the error

termvalues to be as small inmagnitude as possible. The bestway tominimize the error

terms depends on their distribution. Minimizing the sum of absolute values
Pn

i¼1 e*i j
��

works best for the Laplace (double-exponential) distribution of ei, and it works well
for other heavy-tailed distributions. This approach leads to robust regression (see

Chapter 12 in Montgomery et al. (2006) or Section 11.3 in Kutner et al. (2005)).

Minimizing the sum of squares
Pn

i¼1 e*i
� �2

is easier mathematically, and it leads to

the least-squares regression that we will use in this chapter. The least-squares

regression has many desirable properties that will be discussed later on, and it works

especially well when ei’s follow the normal distribution. Since e*i ¼ yi�b0�b1xi,
we define the least-squares estimates b0 and b1 of the coefficients b0 and b1 as the
values minimizing the sum of squares

S b0; b1ð Þ ¼
Xn
i¼1

yi�b0�b1xið Þ2: ð4:4Þ

Once we impose the least-squares minimization, the resulting values of e*i
are no longer their true values, and consequently, the least-squares estimates

b0 and b1 are different from the true values b0 and b1 of the parameters. Note

that the function S b0; b1ð Þ in (4.4) is a second-degree polynomial with respect to

b0 and b1, and it takes the minimum value at a point with both partial derivatives

equal to zero. This means that the least-squares estimates b0 and b1 must satisfy

the equations
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qS b0; b1ð Þ
qb0

����
b0;b1

¼ �2
Xn
i¼1

yi�b0�b1xið Þ ¼ 0;

qS b0; b1ð Þ
qb1

����
b0;b1

¼ �2
Xn
i¼1

yi�b0�b1xið Þxi ¼ 0;

ð4:5Þ

which can be simplified to the following system of two equations:

nb0 þ b1
Xn
i¼1

xi ¼
Xn
i¼1

yi;

b0
Xn
i¼1

xi þ b1
Xn
i¼1

x2i ¼
Xn
i¼1

yixi

ð4:6Þ

called the least-squares normal equations. The solutions to equations (4.6), called the

least-squares estimates, are given as

b1 ¼ Sxy

Sxx
; b0 ¼ �y�b1�x; ð4:7Þ

where �x and �y are the sample means of the x and y values and

Sxx ¼
Xn
i¼1

xi��xð Þ2; Sxy ¼
Xn
i¼1

yi xi��xð Þ: ð4:8Þ

The estimated regression line is given by the equation y ¼ b0 þ b1x. The

regression lines in Figures 4.1, 4.3 and 4.4 were estimated using the least-squares

method. The second equation in (4.7) can be written as �y ¼ b0 þ b1�x, which tells us
that the estimated regression line goes through the center point �x;�yð Þ of the data.

For an arbitrary value x, we define the fitted value as by ¼ b0 þ b1x, which

estimates the expected value E Yð Þ ¼ b0 þ b1x. For the ith observation pair

xi; yið Þ, we define afitted value asbyi ¼ b0 þ b1xi and a residual ei ¼ yi�byi. Figure 4.5
shows a fitted value and a residual for the first observation pair x1; y1ð Þ.

The residual ei approximates the true (but unobserved) realization e*i of the error

term ei. There are some important differences between properties of the error terms

and the residuals. For example, the error terms ei; i ¼ 1; . . . ; n, are uncorrelated and
the residuals are correlated. We say that there are n degrees of freedom in the

responses yi (or in the unobserved realization e*i ), which means that they can be

arbitrary numbers without any constraints. On the other hand, there are only n�2ð Þ
degrees of freedom in the residuals because they need to conform to two constraints

(thiswill becomeclearer from thegeometric interpretation discussed inSection4.2.4).

One of those constraints is that the sum of all residuals is equal to zero (
Pn

i¼1 ei ¼ 0).

Let us nowdiscuss estimation of thevariances2 of the error terms. SinceE eið Þ ¼ 0,

we have s2 ¼ Var eið Þ ¼ E e2i
� �

. If we knew the true realization e*i of the error term ei,
we would simply use

Pn
i¼1 e*i
� �2

=n to estimate s2. However, in the process of
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calculating the residuals (approximating e*i ’s), we say that we lose two degrees of

freedom for estimation of the regression coefficients, and an unbiased estimator of s2

turns out to be

bs2 ¼ 1

n�2

Xn
i¼1

e2i ¼
1

n�2

Xn
i¼1

yi�byið Þ2: ð4:9Þ

Note that the above formula is very different from the formula for the sample

variance of the y-values
Pn

i¼1 yi��yð Þ2=ðn�1Þ, where the variability is calculated with
respect to �y, while in formula (4.9) the variability is with respect to byi that is different
for each data point.

An overall variability in all residuals can be measured by the residual sum of

squares SSRes ¼
Pn

i¼1 e
2
i ¼

Pn
i¼1 yi�byið Þ2, which is the variability of the response

values around the regression line. The total variability of the response values (around

their mean) can be measured by the total sum of squares SSTotal ¼
Pn

i¼1 yi��yð Þ2.
In the so-called analysis of variance (ANOVA), we can partition the total sum

of squares into SSRes and the regression sum of squares defined as

SSRegr ¼
Pn

i¼1 byi��yð Þ2. That is,

SSTotal ¼ SSRegr þ SSRes: ð4:10Þ

The total sum of squares SSTotal measures the variability in the response Ywithout

any input from the regression model. Some of this variability is explained by the

predictor x since we know that Y changes as x changes. The variability that is not

explained by the predictors, that is, by the regression model, is measured by SSRes
because it tells us how far the actual observations yi are from what can be predicted

from the model, that is, byi. For example, if all observations were lying exactly on a

straight line, then SSRes would be equal to zero, and all variability in Y would be

explained by changes in x. Based on equation (4.10), the remaining variability, that is,

the regression sum of squares SSRegr ¼ SSTotal�SSRes, is the amount of variability

explained by the model. The fraction of the total variability explained by the model is
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Figure 4.5 The fitted value and the residual for the first observation pair x1; y1ð Þ.
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measured by the coefficient of determination defined as

R2 ¼ SSRegr

SSTotal
¼ 1� SSRes

SSTotal
: ð4:11Þ

Wealways have 0 � R2 � 1. TheR2 coefficientmay serve as a general indicator by

how much a given model can be potentially improved. For example, if R2 ¼ 0:7, we
may try to find additional predictors that would explain the remaining 30% of

variability. On the other hand, when R2 ¼ 0:95, we know that almost all variability

has been explained, and not much more can be explained by finding a better model.

At the same time, explaining an additional 3% of variability might be important in

some applications.

Example 4.1 (cont.). As a continuation of the Landsat data example, we find the

estimated least-squares regression line as y ¼ 0:3412 þ 0:00061x. The intercept is
the value of y for x ¼ 0, but the solar elevation angle never gets close to zero in our

data set, and it would not be reasonable to extrapolate our model to such values.

Hence, the intercept has no particular interpretation in this case. The slope of 0.00061

means that for each degree of the solar elevation angle, the average reflectance

increases by 0.061% of reflectance. The variance s2 was estimated asbs2 ¼ 0:0000132. It is easier to interpret the estimated standard deviationbs ¼
ffiffiffiffiffibs2p

¼ 0:00363 or 0.363% of reflectance. As an approximate calculation

assuming the normal distribution of the error term, we can use the rule of two

sigma from Section 2.6 and conclude that 95% of reflectance values in Band 2 will

be within � 2� 0:363 ¼ � 0:726% of reflectance from the regression line

y ¼ 0:3412 þ 0:00061x drawn in Figure 4.1. This calculation does not take into

account the uncertainty in the parameters that were estimated. More precise calcula-

tions will be performed in Section 4.2.6.

The sums of squares were calculated as SSRegr ¼ 0:000630 and SSRes ¼ 0:000977
for the total of SSTotal ¼ 0:001607. Hence, the fraction of variability explained by the
model is R2 ¼ 0:392 or 39.2%. From a statistical point of view, there is still room for

model improvement (by using other predictors), although it might be difficult or

impossible in practice. &

Example 4.2 (cont.). For the optical fiber data, we can fit the least-squares

regression line y ¼ �1:99 þ 0:91x. Based on the physical interpretation, the input

power of zero x ¼ 0ð Þ should result in the output power of zero as well y ¼ 0ð Þ.
However, such considerations are not relevant when the range of values for x is far

away from zero, which is the case here. In order to explain this point, assume for a

moment that the intercept was even more negative, let’s say, equal to �37ð Þ. The
resulting regression line y ¼ �37 þ 0:91x is shown in Figure 4.6 as a solid line. The

true relationship between y and x could in fact be a quadratic function, shown in

Figure 4.6 as a dashed line, going through the origin (to satisfy the above physical

requirement). Note that within our range ofx values between 80 and 86 (shown by two

vertical dotted lines), the two lines almost overlap. This means that a linear model can
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be a satisfactory approximation of a true quadratic relationship, if the range of x

values is sufficiently narrow. It is clear from Figure 4.6 that the intercept value of

�37ð Þ has no practical interpretation.

In our fitted regression line, the intercept of �1:99ð Þ is fairly close to zero, andwe
may suspect that it might not be significantly different from zero.Wewill check this

in Section 4.2.5 by testing the null hypothesis H0 : b0 ¼ 0. If we can accept that

b0 ¼ 0, then we could fit a no-intercept regression line y ¼ b1x, where b1 would be

interpreted as the fraction of the input power that is successfully transmitted (on

average) through the whole length of the optical fiber. The power loss in decibels

could then be calculated as 10 log10 b1ð Þ. According to the no-intercept model,

the calculated power loss would apply to any level of input power within the range

of the data used for fitting the model.

The fraction of variability explained by the model is R2 ¼ 0:89 or 89%.

When interpreting this number, we need to understand that the R2 value depends

on the range of x values in data. Assuming that the same relationship would hold for a

much larger range of x values, we could make the R2 value larger by increasing the

range of x values, and we could also make it very small by considering a very narrow

range of x values. This means that theR2 statistic has a limited valuewhen comparing

models across different data sets with varying ranges of x values. &

4.2.2 Residual Analysis

Themost important part of Assumption 4.1 introduced in the previous subsection was

thatE eið Þ ¼ 0 or equivalentlyE Yið Þ ¼ b0 þ b1xi, that is, the relationship between the
two variables is linear. In Figure 4.3, we were checking this assumption by observing

the distribution of points around the estimated regression line for a fixed value x. This

was made possible by the presence of repeated observations. In Figure 4.4, we

considered a different example that did not have repeats. In that case, we identified
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Figure 4.6 Ahypothetical example of a true quadratic relationship (dashed line) approximated by a linear

function (solid line) within the narrow range of data shown by two vertical dotted lines.
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vertical ranges, so that we can look at a pattern of responses for predictor values close

to each other. A more precise method is based on residuals ei ¼ yi�byi because each
observation yi has its own adjustment by the fitted value byi. We also know that

residuals estimate the realizations of the error terms ei. So, observing residuals will

give us hints about properties of the error terms.

In residual analysis, we create plots of residuals in order to check various

assumptions. Figure 4.7 shows residuals plotted versus Input Power (the x predictor)

for the model fitted in Figure 4.3. The horizontal line at the zero level can be regarded

as equivalent to the level of the estimated regression line. The pattern of points is

almost the same as the one shown in Figure 4.3, except that for all four levels of Input

Power, the points are shifted vertically to the same common level. Again, the pattern is

consistent with the assumption thatE eið Þ ¼ 0 andVar eið Þ ¼ s2 for all four levels of x.
Figure 4.8 shows residuals plotted versus the solar elevation angle (the x predictor)

for themodel fitted in Figure 4.4.Here each point has its ownvertical adjustment by its

fitted value, so that the zero level (the horizontal line) in Figure 4.8 represents the fitted

values or the level of the estimated regression line. We again want to observe the

distribution of residuals within each vertical section. The plot confirms the
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Figure 4.7 The residuals plotted versus Input Power (the x predictor) for the model fitted in Figure 4.3.
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Figure 4.8 The residuals plotted versus the solar elevation angle (the x predictor) for the model fitted

in Figure 4.4.
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assumption that E eið Þ ¼ 0 (there is an approximately even balance of points above

and below the line in each segment) and Var eið Þ ¼ s2 (the variability of values is

approximately the same in each section). The only concern might be one or two

exceptionally large residuals. This issuewill be further discussed in Section 4.2.7. The

vertical lines are plotted here in order to convey the idea of the vertical sections, but

they are usually not plotted in residual plots.

The residuals can also be plotted against the expected magnitude of the response,

that is, the fitted value as shown in Figure 4.9. The positions of points in Figures 4.8

and 4.9 are identical because the only difference between the two plots is a linear

transformation on the horizontal axis (the fitted value by ¼ b0 þ b1x is a linear

function of x). The two plots will no longer be identical in the presence of multiple

predictors (discussed in the next subsection). More on residual analysis can be found

in Section 4.2.7.

4.2.3 Multiple Linear Regression and Matrix Notation

In practical applications, we usually have multiple predictors that may potentially

impact the response variable Y. In the context of Example 4.1, the solar azimuth angle

is another variable that may potentially influence the reflectance Y. A population

linear regression model with two predictors can be written as

Y ¼ b0 þ b1x1 þ b2x2 þ e; ð4:12Þ
and the equivalent sample linear regression model is

Yi ¼ b0 þ b1xi;1 þ b2xi;2 þ ei; i ¼ 1; . . . ; n: ð4:13Þ

The abovemodel is called a linearmodel because the regression function is a linear

function of the b parameters. This is a broad class ofmodels that also covers nonlinear

relationships between the response and the predictors. For example, the model

Y ¼ b0 þ b1 log x1ð Þ þ b2
ffiffiffiffiffi
x2

p þ e ð4:14Þ
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Figure 4.9 The residuals plotted versus fitted values for the model fitted in Figure 4.4.
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is also a linear regression model because we can define transformed variables

z1 ¼ log x1ð Þ and z2 ¼ ffiffiffiffiffi
x2

p
, and the model can be written as

Y ¼ b0 þ b1z1 þ b2z2 þ e: ð4:15Þ

With multiple predictors, the formulas for regression analysis become more

complex and more difficult to interpret. For more clarity and more thorough

understanding of regression, it is convenient to use matrix notation. See Supplement

4A for background information about matrix algebra. The sample model (4.13) is

really a set of n equations that can be written in n rows:

Y1 ¼ b0 þ b1x1;1 þ b2x1;2 þ e1;

Y2 ¼ b0 þ b1x2;1 þ b2x2;2 þ e2;

..

.

Yn ¼ b0 þ b1xn;1 þ b2xn;2 þ en:

ð4:16Þ

The columns in (4.16) can be written as n-dimensional vectors

Y ¼ Y1; Y2; . . . ; Yn½ �T (for responses), x1 (for values of the first predictor), x2 (for

values of the second predictor), and e for the n error terms. The column of intercept

terms can be captured as b01n, where 1n is an n-dimensional vector with all

coordinates equal to 1. Hence, (4.16) can be written in vector notation as

Y ¼ b01n þ b1x1 þ b2x2 þ e: ð4:17Þ

The vectors 1n; x1; and x2 can be placed as three columns in a matrix X, and the

three beta parameters can be written as a vector b ¼ b0; b1; b2½ �T. This leads to the

following matrix notation for the sample linear regression model:

Y ¼ Xb þ e: ð4:18Þ

One advantage of thematrix notation in (4.18) is that it works the sameway for any

number of predictors. From now on, we will be discussing a general case of k

predictors, which means that X is an n by k þ 1ð Þ matrix and b is a k þ 1ð Þ-dimen-

sional vector of regression coefficients. The matrix X is called a design matrix, with

this name being especially relevant in designed studies when the values of the

predictors are selected by the investigator. We can use the matrix notation in order

to obtain an equivalent formulation of Assumption 4.1 from Section 4.2.1 as follows

(see Supplement 4B for random vector notation).

Assumption 4.1 The error term in (4.18) is a random vector such that E eð Þ ¼ 0 and

Var eð Þ ¼ s2I, where I is an n by n identity matrix.
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Based on the above assumption, we have E Yð Þ ¼ Xb and Var Yð Þ ¼ s2I. In this

general setup, we can write many formulas in a very concise way. For example, the

least-squares normal equations (see (4.6)) have the form

XTXb ¼ XTY; ð4:19Þ

where the vector b ¼ b0; b1; . . . ; bk½ �T is the least-squares estimator of b. The matrix

equation (4.19) (which is really a system of linear equations) has a unique solution for

bwhen thematrixXTX is nonsingular. The solution gives the least-squares estimators

of the regression coefficients

b ¼ XTX
� ��1

XTY: ð4:20Þ
Note thatb is a linear estimator of the responses because it has the formof amatrix,

here XTX
� ��1

XT, multiplied by the vectorY of responses. Thematrix notation allows

a straightforward derivation (see Problems 4.2 and 4.3) of the following property of

the least-squares estimators.

Property 4.1

(a) The least-squares estimator b given by (4.20) is an unbiased estimator of b, that is,
EðbÞ ¼ b.
(b) The variance–covariance matrix of the least-squares estimator b is equal to

Var bð Þ ¼ s2ðXTXÞ�1
.

This tells us thatb is a linear unbiased estimator. An estimator is called the best linear

unbiased estimator (or BLUE) if it has the minimum variance among all linear

unbiased estimators. Clearly, this is a desirable property of an estimator.

Property 4.2 The least-squares estimator b given by (4.20) is the best linear

unbiased estimator (or BLUE) of b.

The proof can be found in Montgomery et al. (2006) (in their Appendix C.4). It is

worth noting that the above properties hold without any specific distributional

assumption about the model other than Assumption 4.1
�
.

We note that the n-dimensional vector bY of fitted values is equal to Xb. This

means that

bY ¼ Xb ¼ X XTX
� ��1

XTY ð4:21Þ

or equivalently

bY ¼ HY; ð4:22Þ

where

H ¼ X XTX
� ��1

XT ð4:23Þ
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is called the hat matrix. The hat matrix H is symmetric and idempotent, that is,

HH ¼ H. The vector of residual can be written as

e ¼ Y�bY ¼ Y�HY ¼ I�Hð ÞY; ð4:24Þ
where I�Hð Þ is also symmetric and idempotent. It is now easy to show (see Problem

4.4) that

Var eð Þ ¼ s2 I�Hð Þ: ð4:25Þ
In Section 4.2.1, we estimated sigma in a simple regression model using

formula (4.9). In multiple regression, we need to estimate k þ 1ð Þ regression

coefficients. Consequently, the residuals have n�k�1ð Þ degrees of freedom, and an

unbiased estimator of s2 is

bs2 ¼ 1

n�k�1

Xn
i¼1

e2i ¼
1

n�k�1

Xn
i¼1

yi�byið Þ2: ð4:26Þ

The analysis of variance partitioning of the total variability explained in Sec-

tion 4.2.1 (see (4.10)) works in the same way for multiple regression, and the

coefficient of determination R2 is also defined by formula (4.11).

4.2.4 Geometric Interpretation in an n-Dimensional Space

When introducing thematrix notation in the previous section, we used vector notation

as an intermediate step shown in equation (4.17). The vector Y of n responses is an

n-dimensional vector in Rn. For k predictors, the deterministic part Xb of the

model (4.18) can be written as

Xb ¼ b01n þ b1x1 þ � � � þ bkxk; ð4:27Þ

where the vectors on the right-hand side are n-dimensional. Hence, the deterministic

part of the model is a linear combination of those vectors, that is, it belongs to a

k þ 1ð Þ-dimensional linear subspace V of Rn generated (or spanned) by the vectors

1n; x1; . . . ; xk. The subspace V is called an estimation space. The least-squares

method of estimation introduced in Section 4.2.1 (see formula (4.4)) minimizes the

sum of squares

S bð Þ ¼
Xn
i¼1

yi�b0�b1x1i� � � � �bkxkið Þ2 ¼ Y�Xbk k2; ð4:28Þ

which is equal to the squared length of the distance betweenY andXb.We can say that

the least-squaresmethod tries to find avector in the estimation spaceV that is closest to

Y. This vector is the vector bY of the fitted values equal toXb, where b is the vector of

the least-squares estimates. A vector from V that is closest to Y is obtained by an

orthogonal projection ofY onV, and the hatmatrixH defined in (4.23) is thematrix of

that projection. This is consistent with formula (4.22) saying that bY ¼ HY. Fig-

ure 4.10 shows the vectorY projected on the estimation space. The vector e ¼ Y�Xb
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of residuals is a vector connecting the point of fitted values bY ¼ Xb with Y. The

residual vector e is orthogonal to bY based on the property of an orthogonal projection,

but this fact can also be verified algebraically.

Formula (4.20) for the least-squares estimates can be applied when the inverse

matrix XTX
� ��1

exists. We may wonder if the least-squares estimates exist when the

matrixXTX is singular and XTX
� ��1

does not exist. The orthogonal projection ofY on

the estimation space, which is a linear subspace, is obtained by dropping a perpen-

dicular onto the estimation space, which always gives us a unique point bY. From this

geometric interpretation,we realize that the least-squares solution always exists and is

unique in the sense of fitted values. The matrix XTX is singular in the presence of

multicollinearity in the vectors 1n; x1; . . . ; xk, that is, when they span a subspace of

dimension lower than k þ 1ð Þ. In such cases, some of the predictors can be dropped,

resulting in a new matrix X* such that X*
� �T

X* is nonsingular. We then obtain the

same vector of fitted values bY as X* X*
� �T

X*
� ��1

X*
� �T

Y, which is analogous to

formula (4.21).There are several choices for thepredictors to bedropped (each leading

to the samevector offitted values bY),whichmeans that the least-squares solution is not

unique in the sense of being represented as a linear combination of different sets of

predictors. However, it is unique in the sense of a unique vector bY of fitted values.

The geometric interpretation in an n-dimensional space also helps with explaining

the concept of degrees of freedom. ThevectorY of responses has n degrees of freedom

because it can be anywhere in the n-dimensional space Rn. On the other hand, the

vector bY of fitted values has k þ 1ð Þdegrees of freedom (assuming no multi-

collinearity) because it lies in a k þ 1ð Þ-dimensional estimation space V. The

residuals are associated with n�k�1ð Þ degrees of freedom because the residual

vector e lies in a n�k�1ð Þ-dimensional subspace orthogonal to V.

4.2.5 Statistical Inference in Multiple Linear Regression

Themultiple regressionmodelY ¼ Xb þ ewas earlier introduced in formula (4.18),

and now we write the model as

Yi ¼ b0 þ b1xi;1 þ � � � þ bkxi;k þ ei; i ¼ 1; . . . ; n: ð4:29Þ

Y

e

Y = Xb
^ 0

Estimation Space

Figure 4.10 The vector Y of responses is projected on the estimation space resulting in the vector

of fitted values.
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In Section 4.2.3, we introduced Assumption 4.1
�
about the error term e. In order to

perform statistical inference, we will make the following additional assumption for

the remaining part of Section 4.2.

Assumption 4.2 The error terms ei; i ¼ 1; . . . ; n, follow the normal distribution

N 0; s2ð Þ.

An important question in regression is whether the predictors indeed have any

impact on the response. We want to test the null hypothesis of no impact of the

predictors, that is,

H0 : b1 ¼ b2 ¼ � � � ¼ bk ¼ 0 ð4:30Þ

versus an alternative that at least one of the predictors is significant, that is,

Ha : bj 6¼ 0 for at least one j: ð4:31Þ

If the null hypothesisH0 is true, onemight expect that no variability is explained by

the predictors. Indeed, if the regression line were flat, all fitted values byi would be

equal to the mean �y and the regression sum of squares SSRegr ¼
Pn

i¼1 byi��yð Þ2 would
be equal to zero. However, due to the sampling variability, the estimated coefficients

are different from their trueb-values, and the resulting fitted valueswill be on a line (or
a surface for multiple predictors) that is not exactly flat. Therefore, SSRegr will

“accidentally” show some variability due to the natural sampling variability. This

means that SSRegr will typically be different from zero, but its small valuewill indicate

“accidentally” explained variability. Hence, wewill reject the null hypothesisH0 only

for SSRegr large enough. In order to find the appropriate threshold, we need to follow

up on the analysis of variance shown in equation (4.10) and create the so-called

ANOVA table shown in Table 4.1.

The first column in Table 4.1 specifies the two sources of variability—the

regression model (i.e., the predictors as the sources of variability) and the remaining

variability associated with the error term as described by residuals. The second

column in the ANOVA table gives the sums of squares for the two sources of

variability and the sum of the two as the total sum of squares in accordance with

equation (4.10). The concept of degrees of freedom was explained in Section 4.2.4

Table 4.1 The ANOVA Table for Multiple Regression with k Predictors

Source of Variability

Sum of

Squares

Degrees

of Freedom Mean Square F-Statistic

Regression SSRegr k MSRegr ¼ SSRegr

k
F0 ¼ MSRegr

MSRes

Residual (error) SSRes n�k�1 MSRes ¼ SSRes

n�k�1
Total SSTotal n�1

REGRESSION MODELS 101



using the geometric interpretation. We associated n degrees of freedom with the

vector Y of responses. However, the total variability is measured with respect to the

estimatedmean�y, sowe lose one degree of freedom for this estimation, andwe are left

with n�1 degrees of freedom for the total variability. As explained in Section 4.2.4,

each predictor is associated with one degree of freedom resulting in k degrees of

freedom for the whole regression. Note that the intercept does not count here because

the presence of the intercept was already taken into account when subtracting one

degree of freedom in the calculation of the n�1 degrees of freedom for the total

variability. The residual vector e has the remaining n�k�1ð Þ degrees of freedom (see

Section 4.2.4 for a geometric justification) associated with SSRes. The regression and

the residual degrees of freedom sum up to the degrees of freedom for the total

variability. Recall that bs2 defined by formula (4.26) is an unbiased estimator of s2.
That estimator can also be written as bs2 ¼ SSRes= n�k�1ð Þ, which is the same as the

residual mean squareMSRes defined in Table 4.1. Hence, MSRes ¼ bs2 is an unbiased
estimator of s2, that is, E MSResð Þ ¼ s2. The regression mean square MSRegr is

defined in an analogous way by dividing the regression sum of squares by its degrees

of freedom. It turns out that E MSRegr
� � ¼ s2 under the null hypothesis H0, which

means that the average amount of variability in SSRegr with k insignificant predictors

is ks2. We can now define an F-statistic as

F0 ¼ MSRegr

MSRes
: ð4:32Þ

Under the null hypothesis H0, both the numerator and the denominator of F0 are

expected to be around s2. Hence, F0 is expected to be close to 1. More variability

explained by the model will lead to larger MSRegr and hence larger F0. For F0 above a

certain threshold, we can no longer explain the regression variability as merely due to

the random sampling variability, and we will reject the null hypothesis H0.

In order to find a suitable threshold for F0, we use a property that its distribution

under the null hypothesis H0 is known to be the F-distribution with k and n�k�1ð Þ
degrees of freedom. The a-level F-test of significance of regression rejects the null

hypothesis H0 when F0 	 Fk;n�k�1ðaÞ, where Fk;n�k�1ðaÞ is the upper 100að Þth
percentile from the F-distribution with k and n�k�1ð Þ degrees of freedom.

Our earlier considerations about the variability expressed by SSRegr could also be

translated to the percent of explained variability measured by R2, which could also be

used as a test statistic.As expected,F0 is closely related toR
2 by the following formula:

F0 ¼ n�k�1ð Þ
k

R2

1�R2
¼ n�k�1ð Þ

k

1

1=R2ð Þ�1
: ð4:33Þ

That is,F0 is a strictly increasing functionofR
2.Hence, onecoulduse formula (4.33)

to obtain an equivalent threshold for R2 based on the earlier critical value Fk;n�k�1ðaÞ
for the F-test. Clearly, it is easier to use the F-test directly.

Oncewe findout that thewhole regressionmodel is significant, wemaywant to test

which predictors are significant. If some of them are not significant, we might be able
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to remove them from the model in order to simplify it. The jth predictor xj is

significant, that is, it impacts the response, when bj 6¼ 0. Wemay also want to test the

significance of the intercept b0. For any j ¼ 0; 1; 2; . . . ; k, we test the null hypothesis

H0 : bj ¼ 0 versus the alternativeHa : bj 6¼ 0 ð4:34Þ

using a t-test defined by the t-statistic

t0 ¼ bjcSE bj
� � ; ð4:35Þ

where cSE bj
� �

is the estimated standard error of bj calculated as the jth diagonal

element of the matrix dVar bð Þ ¼ bs2ðXTXÞ�1
(see Property 4.1b). We reject

H0 : bj ¼ 0 when t0j 	 tn�k�1ða=2Þj , where tn�k�1ða=2Þ is the upper 100a=2ð Þth
percentile of the t-distribution with n�1ð Þ degrees of freedom.

Example 4.3 As a continuation of Example 4.1, an additional predictor, the solar

azimuth angle (x2), was added in an attempt to explain more variability in Band

2 reflectance. The regression function was estimated as y ¼ 0:3370 þ 0:00065x1 þ
0:000018x2. Note some changes in the intercept and the slope by x1 in relation to the

previous model y ¼ 0:3412 þ 0:00061x1 without x2. Such changes will occur

when the predictors are correlated, that is, some of the information in x1 is also

contained in x2.

The standard deviation was estimated as bs ¼ 0:00365. As can be seen from

Table 4.2, the regression sums of squares increased slightly to SSRegr ¼ 0:000633 at
the expense of the decreasing SSRes ¼ 0:000974. As expected, the total sum of

squares stayed the same because it does not depend on the model. The fraction of

explained variability increased slightly to R2 ¼ 0:394. We may wonder if the small

increase is worth the added complexity created by an extra predictor. This question

can be addressed more formally by testing the significance of individual predictors.

First, we test the significance of thewhole regression by calculating the value of the

F-statistic F0 ¼ 23:7, which is highly significant because the critical value at the

a ¼ 0:05 level is F2;74ð0:05Þ ¼ 3:12.
Table 4.3 shows the calculations needed for checking the significance of

all three regression coefficients. The critical value for each t-statistic is

tn�k�1ða=2Þ ¼ t74ð0:025Þ ¼ 1:99. The p-values in the last column of Table 4.3 are

calculated based on formula (3.33), that is, as 2 1�G t0ð Þð Þ, where t0 is the value of

Table 4.2 The ANOVA Table for Example 4.3 Data with Two Predictors

Source of Variability Sum of Squares

Degrees of

Freedom Mean Square F-Statistic

Regression 0:000633 2 0.000316 23.70

Residual (error) 0:000974 74 0.000013

Total 0.001607 75
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the t-statistic and G is the CDF of the t-distribution with 74 degrees of freedom. We

can see that the intercept term and the slope by the solar elevation angle are both

highly significant. On the other hand, the slope by the solar azimuth angle is not

significant.We conclude that the solar azimuth angle does not contribute significantly

to the prediction of the Band 2 reflection in the presence of the solar elevation angle.

Thismeans that the previousmodel with only one predictor (the solar elevation angle)

is a better model. &

Example 4.2 (cont.). This is a continuation of Example 4.2 from Section 4.2.1,

where we fitted the least-squares regression line y ¼ �1:99 þ 0:91x to the output

power (y) and the input power (x) data from an experiment on an optical fiber.

Table 4.4 shows a high p-value of 0.76 for the significance of the intercept, which

means that it is not significant. On the other hand, the slope is highly significant.

Since the simple regression model has only one predictor, we do not need to check

the significance of the whole regression through the ANOVA table. In such a model,

theF0 statistic is equal to the square of the t-statistic for the slope, and the p-values for

both tests are the same.

Since the intercept is not significant, we can fit a model without the intercept. For

such a model, the matrix notation formulas still hold, but the design matrix X no

longer contains the column of values of 1. We obtain the least-squares regression line

y ¼ 0:886x.We can now interpret b1 ¼ 0:886 as the fraction of the input power that is
successfully transmitted (on average) through the optical fiber for the range of input

power between 80 and 86mW. According to formula (2.1), the average power loss in

decibels is then calculated as 10 log10 b1ð Þ ¼ �0:5257. &

4.2.6 Prediction of the Response and Estimation of the Mean Response

An important application of the regression models is the prediction of the response

variableY based on the values of predictors for a new observation that is not within the

Table 4.3 Calculations Needed for Checking the Significance of All Three Regression

Coefficients for Example 4.3 Data with Two Predictors

Predictor Coefficient Standard Error t-Statistic p-Value

Constant (intercept) 0.3370 0.0114 29.45 1:31� 10�42

Solar elevation angle 0.00065 0.00013 5.11 2:43� 10�6

Solar azimuth angle 0.000018 0.000044 0.42 0.676

Table 4.4 Calculations Needed for Checking the Significance of Regression Coefficients

for Example 4.2 Data

Predictor Coefficient

Standard

Error t-Statistic p-Value

Constant (intercept) �1:99 6.26 �0:32 0.76

Input power (x) 0.91 0.075 5.11 4:7� 10�10
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available data set. In Example 4.1, where the Band 2 reflectance was modeled as a

linear function of the solar elevation angle, wemaywant to predict the reflectance at a

specific future time with a known solar elevation angle. In a general context, we will

denote by xTh ¼ 1; x1; . . . ; xk½ � the values of the predictors for which we want to

predict the response denoted by Yh. We will start with an easier task of estimating the

expected value E Yhð Þ of the response. In the context of Example 4.1, E Yhð Þ can be

interpreted as the average Band 2 reflectance on all occasions with a given solar

elevation angle. Since E Yhð Þ ¼ b0 þ b1x1 þ � � � þ bkxk, we can estimate it with

the fitted value bYh ¼ xThb ¼ b0 þ b1x1 þ � � � þ bkxk. In order to assess precision

of this estimation, we can construct a confidence interval for the mean response

E Yhð Þ given by

bYh � tn�k�1ða=2Þ �cSE bYh

� �
; ð4:36Þ

where

cSE bYh

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTh
dVar bð Þxh

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2xTh XTX
� ��1

xh

q
: ð4:37Þ

Example 4.4 This is a continuation of Example 4.1, where the Band 2 reflectance

was modeled as a linear function of the solar elevation angle. For a model with one

predictor x, we have xTh ¼ 1; xh½ � and formula (4.37) takes the form

cSE bYh

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bs2 1

n
þ xh��xð Þ2

Sxx

 !vuut ; ð4:38Þ

where Sxx ¼
Pn

i¼1 xi��xð Þ2. Figure 4.11 shows the estimated regression line

(solid line) and the 95% confidence interval limits (the two dashed lines)
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Figure 4.11 The estimated regression line (solid line) and the 95% confidence interval limits (the

two dashed lines) together with the 95% prediction interval limits (the two dotted lines) based on

Example 4.4 data.
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calculated based on formula (4.38) for the whole range of the solar elevation

angles as values of xh. Let’s assume we are interested in the mean response E Yhð Þ
for xh ¼ 55. We could then draw a vertical line at the solar elevation angle value of

55. The points of intersection between the vertical line and the two dashed lines

signify the confidence interval for E Yhð Þ. The dashed lines are fairly close to the

solid line, which means that the fitted values bYh estimate E Yhð Þ fairly precisely.

The precision of estimation is best when xh ¼ �x and then the confidence interval

gets wider as xh��xjj increases. The reason is that the uncertainty in the slope has

the largest impact at the extremes due to the tilting of the regression line, which

always goes through the center point �x;�yð Þ.
Note that with the larger sample size, both denominators in formula (4.38) will

get larger, and the confidence interval will get narrower. This is reasonable because

with more data, we should be able to estimate more precisely the regression

coefficients, and consequently, themeanE Yhð Þ. Hence, the dashed lines of confidence
limits will be getting very close to the estimated regression line with increased

sample sizes. With a sufficient amount of data, we would know the average Band 2

reflectance very precisely based on the solar elevation angle. However, this does not

mean that we know the actual Band 2 reflectance (rather than the average) on a given

day. In order to predict the actual reflectance, we need to construct prediction intervals

discussed next. &
We now want to tackle the more difficult problem of predicting the response Yh.

We know that Yh varies around its mean E Yhð Þ with the variability described by the

variance s2. It is intuitively appealing to use E Yhð Þ as one single number that best

predicts the random response Yh. This intuition is supported by the fact that the mean

squared error of prediction MSE cð Þ ¼ E Y�cð Þ2 is minimized by c ¼ E Yð Þ (see

Problem4.5). SinceE Yhð Þ is unknown,wewill use its estimate, the fitted value bYh, as a

predictor of Yh. Uncertainty in the prediction is due to the variance s2 and the

uncertainty in the estimation of E Yhð Þ. We can express it with the variance of

the prediction error estimated as

cSE predictionð Þ
h i2

¼ bs2 þ cSE bYh

� �h i2
: ð4:39Þ

This leads to the following formula for the prediction interval for Yh:

bYh � tn�k�1ða=2Þ �cSE predictionð Þ; ð4:40Þ

where

cSE predictionð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bs2 þ cSE bYh

� �h i2r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibs2 1 þ xTh XTX
� ��1

xh

h ir
: ð4:41Þ

Clearly, the prediction interval (4.40) is always wider (and usually much wider)

than the equivalent confidence interval (4.36). With increased sample size, the

estimated standard error cSE bYh

� �
is getting close to zero, but cSE predictionð Þ is

getting close to s.
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Example 4.4 (cont.). For a model with one predictor x, formula (4.41) takes the

form

SE bYh

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bs2 1 þ 1

n
þ xh��xð Þ2

Sxx

 !vuut : ð4:42Þ

Figure 4.11 shows the 95% prediction interval limits (the two dotted lines) that

are much wider than the confidence intervals (dashed lines). We would expect

approximately 5% of all n ¼ 76 observations to be outside of the prediction limits.

Hence, the two observations above the limits and one observation on the boundary

line should not be surprising here. We can say that at any future time with a known

solar elevation angle, the Band 2 reflectance will be within the plotted prediction

limits with 95% confidence. &

4.2.7 More on Checking the Model Assumptions

In Section 4.2.2, we introduced some residual plots for checking model assumptions.

For more refined plots, we should take into account that residuals may have different

variances, as can be seen from formula (4.25). That is, Var eið Þ ¼ s2 1�hiið Þ, where hii
is the ith diagonal element of the hat matrix H. Hence, we can expect different

variability from different residuals, and their direct comparison can be questionable.

If we knew s, we could use the standardized residuals ei= s
ffiffiffiffiffiffiffiffiffiffiffi
1�hii

p� �
. In practice, we

need to estimate s, and we define externally studentized residuals as

ri ¼ ei

s ið Þ
ffiffiffiffiffiffiffiffiffiffiffi
1�hii

p ; ð4:43Þ

where

s ið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�kð Þbs2�e2i = 1�hiið Þ

n�k�1

s
ð4:44Þ

is used to estimates, andbs2 is calculated from formula (4.26). The term “studentized,”

as a version of “standardized,” is used after a statistician, William Gosset, who wrote

under the pseudonymStudent. The reason for using formula (4.44) is that it estimates s
without the impact of the ith observation yi, unlike the direct estimator bs. This is why
we call the residual externally studentized. Thismethodology is especially relevant for

outlying observations that may significantly impact the bs2 estimator.

Since we replaced the true swith its estimated value s ið Þ, the variance of ri is only
approximately equal to 1. Based on Assumption 4.2 and formula (4.24), the residuals

ei follow a normal distribution. It turns out that the externally studentized residuals

follow a t-distribution with n�k�1ð Þ degrees of freedom. Hence, they all have the

same variance Var rið Þ ¼ n�k�1ð Þ= n�k�3ð Þ for n�k�1ð Þ > 2 (see Appendix A

for properties of the t-distribution). In residual plots, we can now make direct

comparisons of the externally studentized residuals.
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It is often of interest to detect unusually large residuals as outliers. To this end, we

want to calculate a threshold such that it is unlikely that the most extreme absolute

value of the externally studentized residuals would be above the threshold if all

observations followed the assumedmodel. Using a Bonferroni-type approach, we can

use tn�k�1 a= 2nð Þð Þ as the outlier threshold, where a is the acceptable probability of

exceeding the threshold by the most extreme residual. The same threshold can also be

used in the presence of multiple outliers. Although one could develop a different

threshold for the second largest observation and then subsequent order statistics, it

wouldmake little difference and those thresholdswould be smaller than our threshold.

Hence, our approach can be considered a slightly more conservative approach. An

outlier based on our threshold would also be an outlier based on those more precise,

but also more complex, thresholds.

We recommend the following terminology. We detect a likely outlier when using

the outlier threshold with a ¼ 0:05, a definite outlier when using a ¼ 0:01, and an

extreme outlier for a ¼ 0:001. Figure 4.12 shows the threshold values for simple

regression with one predictor (k ¼ 1) as a function of the sample size n for various a
levels. The smallest threshold value is 3.479, so as a practical rule of thumb, we

recommend using the likely outlier threshold of at least 3.5 in any situation. For larger

k, the thresholds are larger, but they are usually only slightly larger, except for very

small sample sizes. However, such small sample sizes are not recommended when

dealing with multiple predictors.

Figure 4.13 shows a plot of the externally studentized residuals versus fitted values

for the simple regression model fitted to the Example 4.1 data. The likely outlier

thresholds are plotted at the levels of � t76�1�1 0:05= 2 � 76ð Þð Þ ¼ � 3:56. There is one
observation that is likely to be an outlier.

Residuals can also be plotted in the order in which the observations were collected,

so that we can detect a potential impact of other factors that change over time but have

not been recorded. For the Example 4.1 data, we can plot the externally studentized

residuals versus the recorded day of the year as shown in Figure 4.14. We can see that
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Figure 4.12 Threshold values for identifying outliers in simple regression with one predictor (k ¼ 1) as a

function of the sample size n for various a levels. Externally studentized residuals larger than the threshold
suggest outliers.
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the residuals for the earlier part of the year (up until Day 120) tend to be somewhat

larger than the remaining residuals, with the two largest residuals belonging to that

group. This is a minor issue, and it could be ignored for this data set. Another option

could be to try to collect more data for the earlier part of the year, and see if a separate

model is needed for those data.

In order to verify the normality assumption of the error term in the model (see

Assumption 4.2 in Section 4.2.5), the normal probability plots (see Section 3.6) of

classic residuals are used. The plots usually work reasonably well. Under the model

assumptions, the classic residuals ei follow the normal distribution, but they

have different variances as pointed out earlier (see also formula (4.25)). Hence,

using the classic residuals in a normal probability plot could be potentially mislead-

ing. A more formal approach is to create a probability plot (see Section 3.6) of the
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Figure 4.13 The externally studentized residuals plotted versus fitted values for the simple regression

model fitted to the Example 4.1 data. The likely outlier thresholds are plotted at the levels of

� t76�1�1 0:05= 2 � 76ð Þð Þ ¼ � 3:56.
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Figure 4.14 The externally studentized residuals plotted versus the day of the year for the simple

regression model fitted to the Example 4.1 data. The likely outlier thresholds are plotted at the levels of

� t76�1�1ð0:05= 2 � 76ð ÞÞ ¼ � 3:56.

REGRESSION MODELS 109



externally studentized residuals versus percentiles from the t-distribution with

n�k�1ð Þ degrees of freedom. Figure 4.15 shows such a plot for the Example 4.1

data. The plotted line y ¼ x is the line of equality for the residuals versus the

theoretical percentiles. Here we used a simplified method by taking

tn�k�1 ði�0:5Þ=nð Þ as the theoretical percentile corresponding to the ith sorted

residual. The points line up reasonably close to the line except for the outlier

discussed earlier. This means that the normality assumption is violated only mildly,

which would not require any action to modify the model.

If simplicity is desired, a normal probability plot of classic residuals can also be

used since it will usually look very similar to the plot of the externally studentized

residuals proposed here. On the other hand, the calculation of the externally

studentized residuals is rather straightforward, and it could easily be implemented

in any software.

Formal testing of the distribution of residuals is rarely done because the statistical

inference in regression is not particularly sensitive to the assumption of normality.We

are mainly interested in major departures from the normality assumption, and a

probability plot of residuals can guide us in identifying amore suitable distribution for

the error term in the model.

4.2.8 Other Topics in Regression

There are many other topics in regression analysis that should be considered in any

serious project involving statistical modeling. We only signal some issues here and

direct the reader to Montgomery et al. (2006), Kutner et al. (2005), and Draper and

Smith (1998) for further reading on those topics.

In a continuation of Example 4.2 at the end of Section 4.2.5, we introduced amodel

with no intercept. This approach should be avoided in general, unless the intercept is

not statistically significant and there is a clear benefit from themodel simplification as

was the case in Example 4.2. Such models have some properties different from those

discussed here. For example, the sum of residuals is not necessarily equal to zero, and
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Figure 4.15 A probability plot of the externally studentized residuals versus percentiles from the

t-distribution with n�k�1ð Þ degrees of freedom for the Example 4.1 data.
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the coefficient of determination R2 no longer has the usual interpretation of the

fraction of explained variability (hence it should not be used).

In the presence of many outlying residuals, we may wish to change the normality

assumption and consider the so-called robust regression. We may also encounter a

situationwhere an observation has unusual values of predictors.Wewould say that we

have an outlier in the values of predictors, which results in the so-called high leverage.

This often leads to excessive influence of the observation on the estimated regression

model, which may not be desirable.

When the assumption of the constant variance does not hold, we might be able to

resolve the problem by applying transformations to the predictors, or to the response,

or both. Sometimes additional information is available regarding the variability of the

error term for each single observation. In that case, it might be helpful to use the

weighted least-squares regression.

Sometimes the predictors are highly correlated or multicollinear, that is, they

convey equivalent, or almost equivalent, information. This problem can be dealt with

by dropping some predictors or by constructing a better set of predictors. Other

methods for dealing with multicollinearity include ridge regression, principal com-

ponent regression, and partial least-squares regression.

When the regression function cannot be written as a linear function of parameters,

we are dealingwith nonlinear regression. There are typically no closed-form formulas

for the least-squares estimates of nonlinear regression coefficients, and the estimates

need to be calculated through some numerical optimization methods. Statistical

inference is more difficult in such models since the distributional properties of

estimators are known only asymptotically.

When the response variable is discrete, we may need to use logistic regression or

Poisson regression. Those are examples of a broader class of models called general-

ized linear models, which allowmore flexibility in statistical modeling. In addition to

increased computational challenges, the user also needs to deal with more complex

interpretations of the resulting models. Specialized references on these topics are

Hosmer (2000) and Agresti (2002).

4.3 EXPERIMENTAL DESIGN AND ANALYSIS

When we plan or analyze a study, it is important to distinguish between an

observational study and a controlled experiment. The Landsat data study described

in Example 4.1 is an observational study becausewe simply measured reflectance (Y)

and recorded the solar elevation angle (X). No attemptwasmade tomove the Sun back

and forth across the sky, so that we could see its impact on reflectance. Figure 4.1

shows a clear correlation betweenY andX, and the linear relationship between the two

variables can be verified to be statistically significant. However, the measurements

were taken on various days, and many other factors might have been changing in the

meantime as well. Hence, we cannot be sure if the changes in X were the reason for

changes in Y, or perhaps there was another unobserved factor causing those changes.

In general, it is difficult to establish a causal relationship between the response Y and

EXPERIMENTAL DESIGN AND ANALYSIS 111



the predictors. An extreme example is that of elementary school children where for

each childwe record the number ofwords the child knows (Y) and the child’s shoe size

(X). Some people are surprised that the two variables are highly correlated. The

confusion is that people often associate correlation with causation. Clearly, there is no

direct causal relationship between these variables, but there is a third factor, age,

which is causing both variables to change (we are assuming a substantial range of ages

among those children). In other situations, the third factor might not be as obvious as

in this case.

In order to mitigate the impact of such third factors and be able to prove causation,

we should use controlled experiments whenever possible. The optical fiber experi-

ment discussed in Example 4.2 is a controlled experiment because the input power of a

laser light signal sent into the optical fiber was being changed and the resulting output

power was recorded. Oneway to perform such an experiment is to make five replicate

runs at 80mW, and then change the laser setup to 82mW power and perform five

replicate runs at that level.We could then continuewith the remaining levels of 84 and

86mW. This way, we would save on some effort of switching between the power

levels. Unfortunately, this approach would create an increasing pattern in the input

power over time, which could coincide with an unobserved third factor being the real

reason for changes in the output power. To avoid this problem,we could perform all 20

runs in a random order. This way, it becomes highly unlikely that a third factor would

keep changing in the same way.

Another consideration in a controlled experiment is the choice of values, or levels,

for the factor x (wewill now use the lowercase x to recognize the fact that the factor is

not random). In the context of experiment design, we often use the term “factor”

instead of predictor. In the case of a quantitative factor, such as input power, we are left

with many choices. First we need to decide on the range of x values we want to

investigate. This may call for some preliminary runs to see how extremewe should go

with the smallest and the largest value for x. Let us consider an experiment where Y is

the surface reflectance and x is the angle, with respect to the surface normal, at which

we send a beam of light at the surface. Such an experiment can be performed to

estimate the bidirectional reflectance distribution function (BRDF) discussed in

Schott (2007). When other factors, such as the viewing angle, the light wavelength,

and so on, are kept constant, the BRDF simplifies to Y as a function of x. The angle x

could go from 0
 to 90
, but the values close to 90
 (almost parallel to the surface)

would cause significant nonlinearity in Y as a function of x, and we should exercise

caution in including such grazing angles into the range of x values.

Let us saywe decided to experiment on the range ofx values from a to b, andwe are

interested in the relationship of Y as a function of x over this range. Figure 4.16 shows

some of the choices we have in terms of specific values for all 20 runs. In DesignA, 10

runs are performed at each of the two extreme ends of the range. If we can be 100%

certain that the relationship between Y and x is linear, Design A is optimal in the sense

of providing the most precise estimates of the model parameters. On the other hand,

the resulting datawill not tell us if the relationship is indeed linear.Hence, ifwe are not

very certain about the linearity, we need to use more levels of the x values. The more

complex the relationship between Y and xwe expect, the more levels we need. At the
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same time, there are some benefits of having repeated values of x. Such repeats allow

the calculation of variability due to factors other than x that are not observed and

recorded in the experiment. The variability observed at these repeated x values is

called pure error, as opposed to modeling error caused by the model imperfections.

Hence, Design C with two repeats at each level is a reasonable solution if we expect a

high degree of nonlinearity in Y as a function of x. If we expect a simpler relationship,

such as a second-degree polynomial, we might also consider Design B with only four

levels. Why don’t we simply choose Design C, which affords us the most protection?

Well, if the relationship actually is linear, then the model’s parameters, for example,

the slope of the line, are estimated less precisely than if Design A (best) or Design B

had been chosen. Based on this reasoning, if we are fairly certain about the linear

relationship but we want to make sure that the experiment confirms that, we might

select Design D, which not only uses more runs at the extreme values, but also covers

some intermediate values.

These considerations assume that we have no prior knowledge about the expected

nonlinearity. In the case of estimating the BRDF discussed earlier, we might want to

sample the grazing angles more densely, if such angles were of interest, since we

would expect more nonlinearity there.

Things becomemore complexwhenwe use two quantitative factors x1 and x2. The

purpose of an experiment is often to find the values of x1 and x2 giving an optimum

value of Y, let’s say the largest possible value. If the number of runs was not limited,

we could simply use a dense grid of possible values forx1 andx2, fit themodel ofY as a

function of the two factors, and find the maximum of that function. However, in most

practical situations, each run costs money and effort of the investigators. Faced with

this reality, researchers often invoke a rule of changing one factor at a time. This is a

correct scientific rule in general. If you changed both factors at the same time, you

would not know if the change in Ywas due to a change in x1 or in x2. What often goes

wrong is that the rule is applied too rigidly in the so-called one-factor-at-a-time

experiments, which are performed as follows.

Consider an experiment, where (unknown to the experimenter) the response Y is a

second-degree polynomial of x1 and x2. The contour lines of such a function are

ellipses as shown in Figure 4.17. The function could also be plotted in three

dimensions to see the so-called response surface directly, but the same type of

information appears in Figure 4.17. The maximum value of Y is at the point (12, 4) in

this case. Now suppose the experimenter’s one-factor-at-a-time strategy was to start

with fixing the value of x2 at 2, and performing runs at multiple levels of x1 from 9 to
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Figure 4.16 Four different designs of an experiment with 20 runs and one quantitative factor x.
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14 (the horizontal row of dots in Figure 4.17). Based on the resulting fit to the data, the

experiment would find the maximum value in the vicinity of x1 ¼ 10. Now

the experimenter would fix the value x1 ¼ 10 and would change the values of x2
(the vertical row of squares). The resulting datawould tell us that the largest value of Y

is in the vicinity of the point (10, 2). We can see that the experimenter entirely missed

the true shape of the relationship betweenY and the factors, and he alsomissed the true

maximum at the point (12, 4).

The problem with the previous experiment can be easily fixed by a different

implementation of the rule of changing one factor at a time. Consider a full factorial

design shown in Figure 4.18 consisting of four runs. For each factor, we choose two

values, one is called a low (L) level and the other is the high (H) level. Run I is at a low

level of both factors, while Run II is at a low level ofx1 and a high level ofx2, and so on

for Runs III and IV. Each set of two runs that are connected by an arrow can be

considered a mini round of a one-factor-at-a-time experiment. Here we have four
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Figure 4.17 Anexample of a one-factor-at-a-timedesignwhere the first phase usedx2 ¼ 2 and the second

phase concentrated on the “best” value of x1 ¼ 10. The maximum was incorrectly identified around the

point (10, 2) instead of the correct point (12, 4).
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Figure 4.18 The 22 factorial design shown as four rounds of one-factor-at-a-time experiments, each

consisting of two runs.
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rounds of one-factor-at-a-time experiments, each consisting of two runs. However,

instead of using a total of eight runs, we only need four runs because each run is a part

of two experiments at the same time. This way, we are conforming to the rule of

changing one factor at a time, but at the same time, we are investigating two levels of

each factor at a time. This design is called the 22factorial design.

If we choose three levels of each factor in a grid of nine points, we have a 32

factorial design. This design consists of six rounds of one-factor-at-a-time experi-

ments, each consisting of three runs.

Factorial experiments are very powerful in discovering various shapes of the

response surface such as the one shown in Figure 4.17. However, in order to minimize

the number of runs and still be able to estimate a second-degree response surface, we

can use central composite designs. One such design is shown in Figure 4.19, where

five levels of each factor are used. Rather than using all 25 combinations of five levels

for each factor, the design uses only nine combinations placed in strategic positions.

The extreme points have the coordinates
ffiffiffi
2

p � 1:414, and the four points connected
into a square in Figure 4.19 are the 22 factorial part of this design. The design is shown

here in a coded form, where zi ¼ xi�mið Þ=bi; i ¼ 1; 2; and mi and bi are chosen

for the ith variable, depending on the desired experimental region. The central point at

(0, 0) has a special purpose, and it is often chosen for repeats (called replicater in

experimental design) that are needed to estimate the pure error discussed earlier. One

would usually use three to five replicater of the center point. An analogous center point

with replicater can also be added to the earlier discussed 22 factorial design in order to

assess nonlinearity of the response surface.

The so-called response surface methodology incorporates multiple rounds of the

designs discussed here, so that the optimum value for Y can be found. Ientilucci and

Bajorski (2008) show an application of similar designs in the estimation of a response

surface in the context of remote sensing.

In the experiments with quantitative factors considered so far, the regression

methods discussed in Section 4.2 are used to fit the appropriate model and
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Figure 4.19 A central composite design allowing estimation of a second-degree response surface.

EXPERIMENTAL DESIGN AND ANALYSIS 115



draw conclusions. When the factors are qualitative, the regression models can still be

used, but some special approaches are required as discussed in the following

subsection.

4.3.1 Analysis of Designs with Qualitative Factors

The following example demonstrates an experiment with qualitative factors.

Example 4.5 An experiment was designed in order to investigate sources of

variability in spectrometer readings. Three tiles were chosen for the experiment—

awhite, a gray, and a black tile coded as 1, 2, and 3, respectively. Two spectrometers of

the same type were chosen and were coded as 1 and 2, respectively. Two operators

performed the measurements and were also coded. We say that we have three factors

here—the tiles (Factor A), the spectrometers (Factor B), and the operators (Factor C).

These three factors are the potential sources of variability in spectrometer readings.

Wewould expect FactorA to generate a lot of variability in themeasurements because

very different tiles are measured here. The other two factors contribute to the

measurement error variability that we would like to see as small as possible. There

are also many other factors, not recorded here, that might contribute to the measure-

ment error. They may cause some drift or trend in spectrometer readings over time,

and we are interested in discovering such trends.

There are three qualitative levels of Factor A and two qualitative levels of each of

the remaining two factors. There are no intermediate levels that can be chosen, and the

central composite designs would not be possible here, but we can use a full factorial

design. In order to cover all possible combinations, we need 12 runs. Since it is useful

to have replicates, 24 runswere usedwith two replicates for each combination. In each

run, a 31-dimensional vector of reflectances was recorded, but for simplicity we will

consider the reflectance in the middle spectral band with wavelength of 550 nm as

the response variable Y. Further analysis of this experiment will be done after we

introduce some mathematical notation and terminology. &

4.3.1.1 One-Factor Experiments
Consider an experiment with one Factor A, where the levels of that factor were coded

into 1, 2, . . ., a, where a is the number of levels. The levels are sometimes called

treatments because they describe the different ways the objects in the study were

treated in the experiment. Factor A could also be quantitative, but its quantitative

nature will be ignored in this approach. Assume that n runs were performed at each

factor level for a total of na runs. Such a design is called a balanced design, as opposed

to an unbalanced design, where a different number of runs is used at different levels.

Balanced designs are preferred and are easier to analyze.

The ith response value at the jth level will be denoted by Yji; j ¼ 1;
. . . ; a and i ¼ 1; . . . ; n. We assume here the fixed-effect model that all response

values at the same level of the factor are independent realizations from the same

normal distribution N mj ;s
2

� �
, where mj is the mean at the jth level and s2 is
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the variance that is the same for all observations in the experiment. The impact of

Factor Awill be evaluated based on the means mj . If they are all the same, this means

that the factor has no impact on the response Y. Hence, it is common and useful to

define an overall mean m ¼Pa
j¼1 mj=a and the treatment effects tj ¼ mj�m. The

fixed-effect model can now be written as

Yji ¼ m þ tj þ eji; where j ¼ 1; . . . ; a and i ¼ 1; . . . ; n; ð4:45Þ
and eji are independent random variables from the normal distribution N 0; s2ð Þ. Note
that

Pa
j¼1 tj ¼ 0, and the null hypothesis of no impact of Factor A can be written as

H0 : t1 ¼ t2 ¼ � � � ¼ ta ¼ 0: ð4:46Þ
In order to test this null hypothesis, we can perform an analysis of variance similar

to the one discussed in Section 4.2.5 and summarized in Table 4.1 for regression

models. The significance of FactorA can be determined based on the treatment sumof

squares defined as

SSTreatment ¼ n
Xa
j¼1

�Yj.��Y. .

� �2
; ð4:47Þ

where bmj ¼ �Yj. ¼
Pn

i¼1 Yji=n estimates the jth level mean mj andbm ¼ �Y. . ¼
Pa

j¼1
�Yj.=a ¼Pa

j¼1

Pn
i¼1 Yji= nað Þ estimates the overall mean m. The

treatment sum of squares SSTreatment measures variability among treatments, or factor

levels, and its largevalues indicate significant differences among treatment effects. Of

course, “large” is relative, so we need to compare that variability to the within-

treatment variability measured by the error, or residual, sum of squares

SSE ¼
Xa
j¼1

Xn
i¼1

Yji��Yj .

� �2
: ð4:48Þ

Adirect comparison is performed in theANOVA table shown inTable 4.5, which is

analogous to the ANOVA table shown in Table 4.1 for a regression model. The total

sum of squares SSTotal is defined as

SSTotal ¼
Xa
j¼1

Xn
i¼1

Yji��Y. .

� �2
; ð4:49Þ

Table 4.5 The ANOVA Table for a One-Factor Fixed-Effect Experiment

Source of

Variability

Sum of

Squares

Degrees of

Freedom Mean Square F-Statistic

Factor (treatments) SSTreatment a�1 MSTreatment ¼ SSTreatment

a�1
F0 ¼ MSTreatment

MSE

Residual (error) SSE na�a MSE ¼ SSE

na�a

Total F na�1
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and we have

SSTotal ¼ SSTreatment þ SSE; ð4:50Þ

which is analogous to equation (4.10) for a regression model.

In a way analogous to the regression case, the mean square error MSE, defined

in Table 4.5, is an unbiased estimator of s2, that is, E MSEð Þ ¼ s2. On the other

hand, the treatment mean square MSTreatment is an unbiased estimator of s2, that is,
E MSTreatmentð Þ ¼ s2, only under the null hypothesis H0 defined in (4.46). In general,

we have

E MSTreatmentð Þ ¼ s2 þ n
Pa

j¼1 t
2
j

a�1
: ð4:51Þ

This means that the large values of the F-statistic defined as

F0 ¼ MSTreatment

MSE
ð4:52Þ

will suggest that the null hypothesis H0 is not true. Under the null hypothesis H0, the

F-statistic F0 follows the F-distribution with a�1ð Þ and na�að Þ degrees of freedom.

The a-level F-test of significance of Factor A rejects the null hypothesis H0 when

F0 	 Fa�1;na�a að Þ, where Fa�1;na�a að Þ is the upper 100að Þth percentile from the

F-distribution with a�1ð Þ and na�að Þ degrees of freedom.

4.3.1.2 Two-Factor Experiments
Let us now add a second Factor B with levels coded into 1, 2, . . ., b, where b is the

number of levels. The treatment effects for Factor B will be denoted as

bk; k ¼ 1; . . . ; b, where
Pb

k¼1 bk ¼ 0. An additive fixed-effect model can now be

written as

Yjki ¼ m þ tj þ bk þ ejki; where j ¼ 1; . . . ; a; k ¼ 1; . . . ; b; and i ¼ 1; . . . ; n;

ð4:53Þ

and ejki are independent random variables from the normal distribution N 0; s2ð Þ. The
model is called additive because the impact of each treatment is expressed by simply

adding the treatment effect tj orbk to the overallmeanm in themodel. These treatment

effects are often calledmain effects. In order to explain this concept, let’s consider a 22

factorial design shown in Figure 4.20, where the two levels of each factor are coded as

1 and 2.With only two levels of each factor, we could also define the factor effect as an

impact on Y of switching from level 1 to 2, which, for Factor A, is equal to

t2�t1 ¼ 2t2 since t1 ¼ �t2. Based on the additive model (4.53), the impact of

Factor A is always the same, nomatter what the level of Factor B is. The same applies

to the impactb2�b1 ¼ 2b2 of Factor B,which adds the same amount to the response Y

independently of the Factor A level.
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The additivemodel (4.53) does not take into account possible interactions between

the factors in theway that they impact the response Y. In order tomake themodelmore

general, we can introduce interaction terms and write the model as

Yjki ¼ m þ tj þ bk þ tbð Þjk þ ejki; where j ¼ 1; . . . ; a; k ¼ 1; . . . ; b;

and i ¼ 1; . . . ; n; ð4:54Þ

and tbð Þjk; j ¼ 1; . . . ; a and k ¼ 1; . . . ; b; are the interaction terms. There are a � b
interaction terms. The interaction terms are needed in the presence of synergy

between factors when the combined effect of two factors is above and beyond the

sumof the individualmain effects.With positive synergy,when the combined effect is

larger than the sum of the main effects, the interaction term is positive. A negative

synergy is described by a negative interaction term. Denote by mjk the population

meanE Yjki
� �

, which is themean responsewhen Factor A is at level j and Factor B is at

level k. We can write mjk ¼ m þ tj þ bk þ tbð Þjk. The interaction term tbð Þjk is that
part of mjk that is not already explained by themain effects tj and bk. Themodel (4.54)

can also be written as

Yjki ¼ mjk þ ejki; where j ¼ 1; . . . ; a; k ¼ 1; . . . ; b; and i ¼ 1; . . . ; n: ð4:55Þ

The population mean mjk can be estimated independently in each cell, or combi-

nation of levels of both factors, by a sample average of observations in that cell, that is,

by bmjk ¼ �Yjk. ¼
Pn

i¼1 Yjki=n. We assume here that there are at least two runs in each

cell, that is, n 	 2.

Let us explain these concepts using an experiment with two factors, each at two

levels. In Figure 4.21a, the two levels of Factor A are shown on the horizontal axis, and

the two levels of Factor B are marked as two lines connecting the estimated responsesbmjk shown on the vertical axis. The mean responses were estimated as bm11 ¼ 1,bm21 ¼ 3, bm12 ¼ 4, and bm22 ¼ 6. Consequently, the estimated overall mean is bm ¼ 3:5.
It is useful here to estimate themean responsebm1.

¼ bm11 þ bm12ð Þ=2 at level 1 of Factor
A, averaged over the two levels of the other factor. This gives us a sense of how level 1

of Factor A impacts the response, all other things being equal. We obtain bm1.
¼ 2:5,

A

B

21

2
1

τ2 −τ1

τ2 −τ 1

β2 −β 1 β2 −β1

Figure 4.20 Additivity of the factor effects impacting Y independently of each other, no matter what the

level of the other factor is.
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and the treatment effect is estimated as t1 ¼ bm1.
�bm ¼ �1. In a similar fashion, we

obtain bm2.
¼ 4:5 and bt2 ¼ 1. For Factor B, we calculate bm

.1 ¼ bm11 þ bm21ð Þ=2 ¼ 2,

which leads to bb1 ¼ �1:5. For the second level of Factor B, we obtain bm
.2 ¼ 5 andbb2 ¼ 1:5.

