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Preface

You don’t write because you want to say something,
you write because you have something to say.

F. Scott Fitzgerald

The management of operational risk in the banking industry has undergone sig-
nificant changes over the last decade due to substantial changes in the operational
environment. Globalization, deregulation, the use of complex financial products and
changes in information technology have resulted in exposure to new risks very dif-
ferent from market and credit risks. In response, the Basel Committee on Banking
Supervision (BCBS) has developed a new regulatory framework for capital mea-
surement and standards for the banking sector, referred to as Basel II, aimed at
sound risk sensitive capital requirements. Basel II formally defined operational risk
and introduced corresponding capital requirements. BCBS began discussions on
operational risk management in 1998, leading to the inclusion of operational risk
capital requirements into the latest Basel II developed during 2001–2006.

Currently, major banks are undertaking quantitative modelling of operational risk
to satisfy these requirements under the so-called Basel II Advanced Measurement
Approaches (AMA). A popular method under the AMA is the Loss Distribution
Approach (LDA) based on statistical quantification of the frequency and severity
distributions for operational risk losses. The LDA is the main focus of this book.
Over the last 3 years, major banks in most parts of the world have received accredi-
tation under the Basel II AMA by adopting the LDA, despite there being a number
of unresolved methodological challenges in its implementation. Overall, the area of
quantitative operational risk is very new and different methods are under hot debate.

Since 2000, I have been involved in consulting projects for several major banks,
assisting with the development of their operational risk models and software sys-
tems to comply with the new Basel II requirements. The development of a consis-
tent mathematical framework for operational risk treatment, addressing all aspects
required in practical implementation, is a challenging task. Due to the absence of a
coherent framework different ad-hoc solutions are often used in practice.

As a result of consulting projects for banks, discussions with regulators and aca-
demic research, I feel that there is a need for a textbook on quantitative issues in
modelling operational risk that should be resolved and addressed in practice. This
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book, in particular, will focus on the LDA and will advocate the use of a Bayesian
inference method (some alternative methods will be described and referenced too).

Though it is very new in this area, I believe that the Bayesian approach is well
suited for modelling operational risk as it allows for a consistent and convenient
statistical framework to quantify the uncertainties involved. It also allows for the
combination of expert opinions with historical internal and external data in estima-
tion procedures. These are critical, especially for operational risks that have small
datasets. During the last 5 years many aspects and problems in the quantitative mod-
elling of operational risk have been addressed in monographs, research papers and
reports from loss data collection exercises. These will be referred to within this
book. The Bayesian approach advocated here is very new for operational risk and is
certainly not fully covered in the available spectrum of books and papers within the
area.

Unfortunately, it was not possible to include examples of the real operational
risk data into this book due to confidentiality issues. As a result, only illustrative
examples with realistic parameter values are used and the book might look too
‘academic’. However, I hope that discussed results and methodologies will make
a positive contribution to a reliable estimation of capital charge for operational risk.

This book is aimed at practitioners in risk management, academic researchers in
financial mathematics, banking industry regulators and advanced graduate students
in the area. One aim is to have a book that can be used as a reference text for practi-
tioners interested in a clear and concise treatment of concepts and methods needed
in practice. Another aim is to have chapters that can be used for teaching university
courses on quantitative risk management. The book also provides a comprehensive
list of references to guide more advanced readers through the vast literature and will
takes the reader to the frontier of practically relevant research. I hope that the book
will facilitate communication between regulators, end-users and academics.

This project would not be possible without a great community of researchers
in the area of operational risk. I would like to particularly mention publications
by K. Böcker, A. Chernobai, M. Cruz, P. Embrechts, A. Frachot, C. Klüppelberg,
G. Mignola, O. Moudoulaud, S. Rachev, T. Roncalli and R. Ugoccioni which have
greatly impacted on and influenced the composition of this work. This book would
also not be possible without help from many colleagues and coworkers.

Overall, I am very grateful to my employer (CSIRO Mathematics, Informatics
and Statistics of Australia), where, over the past 10 years, I have gained knowl-
edge and practical experience in modelling financial risk. Special thanks goes to
my CSIRO colleagues: M. Cameron and F. de Hoog for the support and encour-
agement to write the book; G. Peters for his expert advice on Markov chain Monte
Carlo techniques; X. Luo and J. Donnelly for stimulating discussions; J. Donnelly,
F. de Hoog, M. Westcott, A. Tobin and G. Peters for reviewing the manuscript.

A great thank you goes to the ETH Zurich researchers who have had a signifi-
cant influence on my research: H. Bühlmann, P. Embrechts and M. Wüthrich. Also,
I am very grateful to my other colleagues: M. Delasey, D. Farmer, J. McManus,
U. Schmock and P. Thomson who have influenced my knowledge of the subject;
and R. McGregor for making recommendations on some formal aspects of English
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expression and presentation. And finally, I am wholly indebted to my wife and
daughter for the understanding and support they have granted me throughout this
time consuming project.

Sydney Pavel V. Shevchenko
April 2010
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Chapter 1
Operational Risk and Basel II

Far better an approximate answer to the right question, which
is often vague, than an exact answer to the wrong question,
which can always be made precise.

J.W. Tukey

Abstract The management of operational risk is not a new concept in the banking
industry. Operational risks such as external fraud, internal fraud, and processing
errors have had to be managed since the beginning of banking. Traditionally, these
risks were managed using insurance protection and audit. Globalisation, complex
financial products and changes in information technology, combined with a growing
number of high-profile operational loss events worldwide have increased the impor-
tance of operational risk management for the banking industry. This has prompted
regulators to decide that banks have to set aside risk capital to cover operational risk
losses. The Basel Committee on Banking Supervision (BCBS) began the discus-
sions on operational risk management in 1998 leading to the inclusion of operational
risk capital requirements into the new international regulatory framework, Basel II,
developed during 2001–2006. Currently, major banks are undertaking quantitative
modelling of operational risk to satisfy these requirements. This chapter gives an
overview of the Basel II requirements for operational risk management, several
important loss data collection exercises conducted by regulators in different coun-
tries and proposed modelling approaches.

1.1 Introduction to Operational Risk

Banks are required by the regulators to allocate capital against potential losses. It
can be viewed as some sort of self-insurance. The main risk categories attracting
capital charge in financial institutions are credit risk, market risk and operational
risk (Fig. 1.1). The last, operational risk, did not require explicit capital allocation
until recently; previously, it was implicitly covered by the capital charge for credit
risk. The concept of operational risk is generic for organizations of all types. In
general, it is related to the losses caused by the way a firm operates rather than
those caused by market movements or credit downgrades. Operational risk is sig-
nificant in many financial institutions. It accounts for approximately 15–25% of
the total capital in many large banks that requires allocation of the order of USD

P. Shevchenko, Modelling Operational Risk Using Bayesian Inference,
DOI 10.1007/978-3-642-15923-7_1, C© Springer-Verlag Berlin Heidelberg 2011
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credit risk

operational
risk

market risk

Fig. 1.1 Illustration of the capital allocation for credit, operational and market risks in a major bank

2–10 billion. Typically, for banks, operational risk is the largest risk after credit risk.
The management of operational risk is not a new concept in the banking industry,
but only within the last decade has it been identified as a category that should be
actively measured and managed. It has always been important for banks to try to
prevent some operational risks such as external fraud, internal fraud and processing
errors. Traditionally, banks relied almost exclusively upon insurance protection and
internal control mechanisms within business lines supplemented by audit to manage
operational risks. To illustrate the concept of operational risk processes consider the
following few examples.1

Example 1.1 (An Automobile Journey) Imagine that you have to take a trip from City
A to City B by car. You have done such a trip before and based on previous experi-
ence you plan that the trip will take two days including an overnight stop when you
have travelled about half way. The total travel distance is approximately 1,000 km.
Estimating the cost of petrol, meals, and hotel you plan to spend AUD 400. After
the trip you compare the actual cost with the original plan and observe that:

� The trip took two days more than planned due to a breakdown, some traffic
delays, taking a wrong route when trying to drive over a closed road, and bad
weather.

� The total trip cost was AUD 4,000 due to the required repairs, extra hotel nights,
and traffic fines for speeding. Also, due to the delay, you were late for an impor-
tant business meeting so you missed a business opportunity, which is an indi-
rect loss.

You have undertaken such a trip before, several times, and have never experi-
enced such losses and delays. The losses experienced this time were unexpected but

1 Similar and other illustrative examples, and detailed consideration of the largest historical oper-
ational risk losses can be found in e.g. Cruz [65], King [134].
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could be reduced if you undertook a proper risk management. For example, if you
took a car with more advanced controls (cruise control, GPS navigation, proximity
and maintenance alarms) and considered the weather forecast, you could reduce the
losses substantially.

Of course it is not an example from a financial institution but the essence is simi-
lar. That is, you can reduce your unexpected losses (money and time) by improving
the monitoring and control systems for the process. In this case the process is an
automobile journey; the control systems are, for example, GPS and ABS braking;
the risk factors are weather, traffic accidents and compliance with traffic rules. Of
course, a risk management planning of this trip should consider many other ques-
tions, such as consideration of alternative travel arrangements, comparison of hotel
and petrol prices, and the measurement of losses (that is, how do you measure the
indirect loss due to the missed business opportunity). While some of the risks are
outside your control, you can reduce the potential losses using mitigation strategies.

Example 1.2 (Foreign Exchange Deal) Consider a foreign exchange deal where a
trader:

� buys USD 70 million for AUD 100 million (i.e. AUD 1=USD 0.7); and
� sells USD 70 million for AUD 100,071,480 (i.e. AUD 1=USD 0.6996)

with the total profit AUD 71,480. However, due to mistakes in the back office, there
was a settlement delay of several days, and the bank had to pay AUD 101,000 in
penalties to the counterparties. Overall, due to operational error there was a loss of
AUD 29,520.

Example 1.3 (Large Historical Losses)

� The Barings Bank. One of the most famous operational loss events was the
bankruptcy of the Barings Bank (loss GBP 1.3 billion in 1995). This is alleged
to have occurred because the trader, Nick Leeson, took an enormous position in
futures and options, significantly exceeding his trading limits without approval.
This case has been widely discussed in many papers, books and by Nick Leeson
himself. Being in charge of the trade and the back office enabled Leeson to hide
his position and create an illusion of large profits. He was motivated by large
bonuses and the desire for status within the bank. It could be argued that this loss
occurred due to a lack of controls (i.e. inadequate separation of the front and back
office duties; and the absence of an accounting system enabling the settlements
department in London to reconcile trades with clients’ orders made worldwide).

� Other examples of extremely large operational risk losses include Sumitomo
Corporation (USD 2.6 billion in 1996), Enron (USD 2.2 billion in 2001),
National Australia Bank (AUD 360 million in 2004) and Société Générale (Euro
4.9 billion in 2008).

� The economic crisis 2008–2009. Many events of the recent global economic cri-
sis had their root causes in operational failures within financial firms: mortgage
fraud, inadequate assessment of model risk, failure to implement and maintain
adequate systems and controls, “bonus culture” motivating high short-term sales
regardless of the long-term consequences for the company and its clients.
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1.2 Defining Operational Risk

Globalisation, complex financial products and changes in information technology,
combined with a growing number of high-profile operational loss events world-
wide, have increased the importance of operational risk for the banking industry. In
response to these changes, new international regulatory requirements (Basel II) have
been developed for the banking industry. Currently, major financial institutions are
undertaking quantitative modelling of risk to satisfy the requirements. There was
no widely accepted definition of operational risk when the Basel Committee on
Banking Supervision (BCBS) began discussions on operational risk management at
the end of the 1990s; see BCBS [13]. Often, operational risk was defined as any risk
not categorised as market or credit risk. Some banks defined it as the risk of loss
arising from various types of human or technical error.

Some earlier definitions can be found in a 1997 survey conducted by the British
Bankers Association (BBA); see BBA [39]. In January 2001, the BCBS issued a
proposal for a New Basel Capital Accord (referred to as Basel II) where operational
risk was formally defined as a new category of risk, in addition to market and credit
risks, attracting a capital charge. In the working paper BCBS [19] on the regulatory
treatment of operational risk and in the revised Basel II framework BCBS [16], the
following definition of operational risk was adopted.2

Operational risk is defined as the risk of loss resulting from inadequate or failed inter-
nal processes, people and systems or from external events. This definition includes
legal risk but excludes strategic and reputational risk.

This definition did not change in the latest version of Basel II framework, BCBS
([17], p. 144). The International Actuarial Association, IAA [126], has adopted
the same definition of operational risk in the capital requirements for insurance
companies.

In this book we focus on modelling potential operational risk losses using statisti-
cal techniques for calculation of the economic and regulatory capital. It is important
to mention that operational risk management includes many activities [140] such as:

� developing policies and internal standards;
� developing key risk indicators;
� planning management of major business disruptions; and
� maintaining a database of operational risk incidents.

1.3 Basel II Approaches to Quantify Operational Risk

The Basel II framework is based on a three-pillar concept.

2 The original text is available free of charge on the BIS website www.BIS.org/bcbs/publ.htm
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� Pillar I: Minimum capital requirements. This pillar requires an explicit mini-
mum capital allocated for operational risk that can be calculated using different
approaches.

� Pillar II: Supervisory review process. This pillar focuses on the supervision of
banks’ systems and capital adequacy by regulatory authorities.

� Pillar III: Market discipline. The objective of this pillar is to establish market
discipline through public disclosure of risk measures and other relevant informa-
tion on risk management.

This book focuses on Pillar I and considers probabilistic models for operational risk
losses. Under the Basel II framework, three approaches can be used to quantify the
operational risk annual capital charge C:

� The Basic Indicator Approach:

C = α
1

n

3∑

j=1

max(GI( j), 0), n =
3∑

j=1

1{GI( j)>0}, (1.1)

where GI( j), j = 1, 2, 3 are the annual gross incomes over the previous three
years, n is the number of years with positive gross income, and α = 0.15.

� The Standardised Approach:

C = 1

3

3∑

j=1

max

[
8∑

i=1

βi GIi ( j), 0

]
, (1.2)

where βi , i = 1, . . . , 8 are the factors for eight business lines (BL) listed in
Table 1.1 and GIi ( j), j = 1, 2, 3 are the annual gross incomes of the i-th BL in
the previous 3 years.

� The Advanced Measurement Approaches (AMA): a bank can calculate the capital
charge using an internally developed model subject to regulatory approval.

Hereafter we consider AMA only. A bank intending to use the AMA should demon-
strate accuracy of the internal models within the matrix of Basel II risk cells (eight
business lines by seven event types, see Tables 1.1, 1.2, and 1.3) relevant to the bank
and satisfy criteria, including:

� The use of internal data, relevant external data, scenario analysis and factors
reflecting the business environment and internal control systems;

� The risk measure used for capital charge should correspond to the 99.9% confi-
dence level for a one-year holding period;

� Diversification benefits are allowed if dependence modelling is approved by the
regulator;

� Capital reduction due to insurance is capped at 20%.

Expected and unexpected losses. The initial Basel II proposal suggested that the cap-
ital charge should cover unexpected losses (UL), while expected losses (EL) should
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Table 1.1 Basel II business lines (BL) Level 1. β1, . . . , β8 are the business line factors used in
the Basel II standardised approach; see BCBS ([17], pp. 147, 302). The original texts and data are
available free of charge on the BIS website www.BIS.org/bcbs/publ.htm

i Business line, BL(i) βi

1 Corporate finance 0.18
2 Trading and sales 0.18
3 Retail banking 0.12
4 Commercial banking 0.15
5 Payment and settlement 0.18
6 Agency services 0.15
7 Asset management 0.12
8 Retail brokerage 0.12

Table 1.2 Basel II event types (ET) Level 1; see BCBS ([17], pp. 305–307). The original text is
available free of charge on the BIS website www.BIS.org/bcbs/publ.htm

j Event type, ET( j)

1 Internal fraud
2 External fraud
3 Employment practices and workplace safety
4 Clients, products and business practices
5 Damage to physical assets
6 Business disruption and system failures
7 Execution, delivery and process management

Table 1.3 Basel risk matrix of business lines (BL) and event types (ET)

ET(1) ET(2) · · · ET( j) · · · ET(7)

BL(1)
BL(2)
.
.
.

BL(i) annual losses to be
.
.
. predicted over a one-year time horizon

BL(8)

be covered by the bank through internal provisions. The reasoning was that many
bank activities have regular losses (e.g. credit card fraud). However, the accounting
rules for provisions may not reflect the true EL. As a result, the final Basel II ver-
sion proposed that regulatory capital is calculated as the sum of EL and UL, unless
the bank can demonstrate an adequate capture of EL through its internal business
practices; see BCBS ([17], p. 151). Hereafter, for simplicity, we consider the capital
to be a sum of the EL and UL which is the 99.9% Value-at-Risk (VaR). The latter is
the 0.999 quantile of the annual loss distribution that will be formally defined and
discussed in the next chapter. The loss exceeding the 99.9% VaR does not require a
capital charge. This is a so-called catastrophic loss or stress loss, also often called
a one in 1,000 year event. Figure 1.2 gives an illustration of the EL, UL and VaR
quantities.
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Fig. 1.2 Illustration of the expected and unexpected losses in the capital requirements at the
99.9% confidence level for a 1-year holding period. f (z) is the probability density function of the
annual loss

Regulatory and economic capital. The main purpose of the capital charge required
by banking industry regulators is to protect a bank against potential losses; it can
be viewed as a form of self-insurance. In simple terms, regulatory capital is the
minimum amount imposed by the regulators, while economic capital is the amount
that market forces imply for the risk. While regulatory capital for operational risk is
based on the 99.9% confidence level over a 1-year holding period, economic capital
is often higher. For example, some banks use the 99.95–99.97% confidence levels
for economic capital.

Mapping of the activities into the Basel II matrix. The seven risk event types and
eight business lines (referred to as Level 1) in Tables 1.1 and 1.2 are split by Basel
II further (see Tables 1.4 and 1.5) providing a mapping of activities (where the
losses may occur) into Level 1 risk cells. One can think of this as a hierarchical tree
structure of business lines where each business line node has a branch of event types
attached to it. For simplicity, often we consider Level 1 risk cells only, although in
practice, it is not unusual for banks to quantify risks at the lower levels. Note, the
number of risk cells at the lower levels is of the order of a hundred. Due to lack of
data, banks quantify operational risk at the higher level.

1.4 Loss Data Collections

Several Quantitative Impact Studies (QIS) have been conducted to gain a better
understanding of the potential effects of the Basel II capital requirements. QIS 2,
QIS 2.5 and QIS 3 were conducted by the Basel Committee in 2001 and 2002. These
impact studies gathered data on an international basis across many countries. Several
participating countries decided to conduct further national impact studies (QIS 4).
In 2005, to review the Basel II framework, BCBS undertook QIS 5. Detailed infor-
mation on these studies can be found on the BCBS web site www.bis.org/bcbs/qis.
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Table 1.4 Basel II mapping into level 1 business lines; see BCBS ([17], p. 302). The original text
is available free of charge on the BIS website www.BIS.org/bcbs/publ.htm

Level 1 Level 2 Activity groups (level 3)

Corporate finance Corporate finance Mergers and acquisitions, underwriting,
privatisations, securitisation, research, debt
(government, high yield), equity, syndications,
IPO, secondary private placements

Municipal/Government
finance

Merchant banking

Advisory services

Trading and sales Sales Fixed income, equity, foreign exchanges,
commodities, credit, funding, own position
securities, lending and repos, brokerage, debt,
prime brokerage

Market making

Proprietary positions

Treasury

Retail banking Retail banking Retail lending and deposits, banking services,
trust and estates

Private banking Private lending and deposits, banking services,
trust and estates, investment advice

Card services Merchant/commercial/corporate cards, private
labels and retail

Commercial
banking

Commercial banking Project finance, real estate, export finance, trade
finance, factoring, leasing, lending, guarantees,
bills of exchange

Payment and
settlement

External clients Payments and collections, funds transfer,
clearing and settlement

Agency services Custody Escrow, depository receipts, securities lending
(customers) corporate actions

Corporate agency Issuer and paying agents

Corporate trust

Asset management Discretionary fund
management

Pooled, segregated, retail, institutional, closed,
open, private equity

Non-discretionary fund
management

Pooled, segregated, retail, institutional, closed,
open

Retail brokerage Retail brokerage Execution and full service

Some quantitative impact studies have been accompanied by operational loss
data collection exercises (LDCE). The first two exercises conducted by the Risk
Management Group of the BCBS on an international basis are referred to as the
2001 LDCE and 2002 LDCE. These were followed by the national 2004 LDCE in
USA and the 2007 LDCE in Japan. Below we provide a summary for these LDCEs.3

3 Recently, the BCBS conducted the 2008 LDCE and a public report summarising the results of
the exercise appeared in July 2009; see BCBS [18].
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Table 1.5 Basel II loss event type classification, BCBS ([17], pp. 305–307). The original text is
available free of charge on the BIS website www.BIS.org/bcbs/publ.htm

Level 1 Level 2 Activity (level 3)

Internal fraud Unauthorised activity Transactions not reported (intentional);
transaction type unauthorised (w/monetary loss);
mismarking of position (intentional)

Theft and fraud Fraud/credit fraud/worthless deposits;
theft/extortion/embezzlement/robbery;
misappropriation of assets, malicious destruction
of assets; forgery; check kiting; smuggling;
account take-over/impersonation/etc.;
tax non-compliance/evasion (wilful);
bribes/kickbacks; insider trading (not on firm’s
account)

External fraud Theft and fraud Theft/robbery; forgery; check kiting

Systems security Hacking damage; theft of information
(w/monetary loss)

Employment
practices and
workplace safety

Employee relations Compensation, benefit, termination issues;
organised labour activity

Safe environment General liability (slip and fall, etc.); employee
health and safety rules events; workers
compensation

Diversity and
discrimination

All discrimination types

Clients, products
and business
practices

Suitability, disclosure
and fiduciary

Fiduciary breaches/guideline violations;
suitability/disclosure issues (KYC, etc.); retail
customer disclosure violations; breach of privacy;
aggressive sales; account churning; misuse of
confidential information; lender liability

Improper business or
market practices

Antitrust; improper trade/market practices; market
manipulation; insider trading (on firm’s account);
unlicensed activity; money laundering

Product flaws Product defects (unauthorised, etc.); model errors

Selection, sponsorship
and exposure

Failure to investigate client per guidelines;
exceeding client exposure limits

Advisory activities Disputes over performance of advisory activities

Damage to physical
assets

Disasters and other
events

Natural disaster losses; human losses from
external sources (terrorism, vandalism)

Business disruption
and system failures

Systems Hardware; software; telecommunications; utility
outage/disruptions

Execution, delivery
and process
management

Transaction capture,
execution and
maintenance

Miscommunication; data entry, maintenance or
loading error; missed deadline or responsibility;
model/system misoperation; accounting
error/entity attribution error; other task
misperformance; delivery failure; collateral
management failure; reference data maintenance
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Table 1.5 (continued)

Level 1 Level 2 Activity (level 3)

Monitoring and
reporting

Failed mandatory reporting obligation;
inaccurate external report (loss incurred)

Customer intake and
documentation

Client permissions/disclaimers missing; legal
documents missing/incomplete

Customer/client
account management

Unapproved access given to accounts; incorrect
client records (loss incurred); negligent loss or
damage of client assets

Trade counterparties Non-client counterparty misperformance; misc.
non-client counterparty disputes

Vendors and suppliers Outsourcing; vendor disputes

1.4.1 2001 LDCE

The summary of this LDCE in BCBS [14] is based on individual operational risk
loss data supplied by 30 banks from 11 countries in Europe, North America, Asia
and Africa. This exercise collected 27,371 individual loss events for the 3 year
period, 1998–2000. The majority of banks in the sample used minimum cut-off
levels at or below Euro 10,000. Some of these cut-offs were different across busi-
ness lines including, in some cases, cut-offs higher than Euro 10,000. The following
observations on data clustering were made:

Frequency. The number of reported events appeared to be clustered in a few risk
cells. In particular:

� Across business lines – The data were clustered in two of the eight business
lines. “Retail Banking” BL(3) accounted for 67% of the total number of events;
“Commercial Banking” BL(4) accounted for 13%.

� Across event types – A clustering is observed in two event types. “Execution,
Delivery and Process Management” event type ET(7) accounted for 42% of the
total number of events; “External Fraud” ET(2) accounted for 36%.

� Across business line/event type cells – Two most significant cells are
BL(3)/ET(2) and BL(3)/ET(7), i.e. “External Fraud” ET(2) and “Execution,
Delivery and Process Management” ET(7) in the “Retail Banking” BL(3). These
cells accounted for over half of all individual loss events.

Aggregated loss. The total loss amount over all reported events was approximately
Euro 2.6 billion. The largest losses in the sample ranged between Euro 50 million
and Euro 100 million. The aggregate loss amounts appeared to be clustered in few
risk cells too. In particular:

� Across business lines – “Retail Banking” BL(3) accounted for 39% of the total
loss; “Commercial Banking” BL(4) accounted for 23%; “Trading and Sales”
BL(2) was responsible for 19%.

� Across event types – “Execution, Delivery and Process Management” ET(7)
accounted for 35%; “Clients, Products and Business Practices” ET(4) accounted
for 28%; “External Fraud” ET(2) was responsible for 20%.
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� Across business line/event type cells – Three risk cells accounted for approxi-
mately 40% of the total loss amount. These cells are: BL(2)/ET(7) – “Execu-
tion, Delivery and Process Management” in the “Trading and Sales” business
line; BL(3)/ET(4) – “Clients, Products and Business Practices” in the “Retail
Banking” business line; and BL(4)/ET(2) – “External Fraud” in the “Commercial
Banking” business line.

1.4.2 2002 LDCE

The second LDCE was conducted by BCBS in 2002 across 89 banks from 19 coun-
tries in Europe, North and South America, Asia, and Australasia with the data sum-
mary provided in BCBS [15]. The data were submitted for losses occurred during
2001. Overall, the combined data for the 89 participating banks included more than
47,000 individual loss events. While the survey asked banks to report all events with
gross loss amounts greater than or equal to Euro 10,000, in practice some banks used
different minimum cut-off levels in reporting their data. The number of loss events
and gross loss amounts per Business Line and Event Type reported in BCBS [15]
are presented in Table 1.6.

Table 1.6 Number of loss events (%, top value in a cell) and total gross loss (%, bottom value in
a cell) per business line and event type occurred in 2001 and reported in 2002 LDCE; see BCBS
([15], pp. 6–7). 100% corresponds to 47,269 events and Euro 7,795.5 million. Values exceeding
1% are indicated in bold. The original texts and data are available free of charge on the BIS website
www.BIS.org/bcbs/publ.htm

ET(1) ET(2) ET(3) ET(4) ET(5) ET(6) ET(7) No ET Total

BL(1) 0.04 0.04 0.15 0.15 0.03 0.02 0.45 0.00 0.89
0.63 0.06 0.03 2.03 0.10 0.01 0.64 0.01 3.51

BL(2) 0.10 0.20 0.21 0.23 0.07 0.29 9.74 0.02 10.86
0.76 0.52 0.83 2.48 1.13 0.23 8.96 0.1 14.92

BL(3) 2.68 36.19 4.36 4.50 1.10 0.34 11.19 0.73 61.10
4.26 10.10 4.36 3.26 1.12 0.34 5.45 0.48 29.36

BL(4) 0.18 3.81 0.17 0.65 0.11 0.10 2.14 0.07 7.22
0.27 4.17 0.26 2.01 13.76 0.23 7.95 0.30 28.95

BL(5) 0.05 0.68 0.11 0.05 0.02 0.17 2.82 0.01 3.92
0.29 0.27 0.15 0.13 0.19 1.01 1.20 0.00 3.25

BL(6) 0.01 0.03 0.04 0.06 0.02 0.07 2.92 0.01 3.15
0.00 0.05 0.10 0.06 1.28 0.51 2.23 0.01 4.25

BL(7) 0.06 0.09 0.08 0.28 0.01 0.03 1.77 0.02 2.35
0.08 0.06 0.13 0.99 0.03 0.03 1.45 0.01 2.78

BL(8) 0.12 0.04 1.68 1.14 0.01 0.11 3.75 0.06 6.91
0.79 0.02 0.65 2.03 6.58 0.36 1.25 0.04 11.72

No BL
info

0.07 1.31 1.70 0.11 0.03 0.01 0.29 0.08 3.59
0.13 0.30 0.24 0.15 0.09 0.01 0.29 0.05 1.26

Total 3.31 42.39 8.52 7.17 1.40 1.14 35.07 0.99 100.00
7.23 15.54 6.76 13.14 24.29 2.73 29.41 0.91 100.00
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Frequency. The following clustering can be observed for the number of events:

� Across business lines–The data are clustered into four of the eight business lines,
with the highest concentration in “Retail Banking” BL(3) accounting for 61%
of the individual observations. “Trading and Sales” BL(2) accounted for 11%;
“Commercial Banking” BL(4)–7%; “Retail Brokerage” BL(8)–7%. Altogether,
these four business lines accounted for 86% of all individual loss events reported.

� Across event types – 42% of the individual loss events were categorised as
“External Fraud” ET(2), and 35% as “Execution, Delivery and Process Man-
agement” ET(7). “Employment Practices and Workplace Safety” ET(3) and
“Clients, Products and Business Practices” ET(4) followed with 9 and 7%
respectively. Altogether, these four event types accounted for 93% of the indi-
vidual loss events.

� Across business line/event type cells – A considerable clustering is observed in
the individual business line/event type cells. Just one cell, “External Fraud” in
the “Retail Banking”, BL(3)/ET(2), accounted for over 36% of the individual
loss events. This was followed by BL(3)/ET(7) and BL(2)/ET(7) (i.e. “Exe-
cution, Delivery and Process Management” in “Retail Banking” and “Trading
and Sales”) with 11% and 10% respectively. Most of the cells (42 of the 56)
accounted for less than 1% of the total events.

Aggregated loss. The total of gross operational risk loss amounts was just under
Euro 7.8 billion. The aggregate gross loss amounts were distributed somewhat more
evenly across business lines and Level 1 event types than the number of individual
loss events. However, there was still evidence of clustering.

� Across business lines – “Retail Banking” BL(3) accounted for the largest share
of gross loss amounts, slightly above 29% of the total. One can observe a lower
percentage of loss amounts compared with loss numbers that reflects the dom-
inance of smaller than average losses in this business line (recall that “Retail
Banking” accounts for about 61% of the individual loss events). “Commercial
Banking” BL(4) accounted for just under 29% of gross loss. Again, one can note
a large difference between the share of gross losses accounted for by “Com-
mercial Banking” (29%) and the share of the number of losses incurred by this
business line (7%).

� Across event types – In terms of event types, gross loss amounts were concen-
trated in four categories: “Execution, Delivery and Process Management” ET(7),
29%; “Damage to Physical Assets” ET(5), 24%; “External Fraud” ET(2), 16%;
and “Clients, Products and Business Practices” ET(4), 13%. Comparing the dis-
tribution of the number of losses by event types with the distribution of gross loss
amounts, it is worth noting the difference in the “Damage to Physical Assets”
ET(5). This event type accounted for less than 2% of the number of losses but
over 24% of the gross losses. In contrast, “External Fraud” ET(2) accounted for
over 42% of the number of operational losses but only 16% of the gross loss
amounts.
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� Across business line/event type cells – Looking at the individual cells of
Table 1.6, two cells: BL(4)/ET(5) and BL(8)/ET(5) (i.e. “Damage to Physi-
cal Assets” in “Commercial Banking” and “Retail Brokerage”) account for
about 20% of gross losses. Three further cells: BL(3)/ET(2), BL(2)/ET(7) and
BL(4)/ET(7) (i.e. “External Fraud” in the “Retail Banking” business line; and
“Execution, Delivery and Process Management” in the “Trading and Sales” and
“Commercial Banking” business lines) together account for a further 27% of the
gross losses.

1.4.3 2004 LDCE

This survey was conducted by US Federal bank and Thrift Regulatory agencies in
2004 for US banks only to gain a better understanding of the potential effects of
a Basel II-based regulatory capital regime on US institutions. Its results are sum-
marised in the report from Federal Reserve System, Office of the Comptroller of the
Currency, Office of Thrift Supervision and Federal Deposit Insurance Corporation
[92]. Hereafter this document is referred to as FRS et al. [92]. Twenty three US
banks provided LDCE data. In aggregate, approximately 1.5 million losses were
submitted, totalling USD 25.9 billion. However, there was significant variation in the
number of losses submitted by participating institutions. No specific loss threshold
was required in the 2004 LDCE. Thresholds ranged from USD 0 to more than USD
10,000 across participating institutions.

Table 1.7 obtained from FRS et al. [92] provides the average annual number of
losses and the average loss amount per year across all respondents by business line
and event type for the events with the losses larger than USD 10,000.

Frequency. The reported events were clustered as follows:

� Across business lines – More than half of the losses (60%) occurred in “Retail
Banking” BL(3). The majority of losses in this business line were attributed
to two event types: “External Fraud” ET(2) and “Execution, Delivery and
Process Management” ET(7). The business line with the second largest num-
ber of losses is the “Other” category with 8% of the total losses. Almost all
respondents reported losses that fell within this category, suggesting that clas-
sification of losses affecting more than one business line remains an industry
challenge.

� Across event types – With respect to event type, “External Fraud” ET(2) and
“Execution, Delivery and Process Management” ET(7) had the largest number
of losses per year with 39% and 35% of the reported losses respectively. ET(2)
losses were primarily in “Retail Banking” BL(3), while ET(7) losses were spread
across business lines more evenly with the largest contribution in “Retail Bank-
ing” BL(3).

� Across business line/event type cells – The largest risk cell was BL(3)/ET(2)
accounting for 34% of the events. The next risk cell was BL(3)/ET(7) with 12%
of the events.
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Table 1.7 Number of loss events (%, top value in a cell) and total gross loss (%, bottom value in a
cell) annualised per business line and event type reported by US banks in 2004 LDCE, FRS et al.
([92], tables 3 and 4). 100% corresponds to 18,371.1 events and USD 8,643.2 million. Losses ≥
USD 10,000 occurring during the period 1999–2004 in years when data capture was stable. Values
exceeding 1% are indicated in bold

ET(1) ET(2) ET(3) ET(4) ET(5) ET(6) ET(7) Other Fraud Total

BL(1) 0.01 0.01 0.06 0.08 0.00 0.12 0.03 0.01 0.3
0.14 0.00 0.03 0.30 0.00 0.05 0.01 0.00 0.5

BL(2) 0.02 0.01 0.17 0.19 0.03 0.24 6.55 0.05 7.3
0.10 1.17 0.05 4.29 0.00 0.06 2.76 0.15 8.6

BL(3) 2.29 33.85 3.76 4.41 0.56 0.21 12.28 0.69 2.10 60.1
0.42 2.75 0.87 4.01 0.1 0.21 3.66 0.06 0.26 12.3

BL(4) 0.05 2.64 0.17 0.36 0.01 0.03 1.38 0.02 0.44 5.1
0.01 0.70 0.03 0.78 0.00 0.00 0.28 0.00 0.04 1.8

BL(5) 0.52 0.44 0.18 0.04 0.01 0.05 2.99 0.01 0.23 4.5
0.08 0.13 0.02 0.01 0.00 0.02 0.28 0.00 0.05 0.6

BL(6) 0.01 0.03 0.04 0.31 0.01 0.14 4.52 5.1
0.02 0.01 0.02 0.06 0.01 0.02 0.99 1.1

BL(7) 0.00 0.26 0.10 0.13 0.00 0.04 1.82 0.09 2.4
0.00 0.02 0.02 2.10 0.00 0.01 0.38 0.01 2.5

BL(8) 0.06 0.10 1.38 3.30 0.01 2.20 0.20 7.3
0.03 0.02 0.33 0.94 0.00 0.25 0.07 1.6

Other 0.42 1.66 1.75 0.40 0.12 0.02 3.45 0.07 0.08 8.0
0.1 0.3 0.34 67.34 1.28 0.44 0.98 0.05 0.01 70.8

Total 3.40 39.0 7.6 9.2 0.7 0.7 35.3 0.8 3.2 100.0
0.9 5.1 1.7 79.8 1.4 0.8 9.6 0.1 0.6 100.0

Aggregated loss. The following picture is observed for aggregated losses:

� Across business lines – The majority of the total loss amount (71%) was reported
in the “Other” business line as losses that were not allocated to separate busi-
ness lines. Note that these losses accounted for only 8.0% of annual loss fre-
quency suggesting that the industry’s loss experience is dominated by a small
number of large losses spanning multiple business lines. Of the eight actual
Basel business lines, “Retail Banking” BL(3) had the highest share (12%) of
the annualised total loss though it was responsible for 60% of the number of
losses.

� Across event types – 80% of the total loss amount per year was attributable to
“Clients, Products and Business Practices” ET(4), with the largest portion of
losses in the “Other” business line.

� Across business line/event type cells – Risk cells that appear to account for
most of the total loss were: “Clients, Products and Business Practices” ET(4)
in “Other” business line, 67%; “Clients, Products and Business Practices” ET(4)
in the “Trading and Sales” BL(2) accounted for 4%.
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1.4.4 2007 LDCE

The 2007 national LDCE was conducted in Japan jointly by the Financial Ser-
vice Agency and the Bank of Japan and is referred to as 2007 LDCE. Summary
results are reported in the document of Planning and Coordination Bureau, Finan-
cial Service Agency, Financial Systems and Bank Examination Department, Bank
of Japan [193], hereafter referred to as PCB et al. [193]. Fourteen banks, including
bank-holding companies, participated in this exercise providing 156,112 loss events
which essentially occurred between 2002 and 2006. All of them provided data on
individual losses of more than one yen. The number of losses and annualised gross
amounts are given in Table 1.8. These data were extracted from PCB et al. [193].
Quick observations on data clustering are as follows.

Frequency. More than half of the losses occurred in “Retail Banking” BL(3). The
business line with the second largest number of losses was “Commercial Banking”
BL(4). With respect to event type – “Execution, Delivery and Process Management”
ET(7) and “External Fraud” ET(2) accounted for the largest number of losses per
year. The largest risk cell was BL(3)/ET(2) accounting for approximately 35% of
events.

Table 1.8 Number of loss events (%, top value in a cell) and total gross loss (%, bottom value in
a cell), annualised per business line and event type reported by banks in Japan for 2007 LDCE;
see PCB et al. ([193], tables 3-3 and 3-4). 100% corresponds to 940.7 number of events and JPY
22,650 million. Based on stable data, greater than or equal to JPY 1 million. Values exceeding 1%
are indicated in bold

ET(1) ET(2) ET(3) ET(4) ET(5) ET(6) ET(7) Total

BL(1) 0.00 0.01 0.01 0.11 0.00 0.07 0.28 0.5
0.00 0.00 0.00 0.09 0.00 0.04 0.18 0.3

BL(2) 0.01 0.00 0.04 0.22 0.00 0.26 4.12 4.7
0.00 0.00 0.04 0.09 0.00 0.00 25.03 25.2

BL(3) 0.54 35.73 0.14 3.62 1.11 2.83 13.21 57.2
1.24 6.36 0.18 4.77 0.26 0.26 8.43 21.5

BL(4) 0.29 0.64 1.16 2.02 0.69 5.87 15.05 25.7
0.13 1.99 0.71 18.32 4.19 3.22 16.87 45.4

BL(5) 0.00 0.00 0.00 0.00 0.00 0.38 0.23 0.6
0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.1

BL(6) 0.00 0.00 0.01 0.92 0.01 1.19 3.14 5.3
0.00 0.00 0.00 0.62 0.00 0.22 3.00 3.8

BL(7) 0.00 0.00 0.1 0.48 0.00 0.05 1.50 2.1
0.00 0.00 0.04 0.49 0.00 0.00 1.02 1.5

BL(8) 0.84 0.00 0.01 1.40 0.00 0.18 1.06 3.5
1.32 0.00 0.00 0.53 0.00 0.04 0.13 2.0

Other 0.09 0.11 0.02 0.00 0.13 0.09 0.02 0.4
0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.2

Total 1.8 36.5 1.5 8.8 1.9 10.9 38.6 100
2.9 8.3 1.0 24.8 4.5 3.9 54.6 100
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Aggregated loss. Nearly half of the total loss amount was reported in “Commercial
Banking” BL(4), followed by “Trading and Sales” BL(2). With respect to event
type – “Execution, Delivery and Process Management” ET(7) and “Clients, Prod-
ucts and Business Practices” ET(4) accounted for more than three quarters of the
total loss amount per year, with ET(7) accounting for more than half. Across risk
cells, BL(2)/ET(7) produced the largest loss amount (25% of the total).

1.4.5 General Remarks

Even these very large databases almost certainly fail to provide a fully compre-
hensive sense of the range of potential operational risk loss events experienced by
banks. Several general remarks can be made as follows:

� The data in all LDCEs exhibit considerable clustering around certain business
lines and event types. In particular, there is considerable clustering in “Retail
Banking” BL(3), which tends to have many but small operational risk events.
There are also business line/event type combinations with few to no events
reported. It is unclear whether the low reporting frequency in these areas reflects
the low probability of event types occurring for certain business lines or the short
data collection window or gaps in data collection.

� The number of large loss events (exceeding Euro 1 million) is compara-
tively small, representing just few percents of the observations. The findings
reflect the evolution that was occurring in the data capture of operational risk
losses in terms of methodologies and approaches for data collection in par-
ticipating banks. Gaps in data collection almost certainly contributed to the
considerable variation across banks in the number of events reported. It is
also important to recognise that the findings discussed in the LDCE sum-
maries reflect a short data collection window (one or few years), which even
under the best of circumstances is unlikely to capture many large impact tail
events.

� The data collected in the above LDCEs show some similarities and differences.
In particular, the difference in results between national and international LDCEs
may be attributed to variations between banking systems in different countries in
terms of regulation, structure, scale, etc.

It is necessary to be cautious in using the summary data to draw conclusions
about the extent of operational risk exposures. In considering the findings reported
in Tables 1.6, 1.7, and 1.8, it would be inappropriate to conclude that business line
and/or event types with a comparatively greater number or value of reported loss
events are those representing the greatest sources of operational risk. To assess the
extent of risk, it would be necessary to assess the extent of variability of both num-
ber and value of loss events around their expected values. Business lines or event
types with large numbers of individual losses or with large aggregate losses could
exhibit large or small variation over time, and therefore correspondingly large or
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small degrees of risk. A simple summary of the data does not supply significant
insight in this regard. To gain such insight, it would be necessary to analyse the
actual loss data.

Unfortunately the real operational risk datasets are not available for most of the
researchers due to confidentiality issues. Though the author of this book had to deal
with real data during consulting projects, it was not possible to get the real datasets
to be used in the book. In this respect, two papers that will be referred to many
times are of high importance: Moscadelli [166] analysing 2002 LDCE and Dutta
and Perry [77] analysing 2004 LDCE .

1.5 Operational Risk Models

Many models have been suggested for modelling operational risk under the Basel II
AMA. Excellent overviews of these can be found in Chernobai, Rachev and Fabozzi
([55], chapter 4), and Allen, Boudoukh and Saunders [9]. In brief, two conceptual
approaches are the so-called top-down and bottom-up approach.

Top-down approach. Here, the data are typically analysed at the macro level
(e.g. analysing overall bank losses) without attempting to model individual pro-
cesses/risks types. Examples of the top-down models are:

� Multifactor equity pricing models. This approach assumes market efficiency,
where the current asset price (stock price of the company) reflects all relevant
information. Then the stock return process is assumed to be driven by many
factors related to the market, credit and other non-operational risks. The residual
term of this regression is treated as due to operational risk. An example of such
a study is Allen and Bali [8] that reported empirical evidence of the dependence
between some operational risks and macroeconomic variables (such as GDP,
unemployment, equity indices, interest rates, foreign exchange rates, regulatory
environment variables and others).

� Capital asset pricing model (CAPM). Here, the asset risk premium is quanti-
fied, which is a difference between expected return and risk-free return. Then
the contributions from credit and market risks are measured and the operational
risk is treated as the residual. CAPM was introduced by Sharpe [213] for asset
pricing. In the context of operational risk, it is discussed in van den Brink [38],
and Hiwatashi and Ashida [122].

� Income or expense based models. These models are based on estimating the his-
torical volatility of income or expense respectively subtracting the contributions
from credit and market risks.

� Risk indicator models. These models link operational risk and exposure indica-
tors such as gross income, volume of transactions, number of staff, etc. The Basel
II Basic Indicator Approach (1.1) and Standardised Approach (1.2) are examples
of a single indicator and multi-indicator models respectively.
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Bottom-up approach. Broadly speaking, there are two bottom up approaches: pro-
cess based models and loss distribution approach (LDA) models. The latter are often
referred to as actuarial or statistical models.

� Process based models. Within this group of models, one can find causal net-
work models, multifactor causal models (regression type models) and reliability
models.

– Causal networks are typically subjective models. These models are inherently
linked to scorecard approaches. For each bank activity, a tree of events that
may lead to operational risk loss is constructed. The probability of each event
is specified by an expert. Typically, Bayesian belief networks are used to
quantify the posterior probability of the loss. Various models of this type have
been developed in the safety critical industries over many decades. For recent
applications in air-transport safety, see Ale et al. [7], Neil, Malcolm and Shaw
[173]. For application to operational risk, see Neil, Fenton and Tailor [171],
Cruz ([65], section 9). Many examples can also be found in King ([134],
chapters 8 and 9).

Bayesian networks account for causal dependencies enabling linkage of the
operational conditions to the probability and severity of the losses. There is a
view that these models are certainly useful for risk management in finance but
not as models for quantification of regulatory/economic capital. Nevertheless,
for example, a dynamic Bayesian network recently developed in Neil, Häger
and Andersen [172] allows quantification of the VaR of the total losses.

– Multifactor causal models are based on regression of operational risk loss on
a number of control factors (explanatory variables) such as number of staff,
number of transactions, skill level, etc; see for example Cruz [65], Hauben-
stock [117]. Then these factors are used to predict future losses assuming that
the factors are known for the next period of time.

– Reliability models quantify the probability that a system will operate satis-
factorily for a certain period of time. These are the models considered in
operational research to study the trustworthiness of system elements. This
is relevant to many processes in operational risk, for example, modelling the
reliability of transaction processing systems; see Cruz ([65], section 7.7). For
calculations of operational risk regulatory capital, it is not used as a stand-
alone model but rather as a part of other models.

� LDA models. The LDA model is based on modelling frequency N and severities
X1, X2, . . . of the operational risk events. Then, the annual loss is calculated by
aggregation of the severities over a one-year period: Z = X1 + . . . + X N . Both
frequency and severity are modelled by random variables. The LDA is a focus
of this book. Typically, the model is used to model operational risk within a
business line/event type risk cell rather than at the process level.
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The initial Basel II proposal for operational risk in 2001 suggested three app-
roaches for AMA: the internal measurement approach, the loss distribution approach
and the scorecard approach, see BCBS ([19], Annex 4). The latest Basel II doc-
ument, BCBS [17], does not give any guidelines for the approaches and allows
flexibility.

Hereafter, we consider the LDA model only.



Chapter 2
Loss Distribution Approach

Out of intense complexities intense simplicities emerge.
Sir Winston Churchill

Abstract This chapter introduces a basic model for the Loss Distribution Approach.
We discuss the main aspects of the model and basic probabilistic concepts of risk
quantification. The essentials of the frequentist and Bayesian statistical approaches
are introduced. Basic Markov chain Monte Carlo methods that allow sampling
from the posterior distribution, when the sampling cannot be done directly, are also
described.

2.1 Loss Distribution Model

A popular method under the AMA is the loss distribution approach (LDA). Under
the LDA, banks quantify distributions for frequency and severity of operational risk
losses for each risk cell (business line/event type) over a 1-year time horizon. The
banks can use their own risk cell structure but must be able to map the losses to
the Basel II risk cells. Various quantitative aspects of LDA modelling are discussed
in King [134]; Cruz [65, 66]; McNeil, Frey and Embrechts [157]; Panjer [181];
Chernobai, Rachev and Fabozzi [55]; Shevchenko [216]. The commonly used LDA
model for the total annual loss Zt in a bank can be formulated as

Zt =
J∑

j=1

Z ( j)
t ; Z ( j)

t =
N ( j)

t∑

i=1

X ( j)
i (t). (2.1)

Here:

� t = 1, 2, . . . is discrete time in annual units. If shorter time steps are used (e.g.
quarterly steps to calibrate dependence structure between the risks), then extra
summation over these steps can easily be added in (2.1).

� The annual loss Z ( j)
t in risk cell j is modelled as a compound (aggregate) loss

over one year with the frequency (annual number of events) N ( j)
t implied by a

counting process (e.g. Poisson process) and severities X ( j)
i (t), i = 1, . . . , N ( j)

t .
� Typically, the frequencies and severities are modelled by independent random

variables.

P. Shevchenko, Modelling Operational Risk Using Bayesian Inference,
DOI 10.1007/978-3-642-15923-7_2, C© Springer-Verlag Berlin Heidelberg 2011
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Estimation of the annual loss distribution by modelling frequency and severity
of losses is a well-known actuarial technique; see for example Klugman, Panjer and
Willmot [136]. It is also used to model solvency requirements for the insurance
industry; see Sandström [207] and Wüthrich and Merz [240]. Under model (2.1),
the capital is defined as the 0.999 Value-at-Risk (VaR) which is the quantile of the
distribution for the next year annual loss ZT +1:

VaRq [ZT +1] = inf{z ∈ R : Pr[ZT +1 > z] ≤ 1 − q} (2.2)

at the level q = 0.999. Here, index T + 1 refers to the next year. The capital can be
calculated as the difference between the 0.999 VaR and the expected loss if the bank
can demonstrate that the expected loss is adequately captured through other provi-
sions. If assumptions on correlations between some groups of risks (e.g. between
business lines or between risk cells) cannot be validated then the capital should be
calculated as the sum of the 0.999 VaRs over these groups. This is equivalent to the
assumption of perfect positive dependence between annual losses of these groups.

Of course, instead of modelling frequency and severity to obtain the annual loss
distribution, one can model aggregate loss per shorter time period (e.g. monthly
total loss) and calculate the annual loss as a sum of these aggregate losses. However,
the frequency/severity approach is more flexible and has good advantages, because
some factors may affect frequency only while other factors may affect severity only.
For example:

� As the business grows (e.g. volume of the transactions grows), the expected num-
ber of losses changes and this should be accounted for in forecasting the number
of losses (frequency) over the next year.

� The general economic inflation affects the loss sizes (severity).
� The insurance for operational risk losses is more easily incorporated. This is

because, typically, the insurance policies apply per event and affect the severity.

In this book, we focus on some statistical methods proposed in the literature for
the LDA model (2.1). In particular we consider the problem of combining different
data sources, modelling dependence and large losses, and accounting for parameter
uncertainty.

2.2 Operational Risk Data

Basel II specifies the data that should be collected and used for AMA. In brief,
a bank should have internal data, external data and expert opinion data. In addi-
tion, internal control indicators and factors affecting the businesses should be used.
Development and maintenance of operational risk databases is a difficult and chal-
lenging task. Some of the main features of the required data are summarised as
follows.
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� Internal data. Internal data should be collected over a minimum five-year period
to be used for capital charge calculations (when the bank starts the AMA, a
three-year period is acceptable). Due to a short observation period, typically the
internal data for many risk cells contain few low-frequency/high-severity losses
or none. A bank must be able to map its historical internal loss data into the
relevant Basel II risk cells; see Tables 1.1, 1.2 and 1.3. The data must capture
all material activities and exposures from all appropriate sub-systems and geo-
graphic locations. A bank can have an appropriate low reporting threshold for
internal loss data collection, typically of the order of EURO 10,000. Aside from
information on gross loss amounts, a bank should collect information about the
date of the event, any recoveries of gross loss amounts, as well as some descrip-
tive information about the drivers or causes of the loss event.

� External data. A bank’s operational risk measurement system must use relevant
external data (either public data and/or pooled industry data). These external
data should include data on actual loss amounts, information on the scale of
business operations where the event occurred, and information on the causes and
circumstances of the loss events. Industry data are available through external
databases from vendors (e.g. Algo OpData provides publicly reported opera-
tional risk losses above USD 1million) and consortia of banks (e.g. ORX pro-
vides operational risk losses above EURO 20,000 reported by ORX members).
External data are difficult to use directly due to different volumes and other fac-
tors. Moreover, the data have a survival bias as typically the data of all collapsed
companies are not available. As discussed previously in Sect. 1.4, several Loss
Data Collection Exercises (LDCE) for historical operational risk losses over
many institutions were conducted and their analyses reported in the literature.
In this respect, two papers are of high importance: Moscadelli [166] analysing
2002 LDCE and Dutta and Perry [77] analysing 2004 LDCE. In each case the
data were mainly above EURO 10,000 and USD 10,000 respectively.

� Scenario Analysis/expert opinion. A bank must use scenario analysis in conjunc-
tion with external data to evaluate its exposure to high-severity events. Scenario
analysis is a process undertaken by experienced business managers and risk man-
agement experts to identify risks, analyse past internal/external events, consider
current and planned controls in the banks, etc. It may involve: workshops to
identify weaknesses, strengths and other factors; opinions on the severity and
frequency of losses; opinions on sample characteristics or distribution parame-
ters of the potential losses. As a result some rough quantitative assessment of
the risk frequency and severity distributions can be obtained. Scenario analysis
is very subjective and should be combined with the actual loss data. In addition,
it should be used for stress testing, for example to assess the impact of potential
losses arising from multiple simultaneous loss events.

� Business environment and internal control factors. A bank’s methodology must
capture key business environment and internal control factors affecting opera-
tional risk. These factors should help to make forward-looking estimates, account
for the quality of the controls and operating environments, and align capital
assessments with risk management objectives.
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Data important for modelling but often missing in external databases are risk expo-
sure indicators and near-misses.

� Exposure indicators. The frequency and severity of operational risk events are
influenced by indicators such as gross income, number of transactions, number
of staff and asset values. For example, frequency of losses typically increases
with increasing number of employees.

� Near-miss losses. These are losses that could occur but were prevented. Often
these losses are included in internal datasets to estimate severity of losses but
excluded in the estimation of frequency. For detailed discussion on management
of near-misses, see Muermann and Oktem [167].

2.3 A Note on Data Sufficiency

Empirical estimation of the annual loss 0.999 quantile, using observed losses only, is
impossible in practice. It is instructive to calculate the number of data points needed
to estimate the 0.999 quantile empirically within the desired accuracy. Assume
that independent data points X1, . . . , Xn with common density f (x) have been
observed. Then the quantile qα at confidence level α is estimated empirically as
Q̂α = X̃�nα�+1, where X̃ is the data sample X sorted into the ascending order. The
standard deviation of this empirical estimate is

stdev[Q̂α] =
√
α(1 − α)

f (qα)
√

n
; (2.3)

see Glasserman ([108], section 9.1.2, p. 490). Thus, to calculate the quantile within
relative error ε = 2 × stdev[Q̂α]/qα , we need

n = 4α(1 − α)

ε2( f (qα)qα)2
(2.4)

observations. Suppose that the data are from the lognormal distribution LN (μ = 0,
σ = 2). Then using formula (2.4), we obtain that n = 140, 986 observations are
required to achieve 10% accuracy (ε = 0.1) in the 0.999 quantile estimate. In the
case of n = 1, 000 data points, we get ε = 1.18, that is, the uncertainty is larger
than the quantile we estimate.

Moreover, according to the regulatory requirements, the 0.999 quantile of the
annual loss (rather than 0.999 quantile of the severity) should be estimated. As will
be discussed many times in this book, operational risk losses are typically mod-
elled by the so-called heavy-tailed distributions. In this case, the quantile at level q
of the aggregate distributions can be approximated by the quantile of the severity
distribution at level

p = 1 − 1 − q

E[N ] ;
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see Sect. 6.7. Here, E[N ] is the expected annual number of events. For example, if
E[N ] = 10, then we obtain that the error of the annual loss 0.999 quantile is the
same as the error of the severity quantile at the confidence level p = 0.9999. Again,
using (2.4) we conclude that this would require n ≈ 106 observed losses to achieve
10% accuracy. If we collect annual losses then n/E[N ] ≈ 105 annual losses should
be collected to achieve the same accuracy of 10%. These amounts of data are not
available even from the largest external databases and extrapolation well beyond the
data is needed. Thus parametric models must be used.

For an excellent discussion on data sufficiency in operational risk, see Cope,
Antonini, Mignola and Ugoccioni [62].

2.4 Insurance

Some operational risks can be insured. If a loss occurs and it is covered by an
insurance policy, then part of the loss will be recovered. Under the AMA, banks
are allowed to recognise the risk mitigating impact of insurance on the regulatory
capital charge. The reduction in the capital due to insurance is limited to 20%; see
BCBS ([17], p. 155).

A typical policy will provide a recovery R for a loss X subject to the excess
amount (deductible) D and top cover limit amount U as follows:

R =
⎧
⎨

⎩

0, if 0 ≤ X < D,
X − D, if D ≤ X < U + D,
U, if D + U ≤ X.

(2.5)

That is, the recovery will take place if the loss is larger than the excess and the
maximum recovery that can be obtained from the policy is U . Note that in (2.5),
the time of the event is not involved and the top cover limit applies for a recovery
per risk event, that is, for each event the obtained recovery is subject of the top
cover limit. Including insurance into the LDA is simple; the loss severity in (2.1)
should be reduced by the amount of recovery (2.5) and can be viewed as a simple
transformation of the severity. However, there are several difficulties in practice,
namely that

� policies may cover several different risks;
� different policies may cover the same risk;
� the top cover limit may apply for the aggregated recovery over many events of

one or several risks (e.g. the policy will pay the recovery for losses until the top
cover limit is reached by accumulated recovery).

These aspects and special restrictions on insurance recoveries required by Basel II
make recovery dependent on time. Thus accurate accounting for insurance requires
modelling the loss event times. For example, one can use a Poisson process to model
the event times.
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Remark 2.1 A convenient method to simulate event times from a Poisson process
over a one-year time horizon is to simulate the annual number of events N from the
Poisson distribution and then simulate the times of these N events as independent
random variables from a uniform distribution U(0, 1).

It is not difficult to incorporate the insurance into an overall model if a Monte
Carlo method1 is used to quantify the annual loss distributions. The inclusion of the
insurance will certainly reduce the capital charge, though the reduction is capped by
20% according to the Basel II requirement.

Finally, it is important to note that, incorporating insurance into the LDA is not
only important for capital reduction but also beneficial for negotiating a fair pre-
mium with the insurer because the distribution of the recoveries and its characteris-
tics can be estimated.

For implementation of insurance into the LDA, see Bazzarello, Crielaard, Pia-
cenza and Soprano [22], Peters, Byrnes and Shevchenko [184]; also for guidelines
on insurance within the AMA capital calculations, see Committee of European
Banking Supervisors [59].

