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Preface 

The current form of modern approximation theory is shaped by many new de
velopments which are the subject of this series of conferences. The International 
Meetings on Approximation Theory attempt to keep track in particular of fun
damental advances in the theory of function approximation, for example by (or
thogonal) polynomials, (weighted) interpolation, multivariate quasi-interpolation, 
splines, radial basis functions and several others. This includes both approxima
tion order and error estimates, as well as constructions of function systems for 
approximation of functions on Euclidean spaces and spheres. 

It is a piece of very good fortune that at all of the IDoMAT meetings, col
leagues and friends from all over Europe, and indeed some count ries outside Europe 
and as far away as China, New Zealand, South Africa and U.S.A. came and dis
cussed mathematics at IDoMAT conference facility in Witten-Bommerholz. The 
conference was, as always, held in a friendly and congenial atmosphere. 

After each meeting, the delegat es were invited to contribute to the proceed
ing's volume, the previous one being published in the same Birkhäuser series as 
this one. The editors were pleased about the quality of the contributions which 
could be solicited for the book. They are refereed and we should mention our 
gratitude to the referees and their work. 

The recent meeting in August 2001 was particular in that it was held at the 
time of Professor Manfred Müller's retirement. It was therefore both acelebration 
of approximation theory and of the many mathematical contributions Professor 
Müller made to approximation theory, as well as his friendship with many of the 
meeting's delegates, including, of course, the editors of this volume. We are grateful 
for the fine contributions that were delivered at the time of the conference, several 
of which are now included in this book. It is meant not only as a proceedings of 
the IDoMAT meeting, but also as a Festschrift in honour of Manfred Müller. This 
volume is therefore in its entirety dedicated to hirn. 

At this point we also thank the Deutsche Forschungsgemeinschaft (Bonn) 
for providing the majority of the financial support of this conference and the 
publisher for accepting the proceedings into its International Series of N umerical 
Mathematici:i. 

Also we would like to thank all participants for their efforts towards making 
this a successful meeting. 



viii Preface 

Leading experts and colleagues in approximation theory and quite a number 
of young researchers made the conference a stimulating event, with interesting 
discussions and scientific interactions to support and initiate future research. In 
this sense the success of the IDoMAT conferences in the years 1995, 1998 & 2001 
and the positive resonance will encourage us to continue in future this series of In
ternational Meetings with new developments in approximation theory and applied 
mathematics in Witten-Bommerholz. 

Witten-Bommerholz , August 2002 

Martin D. Buhmann 

Detlef H. Mache 

3rd International Meeting on Approximation Theory 
Witten .. Haus Bommerholz (Germany) 

August 20- 24, 2001 
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Linear Perturbations of the Classical 
Orthogonal Polynomials which are Eigen
functions of Linear Differential Operators 

H. Bavinck 

Abstract 

In this paper we consider polynomials orthogonal with respect to an inner 
product which consists of the inner product of the classical orthogonal poly
nomials combined with some perturbation and we give a survey of the work 
done to derive linear differential operators having these orthogonal polyno
mials as eigenfunctions. 

1 Introduction 

In his paper [24] S. Bochner classified the sequences of real or complex polynomials 
{Pn (x)} ~=o of a real variable x with deg( Pn (x)) = n, which are eigenfunctions of 
a second-order linear differential operator. He showed that, up to a complex linear 
change of variables, the only systems of polynomials with this property are the 
well-known polynomials of Jacobi, Laguerre and Hermite, the Bessel polynomials 
and the polynomials {xn } ~=o. For certain values of the parameters the first three 
are orthogonal with respect to areal weight function. Recently K won and Little
john [44] followed Bochner's work showing that, up to a real change of variable, 
there are six distinct orthogonal polynomial systems (Jacobi, Laguerre, Hermite, 
Bessel, twisted Jacobi and twisted Hermite) that arise as eigenfunctions of a lin
ear differential operator. H.L. Krall tried to classify all differential operators of the 
form 

r 

A(x, D) := :L ai(x)Di, 
i=O 

(1) 
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having orthogonal polynomials, (polynomials orthogonal with respect to areal 
weight function) as eigenfunctions, where D = d'!c, r is an integer;::: 3, {ai(x)};=o 
are real continuous functions on R It is not difficult to see that if (1) has real 
polynomials as eigenfunctions, then ai{x) has to be areal polynomial of degree 
:::; i for all i = 0,1,2, ... , r. Thus the differential operator must have the form 

(2) 

and the eigenvalues{An}::"=o such that 

A{x,D)Pn(x) = AnPn{x), (3) 

with Ao = ° and An does not vanish for all n E N\{O}. In [42J H.L. Krall showed, 
that if r is the smallest order of a differential operator ofthe form (2) having certain 
orthogonal polynomials as eigenfunctions, then r must be even and he gave an 
example of a fourth-order operator having nonclassical orthogonal polynomials as 
eigenfunctions. In another paper [43J he classified all fourth-order linear differential 
operators having orthogonal polynomials as eigenfunctions and he discovered two 
more of such operators. More than forty years later his son A.M. Krall [39J (see 
also [40]) studied the orthogonal polynomials which are eigenfunctions of these 
new operators, using the technique of distributional weight functions. A.M. Krall 
found weight functions and the explicit representations for the polynomials and 
he derived several properties of them including the appropriate boundary value 
problems. Because of their similarity to the corresponding classical polynomials 
A.M. Krall called these polynomials Laguerre type, Jacobi type and Legendre type 
polynomials. 

2 Koornwinder's representation 

In 1984 T .H. Koornwinder [38J considered the polynomials {p.:;,ß,M,N (x) } :"=0 ' 
now usually called Jacobi type polynomials, orthogonal with respect to the inner 
product 

r(a+ß+2) 11 '" ß 
(f, g) 2"'+ß+1r(a + 1)r{ß + 1) -1 f(x)g(x)(1- x) (1 + x) dx + 

+Mf( -l)g( -1) + Nf(1)g(l), 

M ;::: 0, N ~ 0, a > -1, ß > -1. He gave an explicit representation of these 

polynomials in terms of the classical Jacobi polynomials {PA"',ß) (x) } ~=o and their 

derivatives. In the cases ß = 0, N = ° and a = ß = 0, M = N they correspond 
to polynomials studied earlier by A.M. Krall [39J. Furthermore, using the limit 
relation 
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Koornwinder introduced the polynomials {L~,N (x)} :'=0' now usually called La
guerre type polynomials, given by 

which are orthogonal with respect to the inner product 

1 f'X) 
(I, g) = r(a + 1) Jo f(x)g(x)xae-Xdx + N f(O)g(O), N ~ O,a >-1. (5) 

For a E {O, 1, 2} these polynomials in have been considered in [39], [48] and [41]. 

3 Differential operators 

After Koornwinder's paper [38] it became achallenge to find a differential oper
ator having the Laguerre type polynomials {L~,N (x)} :'=0 as eigenfunctions and 
a differential operator having the Jacobi type polynomials {p,';',ß,M,N (x)} :'=0 as 
eigenfunctions. In the case of Laguerre type polynomials this would generalize the 
operators found by H.L. Krall [43], L.L. Littlejohn and A.M. Krall [48], and L.L. 
Littlejohn [41] for a E {O, 1, 2} respectively and the problem was solved by J. 
and R. Koekoek [29] (see also [35]). Since for the classical Laguerre polynomials 

{L~a)(x)} ~=o it is known that 

with 
L(a) := -xD2 - (a + 1- x)D, 

they looked for an operator of the form 

L(a) +NA(a), 

where 
00 

A(a) := Lai(x;a)Di, 
i=l 

and for numbers {a~a)} ~=o such that 

(6) 

(7) 

(8) 

(9) 

for nE N. Here I denotes the identity operator. By substituting (4) into (9) and by 
equating the coefficients of N and N 2 on both sides, J. and R. Koekoek obtained 
two systems of equations and they showed that the two systems of equations for 
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the unknown constants { a~a)} ~=1 and the unknown functions {ai(X; an:1 , have 

a unique solution given by 

(a) _ (n + a + 1) an - , n E {I, 2, 3, ... } 
n-1 

(10) 

and 

1 i .. (a + 1) (a + 2) . 
ai(x;a) = i! ~(-l)'+J j -1 i _j (a+3)i-jxl, i E {1,2,3, ... }. (11) 

Actually they guessed the result and proved afterwards that this solution satisfies 
both systems of equations. From (11) it follows at once that in the case N > 0 the 
differential operator L(a) + NA (a) is of order 2a + 4 if a E N and of infinite order 
if a 1:. N. 

4 Sobolev type orthogonal polynomials 

Using the method of [38] H.G. Meijer and H. Bavinck [52], [22] introduced poly
nomials orthogonal with respect to the inner product 

r(2a + 2) J1 2 '" 
(1,g) 22a+lr(a+1)2 _l j (x)g(x)(l-x) dx+ 

+M[J( -l)g( -1) + j(l)g(l)] + N[f'( -l)g'( -1) + j'(l)g'(1)], 

M ~ 0, N ~ 0, a > -1. Since (x, x) i= (1, x2 ) , these polynomials are no longer or
thogonal to a weight function and in [23] are dealt with properties of the zeros and 
recurrence relations. Such a kind of inner product, involving derivatives evaluated 
at certain points, has been called Sobolev type. In [34], [35] R. Koekoek studied 
the polynomials {L~,Mo,Ml, ... ,Ml (x)} :'=0' polynomials which are orthogonal with 
respect to the inner product 

( 12) 

a > -1, Ah ~ 0 for k E {O, 1, 2, ... , l} and l E N. If l = 0 they are Laguerre type 
polynomial:s. for l ~ 1 we call them Sobolev type Laguerre polynomials. 

5 The inversion method and its applications 

At a conferenc:e in Eric:e (June 1990) R. Askey [25] raised the problem of finding 
rlifference equations for generalii\ations of the :~deixner polynomials. which are or
thogonal with l'espect to a weight function obtained by adcling a point-mass to 
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the ordinary weight function for Meixner polynomials. The following limit relation 
connects the Meixner polynomials {Mn (x; ß, c)} :-0 , defined by 

n ~ (x) (-x -ß) -k M n (x;ß,c)=(-I) f='o k n-k c 

with the Laguerre polynomials: 

1· M ( cx . ) - L(O:)( ) 1m n --,a+l,c - n x, n=0,1,2, .... 
c--+l 1 - c 

H. Bavinck and R. Koekoek decided to investigate the easier case of Charlier 
polynomials first and solved the problem [20J in that case using a new technique 
which I will call the inversion method. Later H. Bavinck and H. van Haeringen 
[18J treated the case of Meixner polynomials by the same method. In both discrete 
cases the difference operator turned out to be of infinite order for all relevant values 
of the parameters. In [4J this inversion method was used in the Laguerre case to 
retrieve the differential operator found by J. and R. Koekoek [29J in a direct way. 
For Laguerre polynomials the method is based on two well-known formulae 

(13) 

and the generating function 

(14) 

It follows that 

(1 - t)i-j-l +. ( -xt ) . 1 (xt) (1 - t)o: 'exp -- (1 - t)-O:-1- exp --
t-l t-l 

00 00 L L~o:-i-l)( -x)tm L L~o:+j)(x)tk 
m=O k=O 

By comparing the coefficient of t i - j on both si des one obtains 

i-j 
'" L(-O:-i-l)(_ )L(O:+j)( ) _ i: .. 
~ i-j-k X k X -u'1' j ~ i,i,j E N 
k=O 

or 
i 

'" L(-O:-i-l)(_ )L(<>+j)( ) _ i: .. 
~ i-k X k-j X -u'1' j ~ i, i,j E N. (15) 
k=j 
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Formula (15) can be interpreted as folIows. If we define the matrix T = (tij )7,j=o 
with entries 

t .. - t-J x, J _ Z, { L(O:+j)() . < . 
tJ - 0, j > i, 

then this matrix T is a triangular matrix with determinant 1 and the inverse U of 
this matrix is given by T- 1 = U = (Uij )7,j=o with entries 

{ L(-O:-i-1)(_) . . . . x J < Z U·· - t-J ,- , 
tJ - 0, j > i. 

This leads to the following lemma (see [33] Lemma 5) 

Lemma 5.1 Suppose that for a certain k E N we have the system of equations 

= L Ai(x)Di+kL~O:)(x) = F n(x), n = k + 1, k + 2, k + 3, ... , 
i=l 

where {A i (x)}:l are independent ofn. Then this system has a unique solution 
given by 

i 

Ai(x) = (_I)i+k L LL;-i-k-1) (-x)Fj+k(x), i = 1,2,3, .... 
j=l 

In order to apply this lemma one has to cope with three problems: 

Problems 

1. Find an expression for the numbers {a~a)} ~=1' 

2. Show the equivalence of the two systems or at least show that all the solutions 
of one of the systems are also solutions of the other one. 

3. Write the coefficients, found by means of Lemma 1, in such a way that the 
finite order of the differential operator in the case of a E N can be seen. 

These problems have been solved in [4], the last one by a tedious computation. 

In [33] J. Koekoek, R. Koekoek and H. Bavinck looked for a linear differential 
operator of a special form having thc polynomials {L~·M.N (x)} :=0' orthogonal 
with respect to the inner product (of Sobolcv type if N > 0) 

(f.g) = [(01+ 1) 1= f(x)g(x)x"e-1dx + Mf(O)g(O) + N.f'(O)g'(O), 
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with M ~ 0, N ~ 0, 0: > -1, as eigenfunctions. The aim was to find operators 

A(<», B(<», C(<» and numbers {o:~<»} ~=o' {ß~<»} ~=o' {I~<»} ~=o such that for 
n = 0, 1,2, ... 

[(L(<» - nI) + M(A (<» - o:~<»I) 

+N(B(<» - ß~<»I) + MN(C(<» - ,~<»I)]L~,M,N(x) = O. (16) 

Here L(<» is given by (7) and A (<» = A (<» (x), B(<» = B(<» (x), C(<» = da) (x) 
are of the form 

= 00 = 

i=l i=l i=l 

Clearly we have to take 0:6a ) = ß6") = 16") = O. It is clear that similar of problems 

as mentioned above for the operator A (<» and the numbers {o:~a)} ~=1' which 

occur he re again, return here in a much more complicated way for the operators 

B(a), c(a) and the numbers {ß~")} ~=1 and { I~")} ~=1 . A new phenomenon is the 

fact that the operators B(a) and C(<» are no longer determined uniquely. Lemma 
1 plays an important role in deriving the unknown operators, but showing that 
the operators are of finite order if 0: is a nonnegative integer causes considerable 
difficulties. We state the main result of [33]: 

Theorem 5.2 For 0: > -1 and M 2 + N 2 > 0 the only differential equations of the 
form (16) satisfied by the polynomials {L~,M,N (x)} ~=o are those where the coeffi-

eients {ai(x; o:n ~1 ,{bi(x; o:n ~1 and {Ci(X; o:n ~1 and the numbers { o:~a)} ~=1' 
{ß~a)} ~=2 and { I~a)} ~=1 are determined explicitly in the paper, and ßi<» is arbi

trary. Only if N ßi<» = 0 and 0: E N the order of this differential equation is finite 
and equal to 

{ 
20:+4 
20:+8 
40: + 10 

if M > 0 and N = 0 
if M = 0 and N > 0 
if M > 0 and N > O. 

Otherwise the differential equation is of infinite order. 

For the orthogonal polynomials which are orthogonal with respect to a dis
crete measure (Charlier, Meixner etc.) we me an by a Sobolev type inner product 
an inner product involving differences (see [2], [3]). The inversion method is also 
used to derive a difference equation of infinite order for Sobolev type Charlier 
poly no mi als [5] and in [21] Sobolev type Meixner polynomials are studied in such 
a normalization, that they can be compared to Sobolev type Laguerre polynomi
als. It turns out that these Sobolev type Meixner polynomials are eigenfunctions 
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of a differenee operator of infinite order for all values of the parameter ß, whereas 
the eorresponding Sobolev type Laguerre polynomials are eigenfunctions of a dif
ferential operator, whieh for nonnegative integer values of the parameter is of 
finite order. In [31] J. and R. Koekoek extended the inversion method to Jacobi 
polynomials and in [30] they used the new inversion formula to obtain a direet 
way to derive the differential equations for symmetrie generalized ultraspherical 
polynomials, found earlier in [36] by ingenious guessing. A survey of the inversion 
formulas and some applieations are given in [37] 

6 The existence of differential and 
difference operators 

One of the problems we met in the preeeding seetion was that of showing the 
equivalenee of some systems of equations and another was that of finding the 

numbers {a~")} ~=1 . The first problem is due to the faet that it is not apriori 

sure that a differential or differenee operator of the desired form exists. In two 
papers, written independently, [28] and [6] the existenee problem is treated and 

also a eonstruetion for the numbers {a~")} ~=1 is found. We state apart of the 

results in [6]. 

6.1 Notations 

Let {Pn(x)}:'=o be polynomials with deg[Pn(x)] = n for eaeh n E N and let 
{An} :'=0 be real numbers with >'0 = 0 and {An} :'=1 not all equal to zero such 
that {Pn (x)} :'=0 is a polynomial set of solutions of 

00 

L(x)y(x) == L li(x)D~t(§) = A\ t(§). (17) 
i=l 

Here {li(X)}:l are polynomials with deg[li(x)] ~ i for all i E {I, 2, 3, ... }. 
D§t(§) may be read as the derivative Dy(x) = d~~), the forward difference 
Lly(x) = y(x + 1) - y(x) or the baekward difference V'y(x) = y(x) - y(x - 1). 
D~t(§) =D§(D~-oot(§)),) E {OO,E,3, ... } and D§t(§) =t(§). 
If A (i), i E N, indicates the difference operator, defined by 

(18) 

(see [11]) then we can also take V~t(§) = A(i)y(x), i E N. 
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6.2 Linear perturbations 

Let {Qn(x)}~=o be polynomials with deg[Qn(x)] :::; n for each n = 0, 1,2, ... with 

n 

Qn(x) = L qn,kPk(X) (19) 
k=O 

and {Ph(X)}~=o be the polynomials given by 

P!:(x) = Pn(x) + J.lQn(x), n = 0,1,2, ... , J.l E R (20) 

The aim is to find an operator A of the form 

00 

A(x)y(x) == Lai(x)V~t(§), (21) 
i=l 

where {ai(x)}:l are polynomials with deg[ai(x)] :::; i for all i = 1,2,3, ... , and 
real numbers {lln} ~=o with llO = 0 such that 

(L + J.lA)P~(x) = (An+J.llln)P~(X), n = 0,1,2, .... (22) 

Definition 6.1 Let {Pn(X)}~=o and {Qn(x)}~=o be as stated. We call the poly
nomials {Ph(X)}~=o given by (20) a 1.inear pertu.rbation 01 {Pn(X)}~=o 01 
the dass m (m E N) when the following conditions are satisfied: 

1. ifn:::; m then qn,k = 0 for all k E {O, 1, 2, ... ,n} 

2. if n > m then qn,n =I- 0, qn,n-l =I- 0 and qn,k = 0 for all k E {O, 1,2, ... , m -
1}. 

We now state the main result. 

Theorem 6.2 Let {Ph(X)}~=o be a linear perturbation of {Pn(x)}~=o of the class 
m. 
Then a necessary and sufficient condition for the existence of an operator A of the 
form (21) and real numbers {lln}~=l such that (22) holds, is 

n n 

qn,k L (Aj - Aj_t}qj,j = L (Aj - Ak)qn,jqj,k, (23) 
j=k+l j=k+l 

for alln E {l,2,3, .. . },k E {0,1,2, .. . ,n -1}. 
1fm = 0, then the real numbers {lln}~=l and the operator Aare uniquely deter
mined. 1fm > 0, then lll, ll2, ll3,"" llm can be chosen arbitrarily and the operator 
A is uniquely determined when lll, ll2, ll3, ... , llm are chosen. 
The numbers {lln} ~=m+l are given by 

n 

lln = llm + L (Aj - Aj_t}qj,j. 
j=m+l 

(24) 
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6.3 Application to Sobolev type orthogonal polynomials 

Let {Pn (x)} :=0 be a system of orthogonal polynomials relative to a positive
definite real moment functional a, which satisfy a differential or difference equation 
of the form (17). Let qy be the symmetrie bilinear form (of Sobolev type if I ~ 0 
and J.L > 0) defined by 

where J.L(=I= 0) and e are real constants, I E {O, 1,2, ... } , P and q are any real 
polynomials and the notation 

is used. If qy is positive-definite then in the case V§ = n it is shown in [28] that 

if p~l) (e) =1= 0 for all n = I, I + 1, 1+ 2, ... , then the corresponding orthogonal 
polynomials {P!: (x)} :=0 satisfy a differential equation (possibly of infinite order) 
ofthe form (22), where al, a2, a3, ... , al can be chosen arbitrarily and the operator 
A ofthe form (21) is uniquely determined when al,a2,a3, ... ,al are chosen. We 
derive this and the corresponding result for differences directly from Theorem 6.2. 
If we write 

(T,S) _ ~ V~p)(§)V{p)(t) 
Kn (x,y)-~ (u,p?(x)) ,n,r,sEN, 

then (see [51], [1], [3]) the polynomials {P!:(x)}:=o can be written as (20) with 

Qn(x) = K~I~i(e,e)Pn(x) - p~l)(e)K~~I{(x,c), 

hence 

(25) 

and 
(1,1) ( ) ( ) qn.n = K n - 1 e, e . 26 

It follows that if p~l) (e) =1= 0 for all n = I, I + 1, l + 2, ... , then {Pj,'(x)} :=0 is a 
linear perturbation of class l of {Pn(x)}::o and by using summation-by-parts (23) 
easily follows. 

6.4 Special and symmetrie linear perturbations 

In [6], [7] two other kinds of linear perturbations are introduced, meant for symmet
rie orthogonal polynomials (Hermite, Gegenbauer). The special linear perturbation 
corresponds to asymmetrie bilinear form (of So bolev type if I ~ 0 and J.L > 0) 
defined by 



Linear Perturbations oE the Classical Orthogonal Polynomials 11 

and the symmetrie linear perturbation corresponds to asymmetrie bilinear form 
(of Sobolev type if l ~ 0 and I-" > 0) defined by 

<jJ(p, q) = (a,pq) + I-" (p(l) (c)q(l) (c) + p(l) (-c)q(l) (-c)) . 

If the orthogonal polynomials with respect to a are symmetrie, then the orthogonal 
polynomials with respect to both these perturbed functionals are symmetrie as 
weIl. For these two cases theorems similar to Theorem 1 are derived. 

6.5 Conclusion 

In the papers [5], [18], [20], [21], [36], [29] and [33] (in the case M = 0, N > 0) dif
ferential and difference operators (in some cases offinite order, in some other cases 
of infinite order) are constructed having certain systems of orthogonal polynomi
als as eigenfunctions. All these orthogonal polynomials are linear perturbations 
of the classieal orthogonal polynomials. The classieal orthogonal polynomials are 
eigenfunctions of a differential or difference operator L of the second order with 
eigenvalues An. In the papers mentioned above tedious proofs were needed to show 
the existence of an operator of the form L+I-"A having the linear perturbations 
of the classieal orthogonal polynomials as eigenfunctions with eigenvalues of the 
form An + W~,n' By the results in [6], [7] in all these cases and in many more such 
proofs have become superfluous and moreover it is shown that for a certain value 
of mE N, depending on the situation, the numbers al, a2,a3,"" a m are arbitrary 
and for the numbers {an}:'=m+1 the explicit expression (24) is given. 

6.6 Two linear perturbations 

In [10] combinations of two linear perturbations are considered and in [19] for the 
symmetrie polynomials combinations of two linear special andjor symmetrie per
turbations are studied. We state the main result of [10] with a small modification 
shown in [19]: 

Theorem 6.3 Let {Pn(x)}:'=o be a system of orthogonal polynomials relative to 
a positive-definite moment functional a and let {An} :'=0 be a sequence of real 
numbers with AO = 0 and {An}:'=l not all equal to zero such that {Pn(x)}:'=o 
are eigenfunctions of a linear differential or difference operator L with eigenvalues 
{An}:'=O' 1f Cl and C2 are real constants, hand l2 are nonnegative integers, 

p~h)(Ct) =I- 0 for all nE {h, II + 1, h + 2, ... } (27) 

and 
(28) 

then the polynomials {P~,V (x)} :'=0' orthogonal with respect to the bilinear form of 
Sobolev type defined by 

'l/J(p, q) = (a,pq) + I-"p(lll(ct)q(ld(Cl) + vp(l2) (C2)q(l2) (C2), (29) 
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where J-t > 0, v > 0 , and p and q are any polynomials, are eigenlunctions 01 one 
(or more il min(h, l2) > 0) linear differential or difference operators ollorm 

L + J-tA + vB + J-tvC (30) 

with eigenvalues 
{An + J-tan + vßn + J-tV/'n}:'=o. (31) 

Here ao = ßo = /'0 = 0 and the numbers {an}~=1 (il h > 0), {ßn}~=1 (il l2 > 0) 
and bn}~~nl{h,lz} (il min{h,l2} > 0) can be chosen arbitrarily. The operators 
A, Band C and the numbers {an} :'=h +1 , {ßn} :'=12+1 and {/'n} :'=min{h,lz}+1 are 

. l d t . d h { }h {ß }12 d {}min{11,lz} fi d unzque y e ermzne , w en an n=l' n n=1 an /'n n=1 are xe. 

7 The finite order cases 

Krall [43] found three fourth-order linear differential operators having orthogonal 
polynomials as eigenfunctions, which A.M. Krall [39] called Laguerre type, Jacobi 
type and Legendre type polynomials. They have all three become the fathers of 
a large family of finite order linear differential operators having (Sobolev type) 
orthogonal polynomials as eigenfunctions. For the non-Sobolev cases it has been 
conjectured by Magnus [25] that if orthogonal polynomials are eigenfunctions of a 
differential operator (3) then they must be orthogonal with respect to a classical 
weight function w (x) plus possibly point masses at the endpoints of the support of 
w(x). Strong support to Magnus' conjecture is given in [45], [46]. For the connection 
with spectral theory and a general survey of the field the reader is referred to [26], 
[27]. 

7.1 The Sobolev type Laguerre polynomials 

We consider the Sobolev type Laguerre polynomials {L~,Ml,M2 (x, ll, l2)} :=0 ' 
which are orthogonal with respect to the inner product 

(p, q) = p(x)q(x)xÜe-Xdx + M 1p(l,) (O)q(l,) (0) + M 2P(l2) (0)q(l2) (0), 1 100 

r(a+ 1) 0 

(32) 
where a > -l,J\h 2 0,1\;12 2 0 and h,l2 E 1'1, II < l2. The8e polynomials are 
generalization8 of the Laguerre polynomials, which are known to be eigenfunctions 
of the 8econd order linear differential operator 

L(a) = -xD2 - (a + 1 - x)D 

with eigenvalues An = n, nE N. 
As an application in [10] it follows that there exist linear differential operator8 

A(n.!,), A(rd2 ),C(fY·J,·12) (usually of infinite order) and numbers {a~,a,I,)}X , 
,,=0 
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{o:~ah)} ~=o' {1'~a,l,h)} ~=o such that the polynomials {L~,M1,M2(x, lt, l2)} :'=0 

are solutions of the differential equation 

[(L(a) _ nI) + MI (A(a,h) - o:~a,h)I) + M 2 (A(a,12) - o:~a,h)I) 

(33) 

= = 
Here A(a,l) = I: ai(x;o:,l)Di, 1 E {h,h}, c(a,h,l2) = I: ci(x;o:,h,h)Di 

bl bl 

and I denotes the identity operator. Further we have to take o:~a,l,) = o:~ah) = 

1'6a ,11h) = 0 and the values { o:~a,h)} ~=1 (if II > 0), { o:~ah)} ~=1 ' {1'~a,l,,12)} ~=1 
(if II > 0) can be chosen arbitrarily; for the other values formulas are given. To 
each choice of the arbitrary values corresponds precisely one linear differential op
erator of the form (30), usually of infinite order. In [15] it is shown that if all 
the arbitrary values are chosen to be 0 and furt her 0: E N, then the correspond
ing operators A (a,h) A (a,b) and C(a,hh) are of finite order' A (a,l) is of order o '0 0 . 0 

20: + 4l + 4, l E {lI, l2} and C~a,ll,h) is of order 40: + 411 + 412 + 6. Further it was 
proved that any other choice of the arbitrary values will lead to an operator of 
infinite order and also that if 0: rt- N, then the operator is of infinite order for any 
choice of the arbitrary values. In a number of special cases this problem has been 
considered before (see [9] for a complete survey). Here we only mention the case 
M 2 = 0, which for II = 0 has been treated in [29] (see also [4] and [12]) and in 
general in [8], and the case lt = 0, l2 = 1, which was studied in [33]. 

7.2 The Sobolev type Jacobi polynomials 

We consider the Sobolev type Jacobi polynomials {p:;,ß,M1,M2 (x, h, l2)} :'=0' which 
are orthogonal with respect to the inner product 

(p, q) r(0:+ß+2) 11 a ß 
2a +ß+1r(0:+I)r(ß+1) _/(x)q(X)(l-x) (I+x) dx (34) 

+M1p(h)( -I)q(hl( -1) + M 2P(l2) (1)q(l2) (1), 

o:,ß> -1, h,l2 E N, M 1 ,M2 ~ O. These polynomials are generalizations ofthe 
Jacobi polynomials, which are eigenfunctions of the linear differential operator 

L(a,ß) := (x2 - 1)D2 + [0: - ß + (0: + ß + 2)x]D, 

with eigenvalues 
A~a,ß) = n(n + 0: + ß + 1) ,n E N. 

As a consequence of the perturbation theory [10] there exists a dass of linear 
differential operators of the form 

L(a,ß) + M1A (a,ß,h) + M 2 B(a,ß,b) + M 1M 2 c(a,ß,11 ,b) (35) 
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for which the Sobolev type Jacobi polynomials are eigenfunctions with eigenvalues 
of the form 

Here a~a,ß,ld = ß~a,ßh) = ')'~a,ß,llh) = 0, the values of {a~,ß,h)}ll (if lt > 
n=l 

0), {ß~a,ßh)} ~=1 (if l2 > 0), {')'~a,ß,llh)} :~~{llh} (if min {lt, h} > 0) can be 

chosen arbitrarily and for the other values formulas are given. To each choice of 
the arbitrary values corresponds a linear differential operator of the form (35), 
usually of infinite order. 
Further it is shown in [16) that, if all the arbitrary values are chosen to be 0, 
then for the corresponding operators A (a,ß,h) B(a,ß,12) and C(a,ß,h.l2) we have· o , 0 0 . 

A~a,ß,ll) is of order 2ß + 4lt + 4, if ß E N, B~a,ß.l2) is of order 2a + 412 + 4, if 

a E N, and C~a,ß,h,12) is of order 2a + 2ß + 4lt + 4h + 6, if a, ß E N. Any other 
choice of the arbitrary values will lead to one or more operators of infinite order. 

In the case lt = h = 0 this was proved by J. Koekoek and R. Koekoek 
[32) (see also [13]). An important tool in their work was the inversion formula 
for Jacobi polynomials, introduced in [31). They also showed that the operator 
A~a,ß,o) is always of infinite order if ß ~ N, that B~a,ß,O) is always of infinite order 

if a ~ N and C~a,ß,o,o) is always of infinite order if a,ß ~ N. Such a result is likely 
to be true for the operators A (a,ßh) B(a,ß,12) and C(a,ß,h,12) in general o , 0 0 . 

7.3 The Sobolev type Gegenbauer polynomials 

We consider the Sobolev type Gegenbauer polynomials {p.::,M"M2 ,hh(x)} :=0' 
orthogonal with respeet to the inner produet 

(J,g) f(2a + 2) 11 2 a 
22a+1r(a + 1)2 -1 f(x)g(x)(l - x ) dx 

+ Mdf(h\ -l)g(l,) ( -1) + f(h)(l)g(h)(l)] 

+ Mdf(l2) ( _1)g(12)( -1) + f(l2)(1)g(12)(1)], (36) 

MI ;::::: 0,M2 ;::::: O,a > -1,ll,l2 E N,h < [2. They are generalizations of the 
Gegenbauer or ultraspherieal polynomials, whieh are eigenfunctions of the linear 
differential operator 

L(a) : =(x2 - 1)D2 + 2(a + l)xD, 

with eigenvalues A~~) = n(n + 2a + 1), n E N. As a eonsequenee of the theory 
of two symmetrie linear perturbations treated in [19] there exist linear differential 
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operators A(<>,I), I E {11,12}and C(<>,hh) and numbers {o:~<>,l)}~=o,l E {11,12} 

and {1'~<>,l,h)} ~=o such that 

[(L(<» ->'~<»I) +M1 (A(<>,!!) -o:~<>,h)I) +M2 (A(<>,b) -0:~<>'!2)I) 

+ M 1M 2 (C(<>,h,b) -1'~<>,hh)I)] p;:,M" M2,l,,12(X) = 0 (37) 

for n E N. Here 0:6<>'1,) = 0:6<>h) = 1'6<>,1,,12) = 0, the values of {o:~<>,l,)} ~=1 (if 

h > 0), { 0:~<>,l2)} ~=1 ' { 1'~<>,1, h)} ~=1 (if min(ll, 12) > 0) can be chosen arbitrarily 

and for the other values formulas are given in [19], To each choice of the arbitrary 
values corresponds a linear differential operator such that (37) holds, usually of 
infinite order, 

Further it is shown in [17] that, if all the arbitrary values are chosen to be 0 
and 0: E N, then for the corresponding operators A6<>,I) (1 E {!t, 12}) and C6<>,h,12) 

we have: A 6c>,I) is of order 20:+41+4 and C6<>,h,12) is of order 40:+4h +412+6. Any 
other choice of the arbitrary values will lead to one or more operators of infinite 
order, In the case 11,[2 = 0,1 1 = 0, this was shown by R. Koekoek [36], (see also 
[30]). The case 11 = 0,12 = 1 has been dealt with in [14]. 
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(0,1) P~il-type Interpolation: 
A General Method for Regularity 

Marcel G. de Bruin & Detlef H. Mache 

Abstract 

Hermite-Birkhoff interpolation and Pal-type interpolation have been receiv
ing much attention over the years. Also during the previous 15 year the 
subject of interpolation in non-uniformly distributed nodes has been looked 
into. 

The methods of proof of regularity often were quite dependent on the 
problem at hand, and the purpose of this note is to treat a possible 'gen
eral' method of finding polynomial pairs that lead to a regular interpolation 
problem; for sake of simplicity so-called (0, 1) Pal-type interpolation is looked 
into. 

Keywords: Pal-type interpolation, regularity 

AMS Subject classification: 41A05 

1 Introduction 

The study of Hermite-Birkhoff interpolation is a well-known subject (cf. the ex
cellent book [1]). Recently the regularity of some interpolation problems on non
uniformly distributed nodes on the unit circle have been studied. 

Along with the continuing interest in interpolation in general, a number of 
papers on Pal-type interpolation have appeared, cf. [2], [3], [4], [5], [6], [7]. 

In this paper the attention will be focused on interpolation problems of the 
following kind: 
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given two polynomials p(z) resp. q(z), with simple zeroes 

{zi}i=l E C resp. {Wj}J=l E C (nodes), 

given data {cdi=l' {dj}J=l E C, 

find Pk E TIk , k = m + n - 1 with Pk(Zi) = Ci (1 ::; i ::; n) 
and P~(Wj) = dj (1 ::; j ::; m). 

Here TIk is the set of polynomials of degree at most k with complex coefficients. 

Although very often the method of proof of regularity depends on the problem 
at hand, one can, nevertheless, distinguish two main tools as indicated in [5]: 

1. Prove that the square system of homogeneous linear equations for the un
known coefficients of the polynomial Pk has a non-vanishing determinant. 

2. Find a differential equation for Pk (or for a factor of Pd and show that if 
this equation has a polynomial solution, the solution must be the trivial one. 

The aim of this paper is to study the second method in a 'general setting'. The 
layout of the paper is as follows: in Section 2 the results will be given with some 
examples, followed by the proofs in Section 3. Finally a (short) list of references is 
given. 

2 Main results and examples 

Consider the node-generating polynomial for the values 

n 

p(z) = rr (z - Zi) 
i=l 

and that for the values of the first derivative 

each having simple zeroes. 

m 

q(z) = rr (z - Wj), 
j=l 

Remark. It is allowed that p and q have (a) common zero(es). 

We then have the following result 

Theorem 2.1 Ij there exist polynomials g(z), r1 (z), r2 (z) such that 

p(z) = (aa + a1z)g(z) + rl (z)q(z), 

p'(z) = ,ßOg(z) + r2(z)q(Z), 60 -=I- 0, 

satisjying the condition 
g( Wj) -=I- 0, 1:::; j :::; m, 

then (0,1) Pal-type interpolation on the zeroes oj {p(z), q(z)} is T'egular 

(1) 

(2) 

(3) 

(4) 

(5) 



(0,1) Pal-type interpolation 23 

1. for al = 0, 

2. for al # 0 if and only if -ßO/al ~ {I, 2, ... , m - I}. 

Examples 
1. Let Pl(Z), P2(Z) be any two co-prime polynomials with simple zeroes, then 

the (0,1) Pal-type interpolation problem on {Pl(Z)p2(Z), P2(Z)} is regular. 
Put ao = al = 0, ßo = 1 and rl(z) = Pl(Z), q(z) = P2(Z), p(z) = Pl(Z)p2(Z). 

For any r2(z), the polynomial g(z) foHows from (4) and therefore satisfies g(Wj) = 

p' (Wj): because the zeroes of q are also zero es of P and moreover simple, then 
p'(Wj) # 0 and (5) is satisfied. 

2. For p(z) = zn - an, a # 0 and q(z) any divisor of 

the (0,1) Pal-type interpolation problem on {p(z), q(z)} is regular. 
Put al = O,ao # 0 and 'T} = ao/ßo in ((3),(4)). The condition (5) follows 

from (4) as Wj # O. For the record: the choice 

nIl g(z) = _zn-l - -r2(z)(Zn - n'T}Zn- - an) 
ßo ßo 

with arbitrary r2(z) and rl (z) = 1 + 'T}r2(z) leads to ((3),(4)) for q the full polyno
mial as indicated above; in case q is a divisor, the polynomials rl, r2 have to be 
multiplied by the complementary factor of q leading to the fuH polynomial. The 
condition on 'T} implies that the zeroes of q(z) are simple. 

3. For p(z) = zn - an, a # 0 and q(z) any divisor of zn-l +'T}an, 'T} # 0, the 
(0,1) Pal-type interpolation problem on {p(z), q(z)} is regular. 

This is the case ao, 0:1 # 0, ßo = nO:l: for the fuH polynomial rl(z) = 

ßo, r2(z) = O:lZ + ao - 1/ ßo. As -ßO/O:l = -n < 0 the condition on the quotient 
is fulfilled; the calculation of 9 is left to the reader. 

The next theorem is an example of what could be done in a very general 
setting: we use a simple connection between the coefficient of g(z) from (6) and 
from (7). 

Theorem 2.2 If there exist polynomials g(z), rl(z), r2(z) such that 

(6) 

with 0:0 + alZ + 0:2z2 having two different (complex) roots Zb Z2, and 

(7) 

satisfying the conditions 
g( Wj) # 0, 1 ~ j ~ m, (8) 
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and 1:2 q( ()d( =F 0, (9) 

then the (0,1) P(il-type interpolation problem on the zeroes 0/ {p(z),q(z)} is regu
lar. 

To keep a long story short, two simple examples will be given only. 

Examples 
1. For n even, the (0,1) Plil-type interpolation problem on 

{zn - an, (n - 2)zn - nezn- 2 + 2an }, 

with a, e =F ° and an =F en is regular. 
For n odd, the conditions on a, e are: a, e =F 0, an =F ±en, en =F 2(n+ l)an. 
The proof uses ao + alZ + a2z2 = z2 - e2, Tl(Z) = -zje, T2(Z) = -lje 

and g(z) = {(n - 2)znj2 + an}/e. The conditions come in to ensure that q has 
simple zero es and because of (8), (9). 

2. Under the condition an =F 1j(n + 1), the (0,1) Plil-type interpolation 
problem on the pair p(z) = z(z - l)(zn+l j(n + 1) - anz + a n +l ), q(z) = zn - an 
is regular. 

The proof uses ao +alz+a2z2 = Z2 - Z, Tl(Z) = _(Z2 - z)2(2z -1), T2(Z) = 
-4(z2 - z)2, g(z) = {2zn+3 - 3zn+2 + (n + 2)zn+! j(n + 1) - 2anz3 + 3anz2 -
2anz + a n+1 . 

The condition on a originates from (9). The zeroes of p( z) are automatically simple 
(p( z) satisfies the differential equation 

(Z2 - 2)p'(z) - (2z - l)p(z) = q(z) 

with solution 

multiple zeroes of the second factor are zero es of zn - an - with absolute value a 
- and the choice C = an+! does the trick). 

3 Proofs 

The interpolation problem has been formulated in the introduction as: 

- given polynomials p( z) and q( z) of degrees n and m respectively with simple 
zeroes 

find a polynomial P(z) of degree at most n + m - 1 with 

P(z;) = 0 (Zi the zeroes u[ p(z), r'(w}) = 0 (1I'j thc zerocs uf q(z). (10) 
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Because of the first condition in (10), we can write 

P(z) = p(z)Q(z), degreeQ(z) S; m - 1. 

The second condition of (10) then leads to 

Proof of Theorem 2.1. Inserting ((3),(4)) into (12) and using (5) we find 

(ao + alWj)Q'(Wj) + ßoQ(Wj) = 0, 1 S; j S; m. 

25 

(11) 

(13) 

Because of the degree restriction on Q, at most m - 1, this immediately implies 

(ao + alz)Q'(Z) + ßoQ(z) = O. (14) 

Solving this linear first order ordinary differential equation for the cases al = 0 
(distinguishing ao = 0 or ao =f. 0) and al =f. 0, we find that Q(z) has to be 
identically zero under the condition stated in the theorem (al =f. 0 was the only 
case that (14) really had a non-trivial polynomial solution of degree at most m -1; 
that is where -ßo/al fj. {1, 2, ... , m - 1} comes in). 0 

Proof of Theorem 2.2. Proceeding as in the previous proof, but now the degree of 
the polynomial on the left-hand side of the equation could be equal to the degree 
of q( z) , we arrive at the differential equation 

(15) 

for the polynomial Q of degree at most m -1. The equation (15) can be integrated 
at once and we find 

(ao + alZ + a2z2)Q(Z) = C r q(()d( + D. lZl (16) 

Now the left-hand side has a zero for z = Zl and z = Z2; the first gives D = 0 
and the second, in view of the condition stated in (9), that C = O. Thus Q == 0, 
implying P == O. 0 
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De la Vallee Poussin Means for 
the Hankel Transform 

Wolfgang zu Castell & Frank Filbir 

Abstract 

We give a construction of a de la Vallee Poussin kernel for the Hankel trans
form based on the convolution structure on the space L 1 (R+, /-Lv). In contrast 
to the classical way to define such a kernel, our construction directly leads 
to an approximate identity for the underlying space. 

1 Introduction 

One of the most important problems in Fourier analysis deals with the difficulty 
that the Fourier transform 

F(() = i: f(x)e-i~x dx, (ER, 

üf a function fE L 1(R) need not belong to L 1(R) itself and therefore the inverse 
Fourier integral may not exist. Nevertheless, in summability theory one tries to 
attack the problem by introducing summability kerneIs into the inverse Fourier 
integral leading to approximate solutions. Let us briefly recall this fundamental 
concept. 

In the classical setting we usually start with a function h E L 1 (R) with 
r::oo) h(x) dx = 1 which is given as the inverse Fourier transform of a function 
HE L1(R), i.e., 

h(x) = ~ 100 H(()eix~ d(, 
271" -00 

xER. 
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To obtain a summabiIity kernel from h we set h>.(x) = )"h()"x) , )., > O. This 
naturally gives rise to an approximation process in L1(R) of the following form: 

lim 11I - h>. * Illu(R) = 0, >'_00 

Note that the convolution operator can be written as an inverse Fourier integral. 
The Fourier transform of the summability kernel thereby acts as a mollifier: 

xE R. 

The most prominent examples in classical Fourier analysis are the Fejer kernei, 
the de la Vallee Poussin kernel and the Bochner-Riesz kernel. In all of these cases 
the defining function H is compactly supported; to be precise the Fejer kernel al 

is given by its Fourier transform Cl(~) = max(l-I~I,O) and the Bochner-Riesz 
kernel analogously by the function S,,(~) = max(1-1~12,0)", cl > O. Note that the 
Fejer kernel is the special case cl = 1 of the Cesaro kernel C,,(~) = max(l-I~I, 0)", 
cl> O. 

The de la Vallee Poussin kernel usually is defined as v(x) = 2al(2x) - aI(x) , 
x E R. It is a well-known fact that the Fejer kernel and the de la Vallee Poussin 
kernel can be expressed as a convolution of two characteristic functions, i.e., the 
function X[O,l] convolved with itself for the Fejer kernel and the function X[O,l] con
volved with X[O,2] for the de la Vallee Poussin kernel. Nevertheless, this observation 
is crucial for our construction. For further information on the classical theory we 
refer the reader to the monographs [3] and [9]. 

In the present paper we deal with the construction of summability methods 
for the Hankel translarm 

the kernel of which is given by a Bessel function of the first kind and of order 
v > - ~ (cf. (2.1) below for the definition of the function l v ) 

Jv(x) = f(v + 1) (~) -v l v(x), (1.1 ) 

with d/1v(x) denoting the measure (2 V f(v + 1))-1.T2v+ i dx. Thc trans form is weIl 
dcfined for all functions I E L i (R+,/1v). 

\Ve want to construct a dc la Vallee Poussin kernel as weIl as a Fejer kernel. 
Taking thc obviollS definition for these kerneIs as in the classical c:aHe doeH not 
lead to approximatc idcntities since thc inverse Hankel transform of the fllnction 
max(l- C 0), ~ E R+. docs not belong to Li (R+, IL v ) for all v > - ~. We therdore 
have to choose anot her way to dcfinc analogllc sUlllIllability kerneIs. 

This problem is known from orthogonal polynomials in thc algcbraic caHe. In 
[G] TlH'lllistoclakis and t1!(' SPccll1d nam(~cl author have definccl a de la Vallcc POllsHill 
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kernel for expansions in terms of orthogonal polynomials using the convolution 
structure for the underlying space of functions. We want to follow their idea in 
the continuous case, i.e., we will use the convolution structure on L1(R+,J-lv) to 
define approximate identities for the Hankel transform. In a forthcoming paper 
the authors will investigate the approximation properties of this new kernel. 

To make the paper self-contained we recall some facts from special functions 
in the second section which will be needed in the sequel. We then introduce classical 
summability kernels for the Hankel transform. In this section we will briefly sketch 
the basic material about the convolution structure related to the Hankel transform. 
In the last section we finally give the construction ofthe de la Vallee Poussin kernel. 

2 Facts from special functions 

The Bessel junction of the first kind and of index v can be defined by its series 
representation 

(X) v oe ( -1) k (X) 2k 
Jv(x) = "2 L klf (v+k+l) "2 ' 

k=O 

(2.1 ) 

Here and throughout the paper we assurne v > -~. 
Working with the Hankel transform it is more convenient to use the following 

modified definition 

oe (-I)k (X)2k 
.:lv(x) = f(v + 1) L kl f(v + k + 1) "2 

k=O 

giving the relation (1.1). 

oF1 [ V + 1 1- :2] , xE R+, 

(2.2) 

Let us briefly introduce the hypergeometrie notation. The function pFq with 
p numerator parameters al, ... ,ap and q denominator parameters b1 , ... ,bq in C, 
p, q E No, is defined by the following formal power series. 

z E C, 

where we used the Pochhammer symbol (a)v a . (a + 1) ... (a + v-I), v E 

N, (a)o = 1 for a E C. 
The series converges for all z E C, if p ::; q and for Izl < 1, if p = q + 

1. For p > q + 1 the only point of convergence is z = O. Further information 
especially concerning the calculus for hypergeometric functions can be found in 
the mono graph [7]. 

The most prominent example is Gauss' hypergeometrie function 2Fl. We will 
need the following two well-known properties of this function. 
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The first is known as Euler's integral representation. For ~ c > ~ b > 0 and 
lxi< 1, it states: 

There are several relations between hypergeometric functions of squared ar
gument and functions of a single argument known as quadratic transformations. 
One of these reads (cf. [1] (3.1.11)) 

[ ab I 4x ] 2 [ a, a - b + ~ I 2] 
2Fl 2b (1 + x)2 = (1 + x) a 2Fl b + ~ x, lxi< 1. (2.4) 

Using both of these properties we ean show a modified version of an integral 
representation whieh ean be found in the tables (cf. for example [8], p. 55). 

Lemma 2.1 Let a, b E C and Rb> O. Then the following representation holds 
true. 

F [ a, a - b + ~ I 2] -
21 b+ 1 x-

2 
(2.5) 

f(b+ 1) 17r 

= 2 sin2b- 1 cjJ . [1 - 2x eos cjJ + x 2r a dcjJ, 
y7rf(b) 0 

lxi< 1. 

Proof. From (2.3) we have using (2.4) 

F [ a, a - b + ~ I 2] ( )-2a F [ a, b I 4x ] 
2 1 b + ~ x = 1 + X 2 1 2b (1 + X)2 = 

f(2b) -2a t b-l ( 4XT)-a 
f2(b) (1 + x) Jo [T(l - T)] 1 - (1 + x)2 dT 

f(2b) t[ b-l[ 2-u 
f2(b) Jo T(l - T)] 1 - 2(2T - l)x + x] dT. 

Setting eos cjJ = 2T - 1 and using the duplication formula far the gamma function 

z E C \ -N, (2.6) 

to simplify the constant in front of thc integral complctes thc proof. o 
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3 Classical summability kerneis for the 
Hankel transform 

31 

In this section we present some classical summability kerneIs re la ted to the Hankel 
transform. To have a good reference as weIl as for the sake of completeness we 
will first of all present some basic facts on convolution structures generated by the 
Bessel functions and the related Hankel transform. 

Let dILv(X) denote the measure ...!..X2v+1 dx on the positive real axis R+, 
C V 

where Cl' = 2V f(v + 1). The following product formula for Bessel functions plays a 
key role in the present paper. 

(3.1) 

where a, bE R+ and c = Va2 + b2 ~ 2abcoscp. 
If we interpret the parameters a and b as the lengths of two sides of a triangle 

adjacent to the angle cp, c is the length of the third side of this triangle. 
To introduce the convolution structure it is more convenient to rewrite the 

product formula (3.1) in the following way 

(3.2) 

where the kernel is defined by 

where (t)+ = max(t, 0). Note that from (3.2) we obtain Jooo Kv(a, b, c) dILv(C) = 1, 
i.e., Kv(a, b, c) dILv(C) is a probability measure on R+. 

We now define a generalized translation operator on the space of all continuous 
functions with compact support Cc(R+) by 

It can be shown that this operator can be extended to all the spaces LP (R+, ILv) ,1 :::; 
p:::; 00, and to the space ofbounded continuous functions Cb(R+). Moreover, this 
operator is a bounded linear operator on all of these spaces with norm not greater 
than one. Furthermore, the measure dILl' is invariant with respect to this operator, 
i.e., 
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for all 1 E Cc(R+) and y E R+. In a more abstract context the measure is 
interpreted as Haar measure for the underlying algebraic structure. 

Using this translation we define the convolution of two functions I, 9 E 

L 1(R+,JLv) by 

(3.3) 

It can easily be checked that the convolution is commutative and that 11 1 * 
gll1 :::; 11/111 Ilgll1 for all I,g E P(R+,JLv). Thus L 1(R+,JLv) becomes a commuta
tive Banach algebra. The Gelfand transform with respect to this Banach algebra 
is given by the Hankel transform, i.e., 

100 I(x)':fv(~x) dJLI/(x) (3.4) 

c v 100 l(x)Jv(~x)xv+1 dx, ~ E R+. 

Note that the transform is self-inverse, i.e., 

From this facts we immediately get the important convolution theorem 

Let us now introduce summability kerneIs for the Hankel transform. As men
tioned above the general concept to construct a summability kernel h)., is to start 
with a function h E L 1(R+,JLv) with fc~ h(x) df-Lv(x) = 1 and then to define 
h).,(x) = >"h(>"x). We will now state the underlying functions corresponding to the 
analogues of the classica} summ ability kerneIs of approximation theory. 

• The Cesaro kernel is defined by its Hankel transform 

where X[O,l] denotei:l the characterii:ltic function of the interval [0,1]. Let us 
mention two i:lpecial cases. For <5 = 0 we get the Dirichlet kernel while <5 = 1 
leads to the Fejer kernel. 

• The Hankel transform of the Bochner-Riesz kernel is given by 

~ 2 6 
R6(~) = (1 - ~ ) X[O.l] (0, 
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We now give explicit representations of the above defined kerneIs in terms of special 
functions. An important tool for getting this representations is the beta junction 
integral 

B( b) = r(a)r(b) = (1(1 _ t)a-itb- i dt 
a, r(a+b) Ja ' a,b E C \ -N. 

For the inverse Hankel transform of the Cesaro kernel we obtain the following 
series 

Cc5(X) 100 Cc5(O.Jv(X~) d/-Lv(~) 

~ f (-l)k . (::fk t(1_~)c5ek+2V+ld~ 
2V k=a k!r(v+k+1) 2 Ja 

1 00 (_l)k (X)2k r(2k + 2v + 2)r(8 + 1) 
2v ~ k! r(v + k + 1)· 2" r(2k + 2v + 8 + 3) . 

Note that the function .Jv is analytic in the whole complex plane. Interchang
ing summation and integration is therefore satisfied. Using the duplication formula 
for the gamma function (2.6) and the relation (a)v = r~a(!) we can furt her con
clude that for x E R+, 

r(8+1) 00 (-l)kr(k+v+~) (X)2k 
Cc5(X) = 2v+6+i ~k!r(k+v+~)r(k+v+~) 2" 

r(8+1)r(v+~) 00 (-l)k (v+~)k 
= 2v +6+lr (v + ill) r (v + lii) L k! (v + ill) (v + lii) 

2 2 k=a 2 k 2 k 

r(8+1)r(v+~) [v+.:.! I x2] 
=2V+6+ir(v+c5!3)r(v+c5!4)lF2 v+ c5!3,v2+ c5!4 -4 . (3.5) 

In the introduction we mentioned that the Fejer kernel does in general not 
define an approximate identity in Li (R+, /-Lv). To show why this is the case, let us 
look at the asymptotic behavior ofthe kernel. From ([7], 5.11.2(4) and 5.11.1(19)) 
we have 

for large x E R+, where I = -~ - ~ - ~. It follows that Cc5 E Li(R+,/-Lv) for 
- 1 
0> V + 2. 



34 W. zu Gastell & F. Filbir 

For the Bochner-Riesz kernei, we have 

Rt5(x) 

From ([12], 7.21(1)) we have for large x E R+ the asymptotic expansion for 
the Bessel functions 

(3.7) 

Taking into account the order of magnitude of the measure Mv for large x E 

R+ it follows that Rt5(x) rv 0 (xv-t5-~). Thus the kernel belongs to P(R+,Mv) 

and therefore defines an approximate identity, if 0 > 1/ + ~. 
The Hankel transform of order 1/ = d;2, dEN, is also called Faurier-Bessel 

transfarm. It is the Fourier trans form of radial functions on R d which is a well
studied topic in classical Fourier analysis. The bound 0 > 1/ + ~ = d;l is called 
critical index (cf. [9], Cor. 4.16). Chanillo & Muckenhoupt [4] studied weak type 
estimates for Bochner-Riesz me ans of radial functions in LP(Rd ). Further exten
sions have been given by Colzani, Travaglini & Vignati (cf. [5] and the references 
therein). 

Other summ ability kerneis for the Hankel transform like the Gaussian kernel 
and the Poisson kernel and their behavior with respect to pointwise convergence 
have been studied in some detail by Stempak (cf. [10] and [11]). We furt her men
tion the work of Betancor and Rodriguez-Mesa. They studied quest ions of norm 
convergence for the Hankel transform (cf. for ex am pie [2] and the references cited 
there). 

4 Construction of the de la Vallee Poussin kernel 

We are now able to define the de la Vallee Paussin kernel for the Hankel transform: 

V.~(O = X[O,7] * X[ü,s](O, (4.1 ) 

Recall that * denotes the convolution associated with the Hankel transform as 
given by (3.3). 
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To derive an explicit representation of the de la Vallee Poussin kernel we 
will use the opposite direction. We will first calculate the Hankel transform of 
the characteristic function X[O,r] and then use the convolution theorem to get the 
desired result. 

Proposition 4.1 The Hankel transform of order v > -~ ofthe characteristic func
tion X[O,r], r > 0, is the Bessel function 

(4.2) 

Proof. From the representation (2.1) it directly follows that 

! V JII(z)] = Zll JII - 1(z). 

Since Zll JI/-1 (z)lz=o = 0 we have that 

Using this formula gives 

r r ll+2 r1 
X[O,r](~) = eil Jo XIl+lJI/(~x)dx = ~ Jo XIl+lJII(~rx)dx 

211+2 
211+2( C)-(II+l) J (C) _ r '7 (C) r r." 11+1 r." - 211+1 f(v + 2) VII+1 r." , 

o 
Let us just remark that equation (4.2) also follows from (3.6) by letting (j --> o. 

From the proposition we immediately have 

Corollary 4.2 For r, s > 0 and v > - ~ we have 

(4.3) 

Again the asymptotic relation (3.7) leads to an estimate for the order of 
magnitude for large arguments. The kernel V;(x) thus satisfies V;(x) rv 0 (x- 2 ) 

for x --> 00. Since .:111+1 (0) = 1 we can conclude that the integral 

r,s > 0, 
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exists and is finite, i.e., the kernel belongs to L 1(R+, /-Lv). Therefore the de la Vallee 
Poussin kernel as defined byequation (4.1) generates an approximate identity in 
the sense described above. 

We are now able to prove the explicit representation for the Hankel transform 
of the de la ValIee Poussin kerneIs for ~ < r - s. 