In order to estimate interactions, we recall that mjk ¼ m þ tj þ bk þ tbð Þjk,
which can be written as tbð Þjk ¼ mjk�m�tj�bk. Again, we can see that tbð Þjk is

what is left frommjk once the effect of the overall mean m and themain effects tj andbk
are subtracted. We can now estimate dtbð Þ11 ¼ bm11�bm�bt1�bb1 ¼ 1�3:5� �1ð Þ�
�1:5ð Þ ¼ 0. In a similar way, we obtain dtbð Þ12 ¼ dtbð Þ21 ¼ dtbð Þ22 ¼ 0. We say that

there are no interactions between the two factors in this experiment. Hence, the

additivemodel of the form (4.53) is suitable for these data. For real data, wewould not

usually get exact zero values and the significance of interactions would be tested by an

appropriate F-test.

The plot in Figure 4.21a is called an interaction plot because it allows a visual

detection of interactions. If the two lines are parallel, the additivemodel holds, andwe

say that there are no interactions. Figure 4.21b shows an interaction plot based on a

different data set. Here the lines are not parallel, showing substantial interactions. Let

us check this algebraically by performing calculations analogous to those shown

previously. Here bm11 ¼ 1, bm21 ¼ 3, bm12 ¼ 6, and bm22 ¼ 4. Consequently, bm ¼ 3:5. For
Factor A, we calculate bm1.

¼ 3:5, t1 ¼ 0, bm2.
¼ 3:5, andbt2 ¼ 0, and for Factor B, we

obtain bm
.1 ¼ 2, bb1 ¼ �1:5, bm

.2 ¼ 5, and bb2 ¼ 1:5. An interaction term is now

estimated as dtbð Þ11 ¼ bm11�bm�bt1�bb1 ¼ 1�3:5�0� �1:5ð Þ ¼ �1. In a similar way,

we obtain dtbð Þ12 ¼ 1; dtbð Þ21 ¼ 1; and dtbð Þ22 ¼ �1. The statistical significance of

these estimated interactionswould depend on the sample size and the variability in the

error term, as expressed by s2.
Both the model (4.55) and the equivalent model (4.54) are called fully saturated

models because they do not impose any additional structure on the cell means. The

additivemodel (4.53) is not fully saturated because itmakes the additional assumption
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Figure 4.21 Interaction plots for two different experiments. In panel (a), there are no interactions between

the factors, which is evident from the parallel lines. In panel (b), the lines are not parallel, which indicates

presence of interactions between the factors.
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about the additive property of themean response. In order to estimate all parameters in

the fully saturated model, wewould usually want at least two runs in each cell, that is,

n 	 2. For n ¼ 1, one strategy is to assume an additivemodel, so that some degrees of

freedom are available for the mean square error, and the statistical significance of the

main effects of the factors can be tested.

4.3.1.3 Multifactor Experiments
The concepts of the previous subsection extend to designs withmore than two factors.

Suchmodels may have two-way interactions of two factors, three-way interactions of

three factors, and so on. We often use an abbreviated notation for interactions, where

AB denotes a two-way interaction between Factors A and B. All models discussed

here can be written as regression models with the use of the so-called dummy

variables, but the details are beyond the scope of this brief section. This means we can

also calculate and analyze residuals to check the model assumptions in the same way

as discussed for regression models in Section 4.2. For many models for data from a

balanced full factorial design, including the saturated model and the additive model,

the diagonal elements of the hat matrixH defined in (4.23) are all equal to each other.

Hence, all residuals have the same variance, and there is no need to use the externally

studentized residuals defined in (4.43).We can simply use the classic residuals defined

as the observation minus the fitted value.

Although the ANOVA table becomes more complex in multifactor designs,

each factor and each interaction can still be tested for significancewith an appropriate

F-test. So, the general concepts are similar to those explained earlier, and we can

evaluate significance of the main factors and interactions based on the p-values

produced by a suitable computer routine. Herewewant to show some results based on

the experiment described earlier in Example 4.5.

Example 4.5 (cont.). In the spectrometer experiment described earlier, we have

three factors. Factor A (the tiles) is at three levels (a ¼ 3), while Factor B (the

spectrometers) and Factor C (the operators) are both at two levels, that is, b ¼ 2 and

c ¼ 2. There are two runs for each combination of factors, so n ¼ 2. The response

variable Y is the reflectance at the wavelength of 550 nm. We first fit a fully saturated

model, that is, with the three main effects A, B, and C, the three two-way interactions

AB, BC, and AC, and the three-way interaction ABC. Before performing any

statistical inference on the model, we need to verify the model assumptions by

inspecting various residual plots.

One of those plots is shown in Figure 4.22, where the residuals are plotted against

the fitted values. It turns out that the dot plotted on the left-hand side (with a very small

fitted value of almost zero) represents eight overlapping residuals with very small

values.We could elicit this information by using jitter as discussed in Section 2.4.4.We

conclude that the variability in residuals is highly dependent on the magnitude of the

observation. This contradicts the assumption of constant variance s2. A physical

interpretation of this situation is that the reflectances of the white tile are larger than

those for the gray tile andmuch larger than those for the black tile. For a different view,

Figure 4.23 shows the residuals plotted against the tile number (1¼white, 2¼ gray,

3¼ black). Each tilewasmeasured eight times, so there are eight residuals for each tile.
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However, for the black tile, the residuals are so small that they all show as one dot. On

the other hand, the residuals for thewhite tile aremuch larger, and those for the gray tile

are in between. This is the same grouping of residuals seen earlier in Figure 4.22.

We may suspect that the measurement error is proportional to the magnitudes of

observations, which is typically the case. This means that we need to modify our

model. In such cases, a transformation of the response variable often helps. In this

case, it turns out that a logarithm of reflectance should be used as the response

variable. While any base of the logarithm could be used here, the most convenient

choice is that of the natural logarithm as we will see later on.

We used the natural logarithm ln Yð Þ as the response, and we fitted a fully saturated
modelwith the same three factorswith interactions. The resulting residuals are plotted

in Figure 4.24. This time, there is only a small difference in variability at the three

levels, which is acceptable. Other plots of residuals also suggest that the model is

acceptable. Note that the absolute values of residuals are not larger than 0.014. Due to

the natural logarithmic scale used on the response, this translates to the approximate
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Figure 4.22 The residuals for the model of reflectance as the response (see Example 4.5) are plotted

against the fitted values.
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Figure 4.23 The residuals for the model of reflectance as the response (see Example 4.5) are plotted

against the tile number (1¼white, 2¼ gray, 3¼ black).
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error of up to 1.4% with respect to the magnitude of the original response Y.

This calculation is based on the fact that exp eð Þ � 1 þ e for small e. Here,

exp 0:014ð Þ � 1:014. If we used logarithm to the base 10 as a transformation on

Y, the residuals would have magnitudes up to 0.006, and the calculation

100:006 � 1:014 would lead to the same conclusion.

We can now inspect the ANOVA table shown in Table 4.6. The first column shows

the sources of variability in Ln Yð Þ, that is, the three factors, three two-way interac-

tions, and one three-way interaction (the star is notation for an interaction, not

multiplication). “Error” relates to the variability in the e error term, that is, the

remaining variability that is not explained by the model factors. This is analogous to

the Residual Error line in the ANOVA table for a regression model, such as the one

shown in Table 4.1. The last column shows the p-values for testing the significance of

the terms in the model. (See formula (3.33) for the definition of the p-values.) A

threshold value of a ¼ 0:05 is often used for interpretation of the p-values. Based on
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Figure 4.24 The residuals for the model of the natural logarithm of reflectance (see Example 4.5) are

plotted against the tile number (1¼white, 2¼ gray, 3¼ black).

Table 4.6 The ANOVA Table for a Fully Saturated Model of Ln(Y) with the Three

Factors, as Discussed in Example 4.5

Source DF SS MS F P

Operator 1 0.0007 0.0007 6.08 0.030

Spectrometer 1 0.0007 0.0007 5.66 0.035

Tile 2 103.9224 51.9612 445623.81 0.000

Operator�
Spectrometer 1 0.0002 0.0002 1.83 0.201

Operator�Tile 2 0.0000 0.0000 0.19 0.831

Spectrometer�
Tile 2 0.0014 0.0007 6.00 0.016

Operator�
Spectrometer�
Tile 2 0.0002 0.0001 0.89 0.438

Error 12 0.0014 0.0001

Total 23 103.9271

EXPERIMENTAL DESIGN AND ANALYSIS 123



that threshold, wewould decide that all threemain factors and the interaction between

Spectrometer and Tile are significant.

However, with seven instances of testing significance, one could argue that a more

correct value of a ¼ 0:05=7 ¼ 0:007 should be used here (based on the Bonferroni

arguments discussed in Section 6.2.2). In that case, only Tile is the significant factor.

(One could instead learn that even if the other factors were assumed statistically

significant, their impact here is very small and practically insignificant.) We then

assume only Tile as the model factor, and fit the model again, so that a final model

check can be performed.

Onegoalof this studywas to investigate thespectrometerdriftover time.This iswhy

wewant to calculate the model residuals, which can be regarded as the log reflectance

values adjusted for the differences in the tiles. A plot of the residuals versus time order

of observations is shown inFigure 4.25.Wedonot observe anypatterns in that plot that

would suggest a drift.Note that the absolutevalues of residuals are not larger than0.03.

As discussed earlier, this translates to approximately 3% error with respect to the

magnitude of the original response Y. This increase from the previous value of 1.4% is

caused by dropping from the original model terms whose average mean square, while

not statistically significant, was still larger than the original error mean square. &

4.3.2 Other Topics in Experimental Design

There aremanyother experimental designs and relatedmodels beyond thosediscussed

here. If one deals with many factors, but the number of feasible runs is limited, one

can consider fractional factorial designs that eliminate some of the runs from the

standard grid of the full factorial designs. This reduction in the number of runs is

done carefully so that the main effects and some interactions can still be estimated.

If we are not interested in the impact of specific factor levels, but instead wewould

like to understand a general impact of those levels when they vary within a certain

population, we would use random-effect models. A typical example would be an

operator as a random factor becausewemaywant to knowhow the responseY changes

whenvarious operators perform the experimental runs, butwemay not be interested in
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Figure 4.25 A plot of the residuals versus the time order of observations reveals no patterns, indicating

that no drift had been observed during the course of the experiment.
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the performance of specific people. Another important consideration is the limitation

on the desired randomization in the experiment. These issues are dealt with by designs

such as randomized block designs and split-plot designs.

Another situation arises when levels of one factor are nested within levels of

another factor. Consider an experiment on lightweight eye tracking headgear, where

several headgear models are being compared. We would also want to know how the

eye tracking headgear performs on various people. An ideal solution would be to test

each model on the same set of people, with each person testing all models. However,

the headgear models are owned and operated by different universities, which prefer to

test the equipment on their own students. We still want to design a consistent

experiment across the universities so that the study will be done in the same way

at each university. However, the subjects wearing the headgear will have to be

different at each university. The subjects are nested here within the headgear models,

and the statistical analysis of such data needs to recognize that fact.

These andmany other topics on the design and analysis of experiments are covered

thoroughly inmany specialized book on this topic, includingBox et al. (2005), Kutner

et al. (2005), andMontgomery (2008). Brief and less mathematical treatments can be

found in Antony (2003) and Barrentine (1999).

SUPPLEMENT 4A. VECTOR AND MATRIX ALGEBRA

This supplement gives some basic facts about vectors and matrices. More details can

be found in Hadi (1996) and Harville (1997).

Vectors

Within the scope of this book, we can think of a vector as being represented by a line

segment with a defined direction or as an arrow connecting an initial point Awith a

terminal point B. We will mostly consider vectors with an initial point at the origin.

In this case, the coordinates of the point B can be regarded as the coordinates of the

vector. A vector with n coordinates (or elements) x1; x2; . . . ; xn is written as a

column vector

x ¼

x1

x2

..

.

xn

2
6666664

3
7777775
: ð4:56Þ

Wewill often think about x as a vector (with the initial point at the origin) or a point

in the n-dimensional space Rn, and we will use the two interpretations interchange-

ably. In both cases, wewill write x 2 Rn. In order towrite a vector as a row vector, we

use a transpose operation, xT , that changes a column vector to a row vector, that is,
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xT ¼ ½x1; x2; . . . ; xn�. Multiplication of a vector x by a number (or scalar) c 2 R and

addition of two vectors of the same dimension are done element by element as

follows:

cx ¼

cx1

cx2

..

.

cxn

2
6666664

3
7777775
; x þ y ¼

x1 þ y1

x2 þ y2

..

.

xn þ yn

2
6666664

3
7777775
: ð4:57Þ

The length (or norm) xk k of avector x is theEuclidean distance of its terminal point

(also denoted by x) to the origin, that is, it can be calculated as

xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x2i

s
: ð4:58Þ

An angle between vectors x and y is defined geometrically in the usual way, and its

cosine can be calculated as

cosðyÞ ¼ xTy

xk k yk k ; ð4:59Þ

where xTy is the inner, or scalar, product of two vectors defined as xTy ¼Pn
i¼1 xiyi.

The vector length xk k can also be expressed using the inner product as follows:

xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

x2i

s
¼

ffiffiffiffiffiffiffiffi
xTx

p
: ð4:60Þ

A distance between two points x and y can be expressed as x�yk k since the vector
x�yð Þ connects the two points.

Definition 4A.1 A set of vectors x1; x2; . . . ; xk is said to be linearly dependent if and
only if there exist constants c1; c2; . . . ; ck not all zero, such that

Xk
j¼1

cjxj ¼ 0; ð4:61Þ

which means that one of the vectors can be represented as a linear combination of the

other vectors.

Definition 4A.2 A set of vectors x1; x2; . . . ; xk is said to be linearly independent if

and only if the condition
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Xk
j¼1

cjxj ¼ 0 ð4:62Þ

implies that the constants c1; c2; . . . ; ck are all equal to zero. This means that none of

the vectors can be expressed as a linear combination of the other vectors.

Definition 4A.3 Two vectors x and y are collinear if there exists c 6¼ 0 such that

y ¼ cx.

Definition 4A.4 A projection of a point x 2 Rnon a closed set A � Rn is a point

a* 2 A that is closest to x among all points in A, that is,

x�a*
�� �� ¼ min x�ak k : a 2 Af g: ð4:63Þ

Definition 4A.5 A projection of a vector x 2 Rnon a vector y 2 Rn is a vector cy,
where c 2 R, such that

x�cyk k ¼ min x�ayk k : a 2 Rf g: ð4:64Þ

A projection on y is a projection on the line defining the direction of y, that is,

cy : c 2 Rf g. The operation of the projection on y is denoted byPy, that is,Py xð Þ is the
projection of x on y.

Property 4A.1 The projection of x on y is given by the formula

Py xð Þ ¼ xTy=yTyð Þy.

Property 4A.2 For a unit length vector v, the projection of x on v is given by the

formula Pv xð Þ ¼ xTvð Þv.

Matrices

A matrix is a rectangular array of numbers such as X ¼ �2 1 5 �1

4 3 0 8

	 

. The

matrix X consists of two rows and four columns. It has a total of eight elements or

entries. The transpose operation, XT, of a matrix X changes the columns into rows,

so that the first column ofX becomes the first row ofXT, the second column becomes

the second row, and so forth. For the above example of the matrix X, we have

XT ¼

�2 4

1 3

5 0

�1 8

2
66666664

3
77777775
: ð4:65Þ

SUPPLEMENT 4A. VECTOR AND MATRIX ALGEBRA 127



A general n by p matrix has n rows and p columns and can be written as

X ¼ xij
� � ¼

x11 x12 � � � x1p

x21 x22 � � � x2p

..

. ..
. . .

. ..
.

xn1 xn2 � � � xnp

2
6666664

3
7777775
; ð4:66Þ

where the xij element is in the ith row and the jth column. Matrices are convenient for

representing data in an organized format consistent with the format of a statistical

database with n observations in rows and p variables in columns. They are also used

for many other purposes. It is worth recalling that an n by pmatrix represents a linear

transformation from a p-dimensional space Rp to an n-dimensional space Rn defined

as Xv on a p-dimensional vector v.

Definition 4A.6 A matrix X is called symmetric if and only if X ¼ XT.

Definition 4A.7 A matrix is called a square matrix if the number of rows is equal to

the number of columns.

When multiplying a matrix X by a constant c, we multiply each element by c, which

results in

cX ¼

cx11 cx12 � � � cx1p

cx21 cx22 � � � cx2p

..

. ..
. . .

. ..
.

cxn1 cxn2 � � � cxnp

2
6666664

3
7777775
: ð4:67Þ

When adding two matrices, we add them element by element:

X þ Y ¼

x11 þ y11 x12 þ y12 � � � x1p þ y1p

x21 þ y21 x22 þ y22 � � � x2p þ y2p

..

. ..
. . .

. ..
.

xn1 þ yn1 xn2 þ yn2 � � � xnp þ ynp

2
6666664

3
7777775
: ð4:68Þ

We define multiplication of two matrices as

xij
� �

n�k
� yij
� �

k�p
¼ zij
� �

n�p
; where zij ¼

Xk
t¼1

xitytj: ð4:69Þ
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The element zij is the scalar product of the ith row of the matrix X and the jth

column of the matrixY. In order to multiply the twomatrices, the number of columns

of the first matrix needs to be equal to the number of rows of the second matrix.

The matrix multiplication is not commutative, that is, typically XY 6¼ YX.

Definition 4A.8 A square matrix I consisting of values of 1 on the diagonal and zeros

elsewhere is called the identitymatrix. For anymatrixX (of the same dimension as I),

we have I �X ¼ X � I ¼ X.

Definition 4A.9 If there exists a matrix A such that A �X ¼ X �A ¼ I, then A is

called the inverse of X and is denoted by X�1.

Definition 4A.10 A matrix X is called orthogonal if and only if

X �XT ¼ XT �X ¼ I; orXT ¼ X�1.

Note that columns bj of an orthogonal matrix X are orthogonal to each other

(bTi bj ¼ 0 for i 6¼ j) and have unit length (bTi bi ¼ 1).

Property 4A.3 Any orthogonal matrix X can be written as a product of a rotation

matrix and a permutation of coordinates.

For amatrixX ¼ xij
� �

n�k
, its elementsxii with the row and column index the same are

called diagonal elements.

Definition 4A.11 A matrix X is called diagonal if its off-diagonal elements are all

equal to zero.

Definition 4A.12 The determinant of a square p� p matrix A ¼ aij
 �

, denoted by

Ajj , is a scalar defined by the following recursive formula:

Aj j ¼
a11 if p ¼ 1;

Xp
j¼1

aij Aij j �1ð Þi þ j
if p > 1;

��
8>><
>>: ð4:70Þ

where Aij is the p�1ð Þ � p�1ð Þ matrix obtained by deleting the ith row and jth

column of A, and i is any integer such that 1 � i � p.

Definition 4A.13 When Aj ¼ 0j , A is called singular, otherwise it is called

nonsingular.

Property 4A.4 An inverse of a matrix A exists, if and only if A is nonsingular.

For any two square matricesA andB of the same dimensions, the determinant of their

product is equal to the product of their determinants, that is,

ABj ¼ Aj Bj:jjj ð4:71Þ
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For a diagonal matrix, its determinant is equal to the product of its diagonal

elements.

Definition 4A.14 The maximum number of linearly independent rows (or columns)

of a matrix A is called the rank of A and is denoted by Rank Að Þ.

Property 4A.5 For anymatrixA, the number of linearly independent rows is equal to

the number of linearly independent columns. This is why we can use either rows or

columns in the definition of the rank.

Property 4A.6 For any matrices A and B, we have

a. Rank AAT
� � ¼ Rank ATA

� � ¼ Rank Að Þ:
b. Rank ABð Þ � min Rank Að Þ;Rank Bð Þf g, if AB exists.

c. Rank A þ Bð Þ � Rank Að Þ þ Rank Bð Þ:

Property 4A.7 For any square p� p matrix A, the matrix A is singular, that is,

Aj ¼ 0j , if and only if Rank Að Þ < p.

Eigenvalues and Eigenvectors of Matrices

A matrix A is said to have an eigenvalue l and a corresponding eigenvector x 6¼ 0, if

Ax ¼ lx. One can show that a p� p square symmetric matrix A has p pairs of real-

valued eigenvalues and corresponding normalized eigenvectors

l1; e1 l2; e2 . . . lp; ep; ð4:72Þ

that is,Aei ¼ liei and eTi ei ¼ 1 for i ¼ 1; . . . ; p. The eigenvectors can be chosen to be
mutually orthogonal (perpendicular) and are unique (up to a constant) unless two or

more eigenvalues are equal.

Spectral Decomposition of Matrices

The spectral decomposition of a p� p square symmetric matrix A is given by

A ¼ l1e1eT1 þ l2e2eT2 þ � � � þ lpepeTp ; ð4:73Þ

where li; ei; i ¼ 1; . . . ; p, are the eigenvalues and normalized eigenvectors of A. Let

P be a matrix consisting of the eigenvectors ei; i ¼ 1; . . . ; p, as columns, that is,

P ¼ e1; e2; . . . ; ep
� �

. The spectral decomposition can then be written as

A ¼ PKPT ; ð4:74Þ

where K is a diagonal matrix with li; i ¼ 1; . . . ; k, eigenvalues on the diagonal.

The matrix PT can be regarded as a matrix of transformation from the original system
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of coordinates to a new system of coordinates in which the transformation A becomes

diagonal.ThematrixP ¼ PT
� ��1

transformsback to theoriginal systemofcoordinates.

Property 4A.8 The determinant of a square matrix A is equal to the product of its

eigenvalues, that is,

Aj j ¼
Yp
i¼1

li: ð4:75Þ

Positive Definite Matrices

The expression xTAx, where A is a matrix and xT ¼ ½x1; x2; . . . ; xn� is a vector of n
variables, is called a quadratic form because it has only square terms x2i and product

terms xixj .

Definition 4A.15 A symmetric matrix A (and its quadratic form xTAx) is said to be
nonnegative definite if

xTAx 	 0 for all x 2 Rn: ð4:76Þ

Definition 4A.16 A symmetric matrix A (and its quadratic form xTAx) is said to be

positive definite if

xTAx > 0 for all x 6¼ 0: ð4:77Þ

Property 4A.9 A symmetric matrix A is nonnegative definite if and only if every

eigenvalue of A is nonnegative.

Property 4A.10 A symmetric matrix A is positive definite if and only if every

eigenvalue of A is positive.

A proof of both properties is given as Problem 4.10.

Property 4A.11 (Maximization Lemma). LetA be a positive definite matrix and d

a given vector. Then for an arbitrary vector x 6¼ 0, we have

max
x6¼0

xTdð Þ2
xTAx

¼ dTA�1d; ð4:78Þ

with the maximum attained when x ¼ cA�1d for any constant c 6¼ 0.

A Square Root Matrix

A square root of a matrix A is defined as a matrix D such that

DD ¼ A: ð4:79Þ
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The matrix D is denoted by A1=2. If a matrix A is nonnegative definite, with the

spectral decomposition

A ¼
Xk
i¼1

lieieTi ; ð4:80Þ

we can calculate the square root matrix A1=2 as follows:

A1=2 ¼
Xk
i¼1

ffiffiffiffi
li

p
eie

T
i : ð4:81Þ

Using the matrix P ¼ e1; e2; . . . ; ek½ �, we can also write

A1=2 ¼ PK1=2PT: ð4:82Þ

In a similar fashion, the inverse matrix of a nonsingular matrix A can be obtained

from the formula

A�1 ¼ PK�1PT : ð4:83Þ

Definition 4A.17 The trace of a p� p square matrix A ¼ aij
� �

is the sum of its

diagonal elements, namely,

Trace Að Þ ¼
Xp
j¼1

ajj : ð4:84Þ

Trace has the following cyclic property.

Property 4A.12 Trace ABCð Þ ¼ Trace BCAð Þ ¼ Trace CABð Þ, provided the pro-

ducts of the matrices exist.

SUPPLEMENT 4B. RANDOM VECTORS AND MATRICES

We provide here some basic notation and properties of random vectors and

matrices. When observing values of a single variable, we think of them as

realizations of a random variable X representing a population model. If the

observations come from a normal distribution, we would assume that X follows

a normal distribution. When observing values of p variables, wewould use multiple

random variables X1;X2; . . . ;Xp representing a population model. The variables

can be organized into a random vector X ¼ X1;X2; . . . ;Xp

� �T
. The vector of the

population means of the p variables and the matrix of the population variances and

covariances are defined as
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l ¼ E Xð Þ ¼

EðX1Þ
EðX2Þ

..

.

EðXpÞ

2
6666664

3
7777775
and R ¼ Var Xð Þ ¼ E X�lð Þ X�lð ÞT

h i

¼

s11 s12 � � � s1p
s21 s22 � � � s2p
..
. ..

. . .
. ..

.

sp1 sp2 � � � spp

2
6664

3
7775
p�p

; ð4:85Þ

where sjk ¼ E ðXj�mjÞðXk�mkÞ
� �

. The matrix R ¼ Var Xð Þ is called the population

variance–covariance (or covariance) matrix. The population mean vector l and the

population variance–covariance matrix R are the parameters that give a basic

description of the joint multivariate distribution of the random vector X.

Let us consider a nonrandom q by p matrix A and two p-dimensional random

vectors X and Y. We then have the following properties.

Property 4B.1

a. E AXð Þ ¼ AE Xð Þ:
b. E X þ Yð Þ ¼ E Xð Þ þ E Yð Þ:
c. Var AXð Þ ¼ AVar Xð ÞAT :

The first two properties above are simple consequences of property (2.12), and

the third one is a multivariate equivalent of property (2.32). The proof is given as

Problem 4.12. Since a q by p matrix A represents a linear transformation from the

p-dimensional space Rp to the q-dimensional space Rq, AX is a q-dimensional

random vector. Property 4B.1c tells us how the variability in X propagates through a

linear transformation A, resulting in the given variability in the vector AX. This

process is often referred to as error propagation.

Let X1 ¼ X11; . . . ;X1p

� �
and X2 ¼ X21; . . . ;X2q

� �
be two random vectors of

dimensions p and q, respectively. Then we define the p by q covariance matrix

Cov X1;X2ð Þ as a matrix of all possible covariances between all components of X1

and all components of X2. That is, Cov X1;X2ð Þ ¼ CovðX1j;X2kÞ
� �

j¼1;...;p;k¼1;...;q
.

We can also write the covariance matrix using vector notation as

Cov X1;X2ð Þ ¼ E X1�E X1ð Þð Þ X2�E X2ð Þð ÞT� �
; ð4:86Þ

which is analogous to a similar vector formula for the variance–covariance

matrix in (4.85). We also have the following property (the proof is given as

Problem 4.13).

SUPPLEMENT 4B. RANDOM VECTORS AND MATRICES 133



Property 4B.2 Cov AX1;BX2ð Þ ¼ A Cov X1;X2ð ÞBT.

This property can be thought of as propagation of covariancewhen the vectorsX1 and

X2 are subjected to linear transformations.

Property 4B.3 Any variance–covariance matrix is symmetric and nonnegative

definite. It is usually positive definite, except for some degenerate distributions.

Property 4B.4 Any variance–covariance matrix has its square root matrix that can

be calculated based on equation (4.82).

Sphering

It is sometimes desirable to decorrelate the distribution of a random vector X.

The variance–covariance matrix Var Xð Þ ¼ R is usually positive definite, except

for some degenerate distributions. If R is positive definite, we can calculate the

inverseR�1=2 of the square root matrix.We can now decorrelateX by pre-multiplying

it by R�1=2 in order to obtain

Y ¼ R�1=2X: ð4:87Þ

We have Var Yð Þ ¼ R�1=2R R�1=2 ¼ I, which means that the components ofY are

uncorrelated and standardized. This process is often called whitening or sphering.

The term whitening is associated with white noise, which is why we prefer to use that

term only in the context of noise. In many imaging applications, the variance–

covariance matrix is calculated based on the whole data set, which includes not only

noise but also other sources of variability such as the spatial variability. In such cases,

we will call this process sphering. The name is justified by the fact that the ellipses of

constant density in the normal distribution become circles when the variance–

covariance matrix is the identity matrix I (see Section 5.7.1).

PROBLEMS

4.1. Let’s assume that we have n pairs xi; yið Þ; i ¼ 1; . . . ; n, of values of two

variables following the model (4.2) with Assumptions 4.1 and 4.2. Can we

conclude that all realizations yi; i ¼ 1; . . . ; n, of the response variable exhibit
the normal distribution? That is, would a normal probability plot suggest

normality of all y responses?

4.2. Show that the least-squares estimator b given by (4.20) is an unbiased

estimator of b (Property 4.1a). Hint: Use the definition b ¼ XTX
� ��1

XTY

and Property 4B.1a.

4.3. Show that the least-squares estimator b given by (4.20) has the variance–

covariance matrix Var bð Þ ¼ s2ðXTXÞ�1
(Property 4.1b). Hint: Use the defini-

tion b ¼ XTX
� ��1

XTY and Property 4B.1c.
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4.4. Show that the variance–covariance matrix of the vector of residuals is given by

Var eð Þ ¼ s2 I�Hð Þ (formula (4.25)). Hint: Use Property 4B.1c.

4.5. Show that the mean squared error of prediction MSE cð Þ ¼ E Y�cð Þ2 is

minimized by c ¼ E Yð Þ. Hint: Calculate the derivative of MSE cð Þ with

respect to c.

4.6. Derive the formula in Property 4A.1 using geometry and formula (4.59).

4.7. Prove Property 4A.2 from Property 4A.1.

4.8. Calculate (by hand) eigenvalues and eigenvectors for the matrix A ¼ 1 4

4 5

	 

.

Hint: Follow these steps:

a. The equation Ax ¼ lx can be written as A�lIð Þx ¼ 0.

b. The system of equations A�lIð Þx ¼ 0 has a nonzero solution x 6¼ 0, only if

the determinant of A�lIð Þ is equal to zero.

c. Find l solutions to A�lIj ¼ 0j . These are eigenvalues.

d. For each eigenvalue, find x such that A�lIð Þx ¼ 0. This is the eigenvector

associated with the eigenvalue. Was the value of x unique?

4.9. Find the spectral decomposition of the matrix A from Problem 4.8.

4.10. Prove Properties 4A.9 and 4A.10.Hint: Use the spectral decomposition ofA to

represent xTAx as a linear combination (with li coefficients) of squares.

4.11. Check if the matrixA from Problem 4.8 is positive definite.Hint: Use Property

4A.10.

4.12. Prove Property 4B.1.

4.13. Prove Property 4B.2.

4.14. Show that Property 4B.1c is a special case of Property 4B.2.
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C H A P T E R 5

Fundamentals of Multivariate Statistics

5.1 INTRODUCTION

In earlier chapters, we have seen examples wheremultiple variables were recorded on

the same objects or experimental units. The traditional univariate statistical methods,

such as those discussed in Chapter 3, can still be used on such data by analyzing

one variable at a time. In Chapter 4, we have seen the use of multiple variables, where

one of them, a response, was modeled as a function of other variables (predictors).

One common feature of all models discussed in Chapter 4 was that the model

uncertainty, expressed by the epsilon term, was described by a univariate distribution

in the one-dimensional spaceR of real numbers. Once a model is fitted to the data, we

usually calculate the fitted values and then calculate the residuals as the differences

between the observations and the fitted values. For the models discussed in Chapter 4,

the residuals are scalars from the one-dimensional spaceR of real numbers. These are

the reasons why such models are not regarded as part of multivariate analysis.

Starting with this chapter, we are going to discuss multivariate methods that

describe and visualize the simultaneous relationships among many variables. They

are based on underlying probability models using multivariate probability distribu-

tions in order to deal with multiple response variables. When the residuals are

calculated, they are multivariate vectors rather than scalars. The tools discussed here

will be used in subsequent chapters for modeling of multivariate data. In order to

understand multivariate methods, let us first look at a multivariate data set in the

following example.

Example 5.1 Consider spectral reflectance Tiles Data as measured using an X-Rite

Series 500 Spectrodensitometer. The data were collected by measuring each of 12

tiles in the BCRA II Series Calibration tiles. Each observation consists of 31 values of

reflectance measured in 31 spectral bands over the spectral range from 400 to 700 nm

at 10 nm increments. Each of the 12 tiles was measured four times for a total of

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
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48multivariate observations. Table 5.1 shows a subset of thewhole data set. Each row

represents an observation, with the first four rows representing the four repeated

measurements of the first tile, followed by four measurements of the second tile, and

so on. Each column represents one spectral band, which is treated as a variable. So, the

whole data set consists of 48 observations on 31 variables. All 48 observations are

shown graphically in Figure 5.1 as 48 curves plotted as functions of the wavelength.

The four repeated observations for a given tile are very close to each other, and

consequently the curves overlap almost perfectly. Thus, in Figure 5.1, one can see

only 12 distinct curves for the 12 different tiles. &

Table 5.1 A Subset of the Whole Data Set Discussed in Example 5.1

Observation

No. W400 W410 W420 W430 W440 W450 W460 W470 W480 W490

1 3.15 3.59 4.27 5.15 6.27 7.79 10.04 13.44 18.21 25.31

2 3.15 3.59 4.28 5.15 6.25 7.79 10.03 13.43 18.18 25.27

3 3.14 3.56 4.24 5.13 6.25 7.80 10.04 13.47 18.26 25.44

4 3.13 3.55 4.24 5.13 6.25 7.79 10.03 13.46 18.26 25.44

5 2.37 2.15 1.94 1.72 1.52 1.34 1.20 1.08 0.99 0.92

6 2.32 2.08 1.88 1.67 1.47 1.29 1.15 1.04 0.95 0.89

7 2.34 2.09 1.89 1.68 1.48 1.31 1.16 1.05 0.96 0.89

8 2.34 2.12 1.90 1.69 1.48 1.31 1.17 1.05 0.96 0.89

9 4.94 5.90 4.75 3.27 2.38 1.96 1.85 1.92 2.23 2.93

10 4.97 5.91 4.77 3.27 2.38 1.97 1.85 1.93 2.24 2.94

11 4.94 5.94 4.77 3.27 2.38 1.97 1.84 1.93 2.24 2.94

12 5.00 5.96 4.77 3.28 2.39 1.97 1.84 1.93 2.24 2.94

aTwelve observations are shown with values on the first 10 variables fromW400 to W490 representing the

wavelengths from 400 to 490 nm.
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Figure 5.1 A function plot of 48 spectral curves as functions of the wavelength.
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5.2 THE MULTIVARIATE RANDOM SAMPLE

In Chapters 2 and 3, we were explaining the duality, where the observations need to

be treated sometimes as numbers and sometimes as random variables. The same

type of statistical thinking applies to multivariate observations. When observing p

different characteristics of a process or a population, we would describe them as

p random variables or components X1;X2; . . . ;Xp. These components may corre-

spond to the p ¼ 10 spectral bands shown in Table 5.1. The components can be

organized into a random vector X ¼ X1;X2; . . . ;Xp

� �T
. (Supplements 4A and 4B

provide information about the vector and matrix operations that will be used

throughout this chapter.) When specific assumptions are made about the multivariate

distribution of X, we call it a population model of the observed characteristics. In

Supplement 4B, we discussed some properties of such random vectors and their

distributions. The population model will often be described by the population mean,

or expected value, l ¼ E Xð Þ and the population variance–covariance matrix

R ¼ Var Xð Þ.
In Chapter 3, we treated a sample as a collection of n independent randomvariables

X1;X2; . . . ;Xn. In the multivariate case, we have n independent random vectors

X1;X2; . . . ;Xn, each following the same distribution of the random vector X

described in the previous paragraph. These random vectors can be placed as rows

into the following random matrix:

X1 X2 � � � Xp

X
n�pð Þ

¼

X11 X12 � � � X1p

X21 X22 � � � X2p

..

. ..
. . .

. ..
.

Xn1 Xn2 � � � Xnp

2
66666664

3
77777775
¼

XT
1

XT
2

..

.

XT
n

2
666666664

3
777777775
;

ð5:1Þ

where the vectors XT
i ; i ¼ 1; . . . ; n, are the row vectors representing the p-dimen-

sional observations. The row of components X1;X2; . . . ;Xp written above the

horizontal line symbolizes the fact that the first column corresponds to values of

the first component X1, the second column corresponds to X2, and so on. Table 5.1 is

an example of a realization matrix of the random matrixX with n ¼ 12 observations

on p ¼ 10 components.

Wewill use the descriptive statistics defined earlier in Chapter 2, but they will now

be organized into appropriate vectors and matrices. To this end, we want to introduce

the following multivariate notation. For the jth component (or column), we denote

the sample mean and sample variance as

Xj ¼ 1

n

Xn
i¼1

Xij and s2j ¼ sjj ¼ 1

n� 1

Xn
i¼1

ðXij � XjÞ2; j ¼ 1; 2; . . . ; p; ð5:2Þ
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respectively. The sample covariance between the jth and kth variables will be

denoted as

sjk ¼ 1

n� 1

Xn
i¼1

ðXij � XjÞðXik � XkÞ; j ¼ 1; 2; . . . ; p and k ¼ 1; 2; . . . ; p: ð5:3Þ

Note thatwe use the lowercase notation for the covariances sjk even though they are

random variables in this context. The double notation for variance as s2j ¼ sjj reflects

the tradition of denoting the variance as the square of the standard deviation, aswell as

the fact that the covariance of a variable with itself is equal to the variance. In order to

have a scale-independent version of covariance, we define the sample correlation

coefficient between two variables as

rjk ¼ sjkffiffiffiffiffi
sjj

p ffiffiffiffiffiffi
skk

p ¼
Pn

i¼1ðXij � XjÞðXik � XkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðXij � XjÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðXik � XkÞ2

q ; j ¼ 1; 2; . . . ; p

and k ¼ 1; 2; . . . ; p: ð5:4Þ

This is the sampling version of the population correlation coefficient defined in

formula (2.34). We assume here that the sample variances sjj; j ¼ 1; 2; . . . ; p, are
positive. The descriptive statistics introduced here can be arranged into vectors and

matrices as follows:

X ¼

X1

X2

..

.

Xp

2
6666666664

3
7777777775
; S

p�pð Þ
¼

s11 s12 � � � s1p

s21 s22 � � � s2p

..

. ..
. . .

. ..
.

sp1 sp2 � � � spp

2
6666666664

3
7777777775
; R

p�pð Þ
¼

1 r12 � � � r1p

r21 1 � � � r2p

..

. ..
. . .

. ..
.

rp1 rp2 � � � 1

2
6666666664

3
7777777775
;

ð5:5Þ

where X is the p-dimensional vector of sample means, S is the p by p sample

variance–covariance matrix (also called the covariance matrix), and R is the p by p

sample correlation matrix. Instead of the previous element-by-element formulas 5.2

and 5.3, we can also use the following vector calculations:

X ¼ 1

n

Xn
i¼1

Xi and S ¼ 1

n� 1

Xn
i¼1

ðXi � XÞðXi � XÞT: ð5:6Þ

It is often convenient to replace formulas (5.6) with direct calculations on the

matrixX. Let 1n be an n-dimensional vector with all coordinates equal to 1.With this

notation, we have the following useful formulas:
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X ¼ 1

n
XT1n; Xc ¼ X� 1n �XT

; S ¼ 1

n� 1
XT

cXc; ð5:7Þ

where Xc is the matrix of the mean-centered values of all variables obtained by

subtracting the sample mean of a given variable from all of its observations.

Another useful matrix is a p by p diagonal matrix D of variances sii; i ¼ 1; . . . ; p,
on the diagonal. Its square root D1=2 is the sample standard deviation matrix

D1=2

p�pð Þ
¼

ffiffiffiffiffiffi
s11

p
0 : : : 0

0
ffiffiffiffiffiffi
s22

p
0 : : 0

: 0 : : : :

: : : : : :

: : : : : 0

0 0 : : 0
ffiffiffiffiffiffi
spp

p

2
6666666666664

3
7777777777775
: ð5:8Þ

We can now establish the following relationship between the sample variance–

covariance matrix and the correlation matrix:

S ¼ D1=2RD1=2 ð5:9Þ

(see Problem 5.7 for a hint on derivation). Since we assume here that the variances

sjj ; j ¼ 1; 2; . . . ; p, are positive, we can also calculate the inverse matrix D�1=2. By

pre-multiplying and post-multiplying both sides of (5.9) by D�1=2, we obtain the

following matrix formula for the correlation matrix:

R ¼ D�1=2SD�1=2: ð5:10Þ

Since each element of the sampleX1;X2; . . . ;Xn follows the same distribution, we

haveE Xið Þ ¼ l for all i ¼ 1; . . . ; n. It is then easy to see thatE X
� � ¼ l, whichmeans

that X is an unbiased estimator of l. One can show that the variance–covariance

matrix of X is equal to ð1=nÞR, which is a multivariate equivalent of formula (2.42).

One can also formulate multivariate equivalents of the laws of large numbers

discussed in Section 2.7. For example, X approaches l as n tends to infinity, and

its distribution can be approximated by amultivariate normal distribution that wewill

define in Section 5.7.

When treating samples as sets of numbers rather than random variables, we are

mostly going to use lowercase letters. However, for matrices, we still want to

use capital letters. The data matrix like the one described in Table 5.1 will be denoted

by X.

Example 5.2 This is a continuation of Example 2.4, and we again use a subset of

Printing Data explained in Appendix B. There are eight cyan patches (at maximum
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gradation) on each printed page. Those patches are treated as observations here. This

time, we use spectral reflectances of the cyan patches measured in 31 spectral bands,

treated as variables, from 400 to 700 nm. For each patch, we have one 31-dimensional

observationvector (or spectral curve) thatwe can denote by xi; i ¼ 1; . . . ; 8. The eight
observationvectors x1; x2; . . . ; x8 can be placed into an 8� 31matrixX. This is a data

set representing just one page. However, there are 21 different pages—three pages

printed immediately after calibration, and then 18 pages printed after 14 hours of idle

time. We will need to perform our multivariate calculations 21 times.

For each page, we can calculate the mean vector of the eight spectra. We denote it

as xk, where k ¼ 1; . . . ; 21 is the index for the kth page. In order to investigate the

variability of patches within each page, we can calculate the sample variance–

covariance matrices Sk; k ¼ 1; . . . ; 21, each based on the eight observations

(patches) from a given page. Each page is now described by the mean vector xk
and the sample variance–covariance matrix Sk. In order to represent this information

graphically, the resulting 21 mean vector spectra are shown in Figure 5.2. All curves

overlap considerably, which does not give us much information about page-to-page

variability. All we can see in the plot is the shape of the spectral characteristic of cyan.

In order to create a more interesting graph, we can calculate the overall mean

x ¼ P21
k¼1 xk of the page mean vectors xk shown in Figure 5.2. We can then subtract

the overall mean from all groups in order to calculate the mean deviations

dk ¼ xk � x; k ¼ 1; . . . ; 21, shown in Figure 5.3, where the three solid lines repre-

sent the three pages printed immediately after the calibration. The dashed line

represents the first page printed after the idle period, and the dotted lines represent

the remaining pages. We can see that the first four printed pages are quite different

from the remaining pages.

700650600550500450400

70
60

50
40

30
20

10

Spectral Wavelength

R
ef

le
ct

an
ce

 (i
n 

pe
rc

en
t)

Figure 5.2 Twenty-one mean spectral curves discussed in Example 5.2.
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Some readers might be tempted to subtract the first-page mean instead of the

overallmean. Such an approach is not consistentwith statistical thinking and results in

more noisy data.

The 21matrices Sk; k ¼ 1; . . . ; 21, of dimensions 31 by 31 are not easy to display,

but we can concentrate on the variability within each band and consider the sample

standard deviations, that is, the square roots of the diagonal elements of

Sk; k ¼ 1; . . . ; 21. Those values are plotted in Figure 5.4 as 21 curves—each curve

being a function of 31 spectral bands. The general magnitudes of variability in the first

three pages (plotted as solid lines in Figure 5.4) are not much different from those in

the other pages. However, the pattern as a function of the spectral bands is quite

different from the consistent pattern for the other pages.

Investigation of all patterns discussed in this example is somewhat difficult due to

the high dimensionality of data. If each curve could be characterized with one or two

numbers, we could more easily see patterns in many of such curves. The tools for the

dimensionality reduction will be discussed in Chapter 7. Some insight can also be

obtained from Problem 5.1. &

5.3 MULTIVARIATE DATA VISUALIZATION

In Section 2.3, we discussed scatter plots for representing two-dimensional data.

When dealing with multiple variables, we can create a scatter plot matrix, which is a

matrix of scatter plots for all possible pairs of variables as shown in Figure 5.5. This

graphical tool is explained in the following example.
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Figure 5.3 Twenty-one curves showing the spectralmean residual reflectances (in percent) as discussed in

Example 5.2. The three solid lines represent the three pages printed immediately after calibration, and the

dashed line represents the first page printed right after 14 h of idle time.
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Example 5.3 This is a continuation of Example 2.5, where we considered one RGB

image (shown in Figure 2.14) from theEyeTracking data set explained inAppendix B.

The scatter plot matrix in Figure 5.5 represents three variables—the intensities in the

threechannels:Red,Green, andBlue.Themiddlepanel in thefirst rowshows the scatter

plot (previously shown in Figure 2.15) of Red versus Greenvalues. The variable Red is

shownon thevertical axis inall plots in thefirst rowandon thehorizontal axis inall plots
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Figure 5.4 Twenty-one curves showing the sample standard deviations versus spectral bands as discussed

in Example 5.2. The three solid lines represent the three pages printed immediately after calibration, and the

dashed line represents the first page printed right after 14 h of idle time.

Figure 5.5 A scatter plot matrix of Red, Green, and Blue intensities in 16,384 pixels of an RGB image

used in Example 5.3.
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in the first column. In the same fashion, Green is on the vertical axis in all plots in

the second row and on the horizontal axis in all plots in the second column. Similarly,

Blue is associatedwith the last rowand the last column.Thebottom left panel is a scatter

plot of Blue versus Red, and the top right panel is a scatter plot of Red versus Blue.

The two plots are mirror images of each other, and they both might be helpful,

even though they contain the same information. In this case, they both look almost

identical because they are symmetric with respect to the diagonal. The two plots

(mirror images) look different when plotting Green versus Blue. Due to some

discreteness of data, we used the jitter, as discussed in Example 2.5. &

Another way to represent multivariate data is a color matrix, where small color

patches are placed in a pattern of rows and columns representing observations and

variables (or vice versa) as shown in Figure 5.6 and discussed in Example 5.4 below.

The patch color represents the value based on several possible scales. Figure 5.6 uses a

simplegrayscale,butbetterresultscanbeachievedwithotherscalesshowninFigure5.7.

Example 5.4 This is a follow-up on Example 5.2. In Figure 5.3, we saw four curves

with values larger than those of the remaining 17 curves. Since the curves represent

pages that were printed in a given order, it would be interesting to check for potential

time-order related patterns. However, it is difficult to represent the time order of so

many curves in that plot. To verify such trends, we can use the color matrix shown in

Figure 5.6, where each row represents one curve (or one printed page), and the

columns represent the spectral bands. A darker color indicates a larger value. There is

an increasing trend in the first four pages (in Bands 3–15), where we see lighter color

in the first two pages and darker colors in the next two. For Pages 5–21, we cannot see

any specific trends over time. Instead, the values oscillate up and down (lighter and

darker shades oscillate). &
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Figure 5.6 A color matrix for spectral mean residual reflectances (in percent) shown in Figure 5.3 and

discussed in Example 5.4. A darker color indicates a larger value.
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Anothermethod for visualization ofmultivariate data is to create a symbol for each

observation that would express the values of multiple variables through various

features of the symbol. One example is a star plot, where each ray of the star is plotted

with the length proportional to the value of a givenvariable as shown in Figure 5.8 and

discussed in the following example.

Selected Rainbow Colors

Heat Colors

Terrain Colors

Topo Colors

Cyan –Magenta

Figure 5.7 Some potential color scales that can be used for representation of quantitative data.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5.8 A star plot of ratings of six print-on-demand books based on 16 observers as discussed in

Example 5.5.
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Example 5.5 Consider Print-on-Demand Data explained in Appendix B. Sixteen

observers rated overall image quality of six print-on-demand books on a scale from 1

to 5 (with ratings being 1¼ very low satisfaction, 5¼ very high satisfaction). Ratings

for a given book are treated as values of one variable, for a total of six variables for six

books. The data set consists of 16 six-dimensional observation vectors. Figure 5.8

shows a star plot of the data. Each star represents one observer. The horizontal ray to

the right shows the value of the first variable, or the first book rated, and then in the

counterclockwise direction, the rays show the subsequent variables. The shape of a

given star tells uswhich bookswere favored by a given person. For example, Observer

1 favored Book 4, and Observer 3 favored Book 6. Stars 5 and 6 have similar shapes,

which means that those observers have similar preferences.

The observers were also asked how much they would be willing to pay for this

quality of book as amemento of the observer’s vacation. For each observer, an average

of the six prices for six books was calculated and recorded as the Vacation Price

variable. We also know the age of each observer. Based on two quantitative variables,

Vacation Price and Age, we can create a scatter plot, where each observation is

represented as a star from Figure 5.8. Such a scatter plot is shown in Figure 5.9, where

eight variables are represented—two variables represented by the system of coordi-

nates and six variables by the star rays. Using that plot, we can determine if the

observers of similar age have similar book preferences, and howmuch they arewilling

to pay for the books. For example, Observers 2 and 11, marked in Figure 5.9, are

similar in their Ratings (similar stars) as well as in Vacation Price and Age (because

the stars are close to each other). &
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Figure 5.9 A scatter plot based on Example 5.5 data showing eight variables—two variables represented

by the system of coordinates and six variables by the star rays. The same stars are also shown in Figure 5.8.
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When dealing with three-dimensional data, we could use a three-dimensional

scatter plot, but such plots are difficult to represent on a two-dimensional display.With

dynamic graphics, wherewe can rotate the data, some feel for the third dimension can

be achieved.

5.4 THE GEOMETRY OF THE SAMPLE

Geometric intuition plays an important role in understanding data and their statistical

modeling. This is why visualization of data is an important part of statistics. In p-

dimensional data, we often think of each observation as a point in the p-dimensional

spaceRp. Thewhole data set is thought of as a cloud of points in that space. For p ¼ 2,

a scatter plot shows the whole data set as a cloud of points on a plane. The geometric

interpretation in the p-dimensional space Rp will be important throughout this book.

However, in this section, we are going to discuss a different type of geometric

interpretation. Specifically, instead of an observation being represented as a point, we

will represent each variable as a point or vector.

In Section 5.2, we organized thewhole data set into an n by p nonrandommatrixX,

where the p columns represented p variables. We will now denote those columns as

n-dimensional vectors y1; y2; . . . ; yp. Hence, the data matrix can be written as

X ¼ y1 y2 � � � yp
� �

. The vectors yi; i ¼ 1; . . . ; p, can be represented as points
in the n-dimensional spaceRn. The number of observations n is usually fairly large, so

it may seem challenging to try to find interpretations in such high-dimensional space.

One fact that will help here is that any p vectors are embedded in a p-dimensional

subspace of Rn. For example, when analyzing the first two variables, we can

concentrate on the two vectors y1 and y2. The two vectors generate a two-dimensional

plane, which makes it easier to visualize the relationship between the two vectors.

5.4.1 The Geometric Interpretation of the Sample Mean

Let v ¼ ½x1; x2; . . . ; xn�T be one of the column vectors in X. That is, we can think of

x1; x2; . . . ; xn as a single sample on onevariable. If wewant to characterize the sample

byusingjustonenumber,sayc,whatshould thisnumberbe?Onewayto thinkabout this

question in then-dimensional space is toconsider avectorc � 1n ¼ c; . . . ; c½ �T,where1n
is an n-dimensional vector with all coordinates equal to 1 and c is an arbitrary scalar.

Characterizing the sample by a single scalar c is like replacing the set x1; x2; . . . ; xn
with a set c; . . . ; c of repeated values of c. Hence, it would make sense to make

x1; x2; . . . ; xn and c; . . . ; c as close to each other as possible. This can be done by an
orthogonal projection of v on 1n because the result of the projection is defined as the

point from the one-dimensional space c � 1n : c 2 Rf g such that it is the closest point
to v. Based on Property 4A.1, we can write an orthogonal projection of v on 1n as

Proj1n vð Þ ¼ vT1n

1Tn1n
1n ¼

Pn
i¼1 xi

n
1n ¼ x1n: ð5:11Þ
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We can say informally that the samplemean x is a projection of the sample vector

on 1n (more precisely, x1n is the projection). Clearly, c ¼ x is the best single number

that characterizes the sample in the sense of the Euclidean distance closeness in the

Rn space. That is, c ¼ x is a number that minimizes the mean square error of

prediction (MSE)

MSE cð Þ ¼ 1

n

Xn
i¼1

xi � cð Þ2 ð5:12Þ

when we try to predict a sample value by using a single number c (see also

Problem 4.5).

Example 5.6 Consider a small data set of three observations on two variables given

by the following matrix:

X ¼
1 5

2 �3

6 �2

2
664

3
775: ð5:13Þ

When concentrating on the first variable, we have v ¼ 1 2 6½ �T,
x ¼ 1þ 2þ 6ð Þ=3 ¼ 3, and

Proj1n vð Þ ¼ 3 � 1n ¼
3

3

3

2
664

3
775: ð5:14Þ

&

5.4.2 The Geometric Interpretation of the Sample Standard Deviation

Once we calculate the sample mean x from the sample defined by the vector v (see

the previous section for notation), we can remove its impact by calculating a

vector of deviations (or residuals) d ¼ v� x � 1n. The deviation vector d contains

the remaining information (about variability) in the sample after the location para-

meter (x) information is taken into account. Since x � 1n is an orthogonal projection

of v, it is clear that d is orthogonal to x � 1n (see Figure 5.10 and Problem 5.2). This

is related to the fact that the coordinates of d sum up to 0 (see Problem 2.2).

We can say that v ¼ x � 1n þ d is a partitioning of y into twoorthogonal components

x � 1n and d. This geometric interpretation is also helpful in explaining the concept of

degrees of freedom. We say that there are n degrees of freedom in the original sample

vector v because the sample elements can be anywhere in the n-dimensional spaceRn.

On the other hand, the deviation vector d is constrained to an n� 1ð Þ-dimensional

subspace orthogonal to 1n. This is why we say that d has n� 1ð Þ degrees of freedom
and x � 1n has one degree of freedom. We can also say that we lose one degree of

freedom in d for the constraint that the total of all its coordinates equals zero.
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Example 5.6 (cont.) For the previously used sample v ¼ 1 2 6½ �T, we obtain

d ¼ �2 �1 3½ �T, which is perpendicular (orthogonal) to 3 � 1n (or 1n) because

d � x � 1nð Þ ¼ 3 � ½ð�2Þ þ ð�1Þ þ 3� ¼ 0. The vector v has three degrees of freedom,

while d has two degrees of freedom. &

We can now calculate the sample variance as

s2 ¼ 1

n� 1

Xn
i¼1

xi � xð Þ2 ¼ 1

n� 1
dTd ¼ 1

n� 1
dk k2; ð5:15Þ

where dk k stands for the length of d. This means that the sample variance is

proportional to the squared length of d. Consequently, the sample standard deviation

is proportional to the length of d, that is,

s ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p dk k: ð5:16Þ

5.4.3 The Geometric Interpretation of the Sample Correlation Coefficient

Let us now consider two variables with their respective samples represented by the jth

and kth columns vj and vk ofX defined in 5.1. The sample correlation coefficient of

the two variables can then be written as

rjk ¼ sjkffiffiffiffiffi
sjj

p ffiffiffiffiffiffi
skk

p ¼
Pn

i¼1ðxij � xjÞðxik � xkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxij � xjÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxik � xkÞ2

q ¼ dTj dkffiffiffiffiffiffiffiffiffi
dTj dj

q ffiffiffiffiffiffiffiffiffiffi
dTkdk

q

¼ dj
�� �� � dkk kcosðyjkÞ

dj
�� �� � dkk k ¼ cosðyjkÞ; ð5:17Þ

v

d

1n

x.1n

Figure 5.10 The vector x � 1n shown as an orthogonal projection of v on 1n. The deviation vector d is

orthogonal to 1n.
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and

sjk ¼ ffiffiffiffiffi
sjj

p ffiffiffiffiffiffi
skk

p
cosðyjkÞ; ð5:18Þ

where yjk is the angle between the vectors dj and dk. This means that for perfectly

correlated variables, the respective deviation vectors are collinear. On the other hand,

for uncorrelated variables (rjk ¼ 0), the deviation vectors are orthogonal. This

geometric interpretation allows for a better understanding of mutual correlations

among variables such as those discussed in Problem 5.3.

Example 5.6 (cont.) For the previously used datamatrixX, we obtain the deviations

of the two variables as d1 ¼ �2 �1 3½ �T and d2 ¼ 5 �3 �2½ �T. The corre-
lation between the two variables is calculated as

r12 ¼ dT1d2ffiffiffiffiffiffiffiffiffiffi
dT1d1

q ffiffiffiffiffiffiffiffiffiffi
dT2d2

q ¼ �13ffiffiffiffiffi
14

p ffiffiffiffiffi
38

p ¼ �0:5636: ð5:19Þ

The angle between the two deviationvectors is equal to y12 ¼ 124:3� ¼ 2:1695 rad
because cosðy12Þ ¼ �0:5636. &

5.5 THE GENERALIZED VARIANCE

The sample variance–covariance matrix S defined in equations (5.5) and (5.6)

describes variability in multivariate data. However, for large dimensionalities p,

especially prevalent in imaging applications, the matrix S is very large, and it is

difficult to interpret it as a whole matrix. In statistics, we always try to summarize the

information in datawith a small number of summary or descriptive statistics.Here, we

will try to summarize the information contained in S. We will discuss two ways to do

this—by defining the generalized sample variance and the total variability.

Definition 5.1 The generalized sample variance (GSV) is defined as the determinant

of the sample variance–covariance matrix S denoted as Sjj .

Based onProperty 4A.8,we can calculate theGSVas a product of the eigenvalues ofS,

that is,

jSj ¼
Yp
i¼1

li: ð5:20Þ

The following example demonstrates how the GSV can be interpreted.

Example 5.7 Consider a simple case of two-dimensional data, where the sample

variance of both variables is 1, and their sample correlation coefficient is equal to r,

where �1 � r � 1. This means that S ¼ 1 r

r 1

� 	
in our multivariate notation.
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The GSV is then equal to jSj ¼ 1� r2. When both variables are perfectly correlated,

we have r ¼ � 1, and the matrix S is singular, that is, Sj ¼ 0j . For two perfectly

correlated variables, the data are effectively one dimensional because all information

is contained in one variable in the sense that the values of the second variable can be

precisely calculated from the first variable. In a scatter plot, perfectly correlated data

would line up along a straight line. We can say that there is no two-dimensional

variability, which is expressed by theGSVequal to zero. Clearly, we get themaximum

GSV for an uncorrelated casewith r ¼ 0. Figure 5.11 shows four scatter plots in order

to demonstrate examples of data with various values of r and the associated values of

Sjj . Each scatter plot is based on n ¼ 1000 data points. We would say that the GSV

measures the amount of two-dimensional variability. &

We will now discuss a case more general than the one discussed in Example 5.7.

Consider two-dimensional data with an arbitrary sample variance–covariance matrix

S, which can always be represented as

S ¼
s21 rs1s2

rs1s2 s22

" #
; ð5:21Þ
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Figure 5.11 Scatter plots of four sets of datawith various values of the sample correlation coefficient r and

the associated values of the generalized sample variance Sjj as discussed in Example 5.7.
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where si; i ¼ 1; 2, are the sample standard deviations of the two variables, and r is the

sample correlation coefficient of the twovariables. From the n-dimensional geometry,

we know that s2i ¼ dik k2= n� 1ð Þ and r ¼ cos yð Þ, where di is the vector of deviations
for the ith variable and y is the angle between d1 and d2 (see Figure 5.12). Hence, the
GSV can be calculated as Sj ¼ s21s

2
2 1� r2ð Þ ¼ d1k k2 d2k k2 1� cos2 yð Þ= n� 1ð Þ2

 .

Since the height of the parallelogram shown in Figure 5.12 is equal to h ¼ d2k ksin yð Þ,
we obtain Sj ¼ d1k k2h2= n� 1ð Þ2 ¼ Areað Þ2= n� 1ð Þ2

 , where Area denotes the area

of the parallelogram generated by the deviation vectors d1 and d2. For highly

correlated variables, the angle y is small, which means a small Area for given lengths

of the deviation vectors, and consequently small GSV Sjj .

These interpretations can be generalized to higher dimensions. For p variables, the

p deviation vectors generate a p-dimensional parallelotope. The parallelogram in

Figure 5.12 is an example of a two-dimensional parallelotope defined by the deviation

vectors d1 and d2. For p ¼ 3, a parallelotope is called a parallelepiped. The formula

for the GSV of p-dimensional data takes the form

jSj ¼ Volumeð Þ2
n� 1ð Þp ; ð5:22Þ

where Volume is the volume of a p-dimensional parallelotope defined by the

p deviation vectors as its edges.

We conclude that the GSV depends not only on the lengths of deviation vectors

(i.e., standard deviations of variables), but also on the angles among them (i.e.,

correlations). The generalized variance gets larger for uncorrelated variables and

smaller for correlated variables. However, for p-dimensional data, we need to take

into account more complex relationships than those that can be described by pairwise

correlations among variables. We can define p deviation vectors, which in general

span a p-dimensional subspace in the n� 1ð Þ-dimensional subspace ofRn orthogonal

to1n (we assume here that p � n� 1).However, if the p-dimensional data are, in fact,

confined to a p� 1ð Þ-dimensional subspace (we call this condition perfect multi-

collinearity), then the p deviation vectors span a subspace of only up to p� 1ð Þ
dimensions. Consequently, the p-dimensional volumeused in formula 5.22 is zero and

the GSV is also zero. Such multicollinearity may not be obvious from the pairwise

correlations among variables as demonstrated by the following example.

d1

d2

θ

h

Figure 5.12 Two deviation vectors d1 and d2 defining a parallelogram.
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Example 5.8 Consider n 	 3 observations on three variables—each with the same

variance, let’s say, equal to 1. Assume further that the three deviation vectors

are positioned on a two-dimensional plane in the way shown in Figure 5.13, that

is, the angle between d3 and any of the first two deviation vectors is 45� and the

deviation vectors d1 and d2 are orthogonal. Clearly, the vector d3 is a linear

combination of d1 and d2, which is an example of perfect multicollinearity. Since

the sample variances are 1 and cosð45�Þ ¼ 2�1=2, we obtain s13 ¼ s23 ¼ 2�1=2 from

equation 5.18. The sample variance–covariance matrix is then equal to

S ¼
1 0 2�1=2

0 1 2�1=2

2�1=2 2�1=2 1

2
664

3
775: ð5:23Þ

The eigenvalues of S can be calculated as l1 ¼ 2, l2 ¼ 1, and l3 ¼ 0 (see Problem

5.5). None of the pairs of variables are perfectly correlated.However, theGSVis equal

to Sj ¼ 0j (see equation 5.20), which confirms the perfect multicollinearity that can be

seen in Figure 5.13. &

Multicollinearity is also present when the number of observations n is not larger

than the dimensionality p, that is, n � p. To investigate this case, we use the

geometric interpretation in p dimensions, where the n observations are represented

as points inRp. Anyn points lie in an n� 1ð Þ affine subspace, or hyperplane,L. Hence,
the mean of all points also lies in the same subspace, and the variability of the points

around the mean is also confined to L. We can say that the variability in the direction

orthogonal to L is zero. This is expressed more formally by the following property.

Property 5.1 Let S be the sample variance–covariance matrix calculated from n

p-dimensional observations. Then

Rank Sð Þ � minðn� 1; pÞ: ð5:24Þ
When n � p, Rank Sð Þ � n� 1 < p and Sj ¼ 0j (see Property 4A.7).

d1

d2

d3

45º
45º

Figure 5.13 Three deviation vectors d1, d2, and d3 used in Example 5.8.
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We now consider a general case of the perfect multicollinearity, either due to

a small number of observations or due to the collinearity of variables. In that case,

the GSV is equal to zero, indicating that there is zero p-dimensional variability.

However, there is still some amount of lower dimensional variability. In order to

measure that variability, we define k-dimensional generalized sample variance

(kGSV) as

kGSV ¼
Yk
i¼1

li ¼ l1 � � � lk; ð5:25Þ

that is, the product of the first k eigenvalues of the p by p variance–covariance matrix

S, where k � p. When k ¼ p, kGSV is the same as GSV (see equation 5.20).

The kGSV is most useful in cases when lkþ1 ¼ � � � ¼ lp ¼ 0. For the variance–

covariance matrix S used in Example 5.8, l1 ¼ 2; l2 ¼ 1; and l3 ¼ 0, and conse-

quently the GSV is equal to Sj ¼ 0j , but a two-dimensional GSV is equal to 2.

