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Preface

These are the proceedings of WAIFI 2010, the Third International Workshop on
the Arithmetic of Finite Fields, held in Istanbul, Turkey, during June 27-30, 2010.
The first workshop, WAIFI 2007, was held in Madrid, Spain, and then WAIFI
2008 was held in Siena, Italy. In 2008, the workshop series was made biannual
and it is now being held every even year, bringing together mathematicians,
computer scientists, engineers and physicists who are doing research on various
aspects of finite field arithmetic.

This year the workshop received 33 submissions, each of which was reviewed
by at least three reviewers who were either members of the Program Committee
of the workshop or external reviewers chosen by the members. Once the review
phase was over, the Program Committee had online discussions over a period of
several days. In the end, a total of 15 papers representing both theoretical and
practical aspects of finite field arithmetic were accepted for presentation. These
accepted papers are part of these proceedings. In addition to the presentations
of these papers, we were fortunate to have three invited talks given by P. Vijay
Kumar, Alfred Menezes and Henning Stichtenoth. The papers, which the invited
talks were based on, are also part of the proceedings.

We are very grateful to the members of the Program Committee for their
dedication, professionalism and careful work with the review and selection pro-
cess. We also sincerely thank the external reviewers who contributed with their
special expertise to review papers for this workshop.

We deeply thank General Co-chairs Çetin Kaya Koç and Ferruh Özbudak
for their support of the Program Committee and their hard work in leading
the overall organization of the workshop and holding it in the historic city of
Istanbul– a joint European Capital of Culture for year 2010. We are also very
grateful to José Luis Imaña for diligently maintaining the workshop website, and
to Claude Carlet for making workshop announcements. Our very special thanks
go to Murat Cenk, Gökay Saldamli and Zülfükar Saygi for dealing with various
local arrangements with a lot of care.

We would also like to sincerely thank members of the Steering Committee
of the workshop series for their constant support and encouragement in our ef-
forts to create a stimulating scientific program, leading to the proceedings of
WAIFI 2010. Special thanks go to Jean-Jacques Quisquater for making arrange-
ments with Springer to publish the proceedings as a volume of Lecture Notes in
Computer Science.

The process of paper submission, review and online discussion was carried out
using the EasyChair conference management system, which we found to be very
useful. The system was also used for dealing with final versions of the accepted
and invited papers and towards the preparation of the proceedings. So, thank
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you EasyChair! We would also like to acknowledge Istanbul Şehir University for
being a sponsor of the workshop.

Finally, but most importantly, we deeply thank the authors from all over the
world who submitted their papers to the workshop. It was their hard work and
endeavor to advance the field of knowledge that made the workshop a stimulating
forum. We also thank the participants of the workshop for making it a very
successful event.

June 2010 M. Anwar Hasan
Tor Helleseth
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Recursive Towers of Function Fields over Finite

Fields

Henning Stichtenoth

Sabancı University, MDBF
34956 Tuzla, İstanbul, Turkey
henning@sabanciuniv.edu

Abstract. The theory of recursive towers of function fields over finite
fields was developed by A. Garcia and the author since 1995. We give a
survey about the main ideas and results, and we propose some problems
for future work.

Keywords: Function fields, towers of function fields, curves with many
points, AG codes.

1 Introduction

Families of algebraic curves which have many rational points over a finite field
IFq, became popular around 1980 after the seminal papers by V.D.Goppa [8], who
introduced algebraic geometry (AG) codes, and by M.A.Tsfasman, S.G.Vladut
and T.Zink [13]. They used modular curves for the construction of long AG codes
over IFq whose limit parameters are better than the Gilbert-Varshamov bound
(for q square, q ≥ 49). The key point of their work is the existence of a sequence
of algebraic curves (Ci)i≥0, defined over IFq, such that the sequence N(Ci)/g(Ci)
has a strictly positive limit. Here N(C) (resp. g(C)) denotes the number of IFq-
rational points (resp. the genus) of the curve C. Certain modular curves yield
such families.

Recursive towers of function fields over IFq provide a more elementary (yet
non-trivial) and explicit approach to families of curves with many rational points,
and hence to the Tsfasman-Vladut-Zink theorem.

2 Notations and Definitions

We denote by IFq the finite field of cardinality q. Rather than dealing with
curves, we use the notion of function fields, which is essentially equivalent to
the concept of algebraic curves [10]. By definition, an algebraic function field F
over IFq is a finite extension of the rational function field IFq(x) such that no
element z ∈ F \ IFq is algebraic over IFq. The theory of function fields is very
similar to the theory of algebraic number fields (i.e.; finite extensions of the field
Q of rational numbers). The analogon to a P -adic valuation of a number field
K (which corresponds to a prime ideal P in the ring of integers of K) is, in the

M.A. Hasan and T. Helleseth (Eds.): WAIFI 2010, LNCS 6087, pp. 1–6, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 H. Stichtenoth

function field case, a valuation v : F → ZZ ∪{∞}, satisfying v(yz) = v(y)+ v(z)
and v(y+z) ≥ min{v(y), v(z)} for all y, z ∈ F . The corresponding valuation ring
O = {z ∈ F | v(z) ≥ 0} has a unique maximal ideal P = {z ∈ F | v(z) > 0},
which is called a place of F . As IFq ⊆ O and P ∩ IFq = {0}, the residue class
field O/P can be considered as an extension field of IFq. In fact, this is a finite
field extension. P is called a rational place (or place of degree one) if O/P = IFq.
The number of rational places of F/IFq is finite and it is denoted by N(F ).

An important numerical invariant of a function field F is its genus g(F ). This
is a non-negative integer which measures - in some sense - how complicated the
function field is. The rational function field IFq(x) has genus 0, and a non-rational
function field always has genus g(F ) ≥ 1.

For every sequence (Fi)i≥0 of function fields over IFq with g(Fi) → ∞, one
has that

lim sup
i→∞

N(Fi)/g(Fi) ≤ √
q − 1 ;

this is the so-called Drinfeld-Vladut bound. The sequence (Fi)i≥0 is called asymp-
totically good if lim supi→∞N(Fi)/g(Fi) > 0, and asymptotically optimal if this
upper limit attains the Drinfeld-Vladut bound.

The function fields corresponding to certain families of modular curves are
asymptotically optimal (over fields of square cardinality q = �2). This property
of modular curves is the main ingredient in the proof of the Tsfasman-Vladut-
Zink theorem. However, it is a non-trivial task to produce asymptotically good
families in an explicit manner. If you try to do so, you will see that, most likely,
either the genera g(Fi) of your sequence of function fields grow too fast, or the
numbers of rational places N(Fi) do not grow fast enough, so that you will
obtain limi→∞N(Fi)/g(Fi) = 0.

3 Towers of Function Fields

A sequence F = (Fi)i≥0 of function fields over IFq is called a tower, if F0 ⊆ F1 ⊆
F2 ⊆ . . ., and all extensions Fi+1/Fi are separable of degree [Fi+1 : Fi] > 1.
Moreover we assume that g(Fi) → ∞ for i → ∞. One shows easily that the
following limits exist in IR+ ∪ {∞}:

γ(F/F0) := lim
i→∞

g(Fi)/[Fi : F0] , the genus of F/F0,

ν(F/F0) := lim
i→∞

N(Fi)/[Fi : F0] , the splitting rate of F/F0,

λ(F) := lim
i→∞

N(Fi)/g(Fi) = ν(F/F0)/γ(F/F0) , the limit of F .

By the Drinfeld-Vladut bound we know that 0 ≤ λ(F ) ≤ √
q − 1 . The tower

is asymptotically good if λ(F ) > 0, and it is asymptotically optimal if λ(F ) =√
q−1. It is also clear that F is asymptotically good if and only if γ(F/F0) <∞

and ν(F/F0) > 0. In order to determine the limit λ(F), one usually studies the
genus γ(F/F0) and the splitting rate ν(F/F0) separately.
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Before doing this, we recall some facts about extensions of function fields.
Let E/F be a separable extension of function fields of degree [E : F ] = n.
A place Q of E is called an extension of the place P of F , if P ⊆ Q. We
write then Q|P . Every place of F has at least one, but at most n extensions
in E. If a rational place P of F has exactly n distinct extensions in E/F , then
these places are rational places of E, and we say that P splits completely in
E/F .

Assume that P is a place of F and Q is a place of E with Q|P . For the
corresponding valuations vP and vQ there exists an integer e ≥ 1 such that
vQ(z) = e · vP (z) for all z ∈ F . We call e =: e(Q|P ) the ramification index
of Q|P . The place P is said to be unramified in E/F if e(Q|P ) = 1 for all
Q|P , otherwise P is ramified in E/F . If e(Q|P ) is relatively prime to q (the
cardinality of IFq), for all Q|P , then P is called tame in E. Otherwise, P is wild
in E. The number of ramified places in a separable extension E/F is always
finite.

The genera g(E) and g(F ) are related by the Hurwitz genus formula

2g(E) − 2 = [E : F ](2g(F ) − 2) + d(E/F ) ,

where d(E/F ) ≥ 0 is the degree of the different of the extension E/F . Roughly
speaking, d(E/F ) is small if only few places of F are ramified in E, and if their
ramification is tame or not ‘too wild’.

Now we can discuss the genus γ(F/F0) and the splitting rate ν(F/F0) of a
tower F = (Fi)i≥0 over IFq.
A. We define the ramification locus V (F/F0) := {P | P is a place of F0 which
is ramified in some extension Fk/F0, k ≥ 1}. If V (F/F0) is finite and all ramifi-
cation in the tower is tame, it follows from the Hurwitz genus formula that the
genus γ(F/F0) is finite (which is a necessary condition for F to be asymptoti-
cally good). The same conclusion holds if some places ramify wildly, but not too
wildly (one can make this statement more precise). In the case of wild ramifica-
tion, it is often a difficult task to understand if ramification is not too wild (see
the examples in Section 4 below).
B. We say that a rational place P of F0 splits completely in the tower F , if P
splits completely in all extensions Fk/F0, k ≥ 1. The places Q of Fk with Q|P
are then also rational. Define the splitting locus of F/F0 as Z(F/F0) := {P | P
is a rational place of F0 which splits completely in F}. It is clear that ν(F/F0) ≥
|Z(F/F0)|. Therefore a non-empty splitting locus implies that the splitting rate
satisfies ν(F/F0) > 0 (which is a necessary condition for an asymptotically good
tower).

The art of finding an asymptotically good tower F = (Fi)i≥0 is therefore to
ensure that it has a non-empty splitting locus Z(F/F0), and that at the same
time, the ramification locus V (F/F0) is finite, having only tame or not too wild
ramification.



4 H. Stichtenoth

4 Recursive Towers

A tower F = (Fi)i≥0 is said to be recursive if there exist a non-zero polynomial
f(x, y) ∈ IFq[x, y] and elements x0, x1, x2, . . . such that

F0 = IFq(x0) , Fi+1 = Fi(xi+1) and f(xi, xi+1) = 0 ,

for all i ≥ 0. We call then the equation f(x, y) = 0 a defining equation for F .
Often it is convenient to write a defining equation in the form ϕ(x, y) = ψ(x, y)
with rational functions ϕ(x, y), ψ(x, y). It is clear that such an equation can be
rewritten in the form f(x, y) = 0 with some polynomial f(x, y).

We know many examples of recursive towers, some of which are asymptotically
good, some are asymptotically optimal. Here are some of these examples (we give
only the defining equations for the towers, and the finite field, over which the
towers are considered).

Example 1. (see [7]) The Fermat tower, defined by the equation

ym + (x+ 1)m = 1

over the field IFq with q = �e, e ≥ 2 and m = (q − 1)/(� − 1). The Fermat
tower is asymptotically good; it is asymptotically optimal over the field IF4, for
� = e = 2,

Example 2. (see [5]) This tower is recursively defined by the equation

y2 = (x2 + 1)/2x

over a finite field IFq of odd characteristic p > 2. The tower is asymptotically
optimal for q = p2.

Example 3. (see [4]) This is a ‘wild’ tower (i.e., there are wildly ramified places)
over IFq with q = �2. The defining equation is

y� + y = x�/(x�−1 + 1) .

The tower is asymptotically optimal over IF�2 for any prime power �.

Example 4. (see [1]) An asymptotically good tower over any field IFq with q = �3

is defined by the equation

(y� − y)�−1 + 1 = −x�(�−1)/(x�−1 − 1)�−1 .

Each tower above has finite ramification locus and a non-empty splitting locus.
However, the problems in proving that the towers are asymptotically good (resp.
optimal) are of quite different type:

In Example 1, to prove that the ramification locus is finite and the splitting
locus is non-empty, is rather easy. But the tower is far from being asymptotically
optimal for q �= 4.

In Example 2 one can easily determine the ramification locus, but it is difficult
to show that the splitting locus is non-empty.
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The towers in Example 3 and 4 are both wild. In both cases it is not very
difficult to show that the ramification locus is finite and the splitting locus is
non-empty. But it is hard to control wild ramification and to show that it is not
‘too wild’.

5 Problems

Here we propose some open problems on recursive towers of function fields.

Problem 1. One knows that there are towers with strictly positive splitting rate,
whose splitting locus is empty [3]. But the following is not known: Is there a
recursive tower F = (Fi)i≥0 over IFq with splitting rate ν(F/F0) > 0 such that
its splitting locus Z(F/Fk) is empty for all k ≥ 0 ?

Problem 2. One knows that there are towers with finite genus γ(F/F0), whose
ramification locus is infinite [3]. But one does not know if there exists a recursive
tower F = (Fi)i≥0 over IFq such that γ(F/F0) < ∞ and its ramification locus
V (F/F0) is infinite.

Problem 3. For q = �k with k = 2s+ 1 ≥ 5 odd, find recursive towers over IFq

having a limit λ(F) ≥ c · qs (with some constant c > 0). For q = �3, such towers
are provided in Example 4 above.

Problem 4. Find an asymptotically good recursive tower over a prime field IFp

(p a prime number). So far, one only knows that there exist asymptotically good
towers over IFp. This was proved in [11], using class field theory.

Problem 5. Construct explicit bases of Riemann-Roch spaces, in some asymp-
totically good recursive tower over a finite field. This is an important task if one
wants to construct the corresponding AG codes explicitly. See [9].

Problem 6. Recent applications of towers in cryptography [2] ask for towers
(Fi)i≥0 such that the function fields Fi have a small p-rank (p = char(IFq)).
Hence one should study more systematically the behaviour of the �-part of the
divisor class group in towers (� any prime number).

For an exhaustive list of references we refer to the survey article [6].
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High-Performance Modular Multiplication on

the Cell Processor

Joppe W. Bos

Laboratory for Cryptologic Algorithms
EPFL, Station 14, CH-1015 Lausanne, Switzerland

Abstract. This paper presents software implementation speed records
for modular multiplication arithmetic on the synergistic processing ele-
ments of the Cell broadband engine (Cell) architecture. The focus is on
moduli which are of special interest in elliptic curve cryptography, that
is, moduli of bit-lengths ranging from 192- to 521-bit. Finite field arith-
metic using primes which allow particularly fast reduction is compared
to Montgomery multiplication. The special primes considered are the
five recommended NIST primes, as specified in the FIPS 186-3 standard,
and the prime used in the elliptic curve curve25519. While presented
and benchmarked on the Cell architecture, the proposed techniques to
efficiently implement the modular multiplication algorithms are suited to
run on any architecture which is able to compute multiple computations
concurrently; e.g. graphics processing units.

Keywords: Cell Broadband Engine, Curve25519, Elliptic Curve Cryp-
tography (ECC), Montgomery Multiplication, NIST primes.

1 Introduction

Elliptic curve cryptography (ECC) [20,24] is an approach to public-key crypto-
graphy which enjoys increasing popularity since its invention in the mid 1980s.
The attractiveness of small key-sizes [22] has placed this public-key cryptosystem
as the preferred alternative to the widely used RSA public-key cryptosystem [30].
This is emphasized by the current migration away from 80-bit to 112-bit security
where, for instance, the United States’ National Security Agency restricts the
use of public key cryptography in “Suite B” [27] to ECC.

In this paper we present performance results for one of the key operations in
ECC: modular multiplication. The performance results are obtained when run-
ning on the heterogeneous, multi-core, single instruction, multiple data (SIMD)
Cell broadband engine (Cell) architecture. As far as we know, our performance
results set new speed records for generic moduli, using interleaved Montgomery
multiplication [25], and special modular multiplication for moduli ranging from
192 to 521 bits. This range covers the current standardized parameters for ECC
cryptosystems as specified by National Institute of Standards (NIST) [34].

The special primes considered in this work are the recommended primes of
special form by NIST [34] and the prime used in curve25519 as proposed by

M.A. Hasan and T. Helleseth (Eds.): WAIFI 2010, LNCS 6087, pp. 7–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Bernstein [2]. These special primes are used to enhance the performance of
ECC-based schemes in practice by exploiting the special form of the primes
to construct a fast reduction step. Typically, the multiplication and special re-
duction are performed sequentially. For the separated multiplication step we
consider schoolbook and Karatsuba multiplication [18] techniques. We use the
straight-forward methods to implement the fast reduction for the NIST recom-
mended primes (see [32]). For the special prime in curve25519 we use a different
approach in order to compare with the proposed fast reduction from [2].

The performance results are obtained by using the features of SIMD archi-
tectures. The implementations are optimized for the Cell and take both the
advantages (e.g., the rich instruction set and large register file) and disadvan-
tages (e.g., the “small” 16 × 16 → 32-bit multiplier) of this architecture into
account. Furthermore, multiple streams of computations are interleaved to in-
crease throughput. Multi-stream modular multiplication computations are use-
ful in both a cryptanalytic and cryptographic setting. For instance, one could
use multi-stream modular multiplication routines, either the generic or special
variant, to speedup batch decryption for ECC-based schemes. Additionally, this
work shows the practical benefit of using the special over generic prime moduli
on the Cell.

The paper is organized as follows. Section 2 introduces the Cell broadband
engine architecture. Section 3 recalls some basic facts about elliptic curves,
Montgomery multiplication and discusses the special primes used in this work.
Section 4 describes the cryptographic and cryptanalytic applications where
multi-stream modular multiplications can be used. Section 5 describes how the
different modular multiplication methods can be combined into a multi-stream
high-performance implementation on the Cell. Section 6 presents and discusses
our performance results and compares them to implementations by others on
the Cell. Section 7 concludes the paper.

2 The Cell Broadband Engine

The Cell architecture [15], jointly developed by Sony, Toshiba, and IBM, is
equipped with one dual-threaded, 64-bit in-order “Power Processing Element”
(PPE), which can offload work to the eight “Synergistic Processing Elements”
(SPEs) [33]. The SPEs are the workhorses of the Cell processor which can be
found in the PlayStation 3 (PS3) game console. Each SPE, running at 3.2 GHz in
the PS3, consists of a Synergistic Processing Unit (SPU), 256 kilobyte of private
memory called Local Store (LS) and a Memory Flow Controller.

Most SPU instructions are 128-bit wide single instruction, multiple data
(SIMD) operations performing sixteen 8-bit, eight 16-bit, four 32-bit, or two
64-bit computations in parallel. Each SPU is equipped with a large register file
containing 128 registers of 128 bits each, providing space for unrolling and soft-
ware pipelining of loops, hiding the relatively long latencies of its instructions.
Unlike the processor in the PPE, the SPUs are asymmetric processors, having
two pipelines (denoted by the odd and the even pipeline) which are designed to
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execute two disjoint sets of instructions (denoted by odd and even instructions).
In the ideal case, two instructions (one odd and one even) can be dispatched per
cycle. The SPUs are in-order processors and have no hardware branch-prediction.
Instead, the programmer (or compiler) can tell the instruction fetch unit in ad-
vance where a (single) branch instruction will jump to.

Each SPE has access to a rich instruction set which operates simultaneously
on 8-, 16- or 32-bit words. Instructions of particular interest are shuffle (odd
instruction) and select (even instruction). The d = shuffle(a, b, c) instruction
uses the pattern given in c to shuffle 16 of the 32 bytes of a and b to the output d,
in such a way that the jth byte of c determines the jth byte of d, either as a
copy of a byte of a or b or as one of the constants {0x00, 0xFF, 0x80}, and
where duplicate copies are allowed. The d = select(a, b, p) instruction acts as
a 2-way multiplexer; depending on the input pattern p the corresponding bit
from either a or b is selected as the output bit in d. The SPEs are equipped
with a 4-way SIMD multiplier (even instruction) which can compute four 16-
bit integer multiplications simultaneously per clock cycle. In addition, an even
4-way SIMD multiply-and-add instruction, which performs a 16 × 16 → 32-bit
unsigned multiplication and an addition of a 32-bit unsigned operand to the
32-bit product, is available and has the same latency as a multiplication without
the addition. Note that carries are not generated for this instruction.

3 Preliminaries

In this section the required background about elliptic curves, the various (mod-
ular) multiplication techniques and the special primes are recalled. We want to
compute the product C ≡ A · B mod M , by either first applying schoolbook or
Karatsuba multiplication and next a fast reduction, or C ≡ A · B · r−n mod M
using Montgomery multiplication, with A, B, C, r, n, M ∈ Z. Here, M is an n-
word, odd modulus such that rn−1 ≤ M < rn. In practice r = 2w with w the
bit-length of a word, for the algorithms implemented for the SPE we either use
w = 32 or w = 16 (cf. Section 5).

Elliptic Curves. Let p > 3 be a prime, then any a, b ∈ Fp such that
4a3 + 27b2 �= 0 define an elliptic curve Ea,b over Fp. The zero point, the so-
called point at infinity, together with the set of points (x, y) ∈ Fp × Fp which
satisfy the shortened affine Weierstrass equation y2 = x3 + ax + b, form an
Abelian group Ea,b(Fp) [31] (usually written additively). Repeated point addi-
tion is called scalar multiplication and a single instance of point addition can be
computed using multiple operations in Fp. Besides the affine Weierstrass repre-
sentation one can use a whole range of different representations. An overview of
the costs, expressed in arithmetic operations in the underlying field, is given by
Bernstein and Lange in [5].

Montgomery Multiplication. The Montgomery modular multiplication
method is introduced in [25] and can be used to replace the conventional modular
multiplication. In order to be used, the operands need to be converted: given an
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Algorithm 1. Schoolbook (left), Karatsuba (middle) and interleaved Montgomery
(right) multiplication algorithms.

Input:{
A =

∑ n−1
i=0 air

i,

B =
∑ n−1

i=0 bir
i

Output:{
C = A · B

=
∑ 2n−1

i=0 cir
i

1. C = A · b0
2. for i = 1 to n−1 do
3. C = C + ri(A · bi)
4. return C

Input:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A =
∑ n−1

i=0 air
i,

B =
∑ n−1

i=0 bir
i,

T : some threshold for
switching to schoolbook
multiplication.

Let r̃ = r�n/2�.

Output:

{
C = A · B

=
∑ 2n−1

i=0 cir
i

1. if n < T then
2. return C = schoolbook(A, B)
3. A = A0 + A1r̃, 0 ≤ A0, A1 < r̃
4. B = B0 + B1 r̃, 0 ≤ B0, B1 < r̃
5. T0 = Karatsuba(A0, B0)
6. T1 = Karatsuba(A1, B1)
7. T2 = Karatsuba(A0+A1, B0+B1)−

T0 − T1
8. return

C = (T0 + T2 · r̃ + T1 · r̃2)

Input:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A =
∑ n−1

i=0 air
i, B,

M, µ such that
0 ≤ A, B < rn,

rn−1 ≤ M < rn,
2 � M, gcd(r, M) = 1

µ = −M−1 mod r,
Output:{

C ≡ A · B · r−n mod M
such that 0 ≤ C < rn

1. C = 0
2. for i = 0 to n − 1 do
3. C = C + ai · B
4. q = µ · C mod r
5. C = (C + q · M)/r
6. if C ≥ rn then
7. C = C − M
8. return C

integer X , the Montgomery residue of this integer is defined as X̃ = X ·rn mod M
with rn−1 ≤ M < rn. The constant rn is the Montgomery radix such that
gcd(rn, M) = 1. The Montgomery product is defined as X̃ · Ỹ · r−n mod M , ad-
dition and subtraction remain unchanged. Since converting to and from Mont-
gomery form requires computational effort, the Montgomery multiplication is
mostly used in settings where the computation of a sequence of modular opera-
tions is required. See Algorithm 1 for a high-level description of the interleaved
Montgomery multiplication method.

Fast Reduction. One way to speed up elliptic curve arithmetic is to enhance the
performance of the finite field arithmetic by using a prime of a special form. The
structure of such a prime is exploited by constructing a fast reduction method,
applicable to this prime only. Typically, the multiplication and reduction are
in two sequential phases. For the multiplication phase we consider the so-called
schoolbook, or textbook, multiplication and the asymptotically faster Karatsuba
multiplication techniques (see Algorithm 1 for a high-level description).
NIST Primes. In the FIPS 186-3 standard [34] NIST recommends the use of
five prime fields when using the elliptic curve digital signature algorithm. These
primes allow fast reduction, see Appendix A for the algorithms optimized for a
machine word (limb) size of 32 bits, based on the work by Solinas [32]. The five
recommended primes are

p192 = 2192 − 264 − 1, p224 = 2224 − 296 + 1,
p256 = 2256 − 2224 + 2192 + 296 − 1, p384 = 2384 − 2128 − 296 + 232 − 1,
p521 = 2521 − 1.

An extensive study of a software implementation of the NIST-recommended
elliptic curves over prime fields on the x86 architecture is given by Brown
et al. [8].
Curve25519. The elliptic curve curve25519 is proposed by Bernstein in [2].
Besides offering high-speed arithmetic, a list of other advantages can be found
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in the original article [2]. This curve is over Fp255 with p255 = 2255 − 19, an ele-
ment x ∈ Fp255 can be represented as x =

∑9
i=0 xi2�25.5i�. Bernstein proposes to

implement the arithmetic using floating point instructions and therefore repre-
sentation inside a CPU is achieved by using floating-point registers. The original
article gives performance data obtained on a Pentium M.

4 Applications

To increase throughput the 4-way SIMD instructions of the SPE are used to
implement a modular multiplication routine which operates on 4 streams, or a
small multiple of 4 by interleaving these streams, in parallel. When a sequence
of multiplications has to be computed, for instance in elliptic curve scalar mul-
tiplication, the algorithm performs the same operations in SIMD-mode on all
inputs. When the scalar multipliers are different, a square-and-multiply algo-
rithm needs to perform a different sequence of point additions and doublings,
since this depends on the binary expansion of the scalar multiplier. Performing
the same computations on multiple streams concurrently, when multiplying with
different scalars, in a SIMD fashion might be suboptimal since all streams which
are being processed in parallel need to perform the same computations. In this
section we present some applications in cryptography and cryptanalysis where
SIMD modular multiplication algorithms can be beneficial; i.e., where the same
multiplier is used in multiple independent instances.

Cryptography. Cryptographic schemes often need to perform exponentiations
with a randomly selected exponent, or scalar multiplications when using the
additive group law as in the elliptic curve setting. If this exponent is used several
times, in independent calculations, these operations can be performed in parallel
in a SIMD fashion. For instance, in elliptic curve public-key schemes the ability
to process multiple streams of modular multiplication computations can be used
to speedup batch decryption. Examples of such schemes are the elliptic curve
integrated encryption scheme (ECIES), proposed by Bellare and Rogaway [1] and
standardized in [9], and the provably secure encryption curve scheme (PSEC),
based on the work by Fujisaki and Okamoto [13] and standardized in [17]. The
decryption of a message consist of multiplying an elliptic curve point, as specified
by the ciphertext, by the private key d in PSEC or by h ·d in the case of ECIES,
where h is the cofactor of the group order and is constant for a given private key.
When many messages need to be decrypted, using the same private key, SIMD
algorithms as described in this article can be used to speedup computations.

In other settings, where the bitsize of the modulus is usually larger compared
to the ECC setting, multi-stream modular multiplication computations can be
useful as well. ElGamal encryption schemes [12] require two exponentiations with
the same random exponent. Other related methods perform more exponentia-
tions with the same exponent. The double base variant of ElGamal by Damg̊ard,
often referred to as Damg̊ard ElGamal [11], performs three exponentiations. The
“double” hybrid Damg̊ard ElGamal, as proposed by Kiltz et al. [19], requires four
exponentiations with the same exponent in every encryption.
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Cryptanalysis. In cryptanalysis, multi-stream modular multiplication compu-
tations, for moduli sizes as considered in this article, can be used to enhance the
performance of the Pollard rho discrete logarithm algorithm [29], a method to
solve the elliptic curve discrete logarithm problem (ECDLP) which is essential
to the security of ECC. In practice, modular inversions in the Pollard rho al-
gorithm are traded for modular multiplications, to increase speed, by using the
Montgomery simultaneous inversion technique [26]. This technique allows one to
trade, when running N computations in parallel, N inversions for roughly 3N
modular multiplications and one inversion. For example, this technique is used
in [7] to solve a 112-bit ECDLP on the SPE architecture by working concur-
rently on 400 computations. Here, 70 percent of the total run-time is spent on
the computation of modular multiplications [7].

Another cryptanalytic application is factoring integers. The integer factoriza-
tion problem is essential to cryptographic algorithms as RSA. The fastest known
method to factor integers is the number field sieve [28,21]. This method can use
the elliptic curve factorization method (ECM) [23] in a co-factorization phase.
Performing elliptic curve arithmetic on multiple points allows the use of multi-
stream modular multiplication methods. Related work by Bernstein et al. [4]
gives performance details of a high-performance multi-stream implementation of
modular arithmetic in the ECM on graphics cards.

5 Multiplication on the SPE Architecture

The (modular) multiplication operations in this work are designed to operate on
relatively small (≤ 521 bits) integers. On the widely available x86 and x86-64
architectures the threshold for switching from schoolbook multiplication to meth-
ods with a lower asymptotic run-time complexity (e.g. Karatsuba multiplication)
is > 800 bits [14]. On these architectures the size of the operands on which the
multiplication and addition instructions work is typically the same (either 32 or
64 bits).

On the Cell “only” a 16× 16 → 32 bits multiplication instruction is available,
performing four multiplications in parallel, while the size of the 4-way SIMD
operands to the addition instruction is 32 bits. Unlike the x86 architecture an
integer multiply-and-add instruction is available. This allows the addition of
two extra 16-bit values to a result of a 16-bit multiplication without generating
a carry, since if 0 ≤ a, b, c, d < 216, then a · b+ c+ d < 232. We consider both the
schoolbook and Karatsuba multiplication for the special modular multiplication
routines.

Integer Representation on the Cell. For a high-performance implementa-
tion of arithmetic algorithms on the Cell, vectorization techniques are applied
and data are represented using the 4-way SIMD organization of the SPEs. Using
m 128-bit registers x[0], x[1], . . . , x[m− 1] a four-tuple (x1, x2, x3, x4) of integers
is represented. Each xi is a wm-bit integer, where w is either 16 or 32 depend-
ing on the setting; typically we use w = 16 for multiplication and w = 32 for
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x[0] =

128-bit wide register︷ ︸︸ ︷
︸ ︷︷ ︸

the 32 (or 16) least significant bits of x2 are located in

this 32-bit word (or in its 16 least significant bits)

...
...

x[j] = 16-bit︸ ︷︷ ︸
high

order

16-bit︸ ︷︷ ︸
low

order

...
...

x[m − 1] = ︸ ︷︷ ︸
↑

(x1,

︸ ︷︷ ︸
↑

x2,

︸ ︷︷ ︸
↑

x3,

︸ ︷︷ ︸
↑

x4)

Fig. 1. A four-tuple (x1, x2, x3, x4) of 32m-bit (or 16m-bit) integers arranged in m
128-bit registers

addition and subtraction to match the bit-lengths of the corresponding 4-way
SIMD instructions. Every element of the four-tuple is represented in a radix-2w

system:

xi =
m−1∑
j=0

x[j]i2wj,

for i = 1, 2, 3, 4. The four 32-bit words of the 128-bit register x[j] are denoted
by x[j]i. The representation of such a four-tuple (x1, x2, x3, x4) is depicted in
Figure 1.

Multiplication. Algorithm 2 depicts schoolbook multiplication designed to
run on SIMD architectures and is optimized for architectures with a native
multiply-and-add instruction. After trivially unrolling the for-loops the algo-
rithm is branch-free. Algorithm 2 splits the operands in 16-bit words, to take
advantage of the 16-bit multiplier on the Cell, but this can be modified to work
with any other word size on different architectures. Hence, on the SPE, Algo-
rithm 2 operates on four-tuples of inputs simultaneously using the data repre-
sentation from Fig. 1.

After the multiply-and-add, and a possible extra addition of one 16-bit word,
the 32-bit result z is split into the 16 most and 16 least significant bits, x and y
respectively. This is denoted by split(z) = (� z

216 �, z mod 216). On the SPE this
splitting can be implemented in different ways, i.e. by using two odd shuffle
instructions, or one even and and one odd shuffle instruction, or two even
and instructions. The appropriate splitting implementation is chosen to bal-
ance the number of odd and even instructions, reducing the total number of
required cycles. Note that when i = 1 the extra addition of di+1 can be omitted.
Hence, Algorithm 2 requires n2 × split, n2 × muladd and n(n− 2)× add (when
multiplying two 16n-bit integers); this can be computed in 2n(n − 3

4 ) cycles,
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Algorithm 2. Radix-216 schoolbook multiplication algorithm.

Input:

{
Integer a = (an−1, . . . , a1, a0), each ai is a 16-bit word.
Integer b = (bn−1, . . . , b1, b0), each bi is a 16-bit word.

Output: Integer c = (c2n−1, . . . , c1, c0) = a · b, each ci is a 16-bit word.
1. di = 0, i ∈ [1, n]
2. for j = 0 to n − 1 do
3. (e0, Dj) = split(a0 · bj + d1)
4. for i = 1 to n − 1 do
5. (ei, di) = split(ai · bj + ei−1 + di+1)
6. dn = en−1

7. return (c = (dn, dn−1, . . . , d1, Dn−1, Dn−2, . . . , D0))

optimistically assuming all odd and even pairs can be dispatched simultaneously.
Furthermore, this approximation ignores the function-call overhead and loading
and storing the in- and output from the local store. This leads to an optimistic
approximation for the computation of a single 16n× 16n → 32n-bit schoolbook
multiplication in n

2

(
n − 3

4

)
cycles (when processing 4 streams in parallel).

A branch-free (when unrolled) Karatsuba multiplication algorithm optimized
for vector architectures is given in Algorithm 3. This algorithm works on 32-bit
words, which is the word size of the even 4-way SIMD addition and subtraction
instructions on the SPE. Just as with the schoolbook multiplication this word
size can trivially be modified. Algorithm 3 assumes that the bitsize of the input
values is a multiple of 64 to split the operands evenly in two 32-bit multiples.
These parts are multiplied using another multiplication routine mul, which is
either a schoolbook or Karatsuba multiplication, which operates on inputs of
half the size.

The 2m-bit multiplication is split into two m×m-bit and one (m+1)×(m+1)-
bit multiplications (see Alg. 1). In order to avoid the use of a probably more
expensive multiplication by an extra limb, three m × m-bit multiplications are
used. The correct result, for the (m+1)×(m+1)-bit multiplication, is computed
by creating select-masks from the most significant bit of each of the two operands.
These are used to select the appropriate value (one of the inputs) or zero, which
is added to the result of the m×m-bit multiplication. Note that the initial borrow
values, in line 21, are (counterintuitively) set to one. An extra subtraction of one
is performed when the borrow is zero and no subtraction is performed when the
borrow is one on the SPE.

Special Reduction. The special reduction algorithms, see Appendix A, do not
fully reduce the input to the range [0, p〉 but to [0, t · p〉, where p is the prime
modulus used and t a small positive integer. In order to reduce a four-tuple of
integers simultaneously using SIMD instructions, different approaches can be
applied. Obviously the reduction algorithm can be applied again. A most likely
faster approach, when t is sufficiently small, is to subtract p repeatedly until the
result is in the desired range. The repeated subtracting is done by masking the
value appropriately before subtracting, which needs to be performed up to t− 1
times since multiple integer values are processed in parallel.
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Algorithm 3. Radix-232 Karatsuba multiplication algorithm for architectures
which support vector instructions, n is even.

Input:

{
Integer X = (xn−1, . . . , x0), each xi is a 32-bit word.
Integer Y = (yn−1, . . . , y0), each yi is a 32-bit word.

Output: Integer Z = (z2n−1, . . . , z0) = X · Y , each zi is a 32-bit word.
1. (Bn−1, . . . , B0) = mul((xn−1, . . . , xn/2), (yn−1, yn/2))
2. (Cn−1, . . . , C0) = mul((xn/2−1, . . . , x0), (yn/2−1, . . . , y0))
3. zero = carry1 = carry2 = {0}
4. for i = 0 to n/2 − 1 do
5. Xi = add extended(xn/2+i, xi, carry1)
6. Yi = add extended(yn/2+i, yi, carry2)
7. carry1 = gen carry extended(xn/2+i, xi, carry1)
8. carry2 = gen carry extended(yn/2+i, yi, carry2)
9. mask1 = cmpgt(carry1, 0), mask2 = cmpgt(carry2, 0)

10. for i = 0 to n/2 − 1 do
11. si = select(zero, Yi, mask1), ti = select(zero, Xi, mask2)
12. c1 = select(zero, carry1, mask2)
13. (zn−1, . . . , zn/2, An/2−1, . . . , A0) = mul((Xn/2−1, . . . , X0), (Yn/2−1, . . . , Y0))
14. carry1 = carry2{0}
15. for i = n/2 to n − 1 do
16. T = add extended(zi, si−n/2, carry1)
17. Ai = add extended(T, ti−n/2, carry2)
18. carry1 = gen carry extended(zi, si−n/2, carry1)
19. carry2 = gen carry extended(T, ti−n/2, carry2)
20. An = add extended(carry1, carry2, c1)
21. borrow1 = borrow2 = {1}
22. for i = 0 to n − 1 do
23. T = sub extended(Ai, Bi, borrow1)
24. Ei = sub extended(T, Ci, borrow2)
25. borrow1 = gen borrow extended(Ai, Bi, borrow1)
26. borrow2 = gen borrow extended(T, Ci, borrow2)
27. En = sub(An, zero, borrow1), En = sub(An, zero, borrow2)
28. carry1 = 0
29. for i = n/2 to n − 1 do
30. Zi = add extended(Ci, Ei−n/2, carry1)
31. carry1 = gen carry extended(Ci, Ei−n/2, carry1)
32. for i = n to n + n/2 − 1 do
33. Zi = add extended(Bi−n, Ei−n/2, carry1)
34. carry1 = gen carry extended(Bi−n, Ei−n/2, carry1)
35. Zn+n/2 = add extended(Bn/2, En, carry1)
36. carry1 = gen carry extended(Bn/2, En, carry1)
37. for i = n + n/2 + 1 to 2n − 1 do
38. Zi = add(Bi−n, carry1)
39. carry1 = gen carry(Bi−n, carry1)
40. return Z = (Z2n−1, . . . , Zn/2, Cn/2−1, . . . , C0)
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Table 1. The values of the 32-bit unsigned limbs of t · p224, c7 and c0 are the most
and least significant limb respectively. In order to avoid using a look-up table the value
t · p224 can be computed efficiently. Given t, c0 = t, c1 = c2 = 0, c3 = 0 − t, the values
for c4, c5, c6, c7 can be constructed (using the select instruction) depending on t.

t t · p224 = {c7, . . . , c0}
c7 c6 c5 c4 c3 c2 c1 c0

0 0 0 0 0 0 0 0 0

1 0 232 − 1 232 − 1 232 − 1 232 − 1 0 0 1

2 1 232 − 1 232 − 1 232 − 1 232 − 2 0 0 2

3 2 232 − 1 232 − 1 232 − 1 232 − 3 0 0 3

4 3 232 − 1 232 − 1 232 − 1 232 − 4 0 0 4

An additional performance gain is possible when the modulus is constant.
Select the desired multiple of p, which needs to be subtracted, from a look-up
table and perform a single subtraction. This can be achieved, when operating on
multiple integer values in parallel, using the select instruction. If reduction to
[0, 2m〉, for an m-bit modulus p, is allowed, the most significant word, containing
the possible carry, has to be inspected only to determine the multiple of p to
subtract. Note that an extra single subtraction might be needed in the unlikely
situation that the result after the subtraction is > 2m. This rare case is imple-
mented by a branch which is hinted to be false to reduce the branch-overhead.
The partially reduced numbers can be used as input to the same modular mul-
tiplication routines and if reduction to [0, p〉 is required this can be achieved at
the cost of a single multi-limb comparison and subtraction.

For the moduli of special form more instructions can be saved. For example
consider the modulus p224 = 2224 − 296 + 1. As described in Algorithm 6, in
Appendix A, the algorithm returns with (s1 + s2 + s3− s4− s5), where all the si

are 224-bit integers. At the implementation level we work with unsigned integers
and prefer not to work with negative numbers. This is achieved by subtracting
s4 + s5 from 2p224. We can bound the return value d by d = s1 + s2 + s3 +
(2p224 − s4 − s5) < 5p224. To reduce d to [0, 2224〉 the value t · p224, for some
t ∈ [0, 5〉, must be subtracted for four possibly different values of t in parallel after
inspection of the most significant word. As can be seen from the representation
in Table 1, when using a 232 radix system, selecting the correct value for the
different limbs is computationally easy. This allows the computation of t · p224

on-the-fly without the need to use and load from a look-up table. The reductions
for the other special NIST primes can be done in a similar fashion.

We propose a different approach for calculating the reduction step for the spe-
cial prime p255 = 2255−19 compared to the floating point approach from [2] (see
Section 3). This approach is similar to the special reduction technique applied to
the 112-bit prime modulus in [6, Appendix A]. A redundant representation mod-
ulo P̃255 = 2 ·p255 = 2256 −38 is used. Let R = rh ·2256 + rl be the 512-bit result
after multiplication. Next, the first reduction step is performed by computing
S = rl + 38 · rh ≡ R mod P̃255; note that S < 2262. Next, the same computation
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Algorithm 4. Radix-216 Montgomery Multiplication Algorithm.

Input:

⎧⎪⎪⎨
⎪⎪⎩

Integer a = (an−1, . . . , a1, a0), each ai is a 16-bit word.
Integer b = (bn−1, . . . , b1, b0), each bi is a 16-bit word.
Integer M = (Mn−1, . . . , M1, M0), each Mi is a 16-bit word and M is odd.
An 16-bit integer m̃ = −M−1 mod 216.

Output: Integer c = (cn−1, . . . , c1, c0) ≡ a · b · 2−16n mod M .
1. di = 0, i ∈ [0, n]
2. for i = 0 to n − 1 do
3. (e0, d0) = split(a0 · bi + d0)
4. for j = 1 to n − 1 do
5. (ej , dj) = split(aj · bi + dj + ej−1)
6. dn = dn + en−1

7. (∗, q) = split(d0 · m̃)
8. (e0, d0) = split(M0 · q + d0)
9. for j = 1 to n − 1 do

10. (ej , dj−1) = split(Mj · q + dj + ej−1)
11. (dn, dn−1) = split(dn + en−1)
12. if dn > 0 then
13. (dn−1, . . . , d1, d0) = (dn, dn−1, . . . , d1, d0) − (Mn−1, . . . , M1, M0)
14. return (c = (dn−1, . . . , d1, d0))

is repeated on S = sh · 2256 + sl: T = sl + 38 · sh ≡ S ≡ R mod P̃255. This is
computationally faster since sh < 26, note that the resulting T < 2257. Similar
techniques as described for the NIST primes are used to reduce the result to
[0, 2256〉.
Montgomery Multiplication. The interleaved Montgomery multiplication,
optimized for the use on vector architectures, is given in Algorithm 4. As pre-
sented, it uses 16-bit limbs and on the Cell four-tuples of inputs are processed
concurrently (but Alg. 4 can trivially be modified to operate on any radix size). A
conditional subtraction step is needed at the end of the algorithm to ensure that
the result is < 216n, for 16n-bit inputs. This conditional subtraction is replaced
by a comparison which creates a select mask, using this mask the value zero or
the value of the modulus is selected and subtracted. This eliminates a branch
which is to be avoided when processing multiple integer values in a SIMD fash-
ion. For efficiency, the integer representation is switched to a 232 radix system
when doing the final masking and subtraction.

The same notation for the split function is used as in Section 5. Hence, Al-
gorithm 4 requires 2n(n + 1) × split, 2n(n + 1) × muladd (when counting the
multiplication in line 8 as an multiply-and-add) and 2n(n − 1) × add since the
addition of dj in line 5 when j = 1 can be omitted. For the conditional sub-
traction we first convert the integer representation to a 232 radix system using

n

2 � shuffle instructions. Next we compare the carry (one cmpgt instruction)
and mask the value which we are going to subtract using 
n

2 � and instructions.
The subtraction requires 
n

2 � (extended) subtraction instructions and 
n
2 � − 1

(extended) generate borrow instructions.
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Counting the number of instructions required in Algorithm 4 gives 4n2+3
n
2
�

even and 
n
2
� odd instructions plus 2n(n + 1) times the split function. Hence,

an optimistic estimate of the number of cycles, ignoring overhead and assuming
perfect scheduling, for a single computation of Montgomery multiplication on
16n-bit inputs, when computing four computations in parallel, using Algorithm 4
on a single SPE is n2 + 9n

16 cycles.

6 Results

We implemented the proposed generic and special modular multiplication algo-
rithms using the C-programming language for the SPEs on the Cell architec-
ture. Four, or a small multiple of four, computations are processed in parallel.
The performance benchmarks are performed on a single SPE in the PlaySta-
tion 3 game console. We summarize these results, together with other (single
and multi-stream computation) modular multiplication results,7 obtained from
the literature, in Table 2. The metric of our performance results is the num-
ber of cycles for a single modular multiplication computation. Our performance
results are obtained by averaging over long sequences, hundreds of millions, of
different modular multiplications and include the timing benchmark overhead,
the function call overhead, loading and storing the in- and output from the lo-
cal store and possibly converting the in- and output from the different integer
representations (from radix-232 to radix-216 and vice-versa).

Performance Comparison. Performance results obtained with the Multi-
Precision Math (MPM) Library [16], provided by IBM in the example API for
the Cell, are given in Table 2 for different bit-sizes. The MPM library imple-
ments a single-stream Montgomery multiplication computation. In order to ob-
tain a faster implementation for specific bit-lengths (to make a fair comparison)
we unrolled the various loops inside the MPM library. These unrolled versions
are significantly faster compared to the standard MPM implementation; e.g.,
the unrolled 256-bit Montgomery multiplication is 1.4 times faster compared to
the unmodified MPM implementation. Our multi-stream implementations have
a higher latency compared to the unrolled MPM library but process multiple
streams resulting in fewer cycles per single multiplication. For instance, in the
setting of 256-bit moduli the unrolled MPM requires 877 cycles for a single
multiplication while our implementation requires 1188 cycles to compute four
multiplications in parallel. This is a speedup of almost a factor of three per
single multiplication.

In [10] Costigan and Schwabe implement elliptic curve arithmetic aimed at
curve25519 on the SPE architecture. The representation used differs slightly,
but is based on, the one proposed in [2]; an element x ∈ Fp255 is represented as
x =

∑19
i=0 xi2�12.75i�. A multi-stream version working on four streams in parallel

is implemented and hand-optimized in assembly and “perfectly” scheduled with
the surrounding code in a larger function implementing elliptic curve arithmetic.
This multi-stream implementation is estimated to compute a single modular
multiplication in around 168 cycles [10], this does not include any overhead for
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Table 2. Performance results of Montgomery multiplication or modular multiplication
modulo the special prime pi. The latter uses a separate multiplication (schoolbook (S)
or Karatsuba (K)) and a fast reduction phase. The benchmarks are performed on a
single SPE on a Cell in the PlayStation 3 game console. The stated number of cycles are
for a single modular multiplication (when processing the reported number of streams
in parallel) and the optimistic estimates are from the formulas from Section 5 and do
not include the special reduction cost.

From
Bitsize of

Method Streams
Performance Estimate

the modulus (cycles) (cycles)

This article 192 p192 (K) 8 105

This article 192 p192 (S) 8 126 68

This article 192 Montgomery 8 176 151

Bernstein et al. [3] 195 Montgomery 6 189

This article 224 p224 (K) 8 139

This article 224 p224 (S) 8 143 93

This article 224 Montgomery 4 234 204

Costigan and
255 p255 (S) 4 1681

Schwabe [10]

This article 255 p255 (K) 8 175

This article 255 p255 (S) 8 182 122

This article 256 p256 (S) 8 192 122

This article 256 p256 (K) 4 193

This article 256 Montgomery 4 297 265

MPM unrolled [16] 256 Montgomery 1 877

MPM [16] 256 Montgomery 1 1188

This article 384 p384 (K) 4 389

This article 384 p384 (S) 4 391 279

This article 384 Montgomery 4 665 590

MPM unrolled [16] 384 Montgomery 1 1610

MPM [16] 384 Montgomery 1 2092

This article 521 p521 (S) 4 622 500

This article 521 p521 (K) 4 723

This article 512 Montgomery 4 1393 1042

MPM unrolled [16] 512 Montgomery 1 2700

MPM [16] 512 Montgomery 1 3275

saving and storing the in- and output registers to and from the local store,
function call overhead and overhead due to benchmarking. In comparison, our
implementation requires 175 cycles for a single modular multiplication using a

1 This is the required number of cycles for an in-register implementation, no load-
ing of input and storing of output from the local store is performed, and excludes
benchmark and function call overhead.
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different approach for the special reduction (see Section 5). This includes loading
and storing the in- and output, function call and benchmarking overhead and
additional latencies because not all code can be scheduled perfectly (especially
at the beginning and end of the function where stalls occur). Comparing the
performance of the two different approaches for the reduction step is difficult
since the reported performance results of two versions are in different settings;
ours is a stand-alone multiplication function while the implementation from [10]
is an inline version working on registers only. In [10] it is estimated that the
time to load and store the in- and output requires 56 cycles in the setting of a
single modular multiplication. When considering this cost our approach using
the redundant representation looks preferable (since 175 < 168 + 56), especially
since we did not use any fine-tuned assembly code to achieve these results.

Improved multi-stream modular multiplication computations results, com-
pared to [4], are given by Bernstein et al. in [3]. Here, not only results for GPUs
are reported but also for the Cell architecture as used in the PlayStation 3. In
this setting Montgomery multiplication is implemented and optimized for one bit
size: a 195-bit generic modulus. A radix-213 system is used to represent 195-bit
integers using 15 limbs, this has the advantage of accumulating multiple carries
before an overflow occurs (on the SPE architecture) compared to a radix-216

system but requires more limbs to represent the integers. When quadratically
scaling our 192-bit performance result, in a similar fashion as done in [3], this
leads to an estimate of 176 · (195

192 )2 = 182 cycles; this is slightly faster compared
to the 189 required cycles reported in [3].

Discussion. The performance data from Table 2 show that the modular mul-
tiplication using the special primes are in almost all cases, with the exception
of p256 and p521, roughly 1.7 times faster compared to the Montgomery multi-
plication implementations targeting the same bit-lengths. Our results show that
p256 is 1.55 times faster than 256-bit Montgomery multiplication while p521 is
2.2 times faster compared to 512-bit Montgomery multiplication. This can be
partially explained by the relatively complicated and easy structure of p192 and
p521 respectively.

For p192 the version using Karatsuba multiplication is significantly (20 per-
cent) faster compared to the version using schoolbook multiplication. For p224,
p255, p256 and p384 the performance is roughly the same while for p521 school-
book multiplication is 16 percent faster. These differences can be explained due
to extra load and store operations from and to the local store. For the smaller
bitsizes almost all operations can be performed, after the initial loading from
the inputs, on registers. For the larger values the available 128 registers are not
sufficient and extra load and store instructions, leading to more instructions and
possibly extra stalls, are required. This also explains why processing four streams
instead of eight gives a higher performance for p384 and p521.

The number of cycles required for the Montgomery multiplication is 12 to 17
percent higher compared to the estimations for all special primes except p521.
This overhead is mainly caused by extra load and stores and due to the fact
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that the estimates are too optimistic (not every cycle a pair of instructions can
be dispatched due to instruction dependencies). For the special prime p521 more
than 33 percent of the estimated number of cycles is needed. After compiling our
code to assembly inspection shows that the significant overhead is as expected
due to the extra loads and stores. Note that loading the two input values in
registers (after conversion to radix-216) requires 66 registers which is already
more than half of the available register space.

7 Conclusions

In this paper we presented techniques to efficiently implement modular mul-
tiplication algorithms to SIMD architectures (such as the Cell or GPUs). We
considered Montgomery multiplication and various special reduction routines
which are of interest for elliptic curve cryptography. The modular multiplica-
tion implementations, which use these faster reduction schemes, are at least 1.5
times faster compared to general purpose Montgomery multiplication for the
same bitsize. The performance results of our multi-stream modular multiplica-
tion implementations for the synergistic processing elements of the Cell broad-
band engine architecture set new performance records for moduli of bit-length in
the range [192, 521] on this platform. These high-performing modular multipli-
cation, generic or special, implementations can be used to speed up public-key
cryptography; e.g. in batch elliptic curve decryption.
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8. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the
NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

9. Certicom Research: Standards for Efficient Cryptography 1: Elliptic Curve Cryp-
tography. Standard SEC1, Certicom (2000)

10. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the Cell broadband
engine. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 368–385.
Springer, Heidelberg (2009)

11. Damg̊ard, I.: Towards practical public key systems secure against chosen ciphertext
attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456.
Springer, Heidelberg (1992)

12. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

13. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

14. Granlund, T.: GMP small operands optimization. In: SPEED 2007 (2007)
15. Hofstee, H.P.: Power efficient processor architecture and the Cell processor. In:

HPCA 2005, pp. 258–262 (2005)
16. IBM: Multi-precision math library, Example Library API Reference,

https://www.ibm.com/developerworks/power/cell/documents.html

17. ISO/IEC 18033-2: Information technology – Security techniques – Encryption al-
gorithms – Part 2: Asymmetric ciphers (2006)

18. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. In: Proceedings of the USSR Academy of Science, vol. 145, pp. 293–294
(1962)

19. Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction
paradigm for hybrid encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 590–609. Springer, Heidelberg (2010)

20. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48,
203–209 (1987)

21. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)

22. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryp-
tology 14(4), 255–293 (2001)

23. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals of Mathemat-
ics 126, 649–673 (1987)

24. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

25. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

26. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

27. National Security Agency: Fact sheet NSA Suite B Cryptography (2009),
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

28. Pollard, J.M.: Factoring with cubic integers. In: [21], pp. 4–10
29. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Mathematics

of Computation 32, 918–924 (1978)
30. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)



High-Performance Modular Multiplication on the Cell Processor 23

31. Silverman, J.H.: The Arithmetic of Elliptic Curves. In: Gradute Texts in Mathe-
matics. Springer, Heidelberg (1986)

32. Solinas, J.A.: Generalized Mersenne numbers. Technical Report CORR 99-39, Cen-
tre for Applied Cryptographic Research, University of Waterloo (1999)

33. Takahashi, O., Cook, R., Cottier, S., Dhong, S.H., Flachs, B., Hirairi, K.,
Kawasumi, A., Murakami, H., Noro, H., Oh, H., Onish, S., Pille, J.,
Silberman, J.: The circuit design of the synergistic processor element of a Cell
processor. In: ICCAD 2005, pp. 111–117. IEEE Computer Society, Los Alamitos
(2005)

34. U.S. Department of Commerce and National Institute of Standards and Technol-
ogy: Digital Signature Standard (DSS) (2009),
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

A NIST Reduction

Algorithm 5. Fast reduction modulo p192 = 2192 − 264 − 1.
Input: Integer c = (c11, . . . , c1, c0), each ci is a 32-bit word, and 0 ≤ c < p2

192.
Output: Integer d ≡ c mod p192.

Define 192-bit integers:
s1 = (c5, c4, c3, c2, c1, c0), s2 = (0, 0, c7, c6, c7, c6),
s3 = (c9, c8, c9, c8, 0, 0), s4 = (c11, c10, c11, c10, c11, c10);

return (d = s1 + s2 + s3 + s4);

Algorithm 6. Fast reduction modulo p224 = 2224 − 296 + 1.
Input: Integer c = (c13, . . . , c1, c0), each ci is a 32-bit word, and 0 ≤ c < p2

224.
Output: Integer d ≡ c mod p224.

Define 224-bit integers:
s1 = ( c6, c5, c4, c3, c2, c1, c0), s2 = ( c10, c9, c8, c7, 0, 0, 0),
s3 = ( 0, c13, c12, c11, 0, 0, 0), s4 = ( c13, c12, c11, c10, c9, c8, c7)
s5 = ( 0, 0, 0, 0, c13, c12, c11);

return (d = s1 + s2 + s3 − s4 − s5);
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Algorithm 7. Fast reduction modulo p256 = 2256 − 2224 + 2192 + 296 − 1.
Input: Integer c = (c15, . . . , c1, c0), each ci is a 32-bit word, and 0 ≤ c < p2

256.
Output: Integer d ≡ c mod p256.

Define 256-bit integers:
s1 = ( c7 c6, c5, c4, c3, c2, c1, c0), s2 = ( c15 c14, c13, c12, c11, 0, 0, 0),
s3 = ( 0, c15, c14, c13, c12, 0, 0, 0), s4 = ( c15, c14, 0, 0, 0, c10, c9, c8),
s5 = ( c8, c13, c15, c14, c13, c11, c10, c9), s6 = ( c10, c8, 0, 0, 0, c13, c12, c11),
s7 = ( c11, c9, 0, 0, c15, c14, c13, c12), s8 = ( c12, 0, c10, c9, c8, c15, c14, c13),
s9 = ( c13, 0, c11, c10, c9, 0, c15, c14);

return (d = s1 + 2s2 + 2s3 + s4 + s5 − s6 − s7 − s8 − s9);

Algorithm 8. Fast reduction modulo p384 = 2384 − 2128 − 296 + 232 − 1.
Input: Integer c = (c23, . . . , c1, c0), each ci is a 32-bit word, and 0 ≤ c < p2

384.
Output: Integer d ≡ c mod p384.

Define 384-bit integers:
s1 = ( c11, c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, c0),
s2 = ( 0, 0, 0, 0, 0, c23, c22, c21, 0, 0, 0, 0),
s3 = ( c23, c22, c21, c20, c19, c18, c17, c16, c15, c14, c13, c12),
s4 = ( c20, c19, c18, c17, c16, c15, c14, c13, c12, c23, c22, c21),
s5 = ( c19, c18, c17, c16, c15, c14, c13, c12, c20, 0, c23, 0),
s6 = ( 0, 0, 0, 0, c23, c22, c21, c20, 0, 0, 0, 0),
s7 = ( 0, 0, 0, 0, 0, 0, c23, c22, c21, 0, 0, c20),
s8 = ( c22, c21, c20, c19, c18, c17, c16, c15, c14, c13, c12, c23),
s9 = ( 0, 0, 0, 0, 0, 0, 0, c23, c22, c21, c20, 0),

s10 = ( 0, 0, 0, 0, 0, 0, 0, c23, c23, 0, 0, 0);
return (d = s1 + 2s2 + s3 + s4 + s5 + s6 + s7 − s8 − s9 − s10);

Algorithm 9. Fast reduction modulo p521 = 2521 − 1.
Input: Integer c = (c33, . . . , c1, c0), each ci is a 32-bit word, and 0 ≤ c < p2

521.
Output: Integer d ≡ c mod p521.

Define 521-bit integers:
s1 = (c16, . . . , c1, c0), s2 = (c32, . . . , c17, c16);
return (d = s1 mod 2521 + s2

223 );
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Abstract. Gaussian normal bases have been included in a number of
standards, such as IEEE [1] and NIST [2] for elliptic curve digital sig-
nature algorithm (ECDSA). Among different finite field operations used
in this algorithm, multiplication is the main operation. In this paper, we
consider type T Gaussian normal basis (GNB) multipliers over GF (2m),
where m is odd. Such fields include five binary fields recommended by
NIST for ECDSA. A modified digit-level GNB multiplier over GF (2m)
is proposed in this paper. For T > 2, a complexity reduction algorithm is
proposed to reduce the number of XOR gates without increasing the gate
delay of the digit-level multiplier. The original and modified digit-level
GNB multipliers are implemented on the Xilinx® Virtex5™ FPGA fam-
ily for different digit sizes. It is shown that the modified digit-level GNB
multiplier requires lower space complexity with almost the same delay
as compared to the original type T, T > 2, GNB multiplier. Moreover,
the bit-parallel GNB multiplier obtained from the proposed modified
digit-level multiplier has the least space and time complexities among
the existing fast bit-parallel type T GNB multipliers for T > 2.

Keywords: Finite field, Gaussian normal basis, digit-serial multiplier,
complexity reduction.

1 Introduction

Elliptic curve cryptosystem, which is proposed independently by Miller [3] and
Koblitz [4], requires extensive finite field operations for the point multiplication.
Multiplication is the main operation and its structure depends strongly on the
representation of the field element. There are a number of ways to represent field
elements. Among them, the most common bases are the polynomial basis and
the normal basis representations [1]. In normal basis representation, squaring of
a field element is free in hardware. Recently, implementation of the point multi-
plication for elliptic curve cryptography (ECC) using normal basis has received
attention in the literature, see for example [5], [6] and [7].

The first normal basis multiplier over GF (2m) was invented by Massey and
Omura [8]. This bit-serial multiplier, which has a parallel-in serial-out structure,
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generates a bit of the result in each clock cycle. Therefore, the coordinates of
the multiplication are generated after m clock cycles with the least complexity.
There are also other bit-serial multipliers with parallel outputs, see for example
[9], [10]. To make a fast hardware implementation, a bit-parallel multiplier is
proposed in [11] by having m copies of identical bit-serial structure of [8] with
shifted inputs. In such a multiplier, once 2m bits of two inputs are received, m
bits of the product are obtained after propagation delay through gates. Various
efficient bit-parallel architecture for normal basis multiplication over GF (2m)
have been developed in the literature, see for example [11], [12] and [13] for
arbitrary normal basis as well as [14], [15], [16], and [17] for special classes of
normal basis.

Bit-parallel multipliers require a lot of silicon area and it is impractical for
resource constrained environments such as smart cards. To obtain an optimum
multiplier for such applications, a digit-level multiplier can be utilized, where
the digit size can be chosen depending on the available resources. Using a digit-
level multiplier allows the designers to trade-off between speed and area. Among
different digit-level normal basis multipliers available in the literature, the ones
with the parallel outputs run at much higher frequency than the other ones.
Such a multiplier is proposed in [15] and [7] for GNB over GF (2m), where m is
odd.

A special classes of normal basis called GNBs, have been included in the re-
cent standards, such as IEEE and NIST for ECDSA. In this paper, a complexity
reduction algorithm is proposed to reduce the number of XOR gates for the orig-
inal parallel-output type T digit-level GNB multiplier proposed in [15] and [7] for
T > 2. This algorithm uses sub-expression sharing without increasing the gate
delay of the multiplier. It is noted that no such common terms is obtained for
T = 2. Thus, the algorithm is coded using MATLAB for the GF (2163) (T = 4)
and GF (2283) (T = 6) finite fields in terms of different digit sizes. Then, based
on the results obtained from the algorithm, the original digit-level multiplier
structure is modified. The modified GNB multiplier requires fewer number of
XOR gates without impacting the gate delay. Both the original GF (2163) and
GF (2283) multipliers and the modified ones are compared in terms of number
of XORs for different digit sizes. To obtain the actual implementation results,
the original and modified structures are coded in VHDL and they are imple-
mented on a Xilinx® Virtex5™ field-programmable gate array (FPGA) device
for different digit sizes. The comparison results show that the modified struc-
ture outperforms the original one in terms of area without significantly affecting
the multiplication time. It is also shown that for the highest digit size, the bit-
parallel multiplier obtained from the modified digit-level multiplier requires the
least number of XOR gates with the same gate delay compared to the existing
fast GNB multipliers.

The organization of the remaining parts of this paper is as follows. In
Section 2, we state the preliminaries required in this paper. Also, the original
digit-level Gaussian normal basis multiplier with parallel output is presented in
this section. A modified version of this multiplier is proposed in Section 3 using a
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complexity reduction algorithm. Moreover, in this section a bit-parallel GNB mul-
tiplier obtained from the proposed digit-level GNB multiplier is presented and
compared with its counterparts in terms of time and area complexities. Results of
the hardware implementations of the proposed multiplier on the Xilinx® Virtex5™
FPGA are presented in Section 4. We finally conclude the paper in Section 5.

2 Preliminaries

It is well known that there is always a normal basis N = {β, β2, β22
, · · · , β2m−1},

for a finite field GF (2m) over GF (2) for any positive integer m, where β is
called normal element [18]. The elements of N are linearly independent and each
element, say A = (a0, a1, · · · , am−1), can be represented as a linear combination
of the elements in N , as A =

∑m−1
i=0 aiβ

2i

, where coefficients ai ∈ GF (2), 0 ≤
i ≤ m − 1, denote the coordinates of A. The merit of the normal basis is that,
squaring of an element A in the normal basis representation is a right cyclic
shift of its coordinates, i.e., A2 = (am−1, a0, a1, · · · , am−2), and it is free in
hardware.

Definition 1. Let p = mT + 1 be a prime number and gcd(mT/k, m) = 1,
where k is the multiplication order of 2 module p. Then, the normal basis N =
{β, β2, · · · , β2m−1} over GF (2m) is called the Gaussian normal basis of type T ,
T > 0.

It is noted that the GNBs exist over GF (2m) whenever m is not divisible by 8
[1]. In this paper, we only consider the GNBs with odd values of m. This implies
that T is an even number. It is noted that such GNBs are important since they
include the five binary fields, i.e., m ∈ {163, 233, 283, 409, 571}, recommended by
NIST for ECDSA [2]. The corresponding types for these fields are T = 4, 2, 6, 4,
and 10, respectively.

2.1 Normal Basis Multiplication

Let A = (a0, a1, · · · , am−1) =
∑m−1

i=0 aiβ
2i

and B = (b0, b1, · · · , bm−1) =
∑m−1

j=0 bjβ
2j

be two field elements over GF (2m). Let C ∈ GF (2m) be their
product, i.e., C = (c0, c1, · · · , cm−1) = AB =

∑m−1
i=0

∑m−1
j=0 aibjβ

2i+2j

. Let us
represent the field element β2i+2j ∈ GF (2m), 0 ≤ i, j ≤ m − 1, with respect to
N as β2i+2j

=
∑m−1

l=0 μ
(l)
i,jβ

2l

.Then, one can find C as

C =
m−1∑

i=0

m−1∑

j=0

aibj

m−1∑

l=0

μ
(l)
i,jβ

2l

=
m−1∑

l=0

m−1∑

i=0

m−1∑

j=0

aibjμ
(l)
i,jβ

2l

. (1)

By representing C with respect to N , i.e., C =
∑m−1

l=0 clβ
2l

, and equating it with
(1), the l-th coordinate of C can be written as cl =

∑m−1
i=0

∑m−1
j=0 aibjμ

(l)
i,j . Then,

it can be written in a matrix form as

cl = aM(l)btr, 0 ≤ l ≤ m − 1, (2)
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where M(l) = [μ(l)
i,j ]

m−1
i,j=0, μ

(l)
i,j ∈ GF (2), 0 ≤ i, j ≤ m− 1, a = [a0, a1, · · · , am−1]

and btr denotes the matrix transpose of row vector b = [b0, b1, · · · , bm−1]. In
(2), M(l) is obtained from the l-fold right and down circular shifts of the mul-
tiplication matrix M = M(0). The computation of entries of M can be found
from [1]. Massey and Omura in [8] proposed the bit-serial multiplier by im-
plementing (2) for one coordinate, say c0 = aMbtr = F (A, B). Then, the lth
coordinate of C can be obtained by cyclic shifts of the coordinates of A and B,
i.e., cl = F (A � l, B � l) [8].

The number of non-zero entries in the multiplication matrix M = M(0) in (2)
is called the complexity of the normal basis and is denoted by CN [19]. This
can be used to estimate the area complexity of hardware implementation of the
multiplier. Gao et al. in [20] proved that CN ≥ 2m − 1. The normal basis is
said to be optimal if CN = 2m − 1. The optimal normal bases are extended to
another class of low complexity normal basis called Gaussian normal basis by
Ash et. al [21]. For type T GNB, T ≥ 2, the complexity of multiplication matrix
M satisfies CN ≤ mT − 1 [21]. A slightly tighter upper bound for CN is found
in [10] as CN = mT − T + 1. Therefore, if there is no optimal normal basis for a
given m, the GNB with the least value of T is an alternative for choosing normal
bases.

2.2 Digit-Level Gaussian Normal Basis Multiplier with Parallel
Output

Let A = (a0, a1, · · · , am−1) and B = (b0, b1, · · · , bm−1) be the GNB elements
over GF (2m), and let d, 1 ≤ d ≤ m, be the digit size. Reyhani-Masoleh in [15]
and Kim et al. in [7] proposed a digit-level Gaussian normal basis multiplier with
parallel output (DLGMp). It requires q, 1 ≤ q ≤ m, clock cycles to generate all
m coordinates of C = AB simultaneously at the end of the final clock cycle.
The original multiplier structure of DLGMp is shown in Figure 1. Let X =
(x0, x1, · · · , xm−1) and Y = (y0, y1, · · · , ym−1) be the input registers of this
multiplier. Then, it implements [15]

J(X, Y ) =
m−1∑

k=0

xm−ks
′
0(k, Y )β2i

, (3)

where

s
′
0(k, Y ) =

∑

i∈Rk

yi−k, (4)

and Rk is a set containing the locations of non-zero entries of row 2k, 0 ≤
2k ≤ m − 1, of the multiplication matrix M = M(0) defined in (2). Based on
the properties of M for GNB, one can find s

′
0(0, Y ) = y1 and s

′
0(k, Y ) =

s
′
0(m−k, Y ), 1 ≤ k ≤ m−1

2 [15]. Also, it is shown in [10] and [15] that the number
of elements in Rk is even and less than or equal to T, i.e., |Rk| ≤ T . The J block
in Figure 1 performs (3) using m AND gates. For the multiplication operation,
the registers X and Y of this figure are initially loaded by the coordinates of A
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Fig. 1. Digit-serial Gaussian normal basis multiplier proposed in [15], [7], where the

i-fold right cyclic shift is denoted by i
� and r is a number 0 ≤ r ≤ d − 1 such that

m = qd − r

and B, respectively. Also, the output register Z should be cleared before starting
the multiplication operation. Then, after q clock cycles, the output register Z
contains the coordinates of C = AB. In the following section, we modify this
multiplier to reduce the number of XOR gates.

3 Modified Digit-Level GNB Multiplier

The number of XOR gates of the DLGMp multiplier presented in the previous
section can be reduced by reusing the common terms appeared at the outputs
of the P blocks. The complexity reduction scheme presented in [15] cannot be
applied for a practical field, such as, GF (2163) and GF (2283). For the GF (27)
example used in [15], the P block is optimized first and then the same block
is copied for all P blocks used in the multiplier. It is interesting to note that
for type 4 GNB over GF (2163), no common pair can be found in the P block of
Figure 1 if one applies the method presented in [15]. For this purpose, we modify
this multiplier by replacing all P blocks that generate P1, · · · , Pd in Figure 1 with
one block. As seen in Figure 1, the number of outputs of an unoptimized P block
in this figure is m+1

2 . These are based on the following signals [15]
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Fig. 2. Modified Digit-level Gaussian Normal Basis Multiplier (MDLGMp)

Pk(Y ) = (y1−k, s
′
0(1, Y � k), s

′
0(2, Y � k), · · ·

, · · · , s
′
0(

m−1
2 , Y � k)), 0 ≤ k ≤ d − 1, (5)

for the P block that generates Pk(Y ). The modified digit-level multiplier is shown
in Figure 2. The combination of all P blocks in Figure 1 is shown by ρ in Figure
2. All signals in (5) are used to build the block ρ in Figure 2. As shown in this
figure, y1−ks are removed from the block ρ. To reduce the complexity of the
ρ block in Figure 2, we divide the ρ block in two blocks ρ1 and ρ2, where ρ1

includes all common pairs used to generate all signals in (5). In the following
section, a complexity reduction algorithm is presented for a given GNB to obtain
the optimized blocks of ρ1 and ρ2 so that the time delay (in terms of gate delays)
of the original block ρ is the same as the one in the modified multiplier, i.e., the
addition of gate delays of the two blocks ρ1 and ρ2.