Theorem 4.3 For r > s > 0 and v > -! the de la Vallee Poussin kemel vanishes 
for all ~ > r + s. The kemel decreases for r - s < ~ :::; r + s while for ~ < r - s we 
have 

~ < r - s. (4.4) 

Proof. Since the inverse of the Hankel transform is the transform itself, we have 

Setting w = Jr2 + s2 - 2rscoscjJ and applying the product formula (3.1) we have 

For the inner integral we can use the following formula (cf. [12], p. 406) 

to get 

if 0< a < b, 
if a = b, 
if a > b, 

100 Jv(~X)Jv+l(WX)X2v+l dx = r(v + 1)r(v + 2) x 

( ~) -v (W) -v-l 100 

X"2 2" 0 Jv(~x)Jv+l(wx)dx 

-2v-2 W , 
1 -2v-2 2"w , 
0, 

if 0 < ~ ::; w, 
if ~ = w, 
if ~ > w. 

(4.5) 
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We modify the value of this function at ~ = w to W- 2v- 2. We therefore have 

(4.6) 

where a = ~. Since r > s we have 0 < a < 1. We can therefore apply (2.5) to 
conclude 

r -2v-2· 2v+2dA-. _ J1fr(v+~) F [V+1,0 Irs22 ]' Jo w sm 'f' - r(v + 2) 2 1 V + 2 

Incorporating the result into (4.6) completes the proof. o 

Let V; = (Jooo V;(x)d{Lv(X))-lv.; and V;'>. = '\Vsr(>,x). A standard argument 
from approximation theory then gives 

Corollary 4.4 For fELl (R+, {Lv), v > - ~, and r, s > 0, we have 

lim Ilf - V;>. * flI L l(R ) = O. 
A~OCl ' +,j..Lv 

(4.7) 
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Polynomial Bases on the Sphere 

N oerni Lain Fernandez 

Abstract 
Considering that the well-known basis of spherical harmonics of degree at 
most n is not localized on the sphere, we construct better localized poly
nomial bases by means of reproducing kernels. Such a construction leads 
to the problem of finding sets of (n + 1)2 points on the sphere that admit 
unique polynomial interpolation. Finally, we present a possible construction 
of polynomial wavelets on the sphere. 

1 Introduction 

Let 0 := {x E R 3 : IIxl12 = I} denote the unit sphere embedded in the Euclidean 
space R 3 and let W: [0,71"] X [0,271") ~ R 3 , (p,8) 1--+ (sinpcos8,sinpsin8,cosp) 
be its parameterization in spherieal coordinates (p, 8). Corresponding to the surface 
element dw(~), we have the inner product and L2 (O)-norm 

(F,G) In F(~) G(~)dw(~) 
(F,F). 

211" 11" ! ! sinp F(w(p,8)) G(w(p,8)) dpd8, 
o 0 

Furthermore, let Harmn (R3 ) denote the space of harmonie homogeneous polyno
mials of degree n in three variables. Restricting these functions to n, we obtain 
the so-called spherical harmonics of order n. Throughout this paper, we will con
centrate on the space Vn := IInln. It can be shown that 

n 

Vn = EB Harmk(O), (1) 
k=O 

where this direct sum decomposition has to be understood in the sense that any 
spherieal polynomial of degree :'S n is the restriction of a harmonie polynomial of 
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degree less or equal to n to the" sphere. Since dim Harmk(O) = 2k + 1, it follows 
that N := dim Vn = E~=o(2k + 1) = (n + 1)2. An L2(O)-orthonormal basis of Vn 
that is not localized on the sphere is given by 

{ j( ) _ f2k+T Ijl( ) ij9 - . - k} Yk p, () - V ~ Pk COS pe, k - 0, ... ,n, J - -k, ... , , (2) 

where 

j _ (k - j)! _ 2 j/2 ~ ( ) 1~ . 

Pk (t) - (k + j)! (1 t) dtj Pk(t), j = 0, ... , k, tE [-1,1), 

denote the associated Legendre functions and Pk stands for the Legendre polyno
mial of degree k normalized according to the condition Pk (l) = 1. From now on, 
this basis will be referred to as the basis 01 spherical harmonics. 

A way of constructing better localized bases is by means of reproducing ker
nels. Let {Y~ : j = -k, ... , k, k = 0, ... , n} be an arbitrary L2 (O)-orthonormal 
basis of Vn . It is straightforward to check that the reproducing kernel of Harmk(O) 
is given by 

k 

Gk(~, 1]):= L yk- j (~)Y~ (1]), ~,1] E O. 
j=-k 

Using now the addition theorem (see [4]) for Harmk(O), one comes up with the 
following theorem 

Theorem 1.1 The unique reproducing kernel 01 Vn is given by 

n n 2k + 1 
Kn(~, 1]) := L Gk(~, 1]) = L ~Pk(~ .1]) =: kn(~ .1]), 

k=O k=O 

~,1]EO. (3) 

In particular, Kn(~,~) = (n4~ 1 f for all ~ E O. It should be observed that 

Kn(~, 1]) = kn(~ . 1]) as a zonal function, only depends on the Euclidean product 
of the vectors ~ and 1]. Therefore, it is invariant with respect to rotations, i.e., 
transformations of the group 80(3). 

2 The space Vn 

2.1 Scaling functions 

In contrast to the spherical harmonics Y~ introduced in (2), the functions K n (·,·) : 

o x 0 --> R defined in (3) have the property of being the spherical polynomials 
with minimal L2 (O)-norm among all spherical polynomials of degree ::::; n that 
attain the value 1 when evaluated at a prescribed point. The following theorem 
establishes this localization property. 
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Theorem 2.1 Let ~ E D. Then 

(4) 

Praof. Let {Yd, k = 0, ... ,n, j = - k, ... , k} be an arbitrary L 2 (D )-orthonormal 
basis of Vn and let P E Vn with P(~) = 1. The polynomial P can be expressed in 
terms of its Fourier sum 

n k 

P(~) = L L (P, ynYk(~), 
k=Oj=-k 

As a consequence of the Cauchy-Schwarz inequality and the addition theorem, we 
obtain 

1 (P«))' ~ (~jt, (1', Y!)Y,' (E)), 

< (t,,t,I(P,Y1)1') (t"t,IY!(OI') 
11P112 Kn(~,~) = 11P11 2 (11~:~~',~jll) 2 

where the last equality follows from the fact that 

o 

Our aim is to study the problem of characterizing sets of points {'I]i, i = 1, ... , N} 
such that the functions {'Pr : = K n ('I]i, . ), i = 1, ... ,N} constitute a basis of the 
space Vn . The functions {'Pr, i = 1, ... ,N} will be called scaling junctions. As the 
following observation shows, the linear independence of the scaling functions is 
reflected in the regularity of an N x N matrix. Given {'I]i, i = 1, ... , N} c D, we 
can construct the interpolation matrix 

YOO('I]l) YoO('I]2) YOO('I]3) YOO('I]N) 
y1-1('I]d y1- 1('I]2) y1- 1('I]3) y1-1('I]N) 
Y?('I]l) y1O('I]2) Y?('I]3) y1O('I]N) 
Y/('I]d y11('I]2) y11('I]3) Yl('I]N) 

An := (5) 

yn-n('I]d yn- n('I]2) y-n( ) n '1]3 yn-n('I]N) 

ynn('I]l) ynn('I]2) ynn('I]3) Y;('I]N) 
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By virtue of the addition theorem, one ean directly see that the symmetrie positive 
semidefinite matrix ~n := A;;'An has the entries 

n k 

~n(r, s) = L L yk-j (1]r) Y1 (1]s) = K n (1]r , 1]8) = (Kn(1]r, .), K n(1]s, .)) . 
k=Oj=-k 

Therefore, the matrix ~n is a Gram matrix and will be positive definite, in partic
ular regular, if and only if the functions involved, i.e., the sealing functions, are lin
early independent. As det ~n = Idet A n 1

2 , we ean study the regularity of either An 
or ~n to determine whether the sealing funetions eonstitute a basis of Vn or not. 

Definition 2.2 A set of points {1]i' i = 1, ... , N} c n fOT which the associated 
scaling junctions constitute a basis of Vn is called a fundamental system of Vn . 

2.2 Examples 

2.2.1 Linear polynomials 

As we deal with low-dimensional matrices (dirn VI = 4), we ean give a eomplete 
characterization of the F.S. of Vn and state conditions under which the sealing 
functions eonstitute an orthogonal basis of Vn . 

Theorem 2.3 FOUT points {1]1, 1]2, 1]3, 1]4} c n form a fundamental system of VI if 
and only if they do not lie on a circle. 

Praof. Let {1]k = (1]l,1]~,1]Z), k = 1, ... ,4} be four points on the sphere. The 
Gram matrix ~1 = (K1 (1]i, 1]j ))i,j=I, ... ,4 attains the form 

( 

1 + 31]1 . 1]1 1 + 31]1 . 1]2 1 + 31]1 . 1]3 
cI>1 = ~ 1 + 31]2' 1]1 1 + 31]2' 1]2 1 + 31]2' 1]3 

4n 1 + 31]3 . 1]1 1 + 31]3 . 1]2 1 + 31]3 . 1]3 
1+3~·~ 1+3~·~ 1+3~·~ 

It is immediate to see that we can deeompose cI>1 into the product cI>1 = 4~AT A 
with 

1 

V31]§ 
V31]~ 
V31]~ 

As det cI>1 = (4~)4 (det A)2, the matrix cI>1 is regular if and only if Ais regular. 
But A is equivalent to the matrix 

o 
V3(1]~ - 1]D 
V3(1]~ - 1]r) 
V3(1]~ - 1]r) 

o 
V3(1]§ - 1]D 
V3(1]~ -1Jn 
V3( 1J~ - 1Jr) 

whieh will be regular if and only if the vectors~,~, ~ are not coplanar. 0 
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Theorem 2.4 The scaling functions {K 1 ('TU, .), i = 1, ... , 4} are orthogonal if and 
only if {ru, i = 1, ... ,4} are the vertices of a regular tetrahedron inscribed in O. 
In this case, the matrix «1»1 assumes the diagonal form ~ 14 • 

Proof. "=}": Orthogonality of the scaling functions implies that 

Hence, we get the following system of six linear equations 

1 
'T]i • 'T]j = - - for 1:S i < j :S 4. 

3 
(7) 

As K 1 is invariant with respect to rotations, we can assume without loss of general
ity that 'T]1 = (0,0,1). The first three equations (for i = 1) in (7) enforce the points 
'T]2, 'T]3 and 'T]4 to lie on a circle parallel to the equator at latitude () = arccos ( - ~) , 
i.e., 

2V2 2V2 . 1 
'T]k = (-3- COS()k, -3- sm()k, -3) for k = 2,3,4. (8) 

Accordingly, our system (7) becomes 

cos( ()2 - ()3) 
1 
2' 

cos( ()2 - ()4) 
1 
2' 

cos( ()3 - ()4) 
1 

-2' 

which yields 

27f 47f 
P2 = Q, P3 = Q + 3' P4 = Q + 3 with Q E [0,27f). 

Combining this fact with (8), we conclude that the points {'T]i, i = 1, ... , 4} are 
the vertices of a regular tetrahedron inscribed in the sphere. 
"{=": As K 1(·,·) is invariant with respect to rotations, we can assume without loss 
of generality that 

'T]1 = (0,0,1) 

V2 J6 1 
'T]3 = (-3' 3' -3) 

are the vertices of a regular tetrahedron. A straightforward calculation shows that 
the matrix «1»1 attains the desired form. 0 
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2.2.2 General degree n 

With dim Vn = (n+ 1)2, the structure of the Gram matrices becomes very compli
cated and it is not possible to give a complete characterization of the fundamental 
systems. Nevertheless, one can prove the following result 

Theorem 2.5 1f {'TU, i = 1, ... , N} c n lie on a circle, then they do not form a 
fundamental system. 

Praof. Basically, the proof is a direct consequence of Theorem 2.3. We have that 

YoO(l}d YoO('T]4) YOO('T]5) YoO(l}N) 
y1-1('T]d y1- 1('T]4) y1- 1('T]5) y1-1('T]N) 
Y10( 1}1) y1O('T]4) Y10( 1}5) y1O('T]N) 

A n = 
Yl('T]l) Yl('T]4) Yl('T]5) Yl(l}N) 

y2- 2 ('T]d y;-2('T]4) y2- 2('T]5) y2- 2 ('T]N) 

ynn('T]d Y;('T]4) Y;('T]5) Y;('T]N) 

If the N points lie on a circle, then any four of them also lie on a circle. Therefore 
using Theorem 2.3, the submatrix constituted by the first four rows of An will 
have rank less or equal to three. Consequently, the entire matrix An will have rank 
less or equal to N -1 and hence be singular. 0 

With n growing, the analysis of the regularity of the matriees An beeomes 
inaccessible, so we have to restriet our analysis to speeifie ehoices of point eonstella
tions. A possible way of eonstrueting fundamental systems is due to B. Sünderman 
[6]. A similar but more general result is found in M. v. Golitsehek and W.A. Light 
[3]. Another deseription of speeifie sets of points which admit unique polynomial 
interpolation is also given in Y. Xu [7]. 

3 Wavelets 

For the partieular ease of equidistant no des on symmetrie latitudes, the matriees 
involved attain an aeeessible form and it is possible to earry out the following 
eonstruetion of polynomial wavelets on the sphere. 
Given l E N, we ean define the spaees 

Wn:=Vn+18Vn=span{Y~, k=n+1, ... ,n+l, j=-k, ... ,k}. 

Note that d := dirn W n = dirn V,,+l - dirn v" = l(l + 2n + 2). Again, the goal 
is to identify functions, then ealled wavelets, whieh form a loealized basis of the 
spaee W//.. In aeeordance with the definition of the sealing functions, we define the 
wavelets in terms of reproducing kernels. 
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Definition 3.1 Let S:= {~i, i = 1, ... ,d} cO. We calt 

n+l 
1fJf(~) := cpr+l(~) - cpf(~) = L 2S4: 1 Ps(~i . ~), i = 1, ... , d, ~ E 0, (9) 

s=n+l 

the wavelet functions corresponding to the set S. 

The wavelet functions have the following properties, which do not depend on the 
choiee of the set S of points. 

Theorem 3.2 Let S:= {~i, i = 1, ... ,d} c 0 and let {1fJi, i = 1, ... ,d} be the 
corresponding wavelet functions. 

(i) The inner praduct of wavelets may be calculated as foltows 

(ii) Let {cpj, j = 1, ... , N} denote the scaling functions with respect to {'T/j, j = 
1, ... , N} c !1. The wavelets and the scaling functions are orthogonal to each 
other: 

(1fJf, cpj) = 0, i = 1, ... , d, j = 1, ... , N. 

(iii) The wavelet 1fJi is localized around ~i : 

II1fJi&i) 11 = min {IIPII : P E Wn , P(~i) = I}. (10) 

Prao! To verify (i), we show that the wavelets satisfy a reproduction property in 
Wn . Let Q E W n . Then 

Consequently, the reproducing kernel of Wn is represented by the wavelets { 1fJi, i = 
1, ... , d}. Assertion (ii) follows directly from the definition of the participating 
functions. The proof of (iii) is along the same lines of Theorem 2.1. 0 

Analogously, we can now ask ourselves for whieh sets S, the wavelets consti
tute a basis of the space Wn . As the next subsection shows, it is possible to give 
an answer for the case l = 2. 

3.1 A possible construction for the case 1 = 2 

By definition Wn := Vn + 2-Vn and d = dirn Wn =4n+8. A possible multiresolution 
construction consists in adding at each level n the totality of (2n + 3) + (2n + 5) = 
4n+8 points distributed equidistantly on two symmetrie latitudes. As the following 
theorem shows, the totality of these points forms a fundamental system of W n . 
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Theorem 3.3 Let p E (0,7r) such that 

Pt(±cosp)=!=O /oralll=n+1,n+2, m=O, ... ,l. (11) 

Then S := {1]k := "iJ!(p, 2~1r':3)' k = 1, ... , 2n + 3} U {ei := "iJ!(7r - p, 2~1:5)' j = 
1, ... , 2n + 5} constitutes a fundamental system 0/ Wn . 

Proof In order to prove the linear independence of the wavelet functions corre-
sponding to the set S, we have to study the regularity of the matrix 

B .- [y-(n+l) yn+1 y-(n+2) yn+2]T n .- n+1 , ... , n+l' n+2 , ... , n+2 , (12) 

where Yk denotes the column vector given by 

Yk := (Y1(1]d,···, y1(1]2n+3), Y1(6), ... , Y1(6n+5))T. 

Making use of the fact that the spherical harmonics are functions with separated 
variables, we can transform B n into an equivalent block matrix by multiplication 
with regular matrices. First we construct the diagonal block matrix 

F := (F2Ö+3 F2~+5)' (13) 

where Fn = Jn (e 2;::i (I-j)(k-I)i). E cnxn is the n x n-dimensional Fourier 
k,J=l, ... ,n 

matrix. Second we employ the permutation matrix PI such that PI B n assumes 
the form 

[ yn+l yn+1 y-(n+2) y-(n+l) y-(n+l) yn+2 
n+l' n+2' n+2 , n+1 , n+2 , n+2' 

Y -n y-n yO yO yn yn]T (14) 
n+l' n+2"'" n+l' n+2"'" n+l, n+2 . 

The matrix B n is regular if and only if the product PI B n Fis regular. Let x := 

cos p and let vk := (yt) T denote the transpose of the column vector y( In the 

way we have chosen the no des on the two latitudes cos p and cos( 7r - p) = - cos p, 

we have that vt := (vk)l, (vk)2), where 

. I (f2k+l 1·1 2"i8;) 2 +3 (vO = Y ----:t:;;:- p/ (x) e 2n+3 E C n , 

s=I, ... ,2n+3 

and 

. 2 (f2k+l 1·1 2"i8j ) 2 5 (vO = Y ----:t:;;:- p kJ (-x) e 2n+5 E C n+ , 
s=I, ... ,2n+5 

contain the first 2n + 3 and second 2n + 5 components of v~ respectively. Further
more, we will denote by u(r) the r-th entry of a vector u. Let us now compute the 
entries of the matrix PI B n F. Given a row v~ of PIBn , the r-th entry of v{ F is 
givcn by 
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(i) if 1 :::; r :::; 2n + 3 

v{ F(r) 
1 2n+3 ° 2,'; 

--=== '"' Y,J(p () ) e2n+3(I-r)(s-l) v'2ri+3 ~ k 's 

( k) 2n+3 
2 + 1 pljl ( ) '"' 2;'+3 (js-rs+r+s-l) 

47r(2n + 3) k cosp ~ e 
s=1 

(2k + 1) ° 2"i 2n+3 2"i ° ----'-__ ...:........pIJI (cos p) e 2n+3(r-l) L e 2n+3 (J-r+l)s 
47r(2n + 3) k s=1 ' 

(ii) if 2n + 4:::; r :::; 4n + 8, i.e., r = 2n + 3 + l (l = 1, ... , 2n + 5) 

1 2n+5 ° 2"i 

----=== L Y?(7r - P () ) e 2n +5(1-1)(s-l) 
~ s=1 k , s 

v{ F(r) 

(2k + 1) ° 2n+5 hi ° 

--'--:--_-'--:-pIJI (cos( 7r - p)) '"' e 2n+5 (Js-ls+l+s-l) 
47r(2n + 5) k ~ 

s=1 

( ) 2n+5 
2k + 1 plJl(cos(7r _ p)) e 2;'75 (l-I) '"' e 2;'75 (j-I+l)s. 

47r(2n + 5) k ~ 

Observe that 

2f3 e 2;'73 (j-rH)s = { ~n + 3 

s=1 

and 

2n+5 { L ..21LL(Jo-1H)s 2n + 5 e 2n+5 = o 
s=1 

Let 

if j - r + 1 == 0 mod (2n + 3), 
otherwise, 

if j - l + 1 == 0 mod (2n + 5), 
otherwise. 

( (2n + 3)(2k + 1)) 1/2 2"i (r-l) 
ak := 47r e 2n+3 , 

and 

for j = - k, ... ,k and k = n + 1, n + 2. 

(15) 

(16) 

(17) 

(18) 

In view of (15) and (16), we can conclude that v{ F has only two nonzero 
entries. To be precise, we obtain 
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for j ~ 0 

vi F(r) ~ { 
ak P1(x) in r = j + 1, 
bk P1(-x) in r = 2n + j + 4, 
0 otherwise, 

and for j < 0 

vt F(') ~ { 
ak p;j (x) in r = 2n + 4 + j, 
bk p;j(-x) in r = 4n + 9 + j, 
0 otherwise. 

For 0:::; j :::; n, we observe that the nonzero entries of v1 F are located between 

1 :::; r :::; n + 1 and 2n + 4 :::; r :::; 3n + 4. (19) 

For -n:::;j:::; -1, nonzero entries occur at positions 

n + 4 :::; r :::; 2n + 3 and 3n + 9 :::; r :::; 4n + 8. (20) 

Therefore, the only rows of P1BnF (for fixed j with -n :::; j :::; n) with nonzero 
entries at the same positions are the ones corresponding to the multi-indices (n + 
1,j) and (n + 2,j). 

For j = ±(n + 1), ±(n + 2), it can be seen that 

v~:::~F(r) ~ { 
an+l p:::tl(x) if r = n + 2, 
bn+1 p:::tl( -x) if r = 3n + 5, 
0 otherwise, 

v;::::lF(r) ~ { 
an+2 P:::tl1 (x) if r = n + 2, 
bn+2 p:::tl( -x) if r = 3n + 5, 
0 otherwise, 

-(n+"F( ) - { 
aT/+2 Pr7ti(x) if r = n + 2, 

v n+2 r- bn+2 p~'ti( -x) if r = 3n + 7, 
0 otherwise, 

pn+l( ) if r = n + 3, an +l n+l X 

-(nH'F( ) . { bn +1 p,~'tl(-x) if r = 3n + 8, v n+1 r-
0 otherwise, 

pn+1( ) if r = n + 3, 
-(n+"F( ) _ { 

an+2 n+1 X 
b pn+l ( ) if r = 3n + 8, v n+2 r- n+2 n+l -x 
0 otherwise, 

v;.::::F(r) ~ { 

pn+2( ) if r = n + 3, (1,,+2 1/+2 X 

b p"+2( ) if ,. = :~n + 6. (21 ) "+2 11+2 -.1' 

0 otherwitic. 
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Hence, the rows v{ F corresponding to the first three and the last three 
expressions of (21) have nonzero entries at the same positions. In view of (19), 
(20) and (21), let P 2 be the permutation matrix 

P 2 := [en+2, e3n+5, e3n+7, en+3, e3n+6, e3n+8, en+4, e3n+9, ... , 
... , e2n+3, e4n+8, el, e2n+4, e2, e2n+5,···, en+l, e3n+4]. (22) 

Then the product P1BnF P 2 is the diagonal block matrix 

PIBnF P 2 = diag (Al, A2, Bn, Bn-l, ... , Bo,···, Bn- l , Bn), 

where A I ,A2 E R3X3, and Bm E R 2x 2 with m = 1, ... ,n, are given by 

( a,,+, P.:':I(x) bn+1 p:::l ( - x) 0 ), an+2 p:::i(x) bn+2 p:::i ( -x) 0 
an+2 p:::i(x) 0 bn+2 p:::i( -x) 

( a,,+, P.:'tt(x) 0 bn+1 p::tl( -x) ) an+2 p::ti(x) 0 bn+2 p::ti ( -x) 
an+2 p::ti(x) bn+2 p:::i( -x) 0 

and 

Bm = ( 
an+l P:+I (x) bn+1 P:+I(-X) ). an+2 P:+2(X) bn+2 P:+2( -x) 

In order to prove the regularity of B n , we now simply have to guarantee the 
regularity of the matrices Al, A 2 and Bm (m = 0, ... , n). Making use of the 
different parity of the functions P:+ I and P:+2 (m = 0, ... , n) and bearing in 
mind the definition of ak,j and bk,j in (17) and (18), respectively, we are in a 
position to establish the equivalence of the matrices 

Bm (m=O, ... ,n) and 

Hence, B m will be regular if and only if Pk'(x) i- 0 for all k = n + 1, n + 2, m = 
0, ... , n. Expanding the determinant of Al by the last column and respectively the 
determinant of A2 by the second column, we obtain analogously that the matrices 
Al and A 2 are regular if and only if p::ti(x) i- 0 and p:::l(x), p:::i(x) i- o. 0 

3.2 Matrix notation 

Let 

v; (Yoo(~), YI-I(~), yIO(O, Y/(~), ... , Yn-n(~), ... , Y:(O) , 

z; (Yn~~+1)(~), ... , Yn'1/(~), ... , Yn~~+l)(~), ... , Y:-0I(~)) . 

Furthermore, let {1]i, i = 1, ... , N} and {~j, j = 1, ... ,d} be fundamental systems 
of Vn and W n . Since the corresponding scaling and wavelet functions constitute 
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bases ofthe spaces Vn and Wn , for any Fn E Vn and Gn E Wn there exist coefficient 
vectors an = (af, ... ,a'1V) E CN and bn = (bf, ... ,bd) E Cd, such that Fn and 
Gn admit a representation in terms of the scaling and wavelet functions as 

N N n 

I: a~cp~(~) ~ I: a~ I: 2k4: 1 Pk ("'8 .~) 
8=1 8=1 k=O 

N n k 

I:I: I: a~Yk-j("'8)Yb~), (23) 
8=1 k=Oj=-k 

d d n+l 
I: b~'ljJ~(€) = I: b~ I: 2k4: 1 Pk(~8 ·0 
8=1 8=1 k=n+1 

d n+l k 

I: I: I: a~Yk-j(€8)Yb€)· (24) 
8=1 k=n+l j=-k 

Introducing matrix notation, we obtain the following lemma 

Lemma 3.4 Let An and B n be the matrices introduced in (5) and (12) and let 
Fn E Vn and Gn E Wn be junctions with an expansion as in (23) and (24). Then 

N cl 

(i) Fn (€) = l: a~cp~(€) = y'[;Anan and G(€) = l: b~'ljJr(€) = zJBn b n . 
8=1 r=1 

and 

3.3 Two-scale relations and decomposition 

In this section, we will only study the case l = 2. Let Fn +2 E Vn +2 . Furthermore, 
consider (n+3)2 points {"'i, i = 1, ... , (n+l)2}U{€j, j = 1, ... , 4n+8} distributed 
on n + 3 latitudes Zk = COS Pk (k = 1, ... , n + 3), where the latitude at height 
Zk contains (2k + 1) equidistantly distributed points and the last two latitudes 
are chosen symmetrie to the equator, i.e., COSPn+2 = - COSPn+3. On account of 
Theorem 2.1 in [3], the totality of these points constitutes a F.S. for Vn +2 = 
Vn EB W n . Moreover, due to Theorem 3.3 of the previous section, we are in a 
position to affirm that the points {€j, j = 1, ... , 4n + 8} constitute a F.S. of 
Wn . In this section, we work out the relationship between the coefficient vectors 
an+2 , an and bn in the so-called two-scale relation 

(n+:l)2 (n+1)2 4n+8 

I: a~+2cp~+2(O I: akipk(~) + I: bk'l/Jk(O 
k=1 k=l k=l 

F,,(O + Gn (€), (25) 
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where Fn E Vn , Gn E Wn and the functions {cpi, i = 1, ... ,N} and {'l/J"j, j = 
1, ... , 4n + 8} are the scaling and wavelet functions corresponding to the funda
mental systems {ru, i = 1, ... , N} and {';j, j = 1, ... ,4n + 8}. 
Using the matrix notation introduced above, equation (25) can be rewritten as 

-T A n+2 -TA n +-TB bn Yn+2 n+2a = Yn n a zn n . 

That is 
A a n +2 _ ( An n+2 - B n (26) 

The following lemma establishes how in view of (25) we can decompose a function 
of Vn+2 into wavelets of Wn and scaling functions of Vn . 

Lemma 3.5 Let the scaling functions {cpi, i = 1, ... , N}, the wavelets {'l/Jj, j = 
1, ... ,4n + 8} and the corresponding matrices A n+2, An and B n be based on a 
fundamental system {l1i, i= 1, ... , N}U{';j, j = 1, ... , 4n+8} of the form presented 
in Theorem 3.3. 

1. (Reconstruction) Let the coefficient vectors an and bn in (25) be given. Then 

n+2 _ A-I (An a - n+2 (27) 

2. (Decomposition) Let the coefficient vector a n +2 in (25) be given. Then 

( bann ) = ( A;:;:I ) A n+2 B;:;:I n+2 a . 

The proof follows directly from (26). Given a fundamental system defined as in 
Theorem 3.3, we can give the explicit expression of B;:;:I. 

Theorem 3.6 Let B n be the matrix in (12) corresponding to the fundamental sys
tem defined in Theorem 3.3 with x = cosp. [ts inverse B;:;:I is given by FP2 CPI, 
where F, PI and P 2 are as in (13), (14) and (22) and C is the diagonal block 
matrix 

with 

( 
-1 -1 

) a n+1 a n +2 

Cm = 2P:'+1(x) 2 P:'+2(x) E R 2X2 , 
b;;-~l b;;-~2 

2P:'+1(-X) 2P:'+2(-x) 

D1~ ( 
-1 -1 

1 
a n±l -an +2 0 

2 P:::t;(x) 2P:::ti(-x) 
b;;-~l b;;-~2 0 E R 3X3 , 

2P:::t;(x) 2 p:::ti ( -x) 
-an +2 a~!l b~!2 b;;-~2 b;;-~2 

2 P::!t(x) 2 p:::ti(-x) P:::tJ(-x) 
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and 

2 p;:!i(-x) 
b~~2 

Noemi Lain Fermindez 

The constants ak and bk for k = n + 1, n + 2 and j = -k, ... , kare defined 
as in (17) and (18). 

The analysis of other values of I is still a question of ongoing research. Also 
the question of which latitudes to choose to obtain well-conditioned Riesz bases 
remains open and will be our main focus of interest in the future. 
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A Shooting Method for 
Symbolic Computation of Splines 

Christoph Fredebeul 

Abstract 

Similar to the case of linear ODEs, where boundary value problems are 
turned into initial value problems by application of the shooting method, 
an algorithm is presented allowing recursive calculation of the polynomials 
that piecewise determine a spline. Tests indicating the usefulness of the new 
algorithm are given. 

1 Introduction 

When attempting to calculate a spline of given degree that should interpolate a 
given set of data, two approaches are under consideration. From the numerical 
point of view, having to deal with roundoff errors and stability, B-splines are pre
ferred [1]. In case of symbolic computation, e.g. with MAPLE, one is interested in 
calculating the polynomials defining the spline piecewise. Their coefficients result 
as the solution of a large system of linear equations. Now, if the amount of data 
is large (more than 100, say), this approach becomes inefficient, although special 
structures of the data (equidistant grid, rational numbers) are exploited. 

In this paper an algorithm based on a recursion is presented that avoids 
solving a linear system of equations. Hence, the storage requirement is drastically 
reduced. This is of particular importance in the case of symbolic computation, since 
the length of a number may vary during the calculation due to exact arithmetic! 
Similar to the case of linear ordinary differential equations, where boundary value 
problems are turned into initial value problems by application of the shooting 
method, the presented algorithm first calculates basic solutions all satisfying the 
left boundary conditions. Now, the desired spline results from a linear combination 
of these basic solutions. The free parameters are determined by the boundary 
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conditions of the right end of the interval. The efficiency of the new algorithm 
compared to the one given in MAPLE is documented. The source code is listed in 
the appendix. 

2 Symbolic shooting for splines 

Let d, NE N, d « N, and a set of data D := {(Xk, Yk) E R 2 1k = 0, ... , N} be 
given. Now, a function S E C d - l [xo, X N] is called interpolating spline (of degree 
d), if S(Xk) = Yk, k = 0, ... , N, and SI[Xk_l,Xk] E IId, k = 1, ... , N holds, i.e., 

d 

SI[Xk_l,Xk](X) = P[k](X) = La[kJ,ixi, 1::; k::; N. 
i=O 

However, to be uniquely determined, d - 1 additional conditions have to be posed 
to s. Here, instead of discussing all possibilities, we restrict ourselves to the cases 
given in MAPLE. For odd d, the resulting S are known as natural splines, i.e., 
determined by the boundary conditions 

d-1 
1=-2-+ 1, ... ,d-1, k=O,N. 

For even d, a similar (but nonsymmetric) set of conditions is taken. 
For simplicity, we present the algorithm for the case of d odd, d ~ 3. The 

handling of the exceptions d = 1, 2 as wen as the case of d even may be obtained 
directly from the source code. 

The basic idea 

As we have seen above, in each interval h := [Xk-l, Xk] a spline of degree d 
is represented by a polynomial P[k] of degree d. Hence, due to the smoothness 
conditions in Xk and the interpolation conditions in Xk and Xk+l, the polynomial 
P[k+l] is given by 

Yk+l - P[k] (xk+d 

C[k]:= (Xk+l - Xk)d . (1) 

However, there is one obstacle preventing us from using (1) directly as a recursion. 
The first polynomial P[l] is not uniquely determined by the boundary conditions 
in Xo and the interpolation conditions in Xo and Xl. It still possesses b := (d - 1) /2 
degrees of freedom, Ct := (Ctll ... , Cto) say. Since the coefficients a[l]il i = 0, ... , d, 
of P[l] depend linearlyon Ct we have 

6 

a[l];(a) = a[l]i,O + L Ctla[l]i,l 

1=1 

(2) 
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and hence 
li 

P[I] = P[I]O + L alP[IJ! (3) 
1=1 

with uniquely determined polynomials P[I]I, l = 0, ... ,8. Now, supposing that P[k] 
depends linearly on a, we see from (1) that the same is true for C[k] , i.e. 

with 

li 

C[k) = C[k)O + L alC[k]l, 
1=1 

Hence, by induction it follows that 

li 

P[k] = P[k]O + L alP[k]l, k = 1, ... , N. 
1=1 

(4) 

l = 1, ... ,8. (5) 

(6) 

with uniquely determined polynomials P[kJ!' Now we are able to exploit the recur
sive structure indicated by (1). 

The algorithm 

For a more compact presentation, we introduce so me abbreviations. For given data 
{(Xk, Yk), k = 0, ... , N}, let us denote 

m(x) (l,x, ... ,xdf (7) 

and A k (a[kJ,i,l) , i = 0, ... ,d, l = 0, ... ,8, (8) 

Ö (l,al, ... ,alif (9) 

ak .- Akö, (10) 

tk .- ( e) (-Xk)d-i) , i = 0, ... ,d, (11) 

1 
(12) Wk 

(Xk+l - Xk)d' 

for k = 1, ... ,N. Observe that P[k] (x) = (m(x))T Akö and (X-Xk)d = (m(x))Ttk' 
Now, the algorithm consists of the following steps. 

1. Let a := (a[I]2"'" a[l]li, a[l]d), d > 3 odd, resp. a = (a[I)3)' d = 3 the free 

coefficients of P[l)' Determine Al from the initial conditions p[~l(xo) = 0, 
l = 8 + 1, ... , d - 1, and the interpolatory conditions P[I)(Xk) = Yk, k = 0,1. 
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2. For k = 1, ... ,N - 1, define Ak+l recursively by 

(13) 

with el := (1,0, ... , O)T E RHI. It is not necessary to store the Ak, k = 
2, ... ,N - 1. Only Al and AN are needed. 

3. Determine a from the boundary conditions PW(XN) = 0, l = 8+ 1, ... , d-1, 
where P[N] (x) = (m(x))T ANä. 

4. Finally, starting with al := Alä, we recursively gain 

(14) 

k = 1, ... , N -1, and hence the desired coefficients of the polynomials P[k] = 
(m(x))Tak , k = 1, ... ,N. 

All these calculations can be done efficiently using standard MAPLE commands, 
e.g. from the Linalg-package. Symbolic computation is useful especially in steps 1 
and 3, whereas it does not seem to be required in steps 2 and 4. But the opposite 
is true. Rewriting (14) yields 

which is stable iff arbitrary products I1{=i M k , 1 :S i :S j :S N, of the matrices 

are bounded. Computations of the eigenvalues of some products in the case of an 
equidistant grid indicate that this is not true. With growing length of the product 
one eigenvalue also grows rapidly, giving rise to growing errors in numerical com
putation. Indeed, this approach is highly unstable when floating point arithmetic is 
used. But, of course, no instability arises in case of symbolic computation. Hence, 
as demonstrated in the next section, this algorithm is useful in the case that exact 
arithmetic is demanded. 

3 Comparison with MAPLE 

From a careful examination of the new algorithm fastspline (see Appendix A) 
with respect to the expressions that have to be calculated we see that the asymp
totic computatitional cost is O( ~ N d2 ). Since the structure of the linear system is 
exploited in Maple, this cost is about O( 4N d2 ). Roughly, we may expect an aver
age faetor of ab out 3. In what follows we compare the run times (givell ill "eeoncb) 
of two test ex am pies calculatecl for different d ami N. All calculatiollS were done 
Oll a Pelltium In 650 MHz pe with 128 1m RAl\I, mlillg MAPLE V, R4. 
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As a first example, the function f(x) = x 5 was evaluated on the grid Xk := 

kiN, k = 0, ... , N, all done in exact arithmetic. In Table 1, the run times of 
fastspline versus spline are given. Here, the average of the new algorithm is 
better than expected; it even grows with increasing N, probably as a result of the 
overhead in storing numbers of varying length (due to the use of exact arithmetic). 
Due to their direct calculation, especially the values of the new algorithm with 
respect to degrees one and two are drastically bett er than those from spline. 

Table 1: Run times of spline (upper) and fastspline (lower), f(x) = x 5 

2 3 4 5 6 

25 0.055 0.170 0.330 0.610 0.960 1.505 2.180 
0.005 0.105 0.235 0.250 0.345 0.395 0.525 

50 0.230 0.555 1.250 2.270 3.520 6.500 10.165 
0.010 0.180 0.500 0.570 0.790 1.115 1.725 

100 0.880 2.200 4.815 8.750 15.205 28.650 50.480 
0.020 0.360 1.100 1.355 2.720 4.900 8.225 

200 3.485 9.265 20.035 36.080 70.685 135.170 251.710 
0.045 0.725 2.750 4.370 12.470 26.985 52.425 

400 14.405 39.615 87.360 165.000 375.245 766.715 1498.210 
0.140 1.520 8.865 16.235 78.965 187.720 377.675 

800 60.910 176.740 414.050 827.820 2226.729 
0.315 3.360 30.910 81.110 559.484 

As a second example we took the function g(x) = sin(x). Hence, the f-values are no 
longer rational numbers and continuing the calculation with symbolic express ions 
produces ugly high run times in MAPLE (see Table 2). 

Table 2: Run times of spline (upper l ) and fastspline (lower row), f(x) 
sin( x), symbolic calculation 

1 2 3 4 5 6 7 

25 0.875 10.265 43.235 106.352 260.384 421.240 743.773 
0.199 .395 1.355 1.980 3.135 5.020 6.185 

50 3.592 35.395 179.833 711.383 2140.325 -" -" 
0.444 1.935 6.855 17.180 23.495 79.170 213.665 

100 18.317 217.533 -" -' -" 
0.514 5.230 63.839 211.090 1133.008 

200 -' _, _, 
0.950 21.704 1748.510 

Hence, we evaluate the f-values as real numbers to a given precision and con
vert them into rational numbers without loss of accuracy. In Table 3, the run 

1 In the case N = 100, d = 3, and N = 200, d = 1, the following MAPLE error message occurs: 
Error, (in collectjseries) too many levels of recursion 
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times are given for different d and N after approximating the f-values within 
10 digits (MAPLE-standard) of accuracy using MAPLE's evalf and convert 
routines. Again, there is an obvious advantage of fastspline (see proc cover
fastspline) compared to the rational variant of spline (see proc cover
spline), this time concerning both d and N. Even in comparison to spline (using 
floating point arithmetic) the new algorithm yields comparable run times. 

Table 3: Run times of spline (top): floating point arithmetic2 , cover-spline 
(middle) and cover-fastspline (lower row): floats converted to rational numbers, 
f(x) = sin(x) 

1 2 3 4 5 6 

25 0.095 0.060 0.120 0.180 0.460 0.585 0.805 
0.540 0.245 0.480 0.815 1.240 2.265 2.860 
0.010 0.145 0.285 0.375 0.430 0.480 0.660 

50 0.080 0.260 0.520 0.840 1.320 1.880 2.720 
0.280 0.780 1.551 2.855 4.640 7.935 11.136 
0.015 0.225 0.635 0.730 0.995 1.385 2.069 

100 0.330 0.770 1.785 3.110 4.785 6.905 9.760 
1.060 2.840 5.914 10.785 18.840 31.694 50.105 
0.030 0.450 1.383 1.905 3.500 5.695 9.190 

200 1.240 3.195 6.995 12.265 19.206 28.300 40.259 
4.170 11.073 24.445 45.955 86.130 150.986 273.315 
0.065 0.995 3.915 7.325 15.620 30.085 57.680 

400 5.936 15.535 32.985 58.020 92.060 138.435 199.929 
19.715 52.931 118.770 230.945 473.682 883.808 1703.076 

0.270 2.360 17.050 35.721 100.960 201.721 410.415 
800 17.805 52.068 120.862 -' 365.878 

61.461 182.189 472.326 1053.501 2380.871 
0.450 3.720 67.220 197.924 655.977 

Conclusions 

As been indicated by the tests above, the new algorithm is fast, especially faster 
than the one implemented in MAPLE and robust in the sense that it is able 
to solve so me problems whereas Maple does not. The restrietion to non-numeric 
computation (i.e. no floating point arithmetic should be used!) is not critical since 
the run times of cover - fastspline and spline are still comparable. Hence, in 
the case of many points, the new algorithm is very recommendable. 

Acknowledgement: The author would like to thank Ralf Tenberg for his patience 
and his advise in many fruitful discussions. 
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4 Source code 

fastspline := proc(X,Y,z,d) 
local dm1h,dh,N,i,k,l,a,p,b,b1,m,monome,bincof,koef,loesvec,hilfmat,mip2, 

hilfvect,koef2,hilfvec2,hilf; 

monome := proc(x, d) 
local l,mon; 

mon := linalg[vector] (d+1); 
mon [1] := 1; 
for 1 from 1 to d do 

mon [l+l] := x*mon[l]; od; 
RETURN(evalm(mon»; 

end: 

# beg in of the usual testings, taken from the original 
Maple-"spline" .... 
if nargs = 3 then RETURN(fastspline(X,Y,z,3» fi; 
if d ('linear') then RETURN(fastspline(X,Y,z,l» fi; 
if d ('quadratic') then RETURN(fastspline(X,Y,z,2» fi; 
if d ('cubic') then RETURN(fastspline(X,Y,z,3» fi; 
if d ('quartic') then RETURN(fastspline(X,Y,z,4» fi; 
if type([X, Y],[vector, vector]) 

then N := linalg['vectdim'] (X); 
if linalg['vectdim'](Y) <> N then ERROR('incompatible dimensions') fi 

elif type([X, Y],[list, list]) 
then N := nops(X); 

if nops(Y) <> N then ERROR('incompatible dimensions') fi 
else ERROR('lst and 2nd arguments must be two lists or two vectors') fi; 

if not type(z,name) 
then ERROR('3rd argument (the variable) must be a name') fi; 

if not type(d,posint) 
then ERROR('4th argument (the degree) must be a positive integer') fi; 

N := N-1; 
for i to N do 

od; 

if type(X[i],numeric) and type(X[i+1],numeric) and X[i+1] <= X[i] 
then ERROR('X values (knots) must be in strictly ascending') fi 

# .... end of the usual testings, taken from the original 
Maple-"spline" 

# begin of special case d=l .... 
if d = 1 then 

fi; 

p:=[] ; 
for i from 1 to N-1 do 

hilf := (Y[i+l]-Y[i])/(X[i+l]-X[i]); 
p := [op(p), [z < X[i+l], simplify(hilf*(z-X[i])+Y[i])]]; 

od; 
hilf := (Y[N+l]-Y[N])/(X[N+l]-X[N]); 
p := [op(p), [simplify(hilf*(z-X[N])+Y[N])]]; 
if nops(p) = 1 then RETURN(op(p[l]» 

else RETURN('piecewise'(seq(op(i), i=p») fi: 

# .... end of special case d=l 
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# begin of special case d=2 ..... 
if d = 2 then 

fi; 

hilf := (Y[2]-Y[1])/(X[2]-X[1])-2; 
b :- evalm([Y[1]+hilf*X[1]-2, -2*X[1] *hilf , hilf]); 
mip2:=monome(X[2],d); 
bincof:=([seq«-l)-(d-k)*binomial(d,k), k=O .. d)]); 
m := linalg[vector] ([seq(z-k, k-O .. d)]); 
p := []; 
for i from 1 to N-l do 

od; 

p := [op(p), [z < X[i+l], linalg[multiply] (m,b)]]; 
for 1 from 1 to d+l do 

hilfvec2[1] := mip2[d+2-1]*bincof[1]; od; 
mip2:=monome(X[i+2],d); 
hilf := linalg[multiply] (mip2,b); 
hilf := (Y[i+2]-hilf)/(X[i+2]-X[i+l])-d; 
for 1 from 1 to d+l do 

b[l] := b[1]+hilfvec2[1]*hilf; od: 

p := [op(p), [linalg[multiply] (m,b)]] ; 
if nops(p) = 1 then RETURN(op(p[l]» 

else RETURN('piecewise'(seq(op(i), i=p») fi: 

# .... end of special case d 2 

# begin of general case d >= 3 .... # begin of step 1 
(left boundary conditions) .... 
p := convert([seq(a[i]*z-i, i=O .. d)], '+'); 
dmlh := floor«d-l)/2); 
dh := floor(d/2); 
koef := seq(a[k], k=2 .. dmlh), a[d]; 

Christoph Fredebeul 

loesvec := sOlve({seq(simplify(subs(z=X[l] , diff(p,z$k»), k=dmlh+l .. d-l)}, 
{seq(a[k] ,k=dmlh+l .. d-l)}); 

p := subs(op(loesvec), p); 
loesvec := solve({seq(subs(z=X[k], p)-Y[k],k=1 .. 2)}, {a[O] , a[l]}); 
p := subs(op(loesvec), p); 
m := linalg[genmatrix] ({p}, [koef], hilfvect); 
m := linalg[augment] (-hilfvect, m); 
hilfmat := linalg[matrix] (d+l, dmlh+l); 
for k from 1 to dmlh+l do 

for 1 from 0 to d do 
hilfmat[l+l,k] := coeff(m[l,k], z, 1); od: 

od: 
bl := evalm(hilfmat); 

# .... end of step 1 (left boundary conditions) 

# begin of step 2 (first main 1oop) 
b eva1m(bl); 
bincof := ([seq«-1)-(d-k)*binomia1(d,k), k=O .. d)]); 
mip2 := monome (X [2] , d); 
for i from 1 to N-l do 

for 1 from 1 to d+l do 
hilfvec2 [1] : = mip2 [d+2-1] *bincof [1]; od; 

mip2 := monome (X [i+2] ,d); 
hilfvect := linalg[multiply] (mip2,b); 
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hilfvect [1] : =hilfvect [1] -Y [i+2] ; 
for 1 from 1 to d+1 do 

for k from 1 to dm1h+1 do 
hilfmat[l,k] := hilfvec2[l] *hilfvect [k] ; od: 

od: 
b := linalg[matadd](b, hilfmat, 1, -1/(X[i+2]-X[i+1])-d); 

od; 
# .... end of step 2 (first main loop) 

# begin of step 3 (right boundary conditions) 
koef2 := linalg[vector] ([l,koef]); 
m := linalg[vector] ([seq(z-k, k=O .. d)]); 
p := linalg[multiply] (m,linalg[multiply] (b,koef2)); 
loesvec := sOlve({seq(simplify(subs(z=X[N+1], diff(p,z$k))), k=dh+1 .. d-1)}, 

{koef}); 
hilfvect := subs(op(loesvec), evalm(koef2)); 

# .... end of step 3 (right boundary conditions) 

# beg in of step 4 (second main loop) .... 
b linalg[multiply] (b1,hilfvect); 
mip2 := monome (X [2] ,d); 
p : = []; 

for i from 1 to N-1 do 

od; 

p := [op(p), [z < X[i+1] ,linalg[multiply] (m,b)]]; 
for 1 from 1 to d+1 do 

hilfvec2[l] := mip2[d+2-l]*bincof[l]; od; 
mip2 monome(X[i+2],d); 
hilf := linalg[multiply] (mip2,b); 
hilf := (Y[i+2]-hilf)/(X[i+2]-X[i+1])-d; 
for 1 from 1 to d+1 do 

b[l] := b[l]+hilfvec2[l]*hilf; od: 

p := [op(p), [linalg[multiply] (m,b))); 
if nops(p) 1 then op(p[l]) else 'piecewise'(seq(op(i), i=p)) fi: 
end: 

# end of step 4 (second main loop) # .... end 
of general case d >= 3 # .... end of "fastspline" 

# Here are the additional test routines: 

# convert floating point numbers into rational 
numbers # and start "fastspline" afterwards 
cover_fastspline := proc(X,Y,z,d) 

end: 

# 

local Xr, Yr; 
Xr:=convert(X,rational,exact); 
Yr:=convert(Y,rational,exact); 
evalf(fastspline(Xr,Yr,z,d)); 

the same as above for "spline" cover_spline 
proc(X,Y,z,d) 

# generate run times by applying the following 
procedure # in the case of non-rational data .... 
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zeiten := proc(knoten,maxgrad) 

end: 

local grad, xdat, ydat, k, n, ab, 53, sc3, fs3, zeit; 
zeit:=linalg[matrix) (3,maxgrad): 
n:=knoten: 
for grad from 1 to maxgrad do 

xdat:=evalf([seq«k-l)/n,k=l .. n+l»)): 
ydat:=evalf([seq(sin(xdat[k),k=l .. n+l»)): 
ab:=timeO: 

od: 

s3:=spline(xdat,ydat,x,grad): 
zeit[l,grad) :=time()-ab; 
ab:=timeO: 
sc3:=cover_spline(xdat,ydat,x,grad): 
zeit [2 ,grad) :=time()-ab; 
ab:=timeO: 
fS3:=cover_fastspline(xdat,ydat,x,grad): 
zeit [3 ,grad) :=time()-ab; 

RETURN(evalm(zeit»; 

# .... and by a similar procedure in the case of rational 
arithmetic: # drop the evalfs, evaluate x-5 instead of 
sin(x), # drop cover_spline and the following two lines # 
and call fastspline instead of cover_fastspline. 
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Error Estimates for the Caratheodory-Fejer 
Method in Polynomial Approximation 

Manfred Hollenhorst 

Abstract 

In the Caratheodory-Fejer method one computes - starting from a complex 
power se ries absolutely convergent on the unit disk - a polynomial which is 
(hopefully) a better approximation to the function given by the power series 
than the truncated power series (with respect to the supremum norm). In this 
article we show that - under fairly restrictive conditions on the coefficients 
of the power series - the Caratheodory-Fejer method gives an asymptotically 
optimal approximation and in some cases is really a better approximation 
than the truncated power series. 

1 Introduction 

The Caratheodory-Fejer method in polynomial approximation can be regarded as 
a non linear approximation operator. We start from the development of a function 
f into apower series: 

(1) 

which we assurne to be absolutely convergent on Sl, the boundary of the unit disc 
in the complex plane C, and from the polynomial Pn of degree n which forms the 
beginning of this series: 

After choosing n and m the coefficients Cn +1, . .. , Cn + m +1 are utilized to mod
ify the coefficients of Pn, and f is then approximated by the modified polynomial 
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Cn,m (the Caratheodory-Fejer approximating polynomial). We consider the error 
of this approximation with respect to the supremum norm on S1, namely 

IIFII = sup{lF{z)1 : Izl = I} . 

We define the minimum deviation with respect to this norm by 

En(f) = min{111 - Pli: PE I1n} , 

where I1n denotes the space of polynomials of degree ~ n. 
In this artide an estimate is given which shows that the error norm in the 

approximation by Cn,m is asymptotically optimal, i.e., 

111 - Cn,mll ~ En (f){l + 0(1)) 

if m ----+ 00 as n ----+ 00, under the condition that !cn+jl < gj- 1 ICn+11 for all 
positive integers j, where 

9 ~ {v'i3 - 1)/6 ~ 0.43426 

We also prove that if Ck ~ 0 for all k > n, if 0 < Cn+j+1 ~ "( cn+j for 
j = 1,2,'" ,m with some "( < 1, and if n sufficiently large, but m{n) = o{n/ log n), 
then 

111 - Cn,mll < 111 - Pnll 

This means that under the fairly restrictive assumptions made above we can 
guarantee that Cn,m is a better approximation to 1 than Pn, i.e., the truncated 
power series of 1. 

2 Caratheodory-Fejer approximation 

The starting point of this method is a theorem about the approximation of complex 
polynomials by meromorphic functions of a certain dass, namely the famous 

Theorem 2.1 (Caratheodory and Fejer [1]) 
Let fn,m be a polynomial with complex coefficients of the form 

f () n+l + n+2 + + n+m+l n,m Z = Cn+lZ Cn+2Z . . . Cn+m+1Z 

where n and m are positive integers. Let Gn be the set of functions which are defined 
and continuous on A = {z : z E C and Izl ~ I} and which have a development of 
the form 

n 

g(z) = L gk zk 
k=-oo 

uniformly convergent on A. 
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(i) Then a function 9* exists in Gn with 

Ilfn,m - 9*11 = inf{llfn,m - 911: 9 E Gn } 

(ii) A function 9* is a best approximation to fn,m from Gn in the sense of (i) if 
and only if 

f () ( ) - n+m+lZiozm+ZilZm-l+"'+Zim 
n m Z - 9* Z - En mZ 

, , QO+ql Z +"'+qmzm 
(2) 

holds for all Z E SI, where En,m is one of the numbers with largest possible 
modulus fulfillin9 (2). 

Remark 2.2 From (2) we see that fn,rn - 9* is of constant modulus IEn,ml on SI 
and can be written as En,mZn+m+l times the reciprocal of a Blaschke product. It 
has poles only in the interior of the unit circle. 

Let us return to the case of a function f with a development (1) absolutely 
convergent on SI. Then the Caratheodory-Fejer approximation method proceeds 
as folIows: 

1.) The part Cn+m+2Zn+m+2 + Cn+m+3Zn+m+3 + . .. is neglected. 

2.) Prom fn,m(z) = Cn+lZn+l + Cn+2Zn+2 + ... + Cn+m+lZn+rn+l we compute 
9*, the best approximation from Gn , by solving a singular value problem. 
But for polynomial approximation of course only the terms with nonnegative 
exponents of Z can be used. So if 

n 

9*(Z) = L akzk 

k=-oo 

is a solution of the above Caratheodory-Fejer problem, we utilize 

and discard 

n 

gn,rn(z) = L ak zk 
k=O 

-1 

Hn,m(z) = L ak zk 
k=-oo 

3.) The n+ 1 terms from the beginning of the series (1) are then added to 9n,m(Z) 
in order to form the Caratheodory-Fejer approximation polynomial to f: 

Cn,m := Pn + gn,m 

The Blaschke product form of the error in the Caratheodory-Fejer problem was -
to the knowledge of the author - first exploited for polynomial approximation by 
S. Darlington [2]. 
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3 Error estimate for finite series 

In order to show that On.Tn is a "good" polynomial approximation to I, we have to 
ensure that Hn,Tn and Cn+Tn+2Zn+Tn+2 +Cn+Tn+3Zn+Tn+3 + ... are negligible relative 
to En [f). We first consider only the approximation of polynomials of higher degree 
(i.e., the In,Tn in the Caratheodory-Fejer theorem), so we only need to estimate 

IIHn,TnII· 
We now derive three systems of equations by comparing coefficients in (2) in 

order to determine the coefficients of 9n,Tn and Hn,Tn explicitly. First we multiply 
(2) with the denominator of the right-hand side: 

Equating the coefficients of zn+m+k+l we get for k = 0,1, ... , m: 

(3) 

Comparing the coefficients of zn+l+1 yields for l = 0,1, ... ,m - 1 

The coefficients of zn, zn-I, ... give rise to an infinite set ofrecursion formulae 
for the coefficients ak-m (k = n, n - 1, ... ): 

From (3) follows that the column vector 

is a solution of the eigenvalue problem 

with 

o o o 

0 

r:= 0 0 Cn + m +1 

0 0 Cn + 771 +1 0 

0 

0 CIl+ 771 +1 Cn +2 

Cn+rn+l Cn +m Cn +1 0 

0 

C"'+771+1 

cn + m 

Cn +2 

C"+l 

o 

o 

(5) 

(6) 
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Remark 3.1 Equation (6) can also be formulated as a singular value problem with 
half the number of rows, but in the sequel we will exploit some well-known properties 
of eigenvalue problems. 

We now come to the central estimate of the neglected part of the series 
solution of the CaratModory-Fejer problem. 

Proposition 3.2 Assume that 

f () - n+1 + n+2 + + n+m+1 n,m z - Cn+1Z Cn+2Z . . . Cn+m+1Z 

has complex coefficients Ck satisfying for j = 1, ... , m 

ICn +1+jl ~ gjlCn +11 

where 9 ~ (JI3 -1)/6 ~ 0.43426, and let 

h := g(2 - 3g2)/(1 - 292 ) 

Let furthermore 
n 

g*(z) = L ak zk 
k=-oo 

be a solution of the CaratModory Fejer problem for fn,m, i.e. 

and let 

Then 

Proof. We choose 

Ilfn,m - g*1I = inf{llfn,m - gll : 9 E Gn } 

-1 

Hn,m(z) = L ak zk 
k=-oo 

9 hn+1 ICn+11 
IIHn,mll ~ 2 3 1- 2g - 2g + 39 

In Cn+1' w:= (0"" ,0,1/v2,0,··· ,0, v'2 ) 
21cn+11 

(7) 

where the nonzero elements are the (m + 1) st and the (2m + 2) nd components 
of the vector. Then we have 

1 1 > *r - Cn+1 Cn+1 + Cn+1Cn+1 - 1 1 
En,m _ W W - 21 1 - Cn+1 

Cn +1 

The asterisk denotes the Hermitian transpose of a vector or matrix. 

(8) 

En,m can be chosen positive because any complex factor of modulus 1 in a 
solution of (2) can be incorporated in the coefficients qo, qt, ... , qm . 