Anothermeasure of variability inmultivariate data is the total variability defined as

Total Variability ¼ Trace Sð Þ ¼
Xp
i¼1

sii; ð5:26Þ

where sii is the variance of the ith variable, which measures the amount of variability

in the direction of the ith axis when the observations are viewed as points in the

p-dimensional space Rp. The total variability is best interpreted in the p-dimensional

geometry, unlike the generalized sample variance, which was mostly interpreted in

the n-dimensional geometry.

We can say that the Total Variability measures the total amount of “linear”

variability in all p orthogonal directions of the p axes. This also turns out to be

equal to the total amount of “linear” variability in any set of p orthonormal directions

(or basis vectors). In order to seewhy, note that amatrix of the transformation between

any two sets of orthonormal basis vectors is an orthogonal matrix. If the data are

realizations of a random vector X in one orthonormal basis, then they will be

expressed as BX after the transformation, where B is an orthogonal matrix. From

Property 4B.1c, the variance–covariance matrix of the transformed data is equal to

BSBT . From Property 4A.12, we have Trace BSBT
� � ¼ Trace SBTB

� � ¼ Trace Sð Þ,
whichmeans that theTotalVariability is the samewhen calculatedwith respect to both

systems of coordinates.

In particular, we can takeB ¼ PT,whereP is thematrix of eigenvectors ofS. Based

on the spectral decomposition (equation (4.74)), we obtain BSBT ¼ K, where K is

a diagonal matrix with li; i ¼ 1; . . . ; p, eigenvalues on the diagonal. We

conclude that the Total Variability can also be calculated as the sum of the

eigenvalues, that is,

Total Variability ¼ Trace Kð Þ ¼
Xp
i¼1

li: ð5:27Þ
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For the variance–covariance matrix S ¼ 1 r

r 1

� 	
used in Example 5.7, the Total

Variability is equal to 2, so it does not depend on r. This means that for all four cases

shown in Figure 5.11, the Total Variability is the same. Figure 5.14 shows the same

data with the arrows plotted along the eigenvectors of S, which are rotated clockwise

by 45� with respect to the axes of the standard system of coordinates. As explained in

the two paragraphs above equation 5.27, thevariability in those directions is described

by the eigenvalues. The length of each arrow is equal to two times standard deviation

(to reflect the two-sigma rule) of the variability in a given direction. The circles have

radius 2, so that we can see graphically which standard deviations are larger than 1

(i.e., when the arrow goes beyond the circle). The shorter arrow in the fourth case

(the bottom right corner) is too short to be visible. The sum of the variances in the two

directions is equal to the Total Variability (equal to 2) in all cases. We can say that the

reduced variability in one rotated direction is compensated by increased variability in

the other (orthogonal) direction.

When investigating variability, we sometimes want to eliminate the impact of

variability of individual variables. We can then standardize each variable by

3210–1–2–3

3
2

1
0

–1
–2

–3

–1
–2

–3

r = 0.049,  |S| = 0.998

3210–1–2–3

3
2

1
0

r = 0.541,  |S| = 0.707

3210–1–2–3

3
2

1
0

–1
–2

–3

r = 0.91,  |S| = 0.172

3210–1–2–3

3
2

1
0

–1
–2

–3
r = 0.991,  |S| = 0.018

Figure 5.14 Scatter plots of data used in Figure 5.11 with lengths of arrows equal to two times standard

deviation of the variability in given directions. Circles of radius 2 are plotted for comparison.
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subtracting its mean and then dividing by its sample standard deviation (
ffiffiffiffi
sii

p
). One

situation when this should be done is when the variables in the data set are in different

units, and consequently their direct comparison is not meaningful. The sample

variance–covariance matrix calculated on the standardized data is equal to the

sample correlationmatrixR. The GSVof the standardized data can then be calculated

as the generalized sample correlation Rjj . Let us use the n-dimensional geometry and

denote the deviation vector of the ith standardized variable by f i. We can now use a

formula analogous to (5.22), that is,

jRj ¼ Standardized Volumeð Þ2
n� 1ð Þp ; ð5:28Þ

where Standardized Volume is the volume of a p-dimensional parallelotope defined

by the p deviation vectors f i; i ¼ 1; . . . ; p. Since f i is a standardized version of the

deviation vector di of the ith original variable, the two vectors are collinear, and we

have di ¼ ffiffiffiffi
sii

p
f i. Consequently, dik k2 ¼ sii f ik k2 and

Volumeð Þ2 ¼ Standardized Volumeð Þ2
Yp
i¼1

sii ð5:29Þ

because the two parallelotopes have exactly the same shape (the same angles between

the edges), and they differ only by the scale factors equal to the standard deviations of

the variables. This shows the following relationship between the generalized sample

variance and the generalized sample correlation:

jSj ¼ jRj �
Yp
i¼1

sii; ð5:30Þ

which could also be verified algebraically (see Problem 5.6). In order to study further

properties of Rjj , define gi ¼ f i=
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
. Since the variance of the standardized

variables is 1, we have 1 ¼ f ik k2= n� 1ð Þ and consequently gik k ¼ 1. Let G be a

parallelotope generated by the unit length vectors gi; i ¼ 1; . . . ; p. It is clear thatG has

exactly the same shape as the parallelotope defined by f i’s and

Volume of G ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p� ��p

Standardized Volumeð Þ: ð5:31Þ

Hence,

Rj ¼ Volume of Gð Þ2:

 ð5:32Þ

This means that the generalized sample correlation Rjj depends only on the angles

between the unit length vectors gi, which are the same as the angles between the

deviation vectors di. Cosines of those angles are the correlations between variables,

which means that Rjj depends only on the correlations between the variables. This, of
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course, can also be concluded directly from the definition of the matrix R, which
consists of correlations. Nevertheless, formula (5.32) is helpful for a better under-

standing of Rjj . For example, the parallelotopeGwith unit length edges has the largest

volume when the vectors gi are orthogonal, that is, when R is an identity matrix.

Hence, the largest possible value for Rjj is 1, and we obtain

0 � Rj � 1:j ð5:33Þ

The generalized sample correlation Rjj measures multicollinearity in data without

the impact of variability of individual variables. Values close to 0 indicate high

multicollinearity—with perfect multicollinearity when Rj ¼ 0j . Values close to 1

indicate lack of multicollinearity. The concept of kGSV can also be used for

standardized data when R is singular. Since the matrix R has values of 1 on the

diagonal, the Total Variability of the standardized variables is always equal to the

dimensionality p of the data. The following example demonstrates practical use of

the Total Variability and kGSV on the original and standardized data.

Example 5.9 In Example 5.1, we used a 31-dimensional data set consisting of

spectral curves as observations. For each calibration tile, four measurements were

taken. The resulting data on each tile can be stored in a 4 by 31 matrix X.

The variability in those measurements is due to a measurement error, which can be

described by the variance–covariancematrix S.We usually desire n� 1ð Þ 	 p, so that

S is nonsingular. Since herewe have n� 1ð Þ ¼ 3 < 31 ¼ p, the rank of S is not larger

than 3 (see Property 5.1) and S is singular. This means that the GSV is 0 for all tiles.

However, we can use three-dimensional kGSV in order to characterize and compare

the measurement errors in various tiles. Figure 5.15 shows a scatter plot of the

logarithm of the kGSV values (k ¼ 3) versus the logarithm of the Total Variability for

the 12 tiles numbered in their order in the original data set as shown in Table 5.2. We

can clearly see strong correlation in the scatter plot, which is not surprising because

the kGSV depends on the eigenvalues of S, which in turn depend on the overall

amount of variability measured by the Total Variability. In order to assess
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Figure 5.15 Ascatter plot of the logarithm (to base 10) of the kGSVvalues (k ¼ 3) versus the logarithmof

the Total Variability for the 12 tiles numbered in Table 5.2.
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multicollinearity in the data without the impact of variability of individual variables,

one can calculate the kGSVbased onR as the product of the three positive eigenvalues

ofR. The logarithms of thosevalues are plotted in Figure 5.16 versus the logarithms of

the Total Variability for the 12 tiles. We observe the highest level of multicollinearity

in spectral bands for Tile 11 and the lowest multicollinearity for Tiles 3 and 8. The

tiles’ colors are provided in Table 5.2 as a reference. &

5.6 DISTANCES IN THE P-DIMENSIONAL SPACE

In statistics, we often study the question of statistical significance. The answer to that

question depends on whether the observations are close to what we expect them to be

(according to a null hypothesis). A crucial element is to define what “close” means.

Table 5.2 Colors of the 12 Tiles Used in Example 5.9 in

Their Original Order in the Data Set

Tile Number Color Name

1 Yellow

2 Maroon

3 Dark green

4 Light green

5 Green blue

6 Dark blue

7 Medium blue

8 Brown

9 Pink

10 Dark gray

11 Medium gray

12 Light gray
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Figure 5.16 A scatter plot of the logarithm (to base 10) of the kGSV values (k ¼ 3) calculated for the

standardized data based on R and plotted versus the logarithm of the Total Variability for the 12 tiles

numbered in Table 5.2.
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This is why we are interested here in the concept of distance. Since p-dimensional

observations can be represented as points in a p-dimensional space, we need to define

distances in that space.

Let x; y; and z be three points in Rp. A distance in Rp is any real-valued function

d x; yð Þ such that

1. d x; yð Þ ¼ d y; xð Þ.
2. d x; yð Þ > 0 if x „ y.

3. d x; yð Þ ¼ 0 if x ¼ y.

4. d x; yð Þ � d x; zð Þ þ d z; yð Þ (triangle inequality).

The best known distance is the Euclidean distance defined as

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞT x� yð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ2 þ ðx2 � y2Þ2 þ � � � þ ðxp � ypÞ2

q
;

ð5:34Þ

where x ¼ x1; x2; . . . ; xp
� �T

and y ¼ y1; y2; . . . ; yp
� �T

. According to the Euclidean

distance, all directions in Rp are equally important. In practice, this is not always the

case. In order to see why, consider a bivariate data set shown in Figure 5.17. The data

are realizations of a random vector X ¼ X1;X2½ � with the mean l ¼ 0; 0½ � and the

variance–covariance matrix R ¼ 1 0

0 9

� 	
. We can see less variability in the horizon-

tal (x1) direction with the standard deviation of 1 and more variability in the vertical

(x2) direction with the standard deviation of 3. Hence, in assessing whether points A

and B are outliers (i.e., not coming from the underlying distribution of the majority of

the points), we should take into account the variability being different in the x1 and x2

642–2–4–6

6
4

2
–2

–4
–6

A

B
C

x1

x2

Figure 5.17 An example of uncorrelated datawith the standard deviations of 1 and 3 in the horizontal (x1)

and vertical (x2) directions, respectively.
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directions. In order to do that, we can calculate the standardized distance by dividing

the horizontal distance by the horizontal standard deviation of 1 and the vertical

distance by the vertical standard deviation of 3. The resulting standardized

distances of points A and B from the origin are

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=1ð Þ2 þ 0=3ð Þ2

q
¼ 4 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0=1ð Þ2 þ 4=3ð Þ2
q

¼ 4=3, respectively. We will discuss the exact interpretation of

those distances later on, but at this point we can see that A is much farther away from

the origin in the sense of the standardized distance. Hence, A is more likely than B to

be an outlier. This is consistent with the fact that point B is well within the cloud of

observations, and A is an extreme observation. For point C ¼ 3; 3½ �, both the vertical
and horizontal components need to be calculated resulting in a standardized distance

from the origin equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=1ð Þ2 þ 3=3ð Þ2

q
¼ ffiffiffiffiffi

10
p 
 3:16. This value reflects the

less extreme position of C relative to A. In a general setting of a population model

with a diagonal variance–covariance matrix R, we would standardize by dividing

by the standard deviations
ffiffiffiffiffi
sii

p
. The standardized distance between the points

x ¼ x1; x2; . . . ; xp
� �T

and y ¼ y1; y2; . . . ; yp
� �T

would then be defined as

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ2

s11
þ ðx2 � y2Þ2

s22
þ � � � þ ðxp � ypÞ2

spp

s
: ð5:35Þ

So far, we have assumed that the coordinates of X in the population model were

uncorrelated (diagonal R). In order to account for correlations, we want to use a

general case of the variance–covariance matrix R and define the statistical, or

Mahalanobis, distance as

dM x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞTR�1 x� yð Þ

q
: ð5:36Þ

One can show that (5.35) is a special case of (5.36) when the matrix R is diagonal

(this is given as Problem 5.4). If the components of X are uncorrelated and have unit

variances, we have R ¼ I, and the Mahalanobis distance becomes the Euclidean

distance. For a fixed point x, wemaywant to find the set of y points equidistant from x.

For the Euclidean distance, this leads to a circle. For theMahalanobis distance, the set

of equidistant points can bewritten as fy 2 Rp : x� yð ÞTR�1 x� yð Þ ¼ r2g, which is
a p-dimensional ellipsoid centered at x and having axes � c

ffiffiffiffi
li

p � ei, where

Rei ¼ li � ei for i ¼ 1; . . . ; p (i.e., li and ei are eigenvalues and eigenvectors of R ,

respectively).

In practice, the variance–covariance matrix R is usually unknown, but it can

be estimated from data using S. The resulting Mahalanobis distance is then

defined as

dM x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞTS�1 x� yð Þ

q
: ð5:37Þ
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In some sources, the expression x� yð ÞTS�1 x� yð Þ is called the Mahalanobis

distance. This is incorrect because the expression is not a distance in the sense of

satisfying the triangle inequality. The expression x� yð ÞTS�1 x� yð Þ should be

called a squared Mahalanobis distance.

Example 5.10 In Example 3.1, we considered n ¼ 104 pixels, or observations, from

an image of a monochromatic tile. For each pixel, we had reflectance values in three

wide spectral bands. We can now represent that data as a 104 by 3 matrixX. As a first

step in exploring the data, we inspect a scatter plot matrix shown in Figure 5.18.

We can see that Band 3 is correlated with the other two bands, which do not seem

to be correlated with each other. This is confirmed by the calculated sample

variance–covariance and correlation matrices

S ¼
0:067 0:007 0:068

0:007 0:057 0:056

0:068 0:056 0:135

2
664

3
775 and R ¼

1 0:11 0:71

0:11 1 0:64

0:71 0:64 1

2
664

3
775: ð5:38Þ

Based on Figure 5.18, there are no outliers in the data set. For further investigation

of the data, we can calculate the sample mean vector x ¼ 25:02; 37:51; 75:02½ �T as a

center point and then theEuclidean distance of each point to the center x. The resulting

104 Euclidean distances are plotted in Figure 5.19, and again none of the observations

seems unusual. In order to take into account the covariance structure of the data, we

can now calculate theMahalanobis distances, which are shown in Figure 5.20.We can

see that four pixels have distinctly larger Mahalanobis distances, which suggests that

Band 1

37.837.437.0
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.6
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24
.4
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37
.4
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.0

Band 2

25.625.224.824.4 75.575.074.5

75
.5

74
.5

Band 3

Figure 5.18 A scatter plot matrix of the three-dimensional data used in Example 5.10.
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theymight be outliers. These potential outliers were discovered only after we used the

information about the variance–covariance matrix and calculated the Mahalanobis

distances. This example will be further discussed in the next section. &

5.7 THE MULTIVARIATE NORMAL (GAUSSIAN) DISTRIBUTION

5.7.1 The Definition and Properties of the Multivariate

Normal Distribution

The univariate normal (or Gaussian) distribution is defined by the probability density

function
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Figure 5.19 Euclidean distances of 104 pixels from the center point x plotted versus pixel number. See

Example 5.10.
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Figure 5.20 Mahalanobis distances of 104 pixels from the center point x plotted versus pixel number. See

Example 5.10.
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f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p exp � 1

2

x� m
s

� �2
� 	

;

where m and s are the expected value and the standard deviation, respectively.

Note that

x� m
s

� �2

¼ x� mð Þ s2
� ��1

x� mð Þ ð5:39Þ

measures the square of the distance between x and m in standard deviation units.

A natural generalization of that squared distance for the vectors x and l is

x� lð ÞTR�1 x� lð Þ; ð5:40Þ

which is the squared Mahalanobis distance between x and l as defined in equa-

tion (5.37). This leads to a natural generalization of the normal distribution to the

multivariate normal distribution.

Definition 5.2 The multivariate normal (or Gaussian) distribution with the mean

vector l and the variance–covariance matrix R is defined by the probability density

function

f ðxÞ ¼ 1

2pð Þp=2 ffiffiffiffiffiffijRjp exp � 1

2
x� lð ÞTR�1 x� lð Þ

� 	
ð5:41Þ

and is denoted by Np l;Rð Þ.

Definition 5.3 A random vector X following the normal distribution N 0; s2Ið Þ is
called the white Gaussian noise.

The constant in front of the exponential function is chosen so that f ðxÞ has the property
of a density function, that is, the integral over the whole p-dimensional space is equal

to 1. Here are some important properties of the multivariate normal distribution.

Property 5.2 Contours of constant density for a p-dimensional normal distribution

Np l;Rð Þ are ellipsoids defined by x such that

x� lð ÞTR�1 x� lð Þ ¼ c2: ð5:42Þ

These ellipsoids are centered at l and have axes � c
ffiffiffiffi
li

p � ei, where

Rei ¼ li � ei for i ¼ 1; . . . ; p (i.e., li and ei are eigenvalues and eigenvectors of R,
respectively).

Property 5.3 The linear combinations of the components of a normally distributed

X, that is,
Pp

i¼1 ciXi, are normally distributed. For example, both X1 and X3 þ 2X4 are
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normal. This means that a projection on a straight line also follows a normal

distribution.

Property 5.4 All subsets of the components of the normally distributed random

vector X have normal distribution. For example, the vector X2;X5;X6½ � is normal.

Properties 5.3 and 5.4 can be generalized to the following property about a linear

transformation of the normal distribution.

Property 5.5 If A is a q by p nonrandom matrix, d is a q-dimensional nonrandom

vector, and X is a p-dimensional random vector following a normal distribution,

then Y ¼ AXþ d also follows a normal distribution. From Property 4B.1, we also

conclude more specifically that if X follows Np l;Rð Þ, then Y follows

Nq Alþ d;ARAT
� �

. This means that a projection of a normal distribution on any

affine subspace also follows a normal distribution.

Property 5.6 Let X1 andX2 be two independent random vectors (not necessarily

normal) of dimensions p and q, respectively. Then the p by q covariance matrix

Cov X1;X2ð Þ (defined in Supplement 4B) is equal to the matrix 0 consisting of all

zeros. (We say that independence always implies zero covariance and consequently

zero correlation.)

Property 5.7 LetX ¼ X1

X2

� 	
be a pþ qð Þ-dimensional random vector consisting of

p- and q-dimensional subvectors X1 andX2. Assume that X follows a multivariate

normal distribution with the variance–covariance matrix R ¼ R11 R12

R21 R22

� 	
. The

matrix R12 is the covariance matrix CovðX1;X2Þ. Then X1 andX2 are independent

if and only if R12 ¼ 0. (We say that zero covariance (or correlation) implies

independence under normality assumption.)

Property 5.8 LetX ¼ X1

X2

� 	
be a pþ qð Þ-dimensional random vector consisting of

p- and q-dimensional subvectors X1 andX2. Assume that X follows a multivariate

normal distribution with the mean l ¼ l1
l2

� 	
and the variance–covariance matrix

R ¼ R11 R12

R21 R22

� 	
such that R22j > 0j . Then the conditional distribution of X1 given

that X2 ¼ x2 is normal with

Mean ¼ l1 þ R12R
�1
22 ðx2 � l2Þ ð5:43Þ

and

Covariance Matrix ¼ R11 � R12R
�1
22 R

T
12: ð5:44Þ

THE MULTIVARIATE NORMAL (GAUSSIAN) DISTRIBUTION 165



Proofs of the above properties can be found in Johnson and Wichern (2007) and

Anderson (2003).

Property 5.9 Let X be distributed as Np l;Rð Þ with Rj > 0j . The random variable

X� lð ÞTR�1 X� lð Þ has the chi-squared distribution with p degrees of freedom.

Proof. Based on Property 5.5, Z ¼ R�1=2 X� lð Þ is standard normal Np 0; Ið Þ. Note
that X� lð ÞTR�1 X� lð Þ ¼ ZTZ ¼ Pp

i¼1 Z
2
i , where Zi are the components of Z.

Since Zi follow N 0; 1ð Þ,Pp
i¼1 Z

2
i follows the chi-squared distribution with p degrees

of freedom (see Appendix A). &

5.7.2 Properties of the Mahalanobis Distance

Property 5.9 allows an interpretation of the Mahalanobis distance dM x; lð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� lð ÞTR�1 x� lð Þ

q
. In Section 2.6, we discussed the rules of two and three sigma

under the assumption of normality. In a one-dimensional space (p ¼ 1), the

Mahalanobis distance can be written as dM x; mð Þ ¼ x� mj=sj , which can be inter-

preted as a distance in standard deviation units. Consequently, for a randomvariableX

following the normal distribution N m; sð Þ, we have P dM X; mð Þ � 2f g 
 0:95 and

P dM X; mð Þ � 3f g 
 0:997, which are the two- and three-sigma rules expressed with

the help of the Mahalanobis distance.

In a p-dimensional space, we have a similar interpretation of the Mahalanobis

distance as a distance in “standard deviation units,” but we need more “standard

deviations” to cover the same probability. We conclude from Property 5.9 that for X

distributed asN l;Rð Þ, we haveP dM X; lð Þ � kf g ¼ Gp k2ð Þ, whereGp is the CDF of

the chi-squared distributionwith p degrees of freedom.By taking the values of k equal

to 2 and 3, we obtain the p-dimensional equivalents of the two- and three-sigma rules.
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Figure 5.21 The probabilities that a normally distributed vector is not further away from the mean than 2

(or 3) based on the Mahalanobis distance as a function of the dimension p.
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Figure 5.21 shows the probability Gp k2ð Þ as a function of the dimensionality p for

the two values of k as the Mahalanobis distance threshold.

We can see that the probabilities decrease rather rapidly to very small values. This

is a symptom of the so-called “curse of dimensionality,” which in our context means

that the central part of the distribution around l seems increasingly empty. We used

theword “seems” in the previous sentence because the real reason for this effect is the

increased volume of the high-dimensional space. According to the multivariate

normal distribution, the region around l has a higher density function than any

other region in the same space. If we think about a large set of data points in Rp as

realizations of a multivariate normal distribution, then the density of points (the

number of points per unit volume) will be highest around l. However, an increasing
dimensionality will result in higher volume and reduced density of points (assuming

the fixed total number of points), not only around l but also in all regions of the Rp

space. In other words, the probability P dM X; yð Þ � kf g for any fixed point y 2 Rp,

not only y ¼ l, decreases to zero as p increases to infinity. (Our previous argument

about the decreasing density of points is not sufficient here, but it turns out that the

volume enclosed by the ellipsoid dM X; yð Þ ¼ k increases much slower than the

volume of the space.)

For further interpretation of the Mahalanobis distance, we can take a different

approach and ask how large an ellipsoid we need in order to cover a certain

probability. Again from Property 5.9, we can see that in order to cover 1� að Þ
probability with an ellipsoid of “radius” k (given by x� lð ÞTR�1 x� lð Þ ¼ k2), we

need k ¼
ffiffiffiffiffiffiffiffiffiffiffi
w2pðaÞ

q
, where w2pðaÞ is the upper 100að Þ percentile from the chi-squared

distribution with p degrees of freedom. The values of k (understood as the Maha-

lanobis distance threshold) are shown in Figure 5.22.

The rules of two and three sigma and their generalization as shown in Figure 5.22

can be used for identification of outliers in normal samples. However, they should be

Dimension p

M
ah

al
an

ob
is

 D
is

ta
nc

e

20012080402010521

16
14

12
10

8
6

4
2

Prob. = 0.999
Prob. = 0.99
Prob. = 0.95

Figure 5.22 The Mahalanobis distance threshold needed in order to enclose a given probability (0.95,

0.99, and 0.999 for the three curves) is plotted as a function of the dimension p.
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used only as general guidelines and only after considering the sample size, as

discussed in Section 3.7. A more direct approach is to calculate the probability of

a given extreme observation. If the probability is very small, we can call the extreme

observation an outlier. Assume that we observe a sample of size n from the normal

distribution Np l;Rð Þ, where l and R are known. For each observation, we can then

calculate its Mahalanobis distance from l. If the largest of those Mahalanobis

distances is larger than a certain threshold L, we can call that extreme observation

an outlier. In order to calculate L, we want to check how likely it is that the largest

Mahalanobis distance is greater than L. Let X1;X2; . . . ;Xn be i.i.d. random vectors

from Np l;Rð Þ. Those random vectors describe our random sample. Let

Yi ¼ Xi � lð ÞTR�1 Xi � lð Þ; i ¼ 1; . . . ; n, be the squared Mahalanobis distances

as random variables. The variables Yi are i.i.d. from the chi-squared distribution

with p degrees of freedom. We can now calculate the probability that the largest

squared Mahalanobis distance is larger than L2 as follows:

P max
1� i�n

Yi > L2
 �

¼ 1�P max
1� i�n

Yi � L2
 �

¼ 1�
Yn
i¼1

P Yi � L2
� �¼ 1� Gp L2

� �� �n
;

ð5:45Þ

where Gp is the CDF of the chi-squared distribution with p degrees of freedom as

defined earlier. For this probability to be equal to a (usually small) value of a, we need

L¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2p 1� að Þ1=n
� �r

. The values of the threshold L are plotted in Figure 5.23 as a

function of the dimension p for various sample sizes and a¼ 0:05.
Note that these calculations assume that the R matrix is known precisely. In

practice, we should use this approximate rule only for large sample sizes nwhen R is

estimated with a reasonable precision.
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Figure 5.23 The Mahalanobis distance threshold needed in order to call an observation an outlier is

plotted as a function of the dimension p for various sample sizes and a ¼ 0:05.
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In Example 5.10, we calculated n ¼ 104 Mahalanobis distances and plotted them

in Figure 5.20. Four of those values were distinctly larger than the remaining values.

We can now compare those values to L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w23 1� 0:05ð Þ1=104
� �r

¼ 4:21. Three out

of the four suspected outliers had Mahalanobis distances larger than 4.21, and the

fourth one was slightly lower at 4.17. For more precise calculations, one should take

into account that the fourth value is a fourth order statistic rather than the maximum,

but those calculations aremuchmore complex (the resulting thresholdwould be lower

than 4.21, of course). An alternative approach is to use formula (5.45) with L ¼ 4:17,
which gives the probability of 0.058. The four points also turn out to be next to each

other spatially as pixels. Considering the above facts, we would decide that all four

observations are outliers.

PROBLEMS

5.1. Use the data set from Example 5.2 and investigate the variability of patches

within pages, which were characterized by the sample variance–covariance

matrices Sk; k ¼ 1; . . . ; 21, each based on the eight observations (patches)

from a given page. Use the generalized sample variance (or kGSV defined

in (5.25), if needed) of thevariance–covariance and correlationmatrices and the

Total Variability defined in (5.26). This analysis is similar to the analysis

performed in Example 5.9.

5.2. Using the notation of Section 5.4.2, show algebraically thatd is orthogonal to 1n
(and x � 1n).

5.3. Consider three random variables X, Y, and Z. Assume that X is not correlated

with Y (Corr X; Yð Þ ¼ 0), and Y is not correlatedwith Z.What can you tell about

the correlation between X and Z? Find all possible values for Corr X; Zð Þ. Use
the n-dimensional geometric interpretation to answer this question.

5.4. Show that formula (5.35) is a special case of (5.36) when thematrixR is diagonal.

5.5. Consider the sample variance–covariance matrix

S ¼
1 0 2�1=2

0 1 2�1=2

2�1=2 2�1=2 1

2
664

3
775 ð5:46Þ

used in Example 5.8. Show by hand calculations that the eigenvalues of S are

l1 ¼ 2, l2 ¼ 1, and l3 ¼ 0, and the normalized eigenvectors are e1 ¼
0:5; 0:5; 2�1=2
� �

, e2 ¼ 2�1=2; � 2�1=2; 0
� �

, and e3 ¼ 0:5; 0:5; � 2�1=2
� �

.
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5.6. Verify algebraically formula (5.30) saying that jSj ¼ jRj � Qp
i¼1 sii. Hint: Use

equations (5.9) and (4.71).

5.7. Show that S ¼ D1=2RD1=2 (see equation (5.9)). Hint: Use sjk ¼ rjk
ffiffiffiffiffi
sjj

p ffiffiffiffiffiffi
skk

p
based on the definition of the correlation coefficient. Also note that post-

multiplying by a diagonal matrix is equivalent to multiplying the jth column

vector by the jth diagonal element. Pre-multiplying by a diagonal matrix is

equivalent to multiplying the jth row vector by the jth diagonal element.

5.8. Use the infrared astronomy data introduced in Example 3.3.

a. Create a scatter plot for both types of objects (stars) based on the H and K

band magnitudes. Mark the two groups with different symbols.

b. Do you think it would be challenging to distinguish the two groups based

on only H band magnitudes? What if only K band magnitudes were used?

Is it easier to distinguish the two groups based on the scatter plot from

point a?

c. Repeat points a and b for the pair of J and H band magnitudes.

d. Repeat points a and b for the pair of J and K band magnitudes.

5.9. Use the infrared astronomy data introduced in Example 3.3. This is a three-

dimensional data set (p ¼ 3) with bands J, H, and K treated as three variables.

Calculate the mean vector x and the matrices S, R, and D1=2 given in

equations (5.5) and (5.8) for

a. The sample of C AGB stars.

b. The sample of H II regions.

5.10. Use the infrared astronomy data from Problem 5.9. Calculate the generalized

sample variance Sjj for the two samples—C AGB stars and H II regions. What

do the numbers tell us about the two samples?

5.11. Use the infrared astronomy data from Problem 5.9. Calculate the generalized

sample correlation Rjj for the two samples—C AGB stars and H II regions.

What do the numbers tell us about the two samples?

5.12. Use the infrared astronomy data from Problem 5.9.

a. Calculate the mean vector x for the sample of C AGB stars. Find the

Euclidean distances of all observations (both C AGB stars and H II regions)

from x. Create a dot plot of the distances that would show the two samples

separately (like in Figure 2.12a). Draw conclusions.

b. Calculate the variance–covariance matrix S for the sample of C AGB stars.

Find the Mahalanobis distances of all observations (both C AGB stars

and H II regions) from x. Create a dot plot analogous to the one in point a.

Draw conclusions.
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c. Create a scatter plot of the Euclidean distances from point a (on the vertical

axis) versus the Mahalanobis distances from point b. Use different colors

and/or symbols for the two samples. Draw conclusions.

d. Should you consider some of the observations in the whole data set as

outliers based on the Euclidean and/or Mahalanobis distances calculated

in points a and b?

5.13. Repeat the tasks described in Problem 5.12, but this time calculate the mean

vector x and the variance–covariance matrix S for the sample of H II regions.

Are your conclusions different this time?
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C H A P T E R 6

Multivariate Statistical Inference

6.1 INTRODUCTION

In Chapter 3, we discussed statistical inference about a univariate distribution that

served as a model for observations on one single characteristic. In Examples 3.2 and

3.3, we were dealing with three characteristics (spectral bands) defined as three

different random variables with potentially different distributions. In that case, we

simply repeated our univariate analysis three times, and the conclusions were drawn

separately for each variable or spectral band. An important question is whether such

an analysis is sufficient or perhaps we are losing some important information by not

taking into account mutual relationships among the three spectral bands. Wewill find

the answer in this chapter. As one might expect, we will need to model the

relationships among variables by using multivariate distributions, especially the

multivariate normal distribution discussed earlier in Section 5.7.

6.2 INFERENCES ABOUT A MEAN VECTOR

Throughout this chapter we are going to deal with a random sampleX1;X2; . . . ;Xn of

p-dimensional random vectors following a p-dimensional normal distribution

Np l;Rð Þ with the mean vector l and the variance–covariance matrix R. We will

start with the hypothesis testing inference to check if the data are consistent with a

predetermined value l0, such as one coming from a specification for a physical

quantity being measured.

6.2.1 Testing the Multivariate Population Mean

Let us start with recalling a univariate scenario of a random sample X1;X2; . . . ;Xn

from a normal distribution N m; s2ð Þ. In order to test the null hypothesis

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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H0 : m ¼ m0 versusH1 : m 6¼ m0, we would use an absolute value of the following

t-statistic:

t ¼ ðX � m0Þ
s=

ffiffiffi
n

p ¼ ffiffiffi
n

p ðX � m0Þ
s

; ð6:1Þ

which has a Student’s t-distribution with (n� 1) degrees of freedom under the null

hypothesisH0 : m ¼ m0. Note that the absolute value tjj is proportional to X � m0j=s
�� ,

which can be interpreted as the standardized distance between X and m0. Using an

absolute value of the t-statistic is equivalent to using its square, which could bewritten

in the following form:

t2 ¼ n
ðX � m0Þ

s

� �2
¼ n X � m0
� �

s2
� ��1

X � m0
� �

: ð6:2Þ

It turns out that t2 follows an F-distribution with 1 and n� 1ð Þ degrees of freedom
(see Appendix A), so it could be used as a statistic equivalent to tjj . We are now going

to generalize this statistic in order to deal with a random sample X1;X2; . . . ;Xn of

p-dimensional vectors following a p-dimensional normal distribution Np l;Rð Þ. For
testing the null hypothesis

H0 : l ¼ l0 versusH1 : l 6¼ l0; ð6:3Þ

we can use a natural generalization of t2 to the multivariate case, that is,

T2 ¼ n X� l0
� �T

S�1 X� l0
� �

; ð6:4Þ

where X is the vector of the sample means of all p-variables and S is the sample

variance–covariance matrix. The statistic T2 is proportional to the squared

Mahalanobis distance X� l0
� �T

S�1 X� l0
� �

between X and l0, so it measures

how far X is from the hypothesized mean value l0 in a way that is adjusted for the

different variances of the p components and their correlations. Under the null

hypothesis H0 : l ¼ l0, the statistic T2 is distributed as

ðn� 1Þp
ðn� pÞ Fp;n�p; ð6:5Þ

whereFp;n�p is a random variablewith anF-distributionwith p and n� pð Þ degrees of
freedom. This means that a T2-test will reject H0 when

T2 � c0 ¼ ðn� 1Þp
ðn� pÞ Fp;n�p að Þ; ð6:6Þ

where Fp;n�p að Þ is the upper 100a percentile from the F-distribution with p and

n� pð Þ degrees of freedom.
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Example 6.1 Let us consider the three-band data from a small image (8 by 13 pixels)

of a monochromatic tile. This data set was used earlier in Example 3.3, where

we tested whether the mean Band 1 reflectance is consistent with the specification

value of m0 ¼ 25:05. In Example 5.10, we discovered that 4 out of 104 observations

were outliers, sowe are nowgoing to use only the remaining 100 observations.We can

perform calculations for Band 2 and 3 data in order to test the specifications of 37.53%

and 74.99% of reflectance in the two bands, respectively. The resulting t-statistics are

equal to�0:646 and 0.756, respectively. In both cases, we are not able to reject the null
hypothesis because the absolute values of those statistics are smaller than the critical

value ta=2;n�1 ¼ t0:025;99 ¼ 1:98.Based on our univariate analysis repeated three times

for the three spectral bands, we conclude no evidence against conforming to the

specification.

In order to perform multivariate analysis, we assume that our measurements are

realizations of a random sample X1;X2; . . . ;Xn (n ¼ 100) from a three-dimensional

normal distributionN3 l;Rð Þ. The vector l represents “true” reflectances as measured

by the sensor. Let us denote the specification values as the vector

l0 ¼ 25:05; 37:53; 74:99½ �T . We assume here that the sensor is calibrated, so that

the sensor measurements can be directly compared against the specification values.

The null hypothesis H0 : l ¼ l0 means that the tile conforms to the specification,

while the alternativeHa : l 6¼ l0 means that it does not conform. In order to calculate

T2 defined in formula (6.4), we need to calculate x ¼ 25:0252; 37:5146; 75:0180½ �T,

S ¼
0:0668 0:0049 0:0730

0:0049 0:0568 0:0610

0:0730 0:0610 0:1373

2
664

3
775; and S�1 ¼

405:4 376:4 �382:6

376:4 383:0 �370:1

�382:6 �370:1 375:0

2
664

3
775:

ð6:7Þ

This gives the value of the statistic T2 ¼ 177:35. In order to calculate

the threshold value c0 defined in (6.6), we obtain F3;100�3 0:05ð Þ ¼ 2:6984
and c0 ¼ 100� 1ð Þ � 3 �F3;100�3 0:05ð Þ= 100� 3ð Þ ¼ 8:262. Since T2 ¼ 177:35 �
8:262 ¼ c0, we reject the null hypothesis H0 : l ¼ l0 and conclude that the tile

does not conform to the specification. The conclusion is significantly different from

the previous conclusion based on the three univariate analyses. The reason for the

discrepancy is the strong correlation among the three variables (spectral bands),

which has not been taken into account in the univariate analyses. &

6.2.2 Interval Estimation for the Multivariate Population Mean

In Section 3.3, we discussed confidence intervals as a way to assess precision of point

estimation and to give an interval that is likely to contain the true value of a parameter.

When estimating the whole vector of the multivariate population mean

m ¼ m1; m2; . . . ; mp
� 	T

, we are in fact dealing with a set of p parameters, and we can

construct p confidence interval, one for each parameter. We have certain, say 95%,

INFERENCES ABOUT A MEAN VECTOR 175



confidence in each single confidence interval, but it is unclear how certain we can be

about all intervals jointly. The issue will be studied in this subsection.

Recall that for each single component mi of the vector l ¼ m1; m2; . . . ; mp
� 	T

, one

can construct the following confidence interval at the 1� að Þ confidence level:

Xi � tn�1ða=2Þ
ffiffiffiffi
sii

n

r
< mi < Xi þ tn�1ða=2Þ

ffiffiffiffi
sii

n

r
; ð6:8Þ

where Xi is the sample mean of the ith variable and sii is the sample variance, that is,

the ith element on the diagonal of the sample variance–covariance matrix S.

Example 6.2 Let us consider the three-band data used in Example 6.1. In Example

3.2, we constructed a confidence interval for the mean Band 1 reflectance based on all

104 observations. Since 4 out of those observations turned out to be outliers (see

Example 5.10), we will use only the remaining 100 observations here. Using

formula (6.8) with a ¼ 0:05, we obtain the values for the lower and upper bounds

of the confidence intervals for the population mean values m1; m2; and m3 as shown
in Table 6.1.

The confidence interval for the Band 1 mean is almost identical to the one

calculated in Example 3.2, which means that the four outliers had little impact on

the results. Note that the specification values given in the vector

l0 ¼ 25:05; 37:53; 74:99½ �T are all within the above confidence intervals. This is

consistent with our previous univariate conclusion that all three univariate tests do not

reject the hypothesized specification values. &

In Example 6.2, we constructed only three confidence intervals, but for higher

dimensions often seen in spectral data, we may need to use a much larger number of

confidence intervals. Consider an example of m ¼ 20 independent confidence inter-

vals, each at 95% confidence level. If we denote by W the number of unsuccessful

confidence intervals out of m ¼ 20, then W follows the binomial distribution with

p ¼ a ¼ 0:05 and n ¼ m ¼ 20. We have E Wð Þ ¼ np ¼ 1, which means that we can

expect, on average, 1 out of 20 confidence intervals to be unsuccessful in covering the

parameter. The probability of all 20 confidence intervals being successful is equal to

P W ¼ 0ð Þ ¼ 1� 0:05ð Þ20 ¼ 0:358, which is unacceptably low. One way to increase
this probability is to increase the confidence level of each single confidence interval.

We will now show how this can be done.

Table 6.1 The Confidence Intervals for the Population Mean Values in the Three

Spectral Bands Based on the Data Discussed in Example 6.2

Estimated Parameter Lower Bound Upper Bound

m1 24.974 25.077

m2 37.467 37.562

m3 74.945 75.092

Each interval is at the confidence level of 0.95.
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We have assumed so far that the sample X1;X2; . . . ;Xn consists of p-dimensional

vectors following a p-dimensional normal distributionNp l;Rð Þ.We now additionally

assume that the p-dimensional components are stochastically independent, that is, the

variance–covariance matrix R is diagonal with variances sii on the diagonal. We can

then construct m � p independent confidence intervals for the means as

Xi � tn�1ða=2Þ
ffiffiffiffi
sii

n

r
< mi < Xi þ tn�1ða=2Þ

ffiffiffiffi
sii

n

r
; i ¼ 1; . . . ;m: ð6:9Þ

We would like to make sure that all those confidence intervals are successful in

covering the respective parameters with a high probability. From the definition of

independent events, the probability of an intersection of independent events is equal to

the product of the events’ probabilities. Hence, we obtain the following formula:

Pfallm confidence intervals at the level ð1� aÞ
are successful; that is; they contain m’sg ¼ ð1� aÞm:

Since this probability describes the joint probability of success, it is called the joint

confidence level. In order to have the joint confidence level for all m simultaneous

confidence intervals at the level of 1� a0ð Þ, we need to construct each of the single,
one-at-a-time confidence intervals at the confidence level 1� að Þ, where

a ¼ 1� 1� a0ð Þ1=m: ð6:10Þ

For example, in order to constructm ¼ 20 independent confidence intervals at the

joint confidence level of 0.95 (a0 ¼ 0:05), we need to use a ¼ 0:002561, which results
in an approximate 99.74% confidence level for each one-at-a-time confidence

interval.

In practice, we are rarely able to assume independence of the confidence intervals.

This is why we are going to introduce the so-called Bonferroni confidence intervals

that can be used without any assumptions about the relationships among the intervals.

The Bonferroni approach is based on the following Bonferroni inequality.

Result 6.1 (Bonferroni Inequality). For any set of events Ai; i ¼ 1; . . . ;m, we

have the following boundary on the probability of the intersection of the events:

P \m
i¼1

Ai


 �
� 1�

Xm
i¼1

P Ac
i

� �
; ð6:11Þ

where Ac
i is a complement of Ai, which means that P Ac

i

� � ¼ 1� P Aið Þ.

See Problem 6.4 for a hint on how to obtain a proof of the above result. If we denote

by Ai the event that the ith 1� að Þ confidence interval is successful in covering the

parameter it estimates, then P Aið Þ ¼ 1� a and P Ac
i

� � ¼ a. The intersection of all Ai

events describes the joint success of all confidence intervals, and we obtain the

following boundary on the joint confidence level:
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P(allm confidence intervals at the level (1-a) are successful, i.e., they contain mi’s)

¼ P \m
i¼1

Ai


 �
� ð1�maÞ: ð6:12Þ

In order to make sure that the joint confidence level is at least 1� a0, we need to

find the value of a such that ð1�maÞ ¼ 1� a0, that is, a ¼ a0=m. In other words, the

m simultaneous Bonferroni confidence intervals at the joint confidence level 1� a0
are defined using the following formula:

Xi � tn�1

a0
2m

�  ffiffiffiffi
sii

n

r
� mi � Xi þ tn�1

a0
2m

�  ffiffiffiffi
sii

n

r
; i ¼ 1; . . . ;m: ð6:13Þ

We can now apply the Bonferroni methodology to the confidence intervals

constructed in Example 6.2.

Example 6.2 (cont.) We again want to find the simultaneous confidence intervals for

the true reflectances m1; m2; and m3, but this timewe apply the Bonferroni methodology

in order to achieve the joint confidence level of 1� a0 ¼ 0:95. We use formula (6.13),

which results in each one-at-a-time confidence interval with a ¼ 0:05=3 ¼ 0:0167.
Table 6.2 shows the numeric results for the three confidence intervals.

These confidence intervals are wider, of course, than one-at-a-time confidence

intervals calculated before for a ¼ 0:05 and shown in Table 6.1. This means that the

specification values are even farther from the confidence bounds, which gives even

stronger support for the tile conforming to the specification, at least when using the

univariate analysis repeated three times.The stronger support can alsobeexplainedwith

the hypothesis testing approach. If we test the specification values as was done in

Example6.1,wecalculate thep-values in theusualway,butwhenmultiple testsaredone,

theBonferroni approach is to compare those p-values to a ¼ 0:05=3 ¼ 0:0167.We can

say that a given result becomes less significant in the presence of multiple testing. &

We may wonder if the Bonferroni approach gives us significantly inflated confi-

dence intervals in relation to the case of independent confidence intervals. In order to

check that, we can compare the individual aidep ¼ 1� 1� a0ð Þ1=m value for the

independent intervals (see (6.10)) with those of the Bonferroni aBonf ¼ a0=m. It turns

out that aidep is only slightly larger than aBonf , which means that the nominal

Table 6.2 The Bonferroni Confidence Intervals at the Joint Confidence Level of 0.95 for

the Population Mean Values in the Three Spectral Bands Based on the Data Discussed in

Example 6.2

Estimated Parameter Lower Bound Upper Bound

m1 24.962 25.088

m2 37.457 37.573

m3 74.928 75.108
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confidence levels of the individual confidence intervals will be very similar in both

cases. One can show that for any m � 1, we have the following boundaries for the

proportion of the two a’s:

1 � aidep
aBonf

� �ln 1� a0ð Þ
a0

for 0 < a0 < 1 ð6:14Þ

and

1 <
�ln 1� a0ð Þ

a0
� �ln 1� 0:05ð Þ

0:05
¼ 1:026 for 0 < a0 � 0:05: ð6:15Þ

Consequently, aidep is never larger than aBonf by more than 2.6% for the range of

0 < a0 � 0:05 that is usually used. In other words, the Bonferroni confidence

intervals are not much wider than the confidence intervals assuming independence.

This makes the Bonferroni approach very attractive in any context when the exact

relationships among the confidence intervals are difficult to take into account. On the

other hand, more efficient confidence regions exist for correlated variables. This will

be the topic of the next section.

The considerations of the previous paragraphs apply to a set of independent

confidence intervals. Now we want to compare a single Bonferroni confidence

interval with a single classic confidence interval. It is worthwhile to check how

much wider the Bonferroni interval is in relation to the classic one. Note that the

length of a Bonferroni confidence interval is proportional to tn�1 a0=2mð Þ, while
the length of a single classic confidence interval is proportional to tn�1 a0=2ð Þ.
The resulting proportion

tn�1 a0=2mð Þ
tn�1 a0=2ð Þ ð6:16Þ

is shown in Figure 6.1 as a function of the number m of the Bonferroni confidence

intervals for various sample sizes and a0 ¼ 0:05. We can see thatm ¼ 2 results in an

approximately 15% increase in the length of the confidence interval. For a large

number of Bonferroni intervals up to m ¼ 200, the length of the confidence interval

less than doubles, except for very small sample sizes n. The solid line represents the

large-sample approximation based on the proportion of the percentiles from the

standard normal distribution, that is,

z a0=2mð Þ
z a0=2ð Þ : ð6:17Þ

6.2.3 T2 Confidence Regions

Consider bivariate data generated from a bivariate normal distribution with the

population mean l ¼ m1; m2½ �T. When constructing the simultaneous confidence
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intervals for the twomeans, we are making a joint statement about plausible values of

l. If a confidence interval L1 < m1 < U1 for the first mean is considered in isolation,

we are not assuming any knowledge about the second mean m2. Consequently, in the
two-dimensional space of values for l plotted in Figure 6.2, the confidence interval

corresponds to an infinite vertical strip marked by shaded lines. On the other hand, a

confidence interval L2 < m2 < U2 for the second mean corresponds to an infinite

horizontal strip in Figure 6.2 because no knowledge can be assumed about the first

mean. A joint statement of both simultaneous confidence intervals is equivalent to an

intersection of the two strips in Figure 6.2, resulting in a rectangle as a plausible region
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Figure 6.1 The graph shows howmany times the Bonferroni confidence intervals are longer than a single

confidence interval at the confidence level a0 ¼ 0:05. The values were calculated based on formulas (6.16)

and (6.17).

U1L1

µ1

U2

L2

µ2

Figure 6.2 Simultaneous confidence intervals for two means resulting in a rectangular confidence region

as an intersection.
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for l. The rectangle is called a confidence region for l. The joint confidence level
1� a0ð Þ of the two simultaneous confidence intervals becomes the confidence

level of the rectangular confidence region.

In a general context, a p-dimensional confidence region consists of all p-

dimensional vectors that are plausible as values of the mean vector l. Confidence
regions may have various shapes, but some of them might be better than others.

We will now investigate this issue.

We again assume that our measurements are realizations of a random sample

X1;X2; . . . ;Xn from a p-dimensional normal distributionNp l;Rð Þ. In Chapter 3, we
constructed a confidence interval for a single parameter as a set of parameter values

that would not be rejected if tested in hypothesis testing. We can now use the same

concept to define a confidence region related to the T2-test introduced in Sec-

tion 6.2.1. Based on the rejection rule defined in (6.6), we can write that lwould not
be rejected if

n X� l
� �T

S�1 X� l
� �

< c0; ð6:18Þ

where c0 ¼ ½ðn� 1Þp=ðn� pÞ�Fp;n�pðaÞ. The inequality (6.18) defines a

100ð1� aÞ% T2confidence region for the mean l. Based on Property 5.2, the

region is ellipsoidal with the center at X and a boundary defined by the p-

dimensional ellipsoid l 2 Rp : n X� l
� �T

S�1 X� l
� � ¼ c0

n o
.

Example 6.3 Here we use the data set from Example 6.1, where 100 three-

dimensional observations were used. Utilizing the calculations of x and S�1 done

in Example 6.1, we obtain the following 95% ellipsoidal confidence region for l:

100 �
25:0252

37:5146

75:0180

2
664

3
775� l

0
BB@

1
CCA

T
405:4 376:4 �382:6

376:4 383:0 �370:1

�382:6 �370:1 375:0

2
664

3
775

25:0252

37:5146

75:0180

2
664

3
775� l

0
BB@

1
CCA < c0;

ð6:19Þ

where c0 ¼ 100� 1ð Þ � 3 �F3;100�3 0:05ð Þ= 100� 3ð Þ ¼ 8:262.
A disadvantage of confidence regions, as opposed to confidence intervals, is that

the inequality (6.19) cannot be written in a simpler form, and consequently, one

cannot immediately seewhich vector values of l belong to the confidence region. In
order to check a specific value l0, we need to calculate the left-hand side of (6.19) for
l ¼ l0. If the left-hand side is less than c0, this means that l0 belongs to the

confidence region. This procedure is more difficult and less intuitive than simply

looking at the simultaneous confidence intervals to check the plausible values for the

parameters.

In order to check the specificationvaluesl0 ¼ 25:05; 37:53; 74:99½ �T considered in
Example 6.1, one can calculate the left-hand side of (6.19), which is the same as the

value of the T2 statistic calculated in Example 6.1 as 177.35. That value is larger than

c0 ¼ 8:262, and we conclude that the vector l0 ¼ 25:05; 37:53; 74:99½ �T is outside of
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the 95% confidence region for the mean vector l. In other words, the three

specification values are not the plausible true reflectance values as measured by

the sensor. &

We may wonder how the ellipsoidal T2 confidence regions are related to the

simultaneous Bonferroni confidence intervals. This is addressed by the following

example.

Example 6.4 Here we considered four data sets, each consisting of n ¼ 100

bivariate observations generated from a bivariate normal distribution with the

population mean l ¼ m1; m2½ �T. Each data set represented a different scenario with

a different value of the correlation coefficient r between the two variables (the

varianceswere assumed to be the same in all scenarios). The simultaneous Bonferroni

confidence intervals for m1 and m2 were constructed at the joint confidence of 0.95.

This resulted in a rectangular confidence region analogous to the one shown in

Figure 6.2. The rectangular region is not impacted by the correlation coefficient r as

shown by identical rectangles in all four scenarios in Figure 6.3. On the other hand, the

elliptical T2 confidence regions will vary with r because of its impact on the sample

variance–covariance matrix S. Figure 6.3 shows the elliptical regions at the same

confidence level of 0.95 for four different values of r. For r � 0:9, there is a significant
difference between the rectangular and elliptical confidence regions.We can see large

parts of the rectangle that are outside the ellipse. One may wonder which of these two

approaches is a more correct representation of the unknown population mean l. It
turns out that the areas outside of the ellipse are less likely to capture the mean l. This
is why the elliptical regions are able to have the same nominal confidence while

covering less area, which in turnmeans beingmore specific in pinpointing the position

of l. This is analogous to having shorter confidence intervals that give a higher

r = 0 r = 0.5

r = 0.9 r = 0.99

Figure 6.3 A comparison of the rectangular Bonferroni confidence regions with the elliptical T2

confidence regions at the same nominal joint confidence of 0.95 as discussed in Example 6.4.
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precision of estimation in the case of one dimension. Consequently, the elliptical

regions are more efficient in capturing l because they use smaller areas to achieve

the same confidence as that of the rectangular region. It should also be mentioned

that the actual joint confidence of the Bonferroni confidence intervals would

typically be larger than their nominal joint confidence, but there is no easy way

to calculate what the exact joint confidence is. This is another reason for the

Bonferroni confidence intervals being less efficient than the elliptical confidence

regions. &

6.3 COMPARING MEAN VECTORS FROM TWO POPULATIONS

Let us now consider two independent samples from two different populations.Wewill

be interested in understanding differences between the two populations. One way to

do this is to see if they have the same mean. This section will deal with statistical

inference about the difference in the two means. Here is an example where such

statistical inference can be useful.

Example 6.5 We again use the Example 6.1 three-band data from a small image

(8 by 13 pixels) of amonochromatic tile.We nowwant to take into account the spatial

structure in the image. The four outliers discussed earlier are all situated in one corner

(thewhite area in the lower right corner in Figure 6.4). After excluding the outliers, we

may wonder whether certain areas in the image are significantly different and how

different they are from other areas in terms of their reflectance. We define the first six

columns of pixels as Sample 1 (this is an 8 by 6 pixel gray area on the left-hand side in

Figure 6.4), and the remaining 52 pixels as Sample 2 (marked as black in Figure 6.4).

In order to decide if there is a statistically significant difference between the two

samples and how large the difference between the true reflectances might be, we need

to develop some general methodology, discussed next. &

Figure 6.4 Three areas marked in a small image (8 by 13 pixels). Thewhite area in the lower right corner

indicates four outlying pixels. The two areas being compared in Example 6.5 are in gray and black,

respectively.
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Let us assume that X11;X12; . . . ;X1n1 is a random sample of size n1 from a p-

dimensional normal distribution Npðl1;R1Þ, and X21;X22; . . . ;X2n2 is a random

sample of size n2 from Npðl2;R2Þ. We assume that the two samples are independent

of each other. We want to test the null hypothesis

H0 : l1 ¼ l2 versusH1 : l1 6¼ l2: ð6:20Þ

Hence, we need to estimate l1 � l2, the difference between the mean vectors. We

can do this by usingX1 � X2, whereX1 andX2 are samplemeans from the first and the

second samples, respectively. In order to construct the appropriate test, we need to

make some assumptions. The following three subsections will consider three versions

of those assumptions. More details and proofs of some of the results can be found in

Johnson and Wichern (2007).

6.3.1 Equal Covariance Matrices

Here we assume that the variance–covariance matrices in the two populations are the

same and equal to R ¼ R1 ¼ R2. A test to check this assumption will be discussed in

Section 6.4. In order to estimate R, we use the so-called pooled variance–covariance
matrix equal to a weighted average of the sample variance–covariance matrices from

the two groups, that is,

Spooled ¼ ðn1 � 1Þ
ðn1 þ n2 � 2Þ S1 þ ðn2 � 1Þ

ðn1 þ n2 � 2Þ S2: ð6:21Þ

We can now define a T2-type statistic of the form

T2
2 ¼ X1 � X2

� �T 1

n1
þ 1

n2


 �
Spooled

� ��1

X1 � X2

� �
: ð6:22Þ

When testing the null hypothesis H0 : l1 ¼ l2 versusH1 : l1 6¼ l2, we would

reject H0 when T2
2 � c2, where

c2 ¼ ðn1 þ n2 � 2Þp
ðn1 þ n2 � p� 1ÞFp;n1 þ n2�p�1ðaÞ: ð6:23Þ

The test is not particularly sensitive to slight departures from normality or a few

outliers. For more significant departures from the assumptions, one can use a more

robust version of the test as developed by Tiku and Singh (1982).

An ellipsoidal 100ð1� aÞ% T2 confidence region for l1 � l2 is defined by the

following inequality:

X1 � X2 � ðl1 � l2Þ
� �T 1

n1
þ 1

n2


 �
Spooled

� ��1

X1 � X2 � ðl1 � l2Þ
� �

< c2:

ð6:24Þ

184 MULTIVARIATE STATISTICAL INFERENCE



Example 6.5 (cont.) Wewant to test if there is a significant difference and how large

the difference is in the mean reflectances in the two areas in the image marked in

Figure 6.4. We obtain the following numerical results:

x1 � x2 ¼ �0:0212;�0:0697;�0:0598½ �T; Spooled ¼
0:0674 0:0045 0:0734

0:0045 0:0561 0:0606

0:0734 0:0606 0:1378

2
664

3
775:

ð6:25Þ

Since the variability within each of the two regions is believed to be due to the

measurement error, the difference l1 � l2 tells us how different the true reflectances

of the two regions are. In order to find the confidence region for l1 � l2, we can use
formula (6.24), which leads to the following inequality:

�0:0212

�0:0697

�0:0598

2
664

3
775� l1 � l2ð Þ

0
BB@

1
CCA

T
11018:5 10349:6 �10415:7

10349:6 10566:8 �10155:0

�10415:7 �10155:0 10190:3

2
664

3
775

�0:0212
�0:0697
�0:0598

2
4

3
5� l1 � l2ð Þ

0
@

1
A < c2; ð6:26Þ

where c2 ¼ 8:267, since F3;100�3�1ð0:05Þ ¼ 2:6994. In order to check whether

l1 � l2 ¼ 0 belongs to the confidence region, we calculate the left-hand side of the

above inequality for l1 � l2 ¼ 0, getting the value 12.256, which is larger than

c2 ¼ 8:267. This means that l1 � l2 ¼ 0 does not belong to the confidence region,

that is, there is a statistically significant difference between the mean reflectance

values in the two areas in the image. The inequality (6.26) describes how large the

difference l1 � l2 is, but it is difficult to see it graphically. If the data were two

dimensional, we could plot the ellipsoidal confidence region to get an idea about the

possible range of values for l1 � l2.
We could also use the equivalent hypothesis testing approach and calculate

the statistic T2
2 defined in (6.22), which is the same as the left-hand side of the

inequality (6.26) for l1 � l2 ¼ 0, that is, T2
2 ¼ 12:256. Since T2

2 ¼
12:256 > 8:267 ¼ c2, we reject the null hypothesis H0 : l1 ¼ l2 and draw the same

conclusion that the two areas are different. &

6.3.2 Unequal Covariance Matrices and Large Samples

Here we no longer assume that the variance–covariance matrices in the two popula-

tions are the same, but we need to assume large sample sizes, since the approximation

used here is based on the central limit theorem. The assumption of normality is not
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needed here, although the approximation will usually be more precise under

normality. We define a T2-type statistic of the form

T2
3 ¼ X1 � X2

� �T 1

n1
S1 þ 1

n2
S2

� ��1

X1 � X2

� �
: ð6:27Þ

When testing the null hypothesis H0 : l1 ¼ l2 versusH1 : l1 6¼ l2, we would

reject H0 when T
2
3 � w2p að Þ, where w2p að Þ is the upper 100að Þth percentile from a chi-

square distribution with p degrees of freedom.

An ellipsoidal 100ð1� aÞ% T2 approximate confidence region for l1 � l2 is

defined by the following inequality:

X1 � X2 � ðl1 � l2Þ
� �T 1

n1
S1 þ 1

n2
S2

� ��1

X1 � X2 � ðl1 � l2Þ
� �

< c3; ð6:28Þ

where c3 ¼ w2p að Þ.

Example 6.5 (cont.) Weagainwant to see howdifferent the two areas are. In order to

find the confidence region forl1 � l2, we can use inequality (6.28), which leads to the
following inequality:

�0:0212

�0:0697

�0:0598

2
664

3
775� l1 � l2ð Þ

0
BB@

1
CCA

T
10962:5 10274:1 �10378:8

10274:1 10468:0 �10099:7

�10378:8 �10099:7 10172:4

2
664

3
775

�0:0212

�0:0697

�0:0598

2
4

3
5� l1 � l2ð Þ

0
@

1
A < c3; ð6:29Þ

where c3 ¼ w23 0:05ð Þ ¼ 7:8147. In order to check whether l1 � l2 ¼ 0 belongs to the

confidence region, we calculate the left-hand side of the above inequality for

l1 � l2 ¼ 0, getting the value 12.018, which is larger than w23 0:05ð Þ ¼ 7:8147. This
means that l1 � l2 ¼ 0 does not belong to the confidence region, that is, there is a

statistically significant difference between the mean reflectance values in the two

areas in the image. As discussed in Section 6.3.1, we could obtain an equivalent result

by utilizing the hypothesis testing approach. We can see that the numerical results

shown here are not much different from those in Section 6.3.1. &

6.3.3 Unequal Covariance Matrices and Samples Sizes Not So Large

Here again we do not assume that the variance–covariance matrices in the two

populations are the same, and the sample sizes do not need to be as large as those in

Section 6.3.2, but we do assume normality again. We use the T2
3 statistic defined
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in (6.27). When testing the null hypothesis H0 : l1 ¼ l2 versusH1 : l1 6¼ l2, we
would reject H0 when T2

3 � c4, where

c4 ¼ vp

ðv� p þ 1ÞFp;v�p þ 1ðaÞ; ð6:30Þ

and v is the adjusted number of degrees of freedom calculated as

v ¼ p þ p2P2
j¼1 1=nj
� �

Trace U2
j

� 
þ Trace Uj

� �� 	2n o ; ð6:31Þ

where

Uj ¼ 1

nj
SjW

�1 and W ¼ 1

n1
S1 þ 1

n2
S2: ð6:32Þ

An ellipsoidal 100ð1� aÞ% T2 approximate confidence region for l1 � l2 is

again defined by the inequality (6.28), except that the threshold c3 is replaced with c4
defined by (6.30). More details on this approach can be found in Krishnamoorthy and

Yu (2004) and Nel and Van der Merwe (1986).

Example 6.5 (cont.) We again want to test if there is a difference between the two

areas. The confidence region for l1 � l2 is given by formula (6.29), except that the

threshold c3 needs to be replaced with c4 calculated from formula (6.30). We obtain

v ¼ 96:95 and c4 ¼ 8:272. Note that the value of c4 is very close to c2 obtained in

Section 6.3.1. Since T2
3 ¼ 12:018 > 8:272 ¼ c0, we again reject H0 : l1 ¼ l2. &

6.4 INFERENCES ABOUT A VARIANCE–COVARIANCE MATRIX

We sometimes deal with two or more independent samples from different popula-

tions, andwemay need to know if thevariance–covariancematrices can be assumed to

be the same in those populations. That is, we would like to test the null hypothesis

H0 : R1 ¼ R2 ¼ � � � ¼ Rg, where g is the number of populations or groups. When

testing the equality of means in two populations in Section 6.3, the methodology is

dependent on whether the two variance–covariance matrices are the same.

If the variance–covariance matrices from several populations are the same, we can

estimate the joint matrixRwith the pooled estimate analogous to formula (6.21). This

time, the estimate is based on the sample variance–covariance matrices

Sj; j ¼ 1; . . . ; g, from the g samples with their sizes denoted by nj; j ¼ 1; . . . ; g.
The pooled sample variance–covariance matrix is then defined as

Spooled ¼ 1Pg
j¼1ðnj � 1Þ

Xg
j¼1

ðnj � 1ÞSj: ð6:33Þ
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If the population variance–covariance matrices are different, then their estimates

should be substantially different from the pooled estimate Spooled. The difference is

measured by the Box’s M statistic (see Box (1950) and Box and Draper (1969))

defined as

M ¼
Xg
j¼1

ðnj � 1Þ
" #

ln
���Spooled����Xg

j¼1

ðnj � 1Þln��Sj��: ð6:34Þ

The M statistic is closely related to a likelihood ratio statistic for this testing

problem (see Section 10.2 in Anderson (2003)). The approximate a-level Box’s M-

test rejects H0 : R1 ¼ R2 ¼ � � � ¼ Rg when M � c, where

c ¼ 1

1� u
w2v að Þ; v ¼ p p þ 1ð Þ g� 1ð Þ=2; ð6:35Þ

and

u ¼
Xg
j¼1

1

ðnj � 1Þ �
1Pg

j¼1ðnj � 1Þ

" #
2p2 þ 3p� 1ð Þp

12v

� �
; ð6:36Þ

where p is the dimensionality of the data. The approximation works well when each

sample size nj exceeds 20 and p and g do not exceed 5. When these conditions do not

hold, other approximations can be used (see Box (1949,1950)).

Example 6.6 In Example 6.5, two areas in an image (see Figure 6.4) were compared

by considering the two sets of pixels as independent samples. In order to decidewhich

of the methodologies introduced in Section 6.3 would be most appropriate, wewould

like to test the equality of the population variance–covariance matrices. The pooled

sample variance–covariance matrix was calculated earlier and is shown in (6.25).