3.1 A Complexity Reduction Algorithm

In this section, an approach for reducing the area complexity of the modified
digit-level GNB multiplier is proposed. It is noted that unlike the complexity
reduction schemes available in the literature, see for example [22], the proposed
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algorithm does not increase the gate delay of the modified structure as compared
to the original one. The complexity reduction algorithm to reduce the number
of XOR gates in the block ρ of Figure 2 is summarized as follows.

Input: The multiplication matrix M and digit size d for type T GNB over
GF (2m).

Output: A pairset which contains all the pairs that should be implemented in
the block ρ1. This set will be used to obtain the formulations for the implemen-
tation of the modified multiplier.

1. Corresponding to the output signals of the P block in Figure 1, an m−1
2 ×T

matrix denoted by μ = [μk]
m−1

2
k=1 is constructed, where μk is the row k, 1 ≤

k ≤ m−1
2

of the matrix μ. The entries of μk are at most T integers in
the range of [0, m − 1] and can be found from (4) which can be written as
s
′
0(k, Y ) =

∑
j∈μk

yj , 1 ≤ k ≤ m−1
2

.
2. Based on the matrix μ and the given digit-size d, a matrix denoted by ρ is

obtained by appending the d− 1 matrices of μ− [i] mod m to μ as follows:

ρ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

μ
μ − [1] mod m
μ − [2] mod m
...

...
...

μ − [d − 1] mod m

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(d×m−1
2 )×T,

(6)

where [i], 1 ≤ i ≤ d, denotes an m−1
2 × T matrix whose all entries are i.

3. Let ρi be a set which contains the entries in row i of the matrix ρ. Then, all
signals

sj =
∑

j∈ρi

yj , 1 ≤ j ≤ d
(m − 1)

2
(7)

should be implemented by the block ρ shown in Figure 2.
4. We want to find the common addition pairs to realize (7) with the least num-

ber of XOR gates without changing the delay of the modified multiplier as
compared with the original one. Therefore, a pairset is generated to form all
pairs that should be implemented in the block ρ1. This set initially contains
all pairs with only two entries in the rows of the matrix ρ. We update the ρ
matrix by removing such pairs from the matrix. Then, go to Step 3.

5. The scheme will be terminated if no common terms will be obtained.
6. Finally, based on common pairs stored in the pairset, the ρ1 inside the ρ is

generated. By reusing the output of the block ρ1, we can generate all signals
from the block ρ2 in Figure 2.

In the following section, we present an illustrative example for the proposed
complexity reduction algorithm.
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3.2 An Example over GF (27)

To better understand the complexity reduction algorithm, we illustrate an ex-
ample for the proposed algorithm for type 4 digit-level multiplier over GF (27)
when the digit-size is d = m = 7. The matrix M for type 4 GNB over GF (27) is

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0
1 0 1 0 0 1 1
0 1 0 1 1 1 0
0 0 1 0 0 1 0
0 0 1 0 0 0 1
0 1 1 1 0 0 1
0 1 0 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

7×7

.

The matrix μ can be generated according to the output of the P blocks in
Figure 1 as s

′
0(1, Y ) = y1−1 + y3−1 + y4−1 + y5−1 = y0 + y2 + y3 + y4, s

′
0(2, Y ) =

y2−2+y6−2 = y0+y4, and s
′
0(3, Y ) = y1−3+y4−3+y5−3+y6−3 = y5+y1+y2+y3.

Then μ can be written as

μ =

⎛

⎝
0 2 3 4
0 4 − −
5 1 2 3

⎞

⎠

3×4

.

ρ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2 3 4
0 4 − −
5 1 2 3
6 1 2 3
6 3 − −
4 0 1 2
5 0 1 2
5 2 − −
3 6 0 1
4 6 0 1
4 1 − −
2 5 6 0
3 5 6 0
3 0 − −
1 4 5 6
2 4 5 6
2 6 − −
0 3 4 5
1 3 4 5
1 5 − −
6 2 3 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

21×4

Pairset1=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y04

y63

y52

y41

y30

y26

y15

ρ
(1)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 2 3 4
5 1 2 3
6 1 2 3
4 0 1 2
5 0 1 2
3 6 0 1
4 6 0 1
2 5 6 0
3 5 6 0
1 4 5 6
2 4 5 6
0 3 4 5
1 3 4 5
6 2 3 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ρ
(2)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 3
1 3
1 2

1 2
0 1

0 1
6 0

6 0
5 0

5 6
4 6

4 5
3 5
2 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Pairset2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y23

y13

y12

y01

y60

y50

y56

y46

y45

y35

y24

Based on the digit-size d = 7 and the matrix μ(3×4), the matrix ρ(21×4) can
be generated corresponding the complexity reduction algorithm. One can obtain
from the matrix ρ(21×4) in which 7 rows of the matrix have just two entries.
Therefore, the pairs corresponding to these rows should be implemented as col-
lected in the pairset1. The matrix ρ is updated to ρ(1) by deleting all the two
entries mentioned in the pairset1. Then the elements of the pairset1 should be
searched in ρ(1) and all common pairs are removed and ρ(1) is updated to ρ(2).
This iteration is repeated until there is no rows with more than two entries. As
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a result, all the remaining pairs as mentioned in the pairset2 should be imple-
mented and repeated pairs (which are underlined in the updated ρ(2) matrix)
are removed. The union of pairset1 and pairset2 includes the total of 18 pairs
that should be implemented for the block ρ1 as follows:

pairset={y04, y63, y52, y41, y30, y26, y15, y23, y13, y12, y01, y60,

y50, y56, y46, y45, y35, y24},
where yij = yi + yj . In addition to the implementation of the ρ block which
requires 18 XOR gates, one need dm−1

2 −d = 14 (as, d = m) extra XOR gates for
the block ρ2 to construct its outputs. Therefore, the total number of XOR gates
required to implement the ρ block will be 18+14 = 32, whereas the unoptimized
P blocks need 49 XOR gates and the scheme proposed in [15] requires 35 XOR
gates.

It is noted that the other complexity reduction algorithms available in the
literature may result in fewer number of gates at the expense of more delay as the
one proposed in this paper. To compare our complexity reduction algorithm with
the one proposed in [22], we have applied the complexity reduction algorithm
proposed in [22] for the block ρ of this example. It decreases the number of XORs
to 23 with the increase of critical path delay to 8TX (eight level of XOR gates).
Note that our scheme for this block results in the complexity of 32 XOR gates
with the same critical path delay as the original one, i.e., 2TX .

3.3 Simulation Results for the Digit-Level GNB Multipliers over
GF (2163) and GF (2283)

To evaluate the efficiency of our complexity reduction algorithm, a MATLAB
code is written to generate common pairs and signals used in the blocks ρ1 and ρ2

of Figure 2. It is noted that for type 2 GNB which is a type 2 optimal normal basis
over GF (2m), there is no common terms to be reused in the block ρ. Therefore,
the algorithm presented in this paper cannot reduce the number of XOR gates
for T = 2. The simulation results of the algorithm for the modified digit-level
GNB multipliers (MDLGMp) over GF (2163) and GF (2283) are obtained and
plotted in Figures 3a and 3b. In these figures, we plot the number of required
XOR gates versus the digit size for the fields GF (2163) (T = 4) and GF (2283)
(T = 6) recommended by NIST for ECDSA [2] as compared to ones of the
original digit-level multiplier with parallel-output (DLGMp). For a given number
of clock cycle, q, 1 ≤ q ≤ m, the least value of digit sizes in the form of d =⌈

m
q

⌉
, 1 ≤ d ≤ m, is implemented so that the area complexity is optimized for

both multipliers.
From Figures 3a and 3b, one can see that as the digit size increases, more

common pairs will be found. As an example, in Figure 3a for the digit size
d = m = 163, the total number of XOR gates required in the original DL-
GMp is 66178 gates whereas, the modified one, requires 50400 XOR gates for
GF (2163). It means that the complexity of the proposed MDLGMp is about
24% less than the original multiplier. More reduction can be found in Figure 3b
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Fig. 3. Comparison between the number of XOR gates required in the DLGMp and
the MDLGMp, for (a): m = 163 (T = 4), (b): m = 283 (T = 6)

for the GF (2283) with d = m = 283. The number of XOR gates needed by the
original DLGMp is 279,604, whereas the proposed MDLGMp requires 185,375
XOR gates which is about 34% less than that of the original multiplier.

The formulations for the output signals of the blocks ρ1 and ρ2 are coded in
VHDL to obtain the actual FPGA implementation results. The implementation
results are presented in Section 4.

3.4 An Extension to Bit-Parallel GNB Multiplier

To obtain the bit-parallel multiplier, one can implement (2) in hardware for all
cl, 0 ≤ l ≤ m − 1. Thus, the hardware architecture of a bit-parallel multiplier
is obtained by implementing m copies of identical structures used for c0 with
cyclic shifts of their inputs [11]. In this section, we extend the modified digit-
level multiplier for d = m to obtain a new bit-parallel GNB multiplier over
GF (2m). Then, its complexities are obtained and compared with the ones of its
counterparts.

Let n denote the total number of common pairs. Thus the block ρ1 contains
at most n XOR gates with the delay of an XOR gate. In the worst case, all
combinations of two coordinates of A, i.e.,

(
m
2

)
= m(m−1)

2 combinations, are
required in the block ρ1 for the bit-parallel multiplier and so, n ≤ m(m−1)

2 .
The block ρ2 consists of XOR gates for the GNB, with T > 2. This is because

there is no row in M with the number of 1s greater than 2 for type 2 GNB.
Thus, for T = 2, n = m(m−1)

2 and the block ρ2 connects its input bus to the
next bus without using any XOR gates.

The exact complexities of ρ1 and ρ2 depend on the GNB. However, one can
find the upper bound for the number of XOR gates and time delay of this
structure as follows.
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Proposition 1. For Type T GNB over GF (2m), the proposed bit-parallel Gaus-
sian normal basis multiplier architecture requires m2AND gates and at most
(T + 4)(m(m−1)

4 ) XOR gates with the critical path delay of

TC = TA + (�log2 T �+ �log2 m�)TX , (8)

where TA and TX are the time delay of a two-input AND gate and an XOR gate,
respectively.

Proof. Let n be the the number of XOR gates which is the number of the pairs
required to construct the block ρ1. As mentioned earlier, one can see that the
upper bound of n can be found from n ≤ (

m
2

)
= m(m−1)

2 . Thus, the block
ρ1 contains at most m(m−1)

2 XOR gates. It is noted that each output of the
block ρ2 is modulo 2 addition of at most T coordinates of A which can be
obtained by adding at most T

2 signals from the output of ρ1. Therefore, the
number of XOR gates required to construct the block ρ2 of the bit-parallel
multiplier is (T

2 − 1)(m−1
2 ) × m = m(m−1)(T−2)

4 . The rest of Figure 2 requires
m2 AND gates and m(m − 1) XOR gates to implement all J blocks and the
GF (2m) adder. By adding the number of XOR gates in the ρ1, ρ2 and other
blocks, one can obtain the upper bound for the total number of XOR gates as
m(m−1)

2 + m(m−1)(T−2)
4 + m(m − 1) = (T + 4)(m(m−1)

4 ).

The critical-path delay of the proposed architecture can be obtained by adding
the delays of the three blocks of ρ1, ρ2, J , and the GF (2m) adder which are TX ,⌈
log2

T
2

⌉
TX , TA, and �log2 m�TX , respectively. This results in the total delay

of TX+
⌈
log2

T
2

⌉
TX + TA + �log2 m�TX = TA + (�log2 T �+ �log2 m�)TX , which

completes the proof.

3.5 Comparison

The time and area complexities of the proposed bit-parallel GNB multiplier and
the previous schemes are compared in Table 1 for general and special values
of T . As shown in the table, the critical path delay of the proposed multiplier
matches the fastest results available in the literature. For type T = 2 GNB,
the number of XOR gates also matches the fastest result available in the open
literature, i.e., 1.5m(m− 1). However, it is much greater than the sub-quadratic
results proposed in [17] and [16] which require much higher delay as compared
to the one proposed here. It is interesting to note that for T > 2, the proposed
multiplier outperforms its counterparts with the same delay in terms of number
of XOR gates as shown in this table. It is noted the number of XOR gates
required for the new bit-parallel GNB multiplier is still greater than the one
required for the polynomial basis.

It should be noted that, to obtain the exact number of XOR gates for a
given GNB, the exact value of n should be obtained by simulations. Using the
complexity reduction algorithm proposed in Section 3.1, a comparison between
the number of XOR gates of bit-parallel GNB multipliers is illustrated in Table
2 for GF (2163) and GF (2283) fields recommended by NIST for ECDSA.
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Table 1. Area and time complexity comparison of bit-parallel GNB multipliers over
GF (2m). Note that for Type T GNB: CN ≤ Tm − T + 1.

Multiplier T ≥ 2

#AND #XOR Critical path

Massey & Omura [8] m2 m(CN − 1) TA + �log2 CN�TX

Gao & Sobelman[12] m2 m(CN − 1) TA + (�log2 T� + �log2 m�)TX

Reyhani-Masoleh & Hasan [13] m2 ≤ m
2 (CN + m − 2) TA + (�log2(CN + 1)�)TX

DLGMp [15], [7] (d = m) m2 ≤ m
2 (CN + m) TA + (�log2 T� + �log2(m)�)TX

DLGMs [15] (d = m) m2 ≤ m(m−1)
2 (T + 1) TA + (�log2 T� + �log2(m)�)TX

This work m2 ≤ ( m(m−1)
4 )(T + 4) TA + (�log2 T� + �log2(m)�)TX

T=2

[8,12] m2 2m(m − 1) TA + �log2(2m − 1)�TX

Koc & Sunar [14] m2 1.5m(m − 1) TA + (1 + �log2 m�)TX

Fan & Hasan [16] 2m1.6 11m1.6 − 12m + 1 TA + (2 log2 m + 1)TX

Gathen et. al [17] 2m1.6 7.6m1.6 + O(m log m) TA + (2 log2 m + 1)TX

[13,15,7], This work m2 1.5m(m − 1) TA + (1 + �log2 m�)TX

T=4

[8], [12] m2 4m2 − 4m TA + (2 + �log2(m)�)TX

Reyhani-Masoleh & Hasan [13] m2 2.5m2 − 4.5m TA + �1 + log2(2m − 1)�TX

DLGMp [15], [7] (d = m) m2 2.5m2 − 1.5m TA + (2 + �log2(m)�)TX

DLGMs [15] (d = m) m2 2.5m2 − 2.5m TA + (2 + �log2(m)�)TX

This work m2 ≤ 2m2 − 2m TA + (2 + �log2(m)�)TX

T=6

[8], [12] m2 6m2 − 6m TA + (3 + �log2(m)�)TX

Reyhani-Masoleh & Hasan [13] m2 3.5m2 − 3.5m TA + (�log2(6m − 4)�)TX

DLGMp [15], [7] (d = m) m2 3.5m2 − 2.5m TA + (3 + �log2(m)�)TX

DLGMs [15] (d = m) m2 3.5m2 − 3.5m TA + (3 + �log2(m)�)TX

This work m2 ≤ 2.5m2 − 2.5m TA + (3 + �log2(m)�)TX

Table 2. Comparison between bit-parallel GNB multipliers for GF (2163) and GF (2283)

m T n Number of XORs in DLGM for
d = m [15]

Number of XOR gates used
in this work

163 4 10791 66178 50400
283 6 25763 279604 185375

4 FPGA Implementations

The architectures described in Sections 2.2 and 3 are written in VHDL. We
have implemented the original (DLGMp) and the modified digit-level multi-
pliers (MDLGMp) on the Xilinx® Virtex5™ FPGA family with target device
xc5vlx330-2ff1760 for GF (2163) and GF (2283) fields. Correctness of the imple-
mentations is verified by performing functional simulations using the Quartus®
II software. We have synthesized both multipliers for several different digit sizes
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Table 3. FPGA implementation results for propagation delay (in terms of nano
second) and area (in terms of number of slices) for different digit sizes with m = 163
and T = 4. Target device is Xilinx xc5vlx330-2ff1760.

Digit
size

# of
cycles

Delay [ns] Area [# of Slice LUTs]

(d) (q) DLGMp MDLGMp DLGMp MDLGMp
1 163 2.8 2.8 1221 1221

2 82 3.1 3.1 1282 1280

3 55 3.1 3.1 1347 1346
4 41 3.4 3.4 1406 1406

5 33 3.5 3.6 1564 1565

6 28 4.1 4.2 1751 1750

7 24 3.8 3.8 1960 1960
8 21 3.7 3.8 2104 2104

9 19 4.3 4.4 2157 2157

10 17 4.2 4.2 2309 2309
11 15 4.2 4.2 2385 2385

12 14 4.5 4.5 2567 2567

13 13 4.6 4.6 2785 2780

14 12 4.5 4.6 2852 2850
15 11 4.8 4.7 2923 2923

17 10 4.9 4.9 3164 3164

19 9 4.9 4.9 4048 4045

21 8 5.4 5.5 4146 4140
24 7 5.6 5.7 4593 4385

28 6 5.7 5.7 4730 4652

33 5 5.8 5.8 5288 5023

41 4 6.1 6.1 6129 5633
55 3 6.4 6.5 8115 6091

82 2 7.3 7.5 11187 7321

163 1 11.5 11.9 22917 14238

d, 1 ≤ d ≤ m using Xilinx synthesis technology (XST), and the timing analysis
results via Xilinx ISE-9.1.03i after place and route (PAR) are illustrated in Ta-
bles 3 and 4 for GF (2163) and GF (2283), respectively. As seen in the tables, large
digit sizes require more area in terms of number of slice look up tables (LUTs).
Therefore, we chose the digit size, d, in such a way to decrease the critical path
delay while increasing the area. Note that other values for d only increases area
without decreasing latency. Our presented multiplier requires less area than the
original one for the different digit size d. The total multiplication time can be
calculated as the product of the minimum clock period and the number of clock
cycles q presented in both tables. Obviously, as shown in the Tables 3 and 4, the
time complexities of these structures are almost the same. It means that, our
proposed multiplier reduces the required area having the same multiplication
time.
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Table 4. FPGA implementation results for propagation delay (in terms of nano second)
and area (in terms of number of slice LUTs) for different digit sizes with m = 283 and
T = 6. The target device is xc5vlx330-2ff1760.

Digit
size

# of
cycles

Delay [ns] Area [# of Slice LUTs]

(d) (q) DLGMp MDLGMp DLGMp MDLGMp
1 283 3.4 3.4 2118 1985

2 142 3.7 3.8 2252 2088
3 95 3.9 3.9 2388 2156

4 71 4.1 4.1 2603 2437

5 57 4.4 4.5 2829 2603

6 48 4.5 4.6 3216 2714
7 41 4.4 4.5 3358 2937

15 19 4.7 4.8 5803 3986

16 18 5.1 5.2 6086 4105

19 15 5.7 5.7 6309 4387
22 13 5.8 5.8 6429 4427

24 12 8.7 8.9 7039 4938

26 11 8.6 8.5 7325 5183

29 10 8.3 8.4 7723 5563
35 9 8.3 8.5 9398 6769

71 4 11.4 11.4 17224 10345

142 2 12.4 12.3 31395 22512

5 Conclusions

We have proposed a modified architecture for digit-level Gaussian normal basis
multiplier over GF (2m). It is shown that this multiplier outperforms the original
one in terms of number of XOR gates. Using a complexity reduction algorithm,
the area complexity of the modified digit-level multiplier, is optimized. We have
also presented a fast low complexity bit-parallel GNB multiplier over GF (2m).
Its complexities have been derived and it is shown that it has fewer XOR gates
for T > 2 and the same for T = 2 as compared to the fast GNB multipliers
available in the literature. For practical applications, we have implemented the
original and the modified digit-level GNB multipliers on the Xilinx® Virtex5™
FPGA family for different digit sizes. Our comparison results show that the
modified digit-level GNB multiplier requires fewer area (slice LUTs) with almost
the same delay as compared to the original one.
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Abstract. In the 1990s and early 2000s several papers investigated the
relative merits of polynomial-basis and normal-basis computations for
F2n . Even for particularly squaring-friendly applications, such as imple-
mentations of Koblitz curves, normal bases fell behind in performance
unless a type-I normal basis existed for F2n .

In 2007 Shokrollahi proposed a new method of multiplying in a
type-II normal basis. Shokrollahi’s method efficiently transforms the
normal-basis multiplication into a single multiplication of two size-(n+1)
polynomials.

This paper speeds up Shokrollahi’s method in several ways. It first
presents a simpler algorithm that uses only size-n polynomials. It then
explains how to reduce the transformation cost by dynamically switching
to a ‘type-II optimal polynomial basis’ and by using a new reduction
strategy for multiplications that produce output in type-II polynomial
basis.

As an illustration of its improvements, this paper explains in de-
tail how the multiplication overhead in Shokrollahi’s original method
has been reduced by a factor of 1.4 in a major cryptanalytic compu-
tation, the ongoing attack on the ECC2K-130 Certicom challenge. The
resulting overhead is also considerably smaller than the overhead in a
traditional low-weight-polynomial-basis approach. This is the first state-
of-the-art binary-elliptic-curve computation in which type-II bases have
been shown to outperform traditional low-weight polynomial bases.

Keywords: Optimal normal basis, ONB, polynomial basis, transforma-
tion, elliptic-curve cryptography.

1 Introduction

If n+1 is prime and 2 has order n modulo n+1 then the field F2n = F2[ζ]/(ζn +
· · ·+ ζ + 1) has a “type-I optimal normal basis” ζ, ζ2, ζ4, . . .. It has been known
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for many years that this basis allows not only fast repeated squarings but also
surprisingly fast multiplications, costing only M(n)+2n−2 bit operations where
M(n) is the minimum cost of multiplying n-coefficient polynomials. The idea is
to permute the basis into ζ, ζ2, ζ3, . . . , ζn, and to decompose multiplication into
the following operations:

• M(n) bit operations: multiply the polynomials f1ζ + · · · + fnζn and g1ζ +
· · · + gnζn in F2[ζ].

• n − 2 bit operations: eliminate the coefficients of ζn+2, . . . , ζ2n using the
identities ζn+2 = ζ, . . . , ζ2n = ζn−1; this requires additions to the existing
coefficients of ζ2, . . . , ζn−1.

• n bit operations: eliminate the coefficient of ζn+1 using the identity ζn+1 =
ζ + ζ2 + · · · + ζn.

An alternative introduced in [IT89] is to use a redundant representation, specifi-
cally coefficients of 1, ζ, . . . , ζn, with arithmetic modulo ζn+1 +1. Multiplication
then costs M(n + 1) + n bit operations; this is worse than M(n) + 2n − 2 for
small n, but it becomes better for large n, since M(n) is subquadratic.

However, most integers n do not have type-I optimal normal bases. In par-
ticular, an odd prime n cannot have a type-I optimal normal basis. This poses
severe problems for cryptographic applications that, for security reasons, pro-
hibit composite values of n.

The conventional wisdom for many years was that type-I normal bases were
a unique exception. For all other normal bases the best multiplication methods
in the literature were quite slow. In particular, multiplication in a “type-II op-
timal normal basis” of F2n was asymptotically at least twice as expensive as
multiplication in traditional low-weight polynomial bases (trinomial bases and
pentanomial bases):

• Traditional normal-basis multipliers use Θ(n2) bit operations.
• The type-II multiplier in [FH07] uses approximately 13 · 3�log2 n� bit opera-

tions.
• The type-II multiplier in [BG01, Section 4.1] uses approximately 3M(n) bit

operations.
• The type-II multiplier in [GvzGP95] (see also [GvzGPS00]) uses approxi-

mately 2M(n) bit operations.

Normal bases were competitive only in extreme situations: applications where n
was very small; applications having many repeated squarings and very few multi-
plications; and applications that imposed extremely small hardware-area require-
ments, effectively punishing polynomial bases by prohibiting fast-multiplication
techniques.

The picture changed a few years ago when Shokrollahi introduced a new type-
II multiplier using only M(n) + O(n log2 n) operations. See Shokrollahi’s thesis
[Sho07, Chapter 4] and the subsequent WAIFI 2007 publication [vzGSS07] by
von zur Gathen, Shokrollahi, and Shokrollahi. This new multiplier makes type-
II normal bases competitive with traditional low-weight polynomial bases for a
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much wider variety of applications. The overhead term O(n log2 n) is not quite
as small as the O(n) cost of low-weight polynomial reduction, but this difference
is quite often outweighed by the benefit of fast repeated squarings.

In this paper we reduce the overhead in Shokrollahi’s method in several ways.
The overall reduction depends on the pattern of desired squarings and multipli-
cations but can be as much as a factor of 2. We give a real-world example in
which the overhead is reduced by more than a factor of 1.4.

1.1 Model of Computation

All of the algorithms in this paper are straight-line (branchless) sequences of
bit operations. The “bit operations” allowed are two-input XORs (addition in
F2) and two-input ANDs (multiplication in F2). We measure algorithm cost by
counting the number of bit operations, as in [Sho07], [Ber09a], etc.

Optimizing bit operations is not the same as optimizing hardware area: a
very small circuit can carry out many bit operations if the operations to be
performed are sufficiently regular. Optimizing bit operations is also not the same
as optimizing hardware latency. Furthermore, the word-level machine operations
used by software are much more complicated than bit operations. For these
reasons, optimizing bit operations is often believed to be of little relevance to
optimizing hardware, and of even less relevance to optimizing software.

However, optimizing bit operations is very close to optimizing the through-
put of unrolled, pipelined hardware; note that full unrolling eliminates all con-
trol logic, and pipelining hides latency. Furthermore, optimizing bit operations
is very close to optimizing the performance of software built from vectorized
bit operations. [Ber09a] recently set new software speed records for public-key
cryptography by exploiting a synergy between “bitsliced” data structures, bit-
operation-optimized polynomial-multiplication techniques, and the 128-bit vec-
tor operations available on common CPUs.

This work began as part of a larger project described in [BBB+09] to solve a
cryptanalytic challenge, the Certicom “ECC2K-130” challenge [Cer97]. One of
the surprises in [BBB+09] is that type-II bases save time for the ECC2K-130
computation on various software platforms, solidly outperforming low-weight (in
this case pentanomial) polynomial bases. At the time of this writing, the latest
version of [BBB+09] reports the speed of software that extends the synergy of
[Ber09a] to include type-II bases, using Shokrollahi’s approach together with
the improvements described in Section 3 of this paper. The latest GPU software
incorporates additional improvements described in subsequent sections of this
paper.

A very recent pipelined FPGA implementation of the ECC2K-130 compu-
tation also uses this approach and is much faster than previous FPGA imple-
mentations; see [FBB+10]. We predict that the speedups discussed in this paper
will turn out to be useful in other applications that need to maximize the num-
ber of F2n operations that can be carried out per second for a given chip area.
We are now investigating the constructive use of the same techniques for fast
Koblitz-curve cryptography — of course, at much larger sizes than ECC2K-130!



44 D.J. Bernstein and T. Lange

1.2 Outline of the Paper

Section 2 reviews Shokrollahi’s algorithm for type-II normal-basis multiplication.
Section 3 presents a streamlined algorithm for type-II normal-basis multiplica-
tion. The streamlined algorithm uses approximately M(n) + 2n log2(n/2) bit
operations. More precisely, if n = 2n0 + 2n1 + · · · with n0 > n1 > · · · , then the
streamlined algorithm uses M(n) +

∑
i(2

ni(2ni − 2 + 4i) + 3) bit operations.
Section 4 presents an algorithm to multiply in a “type-II polynomial basis”

using approximately M(n)+n log2 n bit operations. The overhead n log2 n saves
almost half of the previous overhead 2n log2(n/2); about 0.5n log2(n/4) is saved
by a new reduction method, and about 0.5n log2(n/4) is saved by a simple ex-
ercise in caching. Repeated squaring in a “type-II polynomial basis” is not as
fast as repeated squaring in a normal basis but is still much faster than repeated
squaring in a traditional polynomial basis.

We further reduce the total overhead of multiplications and repeated squarings
by dynamically mixing a type-II polynomial basis P with a type-II normal basis
N . In applications that contain only occasional multiplications, this mixture is
tantamount to working purely in N , as in Section 3. In applications that contain
only occasional repeated squarings, this mixture is tantamount to working purely
in P . However, in many applications the mixture is better than any pure method.
Section 5 uses ECC2K-130 as an illustrative example of this paper’s overall
improvements.

2 Review of the Original Shokrollahi Approach

In this section we review the normal-basis multiplier from [Sho07, Section 4] for
the special case of binary fields F2n .

In a nutshell the main achievement of [Sho07] is a map S between a
normal-basis representation and a special polynomial-basis representation, tak-
ing Θ(n log2 n) bit operations instead of the usual Θ(n2). The multiplication in
normal basis can be performed as S−1(S(a1) ·S(a2)): first use S on a1 and a2 to
map to polynomial-basis representation, where efficient algorithms for polyno-
mial multiplication can be used, and finally map the result back to normal basis
representation.

The irreducible polynomial for this special polynomial basis is usually rather
dense. To avoid reduction modulo this polynomial, Shokrollahi defines a double-
length map that takes an unreduced polynomial product back to normal basis.
The reduction is done on the normal-basis side, where it is simple addition of
length-n vectors.

Before giving the details we review the construction of a type-II normal basis
for F2n and establish notations P and N used throughout the paper. For more
information on type-II normal bases, see Mullin et al. [MOVW89].

2.1 Type-II Normal Bases

For the rest of the paper we assume that n is a positive integer, that 2n + 1 is
prime, and that either (1) the order of 2 in the multiplicative group F∗

2n+1 is 2n
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or (2) n is odd and the order of 2 in F∗
2n+1 is n. In the latter case 2 generates

the subgroup of squares in F∗
2n+1. Since n is odd we have 2n + 1 ≡ 3 (mod 4)

so −1 is not a square in F∗
2n+1; i.e., −1 is not a power of 2.

The conditions on n imply that 22n = 1 in F2n+1 and so there exists an
element ζ ∈ F22n that is a primitive (2n + 1)st root of unity. Now 2n = ±1 in
F2n+1, since 2 has order 2n or n, so ζ2n ∈ {

ζ, ζ−1
}
. Define c = ζ + ζ−1. Then

c2n

= ζ2n

+ ζ−2n

= ζ + ζ−1 = c, so c ∈ F2n .
The elements c, c2, c22

, c23
, . . . , c2n−1

are distinct. Indeed, any repetition would
(after some square roots) imply an equation of the form c2i

= c with i ∈
{1, 2, . . . , n − 1}, i.e., (ζ + ζ−1)2

i

= ζ + ζ−1, i.e., ζ2i

+ ζ−2i

+ ζ + ζ−1 = 0.
This equation factors as (ζ2i

+ ζ)(1 + ζ−2i−1) = 0, so ζ2i

= ζ or ζ2i+1 = 1,
so 2i = ±1 in F2n+1. This implies 22i = 1 in F2n+1 which contradicts that the
order of 2 is 2n. If n is odd and the order of 2 is n then −1 is not a power of 2,
contradicting 2i = −1, while 2i = 1 contradicts that the order is n.

Each power c2i

can be written as ζj +ζ−j for the unique j ∈ {1, 2, . . . , n} with
2i = ±j in F2n+1, since c2i

= (ζ + ζ−1)2
i

= ζ2i

+ ζ−2i

= ζj + ζ−j . Therefore
(c, c2, c22

, . . . , c2n−1
) is a permutation of (ζ+ζ−1, ζ2+ζ−2, ζ3+ζ−3, . . . , ζn+ζ−n).

If a vector (e1, e2, . . . , en) ∈ Fn
2 satisfies e1(ζ+ζ−1)+e2(ζ2+ζ−2)+· · ·+en(ζn+

ζ−n) = 0 then e1(ζ+ζ2n)+e2(ζ2+ζ2n−1)+ · · ·+en(ζn +ζn+1) = 0, so ζ is a root
of the polynomial p = e1(1+z2n−1)+· · ·+en(zn−1+zn) ∈ F2[z] of degree at most
2n−1. Exchanging ζ and ζ−1 shows that ζ−1 is also a root of p. If 2 has order 2n
then the cyclotomic polynomial Φ2n+1 is irreducible in F2[z], so Φ2n+1 divides
p. If n is odd and 2 has order n then Φ2n+1 factors into the coprime irreducible
polynomials (z−ζ)(z−ζ2) · · · (z−ζ2n−1

) and (z−ζ−1)(z−ζ−2) · · · (z−ζ−2n−1
);

each of these polynomials divides p, so again Φ2n+1 divides p. Since deg(Φ2n+1) =
2n this implies p = 0 so (e1, e2, . . . , en) = 0.

Summary: (ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζn + ζ−n) is a basis of F2n , and
(c, c2, . . . , c2n−1

) is a normal basis of F2n . This normal basis is called a “type-II
optimal normal basis”, and the permutation (ζ+ζ−1, ζ2+ζ−2, ζ3+ζ−3, . . . , ζn+
ζ−n) is called a “permuted type-II optimal normal basis”.

2.2 The Functions N and P

We denote by N(x) the representation of x ∈ F2n with respect to the permuted
normal basis (ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζn + ζ−n). In other words, the
vector N(x) = (N(x)1, . . . , N(x)n) ∈ Fn

2 satisfies
∑

i N(x)i(ζi + ζ−i) = x.
We denote by P (x) the representation of x ∈ F2n with respect to

the polynomial basis (c, c2, c3, . . . , cn). In other words, the vector P (x) =
(P (x)1, . . . , P (x)n) ∈ Fn

2 satisfies
∑

i P (x)i(ζ + ζ−1)i = x. Note that this is not
exactly a conventional polynomial basis: the corresponding polynomials have
degree ≤ n and constant term zero.

2.3 Shokrollahi’s Transformation

Shokrollahi extends the normal basis to the redundant generating set N =
(1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζn + ζ−n) and extends the polynomial basis
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to the redundant generating set P = (1, ζ + ζ−1, (ζ + ζ−1)2, (ζ + ζ−1)3, . . . , (ζ +
ζ−1)n−1, (ζ + ζ−1)n). Shokrollahi recursively defines a transformation Sk from
(1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζk−1 + ζ1−k) to (1, (ζ + ζ−1), (ζ + ζ−1)2, (ζ +
ζ−1)3, . . . , (ζ + ζ−1)k−1), and in particular defines a transformation Sn+1 from
N to P .

We first describe S−1
8 and then generalize. The central observation is that if

f0+f1

(
ζ+ζ−1

)
+f2

(
ζ+ζ−1

)2
+ f3

(
ζ+ζ−1

)3

= g0 + g1

(
ζ+ζ−1

)
+ g2

(
ζ2+ζ−2

)
+ g3

(
ζ3+ζ−3

)

and

f4+f5

(
ζ+ζ−1

)
+ f6

(
ζ+ζ−1

)2
+ f7

(
ζ+ζ−1

)3

= g4 + g5

(
ζ+ζ−1

)
+ g6

(
ζ2+ζ−2

)
+ g7

(
ζ3+ζ−3

)

then

f0 + f1

(
ζ + ζ−1

)
+ f2

(
ζ + ζ−1

)2
+ f3

(
ζ + ζ−1

)3

+ f4

(
ζ + ζ−1

)4
+ f5

(
ζ + ζ−1

)5
+ f6

(
ζ + ζ−1

)6
+ f7

(
ζ + ζ−1

)7

= g0 + (g1 + g7)
(
ζ + ζ−1

)
+ (g2 + g6)

(
ζ2 + ζ−2

)
+ (g3 + g5)

(
ζ3 + ζ−3

)

+ g4

(
ζ4 + ζ−4

)
+ g5

(
ζ5 + ζ−5

)
+ g6

(
ζ6 + ζ−6

)
+ g7

(
ζ7 + ζ−7

)
.

The conversion S−1
8 from coefficients of 1, ζ + ζ−1, (ζ + ζ−1)2, . . . , (ζ + ζ−1)7

to coefficients of 1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ7 + ζ−7 performs two half-
size conversions S−1

4 and three additions of bits: first convert f0, f1, f2, f3 to
g0, g1, g2, g3; separately convert f4, f5, f6, f7 to g4, g5, g6, g7; and then add g7

to g1, g6 to g2, and g5 to g3. The inverse S8, converting from coefficients of
1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ7 + ζ−7 to coefficients of 1, ζ + ζ−1, (ζ +
ζ−1)2, . . . , (ζ+ζ−1)7, has exactly the same cost. These conversions are extremely
efficient.

More generally, instead of splitting 8 into (4, 4), one can (and should) split k
into (j, k − j), where j is the unique power of 2 satisfying j + 1 ≤ k ≤ 2j. This
is exactly what Shokrollahi’s transformations Sk and S−1

k do.

2.4 Shokrollahi’s Multiplication Algorithm

Shokrollahi expands N(a) and N(b) by inserting a leading 0, obtaining linear
combinations of N , and then uses the transformation Sn+1 to obtain linear com-
binations of P , which are then interpreted as polynomials of degree at most n.
Multiplying these two size-(n+1) polynomials takes M(n+1) bit operations and
produces a polynomial of degree at most 2n. Shokrollahi uses the transformation
S−1

2n+1 to obtain a linear combination of (1, ζ + ζ−1, ζ2 + ζ−2, ζ3 + ζ−3, . . . , ζ2n +
ζ−2n), uses ζn+i + ζ−(n+i) = ζn+i−2n−1 + ζ2n+1−(n+i) = ζ−(n+1−i) + ζn+1−i for
1 ≤ i ≤ n to reduce the intermediate result back to N , and finally discards the
coefficient of 1 (which is always 0 by [Sho07, Theorem 31]), obtaining N(ab).
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2.5 Shokrollahi’s Analysis

Shokrollahi shows in [Sho07, Lemma 21] that the cost for a size-2r transformation
is η(r) = 2r−1(r − 2) + 1. He then computes the following upper bound on the
cost of his multiplication algorithm:

• two conversions from N to P , costing η(�log2(n + 1)�) each; plus
• a multiplication of polynomials of degree ≤ n, costing M(n + 1); plus
• one double-length conversion of a polynomial of degree ≤ 2n, costing

η(�log2(2n + 1)�); plus
• n final additions.

See [Sho07, Theorem 32] and [vzGSS07, Theorem 8, first display].
We point out that Shokrollahi’s bounds are much higher than the actual costs

of his algorithm, often losing a factor of 2 or more outside the M(n + 1) term.
See Section 5.5 of this paper for an example. The “+16n log2 n” appearing in
[vzGSS07, Section 1], and in more generality in [vzGSS07, Theorem 8, second
display], is even more misleading. Those bounds should be disregarded by read-
ers evaluating the performance of normal-basis arithmetic. We present quickly
computable formulas for exact operation counts of our algorithms, along with
reasonably precise approximations such as (n/2) log2(n/4).

3 Streamlined Multiplication in Type-II Normal Basis

This section presents a simpler, smaller, slightly faster algorithm to compute
N(a), N(b) �→ N(ab). This algorithm is a convenient starting point for the larger
speedups discussed in subsequent sections, so we present the algorithm from
scratch, but we begin by summarizing the most important differences between
the algorithm and Shokrollahi’s algorithm.

3.1 Summary of the Simplification

Recall that Shokrollahi’s original algorithm extends the basis ζ + ζ−1, . . . , ζn +
ζ−n to 1, ζ + ζ−1, . . . , ζn + ζ−n. Note that 1 	= ζ0 + ζ−0; evidently 1 plays a
special role here.

The algorithm in this section shifts the underlying transformation by one po-
sition, avoiding the need to extend the original basis. The new transformation
works with only n elements rather than n + 1, and feeds the multiplier polyno-
mials of size n rather than n + 1.

3.2 Summary of the Speedup

This multiplication algorithm has overhead approximately 2n log2(n/2): i.e., it
uses approximately M(n)+2n log2(n/2) bit operations. It saves M(n+1)−M(n)
bit operations compared to Shokrollahi’s original algorithm (according to our
analysis of Shokrollahi’s algorithm; Shokrollahi’s analysis produces a much larger
upper bound, as discussed in Section 2.5).
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The differences M(1)−M(0), M(2)− M(1), . . . , M(n)− M(n− 1) have sum
M(n) − M(0) = M(n) ∈ O(n log2 n log2 log2 n), so the average difference is
bounded by O(log2 n log2 log2 n), which is asymptotically not nearly as large as
2n log2 n. However, for typical values of n there is a quite significant difference
between the best known upper bound on M(n + 1) and the best known upper
bound on M(n). For example, these differences for n = 53, n = 83, n = 89,
n = 113, n = 131, and n = 173 are 67, 121, 73, 81, 154, and 108 respectively.

This section’s algorithm makes structurally clear that the polynomials to be
multiplied have size only n. An alternate, more complicated, way to save M(n+
1) − M(n) is as follows: observe that the coefficient of 1 inside Shokrollahi’s
algorithm is initialized to 0 and is never modified; conclude that the size-(n+1)
polynomials in the algorithm always have constant coefficient 0; speed up the
algorithm accordingly. The intermediate conclusion appeared (with a different
proof) in [Sho07, Theorem 31, proof, third sentence], but was not exploited in
the algorithm.

3.3 The Transformation

For each k ≥ 1, each vector e ∈ Fk
2 , and each i ∈ {1, 2, . . . , k}, define ei as

the ith component of e. Then e = (e1, e2, . . . , ek). To support infinite sums
over i, as in [Knu97a], we also allow “out-of-range” indices: define ei = 0 for
i ∈ Z \ {1, 2, . . . , k}. We also use the notation [i 	= 0] to mean 0 if i = 0 and 1 if
i 	= 0.

For each k ≥ 1 we define an invertible function Tk : Fk
2 → Fk

2 by the following
recursion:

• Define T1(e) = e.
• For k ≥ 2: Define j as the largest power of 2 in {1, 2, . . . , k − 1}. For each

f ∈ Fj
2 and each g ∈ Fk−j

2 define Tk(f, g) = (Tj(h), Tk−j(g)) where h ∈ Fj
2

is defined by hi = fi + [i 	= 0]gj−i.

To recover f, g from Tk(f, g) = (Tj(h), Tk−j(g)), first invert Tj and Tk−j to
obtain h and g, and then compute f from fi = hi + [i 	= 0]gj−i.

For example:

• T2(e1, e2) = (e1, e2). Here j = 1, f = (e1), g = (e2), and h = (e1).
• T3(e1, e2, e3) = (e1 + e3, e2, e3). Here j = 2, f = (e1, e2), g = (e3), and

h = (e1 + e3, e2).
• T4(e1, e2, e3, e4) = (e1 + e3, e2, e3, e4). Here j = 2, f = (e1, e2), g = (e3, e4),

and h = (e1 + e3, e2).
• T5(e1, e2, e3, e4, e5) = (e1 + e3 + e5, e2, e3 + e5, e4, e5). Here j = 4, f =

(e1, e2, e3, e4), g = (e5), and h = (e1, e2, e3 + e5, e4).
• T6(e1, e2, e3, e4, e5, e6) = (e1 + e3 + e5, e2 + e6, e3 + e5, e4, e5, e6). Here j = 4,

f = (e1, e2, e3, e4), g = (e5, e6), and h = (e1, e2 + e6, e3 + e5, e4).

One can visualize the computation of h as folding g onto f in reverse order, but
skipping the highest coefficient of f , and skipping the highest coefficient of g if
g is as long as f .
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Theorem 3.4. Let k be a positive integer. Let ζ be a nonzero element of a field
of characteristic 2. Then

∑
i(Tk(e))i(ζ+ζ−1)i =

∑
i ei(ζi+ζ−i) for each e ∈ Fk

2 .

Proof. For k = 1: T1(e) = e so (T1(e))1(ζ + ζ−1)1 = e1(ζ + ζ−1).
For k ≥ 2: Define j as the largest power of 2 in {1, 2, . . . , k − 1}. Write e

as (f, g) for some f ∈ Fj
2 and g ∈ Fk−j

2 . Then Tk(e) = (Tj(h), Tk−j(g)) where
hi = fi + [i 	= 0]gj−i.

Both j and k − j are smaller than k, so by induction
∑

i

(Tj(h))i(ζ + ζ−1)i =
∑

i

hi(ζ
i + ζ−i),

∑

i

(Tk−j(g))i(ζ + ζ−1)i =
∑

i

gi(ζ
i + ζ−i).

Recall that j is a power of 2. Use (ζ + ζ−1)j = ζj + ζ−j to see that

∑

i

(Tk(e))i(ζ + ζ−1)i =
∑

i

(Tj(h))i(ζ + ζ−1)i + (ζ + ζ−1)j
∑

i

(Tk−j(g))i(ζ + ζ−1)i

=
∑

i

hi(ζi + ζ−i) + (ζj + ζ−j)
∑

i

gi(ζi + ζ−i)

=
∑

i

(fi + [i �= 0]gj−i)(ζi + ζ−i) +
∑

i

gi(ζi+j + ζ−i−j + ζi−j + ζj−i)

=
∑

i

(fi + gj−i)(ζi + ζ−i) +
∑

i

gi(ζi+j + ζ−i−j + ζi−j + ζj−i)

=
∑

i

fi(ζi + ζ−i) +
∑

i

gi(ζi+j + ζ−i−j)

=
∑

i

ei(ζi + ζ−i)

as claimed. The replacement of [i 	= 0] by 1 on the fourth line follows from [i 	= 0]
(ζi + ζ−i) = ζi + ζ−i; note that ζ0 + ζ−0 = 0. ��

3.5 Speed of the Transformation

The following in-place algorithm replaces e ∈ Fk
2 by Tk(e):

• Stop if k = 1.
• Define j as the largest power of 2 in {1, 2, . . . , k − 1}.
• Add e2j−i into ei for max {1, 2j − k} ≤ i ≤ j − 1. (Now e = (h, g) in the

notation of the definition of Tk.)
• Recursively apply Tj to the first j coefficients of e.
• Recursively apply Tk−j to the remaining coefficients of e.

Inverting this algorithm is a simple matter of carrying out the same additions
in reverse order.

The cost of Tk is min {j − 1, k − j} plus the costs of Tj and Tk−j . An easy
induction shows that if k = 2k0 + 2k1 + · · · , with k0 > k1 > . . ., then the cost of
Tk is exactly

∑
i(2

ki−1(ki − 2 + 2i) + 1).
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3.6 The N × N → N Multiplication Algorithm

The following algorithm computes N(ab) given N(a) and N(b):

• Compute A = Tn(N(a)) and B = Tn(N(b)).
• Compute the product P2z

2+· · ·+P2nz2n of the polynomials A1z+· · ·+Anzn

and B1z + · · · + Bnzn in the polynomial ring F2[z].
• Compute p = T−1

2n (0, P2, . . . , P2n).
• Compute N(ab) = (p1 + p2n, p2 + p2n−1, . . . , pn + pn+1).

Recall that a =
∑

i N(a)i(ζi + ζ−i) by definition of N , so a =
∑

i Ai(ζ + ζ−1)i

by Theorem 3.4. Similarly b =
∑

i Bi(ζ + ζ−1)i. Hence ab =
∑

i Pi(ζ + ζ−1)i, so
ab =

∑
i pi(ζi + ζ−i) by Theorem 3.4, so ab = (p1 + p2n)(ζ + ζ−1) + · · · + (pn +

pn+1)(ζn + ζ−n).
The two computations of Tn each cost

∑
i(2

ni−1(ni − 2 + 2i) + 1) if n =
2n0 + 2n1 + · · · with n0 > n1 > . . .. The polynomial multiplication costs M(n).
The computation of p costs

∑
i(2

ni(ni − 1 + 2i) + 1). The final computation of
N(ab) costs n =

∑
i 2ni .

The total number of bit operations is M(n) +
∑

i(2
ni(2ni − 2 + 4i) + 3). The

overhead term
∑

i(2
ni(2ni − 2 + 4i) + 3) is approximately 2n log2(n/2), and a

trivial computer calculation shows that it is bounded by 2(n + 2) log2(n/2) for
4 ≤ n ≤ 100000.

We comment that the 0 component in the T−1
2n input allows a subsequent

addition of 0 to be eliminated. This speedup might seem too minor to be worth
mentioning, and our operation counts in this section do not take it into ac-
count, but the underlying idea helps produce much larger savings in subsequent
sections.

4 Type-II Polynomial Basis

Let us pause to review the attractive features of the (permuted) type-II normal
basis ζ + ζ−1, ζ2 + ζ−2, . . . , ζn + ζ−n. The multiplication overhead, compared to
size-n polynomial multiplication, is only about 2n log2(n/2). Repeated squaring
is a very fast permutation, costing no bit operations.

This section presents a multiplication algorithm for the non-traditional poly-
nomial basis c, c2, . . . , cn, where c = ζ + ζ−1. The overhead in the new algorithm
is only about n log2 n. Repeated squaring in this basis is more complicated than
a permutation but is still very fast, costing only n log2(n/4) bit operations. We
refer to this basis as a “type-II optimal polynomial basis” because of its close
connection to the type-II optimal normal basis.

For comparison, in a traditional low-weight polynomial basis, the multiplica-
tion overhead is typically 2n (for trinomials) or 4n (for pentanomials), and single
squarings are fast, but repeated squarings such as a �→ a2�n/3�

are very slow.
We obtain our best results by combining type-II polynomial basis P with

type-II normal basis N . This combined system keeps repeated-squaring inputs in
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N form, and keeps multiplication inputs in P form. Multiplications are P ×P →
N when the outputs are used for repeated squarings, and P × P → N → P
when the outputs are used for repeated squarings and for multiplications, but
P × P → P when the outputs are used solely for multiplications.

4.1 The N → P and P → N Conversions

We begin by reinterpreting the transformation Tn in Section 3 as a fast conversion
from type-II normal basis to type-II polynomial basis: Theorem 3.4 implies that
Tn(N(a)) = P (a). This also means that T−1

n is a fast conversion from type-II
polynomial basis to type-II normal basis: T−1

n (P (a)) = N(a). Recall that each
of these conversions costs

∑
i(2

ni−1(ni − 2 + 2i) + 1) ≈ (n/2) log2(n/4).
For comparison: Shokrollahi in [Sho07, Theorem 28], emphasizing “the most

important property” of his multiplier, showed that conversion between a type-II
normal basis and the basis 1, c, c2, . . . , cn−1 takes time O(n log2 n). We simplify
and accelerate the conversion by shifting to the basis c, c2, . . . , cn. The speedup
is Θ(n) operations. The simplification is illustrated by the fact that our basis
conversion naturally appears as a subroutine in our multiplication algorithm,
whereas modifying the multiplication algorithm from [Sho07] to use the ba-
sis conversion from [Sho07, Theorem 28] would slow down the multiplication
algorithm.

4.2 The P × P → N Multiplication Algorithm

We next observe that the N × N → N multiplication algorithm of Section 3
factors into two N → P conversions and a P ×P → N multiplication algorithm.

Specifically, the first step of the N(a), N(b) �→ N(ab) algorithm of Section 3
computes A = Tn(N(a)) and B = Tn(N(b)); i.e., it computes A = P (a) and
B = P (b). The remaining steps make no further use of N(a) and N(b): they start
from A = P (a) and B = P (b) and compute N(ab). In other words, the remaining
steps are exactly a P × P → N multiplication algorithm. This P × P → N
multiplication algorithm costs M(n) +

∑
i(2

ni(ni + 2i) + 1) ≈ M(n) + n log2 n.

4.3 The P × P → P Multiplication Algorithm

Composing P × P → N with a final N → P conversion would produce a P ×
P → P multiplication algorithm with overhead approximately n(1.5 log2 n− 1).
This algorithm would feed the size-2n polynomial product through a size-2n
transform, then fold the result in half using ζ2n+1−i + ζi−2n−1 = ζi + ζ−i, then
transform the size-n result from N to P .

We do better by separately handling the two halves of the polynomial product.
The point is that

Tn(fold(T−1
2n (bottom, top)))

= Tn(fold(T−1
2n (bottom, 0, . . . , 0))) + Tn(fold(T−1

2n (0, . . . , 0, top)))

= bottom + Tn(fold(T−1
2n (0, . . . , 0, top))).
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Instead of uselessly transforming the bottom half back and forth between P and
N , we simply leave it in P and add it at the end. We use transforms as a fast
mechanism to reduce the top half from coefficients of cn+1, . . . , c2n to coefficients
of c1, . . . , cn.

In the computation of T−1
2n (0, . . . , 0, top), and in the subsequent folding, we

systematically eliminate all additions of 0. For any particular n one can do this
elimination by hand, keeping track of which intermediate values are 0; or one
can generate straight-line code for the entire computation and use standard
optimizing-compiler tools.

We have done this optimization for all n ∈ {1, 2, . . . , 100000} and found that
the cost of fold(T−1

2n (0, . . . , 0, top)) can in every case be computed as follows.
Write n as 2n0 + 2n1 + · · · + 2nr with n0 > n1 > · · · > nr. The cost is then∑

i 2ni−1(ni +4i) minus a nonnegative rebate. The rebate is 1 for each 11 in the
binary expansion of n (i.e., each i such that ni = ni+1 + 1), plus 2 for each 111
in the binary expansion, plus 4 for each 1111, plus 8 for each 11111, etc.

Examples: If n = 131 then n has binary expansion 10000011, so the rebate is
1, and the cost is 27−1(7) + 21−1(1 + 4) + 20−1(0 + 8)− 1 = 456. If n = 491 then
n + 1 has binary expansion 111101011, with 4 occurrences of 11, 2 occurrences
of 111, and 1 occurrence of 1111, so the rebate is 1 + 1 + 1 + 1 + 2 + 2 + 4 = 12,
and the cost is 28−1(8) + 27−1(7 + 4) + 26−1(6 + 8) + 25−1(5 + 12) + 23−1(3 +
16) + 21−1(1 + 20) + 20−1(0 + 24) − 12 = 2545.

To summarize, P × P → P multiplication involves

• cost M(n) for the polynomial product;
• the cost discussed above, approximately (n/2) log2 n;
• the cost of Tn, approximately (n/2) log2(n/4); and
• cost n − 1 for the final addition of the bottom half.

The total cost is approximately M(n)+n log2 n, similar to the cost of P×P → N
multiplication. These approximations should not be viewed as equalities: a closer
look shows that P × P → P multiplication costs about

∑
i 2nii more than

P × P → N multiplication.

4.4 Dynamically Mixing N and P

At this point our basic tools are as follows:

• N → P conversion: 1 transform, cost
∑

i(2
ni−1(ni − 2 + 2i) + 1).

• P → N conversion: 1 transform, cost
∑

i(2
ni−1(ni − 2 + 2i) + 1).

• N → N repeated squarings: 0 transforms, cost 0.
• P×P → N multiplication: 2 transforms (actually one double-size transform),

cost M(n) +
∑

i(2
ni(ni + 2i) + 1).

• P × P → P multiplication: 2 transforms, slightly larger cost as discussed
above.

There are several reasonable ways to combine these tools. One extreme is to
work everywhere in N , using N → N repeated squarings (0 transforms) and
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N×N → P ×P → N multiplications (4 transforms). Another extreme is to work
everywhere in P , using P → N → N → P repeated squarings (2 transforms)
and P × P → P multiplications (2 transforms).

We take a more fluid approach, mixing the advantages of both extremes.
We compute N(a) for variables a that will be used in repeated squarings; we
compute P (a) for variables a that will be used in multiplications; we compute
both N(a) and P (a) for variables a that will be used in both repeated squarings
and multiplications. The overall number of transforms in this approach is 0 for
each squaring and between 2 and 4 for each multiplication, depending on the
exact pattern of multiplications and repeated squarings. See Section 5 for an
illustrative example.

We briefly comment that P → P single squaring can be sped up by the same
idea used in P × P → P multiplication. However, in every application so far
where we have tried this approach, we have found a faster solution that uses
N → N squaring and rearranges the earlier computations.

5 Case Study: ECC2K-130

This section illustrates the use of optimal polynomial bases and optimal normal
bases in the ECC2K-130 computation mentioned in Section 1. Specifically, this
section shows that the 5B + 5 multiplications in B iterations of the ECC2K-
130 iteration function from [BBB+09] can be carried out with an overhead of
only 5851B + 9412 bit operations. The original Shokrollahi approach, with our
improved analysis, would have used 8565B + 8565 bit operations.

5.1 Review of the Iteration Function

We take the perspective of an implementor faced with the job of implementing
the ECC2K-130 iteration function from [BBB+09], the bottleneck in the ECC2K-
130 computation. To keep this paper self-contained we now repeat the definition
of the iteration function.

The input to an iteration is a pair (x, y) ∈ F2131 × F2131 satisfying three
conditions: first, y2 + xy = x3 + 1; second, x 	= 0; third, x has trace 0, i.e., N(x)
has even Hamming weight. The output of the iteration is the pair (x′, y′) defined
by the equations

j = 3 +
(

weight(N(x))
2

mod 8
)

, λ =
y + y2j

x + x2j ,

x′ = λ2 + λ + x + x2j

, y′ = λ(x + x′) + x′ + y.

One can check that (y′)2 + x′y′ = (x′)3 + 1, that x′ 	= 0, and that x′ has trace 0.
This iteration function can be computed using 3 + (5/B) multiplications for

a B-way-batched inversion of x + x2j

; 1 multiplication of the inverse by y + y2j

,
producing λ; and 1 multiplication of λ by x+x′. All of these stages are discussed
in more detail below.
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See [BBB+09] for further information on how these iterations are being used
to solve the ECC2K-130 challenge. We comment that thousands of CPU and
GPU cores (including Core 2 clusters, Cell clusters, and GTX 295 clusters)
have already been busy for months computing these iterations, and that many
more cores are being added; obviously every speedup in the computation is
valuable.

5.2 The Main Loop

It is natural to represent the input (x, y) as (N(x), N(y)): the first step is to
compute the weight of N(x), and both x and y are then fed through repeated
squarings. On the other hand, dividing y + y2j

by x + x2j

requires P (y + y2j

)
and P (1/(x + x2j

)). The quotient λ is then used for both a squaring λ2 and a
multiplication λ(x + x′), so we compute both N(λ) and P (λ).

Figure 1 shows the resulting data flow between representations of various field
elements. There are 4 explicit size-131 transforms, and 2 multiplications P×P →
N each involving 2 size-131 transforms. Working solely with N , and with an
N × N → N multiplication subroutine, would require an extra transform for
N(1/d). Note that more transforms are saved inside the inversion, as discussed
below.

Figure 1 shows computations from N(y) through N(y2j

) in parallel with com-
putations from N(x) through N(x2j

). To reduce storage requirements, cache
misses, etc., the ECC2K-130 software actually delays the N(y2j

) computations
until after the inversion.

5.3 Batching Inversions

Montgomery in [Mon87, Section 10.3.1] suggested computing 1/d1 and 1/d2 as
d2/(d1d2) and d1/(d1d2). This suggestion eliminates 1 inversion in favor of 3
multiplications. We are not aware of any inversion method for F2131 that can
compete with 3 multiplications if the multiplications are performed by state-of-
the-art techniques.

A batch of B parallel iterations involves B inversions 1/d1, 1/d2, . . . , 1/dB.
Merging the first two inversions, then merging with the next, etc., leads to
the following standard computation, replacing B − 1 inversions with 3(B − 1)
multiplications: first compute d1d2, d1d2d3, . . . , d1d2 · · · dB using B − 1 multi-
plications; then compute 1/(d1d2 · · · dB) using a single inversion; then compute
1/dB = (d1d2 · · · dB−1)/(d1d2 · · · dB) and 1/(d1d2 · · · dB−1) = dB/(d1d2 · · · dB)
using 2 multiplications, etc.

The single central inversion begins with squarings, as discussed below, and
therefore takes N(d1d2 · · · dB) as input. However, all of the intermediate products
here are used solely for further multiplications, so we represent them in P form.
Figure 2 shows the resulting data flow for B = 4. Working solely with N , and
with an N × N → N multiplication subroutine, would double the number of
transforms.
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Fig. 1. The ECC2K-130 iteration function
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Other merging patterns, such as a balanced tree, reduce latency without
changing the number of operations. The same comments regarding P and N
apply to arbitrary merging patterns.
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Fig. 2. Batching 4 independent inversions

5.4 Core Inversions

Eventually one has to actually invert something. Inversion time is amortized
across a batch of B iterations, but B is often limited by communication costs
(such as the cost of copying data between DRAM and limited SRAM), making
inversion an important part of the ECC2K-130 computation.

The standard branchless inversion method for F2n , certainly not the only
method, is to compute a (2n − 2)nd power. This inversion method is also impor-
tant in many other computations, so we describe the details for general n before
focusing on n = 131.

The standard method of computing a (2n − 2)nd power uses n − 1 squarings
and just r multiplications, where r is the length of an “�0 chain” for n − 1; an
�0 chain is a particular type of addition chain. The idea is to convert a chain
1 = e0, e1, . . . , er = n−1 into a chain containing 1 = 2e0−1, 2e1−1, . . . , 2er −1 =
2n−1−1 along with various doublings; i.e., to compute x1 = x2e0−1, . . . , x2er−1 =
x2n−1−1 along with various squarings. This powering method was introduced by
Brauer in 1939 for the special case of “star chains” and by Hansen in 1959 for all
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�0 chains. See [Bra39], [Han59], and [Knu97b, Section 4.6.3, Theorem G]. Note
that the shortest �0 chains are as short as the shortest addition chains for all
integers below 5784689; see [Cli05].

In particular, a simple binary addition chain achieves r = �log2(n − 1)� +
weight(n−1)−1, producing an inversion method that takes n−1 squarings and
�log2(n − 1)�+weight(n− 1)− 1 multiplications. This inversion method is often
credited to the 1988 paper [IT88] by Itoh and Tsujii. For most values of n one can
do noticeably better (often more than 1.5× better!) by switching to a standard
“windowing” addition chain for n−1, producing an inversion method that takes
n − 1 squarings and (1 + o(1)) log2 n multiplications. For further discussion of
this inversion method see [vzGN99] and [Nöc01].

In the case n = 131 we take the length-8 addition chain 1, 2, 4, 8, 16, 32, 64,
65, 130 for n − 1. We could compute

x, x2, x3, x12, x15, x240, x255 = x28−1, x216−28
, x216−1, x232−216

, x232−1,

x264−232
, x264−1, x265−2, x265−1, x2130−265

, x2130−1, x2131−2 = x−1

but we eliminate a final transform by moving the final squaring to the beginning:

x, x2, x4, x6, x24, x30, x480, x510 = x29−2, x217−29
, x217−2, x233−217

, x233−2,

x265−233
, x265−2, x266−4, x266−2, x2131−266

, x2131−2 = x−1.

Figure 3 shows the resulting data flow. Working solely with N , and with an
N × N → N multiplication subroutine, would require an extra transform for
P (x2), and an extra transform for P (x−1).

5.5 Total Overhead

A batch of B ≥ 2 iterations involves the following multiplications and conversions:

• Inversion (see Figure 3): 8 multiplications P × P → N and 15 conversions
N → P .

• Batching (see Figure 2 for B = 4): 1 multiplication P × P → N and 3B − 4
multiplications P × P → P . Note that all B inversions together involve
8+1+ (3B− 4) = 3B +5 multiplications; i.e., 3+ (5/B) multiplications per
inversion, as mentioned earlier.

• Iteration (B copies of Figure 1): 4B conversions N → P and 2B multiplica-
tions P × P → N .

In total there are

• 2B + 9 multiplications P × P → N , each having overhead 909;
• 3B − 4 multiplications P × P → P , each having overhead 911; and
• 4B + 15 conversions N → P , each having overhead 325.

The total overhead is 5851B+9412, i.e., 5851+9412/B per iteration. To put this
in perspective, the fastest known method for size-131 polynomial multiplication
(see [Ber09a]) costs 11961 bit operations, and all of the other operations in the
iteration cost 3929 bit operations.



58 D.J. Bernstein and T. Lange

N(x)

��
P (x2)

��																		

��

N(x2)

��

convert��

N(x4)
convert �� P (x4)

��


















P (x6)

��																		 N(x6)

��

convert��

N(x24)
convert �� P (x24)

��

















P (x30)

��																		
N(x30)

��

convert��

N(x480)
convert �� P (x480)

��
















P (x29−2)

��																	
N(x29−2)

��

convert��

N(x217−29
)

convert �� P (x217−29
)

��














P (x217−2)

��																	
N(x217−2)

��

convert��

N(x233−217
)

convert �� P (x233−217
)

��













P (x233−2)

��																	
N(x233−2)

��

convert��

N(x265−233
)

convert �� P (x265−233
)

��













N(x265−2)

��
N(x266−4)

convert �� P (x266−4)

��














P (x266−2)

��																	
N(x266−2)

��

convert��

N(x2131−266
)

convert �� P (x2131−266
)

��











P (x2131−2) = P (x−1)

Fig. 3. Core inversion inside the ECC2K-130 iteration function
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For comparison, Shokrollahi’s original approach would have used 5B +5 mul-
tiplications N × N → N , each costing M(132) + 1559. (Shokrollahi’s analysis
actually says M(132) + 3462; M(132) + 1559 is the result of our own analysis
of Shokrollahi’s algorithm, and has been computer-verified.) The fastest known
methods for size-132 multiplication involve 154 bit operations more than the
fastest known methods for size-131 multiplication; if these methods are used
then each N × N → N multiplication has overhead 154 + 1559 = 1713, for a
total overhead of 8565B + 8565, i.e., 8565 per iteration.

5.6 Comparison to Traditional Low-Weight Polynomial Bases

The current ECC2K-130 attack software uses our techniques. The original
ECC2K-130 attack software instead used a low-weight polynomial basis, specif-
ically the basis 1, z, z2, . . . , z130 of F2131 = F2[z]/(z131 + z13 + z2 + z + 1). There
is no trinomial basis for this field.

The obvious approach to multiplication in this polynomial basis has overhead
4 ·130 = 520: for example, one eliminates the coefficient of z260 by adding it to 4
previous coefficients. However, a closer look shows that 65 of these 520 additions
can be reused, thanks to the even spacing of z2, z, 1, reducing the multiplication
overhead to 455.

Similarly, a single squaring costs just 203. The problem is that there are 21
squarings in Figure 1: 10 for x2j

via r2, s4, t16; another 10 for y2j

; and another
1 for λ2. Even worse, one still needs to convert x to N(x) as a stepping-stone to
weight(N(x)).

The total overhead for 5 multiplications and 21 squarings is 5 ·455+21 ·203 =
6538 per iteration. The basis conversion from x to N(x) can be performed in
3380 bit operations as explained in [Ber09b]. We have seen some ideas for slightly
reducing these costs, but nothing that could make this low-weight polynomial
basis competitive with the approach explained in this paper.
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Winterthurerstrasse 190 CH-8057, Zürich, Switzerland
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Abstract. In this paper we study a new class of dynamical systems
generated by iterations of a class of multivariate permutation polyno-
mial systems. Using the same techniques studied previously for other
generators, we bound exponential sums along the orbits of these dynam-
ical systems and show that they admit stronger estimates than in the
general case and thus can be of use for pseudorandom number genera-
tion. We also prove a nontrivial bound “on average” over all initial values
v ∈ F

m
p on the discrepancy for pseudorandom vectors generated by these

iterations.
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1 Introduction

In the series of papers [14,16,17] the authors considered multivariate polynomial
systems F = {F1, . . . , Fm} of m polynomials in m variables over a finite field Fq

having the “triangular” form

F1(X1, . . . , Xm) = X1G1(X2, . . . , Xm) + H1(X2, . . . , Xm),
. . .

Fm−1(X1, . . . , Xm) = Xm−1Gm−1(Xm) + Hm−1(Xm),
Fm(X1, . . . , Xm) = gmXm + hm,

(1)

with Gi, Hi ∈ Fq[Xi+1, . . . , Xm], i = 1, . . . , m − 1, and gm, hm ∈ Fq, gm �= 0,
for which they imposed that the polynomials Fi have unique leading monomial
which dominates the other terms in every variable. For this class of polynomials,
it has been shown in [16] that the degrees of the iterations of the polynomials Fi,
i = 1, . . . , m, grow significantly slower than the exponential growth expected for
iterations of a “generic” system of m polynomials in m variables. In turn, this
leads to much better estimates of exponential sums, and thus of discrepancy,

M.A. Hasan and T. Helleseth (Eds.): WAIFI 2010, LNCS 6087, pp. 62–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for vectors generated by (1) than for those generated originated from arbitrary
polynomial systems, see [4,5,15].

Furthermore, it has been shown in [14] that in the case when such a polynomial
map generates a permutation of the corresponding vector space, one can get
better results “on average” over all initial values. It is also noticed in [14] that in
fact one can avoid the use of the Weil bound (see [7, Chapter 5]) of exponential
sums and achieve a better result with a more elementary argument.

Let p be a prime and Fp be a finite field with p elements. In this paper we
study a special case of the systems (1), namely we consider the polynomials
Gi to be constant polynomials. More precisely, we consider systems of m ≥ 2
polynomials Fi ∈ Fp[X1, . . . , Xm], i = 1, . . . , m, over Fp defined in the following
way:

F1(X1, . . . , Xm) = g1X1 + H1(X2, . . . , Xm),
. . .

Fm−1(X1, . . . , Xm) = gm−1Xm−1 + Hm−1(Xm),
Fm(X1, . . . , Xm) = gmXm + hm,

(2)

where

gi, hm ∈ Fp, gi �∈ {0, 1}, Hi ∈ Fp[Xi+1, . . . , Xm], i = 1, . . . , m.

We note that in the case when the polynomials Hi, i = 1, . . . , m−1, are constant
polynomials, we simply have a system of m independent polynomials. Clearly,
iterations of such systems generate vectors of the form (A1g

n
1 +B1, . . . , Amgn

m +
Bm). Such systems have actually been suggested as pseudorandom number gen-
erators, however with very limited progress. In fact, prior the very recent work
of Bourgain [1], no interesting results have been known for such systems and
corresponding vectors over finite fields. However, for similar systems with con-
stant polynomials Hi, i = 1, . . . , m − 1, but defined over a residue ring modulo
a prime power pα for a fixed prime p, one can also use the estimates of [20],
which apply to an arbitrary linear recurrence sequence modulo pα. However, if
the polynomials Hi, i = 1, . . . , m− 1, are not constant polynomials over a finite
field Fp of p elements (for prime p), this “mixing” increases the length of the
orbits and also allows us to use very different methods and thus derive a series of
new results. Naturally, the strength of our bounds depends on the multiplicative
orders ti of gi in Fp, i = 1, . . . , m.

We remark that for the polynomial systems (2) the conditions imposed in
[14,16,17] are not satisfied anymore, and thus the results are not applicable for
this case.

We follow the same technique as in [14,17] and we exploit the special struc-
ture of iterations of the polynomial systems introduced below that allows us to
replace the use of the Weil bound (see [7, Chapter 5]) by a more elementary and
stronger estimate on the corresponding exponential sums which in turn leads to a
better final result on the distribution of the vectors generated by such dynamical
systems. In fact, since our construction can easily be extended to polynomials
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over commutative rings, the new estimate can also be used to study polynomial
maps over residue rings (while the Weil bound does not apply there).

Our results expand the class of polynomial dynamical systems which admit
good estimates on exponential sums and thus have strong uniform distribution
properties of elements in their orbits.

Throughout the paper, the implied constants in the symbols ‘O’ and ‘�’
may occasionally, where obvious, depend on the number of variables m, and are
absolute otherwise. We recall that the notations A = O(B) and A � B are all
equivalent to the assertion that the inequality |A| ≤ cB holds for some constant
c > 0.