2.5 Basic Statistical Concepts

A concept of financial risk strongly relates to a notion of events that may occur and
lead to financial consequences. Thus it is natural to model risks using probability
theory. While a notion of randomness is very intuitive, it was only in 1933 that
Kolmogorov [138] gave an axiomatic definition of randomness and probability. This
theory gives a mathematical foundation to modern risk modelling. It is expected that
the reader has a basic understanding of elementary statistics and probability. This
section provides a description of essential concepts of probability theory used in the
book and introduces relevant notation.

2.5.1 Random Variables and Distribution Functions

Hereafter, the following notation is used:

� Random variables are denoted by upper case symbols (capital letters) and their
realisations are denoted by lower case symbols, e.g. random variable X and its
realisation x .

� By convention, vectors are considered as column vectors and are written in bold,
e.g. n-dimensional random vector X = (X1, X2, . . . , Xn)

′, where superscript ‘′’
denotes transposition.

� The realisations of random variables considered in this book are real numbers, so
that x = (x1, x2, . . . , xn)

′ means a point in the n-dimensional Euclidean space
of real numbers R

n .

1 Monte Carlo method is discussed in Sect. 3.2.
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� To simplify notation, in general, the same symbol will be used to denote both a
random variable and the space of its possible realisations. For example: Θ is a
random variable; θ is realisation of Θ; and the space of all possible θ values is
also denoted as Θ .

� Operators on random variables are written with square brackets, e.g. the variance
of a random variable X is denoted as Var[X ].

� Notationally, an estimator is a function of the sample while an estimate is the
realised value of an estimator for a given realisation of the sample. For example,
given a sample of random variables X1, X2, . . . , Xn the estimator is a function
of X while the estimate is a function of the realisation x.

A random variable has associated distribution function defined as follows.

Definition 2.1 (Univariate distribution function) The distribution function of a
random variable X , denoted as FX (x), is defined as

FX (x) = Pr[X ≤ x].

A corresponding survival function (tail function) is defined as

F X (x) = 1 − FX (x) = Pr[X > x].

Definition 2.2 (Multivariate distribution function) The multivariate distribution
function of a random vector X = (X1, X2, . . . , Xn)

′ is defined as

FX(x1, x2, . . . , xn) = Pr[X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn].

Often, for short notation we write FX(x). A corresponding survival function is
defined as

FX(x) = Pr[X > x].
Remark 2.2

� Frequently used notation, X ∼ FX (x), means a random variable X has a distribu-
tion function FX (x). Often, for simplicity of notation, we may drop the subscript
and write X ∼ F(·).

� All distributions used throughout the book are formally defined in Appendix A.

Random variables can be classified into different categories (continuous, discrete
or mixed) according to their support (a set of all possible outcomes of a random
variable). Precisely:

Definition 2.3 (Support of a random variable) The support of a random variable
X with a distribution function FX (·) is defined as a set of all points, where FX (·) is
strictly increasing.

Definition 2.4 (Continuous random variable) A continuous random variable X
has its support on an interval, a union of intervals or real line (half-line). The distri-
bution function of a continuous random variable can be written as
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FX (x) =
∫ x

−∞
fX (y)dy,

where fX (x) is called the continuous probability density function.

Definition 2.5 (Discrete random variable) A discrete random variable X has a
finite or countable number of values x1, x2, . . . . The distribution function of a dis-
crete random variable has jump discontinuities at x1, x2, . . . and is constant between.
The probability function (also called the probability mass function) of a discrete
random variable is defined as

pX (xi ) = Pr[X = xi ], i = 1, 2, . . .

pX (x) = 0 for x = x1, x2, . . . .

The corresponding probability density function can be written as

fX (x) =
∑

i≥1

pX (xi )δ(x − xi ), (2.6)

where δ(x) is the Dirac δ-function (also called the impulse δ-function) defined next.

Definition 2.6 (The Dirac δ-function) The Dirac δ-function is a function which is
zero everywhere except from the origin where it is infinite and its integral over any
arbitrary interval containing the origin is equal to one:

δ(x) = 0 if x = 0; δ(0) = ∞,∫ ε

−ε
δ(x)dx = 1 for any ε > 0.

Note that, this implies that for any function g(x)

∫ b

a
g(x)δ(x − x0)dx = g(x0) if a < x0 < b (2.7)

and the integral is zero if (a, b) interval does not contain x0. This definition of δ
function is merely a heuristic definition but it is enough for the purposes of this
book. The use and theory of the Dirac δ-function can be found in many books; see
for example Pugachev ([196], section 9).

Definition 2.7 (Mixed random variable) Mixed random variable X is a continu-
ous random variable with positive probability of occurrence on a countable set of
exception points. Its distribution function FX has jumps at these exception points
and can be written as

FX (x) = wF (d)
X (x)+ (1 − w)F (c)

X (x)
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where 0 ≤ w ≤ 1, F (c)
X is a continuous distribution function and F (d)

X (x) is a
discrete distribution function. The corresponding density function can be written as

fX (x) = w
∑

i≥1

pX (xi )δ(x − xi )+ (1 − w) f (c)X (x), (2.8)

where f (c)X (x) is the continuous density function and pX (xi ) is a probability mass
function of a discrete distribution.

Remark 2.3
� A mixed random variable is common in modelling financial risk and in opera-

tional risk in particular, when there is a probability of non-occurrence loss during
a period of time (giving finite probability mass at zero) while the loss amount is
a continuous random variable.

� In general, every distribution function may be represented as a mixture of three
different types: discrete distribution function, continuous distribution function
and singular continuous distribution function. The last is a continuous distribu-
tion function with points of increase on a set of zero Lebesgue measure. This type
of random variable will not be considered in the book. The case of mixed random
variables with two components (discrete and continuous) covers all situations
encountered in operational risk practice.

2.5.2 Quantiles and Moments

We use the following standard definition of a generalised inverse function (also
called quantile function) for a distribution function.

Definition 2.8 (Quantile function) Given a distribution function FX (x), the inverse
function F−1

X of FX is

F−1
X (α) = inf{x ∈ R : FX (x) ≥ α} = sup{x ∈ R : FX (x) < α},

where 0 < α < 1.

Given a probability level α, F−1
X (α) is the α-th quantile of X (often, it is denoted

as qα). This generalised definition is needed to define a quantile for cases such as
discrete and mixed random variables. If FX is continuous, then the quantile function
is the ordinary inverse function.

The expected value (mean) of a random variable X is denoted as E[X ]. A formal
construction of the operator E[·] is somewhat involved but for the purposes of this
book we will use the following short definition.

Definition 2.9 (Expected value)

� If X is a continuous random variable with the density function fX (x), then

E[X ] =
∫ ∞

−∞
x fX (x)dx; (2.9)
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� If X is a discrete random variable with support x1, x2, . . . and probability mass
function pX (x), then

E[X ] =
∑

j≥1

x j pX (x j );

� In the case of a mixed random variable X (see Definition 2.7), the expected
value is

E[X ] = w
∑

j≥1

x j pX (x j )+ (1 − w)

∫ ∞

−∞
x f (c)X (x)dx .

Remark 2.4
� The expected value integral or sum may not converge to a finite value for some

distributions. In this case it is said that the mean does not exist.
� The definition of the expected value (2.9) can also be used in the case of the

discrete and mixed random variables if their density functions are defined as (2.6)
and (2.8) respectively. This gives a unified notation for the expected value of the
continuous, discrete and mixed random variables. Another way to introduce a
unified notation is to use Riemann-Stieltjes integral

E[X ] =
∫ ∞

−∞
xd FX (x). (2.10)

See Carter and Van Brunt [48] for a good introduction on this topic.

The expected value is the first moment about the origin (also called the first raw
moment). There are two standard types of moments: the raw moments and central
moments, defined as follows.

Definition 2.10 (Moments)

� The k-th moment about the origin (raw moment) of a random variable X is the
expected value of Xk , i.e. E[Xk].

� The k-th central moment of a random variable X is the expected value of
(X − E[X ])k , i.e. E[(X − E[X ])k].
Typically, k is nonnegative integer k = 0, 1, 2, . . . . The expected value may not

exist for some values of k; then it is said that the k-th moment does not exist. The
first four moments are most frequently used and the relevant characteristics are:

� Variance – The variance of a random variable X is the second central moment

Var[X ] = E[(X − E[X ])2] = E[X2] − (E[X ])2. (2.11)

� Standard deviation – The standard deviation,

stdev[X ] = √
Var[X ], (2.12)
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is a measure of spread of the random variable around the mean. It is measured in
the same units as the mean (i.e. the same units as the values of random variable).

� Variational coefficient – The variational coefficient (also called the coefficient of
variation) is dimensionless quantity,

Vco[X ] = stdev[X ]
E[X ] , (2.13)

that measures the spread relative to the mean.
� Skewness – The skewness is a dimensionless quantity that measures an asymme-

try of a random variable X and is defined as

γ1 = E[(X − E[X ])3]
(stdev[X ])3 . (2.14)

For symmetric distributions, the skewness is zero.
� Kurtosis – The kurtosis is a dimensionless quantity that measures flatness of

distribution relative to the normal distribution. It is defined as

γ2 = E[(X − E[X ])4]
(stdev[X ])4 − 3. (2.15)

For the normal distribution, kurtosis is zero.

Again, for some distributions the above characteristics may not exist. Also, cen-
tral moments can be expressed through the raw moments and vice-versa. Detailed
discussion, definition and relationships for the above quantities can be found in vir-
tually any statistical textbook. To conclude this section, we define the covariance
and the linear correlation coefficient that measure the dependence between random
variables.

Definition 2.11 (Covariance and linear correlation) The covariance of random
variables X and Y is defined as

Cov[X,Y ] = E[(X − E[X ])(Y − E[Y ])] = E[XY ] − E[X ]E[Y ].

The linear correlation between X and Y is

ρ[X,Y ] = Cov[X,Y ]/√Var[X ]Var[Y ].

These quantities are popular measures of the dependence between X and Y but,
as will be discussed in Chap. 7, the linear correlation can be a bad indicator of
dependence. Also, for some distributions these measures may not exist.



32 2 Loss Distribution Approach

2.6 Risk Measures

Using economic reasoning, a list of axiomatic properties for a good (coherent) risk
measure was suggested in the seminal paper by Artzner, Delbaen, Eber and Heath
[10].

Definition 2.12 (A coherent risk measure) A coherent risk measure, �[X ],
is defined to have the following properties for any two random variables X
and Y :

� Subadditivity: �[X + Y ] ≤ �[X ] + �[Y ];
� Monotonicity: if X ≤ Y for all possible outcomes, then �[X ] ≤ �[Y ];
� Positive homogeneity: for any positive constant c, �[cX ] = c�[X ];
� Translation invariance: for any positive constant c, �[X + c] = �[X ] + c.

For detailed discussions of this topic, see McNeil, Frey and Embrechts [157].
Two popular risk measures are the so-called Value-at-Risk(VaR) and expected short-
fall defined and discussed below.

Definition 2.13 (Value-at-Risk) The VaR of a random variable X ∼ FX (x) at the
α-th probability level, VaRα(X), is defined as the α-th quantile of the distribution
of X , i.e.

VaRα[X ] = F−1
X (α).

Remark 2.5 VaR is not a coherent measure. In general, VaR possesses all the prop-
erties of a coherent risk measure in Definition 2.12 except subadditivity. For some
cases, such as a multivariate normal distribution, VaR is subadditive. However, in
general, the VaR of a sum may be larger than the sum of VaRs. For examples and
discussions, see McNeil, Frey and Embrechts [157]. This has a direct implication
for measuring operational risk and will be discussed in Chap. 7.

A VaR at a specified probability level α does not provide any information about
the fatness of the distribution upper tail. Often the management and regulators are
concerned not only with probability of default but also with its severity. Therefore,
other risk measures are often used. One of the most popular is expected shortfall
(sometimes referred to as the tail Value-at-Risk), though, a formal Basel II regula-
tory requirement for operational risk capital charge refers to a VaR.

Definition 2.14 (Expected shortfall) The expected shortfall of a random variable
X ∼ FX (x) at the α-th probability level, ESα[X ], is

ESα[X ] = 1

1 − α

∫ 1

α

VaRp[X ]dp,

which is the “arithmetic average” of the VaRs of X from α to 1.
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Remark 2.6 Expected shortfall is a coherent risk measure.

In the case of continuous distributions, it can be shown that ESα[X ] is just
expected loss given that the loss exceeds VaRα[X ].
Proposition 2.1 For a random variable X with a continuous distribution function
FX (x) we have

ESα[X ] = E[X |X ≥ VaRα[X ]],

which is the conditional expected loss given that the loss exceeds VaRα[X ].
Proof Using Definition 2.14, the proof is trivial: simply change the integration vari-
able to x = F−1

X (p). �

Remark 2.7 For a discontinuous distribution function FX (x), we have more general
relation expression

ESα[X ] = E [X |X ≥ VaRα[X ]] +
(

1

1 − α
− 1

F X (VaRα[X ])
)

×E [max(X − VaRα[X ], 0)] . (2.16)

The quantity in brackets can be nonzero for some values of α, where there are jumps
in distribution function. For a proof, see Proposition 3.2 in Acerbi and Tasche [4].

2.7 Capital Allocation

After the total capital is measured by �[·], it is important to answer the question
on how much a risk cell j contributes to the total capital. Calculation of the bank
overall capital �[Z ], where

Z =
J∑

j=1

Z ( j)

is the annual loss in a bank over next year as defined by (2.1),2 should be followed
by an important procedure of allocation of the capital into risk cells in such a way
that

�[Z ] =
J∑

j

AC j . (2.17)

2 Here, for simplicity we drop the subscript indicating a year.
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Here, AC j denotes the capital allocated to the j-th risk cell. It can be used for
performance measurement providing incentives for a business to improve its risk
management practices. Naive choice AC j = �[Z ( j)] is certainly not appropriate
because it disregards risk diversification. Also, the sum of �[Z ( j)] adds up to �[Z ]
only in the case of perfect positive dependence between risk cells.

Two popular methods, the Euler principle and marginal contribution, to allocate
the capital are described below.

2.7.1 Euler Allocation

If risk measure � is a positive homogeneous function (i.e. �[h X ] = h�[X ], h > 0)
and differentiable, then by the Euler principle

�[Z ] =
J∑

j=1

�Euler
j , (2.18)

where

�Euler
j = ∂�[Z + h Z ( j)]

∂h

∣∣∣∣∣
h=0

. (2.19)

For a proof, see Problem 2.4. The Euler principle is used by many practitioners
to calculate the allocated capitals as

AC j = �Euler
j = ∂�[Z + h Z ( j)]

∂h

∣∣∣∣∣
h=0

; (2.20)

see Litterman [146], Tasche [232, 233] and McNeil, Frey and Embrechts ([157],
section 6.3). These are called the Euler allocations and represent capital allocation
per unit of exposure Z ( j). Tasche [232] showed that it is the only allocation compat-
ible with RORAC (return on risk adjusted capital, i.e expected return divided by risk
capital) measure of performance in portfolio management. Another justification of
the Euler allocations was given in Denaut [75] using game-theoretic considerations.

Standard deviation risk measure. In the case of standard deviation as a risk measure,
�[Z ] = stdev[Z ], it is easy to show that

�Euler
j = Cov[Z ( j), Z ]√

Var[Z ] . (2.21)

VaR and expected shortfall risk measures. For risk measures VaRα[·] and ESα[·],
the derivatives in (2.20) can be calculated as
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∂VaRα[Z + h Z ( j)]
∂h

∣∣∣∣∣
h=0

= E[Z ( j)|Z = VaRα[Z ]], (2.22)

∂ESα[Z + h Z ( j)]
∂h

∣∣∣∣∣
h=0

= E[Z ( j)|Z ≥ VaRα[Z ]]. (2.23)

It is easy to verify that

J∑

j=1

E[Z ( j)|Z = VaRα[Z ]] = E[Z |Z = VaRα[Z ]] = VaRα[Z ],

J∑

j=1

E[Z ( j)|Z ≥ VaRα[Z ]] = E[Z |Z ≥ VaRα[Z ]] = ESα[Z ].

In general, the Euler allocations should be calculated numerically. Assume that
the total capital is quantified using Monte Carlo methods. That is, a sample of inde-
pendent and identically distributed annual losses z( j)

k , k = 1, . . . , K is simulated for
each risk cell j (here, the dependence between risk cells is allowed). Then, a sample
z1, . . . , zK , where zk = ∑J

j=1 z( j)
k , can be calculated and VaRα[Z ] is estimated

using the sample in the usual way. Denote this estimate by V̂aRα[Z ]. Then the Euler
allocations in the case of expected shortfall (2.23) are

E[Z ( j)|Z ≥ VaRα[Z ]] ≈
∑K

k=1 z( j)
k 1{zk≥V̂aRα[Z ]}∑K

k=1 1{zk≥V̂aRα[Z ]}
. (2.24)

In the case of VaR, the Euler allocation can be difficult to estimate using the
Monte Carlo sample, because Pr[Z = VaRα[Z ]] = 0 in the case of continuous
distributions. To handle this problem, the condition Z = VaRα[Z ] can be replaced
by |Z −VaRα[Z ]| < ε for some ε > 0 large enough to have Pr[|Z −VaRα[Z ]| < ε]
> 0. However, this condition will be satisfied by only a few Monte Carlo simula-
tions and importance sampling techniques are needed to get an accurate estimation;
see Glasserman [109]. For VaR, it can be somewhat easier to calculate the Euler
allocations using the finite difference approximation

∂�[Z + h Z ( j)]
∂h

∣∣∣∣∣
h=0

≈ �[Z +ΔZ ( j)] − �[Z ]
Δ

(2.25)

with some small suitable Δ = 0. Note that the choice of Δ depends on the numer-
ical accuracy of the estimator for �[·] and curvature of the �[·] with respect to h.
So, Δ should be neither very small nor too large. This is a typical problem with
estimating derivatives via finite difference and details can be found in many books
on numerical recipes; see for example Press, Teukolsky, Vetterling and Flannery
([195], section 5.7).
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2.7.2 Allocation by Marginal Contributions

Another popular way to allocate capital is using marginal risk contribution

�
marg
j = �[Z ] − �[Z − Z ( j)], (2.26)

which is the difference between total risk (across all risk cell) and total risk without
risk cell j . This can be viewed as some crude approximation of Euler allocation
derivatives (2.25) but of course differentiability is not required to calculate marginal
contribution. The sum of marginal contributions may not add up to �[Z ]. In parti-
cular, in the case of subadditive risk measures, it can be shown that

�
marg
j ≤ �Euler

j ,

J∑

j=1

�
marg
j ≤ �[Z ]. (2.27)

One can define

AC j = �
marg
j∑J

i=1 �
marg
i

�[Z ], (2.28)

to ensure that allocated capitals add up to �[Z ].
Example 2.1 To illustrate, consider an example of three risk cells where the annual
losses Z ( j) are independent random variables from the lognormal distribution
LN (0, σ j ) with σ1 = 1.5, σ2 = 1.75, and σ3 = 2 respectively. Results based
on 4 × 106 Monte Carlo simulations are given in Table 2.1. Here, we estimate
VaR of the total loss, VaR0.999[∑ j Z ( j)] ≈ 556, and VaRs of individual risk cells

VaR0.999[Z ( j)], j = 1, 2, 3. The numerical error due to the finite number of simula-
tions is of the order of 1%. �̂Euler

j was estimated using finite difference approxima-

tion (2.25) with Δ = 0.02. Due to this approximation,
∑

j �̂
Euler
j ≈ 553 is slightly

different from VaR0.999[∑ j Z ( j)] ≈ 556, so the final estimate for capital allocations
using Euler principle is

ACEuler
j = �̂Euler

j∑
i �̂

Euler
i

VaR0.999

[
∑

i

Z (i)
]
.

The total diversification

1 − VaR0.999[∑ j Z ( j)]
∑

i VaR0.999[Z (i)] (2.29)

is approximately 30%. It is easy to observe that, both marginal and Euler
allocations AC j are significantly less than corresponding VaR0.999[Z ( j)].
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Table 2.1 Allocation of capital C = VaR0.999[∑ j Z ( j)] ≈ 556 by marginal and Euler contribu-

tions. Here, Z ( j) ∼ LN (0, σ j ). Estimated AC j are given in absolute terms and as a percent of the
total C . See Example 2.1 for details

j σ j VaR0.999[Z ( j)] �
marg
j ACmarg

j �Euler
j ACEuler

j

1 1.5 103 9 13\2 % 20 20\4 %
2 1.75 221 58 84\15 % 102 103\18 %
3 2.0 490 314 459\83 % 431 433\78 %
Total 814 381 556\100 % 553 556\100 %

Also, �̂marg
j < �̂Euler

j . Finally, it is important to note that the relative importance of
risk cells cannot be measured by simple ratios

VaR0.999[Z ( j)]∑
i VaR0.999[Z (i)] , j = 1, 2, 3,

which are, in this example, 13%, 27% and 60% respectively and very different from
AC j/

∑
i ACi .

2.8 Model Fitting: Frequentist Approach

Estimation of the frequency and severity distributions is a challenging task, espe-
cially for low-frequency/high-severity losses, due to very limited data for these
risks. The main tasks involved in fitting the frequency and severity distributions
using data are:

� finding the best point estimates for the distribution parameters;
� quantification of the parameter uncertainties; and
� assessing the model quality (model error).

In general, these tasks can be accomplished by undertaking either the so-called fre-
quentist or Bayesian approaches briefly discussed in this and the next section.

Fitting distribution parameters using data via the frequentist approach is a classi-
cal problem described in many textbooks. For the purposes of this book it is worth
to mention several aspects and methods. Firstly, under the frequentist approach one
says that the model parameters are fixed while their estimators have associated
uncertainties that typically converge to zero when a sample size increases. Several
popular methods to fit parameters (finding point estimators for the parameters) of
the assumed distribution are:

� method of moments – finding the parameter estimators to match the observed
moments;

� matching certain quantiles of the empirical distribution;
� maximum likelihood method – finding parameter values that maximise the joint

density of observed data; and
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� estimating parameters by minimising a certain distance between empirical and
theoretical distributions, e.g. Anderson-Darling or other statistics; see Ergashev
[89].

A point estimator is a function of a sample. Notationally, an estimator is a
function of the sample while an estimate is the realised value of an estimator
for a realisation of the sample. For example, given a vector of random variables
X = (X1, X2, . . . , X K )

′, the estimator is a function of X while the estimate is a
function of the realisation x.

Given a sample X = (X1, X2, . . . , X K )
′ from a density f (x|θ), we try to find

a point estimator Θ̂ for a parameter θ . In most cases different methods will lead to
different point estimators. One of the standard ways to evaluate an estimator is to
calculate its mean squared error.

Definition 2.15 (Mean squared error) The mean squared error (MSE) of an esti-
mator Θ̂ for a parameter θ is defined as

MSEΘ̂ (θ) = E[(Θ̂ − θ)2].

Any increasing function of |Θ̂−θ | can be used as a measure of the accuracy of the
estimator but MSE is the most popular due to tractability and good interpretation.
In particular, it can be written as

MSEΘ̂ (θ) = Var[Θ̂] + (
E[Θ̂] − θ

)2
, (2.30)

where the first term is due to the uncertainty (variability) of the estimator and the
second term is due to the bias. The latter is defined as follows

Definition 2.16 (Bias of a point estimator) The bias of a point estimator Θ̂ for a
parameter θ is

BiasΘ̂ (θ) = E[Θ̂] − θ.

An estimator with zero bias, i.e. E[Θ̂] = θ is called unbiased. The MSE of an
unbiased estimator is reduced to MSEΘ̂ (θ) = Var[Θ̂].
Example 2.2 Consider a sample of independent random variables N1, N2, . . . , NM

from Poisson(λ), i.e. E[Nm] = λ, and an estimator Λ̂ = 1
M

∑M
m=1 Nm (in this case

it is a maximum likelihood estimator; see Sect. 2.8.1 below). Then

E[Λ̂] = 1

M
E

[
M∑

m=1

Nm

]
= λ.

Thus the estimator Λ̂ is an unbiased estimator of λ.

It is important for the point estimator of a parameter to be a consistent estimator,
i.e. converge to the “true” value of the parameter in probability as the sample size
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increases. Formally, a property of consistency is defined for a sequence of estimators
as follows.

Definition 2.17 (Consistent estimator) For a sample X1, X2, . . . , a sequence of
estimators

Θ̂n = Θ̂n(X1, . . . , Xn), n = 1, 2, . . .

for the parameter θ is a consistent sequence of estimators if for every ε > 0

lim
n→∞ Pr[|Θ̂n − θ | < ε] = 1.

A more informative estimation of the parameter (in comparison with the point
estimator) is based on a confidence interval specifying the range of possible values.

Definition 2.18 (Confidence interval) Given a data realisation X = x, the 1 − α

confidence interval for a parameter θ is [L(x),U (x)] such that

Pr[L(X) ≤ θ ≤ U (X)] ≥ 1 − α.

That is, the random interval [L ,U ], where L = L(X) and U = U (X), contains the
true value of parameter θ with at least probability 1 − α.

Typically, it is difficult to construct a confidence interval exactly. However, often
it can be found approximately using Gaussian distribution approximation in the case
of large data samples; see e.g. Sect. 2.8.1. Specifically, if a point estimator Θ̂ is
distributed from N (θ, σ (θ)), then

Pr

[
−F−1

N (1 − α/2) ≤ Θ̂ − θ

σ (θ)
≤ F−1

N (1 − α/2)

]
= 1 − α,

where F−1
N (·) is the inverse of the standard normal distribution N (0, 1). Note that

σ(θ) depends on θ . For a given data realisation, typically σ(θ) is replaced by σ(θ̂)
to approximate a confidence interval by

[
θ̂ − F−1

N (1 − α/2)σ (θ̂), θ̂ + F−1
N (1 − α/2)σ (θ̂)

]
. (2.31)

2.8.1 Maximum Likelihood Method

The most popular approach to fit the parameters of the assumed distribution is the
maximum likelihood method. Given the model parameters θ = (θ1, θ2, . . . , θK )

′,
assume that the joint density of data X = (X1, X2, . . . , Xn)

′ is f (x|θ). Then the
likelihood function is defined as the joint density f (x|θ) considered as a function of
parameters θ .
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Definition 2.19 (Likelihood function) For a sample X = x from the joint density
f (x|θ) with the parameter vector θ , the likelihood function is a function of θ :

�x(θ) = f (x|θ). (2.32)

The log-likelihood function is ln �x(θ).

Often it is assumed that X1, X2, . . . , Xn are independent with a common density

f (x |θ); then the likelihood function is �x(θ) =
n∏

i=1
f (xi |θ).

The maximum likelihood estimators �̂
MLE = ̂�(X) of the parameters θ are for-

mally defined as follows.

Definition 2.20 (Maximum likelihood estimator) For a sample X, ̂�(X) is the
maximum likelihood estimator (MLE), if for each realisation x, ̂θ(x) is a value of
parameter θ maximising the likelihood function �x(θ) or equivalently maximising
the log-likelihood function ln �x(θ).

An important property of MLEs is their convergence to the true value in proba-
bility as the sample size increases, i.e. MLEs are consistent estimators.

Theorem 2.1 For a sample X1, X2, . . . , Xn of independent and identically dis-
tributed random variables from f (x |θ) and corresponding MLE ̂�n, under the
suitable regularity conditions, as the sample size n increases,

lim
n→∞ Pr[|̂�n − θ | ≥ ε] = 0 for every ε > 0. (2.33)

The required regularity conditions are:

� The parameter is identifiable: θ = θ̃ ⇒ f (x |θ) = f (x |̃θ).
� The true parameter should be an interior point of the parameter space.
� The support of f (x |θ) should not depend on θ .
� f (x |θ) should be differentiable in θ .

Asymptotically, for large sample size, under stronger conditions (that further require
f (x |θ) to be differentiable three times with respect to θ and to have continuous and
bounded 3rd derivatives), the MLEs are distributed from the normal distribution:

Theorem 2.2 Under the suitable regularity conditions, for a sample X1, X2, . . . , Xn

of independent and identically distributed random variables from f (x |θ), θ =
(θ1, θ2, . . . , θK )

′, and corresponding MLE ̂�n:

√
n(�̂n − θ) → NK

(
0, [I(θ)]−1

)
, (2.34)

as the sample size n increases. Here, [I(θ)]−1 is the inverse matrix of the expected
Fisher information matrix for one observation I(θ), whose matrix elements are
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I(θ)km = E

[
∂

∂θk
ln f (X1|θ) ∂

∂θm
ln f (X1|θ)

]

= −E

[
∂2

∂θk∂θm
ln f (X1|θ)

]
. (2.35)

That is, �̂
MLE

converges to θ as the sample size increases and asymptotically �̂
MLE

is normally distributed with the mean θ and covariance matrix n−1I(θ)−1. For pre-
cise details on regularity conditions and proofs, see Lehmann ([143], Theorem 6.2.1
and 6.2.3); these can also be found in many other books such as Casella and Berger
([49], p. 516), Stuart, Ord and Arnold ([225], chapter 18), Ferguson ([93], part 4) or
Lehmann and Casella ([144], section 6.3).

In practice, this asymptotic result is often used even for small samples and for
the cases that do not formally satisfy the regularity conditions. Note that the mean
and covariances depend on the unknown parameters θ and are usually estimated by
replacing θ with θ̂

MLE
for a given realisation of data. Often in practice, the expected

Fisher information matrix is approximated by the observed information matrix

Î(̂θ)km = −1

n

n∑

i=1

∂2 ln f (xi |θ)
∂θk∂θm

∣∣∣∣
θ=̂θ

= −1

n

∂2 ln �x(θ)

∂θk∂θm

∣∣∣∣
θ=̂θ

(2.36)

for a given realisation of data. This should converge to the expected information
matrix by the law of large numbers. It has been suggested in Efron and Hinkley
[78], that the use of the observed information matrix leads to a better inference in
comparison with the expected information matrix.

Though very useful and widely used, these asymptotic approximations are usu-
ally not accurate enough for small samples, that is the distribution of parameter
errors can be materially different from normal and MLEs may have significant bias.
Also, as for any asymptotic results, a priori, one cannot decide on a sample size that
is large enough to use the asymptotic approximation.

To assess the quality of the fit, there are several popular goodness of fit tests
including Kolmogorov-Smirnov, Anderson-Darling and Chi-square tests. Also, the
likelihood ratio test and Akaike’s information criterion are often used to compare
models.

Usually maximisation of the likelihood (or minimisation of some distances in
other methods) must be done numerically. Popular numerical optimisation algo-
rithms include simplex method, Newton methods, expectation maximisation (EM)
algorithm, and simulated annealing. It is worth mentioning that the last is attempting
to find a global maximum while other methods find a local maximum. Also, EM
is usually more stable and robust than the standard deterministic methods such as
simplex or Newton methods.

Again, detailed descriptions of the above-mentioned methodologies can be found
in many textbooks; for application in an operational risk context, see Panjer [181].
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2.8.2 Bootstrap

Another popular method to estimate parameter uncertainties is the so-called boot-
strap. This method is based on a simple idea: that we can learn about characteris-
tics of a sample by taking resamples from the original sample and calculating the
parameter estimates for each sample to asses the parameter variability. The bootstrap
method was originally developed by Efron in the 1970s. For a good introduction to
the method we refer the reader to Efron and Tibshirani [79]. Often the bootstrap esti-
mators are reasonable and consistent. Two types of bootstrapping, nonparametric
bootstrap and parametric bootstrap, are commonly used in practice.

Nonparametric bootstrap. Suppose we have a sample of independent and identi-
cally distributed random variables X = (X1, X2, . . . , X K )

′ and there is an estimator
Θ̂(X). Then:
� Draw M independent samples

X(m) = (X (m)
1 , X (m)

2 , . . . , X (m)
K )′, m = 1, . . . , M

with replacement from the original sample X. That is X (m)
k , k = 1, . . . , K ,

m = 1, . . . , M are independent and identically distributed, and drawn from the
empirical distribution of the original sample X.

� Calculate estimator Θ̂(m) = Θ̂(X(m)) for each resample m = 1, . . . , M .
� Calculate

V̂ar[Θ̂] = 1

M − 1

M∑

m=1

(
Θ̂(m) − μ

)2
, where μ = 1

M

M∑

m=1

Θ̂(m). (2.37)

Parametric bootstrap. Suppose we have a sample of independent and identically
distributed random variables X = (X1, X2, . . . , X K )

′ from f (x |θ) and we can cal-
culate some estimator Θ̂(X) (e.g. MLE) for θ . Then:
� Draw M independent samples

X(m) = (X (m)
1 , X (m)

2 , . . . , X (m)
K )′, m = 1, . . . , M,

where X (m)
k , k = 1, . . . , K , m = 1, . . . , M are independent and identically

distributed from f (x |θ̂ ).
� Calculate estimator Θ̂(m) = Θ̂(X(m)) for each resample m = 1, . . . , M .
� Calculate V̂ar[Θ̂] = 1

M−1

∑M
m=1

(
Θ̂(m) − μ

)2
, where μ = 1

M

∑M
m=1 Θ̂

(m).

The obtained V̂ar[Θ̂] is used as an estimator for Var[Θ̂]. Typically, for indepen-
dent and identically distributed samples, this estimator is consistent, i.e.

V̂ar[Θ̂] → Var[Θ̂], as M → ∞ and K → ∞, (2.38)

though in more general situations it may not occur.



2.9 Bayesian Inference Approach 43

Remark 2.8 More accurate treatment of nonparametric bootstrap estimators involves
an approximator

V̂ar∗[Θ̂] = 1

N − 1

N∑

m=1

(
Θ̂(m) − μ

)2
, μ = 1

N

N∑

m=1

Θ̂(m),

where N = K K is the total number of nondistinct resamples. N is very large even
for small K , e.g. for K = 10, N = 1010. Calculations of the variance estimators
(2.37) with M � N is considered as approximation for V̂ar∗ variances. Then, con-
vergence of bootstrap estimators is considered in two steps: V̂ar[Θ̂] → Var∗[Θ̂] as
M → ∞; and Var∗[Θ̂] → Var[Θ̂] as K → ∞.

2.9 Bayesian Inference Approach

There is a broad literature covering Bayesian inference and its applications for the
insurance industry as well as other areas. For a good introduction to the Bayesian
inference method, see Berger [27] and Robert [200]. This approach is well suited
for operational risk and will be a central topic in this book. It is sketched below
to introduce some notation and concepts, and then it will be discussed in detail in
Chap. 4.

Consider a random vector of data X = (X1, X2, . . . , Xn)
′ whose density, for

a given vector of parameters θ = (θ1, θ2, . . . , θK )
′, is fX|�(x|θ). In the Bayesian

approach, both data and parameters are considered to be random. A convenient inter-
pretation is to think that parameter is a random variable with some distribution and
the true value (which is deterministic but unknown) of the parameter is a realisation
of this random variable. Then the joint density of the data and parameters is

fX,�(x, θ) = fX|�(x|θ)π�(θ) = π�|X(θ |x) fX(x), (2.39)

where

� π�(θ) is the density of parameters (a so-called prior density);
� π�|X(θ |x) is the density of parameters given data X = x (a so-called posterior

density);
� fX,�(x, θ) is the joint density of the data and parameters;
� fX|�(x|θ) is the density of the data given parameters� = θ . This is the same as

a likelihood function, see (2.32), if considered as a function of θ for a given x,
i.e. �x(θ) = fX|�(x|θ);

� fX(x) is the marginal density of X. If π�(θ) is continuous, then

fX(x) =
∫

fX|�(x|θ)π�(θ)dθ
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and if π�(θ) is a discrete, then the integration should be replaced by a corre-
sponding summation.

Remark 2.9 Typically, π�(θ) depends on a set of further parameters, the so-called
hyper-parameters, omitted here for simplicity of notation. The choice and estima-
tion of the prior will be discussed later in Chap. 4.

Using (2.39), the well-known Bayes’s theorem, Bayes [21], says that:

Theorem 2.3 (Bayes’s theorem) The posterior density can be calculated as

π�|X(θ |x) = fX|�(x|θ)π�(θ)/ fX(x). (2.40)

Here, fX(x) plays the role of a normalisation constant and the posterior can be
viewed as a combination of prior knowledge (contained in π�(θ)) with information
from the data (contained in fX|�(x|θ)).

Given that f�(x) is a normalisation constant, the posterior is often written as

π�|X(θ |x) ∝ fX|�(x|θ)π�(θ), (2.41)

where “∝” means “is proportional to” with a constant of proportionality indepen-
dent of the parameter θ . Typically, in closed-form calculations, the right hand side
of the equation is calculated as a function of θ and then the normalisation constant
is determined by integration over θ .

Using the posterior π�|X(θ |x), one can easily construct a probability interval
for Θ , which is the analogue for confidence intervals (see Definition 2.18) under the
frequentist approach.

Definition 2.21 (Credibility interval) Given a data realisation X = x, if π�|X(θ |x)
is the posterior density of Θ and

Pr[a ≤ Θ ≤ b|X = x] =
∫ b

a
πΘ|X(θ |x)dθ ≥ 1 − α,

then the interval [a, b] contains the true value of parameter θ with at least probability
1 − α. The interval [a, b] is called a credibility interval (sometimes referred to as
predictive interval or credible interval) for parameter θ .

Remark 2.10
� The inequality in the above definition is to cover the case of discrete posterior

distributions.
� Typically, one chooses the smallest possible interval [a, b]. Also, one can con-

sider one-sided intervals, e.g. Pr[Θ ≤ b|X = x].
� Extension to the multivariate case, i.e. parameter vector θ , is trivial.
� Though the Bayesian credibility interval looks similar to the frequentist confi-

dence interval (see Definition 2.18), these intervals are conceptually different.
To determine a confidence (probability to contain the true value) the bounds of
the frequentist confidence interval are considered to be random (functions of
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random data) while bounds of the Bayesian credibility interval are functions of
a data realisation. For some special cases the intervals are the same (for given
data realisation) but in general they are different especially in the case of strong
prior information.

If the data X1, X2, . . . are conditionally (given� = θ) independent then the pos-
terior can be calculated iteratively, i.e. the posterior distribution calculated after k-1
observations can be treated as a prior distribution for the k-th observation. Thus the
loss history over many years is not required, making the model easier to understand
and manage, and allowing experts to adjust the priors at every step.

For simplicity of notation, the density and distribution subscripts indicat-
ing random variables will often be omitted, e.g. π�(θ) will be written as
π(θ).

2.9.1 Conjugate Prior Distributions

Sometimes the posterior density can be calculated in closed form, which is very
useful in practice when Bayesian inference is applied. This is the case for the so-
called conjugate prior distributions, where the prior and posterior distributions are
of the same type.

Definition 2.22 (Conjugate prior) Let F denote a class of density functions
f (x|θ), indexed by θ . A class U of prior densities π(θ) is said to be a conju-
gate family for F and F − U is called a conjugate pair, if the posterior density
π(θ |x) = f (x|θ)π(θ)/ f (x), where f (x) = ∫

f (x|θ)π(θ)dθ , is in the class U for
all f ∈ F and π ∈ U .

Formally, if the family U contains all distribution functions then it is conjugate
to any family F . However, to make a model useful in practice it is important that U
should be as small as possible while containing realistic distributions. In Chap. 4, we
present F −U conjugate pairs (Poisson-gamma, lognormal-normal, Pareto-gamma)
that are useful and illustrative examples of modelling frequencies and severities in
operational risk. Several other pairs (binomial-beta, gamma-gamma, exponential-
gamma) can be found for example in Bühlmann and Gisler [44]. In all these cases,
the prior and posterior distributions have the same type and the posterior distribution
parameters are easily calculated using the prior distribution parameters and obser-
vations (or recursively).

In general, if the posterior cannot be found in closed form or is difficult to eval-
uate, one can use Gaussian approximation or Markov chain Monte Carlo methods,
discussed next.
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2.9.2 Gaussian Approximation for Posterior

For a given data realisation X = x, denote the mode of the posterior π(θ |x) by θ̂ .
If the prior is continuous at θ̂ , then a Gaussian approximation for the posterior is
obtained by a second-order Taylor series expansion around θ̂ :

lnπ(θ |x) ≈ lnπ(̂θ |x)+ 1

2

∑

i, j

∂2 lnπ(θ |x)
∂θi∂θ j

∣∣∣∣
θ=θ̂

(θi − θ̂i )(θ j − θ̂ j ). (2.42)

Under this approximation, π(θ |x) is a multivariate normal distribution with the
mean θ̂ and covariance matrix

� = I−1, (I)i j = −∂2 lnπ(θ |x)
∂θi∂θ j

∣∣∣∣
θ=θ̂

. (2.43)

Remark 2.11 In the case of improper constant priors, this approximation is compa-
rable to the Gaussian approximation for the MLEs (2.34). Also, note that in the case
of constant priors, the mode of the posterior and the MLE are the same. This is also
true if the prior is uniform within a bounded region, provided that the MLE is within
this region.

2.9.3 Posterior Point Estimators

Once the posterior density π(θ |x) is found, for given data X, one can define point
estimators of Θ . The mode and mean of the posterior are the most popular point
estimators. These Bayesian estimators are typically referred to as the Maximum a
Posteriori (MAP) estimator and the Minimum Mean Square Estimator (MMSE),
formally defined as follows:

MAP : Θ̂MAP = arg max
θ

[π(θ | X)] , (2.44)

MMSE : Θ̂MMSE = E [Θ|X] . (2.45)

The median of the posterior is also often used as a point estimator for Θ . Also, note
that if the prior π(θ) is constant and the parameter range includes the MLE, then the
MAP of the posterior is the same as the MLE; see Remark 2.11.

More formally, the choice of point estimators is considered using a loss function,
l(θ, θ̂ ), that measures the cost (loss) of a decision to use a particular point estima-
tor Θ̂ . For example:

� quadratic loss: l(θ, θ̂ ) = (θ − θ̂ )2;
� absolute loss: l(θ, θ̂ ) = |θ − θ̂ |;
� all or nothing loss: l(θ, θ̂ ) = 0 if θ = θ̂ and l(θ, θ̂ ) = 1 otherwise;
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� asymmetric loss function: e.g. l(θ, θ̂ ) = θ̂ − θ if θ̂ > θ and l(θ, θ̂ ) = −2(θ̂ − θ)

otherwise.

Then the value of Θ̂ that minimises E[l(Θ, Θ̂)|X] is called a Bayesian point
estimator of Θ . Here, the expectation is calculated with respect to the posterior
π(θ |X). In particular:

� The posterior mean is a Bayesian point estimator in the case of a quadratic loss
function.

� In the case of an absolute loss function, the Bayesian point estimator is the
median of the posterior.

� All or nothing loss function gives the mode of the posterior as the point estimator.

Remark 2.12 Θ̂ = Θ̂(X) is a function of data X and thus it is referred to as estima-
tor. For a given data realisation X = x, we get Θ̂ = θ̂ which is referred to as a point
estimate.

Though the point estimators are useful, for quantification of operational risk
annual loss distribution and capital we recommend the use of the whole posterior,
as discussed in following chapters.

2.9.4 Restricted Parameters

In practice, it is not unusual to restrict parameters. In this case the posterior distribu-
tion will be a truncated version of the posterior distribution in the unrestricted case.
That is, if θ is restricted to some range [θ L , θH ] then the posterior distribution will
have the same type as in the unrestricted case but truncated outside this range.

For example, we choose the lognormal distribution, LN (μ, σ ) to model the data
X = (X1, . . . , Xn)

′ and we choose a prior distribution for μ to be the normal distri-
bution N (μ0, σ0). This case will be considered in Sect. 4.3.4. However, if we know
that μ cannot be negative, we restrict N (μ0, σ0) to nonnegative values only.

Another example is the Pareto-gamma case, where the losses are modelled by
Pareto(ξ, L) and the prior distribution for the tail parameter ξ is Gamma(α, β);
see Sect. 4.3.6. The prior is formally defined for ξ > 0. However, if we do not
want to allow infinite mean predicted loss, then the parameter should be restricted
to ξ > 1.

These cases can be easily handled by using the truncated versions of the prior-
posterior distributions. Assume that π(θ) is the prior whose corresponding posterior
density is π(θ |x) = f (x|θ)π(θ)/ f (x), where θ is unrestricted. If the parameter is
restricted to a ≤ θ ≤ b, then we can consider the prior

π tr(θ) = π(θ)

Pr[a ≤ θ ≤ b]1{a≤θ≤b}, Pr[a ≤ θ ≤ b] =
∫ b

a
π(θ)dθ, (2.46)

for some a and b with Pr[a ≤ θ ≤ b] > 0. Pr[a ≤ θ ≤ b] plays the role of
normalisation and thus the posterior density for this prior is simply
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π tr(θ |x) = π(θ |x)
Pr[a ≤ θ ≤ b|x]1{a≤θ≤b}, Pr[a ≤ θ ≤ b|x] =

∫ b

a
π(θ |x)dθ.

(2.47)

Remark 2.13 It is obvious that if π(θ) is a conjugate prior, then π tr(θ) is a conjugate
prior too.

2.9.5 Noninformative Prior

Sometimes there is no prior knowledge about the model parameter θ , or we would
like to rely on data only and avoid an impact from any subjective information. In this
case we need a noninformative prior (sometimes called vague prior) that attempts
to represent a near-total absence of prior knowledge. A natural noninformative prior
is the uniform density

π(θ) ∝ const for all θ . (2.48)

If parameter θ is restricted to a finite set, then this π(θ) corresponds to a proper uni-
form distribution. For example, the parameter p in a binomial distribution Bin(n, p)
is restricted to the interval [0, 1]. Then one can choose a noninformative constant
prior which is the uniform distribution U(0, 1).

However, if the parameter θ is not restricted, then a constant prior is not a proper
density (since

∫
f (θ)dθ) = ∞). Such a prior is called an improper prior. For

example, the parameter μ (mean) of the normal distribution N (μ, σ ) is defined
on (−∞,∞). Then, for any constant c > 0, π(μ) = c is not a proper density
because

∫
π(μ)dμ = ∞. It is not a problem to use improper priors as long as the

posterior is a proper distribution. Also, as noted in previous sections, if the prior
π(θ) is constant and the parameter range includes the MLE, then the mode of the
posterior is the same as the MLE; see Remark 2.11.

A constant prior is often used as a noninformative prior, though it can be criti-
cised for a lack of invariance under transformation. For example, if a constant prior
is used for parameter θ and model is reparameterised in terms of θ̃ = exp(θ), then
the prior density for θ̃ is proportional to 1/θ̃ . Thus we cannot choose a constant
prior for both θ and θ̃ . In this case, one typically argues that some chosen parame-
terisation is the most intuitively reasonable and absence of prior information corre-
sponds to a constant prior in this parameterisation. One can propose noninformative
priors through consideration of problem transformations. This has been considered
in many studies starting with Jeffreys [127]. For discussion on this topic, see Berger
([27], section 3.3). Here, we just mention that for a scale densities of the form
θ−1 f (x/θ), the recommended noninformative prior for a scale parameter θ > 0 is

π(θ) ∝ 1

θ
, (2.49)

which is an improper prior because
∫∞

0 π(θ)dθ = ∞.
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2.10 Mean Square Error of Prediction

To illustrate the difference between the frequentist and Bayesian approaches, con-
sider the so-called (conditional) mean square error of prediction (MSEP) which is
often used for prediction of uncertainty.

Consider a sample X1, X2, . . . , Xn, . . . and assume that, given data

X = (X1, X2, . . . , Xn)
′,

we are interested in prediction of a random variable R which is a some function of
Xn+1, Xn+2, . . . . Assume that R̂ is a predictor for R and an estimator for E[R|X].
Then, the conditional MSEP is defined by

MSEPR|X
(
R̂
) = E[(R − R̂)2|X]. (2.50)

It allows for a good interpretation if decoupled into process variance and estimation
error as

MSEPR|X
(
R̂
) = Var[R|X] + (

E[R|X] − R̂
)2

= process variance + estimation error. (2.51)

It is clear that the estimator R̂ that minimises conditional MSEP is R̂ = E[R|X].
Assume that the model is parameterised by the parameter vector θ = (θ1, . . . , θK )

′.
Then under the frequentist and Bayesian approaches we get the following estimators
of MSEP.

Frequentist approach. Unfortunately, in frequentist approach E[R|X] is unknown
and the second term in (2.51) is often estimated by Var[R̂]; see Wüthrich and Merz
([240], section 6.4.3). Under the frequentist approach, Var[R|X] and E[R|X] are
functions of parameter θ and can be denoted as Varθ [R|X] and Eθ [R|X] respec-
tively. Typically these are estimated as V̂arθ [R|X] = Var�̂[R|X] and Êθ [R|X] =
E�̂[R|X], where �̂ is a point estimator of θ obtained by maximum likelihood or
other methods. Also, typically one chooses R̂ = E�̂[R|X], so that now R̂ is a
function of �̂, that we denote as R̂(�̂). The parameter uncertainty term Varθ [R̂] is
usually estimated using the first-order Taylor expansion of R̂(�̂) around θ

R̂(̂θ) ≈ R̂(θ)+
∑

i

∂ R̂(̂θ)

∂θ̂i

∣∣∣∣∣
̂θ=θ

(θ̂i − θi )

leading to

Varθ [R̂(̂�)] ≈
∑

i, j

∂ R̂

∂θ̂i

∣∣∣∣
̂θ=θ

∂ R̂

∂θ̂ j

∣∣∣∣
̂θ=θ

Cov[Θ̂i , Θ̂ j ].
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Estimating θ by ̂� gives the final estimator

V̂arθ [R̂(̂�)] = Var
̂�
[R̂(̂�)].

Note that if the point estimators are unbiased, i.e. E[Θ̂i − θi ] = 0 then E[R̂(̂θ)] ≈
R̂(θ). Finally, the estimator for conditional MSEP is

M̂SEPR|X
[
R̂
] = V̂ar[R|X] + V̂ar[R̂]

= process variance + estimation error. (2.52)

The above estimators are typically consistent and unbiased in the limit of large
sample size.

Bayesian approach. Under the Bayesian inference approach, where the unknown
parameters θ are modelled as random variables�, Var [ R| X] can be decomposed as

Var [ R| X] = E [Var [ R|�,X]| X] + Var [E [ R|�,X]| X] (2.53)

= average process variance + parameter estimation error

that equals MSEPR|X
[
R̂
]

if we choose R̂ = E[R|X]. Estimation of the terms
involved requires knowledge of the posterior distribution for� that can be obtained
either analytically or approximated accurately using Markov chain Monte Carlo
methods discussed in the next section.

2.11 Markov Chain Monte Carlo Methods

As has already been mentioned, the posterior distribution is often not known in
closed form. Thus, typically, estimation of the posterior empirically by direct sim-
ulation is also problematic. Then, in general, Markov chain Monte Carlo meth-
ods (hereafter referred to as MCMC methods) can be used. These are described
below.

Simulation from the known density function can be accomplished using well-
known generic methods such as the inverse transform, or accept-reject methods; see
Glasserman ([108], section 2.2).

Corollary 2.1 (The inverse transform) If U ∼ U(0, 1), then the distribution of the
random variable X = F−1(U ) is F(x).

Remark 2.14 That is, to simulate X from the distribution F(x) using the inverse
transform, generate U ∼ U(0, 1) and calculate X = F−1(U ).

Corollary 2.2 Simulating X from the density f (x) is equivalent to simulating
(X,U ) from the uniform distribution on (x, u), where 0 ≤ u ≤ f (x).
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Remark 2.15 This means that to simulate X from the density f (x), generate (X,U )
from the uniform distribution under the curve of f (x). The latter is typically done
through accept-reject algorithm (or sometimes called as rejection sampling).

Corollary 2.3 (Accept-reject method) Assume that the density f (x) is bounded
by M (i.e. f (x) ≤ M) and defined on the support a ≤ x ≤ b. Then, to simulate X
with the density f (x):

� draw X ∼ U(a, b) and U ∼ U(0, M);
� accept the sample of X if U ≤ f (X), otherwise repeat the above steps.

If another density g(x) such that Mg(x) ≥ f (x) can be found for constant M, then
to simulate X with the density f (x):

� draw X from g(x) and U ∼ U(0, Mg(X));
� accept the sample of X if U ≤ f (X), otherwise repeat the above steps.

The inverse method cannot be used if the normalisation constant is unknown, and
the above accept-reject method cannot be used if you cannot easily find the bounds
for the density. These difficulties are typical for the posterior densities. In general,
estimation (sampling) of the posterior π(θ |x) numerically can be accomplished
using MCMC methods; for a good introduction see Robert and Casella [201].
MCMC has almost unlimited applicability though its performance depends on the
problem particulars. The idea of MCMC methods is based on a simple observa-
tion that to obtain an acceptable approximation to some integrals depending on a
distribution of interest π(θ |x), it is enough to sample a sequence (Markov chain)
{θ (1), θ (2), . . . }, whose limiting density is the density of interest π(θ |x). This idea
appeared as early as the original Monte Carlo method but became very popular
and practical in the last few decades only when fast computing platforms became
available.

A Markov chain is a sequence of random variables defined as follows:

Definition 2.23 (Markov chain) A sequence of random variables

{�(0),�(1), . . . ,�(l), . . . }
is a Markov chain if, for any l, the conditional distribution of �(l+1) given �(i),
i = 0, 1, . . . , l is the same as the conditional distribution of �(l+1) given �(l).
A conditional probability density of �(l+1) given �(l) is called transition kernel of
the chain and is usually denoted as K (�(l),�(l+1)).

The MCMC approach produces an ergodic Markov chain with a stationary dis-
tribution (which is also a limiting distribution). These chains are also recurrent and
irreducible. The precise definitions of these properties are somewhat involved and
can be found for example in Robert and Casella [201]. For the purposes of this book
we remark as follows:

Remark 2.16
� We are interested in the case when the chain stationary distribution corresponds

to the posterior density π(θ |x).
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� The ergodic property means that the distribution of �(l) converges to a limiting
distribution π(θ |x) for almost any starting value of �(0). Therefore for large l,
�(l) is approximately distributed from π(θ |x) regardless of the starting point.
Of course the problem is to decide what is large l. This can formally be accom-
plished by running diagnostic tests on the stationarity of the chain.

� A Markov chain is said to have a stationary distribution if there is a distribution
π(θ |x) such that if�(l) is distributed from π(θ |x) then�(l+1) is distributed from
π(θ |x) too.

� A Markov chain is irreducible if it is guaranteed to visit any set A of the support
of π(θ |x). This property implies that the chain is recurrent, i.e. that the average
number of visits to an arbitrary set A is infinite and even Harris recurrent. The
latter means that the chain has the same limiting behaviour for every starting
value rather than almost every starting value.

� Markov chains considered in MCMC algorithms are almost always homoge-
neous, i.e. the distribution of �(l0+1),�(l0+2), . . . ,�(l0+k) given �(l0) is the
same as the distribution of �(1),�(2), . . . ,�(k) given �(0) for any l0 ≥ 0 and
k > 0.

� Another important stability property is called reversibility that means that the
direction of the chain does not matter. That is, the distribution of �(l+1) con-
ditional on �(l+2) = θ is the same as the distribution of �(l+1) conditional on
�(l) = θ . The chain is reversible if the transition kernel satisfies the detailed
balance condition:

K (θ, θ ′)π(θ |x) = K (θ ′, θ)π(θ ′|x). (2.54)

The detailed balance condition is not necessary but sufficient condition for
π(θ |x) to be stationary density associated with the transitional kernel K (· , ·)
that usually can easily be checked for MCMC algorithms.

Of course, the samples �(1),�(2), . . . are not independent. However, the inde-
pendence is not required if we have to calculate some functionals of π(θ |x), because
the Ergodic Theorem implies that for large L , the average

1

L

L∑

l=1

g(�(l)) (2.55)

converges to E[g(�)|X = x] (if this expectation is finite), where expectation is
calculated with respect to π(θ |x).

2.11.1 Metropolis-Hastings Algorithm

Metropolis-Hastings algorithm is almost a universal algorithm used to generate
a Markov chain with a stationary distribution π(θ |x). It has been developed by
Metropolis et al. [161] in mechanical physics and generalised by Hastings [116]
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in a statistical setting. It can be applied to a variety of problems since it requires
the knowledge of the distribution of interest up to a constant only. Given a density
π(θ |x), known up to a normalisation constant, and a conditional density q(θ∗|θ),
the method generates the chain {θ (1), θ (2), . . . } using the following algorithm:

Algorithm 2.1 (Metropolis-Hastings algorithm)
1. Initialise θ (l=0) with any value within a support of π(θ |x);
2. For l = 1, . . . , L

a. Set θ (l) = θ (l−1);
b. Generate a proposal θ∗ from q(θ∗|θ (l));
c. Accept proposal with the acceptance probability

p(θ (l), θ∗) = min

{
1,

π(θ∗|x)q(θ (l)|θ∗)
π(θ (l)|x)q(θ∗|θ (l))

}
, (2.56)

i.e. simulate U from the uniform distribution function U(0, 1) and set
θ (l) = θ∗ if U < p(θ (l), θ∗). Note that the normalisation constant of the
posterior does not contribute here;

3. Next l (i.e. do an increment, l = l + 1, and return to step 2).

Remark 2.17
� The density π(θ |x) is called the target or objective density.
� q(θ∗|θ) is called the proposal density and will be discussed shortly.

2.11.2 Gibbs Sampler

The Gibbs sampler is a technique for generating random variables from a distribu-
tion indirectly, without having to calculate the density. The method takes its name
from the Gibbs random fields in image-processing models starting with the paper of
Geman and Geman [101]. Its roots can be traced back to the 1950s; see Robert and
Casella [201] for a brief summary of the early history.

To illustrate the idea of the Gibbs sampler, consider the case of two random
variables X and Y that have a joint bivariate density f (x, y). Assume that simulation
of X from f (x) cannot be done directly but we can easily sample X from f (x |y)
and Y from f (y|x). Then, the Gibbs sampler generates samples as follows:

Algorithm 2.2 (Gibbs sampler, bivariate case)
1. Initialise y(l=0) with an arbitrary value within a support of Y .
2. For l = 1, . . . , L

a. simulate x (l) from f
(
x |y(l−1)

)
;
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b. simulate y(l) from f
(
y|x (l));

3. Next l (i.e. do an increment, l = l + 1, and return to step 2).

Under quite general conditions f (x, y) is a stationary distribution of the chain
{(x (l), y(l)), l = 1, 2, . . .}; and the chain is ergodic with a limiting distribution
f (x, y), that is the distribution of x (l) converges to f (x) for large l.

Gibbs sampling can be thought of as a practical implementation of the fact that
knowledge of the conditional distributions is sufficient to determine a joint distribu-
tion (if it exists!).