68 Manfred Hollenhorst 

If we choose on the other hand 

m-l 
v := (Vo, VI,'" , Vm-l, 0, Vo, VI,'" , Vm-l, 0)' with 2 L VjVj = 1 

j=O 

we have 

Iv*rvi ~ 2ICn+m+lIIVIVm-1 + V2Vm -2 + ... + Vm-IVII 

+ 2Icn+mllv2Vm-1 + V3Vm-2 + ... + Vm-IV21 + ... + 2Icn+31Ivm-IVm-11 

~ ICn+lI((m - l)gm + (m - 2)gm-1 + ... + 2l + g2) 

2 d 1 g2 
< ICn+llg dg (1- g) = ICn+11 (1- g)2 < ICn+11 

where the last inequality holds because of 9 < 1/2. 
So the eigenvector u consisting of the coefficients qk and their complex con

jugates cannot have zero es in its (m + 1) st and (2m + 2) nd components, and we 
can assume qm = 1. Ftom the first equation in (3) we obtain 

and consequently 
Iqol ~ gm 

2m - 2 of the remaining equations in (5) yield the following system of linear 
equations: 

with 

1 
T:=

Er/,rH 

(I - T)ij = 'Y 

ij := (ql, q2,'" , qrn-l, ql' q2"" , qm-l)' 

'Y:= 1/En ,rn' (cn+m ,'" ,Cn +2,Cn+m' .... ,Cn+2)' 

o 

o 
o 

o 

... 0 

Cn+m+l ... 
cll +rn ·· . 

... 0 

0 
Cn+m+l 

C n+4 
Cn+:l 

0 ... 0 

0 Cn+m+l ... 
Cn+rn+l cn+m ·· . 

0 

o 

Cn+m+l 

Cn+4 
C,,+3 

0 

o 
In the following we shall denote by a vcctor or a matrix enclosed in verti

cal bars the vector or matrix of the c:orresponding ahsolute values. Comparisons 
betwcen vectors and matriccs. which will he denote,cl by <:::. will be c:arried out 
cumpollcnt hy componcllt. 
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From (7) and (8) we have the estimates 

ITI ::; j 

with 
0 0 0 0 gm 

0 

0 gm g3 

jo_ 0 0 gm gm-l g2 
0 0 gm 0 0 

0 

0 gm g3 
gm gm-l g2 0 0 

and 
bl::; (gm-\gm-2,ooo,g2,g,gm-\gm-2,ooo,g2,g)' =:i 

If we define j 0 i =: 8, we have for j = 1, 0 0 0' m - 1 

and correspondingly for j = m, 0 0 0 , 2m - 2 

8: = (gmgj -m+1 + gm-lgj-m + 000 + g2m-j g)gj-2m+1 = lj-2m+2 + 000 + g2 ,j 
For 

we have therefore 

T := max{ 8j /ij : j = 1, 0 0 0 ,2m - 2} 

g2 
T<-- 1- g2 

69 

So we can estimate ii by the product of the inverse of the coefficient matrix 
and the right-hand side of the system of equations defining it: 

liil = I(I - T)-l,1 ::; I f Tili ::; f jii ::; 1 ~ Ti 
i=O i=O 

(9) 

Explicitly we have for j = 1, 0 0 0' m - 1 

1 2 I I < - 9 m-j 
qj -1-2g2g 
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Now we can give an estimate for the right-hand sides in (4) : 

Especially we have 

la I = Ir _ I< ICn +11 9 
n 'In 1 - 1 _ 2g2 

We then determine estimates for the ak by induction. 
Let us now assurne that 

for j = 1,2, ... ,I - 1 with I :<:; m - 1. Then we have from (4) 

For I = m, m + 1, ... the induction proceeds as above and yields 

m 

lan-II = 1- Lan-I+jqm-jl 
j=l 

< ICn +11 9 ;:..., (gl_j (1 + 1 -g2 ) 1- j gj 1 _ g2 ) 
1 - 2g2 ~ 1 - 2g2 1 - 2g2 

J=l 

( 2)m 
ICn +1Igl+1 1_g2 (2-3g2)1-", ~ -1 

1 - 2g2 1 - 2g2 1 - 2g2 1 + J..=..:C. - 1 
1-2g2 

( 1 + 1 - g2 ) I ICn +11 9 hl 
1 - 2g2 1 - 2g2 
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Summing over all al with negative l we have 

D 

4 Error estimates for infinite power series 

With the aid of the above estimate of the "neglected" part in the Caratheodory
Fejer problem we can prove the following result about polynomial approximations, 
which is a modification of theorems from the author's dissertation [5], which was 
written under the auspices of Prof. Dr. G. Meinardus: 

Theorem 4.1 Assume that the series J(z) = Co + CIZ + C2Z2 + ... is absolutely 
convergent on the unit disc {z : Izi ::; I} , let Pn, Cn,m , and En(f) be defined as 
above. 

(i) Assume ICn+jl ::; gj-1Icn+ll Jor alt positive integers j, where 

g ::; (v'i3 - 1) /6 ~ 0.43426 , 

and let 

Then 

(ii) 11, in addition to the assumptions oJ (i), m ~ 00 as n ~ 00, then 

Ilf - Cn,mll ::; En(f)(l + 0(1)) 

(iii) IJ Jor alt k > n we have Ck ~ 0 ,iJ 0 < cn+j+l ::; I cn+j for j = 1,2, ... ,m 
with some I < 1, and ifn sufficiently large, but m(n) = o(n/log n), then 

Ilf - Cn,mll < IIJ - Pnll 

Remark 4.2 Figure 1 shows the estimate of Ilf - Cn,m 11 given in (i) divided by 
En(f) depending on g for degrees n = 5 (solid line), n = 10 (dot-dashed), and 
n = 15 (dashed) with m = n. 

Proof. ad (i): Let 

f () n+l + n+2 + + n+m+l n,m Z = Cn+lZ Cn+2Z . . . Cn+m+lZ 
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20.-------~------~------~------~ 

15 

10 

5 
/ I 

/ I 

~--------------------------==~- ~ . ~ / 
O ~------~--------~--------~--------~ 
o 0.1 0.2 0.3 0.4 

Figure 1: Estimation factor in (i) of Theorem 1 

as above; then due to the constant modulus of the error curve (see, e.g. , Klotz [8]) 
gn,rn(Z) = 2:~=o akzk is the polynomial of best approximation to in,rn - Hn,rn of 
degree n, and the error norm is 

Ilin ,rn - Hn,rn - gn,rnll = IEn,rnl 

Applying the general inequality 

we get 

and consequently 

The linear functional L defined for all functions rjJ continuous on SI by 

supplies a lower estimate of the approximation error, so that 
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So under the assumptions of the theorem we have from Proposition 3.2 

Illn,m - gn,mll- En(fn,m) < 2"Hn,ml < 2ghn+1 

En(fn,m) - ICn+11 - 1- 2g - 2g2 + 3g3 

Another consequence of the general inequality cited above is 

= 11 L Ckzkll 
k=n+m+2 

We also employ a simple estimate of the rcmainder of the series development 
of 1 

00 gm+l gm+l 
11 L Ckzkll::; -1 -lcn+11 ::; -1-En (f) 

k=n+m+2 - 9 - 9 

Combining the last three estimates we have 

111 - Gn,mll < IIln,m + Pn - (gn,m + Pn)1I + 11 L Ckzkll 
k=n+m+2 

From this (i) and the asymptotic estimate in (ii) follow under the conditions 
listed in the theorem. 

ad (iii): We first show that under the condition of monotonically decreasing 
coefficients as given in (iii) we have 

qj-l < 'Y qj (10) 

for j = 1,2,··· ,m: 
Because the Ck are real, we only need to consider a m + 1 by m + 1 eigenvalue 

problem to determine En,m and qo, ql, ... , qm. According to the Perron-Frobenius 
theorem (see e.g. Varga [12], p. 30) qo, ql, ... , qm are positive, and we can again 
choose qm = 1 . The condition of irreducibility in this theorem can be easily verified 



74 Manfred Hollenhorst 

by drawing the graph of the corresponding matrix, which is strongly connected 
(see e.g. Varga [12], p. 20) because the last row and the last column contain only 
nonzero elements. 

Now according to (3) 

qm-k = (Cn+m+lqk + Cn+mqk+l + ... + Cn+k+lqm)/En,m 

> (Cn+mqk+l + ... + Cn+k+lqm)/En,m 

> (Cn+m+lqk+l + ... + Cn+k+2qm)/(En,m'Y) = qm-k-d'Y 

From (3) with k = 0 we have the general estimate 

m+l 

En,m :::; Cn+l + L Cn+k Jqm+l-kJ 
k=2 

m+l 
:::; Cn+l + max{Jqd : I = 0, 1, ... , m -I} L cn+k 

So from (10) we conclude that 

m+l 

En,m :::; Cn+l + 'Y L Cn+k 
k=2 

Again, from (3) we deduce 

En,mqm-k = Cn+m+lqk + Cn+mqk+l + ... + Cn+k+lqm 

k=2 

:::; Cn+m_k+2'Yk- Iqk + Cn+m_k+l'Yk-Iqk+l + ... + Cn+2'Yk- Iqm 
m+l 

:::; 'Yk - l L cn+j 
j=2 

Now let al, ... , a m be the zeroes of 

Q(z) = qo + qlZ + ... + qmzrn 

Then from (10) and the Eneström-Kakeya theorem (see e.g. Specht [11], p. 31) 
or the Hurwitz [6] theorem results 

max{JajJ : j = 1, ... ,m} :::; 'Y 

From (2) follows furt her 

rn-I 

g*(z) = zn+l L rkzk /Q(z) (11) 
k=ü 
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We now estimate (4) 

k k "m+1 
'" < '" j m-k+j-I L.Jl=2 Cn+l rk = ~ Cn +j+1Qk-j _ ~ cn+n 'Y 
j=O j=O fn,m 

m-k-I m+1 

:::; 'Y 2 L Cn+l 
1 - 'Y 1=2 

We utilize the development of I/Q(z) by Wronskian functions (see e.g. Specht 
[11], p. 12): 

00 

I/Q(z) = L (TkZ-m-k 

k=O 

with 

where we sum over those nonnegative integers VI, ... , Vm for which VI + ... + vm = 

k. We can interpret these m-tuples (VI, ... , V m ) as distributions of k indistinguishi
ble objects into m cells (namely k times adding 1 to the exponents of ab ... , a m ). 

There are 

( k+m -1) 
m-l 

different ones among these distributions (see e.g. Riordan [9] p. 92), so we have 

From (11) we have 

n m-I 

L 
j=-oo k=max{O,m-I-n+j} 

From the uniqueness ofthe power series development oft he function z-ng*(z) 
in z = 00 we conclude 

m-I 

rk (Tn+l+k-m-j 

k=max{O,m-I-n+j} 
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So under the assumption m < n we have the estimate 

IIHn,mll ::; f la-il ::; f t 'Ym-l-; ~~~l Cn+1 (n ~ ~ ~ k)'Yn+1+k+i -m 
i=l i=l k=O "1 

"m+l 00 m-l 
< m L-1=2 Cn+l L 'Yn+i II (n + k + j) 
- (m - 1)!(1 - "(2) i=l k=l 

"m+l 00 ..Im-I 
_ m L-l=2 Cn+l ""' _u__ n+i+m-l 
- (m - 1)!(1 - "(2) ~ d'Ym-1 "1 

m L:~~l Cn+l d"'-l ('Yn+m ) 
= (m - 1)!(1 - "(2) d'Ym- 1 1 - "1 

= mL:;:~ICn+l t(m-l)'Yn+m-i(m-j-l)!I1;:öl(n+m-l) 

(m - 1)!(1 - "(2) i=O j (1 - 'Y)m-i I1;;'=/(n + m - k) 

< m'Y L-l=2 Cn+l _"1_ 1 + _"1_ (n + m)m n "m+l ( )m-l 
- (m - 1)!(1 - "(2) 1 - "1 1 - "1 

The last (very erude) estimate holds for n > m. By taking logarithms in the 
last term we see that it eonverges to zero, if divided by L:;:~l Cn+l, with n ----t 00 

under the eondition m(n) = o(n/log n): 

( 
n (1 )m-l ) 

log (:: _~)! 1 _ "1 (n + m)m 

::; n log "1 + log m -log(m - I)! - (m - 1) log(l - "1) + m log(2 n) . 

This shows finally that under the eonditions of (iii) for n large enough 

00 

Ili - Gn,mll ::; En,m + IIHn,mll + L Ck 
k=n+m+2 

00 

< L Ck = Ili - Pn 11 o 
k=n+l 

5 Remarks 

1.) One ean transfer the above results to polynomial approximation on the real 
interval [-1, + 1] starting from a development of the function to be approx
imated into Chebyshev polynomials, as the author did in his dissertation. 
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Gutknecht and Trefethen showed that in this transfer one can - due to the 
reality of the coefficients - improve the estimates by truncating the series 

n 

g*(z) = L akzk 
k=-oo 

at -n instead of O. 

2.) In the end of the 1970s the CaratModory-Fejer method was applied to polyno
mial and rational approximation independently by Gutknecht and Trefethen; 
this was treated in aseries of articles including estimates as the above but 
requiring 9 < 1/72 , see, e.g., [3], [4] , and the literat ure cited there. 

3.) The conditions of the above theorem are fairly restrictive. For (i) and (ii) the 
power series of 1 must have a convergence radius ~ l/g, and moreover one 
must choose as Cn+l a coefficient in this series which is "not too small". The 
conditions of (iii) are fulfilled if e.g. 1 with real coefficients in (1) has one 
"dominating" algebraic-logarithmic singularity on the boundary of its circle 
of convergence, which must be of radius greater than 1, see e.g. Jungen [7]. 
These restrictions were made precise in [10] by Saff and Totik who showed 
that the set of functions for which the CaratModory-Fejer method "works" 
in the sense of giving a bett er approximation than Pn for infinitely many n, 
is of second category, i.e., it does not contain any ball with respect to the 
norm we used. 

4.) The author wishes to thank the organizers of the IDoMAT conference for 
the opportunity to give a lecture and to publish his results. This encouraged 
hirn to resurne his study of the CaratModory-Fejer method and to extend it 
to rational approximation. He also thanks the referee for his suggestions to 
improve the paper. 
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Shape Preserving Widths of Weighted 
Sobolev-Type Classes 

V.N. Konovalov and D. Leviatan 

1 Introduction 

Let X be areal linear space of vectors x with norm Ilxllx, W C X, W i= 0, and 
V C X, V i= 0. Let Ln be a subspace in X of dimension dirn Ln :::; n, n :::: O.and 
Mn = Mn(xO) := xO + Ln be a shift of the subspace Ln by an arbitrary vector 
xO EX. Denote 

and let 

E(x, Mn)x:= inf Ilx - yllx, 
yEMn 

E(W,Mn)x:= sup E(x, Mn)x, 
xEW 

denote the deviation of the set W from Mn. 
The Kolmogorov n-width of W is defined by 

If Mn n V i= 0, then we denote by 

E(x, Mn n V)x:= inf Ilx - yllx, 
yEMnnV 

the best approximation of the vector x E X by Mn n V, and by 

E(W, Mn n V)x := sup E(x, Mn n V)x, 
xEW 

the deviation of the set W from Mn n V. 
The quantity 

dn (W, V)x := inf E(W, Mn n V)x, n:::: 0 
Mn 
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is called the relative n-width of W with the constraint V in X. These widths were 
introduced by the first author in [1]. 

Evidently, if V = X, then the relative n-width dn(W, V)x coincides with the 
Kolmogorov n-width dn(W)x. Clearly, dn(W, V)x ~ dn(W)x. 

We also let A(X, Ln) be the set of all linear maps A: X -+ Ln. Then 

E(W, Ln)!Jt := inf sup IIx - Axllx 
AEA(X,Ln) xEW 

denotes the best linear approximation of the set W by Ln. The linear n-width of 
W is defined by 

d (W)lin._ inf E(W Ln)lin n ~ 0. 
n X·- LncX ' X , 

Let I = [a, b] be a finite interval in lR, and let rEN and ° ~ 0: < 00. For 
1 ~ p ~ 00, and p(t) := dist{t,8I}, tEl, we denote 

W;,Q := W;,Q(I) := {x: I -+ lR 

x(r-l) E ACloc(I), Ilx(r)pQIILp(I) ~ I}. 

If 0: = 0, then we write W; := W;(I) := W;,o(1). We also write L q for Lq(I). 
Let 

S = 0,1, ... , 

and denote by ß+ W;,Q = ß+ W;,Q (1), S = 0, 1, . .. the subclasses of functions 
x E W;,Q for which ß~x(t) 2: 0, for all T > ° such that [t, t + ST] ~ I. Analogously 
we will use the notation ß+Lq • In recent years shape preserving approximation has 
become a central subject especially in application. This is due to the fact that in 
CAGD and especially in questions of design, shape preservation is one of the main 
considerations. Our results below show what one may expect to achieve and what 
is beyond reach of any approximation process which involves approximation from 
linear n-dimensional manifolds, when we preserve the shape of the approximants. 

2 U nconstrained Kolmogorov and linear widths 

We begin with some asymptotic relations for unconstrained Kolmogorov and linear 
widths. First we have [2] 

Theorem 2.1 Let 1 be a finite interval and let rEN, 1 ~ p, q ~ 00 and ° < 0: < 00, 

be such that r-o:- ~ + i > 0. If (r,p) =I- (1,1), and if (r,p) = (1,1) and 1 ~ q ~ 2, 
then 

d (W") ~ -,,+(max{ f;.~ }-max{ ~.~ })+ 
TL p,G L q ...--... n , n 2: r. (1) 
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If on the other hand, (r,p) = (1,1) and 2< q < 00, then 

1 1 ~ 
Cln- 2 ~ dn(Wl,a)Lq ~ C2n- 2 (log(n + 1)) 2, n ~ 1, (2) 

where Cl > 0 and C2 da not depend on n. 

Thus we see that the asymptotic order of the Kolmogorov widths is indepen
dent of Oe although the c1asses W;,a become bigger as Oe increases. The smaHest 
of course is W;,o for which the above asymptotics are weH known. In view of this 
it is c1ear that the lower estimates in (1) and (2) need no proof. The proof of the 
upper bounds is too long to be given here and we refer the reader to [2]. 

The exact orders of the widths of the c1asses wl a in L q , 2 < q < 00, are not 
known even when Oe = O. ' 

It turns out that the Kolmogorov widths of the smaller c1asses D.+ W;,a, 
o ~ s ~ r, are, in general, of the same order of magnitude as those of the c1asses 
W;,Q' However, they are significantly smaller for the c1ass D.~;+IW;,a' 

What we have if 0 ~ s ~ r, is (see [3]), 

Theorem 2.2 Let rEN, 1 ~ p, q ~ 00 and 0 ~ Oe < 00, be such that r-Oe- ~ + ~ > 
O. If (r,p) i (1,1) and if (r,p) = (1,1) and 1 ~ q ~ 2, then for each s = 0,1, ... , r, 

(3) 

If on the other hand, (r,p) = (1,1) and 2< q < 00, then for s = 0,1, 

1 1 ~ 
cln- 2 ~ dn(D.+ WI\')Lq ~ C2n-2 (log(n + 1)) 2, n ~ 1, (4) 

where Cl > 0 and C2 da not depend on n. 

But in case s = r + 1, we have [3], 

Theorem 2.3 Let rEN, 1 ~ p, q ~ 00 and 0 ~ Oe < 00, be such that r - Oe - ~ + ~ > 
O. Then 

d ( Ar+lwr) ~ -r-max{i-,~} 
n u+ p,a L q - n , n > r. (5) 

In view of (1) and (2), we don't have to prove the upper bounds in (3) and 
(4). The proof of the lower bounds is too long to be inc1uded in this paper and the 
interested reader should consult [3]. On the other hand, it is interesting to note 
that 

where 1 = [a, b], and that the latter set differs from D.~+l W[+l by a linear subspace 
of dimension r + 1. Hence, the lower bound in (5) for n > 2r + 1 foHows from (3) 
taking r + 1 instead of r there and applying it to s = r + 1 and p = 1. 
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For linear widths we can show [2] that 

Theorem 2.4 Let rEN, 1 ::; p, q ::; 00 and 0 < Cl! < 00 be such that r-Cl!- ~ + ~ > O. 

1/ (r,p) =I (1,1), or i/ (r,p) = (1,1) and 1 ::; q ::; 2, and i/ (r,q) = (1,00) and 
2 ::; p ::; 00, then 

1/ on the other hand, (r,p) = (1,1) and 2< q < 00, then 

and i/ (r, q) = (1,00) and 1 < P < 2, then 

cln-! ::; dn(W;,Q)1: ::; C2n-! (log(n + 1)) ~, n ~ 1, 

where Cl > 0 and C2 do not depend on n. 

(7) 

(8) 

(9) 

The exact orders of the linear widths of the classes Wl,Q in L q , 2 < q < 00, 
and those of the classes W~,Q in L oa , are not known even when Cl! = O. 

We see the same phenomenon that the asymptotic order of the linear widths 
is independent of Cl! although the classes W;,Q become bigger as Cl! increases. The 
smallest of course is W;,o for which the above asymptotics are weH known. In view 
of this it is clear that the lower estimates in (7), (8) and (9) need no proof. For 
the proof of the upper bounds we refer the reader to [2]. 

We have here the same phenomenon as for the Kolmogorov widths, namely, 
the linear widths of the smaHer classes 6:+ W;,Q' 0 ::; S ::; r, are, in general, 
of the same order of magnitude as those of the classes W;,Q' However, they are 
significantly smaller for the class 6~+1W;,Q' Here we have for 0 ::; s ::; r (see [3]), 

Theorem 2.5 Let rEN, 1 ::; p, q ::; 00 and 0::; Cl! < 00, be such that r-Cl!- ~ + ~ > 
O. 1/ (r,p) =I (1,1), or if (r,p) = (1,1) and 1 ::; q ::; 2 and if (r, q) = (1,00) and 
2 ::; p ::; 00, then for each s = 0, 1, ... ,r, 

d ( AS wr )lin ~ -r+(l.-l.)+-min{(l.-l.)+,(l._l.)+} 
n L.l.+ P,Q L q ~ n p q p 2 2 q , 

(10) 
n;::: r. 

If on the other hand, (r,p) = (1,1) and 2 < q < 00 then for s = 0, 1, 

Cln-! ::; dn (6:+ wl,oJ1~ ::; C2n-! (log(n + 1)) ~, n;::: 1, (11) 

and if (r, q) = (1,00) and 1 < P < 2, then for s = 0, 1, 

c n-! < d (6 S W l )lin < C n-! (log(n + 1))~ I _ n + p," L= _ 2 , n;::: 1, (12) 

where Cl > 0 and C2 do not depend on n. 
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In the case s = r + 1 we show in [3] that 

Theorem 2.6 Let rEN, 1 ~ p, q ~ 00 and 0 ~ a < 00, be such that r - a - ~ + ~ > 
O. Then 

d ( ",r+lwr )lin ~ n-r-max{~,~} > 
n U+ p,Ol L q ~ , n r. (13) 

Again, in view of (7), (8) and (9), we do not have to prove the upper bounds 
in (10), (11) and (12). Also as we have noted after Theorem 2.3, the lower bound 
in (13) foIlows from (10). 

Remark. Note that for each fixed q and aIl p such that r - a - ! + ! > 0, the p q 

Kolmogorov and linear widths of the classes ~~+IW;,Ol are of the same order of 
magnitude. 

3 Shape preserving widths 

The most important shapes that we normaIly wish to preserve are positivity, mono
tonicity and convexity. For positivity preserving widths we have, [4], 

Theorem 3.1 Let rEN, 1 ~ p, q ~ 00 and 0 ~ a < 00, be such that r - a - ~ + ~ > 
O. Then 

(14) 
n 2: r, 

and in particular if 1 ~ q ~ p ~ 00, and if 1 ~ P ~ q ~ 2, then this implies 

n 2: r. (15) 

Furthermore, (15) holds for all other cases of p and q, if we actually have the 
(stronger) inequality r - a - ~ > O. (Note that under our assumptions, the latter 
always holds when q = 00.) Finally, if (r, a, p) = (1,0,1) and 2 < q < 00, then 

where Cl > 0 and C2 do not depend on n. 

Here too, the lower bounds in (14) and (16) follow by virtue of (3) and (4), 
respecti vely. 

One may be tempted to conjecture that (15) gives the correct asymptotics 
in all missing cases as weIl. This however is not clear at all in view of the follow
ing asymptotics for monotonicity and for convexity preserving widths that agree 
instead with the right-hand side of (14). For monotonicity preserving widths we 
show in [4], 
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Theorem 3.2 Let rEN, 1 ~ p, q ~ 00 and 0 ~ Q < 00, be such that r-Q- ~ + ~ > 
O. Then 

d ( A 1 W r AlL) ~ -r+( .! _.! )+ > n.u.+ p,<>,.u.+ q L q ~ n p q , n _ r. 

And for convexity preserving widths we obtain (see [4]), 

Theorem 3.3 Let rEN, 1 ~ p, q ~ 00 and 0 ~ Q < 00, be such that r-Q- ~ + ~ > 
O. Ifr > 1, then 

n~r, (17) 

and if r = 1, then 

(18) 

Note that by virtue of (6), the lower bound in (18) for n > 2, can be obtained 
from (17) with r = 2 and p = 1. 

Finally we deal with s-monotone functions with s ~ 3. We encounter here a 
completely different behavior (see [6]), namely, 

Theorem 3.4 Let rEN, sEN and 1 ~ p, q ~ 00. For 3 ~ s ~ r, we have 

dn (~+W;,~+Lq)L ;:::: n-r +s+f;-3, 
q 

n ~ r. (19) 

Also if s = r + 1, r 2: 2, then 

dn (~++lW;, ~++1 Lq) L q ;:::: n-2 , n ~ r. (20) 

Here too, the lower bound in (20) for n ~ 2r + 1, follows by virtue of (6) from 
(20) with r replaced by r + 1 and taking s = r + 1 and p = 1. 

Remarks. (i) Note that the asymptotic relations are independent of q and if 
s = r + 1 also independent of p. Note also that they become worse as s increases 
(inside the range 3 ~ s ~ r + 1). 

(ii) It is worthwhile noting that as a byproduct we may conclude that the lower 
bound in (2) with s = r > 3, excludes the possibility of Jackson-type estimates in
volving the fourth modulus of smoothness of x evaluated at l/n, in s-monotone ap
proximation of x, by piecewise polynomials or splines with n equidistant knots and 
thus also not by polynomials of degree ~ n. Moreover, it even excludes Jackson
type estimates involving the generally bigger Cn-3w(x(3), n-1 )p. 

(iii) Recall that up until now we knew that Shvedov [7] had shown that Jackson
type estimates of s-monotone approximation of an s-monotone x, by polynomials 
of degree ~ n, cannot be had with CWs +2(X, n- 1 )p. Thus the above is somewhat 
unexpected to us in view of what seemed to have been a pattern that we have 
Jackson-type estimates involving CW2(X, n- 1 )p for monotone approximation, and 
by Shvedov [7], it is impossible to have such estimates with W3(X, n- 1 )p, and we 
have J ackson-type estimates for convex approximation involving W3 (x, n -1 )p, while 
again by Shvedov [7], it is impossible to have such estimates with W4(X, n- 1 )p. 
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4 Outline of proofs 

Proof of Theorems 2.1 and 2.4. To prove upper bounds in Theorems 2.1 and 2.4 
we divide the generic interval I = [-1,1] by the partition points 

{
1- (n-i)ß, t .'- n 

ß,n,.·- -1 + (~)ß, 
i = 0, 1, ... ,n, 
i=-1, ... ,-n, 

where ß = ß(r, a,p, q) ~ 1 is to be prescribed. Given a function x E W;,a(I), 
we define on each subinterval In,i := Iß,n,i := [tß,n,i-l, tß,n,i], i = 1, ... , n, and 
In,i := Iß,n,i := [tß,n,i, tß,n,i+l], i = -1, ... , -n, polynomial splines (Ji('j x), i = 
±1, ... ,±n, of degree ::; r + 1, with three fixed knots, yielding the estimates 

n 

Ilx(,) - (Ji(Xj ·)11 Lq(In,;) ::; clln,i Ir- ~+t (L IIn,j I) -a Ilx(r) pa IILp(In,;) ' (21) 
j=i 

i = 1, ... , n, and similar estimates for i = -1, ... , -no It is easy to check that the 
length IIn,il of the interval I ni , i = ±1, ... , ±n, satisfies the inequalities 

where Cl = Cl(ß), C2 = C2(ß)· 
The combined spline (Jr,n(tj x) := (Ji(tj x), t E In,i, i = ±1, ... , ±n is so 

constructed that it belongs to C(I) (I) and it depends linearly on x. It follows from 
(21) and (22) that for 

1 1 1 1-1 ß = (r - - + - )(r - a - - + - ) , 
p q p q 

we obtain 

where c = c(r, a,p, q). 
The upper bounds (23) already yield the required upper estimates in Theorem 

2.1 for a partial range of p and q. We have to improve them when 2< q ::; 00 and 
p < q. This we do by applying discretization techniques and except for the case 
r = p = 1, we obtain 

1 ::; P ::; 2 < q ::; 00, 

2 ::; p < q ::; 00, 

where c = c(r, a,p, q), for all n ~ r. If r = p = 1 and 2 < q < 00, then we can only 
prove 
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We obtain similar inequalities for the linear widths in Theorem 2.4. The lower 
bounds in Theorems 2.1 and 2.4 are immediate consequences of the well-known 
lower bounds for the smaller classes W;. 0 

Proo/ 0/ Theorems 2.2 and 2.5. As was noted above, the upper bounds in Theo
rems 2.2 and 2.5 follow from the upper bounds in Theorems 2.1 and 2.4, respec
tively. Thus, we only need to prove the lower bounds. To this end we choose a 
system w~~ = {"pr,n,p,iH~1 of functions 

n~ (( n+i-l)r ( n+i-2)r) 
'ljJr,n,p,i(t) := -;:r t + n + - t + n +' 

(24) 

tEl, i = 1, ... , 2n. 

It is easy to see that 'ljJr,n,p,i E ß:t-W;(I), i = 1, ... ,2n. Let 

2n 
st(w~~)) := {'ljJ I 'ljJ(t) = I>i'ljJr,n,p,i(t), tE I} 

i=l 

over this system, where a = (al,"" a2n) E ~~n and lIalll~n ~ 1, be the positive 

p-sector. Clearly, st(w~~)) ~ ß:t-W;(I). Hence 

dn(ß:t-W;)Lq ~ dn(St(W~:;'))Lq and dn(ß:t-W;)t ~ dn(St(W;:;,))t;· 

Using discretization techniques we reduce the problem of estimating the widths of 
the positive p-sector st(w~~) in the function space L q , to that of estimating the 
widths of the positive p-sector in the space l~n. More precisely, we obtain 

where 

dn(st(W;:;'))Lq ~ cn -r+~-~ dn(St(E2n))I~n, 

d (S+(w 2n ))lin > cn-T+~-~d (S+(E2n ))lin n p T,p L q - n p l~n , 

2n 
St(E2n ) := {e I e = Laie(i), a = (al, ... ,a2n) E ~~n, Ilalll~n ~ I} 

i=l 

(25) 

(26) 

is the positive p-sector in ~2n over the system E 2n of the standard orthonormal 
vectors e(i), i = 1, ... ,2n. 

Since st (E2n) contains the cube n - ~ st (E2n) and the simplex si (E2n), 
we apply well-known lower estimates of the Kolmogorov 2n-widths of St(E2n ) 
and si(E2n) in l~n, and get from (25) the needed lower bounds in Theorem 2.2. 
Similarly, we use (26) to prove the lower bounds in Theorem 2.5. 0 

Proof of Theorems 2.3 and 2.6. In order to prove the upper bounds in Theorems 
2.3 and 2.6 we have to proceed in another way. We apply so me ideas of V.M. 
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Tikhomirov for obtaining the Kolmogorov widths of the classes Ll~ Wi in L q . 

Following Tikhomirov we reduce our problem to that of the isoperimetrie problem 
in ]Rn. To that end we fix 

1 1 1-1 
ß > (r + -)(r - a - - + - ) , 

q p q 
(27) 

and for any function x E Ll~+lW;,<> we define the approximating spline O"r,n(-; x) 
on each subinterval In,i = Iß,n,i, i = ±1, ... , ±(n-1), as the Lagrange polynomials 
lr,n,iex) of degree r, which interpolate x(·) at the r+ 1 equidistant points. For the 
end intervals In,±n we take O"r,n(';X) := Ir,n,±en-1)(';X), respectively. Note that 
the rth derivative x(r) is nondecreasing on I. Also, without loss of generality, we 
may assume that xer)(t) ~ 0, t E [0,1), and x(r)(t) ~ 0, t E (-1,0]. 

Using well-known Whitney's theorem we have 

where 

Wr,n,i := esssupt,,t,Eln,i Ix(tI) - x(t2)1· 

In view of definition of O"r,n(-; x) we conclude that for all 1 ~ q ~ 00 

Also it is easy to verify that 

Ilx(,) - O"r,n(x; ·)IILq(In,±n) ~ clln,±nlr-<>-~+~. 

So combining (28) and (29) we get 

where c = c(r, a,p, q). 
On the other hand, we have 

1 

Ilxer)p<>IIL p (Ü.1) ~ (~llxer)p<>llip(In'i+1») p 

Note that a.e. in I n ,i+1, i = 1, ... ,n - 1, 

i 

LWr,n,i ~ xer)(t), 
j=l 

(29) 

(30) 
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so that for each 1 ::; P ::; 00 

i 

Ilpa IILp(In,i+!l L Wr,n,i ::; Ilx(r) pa II Lp(In,i+!l . 
j=l 

Hence for all 1 ::; P ::; 00 we have 

(31) 

If we put ai := cIIn,il, bi := IlpaIILp(In,i+!l, and replace Wr,n,i by Ti, then by (30) 
and (31) we are in the setup of the following 

Lemma 4.1 Let n E N and 1 ::; p, q ::; 00. Given ai > 0 and bi > 0, i = 1, ... ,n, 
let T := (Tl, ... , Tn ) belang ta the set 

nil 

Tp = {T I Ti 2: 0, 1::; i ::; n, (L bnLTi)p) p ::; I}, 1::; P ::; 00. (32) 
i=l j=l 

Set 
n 1 

fq(T):= (La;Tn q , 1::; q::; 00. (33) 
i=l 

Then setting an+1 := 0 and ~ + ? = 1, 

n 

maXfq(T) ::; (L(lai - ai+1Ibi1)pl)}t, 1::; p::; 00. 
TETp i=l 

(34) 

Note that the right-hand side of (34) is independent of q. Hence by (22) and (27), 

and 
bi 2: cn~ß(o+f,)(n - i + l)((j~l)(a+f,)~f" i = 1, ... , n - 1, 

which in turn imply 

(35) 

where c = c(r,n,p,q). We have similar inequalities for the interval (-1,0). This 
completes the proof of upper bound in Theorem 2.3 for 1 ::; q ::; 2. 

To improve this llppcr bound for 2 < q ::; 00, we first show that for each 
"1'+1 Uf/' 

xE L..J.+ n p,,,' 

(:30 ) 
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where c = c(r, a,p, q) and 

This we obtain by virtue of Lemma 4.1 since 

We proceed, using discretization techniques, to prove that there exist splines 
O"r,n(x;,) from n-dimensional subspaces for which the estimate 

(37) 

holds, where c = c(r,a,p,q). Combining (35) and (37) we get the upper bound in 
Theorem 2.3. Since the splines ar,n('; x), of (35) and O"r,n(x;,) of (37) are linear, 
the proof of the upper bound in Theorem 2.6 is similar. 

In order to prove the lower bounds in Theorems 2.3 and 2.6, we consider the 
system \]i;+l,l := h\+l,n,l,d;~l' where the functions 7Pr+l,n,1,i(') are defined by 

(24) for p = 1, and replacing r by r + 1. Since 117P~11.n,1,iIILoo(I) = 1, we have 
7Pr+l,n,1,i E ~~+lW~. If St(\]i;+l,l) denotes the positive l-sector over the system 

\]i;+1,l' then St(\]i;+l,l) C ~~+lW~, whence 

dn(~~+lW~)Lq ;:::: dn(St(\]i;+l,l))Lq' 

Using discretization techniques, we obtain 

dn(St(\]i;+l d)L ;:::: cn-r-idn(st(E2n ))12n, 
, q q 

where st(E2n) is the positive l-sector over the system E2n := {e(i)}T~l of the 
standard orthonormal vectors e(i), i = 1, ... , 2n in ]R2n. The lower bounds in Theo
rem 2.3 and 2.6 now follow from the well-known lower estimates of the Kolmogorov 
widths. 0 

Proofs of Theorems 3.1,3.2 and 3.3. In order to obtain upper bounds in Theorems 
3.1-3.3, we take the polynomial splines ar,n(x;,) ofthe proof ofthe upper bounds in 
Theorem 2.2. These splines yield good approximation but, in general, they do not 
preserve the shape. We use correcting splines of small norm on each subinterval I n •i , 

i = ±1, ... , ±n, to modify ar,n(x; .) in a way that the resulting splines preserves 
the shape. Due to the small norm of the correction we still obtain the same rate 
of approximation. 

More interesting is the proof of the lower bounds for monotone and convex 
functions when 2 < q ~ 00 and p < q, namely, when the lower bounds in (3) are 
too small. 

To this end, we construct the system <I>~,p := {Jr,n.p,i(-)}7=1 of monotone 

functions such that IIJ~~~.p,JLp(I) = 1, their supports are subintervals in.i C Iof 
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length [in,i[ ::=:: n-l , which do not intersect, ~r,n,p,i vanish to the left of in,i' and 

~r,n,p,i(') == cn-r+i to the right of in,i' For the positive p-sector S:(<T>~,p) over 

the system we have S: (<T>~p) ~ 6~ W;. Hence 

(38) 

Using a discretization operator, we show that 

dn-2(S:(<T>~,p), 6~Lq)Lq ~ cn-r+i-~dn_2(s:(ji;n), 6~)1~' (39) 

where s:(ji;n) is the positive p-sector in Rn over the system ji;n := {e(i)}f=l of 
vectors e(1) := (1, ... ,1), e(2) := (0,1, ... ,1), ... , e(n) := (0, ... ,0,1), and 

6~:= {x [x = (XI, ... ,xn) E Rn, Xl ~ X2 ~ ... ~ Xn}, 

is the cone of vectors X = (Xl, ... ,Xn ) with monotone coordinates. 
All we need now is the estimate 

( + ( - n) I ) 1 
dm Sp E ,6+ l~ ~ 8"' m+ 1< n, 1 ~ p ~ q ~ 00, (40) 

which readily follows from 

Lemma 4.2 Let nE N, n > 1 and denote 8B''l := {x I X ERn, Ilxllli ~ 8}. Then 
for any 8*,8* > 0 one has 

From (38) through (40) we obtain 

d ( Al wr Al L) > _r+ l _ l 
n U+ p ,U+ q L q _ cn p q, 

where c = c(r,p, q). 
The proof of lower bounds for convex functions in Theorem 3.3 is similar. We 

construct a system <l>~,p := {Jr,n,p,i(' )}f=l of convex functions Jr,n,p,i(')' such that 
the positive p-sector over this system, S: (<l>~,p) ~ 6~ W;. Hence 

dn-2(6~ W;, 6~Lq)Lq ~ dn-2(S:(<l>~,p), 6~Lq)Lq' 

Using a discretization operator we show 

( 41) 

where S: (i~;n) is the positive p-sector in IRn over the system jj;" := {e(i) };~1 of 
vectors e(J) := (1,2, ... , n), e(2) := (0,1, ... , n - 1), ... , e(lI) := (0, .... 0,1), and 

6~ := {:r = (:r I:r = (:1:1 ....• :1:11 ) E IRn. :r2 - :1"1 :s; ... :s; :J: n - .rn-t} , 
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is the cone of vectors x (Xl, ... , X n ) with convex coordinates. It follows by 
Lemma 4.2 that 

m+ 1< n, 1 ::; p ::; q ::; 00, 

which together with (41), (42) implies 

d ( A 2 Wr A 2 L) > ~r+ 1. ~ 1. 
n Ll.+ p ,Ll.+ q L q _ cn p q, 

where c = c(r, p, q). o 
Proof of Theorem 3.4. For the upper bounds we require the following lemma 
which is interesting in its own right (see [5]). 

Lemma 4.3 Let X E C2 [a, b], be 3-monotone, and for m E N, set ti = tm.i := 

a + im ~ 11 JI, i = 0, 1, ... ,m, where J := [a, b]. Then there exists a 3-monotone 
quadratic spline 0"2. rn (x; .) with knots t i , i = 1, ... , m - 1, such that 

x"(ti~d ::; O"~.rn(x; t) ::; X"(ti), t E (ti~l, ti), i = 1, ... , m, 

and 
3 

Ilx(,) - 0"2.rn(X; ·)IIL=(J) ::; 2m~21112w(x"; m~lIJI), 

7 
Ilx'(.) - O";,rn(x; ·)IILoo(J) ::; 2m~1IJlw(x"; m--lIJI), 

and 
Ilx"(.) - O"~,m(x; ·)IILoo(J) ::; w(x";m~llJl)· 

Here w(x; h) is the ordinary modulus of continuity of x. 

In particular we have 

Corollary. Let x be 3-monotone and assume that xE W;, 1 ::; p::; 00. For mE N, 
let t i , i = 0, 1, ... ,m, as in Lemma 4.3. Then there exists a 3-monotone quadratic 
spline 0"2.m(X;·) with knots ti, i = 1, ... , m - 1, such that 

and 

and 

x"(ti~d::; O"~,m(x;t)::; x"(ti ), t E (ti~l,ti), i = 1,. .. ,m, 

Ilx(,) - 0"2.m (x; ·)IIL=(J) ::; ~m~3+~ III3~~, 

Ilx'(-) - O";.mCr: ·)IIL=(J) ::; ;m~2+~ IJI2~t, 
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Given x E ~+W;(I), 3 ::; 8 ::; r, we then construct a spline ar,n(x(s-3);.) 
with ):;: n equidistant knots, which is 3-monotone and approximate weIl X(s-3) 

Il x(s-3)(.) - a (x(s-3). ')11 < cn,-r+s+i-3 r,n ,Loo(I) - , 

where c = c(r, 8,p). Then by 8-3 integrations and appropriate corrections yield an 
8-monotone spline ar,n(x; .), which is dose enough to x. Thus proving the required 
upper bounds. 

In order to prove the lower bounds, we construct a coIlection of functions 
{7jJr,s,n,iH~1 from ~+W;(I), that behave very much like the truncated powers of 
degree 8 -1, such that the distance of any linear manifold Mn in LI (I), to at least 
one of them is no better than cn -r+s+ t -3. To this end we have estimates from 
below on the distance of the (8 - 1 )st derivatives are from the same derivatives of 
arbitrary elements of the manifold, and we need to translate it to distance between 
from the functions themselves. Instead, we replace the functions by the truncated 
powers and apply the foIlowing lemma which is again interesting in its own right. 

Lemma 4.4 For TE lR, b> 0 denote 

Xs,T,b(t) := ;(t - T)~, tE lR, 8 E N. 
8. 

Let 8 > 1 and 7jJ E es [T - a, T + a], a > 0, and assume that 7jJ(s) is nondecreasing 
andO::;7jJ(s)(t)::;b, in [T-a,T+a]. Then, if 

Ilx~~~,b - 7jJ(s) IILl[T-a,T+a] 2': A, 

where 0 < A ::; ab, then 

11 0/'11 > 2-82_48-3 8- l b- I A 2 Xs,T,b - 'f/ Ll[T-a,T+a] _ a . 

Note that since we apply Lemma 4.4 for the (8 - l)st derivative we must have 
s -1 > 1, i.e., s 2': 3. This is the main reason why the case s 2': 3 behaves so much 
different than the case 1 ::; s ::; 2. D 
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On Approximation Methods 
by U sing Orthogonal Polynomial Expansions 

Rupert Lasser, Detlef H. Mache & Josef Obermaier 

1 Introduction and basic facts 

The following investigations start from a general point of view. Therefore let 
(Pn)nENo be an orthogonal polynomial sequence (OPS) on the realline with re
spect to a probability measure 7r with compact support Sand card(S) = 00. The 
polynomials Pn are assumed to be real valued with deg(Pn ) = n. 
Then the sequence (Pn)nENo satisfies a three term recurrence relation of the fol
lowing type 

with Po (x) = qo and P1 (x) = qo (x - bo) / ao, where the coefficients are real numbers 
with ClqO > 0, cnan-l > 0, n > 1, and (cnan-dnEN' (bn)nEN are bounded 
sequences. On the contrary, if we define (Pn)nENo by (1) we get an OPS with the 
assumed properties, see [3]. 
With 

the corresponding orthonormal polynomials are given by Pn(x) 
By the Christoffel-Darboux formula, see [3], we have 

(2) 
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For fELl (S, 11') one may form orthogonal expansion with respect to the 
OPS by 

00 

f "" L j(k)Pkh(k), (4) 
k=O 

where the Fourier coefficients are defined by 

j(k) = fs f(X)Pk(X) d1l'(x) =< f, Pk > . (5) 

In this paper we will focus on weighted expansions 

n 

L an,kj(k)Pkh(k), n ----> 00, (6) 
k=O 

and study convergence properties in various norms, e.g. for 1 ::; p < 00 the Lp-norm 
when f E L p (S,1I') ~ L l (S,1I') or for p = 00 the sup-norm when f E C(S). 

For essential parts of our investigations we make the additional ass um pt ion 
that there exists a point Xo E S such that 

IPn(X) 1 ::; Pn(xo) = 1 for all xE S, nE No. (7) 

Property (7) implies that the coefficients in (1) fulfill qo = 1, ao + bo = Xo and 
an + bn + Cn = 1, n> O. 
If the linearization coefficients g in 

i+j 

PiPj = L g(i,j, k)Pk 
k=li-jl 

(8) 

are non-negative, then there exists a normalized version of (Pn)nENo with property 
(7). Those polynomials are associated with a so-called hypergroup structure on No 
and there exist a lot of examples which are well studied, see [6] and [1]. Further 
on we denote an OPS with property (7) by (Rn)nENo. 

2 Approximate identities 

Denote by B one of the Banach spaces C(S) or Lp(S, 11'), 1 ::; p < 00, with respect 
to the orthogonalization measure 11' and by 11 . 11 ß the actual norm. 
Let (an.k)O~n<oo,O~k~n be a triangular matrix of complex numbers. Then we define 
the generating polynomial An by 

n 

An(x) = L an.kh(k)Pk(x) (9) 
k=() 
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and call the sequence (An)nENo a kernel. We also may identify An with a continuous 
linear operator from B into B by 

(10) 

The weight coefficients an,k have to be chosen appropriately to guarantee concrete 
features of the approximation process. 
Before one go es into details let us give the following definition. 

Definition 2.1 We say that the sequence (An)nENo is an appmrimate identity with 
respect to B, if 

n 

}~ .. ~ IIAnf - filB = nl~~ II L an,kj(k)Pkh(k) - filB = 0 for alt fE B. (11) 
k=O 

The Banach-Steinhaus theorem yields necessary and sufficient conditions for 
(An)nENo to be an approximate identity, see [9]. 

Theorem 2.2 The sequence (An)nENo is an approximate identity with respect to B 
if and only if the foltowing two conditions hold. 

(i) limn->oo an,k = 1 for alt k E No. 

(ii) There exists a constant C > 0 with IIAnfllB :::; CllfliB for alt fE Band for 
alt nE No. 

In [9] it is also shown that (An)nENo is an approximate identity with respect 
to L 1 (8,7r) if and only if it is an approximate identity with respect to C(8). 
Moreover, if (An)nENo is an approximate identity with respect to C(8) then also 
with respect to L p (8, 7r), 1 < P < 00. Of course, the opposite direction is not true. 
For this reason one may focus on approximate identities with respect to C(8). 

Many classical approximation processes concerning trigonometrie polynomi
als are performed by a sequence of convolution operators, see [2] and [7]. In some 
special cases of algebraic polynomial systems, there also does exist a proper con
volution structure on C(8). 

Definition 2.3 If for alt x, y E 8 there exists a complex Borel measure J-Lx,y with 
IIJ-Lx.yll :::; M, where M > 0 is independent of x and y, such that 

(12) 

then we say that for the OPS (Pn)nENo a product formula holds. 
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If a product formula holds, then we are able to define a convolution on 
C(5) by 

cp * 1j;(y) = 1s 1s cp(x)1j;(z) dJ.Lx,y(z) d1f(x) = 1s 1s cp(z)1j;(x) dJ.Lx,y(z) d1f(x), (13) 

see [10], where cp * 1j; E C(5) and 

(14) 

Then the operator An acts as a convolution operator, that is 
n 

Anf = L an,kj(k)Pkh(k) = An * J. (15) 
k=O 

Now, by (14), the uniform boundedness of IIAnll l implies (ii) of Theorem 2.2. So 
one may derive great benefit from the existence of a convolution structure. 

3 Positive approximate identities 

The situation becomes more handsome, if we ass urne the operators An to be pos
itive. For the remainder of this section we suppose (Rn)nENo to be an OPS with 
property (7). 

Definition 3.1 An operator G from C(5) into C(5) is called positive, if f > 0 
implies Gf ~ O. 

In case of positive operators there is a simplification of Theorem 2.2. 

Theorem 3.2 Let (Rn)nENo be an OP5 with property (7) and (An)nENo be a se
quence of positive operators. 
Then (An)nENo is an approximate identity with respect to B if and only if the 
following two conditions hold. 

(ii) There exists a constant C > 0 with IIAnfllB :::; CllfllB for all fE Band far 
allnENo· 

Praof. Define by Ddx) = 2::7=0 Ri(x)h(i) the so-called Dirichlet kerne!. By the 
Christoffel-Darboux formula (3) and (7) we derive 

(1 - R 1 (x))Dk(x) = akh(k)(Rdx) - Rk+1 (x)), k ~ 1. 

Let x E 5. By (7) again it holds IDdx)1 :::; Ddxo) and therefore 

Ddxo) Dk(xo) 
-(1- R1(x)) laklh(k) :::; Rk(x) - Rk+l(X) :::; (1- R1(x)) laklh(k)' 

In case TL ~ m it is simple to deduce that AI/Rrn = an.mRm • 
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Henee, if n > k, then the stated positivity of the operators implies 

< 

With x = Xo we get 

Now eondition (i) yields limrHCXJ lan,k - an,k+ll = 0. 
By induetion we get limn~x an.k = 1 for all k E No and aeeording to Theorem 
2.2 the proof is eomplete. 0 

In ease of a product formula with eorresponding positive measures we may aehieve 
positive operators by a simple proeedure. 

Theorem 3.3 Let (Rn)nENo be an OPS with praperty (7) and suppose that a prad
uct formula holds, wher-e !1x,y is a positive measure for all x, y E 5. 
If the generating polynomials An are non-negative, i.e., An(x) ~ ° for all x E 5, 
then (An)nENo is a sequence of positive operators. 
Additionally, iflimn~CXJ an,o = limn~oo an,l = 1, then (An)nENo is an appraximate 
identity with respect to any B. 

Prao]. Sinee An(z) ~ ° on 5 and !1x,y ~ 0, the positivity of the operators is shown 
by Anf(Y) = Js Js An(z)f(x) !1x,y(z) 7f(x). Moreover, we have IIAnll l = an,O and 
therefore limn~= an,o = 1 implies the uniform boundedness of IIAnll l . Now, by 
(14) and Theorem 3.2, (An)nENo is an approximate identity with respeet to C(5) 
and aeeording to the re mark after Theorem 2.2 with respeet to any B. 0 

4 Local convergence behaviour of An 

At first we give a loeal error estimate for the approximation of functions f E B = 
L p (5) or C(5), 5 = [0,1], by Anf defined in (10). In the following we assurne that 
An is a positive linear operator with an,o = 1, i.e., that the operator An preserves 
constant functions (An Ro = 1). 

Let us note that the estimates in the following theorem will show that the 
order of approximation depends on the first weight eoeffieient an,l' To do this, 
reeall that the Lipsehitz type maximal funetion of order a introdueed by B. Lenze 
[11] is defined as 

f;;(x) sup 
tfex,tES 

lJ(x) - f(t)1 
Ix - tlD" 

xE 5, a E]O, 1]. 
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Then we have 

Theorem 4.1 There exists a constant 0 > 0 such that for each bounded function 
f E Band for alt x E 8 

I f(x) - (An!) (x) I $ 0 f;;(x) (max{lgl(X)I, Ig2(X)I}(1 - an,d) % , 

for a E J 0, 1 J by using the functions 

gl(X) := a6cl -(bo-x)(aob1 +(bo-x)) g2(X) := (bo-x)(aob1 +2(bo-x)). (16) 

Praof. For the sequence (Rn)nENo we have the recurrence relation (1) with property 
(7) 

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn-1(x), n;:::: 1, 

with Ro(x) = 1 and R1(x) = (x - bo)jao. By using the eigenstructure of An, i.e., 
AnRk = an,kRk and the known inequality 

If(t) - f(x)1 $ It - xl CT f;;(x), x,t E 8, 

for 0 < a $ 1, one obtains with An((t - X)2; x) = (1- an,2)gdx) + (1- an,dg2(X) 
and Hölder's inequality 

which concludes the proof. D 

At this point we mention that the constant 0 denotes a positive constant which 
can be different at each occurrence. 

Now if fE B := 0(8), für every xE 8, the k-th difference !:1~f(x) of f with 

the step hER, h -=1= 0 at the point x is given by !:1~ (x) := L~=o( _1)mH (!) f(x+ 
mh), provided that the arguments x + kh E 8. For the sake of brevity one sets 
!:1 h f(x) := !:1U(x) = f(x + h) - f(x). Now, if f : 8 -+ R is a bounded real 
function and if 5> 0, the k-th modulus of continuity wk(f; 5) of fis defined by 

wdf: 5) := sup 1!:1~f(x)l, 
Ihl:S;6,x,x+hES 

where für k = I we have the well-known modulus of continuity w(f 5) := Wl (f; 5). 

Now one can fürmulatc the following 

Theorem 4.2 (Local Direct Results) 
FOT fE B := C(8). :2: E S. we haue 

I f(.1:) - (AnI) (.r) I $ Cw(f; VI - an.I! (17) 
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and further in addition with the second modulus 

I f(x) - (An!) (x) I :::; C (W2(f; Jl - an,l) 

+Ibo - xlJl - an,1 w(f; Jl - an,I)) , 
where C is a positive constant. 

(18) 

Proof. Following the known arguments in [13] and [16] we have that the method 
An defined as 

~ A ~ <f,Rk> 
(An!)(x) = L.....t an,kf(k)Rk(x)h(k) = L.....t an,k R R Rk(X) 

k=O k=O < k, k > 

satisfies the inequality 

I f(x) - (An!) (x) I :::; 2 w(f; An(lx - tl; x)), 

which proves (17). The second inequality (18) follows by the estimates used in [13], 
i.e., for h E (0,2] and x E S 

I f(x) - (An!) (x) I :::; (3 + ~2 An((t - x)2; X)) w2(f; h) 

2 
+hIAn(x - t; x)lw(f; h) 

< (3 + ~2 max{91(x),92(X)}(1 - an,I)) W2(f; h) 

2 
+hlbo - xl (1 - an,I) w(f; h). 

Therefore, with h = Jl - an,1 

I f(x) - (An!) (x) I < (3 + C)W2(f; Jl - an,t) 

+2lbo - xlJl- an,1 w(f; Jl - an,I), 

which proves (18). o 
With the first part of the above theorem we can prove the following equivalence 
result 

Theorem 4.3 (Local Characterization Result) 
Let An, be a positive linear operator defined as in (10). Under the assumption that 
1 - an,1 = O(n- 2 ) we have for fE B(S) and 0< er < 1 

I f(x) - (An!)(x) I < 

w(f; t) 

C(~r 

O(tO") 

(n E N) 

(t -+ 0) . 

Some approximation operators in a similar form like in (10) were investigated 
in [13] and [14]. 
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5 Examples of kernels 

Having in mind Theorem 3.3 let us now derive some important kerneis, whieh are 
associated with a sequenee of positive operators and investigate there eonvergenee 
behaviour. We also lay stress on the relationship to the eorresponding trigonomet
rie kerneis. 
The most outstanding examples of OPS are the Jaeobi polynomials (J~o,ß))nENo, 
a,ß> -1, whieh are orthogonal with respeet to (l-x)O(I+x)ßdx and normalized 
by J~o,ß) (1) = 1. They exaetly fit the eonditions of Theorem 3.3, if a 2:: ß and 

either a + ß 2:: 0 or ß 2:: -~, see [4] and [6]. For Jaeobi polynomials (J~o,ß))nENo 
h (0,ß) _ 2(0+1) b(O,ß) _ ß-o (0,ß) _ (0+ß+2)(n+o+ß+1)(n+o+1) 

we ave a o - 0+ß+2' 0 - a+ß+2' an - (0+1)(2n+o+ß+1)(2n+o+ß) ' 

b(o,ß) _ o-ß (1 _ (0+ß)(0+ß+2) ) (0,ß) - (0+ß+2)n(n+ß d 
n - 2(0+1) (2n+o+ß)(2n+o+ß+2) ' Cn - (0+1)(2n+o+ß)(2n+o+ß+1) un 

h(o,ß)( ) - (2n+o+ß+1)r(ß+1)r(n+o+1)r(n+o+ß+1) > 1 
n - r(0+1)r(0+ß+2)r(n+1)r(n+ß+1) , n _ . 

Another example are the generalized Chebyshev polynomials (C~o,ß))nENo, a, ß > 
-1, whieh are orthogonal with respeet to (1 - x 2 )0IxI 2ß+1dx and normalized by 

C~0,ß)(1) = 1. If (a 2:: ß and a + ß > -1) or ß 2:: -~, then they are fitting our 
eonditions, too, see [5] and [6]. 

5.1 Fejer kernel 

In the trigonometrie ease the Fejer kernel (Fn)nENo is defined as (C,1)-series of 
the Dirichlet kernel (Dn)nENo by 

1 ~ ~ Ikl ikt Fn(t) = -- L.. Dk(t) = L.. (1 - --)e , 
n+1 n+1 k=O k=-n 

tE [0,27[[, (19) 

see [2, Sec. 1.2.2]. Moreover, in the even ease n = 2p we have the representation 

(20) 

Following the even trigonometrie ease we define a general Fejer kerne I (F2p )1'ENo 

for OPS (Rn)nENo by 

D~(x) 21' 
F2p (x) = -- = L CP2p,k Rdx )h(k), xE S, 

X21'.O k=O 
(21) 

where Dp(x) = 2:r=ü Rk(X)h(k), see [8] and [9]. The eoefficients X2p.k are uniquely 
defined by D~(x) = 2:~~o X2p.kRdx)h(k). More explicitly we get 

p P 

X2p,k = L L g(k,j,i)h(j). (22) 
j=ü;=lk-JI 
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Henee, the Fejer weights are determined by 

X2p,k L~=o L~=lk-)1 g(k, j, i)h(j) 
'P2p,k = -- = ,\,p h(') 

X2p,0 6)=0 J 

Obviously, our definition yields F2p (x) 2: 0 and 11F2Pli1 = 'P2p,0 = 1. 
In ease p 2: 1 we derive 

aph(p) 
'P2p,1 = 1 - ,\,P h(') . 