2 Nonlinear Pseudorandom Number Generators

2.1 Iterations of Triangular Polynomial Systems

For each i = 1, . . . , m we define the k-th iteration of the polynomials Fi by the
recurrence relation

F
(0)
i = Xi, F

(k)
i = Fi(F

(k−1)
1 , . . . , F (k−1)

m ), k = 1, 2, . . . . (3)

We can describe explicitly the iterations of the polynomials Fi as follows:

Lemma 1. Let F1, . . . , Fm ∈ Fp[X1, . . . , Xm] be as in (2). Then for i = 1, . . . , m

and k = 0, 1, . . ., for the polynomials F
(k)
i given by (3) we have

F
(k)
i = gk

i Xi + Hi,k(Xi+1, . . . , Xm),

where Hi,k ∈ Fp[Xi+1, . . . , Xm] for i = 1, . . . , m.

We note that the system defined above is a permutation system, that is a system
of multivariate polynomials in Fp[X1, . . . , Xm] which induces a map that per-
mutes the elements of F

m
p , given by absolutely irreducible polynomials. Moreover,

the iterated polynomials F
(k)
i have exactly the same form as the polynomials Fi

and are also absolutely irreducible polynomials.

2.2 Vector Sequences

Let F = {F1, . . . , Fm} be a polynomial system in the ring Fp[X1, . . . , Xm] of the
form (2). We consider the m-dimensional multisequence

(un) = ((un,1, . . . , un,m)) (4)

defined by a recurrence relation of the form

un+1,i = Fi(un,1, . . . , un,m), n = 0, 1, . . . , i = 1, . . . , m, (5)

with some initial vector u0 = (u0,1, . . . , u0,m) ∈ F
m
p .
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Using the following vector notation

F = (F1(X1, . . . , Xm), . . . , Fm(X1, . . . , Xm)),

we have the recurrence relation

un+1 = F(un), n = 0, 1, . . . .

In particular, for any n, k ≥ 0 and i = 1, . . . , m we have

un+k,i = F
(k)
i (un) = F

(k)
i (un,1, . . . , un,m) (6)

or
un+k = F(k)(un).

Clearly, as we work over a finite field of p elements, the sequence of vectors
(un) is eventually periodic with some period τ ≤ pm. We always assume that
the sequence is purely periodic, that is,

un+τ = un, n = 0, 1, . . . .

3 Main Results

3.1 Exponential Sums

Assume that the sequence {un} generated by (4) and (5) is purely periodic with
an arbitrary period τ . For an integer vector a = (a1, . . . , am) ∈ Z

m we introduce
the exponential sum

Sa(N) =
N−1∑

n=0

ep

(
m∑

i=1

aiun,i

)
,

where
ep(z) = exp(2πiz/p).

Also, as before ti denotes the multiplicative order of gi in Fp, i = 1, . . . , m.
As in [14, Lemma 2] we have the following description of the linear combina-

tions of the iterations of the polynomials Fi:

Lemma 2. Let F be the polynomial system (2). For any two integers k > l and
any nonzero integer vector a = (a1, . . . , am) ∈ F

m
p , we define the polynomial

Fa,k,l =
m∑

i=1

ai

(
F

(k)
i − F

(l)
i

)
,

where the polynomials F
(k)
i are given by (3). If gk

s �≡ gl
s (mod ts) where 1 ≤ s ≤

m is the smallest integer such that as �= 0, then we have
p∑

x1,...,xm=1

ep (Fa,k,l(x1, . . . , xm)) = 0.
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Proof. By Lemma 1 we have

Fa,k,l(x1, . . . , xm)

=
m∑

i=s

ai

(
(gk

i − gl
i)xi + (Hi,k(xi+1, . . . , xm) − Hi,l(xi+1, . . . , xm))

)

= as(gk
s − gl

s)xs + Ψa,k,l(xs+1, . . . , xm),

where

Ψa,k,l(xs+1, . . . , xm) =
m∑

i=s+1

(
ai(gk

i − gl
i)xi

)
+

m∑

i=s

ai (Hi,k(xs+1, . . . , xm) − Hi,l(xs+1, . . . , xm)) .

Therefore,

p∑

x1,...,xm=1

ep (Fa,k,l(x1, . . . , xm)) = ps

p∑

xs+1,...,xm=1

ep (Ψa,k,l(xs+1, . . . , xm))

·
p∑

xs=1

ep

(
as(gk

s − gl
s)xs

)
.

Recalling the identity

p∑

u=1

ep(cu) =
{

p, if c ≡ 0 (mod p),
0, if c �≡ 0 (mod p),

see [8, Equation (5.9)], we get the desired result. �

Following the same technique as in [16,17] we obtain now the following estimate
for the exponential sum Sa(N):

Theorem 1. Let the sequence {un} be generated by (4) and (5), where the
system of m ≥ 2 polynomials F = {F1, . . . , Fm} ∈ Fp[X1, . . . , Xm] is of the
form (2). Assume that {un} is purely periodic with period τ . Then for any pos-
itive integer N ≤ τ and any nonzero vector a ∈ F

m
p we have the bound

Sa(N) � N1/2t−1/2
s pm/2,

where 1 ≤ s ≤ m is the smallest integer such that as �= 0 and ts is the order of
gs in Fp.

Proof. We follow the same argument as in the proof of [17, Theorem 4].
In particular, as in [17], we obtain that for any integer K ≥ 1,

K|Sa(N)| ≤ W + K2, (7)
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where

W =

∣∣∣∣∣

N−1∑

n=0

K∑

k=1

ep

(
m∑

i=1

aiun+k,i

)∣∣∣∣∣ .

Using the Cauchy-Schwarz inequality we derive (again exactly the same way as
in [16,17])

W 2 ≤ N

K∑

k,l=1

∑

x1,...,xm∈Fm
p

ep(Fa,k,l(x1, . . . , xm)) .

Because gk
s−gl

s ≡ 0 (mod p) if and only if we have k ≡ l (mod ts), for O(K(Kt−1
s

+1)) elements k, l such that k ≡ l (mod ts) we estimate the sum trivially by pm.
Furthermore, for k �≡ l (mod ts), using Lemma 2 we see that the sum simply
vanishes. We obtain the estimate

W 2 � NK(Kt−1
s + 1)pm.

Choosing now K = ts and inserting the above bound in (7) we obtain the desired
result. �

3.2 Discrepancy

Given a sequence Γ of N points

Γ =
{
(γn,1, . . . , γn,m)N−1

n=0

}
(8)

in the m-dimensional unit cube [0, 1)m it is natural to measure the level of its
statistical uniformity in terms of the discrepancy DN (Γ ). More precisely,

DN(Γ ) = sup
B⊆[0,1)m

∣∣∣∣
TΓ (B)

N
− |B|

∣∣∣∣ ,

where TΓ (B) is the number of points of Γ inside the box

B = [α1, β1) × . . . × [αm, βm) ⊆ [0, 1)m

and the supremum is taken over all such boxes, see [3,6].
We recall that the discrepancy is a widely accepted quantitative measure of

uniformity of distribution of sequences, and thus good pseudorandom sequences
should (after an appropriate scaling) have a small discrepancy, see [11,12].

Typically the bounds on the discrepancy of a sequence are derived from
bounds of exponential sums with elements of this sequence. The relation is made
explicit in the celebrated Erdős–Turan–Koksma inequality, see [3, Theorem 1.21],
which we present it in the following form.

Lemma 3. For any integer H > 1 and any sequence Γ of N points (8) the
discrepancy DN (Γ ) satisfies the following bound:

DN (Γ ) = O

⎛

⎝ 1
H

+
1
N

∑

0<|h|≤H

m∏

j=1

1
|hj | + 1

∣∣∣∣∣∣

N−1∑

n=0

exp

⎛

⎝2πi
m∑

j=1

hjγn,j

⎞

⎠

∣∣∣∣∣∣

⎞

⎠ ,
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where the sum is taken over all integer vectors h = (h1, . . . , hm) ∈ Z
m with

|h| = maxj=1,...,m |hj| < H.

Using now Theorem 1 and Lemma 3 we obtain the following estimate on the
discrepancy of the sequence of vectors generated by polynomial systems of the
form (2).

Theorem 2. Let the sequence {un} be generated by (4) and (5), where the
system of m ≥ 2 polynomials F = {F1, . . . , Fm} ∈ Fp[X1, . . . , Xm] is of the
form (2). Assume that {un} is purely periodic with period τ . Then for any pos-
itive integer N ≤ τ , the discrepancy DN (Γ ) of the sequence

Γ =
{(

un,1

p
, . . . ,

un,m

p

)
, n = 0, . . . , N − 1

}
,

satisfies the bound

DN(Γ ) = O(N−1/2t−1/2pm/2(log p)m)

where t = min{ts|s = 1, . . . , m}.
We note that both Theorem 1 and Theorem 2 are nontrivial if τ ≥ N ≥
t−1(log p)2mpm.

3.3 Average Case over All Initial Values

We follow the scheme previously introduced in [13] for estimating the discrepancy
on average of the sequence generated by (4) and (5).

For a vector a = (a1, . . . , am) ∈ F
m
p and integers c, M, N with M ≥ 1 and

N ≥ 1, we introduce

Va,c(M, N) =
∑

v1,...,vm∈Fp

∣∣∣∣∣∣

N−1∑

n=0

ep

⎛

⎝
m∑

j=1

ajF
(n)
j (v1, . . . , vm)

⎞

⎠ eM (cn)

∣∣∣∣∣∣

2

.

Theorem 3. Let the polynomial system of m polynomials

F = {F1, . . . , Fm} ∈ Fp[X1, . . . , Xm], m ≥ 2,

of the form (2). Then for any positive integers c, M, N and any nonzero vector
a = (a1, . . . , am) ∈ F

m
p we have

Va,c(M, N) � A(N, p),

where

A(N, p) =
{

Npm if N ≤ ts,
N2t−1

s pm if N > ts,

and s ≤ m is the smallest integer such that as �= 0.



Pseudorandom Vector Sequences from Triangular Polynomial Systems 69

Proof. We have

Va,c(M, N) =
N−1∑

k,l=0

eM (c(k − l))

∑

v∈Fm
p

ep

⎛

⎝
m∑

j=1

aj

(
F

(k)
j (v) − F

(l)
j (v)

)
⎞

⎠

≤
N−1∑

k,l=0

∣∣∣∣∣∣

∑

v∈Fm
p

ep

⎛

⎝
m∑

j=1

aj

(
F

(k)
j (v) − F

(l)
j (v)

)
⎞

⎠

∣∣∣∣∣∣
.

As in Theorem 1, for O(N(Nt−1
s +1)) elements k, l such that k ≡ l (mod ts), we

estimate the inner sum trivially by pm. Furthermore, for k �≡ l (mod ts), using
Lemma 2 we see that the sum simply vanishes.

Hence,
Va,c(M, N) � N(Nt−1

s + 1)pm. (9)

Because F is a permutation polynomial system and using (6), for any integer L
we obtain

∑

v∈Fm
p

∣∣∣∣∣∣

L+N−1∑

n=L

ep

⎛

⎝
m∑

j=1

ajF
(n)
j (v)

⎞

⎠ eM (cn)

∣∣∣∣∣∣

2

=
∑

v∈Fm
p

∣∣∣∣∣∣

N−1∑

n=0

ep

⎛

⎝
m∑

j=1

ajF
(n)
j

(
F

(L)
1 (v), . . . , F (L)

m (v)
)
⎞

⎠ eM (cn)

∣∣∣∣∣∣

2

=
∑

v∈Fm
p

∣∣∣∣∣∣

N−1∑

n=0

ep

⎛

⎝
m∑

j=1

ajF
(n)
j (v)

⎞

⎠ eM (cn)

∣∣∣∣∣∣

2

= Va,c(M, N).

Therefore, for any positive integer K ≤ N , separating the inner sum into at
most N/K + 1 subsums of length at most K, and using (9), we derive

Va,c(M, N) � K(Kt−1
s + 1)pmN2K−2 = N2t−1

s pm + K−1N2pm.

Thus, selecting K = min{N, ts} we obtain the desired result. �

Now, exactly as in [13,17], combining Lemma 3 with the bound obtained in
Theorem 3 we obtain stronger estimates for the discrepancy “on average” over
all initial values.

Theorem 4. Let 0 < ε < 1 and let the sequence {un} be generated by (4)
and (5), where the system of m ≥ 2 polynomials

F = {F1, . . . , Fm} ∈ Fp[X1, . . . , Xm]
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is of the form (2). Then for all initial values v ∈ F
m
p except at most O(εpm)

of them, and any positive integer N ≤ pm, the discrepancy DN(Γ (v)) of the
sequence

Γ (v) =
{(

un,1

p
, . . . ,

un,m

p

)
, n = 0, . . . , N − 1

}
,

satisfies the bound
DN(Γ (v)) ≤ ε−1B(N, p),

where

B(N, p) =
{

N−1/2(log N)m+1 log p if N ≤ t,

t−1/2(log N)m+1 log p if N > t,

and t = min{ts|s = 1, . . . , m}.
We note that Theorem 4 is nontrivial if N ≥ (log p)2+ε for some ε > 0.

4 Remarks and Questions

We remark that our bounds of exponential sums can be immediately extended
to arbitrary finite fields. Furthermore, our approach also applies to the same
polynomial systems over residue rings and also leads to similar results.

Although low discrepancy is a very important requirement on any pseudo-
random number generator, this is not the only one. For example, the notion of
linear complexity also plays an important role in this area. We recall that the
linear complexity L of an N -element sequence s0, . . . , sN−1 in a ring R is defined
as the smallest L such that

su+L = cL−1su+L−1 + . . . + c0su, 0 ≤ u ≤ N − L − 1,

for some c0, . . . , cL−1 ∈ R, see [2,9,10,21,22].
We remark that the degree argument which has been used in [18] to prove

the linear complexity bounds for the polynomial systems (1) cannot be applied
here anymore, so more ideas are needed in order to be able to give nontrivial
estimates in the case of the polynomial systems considered in this paper.

Furthermore, in the case of vector sequences it is also natural to consider
linear relations with vector coefficients. Namely, it would be interesting to give
nontrivial estimates for the smallest L such that for some m-dimensional vectors
c0, . . . , cL over Fq where cL is a non-zero vector, we have

L∑

h=0

ch · un+h = 0

for all h = 0, . . . , N −L− 1, where c ·u denotes the scalar product. This can be
extended to sequences over arbitrary finite fields.

It will be also very interesting to investigate character sums using polynomial
systems of the form (2). For some results involving the systems (1) see [19].
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Abstract. We study the distribution of s-dimensional points of Fermat
quotients modulo p with arbitrary lags. If no lags coincide modulo p
the same technique as in [21] works. However, there are some interesting
twists in the other case. We prove a discrepancy bound which is uncondi-
tional for s = 2 and needs restrictions on the lags for s > 2. We apply this
bound to derive results on the pseudorandomness of the binary thresh-
old sequence derived from Fermat quotients in terms of bounds on the
well-distribution measure and the correlation measure of order 2, both
introduced by Mauduit and Sárközy. We also prove a lower bound on its
linear complexity profile. The proofs are based on bounds on exponential
sums and earlier relations between discrepancy and both measures above
shown by Mauduit, Niederreiter and Sárközy. Moreover, we analyze the
lattice structure of Fermat quotients modulo p with arbitrary lags.

Keywords: Fermat quotients, finite fields, pseudorandom sequences, ex-
ponential sums, discrepancy, well-distribution measure, correlation mea-
sure, linear complexity, lattice test.
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1 Introduction

For a prime p and an integer u with gcd(u, p) = 1 the Fermat quotient qp(u)
modulo p is defined as the unique integer with

qp(u) ≡ up−1 − 1
p

(mod p), 0 ≤ qp(u) ≤ p− 1,

and we also define
qp(kp) = 0, k ∈ Z.

We note that (qp(u)) is a p2-periodic sequence modulo p for u ≥ 1. There are
several results which involve the distribution and structure of Fermat quotients
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qp(u) modulo p and it has numerous applications in computational and algebraic
number theory, see e.g. [8,10,11,21] and references therein.

In particular, Heath-Brown [11] presented a nontrivial upper bound on ex-
ponential sums with qp(u), u = d0 + 1, . . . , d0 + N , for any integers d0 and
N ≥ p1/2+ε for any fixed ε. (The result in [11] is weaker but using the Burgess
bound instead of the Polya-Vinogradov bound in the proof one can easily obtain
it, see [21, Lemma 2].) Furthermore, the second author and Shparlinski [21] have
recently presented a nontrivial bound of exponential sums with linear combina-
tions of s ≥ 1 consecutive values (qp(u), . . . , qp(u+s−1)), u = d0 +1, . . . , d0 +N
for longer intervals of length N ≥ p1+ε.

Here we first study the distribution of the points

Γ (D,N, s) =
{(

qp(u+ d0)
p

, . . . ,
qp(u+ ds−1)

p

)
: u = 1, . . . , N

}
(1)

in the s-dimensional unit interval for any lags D = (d0, . . . , ds−1) with 0 ≤ d0 <
· · · < ds−1 < p2. More precisely, we prove an exponential sum bound (which
implies a discrepancy bound using the Erdős-Turan-Koksma inequality) which
is nontrivial for s = 2 and arbitrary lags 0 ≤ d0 < d1 < p2 and for s > 2 if
no three lags are equivalent modulo p. We note that in the case when di �≡ dj

(mod p) for all 0 ≤ i < j < s, the proof is exactly the same as in [21, Theorem
11]. However, the other case brings interesting twists and will be discussed in
Theorem 1 below. We also indicate that the exponential sums can be trivial for
s > 2 if there exist three equivalent lags modulo p.

As applications we use some results of [14] to derive bounds on the well-
distribution measure W (Ep2) and the correlation measure C2(Ep2) of order 2
(see Section 3 below for the definitions) of the binary sequence Ep2 = {e1, e2, . . . ,
ep2} ∈ {0, 1}p2

defined by

eu =
{

0, if 0 ≤ qp(u)/p < 1
2 ,

1, if 1
2 ≤ qp(u)/p < 1, 1 ≤ u ≤ p2. (2)

Note that for such applications a discrepancy bound with arbitrary lags is
needed. Most known discrepancy bounds on nonlinear pseudorandom numbers
found in the literature consider only equidistant lags. In many cases the anal-
ysis of the discrepancy becomes much more intricate for arbitrary lags, see for
example [18].

It was shown in [2] that for a “truly random” sequence ET ∈ {0, 1}T both
pseudorandomness measures W (ET ) and C2(ET ) are “small”. More precisely,
a sequence ET can be considered as a “good” pseudorandom sequence if both
W (ET ) and C2(ET ) are small and are ideally greater than T 1/2 only by at most
a power of logT . We prove bounds on well-distribution measure and correlation
measure of order 2 for the binary threshold sequence Ep2 derived from Fermat
quotients modulo p of the desired order of magnitude.

Moreover, we use the bounds on exponential sums of Fermat quotients to
derive a bound on the linear complexity profile (see Section 4 for the definition)
of the sequence Ep2 defined by (2).
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Finally we study the lattice structure of the sequence (qp(u)). The following
lattice test was introduced in [20]. Let (wu), u = 1, 2, . . ., be a T -periodic se-
quence over the finite field Fp of p elements. For given integers s ≥ 1, 0 ≤ d0 <
d1 < . . . < ds−1 < T , and N ≥ 2, we say that (wu) passes the s-dimensional
N -lattice test with lags d0, . . . , ds−1 if the vectors {wu − w1 : 1 ≤ u ≤ N} span
F

s
p, where

wu = (wu+d0 , wu+d1 , . . . , wu+ds−1), 1 ≤ u ≤ N.

In the case di = i for 0 ≤ i < s, this test coincides essentially with the lattice
test introduced in [5] and further analyzed in [3,4,5,6,9,22]. The latter lattice
test is closely related to the concept of the linear complexity profile, see [5,6,19].
If additionally N ≥ T , this special lattice test was proposed by Marsaglia [13].

We note that in the case di �≡ dj (mod p) for all 0 ≤ i < j < s, the lattice
test can be analyzed essentially along the same lines as in the proof of the linear
complexity bounds in [21, Theorems 13,14].

The implied constants in the symbols ‘O’, and ‘�’ are absolute. We recall
that the notations U = O(V ) and U � V are both equivalent to the assertion
that the inequality |U | ≤ cV holds for some constant c > 0.

2 Distribution of Fermat Quotients

Given a sequence Γ of N points

Γ =
{
(γn,0, . . . , γn,s−1)N

n=1

}
(3)

in the s-dimensional unit cube [0, 1)s it is natural to measure the level of its
statistical uniformity in terms of the discrepancy Δ(Γ ) defined by

Δ(Γ ) = sup
B⊆[0,1)s

∣∣∣∣TΓ (B)
N

− |B|
∣∣∣∣ ,

where TΓ (B) is the number of points of Γ inside the box

B = [α0, β0) × · · · × [αs−1, βs−1) ⊆ [0, 1)s

and the supremum is taken over all such boxes, see [7,17].
Typically the bounds on the discrepancy of a sequence are derived from

bounds of exponential sums with elements of this sequence. The relation is made
explicit in the celebrated Erdös-Turan-Koksma inequality, see [7, Theorem 1.21],
which we present in the following form.

Lemma 1. For any integer H > 1 and any sequence Γ of N points (3) the
discrepancy Δ(Γ ) satisfies

Δ(Γ ) ≤
(

3
2

)s
⎛
⎝ 2
H + 1

+
1
N

∑
0<|a|≤H

s−1∏
j=0

1
max{|aj |, 1}

∣∣∣Σ(s)
N (Γ, a)

∣∣∣
⎞
⎠ ,
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where

Σ
(s)
N (Γ, a) =

N∑
n=1

exp

⎛
⎝2πi

s−1∑
j=0

ajγn,j

⎞
⎠

and the outer sum is taken over all integer vectors a = (a0, . . . , as−1) ∈ Z
s \ {0}

with |a| = max
j=0,...,s−1

|aj | ≤ H.

Our results are based on the following well-known property of Fermat quotients.
For any integers k and u with gcd(u, p) = 1 we have

qp(u+ kp) ≡ qp(u) − ku−1 (mod p), (4)

see, for example, [8, (2)].
Let ψ(z) = exp(2πiz/p) denote the additive canonical character of Fp. For

integers N ≥ 1, s ≥ 1 and a = (a0, . . . , as−1) ∈ Z
s we consider the exponential

sums

Σ
(s)
N (D;a) =

N∑
u=1

ψ

⎛
⎝s−1∑

j=0

ajqp(u+ dj)

⎞
⎠ ,

for any integer vectorD = (d0, d1, . . . , ds−1) with 0 ≤ d0 < d1 < · · · < ds−1 < p2.

Theorem 1. For s ≥ 1 and D = (d0, d1, . . . , ds−1) with 0 ≤ d0 < d1 < · · · <
ds−1 < p2 such that no triple (dl, dh, dt) satisfies dl ≡ dh ≡ dt (mod p) for
0 ≤ l < h < t < s, we have

max
gcd(a0,...,as−1,p)=1

∣∣∣Σ(s)
N (D;a)

∣∣∣ � smax{p log p,Np−1/2} for 1 ≤ N ≤ p2.

If s = 2 or ds−1 < p, the stronger bound sp log p holds.

Proof. For s = 1 the result follows from [11] and we assume s ≥ 2. Select any
a = (a0, . . . , as−1) ∈ Z

s with gcd(a0, . . . , as−1, p) = 1. Let denote by l the
smallest index such that gcd(al, p) = 1. For dl �≡ dj (mod p) for all l < j < s,
we can obtain the desired result by following the proof path of [21, Theorem 11].

Now we suppose that there exists h with l < h < s such that dl ≡ dh (mod p)
but dl �≡ dj (mod p) for all j �= h with l < j < s by our assumption. Let
dh = dl + k0p for some integer 1 ≤ k0 < p. Take K = 	N/p
 and note that
K ≤ p. Using (4) we get

Σ
(s)
N (D;a)

=
Kp∑
u=1

ψ

⎛
⎝s−1∑

j=0

ajqp(u+ dj)

⎞
⎠ +O(p)

=
Kp∑
u=1

ψ

⎛
⎜⎜⎝alqp(u+ dl) + ahqp(u+ dl + k0p) +

s−1∑
j=l+1
j�=h

ajqp(u+ dj)

⎞
⎟⎟⎠ +O(p)
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=
Kp∑
u=1

u�≡−dl (mod p)

ψ
(
−k0ah(u + dl)−1 + (al + ah)qp(u+ dl)

+
s−1∑

j=l+1
j�=h

ajqp(u + dj)
)

+O(p)

= O(p) +
p∑

v=1
v�≡−dl (mod p)

ψ
(−k0ah(v + dl)−1

)

·
K−1∑
k=0

ψ

⎛
⎜⎜⎝(al + ah)qp(v + dl + kp) +

s−1∑
j=l+1
j�=h

ajqp(v + dj + kp)

⎞
⎟⎟⎠ ,

where we substituted u = v + kp in the last step.
If al + ah �≡ 0 (mod p) we get the result following the proof of [21, Theorem

11]. Let V be the set of 1 ≤ v ≤ p with v �≡ −dj (mod p) for l ≤ j < s. Then we
have ∣∣∣Σ(s)

N (D;a)
∣∣∣

≤
∑
v∈V

∣∣∣∣∣∣∣
K−1∑
k=0

ψ

⎛
⎜⎝(al + ah)qp(v + dl + kp) +

s−1∑
j=l+1
j�=h

ajqp(v + dj + kp)

⎞
⎟⎠

∣∣∣∣∣∣∣
+O(sp)

=
∑
v∈V

∣∣∣∣∣∣∣
K−1∑
k=0

ψ

⎛
⎜⎝k

⎛
⎜⎝(al + ah)(v + dl)−1 +

s−1∑
j=l+1
j�=h

aj(v + dj)−1

⎞
⎟⎠

⎞
⎟⎠

∣∣∣∣∣∣∣
+O(sp)

� sp log p,

where we used [21, Lemma 3] in the last step and the fact that

F (X) =
al + ah

X + dl
+

s−1∑
j=l+1
j�=h

aj

X + dj

is a nonconstant rational function of degree O(s). (Note that −dl is a single pole
of F (X).)

If al ≡ −ah (mod p) and there is a j �= h with l < j < s such that gcd(aj , p) =
1 and dj is either not equivalent to any other lag dk or aj �≡ −ak we see that
F (X) is not constant again and derive the bound sp log p in the same way.

In the last case all lags dj with gcd(aj , p) = 1 appear in pairs dj , dh(j) with
dh(j) ≡ dj + kjp (mod p) for some 1 ≤ kj < p such that aj ≡ −ah(j) (mod p).
In this case we get
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Σ
(s)
N (D;a) =

N∑
u=1

ψ

⎛
⎝∑

j

ajkj(u+ dj)−1

⎞
⎠

and get the bound

sp1/2

(
N

p
+ log p

)

using the standard method for reducing incomplete exponential sums to complete
ones, see [12, Chapter 12], and the bound of Moreno and Moreno [16]. (Note that
we have �N/p� complete sums and one incomplete sum.) For s = 2 the sum over
j contains only one summand and we can obtain the better bound

N

p
+ p1/2 log p� p

and the result follows. �

Together with Lemma 1, Theorem 1 implies an upper bound on the discrepancy
of points (1).

Corollary 1. For s ≥ 1 and D = (d0, d1, . . . , ds−1) with 0 ≤ d0 < d1 < · · · <
ds−1 < p2 such that no triple (dl, dh, dt) satisfies dl ≡ dh ≡ dt (mod p), 0 ≤ l <
h < t < s, the discrepancy of points Γ (D,N, s) defined by (1) satisfies

Δ(Γ (D,N, s)) = O

((
3
2

)s

smax{N−1p log p, p−1/2}(log p)s

)
for 1 ≤ N ≤ p2.

If s = 2 or ds−1 < p, we have Δ(Γ (D,N, s)) = O((3/2)ssN−1p(log p)s+1).

However, Theorem 1, hence Corollary 1, are not extendable if there exist at least
three lags congruent modulo p, as the following example shows.

Example. For D = (d0, d1, d2) with 0 ≤ d0 < d1 < d2 < p2 and d0 ≡ d1 ≡ d2

(mod p), let d1 = d0 + k1p and d2 = d0 + k2p for some integers 1 ≤ k1 < k2 < p,
then we have

Σ
(3)
N (D;a)

=
N∑

u=1

ψ

⎛
⎝ 2∑

j=0

ajqp(u+ dj)

⎞
⎠

=
N∑

u=1

ψ

⎛
⎝ 2∑

j=0

ajqp(u+ d0) − a1k1(u+ d0)−1 − a2k2(u+ d0)−1

⎞
⎠

=
N∑

u=1

ψ

⎛
⎝ 2∑

j=0

ajqp(u+ d0) − (a1k1 + a2k2)(u + d0)−1

⎞
⎠ .

We get a trivial bound onΣ(3)
N (D;a) if a0+a1+a2 ≡ 0 (mod p) and a1k1+a2k2 ≡

0 (mod p). In fact, for example, one can select a0 = 1, a1 = −2, a2 = 1 if we
take k1 = 1 and k2 = 2.
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3 Pseudorandom Measures of the Binary Threshold
Sequence

In a series of papers starting from [15], Mauduit and Sárközy (partly with further
coauthors) introduced certain measures of pseudorandomness and studied finite
binary pseudorandom sequences. For a finite binary sequence of length T

ET = {e1, . . . , eT } ∈ {0, 1}T ,

the well-distribution measure of ET is defined as

W (ET ) = max
a,b,t

∣∣∣∣∣∣
t−1∑
j=0

(−1)ea+bj

∣∣∣∣∣∣ ,

where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤ a+b(t−1) ≤ T ,
and the correlation measure of order s of ET is defined as

Cs(ET ) = max
M,D

Cs(ET ,M,D),

where the maximum is taken over all integer vectors D = (d0, . . . , ds−1) and
M > 0 such that 0 ≤ d0 < d1 < . . . < ds−1 ≤ T −M , and

Cs(ET ,M,D) =

∣∣∣∣∣
M∑

n=1

(−1)en+d0+en+d1+···+en+ds−1

∣∣∣∣∣ .

(Note that [15] actually deals with the sequences E′
T = {e′1, . . . , e′T } ∈ {−1, 1}T

defined by e′n = (−1)en , 1 ≤ n ≤ T , and the corresponding definitions of
W (E′

T ) = W (ET ) and Cs(E′
T ) = Cs(ET ).)

In this section, we estimate the well-distribution measure and the correlation
measure of order 2 for the binary sequence Ep2 defined as in (2). For estimates
on the correlation measure of higher order using the same method we would
need a discrepancy bound without restrictions on the lags. However, it seems to
fail according to the example in Section 2.

Theorem 2. For the binary threshold sequence Ep2 defined as in (2), we have

W (Ep2) � p(log p)2.

Proof. For any integers a, b, t ∈ N with 1 ≤ a ≤ a + b(t − 1) ≤ p2, we have by
[14, Theorem 2] ∣∣∣∣∣∣

t−1∑
j=0

(−1)ea+jb

∣∣∣∣∣∣ � tΔ(Γ (t)),

where

Γ (t) =
{
qp(a)
p

,
qp(a+ b)

p
, . . . ,

qp(a+ b(t− 1))
p

}
.
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Note that
qp(ub) ≡ qp(u) + qp(b) (mod p), gcd(ub, p) = 1.

Since otherwise the result is trivial we may assume b < p. Hence we have
∣∣∣∣∣∣
t−1∑
j=0

ψ(qp(a+ jb))

∣∣∣∣∣∣ =

∣∣∣∣∣∣
t−1∑
j=0

ψ(qp(ab−1 + j))

∣∣∣∣∣∣ +O(p) = O(p log p),

where b−1 denotes the inverse of b modulo p2. Finally the Erdős-Turan-Koksma
inequality gives

Δ(Γ (t)) � t−1p(log p)2,

which implies the result. �

Theorem 3. For the binary threshold sequence Ep2 defined as in (2), and D =
(d0, d1) with 0 ≤ d0 < d1 < p2 we have

C2(Ep2 ) � p(log p)3.

Proof. With assumptions on D and M such that M + d1 ≤ p2, by [14, Theorem
1] and Corollary 1, we have

∣∣∣∣∣
M∑

n=1

(−1)en+d0+en+d1

∣∣∣∣∣ �MΔ(Γ (D,M, 2)) � p(log p)3

and the result follows. �

4 Linear Complexity Profile of the Binary Threshold
Sequence

We recall that the linear complexity profile L(ET , N) is the least order L of a
linear recurrence relation over {0, 1}

en+L = c0en + c1en+1 + · · · + cL−1en+L−1 for 1 ≤ n ≤ N − L

which is satisfied by the first N terms of ET .

Theorem 4. For the binary threshold sequence Ep2 defined as in (2), we have

L(Ep2 , N) 
 log(N/p)
log log p

for 2 ≤ N ≤ p2.

Proof. The proof is reminiscent to that of [1, Theorem 1]. Since otherwise the
bound is trivial we may assume L = L(Ep2 , N) < log p. Choose c0, c1, . . . , cL−1 ∈
{0, 1} such that

en+L = cL−1en+L−1 + · · · + c0en, 1 ≤ n ≤ N − L.
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Putting cL = −1, we get

N − L =
N−L−1∑

n=0

(−1)
∑L

i=0 cien+i .

The sum on the right hand side can be estimated by

max
D

1≤s≤L+1

Cs(Ep2 , N − ds−1, D),

where the maximum is taken over all D = (d0, d1, . . . , ds−1) with 0 ≤ d0 <
d1 < · · · < ds−1 ≤ L < p. We note that in this case di �≡ dj (mod p) for all
0 ≤ i < j < s. For all such D, by Corollary 1 we have

maxΔ(Γ (D,N, s)) �
(

3
2

)s

N−1sp(log p)s+1.

So by [14, Theorem 1] we get

Cs(Ep2 , N − ds−1, D) ≤ 2sN maxΔ(Γ (D,N, s)) � 3ssp(log p)s+1

≤ Lp(3 log p)L+1,

which leads to
L
 N − p(3 log p)L+2

and the result follows. �

5 Lattice Tests

In this section we study the behavior of the sequence (qp(u)), u = 1, 2, . . . under
the lattice test.

We denote by

S((wu), N,D) = max{s : 〈(wu+d0 − w1+d0 , . . . , wu+ds−1 − w1+ds−1),
1 ≤ u ≤ N〉 = F

s
p}

the greatest dimension s such that (wu) satisfies the s-dimensional N -lattice test
for the lags D = (d0, . . . , ds−1) with 0 ≤ d0 < · · · < ds−1 < p2.

As we mentioned before, in the case di �≡ dj (mod p) for all 0 ≤ i < j < s,
we can essentially proceed as in the proof of [21, Theorem 13].

Theorem 5. For N ≥ 2 and D = (d0, d1, . . . , ds−1) with 0 ≤ d0 < d1 < · · · <
ds−1 < p2 such that no triple (dl, dh, dt) satisfies dl ≡ dh ≡ dt (mod p), 0 ≤ l <
h < t < s, we have

S((qp(u)), N,D) ≥ min
{
p− 1

2
,
N − p− 1

2

}
.
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Proof. We assume that the sequence (qp(u)) does not pass the s-dimensional
N -lattice test for some lags 0 ≤ d0 < d1 < . . . < ds−1 < p2. Put

wu = (qp(u+ d0), qp(u+ d1), . . . , qp(u+ ds−1)), for u = 1, . . . , N,

and let V be the subspace of F
s
p spanned by all wu − w1 for 1 ≤ u ≤ N . Let

denote by V ⊥ = {u ∈ F
s
p : u · v = 0 for all v ∈ V } the orthogonal space of V ,

where · denotes the usual inner product. Then dim(V ) < s and dim(V ⊥) ≥ 1.
Take 0 �= α ∈ V ⊥, then

α · (wu − w1) = 0 for 1 ≤ u ≤ N.

We denote
δ = α ·wu = α · w1 for 1 ≤ u ≤ N.

If α = (α0, α1, . . . , αs−1), then let j be the smallest index with αj �= 0 (so
0 ≤ j < s). Then we get

s−1∑
i=j

αiqp(u+ di) ≡ δ (mod p) for 1 ≤ u ≤ N. (5)

Let R = min(p,N − p). We see from (5) that for 1 ≤ u ≤ R we have

s−1∑
i=j

αiqp(u+ p+ di) ≡ δ (mod p). (6)

Recalling (4) and using (5) again, we now see that for any integer u with u+di �≡
0 (mod p), i = j, . . . , s− 1, we have

s−1∑
i=j

αiqp(u+ p+ di) ≡
s−1∑
i=j

αi

(
qp(u+ di) − (u+ di)−1

)

≡ δ −
s−1∑
i=j

αi(u + di)−1 (mod p).

(7)

Comparing (6) and (7) we see that

s−1∑
i=j

αi(u+ di)−1 ≡ 0 (mod p) (8)

for at least R− s+ j values of u with

1 ≤ u ≤ R, u+ di �≡ 0 (mod p), i = j, . . . , s− 1.

We consider first the case where dj �≡ dh (mod p), for all j < h < s. Clearing
the denominators of (8), we obtain a nontrivial polynomial congruence

s−1∑
i=j

αi

s−1∏
e=j
e�=i

(u+ de) ≡ 0 (mod p)
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of degree s− j − 1 ≤ s, which has at least R − s+ j solutions (to see that it is
nontrivial it is enough to substitute u ≡ −dj (mod p) in the polynomial on the
left hand side). Therefore s− j − 1 ≥ R− s+ j and the result follows.

In the case dj ≡ dh (mod p), for some j < h < s, taking dh = k0p + dj

for some k0 ≥ 1 and proceeding in the same way as above (but recalling that
u+ dj ≡ u+ dh (mod p)), we get

(αj + αh)
s−1∏

e=j+1
e�=h

(u+ de) + (u+ dj)
s−1∑

i=j+1
i�=h

αi

s−1∏
e=j
e�=i

(u + de) ≡ 0 (mod p). (9)

If αj + αh �≡ 0 (mod p) then the nontriviality of this polynomial equation is
obvious again.

In the case of αj +αh ≡ 0 (mod p), we have reduced the s-dimensional lattice
test to the (s − 2)-dimensional one. If we are in a case where no two lags are
equivalent or there are some equivalent lags dj′ , dh′ with corresponding αj′ +
αh′ �≡ 0 (mod p) we easily see that (9) is nontrivial.

Hence, we are left with the case that there are only pairs di, dh(i) = di + kip
of equivalent lags such that the sum of the corresponding coefficients αi + αh(i)

vanishes modulo p. However, in this case we get

δ ≡
∑

i

(αi + αh(i))qp(u+ di) +
∑

i

αiki(u + di)−1 ≡
∑

i

αiki(u+ di)−1.

Since we can assume αi �≡ 0 (mod p) for some i and the remaining di are pairwise
distinct modulo p now, we have a nontrivial polynomial equation from which we
obtain our result. �

However, in the case when there exist three lags dl, dh, dt, 0 ≤ l < h < t < s,
such that dl ≡ dh ≡ dt (mod p), the lattice test fails as the next result shows.

Theorem 6. For N ≥ 2 and D = (d0, d1, . . . , ds−1) with 0 ≤ d0 < d1 < · · · <
ds−1 < p2 such that there exists a triple (dl, dh, dt) satisfying dl ≡ dh ≡ dt

(mod p), 0 ≤ l < h < t < s, we have

S((qp(u)), N,D) = 2.

Proof. To prove this result it is sufficient to consider the case s = 3 and to
see that for d0 ≡ d1 ≡ d2 (mod p) the 3-dimensional test fails. For this let
α = (α0, α1, α2) be an orthogonal vector on each wu, u = 1, 2, . . .. Then we have

0 ≡ α · (wu − w1) ≡ α ·wu

≡ α0qp(u+ d0) + α1qp(u + d1) + α2qp(u+ d2) (mod p).

This congruence is trivially satisfied for all u with u + d0 ≡ 0 (mod p). For u
with u+ d0 �≡ 0 (mod p) we get

0 ≡ (α0 +α1 +α2)qp(u+ d0)+
(
α1
d1 − d0

p
+ α2

d2 − d0

p

)
(u+ d0)−1 (mod p),
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which gives the system of equations

α0 + α1 + α2 ≡ α1((d1 − d0)/p) + α2((d2 − d0)/p) ≡ 0 (mod p).

It is clear that this system has a nontrivial solution α and then we easily verify
that for all u = 1, 2, . . . we have

(α0, α1, α2) · (wu − w1) = 0.

Hence, the orthogonal space is nontrivial and the lattice test is failed for s = 3,
and thus for every s > 3. �

As in [20], the greatest dimension s such that (wu) satisfies the s-dimensional
N -lattice test for all lags D = (d0, . . . , ds−1) is denoted by S((wu), N), i.e.,

S((wu), N) = max
D

S((wu), N,D) = max {s : ∀ 0 ≤ d0 < · · · < ds−1 < T :

〈(wu+d0 − w1+d0 , . . . , wu+ds−1 − w1+ds−1

)
, 1 ≤ u ≤ N〉 = F

s
p

}
.

Corollary 2. For N ≥ 2, we have

S((qp(u)), N) = 2.
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Distribution of Boolean Functions
According to the Second-Order Nonlinearity�

Stéphanie Dib

Institut de Mathématiques de Luminy, Marseille, France

Abstract. The nonlinearity of a Boolean function is the minimum num-
ber of substitutions required in its truth table to change it into an affine
function. Hence, in a cryptographic context, it is used to measure the
strength of cryptosystems when facing linear attacks. As for the nonlin-
earity of order r of a Boolean function, which equals the least number of
substitutions needed to change it into a function of degree at most r, it
is examined when dealing with low-degree approximation attacks [7,14].

Many studies aimed at the distribution of Boolean functions according
to the r-th order nonlinearity. Asymptotically, a lower bound is estab-
lished in the higher order cases for almost all boolean functions, whereas
a concentration point is shown in the (first order) nonlinearity case. We
present a more accurate distribution by proving a concentration point in
the second-order nonlinearity case.

Keywords: Boolean functions, nonlinearity, Reed-Muller code.

1 Introduction

We shall denote by Bn the set of all Boolean functions of n variables.
A Boolean function f : F

n
2 −→ F2 is often represented by its Algebraic Normal

Form, that is the unique n-variable polynomial over F2 of the form

f(x1, ..., xn) =
∑

u∈F
n
2

au

( n∏

i=1

xui

i

)
,

where au ∈ F2.
Its degree, denoted by deg(f), is called the algebraic degree of the function.
An affine function is a Boolean function that consists of a linear transformation
over the vector space F

n
2 followed by a translation, and thus a function whose

algebraic degree is at most 1.
The Hamming weight wH(f) of a Boolean function f equals the cardinality of its
support, which is the set {x ∈ F

n
2 | f(x) = 1}. The Hamming distance dH(f, g)

between two functions f and g equals the cardinality of the set {x ∈ F
n
2 | f(x) �=

g(x)}.
� This work has been done with the support of the Région Provence-Alpes-Côte

d’Azur.
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The nonlinearity NL(f) of a Boolean function f is its Hamming distance to the
set of affine functions, that is

NL(f) = min
g affine

dH(f, g).

The nonlinearity of order r generalizes the usual nonlinearity. For a given func-
tion f , it is its Hamming distance to the set of all functions whose algebraic
degrees do not exceed r. Namely, for every 0 ≤ r ≤ n , the Reed-Muller code of
order r can be considered as the set of all the vectors of values taken by each
function f of degree at most r, when its argument x ranges over F

n
2 . Let NLr(f)

denote the r-th order nonlinearity of f , we have

NLr(f) = min
g∈RM(r,n)

dH(f, g).

Let us briefly recall the main results about the nonlinearity of Boolean functions.
The nonlinearity of a Boolean function f of n variables is bounded from above
by 2n−1 − 2n/2−1. This upper bound is reached if n is even by the so-called bent
functions. When n tends to infinity, it was shown by C. Carlet [2], D. Olejàr and
M. Stanek [10], that almost all Boolean functions have nonlinearities greater than
2n−1 − c · 2 n

2 −1
√

2n ln 2, where c is a real number greater than 1. However, the
distribution of Boolean functions between the lower and upper bound remained
unknown until F. Rodier [11,12,13] proved that the nonlinearity of almost all
Boolean functions lies in the neighbourhood of 2n−1 − 2n/2−1

√
2n log 2. This

result has been proven as well later by S. Litsyn and A. Shpunt with a different
approach [8].
Before we present our result, we describe the distribution of Boolean functions
in the second-order nonlinearity case. It has been shown, by C. Carlet and S.
Mesnager [4], that the covering radius of RM(2, n), which coincides with the
maximum possible nonlinearity of order 2 of Boolean functions, is bounded from
above by 2n−1 − √

15 × 2n/2−1 + O (1). Asymptotically, C. Carlet [3] proved
that almost all Boolean functions have high r-th order nonlinearities. In fact, he
showed that the density of the set of functions satisfying

NLr(f) > 2n−1 − c

√(
n

r

)
ln 2 2

n−1
2 ,

tends to 1 when n tends to infinity, if c is a real number greater than 1.
In what follows, we will focus on the distribution of Boolean functions for

large n in the case of the second-order nonlinearity. By applying mainly fun-
damental combinatorics and probability theory, we were enabled to establish a
concentration point for almost all Boolean functions, whereas Rodier’s approach
involves harmonic analysis. Our method is indeed convenient in the first order
nonlinearity case.
To attain this goal, we investigate the subset of Boolean functions whose second-
nonlinearities are greater than δ = 2n−1 − c

√(
n
2

)
ln 2 2

n−1
2 where c is
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a strictly positive real number less than 1, δ being slightly greater than the
lower bound given for almost all Boolean functions. By definition, functions
whose second-nonlinearities are greater than a given δ are those for which the
Hamming distance to RM(2, n) exceeds δ. A geometrical viewpoint is the way
to go. Therefore, we consider the Hamming closed balls of radius δ centered at
all codewords of RM(2, n), defined by Bδ[g] = {f ∈ Bn | dH(f, g) ≤ δ}, where
g ranges over RM(2, n). Notice that such functions are strictly those for which
the indicator function of any of the above-mentioned Hamming balls equals 0,
thus the sum of all indicator functions of these balls as well. Then, we assign
probabilities to the subsets of Bn of equiprobable Boolean functions. Hence, the
problem of determining the probability of the event {NL2(f) > δ} is equivalent
to that of the event {η = 0}, where η =

∑
g∈RM(2,n) 1Bδ[g] is an integer-valued

function defined on Bn . This is followed by application of the Chebyshev’s
inequality [1, chapter IV]

P (η = 0) ≤ P
(|η − E(η)| ≥ E(η)

) ≤ E(η2) − E(η)2

E(η)2
.

This upper bound allows us to prove a concentration point around
2n−1 −

√(
n
2

)
ln 2 2

n−1
2 , when n tends to infinity.

This work was done with François Rodier’s guidance.

2 Expected Value of the Random Variable η

In this section, we obtain a lower bound of the expected value of the random
variable η. Note that the mean of any random variable 1Bg [δ], which is equal
to the probability of Bg[δ], does not depend on the choice of g for a simple
translation reason. Thus, E(η) equals to 2kP (B0[δ]), where k =

∑2
j=0

(
n
j

)
is the

dimension of RM(2, n).
We present in the following proposition a lower bound of the density of the subset
B0[δ]. But in order to avoid later interruptions, we introduce first a function of
great importance that will occur very often in our proof . The function is defined
by

H(y) =
∫ y

−∞
e−u2

du

and the double inequality

(1 − 1
2y2

)
e−y2

−2y
< H(y) <

e−y2

−2y
(1)

holds for every y < 0 [5, page 175].

Proposition 1. Let ρ = 2n−1 + α(n)2
n−1

2 , where α is a function of n such
that −α(n)

n tends to a positive constant. The density in Bn of the subset B0[ρ] is
greater than
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1√
π
H(

α(n)
)
(1 + o(1)

)

when n tends to infinity.

Proof: The number of Boolean functions f whose Hamming distance to 0 is
bounded from above by some number ρ equals

∑

0≤i≤ρ

(
2n

i

)

In order to obtain a lower bound of the binomial coefficient, we follow Feller’s [5,
chapter VII] method for the normal approximation to the binomial distribution
and do likewise. Let q be a positive integer, 0 ≤ p ≤ q. We shall take q = 2ν even
to avoid indefiniteness. We denote by at the probability of getting exactly ν + t
successes in q trials with success probability equals 1

2 , where t runs from −ν to ν.
In other words, we consider the terms of the symmetric binomial distribution by
their distance to the central term which is a0. Since a−t = at, we shall consider
only t ≥ 0.
If ν sufficiently large and t is restricted to values 0 < t < Tq such that T 3

q /ν2 → 0,
we have from Feller’s book [5, page 180]

at > a0e
− t2

ν e−
T3

q

ν2 .

Under these circumstances,

at > a0e
− t2

ν (1 − T 3
q

ν2
).

When the binomial coefficient is expressed using the double inequality derived
from Stirling’s formula bounding the factorial, we get

a0 >
1√
πν

(
1 + o(1)

)
.

Adding the last two inequalities and by definiton of at, we obtain

(
q

p

)
>

2qe−
(p−q/2)2

q/2

√
π q

2

(
1 + o(1)

)

provided that ν → ∞ and 0 < p − q/2 < Tq such that T 3
q

(q/2)2
→ 0. It is valid as

well when 0 < q− p− q/2 < Tq because of symmetry, thus when q/2−Tq < p <
q/2 + Tq.
Returning to the summation of the binomial coefficients

(
2n

i

)
over all integers

between 0 and ρ, the relation above holds when n → ∞, for values of i greater
than 2n−1 − T2n for some T2n such that T 3

2n

22(n−1) → 0, say T 3
2n

22(n−1) = 1
n
. We don’t

need to concern ourselves with other values of i since we are looking for a lower
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bound, and adding that the exponential function involved is increasing, we have
therefore
∑

0≤i≤ρ

(
2n

i

)
>

22n

√
π2n−1

(
1 + o(1)

) ∫ ρ

2n−1−T2n−1

e−
(i−2n−1)2

2n−1 di

>
22n

√
π2n−1

(
1 + o(1)

)(∫ ρ

0

e−
(i−2n−1)2

2n−1 di−
∫ 2n−1−T2n−1

0

e−
(i−2n−1)2

2n−1 di
)

>
22n

√
π

(
1 + o(1)

)( ∫ α(n)

−∞
e−u2

du −
∫ − T2n−1√

2n−1

−∞
e−u2

du
)
.

Noticing that − T2n−1√
2n−1 is much less than α(n), the proposition is complete using

(1).

3 Expected Value of η2

We recall that η =
∑

g∈RM(2,n) 1Bδ[g], δ = 2n−1 − c
√(

n
2

)
ln 2 2

n−1
2 , where 0 <

c < 1 and k is the dimension of RM(2, n). We put α = δ−2n−1√
2n−1 .

The random variable η2, defined on the set Bn of all Boolean functions, is equal
to

η +
∑

(g1,g2)∈RM(2,n)×RM(2,n)
g1�=g2

1Bδ[g1]∩Bδ[g2]

3.1 Number of Points in the Intersection of Two Balls

We need to establish an upper bound of the expected value of η2. For this pur-
pose, we will deal first with the probability of intersection of two Hamming balls
of radius δ, centered at g1 and g2. Note that the number of points in the in-
tersection of these balls depends only on the Hamming distance between their
centers. Thus, we can always suppose without loss of generality that the centers
are 0 and g such that wH(g) = dH(g1, g2). This means that we have to consider
the weight distribution of the second-order Reed-Muller code.
Let Aw be the number of Boolean functions of weight w in RM(2, n). Then
Aw = 0 unless w = 2n−1 or w = 2n−1(1 ± 2−h) for some h, 0 ≤ h ≤ 	n

2

. We

have [9, Chapter XV], [6]

A2n−1±2n−1−h = 22h(n−h)+h

∏2h−1
i=0 (1 − 2i−n)

∏h
i=1(1 − 4−i)

where
∏2h−1

i=0 (1−2i−n)∏h
i=1(1−4−i)

< 3
2
, and A2n−1 = 21+n+(n

2) −
∑

w�=2n−1

Aw.

Accordingly, the expected value of η2 is equal to

E(η) + 2k
∑

w�=0

Aw · P (Bδ[0] ∩ Bδ[g]).
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We emphasize that the sum just mentioned is taken over all weights in RM(2, n)
and that g is any codeword of weight w.

Proposition 2. Let g be a Boolean function in n variables of algebraic degree at
most 2, and w its Hamming weight. The density in Bn of the subset Bδ[0]∩Bδ[g]
is less than

1
π

(
1 + o(1)

) ∫ α

−∞

∫ α

−∞
e
−u2+v2+2uvt

1−t2 dudv

where t is such that w = 2n−1(1 + t) and n tends to infinity.

Proof: We start by considering the intersection of two Hamming spheres Sδ1 [0]
et Sδ2 [g], centered at 0 and g, of radius δ1 and δ2, where δ1 and δ2 take val-
ues from 0, ..., δ. Let f be a function that belongs to this intersection. Due to
this belonging, f has δ1−δ2+w

2 elements of its support for which g equals 1 and
δ1+δ2−w

2 elements of its support for which g equals 0. Thus the size of the subset
Sδ1 [0] ∩ Sδ2 [g] is (

w
δ1−δ2+w

2

)(
2n − w
δ1+δ2−w

2

)

As a result, the size of the subset Bδ[0] ∩ Bδ[g] is

∑

(δ1,δ2)

(
w

δ1−δ2+w
2

)(
2n − w
δ1+δ2−w

2

)

where (δ1, δ2) ranges over D = {(δ1, δ2) | 0 ≤ δ1 ≤ δ, 0 ≤ δ2 ≤ δ, 0 ≤ δ1−δ2+w
2 ≤

w, 0 ≤ δ1+δ2−w
2 ≤ 2n − w}, and have same parity since the Hamming weight w

of g ∈ RM(2, n) is even.
As in the preceding section, we can prove that

(
q

p

)
<

2qe−
(p−q/2)2

q/2

√
π q

2

(
1 + o(1)

)

for (p− q
2 )3

(q/2)2 → 0 and q → ∞.
One can prove that the sum taken over all (δ1, δ2) that fail these conditions is
negligible. Also, it can be shown that

∑
(δ1,δ2)

( w
δ1−δ2+w

2

)( 2n−w
δ1+δ2−w

2

)
is less than

22n

π
√

w(2n − w)

(
1 + o(1)

) ∫ δ

0

∫ δ

δ2−w

e
− (δ1−w)2+(δ2−w)2

21−nw(2n−w)
−w(2n−2w)(2nw−2δ1δ2)

2w(2n−w) dδ1dδ2.

The following change of variables u = δ1−2n−1√
2n−1 , v = δ2−2n−1√

2n−1 and w = 2n−1(1+ t)
leads us to this upper bound

22n

π

(
1 + o(1)

) ∫ α

−∞

∫ α

−∞
e
−u2+v2+2uvt

1−t2 dudv

when n tends to infinity. And that ends the proof.
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Let us see what this proposition turns into when codewords have weights close
to 2n−1. Recall that t is either equal to ±2−h for some h such that 0 ≤ h ≤ 	n

2



or to 0. We shall consider t ≤ 0, the other case being similar. In this case, we
have

−(u2 + v2 + 2uvt) ≤ −(1 + t)(u2 + v2).

Thus,

∫ α

−∞

∫ α

−∞
e
−u2+v2+2uvt

1−t2 dudv ≤ ( ∫ α

−∞
e−

u2
1−t du

)2 =
(√

1 − tH(
α√
1 − t

)
)2

<
(
(1−t)

e−α2/(1−t)

−2α

)2
.

For α2t sufficiently small, we have

e−α2/(1−t) = e−α2 − α2te−α2
+ O(α4t2)e−α2

.

Using the left-hand inequality of (1) we find
∫ α

−∞
e−

u2
1−t du < H(α) − x2tH(α) + O(α4t2)H(α).

We have thus proved that

∫ α

−∞

∫ α

−∞
e
−u2+v2+2uvt

1−t2 dudv < H(α)2
(
1 + o(1)

)
, (2)

provided that α2t is small. We shall use this relation when t = ±2−h so that
2−h ≤ 1

n3 , thus for weights corresponding to h ≥ 3 log2 n and for t = 0.
This calls for splitting the sum

∑
w�=0 Aw ·P (Bδ[0]∩Bδ[g]) taken over w into two

parts according to whether the weight is in the interval of length 2
n3 centered at

2n−1 or not.
Let g0 be any codeword of weight 2n−1. We get the following:

S1(w) =
∑

w
3 log2 n≤h≤	n

2 


Aw · P (Bδ[0] ∩ Bδ[g]) + A2n−1 · P (Bδ[0] ∩ Bδ[g0])

and
S2(w) =

∑

w�=0
0≤h<3 log2 n

Aw · P (Bδ[0] ∩ Bδ[g]).

3.2 The Sum over the Weights Close to 2n−1: The Main Part

We need to determine an upper bound of S1(w). In view of (2), we have

S1(w) <
∑

w
3 log2 n≤h≤	n

2 


Aw
H(α)2

π

(
1 + o(1)

)
+ A2n−1

H(α)2

π

(
1 + o(1)

)

<
(
21+n+(n

2) −
∑

w
0≤h<3 log2 n

Aw

)H(α)2

π

(
1 + o(1)

)
.
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What we are about to find out is that almost all codewords of the second-
order Reed-Muller code have weights setting in a small neighbourhood of 2n−1.
Knowing the weight distribution of the code, this property can be easily found.
We proceed as follows:

∑

w
0≤h<3 log2 n

Aw <
3
2

∑

0≤h<3 log2 n

e−2 ln 2
(
(h− 2n+1

4 )2− (2n+1)2

16

)

<
3
2
e

(2n+1)2

8 ln 2

∫ 3 log2 n+1

0

e−2 ln 2(h− 2n+1
4 )2dh

<
3

2
√

2 ln 2
e

(2n+1)2

8 ln 2H(√
2 ln 2(3 log2 n − 2n + 1

4
+ 1)

)

<
3

2
√

2 ln 2
e

(2n+1)2

8 ln 2 e−2 ln 2(3 log2 n− 2n+1
4 +1)2

−2
√

2 ln 2(3 log2 n − 2n+1
4 + 1)

< e3 ln 2(2n+1) log2 n

= o(21+n+(n
2)),

which is the required result.
Finally,

S1(w) < 21+n+(n
2)H(α)2

π

(
1 + o(1)

)
.

3.3 The Sum over the Weights Far from 2n−1

One can see that the number of intersections between two Hamming balls in-
creases when they get closer and decreases otherwise. This yields

∑

w�=0
0≤h<3 log2 n

Aw · P (Bδ[0] ∩ Bδ[g]) ≤ P (Bδ[0] ∩ Bδ[g1])
∑

w
0≤h<3 log2 n

Aw

where g1 has the smallest possible non-zero weight, that is to say 2n−1(1 − 1
2
).

According to proposition 2,

P (Bδ[0] ∩ Bδ[g1]) <
1
π

(
1 + o(1)

) ∫ α

−∞

∫ α

−∞
e−

u2+v2−uv
3/4 dudv.

We have
∫ α

−∞

∫ α

−∞
e−

u2+v2−uv
3/4 dudv =

√
3

2

∫ α

−∞
e−v2

∫ 2√
3
(α− v

2 )

−∞
e−u2

dudv.

Since the sign of α − v
2 varies with v, a separation is in order

∫ α

−∞

∫ α

−∞
e−

u2+v2−uv
3/4 dudv <

√
3

2

∫ α

3α
2

e−v2
∫ 2√

3
(α− v

2 )

−∞
e−u2

dudv+
√

3
2

∫ 3α
2

−∞
e−v2

dv

∫ +∞

−∞
e−u2

du.
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Using (1), we get

∫ α

−∞

∫ α

−∞
e−

u2+v2−uv
3/4 dudv <

√
3

2

∫ α

3α
2

e−v2 e
−
(

2√
3
(α− v

2 )
)2

2√
3
(v − 2α)

dv +
√

3π

2
e−

9
4 α2

−3α
.

Rearranging gives

∫ α

−∞

∫ α

−∞
e−

u2+v2−uv
3/4 dudv <

3
4

∫ α

3α
2

e

(
−α2−

(
2√
3
(v− x

2 )
)2

3
2
α − 2α

dv +
√

3π

2
e−

9
4 α2

−3α
.

A little manipulation with the use of (1) yields
∫ α

−∞

∫ α

−∞
e−

u2+v2−uv
3/4 dudv <

3
√

3
4α2

e−
4
3 α2

+
√

3π

2
e−

9
4 α2

−3α

< e−
4
3 α2(

1 + o(1)
)
.

Putting all together, we have

S2(w) <
1
π

e−
4
3 α2+3 ln 2(2n+1) log2 n

(
1 + o(1)

)
.

Our final step to the evaluation of the mean of η2 is to show that S2(w) is too
weak to participate in the related sum. We have

S2(w)·(21+n+(n
2)H(α)2

π

)−1
< e−

4
3 α2+3 ln 2(2n+1) log2 n·e− ln 2

(
1+n+(n

2)
)
·4α2·e2α2(

1+o(1)
)
,

which tends to 0 if |α| < n
√

3
2

√
ln 2 and this condition is satisfied given that

c < 1. This gives the necessary result.

4 Final Result

Theorem 1. Let δ = 2n−1 − c
√(

n
2

)
ln 2 2

n−1
2 , where 0 < c < 1. The density of

the subset {f ∈ Bn|NL2(f) > δ} tends to 0 when n tends to infinity.

Proof: We have

P
(
NL2(f) > δ

)
≤ E(η2) − E(η)2

E(η)2

≤
22k H(α)2

π

(
1 + o(1)

)
+ E(η) −

(
2k H(α)√

π

(
1 + o(1)

))2

E(η)2

≤ 1
E(η)

(
1 + o(1)

)
,

and
E(η) > 2kH(α)√

π

(
1 + o(1)

)
.
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Since 0 < c < 1,

2k H(α)√
π

(
1 + o(1)

) ∼ 2k 1√
π

e−(n
2) ln 2

2
√(

n
2

)
ln 2

e(
n
2) ln 2(1−c2)

c

tends to infinity with n. This concludes the proof.

5 Conclusion

We have proved that 2n−1 −
√(

n
2

)
ln 2 2

n−1
2 represents a “concentration” point

of the second-order nonlinearity of Boolean functions, when n tends to infinity.
Unfortunately, the situation gets critical when dealing with Reed-Muller codes
of higher orders because of the little knowledge we have about their weight
distribution. Nevertheless, one can prove that almost all codewords have weights
lying in a small neighborhood of 2n−1 as pointed out by Carlet. But the problem
arises regarding the sum taken over the weights far from 2n−1 that we are unable
yet to enhance in order to give the needed precisions.
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Abstract. Bent functions are maximally nonlinear Boolean functions
with an even number of variables. These combinatorial objects, with fas-
cinating properties, are rare. The class of bent functions contains a sub-
class of functions the so-called hyper-bent functions whose properties are
still stronger and whose elements are still rarer. In fact, hyper-bent func-
tions seem still more difficult to generate at random than bent functions
and many problems related to the class of hyper-bent functions remain
open. (Hyper)-bent functions are not classified. A complete classification
of these functions is elusive and looks hopeless.

In this paper, we contribute to the knowledge of the class of hyper-bent
functions on finite fields F2n (where n is even) by studying a subclass Fn

of the so-called Partial Spreads class PS− (such functions are not yet
classified, even in the monomial case). Functions of Fn have a general
form with multiple trace terms. We describe the hyper-bent functions of
Fn and we show that the bentness of those functions is related to the
Dickson polynomials. In particular, the link between the Dillon mono-
mial hyper-bent functions of Fn and the zeros of some Kloosterman sums
has been generalized to a link between hyper-bent functions of Fn and
some exponential sums where Dickson polynomials are involved. More-
over, we provide a possibly new infinite family of hyper-bent functions.
Our study extends recent works of the author and is a complement of a
recent work of Charpin and Gong on this topic.

Keywords: Boolean function, Bent functions, Hyper-bent functions,
Maximum nonlinearity, Walsh-Hadamard transformation, Kloosterman
sums, Cubic sums, Dickson polynomials.

1 Introduction

Bent functions are those Boolean functions whose Hamming distance to the set of
all affine functions equals 2n−1 ± 2

n
2 −1 (where the number n of variables is even).

They were introduced by Rothaus [18] and have attracted a lot of research, spe-
cially in the last 15 years for their own sake as interesting combinatorial objects
but also because of their applications in cryptography (design of stream ciphers)
and their relations to coding theory. Despite their simple and natural definition,
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bent functions have turned out to admit a very complicated structure in general.
Currently, some algebraic properties of bent functions are well known but the gen-
eral structure of bent functions on F2n is not yet clear. In particular a complete
classification of bent functions is elusive and looks hopeless. On the other hand
many special explicit constructions are known. Some infinite classes of bent func-
tions have been obtained, thanks to the identification between the vectorspace
F

n
2 and the Galois field F2n . A non exhaustive list of references devoted to the

description of classes of bent functions, expressed by means of trace-functions
is [1, 5, 7–11, 13–16, 20]. Current results on the known properties and general
constructions of bent functions can be found in [2] (pages 77-109). The class of
bent functions contains a subclass of functions introduced by Youssef and Gong
in [19], the so-called hyper-bent functions, those Boolean functions over F2n (n
even) whose Hamming distances to all functions Trn

1 (axi) ⊕ ε (a ∈ F2n , ε ∈ F2)
where Trn

1 is the trace function from F2n to F2 and where i is co-prime with 2n−1,
equals 2n−1 ± 2

n
2 −1. The classification of hyperbent functions and many related

problems remain open. In particular, it seems difficult to define precisely an in-
finite class of hyperbent functions, as indicated by the number of open problems
proposed by Charpin and Gong in [5].

In [5] the authors have studied the bentness of the class of Boolean func-
tions f defined on F2n by f(x) :=

∑
r∈R Trn

1 (βrx
r(2m−1)), βr ∈ F2n , where

n := 2m and R is a subset of a set of representatives of the cyclotomic cosets
modulo 2m + 1 for which each coset has the full size n = 2m. When r is co-
prime with 2m + 1, the functions f are the sums of several Dillon monomial
functions. A new tool by means of Dickson polynomials to describe hyper-bent
functions f has been introduced in [5]. In fact, Charpin and Gong have shown
that the bentness of those functions is related to the Dickson polynomials under
some restriction on the coefficients βr. Thanks to this new approach, a char-
acterization of a new class of binomial hyper-bent functions has been given:
Trn

1

(
a

(
x(2r−1)(2m−1) + x(2r+1)(2m−1)

))
, where a ∈ F

�
2m and r is an integer such

that 0 < r < m, {2r − 1, 2r + 1} ⊂ R. Continuing their interesting approach,
Gologlu [12] has proved recently that the following functions defined on F2n

(n = 2m), are hyper-bent:

– f(x) :=
∑2m−1−1

i=1 Trn
1

(
βxi(2m−1)

)
; β ∈ F2m \ F2 .

– f(x) :=
∑2m−2−1

i=1 Trn
1

(
βxi(2m−1)

)
; m odd and β(2m−4)−1 ∈ {x ∈ F

∗
2m |

Trm
1 (x) = 0}.

Recently, two new infinite families of hyper-bent Boolean functions in polynomial
forms defined on F2n (n = 2m) have been exhibited and studied in [15, 17]:

– fa,b(x) := Trn
1 (axr(2m−1))+Tr2

1(bx
2n−1

3 ); m odd, gcd(r, 2m+1) = 1, a ∈ F
∗
2n

and b ∈ F
∗
4([15]).

– ga,b(x) := Trn
1 (ax3(2m−1))+ Tr2

1(bx
2n−1

3 ); m odd, a ∈ F
∗
2n and b ∈ F

∗
4 ([17]).

In particular, an explicit characterization of the hyper-bent functions of those
families fa,b and ga,b by means of the Kloosterman sums, has been given.
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In the line of the recent works [5, 15, 17], this paper is devoted to the study
of a subclass Fn of the so-called class PS−. Functions of Fn are of the form: x ∈
F2n �→ ∑

r∈R Trn
1 (arx

r(2m−1))+Tr2
1(bx

2n−1
3 ) where R is a set of representatives

of the cyclotomic cosets modulo 2n−1 of maximal size n := 2m, {ar, r ∈ R} is a
collection of elements of F2m and b is an element of F4 . The set of the functions
Fn includes the functions studied in [15] and in [17].

The paper is organized as follows. Section 2, we fix our main notation and
recall the necessary background. Next, in Section 3, we show that hyper-bent
functions of Fn can be described by means of exponential sums involving Dick-
son polynomials (Theorem 13 and Theorem 15). In particular, when b is a prim-
itive element of F4 , we provide a way to transfer the characterization of hyper-
bentness of an element of Fn to the evaluation of the Hamming weight of some
Boolean functions. To illustrate our results, we show in the Sub-section 3.2.3
that the results presented in [15] and in [17] can be deduced. Finally, in the end
of section 3, we provide a possibly new infinite family of hyper-bent functions
provided that some set is not empty (Conjecture 1).

2 Notation and Preliminaries

For any set E, E� = E \ {0} and |E| will denote the cardinality of E.

• Boolean functions and polynomial forms:

Let n be a positive integer. A Boolean function f on F2n is an F2-valued function
on the Galois field F2n of order 2n. The weight of f , denoted by wt(f), is the
Hamming weight of the image vector of f i.e. the cardinality of its support
supp(f) := {x ∈ F2n | f(x) = 1}.

For any positive integer k, and r dividing k, the trace function from F2k

to F2r , denoted by Trk
r , is the mapping defined as: Trk

r (x) :=
∑k

r −1
i=0 x2ir

.
In particular, we denote the absolute trace over F2 of an element x ∈ F2n

by Trn
1 (x) =

∑n−1
i=0 x2i

. Recall that, the absolute trace satisfies (Trn
1 (x))2 =

Trn
1 (x) = Trn

1 (x2) for every x ∈ F2n and that, for every integer r dividing k, the
trace function Trk

r satisfies the transitivity property, that is, Trk
1 = Trr

1 ◦ Trk
r .

Every non-zero Boolean function f defined on F2n has a (unique) trace ex-
pansion of the form:

∀x ∈ F2n , f(x) =
∑

j∈Γn

Tr
o(j)
1 (ajx

j) + ε(1 + x2n−1)

called its polynomial form, where Γn is the set of integers obtained by choosing
one element in each cyclotomic class {j× 2i (mod 2n − 1); i ∈ N} of 2 modulo
2n − 1, o(j) is the size of the cyclotomic coset of 2 modulo 2n − 1 containing j,
aj ∈ F2o(j) and, ε = wt(f) modulo 2.

• Walsh transform, bent and hyper-bent functions:
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Let f be a Boolean function on F2n . Its “sign” function is the integer-valued
function χ(f) := (−1)f . The W alsh Hadamard transform of f is the discrete
Fourier transform of χf , whose value at ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑

x∈F2n

(−1)f(x)+Trn
1 (ωx).

Bent functions can be defined as follows:

Definition 1. A Boolean function f : F2n → F2 (n even) is said to be bent if
χ̂f (ω) = ±2

n
2 , for all ω ∈ F2n .

Hyper-bent functions have properties still stronger than bent functions. More
precisely, they can be defined as follows:

Definition 2. A Boolean function f : F2n → F2 (n even) is said to be hyper-
bent if the function x �→ f(xi) is bent, for every integer i co-prime with 2n − 1.

Note that bent and hyper-bent functions defined on F2n exist only for even n.
Moreover, it is well known that their Hamming weight is even. Therefore, their
polynomial form is

∀x ∈ F2n , f(x) =
∑

j∈Γn

Tr
o(j)
1 (ajx

j) (1)

where Γn, o(j) are defined as above and aj ∈ F2o(j) .

• Some results on bent and hyper-bent Boolean fucntions:

Recall the following well-known result which includes the definition of the Partial
Spreads class PS− introduced by Dillon.

Theorem 1. [8] Let Ei, i = 1, 2, · · · , N , be N subspaces of F2n of dimension m
satisfying Ei∩Ej = {0} for all i, j ∈ {1, 2, · · · , N} with i 
= j. Let f be a Boolean
function over F2n (n = 2m). Assume that the support of f can be written as

supp(f) =
⋃N

i=1 E�
i , where E�

i := Ei \ {0}.
Then f is bent if and only if N = 2m−1. In this case f is said to be in the

PS− class.