The generalisation of the Gibbs sampling to a multidimensional case is as fol-
lows. Consider a random vector X with a joint density f (x). Denote full conditionals
fi (xi |x−i ) = f (xi |x1, . . . , xi−1, xi+1, . . . , xN ). Then, do the following steps:

Algorithm 2.3 (Gibbs sampler, multivariate case)

� Initialise x (l=0)
2 , . . . , x (l=0)

N with an arbitrary value.
� For l = 1, . . . , L

1) simulate x (l)1 from f1

(
x1|x (l−1)

2 , . . . , x (l−1)
N

)
;

2) simulate x (l)2 from f2

(
x2|x (l)1 , x (l−1)

3 , . . . , x (l−1)
N

)
;

...

N ) simulate x (l)N from fN

(
xN |x (l)1 , . . . , x (l−1)

N−1

)
;

� Next l.

Again, under general conditions the joint density f (x) is a stationary distribution
of the generated chain {x(l), l = 1, 2, . . . }; and the chain is ergodic, that is f (x) is
a limiting distribution of the chain.

2.11.3 Random Walk Metropolis-Hastings Within Gibbs

The Random Walk Metropolis-Hastings (RW-MH) within Gibbs algorithm is easy
to implement and often efficient if the likelihood function can be easily evalu-
ated. It is referred to as single-component Metropolis-Hastings in Gilks, Richardson
and Spiegelhalter ([106], section 1.4). The algorithm is not well known among
operational risk practitioners and we would like to mention its main features; see
Shevchenko and Temnov [217] for application in the context of operational risk and
Peters, Shevchenko and Wüthrich [186] for application in the context of a similar
problem in the insurance.
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The RW-MH within Gibbs algorithm creates a reversible Markov chain with a
stationary distribution corresponding to our target posterior distribution. Denote by
θ (l) the state of the chain at iteration l. The algorithm proceeds by proposing to
move the i-th parameter from the current state θ(l−1)

i to a new proposed state θ∗
i

sampled from the MCMC proposal transition kernel. Typically the parameters are
restricted by simple ranges, θi ∈ [ai , bi ], and proposals are sampled from the normal
distribution. Then, the logical steps of the algorithm are as follows.

Algorithm 2.4 (RW-MH within Gibbs)

1. Initialise θ(l=0)
i , i = 1, . . . , I by e.g. using MLEs.

2. For l = 1, . . . , L

a. Set θ (l) = θ (l−1).
b. For i = 1, . . . , I

i. Sample proposal θ∗
i from the transition kernel, e.g. from the

truncated normal density

f tr
N (θ

∗
i |θ(l)i , σi ) = fN (θ

∗
i |θ(l)i , σi )

FN (bi |θ(l)i , σi )− FN (ai |θ(l)i , σi )
, (2.57)

where fN (x |μ, σ) and FN (x |μ, σ) are the normal density and
its distribution with mean μ and standard deviation σ .

ii. Accept proposal with the acceptance probability

p(θ (l), θ∗) = min

{
1,

π(θ∗|x) f tr
N (θ

(l)
i |θ∗

i , σi )

π(θ (l)|x) f tr
N (θ

∗
i |θ(l)i , σi )

}
, (2.58)

where θ∗ = (θ
(l)
1 , . . . , θ

(l)
i−1, θ

∗
i , θ

(l−1)
i+1 , . . .), i.e. simulate U

from the uniform U(0, 1) and set θ(l)i = θ∗
i if U < p(θ (l), θ∗).

Note that the normalisation constant of the posterior does not
contribute here.

c. Next i

3. Next l.

This procedure builds a set of correlated samples from the target posterior distri-
bution. One of the most useful asymptotic properties is the convergence of ergodic
averages constructed using the Markov chain samples to the averages obtained under
the posterior distribution. The chain has to be run until it has sufficiently converged
to the stationary distribution (the posterior distribution) and then one obtains sam-
ples from the posterior distribution. General properties of this algorithm, including
convergence results, can be found in Robert and Casella ([201], sections 6–10).
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The RW-MH algorithm is simple in nature and easy to implement. However, for a
bad choice of the proposal distribution, the algorithm gives a very slow convergence
to the stationary distribution. There have been several recent studies regarding the
optimal scaling of the proposal distributions to ensure optimal convergence rates;
see Bedard and Rosenthal [24]. The suggested asymptotic acceptance rate optimis-
ing the efficiency of the process is 0.234. Usually, it is recommended that the σi in
(2.57) are chosen to ensure that the acceptance probability is roughly close to 0.234.
This requires some tuning of the σi prior to the final simulations.

2.11.4 ABC Methods

The standard MCMC described above assumes that the likelihood of the data for
given model parameters can easily be evaluated. If this is not the case, but synthetic
data are easily simulated from the model for given parameters, then the so-called
approximate Bayesian computation (ABC) methods can be utilised to estimate the
model. For example, this is the case when the severity is modelled by the α-stable
or g-and-h distributions that can easily be simulated but the density is not available
in closed form. ABC methods are relatively recent developments in computational
statistics; see Beaumont, Zhang and Balding [23] and Tavaré, Marjoram, Molitor
and Plagnol [234]. For applications in the context of operational risk and insurance;
see Peters and Sisson [188], and Peters, Wüthrich and Shevchenko [190].

Consider the data X and denote the model parameters by θ . Then the poste-
rior from which we wish to draw samples is π(θ |x) ∝ f (x|θ)π(θ). The purpose
of ABC is to sample from the posterior π(θ |x) without evaluating computation-
ally intractable f (x|θ). The logical steps of the simplest ABC algorithm are as
follows.

Algorithm 2.5 (Rejection Sampling ABC)
1. Choose a small tolerance level ε.
2. For l = 1, 2, . . .

a. Draw θ∗ from the prior π(·).
b. Simulate a synthetic dataset x∗ from the model given parameters θ∗, i.e.

simulate from f (·|θ∗).
c. Rejection condition: calculate a distance metric ρ(x, x∗) that measures

a difference between x and x∗. Accept the sample, i.e. set θ (l) = θ∗ if
ρ(x, x∗) ≤ ε, otherwise return to step a).

3. Next l.

It is easy to show that, if the support of the distributions on x is discrete and the
rejection condition ρ(x, x∗) ≤ ε is a simplest condition accepting the proposal only
if x∗ = x, then the obtained θ (1), θ (2), . . . are samples from π(θ |x). For general
case, the obtained samples θ (l), are from
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πABC (θ |x, ε) ∝
∫
π(θ)π(x∗|θ)gε(x|x∗)dx∗, (2.59)

where the weighting function

gε(x|x∗) ∝
{

1, if ρ(x, x∗) ≤ ε,

0, otherwise.
(2.60)

As ε → 0, for appropriate choices of distance ρ(·, ·),

πABC (θ |x, ε) → π(θ |x).

Of course, for a finite ε we obtain an approximation for π(θ |x).
To improve the efficiency, ρ(x, x∗) is often replaced by ρ(S(x), S(x∗)), where

S(x) is a summary statistic of the data sample. Other weighting functions can be
used. In general, the procedure is simple: given a realisation of the model parame-
ters, a synthetic dataset x∗ is simulated and compared to the original dataset x. Then
the summary statistic S(x∗) is calculated for simulated dataset x∗ and compared
to the summary statistic of the observed data S(x); and a distance ρ(S(x), S(x∗))
is calculated. Finally, a greater weight is given to the parameter values producing
S(x∗) close to S(x) according to the weighting function gε(x|x∗). The obtained
sample is from πABC (θ |x, ε) that converges to the target posterior π(θ |x) as ε → 0,
assuming that S(x) is a sufficient statistic3 and the weighting function converges to
a point mass on S(x). The tolerance, ε is typically set as small as possible for a
given computational budget. One can calculate the results for subsequently reduced
values of ε until the further reduction does not make material difference for the
model outputs. The described ABC can be viewed as a general augmented model

π(θ , x, x∗) = π(x|x∗, θ)π(x∗|θ)π(θ),

where π(x|x∗, θ) is replaced by g(x|x∗).
To improve the performance of ABC algorithm, it can be combined with MCMC

producing the stationary distribution πABC (θ |x, ε). For example, the MCMC-ABC
can be implemented as follows.

Algorithm 2.6 (MCMC-ABC)
1. Initialise θ (l=0).
2. For l = 1, . . . , L

a. Draw proposal θ∗ from the proposal density q(·|θ (l−1)).

3 A sufficient statistic is a function of the dataset x which summarises all the available sample
information about θ ; for a formal definition, see Berger ([27], section 1.7).
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b. Simulate a synthetic dataset x∗ from the model given parameters θ∗.
c. Accept the proposal with the acceptance probability

p(θ (l−1), θ∗) = min

{
1,

π(θ∗)q(θ (l−1)|θ∗)
π(θ (l−1))q(θ∗|θ (l−1))

1{ρ(S(x),S(x∗))≤ε}

}
,

i.e. simulate U from the uniform (0,1) and set θ (l) = θ∗ if U ≤
p(θ (l−1), θ∗), otherwise set θ (l) = θ (l−1). Here, 1{.} is a standard indica-
tor function.

3. Next l.

Various summary statistics of the dataset x1, . . . , xN are used in practice. For
example, the statistic S(x) can be defined as the following vectors:

� S = (μ̃, σ̃ ), where μ̃ and σ̃ are empirical mean and standard deviation of the
dataset x respectively;

� S = (x1, . . . , xN ), i.e. all data points in the dataset.

Popular choices for the distance metrics, ρ(S,S∗), include:

� Euclidean distance: ρ(S,S∗) = ∑L
l=1(Sl − S∗

l )
2;

� L1-distance ρ(S,S∗) = ∑L
l=1 |Sl − S∗

l |.

2.11.5 Slice Sampling

Often, the full conditional distributions in Gibbs sampler do not take standard
explicit closed forms and typically the normalising constants are not known in
closed form. Therefore this will exclude straightforward simulation using the inver-
sion method (see Corollary 2.1) or basic rejection sampling (see Corollaries 2.2
and 2.3). In this case, for sampling, one may adopt a Metropolis-Hastings within
Gibbs algorithm (described in Sect. 2.11.3). This typically requires tuning of the
proposal for a given target distribution that becomes computationally expensive,
especially for high dimensional problems. To overcome this problem one may use
an adaptive Metropolis-Hastings within Gibbs sampling algorithm; see Atchade and
Rosenthal [11] and Rosenthal [205]. An alternative approach, which is more effi-
cient in some cases, is known as a univariate slice sampler; see Neal [170]. The
latter was developed with the intention of providing a “black box” approach for
sampling from a target distribution which may not have a simple form.

A single iteration of the slice sampler algorithm for a toy example is presented in
Fig. 2.1. The intuition behind the slice sampling arises from the fact that sampling



2.11 Markov Chain Monte Carlo Methods 59

Fig. 2.1 Markov chain created for Θ and auxiliary random variable U ,(
u(1), θ (1)

)
, . . . ,

(
u(l−1), θ (l−1)

)
,
(
u(l), θ (l)

)
, . . . has a stationary distribution with the desired

marginal density p (θ)

from a univariate density p (θ) can always be achieved by sampling uniformly from
the region under the density p (θ).

Algorithm 2.7 (Univariate slice sampler)
1. Initialise θ(0) by any value within the support of p(θ).
2. For l = 1, 2, . . .

a. Sample a value u(l) ∼ U
(
0, p

(
θ(l−1)

))
.

b. Sample a value θ(l) uniformly from the level set Al = {
θ : p (θ) > u(l)

}
,

i.e. θ(l) ∼ U (Al) .

3. Next l.

By discarding the auxiliary variable sample u(l), one obtains correlated samples
θ(l) from p(·). Neal [170], demonstrates that a Markov chain (U,Θ) constructed in
this way will have a stationary distribution defined by a uniform distribution under
p (θ) and the marginal of Θ has desired stationary density p (θ). Additionally, Mira
and Tierney [165] proved that the slice sampler algorithm, assuming a bounded
target density p (θ) with bounded support, is uniformly ergodic.

There are many approaches that could be used in the determination of the level
sets Al for the density p(·); see Neal ([170], section 4). For example, one can use
a stepping out and a shrinkage procedure; see Neal ([170], p. 713, Figure 1). The
basic idea is that given a sampled vertical level u(l), the level sets Al can be found by
positioning an interval of widthw randomly around θ(l−1). This interval is expanded
in step sizes of width w until both ends are outside the slice. Then a new state is
obtained by sampling uniformly from the interval until a point in the slice Al is
obtained. Points that fail can be used to shrink the interval.
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Additionally, it is important to note that we only need to know the target full
conditional posterior up to normalisation; see Neal ([170], p. 710). To make more
precise the intuitive description of the slice sampler presented above, we briefly
detail the argument made by Neal on this point. Suppose we wish to sample a
random vector � whose density p (θ) is proportional to some function f (θ). This
can be achieved by sampling uniformly from the (n + 1)-dimensional region that
lies under the plot of f (θ). This is formalised by introducing the auxiliary random
variable U and defining a joint distribution over � and U (which is uniform over
the region {(�,U ) : 0 < u < f (θ)} below the surface defined by f (θ)) given by

p (θ,u) =
{

1/Z , if 0 < u < f (θ) ,
0, otherwise,

(2.61)

where Z = ∫
f (θ) dθ . Then the target marginal density for � is given by

p (θ) =
∫ f (θ)

0

1

Z
du = f (θ)

Z
, (2.62)

as required.
The simplest way to apply the slice sampler in a multivariate case is by applying

the univariate slice sampler for each full conditional distribution within the Gibbs
sampler, as in the example in Sect. 7.13.1.

2.12 MCMC Implementation Issues

There are several numerical issues when implementing MCMC. In practice, a
MCMC run consists of three stages: tuning, burn-in and sampling stages. Also, it
is important to assess the numerical errors of the obtained estimators due to finite
number of MCMC iterations.

2.12.1 Tuning, Burn-in and Sampling Stages

Tuning. The use of MCMC samples can be very inefficient for an arbitrary chosen
proposal distribution. Typically, parameters of a chosen proposal distribution are
adjusted to achieve a reasonable acceptance rate for each component. There have
been several studies regarding the optimal scaling of proposal distributions to ensure
optimal convergence rates. Gelman, Gilks and Roberts [100], Bedard and Rosenthal
[24] and Roberts and Rosenthal [202] were the first authors to publish theoretical
results for the optimal scaling problem in RW-MH algorithms with Gaussian pro-
posals. For the d-dimensional target distributions with independent and identically
distributed components, the asymptotic acceptance rate optimising the efficiency of
the process is 0.234 independent of the target density. Though for most problems
the posterior parameters are not independent Gaussian, it provides a practical guide.
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There is no need to be very precise in this stage. In practice, the chains with
acceptance rate between 0.2 and 0.8 work well. Typically, tuning is easy. In an
ad-hoc procedure, one can initialise the proposal distribution parameters with the
values corresponding to the proposal with a very small variability; and start the
chain. This will lead to a very high acceptance rate. Then run the chain and gradu-
ally change the parameters towards the values that correspond to the proposal with
a large uncertainty. This will gradually decrease the acceptance rate. Continue this
procedure until the acceptance rate is within 0.2–0.8 range. For example, for Gaus-
sian proposal choose a very small standard deviation parameter. Then increase the
standard deviation in small steps and measure the average acceptance rate over the
completed iterations until the rate is within 0.2–0.8 range. One can apply a reverse
procedure, that is start with parameter values corresponding to a very uncertain pro-
posal resulting in a very low acceptance rate. Then gradually change the parameters
towards the values corresponding to the proposal with small variability. Many other
alternative ways can be used in this spirit.

Gaussian proposals are often useful with the covariance matrix given by (2.43),
that is using Gaussian approximation for the posterior, or just MLE observed infor-
mation matrix (2.36) in the case of constant prior. An alternative approach is to
utilise a new class of Adaptive MCMC algorithms recently proposed in the litera-
ture; see Atchade and Rosenthal [11], and Rosenthal [204].

Burn-in stage. Subject to regularity conditions, the chain converges to the station-
ary target distribution. The number of iterations required for the chain to converge
should be discarded and called burn-in iterations. Again, we do not need to identify
this quantity precisely. Rough approximations of the order of magnitude work well.
Visual inspections of the chain plot is the most commonly used method. If the chain
is run for long enough then the impact of these burn-in iterations on the final esti-
mates is not material. There are many formal convergence diagnostics that can be
used to determine the length of burn-in; for a review, see Cowles and Carlin [63].

Sampling stage. Consider the chain {θ (1), θ (2), . . . , θ (L)} and the number of burn-
in iterations is Lb. Then, θ (Lb+1), θ (Lb+2), . . . , θ (L) are considered as dependent
samples from the target distribution π(θ |x) and used for estimation purposes. For
example, E[g(�)|X = x] is estimated as

E[g(�)|X = x] =
∫

g(θ)π(θ |x)dθ ≈ 1

L − Lb

L∑

l=Lb+1

g(θ (l)). (2.63)

Typically, when we calculate the posterior characteristics using MCMC samples, we
assume that the samples are taken after burn-in and Lb is dropped in corresponding
formulas to simplify notation.

In addition to visual inspection of MCMC, checking that after the burn-in period
the samples are mixing well over the support of the posterior distribution, it is useful
to monitor the serial correlation of the MCMC samples. For a given chain sample
θ
(1)
i , . . . , θ

(L)
i , the autocorrelation at lag k is estimated as
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ÂCF[θi , k] = 1

(L − k )̂s2

L−k∑

l=1

(θ
(l)
i − μ̂)(θ

(l+k)
i − μ̂), (2.64)

where μ̂ and ŝ2 are the mean and variance of a sample θ(1)i , . . . , θ
(L)
i . In well mixed

MCMC samples, the autocorrelation falls to near zero quickly and stays near zero
at larger lags. It is useful to find a lag kmax where the autocorrelations seem to have
“died out”, that is fallen to near zero (for some interesting discussion on this issue,
see for example Kass, Carlin, Gelman and Neal [133]). It is not unusual to choose
a kmax

i for each component such that the autocorrelation at lag kmax
i has reduced to

less than 0.01.

Example 2.3 To illustrate the above described stages, consider a dataset of the
annual counts n = (9, 12, 7, 9) simulated from Poisson(10). Then, we obtain the
chain λ(0), λ(1), . . . using RW-MH algorithm with the Gaussian proposal distribu-
tion for the Poisson(λ) model and constant prior on a very wide range [0.1, 100].
Figure 2.2 shows the chains in the case of different starting values λ(0) and dif-
ferent standard deviations σRW of the Gaussian proposal. One can see that after
the burn-in stage indicated by the vertical broken line, the chain looks like sta-
tionary. Figure 2.2a, b were obtained when σRW = ŝtdev[̂λMLE] ≈ 1.521 leading
to the acceptance probability approximately 0.7, while Fig. 2.2c, d were obtained
when σRW = 0.4 and σRW = 30 leading to the acceptance probability about 0.91
and 0.10 respectively. The MLE was calculated in the usual way as ŝtdev[̂λMLE] =
(
∑m

i=1 ni/m)1/2/
√

m, where m = 4. The impact of the value of σRW is easy to see:
the chains on Fig. 2.2c, d are mixing slowly (moves slowly around the support of the
posterior) while the chains on Fig. 2.2a, b are mixing rapidly. Slow mixing means
that much longer chain should be run to get good estimates.

2.12.2 Numerical Error

Due to the finite number of iterations, MCMC estimates have numerical error that
reduces as the chain length increases. Consider the estimator

Ω̂ = Ê[g(�)|X = x] = 1

L

L∑

l=1

g(�(l)). (2.65)

If the samples �(1), . . . ,�(L) are independent and identically distributed then the
standard error of Ω̂ (due to the finite L) is estimated using

stdev[Ω̂] = stdev[g(�)|X = x]/√L,

where stdev[g(�)|X] is estimated by the standard deviation of the sample g(�(l)),
l = 1, . . . , L . This formula does not work for MCMC samples due to serial
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Fig. 2.2 MCMC chains of λ parameter of Poisson(λ) model in the case of different starting
points λ(0) and different standard deviations of the Gaussian proposal distribution: (a) starting
point λ(0) = 30 and σRW = 1.521; (b) λ(0) = 1 and σRW = 1.521; (c) λ(0) = 30 and σRW = 0.4;
(d) λ(0) = 30 and σRW = 30. The burn-in stage is to the left of the vertical broken line. The
dataset consisting of the annual number of events (9, 12, 7, 9) over 4 years was simulated from
Poisson(10)
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correlations between the samples. Of course one can keep every kmax-th sample
from the chain to get approximately independent samples, but it is always a subop-
timal approach; see MacEachern and Berliner [152].

Effective sample size. If there is only one parameter θ , then one of the popular
approaches is to calculate effective sample size, Tef f = T/τ , where τ is autocorre-
lation time

τ = 1 + 2
∞∑

k=1

ACF[θ, k]. (2.66)

To estimate τ , it is necessary to cut off the sum in (2.66) at a value of k = kmax,
where the autocorrelations seem to have fallen to near zero. Then the standard error
of the Ω̂ (2.65) is estimated using

stdev[Ω̂] = stdev[g(Θ)]√
L/τ

;

see Ripley [199], Neal [168].

Batch sampling. Probably the most popular approach to estimate the numeri-
cal error of the MCMC posterior averages is a so-called batch sampling; see
section 3.4.1 in Gilks, Richardson and Spiegelhalter [106]. Consider MCMC pos-
terior samples �(1), . . . ,�(L) of � with the length L = K × N , and an estimator
Ω̂ = ∑L

l=1 g(�(l)) of E[g(�)]. If N is sufficiently large, the means

Ω̂ j = 1

N

j×N∑

i=( j−1)N+1

g(�(i)), j = 1, . . . , K (2.67)

are approximately independent and identically distributed. Then the overall estima-
tor and its variance are

Ω̂ = 1

K
(Ω̂1 + · · · + Ω̂K ),

Var[Ω̂] = 1

K 2
(Var[Ω̂1] + · · · + Var[Ω̂K ]) = σ 2

K
,

where σ 2 = Var[Ω̂1] = · · · = Var[Ω̂K ]. In the limit of large K , by the central limit
theorem (i.e. we also assume that σ 2 is finite), the distribution of Ω̂ is normal with
the standard deviation σ/

√
K . The latter is referred to as the standard error of Ω̂ .

Finally, σ 2 can be estimated using sample variance

σ̂ 2 = 1

K − 1

K∑

j=1

(Ω̂ j − Ω̂)2. (2.68)
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Note that K is the number of quasi-independent bins, and N = L/K is the size
of each bin or batch. Typically, in practice K ≥ 20 and N ≥ 100kmax, where
kmax = max(kmax

1 , kmax
2 , . . .) is the maximum of the cut-off lags over components.

In general, we would like to run the chain until the numerical error is not material.
So, one can set N using kmax identified during tuning and burning stages, e.g. set
N = 100kmax, then run the chain in batches until the numerical error of the estimates
is less than the desired accuracy.

2.12.3 MCMC Extensions

Sometimes, in the developed Bayesian models, there is a strong correlation between
the model parameters in the posterior. In extreme cases, this can cause slow rates
of convergence in the Markov chain to reach the ergodic regime, translating into
longer Markov chain simulations. In such a situation several approaches can be tried
to overcome this problem.

The first involves the use of a mixture transition kernel combining local and
global moves. For example, one can perform local moves via a univariate slice
sampler and global moves via an independent Metropolis-Hastings sampler with
adaptive learning of its covariance structure. Such an approach is known as a hybrid
sampler; see comparisons in Brewer, Aitken and Talbot [36]. Alternatively, for the
global move, if determination of level sets in multiple dimensions is not problematic
(for the model under consideration), then some of the multivariate slice sampler
approaches designed to account for correlation between parameters can be incorpo-
rated; see Neal [170] for details.

Another approach to break correlation between parameters in the posterior is via
the transformation of the parameter space. If the transformation is effective this will
reduce correlation between parameters of the transformed target posterior. Sampling
can then proceed in the transformed space, and then samples can be transformed
back to the original space. It is not always straightforward to find such transforma-
tions.

A third alternative is based on simulated tempering, introduced by Marinari and
Parisi [153] and discussed extensively in Geyer and Thompson [103]. In particular
a special version of simulated tempering, first introduced by Neal [169], can be
utilised in which one considers a sequence of target distributions {πl} constructed
such that they correspond to the objective posterior in the following way,

πl = (π (θ |x))γl (2.69)

with sequence {γl}. Then one can use the standard MCMC algorithms (e.g. slice
sampler), where π is replaced with πl .

Running a Markov chain such that at each iteration l we target the posterior πl

and then only keeping samples from the Markov chain corresponding to situations
in which γl = 1 can result in a significant improvement in exploration around
the posterior support. This can overcome slow mixing arising from a univariate
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sampling regime. The intuition for this is that for values of γl << 1 the target
posterior is almost uniform over the space, resulting in large moves being possible
around the support of the posterior. Then as γl returns to a value of 1, several itera-
tions later, it will be in potentially new unexplored regions of the posterior support.

For example, one can utilise a sine function,

γl = min

(
sin

(
2π

K
l

)
+ 1, 1

)

with large K (e.g. K = 1,000), which has its amplitude truncated to ensure it ranges
between 0 and 1. That is the function is truncated at γl = 1 for extended iteration
periods for our simulation index l to ensure the sampler spends significant time
sampling from the actual posterior distribution.

In the application of tempering one must discard many simulated states of the
Markov chain, whenever γl = 1. There is, however, a computational way to avoid
discarding these samples; see Gramacy, Samworth and King [111].

Finally, we note that there are several alternatives to a Metropolis-Hastings within
Gibbs sampler such as a basic Gibbs sampler combined with adaptive rejection
sampling (ARS), Gilks and Wild [107]. Note that ARS requires distributions to
be log-concave. Alternatively an adaptive version of this known as the adaptive
Metropolis rejection sampler could be used; see Gilks, Best and Tan [105].

2.13 Bayesian Model Selection

Consider a model M with parameter vector θ . The model likelihood with data x can
be found by integrating out the parameter θ

π(x|M) =
∫
π(x|θ, M)π(θ |M)dθ, (2.70)

where π(θ |M) is the prior density of θ in M . Given a set of K competing models
(M1, . . . , MK ) with parameters θ [1], . . . , θ [K ] respectively, the Bayesian alternative
to traditional hypothesis testing is to evaluate and compare the posterior probability
ratio between the models. Assuming we have some prior knowledge about the model
probability π(Mi ), we can compute the posterior probabilities for all models using
the model likelihoods

π(Mi |x) = π(x|Mi ) π(Mi )∑K
k=1 π(x|Mk) π(Mk)

. (2.71)

Consider two competing models M1 and M2, parameterised by θ [1] and θ [2]
respectively. The choice between the two models can be based on the posterior
model probability ratio, given by
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π(M1|x)
π(M2|x) = π(x|M1) π(M1)

π(y|M2) π(M2)
= π(M1)

π(M2)
B12, (2.72)

where B12 = π(x|M1)/π(x|M2) is the Bayes factor, the ratio of the posterior odds
of model M1 to that of model M2. As shown by Lavin and Scherrish [142], an accu-
rate interpretation of the Bayes factor is that the ratio B12 captures the change of the
odds in favour of model M1 as we move from the prior to the posterior. Jeffreys [127]
recommended a scale of evidence for interpreting the Bayes factors, which was later
modified by Wasserman [238]. A Bayes factor B12 > 10 is considered strong evi-
dence in favour of M1. Kass and Raftery [131] give a detailed review of the Bayes
factors.

Typically, the integral (2.70) required by the Bayes factor is not analytically
tractable, and sampling based methods must be used to obtain estimates of the model
likelihoods. There are quite a few methods in the literature for direct computation
of the Bayes factor or indirect construction of the Bayesian model selection crite-
rion, both based on MCMC outputs. The popular methods are direct estimation of
the model likelihood thus the Bayes factor; indirect calculation of an asymptotic
approximation as the model selection criterion; and direct computation of the pos-
terior model probabilities, as discussed below.

Popular model selection criteria, based on simplifying approximations, include
the Deviance information criterion (DIC) and Bayesian information criterion (BIC);
see e.g. Robert ([200], chapter 7).

In general, given a set of possible models (M1, . . . , MK ), the model uncertainty
can be incorporated in Bayesian framework via considering the joint posterior for
the model and the model parameters π(Mk, θ [k]|x), where θ [k] is a vector of param-
eters for model k. Subsequently calculated posterior model probabilities π(Mk |x)
can be used to select an optimal model as the model with the largest probability or
average over possible models according to the full joint posterior.

Accurate estimation of the required posterior distributions usually involves devel-
opment of a Reversible Jump MCMC framework. This type of Markov chain sam-
pler is complicated to develop and analyse. It goes beyond the scope of this book
but interested reader can find details in Green [112]. In the case of small number of
models, Congdon [60] suggests to run a standard MCMC (e.g. RW-MH) for each
model separately and use the obtained MCMC samples to estimate π(Mk |x). It was
adopted in Peters, Shevchenko and Wüthrich [186] for modelling claims reserving
problem in the insurance. Using the Markov chain results for each model, in the
case of equiprobable nested models, this procedure calculates the posterior model
probabilities π(Mi |x) as

π(Mi |x) = 1

L

L∑

l=1

f
(

x|Mi , θ
(l)
[i]
)

∑K
j=1 f

(
x|M j , θ

(l)
[ j]
) , (2.73)

where θ (l)[i] is the MCMC posterior sample at Markov chain step l for model Mi ,

f (x|Mi , θ
(l)
[i]) is the joint density of the data x given the parameter vector θ (l)[i] for

model Mi , and L is the total number of MCMC steps after burn-in period.
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2.13.1 Reciprocal Importance Sampling Estimator

Given MCMC samples θ (l), l = 1, . . . , L from the posterior distribution obtained
through MCMC, Gelfand and Dey [99] proposed the reciprocal importance sam-
pling estimator (RISE) to approximate the model likelihood

p̂R I (x) =
[

1

L

L∑

l=1

h(θ (l))

π(x|θ (l)) π(θ (l))

]−1

, (2.74)

where h plays the role of an importance sampling density roughly matching the
posterior. Gelfand and Dey [99] suggested the multivariate normal or t distribution
density with mean and covariance fitted to the posterior sample.

The RISE estimator can be regarded as a generalisation of the harmonic mean
estimator suggested by Newton and Raftery [175]. The latter is obtained from the
RISE estimator by setting h = 1. Other estimators include the bridge sampling pro-
posed by Meng and Wong [159], and the Chib’s candidate’s estimator in Chib [56].
In a recent comparison study by Miazhynskaia and Dorffner [162], these estimators
were employed as competing methods for Bayesian model selection on GARCH-
type models, along with the reversible jump MCMC. It was demonstrated that the
RISE estimator (either with normal or t importance sampling density), the bridge
sampling method, and the Chib’s algorithm gave statistically equal performance
in model selection. Also, the performance more or less matched the much more
involved reversible jump MCMC.

2.13.2 Deviance Information Criterion

For a dataset X = x generated by the model with the posterior density π(θ |x), define
the deviance

D(θ) = −2 lnπ(x|θ)+ C, (2.75)

where the constant C is common to all candidate models. Then the deviance infor-
mation criterion (DIC) is calculated as

DI C = 2E[D(�)|X = x] − D(E[�|X = x])
= E[D(�)|X = x] + (E[D(�)|X = x] − D(E[�|X = x])), (2.76)

where

� E[·|X = x] is the expectation with respect to the posterior density of �.
� The expectation E[D(�)|X = x] is a measure of how well the model fits the

data; the smaller this is, the better the fit.
� The difference E[D(�)|X = x] − D(E[�|X = x]) can be regarded as the effec-

tive number of parameters. The larger this difference, the easier it is for the model
to fit the data.
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The DIC criterion favours the model with a better fit but at the same time
penalises the model with more parameters. Under this setting the model with the
smallest DIC value is the preferred model.

DIC is a Bayesian alternative to BIC (Schwarz’s criterion and also called the
Bayesian information criterion, Schwarz [209]) and AIC (Akaike’s information cri-
terion, Akaike [5]). For more details on the above-mentioned criteria, see e.g. Robert
([200], chapter 7).

Problems4

2.1 (�) Given independent and identically distributed data N1, N2, . . . , Nm from
Poisson(λ), find the maximum likelihood estimator Λ̂MLE (for parameter λ) and
its variance. Show that this variance is the same as the one obtained from a large
sample size normal approximation for MLE.

2.2 (� � �) Suppose there are independent and identically distributed data N =
(N1, . . . , Nm)

′ from Poisson(λ).

� Find in closed form the mean and variance of the posterior π(λ|N). Compare
these with the MLE and its variance calculated in Problem 2.1.

� Simulate Markov chain {λ(1), λ(2), . . . , λ(L)} for parameter λ using RW-MH
MCMC and dataset N as in Example 2.3. Estimate the mean and variance of
the chain samples and compare with the above calculated closed form posterior
mean and variance. Assume that L = 1000.

2.3 (� � �) For a Markov chain {λ(1), λ(2), . . . , λ(L)}, L = 1000, simulated in Prob-
lem 2.2, estimate the numerical error of the posterior mean that was estimated using
the chain samples. Repeat calculations for L = 4×103, L = 16×103 and compare
results.

2.4 (��) Consider random variables L1, . . . , L J and L = L1 + · · · + L J . If risk
measure �[L] is positively homogeneous, i.e. �[h Z ] = h�[Z ] for h > 0 and differ-
entiable, show that

�[L] =
J∑

j=1

∂�[L + hL j ]
∂h

∣∣∣∣
h=0

. (2.77)

2.5 (��) Given three independent risks, Zi ∼ Gamma(αi , β), with
α1 = 0.5, α2 = 1, α3 = 1.5 respectively and the scale parameter β = 1, find:

� the 0.999 VaR for each risk, VaR0.999[Zi ], i = 1, 2, 3;
� the 0.999 VaR of the total risk, VaR0.999[Z1 + Z2 + Z3]; and
� diversification

4 Problem difficulty is indicated by asterisks: (�) – low; (��) – medium, (� � �) – high.
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1 − VaR0.999

⎡

⎣
∑

j

Z j

⎤

⎦
/∑

j

VaR0.999[Z j ].

Hint: use the fact that the sum of two independent random variables, X1 ∼
Gamma(α1, β) and X2 ∼ Gamma(α2, β), is distributed from Gamma(α1+α2, β).

2.6 (�) Show that expected shortfall of a continuous random variable X (see Defini-
tion 2.14) can be calculated as

ESα[X ] = E[X |X ≥ VaRα[X ]].

That is, prove Proposition 2.1.

2.7 (�) Calculate mean, variance and 0.9 quantile of a random variable X that has:

� a finite mass at zero, Pr[X = 0] = 0.5; and
� density 1

2 f (c)(x) for x > 0, where f (c)(x) is the density of the lognormal distri-
bution LN (μ, σ ) with μ = 0 and σ = 1.

Compare the results with the case when X ∼ LN (0, 1).

2.8 (�) Calculate mean, variance, skewness, mode, median and 0.9 quantile of a
random variable X ∼ Pareto(ξ = 3, x0 = 1).

2.9 (�) Suppose X ∼ Pareto(ξ, x0). Given two quantiles q1 and q2 of random
variable X at the confidence levels α1 and α2 respectively (α1 = α2), find the
distribution parameters ξ and x0.



Chapter 3
Calculation of Compound Distribution

Science never solves a problem without creating ten more.
Bernard Shaw

Abstract Estimation of the capital under the LDA requires evaluation of compound
loss distributions. Closed-form solutions are not available for the distributions typ-
ically used in operational risk and numerical evaluation is required. This chapter
describes numerical algorithms that can be successfully used for this problem. In
particular Monte Carlo, Panjer recursion and Fourier transformation methods are
presented. Also, several closed-form approximations are reviewed.

3.1 Introduction

The LDA model (2.1) requires calculation of the distribution for the aggregate (com-
pound) loss X1 + · · · + X N , where the frequency N is a discrete random variable.
This is one of the classical problems in risk theory. Before the era of personal com-
puters, it was calculated using approximations such as that based on the asymp-
totic central limit theory or on ad-hoc reasoning using, for example, shifted gamma
approximation. With modern computer processing power, these distributions can be
calculated virtually exactly using numerical algorithms. The easiest to implement
is the Monte Carlo method. However, because it is typically slow, Panjer recursion
and Fourier inversion techniques are widely used. Both have a long history, but
their applications to computing very high quantiles of the compound distribution
functions with high frequencies and heavy tails are only recent developments and
various pitfalls exist. The methods described in this chapter are based on the follow-
ing model assumptions.

Model Assumptions 3.1 The annual loss in a risk cell is modelled by a compound
random variable

Z =
N∑

i=1

Xi , (3.1)

P. Shevchenko, Modelling Operational Risk Using Bayesian Inference,
DOI 10.1007/978-3-642-15923-7_3, C© Springer-Verlag Berlin Heidelberg 2011
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where

� N is the number of events (frequency) over one year modelled as a discrete ran-
dom variable with probability mass function pk = Pr[N = k], k = 0, 1, . . .;

� Xi , i ≥ 1 are positive severities of the events (loss amounts) modelled as inde-
pendent and identically distributed random variables from a continuous distri-
bution function F(x) with x ≥ 0 and F(0) = 0. The corresponding density
function is denoted as f (x);

� N and Xi are independent for all i , i.e. the frequencies and severities are inde-
pendent;

� The distribution and density functions of the annual loss Z are denoted as H(z)
and h(z) respectively;

� All model parameters (parameters of the frequency and severity distributions)
are assumed to be known.

Remark 3.1

� Only one risk cell and one time period are considered, so the indices indicating
the time period and risk cell in the LDA model (2.1) are dropped in this section.

� Typically, the calculation of the annual loss distribution is required for the next
year, i.e. year T + 1 in (2.1).

� In this chapter, the model parameters are assumed to be known. However, in
reality, the model parameters are unknown and estimated using past data over
T years. Estimation of the parameters and implications for the annual loss distri-
bution are the topics of the chapters that follow.

� Note that there is a finite probability of no loss occurring over the considered
time period if N = 0 is allowed, i.e. Pr[Z = 0] = Pr[N = 0].

� The methods described in this chapter can be used to calculate the distribution of
compound loss over any time period. For simplicity, only the most relevant case
of a one-year time period is considered here. Extension to the case of other time
periods is trivial.

In general, there are two types of analytic solutions for calculating the compound
distribution H(z). These are based on convolutions and method of characteristic
functions. Typically, the analytic solutions do not have closed form and numerical
methods (such as Monte Carlo, Panjer recursion, Fast Fourier Transform (FFT) or
direct integration) are required. These solutions and methods are described in the
following sections.1

3.1.1 Analytic Solution via Convolutions

It is well known that the density and distribution functions of the sum of two inde-
pendent continuous random variables Y1 ∼ F1(·) and Y2 ∼ F2(·), with the densities

1 Computing time quoted in this chapter is for a standard Dell laptop Latitude D820 with Intel(R)
CPU T2600 @ 2.16 GHz and 3.25GB of RAM.
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f1(·) and f2(·) respectively, can be calculated via convolution as

fY1+Y2(y) = ( f1 ∗ f2)(y) =
∫

f2(y − y1) f1(y1)dy1 (3.2)

and

FY1+Y2(y) = (F1 ∗ F2)(y) =
∫

F2(y − y1) f1(y1)dy1 (3.3)

respectively. Hereafter, notation f1 ∗ f2 denotes convolution of f1 and f2 functions
as defined above. Thus the distribution of the annual loss (3.1) can be calculated via
convolutions as

H(z) = Pr[Z ≤ z] =
∞∑

k=0

Pr[Z ≤ z|N = k] Pr[N = k]

=
∞∑

k=0

pk F (k)∗(z). (3.4)

Here, F (k)∗(z) = Pr[X1 + · · · + Xk ≤ z] is the k-th convolution of F(·) calculated
recursively as

F (k)∗(z) =
∫ z

0
F (k−1)∗(z − x) f (x)dx

with

F (0)∗(z) =
{

1, z ≥ 0,
0, z < 0.

Note that the integration limits are 0 and z because the considered severities are non-
negative. Though the obtained formula is analytic, its direct calculation is difficult
because, in general, the convolution powers are not available in closed form. Pan-
jer recursion and FFT, discussed in Sects. 3.3 and 3.4, are very efficient numerical
methods to calculate these convolutions.

3.1.2 Analytic Solution via Characteristic Functions

The method of characteristic functions for computing probability distributions is a
powerful tool in mathematical finance. It is explained in many textbooks on prob-
ability theory such as Pugachev ([196], chapter 4). In particular, it is used for cal-
culating aggregate loss distributions in the insurance, operational risk and credit
risk. Typically, the frequency-severity compound distributions cannot be found in
closed form but can be conveniently expressed through the inverse transform of the
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characteristic functions. The characteristic function of the severity density f (x) is
formally defined as

ϕ(t) =
∞∫

−∞
f (x)eitx dx, (3.5)

where i = √−1 is a unit imaginary number. Also, the probability generating func-
tion of a frequency distribution with probability mass function pk = Pr[N = k] is

ψ(s) =
∞∑

k=0

sk pk . (3.6)

Then, the characteristic function of the compound loss Z in model (3.1), denoted by
χ(t), can be expressed through the probability generating function of the frequency
distribution and characteristic function of the severity distribution as

χ(t) =
∞∑

k=0

(ϕ(t))k pk = ψ(ϕ(t)). (3.7)

In particular:

� If frequency N is distributed from Poisson(λ), then

χ(t) =
∞∑

k=0

(ϕ(t))k
e−λλk

k! = exp(λϕ(t)− λ); (3.8)

� If N is from negative binomial distribution NegBin(m, q), then

χ(t) =
∞∑

k=0

(ϕ(t))k
(

k + m − 1
k

)
(1 − q)kqm

=
(

q

1 − (1 − q)ϕ(t)

)m

. (3.9)

Given characteristic function, the density of the annual loss Z can be calculated via
the inverse Fourier transform as

h(z) = 1

2π

∞∫

−∞
χ(t) exp(−i t z)dt, z ≥ 0. (3.10)

In the case of nonnegative severities, the density and distribution functions of the
compound loss can be calculated using the following lemma.
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Lemma 3.1 For a nonnegative random variable Z with a characteristic function
χ(t), the density h(z) and distribution H(z) functions, z ≥ 0, are

h(z) = 2

π

∞∫

0

Re[χ(t)] cos(t z)dt, z ≥ 0; (3.11)

H(z) = 2

π

∞∫

0

Re[χ(t)] sin(t z)

t
dt, z ≥ 0. (3.12)

Proof The characteristic function of a non-negative random variable Z with the
density h(z), z ≥ 0 can be written as

χ(t) =
∞∫

−∞
h(z)eitzdz = Re[χ(t)] + iIm[χ(t)],

where

Re[χ(t)] =
∞∫

0

h(z) cos(t z)dz, Im[χ(t)] =
∞∫

0

h(z) sin(t z)dz.

Define a function h̃(z) such that h̃(z) = h(z) if z ≥ 0 and h̃(z) = h(−z) if
z < 0. Using symmetry property, the characteristic function for this extended
function is

χ̃ (t) =
∞∫

−∞
h̃(z)eitzdz =2

∞∫

0

h(z) cos(t z)dz = 2Re[χ(t)], χ̃(t) = χ̃ (−t).

Thus the density h(z) = h̃(z), z ≥ 0 can be retrieved as

h(z) = 1

2π

∞∫

−∞
χ̃(t)e−i t zdt = 1

π

∞∫

0

χ̃(t) cos(t z)dt = 2

π

∞∫

0

Re[χ(t)] cos(t z)dt

and the distribution can be calculated as

H(z) =
z∫

0

h(y)dy =
z∫

0

2

π
dy

∞∫

0

Re[χ(t)] cos(t y)dt = 2

π

∞∫

0

Re[χ(t)] sin(t z)

t
dt .

This completes the proof. �
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Remark 3.2 Changing variable x = t × z, the formula (3.12) can be rewritten as

H(z) = 2

π

∞∫

0

Re[χ(x/z)] sin(x)

x
dx,

which is often a useful representation to study limiting properties. In particular, in
the limit z → 0, it gives

H(z → 0) = 2

π
Re[χ(∞)]

∞∫

0

sin(x)

x
dx = Re[χ(∞)].

This leads to a correct limit H(0) = Pr[N = 0], because the severity characteristic
function ϕ(∞) → 0 (in the case of continuous severity distribution function). For
example, H(0) = exp(−λ) in the case of N ∼ Poisson(λ), and H(0) = qm for
N ∼ NegBin(m, q).

FFT and direct integration methods to calculate the above Fourier transforms are
discussed in details in the following sections.

3.1.3 Compound Distribution Moments

In general, the compound distribution cannot be found in closed form. However, its
moments can be expressed through the moments of the frequency and severity. It is
convenient to calculate the moments via characteristic function. In particular, one
can calculate the moments as

E[Zk] = (−i)k
dkχ(t)

dtk

∣∣∣∣
t=0

, k = 1, 2, . . . . (3.13)

Similarly, the central moments can be found as

μk = E[(Z − E[Z ])k]
= (−i)k

dkχ(t) exp(−i tE[Z ])
dtk

∣∣∣∣
t=0

, k = 1, 2, . . . . (3.14)

Here, for compound distribution, χ(t) is given by (3.7). Then, one can derive the
explicit expressions for all moments of compound distribution via the moments of
frequency and severity noting that ϕ(0) = 1 and using relations

dkψ(s)

dsk

∣∣∣∣
s=1

= E[N (N − 1) · · · (N − k + 1)], (3.15)
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(−i)k
dkϕ(t)

dtk

∣∣∣∣
t=0

= E[Xk
1], (3.16)

that follow from the definitions of the probability generating and characteristic func-
tions (3.6) and (3.5) respectively, though the expression is lengthy for high moments.
Sometimes, it is easier to work with the so-called cumulants (or semi-invariants)

κk = (−i)k
dk lnχ(t)

dtk

∣∣∣∣
t=0

, (3.17)

which are closely related to the moments. The moments can be calculated via the
cumulants and vice versa. In application, only the first four moments are most often
used with the following relations

μ2 = κ2 ≡ Var[Z ]; μ3 = κ3; μ4 = κ4 + 3κ2
2 . (3.18)

Then, closely related distribution characteristics, skewness and kurtosis, are

skewness = μ3

(μ2)3/2
, (3.19)

kurtosis = μ4

(μ2)2
− 3. (3.20)

The above formulas relating characteristic function and moments can be found
in many textbooks on probability theory such as Pugachev ([196], section 27).
The explicit expressions for the first four moments are given by the following
proposition.

Proposition 3.1 (Moments of compound distribution) The first four moments of
the compound random variable Z = X1 + · · · + X N , where X1, . . . , X N are inde-
pendent and identically distributed, and independent of N , are given by

E[Z ] = E[N ]E[X1],
Var[Z ] = E[N ]Var[X1] + Var[N ](E[X1])2,

E[(Z − E[Z ])3] = E[N ]E[(X1 − E[X1])3] + 3Var[N ]Var[X1]E[X1]
+ E[(N − E[N ])3](E[X1])3,

E[(Z − E[Z ])4] = E[N ]E[(X1 − E[X1])4] + 4Var[N ]E[(X1 − E[X1])3]E[X1]
+ 3 (Var[N ] + E[N ](E[N ] − 1)) (Var[X1])2
+ 6

(
E[(N − E[N ])3] + E[N ]Var[N ]

)
(E[X1])2Var[X1]

+ E[(N − E[N ])4](E[X1])4.

Here, it is assumed that the required moments of severity and frequency exist.
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Proof This follows from the expression for characteristic function of the compound
distribution (3.7) and formulas (3.15). The calculus is simple but lengthy and is left
for the reader as Problem 3.9. �

Example 3.1 If frequencies are Poisson distributed, N ∼ Poisson(λ), then

E[N ] = Var[N ] = E[(N − E[N ])3] = λ,

E[(N − E[N ])4] = λ(1 + 3λ),

and compound loss moments calculated using Proposition 3.1 are

E[Z ] = λE[X1], Var[Z ] = λE[X2
1], E[(Z − E[Z ])3] = λE[X3

1],
E[(Z − E[Z ])4] = λE[X4

1] + 3λ2(E[X2
1])2 (3.21)

Moreover, if the severities are lognormally distributed, X1 ∼ LN (μ, σ ), then

E[Xk
1] = exp(kμ+ k2σ 2/2). (3.22)

It is illustrative to see that in the case of compound Poisson, the moments can
easily be derived using the following proposition

Proposition 3.2 (Cumulants of compound Poisson) The cumulants of the com-
pound random variable Z = X1 + · · · + X N , where X1, . . . , X N are independent
and identically distributed, and independent of N , are given by

κk = λE[Xk
1], k = 1, 2, . . .

Proof Using the definition of cumulants (3.17) and the characteristic function for
compound Poisson (3.8), calculate

κk = (−i)k
dk lnχ(t)

dtk

∣∣∣∣
t=0

= λ(−i)k
dkϕ(t)

dtk

∣∣∣∣
t=0

= λE[Xk
i ], k = 1, 2, . . .

�

3.1.4 Value-at-Risk and Expected Shortfall

Having calculated the compound loss distribution, the risk measures such as VaR
and expected shortfall should be evaluated. Analytically, VaR of the compound loss
is calculated as the inverse of the compound distribution

VaRα[Z ] = H−1(α) (3.23)

and the expected shortfall of the compound loss above the quantile qα = VaRα[Z ],
assuming that qα > 0, is
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ESα[Z ] = E[Z |Z ≥ qα] = 1

1 − H(qα)

∞∫

qα

zh(z)dz

= E[Z ]
1 − H(qα)

− 1

1 − H(qα)

qα∫

0

zh(z)dz, (3.24)

where E[Z ] = E[N ]E[X1] is the mean of compound loss Z . Note that ESα[Z ] is
defined for a given quantile qα , that is, the quantile H−1(α) has to be computed
first. It is easy to show (see Exercise 3.1) that in the case of nonnegative severities,
the above integral can be calculated via characteristic function as

ESα[Z ] = 1

1 − H(qα)

×
⎡

⎣E[Z ] − H(qα)qα + 2qα
π

∞∫

0

Re
[
χ(x/qα)

] 1 − cos x

x2
dx

⎤

⎦ . (3.25)

Remark 3.3
� Strictly speaking, in the above formulas (3.24) and (3.25), we assumed that the

quantile is positive, qα > 0, i.e. α > Pr[Z = 0] and we do not have compli-
cations due to discontinuity at zero. The case of qα = 0 is not really important
to operational risk practice, but can easily be treated if required; see Remark 2.7
and formula (2.16).

� In the above formulas (3.24) and (3.25), H(qα) can be replaced by α. We kept
H(qα), so that the formulas can easily be modified if expected exceedance
E[Z |Z ≥ L] should be calculated. In this case, qα should be replaced by L
in these formulas.

3.2 Monte Carlo Method

The easiest numerical method to calculate the compound loss distribution is Monte
Carlo with the following logical steps.

Algorithm 3.1 (Monte Carlo for compound loss distribution)
1. For k = 1, . . . , K

a. Simulate the annual number of events N from the frequency distribu-
tion.

b. Simulate independent severities X1, . . . , X N from the severity distri-
bution.

c. Calculate Zk = ∑N
i=1 Xi .

2. Next k (i.e. do an increment k = k + 1 and return to step 1).

All random numbers simulated in the above are independent.
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Obtained Z1, . . . , ZK are samples from a compound distribution H(·). Distri-
bution characteristics can be estimated using the simulated samples in the usual
way described in many textbooks. Here, we just mention the quantile and expected
shortfall which are of primary importance for operational risk.

3.2.1 Quantile Estimate

Denote samples Z1, . . . , ZK sorted into the ascending order as Z̃1 ≤ . . . ≤ Z̃K ,
then a standard estimator of the quantile qα = H−1(α) is

Q̂α = Z̃�Kα�+1. (3.26)

Here, �.� denotes rounding downward. Then, for a given realisation of the sample
Z = z, the quantile estimate is q̂α = z̃�Kα�+1. It is important to estimate numerical
error (due to the finite number of simulations K ) in the quantile estimator. Formally,
it can be assessed using the following asymptotic result

h(qα)
√

K√
α(1 − α)

(Q̂α − qα) → N (0, 1), as K → ∞; (3.27)

see e.g. Stuart and Ord ([224], pp. 356–358) and Glasserman ([108], p. 490). This
means that the quantile estimator Q̂α converges to the true value qα as the sample
size K increases and asymptotically Q̂α is normally distributed with the mean qα
and standard deviation

stdev[Q̂α] =
√
α(1 − α)

h(qα)
√

K
. (3.28)

However, the density h(qα) is not known and the use of the above formula is
difficult. In practice, the error of the quantile estimator is calculated using a non-
parametric statistic by forming a conservative confidence interval [Z̃ (r), Z̃ (s)] to
contain the true quantile value qα with the probability at least γ :

Pr[Z̃r ≤ qα ≤ Z̃s] ≥ γ, 1 ≤ r < s ≤ K . (3.29)

Indices r and s can be found by utilising the fact that the true quantile qα is located
between Z̃ M and Z̃ M+1 for some M . The number of losses M not exceeding the
quantile qα has a binomial distribution, Bin(K , α), because it is the number of
successes from K independent and identical attempts with success probability α.
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Thus the probability that the interval [Z̃r , Z̃s] contains the true quantile is simply

Pr[r ≤ M ≤ s − 1] =
s−1∑

i=r

(
K
i

)
αi (1 − α)K−i . (3.30)

One typically tries to choose r and s that are symmetric around and closest to the
index �Kα� + 1, and such that the probability (3.30) is not less than the desired
confidence level γ. The mean and variance of the binomial distribution are Kα and
Kα(1 − α) respectively. For large K , approximating the binomial by the normal
distribution with these mean and variance leads to a simple approximation for the
conservative confidence interval bounds:

r = �l� , l = Kα − F−1
N ((1 + γ )/2)

√
Kα(1 − α),

s = �u� , u = Kα + F−1
N ((1 + γ )/2)

√
Kα(1 − α), (3.31)

where �.� denotes rounding upwards and F−1
N (·) is the inverse of the standard nor-

mal distribution N (0, 1). The above formula works very well for Kα(1 − α) ≥ 50
approximately.

Remark 3.4

� A large number of simulations, typically K ≥ 105, should be used to achieve
a good numerical accuracy for the 0.999 quantile. However, a priori, the num-
ber of simulations required to achieve a specific accuracy is not known. One of
the approaches is to continue simulations until a desired numerical accuracy is
achieved.

� If the number of simulations to get acceptable accuracy is very large (e.g.
K > 107) then you might not be able to store the whole array of samples
Z1, . . . , ZK when implementing the algorithm, due to computer memory lim-
itations. However, if you need to calculate just the high quantiles then you need
to save only �Kα�+1 largest samples to estimate the quantile (3.26). This can be
done by using the sorting on the fly algorithms, where you keep a specified num-
ber of largest samples as you generate the new samples; see Press, Teukolsky,
Vetterling and Flannery ([195], section 8.5). Moments (mean, variance, etc) can
also be easily calculated on the fly without saving all samples into the computer
memory.

� To use (3.31) for estimation of the quantile numerical error, it is important
that MC samples Z1, . . . , ZK are independent and identically distributed. If the
samples are correlated, for example generated by MCMC, then (3.31) can sig-
nificantly underestimate the error. In this case, one can use batch sampling or
effective sample size methods described in Sect. 2.12.2.

Example 3.2 Assume that K = 5 × 104 independent samples were drawn from
LN (0, 2). Suppose that we would like to construct a conservative confidence
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interval to contain the 0.999 quantile with probability at least γ = 0.95. Then, sort
the samples in ascending order and using (3.31) calculate F−1

N ((1 + γ )/2) ≈ 1.96,
r = 49, 936 and s = 49, 964 and �Kα� + 1 = 49, 951.

3.2.2 Expected Shortfall Estimate

Given independent samples Z1, . . . , ZK from the same distribution and the esti-
mator Q̂α of VaRα[Z ], a typical estimator for expected shortfall ωα = E[Z |Z ≥
VaRα[Z ]] is

Ω̂α =
∑K

k=1 Zk1{Zk≥Q̂α}∑K
k=1 1{Zk≥Q̂α}

=
∑K

k=1 Zk1{Zk≥Q̂α}
K − �Kα� . (3.32)

It gives an expected shortfall estimate ω̂α for a given sample realisation, Z = z.
From the strong law of large numbers applied to the numerator and denominator
and the convergence of the quantile estimator (3.27), it is clear that

Ω̂α → ωα (3.33)

with probability 1, as the sample size increases. If we assume that the quantile qα is
known, then in the limit K → ∞, the central limit theorem gives

√
K

σ
(Ω̂α − ωα) → N (0, 1), (3.34)

where σ , for a given realisation Z = z, can be estimated as

σ̂ 2 = K

∑K
k=1(zk − ω̂α)

21zk≥qα(∑K
k=1 1zk≥qα

)2
.

Then, the standard deviation of Ω̂α is estimated by σ̂ /
√

K ; see Glasserman [109].
However, it will underestimate the error in expected shortfall estimate because the
quantile qα is not known and estimated itself by q̂α . Approximation for asymptotic
standard deviation of expected shortfall estimate can be found in Yamai and Yoshiba
([242], Appendix 1). In general, the standard deviation of the MC estimates can
always be evaluated by simulating K samples many times; see the batch sampling
method described in Sect. 2.12.2. For heavy-tailed distributions and high quantiles,
it is typically observed that the error in quantile estimate is much smaller than the
error in expected shortfall estimate.

Remark 3.5 Expected shortfall does not exist for distributions with infinite mean.
Such distributions were reported in the analysis of operational risk losses; see
Moscadelli [166]. This will be discussed more in Chap. 6.
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3.3 Panjer Recursion

It appears that, for some class of frequency distributions, the compound distribution
calculation via the convolution (3.4) can be reduced to a simple recursion introduced
by Panjer [180] and referred to as Panjer recursion. A good introduction of this
method in the context of operational risk can be found in Panjer ([181], sections 5
and 6). Also, a detailed treatment of Panjer recursion and its extensions are given in
a recently published book Sundt and Vernic [229]. Below we summarise the method
and discuss implementation issues.

Firstly, Panjer recursion is designed for discrete severities. Thus, to apply the
method for operational risk, where severities are typically continuous, the continu-
ous severity should be replaced with the discrete one. For example, one can round
all amounts to the nearest multiple of monetary unit δ, e.g. to the nearest USD 1000.
Define

fk = Pr[Xi = kδ], pk = Pr[N = k], hk = Pr[Z = kδ], (3.35)

with f0 = 0 and k = 0, 1, . . . . Then, the discrete version of (3.4) is

hn =
n∑

k=1

pk f (k)∗n , n ≥ 1,

h0 = Pr[Z = 0] = Pr[N = 0] = p0, (3.36)

where f (k)∗n = ∑n
i=0 f (k−1)∗

n−i fi with f (0)∗0 = 1 and f (0)∗n = 0 if n ≥ 1.

Remark 3.6

� Note that the condition f0 = Pr[X = 0] = 0 implies that f (k)∗n = 0 for k > n
and thus the above summation is up to n only.