6)=0 J 

In [8] we have shown that limn-->oo cn/an-l = 1 implies limn-->oo 'P2p,1 = 1. 
For Jaeobi polynümial systems (J~a,ß))nENo we get 

(23) 

(24) 

p,(a,ß)(x)= f(p+0:+ß+2)f(ß+1)f(p+0:+2) (J(a+l,ß)(x)f (25) 
2p f(o: + ß + 2)f(p + ß + 1)[(0: + 2)f(p + 1) p 

and 
-1- 0:+ß+2 

'P2p.l - 2p + 0: + ß + 2 (26) 

Thus 1- 'P2p,1 = O(p-l). 

Espeeially for Chebyshev polynomials of the first kind (0: = ß = -1/2) our Fejer 
kernel coineides with the trigonometrie one and für Chebyshev polynomials üf the 
seeond kind (0: = ß = 1/2) the weights are given by 

{

I _ q(1+q)(6p2+18p+13-2q-2q2) 
(1+2q)(1+p)(2+p) (3+2p) if k = 2q, 

'P2p,k = 
1 _ (Hq)( 3p2+6+9p-2q- q2) 

(Hp)(2+p)(3+2p) if k = 2q + 1. 

5.2 Fejer-Korovkin kernel 

In the trigonometrie ease the Fejer-Korovkin kernel (F Kn)nENo is defined by 

( ) _ 2sin2 (1T/(n + 2)) ( eos((n + 2)t/2) )2 
F K n t - (/( )) , n + 2 eos t - eos 71' n + 2 

t E [0,271'[, 

see [2, Sec. 1.6.1]. By substitution x = eost we get 

sin2 (1T/(n + 2)) 1 + Tn +2 (x) 
n + 2 (x - eos(1T/(n + 2)))2' 

(27) 

(28) 

(29) 

where Tn(x) = eos(nareeosx) are the Chebyshev polynomials of the first kind. 
Whereas in the even ease n = 2p we aehieve 

sin2 (71'/(2(p+ 1))) ( Tp+1(x) )2 
p+1 x-eos(1T/(2(p+1))) 

(30) 
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Following the even case we define a general Fejer-Korovkin kernel (F2p)PENo for 
OPS (Rn)nENo by 

xE S, (31) 

where Zp+l is that zero of Rp+l, which is as dose to Xo as possible. 

The coefficients X2p,k are uniquely defined by (~~~~~: f = L~~o X2p,k Rk(X)h(k). 
It holds 

The Fejer-Korovkin weights are given by 

Obviously, our definition yields FK2p(x) ~ 0 and IIFK2P li1 = K2p,O = 1. 
In case p ~ 1 we derive 

Since it is weH known that limp--->oo zp = Xo we get limp--->oo K2p,1 = 1. 

(34) 

For Jacobi polynomial systems (J~a,ß) )nENo we also define kernel polynomials of 
odd degree by 

( )

2 
J(~,ß+r)(x) 

FK(a,ß)(x) = "V(a,ß) (x + l)r h-J+1 
n In (a,ß+r) , 

X-ZL~J+1 

(35) 

where r = n mod 2, zt~'f:;-) is that zero of J~i'f:1r) which is as dose to 1 as 
possible, 

l-r (J(u,ß+r)( (a,ß+r))h(a,(Hr)(l'"'J + 1) (n,{1+r) (n,ß+r))2 
(a,ß) _ (O'+ß+2) L~J+2 zL~J+1 2 ao aL~J+1 

In - 2(ß + 1) ",L ~ J h(n,ß+r) (J') (f a ,{1+r) (z(u,ß+r)))2 
~J=O J L~J+l 

and 
(<>,(3) _ J(u,ß) ( (a,(J+r)) _ 1 _ 0' + ß + 2 (1 _ (nß+r)) 

K n ,l - 1 ZL~J+l - 2(0' + 1) ZL~J+l' (36) 

This kernel is also known as general Jacobi kernel. It hülds 1 - K;,~/,) = O(n-2), 
which für positive kernels is the best achievable rate of cünvergence, see [16], 
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Especially for Chebyshev polynomials ofthe first kind (0: = ß = -1/2) our Fejer
Korovkin kernel coincides with the well-known kernel (29) and we have 

(_!,_l) n - k + 2 k7r cos(7r/(n + 2)) . k7r (37) 
K 2 - cos-- + Slll--. 

n,k n+2 n+2 (n+2)sin(7r/(n+2)) n+2 

For Chebyshev polynomials of the first kind we may also define a nearby Fejer

Korovkin kernel (NFK~-!'-!))nENo by 

NFK~-!'-!\x) = cos n k; 2FK~-!'-!\x) = 1 + 2 tl/~~}'-!)Tk(X), (38) 
k=l 

with l/( -k!'-!) = COS k+7r2 K( -k!'-!). Of course, this nearby Fejer-Korovkin kernel is 
n , n n, 

also a positive approximate identity and 1 - l/~~1!'-!) = sin2 n~2 = O(n-2). 

5.3 De la ValIee-Poussin kernel 

For trigonometric polynomials the de la Vallee-Poussin kernel (Vn)nENo is defined 
by 

n (n!)2 n 
Vn(t) = 1 + LVn.kCOskt = -( ),(cost+ 1) , 

2n . 
k=l 

(n!)2 
Vn,k = (n _ k)!(n + k)!' (39) 

tE [-7r, 7r), see [2, Sec. 2.5.2]. We are able to give the definition of a general de la 
Vallee-Poussin kernel for OPS (R,,)nENo, see [18], where the assumptions on the 
coefficients in (1) are changed slightly. 
Let us fix s = - minxEs R 1(x) > O. The de la Vallee-Poussin kernel (Vn)nENo and 
the de la Vallee-Poussin weights Vn,k are defined by 

( 40) 

where the coefficients Xn,k are uniquely determined by 

n 

(R1(x) + s)n = L Xn,kRk(X)h(k). 
k=O 

If we define the coefficients bi .j by 

00 

(41) 
j=O j=O 
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",n (n) n-io 1 
Xn,k ui=O i S i,k 

V n k = - = ",n (n) . J: h(k) . 
, Xn,O ui=O i Sn-'Ui,O 

(42) 

Obviously, our definition yields Vn(x) ~ 0, x E Sand IlVnlh = vn,o = l. 
Moreover, if in the non-symmetrie ease, i.e., :Jn E N : bn i- 0, holds 
limi-+oo 0H1,O/Oi,O = 1 and in the symmetrie ease, i.e., "in E N : bn = 0, holds 
limi-+oo 02H2,O/02i,O = 1, then limn -+oo V n ,l = l. 
Espeeially for Jaeobi polynomials we have 

v, (x) = ~ v R (x)h(k) = r(ß + l)f(n + a + ß + 2) (1 + x)n (43) 
n L n,k k r(n+ß+1)r(a+ß+2) 2 

k=O 

with de la Vallee Poussin weights 

n!r(n + a + ß + 2) 
Vn,k= (n-k)!r(n+k+a+ß+2) (44) 

Th 1 - a+ß+2 - O( -1) 
US - V n ,l - n+a+ß+2 - n . 
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Curious q-Series as Counterexamples 
in Pade Approximation 

D.S. Lubinsky 

Abstract 

Basic hypergeometric, or q-series, are usually investigated when Iql < 1. Less 
common is the case Iql > 1, and the case where q is on the unit circle is 
extremely rare. It is the latter curious, exotic, choice of q that has yielded a 
nu mb er of interesting examples and counterexamples in Pade approximation, 
including a counterexample to the Baker-Gammel-Wills Conjecture. We sur
vey some of these, and also pose a number of problems involving q-series for 
q on the unit circle. 

1 Introduction 

Let 
CXJ 

j(z) = :LajZj 

j=O 

(1) 

be a formal power series, with complex coefficients. Given integers m, n ~ 0, the 
(m, n) Pade approximant to j is a rational function 

[m/n] = P/Q 

where P, Q are polynomials of degree at most m, n respectively, such that Q is not 
identically 0, and such that 

(fQ - P) (z) = 0 (zm+n+1). 

By this last relation, we mean that the coefficients of 1, Z, z2, ... , zm+n in the 
formal power series on the left-hand side vanish. The basic idea is that [m/n] is 
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a rational function with given upper bounds on its numerator and denominator 
degrees, chosen in such a way that its Maclaurin series reproduces as many terms 
as possible in the power series f. It is not difficult to see that [m/n] exists and is 
unique. 

Because there are two parameters m and n, it is natural to form the array or 
Pade table 

[0/0] 
[1/0] 
[2/0] 
[3/0] 

[0/1] 
[1/1] 
[2/1] 
[3/1] 

[0/2] 
[1/2] 
[2/2] 
[3/2] 

[0/3] 
[1/3] 
[2/3] 
[3/3] 

and then to investigate convergence of sequences of approximants as we traverse 
some path in the table. 

The path traversed has a dramatic effect on the convergence properties of 
the sequence. For example, the first column {[m/O]}:=l is not hing more than the 
sequence of partial sums of the MacLaurin series: 

m 

[m/O] (z) = I>jzj. 
j=O 

So the first column has the convergence properties of a Taylor series. 
What about the nth column, where n :::: I? Here [m/n] is a rational function 

with at most n poles, so cannot be expected to approximate as m ----; 00, a function 
with more than n poles. That it does approximate functions with exactly n poles 
is the de Montessus de Ballore theorem, the oldest and one of the most widely 
applied convergence results on Pade approximation. Here is the simplest form of 
the theorem [6, p. 282]: 

Theorem 1.1 (De Montessus de Ballore's Theorem) Let f be analytic at 0 and in 
the unit ball U = {z: Izl < I}, except for poles of total multiplicity n. Then 

!im [m/n](z) = f (z), 
rn---+CX) 

uniformly in compact subsets of the unit ball omitting poles of f. 

Wh at happens if we try to approximate a function f with < n poles in U, 
using the sequence {[m/n]} :=1? Because the approximants have "extra" poles, 
so me of those extra poles do not know where to go. In this case, the sequence may 
converge or diverge. This is a whole topic on its own, the so-called "intermediate 
rows." See [29]. 

Even when the full sequence {[m/n]}:=l does not converge in this interme
diate row case, is it possible that a subsequence converges? A. Beardon proved this 
true for the case n = 1, but G. Baker and P. Graves-Morris observed that a sub
sequence often converges for anyn. They obtained partial results and formulated 
a general conjecture [5]: 
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Conjecture 1.2 (Baker-Graves-Morris Conjecture) Let J be analytic at 0 and in 
the unit ball U = {z : Izl < I}, except Jor poles oJ total multiplicity i! < n. Then 
there exists an increasing sequence S oJ positive integers such that 

lim [m/n] (z) = J (z), 
m->oo 
mES 

uniJormly in compact subsets oJ the unit ball omitting poles oJ J. 

The conjecture was finally resolved by Buslaev, Goncar and Suetin [8], after 
the efforts of many authors. They showed that there is a function analytic in 
the unit ball for which the conjecture is false for n = 2. Nevertheless, they did 
prove that there is a constant IJn > 0, independent of the function, such that some 
subsequence converges in {z : Izl < IJn } away from the poles. Using scale invariance 
of Pade approximants, they deduced that the Baker-Graves-Morris Conjecture is 
true for functions meromorphic in the whole plane, with less than n poles there. 

In the next section, we shall discuss how the partial theta function 

CXJ L qj(j-l)/2 zj 

j=O 

gives an example of a function for which the Baker-Graves-Morris Conjecture fails 
for every n ::::: 2. 

Traversing a diagonal seems to be the next natural case to study. In fact, 
surely [n/n] should be the "best" Pade approximant, as it makes full use of its 
rational nature? The convergence nature of the diagonal sequence is complicated 
and not yet fully understood. There are power series J with zero radius of con
vergence, for which [n/n] (z) converges as n ---> 00 to a function single valued and 
analytic in the cut-plane C\[O, (0). On the other hand, Hans Wallin constructed 
in the early 1970's [33] an entire function J for which 

limsup 1 [n/n] (z)1 = 00 
n->oo 

for all z E C\ {O}. The problem in Wallin's example is that each point in the 
plane is a limit point of poles of {[n/n]} ~=l' These poles are called spurious poles, 
because they do not reflect the analytic properties of the underlying function. 

About the same time, John Nuttall made a seminal discovery: the spurious 
poles only affect a small area. More precisely, he proved [25]: 

Theorem 1.3 (Nuttall's Theorem) Let J be analytic at 0 and meromorphic in C. 
Then {[n/n]}~=l converges in measure to J in compact subsets oJ the plane. More 
precisely, let r, E > 0 and meas denote the planar Lebesgue measure. Then 

meas {z: Izl :s: rand If - [n/n] 1 (z) > E} ---> 0, n ---> 00. 
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Subsequently Pommerenke [27] showed that one may replace e by en , planar 
measure by logarithmic capacity, and allow I to have singularities of logarithmic 
capacity O. In particular I, can have essential singularities - but not branchpoints. 
There are far deeper analogues of the Nuttall-Pommerenke theorem for functions 
with branchpoints, due to H. Stahl [30], [31]. In essence, the branchpoints de
termine a so-called extremal set in the plane and the approximants converge in 
capacity inside that extremal set. 

For functions meromorphic only in U, there is no analogue of the N uttall
Pommerenke theorem: {[n/n]}::l need not converge in measure or capacity in 
any open set within U [20], [28]. Nevertheless, there are still attempts to make 
some positive statement in this case [22]. 

Even these brief remarks convey to the reader the complexity of the con
vergence theory, due to spurious poles. Despite this inherent problem, George 
Baker and his collaborators found Pade approximants to be an invaluable tool in 
analysing singularities of series in a variety of physical problems. They also noted 
that in the situations where spurious poles did arise, it nevertheless affected only a 
subsequence of approximants. This led them to formulate a now famous conjecture 
[3], [4]. We shall concentrate on the following form of it: 

Conjecture 1.4 (Baker-Gammel-Wills Conjecture (1961)) Let I be meromorphic 
in the unit ball, and analytic at O. There is an infinite subsequence {[n/n]} nES 01 
the diagonal sequence {[n/n]} :=1 that converges unilormly in all compact subsets 
01 the unit ball omitting poles 01 I. 

The conjecture was generally disbelieved from the early 1970's, at least in the 
above form. It was thought to be possibly true for entire functions, or functions 
meromorphic in the whole plane. While the latter is still unresolved, the author 
recently proved a counterexample to the stated form of the Baker-Gammel-Wills 
Conjecture. For q not a root of unity, let 

00 ·2 L ql . 
G (z)'= Zl 

q • j=O (1 - q) (1 - q2) ... (1 - qj) 

denote the Rogers-Ramanujan function. Moreover, let 

Hq (z) := Gq (z) /Gq (qz). 

For appropriate q on the unit circle, the author showed [23] that H q provides a 
counterexample. This is discussed in Section 4. 

Of course, the comments above provide only a small glimpse into the Pade 
forest. For various perspectives on the convergence theory, including the important 
converse results of the Russian school, see [15], [21], [32], [34]. 

This paper is organised as follows: in Section 2, we discuss the partial theta 
function. In Section 3, we discuss the work of K. Driver on Wynn's series. In Sec
tion 4, we discuss the Rogers-Ramanujan continued fraction. Finally in Section 5, 
we discuss a number of unresolved quest ions and problems that we believe are 
worthwhile. 
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2 The partial theta function 

Basic hypergeometrie, or q-series, is a vast topic [1], [13], [14] and I cannot pretend 
that I am competent to survey even parts of it. Essentially, I am a user of a tiny 
part of the theory. My own interest began when the Rogers-Szegö polynomials 
turned up in describing the behaviour of [m/n] with m ----; 00 and n fixed, when 
the coefficients of the underlying power series f are "smooth." Let us recall some 
of q-notation: for n ~ j ~ 0, the Gaussian binomial coefficient is 

[ 
n] (1- qn) (1- qn-l) (1- qn-2) ... (l_ qn-J+l) 
j - (l-qj)(I-qj-l)(l-qj-2) ... (1_q) . 

Here if q is a root of unity, it must be interpreted in a limiting sense. In particular, 
as q ----; 1, 

The Rogers-Szegö polynomial of degree n is 

Yn (z) = t [ ~ ] zj. 
j=O J 

It is closely related to polynomials appearing in the q-binomial theorem, which 
has the form 

Tin (z) = ~ [ ; ] qj(J+l)/2 z j = D (1 + qjz). 

The Rogers-Szegö polynomial Yn also turns up in the Pade denominators for the 
partial theta function 

00 

hq (z) = Lqj(j-l)/2 z j . 
j=O 

These functions bear this name because they are essentially part of the theta 
function 

(Xl 

L qj2 zj. 
j=-oc 

The partial theta function satisfies a very simple functional relation, namely, 

zhq (qz) = hq (z) - 1. 

The following identity was established by amongst others, Wynn [35]. 

Lemma 2.1 Let n ~ 1 and let q not be a j th raot of unity for 1 ::; j ::; n. Let 
m ~ n - 1 and let [rn/n] = Pmn/Qmn denote the (m, n) Pade approximant for h q , 

normalized by Qmn (0) = l. Then 
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One proof is given in [24, p. 354 ff.]. In particular when Iql = 1, this lemma 
implies that if we fix n, and let m increase to 00, all the zeroes of Qmn will lie 
on circles centre 0 that contain a zero of the fixed polynomial 9n. Even more, if 
q is not a root of unity, {qm} :=1 is dense on the unit circle, and so the zeroes of 
{Qmn} :=1 will have as their limit points precisely the circles centre 0 containing 
zeroes of 9n. 

This suggests a possible counterexample to the Baker-Graves-Morris Conjec
ture: if Iql = 1, then hq is analytic inside the unit ball. If for some Iql = 1, 9n has a 
zero, a say, inside the unit ball, then every [m/n] with m ;:::: n - 1 will have a pole 
on the circle {z : Izl = a}, and so no subsequence of {[m/n]}:=1 can converge to 
hq uniformly in all compact subsets of the unit ball. It turns out that for all such 
q and for every n ;:::: 2, 9n has such a zero a, and so hq provides a counterexample 
to the Baker-Graves-Morris Conjecture for every n ;:::: 2 [24]: 

Theorem 2.2 Let Iql = 1 and q not be a root of unity. Then for n ;:::: 2, 9n has at 
least one zero in the unit ball. Consequently, there does not exist a subsequence of 
{[m/n]} :=1 that converges to hq uniformly in all compact subsets of the unit ball. 

We remind the reader, as mentioned in the previous section, that this was 
not the first counterexample. The first was given by Buslaev, Gonear, and Suetin 
[8]. They showed that the function 

1 + 21/ 3 Z 
f (z) = 1 _ z3 

has no subsequence of {[m/2]}:=1 converging uniformly in {z: Izl:::; 2- 1/ 3 }. We 
also recall that they did show that a subsequence converges in some ball centre 0, 
with the radius being independent of the underlying function. 

Where is the smallest zero of 9n? Using numerical computation, we showed 
[24] that for n = 2, there exists a q such that 92 has a zero with absolute value 
0.58 ... and that this is smallest possible as q ranges over the unit circle. As 
n increases, the size of the smallest zero of 9n as q ranges over the unit circle 
decreases, and reaches 0.24 ... for n = 17. 

This suggests an interesting problem, when taken in conjunction with Bus
laev-Goncar-Suetin's positive result: 

Problem 2.3 Let f be analytic in U and n ;:::: 2. Let an (I) denote the radius of 
the largest disc centre 0 for which same subsequence of {[m/n]} ~=l converges 
uniformly in each compact subset of that disco Compute 

a~ := inf {an (I) : f analytic in U} . 

The only known lower bound for a~ is due to Buslaev, Goncar and Suetin. 
From the examples mentioned above, we know 

a; :::; 0.58 ... 
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and 
a; 7 ::; 0.24 ... 

There has been virtually no work on this problem, maybe because it is so difficult. 
But surely, it can be resolved for n = 2 for example? 

In actual fact, Ed Saff and the author were fishing for something far bigger 
with the partial-theta function: we had initially hoped that it would provide a 
counterexample to the Baker-Gammel-Wills Conjecture. As it turned out, for every 
q, the Baker-Gammel-Wills Conjecture is true for h q • In retrospect, I understand 
why it cannot provide a counterexample, and this is best explained using the 
concept of a continued fraction. 

Given a formal power series (1), we mayaiso formally write 

1+ .. 

or more compactly, 

where {Cj} are complex numbers, and {kj } are positive integers. This is called 
the C-fraction corresponding to f. In the case that all k j = 1 (a most desirable 
phenomenon), the C-fraction is said to be normal. 

Just as we define the value of an infinite series to be the limit of the sequence 
of partial sums (each of which is a truncation of the series), so we define the 
value of a continued fraction to be the limit of the sequence formed by successive 
truncations of it. For n ~ 1, let 

This is called the nth convergent of the continued fraction; it is a rational function 
of z. We define the value of the continued fraction to be 

lim /Ln (z), 
n----too l/n 

if this limit exists. 
There is a dose relationship between continued fractions and Pade approx

imants [19]. In particular, in the normal case, where all k j = 1, the sequence of 
convergents {/Ln/lIn} :'=1 comprises the main diagonal {[n/n]} :'=1 and the super
diagonal {[n + l/n]} :'=1. Thus we can use continued fraction techniques to study 
Pade approximants, and conversely, Pade methods give some insight into continued 
fractions. 
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For the partial theta nmction hq , the continued fraction has the form 

z 1 -qz 1 q(l - q)z 1 _q3z 1 q2(1 - q2)z 1 
h (z)=l+-+--+ +--+ + ... 

q 11 11 1 1 1 1 1 1 

So the continued fraction is normal. For Iql = 1, we see that the coefficients of z are 
bounded in absolute value by 2. An old theorem ofWorpitzky [19] then ensures that 
the continued fraction converges at least for Izl :::; ~. However, the coefficients are 
also oscillatory, some taking the form _qn and others taking the form qn (1 _ qn), 
n 2: 1. This prevents application of standard convergence theorems for continued 
fractions beyond the range of z covered by Worpitzky's theorem. It also suggests 
that convergence of the full sequence of convergents, throughout the unit ball U, 
may not take place. 

Indeed, for a given q, let !::1q denote the inf of the absolute values of the zero es 
of On, so that 

!::1q = inf {Izl : On (z) = 0, some n 2: I}. 

We know that !::1q < 1. It was shown in [24] that the continued fraction converges in 
{z : Izl < !::1q } but not in any larger disko Nevertheless, as Ed Saff and I found to our 
disappointment, some subsequence of the convergents does converge throughout 
the unit ball to hq , and then (with a little more work) also some subsequence of 
{[n/n]}~=l' That subsequence corresponded to an infinite sequence S ofintegers 
for which 

qn --+ 1, n --+ 00, n ES. (2) 

For this subsequence the coefficients 

which was sufficient to guarantee convergence. In retrospect, it should not be 
surprising that such a subsequence yields good convergents: recall the theorem 
that when the full sequence of continued fraction coefficients converges to 0, the 
continued fraction converges to a meromorphic function in the whole complex 
plane (except at the poles). 

There were many other fascinating features of the partial theta function, and 
of its Pade approximants. But undoubtedly the most significant is that for each 
Iql = 1 with q not a root of unity, hq provides a counterexample to the Baker
Graves-Morris Conjecture for every n 2: 2. 

3 Wynn's series 

While the Pade approximants for the partial theta function failed to provide a 
counterexample to the Baker-Gammel-Wills Conjecture, their curious and irregu
lar behaviour sugge8ted that a counterexample might weil be found in some elose 
cousin. Certainly it seems a good idea to use formulas for q-series not in the u8ual 
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setting, namely Iql < 1, but in the exotic domain Iql = 1, with the hope that 
something truly pathological might arise. 

Of course one needs explicit formulas if any analysis is to be possible, and it 
was the 1967 work of P. Wynn [35] that suggested the next candidates for study. 
To some extent, Wynn's work overlapped with earlier work of Heine, Balk, Gragg. 
In that paper, Wynn considered three classes of series. 

(I) 

in the language of basic hypergeometric series. Here A, q E C, a E Rand we 
assume that 

A -=I- qk+c>, k:::: 0, (3) 

so that the series does not terminate. The functional relation is [10] 

h (z) (1 - zA) = 1 - h (qz) zqC>. 

Note that if A = a = 0, h reduces essentially to the partial theta function. 

(11) 

where C, q E C, '"'( E Rand we assume that 

(4) 

The functional relation is [11] 

12 (z) (C - z) = C - q'Y- 1 + q'Y- 1 h (qz). 

(III) j,(z) ~ ~ [g (~=::::) 1 z' 

_ <p ( A-1qQ,q;q,AC-1z ) 
- 2 1 C-1q'Y ' 

where A, C, q E C; a, '"'( E Rand we assume that (3) and (4) hold. The functional 
relation is [12] 

h (z) (C - zA) = C - q'Y-1 + h (qz) (q'Y- 1 - zqQ) . 
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In all three cases, the functional relation is a useful tool in investigating the 
analytic properties of the function. Let us look at h. In her thesis, K.A. Driver [9] 
proved, amongst other things, the following: let A, C i= 0, lAI, ICI i= 1, let Iql = 1 
and q not be a root of unity. Then h has radius of convergence 

R = [max {l, lAI} min {I, ICI-1}] -1, 

and if 
C i= Aql'-<>+j, j = 0,1,2, ... , 

h has a natural boundary on its circle of convergence. (lf this last condition fails, 
h is a rational function.) The continued fraction has the form 

where 

and 
_qn-1 (A _ qn+<» (C _ qn+I'-1) 

C -----;--=---''-;,--=-:-:--:-'~--;;--.,-----__=--'--2n - (C _ q2n+I'-1) (C _ q2n+I'-2) . 

A detailed analysis was provided of the continued fraction. In particular, Driver 
proved that the fuH sequence of convergents (and hence {[n/n]}~=1) converges 
in measure and in capacity in compact subsets of {z : Izl < R}. Moreover, some 
subsequence does converge uniformly in compact subsets of that ball. In fact such 
a subsequence corresponds to the infinite sequence of integers S satisfying (2), just 
as for the partial theta function. 

Thus again hopes of a counterexample to the Baker-Gammel-Wills Conjec
ture dissipated, although there were a host of other interesting features. 

4 The Rogers-Ramanujan continued fraction 

For q not a root of unity, let 

00 -2 qJ _ 
G q (z) : = " ( ) ( 2) ( ) zJ L 1 - q 1 - q ... 1 - qJ 

)=0 

denote the Rogers-Ramanujan function. (At this stage, it is a formal power series.) 
It admits the functional relation 
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Moreover, let 
Hq (z) := Gq (z) /Gq (qz). 

From the functional relation for Gq , it is easy to derive one for Hq : 

Iterating this leads to 

qz 
H q (z) = 1 + ---""02--

1 + _---'q"--"z __ 

and hence to the formal infinite continued fraction 

119 

(5) 

(6) 

For Iql < 1, the continued fraction was considered independently by L.J. Rogers 
and S. Ramanujan in the early part of the twentieth century. 

There are several differences between the Rogers-Ramanujan continued frac
tion (c.f.), and those from Wynn's series. Firstly, if Iql = 1, all the coefficients in 
the Rogers-Ramanujan c.f. have modulus 1, whereas a subsequence of the coeffi
cients in the c.f. for Wynn's se ries converges to O. Moreover the latter subsequence 
is associated with a subsequence of the convergents to the c.f. that converges 
throughout the region of analyticity. This already suggests that there may not be 
a uniformly convergent subsequence of the convergents for the Rogers-Ramanujan 
c.f. Secondly, in the case where q is a root of unity, all of the Wynn's series reduce 
to rational functions, while the Rogers-Ramanujan c.f. corresponds to a function 
with branchpoints. 

We see that the radius of convergence of Gq is 

j-1 

R(q) := liminf 1 rr (1 - qk) 11/j . 
]---+CXJ 

k=ü 

It was essentially proved in [16] that 

R ( q) = lim inf 11 _ qj 11 fj . 
J->OC 

If we write q = e27rir , this is readily reformulated in terms of the diophantine 
approximation properties of T. Since 11 - qj 1 = 2Isin[n(j T - k)]1 for any integer 
k, we see that 

R( q) = lim inf IljTl1 1fj , 
J->OO 
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where IIxll denotes the distance from x to the nearest integer. In particular, eIe
mentary diophantine approximation theory shows that for a.e. q on the unit circle, 
R(q) = 1. 

U sing the functional relation, one can show that G q has a natural boundary 
on its circle of convergence. Then Hq is meromorphic inside this ball. One can also 
show that Hq has a natural boundary on its circle of meromorphy, that is on the 
largest circle centre 0, inside which it is meromorphic. This does not follow from 
the fact that Gq has a natural boundary on {z : Izl = R(q)}, and must be proved 
independently from the functional relation for H q . 

Far more curious, is the fact that the natural boundary of Hq need not 
coincide with that of Gq : somehow in the division in (5), the natural boundary of 
Gq "cancels out" [23]: 

Theorem 4.1 Let 0< a < ~. Then there exists Iql = 1, with q not a root 0/ unity, 
such that G q is analytic in {z : Iz I < a} and has a natural boundary on {z : I z I = a}. 
However, i/ we define Hq by (5), then it may be continued meromorphically to 
{z: Izl < p}, where p ~ ~ > a. Thus Hq is meromorphic in {z : Izl < p}, and has 
a natural boundary on {z : Izl = p}. 

This is the first time that this author has seen a natural boundary cancel 
out: we are all familiar with poles that cancel, but natural boundaries? 

Problem 4.2 Explain this cancellation. 

This phenomenon is unusual. Indeed, for a.e. q on the unit circle, Gq is 
analytic in the unit ball U with natural boundary on the unit circle, and H q is 
meromorphic in the unit ball, with natural boundary on the unit circle. 

Proofs of the explicit formulae for the numerator and denominator polyno
mials f..Ln and I/n in the convergent 

were first published by M. Hirschorn in 1972 [17]: 

and 
[~l 

I/n(z) =f..Ln-l(qZ) = LzkqkCk+ll [n~k], 
k=O 

where [x] is the greatest integer::=; x. The author met Hirschhorn in Sydney in 
2000, and was intrigued by the story of these identities. Like so many other q
identities, they appearcd in not es of Ramanujan, but without proof. Moreover, 
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Hirschhorn was not aware of Ramanujan's not es at the time he wrote his papers 
- again a common occurrence. 

In describing the behaviour of {JLn} and {vn }, we need an elementary obser
vation from number theory: if q is not a root of unity, then {qn} ~=1 is dense on 
the unit circle, and one may extract a subsequence converging to an arbitrary ß 
on the unit circle. This helps to introduce our main convergence theorem for the 
convergents (recall that R(q) is the radius of convergence of G q ) : 

Theorem 4.3 Let Iql = 1, and q not be a raot of unity. Let IßI = 1 and S be any 
infinite sequence of positive integers with 

lim qn = ß. 
n----'J.oo,nES 

(7) 

Then uniformly in compact subsets of {z : Izl < R(q)}, 

lim JLn(z) = Gq(ßqz)Gq(z); 
n---+oo,nES 

(8) 

(9) 

and uniformly in compact subsets of {z : Izl < R(q)} omitting zeroes of Gq(ßqz) 
and Gq(qz), 

H (z) I"n(Z) 
1. q - !/n(Z) 
1m 

n--->CXJ,nES (-l)n zn+lq(n+l)(n+2)/2 

and so in such sets omitting these zeroes, 

1· JLn (z) - H ( ) Im (- q z . n--->oo,nES Vn z) 

The crucial point in the last line is that the convergence takes place away 
from the zero es of both Gq(z) and Gq(ßqz). The zeroes of Gq(ßqz) need not be 
poles of H q , and yet (9) shows that they attract poles ofthe convergents. Moreover, 

because IßI = 1, both G q (z) and Gq(ßqz) have the same number of zeroes on any 
circle centre 0, and this is true of every such ß. Hence: 

Corollary 4.4 Let Iql = 1, not a root of unity. Assume that r < R(q) and H q has 
poles of total multiplicity e on {z : 1 z 1 = r}. Let 0 be an open set containing 
this circle. Then there exists no such that for n ?: no, JLn/vn has poles of total 
multiplicity ?: 2e in O. 

This is the first such example in the literature, in which alt approximants 
of large order have more poles than the approximated function in a region of 
meromorphy. If we could show that there does not exist ß for which the zero 
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sets of Gq(qz) and Gq(ßqz) are the same, then it establishes a counterexample 
to the Baker-Gammel-Wills conjecture. For then, given any subsequence of the 
convergents, we can extract a further subsequence for which (7) holds for some ß; 
that subsequence cannot converge uniformly in a compact set containing zeroes of 
Gq (ßqz) that are not zeroes of Gq (z). 

A little thought shows that the zero sets of Gq(qz) and Gq(ßqz) are not the 
same for any IßI = 1, iff the zeroes of Gq are not symmetrie about any line through 
O. Thus: 

Corollary 4.5 Let Iql = 1, and q not be a root of unity. Assume that the zeroes 
of Gq inside its eircle of eonvergenee are not symmetrie about any line through O. 
Then Hq provides a eounterexample to the Baker-Gammel- Wills Conjeeture. 

Intuitively, there was a lot of reason to believe in the desired asymmetry, at 
least from the following standpoint: recall that a Maclaurin series with real coef
ficients has zeroes symmetrie about the real axis, that is, they occur in conjugate 
pairs. Conversely, one might hope that for special functions, zero es that occur in 
conjugate pairs are associated with Maclaurin series with real coefficients. After 
a rotation of the variable, symmetry of zeroes of Gq about some line through 0, 
would become symmetry about the real axis. Yet the arguments of the coefficients 
of Gq bz) are highly oscillatory for any 'Y on the unit circle, and there is no reason 
to expect symmetry. 

For a long time, the author tried to prove this asymmetry property, but failed. 
Since numerieal computation might provide some insight, the author was fortunate 
to be able to ask A. Knopfmacher (who is, amongst other things, a Mathematica 
expert) to plot so me zeroes a few years ago. Of course, we cannot easily compute 
Gq itself, but we can with reasonable accuracy, plot the zeroes of the partial sums 

m ·2 

S () -2: qJ j mqz- .z. 
, . (I-q)(1- q2) .. ·(1-qJ) 

J=O 

In the case when the radius of convergence is R (q) = 1, the partial sums con
verge rapidly within the unit ball to Gq as m --> 00, and so their zeroes should 
approximate the zeroes of Gq weIl inside the unit circle. 

We typically chose [18] 

where f is sorne positive integer. For almost aIl thc choices of f, Sm.q had zero es 
asymmetrie with rcspect to any line through O. IVloreover, as we increased m frorli 
}O through to IOO, thc zero es weIl within the unit circle remaincd thc same. In 
fact, in almost all c:asm;, the two zeroes düsest to thc origin had distinct modulus 
alld distillct arglllllPtlt. whieh is alr('ady cnough to establish aSYllll1wtry. This very 
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strongly suggested that we do have a counterexample. However, it took some time 
to find a choice of q for which I could obtain a sufficiently fine estimate of 

Gq - Sm,q 

to turn this into a proof. This was finally done for a special q in January 2001 [23]: 

Theorem 4.6 Let 
q := exp (27riT) 

where 
2 

T'= ---= . 99+ y's' 

Then Hq is meromorphic in the unit ball and analytic at O. There does not exist 
any subsequence of {j.tn /vn }:'=l that converges uniformly in all compact subsets of 

A:= {z: Izl < 0.46} 

omitting poles of H q . In particular no subsequence of {[n/n]}:'=l or {rn + 1/n]}:'=1 
can converge uniformly in all compact subsets of A omitting poles of Hq . 

After this counterexample was announced, it was discussed in the seminar 
of A. Gonchar at the Steklov Institute of Mathematics in Moscow. This inspired 
V. Buslaev to construct a simpler counterexample to the Baker-Gammel-Wills 
Conjecture, namely the algebraic function: 

-27 + 6z2 + 3 (9 + () z3 + V81 (3 - (3 +~) z3)2 + 4z6 

f (z) = 2z (9 + 9z + (9 +~) z2) 

where 
1 y3. 

~=-2+2z. 

He shows that this function is analytic in the unit ball, but no subsequence of 
{[n/n]} :'=1 can converge at one of three special points inside the unit ball. See the 
announcement [7]. 

5 Suggested problems 

In a complicated subject like Pade convergence theory, the resolution of the Baker
Gammel-Wills Conjecture raises many problems about weaker forms of the conjec
ture. Some of those are discussed in [23], [32]. Here we shall discuss a few problems 
specifically relating to q-series, that we believe are interesting. 

We have already mentioned the strange cancellation of the natural boundary 
of Gq (Problem 4.2). But there are many others. We know, thanks to work of 
G. Petruska [26], that given R E [0,1], we may find q such that Gq has radius of 
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convergence R, that is R = R (q). But what values can the radius of meromorphy of 
H q assume? Thanks to a theorem of Worpitzky, which ensures that the continued 
fraction (6) converges for Izl :$ i, we know this radius is ~ i. Moreover, for almost 
every q, it is 1, but are there any exceptional values? 

Problem 5.1 Let Iql = 1, and q not be a root of unity. Let p (q) denote the largest 
circle centre 0 inside which Hq may be meromorphieally continued. Can p (q) as
sume any value other than I? If so, what is its range of values? 

Another interesting problem, is to investigate the zeroes of Gq without the 
use of any numerical package: 

Problem 5.2 

(i) Investigate the structure of zeroes of Gq when Iql = 1 and R (q) > O. 

(ii) Moreover, investigate whether for every sueh q, the zeroes of Gq are not 
symmetrie about any line through o. 

(iii) Investigate the behaviour of the zero of Gq closest to the origin as q traverses 
the unit circle. 

It is instructive here to recall that the q-exponential functions are 

00 zj 

eq (z) = L (1 _ q)(1 _ q2) (1 _ q3) ... (1 _ qj) ; 
1=0 

00 qj(j-l)/2 z j 
E q (z) = " 2 3 .• ~ (1- q) (1 - q ) (1 - q ) ... (1 - q1) 

Now in {z : Izl < R (q)}, a direct calculation shows that 

and hence eq and E q have no zero es in that ball. In contrast, we know that 

00 2 . 

L qJ Z1 
G (z) = ...,-,--------,----;-c----;~_____;c:----;----;-:-

q . (1 - q)(1 - q2)(1 - q3) ... (1 - qj) 
1=0 

may have zeroes. This suggests: 

Problem 5.3 Let Iql = 1 and R(q) > O. For a ~ 0, let 

00 ·2 . 
qaJ zJ 

Ga,q (z) = L (1 _ q)(1 _ q2) (1 _ q3) ... (1 _ qj) . 
)=0 

FoT' which a > 0 does G",q have zeroes? 
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Of course these are very specific problems. But there are also some quite 
generaIones, involving the mere definition of q-special functions. We have seen 
above that there is no problem with defining q-exponential functions for q not 
a root of unity. But a q-gamma function is far more challenging. The q-gamma 
function f q (x) is the unique solution of the difference equation 

(10) 

with normalisation 
f q (l)=l, 

and with log f q (x) convex for x > O. As q -+ 1, we see that this becomes the 
classical relation 

f(x+1)=xf(x). 

For q E (0,1), we have [2] 

00 1 n+l 
f (x) = (1 - )l-x II - q . 

q q 1- qn+x 
n=O 

It is easily seen that this also defines a function analytic in the upper-half plane 
(Rex> 0). 

Problem 5.4 Define a q-gamma function fOT Iql = 1. 

The problem seems to be that any solution of the functional relation (10) 
with Iql = 1, q not a root of unity, cannot be defined on the real axis. Of course 
there are other q-special functions for which similar problems might arise. The 
definition of q-special functions for q on the unit circle might seem like the sort 
of subject one invents for the sake of "creating a gap in the literature." However, 
the author believes that q-series with Iql = 1, and q not a root of unity, will have 
a growing number of applications. Moreover, not all of these will be in the search 
for pathological examples. 
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On the Degree of Approximation in 
Multivariate Weighted Approximation 

H.N. Mhaskar 

Abstract 

Let s 2: 1 be an integer, f E LP(RB ) for some p, 1 :::; p < 00 or be a continuous 
function on RB, vanishing at infinity. We consider the degree of approxima-

s 

tion of f by expressions of the form exp( - L Qk(Xk))P(Xl, ... , x s ) where 
k=l 

each exp( -Qk(·)) is a Freud type weight function, and P is a polynomial of 
specific degrees in each coordinate. Direct and converse theorems are stated. 
In particular, it is shown that if each Qk = lxi" for some even, positive in
teger a, and the degree of approximation has apower decay, then the same 

s 

property holds when the weight function is replaced by exp( - L akQk(xk)) 
k=l 

for any positive constants ak. 

1 Introduction 

Let Co(R) be the dass of all continuous real functions on R, vanishing at infinity. 
The dassical Bernstein approximation problem seeks conditions on a weight func
tion w such that expressions of the form wP, Pa polynomial, are dense in Co(R). 
Such expressions will be called (w- )weighted polynomials. In the 1970's, G. Freud 
initiated a detailed study of the degree of approximation of a function f E Co(R) 
by weighted polynomials of a given degree, when the weight function satisfies cer
tain technical conditions, somewhat more stringent than those necessary to ensure 
density. Freud found it convenient to write f = wg for some g, and formulated 
his results as those on approximation of 9 in a weighted norm. This theme has 
been studied in great generality in the past twentyfive years (cf. [5, 6, 7, 2, 1].) 
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Nevertheless, very little is known regarding the connection between the degrees of 
approximation of 9 with respect to different weights ([8]). 

The purpose of this paper is to record the observation that in the case when W 

is a Freud weight, there exists an equivalent weight W such that a polynomial rate 
of decay for the degree of approximation of fE Co(R) by w-weighted polynomials 
implies the same rate for the degree of approximation by wA-weighted polynomials 
for any positive A. We will formulate our results in the multivariate, tensor product 
case. To the best of our knowledge, the only previously published work on the 
degree of weighted approximation in the multivariate setting is by Dzrbasyan and 
Tavadyan [3], where "direct theorem"s are obtained under very strong assumptions 
about the target function, f. For example, in the univariate context, it is required 
that w- l f E Co(R). 

In the next section, we recaIl the definition of Freud weights and a construc
tion of equivalent, smoother weights. Our main results are stated in Section 3. 
The proof of these results involves developing the analogues of both the direct 
and converse theorems of weighted approximation in multivariate setting, as weIl 
as evaluating a new K-functional. The general approach is the same as in the 
univariate case. We will only sketch the proof, supplying details when they are 
significantly different from those in [7]. In Section 4, we define and discuss some 
properties of the shifted average operators and use these to prove the direct, con
verse, and equivalence theorems in terms of the K-functional. In Section 5, we 
evaluate the order of magnitude of this K-functional in terms of the forward dif
ferences of the target function. 

2 Freud weights 

Let w : R ---> [0, (0). We say that w is a Freud(-type) weight (function) if 

Q(x) := log {wtX) } (1) 

is an even, convex function on R, Q is twice differentiable on (0,00), and there 
are constants Cl, C2 > 0 such that 

xQ//(x) 
o < Cl:::; Q'(x) :::; C2 < 00, xE (0, (0). (2) 

In general, if Q : R ---> R, we will write wQ := exp( -Q). It is dear that if 
wQ is a Freud weight, then Q'(A) > 0 for some A > 0, and hence, that xQ'(x) is 
a strictly increasing function of x E [A, (0). We choose and fix such constant A. 
The Freud numbers, qx, are defined by 

x::::: A, (3) 

and q:r = 1 for 0 :::; x < A. The prototypical Freud weights are exp( -lxi<». CI: > 1; 
the corresponding Freud numbers being (:r / CI:) I / n . 
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In the sequel, we adopt the fo11owing convention regarding constants. The 
symbols c, Cl, . .. will denote positive constants depending only on the fixed pa
rameters such as the weight functions and norms involved. The values of these 
constants may be different at different occurrences, even within the same formula. 
The notation D rv B will mean that clD ::::: B ::::: c2D. 

In [7, Theorem 5.1.1], we proved the fo11owing theorem regarding the smooth
ing of Freud weights. 

Theorem 2.1 Let wQ be a Freud weight, r 2: 2 be an integer, and 

w;(x) := max max I~( _IY-v (r - I)Q'(U + l/t)l-> 0 (4) 
x-r-l~u~x+r+l-r~t~r v=O l/ 

as lxi -> 00. Then there exists an even, r times continuously differentiable function 
Q : R -> R such that 

() -(j) IQ J (x) - Q (x)l::::: cw;(x), xE R, j = 0,1, (5) 

and for j = 2, ... , r, 

. IQ(j)(X) I 11m , = o. 
Ixl->oo Q (x)J 

(6) 

In particular, wQ(x) rv exp( -Q(x)) and 1 + Q'(x)2 rv 1 + Q' (x)2 for xE R. 

In general, the function Q will depend upon the choice of r, although we 
prefer to treat r as a fixed parameter, and write Q rather than Qr. In the case 
when r = 1, we find it convenient to let (4) be an "empty condition", and write 
Q := Q. In the case of the prototypical Freud weights exp( -lxi"), the condition 
(4) is satisfied for a11 r > CY, and we may write Q = Q if r < CY. In the case when 
CY is an even integer, we may choose Q = Q for a11 integer r 2: 1, even though (4) 
is not satisfied. 

3 Main results 

In this section, s 2: 1 will denote a fixed integer, and a11 constants will depend 
upon s as we11. Bold face letters will denote vectors, with components indicated 
by subscripts, for example, x = (Xl, ... , x s ) E RS. Similarly, if h : R -> R, 
1 ::::: k ::::: s, a E RS, we will write f(x) := (/I(xI), ... ,fs(xs )), a 8 f(x) := 

(adl(xI), ... , asfs(xs )), and wr(x) := exp( - I:~=l fk(Xk)). 
If 1 ::::: k ::::: s, A <;;; R k is Lebesgue measurable with respect to the k

dimensional Lebesgue measure, and f : A -> R is Lebsegue measurable, we define 

{ }
l/P 

Ilfllp,A:= l'f(x)IPdx , 
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if 0< P < 00, 

IIfllp,A := ess SUp If(x)l, 
xEA 

if p = 00, where the measure is the k-dimensional Lebesgue measure. The space 
of an f for which IIfllp,A < 00 will be denoted by LP(A), where two functions are 
considered equal if they are equal almost everywhere. The subspace of LOO(A) con
sisting of all continuous functions vanishing at infinity will be denoted by Co(A). 
The notation 11 . IIp will mean 11 . IIp,R8. 

In the remainder ofthis section, we assurne that WQk = exp( -Qk), 1 ::; k ::; s, 
are Freud weights satisfying (4) with some r ~ 1, and Qk are the corresponding 
smooth functions as in Theorem 2.1. In the sequel, r will be a fixed parameter, 
and an constants may depend upon rasweil. For 1 ::; k ::; s, let qx,k denote 
the Freud number for WQk' and Pk denote an inverse function of x 1--+ x / qx,k' For 
y ~ 0, Y E R s, we write Iry to be the dass of an polynomials in s variables, having 
degree at most Yk in the k-th variable. For 1 ::; P ::; 00, f E LP(RS), and Y ~ 0, we 
are interested in 

(7) 

Let D k denote the partial derivative with respect to the k-th variable, and wQg E 
LP(RS). We define a K-functional of order r by 

where the infimum is taken over all h : RS ----) R such that h is r - 1 times 
continuously differentiable in each variable, D~-l h is absolutely continuous, and 
wQD'kh E LP(RS) for 1 ::; k ::; s. 

Our main theorem in this section is the following. 

Theorem 3.1 Let r ~ 1 be an integer. For k = 1, ... , s, let WQk be Freud weights 
satislying (4), and Q k be the smooth lunctions as in Theorem 2.1. Let 1 ::; p ::; 00, 

1 E LP (R S). Let al, ... , as be positive numbers, and 0 < ß < r. The lollowing are 
equivalent. 

Ep,y(Q; f) = O(y-ß), Y > O. (9) 

Ep,y(a 8 Q; f) = O(y-ß), Y > O. (10) 

Kr(Q,p; wi:/ 1,6) = O(6ß), 0< <5 < c. (11) 

It is worthwhile to formulate a corollary of this theorem in the case when all 
the weights are equal. We define, for 1 ::; p ::; 00, 1 E LP(RS), and y ~ 0, 

E};~L(Q; f) := inf{111 - wQPIIl' : PE Ir("" ... ,,,,)}, (12) 

where, in contrast to the definition of E]J,y(Q; 1), the infimum i:o taken eNcr all 
polynomiab in s variable:o with coordinatewi:oc degree at most y. 
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Corollary 3.2 Let r 2: 1 be an integer, wQ be a Freud weight satisfying (4), Q = 
(Q, ... , Q), 1 ::; p ::; 00, fE LP(RS), al, ... , a s be positive numbers, and 0 < ß < 
r. Then 

y > 0, 

if and only if 

y > o. 

In particular, if Q(x) = lxi<> for an even, positive integer a, then for any 'Y > 0, 

E~~L(Q; 1) = o(y-,) if and only if E~~L(a 8 Q; 1) = o(y-'). 

4 Shifted average operators 

4.1 The univariate case 

If WQ is a weight function (i.e., JR wQ(t)ltlmdt < 00 for all integer m > 0), 
9 : R ---+ R, and wQg E LP(R), we write 

While the best approximation operator is not linear, Freud developed in aseries of 
papers (cf. [7]) a sequence of linear operators which are "near best" approximants. 

There exists a unique system of orthonormal polynomials {Pk(Q) E IId~o 
with positive leading coefficients such that 

if k = j, and 0 otherwise. 
The shifted average kernel is defined for integer n 2: 1 and x, t E R by 

(13) 

and the shifted average operator is defined by 

vn(Q; g, x) := L g(t)Vn(Q; x, t)w2 (t)dt, (14) 

when the integral on the right-hand side is weH defined. The foHowing theorem 
([7]) summarizes some of the important properties of the operators V n . 
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Theorem 4.1 Let wQ be a Freud weight, and n ?: 1 be an integer. For alt P E TIn, 
we have vn(Q; P) = P. Let 1 '5:. p '5:. 00, and wQg E LP(R). Then vn(Q; g) E TI2n- 1 , 

and 
(15) 

In particular, 

E p,2n-l(Q;g) '5:. II(g - vn(Q;g))wQllp,R '5:. cEp,n(Q;g). (16) 

11 r ?: 1 is an integer, and g is an r tim es iterated integral 01 a lunction g(r) with 
wQg(r) E LP(R), then 

(17) 

and 

(18) 

4.2 Multivariate case 

Let WQk' 1 '5:. k '5:. s, be Freud weights. We introduce the shifted average operators 
coordinatewise as follows. 

Vn,k(g,X) := Vn,k(Qk;g,X) 

:= L Vn(Qk;xk,t)g(Xl, ... ,Xk-l,t,Xk+l, ... ,xs)wbk(t)dt. (19) 

For a multi-integer m ?: 1 (i.e., mk ?: 1, k = 1, ... , s), we further define 

vj!] (g; x) 

k 

X exp( -2 L Qj(tj))dt 1 ... dtk. 
j=l 

We will also find it convenient to define v~ (g) := g. 

(20) 

Similarly, analogous to the K-functional defined in (8), we introduce the 
coordinatewise K -functionals by 

where the infimurn is taken over all functions h such that h is T - 1 times con
tinuously differentiable in the k-th variable, Dr:- 1 h is absolutely continuous with 
respect to the k-th variable, and wQD'kh E LI'(R'). 

Thc dircct theorem of multivariate weighted approximation is the following 
improvement (wcr the corresponding result of Dzrbasyan and Tavadyan [3]. 
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Theorem 4.2 Let WQk be Freud weights for k = 1, ... , s. 
(a) Let 1 ::::: p ::::: 00, and g ; RS ----+ R be such that wQg E LP(RS). Then for 
multi-integers m ~ 1, r ~ 1, 

(22) 

(b) [f 1 ::::: k, e ::::: s are integers, h is r - 1 times continuously differentiable in the 
k-th variable, D~-lh is absolutely continuous with respect to the k-th variable, and 
wQD'kh E LP(RS) then 

IlwQD'kv~(h)llp ::::: cllwQD'khllp· 
Proof. We prove part (b) first. It is clear that 

v~(h) = Vm"l ( ... (vme,f(h)) ... ). 

Therefore, if 1 ::::: e < k, (23) follows trivially from (15). 

(23) 

(24) 

Next, let k ::::: e ::::: s. In this proof only, for x E RS, and 1 ::::: j ::::: s, let hx,j ; 
R ----+ R be defined by hx,j (t) ;= h(Xl, ... ,Xj-l, t, Xj+l, ... ,xs ). The estimate (17) 
implies that 

i.e., 
(25) 

where 11 . IIp,R,k denotes the LP(R) norm taken with respect to the k-th variable. 
Now, (24) implies that 

D'kv~(h) = Vm"l ( ... Vmk_1,k-l (Vmk+I,k+l ( ... (Vme,R (D'kvmk,k(h))) ... ))) . 

Therefore, (23) follows from (15) and (25). 
Continuing the same notation, we observe next that (18) implies that 

II(hx,k - Vmk(Qk; hx,k))WQk IIp,R,k ::::: c (m:m~ 1) r IlwQkh~~llp,R,k' 
which leads to 

(26) 

Now, let 1 ::::: k ::::: s be any integer, wQg E LP(RS), and h be found satisfying the 
conditions of part (b) with rk in place of r, such that 
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From (24) and (15), we deduce that 

11 (v!:-ll (g - h) - v!:l (g - h)) wQ IIp ::; eil (g - h)wQ IIp. (28) 

Further, using (26) (with rk in place of r), we see that 

11 (v!:-ll (h) - v!:l (h)) wQ IIp = Ilv!:-ll (h - Vmk,k(h)) wQ IIp 

::; ell(h-vmk,k(h))wQllp::; (~~~\rk IlwQD~khllp. 
Along with (28) and (27), this leads to 

11 (v!:-ll(g) - v!:l(g)) wQllp ::; CKrk,k ( Q,p; g, ~~~\) . (29) 

The estimate (22) now follows from the fact that 

S 

9 - v!:J(g) = L (V!:-lJ(g) - v!:J(g)). D 
k=l 

As a corollary to this theorem, we prove the following relationship between 
the K-functionals defined in (8) and (21). We observe that in the definition of 
Kr(Q,p;g,c5), the derivatives with respect to each variable are applied to the 
same smooth function, while in the definition of the different Kr,k(Q,p; g, c5)'s, 
there may be a different smooth function for each variable. Further, we observe 
that Pk being an inverse function of x ~ X/qx,k, x'" pk(X)/qPk(X),k for x > 0 and 
1 ::; k ::; s. Therefore, the Markov-Bernstein inequality [7, Theorem 6.2.9] implies 
that 

(30) 

Proposition 4.3 Let r ~ 1 be an integer, and for k = 1, ... , s, WQk be a Freud 
weight. Let 1 ::; P ::; 00, and wQg E LP(RS). Then for 0 < c5 ::; 1, 

s 

Kr(Q,p;g,c5) '" LKr,k(Q,P;g,c5). (31) 
k=l 

Proo! It is easy to see from the relevant definitions that 

s 

LKr,k(Q,p;g,c5)::; cKr(Q,p;g,c5). (32) 
k=l 

Let m be a multi-integer such that mk rv pdc5- 1 ), and hk be found such that 
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We observe that 

IlwQv~(g)llp ~ cllwQgllp ~ c{ll(g - hk)WQllp + IlwQhkllp} ~ ci5- 1'K 1',k(Q,p; g, 15). 
(34) 

In view of (30), (23), and (33), we have 

IlwQDkV~(g)llp ~ IlwQDkV~(g - hk)llp + IlwQDkV~(hk)llp 
~ cr1' {llwQv~(g - hk)llp + i51'llwQDkhkllp} 

~ ci5- 1'K 1',k(Q,p;g,i5). (35) 

From (22), (34), and (35), we eonclude that 

K1'(Q,p; g, 15) ~ II(g - v~(g))wQllp 

+151' {IIWQV~(9)llp + ~ IIWQDkV~(9)llp} 
S 

< c L K1',k(Q,p;g, 15). 
k=l 

Along with (32), this eompletes the proof. o 
We end this seetion with a statement of the eonverse theorem and an equiv

alenee theorem. Towards this end, we write for y 2': 0, and wQg E LP(RS): 

Ep,y(Q; g) := inf{ll(g - P)wQllp : PE IIp(y)}, (36) 

Using (30), it is easy to obtain the following analogue of [7, Theorem 4.2.2]. 

Theorem 4.4 Let WQk be Freud weights for k = 1, ... , s, r 2': 1 be an integer, 
1 ~ P ~ 00, and wQg E LP(RS). Then for 0< 15 ~ 1, 

Kc(Q,p; g, 8) <; cl" {"WQ91, + ,,1;:,., (m + 1 r-""m(Q; g) }. (37) 

The proof of this theorem, being the usual teleseoping argument as in the 
proof of [7, Theorem 4.2.2] or [4, Theorem 3], is ommitted. 

In light of Theorems 4.2, 4.4 and Proposition 4.3, we have the following 
equivalenee theorem. 

Proposition 4.5 Let r 2': 1 be an integer, WQk be Freud weights for k = 1, ... , s, 
1 ~ p ~ 00, wQg E LP(RS), and 0< ß < r. Then the following are equivalent: 

K1'(Q,p; g, 15) = O(i5ß), 15 > 0, (38) 

Ep,y(Q; g) = O(y-ß), Y > O. (39) 
S 

L K1',k(Q,p; g, 15) = O(i5ß), 15 > O. (40) 
k=l 
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5 A modulus of smoothness 

In this section, we relate the coordinatewise K -functionals Kr,k(Q,p; wi:/ J, 8) with 

Kr k(a0 Q,p; w-1_QJ, 8) for J E LP(RS). Since only one co ordinate is (essentially) , a0 
involved here, we find it convenient to do this in the univariate case. Accordingly, 
we will evaluate the order of magnitude of the univariate K-functional: 

where wQ is a Freud weight, and the infimum is taken over all r - 1 times con
tinuously differentiable functions h such that h(r-l) is absolutely continuous, and 
h(r)wQ E LP(R). 