Youssef and Gong have shown that hyper-bent functions exist. They partially
state this main result of [19] in terms of sequences. The following proposition is
an easy translation of their result stated using only the terminology of Boolean
functions (see [3])

Proposition 2. [19] Let n = 2m be an even integer. Let α be a primitive ele-
ment of F2n. Let f be a Boolean function defined on F2n such that f(α2m+1x) =
f(x) for every x ∈ F2n and f(0) = 0. Then, f is a hyper-bent function if and
only if the weight of the vector (f(1), f(α), f(α2), · · · , f(α2m

)) equals 2m−1.

Charpin and Gong [5] have derived a slightly different version of the preceding
Proposition.
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Proposition 3. [5] Let n = 2m be an even integer. Let α be a primitive element
of F2n . Let f be a Boolean function defined on F2n such that f(α2m+1x) = f(x)
for every x ∈ F2n and f(0) = 0. Denote by G the cyclic subgroup of F

�
2n of order

2m + 1. Let ζ be a generator of G. Then, f is a hyper-bent function if and only
if the cardinality of the set {i | f(ζi) = 1, 0 ≤ i ≤ 2m} equals 2m−1.

Remark 1. It is important to point out that bent Boolean functions f defined
on F2n such that f(α2m+1x) = f(x) for every x ∈ F2n (where α is a primitive
element of F2n) and f(0) = 0 are hyper-bent (see proof of Theorem 2 in [5] or
observe that the support supp(f) of such Boolean functions f can be decomposed
as supp(f) =

⋃
i∈S αi

F
�
2m , where S = {i | f(αi) = 1}, that is, thanks to Theorem

1, functions f are bent if and only if |S| = 2m−1, proving that these bent
functions are hyper-bent functions, according to Proposition 2).

Dillon exhibits a subclass of PS−, denoted by PSap, whose elements are defined
in an explicit form ( F22m is a F2m-vectorspace of dimension 2; every element
z ∈ F22m can be decomposed as z = x+wy with (x, y) ∈ F2m ×F2m where {1, w}
stands for a basis of the F2m-vectorspace F22m):

Definition 3. Let n = 2m. The Partial Spreads class PSap consists of all func-
tions f defined as follows: let g be a balanced Boolean function from F2m to
F2 such that g(0) = 0. Define a Boolean function f from F2m × F2m to F2 as
f(x, y) = g(xy2m−2) for every (x, y) ∈ F2m × F2m .

It is well-known (see e.g [3]) that, all the functions of the class PSap are hyper-
bent. Carlet and Gaborit have proved in [3] the following more precise statement
of Proposition 2.

Proposition 4. [3] Boolean functions of Proposition 2 such that f(1) = 0 are
elements of the class PSap. Those such that f(1) = 1 are the functions of the
form f(x) = g(δx) for some g ∈ PSap and δ ∈ F2n \ {1} such that g(δ) = 1.

• Some classical binary exponential sums :

Recall two classical binary exponential sums on F2n (where n is a positive
integer):

Definition 4. The binary Kloosterman sums on F2n are:

Kn(a) :=
∑

x∈F2n

χ
(
Trn

1 (ax +
1
x

)
)
, a ∈ F2n

Recall the following result

Proposition 5. [13] The Kloosterman sums Kn on F2n takes integer values in
the range [−2(n+2)/2 + 1, 2(n+2)/2 + 1].

Definition 5. The binary cubic sums on F2n are:

Cn(a, b) :=
∑

x∈F2n

χ
(
Trn

1 (ax3 + bx
)
), a ∈ F

�
2n , b ∈ F2n
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The exact values of the cubic sums Cm(a, a) on F2m can be computed thanks to
Carlitz’s result [4] by means of the Jacobi symbol. Recall that the Jacobi symbol(

2
m

)
is a generalization of the Legendre symbol (which is defined when m is an

odd prime). For m odd,
(

2
m

)
= (−1)

(m2−1)
8 .

Proposition 6. [4] Let m be an odd integer. Let a ∈ F
�
2m and c ∈ F2m , Then

1. Cm(1, 1) =
(

2
m

)
2

m+1
2 where

(
2
m

)
is the Jacobi symbol.

2. If Trm
1 (c) = 0, then Cm(1, c) = 0.

3. If Trm
1 (c) = 1 (with c 
= 1), then Cm(1, c) = χ(Trm

1 (γ3+γ))
(

2
m

)
2

m+1
2 where

c = γ4 + γ + 1 for some γ ∈ F2m .

• Dickson Polynomials:

Recall that the family of Dickson polynomials Dr(X) ∈ F2 [X ] is defined by

Dr(X) =

r
2∑

i=0

r

r − i

(
r − i

i

)

Xr−2i, r = 2, 3, · · ·

Moreover, the family of Dickson polynomials Dr(X) ∈ F2 [X ] can also be defined
by the following recurrence relation:

Di+2(X) = XDi+1(X) + Di(X)

with initial values
D0(X) = 0, D1(X) = X.

Now, recall the following properties which we use in the sequel. For any non-zero
positive integers r and p, Dickson polynomials satisfy:

1. deg(Dr(X)) = r,
2. Drp(X) = Dr(Dp(X)),
3. Dr(x + x−1) = xr + x−r.

3 Hyper-bent Functions Whose Expression is the Sum of
Multiple Trace Terms

In the sequel, n is an even positive integer, m = n
2 is an odd integer and E is a

set of representatives of the cyclotomic classes modulo 2n−1 for which each class
has the full size n. We denote by Fn the set of Boolean functions fb, (b ∈ F4)
defined on F2n whose polynomial forms are:

fb(x) :=
∑

r∈R

Trn
1 (arx

r(2m−1)) + Tr2
1(bx

2n−1
3 ). (2)

where R ⊆ E and all the coefficients ar are in F2m .
Note that the size of the cyclotomic coset of 2 modulo 2n −1 containing 2n−1

3

is equal to 2 (i.e. o(2n−1
3

) = 2) and that, the function fb does not belong to the
class considered by Charpin and Gong in [5].
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For m odd, 2m + 1 is a multiple of 3 and thus all exponents for x in (2) are
multiples of 2m − 1. Therefore, every Boolean function fb in Fn satisfies

∀x ∈ F2n , fb(α2m+1x) = fb(x).

where α denotes any primitive element of F2n . Furthermore, since every Boolean
fb of Fn vanishes at 0, one can then apply Proposition 3 to get the following
characterization of hyper-bentness for an element of Fn.

Proposition 7. Let fb ∈ Fn. Set Λ(fb) :=
∑

u∈U χ(fb(u)) where U is the group
of (2m + 1)-st roots of unity, that is, U = {x ∈ F2n | x2m+1 = 1}. Then, fb is
hyper-bent if and only if Λ(fb) = 1. Moreover, a hyper-bent function fb is in the
Partial Spreads class PSap if and only if b ∈ F2 .

Proof. The Boolean function fb satisfies the assumptions of Proposition 3. There-
fore fb is hyper-bent if and only if its restriction to U has Hamming weight 2m−1

according to Proposition 3. Now, one has Λ(fb) = 2m+1−2|{u ∈ U | fb(u) = 1}|.
Therefore, the Hamming weight of the restriction of fb to U equals 2m−1 if and
only if Λ(fb) = 1. The second part of the proposition is a direct application of
Proposition 4. Indeed, note that fb(1) =

∑
r∈R Trn

1 (ar)+Tr2
1(b) = Tr2

1(b) (since
Trn

1 (ar) = 0 for every r ∈ R because ar ∈ F2m) and it is clear that the elements
b of F4 whose trace over F4 equals 0, are the elements of F2 .

3.1 The Case b = 0

Charpin and Gong [5] have studied the functions of Fn in the case where b = 0
and provide the following characterization of the hyper-bentness in terms of
Dickson polynomials.

Theorem 8. [5] Let n = 2m. Let E′ be a set of representatives of the cyclotomic
cosets modulo 2m+1 for which each coset has the full size n. Let f be the function
defined on F2n by f(x) =

∑
r∈R Trn

1 (arx
r(2m−1)), ar ∈ F2m where R ⊆ E′. Let

g be the Boolean function defined on F2m by g(x) =
∑

r∈R Trm
1 (arDr(x)). Then

f is hyper-bent if and only if
∑

x∈F2m

χ(Trm
1 (x−1) + g(x)) = 2m − 2 wt(g).

Remark 2. The bentness of monomial functions of Fn has been studied. More
precisely, the exponent 2m−1 has been considered by Dillon in [8] as an example
of bent functions belonging to PS− (Theorem 1). Using results from coding
theory, Dillon has proved in [8] that the function x ∈ F2n �→ Trn

1 (ax2m−1) is
(hyper)-bent if and only if the Kloosterman sum Km on F2m satisfies Km(a) = 0.
Further, the exponent r(2m − 1) where r is co-prime with 2m + 1, has been
considered firstly by Leander [14] and next by Charpin and Gong [5] (in fact
Leander has found another proof of Dillon’s result which gives more insight; a
small error in his proof has been corrected in [5]). It has been proved that the
function x ∈ F2n �→ Trn

1 (arx
r(2m−1)) where gcd(r, 2m + 1) = 1, is hyper-bent if

and only if a is a zero of the Kloosterman sum Km on F2m .
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3.2 The Case Where b ∈ F
�
4

We are interested in characterizing the hyper-bentness of the Boolean function of
the form (2) where b 
= 0. To this end, we begin by introducing some additional
notation while underlining some facts.

Let β be a primitive element of F4 . Suppose that β = α
2n−1

3 for some primitive
element α of F2n . Set ξ := α2m−1 so that ξ is a generator of the cyclic group
U := {u ∈ F2n | u2m+1 = 1}. Note that U can be decomposed as : U =

⋃2
i=0 ξiV

where V := {u3, u ∈ U}. Next, let introduce the sums

Si :=
∑

v∈V

χ(f0(ξiv)), ∀i ∈ {0, 1, 2} (3)

First of all, note that

S0 + S1 + S2 =
∑

u∈U

χ(f0(u)). (4)

Next, one has

Lemma 9. S1 = S2.

Proof. Since the trace map is invariant under the Frobenius automorphism x �→
x2, we get applying m times the Frobenius automorphism : ∀x ∈ F2n ,

f0(x) =
∑

r∈R

Trn
1

(
a2m

r x2mr(2m−1)
)

=
∑

r∈R

Trn
1

(
arx

2mr(2m−1)
)

= f0(x2m

)

because all the coefficients ar are in F2m . Hence, S1 =
∑

v∈V χ(f0(ξ2m

v2m

)) =
∑

v∈V χ(f0(ξ2(ξ2m−2v2m

))). Now, since m is odd, 3 divides 2m + 1 and then
divides 2m − 2. Hence, ξ2m−2 is a cube of U and the mapping v �→ ξ(2m−2)v2m

is a permutation of V . Consequently, S1 =
∑

v∈V χ(f0(ξ2v)) = S2.

Now, for b ∈ F
�
4 , we establish expressions for Λ(fb) :=

∑
u∈U χ(fb(u)) (where U

is the group of (2m + 1)-st roots of unity) involving the sums Si.

Proposition 10. Λ(fβ) = Λ(fβ2) = −S0 and Λ(f1) = S0 − 2S1.

Proof. Introduce for every element c of F4 T (c) :=
∑

b∈F4
Λ(fb)χ(Tr2

1(bc)). Re-
call that one has

Λ(fb) =
1
4

∑

c∈F4

T (c)χ(Tr2
1(bc)). (5)

Indeed
∑

c∈F4

T (c)χ(Tr2
1(bc))

=
∑

c∈F4

∑

d∈F4

Λ(fd)χ(Tr2
1(dc))χ(Tr2

1(bc))

=
∑

d∈F4

Λ(fd)
∑

c∈F4

χ(Tr2
1(c(d + b)))
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But
∑

c∈F4
χ(Tr2

1(c(d + b))) = 4 if d = b (i.e b + d = 0) and 0 otherwise. Then,
one gets

∑
c∈F4

T (c)χ(Tr2
1(bc)) = 4Λ(fb).

Now, note that T (c) =
∑

u∈U χ(f0(u))
∑

b∈F4
χ

(

Tr2
1

(
b
(
c + u

2n−1
3

))
)

. Fur-

thermore, one has

∑

b∈F4

χ

(

Tr2
1

(
b
(
c + u

2n−1
3

))
)

= 0 if u
2n−1

3 
= c and 4 otherwise.

Since, u
2n−1

3 
= 0 for every u ∈ U , T (0) = 0. Since β is a primitive element
of F4 , let suppose from now that c = βi, i ∈ {0, 1, 2}. Recall that β = α

2n−1
3

and ξ = α2m−1 for some primitive element α of F2n . Then βi = ξi 2m+1
3 . Hence,

T (βi) = 4
∑

u∈U, u
2n−1

3 =βi=ξi
2m+1

3
χ(f0(u)). Now,

u
2n−1

3 = ξi 2m+1
3 ⇐⇒ (

u−2ξ−i
) 2m+1

3 = 1 ⇐⇒ u−2 ∈ ξiV.

That follows from the fact that the only elements x of U such that x
2m+1

3 = 1
are the elements of V . Next, noting that the map x �→ x2m−1

is one-to-one from
ξiV to ξiV (because ξi(2m−1−1) is a cube since 2m−1 − 1 ≡ 0 (mod 3) for m

odd), one gets that u
2n−1

3 = ξi 2m+1
3 ⇐⇒ u ∈ ξiV. Therefore

T (βi) = 4
∑

v∈V

χ(f0(ξiv)) = 4Si.

Finally, by the inversion formula (5), one gets Λ(fb) = 1
4

∑
c∈F4

T (c)χ(Tr2
1(bc))

that is,

Λ(f1) = S0χ(Tr2
1(1)) + S1χ(Tr2

1(β)) + S2χ(Tr2
1(β2)),

Λ(fβ) = S0χ(Tr2
1(β)) + S1χ(Tr2

1(β
2)) + S2χ(Tr2

1(1)),
Λ(fβ2) = S0χ(Tr2

1(β2)) + S1χ(Tr2
1(1)) + S2χ(Tr2

1(β)).

The result follows then from Lemma 9 and from the fact that Tr2
1(1) = 0 and

Tr2
1(β) = Tr2

1(β
2) = 1.

From Proposition 7, Proposition 10, Lemma 9 and (4), one straight-forwardly
deduces the following statement.

Lemma 11. Let n = 2m be an even integer with m odd. For b ∈ F4 , let fb be a
function defined by (2). Let β be a primitive element of F4 . Let U be the cyclic
group of (2m + 1)-st roots of unity and V be the set of the cube of U . Then,

1. fβ is hyper-bent if and only if
∑

v∈V χ(f0(v)) = −1.
2. fβ is hyper-bent if and only if fβ2 is hyper-bent.
3. f1 is hyperbent if and only if 2

∑
v∈V χ(f0(v)) − ∑

u∈U χ(f0(u)) = 1.
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The case where b is a primitive element of F4 . According to assertion
(2) of Lemma 11, we can suppose that b = β without loss of generality. As in
the case where b = 0 (Theorem 8), one can establish a characterization of the
hyper-bentness of fβ involving the Dickson polynomials. To this end, we begin
with proving the following result.

Lemma 12. Let f0 be the function defined on F2n by (2) with b = 0. Let g be the
related function defined on F2m by g(x) =

∑
r∈R Trm

1 (arDr(x)), where Dr(x) is
the Dickson polynomial of degree r. Let U be the cyclic group of (2m +1)-st roots
of unity. Then, for any positive integer p, we have

∑

u∈U

χ
(
f0(up)

)
= 1 + 2

∑

c∈F
�
2m ,Trm

1 (c−1)=1

χ
(
g(Dp(c))

)
.

Proof. Using the transitivity rule Trn
1 = Trm

1 ◦Trn
m, the fact that the coefficients

ar are in the subfield F2m of F2n and the fact that the mapping u �→ u2m−1 is a
permutation of U , one has

∑

u∈U

χ
(
f0(up)

)
=

∑

u∈U

χ
( ∑

r∈R

Trm
1

(
ar(u(2m−1)rp + u2m(2m−1)rp)

))

=
∑

u∈U

χ
( ∑

r∈R

Trm
1

(
ar(urp + u−rp)

))
=

∑

u∈U

χ
( ∑

r∈R

Trm
1

(
arDrp(u + u−1)

))

since up +u−p = Dp(u+u−1). Recall now that every element 1/c where c ∈ F
�
2m

with Trm
1 (c) = 1 can be uniquely represented as u +u2m

= u + u−1 with u ∈ U .
Thus

∑

u∈U

χ
(
f0(up)

)
= 1 +

∑

u∈U\{1}
χ
( ∑

r∈R

Trm
1

(
arDrp(u + u−1)

))

= 1 + 2
∑

c∈F
�
2m ,Trm

1 (c)=1

χ
( ∑

r∈R

Trm
1

(
arDrp(1/c)

))

= 1 + 2
∑

c∈F
�
2m ,Trm

1 (c−1)=1

χ
( ∑

r∈R

Trm
1

(
arDrp(c)

))
.

In the last equality, we use the fact that the map c �→ 1/c is a permutation on
F2m . Now, since Drp = Dr ◦ Dp, one gets

∑

u∈U

χ
(
f0(up)

)
= 1 + 2

∑

c∈F
�
2m ,Trm

1 (c−1)=1

χ
(
g(Dp(c))

)
.

From Lemma 11 and Lemma 12, one deduce the following statement.

Theorem 13. Let n = 2m be an even integer with m odd. Let β be a primitive
element of F4 . Let fβ be the function defined on F2n by (2). Let g be the related
function defined on F2m by g(x) =

∑
r∈R Trm

1 (arDr(x)), where Dr(x) is the
Dickson polynomial of degree r. Then, the three assertions are equivalent
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1. fβ is hyper-bent.
2.

∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ
(
g(D3(x))

)
= −2.

3.
∑

x∈F
�
2m

χ
(
Trm

1 (x−1) + g(D3(x))
)

= 2m − 2 wt(g ◦ D3) + 4.

Proof. According to Lemma 12, we have

S0 =
∑

v∈V

χ
(
f0(v)

)
=

1
3

∑

u∈U

χ
(
f0(u3)

)
=

1
3

⎛

⎝1 + 2
∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ
(
g(D3(x))

)
⎞

⎠ .

The equivalence between assertions (1) and (2) follows then from assertion (1)
of Lemma 11.

Now, note that the indicator of the set {x ∈ F
�
2m | Trm

1 (x−1) = 1} can be
written as 1

2

(
1 − χ(Trm

1 (x−1))
)
. Therefore,

∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ
(
g(D3(x))

)

=
1
2

⎛

⎝
∑

x∈F
�
2m

χ
(
g(D3(x))

)
−

∑

x∈F
�
2m

χ
(
Trm

1 (x−1 + g(D3(x)))
)
⎞

⎠

=
1
2

⎛

⎝
∑

x∈F2m

χ
(
g(D3(x))

)
−

∑

x∈F2m

χ
(
Trm

1 (x−1 + g(D3(x)))
)
⎞

⎠ .

Now, fβ is hyper-bent if and only if
∑

x∈F
�
2m ,Trm

1 (x−1)=1 χ
(
g(D3(x))

)
= −2.

Therefore, using the fact that, for a Boolean function h defined on F2n ,∑
x∈F2n

χ(h(x)) = 2n − 2 wt(h), we get that fβ is hyper-bent if and only if
∑

x∈F2m

χ
(
Trm

1 (x−1) + g(D3(x))
)

= 4 + 2m − 2 wt(g ◦ D3).

One also has

Proposition 14. Let n = 2m be an even integer with m odd. Let d be a positive
integer. Suppose that d and 2m+1

3 are co-prime. Let β be a primitive element of
F4 . Let fβ be the function defined by (2) and hβ be the function whose expression
is ∑

r∈R

Trn
1 (arx

dr(2m−1)) + Tr2
1(βx

2n−1
3 )

where ar ∈ F2m . Then, fβ is hyper-bent if and only if hβ is hyper-bent.

Proof. According to assertion (1) of Lemma 11, hβ is hyper-bent if and only if∑
v∈V χ(h0(v)) = −1.Now,

∑
v∈V χ(h0(v)) =

∑
v∈V χ(f0(vd)) =

∑
v∈V χ(f0(v))

since the mapping v �→ vd is then a permutation of V if 2m+1
3 and d are co-prime.

The result follows again from assertion (1) of Lemma 11.
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The case where b = 1. In this subsection, we are interested in characterizing
the hyper-bentness of the Boolean function f1 whose polynomial form is f1(x) =
∑

r∈R Trn
1 (arx

r(2m−1))+Tr2
1(x

2n−1
3 ). In this case one can give a characterization

of the bentness, analogous to the assertion (2) of Theorem 13.

Theorem 15. Let n = 2m be an even integer with m odd. Let f1 be the Boolean
function defined on F2n by

f1(x) =
∑

r∈R

Trn
1 (arx

r(2m−1)) + Tr2
1(x

2n−1
3 ).

Let g be the related function defined on F2m by g(x) =
∑

r∈R Trm
1 (arDr(x)),

where Dr(x) is the Dickson polynomial of degree r.
Then, f1 is hyper-bent if and only if,

2
∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ
(
g(D3(x))

)
− 3

∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ
(
g(x)

)
= 2.

Proof. Note that

2
∑

v∈V

χ(f0(v)) −
∑

u∈U

χ(f0(u)) =
2
3

∑

u∈U

χ(f0(u3)) −
∑

u∈U

χ(f0(u))

= −1
3

+
4
3

∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ
(
g(D3(x))

)
− 2

∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ
(
g(x)

)

according to Lemma 12. One then concludes using Lemma 11 that states that
f1 is hyper-bent if and only if

2
∑

v∈V

χ(f0(v)) −
∑

u∈U

χ(f0(u)) = 1.

On can also prove the similar result to Proposition 14.

Proposition 16. Let n = 2m be an even integer with m odd. Suppose that
m 
≡ 3 (mod 6). Let d be a positive integer such that gcd(d, 2m + 1) = 3. Let β
be a primitive element of F4 . Let fβ be the function defined by (2) and h1 be the
function whose expression is

∑

r∈R

Trn
1 (arx

dr(2m−1)) + Tr2
1(x

2n−1
3 )

If fβ is hyper-bent then, h1 is hyper-bent.

Proof. Set h0(x) :=
∑

r∈R Trn
1 (arx

dr(2m−1)). One has (since gcd(d, 2m +1) = 3)

∑

v∈V

χ(h0(v)) =
∑

v∈V

χ(f0(vd)) =
∑

v∈V

χ(f0(v3)) =
∑

v∈V

χ(f0(v))
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since the mapping v �→ v3 is a permutation when m 
≡ 3 (mod 6). On the other
hand, note that (since gcd(d, 2m + 1) = 3)

∑

u∈U

χ(h0(u)) =
∑

u∈U

χ(f0(ud)) =
∑

u∈U

χ(f0(u3)) = 3
∑

v∈V

χ(f0(v)).

Now,
∑

v∈V χ(f0(v)) = −1 according to Lemma 11, since fβ is hyper-bent.
Hence, 2

∑
v∈V χ(h0(v)) − ∑

u∈U χ(h0(u)) = −2 − (−3) = 1, proving that h1 is
hyper-bent (according to Lemma 11).

Examples

Example 1. To illustrate our results, we describe the set of hyper-bent functions
of a particular family of Boolean functions belonging to the class (2), that is, the
Boolean functions fβi , i ∈ {0, 1, 2} (studied in [15, 16]) defined on F2n (n = 2m,
m odd) as:

fβi(x) = Trn
1 (ax2m−1) + Tr2

1(β
ix

2n−1
3 ), ∀x ∈ F2n

where a ∈ F
�
2m and β is a primitive element of F4 .

In this case, f0(x) = Trn
1 (ax2m−1) is the Dillon function and the related function

g is defined by g(x) = Trm
1 (ax).

According to Lemma 11, fβ is hyper-bent if and only if fβ2 is hyper-bent and,
according to Theorem 13,
fβ is hyper-bent if and only if

∑
x∈F

�
2m ,Trm

1 (1/x)=1 χ(g(D3(x))) = −2. But

∑

x∈F
�
2m ,Trm

1 (1/x)=1

χ(g(D3(x)))

=
∑

x∈F
�
2m

χ(Trm
1 (a(x3 + x))) −

∑

x∈F
�
2m ,Trm

1 (1/x)=0

χ(Trm
1 (a(x3 + x)))

= Cm(a, a) − 1 −
∑

x∈F
�
2m ,Trm

1 (1/x)=0

χ(Trm
1 (a(x3 + x)))

= Cm(a, a) − 1 −
∑

x∈F
�
2m ,Trm

1 (1/x)=0

χ(Trm
1 (ax)).

In the last equality, we use that the mapping x �→ D3(x) := x3 +x is a permuta-
tion on the set of F

�
2m such that Trm

1 (1/x) = 0 (see for instance [6, Lemma 7]).
Now, according to Charpin, Helleseth and Zinoviev [6],

∑

x∈F
�
2m ,Trm

1 (1/x)=0

χ(Trm
1 (ax)) =

Km(a)
2

− 1.

Hence, we get that
∑

x∈F
�
2m ,Trm

1 (1/x)=1 χ(g(D3(x))) = Cm(a, a) − Km(a)
2 . Therefore, fβ (resp. fβ2)
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is hyper-bent if and only if Km(a)− 2Cm(a, a) = 4. The mapping x �→ x3 being
a permutation on F2m for m odd, then every element a ∈ F2m can be (uniquely)
written as a = a′3 with a′ ∈ F2m . One has Cm(a, a) =

∑
x∈F2m

χ(Trm
1 ((a′x)3 +

ax) = Cm(1, a2/3).
Hence, according to Proposition 6 (note that Trm

1 (a2/3) = Trm
1 (a1/3)), the

function fβ (resp. fβ2) is hyper-bent if and only if,

Km(a) =
{

4 if Trm
1 (a1/3) = 0

4 ± (
2
m

)
2(m+3)/2 if Trm

1 (a1/3) = 1

However, using Proposition 5, the value 4 ± (
2
m

)
2(m+3)/2 does not belong to

[−2(m+2)/2 +1, 2(m+2)/2 +1] for every m > 3. This proves that if Trm
1 (a1/3) = 0

then, the Boolean function fβ (resp. fβ2) is hyper-bent whenever Km(a) =
4 while, when Km(a) 
= 4, fβ (resp. fβ2) is not hyper-bent. Otherwise, if
Trm

1 (a1/3) = 1 (which implies that Km(a) 
= 4) then, the function fβ (resp.
fβ2) cannot be hyper-bent when m > 3.

In the other hand, according to Theorem 15, f1 is hyper-bent if and only if,
2

∑
x∈F

�
2m ,Trm

1 (x−1)=1 χ
(
g(D3(x))

)
− 3

∑
x∈F

�
2m ,Trm

1 (x−1)=1 χ
(
g(x)

)
= 2.

We have seen that
∑

x∈F
�
2m ,Trm

1 (1/x)=1 χ(g(D3(x))) = Cm(a, a) − Km(a)
2 .

Furthermore, according to Charpin, Helleseth and Zinoviev [6],
∑

x∈F
�
2m ,Trm

1 (x−1)=1 χ
(
g(x)

)
=

∑
x∈F

�
2m ,Trm

1 (1/x)=1 χ(Trm
1 (ax)) = −Km(a)

2 .

Therefore, f1 is hyper-bent if and only if Km(a) + 4Cm(a, a) = 4.
Now, one has Cm(a, a) = Cm(1, a2/3). Hence, according to Proposition 6,

f1 is hyper-bent if and only if,

Km(a) =
{

4 if Trm
1 (a1/3) = 0

4 ± (
2
m

)
2(m+5)/2 if Trm

1 (a1/3) = 1

However, using Proposition 5, the value 4 ± (
2
m

)
2(m+5)/2 does not belong to

[−2(m+2)/2 +1, 2(m+2)/2 +1] for every m > 3. This proves that if Trm
1 (a1/3) = 0

then, the Boolean function f1 is hyper-bent whenever Km(a) = 4 while, when
Km(a) 
= 4, f1 is not hyper-bent. Otherwise, if Trm

1 (a1/3) = 1 (which implies
that Km(a) 
= 4) then, the function f1 cannot be hyper-bent when m > 3. One
recovers then the results given in [15] (Theorem 12).

Example 2. To illustrate again our results, let consider the set of functions of a
particular family of Boolean functions belonging to the subclass (2), that is, the
Boolean functions hβ (studied in [17]) defined on F2n (n = 2m, m odd) as:

hβ(x) = Trn
1 (ax3(2m−1)) + Tr2

1(βx
2n−1

3 ), ∀x ∈ F2n

where a ∈ F
�
2m and β is a primitive element of F4 . Suppose m 
≡ 3 (mod 6).

According to Proposition 14 and the results of Example 1, one can deduce that if
Trm

1 (a1/3) = 0 then, the Boolean function hβ is hyper-bent whenever Km(a) = 4
and if Trm

1 (a1/3) = 1 then, the Boolean function hβ is not hyper-bent. Thus,
one recovers the results given in [17] (Theorem 17).
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Table 1. Exponents i and j such that (αi, αj) satisfy Conjecture 1 for n = 10

i=1 j= 0, 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 17, 20, 22, 24, 26, 27, 29

i=2 j= 0, 2, 3, 4, 6, 9, 10, 13, 14, 16, 17, 18, 21, 22, 23, 24, 26, 27, 28

i=4 j= 0, 1, 3, 4, 5, 6, 8, 11, 12, 13, 15, 17, 18, 20, 21, 23, 25, 26, 28

i=7 j= 0, 3, 4, 5, 7, 8, 10, 11, 12, 14, 16, 18, 19, 23, 26, 27, 28, 29, 30

i=8 j= 0, 2, 3, 5, 6, 8, 9, 10, 11, 12, 15 16, 19, 21, 22, 24, 25, 26, 30,

i=14 j= 0, 1, 5, 6, 7, 8, 10, 14, 15, 16, 20, 21, 22, 23, 24, 25, 27, 28, 29

i=16 j= 0, 1, 4, 6, 7, 10, 11 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 29, 30

i=19 j= 0, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17, 18, 19, 21, 25, 27, 29, 2, 30

i=25 j= 0, 1, 2, 3, 4, 7, 9, 15, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30

i=28 j= 0, 1, 2, 9, 10, 11, 12, 13, 14, 15 16, 17, 19, 20, 23, 25, 27, 28, 30

Table 2. Number of pairs (a, a′) such that Km(a) = 4 and S(a, a′) = −1

n 14 18 22

Number of pairs 882 3978 13948

We now make a conjecture. We need for that to introduce some notations. Let
I := {x ∈ F

�
2m | x = c3 + c, T rm

1 (c−1) = 1} and set, for a, a′ ∈ F2m ,

S(a, a′) :=
∑

x∈I

χ(Trm
1 (a(x + x3) + a′x5).

Conjecture 1. For every a ∈ F
�
2m such that Km(a) = 4, the set Sa = {a′ ∈ F

�
2m |

S(a, a′) = −1} is non empty.

Fact 1. By a computer program, we have checked that the conjecture holds for
all n = 2m up to n = 26.

Proposition 17. Let n = 2m with m odd. Suppose that conjecture 1 holds. Let
a ∈ F

�
2m such that Km(a) = 4, a′ ∈ Sa (
= ∅) and β is a primitive element of

F4 . Then, the Boolean function f defined on F2n whose polynomial form equals

Trn
1 ((a + a′)x3(2m−1)) + Trn

1 (a′x5(2m−1)) + Tr2
1(βx

2n−1
3 )

is hyper-bent.

Proof. Let g be the Boolean function defined on F2m as

g(x) = Trm
1 ((a + a′)D3(x)) + Trm

1 (a′D5(x)).

According to Theorem 13,

f is hyper-bent if and only if
∑

x∈F
�
2m ,Trm

1 (x−1)=1

χ(g(D3(x))) = −2.
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Now, according to Charpin et al. [6] (Lemma 6), the map x �→ D3(x) is 3-to-1
from {x ∈ F2m \ F2 | Trm

1 (x−1) = 1} to I := {x ∈ F
�
2m | x = c3 + c, T rm

1 (c−1) =
1}. Thus, the former condition can be reworded as 1+3

∑
x∈I χ(g(x)) = −2 that

is,
∑

x∈I χ(g(x)) = −1. Recall now that D3(x) = x+x3 and, D5(x) = x+x3+x5.
So g(x) = Trm

1

(
a(x + x3) + a′x5

)
.

Remark 3. We have made an exhaustive search by a computer program for n ∈
{10, 14, 18, 22} of all sets Sa for each value a such that Km(a) = 4. Let ζ be a
primitive element of F210 (whose minimal polynomial is x10 + x7 + 1) and set
α = ζ33 (so that α is a primitive element of F25).

We list in Table 1 all the pairs of indices (i, j) such that K5(αi) = 4 and αj ∈
Sαi . We have also found all pairs (i, j) for n ∈ {14, 18, 22}. Due to their number,
we do not list them like for n = 10 but we only give in Table 2 the numbers of
pairs that we found (including the case where Km(a) = 4 and S(a, 0) = −1).

4 Conclusion

In this paper, we generalize the results of [15–17] to multiple trace terms func-
tions. We provide several characterizations of hyper-bentness by means of expo-
nential sums involving Dickson polynomials. The characterizations introduced in
this paper provide new methods for exploring theoritically or by computer search
for possible hyper-bent functions of the form (2). In this paper, we have restrict
ourselves to the case where the coefficients ar in (2) are in F2m . A natural ex-
pansion of those characterizations should be to investigate their generalizations
to the case where some of the coefficients are in F2n , but not in F2m .
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Abstract. We focus on the implementation and security aspects of cryp-
tographic protocols that use Type 1 and Type 4 pairings. On the imple-
mentation front, we report improved timings for Type 1 pairings derived
from supersingular elliptic curves in characteristic 2 and 3 and the first
timings for supersingular genus-2 curves in characteristic 2 at the 128-
bit security level. In the case of Type 4 pairings, our main contribution
is a new method for hashing into G2 which makes the Type 4 setting
almost as efficient as Type 3. On the security front, for some well-known
protocols we discuss to what extent the security arguments are tenable
when one moves to genus-2 curves in the Type 1 case. In Type 4, we
observe that the Boneh-Shacham group signature scheme, the very first
protocol for which Type 4 setting was introduced in the literature, is
trivially insecure, and we describe a small modification that appears to
restore its security.

1 Introduction

Bilinear pairings have become an extremely useful instrument in the cryptog-
rapher’s toolbox. Initial breakthroughs such as the one-round tripartite key
agreement protocol of Joux [23] and a practical solution to the problem of
identity-based encryption by Boneh and Franklin [5] have led to an almost expo-
nential volume of research to find novel cryptographic applications of pairings.

At an abstract level, for three groups G1, G2 and GT , a pairing is a func-
tion e : G1 × G2 → GT that is bilinear and non-degenerate. For cryptographic
applications we also need the pairing to be efficiently computable. In concrete
settings such cryptographically suitable bilinear pairings can be realized over
elliptic curves or, more generally, over hyperelliptic curves and abelian varieties.
Naturally the groups G1,G2 and GT as well as the pairing function are con-
strained by the underlying mathematical structure over which they are defined.

However, as noted by Galbraith, Paterson and Smart [17], protocol designers
sometimes treat the bilinear pairing as a “black box”. As a result the designers
may gloss over such important structural constraints and the subtleties they in-
troduce in the protocols and their security arguments. This in turn may lead to
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erroneous or misleading claims about the efficiency and security of pairing-based
protocols. For example, protocols employing bilinear pairings sometimes assume
that the groups G1 and G2 also possess some additional properties such as effi-
cient hashing into G2 or the existence of an efficiently computable isomorphism
ψ : G2 → G1. Different types of pairings can be realized that possess the proper-
ties required of a particular protocol, but not all protocols can be implemented
using the same type of pairing.

This motivated a classification of bilinear pairings into different types based
on the concrete structures of the underlying groups [17]. The focus of that work
was on three types of pairings where the groups G1, G2 and GT are of the
same prime order n. When G1 = G2, the pairing is said to be symmetric (called
Type 1 in [17]). The pairing is asymmetric when G1 �= G2. If there is an efficiently
computable isomorphism ψ : G2 → G1 then the pairing is said to be of Type 2;
if no such isomorphism is known it is called a Type 3 pairing. In either case no
efficiently computable isomorphism from G1 to G2 is known.

Symmetric pairings (Type 1) are derived from supersingular (hyper)elliptic
curves whereas asymmetric pairings are derived from ordinary curves. Known
examples of such pairings are the Weil and Tate pairings and their modifications
such as the eta pairing [2], the ate pairing [22], and the R-ate pairing [25].

Cryptographic protocols employing pairings are usually described in the sym-
metric setting, allowing for a relatively simpler description of the protocol and its
security argument. However, current research indicates that, at higher security
levels, Type 1 pairings are expected to be slower on many platforms. So from the
point of view of efficient implementation, Type 2 and Type 3 are considered bet-
ter choices. And, for a protocol originally proposed in the symmetric setting, it is
usually possible to translate the protocol description and the security argument
to the asymmetric setting.1

In the asymmetric setting, current research suggests that Type 3 is overall a
better choice [17]. This is because of the reduced cost of pairing evaluation and
also the relatively smaller size of elements of G2 which in turn reduces the cost
of other operations such as group operations in G2 or testing membership in G2.
The major functional distinctions between the Type 3 and Type 2 settings are
that, first of all, in the former it is possible to hash into G2, which is infeasible
in the latter; and, secondly, whereas there is an efficiently computable isomor-
phism ψ : G2 → G1 in Type 2, no such efficiently computable map is known
for Type 3. Because in some cases the description of a protocol or its security
argument employed the map ψ, it was earlier thought that either such proto-
cols cannot be implemented in Type 3 [17] or a stronger complexity assumption
was needed [6,33]. Contrary to this belief it has been recently argued that any
protocol or security argument in Type 2 has a natural, efficient, and secure coun-
terpart in Type 3 [11]. Hence, in the asymmetric setting there appears to be no
good reason to use Type 2 instead of Type 3.

1 We are not aware of any protocol that has to be necessarily restricted to the sym-
metric setting.
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However, not all pairing-based protocols available in the literature can be
implemented in Type 3 (or Type 2). For example, consider the case of the group
signature scheme of Boneh and Shacham [7] with verifier-local revocation. In
this protocol a random element of G2 is first obtained through hashing into
G2 and then one applies the map ψ on this element to obtain the corresponding
element of G1. As observed in [33], the protocol cannot be implemented in Type 2
because in that setting we do not have any algorithm to securely hash into G2,
and furthermore cannot be implemented in Type 3 because in that case we do
not know how to compute ψ for a random element of G2.

Perhaps realizing this shortcoming of Type 2 (and Type 3), Shacham in his
PhD thesis [32] introduced a new kind of pairing. In this setting, while G1 and
GT are cyclic groups of prime order n, G2 is taken to be a group of exponent n,
whose order is some power of n. This was later termed a Type 4 pairing [12,17].
Like Type 2 and Type 3, a Type 4 pairing can be realized over ordinary elliptic
or hyperelliptic curves. But unlike Type 2 or Type 3, here one can both hash
into G2 and also have an efficiently computable homomorphism ψ : G2 → G1.
However, the hashing into G2 is reported to be quite expensive and there is a
small probability that the pairing can be degenerate. The Boneh-Shacham group
signature scheme of [7] is described in the Type 4 setting in [32] with a standard
reductionist security argument. Several other protocols that use a Type 4 pairing
have been proposed [29,8] based on the Boneh-Shacham scheme. Thus, protocols
that require hashing into G2 followed by an application of ψ can be implemented
in the Type 4 setting although the protocol description may require some special
care, and as noted in [12] the security argument can become cumbersome.

Protocols such as the Boneh-Shacham group signature scheme [7] can also be
easily implemented in Type 1 because here G1 = G2 and hashing into G1 is very
efficient. Also recall that most pairing-based protocols were originally proposed
in this setting.2 The main drawback of Type 1 is that the bitlengths of the ele-
ments of G1 will be larger (because of the smaller embedding degrees than what
is achievable with asymmetric pairings) and, as a result, pairing computation and
operations in G1 can be expected to be slower at high security levels. However,
instructions on next-generation processors such as the forthcoming Intel ma-
chines may make Type 1 in characteristic 2 (and 3) fields an attractive choice.
Some authors [2,31] have also proposed to use genus-2 curves in the symmetric
setting and use degenerate divisors to speed the pairing computation.

Our contribution. For efficient and secure implementation of the majority of
pairing-based protocols it suffices to work in the Type 3 setting. However, as
the preceding discussion suggests, we also need to consider the issues of efficient
and secure implementation of protocols in the Type 1 and Type 4 settings.
While the question of efficiency does not require any additional justification, we
draw attention to the question of security of a cryptographic protocol in these
settings for the following reasons. A protocol described in the Type 1 setting

2 We note that not all protocols can be implemented securely in Type 1, e.g., those
requiring the extended Diffie-Hellman problem (XDH or SXDH) to be hard [4,9,13].
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which is implemented over a genus-2 curve may require a rewriting of the security
argument to check whether the original security assurance is indeed maintained
in this setting. Similarly, protocols described in the Type 4 setting may require
special scrutiny because of the structure of the group G2, in particular its effect
on the way the pairing is actually employed in the protocol. In this work we
report on both these aspects of efficiency and security in the Type 1 and Type 4
settings.

Type 1. Following recent work of Beuchat et al. [3] and Aranha et al. [1], we
provide improved timings for software implementation of Type 1 pairings over
elliptic curves in characteristic 2 and characteristic 3 fields. We also report the
first pairing timings for supersingular genus-2 curves at the 128-bit security level.
We next take a look at the security arguments of some well-known protocols
when implemented with these genus-2 curves and with degenerate divisors. Our
analysis shows that for the Boneh-Lynn-Shacham (BLS) signature scheme [6]
one needs a new hardness assumption that is trivially equivalent to the security
of the scheme. In other words, the reductionist argument does not provide any
meaningful assurance about the actual security of the protocol in this setting.
A similar analysis is carried out for the Boneh-Franklin IBE scheme [5] and we
observe that here also one needs to modify the original security assumption.

Type 4. As already mentioned, the main motivation for working in Type 4 is
that it is possible to hash into G2. However, in terms of efficiency that appears
to be a major limitation of the Type 4 setting as hashing into G2 has been
reported to be computationally quite expensive [12,17]. Here we propose a new
technique to hash into G2 which is surprisingly cheap. This method is built upon
the shorter representation of elements of G2 proposed in [10] in the context of the
Type 2 setting. We also report the performance benefits that can be obtained for
pairing evaluation and other operations involving elements of G2 in the Type 4
setting. As we have already noted, Type 4 pairings should be carefully used
in cryptographic protocols. We show that the Boneh-Shacham group signature
scheme as described in Shacham’s thesis [32] is trivially insecure. We describe a
small modification that appears to restore security. The signature now contains
an element of G2, however with our new representation of elements of G2 the
corresponding increase in the signature size is not very significant.

Organization. The remainder of the paper is organized as follows. In §2 we
report the pairing computation times in Type 1 when using degenerate divisors
in genus-2 curves over characteristic 2 fields at the 128-bit security level and
also discuss the security aspects of the BLS signature and Boneh-Franklin IBE
schemes in this setting. In §3 we describe the implementation aspects of Type 4
pairings derived from ordinary elliptic curves having even embedding degree
and show how one can efficiently hash into G2. We then show that the Boneh-
Shacham group signature scheme as described [32] is insecure and how a small
modification appears to restore security without significant performance penalty.

Notation. In the remainder of this paper, the first component G1 of the domain
of a pairing e : G1 × G2 → GT is the order-n subgroup of E(Fq) or JC(Fq),
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where E is an elliptic curve defined over Fq and JC is the divisor class group of
a genus-2 hyperelliptic curve C defined over Fq. If e is a Type 1 pairing, then
G2 = G1. If e is a Type 2, Type 3 or Type 4 pairing, then G2 = T, T0, E[n],
respectively, where E[n] is the n-torsion group of E, T0 is the Trace-0 subgroup
of E[n], and T is any order-n subgroup of E[n] different from G1 and T0; cf. §3
for futher details.

2 Type 1 Pairings on Supersingular Genus-2 Curves

In this section, we give the context for performance comparisons at the 128-
bit security level for pairings based on supersingular genus-2 curves defined over
characteristic 2 finite fields against those built on elliptic curves. Security aspects
of the BLS signature scheme and the Boneh-Franklin IBE scheme are discussed
in the genus-2 setting.

2.1 Type 1 Pairings

We briefly describe three specific symmetric pairings derived from supersingular
elliptic and hyperelliptic curves defined over fields of small characteristic; see
[2] for details. The elliptic curves E are defined over F21223 and F3509 , and have
embedding degrees 4 and 6, respectively. The genus-2 curve C is defined over
F2439 and has embedding degree 12. The pairings are e : G1 ×G1 → GT , where
G1 is the subgroup of prime-order n of E(F21223), E(F3509) or JC(F2439), and GT

is the order-n subgroup of F
∗
24·1223 , F

∗
36·509 or F

∗
212·439 , respectively. These pairings

attain the 128-bit security level because Pollard’s rho method for computing
discrete logarithms in E(F21223), E(F3509 ) and JC(F2439) has running time at
least 2128, as do the index-calculus algorithms for computing discrete logarithms
in the extension fields F24·1223 , F36·509 and F212·439 [27].

For genus 2, we focus on the most favourable case where the pairing is on
degenerate divisors, each of which is essentially a point on the curve. The pairing
algorithms given in [2] for the cases under consideration are similar in the sense
that there is a “Miller evaluation” loop, followed by an exponentiation in the
extension field to select a canonical representative. The final exponentiation is
relatively inexpensive, and so the pairing cost can be estimated by counting field
multiplications in the main loop.

Elliptic curve over characteristic 2 field. Let q = 21223. We chose the
representation F21223 = F2[z]/(z1223+z255+1). Squaring is inexpensive relative to
multiplication, and square roots are likewise inexpensive in this representations
since

√
z = z612 +z128 and

√
c =

∑
c2iz

i +
√
z

∑
c2i+1z

i for c =
∑
ciz

i ∈ F21223 .
The extension field Fq4 is represented using tower extensions Fq2 = Fq[u]/(u2 +
u+ 1) and Fq4 = Fq2 [v]/(v2 + v + u).

The supersingular elliptic curve E1/F21223 : y2 + y = x3 + x has embedding
degree 4. We have #E1(F21223) = 5n where n = (21223 +2612 +1)/5 is a 1221-bit
prime. The doubling formula is (x, y) �→ (x4 +1, x4 + y4 +1), and hence the cost
of doubling a point is relatively small.
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Barreto, Galbraith, Ó hÉigeartaigh and Scott [2] give an algorithm for com-
puting the ηT pairing, with cost estimated as 612× 7 = 4284 Fq-multiplications.
The estimate is based on the number of multiplications in the main loop, and
ignores the relatively minor cost of the final exponentiation (1 inversion in Fq4 ,
3 multiplications in Fq4 , and 612 squarings in Fq).

Elliptic curve over characteristic 3 field. Let q = 3509. We chose the
representation F3509 = F3[z]/(z509−z318−z191+z127+1). Cubing is inexpensive
relative to multiplication, and the choice of reduction polynomial enables cube
roots to be computed significantly faster than an Fq-multiplication since z1/3 =
z467 +z361−z276 +z255 +z170 +z85 and z2/3 = −z234+z128−z43. The extension
field Fq6 is represented using tower extensions Fq3 = Fq[u]/(u3 − u − 1) and
Fq6 = Fq3 [v]/(v2 + 1).

The supersingular elliptic curve E2/F3509 : y2 = x3 − x + 1 has embedding
degree 6. We have #E2(F3509) = 7n where n = (3509 − 3255 + 1)/7 is an 804-bit
prime. The tripling formula is (x, y) �→ (x9 − 1,−y9), and hence the cost of
tripling a point is relatively small.

The algorithm of Barreto, Galbraith, Ó hÉigeartaigh and Scott [2] for comput-
ing the ηT pairing has a cost estimate of 255× 14 = 3570 Fq-multiplications. As
in the characteristic 2 case, the relatively minor cost of the final exponentiation
has been ignored.

Genus 2 curve over characteristic 2 field. Let m = 439 and q = 2m. We
chose the representation F2439 = F2[z]/(z439 + z49 + 1). Squaring and square
root are inexpensive relative to multiplication in this representation, with

√
z =

z220 + z25. The extension field Fq12 is represented using tower extensions Fq6 =
Fq[w]/(w6 + w5 + w3 + w2 + 1) and Fq12 = Fq6 [s]/(s2 + s+ w5 + w3).

The curve C/F2439 : y2 + y = x5 + x3 has embedding degree 12. The divisor
class group JC has #JC(Fq) = 22m + 2(3m+1)/2 + 2m + 2(m+1)/2 + 1 = 13n,
where n is an 875-bit prime. The pairing is defined for divisors D = (P1) +
(P2)−2(∞) where Pi are points on the curve; however the computation is faster
for degenerate divisors where the support consists of a single point [2,26]. If D =
(P )−(∞) is such a degenerate divisor (with P ∈ C(Fq)), then it is not necessarily
the case that jD is degenerate; however, 8D is degenerate [2]. Furthermore, this
octupling is relatively inexpensive, and is given by 8D = (φπ6P ) − (∞) where
π(x, y) = (x2, y2) and φ(x, y) = (x + 1, y + x2 + 1). Exploiting this octupling,
the algorithm in [2] for ηT on degenerate divisors has an approximate cost of
219 · 69 = 15111 Fq-multiplications (see [30] for additional details).

Comparisons. Barreto et al. [2] give experimental data for pairing times at
the “950-bit” and “1230-bit” security levels, where the level is in terms of the
bitsize of the extension field Fqk . Times (in milliseconds) for the ηT pairing in
the 1230-bit case on a 3GHz Intel Pentium 4 are given in Table 1.

Their work shows significant incentive to use genus-2 curves in the case that
the pairing is on degenerate divisors. However, field multiplication for F2103 ex-
ploited 128-bit single-instruction multiple-data (SIMD) registers on the Pentium
4, while the other fields used only 32-bit registers. The rationale for limiting the
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Table 1. Times (in milliseconds) from [2] for the ηT pairing at the “1230-bit security
level” on a 3GHz Intel Pentium 4

C(F2103 )
E(F2307) E(F3127) degenerate general

3.50 5.36 1.87 6.42

wide registers to the genus-2 case was that “Great potential savings can be real-
ized if an element of the base field can be represented in a single machine word,
rather than using a multi-precision representation” and a factor 2 acceleration
was reported for field multiplication via the wide registers.

This difference in implementations is especially significant since the Pentium
4 is 32-bit. The techniques are perhaps less elegant when applied to larger fields,
but similar acceleration can be obtained via wide registers for the fields in the
other pairings. For example, [20] examined the acceleration offered by SIMD
registers for pairings at a higher security level using the fields F21223 and F3509 ,
but did not consider an example from genus 2. Beuchat et al. [3] and Aranha et al.
[1] subsequently demonstrated significantly faster field arithmetic on platforms
considered in [20].

In short, the implementation techniques for the times in [2] favour the genus-2
curve. If the registers used in F2103 were applied to F2307 , then we would expect
that the pairing times would be significantly closer. On the other hand, we are
interested in the 128-bit security level, where the higher embedding degree of the
genus-2 curve is an advantage. Our intent here is to give a meaningful comparison
at the 128-bit security level among the various pairings on a “reference platform”
using whatever methods are believed to be fastest in each scenario. The Pentium
4 is no longer of primary interest, and so we chose the popular 64-bit Intel Core2.

Timings for our implementations appear in Table 2. Pairings for the Barreto-
Naehrig (BN) curve (see §3.1) over a prime field are expected to be fastest at
this security level, in part because the embedding degree is 12 and the platform
possesses a relatively fast integer multiplier on 64-bit operands. Details on this
timing using the MIRACL library appear in [20].

Beuchat et al. [3] discuss optimization strategies and set benchmarks for pair-
ing times in the elliptic curve cases over characteristic 2 and 3. As in [1], a focus
is on parallelizing the pairing computation, although the times for a single-core
computation were also impressive. The times in Table 2 are faster, but are con-
sistent in the sense that characteristic 3 offers an advantage. On the other hand,
this advantage is not as large as in [3], mainly due to the difference in charac-
teristic 2 multiplication.

Compared with [2], applying the wide registers across fields has narrowed
differences. Genus 2 has lost much of the performance advantage, although it may
still be attractive from an implementation and keysize perspective for protocols
having pairings on degenerate divisors. The gap between the pairing from the BN
curve and those over characteristic 2 and 3 is perhaps narrower than expected.3

3 The comparison in [3] is against the slower ate pairing, which gives the timing for
the BN curve as 15 × 106 cycles.
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Table 2. Timings (in clock cycles) on an Intel Core2. Field operations in characteristic
2 and 3 use 128-bit SIMD registers and exploit shift and shuffle instructions introduced
with SSSE3. The timing for the BN curve is from [20].

Field, curve, and pairing Field mult Pairing

E/Fp256, R-ate .31 10
E/F3509 , ηT 3.86 15.8
E/F21223 , ηT 3.84 19.0
C/F2439 , ηT on degenerate divisors .86 16.4

Units: 103 cycles 106 cycles

The experimental data in Table 1 gives a factor 3.4 penalty for a pairing on
general divisors. In special cases, the cost will be less. Nondegenerate divisors
(P1)+(P2)−2(∞) are of two forms, either Pi ∈ C(Fq) or P1 and P2 are conjugates
in C(Fq2)\C(Fq). A pairing on divisors can be calculated as a product of pairings
on points; e.g., in the case where Pi ∈ C(Fq), ηT ((P1)+(P2)−2(∞), (P )−(∞)) =
ηT (P1, P )ηT (P2, P ) at twice the cost of a pairing on degenerate divisors. How-
ever, this approach may not be the most efficient when points lie in C(Fq2)\C(Fq)
[2]. Lee and Lee [26] give explicit formulas for the pairing on general divisors,
with estimated cost (from field multiplications, where an Fq12 -multiplication is
counted as 45 Fq-multiplications) as a factor 4 over the pairing on degenerate
divisors.

Implementation notes. Compared with [3] and [20], the characteristic 2 mul-
tiplier (described in [1]) uses twice as much data-dependent precomputation but
fewer shift operations. Some of the improvement against [20] was achieved by
reducing the number of move operations (a weakness underestimated in [20]),
although a portion of the acceleration was obtained by exploiting a shift opera-
tion introduced with the Supplemental Streaming SIMD Extension 3 (SSSE3).4

The faster shift is also useful in characteristic 3 – additions are more expensive
than in characteristic 2, but field multiplication performs more shifting. Multi-
plication for F21223 is via one application of Karatsuba where elements are split
at 616 bits (a multiple of 8 that allows fast shifting and eliminates the “fixup”
required in combing on n-word input when both inputs have length greater than
nW − w for word-length W and comb width w). Multiplication in the 439-bit
field is via combing directly on field elements. Combing uses two tables, each of
16 elements.

The strategies for characteristic 2 and 3 are similar, in part because an
F3-element is represented as a pair (a0, a1) of bits and addition involves only
bitwise operations. Harrison et al. [21] proposed an addition using 7 xor (⊕)
and or (∨) operations via the sequence: t← (a0∨b1)⊕(a1∨b0), c0 ← (a1∨b1)⊕t,
c1 ← (a0 ∨ b0) ⊕ t. The number of operations was reduced to 6 by Kawahara
et al. [24] who reported 7–8% improvement in field multiplication on an AMD

4 SSSE3 was also exploited in [1] to obtain very fast squaring and root for a parallel
implementation that performed these operations in excess; these accelerations give
only minor reduction in pairing times here (e.g., 6% for the pairing over F21223 ).
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Opteron (a processor similar to the Intel Core2) using “non-standard” encodings
of F3-elements. They also gave a 6-operation addition in the encoding suggested
by [21] using xor and andn (x ∧ ȳ).

The SIMD instruction set on the Core2 includes andn, although Beuchat
et al. [3] reported that the 7-op addition “consistently yields a shorter compu-
tation time” than the 6-op variant with andn, and speculated that andn on
the Core2 “is implemented less efficiently” than xor and or. However, these
instructions have the same timings [14], and our experimental data is that field
multiplication is faster with the 6-op variant. We suspect that the discrepancy
is due to register allocation strategy in the accumulation portion of the mul-
tiplication method. A variation on the formulation in [21] is proposed in [3]:
t ← (a0 ∨ a1) ∧ (b0 ∨ b1), c0 ← (a0 ∨ b0) ⊕ t, c1 ← (a1 ∨ b1) ⊕ t. Specifics
are not given on why this resulted in faster code, but we note that it permits
simpler register tracking in the accumulation portion of field multiplication and
has one operation on accumulator registers only. In this sense, the formulation
in [21] and the 6-op variant for c ← c + b are less pleasant. Compilers can be
quite sensitive to the precise form of the code; however, the 6-op variant can
be coded without increasing dependency chains, and we expect this formulation
to be fastest provided that unnecessary moves are avoided. Experimentally, we
observed roughly 10% faster times for field multiplication.

As in [3], we use the loop-unrolling technique of [19] along with the F36m

multiplication of [18] (requiring 15 multiplications and 67 additions in F3m) to
accelerate the pairing computation in characteristic 3. This reduces the cost from
14 to an effective 12.5 F3m multiplications in each iteration of the Miller loop.
Some incremental accelerations noted in [3] were not implemented; for example,
a few tables of precomputation in the evaluation loop of the pairing computation
can be reused (a width-4 comb requires 81 elements of precomputation, although
half are obtained by simple negation).

Timings were done on a 2.4GHz Intel Core2-quad running Sun Solaris, using the
GNU C 4.1 compiler with some fragments written in assembly. Most of the SIMD
operations are via intrinsics, with SSSE3 instructions accessed via assembly.

2.2 Security of Protocols Using Degenerate Divisors

The principal motivation for considering hyperelliptic curves and degenerate divi-
sors for pairing-basedprotocols is to speed the pairing computation at higher secu-
rity levels. Naturally we need the assurance that the protocol, when implemented
in this setting, maintains its original security guarantee. The question of security
received some attention in [15,2], however the main emphasis in those works is on
efficient pairing computation. Here we take a closer look at the security argument
of two well-known protocols when implemented in the setting of §2.1.

BLS signature scheme. We first describe the BLS signature scheme [6] us-
ing symmetric pairings (Type 1). We then present two variants of the scheme
depending upon which particular elements are chosen to be degenerate and ex-
amine the resulting effect on the security argument.
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Let e : G1 × G1 → GT be a Type 1 pairing on a genus-2 curve, and let
H : {0, 1}∗ → G1 be a hash function. Let P1 be a known generator of G1. The
public parameters of the system are 〈G1,GT , H, P1〉.

Alice’s private key is an integer x ∈R [0, n− 1] and her corresponding public
key is X = xP1. To sign a message M , Alice computes Q = H(M) and then
σ = xQ as her signature on M . To verify, Bob computes Q = H(M) and accepts
σ as a valid signature on M if and only if

e(σ, P1) = e(Q,X). (1)

Correctness of the verification algorithm follows because of the bilinearity prop-
erty of e, i.e.,

e(σ, P1) = e(xQ,P1) = e(Q, xP1) = e(Q,X).

Security of the scheme is based on the hardness of the computational Diffie-
Hellman problem (DHP) in G1 assuming H to be a random oracle. Recall that
the DHP in G1 = 〈P1〉 is the following: given X (where X = xP1 for some
x ∈R [0, n − 1]) and Q ∈R G1, compute xQ. The essential ideas behind the
reductionist security argument are as follows. Given a DHP instance (X,Q),
the simulator sets the challenge public key as X and runs the BLS adversary
A. The simulator responds to all hash queries H(M) made by A, except for a
randomly chosen distinguished query, by selecting a ∈R [0, n − 1] and setting
H(M) = aP1; the response to the distinguished hash query H(M∗) is H(M∗) =
Q. The simulator responds to signing queries M �= M∗ by setting σ = aX . If A
eventually produces a forged signature σ∗ on M∗, then the simulator has been
successful in obtaining the solution σ∗ to the DHP instance (X,Q).

Recall from §2.1 that C is a supersingular genus-2 curve over Fq, q = 2m, and
G1 is the set of n-torsion points in JC(Fq) where n ≈ q2 is prime. Let D be the
set of degenerate divisors in G1; then #D ≈ q since #C(Fq) ≈ q. For efficient
implementation we would like to have some (if possible all) of the elements of G1

used in the protocol to lie in D. However, the choice is constrained by how these
elements are actually generated in the protocol, and whether the protocol environ-
ment can be properly simulated in the security argument. We further elaborate on
these issues based on the following two versions of BLS. We use calligraphic fonts
for degenerate divisors to distinguish them from general divisors.

BLS-1a: The key generation algorithm chooses a random element P1 of D as
the system parameter and a hash function H : {0, 1}∗ → D. Both these tasks
can be accomplished without any security penalty and is as efficient as working
in the elliptic curve setting.5 Then, with overwhelming probability, Alice’s public

5 In [16, §7] the concern was raised that hashing to the set of degenerate divisors in
JC(Fq) instead of to the set of general divisors can lead to a loss security. This is
because hash collisions in the former case can be found in O(q1/2) time using generic
algorithms, whereas collision finding in the latter case takes O(q) time. However, the
concern is not an issue in our setting with q = 2439 because then

√
q ≈ 2219 which

is significantly greater than the target security level of 2128.
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key xP1 will not be a degenerate divisor. Since the range of H is D, Q =
H(M) is a degenerate divisor. But σ = xQ will likely be non-degenerate (with
overwhelming probability). As a result, one of the arguments in each of the
two pairing computations in the verification equation (1) is a degenerate divisor
while the other is non-degenerate. This still makes the pairing computation faster
compared to the case when both arguments are general divisors.

Next we investigate to what extent the original security argument of BLS
is applicable in the case of BLS-1a. The DHP (with respect to the generator
P1 of G1) is the problem of determining xQ, given X = xP1 ∈ G1 for some
unknown x ∈R [0, n − 1] and Q ∈R G1. The natural choice would be to argue
security of BLS-1a based on the hardness of the following variant of DHP. Given
X = xP1 ∈ G1 for some unknown x ∈R [0, n − 1] and Q ∈R D, compute xQ
— we call this problem DHP∗. The following shows that DHP and DHP∗ are
computationally equivalent.

Lemma 1. The DHP and DHP∗ problems are computationally equivalent.

Proof. It is clear that DHP∗ reduces to DHP. To prove the converse, suppose
that we are given a DHP instance (X,Q) and an oracle for solving DHP∗. If
Q ∈ D then the DHP∗-oracle can be used to compute xQ. If Q �∈ D, say Q =
(P1)+(P2)−2(∞), there are two cases to consider. Let us say that Q is of type A
if P1, P2 ∈ C(Fq) and of type B if P1, P2 ∈ C(Fq2 ) \ C(Fq).

Suppose first that Q is of type A. This case can be recognized because the
Mumford representation (see [28]) of Q will take the form (a, b), where a, b ∈
Fq[x] with deg(a) = 2, deg(b) ≤ 1, and where the roots of a belong to Fq. More
explicitly, if a(x) = (x − u1)(x − u2) with u1, u2 ∈ Fq, then P1 = (u1, v1) and
P2 = (u2, v2) where v1 = b(u1) and v2 = b(u2). Thus, we can efficiently write
Q = Q1 + Q2, where Q1 = (P1) − (∞) and Q2 = (P2) − (∞) are degenerate
divisors. The DHP∗-oracle can then be used to compute xQ1 and xQ2, from
which xQ = xQ1 + xQ2 is immediately obtained.

Suppose now that Q is of type B. In this case, we can multiply Q by randomly-
selected integers � ∈ [1, n − 1] until the resulting divisor Q′ is of type A. The
expected number of trials is 2, since the number of type A divisors in JC(Fq) is
approximately q2/2, as is the number of type B divisors in JC(Fq) (this follows
because #C(Fq) ≈ q and #C(Fq2) ≈ q2). As above, one can then compute xQ′

and hence xQ = �−1(xQ′). �

Now, given a DHP∗ instance (X,Q), the simulator sets the challenge public key
as X and interacts with the BLS-1a adversaryA. To properly answer A’s signing
query on a message M , the simulator has to “program” the random oracle in
such a way that it outputs some H ∈R D for which the simulator knows the
discrete log with respect to P1. Recall that this was trivially accomplished for
the original protocol — the simulator first chose a ∈R [0, n−1] and then returned
aP1. However, to apply this strategy in the simulation of BLS-1a, the simulator
must satisfy the additional constraint that aP1 lies in D.

The simulator could easily satisfy this condition if given some fixed P ∈ D
she has some mechanism to choose a random a such that aP also belongs to D.
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The only known way to guarantee this in our genus-2 setting is to choose a to
be a power of 8, i.e., if P ∈ D then 8iP is also a degenerate divisor for any
integer i. However, as the following lemma indicates, the hash output will then
be confined to an extremely small subset of D (and thus the simulation will fail).

Lemma 2. Let P be a degenerate divisor of order n in JC(Fq), where C is the
supersingular genus-2 curve over Fq (with q = 2m) defined in §2.1. Then there
are exactly 4m degenerate divisors of the form 8iP.

Proof. We have q12 ≡ 1 (mod n), and so 84m ≡ 1 (mod n). Hence, the order
of 8 modulo n is in {1, 2, 4,m, 2m, 4m}. Since n > 84, 8m �≡ 1 (mod n) and
82m �≡ 1 (mod n), the order of 8 modulo n must be 4m. �

One way to circumvent this problem is to define a new problem which we call
DHP∗ with oracle access and denote by DHP∗

O. In addition to the DHP∗ instance
X = xP1 and Q, the solver (i.e., the BLS-1a simulator in the present context)
is given access to an oracle O. Each time it is invoked, the oracle O returns a
random P ∈ D along with xP . It is easy to argue that the security of BLS-
1a is equivalent to the hardness of DHP∗

O. For example, when reducing DHP∗
O

to the problem of breaking BLS-1a, the simulator returns P when A queries
the random oracle on some message M , and subsequently xP in response to a
signature query on M (where the simulator obtains (P , xP) from its oracle O).
At some point, A returns a valid forgery on some message M∗ whose hash value
has been set to Q. The simulator returns this signature as the solution to the
given DHP∗

O instance.
However, there is a circularity in the whole argument — the assumption that

it is hard to solve DHP∗
O is nothing but a rephrasing of the assertion that it is

hard to forge a BLS-1a signature. Currently we do not know any way out of this
circularity based on the known security argument for BLS. Neither is there any
evidence to suggest that BLS-1a is insecure.

BLS-1b: Alternatively, we can keep the range of the hash function H to be G1

and choose only the fixed system parameter P1 to be a degenerate divisor. With
this modification, we still make some efficiency gains in the verification algorithm
namely in the evaluation of e(σ,P1). The known security argument for BLS with
respect to DHP can now be easily adapted for BLS-1b.

Boneh-Franklin identity-based encryption scheme. The situation is sim-
ilar for the BF-IBE scheme [5]. We assume the reader is familiar with the basic
idea of the protocol. Suppose that the public parameters are 〈G1,GT , H, P1〉,
the Key Generation Centre’s public key is Dpub ∈ G1, and the public key cor-
responding to an arbitrary identity ID is obtained as QID = H(ID). Encryption
involves the computation of a pairing value e(Dpub, QID). The hardness of BF-
IBE is based on the so-called bilinear Diffie-Hellman (BDH) problem — given
aP1, bP1, cP1 for a, b, c ∈R [0, n− 1], compute e(P1, P1)abc.

In [2], Barreto et al. suggest that without loss of security it is possible to choose
both Dpub and QID to be degenerate divisors so that encryption involves pairing
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of two degenerate divisors. We note that the known security argument of BF-IBE
suffers from the same problem that we encountered in BLS-1a, namely it is not
possible to simulate the random oracle H with range D. The security argument
does however go through if one chooses only Dpub to be degenerate. Now in
the encryption algorithm only one of the arguments to the pairing function
is a degenerate divisor while the other is a general divisor. In this case, the
corresponding instance of the BDH problem contains one degenerate divisor and
two general divisors. As was done in Lemma 1, one can prove that this variant
of BDH is equivalent to the original BDH problem.

Remark 1. We have not found any pairing-based protocols in the literature that
can be implemented so that both arguments to one or more of the pairing func-
tions are degenerate divisors, and where the original security argument in the
elliptic curve setting can be carried over to the genus-2 setting. Thus, the speed
benefits of using pairings in the genus-2 setting where both arguments are de-
generate divisors do not seem to be directly applicable to known protocols.

3 Type 4 Pairings

Let E be an ordinary elliptic curve defined over the finite field Fq. Let n be
a prime divisor of #E(Fq) satisfying gcd(n, q) = 1, and let k (the embedding
degree) be the smallest positive integer such that n | qk − 1. We will assume
that k is even. Since k > 1, we have E[n] ⊆ E(Fqk). We will further assume that
n3 � #E(Fqk ). Let GT be the order-n subgroup of F∗

qk . The (full) Tate pairing
is a non-degenerate bilinear function ê : E[n]× E[n] → GT and can be defined
as follows:

ê(P,Q) =
(
fn,P (Q+R)
fn,P (R)

)(qk−1)/n

, (2)

where R ∈ E(Fqk) with R �∈ {∞, P,−Q,P −Q}, and where the Miller function
fn,P is a function whose only zeros and poles in E are a zero of order n at P
and a pole of order n at ∞.

Let G1 = E(Fq)[n]. If the first component of the domain of ê is restricted
to G1, then the definition of ê : G1 × E[n] → GT simplifies to ê(P,Q) =
(fn,P (Q))(q

k−1)/n. Such a mapping ê is called a Type 4 pairing [32] because the
second component of the domain of ê is the full n-torsion group E[n]. The Trace
function Tr defined by Tr(P ) =

∑k−1
i=0 π

i(P ), where π denotes the q-th power
Frobenius, is an efficiently-computable homomorphism from E[n] to G1. The
kernel of Tr, called the Trace-0 group, is an order-n subgroup of E[n]. Hashing
onto G1 can be efficiently computed by first hashing to an x-coordinate of E(Fq),
then solving a quadratic equation over Fq to find the corresponding y-coordinate,
and finally multiplying the resulting point by the cofactor h1 = #E(Fq)/n to
obtain an n-torsion point. Hashing onto E[n] can be accomplished in a similar
fashion, by first hashing onto a random point in E(Fqk) and then multiplying
by the cofactor hk = #E(Fqk )/n2. However, hashing onto E[n] is considerably
more expensive than hashing onto G1 since computations now take place in the
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larger field Fqk instead of in Fq, and moreover the cofactor hk ≈ qk−2 can be
quite large. For the case of BN curves, Chen, Cheng and Smart [12] estimated
that the cost of hashing onto E[n] is about 540 times that of performing a point
multiplication in G1 (and estimated the cost of hashing onto G1 as “free”). This
expensive hashing is a major drawback of Type 4 pairings. In the next section,
we show that the representation for E[n] introduced in [10] can be used to speed
hashing into E[n]. In particular, for the case of BN curves, we estimate that
our new method for hashing into E[n] is less than 3 times as costly as a point
multiplication in G1.

3.1 On Efficient Implementation

Following [17], we denote by D the CM discriminant of E and set

e =

⎧
⎨

⎩

gcd(k, 6), if D = −3,
gcd(k, 4), if D = −4,
2, if D < −4,

(3)

and d = k/e. Then E has a unique degree-e twist Ẽ defined over Fqd such that
n | #Ẽ(Fqd) [22]. Let P̃2 ∈ Ẽ(Fqd) be a point of order n, and let T̃0 = 〈P̃2〉.
Then there is a monomorphism φ : T̃0 → E(Fqk) such that P2 = φ(P̃2) �∈ G1.
The group T0 = 〈P2〉 is the Trace-0 subgroup of E[n]. The monomorphism φ can
be defined so that φ : T̃0 → T0 can be efficiently computed in both directions;
therefore we can identify T̃0 and T0, and consequently T0 can be viewed as
having coordinates in Fqd (instead of in the larger field Fqk).