� If f0 > 0, then f (k)∗n > 0 for all n and k; and the upper limit in summation (3.36)
should be replaced by infinity.

� The number of operations to calculate h0, h1, . . . , hn using (3.36) explicitly is of
the order of n3.

If the maximum value for which the compound distribution should be calculated
is large, the number of computations become prohibitive due to O(n3) operations.
Fortunately, if the frequency N belongs to the so-called Panjer classes, (3.36) is
reduced to a simple recursion introduced by Panjer [180] and referred to as Panjer
recursion.

Theorem 3.1 (Panjer recursion) If the frequency probability mass function pn,
n = 0, 1, . . . satisfies

pn =
(

a + b

n

)
pn−1, for n ≥ 1 and a, b ∈ R, (3.37)
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then it is said to be in Panjer class (a, b, 0) and the compound distribution (3.36)
satisfies the recursion

hn = 1

1 − a f0

n∑

j=1

(
a + bj

n

)
f j hn− j , n ≥ 1,

h0 =
∞∑

k=0

( f0)
k pk . (3.38)

The initial condition in (3.38) is simply a probability generating function of N at
f0, i.e. h0 = ψ( f0), see (3.6). If f0 = 0, then it simplifies to h0 = p0. It was shown
in Sundt and Jewell [228], that (3.37) is satisfied for the Poisson, negative binomial
and binomial distributions. The parameters (a, b) and starting values h0 are listed
in Table 3.1; also see Appendix A.1 for definition of the distributions.

Remark 3.7

� If severity is restricted by a value of the largest possible loss m, then the upper
limit in the recursion (3.38) should be replaced by min(m, n).

� The Panjer recursion requires O(n2) operations to calculate h0, . . . , hn in com-
parison with asymptotic O(n3) of explicit convolution.

� Strong stability of Panjer recursion was established for the Poisson and neg-
ative binomial cases; see Panjer and Wang [182]. The accumulated rounding
error of the recursion increases linearly in n with a slope not exceeding one.
Serious numerical problems may occur for the case of binomial distribution.
Typically, instabilities in the recursion appear for significantly underdispersed
frequencies of severities with a large negative skewness which are not typical in
operational risk.

� In the case of severities from a phase-type distribution (distribution with a ratio-
nal probability generating function), the recursion (3.38) is reduced to O(n)
operations; see Hipp [121]. Typically, the severity distributions are not phase-
type distributions and approximation is required. This is useful for modelling
small losses but not suitable for heavy-tailed distributions because the phase-type
distributions are light tailed; see Bladt [28] for a review.

Table 3.1 Panjer recursion starting values h0 and (a, b) parameters for Poisson, binomial and
negative binomial distributions

a b h0

Poisson(λ) 0 λ exp(λ( f0 − 1))

NegBin(r, q) 1 − q (1 − q)(r − 1)
(

1 + (1 − f0)
1−q

q

)−r

Bin(m, q) − q
1−q

q(m+1)
1−q (1 + q( f0 − 1))m
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The Panjer recursion can be implemented as follows:

Algorithm 3.2 (Panjer recursion)
1. Initialisation: calculate f0 and h0, see Table 3.1, and set H0 = h0.
2. For n = 1, 2, . . .

a. Calculate fn . If severity distribution is continuous, then fn can be
found as described in Sect. 3.3.1.

b. Calculate hn = 1
1−a f0

∑n
j=1

(
a + bj

n

)
f j hn− j .

c. Calculate Hn = Hn−1 + hn .
d. Interrupt the procedure if Hn is larger than the required quantile level
α, e.g. α = 0.999. Then the estimate of the quantile qα is n × δ.

3. Next n (i.e. do an increment n = n + 1 and return to step 2).

3.3.1 Discretisation

Typically, severity distributions are continuous and thus discretisation is required.
To concentrate severity, whose continuous distribution is F(x), on {0, δ, 2δ, . . .},
one can choose δ > 0 and use the central difference approximation

f0 = F(δ/2),

fn = F(nδ + δ/2)− F(nδ − δ/2), n = 1, 2, . . . . (3.39)

Then the compound discrete density hn is calculated using Panjer recursion and
compound distribution is calculated as Hn = ∑n

i=0 hi . As an example, Table 3.2
gives results of calculation of the Poisson(100)−LN (0, 2) compound distribution
up to the 0.999 quantile in the case of step δ = USD 1. Of course the accuracy of
the result depends on the step size as shown by the results for the 0.999 quantile
vs δ, see Table 3.3 and Fig. 3.1. It is, however, important to note that the error of the
result is due to discretisation only and there is no truncation error (i.e. the severity
is not truncated by some large value).

Table 3.2 Example of Panjer recursion calculating the Poisson(100)−LN (0, 2) compound dis-
tributions using central difference discretisation with the step δ = 1

n fn hn Hn

0 0.364455845 2.50419 × 10−28 2.50419 × 10−28

1 0.215872117 5.40586 × 10−27 5.65628 × 10−27

2 0.096248034 6.07589 × 10−26 6.64152 × 10−26

.

.

.
.
.
.

.

.

.
.
.
.

5847 2.81060 × 10−9 4.44337 × 10−7 0.998999329
5848 2.80907 × 10−9 4.44061 × 10−7 0.998999773
5849 2.80755 × 10−9 4.43785 × 10−7 0.999000217



86 3 Calculation of Compound Distribution

Table 3.3 Convergence of Panjer recursion estimate, q̂0.999, of the 0.999 quantile for the
Poisson(100) − LN (0, 2) compound distributions using central difference discretisation vs the
step size δ. Here, N = q̂0.999/δ is the number of steps required

δ N q̂0.999 time (sec)

16 360 5760 0.19
8 725 5800 0.20
4 1457 5828 0.28
2 2921 5842 0.55
1 5849 5849 1.59
0.5 11703 5851.5 5.77
0.25 23411 5852.75 22.47
0.125 46824 5853 89.14
0.0625 93649 5853.0625 357.03
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Fig. 3.1 Panjer recursion estimate, q̂0.999, of the 0.999 quantile for the Poisson(100)−LN (0, 2)
compound distribution vs the step size δ (left figure) and vs the number of steps N = q̂0.999/δ

(right figure)

Discretisation can also be done via the forward and backward differences:

f U
n = F(nδ + δ)− F(nδ);
f L
n = F(nδ)− F(nδ − δ). (3.40)

These allow for calculation of the upper and lower bounds for the compound distri-
bution:

HU
n =

n∑

i=0

hU
i ;

H L
n =

n∑

i=0

hL
i .

For example, see Table 3.4 presenting results for Poisson(100) − LN (0, 2) com-
pound distribution calculated using central, forward and backward differences with
step δ = USD 1. The use of the forward difference f U

n gives the upper bound for
the compound distribution and the use of f L

n gives the lower bound. Thus the lower
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Table 3.4 Example of Panjer recursion calculating the Poisson(100)−LN (0, 2) compound dis-
tributions using central, forward and backward difference discretisation with the step δ = 1

n H L
n Hn HU

n

0 3.72008 × 10−44 2.50419 × 10−28 1.92875 × 10−22

1 1.89724 × 10−42 5.65628 × 10−27 2.80718 × 10−21

.

.

.
.
.
.

.

.

.
.
.
.

5811 0.998953196 0.998983158 0.998999719
5812 0.998953669 0.998983612 0.999000163
.
.
.

.

.

.
.
.
.

.

.

.

5848 0.9989705 0.998999773 0.999015958
5849 0.998970962 0.999000217 0.999016392
.
.
.

.

.

.
.
.
.

.

.

.

5913 0.998999942 0.999028056 0.999043605
5914 0.999000385 0.999028482 0.999044022

and upper bounds for a quantile are obtained with f U
n and f L

n respectively. In the
case of Table 3.4 example, the quantile bound interval is [USD 5811, USD 5914]
with the estimate from the central difference USD 5849.

3.3.2 Computational Issues

Underflow2 in computations of (3.38) will occur for large frequencies during the
initialisation of the recursion. This can easily be seen for the case of Poisson(λ)
and f0 = 0 when h0 = exp(−λ), that is, the underflow will occur for λ � 700 on
a 32bit computer with double precision calculations. Re-scaling h0 by large factor
γ to calculate the recursion (and de-scaling the result) does not really help because
overflow will occur for γ h(n).

The following identity helps to overcome this problem in the case of Poisson
frequency:

H (m)∗(z; λ/m) = H(z; λ). (3.41)

That is, calculate the compound distribution H(z; λ/m) for some large m to avoid
underflow. Then preform m convolutions for the obtained distribution directly or
via FFT; see Panjer and Willmot [179]. Similar identity is available for negative
binomial, NegBin(r, p):

H (m)∗(z; r/m) = H(z; r). (3.42)

2 Underflow/overflow are the cases when the computer calculations produce a number outside the
range of representable numbers leading 0 or ±∞ outputs respectively.
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In the case of binomial, Bin(M, p):

H (m)∗(z; m1) ∗ H(z; m2) = H(z; M), (3.43)

where m1 = �M/m� and m2 = M − m1m.
To make it more efficient, one can choose m = 2k so that instead of m convolu-

tions of H(·) only k convolutions are required H (2)∗, H (4)∗, . . . H (2k )∗, where each
term is the convolution of the previous one with itself.

3.3.3 Panjer Extensions

The Panjer recursion formula (3.38) can be extended to a class of frequency distri-
butions (a, b, 1).

Definition 3.1 (Panjer class (a, b, 1)) The distribution is said to be in (a, b, 1) Pan-
jer class if it satisfies

pn =
(

a + b

n

)
pn−1, for n ≥ 2 and a, b ∈ R. (3.44)

Theorem 3.2 (Extended Panjer recursion) For the frequency distributions in a
class (a, b, 1):

hn = (p1 − (a + b)p0) fn +∑n
j=1 (a + bj/n) f j hn− j

1 − a f0
, n ≥ 1,

h0 =
∞∑

k=0

( f0)
k pk . (3.45)

The distributions of (a, b, 0) class are special cases of (a, b, 1) class. There are
two types of frequency distributions in (a, b, 1) class:

� zero-truncated distributions, where p0 = 0: i.e. zero truncated Poisson, zero
truncated binomial and zero-truncated negative binomial.

� zero-modified distributions, where p0 > 0: the distributions of (a, b, 0) with
modified probability of zero. It can be viewed as a mixture of (a, b, 0) distribu-
tion and degenerate distribution concentrated at zero.

Finally, we would like to mention a generalisation of Panjer recursion for the
(a, b, l) class

pn =
(

a + b

n

)
pn−1, for n ≥ l + 1. (3.46)

For initial values p0 = · · · = pl−1 = 0, and in the case of f0 = 0, it leads to the
recursion
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hn = pl f (l)∗n +
n∑

j=1

(a + bj/n) f j hn− j , n ≥ l.

The distribution in this class is, for example, l−1 truncated Poisson. For an overview
of high order Panjer recursions, see Hess, Liewald and Schmidt [119]. Other types
of recursions

pn =
k∑

j=1

(a j + b j/n)pn−1, n ≥ 1, (3.47)

are discussed in Sundt [226]. Application of the standard Panjer recursion in the case
of the generalised frequency distributions such as the extended negative binomial,
can lead to numerical instabilities. Generalisation of the Panjer recursion that leads
to numerically stable algorithms for these cases is presented in Gerhold, Schmock
and Warnung [102]. Discussion on multivariate version of Panjer recursion can
be found in Sundt [227] and bivariate cases are discussed in Vernic [236] and
Hesselager [120].

3.3.4 Panjer Recursion for Continuous Severity

The Panjer recursion is developed for the case of discrete severities. The analogue
of Panjer recursion for the case of continuous severities is given by the following
integral equation.

Theorem 3.3 (Panjer recursion for continuous severities) For frequency distribu-
tions in (a, b, 1) class and continuous severity distributions on positive real line:

h(z) = p1 f (z)+
∫ x

0
(a + by/z) f (y)h(z − y)dy. (3.48)

The proof is presented in Panjer and Willmot ([179], Theorem 6.14.1 and 6.16.1).
Note that the above integral equation holds for (a, b, 0) class because it is a special
case of (a, b, 1). The integral equation (3.48) is a Volterra integral equation of the
second type. There are different methods to solve it described in Panjer and Willmot
[179]. A method of solving this equation using hybrid MCMC (minimum variance
importance sampling via reversible jump MCMC) is presented in Peters, Johansen
and Doucet [185].

3.4 Fast Fourier Transform

The FFT is another efficient method to calculate compound distributions via the
inversion of the characteristic function. The method has been known for many
decades and originates from the signal processing field. The existence of the
algorithm became generally known in the mid-1960s, but it was independently
discovered by many researchers much earlier. One of the early books on FFT is
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Brigham [37]. A detailed explanation of the method in application to aggregate loss
distribution can be found in Robertson [203]. In our experience, operational risk
practitioners in banking regard the method as difficult and rarely use it in practice. In
fact, it is a very simple algorithm to implement, although to make it really efficient,
especially for heavy-tailed distribution, some improvements are required. Below we
describe the essential steps and theory required for successful implementation of the
FFT for operational risk.

As with Panjer recursion case, FFT works with discrete severity and based on the
discrete Fourier transformation defined as follows:

Definition 3.2 (Discrete Fourier transformation) For a sequence f0, f1, . . . ,

fM−1, the discrete Fourier transformation (DFT) is defined as

φk =
M−1∑

m=0

fm exp

(
2π i

M
mk

)
, k = 0, 1, . . . , M − 1 (3.49)

and the original sequence fk can be recovered from φk by the inverse transformation

fk = 1

M

M−1∑

m=0

φm exp

(
−2π i

M
mk

)
, k = 0, 1, . . . , M − 1. (3.50)

Here, i = √−1 is a unit imaginary number and M is some truncation point. It is
easy to see that to calculate M points of φm , the number of operations is of the order
of M2, i.e. O(M2). If M is a power of 2, then DFT can be efficiently calculated
via FFT algorithms with the number of computations O(M log2 M). This is due to
the property that DFT of length M can be represented as the sum of DFT over even
points φe

k and DFT over odd points φo
k :

φk = φe
k + exp

(
2π i

M
k

)
φo

k ;

φe
k =

M/2−1∑

m=0

f2m exp

(
2π i

M
mk

)
;

φo
k =

M/2−1∑

m=0

f2m+1 exp

(
2π i

M
mk

)
.

Subsequently, each of these two DFTs can be calculated as a sum of two DFTs of
length M/4. For example, φe

k is calculated as a sum of φee
k and φeo

k . This procedure is
continued until the transforms of the length 1. The latter is simply identity operation.
Thus every obtained pattern of odd and even DFTs will be fm for some m:

φeo···ooe
k = fm .

The bit reversal procedure can be used to find m that corresponds to a specific pat-
tern. That is, set e = 0 and o = 1, then the reverse pattern of e’s and o’s is the value
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of m in binary. Thus the logical steps of FFT, where M is integer power of 2, are as
follows:

Algorithm 3.3 (Simple FFT)
1. Sort the data in a bit-reversed order. The obtained points are simply one-

point transforms.
2. Combine the neighbour points into non-overlapping pairs to get two-point

transforms. Then combine two-point transforms into 4-point transforms and
continue subsequently until the final M point transform is obtained. Thus
there are log2 M iterations and each iteration involves of the order of M
operations.

The basic FFT algorithm is very simple and its code is short; see, for example,
C code provided in Press, Teukolsky, Vetterling and Flannery ([195], chapter 12).
The inverse FFT transformation can be calculated in the same way as FFT (the only
differences are sign change and division by M , see (3.49) and (3.50)).

3.4.1 Compound Distribution via FFT

Calculation of the compound distribution via FFT can be done using the following
logical steps.

Algorithm 3.4 (Compound Distribution via FFT)
1. Discretise severity to obtain

f0, f1, . . . , fM−1,

where M = 2r with integer r , and M is the truncation point in the aggregate
distribution.

2. Using FFT, calculate the characteristic function of the severity

ϕ0, . . . , ϕM−1.

3. Calculate the characteristic function of the compound distribution using
(3.7), i.e.

χm = ψ(ϕm), m = 0, 1, . . . , M − 1.

4. Perform inverse FFT (which is the same as FFT except the change of sign
under the exponent and factor 1/M) applied to χ0, . . . , χM−1 to obtain the
compound distribution h0, h1, . . . , hM−1.

Remark 3.8 To calculate the compound distribution in the case of the severity distri-
bution F(x) with a finite support (i.e. 0 < a ≤ x ≤ b < ∞) one can set F(x) = 0
for x outside the support range when calculating discretised severity f0, . . . , fM−1
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using (3.39). For example, this is the case for distribution of losses exceeding some
threshold. Note that we need to set F(x) = 0 in the range x ∈ [0, a) due to the finite
probability of zero compound loss.

3.4.2 Aliasing Error and Tilting

If there is no truncation error in the severity discretisation, i.e.

M−1∑

m=0

fm = 1,

then FFT procedure calculates the compound distribution on m = 0, 1, . . . , M . That
is, the mass of compound distribution beyond M is “wrapped” and appears in the
range m = 0, . . . , M−1 (the so-called aliasing error). This error is larger for heavy-
tailed severities. To decrease the error for compound distribution on 0, 1, . . . , n, one
has to take M much larger than n. If the severity distribution is bounded and M is
larger than the bound, then one can put zero values for points above the bound (the
so-called padding by zeros). Another way to reduce the error is to apply some trans-
formation to increase the tail decay (the so-called tilting). The exponential tilting
technique for reducing aliasing error under the context of calculating compound
distribution was first investigated by Grubel and Hermesmeier [114]. Many authors
suggest the following tilting transformation:

f̃ j = exp(− jθ) f j , j = 0, 1, . . . , M − 1, (3.51)

where θ > 0. This transformation commutes with convolution in a sense that
convolution of two functions f (x) and g(x) equals the convolution of the trans-
formed functions f̃ (x) = f (x) exp(−θx) and g̃(x) = g(x) exp(−θx) multiplied
by exp(θx), i.e.

( f ∗ g)(x) = eθx ( f̃ ∗ g̃)(x). (3.52)

This can easily be shown using the definition of convolution. Then calculation of
the compound distribution is performed using the transformed severity distribution
as follows.

Algorithm 3.5 (Compound distribution via FFT with tilting)
1. Define f0, f1, . . . , fM−1 for some large M .
2. Perform tilting, i.e. calculate the transformed function f̃ j = exp(− jθ) f j ,

j = 0, 1, . . . , M − 1.
3. Apply FFT to a set f̃0, . . . , f̃M−1 to obtain φ̃0, . . . , φ̃M−1.
4. Calculate χ̃m = ψ(φ̃m),m = 0, 1, . . . , M − 1.
5. Apply the inverse FFT to the set χ̃0, . . . , χ̃M−1, to obtain h̃0, h̃1, . . . , h̃M−1.
6. Untilt by calculating final compound distribution as h j = h̃ j exp(θ j).
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This tilting procedure is very effective in reducing the aliasing error. The param-
eter θ should be as large as possible but not producing under- or overflow that will
occur for very large θ . It was reported in Embrechts and Frei [81] that the choice
Mθ ≈ 20 works well for standard double precision (8 bytes) calculations. Evalu-
ation of the probability generating function ψ(·) of the frequency distribution may
lead to the problem of underflow in the case of large frequencies that can be resolved
using methods described in Sect. 3.3.2.

Example 3.3 To demonstrate the effectiveness of the tilting, consider the following
calculations:

� FFT with the central difference discretisation, where the tail probability com-
pressed into the last point fM−1 = 1 − F(δ(M − 1) − δ/2). Denote the corre-
sponding quantile estimator as Q(1)

0.999;
� FFT with the central difference discretisation with the tail probability ignored,

i.e. fM−1 = F(δ(M −1)+δ/2)− F(δ(M −1)−δ/2). Denote the corresponding
quantile estimator as Q(2)

0.999;
� FFT with the central difference discretisation utilising tilting Q(tilt)

0.999. The tilting
parameter θ is chosen to be θ = 20/M .

The calculation results presented in Table 3.5 demonstrate the efficiency of the
tilting. If FFT is performed without tilting then the truncation level for the severity
should exceed the quantile significantly. In this particular case it should exceed by
approximately factor of 10 to get the exact result for this discretisation step. The
latter is obtained by Panjer recursion that does not require the discretisation beyond
the calculated quantile. Thus the FFT and Panjer recursion are approximately the
same in terms of computing time required for quantile estimate in this case. How-
ever, once the tilting is utilised, the cut off level does not need to exceed the quantile
significantly to obtain the exact result – making FFT superior to Panjer recursion.
In this example, the computing time for FFT with tilting is 0.17 s in comparison
with 5.76 s of Panjer recursion, see Table 3.3. Also, in this case, the treatment of the
severity tail by ignoring it or absorbing into the last point fM−1 does not make any
difference when tilting is applied.

Table 3.5 Example of FFT calculating the 0.999 quantile of the Poisson(100)− LN (0, 2) com-
pound distribution using central difference discretisation with the step δ = 0.5. The exact Panjer
recursion for this discretisation step gives Q0.999 = 5851.5

r L = δ × 2r Q(1)
0.999 Q(2)

0.999 Q(tilt)
0.999 time (sec)

14 8192 5117 5665.5 5851.5 0.17
15 16384 5703.5 5834 5851.5 0.36
16 32768 5828 5850 5851.5 0.75
17 65536 5848.5 5851.5 5851.5 1.61
18 131072 5851.5 5851.5 5851.5 3.64
19 262144 5851.5 5851.5 5851.5 7.61
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3.5 Direct Numerical Integration

In the case of nonnegative severities, the distribution of the compound loss is

H(z) = 2

π

∞∫

0

Re[χ(t)] sin(t z)

t
dt, z ≥ 0, (3.53)

where χ(t) is a compound distribution characteristic function calculated via the
severity characteristic function ϕ(t) using (3.7), see Lemma 3.1 and formula (3.12).
The explicit expression of Re[χ(t)] for Poisson(λ) is

Re[χ(t)] = e−λ exp(λRe[ϕ(t)])× cos(λIm[ϕ(t)]). (3.54)

For the cases of negative binomial and binomial distributions, Re[χ(t)] is easily
obtained through complex variable functions in the relevant computer language.
Hereafter, direct calculation of the distribution function for annual loss Z using
(3.53) is referred to as direct numerical integration (DNI).

Much work has been done in the last few decades in the general area of invert-
ing characteristic functions numerically. Just to mention a few, see the works by
Bohman [33]; Seal [211]; Abate and Whitt [1, 2]; Heckman and Meyers [118];
Shephard [214]; Waller, Turnbull and Hardin [237]; and Den Iseger [74]. These
papers address various issues such as singularity at the origin; treatment of long tails
in the infinite integration; and choices of quadrature rules covering different objec-
tives with different distributions. Craddock, Heath and Platen [64] gave an extensive
survey of numerical techniques for inverting characteristic functions. A tailor-made
numerical algorithm to integrate (3.53) was presented in Luo and Shevchenko [147]
with a specific requirement on accuracy and efficiency in calculating high quantiles
such as 0.999 quantile. The method works well both for a wide range of frequencies
from very low to very high (> 105) and heavy-tailed severities.

Each of the many existing techniques has particular strengths and weaknesses,
and no method works equally well for all classes of problems. In an operational risk
context, for instance, there are special requirements in computing the 0.999 quantile
of the aggregate loss distribution. The accuracy demanded is high and at the same
time the numerical inversion could be very time consuming due to rapid oscillations
and slow decay in the characteristic function. This is the case, for example, for heavy
tailed severities. Also, the characteristic function of compound distributions should
be calculated numerically through semi-infinite integrations.

Below we describe the essential steps of the DNI method to calculate the annual
loss distribution via (3.53).

3.5.1 Forward and Inverse Integrations

The task of the characteristic function inversion is analytically straightforward,
but numerically difficult in terms of achieving high accuracy and computational
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efficiency simultaneously. The computation of compound distribution through the
characteristic function involves two steps: computing the characteristic function
(Fourier transform of the density function, referred to as the forward integration)
and inverting it (referred to as the inverse integration).

Forward integration. This step requires integration (3.5), that is, calculation of the
real and imaginary parts of the characteristic function for a severity distribution:

Re[ϕ(t)] =
∞∫

0

f (x) cos( t x)dx, Im[ϕ(t)] =
∞∫

0

f (x) sin(t x)dx . (3.55)

Then, the characteristic function of the compound loss is calculated using (3.7).
These tasks are relatively simple because the severity density typically has closed-
form expression, and is well-behaved having a single mode.

This step can be done more or less routinely and many existing algorithms,
including the ones commonly available in many software packages, can be
employed. The oscillatory nature of the integrand only comes from the sin( ) or
cos( ) functions. This well-behaved weighted oscillatory integrand can be effec-
tively dealt with by the modified Clenshaw-Curtis integration method; see Clenshaw
and Curtis [58] and Piessens, Doncker-Kapenga, Überhuber and Kahaner [192]. In
this method the oscillatory part of the integrand is transferred to a weight function,
the non-oscillatory part is replaced by its expansion in terms of a finite number of
Chebyshev polynomials and the modified Chebyshev moments are calculated. If the
oscillation is slow when the argument t of the characteristic function is small, the
standard Guass-Legendre and Kronrod quadrature formulae are more effective; see
Kronrod [139], Golub and Welsh [110], Szegö [231], and Sect. 3.5.2. In general,
double precision accuracy can be routinely achieved for the forward integrations.

Inverse integration. This step requires integration (3.53), which is much more chal-
lenging task. Changing variable x = t × z, (3.53) can be rewritten as

H(z) =
∫ ∞

0
G(x, z) sin(x)dx, G(x, z) = 2

π

Re[χ(x/z)]
x

, (3.56)

where χ(t) depends on Re[ϕ(t)] and Im[ϕ(t)] calculated from the forward semi-
infinite integrations (3.55) for any required argument t . The total number of forward
integrations required by the inversion is usually quite large. This is because in this
case the characteristic function could be highly oscillatory due to high frequency and
it may decay very slowly due to heavy tails. There are two oscillatory components in
the integrand represented by sin(x) and another part in Re[χ(x/z)]; see (3.54). It is
convenient to treat sin(x) as the principal oscillatory factor and the other part as sec-
ondary. Typically, given z, Re[χ(x/z)] decays fast initially and then approaches zero
slowly as x approaches infinity; see Fig. 3.2 for the case of Poisson(105)-LN (0, 2)
compound distribution with the value of z corresponding to H(z) = 0.999.
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Although the oscillation frequency of Re[χ ] increases with λ, this increase is
much slower than a linear increase. In fact, at λ = 105 (see Fig. 3.2) the oscillation
frequency of Re[χ ] is still smaller than that of sin(x). This can be quantified by ω,
the relative oscillation frequency of Re[χ ] with respect to sin(x), defined as

ω(x, z) = λ
∂Im[ϕ(x/z)]

∂x
,

where ω < 1 indicates that the local oscillation frequency is smaller than that of
sin(x). Figure 3.2 shows a plot of ω as a function of x . It shows that not only ω is
less than one in this case, but also that it appears to decay linearly as x increases,
justifying treatment of Re[χ ] as the secondary oscillator.

To calculate (3.56), one could apply the same standard general purpose adaptive
integration routines as for the forward integration. However, this is typically not
efficient because it does not address irregular oscillation specifically and can lead
to an excessive number of integrand evaluations. The approach taken in Luo and
Shevchenko [147] divides the integration range of (3.56) into intervals with an equal
length of π (referred to as π -cycle) and truncates at 2K π -cycles:

H(z) ≈
2K−1∑

k=0

Hk, Hk =
(k+1)π∫

kπ

G(x) sin(x)dx . (3.57)

Within each π -cycle, the secondary oscillation could be dominating for some
early cycles, thus the π -cycle could in fact contain multiple cycles due to the
“secondary” oscillation. Thus a further sub-division is warranted. Sub-dividing
interval (kπ, (k + 1)π) into nk segments of equal length of Δk = π/nk , (3.57)
can be written as

Hk =
nk∑

j=1

H ( j)
k , H ( j)

k =
bk, j∫

ak, j

G(x) sin(x)dx, (3.58)
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Fig. 3.2 Re[χ(x/z)] (left figure) and frequency ratio ω(x, z) (right figure) for z = 8.22 × 105 ≈
Q0.999 in the case of Poisson(105)− LN (0, 2)
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where

ak, j = kπ + ( j − 1)Δk, bk, j = ak, j +Δk .

The above calculation will be most effective if the sub-division is made adaptive
for each π -cycle according to the changing behaviour of G(x). Assuming that for
the first π -cycle (k = 0) we have initial partition n0, Luo and Shevchenko [147]
recommends making nk adaptive for the subsequent cycles by the following two
simple rules:

� Rule 1. Let nk be proportional to the number of π -cycles of the secondary oscil-
lation – the number of oscillations in G(x) within each principal π -cycle.

� Rule 2. Let nk be proportional to the magnitude of the maximum gradient of
G(x) within each principal π -cycle.

Application of Rule 1 and Rule 2 requires correct counting of secondary cycles
and good approximation of the local gradient in G(x). Both can be achieved with
a significant number of points at which G(x) is computed within each cycle using,
for example, the m-point Gaussian quadrature described in the next section.

Remark 3.9 (Accuracy requirement) Accurate calculation of the quantile as an
inverse of the distribution function requires high precision in evaluation of the dis-
tribution function. To demonstrate, consider the lognormal distribution LN (0, 2).
In this case, the “exact” 0.999 quantile q0.999 = 483.2164 . . . . However, at
α = 0.99902, the quantile becomes qα = 489.045 . . . . That is, a mere 0.002%
change in the distribution function value causes more than 1% change in the quan-
tile value, which is an amplification of the error by 500 times in percentage terms.
In other words, achieving the error for the 0.999 quantile within 1% requires cal-
culation of the distribution function to be accurate to the fifth digit. Formally,
the error propagation from the distribution function level to the quantile value
can be estimated by the relation between the density, f (x), and its distribution
function, F(x): d F/dx = f (x). In the above example, x = 483.2164 . . . and
1/ f (x) = σ x

√
2π exp[0.5(ln x/σ)2] ≈ 287023. That is, in absolute terms, an error

in the distribution function estimation will be amplified by 287023 times in the error
for the corresponding 0.999 quantile. In the case of a compound distribution, the
requirement for accuracy in the distribution function could be even higher, because
1/ f (x) could be larger at x = q0.999. In fact, for compound distribution with high
frequency and heavy-tailed severity, it is often observed that distribution function
correct to the fifth digit is not accurate enough for an accurate estimation of the
0.999 quantiles.

Remark 3.10 (Error sources) The final result of the inverse integration has three
error sources: the discretisation error of the Gauss quadrature; the error from the tail
approximation; and the error propagated from the error of the forward integration.
These were analysed in Luo and Shevchenko [147]. It was shown that the propa-
gation error is proportional to the forward integration error bound. At the extreme
case of λ = 106, a single precision can still be readily achieved if the forward
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integration has a double precision. For very large λ, the propagation error is likely
the largest among the three error sources. Though some formulas for error bounds
were derived, these are not very useful in practise because high order derivatives are
involved, which is typical for analytical error bounds. An established and satisfac-
tory practice is to use finer grids to estimate the error of the coarse grids.

3.5.2 Gaussian Quadrature for Subdivisions

With a proper sub-division, even a simple trapezoidal rule can be applied to get
a good approximation for integration over the sub-division H ( j)

k in (3.58). How-
ever, higher order numerical quadrature can achieve higher accuracy for the same
computing effort or it requires less computing effort for the same accuracy. The
m-point Gaussian quadrature makes the computed integral exact for all polynomials
of degree 2m−1 or less. In particular:

∫ b

a
g(x)dx ≈ Δ

2

m∑

i=1

wi g ((a + b + ζiΔ)/2) , (3.59)

where 0 < wi < 1 and −1 < ζi < 1 are the i th weight and the i th abscissa of
the Gaussian quadrature respectively, Δ = b − a and m is the order of the Gaus-
sian quadrature. For completeness, Table 3.6 presents 7-point Gaussian quadrature
weights and abscissas.

The efficiency of the Gaussian quadrature is much superior to the trapezoidal
rule. For instance, integrating the function sin(3x) over the interval (0, π), the
7-point Gaussian quadrature has a relative error less than 10−5, while the trape-
zoidal rule requires about 900 function evaluations (grid spacing δx = π/900)
to achieve a similar accuracy. The reduction of the number of integrand function
evaluations is important for a fast integration of (3.57), because the integrand itself
is a time consuming semi-infinite numerical integration. The error of the m-point
Gaussian quadrature rule can be accurately estimated if the 2m order derivative of
the integrand can be computed [132, 223]. In general, it is difficult to estimate the
2m order derivative and the actual error may be much less than a bound established
by the derivative. As it has already been mentioned, a common practice is to use two

Table 3.6 The weights wi and abscissas ζi of the 7-point Gaussian quadrature

i ζi wi

1 −0.949107912342759 0.129484966168870
2 −0.741531185599394 0.279705391489277
3 −0.405845151377397 0.381830050505119
4 0.0 0.417959183673469
5 0.405845151377397 0.381830050505119
6 0.741531185599394 0.279705391489277
7 0.949107912342759 0.129484966168870
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numerical evaluations with the grid sizes different by the factor of two and estimate
the error as the difference between the two results. Equivalently, different orders of
quadrature can be used to estimate error. Often, Guass-Kronrod quadrature is used
for this purpose. Table 3.7 gives 15-point Guass-Kronrod quadrature weights and
abscissas.

Let δG
m denote the error bound for the m-order Gauss quadrature and δG K

2m+1 be
the error bound for the corresponding Guass-Kronrod quadrature. Brass and Förster
[35] proved that

δG K
2m+1/δ

G
m ≤ const × 4

√
m (1/3.493)m .

Because δG K
2m+1 is smaller than δG

m by at least an order of magnitude, the dif-
ference between Gauss-Kronrod and Gauss quadrature serves as a good estimate
for δG

m . Adaptive integration functions in many numerical software packages use
this estimate to achieve an overall error bound below the user-specified tolerance.
For example, the IMSL subroutine QDAG subdivides a given interval and uses the
(2m+1)-point Gauss-Kronrod rule to estimate the integral over each subinterval.
The error for each subinterval is estimated by comparison with the m−point Gauss
quadrature rule. The subinterval with the largest estimated error is then bisected and
the same procedure is applied to both halves. The bisection process is continued
until the error criterion is satisfied, or the subintervals become too small, or the max-
imum number of subintervals allowed is reached. As it has already been mentioned,
this numerical functions can successfully be applied for the forward integration but
is not efficient for the inverse integration.

Typically, even a simple 7-point Gaussian quadrature (m = 7), which calculates
all polynomials of degree 13 or less exactly, can successfully be used to calculate
H ( j)

k in (3.57, 3.58).

Table 3.7 The weights wi and abscissas ζi of the 15-point Guass-Kronrod quadrature

i ζi wi

1 –0.991455371120813 0.022935322010529
2 –0.949107912342759 0.063092092629979
3 –0.864864423359769 0.104790010322250
4 –0.741531185599394 0.140653259715525
5 –0.586087235467691 0.169004726639267
6 –0.405845151377397 0.190350578064785
7 –0.207784955007898 0.204432940075298
8 0.0 0.209482141084728
9 0.207784955007898 0.204432940075298
10 0.405845151377397 0.190350578064785
11 0.586087235467691 0.169004726639267
12 0.741531185599394 0.140653259715525
13 0.864864423359769 0.104790010322250
14 0.949107912342759 0.063092092629979
15 0.991455371120813 0.022935322010529
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3.5.3 Tail Integration

The truncation error of using (3.57) is

HT =
∞∫

2Kπ

G(x) sin(x)dx . (3.60)

For higher accuracy, instead of increasing truncation length at the cost of computing
time, one can try to calculate the tail integration HT approximately or use tilting
transform (3.51). Integration of (3.60) by parts, gives

∞∫

2Kπ

G(x) sin(x)dx = G(2Kπ)+
k−1∑

j=1

(−1) j G(2 j)(2Kπ)

+(−1)k
∫ ∞

2Kπ
G(2k)(x) sin(x)dx, (3.61)

where k ≥ 1, G(2 j)(2Kπ) is the 2 j-th order derivative of G(x) at the truncation
point. Under some conditions, as K → ∞,

∞∫

2Kπ

G(x) sin(x)dx → G(2Kπ)+
∞∑

j=1

(−1) j G(2 j)(2Kπ).

For example, if we assume that for some γ < 0, G(m)(x) = O(xγ−m), m =
0, 1, 2, . . . as K → ∞, then the series converges to the integral. However, this is
not true for some functions, such as exp(−x). Though, typically in this case the
truncation error is not material.

It appears that often (see [147, 149]) the very first term in (3.61) gives a very
good approximation

HT =
∞∫

2Kπ

G(x) sin(x)dx ≈ G(2Kπ) (3.62)

for the tail integration or does not have a material impact on the overall integration.
This elegant result means that we only need to evaluate the integrand at one single
point x = 2πK for the entire tail integration. One can consider this as an assumption
that G(x) is well approximated by a function piece-wise linear within each π cycle.
The approximation (3.62) can be improved by including further terms if derivatives
are easy to calculate, e.g. HT ≈ G(2Kπ)− G(2)(2Kπ).

Thus the total integral approximation (3.57) can be improved by including tail
correction giving
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H(z) ≈
2K−1∑

k=0

Hk + G(2Nπ). (3.63)

Remark 3.11 If the oscillating factor is cos(x) instead of sin(x), one can still derive
a one-point formula similar to (3.61) by starting the tail integration at (2K − 1/2)π
instead of 2Kπ . In this case, the tail integration is

∞∫

(2K−1/2)π

G(x) cos(x)dx ≈ G ((2K − 1/2)π) . (3.64)

Also, the tail integration approximation can be applied to the left tail (integrating
from −∞ to −2Kπ) as well, if such integration is required.

Remark 3.12 Of course there are more elaborate methods to treat the truncation
error which are superior to a simple approximation (3.62) in terms of better accuracy
and broader applicability, such as some of the extrapolation methods proposed in
Wynn [241], Sidi [219, 220].

Example 3.4 As an example of effectiveness of the above tail integration approxi-
mation consider the integrals

IE =
∫ ∞

0
G(x) sin(x)dx, Ĩ (2Kπ) =

∫ 2πK

0
G(x) sin(x)dx, (3.65)

where G(x) = 1/
√

x . The exact tail integration can be computed from IT (2Kπ) =
IE − Ĩ (2Kπ). We compare Ĩ (2Kπ) + G(2Kπ) with Ĩ (2Kπ) and compare both
of them with the exact semi-infinite integration IE . The error of using (3.62) is
εT = IE − [ Ĩ (2Kπ)+ G(2Kπ)]. Here, we have a closed form for the total integral
IE = √

π/2 and Ĩ was accurately computed by an adaptive integration function
from IMSL software package.

Figure 3.3 compares the tail integration IT (2Kπ) with a one-point value
G(2Kπ). One can see that, one-point approximation does an extremely good job.
Even at the shortest truncation length of just 2π (i.e. K = 1), one-point approx-
imation is very close to the exact semi-infinite tail integration. The relative error
δT /IE (2Kπ) is about 1% at K = 1 and it is about 0.002% at K = 10. Apparently,
if the extra correction term G(2)(2Kπ) is included, the error δT reduces further by
an order of magnitude at K = 1 and by several orders of magnitude at K = 10.

Figure 3.3 shows Ĩ (2Kπ) and Ĩ + G(2Kπ), along with the correct value of the
full integration IE = √

π/2. The contrast between results with and without the one-
point tail approximation is striking. At the shortest truncation length of 2π (K = 1),
the relative error due to truncation for the truncated integration (IE − Ĩ (2Kπ))/IE

is more than 30%, but with the tail approximation added, the relative error (IE −
Ĩ (2Kπ) − G(2Kπ))/IE reduces to 0.5%. At 100π , the largest truncation length
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Fig. 3.3 G(x) = 1/
√

x . Left figure (a) – comparison between exact tail integration∫∞
2πK G(x) sin(x)dx and a simple one-point approximation (3.62), G(2Kπ). Right figure (b) –

comparison between truncated integration Ĩ (2Kπ) = ∫ 2πK
0 G(x) sin(x)dx and the truncated inte-

gration plus the one-point approximation of tail integration, Ĩ (2Kπ) + G(2Kπ). The solid line
represents the exact value of the full integration without truncation error, Ĩ (∞) = √

π/2. The
truncated length is lT = 2Kπ with 2 ≤ K ≤ 50

shown in Fig. 3.3, the relative error due to truncation is still more than 4%. After
one-point correction is added, the relative error reduces to less than 0.5 × 10−6.

Another way to look at these comparisons, which is relevant for integrating
heavy-tailed functions, is to consider the required truncation length for the truncated
integration to achieve the same accuracy as the one with one-point correction. For
the truncated integration Ĩ (2Kπ) to achieve the same accuracy of Ĩ (2π) + G(2π)
(i.e. integration truncated at one-cycle plus the “magic point”), the integration
length should be extended to 7700π . For Ĩ (2Kπ) to achieve the same accuracy of
Ĩ (100π)+ G(100π), the integration length has to be extended to more than 1012π !
On the other hand, if we add the tail approximation G(7700π) to Ĩ (7700π), the
relative error reduces from 0.5% to less than 10−11! This error reduction requires
virtually no extra computing, since calculation of G(7700π) = 1/

√
7700π is trivial.

Example 3.5 Table 3.8 shows the convergence of DNI results (seven digits), for
truncation lengths 2 ≤ K ≤ 80 in the cases of tail correction included and ignored.
One can see a material improvement from the tail correction. Also, as the trunca-
tion length increases, both estimators with the tail correction and without converge.

Table 3.8 Convergence in DNI estimates of H(z = 5,853.1) for Poisson(100)-LN (0, 2) in the
case of n0 = 1 and different truncation length K . Ĥtail is the estimate with the tail correction and
Ĥ is the estimate without the tail correction

K Ĥ Ĥtail T ime(s)

2 0.9938318 0.9999174 0.0625
3 1.0093983 0.9993260 0.094
4 1.0110203 0.9991075 0.125
5 1.0080086 0.9990135 0.141
10 0.9980471 0.9989910 0.297
20 0.9990605 0.9990002 0.578
40 0.9989996 0.9990000 1.109
80 0.9990000 0.9990000 2.156
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In this particular case we calculate compound distribution Poisson(100)-LN (0, 2)
at the level z = 5853.1. The latter is the value that corresponds to the 0.999 quantile
(within 1st decimal place) of this distribution as has already been calculated by
Panjer recursion; see Table 3.3. Of course, to calculate the quantile at the 0.999
level using DNI, a search algorithm such as bisection should be used that will
require evaluation of distribution function many times (of the order of 10) increasing
computing time. Comparing this with Tables 3.3 and 3.5, one can see that for this
case DNI is faster than Panjer recursion while slower than FFT (with tilting) by a
factor of 10.

3.6 Comparison of Numerical Methods

For comparison purposes, Tables 3.9 and 3.10 present results for the 0.999 quan-
tile of compound distributions Poisson(λ)-LN (0, 2) and Poisson(λ)-G P D(1, 1)
(with λ = 0.1, 10, 103), calculated by the DNI, FFT, Panjer and MC methods. Note
that, with the shape parameter ξ = 1, G P D(ξ, β) has infinite mean and all higher
moments. For DNI, FFT and Panjer recursion methods, the results, accurate up to 5
significant digits, were obtained as follows:
� For DNI algorithm we start with a relatively coarse grid (n0 = 1) and short trun-

cation length K = 25, and keep halving the grid size and doubling the truncation
length until the difference in the 0.999 quantile is within required accuracy. The
DNI algorithm computes distribution function, H(z), for any given level z by
(3.53), one point at a time. Thus with DNI we have to resort to an iterative pro-
cedure to inverse (3.53). This requires evaluating (3.53) many times depending
on the search algorithm employed and the initial guess. Here, a standard bisection

Table 3.9 The estimates of the 0.999 quantile, Q0.999, for Poisson(λ)-LN (0, 2), calculated using
DNI, FFT, Panjer recursion and MC methods. Standard errors of MC estimates are given in brack-
ets next to the estimator

λ 0.1 10 1,000

DNI Q0.999 105.36 1, 779.1 21, 149
time 15.6 s 6 s 25 s
K\n0 50\2 25\1 25\1

MC Q0.999 105.45(0.26) 1, 777(9) 21, 094(185)
time 3 min 3.9 min 11.7 min
NMC 108 107 106

Panjer Q0.999 105.36 1, 779.1 21, 149
time 7.6 s 8.5 s 3.6 h
h 2−7 2−3 2−4

FFT Q0.999 105.36 1, 779.1 21, 149
time 0.17 s 0.19 s 7.9 s
h 2−7 2−3 2−4

M 214 214 219
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Table 3.10 The estimates of the 0.999 quantile, Q0.999, for Poisson(λ)-G P D(1, 1), calculated
using DNI, FFT, Panjer recursion and MC methods. Standard errors of MC estimates are given in
brackets next to the estimator

λ 0.1 10 1,000

DNI Q0.999 99.352 10, 081 1.0128 × 106

time 21 s 29 s 52 s
K\n0 100\2 100\2 100\1

MC Q0.999 99.9(0.3) 10, 167(89) 1.0089(0.026)× 106

time 3.1 min 3.6 min 7.8 min
NMC 108 107 106

Panjer Q0.999 99.352 10, 081 1.0128 × 106

time 6.9 s 4.4 s 15 h
h 2−7 1 1

FFT Q0.999 99.352 10, 081 1.0128 × 106

time 0.13 s 0.13 s 28 s
h 2−7 1 1
M 214 214 221

algorithm is employed. Other methods (MC, Panjer recursion and FFT) have the
advantage that they obtain the whole distribution in a single run.

� For Panjer recursion, starting with a large step (e.g. δ = 8) the step δ is succes-
sively reduced until the change in the result is smaller than the required accuracy.

� For FFT with tilting, the same step δ is used as the one in the Panjer recursion.
If we would not know the Panjer recursion results, then we would successively
reduce the step δ (starting with some large step) until the change in the result is
smaller than the required accuracy. The truncation length M = 2r has to be large
enough so that δM > Q̂q is satisfied. We use the smallest possible integer r that
allows to identify the quantile, typically such that δM ≈ 2Q̂q . Here, Q̂q is the
quantile to be computed, which is not known a priori and some extra iteration is
typically required. Also, the tilting parameter is set to θ = 20/M .

� For the MC estimates, the number of simulations, NMC (denoted by K in
Sect. 3.2), ranges from 106 to 108, so that calculations are accomplished within
≈ 10 min. The error of the MC estimate is approximately proportional to
1/

√
NMC and the calculation time is approximately proportional to NMC . Thus

the obtained results allow to judge how many simulations (time) is required to
achieve a specific accuracy.

The agreement between FFT, Panjer recursion and DNI estimates is perfect. Also,
the difference between these results and corresponding MC estimates is always
within the two MC standard errors. However, the CPU time is very different across
the methods:

� The quoted CPU time for the MC results is of the order 10 min. However, it
is clear from the standard error results (recalling that the error is proportional
to 1/

√
NMC ) that the CPU time, required to get the results accurate up to five

significant digits, would be of the order of several days. Thus MC is the slowest
method.
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� Typically, the CPU time for both Panjer recursion and FFT increase as λ

increases, while CPU time for DNI does not change significantly.
� FFT is the fastest method, though at very high frequency λ = 103, DNI per-

formance is of a similar order. As reported in Luo and Shevchenko [147], DNI
becomes faster than FFT for higher frequencies λ > 103.

� Panjer recursion is always slower than FFT. It is faster than DNI for small fre-
quencies and much slower for high frequencies.

Finally note that, the FFT, Panjer recursion and DNI results were obtained by
successive reduction of grid size (starting with a coarse grid) until the required
accuracy is achieved. The quoted CPU time is for the last iteration in this procedure.
Thus the results for CPU time should be treated as indicative only.

For comparison of FFT and Panjer, also see Embrechts and Frei [81], and
Bühlmann [43].

3.7 Closed-Form Approximation

There are several well-known approximations for the compound loss distribution.
These can be used with different success depending on the quantity to be calculated
and distribution types. Even if the accuracy is not good, these approximations are
certainly useful from the methodological point of view in helping to understand the
model properties. Also, the quantile estimate derived from these approximations can
successfully be used to set a cut-off level for FFT algorithms that will subsequently
determine the quantile more precisely.

3.7.1 Normal and Translated Gamma Approximations

Many parametric distributions can be used as an approximation for a compound loss
distribution by moment matching. This is because the moments of the compound
loss can be calculated in closed form. In particular, the first four moments are given
in Proposition 3.1. Of course these can only be used if the required moments exist
which is not the case for some heavy-tailed risks with infinite moments. Below we
mention normal and translated gamma approximations.

Normal approximation. As the severities X1, X2, . . . are independent and iden-
tically distributed, at very high frequencies the central limit theory is expected to
provide a good approximation to the distribution of the annual loss Z (if the second
moment of severities is finite). Then the compound distribution is approximated by
the normal distribution with the mean and variance given in Proposition 3.1, that is,

H(z) ≈ N (E[Z ],√Var[Z ]). (3.66)
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This is an asymptotic result and a priori we do not know how well it will perform
for specific distribution types and distribution parameter values. Also, it cannot be
used for the cases where variance or mean are infinite.

Example 3.6 If N is distributed from Poisson(λ) and X1, . . . , X N are independent
random variables from LN (μ, σ ), then

E[Z ] = λ exp(μ+ 0.5σ 2), Var[Z ] = λ exp(2μ+ 2σ 2). (3.67)

Translated gamma approximation. From (3.21), the skewness of the compound dis-
tribution, in the case of Poisson distributed frequencies, is

E[(Z − E[Z ])3]
(Var[Z ])3/2 = λE[X3]

(
λE[X2])3/2

> 0, (3.68)

that approaches zero as λ increases but finite positive for finite λ > 0. To improve
the normal approximation (3.66), the compound loss can be approximated by the
shifted gamma distribution which has a positive skewness, that is, Z is approximated
as Y + a where a is a shift and Y is a random variable from Gamma(α, β). The
three parameters are estimated by matching the mean, variance and skewness of the
approximate distribution and the correct one:

a +αβ = E[Z ]; αβ2 = Var[Z ]; 2√
α

= E[(Z −E[Z ])3]/ (Var[Z ])3/2 . (3.69)

This approximation requires the existence of the first three moments and thus cannot
be used if the third moment does not exist.

Example 3.7 If frequencies are Poisson distributed, N ∼ Poisson(λ), then

a + αβ = λE[X ]; αβ2 = λE[X2]; 2√
α

= λE[X3]/
(
λE[X2]

)3/2
. (3.70)

3.7.2 VaR Closed-Form Approximation

If severities X1, . . . , X N are independent and identically distributed from the sub-
exponential (heavy tail) distribution F(x), and frequency distribution satisfies

∞∑

n=0

(1 + ε)n Pr[N = n] < ∞

for some ε > 0, then the tail of the compound distribution H(z), of the compound
loss Z = X1 + · · · + X N , is related to the severity tail as
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1 − H(z) → E[N ](1 − F(z)), as z → ∞; (3.71)

see Theorem 1.3.9 in Embrechts, Klüppelberg and Mikosch [83]3. This will be dis-
cussed more in Sect. 6.7. The validity of this asymptotic result was demonstrated
for the cases when N is distributed from Poisson, binomial or negative binomial.
This approximation can be used to calculate the quantiles of the annual loss as

VaRα[Z ] → F−1
(

1 − 1 − α

E[N ]
)
, as α → 1. (3.72)

For application in the operational risk context, see Böcker and Klüppelberg [29].
Under the assumption that the severity has a finite mean, Böcker and Sprittulla [32]
derived a correction reducing the approximation error of (3.72).

Example 3.8 Consider a heavy-tailed Poisson(λ)-G P D(ξ, β) compound distribu-
tion. In this case, (3.72) gives

VaRα[Z ] → β

ξ

(
λ

1 − α

)ξ
, as α → 1. (3.73)

This implies a simple scaling, VaRα[Z ] ∝ λξ , with respect to the event intensity λ
for large α.

Example 3.9 To demonstrate the accuracy of the above approximations, consider
compound distribution Poisson(λ = 100)-LN (μ = 0, σ = 2) with relatively
heavy tail severity. Calculating moments of the lognormal distribution E[Xm] using
(3.22) and substituting into (3.21) gives

E[Z ] ≈ 738.9056, Var[Z ] ≈ 298095.7987,

E[(Z − E[Z ])3]/(Var[Z ])3/2 ≈ 40.3428.

Approximating the compound distribution by the normal distribution with these
mean and variance gives normal approximation. Approximating the compound dis-
tribution by the translated gamma distribution (3.69) with these mean, variance and
skewness gives

α ≈ 0.002457, β ≈ 11013.2329, a ≈ 711.8385.

Figure 3.4a shows the normal and translated gamma approximations for the tail
of the compound distribution. These are compared with the asymptotic result for
heavy tail distributions (3.71) and “exact” values obtained by FFT. It is easy to see

3 Note that often, in the relevant literature, notation “∼” is used to indicate that the ratio of the
left- and righthand sides converge to 1; here we use “→” to avoid confusion with notation used to
indicate that a random variable is distributed from a distribution.
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Fig. 3.4 Different approximations for the tail of the Poisson(100) − LN (0, σ ) distribution for
(a) σ = 2; and (b) less heavier tail σ = 1. See Example 3.9 for details

that the heavy tail asymptotic approximation (3.71) converges to the exact result for
large quantile level α → 1, while the normal and gamma approximations perform
badly. The results for the case of not so heavy tail, when the severity distribution
is LN (0, 1), are shown in Fig. 3.4b. Here, the gamma approximation outperforms
normal approximation and heavy tail approximation is very bad. The accuracy of
the heavy tail approximation (3.71) improves for more heavy-tailed distributions,
such as GPD with infinite variance or even infinite mean.

Problems4

3.1 (�) Suppose that a non-negative random variable Z is from a distribution H(z)
whose characteristic function is χ(t). Prove that the expected exceedance over the
level L is

E[Z |Z ≥ L] = 1

1 − H(L)

⎡

⎣E[Z ] − H(L)L + 2L

π

∞∫

0

Re[χ(x/L)]1 − cos x

x2
dx

⎤

⎦ ,

which is the expected shortfall if L = VaRα[Z ]. Assume that H(z) is continuous
for z ≥ L .

3.2 (�) Simulate 105 independent samples from LN (0, 3). Estimate the 0.99 and
0.999 quantiles and their numerical errors. For the latter, use the conservative confi-
dence interval (3.29). Calculate the conservative interval bounds using exact formula
(3.30) and compare with the normal approximation (3.31). Repeat estimation using
4 × 105 simulations.

3.3 (�) Using simulated samples of Z from Problem 3.2, estimate the expected
shortfalls above the 0.99 and 0.999 quantiles.

3.4 (�) Simulate 105 independent samples of Z = X1 + . . . + X N , where Xi ∼
LN (0, 1.5) and N ∼ Poisson(5), Xi and N are independent. Estimate the 0.99 and

4 Problem difficulty is indicated by asterisks: (�) – low; (��) – medium, (� � �) – high.
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0.999 quantiles of Z . Estimate numerical errors of the estimated quantile using the
conservative confidence interval (3.29). Repeat estimation using 4×105 simulations.

3.5 (��) Estimate the 0.99 and 0.999 quantiles of Z = X1 + . . . + X N , where
Xi ∼ LN (0, 1.5) and N ∼ Poisson(5) (i.e. the same as in Problem 3.4), using
Panjer recursion. Compare with the Monte Carlo results for Problem 3.4.

3.6 (� � �) Using FFT, estimate the 0.99 and 0.999 quantiles of Z = X1 +
. . . + X N , where Xi ∼ LN (0, 1.5) and N ∼ Poisson(5) (i.e. the same as
in Problem 3.4). Compare with the Monte Carlo and Panjer recursion results
from Problems 3.4 and 3.5. Obtain estimates using FFT with and without
tilting.

3.7 (� � �) Using Panjer recursion, estimate the 0.99 and 0.999 quantiles of a random
variable Z = X1 + . . .+ X N , where

� X1, . . . , X N are independent random variables from LN (0, 1.5), and indepen-
dent of N .

� N is a random variable from a zero truncated Poisson distribution

Pr[N = 0] = 0 and Pr[N = k] = pk

1 − p0
, k = 1, 2, . . . ,

where pk is Poisson(5).

Estimate numerical error of the quantile estimates.

3.8 (� � �) Using Panjer recursion, estimate the 0.99 and 0.999 quantiles of a random
variable Z = X1 + . . .+ X N , where

� X1, . . . , X N are independent random variables from LN (0, 1.5), and indepen-
dent of N .

� N is a random variable from a zero modified Poisson distribution

Pr[N = 0] = q and Pr[N = k] = (1 − q)
pk

1 − p0
, k = 1, 2, . . . ,

where pk is Poisson(5) and q = 0.1.

Estimate numerical error of the quantile estimates.

3.9 (� � �) Prove that the first four moments of the compound random variable
Z = X1 + · · · + X N are given by the Proposition 3.1. Here, we assume that
X1, . . . , X N are independent and identically distributed, and independent from a
random frequency N . Hint: use the formula (3.13) that calculates moments via the
characteristic function (3.7), severity characteristic function (3.5) and probability
generating function (3.6).

3.10 (��) Using the normal and translated gamma approximations, estimate the 0.99
and 0.999 quantiles of Z = X1 + . . . + X N , where Xi ∼ LN (0, 1.5) and N ∼
Poisson(5) (i.e. the same as in Problem 3.4). Compare with the Monte Carlo, Panjer
recursion and FFT results from Problems 3.4, 3.5 and 3.6.



Chapter 4
Bayesian Approach for LDA

Essentially, all models are wrong but some of them useful.
George Box

Abstract To meet the Basel II regulatory requirements for the Advanced Measure-
ment Approaches, a bank’s internal model must include the use of internal data,
relevant external data, scenario analysis and factors reflecting the business environ-
ment and internal control systems. Bayesian inference is a statistical technique well
suited for combining different data sources. This chapter presents examples of the
Bayesian inference and closely related credibility theory methods for quantifying
operational risk.

4.1 Introduction

Basel II AMA includes the following requirement1 ([17], p. 152):

Any operational risk measurement system must have certain key features to meet the
supervisory soundness standard set out in this section. These elements must include
the use of internal data, relevant external data, scenario analysis and factors reflecting
the business environment and internal control systems.

Combining these different data sources for model estimation is certainly one of
the main challenges in operational risk. This was emphasised in interviews with
industry executives in September 2006 (Davis [70]):

[. . . ] Another big challenge for us is how to mix the internal data with external data;
this is something that is still a big problem because I don’t think anybody has a
solution for that at the moment. [. . . ] What can we do when we don’t have enough
data [. . . ] How do I use a small amount of data when I can have external data with
scenario generation? [. . . ] I think it is one of the big challenges for operational risk
managers at the moment.