In [7], we have studied a slightly different version of the K-functional defined 
by 

Kr(Q,p; g, 8) := inf {1I(g - h)wdp,R + 8rllh(r)wQllp,R} , (42) 

where the infimum is taken over all r - 1 times continuously differentiable func
tions h such that h(r-l) is absolutely continuous, and Mr)wQ E LP(R). In [7], 
we evaluated the order of magnitude of this K-functional in terms of a modified 
modulus of smoothness as follows. 

For t > 0 and integer k 2': 0, the forward difference of a function J : R ----7 R 
is defined by 

D.~J(X):= t,(-1)k-VC)f(x+vt). 

Let wQ be a Freud weight satisfying (4), and Q be constructed as in Theorem 2.1. 
With 

8> 0, xE R, 

we define a pre-modulus of smoothness by the formula 

r 

(43) 

and the modulus of smoothness by the formula 

Dr(Q,p;g,8):= inf wr(Q,p;g - P,8). 
PEII"-l 

( 44) 

In [7], we proved that 

( 45) 

for r 2': 1, 0 < 8 ::; 1. 1 ::; P ::; 00, and wQg E U'(R). We will provc he re the 
following theorem. 
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Theorem 5.1 Let r 2: 1 be an integer, and wQ be a Freud weight satisjying (4), 
1 ~ p ~ 00, and wQg E LP(R). Then 

Kr(Q,p; g, 8) rv wr(Q,p; g, 8) rv Kr(Q,p; g, 8) + 8r llwQgllp,R, 

Proof Using the triangle inequality, 

0< 8 ~ 1. (46) 

IllwQhllp,R -llwQgllp,RI ~ II(g - h)wQllp,R, 

it is easy to derive that 

O<8~1. (47) 

If 0< 8 ~ 1, Q~(x) 2: 1 for all x E R, and 8r llwQgllp,R ~ 8rll(Q~rwQgllp,R. The 
last expression being one of the summands in (43), we see that 

In view of (45) and (44), K r (Q,p;g,8) ~ cwr(Q,p;g,8). Thus, we have 

Let h be found such that 

and 

Then 

r-l h(j)(O) . 
T(x):= L-.,-x1 . 

j=O J. 

(48) 

(49) 

Wr(Q,p; g, 8) ~ wr(Q,p; 9 - h, 8) + wr(Q,p; h - T, 8) + wr(Q,p; T, 8). (51) 

It is clear from the definition that 

Wr(Q,p; 9 - h, 8) ~ cll(g - h)wQllp,R. (52) 

During the proof of [7, Theorem 5.2.1], we have shown (estimate (5.2.16)) that 

(The notation in [7] is different; the function 9 there is what we are calling h - T 
here.) We have also proved (cf. the derivation of [7, estimate (5.2.14)]) that for 
Itl ~ 8 and 0 ~ /.I ~ r, 

II(Q~r-v ~r(WOT)llp,R ~ 8vlI(1 + Q,2)(r-V)/2(WOT )(V) IIp,R. 
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Therefore, (43) shows that 

r 2 
Wr(Q,pj T, 8) ~ 8r L 11(1 + Q' )(r-v)/2(1VQT)(v) IIp,R. 

v=o 

r 

Now, L 11(1 + Q,2)(r-v)/2((-)1VQ)(v)llp,R is a norm on IIr-I' Since all norms on 
v=o 

IIr-I are equivalent, we deduce that 

Using (48) with h - Tin place of g, and then using (53), we see that 

Hence, (54) implies that 

Substituting from this estimate and those in (52), (53) in (51), we get 

Our choice of the function h as in (50) now shows that 

Wr(Q,pjg,r5):::; cKr(Q,pjg,r5). 

This completes the proof. D 

It is obvious that for any A > 0 and f E LP(R), 

where the constants may depend upon A. Transcribing all these univariate results 
to the coordinatewise K-functionals, we arrive at the following corollary. 

Corollary 5.2 Let r ?: 1 be an integer. For k = 1, ... , s, let WOk be a Freud weight 
satisfying (4), and Q k be the smooth function as in Theorem 2.1. Let 1 :::; P :::; 00, 

fE LP(RS) and aI, .. " as be positive numbers. Then for 1 :::; k :::; s: 

0<15:::;1. (55) 

Hence, also 

0<15:::;1. (56) 
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We end this paper with the proof of Theorem 3.1. 

Proof of Theorem 3.1. In light of Theorem 2.1, we see that 

Ep,y(Q; f) = Ep,y(Q; wi:i1 I) '" Ep,y(Q; wi:i11), y > o. (57) 

Therefore, the equivalence between (9) and (11) follows from Proposition 4.5. In 
view of (56), Proposition 4.5 furt her implies that (11) is equivalent to 

Ep,y(a 8 Q; I) '" Ep,y(a 8 Q; w;:~QI) = O(y-ß), y > O. (58) 

This completes the proof. o 
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Semigroups Associated to Mache Operators 

I. Rasa 

Abstract 

Mache operators are investigated from the point of view of Altomare's theory. 
We prove the existence of a Feiler semigroup representable as a limit of suit
able iterates of Mache operators. The preservation properties of Mache oper
ators lead to qualitative properties of the solution of the associated Cauchy 
problem. A new Chernoff type approach to the semigroup is presented, as 
weil as quantitative results related to it. 

1 Introduction 

F. Altomare [1] initiated a systematic study of the connection between some ap
proximation processes (in an arbitrary dimensional context) and the solution of 
suitable evolution problems, the key ingredients being Voronovskaja's formula and 
Trotter's theorem. Chapter 6 of [2] gives a first account of Altomare's theorYi for 
furt her developments see [3]-[9],[11]-[13],[25],[27] and the references therein. The 
general (i.e., arbitrary dimensional) case has discussed in [1],[2],[11],[7],[8],[25],[27]. 
In the particularly important one-dimensional case many authors considered these 
problems either using classical approximation processes or introducing new ones 
satisfying a prescribed Voronovskaja formula. In [3]-[6],[9],[11]-[13] the authors in
vestigate such classical or new processes and prove the existence of corresponding 
FeIler semigroupsi in some cases also the associated Markov process is studied. 

In this paper Mache operators are considered from the point of view of AI
tomare's theory. The existence of an associated FeIler semigroup is proved and the 
preservation properties of this semigroup are studiedi as in the general Altomare 
theory, these preservation properties lead to qualitative properties of the solution 
of the associated Cauchy problem. 
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Using the technique of [25], a qualitative and a quantitative Chernoff-type 
approach to the FeUer semigroup are presented. The Chernoff-type approaches to 
the semigroups are studied in [3]-[6],[9],[11]-[13] will be discussed in forthcoming 
papers. 

2 Mache operators 

Let a, b > -1 and a ~ ° be real numbers. For n ~ 0, k = 0,1, ... , n and for 
x E [0, 1] let us define the Bernstein-Bezier polynomials Pn,k(X) = (~)xk (1- x )n-k. 
Set c := [na] and consider the functionals An,k : G[O, 1] ----> R by 

An,k(f) = B(ck + a + 1, cn - ck + b + 1)-1 11 tck+a (1 - tyn-ck+b f(t)dt 

where B is Euler's Beta function. 
Now let Pn : G[O, 1] ----> G[O, 1], n ~ 0, 

n 

Pnf = L An,df)Pn,k . (1) 
k=O 

The linear positive operators Pn have been introduced, even in a more general 
form, by D.H. Mache [21], [22]; by specializing the parameters a, b, a one obtains 
several known families of (Durrmeyer-type) operators (see [15], [20], [21]-[23]). 

The approximation properties and characterization results of Mache oper
ators have been studied in [21]-[23], [26], [27]. Now Pn transforms the polyno
mials of the degree :::; m into polynomials of degree :::; m; see [26], (1). Here is 
Voronovskaja's formula for Mache operators, established independently in [21]and 
[26],[27]. 

Theorem 2.1 Let f E G2 [0, 1]. 1f a > ° we have 

lim n(Pnf(x) - f(x)) x(1 - x) j"(x) 
2 n-----too 

uniformlyon [0, 1]. 
If a = ° then 

lim n(Pnf - f) = uj" + vi' 
n-----tCX) 

uniformlyon [0, 1], where 

u(x) := x(1 - x), v(x):= a + 1 - (a + b + 2)x. 

(2) 

(3) 

xE [0,1]. (4) 

For n = CL = b = 0, (3) was provecl in [16], Theorem 2. p. 10. The preservation 
properties of Mache operators have been investigatpd in [19].[26].[27]. They are 
describecl CiS folIows. 
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Theorem 2.2 ([26],[27]). Let ° ~ m ~ n and {Jo, ... , fm} C G[O, 1] be a Cheby
shev system. Then {Pnfo, ... , Pnfm} is also a Chebyshev system. If f E G[O,l] 
is convex with respect to {fo, ... , fm}, then Pnf is also convex with respect to 
{Pnfo, ... , Pnfm}. 

Corollary 2.3 ([10],[19],[26],[27]). IfO ~ m ~ n and fE G[O, 1] is convex of order 
m (i.e., convex with respect to {eo, ... ,em } where ej(x) = xj, j E No), then Pnf 
is convex of order m. 

Theorem 2.4 ([26],[27]). Let Lip(ß, M) be the Hölder class on [0,1] with the expo
nent ß E (0,1] and constant M > 0. Then 

(5) 

and 
w(P f t) < 2cn + a + b + 2 w(f t) 

n, - cn+a+b+2 " 
(6) 

where w is the usual first-order modulus of continuity and N = cn+~~b+2. 

For 0 = a = b = 0, from (5) we obtain the result expressed in Theorem l(e) of [10]. 

3 The FeIler semigroup in the case a = 0 

Let 0 = 0, a, b :::: 0. Consider the operator 

Af(x) = u(x)J"(x) + v(x)f'(x), ° < x < 1, fex) E D(A) (7) 

where u and v are defined by (4), and 

D(A) := {J E GI [0,1] n G2(0, 1) I lim u(x)J" (x) = O}. (8) 
x---+O,l 

Theorem 3.1 Under the above mentioned hypotheses, (A, D(A)) generates a semi 
group (T(t))t'2o of positive contractions on the Eanach space G[O, 1] with the uni
form norm. Moreover, 

T(t) = lim p),nt] stronglyon G[O,l]. (9) 
n--+oc; 

Proof. Sinee a :::: 0 and b :::: 0, the eondition (4.1) in [13] is satisfied, henee Lemma 
4.2, Prop. 4.3 and Theorem 4.4 of [13] show that (A, D(A)) generates a semigroup 
(T(t)) of positive eontraetions on G[O, 1] and G2 [0, 1] is a eore for A. 

By Theorem 2.1 we have 

lim n(Pnf - 1) = Af, 
n--+x· 
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and so it is possible to apply Chernoff's product formula ([18], Cor. 111.5.4) to the 
family of contractions 

1 1 
-<t<--, n~2. n - n-1 

It follows that 

T(t) = lim V(tn)k n stronglyon G[O, 1], (10) 
n-->oo 

whenever kntn ----7 t > 0 with kn integers tending to +00. 

For tn = ~ and kn = [nt], (10) reduces to (9) and the proof is finished. D 

Corollary 3.2 We have the following two statements: 

(i) 1f fE G[O, 1] is convex of order m, then T(t)f is convex of order m for t ~ O. 
(ii) T(t)(Lip(ß, M)) c Lip(ß, Me-(a+b+2)tß). 

Prao! (i) is a consequence of (9) and Corollary 2.3, while (ii) follows from (9) and 
(5). Remark that the Hölder constant diminishes under T(t) and vanishes when 
t ----7 00. D 

If f E D(A), the unique solution of the problem 

Wt(t,x) = Aw(t,x) 0< x < 1, t ~ 0, 

W(O, x) = f(x) (11) 

is given by w(t,x) = T(t)f(x), t ~ 0,0 ::::; x ::::; 1. So, if fis convex of order m, 
then w(t,.) is convex of order m for all t ~ 0; if fis in Lip(ß, M), then w(t;.) is 
in Lip(ß, M e-(a+b+2)tß) for all t ~ O. 

On the other hand, consider (11) for f = em ; it is not difficult to prove that 
the corresponding solution has the form 

m 

T(t)e m = w(t,.) = L ci(t)ei 
i=O 

where 1irnt-->oc c.;(t) = 0, i = 1, ... , m and limt-->x co(t) is finite. 

This means that for every polynomial p there exists a constant function K p 
such that 1imt-->= T( t)p = K p. As a consequence, the semigroup has the following 
important property (which is present in a suitable form, see [2], Theorem 6.2.6 
also in the general Altomare theory): 

Corollary 3.3 FOT euch f E G[O, 11 theTe exist8 a con8tant function K f such that 
lilll/.-->x T(t)f = Kf· So.if in (11) f E D(A), then limt-->x w(t,.) = Kf. 
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At this point we state 

Conjecture 3.4 K = Po, that is, the constant value of the function K f is given by 

Still in the case Cl: = 0, suppose that -1 < a, b < 0. 
Let the operator A be dejined by (7), but this time 

D(A) := {J E 0[0,1] n 0 2(0, 1) I lim (u(x)j"(x) + v(x)f'(x)) = O}. (12) 
x---+O,l 

Consider the junction 

W(x) = exp( -lx ~~~~ dt) = Ta-b-2x-a-1(1 - x)-b-1. 
2 

Since a < ° and b < 0, we have W E L1(0,~) and W E L1(~, 1). By the 
results of [14] it follows that (A, D(A)) generates a semigroup (T(t)) of positive 
contractions on 0[0,1]. Corollary 3.3 and the Conjecture 3.4 have the same signi
jication as before; maybe (9) is true also in this case. 

4 The FeIler semigroup in the case a > 0 

Now let 
Af(x) = X(l; x) j"(x), ° < x < 1, fE D(A) (13) 

where 

D(A) := {J E 0[0,1] n 0 2(0, 1) I lim x(l - x) j"(x) = O}. (14) 
x-tO,l 2 

It is weH known (see [2], Theorem 6.3.5 or [18], Sect. III.5.7) that (A, D(A)) gen
erates a semigroup (T( t)) of positive contractions on 0[0, 1] such that 

T(t) = lim B~nt] stronglyon 0[0,1], (15) 
n-->oo 

where B n are the classical Bernstein operators on 0[0,1]. 
Since 0 2 [0,1] is a core for A, Theorem 2.1 and Chernoff's product formula 

yield an alternative representation of this semigroup: 

T(t) = lim pJnt] stronglyon 0[0,1]. (16) 
n---+·x, 

By USillg the preservation properties of Bernstein operators B n or those of Mache 
operators Pn , we find that T(t) preserves the m-convexity and T(t)(Lip(ß, M)) c 
Lip(ß, M). 
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5 A qualitative Chernoff-type approach 

In the sequel we consider only the case Cl! = 0, a, b ~ O. Let q := maxi a + 1, b + I} 
and ;0 = 2max{2,q}. For 0::; P::; 1, x E [O,IJ and fE C[O, IJ let 

T(p)f(x) := (1- x)f((1 - /P)x) + xf(/P + (1 - /P)x). (17) 

For 0 ::; p ::; Po we may consider the linear positive contractions E(p) : C[O, 1 J --t 

C[O,I], 
1 1 

E(p)f(x) := 2F (4p)f(x) + 2f (x + 2pv(x)). (18) 

It is not difficult to prove that for f E C 2 [0, 1 J, 

lim ~(E(p)f - f) = Af 
p-.op 

(19) 

where A is described by (7). 
Let (T(t)) be the semigroup from (9). An application of Chernoff's product 

formula ([18], Theorem 111.5.2) yields an alternative description of the semigroup, 
namely: 

Theorem 5.1 For t ~ 0 we have 

T(t) = lim E(!)n 
n~oo n 

strongly on C[O,I]. (20) 

The approximations of T(t) furnished by (9) and (20) can be compared in 
the spirit of [25J, Ex.5.3. 

6 A quantitative approach 

Consider the Altomare projection T on G[O,l], Tf(x) = (1 - x)f(O) + xf(l). 
With notation as in the preceding section, (5.18) of [25] yields for 0 < P ::; Po and 
f E C:~[O, 1]: 

(21 ) 

This means that 

I~ (E(p)f(x) - f(x)) - Af(X)1 ::; ~llf(3)11 + Iv(x)IIf'(Y) - f'(x)1 

for sorne y between x and x + 2pv(x). Since Ilvll = q, we obtain for f E G3 [0, 1]: 

(22) 
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On the other hand, for f E G4 [O, 1] we have (see, e.g., [24], p. 7): 

11~(T(P)f-f)-Afll::; ~IIA2fll. (23) 

So, for f E G4[O, 1] we get 

IIE(p)f - T(p)fll ::; p2 (~IIA2 fll + 2q211 f"11) + P~llf(3lll. (24) 

Let U be the space of those f E G4 [O, 1] for wh ich T(t)f E G4 [O, 1], t :::: 0, 
and SUPt2:0 II(T(t)f)(j) 11 < 00,] = 2,3. For f EU set 

Iflu := max{ -2111A2 fll + 2q2sup II(T(t)f)"II, ~ sup II(T(t)f)(3l ll}· 
t2:0 12 t2:0 

Let fE U. Then 

IIA2T(t)fll = IIT(t)A2 fll < IIA2 fll, 

hence (24) implies 

II(E(p) - T(p))T(t)fll ::; (p2 + p"fP) Iflu. (25) 

This is the consistency condition (2.3) from [17], with G = 1, W = 0, cp(p) = 
p + "fP. Now Theorem 1 of [17] yields the following quantitative result related to 
the Theorem 5.1: 

Theorem 6.1 For fE U, n :::: 1 and t :::: 0 we have 

(26) 

The subspace U is dense in G[O, 1]. The proof is the same as in [25], Remark 
5.5.b, and uses Corollary 3.3 as well as the fact that each Pn transforms the 
polynomials of degree ::; m into polynomials of degree ::; m. 

Appendix. Let f E D(A); we know that the unique solution of (11) is w(t, x) = 
T(t)f(x) rv EUJn f(x). We shall devise an algorithm for computing E(p)n f(x), 
given f E G[O, 1], x E [0,1], n :::: 1 and 0 ::; p ::; Po. 

With obvious notations (see (18)) we have 

Consider the 3n numbers 

where ]1, ... ,]n E {1, 2, 3}. 
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For k E {n - 1, ... ,I} define successively 

sl(Ejk ... Ej,x)Yh ... jk1 + s2(Ejk ... Ej, x)Yj, ... jk 2 
+s3(Ejk ... Eh X)Yj, ... jk3. 

By induction it is easy to prove that 

In particular, 
Yj = E(p)n-l f(Ejx), 

due to (27), this implies 

E(p)n f(x) 

References 

kE{n-l, ... ,I}. 

j = 1,2,3; 

1. Rasa 

[1] Altomare, F., Limit semigmups of Bernstein-Schnabl operators associated 
with positive pmjections, Ann. Sc. Norm. Sup. Pisa, cl. Sei. IV, 16 (1989), 
259-279. 

[2] Altomare, F. and Campiti, M., Komvkin-type Approximation Theory and its 
Applications, W. de Gruyter, Berlin-New York, 1994. 

[3] Altomare, F. and Carbone, 1., On some degenerate differential operators on 
weighted function spaces, J. Math. Anal. Appl. 213 (1997),308-333. 

[4] Altomare, F. and Attalienti, A., Forward diffusion equations and positive op
erators, Math. Z. 225 (1997),211-229. 

[5] Altomare, F. and Attalienti, A., Degenerate evolution pmblems and related 
Markov processes arising fmm Mathematical Finance, Part I and 11, preprints, 
Bari University (2001). 

[6] Altomare, F. and Mangino, E.M., On a class of elliptic-parabolic equations 
on unbounded intervals, Positivity, 2000. 

[7] Altomare, F. and Rasa, 1., Towards a characterization of a class of differen
tial operators associated with positive pmjections, Atti Sem. Mat. Fis. Univ. 
Modena Suppl. 46 (1998), 3-38. 

[8] Altomare, F. and Rasa, 1., Feller semigmups, Bernstein type operators and 
generalized convexity associated with positive pmjections, in: New Develop
ments in Approximations Theory (eds.) M.D. Buhmann, M. Feiten, D.H. 
Mache und M.W. Müller), Int. Series of Numerical I\Iathematics Vol. 132, 
Birkhäuser Verlag, Basel (1999), 9-32. 



Semigroups associated to Mache operators 151 

[9] Attalienti, A., Generalized Bernstein-Durrmeyer operators and the associated 
limit semigroup, J. Approx. Theory 99 (1999), 289-309. 

[10] Adell, J.A. and de la Cal, J., Bernstein-Durrmeyer operators, Comp. Math. 
Appl. 30 (1995), 1-14. 

[11] Campiti, M., Binomial-type coefficients and classical approximation processes, 
in: Handbook of analytic-computational methods in applied mathematics, 
(ed.) G. Anastassiou, Boca Raton, FL: Chapman & Hall/CRC, (2000),947-
996. 

[12] Campiti, M. and Metafune, G., Evolution equations aS80ciated with recursively 
defined Bernstein-type operators, J. Approx. Theory 87 (1996), 270-290. 

[13] Campiti, M., Metafune, G. and Pallara, D., Generalized Voronovskajaformula 
and solutions of second-order degenerate differential equations, Rev. Roum. 
Math. Pures Appl. 44 (1999), 755-766. 

[14] Clement, Ph. and Timmermans, C.A., On Co-semigroups generated by dif
ferential operators satisfying Ventcel 's boundary conditions, Indag. Math. 89 
(1986),379-387. 

[15] Durrmeyer, J.J., Une formule d'inversion de la transformee de Laplace: Ap
plications cl la theorie des moments, These de 3ieme cycle, Univ. Paris, 1967. 

[16] Derriennic, M.M., Sur l'approximation des fonctions d'une ou plusieurs vari
ables par des polynomes de Bernstein modifies et application au probleme des 
moments, These de 3ieme cycle, Univ. de Rennes, 1978. 

[17] Dickmeis, W. and Nessel, R.J., Classical approximation processes in connec
tion with Lax equivalence theorems with orders, Acta Sei. Math. 40 (1978), 
33-48. 

[18] Engel, K.J. and Nagel, R., One-parameter semigroups for linear evolution 
equations, Springer-Verlag (2000). 

[19] Gavrea, 1., Gonska, H.H. and Kacso, D.P., On the variation-diminishing prop
erty, Resultate Math. 33 (1998),96-105. 

[20] Lupas, A., Die Folge der Beta Operatoren, Dissertation. Stuttgart (1972). 

[21] Mache, D.H., Gewichtete Simultanapproximation in der Lp-Metrik durch das 
Verfahren der K antorovic Operatoren, Dissertation, U niv. Dortmund (1991). 

[22] Mache, D.H., A Link between Bernstein Polynomials and Durrmeyer Polyno
mials with Jacobi Weights, in: Approximation Theory VIII, VOL. 1, Approx
imation and Interpolation, Charles K. Chui and Larry L. Schumaker (eds.), 
World Scientific Publishing Co., (1995), 403-410. 



152 1. Rasa 

[23] Mache, D.H. and Zhou, D.X., Characterization Theorems for the Approxima
tion by a Family of Operators, J. Approx. Theory 84 (1996), 145-161. 

[24] Pazy, A., Semigroups of linear operators and applications to partial differential 
equations, Springer-Verlag, (1983). 

[25] Rasa, 1., Feller semigroups, elliptic operators and Altomare projections, to 
appear in Proc. 4th FAAT Maratea (2000). 

[26] Rasa, I. and Vladislav, T., A Voronovskaja-type formula and preservation 
properties of a class of operators, Proc. Roger 2000, Univ. Duisburg, Schriften
reihe Fach. Math. SM-DU-485 (2000), 120-123. 

[27] Vladislav, T. and Rasa, 1., Analiza Numerica, Aproximare, problema lui 
Cauchy abstracta, proiectori Altomare, Editura Tehnica, Bucuresti (1999). 

Institute of Mathematics 
Technical University Cluj-Napoca 
RO-3400 Cluj-Napoca, Romania 
Email address:Ioan.Rasa@math.utcluj.ro 



Advanced Problems in Constructive Approximation 
(Eds.) M.D. Buhmann and D.H. Mache 

International Series of Numerical Mathematics Vol. 142, 153-163 
© 2002 Birkhäuser Verlag Basel (ISBN 3-7643-6648-6) 

A Survey on Lagrange Interpolation 
Based on Equally Spaced Nodes 

Michael Revers 

Abstract 

Lagrange interpolation polynomials based on the equidistant node system 
have not been a popular subject in approximation theory. This is due to 
some famous examples published by C. Runge in 1901 and later by S.N. 
Bernstein in 1918 wh ich discouraged mathematicians from considering this 
method of interpolation. This paper provides abrief survey of Lagrange 
interpolation polynomials wh ich are based on equidistant no des including 
recent results on pointwise divergence properties and certain limit relations. 

1 Introduction 

We begin with some definitions and notation. Let C = C (1) denote the Banach 
space of continuous functions on the interval I ;= [-1,1] equipped with the usual 
uniform norm 11.11. Further denote by IIn the set of algebraic polynomials of degree 
at most n. Let X be an interpolation array, i.e., 

X = {Xj,n ; j = 0, 1, ... , n; n = 0, 1,2, ... }, 

with 

-1:S; XO,n < XI,n < ... < xn,n :s; 1, (n = 0, 1,2, ... ), 

and consider the corresponding Lagrange interpolation polynomial 

n 

Ln (f, X, x) ;= L f (Xj,n) lj,n (X, X), nE No· 
j=O 
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Here, for n E No, 

W n (X, x) 
lj,n (X, x):= I (X . ) ( _ . )' 0"5:. j "5:. n, wn ,xJ,n X xJ,n 

with 
n 

W n (X,x) = II (x - Xj,n) , 
j=O 

are polynomials of exact degree n. They are called the fundamental polynomials 
associated with the nodes {Xj,n : j = 0, 1, ... , n}. In other words, to each lEe (1) 
there corresponds a unique interpolating polynomial Ln (f, X,.) of degree at most 
n coinciding with I at the nodes {Xj,n : 0 "5:. j "5:. n}. 

The main quest ion is, of course, the convergence, i.e., to understand for what 
choices of the interpolation array X we can expect that 

Ln (f,X) ~ I, as n ~ 00. 

Since, by the Chebyshev alternation theorem, the best uniform approximation 
p~ (f) to lEe (I) from IIn interpolates in at least n + 1 points, there exists, for 
each lEe (I), an interpolation array Y (unfortunately depending on f) for wh ich 

IILn (f, y) - I11 = En (f) := min 11I - pli 
pEITn 

tends to 0 as n ~ 00. However, for the whole class C (I), the situation is much 
less favorable, since there is no "universally effective" set of nodes. 

2 Divergence results 

The main result, which can be considered as the starting point of the divergence 
theory of Lagrange interpolation, is due to G. Faber [10] in 1914. In order, to 
formulate the mentioned negative result of Faber, we quote some estimates and 
introduce some furt her definitions. By the classical Lebesgue estimate 

ILn (f,X,x) - I (x)1 < ILn (f,X,x) - p~ (f,x)1 + Ip~ (f,x) - I (x)1 

ILn (f - p~, X, x)1 + En (f) 

< (~ilj,n (X, x)i + 1) Rn (I), 

therefore, with the notations 

Tl. 

An (X, x) L IIJ.1I (X, x)l· nE No, 
j=O 

An (X) IIA n (X. ·)11. Tl E No. 
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(Lebesgue function and Lebesgue constant of Lagrange interpolation, respective
ly), we have for n E No 

ILn (f, X, x) - f (x)1 S (An (X, x) + 1) En (f) 

and 

It is not hard to see that the Lebesgue constant equals the operator norm of 
Ln (., X) with 

L n (.,X):C[-I,I] --> 

f f----+ 

C[-I,I] 

Ln (f,X). 

G. Faber [10] proved the then rather surprising lower bound 

1 
An (X);::O:8j1flog(n+l), nENo, 

for any interpolation array X. Based on this result he obtained 

(1) 

Theorem 2.1 (Faber, 1914) For any interpolation array X there exists a function 
h E C [-1, 1] such that 

limsup IILn (h, X) - h 11 = 00. 
n->oo 

But, of course, this result does not exclude a pointwise convergence result at least 
at a single point. This quest ion was (negatively) answered by S.N. Bernstein [3] in 
1931: 

Theorem 2.2 (Bernstein, 1931) For any interpolation array X there exists a point 
Xo E [-1,1] and an 12 E C [-1, 1] such that 

lim sup ILn (12, X, xo) 1 = 00. 
n->oc 

The next natural quest ion is: are there divergence results on a set of positive 
measure? As has been observed independently by Ch. Meray [15] in 1884 and 
so me years later by C. Runge [22] in 1901, Lagrange interpolation polynomials 
which are based on an equidistant interpolation array need not provide a good 
approximation method. Runge considered the interpolation array 

E = { -1 + ~ : j = 0, 1, ... , n; nE N} . 

We shortly call this array the equidistant node system. Then we have the following 
divergence result which is due to Runge [22]: 



156 M. Revers 

Theorem 2.3 (Runge, 1901) Let f (x) = (1 + 25x2 ) -1, x E [-1,1]. Then, for 
0.72 ... < Ixol < 1, 

lim sup ILn (1, E, xo)1 = 00, 
n--+oo 

whereas, for 0 ::; Ixo I < 0.72 ... , 

limsup Ln (1, E, xo) = f (xo). 
n--->oo 

However, S.N. Bernstein [2] produced an example which is even more dramatic. 

Theorem 2.4 (Bernstein, 1918) Let f (x) = lxi, xE [-1,1]. Then 

limsuplLn (1,E,xo)1 = 00, VXo E [-1,1] ,Xo i= -1,0,+l. 
n--->oo 

In other words, the Bernstein example exhibits a particularly simple function for 
which the interpolating polynomials on E diverge throughout [-1,1], except at a 
few points. 

The next result states a similar theorem concerning the Chebyshev interpolation 
array 

{ ( 2j + 1 ) . } T = - cos 2n + 27r : J = 0,1, ... , n; nE No . 

G. Grünwald [12] and J. Marcinkiewicz [14] (independently) obtained 

Theorem 2.5 (Grünwald, Marcinkiewicz, 1936/37) There exists a function h E 

C [-1, 1], for which 

limsup ILn (h,T,xo)1 =00, VXo E [-1,1]. (2) 
n---+:x: 

In a joint paper, [13], P. Erdos and G. Grünwald sharpened this result. They 
constructed a function fEe [-1, 1] satisfying (2), where, at the same time, the 
even function f (cos'l9) has a uniformly convergent Fourier series on [0,7r]. 

In 1980, P. Erdos and P. Vertesi [9] settled the case for general interpolation arrays. 
They proved the following remarkable result: 

Theorem 2.6 (Erdos, Vertesi, 1980) For any interpolation array X one can find 
a function f4 E C [-1, 1] such that 

lim sup IL n (fl, X, xo) 1 =x, for almost all Xo E [-1,1]. 
7/,---+CX::;, 

Aforeover, the diveryence set is of second category on [-1,1]. 
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It is not hard to see that the word "almost" in the above statement is best possible. 
It is fairly easy to construct an interpolation array for which limn -+oo Ln (f, X, X) = 
l(x),1 E C[-I,I], on a dense subset (again independent of I) of [-1,1]. For 
example, we can take 

where {xd~o is a dense subset of [-1, 1]. 

As a final cautionary note about divergence results which are based on general 
interpolation arrays we mention two papers (1. Muntean [16] and S. Cobzas and 
1. Muntean [8]). 

Theorem 2.7 (Muntean, 1976) Given an arbitrary interpolation array X and de
note by 

Ux = {I E C [-1,1] : limsup IILn (f, X)II = oo}. 
n-+oo 

Then U x is an uncountable, G 8, dense subset 01 C [-1, 1]. 

The examples of Meray, Runge, Bernstein, Grünwald, Marcinkiewicz were not 
isolated examples of "bad" functions. The result of Muntean, loosely speaking, 
states that "bad" functions are everywhere. 

3 Equidistant interpolation 
We have seen in the previous chapter that the efficiency of approximation by 
Ln (., X) is governed by 

IILn (f, X) - I11 ::; (1 + An (X)) En (f). 

For certain sets of interpolation nodes the behavior of the Lebesgue function has 
been weIl investigated. An excellent survey is given in Brutman [5]. Among the 
many results available up to now, we collect some facts which are placed within the 
relevance of this survey. For the Chebyshev nodes T the behavior of An (T, .) has 
been investigated for the first time by Bernstein [2] who established an asymptotic 
value for An (T) by 

2 
An (T) rv -log (n + 1), as n ---- 00. 

7r 
(3) 

In view of Faber's result (1) it becomes clear that the Chebyshev no des T are a 
particularly good choice for interpolation if good uniform approximation is desired. 
However, T is not an optimal node system, that is, there exists some set of nodes 
X such that 
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Now, turning to the case of equidistant nodes, Schönhage [24] published in 1961 
the asymptotic expression 

2n+1 
An (E) rv , as n --+ 00, 

en (logn + 'Y) 

where 'Y = 0.577 ... is Euler's constant. The above mentioned divergence exam
pIes of Runge and Bernstein together with Schönhage's result made the study of 
interpolation polynomials which are based on equidistant nodes very unpopular. 

For example, many papers have been written about Chebyshev interpolation. Also, 
much attention has been devoted to the case X(a.,ß) consisting of the zeroes of 
the Jacobi polynomial p~a.,ß) (see, for example, Szegö [25]). But calculating the 
zeroes of Jacobi polynomials is (numerically) not easy. On the other hand, if we 
are interested in equidistant interpolation then splines are more popular than 
polynomials. 

However, despite the negative results of Runge and Bernstein and the undis
puted success of spline interpolation, the study of Lagrange interpolation based on 
equidistant nodes offers many interesting unsolved problems. Here we shall treat 
some problems which are related to equidistant Lagrange interpolation. 

4 N ew results 

Let us recall the divergence result of S.N. Bernstein [2]: Let f (x) = lxi, x E [-1, 1]. 
Then 

limsup ILn (I, E, xo)1 = 00, VXo E [-1,1], Xo =I- -1,0, +1. 
n---+oo 

Bernstein's proof is short but rather technically. It is based on the Newton repre
sentation of the interpolating polynomials. Another source for the proof is the book 
of I.P. Natanson ([17], pp. 30-35). Since the points ±1 are interpolation points for 
each Lagrange polynomial Ln (I, E,.), n E N we simply have Ln (lxi, E, -1) = 
Ln (lxi, E, 1) = 1 for all indices. Hence divergence can never occur at the end
points (for any /). However, at the point Xo = 0 the (convergence) behavior of 
the interpolating polynomials to the function lxi is not so dear. We mention that 
Bernstein has not investigated the case Xo = 0, probably because 0 is anode for 
all even integers n. It was first noted in the student term paper of D.L. Berman 
in 1939 that 

lim Ln (lxi, E, 0) = 0, 
n---+oo 

and S.M. Lozinskii showed more exactly that ILn (lxi, E, 0)1 -::; ein. A short survey 
on this topic is given, for example, in ([23], p. 285). S.M. Lozinskii again used the 
Newton repreH8lltation for the upper estimate of the order of convergence. In [19] 
Bernstein's result is extended to the following 
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Theorem 4.1 Let 0: E (0,1]. Then 

limsup ILn (Ixl ll 
, E, xo)1 = 00, VXo E [-1,1] ,Xo -:f- -1,0, +1. (4) 

n->oo 

The proof of this faet is eompletely different (even for the ease 0: = 1) from Bern
stein's idea sinee it is based on the Lagrange representation formula. This formula 
has not beeome very popular in proving divergenee result (see also the reeent work 
of L. Brutman and E. Passow [6] which deals with divergenee properties for lxi at 
a broad family of interpolation nodes (including the so-ealled Newman nodes)). 
Motivated by some numerieal eomputations I eonjectured that the everywhere di
vergenee (apart from -1,0,+1) ofthe sequenee (Ln (jxl ll ,E,xO))n>l takes plaee 
for all 0: > 0, (0: -:f- 2,4,6, ... ). -
It is worth mentioning that Bernstein's divergenee result has been sharpened in 
1990 by G. Byrne, T.M. Mills and S. Smith [7] to the following 

Theorem 4.2 Let 0 < Ixo I < 1. Then 

limsup -l- ILn (lxi, E, xo) -Ixoll 
n->oo n + 1 

1 
= 2 [(1 + xo) log (1 + xo) + (1 - xo) log (1 - xo)]. (5) 

In other words, the rate of divergenee of the interpolation polynomials is geomet
rically fast, but depends on the loeation of Xo in [-1,1]. It is somewhat surprising 
that the nth root asymptoties (5) also holds for the "smoother" nllletion Ix1 3 . In 
[20] the following nth root asymptotics is proved: 

Theorem 4.3 Let 0 < Ixol < 1. Then 

limsup - 1-ILn (lxl3 ,E,xo) -lxo l31 
n->oo n + 1 

1 
= 2 [(1 + xo) log (1 + xo) + (1 - xo) log (1 - xo)]. (6) 

It is somewhat surprising to see that the rate of divergenee is not influeneed by 
the parameter 0: (at least for the eases 0: = 1,3). Now, looking to the eonvergenee 
behavior at the point Xo = 0 we have (see [20]): 

Theorem 4.4 Let n = 2m - 1, m E N, m ~ 2. Then 

~~ [1 + _2_] :S ILn (lx l3 ,E,o)l:s ~~ [1 + _2_] [1 + _2_]. 
7f n 3 n - 2 7f n 3 n - 2 n - 1 
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This result extends the well-known result of D.L. Berman and S.M. Lozinskii 
(which handles the case lxI) and it shows that the exact rate of convergence at 
xo = 0 is 0 (n- 3). A careful investigation into the proof of (4) and (6) strongly 
motivates the following question: Let 0 E R+ \2N and 0< Ixol < 1. Is it true that 

limsup ~ll0glLn (lxlQ ,xo) -lxolQI 
n--+oo n + 

1 
= "2 [(1 + xo) log (1 + xo) + (1 - xo) log (1 - xo)] ? 

Very recently M. Ganzburg [11] established the following strong asymptotics for 
the rate of divergence of IlxolQ - Ln (lxlQ ,E, xo)1 for 0 < Ixol < 1: 

Theorem 4.5 For x E [-1,1] and 0 > 0 let (we denote the gamma junction by 
r (.)) 

CPN (x) .- ~ (l+x)1+X(I_x)l-X , ( )N/2 

Cdo) 100 yQ-l dy = r (0) f: (_I)k (2k + 1)-" , .-
o eY + e-Y 

k=O 

C2 (0) 100 y" _ dy = r (0 + 1) f: (2k + 1)-(,,+1) , .-
o eY - e Y k=O 

c(x) { cos 2:' x = p/m, (p, m) = 1, m odd,lpl E N, .- 1, otherwise, 

sex) { cos 2:' x = p/m, (p, m) = 1,p odd, Iml E N, .- 1, otherwise. 

Further let Xo E (-1, 1) ,Xo i- 0 be a fixed point. 
(i) 

limsup ((7rN/2)"+2 /CPN (xo)) Ilxol" - LN (lxi" ,E,xo)1 
N=2n-l-->oo 

(ii) 

limsup ((7rN/2)"+1 /CPN (xo)) Ilxol" - LN (lxi'" ,E,xo)1 
N=2n-->oo 

for 0> O. 

(7) 

(8) 

As immediate consequences of (7) and (8), Ganzburg obtains the nth root asymp
totic relation for Ilxol" - Ln (lxi" ,E,xo)1 and extends (5) and (6) to all 0 > 
0, (0 i- 2,4,6, ... ). 

Now, what can be said about the convergence behavior of Ln (lxi" ,E, 0) ,0 > O? 
In [21] the following result is proved: 
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Theorem 4.6 Let a E (O,IJ. Then 
00 

C(a):= lim NCtL N (lxl Ct ,E,O) =.i (~)Ct sin 'lr2a / ttCt-1_t dt . (9) 
N=2n-l-+00 'Ir 'Ir e + e 

o 

Bince the proof of (9) is based on a certain representation of arbitrary powers of 
n by the gamma function - which only holds for a E (O,IJ - it seems that the 
restrietion for a E (O,IJ is rather technical than essential for obtaining the result 
(9). Thus I conjectured that (9) also holds for all relevant a > o. Actually, in the 
previous mentioned paper [11], M. Ganzburg was able to establish relation (9) to 
all a > O. The result is surprising because it indicates a (possible) connection to 
the most prominent constant in polynomial uniform approximation for Ixl Ct - the 
so-called Bernstein constant (in approximation theory). We give a short exposition 
of this topic: 

In 1913 and later (for the general case in 1938), B.N. Bernstein ([IJ, [4]) investigated 
into the behavior of the best uniform approximation polynomials to the function 
lxi (and IxI Ct , respectively). Recall the definition of IIn to be the space of (real) 
algebraic polynomials with degree at most n and the minimal approximation error 
En (lxl Ct ,[-1,1]) to be defined by 

En = min IIlxl Ct - pli. 
pEnn 

From Jackson's and Bernstein's theorems about the dependence of approximation 
speed and smoothness of the function to be approximated we know that in case of 
a E R+ \ 2N the minimal error En (lxl Ct ,[-1,1]) behaves like 0 (n- Ct ) as n ----+ 00. 

In [4J B.N. Bernstein proved the following deep result. He showed that the limit 

lim nCt En (lxI Ct ,[-I,I])=:ß(a) 
n-+oo 

exists for each a > o. Unfortunately, an explicit expression for the constant 
ß (a), a > 0 is still unknown. In case a = 1 the number ß (1) = 0.28016 ... is 
known as Bernstein's constant (see also [26]). For large values of a, Bernstein was 
able to establish an asymptotic expression. He showed (see [4], p. 190) that 

ß(a) rv ~ Isin 'lr2a 1 r(a) ,as a ----+ 00, 

and moreover, he obtained a both-sided estimate (see also [18], p. 505) for the 
approximation error E n (lxI Ct , [-1, 1]) ( a > O,n sufficiently large) from which we 
deduce that 

41 'lra 1/00 
tCt - 1 

with 'TJCt = :; sin 2"" et + e_tdt . 
o 

It is an interesting open problem to reveal whether there is a "simple" connection 
between the both approximation constants ß (a) and C (a) or not? 
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Multiresolution Analysis with Pulses 

earl H. Rohwer 

Abstract 

Multiresolution analysis has recently received considerable attention in re
lation to wavelets. The word "multiresolution" is appropriate in so far as 
wavelets are local in some sense, and therefore have exponentially decay
ing impulse response. In image processing it is clear that edges and im
pulses yield undesirable synthetic features in partially reconstructed images 
from linear multiscale decompositions. Median decompositions are regarded 
as better in practice, but computational complexity and lack of theory are 
problems. An alternative, from mathematical morphology is possible, yield
ing results demonstrably similar to the median decomposition, but compu
tationally simpler, and having a strong theory for deriving qualitative and 
quantitative properties. 

1 Introduction 

The fast Fourier transform (FFT) has often been called the most important math
ematical tool in modern technology. In a similar way the fast wavelet trans form 
(FWT) will have an impact, for instance, in image processing and transmission. 
Recently a new idea emerged, which some consider to be even better in the "mul
tiresolution analysis" of digital images. In the book, image processing and data 
analysis, Stark Murtagh and Bijaoui (1) follow a discussion of the wavelet trans
form with a section on multiresolution analysis (MRA) based on the median trans
form. Roughly speaking, the averaging filter that maps a function onto a function 
in aspace of lower dimension in the wavelet transform is replaced by a median 
smoother. As usual this can heuristically be motivated by yielding a more ro
bust estimator of an average and therefore outliers have a lesser damage on the 
"smoother component" in the mapping. Iterative and non-iterative algorithms for 
median transforms are presented. The claim is made that this MRA is weIl suited 
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when image reconstruction is done from a subset of the (additive-) decomposition 
for purposes of restoration, compression and partial reconstruction. The recon
structed image is often found to have fewer artifacts than in the case of wavelet 
decomposition, where these artifacts are often in the form of the specific wavelets 
chosen. An example is the negative ring surrounding bright point sources. Shapes 
are found to be doser to those of the input image. Computational requirements 
are listed as high, although there is a saving in that these transforms can be 
performed in integer values only and decimation can yield a considerable economi
sation. Other morphologieal tools, specifically N erosions followed by N dilations 
are mentioned, with the observation that results were found to be better with the 
median. Morphologieal transform are presented, with mention of the good esti
mate of the image background that is obtained, especially for images with small 
structures, as in astronomy. 

In one-dimensional signal analysis the origin of many artifacts (irritating 
significant distortions) in signals partially reconstructed from wavelet decomposi
tions, can often be understood in the context of approximation theory. The linear 
projections used in wavelet decompositions perform relatively weIl in audio sig
nals. The explanation may ultimately be physiologieal, but for the purpose at 
hand, it is sufficient to observe that an audio signal is often weIl approximated 
10caIly by trigonometrie polynomials, so that the FFT can be truncated for com
pression. Such local approximation does have some damage (Gibb's phenomenon), 
but "softer" windows can be employed to lessen this. Depending upon the sup
port of a specific wavelet, and the norm of an associated mapping onto a subset 
of lesser dimension, the Gibb's-Phenomenon may be acceptable for the partial 
reconstruction. 

For visual signals, or images, sharp edges and constant regions play a sig
nificant part in the acceptability or recognisability of an image. Such data, ap
proximated by smooth functions, or sequences of sampled smooth functions, bring 
Gibbs into play, with possible "overshoot" and "undershoot" near edges. An edge 
can be interpreted as having an impulse in the derivative, or an impulse in the 
sequence of differences of sampies of such an image. Impulses are not handled 
weIl by linear filters, or smooth functions in approximation theory. Convoluting a 
wavelet with an impulse yields precisely the wavelets concerned so that impulsive 
noise on a sequence can be expected to yield spurious features, often dose to the 
shape of the wavelets, or sums of these, at aIl resolution levels. 

In the extreme case of the non-Iocal Fourier transform, the impulse results 
in a constant function in the frequency domain. This contamination is difficult to 
remove afterwards. A linear filter preserves the "energy" in an impulse. Even in 
the case of the simplest Haar-wavelet decomposition, where the projection onto 
the lower frequency sequence has minimal norm, an impulse is merely spread onto 
aIl levels of the wavelet decomposition. The general rule of thumb is to handle 
outliers (impulses) be fore any linear mapping is done. This was the original mo
tivation of Tukey and others to use running medians ("median smoothers"), or 
other selectors, before any linear mapping, or at least as so on as possible. It is also 
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in this light that the median smoothers were considered the "basic" smoothers. 
Despite the almost universallament at the lack of an underlying theory (11), useful 
ideas emerged. A sensible set ofaxioms emerged, as well as a characterization of 
the so-called "roots" of median smoothers in terms of edges, constant regions and 
monotone sections. As it turns out a simple, illuminating characterization of the 
eigensequence w.r.t. the eigenvalue 1 ("root"), turns out to be that of local mono
tonicity, provided the sequences considered are square summable. This is always 
the case in practice, as the only spurious roots are periodic, a fact that was proved 
recently (12). Furthermore, a slight relaxation of one of the axioms of Mallows 
allows an even simpler set of selectors, which can essentially be reduced further to 
composition of minimum- and maximum operators, and which allow a framework 
for comparison and analysis. This leads to the so-called L UL U- theory, developed 
for the purpose of removing impulsive noise from one-dimensional data (5), (6), 
(7). This theory was later shown to overlap particular cases of the theory of math
ematical morphology, as developed by Serra (10) and others. The LULU-theory 
has the special advantages of demonstrating the concept of local-monotonicity 
("trend") that is complementary to a concept of impulsive noise in a strict sense. 
It yields a collection of nonlinear smoothers that are weH structured in an order
ing on such operators, and some illuminating theory. Computational and other 
advantages can be demonstrated, leading to a theory for selecting, constructing 
and comparing morphological filters, median filters and others that can lead to 
a multiresolution analysis with the advantages observed as weH as computational 
efficiency comparable to the FWT. 

For the purpose at hand a sequence can conveniently be identified with an 
interpolating spline function of order 2 or 1 (degree 0 or 1), as required, since there 
is a one-to-one correspondence from the B-spline basis. This idea leads to a useful 
generalisation, since a spline function of arbitrary degree can be decomposed into a 
sequence of coefficients representing pulses of B-spline shape. Since B-splines have 
multiscale relations it is clear that there exist an infinite number of possibilities 
to decompose a polynomial spline into linear combinations of B-splines at all 
resolution levels. A diadic wavelet decomposition is one such decomposition, of a 
specific type, where resolution is halved at each stage and a specific choice is made 
to have pulses at all levels exhibiting so me local periodicity. 

A beautiful, comprehensive theory of spline wavelets exists (2), but often we 
pretend to want what the theory deli vers because the theory does not quite deliver 
what we want. Rethinking the requirements of a multiresolution analysis can be 
shown to be useful. It could start with a clear definition of the concept of resolution, 
along the lines of the practical heuristic uses of the term in measurements of physics 
or chemistry. In chemistry, for example, a spectroscopy apparatus can be said to 
have aresolution sufficient to distinguish between spectral lines of two chemical 
compollnds. These may be of Gaussian-shape and the instrument must be able to 
separate two definite maxima, even in the presence of some reasonable expected 
noise. If the instrument has a higher resolution it can separate a spectrum of these 
compounds into several pulses from the presence of a few ionisation species in 
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the compounds. When the instrument is even bett er it could even break up these 
pulses into pulses representing different isotopes in the species. Thus resolution is 
associated with ability to distinguish or separate different "pulses." 

We should like a more rigorous concept of "resolution" along these lines and 
an associated multiresolution analysis. If at all possible we would like to have 
a decomposition that is translation invariant in both axes, so as to remove the 
problem of the phase ambiguity (the dependence of the decomposition on the 
choice of index). A further useful property would be a linear decrease in resolution 
instead of a geometrie one, as is the case with classic Fourier analysis. 

It will be demonstrated that all these aims can be realised to a remarkable 
extent to provide an alternative system of multiresolution analysis. 

2 Multiresolution analysis 

For the purpose at hand it is convenient to briefty sketch the ideas of a simple 
wavelet decomposition. 

Given a function f, a subset of a function space is chosen so that it is spanned 
by translations of a so-called scaling function rp, which is itself a linear combination 
of the type 

00 

i=-oo 

It is sufficient for the purpose at hand to consider only the simple Haar-wavelet 
decomposition. The "scaling function" </J in this case is simply the characteristic 
function of the interval [0,1), thus a B spline of order 1 (degree 0). It is clear that 
</J(t) is a linear combination of </J(2t) and </J(2t - 1), and that, in this case, it is 
simply the sumo 

Thus </J(t) = </J(2t) + </J(2t - 1), and by induction 

2 k 

</J(t) = L </J(2k t - i). 
i=O 

Consider the span of these functions, and x = {Xi: i = 0, ... , N - I}, wh ich 

is a sampling of a function of f at the values t i = i ~(5, where 0 ::; 15 < l. 
Clearly, in this case, the sequence can be identified with the sequence of 

coefficients w.r.t. the basis {</Ji; </J;(k) = </J(2 k t - i)}. Letting 

a best least squares estimate Px from Bk-l to a function 

N-l 

X = L cxirP(2kt - i) 
,=0 
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from Bk is easily obtained as 

and 

where 'lj;(t) = cp(2t - 1) - cp(2t), is the Haar-wavelet. 
The basis is orthonormal W.r.t. the inner product 

(x, y) = f: x(t)y(t)dt, 

and the set of wavelets 'lj;i span the orthogonal complement of Bk-i, if 'lj;i(t) = 
'lj;(2 k - 1t - i). 

For later comparison it is sufficient to note that there is a preservation of 
"energy" in the sequences in that 

~ . ~ 2 (OO2j +2OO2j+1 ) 2 + . ~ 2 (OO2j+12- OO2j ) 2 Ilooll~ = ~ 00; = ~ ~ 
~-= =-= 1=-= 

Thus the sequence x is decomposed into a "smoother" sequence Px, which is 
pairwise constant, and a "rougher" sequence x - Px which has pairwise elements 
equal in absolute value, but differing in signs. Significant, for later argument, is 
that Px has every three consecutive elements monotone. 

Since the wavelet 'lj; has a definable frequency, it is natural to view the decom
position as a "smoother" spline Px and a wavelet component, which is a sequence 
with an associated frequency locally. Repeating such a decomposition the original 
sequence x can eventually be decomposed into a constant sequence and several 
"layers" of wavelets at frequencies that are successively an octave lower than the 
previous. 

Schematically the wavelet decomposition can be viewed in the following dia
gram. 

! 
1 

Wd = (I - Pd! 

----+ Pi ! ----+ 

1 
Wd = (I - P2 )Pd 

P2 Pd ----+ P3P2Pd 
1 1 

W3 ! = (I - P3 )P2Pd 

Früm the theory of wavelets the projections Pi have the following properties; 

(i) Pd ..l {j, Pd, .. ·, Pi-d} 

(ii) Pi is idempotent, linear and eigenvalues are only 0 and 1. 



170 C.R. Rohwer 

Reconstruction can be achieved by adding the different "layers", and partial 
reconstruction by a subset of the layers, or a set of subsets of each layer. For data 
compression, for instance, the coefficients at each wavelet level can be "quantized" 
and only the nonzero quantized values stored or transmitted. Thus it is reasonable 
to speak of a "local frequency content" by considering the size of coefficients of 
wavelets with support at a chosen location. 

What seems clear is that a signal with sections of almost constant value will 
have small frequency content at all frequencies there. Only in regions where the 
sequence varies significantly will there be a need for high frequency information 
being transmitted. For purposes of automatie analysis, significant changes in the 
sequences are identified with "wavelet activity" nearby. The effect seems local due 
to the small support of the scaling function cp and the wavelet '1/;. In a sense there
fore it is reasonable to say that global shape is determined by the low frequency 
content and higher resolution features reside in the wavelet coefficients. Hence the 
name multiresolution analysis (MRA). But should this name not be reserved for 
a stricter interpretation? 

A linear trans form can be characterised by its response to an "impulse". Let
ting di be the sequence {bij : j = 0, ... , N - I}, where bij is the Kronecker-deIta 
it is easy to see that, in spite of its minimal support, the wavelet decomposition 
will have exponential decaying amplitudes in exponentially growing support in
tervals. A partial reconstruction will therefore inevitably have deviation from the 
original sequence in an arbitrarily large region. This is the essential problem of the 
response of a linear mapping to "impulsive noise", if impulsive noise is precisely 
defined as an arbitrary multiple of a Kronecker-delta sequence. The "energy" in 
such an impulse is "spread" or "smeared", and, depending on the amplitude of the 
impulse, can completely swamp the essential signal in an arbitrarily large region. If 
impulses like these can be expected in a measuring (or transmitting-) device, there 
will have to be so me precaution taken, preferably before any linear transforma
tion is performed. This led to the widespread use of pre-smoothing with running 
medians. The problem is essentially similar in all wavelet decompositions, and a 
progressively more local feature has progressively wider frequency content in gen
eral; the time-frequency window has an area exceeding a fixed positive quantity. 
Moreover, the damage done is not restricted to impulses, but to impulses in differ
ences of the sequences too. Thus a sampling of a simple step function will generally 
have significant distortions spreading into all frequency levels. This behaviour is 
also phase dependent. 

It is illuminating to consider the above observations in the simple case of 
a sequence of samplings of a smooth function, with a simple unit step function 
(Heaviside function), uniformly distributed random noise and two isolated impulses 
(Krollecker-deita sequences) added. 

It is dear that the :;ynthetic wavelet activity due to the edge amI the irnpubes 
is arnplified by the factor a if the original impulses and jump discontinuity are, 
resulting in arbitrary synthetic features arbitrarily far in t he decompm;ition. 
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In image processes edges are significant for picture quality. Linear mappings 
generally do not preserve monotonicity in a sequence as median smoothers do, and 
do so in apreeise loeal sense, as do all rank order selectors. Can this be exploited? 
Clearly experienee suggest that multiresolution analysis with medians works well in 
image processing (1). Are there computationally efficient alternatives, and can an 
underlying theory provide reassuranee of predictable, eomparable performance? 
And if a "feature" or a deviation from a "smooth" surrounding trend is at a 
precisely defined "resolution", in that it is sufficiently local, can it be separated 
without excessive contamination? 

3 An alternative multiresolution analysis 

A first possible development can start with a precise definition of impulsive noise, 
and the so-called LULU-operators (5). Operators are eonstrueted that remove, 
from constant sequences, the impulses that ereate problems in linear deeomposi
tions. 

Definition 3.1 A pure n-impulse is a sequence p with Pi = a, for i E [j, j + 1, ... , j + 
n - i] and 0 elsewhere. (a is any nonzero scalar amplitude.) An-impulse is any 
sequence which is between -p and p, for same pure n-impulse. 

For each integer n ~ 0, the following operators are defined. 

Definition 3.2 Let x be a sequence in X, then; 

(UnX)i 
(LnX)i 

(MnX)i 

min{max{Xi-n, ... ,xd,··· ,max{xi, ... , Xi+n}} 
max{min{xi_n, ... , xd, ... , min{xi, ... , Xi+n}} 
median{xi_n, ... , Xi, ... , Xi+n}. 

These operators are easily seen to remove n-impulses from eonstant sequences. 
Analysis shows that Un, Ln, UnLn and LnUn are all idempotent. Un and Ln are 
morphologieal filters (10) in one dimension and are just compositions of "erosions" 
and "dilations". Furthermore, they are eaeh others "duals", sinee -Unx = Ln( -x), 
where -x = Nx = {Yi; Yi = -Xi}. Furthermore it should be clear that Un annihi
lates any sequence x that is a nonnegative n-impulse (and also that Ln annihilate 
any nonpositive n-impulse) since the maxima of n + 1 eonseeutive elements of a 
non-negative impulse must eontain a zero. Careful analysis (6),(7) shows that the 
eompositions LnUn and UnLn annihilate any n-impulse, are invariant w.r.t. the 
choice ofaxes for the data under consideration, sinee they are translation invariant 
and if xis any sequenee and ca constant sequenee, Un(x+c) = Unx+Unc = Unx+e, 
and Ln (X + c) = Lnx + c. They are also scale invariant in that Ln ({x) = "Y Lnx 
and Un{{x) = "YUnx, for any sealar "Y ~ o. Clearly the operators are non-linear, as 
the sum of n-impulses need not be in the nulset of Un or Ln. Defining the usual 
(partial-) order relation on X, and on the operators, also shows (5) the operators 
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Un, Ln and Mn to be syntone and UnLn ~ Mn ~ LnUn. Clearly UnLn , Mn, LnUn 
are therefore equivalent in the power of removing impulses, at least from eonstant 
sequenees. Due to the nonlinearity of the operators it is unclear in how far they re
move an impulse superimposed on a general sequenee ("signal"), but is so in some 
precise sense, in that the interval of sequenees ean be eonsidered as an "interval 
of fundamental ambiguity" associated with the eoneept of "impulsive noise" (6). 
Fundamental is that the eommon range M of UnLn , LnUn eonsists precisely of 
those sequenees that are n-monotone. 