We have E[n] ∼= G1 × T0. Define the homomorphism ψ : E[n] → G1 by
ψ(Q) = 1

kTr(Q). Then it is easy to verify that Q− ψ(Q) ∈ T0 for all Q ∈ E[n]
and consequently the map ρ : Q �→ Q−ψ(Q) is a homomorphism from E[n] onto
T0. Thus, the map φ : E[n] → G1 × T0 defined by φ(Q) = (ψ(Q), ρ(Q)) is an
efficiently-computable isomorphism, whose inverse, given by (Q1, Q2) �→ Q1+Q2,
is also efficiently computable. Hence, without loss of generality, the elements of
E[n] can be represented as pairs of points (Q1, Q2), where Q1 ∈ G1 and Q2 ∈ T0.

With this representation forE[n], hashing ontoE[n] can be defined asH(m) =
(H1(m), H2(m)), where H1 and H2 are hash functions with ranges G1 and T0,
respectively. This is expected to be faster than the conventional hashing method
outlined in the beginning of this section because hashing onto G1 and T0 requires
arithmetic in Fq and Fqd , respectively, rather than in Fqk . Observe that if H1

and H2 are modeled as random oracles, then H is also a random oracle.
The ate [22] and R-ate [25] pairings are fast Type 3 pairings from G1×T0 to GT

defined by e3(P,Q) = ê(Q,P )N for some fixed integer N . Now, define the Type 4
pairing e4 : G1 × E[n] → GT by e4(P,Q) = e3(P, Q̂), where Q̂ = Q − πk/2(Q).
Note that if Q = (Q1, Q2), then Q̂ = (∞, 2Q2). Thus, e4 is a bilinear pairing
and can be computed in essentially the same time as the Type 3 pairing e3. The
pairing e4 is non-degenerate in the sense that (i) for each P ∈ G1 \ {∞}, there
exists Q ∈ E[n] such that e4(P,Q) �= 1; and (ii) for each Q ∈ E[n] \ G1, there
exists P ∈ G1 such that e4(P,Q) �= 1.
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Table 3. Bitlengths of elements in G1, T0, E[n] and GT , and estimated costs (in terms
of Fp multiplications) of basic operations for Type 3 and Type 4 pairings derived from
a particular BN elliptic curve

Type 3 Type 4
Bitlength of elements in G1 257 257

Bitlength of elements in T0/E[n] 513 770
Bitlength of elements in GT 1,024 1,024

Compressing elements in G1 free free
Compressing elements in T0/E[n] free free

Decompressing elements in G1 315m 315m
Decompressing elements in T0/E[n] 674m 989m

Addition in G1 11m 11m
Doubling in G1 7m 7m

Addition in T0/E[n] 30m 41m
Doubling in T0/E[n] 17m 24m

Exponentiation in G1 1,533m 1,533m
Exponentiation in T0/E[n] 3,052m 4,585m

Fixed-base exponentiation in T0 718m 718m
Fixed-base exponentiation in T0/E[n] 1,906m 2,624m

Hashing into G1 315m 315m
Hashing into T0/E[n] 3,726m 4,041m

en/Rn Pairing 15,175m 15,175m

Testing membership in G1 free free
Testing membership in T0/E[n] 3,052m 3,052m

Remark 2. In cryptographic applications of Type 4 pairings, one can ensure
that hash values H(m) = (H1(m), H2(m)) do not lie in G1 or T0 by defining H1

and H2 to have ranges G1 \ {∞} and T0 \ {∞}, respectively. This ensures that
ψ(H(m)) �=∞ and e4(P,H(m)) �= 1 for P �=∞.

For concreteness, we consider the BN curve E/Fp : Y 2 = X2 + 3 with BN
parameters z = 6000000000001F2D that was studied in [10]. This curve has
the property that n = #E(Fp) is a 256-bit prime, and the embedding degree
is k = 12. For this particular curve, Table 3 lists the bitlengths of elements in
G1, T0, E[n] and GT , and the estimated costs of performing essential operations
in these groups; for detailed explanations see [10]. Table 3 demonstrates that
Type 4 pairings have very similar performance attributes as Type 3 pairings.

3.2 On Secure Implementation

As we have observed earlier, the only motivation to consider the Type 4 setting
for implementation of a protocol is when the protocol requires hashing into the
second component G2 of the pairing’s domain followed by an application of ψ on
the hash output. However, for Type 4 pairings, G2 = E[n] has order n2, which
can be a fundamental distinction affecting the functionality and security of a
protocol in the Type 4 setting. We demonstrate this with the very first protocol
for which the Type 4 setting was introduced in the literature.
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Boneh-Shacham group signature scheme. In a group signature scheme
every member of the group has a secret key but there is a single public key for the
entire group. The signer-anonymity property of such a scheme finds application,
for example, in privacy preserving attestation [7]. Revocation of a user may be
critical for such an application, e.g., when the user’s secret key is compromised.

Boneh and Shacham proposed a short group signature scheme [7] with an
interesting property that given a list of revoked users a verifier can locally check
whether the signature has been generated by one of them. This is called a verifier-
local revocation (VLR) group signature. They defined a security model for VLR
group signature, proposed a construction based on asymmetric pairings, provided
a security proof, and discussed the efficiency of the scheme in the elliptic curve
setting.

The original description [7] of the Boneh-Shacham group signature scheme
(BS-VLR) includes a hash function whose range is G2 × G2 and also employs
the map ψ on the components of the outputs of this hash function. As noted
elsewhere [33,11], this protocol cannot be implemented in either the Type 2 or
the Type 3 setting. Later in his Ph.D. thesis [32], Shacham introduced Type 4
pairings and reproduced the BS-VLR scheme in that setting without further
modification.

Here we take another look at the BS-VLR scheme from [32] and demonstrate
that the protocol as described does not achieve its desired functionality and
in fact is not secure. The protocol description is quite involved and so is its
security proof. We recall only those parts of the protocol that are relevant to
our discussion. Interested readers are referred to §7.4 of Shacham’s thesis [32] as
well as the original paper of Boneh and Shacham [7] for the elaborate details.

BS-VLR group signature scheme: The protocol employs a Type 4 pairing e : G1×
E[n] → GT . In order to maintain consistency with [7,32], we use multiplicative
notation for G1 and E[n]. The group public key is gpk = (g1, g2, w), where g2 ∈R

E[n], g1 = ψ(g2), and w = gγ
2 for some γ ∈R [1, n− 1]. Suppose that the group

consists of N members. The private key of the ith member is gsk[i] = (Ai, xi)
where xi ∈R [1, n− 1] and Ai = g

1/(γ+xi)
1 . The revocation token corresponding

to this private key is Ai which is made public in a revocation list (RL) when
membership of i is revoked from the group.

The signer i computes, among other items, two elements T1, T2 ∈ G1 in the
following way:

1. (û, v̂)← H0(gpk,M, r) where M is the message to be signed, r ∈R [1, n− 1]
is a nonce, and H0 is a hash function with range E[n]× E[n] (treated as a
random oracle in the security proof); cf. Remark 2.

2. u← ψ(û) and v ← ψ(v̂).
3. T1 ← uα and T2 ← Aiv

α, where α ∈R [1, n− 1].

T1, T2 and r are then sent as part of the group signature σ on M . Note that
given r, the verifier can easily obtain û and v̂.

Verification is a two-step procedure — signature check and revocation check.
The signature is accepted as valid only if both these checks are successful. We
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do not describe the first step where the verifier performs the standard check for
validity of the signature σ on M under the group public key gpk. The insecurity
of the protocol lies in the revocation check step, which we reproduce verbatim
from [32].

Revocation check. For each element A ∈ RL, check whether A is en-
coded in (T1, T2) by checking if

e(T2/A, û)
?= e(T1, v̂). (4)

If no element of RL is encoded in (T1, T2), the signer of σ has not been
revoked.

In other words, suppose the group member i who generated the signature has
already been revoked, i.e., Ai ∈ RL. Then for A = Ai, the left side of (4) becomes

e(T2/Ai, û) = e(vα, û) = e(v, û)α,

while the right side becomes

e(T1, v̂) = e(uα, v̂) = e(u, v̂)α.

It is assumed that e(v, û)α and e(u, v̂)α are equal, in which case equation (4)
holds. As a result the verifier can link the signature to the revoked member i
and hence reject it.

In fact, for a signature generated by a revoked user, equation (4) trivially
holds if we are in the Type 2 or Type 3 settings where G1 and G2 are cyclic
groups of the same prime order n. (Simply write û = v̂x for some x ∈ [0, n− 1],
and note that u = ψ(û) = ψ(v̂x) = vx.) But recall that the protocol is now
described in the Type 4 setting where G2 = E[n] is a group of order n2. Notice
that E[n] has n + 1 different subgroups of order n, two of which are G1 and
T0. Suppose that T is any order-n subgroup of E[n] other than G1 and T0. In
the Type 4 setting, if û and v̂ are in the same subgroup T, then equation (4)
holds. Conversely, if û and v̂ are in different subgroups T, then equation (4) only
holds with negligible probability. However, û and v̂ are obtained through hashing
to random points in E[n], and so the probability that they both belong to the
same subgroup T is negligible. In fact, the inability to deterministically hash to
a particular subgroup T is the sole reason to describe the protocol in the Type 4
setting instead of Type 2. So with an overwhelming probability equation (4) will
not be satisfied and a signature generated by the revoked member i will pass the
revocation check.

The security definition of the BS-VLR signature scheme requires that the
protocol must satisfy the correctness, traceability, and selfless-anonymity prop-
erties, of which the first two are relevant to our discussion. Informally speaking,
correctness means that every properly generated signature is accepted as valid if
and only if the corresponding signer is not revoked, whereas traceability means
that an adversary should not be able to forge a signature that cannot be traced to
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a revoked user. Neither of these is satisfied for the BS-VLR signature scheme as
we have already explained. The wrong assertion in Theorem 7.4.4 of [32] regard-
ing the correctness of the scheme renders the proof of Theorem 7.4.8 regarding
traceability meaningless.

Modified BS-VLR signature scheme in Type 4: We now describe a small modifi-
cation to the protocol that appears to restore security. One apparent drawback is
that the signature in the modified protocol contains an element of E[n] and may
no longer be considered as “short”, which was one of the original motivations
of the construction. Fortunately, our new representation of E[n] as discussed in
§3.1 (cf. Table 3) helps to maintain the relatively small signature length.

To begin with, we note that the problem with the original protocol [32] does
not stem from any intrinsic structural weakness. Rather, it is because of a tech-
nical issue related to the structure of G2. For example, it is possible to securely
implement the protocol in the Type 1 setting (where G2 = G1) though the
signature length increases. To keep this length short one has to work in the
asymmetric setting; and since the protocol requires both hashing into G2 and
the map ψ, the only known option is Type 4. However, that means G2 is no
longer a cyclic group of prime order n, but a group of order n2. Hence, we can-
not expect that two (or more) randomly generated elements will lie in the same
order-n subgroup T of G2.

Keeping this in mind, the problem of the BS-VLR signature scheme in Type 4
can be easily fixed with a simple modification. The essential idea is the following.
For û, v̂ ∈R E[n], even though in general one cannot expect that e(ψ(v̂), û) will
be equal to e(ψ(û), v̂), bilinearity of e ensures that

e(ψ(v̂)α, û) = e(ψ(v̂), ûα) (5)

for all α ∈ [0, n− 1]. So we make the following changes to the protocol.

1. The key generation algorithm remains unchanged. But note that g2 is a
random order-n element of E[n] which can be obtained by hashing into E[n]
as discussed in §3.1.

2. The hash function H0 has range E[n]×G1 (instead of E[n]× E[n]).
3. In the signing algorithm, compute (û, v) = H0(gpk,M, r) and T̂1 = ûα. Then

use T̂1 and û to compute the helper value R3 = T̂ rx
1 · û−rδ ∈ E[n], and use T̂1

to compute the challenge value c. Send T̂1 (not T1) as part of the signature.
4. In the verification algorithm, use T̂1 and û (instead of T1 and u) to rederive
R3 ∈ E[n], use T1 = ψ(T̂1) to rederive R1 in the signature check process, and
use T̂1 to rederive the challenge value c. Use T̂1 (not T1) in the revocation
check step, i.e., for each A ∈ RL, determine whether A is encoded in (T̂1, T2)
by checking if

e(T2/A, û) = e(v, T̂1). (6)

The only noticeable differences with the original scheme is that the signature now
contains T̂1 ∈ E[n] instead of T1 ∈ G1 and the revocation check is performed
based on T̂1. We briefly analyze the resulting effect on the security.
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It is easy to check that the modified scheme satisfies the correctness property.
For a signature generated by an honest user, the original argument of Theo-
rem 7.4.4 in [32] applies when T̂1 (and not T1) is sent as part of the signature.
In particular, for a signature generated by a revoked member, equation (6) is
exactly in the form of (5) and hence that signature will not pass the revocation
check and will be rejected.

The selfless-anonymity and traceability properties of the original scheme are
established through involved reductionist security arguments in Lemma 7.4.7 and
Theorem 7.4.8 of [32]. Recall that the traceability property is violated because
the correctness property does not hold for the original scheme. In fact we do not
find any flaw per se in the proofs of these two theorems if we assume that G2 is
a group of prime order n.

However, in the Type 4 setting G2 is the set of all n-torsion points E[n], which
is a group of order n2. Still it is possible to carry over the original security argu-
ments with some modifications. We do not reproduce the complete arguments
here but only emphasize that in the selfless-anonymity game (Lemma 7.4.7) the
following variant of the Decision Linear problem should be used: Given a 6-tuple
(u0, u1, h0 = ua

0 , h1 = ub
1, v, Z), where u0, u1 ∈R E[n], a, b ∈R [1, n−1], v ∈R G1,

and either Z = va+b or Z ∈R G1, decide whether Z = va+b. Furthermore, the
elements u0 and u1 have to be appropriately randomized when answering signa-
ture queries on behalf of users i0 and i1. This randomization is possible because
elements of E[n] can be represented as described in §3.1; for further details see
the full version of this paper.

We have identified two other protocols in the literature that extend or apply
the idea of the BS-VLR signature scheme. These are the VLR signature with
backward unlinkability due to Nakanishi and Funabiki [29] and the remote bio-
metric authentication protocol due to Bringer et al. [8]. All our observations
regarding the BS-VLR scheme apply to these protocols as well.

Protocols that employ asymmetric pairings and which utilize hashing into
G2 followed by an application of the map ψ can only be instantiated in the
Type 4 setting. In fact, to the best of our understanding, one should only resort
to Type 4 for these kinds of protocols, since any other protocol employing an
asymmetric pairing can be more efficiently instantiated in the Type 3 setting.
However, when describing a protocol in the Type 4 setting or arguing its security,
protocol designers should be cautious of the fact that G2 is no longer a prime-
order group like G1 or GT . Not doing so may critically affect the functionality
and security of the protocol as illustrated by the examination of BS-VLR.

4 Concluding Remarks

We presented the first timings for Type 1 pairings derived from supersingular
genus-2 curves in characteristic 2 at the 128-bit level, and showed that hashing
to the group G2 in Type 4 pairings is not nearly as costly as previously believed.
Furthermore, we demonstrated some pitfalls that can arise when designing pro-
tocols and formulating reductionist security arguments in the Type 1 and Type 4
settings.
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Abstract. A function f : Fpn → Fpn is planar, if f(x+a)−f(x) = b has
precisely one solution for all a, b ∈ Fpn , a �= 0. In this paper, we discuss
possible extensions of the switching idea developed in [1] to the case of
planar functions. We show that some of the known planar functions can
be constructed from each other by switching.

Keywords: planar function, equivalence of functions, semifield, projec-
tive plane.

1 Introduction and Preliminaries

The construction of almost perfect nonlinear functions F2n → F2n and planar
functions Fpn → Fpn (p odd) is of interest due to the connection with geometry,
and application in cryptography, but also in themselves as remarkable classes of
mappings on finite fields.

In this paper, we discuss a possible extension of the so called switching con-
struction in [1] to the non-binary case. We consider the known planar functions
and their projections on fields of order 3n with n � 6.

Definition 1. A semifield F is a set with two binary operations, addition + and
multiplication ∗, which satisfy the following axioms:

– (F, +) is a group, with identity element 0;
– (F, ∗) is a quasigroup;
– 0 ∗ a = a ∗ 0 = 0 for all a;
– The left and right distributive laws hold;
– There is an element e ∈ F such that e ∗ x = x ∗ e = x for all x ∈ F .

Furthermore, if F satisfies all the axioms above, except possibly the last one,
then F is called a presemifield.

In the earlier literature (predating 1965), semifields were also called division alge-
bras or distributive quasifields. The study of semifields was initiated by Dickson [2],
shortly after the classification of finite fields. Until now, semifields have become
an attracting topic in many different areas of mathematics, such as difference sets,
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coding theory, group theory and finite geometry. Although the definition extends
to infinite sets, this article is only concerned with the finite case.

A finite field is a trivial example of a semifield. The first non-trivial examples
were constructed by Dickson [2]. In [3], Knuth showed that the additive group
of a presemifield F is an elementary abelian group, and the additive order of
the elements in F is called the characteristic of F . Hence, any finite presemifield
can be represented by (Fpn , +, ∗). Here (Fpn , +) is the additive group of Fpn and
x ∗ y = ϕ(x, y), where ϕ is a mapping from Fpn × Fpn to Fpn .

On the other hand, there is a well-known correspondence, via coordinatisation,
between commutative presemifields and translation planes of Lenz-Barlotti type
V.1 and above, see [4]. In [5], Albert showed that two presemifields coordinatise
isomorphic planes if and only if they are isotopic:

Definition 2. Let F1 = (Fpn , +, ∗) and F2 = (Fpn , +, �) be two presemifields. If
there exist three linearized permutation polynomials L, M, N ∈ Fpn [x] such that

M(x) � N(y) = L(x ∗ y)

for any x, y ∈ Fpn , then F1 and F2 are called isotopic, and the triple (M, N, L)
is an isotopism between F1 and F2. Furthermore, if there exists an isotopism of
the form (N, N, L) between F1 and F2, then F1 and F2 are strongly isotopic.

We refer the reader to [6] for more background on finite fields, in particular
about linearized polynomials. Let F = (Fpn , +, ∗) be a presemifield, and a ∈ F .
If we define a new multiplication � by the rule

(x ∗ a) � (a ∗ y) := x ∗ y

we obtain a semifield (F, +, �) with unit a ∗ a. There are many semifields asso-
ciated with a presemifield, but they are all isotopic.

Next, we give the definition of planar functions, which was introduced by
Dembowski and Ostrom in [7] to describe affine planes possessing a collineation
group with specific properties.

Definition 3. Let p be an odd prime. A function f : Fpn → Fpn is called a
planar function, or perfect nonlinear (PN), if for each a ∈ F

∗
pn , Δf (x, a) :=

f(x + a) − f(x) is a bijection on Fpn .

Planar functions can also be defined using differential uniformity: A function
f : Fpn → Fpn is called differentially δ-uniform, if for every a �= 0 and every
b ∈ Fpn ,

#{x|f(x + a) − f(x) = b} ≤ δ .

It is obvious that differentially 1-uniform functions are PN or planar functions.
Furthermore, it is easy to see that planar functions can only exist for p odd.
For p even, differentially 2-uniform functions are called almost perfect nonlinear
(APN ). We refer the readers to [8,9,10] for more background on planar and APN
functions.
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A Dembowski-Ostrom (DO) polynomial D ∈ Fpn [x] is a polynomial

D(x) =
∑

i,j

aijx
pi+pj

.

Obviously, ΔD(x, a) = D(x + a) − D(x) − D(a) is a linearized polynomial for
any nonzero a. If we replace D(x) by D(x) + c, then ΔD(x, a) should be defined
as a linear mapping D(x + a) − D(x) − D(a) + D(0), and all proof in this
paper go through with this small modification. In [11], Coulter and Henderson
proved that planar DO polynomials are equivalent to commutative semifields
with odd characteristic. This relation between the two concepts is identical to
the equivalence between bilinear forms and quadratic forms in finite fields with
odd characteristic. If ∗ is the presemifield product, then the corresponding planar
function is f(x) = x ∗ x. When the planar DO polynomial f is given, then the
corresponding presemifield product is

x ∗ y = (1/2)(f(x + y) − f(x) − f(y)) .

Now, we introduce group ring notation. This notion is also quite useful to de-
scribe the equivalence and the “switching construction” of planar functions.

Let K be an arbitrary field, and let (G, +) be an additively written abelian
group of finite order. The group algebra K[G] consists of all “formal” sums

∑

g∈G

agg, ag ∈ K .

We define componentwise addition
∑

g∈G

agg +
∑

g∈G

bgg =
∑

g∈G

(ag + bg)g

and multiplication by
∑

g∈G

agg ·
∑

g∈G

bgg =
∑

g∈G

(
∑

h∈G

ah · bg−h)g .

These two operations together with the scalar multiplication λ
∑

g∈G agg =∑
g∈G(λag)g, the set K[G] becomes an algebra, named group algebra. The dimen-

sion of this algebra as a K−vectorspace is |G|. Given a function f : F
n
p → F

m
p ,

we associate a group algebra element Gf in K[Fn
p × F

m
p ] with it:

Gf =
∑

v∈Fn
p

(v, f(v)) .

The coefficients of the group elements in Gf are just 0 or 1. More generally, any
subset T of a group G can be identified with the element

∑
g∈T g, where the

coefficients of all elements in T are 1, and the coefficients of elements not in T
are 0. Hence, Gf is the group algebra element corresponding to the “graph” of
the function f , which consists of all pairs (v, f(v)), v ∈ F

n
p .

There are three important equivalence relations of functions over finite fields,
for which differential uniformity is invariant.
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Definition 4. Two functions f, g : F
n
p → F

m
p are called CCZ-equivalent if there

is an automorphism Ψ of the group F
n
p × F

m
p and an element (u, v) ∈ F

n
p × F

m
p

such that
Ψ(Gf ) = Gg · (u, v) .

Furthermore, if Ψ fixes the subgroup {(0, y)|y ∈ F
m
p } setwise, then f and g

are called extended affine(EA)-equivalent. Additionally, if Ψ also fixes the set
{(x, 0)|x ∈ F

n
p}, then f and g are called affine equivalent.

Generally speaking, EA-equivalence implies CCZ-equivalence, but not vice versa,
see [12]. However, if planar functions f and g are CCZ-equivalent, then they are
also EA-equivalent [13]. Since the correspondence between commutative pre-
semifields with odd characteristic and planar functions as we mentioned above,
the strong isotopism of two commutative presemifields is equivalent to the affine
equivalence of the corresponding planar DO functions. Furthermore, in [11],
Coulter and Henderson derived strong conditions for when two commutative
presemifields are isotopic, for example, they showed that any two commutative
presemifields of order pn with n odd are isotopic if and only in they are strongly
isotopic. Moreover, it is still an open problem to find two commutative presemi-
fields which are not strongly isotopic but isotopic.

The known families of planar functions, and corresponding commutative semi-
fields which are defined in arbitrary odd characteristic are the following:

1.
x2

over Fpn , which corresponds to the finite field Fpn ;
2.

xpk+1

over Fpn , with n
gcd(k,n) odd, which corresponds to Albert’s commutative

twisted fields [14];
3. the functions over Fp2k , corresponding to Dickson semifields [2];
4.

x1+q′ − vxq2+q′q

over Fq3 , where p is an odd prime, q = ps, q′ = pt, s′ = s/ gcd(s, t), t′ =
t/ gcd(s, t), s′ is odd, ord(v) = q2 + q + 1, and at least one of the following
conditions hold:

s′ + t′ ≡ 0 mod 3,

q ≡ q′ ≡ 1 mod 3 .

This planar function family corresponds to Zha-Kyureghyan-Wang (ZKW)
semifields [15,16];

5.
x1+q′ − vxq3+q′q

over Fq4 , where p is an odd prime, q = ps, q′ = pt such that 2s/ gcd(2s, t)
is odd, q ≡ q′ ≡ 1 mod 4, and ord(v) = q3 + q2 + q + 1. It corresponds to
Bierbrauer semifields [17];
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6.
Tr(xq+1) + Tr(βxps+1)ω

over Fq2 , where p is an odd prime, q = pm, Tr(·) is the trace function from
Fq2 to Fq, ω, β ∈ Fq2 , Tr(ω) = 0 and s is a positive integer such that the
followings hold:
(a) βq−1 is not contained in the subgroup of order (q +1)/ gcd(q +1, ps +1)

in (Fq2 , ∗);
(b) There is no 0 �= a ∈ Fq2 , such that Tr(a) = 0 and aps

= −a.
This planar function family was firstly discovered by Budaghyan and Helle-
seth in [18], as two independent families, which belongs to the one discov-
ered by Bierbrauer in [19]. However, it is still not known whether Bier-
brauer’s family properly contains them, so we call the corresponding semi-
fields Budaghyan-Helleseth-Bierbrauer(BHB) semifields;

7.
Tr(x2) + G(xq2+1)

over Fq2m , where q is a power of an odd prime p, m = 2k + 1, Tr(·) is the
trace function from Fq2m to Fqm , and G(x) = h(x−xqm

), where h ∈ Fq2m [x]
is defined as

h(x) =
k∑

i=0

(−1)ixq2i

+
k−1∑

j=0

(−1)k+jxq2j+1
.

This planar function family corresponds to Bierbrauer’s generalization of the
semifield discovered by Lunardon, Marino, Polverino and Trombetti over q6,
see [19,20]. As in case (6), they should be called Lunardon-Marino-Polverino-
Trombetti-Bierbrauer (LMPTB) semifields [19].

For p = 3, there are some more families as follows:

8.
x10 ± x6 − x2

over F3n , with n odd, corresponding to the Coulter-Matthews and Ding-Yuan
(CMDY) semifields [21,22]1;

9. the functions over F32k , corresponding to the Cohen-Ganley (CG) semifields
[23];

10. the functions over F32k , with k odd, corresponding to the Ganley semifields
[24];

11.
x2 + x90

over F35 , corresponding to the At-Cohen-Weng (ACW) semifield [25,26];

1 It has been pointed out by a reviewer that this family is also described in the master
thesis by Bodil Stakkestad Kristensen, Department of Informatics, University of
Bergen, 1997.
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12. the function over F38 , corresponding to the Coulter-Henderson-Kosick semi-
field [27];

13. the function over F310 , corresponding to the Penttila-Williams semifield [28];

In [29], the polynomial representations of those planar functions corresponding
to the Dickson, Cohen-Ganley, Ganley and Penttila-Williams semifields can be
found. We refer to a survey contained in the very interesting paper [30] for more
information about those commutative semifields. The isotopy relations involving
BHB and LMPTB semifields are still not known, however, except for this pair,
every two of the semifield families mentioned above are generally not isotopic
with each other.

The only known planar functions which are not DO polynomials are:

14.
x

3k+1
2

over F3n , where k is odd and gcd(k, n) = 1. We call it Coulter-Matthews
(CM) planar functions [21], and they do not correspond to any semifield.

2 Switching Construction

Now we consider certain projection homomorphisms on the group algebra K[G],
which is defined in Section 1. Let U be a subgroup of G. Then the canonical
homomorphism ϕU : G → G/U defined by ϕU (g) := g + U (denoted by ḡ)
can be extended to a homomorphism ϕU : K[G] → K[G/U ]. To be precise, let
D =

∑
agg ∈ K[G], then ϕ(D) =

∑
ḡ∈G/U (

∑
h∈g+U ah) · ḡ. Furthermore, if D

corresponds to a set in G, i.e. D has only coefficients 0 and 1, then the coefficient
of ḡ is |D ∩ (g + U)|.
Definition 5. Let f, g : F

n
p → F

n
p be two functions, and let U be a subgroup of

{0} × F
n
p . We call f and g switching neighbors with respect to U if ϕU (Gf ) =

ϕU (Gg) and 1 � dim(U) < n. Furthermore, f and g are called switching neigh-
bors in the narrow sense if dim(U) = 1.

In this definition, it is required that dim(U) < n. Otherwise, if dim(U) = n is
allowed, then every planar functions are switching neighbors. If f, g are switching
neighbors with respect to U , then g can be obtained from f by first projecting
Gf onto ϕU (Gf ), and then “lifting” this element to Gg. In fact, this project
and lift method turns out to be very powerful for the construction of new APN
functions. In [1], it is shown that many APN functions can be constructed by
switching, and even a new nonquadratic APN function over F26 has been found.
So, it is natural to consider these questions:

Question 1. Is it possible that two planar functions are switching neighbors?

Question 2. Can we use the switching idea for the construction of new planar
functions?
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One of the difficulties to generalize the idea in [1] to odd characteristic finite
field is that the linear restrictions in the even characteristic case for the switching
become nonlinear conditions in the odd characteristic case. Due to the limitation
of computer capacity, we only consider the switching for the case p = 3.

Theorem 1. Assume that f : F
n
3 → F

n
3 is a planar function. Let u ∈ F

n
3 \ {0},

and let δ : F
n
3 → F3. Then f(x) + δ(x) · u is a planar function if and only if

2∑

i=0

Δδ(xi, a) = 0, and Δδ(x1, a) − Δδ(x2, a) �= 1 , (1)

for all 0 �= a, xi ∈ F
n
3 with

Δf (xi, a) = b + i · u , (2)

for i = 0, 1, 2 and b ∈ F
n
3 .

Proof. Since f is a planar function, the three equations

Δf (x, a) = b + i · u , i = 0, 1, 2

have one solution for each i, denoted by xi, i = 0, 1, 2. Now, we consider the
value of Δδ(xi, a). Notice that f + δ · u is planar, if and only if

{Δf (xi, a) + Δδ(xi, a) · u|i = 0, 1, 2} = {b, b + u, b + 2u}

That means the vector (Δδ(x0, a), Δδ(x1, a), Δδ(x2, a)) belongs to

{(i, i, i)|i = 0, 1, 2} ∪ {(i, i + 1, i + 2)|i = 0, 1, 2} ,

which is equivalent to (1). 
�
Theorem 1 suggests a strategy to find the p−ary function δ such that f + δ ·
u is a planar function: Determine all the xi and xi + a such that (2) holds.
Then they give rise to linear constraints

∑2
i=0 Δδ(xi, a) = 0, and nonlinear

constraints Δδ(x1, a) − Δδ(x2, a) �= 1. Finally, find out whether these planar
functions obtained from the switching construction above are new.

For the p > 3 case, the nonlinear conditions can not be written as some linear
inequalities as in Theorem 1, and it seems quite difficult to make an efficient
MAGMA [31] program to do the switching construction.

3 EA-equivalence of Planar Functions

In Section 1, we mentioned the EA-equivalence of planar functions. Similarly to
APN functions, we can also build links between linear codes and planar functions
to investigate the equivalence. The two definitions of equivalence of linear codes,
which are used in this paper, are as follows,
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Definition 6. Let F be an arbitrary field. Two linear codes in F
n are monomi-

ally equivalent if each can be obtained from the other by permuting the coordinate
positions in F

n and multiplying each coordinate by a non-zero field element. The
codes will be said to be permutation equivalent if a permutation of the coordinate
positions suffices to take one to the other.

By coding theory, the two equivalences mentioned above can be represented by
monomial matrices and permutation matrices, respectively, which we multiply
from the right side of the generator matrix of the code. Furthermore, the set
of monomial matrices that map the linear code C to itself forms the group
MAut(C) called the monomial automorphism group of C. Similarly, the set of
permutation matrices that map C to itself forms another group PAut(C) named
the permutation automorphism group of C.

Let f : F
n
p → F

m
p be any function. Define a matrix Mf ∈ F

(m+n+1,pn)
p as

follows:

Mf =

⎛

⎝
· · · 1 · · ·
· · · x · · ·
· · · f(x) · · ·

⎞

⎠

x∈Fn
p

(3)

Then we can construct a code Cf over Fp by the generator matrix Mf . Different
from the codes corresponding to APN functions over F2n , the weight distribu-
tions of the codes from all the known planar functions are the same (In [32], this
is obtained only for CM planar functions and some DO planar functions, but
this result can be generalized to all DO planar functions). Moreover, we can not
tell whether f is a planar function by the minimum distance of C⊥

f as in the
APN cases. However, it can still be used to test the equivalence of two functions,
due to the following proposition:

Proposition 1. Let p be a prime, m and n be integers. Two functions f, g :
F

n
p → F

m
p are CCZ-equivalent, if and only if the corresponding codes Cf and Cg

are permutation equivalent.

Proof. Assume that Cf and Cg are permutation equivalent, then we have a
permutation matrix P and an (n+m+1)× (n+m+1) matrix L with full rank,
such that

L · Mf · P = Mg .

That means there are u ∈ F
n
p , v ∈ F

m
p and a matrix L̃ with full rank, such that

L̃ ·
( · · · x · · ·
· · · f(x) · · ·

)
· P =

( · · · x · · ·
· · · g(x) · · ·

)
+

(
u
v

)
.

Therefore, by the definition of CCZ-equivalence, f and g are CCZ-equivalent.
The proof of the converse is the same. 
�
MAGMA only provide us the command to tell whether two codes are monomially
equivalent, however for the codes Cf and Cg from the planar functions f, g,
monomial and permutation equivalence are identical, because there are only p−1
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code words (i, i, · · · , i) with weight pn (0 < i < p), see [32]. Meanwhile, for a
linear code C, we can also calculate PAut(C) and MAut(C), which are important
invariances and useful to investigate some properties of the code. Next, we will
give some properties of PAut(Cf ) and MAut(Cf ), where Cf is defined by the
generator matrix Mf in (3).

For any linear mappings l1, l2 : F
n
p → Fp, since

l1(xp) + l2(f(x)p) = l1(x) + l2(f(x)) ,

we have Gal(Fpn) ⊆ PAut(Cf ), where Gal(Fpn) denote the Galois group of the
field extension Fpn of Fp.

Moreover, let C be a cyclic code of length pn−1 over Fp. Then we call the set
DC = {i|αi is a zero of C, 1 � i � pn − 1} the defining set of C, where α ∈ Fpn

is a primitive element of Fpn . If Cext is the extended code of C (this extension
is also referred to as adding an overall parity check), i.e. Cext is an extended
cyclic code, then we say that Cext has defining set DCext := DC ∪ {0}. We refer
to [33,34] for more background about cyclic and extended cyclic codes.

Now, assume that f = xd ∈ Fpn [x], which is a monomial. Then C⊥
f is an

extended cyclic code, and the defining set of C⊥
f is T̂ = {0}∪{pi|i = 0, 1, . . . , n−

1}∪{d ·pi|i = 0, 1, . . . , n−1}. According to the definition of a cyclic code, notice
that PAut(C) = PAut(C⊥), the following lemma can be easily verified.

Lemma 1. Let f = xd ∈ Fpn [x], and linear code Cf are defined by the generator
matrix Mf in (3). Then (F∗

pn , ∗) ⊆ PAut(Cf ).

Furthermore, let GAm(q) = F
m
q � GLm(Fq) be the general affine group over the

vector space F
m
q . For any σa,b ∈ GA1(q) = {σu,v|u ∈ F

∗
q , v ∈ Fq}, we have

σa,b(g) = a · g + b, where g ∈ Fq. Moreover, if C is an extended cyclic code of
length pn over Fp, with GA1(pn) ⊆ PAut(C), then C is called affine-invariant.

We can define a partial ordering 
 on S := {0, 1, . . . , pn − 1}. If s, t ∈ S have
p-adic expansions

s =
n−1∑

i=0

sip
i, t =

n−1∑

i=0

tip
i .

with 0 ≤ si, ti < p for 0 ≤ i < n, then we say s 
 t provided si ≤ ti for 0 ≤ i < n.
To prove our result about PAut(Cf ), we need the following two propositions,

Proposition 2. Let p be a prime, and C be an extended cyclic p−ary code over
Fp of length pn with defining set DC ⊂ S = {0, 1, . . . , pn − 1}. Then,

1. (Kasami, Lin and Peterson [35])
C is affine-invariant if and only if for all s ∈ DC , we have t 
 s ⇒ t ∈ DC;

2. (Berger and Charpin [36])
Let a be a divisor of n. Assume n > 1 and C is affine-invariant, then
GAn/a(pa) ⊂ PAut(C) if and only if the following condition holds:

for all s ∈ DC and all j ∈ S with j 
 s, we have s + j(pa − 1) ∈ DC

where s + j(pa − 1) is computed modulo pn − 1.
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Proposition 3. [33, Theorem 3.1 in Chapter 17] Let G be a subgroup of the
symmetric group SI on I, where I = Fpn with p a prime and n > 1. If G
contains GA1(pn), then one of the following holds:

1. G = SI ,
2. p = 2 and G = AI , the alternating group on I, or
3. there exists a divisor a of n such that GAn/a(pa) ⊆ G ⊆ ΓAn/a(pa), where

ΓAn/a(pa) = GAn/a(pa) � Gal(Fpa) is the semi-affine group of Fpa .

We can prove:

Theorem 2. Let f = xd ∈ Fpn [x] and d = pi + pj for some 0 ≤ i, j < n − 1.
Then the linear code Cf defined by the generator matrix Mf has the following
permutation automorphism group:

PAut(Cf ) = ΓA1(pn) = GA1(pn) � Gal(Fpn) .

Proof. By Proposition 2, it can be verified that GAn/a(pa) ⊆ PAut(C⊥
f ) if and

only if a = n. Furthermore, since Gal(Fpn) ⊆ PAut(C⊥
f ), by Proposition 3, it can

be shown that PAut(C⊥
f ) = ΓA1(pn). Since PAut(Cf ) = PAut(C⊥

f ), we prove
the claim in the theorem. 
�
On the other hand, when f is a DO polynomial, we can prove:

Theorem 3. Let f ∈ Fpn [x] be a DO polynomial, l be a linear mapping from Fpn

to Fpm . The linear code Cl◦f is defined by the generator matrix Ml◦f . Then the
elementary abelian group (Fpn , +) and Gal(Fpn) are subgroups of PAut(Cl◦f ).

Proof. It is trivial to prove that Gal(Fpn)⊆PAut(Cl◦f ). We only prove (Fpn ,+)⊆
PAut(Cl◦f ) below. For any a ∈ Fpn , define the matrix M

(a)
l◦f as follows

M
(a)
l◦f =

⎛

⎝
· · · 1 · · ·
· · · x + a · · ·
· · · l ◦ f(x + a) · · ·

⎞

⎠

x∈Fn
p

.

It is obvious that M
(a)
l◦f can be obtained by permutating the columns of Ml◦f .

Let C
(a)
l◦f be the code generated by M

(a)
l◦f . If we show that C

(a)
l◦f = Cl◦f , then we

prove the claim.
Let l1 : Fpn → Fp and l2 : Fpm → Fp be two linear mappings, and c ∈ Fp,

then any codeword in Cf can be written as

(l1(x) + l2 ◦ l ◦ f(x) + c)x∈Fn
p

.

Since f is a DO-polynomial, u(x) = l2 ◦ l(f(x + a) − f(x) − f(a)) is a linear
mapping. Define a linear mapping l3 : Fpn → Fp by

l3(x) = l1(x) − u(x) .

Then it can be proved that

l1(x) + l2 ◦ l ◦ f(x) = l3(x + a) + l2 ◦ l ◦ f(x + a) + d ,

where d = l2 ◦ l ◦ f(a) − l3(a), for any x, a ∈ Fpn . Therefore, Cl◦f = C
(a)
l◦f . 
�
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4 Computational Results

Now, let us describe the switching construction of planar functions on F3n in
the following steps. First, we “project” all known functions to n−1-dimensional
subspaces, calculate how many inequivalent classes there are. Then, we do the
“lift” for all the inequivalent projections, construct f ′(x) = f(x) + δ(x) · u.
Finally, we test whether f ′ is inequivalent to known planar functions.

Due to the nonlinear conditions in Theorem 1, we can only do the exhaus-
tive search for the switching of all known planar functions on F3n with n ≤ 6.
However, all the planar functions obtained this way are equivalent to known
ones.

Next, we investigate the number of equivalent m-dimensional projections of
two known inequivalent planar functions, for every 0 < m < n. If l is a projection
from F

n
p to F

m
p , then l can be expressed as an m × n matrix, and there are

∏n
i=n−m+1(p

i−1)∏m
i=1(p

i−1) such projections. When m = 1, the function l◦f(x) can always be
expressed by tr(a·f(x)), where a ∈ F

∗
pn and tr(·) is the trace function from Fpn to

Fp. If f is a planar DO-polynomial, then tr(a ·f(x)) is a nondegenerate quadratic
form on Fp. Furthermore, it can proved that, under the affine transformations of
p−ary functions, there are two quadratic forms for even n, and only one quadratic
form for odd n. Moreover, it is obvious that tr(a · g(x)) is not quadratic, when

g is a non-DO monomial function, for example CM functions x
3k+1

2 with odd
k > 1 and gcd(n, k) = 1. Therefore we have:

Proposition 4. Let g be a non-DO monomial planar function on Fpn , then g
is not a switching neighbor of any DO planar functions on Fpn with respect to
any m−dimensional subspace U ∈ F

n
p with 0 < m < n.

Note 1. For APN functions, the claim in Proposition 4 does not hold. That
means, even if f and g are CCZ-equivalent, then it is still possible that there is
an integer m, such that l1 ◦ f is not CCZ-equivalent with l2 ◦ g for projections
l1, l2 : F

n
p → F

m
p . It happens because CCZ-equivalence is strictly more general

than EA-equivalence for APN functions. For example, it can be shown that
x23+1, x23−1 are CCZ-equivalent but not EA-equivalent on F25 (actually, they
are inverse for each other). However, it can be verified by MAGMA that, for
any 0 < m < 5 and any projection l1, l2 : F

n
p → F

m
p , l1 ◦ f and l2 ◦ g are never

CCZ-equivalent with each other.

In the following, we only do the calculation for the planar functions on F3n with
n � 3, since x2 is the only planar function on F3 and on F32 .

4.1 The F33 Case

In [11], Coulter and Henderson showed that there are only two inequivalent
planar DO functions x2 and xp+1 over Fp3 . Obviously, the CM planar function
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Table 1. Switching Neighbors with respect to all l : F
3
3 → F

2
3, F3

x2 x4

x2 1 1
x4 1 1

x2 x4

x2 1 1
x4 1 1

(a) F
3
3 → F

2
3, (b) F

3
3 → F3

family does not provide any other functions here, so we have only 2 known
inequivalent planar functions over F33 , and by Theorem 3, the permutation au-
tomorphism groups of the corresponding codes are both ΓA1(pn). The numbers
in Table 1 denote, for two planar functions f, g : F

3
3 → F

3
3, how many inequivalent

projections l, k : F
3
3 → F

m
3 there are, such that l ◦ f is equivalent to k ◦ g.

4.2 The F34 Case

By the lists in Section 1, all the known planar functions on F34 are CM functions
and those from the following commutative semifields of order 34: finite field,
Dickson semifields, BHB semifields and CG semifields. However, by MAGMA
program, we know that all the planar functions from Dickson, BHB and CG
semifields are EA-equivalent. Hence, we list the only 3 known inequivalent pla-
nar functions on F34 in Table 2, with the order of the permutation automor-
phism groups of corresponding codes. Furthermore, as in Subsection 4.1, we have
Table 3. It is worth noting that two inequivalent examples (x2, BHB) are switch-
ing neighbors.

4.3 The F35 Case

From the lists in Section 1, Table 4 contains all the known inequivalent planar
functions on F35 . No two functions are switching neighbors with respect to 1-
dimension linear space. Therefore, we do not write down the entire matrix of
the number of switching neighbor since all off-diagonal elements are 0 (Table 5).

Table 2. All known inequivalent planar functions over F34

No. Families Functions |PAut(Cf )|/|Gal(F34)|
1 Finite Field x2 |GA1(3

4)|
2 Dickson, BHB, CG x4 + x10 − x36 16 · |F34 |
3 CM x14 |F∗

34 |

Table 3. Switching Neighbors with respect to all l : F
4
3 → F

3
3, F

2
3, F3

x2 BHB x14

x2 2 1 0
BHB 1 4 0
x14 0 0 2

x2 BHB x14

x2 5 5 0
BHB 5 7 0
x14 0 0 6

x2 BHB x14

x2 2 2 0
BHB 2 2 0
x14 0 0 2

(a) F
4
3 → F

3
3 (b) F

4
3 → F

2
3 (c) F

4
3 → F3
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Table 4. All known inequivalent planar functions over F35

No. Families Functions |PAut(Cf )|/|Gal(F35)|
1 Finite Field x2 |GA1(3

5)|
2 Albert x4 |GA1(3

5)|
3 Albert x10 |GA1(3

5)|
4 CMDY[1] x10 + x6 − x2 2 · |F35 |
5 CMDY[2] x10 − x6 − x2 2 · |F35 |
6 ACW x2 + x90 22 · |F35 |
7 CM x14 |F35 |

Table 5. Number of inequivalent l ◦ f for all l : F
5
3 → F

4
3

f x2 x4 x10 CMDY[1] CMDY[2] x2 + x90 x14

Number 1 1 1 25 25 3 1

Table 6. Switching Neighbors with respect to all l : F
5
3 → F

3
3

x2 x4 x10 CMDY[1] CMDY[2] x2 + x90 x14

x2 2 0 0 0 0 0 0
x4 0 2 0 0 2 0 0
x10 0 0 2 0 0 0 0

CMDY[1] 0 0 0 239 14 3 0
CMDY[2] 0 2 0 14 230 1 0
x2 + x90 0 0 0 3 1 22 0

x14 0 0 0 0 0 0 2

Table 7. Switching Neighbors with respect to all l : F
5
3 → F

2
3

x2 x4 x10 CMDY[1] CMDY[2] x2 + x90 x14

x2 2 2 2 2 2 2 0
x4 2 2 2 2 2 2 0
x10 2 2 2 2 2 2 0

CMDY[1] 2 2 2 4 4 4 0
CMDY[2] 2 2 2 4 4 4 0
x2 + x90 2 2 2 4 4 4 0

x14 0 0 0 0 0 0 2

Furthermore, Table 6 and 7 show their switching neighbors with respect to all
the projections from F

5
3 to F

3
3 and F

2
3 respectively. As we mentioned at the

beginning of this section, with respect to all the projections from F
5
3 to F3, all

the DO planar functions share only one quadratic form on Fp, except for the CM
function, which is a nonquadratic function on Fp under these projection. Hence,
we do not give another table to describe the F

5
3 → F3 case.
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Table 8. All known inequivalent planar functions over F36

No. Families Functions
|PAut(Cf )|
|Gal(F36 )|

1 Finite Field x2 |GA1(3
6)|

2 Albert x10 |GA1(3
6)|

3 Dickson x162 + x84 + α58x54 + α58x28 + x6 + α531x2 26 · |F36 |
4 BHB α75x2214 + x756 + α205x82 + x28 52 · |F35 |
5 LMPTB 2x270 + x246 + 2x90 + x82 + x54 + 2x30 + x10 + x2 52 · |F35 |
6 Ganley x270 + 2x244 + α449x162 + α449x84 + α534x54

+2x36 + α534x28 + x10 + α449x6 + α279x2 13 · |F35 |
7 CG x486 + x252 + α561x162 + α561x84 + α183x54

+α183x28 + x18 + α561x6 + α209x2 4 · |F35 |
8 CM x122 |F35 |

Table 9. Number of inequivalent l ◦ f for all l : F
6
3 → F

5
3

f x2 x10 BHB LMPTB Dickson Ganley CG x122

Number 2 2 7 7 7 12 43 2

4.4 The F36 Case

Table 8 contains all the known inequivalent planar functions on F36 , where α
is a primitive element of F36 and a root of x6 − x4 + x2 − x − 1. It should be
noted that, although the codes corresponding to BHB and LMPTB semifields
have automorphism groups with the same size, it can be calculated by MAGMA
that they are inequivalent with each other.

For all the projections l : F
6
3 → F

5
3, the numbers of inequivalent l ◦ f are listed

in Table 9. We have shown that there is only one equivalent pair which comes
from the projections of Dickson and CG planar function respectively, i.e. there
is again one case where two inequivalent functions are switching neighbors in the
narrow sense. Since there are 11011 projections from F

6
3 to F

4
3 or F

2
3, it is beyond

our computation capacity to compute all projection up to equivalence. Hence,
we can not give the classification of projections with other dimension here.

5 Conclusion

This paper shows that some, but not many of the known planar functions are
switching neighbors in the narrow sense. Therefore, we can be mildly optimistic
that a switching construction may provide new examples for some Fpn .

The partially ordered set of codes that can be obtained via projection seems
to be nontrivial. It may be interesting to investigate these POSETs in more
detail.

The function l◦f considered in Section 3 and 4 correspond to so called relative
difference set [10]. These relative difference sets describe certain designs. It may
be interesting (though apparently much more involved) to investigate the non-
isomorphic designs that can be obtained via projection l ◦ f .
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Abstract. We study sparse non-linear equation systems defined over a
finite field. Representing the equations as symbols and using the Agreeing
algorithm we show how to learn and store new knowledge about the sys-
tem when a guess-and-verify technique is used for solving. Experiments
are then presented, showing that our solving algorithm compares favor-
ably to MiniSAT in many instances.

Keywords: agreeing, multivariate equation system, SAT-solving, dy-
namic learning.

1 Introduction

In this paper we present a dynamic learning strategy to solve systems of equa-
tions defined over some finite field where the number of variables occuring in
each equation is bounded by some constant l. The algorithm is based on the
group of Gluing-Agreeing algorithms by H̊avard Raddum and Igor Semaev[1,2].
Solving non-linear systems of equations is a well known NP-complete problem
already when all equations are of degree 2; this is known as the MQ-problem
[3]. Finding a method to solve such systems efficiently is crucial to algebraic
cryptanalysis and could break certain ciphers that can be expressed by a set of
algebraic equations, such as AES [4], HFE [5], etc.

Several approaches have been proposed to solve such systems, among them
SAT-solving [6], Gröbner-basis algorithms [7] and linearization [4]. Since our
algorithm falls into the category of the guess and verify methods, we compared
our solving technique to a state-of-the-art SAT-solving implementation, namely
MiniSAT [8].

We adapt the two past major improvements to the DPLL [9] algorithms,
which are watching and dynamic learning [10]. During the search for a solution
the method obtains new information from wrong guesses and requires for many
instances much less or almost no guessing to obtain a solution to the equation
system. The method we present learns new constraints on vectors over some
finite field Fq and can therefore be seen as a generalization of the most common
learning method SAT-solvers use, which operates on single variables over F2. Like
in SAT-solving the learning routine of our algorithm runs in polynomial time.
Furthermore we show by experimental results that our approach outperforms
MiniSAT for a certain class of equation systems, while there still is space for
improvement of the method.
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The paper is organized as follows. In Section 2 we explain the symbol rep-
resentation of equations and the basic idea for agreeing. Section 3 introduces
the concept of pockets, and how pockets efficiently integrate with guessing and
agreeing. Section 4 shows how the solving technique can gather new (valuable)
information from wrong guesses, and Section 5 compares our proposed method
to MiniSAT. Section 6 conculdes the paper.

2 Preliminaries

Let
f0(X0) = 0, f1(X1) = 0, . . . , fm−1(Xm−1) = 0 (1)

be an equation system in m equations and n = |X | = |X0 ∪ X1 ∪ . . . Xm−1|
variables over some finite field Fq. Equations fi are often given in their ANF-
form using the variables in Xi, but here we will use symbol representation.

Definition 1 (Symbol). Let fi(Xi) = 0 be an equation over some finite field
Fq. We say that Si = (Xi, Vi) is its corresponding symbol where Xi is the set of
variables in which the equation fi is defined and Vi is the set of vectors over Fq

in variables Xi for which fi(Xi) = 0 is satisfied.

Following this definition the system (1) can be expressed by a set of symbols
{S0, S1, . . . , Sm−1}. The cost of transforming (1) to a set of symbols is clearly
dominated by the number of equations and the variables involved per equation.
Let l = max{|Xi| | 0 ≤ i < m}. Transforming the system (1) to a set of symbols
can be done in time O(mql) and we say that (1) is l-sparse. The examples in
this paper will only consider q = 2, which is the case for most equation systems
arising in practice.

Example 1 (Symbol). Let the equation

f0(X0 = {x0, x1, x2}) = x0 ⊕ x1x2 = 0

be given over F2. In order to construct S0 = (X0, V0) we need to know V0.
Every vector vi ∈ V0 represents by definition a solution to f0(X0) = 0 and by
searching over all 23 vectors in 3 variables and evaluating them we can compute
V0. Therefore the corresponding symbol is

S0 = (X0 = {x0, x1, x2}, V0 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)}).
Throughout the paper a symbol S0 is represented in table-form for better read-
ability. For this example S0 it is

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

where the integers 0, 1, 2 in the first row indicate the variables x0, x1, x2 and
a0, . . . , a3 are identifiers of the vectors in V0.
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2.1 Agreeing

In order to find a solution to (1) the Agreeing algorithm attempts to delete
vectors from symbols Si which cannot be part of a common solution. In the
following, the projection of a vector vk on variables A is denoted by vk[A] and
V [A] denotes the set of projections of all vectors vk ∈ V on variables A.

Given two symbols Si = (Xi, Vi) and Sj = (Xj , Vj) with i �= j we say that Si

and Sj are in a non-agreeing state if there exists at least one vector ap ∈ Vi such
that ap[Xi ∩ Xj ] �∈ Vj [Xi ∩ Xj]. If there exists a solution to the system, each
symbol will contain one vector that matches the global solution. The vector ap

cannot be combined with any of the possible assignments in symbol Sj , hence
it cannot be part of a solution to the whole system and can be deleted. The
deletion of all vectors ap ∈ Vi and bq ∈ Vj which are incompatible with all
vectors in Vj and Vi, respectively, is called agreeing. If by agreeing the set of
vectors of a symbol gets empty, there exists no solution to the equation system.
The agreeing of all pairs of symbols in a set of symbols {S0, . . . , Sm−1} until no
further deletion of vectors can be done is called the Agreeing algorithm.

Example 2 (Agreeing). The following pair of symbols is in a non-agreeing state:

S0 0 1 2
a0 0 0 0
a1 0 0 1
a2 0 1 0
a3 1 1 1

S1 0 1 3
b0 0 0 0
b1 1 0 1

.

The vectors a2, a3 differ from each bj in their projection on common variables
x0, x1 and can be deleted. Likewise, b1 cannot be combined with any of the ai

and can also be deleted. After agreeing the symbols become:

S0 0 1 2
a0 0 0 0
a1 0 0 1

S1 0 1 3
b0 0 0 0 .

2.2 Guessing

In the example above a further simplification of the equation system by agreeing
is not possible. One has to introduce a guess to the system. With Example 2,
that can be the deletion of vector a0. The system is in an agreeing state and
there exists only a single vector in V0 and V1 which gives us a local solution to
the equation system, namely the combination of a1 and b0, that is x0 = 0, x1 =
0, x2 = 1, x3 = 0.

Since practical examples of equation systems are fully or almost fully pair-
wise agreeing, a single run of the Agreeing-algorithm obtains no or little extra
information about the solution to the system. Thus guessing a vector g ∈ Vi and
deleting all other v ∈ Vi, v �= g of a symbol and verifying the partial solution by
agreeing is a way to find a solution. If the guess was wrong the changes to the
equation system are undone and another guess is introduced.
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3 Pocket-Agreeing

We introduce an improvement of the Agreeing algorithm based on the tuple
propagation by I. Semaev [11]. The Pocket Agreeing is closer to a potential
software implementation and offers some speed advantages and a simple learning
process.

The goal is to implement a software method to verify a guess fast. Another
aspect is fast backtracking. That means that when a guess is confirmed as in-
correct, the guess should be undone fast to avoid unnecessary overhead during
the computation.

Definition 2 (Pocket). Let Si = (Xi, Vi) and Sj = (Xj , Vj) be two pair-wise
agreeing symbols with Xi ∩ Xj = Xi,j and |Xi,j | > 0. For every projection
ρ ∈ Vi[Xi,j ] one creates a pair of pockets

pα = ({a | a ∈ Vi and a[Xi,j] = ρ}, β), pβ = ({b | b ∈ Vj and b[Xi,j] = ρ}, α))

with α and β as unique identifiers or ∅. For the pocket pα = (A, β), we use the
notation V (pα) = A and I(pα) = β.

The purpose of pockets is to have a system that easily identifies vectors that
cannot be part of a global solution. Assume that all the vectors in a pocket p
are identified as incompatible with a global solution for the system in its current
state, and get deleted. Then we can immediately delete all vectors in pocket I(p)
since these have the same assignment of variables also found in p, and so must
be inconsistent with a global solution too. Also note that one particular vector
from a symbol will in general appear in several different pockets. When a vector
is deleted from one pocket it is also simultaneously deleted from all the other
pockets where it appears.

Example 3 (Pocket). Given the symbols S0, S1 from Example 2 after they are
pairwise agreeing, X0 ∩ X1 = X0,1 = {0, 1}. There exists only one projection
V0[X0,1] = {(0, 0)}, thus there is only one pair of pockets to create, namely

p0 = ({a0, a1}, 1)
p1 = ({b0}, 0).

3.1 Propagation

Given a set of pockets generated from symbols S0, . . . , Sm−1 one can run agreeing
through pockets. In order to do so efficiently one assigns a flag to each vector
in the problem instance instead of actually deleting them. The flag of a vector
ai can have three values: undefined, marked, and selected, where the flags of
all vectors are initially undefined. If a vector ai is marked, denoted by ai, it is
not suitable for extending the current partial solution, i.e. it is considered to be
deleted. If an ai is selected, denoted by a+

i , it is considered to be part of the
current partial solution, and cannot be deleted. In other words a+

i is guessed.
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The main rule of propagating information in Pocket-Agreeing for the set of
pockets is: “While there is a pocket pq = (A, b) where all ai ∈ A are marked,
mark all vectors in the pocket pb, if b �= ∅.”

This method is analogous to agreeing, where vectors whose projection is not
found in another symbol are deleted. In Pocket-Agreeing equal projections are
calculated beforehand, stored as pockets, and instead of being deleted as soon
as they are not suitable for extending a partial solution, the vectors are flagged
as marked.

3.2 Watching

One technical improvement of the Pocket-Agreeing is the possibility to introduce
watches as done in SAT-solving. If one wants to implement the Pocket-Agreeing
one has to check constantly if all ai ∈ A are marked in a pocket (A, b). Experi-
ments show that this consumes a lot of time during the propagation.

In order to avoid this, one assigns in every pocket p a watch w ∈ V (p). Only
if the w gets marked it is checked if all the other ai ∈ V (p) are marked too. If w
gets marked there are two possible cases to distinguish:

1. All ai ∈ V (p) are marked, and by the propagation rule all vectors in the
pocket I(p) have to be marked, too.

2. There exists at least one ai ∈ V (p) which is not marked. This is then the
new watch.

This technique reduces the time used in the propagation phase. Also backtrack-
ing, i.e., undoing a guess in case it was wrong, is sped up. If at some point in
the program the conclusion is reached that the guess was wrong, one wants to
undo the changes - namely markings - caused by the last guess, in order to try
another guess.

To do so one just undoes the marking of vectors from the last guess, since
pockets were not changed. The watches can stay the same, since they were by
construction the last vectors which got marked in the pocket, or they are not
marked at all.

3.3 Guessing

The process of guessing starts with selecting one symbol Si where all but one
vector from Vi are marked. The remaining vector v+ gets flagged as selected
in order to remember that it is guessed to be part of a correct solution. Then
Pocket-Agreeing based on the latest markings is started.

Two possible outcomes of the agreeing are possible:

1. Only non-selected vectors get marked. The system is in an agreeing state.
2. At some point the algorithm marks some g+, which is by the description

above the last vector remaining for some symbol. This is called a conflict.
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If the system ends in an agreeing state, we pick another symbol, select one of its
vectors, mark the others and continue the propagation. In the case of a conflict
the extension of the partial solution with the previous guess(es) was not possible,
and we must backtrack.

4 Learning

During the computation of a solution to the input equation system, it is nat-
ural that wrong guesses occur. It is now interesting why these occur, since a
wrong guess implies that a wrong branch of the search tree was visited. Usually,
the implications that show a guess must be wrong only involve a subset of the
introduced markings. The purpose of this section is to identify exactly which
markings yield a proof of inconsistency for the system. By storing this informa-
tion the solver learns new facts about the system, and the overall number of
guesses needed to find the solution is reduced.

Definition 3 (Implication Graph). An implication graph G is a directed
graph. Its vertices are vectors which are marked.

For a marked vector ai the pocket P (ai) is the pocket where all vectors became
marked, and by propagation caused the marking of ai. If the marking of ai is due
to an an introduced guess then P (ai) = ∅. The set of directed edges E consists
of all markings due to propagation, i.e.:

(ai, aj) ∈ E if ai ∈ V (P (aj)).

Edges (ai, aj) are labeled by P (aj).

Example 4 (Implication Graph). Let the following pockets be given.

p0 = ({a0}, 1)
p1 = ({c0, c1}, 0)
p2 = ({b0, b1}, ∅)
p3 = ({c0}, 2)

Introducing the marking a0 would yield the following implication graph.

a0

c0p0

c1

p
0

b0

b1

p3

p
3

Fig. 1. Example Implication Graph

The implication graph is not unique and depends on the order in which empty
pockets are processed.
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4.1 Conflict Analysis

Let g+ be the vector which yielded the conflict, that is it was flagged as selected
and by agreeing became marked. The immediate source of the conflict is the
marking of all hj ∈ V (P (g+)). But for further analysis we are more interested
in vectors which caused the conflict by introducing a guess. These are hj ’s con-
nected to g+ in the implication graph, where P (hj) = ∅. By analyzing the graph
we can find the hj ’s recursively:

R(g) = {hj|hj ∈ V (P (g)) and P (hj) = ∅} ∪
⋃

hj∈V (P (g))

P (hj)�=∅

R(hj). (2)

R(g) will then be the set of marked vectors due to guesses, that caused g to be
marked. In other words, R(g) tells us exactly which of the introduced guesses
that are incompatible with g being part of the solution. This information can be
stored as a new pocket, as shown in the following.

4.2 Conflict Construction and Reduction

Assume the marking of g+ yields a conflict and we have found that R(g) =
{h0, h1, . . . , hr} are the marked vectors that imply the marking of g+. We can
now create a new pair of pockets with the implication

R(g) ⇒ g,

i.e., if all vectors in R(g) are marked, then g must be marked. The pockets
expressing this are

ps∗ = ({h1, . . . , hr}, t)
pt = (g, ∅). (3)

However, storing (3) for further computation does not give us any new informa-
tion, since it is a direct consequence of agreeing. We are more interested in a
reduced condition under which we can mark g and exclude it from a common
solution during the search process. The following lemma shows how to find a
reduced condition for when g can be marked.

Lemma 1. Let the pockets p = ({h1, . . . , hr}, q) and pq = ({g1, . . . , gs}, ∅) be
given. For any hj and gi, let Xgihj be the set of variables that are common to both
hj and gi. Let H be the set of vectors hj ∈ V (p) such that hj [Xgihj ] �= gi[Xgihj ]
for all i. Then marking all vectors in V (p) \ H implies marking all vectors in
V (pq).

Proof: Mark all vectors in V (p)\H and assume that some gi is part of the solution
to the system and should not be marked. Since any vector hj ∈ H is different
in its projection on Xgihj from gi[Xgihj ], no vectors in H can be combined with
gi in a global solution, so all vectors in H must be marked. Then the pocket p
yields that gi must also be marked. This conflict shows that gi cannot be part
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of the solution to the system after all, so all vectors in V (pq) should be marked
once the vectors in V (p) \ H are marked. 
�
Using this lemma, we delete from the vectors in R(g) all hj for which is true
that

hj [Xghj ] �= g[Xghj ],

and save the implication in a pair of pockets:

ps = ({hj |hj ∈ R(g) and hj [Xghj ] = g[Xghj ]}, t)
pt = (g, ∅).

These two pockets are then added to the list of pockets the system already
knows.

From the conflict described above we can also derive further new knowledge.
Up until now we have our reduced implication ps ⇒ pt, i.e. if all vectors in ps

are marked, mark the vector g ∈ V (pt). Also, it holds for any vector g that

g+ ≡ g1, g2, . . . , gr with gi �= g and g, g1, . . . , gr are all vectors in a symbol (4)

Thus g can become an implicit guess by marking all other gi’s in the same
symbol. From the pair of pockets ps, pt we can now further derive that if g is
guessed, at least one of the vectors in ps has to be selected. Otherwise all hj in
ps would be marked, and the pockets ps, pt would yield a conflict. We express
this with the following lemma.

Lemma 2. Let the pockets ps = (h1, . . . , hr, t) and pt = (g, ∅) be given. For any
symbol Sγ = (Xγ , Vγ) such that Vγ ∩ V (ps) �= ∅ the implication of the following
pockets must hold:

psγ = ({g1, . . . , gr|gi �= g} ∪ (V (ps) \ Vγ), tγ)
ptγ = (Vγ \ V (ps), ∅)

Proof: Let ps = ({au, . . . , av, bx, . . . , by}, t) where {bx, . . . , by} = V (ps) ∩ Vγ .
Then the condition g+, au, . . . , av implies that one of bx, . . . , by has to be selected
(guessed). Otherwise, if none of bx, . . . , by are selected all vectors in V (ps) are
marked, and g has to be marked too (by ps ⇒ pt). This would be a conflict since
g+ is implicitly selected. Guessing one of bx, . . . , by implies the marking of all
vectors in Vγ \ {bx, . . . , by}, which is exactly the set of vectors in ptγ . 
�
By using Lemma 1, we should also reduce the condition for when the vectors in
V (ptγ ) can be deleted by excluding vectors in V (psγ ) that differ in projection
on common variables to all vectors in V (ptγ ).

Remark 1 (Cycle-rule). Lemma 1 is an extension to the cycle-rule by Igor Se-
maev [12]. The cycle-rule states that through (4) it is possible to delete from
an implication a0, . . . , ar ⇒ h0, . . . , hs those ai which belong to the same sym-
bol as h0, . . . , hs. However, the cycle-rule is extended by removing vectors from
a0, . . . , ar which do not belong to the same symbol, but only differ in their
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projection from the vectors h0, . . . , hs. Note that if two vectors belong to the
same symbol, they always differ in their projection on common variables.

4.3 Non-chronological Backtracking

After the learning is completed the last guess should be undone and based on
the extended pocket database Agreeing should run again. If the system is now
in a non-agreeing state it can only be due to newly learnt pockets ps. Thus any
change to the system that does not involve vectors in V (ps) will necessarily result
in a conflict again. Therefore we can jump back to the tree-level at which the
last change in an ps occurred, depending on which pocket yielded the conflict.
This way we cut futile branches of the search tree and economize the search in
the number of guesses.

Example 5. Let the following equation system be given:

S0 1 2 3
a0 0 0 0
a1 0 1 1
a2 1 1 0
a3 1 1 1

,

S1 2 4 5 6 12
b0 0 1 0 0 0
b1 0 1 0 1 0
b2 0 1 1 0 1
b3 1 0 1 1 1

,

S2 4 7 8
c0 1 0 0
c1 1 0 1
c2 0 1 0
c3 0 1 1

,

S3 1 9 10
d0 0 0 1
d1 0 1 0
d2 1 0 0
d3 1 1 1

,

S4 10 11 12
e0 0 0 1
e1 0 1 0
e2 1 0 0
e3 1 1 1

,

S5 9 11 12
f0 0 0 1
f1 0 1 0
f2 1 0 0
f3 1 1 1

.

S0

S3 S5 S1

S4

S2

{1}
{2}

{4}

{12}

{12}{10}

{9}

{11, 12}

p0 = ({a0}, 1) p1 = ({b0, b1, b2}, 0)
p2 = ({a1, a2, a3}, 3) p3 = ({b3}, 2)
p4 = ({a0, a1}, 5) p5 = ({d0, d1}, 4)
p6 = ({a2, a3}, 7) p7 = ({d2, d3}, 6)
p8 = ({b0, b1, b2}, 9) p9 = ({c0, c1}, 8)
p10 = ({b3}, 11) p11 = ({c2, c3}, 10)
p12 = ({b0, b1}, 13) p13 = ({e1, e2}, 12)
p14 = ({b2, b3}, 15) p15 = ({e0, e3}, 14)
p16 = ({d0, d3}, 17) p17 = ({e2, e3}, 16)
p18 = ({d1, d2}, 19) p19 = ({e0, e1}, 18)
p20 = ({d0, d2}, 21) p21 = ({f0, f1}, 20)
p22 = ({d1, d3}, 23) p23 = ({f2, f3}, 22)
p24 = ({e0}, 25) p25 = ({f0}, 24)
p26 = ({e1}, 27) p27 = ({f1}, 26)
p28 = ({e2}, 29) p29 = ({f2}, 28)
p30 = ({e3}, 31) p31 = ({f3}, 30)

Fig. 2. The intersection graph and the resulting pockets. Dotted edges in the intersec-
tion graph are ignored.

The intersection graph in Figure 2 indicates pairs of symbols from which
pockets are generated. The labled edges between symbols show intersections
in the sets of variables. No pockets are generated from the pair S1, S5 since
changes of variable x12 will propagate through the path S1, S4, S5 while
agreeing.
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Assume that by some heuristic the order of symbols to be guessed is S0, S1, S2,
S3, S4, S5. The partial solutions a+

0 , b+
0 , c+

0 are selected in that order. This results
in the following equation system after agreeing:

S0 1 2 3
a0 0 0 0 ,

S1 2 4 5 6 12
b0 0 1 0 0 0 ,

S2 4 7 8
c0 1 0 0 ,

S3 1 9 10
d0 0 0 1
d1 0 1 0

,
S4 10 11 12
e1 0 1 0
e2 1 0 0

,
S5 9 11 12
f1 0 1 0
f2 1 0 0

.

For a further extension of the partial guess one tries to extend the partial so-
lution by d0. The resulting implication graph after marking d1 is shown below.
Marking d1 causes e1 to be marked by pocket p18, which again causes f1 and
d0 to be marked by pockets p26 and p21. This is clearly a conflict, since d0 was

a1

d2

p2

d3

b3

p
2

p
2

a2

a3
p6

p 6

p6

p
6

c2

c3

p 10

p 10

b2b1

e0

e3

p14

p
14

p14

p14 f3
p30

p25 f0

c1

d1

e1

p
18

p18 p26 f1

d0

p
21

p 21

Fig. 3. Implication Graph of guess a0, b0, c0, d0

previously selected but should be marked now. Now we analyze the source of
the conflict in order to learn from it.

R(d0) = {a1, a2, a3, b2, d1}
To create the reduced ps we compare projections of a1, a2, a3, b2, d1 in common
variables to projections of d0. We see that a2 and a3 have a different projection
than d0 on their common variable x1, so these vectors can be excluded from ps

by Lemma 1. d1 can obviously also be excluded since it belongs to the same
symbol as d0. After this reduction we get:

p32 = ({a1, b2}, 33)
p33 = ({d0}, ∅).

Using Lemma 2 we also derive:

p34 = ({d1, d2, d3, a1}, 35)
p35 = ({b0, b1, b3}, ∅)
p36 = ({d1, d2, d3, b2}, 37)
p37 = ({a0, a2, a3}, ∅)
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After this learning process we agree the system again, with our newly obtained
knowledge. The pockets p32 and p33 cause d0 to be marked. This implicitly
selects d+

1 , which immediately yields another conflict, without introducing any
new guess. Thus the guesses a+

0 , b+
0 , c+

0 cannot all be right. We can immediately
read from p32 where to backtrack. We see from p32 that the guessing of c+

0

was not a cause for the conflict, otherwise there would be some ci-vectors in
p32. This tells us that if we now backtrack and select, say c+

1 , we will end up
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in the very same conflict again. Hence we can go back to the point where b0

got guessed (and b2 marked) and try selecting another bj-vector. Bypassing the
guesses on all ci-vectors that would be due in a naive search algorithm saves a
lot of time.

Figure 4 shows the decision tree until the first solution is found. Branches
not incorporating vectors from all symbols indicate conflicts. Connected to the
dotted lines are the newly learned pockets. In comparison the naive search tree,
without learning, is depicted in Figure 5.