1 The original text is available free of charge on the BIS website www.BIS.org/bcbs/publ.htm

P. Shevchenko, Modelling Operational Risk Using Bayesian Inference,
DOI 10.1007/978-3-642-15923-7_4, C© Springer-Verlag Berlin Heidelberg 2011
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Under the Loss Distribution Approach (LDA), banks should quantify distribu-
tions for frequency and severity of operational losses for each risk cell (business
line/event type) over a 1-year time horizon. The commonly used LDA model for
the annual loss is a compound loss (2.1). In this chapter, we consider a single risk
cell (business line/event type). As a reminder, the annual loss in a risk cell under the
LDA model is

Zt =
Nt∑

i=1

Xi (t). (4.1)

Here: t = 1, 2, . . . , T, T + 1 is discrete time in annual units and T + 1 refers to the
next year; Nt is the annual number of events (frequency) modelled as a random vari-
able from some discrete distribution (typically Poisson); and Xi (t) are the severities
of the events modelled as random variables from a continuous distribution. The case
of many risks cells with dependence will be considered in Chap. 7.

Several studies, for example, Moscadelli [166] and Dutta and Perry [77], anal-
ysed operational risk data collected over many banks by Basel II business line and
event type. While analyses of collective data may provide a picture for the whole
banking industry, estimation of frequency and severity distributions of operational
risks for each risk cell is a challenging task for a single bank, especially for low-
frequency/high-severity losses. The banks internal data (usually truncated below
approximately USD 20,000) are available typically over several years and contain
few (or no) low-frequency/high-severity losses. The external data (losses experi-
enced by other banks) are available through third party databases, but these are
difficult to adapt directly to internal processes due to different volumes, thresholds,
etc. Moreover, the data have a survival bias as typically the data of all collapsed
companies are not available. It is difficult to estimate distributions using these data
only.

It is also clear that estimation based on historical losses is backward looking
and has limited ability to predict the future due to a constantly changing banking
environment. For example, assume that a new policy was introduced in the bank,
aiming to decrease the operational risk losses. Then it cannot be captured in the
model based on the loss data only. As another example, assume that the annual
intensity of risk events is 1/100. A bank started to collect data 2 years ago and
by chance this risk event occurred within this period. Formally, applying the loss
data approach, the intensity of this risk might be estimated as 1/2. This is clearly
overestimated, yet it is important to take this event into account.

It is very important to have scenario analysis/expert judgments incorporated
into the model. These judgments may provide valuable information for forecasting
and decision making, especially for risk cells lacking internal loss data. In fact,
it is mandatory to include scenario analysis into the model to meet the regulatory
requirements. In the past, quantification of operational risk was based on such expert
judgments only. Scenario analysis is a process undertaken by banks to identify risks,
to analyse past events experienced both internally and by other banks (including
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near miss losses), and to consider current and planned controls. Usually, it involves
workshops and templates to identify weaknesses, strengths and other factors. As a
result some rough quantitative assessment of risk frequency and severity distribu-
tions is obtained from expert opinions. By itself, scenario analysis is very subjective
and should be combined (supported) by the actual loss data analysis.

Bayesian inference is a statistical technique that can be used to incorporate
expert opinions into data analysis and to combine different data sources. It is also
a convenient method to account for parameter uncertainty, which is critical for
low-frequency/high-severity operational risks with small datasets. The main con-
cept and notation of this method have already been introduced in Sect. 2.9. This
chapter focuses on description of this technique within the context of operational
risk and provides several examples of its application for operational risk quantifi-
cation. There is a broad literature covering Bayesian inference and its applications
for the insurance industry as well as other areas. For a good introduction to the
Bayesian inference method, see Berger [27] and Robert [200]; for the closely related
methods of credibility theory, see Bühlmann and Gisler [44]. The method allows for
structural modelling where expert opinions are incorporated into the analysis via
specifying distributions (so-called prior distributions) for model parameters. These
are updated by the data as they become available. Given new information (for exam-
ple, new policy control is introduced), the expert may reassess the prior distributions
to incorporate this information into a model.

The Bayesian inference methods, in the context of operational risk, have been
briefly mentioned in the early literature. Books such as King ([134], chapter 12),
Cruz ([65], chapter 10) and Panjer ([181], section 10.5) have short sections on a
basic concept of Bayesian method. Bayesian method was implicitly used to estimate
operational risk frequency in the working paper of Frachot and Roncalli [96]. How-
ever, the Bayesian methods have not really merged into operational risk literature
as a recurrent research tool until approximately 2006. One of the first publications
to present detailed and illustrative examples of the Bayesian inference methodology
for estimation of the operational risk frequency and severity, and subsequent esti-
mation of the capital, was a paper by Shevchenko and Wüthrich [218]. Then, an
example of a “toy” model for operational risk, based on the closely related cred-
ibility theory, was presented in Bühlmann, Shevchenko and Wüthrich [45]. The
Bayesian methodology was extended to combine three data sources (expert opin-
ion, internal and external data) in Lambrigger, Shevchenko and Wüthrich [141];
and developed further in Peters, Shevchenko and Wüthrich [187] for a multivari-
ate case with dependence between risks. Currently, the use of Bayesian methods
for modelling operational risk is an active research line. This can be seen over
the last few years, for example, in The Journal of Operational Risk available at
www.journalofoperationalrisk.com. Also, there are several publications on the use
of Bayesian belief networks for operational risk which are not discussed in this
book; for references see Sect. 1.5.

This chapter demonstrates how to combine two data sources (either expert opin-
ion and internal data or external data and internal data), which is a standard Bayesian
method. Then, the methodology is extended to the model combining three data
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sources (internal data, external data and expert opinions) simultaneously. Next,
methods of credibility theory are presented: these should be very useful if the
data are so limited that no reliable quantification of prior distribution can be made.
Finally, estimation of the annual loss distribution is described.

4.2 Combining Different Data Sources

Combining different sources of information is critical for estimation of operational
risks, especially for low-frequency/high-severity risks. These data sources are mul-
tiple expert opinions, internal data, external data, and factors of business environ-
ment and control systems. Conceptually, the following ways have been proposed
to process different data sources of information; see for example Berger ([27], sec-
tions 4.11 and 4.12):

� numerous ad-hoc procedures;
� Bayesian methods; and
� general non-probabilistic methods such as Dempster-Shafer theory.

Some of the ad-hoc procedures will be presented shortly and Bayesian methods
are the main focus of this chapter. Dempster-Shafer theory is based on the so-called
belief functions and Dempster’s rule for combining evidence; see Dempster [73]
and Shafer [212]. It is often referred to as a generalisation of Bayesian method.
Closely related ideas of “probability-boxes” (referred to as “p-boxes”) attempt to
model uncertainty by constructing the bounds on cumulative distribution functions.
For a good summary on the methods for obtaining Dempster-Shafer structures and
“p-boxes”, and aggregation methods handling a conflict between the objects from
different sources, see Ferson et al. [94]. Some writers consider this approach as
unnecessary elaboration that can be handled within the Bayesian paradigm through
Baysian robustness (section 4.7 in Berger [27]). These methods are attractive for
operational risk (though they have not appeared in the operational risk literature
yet) but will not be considered in this book and the reader is referred to the literature
mentioned above.

4.2.1 Ad-hoc Combining

Often in practice, accounting for factors reflecting the business environment and
internal control systems is achieved via scaling of data. Then ad-hoc procedures are
used to combine internal data, external data and expert opinions. For example:

� Fit the severity distribution to the combined samples of internal and external data
and fit the frequency distribution using internal data only.

� Estimate the Poisson annual intensity for the frequency distribution as wλint +
(1 − w)λext , where the intensities λext and λint are implied by the external and
internal data respectively, using expert specified weight w.



4.2 Combining Different Data Sources 115

� Estimate the severity distribution as a mixture

w1 FS A(x)+ w2 FI (x)+ (1 − w1 − w2)FE (x),

where FS A(x), FI (x) and FE (x) are the distributions identified by scenario anal-
ysis, internal data and external data respectively, using expert specified weights
w1 and w2.

� Apply the minimum variance principle, where the combined estimator is a linear
combination of the individual estimators obtained from internal data, external
data and expert opinion separately with the weights chosen to minimise the vari-
ance of the combined estimator.

Probably the easiest to use and most flexible procedure is the minimum variance
principle. The rationale behind the principle is as follows. Consider two unbi-
ased independent estimators Θ̂(1) and Θ̂(2) for parameter θ , i.e. E[Θ̂(k)] = θ and
Var[Θ̂(k)] = σ 2

k , k = 1, 2. Then the combined unbiased linear estimator and its
variance are

Θ̂tot = w1Θ̂
(1) + w2Θ̂

(2), w1 + w2 = 1 (4.2)

Var[Θ̂tot ] = w2
1σ

2
1 + (1 − w1)

2σ 2
2 . (4.3)

It is easy to find the weights minimising Var[Θ̂tot ]:

w1 = σ 2
2

σ 2
1 + σ 2

2

and w2 = σ 2
1

σ 2
1 + σ 2

2

.

The weights behave as expected in practice. In particular, w1 → 1 if σ 2
1 /σ

2
2 → 0

(σ 2
1 /σ

2
2 is the uncertainty of the estimator Θ̂(1) over the uncertainty of Θ̂(2)) and

w1 → 0 if σ 2
2 /σ

2
1 → 0. This method can easily be extended to combine three or

more estimators using the following theorem.

Theorem 4.1 (Minimum variance estimator) Assume that we have Θ̂(i),
i = 1, 2, . . . , K unbiased and independent estimators of θ with variances σ 2

i =
Var[Θ(i)]. Then the linear estimator

Θ̂tot = w1Θ̂
(1) + · · · + wK Θ̂

(K ),

is unbiased and has a minimum variance if

wi = 1/σ 2
i∑K

k=1(1/σ
2
k )
.
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In this case, w1 + · · · + wK = 1 and

Var[Θ̂tot ] =
(

K∑

k=1

1

σ 2
k

)−1

.

Proof See e.g. Lemma 3.4 in Wüthrich and Merz [240]. �

Heuristically, this can be applied to almost any quantity, including a distribu-
tion parameter or distribution characteristic such as mean, variance or quantile. The
assumption that the estimators are unbiased estimators for θ is probably reason-
able when combining estimators from different experts (or from expert and internal
data). However, it is certainly questionable if applied to combine estimators from the
external and internal data. The following sections focus on the Bayesian inference
method that can be used to combine these data sources in a consistent statistical
framework.

4.2.2 Example of Scenario Analysis

Expert opinions on potential losses and corresponding probabilities are often
expressed using the following approaches:

� opinion on the distribution parameter;
� opinions on the number of losses with the amount to be within some ranges;
� separate opinions on the frequency of the losses and quantiles of the severity;
� opinion on how often the loss exceeding some level may occur.

Expert elicitation is certainly one of the challenges in operational risk because many
managers and employees may not have a sound knowledge of statistics and prob-
ability theory. This may lead to misleading and misunderstanding. It is important
that questions answered by experts are simple and well understood by respondents.
There are psychological aspects involved. There is a vast literature on expert elicita-
tion published by statisticians, especially in areas such as security and ecology. For
a good review, see O’Hagan et al. [178].

However, published studies on the use of expert elicitation for operational risk
LDA are scarce. Among the few are Frachot, Moudoulaud and Roncalli [95]; Alder-
weireld, Garcia and Léonard [6]; Steinhoff and Baule [222]; and Peters and Hübner
[191]. These studies suggest that questions on “how often the loss exceeding some
level may occur” are well understood by operational risk experts. Here, experts
express the opinion that a loss of amount L or higher is expected to occur every d
years. If there are M experts then we have M opinions (L1, d1), . . . , (L M , dM ).
These opinions can be used to fit assumed frequency and severity distributions.
For example, assume that the frequency is modelled by Poisson(λ) and severity
is modelled by distribution F(x |θ). Then, the number of losses exceeding level Li

is distributed from Poisson(λ(1−F(Li |θ))). That is, the expected number of losses
exceeding Li per year is λ̃ = λ(1 − F(Li |θ)). This is typically interpreted that the
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loss exceeding Li occurs (on average) every 1/̃λ years or the expected duration
between losses exceeding Li is 1/̃λ. Then the parameters (λ, θ) can be estimated as

(̂λ, θ̂) = arg min
λ,θ

M∑

j=1

w j

(
d j − 1

λ
(
1 − F(L j |θ)

)
)2

, (4.4)

wherew j is the weight associated with the j-th opinion. The above-mentioned liter-
ature suggests to use a weight w j equal to the inverse of the variance estimate of the
duration between events exceeding L j , i.e. w j = 1/d j . If the severity is assumed
to be from a two-parameter distribution, then one can fit all three model param-
eters (frequency and severity) using three or more opinions. However, the above
method does not allow for estimation of parameter uncertainty (prior distribution) if
a Bayesian approach is undertaken. For the latter, it is important that experts specify
not just the expected duration d j , but also the uncertainty of their estimates. This
will be discussed more in Sect. 4.3.1.

4.3 Bayesian Method to Combine Two Data Sources

The Bayesian inference method can be used to combine different data sources in
a consistent statistical framework. The main concept of the Bayesian approach has
already been introduced in Sect. 2.9. Now we consider the approach in detail.

Consider a random vector of data X = (X1, X2, . . . , Xn)
′ whose joint density,

for a given vector of parameters� = (Θ1,Θ2, . . . , ΘK )
′, is h(x|θ). In the Bayesian

approach, both observations and parameters are considered to be random. Then the
joint density is

h(x, θ) = h(x|θ)π(θ) = π(θ |x)h(x), (4.5)

where:

� π(θ) is the probability density of the parameters, a so-called prior density func-
tion. Typically, π(θ) depends on a set of further parameters that are called hyper-
parameters, omitted here for simplicity of notation;

� π(θ |x) is the density of parameters given data X, a so-called posterior density;
� h(x, θ) is the joint density of observed data and parameters;
� h(x|θ) is the density of observations for given parameters. This is the same as a

likelihood function if considered as a function of θ , i.e. �x(θ) = h(x|θ);
� h(x) is a marginal density of X that can be written as

h(x) =
∫

h(x|θ)π(θ)dθ . (4.6)

For simplicity of notation, we consider continuous π(θ) only. If π(θ) is a discrete
probability function, then the integration in the above expression should be replaced
by a corresponding summation; see Definition 2.9.
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Predictive distribution. The objective (in the context of operational risk) is to esti-
mate the predictive distribution (frequency and severity) of a future observation
Xn+1 conditional on all available information X = (X1, X2, . . . , Xn). Assume
that conditionally, given �, Xn+1 and X are independent, and Xn+1 has a den-
sity f (xn+1|θ). It is even common to assume that X1, X2, . . . , Xn, Xn+1 are all
conditionally independent (given �) and identically distributed. Then the condi-
tional density of Xn+1, given data X = x, is

f (xn+1|x) =
∫

f (xn+1|θ)π(θ |x)dθ . (4.7)

If Xn+1 and X are not independent, then the predictive density should be
written as

f (xn+1|x) =
∫

f (xn+1|θ, x)π(θ |x)dθ . (4.8)

Posterior distribution. Bayes’s theorem (see Theorem 2.3) says that the posterior
density can be calculated from (4.5) as

π(θ |x) = h(x|θ)π(θ)/h(x). (4.9)

Here, h(x) plays the role of a normalisation constant. Thus the posterior distribution
can be viewed as a product of a prior knowledge with a likelihood function for
observed data.

In the context of operational risk, one can follow the following three logical
steps:

� The prior π(θ) should be estimated by scenario analysis (expert opinions with
reference to external data).

� Then the prior should be weighted with the observed data using formula (4.9) to
get the posterior π(θ |x).

� Formula (4.7) is then used to calculate the predictive density of Xn+1 given the
data X.

Remark 4.1 Of course, the posterior density can be used to find parameter point
estimators. Typically, these are the mean, mode or median of the posterior; see
Sect. 2.9.3. The use of the posterior mean as the point parameter estimator is optimal
in a sense that the mean square error of prediction is minimised. For more on this
topic, see Sect. 2.10 or Bühlmann and Gisler ([44], section 2.3). However, in the
case of operational risk, it is more appealing to use the whole posterior to calculate
the predictive distribution (4.7).

The iterative update procedure for priors. If the data X1, X2, . . . , Xn are condition-
ally (given� = θ ) independent and Xk is distributed with a density fk(·|θ), then the

joint density of the data for given θ can be written as h(x|θ) =
n∏

i=1
fi (xi |θ). Denote
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the posterior density calculated after k observations as πk(θ |x1, . . . , xk), then using
(4.9), observe that

πk(θ |x1, . . . , xk) ∝ π(θ)

k∏

i=1

fi (xi |θ)

∝ πk−1(θ |x1, . . . , xk−1) fk(xk |θ). (4.10)

It is easy to see from (4.10), that the updating procedure which calculates the
posteriors from priors can be done iteratively. Only the posterior distribution calcu-
lated after k −1 observations and the k-th observation are needed to calculate the
posterior distribution after k observations. Thus the loss history over many years
is not required, making the model easier to understand and manage, and allowing
experts to adjust the priors at every step. Formally, the posterior distribution cal-
culated after k −1 observations can be treated as a prior distribution for the k-th
observation. In practice, initially, we start with the prior π(θ) identified by expert
opinions and external data only. Then, the posterior π(θ |x) is calculated, using (4.9),
when actual data are observed. If there is a reason (for example, the new control
policy introduced in a bank), then this posterior distribution can be adjusted by an
expert and treated as the prior distribution for subsequent observations. Examples
will be presented in the following sections.

Conjugate prior distributions. So-called conjugate distributions (see Definition
2.22) are very useful in practice when Bayesian inference is applied. Below we
present conjugate pairs (Poisson-gamma, lognormal-normal, Pareto-gamma) that
are good illustrative examples for modelling frequencies and severities in opera-
tional risk. Several other pairs (binomial-beta, gamma-gamma, exponential-gamma)
can be found, for example, in Bühlmann and Gisler [44]. In all these cases, the prior
and posterior distributions have the same type and the posterior distribution param-
eters are easily calculated using the prior distribution parameters and observations
(or recursively using (4.10)).

4.3.1 Estimating Prior: Pure Bayesian Approach

In general, the structural parameters of the prior distributions can be estimated sub-
jectively using expert opinions (pure Bayesian approach) or using data (empirical
Bayesian approach). In a pure Bayesian approach, the prior distribution is specified
subjectively (that is, in the context of operational risk, using expert opinions). Berger
[27] lists several methods.

� Histogram approach: split the space of the parameter θ into intervals and specify
the subjective probability for each interval. From this, the smooth density of the
prior distribution can be determined.

� Relative Likelihood Approach: compare the intuitive likelihoods of the different
values of θ . Again, the smooth density of prior distribution can be determined. It
is difficult to apply this method in the case of unbounded parameters.
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� CDF determinations: subjectively construct the distribution function for the prior
and sketch a smooth curve.

� Matching a Given Functional Form: find the prior distribution parameters assum-
ing some functional form for the prior distribution to match prior beliefs (on the
moments, quantiles, etc) as close as possible.

In this chapter, the method of matching a given functional form will be used
often. The use of a particular method is determined by a specific problem and expert
experience. Usually, if the expected values for the quantiles (or mean) and their
uncertainties are estimated by the expert then it is possible to fit the priors.

Often, expert opinions are specified for some quantities such as quantiles or other
risk characteristics rather than for the parameters directly. In this case it might be
better to assume some priors for these quantities that will imply a prior for the
parameters. In general, given model parameters θ = (θ1, . . . , θn), assume that
there are risk characteristics di = gi (θ), i = 1, 2, . . . , n that are well understood
by experts. These could be some quantiles, expected values, expected durations
between losses exceeding high thresholds, etc. Now, if experts specify the joint prior
π(d1, . . . , dn), then using transformation method the prior for θ1, . . . , θn is

π(θ) = π(g1(θ), . . . , gn(θ))

∣∣∣∣
∂ (g1(θ), . . . , gn(θ))

∂ (θ1, . . . , θn)

∣∣∣∣ , (4.11)

where |∂ (g1(θ), . . . , gn(θ))/∂ (θ1, . . . , θn)| is the Jacobian determinant of the
transformation. Essentially, the main difficulty in specifying a joint prior is due to
a possible dependence between the parameters. It is convenient to choose the char-
acteristics (for specification of the prior) such that independence can be assumed.
For example, if the prior for the quantiles q1, . . . , qn (corresponding to probability
levels p1 < p2 < · · · < pn) is to be specified, then to account for the ordering it
might be better to consider the differences

d1 = q1, d2 = q2 − q1, . . . , dn = qn − qn−1.

Then, it is reasonable to assume independence between these differences and
impose constraints di > 0, i = 2, . . . , n. If experts specify the marginal priors
π(d1), π(d2), . . . , π(dn) (e.g. gamma priors) then the full joint prior is

π(d1, . . . , dn) = π(d1)× π(d2)× · · · × π(dn)

and the prior for parameters θ is calculated by transformation using (4.11). To spec-
ify the i-th prior π(di ), an expert may use the approaches listed above. For example,
if π(di ) is Gamma(αi , βi ), then the expert may provide the mean and variational
coefficient for π(di ) (or median and 0.95 quantile) that should be enough to deter-
mine αi and βi .

A very appealing example demonstrating the importance of subjective prior
information was given in Savage [208]:
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1. A lady, who adds milk to her tea, claims to be able to tell whether the tea or milk
was poured into the cup first. In all ten trials, her answer is correct.

2. A music expert claims to be able to distinguish a page of Haydn score from a
page of Mozart score. In all ten trials, he makes a correct determination.

3. A drunken friend says that he can predict the outcome of a coin flip. In all ten
trials, his prediction is correct.

In all three cases, the unknown parameter to identify is the probability of the correct
answer. Classical statistical approach (based on hypothesis testing) ignoring our
prior opinion would give a very strong evidence that all these claims are correct.
We would not doubt this result for situation 2. However, for situation 3, our prior
opinion is that this prediction is impossible and we would tend to ignore the empir-
ical evidence. Different people may give a different prior opinion for situation 1.
Anyway, in all these cases, prior information is certainly valuable.

4.3.2 Estimating Prior: Empirical Bayesian Approach

Under empirical Bayesian approach, the parameter θ is treated as a random sample
from the prior distribution. Then using collective data of similar risks, the parame-
ters of the prior are estimated using a marginal distribution of observations. Depend-
ing on the model setup, the data can be collective industry data, collective data in
the bank, etc.

To explain, consider K similar risks where each risk has own risk profile �(i),
i = 1, . . . , K ; see Fig. 4.1. Given �(i) = θ (i), the risk data X (i)

1 , X (i)
2 , . . . are gen-

erated from the distribution F(x |θ (i)). The risks are different having different risk
profiles θ (i), but what they have in common is that �(1), . . . ,�(K ) are distributed
from the same density π(θ). Then, one can find the unconditional distribution of
the data X and fit the prior distribution using all data (across all similar risks). This
could be done, for example, by the maximum likelihood method or the method of
moments or even empirically. This approach will be discussed in detail in Sect. 4.4.

4.3.3 Poisson Frequency

Consider the annual number of events for a risk in one bank in year t modelled as a
random variable from the Poisson distribution Poisson (λ). The intensity parameter
λ is not known and the Bayesian approach models it as a random variable Λ. Then
the following model for years t = 1, 2, . . . , T, T + 1 (where T + 1 corresponds to
the next year) can be considered.

Model Assumptions 4.1
� Suppose that, given Λ = λ, the data N1, . . . , NT +1 are independent random

variables from the Poisson distribution, Poisson(λ):

Pr[Nt = n|λ] = e−λ λn

n! , λ ≥ 0. (4.12)
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(1)
1 1

(1) (1) (1)

(1) (K )

(K ) (K ) (K ) (K )
2 2

Fig. 4.1 Interpretation of the prior density π(θ) using empirical Bayes approach. � (i) is the risk
profile of the i-th risk. Given �(i) = θ (i), the risk data X (i)

1 , X (i)
2 , . . . are generated from the

distribution F(x |θ (i)). The risks are different having different risk profiles θ (i), but what they have
in common is that �(1), . . . ,�(K ) are distributed from the same density π(θ)

� The prior distribution for Λ is a gamma distribution, Gamma(α, β), with a
density

π(λ) = (λ/β)α−1

 (α)β
exp(−λ/β), λ > 0, α > 0, β > 0. (4.13)

That is, λ plays the role of θ and N = (N1, . . . , NT )
′ the role of X in (4.9).

Posterior. Given Λ = λ, under the Model Assumptions 4.1, N1, . . . , NT are inde-
pendent and their joint density, at N = n, is given by

h(n|λ) =
T∏

i=1

e−λ λni

ni ! . (4.14)

Thus, using formula (4.9), the posterior density is

π(λ|n) ∝ (λ/β)α−1

 (α)β
exp(−λ/β)

T∏

i=1

e−λ λni

ni ! ∝ λαT −1 exp(−λ/βT ), (4.15)

which is Gamma(αT , βT ), i.e. the same as the prior distribution with updated
parameters αT and βT given by:
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α → αT = α +
T∑

i=1

ni , β → βT = β

1 + β × T
. (4.16)

Improper constant prior. It is easy to see that, if the prior is constant (improper
prior), i.e. π(λ|n) ∝ h(n|λ), then the posterior is Gamma(αT , βT ) with

αT = 1 +
T∑

i=1

ni , βT = 1

T
. (4.17)

In this case, the mode of the posterior π(λ|n) is

λ̂MAP
T = (αT − 1)βT = 1

T

T∑

i=1

ni , (4.18)

which is the same as the maximum likelihood estimate (MLE) λ̂MLE
T of λ.

Predictive distribution. Given data, the full predictive distribution for NT +1 is neg-
ative binomial, NegBin(αT , 1/(1 + βT )):

Pr[NT +1 = m|N = n] =
∫

f (m|λ)π(λ|n)dλ

=
∫

e−λ λm

m!
λαT −1

(βT )αT (αT )
e−λ/βT dλ

= (βT )
−αT

 (αT )m!
∫

e−(1+1/βT )λλαT +m−1dλ

=  (αT + m)

 (αT )m!
(

1

1 + βT

)αT
(

βT

1 + βT

)m

. (4.19)

It is assumed that given Λ = λ, NT +1 and N are independent. The expected num-
ber of events over the next year, given past observations, E[NT +1|N], i.e. mean of
NegBin(αT , 1/(1 + βT )) (which is also a mean of the posterior distribution in this
case), allows for a good interpretation as follows:

E[NT +1|N = n] = E[λ|N = n] = αTβT = β
α +∑T

i=1 ni

1 + β × T

= wT λ̂
MLE
T + (1 − wT )λ0. (4.20)

Here:

� λ̂MLE
T = 1

T

∑T
i=1 ni is the estimate of λ using the observed counts only;

� λ0 = αβ is the estimate of λ using a prior distribution only (e.g. specified by
expert); and

� wT = Tβ
Tβ+1 is the credibility weight in [0,1) used to combine λ0 and λ̂MLE

T .
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Remark 4.2

� As the number of observed years T increases, the credibility weightwT increases
and vice versa. That is, the more observations we have, the greater credibility
weight we assign to the estimator based on the observed counts, while the lesser
credibility weight is attached to the expert opinion estimate. Also, the larger
the volatility of the expert opinion (larger β), the greater credibility weight is
assigned to observations.

� Recursive calculation of the posterior distribution is very simple. That is, con-
sider observed annual counts n1, n2, . . . , nk, . . . , where nk is the number of
events in the k-th year. Assume that the prior Gamma(α, β) is specified initially,
then the posterior π(λ|n1, . . . , nk) after the k-th year is a gamma distribution,
Gamma(αk, βk), with αk = α+∑k

i=1 ni and βk = β/(1+β×k). Observe that,

αk = αk−1 + nk, βk = βk−1

1 + βk−1
. (4.21)

This leads to a very efficient recursive scheme, where the calculation of posterior
distribution parameters is based on the most recent observation and parameters of
posterior distribution calculated just before this observation.

Estimating prior. Suppose that the annual frequency of the operational risk losses
N is modelled by the Poisson distribution, Poisson(Λ = λ), and the prior density
π(λ) for Λ is Gamma(α, β). Then, E[N |Λ] = Λ and E[Λ] = α × β. The expert
may estimate the expected number of events but cannot be certain in the estimate.
One could say that the expert’s “best” estimate for the expected number of events
corresponds to E[E[N |Λ]] = E[Λ]. If the expert specifies E[Λ] and an uncertainty
that the “true” λ for next year is within the interval [a,b] with a probability Pr[a ≤
Λ ≤ b] = p (it may be convenient to set p = 2/3), then the equations

E[Λ] = α × β,

Pr[a ≤ Λ ≤ b] = p =
b∫

a
π(λ|α, β)dλ = F (G)

α,β (b)− F (G)
α,β (a)

(4.22)

can be solved numerically to estimate the structural parameters α and β. Here,
F (G)
α,β (·) is the gamma distribution, Gamma(α, β), i.e.

F (G)
α,β [y] =

y∫

0

xα−1

 (α)βα
exp

(
− x

β

)
dx .

In the insurance industry, the uncertainty for the “true” λ is often measured in
terms of the coefficient of variation, Vco[Λ] = √

Var[Λ]/E[Λ]. Given the expert
estimates for E[Λ] = αβ and Vco[Λ] = 1/

√
α, the structural parameters α and β

are easily estimated.
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Example 4.1 If the expert specifies E[Λ] = 0.5 and Pr[0.25 ≤ Λ ≤ 0.75] = 2/3,
then we can fit a prior distribution Gamma(α ≈ 3.407, β ≈ 0.147) by solving
(4.22). Assume now that the bank experienced no losses over the first year (after the
prior distribution was estimated). Then, using formulas (4.21), the posterior distribu-
tion parameters are α̂1 ≈ 3.407 + 0 = 3.407, β̂1 ≈ 0.147/(1 + 0.147) ≈ 0.128 and
the estimated arrival rate using the posterior distribution is λ̂1 = α̂1 × β̂1 ≈ 0.436.
If during the next year no losses are observed again, then the posterior distribu-
tion parameters are α̂2 = α̂1 + 0 ≈ 3.407, β̂2 = β̂1/(1 + β̂1) ≈ 0.113 and
λ̂2 = α̂2 × β̂2 ≈ 0.385. Subsequent observations will update the arrival rate
estimator correspondingly using formulas (4.21). Thus, starting from the expert
specified prior, observations regularly update (refine) the posterior distribution. The
expert might reassess the posterior distribution at any point in time (the posterior
distribution can be treated as a prior distribution for the next period), if new prac-
tices/policies were introduced in the bank that affect the frequency of the loss. That
is, if we have a new policy at time k, the expert may reassess the parameters and
replace α̂k and β̂k by α̂∗

k and β̂∗
k respectively.

In Fig. 4.2, we show the posterior best estimate for the arrival rate λ̂k = α̂k × β̂k ,
k = 1, . . . , 15 (with the prior distribution as in the above example), when the annual
number of events Nk , k = 1, . . . , 15 are simulated from Poisson(λ = 0.6) and are
given in Table 4.1.

On the same figure, we show the standard maximum likelihood estimate of the
arrival rate λ̂MLE

k = 1
k

∑k
i=1 ni . After approximately 8 years, the estimators are very

close to each other. However, for a small number of observed years, the Bayesian
estimate is more accurate as it takes the prior information into account. Only after 12
years do both estimators converge to the true value of 0.6 (this is because the bank
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Fig. 4.2 The Bayesian and the standard maximum likelihood estimates of the arrival rate vs the
observation year. The Bayesian estimate is a mean of the posterior distribution when the prior
distribution is Gamma with: (a) E[Λ] = 0.5; α ≈ 3.41 and β ≈ 0.15; (b) E[Λ] = 0.7 and
Vco[Λ] = 0.5; α = 4 and β = 0.175. The maximum likelihood estimate is a simple average over
the number of observed events. The annual counts were sampled from the Poisson(0.6) and are
given in Table 4.1. See Example 4.1 for details

Table 4.1 The annual number of losses simulated from Poisson(0.6)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ni 0 0 0 0 1 0 1 1 1 0 2 1 1 2 0
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was very lucky to have no events during the first 4 years). Note that for this exam-
ple we assumed the prior distribution with a mean equal to 0.5, which is different
from the true arrival rate. Thus this example shows that an initially incorrect prior
estimator is corrected by the observations as they become available. It is interesting
to observe that, in year 14, the estimators become slightly different again. This is
because the bank was unlucky to experience event counts (1, 1, 2) in the years
(12, 13, 14). As a result, the maximum likelihood estimate becomes higher than
the true value, while the Bayesian estimate is more stable (smooth) with respect to
the unlucky years. If this example is repeated with different sequences of random
numbers, then one would observe quite different maximum likelihood estimates (for
small k) and more stable Bayesian estimates.

4.3.4 The Lognormal LN (μ, σ) Severity with Unknown μ

Assume that the loss severity for a risk in one bank is modelled as a random variable
from a lognormal distribution, LN (μ, σ ), whose density is

f (x |μ, σ) = 1

x
√

2πσ 2
exp

(
− (ln x − μ)2

2σ 2

)
. (4.23)

This distribution often gives a good fit for operational loss data. Also, it belongs
to a class of heavy-tailed distributions that will be considered in Chap. 6. The
parameters μ and σ are not known and the Bayesian approach models these as
a random variables Θμ and Θσ respectively. We assume that the losses over the
years t = 1, 2, . . . , T are observed and should be modelled for next year T + 1.
To simplify notation, we denote the losses over past T years as X1, . . . , Xn and
the future losses are Xn+1, . . . . Then the model can be structured as follows. For
simplicity, below we assume that σ is known and μ is unknown. The case where
both σ and μ are unknown will be treated in Sect. 4.3.5.

Model Assumptions 4.2
� Suppose that, given σ and Θμ = μ, the data X1, . . . , Xn, . . . are independent

random variables from LN (μ, σ ). That is, Yi = ln Xi , i = 1, 2, . . . are dis-
tributed from the normal distribution N (μ, σ ).

� Assume that parameter σ is known and the prior distribution for Θμ is the nor-
mal distribution, N (μ0, σ0). That is the prior density is

π(μ) = 1

σ0
√

2π
exp

(
− (μ− μ0)

2

2σ2
0

)
. (4.24)

Denote the losses over past years as X = (X1, . . . , Xn)
′ and corresponding log-

losses as Y = (Y1, . . . ,Yn)
′.

Remark 4.3 That is, μ plays the role of θ in (4.9). The case of a conjugate joint prior
for both μ and σ unknown is considered in Sect. 4.3.5.
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Posterior. Under the above assumptions, the joint density of the data over past years
(conditional on σ and Θμ = μ) at position Y = y is

h(y|μ, σ) =
n∏

i=1

1

σ
√

2π
exp

(
− (yi − μ)2

2σ 2

)
. (4.25)

Then, using formula (4.9), the posterior density can be written as

π(μ|y) ∝
exp

(
− (μ−μ0)

2

2σ2
0

)

σ0
√

2π

n∏

i=1

exp
(
− (yi −μ)2

2σ 2

)

σ
√

2π

∝ exp

(
− (μ− μ0,n)

2

2σ 2
0,n

)
, (4.26)

that corresponds to a normal distribution, N (μ0,n, σ0,n), i.e. the same as the prior
distribution with updated parameters

μ0 → μ0,n =
μ0 + ω

n∑
i=1

yi

1 + n × ω
, (4.27)

σ2
0 → σ 2

0,n = σ 2
0

1 + n × ω
, where ω = σ2

0/σ
2. (4.28)

The expected value of Yn+1 (given past observations), E[Yn+1|Y = y], allows for
a good interpretation, as follows:

E[Yn+1|Y = y] = E[Θμ|Y = y] = μ0,n =
μ0 + ω

n∑
i=1

yi

1 + n × ω

= wn yn + (1 − wn)μ0, (4.29)

where

� yn = 1
n

n∑
i=1

yi is the estimate of μ using the observed losses only;

� μ0 is the estimate of μ using a prior distribution only (e.g. specified by expert);
� wn = n

n+σ 2/σ2
0

is the credibility weight in [0,1) used to combine μ0 and yn .

Remark 4.4

� As the number of observations increases, the credibility weight w increases and
vice versa. That is, the more observations we have the greater weight we assign to
the estimator based on the observed counts and the lesser weight is attached to the
expert opinion estimate. Also, larger uncertainty in the expert opinion σ2

0 leads to
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a higher credibility weight for observations and larger volatility of observations
σ 2 leads to a higher credibility weight for expert opinions.

� The posterior distribution can be calculated recursively as follows. Consider
the data Y1,Y2, . . . ,Yk, . . . . Assume that the prior distribution, N (μ0, σ0), is
specified initially, then the posterior density π(μ|y1, . . . , yk) after the k-th event
is the normal distribution N (μ0,k, σ0,k) with

μ0,k =
μ0 + ω

k∑
i=1

yi

1 + k × ω
, σ 2

0,k = σ2
0

1 + k × ω
,

where ω = σ2
0/σ

2. It is easy to show that

μ0,k = μ0,k−1 + ωk−1 yk

1 + ωk−1
, σ 2

0,k = σ 2ωk−1

1 + ωk−1
(4.30)

with ωk−1 = σ 2
0,k−1/σ

2. That is, calculation of the posterior distribution param-
eters can be based on the most recent observation and the parameters of the
posterior distribution calculated just before this observation.

Estimating prior. Suppose that X , the severity of operational losses, is modelled
by the lognormal distribution, LN (μ, σ ) and Model Assumptions 4.2 are satisfied.
Then, for given Θμ (and σ is known), the expected loss is

Ω = E[X |Θμ] = exp

(
Θμ + 1

2
σ 2
)

(4.31)

and the quantile at level q is

Qq = exp(Θμ + σ zq), (4.32)

where zq = F−1
N (q) is the inverse of the standard normal distribution. That is Ω

and Qq are functions of Θμ.
Consider the case when the prior distribution for Θμ is N (μ0, σ0). In this case,

unconditionally, Ω is distributed from LN
(
μ0 + 1

2σ
2, σ0

)
and the quantile Qq is

distributed from LN (μ0+σ zq , σ0). Then, the expert may specify ‘the best’ estimate
of the expected loss E[Ω] and uncertainty, that is, the interval [a, b] such that the
true expected loss is within the interval with a probability p = Pr[a ≤ Ω ≤ b].
Then, the equations

p = Pr[a ≤ Ω ≤ b] = FN

(
ln b − 1

2σ
2 − μ0

σ0

)
− FN

(
ln a − 1

2σ
2 − μ0

σ0

)
,
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E[Ω] = exp

(
μ0 + 1

2
σ 2 + 1

2
σ2

0

)
(4.33)

can be solved to find μ0, σ0. Here, FN (·) is the standard normal distribution.

Example 4.2 For example, assume that σ = 2 and the expert estimates are E[Ω] =
10 and p = Pr[8 ≤ Ω ≤ 12] = 2/3. Then, solving (4.33) gives μ0 ≈ 0.28 and
σ0 ≈ 0.21. Finally, using (4.27) we can calculate the posterior parameters μ0,k, σ0,k
as observations Xk, k = 1, 2, . . . become available.

One can also try to fit parameters μ0 and σ0 using estimates for some quantile
and uncertainty by solving

p = Pr[a ≤ Qq ≤ b] = FN

(
ln b − σ zq − μ0

σ0

)
− FN

(
ln a − σ zq − μ0

σ0

)
,

E[Qq ] = exp

(
μ0 + σ zq + 1

2
σ2

0

)
. (4.34)

Remark 4.5 If the uncertainty forΩ or Qq in (4.33) and (4.34) is measured using the
coefficient of variation Vco[X ] = √

Var[X ]/E[X ], then μ0, σ0 are easily expressed
in the closed form. In the insurance industry Vco is often provided by regulators.

4.3.5 The Lognormal LN (μ, σ) Severity with Unknown μ and σ

As in the previous section, assume that the loss severity for a risk in one bank is
modelled as a random variable from a lognormal distribution, LN (μ, σ ). However,
now consider the case of both μ and σ unknown and modelled by random variables
Θμ and Θσ respectively.

Model Assumptions 4.3
� Suppose that, given Θμ = μ and Θσ = σ , the data X1, . . . , Xn, . . . are inde-

pendent random variables from LN (μ, σ ), i.e. Yi = ln Xi ∼ N (μ, σ ).
� Assume that the prior distribution of Θ2

σ is the inverse Chi-squared distribu-
tion, I nvChi Sq(ν, β), and the prior distribution of Θμ (given Θσ = σ ) is
N (θ, σ/

√
φ), i.e. the corresponding densities are:

π(σ 2) =
(
σ 2/β

)−1−ν/2

 (ν/2)β2ν/2
exp

(
− β

2σ 2

)
, (4.35)

π(μ|σ 2) = 1√
2πσ 2/φ

exp

(
− (μ− θ)2

2σ 2/φ

)
. (4.36)

Denote the losses over past years as X = (X1, . . . , Xn)
′ and corresponding

log-losses as Y = (Y1, . . . ,Yn)
′.



130 4 Bayesian Approach for LDA

Posterior. Under the above assumptions, the joint prior density is

π(μ, σ 2) = 1√
2πσ 2/φ

exp

(
− (μ− θ)2

2σ 2/φ
− β

2σ 2

)
× 2−ν/2

β (ν/2)

(
σ 2

β

)− ν
2 −1

∝ (σ 2)−
ν+1

2 −1 exp

(
− 1

2σ 2
(β + φ(μ− θ)2)

)
. (4.37)

It is easy to see that the marginal prior distribution of Θμ is shifted t-distribution
with ν degrees of freedom:

π(μ) =
∫
π(μ, σ 2)dσ 2 ∝

∫
x− ν+1

2 − 1 exp

(
− 1

2x
[β + φ(μ− θ)2]

)
dx

∝
∫

y
ν+1

2 − 1 exp
(
− y

2
[β + φ(μ− θ)2]

)
dy

∝ [β + φ(μ− θ)2]− ν+1
2

∫
z
ν+1

2 − 1 exp(−z)dz

∝
(

1 + φν(μ− θ)2

νβ

)− ν+1
2
. (4.38)

Denote Ψσ = (σ 2)
− ν+1+n

2 − 1
, y = 1

n

n∑
i=1

yi and y2 = 1
n

n∑
i=1

y2
i . Then, given

Y = y, the joint posterior density

π(μ, σ 2|y) ∝ Ψσ exp

(
− 1

2σ 2

(
β + φ(μ− θ)2 +

n∑

i=1

(yi − μ)2

))

∝ Ψσ exp

(
− 1

2σ 2

(
β + (φ + n)μ2 + φθ2 − 2μ(φθ + ny)+ ny2

))

∝ Ψσ exp

(
− 1

2σ 2

(
β + φθ2 + ny2 − (φθ + ny)2

φ + n

+ (φ + n)

(
μ− φθ + ny

φ + n

)2
))

∝ (σ 2)−
νn+1

2 −1 exp

(
− 1

2σ 2

(
βn + φn(μ− θn)

2
))

has the same form as the joint prior density (4.37) with parameters updated as:
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ν → νn = ν + n,

β → βn = β + φθ2 + ny2 − (φθ + ny)2

φ + n
,

θ → θn = φθ + ny

φ + n
,

φ → φn = φ + n. (4.39)

Improper constant prior. It is easy to see that if the prior is constant (improper
prior), i.e. π(μ, σ |y) ∝ h(y|μ, σ), then the posteriors densities π(σ 2|y) and
π(μ|σ 2, y) correspond to the I nvChi Sq(νn, βn) and N (θn, σn/

√
φn) respectively

with

νn = n − 3, βn = ny2 − n(y)2, θn = y, φn = n. (4.40)

In this case, the mode of the posterior density π(μ, σ |y) is

μ̂MAP = y, (̂σ 2)MAP = y2 − (y)2 (4.41)

which are the same as MLEs of μ and σ 2.

Estimating prior for both μ and σ . For given Θμ and Θσ , the loss quantile at the
level q is

Qq = exp(Θμ +Θσ zq); (4.42)

see (4.32). Thus one can find Θσ via two quantiles Qq2 and Qq1 as

Θσ = ln(Qq2/Qq1)

zq2 − zq1

. (4.43)

Then, one can try to fit the prior distribution for Θσ using the expert opinions on
E[ln(Qq2/Qq1)] and Pr[a ≤ Qq2/Qq1 ≤ b] or the opinions involving several pairs
of quantiles. Given σ , the prior distribution for μ can be estimated using Eqs. (4.33)
or (4.34).

4.3.6 Pareto Severity

Another important example of the severity distribution, which is very useful to
fit heavy-tailed losses, for a given threshold L > 0, is the Pareto distribution,
Pareto(ξ, L), with a density

f (x |ξ) = ξ

L

( x

L

)−ξ−1
. (4.44)
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It is defined for x ≥ L and ξ > 0. If ξ > 1, then the mean is Lξ/(ξ − 1), otherwise
the mean does not exist. The tail parameter ξ is unknown and modelled by a random
variable Θξ .

Model Assumptions 4.4
� Suppose that conditionally, givenΘξ = ξ , the data X1, . . . , Xn, . . . are indepen-

dent random variables from Pareto(ξ, L);
� The prior distribution for the tail parameter Θξ is Gamma(α, β), i.e. the prior

density is

π(ξ) ∝ ξα−1 exp(−ξ/β). (4.45)

Denote the losses over past years as X = (X1, . . . , Xn)
′.

Posterior. Given X = x, under the above assumptions, the posterior density
(using (4.9))

π(ξ |x) = ξn exp

(
−(ξ + 1)

n∑

i=1

ln (xi/L)

)
× ξα−1 exp (−ξ/β)

∝ ξαn−1 exp (−ξ/βn) (4.46)

is Gamma(αn, βn), i.e. the same as the prior distribution with updated parameters

α → αn = α + n, β−1 → β−1
n = β−1 +

n∑

i=1

ln (xi/L). (4.47)

The mean of the posterior distribution for Θξ allows for a good interpretation, as
follows:

ξ̂ = E[Θξ |X = x] = αnβn = α + n

β−1 +
n∑

i=1
ln (xi/L)

= wn ξ̂
MLE

n + (1 − wn)ξ0, (4.48)

where

� ξ̂MLE
n = 1

n

n∑
i=1

ln (xi/L) is the maximum likelihood estimate of ξ using the

observed losses;
� ξ0 = αβ is the estimate of ξ using a prior distribution only (e.g. specified by

expert);

� wn =
[

n∑
i=1

ln (xi/L)

]
×
[

n∑
i=1

ln (xi/L)+ 1/β

]−1

is the weight in [0,1) combin-

ing ξ0 and ξ̂ MLE
n .
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The posterior distribution can be easily calculated recursively. Consider the
observed losses x1, x2, . . . , xk, . . . . Assume that the prior, Gamma(α, β), is
specified initially, then the posterior π(ξ |x1, . . . , xk) after the k-th event is
Gamma(αk, βk) with

αk = α + k, β−1
k = β−1 +

k∑

i=1

ln(xi/L).

It is easy to show that

αk = αk−1 + 1, β−1
k = β−1

k−1 + ln (xk/L) . (4.49)

Again, this leads to a very efficient recursive scheme, where the calculation of the
posterior distribution parameters is based on the most recent observation and para-
meters of the posterior distribution calculated just before this observation.

Remark 4.6 It is important to note that the prior and posterior distributions ofΘξ are
gamma distributions formally defined for ξ > 0. Thus there is a finite probability
that Pr[Θξ ≤ 1] > 0, which leads to infinite means of predicted distributions, that
is, E[Xi ] = ∞ and E[Xn+1|X] = ∞. If we do not want to allow for infinite mean
behaviour, then ξ should be restricted to ξ > 1. See Sect. 2.9.4 on how to deal
with this.

Improper constant prior. It is easy to see that if the prior is constant (improper
prior), i.e. π(ξ |x) ∝ h(x|ξ), then the posterior is Gamma(αn, βn) with

αn = n + 1, βn
−1 =

n∑

i=1

ln (xi/L). (4.50)

In this case, the mode of the posterior density π(ξ |x) is

ξ̂MAP = n∑n
i=1 ln (xi/L)

, (4.51)

which is the same as MLE of ξ .

Estimating prior. Suppose that X , the severity of operational losses exceeding
threshold L , is modelled by the Pareto distribution, Pareto(ξ, L). Then, condi-
tionally on Θξ = ξ , the expected loss

E[X |Θξ = ξ ] = μ(ξ) = Lξ

ξ − 1
, if ξ > 1 (4.52)

and the loss quantile at level q is

fq(ξ) = L exp

(
− ln(1 − q)

ξ

)
, ξ > 0, (4.53)
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The mean and quantile of the loss are functions of ξ and thus, unconditionally, are
random variables

Ω = μ(Θξ ) and Qq = fq(Θξ )

respectively. If there is a reason to believe that, unconditionally, expected loss is
finite, then the tail parameter ξ should satisfy ξ ≥ B > 1. Now, assume that
we choose the prior distribution for Θξ to be Gamma(α, β) distribution truncated
below B, i.e. to have a density:

π(ξ) = ξα−1 exp(−ξ/β)
(1 − F (G)

α,β (B)) (α)β
α

1{ξ≥B}, ξ ≥ B, α > 0, β > 0, (4.54)

where F (G)
α,β (·) is a gamma distribution Gamma(α, β). If the expert estimates E[Θξ ]

and the uncertainty Pr[a ≤ Θξ ≤ b] = p, then the following two equations

E[Θξ ] = αβ
1 − F (G)

α+1,β(B)

1 − F (G)
α,β (B)

,

Pr[a ≤ Θξ ≤ b] = F (G)
α,β (b)− F (G)

α,β (a)

1 − F (G)
α,β (B)

(4.55)

can be solved to estimate the structural parameters α and β.

Example 4.3 Assume that, the lower bound for the tail parameter is B=2 and the
expert estimates are E[Θξ ] = 5, Pr[4 ≤ Θξ ≤ 6] = 2/3. Then we can fit α ≈
23.086, β ≈ 0.217 and can calculate the posterior distribution parameters αk , βk ,
when observations x1, x2, . . . become available, using (4.21). In Fig. 4.3a, we show
the subsequent posterior best estimates for the tail parameter

ξk = αkβk
1 − F (G)

α+1,β(B)

1 − F (G)
α,β (B)

, k = 1, 2, . . . , (4.56)

when the losses Xk are simulated from Pareto(4, 1). The actual simulated loss val-
ues are presented in Table 4.2. On the same figure, we show the standard maximum
likelihood estimate of the tail parameter

ξ̂MLE
k =

(
1

k

k∑

i=1

ln(xi/L)

)−1

.

It is easy to see that the Bayesian estimates are more stable while the maximum
likelihood estimates are quite volatile when the number of observations is small.
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Fig. 4.3 The Bayesian and the standard maximum likelihood estimates (MLE) of the Pareto tail
parameter vs the number of observations. The losses were sampled from Pareto(4, 1). The prior
distribution is gamma: (a) Gamma(23.1, 0.22), truncated below B = 2; (b) Gamma(4, 1.125).
See Example 4.3 for details

Table 4.2 Loss severities xi , i = 1, 2, . . . , 15 sampled from a Pareto(4, 1) distribution
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
xi 1.089 1.181 1.145 1.105 1.007 1.451 1.187 1.116 1.753 1.383 2.167 1.180 1.334 1.272 1.123

As the number of observations increases, two estimators become almost the same.
As another example, Fig. 4.3b compares the Bayesian estimate and MLE when the
gamma prior is specified by expert who says that E[Θξ ] = 4.5 and Vco[Θξ ] = 0.5.
This gives the parameters of the prior α = 4 and β = 1.125.

If it is difficult to express opinions on ξ directly, then the expert may try to esti-
mate the expected loss, quantile or their uncertainties. It might be difficult numer-
ically to fit α, β if the expert specifies unconditional expected loss or expected
quantile

E[Ω] = E[μ(Θξ )] =
∞∫

B

μ(ξ)π(ξ)dξ,

E[Qq ] = E[ fq(Θξ )] = L

∞∫

B

fq(ξ)π(ξ)dξ, (4.57)

respectively, as these are not easily expressed. Nevertheless, there is no problem
in principle. Fitting opinions on uncertainties might be easier. For example, if the
expert estimates the interval [a, b] such that the true expected loss is within the
interval with the probability Pr[a ≤ Ω ≤ b] = p, then it leads to the equation

Pr[a ≤ Ω ≤ b] = p =
∫ ã

b̃
π(ξ)dξ = F (G)

α,β (̃a)− F (G)
α,β (̃b)

1 − F (G)
α,β (B)

, (4.58)

where ã = a

a − L
, b̃ = b

b − L
.
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Here, the interval bounds should satisfy L < a < b ≤ B × L/(B − 1). The
estimation of the interval [a, b], L < a < b, such that the true quantile is within
the interval with the probability Pr[a ≤ Qq ≤ b] = p leads to the equation

Pr[a ≤ Qq ≤ b] = L
∫ C2

C1

π(ξ)dξ = F (G)
α,β (C2)− F (G)

α,β (C1)

1 − F (G)
α,β (B)

, (4.59)

C1 = − ln(1 − q)

ln(b/L)
, C2 = − ln(1 − q)

ln(a/L)
,

where the interval bounds should satisfy

L < a < b ≤ L exp

(
− ln(1 − q)

B

)
.

Equations (4.58) and (4.59) or similar ones can be used to fit α and β. If the expert
specifies more than two quantities, then one can use, for example, a nonlinear least
square procedure to fit the structural parameters.

4.4 Estimation of the Prior Using Data

The prior distribution can be estimated using a marginal distribution of observa-
tions. The data can be collective industry data, collective data in the bank, etc. This
approach is referred to as empirical Bayes; see Sect. 4.3.1 and Fig. 4.1.

4.4.1 The Maximum Likelihood Estimator

Consider, for example, J similar risk cells with the data {X ( j)
k , k = 1, 2, . . . ,

j = 1, . . . , J }. This can be, for example, a specific business line/event type risk cell
in J banks. Denote the data over past years as X( j) = (X ( j)

1 , . . . , X ( j)
K j
)′, that is, K j

is the number of observations in bank j over past years. Assume that X ( j)
1 , . . . , X ( j)

K j

are conditionally independent and identically distributed from the density f (·|θ j ),
for given�( j) = θ ( j). That is, the risk cells have different risk profiles� j . Assume
now that the risks are similar, in a sense that �(1), . . . ,�(J ) are independent and
identically distributed from the same density π(θ). That is, it is assumed that the
risk cells are the same a priori (before we have any observations); see Fig. 4.1. Then
the joint density of all observations can be written as

f (x(1), . . . , x(J )) =
J∏

j=1

∫ ⎡

⎣
K j∏

k=1

f
(

x ( j)
k |θ ( j)

)
⎤

⎦π
(
θ ( j)

)
dθ ( j). (4.60)
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The parameters of π(θ) can be estimated using the maximum likelihood method
by maximising (4.60). The density π(θ) is a prior density for the j-th cell. Using
internal data of the j-th risk cell, its posterior density is calculated from (4.9) as

π(θ ( j)|x( j)) =
K j∏

k=1

f
(

x ( j)
k |θ ( j)

)
π
(
θ ( j)

)
, (4.61)

where π(θ) was fitted with MLE using (4.60). The basic idea here is that the esti-
mates based on observations from all banks are better then those obtained using
smaller number of observations available in the risk cell of a particular bank.

4.4.2 Poisson Frequencies

It is not difficult to include a priori known differences (exposure indicators, expert
opinions on the differences, etc) between the risk cells from the different banks.
As an example, we consider the case when the annual frequency of the events is
modelled by the Poisson distribution with the gamma prior and estimate structural
parameters using the industry data with differences between the banks taken into
account.

Model Assumptions 4.5 Consider J risk cell with the loss frequencies {N j,k ,
k = 1, 2, . . . , j = 1, . . . , J }, where N j,k is the annual number of events in
the j-th risk cell in the k-th year. Denote the data over past years in risk cell
j as N j = (N j,1, . . . , N j,K j ) and the data over past years in all risk cells as
N1:J = (N1, . . . ,NJ ). Assume that:

� Given Λ j = λ j , N j,k are independent random variables from Poisson(λ j V j,k),
with probability mass function denoted as f (·|λ j ). Here, Vj,k is the known con-
stant (i.e. the gross income or the volume or combination of several exposure
indicators) and λ j is a risk profile of the cell in the j-th bank.

� Λ1, . . . , ΛJ are independent and identically distributed from Gamma(α, β)
with the density denoted as π(·).

� Denote N j = ∑K j
k=1 N j,k and Vj = ∑K j

k=1 Vj,k .

Given the Model Assumptions 4.5, the joint density of all data (over all J risk cells)
can be written as

f (n1:J ) =
J∏

j=1

∫ ⎡

⎣
K j∏

k=1

f (n j,k |λ j )

⎤

⎦π(λ j )dλ j

=
J∏

j=1

∫ ⎡

⎣
K j∏

k=1

e−λ j V j,k
(Vj,kλ j )

n j,k

(n j,k)!

⎤

⎦ λα−1
j e−λ j /β

 (α)βα
dλ j

=
⎡

⎣
J∏

j=1

K j∏

k=1

(Vj,k)
n j,k

(n j,k)!

⎤

⎦
J∏

j=1

 (α + n j )

 (α)βα(Vj + 1/β)α+n j
. (4.62)
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The parameters α and β can now be estimated using the maximum likelihood
method by maximising

ln f (n1:J ) ∝
J∑

j=1

{
ln (α + n j )− ln (α)− α lnβ − (α + n j ) ln

(
1

β
+ Vj

)}

(4.63)

over α and β. To avoid the use of numerical optimisation required for maximising
(4.63), one could also use a method of moments; see Proposition 4.1. Once the
prior distribution parameters α and β are estimated, then, using (4.9), the posterior
distribution of λ j for the j-th risk cell has a density

π(λ j |n j ) ∝ (λ j/β)
α−1

 (α)β
e−λ j /β

K j∏

k=1

e−λ j V j,k
(Vj,kλ j )

n j,k

n j,k !