Definition 3.3 A sequence xis n-monotone if each set ofn+2 consecutive elements 
{Xi, XH1, ... ,XHn+l} are monotone increasing (-nondecreasing) or monotone de
creasing (-nonincreasing). 
Mn is the subset of all n-monotone sequence in 1\. 

The eoncept of loeal monotonicity is a more eompact eharaeterisation of the 
so-ealled "roots" of median smoothers. The behaviour of Mn itself is enigmatie, 
and this ean be associated with the existence of sections of "spurious" roots in 
a sequence. The "spurious" roots have recently been shown to be precisely the 
periodic ones (12) that are not in €p, In the case of M 1 it is essentially only one 
sequence, namely Xi = (_l)i, and its multiples. 

It is easy to see that if X E X then X is O-monotone and therefore Mo = X. 
Furthermore Mo :J M 1 :J ... :J Mn :J ... form a sequence of nested subsets. (A 
Haar-decomposition projects into M 1 with the first decomposition onto M3 with 
the second and so forth, and this is dependent on the phase, or therefore of the 
choice of the nodes of the splines involved.) If an alternative decomposition is to 
be constructed it can be considered prudent to aim for an elementary separator P 
in such a way that the following criteria are not compromised too much. 

Effectiveness : The output P must be a sequence without higher resolution detail. 

Efficiency : The computations must be local and economical in terms of basic 
digital operations like logical comparisons, additions, multiplica
tions, divisions etc. 

Consistency : Mapping the output again should preserve it, or confirm it as good. 

Stability : Input perturbations should not result in excessive output pertur
bations. 

Considering the simple Haar-wavelet, the projection operator P, is effective since 
it is a projection onto a spline-subspace of half the original dimension of the 
(order 1-) spline space at the sampling resolution. It is achieved efficiently by a 
simple averaging filter on the sequence. Since a projection operator is idempotent 
it preserves its own output. (It is noteworthy that this necessitates a filter that 
is not translation invariant (and therefore phase dependent as it depends on the 
nodes of the spline subspace of lower dimension onto which is mapped.) Thus it 
does not meet the requirements of one of the axioms of a smoother, as introduced 
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by Mallows. Stability has been argued to be suspect in the case of features that 
are "brief" impulses. Excessive output perturbations can result. 

Choosing, as the first separator in an alternative multiresolution analysis 
the operator PI = L1U1, it is clear that the output is I-monotone. (U1L1 would 
be another choice leading to a similar scherne. ) A general sequence x E X is 
then effectively mapped onto aI-monotone sequence P1x in MI. This operator 
is efficient, requiring only O(N) comparisons, as will be shown later. Since L1U1 
is idempotent it is consistent, in preserving its output, but, since the operator is 
nonlinear, consistency demands somewhat more. Since PI is not a projection, the 
component (I - P2 )x that is removed must also be consistently removed, in that 
(I - Pt}(1 - H)x = (I - Pt}x. 

This means that 1 - PI must also be idempotent. This turns out to be so 
for all the operators LnUn (and UnLn) and this "co-idempotence" of Pn = LnUn 
is equivalent to having (I - Pn)x being a null-sequence of the operator Pn, for 
each x (7). The separation can thus be considered to be consistent. Stability is 
good since the operator has a Lipschitz constant, so that small amplitude per
turbations cannot be amplified (8). Furthermore a single (large) impulse has an 
influence restricted to amplitudes of neighbours, and the influence is local. Under 
the heading of effectiveness, a furt her consideration arises when P is not a pro
jection. A projection onto a subspace S is automatically a good approximation in 
the appropriate norm, and since the Lebesgue inequality is applicable, also if the 
norm of P is finite, in any other norm. If Pn is merely aseparator, (a idempotent 
and co-idempotent mapping), it is important to consider whether the image Pnx 
is a good approximation from Mn to the sequence x. This can again be shown to 
be so in the cases of LnUn and UnLn (8). 

Thus the separator LI U1 effectively separates a sequence x into a good ap
proximation L1U1X in MI and a (high resolution) sequence (1 - L1U1)X, which is 
a null-sequence of LI U1 , and thus can be considered to consist of sufficiently local 
impulses, sufficiently separated not to yield a lower resolution non-zero output 
when mapped by LI U1 • It can be considered as a sum of "noiselets". It must be 
stressed that the sum of such null-sequences is not automatically a null-sequence 
again! Furthermore, the operator UnLn, although considering LnUnx as a "sig
nal", since it is in Mn, does not necessarily consider (confirm) (1 - LnUn)x as 
being noise. This is because UnLn(I - LnUn) is not the zero operator, although 
LnUn(I - LnUn) iso LnUn and UnLn have a common range but 1 - LnUn and 
1 - UnLn not. These observations are associated with a fundamental "uncertainty 
principle" with respect to the concept of impulse (6), and will result in a similar 
uncertainty in the concept of resolution, if made strict. The two decompositions, 
with LU and U L can be effectively done in parallel, but separately. 

It is instructive to consider a sequence with two large impulses, as well as a 
"jump-discontinuity", sufficiently large so that the "smoother" parts LI U1x and 
U1L1x will not be affected at all if the impulses are multiplied by an arbitrarily 
larger number. All the extra amplitude will be restricted to the noise-components 
x - L1U1X and x - U1L1x. No change will result in lower layers of decomposi-
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tions. Only when the amplitude decreases to the level of the local variation of 
the uncontaminated signal will there be a minor change in LIUIX and UILlx, 
(minor meaning; of the order of the difference between the two). Since the Haar
decomposition is based on linear operators the multiplication of the impulses by 
an arbitrary Q will result in a proportional distortion by the same factor in the 
wavelet component resulting in proportional distortion with exponentially increas
ing width. With sufficiently large amplitude impulses this can swamp all significant 
features of the original sequence. 

In the Haar-decomposition the large scale level change smear this significant 
feature to exponentially growing large sections of the successively smoother decom
positions. The synthetic wavelet activity at the jump will have a correspondingly 
large amplitude in all subsequent wavelet layers. The well-known idea of threshold
ing the wavelet coefficient sequences to handle impulsive noise is clearly limited in 
its effectiveness, quite apart from the difficulty of choosing an appropriate thresh
old. The observations above are demonstrated already in the simple example of a 
constant signal and a single impulse of width 1. The first two Haar-decompositions 
demonstrate the exponentially growing width in both components of the decom
positions, and because the operators involved are linear this behaviour is scale 
independent. Omitting one or more levels of wavelet components will result in a 
large distortion in the reconstructed signal. 

The L UL U-decomposition of the same signal and impulse has the full energy 
of the impulse in its first noise-component and omitting this (highest resolution) 
component and any other willleave a perfectly smoothed original constant signal. 

Since the Haar decomposition is linear, this behaviour will result in a simi
lar distortion when added to any signal. Since the LULU-decompositions are not 
linear, the superposition of this impulse on a given signal x will not necessarily 
result in an undistorted removal of the impulse from x. But all the distortions will 
not exceed the magnitude of the local variation of the signal at the position of the 
impulse. Strictly speaking LIUIX and UILlx cannot be distorted by more than 
the factor max{lxi+1 - xii, lXi - Xi-li} at i, if the arbitrarily large impulse is added 
at i, since both have either the value Xi-l or Xi+l. No distortion larger than this 
can result in any lower level of decompositon, since the norms of all the operators 
LnUn and UnLn are 1. A furt her distortion occurs at the two neighbouring points 
i-I and i + 1, but this distortion cannot exceed IXi-2 - xi-li and IXi+2 - xi+ll 
respectively. Clearly the contamination can spread, but this cannot exceed the 
maximum amplitude of the signal in the corresponding region. Furthermore, it 
does not spread far unless there is so me Nyquist frequency present. A precise 
analysis is not intended here, and may become exceedingly difficult. Experience 
suggest very limited growth in the contamination support. 

A practical typical comparison that is illustrative of the specific advantage of 
the LULU-decomposition argued above is where a broad n-impulse, with random 
noise added, is decomposed by LULU-decomposition and Haar uecomposition. 
Except for the, progressively more unlikcly event, as n increases, of the n-pulse 
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starting and ending at anode of the lower-dimensional spline subspaces, there will 
be wavelet activity at arbitrary levels due to the sharp edge. 

Having suggested and heuristically argued many "advantages" the L UL U
decompositions have, it would be appropriate to derive some theorems that can 
support some of these known, observed or believed properties of the LULU-de
composition. 

In linear orthogonal decompositions the squares of 2-norm are preserved. A 
pure n-pulse has the same "energy" as nI-pulses of the same amplitude, but, 
depending upon how these I-pulses are distributed, can have a total variation 
between 20: and 2no:. The total variation is therefore a measure of the "resolution" 
of features. Pursuing this idea leads to the following substantial results. 

4 Decomposition, smoothing and variation reduction 

The operators involved were originally intended for nonlinear smoothing, or pre
smoothing for the removal of impulsive noise. On attempting to clarify and quantify 
some experimental observations and case studies, it is natural to choose total 
variation of a sequence as a measure of smoothness. For each sequence x, the total 
variation T(x) is defined by; 

Definition 4.1 
N 

T(x) = lim "lxi+! - Xii. 
n-+(X) ~ 

-N 

As is weH known, and easy to prove, T(x) is a semi-norm. If X E Pp, the 
vectorspace of sequences such that the p-norm, 

is finite, then T(x) is also a norm. This is because 

. lim lXii = lim lXii = 0, 
1..-+-00 1.-+00 

and thus the only sequence with zero variation is the null-sequence. 
A wavelet decomposition of a sequence X E Pp with order 1 or 2 spline wavelets 

will eventually lead to a constant sequence, which has to be the null-sequence. Thus 
all the "energy" has been peeled off into the (wavelet-) frequency layers, since the 
squares of the 2-norms of Px and X - Px add up to the square of the 2-norm of 
x, so that 

IIx - Plxll~ + I !FIX - P2PIXIl~ + ... = IIxll~· 
The behaviour of the total variation of X and all the components of the decomposi
tion at the intermediate stages is of interest, if smoothing is desired for the purpose 
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of exposing significant features in the sequence x without too much damage. In a 
wavelet-decomposition, like in a Fourier decomposition, it is natural to stop the 
decomposition process when the frequency layers do not contain significant energy 
any more. Similarly it would be convenient if the reduction in variation has some 
natural measure giving precise indication of what fraction of the total variation has 
been removed. Assuming that the features to be exposed by smoothing are given by 
a sequence e to which higher resolution noise, given by a sequence r, has been added 
to produce a significant increase in variation. Since T(x) = T(e + r) :s; T(e) + T(r) 
in general we are therefore assuming that T(x) ~ T(e) + T(r). We should like 
to stop smoothing when the total variation go es significantly below that of T(e), 
which is not known but perhaps estimated. If the noise r is of much higher "res
olution" than the desired features of the sequence, the successive peeling off of 
resolution layers could be expected to decrease the variation steadily until most of 
the noisy features are removed. Reaching the expected resolution level of e should 
result in a furt her strong reduction, perhaps identifying that the unknown reso
lution level of e has been reached, and furt her "smoothing" would partially erase 
these. This heuristic motivation could be experimentally supported, but clearly 
the underlying assumption of a "proportional" allocation of the total variation to 
each resolution layer, is crucial in the appropriateness. 

The L UL U-decompositions have such aremarkable property. It can be proved 
in the following way. 

Lemma 4.2 Let x be (n - l)-monotone. 1f j is a point where UnXj =I Xj and 
Xj-l =I Xj, then UnXj = min{Xj-l,Xj+n} and UnXj-l = Xj-l. 

Praof. If UnXj differs from Xj it must be larger, since UnX :::: x. 
UnXj = min{max{Xj_n, ... ,Xj}, ... ,max{Xj, ... ,Xj+n}} > Xj, implies that each 
of the maxima is larger that Xj, so that there are at least two values Xe E 

{Xj-n, ... , Xj} and X r E {Xj, ... , Xj+n}, such that Xe, X r > Xj. 

Each set of n + 1 successive elements of X are monotone. Then Xj-n :::: ... :::: 

Xe :::: ... :::: Xj-l :::: X.i :s; Xj+l :s; ... :s; X r :s; ... <:::: Xj+n· Noting Xj-1 =I Xj, from the 
assumption of the lemma, it must follow that Xj-1 > Xj. From this it follows that 
there must be a constant seetion of equal values, since Xj-l > x J :::: •.. :::: Xj+n-1 

and x J :s; ... :s; '];j+,,-1 <:::: X J + n , imply that Xj = Xj+l = ... = Xj+n-1. At least 
one of the points Xj+1, ... ,Xj+n must be strictly larger than Xj, so that this value 
ruust be Xj+n. 

Therefore also U,,:r.J+n = x J + n . Thus Unx.! = rnin{ruax{x.I_1,"" Xj+n-J}, 

Xj+n} = min{'];}-l,Xj+n}' 

Furthermore, clearly U n Xj-1 = J'j-1, since rnax{ Xj-l, Xj, ... ,X}-l} = Xj-I. D 

Theorem 4.3 FOT:1' E ,U"-l, TI :::: 1, 

fI " 
T(:r) = T(V:1') + T(U"J: - .1') = T(/\ .t) + T(T~".l: - x) 
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Proof. Consider the sequence t = {tj} of integers where U71Xtj > Xtj and Xtj+l "I
Xtj' By the lemma, and noting that {Xtj-71,"" Xtj} are (n-l)-monotone, Xtj-l > 
Xtj' it follows that. The sequence t cannot contain two consecutive integers, so that 

= 0+1- 71 - 1 

T(x) = L Tj, with Tj = L IXi+l - xii 

j=-oo 

Consider a specific j, with k = tj and m = tJ+l for notational convenience, 
let eJ+ 1 = w be the first index after k such that X w > X w + 1. Clearly w exists in 
[k+l, m-l]. Since x is (n-l)-monotone, and therefore Xk-l > Xk 2: Xk+l 2: ... 2: 
Xk+n-l and Xk :s; Xk+l :s; ... :s; Xk+n, it follows that Xk = Xk+l = ... = Xk+n-l· 

A similar argument yields X w - n = ... = Xw-l = Xw' By the previous lemma 
UXk = min{Xk-l,Xk+71} implies that Xk-l,Xk+n and w must be larger than Xk. 

Since tJ+l is the first integer after tj where the sequence changes from a 
monotone decreasing to monotone increasing set of values, {Xk+n, ... , xm-n-d 

has the following structure; {Xk-n, ... , Xk-l} is a monotone decreasing section, 
Xk-l > Xk = Xk+l = ... = Xk+n-l, {Xk,""Xw } is monotone increasing and 
X w > Xw+l 2: ... 2: X m · Let: 

rn-n-l n n 

flj L I V Xi+l - V xii 
i=k-n 

k-2 TL TL k-l n n 

L I V Xi+l - V Xii + L I V Xi+l - V Xii 
i=k-n i=k-l 

m-n-l n n 

+ L I V Xi+ 1 - V Xi I 
i=k 

k-2 

The first of these three sums is equal to L IXi+l - Xi I, since the set 
i=k-n 

{Xk-n, ... ,Xk+n-l} is monotone decreasing, and the next sum is 

n n 

I V Xk - V Xk-ll = IXk+n - Xk-ll· 

This sum has two cases; 

(i) Suppose w > m - n - 1. Then 

rn-n-l n n 

L I V Xi+l - V Xii = IX k+71+l - xk+nl + .. 'Ixw - n + Xw-n-ll, 

i=k 

since 'm - n - 1 > w - n - 1 if w < m and Xw-n = Xw-n+l = ... = Xw-l = Xw' 

This is the variation on a monotone increasing section and yields Ix w - Xk+n I. 
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Thus 

But 

Therefore 

k-2 

J.Lj L IXi+l - xii + IXk+n - Xk-ll + X w - Xk+n 
i=k-n 

k-l 

L lXi+! - xil-IXk - Xk-ll + IXk+n - Xk-ll 

i=k-n 

m-n-l 

i=k 

J.Lj Tj + 2Xk - 2min{xk+n,Xk-d 

Tj - 2(UnXk - Xk), 

C.H. Rohwer 

from the lemma. But 

m-n-l 

L IUnXi+! - Xi+l - UnXi + xii 

i=k-n 

The last equality comes from the fact that 

U Xi - Xi = U Xk - Xk for i = k, ... , k + n - 1 

and zero elsewhere in the interval [k - n, . .. , m - n - 1], and then the variation of 
this block pulse is simply twice the height. 

(ii) Suppose m - n - 1 ~ w. Then 

or 

m-n-l n n 

L I V Xi+l - V Xii = X w - Xk+n + X w - X m - n 

i=k 

Tn-n-l n n 

L I V Xi+l - V Xii = XII! - Xk + X w - X m - n + Xk - Xk+n· 

i=k 

This again yiclds 
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In both eases therefore 

n = = = 2 tj+l-n - l 

L Tj - L - L IUnXi - xii 
j=-oo j=-oo n i=tj-n 

T(Vx)= L fJj 

j=-oo 

00 tj+l -n-l 

T(x) - L L l(Un x - X)i+1 - (Un x - x)il 

T(x) - T(Unx - x) 

or T(x) = T(Vn x) + T(x - Unx). By a similar argument, or by the usual duality 
argument, T(x) = T(A n x) + T(x - Lnx), eompleting the proof. 0 

Theorem 4.4 FOT" x E Mn-I, n ~ 1; 

T(x) = T(Unx) + T(x - Unx) 

and 
T(x) = T(Lnx) + T(x - Lnx). 

Praof. The proof is simple sinee Anis variation diminishing so that T(x) ~ 
T(A n Vn x) + T(x - Unx) and the equality follows from the subadditivity of T, 
sinee Un = An Vn . A similar proof, or the usual duality argument yields the other 
equality. 0 

Theorem 4.5 FOT" xE 1vln - l , n ~ 1; 

and 
T(x) = T(UnLnx) + T(x - LnUnx). 

Praof. T(x):::; T(LnUnx) + T(x - LnUnx), by the usual subadditivity of T. But 
by the first equality of the previous theorem T(x) = T(Unx) + T(x - Unx), and 
by the seeond T(x) = T(LnUnx) + T(Unx - LnUnx) + T(x - Unx). 

By the usual subadditivity the last two terms are not smaller than T(Unx -
LnUnx+x-Unx) and therefore T(x) ~ T(LnUnx)+T(x-LnUnx). This argument 
ean be repeated, or to illustrate the usual duality argument; 

T(x) T( -x) = T(LnUn( -x) + T( -x - LnUn( -x)) 

T( -UnLn(x)) + T(-x + UnLnx) 

T(UnLnx) + T(x - UnLnx) 

The important point is however that the total variation, and the loeal variation, ean 
alloeate proportional weight to eonstituent parts of the deeomposition. A fractional 
part of the measuremcnt vector length ean be alloeated to eaeh resolution level. 
This is useful. 0 
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5 Comparison of Haar- and L UL U-decompositions. 

In the previous comparisons the complications at endpoints of a finite sequence 
are avoided for the sake of simplicity. These problems can be treated satisfactorily 
in a variety of different ways, usually by letting both beginning and end of a finite 
sequence move to zero in a variety of different reasonable ways. Furthermore, 
there is an arguably unfair advantage that is easily overlooked if only the first 
decompositions are considered. 

If the sequences are finite, then a Haar-decomposition projects the sequence 
x onto a nested set of subspaces, each being of half the dimension of the previous 
until a constant is reached. The L UL U-operators map, in a way that is projection
like, (roughly speaking, as near to a projection as can be expected with a non
linear operator) onto nested subsets MI :J M 2 :J M3 :J ... etc. Since these 
are not subspaces, there is no question of dimension, but to be fair it should 
be realized that there is not a decomposition into octaves, but rather a linear 
decrease in "flexibility" (for lack of a better word). A fairer comparison would be 
if the decomposition were from Mo to MI to M 3 to M 5 etc., since, if the range of 
the projections Pj of the Haar-decomposition are R j we have that R j C M 2j - l . 

The proof of this is obvious if we observe that a sequence in R j is a sampled B
spline of order 1, which is (2 j - 1)-monotone, since it is a sampling of a piecewise 
constant function. The sequence is therefore made up of successive sections of 2j 

equal values, and clearly every 2j + 1 successive values are monotone. 
At this stage there has been no attempt to suggest comparison in a significant 

advantage of the wavelet-decomposition, namely the economising in representation 
and computation by the fact that the smoother component and the wavelet com
ponent can be economically stored by the respective spline and wavelet basis. This 
yields an effective representation in no more numbers than the original number of 
element of the sequence. These coefficients can furthermore be quantized without 
major distortion in the reconstructed sequence. 

In the L UL U-decompositon there is no basis that is generally useful for econ
omization. There are several possibilities for savings by co ding the noise com
ponents, which can be progressively more sparse. Similarly the smoother part 
could have progressively larger constant sections, permitting some economising. 
This whole issue is not addressed here, and it is generally complicated, like in the 
case of the two-dimensional image processing, with both wavelet decompositions 
and median decompositions. The primary comparisons to be made here are more 
fundamental in nature. The L UL U-decompositions are an alternative to the preva
lent median transform of the same type. These seem generally to be good in the 
two-dimensional case of image processing (1). A disadvantage listed is the compu
tational complexity. A more serious disadvantage seems to be the lack of theory. 
Wavelet theory has a comprehensive and beautiful theory for analysis. For linear 
operators, Fourier transforms and their inverses, provide a framework for analysis. 
For a large dass of operators, mathematical morphology provides a framework 
of analysis, and is well developed, especially in the two-dimensional case. Starck, 
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Murtagh and Bijaoni state that median transforms are considered bett er than 
morphological filters. This may be when considering only the simpler composi
tions like Un and Ln, in the one-dimensional case, when Ln :::; Mn :::; Un is true, 
but the interval [Ln, Un] is too large and Ln and Un are only comparable to Mn in 
approximating properties when the significant features in the noise are one-sided. 
The inequality UnLn :::; Mn :::; LnUn , which is not general in morphological filters, 
is much sharper and the operators UnLn and LnUn are good approximations to 
the median. This is visible in the foregoing examples where the first decomposi
tions with LnUn and UnLn are compared. Since this difference can be argued to 
be within the fundamental uncertainty interval of the concept "impulse" and an 
associated concept of "resolution". They must both bc expected to be equivalent 
to the median for the purpose at hand. 

The advantage argued here is in the application to analysis of measure
ments. Significant features of measurements that are fundamental are "edges", 
"local trend", and "pulses". The words "edges", "trend", "impulse", "pulse" and 
"resolution" are all widely used in science and technology and are very often not 
elearly defined in the context. For a multiresolution decomposition to be called 
such, it may be prudent to be more precise. 

At this stage it is good to argue elearly a fundamental ambiguity in the pulse
decomposition with L UL U-operators. (It must be noted that the Haar-decom
position also gives ambiguous decompositions at each level, depending on the 
choice of the knots.) Two sufficiently separated single pulses would both be re
moved. If they are next to each other they will not be. If separated by one index 
an ambiguity results (5). After the next two decomposition no pulse of lower res
olution will be present. The only activity is in the first three layers indicating the 
fundamental resolution interval [1,3]. Two Haar decompositions of the same pulse 
smear activity into all levels, making a stricter use of the term "resolution" difficult. 

It is not the purpose here to expand on all the various advantages, and 
dis advantages , over wavelet transforms, but to indicate the type of use that has 
been, and can be made in the detection of detail at various resolution levels. The 
method of analysis is relatively unknown, and based on the strong mathematical 
structure on the basic operators. Having defined a pure n-impulse Pn it may be 
useful to define a pulse P of resolution between m and n if Pm :::; P :::; Pn. If 
superimposed noise is comparatively small, it is elear that, by the syntoneness 
of the operators involved in the L UL U-decomposition, the pulse will appear in 
the m-th level and disappear in the n-th level. Thus it may be a more precise 
way of defining what is meant by a pulse at a resolution level (or interval). If 
two such pulses are separated sufficiently they can be resolved. When they are 
superimposed, or elose enough, the fundamental uncertainty at that resolution 
level can be recognised by the difference between the decomposition with LnUn 
and UnLn. Clearly other interpretations are also possible, but the ambiguity is at 
least apparent from the different sequences x - L1U1X and x - U1L1x. 

At each level n the operators Ln, Un, UnLn and LnUn are all idempotent 
and co-idempotent and all compositions are one of these four. This near-ring of 
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operators has a complete order given by Ln::; UnLn ::; LnUn ::; Uno In the decom
position procedure several layers of such operators are used, and since they are 
all syntone operators, relative orders are inherited and remain useful for analysis. 
The well-established median operators, popularly used for smoothing out impulsive 
noise and accepted to be very good for preservation of edges and other significant 
features are contained between such L UL U-outputs. When decompositions with 
LnUn and UnLn are compared, the difference indicates an "amount of ambiquity, 
which turns out to be very useful. Using the "commutators" like LnUn - UnLn 
resulted in the design of recording instruments for times of arrival of shock pulses 
for location purposes. In the first application attempted, accuracy of such time of 
arrival estimates of a shock wave have exceeded the best previous designs of an 
international company by a large margin. 

6 Computational considerations and characterisation 
of the resolution levels 

From the definition of LULU-operators they appear computationally expensive, 
but for the purpose of successive decompositions by LnUn (or UnLn) there are 
considerable computational (and conceptual-) simplifications. The example with 
LnUn can be chosen to illustrate. Given a sequence x = {Xij i = 1,2, ... , N} 
in Mo the first decomposition is with UI , followed by LI to yield a sequence 
LIUIX in MI and a residual Rlx = x-LIUIX. At each stage, the sequence that is 
decomposed by LnUn is in Mn-I, which permits a simplified calculation. Consider 
(UnX)i = min{max{Xi-n, ... ,xd, ... ,max{xi"",XHn}. Near endpoints, where 
left (or right-) neighbours are not defined, it is simple to simply omit them in 
the maximum (or minimum) calculators. This is clearly equivalent to appending 
sufficient values equal to Xl to the left (and equal to XN at the right). Given that 
n ::::: 1 and X is (n - l)-monotone the first (and the last) values of Unx can be 
copied from x. This is since the following arguments hold. 

{Xk,Xk+I ... ,Xk+n} is monotone for each k. 

(i) Assume Xl ::; X2 ::; ... ::; Xn+l then for j = 1, ... , n 

UnXj = min{maX{XI, ... ,Xj},maX{X2,'" ,Xj,Xj+I},'" 
... ,max{Xj, ... ,Xj+n} 

= Xj, 

since Xj = max{xI,"" Xj} and Xj is not larger than all the others since they 
are upper bounds. 

(ii) Assume Xl ::::: X2 ::::: ... ::::: Xn+l. 
Noting that Xn ::::: Xn+l implies that Xn ::::: Xn+l ::::: ... ::::: Xn+n' it is clear that 
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UnXj = min{max{l, ... ,Xj}, ... , max{xj,Xj+1, ... ,xj+n} 

=Xj, 

since the last maximum is Xj and the previous cannot be less. 

Thus UnXj = Xj for jE {I, ... ,n}. 
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A similar argument also holds for j E {N - n + 1, ... , N} so that 2n values of 
UnXj are already calculated. The following sequences are calculated successively. 

ei = max{xi,xi+I, ... ,Xi+n} = max{xi,xi+n}, i = 2 to N - n -1, the 
simplification being due to the fact that Xi, Xi+I, ... , xi+n are monotone since 
X E Mn-I. The maximum operator does not preserve the monotonicity, so that a 
similar simplification fails in; ti = min { ei-n, ... , ei}, for i = n + 1 to N - n - 1 

This is followed by a similar process for Ln(Unx), where Unx is again in 
Mn-I. 

It is therefore clear that if pE Pn and P = X - Unx, where Pn = Mn- I \ Mn, 
that 

Pi = 0 for 1:S i :S n and N - n + 1 :S i :S N. 

Therefore if P -I- 0, then the first index j where Pj -I- 0 is the first value of a 
constant region such that Pj = Pj+I = .. . Pj+n-I followed by a point Pj+n = O. 
This is a block pulse of negative amplitude a nj = Pj. Noting that P E M n- I it is 
clear that Pj+n-I :S Pj+n· It follows that Pi ~ 0 for j + n :S i :S j + 2n - 1, and 
since P = X - Unx is a non-positive sequence Pi = 0 for j + n :S i :S j + 2n -1, the 
first index following j + n - 1 where P can differ from zero is thus j + 2n. 

N-2n 
There are thus no more than such pulses in P, and each has some 

2n 
negative amplitude. Applying Ln to Unx E M n- I similarly yields no more than 

N ;n2n pulses of positive amplitude in Unx - LnUnx. Noting that Ln preserves 

the pulses in Unx, since those sections are n-monotone, the positive and negative 
pulses cannot overlap. In total therefore x-LnUnx = x-Unx+UnxLnUnx cannot 

N-2n 
have more than pulses and can be fully specified by a sequence of no more 

n 
N-2n 

than amplitudes a J" • n n 

To compute the residual X - LnUnx at each level, only values different from 
o need a subtraction. (The minority of points, definitely less than ~, but gener
ally much less.) There is no point in letting n be more than N - 1, since then 
X - LnUnx = 0 and LnUnx a constant. There are indications that further saving 
can be achieved, as the above estimates are not sharp. Certainly it is clear that a 
great amount of parallelisation is possible, depending upon the equipment avail
able. Some simple examples demonstrate very economic coding if some structures 
are present. Such economising is likely to occur often when quantising (and/or 
thresholding) is introduced for the amplitude, as is the case with measurements 
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in fixed bit format It should be noted that in such a case none but the finite 
number of possible numbers available are sufficient for all decompositions, since 
the only operations performed are selections on those values present. This is an 
important economisation, compared to other values that are introduced by wavelet 
decompositions. 

Example 6.1 Let N = 2k and x = {Xi = li - kl} 
At level 1. (x - L1U1X)i = 8ik (The Kronecker delta) 
At level 3. (x - L3U3)L2U2LIUIXi = dik-l 

At level 5 = dkk-2 

At level 2m + 1 = dik-m. 
Thus there are precisely N pulses. Each is of width 2m - 1 and constant ampli
tude, costing requires N starting indexes and N amplitudes (in this case I). (Here 
symmetry economises.) 

Example 6.2 When random noise from a cubic-B-spline distribution was added 
to three uniform level pulses of duration 1,2 and 3 the visually signijicant counts 
were 23,6 and 5 out of a sequence length of 50. Quantizing and thresholding ap
propriately, and reconstituting from only 3 signijicant pulses yielded an image that 
substantially contained the signijicant features from 3 indexes and amplitudes. The 
thresholds can be chosen from estimates corresponding to amplitudes and distribu
tion of the random noise. Impulsive noise of a prescribed width can be removed by 
omitting higher levels altogether. 

From the above examples, and others, it seems as if a sequence can always 
be decomposed into a total of not more than N pulses. This looks provable by a 
very simple argument, but is being thoroughly investigated, together with other 
computational simplifications, and remarkable shape preserving properties of the 
L UL U-approximation. 

7 Conclusion 

The theory of L UL U-operators, and the more general theory of a mathematical 
morphology, provide the possibility of a speeific strieter eoneept of "resolution" 
eoupled to the eoneepts of "pulse" and "loeal trend". This permits systematic 
deeomposition of a sequenee into eomponents at resolution levels 1 to any n in 
more than one way. Choices ean be made that provide for a multi resolution anal
ysis that is effeetive, efficient, eonsistent and stable and permits eeonomieal eod
ing for storage and transmission of information eontained in the sequenee. The 
total variation of the sequenee is preserved at eaeh separation stage, providing 
a quantitative measun~ of relative eontribution of eaeh resolution level for au
tomatie decisions on thresholding, quantising, truneation ami economisation in 
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storage and transmission. Coding of the information at each resolution level is 
simple. Reconstruction, fully or partially, is straightforward, and all computations 
are simple and extensively parallisable. The theory that supports the procedure is 
furthermore indirectly applicable to explain and predict some properties of median
decompositions, which are generally regarded to be very good for image processing, 
as these components are related to those of two equivalent L UL U-operators used 
in the decompositions developed here. 

The idea that morphological filters are not as good as the medians for de
composition can be shown to be a result of a suboptimal choice amongst these. 
There are indications that the ideas based on the properties of L UL U-operators 
can be generalised extensively to other morphological filters, and promising gen
eralisations have already been discovered. 

There are furt her remarkable shape preservation properties of the LULU
separators discovered recently, which the author intends publishing soon. 
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H -splines and Quasi-interpolants on a 
Three Directional Mesh 

Paul Sablonniere 

Abstract 

Let T (resp. T*) be the uniform three-directional mesh of the plane gen
erated by the vectors el = (1,0),e2 = (0,1),e3 = (-1,-1) (resp. ei = 
(1,0), ei = (-~, '?), ej = (-~, - ,?)). Let P~(T) and P~(T*) be the spaces 
of piecewise polynomial functions of degree n and smoothness s on these 
meshes. There exist two interesting families of B-splines, respectively in the 
spaces P:j;+I(T),r 2: 0 and P32;-I(T),r 2: 1. In the first space, B-splines 
with minimal support are simultaneously box-splines and Hr+l-splines, i.e., 
their support is the hexagon H r + l , centered at the origin, whose sides are 
composed of r + 1 edges of triangles of the mesh. In the second space, there 
exist three types of box-splines whose supports are non regular hexagons. 
Generalizing examples given in [18] and [19], we construct Hr+l-splines in 
the space p;;-I (T) as linear combinations of translates of three box-splines. 
Then we construct various differential and discrete quasi-interpolants (QI) 
wh ich have the best possible approximation order, for degrees (resp. smooth
ness orders) ranging from 3 to 10 (resp. from 1 to 6). Their computation is 
made easier thanks to the symmetry properties of H-splines. Finally, we 
give some examples of QI with nearly minimal infinite norms, which we call 
near-best quasi-interpolants. 

1 Introduction and notations 

Let T (resp. T*) be the uniform three-directional mesh of the plane generated 
by the vectors el = (1,O),e2 = (O,1),e3 = (-1,-1) (resp. er = (l,O),e::2 = 
(_1 V3) e~ = (_1 - V3)) Let PS(T) and PS(T*) be the spaces of piecewise 

2' 2 ' 3 2' 2' Tl Tl 

polynomial functions (abbr. ppf) of degree n and smoothness s respectively de-
fined on these meshes. It is weil known (see e.g. [1], [2], [3], [6]) that there exist 
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interesting families of B-splines, respectively in the two spaces pl::+ 1 (T), r ~ 0 and 
pi;-l(T),r ~ 1. In the first space, B-splines M r+1 with minimal support (abbr. 
ms-splines) are simultaneously box-splines and Hr+1-splines, i.e., their support is 
the hexagon H r +1 (centered at the origin) whose sides are composed of r + 1 edges 
ofthe mesh. They already appeared in the seventies (e.g. in [11],[12],[14],[15]) and 
later in Bezier form ([17], [18], [19], [20]). In the second space, the situation is 
more complex: there exist two types of ms-splines (whose support is a non regular 
hexagon) and three types of box-splines with a larger support (which is another 
kind of non regular hexagon), see e.g. [2]. Generalizing examples given in [18] and 
[19], we construct Hr+1-splines Ar+1 as linear combinations of translates of the 
three types ofbox-splines. Similarly, there exist H;+1-splines M;+1 (resp. A;+1) in 
the spaces pl::+ 1 ( T*) (resp. pi;-l ( T*)). Then, using the inverses of Fourier trans
forms of H-splines and the results of [9], we construct differential quasi-interpolants 
(abbr. DQI), associated with the H - or H* -splines previously defined, having the 
best possible approximation order. Their computation is made easier thanks to 
the symmetry properties of hexagonal supports. Moreover, the examples studied 
for the first degrees show that they seem to be particularly suited to the approxi
mation of harmonie functions and polynomials. Next we recall results of [21] and 
[22] in order to give examples of discrete quasi-interpolants (abbr. dQI). The de
grees (resp. smoothness orders) of our examples range from 3 to 10 (resp. 1 to 6). 
Finally, we construct examples of dQI with quasi-minimal infinite norms, which 
we call near-best QI. We thus provide a partial answer to the problem raised in 
Chapter III of [3] about the determination of discrete quasi-interpolants with min
imal infinite norm (see Section 5.2 for details). For additional informations on QI, 
see for example [1], Chapter 11, [3], Chapter 3, [6], Chapter 8 and also the papers 
[4],[10]. Most of the results presented below are only sketched and more detailed 
proofs will be given elsewhere in a more complete paper. New results are essentially 
those of Sections 2.2 and 3.2 on Hr+1-splines Ar +1 and A;+1' and of Sections 5 
and 6 on dQI, specifically those concerning near-best dQI. 

For a box-spline B(·IX) associated with a set of directions X c R 2 , we use 
the fol!owing notations (see e.g.[1], Chapter 11): 

Y = Y(X) = {Y c X I (X\Y) ~ R 2 } 

V = V(X) = {f : D y f = 0 for all Y E Y} where D y f = (I1yEY Dy)f 

d = d(X) = min{1Y1 : Y E Y} - 1 

lBl(X) = {V c X : IVI = dim(V) = 2}, dirn V(X) = IlBl(X) I 

For a box-spline cp = B(-IX) or more general!y for a B-spline cp, we denote by 

S(X) = S(cp) = ({cp(. - a),a E Z2}) 

the spline space gellerated by integer translates of cp. 
We also rec:al! some important properties of box-splines: denoting by I1d the 

spacc of bivariate polynomials of total degrec at most d, we have IId ~ V(X), 
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but IId+l is not a subset of V(X), therefore the approximation order of smooth 
functions in S(X) is O(hd+!) for a triangulation with meshsize h. 

Defining sc(t) = si(iit~) and j(y) = JR2 exp( -ixT y)f(x)dx, then the Fourier 
transform of the box-spline B('IX) can be written 

A T 
B(yIX) = IIxExsc(x y) 

Finally, for any invertible matrix A and X* = AX, one has (see e.g. [10]): 

B(xIX*) = B(xIAX) = det~A) B(A-1xIX), B(yIX*) = B(AT ylX) 

Setting V = Z2 and V* = A V, we easily get 

L B*(x - ß) = det1(A) 
ßEV' 

So, if det(A) =I=- 1, box-splines on the triangulation T* with vertices V* have to be 
normalized in order to get a partition of unity. 

2 H-splines on the triangulation T 

2.1 H-splines in Pl:+1(T) 

In the space Pi::+! (T), r ~ 0, there exists a unique box-spline M r +1 with hexagonal 
support H r+!. It is defined as the convolution product 

M r +1 = M 1 * M 1 * ... * M 1 (r + 1 times) 

of the piecewise affine pyramid M 1 with support the unit hexagonal cell H 1 cen
tered at the origin. The set of directions defining this box-spline is 

where the parentheses mean that each direction is taken with multiplicity r + 1. 
In this case, one can check that d(Xr+1) = dr+1 = 2r + 1, the minimal cardi
nal of a subset Y E y. Since Vr + 1 = V(Xr+d contains II2r+1 , but not II2r+2, 

therefore, the approximation order of smooth functions in this space is O(h2r+2 ) 

for a triangulation of meshsize h. Moreover dirn V r +1 = 3(r + 1)2 =number of 
triangles in Hr +! having the same orientation. The Fourier transform of M r +1 is 
Mr+1(y) = [SC(Yl)SC(Y2)SC(Y3)r+!, where Y3 = -(Yl +Y2). 

2.2 H-splines in Pi:-1(T) 

For S = 1,2,3, therc exist three box-splines B~21 = B('lx~21) generated by the 

subsets of vectors defined respectively by X~21 = X r+! \ {es}. Assuming that their 
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supports are centered at the origin, we define the Hr+l-spline Ar+! E pi;-l(r) by 

Theorem 2.1 (i) The Fourier transform of Ar+! is equal to 

where Al is the characteristic function of the hexagon H I and 

(ii) The spline space S(Ar+d contains TI2r , therefore the approximation order of 
smooth functions in this space is O(h2r+l ) for a triangulation of meshsize h. 

Proof. since D(X;~l) contains TI2r for s = 1,2,3, it can be verified, by using 
Strang-Fix conditions, that TI2r is also included in the spline space S(cP). 0 

Remark 2.2 The Bernstein (abbr. B)-coefficients of M 2 E pi, M3 E Pt, M 4 E Pfo 
can be found in [19], which is available from the author. A general algorithm for the 
computation of B-coefficients of box-splines is given in [7J. The B-coefficients of 
A2 E pl, A3 E pl, and A4 E pJ are also in [19]. In general, they can be computed 
by using {'li for box-splines in the above definition of Ar+!. 

3 H -splines on the triangulation T* 

A = (1 -~) A-1 = (1 -~) AT = ( 1 o v'3' 0..1...' 1 
2 v'3 -"2 

In particular, det(A) = ~. 

As the set of directions is now 

the box-splinc in this space is 

o ) v'3 
""2 
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and its Fourier transform is 

There are two possible normalizations: M:+l or M!'+l = 1M:+l satisfying re
spectively 

3.2 H-splines in pi;-l (T*) 

Similarly, the H:+1-spline is defined by 

A;+l(X) = ~Ar+l(A-lx) 

or through its Fourier trans form 

As in the preceding case, we can choose two normalizations: A;+l or A~+l = 

1A;+1 satisfying respectively 

4 Differential quasi-interpolants (DQI) 

4.1 Differential quasi-interpolants on T 

We use results of [9]: given some H-spline q;, take the inverse of its Fourier trans
form 

-J:- = L aaya 
q;(y) aEV 

Assuming that IId is the maximal space of polynomials of type IIn included in the 
spline space generated by q;, define the differential operator 

]]J)q, = L (_i)la1a",Da 

lal:Sd 

Then the differential quasi-interpolant (abbr. DQI) Qq, associated with q; is defined, 
for a given smooth function f, by 

Qq,f(x) = L ]]J)q,f(a)q;(x - a) 
aEV 
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The operator Q", is exact on IId, i.e., Q",p = P for all pE IId, therefore the approx
imation order of a smooth function f by the associated DQI on the triangulation 
with meshsize h is maximal, i.e., O(hd+1). 

In order to illustrate this method, we give the DQIs associated with the 
Hr-splines M r and Ar for r = 2,3,4. For sake of simplicity, we set 

Introducing the auxiliary differential operator (D1 = tx and D2 = gy) 

then, with the help of a computer algebra system, one obtains respectively the 
coefficients of the differential quasi-interpolants Qr, for r = 2,3,4: 

1 1 1 2 
ID>2 = I - "6 D, ID>3 = I - 4 D + 30 D , 

1 7 2 1 3 1 
ID>4 = I - 3D + 120D - 140D - 15120 06 

where 0 6 is the differential operator of order 6 defined by 

For the coefficients of the differential quasi-interpolants Qr, r = 2,3,4, we obtain 
respectively 

lD2 = I - ~ D lD = I - ~ D + ~ D 2 
9 ,3 36 1620 

lD - I _ ~D 131 D2 _ 2453 D3 __ 1_0 
4 - 18 + 1620 204120 10080 6 

4.2 Differential quasi-interpolants on T* 

For box-splines B('IX*), let us define 

Y* = Y(X*) = {y* c X* I (X*\Y*) i- R 2 } 

V* = V(X*) = {g : D~g = 0 for all Y* E Y*} where D~g = (IIY*Ey*Dy)g 

With any given polynomial pE V(X), one can associate the polynomial q(x) = 

p(A-1x). Reciprocally, for any polynomial q E V(X*), there exists a unique poly
nomial p E V(X) defined by p(x) = q(Ax). Using the notation D = (D1 , D 2)T, 
this can be verified by observing that for any y* = Ay, there holds 

Dy.q(x) = (y*f Dq(x) = yT AT Dq(x) = yT AT Dp(A-1x) 

= (yT AT)A-T Dp(x) = yT Dp(x) = Dyp(x) 
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For p E V(X), Dyp = 0 for all Y E Y(X), therefore the above equations imply 
Dy*q = 0 for all Y* E Y(X*), and q E V(X*). The converse is also true: the fact 
that q E V(X*) implies immediately that p E V(X). So, to each box-spline ifJ on 
T corresponds a unique box-spline ifJ* on T* whose associated DQI is defined, for 
any smooth function g, by 

Q<f;*g(x) = 2: IDJ<f;*g(ß)ifJ*(x - ß) 
ßEV* 

The differential operator IDJ<f;* and its coefficients are respectively given by 

As in Section 4.1, Q<f;* is exact on IId and the approximation order of a smooth 
function 9 by the associated DQI on the triangulation with meshsize h is maximal, 
i.e., O(hd+1 ). 

In order to illustrate this method, let us give the DQIs associated with the 
H;-splines M; and A; for r = 2,3,4. For sake of simplicity, we set 

Using the Laplace operator a = Dr + D§ then one obtains respectively the coef
ficients of the differential quasi-interpolants Q;, for r = 2,3,4: 

* 1 lTh* 3 A 3 A 2 IDJ =I--a jjj!3=I--~+-~ 
2 8' 16 160 

IDJ* = I - ~a ~a2 _ 1459 a 3 _1_ 0 * 
4 4 + 640 483840 + 483840 6 

where 0 6 is the 6th-order differential operator defined by 

For the coefficients of the differential quasi-interpolants Q;, r = 2,3,4, we obtain 
respectively 

lTh* 1 A Th* __ I _ ~ A ~ A 2 
jjj!2 = I - 6~' jjj!3 48~ + 2880~ 

lD>* = I _ ~a 131 a 2 _ 4909 a 3 _1_ 0 * 
4 24 + 2880 967680 + 322560 6 
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Remark 4.1 Approximation of harmonie functions or polynomials. 
Interesting simplifieations occur when we assume that the function f to be 

approximated is harmonie, i.e., satisfies tl.f = O. F'rom the preeeding ealeulations, 
we deduee that the operators Q; and Q;, for r = 2,3 coineide with the simple 
Sehoenberg operators: 

S;f(x) = L f(ß)M/!(x - ß) and S;f(x) = L f(ß)A'f(x - ß) 
ßEV' ßEV' 

They are exaet on harmonie polynomials in the spaees IIr, r = 2,3,4,5. For high er 
degrees, there appear in the expression of lD>",. some sparse differential operators 
of high orders with very small rational eoeffieients. For box-splines Mf of degree 
10 and class C6, we obtain for example 

Q:f(x) = L (J + 4831840 D6J)(ß)Mf (x - ß) 
ßEV* 

This QI is exaet on the subspaee oE harmonie polynomials in II7. Similarly, for 
Ht -splines At of degree 9 and class C 5 , we obtain 

Q:f(x) = L (J + 3221560 D6J)(ß)At (x - ß) 
ßEV* 

This QI is exaet on the subspaee oE harmonie polynomials in II6 . This kind of 
situation also holds for H* -splines and DQI of higher degrees. 

Now, let us eonsider a polynomial f(z) = p(x, y) + iq(x, y) of one eomplex 
variable z = x + iy. Thanks to Cauehy-Riemann eonditions, it is well known 
that the real and imaginary parts p(x, y) and q(x, y) of f are harmonie funetions. 
Therefore defining, for any H* -spline <jJ* 

Qq,*f(z) = Qq,*p(x,y) +iQq,*q(x,y) 

we see that the operators Q; and Q;, for r = 2,3 eoineide with the Sehoenberg 
operators, and that, for high er degrees, the expression ofQq,*f(z) is greatly simpli
fied. This property is very interesting and we plan to develop this point with some 
applieations in a further paper. 

Remark 4.2 Two families of simple and effieient DQIs. 
For r ::::: 2, the first two terms of differential operators Jl))q, or lD>q,* are the 

following 

Jl)) = I - !... D []) = I - 3r + 2 D Jl))* = I _ !... tl. [])* = I _ 3r + 2 tl. 
T 12' r 36' r 16' T 48 

The eorresponding DQ! are exaet on II:l (exeept Q2 whieh is exact on II2), there
fore, their approximation order is O(h4 ) on a triangulation of meshsize h. As a 
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by-product, all monomials xC< = xr' X~2, lai :s: 3 have simple expansions in series 
of translates of B-splines. 

Similarly, for r ?: 3, the first three terms of differential operators ~4> or ~4>' 
are the following 

~ =I-~D r(5r+1)D2 IT» =I_ 3r + 2D 45r2 +69r+52 D2 
r 12 + 1440 ,r 36 + 12960 

~* = I _ ~~ r(5r + 1) ~2 IT»* = 1- 3r + 2 ~ 45r2 + 69r + 52 ~2 
r 16 + 2560 'r 48 + 23040 

The corresponding DQIs are exact on IIs (except Q3 which is exact on II4), there
fore, their approximation order is O(h6) on a triangulation of meshsize hand all 
monomials {xc< = xr' X~2 , lai :s: 5} have simple expansions in series of translates 
of B-splines. 

Remark 4.3 In [5], the Taylor expansions of functions (sc(y)) -r are given in terms 
of central factorial numbers. They can be used for explicit formal expressions of 
coefficients of DQI. 

5 Discrete quasi-interpolants (dQI) 

In this section, we use notations and results of [21] and [22]. As it is easier to 
work with the triangulation T*, we only study dQIs on this mesh. They are easily 
extended to the triangulation T with minor modifications. Let H; denote the space 
of hexagonal sequences with support W; = H; n V*, namely the set of vertices 
of the hexagonal mesh V* which lie inside and on the boundary of the hexagon 
H;. By definition, these hexagonal sequences are invariant with respect to the 
group oI symmetries oI the hexagon. Such a sequence, for example a E H 4, can be 
represented as follows 

since dirn H:; = 9 (see Theorem 2.2 of [20]). With this sequence is associated a 
unique central difference operator oa defined by 

3 3 

OaU) =aof(O) +al2:)f(e;) + f( -e;)] +a3 2)f(2e;) + f( -2e;) 
8=1 8=1 

:l 

+a2 Lf(e; - e;) +a4 L[f(e; - 2e;) + f(2e; - e;)] +a.5 L[J(3e;) + f( -3e;) 
8=1 

3 

+a6 Lf(2e; - 2e;) +a7 L[J(e; - 3e;) + f(3e; - en] +aS L[J(4e;) + f( -4e;)]. 
8=1 
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The set JH[* = Ur~oH; is a convolution algebra for the usual convolution 
of sequences (Ho = {8o} is reduced to the unit sequence 80 = [1) associated 
with the Dirac linear functional 80(/) = f(O)). This algebra is isomorphie to 
the composition algebra lL* of a11 central difference operators (abbr. CdOs). Here 
lL * stands for Laplace because CdOs associated with basic sequences are discrete 
approximations of the Laplace operators .d or .d 2. It is the case for the fo11owing 
basic hexagonal sequences whose associated CdOs are denoted 81,82,83 ,84 and are 
used later in Section 5.2 

al = [-611), a2 = [-61010,1), as = [-48191- 1,0), 84 = [121 - 311,0) 

According to [8), p.544-546, 81, 82, 83 and 84 are respectively approximations of 
~.d, 6.d, 9.d and 196.d2. 

For any H*-spline <jJ* generating a spline space S(<jJ*) containing IId, the 
Schoenberg operator S</>o coincide on IId with the CdO 8a associated with the 
hexagonal sequence a = <jJ* IV* of values of <jJ* at the meshpoints lying inside 
supp(<jJ*) (see Theorem of [20)). For example, if supp(<jJ*) = H4, then we have 
respectively 

ao = <jJ*(0), a1 = <jJ*(ei), a2 = <jJ*(ei - ej), a3 = <jJ*(2ei), a4 = <jJ*(2ei - ej) 

a5 = <jJ*(3ei), a6 = <jJ*(2ei - 2ej), a7 = <jJ(3ei - ej), a8 = <jJ*(4ei) 

Both operators Sq,. and 8a are isomorphisms of IId and the inverse of oa in lL * 
can be formally expressed as 8b = 0; 1 where b E JH[* is an infinite hexagonal se
quence. In order to get a finite hexagonal sequence, we associate with the difference 
operator Jb = Ob IIId the dQI defined by 

Qq,·f(x) = L Jb(f(' + ß))<jJ*(x - ß) 
ßEV' 

We have proved in ([20), Theorem 3.1) that this dQI is exact on IId. 

5.1 Examples 

Example 5.1 The hexagonal sequence a and the corresponding CdO oa associated 
with the C2 quartic box-spline Mt are respectively a = [~I /21 and oa = 00 + 11201 , 
Therefore Jb = 00 - 11201 with b = [~1 112 1 and the associated dQI defined by 

Q;f(x) = L [f - 1120d](ß)Mt(x - ß) 
(:iEV' 

is exact on II:l . The approximation order for a smooth function f is O(h4 ) on 
a triangulation with me8h8izc h. MOreOllfT, the uniform norm of Q; is obviously 
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bounded by the sum of absolute values of coefficients of b (see Section 6 below). 
Since we have 

we deduce that IIQ21100 :::; 2. The exact value of this norm is equal to the Chebyshev 
norm of the standard Lebesgue function associated with the operator. Of course, it 
is smaller than 2. 

Example 5.2 The hexagonal sequence a and the CdO 8a associated with the Cl 
cubic H 2 -spline A~ are respectively a = [SI!] and 8a = 80 + !81 . Therefore Jb = 
80 - !81 with b = [~I!] and the associated dQI defined by 

O;f(x) = L [J - ~8d](ß)A~(x - ß) 
ßEV' 

is exact on I12 . The approximation order for a smooth function f is 0(h3 ) on a 
triangulation with meshsize h. As in the previous case, the uniform norm of O2 is 
bounded by the sum of absolute values of coefficients of b. Since we have 

1 5 1 3 
[f - g8d](ß) = 3 f(ß) - 9 L[J(ß + es) + f(ß - es)] 

s=l 

we deduce that 11021100 :::; i ~ 2.33 For the computation of dQIs associated with 
H* -splines of higher degrees, we need to define bases of hexagonal sequences (or of 
corresponding CdOs). 

5.2 Some bases in H* and lL* 

Let us consider the three pairs (81 ,82 ), (81,83 ), and (St,84 ) of CdOs defined at 
the beginning of this section. Consider the three families Bs of CdOs consisting of 
all powers 8f 8~, for positive integers p and q and for s E {2, 3, 4} fixed (here, the 
product means, of course, the composition of CdOs). We have proved in [20] and 
[21] that these families are bases of lL*, Le., that each CdO can be expressed as 
a linear combination of elements of any of the three bases. Therefore, we obtain 
three expansions for each CdO. 

Example 5.3 Box-spline of degree 7 and dass C4 
The hexagonal sequence a and the three CdOs 8a (s), S = 2,3,4 associated with 

the C 4 box-spline Mt of degree 7 with support Hj, are respectively (see e.g. [19], 
[21]). 
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(3) _ ~ _1_ 2 __ 1_ (4) _ ~ _1_ 2 _1_0 
Oa - 00 + 28001 + 84001 28003' Oa - 00 + 28001 + 84001 + 280 4 

w.r.t. the three bases B2 , B3 and B4 . The corresponding truncated formal inverses 
on IIs and the associated hexagonal sequences are the following 

J(2) _ ° _ E>: 3407 >:2 __ 1_>: _ ~>: >: _1_02 
b - 0 280 U1 + 235200U1 560 U2 78400 U1U2 + 313600 2 

b(2) _ [372193 1_ 12919 1 103 8971 1_ ~ _~I_l_ 0 _1_J 
- 156800 47040 3675' 470400 78400' 78400 156800' , 313600 

J(3) - ° _ ~o 4763 02 _1_0 _ ~o ° _1_02 
b - 0 280 1 + 235200 1 + 280 3 39200 1 3 + 78400 3 

b(3) _ [87637 1_ 3473 I 1781 397 1_1 ___ 1_
1
_1_ 0 OJ 

- 39200 14700 117600' 29400 1225' 39200 78400' , 

J(4) - ° _ ~O 2987 02 _ _ 1_0 
b - 0 280 1 + 235200 1 280 4 

b(4) _ [12307 1 _ 5507 I 2567 2987 J 

- 5600 23520 117600' 235200 
For s = 2,3,4, the associated dQI are 

0;(8) f(x) = L J~8) f(· + ß)Mt(x - ß) 
ßEV' 

and we obtain the following bounds for their uniform norms 

*(2) 5283 *(3) 4698 *(4) 7467 
1103 Ilx::; 1225 ~ 4.31, 1103 1100::; 1225 ~ 3.83, 1103 11=::; 1960 ~ 3.81 

Other examples ean be found in [21], in partieular on the 4-direetional mesh. 

Remark 5.4 In [22J, we proposed a first method of solving the problem of dQI 
with minimal infinite norm. It eonsisted in trying to determine good bases of the 
algebras of hexagonal sequenees or of assoeiated CdOs in order to get small rational 
eoeffieients in formal inverses and eonsequently small norms for the corresponding 
dQl. In the next seetion, we propose a seeond method whieh seems more effective. 

6 Near-best discrete quasi-interpolants 

Given a dQI 

Orp'f(x) = L { L bjd(a + ß)}1J*(x - ß) 
"E v' .,JE ~V' 

whcre cp* = Alr# or AtF ancl W* = :mpp( 1J*) n V*, we defillP respectivdy t he 
fundamental funct.ion amI the Lebesgue ftmd iOll 

L*(J:) = L bjJ 1J*(x - (J), A*(X) = L 11J*(:r - 0:)1 
nEV' 
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Since the dQI can be written in the form 

L j(a)L*(x - a) 
aEV* 

its infinite (or uniform) norm is equal to the Chebyshev norm of A*, hence it is 
bounded by the lI-norm of the hexagonal sequence b 

IIQq,*lloo=IA*ICXJ:::;1/1(b)= L IbßI 
ßEW* 

In ail ex am pIes studied previously, the sequence b was defined as a truncated 
formal inverse of a (resp. 8a ) for the convolution product (resp. the composition 
product). We had almost no fiexibility in the choice of its coefficients, except the 
possibility of using different bases of lL *, therefore the values of 1/1 (b) were not in 
general minimal. 