4.4 Variable-Based Guessing

In the algorithm we have explained, we guess on which of the possible assignments
in a symbol that is the correct one. It may look more natural to guess on the value
of single variables as is done in SAT-solving. Given an instance S0, S1, . . . , Sm in
variables X there exists a simple way to realize variable-based guessing. Instead
of establishing a separate mechanism of introducing the guess on a single variable
one inserts new symbols of the form Sxi = ({xi}, {v0 = 0, v1 = 1}) for every
xi ∈ X before the pocket generation. These symbols contain no information but
can easily be integrated into the system. Assume one wants to guess that xi = 0.
From the newly inserted symbol one just marks v1 and propagates the guess by
agreeing instead of keeping a separate table of all vectors in which xi occurs as
1 and marking them. Another advantage is that this way of introducing variable
guessing integrates with the learning without problems.

Of course this approach works for other fields than F2, too. Assume an equa-
tion system over Fq then one inserts for every xi ∈ X a symbol Sxi = ({xi}, Vxi =
{vj |vj ∈ Fq}).

5 Experiments

5.1 Results

In order to evaluate the strength of the proposed solving algorithm, several
experiments were made with random equation systems over F2. A software,
called Gluten, that implements the algorithm was developed. To get a comparison
with another solving technique we took a SAT-solver, namely MiniSAT since the
guess/verify technique to obtain a solution is similar. Furthermore SAT-solving
is a well researched field and MiniSAT among the fastest programs in this field.

Rather than comparing pure solving time we compare the number of variable
guesses needed until a solution to the system is obtained. During all the exper-
iments it holds m = n, i.e. the number of equations is equal to the number of
variables. We make sure the systems have at least one solution. The sparsity l
is also fixed to l = 5. The ANF degree for the equations we generate will be
randomly distributed, but will of course be upper bounded by the sparsity. Fur-
thermore every m = n was tested with 100 randomly generated instances and
the arithmetic mean calculated afterwards.

Figures which display both very large and very small values are log-scaled for
better readability.
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5.2 Random Instances

In this experiment the expected number of roots for every equation is E(|Vi|) =
24 and binomially distributed, as would be the case when the symbols are ob-
tained from random ANF’s.
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In Figure 6 one can see that Gluten performs clearly better up til around
m = n = 170. Afterwards the average values for MiniSAT stay low while the
number of guesses for Gluten rise fast. Figure 7 shows that the error margin is
very high to the average in comparison to the error margin of MiniSAT, shown
in Figure 9. In other words, Gluten runs into a few cases where it makes an
extremely high number of guesses whereas MiniSAT is able to keep its number
of guesses not too far from the average.

To get a better comparison of both methods in Figure 8, the case of n =
m = 200 along with the sample number is given. For every of the 100 samples
the black bar indicates the number of variable guesses Gluten took to obtain a
solution and the grey bar shows the number of guesses MiniSAT took to find a
solution. In approximately 1/3 of all samples Gluten performs worse, in the rest
approximately equally or better.
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5.3 Uniformly Distributed Number of Roots

The case when the number of roots in the equations are distributed uniformly at
random was also investigated. That means that the size of Vi is taken uniformly
at random from [1, 2l − 1] for each symbol.
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In this scenario Gluten performs much better on the whole spectrum of the
experimental data. As Figure 10 and 11 shows the number of guesses for Gluten
rise linearly while the curve giving the number of MiniSAT’s guessings seems to
be quadratic (the polynomial 0.0232n2 + 1.6464n − 15.4 fits the dashed curve
very well). The Gluten values are less than 50; note the different scalings in
Figure 10 and 11. It is also interesting to notice that Gluten only needs to make
very few guesses, even for systems with over 250 variables.

6 Conclusion and Further Work

We have shown how new knowledge about the equation system can be obtained
in polynomial time when guessing partial solutions and running the Agreeing
algorithm. New constraints on vectors defining partial solutions can be added
and using this, futile search-regions can be pruned. Our experiments show our
proposed algorithm performs better than SAT-solving in a large number of in-
stances. In particular, the experimental data shows that it is only necessary to
make a small number of guesses to solve systems where the number of roots are
uniformly distributed.

Several mechanisms are not yet introduced to our algorithm. Among them are
random restarts during the search process or random guesses. It is obvious that
a good guessing heuristic is crucial for the success of a solver of this kind. While
SAT-solving is well studied and a lot of different search-heuristics are available,
this is still an open field and topic for future research for the algorithm proposed
in this paper.
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Abstract. A large set of moduli, for which the speed of bipartite modular mul-
tiplication considerably increases, is proposed in this work. By considering state
of the art attacks on public-key cryptosystems, we show that the proposed set is
safe to use in practice for both elliptic curve cryptography and RSA cryptosys-
tems. We propose a hardware architecture for the modular multiplier that is based
on our method. The results show that, concerning the speed, our proposed archi-
tecture outperforms the modular multiplier based on standard bipartite modular
multiplication. Additionally, our design consumes less area compared to the stan-
dard solutions.

Keywords: Bipartite modular multiplication (BMM), Barrett reduction, Mont-
gomery reduction, Public-key cryptography (PKC).

1 Introduction

Public-key cryptography (PKC), a concept introduced by Diffie and Hellman [9] in
the mid 70’s, has gained its popularity together with the rapid evolution of today’s
digital communication systems. The best-known public-key cryptosystems are based
on factoring i.e. RSA [20] and on the discrete logarithm problem in a large prime field
(Diffie-Hellman, ElGamal, Schnorr, DSA) [14] or on an elliptic curve (ECC/HECC) [2].
Based on the hardness of the underlaying mathematical problem, PKC usually deals
with large numbers ranging from a few hundreds to a few thousands of bits in size.
Consequently, the efficient implementations of the PKC primitives has always been a
challenge.

An efficient implementation of the mentioned cryptosystems highly depends on the
efficient implementation of modular arithmetic. Namely, modular multiplication forms
the basis of modular exponentiation which is the core operation of the RSA cryptosys-
tem. It is also present in many other cryptographic algorithms including those based
on ECC and HECC. In particular, if one uses projective coordinates for ECC/HECC,
modular multiplication remains the most time consuming operation for ECC. Hence, an
efficient implementation of PKC relies on efficient modular multiplication.

Two algorithms for modular multiplication, namely Barrett [3] and Montgomery [15]
algorithms are widely used today. Both algorithms avoid multiple-precision divisions,
the operation that is considered to be expensive, especially in hardware. The classical
modular multiplication algorithm, based on Barrett’s reduction, uses single-precision
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c© Springer-Verlag Berlin Heidelberg 2010
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multiplications with a precomputed modulus reciprocal instead of expensive divisions
[8]. An algorithm that efficiently combines classical and Montgomery multiplications,
both in finite fields of characteristic 2, was first proposed by Potgieter [17] in 2002. Pub-
lished in 2005, a bipartite modular multiplication (BMM) by Kaihara and Takagi [11]
extended this approach to the ring of integers.

In this work, we propose a large set of moduli, for which the intermediate quotient
evaluation in both Barrett and Montgomery algorithms basically comes for free. There-
fore a speed of bipartite modular multiplication, where the Barrett and Montgomery
algorithms are the main ingredients, significantly increases. By considering state of the
art attacks on public-key cryptosystems, we show that the proposed set is safe to use
in practice for both ECC/HECC and RSA cryptosystems. We propose a hardware ar-
chitecture for the modular multiplier that outperforms the multiplier based on standard
BMM method.

The remainder of the paper is structured as follows. Section 2 introduces preliminar-
ies. Section 3 describes the proposed method. In Sect. 4 we give the results of hardware
implementations and Sect. 5 discusses the security issues. Section 6 concludes.

2 Preliminaries

In the paper we use the following notations. A multiple-precision n-bit integer A is
represented in radix r representation as A = (Anw−1 . . . A0)r where r = 2w; nw

represents the number of digits and is equal to
⌈
n/w

⌉
where w is a digit-size; Ai is

called a digit and Ai ∈ [0, r − 1].

2.1 Classical and Montgomery Modular Multiplication Methods

Given a modulus M and two elements X, Y ∈ ZM where ZM is the ring of integers
modulo M , the ordinary modular multiplication is defined as:

X × Y � XY mod M .

Let the modulus M be an nw-digit integer, where the radix of each digit is r = 2w.
The classical modular multiplication algorithm computes XY mod M by interleaving
the multiplication and modular reduction phases as it is shown in Algorithm 1. The cal-
culation of the intermediate quotient qC at step 4 of the algorithm is done by utilizing
integer division which is considered as an expensive operation, especially in hardware.
The idea of using the precomputed reciprocal of the modulus M and simple shift and
multiplication operations instead of division originally comes from Barrett [3]. To ex-
plain the basic idea, we rewrite the intermediate quotient qC as:

qC =
⌊ Z

M

⌋
=

⌊ Z
2n+β

2n+α

M

2α−β

⌋
≥

⌊⌊
Z

2n+β

⌋⌊
2n+α

M

⌋

2α−β

⌋
= q̂ .

The value q̂ represents an estimation of the intermediate quotient qC . In most of the
cryptographic applications, the modulus M is fixed during the many modular multipli-
cations and hence the value �2n+α/M� can be precomputed and reused multiple times.
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Algorithm 1. Classical modular multiplication algorithm.
Input: X = (Xnw−1 . . . X0)r , Y = (Ynw−1 . . . Y0)r , M = (Mnw−1 . . . M0)r where 0 ≤

X, Y < M , 2n−1 ≤ M < 2n, r = 2w and nw =
⌈
n/w

⌉
.

Output: Z = XY mod M .
1: Z ⇐ 0
2: for i = nw − 1 downto 0 do
3: Z ⇐ Zr + XYi

4: qC ⇐ �Z/M�
5: Z ⇐ Z − qCM
6: end for
7: Return Z.

Furthermore, an integer division with the power of 2 is a simple shift operation in hard-
ware. Since the value of q̂ is an estimated value, some correction steps at the end of the
modular multiplication algorithm have to be performed. In his thesis, Dhem [8] deter-
mines the values of α and β for which the classical modular multiplication, based on
Barrett reduction algorithm, needs at most one subtraction at the end of the algorithm.
The improved Barrett algorithm [8], uses the following parameters: α = w + 3 and
β = −2.

Montgomery’s algorithm [15] is the most commonly utilized modular multiplication
algorithm today. In contrast to classical modular multiplication, it utilizes right to left
divisions. Given an nw-digit odd modulus M and an integer U ∈ ZM , the image or the
Montgomery residue of U is defined as X = UR mod M where R, the Montgomery
radix, is a constant relatively prime to M . If X and Y are, respectively, the images of
U and V , the Montgomery multiplication of these two images is defined as:

X ∗ Y � XY R−1 mod M .

The result is the image of UV mod M and needs to be converted back at the end of
the process. For the sake of efficient implementation, one usually uses R = rnw where
r = 2w is the radix of each digit. Similar to the Barrett multiplication, this algorithm
uses a precomputed value M ′ = −M−1 mod r = −M−1

0 mod r. The algorithm is
shown in Algorithm 2.

2.2 Bipartite Modular Multiplication Method

An algorithm that efficiently combines classical and Montgomery multiplications, both
in finite fields of characteristic 2, was first proposed by Potgieter [17] in 2002. Extend-
ing this approach to the ring of integers, the bipartite modular multiplication (BMM)
was introduced by Kaihara and Takagi in [11]. The method efficiently combines a clas-
sical modular multiplication method with Montgomery’s modular multiplication algo-
rithm. It splits the operand multiplier into two parts that can be processed separately
in parallel, increasing the calculation speed. The calculation is performed using Mont-
gomery residues defined by a modulus M and a Montgomery radix R, R < M . Next,
we outline the main idea of the BMM method.
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Algorithm 2. Montgomery modular multiplication algorithm.
Input: X = (Xnw−1 . . . X0)r, Y = (Ynw−1 . . . Y0)r, M = (Mnw−1 . . . M0)r, M ′ =

−M−1
0 mod r where 0 ≤ X, Y < M , 2n−1 ≤ M < 2n, r = 2w, gcd(M, r)=1 and

nw =
⌈
n/w

⌉
.

Output: Z = XY r−nw mod M .
1: Z ⇐ 0
2: for i = 0 to nw − 1 do
3: Z ⇐ Z + XYi

4: qM ⇐ (Z mod r)M ′ mod r
5: Z ⇐ (Z + qMM)/r
6: end for
7: if Z ≥ M then
8: Z ⇐ Z − M
9: end if

10: Return Z.

Let the modulus M be an nw-digit integer, where the radix of each digit is r = 2w

and let R = rk where 0 < k < nw. Consider the multiplier Y to be split into two parts
YH and YL so that Y = YHR + YL. Then, the Montgomery multiplication modulo M
of the integers X and Y can be computed as follows:

X ∗ Y = XY R−1 mod M

= X(YHR + YL)R−1 mod M

=
(
(XYH mod M) + (XYLR−1 mod M)

)
mod M .

The left term of the last equation, XYH mod M , can be calculated using the clas-
sical modular multiplication that processes the upper part of the split multiplier YH .
The right term, XYLR−1 mod M , can be calculated using the Montgomery algorithm
that processes the lower part of the split multiplier YL. Both calculations can be per-
formed in parallel. Since the split operands YH and YL are shorter in length than
Y , the calculations XYH mod M and XYLR−1 mod M are performed faster than
XY R−1 mod M .

2.3 Related Work

Before introducing related work we note here that for the moduli used in all common
ECC cryptosystems, the modular reduction can be done much faster than the one pro-
posed by Barrett or Montgomery. Even without any multiplication. This is the reason
behind standardizing generalized Mersenne prime moduli (sums/differences of a few
powers of 2) [16,1,21].

The idea of speeding up a modular multiplication by simplifying an intermediate
quotient was first presented by Quisquater [18] at the rump session of Eurocrypt ’90.
The method is similar to the one of Barrett except that the modulus is preprocessed
before the modular multiplication in such a way that the evaluation of the intermediate
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quotient basically comes for free. Preprocessing requires some extra memory and com-
putational time, but the latter is negligible when many modular multiplications are per-
formed using the same modulus.

In [12], Lenstra proposes several ways to generate RSA moduli with any number
of predetermined leading (trailing) bits, with the fraction of specified bits only limited
by security considerations. He points out that choosing such moduli is beneficial both
for storage and computational requirements. Furthermore, Lenstra discusses security
issues and concludes that the resulting moduli do not seem to offer less security than
regular RSA moduli. Joye [10] enhances the method for generating RSA moduli with a
predetermined portion proposed in [12].

3 Speeding Up the Bipartite Modular Multiplication

In both Barrett and Montgomery modular multiplication algorithms, the precomputed
values of either modulus reciprocal or modulus inverse are used in order to avoid
multiple-precision divisions. However, single-precision multiplications still need to be
performed (step 4 of the algorithms above). This especially concerns the hardware im-
plementations, as the multiplication with the precomputed values often occurs within
the critical path of the whole design. Section 4 discusses this issue in more detail.

Since the BMM method utilizes both Barrett and Montgomery multiplication algo-
rithms, one needs to precompute both μ =

⌊
2n+α/M

⌋
and M ′ = −M−1

0 mod r. Let
us, for now, assume that the precomputed values are both of type 2γ where γ ∈ Z. By
tuning μ and M ′ to be of this special type, we transform a single-precision multiplica-
tion with these values into a simple shift operation in hardware. Therefore, we find a set
of moduli for which the precomputed values are both of type 2γ . A lemma that defines
this set is given below:

Lemma 1. Let M = 2n − Δ2w − 1 be an n-bit positive integer in radix r = 2w

representation with Δ ∈ Z, w ∈ N and w < n. Now, let μ =
⌊
2n+α/M

⌋
where α ∈ N

and M ′ = −M−1
0 mod r. The following statement holds:

μ = 2α ∧ M ′ = 1 ⇒ 0 ≤ Δ ≤
⌊

2n − 2α − 1
2w(2α + 1)

⌋
.

Proof. To prove the theorem, we first rewrite 2n+α as:

2n+α = M2α + Δ2w+α + 2α .

Now, the reciprocal μ of the modulus M can be written as:

μ =
⌊2n+α

M

⌋
= 2α +

⌊Δ2w+α + 2α

M

⌋
= 2α +

⌊ λ

M

⌋

Having that μ = 2α, the inequality 0 ≤ λ < M must hold. By solving the left part of
inequality (λ ≥ 0) we get:

Δ ≥ −2−w . (1)
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Similar, for the right part of inequality (λ < M ) we get:

Δ <
2n − 2α − 1
2w

(
2α + 1

) . (2)

From the condition M ′ = −M−1
0 mod r = 1 it follows that M ≡ −1 mod r. This

is true for all Δ ∈ Z. Finally, a condition that the modulus M is an n-bit integer
(2n−1 ≤ M < 2n) makes the last condition for Δ:

−2−w < Δ ≤ 2n−w−1 − 2−w . (3)

Now, from the inequalities (1), (2), (3) and the fact that Δ ∈ Z, follows the final condi-
tion for Δ:

0 ≤ Δ ≤
⌊

2n − 2α − 1
2w(2α + 1)

⌋
.

The previous theorem defines a set of moduli for which both conditions μ = 2α and
M ′ = 1 are true. As mentioned earlier, to minimize the number of correction steps in
the improved Barrett algorithm [8], we choose α = w + 3. Finally, the proposed set is
defined as:

S : M = 2n − Δ2w − 1 where 0 ≤ Δ ≤
⌊

2n − 2w+3 − 1
2w(2w+3 + 1)

⌋
.

Figure 1 further illustrates the properties of the proposed set. As can be seen, the w least
significant bits and the w + 3 most significant bits are fixed to be all 1’s while the other
n − 2w − 3 bits can be randomly chosen.

…all 1’s… … 11

n-1 0

S: …all 1’s…mw

w+3 wn-2w-3

mn-w-4

Fig. 1. Binary representation of the proposed set

The evaluation of the intermediate quotient for the improved Barrett algorithm, q̂, now
becomes equal to:

q̂ =
⌊⌊

Z
2n+β

⌋
μ

2α−β

⌋
=

⌊⌊
Z

2n+β

⌋
2α

2α−β

⌋
=

⌊⌊ Z

2n+β

⌋
2β

⌋
.

For β ≤ 0, the previous equation becomes simplified and equivalent to:

q̂ =
⌊

Z

2n

⌋
.

Since M ′ = 1, the intermediate quotient for the Montgomery multiplication also gets
simplified:

qM = Z mod r .

Finally, the bipartite modular multiplication for the proposed set of moduli is given in
Algorithm 3. After the final addition is performed, one more correction step might be
necessary since 0 ≤ ZH + ZL < 2M .
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Algorithm 3. BMM algorithm for the proposed set of moduli.

Input: X = (Xnw−1 . . . X0)r , Y = (Ynw−1 . . . Y0)r = YHrk + YL, M =
(Mnw−1 . . . M0)r ∈ S, where 0 ≤ X, Y < M , r = 2w, 0 < k < nw and nw =

⌈
n/w

⌉
.

Output: Z = XY r−k mod M .

1: ZH ⇐ 0
2: for i = nw − 1 downto k do
3: ZH ⇐ ZHr + XYi

4: q̂ ⇐ ⌊
ZH/2n

⌋

5: ZH ⇐ ZH − q̂M
6: end for
7: if ZH ≥ M then
8: ZH ⇐ ZH − M
9: end if

1: ZL ⇐ 0
2: for i = 0 to k − 1 do
3: ZL ⇐ ZL + XYi

4: qM ⇐ ZL mod r
5: ZL ⇐ (ZL + qMM)/r
6: end for
7: if ZL ≥ M then
8: ZL ⇐ ZL − M
9: end if

Return Z ⇐ ZH + ZL

4 Hardware Implementation

To verify our approach in practice, we implement a set of multipliers that are based
on our proposal and compare them with the multipliers that support the original BMM
algorithm. Obviously, the mission of the BMM algorithm is to utilize the parallel com-
putation and hence, increase the speed of the modular multiplication. Therefore, in order
to compare different designs with the same input size, we define a relative throughput
as

Tr =
1

Ntcp

where tcp is a critical path delay and N is a number of clock cycles. The total throughput
is then obtained as T = BTr, where B is the number of bits processed in 1/Tr time.

To maximize the throughput, one obviously needs to decrease both N and tcp. Typi-
cally, there are plenty of trade-offs to explore in order to make an optimal (in this case
fastest) design. To make an objective comparison, we distinguish between designs that
aim at the shortest critical path and the ones that achieve the minimum number of clock
cycles. We address each of them separately, in the coming subsections.

4.1 Optimization Goal: Shortest Critical Path

A modular multiplier based on the BMM algorithm, depicted in Fig. 2, consists of four
multiple-precision multipliers (πH1, πH2, πL1, πL2). Apart from the multipliers, the ar-
chitecture contains some additional adders (ΣL, ΣH and Σ). The multiple-precision
multipliers are implemented in a digit-serial manner which typically provides a good
trade-off between area and speed. The multipliers πH1 and πH2 assemble together the
Barrett modular multiplier that processes the most significant half of Y (that is YH ).
Similarly, the multipliers πL1 and πL2 form the Montgomery modular multiplier that
processes the least significant half of Y (that is YL). The results of both multipliers are
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finally added together, resulting in Z = XY r−k mod M . The parameters k and α are
chosen such that the execution speed is maximized and the number of correction steps
is minimized: k =

⌊
nw/2

⌋
and α = w + 3.

A choice of the specific architecture is based on the following criteria. The two levels
of parallelism are exploited such that the number of clock cycles needed for one mod-
ular multiplication is minimized. First, the BMM algorithm itself is constructed such
that the Barrett part and the Montgomery part of the multiplier work independently, in
parallel. Second, the multiple-precision multipliers πH1 and πH2 in the Barrett part,
and πL1 and πL2 in the Montgomery part operate with the independent data such that
they run in parallel and speed-up the whole multiplication process. The critical path is
minimized and consists of one multiplexer, a single-precision multiplier and an adder
(bold line, Fig. 2).
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Fig. 2. Datapath of the modular multiplier with the shortest critical path based on BMM method

In order to avoid any ambiguity we provide a graph in Fig. 3 which shows the exact
timing schedule of separate blocks inside the multiplier. With i (0 ≤ i < k) we denote
the current iteration of the algorithm. Each iteration consists of nw + 3 clock cycles
except the first iteration that lasts for nw + 1 cycles.

4.2 Optimization Goal: Minimum Number of Clock Cycles

In order to minimize the number of clock cycles needed for one modular multiplication,
the architecture from Fig. 2 is modified as depicted in Fig. 4. Two single-precision
multipliers (πH3 and πL3), consisting only of a pure combinatorial logic, are added
without requiring any clock cycles for calculating their products.
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πH1
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Fig. 3. Timing schedule of the BMM multiplier with the shortest critical path
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Fig. 4. Datapath of the modular multiplier with the minimized number of clock cycles based on
BMM method

We again provide a graph in Fig. 5 which shows the timing schedule of the multiplier.
Each iteration now consists of nw + 2 clock cycles except the first that lasts for nw + 1
cycles.

The critical path of the whole design occurs from the output of the register ZH to the
input of the temporary register in πH1, passing through two single-precision multipliers
and one adder (bold line).

4.3 Proposed Multiplier

An architecture of the modular multiplier based on the BMM method with the moduli
from the proposed set (see Algorithm 3) is shown in Fig. 6. The most important dif-
ference is that there are no multiplications with the precomputed values and hence, the
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πH1
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Fig. 5. Timing schedule of the BMM multiplier with the minimized number of clock cycles
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Fig. 6. Datapath of the modular multiplier based on BMM method with the modulus from the
proposed set

critical path contains one single-precision multiplier and one adder only. A full timing
schedule of the multiplier is given in Fig. 7. The number of cycles remains the same as
in the architecture from Fig. 4 while the critical path reduces.

4.4 Results

To show this in practice, we have synthesized 192-bit, 512-bit and 1024-bit multipliers,
each with the digit size of 16, 32 and 64 bits. The designs were synthesized using UMC
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Fig. 7. Timing schedule of the proposed BMM multiplier

0.13 μm CMOS High-Speed standard cell library with Synopsys Design Vision version
C-2009.06-SP3. The results are given in Table 1.

Observing the implementation results, we conclude that our proposed design out-
performs the standard BMM design with the shortest critical path for at most 18 %. A
design that is based on standard BMM with the minimum number of clock cycles is
outperformed by at most 67 %. Furthermore, our design consumes less area than all its
counterparts.

5 On the Security of the Proposed Set

In this section we analyze the security implications of choosing primes in the proposed
set for use in ECC/HECC and in RSA.

In the current state of the art, the security of ECC/HECC over finite fields GF(pm)
only depends on the extension degree m of the field [2]. Therefore, the security does
not depend on the precise structure of the prime p. This is illustrated by the particular
choices for p that have been made in several standards such as SEC [21], NIST [16],
ANSI [1]. In particular, the following primes have been proposed: p192 = 2192−264−1,
p224 = 2224 − 296 + 1, p256 = 2256 − 2224 + 2192 + 296 − 1, p384 = 2384 − 2128 −
296 +232−1, and p521 = 2521−1. It is easy to verify that for w ≤ 28 all primes except
p224 are in S. In conclusion: choosing a prime of prescribed structure has no influence
on the security of ECC/HECC.

The case of RSA requires a more detailed analysis than ECC/HECC. First, we as-
sume that the modulus N is chosen from the proposed set. This is a special case of the
security analysis given in [12] followed by the conclusion that the resulting moduli do
not seem to offer less security than regular RSA moduli.

Next, we assume that the primes p and q that constitute the modulus N = pq are
both chosen in the set S. To analyze the security implications of the restricted choice
of p and q, we first make a trivial observation. The number of n-bit primes in the set
S for n > 259 + 2w is large enough such that the exhaustive listing of these sets is
impossible, since a maximum of 2w + 3 bits are fixed.



Speeding Up Bipartite Modular Multiplication 177

Table 1. Synthesis results for the hardware architectures of 192-bit, 512-bit and 1024-bit modular
multipliers

Design n w Area tcp N Tr

[bit] [bit] [kGE] [ns] [MHz]

16 48.20 2.94 178 1.91
192 32 85.66 4.46 52 4.31

64 212.40 7.29 16 8.57
16 96.31 3.17 1118 0.28

Fig. 2 512 32 134.10 4.79 302 0.69
64 259.84 7.49 86 1.55
16 177.93 3.33 4286 0.07

1024 32 208.59 5.19 1118 0.17
64 356.37 7.46 302 0.44

16 50.17 4.34 167 1.38
192 32 84.25 6.81 47 3.12

64 220.73 12.16 14 5.87
16 97.44 4.28 1087 0.21

Fig. 4 512 32 127.33 6.95 287 0.50
64 271.54 12.43 79 1.02
16 169.49 4.48 4223 0.05

1024 32 198.01 6.91 1087 0.13
64 341.59 12.22 287 0.29

16 44.65 2.92 167 2.05
192 32 83.14 4.18 47 5.09

64 204.73 7.25 14 9.85
16 95.23 3.10 1087 0.30

Fig. 6 512 32 137.41 4.37 287 0.80
64 247.35 7.45 79 1.70
16 183.01 3.16 4223 0.07

1024 32 211.07 4.71 1087 0.20
64 346.40 7.45 287 0.47

The security analysis then corresponds to attacks on RSA with partially known fac-
torization. This problem has been analyzed extensively in the literature and the first
results come from Rivest and Shamir [19] in 1985. They describe an algorithm that
factors N in polynomial time if 2/3 of the bits of p or q are known. In 1995, Copper-
smith [5] improves this bound to 3/5.

Today’s best attacks all rely on variants of Coppersmith’s method published in 1996
[7,6]. A good overview of these algorithms is given in [13]. The best results in this
area are as follows. Let N be an n bit number, which is a product of two n/2-bit
primes. If half of the bits of either p or q (or both) are known, then N can be factored in
polynomial time. If less than half of the bits are known, say n/4 − ε bits, then the best
algorithm simply guesses ε bits and then applies the polynomial time algorithm, leading
to a running time exponential in ε. In practice, the values of w (typically w ≤ 64) and
n (n ≥ 1024) are always chosen such that our proposed moduli remain secure against
Coppersmith’s factorization algorithm, since at most 2w + 3 bits of p and q are known.
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Finally, we consider a similar approach extended to moduli of the form N = prq
where p and q have the same bit-size. This extension was proposed by Boneh, Durfee
and Howgrave-Graham [4]. Assuming that p and q are of the same bit-size, one needs
a 1/(r + 1)-fraction of the most significant bits of p in order to factor N in polynomial
time. In other words, for the case r = 1, we need half of the bits, whereas for e.g. r = 2
we need only a third of the most significant bits of p. These results show that the primes
p, q ∈ S, assembling an RSA modulus of the form N = prq, should be used with care.
This is especially true when r is large. Note that if r ≈ log p, the latter factoring method
factors N in polynomial time for any general primes p, q ∈ N.

6 Conclusion

A set of moduli for which the performance of bipartite modular multiplication con-
siderably increases is proposed in this work. The size of the set is determined by the
digit-size and the length of the modulus. Since the security level of ECC/HECC does
not depend at all on the precise structure of the prime p, our proposed set is safe to be
used for constructing underlying fields in elliptic curves cryptography. The case of RSA
is also discussed with a conclusion that if used with care (w ≤ 64 and n ≥ 1024) our
proposed set does not decrease the security of RSA.

Additionally, we propose an architecture for a modular multiplier that is based on
our method. The results show that, concerning the speed, our proposed architecture
outperforms the modular multiplier based on standard BMM method with no additional
area overhead.
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Abstract. A cryptographic pairing evaluates as an element of a finite
extension field, and the evaluation itself involves a considerable amount
of extension field arithmetic. It is recognised that organising the exten-
sion field as a “tower” of subfield extensions has many advantages. Here
we consider criteria that apply when choosing the best towering con-
struction, and the associated choice of irreducible polynomials for the
implementation of pairing-based cryptosystems. We introduce a method
for automatically constructing efficient towers for more classes of finite
fields than previous methods, some of which allow faster arithmetic.

We also show that for some families of pairing-friendly elliptic curves
defined over Fp there are a large number of instances for which an efficient
tower extension Fpk is given immediately if the parameter defining the
prime characteristic of the field satisfies a few easily checked equivalences.
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1 Introduction

When considering the software implementation of a cryptographic scheme such
as RSA, or schemes based on the discrete logarithm problem, an implementation
can be written which performs reasonably efficiently for any level of security.
For example, an RSA implementation with a 1024-bit modulus can easily be
modified to use a 4096-bit modulus, maybe by just changing a single parameter
within the program. The same applies to elliptic curve cryptography where a
generic implementation will perform reasonably well for a curve with a subgroup
of points of size 160-bits, 192-bits or 256-bits. Of course an implementation
specially tailored for, and hard-wired to, a particular level of security will perform
somewhat better, but not spectacularly so.

The situation for pairing-based cryptography is fundamentally different. An
efficient implementation at the 80-bit level of security using the Tate pairing on
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a Cocks-Pinch pairing-friendly curve [10] will be completely different from an
implementation at the 128-bit level using the R-ate [16] pairing on a BN curve
[6] and very little code will be reusable between the two implementations. In
this situation the development and maintenance of good quality pairing code
becomes difficult and there is a compelling case for the development of some
kind of automatic tool – a cryptographic compiler – which can generate good
quality code for each case [9].

When using pairing-based protocols, it is necessary to perform arithmetic in
fields of the form Fqk , for moderate values of k, so it is important that the field
is represented in such a way that the arithmetic can be performed as efficiently
as possible. It is this aspect of the implementation of pairing-based protocols
which is the focus of this paper. The first contribution of this work is to prove a
result which gives a method of checking if a binomial defined over an extension
field is irreducible by testing a single element in the base field. This result gives a
new method which complements the existing method and gives a means for au-
tomatically constructing efficient towers of extensions of finite fields in the cases
for which the existing method can not be used or do not give the most efficient
algorithms. The resulting constructions are efficient and the usefulness of these
results will be shown by the specific application to pairing-based cryptography.
The second contribution of this work is to give some constant constructions for
the tower extensions for classes of families of pairing-friendly curves.

The remainder of the paper is organised as follows: in §2 the motivation for the
work in this paper will be reinforced. In §3 the specific context will be presented.
Some existing ideas for constructing tower extensions are briefly explained in §4.
A general result to use in the construction of tower extensions for general fields
is given in §5 which is applied to the context of PBC in §6. In §6.2 Euclid’s
conjectures will be presented and used to give concrete tower constructions for
some specific families of pairing-friendly curves. In §7 the selection of appro-
priate polynomials for implementation will be discussed. In §8 we draw some
conclusions.

2 Extension Fields

Consider the implementation of the extension field Fpk . The natural repre-
sentation of the elements of this field is as polynomials of degree k − 1,
Fpk = Fp[x]/f(x)Fp[x], where f(x) is an irreducible polynomial in Fp[x] of de-
gree k. For efficiency reasons some effort might be made to choose f(x) to have
a minimal number of terms and small coefficients. For example, for the field Fp2 ,
where p is a prime and p ≡ 3 mod 4, a good choice for f(x) would be x2 + 1,
and elements can be represented as ax + b, with a, b ∈ Fp. For the case p ≡ 5
mod 8, a good choice for f(x) would be x2 − 2. For the final case p ≡ 1 mod 8
there is no immediately obvious way to choose a suitable irreducible binomial,
but for some small value i which is a quadratic non-residue in Fp, x2 − i would
be appropriate.

In some settings the value of the extension degree k might be much greater
than 2, in which case the direct polynomial representation becomes more
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arithmetically complex. For elliptic curve cryptography implemented over “Op-
timal Extension Fields”, (OEFs) as suggested by Bailey and Paar [3], extensions
as high as Fp30 are considered; in pairing-based cryptosystems, an extension de-
gree of up to 50 is reasonable [10]. OEFs are usually defined as extensions with
respect to a small single-word pseudo-mersenne prime. The extension fields that
arise in the context of efficient implementations of pairing-based cryptography,
however, are rather different.

If the extension degree is a parameter of the implementation then the poten-
tially uncomfortable situation arises where, if the extension degree changes, an
optimal implementation must be re-written again, largely “from scratch”. The
alternative seems to be to use generic polynomial code to construct the exten-
sion field, making the implementation slow and bulky. A nice compromise that
applies when the extension k is smooth (that is has only small factors) is to use a
“tower” of extensions, where one layer builds on top of the last, and ideally where
each sub-extension is quite small. For example, Fp12 could be implemented as a
quadratic extension, of a cubic extension, of a very efficiently implemented (and
reusable) quadratic extension field Fp2 , as implemented by Devegili et al. [8].

This idea of using a tower of extensions was suggested by Baktir and Sunar
[19] as a better way of implementing OEFs, and in the process of doing this
they discovered that the resulting simpler implementation resulted in an asymp-
totically improved method for performing field inversion. The point is that it is
relatively easy to implement quadratic and cubic extensions efficiently, whereas
the complexity of implementing generic methods over large extensions might
result in the inadvertent use of sub-optimal methods.

It is also proposed in the IEEE draft standard “P1363.3: Standard for Identity-
Based Cryptographic Techniques using Pairings” that extensions of odd primes
are constructed using a tower of extensions created using irreducible binomials
at each stage [1].

Clearly it is advantageous to use this towering method when implementing a
pairing-based protocol. One issue remains: finding the best tower for a particular
value of k. Obviously, for different values of k, we will need to use different towers;
a very reasonable approach in the context of Pairing-Based Cryptography (PBC)
would be to fix the tower for a particular k. This will be made clear in §6.

The construction does not only depend on k however, but also on p, the
characteristic of the base field. There is an existing method for constructing such
towers given by Koblitz and Menezes in [15] which can only be used for some
p with specific properties, so relying on this method alone places unnecessary
restrictions on the parameters of a pairing-friendly curve. Given that pairing-
friendly elliptic curves are quite rare, it is clear that we should aim to reduce the
number of constraints on the parameters that may compromise the efficiency of
the implementation.

Motivating this work is our ambition to contribute to a “cryptographic com-
piler” [9], that is, a compiler which when given as input the parameters for
a pairing-friendly curve, should be able to automatically generate the optimal
pairing code, including the optimal field arithmetic implementation.
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3 Pairings and Pairing-Friendly Elliptic Curves

The Tate pairing of two linearly independent points P and Q on an elliptic curve
E(Fqk), denoted e(P, Q), evaluates as an element of the extension field Fqk . If
P is of prime order r, then the pairing evaluates as an element of order r. Here
we focus on the case of non-supersingular elliptic curves over prime fields, that
is, q = p. In practice it is common to choose P as a point on the elliptic curve
over the base field, E(Fp). As is well known, the number of points on this elliptic
curve is p + 1 − t, where | t |≤ 2

√
p (Hasse bound) is the trace of the Frobenius

endomorphism [23].
The Tate pairing is only of interest if it is calculated on a “pairing-friendly”

elliptic curve. This pairing-friendliness entails that r | (pk − 1) for some rea-
sonably small value of k, that is, the rth roots of unity in Fp are contained in
Fpk , the codomain of the pairing. To find the actual parameters of the curve,
however, it is also required that the integer 4p − t2 (always positive as a con-
sequence of the Hasse condition), has a relatively small non-square part D (the
CM discriminant), that is it factors as Dv2 for small D. Such curves can then
be found using the method of complex multiplication (CM) [7].

For the Tate pairing the point Q is commonly represented as a point over
some twist E′(Fpk/d), where d | k, as opposed to being on the curve defined over
the full extension field E(Fpk). When k is even, the quadratic twist (d = 2) can
always be used, when the pairing-friendly curve has a CM discriminant of D = 1
and 4 | k, the quartic twist (d = 4) can be used, if D = 3, 3 | k and k is odd,
cubic twists (d = 3) can be used and when the CM discriminant is D = 3 and
6 | k, the sextic twist (d = 6) can be used. It is preferable to use the highest
order twist available, as this leads to a faster more compact implementation [13].

Variants of the Tate pairing have recently been discovered (the ate pairing
[13], and the R-ate pairing [16]) that are more efficient in some cases, but which
require the roles of P and Q to be reversed. This makes it even more important to
use the highest order twist available as a significant part of the pairing calculation
is a point multiplication of the first parameter (now Q), which is more expensive
than in the Tate pairing.

In their taxonomy of pairing-friendly curves [10], Freeman, Scott and Teske,
following a recommendation from Koblitz and Menezes [15, §8.3], particularly
recommend curves for which the embedding degree k is of the form k = 2i · 3j

for i, j ≥ 0. Here we further restrict that i ≥ 1, j ≥ 0 as an even value for k
facilitates the important “denominator elimination” optimization for the pairing
calculation [4]. In each case we prefer curves which support the maximal twist.

4 Existing Ideas for Constructing General Towers

Let p be an odd prime, and let n, m > 0 be integers. the most obvious way to
construct the tower of sub-extensions of the field Fpnm over Fpn would be to use
a binomial xm −α which is irreducible over Fpn and successively adjoin roots of
the previously adjoined root until the tower has been constructed (we refer to
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this as the ‘general method’). We are able to test xm −α for irreducibility using
the following theorem:

Theorem 1. [18, Theorem 3.75] Let m ≥ 2 be an integer and α ∈ F
×
pn. Then

the binomial xm − α is irreducible in Fpn [x] if and only if the following two
conditions are satisfied:

1. each prime factor of m divides the order e of α ∈ F
×
pn , but not (pn − 1)/e;

2. If m ≡ 0 mod 4 then pn ≡ 1 mod 4.

The order of γ ∈ Fpn is the smallest positive integer e such that γe = 1 in Fpn

and the order is a divisor of pn − 1.
By Theorem 1 we see that the general method above works for all m �≡ 0

mod 4. When m ≡ 0 mod 4, this method works if pn ≡ 1 mod 4.
Given the constraints outlined in §3, it is clear that the tower of extensions

used in pairing-based cryptography can be built using a sequence of cubic and
quadratic sub-extensions. This was recognised by Koblitz and Menezes in [15].
They called a field Fpk pairing-friendly (not to be confused with a pairing friendly
elliptic curve) if p ≡ 1 mod 12 and k is of the form k = 2i3j, in which case by
[15, Theorem 2] (which is derived from Theorem 1 above) the polynomial xk −α
is irreducible over Fp if α neither a square not a cube in Fp. The extension can
be constructed using the general method by simply adjoining a cube or square
root of some small such α and then successively adjoining a cube or square root
of the previously adjoined root until the tower has been constructed. If j = 0
then it is sufficient that p ≡ 1 mod 4 and that α be a quadratic non-residue in
Fp. This result gives us an easy method for building towers over pairing-friendly
fields: simply find an element α ∈ Fp which is a quadratic and (when necessary)
cubic non-residue and adjoin successive cube and square roots of α to Fp.

There is one major issue remaining, the strict condition that p ≡ 1 mod 12
to give a pairing-friendly field. When searching for pairing-friendly curves of a
suitable size there are typically other criteria that we wish to meet (for example,
it is preferred that the Hamming weight of the variable that controls the Miller
loop in the pairing calculation should be as small as possible [8]). Having to
skip a nice curve just because p ≡ 3 mod 4 seems unnecessarily restrictive.
Since the publication of [15], new families of pairing-friendly elliptic curves have
been discovered which the results of [15] could not have taken into account.
In particular, the KSS curves with embedding degree k = 18 [14] are good for
implementation given the many optimisations possible using these curves. The
condition that p ≡ 1 mod 12 here is completely unnecessary as this condition
arises from condition 2 of Theorem 1 which is not applicable when k = 18.

Given the many applications of pairings in cryptography and the fact that
the parameters of a pairing-based protocol are already subject to quite strict
constraints, it is clear that there is a necessity for a method to construct towers
for fields which would not be considered pairing-friendly (in the sense of Koblitz
and Menezes) but would otherwise be favourable for implementation of a pairing-
based protocol. The term ‘pairing-friendly’ field is slightly misleading, as there
are families of pairing-friendly elliptic curves attractive for implementation which
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are defined over fields which do not necessarily satisfy p ≡ 1 mod 12. In a sense,
the pairing-friendly fields of [15] are the fields, in the context of pairings, over
which it is easy to build the towers. We instead refer to these fields as towering-
friendly as this gives a more accurate description of these fields – the towers over
such fields are easily constructed. This definition is not specific to pairings, but
in this setting we would like to use towering-friendly fields for the most efficient
implementation possible.

Definition 2. A towering-friendly field is a field of the form Fqm , where q is a
prime power, for which all prime divisors of m also divide q − 1.

In essence, towering-friendly fields are fields for which the tower of sub-extensions
can be easily (and most efficiently) constructed; that is, using binomials. The
OEFs of Bailey and Paar [3] are by definition towering-friendly fields with charac-
teristic a prime of a special form. The fields said to be pairing-friendly by Koblitz
and Menezes are indeed towering-friendly, but these are not the only towering-
friendly fields which occur in the context of pairing-based cryptography.

5 General Tower Construction Method

Considering first the general case where p is an odd prime, n > 0 and m > 1 are
integers and we want to construct the tower of sub-extensions of the towering-
friendly finite field Fpnm over Fpn . The general method uses a binomial xm − α
which is irreducible in Fpn [x] and successively adjoins roots of the previously
adjoined root until the tower has been constructed, as in [19]. By Theorem 1
the only restriction on α is that α should not be a qth power in Fpn for any
prime divisor q of m. This method works for all m, m �≡ 0 mod 4. When m ≡ 0
mod 4, this method will work if pn ≡ 1 mod 4 (which is always true for even n).

The two issues to address now are:

– we need a method to build a tower when m ≡ 0 mod 4 and pn ≡ 3 mod 4;
– we need to find a suitable irreducible binomial xm −α ∈ Fpn [x] to construct

the tower.

The first problem has a relatively simple solution. We construct first a quadratic
extension of Fpn , Fp2n , which we will refer to as a base tower, using a binomial.
We now have p2n ≡ 1 mod 4 so we can use the general method to build the
rest of the tower above Fp2n using a binomial xm/2 − α, where α ∈ Fp2n (not
in Fpn). In the particular case of n = 1 this can be done by simply adjoining a
square root of −1. This idea is a generalisation of the approach taken by Barreto
and Naehrig in [6] to construct the field Fp12 over Fp. They first implement an
efficient quadratic extension over the base field, and then look for irreducible
polynomials of the form x6 − α, where α ∈ Fp2/Fp is neither a square nor a
cube.

Remark 3. The idea of a base tower can be generalised: Suppose Fpnm over Fpn

is not a towering-friendly field. Write m = m1m2 such that gcd(pn − 1, m2) = 1
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and all the primes dividing m1 divide pn − 1. If all the primes dividing m2

divide pnm1 − 1 then the tower of Fpnm over Fpn can be constructed in two parts
using the general method. First Fpnm1 over Fpn is constructed using a binomial,
this is the base-tower. Then Fpnm = Fpnm1m2 over Fpnm1 is constructed using a
binomial defined over Fpnm1 (not over any subfield of Fpnm1 ). This method can be
implemented recursively to achieve an efficient tower for a non-towering-friendly
extension.

As to the problem of finding a suitable α for constructing the tower (and also
the base tower when necessary), Theorem 1 provides a means for determining
whether a given binomial is irreducible, but it does not give an efficient method
for constructing the towers: taking random small elements then computing their
order in the extension field and verifying that the conditions hold is quite cum-
bersome, the order could be quite large and this could require a lot of extension
field computation for a single element. Using Theorem 1, however, we are able
to prove a theorem which results in a simpler method for checking the irre-
ducibility of a polynomial xm − α in certain cases and hence a more practical
method for finding irreducible polynomials to construct the towering-friendly
field extensions, particularly in the context of PBC.

We first recall some definitions and properties which will be used in the fol-
lowing theorems and proof: Let γ ∈ Fpn . The Norm of Fpn over Fp of γ, denoted
NFpn/Fp

(γ), is the product of all its conjugates,

NFpn/Fp
(γ) =

n−1∏

i=0

(γ)pi ∈ Fp.

The norm is multiplicative, that is, for γ1, γ2 ∈ Fpn ,

NFpn/Fp
(γ1 · γ2) = NFpn/Fp

(γ1) · NFpn/Fp
(γ2)

and so for any � ∈ Z
+ we have NFpn/Fp

(γ�) = NFpn/Fp
(γ)�.

Theorem 4. Let m > 1, n > 0 be integers, p an odd prime and α ∈ F
×
pn .

The binomial xm − α is irreducible in Fpn [x] if the following two conditions are
satisfied:

1. Each prime factor q of m divides p − 1 and NFpn/Fp
(α) ∈ Fp is not a qth

residue in Fp;
2. If m ≡ 0 mod 4 then pn ≡ 1 mod 4.

Proof. To prove this theorem, we show that condition 1 of Theorem 4 implies
condition 1 of Theorem 1. We assume that condition 1 of Theorem 4 is true. Let
e denote the order of α in Fpn and q denote a prime divisor of m.

Suppose that q | (pn − 1)/e. This implies that e | (pn − 1)/q and so α is a qth
power in Fpn . Let δ ∈ Fpn be such that δq = α. Taking the norm of α we see
that NFpn/Fp

(α) = NFpn/Fp
(δq) = NFpn/Fp

(δ)q where NFpn/Fp
(δ) ∈ Fp and thus

NFpn/Fp
(α) is a qth residue in Fp, a contradiction, so q � (pn − 1)/e.

We have also assumed that q | (pn − 1) and since q � (pn − 1)/e it is clear that
q | e and so condition 1 of theorem 4 is satisfied.
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Using Theorem 4 we are able to verify the irreducibility of a binomial xm − α
over an extension field Fpn [x], where α is an element of Fpn , by checking the
properties of just one particular element of the base field, namely the norm
of Fpn over Fp of α – a much simpler task than computing the order of an
element in Fpn . Theorem 4 can be used in all cases for which the prime divisors
of m also divide p − 1 to automatically generate towers of extensions over all
towering-friendly fields to build an efficient tower of extensions for the extension
field Fpnm . As already mentioned, if condition 2 of Theorem 1 is not satisfied,
the towers can still be easily constructed by first constructing a base tower, a
quadratic extension, then using the theorem to construct the tower over the base
tower.

We now illustrate the usefulness of Theorem 4 by adapting it to the context
of PBC as outlined in §3.

6 Towers in Pairing-Based Cryptography

Given the constraints outlined in §3, it is clear that the tower of extensions can
be built as a sequence of quadratic and cubic sub-extensions. There is some
freedom as to the best way to order the extensions. The choice here may be
influenced by whether or not it is intended to compress the value of the pairing
[21,12]. This compressed value can then be further efficiently exponentiated in
its compressed form by using Lucas or XTR based methods for times 2 and times
3 compression respectively. This is facilitated by terminating with a quadratic
or a cubic extension respectively.

Consider for example the BN curves [6], which have an embedding degree of
12 and which support the sextic twist t = 6. In this case E(Fp2) arithmetic must
be supported, and so it makes sense that the tower should start with a quadratic
extension over the base field. This can be followed by a cubic extension and then
a quadratic, or indeed the other way around. Assuming that the highest possible
compression should be supported, the tower of choice in this case is 1−2−4−12.
This particular tower construction is given as an example by the IEEE draft
standard [1]. Starting with a quadratic extension where possible is preferred (in
case a base tower is needed). Taking all these constraints into account, in Table
1 we make the towering recommendations for the curves recommended in [10].

The ρ-value is given by log(p)
log(r) for p the characteristic of the field over which

the curve is defined and r the cardinality of the group of points on the elliptic
curve.

There have been some advances in arithmetic performance in Fpk based on
the final extension being a quadratic extension [2]. Such towers can also be
constructed using our method.

6.1 Tower Construction for PBC

From the definition of towering-friendly fields we are only able to distinguish
on a specific case-to-case basis if a general extension field is a towering-friendly
field.
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Table 1. Suggested Towers for Curves with Efficient Arithmetic

k ρ D Twist d Construction Tower

4 2 1 4 FST [10] 1-2-4
6 2 3 6 FST [10] 1-2-6
8 1.5 1 4 KSS [14] 1-2-4-8
12 1 3 6 BN [6] 1-2-4-12
16 1.25 1 4 KSS [14] 1-2-4-8-16
18 1.333 3 6 KSS [14] 1-3-6-18
24 1.25 3 6 BLS [5] 1-2-4-8-24
32 1.125 1 4 KSS [14] 1-2-4-8-16-32
36 1.167 3 6 KSS [14] 1-2-6-12-36
48 1.125 3 6 BLS [5] 1-2-4-8-16-48

In the PBC setting we have a little more information. We are able to determine
information about some of the parameters for particular curves in advance by
making some observations. We see from the following discussion that all the
fields Fpk arising when using the families of pairing-friendly curves in Table 1
are towering-friendly.

Elliptic curves with CM discriminant D = 1. Elliptic curves from Table
1 with CM discriminant D = 1 have equations of the form E : y2 = x3 +Ax. We
know that these curves are not supersingular (which is the case for curves with
such equations defined over a prime field with characteristic p ≡ 3 mod 4 [7])
and so p ≡ 1 mod 4. This means that the field is towering-friendly as all D = 1
cases in Table 1 have k = 2n so the Koblitz-Menezes strategy appears to be
optimal. Indeed, in the case of p ≡ 5 mod 8 we can always choose α = 2, which
leads to fast reduction. An implementation can simply tower up quadratically, by
adjoining the square root of the last adjoined element to build the next extension
at each step.

Elliptic curves with CM discriminant D = 3. For elliptic curves with
CM discriminant D = 3, p will not always be a pairing-friendly prime in the
sense of the Koblitz and Menezes definition, but we do have some information
which will aid us in the construction of the towers over Fp. Given that the CM
discriminant D = 3, we know that the elliptic curve must have an equation of the
form E : y2 = x3 +B. If p ≡ 2 mod 3 then such a curve would be supersingular
[23] and so p ≡ 1 mod 3 must be true. We see then that all the fields resulting
from this construction are towering-friendly.

For the KSS k = 18 curves and FST k = 6 curves we are able to use the
general method in every case without a base tower (as k �≡ 0 mod 4 and both
2 and 3 divide p− 1). We simply adjoin successive cubic and quadratic roots of
some cubic and quadratic non-residue α ∈ Fp in the recommended order.

For all other families of curves, if the prime p �≡ 1 mod 4 then we need to use
a base tower to construct the tower. One advantage in this case is that we know
p ≡ 3 mod 4 and so the base tower Fp2 over Fp can be efficiently constructed
by adjoining a square root of −1. This may actually be more efficient than an
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implementation using a pairing-friendly field as the arithmetic in Fp(
√−1) can

be performed faster than in Fp(
√

τ) for some other quadratic non-residue τ ∈ Fp

[11]. The following Corollary (drawing on ideas from Barreto and Naehrig in
[6]) gives a method for finding an appropriate value α such that the polynomial
xm − α is irreducible over a finite field of the form Fp2 = Fp(

√−1).

Corollary 5. The polynomial xm− (a± b
√−1) is irreducible over Fp2 , for m =

2i3j, i, j > 0, if a2 + b2 is neither a square nor a cube in Fp.

Proof. For any element a±b
√−1, NFp2/Fp

(a±b
√−1) = (a+b

√−1)(a−b
√−1) =

a2+b2. The integer m is of the form 2i3j and so by Theorem 4 if a2+b2 is neither
a quadratic nor a cubic residue modulo p, then xm − (a ± b

√−1) is irreducible
over Fp2 .

This Corollary is basically Theorem 4 in the case p ≡ 3 mod 4, n = 2 and
m = k/2, this is the case of most concern in PBC. Using this corollary, in order
to construct the tower, small values of a and b can be tested until a combination
is found such that a2 + b2 is neither a square nor a cube in Fp. This process
only requires a few cubic and quadratic non-residue tests to be performed on
elements of the base field. Small values for a and b can be found to help improve
efficiency.

As 1
2 of the non-zero elements of Fp are non-squares and 2

3 of the non-zero
elements are non-cubes, such an element must exist; in fact, on heuristic grounds
it is expected that 1

3 of the elements will be neither squares nor cubes, which
the experimental evidence supports [6].

Given a little more information about p, which is easily found, we are able to
give some more specific constructions.

Construction 6. For approximately 2/3 of the primes p ≡ 3 modulo 8 the
polynomial xm − (1 +

√−1) is irreducible in Fp2 [x] for m = 2i3j, i, j > 0.

Proof. In this case a2+b2 = 2. The polynomial will be irreducible if 2 is neither a
square nor a cube modulo p. We know that 2 is a quadratic non-residue modulo
p when p ≡ 3 mod 8. The only remaining condition is that 2 is not a cube
modulo p.

All primes p ≡ 1 mod 3 can be written in the form p = 3u2 + v2. As Euler
conjectured (proved by Gauss [17]) 2 is a cubic residue modulo p if and only if
3 | u. Instinctively we would presume that this occurs 1/3 of the time. There is
currently no proof concerning the number of primes in a quadratic sequence but
this is supported by experimental results. So 2 is a cubic non-residue modulo p
for approximately 2/3 of the values of p.

When p ≡ 7 mod 8 the following corollary may be useful:

Construction 7. For approximately 2/3 of the primes p ≡ 2 or 3 modulo 5 the
polynomial xm − (2 +

√−1) is irreducible in Fp2 [x] for m = 2i3j, i, j > 0.1

1 In this case, the polynomial xm − (1 + 2
√−1) is also irreducible.



190 N. Benger and M. Scott

Proof. The values of a and b in Corollary 5 in this case are 2 and 1 respectively,
so a2 + b2 = 5. The polynomial will be irreducible if 5 is neither a square nor
a cube modulo p. When p ≡ 2 or 3 modulo 5 we know that 5 is a quadratic
non-residue modulo p and so the only condition left is that 5 should not be a
cube in Fp. With p written in the form p = 3u2 + v2, we know that 5 is a cube
if 15 | a, or 3 | a and 5 | b, or 15 | (a ± b), or 15 | (a ± 2b) [17]. Again, there is
currently no proof concerning the number of primes in a quadratic sequence but
as supported by experimental results we expect that this occurs 1/3 of the time.
So 5 is a cubic non-residue modulo p for approximately 2/3 of the values of p.

The result of Constructions 6 and 7 is that for around 2/3 of the fields not
considered pairing-friendly we have a more automatic and often more efficient
implementation than is possible for pairing-friendly fields.

6.2 Using Euler’s Conjectures

For primes which are equivalent to 2 mod 3 it is easily shown that every element
is a cubic residue modulo p. For primes which are 1 mod 3 Fermat showed that
p can be written as the sum p = a2 + 3b2 for some integers a and b. Euler
conjectured (and Gauss proved) that using this form we can easily determine if
some small elements are cubic residues [17]:

1. 2 is a cubic residue ⇔ 3 | b.
2. 3 is a cubic residue ⇔ 9 | b; or 9 | (a ± b).
3. 5 is a cubic residue ⇔ 15 | b; or 3 | b and 5 | a; or 15 | (a± b); or 3 | (2a± b).
4. 6 is a cubic residue ⇔ 9 | b; or 9 | (a ± 2b).
5. 7 is a cubic residue ⇔ 21 | b; or 3 | b and 7 | a; or 21 | (a± b); or 7 | (a± 4b);

or 7 | (2a ± b).

These conjectures can be used once p has been constructed to decide if construc-
tions 6 or 7 can be used. For some cases we have this information already.

BN Towers. The prime characteristic p of the field over which a BN curve is
defined is parameterised by the polynomial p(x) = 36x4 + 36x3 + 24x2 + 6x + 1;
an appropriate value x0 is chosen to give p = p(x0). It was noticed by Shirase
[22] that this parameterisation can be written in the form p(x) = a(x)2 +3b(x)2

thus giving us more information about the towers we can construct for certain
values of x0 without having to perform the quadratic and cubic residue tests
modulo p. We have a(x) = 6x2 + 3x + 1 and b(x) = x. With this additional
information, we now see that we are able to use Theorem 4 to put conditions on
the values of x0, which, when satisfied, give an immediate construction for the
tower of fields of degree 12 over BN primes.

Considering first BN primes p ≡ 3 mod 4 we know that x0 ≡ ±1 mod 4 and
that we have a towering friendly field which requires a base tower Fp2 which
can be constructed by adjoining

√−1 to Fp. We now need to find an element
a+b

√−1 ∈ Fp2 such that x6−(a+b
√−1) is irreducible to construct the remaining

extensions. From Corollary 5 we know that x6 − (a + b
√−1) is irreducible if
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a2 + b2 is neither a square nor a cube in Fp. We know from the conjecture 1
that if x0 ≡ ±1 mod 3 then 2 is a cubic non-residue modulo p. For 2 to be
a non-quadratic residue also we need p ≡ 3 mod 8, this implies that x0 ≡ 3
mod 4. Together, these two constraints give the following:

– If x0 ≡ 7 or 11 mod 12 then x6 − (1 +
√−1) is irreducible over Fp2 =

Fp(
√−1).

In [22] the same conclusion is drawn, but using a much more elaborate method.
We see that this result supports the claim in Construction 6 as 2/3 of the possible
values of x0 (for p ≡ 3 mod 8) give a p for which 2 is a quadratic non-residue.

Using Theorem 4 we are also able to classify more constructions than those
given in [22]. Using a similar method as above:

– If x0 is odd and x0 ≡ 1, 3, 7, 11, 12 or 13 mod 15 then x6 − (1 + 2
√−1) is

irreducible over Fp2 = Fp(
√−1).

Using Euler’s conjectures it is also straight forward to set construction for BN
primes p ≡ 1 mod 4 not needing a base tower.

– If x0 �≡ 0 mod 3 and x0 ≡ 2, 6 mod 8 then x12 − 2 is irreducible;
– If x0 ≡ 1, 3, 7, 11, 12 or 13 mod 15 then x12 − 5 is irreducible;
– If x0 �≡ 0, 2 or 4 mod 9 and x0/2 is odd then x12 − 6 is irreducible.

BN curves are quite plentiful and easy to find. Using BN curves in pairing-based
protocols means that we need an efficient implementation of Fp12 and also of Fp2

as we would use a degree 6 twist. It may be favourable to choose x0 ≡ 1 mod 2
and x0 satisfying one of the equivalences above so that Fp2 can be constructed as
Fp(

√−1) and the tower for Fp12 can be constructed using one of Constructions
6 or 7, though these fields would not have originally been considered pairing-
friendly. Given that BN curves are so plentiful, this restriction would not impede
finding curves appropriate for use.

KSS Towers. When k = 18 the parameterisation of p(x) can also be written
in the form a(x)2 + 3b(x)2 = p(x) where a(x) and b(x) have integer coefficients.
In these cases we are also able to give the tower construction if the value x0

satisfies some easily checked conditions.

KSS k = 18. The polynomial parameterisation of p for a KSS k = 18 curve is
given by

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x + 2401)/21.

We also know that x ≡ 14 mod 42 so substituting x = 42x′ + 14 we obtain the
equation

p(x′) =
461078666496x′8+1284433428096x′7+1564374047040x′6+1088278335648x′5+
473078255328x′4+131624074008x′3+22896702948x′2+2277529014x′+99213811.



192 N. Benger and M. Scott

Using Euclid’s algorithm and interpolation we find

a(x′) = 444528x′4 + 629748x′3 + 333396x′2 + 78321x′ + 6908,

and
b(x′) = 296352x′4 + 407484x′3 + 209916x′2 + 48091x′ + 4143,

such that a(x′)2 + 3b(x′)2 = p(x′). Using Euler’s Conjectures we see that:

– If x′
0 ≡ 1, 4, 5, 8 mod 12 then x18 − 2 is irreducible over Fp;

– If x′
0 �≡ 2, 3, 4 mod 9 then x18 − 3 is irreducible over Fp;

– If x′
0 ≡ 7, 9, 12, 14 mod 15 then x18 − 5 is irreducible over Fp;

– If x′
0 ≡ a mod 42 then x18 − 6 is irreducible over Fp,

where a = {2, 3, 4, 9, 10, 11, 12, 13, 18, 20, 21, 22, 27, 28, 30, 31, 35, 36, 37, 38,
38, 40, 44, 45, 46, 48, 49, 53, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66};
– If x′

0 ≡ 2 mod 7 then x18 − 7 is irreducible over Fp.

7 Twists and Choosing α

When choosing a particular value of α to construct the tower we may find that
there are more than one potential values we could use. In this case we must decide
which value α is best for implementation. This is illustrated in the following
example.

Example 1. The value x0 = 400880400000000916 generates suitable parameters
for a BN curve. Using this x0 we see that p ≡ 3 mod 4 and we first need a base
tower Fp2 = Fp(

√−1) before we use the general construction method. We see
also that x0 ≡ 3 mod 15 and x0 is odd so, as shown in section 6.2, we know
immediately that 5 is a cubic and quadratic non-residue in Fp and so x6 − (1 +
2
√−1) is irreducible over Fp2 = Fp(

√−1). Using the same reasoning, however,
we also know that x6 − (2 + 1

√−1), x6 − (2 − 1
√−1), x6 − (−2 − 1

√−1) and
x6 − (−2 + 1

√−1) are all irreducible over Fp2 = Fp(
√−1). Using this particular

value of x0 we also see that a2 + b2 is neither a square nor a cube for the
(unordered and unsigned) pairs (a, b) = (1, 3), (1, 5), (2, 3) as well as for (1, 2).
This example raises an important question:

How do we decide which value will be the best for implementation?

A simple analysis indicates that the optimal choice is the one which minimises
ω(a) + ω(b), where ω(n) is the number of additions required to perform a mul-
tiplication by n. There is another important point to take into account when
choosing α and that is the construction of the twists of the elliptic curve used
when computing the pairing.

In §3 it was mentioned that twists are used to improve the efficiency of the
pairing computation. To construct a twist of degree d and the isomorphism from
the twist to the curve we need an element i ∈ Fpk/d which is a qth non-residue
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for all divisors q of k/d. Clearly, for the tower construction we already have such
an element. In fact, it would make sense to use the same element to define the
twist as we use to construct the tower; though we will have to be slightly more
careful in our selection of the element α. An elliptic curve with a twist of degree
d actually has φ(d) twists of degree d, with different numbers of points. The
twists used for the curves specified above are of degrees d = 4 or 6, both having
φ(6) = φ(4) = 2 possible twists.

For E(Fp) : y2 = x3 + Ax, the quartic twists are given by E′
1(Fpk/t) : y2 =

x3 + Ax/i and E′
2(Fpk/t) : y2 = x3 + Ax/i3, the twist used for the pairing is the

twist with the correct number of points. The respective isomorphisms are given
as [20]:

E′
1 → E : (x, y) → (i1/2x, i3/4y)

and
E′

2 → E : (x, y) → (i1/2x/i, i1/4y/i).

Similarly, for E(Fp) : y2 = x3 + B, the sextic twists are given by E′
1(Fpk/t) :

y2 = x3 + B/i and E′
2(Fpk/t) : y2 = x3 + B/i5, the twists must then be tested

to find the one with the correct number of points. The respective isomorphisms
are given as:

E′
1 → E : (x, y) → (i1/3x, i1/2y)

and
E′

2 → E : (x, y) → (i2/3x/i, i1/2y/i).

We see here how important it is to choose the element i to be of the simplest
form as the isomorphism will be effected. If we select α such that i = α(1/e),
where e = k/d, then the isomorphism is basically a free computation [8]. If the
curve defined choosing i = α(1/e) does not give the correct number of points,
then we must take i = α(3/e) if E′ is a quartic twist or i = α(5/e) if E′ is a sextic
twist. In these cases the isomorphism will be slightly more expensive. This is
also discussed in [13].

To summarise, when selecting the element α to define the tower, both ω(α)
and the structure of the twist should be taken into account.

8 Conclusion

In this paper we proved a theorem which leads to a method to determine if a bi-
nomial defined over an extension field is irreducible by performing a few tests on
one element of the base field. This results in an efficient method of construction
for fields which occur in pairing-based cryptography and which were not orig-
inally considered to be “pairing-friendly” and could not be constructed using
general method discussed in [15]. Using Theorem 5 along with the general con-
struction method we are now able to automatically construct towers of extensions
for the implementation of the finite fields used in pairing-based cryptography by
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performing a few cubic and quadratic non-residue tests on elements of Fp. The
resulting constructions are efficient and can contribute to the development of a
cryptographic compiler specialised for pairing-based cryptography as described
in [9]. We have used our results, Euclid’s conjectures and an observation by Shi-
rase [22] to give immediate constructions for a large class of towering-friendly
fields used with BN curves. Using Euclid’s conjectures we have also given an
immediate construction for a large group of towering-friendly fields used with
KSS k = 18 curves. We are confident that these methods can be extended to
other families of pairing-friendly elliptic curves and other embedding degrees to
generate automatic tower structures for these curves.
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Abstract. Miller’s algorithm for computing pairings involves perform-
ing multiplications between elements that belong to different finite
fields. Namely, elements in the full extension field Fpk are multiplied
by elements contained in proper subfields Fpk/d , and by elements in the
base field Fp. We show that significant speedups in pairing computations
can be achieved by delaying these “mismatched” multiplications for an
optimal number of iterations. Importantly, we show that our technique
can be easily integrated into traditional pairing algorithms; implementers
can exploit the computational savings herein by applying only minor
changes to existing pairing code.
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1 Introduction

For the past decade, the public-key cryptographic community has witnessed an
avalanche of novel and exciting protocols based on bilinear pairings; the major
trigger being the discovery of identity-based encryption by Boneh and Franklin
[8]. The algorithm for computing these pairings, initially proposed by Miller
in the mid 1980’s [27], was originally too slow for pairing-based protocols to
be practically competitive with their RSA and Diffie-Hellman type rivals, and
much research has since been invested towards speeding up Miller’s algorithm.
Consequently, Miller’s algorithm has come a long way from its original form,
to the point where many possible enhancements have now been fully optimized
[2,3,29,4,31,19].

The progress in the field of pairing improvements has seemingly steadied to a
pace where a real world programmer could rest assured that their currently
optimized (or close to optimized) implementation will most likely remain
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within arms length of the state-of-the-art implementation, for at least a couple
of years. Nevertheless, so long as optimizations continue to be introduced
[5,12,10], old pairing code could potentially become outdated quite quickly. The
importance of code reusability and integrability might be the difference between
an implementer continuing to modify and update their existing code in light of
the latest breakthroughs, or shying away from such improvements because of the
difficulty in integrating them.

It was shown very recently [10] that it is possible to avoid much of the
costly, full extension field arithmetic encountered in pairing computations over
large prime fields by replacing a multiplication in the full extension field
with more minor multiplications in its proper subfields, decreasing the overall
complexity of Miller’s algorithm by over 30% in some cases. In these instances, an
implementation not encompassing these techniques would perform substantially
slower compared to one that does. However, a programmer wishing to implement
the methods of avoiding extension field arithmetic in [10] would be facing the
task of re-writing most (if not all) of their pairing code from scratch, having to
employ new and potentially cumbersome explicit formulas.

In this paper we provide an alternative to the technique in [10] that offers
much higher integrability into traditional pairing algorithms and existing pairing
code. The idea used herein is the same as that used by Granger, Page and Stam
[18, §6], who employ loop unrolling to combine two Miller iterations at a time,
achieving fewer overall field operations in the case of characteristic three pairing
implementations. In this paper we apply this same loop unrolling technique to
pairings computed over large prime fields, by analyzing the cost of combining
n Miller iterations at a time, and choosing the optimal value of n for various
embedding degrees. Unlike the method in [10], our method requires no new
explicit formulas for elliptic curve point operations and Miller line computations.
Our aim is to inject a new and conceptually simple subroutine into Miller’s
algorithm that optimizes the field arithmetic occuring between elements of finite
fields with different extension degree, with a parallel goal of minimizing the
change imposed on existing pairing code.

The rest of this paper is organized as follows. In Section 2 we set notations and
give a background on the computation of pairings. In Section 3 we discuss the
proposed technique, before analyzing its computational complexity in Section
4. We provide necessary implementation details in Section 5, before providing
parameters to optimize its implementation in Section 6, where we also draw
comparisons against the traditional version of Miller’s algorithm.

2 Preliminaries

Implementing pairings in cryptography most commonly requires the definition of
two linearly independent groups, G1 and G2, of large prime order r, contained
on an elliptic curve E which is defined over a finite field Fq of large prime
characteristic p. Herein, we choose to deal with the most common case of
prime fields, so that in fact we have q = p. Let πp be the p-power Frobenius
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endomorphism on E. In general, the most popular choices for G1 and G2

are the two eigenspaces of πp, restricted to the r-torsion E[r] of E, so that
G1 = E[r] ∩ ker(πp − [1]) and G2 = E[r] ∩ ker(πp − [p]). Let k be the smallest
integer such that r | pk−1; a direct consequence of this is that the field Fpk is the
smallest extension of Fp that contains all of the points in E[r], so that Fpk houses
both G1 and G2 in their entirity. We refer to k the embedding degree, because
computing the pairing of any two linearly independent points in E[r] results in
an element of an order-r subgroup of the finite field Fpk , i.e. the pairing embeds
the points of E[r] into the k-degree extension of Fp. We use GT to denote this
order-r subgroup of Fpk , since this is the target group of the pairing map. For
k > 1, the points in G1 are completely defined over the base field Fp, whilst the
points in G2 are defined over the larger field Fpk .

We assume that our pairing is defined by the Tate methodology rather than
the Weil methodology (see [19]), since the Weil pairing has been phased out in
practice due to its inefficient computation. The Tate methodology computes a
bilinear pairing, e, of two linearly independent points R,S ∈ E[r], as

e(R,S) = fm,R(S)(p
k−1)/r, (1)

where fm,R is a function with divisor div(fm,R) = m(R)− ([m]R)− (m− 1)(O),
with O being the neutral element on E. We refer to the function fm,R as the
Miller function, since it is computed using Miller’s algorithm. This algorithm
uses relations between divisors of functions to build fm,R in log2(m) iterations
in a double-and-add like fashion, as summarized in Algorithm 1.