We also obtain v ¼ 6, u ¼ 0:0332, w26 0:05ð Þ ¼ 12:59, c ¼ 13:02, and M ¼ 8:67.
Since M ¼ 8:67 < 13:02 ¼ c, we do not reject the H0 : R1 ¼ R2 and accept

the possibility that the population variance–covariance matrices are the same.

Hence, the methodology introduced in Section 6.2.1 is the most appropriate in this

context. &

6.5 HOW TO CHECK MULTIVARIATE NORMALITY

The assumption of normality is often used in various methods of statistical inference

in order to utilize distributional properties of some statistics. It is then of interest to

check if a givenp-dimensional data set comes froma normal distribution.Assume that

our data come from a population model described by a random vector

X ¼ X1; . . . ;Xp

� 	
. We want to test the hypothesis that X follows a multivariate

normal distribution. One way to do this is to check for some conditions necessary

188 MULTIVARIATE STATISTICAL INFERENCE



for X to follow a multivariate normal distribution. Based on Property 5.4, one such

condition is that each component Xj; j ¼ 1; . . . ; p, follows a univariate normal

distribution. In Section 3.5, we described some ways of checking the univariate

normality. This procedure should be performed on all p variables. A different

procedure is suggested by Property 5.3 saying that any linear combination should

also be normal. Assuming we have n multivariate observations, we could generate

values of a linear combination by multiplying the n by p data matrix X by a p-

dimensional vector of coefficients a, which is equivalent to projecting the data points

on the direction of the vector a. The resulting data given by the n-dimensional vector

y ¼ Xa should be checked for normality. Various choices for the vector of

coefficients a could be obtained by using random numbers. A procedure proposed

by Srivastava (1984) (see also Section 3.5.2 in Srivastava (2002)) amounts to

projecting on the vector a equal to an eigenvector ej; j ¼ 1; . . . ; p, of the

sample variance–covariance matrix S. The appeal of this method is that the resulting

p variables described by yj ¼ Xej; j ¼ 1; . . . ; p, are uncorrelated (which will

become clear in Chapter 7). When the original components Xj; j ¼ 1; . . . ; p, are
in different physical units, the variables could be first standardized prior to further

calculations.

If any of the univariate projections exhibit highly significant non-normality, there

is no need for further investigation. We stress the need for highly significant results

because when many projection directions are used, one needs to ensure a large joint

confidence level as discussed in Section 6.2.2.

If a given data set passes the test of univariate projections, further methods can be

used that more explicitly address the multivariate structure of the data distribution.

One approach is to consider the squared Mahalanobis distances of observation

vectors from the mean vector, that is,

D2
i ¼ Xi � X

� �T
S�1 Xi � X
� �

; i ¼ 1; . . . ; n: ð6:37Þ

As n tends to infinity, the distribution ofD2
i approaches the chi-square distribution

with p degrees of freedom.We could then create a probability plot (see Section 3.6) of

the sorted d2
i values ofD

2
i ’s versus percentiles from the chi-square distribution. Some

authors suggest this procedure for n and n� pð Þ greater than 25. However, other

authors point out that the use of the chi-square distribution could bemisleading, and a

much larger sample size n is needed for larger p.

A preferred approximation is with the use of a beta distribution, which leads to the

following Small’s (1978) graphical method. Based on the observed d2
i values,

calculate

ui ¼ nd2
i

n� 1ð Þ2 ; ð6:38Þ

and then plot the sorted ui; i ¼ 1; . . . ; n, values against the percentiles from the beta

distribution given by
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vi ¼ F�1
a;b

i � g
n� g� b þ 1


 �
; ð6:39Þ

where

a ¼ p=2; b ¼ n� p� 1ð Þ=2; g ¼ a� 1

2a
; b ¼ b� 1

2b
: ð6:40Þ

The plotted points should line up along a straight line having slope 1 and going

through the origin. Departures from this pattern suggest non-normality of all data or

some single observations.

Example 6.7 We again use the Example 6.1 three-band data from a small image (8

by 13 pixels) of a monochromatic tile. The univariate normality was confirmed in

Example 3.4 for all 104 pixels in the image, even when including the four outliers

identified later on in Example 5.10. Here we are going to investigate only the

remaining 100 observations. We can implement the Small’s graphical method for

checking three-dimensional normality. We obtain the values a ¼ 1:5; b ¼ 48;
g ¼ 0:1667; and b ¼ 0:4896, and the plot of the sorted ui; i ¼ 1; . . . ; n, values

against the percentiles given by (6.39) is shown in Figure 6.5. The points line up

reasonably close to the line, which is consistent with the normality assumption.

Figure 6.6 shows the probability plot of the squared Mahalanobis distances d2
i

versus percentiles of the chi-square distribution with p ¼ 3 degrees of freedom.

The points line up along the plotted line almost as well as those in Figure 6.5. It seems

that the chi-square approximation works quite well in this case, probably due to a

reasonably sized sample with n ¼ 100 for p as small as 3. &

More topics on multivariate statistical inference can be found in Johnson and

Wichern (2007), Anderson (2003), Srivastava (2002), and Rencher (2002). A more

applied approach can be found in Hardle and Simar (2007).
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Figure 6.5 A probability plot using the Small’s method for Example 6.7 data.
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PROBLEMS

6.1. Perform the calculations for the T2 statistic done in Example 6.1. Repeat your

calculations for all 104 observations (including outliers). Are the results

significantly different?

6.2. Use the infrared astronomy data introduced in Example 3.3. This is a three-

dimensional data set (p ¼ 3) with bands J, H, and K treated as three variables.

a. Your colleague calculated the mean vector x for the sample of C AGB stars

and sent the results to you in an email. Do the calculations yourself, so that

you can find out what the vector coordinates are.

b. Your colleague was in rush, so he made a mistake and wrote to you that

these are typical, average values for H II regions. You look at the vector x

and wonder if this can indeed be typical for H II regions. So, you consider

that vector as your vector l0. You define l as the theoretical mean of a

population of H II regions. Of course, you do not have information about

the whole population. You have only a sample of 59 H II regions. You want

to test the null hypothesis that H0 : l ¼ l0. Use the T2-test to test that

hypothesis. Draw conclusions. Can you be sure that your colleague has

made a mistake?

c. Use the data on H II regions in order to construct a T2 confidence region for

the theoretical mean l of a population of H II regions. Check if the vector l0
from point b belongs to that region.

6.3. Do the opposite of calculations in Problem 6.2, that is, calculate l0 based on H II

regions and test if this is a plausible mean vector for the population of C AGB

stars. Draw conclusions.
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Figure 6.6 A probability plot using the chi-square approximation for Example 6.7 data.
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6.4. Prove the Bonferroni inequality (Result 6.1). Hint: Show the following:

P \n
i¼1

Ai


 �
¼ 1� P \n

i¼1
Ai

� �c
 �
¼ 1� P

[n
i¼1

Ac
i

 !
� 1�

Xn
i¼1

P Ac
i

� �
:

6.5. Perform the calculations for the T2 confidence region done in Example 6.3.

Repeat your calculations for all 104 observations (including outliers). Are the

results significantly different?

6.6. Use the infrared astronomy data introduced in Example 3.3. This is a three-

dimensional data set (p ¼ 3)with bands J, H, andK treated as three variables.We

have two groups ofmultivariate observations, one sample from the population of

C AGB stars and one sample from the population of H II regions. Test the

hypothesis that the mean vectors in the two populations are the same.

a. Here assume that the population variance–covariance matrices are the same

in the two populations.

b. Now assume that the population variance–covariance matrices are not the

same in the two populations. Consider the samples large, but not necessarily

normal.

c. Now assume that the population variance–covariance matrices are not the

same in the two populations. Consider the samples not so large, but assume

they are normal.

6.7. Perform the calculations leading to the implementation of the Small’s graphical

method as done in Example 6.7. Repeat your calculations for all 104 observa-

tions (including outliers). Are the results significantly different?

6.8. Use the infrared astronomy data introduced in Example 3.3. This is a three-

dimensional data set (p ¼ 3) with bands J, H, and K treated as three variables.

We have two groups of multivariate observations, one sample from the popula-

tion of C AGB stars and one sample from the population of H II regions.

a. Test the hypothesis that the variance–covariance matrices in the two

populations are the same.

b. Use the Small’s graphical method to check if the sample describing C AGB

stars comes from a three-dimensional normal distribution in terms of the

values in bands J, H, and K.

c. Repeat point b for the sample of H II regions.
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C H A P T E R 7

Principal Component Analysis

7.1 INTRODUCTION

In Section 5.5, we considered various ways of measuring overall variability in

multivariate data. If p-dimensional observations are represented as points in a

p-dimensional space Rp, the overall variability measures the variability of all those

points. It is clearly a difficult task to summarize such variability with only one

number. In this chapter, we will further investigate the p-dimensional variability by

exploring the variability in various directions. This will help in understanding the

multidimensional structure of the variability. The simplest way to start is to think

about variability in the direction of the axes in Rp. We could start with the first

coordinatex1 and project all points onto the first axis. This is the same as considering

a univariate sample of data on the first variableX1, so it does not reveal anything new.

However, investigating other directions will be more interesting as demonstrated by

the following example.

Example 7.1 Wewant to consider a simplified scenario of an implanted radiopaque

marker, which is monitored by orthogonal projections on two X-ray screens.

Figure 7.1 shows a simplified two-dimensional scenario, where the screens are shown

in panel (a) along the normalized vectors v1 and v2, and the 150 dots represent

measurements collected over a 5-minute interval (once every 2 seconds). Panel (a)

shows the physical locations with respect to standard coordinates f1 and f2. When a

given point is projected on v1, the distance of that projection from the origin is denoted

as x1. In the same fashion, the projection on v2 is denoted as x2. The variables x1 and

x2 are the mathematical coordinates describing the locations of points based on the

measured values on the X-ray screens. Those coordinates are shown in panel (b). The

calculations will be done in the mathematical coordinates x1 and x2. In order to relate

back to the physical coordinates, one needs to use a linear transformation determined

by the vectors v1 and v2.

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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It is known that the marker can oscillate only along a fixed axis. We are assuming

here that the measurement errors in the two screens are independent of each other and

have the same normal distribution with the mean zero (i.e., the measurements are

unbiased). This means that the measurement error variability is the same in all

directions in thex1; x2 coordinates shown in Figure 7.1b. The oscillation of themarker

along a fixed axis will cause additional variability in that direction, which means that

we can find the oscillation axis by finding the direction of maximum variability. The

remaining variability, causing the points to be outside of that axis, must be due to the

measurement error.

The intuitive concept of the variability in a certain direction can be studied by

projecting the observation points on a straight line. Let us describe a straight line L

in a parametric form as a set of all vectors t � bþ d parameterized by t 2 R, where d

is a vector orthogonal to a normalized vector b. Then the orthogonal projection of a

point x ¼ x1; x2½ �T on L is given by bT � x� �
bþ d, which means that the position of

the projection on the line L can be described by the scalar product bT � x. If

X ¼ X1;X2½ �T is a random vector, the random variable Y ¼ bT �X describes the

variability in the direction b. We can also think of Y as a linear combination of

the components of X.

Figure 7.2 shows an example of points projected on two straight lines. The lines

L1 and L2 are defined by the normalized vectors b1 ¼ �1; 4½ �T= ffiffiffiffiffi
17

p
and

b2 ¼ 7;�1½ �T= ffiffiffiffiffi
50

p
, respectively. The variability in those two directions can be

described by variances of the variables Yi ¼ bTi �X; i ¼ 1; 2 (here, X has the

sampling distribution described by the points in Figure 7.2). For the data shown

in Figure 7.2, Var Y1ð Þ ¼ 0:0542 and Var Y2ð Þ ¼ 0:2199. It is intuitively clear that

we can get even larger variance by projecting on the line P1 shown in Figure 7.3.

In the next section, we will discuss how the direction of maximum variability can

be found.
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Figure 7.1 Locations of a radiopaque marker as measured by two X-ray screens positioned along the

vectors v1 and v2. Panel (a) shows the physical locations with respect to standard coordinates f1
and f2. Panel (b) shows the locations in the mathematical coordinates x1 and x2 as measured on

the X-ray screens.
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7.2 DEFINITION AND PROPERTIES OF PRINCIPAL COMPONENTS

Principal component analysis (PCA) identifies linear combinations of the original

variables that contain most of the information, in the sense of variability, contained in

the data. The general assumption is that useful information is proportional to the

variability.PCAisusedfordatadimensionality reductionandfor interpretationofdata.

7.2.1 Definition of Principal Components

In Figure 7.3, we drew an intuitively appealing direction P1 of maximum variability.

The question is: howdowefind the direction of the lineP1 mathematically? In order to

answer this question, let us introduce more general notation and some definitions.
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Figure 7.2 Variability of data in two directions as given by projections on the direction vectors.
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Figure 7.3 The direction of maximum variability (P1) and the orthogonal direction of the minimum

variability (P2).
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Consider a p-dimensional random vector X ¼ X1;X2; . . . ;Xp

� �T
and a linear combi-

nation of its components

Y1 ¼ aT1X ¼ a11X1 þ a21X2 þ � � � þ ap1Xp: ð7:1Þ

The first principal component (PC) is defined as the linear combination Y1 ¼ aT1X

that maximizes the variance VarðY1Þ subject to the constraint aT1a1 ¼ 1 that the vector

a1 has length 1. This constraint is necessary because the variance could be increased to

unlimited values by simply increasing the magnitude of the vector a1. This constraint

is also consistent with our interpretation of a1 as a direction vector.

Once thevariability in the direction a1 is explained by the first principal component

Y1, we would like to explain the variability in the remaining directions. To achieve

this, we define the second principal component as the linear combination

Y2 ¼ aT2X ¼ a12X1 þ a22X2 þ � � � þ ap2Xp determined by the direction unit vector

a2 orthogonal to a1, such that it maximizes the variance VarðY2Þ. The assumption of

orthogonality is crucial here. If a2 was at an acute anglewith a1, then the variability of

Y2 could be maximized by getting a2 almost collinear with a1. We could also say that

some of the Y2 variability would be in the a1 direction. By taking a2 orthogonal to a1,

we obtain the variability in Y2 that is uncorrelated with Y1. This can be explainedmore

formally by taking the vector a2 represented as a linear combination aa1 þ ba?1 ,
where a?1 is a vector orthogonal to a1. In that case, the variance of Y2 would be equal to

a2 Var Y1ð Þ þ b2 Var a?1 X
� �

(see Problem 7.11), and thus it would include the

variability already explained by Y1. Hence, we want a ¼ 0, which is the same as

the requirement of orthogonality to a1.

In the same fashion, we define the remaining principal components, where the jth

principal component is a linear combination Yj ¼ aTj X; j � p, such that VarðYjÞ is
maximized subject to the constraints that aj is a vector of length 1, which is orthogonal

to all ak; k < j.We can always find a set of exactly p principal components for a given

p-dimensional random vector X because there are p orthogonal directions in Rp.

7.2.2 Finding Principal Components

With the above definition of principal components, it is not immediately clear how

to find them as the appropriate linear combinations. Recall that VarðYjÞ ¼
aTj Raj; j ¼ 1; 2; . . . ; p, where R is the variance–covariance matrix of X. Hence, the

maximization of the variance is equivalent to maximizing the quadratic form defined

by the R matrix. The following theorem provides the solution.

Theorem 7.1 Let R be the variance–covariance matrix of the random vector

X ¼ X1;X2; . . . ;Xp

� �T
having eigenvalue-normalized-eigenvector pairs ðl1; e1Þ;

ðl2; e2Þ; . . . ; ðlp; epÞ, where the eigenvalues are ordered so that l1 � l2
� � � � � lp � 0. Then the jth principal component is given by

Yj ¼ eTj X ð7:2Þ
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and

VarðYjÞ ¼ eTj Rej ¼ lj; j ¼ 1; 2; . . . ; p: ð7:3Þ

Property 7.1 The principal components are uncorrelated since CovðYi; YjÞ ¼
eTi Rej ¼ ljeTi ej ¼ 0 for i 6¼ j.

Proof. See Problem 7.12.

Remark 7.1 In practice, the matrixR is unknown, and principal component analysis

is performed on the sample estimate S of R. In order to simplify notation, we will

mostly denote the eigenvalues and eigenvectors of S with the same symbols ðli; eiÞ,
without emphasizing that these are estimated quantities.

The coordinates of thevector ej denoted as e1j; e2j ; . . . ; epj are the coefficients of the
jth principal component as a linear combination of the original variables, that is,

equation (7.2) can be written as

Yj ¼ e1jX1 þ e2jX2 þ � � � þ epjXp: ð7:4Þ

The coefficients e1j; e2j; . . . ; epj are called loadings of the jth principal component.

Example 7.1 (cont.) For the radiopaquemarker data, we can calculate the estimated

variance–covariance matrix

S ¼
0:2585 0:1269

0:1269 0:1049

" #
; ð7:5Þ

which has the eigenvalues l1 ¼ 0:330 and l2 ¼ 0:033 and eigenvectors e1 ¼
0:871; 0:491½ �T and e2 ¼ 0:491;�0:871½ �T. Since the screen measurements are

assumed to be unbiased, the estimated position of the oscillation axes should go

through the sample mean point �x, and it can be written in the parametric form as

P1 ¼ t � e1 þ �x : t 2 Rf g shown in Figure 7.3. The variability along P1 is due to the

joint effect of the oscillation andmeasurement error. On the other hand, the variability

in the orthogonal direction e2 (plotted as P2 ¼ t � e2 þ �x : t 2 Rf g in Figure 7.3) is

only due to the measurement error. So, the standard deviation of the measurement

error can be estimated as smeasure ¼
ffiffiffiffiffi
l2

p ¼ 0:18. If wemodel the oscillations as being

random and independent of the measurement error, we can write that

s2oscillation þ s2measure ¼ l1 ¼ 0:330 ð7:6Þ

and soscillation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 � l2

p ¼ 0:545. By using principal component analysis, we are

able to estimate the position of themain axis of themarker oscillation, its variability in

that direction, and the precision of measurements. &
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The geometric interpretation discussed in Example 7.1 and seen in Figure 7.3 can

be generalized to the geometry in p dimensions. The eigenvectors e1; e2; . . . ; ep of the
variance–covariance matrix define orthogonal directions in which the variability of

the random vector X is sequentially maximized, and the projections on those

directions (principal components) are uncorrelated. If we denote by P the matrix

of eigenvectors as columns, the vector Y of principal components can be written as

Y ¼ PTX. Since PT is an orthogonal matrix representing a rotation (and possibly a

permutation of coordinates), PCA can be viewed as a rotation of the data into a more

convenient system of coordinates, where the new variables (i.e., principal compo-

nents) are uncorrelated. We can also express X in the new system of coordinates

e1; e2; . . . ; ep as follows. Since P is an orthogonal matrix, we have P�1 ¼ PT, and we

can write X ¼ PY or

X ¼ Y1 � e1 þ Y2 � e2 þ � � � þ Yp � ep; ð7:7Þ

which shows that X is a linear combination of the eigenvectors with principal

components as random coefficients.

Since thematrixR describes thevariability aroundl ¼ E Xð Þ, it is often convenient
to use the centered random vector Xcentered ¼ X� l. All formulas above can also be

writtenwithX replaced byXcentered. Thevariance–covariancematrix ofXcentered is still

the same matrix Rwith the same eigenvectors. In that case, the principal components

are also centered and are given by the formula Ycentered
j ¼ eTj Xcentered; j ¼ 1; . . . ; p.

In Chapter 5, we defined the total variability as the sum of variances of all Xi

variables, which also turned out to be equal to the sum l1 þ l2 þ � � � þ lp of

eigenvalues (see formula (5.27)). We can now see that the sum is also equal to the

total variability in the principal components. This makes sense since the rotation of

data does not change its variability.

It is often of interest to calculate the percent of variability accounted for by the ith

principal component, which can be calculated from the formula

li
l1 þ l2 þ � � � þ lp

: ð7:8Þ

The following example demonstrates this concept.

Example 7.2 Awhite colored tile was measured eight times using an X-Rite Series

500 Spectrodensitometer. The resulting 31-band spectral curves are shown in

Figure 7.4. This is a subset of Spectrometer Data. The 31 spectral bands (covering

the range from 400 to 700 nmwavelength) are treated as random component variables

X1;X2; . . . ;X31, and we have eight observation vectors on those variables. The sample

variance–covariance matrix S is a 31 by 31 dimensional matrix of rank 7 (see

inequality (5.24)). We want to investigate the nature of the measurement errors in

these measurements. We assume our measurements to be unbiased, and we get the

estimates of the measurement errors by subtracting the mean spectral curve �x (vector
of the components’ sample means) from all eight spectral curves. The resulting eight
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31-dimensional vectors are shown in Figure 7.5. The errors range from �1:22ð Þ to
0.98 in percent of reflectance. The variability of measurements as described by the

matrix S also describes the variability of the measurement error because the same tile

was measured each time.

The first seven eigenvalues of S are listed in Table 7.1. The remaining eigenvalues

are zero because of the rank of S equal to 7. The sum of those seven eigenvalues is the

total variability in the data set.
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Figure 7.4 Eight reflectance spectra of a white colored tile as discussed in Example 7.2.
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Figure 7.5 The estimates of the measurement errors, as discussed in Example 7.2.
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The calculated percentages of explained variability are listed in the second row of

Table 7.1. Since the majority of the variability is usually explained by a certain

number of the first principal components, we often use those initial principal

components and ignore the remaining principal components. Hence, it is also useful

to calculate the cumulative percent of variability explained by the initial principal

components. Those numbers are shown in the third row of Table 7.1.

We can see that 97.8% of themeasurement error variability is explained by the first

principal component. When we also add the second principal component, explaining

1.648%, the first two principal components together explain 99.448% of variability.

This means that almost all of the information about the measurement error is

contained in one or two variables (principal components). This is a considerable

simplification relative to 31 spectral bands.

7.2.3 Interpretation of Principal Component Loadings

Since the first several principal components tend to explain a large amount of

variability, it would be useful to interpret their meaning. In order to do that, we

need to inspect the loadings, that is, the coefficients of principal components.

Figure 7.6 shows the loadings of the first three principal components for Example 7.2

spectrodensitometer data.

Table 7.1 Variability Explained by the First Seven Principal Components for Example

7.2 Spectrodensitometer Data

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Eigenvalues 11.5254 0.1942 0.0553 0.0039 0.0033 0.0019 0.0007

Percent of variability 97.800 1.648 0.469 0.033 0.028 0.016 0.006

Cumulative percent 97.800 99.448 99.917 99.950 99.978 99.994 100.000
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Figure 7.6 Coefficients (loadings) of the first three principal components for Example 7.2 spectro-

densitometer data.
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The coefficients of the first principal component (PC1) are all positive and are of

almost the same magnitude. This means that PC1 is (approximately) proportional to

the average over all spectral bands, and it represents an overall magnitude of

reflectances in all bands. In the context of variability, PC1 represents the movement

of the spectral curve up and down in a parallel way, that is, by approximately the same

amount in all bands. To see this, let us investigate what happens when a curve moves

up in a parallel way. Since all X variables will increase, the first principal component

will also increase. On the other hand, each of the remaining principal components will

be almost unchanged because the sumof coefficients for those principal components is

close to zero.We can also see this from a different perspective by using equation (7.7).

Changing the value of Y1 will impact all components of X in approximately the same

way because the components of e1 are approximately the same.

We can see that the spectral curves in Figure 7.4 are largely parallel to each other,

which is exactly the variability explained by PC1 in this case. So, it is not surprising

that the movement up and down (expressed by PC1) accounts for most of the

variability. The same parallel relation is also seen in Figure 7.5.

Figure 7.6 shows that the first three coefficients of the second principal component

are significantly larger in magnitude (absolute value) than the remaining coefficients.

This means that PC2 is largely dominated by the first three spectral bands, and we

would interpret it as explaining variability in the first three spectral bands. To obtain an

alternative interpretation, we could contrast the substantially positive coefficients 1–6

with the substantially negative coefficients 13–27.

In order to better interpret the meaning of principal components, it is helpful to

introduce the concept of impact plots. Formula (7.7) holds for each observation, so it

must also hold for the mean of all observations. That is, we can express the sample

mean vector �x as the function of principal component sample means as follows:

�x ¼ �y1 � e1 þ �y2 � e2 þ � � � þ �yp � ep: ð7:9Þ

The impact of a given principal component can be measured by how much an

observation spectrum vector x would change due to a change in the principal

component value. Let’s assume that the jth principal component value is k standard

deviation units ¼ ffiffiffiffi
lj

p� �
away from the mean, and the remaining principal com-

ponents have values equal to their means. We want to see how different a

hypothetical vector

x ¼ �yj þ k
ffiffiffiffi
lj

p� �
� ej þ

X
i 6¼j

�yi � ei ð7:10Þ

is from �x. Based on equations (7.9) and (7.10), we can write that x ¼ �xþ k
ffiffiffiffi
lj

p � ej .
We can say that we start at the point �x, and move by the distance k

ffiffiffiffi
lj

p
in the

direction of ej . Figure 7.7 shows the values of such x for j ¼ 2, that is, the impact of

changes in the second principal component. The mean spectrum �x of all spectra is

shown as a solid line. The curve of positive impact is for k ¼ 5 and the negative

impact is for k ¼ �5. We could interpret the second principal component as
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explaining variability due to “tilting” in the shape of spectra (as shown in Figure 7.7),

where the curve goes up in the lower spectral bands and down in the higher spectral

bands for positive k. The tilting goes in the opposite direction for negative k.

The value of k ¼ 5 used in Figure 7.7 is rather excessive. Amore reasonable value

of k would be around 2 or 3 based on the two- and three-sigma rules, but the effect

would not be easily seen in the graph due to a much larger variability of reflectance

from band to band. To overcome this difficulty, we plot the measurement errors

x� �x ¼ k
ffiffiffiffi
lj

p � ej in Figure 7.8. The position of the mean �x is represented as the solid
line at the zero level. Here we use k ¼ 2 in order to reflect the two-sigma limits of

the principal component variability. The band variability, calculated as two times the

band sample standard deviation, is plotted (dot-dashed lines) as a point of reference to
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Figure 7.7 The impact of varying the value of the second principal component on the spectral curve based

on Example 7.2 data.
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Figure 7.8 The impact of varying the value of PC2 on the measurement errors based on Example 7.2 data

(with k ¼ 2). The plotted band variability (dot-dashed lines) equals two times the band sample standard

deviations.
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the variability of the whole data set. We can see a rather small impact of the second

principal component in most spectral bands, except for the first three bands.

In order to plot the impact of several principal components, we propose an impact

plot (see Figure 7.9), where the impact curves
ffiffiffiffi
lj

p � ej are plotted. For the x described
in formula (7.10), we have x� �x ¼ k

ffiffiffiffi
lj

p � ej . Hence, the impact curve describes the

impact on x of the change in the jth principal component by one standard deviation

k ¼ 1ð Þ. Figure 7.9 can be regarded as a simplified version of Figure 7.8,with only one

curve representing each type of variability. The actual variability is described by the

plus/minus limits of an impact curve multiplied by k as shown in Figure 7.8 for PC2.

Plots similar to Figure 7.8 could be created for the other principal components.

However, with some experience, one can draw the same conclusions from Figure 7.9.

The PC1 impact curve is approximately horizontal, which means that the

resulting impact on x will be the up and down movement with respect to �x as

explained before. The PC3 can be interpreted as a contrast between Bands 4–14 and

Bands 18–31, with the tilting similar to that of PC2 but for a different set of spectral

bands. The sample standard deviations of spectral bands are plotted as the dot-

dashed line, whichmostly overlaps with the PC1 line. This reflects the large fraction

of variability being explained by the first principal component. The lines do not

overlap for the first three bands, where the second principal component contributes

most of the remaining variability.

A plot of impact curves is useful when the standard deviations
ffiffiffiffi
lj

p
of principal

components are not very different from each other. When they differ a lot, the impact

curves with small
ffiffiffiffi
lj

p
are too close to zero level for us to see their variability. In those

cases, we can simply plot the vectors ej of loadings in order to interpret them.

Another way to evaluate the impact of principal components is to calculate the

percent of variability they contribute to individual variables. Formula (7.8) tells us

about the contribution to the total variability in all variables jointly, but not for
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Figure 7.9 The impact plot for the first three principal components in the context of Example 7.2 data.

DEFINITION AND PROPERTIES OF PRINCIPAL COMPONENTS 203



individual variables. In order to calculate the contribution to an individual variableXi,

we can write the ith components of both sides of equation (7.7), which gives

Xi ¼ Y1 � ei1 þ Y2 � ei2 þ � � � þ Yp � eip: ð7:11Þ

We conclude that Var Xið Þ ¼ sii ¼ l1 � e2i1 þ l2 � e2i2 þ � � � þ lp � e2ip, and the con-

tribution from the jth principal component is equal to lj � e2ij . We finally obtain the

percent of the variability in Xi explained by the jth principal component as

lj � e2ij
sii

: ð7:12Þ

In practice, all of the above quantities are estimated, and we obtain the formula

lj � e2ij
sii

; ð7:13Þ

where sii is the estimated variance of Xi, that is, the ith diagonal element of S.

Applications of these formulas will be demonstrated in the following example.

Example 7.3 This example uses remote sensing data. Some background informa-

tion about such data can be found in Example 1.3. Herewe use data from the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS), which is a sensor collecting

spectral radiance in the range of wavelengths from 400 to 2500 nm. It has been

flown on various aircraft platforms, and many images of the Earth’s surface are

available. Figure 7.10 shows a 100 by 100 pixel AVIRIS image of an urban area in

Rochester, NY, near the Lake Ontario shoreline. The scene has awide range of natural

andman-madematerial including amixture of commercial/warehouse and residential

neighborhoods, which adds a wide range of spectral diversity. Prior to processing,

invalid bands (due to atmospheric water absorption) were removed, reducing the

Figure 7.10 Color rendering of the AVIRIS scene in Rochester, NY, used in Example 7.3.
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overall dimensionality to 152 bands. This image has been used in Bajorski et al.

(2004) and Bajorski (2011a, 2011b).

When the p ¼ 152 spectral bands are treated as variables, and the n¼ 10,000 pixels

are treated as observations, one can calculate the resulting eigenvalues of the sample

variance–covariance matrix S of the whole image. This will tell us the variability

explained by principal components. The first seven eigenvalues and the percent

variability explained by the first seven principal components are given in Table 7.2.

We can see that 99.23% of the image variability is explained by the first two

principal components. Based on research in target detection methods (see Bajorski

et al. (2004)), it is known that the remaining principal components still contain

important information, and at least 20 principal components should be used for

describing this data set. We will also see this later on when discussing residuals in

Section 7.5. This means that what would otherwise be considered an overwhelming

amount of explained variability is still not sufficient in the context of this spectral data

set. This is different from Example 7.2, where a similar percent of explained

variability in the measurement error was judged to be sufficient.

Figure 7.11 shows the impact plot for the first three principal components. We can

interpret the first principal component as mainly the weighted average of radiance in

Table 7.2 Variability Explained by the First Seven Principal Components for the

AVIRIS Image from Example 7.3

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Eigenvalues 102,453,181 21,445,196 399,655 227,236 117,133 81,133 46,802

Percent of

variability

82.06 17.18 0.32 0.18 0.09 0.06 0.04

Cumulative

percent

82.06 99.23 99.55 99.73 99.83 99.89 99.93
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Figure 7.11 The impact plot for the first three principal components for the AVIRIS image discussed

in Example 7.3.
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the spectral bands 35–100. The remaining coefficients of PC1 are very small, and they

have little impact on the PC1 value. The second principal component is mainly the

weighted average of radiance in the first 35 bands. In order to see the proportion of

variability that each principal component explains in the individual spectral bands, we

could also plot values of the bands’ standard deviations as we did in Figure 7.9.

However, the resulting curve mostly overlaps the PC1 and PC2 curves in the plot,

which then becomes difficult to read.

In order to overcome this difficulty, we can calculate the fraction of explained

variability based on formula (7.13). For PC1, it becomes l1 � e2i1=sii for the ith spectral
band. The variability in the ith spectral band explained by the first k principal

components becomes

1

sii

Xk
j¼1

lj � e2ij : ð7:14Þ

Figure 7.12 shows the percentages of variability explained by the first three

principal components. The first PC explains almost all (above 98%) variability in

Bands 39–100. The second PC explains over 86% of the variability in each of the

first 34 bands. In bands above 102, both PC1 and PC2 contribute significantly, and

PC3 contributes between 3% and 5% in those bands. We can contrast these values

with the overall percentages of the explained variability as given in Table 7.2. For

example, PC3 explains only 0.32% of the total variability, but as much as 3–5% in

some bands.

The cumulative percent variability explained by the first three principal compo-

nents is plotted as a dot-dashed line in Figure 7.12. We can see that almost all

variability is explained by those PCs, but in some bands, up to 10% is still

not explained.
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Figure 7.12 Percentages of variability explained by the first three principal components within the

spectral bands of the AVIRIS image.
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The third principal componentwas difficult to interpret based on Figure 7.11 due to

the very small values of impact (because of relatively small
ffiffiffiffiffi
l3

p
). To deal with this

obstacle, we could plot the third eigenvector directly without multiplying by
ffiffiffiffiffi
l3

p
. An

alternative solution is to create an impact plot of PC3 together with the subsequent

principal components, as done in Figure 7.13. Each of the three PCs shown is a

contrast between the bands where a given line is above the zero level versus bands

where the line is below the zero level.

The concept of a contrast was explained in this section when interpreting

loadings in Figure 7.6 and impact curves in Figure 7.9. Here we will show an

interpretation of PC3 based on Figure 7.13. We first identify the PC3 impact

coefficients
ffiffiffiffiffi
l3

p
ei3 (values shown in Figure 7.13) that are considerably different

from zero. We do this based on an arbitrary decision that the coefficients larger than

25 or smaller than�25 are considerable. This leads to an interpretation of PC3 as a

contrast between a positive impact of Bands 25–37 and 83–152 versus a negative

impact of Bands 1–20 and 39–55. When the value of PC3 increases, the values in

Bands 25–37 and 83–152will also increase (assuming other PCs being constant) and

the values in Bands 1–20 and 39–55 will decrease.

Figure 7.14 shows the impact plot for PCs 30, 60, and 100. Those are again

contrasts between various spectral bands. The high frequency of oscillations suggests

some random behavior and a large impact of image noise. We will provide further

interpretations of principal components through their values (called scores) in

Section 7.4.

7.2.4 Scaling of Variables

The principal components are defined as linear combination of the original variables

X1;X2; . . . ;Xp. This means an implicit assumption about the comparability of those
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Figure 7.13 The impact plot for the selected principal components for the AVIRIS image discussed in

Example 7.3.
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variables. If one of the variables measures a physical quantity different from those

measured by other variables, then combining those variables directly is usually not

meaningful. If one variable measured reflectance of a surface in percent, and another

variable measured the distance to the surface in meters, then the result of principal

component analysis would depend on the specific units used here. If the distance units

were changed to centimeters, the variance of that variable would increase 10,000

times, whichwould significantly change thewhole analysis.When the variables are in

different physical units, we need to standardize them before performing principal

component analysis. In some situations, it might be possible to standardize based on

the subject matter knowledge of the variables, for example, by assessing their impact

on the process under consideration. In other situations, we need to rely on statistical

standardization, where the sample mean is subtracted and the result is divided by the

sample standard deviation. Such standardized variables have variance equal to 1, so

they can be directly compared. The variance–covariance matrix of the statistically

standardized variables is equal to the correlation matrix of the original variables.

Hence, we often talk about principal component analysis on the correlation matrix.

Most elements of the analysis are the same whether the variance–covariance or

correlation matrices are considered. One exception is the statistical inference dis-

cussed in Section 7.6. In all other cases, we will refer to the analysis of the estimated

variance–covariance matrix S with the understanding that if the variables are

statistically standardized, the matrix S is the same as the correlation matrix R of

the original variables.

Sometimes, the variables are in the same units, but it is not easy to tell if they should

be compared directly. Should the radiance in the visible range of radiation be directly

compared to the infrared radiation? If the answer is “no,” we should standardize each

of the spectral bands before further analysis. This may vary depending on a specific

data set. If the signal to noise level ismuch lower in some spectral bands than in others,
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Figure 7.14 The impact plot for selected principal components for the AVIRIS image discussed in

Example 7.3.
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then the standardizationwill amplify the noise from the noisy bands. Thiswill result in

an unduly large effect of noise on the analysis. There are also other factors at play, and

there is no general agreement on whether spectral data should be standardized within

bands. In this book, we do not standardize the spectral data.

7.3 STOPPING RULES FOR PRINCIPAL COMPONENT ANALYSIS

One purpose of PCA is to simplify a larger set of variables into a much smaller set of

principal components, which leads to dimensionality reduction of data.We then need

to have some stopping rules thatwould assist us in deciding on the number of principal

components to be taken into account. For example, the first k principal components

may contain most of the information contained in thewhole set of p variables. We can

say that we reduce the dimensionality of the data set from p to k, or that the effective or

intrinsic dimensionality of the data is equal to k. The decision about a reasonable

choice of k will usually depend on the meaning of variability in the specific

application, on our ability to interpret principal components, and on other practical

considerations. Nevertheless, it is useful to have a set of stopping rules from which

to choose.

One such stopping rule is based on the percent of variability explained by the first k

principal components.Wemay decide that once a threshold of 90%or 95% is crossed,

the resulting principal components might be sufficient for practical purposes. Using

this rule in Example 7.2 would result in one or two principal components, when using

a threshold of 95%or 99%, respectively. The percent-of-explained-variabilitymethod

can be appealing in some applications. For example, when investigating sources of

measurement error, we might be satisfied with addressing 99% of variability without

worrying about the remaining 1%. On the other hand, in some other imaging

applications, this method is not satisfactory. For example, in the context of imaging

spectrometer data, the total variability in the image is often very large due to the

spectral variability of the materials present in the image scene. Consequently, a small

percent of unexplained variability may still play a significant role.

In the context of spectral images, the number k of principal components required to

describe the image is usually quite large but still significantly smaller than the actual

dimensionality p. The number k is often called the intrinsic linear dimensionality

because the principal components represent variability in linear directions. They also

define an affine subspace in the p-dimensional space of the original observations,

which will be formalized in Section 7.5. The dimensionality k can also be called the

intrinsic global linear dimensionality because it is based on the global variance–

covariance matrix estimated from the whole image. This would be in contrast to

variance–covariance matrices that can be calculated from subsets of all pixels, for

example, only pixels representing certain types of ground cover such as grass areas or

water surface.

Example 7.4 Here again, we use remote sensing data. Some background informa-

tion about such data can be found in Example 1.3. Let us consider the 280 by 800 pixel
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HyMap Cooke City image shown in Figure 7.15, where each pixel is described by a

126-band spectrum (see Snyder et al. (2008) for details about the image). When the

p ¼ 126 spectral bands are treated as variables, and the n ¼ 224; 000 pixels are treated
as observations, one can calculate the resulting eigenvalues of the sample variance–

covariance matrix S, which tell us the variability explained by principal components.

Table 7.3 shows the percentages of the variability explained by the first eight PCs.

Even with the threshold of 99.9% of variability, we would opt for only eight principal

components, while in fact it is known that the remaining principal components still

contain important information. This is analogous to our experiencewith other spectral

images as discussed in Example 7.3 for anAVIRIS image.Wewill also verify this later

on when discussing residuals in Section 7.5. Of course, we could further increase the

percentage threshold. However, there is no clear guideline as to where this process

should be stopped, and the high percentages no longer give us any intuitive feel for a

specific value that should be used.

Another stopping rule for principal components is based on the plot of eigenvalues

as shown in Figure 7.16a for the Cooke City image.We are looking for an elbow in the

shape of the line, indicating a sudden drop in values. In this case, we would decide on

retaining the first two principal components based on the elbow shape. This result is

even less satisfactory than the previous selection of eight principal components.

When the eigenvalues differ by orders of magnitude, it is convenient to use the logari-

thmic scale for better differentiation of the values, as shown in Figure 7.16b. However,

in this case, it is still unclear where the threshold for the eigenvalues should be. &

7.3.1 Fair-Share Stopping Rules

Here we discuss stopping rules based on the fair share of variability expected from a

given principal component. If all variability was equally divided into all principal

Figure 7.15 Color rendering of the 280 by 800 pixel HyMap Cooke City image (see Snyder et al. (2008)

for details about the image).

Table 7.3 Variability Explained by the First Eight Principal Components for the Cooke

City image Data

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Percent of variability 88.94 9.08 0.96 0.65 0.16 0.05 0.04 0.03

Cumulative percent 88.94 98.02 98.98 99.64 99.80 99.85 99.89 99.92
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components, the share of each PC would be equal to l1 þ l2 þ � � � þ lp
� �

=p, where
l1 � l2 � � � � � lp � 0 are the eigenvalues of the estimated variance–covariance

matrix S. The simple fair-share stopping rule identifies the largest k such that lk is

larger than its fair share, that is, larger than l1 þ l2 þ � � � þ lp
� �

=p. We would then

use the first k principal components.

If one was concerned that the above method produces too many principal

components, a broken-stick rule could be used. The rule is based on the fact that

if a line segment of a unit length is randomly divided into p segments, the expected

length of the jth longest segment is given by

aj ¼ 1

p

Xp
i¼j

1

i
; j ¼ 1; . . . ; p; ð7:15Þ

which is used as the fair fraction of variability for the jth principal components. Note

that a1 > a2 > � � � > ap > 0, so we expect larger variability in earlier principal

components. The broken-stick stopping rule identifies the principal components with

the fraction of variability larger than the fair fraction aj . The rule tells us to stop at the

largest k such that lj= l1 þ l2 þ � � � þ lp
� �

> aj; for all j � k. The broken-stick

stopping rule threshold is usually larger than the simple fair-share threshold,

indicating the same or lower intrinsic dimensionality (see Problem 7.7).

We can see from Table 7.4a that both methods would select only the first principal

component for the Example 7.2 spectrodensitometer data, which is acceptable

because we would explain 97.8% of the measurement error.

However, both rules do not work well for detection of the intrinsic global linear

dimensionality of imaging spectrometer data. For the Cooke City image, the two

methodswould produce intrinsic dimensionalities of 2 or 3 (see Table 7.4b), which are

not satisfactory as explained earlier in Example 7.4.

A common scenariowhen the simple fair-share and the broken-stick stopping rules

do not work well is the situation with eigenvalues differing by orders of magnitude.

For example, when the first principal component accounts for 90% of variability, not
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Figure 7.16 Aplot of eigenvalues (often called a scree plot) is shown in (a) for the Cooke City image.

A logarithmic scale is used in plot (b) for better discrimination of the values that differ by orders

of magnitude.
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much is left for the remaining principal components and the threshold is crossed very

quickly. One could argue that we should consider themagnitude of a given eigenvalue

with respect to the remaining lower values (without the impact of the larger values).

This leads to the relative broken-stick rule, wherewe analyze lj as the first eigenvalue
in the set lj � ljþ1 � � � � � lp of eigenvalues, where j < p. This stopping rule is

based on the expected length of the longest segment if a line segment of unit length

is randomly divided into p� j þ 1ð Þ segments, which is equal to a1 defined in (7.15)

with p being replaced by p� j þ 1ð Þ. This means the threshold is equal to

bj ¼ 1

p� j þ 1

Xp�jþ1

i¼1

1

i
; ð7:16Þ

that is, the dimensionality k is chosen as the largest value such that

lj= lj þ � � � þ lp
� �

> bj , for all j � k. The dashed line in Figure 7.17 shows the bj

Table 7.4 Percent ofVariability Explained byPrincipalComponents and theRespective

Thresholds Based on the Simple Fair-Share and Broken-Stick Stopping Rules for the

Measurement Error Data in Example 7.2 (a) and for the Cooke City Image (b)

PC1 PC2 PC3 PC4 PC5 PC6 PC7

(a)

Percent of variability 97.80 1.65 0.47 0.03 0.03 0.02 0.01

Simple fair share 3.23 3.23 3.23 3.23 3.23 3.23 3.23

Broken-stick threshold 12.99 9.77 8.15 7.08 6.27 5.63 5.09

(b)

Percent of variability 88.94 9.08 0.96 0.65 0.16 0.05 0.04

Simple fair share 0.79 0.79 0.79 0.79 0.79 0.79 0.79

Broken-stick threshold 4.30 3.51 3.11 2.84 2.65 2.49 2.36
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Figure 7.17 The threshold values bj (the dashed line) based on the relative broken-stick rule calculated for

the Cooke City image. The solid line represents the relative percent of explained variability calculated as

lj= lj þ � � � þ lp
� �

.
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threshold values calculated for the Cooke City image. The solid line represents the

relative percent of explained variability calculated as lj= lj þ � � � þ lp
� �

. The two

lines intersect for the k value between 34 and 35. This points to 34 as the

intrinsic global linear dimensionality of the Cooke City image based on the relative

broken-stick rule, which is an acceptable number based on our earlier discussion

in Example 7.4.

Example 7.5 As a continuation of Example 7.3, we would like to identify the

intrinsic global linear dimensionality of the AVIRIS image. We could start with

plotting the eigenvalues in a scree plot as was done in Figure 7.16a for the Cooke City

image. Another possibility is to plot the standard deviation of the principal compo-

nents, that is, the square roots of eigenvalues, as done in Figure 7.18a. We can see the

principal component variability dropping quickly to very small values. Figure 7.18b

shows the logarithms of eigenvalues, which follow a steadily decreasing curve

without a clear cutoff point.

In order to apply the relative broken-stick rule, we calculated the bj threshold

values using equation (7.16) and plotted them as the dashed line in Figure 7.19. The

solid line represents the relative percent of explained variability calculated as

lj= lj þ � � � þ lp
� �

. The two lines intersect for the k value between 34 and 35.

This again points to 34 as the intrinsic global linear dimensionality of the AVIRIS

image based on the relative broken-stick rule. We incidentally obtained the same

dimensionality as the one for the Cooke City image.

7.3.2 Large-Gap Stopping Rules

Another class of stopping rules is based on a larger gap in eigenvalues. It is convenient

to assess the size of gaps based on the proportion fj ¼ lj � ljþ1

� �
=ljþ1 ¼

lj=ljþ1 � 1, which is a relative measure of the size of the gap between lj and
ljþ1 as a fraction of ljþ1. It turns out that in many imaging spectrometer data sets, the

proportions fj have positive values close to zero for large j. That is, here we want to
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Figure 7.18 A plot of square roots of eigenvalues is shown in (a) for the AVIRIS image used in

Example 7.3. A logarithmic scale is used in plot (b) for better discrimination of the values that

differ by the orders of magnitude.
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start with large j values and then move backward to the smaller values of j for which

fj tends to get much larger. Moreover, the values fj , for large j, tend to follow the

gamma distribution (see Appendix A for information about the gamma distribution).

This motivates the following algorithm that moves backward from the larger to the

smaller j as the index of the eigenvalues. The approach was introduced in Bajorski

(2011a) in the context of defining the second moment linear dimensionality as

the intrinsic global linear dimensionality of imaging spectrometer data sets. The

following algorithm clarifies the details of calculating the second moment linear

dimensionality.

Step 1. Choose an initial set of the “last” proportions fp�m; . . . ; fp�1, such that we

expect the dimensionality to be smaller than p�mð Þ. We recommend

takingm ¼ p=3½ � þ 1, where x½ � denotes the integer part of x. Choose the
significance level a. We recommend using a equal to 0:05= p�m� 1ð Þ.

Step 2. Starting with j ¼ p�m, fit a gamma distribution to the sample

fj; . . . ; fp�1. The easiest way to do this is to use the method of moments,

and estimate the scale parameter b using s2=�x and the shape parameter a
using �x2=s2, where s2 is the sample variance.

Step 3. Calculate the p-score of fj�1 equal to the upper-tail probability based on

the gamma distribution with parameters estimated in Step 2, that is, p-

score ¼ 1� G fj�1

� � ¼ Ð1
f j�1ð Þ

g xð Þdx, where G is the cumulative distribu-

tion function of the gamma distribution. The p-score tells us how extreme

fj�1 is in relation to fj; . . . ; fp�1. If the p-score is smaller than or equal to a,
then fj�1 can be treated as an outlier, which no longer follows the gamma

distribution of the other f fractions. The number j � 1ð Þ is called the

second moment linear dimensionality at level a. If the p-score is larger

than a, continue by going to Step 2 with j ¼ j � 1.
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Figure 7.19 The threshold values bj (the dashed line) based on the relative broken-stick rule calculated for

the AVIRIS image. The solid line represents the relative percent of explained variability calculated as

lj= lj þ � � � þ lp
� �

.
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Here are some comments regarding the above steps. The algorithm is not particularly

sensitive to the choice of m in Step 1. In Step 2, one could also use the maximum

likelihood estimates of parameters, but they require a numerical solution of an

equation involving special functions. We recommend the simpler method of mo-

ments, because there is little difference in the p-scores calculated based on the two

methods. Since the algorithm requires a large number of statistical inferences (up to

p�m� 1ð Þ), we recommend using a equal to 0:05= p�m� 1ð Þ in order to account
for the joint significance level (based on the Bonferroni method; see Result 6.1).

Smaller values of a could also be used, and they will lead to lower dimensionality.

Hence, the user can choose the a level depending on the depth of a study. A cursory

investigation of an image can be successful with fairly low dimensionality (using

small a, that is, less sensitive testing), while a more in-depth investigation may

require higher dimensionality (using somewhat larger a, that is, more sensitive

testing). A specific choice of a can be supported by consideration of information

loss associated with a given dimensionality reduction. Specifics will depend on the

type of application. For example, the choice of a can be based on the ability to

reconstruct the image or based on the efficiency of target detection in the image.

There might be situations where the “last” proportions fp�m; . . . ; fp�1 follow a

distribution different from the gamma distribution. In that case, the algorithm can

identify the first outlier from that distribution.

Example 7.6 As a continuation of Example 7.4, we would like to identify the

intrinsic global linear dimensionality of the HyMap image of Cooke City shown in

Figure 7.15.We implemented the algorithm for the secondmoment linear dimension-

ality. Here, we had p ¼ 126, so the algorithm started with j ¼ p� p=3½ � þ 1 ¼ 85.

The “last” proportions f85; . . . ; f125 turned out to follow a gamma distribution. Then

the fraction f84 was added, resulting again in a gamma distribution, with slightly

different estimated parameters. The procedure then continued until j ¼ 28 when the

“last” proportions f28; . . . ; f125 (p ¼ 126) were again confirmed to follow a gamma

distribution. Those values are plotted in Figure 7.20 as small circles (excluding the

solid circle in the top right-hand corner). The circles line up reasonably well along the

straight line y ¼ x, showing that the observations follow a gamma distribution.

The fraction f27 (shown in the top right-hand corner as a solid circle) is significantly

larger and can be regarded as an outlier. This was confirmed by the p-score equal to

2:7� 10�4. The algorithm stopped here, based on the recommended level

a ¼ 0:05= 126� 43� 1ð Þ ¼ 0:00061. This signifies the first (counting from the end)

larger gap in eigenvalues between the 27th and 28th eigenvalues, whichwould suggest

retaining the first 27 principal components in that image. This gave the second

moment linear dimensionality of 27.

For smaller a values, the algorithm would continue beyond 27, resulting in

lower dimensionalities. Table 7.5 shows the second moment linear dimension-

alities for such smaller a values. Only a limited choice of lower dimension-

alities is available. Clearly, the dimensionality of 2 is too low to be considered

for this image, but other values could be used for cursory investigations of

the image. &
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Example 7.5 (cont.) The algorithm for the second moment linear dimensionality

was run on the AVIRIS image, and the resulting dimensionalities are shown in

Table 7.6. For the recommended level a ¼ 0:05= 152� 51� 1ð Þ ¼ 0:0005, the

suggested dimensionality is 18. For smaller a values, a limited choice of lower

dimensionalities is available. Those values could be used for cursory investigations of

the image when the more detailed information is not needed.
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Figure 7.20 A gamma probability plot of the “last” proportions f28; . . . ; fp�1 (p ¼ 126) for the HyMap

image shown in Figure 7.15. The outlier f27 is shown in the top right-hand corner as a solid circle.

Table 7.5 The Second Moment Linear Dimensionalities for Various a Levels for the

HyMap Image from Figure 7.15

Alpha level

Between

6:1� 10�4

and 2:7� 10�4

Between

2:7� 10�4

and 9:6� 10�5

Between

9:6� 10�5

and 8:7� 10�6

Between

8:7� 10�6

and 1:9� 10�6

SML

dimensionality

27 10 5 2

Table 7.6 The Second Moment Linear Dimensionalities for Various a Levels for the

AVIRIS Image

Alpha level

Between

5:0� 10�4

and 4:2� 10�4

Between

4:2� 10�4

and 9:2� 10�6

Between

9:2� 10�6

and 9:9� 10�10

SML

dimensionality

18 12 9
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7.4 PRINCIPAL COMPONENT SCORES

As we have learned earlier in this chapter, each principal component Yi is a random

variable. This means that it will take on a specific value for a given observation vector

x. The value would be calculated as eTi x. Prior to this calculation, we usually center

each observation vector x by subtracting the sample mean �x. The reason is that the

variability measured by the estimated variance–covariance matrix S and considered

here is the variability around the mean value �x. The resulting value is calculated as a
linear combination of the coordinates of the vector x� �xð Þ according to the formula

yj ¼ eTj x� �xð Þ: ð7:17Þ

The values yj are called the jth principal component scores. For the ith observation

vector xi, we can calculate its p scores

yij ¼ eTj xi � �xð Þ; j ¼ 1; . . . ; p: ð7:18Þ

It is usually informative to create some scatter plots of scores for pairs of the first

few principal components as demonstrated in the following example.

Example 7.7 Upon further inquiries about the spectral measurements discussed

earlier in Example 7.2 (and shown in Figure 7.4), we found out that themeasurements

were in fact taken by two different operators using two X-Rite Series 500 Spectro-

densitometers. Some other tiles were also measured within the same experiment, but

here we investigate only the white tile measurements (see Appendix B). The operator

can be regarded as one factor in this study and the spectrometer as a second factor.

The statistical design of the study was the full factorial design with two replicates.

The order of runs was generated randomly and is shown in Table 7.7. Although the

order of operators might not look random, it was, in fact, generated randomly.

Figure 7.21 shows a scatter plot of scores of the first two principal components for

the eight spectral measurements. For i ¼ 1; . . . ; 8, the values yi2 on the vertical axis

are plotted versus yi1 on the horizontal axis.

Table 7.7 Order of Runs for Example 7.7 Data

Run Order Operator Spectrometer

1 1 1

3 1 1

6 1 2

7 1 2

12 2 1

13 2 2

17 2 1

21 2 2
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PC1 scores for Operator 1 have a tendency to be lower than those for Operator 2.

Recall that PC1 was previously interpreted as being responsible for the movement up

and down of the spectral curves, with higher PC1 values representing higher spectra.

This means that Operator 1 has a tendency to produce lower spectra versus Operator 2

producing higher spectra. We would need to investigate whether the effect is statisti-

cally significant. We can also see a tendency of Spectrometer 1 to have values of PC2

higher than those for Spectrometer 2. This would suggest that the type of tilting

observed in Figure 7.7 is different for the two spectrometers. Again, the statistical

significance of these conclusions would need to be investigated, especially for such

small samples. &
When the principal component scores are calculated for images where the

pixels are treated as observations, the scores represent the image pixels, and they

can be plotted as an image where the shades of gray indicate the value. There is a

tradition in the field of imaging to represent large values in lighter gray and the

largest values in white. Unfortunately, this approach often leads to some poor

quality displays, where most of the image is almost black and one can see only the

spots that are very bright. We believe that in most cases it is a better approach to

use black for the largest values and white for the smallest values. This is the

approach that we are using throughout this book. The following example shows the

principal component scores displayed as an image, so that the spatial information

about pixels is preserved.

Example 7.8 This is a continuation of Examples 7.3 and 7.5, where an AVIRIS

image of an urban area in Rochester, NY, was used (see Figure 7.10). For each pixel i,

where i ¼ 1; . . . ; n and n ¼ 10,000, we can calculate the score yij of the jth principal

component given by formula (7.18). The scores are represented as shades of gray in

Figure 7.22 with large values shown in darker gray. Each panel shows scores for one

principal component. For the PC1 image, we can see a lot of spatial details. Based on
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Figure 7.21 A score plot of the Spectrometer Data (Example 7.7). Operator 1 scores are marked with

triangles and Operator 2 with dots. Results from Spectrometer 1 are enclosed in circles.
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the interpretation of PC1 in Example 7.3 (see Figure 7.11), these are ground features

visible mainly in spectral bands 39–100. The PC2 score image shows ground features

visible mainly in the first 34 spectral bands. The third principal component was

interpreted in Example 7.3 as a contrast between a positive impact ofBands 25–37 and

83–152 versus a negative impact of Bands 1–20 and 39–55. However, this interpre-

tation assumes scores of other principal components being constant. We can also say

that the panel for PC3 in Figure 7.22 reflects the contrast between those bands after the

adjustment for other principal components is already made. We can see substantial

spatial patterns in the PC3 image, suggesting that important information is included in

PC3. The next panel represents PC30 with considerably weaker spatial patterns. This

suggests a significant amount of noise in that PC band. The remaining two panels

show even more noise in PC bands 60 and 100. We cannot show images of all bands

here, but further bands show even more noise, as expected. &

We need to keep inmind that each image of PC scores shows the variability only in

one linear direction. We may wonder what information might be contained in several

PCs together. For example, is there any important information still included in several

PC bands together when the PC bands 101–152 are considered jointly? This question

will be answered in Section 7.5 on residuals.

If the scores yj; j ¼ 1; . . . ; p, from equation (7.17) are organized into a vector y, we

can write y ¼ PT x� �xð Þ or equivalently x ¼ �xþ Py. This can also be written as

x ¼ �xþ y1 � e1 þ y2 � e2 þ � � � þ yp � ep; ð7:19Þ

Figure 7.22 The PC scores yij of the jth principal component given by formula (7.18) are represented as

shades of graywith large values shown in darker gray. Each panel shows scores for the principal component

with the given value of j.
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which clarifies how the original observation vector depends on the principal

component scores. This formula is similar to formula (7.7), except that we are

dealing with centered scores here. The matrix PT is called the matrix of PC

rotation, because it rotates the original vector of observations into principal

components. The matrix P is the matrix of inverse PC rotation because it rotates

the principal component values (scores) back into the original vector of

observations.

7.5 RESIDUAL ANALYSIS

When PCA is used for dimensionality reduction and only the first k principal

components are used to represent the data, the observation x from equation (7.19)

can be approximated by the fitted value defined as

x̂ ¼ �xþ y1 � e1 þ y2 � e2 þ � � � þ yk � ek; ð7:20Þ

that is, the terms with scores ykþ1 to yp were removed from the right-hand side

of (7.19).At this point, it is critical that the scores are calculated from the centered data

as given in formula (7.18). In a data set with n observations xi; i ¼ 1; . . . ; n, we define
a fitted value for each observation as

x̂i ¼ �xþ yi;1 � e1 þ yi;2 � e2 þ � � � þ yi;k � ek; ð7:21Þ

where yi;j is the score of the jth principal component for the ith observation. We

hope that x̂i is close enough to xi, so that the use of only k principal components is

justified. This transformation from the principal component scores to the fitted

values x̂i can be regarded as the inverse PC transformation (but this is not a

rotation), because it transforms back to the original space of observations. Note that

the inverse PC transformation defined here for k < p is not the exact inverse of the

PC rotation, unless the variability in the remaining PCs is zero. Since the informa-

tion in the principal components numbered from k þ 1ð Þ to p was lost, we are not

obtaining the exact original values xi, but only the fitted values x̂i. The error of this

approximation can be assessed by calculating the residual vectors

Ei ¼ xi � x̂i ¼ yi;kþ1 � ekþ1 þ � � � þ yi;p � ep: ð7:22Þ

As a global measure of approximation, we can use the residual sum of squares

defined as

RSS ¼
Xn
i¼1

Eik k2 ¼
Xn
i¼1

Xp
j¼kþ1

y2i;j : ð7:23Þ
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Note that
Pn

i¼1 y
2
i;j= n� 1ð Þ is the sample variance of the jth principal component

(because the sample mean is equal to zero due to centering) and is equal to lj
calculated from the sample variance–covariance matrix S. Hence,

RSS ¼ n� 1ð Þ
Xp
j¼kþ1

lj: ð7:24Þ

Note that the fitted values x̂i defined in (7.21) belong to a k-dimensional affine

subspace going through the mean vector �x. We may wonder whether there exists a

different k-dimensional affine subspace that would give us a better approximation.

The answer is no, and it is clarified by the following theorem.

Theorem 7.2 Let zi; i ¼ 1; . . . ; n, be a set of points from an affine k-dimensional

subspace L � Rp. Then

Xn
i¼1

xi � zik k2 �
Xn
i¼1

xi � x̂ik k2 ¼ RSS: ð7:25Þ

This theorem tells us that the principal components give the best approxima-

tion in the sense of the global measure RSS. However, it is worthwhile to check

how the approximation works on single observations by inspecting the residual

vectors Ei. This approach may not be practical for large data sets, so in those

cases we can investigate the lengths Eik k of the residual vectors. Note that for

the p-dimensional residual vector E ¼ 1; . . . ; 1½ �T, we would have Ek k ¼ ffiffiffi
p

p
.

To make an investigation of residuals more intuitive, we can use an adjusted

norm

Adj:Norm Eð Þ ¼ Ek kffiffiffi
p

p : ð7:26Þ

An advantage of the adjusted norm is that it is less dependent on the dimensionality,

and for the vectorE ¼ 1; . . . ; 1½ �T, the standardized norm is 1. In general, it gives us an

idea about the average (in the root mean square sense) size of residuals per each

variable (e.g., a spectral band). The adjusted norm is the adjusted Euclidean L2 norm

discussed in Section 10.2.1.

Example 7.9 Here we used the eight spectral measurements discussed earlier in

Examples 7.2 and 7.7. We decided to approximate the data with k ¼ 2 principal

components. The resulting eight residual vectors Ei are shown in Figure 7.23, where

Operator 1 values are plotted as solid lines and those for Operator 2 as dashed lines.

The black lines indicate Spectrometer 1 and gray lines Spectrometer 2. There is no

pattern indicating any specific impact of the two factors (Operator and Spectrometer)

on the residuals. The randomand rugged shape of the lines is desirable here, indicating

RESIDUAL ANALYSIS 221



a randomnature of the remaining variability.However,we can also see a patternwhere

two lines are entirely different from the remaining lines. Hence, there is still some

nonrandom effect beyond the first two principal components. All residuals are within

the range of �0:155ð Þ and 0.120 in percent of reflectance. Those values should be

evaluated in the context of themeasurement error estimates shown in Figure 7.5. If the

fitted values x̂i were used in place of the original values xi, the measurement error

estimates would change by the amounts equal to the residuals. We conclude that the

residuals are small enough for most practical purposes.

We can also investigate the adjusted norms of the residual vectors plotted in

Figure 7.24. We used a dot plot due to a small sample size. This allowed a

representation of the run order of the measurements (the vertical axis). No time

patterns can be seen in that plot. Also no pattern can be identified with respect the

experiment factors—Operator and Spectrometer. The symbols used here are
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Figure 7.23 The eight residual vectors Ei; i ¼ 1; . . . ; 8, for the Spectrometer Data (Example 7.9) are

plotted versus spectral band number. Operator 1 residuals are plotted as solid lines and those for Operator 2

as dashed lines. The black lines indicate Spectrometer 1 and gray lines Spectrometer 2.
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Figure 7.24 A dot plot of the standardized norms of the residual vectors (Example 7.9). The vertical axis

indicates the run order of the measurements. Operator 1 values are marked with triangles and Operator 2

with dots. Results from Spectrometer 1 are plotted in solid black.
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different from those used in Figure 7.21 in order to shown different ways how this

can be done.

A similar analysis can be performed with k ¼ 3 principal components explaining

the variability in the data. The resulting residual vectors Ei are shown in Figure 7.25.

Herewe obtain a truly randombehavior of the residuals. Thismeans that nomore than

three principal components are needed to explain the patterns in the measurement

error variability. &

Thenext example shows applications of principal component analysis in a scenario

that is more challenging due to a large number of observations, large dimensionality,

and complex structures shown in the image.

Example 7.10 In the context of imaging spectrometer data, such as the Cooke City

image discussed in Example 7.4, we are interested in the intrinsic global linear

dimensionality of the image as discussed in Section 7.3.2,where the dimensionality of

27 was suggested for this image. We want to calculate the residual vectors Ei,

assuming that k ¼ 27 principal components were used in the calculation of the fitted

values in formula (7.21). Figure 7.26 shows all n¼ 224,000 residual vectors. The

original image spectra are given in the units of percent of reflectance, so the same units

apply to the residuals. Some residuals are as large as 3 in absolute values, which

translate to the precision of approximation (by the 27 principal component dimen-

sions) up to 	 3% of reflectance. However, most of the remaining values are much

smaller.We can see a large range of variability in various spectral bands, whichmeans

that the precision of approximation varies significantly from band to band. Due to the

large sample size n, it is convenient to use the adjusted norms of the residual vectors.