Here we change our strategy: we choose apriori a sequence b, with a larger 
hexagonal support, and we minimize 1/1 (b) under the linear constraints consisting 
of reproducing all monomials in IId (in fact, we have also the possibility of repro
ducing monomials of lower degrees). This problem is weil known to be equivalent 
to a linear programming one (see e.g. [13], Section 4.2.3, 11 problem). 

Example 6.1 Cl cubic H 2 -splines 
In Section 5.1 (Example 2), we got the sequence b = [il!l with support H 1 

satisjying 1/1(b) = ~ ~ 2.33. Choosing an hexagonal sequence b' E Hz, i.e., ojtype 
[bolb1 Ib2 , b3 ], we obtain an optimal solution b' = [tIOIO, -l6l with a much smaller 
norm 1/1 (b') = ~ ~ 1.33. Oj course, the associated dQI is also exact on II2 . 

Example 6.2 C 2 H 2 -splines=quartic box-splines 
In Section 5.1 (example 1), we got the sequence b = [~I /2l with support H 1 

satisjying 1/1 (b) = 2. Choosing an hexagonal sequence b' E Hz, we obtain an 
optimal solution b' = [~1010, - 418l with a much smaller norm 1/1 (b') = % = 1.25. 
Oj course, the associated dQI is also exact on II3 . 

It is interesting to observe that the nonzero coefficients of the two new se
quences b' are at the center and at the vertices of the hexagon H 2 . This situation 
also occurs for other types of H-splines with higher degrees and smoothness orders. 

Example 6.3 C4 H3 -splines=box-splines oj degree 7 
The sequence b' = [18

2i 101 - Jo' - 12630l is one oj the optimal solutions in Hz 
(there is an infinite set oj solutions in that case) and 1/1 (b') = 1; = 3.8. It is 
simpler and slightly better than the solution b(4) given in the example oj Section 
5.2. 

A systematic study of these problems is still under investigation. Some partial 
results will be given at the congress Curves and Surfaces in Saint-Malo (June 26-
July 4, 2002). 
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Approximation by Positive Definite KerneIs 

Robert Schaback and Holger Wend land 

Abstract 

This contribution extends earlier work [16] on interpolation/approximation 
by positive definite basis functions in several aspects. First, it works out the 
relations between various types of kerneis in more detail and more generality. 
Second, it uses the new generality to exhibit the first example of a discon
tinuous positive definite function. Third, it establishes the first link from 
(radial) basis function theory to n-widths, and finally it uses this link to 
prove quasi-optimality results for approximation rates of interpolation pro
cesses and decay rates for eigenvalues of integral operators having smooth 
kerneis. 

1 Kernel functions 

Let 0 be a domain in ]Rd. We want to work with large-dimensional data-dependent 
spaces of functions on O. A simple way to do this is to consider functions of the 
form 

M 

sa.,x := L Ctj4>(Xj, .) 
j=l 

(1) 

for "data sets" X = {Xl,'" ,XM} ~ 0 ~ ]Rd, coefficients Ct E]RM and a "kernel" 
function 

(2) 

We start with a short review of the basic features of kerneIs, but we do not 
follow the standard path. The functions (1) form a finite-dimensional space 

SX,iP:= span {4>(x,·) : X E X} (3) 
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of dimension at most M. These spaces are the ones we want to work with. The 
union of these spaces is 

84>:= span {<p(x,·) : xE n}. (4) 

Of course, everything is useless if <P = 0, and at least one would like to have linear 
independence of functions <p(x, .) for x E n. 
Definition 1.1 We call a kernel (2) nondegenerate on n, if for all finite data sets 
X = {Xl,"" XM} the functions <p(Xj,·), Xj E X = {Xl,"" XM} are linearly 
independent over n. 

There are plenty of such kernels, e.g. <p(x,y) := exp(xTy), x,y E ]Rd is 
nondegenerate on every subset of ]Rd that contains at least an interior point. 

But we also want to have a norm structure on the space (4). The simplest axiomatic 
way to do this is to use the kernel itself: 

Definition 1.2 A function (2) on n ~ ]Rd that generates an inner product of the 
form 

(<p(X,·),<P(Y,·))4> = <p(x,y) for all x,y E n 
on the space 84> will be called a reproducing kernel on n. 

Clearly, a reproducing kernel has simple properties like 

<p(X,X) 
<p(x,y) 
<p(X,y)2 

> 0 
<p(y,x) 

< <p(x,x)<p(y,y) 

for all xE n, 
for all x, yEn, 
for all x, yEn, 

(5) 

but we just note them in passing. Equation (5) turns 84> into a pre-Hilbert space, 
and it allows to write 

(1(.), <p(y, '))4> := f(y) for all yEn, fE 84>, 

because the equation holds for all functions fx(Y) := <p(x, y) and thus on the whole 
space 8q,. 

The formal closure Nq, of 8q, under the inner product (., .)q, will be a Hilbert space, 
and an abstract element f of Nq, can be interpreted as a function on n by 

(I, <I>(y, .))q, =: f(y) for all yEn, fE Nq" (6) 

because the left-hand side makes sense on the closure. Equation (6) is the reason 
why a kernel <I> is usually called reproducing with respect to a specific Hilbert 
space of functions: it allows to recover the function values of an element f of the 
Hilbert space by (6). Standard sources for results on reproducing kernel Hilbert 
spaces are [1, 8], while results on native spaces are compiled in [7, 15]. 
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Definition 1.3 If<I> is a repraducing kerneIon n ~ ~d, we calt the space 

N;p:= clos (.,.)<1>S;p:= clos (.,.)<1> span {<I>(x, .) : x E n} 

the native spaee for <I>. 

If the kernel is just reproducing and possibly degenerate or even zero, we eannot 
get a rieh native Hilbert spaee. But in many situations we have both properties, 
and then we get another useful notion: 

Theorem 1.4 If a kernel (2) is repraducing and nondegeneratr-: on n ~ ~d, it is 
(strietly) positive definite there. This mmns that for alt finite data sets X = 
{Xl, ... , X M} the matrices 

are symmetrie and positive definite. The eonverse is also true: a positive definite 
kernel is nondegenerate and repradueing. 

Praof. If we have a reproducing kernel <I> , the matrices Ax,;p are Gramians and 
thus positive semidefinite. If the kernel is nondegenerate, the matrices must be 
positive definite, because Gramians of linearly independent functions are positive 
definite. 

For the converse, we start with a positive definite kernel <I> and consider functions 
sa,X of the form (1). We have 

using the k-th unit vector ek E ~M. By positive definiteness we can conclude that 
such a function can only vanish on X if the coefficients are zero. This proves that 
the kernel is nondegenerate, and it implies that finitely generated functions Sa,X 

from (4) are uniquely determined by Cl: and X. Thus we can define abilinear form 
by (5) on the functions <I>(x,·) that generate S;p and use (1) again to write 

= Ilsa,xll~ ;:: 0 

for all Cl: E ]RM, X = {Xl, ... , X M} ~ n ~ ~d to conclude the definiteness of the 
bilinear form. 0 

There are other equivalent formulations for positive definiteness of a kernel <I> on 
n ~~d: 
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Theorem 1.5 If a kernel cI> is reproducing on n <:;;: IRd , then the following properties 
are equivalent: 

1. The functions cI>(Xj,·) are linearly independent on n for all finite data sets 
X = {XI, ... ,XM} <:;;: n. 

2. For all finite data sets X = {Xl,"" XM} the matrices Ax,4> are positive 
definite. 

3. All point evaluation functionals for distinct points in n are linearly indepen
dent in the dual of N4>. 

4. The native space N4> separates points of n, i.e., for all finite data sets X = 
{Xl, ... ,XM} <:;;: n and all points Xj E X there is a function fJ E N4> such 
that fj(Xk) = Ojk, 1 ::; j, k ::; M. 

Proof. We already know the equivalence of properties 1 and 2. In the dual of 
the native space, we can use (6) to see that the Riesz representer of the point 
evaluation functional Ox : f 1--+ f(x) is the function cI>(x, .), and thus 

holds in the dual of the native space. Thus the matrices A x ,4> are Gramians of 
the point evaluation functionals OXj' Xj E X in the dual of the native space, and 
linear independence of the functionals is equivalent to positive definiteness of the 
matrix. 

Ifwe have property 4, we can easily see that the point evaluation functionals for any 
finite point set are linearly independent, since for a vanishing linear combination 
we get 

0= (t ÜkOXk) fJ = t ükfj(Xk) = Üj, 1::; j ::; M. 
k=l k=l 

Conversely, property 4 follows from property 2 by interpolation. We define vectors 
and functions 

via (1). This gives 

fj(xd = saj,X(Xk) = aJ A x ,4> ek = eJ Ax\Ax,q,ek = eJ ek = Ojk, 1 ::; j, k ::; M. 
o 

For completeness, we add a standard observation that go es the other way round: 

Theorem 1.6 IfH is a Hilbert space of functions on n such that all point eval1wtion 
functionals for distinct points in n are linearly independent in the dual of H, then 
H is the native space of a nondegenerate reproducing kernel. 

Proof. \Ve define cJ> as the Riesz representer for the point evaluation functionals, 
i.e., by (6) for all fEH. Then we get (5) by putting fr:(') := cJ>(x,·) into (6), and 
the previous theorems yield that cJ> is a positive definite rcproducing kernel on n 
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with its native space Nil> being necessarily a elosed subspace of H. But we can use 
(6) to show that an element f of H which is orthogonal to all <JI(y,.) must vanish 
on n, and thus the spaces Hand Nil> coincide. D 

This result shows that reproducing positive definite kernels are not exotic. They 
automatically arise for any Hilbert space of functions where point evaluation is a 
continuous and nondegenerate operation. 

We list aseries of important special forms of kernels: <JI(x, y) = 

Radial Basis Functions 
Translation-invariant Kernels on ]Rd 

Zonal Kernels on Spheres 
Periodic Kernels on Tori 

Convolution Kernels 

Hilbert-Schmidt Kernels 

cjJ(llx - y112) 
\l1(x - y) 

cjJ(xTy) 
\l1(x - y) 

h \l1(x, s)\l1(y, s)df.l(s) 

\l1: nxI:---->]R 

L Ai'Pi(X)'Pi(Y) 
iEI 

'Pi : n ---->]R, Ai > 0 

't/x,y E]Rd 

't/x,y E]Rd 

't/x,y E Sd-l 
't/x, y E [0, 27fJd 

't/x,y E n 

't/x,y E n 

't/i E I 

This paper focuses on Hilbert-Schmidt kernels, because it turns out that they are 
quite general, though they look rat her special. This will be topic of the next section. 
But we should add some remarks on the other cases. Translation-invariant kernels 
occur as reproducing kernels of translation-invariant Hilbert spaces of functions 
on ]Rd. They allow Fourier transform methods and are positive definite in ]Rd, 

if their Fourier transform exists and is positive almost everywhere. Radial basis 
functions additionally have rotational symmetry. By replacing Fourier transforms 
by other transforms, one can deal with the other cases. Zonal kernels cjJ(xT y) are 
positive definite, iftheir symmetrized spherical transform, i.e., their expansion into 
Legendre polynomials as functions of the eosine of the angle () between x and y 
has positive coefficients. For periodic kernels on tori, one simply uses positivity of 
the coefficients of the Fourier series representation. 

These observations immediately show that many kernels have series expansions 
with positive coefficients, and thus they come elose to the Hilbert-Schmidt kernel 
form that we want to study in the next section. 

2 Hilbert-Schmidt kerneIs 

Before we delve into the standard way oflooking at those kernels, i.e., by introduc
ing an integral operator in L 2 (n), we want to focus on a somewhat more abstract 
view that does not require a link to embeddings into L 2 spaces. 
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Definition 2.1 For each index i from a countable index set I let there be a positive 
weight Ai and a function <Pi : n - IR such that for all x E n the condition 

L Ai<P~(X) < 00 (7) 
iEI 

is satisfied and such that any finite subset of the <Pi is linearly independent over 
n. Then the function 

<I>(X,y) = LAi<pi(X)<pi(Y) n x n-IR (8) 
iEI 

is called a Hilbert-Schmidt kernel. 

Theorem 2.2 Any Hilbert-Schmidt kernel <I> is a reproducing kernel on the native 
space 

{ 
C2 } Nil>:= LCi<Pi: Ci E IR, L A" < 00 . 

iEI iEI ' 
(9) 

Proof. Note first that our summability Condition (7) implies that the kernel series 
is summable. Furthermore, the functions in Nil> are wen defined because of 

By our assumption on linear independence, an finite linear combinations of the <Pi 
have unique coefficients, and we can define the inner product 

('Pi, <Pj)il> 

( L Ci'Pi, L dj'Pj) 
iEI JEI il> 

on these functions. We get a pre-Hilbert space whose closure is Nil>. By easy 
calculations, an <I>(x,·) are in Nil> and both (6) and (5) hold. 0 

Unfortunately, the linear independence assumptions of Definitions 1.1 and 2.1 
differ, and we cannot conclude that a Hilbert-Schmidt kernel is nondegenerate in 
general. For example, if an 'Pi have a common zero, the nondegeneracy fails. 

Theorem 2.3 If the space of alt finite linear combinations of the generating func
tions 'Pi of a Hilbert-Schmidt kernel <I> of the form (8) separates points of n in the 
sense of assertion 4 of Theorem 1.5, the kernel is nondegenerate. 
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Proof. Assume there is a vanishing linear combination so:,x for some 

x = {Xl, ... , X M} <;;; O. 

Then 

implies that all sums ~f=l Cl:j'Pi(Xj) are zero. Taking linear combinations with the 
coefficients of point-separating functions, we can conclude that CI: vanishes. 0 

We now know that under mild ass um pt ions all Hilhert-Schmidt kerneIs are positive 
definite reproducing kerneIs of some Hilbert space. We now assert the converse, 
but we need so me tool to proceed from a fairly general kernel <I>, e.g. a radial basis 
function on jRd, to certain functions 'Pi and positive weights Ai that allow to rewrite 
<I> in the form (8). This will be done by going back to the origin of Hilbert-Schmidt 
theory, i.e., eigenfunction expansions of kerneIs of compact integral operators. 

Definition 2.4 Let <I> : 0 x 0 ----> jR be a kernel. If the integral operator 

Icp(f):= L f(t)<I>(t, ·)dt (10) 

maps L 2 (0) into itself and is compact, injective, positive, and selfadjoint, we say 
that<I> is a CIPS kernel on L 2 (0). 

Theorem 2.5 Any CIPS kernel on L 2 (0) has an absolutely and uniformly conver
gent representation (8) with 1 := Nand 

and a complete orthonormal system {'PdiEN in L 2 (0) of eigenfunctions, i.e., 

Icp('Pi) = Ai'Pi for all i E N. 

Proof. The existence of the eigenfunctions and the series representation is a con
sequence of standard ([12]) spectral theory of selfadjoint compact operators on 
L 2 (0). Uniform convergence of the series follows from the theorem of Mercer, and 
we get (7). 0 

Definition 2.6 A Hilbert-Schmidt kernel on 0 that has the properties asserted in 
Theorem 2.5 will be called a positive Hilbert-Schmidt kernel (PHS) on L 2 (0). 

Note that positivity and injectivity of the integral operator means that 
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is an inner product on L2(O). The notion of positive definiteness of a kernel is 
different, and it does not seem easy to connect these properties. We further note 
that for PHS kerneis we also have 

(11) 

and the native space (9) is embedded into L2(O) as 

(12) 

with the inner product taking the form 

(I ) =" (f, <pih(g, <pih c 11 1 E· r ,g cp ~ A. lor a ,g JVcp. 

iEI\l • 

(13) 

Theorem 2.7 The lollowing are equivalent: 

1. The kernel cI> is PHS in L 2 (O). 
2. The kernel cI> is reproducing on 0 with the above native space Ncp ~ L 2 (O) 

and a complete L 2 -orthonormal system 01 functions <Pi such that (7) holds. 
3. The kernel cI> is a CIPS kernel on L 2 (O). 

Prool sketch. The implication 3 => 1 is Theorem 2.5, while the implication 1 => 2 
follows from Theorem 2.2. If 2 holds, the integral operator is the limit of integral 
operators whose kerneis are the finite partial sums of cI> , and thus is compact. 
Injectivity and positivity follow easily, because all Ai are positive. 0 

Theorem 2.8 If cI> is a reproducing kernel on 0 such that 

10 cI>(y, y)dy < 00 

l 10 cI> (x, y)2dxdy < 00 

l cI> (x, y)f(y)dy 0 for alt xE 0 implies f = 0 in L2(O) 

then cI> is a CIPS kernel on L 2(O). 

Proof sketch. The first additional hypothesis guarantees that the native space of 
cI> can be embedded into L 2 (O). The second ensures compactness of the integral 
operator in L2 (O). Then spectral theory [12] allows to conclude the existence of 
an expansion (8) with L2-orthogonal 'Pi and rat her general weights, but the repro
duction property implies that the weights are nonnegative. The third additional 
hypothesis guarantees injectivity of the integral operator, positivity of all weights, 
alld completeness of the system of orthogonal eigenfunctions. Details are in [16]. 

o 



Approximation by Positive Definite Kernels 211 

Note that injectivity of I<f> is essential here, but the nondegeneracy of the kernel 
and the separation property are not mentioned at all. Theorem 2.8 shows that 
very many kerneis have a positive Hilbert-Schmidt form, and this motivates our 
concentration on those kern eIs in the remaining sections. We elose this section by 
noting that we are still lacking useful conditions that allow to relate properties of 
<I> like positive definiteness or nondegeneracy to properties of I<f> like positivity or 
injectivity. 

3 A discontinuous example 

The techniques of the previous section allow to construct new kerneis from ex
pansions. These expansions may be based on a complete set of L2-orthonormal 
functions, but they can also be quite general as in Definition 2.1 and Theorem 
2.2. So far, all known kerneis are at least continuous, but we can use the new 
technique to present a discontinuous case as an example. We modify an approach 
due to Fabien Hinault (private communication, 2000). 

Let us mimic part of a Haar basis on lR by taking scaled and shifted characteristic 
functions 

H~(x) := X[O,l) (2 j x - k) = X[k2- j ,(k+l)2- j )(X) for all k E Z,j :::: 0, xE R 

They have the properties 

H~(x) 
H~(x)H~(y) 

1 iff k = l2 j x J 
1 iff k = l2 j xJ = l2 j yJ 

else = 0, 
else = O. 

With a summable sequence of positive weights Pj, j :::: 0 we define 

<I>(x,y) 
00 00 

L Pj L H~(x)H~(y) 
j=O k=-oo 

00 

L Pj 
j=O 

l2j x J = l2j Y J 

for all x, y E R Note now that l2 j x J = l2 j yJ for some j :::: 0 can hold only if x 
and y are of the same sign and do not differ by 1 or more. Moreover, the identity 
l2 j x J = l2 j y J me ans that x and y coincide in their binary expansions in all of the 
pre-period digits and in the first j post-period digits. This means 

x, y coincide in sign and allieading binary digits 

up to the m-th after the period 
else 
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and in particular 
00 

<i>(X ,X) 

Thus the kernel is piecewise constant and has a finite evaluation scheme, if the 
sum over the Pj has a known value. 

Theorem 3.1 The kernel <i> is positive definite. 

Proof. In view of Theorems 2.2 and 2.3 we only have to show that the functions 
Hk separate points. Take a set X = {Xl,"" X M} ~ IR, pick an arbitrary index 
sE {l, .. . , M} and a j > 0 such that 

IXr - xsl > Tj for all r =I- s, 1 :S r :S M. 

This implies l2 j xs J =I- l2j xr J for all r =I- s. Then we pick k = l2 j xs J and find that 
Hk(xs ) = 1 while Hk(xr ) = 0 for all r =I- s, and we get the separation. 0 

1 

0.5 

o 
2 

-2 

Figure 2: The case Pj = 2- j - 1 

We re mark that one can construct plenty of other examples using other bases, in 
particular wavelet bases. We hope to find time to follow the open road towards 
"refinable kerneIs" elsewhere. 
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4 Native space and range 

From here on we always assurne a positive definite kernel cI> that is a positive 
Hilbert-Schmidt kernel on L2 (D), and in particular we consider the native space 
(12) and the inner product (13) there. Note that the action ofthe integral operator 
Iep of (10) on a function f with expansion coefficients (f, 'Pih just consists of a 
multiplication of the coefficients by Ai. 

The range of the integral operator Iep of (10) then is 

and it is the native space of the convolution kernel 

(cI> * cI»(x, y) in cI>(x, t)cI>(y, t)dt 

00 

L A;'Pi(X)'Pi(Y) 
i=l 

Consequently we have the inclusions 

The subspace Rep of the native space Nep is of quite some importance. For com
pleteness, we add a result from [16] that generalizes [14]: 

Theorem 4.1 The convergence order of interpolants to functions from Rep is twice 
the convergence order of functions from the native space Nep. 

Proof. The interpolant Sj,x,ep E Sx,ep of (3) to a function f from Nep in data 
locations X = {Xl, ... , X M } with fill distance 

hx := sup min Ilx - Xj 112 
xEn I:S:J:S:M 

has a standard [13] error bound 

for all X E D with a certain function Fep that depends on the smoothness of cI>. We 
assert that for f = Iep(g) E Rep there is an improved bound 

To this end, we use the standard [15] orthogonality relation 
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and the property (11) of I<I> for I = I<I>(g) E R<I> = N<I>*<I> to find 

III - sj,x,<I>II7v4> (f - Sj,X,<I>,f)N4> 
(f - Sj,X,<I>,I<I>(9))N4> 
(f - Sj,x,<I>,gh 

< III - sj,x,<I>1121IgI12 
< y!F<I>(hx ) 11I - sj,x,<I>IIN4>llgI12 

III - sj,x,<I>IIN4> y!F<I>(hx)llgI!2 
and we can plug this into the standard error bound (14) to arrive at 

with 
Ilgll~ = (g,gh = (I<I>(9),9)N4> = (I<I>(g),I<I>(g))<I>*<I> = IIIII~*<I>' 0 

If we ask somewhat more than (7), i.e., 

L A<p;(x) < 00 (15) 
iEI 

we can define the convolution square-raot of <I> by the kernel 

00 

#(x, Y) := L A<Pi(X)<pi(Y) 
i=l 

and get 

5 n-widths 
From now on we let <I> be a positive Hilbert-Schmidt kerneIon L2 (D) and assume 
(15) to play safe. We make use of the fact that we have integral operators related 
to #(x, y) or <I> (x, y) that map L 2 (D) into N<I> or R<I>. This opens the road for 
applications of the theory of n-widths [11]. For the convenience of the reader, we 
will review that part that is of interest for uso For a sub set A of a Hilbert space 
H, the Kolmogorov n-width is defined by 

dn(A; H) := inf sup inf III - 811H. 
V" fEH sEV" 

Here, the outer infimum is taken over all n-dimensional sllbspaces Vn of H. An 
n-dimensional space ~; is called optimal if 

E(A; ~~) := sup inf Ilf - 811H = dn(A; H). 
fEA sEV,; 
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In our case, the Hilbert space H will always be H = L 2 (0,) and the set A will 
essentially be either N;p or R;p. Actually, to avoid problems with scaling we will 
take A rather to be the unit ball in that space, i.e., A = S(N;p) or A = S(R;p), 
where we used the general notation S(H) = {h EH: Ilhlh ::::: I}. This perfectly 
fits into the theory of n-width of compact operators, where A is the image of the 
unit ball of the linear space H under a continuous mapping T. In our case, the 
mapping is given by Iv;p and I;p, respectively. 

Lemma 5.1 The unit ball of the native space N;p is the image of the unit ball of 
L 2 (0,) under the operator Iv;p, i.e., S(N;p) = Iv;p(S(L 2 (0,))). Similarly, we have 
for R;p that S(Rq-,) = I;p(S(L 2 (0,))). 

Proof. If f = Iv;pv with v E S(L2 (0,)), then, by definition of the native space 
norm, Ilfll;p = Ilv112' The same holds in the second case. D 

The results of Pinkus' book [11], in particular, Corollary 2.6 of Chapter IV yield: 

Theorem 5.2 Let <I> be a positive Hilbert-Schmidt kernel on L 2 (0,) with (15). Then, 
the n-widths for the unit ball in N;p and R;p are given by 

dn(S(N;p); L 2 (0,)) 

dr,(S(R;p); L 2 (0,)) 

respectively. In both cases, the subspace 

is optimal. The associated optimal data functionals have the form 

As said before, the proof can be found in Pinkus' book, but it is also not too 
difficult. For example, to see that V; is optimal for S(N;p) we simply use fn 
2:.7=1 (f, 'Pj h'Pj E v; as the approximant to f E S(N;p) to get 

Ilf - fnll~ = f (f,'Pj)~ = f Aj (f':j)~ ::::: An+l f (f':j)~::::: VAn +1' 

j=n+1 j=n+1 J j=n+1 J 

since Ilfll;p = 2:. (f'rj)~ ::::: 1. 
J 

D 

The good news here is that we have found best rates for n-term approximation. 
The bad news is that for standard radial c.:ases neither the 'Pi nor the Ai are known. 
Furthermore, the optimal functionals are not easily accessible numerically. Thus 
the next section tries to compare the optimal n-width errors with the behaviour of 
standard interpolation in n data locations or with simple approximation schemes. 
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6 Quasi-optimal processes 

Here, we shalllook at approximation or interpolation schemes to see whether they 
realize the optimal behaviour outlined in Theorem 5.2 or not. Since the eigenfunc
tions are not accessible in many cases, and since the inner products with eigen
functions are not practically relevant as data functionals, we have to be satisfied 
with quasi-optimal subspaces instead of optimal subspaces. 

Definition 6.1 An n-dimensional subspace Vn ~ H is called quasi-optimal for A ~ 
H if there exists a constant C > 0, independent of n, such that 

Since E(A; Vn) ;:::: dn(A; H) is always satisfied, both quantities are equivalent, 
which we will also denote by E(A; Vn ) "-' dn(A; H). 

We now look at some special cases from the literature, and we start with approx
imation on the sphere Sd-l = {x E Rd : IIxl12 = I}. Here, things are generally 
presented upside down, Le., one starts with a family of orthonormal functions, 
namely spherical harmonics and defines the kernel <l> by its expanding series so 
that the eigenvalues of the corresponding integral operator are the Fourier coeffi
cients of the kernel. To be more precise, let {Ye,k : 1 ::; k ::; N (d, f)} denote the 
usual orthonormal basis for the space of spherical harmonics of degree f (cf. [10]), 
where 

N(d,O) = 1, and N(d f) = 2f + d - 2 (f + d - 3) f ° 
, f f-l' > . 

Then the kernel has an expansion of the form 

00 N(d,P) 

<l>(p, q) = L L ap,kYe,k(p)Ye,k(q). (16) 
p=o k=l 

For simplicity, we will assume that the kernel is radial or zonal, which is equivalent 
to the fact that for a fixed f a11 coefficients ap,k, 1 ::; k ::; N (d, f), are the same, 
i.e., ap:= ap,k, 1::; k::; N(d,f). 

Under this assumption, it is actua11y more natural to look at the space of spherical 
harmonics up to order f, 

Vp := span{Y,u : 0 ::; A ::; f, 1::; k ::; N(d, A)}, 

which is the restriction of the space of d-variate polynomials of degree at most f 
Lu the sphere and has dimension dim Vf = N(d + 1, €). The n-width theory gives 
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Corollary 6.2 If the coefficients ai = ai,k, 1 ::; k ::; N(d, .e), of the kernel (16) 
form a sufficiently fast decaying, nonincreasing, and positive sequence, then 

dn (S(NiI?),L2(Sd-l)) = y'ai, 

for N (d + 1,.e) ::; n < N (d + 1, .e + 1). 

This is the result to which we have to compare the known estimates for inter
polation by positive definite kernels. In the latter context it is usual to assurne 
that 

N(d,.e)aR ::; C(1 + .e)-a 

which is, since N(d,.e) grows like O(.ed - 2), equivalent to ai = O(.e-a- d+2). The 
reason for looking at N (d, .e)aR rather than aR is that this number appears naturally 
for "radial" kernels, since the addition theorem (cf. [10]) yields 

""( ) ~ N(d,.e)aR Tl ( ) 
'l' p, q = ~ .Li p. q , 

R=O Wd-l 

where Wd-l denotes the surface area of Sd-l and PR is the Legendre polynomial 
of degree.e in d dimensions, normalized by PR(1) = 1. 

In case of interpolation by positive definite kernels it is usual to measure the 
approximation orders in terms of the so-called fill distance, which is in this context 
hx := sUPxESd-1 minXjEx dist(x, Xj). Here, dist is the usual spherical distance. 

The following result comes from Dyn/Narcowich/Ward [4], Jetter/Stöckler/Ward 
[6], and Morton/Neamtu [9J. 

Theorem 6.3 Suppose <P is a radial positive definite kernel on the sphere with aR = 
O(.e-a ), .e --t 00, with a > d. Then, the interpolation error can be bounded by 

0<-1 

III - sf,xlloo ::; ChT 11/11iI?· 

The Loo-error bound leads immediately to an L 2-error bound, which we now want 
to compare with the results from n-width theory. To achieve this, we have to relate 
hx to .e, since by Corollary 6.2 the n-width is rather related to .e than to n in this 
situation, 

This is hopeless in the general case, but the situation changes in case of quasi
uniform data sets. A set X ~ Sd-l of n points is said to be quasi-uniform if 
h'1-1 rv l/n. Since we also know that n rv N(d + 1,.e) rv .ed - 1 we can conclude 

0<-1 III - sf,xl12 = O(.e--2 ). 
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Corollary 6.4 Interpolation of function values in quasi-uniform data locations by 
positive definite "radial" kernels on the sphere may fail to be quasi-optimal by order 
at most d;l if the kernel has eigenvalues with algebraic decay. 

Our formulation of the corollary just poses an upper bound on the deviation from 
quasi-optimality, but we think that we actually have a quasi-optimal approxima
tion scherne. The reason for our optimistic point of view is the following. We gained 
the L 2 approximation error simply by integrating the Loo-error. In the light of the 
]Rd theory, this seems to be too naive. In the ]Rd case it is, in a similar situation, 
possible to gain an additional d/2 in the order by using a localization trick, which 
dates back to Duchon's initial work on thin-plate splines (cf. [2, 3]). This trick 
should also work in the sphere setting, but so far nobody has ever tried it. 

Note that in the just described situation the native space is actually the Sobolev 
space Hs(Sd-l) with s = atd _1. 

For Euclidean space ]Rd and bounded domains 0 therein, we usually do not know 
the orthogonal Hilbert-Schmidt expansions in L2 (O). Thus we cannot assess the 
optimality of the known error bounds. The state-of-the-art in results on optimality 
of rates of approximation provided by interpolation is in [17, 20]. Instead of opti
mality results for approximations, we here get upper bounds on the decay of the 
unknown eigenvalues. Curiously enough, this me ans that approximation theory 
provides results on the spectrum of integral operators. 

On ]Rd we make the following assumptions: 

• the kernel <I> (x, y) = cjJ(x - y) is symmetrie and Fourier-transformable, 

• we consider interpolation by translates of cjJ on n asymptotically quasi
uniform data locations in a bounded domain 0<;;; ]Rd, which has a :mfficiently 
smooth boundary. 

Let us look at the casc of limited smoothness (e.g. [13]) first. For 

(17) 

thcre is an crror bound 

This crror bOlllld c:all be improved b:v Ducholl's loc:alization trick a::; lIlentiollPllPd 
earlier (see for examplp [19]) to 

pl"Ovidecl t ha t t 1](' !Jollllda ry or 0 ie; sufhciellt ly Sllloot h. 
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In case of quasi-uniform data, which now becomes h'k!1 rv 1jn, the latter means 
in terms of n, ' 

Ilf - sJ,x112 ::::: Cn-eß+d)/2dllfllq,· 

The error of the optimal process must be asymptotically smaller, and this implies 

Theorem 6.5 The eigenvalues of the Hilbert-Schmidt operator Lq, with kernel cI> on 
L 2(D) and Fourier transform satisfying (17) for a bounded domain D <;;; Jl{d satisfy 

An+1 ::::: Cn-U'+d)/d 

for n --+ 00. D 

Again, as in the case ofthe sphere, the native space is a Sobolev space HS(D), 
s = (ß + d)j2. For Sobolev spaces, the optimal n-widths are known (Jerome 1970 
[5]): 

dn(S(H'(D); L 2 (D)) = JAn+1 = O(n-s/d ) for n --+ 00 

and we can compare with the interpolation error bounds for HS(D) with D <;;; Jl{d. 

They have the form (14) with s = (ß + d)j2 > 0, and we get 

Theorem 6.6 Interpolation in quasi-uniform locations by translates of reproducing 
kernels that generate Sobolev spaces is quasi-optimal. 

Since Sobolev kernels and Wendland functions [18, 19] reproduce spaces that are 
norm-equivalent to Sobolev spaces, we have 

Corollary 6.7 Interpolation in asymptotically regular data locations by translates 
of Sobolev kernels 01' Wendland functions is quasi-optimal. D 

Generalizations to other radial basis functions are not known, but would be 
welcome. 

The case of unlimited smoothness occurs for inverse multiquadrics and Gaussians, 
and it leads to Fourier transforms with a decay like 

(18) 

Then there is an error bound [13] 

Ilf - sJ,nllx::::: Cexp(-cjh)llfllq,::::: Cexp(-cn1/d)llfllq,· 

Theorem 6.8 For a kernel cI> with exponential decay (18) of its Fourier transform, 
the eigenvalues of the integral operator Lq, in L 2(D) fOT a bounded domain D <;;; Jl{d 

satisfy 

fOT n --+ 00. D 
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Inequalities for Polynomials With Weights 
Having Infinitely many Zeros on the Real Line 

J ozsef Szabados 

Abstract 

We prove infinite-finite range, as weH as Bernstein-Markov type inequalities 
for generalized algebraic polynomials on the real line when the weight is the 
product of a Freud-type weight and of another function which has infinitely 
many roots on the real line. This kind of investigation is an analogue of the 
so-caHed genralized Jacobi weights on finite intervals. 

1 Introduction 
Let u(x) = cQ(x) be a Freud-type weight function on R:= (-00,00), i.e., let 
Q : R ---> R be even, continuous, Q" continuous, Q' > 0 in (0,00) and 

. (xQ'(x))' (xQ'(x))' 
o < Cl!:= mf Q'() ~ sup Q'() < 00. 

xER+ X xER+ X 
(1) 

(A typical example is Q(x) = lxi<>, Cl! > 0.) Further let Pv be the set of generalized 
algebraic polynomials 

s 

P(x) = w rr Ix - zjlVj 
j=l 

of degree v = 2:;=1 Vj, where w > 0, Zj, j = 1, ... , s are pairwise different 
complex numbers, and the real numbers Vj ~ 1, j = 1, ... , s are the corresponding 
multiplicities. This is an obvious generalization of the absolute value of ordinary 
polynomials (where all the vj's are positive integers). 

For such weights and generalized polynomials the infinite-finite range inequal-
ity 

PEPv (2) 
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as well as the Markov-Bernstein inequality 

Mv = {~gV 
a v 

0< 0< 1, 

0= 1, 

0>1 

J. Szabados 

PE Pv (3) 

hold for any generalized polynomial P E Pv and 0 < p ~ 00, where c > 0 depends 
only on the weight and on K > 0,3 and av is the so-called Mhaskar-Rahmanov-Saff 
number satisfying 

for all PE Pv (4) 

(cf. Levin-Lubinsky [3], Theorem 1.8). Inequalities (2)-(3), in a much more general 
form, can be found in [3], Theorem 1.9(a) and Corollary 1.16. 

Our purpose here is to generalize inequalities (2)-(3) for weights which have 
infinitely many zeros on the realline. The motivation for such investigations is the 
following. On a finite interval, in case of Jacobi weights, polynomial inequalities, 
properties of orthogonal polynomials, estimates for the Christoffel functions, etc., 
were generalized for weights having finitely many algebraic type roots inside the 
interval considered (see works of Badkov, Mastroianni, Vertesi and others). A nat
ural analogue of these investigations is when the weights on R have infinitely many 
zeros. A first (and most important) step in this subject can be the establishing of 
(2)-(3) for such weights. 

So let 
o < tl < t2 < .. " lim -k ~ ootk = 00 (5) 

and 
mk > 0, k = 1, ... , liminfmk > 0 

k--->oo 
(6) 

be two sequences of real numbers. Under some growth condition on the sequences 
(5)-(6), we will construct a weight function on R whose real roots are exactly the 
numbers ±tk with corresponding multiplicities mk, k = 1,2, .... In other words, 
we consider the case when the roots are symmetrie with respect to zero. It would 
be easy to handle the general case, but since the formulas are too involved, we 
rest riet ourselves to this situation. Besides, we will associate Freud-type weights 
to this weight which is, by definition, symmetrie to zero. Our construction will 
be such that, besides the prescribed roots ±tk, k = 1,2, ... , the weight function 
will contain complex roots as weIl. We could have avoided this by making a more 
delicate construction, but the ideas we use can be seen much better if we do not 
care about non-real roots. 

Our assumption on the sequences (5)-(6) is the following: there exists a {J ;::: 0 
:mch that 

oe 

""' mk L te+c: < 00, but 
k=l k 

for all E > O. (7) 

.1In what folIows, c > 0 will dellOte constants independent of v ami P. not npcpssarily the same 
at each occurrence. 
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Typical examples for such sequences are tk = k ß, ß > 0 (when (! = l/ß), or 
tk = 2k (when (! = 0). (Here we took mk = 1, k = 1,2, .... ) 

Now consider the function 

v(x) ~ n l' - (~) 'f ' q = [{!/2] + 1. (8) 

Here the infinite product converges uniformly in each compact subset of R. This 
will be seen from the following 

Lemma 1.1 Suppose the conditions (7) hold with some (! ;::: 0 and for alt c > o. 
Then 

I le+g 
(a) v(x) :::; eC x for alt xE R, c > 0, and (b) with to = 0, 

I le+g 
(b) v(x) ;::: e-c x for 

where in both cases c > 0 depends on v and c. 4 . 

Proof. (a) By symmetry, we may assume that x ;::: o. Let 

By the first relation in (7), evidently 

N(x) :::; c(c)xi!+c for all c > o. 

(9) 

(10) 

Using the geometric-arithmetic means inequality as well as the first condition 
in (7) we obtain 

(
" ..!!!I<..) -fnN(x) ~N( ) 

2qN(x) utk~x t~+g < (CXi!+C) e+g x 
:::; (2x) N(x) - N(x) 

Hence, using that the function (a/u)U attains its maximum in the interval [1, (0) 
at u = ale we obtain 

v(x) :::; (ce)e(!";'gjXe+g, 

which proves the first statement of the lemma. 

4If a > b, then let [a, bJ = 0 
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(b) First we show that I j -I=- 0 for infinitely many j's, thus the statement is 
not about the empty set. Namely, if I j = 0, then 

mj-l mj 
1I+c + 1I+c > tj - tj-l. 

t j _ 1 t j 

If this were true for sufficiently large j's then adding these inequalities we would 
arrive at a contradiction with the first relation in (7). 

Now we may assume that x ~ 1, since for 0 :::: x :::: 1 the statement is trivial. 
We have 

v(x) ~ rr 11- ~ Imk rr 11- t: Imk rr 11-::: Imk = P 1 P 2 P 3 · 

tk 5,x X<tk 5,2x tk >2x k 

Here by (6) and (9)-(10) 

(t + mj_1 

j-l t e+€ 
P > J-1 

1 - t 
) 

N(x) 

_ 1 > C-(1+1I+c )N(x) > X-(1+1I+c )c(c/2)xe+€/2 
- }-1 -

j-l 

Next, 

P 2 ~ (1 _ ~) N(2x) , 

Here we distinguish two cases. If t j ~ 2x, then 

P > 2- N (x) > e-cxe+€ 2 _ _ , 

while if t j :::: 2x then 

P 2 > (1 _ tj - tT-t€ ) N(x) ~ tj(1+1I+c )N(X) ~ (2x)-(1+e+ c )N(x), 
- tj 

and he re the estimate can be continued as for PI. 
FinaIly, using the inequality 1 - u ~ e-2u , 0:::: u :::: 1/2 we obtain 

xE I j , 

provided E :::: 2q - (J. (Evidently, it suffices to prove the lower estimate for suffi
ciently small E'S. D 

Now we return to the definition of our weight function. Lemma 1.1 teIls 
us that in order to have a weight decaying exponentially at infinity, we have to 
multiply v by a proper Freud-type weight. Our weight with the infinitely many 
zeros (5) will be 

w(x) =u(x)lv(x)l. (11 ) 

Under sornc condition on (t, this new weight function will behave at infinity simi
larly tou(x). 
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2 The infinite-finite range inequality 

Theorem 2.1 With the previous notations, if 

o :::; {] < 0:, (12) 

then we have 

(13) 

where av is the Mhaskar-Rahmanov-Sajj number associated with u (see (4)), 0 < 
p:::; 00, and 

E > 0 arbitrary, (14) 

with C, Cl, C2 > 0 absolute constants. 

Remark. (14) shows that by (12), we always have limv->oo /Lv = 1. In fact, a sharp 
inequality similar to (2) can be obtained if 0: > 3{]. (13) shows that the presence 
of the weight v causes no significant change in the situation: the finite interval in 
(13) is more or less the same as for the Freud weight u. 

Proof. We present the proof for the case 0 < p < 00; the case p = 00 runs along 
parallellines, but everything is much simpler. We have to estimate the quantity 

where the constant A > 1 will be chosen later. 
Estimate of I I . Let 

(15) 

Then by (10) R v E PT! where 

c > 0, 

since 

(16) 

(cf. [5], (5.8)). On the other hand, evidently Sv is monotone decreasing in the 
interval [0, Aav ]. Thus applying (2) with PvRv E Pv+ve/o<+€ instead of P v , and 
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using the above mentioned monotonicity twice we obtain 

LI = r (PvRvSvu)P::; Sv(/-lvav)P r (PvRvu)P 
JJ1.vavS,lxI9av J 1xl?'J1.vav 

::; Sv (/-lvav )P r (PvRvu)P 
J1xl ?av+ve! 0+' (1-K (v+vo/ 0+') -2/3) 

::; cSv(/-lvav)P r (PvRvu)p 
J1xls,av+v';0+, (I-K(v+v% +')-2/3) 

::; cSv(/-lvav)P r (PvRvu)P ::; c r (Pvw)P, 
J1xlS,J1.vav J 1xlS,J1.v av 

since 
av+v,/o+,{1- K(v + vi!/a+E)-2/3} 

( Iv + Vi!/a+E I) ::; av 1 + Cl v-I (1 - Kv-2/3) 

::; av (1 + CIVi!/a-I+E - c2v-2/3) = /-lvav 

(cf. [5], (5.9)). 
Estimate ofL2' This quantity will turn out to be exponentially smaller than 

LI, but the proof is more involved. Let 

Ihl ?: I/v, 
otherwise, 

k=I,2, .... 

Let kv be defined by 

/-lvav - tk v - ::~~ > I/v, 
k v 

otherwise. 

(17) 

where in the last step we used the inequality 

Q(x) ?: clxl'" xE R, (18) 

which is easily obtained from (1) by integration. Hence by the lIlonotonicity of 
Q(;r;) in R+ we get 

A . IIP 11 > ,-cQ(iLv)IIP 11 
1/'= v W U'(I.rl<O""a,,) _ ( v LI'(.J,.)· 

i.e., by 
( 19) 
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(cf. [5], relation (5.5)) we get IlPl'lILP(Jvl ::; eCl' Al'. Thus using the Nikolski-type 
inequality 

IlPl'IILoo(J.l ::; C C~:I) l/p IlPl'IILp(J.l ::; cv3 / p llPl'IIL p (J.l' 

(cf. [1], Theorem A.4.4) we get 

IIPl'llu>O(Jvl ::; v 3 / P ecv Al' ::; ecv Al'. 

Since by construction, for K l' := [-al" al' ] \ J l' we have (see (15) and (16)) 

IK I < 2~ (m k - 1 mk ) 2N(al' ) +2 2Kal' < ( ~) 
v - L 1'+0 + e+c: + + 2/3 - C 1 + 2/3 ' 

k=l t k - 1 t k v V v 

the Remez inequality (cf. [1], Theorem A.4.1) applied to the interval [-al" al' ] 
yields 

(TK";;T / ~ 1/3 IIP,II oc_ <el'V~A <eCVyav+cv A <ecl'A. v L [ av,av ] _ v _ 1/ _ v 

Thus by Chebyshev's inequality 

(This is a weaker version of the Chebyshev inequality, which can be proved for 
generalized polynomials first with rational Vj 's, and then with a limiting process 
for arbitrary Vj 's.) Hence 

where 
1 21xl i.pl'(x) = -Q(x) - vlog-. 
2 al' 

Here by 
Q(AX) ~ CAO<Q(x) 

(cf. (5.3) in [5]), by (19) for sufficiently large A 

(20) 

1 
i.pl'(Aal' ) = "2 Q(Aa l' ) - vlog(2A) ~ cAC>Q(al' ) - vlog(2A) ~ CV(AO< -log(2A)) > 0, 

(21 ) 
Moreover, 

I ( ) = ~Q'( ) _ ~ > aQ(x) - v > aA"'Q(x/A) - v 
i.pl' x 2 x lxi - lxi - lxi 

aA'''Q(al' ) - 2v CV(AC> - 1) 
> > > 0 - 21xl - 21xl ' 
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provided A is large enough. This together with (21) implies rpv(x) > 0 if lxi;:::: Aav ' 

Hence by Lemma (a) and (18) 

holds with any small enough 11 > 0 for sufficiently large lI'S, and thus we obtain 

Integrating the pth power of both sides, using (20) we get 

T2 :::; eCPv A~ 1 e-~Q(x) dx :::; eCPV A~ 1 IxIQ'(x)e-~Q(x) dx 
Ixl2>.av Ixl2>.av 

:::; eCPV A~ 1 Q'(x)e-~Q(x) dx :::; eCPV A~6cpe-p3Q(>.av) 
Ixl2>.av 

< ecpv(l->''') AP < e-CPV AP 
- v - v 

for sufficiently large A, which together with the estimate for Tl proves the theorem. 
D 

Remark. Instead of (7), we could have used the function 

(for q = 1 the sum is counted as zero). The advantage of this function is that 
its roots are exactly the numbers ±tk with multiplicities mk, k = 1,2, .... The 
disadvantage is the presence of the convergence factors which causes technical 
difficulties. 

3 Markov-Bernstein inequalities 

We now wish to generalize (3) for the weights (11). Unfortunately, in the generality 
of (7) we cannot do this for the sequences (5)-(6). Wh at we need here is a slightly 
stronger condition than (7): from now on we will assurne that, with the notation 
~tk := tk - tk-l, k = 1,2, ... , we have 

{ 
._ l' log t:.tk _ l' log t:.tk _ 

1'- Imk~x I t - Imk~x I t > 00, og -k og -/;;-1 

Tnk:SlvJ, k=1,2, ... 
(22) 

(of courSE', "( :::; 1). The examples tk = k l', ß > 0 and tk = 2k mentioned after 
(7) still satisfy this (with I = 1 - l/ß and I = 1, respectively). The novclty in 
condition (23) is that it restriets thc clistancc betwecn adjac:ent tA;'s (from below). 
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That (23) implies (7) with f} = 1 - , is easy to show. Namely, if E > 0 is 
arbitrary, then (23) yields that 

k = 1,2, ... , (23) 

whence 

while 

~ m t~-2c c ~ ~tk+1 = c ~ ~tk+1 > c1°° ~ = 00. 
~ k > ~ (I+I2-c ~ tl-c - t l - c 
k=1 - k=1 k k=1 k tl 

Obviously, (23) is stronger than (7): for the sequence 

k = 0, 1, ... , 

(7) holds with (} = 1, while (23) fails to hold (the limits do not exist). 
Thus, for any sequences (5)-(6) with the property (23) we form the function 

(8) with 
0:::; f} = 1 -I· (24) 

Then, with the Freud-type weight u(x) = e-Q(x) we consider our weight w defined 
in (11) and state 

Theorem 3.1 With the previous notations, if the chamcteristic 0: of the Freud-type 
weight u defined in (1) satisfies 

then we have 

(25) 

for all Pu E Pu and 0 < p :::; 00. 

(26) 

Note that condition (26) is very delicate: if, is approaching an odd negative 
integer from above then the right-hand side of (26) tends to infinity. 

ProoJ. First we prove the theorem for p = 00. (The condition (12), i.e., 

(27) 

evidently holds, cf. (25) and (26).) 
For convenience of notation, let m = vII - , + E with a small E > 0 to be 

determined later. We show that 

[1 -I] lxi:::; Aau , q = -2- + 1, (28) 
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where the constant A > 2 will be determined later. By (3.6), we have for 

lxi::; Aav ::; cv1/0!. ::; 12v 1-;+< = ~, 

(see (16)) the inequality 

On the other hand, by 1 - t :::: e-2t (0 ::; t ::; 1/2), as weH as (16), (23) and (24) 
we obtain 

:::: exp -cMv q O!.m - q-,),+€ :::: exp -cMv" - 1 'Y+ö :::: e-e , ( 2 / 1 2 ) ( ~ 2 9+1 - 1 -<) M 

provided 

O a(2q + ')' - 1) - 2q(1- ')') 
<c:< . - 2q+a 

The latter inequality can be satisfied because of (26). Hence (3.7) is proved. 
Besides (3.7), we will need the existence of polynomials Qv(x) E Pev such 

that 
u(x) rv Qv(x), (29) 

(cf. [4], Theorem 1.3). 
Now let 

T"{x) ~ ,.llil- (;.) 'f (30) 

Then by (9)-(10) (using the latter with c:/2 instead of c:), Tv E Pv . Thus Theorem 1 
(applied in a weaker form) yields with PvTv E P2v (by utilizing (3.7) and (3.8) 
as weH) 

IIP~wIILooCR) ::; cIIP~wIILooClxI9av) ::; cIIP~TvuIILooClxI9av) 
::; cll(PvTv)'uIILoo Clxl$2av) + cIIPvT~uIILooClxI9av) 

::; CM2vIIPvTvuIILocClxl$a2n) + 2qllpvTvQv L ~:x~q~: 11 (31) 
tk$m k Loo Clxl$2av) 

::; ecM MvIIPvwll"=CR) + 2QllpvTvQv L ~:x~qt~: 11 ' 

tk$m k L.=Clxl$2av) 

provided A > 2 i8 ch08en such that a2v ::; Aav 80 that (3.7) is applicable. 
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Here we have to estimate the second term on the right-hand side. By sym
metry, we may assurne 0 :S x :S 2av . First, 

where E = 2q - 1 + I > O. 
Now if tk ~ 2av + 1Mv , then 

while for tk :S 2av + 1Mv we have 

Hence using Remez inequality (cf. [1], Theorem A.4.1) on the interval lxi :S Aav 

we get 

11 
PvTv:!Vmk 11 :S exp ( cMv ) MvIIPvwIILoo(R) 

x tk Loc (lxI9a v ) av v (34) 

:S cMMvIIPvwIILoo(R)' 

This shows that (3.12) holds for all tk 'so 
In order to estimate the norm on the right-hand side of (3.10) in the interval 

j ~ 1 fixed, (35) 

we use (3.12) to estimate the term k = j on the right-hand side of (3.10): 

11 
PvTv~vr:j~2q-lll . :S M 11 P;~~v 11 

x t j L (u u.) J L oo (lxl::;2a v ) 
00 )-1, J 

:S cMMvIIPvWIILoo(R)' 

Next, we estimate the sum for k # j on the right-hand side of (3.10). Using 
(24) we obtain for the x's specified in (3.14) (some of the sums below may be 
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empty) 

provided 0 < 0: < 2q + , - 1. If 0 ::; , ::; 1, then this is bounded. Otherwise we 
obtain 

(36) 

provided a~-T+2c: ::; cv. With respect to (16), the latter inequality is satisfied if 
Ct :::: 1 -, + 20:. But this is true because of (3.6), provided 0: > 0 is small enough. 

Now (3.15) yields 

Summing up the pth power of these inequalities for j's and taking into account 
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(3.11) we obtain 

which with respect to (3.10) proves Theorem 2 for p = 00. 

Now let 0 < p < 00. According to the theory of Christoffel functions applied 
for the Legendre polynomials (see e.g. [2], Lemma 3.1 on p. 100), there exist 
(ordinary) polynomials Kv(x) E Pv such that 

12 C 
Kv(x) dx:::; -

-2 V 
and Kv(O) = 1. (37) 

The other tool we are going to use is 

(38) 

(cf. (3.7) and (3.9)). 
Let t be a fixed parameter, and apply the just proved part of the theorem to 

instead of Pv(x) (where d > 1 is a constant to be specified later, as weH as Theo
rem 1, (3.17) and Nikolski's inequality between L oo and LI spaces 

(cf. [1], Theorem 6.2.10) to get 
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Substituting t = x, using Kv(O) = 1 and choosing d = c > 1 (Le., the constant in 
the last inequality), by 

IIK v (u - x) 11 = av j1- c~v Kv(v) dv ::; av j2av Kv(v) dv ::; cav , 
cav L1 (lul::;cav) -1- c~v -2av V 

lxi::; cav (39) 

(see (3.15)) we obtain, using the Cauchy-Schwarz inequality, 

IP~(x)lw(x) ::; ecMvMv Ilpv(t;,)Kv (~ - x) W(~)II 
av cav Ll(I~I::;cav) 

cM M (jcav (~ ) ) l/p 
::; e ~ v -cav [lPv(~)lw(O]P Kv c:v

x ~ II x 

( )11 1-1/p cM ( v ) l/p 
xKv ~ - xcav Ll(I~I::;cav)::; e Mv av 

x ([C
e
: v [lPv(~)lw(~)]P K v (~c:vx) d~) l/p , lxi::; cav. 

Taking pth power on both sides, integrating, using Fubini's theorem and (3.16) 
again, 

[:v [lP~(x)lw(x)]P dx ::; ecMp Me [Cc:v [lPv(~)lw(~)]P d~. 
With respect to Theorem 1, this proves Theorem 2 for 0 < P < 00. D 
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Some Erdös-type Convergence Processes 
in Weighted Interpolation 

Lasz16 Szili and Peter Vertesi 

Abstract 

In 1943, P. Erdös [5] showed that if the interpolation point system X n C 
[-1,1] (n E N) such that the fundamental polynomials of Lagrange interpo
lation are uniformly bounded in [-1,1] then for every JE C[-I, 1] and c > 0 
there exists a sequence of polynomials 'Pn of degree :S n(1 +c) (n E N) wh ich 
interpolates f at the points X n and it tends to f uniformly in [-1,1]. The 
weighted versions of this result were proved in [19] and [18] using Freud-type 
weights and exponential weights on [-1,1]. The aim of this paper is to show 
that analogue statements are true for weighted interpolation if we consider 
Erdös-type and some ultraspherical weights. 

1 Introduction, notations, preliminaries 

1.1 

On an interval I c R one of the most natural approximating tools is the Lagrange 
interpolation. Namely, if X n := {Xn,n < Xn-l,n < .,. < X2,n < Xl,n} C I 
(n E N := {I, 2, ... }) is an interpolatory matrix on land! : I ...... R is a given 
function then we can construct the Lagrange interpolatory polynomials 

n 

Ln(f,Xn,X) := L,!(xk,n)Rk,n(Xn,X) (x E I, nE N), 
k=l 

where 

) Wn(Xn,X) 
Rk,n(Xn , X := Rk,n(x):= '(X )( ) wn n, Xk,n X - Xk,n 

(1) 

(x E I, k = 1,2, ... ,n, nE N) 
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(here wn(Xn , x) := Cn I1~=1 (X-Xk,n), n E N) are the fundamental polynomials of 
degree exactly n -1 (fk,n(Xn ,,) E IIn - 1 \ IIn - 2 shortly) of Lagrange interpolation. 

It was proved by G. Faber in 1914, there is no point system X n C [-1,1] (n E 
N) for which the corresponding sequence of Lagrange interpolatory polynomials 
Ln(f, X n ,') (n E N) would converge uniformlyon [-1,1] for every fE C[-I, 1]. 
Two years later, relaxing the degree-restriction, L. Fejer proved as follows. If 

2k -1 
X n := Tn :={Ck n := cos ---1f I k = 1,2, ... ,n} , 2n (n E N) 

thenfor alt fE C[-I, 1] the sequence Hn(f,Tn,x) (x E [-1,1], nE N) tends to f 
uniformlyon [-1,1]. Here, the so-called Hermite-Fejer polynomials Hn of degree 
::::; 2n - 1 satisfy 

(j=1,2, ... ,n, nEN, i=O,I). 

A far reaching generalization was proved in 1943 by P. Erdös [5]. 

Theorem 1.1 Let the point group X n C [-1,1] (n E N) be such that the funda
mental polynomials of Lagrange interpolation fk,n (k = 1,2, ... , n, n E N) are 
uniformly bounded in [-1, 1]. Then to every f E C[ -1, 1] and c > 0 there exists a 
sequence of polynomials <Pn(x) := <Pn(f, c, x) (x E [-1,1], nE N) such that 

(i) the degree of <Pn is ::::; n(1 + c), 

(ii) <Pn(Xj,n) = f(xj,n) (j = 1,2, ... , n, nE N), 

(iii) (<Pn) tends to f uniformly in [-1,1]. 

1.2 

The goal of this paper is to investigate the corresponding results for weighted 
interpolation using some weights. The weighted version of Theorem 1.1 were proved 
in [19] and [18] using Freud-type weights and exponential weights on [-1,1]. In 
this paper we prove the corresponding results for Erdös-type weights and certain 
ultraspherical Jacobi weights, too. As it turns out, the above mentioned four cases 
can be treated in a unified way. That meam;, sometimes we only sketch the proofs, 
referring the corresponding parts in [19] or [18]. 

However, to do this, we have to prove a new ~Iarkov-Bernstein inequality (see 
(23)) if 11) E E(R) (see Definition 1.5). Moreover, we show the root distribution of 
the orthonormal polynomials with the weight 11) E E(R). 

Giving up the unified treatment and applying ad hoc: considerations, we hope 
to get similar Erdös-type theorems for other weights, too. This far-reaching pro
gram is the topic of SOln8 forthcoming papers. 
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1.3 Some classes of weight functions 

In the sequel I = (-1, 1) or I = R. We suppose that the weight function w : I ----> R 
is even, continuous, w(x) > ° (x E 1) and it vanishes at the end points of I, i.e., 
w(x) ----> ° if lxi ----> supI. 