∝ λn j +α−1 exp

(
−λ j V j − λ j

β

)
, (4.64)

which is Gamma(̂α, β̂) with

α̂ = α +
K j∑

k=1

n j,k, β̂ = β

⎛

⎝1 + β

K j∑

k=1

Vj,k

⎞

⎠
−1

. (4.65)

Assume that the exposure indicator of the cell in the j-th bank for the next year
is Vj,K j +1 = V . Then, the predictive distribution for the annual number of events in
the cell (conditional on the past internal data) is negative binomial, NegBin(̂α, p̂ =
1/(1 + V β̂)):

Pr[NK j +1 = n|N j = n j ] =
∫

e−λV (Vλ)
n

n!
λα̂−1

 (̂α)β̂α̂
e−λ/β̂dλ

=  (n + α̂)

 (̂α)n! (1 − p̂)n p̂α̂ . (4.66)

Remark 4.7 Observe that we have scaled the parameters for considering a priori dif-
ferences. This leads to a linear volume relation for the variance function. To obtain
different functional relations, it might be better to scale the actual observations. For
example, given observations X j,k, j = 1, . . . , J , k = 1, . . . , K j (these could be
frequencies or severities), consider variables Y j,k = X j,k/V j,k . Assume that, for
given � j = θ j , {Y j,k , k = 1, . . . , K j } are independent and identically distributed
from f (·|θ j ). Also, assume that �1, . . . ,�J are independent and identically dis-
tributed from π(·). Then one can construct the likelihood of Y j,k using (4.60) to fit
parameters of π(·) or try to use the method of moments.
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Estimating prior using method of moments. To avoid the use of numerical optimi-
sation required for maximising (4.63), one could also use a method of moments
utilising the following proposition.

Proposition 4.1 Given Model Assumptions 4.5, denote λ0 = E[Λ j ] = αβ, σ2
0 =

Var[Λ j ] = αβ2. Then the estimates λ̂0 and σ̂ 2
0 for λ0 and σ2

0 respectively are

λ̂0 = 1

J

J∑

j=1

λ̂ j , λ̂ j = 1

K j

K j∑

k=1

n j,k

Vj,k
, j = 1, . . . , J,

σ̂ 2
0 = max

⎡

⎣ 1

J − 1

J∑

j=1

(̂λ j − λ̂0)
2 − λ̂0

J

J∑

j=1

1

K 2
j

K j∑

k=1

1

Vj,k
, 0

⎤

⎦ .

These can easily be used to estimate α and β as α̂ = λ̂0/β̂ and β̂ = σ̂ 2
0 /̂λ0 corre-

spondingly2.

Proof Consider the standardised frequencies Fj,k = N j,k/Vj,k . It is easy to observe
that,

E[N j,k |Λ j ] = Λ j V j,k,Var[N j,k |Λ j ] = Λ j V j,k,

E[Fj,k |Λ j ] = Λ j , Var[Fj,k |Λ j ] = Λ j/Vj,k

and

E[Fj,k] = E[E[Fj,k |Λ j ]] = E[Λ j ] = λ0,

Var[Fj,k] = E[Var[Fj,k |Λ j ]] + Var(E[Fj,k |Λ j ])
= E[Λ j/Vj,k] + Var[Λ j ] = λ0

Vj,k
+ σ2

0.

Note that, given Λ j , Fj,k are independent. Consider estimators

Λ̂ j = 1

K j

K j∑

k=1

Fj,k, j = 1, . . . , J.

These estimators are independent and

E[Λ̂ j ] = 1

K j

K j∑

k=1

E[Fj,k] = λ0,

Var[Λ̂ j ] = E[Var[Λ̂ j |Λ j ]] + Var[E[Λ̂ j |Λ j ]] = λ0

K 2
j

K j∑

k=1

1

Vj,k
+ σ2

0.

2 Alternative unbiased moment estimators are given in Bühlmann and Gisler ([44], section 4.10).
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Thus

Λ̂0 = 1

J

J∑

j=1

Λ̂ j

is an unbiased estimator for λ0. In the case of the same number of observations per
company and the same weights Vj,k , this estimator would have a minimal variance
among all linear combinations of Λ̂1, . . . , Λ̂J . Next, calculate

J∑

j=1

E[(Λ̂ j − Λ̂0)
2] =

J∑

j=1

E[(Λ̂ j − λ0 + λ0 − Λ̂0)
2]

=
J∑

j=1

(
Var[Λ̂ j ] + Var[Λ̂0] − 2Cov[Λ̂ j , Λ̂0]

)

=
J∑

j=1

(
Var[Λ̂ j ] + 1

J 2

J∑

i=1

Var[Λ̂i ] − 2

J
Var[Λ̂ j ]

)

= J − 1

J

J∑

j=1

Var[Λ̂ j ]

= λ0
J − 1

J

J∑

j=1

1

K 2
j

K j∑

k=1

1

Vj,k
+ σ2

0(J − 1). (4.67)

Thus

Ξ̃2
0 = 1

J − 1

J∑

j=1

(Λ̂ j − Λ̂0)
2 − Λ̂0

J

J∑

j=1

1

K 2
j

K j∑

k=1

1

Vj,k
(4.68)

is an unbiased estimator for σ2
0. Observe that Ξ̃2

0 is not necessarily positive, hence
we take Ξ̂2

0 = max{Ξ̃2
0 , 0} as the final estimator for σ 2

0 . This completes the proof.
�

4.5 Combining Expert Opinions with External and Internal Data

In the above sections we showed how to combine two data sources: expert opinions
and internal data; or external data and internal data. In order to estimate the risk cap-
ital of a bank and to fulfil the Basel II requirements, risk managers have to take into
account internal data, relevant external data (industry data) and expert opinions. The
aim of this section is to provide an example of methodology to be used to combine
these three sources of information. Here, we follow the approach suggested in Lam-
brigger, Shevchenko and Wüthrich [141]. As in the previous section, we consider
one risk cell only. In terms of methodology we go through the following steps:
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� In any risk cell, we model the loss frequency and the loss severity by parametric
distributions (e.g. Poisson for the frequency or Pareto, lognormal, etc. for the
severity). For the considered bank, the unknown parameter vector θ (for example,
the Poisson parameter or the Pareto tail index) of these distributions has to be
quantified.

� A priori, before we have any company specific information, only industry data
are available. Hence, the best prediction of our bank specific parameter θ is given
by the belief in the available external knowledge such as the provided industry
data. This unknown parameter of interest is modelled by a prior distribution
(structural distribution) corresponding to a random vector �. The parameters
of the prior distribution (hyper-parameters) are estimated using data from the
whole industry by, for example, maximum likelihood estimation, as described in
Sect. 4.4. If no industry data are available, the prior distribution could come from
a “super expert” that has an overview over all banks.

� The true bank specific parameter θ0 is treated as a realisation of �. The prior
distribution of a random vector � corresponds to the whole banking industry
sector, whereas θ stands for the unknown underlying parameter set of the bank
being considered. Due to the variability amongst banks, it is natural to model
θ by a probability distribution. Note that � is random with known distribution,
whereas θ0 is deterministic but unknown.

� As time passes, internal data X = (X1, . . . , X K )
′ as well as expert opinions

� = (Δ1, . . . , ΔM )
′ about the underlying parameter θ become available. This

affects our belief in the distribution of � coming from external data only and
adjust the prediction of θ0. The more information on X and � we have, the
better we are able to predict θ0. That is, we replace the prior density π(θ) by a
conditional density of � given X and �.

In order to determine the posterior density π(θ |x, δ), consider the joint condi-
tional density of observations and expert opinions (given the parameter vector θ ):

h(x, δ|θ) = h1(x|θ)h2(δ|θ), (4.69)

where h1 and h2 are the conditional densities (given � = θ ) of X and �, respec-
tively. Thus X and � are assumed to be conditionally independent given �.

Remark 4.8

� Notice that, in this way, we naturally combine external data information, π(θ),
with internal data X and expert opinion �.

� In classical Bayesian inference (as it is used, for example, in actuarial science),
one usually combines only two sources of information as described in the previ-
ous sections. Here, we combine three sources simultaneously using an appropri-
ate structure, that is, Eq. (4.69).

� Equation (4.69) is quite a reasonable assumption. Assume that the true bank spe-
cific parameter is θ0. Then, (4.69) says that the experts in this bank estimate θ0
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(by their opinion�) independently of the internal observations. This makes sense
if the experts specify their opinions regardless of the data observed. Otherwise
we should work with the joint distribution h(x, δ|θ).

We further assume that observations as well as expert opinions are conditionally
independent and identically distributed, given � = θ , so that

h1(x|θ) =
K∏

k=1

f1(xk |θ), (4.70)

h2(δ|θ) =
M∏

m=1

f2(δm |θ), (4.71)

where f1 and f2 are the marginal densities of a single observation and a single expert
opinion, respectively. We have assumed that all expert opinions are identically dis-
tributed, but this can be generalised easily to expert opinions having different distri-
butions.

Here, the unconditional parameter density π(θ) is the prior density, whereas the
conditional parameter density π(θ |x, δ) is the posterior density. Let h(x, δ) denote
the unconditional joint density of the data X and expert opinions�. Then, it follows
from Bayes’s theorem that

h(x, δ|θ)π(θ) = π(θ |x, δ)h(x, δ). (4.72)

Note that the unconditional density h(x, δ) does not depend on θ and thus the pos-
terior density is given by

π(θ |x, δ) ∝ π(θ)

K∏

k=1

f1(xk |θ)
M∏

m=1

f2(δm |θ). (4.73)

For the purposes of operational risk, it should be used to estimate the predictive
distribution of future losses.

Hereafter, in this section, we assume that the parameters of the prior distribu-
tion are known and we look at a single risk cell in one bank. Therefore, the index
representing bank or risk cell is not introduced.

4.5.1 Conjugate Prior Extension

Equation (4.73) can be used in a general setup, but it is convenient to find some
conjugate prior distributions such that the prior and the posterior distribution have
a similar type, or where at least the posterior distribution can be calculated analyti-
cally. This type of distribution has been treated in Sect. 4.3 when two data sources
have to be combined. For the case of (4.73), the standard definition of the conjugate
prior distributions, Definition 2.22, can be extended as follows.
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Definition 4.1 (Conjugate Prior Distribution) Let F denote the class of density
functions h(x, δ|θ), indexed by θ . A class U of prior densities π(θ) is said to be
a conjugate family for F if the posterior density π(θ |x, δ) ∝ π(θ)h(x, δ|θ) also
belongs to the class U for all h ∈ F and π ∈ U .

Again, in general, the posterior distribution cannot be calculated analytically but
can be estimated numerically – for instance by the Markov chain Monte Carlo meth-
ods described in Sect. 2.11.

4.5.2 Modelling Frequency: Poisson Model

To model the loss frequency for operational risk in a risk cell, consider the following
model.

Model Assumptions 4.6 (Poisson-gamma-gamma) Assume that a risk cell in a
bank has a scaling factor V for the frequency in a specified risk cell (it can be
the product of several economic factors such as the gross income, the number of
transactions or the number of staff).

(a) Let Λ ∼ Gamma(α0, β0) be a gamma distributed random variable with shape
parameter α0 > 0 and scale parameter β0 > 0, which are estimated from (exter-
nal) market data. That is, the density of Gamma(α0, β0), plays the role of π(θ)
in (4.73).

(b) Given Λ = λ, the annual frequencies, N1, . . . , NT , NT +1, where T +1 refers to
next year, are assumed to be independent and identically distributed with Nt ∼
Poisson(Vλ). That is, f1(·|λ) in (4.73) corresponds to the probability mass
function of a Poisson(Vλ) distribution.

(c) A financial company has M expert opinions Δm, 1 ≤ m ≤ M, about the
intensity parameter Λ. Given Λ = λ, Δm and Nt are independent for all
t and m, and Δ1, . . . , ΔM are independent and identically distributed with
Δm ∼ Gamma(ξ, λ/ξ), where ξ is a known parameter. That is, f2(·|λ) in (4.73)
corresponds to the density of a Gamma(ξ, λ/ξ) distribution.

Remark 4.9

� The parameters α0 and β0 in Model Assumptions 4.6 are hyper-parameters
(parameters for parameters) and can be estimated using the maximum likelihood
method or the method of moments; see for instance Sect. 4.4.

� In Model Assumptions 4.6 we assume

E[Δm |Λ] = Λ, 1 ≤ m ≤ M, (4.74)

that is, expert opinions are unbiased. A possible bias might only be recognised
by the regulator, as he alone has the overview of the whole market.
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Note that the coefficient of variation of the conditional expert opinion Δm |Λ is

Vco[Δm |Λ] = (Var[Δm |Λ)])1/2/E[Δm |Λ] = 1/
√
ξ,

and thus is independent ofΛ. This means that ξ , which characterises the uncertainty
in the expert opinions, is independent of the true bank specific Λ. For simplicity, we
have assumed that all experts have the same conditional coefficient of variation and
thus have the same credibility. Moreover, this allows for the estimation of ξ as

ξ̂ = (μ̂/σ̂ )2, (4.75)

where

μ̂ = 1

M

M∑

m=1

δm and σ̂ 2 = 1

M − 1

M∑

m=1

(δm − μ̂)2, M ≥ 2.

In a more general framework the parameter ξ can be estimated, for example, by
maximum likelihood method.

In the insurance practice ξ is often specified by the regulator denoting a lower
bound for expert opinion uncertainty; e.g. Swiss Solvency Test, see Swiss Finan-
cial Market Supervisory Authority ([230], appendix 8.4). If the credibility differs
among the experts, then Vco[Δm |Λ] should be estimated for all m, 1 ≤ m ≤ M .
Admittedly, this may often be a challenging issue in practice.

Remark 4.10 This model can be extended to a model where one allows for more
flexibility in the expert opinions. For convenience, it is preferred that experts are
conditionally independent and identically distributed, given Λ. This has the advan-
tage that there is only one parameter, ξ , that needs to be estimated.

Using the notation from Sect. 4.5, the posterior density of Λ, given the losses up
to year K and the expert opinions of M experts, can be calculated. Denote the data
over past years as follows:

N = (N1, . . . , NT )
′,

� = (Δ1, . . . , ΔM )
′.

Also, denote the arithmetic means by

N = 1

T

T∑

t=1

Nt , Δ = 1

M

M∑

m=1

Δm, etc. (4.76)

Then, the posterior density is given by the following theorem.

Theorem 4.2 Under Model Assumptions 4.6, given loss information N = n and
expert opinion � = δ, the posterior density of Λ is

π(λ|n, δ) = (ω/φ)(ν+1)/2

2Kν+1(2
√
ωφ)

λνe−λω−λ−1φ, (4.77)
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with

ν = α0 − 1 − Mξ + T n,

ω = V T + 1

β0
, (4.78)

φ = ξMδ,

and

Kν+1(z) = 1

2

∫ ∞

0
uνe−z(u+1/u)/2du. (4.79)

Here, Kν(z) is a modified Bessel function of the third kind; see for instance
Abramowitz and Stegun ([3], p. 375).

Proof Model Assumptions 4.6 applied to (4.73) yield

π(λ|n, δ) ∝ λα0−1e−λ/β0

T∏

t=1

e−Vλ (Vλ)
nt

nt !
M∏

m=1

(δm)
ξ−1

(λ/ξ)ξ
e−δmξ/λ

∝ λα0−1e−λ/β0

T∏

t=1

e−Vλλnt

M∏

m=1

(ξ/λ)ξe−δmξ/λ

∝ λα0−1−Mξ+T n exp

(
−λ

(
V T + 1

β0

)
− 1

λ
ξMδ

)
.

Remark 4.11

� A distribution with density (4.77) is known as the generalised inverse Gaussian
distribution GIG(ω, φ, ν). This is a well-known distribution with many applica-
tions in finance and risk management; see McNeil, Frey and Embrechts ([157],
pp. 75, 497). The GIG has been analysed by many authors; see a discussion in
Jørgensen [129]. The GIG belongs to the popular class of subexponential (heavy-
tailed) distributions; see Embrechts [80] for a proof and Sect. 6.7 for a detailed
treatment of subexponential distributions. The GIG with ν ≤ 1 is a distribution
of the first hitting time for certain time-homogeneous processes; see for instance
Jørgensen ([129], chapter 6). In particular, the standard inverse Gaussian (i.e. the
GIG with ν = −3/2) is known by financial practitioners as the distribution func-
tion determined by the first passage time of a Brownian motion. The algorithm
for generating realisations from a GIG is provided in Appendix B.1.

� In comparison with the classical Poisson-gamma case of combining two sources
of information (considered in Sect. 4.3.3), where the posterior is a gamma dis-
tribution, the posterior π(λ|·) in (4.80) is more complicated. In the exponent, it
involves both λ and 1/λ. Note that expert opinions enter via the term 1/λ only.

� Observe that the classical exponential dispersion family with associated conju-
gates (see chapter 2.5 in Bühlmann and Gisler [44]) allows for a natural extension
to GIG-like distributions. In this sense the GIG distributions enlarge the classical
Bayesian inference theory on the exponential dispersion family.
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For our purposes it is interesting to observe how the posterior density transforms
when new data from a newly observed year arrive. Let νk , ωk and φk denote the
parameters for the data (N1, . . . , Nk) after k accounting years. Implementation of
the update processes is then given by the following equalities (assuming that expert
opinions do not change).

Information update process. Year k → year k + 1:

νk+1 = νk + nk+1,

ωk+1 = ωk + V, (4.80)

φk+1 = φk .

Obviously, the information update process has a very simple form and only the
parameter ν is affected by the new observation nk+1. The posterior density does not
change its type every time new data arrive and hence, is easily calculated.

The moments of a GIG are not available in a closed form through elementary
functions but can be expressed in terms of Bessel functions; see Appendix A.2.11.
In particular, the posterior expected number of losses is

E[Λ|N = n,� = δ] =
√
φ

ω

Kν+2(2
√
ωφ)

Kν+1(2
√
ωφ)

. (4.81)

The mode of a GIG has a simple expression (see Appendix A.2.11) that gives the
posterior mode

mode [Λ|N = n,� = δ] = 1

2ω

(
ν +

√
ν2 + 4ωφ

)
. (4.82)

It can be used as an alternative point estimator instead of the mean. Also, the mode
of a GIG differs only slightly from the expected value for large |ν|.

We are clearly interested in robust prediction of the bank specific Poisson param-
eter and thus the Bayesian estimator (4.81) is a promising candidate within this
operational risk framework. The examples below show that, in practice, (4.81) out-
performs other classical estimators. To interpret (4.81) in more detail, we make use
of asymptotic properties. Using properties of Bessel functions, it is easy to show
that

Rν2(2ν) → ν as ν → ∞, (4.83)

where

Rν(z) = Kν+1(z)

Kν(z)
;
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see Lambrigger, Shevchenko and Wüthrich ([141], lemma B.1 in appendix B).
Using this result, a full asymptotic interpretation of the Bayesian estimator (4.81)
can be found as follows.

Theorem 4.3 Under Model Assumptions 4.6, the following asymptotic relations
hold:

(a) If T → ∞ then E[Λ|N,�] → E[Nt |Λ = λ]/V = λ.
(b) If Vco[Δm |Λ] → 0 then E[Λ|N,�] → Δm, m = 1, . . . , M.
(c) If M → ∞ then E[Λ|N,�] → E[Δm |Λ = λ] = λ.
(d) If Vco[Δm |Λ] → ∞, m = 1, . . . , M then

E[Λ|N,�] → 1

V Tβ0 + 1
E[Λ] + 1

V

(
1 − 1

V Tβ0 + 1

)
N .

(e) If E[Λ] = constant and Vco[Λ] → 0 then E[Λ|N,�] → E[Λ].

Proof The proof is given in Lambrigger, Shevchenko and Wüthrich ([141],
appendix C). These asymptotic relations should be understood in a probability
sense, that is, true with probability 1 (the so-called P-almost surely).

Remark 4.12 The GIG mode and mean are asymptotically the same for ν → ∞;
also 4ωφ/ν2 → 0 for T → ∞, M → ∞, M → 0 or ξ → 0. Then, one can
approximate the posterior mode as

mode [Λ|N = n,� = δ] ≈ ν

2ω
1{ν≥0} + φ

|ν| (4.84)

and obtain the results of Theorem 4.3 in an elementary manner avoiding Bessel
functions.

Theorem 4.3 yields a natural interpretation of the posterior density (4.77) and its
expected value (4.81):

� As the number of observations increases, we give more weight to them and in the
limit T → ∞ (case a) we completely believe in the observations Nk and neglect
a priori information and expert opinion.

� On the other hand, the more the coefficient of variation of the expert opinions
decreases, the more weight is given to them (case b).

� In Model Assumptions 4.6, we assume experts to be conditionally independent.
In practice, however, even for Vco[Δm |Λ] → 0, the variance of Δ|Λ cannot be
made arbitrarily small when increasing the number of experts, as there is always
a positive covariance term due to positive dependence between experts. Since
we predict random variables, we never have “perfect diversification”, that is, in
practical applications we would probably question property c.

� Conversely, if experts become less credible in terms of having an increasing coef-
ficient of variation, our model behaves as if the experts do not exist (case d). The
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Bayes estimator is then a weighted sum of prior and posterior information with
appropriate credibility weights. This is the classical credibility result obtained
from Bayesian inference on the exponential dispersion family with two sources
of information; see (4.20).

� Of course, if the coefficient of variation of the prior distribution (i.e. of the whole
banking industry) vanishes, the external data are not affected by internal data and
expert opinion (case e).

The above interpretation shows that the model behaves as we would expect and
require in practice. Thus there are good reasons to believe that it provides an ade-
quate model to combine internal observations with relevant external data and expert
opinions, as required by many risk managers. One can even go further and generalise
the results from this section in a natural way to a Poisson-gamma-GIG model, that
is, where the prior distribution is a GIG. Then, the posterior distribution is again a
GIG (see also Model Assumptions 4.16 below).

Example 4.4 A simple example, taken from Lambrigger, Shevchenko and Wüthrich
([141], example 3.7), illustrates the above methodology combining three data
sources. It also extends Example 4.1 displayed in Fig. 4.2, where two data sources
are combined using classical Bayesian inference approach. Assume that:

� External data (for example, provided by external databases or regulator) estimate
the intensity of the loss frequency (i.e. the Poisson parameter Λ), which has a
prior gamma distribution Λ ∼ Gamma(α0, β0), as E[Λ] = α0β0 = 0.5 and
Pr[0.25 ≤ Λ ≤ 0.75] = 2/3. Then, the parameters of the prior are α0 ≈ 3.407
and β0 ≈ 0.147; see Example 4.1.

� One expert gives an estimate of the intensity as δ = 0.7. For simplicity, we
consider in this example one single expert only and hence, the coefficient of
variation is not estimated using (4.75), but given a priori (e.g. by the regulator):
Vco[Δ|Λ] = √

Var[Δ|Λ]/E[Δ|Λ] = 0.5, i.e. ξ = 4.
� The observations of the annual number of losses n1, n2, . . . are sampled from

Poisson(0.6) and are the same as in the Example 4.1 (i.e. given in Table 4.1).

This means that a priori we have a frequency parameter distributed as Gamma
(α0, β0) with mean α0β0 = 0.5. The true value of the parameter λ for this risk in a
bank is 0.6, that is, it does worse than the average institution. However, our expert
has an even worse opinion of his institution, namely δ = 0.7. Now, we compare:

� the pure maximum likelihood estimate

λ̂MLE
k = 1

k

k∑

i=1

ni ;

� the Bayesian estimate (4.20),

λ̂
(2)
k = E[Λ|N1 = n1, . . . , Nk = nk], (4.85)

without expert opinion; and



4.5 Combining Expert Opinions with External and Internal Data 149

� the Bayesian estimate derived in formula (4.81)

λ̂
(3)
k = E[Λ|N1 = n1, . . . , Nk = nk,Δ = δ], (4.86)

that combines internal data and expert opinions with the prior.

The results are plotted in Fig. 4.4a. The estimator λ̂(3)k shows a much more stable
behaviour around the true value λ = 0.6, due to the use of the prior information
(market data) and the expert opinions. Given adequate expert opinions, λ̂(3)k clearly
outperforms the other estimators, particularly if only a few data points are available.

One could think that this is only the case when the experts’ estimates are appro-
priate. However, even if experts fairly under- (or over-) estimate the true parameter
λ, the method presented here performs better for our dataset than the other men-
tioned methods, when a few data points are available. Figure 4.4b displays the same
estimators, but where the expert’s opinion is δ = 0.4, which clearly underestimates
the true expected value 0.6.

In Fig. 4.4a, λ̂(3)k gives better estimates when compared to λ(2)k . Observe also that

in Fig. 4.4b, λ̂(3)k gives more appropriate estimates than λ(2)k . Though the expert is

too optimistic, λ̂(3)k manages to correct λ̂MLE
k (k ≤ 10), which is clearly too low.

The above example yields a typical picture observed in numerical experiments
that demonstrates that the Bayes estimator (4.81) is often more suitable and stable
than maximum likelihood estimators based on internal data only.

Remark 4.13 Note that in this example the prior distribution as well as the expert
opinion do not change over time. However, as soon as new information is available
or when new risk management tools are in place, the corresponding parameters may
be easily adjusted.
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Fig. 4.4 (◦) The Bayes estimate λ̂(3)k , k = 1, . . . , 15, combines the internal data simulated from
Poisson(0.6), external data giving E[Λ] = 0.5, and expert opinion δ. It is compared with the
Bayes estimate λ̂(2)k (�), that combines external data and internal data, and the classical maximum
likelihood estimate λ̂MLE

k (•). (a) is the case of expert opinion δ = 0.7 and (b) is the case of expert
opinion δ = 0.4. See Example 4.4 for details
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4.5.3 Modelling Frequency: Poisson with Stochastic Intensity

Consider the annual number of events for a risk in one bank in year t modelled as
random variable from the Poisson distribution Poisson (Λt = λt ). Conditional on
Λt , the expected number of events per year is Λt . The latter is not only different for
different banks and different risks but also may change from year to year for a risk
in the same bank. In the previous section, we considered the situation where Λt is
the same for all years t = 1, 2, . . . . However, in general, the evolution of Λt , can
be modelled as having deterministic (trend, seasonality) and stochastic components,
that is, we consider a sequence Λ1,Λ2, . . . , ΛT ,ΛT +1, where T + 1 corresponds
to the next year. In actuarial mathematics this is called a mixed Poisson model.

For simplicity, assume that Λt is purely stochastic and distributed according
to a gamma distribution. In the context of operational risk, this case was consid-
ered in Peters, Shevchenko and Wüthrich [187]. The frequency risk profile Λt is
characterised by a risk characteristic ΘΛ. This ΘΛ represents a vector of unknown
distribution parameters of risk profile Λt . The true value of ΘΛ is not known. Then,
under the Bayesian approach, it is modelled as a random variable. A priori, before
having any company specific information, the prior distribution of ΘΛ is based on
external data only. Our aim then is to find the distribution of ΘΛ when we have
company specific information about risk cell such as observed losses and expert
opinions. This can be achieved by developing the following Bayesian model.

Model Assumptions 4.7 Assume that a risk cell has a fixed, deterministic volume
V (i.e. number of transactions, etc.).

1. The risk characteristics ΘΛ of a risk cell has a gamma prior distribution:

ΘΛ ∼ Gamma(a, 1/b), a > 0, b > 0.

2. Given ΘΛ = θΛ, (Λ1, N1), . . . , (ΛT +1, NT +1) are independent and identically
distributed, and the intensity of events of year t ∈ {1, . . . , T + 1} has conditional
marginal distribution

Λt ∼ Gamma(α, θΛ/α)

for a given parameter α > 0.
3. Given ΘΛ = θΛ and Λt = λt , the frequencies

Nt ∼ Poisson(Vλt ).

4. The financial company has M expert opinions Δm, m = 1, . . . , M about ΘΛ.
Given ΘΛ = θΛ, Δm and (Λt , Nt ) are independent for all m and t, and
Δ1, . . . , ΔM are independent and identically distributed with

Δm ∼ Gamma(ξ, θΛ/ξ).
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Remark 4.14

� Given that ΘΛ ∼ Gamma(a, 1/b), E [ΘΛ] = a/b and Var [ΘΛ] = a/b2. These
are the prior two moments of the underlying risk characteristics ΘΛ. The prior is
determined by external data (or the regulator). In general parameters a and b can
be estimated by the maximum likelihood method using the data from all banks.

� The first moments are

E [Λt |ΘΛ] = ΘΛ,

E [Λt ] = a

b
,

E [ Nt |ΘΛ,Λt ] = V Λt ,

E [ Nt |ΘΛ] = V ΘΛ,

E [Nt ] = V
a

b
.

The second moments are given by

Var [Λt |ΘΛ] = α−1 Θ2
Λ,

Var [Λt ] = α−1 a2

b2
+ (α−1 + 1)

a

b2
,

Var [ Nt |ΘΛ,Λt ] = V Λt ,

Var [ Nt |ΘΛ] = V ΘΛ + V 2 α−1 Θ2
Λ,

Var [Nt ] = V
a

b
+ V 2 α−1 a2

b2
+ V 2 (α−1 + 1)

a

b2
.

Note that if we measure diversification in terms of the variational coefficient
(Vco) we obtain

lim
V →∞ Vco2 [ Nt |ΘΛ] = lim

V →∞
Var [ Nt |ΘΛ]

E2 [ Nt |ΘΛ]
= α−1 > 0 (4.87)

and

lim
V →∞ Vco2 [Nt ] = lim

V →∞
Var [Nt ]

E2 [Nt ]
= α−1 +

(
α−1 + 1

)
a−1 > 0. (4.88)

That is, the model makes perfect sense from a practical perspective. Namely, as
volume increases, V → ∞, there always remains a non-diversifiable element;
see (4.87) and (4.88). This is exactly what has been observed in practice and what
regulators require from internal models. Note that if we modelΛt as constant and
known, then Vco2 [Nt |Λt ] → 0 as V → ∞.

� Contrary to the developments in the previous section, where the intensityΛt was
constant over time, nowΛt is a stochastic process. From a practical point of view,
it is not plausible that the intensity of the annual counts is constant over time.
In such a setting parameter risks completely vanish if we have infinitely many
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observed years or infinitely many expert opinions, respectively (see theorem 3.6
(a) and (c) in Lambrigger, Shevchenko and Wüthrich [141]). This is because
Λt can then be perfectly forecasted. In the present model, parameter risks will
also decrease with increasing information. As we gain information the posterior
standard deviation of ΘΛ will converge to 0. However, since ΛT +1 viewed from
time T is always random, the posterior standard deviation forΛT +1 will be finite.

� Note that conditionally given ΘΛ = θΛ, Nt has a negative binomial distribution
with probability weights for n ≥ 0,

Pr [Nt = n| θΛ] =
(
α + n − 1

n

)(
α

α + θΛV

)α (
θΛV

α + θΛV

)n

. (4.89)

That is, we could directly work with a negative binomial distribution, instead of
introducing stochastic intensityΛt explicitly. In Sect. 7.12, we extend this model
to the case of many risks with dependence induced by the dependence between
risk profiles Λt of different risks.

� Δm denotes the expert opinion of expert m which predicts the true risk charac-
teristics ΘΛ of his company. We have

E [Δm |ΘΛ] = E
[
Λ j

∣∣ΘΛ

] = E
[
N j/V

∣∣ΘΛ

] = ΘΛ,

Var [Δm |ΘΛ] = Θ2
Λ/ξ, Vco [Δm |ΘΛ] = ξ−1/2. (4.90)

That is, the relative uncertainty Vco in the expert opinion does not depend on
the value of ΘΛ. That means that ξ can be given externally, for example, by the
regulator, who is able to give a lower bound to the uncertainty. Moreover, we see
that the expert predicts the average frequency for his company. Alternatively, ξ
can be estimated using a method of moments as in (4.75).

Denote 	 = (Λ1, . . . , ΛT )
′, N = (N1, . . . , NT )

′ and � = (Δ1, . . . , ΔM )
′. Then,

using Bayes’s theorem, the joint posterior density of the random vector (ΘΛ,	)

given observations N = n and � = δ is

π(θΛ,λ|n, δ) ∝ π (n|θΛ,λ) π (λ|θΛ) π (δ|θΛ) π (θΛ) .

Here, the explicit expressions for the likelihood terms and the prior are

π (n|θΛ,λ) π (λ|θΛ) =
T∏

t=1

(Vλt )
nt

nt !
(α/θΛ)

α

 (α)
λα−1

t

× exp {−λt (V + α/θΛ)} , (4.91)

π (δ|θΛ) =
M∏

m=1

(ξ/θΛ)
ξ

 (ξ)
δξ−1

m exp {−δmξ/θΛ} , (4.92)

π (θΛ) = ba

 (a)
θa−1
Λ exp {−θΛb} . (4.93)
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Note that the intensitiesΛ1, . . . , ΛT are non-observable. Therefore we take the inte-
gral over their densities to obtain the posterior distribution of the random variable
ΘΛ, given N = n and � = δ,

π (θΛ|n, δ) ∝
T∏

t=1

(
α + nt − 1

nt

)(
α

α + θΛV

)α (
θΛV

α + θΛV

)nt

×
M∏

m=1

(ξ/θΛ)
ξ

 (ξ)
δξ−1

m exp {−δmξ/θΛ} ba

 (a)
θa−1
Λ exp {−θΛb}

∝
(

1

α + θΛV

)Tα+∑T
t=1 nt

θ
a−Mξ+∑T

t=1 nt −1
Λ

× exp

{
−θΛb − ξ

θΛ

M∑

m=1

δm

}
. (4.94)

Given ΘΛ, the distribution of the number of losses Nt is negative binomial.
Hence, one could start with a negative binomial model for Nt . The reason for the
introduction of the random intensities Λt is that in Sect. 7.12 we will utilise them to
model dependence between different risk cells, by introducing dependence between
Λ
(1)
t , . . . , Λ

(J )
t , where superscript refers to the risk cell.

Typically, a closed-form expression for the marginal posterior density of ΘΛ,
given (N,�), cannot be obtained. In general, one can integrate out the latent vari-
ables Λ1, . . . , ΛT numerically through a MCMC approach, as will be done in
Sect. 7.13, to obtain an empirical distribution for the posterior of π (θΛ|n, δ). This
empirical posterior distribution then allows for the simulation of ΛT +1 and NT +1,
respectively, conditional on data (N,�).

4.5.4 Lognormal Model for Severities

In general, one can use the methodology summarised by Eq. (4.73) to develop a
model combining external data, internal data and expert opinion for estimation of
the severity. For illustration purposes, this section considers the lognormal severity
model; the Pareto severity model is developed in the next section.

Consider modelling severities X1, . . . , X K , . . . using the lognormal distribution
LN (μ, σ ), where X = (X1, . . . , X K )

′ are the losses over past T years. Here, we
take an approach considered in Sect. 4.3.4, whereμ is unknown and σ is known. The
unknown μ is treated under the Bayesian approach as a random variable Θμ. Then
combining external data, internal data and expert opinions can be accomplished
using the following model.
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Model Assumptions 4.8 (Lognormal-normal-normal) Let us assume the follow-
ing severity model for a risk cell in one bank:

(a) Let Θμ ∼ N (μ0, σ0) be a normally distributed random variable with parame-
ters μ0, σ0, which are estimated from (external) market data, i.e. π(θ) in (4.73)
is the density of N (μ0, σ0).

(b) Given Θμ = μ, the losses X1, X2, . . . are conditionally independent with a
common lognormal distribution:

Xk∼LN (μ, σ ),

where σ is assumed known. That is, f1(·|μ) in (4.73) corresponds to the density
of a LN (μ, σ ) distribution.

(c) The financial company has M experts with opinionsΔm, 1 ≤ m ≤ M, aboutΘμ.
Given Θμ = μ, Δm and Xk are independent for all m and k, and Δ1, . . . , ΔM

are independent with a common normal distribution:

Δm∼N (μ, ξ),

where ξ is a parameter estimated using expert opinion data. That is, f2(·|μ)
corresponds to the density of a N (μ, ξ) distribution.

Remark 4.15

� For M ≥ 2, the parameter ξ can be estimated by the standard deviation of δm :

ξ̂ =
(

1

M − 1

M∑

m=1

(δm − δ)2

)1/2

. (4.95)

� The hyper-parameters μ0 and σ0 are estimated from market data, for example,
by maximum likelihood estimation or by the method of moments.

� In practice one often uses an ad-hoc estimate for σ , which usually is based on
expert opinion only. However, one could think of a Bayesian approach for σ ,
but then an analytical formula for the posterior distribution in general does not
exist and the posterior needs then to be calculated numerically, for example, by
MCMC methods.

Under Model Assumptions 4.8, the posterior density is given by

π(μ|x, δ) ∝ 1

σ0
√

2π
exp

(
− (μ− μ0)

2

2σ 2
0

)
K∏

k=1

1

σ
√

2π
exp

(
− (ln xk − μ)2

2σ 2

)

M∏

m=1

1

ξ
√

2π
exp

(
− (δm − μ)2

2ξ2

)
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∝ exp

[
−
(
(μ− μ0)

2

2σ 2
0

+
K∑

k=1

(ln xk − μ)2

2σ 2
+

M∑

m=1

(δm − μ)2

2ξ2

)]

∝ exp

[
− (μ− μ̂)2

2σ̂ 2

]
, (4.96)

with

σ̂ 2 =
(

1

σ 2
0

+ K

σ 2
+ M

ξ2

)−1

,

and

μ̂ = σ̂ 2 ×
(
μ0

σ 2
0

+ 1

σ 2

K∑

k=1

ln xk + 1

ξ2

M∑

m=1

δm

)
.

In summary, we derived the following theorem (also see Lambrigger, Shevchenko
and Wüthrich [141]).

Theorem 4.4 Under Model Assumptions 4.8, the posterior distribution ofΘμ, given
loss information X = x and expert opinion� = δ, is a normal distribution N (μ̂, σ̂ )

with

σ̂ 2 =
(

1

σ 2
0

+ K

σ 2
+ M

ξ2

)−1

and

μ̂ = E[Θμ|X = x,� = δ] = ω1μ0 + ω2ln x + ω3δ, (4.97)

where ln x = 1
K

∑K
k=1 ln xk and the credibility weights are

ω1 = σ̂ 2/σ 2
0 , ω2 = σ̂ 2 K/σ 2, ω3 = σ̂ 2 M/ξ2.

This theorem yields a natural interpretation of the considered model. The estimator
μ̂ in (4.97) weights the internal and external data as well as the expert opinion
in an appropriate manner. Observe that under Model Assumptions 4.8, the mean
of the posterior distribution can be calculated explicitly. This is different from the
frequency model in Sect. 4.5.2, where asymptotic calculations (Theorem 4.3) were
required for the interpretation of the terms. However, interpretation of the terms is
exactly the same as in Theorem 4.3. The more credible the information, the higher
is the credibility weight in (4.97) – as expected from an appropriate model for com-
bining internal observations, relevant external data and expert opinions.
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4.5.5 Pareto Model

Consider modelling severities X1, . . . , X K , . . . using Pareto(γ, L) with a density

f (x) = γ

L

( x

L

)−γ−1
, x ≥ L , ξ > 0, (4.98)

where X = (X1, . . . , X K )
′ are the losses over past T years. Note that if ξ > 1,

then the mean is Lξ/(ξ − 1), otherwise the mean does not exist. Here, we take
an approach considered in Sect. 4.3.6, where γ is unknown and the threshold L is
known. The unknown γ is treated under the Bayesian approach as a random vari-
able Θγ . Then, combining external data, internal data and expert opinions can be
accomplished using the following model.

Model Assumptions 4.9 (Pareto-gamma-gamma) Let us assume the following
severity model for a risk cell in one bank:

(a) Let Θγ ∼ Gamma(α0, β0) be a gamma distributed random variable with
parameters α0 and β0, which are estimated from (external) market data, i.e.
π(θ) in (4.73) is the density of a Gamma(α0, β0) distribution.

(b) Given, Θγ = γ , the losses X1, X2, . . . in the risk cell are assumed to be condi-
tionally independent and Pareto distributed:

Xk ∼ Pareto(γ, L),

where the threshold L ≥ 0 is assumed to be known and fixed. That is, f1(·|γ ) in
(4.73) corresponds to the density of a Pareto(γ, L) distribution.

(c) A financial company has M experts with opinions Δm, 1 ≤ m ≤ M, about the
parameterΘγ . GivenΘγ = γ ,Δm and Xk are independent for all m and k, and
Δ1, . . . , ΔM are independent and identically distributed with

Δm∼Gamma(ξ, γ /ξ),

where ξ is a parameter estimated using expert opinion data; see (4.75). That is,
f2(·|γ ) corresponds to the density of a Gamma(ξ, γ /ξ) distribution.

Theorem 4.5 Under Model Assumptions 4.9, given loss information X = x and
expert opinion � = δ, the posterior distribution of Θγ is G I G(ω, φ, ν) with the
density

π(γ |x, δ) = (ω/φ)(ν+1)/2

2Kν+1(2
√
ωφ)

γ νe−γω−γ−1φ, (4.99)
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where

ν = α0 − 1 − Mξi + K ,

ω = 1

β0
+

K∑

k=1

ln
xk

L
, (4.100)

φ = ξMδ.

Proof This is straightforward from the calculation of the posterior density

π(γ |x, δ) ∝ γ α0−1e−γ /β0

K∏

k=1

γ

L

( xk

L

)−γ−1 M∏

m=1

(δm)
α−1

βα
e−δm/β

∝ γ α0−1−Mξ+K exp

[
−γ

(
1

β0
+

K∑

k=1

ln
xk

L

)
− ξMδ

γ

]
. (4.101)

Hence, as in Theorem 4.2 for modelling Poisson frequencies, the posterior dis-
tribution is a GIG with the nice property that the term γ in the exponent in (4.101)
is only affected by the internal observations, whereas the term 1/γ is driven by the
expert opinions.

Remark 4.16 It seems natural to generalise this result to the case of the GIG prior
distribution. In particular, changing the assumption a) in Model Assumptions 4.9
to Θγ ∼ G I G(ω0, φ0, ν0), with the parameters ν0, ω0, φ0, the posterior density
π(γ |x, δ) is G I G(ω, φ, ν) with

ν = ν0 − Mξ + K ,

ω = ω0 +
K∑

k=1

ln(xk/L), (4.102)

φ = φ0 + ξMδ.

Note that for φ0 = 0, the prior GIG is a gamma distribution and hence we are in the
Pareto-gamma-gamma situation of Model Assumptions 4.9.

The posterior mean (that can be used as a Bayesian point estimator for γ ) can be
calculated as

E[Θγ |X = x,� = δ] =
√
φ

ω

Kν+2(2
√
ωφ)

Kν+1(2
√
ωφ)

; (4.103)

see Appendix A.2.11. The maximum likelihood estimator of the Pareto tail index γ
is also easily calculated as

γ̂ MLE = K
∑K

k=1 ln(xk/L)
. (4.104)
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Then, completely analogous to Theorem 4.3, the following theorem gives a natural
interpretation of the Bayesian (posterior mean) estimator.

Theorem 4.6 Under Model Assumptions 4.9, the following asymptotic relations
hold P-almost surely:

(a) If K → ∞ then E[Θγ |X,�] → E[Xk |Θγ = γ ]/V = γ.

(b) If Vco[Δm |Δγ ] → 0 then E[Θγ |X,�] → Δm, m = 1, . . . , M.
(c) If M → ∞ then E[Θγ |X,�] → E[Δm |Θγ = γ ] = γ.

(d) If Vco[Δm |Θγ ] → ∞, m = 1, . . . , M then

E[Θγ |X,�] → (1 − w)E[Θγ ] + wγ̂ MLE,

where w = Kβ0/(γ̂
MLE + Kβ0).

(e) If E[Θγ ] = constant and Vco[Θγ ] → 0 then E[Θγ |X,�] → E[Θγ ].
Remark 4.17

� Theorem 4.6 basically says that the higher the precision of a particular source of
risk information, the higher its corresponding credibility weight. This means that
we obtain the same interpretations as for Theorem 4.3 and formula (4.97).

� Observe that Model Assumptions 4.9 lead to an infinite mean model because the
Pareto parameter Θγ can be less than one with positive probability. For finite
mean models, the range of possible γ has to be restricted to γ > 1. This does
not impose difficulties; see Sect. 2.9.4.

The update process of (4.100) and (4.102) has again a simple linear form when
new information arrives. The posterior density (4.99) does not change its type every
time a new observation arrives. In particular, only the parameter ω is affected by a
new observation.

Information update process. Loss k → loss k + 1:

νk+1 = νk + 1,

ωk+1 = ωk + ln(xk+1/L), (4.105)

φk+1 = φk .

The following example illustrates the simplicity and robustness of the posterior
mean estimator.

Example 4.5 Assume that a bank would like to model its risk severity by a Pareto
distribution with tail index Θγ . The regulator provides external prior data, saying
that Θγ ∼ Gamma(α0, β0) with α0 = 4 and β0 = 9/8, i.e. E[Θγ ] = 4.5 and
Vco[Θγ ] = 0.5. The bank has one expert opinion δ = 3.5 with Vco[Δ|Θγ = γ ] =
0.5, i.e. ξ = 4. We then observe the losses given in Table 4.2 (sampled from a
Pareto(4, 1) distribution). In Fig. 4.5, the following estimators are compared:
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� the classical maximum likelihood estimate

γ̂ MLE
k = k

∑k
i=1 ln(xi/L)

; (4.106)

� the Bayesian posterior mean estimate (4.48)

γ
(2)
k = E[Θγ |X1 = x1, . . . , Xk = xk], (4.107)

that does not account for expert opinions; and
� the Bayesian posterior mean estimate

γ̂
(3)
k = E[Θγ |X1 = x1, . . . , Xk = xk,Δ = δ], (4.108)

given by (4.103).

Figure 4.5 shows the high volatility of the maximum likelihood estimator for
small numbers k. It is very sensitive to newly arriving losses. The estimator γ̂ (3)k
shows a much more stable behaviour around the true value α = 4, most notably
when a few data points are available. This example also shows that consideration of
the relevant external data and well-specified expert opinions stabilises and smoothes
the estimator in an appropriate way.
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Fig. 4.5 (◦) The Bayes estimate γ̂ (3)k , k = 1, . . . , 15, combines the internal data simulated from
Pareto(4, 1), external data giving E[Θγ ] = 4.5, and expert opinion δ. It is compared with the

Bayes estimate γ̂ (2)k (�), that combines external data and internal data, and the classical maximum
likelihood estimate γ̂MLE

k (•). (a) is the case of expert opinion δ = 3 and (b) is the case of expert
opinion δ = 3. See Example 4.5 for details

4.6 Combining Data Sources Using Credibility Theory

Quantification of the frequency and severity distributions of the low-frequency/high-
severity losses (that typically account for most of the operational risk capital) is a
challenging task. The data are so limited that often full quantification of frequency,
severity and related prior distributions is problematic. In this situation, methods of
credibility theory are very useful as they require less information. Credibility theory
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approach has been successfully used in the insurance industry and actuarial sciences
for many decades. It can be used to estimate frequency and severity distributions of
the low frequency large losses in each risk cell by taking into account bank internal
data, expert opinions and industry data. An excellent textbook on credibility theory
is Bühlmann and Gisler [44]; also see Kaas, Goovaerts, Dhaene and Denuit ([130],
section 7.2).

Consider a model parameterised by θ that generates data X1, . . . , Xn, . . .. In
general we are interested in estimation of some function of θ (e.g. μ(θ)) given past
data X = (X1, . . . , Xn)

′. Under the Bayesian approach, θ is modelled by random
variable Θ . Let μ̂(Θ) be some estimator of μ(Θ). Then the unconditional MSEP
(mean square error of prediction) of an estimator μ̂(Θ) is

MSEP = E[(μ(Θ)− μ̂(Θ))2]
= E

[
E[(μ(Θ)− E[μ(Θ)|X] + E[μ(Θ)|X] − μ̂(Θ))2]|X

]

= E[(μ(Θ)− E[μ(Θ)|X])2] + E[E[(μ(Θ)|X] − μ̂(Θ))2]

It is easy to see that the posterior mean

μ̂(Θ) = E[μ(Θ)|X]

minimises MSEP and thus is the best estimator with respect to the quadratic loss
function; also see Sect. 2.10.

In general, the posterior mean cannot be found in closed form. The prior and
conditional distributions should also be specified which is certainly a problem in
the case of small datasets. The credibility theory initiated by Bühlmann [42] consid-
ers estimators which are linear in observations X1, X2, . . . and minimise quadratic
loss function. This allows for simple calculation of the estimators, referred to as
credibility estimators or linear Bayes estimators.

The credibility estimators have already appeared in the above sections. For exam-
ple, the estimator for the expected intensity of events (4.20), when frequencies are
modelled by Poisson(Λ = λ) and the prior for Λ is Gamma(α, β), is

Λ̂ = E[Λ|N1, . . . , NT ] = wN + (1 − w)λ0,

where

� N = 1
T

∑T
t=1 Nt is the estimator of λ using the observed counts only;

� λ0 = αβ is the estimate of λ using a prior distribution only (e.g. specified by
expert or from external data); and

� w = T
T +1/β is the credibility weight in [0,1) used to combine λ0 and N .

The estimator Λ̂ is linear in data N1, . . . , NT and minimises the mean square error
of prediction

E[(Λ̂−Λ)2].
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Of course, the estimator Λ̂ was derived assuming a specific prior distribution. The
credibility theory avoids this assumption and requires the knowledge of the first
and second moments only. To demonstrate the idea, consider a simplistic credibility
model.

Model Assumptions 4.10 (Simple credibility model)

� Given, Θ = θ , random variables X1, X2, . . . are independent and identically
distributed with

μ(θ) = E[X j |Θ = θ ], σ 2(θ) = Var[X j |Θ = θ ].
� Θ is a random variable with

μ0 = E[μ(Θ)], τ 2 = Var[μ(Θ)].

The aim of credibility estimators is to find an estimator of μ(Θ) which is linear
in X1, . . . , Xn , i.e.

μ̂(Θ) = â0 + â1 X1 + · · · + ân Xn

and minimise quadratic loss function, i.e.

(̂a0, . . . , ân) = min
a0,...,an

E
[
(μ(Θ)− a0 − a1 X1 − · · · − an Xn)

2
]

The invariance of the distribution of X1, . . . , Xn under permutations of X j , gives
â1 = â2 = · · · = ân := b̂. Then, by solving the minimisation problem for two
parameters a0 and b by setting corresponding partial derivatives with respect to a0
and b to zero, obtain

μ̂(Θ) = wX + (1 − w)μ0,

where

w = n

n + σ 2/τ 2
, X = 1

n

n∑

i=1

Xi .

For details of the proof and discussion, see Bühlmann and Gisler ([44], section 3.1).

4.6.1 Bühlmann-Straub Model

In operational risk we are interested in the LDA model for the annual loss (4.1).
That is, for a risk cell, the annual number of events N1, N2, . . . are modelled as
random variables from some discrete distribution P(·|λ) and the severities of the
events X1, X2, . . . are modelled as random variables from a continuous distribution
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F(·|θ). Under the Bayesian approach, λ and θ are distribution parameters which
are not known and are modelled by random variables 	 and � respectively. Often,
the credibility approach takes the empirical Bayes setup (see Sect. 4.3.1). That is,
it considers a group of risks, where 	 are different for different risks but are drawn
from the same distribution (the prior distribution) common across the risks (and
similar for �). In this framework we do not consider risks individually but regard
each risk as embedded in a group of similar risks (collective). If a pure Bayesian
setup is taken then the prior distribution is specified by the expert.

Usually, the credibility estimators are used to estimate expected number of events
or expected loss. However, in general, they can be applied to estimate any square
integrable valued random variable Z based on some known random vector Y. For
example, the elements of Y can be the maximum likelihood estimators, transformed
data, quantiles, etc. In particular, the credibility estimators for the severity and
frequency distribution parameters can be calculated using the model developed in
Bühlmann and Straub [46]; also see Bühlmann and Gisler ([44], Model Assump-
tions 4.1 and Theorems 4.2, 4.4).

Model Assumptions 4.11 (Bühlmann-Straub model) Consider a portfolio of J
risks modelled by random variables Y j,k : k = 1, 2, . . . , j = 1, . . . , J . Assume
that, for known weights w j,k , the j-th risk is characterised by an individual risk
profile θ j , which is itself the realisation of a random variable Θ j , and

� Given Θ j , the data Y j,1,Y j,2, . . . are independent with

E[Y j,k |Θ j ] = μ(Θ j ), Var[Y j,k |Θ j ] = σ 2(Θ j )/w j,k (4.109)

for all j = 1, . . . , J .
� The pairs (Θ1,Y1,k; k ≥ 1), . . . ,(ΘJ ,YJ,k; k ≥ 1) are independent.
� Θ1,. . . ,ΘJ are independent and identically distributed with

μ0 = E[μ(Θ j )], σ 2 = E[σ 2(Θ j )], τ 2 = Var[μ(Θ j )].

for all j .

Theorem 4.7 (Bühlmann-Straub credibility estimators) Under the Model
Assumptions 4.11, given the available data Y j = (Y j,1, . . . ,Y j,K j )

′, j = 1, . . . , J ,
the inhomogeneous and homogeneous credibility estimators of μ(Θ j ) are given as
follows:

� The inhomogeneous credibility estimator is

̂
μ̂(Θ j ) = α j Y j + (1 − α j )μ0. (4.110)

� The homogeneous credibility estimator is

̂
μ̂(Θ j ) = α j Y j + (1 − α j )μ̂0. (4.111)



4.6 Combining Data Sources Using Credibility Theory 163

Here:

μ̂0 =
J∑

j=1

α j

α0
Y j , Y j =

K j∑

k=1

w j,k

w̃ j
Y j,k, α j = w̃ j

w̃ j + σ 2/τ 2
,

α0 =
J∑

j=1

α j , w̃ j =
K j∑

k=1

w j,k .

Remark 4.18

� Note that K j may vary between the risks.
� Structural parameters μ0, σ 2 and τ 2 can be determined using expert opinions

(pure Bayes) or using data of all risks (empirical Bayes).
� The difference between inhomogeneous and homogeneous credibility estimators

is that the latter estimates μ0 by μ̂0 using the data for all risks.

Using the above credibility estimators, Bühlmann, Shevchenko and Wüthrich
[45] suggested a “toy” model for operational risk, where the Pareto and Poisson
distributions were used for modelling severity and frequency respectively. Although
the model might be simple, it is a very good illustration of a consistent credibility
approach for estimating low-frequency/high-severity operational risks. Below we
illustrate the use of the model in a simple case of J risks without considering a full
hierarchical model.

4.6.2 Modelling Frequency

Consider a collection of J similar risk cells; see Fig. 4.6. Let N j,k be the annual
number of events, with the event losses exceeding some high threshold L , in the
j-th risk cell ( j = 1, . . . , J ) in the k-th year. That is, the same threshold L is used
across all risk cells in a collection (for example, one can choose the threshold equal
to the threshold in the database of external data).

Model Assumptions 4.12 (Poisson frequency) Assume that:

(a) Given,Λ j = λ j , N j,k are independent and distributed from Poisson(ν jλ j ), i.e.

Pr
[
N j,k = n|Λ j = λ j

] =
(
ν jλ j

)n

n! exp
(−ν jλ j

)
(4.112)

and moments

E[N j,k |Λ j ] = ν jΛ j , Var[N j,k |Λ j ] = ν jΛ j . (4.113)
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Fig. 4.6 Example of the credibility model for operational risk. Given Θ j = θ j and Λ j = λ j ,
X j,k ∼ Pareto(a j θ j , L j ) and N j,k ∼ Poisson(ν jλ j ) are the losses (above threshold L j and
their annual frequencies in risk cells j = 1, . . . , J respectively. The risk profiles Λ j are drawn
from common distribution with E[Λ j ] = λ0,Var[Λ j ] = (ω0)

2; risk profiles Θ j are from com-
mon distribution with E[Θ j ] = θ0, Var[Θ j ] = (τ0)

2. Scaling factors a j and ν j for the relative
differences between the risks can be specified using expert opinions or known factors

The arrival rate parameter is defined as ν jΛ j , where ν j are the known a priori
constants and Λ j are the risk profiles of the bank cells. The constants ν j are
scaling factors, reflecting differences in frequencies across the risks, discussed
below.

(b) Assume that Λ1, . . . , ΛJ are independent and identically distributed with

E[Λ j ] = λ0 and Var[Λ j ] = (ω0)
2,

and (Λ1, N1,k; k ≥ 1), . . . , (ΛJ , NJ,k; k ≥ 1) are independent.
(c) The available data are {N j,1, . . . , N j,K j : j = 1, . . . , J }.

4.6.2.1 The Arrival Rate MLE Using Data in a Risk Cell

Under the first assumption in Model Assumptions 4.12, N j,k , k = 1, . . . , K j in
the j-th risk cell are conditionally independent. Thus, given Λ j = λ j , the standard
MLE of λ j is

Λ̂ j = 1

ν̃ j

K j∑

k=1

N j,k, ν̃ j = ν j K j (4.114)

with

E[Λ̂ j |Λ j = λ j ] = λ j ,

Var[Λ̂ j |Λ j = λ j ] = λ j /̃ν j .
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Again, a common situation in operational risk is that only few large losses are
observed for some risk cells, so the standard MLEs of parameters λ j will not be
reliable. The idea is to use data from a collection of risks to improve the estimates
of the arrival rate parameter.

4.6.2.2 The Arrival Rate Estimator Improved by Bank Data

Under the second assumption in Model Assumptions 4.12, Λ1,Λ2, . . . are indepen-
dent and identically distributed with E[Λ j ] = λ0 and Var[Λ j ] = (ω0)

2. Observe
that the standardised frequencies Fj,k = N j,k/ν j satisfy

E[Fj,k |Λ j ] = Λ j and Var[Fj,k |Λ j ] = Λ j/ν j . (4.115)

Thus Fj,k satisfy the Bühlmann-Straub model (4.109), (4.110), and (4.111) and the
credibility estimator for Λ j is given by

̂̂Λ j = γ j Λ̂ j + (1 − γ j )λ0, (4.116)

where

γ j = ν̃ j

ν̃ j + λ0/(ω0)2
. (4.117)

The structural parameters λ0 and ω0 can be estimated using all data from a collec-
tion of J risks by solving two nonlinear equations (using, for example, an iterative
procedure; see Bühlmann and Gisler [44], pp. 102–103):

(ω̂0)
2 = max

[
c ×

{
A − J λ̂0

ν0

}
, 0

]
, λ̂0 = 1

γ̃

∑

j

γ j Λ̂ j , (4.118)

where

ν0 =
J∑

j=1

ν̃ j , A = J

J − 1

J∑

j=1

ν̃ j

ν0
(Λ̂ j − F)2, γ̃ =

∑

j

γ j ,

F = 1

J

J∑

j=1

Λ̂ j , c = J

J − 1

⎧
⎨

⎩

J∑

j=1

ν̃ j

ν0

(
1 − ν̃ j

ν0

)⎫⎬

⎭

−1

.

Here, the coefficients γ j are given in (4.117) with λ0 and ω0 replaced by λ̂0 and ω̂0
respectively.

Remark 4.19
� Based on the cell data and all data in a collection of J risks, the best credibility

estimator of the arrival rate parameter in the j-th cell is ν j
̂̂Λ j .
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� We assumed that the constants ν j are known a priori. Note that these constants
are defined up to a constant factor, that is, the coefficients γ j (and the final
estimates of the arrival rate parameters) will not change if all ν j are changed
by the same factor. Hence, only relative differences between risks play a role.
These constants have the interpretation of a priori differences and can be fixed
by the expert opinions on expected annual number of losses exceeding threshold
L for each risk cell. For example, the expert may estimate the expected annual
number of events (exceeding threshold L j ) n j in the j-th cell as n̂ j and estimate
ν j as n̂ j/λ0. Only relative differences play a role here, thus (without loss of
generality) λ0 can be set equal to 1. For an example of using expert opinions for
quantification of frequency and severity distributions, see Alderweireld, Garcia
and Léonard [6], and Shevchenko and Wüthrich [218].