The adjusted norms range from 0 to 0.54, and their histogram is shown in Figure 7.27.

Most of the adjusted norms are well below 0.1, but it turns out that as many as 177
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Figure 7.25 A residual plot analogous to Figure 7.23, except that k ¼ 3 principal components were used

to define the fitted values.
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adjusted norms are above 0.2. The numbers seem small, and the approximation might

be suitable for some purposes.

On the other hand, we may want to check if any relevant information is left in the

residuals. Oneway to do that is to look for spatial patterns in residuals. Since we have

one residual vectors Ei for each pixel, we can create an image where the color of a

given pixel shows its value of the adjusted norm of Ei. Figure 7.28 shows an image

where the darker gray indicates a larger adjusted norm. Most of the image is in a very

light shade of gray, reflecting mostly very small adjusted norms in contrast to a small

number of large values. In such cases, it is often helpful to rescale the values, as was

done in Figure 7.29, where the gradation of gray is proportional to the logarithm of the

Figure 7.26 All n¼ 224,000 residual vectors for the Cooke City image data discussed in Example 7.10.
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Figure 7.27 A histogram of adjusted norms of the residual vectors shown in Figure 7.26 and discussed in

Example 7.10.
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adjusted norm. In both images, we can see a clear spatial structure, including the town

and the road being clearly visible. We conclude that there is still a substantial amount

of information in the image beyond the first 27 principal component dimensions.

Nevertheless, the first 27 dimensions might be sufficient for some tasks.

In order to check how many principal component dimensions we need for a full

representation of the image information, we can inspect the residual images for

larger k values. Figure 7.30 shows the image of the adjusted norms when k ¼ 100

principal components were used. Recall that the original image dimensionality is

p ¼ 126, so we are now using most of the original image information. However, we

can still see some spatial structure of residuals, mostly in the town area, although it is

fairly weak here. Based on these results, we may suspect that the imaging

spectrometer data with complex structures and a small amount of noise cannot be

precisely approximated by a global linear dimensionality substantially smaller than

their original dimensionality. &

In the following example, we want to perform residual analysis on the AVIRIS

image considered earlier.

Figure 7.28 The adjusted norms of the residual vectors marked as shades of gray. Darker color indicates

larger values.

Figure 7.29 The logarithms of the adjusted norms of the residual vectorsmarked as shades of gray.Darker

color indicates larger values.
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Example 7.11 This is a continuation of Example 7.8, where we created images of

principal component scores in Figure 7.22. Each of those images represents scores

of only one principal component. We observed that each of the principal compo-

nents numbered from 101 to 152 contained very little, if any, spatial information,

which suggested a large amount of noise in those bands. We were then wondering

about the amount of spatial information in all PC bands from 101 to 152 when

considered jointly.

When we use k ¼ 100 principal components in order to approximate the

original image information, the residuals describe the joint impact of the remain-

ing PC bands from 101 to 152. Since the residuals are p-dimensional vectors, we

use the adjusted norms based on formula (7.26) in order to assess the magnitude of

residuals. The adjusted norms are represented in Figure 7.31, where the darker

shade of gray indicates larger values. We can see strong spatial structure in the

image, mostly in terms of differences among various areas such as the water

surface, the sandy shore, and then the remaining areas. The first 100 principal

components were not sufficient to approximate precisely all image features.

Figure 7.30 This image is analogous to Figure 7.29, except that here k ¼ 100 principal components

were used.

Figure 7.31 The magnitude of the adjusted norms of residual vectors represented by shades of gray

(darker means larger values) for the AVIRIS image discussed in Example 7.11. As many as k ¼ 100

principal components were used.
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Nevertheless, lower dimensional approximations can still be used for some

purposes where less precision is required. &

7.6 STATISTICAL INFERENCE IN PRINCIPAL COMPONENT

ANALYSIS

As discussed in previous chapters, the statistical inference is about drawing conclu-

sions about a population, or itsmodel, based on the available sample. In this process, it

is critical to specify the sampling scheme under which a given data set was collected.

A classic assumption in the context of principal component analysis is that the

multivariate sample of p-dimensional independent and identically distributed vectors

X1;X2; . . . ;Xn comes from amultivariate distribution with the mean vector l and the
variance–covariancematrixR. This assumptionmight be reasonable in some imaging

applications, but not in others. In Example 7.2, we considered eight repeated

measurements of the same tile. In this context, it is reasonable to assume that

X1;X2; . . . ;X8 are independent and identically distributed, where the mean vector

l can be interpreted as the vector of true reflectances. This scenariowill be considered
in the next subsection. A different scenario will be discussed in Section 7.6.2.

7.6.1 Independent and Identically Distributed Observations

In this subsection, we will assume that the multivariate sample of p-dimensional

independent and identically distributed vectors X1;X2; . . . ;Xn comes from a multi-

variate normal distribution Np l;Rð Þ with the mean vector l and the variance–

covariance matrix R. As usual, the matrix R is estimated by the sample variance–

covariance matrix S. The eigenvalues and normalized eigenvectors of S will

be denoted with hats, that is, as ðl̂j; êjÞ; j ¼ 1; . . . ; p, to emphasize that these are

estimated quantities. We have the following asymptotic property.

Property 7.2 Let K be the diagonal matrix of distinct eigenvalues

l1 > l2 > � � � > lp > 0 of the matrix R. Then the distribution of the vectorffiffiffi
n

p
l̂1; l̂2; . . . ; l̂p
h iT

� l1; l2; . . . ; lp
� �T	 


approaches the normal distribution

Np 0; 2K2
� �

as n tends to infinity.

The proof can be found in Section 13.5.1 in Anderson (2003). This property means

that the sample eigenvalues are asymptotically uncorrelated and the distribution

of l̂j can be approximated by the normal distribution N lj; 2l
2
j =n

� �
. This allows

construction of a large-sample 1� að Þ confidence level confidence interval for

lj; j ¼ 1; . . . ; p, given by

l̂j
1þ zða=2Þ ffiffiffiffiffiffiffiffi

2=n
p � lj � l̂j

1� zða=2Þ ffiffiffiffiffiffiffiffi
2=n

p ; ð7:27Þ
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which can also be written in a more convenient form as

1� zða=2Þ
ffiffiffiffiffiffiffiffi
2=n

p
� l̂j

lj
� 1þ zða=2Þ

ffiffiffiffiffiffiffiffi
2=n

p
; ð7:28Þ

or

l̂j
lj
� 1

����� � zða=2Þ
ffiffiffiffiffiffiffiffi
2=n

p
;

����� ð7:29Þ

which means that l̂j is different from lj by no more than zða=2Þ ffiffiffiffiffiffiffiffi
2=n

p
with 1� að Þ

confidence.

Since the distribution of l̂j can be approximated by the normal distribution

N lj ; 2l
2
j =n

� �
, we have E l̂j

� �

 lj and Var l̂j

� �

 2l2j =n. The following, more

precise, approximations were derived by Lawley (1956):

E l̂j
� �


 lj 1þ1

n

X
k 6¼j

lk
lj�lk

" #
; Var l̂j

� �

 2l2j

n
1�1

n

X
k 6¼j

lk
lj�lk

	 
2
" #

: ð7:30Þ

This means that the large eigenvalues will be estimated as too large and small ones

as too small. In order to correct for the bias, we can use the following adjusted

estimates:

l̂j* ¼ l̂j 1� 1

n

X
k 6¼j

l̂k
l̂j � l̂k

" #
: ð7:31Þ

More details about these and some other approximations can be found in

Jackson (1991).

7.6.2 Imaging Related Sampling Schemes

The statistical inference discussed in the previous subsection is valid when the

multivariate sample consists of p-dimensional independent and identically dis-

tributed random vectors. In many applications, this may not be the case. For

spectral data representing images of the Earth’s surface, like those considered in

Examples 7.3 and 7.4, each pixel may have a different distribution. In order to

identify what that distribution is, we need to know the population of interest and

the sampling process that we want to consider in a given situation. When a global

variance–covariance matrix is calculated from the whole image, it incorporates

both the spatial variability of the Earth’s surface features and other variability

such as noise.
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In practice, we usually have one image (i.e., one sample) that we want to

investigate. A convenient way of thinking about the sampling process we discuss

here is to imagine repeated sampling (i.e., repeated images) from the population of

interest. For example, imagine that we collect repeated images of the same area under

the same conditions. Assume further that within that area, there is a house with

horizontal dimensions of 10m by 20m, the image pixel size is 5m by 5m, and the

house is represented by exactly 8 pixels. Assuming the i.i.d. (independent and

identically distributed) sampling scheme and an image consisting of 10,000 pixels,

we would expect to see anywhere between 3 and 13 pixels of that house in 95% of

repeated images (use the binomial distribution with n ¼ 104 and p ¼ 8� 10�4). This

clearly has no physical justification, and we would conclude that the i.i.d. sampling

scheme is not realistic here.

A suitable sampling scheme will depend on a given application and the type of

statistical inference we want to perform. The correct sampling scheme should reflect

the true relationship between the sample (the image) and the population (the reality

the image represents). Here we will make a comparison between two different i.i.d.

schemes and one more realistic sampling scheme in order to evaluate their impact on

eigenvalues and eigenvectors of the variance–covariance matrix. Wewill also show a

methodology for construction of confidence intervals under those sampling schemes.

In a broader context, this is an example of a good practice of using the correct

sampling schemes and correct statistical inference in imaging applications. A similar

approach can be used in other types of statistical inference such as ROC curves,

hypothesis testing, and so on. The results shown in this subsection were published

earlier in Bajorski; (2011).

We will use here the following sampling schemes.

Sampling SchemeA. This is an i.i.d. sampling schemewhere all spectra xi’s follow

a p-dimensional Gaussian (normal) distribution Np l;Rð Þ, where l and R are

estimated based on the sample mean �x and the sample variance–covariance

matrix S calculated from the whole image.

Sampling Scheme B. This is an i.i.d. sampling scheme with a discrete uniform

distribution on all image spectra xi; i ¼ 1; . . . ; n, with each spectrumhaving the

same probability 1=n. This sampling scheme is appropriate when we are not

willing to make any assumptions about a parametric model for the population

distribution (such as those in Scheme A). This type of sampling is used in

nonparametric bootstrap methods (see Section 3.9).

Sampling Scheme C. We assume that image spectra follow the so-called linear

mixing model (as discussed in Schott (2007), Healey and Slater (1999), and

Manolakis and Shaw (2002))

xi ¼
Xk
j¼1

aijmj þ ei; ð7:32Þ

where the term
Pk

j¼1 aijmj represents the deterministic component, which would

not change in the sampling process. We assume that the constants aij are such that
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Pk
j¼1 aij ¼ 1, but not necessarily positive. A good choice of p-dimensional vectors

m1; . . . ;mk (representing spectra of material present in the image) should ensure

positivity or near positivity of aij’s. Here we want to make sure that the affine

subspace

M m1; . . . ;mkð Þ ¼ x : x ¼
Xk
j¼1

ajmj ;
Xk
j¼1

aj ¼ 1

( )
ð7:33Þ

gives a good approximation of the image spectra xi; i ¼ 1; . . . ; n. A benefit of this

approach is that we do not need to identify the vectorsm1; . . . ;mk, but instead we

only identify the affine spaceM based on the first k eigenvectors of the variance–

covariance matrix S. We also assume that the error terms ei follow the Gaussian

distribution N 0;Reð Þ, where Re is calculated as discussed below.

The deterministic component
Pk

j¼1 aijmjrepresents the signal in the image,

that is, the surface seen in the image as a mixture of some basic materials. Hence,

if repeated images of the same area were taken, this deterministic component

should not change (if identified correctly). This is why we keep this component

constant in this sampling process.

Let l1 � l2 � � � � � lp be eigenvalues and e1; . . . ; ep respective normalized eigen-

vectors ofS.We assume that thevariability in the space orthogonal toM is due to noise

and is determined by lkþ1 � lkþ2 � � � � � lp. However, we have no information

about the noise in the directions withinM. Wewill assume the variance of noise to be

lkþ1 in all directions withinM, which seems to be a reasonable approximation given

the lack of any additional information. Let K be a diagonal matrix with the first k

elements on the diagonal equal to lkþ1 followed by lkþ1 � lkþ2 � � � � � lp. Let P
be a matrix of e1; . . . ; ep as columns. We now defineRe ¼ PKPT. In order to preserve

the total variability in the first k PC dimensions, we need to make a correction to

the deterministic part of the model by multiplying the ith PC coordinate of each

spectrum (after subtracting �x) by bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lkþ1=lj

p
for j ¼ 1; . . . ; k. Clearly, bj � 1

for j ¼ 1; . . . ; k, and it can be shown (see Appendix C) that multiplying by bj
is equivalent to reducing the variability of the deterministic part by lkþ1, which is

the amount assumed to be due to noise.

In order to investigate a wide range of scenarios for our numerical calculations,

we used two very different images, and then three different-size subimages were

selected from each of those two images. The first image was a MISI (Modular

Imaging Spectrometer Instrument) image of the Lake Ontario shoreline near Russell

Station located in Rochester, NY. The data on the 16NIR (near-infrared) bands

(730–985 nm) were collected on September 9, 2001. The MISI instrument was

flown at an altitude of 5000 feet with a ground speed of 128 knots. More information

about the image can be found in Ientilucci (2003) and about the MISI instrument in

Feng et al. (1994). The second image was the AVIRIS image shown in Figure 7.10

and discussed in Example 7.3. With much larger number of spectral bands and being

an image of an urban scene, the AVIRIS image is much more complex and very

different from the MISI image.
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For each of the two images, we selected a 50 by 50 pixel subset (n ¼ 2500), and

then a 20 by 20 pixel subset (n ¼ 400) and a 10 by 10 pixel subset (n ¼ 100), each

being a subset of the previous subimage. Those choices and the numbering of images

are represented in Table 7.8, which can also be used as a reference for interpretation of

figures organized in the same fashion.

These images may appear somewhat small to some readers. However, we believe

that in modern image analyses, one should not use covariance matrices of the whole

large images covering awide range of different ground covers because such approach

does not give a realistic assessment of the pixel-to-pixel variability. Recently more

popular and more successful approach is the modeling of individual background

components and small multimaterial clusters within a hyperspectral image (for

instance, see Schlamm et al. (2008) and Caefer et al. (2008)). For the 50 by 50 pixel

images, the PCA inference was largely satisfactory, and for larger images, it would

be even more precise. Hence, we were more interested in performance for smaller

sample sizes such as n ¼ 100 or 400. These smaller imageswere selected tomimic the

context of some of the imaging processing algorithms, where relatively small

windows are selected in the process of scanning a large image, for example, in the

context of anomaly detection (local RX and other local detectors; see Schaum (2007)

and Basener and Messinger (2009)) or in modeling of individual background

components. All images were chosen so that their variability is somewhat similar

to each other and to the variability of the whole MISI image as measured by

eigenvalues. That is, we avoided subsetting of some more uniform areas with small

variability. The three images should not be compared directly because they have

somewhat different eigenvalues. Nevertheless, they give us some idea about the

impact of the sample size n on PCA inference.

For the Sampling SchemeC, one needs to identify the dimensionalityk of the affine

space M. This decision was based on a simple method of explained variability as

discussed in Section 7.3. For all MISI subimages, we used a threshold of 99.3%, and

for all AVIRIS subimages, we used 99.98%. The resulting values of k are shown in

Table 7.8 in parentheses.

The results of our analysis are presented in the following subsections.

7.6.2.1 Investigation of Eigenvalues
For each of the six images (I–VI) and for each of the sampling schemes (A, B, and C),

the following procedure was followed for the resulting 18 scenarios. A number of

N ¼ 105 images of a given size n were generated using the appropriate sampling

scheme. For each generated image, PCAwas performed, and the sample eigenvalues

Table 7.8 Numbering of the Six Images Used for Numerical Calculations

Image Size MISI AVIRIS

50 by 50 pixels Image I (5) Image IV (18)

20 by 20 pixels Image II (5) Image V (15)

10 by 10 pixels Image III (3) Image VI (12)

The image intrinsic dimensionalities (as calculated in Section 7.6.2.3) are shown in parentheses.
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l̂1 � l̂2 � � � � � l̂p were calculated. Then the normalized eigenvalues were calcu-

lated as l̂i=li, where li is the “true” (as assumed by the Monte Carlo simulations)

eigenvalue from the given image. For example, the normalized eigenvalue of 1.05

means that the sample valuewas 5% larger thanwhat it should have been, based on the

“true” value li.
For each of the 18 scenarios and each PC direction i (i ¼ 1; . . . ; p), we obtained a

distribution of N ¼ 105 normalized eigenvalues. We then calculated the 2.5th and

97.5th percentiles of those sampling distributions in order to capture 95% of the

distribution. Figure 7.32 shows those percentiles for the six images in the layout
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Figure 7.32 The normalized eigenvalue limits based on the 2.5th and 97.5th percentiles for six images.

The layout is consistent with Table 7.8, that is, Images I–VI are shown in (a)–(f). The AVIRIS images show

only the first 50 PC directions, because they would be mostly of interest.
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presented in Table 7.8. Based on Figure 7.32a, 95% of the sampling distribution was

approximately within 	 6% of the true values, with only a small amount of negative

bias for the last several PC directions for the Sampling Schemes A and B in Image I.

For the Sampling Scheme C used on the same data set, we can see much smaller

sampling variability for the first several PC directions until the variability become the

same as for Schemes A and B (where all lines start to overlap). The reason is that the

first five PC directions contain significant deterministic components, thus reducing

the sampling variability. The first PC direction has the largest deterministic compo-

nent, which results in the smallest relative variability in the first eigenvalue. Similar

behavior is observed in all subpanels in Figure 7.32. This by itself does not mean that

Scheme C is better than the other schemes. It simply reflects the lower variability

assumed by that sampling scheme.

We can also see that the reduction in the sample size results in larger uncertainty

about eigenvalues, reaching levels of about 15–20% limits for n ¼ 400 and levels of

about 20–40% limits for n ¼ 100. For smaller sample sizes, we start seeing a

significant amount of negative bias reaching levels of approximately 40% drop for

the 50th PC direction for the AVIRIS image with n ¼ 100 (Image VI).

7.6.2.2 Investigation of Eigenvectors
The investigation of eigenvectors was performed in away similar to the one described

in the previous subsection when discussing eigenvalues. The difference was that for

each generated image, PCAwas performed, and the sample eigenvalues ê1; ê2; . . . ; êp
were calculated. Then we calculated the angle between êi and the “true” vector ei.

Large angles indicate lack of precision in estimating the eigenvectors. We calculated

the 95th percentile for each sampling distribution of N ¼ 105 angles.

Figure 7.33 shows those percentiles in a layout analogous to the one in Figure 7.32.

For all three MISI images, the results for the three sampling schemes are very similar

to each other, except for Sampling Scheme C variability being significantly smaller

for the PC directions 2 and 3 in Image III (see Figure 7.33c). We can also notice that

starting with the sixth eigenvector, the estimation is highly imprecise. Note that a 90�

angle represents the worse-case scenario of an estimate being orthogonal to the true

eigenvector. This poor estimation performance for the PC directions 6–16 was

expected, because the respective eigenvalues are very close to each other; hence,

the directions withmaximum variability are difficult to identify. It is known that when

several eigenvalues are exactly equal to each other, the eigenvectors are identifiable

only up to the appropriate subspace. In the presence of sampling variability, this

additional (sampling) variability tends to be assigned to the higher PCs causing

positive bias in those higher PCs at the cost of negative bias in lower PCs. We have

seen this effect in the classic i.i.d. inference in the context of equation (7.30).

For the three AVIRIS images, the differences among sampling schemes are larger

than those for theMISI images. For smaller sample sizes, we observe poor precision in

estimation already within the first 10 eigenvectors. This is partially caused by some of

the first 10 eigenvalues being close to each other. For both images (MISI andAVIRIS),

we can see that the reduction in the sample size consistently results in larger

uncertainty about eigenvectors.
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7.6.2.3 Estimation of Image Intrinsic Linear Dimensionality
In Section 7.3, we discussed various stopping rules and introduced the concept of

intrinsic linear dimensionality of a spectral image. It is interesting to find out how the

intrinsic linear dimensionality might depend on the sampling variability. To this end,

we concentrate on the dimensionality defined by the percent of explained variability.

As explained earlier, we used a threshold of 99.3% for all MISI subimages, and a

threshold of 99.98% for all AVIRIS subimages. This method was applied to the six

images, and the resulting values of dimensionality kare shown in Table 7.8 in

parentheses. When the simulation is run N ¼ 105 times, each time we obtain a
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Figure 7.33 The prediction limits for the angle between the true and estimated eigenvectors based on the

95th percentile for six images. The layout is consistent with Table 7.8, that is, Images I–VI are shown in

(a)–(f). The AVIRIS images show only the first 50 PC directions, because they would be mostly of interest.
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simulated spectral image and its intrinsic linear dimensionality k can be calculated.

The sampling distributions of the dimensionality estimators are shown in Figure 7.34.

The precision of estimation is fairly good with some amount of negative bias (not

exceeding one dimension) for Images V and VI.

7.6.2.4 Calculation of Confidence Intervals
The simulation results shown in Figure 7.32 can be used for calculation of confidence

intervals for the population eigenvalues. Equation (7.27) shows a confidence interval

constructed based on a theoretical assumption about the underlying distribution.
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Figure 7.34 Histograms of the sampling distributions of the estimator of the image intrinsic linear

dimensionality based on the explained variability. The three histograms within each subpanel are for the

Sampling Schemes A (top), B, and C, respectively. The layout is consistent with Table 7.8. The diamonds

show the value of the original image intrinsic linear dimensionality (when using the same method).
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Without such assumptions, we can use the distribution information based on

simulations or bootstrap.

It is now important to realize that in a broader sense, all sampling schemes used in

this section are types of bootstrap sampling. Sampling SchemesA andC are examples

of parametric bootstrap, where the model parameters are estimated from the sample.

On the other hand, Sampling Scheme B is a typical nonparametric bootstrap. The

bootstrap sampling distributions that are used here are those described in Figure 7.32.

In fact, the limits shown in Figure 7.32 are the bootstrap percentile method limits as

defined in equation (3.48). They show significant bias in some cases as discussed

earlier. Here we will be calculating the confidence intervals based on the percentile-

reversal method defined in equation (3.51).

Table 7.9 shows an example of numerical results for the percentile-reversal

bootstrap confidence intervals for the third eigenvalue for all six images used here.

As expected, the lengths of those CIs are consistent with the ranges of variability

shown in Figure 7.32. The Sampling Scheme C consistently produces the shortest

confidence intervals, while there is little difference between the results for SchemesA

and B. In a similar fashion, Figure 7.32 results would be consistent with the results for

confidence intervals of other eigenvalues, if they were calculated.

Table 7.10 shows the confidence intervals for the 16th eigenvalue for all six images

used here.

Table 7.11 shows the estimated biases of the raw point estimate of the third

eigenvalue. All biases are fairly small relative to the magnitudes of the estimates.

Table 7.9 Confidence Intervals for the Third Eigenvalue for the Six Images (in Rows)

Lower Bound Upper Bound

Image Scheme A Scheme B Scheme C Scheme A Scheme B Scheme C

I 59.72 59.72 62.02 66.76 66.76 64.48

II 53.81 53.76 59.19 70.97 71.52 65.47

III 38.83 42.32 43.07 66.47 64.26 60.47

IV 409,656 404,891 432,176 457,453 461,832 434,831

V 436,347 431,940 503,244 576,930 584,724 510,803

VI 134,599 138,384 180,571 236,794 236,155 192,959

Table 7.10 Confidence Intervals for the 16th Eigenvalue for the Six Images (in Rows)

Lower Bound Upper Bound

Image Scheme A Scheme B Scheme C Scheme A Scheme B Scheme C

I 1.98 1.98 1.98 2.17 2.17 2.17

II 1.70 1.71 1.70 2.06 2.06 2.06

III 1.30 1.31 1.31 1.70 1.76 1.70

IV 904 892 905 1005 1019 1001

V 660 651 659 805 813 805

VI 524 539 524 727 737 727
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The biases under the Sampling Scheme C are consistently the smallest relative to the

other sampling schemes. Again, this by itself should not be interpreted that the

Scheme C is the best. Instead, it means that the bias is actually smaller (as shown by

the more realistic Scheme C) than it would be suggested by the unrealistic Sampling

Schemes A and B.

Table 7.12 shows the estimated biases of the raw point estimates of the 16th

eigenvalue. The biases for Images II and III are fairly large relative to the magnitudes

of the estimates. The bias-adjusted estimates can be calculated by subtracting those

biases as shown in formula (3.47).

Clearly, there are some general patterns in the results shown here. The reduced

sample size results in more variability and some bias in the sampling distributions of

eigenvalues. Consequently, the resulting confidence intervals become wider. At the

same time, there are also significant differences among the images as well as among

different sampling schemes assumed.Hence, researchers should investigate their own

case separately, and the appropriate sampling scheme needs to be chosen based on

the purpose of a given study.Our purposewas to demonstrate how this should be done.

We advocate use of the Sampling Scheme C or a similar type of scheme that would be

based on a realistic model for the spectral image under investigation. A similar

approach can also be used in other types of statistical inference, such as ROC curves,

hypothesis testing, and so on.

Table 7.11 Raw Point Estimates ĥ and Their Estimated Biases for the Third

Eigenvalue for the Six Images (in Rows)

Estimated Bias

Image Point Estimate Scheme A Scheme B Scheme C

I 63.27 �0.03 �0.03 0.01

II 62.44 �0.26 �0.41 0.06

III 52.03 �1.44 �1.59 �0.02

IV 433,518 �235 �284 8

V 507,076 �1955 �3386 40

VI 187,027 �2275 �2792 220

Table 7.12 Raw Point Estimates ĥ and Their Estimated Biases for the 16th

Eigenvalue for the Six Images (in Rows)

Estimated Bias

Image Point Estimate Scheme A Scheme B Scheme C

I 2.02 �0.05 �0.05 �0.05

II 1.69 �0.18 �0.19 �0.18

III 1.15 �0.36 �0.39 �0.36

IV 958 3 1 4

V 732 �3 �3 �3

VI 614 �19 �31 �18
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7.7 FURTHER READING

More information about principal component analysis can be found in Jackson

(1991), Johnson and Wichern (2007), Anderson (2003), and Srivastava (2002).

PROBLEMS

7.1. Refer to the radiopaque marker data shown in Figure 7.1. Assume a point

f ¼ f1; f2½ � given in the physical coordinates f1 and f2. Find thematrix of a linear

transformation giving you themathematical coordinates x1 andx2 of that point.

Find the algebraic form of that matrix using the vectors v1 and v2 without

assuming their specific coordinates.

7.2. Refer to the radiopaque marker data shown in Figure 7.1. Assume a point

x ¼ x1; x2½ � given in themathematical coordinates x1 andx2. Find thematrix of

a linear transformation giving you the physical coordinates f1 and f2 of that

point. Find the algebraic form of that matrix using the vectors v1 and v2 without

assuming their specific coordinates. If you were also asked to do Problem 7.1,

discuss how this solution is different from the one in Problem 7.1 and why.

7.3. The radiopaquemarker data provided for Example 7.1 are given in the physical

coordinates f1 and f2.

a. Project all points on the X-ray screens defined by the unit vectors

v1 ¼ 10; 1½ �= ffiffiffiffiffiffiffiffi
101

p
and v2 ¼ 1; 5½ �= ffiffiffiffiffi

26
p

. This will give you the mathemati-

cal coordinates x1 and x2 of those points. Create a scatter plot of those

coordinates and compare it to Figure 7.1b.

b. Use the mathematical coordinates x1 and x2 of those points to project them

on the lineL1 described in a parametric form as a set of all vectors t � b1 þ d1
parameterized by t 2 R, where b1 ¼ �1; 4½ �T= ffiffiffiffiffi

17
p

and d1 ¼ 8; 2½ �=17.
Calculate the variance describing one-dimensional variability of those

projections on L1.

c. Repeat the process described in point b in order to project onL2 described by

t �b1 þ d1 with b2 ¼ 7;�1½ �T= ffiffiffiffiffi
50

p
and d2 ¼ 0:07 � 1; 7½ �. Calculate the

variance describing one-dimensional variability of those projections on L2.

7.4. Perform principal component analysis on the radiopaque marker data used in

Example 7.1. Estimate the standard deviations of the marker’s oscillations and

the measurement error as demonstrated in Example 7.1.

7.5. Use the infrared astronomy data introduced in Example 3.3. This is a three-

dimensional data set (p ¼ 3) with bands J, H, and K treated as three variables.

We have two groups of multivariate observations, one sample of C AGB stars

and one sample of H II regions. Treat all observations as one sample and

238 PRINCIPAL COMPONENT ANALYSIS



perform principal component analysis of all data. Create the impact plot for the

three principal components like the one in Figure 7.9. Include in the plot

the standard deviations of the original bands J, H, and K. Interpret all three

principal components.

7.6. Refer to Problem7.5 and standardize all three bands by subtracting their sample

means and dividing by their sample standard deviations. Repeat the tasks of

Problem 7.5 for the standardized data. How different are the results? Are they

easier to interpret?

7.7. Show that for aj defined in formula (7.15), we have aj � 1=p; for all j � p=3.
Thismeans that if the simple fair-share stopping rule indicates dimensionality

k not larger than one-third of p (which is usually the case), then the broken-

stick stopping rule will indicate the same or smaller dimensionality.

7.8. For Example 7.2 data, calculate thevectors of principal component coefficients.

Your results may have signs opposite to those in Figure 7.6. Explain why this is

happening.

7.9. Recreate Figure 7.21.

7.10. Recreate Figure 7.23.

7.11. Consider a p-dimensional random vectorX ¼ X1;X2; . . . ;Xp

� �T
and denote by

Y1 ¼ aT1X thefirstprincipalcomponent.Definethevectora2 asanarbitrarylinear
combination aa1 þ ba?1 , where a

?
1 is a vector orthogonal to a1. Show that the

variance of Y2 is equal to a2 Var Y1ð Þ þ b2 Var a?1 X
� �

. Hint: Use Theorem 7.1.

7.12. Prove Property 7.1. Hint: Use Property 4B.2 and the definition of the eigen-

vectors of R.

7.13. � In Example 5.9, we analyzed a 31-dimensional data set consisting of spectral

curves as measurements, or observations. For each of 12 calibration tiles, four

measurements were taken. Based on those four measurements, a variance–

covariance matrix Swas calculated for each tile. Consider only tiles numbered

3, 5, and 8, and the resulting matrices Si; i ¼ 3; 5; 8. We would like to test if

the three variance–covariance matrices are statistically significantly different.

We would like to use the Box’sM-test discussed in Section 6.4. However, one

difficulty is that the test requires nonsingular matrices Si. In order to overcome

this difficulty, perform the following tasks.

a. Pool all 12 observation vectors from the three groups for the three tiles into

one data set. The data set can be represented as a 12 by 31 matrix X.

b. Perform principal component analysis onX. Based on some stopping rules,

identify how many PCs you want to retain. The preferred number is three
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PCs because this is the rank of each Si. This step is only for exploratory

purposes.

c. Independent of the results of point b, use k ¼ 3 principal components for

approximations of all 12 observations. Check how precise those approx-

imations are by analyzing residuals.

d. Use the scores of the three principal components calculated in point c, and

place them in a 12 by 3matrixY as the data set for further analysis. Split this

data set into three groups of observations from the three tiles. For each tile,

calculate the matrix S*i ; i ¼ 3; 5; 8. The matrix S*i should approximate

the variability in Si, if the residuals in point c were small enough.

e. Run the Box’s M-test for the three matrices S*i ; i ¼ 3; 5; 8, calculated in

point d. Draw conclusions.

7.14. Refer to the infrared astronomy data used in Problem 7.5.

a. Create a matrix plot (see Section 5.3) based on the three bands J, H, and

K. Mark the C AGB stars and the H II regions with different symbols

and/or colors.

b. Create a scatter plot of principal component scores of the first two principal

components. Is this plot more informative than the matrix plot from point a

in terms of seeing the differences between the two groups of observations?

Draw conclusions about the two groups. Draw conclusions about the role of

principal components in data analysis.

7.15. For the eight vectors of the estimated measurement errors shown in Figure 7.5,

calculate the sample variance–covariance matrix S and their eigenvalues. We

would like to know how precise these estimates are relative to the population

eigenvalues. However, we cannot use results of Section 7.6.1 because the

sample size is too small. Performnonparametric bootstrap of your sample using

the i.i.d. scheme. Calculate the bias and the confidence intervals for the first

three eigenvalues. Interpret your results.
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C H A P T E R 8

Canonical Correlation Analysis

8.1 INTRODUCTION

Canonical correlation analysis (CCA) deals with two groups of variables and tries to

investigate correlations between the two groups. This is primarily used for descriptive

purposes, but there are also some predictive applications. One possible application

in imaging science is an inverse problem, where the atmospheric effects can be

estimated from the observed radiation (see Hernandez-Baquero and Schott (2000)).

Another potential application is texture generation, where the interest is in correlating

sets of variables (spectral bands and spatial neighboring pixels) and trying to predict

one set of variables from the other.

Example 8.1 Here again, we use remote sensing data. Some background informa-

tion about such data can be found in Example 1.3. Let us consider an example of a 15

by 15 pixel image of grass texture in 42 spectral bands and look at the function plot of

all 225 spectra shown in Figure 8.1. Many spectra are parallel to each other, which

suggests that the reflectance values from the adjacent spectral bands are highly

correlated, with an exception of spectral bands 30 and 31. This can be confirmed

numerically by calculating the sample correlations matrix R of all 42 spectral bands

(represented in Figure 8.2 in shades of gray). Most values in the R matrix are very

high, which means that most of the 42 spectral bands are highly correlated.

Such correlations play an important role in constructing algorithms for generat-

ing textures. The idea is that reflectance values at some spectral bands can be

predicted from reflectance values at other spectral bands. It might be even more

beneficial to try to establish correlations among sets of spectral bands and their

linear combinations. &

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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8.2 MATHEMATICAL FORMULATION

In order to explain the methodology of canonical correlation analysis, we need to

introduce some mathematical notation. The two sets of random variables being

considered are represented as two random vectors

X ¼ X1;X2; . . . ;Xp

� �T
and Y ¼ Y1; Y2; . . . ; Yq

� �T
: ð8:1Þ

Our goal is to find linear combinations

U ¼ aTX ¼ a1X1 þ a2X2 þ � � � þ apXp ð8:2Þ

and

V ¼ bTY ¼ b1Y1 þ b2Y2 þ � � � þ bqYq ð8:3Þ

403020100
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42 Spectral Bands
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Figure 8.1 Function plot of 225 pixel spectra of grass texture.
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Figure 8.2 The correlations of all 42 spectral bands represented in gray. Larger values are in darker

shades.
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that maximize the correlation

Corr U;Vð Þ ¼ Cov U;Vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Uð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Vð Þp : ð8:4Þ

We will assume that the following variance–covariance and covariance matrices

exist:

Var Xð Þ ¼ RXX; Var Yð Þ ¼ RYY ; Cov X;Yð Þ ¼ RXY ð8:5Þ

and the pþ qð Þ � pþ qð Þ matrix

R ¼
RXX RXY

RT
XY RYY

" #
ð8:6Þ

has full rank. The following theorem defines the canonical variables and explains how

to find them.

Theorem 8.1 Letm ¼ min p; qf g and define r21 � r22 � � � � � r2m as the eigenvalues

of the matrix R�1=2
XX RXYR

�1
YYR

T
XYR

�1=2
XX , and e1; e2; . . . ; em are the associated normal-

ized p-dimensional eigenvectors. The same quantities r21 � r22 � � � � � r2m are also

the m largest eigenvalues of the matrix R�1=2
YY RT

XYR
�1
XXRXYR

�1=2
YY with corresponding

normalized q-dimensional eigenvectors f1; f2; . . . ; fm. Each eigenvector fk;

k ¼ 1; . . . ;m, is proportional to R�1=2
YY RT

XYR
�1=2
XX ek. The correlation Corr U;Vð Þ is

maximized by the following linear combinations:

U1 ¼ aT1X ¼ eT1R
�1=2
XX X ði:e:; aT1 ¼ eT1R

�1=2
XX Þ ð8:7Þ

and

V1 ¼ bT1Y ¼ fT1R
�1=2
YY Y ði:e:; bT1 ¼ fT1R

�1=2
YY Þ ð8:8Þ

called the first pair of canonical variables. The maximum correlation is equal to

Corr U1;V1ð Þ ¼ r1 ¼
ffiffiffiffiffi
r21

q
ð8:9Þ

and is called the first canonical correlation. The kth pair of canonical variables,

k ¼ 2; 3; . . . ;m,

Uk ¼ eTkR
�1=2
XX X and Vk ¼ fTkR

�1=2
YY Y ð8:10Þ

MATHEMATICAL FORMULATION 243



maximizes

Corr Uk;Vkð Þ ¼ rk ¼
ffiffiffiffiffi
r2k

q
ð8:11Þ

(called the kth canonical correlation) among those linear combinations uncorrelated

with preceding k � 1ð Þ canonical variables.

Property 8.1 The canonical variables have the following properties:

Var Ukð Þ ¼ Var Vkð Þ ¼ 1;

Corr Uk;Uj

� � ¼ 0; for k 6¼ j;

Corr Vk;Vj

� � ¼ 0; for k 6¼ j;

Corr Uk;Vj

� � ¼ 0; for k 6¼ j;

ð8:12Þ

for k; j ¼ 1; 2; . . . ;m.

In Theorem 8.1, we constructed onlym canonical variables, wherem is the smaller

of the two numbers p and q. Let us assume that p � q. In that case, we can construct

q canonical variables V1;V2; . . . ;Vq, but we can also construct as many as p canonical

variables U1;U2; . . . ;Up by using the formula in (8.10). The additional variables

Uqþ1; . . . ;Up were not mentioned in Theorem 8.1 because they do not pair with the V

variables. Nevertheless, the full set of U variables will be useful. The vectors

of canonical variables U ¼ U1;U2; . . . ;Up

� �
and V ¼ V1;V2; . . . ;Vq

� �
can be ex-

pressed as

U ¼ A �X and V ¼ B �Y; ð8:13Þ

whereA is a p� pmatrix of ak vectors as rows andB is a q� qmatrix of bk vectors as
rows. Figure 8.3 shows relationships between the original random components and

the canonical variables. Each canonical variable Uj is a linear combination of the X

Up Xp

Y1 V1 U1 X1

Y2 V2 U2 X2

Yq Vq Uq Xq

AB

Figure 8.3 Relationships between the original random components and the canonical variables. The

matrixA transformsX to the vector of canonical variablesU, and B transformsY toV. Only the canonical

variables connected by arrows are potentially correlated.
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components, and A is the matrix of transformation from the components X to the

vector of canonical variables U. In a similar way, B transforms Y to V. Only the

canonical variables connected by arrows are potentially correlated. We assumed that

p > q, so the additional canonical variables Uqþ1; . . . ;Up are not correlated with any

of the remaining canonical variables.

Remark 8.1 In practice, the matrices RXX; RYY ; and RXY are unknown, and canoni-

cal correlation analysis is performed on the sample estimates SXX ; SYY ; and SXY ,
respectively. For simplicity, we are going to use the notation from the above theorem

also for the sample canonical correlation analysis, with the only modification that

RXX; RYY ; and RXY are replaced by SXX; SYY ; and SXY.

Remark 8.2 When the canonical variables are calculated based on the above

formulas using eigenvectors, they are defined up to a � 1ð Þ factor. Consequently,
some of the canonical correlations may have a negative sign. In a sense, we are

maximizing the absolute value of the correlations. The negative correlations can be

changed to positive ones by changing the signs of some of the canonical variables.

Remark 8.3 Some sources (e.g., Schott, 2007) use a slightly different approach,

where a matrix R�1
XXRXYR

�1
YYR

T
XY is used instead of R�1=2

XX RXYR
�1
YYR

T
XYR

�1=2
XX in the

definition of canonical variables. That approach is equivalent to our approach, except

that the resulting canonical variables can have variances different from 1. Details are

explained in Appendix C.

8.3 PRACTICAL APPLICATION

Example 8.1 (cont.) Let’s continue the examplewith a 15 by 15 pixel image of grass

texture in 42 spectral bands. We divide all 42 components (spectral bands) into

two groups. The first group of components consists of Bands 1–18, and we denote

them by Y. The second group of components consists of Bands 19–42, and we

denote them by X. In our notation, p ¼ 24 and q ¼ 18. The first 12 canonical

correlations were calculated for this data set, and they are shown in Table 8.1.

The first three canonical correlations are very large, and the subsequent values are

also quite large. This means that we found several pairs of linear combinations in both

sets of spectral bands that are highly correlated. The result is not surprising when you

look at the sample correlations matrix R of all 42 spectral bands (represented in

Figure 8.2).Most values in theRmatrix are very high,whichmeans thatmost of the 42

spectral bands are highly correlated.

When performing canonical correlation analysis, we hope that the correlation

between the two sets of variables can be described by a relatively small set of

Table 8.1 The First 12 Canonical Correlations for the Grass Texture Data

0.9998 0.9941 0.9748 0.8630 0.7866 0.7496 0.6714 0.6192 0.4996 0.4678 0.4626 0.3918
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canonical variables. In our example, the number of highly correlated pairs is relatively

large.We should now investigate the canonical variables, try to interpret them, and see

how much variability within each set of variables they explain.

Coefficient vectors ak and bk of the canonical variables are chosen so that the

variables have variance 1. Hence, theirmagnitudesmay vary substantially for different

k. For interpretation purposes,we can plot the normalized vectors ak andbk. Figure 8.4

shows such normalized values for thefirst three canonical variables from thefirst sets of

variables. The coefficients alternate between negative and positive, indicating that all

three canonical variables are contrasts of spectral bands. However, one cannot see any

particular patterns in these values to allow for any more specific interpretation.

Figure 8.5 shows such normalized coefficients for the first three canonical variables

from the second sets of variables. The coefficients again alternate between negative

and positive, indicating that they are contrasts of spectral bands. We can also see that

for all three vectors bk, the coefficients corresponding to Bands 29, 30, and 31 are

almost equal to zero. This was expected from Bands 30 and 31 since they have little

correlation with any other bands (see Figure 8.2). Band 29 seems to have larger

correlations but apparently is not substantially contributing to correlations with the

first 18 bands. &

8.4 CALCULATING VARIABILITY EXPLAINED BY CANONICAL

VARIABLES

We can now calculate howmuch variability within each set of variables the canonical

variables can explain. We will then compare the variability with that of the principal

components (which is the largest variability that can be explained). For this purpose,

we need the following result.
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Figure 8.4 Normalized coefficients for the first three canonical variables from the set of the first 18

spectral bands denoted by Y.
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Result 8.1 For any matrix G consisting of p columns gj; j ¼ 1; . . . ; p, and matrix

H consisting of p rows hTj ; j ¼ 1; . . . ; p, we have

G �H ¼ g1h
T
1 þ g2h

T
2 þ � � � þ gph

T
p : ð8:14Þ

From equations (8.12) and (8.13), the sample covariance Cov U;Vð Þ ¼ ASXXB
T ¼

diagp�qðr1; r2; . . . ; rpÞ, sample variance Var Uð Þ ¼ ASXXA
T ¼ Ip, and sample vari-

ance Var Vð Þ ¼ BSYYB
T ¼ Iq, where diagp�qðr1; r2; . . . ; rpÞ is a p� q matrix with

nonzero elements r1; r2; . . . ; rp on the diagonal only. We can solve for the three S

matrices to obtain

SXY ¼ A�1 diagp�q ðr1; r2; . . . ; rpÞ B�1
� �T

¼ r1a
1ð Þb 1ð ÞT þ r2a

2ð Þb 2ð ÞT þ � � � þ rpa
pð Þb pð ÞT ;

SXX ¼ A�1 A�1
� �T ¼ a 1ð Þa 1ð ÞT þ a 2ð Þa 2ð ÞT þ � � � þ a pð Þa pð ÞT ;

SYY ¼ B�1 B�1
� �T ¼ b 1ð Þb 1ð ÞT þ b 2ð Þb 2ð ÞT þ � � � þ b qð Þb qð ÞT ; ð8:15Þ

where a ið Þ and b ið Þ denote the ith column of A�1 and B�1, respectively.

Solving equations (8.13), we can recover X and Y values from the canonical

variables using the following formulas:

X ¼ A�1U and Y ¼ B�1V: ð8:16Þ
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Figure8.5 Normalized coefficients for thefirst three canonical variables from the set of the last 24 spectral

bands denoted by X.
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When we use only the first r canonical variables, the X and Y values are

approximated by

~X ¼ A�1
ðrÞUðrÞ and ~Y ¼ B�1

ðrÞVðrÞ; ð8:17Þ

whereU rð Þ andV rð Þ are vectors of the first r canonical variables, andA�1
ðrÞ and B

�1
ðrÞ are

matrices consisting of the first r column vectors a ið Þ and b ið Þ. The sample variance–

covariance matrices of approximations ~X and ~Y are

~SXY ¼ r1a
1ð Þb 1ð ÞT þ r2a

2ð Þb 2ð ÞT þ � � � þ rra
rð Þb rð ÞT ;

~SXX ¼ a 1ð Þa 1ð ÞT þ a 2ð Þa 2ð ÞT þ � � � þ a rð Þa rð ÞT ;

~SYY ¼ b 1ð Þb 1ð ÞT þ b 2ð Þb 2ð ÞT þ � � � þ b rð Þb rð ÞT ;

ð8:18Þ

which can be regarded as approximations of SXY ; SXX ; and SYY , respectively.
We can now calculate the total variability (as defined in formula (5.26)) explained

by the first r canonical variables using the following formulas:

tr ~SXX
� � ¼ tr a 1ð Þa 1ð ÞT

� �
þ tr a 2ð Þa 2ð ÞT

� �
þ � � � þ tr a rð Þa rð ÞT

� �

¼ a 1ð Þ		 		2 þ a 3ð Þ		 		2 þ � � � þ a rð Þ		 		2;
tr ~SYY
� � ¼ tr b 1ð Þb 1ð ÞT

� �
þ tr b 2ð Þb 2ð ÞT

� �
þ � � � þ tr b rð Þb rð ÞT

� �

¼ b 1ð Þ		 		2 þ b 2ð Þ		 		2 þ � � � þ b rð Þ		 		2 ð8:19Þ

for the first and the second set of variables, respectively.

Example 8.1 (cont.) Table 8.2 summarizes the variability explained by the first

10 canonical variables within the first 18 spectral bands for the grass texture

data and compares those values to the variability explained by principal

components.

The variability explained by canonical variables is almost as high as that explained

by principal components (which, in turn, is the highest possible). This means that in

this case the canonical variables achieve two goals at the same time:

1. They give the best correlation with the other set of variables.

2. Theygive close to the optimal explanation of thevariabilitywithin the subgroup

of variables.

Table 8.3 summarizes similar results on the variability explained by the first 10

canonical variables within the last 24 spectral bands for the grass texture data.
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This time, we can see much lower variability explained by the first canonical

variable, but after including the second canonical variable, the cumulative explained

variability is almost as high as that of principal components.

We can also investigate correlations between pairs of principal components

from the two sets of spectral bands. Table 8.4 summarizes such correlations for

the pairs of the first five PCs. The first correlation coefficient is quite high, but the

remaining values are very low and are much lower than the canonical

correlations.

When comparing canonical variables with principal components, there is a trade-

off between maximizing correlations of the two sets of variables and maximizing the

explained variability within those sets. In our example of grass texture data, we can

see a relatively good agreement between the two goals. In some cases, it may not work

thatwell.An examplewhen the two approaches give entirely different results is shown

in Problem 8.6, where the first principal components from the two groups are

uncorrelated and the canonical variables explain little variability.

8.5 CANONICAL CORRELATION REGRESSION

So far, we have been using canonical correlation as a tool to describe the correlations

between two sets of variables. It can also be used for predictive purposes in the

so-called canonical correlation regression (CCR). The idea is to establish a predictive

relationship between the sets of canonical variables V andU.

We are going to perform sample canonical correlation analysis with the

following notation. X andY are n� p and n� q matrices representing data from

the two sets of variables, respectively. All observations have been centered, that is,

a mean vector was subtracted from each observation. The values of canonical

variables for all n observations can be represented in matrices U andV given by

the following formulas:

U ¼ X �AT and V ¼ Y �BT ; ð8:20Þ
whereA is a p� pmatrix of ak vectors as rows and B is a q� qmatrix of bk vectors

as rows (as defined in the context of formula (8.13)).

The idea of canonical correlation regression is to build a regression relationship

between V andU and then transform it to the relationship between Y andX. Let us

say, we want to predict Y based on X. This means we need to predict V based on U.

We can do this by using the traditional least-squares method of linear regression.

Table 8.4 Correlations Between Pairs of Principal Components from the Two Sets of

Spectral Bands for the Grass Texture Data

PC1 PC2 PC3 PC4 PC5

0.9475 0.1392 �0.0523 0.0847 �0.4689
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The resulting fitted values given by an n� p matrix V̂ can be calculated from the

following formula:

V̂ ¼ U � b̂CC; ð8:21Þ

where b̂CC ¼ UT U
� Þ�1UT V. It turns out that b̂CC ¼ diagp�qðr1; r2; . . . ; rmÞ,

where m ¼ min p; qf g. However, some of the correlations on the diagonal can be

negative, so they should be calculated directly as the sample correlations between the

canonical variables rather than as the square root of r2j . An alternative computational

strategy is to modify the sign of a canonical variable so that only nonnegative

correlations are used (as commented in Remark 8.2). Finally, the fitted values for

the prediction of Y can be calculated as

Ŷ ¼ V̂ � BT
� ��1

: ð8:22Þ

By taking together formulas (8.20), (8.21), and (8.22), we obtain

Ŷ ¼ X �CT ; ð8:23Þ

where C ¼ B�1 � b̂TCC �A. In order to write down the predictive linear function for

canonical correlation regression, we want to operate on the vectors Y and X. In that

case, equation (8.23) can be written as

Ŷ ¼ C �X; ð8:24Þ

where C is the matrix of regression coefficients describing the predictive linear

transformation between the two sets of variables. The three transformations

A; b̂
T

CC; and B
�1 are shown in Figure 8.6, so that we can see their chain leading

to the transformation C representing the regression coefficients.

When all canonical variables are used (as shown above), the resulting regression

is equivalent to the traditional least-squares regression. Since the initial pairs of

canonical variables give the strongest correlations, it makes sense to decide on a

smaller number, say t � m, of canonical variable pairs. In that case, we can still use

the above formulas with the matrix bCC equal to diagp�qðr1; r2; . . . ; rtÞ (i.e., the

remaining m� tð Þ correlations on the diagonal are replaced by zeros).

In order to assess the CCRmodel, we can study residual vectors calculated as rows

of the following residual matrix D:

D ¼ Y� Ŷ : ð8:25Þ

Example 8.1 (cont.) For the grass texture data, a CCR model was fitted for t ¼ 18

(the full model). The resulting residual vectors di; i ¼ 1; . . . ; n (rows of D), are

plotted in Figure 8.7. There are some differences in the residual variability in different

spectral bands. This means that the prediction will be more precise in the bands with
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lower residual variability. The distribution of row vectors of D seems to be well

approximated by the p-dimensional normal distribution, which was verified by

univariate normal probability plots. It is also confirmed by a chi-squared Q–Q plot

of statistical distances shown in Figure 8.8, where most points follow the plotted

straight line (y ¼ x), except for one outlier.
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Figure 8.7 Residual vectors (rows of the residual matrixD defined by formula (8.25)) shown as functions

of the spectral band number.
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Figure 8.6 The three transformations A; b̂
T

CC; andB
�1 shown as a chain leading to the transformation

C representing the regression coefficients.
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It is of interest to investigate the impact of reducing the number k of canonical

variables used in CCR. As a one-number summary of variability in residuals, we use

the total variability in residuals (TVR)

TVR ¼ 1

n� 1

Xn
i¼1

dik k2 ¼
Xp
j¼1

1

n� 1

Xn
i¼1

d2
ij

 !
¼
Xp
j¼1

lj; ð8:26Þ

where dij are the coordinates of di and lj are eigenvalues of the sample variance–

covariance matrix of the residual vectors. Figure 8.9 shows the values of the TVR for

the range of t from 2 to 18 (the value for t ¼ 1 is much larger). The values are
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Figure 8.8 A probability plot using the Small’s method for the residual vectors calculated as rows of the

residual matrix D defined by formula (8.25).
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Figure 8.9 The total variability in residuals for the range of t from 2 to 18.

254 CANONICAL CORRELATION ANALYSIS



decreasing with the smallest value at t ¼ 18, and they are almost constant for large t.

This may suggest the use of t ¼ 18 as the best choice, or possibly the use of a

somewhat smaller t, if onewas not concernedwith a slight increase in TVR.However,

a shortcoming of such analysis is that the TVR will usually be reduced for more

complex models such as CCR with a larger value of t.

In general, a drawback of more complex models is that they are more likely to be

overfitted to the data. This means that the model gives good predictions (small

residuals) for the points from the data set used to fit the model, but it may give poor

predictions in future data. Consequently, cross-validation should be performed to

compare the models and give a more realistic assessment of prediction in future

data. Herewe use k-fold cross-validation with several values of k and leave-one-out

cross-validation (see Supplement 8A for a general discussion of cross-validation).

For each test vector xi (realization of the second set of variablesX), we calculate the

fitted value ŷi ¼ C � xi. In the leave-one-out cross-validation, each vector from the

data set is taken exactly once as a test vector. Hence, we can calculate the estimated

test error (ETE) as

ETE ¼ 1

n

Xn
i¼1

yi � ŷik k2 ¼
Xp
j¼1

1

n

Xn
i¼1

yij � ŷij
� �2 !

; ð8:27Þ

where yij; j ¼ 1; . . . ; p, are the coordinates of yi. The ETE can also be regarded

as the total variability of the prediction error around zero (the desired value). For the

k-fold cross-validation, each vector from the data set is also taken exactly once as a

test vector within one round of cross-validation. Hence, formula (8.27) can also be

used for estimation of the test error. The ETE values for the leave-one-out and

three types of k-fold cross-validation are plotted in Figure 8.10. The k-fold
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Figure 8.10 TheETE values for the leave-one-out and three types of k-fold cross-validation for a range of

the number of canonical variables used in CCR.
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cross-validation consisted of 100 rounds each, and consequently the standard errors

(due to random sampling) of all estimates are very low (below 0.004). Here, the

nine-fold cross-validation leaves out the largest number of vectors (225=9 ¼ 25) for

testing each time, and hence it is the most challenging case for prediction. This

explains why the ETE values are mostly the largest ones for the nine-fold case. For

larger k, the k-fold generated ETE values become smaller, with the smallest values

for the leave-one-out cross-validation (equivalent to n-fold cross-validation),

except for t ¼ 10.

Within a given type of cross-validation, the smallest ETE values are observed for

t ¼ 15 (9-fold and 15-fold) and for t ¼ 16 (25-fold and one-out). This suggests slight

overfitting in the full CCR model with t ¼ 18 and a recommended value of t ¼ 15 in

CCR. One could also consider t ¼ 8, if further simplification is sought, possibly at a

cost of an increased prediction error.

8.6 FURTHER READING

Good references for further reading on canonical correlation analysis are Johnson and

Wichern (2007) and Jackson (1991). Schott (2007), Hernandez-Baquero and Schott

(2000), and Hernandez-Baquero (2001) shows applications of canonical correlation

regression in remote sensing.

SUPPLEMENT 8A. CROSS-VALIDATION

In any type of statistical modeling, we are interested in the model fit, not only to the

currently available data, but also to the future observations. However, the model

parameters are estimated based on the current data, and it is unclear how the model

may perform on future data. Once the model is found, its performance on future data

can sometimes be evaluated based on some theoretical results, as was done in

Section 4.2.6 in the context of regression. Such results, however, assume that we

found the correct model. One danger here is that we overfit the model to the current

data. In the context of linear regressionmodels discussed in Chapter 4, there are some

ways of mitigating the problem by using statistical inference. For example, wewould

eliminate the insignificant predictors from the model, even though they always

increase the model fit (lower residual sum of squares and higher R2). Without such

precautions, one could fit a seven-degree polynomial to eight data points perfectly

(assuming different values of the only predictor x) with all residuals equal to zero.

Even though the model fits perfectly to the current data, it would perform poorly

on future data. In more complex models, it is far more difficult, if at all possible,

to check analytically if a given model is overfitted. In those cases, one should use

cross-validation.

The concept of cross-validation is to simulate the presence of future data. We

pretend that some of the current data points are the future observations (we call it a
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testing sample), and only the remaining observations (a learning sample) are used to

fit themodel. The fittedmodel is then evaluated based on the testing sample.Wewould

typically compare different types of models through cross-validation. Once it is

decided which model is the most promising one, the specific model parameters are

fitted based on the whole data set.

The question that remains is how to choose the testing sample. There are many

ways to do this. One popular method is that of k-fold validation, where k is a

chosen number such as 5 or 10. The k-fold validation is performed in the following

round of steps:

1. The data set is randomly divided into k approximately equal subsets.

2. One of the k subsets is removed as the learning sample, and themodel is fitted to

the data from the remaining k � 1ð Þ subsets.
3. The model is evaluated based on the removed subset (the testing sample).

4. Steps 2 and 3 are repeated for all k subsets being removed in turn.

In the above steps, each observation is removed exactly once as an element of one of

the k subsets. The above round can be repeated several times and the average

evaluation results are calculated. The model evaluation in Step 3 involves a measure

of prediction error. For continuous vector responses y, we can calculate the estimated

test error as

ETE ¼ 1

n

Xn
i¼1

yi � ŷik k2 ¼
Xp
j¼1

1

n

Xn
i¼1

yij � ŷij
� �2 !

; ð8:28Þ

where yi is the actual response of the ith observation and ŷi is the predicted response

for the ith observation based on the learning sample. The values yij ; j ¼ 1; . . . ; p; are
the coordinates of yi. The value of ETE can be calculated after one round of cross-

validation. If more rounds are performed, the resulting ETE values are averaged.

In classification problems, we use different ways to evaluate the model and the

resulting classification rule (see Chapter 9 for details).

When k is equal to the sample size n, the k-fold cross-validation becomes the

so-called leave-one-out method. Here the procedure is repeated n times with

exactly one observation removed each time. There is no need to randomize here,

so the result is not random, in contrast to the classic k-fold method for smaller k.

This is a definite advantage of the leave-one-out cross-validation. On the other

hand, the method is limited in predicting some challenges in future data because

only one observation is removed at a time. If there are small clusters of outliers in

the data, the remaining outliers in the cluster will mask the difficulty of prediction.

When we remove more observations at one time, a cluster of outliers might be

removed as a whole from the learning sample, resulting in poor, but more realistic,

prediction. Another difficulty is that for very large data sets and complex

procedures being evaluated, the leave-one-out cross-validation may not be com-

putationally feasible.
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PROBLEMS

8.1. Calculate all 18 canonical correlations for the grass data used in Example 8.1.

Check your first 12 values with those in Table 8.1. Are some values different

only by an opposite sign? Is this a problem? Why?

8.2. Calculate the coefficients for the first 10 canonical variables from both sets of

the spectral bands considered in Example 8.1. Also calculate their normalized

versions and plot the figures analogous to Figures 8.4 and 8.5. Can you observe

any patterns?

8.3. Fit the canonical correlation regressionmodel for all values ofk from1 to 18 for

the data used in Example 8.1. Recreate the results of

a. Figure 8.7.

b. Figure 8.9.

8.4. Perform leave-one-out cross-validation for the canonical correlation regression

model for the data used in Example 8.1. Recreate the results of Figure 8.10 for

the leave-one-out cross-validation.

8.5. Perform k-fold cross-validation for the canonical correlation regression model

for the data used in Example 8.1. Recreate the results of Figure 8.10 for the

k-fold cross-validation.

a. Use k ¼ 9.

b. Use k ¼ 15.

c. Use k ¼ 25.

8.6. Assume that we have two sets of variables written as two random vectorsX and

Y, each of dimensionality 2, that is, p ¼ q ¼ 2 in our notation. The variance–

covariance matrix of the joint vector is given by

Var
X

Y

" # !
¼

80 0 0 0

0 1 0:97 0

0 0:97 1 0

0 0 0 120

2
666664

3
777775:

a. Find the pairs of canonical variables.
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b. Calculate the fraction of variability explained by each of the first canonical

variables within their respective sets of variables.

c. Find the principal componentswithin each group of variables and howmuch

variability they explain.

d. Find the correlations among the principal components identified in part c.

e. Interpret your findings.

8.7. Consider infrared astronomy data used in Example 3.3 and described in

Appendix B. Here we want to use only the group of C AGB stars and all four

bands J, H, K, and A as variables. The first group of variables, denoted by the

random vector X, consists of the J and H bands, and second group of variables

consists of the remaining bands K and A (described by the random vector Y).

Perform canonical correlation analysis and see if you can interpret the

canonical variables in both groups (use an equivalent of Figure 8.4). Calculate

all canonical correlations. Interpret the results.

8.8. Consider the infrared astronomy data used in Problem 8.7.

a. Find the principal componentswithin each group of variables and howmuch

variability they explain. Try to interpret the principal components by using

impact plots, like the one shown in Figure 7.9.

b. Find the correlations among the principal components identified in part a.

Interpret your findings.

c. If you were also assigned Problem 8.7, compare the results and conclude

which set of variables (canonical correlations versus principal components)

better summarizes the structure of data.

8.9. Perform tasks of Problem 8.7 for the group of H II regions. If you were also

assigned Problem 8.7, compare the results for the two groups.

8.10. Perform tasks of Problem 8.8 for the group of H II regions. If you were also

assigned Problem 8.8, compare the results for the two groups. Also compare

your results to those in Problem 8.9, if you were assigned that problem as well.

8.11. Consider the infrared astronomy data used in Problem 8.7. Use the canonical

correlation regression to predict the vectors of readings in the second group

described by the random vector Y based on the variables in the first group

described by the random vector X. See if you can reduce the number of

canonical variables used from t ¼ 2 to t ¼ 1. Base your decision on the

residuals and some of their summary measures developed in Section 8.5.

8.12. In the context of Problem 8.11, perform cross-validation of the canonical

correlation regression. Use the leave-one-out cross-validation and the k-fold

cross-validation for k ¼ 7 and k ¼ 18.
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C H A P T E R 9

Discrimination and Classification –

Supervised Learning

9.1 INTRODUCTION

In this chapter, wewill describe discrimination and classification analysis, also called

supervised learning. The purpose of discrimination analysis is to describe features of

observations from several populations that allowdifferentiating those populations and

their observations. On the other hand, classification is a more formal process of

assigning new observations to one of the identified populations. In practice, the same

methodologies can be used for both discrimination and classification, and we will

mostly use the term classification to describe those methods.

In the classification problems, we have a data set with observations on one or more

variables, and we know which observations come from which populations or groups.

This is why the methods for classification are often called supervised learning (we

learn how to classify objects into groups), which is different from unsupervised

learning (called cluster analysis in statistics) discussed in the next chapter. Our goal is

to find a classification rule or procedure that would predict the group membership of

future observations based on their observed values of the variables. Here are two

examples of classification problems.

Example 9.1 Consider infrared astronomy data described in Example 3.3. Here

we want to concentrate on two variables, the J (1.25 mm) and H (1.65 mm) band

magnitudes obtained for 126 star objects, of which 67 are CAGB stars and 59 are H II

regions. SeeAppendixB formore details about this data set. Figure 9.1 shows a scatter

plot of the two groups of stars based on those two variables. The task of classification

is to find a boundary line that would separate the two groups, so that, for example, the

observations above the line are classified as C AGB and those below the line as H II.

We can see some overlap of the two groups, and it is clear that perfect classification

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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based only on these two variables will not be possible. We will continue using this

example throughout the chapter. &

Example 9.2 Consider a 64 by 64 pixel image of grass texture in 42 spectral bands.

This means that each pixel is represented by a 42-dimensional vector or spectrum of

reflectances in 42 spectral bands. A small area in the top right corner of the image

(see Figure 9.2 and Appendix B for the exact definition of that area) is affected by a

disease. There are 256 pixels with diseased grass, out of the total of the 4096 pixels in

the image.

Our goal is to find out how the diseased grass can be recognized based on the

reflectance values in 42 spectral bands. For this purpose, we define two sets of

observations (pixels). The first set represents healthy grass, and the second set
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Figure 9.1 A scatter plot of two groups of stars (CAGB andH II) based on themagnitudes in two infrared

bands, J and H.

Figure 9.2 An area of diseased grass in the top right corner.
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represents diseased grass, based on known locations of pixels. We will try to

characterize the two data sets so that a future observation of a grass pixel can be

identified as healthy or diseased based on reflectance values in 42 spectral bands.

A function plot of all 4096 spectra would look somewhat similar to Figure 8.1,

where a subset of this data set was used. However, the plot would not be very

informative due to a large number of overlapping lines. An alternative solution is to

perform principal component analysis and plot values of the first two principal

component scores as done in Figure 9.3. The spectra of the diseased grass are

represented by crossed squares, and those of the healthy grass by circles. Some of the

diseased grass spectra are clearly distinct from those of healthy grass, but there is also

some significant overlap of the two groups. It turns out that the first two principal

components explain 84.6% of the variability, which is not a lot in the context of

spectral images. This suggests significant information contained in the remaining

dimensions. Nevertheless, we can use Figure 9.3 for exploratory purposes, and try to

construct a classification rule in those two dimensions.