Pairings that fit into the Tate methodology can be naturally divided into
two categories: Miller-lite pairings which take R ∈ G1 and S ∈ G2 and Miller-
full pairings which take R ∈ G2 and S ∈ G1. That is, elite : G1 × G2 �→ GT ,
whilst efull : G2×G1 �→ GT . The Tate pairing and the twisted ate pairing [20] are
examples of Miller-lite pairing, whilst the ate pairing [20] and its derivatives (the
atei pairing [26], the R-ate pairing [24], etc) sit under the umbrella of Miller-full
pairings. Efficient pairing implementations make use of the twisted curve E′ to
define a group G

′
2 ∈ E′ that is isomorphic to G2 ∈ E, but whose elements are

contained in a much smaller subfield Fpe ⊂ Fpk , where e = k/d and d is the
degree of the twist. We let ψ : E′ → E denote the twisting isomorphism from E′

to E, so that ψ(G2) = G1. The bulk of the operations encountered in an iteration
of Miller’s algorithm are computed using the coordinates of R or its image R′

under ψ−1, so that Miller-lite pairings benefit from the majority of operations
being performed over G1, which is defined over the base field Fp. Alternatively,
Miller-full pairings spend the majority of computations operating on coordinates
that are defined over the larger extension field Fpe . Such computations are more
costly over extension fields, however Miller-full pairings are usually more efficient
than Miller-lite pairings in practice [20,12], because they enjoy a much smaller
loop parameter m, meaning that Miller’s algorithm requires significantly less
iterations.

Any extension fields of Fp that are required in the pairing computation
are best constructed using towers of field extensions. The general method to
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Algorithm 1. Miller’s double-and-add Algorithm
Input: R, S, m = (ml−1...m1, m0)2.
Output: fm,R(S)← f .

1: T ← R, f ← 1.
2: for i = l − 2 to 0 do
3: T ← [2]T .
4: Compute a function g, which has divisor div(g) = 2(T )− (2T )− (O).
5: Compute g = g(S) (evaluate g at the coordinates of S).
6: f ← f2 · g.
7: if mi �= 0 then
8: T ← T + R.
9: Compute a function g, which has divisor div(g) = (T ) + (R)− (T + R)−

(O).
10: Compute g = g(S) (evaluate g at the coordinates of S).
11: f ← f · g.
12: end if
13: end for
14: return f .

construct towers of extension fields in pairing-based cryptography is originally
due to Koblitz and Menezes [23], who introduced the notion of pairing-friendly
fields, where the embedding degree is chosen to be of the form k = 2i3j , and the
characteristic of the field Fp is chosen to be p ≡ 1 mod 12. These conditions allow
us to easily build a tower of extensions up to Fpk using a sequence of z = i+ j
cubic and quadratic sub-extensions, where the defining polynomial for each of
the di,j-degree sub-extensions are actually binomial of the form xdi,j − α. Such
quadratic and cubic binomials facilitate fast arithmetic over extension fields.
Very recently, Benger and Scott [5] broadened the definition of pairing-friendly
fields to present the more general notion of towering-friendly fields, which are
fields of the form Fqm (q not necessarily prime itself) for which all prime divisors
of m also divide q − 1, showing that efficient tower constructions can also be
achieved without satisfying the more restrictive condition of p ≡ 1 mod 12 for
characteristic p fields.

For elliptic curves, there are only four twist degrees possible: d = 2 quadratic
twists, d = 3 cubic twists, d = 4 quartic twists and d = 6 sextic twists. In both
Miller-lite and Miller-full pairings, it is advantageous to choose the Weierstrass
curve model (of the form y2 = x3 + ax + b) which supports the maximal twist
degree d, such that d | k. Cubic and sextic twists are only possible when a = 0,
quartic twists when b = 0, and quadratic twists impose no condition on the curve
constants, although it is usually advantageous to set either a or b to be zero for
computational efficiency anyway [1,12].

For quadratic and cubic twists, Fpk is the direct (quadratic or cubic) sub-
extension of the field Fpe . For quartic and sextic extensions, however, we must
first extend Fpe to an intermediate field Fph , where Fpe ⊂ Fph ⊂ Fpk , and the field
extensions are formed by taking Fph = Fpe(α) and Fpk = Fph(β). We denote the
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degree of the extensions as δα = [Fph : Fpe ] = h/e and δβ = [Fpk : Fph ] = k/h,
in agreement with [Fpk : Fpe ] = δαδβ = k/e = d. For all twists, we have that
an element of the full extension field, say the Miller function f ∈ Fpk , takes the
form

f =
δβ−1∑

j=0

( δα−1∑

i=0

fj,i · αi
)
· βj , (2)

where each of the fj,i are contained in Fpe . For quadratic twists we must take
(δα, δβ) = (2, 1) and for cubic twists we must take (δα, δβ) = (3, 1). For both
quartic and sextic twists, Benger and Scott [5] suggest that the most efficient
tower is constructed with δα = 2, so that quartic twists should take (δα, δβ) =
(2, 2), and sextic twists should take (δα, δβ) = (2, 3). The nature of the tower for
the fields that lie between Fp and Fpe do not play a role in this work, so we pay
no attention to these details, but point the interested reader to [5].

The general twist of a short Weierstrass curve is written as E′(Fpe) : y2 =
x3 + az4x + bz6, where the isomorphism ψ : E′ → E is defined as ψ(x′, y′) =
(z2x′, z3y′). For quartic twists when b = 0, we choose z4 ∈ Fpe such that z2 ∈
Fpk/2 �∈ Fpe and z ∈ Fpk �∈ Fpk/2 , so that we can set α = z2 and β = z3,
resulting in a twisting isomorphism ψ(x′, y′) = (αx′, βy′) that allows twisted
coordinates to be easily integrated with general field elements taking the form
of f in (2). Similarly, for sextic twists when a = 0, we choose z6 ∈ Fpe such that
z3 ∈ Fpk/3 �∈ Fpe and z2 ∈ Fpk/2 �∈ Fpe , so that we can set α = z3 and β = z2,
and the twisting isomorphism conveniently becomes ψ(x′, y′) = (βx′, αy′).

We follow the general trend of reporting results for even k [3,23,5], since such
embedding degrees support the denominator elimination optimization [2]. Thus,
any k we consider which is divisible by 3 will also be divisible by 6 and admit
a sextic twist, so that we do not need to consider cubic twists. Computationally
speaking, the treatment of cubic twists is quite different to the other even degree
twists and tends to be awkward anyway [12], so curves with odd embedding
degree divisible by 3 are generally not chosen in practice, although Lin et al. [25]
show that choosing k = 9 can be competitive at some security levels.

Remark 1 (A notation for counting costs). This paper is largely concerned
with the computational cost of field operations, so we employ a notation that
allows us to easily narrate such costs alongside the associated algebra. We
use cost

[
L ← J

]
to denote the computational cost of computing the set

L = {L1, ..., Li} from the already computed (or available) set J = {J1, ..., Jj}.
If the best way to compute the set L from the set J is to compute the
intermediate set K = {K1, ...,Kj}, then we can clearly split the cost, so that
cost

[
L← J

]
= cost

[
L← K

]
+cost

[
K ← J

]
, under the assumption that there

does not exist a cheaper way to compute L from J which does not require the
computation of K. When referring to the cost of computing the set L without
assuming any prior computations, we simply use cost

[
L

]
.

Remark 2 (The squaring vs. multiplication ratio). Our cost analyses are
primarily concerned with field multiplications and field squarings and we choose
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not pay any attention to the much cheaper cost of field additions, although the
algorithms presented herein aim to minimize all field operations. We use mi and
si to represent the respective costs of a multiplication and a squaring in the field
Fpi . Since the ratio of the complexity of a field squaring to a field multiplication
is specific to the implementation, we leave the discussion general until Section
6 by using the parameter Ω, which denotes the s : m ratio. That is, s = Ωm,
where 0 << Ω ≤ 1. For example, Bernstein [6] achieves Ω = 0.68 and Hisil
[21] reports Ω = 0.72, while the EFD [7] presents results based on the more
commonly accepted Ω = 0.8 and Ω = 1 values.

Remark 3 (Non-specific field definitions). In the pairing e(R,S), the respective
fields that R and S belong to are different depending on whether the pairing is a
Miller-lite or Miller-full pairing. In a Miller-lite pairing computed as e(R,ψ(S′)),
we take R ∈ Fp and S′ ∈ Fpe , whilst a Miller-full pairing computed as
e(ψ−1(R), ψ−1(S)) (see [12]) has R′ ∈ Fpe and S ∈ Fp. Ignoring the twisting
elements α and β, then the first and second arguments in a Miller-lite pairing
are from Fp and Fpe respectively, whilst the same arguments in a Miller-full
pairing are from Fpe and Fp respectively. In sections 3 and 4, we cover both
cases simultaneously by saying that the first argument R belongs to Fpu and the
second argument S belongs to Fpv , where it is understood that (u, v) = (1, e) for
Miller-lite pairings and (u, v) = (e, 1) for Miller-full pairings. Most importantly,
in either case we have that multiplying an element of Fpu by an element of Fpv

costs em1 (cf. [12]).

Remark 4 (Ignoring additions). As is the common trend in papers discussing
optimal pairing implementations, we assume that the loop parameter m has low
Hamming weight so that additions are sparse in Miller’s algorithm. Thus, when
discussing any consecutive iterations of the Miller loop, we assume that no such
iterations involve additions.

3 Delaying Mismatched Multiplications

We begin this section by illustrating the potential advantage of delaying
“mismatched” multiplications, through the use of a toy example. Suppose we
have a basic algorithm that involves n iterations, where the i-th iteration simply
involves computing an element ai, and updating the master function Ai as
Ai ← ai · Ai−1, where the master function was initialized as A0. The output of
the algorithm would be An = (((...((A0 · a1) · a2)...))), which could alternatively
be written, or indeed computed as An = A0 · (

∏n
i=1 ai), where the product of

the ai’s is computed prior to multiplication with A0. If both A0 and the ai’s are
general elements of the same field, say Fpc , then both methods of computation
would require n multiplications in Fpc , as

cost
[
An ← {a1, ..., an, A0}

]
=

n∑

i=1

cost
[
Ai ← {Ai−1, ai}

]
=

n∑

i=1

1mc = nmc,
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or

cost
[
An ← {a1, ...,an, A0}

]
= cost

[
An ← {

n∏

i=1

ai, A0}
]
+

cost
[ n∏

i=1

ai ← {a1, ..., an}
]

= 1mc + (n− 1)mc = nmc.

However, suppose again that the ai values are general elements of the field Fpc ,
but instead suppose that A0 is a general element of the degree-w extension field
Fpcw , of Fpc . For ease of exposition, we assume for now that w is prime so that
a general element of Fpcw can be expressed as a (w− 1)-degree polynomial with
coefficients in Fpc . In this case, multiplying each of the ai values by A0 would
typically involve multiplying each of the w coefficients of A0 by ai, costing wmc

each time. Clearly, it would be advantageous to form the product
∏n

i=1 ai prior
to a multiplication by A0, as we show by using the same comparison as before,
where

cost
[
An ← {a1, ..., an, A0}

]
=

n∑

i=1

cost
[
Ai ← {Ai−1, ai}

]
=

n∑

i=1

wmc = wnmc,

whilst

cost
[
An ← {a1, ..., an, A0}

]
= cost

[
An ← {

n∏

i=1

ai, A0}
]
+

cost
[ n∏

i=1

ai ← {a1, ..., an}
]

= wmc + (n− 1)mc = (w + n− 1)mc.

Forming the product of the ai elements from the smaller field prior to the
multiplication by A0 gives a count of (w + n − 1)mc, as opposed to the wnmc

that it costs to multiply ai by A0 in each iteration. When n > 1 and w > 1,
it is always the case that wn > (w + n − 1), so that forming the product of
n > 1 elements in the smaller field and delaying any multiplications by the
element in the larger field is always advantageous. The central theme of this
paper is applying this idea towards pairing computations, however the story
in Miller’s algorithm is more complicated than the example above. Firstly, the
“mismatched” multiplications above were easy to spot, since we were multiplying
general elements from different fields. However, there are other more subtle
examples of mismatched multiplications, which we formalize in the following
definitions.

Definition 1 (General vs. Special Field Elements). Let ω ∈ Fpc , where
Fpc is constructed as a tower of extensions as Fp ⊂ Fpc1 ⊂ Fpc1c2 ⊂ ... ⊂
Fpc1c2...ct = Fpc , i.e. ci is the degree of the i-th extension in the tower up to
Fpc . Let Cj =

∏j
i=1 ci so that we can write the tower as Fp ⊂ FpC1 ⊂ FpC2 ⊂

... ⊂ FpCt = Fpc . Let #ω(FpCj ) be the number of non-zero coefficients in the
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polynomial representation of ω over the subfield FpCj . If #ω(FpCj ) < c/Cj for
any j where 1 ≤ j ≤ t, then we call ω a special element of Fpc , otherwise we call
ω a general element of Fpc .

Definition 2 (Mismatched Multiplications). Let ω ∈ Fpc and ω̂ ∈ Fpĉ . We
call the multiplication between ω and ω̂ mismatched if one of the following two
conditions hold:

(i) c�= ĉ.

(ii) c = ĉ, but at least one of ω and ω̂ are special.

We refer to a mismatched multiplication as a type (i) or type (ii) mismatch,
depending on which of the above conditions it breaches.

Equipped with the above definitions, we now focus on searching for mismatched
multiplications in Miller’s algorithm, with the aim of investigating the possibility
and potential advantage of optimizing the delay or the avoidance of such
multiplications. We start by taking a close look at the doubling stage of
Miller’s algorithm which is the combination of steps 3, 4, 5 and 6 of Algorithm
1. Steps 3 and 4 involve doubling the point T (i.e. computing [2]T from
T ), and computing the coefficients of the associated function g with divisor
div(g) = 2(T )−(2T )−(O). These computations only depend on the coordinates
of the point T = (Tx, Ty) ∈ Fpu , and since Tx and Ty are assumed to be
general elements of Fpu , we can safely assume that, in general, none of the field
multiplications in steps 3 and 4 are mismatched. Many authors have achieved
speed ups in pairing computations by focussing on reducing the combined cost of
these two steps [9,13,22,1,11,12], where the cost of encapsulated point doubling
(step 3) and line computation (step 4) is generally presented together, in terms of
the combined number of field multiplications (m) and squarings (s) encountered,
as

cost
[{g, [2]T } ← T

]
= mmu + ssu = (m+Ωs)mu. (3)

For curves with even embedding degrees, the denominator elimination
optimization greatly simplifies the form of the line function g, so that g = g(x, y)
always (cf. [12]) takes the form

g(x, y) = gx · x+ gy · y + g0, (4)

where gx, gy, g0 ∈ Fpu . Step 5 of Algorithm 1 involves evaluating g at the
coordinates of S = (Sx, Sy), i.e. multiplying gx by Sx and gy by Sy. From Section
2, we know that (unless e = 1) R and S are contained in different fields, so that
the evaluation of g at S incurs two type (i) mismatched multiplications. Following
this, step 6 of Algorithm 1 involves squaring the Miller function f ∈ Fpk ,
and multiplying this result by g(S) ∈ Fpk . Although the point S belongs to
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the field Fpk , each of its coordinates are actually either very special elements
of Fpk , or lie in proper subfields of Fpk . For example, in Section 2 we saw that
an implementation employing a quartic twist has (Sx, Sy) = (αŜx, βŜy), where
Ŝx, Ŝy ∈ Fpv , or similarly an implementation using a sextic twist has (Sx, Sy) =
(βŜx, αŜy) with Ŝx, Ŝy ∈ Fpv . In both cases, it is clear by Definition 1 that g(S)
is a special element of Fpk , so that the multiplication of the Miller function f by
g(S) is, by Definition 2, a type (ii) mismatched multiplication.

We concretize the above discussion with an example, where we assume a sextic
twist has been used, so that lines 5 and 6 of Algorithm 1 require that we compute
a multiplication between

f = (f2,1 · α+ f2,0) · β2 + (f1,1 · α+ f1,0) · β + (f0,1 · α+ f0,0) ∈ Fpk

and

g(Sx, Sy) = (gxŜx) · β + (gyŜy) · α+ g0 ∈ Fpk ,

where the fi,j ’s and both gxŜx and gyŜy are contained in Fpe (see Remark 3),
and g0 is contained in Fp for Miller-lite implementations or Fpe in Miller full
implementations. Since gx, gy ∈ Fpu and Ŝx, Ŝy ∈ Fpv , the products formed to
create g(Sx, Sy) are type (i) mismatches, whilst the multiplication between f
and g(S) is a type (ii) mismatch.

There are two natural questions that now arise: are these mismatches a
problem? and, if so, what can we do about them? We can immediately answer
the first question by referring back to the toy example at the beginning of this
section, where we saw that delaying the multiplications between elements of
different sized fields can be very advantageous, particularly if the difference in
the extension degrees is large.

We start the answer to the second question by noting the main complication,
in terms of mismatched multiplications, that we encounter in an iteration of
Miller’s algorithm; that being the simultaneous presence of both type (i) and type
(ii) mismatches. Specifically, each iteration of Miller’s algorithm involves two
type (i) mismatches buried inside a larger type (ii) mismatch. An ideal solution
might involve minimizing both mismatches simultaneously, but unfortunately
we will soon see that this is not possible; namely, that the type (i) mismatches
are somewhat unavoidable in Miller’s algorithm. However, the solution we adopt
follows quite naturally if we start by trying to avoid the type (i) mismatches, as
follows. In a particular iteration of Miller’s algorithm, it seems that the only way
we can avoid the type (i) mismatched multiplications is to delay them until the
following iteration: let g and g̃ represent two consecutive g’s in two iterations
of Miller’s algorithm, and suppose we temporarily delay evaluating g as S until
the following iteration when g̃ is computed. Instead of evaluating both functions
separately at S, we form the product two indeterminate functions, g(x, y) and
g̃(x, y), modulo the curve equation, and call it G(x, y). In fact, g would have
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been multiplied by f and squared in the previous iteration, so that G(x, y) is
actually computed as

G(x, y) = g(x, y)2 · g̃(x, y) = (gx · x+ gy · y + g0)2 · (g̃x · x+ g̃y · y + g̃0)

=
4∑

i=0

Gxi · xi +
[ 3∑

i=0

Gxiy · xi
] · y, (5)

where we reduce any higher powers of y via the curve equation. We could then
evaluateG(x, y) at S and multiplyG(S) by the Miller function f , so that delaying
the evaluation of g at S and the multiplication of f by g(S) avoided both types
of mismatched multiplications for one iteration. However, at this next iteration,
we now have many more type (i) multiplications to deal with. Namely, what
would have been 4 type (i) mismatches in total (2 for the evaluation of g at S
and likewise for the evaluation of ĝ at S), has now become 8 type (i) mismatches
(multiplying Gxiy by xiy and Gxi by xi above). At a first glance then, this idea
seems somewhat counterproductive. However, let us assume for now that we are
employing a sextic twist so that (δα, δβ) = (2, 3) and observe the new function
G evaluated at S = (Ŝxβ, Ŝyα), as

G(x, y) =
4∑

i=0

Gxi · Si
x · βi +

[ 3∑

i=0

Gxiy · Si
x · βi

] · α =
δβ∑

j=0

( δα∑

i=0

Ĝj,i · αi

)
· βj ,

(6)

where each of the Ĝj,i are easily derived combinations of the Gxiy and Gxi

terms in (5). Importantly, we now have that G(x, y) has become a general
element of Fpk , so that performing the multiplication between f and G will fully
exploit a routine written to perform optimized multiplication over Fpk . More
importantly, we have only had to perform one full extension field multiplication
in two Miller iterations. In short, we delayed the multiplication between f and
g until g was built up into G (a product of g’s), a general element of Fpk , and
in doing so we saved a mismatched multiplication in Fpk . The price we pay for
this saving is the increased number of type (i) mismatched multiplications that
are required to evaluate G at S, as well as an increased number of standard Fpu

multiplications that are required to form the coefficients of G from g and ĝ. Our
goal becomes clear then; we wish to explore whether it is advantageous to spend
extra computations in order to achieve the savings offered by avoiding type (ii)
mismatches altogether.

In the following sections, we explore these trade-offs in detail. Specifically, we
consider delaying the multiplication between the g’s and the Miller function f
for an arbitrary number (N) of iterations, a process we refer to as N -delay. We
track the computational cost of N -delay and determine the optimum values of
N for implementations over a variety of embedding degrees. Before moving to
the next section, we make the following remarks.

Remark 5. Since we are forced to accept the presence of type (i) mismatches in
pairings, one possible solution to the problem described above would be to write
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a specialized multiplication routine for the type (ii) mismatched multiplication
between the general element f and special element g, of Fpk . However, replacing
the full Fpk multiplication routine (that takes two general field elements as
inputs) with such a specialized routine means that, to some extent, we are
sacrificing the tricks that speed up general multiplications, such as the Karatsuba
and Toom-Cook methods. Such optimizations are the reason we build extension
fields up as towers of degree 2 and 3 sub-extensions, so we argue that avoiding
these optimizations is potentially counterproductive, instead favoring the N -
delay techniques herein.

Remark 6. The discussion in this section (and in the next) essentially describes
the technique of loop unrolling, which was first introduced into pairing
computations by Granger et al. [18], who merged iterations to exploit the sparsity
of g. Speedups were achieved in [18] by combining two consecutive iterations into
one merged iteration, in implementations over fields of characteristic three. This
technique was later used by Shirase et al. [30] in pairing implementations over
binary fields. To the best of the authors knowledge, this paper is the first to
describe a general algorithm for loop unrolling which merges any number of
iterations over large prime fields.

4 The Cost of N -delay

We let N -delay refer to the process of delaying the multiplication of the Miller
function f by consecutive function updates g, N times in a row. We make
note that N = 0 corresponds to the standard Miller routine which delays zero
multiplications between f and g, whilst N = 1 corresponds to the Miller routine
which delays one multiplication (combines two iterations), and so on, so that
in general N can be thought of as the number of times a multiplication by f
is delayed, whilst N + 1 is the number of iterations that are combined. The
aim of this section is to obtain an expression for the computational cost of N -
delay, in terms of N , so that we can determine the optimal N value for specific
implementations. To do this, we determine the cost of delaying a single, but
general iteration. That is, we write a general expression for the product of the n
different powers of g’s accumulated after n iterations, and use this to determine
the cost of updating this to the n + 1-th product. We then sum this cost from
n = 0 to n = N − 1 to obtain the entire cost of performing N -delay.

We let Gn(x, y) be the cumulative product of the first n indeterminate g(x, y)
functions, reduced modulo the curve equation, as

Gn(x, y) =
An∑

i=0

ai · xi · y +
Bn∑

i=0

bi · xi = Gna(x) · y +Gnb
(x), (7)

where Gna(x) =
∑An

i=0 ai · xi and Gnb
(x) =

∑Bn

i=0 bi · xi. Similarly, we define the
n-th Miller function update from (4) as

gn(x, y) = gnx · x+ gny · y + gn0 = gna · y + gnb
(x), (8)
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where gna = gny and gnb
(x) = gnx · x + gn0 . The (n + 1)-th consecutive Miller

iteration would multiply the square of Gn(x, y) by the (n+1)-th Miller function
update, gn+1(x, y), as

Gn+1(x, y) =G2
n(x, y) · gn+1(x, y) =

(
Gna(x) · y +Gnb

(x)
)2 · gn+1(x, y)

=
(
Gna(x)2C(x) + 2Gna(x)Gnb

(x) · y +Gnb
(x)2

)
· gn+1(x, y)

=
(
gn+1ah1(x) + gn+1b

(x)h2(x)
)
· y +

(
gn+1b

(x)h1(x) + gn+1ah3(x)
)

=
A(n+1)∑

i=0

âi · xi · y +
B(n+1)∑

i=0

b̂i · xi = Gn+1a(x) · y +Gn+1b
(x), (9)

where h1(x) = Gna(x)2C(x) + Gnb
(x)2 , h2(x) = 2Gna(x)Gnb

(x), h3(x) =
2Gna(x)Gnb

(x)C(x), and y2 was replaced with C(x) = x3 + ax + b. Paying
close attention to (9) allows us to determine the cost of obtaining Gn+1 from
Gn. We make the following observations.

– Observation 1. To determine the values of An+1 and Bn+1, (9) reveals that

An+1 = Max{deg(gn+1a) + deg(h1), deg(gn+1b
) + deg(h2)}

= Max{2An + 3, 2Bn, An +Bn + 1},

and similarly

Bn+1 = Max{deg(gn+1b
) + deg(h1), deg(gn+1a) + deg(h3)}

= Max{2An + 4, 2Bn + 1, An +Bn + 3}.

Since (A0, B0) = (0, 1), we always have that (An+1, Bn+1) = (2An+3, 2An+
4), from which it follows that

(An, Bn) = (3(2n − 1), 3(2n − 1) + 1). (10)

– Observation 2. The three necessary terms G2
na

= (
∑An

i=0 ai · xi)2, G2
nb

=
(
∑Bn

i=0 bi ·xi)2 and 2GnaGnb
= 2(

∑An

i=0 ai ·xi)(
∑Bn

i=0 bi ·xi) can be computed
using only field squarings as follows. Each of the a2

i terms in G2
na

can be
computed first and used to compute (via a squaring) the remaining terms
of the form 2aiaj in G2

na
, where i �= j. In total, there are

∑An

i=0

∑i
j=0 =

(An + 1)(An + 2)/2 different aiaj combinations contributing to G2
na

, so that
cost

[
G2

na
← Gna

]
= [(An + 1)(An + 2)/2]su. Identically, we have that

cost
[
G2

nb
← Gnb

]
= [(Bn + 1)(Bn + 2)/2]su. Lastly, each of the terms of

the form 2aibj in 2GnaGnb
can be computed at the cost of a squaring using

the previously computed a2
i and b2j values. There are (An + 1)(Bn + 1) such

terms contributing to 2GnaGnb
, so that cost

[
2GnaGnb

← {G2
na
, G2

nb
}] =

(An + 1)(Bn + 1)su. Importantly, we use (10) to give
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cost
[{G2

na
, 2GnaGnb

, G2
nb
} ← {Gna , Gnb

}] = cost
[
G2

na
← Gna

]

+cost
[
G2

nb
← Gnb

]
+ cost

[
2GnaGnb

← {G2
na
, G2

nb
}]

=
[
(An + 1)(An + 2)/2 + (An + 1)(Bn + 1) + (Bn + 1)(Bn + 2)/2

]
su

= [3(3 · 2n − 1)(2n+1 − 1)Ω]mu. (11)

– Observation 3. Aside from additions, computing the three polynomials h1,
h2 and h3 from G2

na
, 2GnaGnb

, and G2
nb

requires multiplications by C only.
Since we are ignoring additions and assuming that multiplications by curve
constants are negligible, we assume that there is no extra cost associated in
these computations. That is,

cost
[{h1, h2, h3} ← {G2

na
, 2GnaGnb

, G2
nb
}] = 0. (12)

– Observation 4. The cost of multiplying G2
n by gn+1 is determined by

the cost of the required multiplications of the gna and gnb
values, and

the polynomials h1, h2 and h3. Since gna = gny ∈ Fpu , multiplying a d-
degree polynomial by gna requires d + 1 multiplications in Fpu , and since
gnb

= gnx · x + gn0 has gnx , gn0 ∈ Fpu , multiplying a d-degree polynomial
by gnb

requires 2(d+1) Fpu -multiplications. There are four of these types of
multiplications required in (9).

(i) : cost
[
gn+1a · h1 ← {gn+1a , h1}

]
= (deg(h1) + 1)mu

(ii) : cost
[
gn+1b

· h2 ← {gn+1b
, h2}

]
= 2(deg(h2) + 1)mu

(iii) : cost
[
gn+1b

· h1 ← {gn+1b
, h1}

]
= 2(deg(h1) + 1)mu

(iv) : cost
[
gn+1a · h3 ← {gn+1a , h3}

]
= (deg(h2) + 1)mu

In the case of (iv), since h3 = h2 ·C, we save 3 multiplications by multiplying
gn+1a and h2 prior to multiplying by C. Thus, the total cost of obtaining
Gn+1 given G2

n and gn+1 is the combined costs of (i), (ii), (iii) and (iv) above,
which is

cost
[
Gn+1 ← {G2

n, gn+1}
]

= (3 · deg(h1) + 2 · deg(h2) + deg(h3) + 6)mu

= (3(2An + 3) + 3(An + Bn) + 3)mu

= (9An+3Bn + 15)mu = (36(2n − 1) + 18)mu, (13)

The cost of computing Gn+1 from Gn. We now collect all of the costs
calculated in (3), (11), (12) and (13) to determine the cost of computing Gn+1

from Gn, as

cost
[
Gn+1 ← Gn

]
=cost

[
Gn+1←{G2

n, gn+1}
]
+cost

[
gn+1

]
+cost

[
G2

n ← Gn

]

= cost
[
Gn+1 ← {G2

n, gn+1}
]
+ cost

[
gn+1

]
+ cost

[{h1, h2, h3} ← {Gna , Gnb
}]

= cost
[
Gn+1 ← {G2

n, gn+1}
]
+ cost

[
gn+1

]
+ cost

[{h1, h2, h3}
← {G2

na
, 2GnaGnb

, G2
nb
}] + cost

[{G2
na
, 2GnaGnb

, G2
nb
} ← {Gna , Gnb

}]

=
[
(36(2n − 1) + 18) + (m+Ωs) + 3(3 · 2n − 1)(2n+1 − 1)Ω

]
mu, (14)
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The total cost of N-delay. Display (14) allows us to determine the number
of Fpu multiplications required to compute GN (x, y) from scratch, as follows.

cost
[
GN (x, y)

]
= cost

[
G0

]
+

N−1∑

n=0

cost
[
Gn+1 ← Gn

]

= (m+ sΩ)mu +
N−1∑

n=0

(36(2n − 1) + 21) + (m+Ωs) + (18(2n − 1) + 6)Ωmu

= [(N + 1)(m+ sΩ) + 3N(Ω − 6) + 3(2N − 1)((2N+1 − 3)Ω + 12)]mu. (15)

We note that the above cost also incorporates the cost of transforming the point
T into [2N+1]T , as these costs are accounted for in the multiples of (m+ sΩ)mu

(see (3)). The other computations we need to consider in an iteration involving
N -delay are those that occur when evaluatingGN (x, y) at the point S = (Sx, Sy).
Setting n = N into (7) reveals that N -delay will require the precomputation of
the set {Si

x, i = 1...BN}, and the set {Si
x · Sy, i = 0...AN}, each of which

will be multiplied by an element in Fpu . From Remark 3, we have that such a
multiplication costs em1, and since there are AN + BN + 1 such elements, we
have that

cost
[
GN (S)← GN (x, y)

]
= [AN +BN + 1]em1 = [6(2N − 1) + 2]em1. (16)

We combine (15) and (16) to obtain the total cost of N -delay as

cost
[
GN (S)

]
= cost

[
GN (S)← GN (x, y)

]
+ cost

[
GN (x, y)

]

=
[
6(2N − 1) + 2

]
em1 +

[
(N + 1)(m+ sΩ) + 3N(Ω − 6)

+ 3(2N − 1)((2N+1 − 3)Ω + 12)
]
mu + (1 + (N + 1)Ω)mk, (17)

where the (1 + (N + 1)Ω)mk accounts for the (N + 1) squarings of the Miller
function f , as well as the full field multiplication of f with GN (S) that occurs
after N -delay.

5 Implementing N -delay

The advantage of employing N -delay over the technique in [10] is the ease
at which a standard implementation of Miller’s algorithm can be updated
to incorporate N -delay. The routines for the point doublings/additions and
encapsulated line computations that are used in the standard version of Miller’s
algorithm are the same routines used in N -delay, so that this (existing) code is
not altered when employing N -delay. We refer to these two standard subroutines
as MillerDBL, which performs steps 3 and 4 in Algorithm 1, and MillerADD,
which performs steps 8 and 9 in Algorithm 1, both of which are the same
subroutines we call in Algorithm 2.

Since N -delay performs N + 1 squarings in the same iteration, we follow the
algorithm description in [10] and write the loop parameter in base 2N+1. Our
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goal is to incorporate N -delay by injecting a new subroutine into Algorithm
1, and slightly tweaking the original Miller code to account for this alteration.
After calling MillerDBL, we call the new subroutine GetNewabArrays, which
transforms Gn into Gn+1, based on equation (9) and the four observations that
followed.

Algorithm 2. Miller N -delay
Input: R, S, N , m = (mlN−1...m1, m0)2N+1 , f[w]R for each unique non-zero w ∈
{mlN−1, ..., m1, m0}.

Output: fm,R(S)← f .

1: T ← R, f ← 1.
2: if mlN−1 �= 1 then
3: [gx, gy , g0, T ] = MillerADD(T, [mi]R).
4: f ← f · f[mi]R(S).
5: end if
6: for i = lN − 2 to 0 do
7: Compute [gx, gy, g0, T ] = MillerDBL(T ).
8: a(1)← gy, b(1)← g0, b(2)← gx.
9: An ← 0, Bn ← 1.

10: for i = 0 to N − 1 by 1 do
11: Compute [gx, gy, g0, T ] = MillerDBL(T ).
12: Compute a, b, An, Bn = GetNewabArrays(a, b, An, Bn, gx, gy, g0).
13: end for
14: Evaluate G = (a, b) at S.

15: f ← f2N+1 ·G.
16: if mi �= 0 then
17: Compute [gx, gy, g0, T ] = MillerADD(T, [mi]R).
18: f ← f · f[mi]R · (gx · Sx + gy · Sy + g0)
19: end if
20: end for
21: return f .

Since non-zero mi that appear in m = (ml−1...m1,m0)2N+1 can now take
values up to 2N+1 − 1, Algorithm 2 must account for the additions of [mi]R to
the point T . We follow the technique in [10] and adjust the step accordingly, by
including the precomputed function f[mi]R, with divisor div(f[mi]R) = mi(R)−
([mi]R)− (mi − 1)(O), into the addition product on line 18 of Algorithm 2.

6 Optimal N -delay

This section makes use of (17) to determine the value of N which gives the
lowest operation count for all even embedding degrees less than k = 50. To
obtain the m and s values described in (3) that are required in (17), we
couple the recommendations for optimal curve construction in [16] with the
fastest applicable explicit formulas for D = 1, 3 curves that admit high-degree
twists in [12]. For curves admitting only quadratic twists, we opt for the CM
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Table 1. Optimal N values for Miller-lite pairings on different embedding degrees
k ≤ 50

Ω = 1 (s = m) Ω = 0.8 (s = 0.8 m)

k D m, s Fpu ⊆ Fpe ⊂ Fpk N = 0 Optimal N N = 0 Optimal N
count count count

2 3 2, 7 Fp = Fp ⊂ Fp2 17 − 15 −
4 1 2, 8 Fp = Fp ⊂ Fp4 30 − 26.6 −
6 3 2, 7 Fp = Fp ⊂ Fp6 41 − 36.6 −
8 1 2, 8 Fp ⊂ Fp2 ⊂ Fp8 68 − 61 −
10 some 1, 11 Fp ⊂ Fp5 ⊂ Fp10 100 − 90 −
12 3 2, 7 Fp ⊂ Fp2 ⊂ Fp12 103 1 96.5 92.6 1 85.5
14 3 2, 7 Fp ⊂ Fp7 ⊂ Fp14 155 1 148 140.4 1 132.8
16 1 2, 8 Fp ⊂ Fp4 ⊂ Fp16 180 1 159.5 162.2 1 141.1
18 3 2, 7 Fp ⊂ Fp3 ⊂ Fp18 165 1 145.5 148.6 1 128.5
20 1 2, 8 Fp ⊂ Fp10 ⊂ Fp20 254 1 217.5 229 1 191.9

22 1 2, 8 Fp ⊂ Fp11 ⊂ Fp22 428 1 363 386.8 1 321.2
24 3 2, 7 Fp ⊂ Fp4 ⊂ Fp24 287 1 239.5 258.6 1 210.5
26 3 2, 7 Fp ⊂ Fp13 ⊂ Fp26 581 1 482.5 525 1 425.9
28 1 2, 8 Fp ⊂ Fp7 ⊂ Fp28 420 1 347 378.8 1 305.2
30 3 2, 7 Fp ⊂ Fp10 ⊂ Fp30 409 1 333.5 368.6 1 292.5

32 1 2, 8 Fp ⊂ Fp8 ⊂ Fp32 512 1 418.5 461.8 1 367.7
34 3 2, 7 Fp ⊂ Fp17 ⊂ Fp34 961 2 775.3 867.8 2 678.7
36 3 2, 7 Fp ⊂ Fp6 ⊂ Fp36 471 1 382.5 424.6 1 335.5
38 3 2, 7 Fp ⊂ Fp19 ⊂ Fp38 1187 2 936.7 1071.6 2 817.9
40 1 2, 8 Fp ⊂ Fp10 ⊂ Fp40 732 2 585.6 660.2 2 510.5

42 3 2, 7 Fp ⊂ Fp7 ⊂ Fp42 683 2 536.7 615.6 2 465.9
44 1 2, 8 Fp ⊂ Fp11 ⊂ Fp44 1220 2 916.3 1099.6 2 792.5
46 1 2, 8 Fp ⊂ Fp23 ⊂ Fp46 1712 2 1308.3 1544.8 2 1137.7
48 3 2, 7 Fp ⊂ Fp8 ⊂ Fp48 835 2 643.3 752.6 2 557.5
50 3 2, 7 Fp ⊂ Fp25 ⊂ Fp50 1073 1 881.5 970.2 1 778.1

discriminant D that facilitates the best ρ-value for the particular embedding
degree (see [16]). If these curves do not have D = 1 or D = 3, we use the
best operation count for general curves reported in [1] and [22]. For example,
the maximal twist for k = 10 is a quadratic twist, and since such twists
are admitted on any curve, we opt for Freeman’s curves [15] with optimum
ρ = 1, rather than the D = 1 or D = 3 curves that achieve ρ = 1.5. We
report the optimal N values for both Ω = 0.8 and Ω = 1, although we
make note that lesser values of Ω, such as those stated in Remark 2, would
be more likely to favor higher values of N , since lower values of Ω give a
greater weight to multiplications in the operation count, and Fpk -multiplications
are what N -delay avoids. Since the operation count given by (17) is the total
count (in terms of Fp-multiplications) for the equivalent of N + 1 double-and-
add iterations, the counts presented in Table 1 are given as counts equivalent
to one iteration of 0-delay (the standard Miller routine in Algorithm 1),
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and these counts are obtained by dividing the cost in (17) by N + 1. We are
reporting results for even embedding degrees that are not necessarily 3-smooth.
Thus we must extend the standard method of reporting multiplications in fields
of extension degree k = 2i3j as mk = 3i5j [23,20,12], this complexity being
a result of coupling Karatsuba multiplication with Toom-Cook multiplication,
the former allowing us to write m2c = 3mc, whilst the latter allows us to
write m3c = 5mc. Montgomery [28] extended Karatsuba-like multiplication
methods to polynomials (or extension degrees) of degrees 5, 6 and 7, achieving
m5c = 13mc, m6c = 17mc and m7c = 22mc respectively. We note that the
degree 6 result is of no use here, since it is more advantageous to build a six
degree extension as a combination of quadratic and cubic extensions. For higher
prime extension degrees, we use the more general result given by Weimerskirch
and Paar [32], who generalize the Karatsuba algorithm to arbitrary w-degree
extensions to give mwc = [w(w + 1)/2]mc. The complexity of multiplications in
the field of extension degree k = 2e23e35e57e7 ·∏ p

epi

i are reported in terms of
Fp-multiplications as

mk =
[
3e25e313e522e7 ·

t∏

i=1

(pi(pi + 1)/2)ei
]
m1, (18)

where the pi are the primes greater than 7 in the prime factorization of k. We
use (18) to give a fair and relative comparison across all embedding degrees, not
to overlook the substantial speed ups recently achieved by El Mrabet and Negre
for particular extension degrees [14].

For Miller-full pairings, N = 0 was optimal across all embedding degrees, so
we do not report the results here (the standard N = 0 operation counts in the
Miller-full setting for 3-smooth embedding degrees can be found in [12]). Table
1 shows that Miller-lite pairings on curves with even embedding degrees greater
than k = 10 will always benefit from N -delay. Although N > 2 is never optimal,
it is still interesting to see that N = 2 is optimal in many instances. Consider
equation (6) which showed that, even after one delayed iterate, the product of
g’s becomes a general field element, i.e. #G1(Fpe) = k/e (refer to Definition
1). Any further delay that occurs after the initial delay will actually involve
squaring both f and G1 (or Gn for n > 1) separately, which are both general
elements of Fpk , prior to multiplying them. One might intuitively guess that
multiplying f and G1 prior to performing the squaring might be preferred, but
clearly this is not the case for embedding degrees where N = 2 is optimal. In the
case of quadratic twists, this preferred delay is even more surprising since the
function updates g are already general elements of Fpk . In agreement with [10],
it becomes clear that for Miller-lite pairings where the difference between the
fields Fpu = Fp and Fpk is larger than in Miller-full pairings where Fpu = Fpe , it
can be very advantageous to spend many extra computations in Fp in order to
delay one single (and most costly) Fpk -multiplication between f and G.
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Abstract. In a storage system where individual storage nodes are prone
to failure, the redundant storage of data in a distributed manner across
multiple nodes is a must to ensure reliability. Reed-Solomon codes possess
the reconstruction property under which the stored data can be recovered
by connecting to any k of the n nodes in the network across which data
is dispersed. This property can be shown to lead to vastly improved
network reliability over simple replication schemes. Also of interest in
such storage systems is the minimization of the repair bandwidth, i.e.,
the amount of data needed to be downloaded from the network in order
to repair a single failed node. Reed-Solomon codes perform poorly here
as they require the entire data to be downloaded. Regenerating codes
are a new class of codes which minimize the repair bandwidth while
retaining the reconstruction property. This paper provides an overview
of regenerating codes including a discussion on the explicit construction
of optimum codes.

Keywords: Distributed storage, MDS codes, Regenerating codes, Re-
pair bandwidth, Interference alignment.

1 Introduction

In a distributed storage network, information pertaining to a single file of size B
symbols is dispersed across nodes in the network in such a manner that an end-
user can retrieve the data stored by tapping into neighboring nodes. Under the
simplest option, all the data is stored at a single node. This however makes the
network highly vulnerable to single-node failures and also increases congestion
of the links surrounding the particular node. A second option is to replicate the
data across � nodes in the network. Such a system can tolerate �− 1 failures but
needs to store �B amount of data. If p is the probability of a single node failure,
then the probability of data loss is p�. The links surrounding the servers may
still be congested. A third option is one of using erasure codes. Here, data is
split into k fragments, and a maximum distance separable (MDS) code, such as
a Reed-Solomon code, is used to generate n fragments which are stored across n
nodes in the network. Each fragment represents a single symbol from the finite
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field Fq. The properties of an MDS code permit an end-user to retrieve the data
by connecting to any k nodes. Thus the system can tolerate n− k node failures
and the total amount of data stored is nB/k. The probability of data loss is
given by

n∑

r=n−k+1

(
n

r

)
pr(1 − p)n−r, (1)

which can be several orders of magnitude lower than the corresponding proba-
bility under the replication option. Also, the links surrounding the storage nodes
are less likely to be congested as the data is dispersed to a greater extent across
the network.

More formally, let the total amount of data to be stored be B symbols from
a finite field Fq of size q. Data is to be stored across n nodes in the network,
such that the entire data can be recovered by connecting to any k nodes. This
process of recovering the data from any k nodes is termed as reconstruction and
is depicted in Figure 1a.

(a) (b)

Fig. 1. The two main components of a distributed storage system: (a) Reconstruction
by a DC, and (b) Regeneration of a failed node

Upon failure of an individual node, a self-sustaining data storage network
must naturally possess the ability to regenerate (i.e., repair) a failed node. An
obvious means to accomplish this is to connect to any k nodes, download the
entire data, and extract the data that was stored in the failed node. Figure 2
depicts node regeneration in the RAID 6 storage system which uses a [4, 2]-MDS
code. But downloading the entire B units of data to recover the data stored in
a single node (which is of the order of B/k) is wasteful and raises the question as
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Fig. 2. RAID-6 system with n = 4, k = 2

Fig. 3. Repair of a failed node while downloading less than B units

to whether there is a better option. Such an option is provided by the concept
of a regenerating codes[1].

Traditional erasure codes treat each fragment as a single symbol over the finite
field Fq. When individual nodes are only permitted to perform linear operations
over Fq, the total amount of data download needed to repair a failed node can be
no smaller than the size B of the entire file. Regenerating codes treat the data
stored in each node as a vector over a smaller field (which we will however, also
denote by Fq ). Linear operation over Fq in this case permits the transfer of a
fraction of the data stored at a particular node for the purposes of node repair.
This is illustrated in Figure 3 which shows an example regenerating code. The
process of repairing a failed node by downloading data from the existing nodes
is termed as regeneration and the total amount of data download needed for
repair is termed the repair bandwidth.

We now introduce some parameters (see [1]) associated with a regenerating
code. We use α to denote the number of symbols over Fq stored in each node.
Clearly, for reconstruction from any k nodes, one needs

α ≥ B/k . (2)
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Upon failure of a node, the new node replacing it is permitted to connect to
any d existing nodes, while downloading β symbols over Fq from each of them,
making the repair bandwidth equal to dβ. Note that the regeneration is only
functional in the sense that the only constraint needed to be satisfied is that
the new node along with the existing nodes, possess the reconstruction and
regeneration properties. This is as opposed to exact regeneration, under which
duplication of data stored in the failed node is required.

The distributed storage network evolves through successive regeneration over
time and this is graphically depicted in Figure 4. In the graph, each storage
node with storage capacity α is represented using two nodes: an ‘in’ node and
and an ‘out’ node with an edge of capacity α linking the two. All edges coming
into the node arrive into ‘in’ and all outgoing edges emanate from ‘out’. Data
collectors (DC) are represented as sinks connecting to some subset of k nodes in
the network.

Fig. 4. Illustrating a cut in the network when the sink is a data collector and the
system has undergone several rounds of regeneration (from [2])

The max-flow, min-cut bound of network coding can be shown to yield the
lower bound:

B ≤
k−1∑

i=0

min{α, (d− i)β}. (3)

Our interest is in minimizing both the amount of data stored per node as well
as the total repair bandwidth, which corresponds respectively to minimizing α
and dβ, or equivalently minimizing α and β. This results in a tradeoff between
α and β called the ‘storage-repair bandwidth tradeoff’. By minimizing first α
and then β, one obtains the minimum storage regeneration (MSR) point which
is one extreme point of the tradeoff. The MSR point is characterized by

αmin =
B

k
(4)

dβmin =
B

k(1 − k−1
d )

. (5)
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The other extreme point is the minimum bandwidth regeneration (MBR)
point, which is obtained by first minimizing β and then minimizing α. This
point is characterized by

dβmin =
dB

∑k−1
i=0 (d− i)

=
B

k(1 − k−1
2d )

(6)

αmin = dβmin =
B

k(1 − k−1
2d )

. (7)

From this it can be seen that regenerating codes potentially offer a savings in
repair bandwidth by a factor of k. We illustrate with an example. Let n =
35, k = 5, d = 34, B = 150 tera bytes (TB) and α = 30 TB. Both RS and
regenerating codes permit the entire file to be recovered by connecting to any
k = 5 nodes. However while the repair bandwidth required by RS codes equals
150 TB, the use of regenerating codes brings this down to to just 34 TB, thereby
reducing the repair bandwidth by an approximate factor of k = 5.

The authors in [2] prove the existence of codes achieving the tradeoff curve.
No explicit constructions however, are given. In our recent work [3–5] we pro-
vide explicit code constructions at the MSR and MBR points for various set of
parameters. Some of the explicit codes provided are systematic i.e., a set of k
out of the n nodes store all source symbols in uncoded form. A data collector
connecting to these k systematic nodes can reconstruct the data without need
for any further processing of the downloaded symbols. To maintain the system-
atic nature of the code, we need to exactly regenerate a failed node, i.e., the new
node replacing the failed node should store data identical to what was stored in
the failed node.

In all our constructions, we assume β = 1 without loss of optimality. This
choice gives the code a high degree of flexibility while simultaneously reducing
the field size q as well as the complexity of encoding and decoding the code.

2 Explicit Regenerating Code Constructions

Our recent code constructions [3–5] applicable to a variety of situations are are
tabulated in Table 1.

In this section, we describe as an example, one of the code constructions listed
in Table 1 which operates at an MSR point. At an MSR point, the code stores
the minimum possible amount of data possible while enabling reconstruction,
which forces the code to be MDS (over a vector alphabet). In addition, the code
must be constructed in such a way so as to also minimize the repair bandwidth.

The code construction is linear over Fq, i.e. any symbol stored is a linear
combination of the source symbols, and only linear operations at any node are
permitted. Define a column vector z of length B consisting of the source symbols.
Each source symbol can independently take values from Fq. Hence, the B source
symbols can be thought of as forming a B-dimensional vector space over Fq.

Since the code is linear, any stored symbol can be written as �tz for some
column vector �. This vector �t is termed the global kernel associated with that
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Table 1. Explicit regenerating code constructions

Operating
point

System
parameters

Type of regeneration Minimum
field size
required

MSR d ≥ 2k − 1 Exact regeneration of systematic nodes n+d−2k+1

MSR d = k + 1 Approximately exact regeneration of all nodes n

MBR d = n − 1 Exact regeneration of all nodes
(

n
2

)

MBR All Exact regeneration of systematic nodes n − k + d

symbol, and it is these global kernels that define the code; the actual symbols
stored depend on the instantiation of z. Since a node stores α symbols, it can be
considered as storing α vectors of the code, and hence can be represented by a
α×B matrix. We will say that the node stores this matrix. Denote the matrix
stored in node m as G(m).

For the regeneration of a failed systematic node, d other nodes contribute a
single symbol each over Fq (since β = 1 in our constructions). We say that each
node passes a vector for the regeneration of the failed node. The row vector
passed will represent the global kernel of the symbol passed.

One of the key concepts driving code construction is that of interference align-
ment, a concept originally introduced in [6] in the context of communication over
wireless channels. There are significant differences though in the manner in which
this principle is applied in storage channels.

An Example Code Construction. Since the intent here is to provide a flavor of
code construction rather than provide all details, we confine the discussion below
to an example that captures all features of the particular method of construction.
The general code construction holds for all d ≥ 2k − 1, and is available in [4].
In the example, we select the parameter set n = 6, d = 5, k = 3 and B = 9.
Setting β = 1 we obtain α = 3 for the MSR point. We assume that all symbols
lie in F7.

Each node stores a 3 × 9 matrix. Let the first three nodes be systematic.
Hence,

G(1) = [I3 03 03]
G(2) = [03 I3 03]
G(3) = [03 03 I3]. (8)

Thus the first three columns of any global kernel are termed as the component
along systematic node 1, the next three columns as the component along node
2, and the last three columns as the component along node 3.

Let Ψ3 =

⎡

⎢⎣
ψ

(4)
1 ψ

(4)
2 ψ

(4)
3

ψ
(5)
1 ψ

(5)
2 ψ

(5)
3

ψ
(6)
1 ψ

(6)
2 ψ

(6)
3

⎤

⎥⎦ be a 3× 3 Cauchy matrix. A Cauchy matrix has the

property that all of its sub-matrices are of full rank. The three non-systematic
nodes store the matrices G(m), m = 4, 5, 6, given by
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G(m) =

⎡

⎢⎣
2ψ(m)

1 2ψ(m)
2 2ψ(m)

3 ψ
(m)
2 0 0 ψ

(m)
3 0 0

0 ψ
(m)
1 0 2ψ(m)

1 2ψ(m)
2 2ψ(m)

3 0 ψ
(m)
3 0

0 0 ψ
(m)
1 0 0 ψ

(m)
2 2ψ(m)

1 2ψ(m)
2 2ψ(m)

3

⎤

⎥⎦ (9)

Regeneration. When a systematic node fails, the new node replacing it down-
loads one symbol each from all the existing nodes. Since the other two systematic
nodes cannot pass any useful information, it is the three vectors from the non-
systematic nodes that have to provide all the information about the failed node.
In other words, the components along the failed node in the three vectors passed
by the non-systematic should be linearly independent. For the regeneration of
systematic node l (∈ {1, 2, 3}), each non-systematic node passes its lth row, and
we can see that the components along the failed node form the Cauchy matrix
Ψ3 which is non-singular.

Although the other systematic nodes do not contribute any useful informa-
tion, they perform a very important task – that of interference cancelation. The
vectors passed by the non-systematic nodes have non-zero components along
the other systematic nodes which need to be removed. These components are
termed as interference. The interference along any other systematic node can
be canceled only by the vector passed by that systematic node. Since each sys-
tematic node passes only one vector, the components along a particular existing
systematic node in the vectors passed by the non-systematic nodes should be
aligned in a single dimension. This is interference alignment in the context of
regenerating codes.

Our code construction satisfies the above interference alignment conditions.
For example, consider regeneration of systematic node 1. Each non-systematic
node passes its first row. The first rows of G(m), m = 4, 5, 6, have components
along the systematic nodes (nodes 2 and 3) aligned in the direction [1 0 0].
Now, the second and third systematic nodes pass [0 0 0 1 0 0 0 0 0],
and [0 0 0 0 0 0 1 0 0] respectively and cancel out the interference
leaving behind the matrix [Ψ3 03 03]. Since Ψ3 is invertible, systematic node
1 can be exactly regenerated.

Reconstruction. For reconstruction of the data, the DC can connect to any
three nodes in the system. For reconstruction to be possible, the 9 × 9 matrix
formed by juxtaposing the node matrices of these three nodes one below the
other should be non-singular.

Reconstruction is trivially satisfied when the data collector connects to all the
three systematic nodes. Now consider the case of a DC connecting to the three
non-systematic nodes. Let C1 be the matrix formed by juxtaposing the matrices
stored in these three nodes one below the other.

Theorem 1. The matrix C1 is full rank.
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Proof. In C1, group the ith (i = 1, 2, 3) rows of all the three nodes together to
obtain the matrix C2. Thus,

C2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2ψ(4)
1 2ψ(4)

2 2ψ(4)
3 ψ

(4)
2 0 0 ψ

(4)
3 0 0

2ψ(5)
1 2ψ(5)

2 2ψ(5)
3 ψ

(5)
2 0 0 ψ

(5)
3 0 0

2ψ(6)
1 2ψ(6)

2 2ψ(6)
3 ψ

(6)
2 0 0 ψ

(6)
3 0 0

0 ψ
(4)
1 0 2ψ(4)

1 2ψ(4)
2 2ψ(4)

3 0 ψ
(4)
3 0

0 ψ
(5)
1 0 2ψ(5)

1 2ψ(5)
2 2ψ(5)

3 0 ψ
(5)
3 0

0 ψ
(6)
1 0 2ψ(6)

1 2ψ(6)
2 2ψ(6)

3 0 ψ
(6)
3 0

0 0 ψ
(4)
1 0 0 ψ

(4)
2 2ψ(4)

1 2ψ(4)
2 2ψ(4)

3

0 0 ψ
(5)
1 0 0 ψ

(5)
2 2ψ(5)

1 2ψ(5)
2 2ψ(5)

3

0 0 ψ
(6)
1 0 0 ψ

(6)
2 2ψ(6)

1 2ψ(6)
2 2ψ(6)

3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Multiply the 3 groups of 3 rows each by Ψ−1
3 to get a matrix C3 given by

C3 =

⎡

⎣
Ψ−1

3 03 03

03 Ψ−1
3 03

03 03 Ψ−1
3

⎤

⎦C2 (11)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0
0 0 2 0 0 0 1 0 0
0 1 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 1 0
0 0 1 0 0 0 2 0 0
0 0 0 0 0 1 0 2 0
0 0 0 0 0 0 0 0 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Further elementary row operations can be used to show that this matrix is full
rank over the field F7, and hence the data collector can recover all the source
data.

Similarly, when the data collector connects to a combination of systematic and
non-systematic nodes, it can be shown that the resultant 9×9 matrix is invertible,
which enables the data collector to recover all the source data.
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Abstract. We study the rationality of the intersection points of certain
lines and smooth plane quartics C defined over Fq. For q ≥ 127, we prove
the existence of a line such that the intersection points with C are all
rational. Using another approach, we further prove the existence of a tan-
gent line with the same property as soon as char Fq �= 2 and q ≥ 662 +1.
Finally, we study the probability of the existence of a rational flex on C
and exhibit a curious behavior when char Fq = 3.
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1 Introduction

In computational arithmetic geometry, it is an important task to develop an
efficient group law for the Jacobian variety of algebraic curves defined over a
finite field. One of the most important and recent application of such efficient
arithmetic comes from cryptography [18,19,4]. In [7], the authors introduced an
efficient algorithm to perform arithmetic in the Jacobian of smooth plane quar-
tics. The presented algorithm depends on the existence of a rational line l inter-
secting the quartic in rational points only. Moreover, the more special l is (for
instance, tangent, tangent at a flex,. . . ), the better is the complexity of the algo-
rithm. Motivated by the above efficiency argument, we prove here the following
theorems.

Theorem 1. Let C be a smooth plane quartic over the finite field Fq with q
elements. If q ≥ 127, then there exists a line l which intersects C at rational
points only.
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Theorem 2. Let C be a smooth plane quartic over Fq and assume that char Fq �=
2. If q ≥ 662 + 1, then there exists a tangent to C which intersects C at rational
points only.

In [7], the authors gave heuristic arguments and computational evidences that
the probability for a plane smooth quartic over a finite field to have a rational flex
is about 0.63. In this article, we present a ‘proof’ which depends on a conjectural
analogue over finite fields of a result of [13] on the Galois group G of the 24 flexes
of a general quartic. Harris proved that, over C, the group G is as big as possible,
namely the symmetric group S24. Unfortunately, Harris’s proof uses monodromy
arguments which cannot be adapted so easily in positive characteristic. Worse,
we surprisingly found that Harris’s result is not valid over fields of characteristic 3
and we prove that for this field the Galois group is S8. This is a consequence of the
peculiar fact that, in characteristic 3, a smooth plane quartic C has generically
only 8 flexes (with multiplicity 3), which belong to a conic. We suspect that this
is the only exceptional case.

The methods used for these three problems are various and can be general-
ized or adapted to other questions. This was our principal motivation to write
down our approaches in the case of quartics. It illustrates also the very unusual
behavior of special points and lines in small characteristics.

Coming back to our initial motivation, it appears nowadays unlikely (due to
recent progress in index calculus [5]) that smooth plane quartics may be used for
building discrete logarithm cryptosystems. However, it is interesting to mention
that the complexity analysis of the index calculus attack of [5] uses an asymptotic
bound for the number of lines intersecting a smooth plane quartic in four distinct
rational points, in the spirit of Theorem 1.

The paper is organized as follows: Section 2 gives a brief overview on the
possible geometric intersections of a line and a smooth plane quartic. In Section
3, we give a proof of Theorem 1 using Chebotarev density theorem for covers of
curves. In Section 4, we prove Theorem 2 using the tangential correspondence
and its associated curve XC ⊂ C × C. The crucial point is to prove that XC

is geometrically irreducible in order to apply Hasse-Weil bound for (possibly
singular) geometrically irreducible curves. Finally, in Section 5, we study the
possible generalization of Theorem 2 to characteristic 2. We cannot prove that
XC is always geometrically irreducible. However if this is true, we can give a
bound using intersection theory. We also address the question of the probability
of existence of a rational flex and show that in characteristic 3, the flexes are on
a conic.

Conventions and notation. In the following, we denote by (x : y : z) the
coordinates in P

2, and by (x, y) the coordinates in A
2. Let p be a prime or 0 and

n ≥ 1 an integer. We use the letter K for an arbitrary field of characteristic p
and let k = Fq be a finite field with p �= 0 and q = pn elements. When C is a
smooth geometrically irreducible projective curve, we denote by κC its canonical
divisor. Operators such as Hom, End or Aut applied to varieties over a field K
will always refer to K-rational homomorphisms and endomorphisms.
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2 Structure of the Canonical Divisor

In this section, we recall some geometric facts about special points and lines on
a plane smooth quartic. Let K be an algebraically closed field of characteristic
p and C be a smooth (projective) plane quartic defined over K. The curve C
is a non hyperelliptic genus 3 curve which is canonically embedded. Hence the
intersection of C with a line l are the positive canonical divisors of C. There are
5 possibilities for the intersection divisor of l and C denoted (l ·C) = P1 + P2 +
P3 + P4:

case 1. The four points are pairwise distinct. This is the generic position.
case 2. P1 = P2, then l is tangent to C at P1.
case 3. P1 = P2 = P3. The point P1 is then called a flex. As a linear intersection

also represents the canonical divisor κC , these points are exactly the
ones where a regular differential has a zero of order 3. The curve C
has infinitely many flexes if and only if p = 3 and C is isomorphic
to x4 + y3z + yz3 = 0 which is also isomorphic to the Fermat quartic
x4 + y4 + z4 = 0 and to the Klein quartic x3y + y3z + z3x = 0. This
is a funny curve in the sense of [14, Ex.IV.2.4] or a non classical curve
in the sense of [28, p.28]. On the contrary, if C has finitely many flexes,
then these points are the Weierstrass points of C and the sum of their
weights is 24.

case 4. P1 = P2 and P3 = P4. The line l is called a bitangent of the curve C and
the points Pi bitangency points. If p �= 2, then C has exactly 28 bitangents
(see for instance [23, Sec.3.3.1]). If p = 2, then C has respectively 7, 4, 2,
or 1 bitangents, if the 2-rank of its Jacobian is respectively 3, 2, 1 or 0
[27]. Recall that the p-rank γ of an abelian variety A/K is defined by
#A[p](K) = pγ .

case 5. P1 = P2 = P3 = P4. The point P1 is called a hyperflex. Generically, such
a point does not exist. More precisely, the locus of quartics with at least
one hyperflex is of codimension one in the moduli space M3 (see [29,
Prop.4.9,p.29]). If p = 3 and C is isomorphic to the Fermat quartic then
the number of hyperflexes of C is equal to 28. Otherwise, the weight of a
hyperflex is greater than or equal to 2, so there are less than 12 of them
[26]. Note that the weight of a hyperflex is exactly 2 when p > 3 or 0
and that the weight of a flex which is not a hyperflex is 1 if p �= 3. See
also [30] for precisions when p = 2 and Section 5.2 when p = 3.

A point P can even be more special. Let P ∈ C be a point and let us denote
φP : C → |κC − P | = P

1 the degree three map induced by the linear system
|κC − P |. If this cover is Galois, such a point P is called a (inner) Galois point
and we denote Gal(C) the set of Galois points of C.

Lemma 1 ([8,9,10,11]). Let C be a smooth plane quartic defined over K. The
number of Galois points is at most 4 if p �= 3 and at most 28 if p = 3. Moreover,
the above bounds are reached, respectively by the curve yz3 +x4 + z4 = 0 and the
Fermat quartic.
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In the sequel, we will need the first item of the following lemma.

Lemma 2. Let C be a smooth plane quartic defined over K. There is always a
bitangency point which is not a hyperflex unless

– p = 3 and C is isomorphic to the Fermat quartic,
– p = 2 and JacC is supersingular,
– p = 2 and C is isomorphic to a 2-rank one quartic

(ax2 + by2 + cz2 + dxy)2 + xy(y2 + xz) = 0

with ac �= 0,
– p = 2 and C is isomorphic to a 2-rank two quartic

(ax2 + by2 + cz2)2 + xyz(y + z) = 0

with abc �= 0 and b + c �= 0.

Proof. According to Section 2 case 5, the number of hyperflexes when C is not
isomorphic to the Fermat quartic and p = 3, is less than 12. On the other hand,
if p �= 2, a curve C has 28 bitangents, and thus there are at least 28·2−12·2 = 32
bitangency points which are not hyperflexes. However, for the Fermat quartic in
characteristic 3, all bitangency points are hyperflexes.
There remains to look at the case p = 2 for which we use the classification of
[31], [22]. The quartic C falls into four categories according to its number of
bitangents:

1. if C has only one bitangent, then C is isomorphic to a model of the form
Q2 = x(y3 + x2z) where Q = ax2 + by2 + cz2 + dxy + eyz + fzx and c �= 0.
The unique bitangent x = 0 intersects C at points (x : y : z) satisfying
by2 + cz2 + eyz = 0 . Therefore, C has a hyperflex if and only if e = 0,
i.e. C falls into the subfamily S [22, p.468] of curves whose Jacobian is
supersingular. Conversely, any curve in S has a hyperflex.

2. if C has two bitangents, then C is isomorphic to a model of the form Q2 =
xy(y2 + xz) where Q = ax2 + by2 + cz2 + dxy + eyz + fzx and ac �= 0. All
bitangency points are then hyperflexes if and only if e = f = 0.

3. if C has four bitangents, then C is isomorphic to Q2 = xyz(y + z) with

Q = ax2 + by2 + cz2 + dxy + eyz + fzx and abc �= 0, b + c + e �= 0.

All bitangency points are hyperflexes if and only if d = e = f = 0.
4. if C has seven bitangents, then C is isomorphic to Q2 = xyz(x+ y + z) with

Q = ax2 + by2 + cz2 + dxy + eyz + fzx and some open conditions on the
coefficients [22, p.445]. The bitangents are

{x, y, z, x + y + z, x + y, y + z, x + z}.
Suppose that the intersection points of x = 0, y = 0 and z = 0 with C are
hyperflexes, then d = e = f = 0. Moreover x+ y = 0 gives a hyperflex if and
only if (a + b)y2 + yz + cz2 is a perfect square, which is never possible. ��
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3 Proof of Theorem 1

Let q ≥ 127 be a prime power. Note that, as an easy consequence of Serre-Weil
bound, we know that

#C(k) ≥ q + 1 − 3 · 	2√q� = 62.

For the proof, we follow the same strategy as [5, p.604]. The lines intersecting C
at P are in bijection with the divisors in the complete linear system |κC −P |. We
wish to estimate the number of completely split divisors in this linear system,
since such a divisor defines a line solution of Theorem 1. To get the existence of
such a divisor, we will use an effective Chebotarev density theorem for function
fields, as in [21, Th.1]. This theorem assumes that the cover is Galois but we can
reduce to this case thanks to the following lemma.

Lemma 3. Let K/F be a finite separable extension of function fields over a
finite field. Let L be the Galois closure of K/F . A place of F splits completely
in K if and only if it splits completely in L.

Proof. It is clear that, if a place P ∈ F splits completely in L, it splits com-
pletely in K. Conversely, let G be the Galois group of L/F and H be the Galois
subgroup of L/K. By construction (see [3, A.V.p.54]), L is the compositum of
the conjugates Kσ with σ ∈ G/H . If a place P ∈ F splits completely in K, it
splits completely in each of the Kσ. It is then enough to apply [25, Cor.III.8.4]
to conclude. ��
We consider the separable geometric cover φP : C → |κC − P | = P

1 of degree 3
induced by the linear system |κC −P |. We may assume that no rational point in
P

1 is ramified for φP . Otherwise, it is easy to see that the fiber of φP above this
point has only rational points and the line defined by these points intersects the
quartic in rational points only. Theorem [21, Th.1] boils down to the following
proposition.

Proposition 1. a) If the cover φP has a non-trivial automorphism, then the
number N of completely split divisors in |κC − P | satisfies

∣
∣
∣
∣
N − q + 1

3

∣
∣
∣
∣
≤ 2

√
q + |D|

where |D| =
∑

y∈P1,ramified deg y.
b) If the cover φP has a non-trivial k̄-automorphism not defined over k, then

there are no completely split divisors in |κC − P |.
c) If the cover φP has no non-trivial k̄-automorphism, then the number N of

completely split divisors in |κC − P | satisfies
∣
∣
∣
∣
N − q + 1

6

∣
∣
∣
∣
≤ √

q + |D|.
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Proof (of Theorem 1). To avoid case (b) of Proposition 1, it is enough that P is
not a Galois point (and we will avoid case (a) as well). By Lemma 1, we know that
the number of such P is less than 28. So let the point P ∈ C(k)\(Gal(C)∩C(k)).
Then the cover φP has a completely split divisor if

q + 1
6

>
√

q + |D|. (1)

Using Riemann-Hurwitz formula we get

|D| ≤ (2 · 3 − 2) − 3 · (0 − 2) = 10.

Hence the inequality (1) is satisfied as soon as q ≥ 127. ��
Remark 1. We do not pretend that our lower bound 127 is optimal. In [2], the
converse problem is considered (i.e. the existence of a plane (not necessarily
smooth) curve with no line solution of Theorem 1) but their bound, 3, is also
far from being optimal in the case of quartics. Indeed, by [17], for q = 32, there
still exists a pointless smooth plane quartic for which of course there is no line
satisfying Theorem 1.

4 Proof of Theorem 2

Let C be a smooth plane quartic defined over a field K. Let the map T : C →
Sym2(C) be the tangential correspondence which sends a point P of C to the
divisor (TP (C) · C) − 2P . We associate to T its correspondence curve

XC = {(P, Q) ∈ C × C : Q ∈ T (P )}
which is defined over K. Our goal is to show that when K = k = Fq with q > 662

and p �= 2, then XC has a rational point, i.e. there is (P, Q) ∈ C(Fq)2 such that
(TP (C) · C) = 2P + Q + R for some point R, necessarily in C(Fq). Thus, the
tangent TP (C) is a solution of Theorem 2.

To do so, we first study properties of the geometric covers XC → C. Let
πi : XC → C, i = 1, 2, be the projections on the first and second factor. The
morphism π1 is a 2-cover between these two projective curves.

Lemma 4. Let K be an algebraically closed field of characteristic p. The pro-
jection π1 : XC −→ C has the following properties:

1. The ramification points of π1 are the bitangency points of C,
2. π1 is separable,
3. The point (P, Q) ∈ XC such that P, Q are bitangency points and P is not a

hyperflex (i.e. P �= Q) is a regular point if and only if p �= 2,
4. If p �= 2, the only possible singular points of XC are the points (P, P ) where

P is a hyperflex of C.

Proof. The first property is an immediate consequence of the definition of a
bitangent.
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If π1 is not separable then p = 2 and π1 is purely inseparable. Thus #π−1
1 (P ) = 1

for all P ∈ C, i.e. all P are bitangency points. This is impossible since the number
of bitangents is finite (less than or equal to 7).

Let F (x, y, z) = 0 be an equation of C. Let Q �= P be a point of C defining a
point (P, Q) in XC\Δ where Δ is the diagonal of C×C. For such points, it is easy
to write local equations as follows. We can suppose that P = (0 : 0 : 1) = (0, 0),
Q = (1 : 0 : 1) = (1, 0) and assume that f(x, y) = F (x, y, 1) = 0 is an equation
of the affine part of C. Then, if we consider the curve YC in A

4(x, y, z, t) defined
by

⎧

⎪⎨

⎪⎩

f(x, y) = 0 ,

f(z, t) = 0 ,
∂f
∂x (x, y)(z − x) + ∂f

∂y (x, y)(t − y) = 0 ,

YC \ Δ is an open subvariety of XC containing (P, Q). The Jacobian matrix at
the point (P, Q) = ((0, 0), (1, 0)) is equal to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂f
∂x

(0, 0) 0 ∂2f

∂x2 (0, 0) − ∂f
∂x

(0, 0)

∂f
∂y

(0, 0) 0 ∂2f
∂x∂y

(0, 0) − ∂f
∂y

(0, 0)

0 ∂f
∂x

(1, 0) ∂f
∂x

(0, 0)

0 ∂f
∂y

(1, 0) ∂f
∂y

(0, 0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now, if P and Q are bitangency points, then the tangent at these points is y = 0,
so ∂f

∂x(0, 0) = ∂f
∂x(1, 0) = 0. The only non-trivially zero minor determinant of the

matrix is then
∂f

∂y
(1, 0) · ∂f

∂y
(0, 0) · ∂2f

∂x2
(0, 0).

So (P, Q) ∈ XC is not singular if and only if ∂2f
∂x2 (0, 0) �= 0. This can never be

the case if p = 2, so we now suppose that p �= 2. We can always assume that the
point (0 : 1 : 0) /∈ C and we write

f(x, y) = x4 + x3h1(y) + x2h2(y) + xh3(y) + h4(y),

where hi are polynomials (in one variable) over K of degree ≤ i. Since y = 0 is
a bitangent at P and Q, we have

f(x, 0) = x2(x − 1)2 = x4 − 2x3 + x2,

and thus h2(0) = 1. Now

∂2f

∂x2
(0, 0) = 2h2(0) �= 0.