4.6.3 Modelling Severity

Again, consider a collection of J similar risk cells; see Fig. 4.6.

Model Assumptions 4.13 (Pareto severity) Assume that:

� Given, Θ j = θ j , the losses X j,k , k ≥ 1 above threshold L j in the j-th risk cell
( j = 1, . . . , J ) are independent and Pareto distributed, Pareto(a jθ j , L), with
the density

f (x) = a jθ j

L

( x

L

)−a j θ j −1
(4.119)

respectively, for x ≥ L and a jθ j > 0. It is assumed that the threshold L is known
and the same across risk cells. Here a j are known a priori constants (differences)
and θ j are the risk profiles of the cells in the bank. The constants a j are scaling
factors, reflecting differences in severities across the risks, that can be fixed by
experts as discussed below.

� Assume that Θ1, . . . , ΘJ are independent and identically distributed with

E[Θ j ] = θ0 and Var[Θ j ] = (τ0)
2,

and (Θ1, X1,k; k ≥ 1), . . . , (ΘJ , X J , k; k ≥ 1) are independent. Here, θ0 is a
risk profile of the collection.

� The available data are denoted as {X j,1, . . . , X j,K̃ j
: j = 1, . . . , J }.

Remark 4.20
� Note that the number of available losses in the j-th risk cell, denoted as K̃ j , is

the number of events over K j years. The latter is the number of observed years
for modelling annual frequencies in the previous section.

� The results in this section are valid if thresholds are different for different risk
cells, although in the previous section for modelling frequencies we assumed the
same threshold across risk cells.
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� The Pareto distribution is often used in the insurance industry to model large
claims and is a good candidate for modelling large operational risk losses. It is
interesting to note that the conditional distribution of the losses exceeding any
higher level L̃ is also a Pareto distribution with parameters a jθ j and L̃ .

4.6.3.1 The Tail Parameter MLE Using Data in a Risk Cell

Under the first assumption in Model Assumptions 4.13, the losses X j,k , k ≥ 1 in the
j-th risk cell are conditionally (given Θ j ) independent and Pareto distributed. Thus
MLE of θ j is

Ψ̂ j =
⎡

⎣ a j

K̃ j

K̃ j∑

k=1

ln

(
X j,k

L

)⎤

⎦
−1

. (4.120)

It is easy to show (see Rytgaard [206]) that an unbiased estimator of θ j is

Θ̂ j = K̃ j − 1

K̃ j
Ψ̂ j , (4.121)

with

E[Θ̂ j |Θ j = θ j ] = θ j , Var[Θ̂ j |Θ j = θ j ] = (θ j )
2

K̃ j − 2
. (4.122)

A common situation in operational risk is that only a few losses are observed for
certain risk cells. Thus the standard MLE a j Θ̂ j (based on the data in the j-th risk
cell only) for the Pareto tail parameters will not be reliable (this is easy to see from
the variance in (4.122)). The idea is to use the collective losses (from bank, industry,
etc) to improve the estimates of the Pareto parameters in the risk cells.

4.6.3.2 The Tail Parameter Estimator Improved by Collective Data

The tail parameter estimator a j Θ̂ j can be improved using all data in the collec-
tion of J risks as follows. Under the second assumption in Model Assumptions
4.13,Θ1, . . . , ΘJ are independent and identically distributed random variables with
E[Θ j ] = θ0 and Var[Θ j ] = (τ0)

2, where θ0 is a risk profile for the whole collective.
Observe that the unbiased estimators Θ̂ j , see (4.122), satisfy the assumptions of
the Bühlmann-Straub model (4.109), (4.110), and (4.111) and thus the credibility
estimator is given by

̂̂Θ j = α j Θ̂ j + (1 − α j )θ0, (4.123)
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where

α j = K̃ j − 2

K̃ j − 1 + (θ0/τ0)2
.

The structural parameters θ0 and (τ0)
2 can be estimated using data across all risk

cells in the bank by solving two nonlinear equations (using for example an iterative
procedure; see Bühlmann and Gisler [44], pp. 116–117):

(̂τ0)
2 = 1

J − 1

J∑

j=1

α j (Θ̂ j − θ̂0)
2, θ̂0 = 1

W

J∑

j=1

α j Θ̂ j , (4.124)

where W =
J∑

j=1

α j .

Here, the coefficients α j are given in (4.123), with θ0 and (τ0)
2 replaced by θ̂0 and

(̂τ0)
2 respectively. If the solution for (̂τ0)

2 is negative, then we set α j = 0 and

θ̂0 = 1

W

J∑

j=1

w j Θ̂ j , w j = K j − 2, W =
J∑

j=1

w j .

The best credibility estimate for the tail parameter in the j-th cell (based on
the cell data and all data in the collection) is a j

̂̂Θ j . We assumed that constants a j

are known a priori. Note that these constants are defined up to a constant factor,
that is, coefficients α j (and final estimates of tail parameters) will not change if all
a j , j = 1, . . . , J, are changed/scaled by the same factor. Hence, only relative dif-
ferences between risks play a role. These constants have the interpretation of a priori
differences and can be fixed by expert using opinions on, for example, quantiles of
losses exceeding L j . For example, the expert may estimate the probability q j , that
the loss in the j-th cell will exceed level Hj , as q̂ j and use relations

a jθ j = − ln q j/ ln(Hj/L j ) and E[Θ j ] = θ0

to estimate a j as − ln q̂ j/[θ0 ln(Hj/L j )]. Only relative differences play a role, so
here (without loss of generality) θ0 can be set equal to 1. Experts may specify several
quantiles, then a j can be estimated using, for example, a least square method. Ide-
ally, the expert specifying constants a j has a complete overview over all risk cells
in the bank, as only relative differences between risks are important. However, in
practice, opinions from experts with special knowledge of business specifics within
a risk cell are required. Combining opinions from different experts is one of the
problems to be resolved by a practitioner.
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4.6.4 Numerical Example

To illustrate the above procedures consider an example where losses (exceeding
USD 1 million) observed across 10 risk cells are given in Table 4.3 and all risk
cells are the same a priori, a1 = · · · = a10 = 1. Using these losses the MLEs
for the tail parameters Θ̂ j , presented in Table 4.3, are calculated by (4.121). Then,
using (4.123) and (4.124), we estimate the structural parameters (̂τ0)

2 ≈ 1.116 and
θ̂0 ≈ 3.157, and credibility coefficients α j ≈ 0.446 (the coefficients are the same
because equal number of losses is observed in the cells).

The credibility estimators ̂̂Θ j , shown in Table 4.3, are calculated using (4.123).
In this example, the MLEs are quite volatile as the number of observations is small.
For example, cell 7 has no large losses and thus its MLE is high; cell 10 has one
large loss and thus its MLE is smaller. One could easily calculate cell MLEs vs
the number of observations in a cell and observe that MLEs are highly volatile
for small number of observations. One large observation may lead to a substantial
change in MLE. The credibility estimators (based on data in the bank) are smoother
in comparison with MLEs. This is because a credibility estimator is a weighted
average, according to credibility theory, between a risk cell MLE and the estimator
of the structural parameter θ̂0 based on all data in the collection. The credibility
weights α j are approximately 0.45 which means that a risk cell MLE (based on
observations in a cell) Θ̂ j and the a priori estimate θ̂0 ≈ 3.157 are weighted with
0.45 and 0.55 respectively.

Table 4.3 Losses (in millions USD) exceeding USD 1 million observed across 10 risk cells; and
corresponding maximum likelihood and credibility estimators for the Pareto tail parameter in the
risk cells

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10

Losses (in millions USD) exceeding USD 1 million observed in risk cells

1.557 9.039 1.166 1.548 1.578 1.201 1.006 1.741 1.364 1.074
1.079 2.138 1.037 1.040 1.282 2.815 1.169 1.165 2.036 1.103
1.047 1.008 1.136 1.045 1.092 3.037 1.215 1.010 1.014 1.664
1.199 1.761 2.104 1.774 1.658 1.001 1.116 1.096 1.217 1.049
1.395 1.654 1.774 1.045 2.025 1.114 1.010 1.060 1.202 1.104
1.060 1.073 1.161 1.856 1.129 1.422 1.560 1.352 1.095 2.924
3.343 2.435 1.080 1.636 1.946 2.397 1.059 1.044 1.348 1.265
2.297 4.357 1.154 1.403 1.831 1.241 1.059 1.678 1.191 1.333
1.297 1.576 1.257 2.522 1.478 1.522 1.050 1.882 1.161 1.424
1.180 1.113 1.231 1.113 1.208 1.243 1.231 1.401 1.017 1.435

Maximum likelihood estimators (MLEs) Θ̂ j , j = 1, . . . , 10

2.499 1.280 3.688 2.487 2.264 1.992 6.963 3.335 4.194 2.870

Credibility estimators ̂̂Θ j , j = 1, . . . , 10 disregarding industry data

2.863 2.319 3.394 2.858 2.759 2.637 4.855 3.236 3.620 3.029
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4.6.5 Remarks and Interpretation

The credibility formulas (4.116) and (4.123) for the frequency and severity param-
eter estimators, based on a cell and collective data, have a simple interpretation.

� As the number of observations in the j-th cell increases, the larger credibility
weights γ j and α j are assigned to the estimators Λ̂ j and Θ̂ j (based on the cell
observations) and the lesser weights are assigned to the estimators θ̂0 and λ̂0
(based on all observations in a collection of risks) respectively.

� Also, the larger τ0 and ω0 (variance across risk cells in a collection), the larger
weights are assigned to Θ̂ j and Λ̂ j correspondingly. For a detailed discussion on
the credibility parameters, refer to Bühlmann and Gisler ([44], section 4.4).

It is not difficult to consider a hierarchical model, where the collection of risks
is part of another larger collection. For example, one can consider the collection
of similar risks in the bank and then consider a collection of banks (i.e. the bank-
ing industry). This will further improve the estimates of arrival rate ν jλ j and the
tail parameter a jθ j . This can be done using a hierarchical credibility model; see
Bühlmann and Gisler ([44], chapter 6). In particular, one can consider M banks
with bank specific parameters λ(m)0 and θ(m)0 modelled by random variables Λ(m)

0

and Θ(m)
0 , m = 1, . . . , M respectively. Then assume that:

(a) Λ(m)
0 are independent and identically distributed random variables with

E[Λ(m)
0 ] = λcoll and Var[Λ(m)

0 ] = ω2
coll .

(b) Θ(m)
0 are independent and identically distributed random variables with

E[ϑ(m)0 ] = ϑcoll and Var[ϑ(m)0 ] = τ 2
coll .

The credibility weights and estimators in such a hierarchical model can be calculated
as described in Bühlmann, Shevchenko and Wüthrich [45].

The Capital Calculations. For the purposes of the regulatory capital calculations of
operational risk, the annual loss distribution, in particular its 0.999 quantile (VaR) as
a risk measure, should be quantified for each Basel II risk cell in the matrix of eight
business lines times seven risk types and for the whole bank. The credibility model
presented in the above is for modelling low-frequency/high-severity losses exceed-
ing some large threshold L . Given the credibility estimates for the model parame-
ters the annual loss distribution can be calculated as usual using methods listed in
Chap. 3; also see Bühlmann, Shevchenko and Wüthrich ([45], section 5). Of course,
modelling of the high-frequency/low-severity losses (below threshold L) should be
added to the model before the final operational risk capital charge is estimated. For
a related actuarial literature on this topic, see Sandström [207] and Wüthrich [239].
That is, one can model the losses above threshold L using credibility theory as
described in the above, while the losses below the threshold are modelled separately.
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Note that typically the low-frequency/high-severity losses give the largest contribu-
tion to the final capital charge. The number of high-frequency/low-impact losses
recorded in the bank internally is usually large enough to obtain reliable estimates
by a standard fitting of the frequency and severity distributions without the use of
the external data.

The important assumption in calculation of the credibility estimates is that the
risk cells are independent. While it is an important (and quite realistic) assumption
of the proposed model that the low-frequency/high-severity losses from different
risk cells are independent, dependence can be considered between the high fre-
quency low impact losses from different risk cells. Accurate quantification of the
dependencies between the risks is a difficult task; this is an open field for future
research. The dependence can be introduced using different methods (for example,
copula methods, common shocks, etc.) that will be discussed in Chap. 7.

4.7 Capital Charge Under Parameter Uncertainty

According to the Basel II requirements (BCBS [17]) the final bank capital should
be calculated as a sum of the risk measures in the risk cells if the bank’s model
cannot account for correlations between risks accurately. If this is the case, then
one needs to calculate VaR for each risk cell separately and sum VaRs over risk
cells to estimate the total bank capital. It is equivalent to the assumption of perfect
dependence between risks. Modelling of dependence between risks and aggregation
issues will be discussed in Chap. 7. In this section, we consider one risk cell, but
note that adding quantiles over the risk cells to find the quantile of the total loss
distribution is not necessarily conservative. In fact it can underestimate the capital
in the case of heavy-tailed distribution as will be discussed in Chap. 7.

Under the LDA model, the annual loss in a risk cell over the next year T + 1
is modelled as a random variable ZT +1 with some density f (zT +1|θ), where θ
are model parameters. Given data Y over past T years (frequencies and severities)
generated from some distributions parameterised by θ , the main task is to estimate
the distribution of ZT +1. The MLE θ̂

MLE
is often used as the “best fit” point estimate

for θ . Then, a typical industry practice is to estimate the annual loss distribution for
the next year as f (zT +1 |̂θMLE

) and its 0.999 quantile, Q0.999(̂θ
MLE
), is used for the

capital charge calculation.
However, the parameters θ are unknown and it is important to account for this

uncertainty when the capital charge is estimated especially for risks with small
datasets. The Bayesian inference approach is an elegant and convenient way to
accomplish this task.

4.7.1 Predictive Distributions

Under the Bayesian approach, the unknown parameters are modelled by random
variables Θ and their posterior density π(θ |y) is calculated. Then, the predictive
density of ZT +1, given data Y = y, is defined as follows.
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Definition 4.2 (Predictive density for annual loss) Suppose that:

(a) Given Θ = θ , the conditional density of the annual loss ZT +1 is f (zT +1|θ).
(b) Given data Y = y, the posterior density of Θ is π(θ |y).
(c) Given Θ , ZT +1 and Y are independent.

Then the predictive density of ZT +1 is

f (zT +1|y) =
∫

f (zT +1|θ)π(θ |y)dθ . (4.125)

Remark 4.21

� The predictive distribution accounts for both process and parameter uncertain-
ties.

� It is assumed that, given Θ , ZT +1 and Y are independent. If they are not inde-
pendent, then f (zT +1|θ) should be replaced by f (zT +1|θ, y).

� If a frequentist approach is taken to estimate the parameters, then θ should be
replaced by the point estimators θ̂ and the integration should be done with respect
to the density of θ̂ .

The ultimate goal in capital charge calculation is to estimate the 0.999 quantile
of the annual loss distribution. It is important to realise that there are two ways to
define the required quantile to account for parameter uncertainty.

Definition 4.3 (Quantile of the predictive density f (zT +1|y)) The quantile of a
random variable with the predictive density (4.125) is

Q P
q = F−1

ZT +1|Y(q) = inf{z ∈ R : Pr[ZT +1 > z|Y] ≤ 1 − q}, (4.126)

where q ∈ (0, 1) is a quantile level and F−1
ZT +1|Y(q) is the inverse of the distribution

corresponding to the density (4.125).

Then, Q P
0.999 can be used as a risk measure for capital calculations. Here, “P”

in the upper script is used to emphasise that this is a quantile of the full predictive
distribution.

Another approach under a Bayesian framework to account for parameter uncer-
tainty is to consider a quantile of the annual loss density f (zT +1|θ) conditional on
parameter � = θ , defined in a standard way as follows.

Definition 4.4 (Quantile of the conditional density f (z|θ)) The quantile of a ran-
dom variable with the density f (z|θ) is

Qq(θ) = F−1
ZT +1|�(q) = inf{z ∈ R : Pr[ZT +1 > z|� = θ ] ≤ 1 − q}, (4.127)

where q ∈ (0, 1) is a quantile level and F−1
ZT +1|�(q) is the inverse of the distribution

corresponding to the density f (zT +1|θ).
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That is, the quantile Qq(θ) is a function of θ and thus Qq(�) is a random vari-
able with some distribution. Given that� is distributed with the density π(θ |y), one
can find the predictive distribution of Qq(�) and its characteristics. In particular,
the mean of this distribution can be used as a point estimator:

Q̂q(�)
MMSE =

∫
Qq(θ)π(θ |y)dθ . (4.128)

Other standard point estimators are the mode and median. A predictive interval
[L ,U ] can be formed to contain the true value with a probability α:

Pr
[
L ≤ Qq(�) ≤ U

] = α (4.129)

or one-sided predictive interval

Pr
[
Qq(�) ≤ U

] = α. (4.130)

As before, for capital charge calculations we are interested in q = 0.999. Then one
can argue that the conservative estimate of the capital charge accounting for param-
eter uncertainty should be based on the upper bound of the constructed predictive
interval.

Remark 4.22

� Specification of the confidence level α is required to form a conservative interval
for Qq(�). It might be difficult to justify a particular choice of α. For example,
it might be difficult to argue that the commonly used confidence level α = 0.95
is good enough for estimation of the 0.999 quantile.

� This is similar to forming a confidence interval in the frequentist approach using
the distribution of Q0.999(̂θ

MLE
), where θ̂

MLE
is treated as random.

In operational risk, it seems that the objective should be to estimate the full pre-
dictive distribution (4.125) for the annual loss ZT +1 over next year conditional on
all available information. The capital charge should then be estimated as a quantile
of this distribution, i.e. Q P

0.999 given by (4.126).

4.7.2 Calculation of Predictive Distributions

Consider a risk cell in the bank. Assume that the frequency p(·|α) and severity
f (·|β) densities for the cell are chosen. Also, suppose that the posterior density
π(θ |y), θ = (α,β) is estimated. Then, the predictive annual loss density (4.125) in
the cell can be calculated using Monte Carlo procedure with the following logical
steps.
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Algorithm 4.1 (Full predictive loss distribution via MC)
1. For k = 1, . . . , K

a. For a given risk simulate the risk parameters θ = (α,β) from the
posterior π(θ |y). If the posterior is not known in closed form then this
simulation can be done using MCMC (see Sect. 2.11). For example,
one can run MCMC for K iterations (after burn-in) beforehand and
simply take the k-th iteration parameter values.

b. Given θ = (α,β), simulate the annual number of events N from
p(·|α) and severities X (1), . . . , X (N ) from f (·|β), then calculate the
annual loss Z (k) = ∑N

n=1 X (n).

2. Next k

Obtained annual losses Z (1), . . . , Z (K ) are samples from the predictive density
(4.125). Extending the above procedure to the case of many risks is easy but requires
specification of the dependence model; see Chap. 7. In this case, in general, all
model parameters (including the dependence parameters) should be simulated from
their joint posterior in Step (a). Then, given these parameters, Step (b) should sim-
ulate all risks with a chosen dependence structure. In general, sampling from the
joint posterior of all model parameters can be accomplished via MCMC; see Peters,
Shevchenko and Wüthrich [187] and Dalla Valle [68]. The 0.999 quantile Q P

0.999
and other distribution characteristics can be estimated using the simulated samples
in the usual way; see Sect. 3.2.

The above procedure is easily adapted to calculate the predictive distribution of
Q0.999(�). In particular, in Step (b) one can calculate the quantile Q0.999(θ) of the
conditional density f (z|θ), using for example FFT; see Chap. 3. Then the obtained
K samples of the quantile can be used to estimate the distribution of Q0.999(�)

implied by the posterior π(θ |y). To summarise, the logical steps of Monte Carlo
procedure are as follows.

Algorithm 4.2 (Posterior distribution of quantile via MC)
1. For k = 1, . . . , K

a. For a given risk simulate the risk parameters θ = (α,β) from the
posterior π(θ |y). If the posterior is not known in closed form then this
simulation can be done using MCMC (see Sect. 2.11). For example,
one can run MCMC for K iterations beforehand and simply take the
k-th iteration parameter values.

b. Given θ = (α,β), calculate the quantile Q(k)
q (θ) of f (z|θ) using FFT

or other methods described in Chap. 3.

2. Next k
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Fig. 4.7 Comparison of the estimators of the 0.999 annual loss quantile vs number of observation
years. Losses were simulated from Poisson(10) and LN (1, 2). Parameter uncertainty is ignored
by Q0.999(θ̂

MLE) (MLE) but taken into account by Q P
0.999 (Bayesian). (a) The quantile estimators

for a one specific data realisation; (b) Relative bias E[Q P
0.999 − Q0.999 (̂θ

MLE
)]/Q(0)

0.999 calculated as
an average over 100 realisations

Note that in the above Monte Carlo procedures the risk profile� is sampled from
its posterior for each simulation k = 1, . . . , K . Thus we model both the process
uncertainty, which comes from the fact that frequencies and severities are random
variables, and the parameter risk (parameter uncertainty), which comes from the fact
that we do not know the true values of θ .

Example 4.6 The parameter uncertainty is ignored by the estimator Q0.999(̂θ
MLE
)

but is taken into account by Q P
0.999. The following illustrative example is taken

from Shevchenko ([215], section 8). Figure 4.7 presents results for the relative
bias (averaged over 100 realisations) E[Q P

0.999 − Q0.999(̂θ
MLE
)]/Q(0)

0.999, where θ̂
MLE

is MLE, Q(0)
0.999 is the quantile of f (·|θ0) and θ0 is the true value of the param-

eter. The frequencies and severities are simulated from Poisson(λ0 = 10) and
LN (μ0 = 1, σ0 = 2) respectively. Also, constant priors are used for the parameters
so that there are closed form expressions for the posterior; see Sects. 4.3.3 and 4.3.5.
In this example, the bias induced by parameter uncertainty is large: it is approx-
imately 10% after 40 years (i.e. approximately 400 data points) and converges to
zero as the number of losses increases. A similar analysis for a multivariate case
was performed in Dalla Valle [68] with real data. For high-frequency/low-severity
risks, where a large amount of data is available, the impact is certainly expected to
be small. However, for low-frequency/high-severity risks, where the data are very
limited, the impact can be significant.

4.8 General Remarks

This chapter described how the parameters of the frequency and severity distribu-
tions are estimated using internal data, external data and expert opinion. Then cal-
culation of VaR (accounting for parameter uncertainty) for each risk cell can easily
be done using a simulation approach as described in Sect. 4.7. The approaches and
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issues related to modelling dependence and aggregation over many risks will be
discussed in Chap. 7.

The main motivation for the use of the Bayesian approach is that, typically, the
bank’s internal data of the large losses in risk cells are so limited that the standard
maximum likelihood estimates are not reliable. Overall, the use of the Bayesian
inference method for the quantification of the frequency and severity distributions
of operational risks is very promising. The method is based on specifying the prior
distributions for the parameters of the frequency and severity distributions using
expert opinions or industry data. Then, the prior distributions are weighted with
the actual observations in the bank to estimate the posterior distributions of the
model parameters. These are used to estimate the annual loss distribution for the
next accounting year. The estimation of low-frequency risks using this method has
several appealing features such as stable estimators, simple calculations (in the case
of conjugate priors), and the ability to take into account expert opinions and indus-
try data. The approach allows for combining all three data sources: internal data,
external data and expert opinions required by Basel II.

If the data a very limited, it might be difficult to specify the prior distribu-
tions. Then one can use a closely related credibility theory approach to estimate
parameters of the frequency and severity distributions for the low-frequency/high-
severity risks, as described in Sect. 4.6.

The models presented in this chapter give illustrative examples that can be
extended to a full scale application. The approach has a simple structure which is
beneficial for practical use and can engage the bank risk managers, statisticians and
regulators in productive model development and risk assessment.

Several general remarks on the described Bayesian method for operational risk
are worth making:

� Validation of the models in the case of small data sets is problematic. For-
mally, justification of the model assumptions (such as conditional independence
between the losses or common distribution for the risk profiles across the risks)
can be based on the analysis of the unconditional properties (e.g. unconditional
means and covariances) of the losses and should be addressed during model
implementation.

� Presented examples have a simplistic dependence on time but can be extended to
the case of more realistic time component.

� Adding extra levels to the considered hierarchical structure may be required to
model the actual risk cell structure in a bank.

� One of the features of the described method is that the variance of the posterior
distribution π(θ |·) will converge to zero for a large number of observations. This
means that the true value of the risk profile will be known exactly. However, there
are many factors (political, economical, legal, etc.) changing in time that should
not allow for the precise knowledge of the risk profiles. One can model this by
limiting the variance of the posterior distribution by some lower levels (e.g. 5%).
This has been done in many solvency approaches for the insurance industry, for
example in the Swiss Solvency Test; see Swiss Financial Market Supervisory
Authority ([230], formulas (25) and (26)).
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� For convenience, we have assumed that expert opinions are independent and
identically distributed. However, all formulas can easily be generalised to the
case of expert opinions modelled by different distributions.

� It would be ideal if the industry risk profiles (prior distributions for frequency and
severity parameters in risk cells) are calculated and provided by the regulators to
ensure consistency across the banks. Unfortunately this may not be realistic at
the moment. Banks might thus estimate the industry risk profiles using industry
data available through external databases from vendors and consortia of banks.
The data quality, reporting and survival biases in external databases are the issues
that should be considered in practice.

Finally, in this book we consider modelling operational risk but the use of similar
Bayesian models is also useful in other areas (such as credit risk, insurance, envi-
ronmental risk and ecology) where, mainly due to lack of internal observations, a
combination of internal data with external data and expert opinions is required.

Problems33

4.1 (��) Prove the Theorem 4.1.

4.2 (�) Assume that, given Θ = θ , the counts N1, N2, . . . , NT are independent and
binomial distributed: N j ∼ Bin(Vj , θ). Also, assume that the prior distribution of
Θ is Beta(α, β). Find the posterior density of Θ given N = n, i.e. π(θ |n).
4.3 (�) Consider the annual number of losses Ni , i = 1, . . . , 10 given in Table 4.4,
that were observed for a risk over 10 years. Assume that Ni are independent and dis-
tributed from Poisson(λ). Using noninformative constant prior, find the posterior
for parameter λ.

Table 4.4 The annual number of losses Ni , i = 1, 2, . . . , 10; see Problem 4.3 for details

i 1 2 3 4 5 6 7 8 9 10
Ni 1 1 4 1 1 0 1 2 0 4

4.4 (�) Consider the losses Xi , i = 1, . . . , 15 given in Table 4.5, that were observed
for a risk. Assume that Xi are independent and distributed from LN (μ, σ ). Using
noninformative constant priors, find the posterior for parameters μ and σ and esti-
mate the mean of these posteriors.

Table 4.5 Loss severities Xi , i = 1, 2, . . . , 15; see Problem 4.4 for details

1.877 2.050 9.050 0.406 0.210 0.066 2.893 321.668 0.421 0.368

0.196 3.290 12.027 2.701 13.528

3 Problem difficulty is indicated by asterisks: (�) – low; (��) – medium; (� � �) – high.



178 4 Bayesian Approach for LDA

4.5 (��) Repeat calculations of Example 4.1 (combining expert opinion and internal
data), if the prior is determined by expert who specifies E[Λ] = 0.8 and Vco[Λ] =
0.5.

4.6 (��) Repeat calculations of Example 4.3 (combining expert opinion and internal
data), if the prior is determined by expert who specifies E[Θξ ] = 3 and Vco[Θξ ] =
0.5.

4.7 (��) Repeat calculations of Example 4.4 (combining expert opinions, internal
data and external data) using mode of the posterior as a Bayesian point estimate.

4.8 (� � �) Assume that the annual frequency is N ∼ Poisson(λ) and independent
severities are Xi ∼ LN (μ, σ ); assume also that severities and frequency are inde-
pendent. Suppose that past data imply that the posterior for λ is gamma distribution
with mean 15 and standard deviation 5, and that severity parameters are known
μ = 0, σ = 2. Calculate the predictive distribution of the annual loss Z = ∑N

i=1 Xi

and find its 0.999 quantile. Given model parameters θ = (λ, μ, σ ), denote the 0.999
quantile of the annual loss as Q0.999(θ). Calculate the predictive distribution of the
Q0.999(θ) and find its mean, median, 0.25 and 0.75 quantiles.

4.9 (���) Repeat calculations of Problem 4.8, if the severity parameterμ is unknown
and past data imply that its posterior is the normal distribution with mean 0 and
standard deviation 1. Assume thatμ and λ are independent in the posterior. Compare
with the results of Problem 4.8.



Chapter 5
Addressing the Data Truncation Problem

Whenever you set out to do something, something else must be
done first.

Murphy

Abstract Typically, operational risk losses are reported above some threshold. This
chapter studies the impact of ignoring data truncation on the 0.999 quantile of
the annual loss distribution. Fitting data reported above a constant threshold is a
well-known and studied problem. However, in practice, the losses are scaled for
business and other factors before the fitting and thus the threshold varies across the
scaled data sample. The reporting level may also change when a bank changes its
reporting policy. This chapter considers the issue of thresholds – both constant and
time-varying. The maximum likelihood and Bayesian Markov chain Monte Carlo
approaches to fit the models are discussed.

5.1 Introduction

Accurate modelling of the severity and frequency distributions is the key to estimat-
ing a capital charge. One of the challenges in modelling operational risk is the lack
of complete data – often a bank’s internal data are not reported below a certain level
(typically of the order of Euro 10,000). These data are said to be left-truncated.
Generally speaking, missing data increase uncertainty in modelling. Sometimes a
threshold level is introduced to avoid difficulties with collection of too many small
losses. Industry data in external databases from vendors and consortia of banks are
available above some thresholds: Algo OpData provides publicly reported opera-
tional risk losses above USD 1 million and ORX provides operational risk losses
above Euro 20,000 reported by ORX members. The operational risk data from Loss
Data Collection Exercises (LDCE) over many institutions are truncated too. For
example, Moscadelli [166] analysed 2002 LDCE and Dutta and Perry [77] anal-
ysed 2004 LDCE, where the data were mainly above Euro 10,000 and USD 10,000
respectively.

Often, modelling of missing data is done assuming a parametric distribution
for losses below and above the threshold. Then fitting is accomplished using

P. Shevchenko, Modelling Operational Risk Using Bayesian Inference,
DOI 10.1007/978-3-642-15923-7_5, C© Springer-Verlag Berlin Heidelberg 2011
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losses reported above the threshold via the maximum likelihood method (Fra-
chot, Moudoulaud and Roncalli [95]) or the expectation maximisation (EM) algo-
rithm (Bee [25], [26]). In practice, often the missing data are ignored completely.
This may lead to a significant underestimation or overestimation of the capital.
The impact of data truncation in operational risk was discussed in the literature;
see Baud, Frachot and Roncalli [20], Chernobai, Menn, Trück and Rachev [53],
Mignola and Ugoccioni [163], and Luo, Shevchenko and Donnelly [151]. Typ-
ically, the case of a constant threshold is discussed in research studies, though
in practice, a threshold level is varying across observations; see Shevchenko and
Temnov [217]. One of the reasons for appearing a varying threshold in opera-
tional risk loss data is that the losses are scaled for inflation and other factors
before fitting to reflect changes in risk over time. The reporting level may also
change from time to time within a bank when reporting policy is changed. The
problem with multiple thresholds also appears when different companies report
losses into the same database using different threshold levels; see Baud, Frachot and
Roncalli [20].

Of course, for risks with heavy-tailed severities, the impact of the data threshold
should not be important in a limit of high quantiles. However, it should be quantified
first before making such a conclusion and to justify a chosen reporting level. Also,
for light tailed risks, the impact can be significant.

In this chapter, a single risk cell is considered only, and the following notation
and assumptions are used:

� The annual loss in a risk cell in year m is

Zm =
Nm∑

i=1

Xi (m). (5.1)

� Nm is the number of events (frequency) and Xi (m), i = 1, . . . , Nm are the sever-
ities of the events in year m.

� If convenient, we may index severities Xi (m) and their event times Ti (m),
i = 1, . . . , Nm , m = 1, 2, . . . (ordered in time) as X j and Tj , j = 1, 2, . . .
respectively, where T1 < T2 < · · · .

� The severities of the events X j , j = 1, 2, . . . occurring at times Tj , j = 1, 2, . . .
respectively are modelled as independent and identically distributed random vari-
ables from a continuous distribution F(x |β), 0 < x < ∞, whose density is
denoted as f (x |β). Here, β are the severity distribution parameters.

� Nm , m = 1, 2, . . . are independent and identically distributed random variables
from a discrete frequency distribution with probability mass function p(n|λ) =
Pr[Nm = n], where λ is a frequency parameter (or a vector of parameters).

� It is assumed that the severities Xi (m) and frequencies Nm of the events are
independent.

� γ = (λ,β) is a vector of frequency and severity distribution parameters.
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5.2 Constant Threshold – Poisson Process

Often, it is assumed that loss events are modelled by a homogeneous Poisson pro-
cess with the intensity parameter λ. Then, Nm , m = 1, 2, . . . are independent and
identically distributed random variables from the Poisson distribution, Poisson(λ),
with

Pr[Nm = n] = p(n|λ) = λn

n! exp(−λ), λ > 0, n = 0, 1, . . . (5.2)

and the event inter-arrival times δTj = Tj − Tj−1, j = 1, 2, . . . (where T0 < T1 <

T2 < . . . are the event times and T0 = t0 is the start of the observation period)
are independent exponentially distributed random variables with the density and
distribution functions

g(τ |λ) = λ exp(−λτ) and G(τ |λ) = 1 − exp(−λτ) (5.3)

respectively.
If the losses, originating from severity f (x |β) and frequency p(n|λ) densities,

are recorded above a known reporting level (truncation level) L , then the density of
the losses above L is left-truncated density

fL(x |β) = f (x |β)
1 − F(L|β) ; L ≤ x < ∞. (5.4)

The events of the losses above L follow the Poisson process with the intensity

θ(γ , L) = λ(1 − F(L|β)), (5.5)

the so-called thinned Poisson process, and the annual number of events above the
threshold is distributed from Poisson (θ).

The series of the annual counts or event times can be used for estimating fre-
quency distribution. These cases are considered separately below.

Data for annual counts and severities. Consider a random vector Y of the events
recorded above the threshold L over a period of T years consisting of the annual
frequencies Ñm , m = 1, . . . , T and severities X̃ j , j = 1, . . . , J , J = Ñ1+. . .+ ÑT .
For given model parameters γ , the joint density of Y at Ñm = ñm and X̃ j = x̃ j can
be written as

h(y|γ ) =
J∏

j=1

fL (̃x j |β)
T∏

m=1

p(̃nm |θ(γ , L)). (5.6)

That is, the likelihood function for this model is �y(γ ) = h(y|γ ).
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Data for event times and severities. Similarly, if the data Y of the events above
a constant threshold over the time period [t0, tE ] consist of the event inter-arrival
times δT̃ j = T̃ j − T̃ j−1, j = 1, . . . , J (where T̃ j , j = 1, 2, . . . are the event times
and T̃0 = t0) and the severities X̃ j , j = 1, . . . , J, then the joint density (for given γ )
of Y at δT̃ j = τ̃ j and X̃ j = x̃ j is

h(y|γ ) = (
1 − G(tE − t̃ J |θ(γ , L))

) J∏

j=1

fL (̃x j |β)g(̃τ j |θ(γ , L))

= λJ exp(−θ(γ , L)(tE − t0))
J∏

j=1

f (̃x j |β). (5.7)

Here, 1 − G(tE − t̃ J |θ(γ , L)) is the probability that no event will occur within
(̃tJ , tE ]. The likelihood function for this model is �y(γ ) = h(y|γ ).
Remark 5.1 If the start and end of the observation period correspond to the begin-
ning and end of the first and last years respectively, then the inferences based on
the likelihoods (5.7) and (5.6) are equivalent. This is because the likelihoods, in this
case, are different by a factor that does not depend on the model parameters.

5.2.1 Maximum Likelihood Estimation

The maximum likelihood estimators (MLEs) γ̂ are the values of frequency and
severity parameters γ that maximise the likelihood function. That is, maximise (5.6)
or (5.7) if the frequency data consists from the annual counts or the event times
respectively. Note that the likelihood function corresponding to the joint density
(5.6) or (5.7) is �y(γ ) = h(y|γ ).
Data for annual counts and severities. From (5.6), the maximum likelihood esti-
mators (MLEs) γ̂ can be found as a solution of

∂ ln �Y(γ )

∂λ
= (1 − F(L|β))

T∑

m=1

∂

∂θ
lnp(Ñm |θ(γ , L)) = 0, (5.8)

∂ ln �Y(γ )

∂β
=

J∑

j=1

∂

∂β
ln fL(X̃ j |β)

−λ∂F(L|β)]
∂β

T∑

m=1

∂

∂θ
lnp(Ñm |θ(γ , L)) = 0. (5.9)

It is easy to see that the MLEs β̂ for the severity parameters can be found marginally
(independently from frequency) by maximising
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J∑

j=1

ln fL(X̃ j |β) (5.10)

and then the Eq. (5.8) gives the MLE for the intensity

λ̂ = 1

1 − F(L |̂β) × 1

T

T∑

m=1

Ñm . (5.11)

Data for event times and severities. From (5.7), the MLEs γ̂ can be found as a
solution of

∂ ln �Y(γ )

∂λ
= J

λ
− (1 − F(L|β))(tE − t0) = 0,

∂ ln �Y(γ )

∂β
= λ(tE − t0)

∂F(L|β)
∂β

+
J∑

j=1

∂

∂β
ln f (X̃ j |β) = 0. (5.12)

This gives the intensity MLE

λ̂ = J

(1 − F(L |̂β))(tE − t0)
, (5.13)

which is equivalent to (5.11) if the start and end of the observation period correspond
to the beginning and end of the first and last years respectively. Substituting λ̂ into
the second equation in (5.12), it is easy to see that the severity MLEs β̂ can be

obtained by maximising
J∑

j=1
ln fL(X̃ j |β).

MLE errors. The MLE errors are typically estimated using asymptotic Gaussian
approximation via the inverse of the Fisher information matrix; see Sect. 2.8.1. The
latter is often estimated by the observed information matrix. That is,

Cov[γ̂i , γ̂ j ] ≈ (̂I−1)i j , (̂I)i j = −∂2 ln �y(γ )

∂γi∂γ j

∣∣∣∣∣
γ=γ̂

. (5.14)

Whether the sample size is large enough to use this asymptotic approximation is a
difficult question that should be addressed in a practical solution. Also, the regularity
conditions required for this approximation are mild but difficult to prove.

A point estimator for a risk measure, for example a quantile Qq(γ ) of the annual
loss distribution, is calculated as Q̂q = Qq(γ̂ ). Its accuracy is typically estimated
using the error propagation method by performing the first order Taylor series
expansion around the true value

Qq(γ̂ )− Qq(γ ) ≈
∑

i

∂Qq(γ )

∂γi
(γ̂i − γi ) (5.15)
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and calculating the standard deviation stdev[Qq(γ̂ )] = √
Var[Qq(γ̂ )], where

Var[Qq(γ̂ )] ≈
∑

i, j

∂Qq(γ )

∂γi

Qq(γ )

γ j
Cov[γ̂i , γ̂ j ]. (5.16)

Finally, the unknown true parameter values γ are replaced by γ̂ and the stan-
dard deviation is estimated using the above formula with ∂Qq(γ )/∂γi replaced by
∂Qq(γ̂ )/∂γ̂i .

Example 5.1 As an illustrative example, consider simulated loss amounts X j and
times Tj from Poisson(10)-G P D(0.3, 6) over unrealistic T = 80 years; GPD1 is
the generalised Pareto distribution formally defined in Appendix A.2.9. The sim-
ulated loss amounts and times over realistic time period of T = 5 are given in
Table 5.1. Then, the truncated data were simulated and fitted using the following
procedure:

� Step 1. Simulate the Poisson process event times t j , j = 1, 2 . . . covering the
period of T years by simulating independent inter-arrival times τ j = t j − t j−1
from the exponential distribution with the parameter λ. Find the number of events

Table 5.1 Losses and event times simulated from Poisson(10)-G P D(0.3, 6) over 5 years

Index, i ti ti − ti−1 Loss, xi Index, i ti ti − ti−1 Loss, xi

1 0.0257 0.0257 7.5306 26 2.6488 0.1077 4.5207
2 0.2540 0.2284 3.1811 27 2.7531 0.1043 26.7507
3 0.4662 0.2121 2.1633 28 2.9669 0.2139 6.5704
4 0.5784 0.1123 2.0684 29 3.1671 0.2002 1.0533
5 0.7248 0.1463 7.0108 30 3.2638 0.0967 11.5740
6 0.7399 0.0151 15.1171 31 3.2988 0.0350 1.3647
7 0.7803 0.0404 0.4791 32 3.3984 0.0996 17.4227
8 0.8533 0.0731 1.9012 33 3.6000 0.2016 6.1744
9 0.9065 0.0532 9.6585 34 3.7285 0.1284 2.1298

10 1.2136 0.3070 6.5786 35 3.7799 0.0514 7.8412
11 1.2265 0.0129 2.9675 36 3.9074 0.1276 13.9317
12 1.3274 0.1009 0.2208 37 3.9117 0.0043 4.1237
13 1.5192 0.1918 13.9372 38 4.0006 0.0889 13.5370
14 1.5728 0.0536 8.3221 39 4.0628 0.0622 8.1449
15 1.8030 0.2301 62.9923 40 4.1023 0.0395 1.2949
16 1.8641 0.0611 4.0205 41 4.3969 0.2946 11.3031
17 1.8648 0.0008 4.5983 42 4.4120 0.0151 1.7095
18 1.8755 0.0107 3.6437 43 4.4696 0.0576 15.2808
19 1.9202 0.0447 0.6435 44 4.6578 0.1882 0.6268
20 1.9538 0.0336 9.5114 45 4.7437 0.0859 2.2327
21 1.9897 0.0359 4.4838 46 4.7440 0.0003 0.3352
22 2.1843 0.1946 26.9387 47 4.7540 0.0100 13.3572
23 2.2377 0.0535 37.6751 48 4.7738 0.0198 6.7379
24 2.3737 0.1359 24.1384 49 4.8508 0.0770 3.0586
25 2.5410 0.1674 0.4814 50 4.9532 0.1024 0.9756

1 GPD is a distribution of threshold exceedances in the limit of large threshold; see Sect. 6.3.



5.2 Constant Threshold – Poisson Process 185

nm occurred during each year m = 1, . . . , T and the total number of events
n = n1 + . . .+ nT .

� Step 2. Simulate independent severities x j from G P D(α, β) for the event times
t j , j = 1, . . . , n respectively.

� Step 3. Remove the events from the simulated sample when the event loss is
below a threshold L .

� Step 4. Given truncated sample of the severities x̃1, . . . , x̃ J exceeding the thresh-
old and corresponding event times, estimate the parameters (α, β, λ) via the
MLE and MCMC procedures using likelihood (5.7).

In total, 50 losses occurred over 5 years. It is easy to see that only 38 of these
losses, x̃ j exceeding L , will be reported if there is a reporting threshold L = 2; for
L = 1, 43 losses will be reported. The probabilities of the loss to be less than L ,
i.e. F(L|ξ, β), are (0, 0.150, 0.272) for L = (0, 1, 2) respectively. The data over
5-year period correspond to a realistic example if the losses X j , reporting level L ,
and scaling parameter β are multiplied by USD 10,000. Note that in the case of
G P D(0.3, 6) severity, the skewness and higher moments do not exist.

If we know the true distribution types but do not know the model parameters,
then the log-likelihood function for the reported data is found using (5.7):

ln �y(γ ) = J ln λ− λT

(
1 + ξL

β

)− 1
ξ − J lnβ

−
(

1 − 1

ξ

) J∑

j=1

ln

(
1 + ξ x̃ j

β

)
. (5.17)

Maximising the log-likelihood gives the MLEs ξ̂ , β̂, λ̂ shown in Table 5.2. For
these MLEs we also calculate the 0.999 quantile Q̂0.999 = Q0.999(γ̂ ) of the annual
loss distribution and its standard deviation calculated using FFT, as explained in
Sect. 3.4. The standard deviation is obtained using (5.16). To demonstrate the
behaviour of the estimators, we present the results for several reporting levels
L = 0, 1, 2 and several time periods T = 5, 20, 80. The results for L = 0, 1, 2 with
T = 5 show that reporting level introduces more uncertainly into the estimators
and the uncertainty in the quantile estimator is so large (approximately 50% for
T = 5, 20) that no reliable conclusion can be made. Increasing the time period (i.e.
the data sample size), improves the accuracy of the estimators. Only at T = 80, the
estimator for the 0.999 quantile is getting some certainty where the standard devia-
tion is approximately 20% of the quantile estimator. Moreover, increasing T from 5
to 20 in the case of L = 2 does not reduce the standard deviation (which is approx
50% in both cases) of the 0.999 quantile that indicated that the 1st order expansion
(5.15) is not a good approximation for this case. Also note that correlations between
λ̂ and severity MLEs are zero when L = 0 and become significant for L = 1, 2.
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Table 5.2 MLEs ξ̂ , β̂, λ̂ when data are simulated from Poisson(λ = 10)-G P D(ξ = 0.3, β = 6)
in the case of different reporting levels L = 0, 1, 2 and time horizons T = 5, 20, 80. The 5-year
data are given in Table 5.1

MLE
L = 0
T = 5

L = 1
T = 5

L = 2
T = 5

L = 2
T = 20

L = 2
T = 80

ξ̂ 0.214 0.203 0.218 0.321 0.357
̂stdev[̂ξ ] 0.174 0.185 0.203 0.102 0.051
β̂ 6.980 7.147 6.913 7.409 5.632
̂stdev[β̂] 1.551 1.873 2.176 1.159 0.464
λ̂ 10.000 9.872 10.062 9.975 10.740
̂stdev[̂λ] 1.414 1.543 1.820 0.883 0.505
ρ̂β̂,̂ξ −0.649 −0.704 −0.754 −0.699 −0.697
ρ̂̂λ,̂ξ 0.000 0.149 0.314 0.269 0.327
ρ̂̂λ,β̂ 0.000 −0.220 −0.441 −0.413 −0.512
Q̂0.999 325.7762 319.4020 328.3046 552.6983 528.2161
̂stdev[Q̂0.999] 168.5775 161.3365 186.5343 242.3923 125.4532

5.2.2 Bayesian Estimation

Under the Bayesian approach, the parameters are modelled as random variables.
Given the vector of all frequency and severity parameters γ = (λ,β), denote the
density of the annual loss as h(z|γ ). Then, given data Y (severities and frequencies
over T years), the predictive density for the next year annual loss ZT +1 is

h(z|y) =
∫

h(z|γ )π(γ |y)dγ , (5.18)

where π(γ |y) is the joint posterior density of the parameters given data Y. From
Bayes’s rule

π(γ |y) ∝ h(y|γ )π(γ ), (5.19)

where h(y|γ ) is the joint density of the data and π(γ ) is a prior density for the
parameters (the prior distribution can be specified by an expert or fitted using exter-
nal data or can be taken to be noninformative so that inference is implied by data
only).

For large sample size (and continuous prior distribution), it is common to approx-
imate lnπ(γ |y) by a second-order Taylor series expansion around γ̂ . Then π(γ |y)
is approximately a multivariate normal distribution (see (2.42)) that in the case
of improper constant priors (that is, π(γ |y) ∝ h(y|γ )) compares to the Gaussian
approximation for the MLEs; see Sect. 2.8.1 and formula (5.14). Also, note that in
the case of constant priors, the mode of the posterior and MLE are the same. This is
also true if the prior is uniform within a bounded region, provided that the MLE is
within this region.
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Prior distribution. If one is interested in getting inferences based mainly on obser-
vations, then noninformative or vague priors can be utilised. Informative priors can
be used if external data and expert opinions are taken into account, as explained and
discussed in Chapter 4.

Predictive distributions. The 0.999 quantile Q P
0.999 of the predictive distribution

h(z|y) can be calculated using Monte Carlo Algorithm 4.1. Note that this accounts
for both the process uncertainty (severity and frequencies are random variables) and
the parameter uncertainty (parameters are simulated from their posterior distribu-
tion). The parameter uncertainty comes from the fact that we do not know the true
values of the parameters.

The predictive distribution of the 0.999 quantile Q0.999(γ ) of the conditional
annual loss density h(z|γ ) can be calculated knowing that γ is distributed from
π(γ |y). This can be used to form a one-sided or two-sides predictive intervals to
contain the true value of the quantile with some probability q. Then one can argue
that the conservative estimate of the capital charge should be based on the upper
bound of the constructed confidence interval. Calculation of the predictive interval
for the quantile Q0.999(γ ) of h(z|γ ) can be accomplished using FFT to calculate
Q0.999(γ ) for a given γ and samples of γ from its posterior; see Monte Carlo
Algorithm 4.2.

Posterior distribution. Typically, for models with truncation, direct sampling from
the posterior is not possible. In general, it can be accomplished numerically using
MCMC; see Sect. 2.11.

Example 5.2 To illustrate, consider the Bayesian inference method for the truncated
dataset that was fitted using maximum likelihood method in Example 5.1. That is,
the loss amounts X j and times Tj are simulated from Posson(10)-G P D(0.3, 6)
over T = 80 years and truncated below the reporting level L = 2. In calculations
below we consider the simulated dataset over three different time periods: T =
5, 20, and 80.

A closed-form solution for posterior densities is not available and we utilise
MCMC method to get samples from the posterior π(γ |y). In this example, RW-MH
within Gibbs Algorithm 2.4 is adopted. For comparison purposes with MLE results,
we are interested in the inferences mainly implied by the data. Thus we choose
the independent constant priors bounded as follows: λ ∈ [5, 20], ξ ∈ [0.02, 1],
β ∈ [1, 13]. That is, all parameters are independent under the prior π(γ ) and dis-
tributed uniformly with γi ∼ U(ai , bi ) on a wide ranges. Denote by γ (k) the state
of the chain at iteration k with the initial state γ (k=0) taken as MLEs. The algorithm
proceeds by proposing a new state γ ∗

i sampled from the MCMC proposal transition
kernel, that we choose to be the Gaussian distribution truncated below ai and above
bi , with the density

f (T )N (γ ∗
i ; γ (k)i , σi ) = fN (γ

∗
i ; γ (k)i , σi )

FN (bi ; γ (k)i , σi )− FN (ai ; γ (k)i , σi )
. (5.20)
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Here, fN (x;μ, σ) and FN (x;μ, σ) are the normal density and its distribution
respectively with the mean μ and standard deviation σ . Then, the proposed move is
accepted with the probability

p(γ (k), γ ∗) = min

{
1,

π(γ ∗|y) f (T )N (γ ∗
i ; γ (k)i , σi )

π(γ (k)|y) f (T )N (γ
(k)
i ; γ ∗

i , σi )

}
, (5.21)

where y is the vector of observations and π(γ ∗|y) is the posterior distribution.
Also, here γ ∗ = (γ

(k)
1 , . . . , γ

(k)
i−1, γ

∗
i , γ

(k−1)
i+1 , . . .) is a new state, where parameters

1, 2, . . . , i − 1 are already updated while i + 1, i + 2, . . . are not updated yet.
Note that the normalisation constant for the posterior distribution is not needed

here. If under the rejection rule one accepts the move, then the new state of the i-th
parameter at iteration k is given by γ (k)i = γ ∗

i , otherwise the parameter remains in

the current state γ (k)i = γ
(k−1)
i and an attempt to move that parameter is repeated at

the next iteration.
Using the chain samples γ (k), k = 1, 2, . . . as realisations from the posterior

π(γ |y), we can estimate the expectations such as posterior mean, posterior standard
deviation, etc. This has already been discussed in Sect. 2.11. Here, we just mention
that in this example σi for proposals is chosen to be the MLE standard deviation of
the corresponding parameter.

Figure 5.1 presents the chain samples for all parameters λ, ξ and β produced by
the described algorithm. The chain is run for 1,010,000 iterations2; the initial 10,000
are discarded and 1,000,000 samples are used for estimation of expectations. It is
useful to inspect the chain visually. One can see for example that the chain is mixing
very well. Formal diagnostics on the stationarity of the chain can also be calculated;
see Sect. 2.12. Fig. 5.2 and Table 5.3 present:

� the posterior densities for all parameters (ξ, β, λ) – one can see the change in the
posterior as the data sample increases (in particular, the uncertainty decreases);

� the predictive density and distribution for the annual loss (over next year); and
� the density of the 0.999 quantile Q0.999(γ ), where γ is distributed from the pos-

terior π(γ |y).
One can see that the MLE and Bayesian posterior estimates for the parameters and
quantile converge as the data sample increases. Also, the 0.999 quantile of the pre-
dictive distribution Q P

0.999 converges to the E[Q0.999(γ )].

5.3 Extension to Negative Binomial and Binomial Frequencies

In addition to Poisson, negative binomial and binomial are other distributions often
used to model frequencies. A nice property is that binomial has the mean less than

2 The chain should be long enough so that numerical error in the estimates due to finite number of
chain samples is not material.
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Fig. 5.1 MCMC realisations of the shape ξ , scale β, and Poisson intensity λ parameters in the case
of reporting threshold L = 2 and data from Table 5.1

the variance; the mean of the negative binomial is larger than its variance; and Pois-
son mean equals its variance. This is often used as a criterion to choose a frequency
distribution.

Another useful property of these distributions is that their type is preserved in the
case of loss truncation as given by the following proposition.

Proposition 5.1 (Frequency of truncated losses) Consider independent losses
X1, X2, . . . , X N with a common distribution F(x) over some time period. Assume
that the losses are independent of the loss frequency N. Denote the frequency of the
losses above the reporting level L as NL. Then

(a) If N ∼ Poisson(λ), then NL ∼ Poisson(λ(1 − F(L)).
(b) If N ∼ NegBin(r, p), where the parameter p = 1/(1 + q), then NL ∼

NegBin(r, p̃) with p̃ = 1/(1 + q̃), where q̃ = q(1 − F(L)).
(c) If N ∼ Bin(n, p), then NL ∼ Bin(n, p̃), where p̃ = p(1 − F(L)).

Proof The proof is trivial using a more general result (5.26) derived below. �
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Fig. 5.2 MCMC posterior distributions of the shape ξ , scale β, and Poisson intensity λ parameters
in the case of reporting threshold L = 2 and data from Table 5.1

Remark 5.2 We have already used this property of Poisson distribution, e.g. in
Sect. 5.2.

In general, the relation between the distributions of N and NL can be calcu-
lated as follows. Assume that the probability function for the number of events N is
known to be pn = Pr[N = n] and its probability generating function is

ψN (t) = E[t N ] =
∑

k

pktk . (5.22)

Consider a compound sum S = M1 +· · ·+ MN , where N is a discrete random vari-
able with probability generating function ψN (t), and Mi are independent discrete
random variables with probability generating function ψM (t). Utilising the fact that
the probability generating function of the sum of independent random variables is
the product of the individual probability generating functions, the probability gen-
erating function of S can be found as
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Table 5.3 Characteristics of the posterior distributions for parameters ξ (shape), β (scale), λ
(intensity); quantile Q0.999(γ ) and full predictive loss distribution. The data are simulated from
Poisson(λ = 10)-G P D(ξ = 0.3, β = 6) with a reporting level L = 2 and time horizons
T = 5, 20, 80. The 5 year data are given in Table 5.1

T = 5 T = 20 T = 80

Posterior for model parameters

E[ξ ] 0.343(0.001) 0.346(0.0003) 0.363(0.0002)
stdev[ξ ] 0.209(0.0003) 0.106(0.0002) 0.051(0.0001)
E[β] 6.614(0.006) 7.415(0.004) 5.628(0.002)
stdev[β] 2.027(0.003) 1.17 (0.002) 0.465(0.001)
E[λ] 10.716(0.006) 10.093(0.002) 10.777(0.002)
stdev[̂λ] 2.048(0.005) 0.903(0.001) 0.509(0.001)
ρβ,ξ –0.66 –0.69 –0.69
ρλ,ξ 0.34 0.28 0.33
ρ̂̂λ,β̂ –0.50 –0.43 –0.52

Posterior for the 0.999 quantile, Q0.999(γ )

E[Q0.999(γ )] 1,591(8) 777(4) 571.2(0.6)
stdev[Q0.999] 4,037(20) 653(26) 153.1(0.6)
0.25 quantile 318 460 464
median 470 602 540
0.75 quantile 1038 864 642

Full predictive loss distribution

Q P
0.999 1,864(27) 887(7) 580(5)

ψS(t) =
∑

k

Pr[S = k]tk

=
∑

k

∑

n

Pr[M1 + · · · + Mn = k|N = n] Pr[N = n]tk

=
∑

n

Pr[N = n](ψM (t))
n

= ψN (ψM (t)). (5.23)

The number of events above the threshold can be written as

NL = I1 + · · · + IN ,

where I j are independent and identically distributed indicator random variables

I j =
{

1, Pr[I j = 1] = 1 − F(d), if X j > u,
0, Pr[I j = 0] = F(d) if X j ≤ u,

(5.24)

with probability generating function

ψI (t) = F(L)+ t (1 − F(L)) = 1 + (1 − F(L))(t − 1).
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The probability generating function of the number of events above the threshold L
can then be calculated as

ψNL (t) = ψN (ψI (t)). (5.25)

Moreover, if the distribution of N is parameterised by some θ and its probability
generating function has a special form ψN (t; θ) = g(θ(t − 1)), i.e. t and θ appear
in ψN (t; θ) as θ(t − 1) only, then

ψNL (t; θ) = g(θ(1 − F(L))(t − 1)) = ψN (t; θ(1 − F(L))). (5.26)

That is, both N and NL have the same distribution type with different parameter θ .
Specifically, if N is distributed from P(·|θ) then NL is distributed from P(·|θ̃ ),
where θ̃ = θ(1 − F(L)). It can be checked directly that this relationship holds for
Poisson, binomial and negative binomial. For more details and examples, see Panjer
([181], sections 5.7 and 7.8.2).

5.4 Ignoring Data Truncation

Often, the data below a reported level are simply ignored in the analysis, arguing that
the high quantiles are mainly determined by the low-frequency/heavy-tailed severity
risks. However, the impact of data truncation for other risks can be significant. Even
if the impact is small, often it should be estimated to justify the reporting level.
There are several ways to ignore the truncation discussed below.