One possibility is to use the straight line shown in Figure 9.3 as the boundary line L

for a classification rule. The line goes through two points: (20, � 40) and (� 40, 20) in

the principal component coordinates, or PC scores, that we will denote here by

y1; y2ð Þ. We can classify all observations below the dividing line as representing

diseased grass, and those on the line or above as healthy grass. Since the equation of

the boundary line is y2 ¼ �y1 � 20, we can calculate the threshold PC2 value for each

observation y1; y2ð Þ as �y1 � 20. If y2 is smaller than the threshold, that is,

y2 5 �y1 � 20ð Þ, we would classify the observation as a pixel of diseased grass.

However, a simpler approach would be to calculate y1 þ y2 and check if it is below

�20ð Þ. Note that y1 þ y2 ¼ y1; y2½ � � v is proportional to the projection on v, where

v ¼ 1; 1½ �T is a vector orthogonal to L. We can say that the classification is performed

based on the projections of points on the vector v. We will return to this general

concept later on in this chapter.
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Figure 9.3 Two sets of grass spectra in principal component coordinates (PCA scores), with an example

of a possible boundary line for a classification rule.
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It is clear from Figure 9.3 that using the above approach leads to some misclassifi-

cation errors. The classification results are summarized in a classification table, or a

confusion matrix, shown in Table 9.1. We prefer the term classification table and will

be using it throughout this book. The number of correctly classified observations is

identified on the diagonal of the table or matrix, and the incorrect classifications are

outside of the diagonal in the shaded cells.

We might wonder if we can reduce the misclassification rates shown in Table 9.1.

When moving the dividing line up, we would reduce the number of misclassified

pixels of diseased grass, but at the same time, we would increase the number of

misclassified pixels of healthy grass. On the other hand, when moving the dividing

line down, wewould increase the number ofmisclassified pixels of diseased grass, but

at the same time, wewould reduce the number ofmisclassified pixels of healthy grass.

The following questions arise:

. What is the optimum position for the dividing line?

. Is the use of the first two principal components optimal? Should we use the

remaining principal components?

. Do we really need principal components, or should we just use the original

variables?

. Would it help if we used a dividing line that was not a straight line?

The next section introduces some mathematical notation and results that help in

answering these questions. &

9.2 CLASSIFICATION FOR TWO POPULATIONS

Consider two populations from which two groups, or samples, of observations are

drawn. We will denote the two populations by p1 and p2. In the context of Example

9.2, p1 could be the population of healthy grass spectra, meaning not only the grass

represented in the image, but also other healthy grass of similar type. The second

population, p2, would then be the population of diseased grass spectra, again not only
that represented in the image, but also other diseased grass (although we should

probably limit that population to a given type of disease). The two sets of spectra

Table 9.1 A Classification Table for Example 9.2 Grass Texture Data Classified

into Healthy and Diseased Grass

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3809 31 3840

Diseased grass 149 107 256

Total 3958 138 4096
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represented in Figure 9.3 (by their PC coordinates only) are two samples drawn from

the two populations p1 and p2, respectively.
Let X be a random vector representing all the variables we observe in order to

discriminate between the two populations. In Example 9.2,X could be a vector of all

42 spectral bands, or it could be a vector of the first two principal components as

discussed in Section 9.1. If an observation comes from the first population p1, the
distribution ofX is assumed to have a probability density function f1 xð Þ. On the other
hand, if an observation comes from the second population p2, the distribution of X is

assumed to have a probability density function f2 xð Þ. It is assumed that the densities

f1 xð Þ and f2 xð Þ are different from each other, since otherwise it would not be possible

to distinguish between the two populations.

For each realization x of the randomvectorX, wewant to decidewhether the object

comes from the population p1 or p2. LetR1 be the set of x values for which we classify

the object as coming from p1, and R2 be the set of the remaining possible x values (for

which we classify the object as coming from p2). The mutually exclusive regions R1

andR2 are called classification regions for the two populations. In the context ofGrass

Data from Example 9.2, let us assume that the vectorXwas taken as the vector of the

first two principal components. Then R1 could be the area above the dividing straight

line, and R2 would be the area below the dividing straight line. Table 9.2 shows the

four possible events that can happen when an observation is classified into one of

the two populations.

We are mainly interested in avoiding the misclassification events. In order to

calculate their probabilities, we need to introduce prior probabilities. If we randomly

select an object, the probability that it comes from population p1 is the prior

probability p1, and the probability that it comes from population p2 is the prior

probability p2. Clearly, p1 þ p2 ¼ 1. In practice, the values of p1 and p2 might be

difficult to estimate. They could be estimated from the proportions of observations in

the available data set under the assumption that the sample proportions are reasonable

estimates of the population proportions. Inmany classification problems, thismay not

be a reasonable assumption since the data are often collected simply to represent the

features of the two populations, but the sample proportions are not necessarily

representative of the population proportions. In Example 9.2, the proportion of

diseased grass shown in Figure 9.2a is highly unlikely to represent the true proportion

in the population. If the imagewere taken as centered at the diseased grass area, those

pixels would have larger representation, but again the sampling proportion would

most likely be different from the true population proportion.

Table 9.2 Four Possibilities When an Observation is Classified into One of the

Two Populations

Observation Comes from

Observation Is Identified as Coming from

Population p1 Population p2

Population p1 OK Misclassified as p2
Population p2 Misclassified as p1 OK
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The proportions p1 and p2 can sometimes be estimated from some general statistics

available independently of the given data set. For example, it might be known that

approximately 5% of grass in a given county is affected by a specific disease.

We also need to know some conditional probabilities. The conditional probability

P 2j1ð Þ of classifying an object as p2 when, in fact, it is from p1 is given by

P 2j1ð Þ ¼ P X 2 R2jp1ð Þ ¼
ð
R2

f1 xð Þdx; ð9:1Þ

and similarly, the conditional probabilityP 1j2ð Þ of classifying an object asp1 when, in
fact, it is from p2 is given by

P 1j2ð Þ ¼ P X 2 R1jp2ð Þ ¼
ð
R1

f2 xð Þdx: ð9:2Þ

We can now write down formulas for misclassification probabilities.

P observation is misclassified as p1ð Þ
¼ P observation comes from p2 and is misclassified as p1ð Þ
¼ P X 2 R1jp2ð ÞP p2ð Þ ¼ P 1j2ð Þp2:

ð9:3Þ

Similarly,

P observation is misclassified as p2ð Þ
¼ P observation comes from p1 and is misclassified as p2ð Þ
¼ P X 2 R2jp1ð ÞP p1ð Þ ¼ P 2j1ð Þp1:

ð9:4Þ

Our goal is to minimize both probabilities of misclassification. In practice, it is

usually not possible to find a classification rule thatwouldminimize both probabilities

at the same. We could use the following approaches:

1. Fix the probability of one type of misclassification, and minimize the proba-

bility of the other type of misclassification (this is similar to the hypothesis

testing problem with Type I and Type II errors).

2. Assign costs associated with each type of misclassification, and minimize the

total cost of misclassification.

We are going to investigate the second option here. To this end, we can define the

misclassification costs as shown in Table 9.3. The cost of correct classification is

zero; the cost of misclassification as p2 is c(2|1); and the cost of misclassification

as p1 is c(1|2).
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Definition 9.1 The expected cost of misclassification (ECM) is defined as

the average cost of both types of misclassifications and can be calculated from

the formula

ECM ¼ c 2j1ð ÞP 2j1ð Þp1 þ c 1j2ð ÞP 1j2ð Þp2: ð9:5Þ

Theorem 9.1 The classification rule that minimizes ECM is defined by the classifi-

cation regions R1 and R2 given as

R1 ¼ x :
f1 xð Þ
f2 xð Þ �

c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
and R2 ¼ x :

f1 xð Þ
f2 xð Þ 5

c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
: ð9:6Þ

Proof. See Problem 9.2 for a sketch of the proof.

When no information is available about prior probabilities or misclassification costs,

they can be assumed to be the same for the two populations. The above classification

rule is then simplified to a straightforward rule based on which density has the larger

value, that is, R1 ¼ x : f1 xð Þ � f2 xð Þf g and R2 otherwise.

The classification rule given by (9.6) requires knowledge of the density functions

f1 xð Þ and f2 xð Þ for the two populations. Even though one could estimate those

densities, it is rather difficult, especially in themultivariate case.Another possibility is

to assume a specific form of those densities.We are going to take the latter approach in

the next section, and assume normality of observations from both populations.

9.2.1 Classification Rules for Multivariate Normal Distributions

We now assume that f1 xð Þ and f2 xð Þ are multivariate normal (Gaussian) densities,

the first one with the mean vector l1 and the variance–covariance matrix R1 and

the second one with the mean vector l2 and the variance–covariance matrix R2. The

classification rules discussed in this section are called Gaussian maximum likelihood

rules by some sources, but there is little justification for this name because the

maximum likelihood principles are not used here. We will call these rules the

Gaussian classification rules. The true maximum likelihood rules are more complex

and are defined in Anderson (2003) in Section 6.5.5 (equal variance–covariance

matrices) and Section 6.10.1 (unequal variance–covariance matrices).

Table 9.3 The Cost Matrix of Misclassifications

Observation Comes from

Observation Is Identified as Coming from

Population p1 Population p2

Population p1 0 c(2|1)

Population p2 c(1|2) 0
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9.2.1.1 Classification for Normal Populations with Equal
Variance–Covariance Matrices
When R1 ¼ R2 ¼ R, we can simplify the classification rule defined in equation (9.6).

Specifically, one can show that the rule that minimizes the ECM is such that x 2 R1, if

l1 � l2ð ÞTR�1x� 1

2
l1 � l2ð ÞTR�1 l1 þ l2ð Þ � ln

c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
ð9:7Þ

and x 2 R2 otherwise (the derivation is given as Problem 9.6). In practice, the

population parameters are unknown, and they need to be estimated. The variance–

covariance matrix R is estimated from the pooled (combined) estimate

Spooled ¼ ðn1 � 1Þ
ðn1 þ n2 � 2Þ S1 þ

ðn2 � 1Þ
ðn1 þ n2 � 2Þ S2; ð9:8Þ

and the classification rule for x 2 R1 becomes

x1 � x2ð ÞTS�1
pooledx�

1

2
x1 � x2ð ÞTS�1

pooled x1 þ x2ð Þ � ln
c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
ð9:9Þ

and x 2 R2 otherwise. The rule is called the linearGaussian rule. Since the parameters

are estimated here, the rule is no longer guaranteed to minimize the ECM. It is

assumed that Spooled is a nonsingular matrix. This means that n1 þ n2 � 2 � p, where

n1 and n2 are sizes of the two samples. If this is not the case, we can reduce

the dimensionality p of the data set, so that Spooled becomes nonsingular, and

the classification can be performed in the reduced space. In practice, the sample

sizes should be much larger than the minima mentioned here.

The classification rule defined by formula (9.7) or (9.9) is called a linear rule

because the classification depends on x in a linear way. This can be seen from an

alternative notation, where inequality (9.9) is written in the form

vTx � c; ð9:10Þ

where

vT ¼ x1 � x2ð ÞTS�1
pooled and c ¼ 1

2
vT x1 þ x2ð Þ þ ln

c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
: ð9:11Þ

This also means that the classification regions R1 and R2 are regions in a

p-dimensional space separated by a (p � 1)-dimensional affine (linear) subspace

(a straight line for p ¼ 2) orthogonal to the discriminant vector v. The boundary

subspace is described by the equation vTx ¼ c.

We call the direction of the discriminant vector v a discriminant direction because

the discrimination (or classification) is performed based on the projection of x on

the vector v. It is worth mentioning that the discriminant direction does not depend on
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the costs of misclassification and the prior probabilities. Only the threshold c applied

to the projections on v depends on those quantities. Figure 9.4 shows graphically the

situation for a two-dimensional classification problem (p ¼ 2). The ellipses are the

contour lines of two bivariate normal distributions with the same estimated var-

iance–covariance matrix Spooled and different mean vectors shown as stars. These are

the estimated distributions of the two populations. Note that the discriminant

direction, marked as v, is not necessarily parallel to the line connecting the two

means. Instead, it adjusts to the shape of the distributions, so that the boundary line L,

orthogonal to v, approximately minimizes the value of the ECM. The bold boundary

line L shown in Figure 9.4 was calculated for the case when c 1j2ð Þp2 ¼ c 2j1ð Þp1,
which could be used when no information about the costs of misclassification and

prior probabilities is available. In that case, the boundary line is the linewhere the two

normal densities have the same values, that is, L ¼ x : f1 xð Þ ¼ f2 xð Þf g. This means

that L will cross all pairs of points where the two contour lines of densities of equal

height intersect (such as points x1 and x2 in Figure 9.4a). The line Lwill also cross the
middle point x0 between the estimated means of the two populations.

Note that c 1j2ð Þ is the cost of misclassification per one object from Population 2. If

N is the total size of both populations, then p2N is the size of Population 2, and

c 1j2ð Þp2N is the total cost of all misclassifications in Population 2. In the same

fashion, c 2j1ð Þp1N is the total cost of all misclassifications in Population 1. When

c 1j2ð Þp2 4 c 2j1ð Þp1, misclassification in Population 2 will be more costly. This can

happen when the objects from Population 2 are more costly when misclassified (i.e.,

c 1j2ð Þ4 c 2j1ð Þ), or when there are more objects in Population 2 (p2 4 p1). In either

case, we would want to move the boundary line above L, so that more objects are

classified as Population 2, thus reducing misclassifications. Since only the constant c

in formula (9.10) is impacted by those changes, the resulting boundary line will be

parallel to L, as shown by the dashed line in Figure 9.4b. In the sameway, the linewill

x0

L

v
x1

x2

Population 1

Population 2

(a)

L

v

Population 1

Population 2

(b)

Figure 9.4 A scenario of linear classification for two populations following bivariate normal distributions

with the same variance–covariance matrix.

CLASSIFICATION FOR TWO POPULATIONS 269



move down (as the dotted line in Figure 9.4b) when Population 1 is more costly (when

c 1j2ð Þp2 5 c 2j1ð Þp1).
Instead of working in the original space ofX variables, we could “sphere” all data

by using the transformed coordinates z ¼ S
�1=2
pooledx. In the “sphered” space of z

coordinates, things look much simpler.

We can write the linear Gaussian rule (9.10) as

vTz � c; ð9:12Þ

where

vT ¼ z1 � z2ð ÞT; c ¼ 1

2
vT z1 þ z2ð Þ þ b; b ¼ ln

c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
: ð9:13Þ

The ellipses from Figure 9.4 become circles, and the line connecting the means is

parallel to the discriminant direction v and is orthogonal to the boundary line L, as

shown in Figure 9.5.

Errors of Misclassification

When the two costs ofmisclassification are assumed to be the same (c 1j2ð Þ ¼ c 2j1ð Þ),
the ECM criterion is reduced to minimizing the total probability of misclassification

(TPM) defined by

TPM ¼ P 2j1ð Þp1 þ P 1j2ð Þp2: ð9:14Þ

z0 L

v

Population 1

Population 2

Figure 9.5 A scenario (shown in the sphered z space) of a linear classification for two populations

following bivariate normal distributions with the same variance–covariance matrix.
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We will now show how one can estimate both ECM and TPM for the linear

Gaussian rule given by (9.10). In a given practical situation, we already know the

values for the prior probabilities and the costs of misclassification because they were

used in constructing the classification rule. However, we do not know the conditional

probabilities. They can be estimated in the sphered z space shown in Figure 9.5 by

using some simple geometric considerations. Note that the Euclidean distance in the z

space is equivalent to the Mahalanobis distance in the original space, and the linear

Gaussian rule has the form written in equation (9.12). Let D ¼ z1 � z2k k be the

Euclidean distance between the two sample means, and assume that z2 is at the origin
(only for simplicity of explanations). Let f be a unit vector in the direction of z1 � z2.

Then z1 � z2 ¼ D � f and z1 þ z2ð Þ=2 ¼ D=2ð Þ � f. Let z0 ¼ h � f be a point onL (this is
the case of arbitrary costs of misclassifications, so think of L as the dashed line in

Figure 9.5). Hence, vTz0 ¼ c. We also have vTz0 ¼ D � h and c ¼ D2=2þ b. This

leads to h ¼ D=2þ b=D. The probability P 1j2ð Þ can be approximated as the

probability of the area above the dashed line in Figure 9.5 when using the standard

bivariate normal distribution with the center at z2. This is only an approximation

because the estimate S
�1=2
pooled was used instead of the true populationmatrixR�1=2 in the

sphering process. Similar arguments can be used for derivation of P 2j1ð Þ. Hence,

P 2j1ð Þ � U �D
2
þ b

D

� �
and P 1j2ð Þ � U �D

2
� b

D

� �
; ð9:15Þ

where F is the cumulative standard normal distribution function,

b ¼ ln
c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
and D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð ÞTS�1

pooled x1 � x2ð Þ
q

: ð9:16Þ

More precise approximations are discussed by Srivastava (2002) in Section 8.4.

Approximations (9.15) require the assumption of normality. For non-normal

data, we can still use the linear Gaussian rule, and the conditional probabilities can

be estimated from the data. Let us say that a given classification procedure was

applied to all observations and the resulting classifications were recorded in a

classification table like the one shown in Table 9.4. The table shows the notation

that we want to use here. For example, n21 is the number of observations classified

into Population 2, given they actually come from Population 1. It is clear that

Table 9.4 Classification Table Showing Notation Used in the Text

Observation Comes from

Observation Is Identified as

Coming from

TotalPopulation p1 Population p2

Population p1 n11 n21 n1
Population p2 n12 n22 n2

Grand total n
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P 2j1ð Þ � n21=n1 and P 1j2ð Þ � n12=n2. Hence, we introduce the estimated error

rate (EER), defined as

EER ¼ n21

n1
p1 þ n12

n2
p2; ð9:17Þ

as an estimator of TPM. When the prior probabilities are estimated from the sample,

we have p1 ¼ n1=n and p2 ¼ n2=n, and EER ¼ n21 þ n12ð Þ=n reduces to the apparent
error rate (APER), defined by the same formula APER ¼ n21 þ n12ð Þ=n. APER is

often mentioned by other authors and is produced by software. We need to remember

that APER should be used only when we are willing to assume the prior probabilities

estimated from the sample. Otherwise, it is better to use EER.

Unfortunately, the methods of misclassification error estimation shown here tend

to underestimate the true error rates in future samples. The reason is that the

classification rule is assessed based on the same data that were used to estimate the

rule. This iswhy it is important to use cross-validation to findmore realistic error rates.

We will show the use of cross-validation in Section 9.2.2.

Example 9.1 (cont.) TheAstronomyData shown earlier in Figure 9.1 is onlymildly

non-normal as can be seen in Figure 9.6, where two beta probability plots (see Section

6.5) for the two groups are shown. The H II group shown in Figure 9.6b looks less

normal due to two outlying observations. Out of the four tests of univariate normality

(for two groups and two variables) only H magnitude variable for H II group shows a

significant p-value of 0.0026. This value can be interpreted as a p-value of

4� 0:0026 � 0:01 based on theBonferroni-type arguments (see Result 6.1 in Section

6.2.2) because four inferences were performed here.

In order to test the equality of variance–covariancematrices for the two groups, we

can use the Box test (see Section 6.4), and the resulting p-value of 0.0008 tells us that

thematrices are statistically significantly different. Consequently, the linear Gaussian
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Figure 9.6 Probability plots for the C AGB group (a) and the H II group (b) as discussed in Example 9.1.
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rule defined by (9.9) may not be approximately optimal in the ECM sense. Never-

theless, it is worthwhile to try it here. Since we have no information about the

frequency of the two types of stars in future applications, we assume p1 ¼ p2 ¼ 0:5.
We also assume equal costs of misclassification. Application of the classification

rule (9.9) results in the boundary line shown in Figure 9.7. Table 9.5 shows

the classification table with 11 misclassifications. EER is calculated as

7=67ð Þ � 0:5þ 4=59ð Þ � 0:5 ¼ 0:861, and APER as 11=126 ¼ 0:0873. Based on

formula (9.15), both misclassification probabilities are estimated as 0.0781, and

formula (9.14) with p1 ¼ p2 ¼ 0:5 leads to the TPM being estimated as 0.0781. We

can see that all three approaches to the estimation of TPM produce somewhat similar

results in this case. &

Example 9.2 (cont.) Let us again consider two populations of grass pixels. The first

population p1 is the population of healthy grass, and the second population, denoted
by p2, is the population of diseased grass. Before we apply the linear Gaussian

methodology, we need to check whether the two samples representing our two

populations come frommultivariate normal (Gaussian) distributions. A simple check
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Figure 9.7 The linear Gaussian classification boundary line (the bold line) for Example 9.1 data. The

ellipses are the contour lines encompassing 50% and 95% of the assumed bivariate normal distributions.

The sample means are marked by the two squares.

Table 9.5 Classification Table for the Linear Gaussian Classification Rule Applied to

the Example 9.1 Data

Actual State

Stars Identified as

TotalC AGB H II

C AGB 60 7 67

H II 4 55 59

Total 64 62 126
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of univariate normal probability plots reveals that the sample of diseased grass is

certainly not normal. Additionally, the estimates of the variance–covariance matrices

S1 and S2 are significantly different (the variances on diagonals are up to 50 times

larger in one matrix versus the other). This means that we have no good theoretical

justification for using the linear Gaussian rule. However, we can still use this

classification rule to see if it improves the previous rule that was based on an

arbitrarily chosen straight line in the principal component coordinates as shown in

Figure 9.3.

In order to use the classification rule, we need to decide on misclassification costs

and prior probabilities. Let us assume that the grass identified as diseased will be

treated with inexpensive chemicals that do not bother healthy grass. We further

assume that grass identified as healthy will not be treated. Therefore, if the grass is

diseased and not treated, there is a danger that itmay die. Consequently, the cost c 1j2ð Þ
is higher than c 2j1ð Þ. For instance, we can assume that it is three times higher, that is,

c 1j2ð Þ=c 2j1ð Þ ¼ 3. Note that we do not need to know the exact costs, but only the

proportion of the two costs. In order to establish prior probabilities, wewould need to

know how much of the healthy grass area we might expect in relation to the diseased

grass area. If we have no idea about proportions of the two populations in the general

population, it is natural to assume that p1 ¼ p2 ¼ 0:5. With these assumptions, the

right-hand side in (9.9) is equal to lnð3Þ ¼ 1:0986.
Table 9.6 shows the first 10 coordinates of the x1 and x2 vectors and the first 10

values on the diagonal ofS�1
pooled. Coordinates of the resulting discriminant vector v are

also shown in the same table.

The constant c defined in equation (9.11) is equal to 38.314. The linear Gaussian

rule given by (9.10) can now be used to classify all grass pixels. Table 9.7 summarizes

the number of correctly and incorrectly classified pixels. The misclassification rates

Table 9.6 Partial Numerical Results for Calculations in Example 9.2

Coordinate 1 2 3 4 5 6 7 8 9 10

x1 2.77 2.84 3.32 3.97 4.47 5.13 6.02 7.49 8.39 9.03

x2 4.40 4.20 4.47 4.95 5.31 5.76 6.51 7.87 9.64 11.49

S�1
pooled 5.98 32.46 75.72 140.01 158.51 159.07 230.44 264.91 337.08 259.58

v � 1.505 � 3.373 � 5.532 � 6.610 � 2.520 3.663 14.685 � 12.709 2.315 0.807

Table 9.7 Classification Table for the Linear Gaussian Rule Applied to the Grass Data

from Example 9.2

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3837 3 3840

Diseased grass 40 216 256

Total 3877 219 4096

We assumed c 1j2ð Þ=c 2j1ð Þ ¼ 3 and equal prior probabilities.
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are much lower than those for the principal component-based rule summarized in

Table 9.1.

We may want to investigate the sensitivity of the linear Gaussian rule (9.9) to the

assumptions about the misclassification costs and prior probabilities. Assuming

c 1j2ð Þ=c 2j1ð Þ ¼ 3, as before, and p1 ¼ 0:75; p2 ¼ 0:25 leads to the right-hand side

of (9.9) equal to lnð1Þ ¼ 0. (The same result is obtained when no prior information is

assumed, that is, c 1j2ð Þ=c 2j1ð Þ ¼ 1 and p1 ¼ p2 ¼ 0:5.) In this case, c is equal to

37.215, and the classification results are summarized in Table 9.8. The misclassifica-

tion rates are only moderately different from previous ones. A more thorough

sensitivity analysis would involve investigation of more alternative values for the

misclassification costs and prior probabilities. &

9.2.1.2 Classification for Normal Populations with Unequal Variance–
Covariance Matrices
When R1 6¼ R2, we can also simplify the classification rule defined in equa-

tion (9.6). Specifically, one can show that the rule that minimizes the ECM is

such that x 2 R1 if

� 1

2
xT R�1

1 � R�1
2

	 

xþ lT1R

�1
1 � lT2R

�1
2

	 

x� k � ln

c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
; ð9:18Þ

where

k ¼ 1

2
ln

� jR1j
jR2j

�
þ 1

2
lT1R

�1
1 l1 � lT2R

�1
2 l2

	 
 ð9:19Þ

and x 2 R2 otherwise (the derivation is given as Problem 9.8). In practice, the

population parameters are unknown, and they are estimated here using the plug-in

principle (with the unbiased version of the sample variance-covariance matrix). The

classification rule for x 2 R1 becomes

� 1

2
xT S�1

1 � S�1
2

	 

xþ xT1S

�1
1 � xT2S

�1
2

	 

x� k̂ � ln

c 1j2ð Þ
c 2j1ð Þ

p2

p1

� �
; ð9:20Þ

Table 9.8 Classification Table for the Linear Gaussian Rule Applied to the

Example 9.2 Data

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3838 2 3840

Diseased grass 42 214 256

Total 3880 216 4096

Here we assumed equal misclassification costs and equal prior probabilities.
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where

k̂ ¼ 1

2
ln

� jS1j
jS2j

�
þ 1

2
xT1S

�1
1 x1 � xT2S

�1
2 x2

	 

; ð9:21Þ

and x 2 R2 otherwise. The rule is called the quadratic Gaussian rule. It is assumed

here thatmatrices S�1
1 and S�1

2 exist. For this, it is necessary that n1 4 p and n2 4 p. If

those conditions are not satisfied,we can reduce the dimensionality pof the data set, so

that the variance–covariance matrices become nonsingular, and the classification can

be performed in the reduced space. In practice, the sample sizes should bemuch larger

than the minima mentioned here.

The quadratic Gaussian rule is more flexible than a linear rule in adjusting to the

shapes of distributions of the two groups. When S1 is close to S2, the rule should give

the results that are similar to those for the linear rule because the first term on the

left-hand side of (9.20) will be small.When S1 is very different from S2, the quadratic

rule should performmuch better than the linear one. These properties are based on the

distributional assumption of normality, but they often hold for other types of data as

well.

The following two examples discuss applications of the quadratic Gaussian rule to

the two data sets used earlier.

Example 9.3 As a continuation of Example 9.2, we use the same Grass data set, but

we now recognize the fact that the variance–covariance matrices for the two

populations are different, and we want to use the quadratic Gaussian rule. As earlier,

we assume c 1j2ð Þ=c 2j1ð Þ ¼ 3 and p1 ¼ p2 ¼ 0:5. Using the quadratic rule, we obtain
the classification table shown in Table 9.9.

We can now compare the classifications in Table 9.9 to those in Table 9.7 for the

linear Gaussian rule. It may seem surprising at first that the quadratic rule gives a

larger total number of misclassifications. However, when using the linear classifica-

tion rule, we have asmany as 40 of themore costlymisclassifications. Let us calculate

the cost associated with both classification rules. An appropriate way to do so would

be to calculate the expected cost of misclassification defined previously. Unfortu-

nately, the assumption of normality was not fulfilled for the Grass Data. Without this

assumption we cannot use formulas (9.15), and it is rather difficult to calculate the

required conditional probabilities.

Table 9.9 Classification Table for the Quadratic Gaussian Rule Applied to the

Example 9.2 Data

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3793 47 3840

Diseased grass 4 252 256

Total 3797 299 4096
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Another possibility is to calculate the observed cost when the two classification

rules are applied to the Grass data set. Assuming c 2j1ð Þ to be a unit cost per pixel, the
total observed misclassification cost for the linear rule is

40� 3 unitsþ 3� 1 unit ¼ 123 units; ð9:22Þ

and for the quadratic rule the cost is

4� 3 unitsþ 47� 1 unit ¼ 59 units; ð9:23Þ

which is significantly less. &

Example 9.4 Here we use the star data from Example 9.1 but recognize different

variance–covariance matrices as tested earlier. We again assume equal misclassifica-

tion costs and equal prior probabilities. When using the quadratic rule defined by

formula (9.20), we obtain misclassification counts identical to those in Table 9.5 for

the linear rule. One reason for this result is the relatively small difference between the

variance–covariance matrices of the two groups, even though the difference is

statistically significant. &

9.2.2 Cross-Validation of Classification Rules

Earlier we mentioned that the evaluation of classification rules based on error rates

estimated directly from the original data underestimates the true rates. This problem

is related to model overfitting. Specifically, the linear and quadratic classification

rules developed in the previous section are dependent on the available data set. The

rules are then evaluated using the same data. The danger is that a classification rule

may be fitted precisely to the data but may not accurately predict future observa-

tions. One possible methodology to check for such overfitting is to perform cross-

validation as discussed in Supplement 8A. Recall that the idea is to separate a small

subset (testing sample) of the original data set, develop a classification rule using the

remaining data (learning sample), and then check how well the classification rule

works on the testing sample separated at the beginning. In cross-validation, we need

to decide on the size of the subset and how it is chosen. Herewewant to start with the

leave-one-out cross-validation, wherewe choose a testing sample consisting of only

one observation, but we repeat it for all observations in the whole data set. This

procedure was performed on the Grass Data for the linear Gaussian classification

rule under the assumption that c 1j2ð Þ=c 2j1ð Þ ¼ 3 and p1 ¼ p2 ¼ 0:5. For each

removed observation, the vector v and the constant c defined in (9.11) are somewhat

different because they are based on a somewhat different data set (if only by one

observation). Using the fitted rule, we classify the removed observation as healthy or

diseased grass, and then compare it to its actual state as healthy or diseased grass.

This gives one count into Table 9.10. If the removed observation was from

the diseased grass area and it was classified as healthy, the case would count as
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one of 41 cases shown in the second rowof the first column. The process of removing

one observation is then repeated 4096 times, and Table 9.10 is filled out with the

counts.

The number of misclassifications is just a little bit larger than the one in Table 9.7.

This is not surprising because linear rules are typically robust in the sense of not being

strongly influenced by a single observation (unless an outlier). Similar calculations

were done for the quadratic Gaussian classification rule, and the results are summa-

rized in Table 9.11.

This time, the misclassification rates are not very close to those estimated directly

from thewhole data set (and shown in Table 9.9). In order to assess an impact of those

misclassification rates, it is worthwhile to recalculate the estimate of ECM. Again,

assuming c 2j1ð Þ being a unit cost per pixel, the total misclassification cost based on

the leave-one-out cross-validation for the linear rule is

41� 3 unitsþ 3� 1 unit ¼ 126 units; ð9:24Þ

and for the quadratic rule

13� 3 unitsþ 51� 1 unit ¼ 90 units: ð9:25Þ

We observe an increase in the estimate of ECM in both cases in relation to the

numbers calculated at the end of the previous section (formulas (9.22) and (9.23)).

However, the increase is much more significant for the quadratic rule, which shows

that the rule ismore prone to overfitting. These costs aremore realistic estimates of the

ECM values in future samples.

Table 9.10 Leave-One-Out Cross-Validation Results for the Linear Gaussian Rule

Applied to the Grass Data Used in Example 9.2

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3837 3 3840

Diseased grass 41 215 256

Total 3878 218 4096

Table 9.11 Leave-One-Out Cross-Validation Results for the Quadratic Gaussian

Rule Applied to the Grass Data Used in Example 9.2

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3789 51 3840

Diseased grass 13 243 256

Total 3802 294 4096
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We can now try the k-fold cross-validation also described in Supplement 8A. We

will start with k ¼ 8, which means eight-fold cross-validation. Here the data set is

randomly divided into eight groups, and then each group in turn plays a role of the

testing sample. Since there are 4096=8 ¼ 512 elements in each testing group, wewill

obtain 512 classification results for each testing sample. Since there are eight testing

samples, we will obtain 4096 classification results after the whole round of the eight-

fold cross-validation. Those results could be placed into a 2 by 2 classification table

like the ones used earlier. Since the result of thewhole round of the cross-validation is

random here, we can run several rounds and then average the results in order to reduce

an impact of spurious variability. Table 9.12 shows the average classification results

from 50 random rounds.

The average total misclassification cost for the linear rule is now estimated as

41:02� 3þ 3:42� 1 ¼ 126:48, which is only slightly larger than the cost in (9.24)

for the leave-one-out cross-validation. Similar calculations were performed for the

quadratic Gaussian rule as well, and the results are summarized in Table 9.13. The

average cost for the quadratic rule is now estimated as 14:66� 3þ
47:38� 1 ¼ 91:36, which is not much larger than the cost in (9.25) for the leave-

one-out cross-validation.

Since the results have not changed much between the leave-one-out and the eight-

fold cross-validation,we also tried two-fold cross-validation.Here the classification is

more challenging because only half of the data are used for the estimation of the

classification rule. In this scenario, themisclassification cost of the linear rulewent up

to 129.74 and that of the quadratic rule went up to 100.24. We conclude that the

Table 9.12 Eight-Fold Cross-Validation Results for the LinearGaussianRule Averaged

over 50 Random Rounds

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3836.58 3.42 3840

Diseased grass 41.02 214.98 256

Total 3877.60 218.40 4096

Table 9.13 Eight-Fold Cross-Validation Results for the Quadratic Gaussian Rule

Averaged over 50 Random Runs

Actual State

Grass Identified as

TotalHealthy Diseased

Healthy grass 3792.62 47.38 3840

Diseased grass 14.66 241.34 256

Total 3807.28 288.72 4096
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quadratic rule is less robust to variations in the sample, but it is still a better rule than

the linear one for this data set.

The above-described approaches to cross-validationwere also implemented on the

linear Gaussian rule applied to the Astronomy Data used in Example 9.1. The leave-

one-out method produced only one additional misclassification case relative to

Table 9.5 results. The six-fold cross-validation resulted in the average misclassifica-

tions almost identical to those of the leave-one-out method. Similar results were also

obtained for the quadratic Gaussian rule. This shows that both the linear and quadratic

Gaussian rules promise to be robust to the variability in the future samples from the

same distributions. The future misclassification rates are expected to be only slightly

higher than those in Table 9.5.

9.2.3 Fisher’s Discriminant Function

The linear Gaussian classification rule can also be derived without the Gaussianity

assumption. The approach discussed here was proposed by Fisher (1938). His idea

was to look for a linear combination of the observed vector x that would best

separate two samples. Specifically, using a p-dimensional vector of coefficients a,

we can define a linear combination y ¼ aTx. The y values can be calculated for all

observations from the first sample (and will be denoted by y11; y12; . . . ; y1n1 ) and the
second sample (denoted by y21; y22; . . . ; y2n2 ). The y values can be regarded as

projections onto a straight line defined by the vector a (see Property 4A.1). One can

calculate means of the two sets of y values and denote them by y1 and y2. The

separation of the two sets is assessed based on separation of the y values, which, in

turn, is measured by the difference between the two means in standard deviation

units, that is,

y1 � y2j j
sy

; ð9:26Þ

where

s2y ¼
Pn1

i¼1 y1i � y1ð Þ2 þPn2
i¼1 y2i � y2ð Þ2

n1 þ n2 � 2
ð9:27Þ

is the pooled variance estimated from both samples. The following theorem tells

us how to find the direction a that would maximize the separation between the

two samples.

Theorem 9.2 The linear combination y ¼ aTx ¼ x1 � x2ð ÞTS�1
pooledx maximizes

the ratio

y1 � y2ð Þ2
s2y

¼ aT x1 � x2ð Þ½ �2
aTSpooleda

ð9:28Þ
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over all possible coefficient vectors a. The maximum of the ratio is

D2 ¼ x1 � x2ð ÞTS�1
pooled x1 � x2ð Þ; ð9:29Þ

which is the squared Mahalanobis distance between the two means and can be

regarded as a measure of separation between the two samples.

Proof. See Problem 9.5.

TheFisher discrimination rule assigns x toR1 if its y value is closer to y1 than to y2,

that is, if

y ¼ aTx ¼ x1 � x2ð ÞTS�1
pooledx � x1 � x2ð ÞTS�1

pooled

x1 þ x2ð Þ
2

; ð9:30Þ

and x is assigned to R2 otherwise. The vector a ¼ S�1
pooled x1 � x2ð Þ is called the

discriminant vector. The Fisher discrimination rule is equivalent to the linear

Gaussian classification rule (defined by (9.9)) that minimizes the ECM when

c 1j2ð Þp2 ¼ c 2j1ð Þp1. The difference between the two approaches is that Fisher’s

approach does not require the assumptions of normality, but then it does not guarantee

any optimality such as minimizing ECM. Fisher’s approach gives a geometric

interpretation of the linear Gaussian rule consistent with Figure 9.4, where the vector

v defines the direction of maximum separation between the two samples.

When the data are sphered by applying the transformation z ¼ S
�1=2
pooledx, the

samples should have the variance–covariance matrices close to the identity. The

Mahalanobis distance then becomes the Euclidean distance, and the separation

between the two samples is maximized along the line connecting the sample means

as in Figure 9.5.

Since the discriminant vector points in the direction of the best separation between

the two samples, it can be used for plotting the data. For simplicity of presentation, we

are now going to use the sphered and centered data after the transformation

z ¼ S
�1=2
pooled x� x1 þ x2ð Þ=2½ �. This means that the middle point between the group

means z1 and z2 is the origin of the new system of coordinates. The discriminant

direction now becomes a ¼ z1 � z2.

Example 9.1 (cont.) Figure 9.8 shows the Astronomy Data from Example 9.1

plotted in the centered and sphered coordinates that were further rotated so that the

vertical axis is the normalized discriminant direction. The horizontal axis is orthogo-

nal to the discriminant direction in the sphered coordinates. The horizontal straight

line at level zero is the boundary line between the two discrimination regions.

Figure 9.8 shows the same information that was shown in Figure 9.7, but it is now

easier to appreciate the separation between the two groups. It is also easier to assess

normality of data by a comparison to the circles representing contour lines encom-

passing 50% and 95% of the normal distributions. We can see some mild departures

from normality. &
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Example 9.5 For Grass Data from Example 9.2, we can assume equal misclassifi-

cation costs and equal prior probabilities. In that case, Fisher’s rule is equivalent to the

linear Gaussian rule, and the classification table for both rules is shown in Table 9.8.

For a graphical presentation of the data, we can again use the sphered coordinates with

the normalized discriminant vector as the vertical basis vector. However, here the data

are 42 dimensional, and there are many possibilities how the horizontal axis can be

chosen as the direction orthogonal to the discriminant vector a. Since it is interesting

to see the misclassifications in the graph, we chose the direction of maximum

variability in the misclassified observations. More specifically, we projected all

k ¼ 44 centered and sphered spectra of themisclassified observations onto a subspace

orthogonal to a and then placed all those projections into a k by p matrix W and

performed the singular value decomposition (SVD) that gives the representation

W ¼ UKVT. The diagonal elements of theKmatrix describe the variability of data in

W around zero. It is important that the SVDwas performed here rather than principal

component analysis. The latter would describe the variability around the mean of the

misclassified observations, which is not interesting here. Assuming that the diagonal

elements are ordered, with the first value being the largest, we choose the first column

3210–1–2–3
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Figure 9.8 The Astronomy Data from Example 9.1 plotted in the centered and sphered coordinates. The

vertical axis is the normalized discriminant direction. The contour lines encompass 50% and 95% of the

normal distributions. The sample means are marked by two squares.
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of the V matrix as the horizontal axis. Figure 9.9 shows the Grass Data in those two

coordinates. The contour lines encompassing 99% and 99.9% of the normal dis-

tributions are plotted this time due to large sample sizes. If the two populations were

indeed normal, we would not expect any of the 256 observations from Group 2

(diseased grass) to be outside of the larger circle. In Group 1 (healthy grass) with 3840

observations, we would expect approximately four observations outside of the larger

circle. We can say that Group 2 looks more non-normal than Group 1.

We might also be interested in plotting the data in the original space, that is,

without the scaling that is done in the process of data sphering. In that case, the

discriminant vector a ¼ S�1
pooled x1 � x2ð Þ is not collinear with the vector

v ¼ x1 � x2 connecting the group means. Hence, we can project all data onto the

plane G spanned by a and v. The normalized vector a= ak k was again used as the

vertical basis vector, and an orthogonal vector in G was chosen as the horizontal

axis. Figure 9.10 shows the data projected on G, with the contour lines encom-

passing 99% and 99.9% of the normal distributions, similarly to Figure 9.9. Note

that the data stretch much more in the horizontal direction, and the difference
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Figure 9.9 Two groups (marked as 1¼ healthy grass and 2¼ diseased grass) of GrassData fromExample

9.2 in the sphered coordinates of the discriminant direction and an orthogonal direction based on the

maximum variability of misclassified observations. The contour lines encompass 99% and 99.9% of the

normal distributions. The sample means are marked by two squares.
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between the group means is also much larger in that direction. Nevertheless, the

best direction of the groups’ separation is vertical, with the boundary line between

the two classification regions being horizontal. &

9.3 CLASSIFICATION FOR SEVERAL POPULATIONS

In the presence of several populations, we could again try to minimize ECM, but this

would require a specification of a cost matrix (like the one in Table 9.3) with g g� 1ð Þ
nonzero entries, where g is the number of populations. The appropriate formulas for

that approach can be found in Section 11.5 in Johnson and Wichern (2007). Here

we take a simplified approach by assuming that all misclassification costs are the

same. In that case, minimizing ECM is equivalent to minimizing TPM.

9.3.1 Gaussian Rules

In this subsection, we will assume that the samples come from normal populations.

We start with the case of possibly different population variance–covariance matrices.

We define the quadratic Gaussian classification rule assigning x to Ri when

the quadratic score dQ
i xð Þ is the largest of dQ

1 xð Þ; dQ
2 xð Þ; . . . ; dQ

g xð Þ for g groups

(samples), where

dQ
j xð Þ ¼ �0:5 x� xj

	 
T
S�1
j x� xj
	 
� 0:5 ln Sjj þ ln pj; j ¼ 1; 2; . . . ; g;

��
ð9:31Þ

and xj ,Sj , and pj are the samplemean, the sample variance–covariancematrix, and the

prior probability for the jth group, respectively.

When all g samples come from normal distributions and their parameters are

known exactly (rather than estimated), the above classification rule is optimal in terms
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Figure 9.10 Two groups (marked as 1¼ healthy grass and 2¼ diseased grass) of Grass Data from

Example 9.2 projected on the plane spanned by the discriminant direction and the vector connecting the

group means. The contour lines encompass 99% and 99.9% of the normal distributions. The sample means

are marked by two squares.
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of minimizing TPM. The first term in the definition of d
Q
j xð Þ is the scaled squared

Mahalanobis distance between x and the jth sample mean xi, but the distance is based

on a different variance–covariance matrix Sj for each group.

When all population variance–covariance matrices are equal, that is,

Rj ¼ R; j ¼ 1; 2; . . . ; g, R can be estimated using the pooled estimate

Spooled ¼ 1Pg
j¼1ðnj � 1Þ

Xg
j¼1

ðnj � 1ÞSj; ð9:32Þ

where the sample variance–covariance matrices Sj; j ¼ 1; . . . ; g, are from the g

samples with their sizes denoted by nj ; j ¼ 1; . . . ; g. The classification rule defined by
(9.31) simplifies then to the linear Gaussian classification rule assigning x to Rj when

the linear score dj xð Þ is the largest of d1 xð Þ; d2 xð Þ; . . . ; dg xð Þ for g groups, where

dj xð Þ ¼ xTj S
�1
pooledx� 0:5xTj S

�1
pooledxj þ ln pj; j ¼ 1; 2; . . . ; g: ð9:33Þ

It is convenient to have the linear form of the scores dj xð Þ, but we may also relate

that rule to distances. When the sample variance–covariance matrices Sj in (9.31) are

replaced by the pooled estimate Spooled, the resulting rule assigns x to the closest group

based on the adjusted Mahalanobis distance defined as

Aj xð Þ ¼ D2
j xð Þ � 2 ln pj; ð9:34Þ

where D2
j xð Þ ¼ x� xj

	 
T
S�1
pooled x� xj

	 

is the squared Mahalanobis distance based

on the common variance–covariance matrix Spooled. This rule is equivalent to the

linear Gaussian classification rule defined by (9.33).

It is often convenient to work on the sphered data obtained by applying the

transformation z ¼ S
�1=2
pooledx. In the new coordinates, the Mahalanobis distance

becomes the Euclidean distance, and formula (9.33) simplifies to

dj zð Þ ¼ zTj z� 0:5 zj
�� ��2 þ ln pj; j ¼ 1; 2; . . . ; g; ð9:35Þ

while formula (9.34) simplifies to

Aj zð Þ ¼ z� zj
�� ��2 � 2 ln pj: ð9:36Þ

Sometimes, wemaywant to find the boundaries between the classification regions.

For the boundary between the jth and kth regions, we need to find all z satisfying the

condition dj zð Þ ¼ dk zð Þ, which can be written as

zj � zk
	 
T

z ¼ 0:5 zj
�� ��2 � zkk k2

 �
� ln pj=pk

	 

: ð9:37Þ

The above equation describes a p� 1ð Þ-dimensional affine subspace orthogonal to

the vector zj � zk.
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The linear and quadratic Gaussian rules are further discussed in the next section,

where a numerical example is also shown.

9.3.2 Fisher’s Method

Fisher’s method discussed earlier in Section 9.2.3 generalizes to the case of several

populations. The result will again be equivalent to the linear Gaussian rule (9.33) with

equal priors, but the approach will also give us a useful geometric interpretation.

Let us assume that we have g populations with equal population variance–

covariance matrices. As usual in such cases, the joint population variance–covariance

matrix is estimated by the pooled variance–covariancematrixSpooled defined in (9.32).
For the remainder of this section, we will work with the sphered data obtained by

applying the transformation z ¼ S
�1=2
pooledx. In the new coordinates, the samples should

have the variance–covariance matrices close to the identity and the Mahalanobis

distance becomes the Euclidean distance. We denote the sample mean vectors as

zj; j ¼ 1; . . . ; g, and define the overall mean vector as the weighted mean of the

sample means

z ¼
Pg

j¼1 njzjPg
j¼1 nj

¼
Pg

j¼1

Pnj
i¼1 zijPg

j¼1 nj
; ð9:38Þ

where zij are the observation vectors within the groups. The ability to distinguish

between the groups depends on how large the differences zj � z are. An overall

measure of the between-group variability is the matrix B defined as

B ¼
Xg
j¼1

nj zj � z
	 


zj � z
	 
T

: ð9:39Þ

For the case of two groups, we obtain z1 � z ¼ n2 z1 � z2ð Þ= n1 þ n2ð Þ and

z2 � z ¼ n1 z2 � z1ð Þ= n1 þ n2ð Þ, and B simplifies to

B2 ¼ n1n2

n1 þ n2
z1 � z2ð Þ z1 � z2ð ÞT; ð9:40Þ

which has rank 1 and explains the variability along the line connecting the group

means, that is, z1 � z2 (see Problem 9.1).

As before, Fisher’s method is to find a linear combination y ¼ aTz that maximizes

separation of samples. The between-group variability in the direction of the coeffi-

cient vector a is described by

aTBa ¼
Xg
j¼1

nj a
T zj � z
	 
� �2

; ð9:41Þ

where the jth term is proportional to the squared distance between the jth group mean

and the overall mean after projection on a. In the Fisher’s approach, we want to

286 DISCRIMINATION AND CLASSIFICATION – SUPERVISED LEARNING



maximize expression (9.41) subject to the constraint of the unit length of a, that is,
ak k ¼ 1. For the case of two groups,

aTB2a ¼ n1n2

n1 þ n2
aT z1 � z2ð Þ� �2

; ð9:42Þ

which is maximized for a being proportional to z1 � z2. This is illustrated in

Figure 9.5, where the discriminant direction v is parallel to the line connecting the

group means. In a general setup, the following theorem provides the solution to

maximization of (9.41), and hence to the optimum separation of several samples.

Theorem 9.3 Let l1 � l2 � � � � � ls 4 0 be the nonzero eigenvalues of B and

e1; e2; . . . ; es be the corresponding normalized eigenvectors. The number s is not

larger than min g� 1; pð Þ. Then the vector a1 ¼ e1 maximizes expression (9.41)

subject to ak k ¼ 1. The linear combination aT1z is called the sample first discriminant.

The sample second discriminant is defined as aT2z ¼ eT2z, and continuing, we can

define the sample kth discriminant as aTkz ¼ eTkz; k � s.

The theorem tells us that the sample first discriminant is the best direction for

separating the groups, followed by the second discriminant, and so on. Thismeans that

we can use a certain number of the discriminants up to the rth discriminant as

described by the following classification rule.

Fisher’s Classification Rule.Assign z to Rj when the score D
2
j zð Þ for the ith group is

the smallest of D2
1 zð Þ;D2

2 zð Þ; . . . ;D2
g zð Þ for all g groups, where

D2
j zð Þ ¼

Xr

m¼1

aTm z� zj
	 
� �2

; j ¼ 1; 2; . . . ; g ð9:43Þ

and r � s.

Since the above classification rule uses the first r discriminants or the first r

discriminant directions aj , the classification is performed based on those r dimen-

sions. In most cases, wewant to use all s discriminants, that is, r ¼ s. Wemay want to

use smaller r when a simplification is needed or when some of the eigenvalues kj are
very small, suggesting that the respective determinants are not significant.

Remark 9.1 When prior probabilities are all equal and r ¼ s, Fisher’s classification

procedure is equivalent to the linear Gaussian classification rule defined by the linear

score (9.33).

The boundary between the jth and kth classification regions can be found from

condition (9.37), which can be written as

zj � zk
	 
T

z ¼ 0:5 zj
�� ��2 � zkk k2

 �
ð9:44Þ
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because equal priors are assumed here. The above equation describes a p� 1ð Þ-di-
mensional affine subspace orthogonal to the vector zj � zk.

For further consideration, let us assume that all sphered data were further centered

at z, which becomes the origin in the new, shifted system of coordinates. Let A be the

subspace spanned by all group centers zj , and denote by s the dimension of A. For two

groups, A is the line connecting the group centers. When p is large, swill generally be

equal to g� 1ð Þ because the group centers are not linearly independent (their

weighted mean is zero) in the z centered space. The dimension s might also be

smaller than g� 1ð Þwhen there is more collinearity among the group centers. At the

same time, s can never be larger than p. Hence, s is not larger thanmin g� 1; pð Þ. Note
thatB describes variability in the directions within A, so the rank ofB is s. This is why

there are exactly s eigenvalues of B, as described in Theorem 9.3. The s discriminant

directions aj span the same subspace A. This means that Fisher’s rule is entirely

determined within the subspace A, that is, if z ¼ vþ w, where v 2 A and w is

orthogonal to v, then

D2
j zð Þ ¼ D2

j vð Þ; j ¼ 1; 2; . . . ; g: ð9:45Þ

The first two Fisher’s discriminants are the most relevant for the group separation,

so they are often used for plotting the data in two dimensions. The following example

shows an application of discriminants for classification and visualization of data.

Example 9.6 Let us continue with the Grass data set from Example 9.2. When we

analyze the diseased grass in the top right corner of our image, it becomes clear that

the pixels of diseased grass are not all of the same kind. A small top right corner

represents severely diseased grass, while the surrounding area represents less severely

diseased grass. This suggests that we can identify three groups of grass pixels. Let us

call the healthy grass pixels—Group 1, less-severely diseased grass—Group 2, and

severely diseased grass—Group 3. Spatial locations of the three groups are defined in

Appendix B and are shown in Figure 9.11a.

We assume equal misclassification costs and equal prior probabilities, so that

Fisher’s approach can be used. Table 9.14 shows the classification table for Fisher’s

Figure 9.11 Spatial locations of the three groups of grass pixels. Healthy grass (Group 1 in black) is the

largest group, severely diseased grass (Group 3 in gray) is in the top right corner, and the less severely

diseased grass (Group 2 inwhite) is between the other two groups. Panel (a) shows the actualmembership of

pixels, and panel (b) shows the results of linear classification summarized in Table 9.14.
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classification rule applied to the three groups. The classification is largely successful,

except for 115 observations from Group 1 that were misclassified to Group 2.

The leave-one-out cross-validation produced exactly the same numbers of misclas-

sifications, and the numbers were only slightly larger for the eight-fold cross-

validation (less than one additional misclassification in each cell on average). This

confirms the usual robust behavior of the linear classification rule.

In this example, the number of groups is equal to g ¼ 3, and we obtain s ¼ 2

nonzero eigenvalues of the matrix B. This means that the two Fisher’s discriminant

vectors can be used as the basis (system of coordinates) in the subspace A discussed in

the paragraph above formula (9.45). Since we are working on the sphered data, the

discriminant vectors are orthogonal to each other. Figure 9.12 shows theGrassData in

the coordinates of the first two Fisher’s discriminants. The two straight lines show the

classification boundaries between Groups 1 and 2 and between Groups 2 and 3. The

boundaries were calculated based on formula (9.44). The boundary betweenGroups 1

and 3 is not shown.

Table 9.14 The Classification Table for Fisher’s Classification Rule Applied to the

Three Groups from Example 9.6

Actual Group

Grass Classified into Groups

Total1 2 3

1 3581 115 0 3696

2 13 285 2 300

3 0 7 93 100

Total 3594 407 95 4096
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Figure 9.12 Three groups (marked as 1¼ healthy grass, 2¼ less severely diseased grass, and 3¼ severely

diseased grass) of Grass Data from Example 9.6 plotted in the coordinates of the first two Fisher’s

discriminants. The contour lines encompass 99% and 99.9% of the normal distributions. The samplemeans

are marked by three squares.
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Since the variance–covariance matrices of the three groups are significantly

different, we should also try the quadratic Gaussian classification rule defined by

the scores shown in formula (9.31). The resulting misclassification rates shown in

Table 9.15 are significantly lower than those shown in Table 9.14 for the linear

Gaussian rule. The spatial positions of the classified pixels are shown in Figure 9.13.

The results of the leave-one-out cross-validation are shown in Table 9.16 with the

values somewhat larger than those in Table 9.15. This means that the quadratic rule is

not as robust as the linear rule, which is expected. Table 9.17 shows the average

classification results from 50 random runs of the eight-fold cross-validation. The

results are not much different from the leave-one-out cross-validation results. It is

somewhat surprising that there were fewer (96.38) eight-fold misclassifications than

leave-one-out ones in Group 1. This was not due to a spurious random fluctuation,

since the standard error of each of the results in Table 9.17 was estimated at less

than 0.04.

Let us look again at Figures 9.11b and 9.13, which show the spatial positions of

pixels classified into the three groups based on the linear and quadratic rules,

respectively. In both cases, we can see some single pixels in the area dominated by

Group 1, which are classified as Group 2. We may wish to reclassify those pixels into

Group 1 based on their spatial position. Methods for doing this are discussed in the

next section. &

Table 9.15 Classification Table for the Quadratic Gaussian Classification Rule Applied

to the Grass Data from Example 9.6

Actual Group

Grass Classified into Groups

Total1 2 3

1 3601 95 0 3696

2 3 295 2 300

3 0 0 100 100

Total 3604 390 102 4096

Figure 9.13 Results of the quadratic Gaussian classification rule. Group 1 is in black, Group 2 in white,

and Group 3 in gray.
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9.4 SPATIAL SMOOTHING FOR CLASSIFICATION

Sometimes we are able to use additional information in order to improve a given

classification procedure. The additional informationmight be difficult to express as an

additional set ofX variables to be added to previous data. In that case, wemaywant to

fine-tune the classification procedure with a specifically designed follow-up proce-

dure. An example is a situation with spatial data, where the spatial information might

be of some help.

Here we show a follow-up fine-tuning procedure that takes classification results of

an arbitrary classification rule as an input. We assume here that the classified

observations are pixels of an image. We define a classification image as an image

where each pixel has a value equal to the group number based on the given

classification. Figure 9.13 is an example of a classification image, where the groups

are represented as colors.

We define the following spatial smoothing voting procedure (SSVP) that is applied

to each pixel (call it Pixel C) in a classification image.

1. Let j be the group assignment for Pixel C based on the classification image.

2. Find a setF of neighboring pixels that excludes the central PixelC (herewe used

a 3 by 3 neighborhood consisting of eight pixels).

3. Find the group assignments of all pixels inF, and find the group number k of the

most prevalent group. If there is a tie with Group j, go to Step 5. If the tie is

among groups different from j, go to Step 6.

Table 9.16 Leave-One-Out Cross-Validation Results for the Quadratic Gaussian

Rule Applied to the Grass Data from Example 9.6

Actual Group

Grass Classified into Groups

Total1 2 3

1 3596 100 0 3696

2 5 292 3 300

3 0 5 95 100

Total 3601 397 98 4096

Table 9.17 Eight-Fold Cross-Validation Results for the Quadratic Gaussian Rule

Applied to the Grass Data from Example 9.6

Actual Group

Grass Classified into Groups

Total1 2 3

1 3599.62 96.38 0 3696

2 6.70 290.58 2.72 300

3 0 6.46 93.54 100

Total 3606.32 393.42 96.26 4096
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4. If the number of pixels in F that are fromGroup k is at least equal to a threshold

m (we used m ¼ 6), then assign Pixel C to Group k and stop. Otherwise, go to

the next step.

5. Assign Pixel C to Group j and stop.

6. Choose randomly one of the tied groups (call it k). Assign Pixel C to Group k

and stop.

The SSVP was applied to the linear Gaussian classification of Grass Data into

three groups (see Example 9.6). The classification results are shown in Table 9.18

and in Figure 9.14. The results are much better than those without smoothing

shown in Table 9.14. An additional advantage of the smoothed classification is that

the spatial boundaries between the groups in the image are smoother than those

from the nonsmoothed classification. This might be relevant for some follow-up

procedures. In the case of the Grass Data, the diseased grass may need to be treated

with some chemicals. Due to the logistics of such treatment, we may not be able to

treat small areas represented by single pixels in the middle of the healthy grass

area. For such logistical reasons, it would be more convenient to have smoother

boundary lines.

We also applied the SSVP to the quadratic Gaussian classification of Grass Data

into three groups. The classification results are shown inTable 9.19 and in Figure 9.15.

The results are similar to those without smoothing shown in Table 9.15.

Table 9.18 Classification Table for the Spatially Smoothed Linear Gaussian

Classification Rule Applied to the Grass Data from Example 9.6

Actual Group

Grass Classified into Groups

Total1 2 3

1 3592 104 0 3696

2 10 289 1 300

3 0 5 95 100

Total 3602 398 96 4096

Figure 9.14 Results of the spatially smoothed linear Gaussian classification rule. Group 1 is in black,

Group 2 in white, and Group 3 in gray.
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9.5 FURTHER READING

The classification problem can be formulated as a prediction problem with a

categorical response variable (group number). Hence, the logistic regression and

some other types of generalized linear models are useful for classification.

The logistic regression is about 30% less efficient than the Gaussian rule under the

normality assumption, but it often performs much better for non-normal data. The

logistic regression boundaries between classification regions are less influenced by

the observations lying far away from the boundaries. References for generalized

linear models and logistic regression are Montgomery et al. (2006), Kutner et al.

(2005), Hosmer (2000), and Agresti (2002).

On the opposite spectrum of classification methods is a highly nonparametric

method of k-nearest neighbor, which is based on a majority vote among the closest

k neighbors. Other methods include neural networks, support vector machines, and

classification trees. All of these methods are prone to overfitting to the sample data,

and the cross-validation is very important when applying those tools. A good

reference on these and many other classification methods is Hastie et al. (2001).

A general reference at a descriptive level is Tso and Mather (2009). Classification in

the context of remote sensing is discussed in Canty (2010). Support vector machines

for classification are presented in Abe (2005).

Table 9.19 Classification Table for the Spatially Smoothed Quadratic Gaussian

Classification Rule Applied to the Grass Data from Example 9.6

Actual Group

Grass Classified into Groups

Total1 2 3

1 3602 94 0 3696

2 4 295 1 300

3 0 0 100 100

Total 3606 389 101 4096

Figure 9.15 Results of the spatially smoothed quadratic Gaussian classification rule. Group 1 is in black,

Group 2 in white, and Group 3 in gray.
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PROBLEMS

9.1. For an arbitrary vector v, define a matrix B ¼ vvT. Show that v is the

eigenvector of B with the eigenvalue equal to vTv. Show also that any vector

w 6¼ 0 orthogonal to v is the eigenvector of B with the eigenvalue equal to

zero. This means that B has rank 1 and describes variability in the direction

of v.

9.2. Prove Theorem 9.1. Hint: Use the definition of ECM in equation (9.5) and

integrals in (9.1) and (9.2) to obtain

ECM ¼ c 2j1ð Þp1
ð
R2

f1 xð Þdxþ c 1j2ð Þp2
ð
R1

f2 xð Þdx: ð9:46Þ

Since

1 ¼
ð

R1[R2

f1 xð Þdx ¼
ð
R1

f2 xð Þdxþ
ð
R2

f1 xð Þdx; ð9:47Þ

we can write

ECM ¼ c 2j1ð Þp1 1� Ð
R1
f1 xð Þdx

 �
þ c 1j2ð Þp2

Ð
R1
f2 xð Þdx

¼ Ð
R1

c 1j2ð Þp2f2 xð Þ � c 2j1ð Þp1f1 xð Þ½ �dxþ c 2j1ð Þp1:
ð9:48Þ

Wewant to minimize ECM by changing the shape of the region R1 (everything

else is fixed here). This can be achieved by including into R1 all x such that the

expression under the integral is negative, that is, c 1j2ð Þp2f2 xð Þ�
c 2j1ð Þp1f1 xð Þ5 0 and excluding all x such that the expression is positive. It

does not matter where we place the x values such that the expression is zero.

9.3. Consider the Astronomy Data used in Example 9.1. Verify the multivariate

normality of the data in the two samples.

9.4. Consider the Astronomy Data used in Example 9.1. Test the equality of the

population variance–covariance matrices in the two samples.

9.5. Prove Theorem 9.2. Hint: Use Property 4A.11 (Maximization Lemma).

9.6. Show how to simplify the classification rule defined in equation (9.6) in order to

obtain the rule defined in equation (9.7).

294 DISCRIMINATION AND CLASSIFICATION – SUPERVISED LEARNING



9.7. Apply the linear Gaussian classification rule to the Astronomy Data used

in Example 9.1. Assume equal costs of misclassification and equal prior

probabilities.

a. Calculate all entries in the classification table.

b. Calculate EER and APER.

c. Use formulas (9.14) and (9.15) to estimate the TPM and compare the value

to those obtained in point b.

9.8. Show how to simplify the classification rule defined in equation (9.6) in order to

obtain the rule defined in equation (9.18).

9.9. Consider the Astronomy Data used in Example 9.1. Assume equal costs and

equal prior probabilities. Perform cross-validation of the linear Gaussian rule to

classify observations into the two groups of stars. Use the leave-one-out cross-

validation and the k-fold cross-validation for k ¼ 7 and k ¼ 18.

9.10. Repeat tasks of Problem 9.9 for the quadratic Gaussian rule. What difference

do you observe in relation to the results of Problem 9.9? How would you

explain it?

9.11. Consider the Astronomy Data used in Example 9.1, but add the third band for

three-dimensional data of J, H, and K bands. Find the Fisher discriminant

direction a and then the Fisher discrimination rule.

a. Construct the misclassification table and compare it to Table 9.5. Explain

differences and similarities.

b. Plot all data projected onto the plane spanned by a and the vector

v ¼ x1 � x2 connecting the group means. Use different symbols and/or

colors for the two groups of observations.

9.12. Repeat tasks of Problem 9.11 for the sphered version of the three-band data.

Verify that the Fisher discriminant direction a and the vector v ¼ x1 � x2
connecting the group means are collinear. Then follow the steps shown in

Example 9.5 in order to find the direction b of maximum variability in the

misclassified observations in the space orthogonal to a. Plot all data in the

coordinates of two axes in the directions of a and b. Use different symbols

and/or colors for the two groups of observations. If you were also assigned

Problem 9.11b, consider if this plot is more helpful than the one created in

Problem 9.11b.

9.13. Consider the Astronomy Data used in Example 9.1, but add a third group of

stars (oxygen-rich asymptotic giant branch (O AGB)) and two additional

bands. We now have four-dimensional data of J, H, K, and A bands. Find the
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Fisher discriminant directions and then the Fisher discrimination rule for the

three groups.

a. Construct the misclassification table and draw conclusions.

b. Plot all data projected onto the plane spanned by the Fisher discriminant

directions. Use different symbols and/or colors for the two groups of

observations.