Finally if (P, Q) ∈ XC is not ramified for π1, it is a smooth point. This proves
the last assertion. ��
We want to apply the following version of Hasse-Weil bound to the curve XC .
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Proposition 2 ([1]). Let X be a geometrically irreducible curve of arithmetic
genus πX defined over Fq. Then

|#X(Fq) − (q + 1)| ≤ 2πX
√

q.

In particular if q ≥ (2πX)2 then X has a rational point.

Hence, to finish the proof, we need to show that XC is geometrically irreducible
and then to compute its arithmetic genus. For the first point, we use the following
easy lemma for which we could not find a reference.

Lemma 5. Let φ : X → Y be a separable morphism of degree 2 between two
projective curves defined over an algebraically closed field K such that

1. Y is smooth and irreducible,
2. there exists a point P0 ∈ Y such that φ is ramified at P0 and φ−1(P0) is not

singular.

Then X is irreducible.

Proof. Let s : X̃ → X be the normalization of X and φ̃ = φ ◦ s : X̃ → Y . Due
to the second hypothesis, φ̃ : X̃ → Y is a separable, ramified 2-cover. Clearly, X
is geometrically irreducible if and only if X̃ is.
Let us assume that X̃ is not irreducible. There exist smooth projective curves X̃1

and X̃2 such that X̃ = X̃1∪ X̃2. Then, consider for i = 1, 2, φ̃i = φ̃|X̃i
: X̃i → Y .

Each of these morphisms is of degree 1 and since the curves are projective and
smooth, they define an isomorphism between X̃i and Y .
Since P0 ∈ Y is a ramified point, φ̃−1

1 (P0) = φ̃−1
2 (P0). It follows that

φ̃−1(P0) ∈ X̃1 ∩ X̃2

so that φ̃−1(P0) is singular, which contradicts the hypothesis. ��
Proof (of Theorem 2). Let us first start with C k̄-isomorphic to the Fermat
quartic in characteristic 3. By Section 2 case 3, all its points are flexes. So if
there exists P ∈ C(k), then the tangent at P cuts C at P and at another unique
point which is again rational over k. Now when q > 23 and q �= 29, 32, it is proved
in [17] that a genus 3 non-hyperelliptic curve over Fq has always a rational point
and the result follows.
We suppose that C is a smooth plane quartic not k̄-isomorphic to the Fermat
quartic if p = 3. As we assumed that p �= 2, by Lemma 5, Lemma 2 and Lemma 4,
we conclude that XC is an geometrically irreducible projective curve. Moreover,
if we assume that C has no hyperflex, then XC is smooth and we can compute
its genus gXC using Riemann-Hurwitz formula for the 2-cover π1 : XC → C
ramified over the 2 · 28 bitangency points. In fact,

2gXC − 2 = 2(2 · 3 − 2) + 56 ,

and thus gXC = 33. The family of curves XC is flat over the locus of smooth
plane quartics C by [6, Prop.II.32]. As the arithmetic genus πXC is constant in
flat families [14, Cor.III.9.10] and equal to gXC for smooth XC [14, Prop.IV.1.1],
we get that πXC = 33 for any curve C. We can now use Proposition 2 to get the
bound q > (2 · 33)2. ��
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5 Further Results and Open Questions

5.1 The Tangent Case in Characteristic 2

It is of course tempting to extend Theorem 2 to characteristic 2. Unfortunately,
as we have seen in Lemma 4, all ramified points are singular and we cannot
apply Lemma 5 to show that XC is geometrically irreducible. However, explicit
computations with Magma, see

http://iml.univ-mrs.fr/~ritzenth/programme/tangent-char2.mag,

suggest that XC is still geometrically irreducible (see also Remark 2).

Conjecture 1. Let C be a smooth plane quartic over a field k of characteristic 2.
Then the correspondence curve XC is geometrically irreducible.

Even if we assume the conjecture, we still have to compute the arithmetic genus
of XC . It is not easy in this case, as wild ramification occurs. We therefore
suggest another point of view, which can actually be used in any characteristic.

The notation is like in Section 4. In order to emphasize how general the
method is, we will denote by g = 3 the genus of C and by d = 4 its degree. The
map T is a correspondence with valence ν = 2, i.e. the linear equivalence class
of T (P )+ νP is independent of P . Let denote by E (resp. F ) a fiber of π1 (resp.
π2) and Δ the diagonal of C × C. We get, as in the proof of [12, p.285], that
XC is linearly equivalent to aE + bF − νΔ for some a, b ∈ Z to be determined.
Then, one computes the arithmetic genus πXC of XC thanks to the adjunction
formula [14, Ex.V.1.3.a]

2πXC − 2 = XC .(XC + κC×C)

where κC×C is the canonical divisor on C × C. Using that (see for instance [12,
p.288], [14, Ex.V.1.6])

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

E.E = F.F = 0,

E.F = Δ.E = Δ.F = 1,

κC×C ≡num (2g − 2)E + (2g − 2)F,

Δ2 = (2 − 2g),

we find
πXC = ab − 15.

Now, we determine the values of a and b. One has

XC .E = b − ν = deg π1 = d − 2 = 2

so b = 4. Also, XC .F = a − ν = deg π2. The degree of π2 is equal to the degree
of the dual curve C∗ minus 2. By [16, p.786]

deg C∗ =
d(d − 1)

m

where m is the inseparable degree of the dual map C → C∗. In the case of smooth
plane quartics, the degree m equals 1 and a = 12 except (see [15, Cor.2.4])
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– if p = 3 where C is geometrically isomorphic to the Fermat quartic and then
m = 3;

– or if p = 2, then m = 2 and a = 6.

Plugging the values of a and b, we find that

– πXC = 33 if p �= 2 and if C is not k̄-isomorphic to the Fermat quartic in
characteristic 3;

– πXC = 9 if p = 2.

Hence we get the following proposition.

Proposition 3. If Conjecture 1 is true, then any smooth plane quartic over Fq

with q = 2n and n > 8 has a tangent which intersects the quartic at rational
points only.

Remark 2. We can prove Conjecture 1 for generic quartics C using the previous
background. Indeed, if XC is not geometrically irreducible, it is the union over
k̄ of two geometrically irreducible curves X1 and X2, birationally equivalent to
C, and of arithmetic genus

0 ≤ πX1 = πX2 ≤ g = 3.

Now by [14, Ex.V.1.3.c]

9 = πXC = πX1 + πX2 + X1.X2 − 1.

Hence 4 ≤ X1.X2 ≤ 10. But X1.X2 is greater than or equal to the number of
ramification points of π1 : XC → C which are the bitangency points of C. When
this number is greater than 10 (and generically, for 2-rank 3 quartics with no
hyperflex, it is 14), we get that XC is geometrically irreducible.

5.2 The Case of Flexes

The heuristic results and computations of [7] tend to suggest that a random
plane smooth quartic over Fq has an asymptotic probability of about 0.63 to
have at least one rational flex when q tends to infinity. We describe how to turn
the heuristic strategy into a proof.

Let P
14 be the linear system of all plane quartic curves over a field K and

I0 = {(p, l), p ∈ l} ⊂ P
2 × P

2∗. Let I4 ⊂ P
14 × I0 be the locus

I4 = {(C, (p, l)), C is smooth and p is a flex ofC with tangent line l}.

Harris proved the following result using monodromy arguments.

Theorem 3 ([13, p.698]). The Galois group of the cover I4 → P
14 over C is

the full symmetric group S24.
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Let us assume for a moment that this result is still valid over finite fields. Then,
using a general Chebotarev density theorem for function fields like in [24, Th.7],
this would mean that the probability of finding a rational flex is within O(1/

√
q)

of the probability that a random permutation of 24 letters has a fixed point,
which is

p24 := 1 − 1
2!

+
1
3!

− . . . − 1
24!

≈ 1 − exp(−1) ≈ 0.63.

Unfortunately, it is not easy to transpose Harris’s proof over any field. And
actually, Harris’s result is not true in characteristic 3, as the following proposition
implies.

Proposition 4. Let C : f(x1, x2, x3) = 0 be a smooth plane quartic defined
over an algebraically closed field K of characteristic 3. The flexes of C are the
intersection points of C with a certain curve HC : hC = 0 of degree less than or
equal to 2. The curve HC can be degenerate as in the case of the Fermat quartic
where hC = 0.

Proof. We use the method to compute flexes of a plane curve of degree d de-
scribed in the appendix of [7] (see also [26, Th.0.1]). Indeed, when the charac-
teristic of the field divides 2(d − 1), one cannot use the usual Hessian and one
should proceed as follows.
Let C : f = 0 be the generic plane quartic over K

f(x, y, z) := a00y
4 + y3(a10x + a01z) + y2(a20x

2 + a11xz + a02z
2)

+y(a30x
3 + a21x

2z + a12xz2 + a03z
3)

+(a40x
4 + a31x

3z + a22x
2z2 + a13xz3 + a04z

4),

We define as in [7]

2h̄ = 2f1f2f12 − f2
1 f22 − f2

2f11,

= f1(f2f12 − f1f22) + f2(f1f12 − f2f11)

where fi or fij are the partial derivatives with respect to ith variable (or to ith
and jth variables). It is then easy to check via a computer algebra system, see

http://iml.univ-mrs.fr/~ritzenth/programme/flex-char3.mw ,

that
2h̄ − a20f

2 − f · (ax3 + by3 + cz3)z = h̃C · z2,

with

a := a40a11 + a21a30 − 2a20a31,

b := a10a11 + a00a21 − 2a20a01,

c := 2a2
12 + a13a11 + a20a04 + a03a21 + a02a22,

where h̃C is a homogeneous polynomial in K [x, y, z] of degree 6, for which
nonzero coefficients appear only for the monomials x6, y6, z6, x3y3, x3z3 and
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y3z3. Since the map u �→ u3 is an isomorphism of K, there is a polynomial
hC ∈ K [x, y, z] satisfying h̃C = h3

C . If we suppose that there is no flex at infin-
ity, the flexes are the intersection points of h̄ = 0 and f = 0, so they are also
the intersection points of hC = 0 and f = 0 and hC = 0 is the equation of a
(possibly degenerate) conic HC . ��
Remark 3. As h̃C = h3

C , we see that the weight of a flex which is not a hyperflex
is 3 in characteristic 3.

Corollary 1. The Galois group of the cover I4 → P
14 over F̄3 is the full sym-

metric group S8.

Proof. Note that the Galois group G of the cover is the Galois group of the
x-coordinate of the 8 flexes of the general quartic. Hence, G is included in S8.
To show that G is exactly S8, we are going to specialize the general quartic to
smooth quartics over finite fields with 8 distinct flexes having different arithmetic
patterns. More precisely, to generate S8 we need to produce (see [20, Lem.4.27]):

– a smooth quartic with 8 Galois conjugate flexes over F3:

2x4 + 2x3y + x3z + 2x2z2 + xy3 + 2xy2z + y3z + yz3 = 0;

– a smooth quartic with one rational flex and 7 Galois conjugate flexes over
F3:

x3y + x2z2 + 2xy3 + xy2z + 2xyz2 + 2xz3 + y4 + 2yz3 = 0;

– a smooth quartic with two quadratic conjugate flexes and 6 rational flexes
over F9:

a6x4 + ax3y + a7x3z + a6x2y2 + a2x2z2 + a7xy3 + a7xy2z

+ xyz2 + a5xz3 + a5y4 + a3y3z + a5y2z2 + 2yz3 + a7z4 = 0,

where a2 − a − 1 = 0. ��
Corollary 2. Let C be a smooth plane quartic over F3n . The probability that C
has a rational flex tends to

p8 := 1 − 1
2!

+
1
3!

− . . . − 1
8!

≈ 0.63

when n tends to infinity.

Remark 4. The fact that the Galois group G in characteristic 3 is S8 and not
S24 was unnoticed in our computations in [7] because |p24 − p8| ≤ 10−5.

General reduction arguments show that the Galois group G remains S24 almost
all p. We conjecture that p = 3 is the only exceptional case.

Conjecture 2. The Galois group of the cover I4 → P
14 over F̄p is the full sym-

metric group S24 if p �= 3 and S8 otherwise.
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27. Stöhr, K.-O., Voloch, J.F.: A formula for the cartier operator on plane algebraic
curves. J. für die Reine und Ang. Math. 377, 49–64 (1987)
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Reflections about a Single Checksum

Ulrich Tamm

German Language Department of Business Informatics,
Marmara University, Istanbul, Turkey

Abstract. A single checksum for codes consisting of n integer compo-
nents is investigated. In coding theory this is mostly used for single error–
correction in unconventional error models. If the errors are such that a
single component ci is distorted to ci±ei, the analysis leads to equivalent
group factorizations. We shall present several code constructions for this
model, give a short survey on the coding theoretical and mathematical
background, and also emphasize applications in cryptography and com-
puter science.

Keywords: single – error correction, perfect codes, group factorization,
steganography, distributed computing.

1 Introduction

We are considering the following checksum for a code which consists of all words
(c1, . . . , cn) ∈ Z fulfilling

n∑

i=1

wi · ci = 0 mod m, (1)

where (w1, . . . , wn) ∈ Z is a fixed sequence of weights and n is the length of the
code.

Since the checksum is reduced modulo m, of course, the components of the
code words may be regarded as letters over an alphabet of size m. Usually, this
is indeed the case. However, for some applications, the letters ci are from a much
smaller alphabet.

For instance, in the famous Varshamov – Tenengolts codes [37], which arise for
(w1, . . . , wn) = (1, 2, . . . , n), and m = n + 1, the code words are binary. Another
case, where the ci’s are chosen from a smaller alphabet will be discussed more
detailed in the application in steganography.

Varshamov – Tenengolts codes are able to correct single asymmetric errors
[4] and were later also applied by Levenshtein [18] in order to correct single
deletions.

Later, Levenshtein and Vinck [19] and Martirossian [22] used the checksum
(1) in order to analze single – error correcting codes for further unconventional
error models as peak shifts in run–length–limited codes. The effect of a single
error is reflected in the behaviour of the syndrome, which should be changed to

M.A. Hasan and T. Helleseth (Eds.): WAIFI 2010, LNCS 6087, pp. 238–249, 2010.
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a value different from 0 by a linear combination of the weights corresponding to
the codeword’s coordinates involved in this error.

The proper choice of the weight sequence is crucial for the quality of the code.
It strongly depends on the type of error to be corrected.

Vinck and Morita [38] later called the codes obtained via checksum (1) integer
codes.

The most important case is the error type of substitution of the letter ci by
c′i. Then the resulting syndrome is

w1c1 + . . . wi−1ci−1 + wic
′
i + wi+1ci+1 + . . . wncn

= wi(c′i − ci), for i = 1, . . . , n (2)

A single error may involve more than one component. For instance, if the two
adjacent letters ci and ci+1 are permuted, then the syndrome will be

w1c1 + . . . wi−1ci−1 + wici+1 + wi+1ci + wi+2ci+2 + . . . wncn =

(wi − wi+1)(ci+1 − ci), for i = 1, . . . , n− 1.

A very similar syndrome (with n being the number of runs in a run – length
limited sequence) occurs in the correction of peak shifts discussed by Levenshtein
and Vinck [19].

In order to be able to correct one single error, the syndromes of an integer
code have to be pairwisely different. So if the possible distortions, which can
be corrected by the integer code, are from an error set E ⊂ Zm and the linear
combinations of the weights (for instance wi for substitutions (2) or wi − wi+1

for permutations) are from a set H ⊂ Zm, then we have to assure that

e · h �= e′ · h′ for all e, e′ ∈ E and h, h′ ∈ H. (3)

If, in addition, all elements from the set Zm \{0} occur as a product in (3), then
the code is said to be perfect. For a perfect integer code in Zm the pair (E ,H) is
also known as splitting of the additive group Zm, cf. [30] and we shall also use
this notion in the following.

Usually, we choose m = p a prime number, such that we operate in finite
fields. Then E · H yields a factorization of the multiplicative group Z∗

p (here
multiplication of two sets means the set of all possible products of one element
in one set with an element of the other set). For the theory of group factorizations
we refer to [34], [26].

Integer codes for the error sets E = {±1,±2, . . . ,±k} are denoted as k – shift
codes or k – shift designs and arise in the study of peak shift correction [19]
and of correction of errors in the so – called Stein sphere [7], where a single
component is distorted in such a way that the received letter c′i is of the form
c′i = ci + j, j ∈ {±1,±2, . . . ,±k}. Conditions for the existence of perfect k –
shift codes have been introduced for k = 1, 2 and k = m−1

2 in [19] and for the
parameters k = 3 and k = 4 in [24,35].

In [23] the error set E = {±1,±a} is discussed. This corresponds to the error
model, in which a letter ci is changed to one of its nearest neighbours on the



240 U. Tamm

a × a – grid, where a component (x, y) is represented by the number x + y · a
This can be described in such a way that the received letter is contained in the
set {ci ± 1, ci ± a}.

The error set E = {±1,±a,±b} was studied in [35] as a special case of the
more general {±1,±a, . . . ,±ar,±b, . . . ,±bs} for positive integers r, s.

In Section 2 we shall discuss further applications of the checksum (1) in cryp-
tography and computer science. Especially, it is related to the efficient placement
of processors in distributed computing.

In Section 3 we concentrate on error – correction. First, we present a very
general method to obtain perfect integer codes for any error set of the form
E = {1, a1, . . . ak−1} in Zp, where p = 2k + 1 is an odd prime number. Perfect
codes for the same error set in Zm with composite residues m can be derived
from them. Our method makes use of the fact that the multiplicative group Z∗

p

is cyclic and hence generated by one element g ∈ {2, . . . , p− 2}. A perfect code
is shown to exist in Zp exactly if the powers μi in the representation ai = gμi of
the elements in the error set fall into the different congruence classes modulo k.

This result is rather obvious. The big advantage compared to previous ap-
proaches, however, is that besides the existence an efficient algorithm is available
to check this condition, and also to explicitly construct the codes. This will be
analyzed for special error sets E .

Finally, in Section 5, we relax the model not further requiring perfectness but
a good packing. This may be even a harder task, since the error spheres around
a code word are rather nasty. So, finding a perfect code via algebraic methods
may be easier than finding a good packing via combinatorial methods.

2 Applications in Computer Science and Cryptography

Lattice tilings: Mathematically, a group factorization obtained from a perfect
code with error set F (k) = {±1,±2, . . . ,±k} corresponds to a tiling of the
Euclidean space by a certain star body, the (n, k)–cross. This is a collection
of unit n–dimensional cubes, with one cube in the center and a number of k
consecutive cubes attached to each of its faces.

More exactly, a lattice tiling of the n–dimensional Euclidean space exists, if
F (k) “splits” some abelian group, which for the groups Zp is just a factorization.
We do not go into detail here and refer to [30], [33] for further reading.

Distributed computing: In parallel computing processors may share some re-
sources as memory. This is usually modeled by a graph, where the vertices denote
the processors, and an edge between two vertices means that the corresponding
processors are connected in the network. Some resources as memories, software
modules, or I/O–connections may be expensive and hence only be placed at a
subset of the processors [3], [5], [14]. An efficient placement of these resources
leads to the concepts of codes in graphs and domination in graphs, e.g., [2], [15],
[16], [21]. Usually, a combinatorial treatment is necessary. However, if the under-
lying graphs have a very regular structure, as a ring or a grid, then checksum (1)
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can be used to construct an efficient placement. This is essentially equivalent to a
good code, where the code words correspond to the processors equiped with the
resources and the error spheres around them correspond to the direct neighbours
(or neighbours within a certain distance).

Packet loss in internet protocols: Sloane [28] used Varshamov – Tenengolts
codes in order to protect internet protocols against packet losses or genome
sequences against a deletion of one letter in the sequence. He also analyzed, in
which cases it might be better to compute the checksum (1) modulo a number
d different from 0.

SEC–DED Codes: If we choose all weights wi = 1, the checksum (1) can, of
course, be used to detect a single error, which would result in a sum different
from 0. However, it can not be recognized from which component i this error
results. Chosing instead the weights wi = i indeed gives information about the
location of the component if the alphabet size m is appropriately large and
hence also automatically allows to correct this error. A different way to achieve
this goal is a second checksum. If this checksum is carefully chosen, it may also
detect a second error. Such SEC–DED codes (single–error correction, double–
error detection) are implemented in computer memories, where the errors occcur
in a single bit. Combining l bits to an integer modulo m = 2l, integer codes with
two checksums have been constructed as SEC–DED codes.

Steganography: In steganography we have a situation complementary to cod-
ing theory, where the errors occur at random. Here, sender and receiver agree on
a certain set of n positions in which the sender may slightly change the value of
the component ci. In order that these changes will not be detected, there have
to be very few changes of very small amplitude. For instance, it may only be
allowed to change one component by adding plus or minus 1 to ci, i.e. c′i = ci±1.
The checksum

n∑

i=1

i · c′i mod 2n + 1

will then be used to decode the corresponding message. Lisonek’s idea in [20]
was that by appropriate choice of the weights in checksum (1) it is possible
to obtain a better perfomance by changing two components by ±1 and decode
the message. In order to assure a succesful decoding, Lisonek chose the weights
w1, w2, . . . , wm from a symmetric sum cover S = {0,±w1,±w2, . . . ,±wn}, which
means that S + S = Zm. This has the effect that the message can be decoded,
if all the sums wi + wj with i �= j are different.

In order to avoid too much overlap, the task hence is to find a large enough m
such that S+S = Zm. Lisonek provides a table for small m. Note that it is really
required that i �= j. If i = j would be allowed an amplitude 2 would be possible
for some i. The symmetry condition as above (including ±wi) seems to be a
new requirement compared to previous calculations, for instance, by Graham
and Sloane [10]
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Interestingly, this application in steganography, adresses rather the additive
structure of the group Zm, whereas the factorizations important for the anal-
ysis of the change of amplitude in only one component, can be analyzed via
factorizations, which of course rely on the multiplicative structure of Zm.

Group factorizations in cryptography: Factorizations of groups are also
used to construct cryptosystems, which may replace RSA when, for instance,
reliable quantum computers will once be in use [25]. However, the group Zp

important for our error–correcting codes is too simple for such applications and
does not allow a one–way function for encoding.

Double error correction: In principle, it would also be possible to use one
checksum (1) in order to correct more than one error. For instance, Lisonek’s
idea for steganography may in some cases be transfered to error–correcting codes
(steganography, however, is more related to covering than to packing). Usually, a
second check will be carried out, as we saw in the application of SEC–DED codes.
These codes, however, only correct bit flips. The analysis of 2–error correcting
codes for even the simplest symbol changes is extremely difficult. In [17] one
construction is provided. Even more difficult is the correction of errors of distance
2 in the Lee metric [13]. The reason is that this may arise in two ways. Either
one component ci is distorted to c′i = ci ± 2 or two components are distorted by
c′i = ci ± 1 and c′j = cj ± 1, This is a combination of the single–error correction
as studied by Martirossian [22] and the double–error correction related to the
steganographic model discussed by Lisonek.

Further applications: Further applications of the checksum (1) arise in coding
for memories with defects [1], [27] and for tilings by certain polyominoes as
studied by Golomb [8].

3 A General Construction for Perfect Integer Codes

The analysis can be reduced to groups Zp where p is a prime number. In this
case a splitting (E ,H) corresponds to a factorization E · H of the group Z∗

p .
For a composite number m = ps1

1 · · · psr
r a perfect integer code in Zm can be

obtained from the perfect integer codes in Zpi for the prime factors pi, i = 1, . . . r,
of m. For sets E of small size it has even been shown that this is the only way
to obtain perfect integer codes for composite m [30], [24].

The idea here will be to arrange that the set H obtained from the weights
in the definition of an integer code (1) consists of a subgroup G of Z∗

p and its
translates in the cosets of G. Since Z∗

p is a cyclic group, it is generated by one
element g. If G is a subgroup of Z∗

p , its order must be a divisor of p − 1 and G
itself must be generated by a power of g, i. e. for some t dividing p− 1

G = {gjt : j = 0, . . . , p− 1}.
Theorem 1: Let E = {1, a1, . . . , ak−1} be the error set of an integer code, let g
be a generator of Z∗

p and let ai = gνi in Z∗
p for i = 1, . . . , k − 1. Then a perfect
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integer code with error set E exists in Zp, exactly if for some divisor l of p−1
k

the powers νi are such that νi = lμi for i = 0, . . . , k − 1, where the μi’s fall into
the different congruence classes modulo k, i. e.,

{μ1 mod k, . . . , μk−1 mod k} = {1, . . . , k − 1}. (4)

Proof: There are basically two possible structures for the integer code H when
the error (or splitting) set E = {1, a1, . . . , ak}.
Type 1: H is already the subgroup G in Z∗

p . In this case

H = {gjk : j = 0, . . . ,
p− 1

k
},

where g is a generator of Z∗
p .

Now express the elements of E as powers of the generator g, namely ai = gμi

for i = 1, . . . , k − 1. In order to assure that all products e · h (e ∈ E , h ∈ H) are
different, one has to guarantee that (with μ0 = 0) all products gμi · gjk = gjk+μi

are different for all possible choices j = 0, . . . , p−1
k , i = 0, . . . , k−1. This obviously

holds if and only if the μi fall into the different congruence classes modulo k, i.
e., if

{μ0 mod k, . . . , μk−1 mod k} = {0, . . . , k − 1}.
If, additionally, |E| · |H| = p− 1, then H is a perfect integer code.

Type 2: G = {g′jk : j = 0, . . . , p−1
kl }, where g′ = gl for some l ≥ 2. In this case

t = lk, l being a divisor of p−1
k and the integer code H will be of the form

H =
⋃

coset C of G
xC · G,

where xC may be any representative of the coset C.
With the same argumentation as above it can be seen that in order to assure

that all products e ·h (e ∈ E , h ∈ H) are different, it suffices to show that powers
μi of the elements of the error set ai = glμi , i = 1, . . . , k−1, fall into the different
congruence classes modulo k.

From this theorem the next algorithm is immediate:

Algorithm IntegerCode. (set E = {1, a1, . . . , ak−1}, prime number p)

(1) Find a generator g of Z∗
p

(2) for i = 1 to k − 1 write ai = gνi in Z∗
p

(3) for all divisors l of p−1
k

(3a) write νi = lμi

(3b) if {μ0 mod k, . . . , μk−1 mod k} = {0, . . . , k−1} output (G = {(gl)jk, j =
0, . . . , p−1

k
})

Remarks
1) Perfect integer codes of type 1 just correspond to the coset splittings in [30],
where the elements of E then are representatives of the cosets of the subgroupH.
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2) Computational results from [31], [35] suggest that at least for small sets
E other types of perfect integer codes than those in the above theorem do not
occur at all or only occur sporadically.

The above theorem is rather obvious. However, from the algorithmic point of
view it has several advantages.

1) The algorithm “Integer Code” is rather efficient. The existence of an integer
code in large groups (size 100000, fo instance) can be checked in a few seconds.
Especially, in the mathematical literature, only existence results were analyzed
without providing an efficient algorithm.

2) The integer code itself is automatically provided - just the set H from the
theorem. This may be further analyzed, for instance, in order to express the
integer code in dependence of the elements of E .

3) From the integer code the structure of lattice tilings is clear. This means
that the lattice points, in which to place the centers of the star bodies by which
one would like to tile the space Rn, can be easily obtained. This may be of
interest, for instance, in distributed computing, wher the processors should be
placed efficiently in regular graphs such as a grid or a hypecrube.

Let us illustrate these advantages with some basic examples:

The set E = {1, a}
1) The condition on the existence of a perfect integer code is that a has an

even order modulo p.
2) The set H then consists of the group G of the even powers of a in Z∗

p (and
its translates in the respective cosets). This was was discussed already in [23]
and in [19] and [22] for a = 2.

3) If you want to tile a path or a cycle {0, . . . , n − 1} by paths of length 2,
place the initial vertex of these paths in the even positions. Obviously, this is
only possible, if n is even.

4) The generalization to the set E = {1, a, a2, . . . , ar−1} is straightforward –
the integer code consists of the powers of ar.

The set E = {1, a, b}
1) The conditions on the existence of a perfect integer code in Zp were derived

in [35]:

1 The orders of a and b are both divisible by 3.
2 Whenever bk = al for some integers k, l, then k + l ≡ 0 mod 3.

2) The integer code then consists of the subgroup G = {ai·bj , i−j ≡ 0 mod 3},
which is generated by the elements a3, b3 and a · b, and its translates.

3) In a lattice tiling of R2 or a tiling of a grid (direct product of two paths
or two cycles) by the cross (body containing vertices (u, v), (u, v + 1), (u + 1, v))
place the central vertices (u, v) in positions i, j with i− j = 0 mod 3. Of course
a tiling of the direct product of cycles Zk×Zl is only possible if k and l are both
divisible by 3.

4) The generalization to sets E = {1, a, . . . , ar−1, b, . . . , bs−1 is possible. The
integer code then basically is H = {ai · bj, i− j ≡ 0 mod (r + s− 1)}.
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For the above two sets E the analysis was still possible without Theorem 1.
The structure of the integer code still can be obtained using graph theoretic
arguments. This argumentation breaks down when the set E is getting bigger.
The following result can easily be derived with Theorem 1. A graph theoretic
approach would already be very difficult.

The set E = {1, a, b, c}
Theorem 2: A perfect integer code with error set E = {1, a, b, c} (with a, b and
c in the appropriate order) exists in Z∗

p , exactly if the following conditions hold

1 In Zp ∗/ the orders of a and b are divisible by 4 and the order of c is divisible
by 2,

2 whenever ai · bj ∈ G then i + j ≡ 0 mod 4,
3 whenever ai · cj ∈ G then 2i + j ≡ 0 mod 4,
4 whenever bi · cj ∈ G then 2i + j ≡ 0 mod 4.

The set H then is determined by the subgroup G generated by the elements
a4, b4, a · b, c2.
Proof of Theorem 2: With Theorem 1, a perfect integer code exists, exactly
if for some l, the powers in the representations a = (gl)μ1 , b = (gl)μ2 , and
c = (gl)μ3 fall into the three different congruence classes 1, 2, and 3 modulo 4.
In order to follow the statement in the theorem, we choose μ1 ≡ 1 mod 4, μ2 ≡ 3
mod 4, and μ3 ≡ 2 mod 4. Since G consists of all elements of the form g4l, it
follows immediately that a4, b4, a · b, and c2 and because of the group structure
all their products must be contained in G. Further, if ai · bj ∈ G then obviously
i + j ≡ 0 mod 4, if ai · cj ∈ G then obviously 2i + j ≡ 0 mod 4, and if bi · cj ∈ G
then obviously 2i + j ≡ 0 mod 4.

The set E = {1, a, b, c, d}
When |E| is getting bigger, conditions similar to those in Theorem 2 must be
verified. As in Theorem 2, one has to assure that several products of the elements
in E are contained in the set H. For instance, if E = {1, a, b, c, d} with a =
g1 mod k, b = g2 mod k, c = g3 mod k, and d = g4 mod k, then the elements a5,
b5, c5, d5, a · d, and b · c must be contained in G.
Symmetric errors
Most interesting for applications are symmetric errors, in which case the error
sets E under consideration are of the form {±1,±a1, . . . ,±ak−1}. In this case we
identify the elements x and −x in Z∗

p and hence consider factorizations by the
set {1, a1, . . . , ak−1} ∈ Z∗

p/{1,−1} ad apply Theorem 1 to this setting.
In [35] and [36] special choices of the parameters a, b, and c relevant for the

important shift codes were considered.
1. E = {±1,±2,±3,±4}. There are only 9 prime numbers up to 10000 for

which a perfect shift code exists, namely p = 97, 1873, 2161, 3457, 6577, 6673,
6961, 7297, and 7873. Observe that in this case perfect shift codes of type 1
cannot exist. Since 2 is a quadratic residue for primes ≡ 1 mod 8 it must be an
even power of a generator. Hence, the number 4 must be of the form gμ3 with



246 U. Tamm

μ3 ≡ 0 mod 4 and hence μ3 would be in the same congruence class as μ0 = 0,
the power of the element 1 ∈ E . This means that one has to search for perfect
shift codes of type 2 in this case, which seemingly do not occur so frequently.
The same holds for any other set containing the element 4, for instance for the
set {±1,±3,±4,±5}, and in many cases also for sets E containing the number
2 – if not, the number 2 must be chosen as element c in Theorem 2.

2. E = {±1,±2,±3,±5}. Perfect integer codes exist for p = 137, 953, 1697,
2417, 2633, 2753, 2777, 2897, 4073, 4673, 5153, 5417, 5657, 6113, 6257, 6737,
7193, 7433, 8753, 9257, 9497, 9857.

These primes have been found with the help of Theorem 1 in a few seconds.
Further sets E can be studied similarly.

We also quickly found the following shift codes:
4. E = {±1,±2,±3,±4,±5}. Perfect shift codes exist for p = 421, 701, 2311,

2861, 3181, 3491, 3931, 4621, 5531, 6121, 7621, 7741, 9001, 9161, 9941.

4 Packings with Error Spheres

Since perfect integer codes seem to be quite sparsely distributed one might relax
the conditions and no longer require perfectness but a good packing with the
error spheres.

The special error set E = {±1,±2, . . . ,±k} is also denoted as F (k) in the
literature. We say that F (k) n–packs G with packing setH of size n if all products
m · h with m ∈ F (k), h ∈ H ⊂ G are different. Of course, then H is a k–shift
code of size n.

Let m(k, n) denote the size of the smallest group G such that a k–shift code
of size n exists in G. For a good shift code (or the corresponding packing of the
group G) one would expect that m(k, n) is not much bigger than the theoretical
lower bound 2nk + 1, which is obtained for a perfect k–shift code.

Such packings have been considered e.g in [6], [12], [32]. Some applications to
Information Theory are discussed in [29] and [11]. The following asymptotical
result is known [29].

lim
k→∞

m(k, n)
k2

= 1

Motivated by the geometric application of tiling the space with certain star
bodies, where n is the dimension of the space, here the parameter n is fixed and
k tends to infinity. The result shows that good packings in this case cannot be
expected, since m(k, n) is about k2, which is much bigger than 2kn + 1 for n
small compared to k.

For applications in Coding Theory, however, one would rather fix k and look
for code constructions suitable for any n.

In [30] several constructions for packings by the cross F (k) (k–shift codes)
are presented. Especially, an almost perfect (p − 1)–shift code of size p + 1
exists in cyclic groups of order 2p2 for an odd prime number p. For instance,
if p = 5, then Z50 is packed by F (4) = {±1,±2,±3,±4} with packing set
S = {1, 5, 9, 11, 19, 21}. Observe that all the products m ·h of elements m ∈ F (4)
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and h ∈ S are different and that only the elements 0 and p2 = 25 in Z50 cannot
be obtained as such products. Indeed, the general structure of the shift code is

S = {1, p, 2p± 1, 4p± 1, . . . , 2
p− 1

2
p± 1}.

Another idea would be to follow the constructions in the previous section no
longer requiring perfectness. So one has to arrange that for a generator g the
powers μ1 = 0, . . . , μk of 1 = gμ1 , 2 = gμ2 , . . ., k = gμk fall into different
congruence classes. In this case a close packing wil be obtained as above (if some
further divisibilty conditions hold). This way, one can also see, that the packings
become worse the fewer residue classes are occupied by the μi’s.

Some further sporadic constructions in [30] usually proceed by following the
orbit of special elements in the group.

For the systematic search of 3–shift codes, this gave us the idea to the following
greedy algorithm:

Consider the orbit of the element 3 in the cyclic group Zl, i.e. the set

F = {3s : s = 0, . . . , ord(3)}.
Starting with i = 0 include the element 3i in the shift code S if possible, and set
i ← i + 1. When the search in F is finished, continue with the same procedure
in the residue classes a · F , a ∈ G.

This way, we found some quite good shift codes: For instance, in Z40 the 3–
shift code {1, 4, 5, 7, 9, 17} of size 6 improves the value in Table V-4 on p. 316 in
[30], where only an example of a 3–shift code of size 6 in Z43 was given. Further,
Z56 contains the 3–shift code {1, 4, 5, 7, 9, 11, 13, 25} of size 8 and in Z88 there is
a 3–shift code of size 13, namely {1, 4, 7, 9, 11, 15, 17, 23, 25, 31, 36, 39, 41}.

Observe that all the group orders l here are divisible by 4. In this case the
algorithm behaves very nice, since usually almost all odd elements and almost
all elements ≡ 2 mod 4 are included in some sphere around a codeword in the
shift code.

A similar construction – following the orbit of the element 2 – allowed us to
find the following 4–shift code {1, 5, 8, 9, 11, 13, 14, 17, 23, 35, 37, 40} of size 12 in
Z99.

The Greedy algorithm does not always perfom very well. Indeed, we have
examples where it finds very bad packings. It would be interesting to find con-
ditions under which good packings can be obtained using the Greedy algorithm.

Further, here it was only applied to the sets F (3) and F (4). The reason is
that one should follow the orbit of one element 2, say, in the powers of the other
one, then 3. For F (5) one also has to consider the powers of the element 5, which
becomes much more difficult. It would be interesting to find good packings in
this case.

5 Concluding Remarks

A single checksum modulo an integer m was studied. In coding theory this is usu-
ally applied to correct unconventional types of errors such as asymmetric errors,
deletions and insertions, permutations or peak shifts in run–length–limited codes.
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Mathematically, the analysis of perfect codes in this setting is based on group
factorizations, which are best carried out if p is a prime number. The problem
is of mathematical interest itself, since a factorization (or equivalently a perfect
code) corresponds to a lattice tiling of the the Euclidean space by certain star
bodies.

Depending on the mathematical approach, several further applications in com-
puter science and crypotgraphy arise. From a lattice tiling of the Euclidean
space one may obtain efficient placement of resources in computer networks as
grids. From group factorizations, error correcting or steganographic codes can be
derived.

To analyze the existence of perfect codes in Zp we present a method to simply
check the powers μi of the elements ei in the set of tolerated errors, when they
are represented as powers of a generator, i. e., ei = gμi . This also yields an
efficient computational criterion.

Good packings are very difficult to find. For small error sets a greedy algorithm
provided some very close packings improving results of a previous table by Stein.
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34. Szabó, S.: Topics in Factorization of Abelian Groups. Birkhäuser, Basel (2004)
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Abstract. The work in this paper discusses the feasibility of a low-resource ECC 
processor implementation over GF(2m) that supports scalability across a set of 
standards curves for application in resource constrained environments. A  
new architecture based on the microcoding technique and targeted to FPGAs  
is presented for the implementation of a low resource ECC processor design that 
is scalable to support the 131, 163, 283, 571 bits suite of recommended  
curves without significant deterioration of the performance. The processor is 
parameterized for 8, 16, 32-bit data-paths, to quantify the gain in terms of time 
and area in each case. The implementation results obtained show that the 
microcode approach results in a lesser area overhead for the ECC point 
multiplication compared to a full hardware implementation; this makes such 
approach attractive for numerous applications, where the hardware resources are 
scarce, as in security in wireless sensor nodes, mobile handsets, and smart cards.   

Keywords: Elliptic curve cryptography, binary finite fields, Microcode, FPGA. 

1   Introduction 

The development of efficient algorithms and architectures for public key systems 
(PKS) has gathered a significant impetus in the last few years; this is attributed to the 
increasingly important role of PKS, in many life applications for providing 
authentication, integrity, confidentiality, and non-repudiation services, while 
minimizing complexities and vulnerabilities in the management of keys [2]. Elliptic 
Curve Cryptography (ECC) cryptosystems have emerged recently as an attractive 
alternative to the well established RSA especially in resource critical applications due 
to their superior security strength per bit, which accounts for the use of much shorter 
keys than RSA [2].  

The design space for ECC extends across the software and the hardware 
implementation domains. Fundamentally, hardware methods offer higher speed and 
bandwidth stability, thus providing more scope for real-time operation. ASIC and 
FPGA are two distinct environments for implementing cryptographic algorithms in 
hardware. The FPGA environment is adopted in this work as it enables 
reconfigurability at low cost and without dissipating the design efficiency. The 
proposed ECC processor architecture is based on a firmware control to control the 
execution of the arithmetic operations on the reconfigured hardware. The firmware 
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control is realized via microcoded instructions stored in a block memory on the 
FPGA. A Specialized instruction set has been developed to execute the ECC point 
operation and to support the scalability prerequisite. Such an approach simplifies by 
far the control of applications that conventionally require substantial computational 
power like ECC; by emulating or (coding) their behavior as simple instructions called 
microinstructions, yielding a significant reduction in the circuit complexities and their 
corresponding timing delays.  

The adoption of microcoding in implementing the ECC point multiplication has been 
reported by a number of researchers. [3] implemented, on 0.18µm CMOS technology, a 
universal cryptography processor for smart-card applications that incorporates the Data 
encryption standards (DES), Advanced encryption standards (AES), and ECC curve 
with 83-bit. [4] introduced a generic ECC processor over GF(2m) on FPGA; their 
proposed processor supports standard curves m=163, 193, 233 besides non-standard 
curves for m ≤ 255. [5] employed the microcode technique to compare the performance 
gain of using the projective coordinates over affine coordinates and two designs with 
two different microcodes with the same arithmetic circuit were presented. The highest 
field length reported in [5] was 473-bit without incorporating the scalability property. In 
[6], two distinct microcode units are adopted to provide the point operation and finite 
field arithmetic control units in a processor working over GF(2167). However, none of 
the reported designs addressed the scalability issues.   

In this work, we demonstrate that it is possible to provide the required level of field 
agility by using a limited amount of hardware resources. The overheads associated 
with the control logic are mitigated by adopting the microcode technique. The 
microcoding approach facilitates the design of the control unit and makes it easier to 
develop and debug, yielding a processor’s architecture that can provide limited 
programmability that is enough to adapt to changes in standards. 

The presented ECC processor architecture based on microcode control is 
augmented with small footprint arithmetic units to perform the computation of the 
ECC point multiplication across many standards curves covering both NIST [7] and 
SECG [8], namely, 131, 163, 283, 571 with practical performance figures. The design 
is parameterized for different data widths 8, 16, 32 bits without the need to modify the 
micro-program (microcode) to quantify the performance gain in each case. 
Additionally, a baseline design that implements the point operation control as a 
hardwired control is provided for comparison.  

The paper commences with a brief background of ECC and finite field arithmetic 
in section 2, followed by an introduction to the microcoding technique in section 3. 
The detailed ECC processor architecture is revealed in section 4. Section 5 provides 
the implementation results and analysis. Section 6 concludes the paper. 

2   Background Theory  

Mathematically, an elliptic curve E defined over binary finite field GF(2m) is the set 
of points together with a point at infinity called О satisfies the reduced Weierstarss 
equation on the form : 

E: y2+xy=x3+ ax2 + b (1)

Where, a, b ∈GF(2m) and b ≠ 0.  
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The central operation in any ECC system is called the scalar point multiplication 
given in (2).  

Q=K.P (2)

Where P, Q ∈  E and K is an integer. The computation of (2) or evenly the scalar 
point multiplication can be carried out in one way to compute Q given P and K. 
However, solving (2) in the reverse way to find K given P and Q is believed to be 
mathematically intractable [2]. Many efficient algorithms in the context of ECC have 
been proposed to calculate (2). Herein, Lopez-Dahab’s method based on Montgomery 
ladder trick over GF(2m) outlined in [10] is adopted to compute (2) due to its 
symmetrical structure, which by far simplifies its emulating using microcode 
technique, in addition to, its potential to resist timing attacks and power analysis 
attacks [2]. This method has two affine and projective flavors, we opted the later one 
to evade the costly modular inversion operation over GF(2m). The approximate 
running time for this method is (6M+5S)×(m-1) + I +10M+3S, where, the symbols M, 
S, I denote modular multiplication, squaring, inversion over GF(2m) respectively.  

2.1   Arithmetic in Binary Finite Fields 

In this work, the binary field arithmetic is realized as a polynomial arithmetic modulo 
irreducible polynomial p(x) as suggested by ECC standards [7, 8]. Finite field 
multiplications performed using Comba’s algorithm [9]. Modular addition is 
implemented as a bitwise XOR of any two elements defined over GF(2m). The squaring 
operation is accomplished through algorithm 2.39 in [2] with word lengths 8, 16, and 
32-bits. Modular inversion has the most time and area complexities of all the finite field 
arithmetic operations. In the context of ECC, two main methods are used to implement 
the modular inversion, Extended Euclidian algorithm (EEA) and Fermat’s little theorem 
(FLT). Herein, Inversion is implemented using an efficient algorithm 5.6 based on FLT 
in [2]. FLT uses multiplications and squaring only to compute the inversion. The total 
number of multiplications is given by 2log (m 1) h(m 1) 1⎢ ⎥− + − −⎣ ⎦ , where h(m-1) 

denotes the Hamming weight, with (m 1)− squaring operations. 

3   Microcode Design 

Customarily, the control unit in any application is implemented as a finite state 
machine, which may entail a complex logic and long time delays, especially in 
applications involve highly intensive computations. An old trend has become active 
recently used as alternative for the hardwired control called Microcoding. From the 
hardware perspective, a microcoding description can be regarded as higher-level 
abstraction than a finite-state machine [15]. In some context, this is called firmware 
control. The later term reflects the fact that a microcode technique is midway between 
the hardware and software design space [15]. 

The microcode (microprogramming) technique is initiated first by M.V. Wilkes in 
the early 1950s [1]. Wilkes proposed an approach to design a control unit that was 
systematic and avoided the hardwired control’s complexities [15]. The principle 
advantage of such design strategy is that the circuits that constitute the microcode 
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control are very simple and require tiny pieces of logic. Furthermore, it can be 
changed without requiring recompilation of the entire processor. This by far facilities 
the design of the control unit and makes it easier to develop and debug, yielding a 
quick, cheap and less error-prone solution for applications require complex control 
circuits like the design in our hand. In security terms, it is of interest for any security 
application to incorporate the capability to change the higher-level operations (e.g. 
point doubling and addition algorithm) if better or more secure algorithms for these 
operations are proposed. 

To control a logic or hardware operations in a data-flow e.g. multiplexers, 
decoders, or arithmetic logic units using microcode approach, a group of bits called a 
control word or microinstruction is emanated from the microcode control unit. A 
microinstruction contains controlling bits that represents the micro-operation and bits 
to determine the next address generation to the sequencer circuit. Hence, the control 
word can be coded or programmed to initiate the required micro-operations. 
Conventionally, microinstructions can be grouped in the code memory in what so 
called a Routine. A typical microcode control organization sketched in figure 1 is 
used to perform this functionality.  

 

Fig. 1. Microcode control organization 

As shown in figure 1, a microcode control consists of a code memory (control 
store) to hold the microinstructions (each instruction represents one or more micro-
operation) [1, 15]. The code memory contains only the instructions that can be 
emulated and have frequent or non-frequent usage [15]. Meanwhile, the hardware can 
implement other instructions that cannot be emulated. Thus, the microcode design is a 
mixture of emulated and hardwired instruction in one platform [1, 15]. The code 
memory is managed by sequencer logic through a memory address register, which 
holds the address of the next microinstruction required for execution. The code 
memory outputs a microinstruction, which will be decoded in a decoder circuit to 
generate a decoded control word to execute corresponding micro-operations.  

4   Processor Architecture  

For ECC point multiplication, assigning the tasks between the hardware and 
microcode regions has to be undertaken efficiently to capitalize the adoption of 
microcoding technique. The decision to allocate a task to either of the domains is 
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based on the design criterion. In our case, where reducing the controlling circuits’ 
overheads is paramount, in addition to the prerequisite to incorporate the scalability, 
the decision is made to microcode the controlling of point operations (senior level) 
(controlling the point doubling - addition and conversion to the affine coordinates) 
and to implement the finite field arithmetic control (sublevel control) as a finite state 
machine (hardwired control).  

The key motivations for this choice are two folds, first to exploit the symmetric 
nature of the Montgomery point multiplication, which facilitates the development of 
the microinstructions in a linear code style with reasonable code memory size to 
emulate the point operations. Second, microcoding the sublevel control would require 
specialist support from the hardware resources, which may incur more area penalties, 
and increase the design complexity.  

The top-level of our proposed processor is shown in figure 2. In this work, a 
traditional Harvard architecture is employed; that way, the processor’s data-path is 
isolated from both the control path and the key path. This architecture not only 
reduces the overall complexity of the design, but also, maximizes the performance of 
the overall circuits and enables our scalable ECC processor to be parameterized for 
different data-path widths without the need to alter the microprogram.  

 

 

Fig. 2. The top level of the new area-efficient scalable microcode ECC processor 

The control in this design is achieved via two levels of hierarchal control using 
hybrid control approach. The head of the hierarchy is the microcode unit, which 
controls the point operation execution through commanding the sub-level control to 
perform the underlying finite field arithmetic. The processor data path contains the 
arithmetic circuits, switching multiplexers, and the storage blocks (Dual Block 
memory DBRAM). The sublevel control executes the senior level commands and 
manages the data-path’s traffic between the ALU and storage elements. Mode pins are 
provided to enable the selection of the required field extension, for instance, when the 
mode is set to ”00”, this value is equivalent to the field extension 131-bit, the other 
values are ”01”=163-bit, ”10”=283-bit, and ”11”=571-bit. 
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4.1   Instruction Set Design 

As shown in figure 3, each instruction has a 16-bit width and contains four fields. Each 
field has four bits long. The first field is dedicated to hold the micro-operation (Opcode). 
The other fields hold values according to the category of the microinstruction. Four 
categories of instructions are used to control the execution of the point group operations. 
They are finite field arithmetic instructions, branching instructions, logical and arithmetic 
instructions, in addition to the memory instructions. The finite field arithmetic 
instructions are MUL, SQR, ADD, these instructions execute the multiplication, squaring 
and addition operations over GF(2m) respectively. The reduction operation is interleaved 
with the multiplication and squaring operations, consequently, no special instruction is 
needed for this operation. The arithmetic instructions require three fields to represent the 
addresses of the source operands and one address for the destination operand. 

The branching instructions JMPZ, JMPNZ, JMP are used to perform a conditional 
or unconditional branching to control the flow of the point operations and the 
conversion from the projective to the affine coordinates. The branching instructions 
require two fields to hold the branching address etc.  

 

Fig. 3. Instruction set format 

The logical instructions are SHIFTL, SHIFTR, DEC and COMPARE. SHIFTR and 
SHFTL are used to performing shifting by one bit right or left respectively for a 
register. A DEC instruction decrements the content of a register by one. A COMPARE 
instruction compares the content of a register with a constant value. Three additional 
memory instructions (COPY, INPUT, OUTPUT) are employed to control the data 
memory. A COPY instruction copies the content of a memory to another. This 
instruction is needed during the execution of the conversion from the projective to the 
affine coordinates. An INPUT instruction is used to input the curve parameters and 
private key to the storage elements, in addition to reading the operating mode (decoded 
field information).  
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Table 1 shows the specialized instruction set to control the ECC point.  

Table 1. Instruction Set 

Mnemonic Op-code Source 
address-1 

Source 
address-2

Destination 
address Operation 

NOP 0000 0000 0000 0000 No operation 

MUL 0001 SRx SRy DS Multiply (SRx)×( SRx) → result in (DS) 

SQR 0010 SRx SRx DS Square (SRx) → result in (DS) 

ADD 0011 SRx SRy DS ADD (SRx + SRy)   → result in (DS) 

COPY 0100 SRx SRx DS COPY (SRx) → into (DS) 

MASK 0101 K 0000 0000 Hide the (sw –1 to m) bits in K 

COMPARE 0110 Rx Ky 0000 Compare register Rx with constant Ky 

SHIFTR 0111 Rx 0000 0000 Shift right register Rx 

SHIFTL 1000 Rx 0000 0000 Shift left register Rx 

SET 1001 Rx 0000 0000 Set register Rx with its intial value 

DEC 1010 Rx 0000 0000 Decrement register Rx by one 

JMPNZ 1011 Addrx Addrx 0000 Jump to addrx if the tested value is not 
equal to zero 

JMPZ 1100 Addrx Addrx  0000 Jump to addrx if the tested value is equal 
zero 

JMP 1101 Addrx Addrx 0000 absolute Jump to addrx 

OUTPUT 1110 SRx 0000 0000 Output the  data content in memory SRx 

INPUT 1111 SRx 0000 0000 Input data into memroy SRx 

END 1111 1111 1111 1111 End program 

 
An OUTPUT instruction is used to output the x and y coordinates of the public 

key. A COPY instruction has 16-bit length as finite field arithmetic instruction. An 
END instruction terminates the program execution. A SET instruction loads a value to 
a register. A MASK instruction is adopted at the beginning of the microprogram to 
zero out the (sw-1 to m) bits in the most significant word of K and keep the remaining 
bits intact for testing the ‘0’ and ‘1’ conditions, where s, m, w denote the number of 
words, field order and data-path width respectively.  

Point Multiplication Microprogram 

We have adopted the Montgomery’s point multiplication method using Lopez-Dahab 
projective coordinates to compute the ECC point multiplication [10]. This technique 
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Fig. 4. A Microcode snippet 

exhibits a high degree of symmetry, where both addition and doubling of a point are 
performed in the same iteration irrespective of the tested binary value of the private 
key k, yielding a simplification in the control operation and reduction in its circuit’s 
complexity. In terms of microcode design, this is reflected in decreasing the required 
number of microinstructions to emulate Montgomery’s point multiplication algorithm. 

A snippet of the proposed microcode instructions to realize the ECC point 
multiplication is shown in figure 4. Our microprogram is divided into three parts. The 
first part is dedicated to input the curve parameters and Field information. The second 
part consists of routines to load, test the binary value of the key, test the end of key, 
and implement addition and doubling of the point. The third part performs the 
conversion of the final projective result to the affine coordinate and outputs the public 
key. The whole ECC point multiplication is microcoded in 105 instructions. 

4.2   Microcode Control Unit 

The microcode unit is the senior control, which is responsible of manipulating the 
point operations and the coordinate’s conversion. The architecture of this unit is similar 
to the traditional micro-programmed control unit in [1] and sketched in figure 1.  

At the start, The INPUT instruction is used to load the required field information 
from the mode pins. Then, the field information is passed automatically to the 
ALUC to adjust its parameters according to the working field. Next, the INPUT 
instruction is used again to read the input port to load the base point P coordinates 
and the curve parameter. The SET instruction preloads the internal counters of the  
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Fig. 5. Microcode control unit 

private key control and the finite field inversion control unit with the value of the 
uppermost address /s m w= ⎡ ⎤⎢ ⎥  

of the private key K, and the required squaring count 

/ 2m= ⎢ ⎥⎣ ⎦ respectively. 

Figure 5 shows the key elements of the microcode unit. To execute a 
microinstruction, the sequencer logic circuit issues the address of the required 
instruction to the code memory; next, the microinstruction whose address is specified 
is generated and then decoded in the instruction decoder unit. The contents of the 
decoded instruction are used to generate commands, which are relative to the category 
of the instruction. The feedback from the ALUC, the other hardware units and the 
content of the current instruction is used to specify the next address value and so on. 
The next address value will be always an incremented value of the current address or 
an absolute address value. The microcode unit includes a sequencer circuit, branching 
circuit, private key test unit, finite field inversion control, code memory, and 
instruction decoder. 

Sequencer Circuit 

The main function of the sequencer circuit is to produce the required position address 
of the next instruction to the code memory. The generated next address can be an 
incremental address, unconditional branching as required from the address field in the 
previous microinstruction, conditional branching from logic or registers (nonzero/zero 
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Fig. 6. Branch control circuit 

condition, etc), to return to an arbitrary address from subroutine calls. The microcode 
sequencer in this design is very simple and has the smallest area overhead among all 
the design units. It consists of a multiplexer and address register. The inputs to this 
unit are the output from the address register incremented by one and the next address 
from the current microinstruction (second and third field). The decision to select 
either of the two inputs is based on the select address signal from the branching 
circuit.  

Branch Control Circuit 

The branching circuit provides the decision making capabilities to control the flow of 
the microprogram according to feedback signals from the hardware units (ALU 
control unit), the control circuits (private key control, finite field inversion control), or 
instruction decoder circuit. Three branching instructions are used to support the 
functionality of this unit, namely, JMP, JMPZ and JMPNZ. The inputs to this unit are 
the status signals from the private key control (e.g. k-bit is odd-even, k address-end) 
and the finite field inversion circuits etc. The output signal of this unit is a select next 
address signal, which is either logic ‘0’ to increment the current address by one or ‘1’ 
to jump to a specified address in the microinstruction if any of the three branching 
instructions is fulfilled. The JMPZ and JMPNZ instructions are always preceded by 
the COMPARE instruction. The status bits from the private key control or the finite 
field inversion circuits are tested by the COMPARE instructions.  

Accordingly, a zero-flag is checked after every COMPARE instruction by JMPZ or 
JMPNZ instructions to perform a branch, otherwise; the code memory’s address is 
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incremented by one. The JMP instruction executes an unconditional branching by 
loading the next address of the microinstruction from the current one. Figure 6 depicts 
the branching unit structure. 

Code Memory 

The code memory is organized as 128×16-bits ROM and has been implemented as 
DBRAM. The microcode unit controls the execution of the point multiplication 
through generating the instructions to the sublevel control unit, which in turn 
manipulates the computations of underlying finite field arithmetic.   

Instruction Decoder 

The instruction decoder unit maps a microinstruction into a group of control signals 
to test a value and return a result or to command other hardware units to perform 
certain actions. In the microcode approach, two types of instruction are used. They 
are horizontal and vertical instructions [1, 15]. Both terms are related to the way that 
the microinstruction is used to generate the control signals. In the horizontal 
instruction, each bit in the microinstruction pattern executes a certain micro-
operation i.e. each bit in the microinstruction is attached to a control signal. This 
technique maximizes the usage of the hardware resources. Hence, this comes at the 
expense of increasing the complexity of the microcode circuit due to increasing the 
length of the control word. 

On the other hand, the vertical instruction encodes a field of t control bits in a 
microinstruction to provide 2t micro-operations. Each field of t bits has a 
corresponding decoding circuit is placed vertically to produce the controlling circuit. 
The instruction decoder unit decodes (translates) each op-codes, which upon 
decoding, activates one or more control signal. The latter technique is opted to 
implement the instruction decoder circuit, whereas, it has the advantage of reducing 
the microinstruction width in comparing with former approach at the expense of 
additional amount of logic and time delays.  

4.3   Arithmetic and Logic Unit Control (ALUC) 

The ALUC is employed to carry out the multi-precision multiplication algorithm in 
[9], squaring, and the reduction procedure in [11], which is interleaved with both 
multiplication and squaring. Furthermore, it controls either the data transactions 
between the block memories and the ALU and block memories with each other. The 
ALUC supports the execution of the arithmetic instructions MUL, SQR, ADD, in 
addition to, performing the data memory instructions (COPY, INPUT, OUTPUT). 
Upon receiving the decoded instruction from the instruction decoder unit, the ALUC 
starts to execute the required arithmetic or memory operations e.g. input or output 
data, copy from memory to another. After the execution of any operation is 
accomplished, the ALUC sends a DONE signal to the microcode unit to fetch and 
execute the next instruction and waits for the next command from microcode unit. 
The ALUC is realized as a finite state machine in 107 states. 



 Efficient Time-Area Scalable ECC Processor Using μ-Coding Technique 261 

4.4   Data Path  

As shown in figure 7, the data path includes the arithmetic and logic units (ALU), 
storage memories and the data multiplexing. All the units on the data-path are 
supervised by the arithmetic and logic unit control (ALUC) to carry out the all the 
arithmetic operation over GF(2m). The data-path between the data memories and the 
ALU is implemented as a bus structure to remove the need to multiplex the operands 
from different memory elements at the ALU input [4]. In addition, all the other 
multiplexers in this design are implemented as tri-state buffers-based multiplexers to 
reduce their area overheads. The ALU consists of multi-precision multiplier-squarer 
and adder unit over GF(2), (MSAU) and scalable reduction circuit (SRU).   

 

Fig. 7. Scalable ALU for area optimized ECC processor over GF(2m) 

Arithmetic and Logic Unit (ALU) 

The ALU unit depicted in figure 7, consists of two novel arithmatic circuits namely, a 
multi-precision multiplier-squarer and adder unit over GF(2) (MSAU) augmented 
with a scalable reduction unit (SRU) and two data multiplexers. Figure 8 illustrates 
the proposed MSAU circuit.  

The MSAU incorporates three identical instances namely, mulgf2 units, and 
accumulator circuits. The individual mulgf2 unit, consists of 2×w-bit registers to load 
the multiplicand and the multiplier operands and w×w multiplier unit.  

The individual mulgf2 unit performs a w×w-bit single precision multiplication over 
GF(2). The output of each mulgf2 unit is 2w-1 bit. The accumulating circuit has a 2w-
XOR gate and 2w register. Its function is to accumulate the sum of the partial 
products of the mulgf2 units with the accumulated 2w-carry from the preceding 
single-precision multiplications. In addition, it produces the w-bit partial product at 
the end of each inner loop iteration as a part of the whole multiplication result. The 
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MSAU performs the partial product in each iteration of Comba’s algorithm in the 
following style. The ALUC unit generates three successive load signals to both 
multiplicand and the multiplier in the three-mulg2 units. 

According to the flow of Comba’s algorithm, if the required number of load 
operations is less than three, the remaining 2w registers are zeroed out. Afterwards the 
three-mulgf2 units are completely loaded, the ALUC generates a multiply signal to 
perform three partial products simultaneously. The outputs of the mulgf2 units is 
XORed with the 2w-bit carry. Thus, the (accumulation) XOR operation by design is 
performed simultaneously with the multiply operation, yielding a further reduction of 
the latency of the multiplication operation by ((# mulgf2) -2) clock cycles, where # 
mulgf2 represents the required total number of multiply operations to perform a full 
precision multiplication. The ALUC issues a store signal at the end of each iteration 
to store back the partial product result in a DBRAM or to the SRU. The MSAU 
completes one multiplication over GF(2m) in (2s2+#mulgf2+2s) clock cycles. 

Due to the restrictions on the resources in our design and to exploit the contribution 
of the three-mulgf2 units, the squarer functionality is realized through the same 
circuitry by bypassing the accumulating circuit which is not needed in the squaring 
mode owing to the linear nature of the squaring operation over GF(2m). As shown in 
figure 8, two additional multiplexers are placed in the multiplier data path to realize 
the squaring operation. In this case, the squaring is accomplished in (2s+ ⎡ ⎤s / 3 +2s) 
clock cycles. The MSAU is used to carry out the modular addition by simply loading 
two operands into the first mulgf2 unit and a corresponding store signal to store back 
the result into the DBRAMs. 

 

 

Fig. 8. The novel MSAU architecture 

The reduction operation in this work is hardwired and interleaved with the 
operation of the MSAU circuit. The SRU portrayed in figure 9 adopts the right to left 
reduction algorithm in [11]. The proposed circuit is designed such that it has the 
capability to work with four different field extensions, namely, 131, 163, 283, 571 
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Fig. 9. Scalable reduction unit (SRU) 

bits without the need to modify the unit. The operation of the SRU starts after the 
completion of the computation of the partial product of index s in both multiplication 
and squaring operations, until the word 2s-2. The ALUC switches the output word 
from the MSAU into the input of the SRU to reduce it as illustrated in figure 7. The 
whole reduction process is executed in (21 + 3s) clock cycles. 

The storage elements in this design are realized through the available dual block 
RAM (DBRAM) and distributed memories. The field parameters, the point coordinates, 
and the private key are implemented using the distributed memories. The projective 
coordinates (X1, Z1, X2, Z2) and the two temporary variables (T1, T2) consumed three 
DBRAMs. The code memory is realized on additional DBRAM. Noteworthy, 
employing the DBRAM reduces considerably the design budget via saving the FPGA 
resources and leads to a faster and compact circuit architecture. 

5   Implementation and Results Analysis  

The main design goals are to implement a scalable ECC processor that achieves a 
small area footprint. The microcode unit, ALUC, arithmetic circuits and other units are 
modeled in VHDL language. We implemented the proposed microcode ECC processor 
on the smallest chips from XILINX FPGA, namely, XC3S50 and XC3S200. The 
design was parameterized for three different data-path widths, namely, 8, 16, 32-bit to 
quantify the performance gain in each case. The microcode program for the four 
different curves namely, 131, 163, 283, 571 recommended by [7-8] is developed in  
assembly language. Xilinx ISE 9.2.04i tool is used to synthesize and place & route the 
designs for different data paths. ModelSim 6.2 performed all the simulations and 
verification across all the different levels of the design flow. 
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Fig. 10. Area utilization of the individual unit in the microcoded ECC processor for w = 8-bit 

The pie chart in figure 10 depicts the area utilization for individual unit in the 
novel microcode ECC processor for w=8-bit. Clearly, the ALUC has the most 
contribution (23% of the total design’s slice count) in the total area consumption 
amongst the other units.  

To support our claims in this work, a baseline design for ECC processor has been 
provided. The baseline design implements the senior level control as a hardwired control 
and keeps the other units. We implemented the baseline design for data-path w=8-bit 
only, as the senior control circuit in our proposed processor is independent on the data 
path width and the main purpose is to compare the consumed resources to determine the 
efficiency in terms of area resources in each case. Table 2, shows the actual cost for the 
microcode-control- based ECC processor for different data widths and the hardwired 
controlled-based design for 8-bit data path after place and route process.  

Table 2. The whole utilization of the scalable ecc processor on Xilinx FPGA Spartan3 
XC3S50-S200 for microcode and hardwired control-based designs 

Control Chip Data-Path D-BRAM LUT F.F Slices   Period 
  (nsec) 

Microcode 

XC3S50 

8

 4 

847 417 543/70% 13.083 

16 1056 543 619/80% 13.402 

XC3S200 32 2220 839 1180/61% 14.731 

Hardware XC3S50 8 1087 597 617/80% 12.787 

 
 

Noticeably, the microcode-based design achieves 10% lower area consumption 
than the fully hardwired controlled-based design for the same w = 8-bit. The expected 
performance for microcode-design may be less than the hardwired control; this is 
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attributed to including the code memory that is realized as DBRAM, which 
contributes in slight increase in the overall design time delay. Moreover, the 
microcode-based design for w = 16-bit is roughly has the same area overheads as the 
hardwired control-based design for w=8-bits. The improvements in the area are owing 
to the microcode technique, which decomposed the senior level control into higher 
level of circuit abstraction, yielding simplification of the implementation of the logic 
circuits. Table 3 shows the proposed ECC processor timing for different data widths. 

Table 3. The ECC processor timing for different data widths in (msec) 

      m    
w 

131 163 283 571 

8 9.578 17.157 76.04 587.6 

16 3.51 5.36 21.7 162.16 

32 1.72 2.7 8.3 51.38 

 
Table 4 compares the existing works that implemented the ECC point multiplication 

using both microcode-control and hardware-control methods. In the literature of the 
ECC, not much works addressed the adoption of the microcode technique to realize the 
ECC point multiplication. For the sake of fairer comparison, the comparison with the 
state of the art will be restricted to the designs that implemented microcode control and 
those that have relatively low FPGA resources utilization. Noteworthy, the equivalent 
LUT metric used in table 4 is computed based on the fact that any 4-input LUT can be 
configured also as a 16-bit RAM (Random Access Memory) [26, 27]. 

Noticeably, our implementation is the distinctive in incorporating the field with 
571-bit length. Moreover, it has the smallest code memory utilization. The works in 
[4, 12] implemented an ECC processor for both standardized and arbitrary curves 
over GF(2m). The maximum reported field lengths in [4] and [12] are 256 and 283 bits 
respectively. In [4], the ECC processor consumed much larger area resources due to 
the adoption of digit serial multiplier and divider circuit to accelerate the computation 
of the ECC point multiplication. Compared to [12], our processor for the same word 
length of w=32 bits takes less resources whilst supporting more and larger fields. In 
[5], an ECC processor is reported that works over optimal normal controlled by a 
microcoded unit with relatively low FPGA resources utilization. Our processor 
outperforms [5] in two aspects; firstly, it achieves 89.6%, 88.2%, 77.6% lower slice 
count usage for w= 8, 16, 32-bits respectively while supporting higher security levels 
(571 bits compared to 473 bits); secondly, incorporates scalability across many 
standard curves for different path widths.  

The design in [6] employed two dedicated block memories to hold the instructions 
to control the point multiplication algorithm and the execution of the finite field 
arithmetic. Our solution has a smaller area overheads by 62.2%, 55.2%, 16.2% for 
w=8, 16, 32-bit respectively in terms of equivalent LUT count, with fewer number of 
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Table 4. Comparison with the State of the Art 
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This work 

Spartan 
III

XC3S50 

Spartan III 
XC3S200 

Data path 32 256 473 192 167 8 16    32 
D-

BRAM 8 10 8 2 10               3 

Code
Memory 256×16 512×16 512×16 NA 

512×16
128×16

512×24
Memory 
Eq. LUTs 380 656 719 24 1364 284

    LUTs 2556 20068 8422 4729 1627 847 1056 2220

Total 
eq. LUTs 2936 20724 9141 4753 2991 1131 1340 2504

Scalability Yes    Yes     No   No No Yes

Max. (m) 283   255    473   192 167 571
Max Freq 

MHZ 150 66.4 18 50 85.7    76 75 70.5 

Through
put[kbps]/ 

(m) 

83.6/
(163)
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(163)

    NA 

32/
(192)

303.6/
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  13.8 37.32 76.16 
131

9.5 30.41 60.37 
163

43.6/
(283)

1015.7/
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3.72 13.04 34.1 
283
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(233)

  0.972 3.52 11.1 
                571 

Normalized 
Efficiency 

=
Through
put[bps]/ 

LUT2

9.6/
(163)
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(192)

34/
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7 17 9
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5/
(283)

2.3/
(193)

     3    7 6
283

2.3/
(233)

   0. 8 2 1.7 
571

Fastest Smallest Smallest-
32-bit

 

DBRAMs and support for higher fields. An example for designs that adopts the 
hardwired control to implement a compact ECC processor over GF(p) on FPGA was 
presented in [13]. Their compact processor with 192-bit data-path is larger than our 
scalable ECC processor by 76.2%, 71.8%, 47.3% for w= 8, 16, 32-bit respectively. 
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In terms of the efficiency, which corresponds to the capability of a design in terms 
of time per square of the equivalent LUT unit [14], the design in [6] has the best 
efficiency in the entries of table 4. This is can be accounted for the effect of extending 
the storage capacity of our design to adapt to the maximum field length (571-bit), 
which contributed to increasing the total equivalent LUTs count for different data 
paths. Furthermore, the processor architecture in [6] employed a full-length digit serial 
multiplier. Consequently, if we presume that our design would scale to m=163 only, 
which is a comparable to the field order in [6], additionally, the performance of our 
processor could be further enhanced by augmenting more mulgf2 units in the MSAU 
to accelerate the modular arithmetic computation, which would have a corresponding 
trivial increase in the processor’ area complexity. In this case, it is expected that our 
scalable design would exhibit better efficiency than the designs in [6]. 

6   Conclusions  

We investigated the potential of the microcode technique to implement a low resource 
scalable ECC processor over GF(2m) on FPGA without detrimental effect on 
performance. In this context, a scalable ECC processor was presented that supports 
the named curves in [7] and [8], 131, 163, 283, 571-bit, in which the point operations 
are emulated using the microcoded instructions. The microcode instructions are stored 
on a dedicated block memory to save the design resources. The finite field arithmetic 
control was implemented as a hardwired control. A multi-precision multiplier circuit 
mapped as a parallel structure was used to speed up the computation of the finite field 
multiplication operation. The proposed processor architecture was implemented on 
the smallest and lowest cost FPGA chips from XILINX namely, XC3S50 and 
XC3S200, the designs for w = 8, 16-bit occupied 70% and 80% of the available 
resources from XC3S50 while the designs for w = 32-bit consumed 60% of slices of 
the XC3S200. It is believed that the proposed ECC processor architecture in this work 
achieves the smallest area consumption amongst the state of the art ECC 
implementation on FPGA whist still supports scalability across a set of standards 
curves with practical performance. This design has its importance in numerous low 
resource applications such as smart cards, mobile handsets, and wireless sensor nodes 
to implement key exchange protocols.  
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