Definition 1.2 The class of the ultraspherical weights 

w(x) := w(a)(x) := (1 - x 2 )a = exp(o: log(l - x 2 )) =: exp( -Q(x)) 

(x E (-1,1), 0: > 0) 

will be denoted byU[-l,l]. 

Definition 1.3 Let w : = exp( - Q), where Q : (-1, 1) ----> R is even and twice con
tinuously differentiable in (-1,1). Assume moreover, that Q':2':: 0, Q":2':: ° in (0,1) 
and lim Q(x) = +00. We also suppose that the function 

x~l-O 

Q"(x) 
T(x) := 1 + x Q'(x) 

is increasing in [0,1), moreover 

(i) T(O+) > 1, 

(ii) T(x) rv Q'(x)jQ(x), x close enough to 1, 
(iii) for some A > 2 

(x E [0,1)) 

A 
T(x) :2':: --2' X close enough to l. 

I-x 

Then w is called an exponential weight on [-1, 1] and we write w E E XP [-1, 1]. 

The principle examples of w E EXP[-l, 1] are 

w(x) = wk,a(x):= exp(-exPk(l- x 2 )-a) 

(x E (-1,1),0: > 0, k E N o := {O, 1, ... }), 

where expo(x) := x (x E R) and for k E N eXPk := exp(exPk_l)' These are 
"strongly vanishing" weights at ± 1. 

A routine calculation shows that the ultraspherical weights w(a) do not belong 
to EXP[-l, 1]. 

Definition 1.4 A weight w := exp( -Q) is a Freud-type weight (w E F(R), shortly} 
iff Q : R ----> R is even, continuous in R, Q" is continuous in (0, +(0), Q' > ° on 
(0, +(0) and for some 1 < c::; C 

Q"(x) 
c::; T(x) := 1 + x Q'(x) ::; C (x E (0, +(0)). (2) 
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The simplest cases are the so-called Freud weights 

w",(x) := exp( _lxi"') (x E R, a> 1). 

From (2) it follows that Q is polynomial growth at +00. We also consider a dass 
of Erdös weights, for which the exponent Q grows faster than any polynomial. 

Definition 1.5 We say that W E E(R) (w is an Erd6s-type weight on R) iff Q : 
R -t R is even and differentiable on R, Q' > 0 and Q" > 0 in (0, +00) and the 
function 

Q"(x) 
T(x) = 1 + X Q'(x) 

is increasing in (0, +00) with 

(x E (0, +00)) 

lim T(x) = +00, 
X---++CXI 

T(O+):= lim T(x) > 1. 
x--->O+ 

Moreover we assume that for some Cl, C2, c3 > 0 

The prototype of W E E(R) is the case when 

The corresponding w will be denoted by Wk,,,,' 

Let us introduce the following notation: 

(x E R, k:2: 1, a> 1). 

W(I) := U[-I, 1] U EXP[-l, 1] U F(R) U E(R). 

By definitions, if W E W(I) then w 2 E W(I), too. If W E W(I) and u > 0 then as 
it Ü, well known ([13, p. 76]) there is exactly one positive root of the equation 

u = ~ r1 AtQ'(At) dt 
JrJo ~ (A ER). (3) 

It is called the Mhaskar-Rahmanov-Saf[ number (of w); we denote it by au(w) =: 

au. An important property of an(w) is the following: For any r" =/'.0, rn EIl" (the 
set of polynomials of degree at most n) 

Ilrnwll := max ITn(:r)w(.r)1 = max ITn(x)u{r)1 
:cEl l:cISo,,(11') 

IITnwl1 > IT,,(J;)w(.J:)1 for I-r! > 1l,,(W) 

amI asymptot.ically ClS 71 -t +:X;. (/" (ll') is thc sillallest such llum]H'r. 
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For a weight function w = exp( -Q) E W(1) let 

Tu := Tu(w) := T(au(w)), 6u := 6u(w) := (_1_)2/3 
uTu 

241 

(u > 0) (5) 

(as above, T(x) = 1 + xQ"(x)/Q'(x) for xE R+ n 1) and with L > 0 let us define 

xO,n:=xo,n(w,L):=an(1+2L6n ) (nEN), (6) 

Remark 1.6 If 1= R (i.e., w E F(R) U E(R)) then XO,n E I for any L > 0 and 
n E N. For I = (-1,1) it is not true in general. If w E U[-I, 1] then one can 
choose Lo > 0 and no E N such that XO,n(W, L) < 1 and 1 - XO,n(w, L) rv 1 - an 
(0 < L < Lo, n > no). 

If w E EXP[-l, 1] then an6n/(1 - an) ----> 0 if n ----> +00 (see [6, (3.8) and 
p.30]) therefore for every L > 0 there exists no E N such that XO,n < 1 (n > no). 
In the following we suppose that the points XO,n satisfy the above requirements. 

The functions 

(7) 

(lxi< XO,n, n E N). 

playafundamental role in the asymptotic formulae with respect to the orthogonal 
polynomials. We set x =: XO,n cos'!9 ('!9 E (0, 7f)) and define 

('!9 E (0,7f)). 

A routine calculation shows that for every fixed 0 < c < 7fy!T;/2, '!9 E (0, 7f /2) 
and n E N 

~{ (8) 

Here and later An rv B n means that 0 < Cl ::; An/ Bn ::; C2, where Cl and C2 do 
not depend on n (but may depend on other, previously fixed parameters). 

1.4 Some classes of functions 

Let C(1) represent the linear space of real valued continuous functions defined on 
the interval I c R. Fix a weight w E W(I) and let 

Cw(T) := U E C(1) I lim (fw)(x) = O}. 
Ixl~sup I 

One can show that Ilfllw := Ilfwll := maxxEI l(fw)(x)1 (f E C 711 ) is a norm 
on C711 and (C711 , 11'llw) is a Banach space. 



242 L. Szili and P. vertesi 

1.5 Weighted Lagrange interpolation 

If X n cl is an interpolatory matrix, W E W(I) then for f : I --> R the weighted 
Lagrange interpolation is defined by 

where 

n 

Ln(J,w,Xn,x):= 2:)fW)(Xk,n)qk,n(W,Xn,x) (x E I, nE N), 
k=l 

(x E I, k = 1,2, ... ,n, n E N) 

are the fundamental functions of the weighted Lagrange interpolation. 
It is known that the weighted Lebesgue junctions 

n 

.An(w, X n, x) := L Iqk,n(W, X n, x)1 (x E I, nE N) 
k=l 

and the weighted Lebesgue constants 

(n E N) 

playafundamental role in the convergence-divergence behavior of sequences of 
weighted Lagrange interpolation polynomials. 

Special cases of P. Vertesi [20], [21] result that if W E W(I) and X n C I is 
an arbitrary interpolatory point system then An (w, X n ) ;::: clog n (n E N). From 
these relations one can easily get a Faber type result jor the corresponding weighted 
Lagrange interpolation. 

1.6 Orthogonal polynomials 

If W E W(I) then we can define the orthogonal polynomials 

for the weight w2 , so that J1Pr, (W 2 ,X)Prn(W2 , x)w2 (x)dx = orn,n (rn,n E No). 
Let us denote by 

2 2 U" := Un(w ) := {Yk,n := Yk,,,(W ) I k = 1,2, ... , n} (n E N) (10) 

the n different roots of Pn (w 2 , .). \Ve index thern as 

2 2 2 2 
-00 < Yn.n(w ) < Yn-l,n(W ) < ... < Y2,n(W ) < Yl.n(w ) < x. 
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There is a dose relation between Yl,n(W2 ) and an(w). Namely, if w E W(I) 
then there are a positive number Co and an index nl E N such that 

(11) 

Ifw E W(I)\U[-I, 1] then (11) is [7, (1.17)], [6, (1.33)] and [9, (1.23)], respectively. 
If w E U[-I, 1] then (11) comes from the relations 

2 1 1 1 
1 - Yl (w) '" - 1 - a (w) '" - '" -,n n2 ' n Tn n 2 

(n E N) (12) 

(see [16, (8.9.1)] and [10, p. 553]). 
The fundamental functions of the weighted Lagrange interpolation with re

spect to U n ( w 2 ) will be denoted by 

( 2) ) Pn(W2 ,x)w(x) 
Uk,n(W,Un W ,x := '( 2 ) ()( ) (k=I,2, ... ,n, nEN). 

Pn w , Yk,n W Yk,n X - Yk,n 
(13) 

2 N ew developments 

To get the analogue of Theorem 1.1, we use some preliminaries being interesting 
in themselves. 

2.1 

For W E W(I) and L > Co (see (11) and Remark 1.6) let 

YO,n(w2 ):= YO,n(w2 ,L):= Xo,n(w2 ,L) =: -Yn+l,n(w2 ,L) =: -Yn+l,n(W2 ), 

where XO,n(w 2 ,L) is defined by (6). Then an(w) '" YO,n(W2 ) (n E N) and 

(k = 1,2, ... , n, n ~ nd. 

Let us also introduce the following notations: 

Yk,n:= Yk,n(W2 ) =: YO,n(W2 )tk,n(w2 ,L) =: YO,n(W2 )tk,n 

=: YO,n(W2 ) cosih,n(w2 , L) =: YO,n(W2 ) cos ih,n. 

For the distribution of the roots of Pn (w2 , .) the following holds. 

Proposition 2.1 For W E W(I), L > Co (see (1.11) and Remark 1.6), 0 < c < 
,;T;/2 and nE N we have 

if 1 :::; k :::; cnT;;1/2 

zjcnT- 1/ 2 <k< [n+l]. 
n - - 2 ' 

(14) 
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(15) 

w ( ) '192 t t n Yk,n k,n 
k,n - k+l,n rv n rv k 

~{ 
1 

if cnT;;1/2 ~ k ~ [ntI]. 
(16) 

If W E U[-I, 1] then Tn rv n2 (n E N), whence for the ultraspherical weights 
the second relations hold for every 1 ~ k ~ [(n + 1)/2] in the formulae (14), (15) 
and (16). 

If w is a Freud-type weight then Tn rv 1 (n E N) and for 0 < c < ßt/2 

we have cnT;;1/2 ~ [(n + 1)/2]. In this case the first relations hold for every 
1 ~ k ~ [(n+l)/2] in (14)-(16). For W E t'(R) we know that Tn -+ +00 (n -+ +00) 
and for any c > 0 there exists c > 0 independent of n such that Tn = O( nE:) (n E N) 
(see [2, (2.7)]). From these facts it follows that nT;;1/2 tends to +00 slowly than 
n if n -+ +00. This is also true for W E t'XP[-I, 1] since for some c > 0 we have 
Tn = O(n2-E:) (n -+ +00) (see [6, (3.8)]). 

2.2 

Using Proposition 2.1, we conclude some useful estimates. For x Eldenote by Yj,n 
(one of) the closest node(s) to x (shortly x ~ Yj,n) from {Yk,n I k = 1,2, ... , n} 
(see Part 1.6). 

Proposition 2.2 Let W E W(I). Then 

n 

Hn(w,x):= LU%,n(w,Un(w2),x) ~ C (x E I, nE N) (17) 
k=l 

with same constant c > O. Moreover there exists c > 0 such that for every fixed 
s = 1,2, ... , [(n + 1)/2] and K 2 1 we have 

[(n+l)/2] 1 1 
Gn(w):= L u;,n(w,Un (W2),Ti,n) ~ c(K +~) 

i=l 
li- s l2 K 

for alt n E N, where Ti,n E [Yi,n(W2), Yi_l,n(W2)] (i = 1,2, ... , [n!l]). 

(18) 
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2.3 

For a given weight w E W(I) we shall consider such point systems X n (n E N) 
for which the fundamental functions qk,n of the weighted Lagrange interpolation 
(see (9)) are uniformly bounded on I, i.e., there exists a constant A > 0 such that 

(x E I, k = 1,2, ... ,n, n E N). (19) 

They are the E(w)-systems (the letter E reminds of Erdös). 

Proposition 2.3 1J w E W(I) and X n = {Xk,n} cl (n E N) is an E(w)-system, 
then there exists a constant S > 0 such that 

(1 ::::: k ::::: n, n E N). (20) 

M oreover, Jor w E U [-1, 1] the constant S can be chosen such that 

an(w)(l + St5n(w)) < 1, 1- an(w)(l + St5n(w)) '" an(w)t5n (w) (n 2': nI) 

also hold. (Actually, here 1 - an(w) '" t5n(w) '" n-2 .) 

2.4 

A significant observation shows that the node-distribution of an E( w )-system is 
similar to the 'rOot- distribution oJ the orthogonal polynomials Pn ( w2 , .) (n E N). To 
formulate the exact result we have to introduce some notations. Let X n = {Xk,n} 
be an E(w)-system and L > max{S, Co} a fixed constant (see (11) and (20)). Let 

XO,n := XO,n(W, L) := an(w)(l + 2Lt5n(w)) =: -Xn+l,n(W, L) =: -xn+1,n 

Xk,n =: XO,nrk,n(W, L) =: XO,nrk,n =: XO,n COS~k,n(W, L) =: XO,n COS~k,n (21) 
(k = 0, 1, ... ,n + 1, nE N). 

Proposition 2.4 1J w E W(I), X n = {Xk,n} (n E N) is an E(w)-system and 
XO,n, Xn+l,n are given by (21), then Jor every fixed c 2': 0 we have 

(22) 

(k = 0,1, ... , n, t = 1,2, ... , n - 1, It - kl ::::: c, nE N). 

Moreover {rk,n} and {~k,n} satisJy Jormulae analogous (14)-(16). 

To prove this result we need a Markov-Bernstein inequality. 

Proposition 2.5 Fix a weight w E W(I), the number L > 0 and consider the 
point XO,n (see (6)). Then there exist c > 0 and nl E N such that Jor P E IIn , 
lxi::::: an(l + Lt5n ) and n > nl 

I (pw)'(x) I ::::: c~ .T, 1( ) Ilpwll, (23) 
an ~n X 

where Wn is given by (7). 
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2.5 

Now we formulate our main result which is analogue to the Theorem 1.1. First a 
definition. If w E W(I) and j E Cw(I), then let 

En(f, w):= min Ilw(f - P)II 
PEIIn 

(n E N). 

(As it is weIl known, En(f,w) --> 0 for n -+ +00.) 

Theorem 2.6 Let w E W(I) and suppose that X n = {Xk,n} (n E N) is an E(w)
system. Then lor every fixed c > 0, to every I E Cwl+e (I) there exists a sequence 
01 polynomials 'Pt::, E TIt::, such that 

(i) 6 :::; n(1 + c + cc(Tn /n2)1/3) , 

(ii) 'Pt::,(Xk,n) = j(Xk,n) (k = 1,2, ... , n, nE N), 
(iii) Ilwl+€(f - 'Pdli:::; cEdj, wl+€). 

3 Proofs 

3.1 Proof of Proposition 2.1 

If w E W(I) then for k = 1,2, ... , n and n E N 

Yk,n - Yk+l,n rv ~ Wn(Yk,n) and Wn(Yk,n) rv Wn(Yk+l,n)' (24) 

For W E F(R), this follows from [1, Lemma 4.4 and (4.21)]; for W E E(R) this 
follows from [2, (2.2)], [9, p. 205] and [3, (2.10)]; for w E EXP[-I, 1] this follows 
from [6, (1.35), (2.19) and (10.12)]; for W E U[-I, 1], see [15, p. 282]. 

In [19, Part 3.1] (see also [18, Part 4.1]) it was shown how to get (14)-(16) 
from (11) and (24). 

3.2 Proof of Proposition 2.2 

The proofs of this result for W E F(R) U EXP[-I, 1] (see [19, Part 3.10] and [18, 
Part 4.3]) show that beside the formulae (14)-(16) we used the following properties 
ofw: 

IUk,n(x)1 := IUk,n(W, Un(w2 ), x)1 :::; c (x E I, k = 1,2, ... , n, nE N); (26) 

Uk.n(X) + Uk+l,n(X) 2: 1 (x E [Yk+l,n, Yk,n], k = 1,2, ... , n, nE N); (27) 

I(Pnw)(x)1 rv I(PnW)'(Yi,n)I·lx - 1/j,,,1 (x ~ Yj.n E [-YO.n, YO,n], nE N). (28) 
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For W E E(R) (25) is (1.27) of [9], (26) is (2.14) of [3] (a more simple proof can be 
given using (14)-(16)), (27) is (2.15) of [3]. Finally, (28) can be proved in the same 
way as P. Vertesi did it for Freud-type weights (see [19, Part 3.2]). For W E U[-I, 1] 
(25) and (28) come from [15, (9.11) and (9.10)]; (26) can be obtained by a simple 
computation using (13), while (27) is a special case of [12]. 

3.3 Proof of Proposition 2.3 

If W E F(R) u E(R) u EXP[-I, 1] then (20) was shown in [17]. (For W E F(R) U 
EXP[-I, I] different proofs can be found in [19] and [18].) 

Now, assume that W E U[-I,I]. Let Zl,n E [-1,1] be a point such that 
IIL\nll = IJ\n(ZI,n)1 (see (1)) and let Z2,n := Zl,n - 2~2 if Zl,n ?: 0 and Z2.n := 

Zl,n + ~ if Zl,n < O. Then 1 - z~,n = (1 - z2,n)(1 + Z2,n) ?: ~. By the Markov
Bernstein inequality we have 

Therefore 

Let 1 - XI,n := ~ (n E N). We may assume that XI,n ?: O. Then by (19) 

A> I (z )1-lw(Z2,n) e (z )1> (1- z~,n)a > (~)a 
- ql,n 2,n - W(ZI,n) l,n 2,n - 2(1- xi,n)a - 2a+I(~)a' 

i.e., Cn ?: (4(2A)r l / a (n E N). From it follows that there exists Cl > 0 such that 
o ~ XI,n ~ 1-~ (n E N). Similar argument shows that 1 + xn,n ?: ~ (n E N). 

It is known that (see [10, p. 553]) 1- an(w) '" n-2, Tn(w) '" n 2 and On(w) '" 

n-2 (n E N) which completes the proof of the Proposition 2.3 for W E U[-I, 1]. 

3.4 Proof of Proposition 2.5 

If W E F(R) then there exists c> 0 such that for p E IIn , n E N and x E R 

(see [1, (4.16)]). Therefore (23) follows from 

Für W E EXP[-I, 1], (23) were proved in Part 4.12 of [18]. 
Nüw, suppose that W E E(R). Fix 'Tl E (0,1) and r > O. Let us cünsider three 

cases. 
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Gase 1: lxi E [an(1- r8n), an(1 + L8n)]. Then for pE IIn we have 

I (pw)'(x) I ~ c(an8n)-I11pwII 

(see [9, Lemma 10.10]). Since 

(n ~ 1) 

_1_ = ~(nTn)2/3 = ~(T~)1/3 = ~TnA 
an8n an an n an 

and 

(n ~ 1) 

1 
Wn(x) '" Ir (lxi E [an(1- r8n), an (1 + L8n)], n ~ 1) 

Tny 8n 

therefore (23) follows from the above relations. 
Gase 2: lxi ~ 'flan. Then for n > nl and pE IIn l(pw)'(x)1 :S ca: IIpwll (see 

[11, Lemma 4.2]) from which we obtain (23) using Wn(x) '" 1 (lxl:S 'flan, n ~ 1). 
Gase 3: lxi E ['flan, an (1 - r8n)] =: Jn. It was shown in [11, (1.25)] and [9, 

(10.37)] that for n > nl, pE IIn and lxi E Jn 

(29) 

where with a fixed ~ > 0 

"'n(t) := 11 antQ'(ant) - ansQ'(ans) 1 ds (t E [0,1]). 
tjan ant - anS .J1=S" 

For n = 1, 2, . . . and t E (-1, 1), let 

( ) ._ ~ 11 ansQ'(ans) - antQ'(ant) ~d 
/Ln t .- 2 2 ~ S. 

7r2 0 n(s -t) yl-S2 

Then /Ln is even, /Ln(t) ~ 0 a.e. in (-1, 1), J~l /Ln (t)dt = 1 (see [11, Lemma 3.1]) 
and for n large enough 

Kn(t) '" ~ F/Ln(t) uniformly 7]:S Itl < 1, 
an 1 - Itl 

(30) 

where'fl E (0,1) is a fixed nu mb er (see [11, (3.26)]). From (29) and (30) we get 

I (pw)'(x) I :S ce ~ lxi 1:1 /Ln(t)dt) a: IIpwll (x E Jn, pE IIn, n ~ 1). 
an an 

It is easy to show that the relations 

l(pw)'(x)1 :S ce _IEL J~ /Ln (t)dt) 2 IIPwll (x E Jn1 pE IIn1 n ~ 1) (31) 
XO,n XO,n 

also hold. 
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Theorem 3.1 in [9] states that uniformly for n ~ 1 and Itl < 1 we have f.ln(t) rv 

min{(l- t 2)-1/2,Tn(1- t2)1/2}. Let x =: XO,ncos19, t =: COST (T,19 E (0,7[/2)). 
Then for x E Jn and n > n1 

__ 1-;--'--'~'1 J1 f.ln(t)dt = 1 .0 t J f.ln(cosT)sinTdT 
1-~.E.L 1-cosv)o 

XO,n XO,n 

1 1,'} 1 {Tn 19' if 0< 19 < k 1 
rv .02 min{ -, TnT }TdT rv 1 . 1 n7f rv ~( )' 

v ° T - 1f - < 19 < - ~n X 19' .;r;: 2 

(32) 

For x E Jn , we obtain (23), using (29) and (32) which completes the proof of (23) 
for w E E(R). 

Now, suppose that w E U[-l, 1]. Let 0 < L < Lo (see Remark 1.6), n E N, 

XO,n:= an(1+2Lc5n) andx~:= xo,n-anT;;l. Then Wn(x) = (l-lxl/an+2Lc5n)1/2 

if lxi ::; x~ and Wn(x) = T;;l (1 - lxi/an + 2Lc5n) -1/2 if x~ ::; lxi< XO,n' Since 
1 - an rv l/Tn rv c5n rv n-2 (n E N) thus 

and 
(lxi ::; x~, n E N). (34) 

H P E IIn then 

( ) ' , 2ax 
pw (x) = w(x)p (x) - 1 _ x2 w(x)p(x) (x E (-1,1)). 

Let x~ ::; x::; an(1 + Lc5n). Using (33), 1- x2 ~ cn-2 and Ilwp'll ::; C1n211pwll (see 
[10, (1.21)]) we have 

(pw)' (x) ::; C1n211pwll + C2n211pwll ::; C3~ .T. 1( ) IIpwll. 
an ~n X 

HO::; x::; x~ then Iw(x)p'(x)1 ::; c1nllwpll/~ (see [4, (8.1.3)]). Therefore by 
1!x2 ::; C2 v'1~x2 we obtain 

(0 ::; x ::; x~) 

whence we get (23) using an rv 1 (n E N) and (34). 

3.5 Proof of Proposition 2.4 

First we prove the following statement. Fix a weight w E W(I). Let X n = {Xk,n} 
be an E(w)-system and XO,n, Xn+1,n (n E N) are given by (21). Then 

Xk,n - Xk+1,n rv ~ min{ Wn(Xk,n), Wn (Xk+ 1,n)} (k = 0, 1, ... , n, nE N). (35) 
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The "~" part of (35) is a simple consequence of the Markov-Bernstein inequality 
(23) (see [19, Part 3.4] or [18, Part 4.12]). The proof of the ":::;" relation in (35) 
is more cumbersome. In [19, Part 3.5] and [18, 4.13] this statement were proved 
indirectly for W E F(R) U eXP[-l, 1] using Proposition 2.2. However, one can 
check that this argument works für W E e(R) UU[-l, 1], too. 

From (35) it follows that Wn(Xk,n) rv Wn(Xk+1,n), k = 1,2, ... , n, n E N. 
Moreover, rk,n := Xk,n/XO,n and !;,k,n (COS!;,k,n := rk,n) satisfy formulae analogous 
(14)-(16). 

3.6 Proof of Theorem 2.6 

Let W E W(I), n E N, c > 0, 

m:= (;] + 1 and N:= [n(l + d(:;)1/3], (36) 

where [x] denotes the integer part of x E Rand the constant d> 0 will be fixed 
later (see Part 3.7). 

One of the crucial steps of the proof of Theorem 2.6 is the following result 
which we shall prove in the next part. 

Proposition 3.1 Let W E W(I), m be given by (36) and suppose that X n = {Xk,n} 
(n E N) is an E(w)-system and c > O. Then there exist wo-weighted polynomials 
hk,m (k = 1,2, ... , n, nE N) such that 

(a) the degree oJthe polynomial hk,m/Wo is:::; 2m (k = 1,2, ... ,n, nE N); 

(b) hk,m(Xk,n) = 1 (k = 1,2, ... , n, nE N); 

(c) L~=llhk,m(x)1 :::; D (x E I, nE N) with some constant D > O. 

Now the proof of the Theorem 2.6 can be finished as follows. Let 6 := 

n - 1 + 2(m - 1) (i.e., 6:::; n(l + c + dc(Tn /n2)1/3)) and define the polynomial 

( ) ._ ( ) ~ ( )qk,n(W,Xn,x)hk,m(x) 
<pt::,. X .- Pt::,. J, x + L 6k,n 1 + c w1+c (x) , 

k=l 

where Pt::,. (f, .) E IIt::,. is the polynomial for whieh 

Ilw1+°(f - PdJ, ·))11 = Et::,.(f, w1+0), 

6k,n(1 +c):= (J(Xk,n) - Pt::,.(f,Xk,n))W1+C (Xk,n) (k = 1,2, .. . ,n, nE N) 

and qk,n is given by (9). 
Obviously<pt::,. interpolates J at the points of X n . Moreover, by (19) and (e) 

we have 

n 

+12: 6k,n(1 + c)qk,n(X)hk,m(X)1 :::; (1 + AD)Et::,.(f, W1+E) 
k=l 

far all .T E I, as it was statcd. 
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3.7 Proof of Proposition 3.1 

For c > 0 let Pm (x) := Pm(Wc, x) be the mth orthonormal polynomial with respect 
to W C E W(I). Its roots will be denoted by Yk,m := Yk,m(Wc) (k = 1,2, ... , m, mE 
N). Then the following is true. If {Xk,n} is an E(w)-system then the constant d 
in (36) can be chosen such that 

Xk,n E [Ym,m(WC ), Yl,m(WC )] (k = 1,2, ... , n, n> no). (37) 

For W E F(R) U fXP[-l, 1] this statement were proved in [19, Part 3.9] and 
[18, Part 4.16]. For W E f(R) one can prove (37) in the same way using (11), 
au(wV ) = aujv(w) for all U,V > 0 (see (3)), T",u rv Tßu uniformly for u:2 c, where 
o < a < ß (see [9, (2.8)]) and 

lau -11 rv I~ -11~ (u E (c,+oo),v E [u/2,2u]) 
av v Tn 

(see [9, (2.12)]). If W E U[-l, 1] then (37) is given by a simple calculation from 
Xl,n = 1 - cln-2 and Yl,m = 1 - C2n-2. 

Let us define the following weighted polynomials 

( Om(X) )2 
Hi,m(x):= 0' (. )(X _ . ) 

m Y.,m Y.,m 
(x E I, i = 1,2, ... ,m, m E N), 

where Om(X) := Wcj2(X)Pm(Wc, x). Using (17) we have 

m 

L Hi,m(x) :::; d1 (x E I, mE N) (38) 
i=l 

with a proper constant d1 > O. Now let us define the indices c(k) = c(k,n) by 

min IXk n - Yi ml = IXk n - Yc(k) ml l:=;i$n' , , , 
(k = 1,2, ... , n, nE N). 

(If there exist for a fixed k and n at least two c( k, n), we can choose any of them.) 
Using Propositions 2.1 and 2.4 we have as follows. If 

c(r,n)=c(s,n) ===} Ir-sl:::;do (r,s=1,2, ... ,n, nEN) (39) 

with a constant do > O. 
Now consider the weighted polynomials 

h () ._ HC(k),m(X) 
km X .- ) , Hc(k),m(Xk,n 

(x E I, k = 1,2, ... ,n, n E N). (40) 

It is clear that hk,m/Wc E II2m and hk,m(Xk,n) = 1 k = 1,2, ... , n, n E N). 
Moreover by (28) and (37) we have Hc(k),m(Xk,n) rv 1 (k = 1,2, ... , n, n E 
N). Therefore from (38) and (39) it follows that there exists D > 0 such that 
L~=l Ihk,m(x)1 :::; D for all x E land n E N which proves the Proposition 3.1. 
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Absolute Continuity of Spectral Measure for 
Certain Unbounded Jacobi Matrices 

1 

Ryszard Szwarc 

Abstract 

Spectral properties of unbounded symmetrie Jacobi matriees are studied. 
Under mild assumptions on the coefficients absolute continuity of spectral 
measure is proved. Only operator theoretic proofs are provided. Some open 
problems of Ifantis are solved. 

Introduction 

Let J be a Jacobi matrix of the form 

ßo Al 0 0 
Al ßl A2 0 

J= 0 A2 ß2 A3 
0 0 A3 ß3 

(1) 

where An > 0, for n 2: 1, and ßn E R, for n 2: O. The matrix J gives rise 
to a symmetrie operator on the Hilbert space g2(N) of square summable complex 
sequences a = {an}~=o, with the domain D(J) consisting of sequences with finitely 
many nonzero terms. This operator acts by the rule 

for n 2: 0, with the convention that a-l = Ao = O. It is weH known that this 
operator admits selfadjoint extensions (see [1]). In case the extension is unique the 
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operator is called essentially selfadjoint. Then there exists a unique probability 
measure I-" on R, with finite moments, such that 

where 80 = (1, 0, 0, ... ). This measure is called the spectral measure of the operator 
J, because it can be shown that the operator J is unitarily equivalent to the 
operator Mx acting on L 2 (R, 1-") by the rule 

Mxf(x) = xf(x). 

This unitary equivalence is defined as follows. Let Pn (x) be a system of polynomials 
orthonormal with respect to the inner product in L 2 (R, 1-"). Then the operator 
U 8n = Pn extends to an isometry from f2 (N) onto L2 (R, 1-"), where 8n denotes the 
sequence whose nth term is equal to 1, and all other terms are equal to 0. Since 

we have 
xPn = An+lPn+1 + ßnPn + An-lPn-l. 

In this paper we will be dealing with special unbounded Jacobi matrices such 
that An ---) +00 and 

---:---:A:..::.;_ n --: ---) a. 
ßnßn-l 

It is known that if J is essentially selfadjoint and a < ~ the measure I-" is discrete 
(see [2]). In [5] Ifantis stated a problem of studying the spectra of operators for 
which a > ~. In this note we are going to show that the spectra of such operators 
cover the whole real line and, under some mild conditions on the coefficients, 
the spectral measure is absolutely continuous. We will also provide an operator 
theoretic proof for the case a < ~, which was also one of the problems stated by 
Ifantis. 

2 Main results 

Our considerations will rely heavily on the following generalization of a result of 
Mate and Nevai. We will state it in a form which will be useful for our considera
tions. We will also provide a proof different from the one in [8], and based on ideas 
from [4]. 

Theorem 2.1 (Mate, Nevai) Let An{x) be a positive valued sequence whose terms 
depend continuously on xE [a, b]. Let an{x) be areal valued sequence oj continuous 
junctions satisjying 
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for n 2: N. Assume the sequence An(x) has bounded variation and An(x) ----; ~ for 
x E [a, bJ. Let IBI < 1. Then there is a positive function f(x) continuous on [a, bJ 
such that 

a~(x) - an-1(x)an+1(x) ~ f(x) 

uniformly for x E [a, bJ. Moreover there is a constant c such that 

for n 2: 0 and x E [a, bJ. 

Proof. Let 
~n(X) = a~(x) - an-1 (x)an+! (x), 

for n 2: N. By using the recurrence relation one can show that 

( An ) 2 ( An) 2 (1 1) ~n+1-~n = 1-~ an+! + 1- -A an +B -A - -A anan+1· 
n-1 n+1 n+1 n-1 

Hence 

l~n+1 - ~nl ::::: c(IAn- 1 - Anl + IAn - An+11)(a~ + a~+l)· (2) 

On the other hand 

Since An ~ ~, uniformly for x E [a, b], and IBI < 1 we have 

( ')-1 1 B 2 
where c = - --

2 2' 
(3) 

for n sufficiently large. Combining this with (2) gives 

Let 

Then 
(1 - cn)~n ::::: ~n+! ::::: (1 + cn)~n, 

for n sufficiently large. Thus the sequence ~n is convergent uniformly to a positive 
function f(x) for x E [a, bJ. Moreover by (3) we obtain the second part of the 
statement. 0 
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The main result of this note is following. 

Theorem 2.2 Assume the sequences An and ßn satisfy An ---- +00, Ißnl 2'+ +00, 
ßn/ßn-1 2'+ 1 and 

Let the sequences 

A; nIl 
...,--"'- ---- --2 > -. 
ßn-1ßn 4B 4 

ßn-1 + ßn 
A;' 

1 
A2 n 

have bounded variation. Then the corresponding Jacobi matrix J is essentially 
selfadjoint if and only if L .\;:1 = 00. In that case the spectrum of J coincides 
with the whole real line and the spectral measure is absolutely continuous. 

Proof We may assume that ßn 2'+ +00. Assume that J is essentially selfadjoint. 
Let J.t denote the spectral measure of J. Fix areal number x. Consider the difference 
equation 

(4) 

for n ~ 1. By [7J the measure J.t is absolutely continuous on the set of those x for 
which the ratio 

n 

Llukl 2 

k=1 (5) n 

Llvk l 2 

k=1 

remains bounded above for any n, for any fixed solutions U n and V n of (4). We are 
going to show that this ratio is always bounded. Let an satisfy (4). Let N be large 
enough so that ßn > x for n ~ N. Set 

(6) 

The equation (4) can be transformed into the following. 

(7) 

for n ~ N, where 

( ) An 
An X = B (ßn-l _ x)(ßn - x) (8) 

By assumptions we have An 2'+ ~ and IBI < 1. Moreover An(x) has bounded 
variation if and only if A~2(x) has bounded variation. But 

A- 2 ( ) = ßn-lßn ßn-l + ßn 1 2 
n X A2 - A2 X + A2 X . 

TI, n n 
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Theorem 2.1 implies 

and an(x) is a bounded sequence. Using (6), the boundedness of an(x) and the 
assumptions on ßn we obtain that 

ßn(Y~ - Yn-IYn+d ~ C 

and ßnY;' is bounded. Therefore there exist positive constants c and M such that 

ßnY~ < c 

ßn(Y~ - Yn-IYn+d > c- I 

for n ~ M. If J is essentially selfadjoint there exists a solution Yn of (4) which is 
not square summable. Thus 'L.ß;;I = +00. Hence 'L..A;;I = +00. 

We have 

c :::; ßn(Y~ - Yn-IYn+d :::; ßn(Y~-1 + y~ + Y~+l) :::; c'. 

for n ~ M. Now if U n and V n are arbitrary nonzero solutions of (4) we have 

U 2 + u2 + 2 C' n-I n Un+1 
2 + 2 + 2 < -. Vn - I Vn Vn +1 - C 

This implies the ratio in (5) is bounded. o 

Remark 2.3 Let Pn be the polynomials satisfying 

By the proof of Theorem 2.2 we get that 

uniformlyon any bounded interval. and 

on any bounded interval. In the case of bounded .An and ßn Mate and Nevai 
showed that the limit f(x) = limn[p;,(x) - Pn-I(X)Pn+l(X)] is closely related with 
the density of the spectral measure of J, which coincides with the orthogonality 
measure for the polynomials Pn. Namely they showed that if.An ~ 1/2 and ßn ~ 0 
then the orthogonality measure fL is absolutely continuous in the interval (-1, 1) 
and its density is given by 

2J1=X2 
7rf(x) , -1< x < 1. 
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Remark 2.4 A similar result has been obtained recently by Janas and Moszyski 
[6] under stronger assumptions that the sequences 

An-l 1 ßn-l 
~' An' An 

have all bounded variation. It can be verified easily that these assumptions imply 
the assumptions of Theorem 2.2. Moreover there are examples showing that our 
assumptions are actually weaker. Indeed, let 

ßn = n + 1 + (_1)n, 

One can verify that ßn/ An does not have bounded variation while the assumptions 
of Theorem 2.2 are satisfied. 

Example 2.5 Let An = nl< and ßn = ßnl<, where IßI < 1 and 0 < K, ::; 1 (see 
[5])). By the Carleman criterion the corresponding Jacobi matrix is essentially 
selfadjoint. Moreover all the assumptions of Theorem 2.2 are satisfied. Hence the 
spectrum of J cover the whole real line and the spectral measure is absolutely 
continuous. Also we have that the corresponding orthonormal polynomials satisfy 

nl< [p~(x) - Pn-l(X)Pn+1(X)] -t f(x) > 0, 

nl< IPn(x) I ::; c, 

uniformly with respect to x from any bounded interval [a, b]. 

The next theorem is known (see [3]). We give an operator theoretic proof. 
Finding such a proof was one of the open problems stated in [5]. 

Theorem 2.6 (Chihara) Let J be a Jacobi matrix given by (1) and satisjying 

A2 1 1 
n -t--<-

ßn-lßn 4B2 4· 

Let An -t +00 and ßn -t 00. Assume J is essentially seljadjoint. Then the spec
trum oj J is discrete and consists oj a sequence oj points convergent to +00. 
ProoJ. It suffices to show that for every real number M there are only finitely 
many points in the spectrum a(J) which are less than M. Fix M. By assumptions 
there is N such that ßn+N-l > M and 

A;'+N 1 
~------~~~------~ < -
(ßn+N-l - M)(ßn+N - M) - 4' 

(9) 

for n :?: O. Let JN be the Jacobi matrix defined as 

ßN-l AN 0 0 
AN ßN AN+l 0 

JN = 0 AN+l ßN+l AN+2 

0 0 AN+2 ßN+2 
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We will show that 
a(JN) <:;; [M,+oo) 

by estimating the quadratic form (JNX,X)(2(N) from below by M(X,X)(2(N)' Let 
x be areal valued sequence. Set ß~ = ßn+N -1 - M and A~ = An+N. Then by (9) 
we have 

00 00 

L ß~x; + 2 L A~XnXn+1 
n=O n=O 

00 00 

n=O n=O 
00 00 

> Lß~x; - L Jl%Jß~+1IXnIIXn+11 
n=O n=O 

> 

Hence 
(JNX, X)(2(N) ;:::: M(x, X)(2(N)' 

and consequently a(JN ) <:;; [M,+oo). Let ON denote the N x N matrix with all 
entries equal to zero. Observe that the Jacobi matrix J can be written in the form 

where Jo is a finite-dimensional Jacobi matrix. We have 

By the Weyl perturbation theorem the spectra of J and ON EB J N may differ by 
at most N points. Hence a(J) can have at most N + 1 points to the left of M. 

o 

References 

[1] Akhiezer, N.!., The Classical Moment Problem, Hafner Publ. Co., New York, 
1965. 

[2] T. Chihara, An Introduction to Orthogonal Polynomials, Mathematics and Its 
Applications, Vol. 13, Gordon and Breach, New York, London, Paris, 1978. 

[3] T. Chihara, Chain sequences and orthogonal polynomials, Trans. Amer. Math. 
Soc., 104 (1962), 1-16. 



262 Ryszard Szwarc 

[4] J. Dombrowski and P. Nevai, Orthogonal polynomials, measures and recur
rence relations, SIAM J. Math. Anal., 17 (1986), 752-759. 

[5] E.K. Ifantis, On the speetral measure 0/ a class 0/ orthogonal polynomials, J. 
Comp. Appl. Math., 133 (2001), 688-689. 

[6] J. Janas and M. Moszynski, Alternative approaehes to the absolute eontinuity 
0/ Jaeobi matriees with monotonie weights, Int. Eq. Oper. Theory, (to appear). 

[7] S. Khan and D.B. Pearson, Subordinaey and speetral theory /or inifinite ma
triees, Helv. Phys. Acta 65 (1992), 505-527. 

[8] A. Mate and P. Nevai, Orthogonal polynomials and absolutely continuous mea
sures, In C.K. Chui et al., editor, Approximation Theory IV, Vol. 103, Aca
demic Press, New York, (1983), 611-617. 

[9] B. Simon, The classical moment problem as a sel/-adjoint finite difference 
operator, Advances Math. 137 (1998), 82-203. 

Institute of Mathematics 
Wrodaw University 
pI. Grunwaldzki 2/4 
50-384 Wrodaw, Poland 
Email address:szwarc@math.uni.wroc.pl 

This work was partially supported by KBN (Poland) under grant 5 P03A 03420. 



Advanced Problems in Constructive Approximation 
(Eds.) M.D. Buhmann and D.H. Mache 

International Series of Numerical Mathematics Vol. 142, 263-274 
© 2002 Birkhäuser Verlag Basel (ISBN 3-7643-6648-6) 

Approximation on Compact Subsets of R 

Vilmos Totik 

Dedicated to Bela Cs6,kany on his 70-th birthday 

Abstract 

The role polynomial approximation of the lxi function in approximation 
theory, as weH as some recent developments on the subject is discussed. In 
particular, we show how a strengthening of the classical approximation of 
lxi can lead to the Jackson theory. 

1 The role of approximation of Ix I 
Weierstrass' theorem on polynomial approximation is the most fundamental results 
in approximation, and there are many different approaches to it, see the exceHent 
article [9]. 

One of the possible approaches, due to Lebesgue [8] (cf. [9]) is via approximat
ing lxi on [-1,1]. In fact, ifwe can approximate lxi on [-1,1] by polynomials with 
any accuracy, then by translation we get the same fact for any Ix - al, a E [0,1] 
on the interval [0,1]. Now every piecewise linear continuous function ("broken 
line") is a linear combination of such functions, therefore every "broken line" is 
approximable arbitrarily weH by polynomials. But it is clear that to any continu
ous function we can put arbitrarily closely a piecewise linear continuous function, 
hence we can approximate any continuous function on [0,1] by polynomials with 
anyerror. 

Thus, the Weierstrass theorem foHows from its special case for the function 
lxi, which can be achieved e.g. by taking an appropriate section of the expansion 

lxi = [1- (1 - x 2W/2 = ~ C'2) (-1)k(1 - x 2 )k, 

which can be shown to be uniformly convergent for x E [-1, 1]. 
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A refinement of the Weierstrass theory is Jackson's theory, which connects 
the rate of approximation to smoothness. It is a natural quest ion if the above 
argument can be extended so as to obtain the Jackson theorems. To answer this 
quest ion we need to know how weIl lxi can be approximated by polynomials of a 
given degree. Let for i E F 

En(f, F) = inf Ili - PnllF 
deg(Pn ) 

denote the error of best approximation of i on the set F c IR by polynomials of 
degree at most n. In 1914 S.N. Bernstein [1] proved that 

lim nEn(lxl, [-1, 1]) 
n-+oo 

exists, it is finite and positive, which implies among others, that En(lxl, [-1, 1]) 
decreases to zero with rate n- 1 . Thus, there are polynomials Qn of degree n such 
that c Ilxl- Qn(x)1 ::::; -, 

n 
xE [-1,1], 

but this does not seem to be strong enough to deduce Jackson's theorem. To do 
that we need a refinement of the preceding inequality. This refinement is related 
to the fact that with lxi there is trouble only at the origin, otherwise it is a nice 
(analytic) function. This suggests, that although on the whole interval [-1, 1] we 
cannot approximate lxi by polynomials of degree at most n better than ein, 
perhaps this order can be improved as we move away from the origin. There are 
several papers on improved local approximation of functions away from singular 
points (see e.g. [7], [13]), and the main technique of those papers is to use fast 
decreasing polynomials. We shall illustrate this approach for the function lxi, and 
then we shall deduce Jackson's theorem from the improved approximation rate. 

2 Fast decreasing polynomials 

Many applications in mathematical analysis require polynomials that take the 
value 1 at the origin and are fast decreasing on [-1, 1] as we move away from 
the origin. Thus, these fast decreasing polynomials (Paul Erdös used the term pin 
polynomials ) imitate the Dirac delta as elose as possible. Thus, we are looking for 
polynomials with the property 

P(O) = 1, IP(x)l::::; e-'P(x), xE [-1,1], (1) 

where 'P is a given even function that typically involves the degree of P, as well. 
As we shall see, the integrals of such polynomials provide good approxima

tion to the signum function and thereby they serve as the building blocks for 
well-Iocalized "polynomial partition of unity". Once we have such well-Iocalized 
"partition of unity", the connection between smoothness and order of polynomial 
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approximation beeomes a fairly simple thing, for the "partition of unity" allows 
us to use loeal approximation. 

The problem ean be formulated in two different ways: find the fastest de
ereasing polynomials of a given degree, or alternatively, find the smallest possible 
degree for the polynomial P in (1). This degree is denoted by ncp. 

The order of ncp ean be estimated by an explicitly computable quantity as 
follows (see [6]): 

Let cp be an even funetion, right eontinuous and inereasing on [0, 1]. Then 

where N<p = 0 if cp(l) :::; 0 and 

N. = 2 sup Jcp(X) + rl / 2 cp(x) dx + sup cp(x) + 1 
<p <p-l(O)~x<b x2 Jb x2 1/2~x<1 -log(1- x) , 

b = min(cp-l(l), 1/2) , otherwise. 

Here, for u ;::: 0, 

cp-l(U) = SUp{T I TE [0,1], cp(T):::; u}. 

If N<p = 00, then the statement of the theorem means that there are no polynomials 
whatsoever with the stated properties. 

As special eases the following hold. Let cp be an even and on [0,(0) increasing 
function with cp(O) = cp(O + 0) = 0 and cp(x) :::; Ccp(x/2) for xE [0,1]. Then there 
are polynomials Pn of degree at most n satisfying 

Pn(O) =1, IPn(x)I:::;Dexp(-dncp(x)), XE[-l,l], n=O,l, ... (2) 

for some constants D > 0 and d > 0 if and only if 

For example, 

rl cp(~) du < 00. Jo u 

IP(O)I = 1, IP(x)l:::; Cl exp( -nlxIß ) 

(3) 

with ß > 1 ean be aehieved by polynomials of degree :::; Cn, but for cp(x) = lxi we 
get that the minimal degree n<p of the polynomials P satisfying 

IP(O)I = 1, IP(x)l:::; Cle-nlxl, xE [-1,1] 

satisfies 
1 
cnlogn:::; n<p :::; Cnlogn. 
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If we want instead of (2) the property 

Pn(O) = 1, IPn(x)1 ~ Dexp(-d<p(nx)), xE [-1,1], n = 0, 1, ... , 

then for this the necessary and sufficient condition is that 

(OO <p(~) du < 00. 

JI U 
E.g. 

Pn(O) = 1, IPn(x)1 ~ Dexp(-dlnxIß), xE [-1,1], n = 0, 1, ... , (4) 

is possible if and only if ß < 1. 
The substitution x -7 x 2 easily changes the problem into fast decreasing 

polynomials on [0,1]. E.g. in this case (2) takes the form 

IPn(X) I ~ De-dncp(x) xE [0,1], (5) 

and for this (3) will change into the necessary and sufficient condition 

(1 <p( t) 
Jo t 3 / 2 dt < 00. (6) 

3 Improved approximation of lxi and Jackson's theorem 

What we use from (4) is that if ß < 1, then there are Pn with 

Actually, we need to use this for a fixed ß, so let us put here ß = 1/2. Thus, there 
are even polynomials Pn ~ ° with 

IPn(x)1 :::; De-d~, xE [-1,1]. 

Consider 2jX Qn(x) = - Pn(t)dt - 1 
"In -1 

where j 1 1 
"In = Pn(t)dt rv -. 

-1 n 

If xE [-1,0], then 
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On the other hand if xE [0,1], then 

2 11 0:::; 1 - Qn(x) = - Pn(t)dt 
"in x 

:::; Cn (I e-dfojtTdt :::; 100 e-dVudu :::; Ce-d~/2 
Jx nx 

Thus, we have shown that 

Isign(x) - Qn(x)1 :::; Ce-d~/2, 

i.e., the signum function can be approximated in this sense. On multiplying by x 
we obtain 

(7) 

which is the improvement over the standard O(l/n) approximation that one needs 
to deduce Jackson's theorem. 

Indeed, (7) yields for the function x+ = (x + Ixl)/2 and for the polynomial 
Q~(x) = (x + Qn(x))/2 the estimate 

Ix+ - Q~(x)1 :::; C e-d~/4, xE [-1,1]. 
n 

Now let for example f E Lip a on [0,1]. Set fn(k/n) = f(k/n) k = 0,1, ... , n and 
let fn be linear on each (k/n, (k + l)/n). Then clearly If - fnl :::; Cn-a. We can 
write fn it in the form 

where 

But then for 

we have 

n 

fn(x) = f(O) + L Bk,n(x - k/n)+, 
k=O 

I
B 1 = I f((k + l)/n) - f(k/n) I < Cn I - a . 

k,n l/n -

n 

Pn(x) = f(O) + L Bk,nQ~(X - kin) 
k=O 

If(x) - Pn(x)1 < If(x) - fn(x)1 + Ifn(x) - Pn(x)1 

< Cn- a + t IBk,nl C e-dvnlx-k/nl/4 
n 

k=O 

< Cn-a + C nI-a '" e-d..jJ/4 < S!...-
n ~ - n a ' 

J 
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which shows that f can be approximated in the order O(n-a ) by polynomials of 
degree at most n. 

If we want the Jackson estimate not just for Lipshitz a function, and if 

w(j,8) = sup If(x) - f(x')1 
Ix-x'19 

is the normal modulus of continuity of f, then aH we have to do is to notice that 
If - fnl ~ w(j, l/n), IBk,nl ~ nw(j, l/n), and 

n C 
Ifn(x) - Pn(x)1 ~ L nw(j, l/n)_e-d y'n1x-k/n l /4 ~ Cw(j, l/n), 

n 
k=O 

and these give 
If(x) - Pn(x) ~ Cw(j, l/n), 

Le., we obtain Jackson's estimate. 
It would be possible to obtain this way the Nikolskii-Dzjadyk-Timan-Gopen

gauz estimates as weH as the Wcp sharpening of the Jackson theorem, but to do 
that one needs nonsymmetric fast decreasing polynomials. 

4 Order of approximation on compact sets 

We have already mentioned that in 1914 S.N. Bernstein verified that the finite and 
positive limit 

lim nEn(lxl, [-1, 1]) = a 
n--->oo 

exists, and for the value of a he obtained 0.278 < a < 0.286. That was a proof of 
about 50 pages. The exact value of a is still unknown, though it was calculated 
up to 50 decimal digits in [14J. In the years 1938-46 Bernstein returned to the 
problem, and established that if p > 0 is not an even integer, then 

(8) 

exists and it is finite, and so is 

lim nPEn(sign(x)lxIP, [-1, 1]) = a;. 
n--->oo 

He also showed that for Xo E (-1, 1) 

lim nPEn(lx - xolP, [-1, 1]) = (1- x~)p/2ap, 
n--->oo 

(9) 

where this ap constant is the same as in (8). 
It is a natural quest ion what happens for more general sets. We need to 

measure somehow the density of F ab out a point Xo. Let this measure be 

8F(t, xo) = I[xo - t, Xo + tJ \ FI, 
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which is a variant of the density nmction in [5], but it also appears in a different 
form in the work of R.K. Vasiliev [15]. Now with this density function we have the 
foHowing result. 

Theorem 1 If 

118F(t,xo)2d 
3 t< 00, 

o t 
(10) 

then for p > 0 not an even integer we have 

liminf nP En(lx - xolP, F) > O. 
n-HXJ 

(11) 

Conversely, if 0 ::::; 8( t) ::::; 2t is an increasing function on [0, 1] with 

118(t)2 
-3-dt = 00, 

o t 
(12) 

then there is a compact set Fe [-1,1] such that 8 F(t,0) ::::; 8(t) for alt t and 

lim nPEn(lxIP,F) = O. (13) 
71,-'00 

Let us mention that the same density condition as in the theorem appears in 
other problems, as weH. For example, for the analogue of the Bernstein inequality 

on compact sets we have the following: 

Theorem 2 If (10) holds, then 

for some C > O. 
Conversely, if 8(t) ::::; 2t, is an increasing function such that (12) holds, then 

there is a set F C [-1,1] such that 8 F(t, 0) ::::; 8(t) for alt t > 0, but for some 
polynomials Pn , n = 1,2, ... 

lim P~ (0) = 00 

71,-'00 nllPnli F . 

Or consider the analogue of (2) on fast decreasing polynomials. Suppose that 
Fe [-1,1] is a compact set, c.p is an even, and on [0,1] increasing function with 
c.p(0) = c.p(0 + 0) = 0, c.p(x) ::::; Cc.p(x/2) for x E [0,1]. We consider the problem how 
fast a polynomial can decrease on F in the sense that we look for polynomials Pn 

of degree at most n with the property 

Pn(O) = 1, IPn(x)l::::; Dexp( -dnc.p(x)) , xE F, n = 0,1,.... (14) 
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It is dear that since F is not the whole [-1,1] and we do not care how the polyno
mials behave outside F, there is more freedom in constructing such polynomials. 
Now we have the following result that teIls us that (2) is true under the density 
condition (10). 

Theorem 3 If (10) holds, then there are polynomials with the property (14) if and 
only if 

rl cp~) dt < 00. 10 t 
(15) 

Conversely, if 0 :::; 8(t) :::; 2t is an increasing function on [0,1] with the 
property (12), then there is a compact set F C [-1,1] such that 8p(t) :::; 8(t) for 
all t and there is a monotone cp with 

rl cp(t) dt = 00 

10 t 2 

for which there are polynomials Pn with property (14). 

(16) 

That the necessity of the condition in (10) have to be considered in the above 
sense is shown by the following surprising results, which show that the positive 
directions of the above theorem can be true for sets of measure O. In fact, let F* 
be symmetrie onto the origin, and set F = {x 2 1 xE F*} ~ [0,1]. Then 

En(lxIP,F*) rv n-P <===} En(lxIP/ 2 ,F) rv n-P, 

Le., our approximation problem is equivalent to approximation of xp / 2 on a set 
Fe [0,1]. Therefore, in what follows let F ~ [0,1] be compact and 0 E F. 

For Cl, C2, ... E (0,1) do the Cantor set construction with this sequence, i.e., 
at the n-th step omit the middle Cn part of each remaining interval. Let Cn be the 
set the we have after n steps. Then Cn consists of 2n intervals of length, 

1 - Cl 1 - C2 1 - Cn --.-- ... --
2 2 2 

so their total length is 

This shows that C = nnCn is of measure 0 if and only if Lj Cj = 00. Now for 
approximation on these Cantor sets the following is true. 

Theorem 4 Let p > 0 be not an integer. Then 

En(xP,C)? n~p' n = 1,2, ... 

for some c > 0 if and only if Lj c] < 00. 
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With C j = 1/ (j + 1) we get a set F of measure 0 such that E n (xP ,F) ?': 
c/n2p , c > 0, and by symmetrization a set F <:;;; [-1,1] of measure 0 such that 
En(lxIP,F)?,: c/nP, c> o. Note that for a set ofmeasure 0 the function 8 F (t,xo) 
is identically 2t, so the integral in (10) is infinite, i.e., (10) is not true. Thus, the 
strict necessity of (10) is not true, just in the sense that was discussed above. 

The condition 2:i e; < 00 also appears in several other questions, for example 
the local Markoff inequality 

deg(Pn ) :::; n, n = 1,2, ... 

holds if an only if 2:i e; < 00. 

5 Vasiliev's results 

R.K. Vasiliev in his paper [15] considered approximation of IxlP (or what is the 
same Ix - Xo IP) on compact sets. His approach was the following. 

Let 

and consider the sets 

Fm consists of m intervals 

where Aj are chosen so that 

for all k = 1, ... , m - 1. N ow set 

where it can be shown that the limit exists (but it is not necessarily finite). 
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Now Vasiliev claims that 

(17) 

(18) 

This second claim contradicts Theorem 4 (recall that for a set F of zero measure 
we have 8F(t,XO) == 2t), and the correct relevant result is Theorem 1. Vasiliev's 
paper [15] is 166 pages long and it is solely dedicated to the proof of (17) and (18). 
Now it is difficult to say what is wrong in a 160 page proof. I do not know if the 
full (17) is correct. However, the following is certainly true, which shows that (17) 
is correct provided Xo lies in the interior of F. 

To formulate the result let us recall that the density of the equilibrium mea
sure (cf. [11]) for a set 

F = U~daj, bj ] 

al < b1 < a2 < b2 .•. bm - 1 < a m < bm is given by 

where )..j are chosen so that 

(19) 

for all k = 1, ... , m - 1. Thus, Vasiliev's function is just hF(x) = 7fWF(X) if F 
consists of a finite number of intervals, and this is also true if F is arbitrary 
compact, but x is in its interior. Now (17) for Xo E Int(F) takes the following 
form. 

Theorem 5 (R.K. Vasiliev) Let F <:;; lR be compact and let Xo be a point in the 
interior 01 F. Then 

where O'p is the constant lram Bernstein's theorem (8). 

Für example, if F = [-1,1], then 

1 
7fW[-1,1] (x) = v'1-=X2' 

and in this special case we recapture Bernstein's result (9). 

(20) 
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Idea of the proof is to use polynomial inverse images of intervals. 
Let TN be areal polynomial of degree N. We call TN admissible, if TN has 

(N - 1) local extrema, and all the local extremal values of TN are alternately 2: 1 
and:::; -1. The inverse image of [-1,1] under TN is 

Now it can be shown (see e.g. [4], [10], [12]) that if F = u~=daj, bj ] consists 
of l intervals, and E: > 0, then there is an admissible TN such that 

consists of the same number of intervals, and for all i we have 

If Xo E Int(F), then it can also be achieved that TN(XO) = 0 (and also that 
TN1([-I, I]) C F or F C TN1([-I, 1]) as we wish). 

Knowing this, the sketch of our proof for Vasiliev's theorem for Xo E Int(F) 
is as follows. Each of the following steps uses the result from the previous step. 

• Apply Bernstein's original result, i.e., we have the statement for F = [-1,1], 
Xo = O. 

• If F = TN1([-I, 1]), TN(XO) = 0, then take polynomial inverse image, and 
transfer the result from the previous step. This is the step when we change 
from one interval to several intervals. 

• If F consists of finitely many intervals, then approximate F by a polynomial 
inverse image set TN1([-I, 1]) with TN(xo) = O. The approximation means 
that WF(XO) and WTN'([-l,lj)(XO) are elose. 

• If F is an arbitrary compact, then approximate it by a set of finitely many 
intervals. 
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