9.14. Consider the scenario of Astronomy Data used in Problem 9.13 with three

groups of stars with four bands J, H, K, and A. Perform cross-validation of the

Fisher discrimination rule to classify observations into the three groups of stars.

Use the leave-one-out cross-validation and the k-fold cross-validation for

k ¼ 7 and k ¼ 18.

9.15. Consider the Astronomy Data used in Problem 9.13 with three groups of stars

with four bands J, H, K, and A. Apply the quadratic Gaussian rule to classify

observations into the three groups of stars. Construct themisclassification table.

If youwere also assigned Problem 9.13, compare this table to the one created in

Problem 9.13.

9.16. Consider the Astronomy Data used in Problem 9.13 with three groups of stars

with four bands J, H, K, and A. Perform cross-validation of the quadratic

Gaussian rule to classify observations into the three groups of stars. Use the

leave-one-out cross-validation and the k-fold cross-validation for k ¼ 7 and

k ¼ 18. If youwere also assigned Problem 9.15, compare your cross-validation

misclassification rates with those in the table created in that problem.
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C H A P T E R 10

Clustering – Unsupervised Learning

10.1 INTRODUCTION

The purpose of cluster analysis is to group objects in such a way that objects in the

same group (cluster) are alike, whereas objects in different groups are dissimilar.

When a data set is given as a traditional statistical database, objects can be either

observations or variables. Sometimes the objects are not directly described, but

instead we have information about relations among objects, for instance, in the form

of similarity. In cluster analysis, we have no prior information about the grouping of

objects. This is why cluster analysis is often called unsupervised learning, which is

different from supervised learning (or the classification problem) discussed in

Chapter 9.

Clustering is usually done for descriptive or exploratory purposes, so that the

relations among objects or the structure of data can be better understood. When

we find a cluster of similar variables, we may try to replace the whole group

with only one summary variable conveying the same information. When we

cluster observations, we may describe the whole data set as consisting of several

groups. Each group can then be described by summary statistics. Such descrip-

tions will typically be more precise than global summary statistics of the whole

data set.

Finding suitable clusters can be a computationally intensive task. Checking all

possible clusters is usually impractical or even impossible. As an example, we are

going to find the number of all possible ways to divide the sample of size n into two

clusters. For a sample of size n, the number of subsets is 2n. Any subset (except for the

whole data set) and its complement define one clustering, so there are 2n�1 � 1 ways

to divide into two subsets. This number can be very large. For n ¼ 100, we obtain

299 � 1 � 6:3� 1029. If we could check 1 billion clusters in 1 second, it would still

take about 2� 1013 years to check all possible two-cluster solutions, which is over

1000 times longer than the age of the universe. In practice, we do not try to check all

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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possibilities, but instead rely on some heuristic algorithms that search for good

clusters. However, there is no guarantee that the clustering found is the best one. An

additional difficulty is in defining the best measure to evaluate the quality of a cluster.

Such measures are subjective and depend on a given application. In this chapter, we

will show various algorithms for clustering and various ways to evaluate the resulting

clusters.

In order to group objects into clusters, we need to know how to measure the

similarity of the objects, which is discussed in the next section.

10.2 SIMILARITY AND DISSIMILARITY MEASURES

The measures of similarity among observations are usually different from those for

comparing variables. Hence, we will discuss them in two separate subsections.

10.2.1 Similarity and Dissimilarity Measures for Observations

Herewe assume that a data set consists of n observations on p variables, which means

that each observation is represented by a p-dimensional vector. In this context,

dissimilarity of observations is usually described by a distance between them. See

Section 5.6 for axioms of a distance and other properties. Themost popular distance is

the Euclidean distance defined as

d x; yð Þ ¼ x� yk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞT x� yð Þ

q
ð10:1Þ

for two p-dimensional vectors x and y. If the distance is zero, the observations

represented by x and y are identical. If the observations are far way from each

other, they are very different. Like the distance, a similarity measure s x; yð Þ is also
defined as a real-valued function on pairs of vectors x and y. A similarity works

opposite to dissimilarity, that is, small values indicate little similarity between

objects that are very different. Large similarity values indicate similar objects. In

general, a similarity may be unbounded with very large values, but we often prefer

to assign a value of 1 as the largest possible similarity of identical observations. A

similarity can be defined as any decreasing function of a distance. One possibility

is the formula

s x; yð Þ ¼ 1

1þ d x; yð Þ ð10:2Þ

for any distance d, which gives similarity values between 0 and 1. If we already have

a similarity measure, we can define dissimilarity as any decreasing function of the

similarity. However, the dissimilarity might not be a distance in the sense of

satisfying the axioms of a distance (see Section 5.6).

Assuming n observations in a data set and an n� nmatrixA ¼ aij
� �

of similarities

between them with aij � 1, we can define a dissimilarity as
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dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� aij
� �q

: ð10:3Þ

Assume that the largest elements of A are its diagonal elements aii (representing

similarities of observations to themselves) all equal to 1. If thematrixA is nonnegative

definite, then the dissimilarities dij have the property of a distance. This property will

become useful in Section 10.2.2, when defining similarity measures for variables.

In addition to the Euclidean distance, we can define many other types of distances

also called metrics. One example is a Minkowski metric often referred to as Lm and

defined as

Lmðx; yÞ ¼
"Xp

i¼1

��xi � yi
��m#1=m; m4 0; ð10:4Þ

where xi and yi are the coordinates of x and y, respectively. Form ¼ 2, formula (10.4)

defines the Euclidean distance, also called L2 metric. Form ¼ 1, we obtain L1 called

the city-block distance orManhattan distance because the distance is measured along

the directions parallel to the axes as shown in Figure 10.1. Note that all three paths

from the origin to pointA show the shortest L1 distance of 5. Any point on the bold line

in Figure 10.1 is in the L1 distance of 5 from the origin. Whenm tends to infinity, the

Lm distance gets close to the Chebyshev distance L? defined as

L?ðx; yÞ ¼ max
1�i�p

xi � yij:j ð10:5Þ

It is often convenient to define the distance between the point x and the origin as the

norm of x. The Lm norm corresponding to the Lm distance is defined as

xk km ¼
"Xp

i¼1

��xi��m
#1=m

: ð10:6Þ

543210

5
4

3
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0

x1

x 2
A

Figure 10.1 Three paths between the origin and Point A, each going along the shortest L1 distance of 5.
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Figure 10.2 shows spheres of the same radius in various Lm metrics. Note that a

unit length vector in the direction of an axis of the system of coordinates has the

length of 1 in any of the Lm metrics. This might be a desirable property in some

applications, but not in the context of spectral curves. Instead of treating a spectral

curve as a vector, we may want to treat it as a function of the range of spectral

wavelengths that the curve represents. In that case, we would calculate the distance

between two spectral functions f and g as the appropriate Lm norm expressed as the

following integral:

 ð
R

��f lð Þ � g lð Þ��m dl

!1=m

; ð10:7Þ

where R is the range of the spectral wavelengths under consideration. In practice, the

spectral curves are discretized as vectors, and it is convenient to use the equivalent

of (10.7) in the form of an adjusted Lm metric defined as

Ladjm ðx; yÞ ¼
"
1

p

Xp
i¼1

��xi � yi
��m#1=m ¼ 1

p1=m
Lmðx; yÞ ð10:8Þ

and the adjusted Lm norm defined as

xk kadjm ¼
"
1

p

Xp
i¼1

��xi��m
#1=m

¼ 1

p1=m
xk km: ð10:9Þ

Formula (10.8) can be viewed as an approximation of integral (10.7), where the

interval R is divided into p equal subintervals.

The adjusted Lm metric has a desirable property in that its value does not depend on

the dimensionality p in the following sense. Assume that two reflectance spectral

m = 0.3

m = 0.7 m = 1

m = 1.5 m = 2 m = ∞

Figure 10.2 Spheres of the same radius in various Lm metrics.

300 CLUSTERING – UNSUPERVISED LEARNING



curves described by the vectors x and y are being compared, and their distance has

been calculated asLmðx; yÞ.We can nowdivide each spectral band into two halves and

assign the original reflectance to both of those narrower spectral bands. This results in

a spectral curve practically identical to the one described by x that is now described by

x* with twice the number of spectral bands. In the same way, we can denote by y* a

2pð Þ-dimensional vector corresponding to y. Note that Lmðx*; y*Þ ¼ 21=mLmðx; yÞ
even though both ðx*; y*Þ and ðx; yÞ describe the same pair of spectral curves. On the

other hand, we have an equality between the corresponding adjusted Lm distances

Ladjm ðx*; y*Þ ¼ Ladjm ðx; yÞ.
Another property of the adjusted Lm metric can be explained by considering a

difference D ¼ x� y between hypothetical vector spectra represented by the vectors

x and y. Figure 10.3 shows three scenarios for such difference vectors. The difference
vectors are shown as hypothetical symmetric curves, that is, each curve extends above

the level of 1 on the right-hand side of the plot by the same amount that it is below the

level of 1 on the left. The adjusted Lm norm does not depend on m for a constant-

difference curve like Curve 1 in Figure 10.3. Table 10.1 shows values of adjusted Lm
norms for the three curves from Figure 10.3. These values may help you in deciding

which Lm metric to use in a given context. This will depend on which column in

Table 10.1 best reflects the nature of differences described by the three curves. If you
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Figure 10.3 An example of three difference curves. Each curve is a difference between two hypothetical

vector spectra.

Table 10.1 The Adjusted Lm Norms for the Three Curves from Figure 10.3

Value of m

0.3 0.7 1 1.5 2 ?

Curve 1 1.00 1.00 1.00 1.00 1.00 1.00

Curve 2 0.97 0.99 1.00 1.02 1.04 1.40

Curve 3 0.81 0.93 1.00 1.10 1.19 1.90
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believe that all three curves exhibit the equivalent differences between pairs of

spectral curves, then you should be using L1 norm or distance because all values in the

L1 column in Table 10.1 are identical. If you believe that there should be an additional

“penalty” for the large differences and they are not offset by the respective smaller

differences, then you should use an Lm norm with m4 1. However, L? seems to be

rather extreme since it is based on the maximum difference. Considering the

mathematical convenience of the Euclidean L2 metric and a modest penalty for large

differences, it seems a reasonable choice in many situations. The Lm metric with

m5 1 could be used if there were a benefit of small differences in some wavelength

ranges despite larger differences for other wavelengths.

The benefit of using the adjusted Lm metric is in making comparisons across

different dimensionalities or in deciding the suitable value of m as described above.

Once the metric is chosen and the dimensionality is fixed for a given data set, the

adjusted Lm metric is entirely equivalent to the classic Lm metric, and either of the two

can be used.

A distance that takes into account variability is the Mahalanobis distance used in

previous chapters and defined again here as

dM x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞTS�1 x� yð Þ

q
: ð10:10Þ

The variance–covariance matrix S can be either a global statistic calculated from

thewhole data set or amore local statistic calculated from a cluster or from some other

available information. It is often practical to sphere the data by using the transforma-

tion S�1=2 and then use a suitable metric such as Lm in the sphered coordinates. When

L2 is used in the sphered coordinates, it is equivalent to using the Mahalanobis

distance in the original coordinates. This approach is often used in images with pixels

described by spectral curves in order to adjust for the inherent structure of the data as

described by S.

If the original variables are in different physical units, then they should be

standardized so that the variables are comparable. This will preserve the correlations

among variables (unlike the sphering, which results in uncorrelated variables). If the

original variables are in the same physical units but their variances are very different,

then the decision about standardization depends onwhether or notwewant to preserve

those differences in variability.

Different measures of similarity are needed in the case of categorical variables.

A categorical variable takes on labels or names as values. The simplest case is that

of a binary variable, where observations can be characterized by the presence or

absence of a certain characteristic. A binary variable can be coded with 0 and 1

representing the only two values taken by the variable. Here we will discuss only

binary variables.

Let us assume thatwe have p binary variables. Each observation is then represented

by a p-dimensional vector of 0 and 1 values. A similarity between the ith observation,

represented by a vector x, and the kth observation, represented by y, can be defined by
counting the number ofmatches andmismatches at the same positions. The counts can
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be summarized in a contingency table like the one in Table 10.2, where the counts of

mismatches are shown in the shaded cells. For example, with x ¼ 0; 1; 1; 1; 0; 0½ �T and
y ¼ 0; 0; 1; 1; 0; 0½ �T, we obtain a ¼ 2; b ¼ 1; c ¼ 0; and d ¼ 3. Note that

aþ bþ cþ d ¼ p.

A simple measure of similarity can be the fraction of matches out of all

comparisons, that is, f ¼ aþ dð Þ=p. We can also calculate the Euclidean distance

of the twovectors, which turns out to be equal to
ffiffiffiffiffiffiffiffiffiffiffi
bþ c

p
, as ameasure of dissimilarity.

Note that the fraction f of matches is a strictly decreasing function of the Euclidean

distance, that is,

f ¼ 1� Euclidean Distanceð Þ2
p

: ð10:11Þ

The fraction f treats all matches equally, but sometimes matches on 1 might be

more important thanmatches on 0. In order to adjust for different levels of importance,

we can assign the weight ofw11 to a match on 1 and the weight ofw00 to a match on 0.

Similar weights can be assigned to mismatches as shown in Table 10.3.

A weighted measure of similarity can be calculated as

w ¼ w11aþ w00d � w10b� w01c

w11aþ w00d þ w10bþ w01c
¼ 2

w11aþ w00d

w11aþ w00d þ w10bþ w01c
� 1: ð10:12Þ

We can assume that the weights are nonnegative, so that�1 � w � 1, with values

close to 1 indicating strong similarity and those close to�1 strong dissimilarity. If all

weights are equal to 1, then w ¼ 2f � 1.

Table 10.2 Frequencies of Matches and Mismatches Between the ith and kth
Observations

Observation i
Observation k

1 0

1 a b

0 c d

Table 10.3 Weights for Importance of Matches and Mismatches Between the ith and

kth Observations

Observation i
Observation k

1 0

1 w11 w10

0 w01 w00
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10.2.2 Similarity and Dissimilarity Measures for Variables and Other
Objects

Sometimes, we may want to cluster variables into groups of highly correlated

variables, so that they can be summarized by only one or two new variables. The new

summary variables could be constructed based on the particular knowledge about

those variables or through some statistical methods such as principal component

analysis performed on the cluster of variables. A correlation coefficient can be used

here as a measure of similarity. Some clustering procedures require an input in the

form of a dissimilarity (or even a distance) matrix. Since the correlation matrix is

nonnegative definite, we can use formula (10.3) to define a distance between

variables.

For binary variables (i.e., having only two possible values), one can simply treat

variables as observations and observations as variables, and use the similarity

measures developed in Section 10.2.1 for binary data. We can also define a distance

between such binary variables, especially the Euclidean distance, which is related to

one of the discussed similarities as shown in equation (10.11).

Another situation is when information is not available in the form of a statistical

database with observations and variables. Instead, we have objects and some

similarities among objects are directly available. For example, in an experiment

evaluating similarity among colors, several judges can be asked to rate the similarity

for each pair of colors on a scale from 0 to 100. The similarity measure is then the

average calculated over all judges.

10.3 HIERARCHICAL CLUSTERING METHODS

We start a discussion of clustering with hierarchical methods, which often provide

more clustering information than other methods. There are two types of hierar-

chical clustering algorithms: divisive hierarchical algorithms and agglomerative

hierarchical algorithms. Divisive hierarchical algorithms start with placing all

objects in one cluster, and try to divide it into the two most meaningful clusters.

Next, one of the clusters is further divided, and the process continues until a

desired number of clusters are achieved. Agglomerative hierarchical algorithms

work in the opposite direction. They start with each object forming a separate

cluster, and then try to merge the most similar clusters until all objects are in a

single cluster.

We are going to discuss agglomerative hierarchical algorithms and will start with

three different linkage methods. These algorithms, as many other clustering

methods, can use either a dissimilarity or similarity measure. For simplicity of

presentation, we will refer to a distance as an example of dissimilarity. When a

similarity measure is used, some obvious modifications to the algorithms need to be

made, such as taking a maximum instead of a minimum, for instance. All linkage

methods follow these steps
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1. Assuming a set of n objects, start with n clusters, each cluster

containing one single object. Calculate an n�n symmetric matrix

of distances among the objects.

2. Search for the most similar pair of clusters. (One needs to find the

smallest element in the distance matrix, excluding the zero

distances on the diagonal.) Let us call these two clustersU and V.

(10.13)
3. Merge clustersU and V into a new cluster called (UV). Update the

distance matrix by

a. Deleting the rows and columns corresponding to clusters U

and V.

b. Adding a row and column for cluster (UV) specifying the

distance between cluster (UV) and the remaining clusters.

4. Repeat Steps 2 and 3 a total of (n�1) rounds, until all objects are in

a single cluster.

After each round in the algorithm, the number of clusters is reduced by one. This

means that we actually have n different clustering solutions, each with a different

number of clusters from1 to n. Of course, the extreme solutionswith 1 or n clusters are

not interesting, but we have many other clustering solutions from which to choose.

The appealing property of the hierarchical algorithms is that they do not require a

priori determination of the number of clusters, but instead provide the flexibility of

choosing the number after we see all potential choices.

The three linkage algorithms we are going to present differ in the method of cal-

culating the distance between two clusters as discussed in the following subsections.

10.3.1 Single Linkage Algorithm

In the single linkage algorithm (also called minimum distance or nearest neighbor

algorithm), the distance between clusters is calculated as the distance between the two

closest elements from the two clusters. This rulewould suggest that we need to use the

original distances at each step of the algorithm. However, it turns out that there is a

computationally simpler approach that can be described as follows (the explanation

why the two approaches are equivalent is given as Problem10.1).When two clustersU

andV aremerged (in Step 3 above), the distance between (UV) and any other clusterW

is calculated as

d UVð ÞW ¼ min dUW ; dVWf g; ð10:14Þ

where dUW and dVW are distances between clusters U and W and clusters V and W,

respectively. We would use the maximum for similarities. Since the operations of

the minimum and maximum are invariant to a strictly increasing transformation of

distances, the single linkage clustering is also invariant to a strictly increasing

transformation of distances (or similarities) in the sense that the same clustering is

produced based on the original distance and the transformed distance (see

Problem 10.2).
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Example 10.1 Let us consider the Tile Data from Example 5.1. The data set

consisted of 4 measurements for each of the 12 monochromatic (uniformly colored)

tiles for a total of 48 observations in 31 spectral bands (variables). Herewewant to find

spectral similarities among the tiles.We calculate averages of the 4measurements for

each of the 12 tiles and treat those means as 12 observations, each representing one

tile. The mean spectral reflectance curve for a given tile describes the inherent

property of how the tile reflects light at different wavelengths. The distance between

the spectral curves will measure how different those properties are for different tiles.

This is not the same as the difference between the colors of the tiles as perceived by

humans. For a meaningful analysis of similarity between colors, one would need to

transform the spectral reflectance curves into coordinates in a color space that

approximates human vision, such as the CIELAB (see Berns (2000)). This transfor-

mation depends on the type of the illuminant used, that is, the colors may look

different in daylight than under artificial light indoors.

The single linkage algorithm with Euclidean distance between spectra has been

applied to those 12 observations, and the clustering results are represented in the form

of a dendrogram, or tree diagram, shown in Figure 10.4. The branches in the tree

represent clusters. The merging of clusters is shown as two branches coming together

at nodes. The vertical position of nodes (Height) indicates the value at which the

merging occurred, that is, the distance between the two clusters. Let’s read the

dendrogram from the bottom up. At the bottom, you can see “dark green” merging

with “dark gray.” This first merging occurs at the level of a ¼ 15:7, where a horizontal
dashed line is drawn. This means that the Euclidean distance between the spectra of

the dark green and dark gray tiles is 15.7.

In the second round of the algorithm, the cluster consisting of “dark green” and “dark

gray” was merged with “green blue.” The subsequent merging occurs at higher

distances, sometimes between clusters and sometimes between two observations, such
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Figure 10.4 Adendrogram showing clusters of 12 tileswhen using the single linkagemethod as discussed

in Example 10.1.
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as “light green” and “medium gray.” The final merging of two clusters into the whole

data set is done at the highest level shown in thegraph at 163.9 of theEuclidean distance.

We can say that the dendrogram provides the hierarchical structure of clusters.

The dendrogram can assist us in deciding on a suitable number of clusters. One way

to do this is to decide on a threshold level in the dendrogram. For example, if we

believe that 100 is a large enough distance to decide that two clusters are different,

then we can draw a horizontal line at that level and identify the branches below the

line as clusters. Based on Figure 10.4 with the threshold of 100, we would identify

four clusters—three one-element clusters of “light gray,” “yellow,” and “pink,” and

the fourth cluster containing all remaining tiles. In the next example, wewill discuss

some other criteria for finding a suitable number of clusters.

It seems that the tile brightness plays an important role in the clustering results.

Some hues, such as green, are found in quite different clusters. Clustering analysis

using the CIELAB color space will be done in Example 10.3 in order to reflect human

color vision. &

Example 10.2 Consider the RGB image from an Eye Tracking experiment that was

discussed in Example 2.5. A scatter plot of intensity of Red versus intensity of Green

for all 16,384 pixels was shown in Figure 2.15. Here we selected a sample of 196

pixels randomly from all pixels. Our goal was to cluster those pixels into distinct

groups based on the red and green intensity values. Those distinct groups can be

characterized by some descriptive statistics. The whole set of pixels can then be

described as consisting of several groups with given characteristics. The analysis

would ultimately be done on thewhole image in all three RGB channels, but we show

here a simplified scenario for educational purposes. Figure 10.5 shows a scatter plot of

color intensity values for the 196 pixels used in this example.

The single linkage algorithmwith Euclidean distance has been applied to the set of

196 pixels, and the results are shown in the form of the dendrogram in Figure 10.6. The

graph may seem busy and confusing. However, for a large data set, the purpose of a

dendrogram is not to see all details of clustering, but instead to see major patterns.

Here our practical goal is to identify several large clusters that encompassmost pixels,

but not necessarily all of them. This means that we can also leave some of the pixels as

unclassified. If we use the threshold level of Height ¼ 0:081 (the solid horizontal line
in Figure 10.6 cutting the tree into branches positioned below the threshold), then we

obtain three large clusters and the remaining pixels form one-element clusters or some

small clusters. We could also use Height ¼ 0:072 (the dashed horizontal line in

Figure 10.6), which results in four large clusters. We will further evaluate those

clusters later on in this section. &

It turns out that the single linkage clustering is closely related to the graph theory

concept of the minimum spanning tree. In mathematics, a graph is a representation of

a set of objects with vertices, where some pairs of the objects are connected by links or

edges. When planning an optical fiber network connecting a number of sites, we may

initially consider some connections between them as feasible and other as infeasible.

Figure 10.7 shows six sites with feasible connections plotted as edges of the graph.
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Figure 10.5 A scatter plot of color intensity values for the 196 pixels used in Example 10.2.
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Figure 10.6 A dendrogram describing clustering results of the single linkage algorithm applied to the set

of 196 pixels discussed in Example 10.2.
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Note that the positions of vertices may or may not be associated with the actual

geographic locations of the sites, depending on our preference.

In the next step of planning the network, we realize that there is no need for

multiple paths between sites. All we need is to have a connection between any two

sites by a simple path. Considering the cost of burying the optical fiber into the ground,

it is not cost efficient tomake anyunnecessary links, even if the connection needs to go

around through some other sites. A graph where each two vertices are connected by

exactly one simple path is called a tree. There are no cycles in a tree, such as the cycle

connecting Sites 1, 2, and 3 in Figure 10.7. An example of a tree is shown in

Figure 10.8 as a potential optical fiber network. This is a spanning tree because it

connects all vertices in the graph.

In further planning for the network, we would also need to take into account the

costs associated with each link. In order to minimize the cost, wewould need to find a

tree with the smallest total cost equal to the sum of all weights, or costs, associated

with the tree edges. This tree is called the minimum spanning tree. There could be

more than one minimum spanning tree for a given graph. However, if all weights of

edges are different, then the solution is unique.

In the context of clustering, we typically assume that each object (vertex) can be

connected with any other object. So, the initial graph may look like the one in

Figure 10.9, which means that all connections are feasible. This is what we will

assume from now on, and we will define the weights of the links as equal to the

distances between the sites.

The minimum spanning tree for this configuration of objects, or sites, is shown in

Figure 10.10. This is the optimal solution for the optical fiber network, if we assume

that the cost is proportional to the actual distances shown in the graph.

In order to find the clustering of sites, we need to drop the longest link from the

minimum spanning tree resulting in two trees, each connecting elements of one

cluster as seen in Figure 10.11. The graph shown in Figure 10.11 is called a forest
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Figure 10.7 A graph with six sites as vertices and feasible connections plotted as edges or links.
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Figure 10.8 An example of a tree as a potential optical fiber network.
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because it consists of multiple trees. By removing the next longest link at each

step, we can construct further divisions of all sites into more clusters. This process

results in a clustering equivalent to the single linkage algorithm discussed earlier

(the proof is given as Problem 10.7). We call the forest shown in Figure 10.11 the

first-level minimum forest because it is obtained at the first level of clustering,

counting from the top of the dendrogram. Moving down the tree, we obtain the

second-level minimum forest and so on. At each level, each tree is the minimum

spanning tree of a cluster.

The results of the single linkage algorithm applied to the six sites are shown in

Figure 10.12.We can again see the first split into two clusters, one consisting of Sites 1

and 3 and the remaining sites being in the other cluster.We can now apply the concept

of theminimum spanning tree to larger data sets such as the one discussed in Example

10.2.

Example 10.2 (cont.) The clustering solution shown in Figure 10.6 for 196 pixels

discussed in Example 10.2 can now be represented as the minimum spanning tree

shown in Figure 10.13. In order to evaluate the clustering proposed in Figure 10.6 by

cutting the tree at the level of 0.081,we can find the equivalent k-levelminimum forest

shown in Figure 10.14. Here k turns out to be equal to 10. We can then plot the

resulting clusters as shown in Figure 10.14. The three large clusters are marked in

different colors and symbols, and the remaining clusters, including single observa-

tions, are regarded as unclassified and are marked with circles.

Each of the three large clusters can be described by a two-dimensional meanvector

and a 2 by 2 variance–covariance matrix. In Figure 10.14, we plotted ellipses

encompassing 90% of the normal (Gaussian) distributions with the means and

variance–covariance matrices of the clusters. We conclude that the clusters conform

1

2

3

4 5

6

Figure 10.9 A graph of objects in the context of a typical clustering problem, where dissimilarity is

defined for all pairs of objects.
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Figure 10.10 The minimum spanning tree for the configuration of objects from Figure 10.9 with weights

given by Euclidean distances.

310 CLUSTERING – UNSUPERVISED LEARNING



1

2

3

4 5

6

Figure 10.11 A forest consisting of two trees as clusters.
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Figure 10.12 A dendrogram describing clustering results of the single linkage algorithm applied to the

sites shown in Figure 10.11.
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Figure 10.13 The minimum spanning tree equivalent to the clustering solution shown in Figure 10.6 for

196 pixels discussed in Example 10.2.
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quite well to the shapes of the ellipses. This is not to suggest any normality

assumption, which is not needed here. Instead, the intention is to check how well

the first and second moments describe those clusters. There are only 15 unclassified

pixels (less than 10% of all pixels). It seems that the whole data set has been

characterized reasonably well by describing the three large clusters.

We can also try the other threshold suggested in Figure 10.6 and cut the tree at the

level of 0.072. This results in four large clusters shown in Figure 10.15. Again, the

characterization of the large clusters is quite reasonable. There is only one additional

unclassified pixel for a total of 16. Again, it seems that the whole data set has been

characterized reasonably well by describing the four large clusters. &

The single linkage method is prone to a chain effect, where a long chain of

observations can be merged into one cluster, even though some of them are very

far from each other. This is a good property when we design an optical fiber network,

but it may not be desirable if the emphasis is on clusters of similar objects. The

complete linkage method discussed next is less prone to the chain effect.

10.3.2 Complete Linkage Algorithm

The complete linkage algorithm (also called maximum distance or farthest neigh-

bor algorithm) follows the same steps (see (10.13)) as the other linkage algorithms,

but the distance between clusters is calculated as the distance between the two

farthest elements from the two clusters. Again, it turns out that there is a

computationally simpler approach that can be described as follows (the explanation
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Figure 10.14 Three large clusters from the single linkage method are marked in different colors and

symbols. The remaining unclassified clusters, including single observations, are marked as black circles.

The ellipses encompass 90% of the normal (Gaussian) distributions with the means and variance–cov-

ariance matrices of the clusters.
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why of the two approaches are equivalent is given as Problem 10.3). When two

clusters U and V are merged in Step 3, the distance between (UV) and any other

cluster W is calculated as

d UVð ÞW ¼ max dUW ; dVWf g; ð10:15Þ

where dUW and dVW are distances between clusters U and W and clusters V and W,

respectively.Wewould use theminimum for similarities. Again, the complete linkage

clustering is invariant to a strictly increasing transformation of distances (or similari-

ties) in the sense that the same clustering is produced based on the original distance

and the transformed distance (see Problem 10.2).

The complete linkage method has a tendency to produce tight clusters because any

new observation mergedwith a cluster cannot be too far from all observations already

in that cluster.

Example 10.3 This is a continuation of Example 10.1, where we were clustering

mean spectra of 12 tiles. For a different perspective that takes into account color

perception, we transformed the 12 spectra into three-dimensional CIELAB color

space coordinates. See Appendix B for details. This transformation depends on the

type of the illuminant used, that is, the colorsmay look different in daylight than under

artificial light indoors. We used two illuminants, one representing the noon daylight

with overcast sky (Illuminant D65) and the other representing the incandescent or

tungsten light source found in homes (Illuminant A). In both cases, the Euclidean

distance in the three dimensionswas used as a dissimilaritymeasure. The results of the

single and complete linkage algorithms for both illumination conditions are shown as

dendrograms in Figure 10.16. One can compare the methods by inspecting the panels

0.80.60.40.20.0

0.
8

0.
6

0.
4

0.
2

0.
0

Intensity of Green

In
te

ns
ity

 o
f R

ed

Figure 10.15 Four large clusters from the single linkage method with the 90% probability ellipses

characterizing the normal distributions of the clusters.
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in the same row since they are for the same illumination. For both illuminants, the two

methods show different results, although they seem to be more similar under daylight

conditions.

The panels in columns are based on the same method and the colors under

different illuminations can be compared. According to the single linkage method,

the colors cluster only somewhat differently. Based on the complete linkage, the

difference is much more significant. For example, in daylight, the brown tile is most

similar to the yellow one, but in the tungsten light, the brown tile is most similar to

the maroon one. &

Example 10.4 This is a continuation of Example 10.2, where 196 pixels were

clustered based on bivariate values of red and green color intensity. The complete

linkage algorithm with Euclidean distance was applied to the data, and the results are

shown as the dendrogram in Figure 10.17. The dendrogram looks very different from

the one for the single linkage algorithm. There are no single observations merged at

the large distances (Height). Instead, all observations merge into some clusters early

in the clustering process. We can again define three clusters with the threshold of

Height ¼ 0:8 (the solid horizontal line in Figure 10.17). For each cluster, we used the
minimum spanning tree of that cluster only for the purpose of graphical presentation
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Figure 10.16 The dendrograms of the single and complete linkage (in the two columns of panels)

clustering results for two illumination conditions (in rows of panels).
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as one group. The clusters are very different from the three clusters in Figure 10.14

that were based on the single linkage method.

One can also use the threshold of Height ¼ 0:6 (the dashed horizontal line in

Figure 10.17) in order to define five clusters shown in Figure 10.19. Those clusters

look quite appealing, except perhaps the fifth cluster marked with circles. The fifth

cluster is rather small (13 pixels) and is spread “thinly” over a relatively large area.

This clustering is similar to the one in Figure 10.15, except that unclassified pixels in

Figure 10.15 are now gathered into one cluster. For the purpose of a sparse

representation of the whole set of pixels with summary statistics of clusters, we

could either use five clusters from Figure 10.19 or prefer a solution with some

observations being unclassified and choose the solution from Figure 10.15. The latter

solutionmight work better for dealing with outliers in cases when they spread out into

other areas where they will not merge into the fifth cluster. &

10.3.3 Average Linkage Algorithm

The average linkage algorithm (also called average distance) follows the same steps

as the other linkage algorithms (see (10.13)), but the distance between clusters is

calculated as the average distance over all possible pairs of elements from the two

clusters.When two clustersU andV aremerged (in Step 3), the distance between (UV)

and any other cluster W is calculated as

d UVð ÞW ¼
P

i

P
kdik

n UVð ÞnW
; ð10:16Þ
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Figure 10.17 Adendrogramdescribing clustering results of the complete linkage algorithm applied to the

set of 196 pixels discussed in Example 10.4.
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where dik is the distance between object i in the cluster (UV) and the object k in the

cluster W and n UVð Þ and nW are the numbers of objects in clusters (UV) and W,

respectively. Unlike the previous two linkage methods, the average linkage is not

invariant to a strictly increasing transformation of distances or similarities (see

Problem 10.2).
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Figure 10.18 Three clusters from the complete linkage method for the Example 10.4 data are marked in

different colors and symbols. The ellipses encompass 90% of the normal (Gaussian) distributions with the

means and variance–covariance matrices of the clusters.
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Figure 10.19 Five clusters from the complete linkage method with the 90% probability ellipses

characterizing the normal distributions of the clusters.
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The average linkage method can be considered a compromise between the single

and complete linkage methods since the average distance is always between the

shortest and the longest distances.

Example 10.5 This is a continuation of Examples 10.2 and 10.4, where 196

pixels were clustered based on bivariate values of red and green color intensity.

The average linkage algorithm with Euclidean distance was applied to the data,

and the results are shown as the dendrogram in Figure 10.20. The dendrogram

looks very similar to the one for the complete linkage shown in Figure 10.17.

However, it is difficult to see from the dendrogram the actual cluster membership

in a large data set like this one. Figure 10.21 showing three clusters based on

the threshold of Height ¼ 0:4 reveals that the clusters are very different from the

results of the complete linkage (Figure 10.18). In this case, the average linkage

results are more similar to the single linkage results (Figure 10.14), except that

the unclassified pixels are now included in one of the three large clusters.

Figure 10.22 shows five clusters based on the threshold of Height ¼ 0:3. These
results are very similar to those for the complete linkage in Figure 10.19. Consistency

of results among the three linkage methods with five groups (or four groups with

the fifth group of unclassified pixels for the single linkage) points to the stability of

this solution. &
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Figure 10.20 A dendrogram describing clustering results of the average linkage algorithm applied to the

set of 196 pixels discussed in Example 10.5.
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Figure 10.21 Three clusters from the average linkage method for the Example 10.5 data are marked in

different colors and symbols. The ellipses encompass 90% of the normal (Gaussian) distributions with the

means and variance–covariance matrices of the clusters.
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Figure 10.22 Five clusters from the average linkage method with the 90% probability ellipses charac-

terizing the normal distributions of the clusters.
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10.3.4 Ward Method

The Ward method, introduced in Ward (1963), is an agglomerative hierarchical

clustering procedure, but unlike the linkage methods, it does not define a distance

between clusters. Instead, the method is based on the error sum of squares defined for

the jth cluster as the sum of squared Euclidean distances from points to the cluster

mean

ESSj ¼
Xnj
i¼1

xij � �xj
�� ��2; ð10:17Þ

where xijis the ith observation in the jth cluster and �xj is themean of all observations in

the jth cluster. The error sum of squares for all clusters is the sum of the ESSj values

from all clusters, that is,

ESS ¼ ESS1 þ ESS2 þ � � � þ ESSk; ð10:18Þ

where k is the number of clusters. The algorithm starts with each observation forming

its own one-element cluster for a total of n clusters, where n is the number of

observations. In each one-element cluster, the mean is equal to that one observation

and ESSj ¼ 0; j ¼ 1; . . . ; n. Consequently, ESS ¼ 0. In the first round of the algo-

rithm, we try tomerge two elements into one cluster in a way that would increase ESS

by the smallest possible amount. This can be done by merging the two closest

observations within the data set. Up to this point, the Ward algorithm produces the

same result as any of the three linkage methods discussed earlier. At each subsequent

round,we findmerging that produces the smallest increase in ESS. Thisminimizes the

distances between the observations and the centers of the clusters. The process is

continued until all observations are in one cluster.

One can show (see Problem 10.8) that formula (10.17) can be replaced with the

following one:

ESSj ¼ 1

2nj

Xnj
i¼1

Xnj
m¼1

xij � xmj

�� ��2: ð10:19Þ

This means that all calculations can be based on an n� n matrix of distances

between observations. Thismatrix is sometimes the only available information, while

the vectors xi of the original observations are unknown. Many computer software

implementations of clustering procedures use the matrix of distances as the only

input. This works with the Ward method and the linkage methods discussed earlier,

but some other clustering methods require the vectors xi of the original observations.
The Ward method was used to cluster the 196 pixels from Example 10.5. The

results were almost identical to those obtained in that examplewhen using the average

linkage method (Figures 10.21 and 10.22). Only one pixel was assigned to a different

cluster in both cases of three and five selected clusters. The two methods often give

similar results. TheWardmethod tends to give clusters of circular or elliptical shapes.
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10.4 NONHIERARCHICAL CLUSTERING METHODS

Nonhierarchical clustering methods identify a specific number of clusters rather than

building the whole structure of clusters (as do the hierarchical methods). The number

of clusters can be either determined by the user or calculatedwithin the algorithm. The

most popular among nonhierarchical clustering methods is the K-means algorithm

discussed in the next subsection.

10.4.1 K-Means Method

We now look more broadly at the error sum of squares and define it for any set C of k

clusters and any set of centroidsm1; . . . ;mk that may not be directly dependent on the

clusters. We define a general error sum of squares as

ESS C;m1; . . . ;mkð Þ ¼
Xk
j¼1

Xnj
i¼1

xij �mj

�� ��2; ð10:20Þ

where xijis the ith observation in the jth cluster. Given a set of observations, our global
minimization problem is to find the set C of k clusters and a set of centroids

m1; . . . ;mk that would minimize ESS C;m1; . . . ;mkð Þ. Even for a fixed number

(k) of clusters, it is difficult to find the global minimum, but we can find some local

ones, and this is what the K-means method does.

For a given assignment C of observations into clusters, the minimum of

ESS C;m1; . . . ;mkð Þ is achieved by mj equal to the cluster mean �xj for each

j ¼ 1; . . . ; k (the proof is given as Problem 10.6). When mj ¼ �xj , the criterion

ESS C;m1; . . . ;mkð Þ becomes ESS defined in equation (10.18). So, the minimization

criterion is essentially the same here as the one in the Ward method discussed in

Section 10.3.4. TheWardmethodminimizes ESS over all clustering solutions that can

be obtained by merging two out of k þ 1ð Þ clusters obtained in the previous round of
the algorithm. This allows building the hierarchical structure of the Ward method

solution. TheK-meansmethod is not limited by those choices of new clusters. Instead,

once the centroids are fixed, the algorithm reassigns the observations into potentially

entirely new clusters in each round, so that ESS C;m1; . . . ;mkð Þ is minimized. An

easy way to do this is to assign each observation to the cluster defined by the closest

centroid. If the observationwere assigned to a different cluster, the longer distance to a

different centroid would increase ESS C;m1; . . . ;mkð Þ. More specifically, the classic

K-means algorithm follows these steps:

1. Identify k initial clusters.

2. Calculate centroids (mean vectors) for all k clusters (minimization of

ESS C;m1; . . . ;mkð Þ given C).

3. Reassign each observation into the cluster whose centroid is nearest (minimi-

zation of ESS C;m1; . . . ;mkð Þ given m1; . . . ;mk).

4. Repeat Steps 2 and 3 until no more reassignments need to be made in Step 3.
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We can say that the K-means algorithm finds the local minimum of

ESS C;m1; . . . ;mkð Þ, but not necessarily the global minimum. Since for a given

clustering C, we would always prefer to use the means as centroids, the criterion

ESS C;m1; . . . ;mkð Þ is essentially the same as ESS defined in equation (10.18), but

the notation used here helps in a better understanding of the alternating minimization

performed by the K-means algorithm.

Some implementations of the K-means algorithm attempt to “jump out” of the

local minimum by investigating some other reassignments into clusters. For example,

Hartigan and Wong (1979) implementation checks if a single switch of one observa-

tion fromone cluster to anotherwould reduceESS. If yes, then the switch ismade even

though the observation was closer to a different cluster mean before the switch. Note

that the reduction in ESS is possible only because the switch will change the cluster

means as well (we change bothC andm1; . . . ;mk in one step, rather than one of them

at a time as in the classic implementation of the algorithm). The switched observation

will be closer to its new cluster mean than to any other cluster mean (otherwise, it

would not minimize ESS).

Another way to deal with suboptimal localminima is to run theK-means algorithm

several times, each timewith a different set of initial clusters in Step 1.We then choose

the solution with the lowest ESS.

We still need to discuss how the initial clusters are identified in Step 1. This is often

done by a random assignment of observations into clusters. An alternative solution is

to run a different clustering algorithm and use its results as a starting point of the K-

means algorithm. This is especially meaningful when the preprocessing algorithm is

used for determination of the number of clusters k. For example, a hierarchical

clustering algorithm can be run first. We can then use the hierarchy to help us in

deciding on a suitable value of k. The resulting clusters are then used as the initial

clusters in the K-means algorithm. One problem with this approach is that the

hierarchical algorithms tend to be computationally intensive, while the advantage

of theK-means algorithm is that it is cheaper computationally. So, a different strategy

is needed for very large data sets.

For the initialization of theK-means algorithm, Step 1 can be skipped altogether as

long as we specify the initial centroids in Step 2. One promising example of this

approach is the K-meansþþ algorithm proposed by Arthur and Vassilvitskii (2007).

For the set of observation vectors xi; i ¼ 1; . . . ; n, the algorithm finds the initial

centroids mj ; j ¼ 1; . . . ; k, by following these steps:

1. m1 is chosen randomly as one of thevectors xi; i ¼ 1; . . . ; n, eachwith the same

probability of 1=n.

2. For each xi, calculate the squared distance d2 xið Þ between xi and the closest

centroid that has already been chosen.

3. Calculate the weights pi ¼ d2 xið Þ=Pn
j¼1 d

2 xj
� �

.

4. Choose a new centroid randomly as one of vectors xi; i ¼ 1; . . . ; n, where each
has the probability pi of being chosen.

5. Repeat Steps 2, 3, and 4 until all k centroids are found.
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The algorithm favors the candidates for a new centroid that are far away from the

previous centroids. However, due to its random nature, it is not locked into the farthest

observations that could be outliers. This means that theK-means algorithm initialized

by K-means þþ algorithm still should be run several times, as usual, in order to

deal with local minimum issue, but it is more likely to give a better initial

configuration of centroids than the standard randomization.

Example 10.6 Here we continue the previous examples, where 196 pixels were

clustered based on bivariate values of red and green color intensity. We first want to

evaluate the previous five-cluster solutions in light of the error sum of squares ESS

criterion given in formula (10.18). The ESS was calculated as 2.769 for the Ward

method solution (not shown in a separate graph), 2.924 for the complete linkage

(shown in Figure 10.19), and 2.727 for the average linkage (shown in Figure 10.22).

The Ward and the average linkage solutions were different only by one observation

assignment to a different cluster, and the average linkage happened to be slightly

better based on the ESS criterion.

We then ran the Hartigan and Wong (1979) implementation of the K-means

algorithm. When the initial clustering was the result of the Ward method or the

complete linkage, the algorithm would converge to a clustering with ESS ¼ 2:6321.
When starting with the clustering result of the average linkage, there was only a slight

improvement with ESS ¼ 2:6320. The same solution was obtained as the best one

when trying many random initializations. This solution is shown in Figure 10.23, and
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Figure 10.23 Five clusters from the K-means algorithm with the 90% probability ellipses characterizing

the normal distributions of the clusters.
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it seems to provide the global minimum for ESS in this data set, but we cannot be sure

about it. These results are meant as examples of calculations that can be replicated by

the reader for educational purposes rather than an evaluation of the performance of the

algorithms in general. &

10.5 CLUSTERING VARIABLES

When performing cluster analysis of variables, we usually use the correlation

coefficients as similarities as discussed in Section 10.2.2. These similarities can be

transformed to a distance measure by using formula (10.3). Oncewe have a similarity

or a dissimilarity measure, any of the linkage algorithms can be used. In order to use

the K-means method discussed in Section 10.4, we would need to have vectors

representing variables. This could be done by using an n-dimensional vector of all

values of a given variable. However, this approach would not be useful in most

applications. For example, two variables could be highly or even perfectly correlated,

but magnitudes of their values could be very different, resulting in a large distance

between thevariables. Thismay ormay not reflect the intended dissimilarity in a given

application.

For binary variables (i.e., having only two possible values), one can simply treat

variables as observations and observations as variables as discussed in Section 10.2.2.

We can then use the similarity measures developed in Section 10.2.1 for binary data.

In this context, the approach with using an n-dimensional vector of all values of a

given variable would work because binary variables can become highly correlated

only through a large number of matches of values. Note also that the Euclidean

distance is meaningful here, and it is, in fact, related to one of the discussed

similarities as shown in equation (10.11). This means that we could use the K-means

method for binary variables. The centroids would not be binary variables, but this

should not create any problems.

Example 10.7 In Example 9.2, we considered a 64 by 64 pixels image of grass

texture in 42 spectral bands. As is usually the case for spectral images, the spectral

bands, treated here as variables, are highly correlated. However, we may want to

check which pairs of variables are more correlated with each other than with other

variables. This might be helpful in band selection procedures, where one is interested

in a subset of all spectral bands that would carry most of the information available

from all bands. This is relevant for more efficient planning of specialized remote

sensing devices. If a band is highly correlated with other bands, it may not be carrying

much information other than what is already contained in the other bands.

The 42 by 42 correlation matrix was used as a similarity matrix. The similarities

were then transformed to distances by using formula (10.3), and the three linkage

algorithms were run. Figure 10.24 shows the dendrogram obtained with the single

linkage algorithm.We can see that many spectral bands merge at the levels very close

to zero, which is equivalent to the correlation coefficient close to one. Band 1 merges

with any of the clusters very late in the process. It merges at the level of the distance
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equal to 0.674. Since formula (10.3) can be solved for similarity to produce

aij ¼ 1� d2
ij=2, we conclude that the highest correlation coefficient of Band 1 with

any other variable is 1� 0:674ð Þ2=2 ¼ 0:773. Bands 13–21 are somewhat different

from all other bands. They mergewith the remaining variables in the last round of the

algorithm at the level of 0.7423, whichmeans that the highest correlation between any

of the Bands 13–21 and the remaining bands is 0.7245. The vertical axis in

Figure 10.24 could show the values of the correlation coefficient directly to make

these interpretations easier.
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Figure 10.24 A dendrogram showing clusters of 42 spectral bands as obtained with the single linkage

algorithm.
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Figure 10.25 A dendrogram showing clusters of 42 spectral bands as obtained with the complete linkage

algorithm.
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The hierarchical clustering is very useful in this example because we are not

looking for a particular number of clusters, but instead we are trying to understand

the correlations among variables for further investigation. We also need to keep in

mind that correlations describe the pairwise relations between pairs of variables

without taking into account more complex multicollinearity structures. In further

analysis, we may want to utilize canonical correlation analysis (see Chapter 8) to see

if some bands already contain the information included in linear combinations of

other variables.

The dendrogram based on the complete linkage algorithm is shown in Fig-

ure 10.25. Since this algorithm merges clusters based on the farthest distance, it

can be interpreted as the worse-case scenario. Bands 13–21 again form a fairly

tight cluster, and they merge with bands 5–12 at the level of 1.393. This means that

the least correlated pair of bands, one from the range 13–21 and the other from

5–12, has the correlation coefficient of only 0.030, which practically means no

correlation.

The results of the average linkage algorithm are not shown. They are more difficult

to interpret, especially that the algorithm produces different results depending on

whether the correlations are used directly as a similarity measure or the distances

defined by formula (10.3) are used. &

10.6 FURTHER READING

Clustering, or unsupervised learning, is a broad topic and many other methods are

discussed in Hastie et al. (2001) and Clarke et al. (2009). Clustering in the context of

remote sensing is discussed in Canty (2010).

PROBLEMS

10.1. In the single linkage algorithm, the distance between clusters is calculated as

the distance between the two closest elements from the two clusters. Show that

this distance is equal to the one defined by formula (10.14).

10.2. Assume that a distance d x; yð Þ is defined for all pairs of objects x and y.

Define a new distance dnew x; yð Þ ¼ F d x; yð Þð Þ, where F �ð Þ is a strictly

increasing function. Show that

a. d x1; y1ð Þ5 d x2; y2ð Þ if and only if dnew x1; y1ð Þ5 dnew x2; y2ð Þ.
b. The clustering obtained by applying the single linkage algorithm with the

distance d x; yð Þ is identical to the one obtained with the distance dnew x; yð Þ.
c. The clustering obtained by applying the complete linkage algorithm with

the distance d x; yð Þ is identical to the one obtained with the distance

dnew x; yð Þ.
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d. The clustering obtained by applying the average linkage algorithm with the

distance d x; yð Þ is not necessarily the same as the one obtained with the

distance dnew x; yð Þ.

10.3. In the complete linkage algorithm, the distance between clusters is calculated

as the distance between the two farthest elements from the two clusters. Show

that this distance is equal to the one defined by formula (10.15).

10.4. In Example 10.7, we used a 64 by 64 pixels image of grass texture in 42

spectral bands. Use that data set to

a. Run the average linkage algorithm to cluster variables using the correlations

as a similarity measure (if your software accepts only dissimilarities, use

1� rij , where rij is the correlation; explain why that is equivalent to using rij
as similarities).

b. Run the average linkage algorithm to cluster variables using the distances

defined as dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� rij
� �q

(see formula (10.3)). Are the results the same

as those from part a? Explain why.

10.5. Prove that for a given set of points xi; i ¼ 1; . . . ; n, the mean squared error of

prediction MSE mð Þ ¼Pn
i¼1 xi �mk k2=n is minimized by m equal to the

sample mean �x ¼Pn
i¼1 xi=n. This is a multivariate version of the property in

Problem 4.5 written here for the sampling distribution.

10.6. Prove that for a given assignment C of observations into clusters, the

minimum of ESS C;m1; . . . ;mkð Þ given by formula (10.20) is achieved by

mj equal to the cluster mean �xj for each j ¼ 1; . . . ; k. Use the lemma written

as Problem 10.5.

10.7. Assume that we constructed a minimum spanning tree for a given data set

based on a distance matrix. We can find two clusters by removing the longest

link from the tree. This results in the first-level minimum forest. In the second

step, we can remove the second longest link from the forest, which will result

in three clusters. We can continue this process until all links are removed and

all observations form their own clusters. Prove that this process results in a

clustering equivalent to the single linkage algorithm.

10.8. Show that formula (10.17) is equivalent to formula (10.19). Hint: Add and

subtract the cluster mean inside �k k in formula (10.19).

10.9. Recreate Figure 10.3 and the results in Table 10.1. Give an example of an

application where you would like to calculate distances of multivariate

observations. Based on the results here, decide which Lm would be most

appropriate for your application. Explain why.
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10.10. For the TileData in theCIELABcolor space (for both illumination conditions)

as used in Example 10.3, perform clustering by using the average linkage

algorithm. Create dendrograms and compare them to the dendrograms shown

in Figure 10.16.

10.11. For the TileData in theCIELABcolor space (for both illumination conditions)

as used in Example 10.3, perform clustering by using theWardmethod. Create

dendrograms and compare them to the dendrograms shown in Figure 10.16.

10.12. Replicate the result of Example 10.6, including initialization of the K-means

algorithm from the clustering of the other algorithms and also calculating the

resulting error sums of squares ESS.

10.13. Use the Ward method to cluster the 196 pixels from Example 10.5. Create a

dendrogram and then consider two cases:

a. Find three clusters based on the dendrogram and create a plot analogous to

Figure 10.21.

b. Find five clusters based on the dendrogram and create a plot analogous to

Figure 10.22.
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A P P E N D I X A

Probability Distributions

A.1 INTRODUCTION

The purpose of this appendix is to define the most often used probability distributions

and present some of their properties. We provide the probability mass function or a

density functionforeachdistribution,butacumulativedistributionfunction isprovided

onlywhen it has a simple form.Otherwise it needs to be calculated as an integral of the

density function, that is, F xð Þ ¼ Ð x�? f uð Þdu for the continuous distribution or a

summationforadiscretedistribution.Thevaluesofthecumulativedistributionfunction

for thenormaldistributionare tabulated inSectionA.18.Wealsoshowthenotationused

throughout this book for the upper percentiles of someof these distributions. Theupper

percentiles for some distributions are tabulated in Section A.18.

More details about these and some other distributions can be found in Forbes et al.

(2010), Balakrishnan and Nevzorov (2003), and Johnson et al. (1994, 1995).

A.2 BETA DISTRIBUTION

The distribution of X is called the standard beta distribution with parameters a40

and b40 if its probability density function is given by

f xð Þ ¼ 1

B a; bð Þ x
a�1 1� xð Þb�1

for 0 � x � 1 ðA:1Þ

and zero otherwise, where B a; bð Þ is the beta function defined as follows:

B a; bð Þ ¼
ð1
0

ua�1 1� uð Þb�1
du: ðA:2Þ

Statistics for Imaging, Optics, and Photonics, Peter Bajorski.
� 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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The kth moment of X (about zero) is given by

E Xk
� � ¼Yk�1

i¼0

aþ i

aþ bþ i
¼ B aþ k; bð Þ

B a; bð Þ : ðA:3Þ

We also have E Xð Þ ¼ a= aþ bð Þ and Var Xð Þ ¼ ab aþ bð Þ�2 aþ bþ 1ð Þ�1
. Three

examples of beta density functions are shown in Figure A.1.

A random variable Y following a general beta distribution on an interval a; b½ � can
be defined as Y ¼ aþ b� að ÞX, that is, its probability density function is given by

f xð Þ ¼ 1

B a; bð Þ y� að Þa�1
b� yð Þb�1

for a � y � b: ðA:4Þ

When b ¼ 1, the distribution is sometimes called a power function distribution.

A.3 BINOMIAL DISTRIBUTION

Let us say, we observe a sequence of n independent trials with the outcomes of the

trials represented by random variables Xi; i ¼ 1; . . . ; n, such that P Xi ¼ 1ð Þ ¼ p and

P Xi ¼ 0ð Þ ¼ 1� p, where 0 � p � 1. The outcome Xi ¼ 1 can be called a success

and Xi ¼ 0 can be called a failure. Such trials are called Bernoulli trials. The number

of successes in n trials, equal to X ¼Pn
i¼1 Xi, follows the binomial distribution with

parameters 0 � p � 1 and n � 1. The probability mass function of the binomial

distribution is given by

b k; n; pð Þ ¼
n

k

 !
pk 1� pð Þn�k

for 0 � k � n ðA:5Þ

and zero otherwise, where n
k
¼ n!

k! n�kð Þ! is the number of combinations of size k from

an n-element set. We have E Xð Þ ¼ np and Var Xð Þ ¼ np 1� pð Þ. When n ¼ 1,

the distribution is called a Bernoulli distribution.

Figure A.1 Three examples of density functions of the standard beta distributions.
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A.4 CAUCHY DISTRIBUTION

The distribution of X is called the standard Cauchy distribution if its probability

density function is given by

f xð Þ ¼ 1

p 1þ x2ð Þ for x 2 R: ðA:6Þ

A random variable Y following a general Cauchy distribution can be defined as

Y ¼ yþ bX, where y is the location parameter andb40 is the scale parameter, that is,

its probability density function is given by

f yð Þ ¼ pbð Þ�1
1þ y� y

b

� �2
" #�1

for y 2 R ðA:7Þ

and its cumulative distribution function is

F yð Þ ¼ 1

2
þ p�1 arctan

y� y
b

� �
for y 2 R: ðA:8Þ

The Cauchy distribution has no finite moments. For example, the mean E Xð Þ does not
exist. The Cauchy distribution is symmetric around its mode y.

The Cauchy distribution has the following interpretation. Let us say, photons are

sent from point A shown in Figure A.2 in random directions on the plane (uniformly

with respect to the angle). Some of those photons reach the horizontal line L drawn in

Figure A.2. Assume that (a) the photon reaches the line at a random point X, (b) the

distance between A and the line is equal to b, and (c) the point on the line L that is

closest to A has the coordinate y. The angle g is between the line connecting A with y
and the line of the photon (the angle is negative when X5y). Note that

tan gð Þ ¼ X � yð Þ=b. We can assume that g is random, and it follows the uniform

distribution on the interval �p=2; p=2ð Þ since for other angles the photon will not

reach the line. The random variable X has the Cauchy distribution with parameters y
and b.

Figure A.2 A photon is sent from point A and it hits the line at point X.
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The standard Cauchy distribution is the same as the t-distribution with one degree

of freedom (see Section A.15). Figure A.3 shows the probability density function of

the standard Cauchy distribution (solid line) in comparison to the normal distribution

with s ¼ 1=z0:25 ¼ 1:4826, where z0:25 is the 25th upper percentile from the standard

normal distribution. The two distributions have the same first and third quartiles equal

to �1. The Cauchy distribution is more peaked than the normal distribution in the

center, and it has heavier tails. The kurtosis cannot be calculated because themoments

are not finite.

A.5 CHI-SQUARED DISTRIBUTION

Consider n independent randomvariablesXi; i ¼ 1; . . . ; n, each following the standard
normal distribution. Define their sumof squares asX ¼Pn

i¼1 X
2
i . The distribution ofX

is called the chi-squared distributionwith parameter n called the number of degrees of

freedom. Its probability density function is given by

f xð Þ ¼ 1

2n=2G n=2ð Þ x
n�2ð Þ=2 exp �x=2ð Þ for x � 0 ðA:9Þ

and zero otherwise, where G �ð Þ is the gamma function defined by

G að Þ ¼
ð?
0

ta�1e�t dt for a40 ðA:10Þ

and G nð Þ ¼ n� 1ð Þ! when n is a positive integer. We also have G 0:5ð Þ ¼ ffiffiffi
p

p
. Many

statistics follow the chi-squared distribution either exactly or approximately, due to the

earlier mentioned property of being the sum of squares of the normally distributed

variables. This interpretation requires an integer n, but the distribution is defined for

any n40.

Figure A.3 The probability density function of the standard Cauchy distribution (solid line) in

comparison to the normal distribution with s ¼ 1=z0:25 ¼ 1:4826, where z0:25 is the 25th upper percentile

from the standard normal distribution.
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The chi-squared distribution is a special case of the gamma distribution with the

shape parameter a ¼ n=2 and the scale parameter b ¼ 1. The kth moment of X (about

zero) is given by

E Xk
� � ¼ 2k

Yk�1

i¼0

i þ n
2

� �
¼ 2k

G k þ n=2ð Þ
G n=2ð Þ : ðA:11Þ

We also have E Xð Þ ¼ n and Var Xð Þ ¼ 2n. The coefficient of skewness is

g1 ¼ 23=2n�1=2 and kurtosis is Kurt Xð Þ ¼ 3þ 12=n. Three examples of chi-squared

density functions are shown in Figure A.4. Based on the central limit theorem (see

Section 2.7), the chi-squared distribution with large n (degrees of freedom) can be

approximated by the normal distribution.

The upper 100að Þth percentile from the chi-squared distribution with n degrees of
freedom is denoted by w2n að Þ and is tabulated in Section A.18.

A.6 ERLANG DISTRIBUTION

Consider k independent random variables Xi; i ¼ 1; . . . ; k, each following the

exponential distribution with the same scale parameter b40. Define their sum as

X ¼Pk
i¼1 Xi. The distribution of X is called the Erlang distribution with the shape

parameter k � 1 and the scale parameter b40. Its probability density function is

given by

f xð Þ ¼ x=bð Þk�1

b k � 1ð Þ! exp �x=bð Þ for x � 0 ðA:12Þ

and zero otherwise. The cumulative distribution function is given by

F xð Þ ¼ 1� exp �x=bð Þ
Xk�1

i¼0

x=bð Þi
i!

for x � 0 ðA:13Þ

and zero otherwise. The Erlang distribution is a special case of the gamma distribu-

tion, and some of its properties can be found in Section A.10. For the scale parameter

FigureA.4 Three examples of chi-squared density functions for various numbers of degrees of freedom n.
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b ¼ 1, the Erlang distribution is the chi-squared distribution with 2k number of

degrees of freedom. Hence, the density functions shown in Figure A.4 also represent

the densities of the Erlang distributions with k ¼ 2; 5; and 10, respectively.

A.7 EXPONENTIAL DISTRIBUTION

Consider independent events happening randomly over time at a constant average rate

as discussed in Section A.14 in the context of the Poisson distribution. In this context,

the length of time between events follows the exponential distribution. The distribu-

tion of a random variable X is called the exponential distribution with the scale

parameter b40 if its probability density function is given by

f xð Þ ¼ 1

b
exp �x=bð Þ for x � 0 ðA:14Þ

and zero otherwise (Figure A.5). The cumulative distribution function is given by

F xð Þ ¼ 1� exp �x=bð Þ for x � 0 ðA:15Þ

and zero otherwise. The exponential distribution is sometimes parameterized by the

rate parameter l ¼ 1=b. This is the only continuous distribution having the property
of “lack of memory” that can be described as follows. If the waiting time between

events is modeled by the exponential distribution, and we arewaiting for an event that

has not happened yet, the remaining waiting time follows the same exponential

distribution. That is, our waiting time so far does not change the chances of the event

happening, no matter how long we are already waiting.

The kth moment of X about zero is given by E Xk
� � ¼ bkk!. We also have

E Xð Þ ¼ b and Var Xð Þ ¼ b2. The coefficient of skewness is g1 ¼ 2 and kurtosis is

Kurt Xð Þ ¼ 9. The exponential distribution is a special case of the gamma distribu-

tion discussed in Section A.10.

Figure A.5 Three examples of exponential density functions for various values of the scale parameter b.
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A.8 EXPONENTIAL POWER DISTRIBUTION

The distribution of X is called the exponential power distribution (also called general

error distribution) with the location parameter m, the scale parameter b40, and the

shape parameter a40 if its probability density function is given by

f xð Þ ¼ a
2b G 1=að Þ exp � x� mj j

b

� �a	 

for x 2 R; ðA:16Þ

where G �ð Þ is the gamma function defined in equation (A.10). The distribution is

symmetric with respect to the location parameter m, which is also the distribution

mean E Xð Þ ¼ m. The kth moment of X about the mean for even k is given by

E X � mð Þk
h i

¼ bk
G k þ 1ð Þ=að Þ

G 1=að Þ : ðA:17Þ

In particular, we have Var Xð Þ ¼ b2G 3=að Þ=G 1=að Þ. For k odd, we have

E X � mð Þk
h i

¼ 0 from the symmetry about m.

Table A.1 shows some special cases of the exponential power distribution.

When the shape parameter a is less than or equal to 1, the exponential power

density function has a peak at x ¼ 0 and is not differentiable at that point. Figure A.6

shows three examples of such densities. The case of a ¼ 1 is the Laplace distribution.

When a41, the density has a derivative equal to zero at x ¼ 0. FigureA.7 shows three

examples of such density functions. The case of a ¼ 2 is the normal distribution. In

both figures, the scale parameter b for each distribution is chosen so that the resulting

Table A.1 Some Special Cases of the Exponential Power Distribution

Distribution Shape Parameter a

Normal a ¼ 2

Laplace a ¼ 1

Uniform a!?

Figure A.6 Three examples of the exponential power density functions with the shape parameter a � 1.

The scale parameter b for each distribution is chosen so that the resulting variance is equal to 1 in each case.
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variance is equal to 1 in each case. A comparison of the Laplace distribution to the

normal distribution can be seen in Figure A.10.

A.9 F-DISTRIBUTION

Consider two independent random variables V and W following the chi-squared

distributions with n and m degrees of freedom, respectively. The random variable

X ¼ V=n

W=m
ðA:18Þ

follows the F-distribution with n numerator degrees of freedom and m denominator

degrees of freedom. This is a distribution of many statistics, where estimates of two

different variances are being compared, each having a distribution proportional to the

chi-squared distribution. The kth moment of X about the origin is finite only for

k5m=2 and is given by

E Xk
� � ¼ m

n

� �k G n=2þ kð ÞG m=2� kð Þ
G n=2ð ÞG m=2ð Þ ; ðA:19Þ

where G �ð Þ is the gamma function defined in equation (A.10). In particular, we have

E Xð Þ ¼ m= m� 2ð Þ for m42 and

Var Xð Þ ¼ 2m2 nþm� 2ð Þ
n m� 2ð Þ2 m� 4ð Þ for m44: ðA:20Þ

The mode of the F-distribution is given by

m n� 2ð Þ
n mþ 2ð Þ for n42; ðA:21Þ

which is always less than 1, but is close to 1 for large degrees of freedom n and m.

Figure A.7 Three examples of the exponential power density functions with the shape parameter a41.

The scale parameter b for each distribution is chosen so that the resulting variance is equal to 1 in each case.
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Figure A.8 shows three densities of the F-distributions with various numerator

degrees of freedom n shown in the graph and the fixedm ¼ 30 denominator degrees of

freedom. The 100að Þth upper percentile from the F-distribution with n andm degrees

of freedom is denoted by Fn;m að Þ and is tabulated in Section A.18.

A.10 GAMMA DISTRIBUTION

The distribution of X is called the gamma distributionwith the shape parameter a40

and the scale parameter b40 if its probability density function is given by

f xð Þ ¼ 1

baG að Þ x
a�1 exp �x=bð Þ for x � 0 ðA:22Þ

and zero otherwise, where the gamma function G að Þ is defined in (A.10). Table A.2

shows some distributions as special cases of the gamma distribution.

The kth moment of X about zero is given by

E Xk
� � ¼ bk

G aþ kð Þ
G að Þ : ðA:23Þ

We also have E Xð Þ ¼ ab and Var Xð Þ ¼ ab2. The coefficient of skewness is

g1 ¼ 2a�1=2 and kurtosis is Kurt Xð Þ ¼ 3þ 6=a.
Inorder tounderstand the shapesofvariousgammadistributions,wecanassume the

scale parameter b ¼ 1. For integer a, the gamma distribution is the same as the Erlang

distribution,which in turn is the sameas thechi-squareddistribution (sinceb ¼ 1)with

even number of degrees of freedom n. The shapes of such distributions are shown in
Figure A.4. For non-integer values of a41, the shapes are similar to those shown in

Figure A.8 Three densities of the F-distributions with various numerator degrees of freedom n and the

fixed m ¼ 30 denominator degrees of freedom.

Table A.2 Some Special Cases of the Gamma Distribution

Distribution Shape Parameter a Scale Parameter b

Chi-squared a ¼ n=2 b ¼ 1

Erlang Any positive integer Any b
Exponential a ¼ 1 Any b
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Figure A.4. Note that for any a41, the density at the point zero is equal to zero, that is,

f 0ð Þ ¼ 0. For a ¼ 1, that is, the exponential distribution, we have f 0ð Þ ¼ 1 (or

f 0ð Þ ¼ 1=b for an arbitrary b40), and for a51, we have limx! 0þ f xð Þ ¼ ?.

Figure A.9 shows three examples of gamma density functions for a � 1.

Marchetti et al. (2002) discuss tests for testing the gamma distribution.

A.11 GEOMETRIC DISTRIBUTION

Let us say,we observe a sequence of Bernoulli trials (see SectionA.3) and denote byX

the number of failures before the first success. The random variable X follows the

geometric distribution, which has the probability mass function given by

PðX ¼ kÞ ¼ p 1� pð Þk for integer k � 0: ðA:24Þ

The cumulative distribution function is given by

F kð Þ ¼ PðX � kÞ ¼ 1� 1� pð Þkþ1
for integer k � 0: ðA:25Þ

Themean is equal toE Xð Þ ¼ 1� pð Þ=p, and the variance is Var Xð Þ ¼ 1� pð Þ=p2.
The geometric distribution is the only discrete distribution having the property of

“lack of memory” (the exponential distribution is the only continuous distribution

with this property). That is, when we start our waiting time for a success (counted in

the number of failures) at a given time, the distribution of that waiting time is always

the same, independent of the events that happened up to that point.

A.12 LAPLACE DISTRIBUTION

The distribution of X is called the Laplace distribution (or double exponential

distribution) with the location parameter m and the scale parameter b40 if its

probability density function is given by

f xð Þ ¼ 1

2b
exp � x� mj j

b

	 

for x 2 R; ðA:26Þ

Figure A.9 Three examples of gamma density functions for a � 1 with the scale parameter b ¼ 1.
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whereG �ð Þ is the gamma function defined in equation (A.10). This is a special case of

the exponential power distribution (see Section A.8). The distribution is symmetric

with respect to the location parameter m, which is also the distribution mean

E Xð Þ ¼ m. The kth moment of X about the mean for even k is equal to

E X � mð Þk
h i

¼ k!bk. In particular, we have Var Xð Þ ¼ 2b2. For k odd, we have

E X � mð Þk
h i

¼ 0 from the symmetry about m. FigureA.10 shows the density function

of the Laplace distribution with b ¼ 1=
ffiffiffi
2

p
(so that its variance is 1) in comparison to

the standard normal distribution.

A.13 NORMAL (GAUSSIAN) DISTRIBUTION

The distribution ofX is called the normal distribution (orGaussian distribution) with

the location parameter m and the scale parameter s40 if its probability density

function is given by

f xð Þ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

x� m
s

� �2	 

for x 2 R: ðA:27Þ

The important role of the normal distribution stems mainly from the central limit

theorem (see Section 2.7). The normal distribution is symmetric with respect to the

location parameter m, which is also the distribution mean E Xð Þ ¼ m. The kth moment

mk of X about the mean for even k is given by

mk ¼ E X � mð Þk
h i

¼ sk k � 1ð Þ k � 3ð Þ � � � 3 � 1; ðA:28Þ

which gives a simple recursive formula mk ¼ s2 k � 1ð Þmk�2 for even k � 4 and

m2 ¼ Var Xð Þ ¼ s2. For k odd, we haveE X � mð Þk
h i

¼ 0 from the symmetry about m.

Figure A.10 The density function of the Laplace distribution with b ¼ 1=
ffiffiffi
2

p
(so that its variance is 1) in

comparison to the standard normal distribution.
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The normal distribution with m ¼ 0 and s ¼ 1 is called the standard normal

distribution. Its probability density function is denoted by j �ð Þ, that is,

j xð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp � x2

2

� �
for x 2 R; ðA:29Þ

and its shape is shown in Figure A.11. The cumulative distribution function of the

standard normal distribution is denoted by F �ð Þ, and it needs to be calculated as an

integral of j �ð Þ. A related function is the error function defined as

erf xð Þ ¼ 2ffiffiffi
p

p
ðx
0

exp �t2
� �

dt ¼ 2F x
ffiffiffi
2

p� �
� 1: ðA:30Þ

We can also write

F xð Þ ¼ 1

2
þ 1

2
erf

xffiffiffi
2

p
� �

: ðA:31Þ

Some values of F xð Þ are tabulated for x � 0 in Table A.3 in Section A.18. For

negative arguments, one can use the formulaF �xð Þ ¼ 1� F xð Þ. The upper 100að Þth
percentile of the standard normal distribution is denoted by z að Þ, and its value can be
read from Table A.3.

A.14 POISSON DISTRIBUTION

Consider independent events happening randomly over time at a constant average

rate. In medical imaging, quanta, such as X-rays, electrons, or light photons, arrive

randomly at a given rate (everything else being constant). In such processes, the

number X of events (or arriving quanta) happening in a fixed time interval follows

Figure A.11 The shape of the normal density function shown in the standard deviation units. One-, two-,

and three-sigma rules are shown by highlighting areas under the normal density curve.
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the Poisson distribution with the parameter l40 (under some mild assumptions).

Hence, the number of X-rays recorded in a given image pixel follows the

Poisson distribution. This is a discrete distribution with the probability mass function

defined by

P X ¼ kð Þ ¼ lk

k!
e�l for any integer k � 0: ðA:32Þ

The mean E Xð Þ is equal to l, which is the average rate of the events. We also have

thevarianceVar Xð Þ ¼ l, which tells us how thevariability changeswith the change in

magnitude. For example, the relative noise in an X-ray pixel can be measured by the

coefficient of variation (COV) calculated as

COV ¼ StDev Xð Þ
E Xð Þ ¼

ffiffiffi
l

p

l
¼ 1ffiffiffi

l
p ; ðA:33Þ

which means that the relative noise gets smaller for a stronger signal with larger l.
This can also be expressed by the signal-to-noise ratio (SNR) calculated as4

SNR ¼ E Xð Þ
StDev Xð Þ ¼

lffiffiffi
l

p ¼
ffiffiffi
l

p
; ðA:34Þ

which gets larger for a stronger signal. For large l, the Poisson distribution can be

approximated by the normal distribution.

A.15 t (STUDENT’S) DISTRIBUTION

Consider two independent random variables Y andW following the standard normal

distribution and the chi-squared distribution with n degrees of freedom, respectively.

The random variable

X ¼ Yffiffiffiffiffiffiffiffiffi
W=n

p ðA:35Þ

follows the t-distribution with n degrees of freedom. This is a distribution of many

statistics, where a normally distributed random variable is standardized by an

estimator of the standard deviation, which in turn has a distribution proportional to

the square root of the chi-squared distribution. The density function of the t-

distribution is given by

f xð Þ ¼ G nþ 1ð Þ=2ð Þffiffiffiffiffi
pn

p
G n=2ð Þ 1þ x2

n

� �� nþ1ð Þ=2
for x 2 R; ðA:36Þ

where G �ð Þ is the gamma function defined in equation (A.10). The shapes of the

density functions with various degrees of freedom are shown in Figure A.12. The t
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density with n ¼ 100 is fairly close to the standard normal density function, and the

two would overlap if plotted in Figure A.12. The difference between the two

distributions can be assessed based on Figure 3.6.

The t-distribution is symmetric with respect to zero, which is also the distribution

mean E Xð Þ ¼ 0 for n41. For k even, the kth moment mk of X about zero is infinite for

k � n, and for k5n, it is given by

mk ¼ E Xk
� � ¼ k � 1ð Þ k � 3ð Þ � � � 3 � 1

n� 2ð Þ n� 4ð Þ � � � n� kð Þ n
k=2; ðA:37Þ

which gives a recursive formula mk ¼ n k � 1ð Þmk�2= n� kð Þ for even k � 4

such that k5n. We also have m2 ¼ Var Xð Þ ¼ n= n� 2ð Þ for n42. For k odd,

we have E Xk
� � ¼ 0 when k5n. The upper 100að Þth percentile of the

t-distribution with n degrees of freedom is denoted by tn að Þ and is tabulated

in Section A.18.

The square X2 of a t distributed random variable follows an F-distribution with

1 and n degrees of freedom as can be seen by comparing equations (A.35)

and (A.18).

A.16 UNIFORM (RECTANGULAR) CONTINUOUS DISTRIBUTION

The distribution ofX is called the uniform (or rectangular) distribution on the interval

a; b½ � if its probability density function is constant on that interval, that is,

f xð Þ ¼ 1

b� a
for a � x � b ðA:38Þ

and zero otherwise. The cumulative distribution function is given by

F xð Þ ¼ x� að Þ= b� að Þ for a � x � b. According to the uniform distribution, each

value in the interval a; b½ � is equally likely to occur. The distribution is symmetric

with respect to the mean E Xð Þ ¼ aþ bð Þ=2. The kth central moment of X is equal

to E X � E Xð Þð Þk
h i

¼ b� að Þ=2½ �k= k þ 1ð Þ for even k. In particular, we have

Figure A.12 The t-distribution density functions with various n degrees of freedom.
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Var Xð Þ ¼ b� að Þ2=12. For k odd, we have E X � E Xð Þð Þk
h i

¼ 0 from the symmetry

about E Xð Þ.

A.17 WEIBULL DISTRIBUTION

The distribution of X is called the two-parameter Weibull distributionwith the shape

parameter a40 and the scale parameter b40 if its probability density function is

given by

f xð Þ ¼ axa�1

ba
exp � x

b

� �a	 

for x � 0 ðA:39Þ

and zero otherwise. Its cumulative distribution function is

F xð Þ ¼ 1� exp � x

b

� �a	 

for x � 0: ðA:40Þ

The kthmoment ofX about zero is equal toE Xk
� � ¼ bkG 1þ k=að Þ½ � for all integer

k. In particular, we have E Xð Þ ¼ b �G 1þ 1=að Þ½ �, and the variance can be calculated
as

Var Xð Þ ¼ b2 G 1þ 2

a

� �
� G 1þ 1

a

� �	 
2( )
: ðA:41Þ

A power transformation Y ¼ X=bð Þa generates Y following the standard exponen-

tial distribution. Consequently, the Weibull distribution with the shape parameter

a ¼ 1 is the exponential distribution.

Note that for any a41, the density at the point zero is equal to zero, that is,

f 0ð Þ ¼ 0. For a ¼ 1, that is, the exponential distribution, we have f 0ð Þ ¼ 1=b, and for

Figure A.13 Three Weibull density functions for various values of a and the scale parameter b ¼ 1.
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a51, we have limx! 0þ f xð Þ ¼ ?. Figure A.13 shows three examples of Weibull

density functions for various values of a and the scale parameter b ¼ 1.

A.18 TABLES OF DISTRIBUTIONS

Here we provide tables for the following distributions:

. Normal distribution (Table A.3).

. Chi-squared distribution (Table A.4).

. t-distribution (Table A.5).

. F-distribution (Table A.6).

Table A.3 Areas Under the Standard Normal Curve, That is, Values of the Standard

Normal Cumulative Distribution Function Given by U zð Þ ¼ Ð z�? 1=
ffiffiffiffiffiffi
2p

p� �
exp �t2=2
� �

dt

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
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Table A.4 The Upper 100að Þth Percentiles v2n að Þ from the Chi-Squared Distribution

with m Degrees of Freedom

d.f. a Values
n

0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005

1 0.0000 0.0002 0.0010 0.0039 0.016 2.706 3.841 5.024 6.635 7.879

2 0.0100 0.0201 0.0506 0.1026 0.211 4.605 5.991 7.378 9.210 10.597

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278

8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.95

9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 26.76

12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32

15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00

21 8.03 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93 41.40

22 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80

23 9.26 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64 44.18

24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56

25 10.52 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31 46.93

30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77

50 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49

60 35.53 37.48 40.48 43.19 46.46 74.40 79.08 83.30 88.38 91.95

70 43.28 45.44 48.76 51.74 55.33 85.53 90.53 95.02 100.43 104.21

80 51.17 53.54 57.15 60.39 64.28 96.58 101.88 106.63 112.33 116.32

90 59.20 61.75 65.65 69.13 73.29 107.57 113.15 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 82.36 118.50 124.34 129.56 135.81 140.17
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Table A.5 The Upper 100að Þth Percentiles tn að Þ from the t-Distribution with m Degrees
of Freedom

d.f. a Values
n

0.250 0.100 0.050 0.025 0.010 0.00833 0.00625 0.005 0.0025

1 1.000 3.078 6.314 12.706 31.821 38.190 50.923 63.657 127.321

2 0.816 1.886 2.920 4.303 6.965 7.649 8.860 9.925 14.089

3 0.765 1.638 2.353 3.182 4.541 4.857 5.392 5.841 7.453

4 0.741 1.533 2.132 2.776 3.747 3.961 4.315 4.604 5.598

5 0.727 1.476 2.015 2.571 3.365 3.534 3.810 4.032 4.773

6 0.718 1.440 1.943 2.447 3.143 3.287 3.521 3.707 4.317

7 0.711 1.415 1.895 2.365 2.998 3.128 3.335 3.499 4.029

8 0.706 1.397 1.860 2.306 2.896 3.016 3.206 3.355 3.833

9 0.703 1.383 1.833 2.262 2.821 2.933 3.111 3.250 3.690

10 0.700 1.372 1.812 2.228 2.764 2.870 3.038 3.169 3.581

11 0.697 1.363 1.796 2.201 2.718 2.820 2.981 3.106 3.497

12 0.695 1.356 1.782 2.179 2.681 2.779 2.934 3.055 3.428

13 0.694 1.350 1.771 2.160 2.650 2.746 2.896 3.012 3.372

14 0.692 1.345 1.761 2.145 2.624 2.718 2.864 2.977 3.326

15 0.691 1.341 1.753 2.131 2.602 2.694 2.837 2.947 3.286

16 0.690 1.337 1.746 2.120 2.583 2.673 2.813 2.921 3.252

17 0.689 1.333 1.740 2.110 2.567 2.655 2.793 2.898 3.222

18 0.688 1.330 1.734 2.101 2.552 2.639 2.775 2.878 3.197

19 0.688 1.328 1.729 2.093 2.539 2.625 2.759 2.861 3.174

20 0.687 1.325 1.725 2.086 2.528 2.613 2.744 2.845 3.153

21 0.686 1.323 1.721 2.080 2.518 2.601 2.732 2.831 3.135

22 0.686 1.321 1.717 2.074 2.508 2.591 2.720 2.819 3.119

23 0.685 1.319 1.714 2.069 2.500 2.582 2.710 2.807 3.104

24 0.685 1.318 1.711 2.064 2.492 2.574 2.700 2.797 3.091

25 0.684 1.316 1.708 2.060 2.485 2.566 2.692 2.787 3.078

26 0.684 1.315 1.706 2.056 2.479 2.559 2.684 2.779 3.067

27 0.684 1.314 1.703 2.052 2.473 2.552 2.676 2.771 3.057

28 0.683 1.313 1.701 2.048 2.467 2.546 2.669 2.763 3.047

29 0.683 1.311 1.699 2.045 2.462 2.541 2.663 2.756 3.038

30 0.683 1.310 1.697 2.042 2.457 2.536 2.657 2.750 3.030

40 0.681 1.303 1.684 2.021 2.423 2.499 2.616 2.704 2.971

60 0.679 1.296 1.671 2.000 2.390 2.463 2.575 2.660 2.915

120 0.677 1.289 1.658 1.980 2.358 2.428 2.536 2.617 2.860

? 0.674 1.282 1.645 1.960 2.326 2.394 2.498 2.576 2.813
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A P P E N D I X B

Data Sets

B.1 INTRODUCTION

This appendix provides some background information and descriptions of data sets

used throughout the book. The data set text files are available at

http://people.rit.edu/�pxbeqa/ImagingStat

where more details about data format are available.

B.2 PRINTING DATA

Printer manufacturers want to ensure high consistency of printing by their devices.

There are various types of calibrations and tests that can be done on a printer. One of

them is to print a page of random color patches such as those shown in Figure 1.3. The

pattern of patches is chosen randomly, but only once, that is, the same pattern is

typically used by a given manufacturer. The patches are in four basic colors of the

CMYK color model used in printing: cyan, magenta, yellow, and black. In a given

color, there are several gradations, from themaximumamount of ink to less ink,where

the patch has a lighter color if printed on awhite background. For a given gradation of

color, there are several patches across the page printed in that color gradation (exactly

eight patches for the test prints used here).

Printing data used here are a subset of a larger data set collected in an experiment,

where a printer was calibrated several times and pages were printed between

calibrations. The printer was also kept idle at various times. For the subset used

here, three pages were printed immediately after the printer calibration. The printer

was then idle for 14 h, and a set of 30 pages was printed, of which only 18 pages were

utilized. This gives us a total of 21 pages, which were then measured by a scanning

spectrophotometer. We use only the measurements of the eight cyan patches per page
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at maximum color gradation. For each patch, the reflectances were recorded in

31 spectral bands in the visible spectrum. The bands are in the spectral range from 400

to 700 nm at 10 nm increments. The reflectance is the power of the light reflected by a

surface divided by the power of the light incident upon the surface. The 31 reflectances

define a reflectance spectrum, or a spectral reflectance curve. Visual density is a

measure of print quality that is calculated from the reflectance spectrum.

Printing Spectra data set consists of 31 spectral reflectances for the eight patches

for each of the 21 pages. For each patch, visual density was calculated and the values

are stored as the Printing Density data set consisting of eight values for the eight cyan

patches for each of the 21 pages.

B.3 FISH IMAGE DATA

Wold et al. (2006) describe amultispectral imaging near-infrared tranflectance system

developed for online determination of crude chemical composition of highly hetero-

geneous food and other biomaterials. The transflection measures the light penetrating

the sample as opposed to reflectance that measures only the light reflected from the

sample surface. The transflection is then well suited for nonhomogeneous materials

that are not well characterized by simply observing their surface. The near-infrared

tranflectance system was used for moisture determination of dried salted coalfish

(bacalao). One of themultispectral images used inWold et al. (2006) is used here. This

is an image of fish on a conveyer belt. There are 45 pixels along the width of the

conveyer belt and 1194 pixels along its length, for a total of 53,730 pixels. For each

pixel, we have the transflected light intensity values for 15 near-infrared spectral

bands. The values are stored in Fish Image data set. An average of those 15 spectral

values was calculated for each image pixel and plotted in Figure 2.6.

B.4 EYE TRACKING DATA

Eye tracking devices are used to examine people’s eye movements as people perform

certain tasks (see Pelz et al. (2000)). This information is used in research on the human

visual system, in psychology, in product design, and inmanyother applications. In eye

tracking experiments, a lot of data are collected. In order to reduce the amount of data,

fixation periods are identified when a shopper fixes her gaze at one spot. In a data

collection effort described in Kinsman et al. (2010), 760 fixation images were

identified. Here we use only one such image shown in Figure 1.1. The cross in the

image shows the spot the shopper is looking at. This 128 by 128 pixel image was

recorded with a camcorder in the RGB (red, green, and blue) channels. For each pixel,

the intensity values (ranging from0 to 1) for the three colors are given. Thismeans that

each pixel is represented by a mixture of the three colors. The Eye Tracking data set

gives the RGB values for all 16,384 pixels from the image shown in Figure 1.1.

In Chapter 10, a subset of the EyeTracking image is used. The subset is given in the

file “Eye_Tracking_Subset.txt” with 196 rows representing the pixels chosen at
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random. The first column gives the pixel number within the whole image of 16,384

pixels. The next three columns are the intensity values in the RGB (red, green, and

blue) channels, respectively.

B.5 LANDSAT DATA

TheLandsat Program is a series of Earth-observing satellitemissions jointlymanaged

by NASA and the U.S. Geological Survey since 1972. Due to the long-term nature of

the program, there is a significant interest in the long-term calibration of the results, so

that measurements taken at different times can be meaningfully compared. One

approach to this calibration problem is discussed by Anderson (2010). As part of the

approach, Landsat measurements of a fixed desert site were collected. The desert site

was confirmed to be sufficiently stable over time, so that the changes inmeasurements

can be attributed to a drift of themeasuring instrument, except for some factors such as

the Sun position in the sky. The Landsat data set consists of 76 rows for observations

taken at different times. There are eight variables given in columns. The first three

columns are the day of the year, the solar elevation angle, and the solar azimuth angle.

The next five columns are spectral reflectances in Bands 1–4 and then Band 7.

B.6 OPTICAL FIBER EXPERIMENTS

Two experiments were performed in order to find out how much power is lost when

sending laser light signals through optical fiber. In both experiments, a laser light

signalwas sent fromone end of optical fiber, and the output powerwasmeasured at the

other end. The input power and the output power were recorded in mW.

In the first experiment, five pieces of 100m length of optical fiber were tested, as

described in Example 2.1. The resulting data are shown in Table 2.1 and are available

as the Fibers Experiment 1 data. In the second experiment, one piece of 100m length

of optical fiber was tested at several levels of input power. The resulting data are

available as the Optical Fiber Experiment 2 data given in the order of test runs.

B.7 SPECTROMETER DATA

An experiment was designed in order to investigate a potential drift or trend in

spectrometer readings over time. Three tiles were chosen for the experiment—a

white, a gray, and a black tile coded as 1, 2, and 3, respectively. Two spectrometers of

the same type were chosen and were coded as 1 and 2, respectively. Two operators

performed the measurements and were also coded. The first three columns in

Spectrometer Data show the operator, spectrometer, and tile numbers for the 24

experimental runs (given in rows in time order) performed in the experiment. The

subsequent 31 columns give the reflectancevalues in the 31 spectral bands from400 to

700 nm at 10 nm increments.
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B.8 TILES DATA

Spectral reflectance of 12 tiles in the BCRA II Series Calibration tiles was measured

using anX-Rite Series 500 Spectrodensitometer. Each row in TilesData consists of 31

values of reflectancemeasured in 31 spectral bands over the spectral range from400 to

700 nm at 10 nm increments. Each of the 12 tileswasmeasured four times for a total of

48multivariate observations. Table 5.1 shows a subset of thewhole data set. Each row

represents an observation, with the first four rows representing the four repeated

measurements of the first tile, followed by four measurements of the second tile, and

so on. Each column represents one spectral band. The colors of the 12 tiles are shown

in Table 5.2 and are given in the file Tile_Color_Names.txt.

B.9 PRINT-ON-DEMAND DATA

Phillips et al. (2010) describe an experiment to evaluate quality of print-on-demand

books provided by various online vendors. Sixteen observers rated overall image

quality of six print-on-demand books on a scale from 1 to 5 (with ratings being 1 ¼
very low satisfaction, 5 ¼ very high satisfaction). Those ratings are given as the first

six columns in the Print-on-Demand Data. The observers were also asked how much

they would be willing to pay for this quality of book as a memento of the observer’s

vacation. For each observer, the six prices in dollars for the six books are given in

Columns 7–12. The final 13th column is the age of the observer.

B.10 MARKER DATA

In biomedical applications, radiopaquemarkers are used to observemotion of internal

organ such as a heart. The marker is implanted into the body and then observed using

X-rays. Here, we consider a simplified scenario of an implanted radiopaque marker,

which is monitored by an orthogonal projection on two X-ray screens. Figure 7.1a

shows a simplified two-dimensional scenario, where the X-ray screens are shown

along the normalized vectors v1 and v2, and the 150 dots represent measurements

collected over a 5-minute interval (once every 2 seconds). Marker Data contain the

physical standard coordinates f1 and f2 of all 150 points. The unit length vectors v1 and

v2 are given as v1 ¼ 10; 1½ �= ffiffiffiffiffiffiffiffi
101

p
and v2 ¼ 1; 5½ �= ffiffiffiffiffi

26
p

.

B.11 AVIRIS DATA

A general introduction to remote sensing data can be found in Example 1.3. Here we

introduce data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),

which is a sensor collecting spectral radiance in the range of wavelengths from 400 to

2500 nm. It has been flown on various aircraft platforms, and many images of the

Earth’s surface are available. Figure 7.10 shows a 100 by 100 pixel AVIRIS image of
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an urban area in Rochester, NY, near the Lake Ontario shoreline. The scene has a

wide range of natural and man-made material including a mixture of commercial/

warehouse and residential neighborhoods, which adds a wide range of spectral

diversity. Prior to processing, invalid bands (due to atmospheric water absorption)

were removed, reducing the overall dimensionality to 152 bands. This image has been

used in Bajorski et al. (2004) and Bajorski (2011a, 2011b). The first 152 values in the

AVIRIS Data represent the spectral radiance values (a spectral curve) for the top left

pixel in the image shown in Figure 7.10. This is followed by spectral curves of the

pixels in the first row, followed by the next row, and so on.

B.12 HyMap Cooke City Data

This is also remote sensing data (see the previous section). The HyMap Cooke City

image shown in Figure 7.15 has 280 by 800 pixels, where each pixel is described by a

126-band spectrum. More information about the image can be found in Snyder et al.

(2008). The data set is available as the self-test image on the web site http://dirsapps.

cis.rit.edu/blindtest/.

B.13 GRASS DATA

This is a spectral image of grass texture. Each pixel is represented by a spectral

reflectance curve in 42 spectral bandswith reflectance given in percent. Grass 64 by 64

data set describes a 64 by 64 pixel image of grass texture used in Chapter 9. The image

in Figure 9.2 shows the areas of diseased and healthy grass. Denote by i the columns in

that image. The rows are denoted by j, but they are counted from the bottom of the

image rather than from the top. With this notation, the area of diseased grass

considered in Example 9.2 is defined as all pixels with i; jð Þ coordinates such that

i ¼ 49; 50; . . . ; 64 and j goes from 64� 2 i� 49ð Þ½ � to 64. There are 256 pixels with

distressed grass in total.

In Example 9.6, three groups of grass pixels are introduced. We define here the

exact location of Groups 2 and 3. Using indexes i and j, Group 3 is identified as all

pixels with i; jð Þ coordinates such that i ¼ 55; 56; . . . ; 64 and j goes from

64� 2 i� 55ð Þ½ � to 64. There are 100 pixels in Group 3. Group 2 is identified as all

pixels with i; jð Þ coordinates such that i ¼ 45; 46; . . . ; 64 and j goes from

64� 2 i� 45ð Þ½ � to 64, but those that are not in Group 3. There are 300 pixels in

Group 2.

A small 15 by 15 pixel subimage of grass texture is used in Chapter 8 and is

provided as the Grass 15 by 15 data set.

B.14 ASTRONOMY DATA

Here, we describe a subset of infrared astronomy data used in Kastner et al. (2008),

where one can find further references. There are 179 stars or star-like objects in our
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Astronomy Data. The first column provides object number as used in the Large

Magellanic Cloud (LMC) survey conducted by the Midcourse Space Experiment

(MSX). The next three columns give infraredmagnitudes obtained for those objects in

the J (1.25 mm), H (1.65 mm), and K (2.17 mm) bands from the Two-Micron All-Sky

Survey. The fifth column is the A (8.3 mm) band magnitude obtained from the MSX

survey. The last column is the object’s classification used in Kastner et al. (2008). The

red supergiants (RSG) are coded as 1. Code 2 denotes the carbon-rich asymptotic

giant branch (C AGB) stars, which are dying, sun-like stars (red giants). Code 4

denotes the so-called “H II regions,”which are plasmas ionized by hot,massiveyoung

stars that are still deeply embedded in the molecular clouds out of which they were

formed. The oxygen-rich asymptotic giant branch (O AGB) stars are coded as 5.

B.15 CIELAB DATA

This data set is based on the Tile Data discussed in Section B.8. For each tile, four

spectral curve measurements were given in the Tile Data. An average of those

four spectral curves was calculated as spectrum representing a given tile. Based on

that spectrum, three-dimensional CIELAB color space coordinates were calculated.

This scale describes a given color with three numbers. The L
�
coordinate describes

color lightness with themaximumvalue of 100 and theminimum of zero representing

black. The remaining two coordinates a
�
and b

�
have no specific numerical limits. The

negative a
�
values indicate green, while positive values indicate red. The negative b

�

values indicate blue, while positive values indicate yellow. The three-dimensional

color space of L
�
, a

�
, and b

�
values is approximately uniform in the sense that the

perceptual difference between two colors is well approximated by the Euclidean

distance between the two colors.

The measured reflectance spectrum of a given surface, such as a tile here, tells us

the fraction of light that is reflected in various wavelengths. However, if little light at

a given wavelength is illuminated at the surface, then not much can be reflected,

even if the reflectance in high. This is why the color perception also depends on the

light illuminated at the surface. Hence, the calculation of CIELAB color space

coordinates based on the reflectance spectrum also depends on the illuminant used.

For example, the colors may look different in daylight than under artificial light

indoors. Here we used two illuminants, one representing the noon daylight with

overcast sky (Illuminant D65) and the other representing the incandescent or

tungsten light source found in homes (Illuminant A).

The CIELAB data set consists of 12 rows representing 12 tiles with numbers listed

in the first column. The second column gives the names of the tiles’ colors. This is

followed by three columns of L
�
, a

�
, and b

�
values calculated based on Illuminant D65.

The next three columns give L
�
, a

�
, and b

�
values calculated based on Illuminant A.
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A P P E N D I X C

Miscellanea

C.1 SINGULAR VALUE DECOMPOSITION

In Supplement 4A, we define a spectral decomposition of a symmetric square matrix.

A related decomposition for a more general matrix is defined by the following

theorem.

Theorem C.1 LetX be an n by pmatrix of real numbers. Then there exist an n by p

matrix U with orthogonal columns (i.e., UTU ¼ Ip), a p by p diagonal matrix D with

nonnegative elements, and a p by p orthogonal matrix V such that

X ¼ UDVT : ðC:1Þ

The above decomposition of X is called the singular value decomposition. The

diagonal elements dj ofD are called singular values.Wehave the following properties.

1. The squares d2j of the singular values are the eigenvalues of XTX and the

corresponding eigenvectors are the columns of the matrix V.

2. The squares d2j of the singular values are the eigenvalues of XXT and the

corresponding eigenvectors are the columns of the matrix U.

When the singular value decomposition is applied to a symmetric (square) matrix,

we obtain its spectral decomposition discussed in Supplement 4A. A more typical

application of the singular value decomposition is on the matrix X of a p-

dimensional data set consisting of n observations. In that case, the diagonal elements

dj describe the variability of the data around zero. Since in statistics, we are usually
interested in the variability around the mean, the singular value decomposition is

often performed on the centered data, that is, on Xc ¼ X� 1n � xT , where

x ¼ ð1=nÞXT1n is the vector of the column means and 1n is an n-dimensional
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vector with all coordinates equal to 1. Assume now the singular value decomposi-

tion of the centered data, that is,

Xc ¼ UDVT: ðC:2Þ
Many calculations are easier to perform and aremore computationally stablewhen

using the above decomposition. For example, the sample variance–covariance matrix

can be calculated as

S ¼ 1

n� 1
VD2VT; ðC:3Þ

and its inverse and square root matrices are

S�1 ¼ n�1ð ÞVD�2VT; S1=2 ¼ 1ffiffiffiffiffiffiffiffiffiffi
n�1

p VDVT; S�1=2 ¼
ffiffiffiffiffiffiffiffiffiffi
n�1

p
�VD�1VT: ðC:4Þ

As an example of some other useful formulas, consider a task of calculating the

Mahalanobis distances of all p-dimensional observations given as rows in an n by p

matrixX from the mean vector x. This is equivalent to calculating a diagonal of the n

by n matrix XcS
� 1XT

c , which can be written as

XcS
� 1XT

c ¼ n� 1ð ÞUUT: ðC:5Þ

Since n is often large, we would like to avoid calculating the whole matrix, if

only the diagonal of that matrix is needed. This can be done by using the following

formula:

diag XcS
� 1XT

c

� � ¼ n� 1ð Þdiag UUT
� � ¼ n� 1ð Þ U*Uð Þ1p; ðC:6Þ

where * stands for the element-by-element multiplication of matrices and the

multiplication by 1p results in the summation of the row elements (so, it would

typically be achieved by a summation in a computer procedure). In a more general

setting, assume that we have two n by pmatricesA and B, and the task is to calculate

the diagonal elements of ABT. We can then use the formula

diag ABT
� � ¼ A*Bð Þ1p: ðC:7Þ

The singular value decomposition (of the centered data) shown in (C.2) can also be

used in principal component analysis. The columns of the matrix V are the eigen-

vectors of the sample variance–covariance matrix S. The matrix V is denoted as P in

Chapter 7. If the vector of principal components is denoted as Y, the sample

variance–covariance matrix of Y can be calculated as

cVar Yð Þ ¼ 1

n� 1
D2; ðC:8Þ
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and the estimated variances of principal components are

cVar Yj
� � ¼ lj ¼

d2j
n� 1

; ðC:9Þ

where lj are the eigenvalues of S.

C.2 IMAGING RELATED SAMPLING SCHEME

In Section 7.6.2, we introduce Sampling Scheme C that is based on the linear mixing

model describing the materials seen in a spectral image and the image noise. Here we

give a justification for the correction coefficients bj used in the Sampling SchemeC. In

order to simplify our considerations, let us assume that the system of coordinates was

shifted by x and then rotated (by the matrix of eigenvectors), so that the values of the

centered PCs are the coordinates of the observationvectors. It means that the (rotated)

image spectra are the realizations of the random vector Y1; . . . ; Yp
� �

, where Yj is the

jth PC. TheSampling SchemeC assumes a deterministic structurewithin the subspace

generated by the first k PCs. However, we also want to make sure that the random

vector ei has some nontrivial components within that subspace. This is why we

assumed the variance of the noise to be lk þ 1 in the first k PC directions. In the linear

mixingmodel (7.32), the aij’s are considered nonrandom.However, when performing

PCA on the global covariance matrix, the resulting PCs measure the variability, as if

aij’s were realizations of some random variables. In that sense, model (7.32) is

conditional on the values aij . In the simplified notation of the random vector

Y1; . . . ; Yp
� �

, the realizations of PCs Yj are the equivalents of the coefficients aij .

Let us now construct the random variable Zj ¼ bjYj þ Ej , where

bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lk þ 1=lj

p
, and Ej is independent of Yj and normally distributed

N 0; lk þ 1ð Þ. The variable Tj ¼ bjYj will form the jth coordinate of the deterministic

part of the model (in the conditional sense) and Ej will be the jth coordinate of the

error. For this model to be consistent with the original data, we want to have the

unconditional variance of Zj to be equal to lj . Based on the conditional variance

formula, we have

Var Zj
� � ¼ E Var ZjjTj

� �� � þ Var E Zj jTj
� �� �

¼ E lk þ 1ð Þ þ Var Tj
� � ¼ lk þ 1 þ b2j lj ¼ lj: ðC:10Þ

This justifies the use of the coefficients bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lk þ 1=lj

p
.

C.3 APPROACHES TO CANNONICAL CORRELATION ANALYSIS

In Theorem 8.1, canonical variables are defined with the help of the matrix

G ¼ R� 1=2
XX RXYR

� 1
YY RT

XYR
� 1=2
XX . On the other hand, some other sources, for example,
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Schott (2007), use the matrix G* ¼ R� 1
XX RXYR

� 1
YY RT

XY instead. We want to show here

that the two approaches are essentially equivalent. In Section 8.2, we define the ith

canonical variable as

Ui ¼ eTi R
� 1=2
XX X; ðC:11Þ

where ei is the normalized eigenvector of G with an associated eigenvalue r2i . An
alternative approach is to define

U*
i ¼ wT

i X; ðC:12Þ

wherewi is the normalized eigenvector ofG*. In order to compare the two approaches,

we need the following lemma.

Lemma C.1 The vector R� 1=2
XX ei is an eigenvector of G* with the associated

eigenvalue r2i .

Proof. G* R� 1=2
XX ei

� �
¼ R� 1

XX RXYR
� 1
YY RT

XYR
� 1=2
XX ei ¼ R� 1=2

XX Gei ¼ R� 1=2
XX r2i ei ¼ r2i R� 1=2

XX ei

� �
.

&

Hence, if wi is taken as R� 1=2
XX ei, we get exactly the same solution in both cases.

However, wi is often taken as the normalized eigenvector. In that case, U*
i is a scaled

version of Ui, and its variance is not equal to 1. The variance of this “not-quite-

canonical” variable U*
i is

R� 1=2
XX ei

��� ���� 2

¼ eTi R
� 1
XX ei

� �� 1
:

We can also calculate it as

Var U*
i

� � ¼ wT
i RXXwi:

In a similar fashion, we can define

V*
i ¼ zTi X ðC:13Þ

as a scaled version of Vi, where zi is the normalized eigenvector of the matrix

R� 1
YY RYXR

� 1
XX RT

YX . The resulting pairs U*
i ;V

*
i

� �
have the same canonical correlations

(see formula (8.9)) and the same properties (8.12) of canonical variables, except that

their variances are not equal to 1.

C.4 CRITICAL VALUES FOR THE RYAN–JOINER TEST
OF NORMALITY

The following table gives the ca critical values for the Ryan–Joiner test of normality

defined in Section 3.6.4.
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Sample

Size
a

0.10 0.05 0.01

5 0.9026 0.8793 0.8260

6 0.9106 0.8886 0.8379

7 0.9177 0.8974 0.8497

8 0.9240 0.9052 0.8605

9 0.9294 0.9120 0.8701

10 0.9340 0.9179 0.8786

11 0.9381 0.9230 0.8861

12 0.9417 0.9276 0.8928

13 0.9449 0.9316 0.8987

14 0.9477 0.9352 0.9040

15 0.9503 0.9384 0.9088

16 0.9526 0.9413 0.9132

17 0.9547 0.9439 0.9171

18 0.9566 0.9463 0.9207

19 0.9583 0.9484 0.9240

20 0.9599 0.9504 0.9270

21 0.9614 0.9523 0.9297

22 0.9627 0.9540 0.9323

23 0.9640 0.9556 0.9347

24 0.9652 0.9571 0.9369

25 0.9663 0.9584 0.9390

26 0.9673 0.9597 0.9409

27 0.9683 0.9609 0.9427

28 0.9692 0.9620 0.9444

29 0.9700 0.9631 0.9460

30 0.9708 0.9641 0.9475

31 0.9716 0.9651 0.9489

32 0.9723 0.9660 0.9503

33 0.9730 0.9668 0.9516

34 0.9736 0.9676 0.9528

35 0.9742 0.9684 0.9539

36 0.9748 0.9691 0.9550

37 0.9754 0.9698 0.9560

38 0.9759 0.9705 0.9570

39 0.9764 0.9711 0.9580

40 0.9769 0.9717 0.9589

41 0.9774 0.9723 0.9598

42 0.9778 0.9728 0.9606

43 0.9782 0.9734 0.9614

44 0.9786 0.9739 0.9621

45 0.9790 0.9744 0.9629
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Sample

Size
a

0.10 0.05 0.01

46 0.9794 0.9748 0.9636

47 0.9798 0.9753 0.9642

48 0.9801 0.9757 0.9649

49 0.9805 0.9762 0.9655

50 0.9808 0.9766 0.9661

51 0.9811 0.9770 0.9667

52 0.9814 0.9773 0.9673

53 0.9817 0.9777 0.9678

54 0.9820 0.9781 0.9683

55 0.9823 0.9784 0.9688

56 0.9825 0.9787 0.9693

57 0.9828 0.9791 0.9698

58 0.9831 0.9794 0.9703

59 0.9833 0.9797 0.9707

60 0.9835 0.9800 0.9711

61 0.9838 0.9802 0.9716

62 0.9840 0.9805 0.9720

63 0.9842 0.9808 0.9724

64 0.9844 0.9810 0.9728

65 0.9846 0.9813 0.9731

66 0.9848 0.9815 0.9735

67 0.9850 0.9818 0.9738

68 0.9852 0.9820 0.9742

69 0.9854 0.9822 0.9745

70 0.9856 0.9825 0.9748

71 0.9857 0.9827 0.9752

72 0.9859 0.9829 0.9755

73 0.9861 0.9831 0.9758

74 0.9862 0.9833 0.9761

75 0.9864 0.9835 0.9764

80 0.9871 0.9844 0.9777

90 0.9884 0.9859 0.9799

100 0.9894 0.9872 0.9818

200 0.9943 0.9931 0.9904

300 0.9960 0.9952 0.9934

400 0.9969 0.9964 0.9950

600 0.9979 0.9975 0.9966

800 0.9984 0.9981 0.9974

1000 0.9987 0.9985 0.9979

2000 0.9993 0.9992 0.9989
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C.5 LIST OF ABBREVIATIONS AND MATHEMATICAL SYMBOLS

n! n factorial

xjj absolute value

xk k Euclidean norm

xk km Lm Minkowski norm

XT transpose operation of a matrix X

Ajj determinant of a square matrix A

X sample mean

x overall sample mean[k
i¼1

Ai union of k sets

\k
i¼1

Ai intersection of k sets

A \ B intersection of two sets

Bc ¼ S \B complement of the set Bbm1.
the dot indicates an average over that index

1n an n-dimensional vector with all coordinates equal to 1

w2n að Þ the upper 100að Þth percentile from the chi-squared distri-

bution with n degrees of freedom
e error term in a model

ðli; eiÞ pair of an eigenvalue and a normalized eigenvector

pi the ith population (in Chapter 9 on classification)

F cumulative distribution function of the standard normal

distribution

j density function of the standard normal distribution

y general notation for an arbitrary parameterby estimator of the parameter y
R population variance–covariance matrix

s population standard deviation (as a parameter)

Zp 100pð Þth percentile of a distribution

tbð Þjk a term for an interaction between two factors with main

effects denoted by t and b
m population mean (as a parameter)

G gamma function

g1 coefficient of skewness

g2 excess kurtosis

APER apparent error rate

CCA canonical correlation analysis

CCR canonical correlation regression

CDF cumulative distribution function
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Cov X; Yð Þ covariance of two random variables

Cov X;Yð Þ covariance matrix of two random vectors

D diagonal matrix of variances

d deviation vector (in Chapter 5)

d x; yð Þ distance between vectors x and y

E Xð Þ expected value of X

Ei the ith residual vector (in Chapter 7)

ei the ith residual (in Chapter 4)

ECM expected cost of misclassification

EER estimated error rate

ESS error sum of squares (for clusters)

ETE estimated test error

exp xð Þ ¼ ex exponential function with the base e � 2:71
F cumulative distribution function

Fn empirical cumulative distribution function

Fn;m að Þ the 100að Þth upper percentile from the F-distribution with

n and m degrees of freedom

f probability density function

GSV generalized sample variance

H hat matrix (in Chapter 4)

hii the ith diagonal element of the hat matrix H

I identity matrix

kGSV k-dimensional generalized sample variance

Kurt Xð Þ kurtosis

Lm Minkowski metric

L? Chebyshev distance

ln xð Þ natural log of x

MLE maximum likelihood estimator

MSE mean squared error

MVU minimum variance unbiased (estimator)

N m; s2ð Þ normal distribution with the mean m and variance s2

Np l;Rð Þ p-dimensional normal distribution with the mean vector l
and the variance–covariance matrix R

n usually the sample size

Pv xð Þ projection of x on v

P A Bjð Þ probability of A given B

p number of random components or variables

PCA principal component analysis

R set of real numbers

R sample correlation matrix

Ri the ith classification region (in Chapter 9)

R2 coefficient of determination

r sample correlation coefficient

RSS residual sum of squares

S sample space
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S sample variance–covariance matrix

Spooled pooled estimated variance–covariance matrix

s, s2 sample standard deviation and variance

sjk sample covariance between the jth and kth variables

SE by� �
standard error of the estimatorby

SSRegr regression sum of squares

SSRes residual sum of squares

SSTotal total sum of squares

StDev Xð Þ standard deviation of X

tn að Þ the upper 100að Þth percentile of the t-distribution with n
degrees of freedom

TPM total probability of misclassification

TVR total variability in residuals

Var Xð Þ variance of X

Var Xð Þ variance–covariance matrix of a random vector

X matrix X

X ¼ X1;X2; . . . ;Xp

� 	T
random vector of p components

Z standardized variable

z að Þ the upper 100að Þth percentile of the standard normal

distribution
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Index

Absolute deviation, 56

Abstract population, 52

Additive model, 118

Adjusted norm, 221

Agglomerative hierarchical Clustering, 304

Alpha risk, 64

Alternative hypothesis, 64

one-sided/ two-sided, 65

Analysis of variance (ANOVA), 92

Analysis of variance (ANOVA) table, 101,

117, 123

Angle between vectors, 126

Anomaly detection, 231

ANOVA (analysis of variance), 92

ANOVA (analysis of variance) table, 101,

117, 123

Apparent error rate (APER), 272

Astronomy data, 71, 261, 353

Average linkage Clustering, 315

AVIRIS data, 352

AVIRIS image, 204, 230

Balanced design, 116

Bayes’ theorem, 29

Best linear unbiased estimator (BLUE), 98

Beta distribution, 329

Beta risk, 65

Between-group variability, 286

Bias, 55, 80, 237

Bias-adjusted estimate, 56, 81

Biased estimator, 55

Bidirectional reflectance distribution

function (BRDF), 112

Binomial distribution, 330

Bivariate distribution, 35

Bonferroni Confidence interval, 178

Bonferroni inequality, 177

Bootstrap, 79, 236

hybrid method, 81–82

nonparametric, 80, 229, 236

parametric, 80, 236

percentile method, 81

percentile-reversal method, 81–82, 236

Box plot 23

Box’s M statistic, 188

Broken-stick stopping rule for PCA, 211

Canonical correlation, 243

analysis (CCA), 241–251

regression (CCR), 251–256

variables, 243

Cauchy distribution, 331

CCA (Canonical correlation

analysis), 241–251

CCR (Canonical correlation

regression), 251–256

Central composite design, 115

Central limit theorem, 43

Central moment, 33

Centroid, 320

Chebyshev’s distance, 299

Chebyshev’s inequality, 41
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Chi-squared distribution, 332

Chi-squared distribution table, 345

Chi-squared test, 76

CILAB color space, 306, 313, 354

CILAB data, 354

City-block distance, 299

Classification, 261;

image, 291

region, 265

rule, 267

table, 264

tree, 293

with spatial smoothing, 291

Clustering, 297–325

average linkage, 315

complete linkage, 312

hierarchical, 304–320

k-means, 320

nonhierarchical, 320–323

single linkage, 305

variables, 323–325

Ward method, 319

CMYK color model, 3

Coefficient of

determination (R2), 93

skewness, 45

variation, 341

Collinear (vectors), 127

Color matrix, 145

Color model, CMYK, 3

Color space, CILAB, 306

Complete linkage Clustering, 312

Components of a random vector, 139

Conditional

distribution, 36, 165

probability, 28, 266

Confidence interval, 60, 176

Bonferroni, 178

for the mean response, 105

one-sample t, 62

one-sample z, 62

simultaneous, 177–179

two-sample t, 73

Confidence

joint level, 177

level, 60

region, 179

Confusion matrix, 264

Consumer’s risk, 70

Continuous random variable, 31

Contrast, 201, 203, 207

Controlled experiments, 89, 111

Cooke City HyMap data, 353

Correlated variables, 39

Correlation coefficient, 39, 76, 140

Correlation matrix, 140

Cost of misclassification, 266

Covariance matrix, 133

Covariance, 38

Cross-validation, 255–256, 277–280

Cumulative distribution function, 32, 35

Curse of dimensionality, 167

Data format, 13

Decibel, 13

Dendrogram (for clustering), 306

Density function, 31

Descriptive statistic, 14, 139

Descriptive statistics, 11

Design

balanced, 116

central composite, 115

fractional factorial, 124

full factorial, 114

of experiments (DOE), 111–124

randomized block, 125

split-plot, 125

unbalanced, 116

Determinant of a matrix, 129

Deviation, mean absolute, 56

Diagonal matrix, 129

Dimensionality of data, 209

Dimensionality, Curse of, 167

Discrete random variable, 31

Discriminant

direction, 268

vector, 268, 281, 287

Discrimination, 261

Fisher, 281, 286–287

Dissimilarity measure, 298

Distance, 126, 159–163

Chebyshev, 299

city-block, 299

Euclidean, 160

Lm, 299

mahalanobis, 161, 302

Manhattan, 299

statistical, 161
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Distribution function, empirical, 52–53

Distribution, 16, 19, 23, 30–33

beta, 329

binomial, 330

bivariate, 35

Cauchy, 331

chi-squared, 332

conditional, 36

double chi-squared, 47

Erlang, 333

exponential, 334

exponential power, 56, 335

F-, 72, 336

gamma, 337

geometric, 338

joint, 34–35

marginal, 35

multivariate,139

poisson, 340

sampling, 42

t (Student’s), 341–342

uniform (rectangular), 342–343

Weibull, 343–344

Divisive hierarchical Clustering, 304

DOE (design of experiments),

111–124

Dot plot, 17

Double chi-squared distribution, 47

Dummy variables, 121

Edges of a graph, 307

Eigenvalues/eigenvectors of

a matrix, 131

Ellipsoidal confidence region, 185

Empirical distribution function, 52–53

Erlang distribution, 333

Error function, 340

Error of misclassification, 270

Error of prediction, 106

Error propagation, 133

Error rate apparent/estimated, 272

Error sum of squares (for clusters), 319

Error term, 87

Estimated error rate (EER), 272

Estimated test error, 255, 257

Estimates, least-squares, 90–91

Estimation space, 99

Estimator, 53

biased, 55

minimum variance unbiased (MVU),

54

unbiased, 54

Euclidean distance, 160

Event (in probability), 27

Events, disjoint, 28

Events, independent, 28

Excess kurtosis, 45

Expected cost of misclassification

(ECM), 267

Expected value, 33

Experiment, 111–113

one-factor, 116

two-factor, 118

Experimental

design, 111

factor, 112

run, 116

unit, 12

Exponential distribution, 334

Exponential power distribution, 56 , 335

Externally studentized residual, 107

Eye tracker, 1

Eye tracking data, 350

Factor, 111–112

effect, 118

experimental, 112

nested, 125

qualitative, 116

quantitative, 113

Fair-share stopping rule for PCA,

210–213

False alarm, 64

Fat tail (of a distribution), 45

F-distribution, 72 , 336

F-distribution table, 347–348

Fish image data, 20, 350

Fisher classification/discrimination

rule, 281, 286–287

Fisher discriminant, 287–289

Fitted regression line, 94

Fitted value (in regession), 91

Fitted value (in PCA), 220

Fixation image, 2

Fixed-effects model, 116, 118

Forest (in graphs), 309–310

Fractional factorial design, 124

F-statistic, 72, 102, 118
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Full factorial design, 114

Fully saturated model, 120

Gamma distribution, 337

Gamma function, 332

Gaussian

classification rule, 267

distribution (normal), 40, 339

distribution (normal),

multivariate, 163–171

distribution (normal), standard 40, 339

distribution (normal), table, 344

linear rule, 268, 285

noise, 164

quadratic rule, 276, 284

rule, linear, 268, 285

rule, quadratic, 276, 284

Generalized

linear model, 111

sample correlation, 158

sample variance (GSV), 151

sample variance k-dimensional

(kGSV), 155

Geometric distribution, 338

Geometric interpretation of

regression, 99

sample correlation coefficient, 150

sample mean, 148

sample standard deviation, 149

Global linear dimensionality, 209

Graph (in mathematics), 307

Grass data, 353

Grass texture image, 241, 245, 262

Grubbs test (for an outlier), 77

Hartigan-Wong implementation of

k-means, 321

Hat matrix, 99

Hierarchical Clustering, 304–320

agglomerative, 304

divisive, 304

Histogram, 19

Hymap Cooke City data, 353

Hymap Cooke City image, 210

Hypothesis testing, 63

i.i.d. random variables, 42

Identity matrix, 129

Illuminant, 313

Imaging related sampling scheme, 228–230

Impact curve, 203

Impact plot, 201, 203

Independent events, 28

Independent random variables, 37

Inferential statistics, 11, 52

Information-to-ink ratio, 17

Infrared astronomy data, 71, 261, 353

Inner product, 126

Input power, 13

Interaction plot, 120

Interaction term, 119

Intercept, 87

Interquartile range, 17

Interval estimation, 60, 175

Intrinsic linear dimensionality, 209, 234

Inverse matrix, 129

Inverse principal components rotation/

transformation, 220

Jitter, random, 25

Joint confidence level, 177

Joint distribution, 34

K-fold cross-validation, 255, 257

K-means clustering, 320

K-meansþþ initialization in

clustering, 321

K-nearest neighbor, 293

Kolmogorov-Smirnov statistic, 75

Kurtosis, 45

Kurtosis, excess, 45

Landsat data, 351

Landsat program, 86

Large-gap stopping rule for PCA, 213–217

Law of large numbers, 42

Learning sample (in cross-validation), 256

Least-squares estimates, 90–91

Least-squares normal equations, 91, 98

Least-squares regression, 90

Leave-one-out cross-validation, 255, 257

Length of a vector, 126

Leptokurtic, 45

Likelihood, 59

Limit theorem, central, 43

Linear dimensionality, 209, 234

Linear dimensionality, second moment, 214

Linear estimator, 98
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Linear Gaussian classification rule,

268, 285

Linear mixing model, 229

Linear model, generalized, 111

Linear regression model, 87

Linear regression, multiple, 96

Linearly dependent/ independent, 126

Linkage clustering, 304–305

Links of a graph, 307

Lm metric, 299

Lm norm, 299

Loadings of principal components,

197, 200

Location, measures of, 14

Logistic regression, 111

Logistic regression for classification, 293

Log-likelihood, 59

Mahalanobis Distance, 161, 302

Main effect, 118

Manhattan distance, 299

Marginal distribution, 35

Marker data, 352

Matrix multiplication, 128

Matrix, 127

color, 145

correlation, 140

determinant of, 129

diagonal, 129

eigenvalues of, 131

eigenvectors of, 131

hat, 99

identity, 129

inverse, 129

nonnegative definite, 131

nonsingular, 129

orthogonal, 129

positive definite, 131

random, 132

rank of, 131

scatter plot, 143

singular, 129

spectral decomposition of, 131

square, 128

square root, 131

standard deviation, 141

symmetric, 128

trace of, 132

variance-covariance, 133, 140

Maximization lemma, 131

Maximum likelihood estimation, 57

Mean absolute deviation, 56

Mean response, confidence interval

for, 105

Mean square,

regression, 102

residual, 102

treatment, 118

error, 55, 118

Mean, 14, 33

Mean, trimmed, 16

Mean vector, 133, 173

Measurement, 12

Measures of location, 14

Median, 15

Method of moments, 56

Metric, Chebyshev, 299

Metric, Lm, 299

Metric, Lm adjusted, 300

Metric, Minkowski, 299

Minimum forest (in graphs), 310

Minimum spanning tree, 309

Minimum variance unbiased (MVU)

estimator, 54

Minkowski metric, 299

Misclassification

cost, 266

error, 270

rate, 264

MISI image, 230

Model, 85

fixed-effects, 116

fully saturated, 120

linear regression, 87

regression, 85

statistical, 85

Modeling error, 113

Moment, 33

central, 33

kth, 33

noncentral, 33

second central, 33

method of, 56

Monte Carlo simulation, 79, 232

Multicollinearity, 111, 153–154

Multifactor experiments, 121

Multiple linear regression, 96

Multiplication of matrices, 128
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Multivariate

distribution, 139

Normal (gaussian) distribution, 163–171

observation, 138

random sample, 139

statistical inference, 173–192

Nested factor, 125

Neural network, 293

No-intercept regression line, 94, 110

Nonlinear regression, 111

Nonnegative definite matrix, 131

Nonparametric bootstrap, 80, 229, 236

Nonsingular matrix, 129

Norm, adjusted, 221

Norm, Lm, 299

Norm, Lm adjusted, 300

Normal (gaussian) distribution, 40,

163–171, 339

multivariate, 163–171

standard 40, 339

table, 344

Normal equations, least-squares, 91, 98

Null hypothesis, 63–64

Observation, 13

multivariate, 138

Observational studies, 89, 111

One-factor-at-a-time experiments, 113

One-sample t confidence interval, 62

One-sample z confidence interval, 62

One-sided alternative, 65

Optical fiber data, 13, 88, 351

Order statistic, 15

Orthogonal matrix, 129

Outlier threshold, 108

Outlier, 77, 108

definite, 108

extreme, 108

likely, 108

Output power, 13

Overall mean, 117

Parallelogram/parallelotope, 153

Parametric bootstrap, 80, 236

Partial least squares regression, 111

PCA (principal component

analysis), 193–238

Peakedness (of a distribution), 45

Percent of variability, 198, 209

Percentile, 16, 32

method, bootstrap, 81

upper, 32

Percentile-reversal method,

bootstrap 81–82, 236

Pivot, 60

Pixel, 4

Plot of residuals, 95

Plug-in principle, 56

Point estimator, 53

Poisson distribution, 340

Poisson regression, 111

Pooled variance-covariance matrix, 184,

187, 268

Population, 12

abstract, 52

regression model, 87

Positive definite matrix, 131

Power (of a test), 66–67

Power loss, 13

Prediction error, 106

Prediction interval, 106

Predictor variable, 85

Principal component, 196

analysis (PCA), 193–238

loadings of, 197, 200

regression, 111

rotation, 220

rotation, inverse, 220

score, 217–220

Printing data, 3, 349

Print-on-demand data, 147, 352

Prior probability, 264

Probability, 26–27

conditional, 28

density function, 31

distribution, 30

mass function, 31

plot, 74

Producer’s risk, 70

Projection, 127

P-score, 214

Pure error, 113

P-value, 70

Quadratic form, 131

Quadratic Gaussian classification rule,

276, 284

376 INDEX



Qualitative factor, 116

Quanta, 340

Quantitative factor, 113

Quartile, 16

R2 (Coefficient of determination), 93

Radiopaque marker data, 193–194,

352

Random

jitter, 25

matrix, 132

sample, 42

sample, multivariate, 139

variable, 30

variable, continuous, 31

variable, discrete, 31

variables, i.i.d., 42

variables, independent, 37

vector, 132

Random-effects model, 124

Range, 17

Rank of a matrix, 131, 154

Receiver operating characteristic (ROC)

curve, 67

Rectangular (uniform) distribution,

342–343

Regression, 85–111

function, 87

geometric interpretation of, 99

least-squares, 90

line, 87

line, estimated, 91

line, fitted, 94

line, no-intercept, 94, 110

logistic, 111

mean square, 102

model, 85

model, population, 87

model, sample, 89

nonlinear, 111

partial least squares, 111

Poisson, 111

principal component, 111

ridge, 111

robust, 90, 111

statistical inference in, 100–101

sum of squares, 92, 101

weighted least-squares, 111

Rejection region, 65

Relative broken-stick stopping rule for

PCA, 212

Remote sensing, 4

Residual, 91

analysis (in PCA), 220–227

analysis (in regression), 94

externally studentized, 107

matrix (in CCR), 252

mean square, 102

standardized, 107

studentized, 107

sum of squares (in DOE), 117

sum of squares (in PCA), 220

sum of squares (in regression), 92, 102

vector (in PCA), 220

Response surface, 113, 115

Response variable, 85

RGB, 2, 24–25

Ridge regression, 111

Risk,

alpha, 64

beta, 65

consumer’s, 70

producer’s, 70

Robust regression, 90, 111

ROC (receiver operating characteristic)

curve, 67

Rule of three sigma, 40

Rule of two sigma, 40

Run (experimental), 116

Ryan-Joiner test, 76, 358–360

Sample, 12

correlation coefficient, 76

mean, 14

median, 15

percentile, 16

regression model, 89

size determination, 69

space, 27

standard deviation, 17

variance, 17

Sampling distribution, 42, 54

Saturated model, 120

Scalar product, 126

Scaling of variables, 207–209

Scatter plot, 24

matrix, 143

Score of a principal component, 217–220
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Second moment linear dimensionality, 214

Sensitivity, 29

Signal-to-noise ratio, 341

Similarity measure, 298

Simple fair-share stopping rule for PCA, 211

Simple random sample, 42

Simulation, Monte Carlo, 79, 232

Simultaneous confidence intervals,

178, 180

Single linkage clustering, 305

Singular matrix, 129

Singular value decomposition (SVD), 282,

355

Skewness, coefficient of, 45

Slope, 87

Small image data, 62

Small’s graphical method, 189

Solar azimuth angle, 103

Solar elevation angle, 86

Spanning tree, 309

Spatial smoothing voting procedure

(SSVP), 291

Specificity, 29

Spectral

bands, 205

curve, 4

decomposition of a matrix, 131

radiance, 204

Spectrometer data, 116, 121, 351

Spectrometer drift, 124

Spectrometer experiment, 116

Sphering, 134, 270

Square matrix, 128

Square root matrix, 131

Standard

deviation, 17, 34

deviation matrix, 141

error, 54

normal distribution, 40

Standardization, 60

Standardized

residual, 107

variable, 208

volume, 157

Star plot, 146

Statistic, 53

descriptive, 14

F-, 72

order, 15

summary, 14

t-, 64, 73

Statistical

distance, 161

inference in PCA, 227–238

inference in regression, 100–101

inference, multivariate, 173–192

model, 85

thinking, 5, 11

Statistics, 11

descriptive, 11

inferential, 11, 52

Stopping rule for PCA, 209–217

broken-stick, 211

fair-share, 210–213

large-gap, 213–217

relative broken-stick, 212

Student’s t distribution, 341–342

Studentized residual, 107

Sub-gaussian, 45

Sum of squares,

regression, 92, 101

residual (in DOE), 117

residual (in PCA), 220

residual (in regression), 92, 102

total, 92, 117

treatment, 117

Summary statistic, 14

Super-gaussian, 45

Supervised learning, 261

Support vector machine, 293

SVD (Singular value decomposition),

282, 355

Symmetric matrix, 128

t

confidence interval, 62

distribution, 341, 342, 346

distribution table, 346

statistic, 64, 73, 103

T2

test/statistic, 173

confidence region, 179

Tail (of a distribution), 45

Test, 65

chi-squared, 76

Grubbs (for an outlier), 77

power of, 66–67

procedure, 65
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Ryan-Joiner, 76

statistic, 65

Testing sample (in cross-validation), 256

Thin tail (of a distribution), 45

Three sigma, rule of, 40

Tiles data, 137, 352

Total probability of misclassification

(TPM), 270

Total sum of squares, 92, 117

Total variability in residuals (in CCR), 254

Total variability, 155

Trace of a matrix, 132

Transpose, 125

Treatment (experimental), 116

effect, 117

mean square, 118

sum of squares, 117

Triangle inequality, 160

Trimmed mean, 16

Two sigma, rule of, 40

Two-factor experiment, 118

Two-sample problem, 72, 184

Two-sample t confidence interval, 73

Two-sided alternative, 65

Type I error, 64

Type II error, 65

Unbalanced design, 116

Unbiased estimator, 54

Uncorrelated variables, 39

Uniform (rectangular) distribution, 342–343

Unsupervised learning, 297–325

Upper percentile, 32

Variable, 13

predictor, 85

response, 85

Variables,

correlated, 39

independent, 37

uncorrelated, 39

Variance, 33

generalized, 151

generalized k-dimensional, 155

sample, 17

Variance-covariance matrix, 133, 140

Vector, 125

length of, 126

random, 132

Venn diagram, 28

Vertices of a graph, 307

Visual density, 18

Visualization of

multivariate data, 143–148

univariate data, 17–24

Volume, 153

Ward method (clustering), 319

Weibull distribution, 343–344

Weighted least-squares regression, 111

White Gaussian noise, 164

Whittening, 134

z confidence interval, 62
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