Assume that the true model is based on the annual number of events N and sever-
ities X j coming from distributions P(·|λ) and F(·|β) respectively. Here, P(·|λ) can
be different from Poisson and λ denotes all frequency parameters. The density of the
distribution F(·|β) is f (·|β). If it is further assumed that severities are independent
and identically distributed, and independent of frequency. Then the frequency Ñ
and losses X̃ j above the threshold L are from P̃(·|θ) and

FL(x |β) = F(x |β)− F(L|β)
1 − F(L|β) , x ≥ L ,

respectively. Note that θ is a function of λ, β and L; see Sect. 5.3. The corresponding
truncated severity density is

fL(x |β) = f (x |β)
1 − F(L|β) , x ≥ L .

Denote the data above the threshold as Ỹ. Then fitting of the correct model pro-
ceeds as follows.

“True model”. Using the frequency P̃(·|θ) and severity FL(x |β) distributions of
the truncated data Ỹ, fit the model parameters λ and β, using the likelihood of
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the observed data Ỹ via the MLE or Bayesian inference methods as described in
Sect. 5.2. Then calculate the annual loss as

Z (0) =
N∑

i=1

Xi , N ∼ P(·|λ), Xi
iid∼ F(·|β). (5.27)

Of course it is assumed that data below the threshold are generated from the
same process as data above. To simplify the fitting procedure or to avoid making the
assumptions about data below the level, several approaches are popular in practice.
In particular “naive model”, “shifted model” and “truncated model” are defined
below.

“Naive model”. Using truncated data Ỹ, fit frequency distribution P̃(·|θ) and sever-
ity F(·|βU ) assuming that there is no truncation. Then calculate the annual loss as

Z (U ) =
N∑

i=1

Xi , N ∼ P̃(·|θ), Xi
iid∼ F(·|βU ). (5.28)

“Shifted model”. Using truncated data Ỹ, fit frequency P̃(·|θ) and severity
F (S)

L (x) = F(x − L|β). Then calculate the annual loss as

Z (S) =
N∑

i=1

Xi , N ∼ P̃(·|θ), Xi
iid∼ F (S)

L (·|βS), (5.29)

“Truncated model”. Using truncated data Ỹ, fit frequency P̃(·|θ) and severity
FL(x |β). Then calculate the annual loss as

Z (T ) =
N∑

i=1

Xi , N ∼ P̃(·|θ), Xi
iid∼ FL(·|β). (5.30)

Denote the 0.999 quantiles of the annual losses under the “true”, “naive”,
“shifted” and “truncated” models as Q(0), Q(U ), Q(S) and Q(T ) respectively. The
bias introduced into the 0.999 quantile of the annual loss distribution from use of
the wrong model can be quantified by the relative difference

δ(�) ≡ Q(�) − Q(0)

Q(0)
, (�) = “U”, “T ”, “S”. (5.31)

Calculation of the annual loss quantile using the incorrect model (wrong frequency
and severity distributions) will induce a bias. One may think that the bias is not
material and take one of the above methods.
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Each of the “naive model”, “shifted model” and “truncated model” is biased for
finite truncation, that is, their quantile estimates will never converge to the true value
as the data sample size increases.

The difference (bias) between Q(0) and Q(S), and between Q(0) and Q(U ) was
studied in Luo, Shevchenko and Donnelly [151]. The difference between Q(T ) and
Q(0) was studied in Mignola and Ugoccioni [163]. The “naive model” was analysed
in Chernobai, Menn, Trück and Rachev [53] and Frachot, Moudoulaud and Roncalli
[95].

Example 5.3 (Poisson-lognormal) To demonstrate the impact of ignoring data trun-
cation consider N and Xi modelled by the Poisson(λ) and LN (μ, σ ) with the
probability mass p(·|λ) and the density f (x |μ, σ), 0 < x < ∞ respectively. The
density of a left-truncated lognormal distribution is

fL(x |μ, σ) = f (x |μ, σ)
1 − F(L|μ, σ) ; L ≤ x < ∞, (5.32)

Assuming that losses originating from f (x |μ, σ) and p(k|λ) are recorded above
known reporting level L , the data above L are counts from Poisson(θ), θ =
λ(1 − F(L|μ, σ)) and losses from fL(x |μ, σ). Then the models are calculated as
follows.

� “True model” is obtained by using λ, μ and σ in (5.27).
� “Shifted model”. Suppose that the shifted lognormal density

f (S)L (x |μs, σs) = 1

(x − L)
√

2πσ 2
s

exp

(
− (ln(x − L)− μs)

2

2σ 2
s

)
, (5.33)

where L ≤ x < ∞, is fitted to the truncated data using the method of maximum
likelihood. In the limit of large sample size, the parameters of this distribution
μS and σS can be determined using first two moment, that is, expressed in terms
of the true parameters μ and σ as follows:

μS =
∞∫

L

ln(x − L) f (T )L (x |μ, σ)dx, (5.34)

σ 2
S =

∞∫

L

[ln(x − L)]2 f (T )L (x |μ, σ)dx − μ2
S . (5.35)

The above integrals can be efficiently calculated using Gaussian quadrature
(see Sect. 3.5.2) or just using standard adaptive integration routines avail-
able from most of software packages (for example, adaptive integration rou-
tine QDAGI from IMSL library). In this model the frequency is modelled by
Poisson(θ), that is the losses below L are ignored. Finally, θ ,μS and σS are used
in (5.29).
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� “Naive model”. This model is based on the un-truncated lognormal with density
f (x |μU , σU ) defined by (2) and fitted to data above the threshold L using the
method of maximum likelihood. Similar to the “shifted model”, in the limit of
large sample size, parameters μU and σU can be determined via the true param-
eters μ and σ as follows; see Chernobai, Menn, Trück and Rachev [53]:

μU =
∞∫

L

ln(x) f (T )L (x |μ, σ)dx, (5.36)

σ 2
U =

∞∫

L

(ln x)2 f (T )L (x |μ, σ)dx − μ2
U . (5.37)

Unlike the “shifted model” these integrals can be evaluated in closed form. The
frequency under the “naive model” is modelled by Poisson(θ), that is, the losses
below the threshold are ignored when the intensity of loss events is estimated.
Finally, θ , μU and σU are used in (5.28).

� “Truncated model” is obtained by using θ , μ and σ in (5.30).

Figure 5.3 shows the relative bias in the 0.999 annual loss quantile (5.31) vs a
fraction of truncated points Ψ = F(L|μ, σ) × 100%, for the cases of light and
heavy tail severities. In this example, the parameter values are chosen the same as
some cases considered in Luo, Shevchenko and Donnelly [151]. In particular, we
show the results for (θ = 10, σ = 1) and (θ = 10, σ = 2). The latter corresponds
to the heavier tail severity. Here, the calculated bias is due to the model error only,
that is, the bias corresponds to the limiting case of a very large data sample. Also
note that the actual value of the scale parameter μ is not relevant because only
relative quantities are calculated. “Naive model” and “shifted model” are easy to fit
but induced bias can be very large. Typically “naive model” leads to a significant
underestimation of the capital, even for a heavy tail severity; “shifted model” is bet-
ter than “naive model” but worse then “truncated model”; the bias from “truncated
model” is less for heavier tail severities.
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Remark 5.3 The biases introduced by the “naive” and “shifted” models, studied in
this section, are the biases in the limit of large sample size. The parameters fitted
using real data are estimates that have statistical fitting errors due to finite sample
size. The true parameters are not known. The impact of parameter uncertainty on
quantile estimates can be taken into account using a Bayesian framework. The prob-
lem with the use of the simplified models that ignore data truncation, such as “naive”
and “shifted” models, is not just the introduced bias but underestimation of extra
capital required to cover parameter uncertainty. Typically these simplified models
lead to smaller fitting errors. It is not difficult to find a realistic example where
the “shifted model” overestimating the quantile leads to under-estimation when the
parameter uncertainty is taken into account; for an example, see Luo, Shevchenko
and Donnelly ([151], section 6, Table 1). “Naive model” typically underestimates
the capital even if the parameter uncertainty is taken into account This is because
the “shifted” and “naive” models lead to smaller fitting errors in comparison to the
“unbiased model”. Of course, as the number of observations increases, the impact of
parameter uncertainty diminishes. However, for modest fitting errors 5–10% (often,
in modelling operational risk data, the errors are larger) the impact of parameter
uncertainty is significant.

5.5 Threshold Varying in Time

Often, in practice, before fitting a specific severity distribution, a modeller scales
the losses by some factors (inflation, business factors, etc). The reporting threshold
should be scaled correspondingly and thus the losses in the fitted sample will have
different threshold levels. In addition, the reporting policy may change affecting the
threshold. To model this situation consider the following setup studied in [217].

� In the absence of a threshold, the events follow a homogeneous Poisson pro-
cess with the intensity λ and the severities X j are independent with a common
distribution F(·|β); denote γ = (λ,β).

� The losses are reported above the known time dependent level L(t). Denote the
severities and arrival times of the reported losses as X̃ j and T̃ j , j = 1, . . . , J
respectively and t0 is the start of the observation period.

Under the above assumptions, the events above L(t) follow a non-homogeneous
Poisson process with the intensity

θ(γ , L(t)) = λ(1 − F(L(t)|β)). (5.38)

Denote

Λ(t, h) =
t+h∫

t

θ(γ , L(x))dx . (5.39)
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Then, given that ( j − 1)th event occurred at t̃ j−1, the inter-arrival time for the j-th
event δT̃ j = T̃ j − T̃ j−1 is distributed from

G j (τ |γ ) = 1 − exp(−Λ(t j−1, τ )) (5.40)

with the density

g j (τ |γ ) = θ(γ , L(t j−1 + τ)) exp(−Λ(t j−1, τ )). (5.41)

The implied number of events in year m is Poisson(Λ(sm, 1)) distributed, where
sm is the time of the beginning of year m, and the number of events over the non-
overlapping periods are independent.

Data for event times and severities. Given γ , the joint density of the data Y of the
events above L(t) over the time period [t0, tE ], consisting of the inter-arrival times
δT̃ j = T̃ j − T̃ j−1 and severities X̃ j , j = 1, . . . , J above L(t), can be written as

h(y|γ ) = (
1 − G J (tE − t̃ J |γ ))

J∏

j=1

fL (̃t j )(̃x j |β)g j (̃τ j |γ )

= λJ exp(−Λ(t0, tE − t0))
J∏

j=1

f (̃x j |β). (5.42)

Here, explicitly

Λ(t0, tE − t0) = λ

∫ tE

t0
[1 − F(L(x)|β)]dx .

Then, the likelihood function for the model is �y(γ ) = h(y|γ ) and the maximum
likelihood equations are

∂ ln �y(γ )

∂λ
= J

λ
−

T∫

t0

[1 − F(L(x)|β)]dx = 0, (5.43)

∂ ln �y(γ )

∂β
= − ∂

∂β
Λ(t0, T − t0)+

J∑

j=1

∂

∂β
ln f (̃x j |β) = 0. (5.44)

The first equation gives

λ̂ = J
T∫

t0
[1 − F(L(x)|̂β)]dx

, (5.45)
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that can be substituted into (5.42) and maximisation will be required with respect
to β only. The likelihood contains integral over the severity distribution. If inte-
gration is not possible in closed form then it can be calculated numerically (that
can be done efficiently using standard routines available in many numerical pack-
ages). For convenience, one can assume that a threshold is constant between the
reported events: L(t) = L(t j ), t̃ j−1 < t ≤ t̃ j and L(t) = L(tE ) for t̃ j < t ≤ tE ,
so that

tE∫

t0

[1 − F(L(x)|β)]dx = [1 − F(L(tE )|β)](tE − t̃ J )

+
J∑

j=1

[1 − F(L (̃t j )|β)]τ j . (5.46)

Of course this assumption is reasonable if the intensity of the events is not
small. Typically scaling is done on the annual basis and one can assume a piece-
wise constant threshold per annum and the integral is replaced by a simple
summation.

Data for annual counts and severities. If a data vector Y of the events above the
reporting threshold consists of the annual counts Ñm , m = 1, . . . , T and severi-
ties X̃ j , j = 1, . . . , J (J = Ñ1 + . . . + ÑT ), then the joint density of the data
(given γ ) is

h(y|γ ) =
J∏

j=1

fL(t j )(̃x j |β)
T∏

m=1

p(̃nm |Λ(sm, 1)), (5.47)

where p(·|Λ(sm, 1)) is probability mass function of Poisson(Λ(sm, 1)). Usually,
in practice, scaling is done on an annual basis. Thus we can consider the case of a
piece-wise constant threshold per annum such that for year m:

L(t) = Lm, θ(γ , L(t)) = λ(1 − F(Lm |β)) = θm, sm ≤ t < sm + 1,

where sm is the time of the beginning of year m. The joint density in this
case is

h(y|γ ) =
J∏

j=1

fL (̃t j )(̃x j |β)
T∏

m=1

p(̃nm |θm) (5.48)

and equations to find MLEs using the likelihood function �y(γ ) = h(y|γ ) are
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∂ ln �y(γ )

∂λ
=

T∑

m=1

[1 − F(Lm |β)] ∂

∂θm
lnp(̃nm |θm) = 0, (5.49)

∂ ln �y(γ )

∂β
=

J∑

j=1

∂

∂β
ln fL (̃t j )(̃x j |β)

−λ
T∑

m=1

∂F(Lm |β)]
∂β

∂

∂θm
lnp(̃nm |θm) = 0. (5.50)

The first equation gives

λ̂ =

T∑
m=1

ñm

T∑
m=1

(1 − F(Lm |̂β))
. (5.51)

The MLEs of the severity parameters should be estimated jointly with the inten-
sity. Given that the intensity MLE can be expressed in terms of the severity param-
eters MLEs via the above equation, one can substitute (5.51) into the likelihood
function (5.48) and find severity parameters MLEs by maximising the obtained
likelihood profile.

Often the MLEs for severity parameters calculated marginally (that is by simply
maximising

∑
ln fL(t j )(̃x j |β)) do not differ materially from the results of the joint

estimation if the variability of the threshold is not extremely fast. The results of
the estimation for the simulated data in the case of exponentially varying threshold,
presented in [217], confirm this intuitive observation, although the difference can
still be significant if the intensity is small. Also, marginal estimation does not allow
for quantification of the covariances between frequency and severity parameters
required to account for parameter uncertainty.

Example 5.4 To illustrate the case of time varying threshold, consider data sim-
ulated from Poisson(10) − G P D(0.3, 6) over T = 5 years (see Example 5.1).
Assume that the reporting threshold L(t) is piece-wise constant per annum, that is
L(t) = Lm , m −1 ≤ t < m, m = 1, 2, . . . , T . Moreover, assume that L1 = L2 = 1
and L3 = L4 = L5 = 2. Then the log-likelihood function for the reported events is

ln �y(γ ) = J ln λ− λ

T∑

m=1

(
1 + ξL

β

)− 1
ξ − J lnβ

−
(

1 − 1

ξ

) J∑

j=1

ln

(
1 + ξ x̃ j

β

)
. (5.52)
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Table 5.4 MLE and MCMC (with 2 × 105 iterations) results in the case of data simulated over 5
years from Poisson(λ = 10) − G P D(0.3, 6) and truncated below L1 = L2 = 1, L3 = L4 =
L5 = 2. Numerical errors of the MCMC estimates are given in brackets next to the estimates

Maximum likelihood estimates

ξ̂ = 0.176 ̂stdev[̂ξ ] = 0.183 β̂ = 7.593 ̂stdev[β̂] = 2.090
λ̂ = 9.571 ̂stdev[̂λ] = 1.611 ρ̂β̂,̂ξ = −0.716 ρ̂̂λ,̂ξ = 0.208 ρ̂̂λ,β̂ = −0.308

Q̂0.999 = 305.079 ̂stdev[Q̂0.999] = 132.504

Bayesian MCMC estimates

E[ξ ] = 0.295(0.002) stdev[ξ ] = 0.189 E[β] = 7.37(0.01) stdev[β] = 1.90
E[λ] = 9.99(0.01) stdev[λ] = 1.69 ρβ,ξ = −0.59 ρλ,ξ = 0.20 ρλ,β = −0.33
VaR0.25[Q0.999(γ )] = 305.2(0.3) VaR0.75[Q0.999] = 777(3)
VaR0.5[Q0.999] = 415.8(0.8) E[Q0.999] = 1, 179(19) Q P

0.999 = 1, 411(19)

Note that the integral is replaced by a simple summation because the threshold
is a piece-wise constant function of time. After scaling the threshold L0 and scale
parameter β by USD 10,000 this corresponds to more or less typical values observed
with real data. The maximum likelihood and Bayesian MCMC estimations are pre-
sented in Table 5.4. The prior distributions and MCMC procedure used to obtain the
results are the same as in Example 5.2.

Problems3

5.1 (�) Assume that the losses X1, X2, . . . , Xn are independent random variables
from a one-parameter Pareto distribution F(x |ξ) = 1−(x/a)−ξ , x ≥ a > 0, ξ > 0.
Also, assume that the losses below L > a are not reported. Find the likelihood
function for the observed losses above L and find the MLE for the parameter ξ .

5.2 (��) Suppose that:

� The frequencies N1, N2, . . . , NM are independent with a common binomial dis-
tribution Bin(n, p).

� Corresponding losses X1, X2, . . . , X J , where J = N1 + · · · + NM , are inde-
pendent random variables from a one-parameter Pareto distribution F(x |ξ) =
1 − (x/a)−ξ , x ≥ a > 0, where ξ > 0 is unknown and a is known.

� The severities and frequencies are independent.

Suppose that the losses below L > a are not reported. Find the likelihood of the
observed frequencies and severities (that is, events with the losses above L). Derive
the MLE for parameters p and ξ assuming binomial parameter n is known.

5.3 (��) Solve Problem 5.2 in the case of frequencies distributed from the negative
binomial distribution NegBin(n, p) instead of binomial distribution Bin(n, p).

5.4 (� � �) Suppose that:

3 Problem difficulty is indicated by asterisks: (�) – low; (��) – medium, (� � �) – high.
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� The annual frequencies N1, N2, . . . , NM are independent with a common distri-
bution Poisson(λ).

� Corresponding losses X1, X2, . . . , X J , where J = N1 + · · · + NM , are inde-
pendent random variables from a one-parameter Pareto distribution F(x |ξ) =
1 − (x/a)−ξ , x ≥ a > 0, where a is known.

� The severities and frequencies are independent.

Simulate the data over 5 years (i.e. M = 5) using λ = 5, ξ = 3, a = 1.
Suppose that the losses below L = 2 are not reported. Using truncated data (i.e.
the events with losses above L), estimate λ and ξ (assuming that these parameters
are unknown) utilising random walk Metropolis-Hastings within Gibbs algorithms.
Also, estimate the 0.999 quantile of the predictive distribution for the annual loss.
Repeat estimation for the case M = 20. Assume constant priors.

5.5 (�) Suppose that:

� The annual frequency N is distributed from the negative binomial with mean 10
and standard deviation 5.

� The independent risk severities are Pareto distributed, Xi ∼ Pareto(ξ, a), with
ξ = 4 and a = 1.

� The severities and frequency are independent.

Calculate the true 0.999 quantile of the annual loss Z = ∑N
i=1 Xi assuming that all

model parameters are known. Suppose that the losses below L > a are not reported
and ignored using “truncated model”; see Sect. 5.4. Find the 0.999 quantile of the
annual loss distribution under “truncated model”. Compare it with the true value
for different threshold levels corresponding to the fraction of truncated data ranging
from 0% to 90%.

5.6 (�) Repeat calculations of Problem 5.5 if the frequency distribution is Bin(n, p)
with mean 10 and standard deviation 3.

5.7 (�) Repeat calculations of Problem 5.5 if the frequency is Poisson distributed
with mean 10 and the severity distribution is G P D(ξ, β = 1), for two cases: ξ =
0.2 and ξ = 0.5.

5.8 (�) Suppose that risk events follow to Poisson process with time dependent
intensity that will change linearly from 5 to 10 over next year. Find the distribution
of the number of events over the next year.



Chapter 6
Modelling Large Losses

If there is a possibility of several things going wrong, the one
that causes the most damage is the one to go wrong.

Murphy

Abstract Some operational risk events are rare but may have a major impact on a
bank. Limited historical data make quantification of such risks difficult. This chap-
ter discusses Extreme Value Theory that allows analysts to rationally extrapolate
to losses beyond those historically observed and to estimate their probability. The
chapter also discusses several parametric distributions which have been proposed to
model the distribution tail of operational risk losses.

6.1 Introduction

Some operational risk events are rare but may have a major impact on a bank.
These are often referred to as low-frequency/high-severity risks. It is recognised
that these operational risks have heavy tailed severity distributions. Due to simple
fitting procedure, one of the popular distributions to model severity is the lognormal
distribution. It is a heavy-tailed distribution, that is, belongs to the class of so-called
sub-exponential distributions where the tail decays slower than any exponential tail.
Often it provides a reasonable overall statistical fit, as reported in the literature,
and was suggested for operational risk at the beginning of Basel II development;
see BCBS ([19], p. 34). However, due to the high quantile level requirement for
operational risk capital charge, accurate modelling of extremely high losses (the
tail of severity distribution) is critical and other heavy tail distributions are often
considered to be more appropriate.

Two studies of operational risk data collected over many institutions are of central
importance here: Moscadelli [166] analysing 2002 LDCE (where Extreme Value
Theory (EVT) is used for analysis in addition to some standard two-parameter
distributions), and Dutta and Perry [77] analysing 2004 LDCE. The latter paper
considered the four-parameter g-and-h and GB2 distributions as well as EVT and
several two-parameter distributions. There are two types of EVT models: traditional
block maxima and threshold exceedances. Block maxima EVT is focused on mod-
elling the largest loss per time period of interest. This is used in the insurance and in
many other fields. For example, it is used in the design of dams for flood control
where engineers are interested in quantification of the probability of the annual

P. Shevchenko, Modelling Operational Risk Using Bayesian Inference,
DOI 10.1007/978-3-642-15923-7_6, C© Springer-Verlag Berlin Heidelberg 2011

203



204 6 Modelling Large Losses

maximum water level. It is certainly important to operational risk too. However,
for capital calculations, the primary focus is to quantify the impact of all losses per
year. Modelling of all large losses exceeding a threshold is dealt by EVT–threshold
exceedances. The key result of EVT is that the largest losses or losses exceeding a
large threshold can be approximated by the limiting distribution – which is the same
regardless of the underlying process. This allows for rational extrapolation to losses
beyond those historically observed and estimation of their probability. However, as
with any extrapolation methods, EVT should be applied with caution.

Typically, to apply EVT (or other extrapolation method) for a dataset, we assume
that there is a single physical process responsible for the observed data and any
future losses exceeding the observed levels. This is often the case in physical sci-
ences (e.g. hydrology).

However, in assessing operational risk, some people may argue that extreme val-
ues are anomalous and are not strongly related to the rest of the data. In addition,
multiple processes might be responsible for extreme events within a risk cell and
these processes might be different from the processes generating less severe losses.
A good discussion on these issues can be found in Cope, Antonini, Mignola and
Ugoccioni [62] and Nešlehová, Embrechts and Chavez-Demoulin [174].

Another important issue is that the loss-generating processes in operational risk
change in time due to changes in regulations, bank size and policy, political envi-
ronment, etc. Often, the occurrence of a large operational risk loss event leads to
changes in the bank’s controls and policies designed to prevent the occurrence of
another similar event. One should either discard such data points from a fitting pro-
cedure or include them under ‘what if’ scenario. Finally, for some risks there might
be upper limits on the maximum possible loss (e.g. underwriting risks); extrapola-
tion beyond these limits does not make sense. All these issues should be addressed
in practice.

If we assume that a single mechanism is responsible for the losses in dataset and
extrapolation can be done, then EVT is a very powerful tool. A detailed presentation
of EVT can be found in Embrechts, Klüppelberg and Mikosch [83] or chapter 7
in McNeil, Frey and Embrechts [157]; also see Panjer ([179], chapter 7). In this
chapter, we summarise the main results relevant to operational risk. It is important
to note that EVT is asymptotic theory. Whether the conditions validating the use of
the asymptotic theory are satisfied is often a difficult question to answer. Also, the
convergence of some parametric models to the EVT regime is very slow. For exam-
ple, this is the case for the lognormal and g-and-h distributions studied in Mignola
and Ugoccioni [164] and Degen, Embrechts and Lambrigger [71] respectively. In
general, EVT should not preclude the use of other parametric distributions. Several
severity distributions popular in operational risk practice will be presented in this
chapter too.

6.2 EVT – Block Maxima

Consider a sequence of n independent random variables X1, . . . , Xn from a distri-
bution F(x) representing losses. Denote the maximum loss as
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Mn = max(X1, . . . , Xn).

Because each loss cannot exceed the maximum and due to independence between
the losses, the distribution of the maximum is

FMn (x) = Pr[Mn ≤ x] = Pr[X1 ≤ x, . . . , Xn ≤ x]

=
n∏

i=1

Pr[Xi ≤ x] = (F(x))n . (6.1)

Remark 6.1 If we were interested to find the distribution of the largest loss per year
(annual maximum) but the number of observation years is small, then one can study
the largest loss per month (monthly maximum). This will increase the number of
observations by a factor of 12. Suppose the distribution of the monthly maximum is
FM (x), and monthly maxima are independent and identically distributed. Then the
distribution of the annual maximum is (FM (x))12.

Given that F(x) < 1 or F(x) = 1, it is easy to see that if n → ∞, then
the distribution of maximum (6.1) converges to the degenerate distribution which
is either 0 or 1 (i.e. the density concentrates on a single point) which is not very
useful information. That is why the study of the largest losses in the limit n → ∞
requires appropriate normalisation. This is somewhat similar to the central limit
theory stating that appropriately normalised sum

S̃n = (Sn − an)/bn,

where Sn = X1 + · · · + Xn and X1, . . . , Xn are independent and identically dis-
tributed random variables with finite variance, converges to the standard normal
distribution as n → ∞. Here, the normalised constants are

an = nE[X1], bn = √
nVar[X1].

Similarly, the limiting result for the distribution of the normalised maximum
M̃n = (Mn − dn)/cn says that for some sequences of cn > 0 and dn ,

lim
n→∞ Pr[(Mn − dn)/cn ≤ x] = lim

n→∞(F(cn x + dn))
n = H(x). (6.2)

If H(x) is non-degenerate distribution, then F is said to be in the maximum domain
of attraction of H , which is denoted as F ∈ M D A(Hξ ). Then the well-known
Fisher-Trippet, Gnedenko Theorem essentially says that H(x) must be the gener-
alised extreme value (GEV) distribution Hξ ((x − μ)/σ), σ > 0, μ ∈ R with the
standard form

Hξ (x) =
{

exp
(−(1 + ξ x)−1/ξ

)
, ξ = 0,

exp(− exp(−x)), ξ = 0,
(6.3)



206 6 Modelling Large Losses

where 1 + ξ x > 0. The standard GEV will often be referred to as G EV (ξ). If
convergence takes place, then it is always possible to choose normalising sequences
cn and dn so that the limit will be in the standard form Hξ (x). The shape parameter ξ
determines a type of distribution: ξ > 0 – a Fréchet distribution; ξ = 0 – a Gumbel
distribution; and ξ < 0 – a Weibull distribution. The Weibull distribution (ξ < 0)
has bounded right tail (i.e. x ≤ −1/ξ ), while Gumbel and Fréchet have unbounded
right tail. Also, the decay of the Fréchet tail is much slower than the Gumbel tail.

Remark 6.2

� The GEV is continuous at ξ = 0 which is very convenient in statistical modelling
because the distribution type is not known a priori and has to be determined by
fitting.

� The standard EVT assumes independent and identically distributed data. The
maxima of strictly stationary time series (for many processes) has the same
limiting distribution, that is GEV; see McNeil, Frey and Embrechts ([157], sec-
tion 7.1.3).

� There are regularity conditions required from F(x), so that Hξ is a limiting
distribution of the maximum. In particular, the distribution F(x) should satisfy
some continuity conditions at the right endpoint; see chapter 3 in Embrechts,
Klüppelberg and Mikosch [83]. For the purpose of this book, we just say that
essentially all common continuous distributions in operational risk are in the
M D A(Hξ ). Also note that some discrete distributions do not satisfy the required
conditions so that a non-degenerate limit distribution for maxima does not exist.
This is the case, for example, for Poisson and negative binomial distributions.

Example 6.1 (Maximum of exponentially distributed losses) If X1, . . . Xn are inde-
pendent with an exponential distribution F(x) = 1−exp(−βx), β > 0, x ≥ 0, then
the distribution of their maximum is

FMn (x) = (1 − exp(−βx))n .

Rewriting this as

FMn (x) = (F(x))n =
(

1 − 1

n
exp

(
−β

(
x − β−1 ln n

)))n

,

it is easy to see that, by choosing cn = 1/β and dn = (ln n)/β, we get the following
limiting distribution of the normalised maximum M̃n = (Mn − dn)/cn :

FM̃n
(x) = (F(cn x + dn))

n =
(

1 − 1

n
exp(−x)

)n

→ exp(− exp(−x)), n → ∞, (6.4)

with the domain x ≥ −dn/cn = − ln n (i.e. the domain becomes (−∞,∞) as
n → ∞). It is easily recognised as GEV, Hξ=0(x).
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Example 6.2 (Maximum of Pareto distributed losses) For a two-parameter Pareto
distribution

F(x) = 1 −
(

1 + x

β

)−α
, α > 0, β > 0, x ≥ 0,

choosing

cn = β
n1/α

α
, dn = βn1/α − β

we get the limiting distribution for the normalised maximum

(F(cn x + dn))
n =

(
1 − 1

n

(
1 + x

α

)−α)n

→ exp

(
−
(

1 + x

α

)−α)
, n → ∞,

with the domain

x ≥ −dn/cn = α(n−1/α − 1) → 1 + x/α > 0 as n → ∞.

It is easily recognised as GEV, Hξ=1/α .

The limiting distribution of the maximum can be applied to any distribution F(x)
(satisfying some general conditions) and thus can be used as an approximation to
the true distribution of the maximum without a full knowledge of the underlying
F(x). The implication of this theory is that the true distribution of the maximum
can be approximated by three parameter GEV, Hξ,μ,σ (x) = Hξ ((x − μ)/σ):

Hξ,μ,β(x) =
{

exp
(− (1 + ξ(x − μ)/σ)−1/ξ ) , ξ = 0,

exp (− exp(−(x − μ)/σ) , ξ = 0.
(6.5)

The corresponding density function is

hξ,μ,σ (x) =
{

1
σ

exp
(
− (

1 + ξ
x−μ
σ

)−1/ξ
) (

1 + ξ
x−μ
σ

)−1−1/ξ
, ξ = 0;

1
σ

exp
(− exp(− x−μ

σ
)
)

exp
(− x−μ

σ

)
, ξ = 0.

(6.6)

Example 6.3 (Fitting GEV) Consider the weekly maximum losses due to transac-
tion errors M(1), . . . , M(m) over m weeks. To apply the above described EVT, the
losses should be independent and identically distributed, and the number of losses
for each week should be large and the same. The latter is not really valid for oper-
ational risk where frequency is random; see remark below and Sect. 6.5. Here, we
just assume that these conditions are satisfied, then M(i) are independent and their
common distribution is approximated by Hξ,μ,σ (x). The log-likelihood function
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ln �M(ξ, μ, σ ) = ln
m∏

i=1

hξ,μ,σ (M(i))

can be calculated explicitly as

ln �M(ξ = 0, μ, σ ) = − m ln σ −
(

1 + 1

ξ

) m∑

i=1

ln

(
1 + ξ

M(i)− μ

σ

)

−
m∑

i=1

(
1 + ξ

M(i)− μ

σ

)−1/ξ

, (6.7)

ln �M(ξ = 0, μ, σ ) = − m ln σ −
(

1 + 1

ξ

) m∑

i=1

exp

(
M(i)− μ

σ

)

−
m∑

i=1

M(i)− μ

σ
, (6.8)

where σ > 0 and 1 + ξ(M(i) − μ)/σ > 0 for all i . Subject to these constraints,
parameter estimates can be obtained using the maximum likelihood method by max-
imising the above log-likelihood or using MCMC. Also, note that the likelihood is
continuous at ξ = 0. The distribution of the annual maximum loss can be estimated
by

(
Hξ,μ,σ (x)

)K , where K is the number of weeks in a year.

Remark 6.3 The distribution of the maximum (6.1) assumes a deterministic (known)
number of events. Moreover, in this framework, fitting GEV using data on maxima
over many time periods (blocks), assumes that the number of events n is the same
for all blocks. However, in operational risk the number of events is unknown and
modelled as a random variable. This does not really affect the application of the
block-maxima EVT in practice (i.e. often it can still be done as in the above exam-
ple); see Sect. 6.5 for more details.

6.3 EVT – Threshold Exceedances

While it is important to understand and measure maximum possible loss over a
1-year time horizon, the primary focus in operational risk capital charge calculations
is quantification of overall impact of all losses. For this purpose, the method of
EVT threshold exceedances is very useful. Consider a random variable X , whose
distribution is F(x) = Pr[X ≤ x]. Given a threshold u, the exceedance of X over u
is distributed from

Fu(y) = Pr[X − u ≤ y|X > u] = F(y + u)− F(u)

1 − F(u)
. (6.9)
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As the threshold u increases, the limiting distribution of Fu(·) is given by the
Pickands-Balkema-de Haan theorem; see McNeil, Frey and Embrechts ([157], sec-
tion 7.2). The theorem essentially states that if and only if F(x) is the distribution for
which the distribution of the maximum (6.2) is G EV (ξ) given by (6.3), then, as u
increases, the excess distribution Fu(·) converges to a generalised Pareto distribution
(GPD), GPD(ξ, β):

Gξ,β(y) =
{

1 − (1 + ξ y/β)−1/ξ , ξ = 0,
1 − exp(−y/β), ξ = 0.

(6.10)

Here, the shape parameter ξ is the same as the shape parameter of GEV distribution
Hξ . More strictly, we can find a function β(u) such that

lim
u→a

sup
0≤y≤a−u

|Fu(y)− Gξ,β(u)(y)| = 0, (6.11)

where a ≤ ∞ is the right endpoint of F(x), ξ is the GPD shape parameter and
β > 0 is the GPD scale parameter. The domain of GPD is

y ∈
{

[0,∞) , if ξ ≥ 0,[
0,−β/ξ] , if ξ < 0.

(6.12)

The properties of GPD depend on the value of the shape parameter ξ :

� The case ξ = 0 corresponds to an exponential distribution with the right tail
unbounded.

� If ξ > 0, the GPD right tail is unbounded and the distribution is heavy-tailed,
so that some moments do not exist. In particular, if ξ ≥ 1/m then the m-th
and higher moments do not exist. For example, for ξ ≥ 1/2 the variance and
higher moments do not exist. The analysis of operational risk data in Moscadelli
[166] reported even the cases of ξ ≥ 1 for some business lines, that is, infinite
mean distributions; also see discussions in Nešlehová, Embrechts and Chavez-
Demoulin [174].

� ξ < 0 leads to a bounded right tail, that is, x ∈ [
0,−β/ξ]. It seems that this case

is not relevant to modelling operational risk as all reported results indicate a non-
negative shape parameter. One could think though of a risk control mechanism
restricting the losses by an upper level and then the case of ξ < 0 might be
relevant.

� The density of GPD is

h(x |ξ, β) =
{

1
β
(1 + ξ x/β)−

1
ξ
−1
, ξ = 0,

1
β

exp(−x/β), ξ = 0,
(6.13)

where, h(x = 0) = 1/β. Note some special cases of negative shape parameter:
if ξ = −1/2 then h(x) = 1

β
(1 − 1

2 x/β) is linear function; if ξ = −1 then
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Fig. 6.1 The density of GPD(ξ, β = 1) for several values of the shape parameter ξ

h(x) = 1/β is constant; if ξ < −1 then h(x) is infinity at the boundary of
the domain −β/ξ . The latter case is certainly not relevant to operational risk
in practice and can be excluded during fitting procedures. Figure 6.1 shows the
density of GPD for different values of the shape parameter ξ .

� The GPD has a special stability property with respect to excesses. Specifically,
if X ∼ Gξ,β(x), x > 0, then the distribution of the conditional excesses
X − L|X > L over the threshold L is also the GPD with the same shape param-
eter ξ and changed scale parameter from β to β + ξL:

Pr[X − L ≤ y|X > L] = Gξ,β+ξL(y), y > 0. (6.14)

The proof is simple and left to the reader as Problem 6.8. This stability property
implies that if ξ < 1, then the mean excess function is

e(L) = E[X − L|X > L] = β + ξL

1 − ξ
. (6.15)

That is, the mean excess function is linear in L . This is often used as a diagnostic
to check that the data follow the GPD model. In particular, it is used in a graphical
method (plotting the mean excess of the data versus the threshold) to choose a
threshold when the plot becomes approximately “linear”.

GPD maxima. It is easy to verify that the distribution of the normalised maximum
of the GPD(ξ, β) exceedances is G EV (ξ). In particular, calculate the distribution
of the maximum of GPD(ξ, β) independent and identically distributed exceedances
Y1, . . . ,Yn
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FMn (x) =
(

1 − (1 + ξ x/β)−1/ξ
)n
.

Rewrite this as

FMn (x) = (F(x))n =
(

1 − 1

n

(
1 + ξ

nξ β
(x − (nξ − 1)β/ξ)

)−1/ξ
)n

.

Then, it is easy to see that by choosing cn = βnξ and dn = (β/ξ)(nξ − 1), the
limiting distribution of the normalised maximum M̃n = (Mn − dn)/cn is

FM̃n
(x) =

(
1 − 1

n
(1 + ξ x)−1/ξ

)n

→ exp
(
− (1 + ξ x)−1/ξ

)
, n → ∞,

with the domain 1 + ξ x > 0, i.e. G EV (ξ). The case of ξ = 0 can be obtained by
simply taking a limit ξ → 0 in the above.

GPD likelihood function. In practice, the implication of the limiting result for the
distribution of threshold exceedances is that we can approximate Fu by GPD(ξ, β)
when u is large. Given independent and identically distributed exceedances Yi , i =
1, . . . , K , the log-likelihood function is

ln �Y(ξ, β) =
K∑

i=1

ln h(Yi |β, ξ)

= −K lnβ −
(

1 + 1

ξ

) K∑

i=1

ln

(
1 + ξ

Yi

β

)
(6.16)

which is continuous at ξ = 0, where

ln �Y(ξ = 0, β) = −K lnβ − 1

β

K∑

i=1

Yi . (6.17)

This can be maximised (subject to β > 0 and 1 + ξYi/β > 0 for all i) to get
maximum likelihood estimators for the parameters (see Sect. 6.4) or used in MCMC
procedure to obtain Bayesian inferences (see Sect. 6.6).

Modelling the whole severity distribution. Often we have to model the whole sever-
ity distribution, rather than the tail only. Assume that losses Xk , k = 1, 2, . . . , K are
independent and identically distributed. Then we can try to model the losses above a
selected threshold u using Gξ,β and the losses below using an empirical distribution.
That is,

F(x) ≈
{

Gξ,β(x − u)(1 − Fn(u))+ Fn(u), x ≥ u,
Fn(x), x < u.

(6.18)
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Here,

Fn(x) = 1

K

∑K

k=1
1{Xk≤x}

is an empirical distribution. This approach is a so-called ‘splicing’ method when the
density is modelled as

f (x) = w1 f1(x)+ w2 f2(x), w1 + w2 = 1, (6.19)

where f1(x) and f2(x) are proper density functions defined on x < u and x ≥ u
respectively. In (6.18), f1(x) is modelled by the empirical distribution but one may
choose a parametric distribution instead. Splicing can be viewed as a mixture of
distributions defined on non-overlapping regions, while a standard mixture distri-
bution is a combining of distributions defined on the same range. More than two
components can be considered in the mixtures but typically only two components
are used in the operational risk context. The choice of the threshold u is critical; for
details of the methods to choose a threshold the reader is referred to McNeil, Frey
and Embrechts [157].

Threshold exceedances. Finally, it is important to note that frequency of the
exceedances changes when the threshold changes. Consider n independent losses
X1, . . . , Xn with a common distribution F(x). If there is a threshold u, then the
probability of loss exceeding u is Pr[X > u] = 1 − F(u). If we define the indicator
random variables

I j =
{

1, if X j > u,
0, if X j ≤ u,

(6.20)

then Pr[I j = 1] = 1 − F(u) and the number of losses above u

Nu = I1 + · · · + In

is a random variable from a binomial distribution, Bin(n, 1 − F(u)). As the thresh-
old increases, the probability of exceedance becomes smaller and it is argued that
for a fixed time period, if n is large, then Nu follows a Poisson distribution with
mean n(1− F(u)). This follows from the well-known convergence of the Bin(n, p)
to Poisson(λ = np) when p → 0 for a fixed λ = np. However, in operational risk
the number of losses per time period, n, is not known and is modelled as a random
variable N . This case will be considered in Sect. 6.5.

6.4 A Note on GPD Maximum Likelihood Estimation

Given the likelihood, the estimation of the GPD can be done by the maximum like-
lihood or Bayesian MCMC methods. For the latter, the knowledge of MLEs is also
very useful. In particular, the MLEs are often used as starting point for the Markov



6.4 A Note on GPD Maximum Likelihood Estimation 213

chain. Moreover, the standard deviations of the MLEs are often used as the standard
deviations for the proposal Gaussian densities; see Example 6.4. Below, we consider
the maximum likelihood method.

Maximisation of the likelihood (6.16) with respect to ξ and β provides their
estimators ξ̂ and β̂. Formally, maximisation of the likelihood is subject to

{
β > 0,
1 + ξ ymax/β > 0,

(6.21)

where ymax = max(y1, . . . , yK ). It is important to note that if ξ < −1, then the
likelihood (6.16) is infinity when −β/ξ → ymax. This is because the GPD density is
infinity at the upper bound if ξ < −1. Thus, to get maximum likelihood estimates,
one has to maximise likelihood (6.16) subject to conditions (6.21) and ξ ≥ −1.
It is convenient to introduce a new variable τ = −ξ/β and then maximise the
log-likelihood function

ln �y(ξ, τ ) = −K ln(−ξ/τ)−
(

1 + 1

ξ

) K∑

i=1

ln(1 − τ × yi ) (6.22)

subject to τ < 1/ymax and ξ ≥ −1. Also, the extremum condition ∂ ln �(ξ, τ )/
∂ξ = 0, gives

ξ(τ ) = 1

K

K∑

i=1

ln(1 − τ × yi ). (6.23)

Then, the estimator τ̂ can be obtained by maximisation of ln �(ξ(τ ), τ ) with respect
to one parameter τ only, subject to τ < 1/ymax. Finally

ξ̂ = 1

K

K∑

i=1

ln(1 − τ̂ × yi ), β̂ = −ξ̂ /τ̂ .

Note that ln �(ξ(τ ), τ ) is continuous at τ = 0: if τ̂ = 0, then

ξ̂ = 0, β̂ =
K∑

i=1

yi/K .

To ensure that ξ ≥ −1, the condition τ < 1/ymax should be modified to τ ≤
(1 − ε)/ymax, where ε can be found from the condition ξ(τ ) ≥ −1.

Another approach to avoid explicit condition ξ ≥ −1 while avoiding the problem
with infinite likelihood is to discretise the GPD using a precision δ of the data;
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see section 13 in Schmock [210]. For example, if losses are measured in USD 1000,
then take δ = 1,000. Then the likelihood function

�y(ξ, β) =
K∏

i=1

(
Gξ,β (yi + δ)− Gξ,β (yi )

)
(6.24)

has no singularity if ξ < −1.
The covariances of the MLEs can be estimated using the inverse of the observed

information matrix (2.36). The latter can be estimated using second derivatives of
the log-likelihood at the maximum. In the case of likelihood (6.16) these are:

∂2

∂β2
ln �y(ξ, β) = − 1

β
(ξ + 1)

K∑

i=1

yi

(β + ξ yi )2
; (6.25)

∂2

∂ξ2
ln �y(ξ, β) = −2

ξ

K∑

i=1

yi

β + ξ yi
+
(

1 + 1

ξ

) K∑

i=1

y2
i

(β + ξ yi )2
; (6.26)

∂2

∂ξ∂β
ln �y(ξ, β) =

K∑

i=1

yi

(β + ξ yi )2
− 1

β

K∑

i=1

y2
i

(β + ξ yi )2
. (6.27)

In the case of ξ > −1/2, it was shown that the MLE vector (̂ξ , β̂) is asymptot-
ically consistent and distributed from the bivariate normal distribution; see Smith
[221] and sect. 6.5.1 in Embrechts, Klüppelberg and Mikosch [83]. The asymptotic
covariance matrix for (̂ξ , β̂), calculated using the inverse of the Fisher information
matrix (2.35), can be found in closed form

1

K

(
(1 + ξ)2 −(1 + ξ)β

−(1 + ξ)β 2(1 + ξ)β2

)
. (6.28)

This matrix (with ξ and β replaced by ξ̂ and β̂ respectively) is often used to estimate
the precision of the MLEs.

6.5 EVT – Random Number of Losses

As has been mentioned above, in operational risk, the number of losses per time
period is not fixed and is modelled as a random variable N with pn = Pr[N = n].
This has some implications for the use of the above described EVT.
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Distribution of maximum. If the frequency N is random then, instead of (6.1), the
distribution of a maximum MN is calculated as

FMN (x) =
∞∑

n=0

Pr[MN ≤ x |N = n] Pr[N = n]

=
∞∑

n=0

(F(x))n Pr[N = n] = ψN (F(x)), (6.29)

where

ψN (t) = E[t N ] =
∑

k

pktk

is the probability generating function of the frequency distribution; also see (3.6).
Note that there is a finite probability for zero maximum, that is, Pr[MN = 0] =
ψN (F(0)). Typically, severity distribution has F(0) = 0 and frequency distribution
has a finite probability at zero, Pr[MN = 0] = Pr[N = 0].

For example, if the annual number of losses N ∼ Poisson(λ) then ψ(t) =
exp(−λ(1 − t)) and thus the distribution of the maximum loss (per annum) is
FMN (x) = exp(−λ(1−F(x)). The distribution of the maximum loss over m years is
(FMN (x))

m = exp(−mλ(1− F(x)). If the severities are from GPD Gξ,β(x), x ≥ 0,
defined by (6.10), then in the case of ξ = 0:

FMN (x) = exp
(
−λ(1 + ξ x/β)−1/ξ

)

= exp
(
−(1 + ξ(x − μ)/σ)−1/ξ

)
, x ≥ 0, (6.30)

where σ = βλξ and μ = (βλξ − β)/ξ . In the case of ξ = 0,

FMN (x) = exp (−λ exp(−x/β))

= exp (− exp(−(x − μ)/σ)) , x ≥ 0, (6.31)

where μ = β ln λ and σ = β. Thus the distribution of MN is a three parameter
GEV Hξ,μ,σ (x) for x ≥ 0 and zero for x < 0. Note that FMN (x) is continuous at
ξ = 0. It is important to note that FMN (x) is not GEV for all x but for x ≥ 0 and
there is a finite probability at zero Pr[MN = 0] = exp(−λ). If λ increases, then
Pr[MN = 0] → 0 and FMN (x) will converge to GEV on the whole domain. In the
case of other severity distributions, one can consider the limit of large λ when the
distribution of FMN (x) converges to a continuous distribution function, then it can
be argued that the limiting distribution of maxima over many time periods is GEV.

Frequency of exceedances. Consider N independent losses X1, . . . , X N with a
common distribution F(x), where N is a discrete random variable with pn =
Pr[N = n]. Then the number of losses above a threshold u is
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Nu = I1 + · · · + IN ,

where I j are independent indicator random variables. Then, the probability gener-
ating function of Nu can be calculated using probability generating function of N ,
ψN (t), and probability generating function of I j , ψI (t), as

ψNu = ψN (ψ(I ));

see (5.25). Moreover, in the case when N is from Poisson, binomial or negative
binomial, the distribution of Nu is the same as distribution of N with only one
parameter changed; see Sect. 5.3. As a reminder:

� Poisson. If the frequency of losses is from Poisson(λ) then the frequency of
losses above u is Poisson(̃λ) with λ̃ = λ(1 − F(u)).

� Negative Binomial. If the frequency of losses is from NegBin(r, p), where the
parameter p = 1/(1 + q), then the frequency of losses above u is NegBin(r, p̃)
with p̃ = 1/(1 + q̃), where q̃ = q(1 − F(u)).

� Binomial. If the frequency of losses is from Bin(n, p), then the frequency of
losses above L is Bin(n, p̃), where p̃ = p(1 − F(u)).

It can be argued that binomial and negative binomial distributions will converge
to Poisson when u increases, that is, when 1−F(u) → 0. This is intuitively expected
because in this limit, the variance and mean of these distributions converge to the
mean of Poisson. There is an extensive literature on point processes of extremes;
see Sect. 7.4 in McNeil, Frey and Embrechts [157] or chapter 5 in Embrechts,
Klüppelberg and Mikosch [83]. For the purposes of this book, we just say that in
general it is argued that the distribution of the exceedances over a high threshold is
well approximated by Poisson distribution. Moreover, the theory suggests to model
the high threshold exceedances by the Poisson process.

Remark 6.4 The EVT threshold exceedances says that for a large threshold, the
distribution of loss exceedances F(x) can be approximated by GPD. Thus one can
always argue that the distribution of the maximum of independent and identically
distributed excesses over a high threshold can be approximated by GEV in the case
of Poisson frequency; see (6.30). The assumption of Poisson distribution for the
frequency of exceedances is also typical for high threshold exceedances.

6.6 EVT – Bayesian Approach

The above described EVT provides theoretical results for limiting distributions
assuming that the model parameters are known. Of course in real life the parameters
should be estimated using data. The uncertainty in parameter estimates will have
implications for our inferences about maximum possible losses or loss sizes over
the time period of prediction. Here we take Bayesian approach, which is a conve-
nient way to quantify the uncertainty; see Sect. 2.9. Under this approach unknown
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parameters are modelled as random variables. Denote the vector of all model param-
eters by γ , then the Bayesian approach for EVT proceeds as follows:

Model Assumptions 6.1
� Suppose that, given γ , we consider independent and identically distributed loss

exceedances

Y1(1), . . . ,YN1(1), . . . ,Y1(m + 1), . . . , YNm+1(m + 1)

above a high threshold over m +1 time periods with the independent frequencies

N1, . . . , Nm+1

which are independent of the exceedances, i.e. Ni is the number of events in the
i-th period.

� Assume that the threshold is high enough, so that EVT is applicable. That is the
distribution of the exceedances and frequencies can be modelled by GPD(ξ, β)
and Poisson(λ) respectively, i.e. the vector of all model parameters is γ =
(λ, ξ, β).

� Denote the data vector by X = (Y,N), where:

Y = (Y1(1), . . . ,YN1(1), . . . ,Y1(m), . . . ,YNm (m));
N = (N1, . . . , Nm).

In the context of operational risk, the objective is to predict loss events over the
next time period given available data. Under the above assumptions, we consider
the data X over m time periods and we try to make predictions for period m + 1.
The Bayesian approach models unknown parameters γ as random variables with a
conditional, given data, density (posterior):

π(γ |x) ∝ �x(γ )π(γ ),

where �x(γ ) is the likelihood of the data and π(γ ) is the prior density (specified
before the data are available). The frequencies and severities are assumed indepen-
dent. Thus

�x(γ ) = �n(λ)�y(ξ, β),

where

�n(λ) =
m∏

i=1

exp(−λ)λni /ni !

is the likelihood of counts and �y(ξ, β) is the likelihood of GPD severities. The
latter is given by (6.16). We can also write the posterior for frequency and severity
parameters
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π(λ|n) ∝ �n(λ)π(λ),

π(ξ, β|y) ∝ �y(ξ, β)π(ξ, β),

where π(λ) and π(ξ, β) are the prior densities. If λ and (ξ, β) are independent in
prior, then π(γ ) = π(λ)π(ξ, β) and thus π(γ |x) = π(λ|n)π(ξ, β|y).
Frequency prediction. Given data, N = n, the density of number of events over next
period Nm+1 is

p(n|n) =
∫

p(n|λ)π(λ|n)dλ,

where p(n|λ) is Poisson(λ). This is a full predictive distribution for the frequency.
Note that the model assumptions imply that the number of events over next time
period Nm+1 is independent of N. As it is shown in Sect. 4.3.3, if there is no prior
information then the prior can be assumed to be a noninformative improper constant
and the posterior π(λ|n) is the density of Gamma(αm, βm), with

αm = 1 +
m∑

j=1

n j , βm = 1/m.

Also, if the prior π(γ ) is the density of Gamma(α, β) then the posterior is
Gamma(αm, βm) with

αm = α +
m∑

j=1

n j , βm = β/(1 + βm).

It is easy to show that if the posterior π(λ|n) is Gamma(αm, βm), then the pre-
dictive density p(n|n) of Nm+1 corresponds to a negative binomial distribution,
NegBin(αm, 1/(1 + βm)); see (4.19).

Severity prediction. Given data for severities, Y = y, the predictive density of pos-
sible losses for the next and subsequent periods is

f (y|y) =
∫

f (y|θ)π(θ |y)dθ .

Here we assumed that, for a given θ = (ξ, β), all subsequent losses are independent
of the data Y. There is no closed form for the posterior in this case, but it can
easily be estimated numerically using MCMC. In the following example we will
use RW-MH within Gibbs described in Sect. 2.11.3. The complication here is that
ξ > −β/Ymax and thus the domain for ξ parameter is formally dependent on the
data. Using this domain for the prior π(ξ) contradicts to the concept that the prior
is specified before the data. The way to overcome this problem is not to impose any
specific restriction on the prior but to modify the acceptance probability of MCMC
so that parameter samples outside the domain are rejected.
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Remark 6.5 It is important to note that if the prior π(ξ) has finite probability for
ξ ≥ 1, that is, Pr[ξ ≥ 1] > 0, then the prediction distributions of loss has infinite
mean and higher moments, that is, E[Yi (m + 1)|Y] = ∞. If we do not want to
allow for infinite mean behaviour, then the prior for ξ should be restricted to the
domain ξ < 1.

Aggregate loss prediction. Overall, we are interested in the aggregated possible loss
over m + 1,

Zm+1 =
Nm+1∑

i=1

(L + Yi (m + 1)).

Its predictive density is simply

h(z|x) =
∫

h(z|γ )π(γ |x)dγ .

Here, h(z|γ ) is the density of aggregate loss Z = ∑N
i=1(L + Yi ), where N is from

Poisson(λ) and Yi are independent GPD(ξ, β) exceedances above threshold L .

Remark 6.6 If the prior π(ξ) has finite probability for ξ ≥ 1, that is, Pr[ξ ≥ 1] > 0,
then not only predicted severity (see Remark 6.5) but also predicted aggregate loss
has infinite mean, i.e. E[Zm+1|X] = ∞. So, if we would like to avoid infinite mean
distribution for predicted aggregate loss over next time period, then the prior should
be defined on ξ < 1.

Maximum exceedance prediction. The predictive density of maximum exceedance
over m + 1 is

fMN (w|x) =
∫

fMN (w|γ )π(γ |x)dγ ,

where fMN (w|γ ) is given by (6.30) which is essentially GEV apart of finite prob-
ability at zero. Again, the closed-form solution is not available for the cases of
practical interest but it is trivial to calculate using MCMC.

Example 6.4 As an illustrative example of Bayesian inference calculations, we
simulate the loss exceedances Yj above USD 1 million and event times Tj from
Poisson(10)-GPD(ξ0, 6) over 4 years in the case of ξ0 = −0.1 (i.e. right tail is
bounded) and ξ0 = 0.25 (i.e. right tail is unbounded). The simulated loss amounts
and times are given in Table 6.1.

For comparison purposes with maximum likelihood method, assume constant
independent priors bounded as follows: λ ∈ [5, 20], ξ ∈ [−1, 1], β ∈ [1, 13]. That
is, all parameters are independent under the prior distribution π(γ ) and distributed
uniformly with γi ∼ U (ai , bi ) on a wide ranges, so that the inference is mainly
implied by the data only. The full posterior π(γ |x) is not available in closed form
and to simulate from the posterior we adopt RW-MH within Gibbs Algorithm 2.4.

Denote by γ (k) the state of the chain at iteration k with the initial state γ (k=0)

taken as MLEs. The algorithm proceeds by proposing a new state γ ∗
i sampled from
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Table 6.1 Event times ti and loss exceedances xi (in USD 1 million, over the threshold USD 1
million simulated from Poisson(10)-GPD(ξ0, 6) over 4 years in the case of ξ0 = −0.1 (i.e. right
tail is bounded) and ξ0 = 0.25 (i.e. right tail is unbounded)

Index, i ti
ξ0 = −0.1

xi

ξ0 = 0.25
xi Index, i ti

ξ0 = −0.1
xi

ξ0 = 0.25
xi

1 0.0257 6.063 7.323 20 1.9538 7.297 9.190
2 0.2540 2.881 3.141 21 1.9897 3.912 4.407
3 0.4662 2.019 2.145 22 2.1843 14.851 24.861
4 0.5784 1.936 2.051 23 2.2377 17.847 34.011
5 0.7248 5.719 6.830 24 2.3737 13.915 22.419
6 0.7399 10.266 14.366 25 2.5410 0.474 0.480
7 0.7803 0.472 0.478 26 2.6488 3.940 4.442
8 0.8533 1.789 1.887 27 2.7531 14.790 24.698
9 0.9065 7.385 9.328 28 2.9669 5.421 6.410

10 1.2136 5.426 6.418 29 3.1671 1.018 1.049
11 1.2265 2.704 2.933 30 3.2638 8.471 11.112
12 1.3274 0.219 0.221 31 3.2988 1.306 1.357
13 1.5192 9.696 13.289 32 3.3984 11.309 16.454
14 1.5728 6.570 8.072 33 3.6000 5.147 6.032
15 1.8030 22.662 54.563 34 3.7285 1.990 2.112
16 1.8641 3.554 3.958 35 3.7799 6.264 7.617
17 1.8648 3.999 4.517 36 3.9074 9.693 13.284
18 1.8755 3.256 3.592 37 3.9117 3.634 4.058
19 1.9202 0.630 0.642

the MCMC proposal transition kernel, chosen to be the Gaussian distribution trun-
cated below ai and above bi , with the density

f (T )N

(
γ ∗

i ; γ (k)i , σi

)
=

fN

(
γ ∗

i ; γ (k)i , σi

)

FN

(
bi ; γ (k)i , σi

)
− FN

(
ai ; γ (k)i , σi

) (6.32)

where fN (x;μ, σ) and FN (x;μ, σ) are the normal density and its distribution
respectively with the mean μ and standard deviation σ . For the proposal standard
deviations σi we take the MLE standard deviation of corresponding parameters.
Then the proposed move is accepted with the probability

p
(
γ (k), γ ∗) = min

⎧
⎨

⎩1,
π(γ ∗|y) f (T )N

(
γ ∗

i ; γ (k)i , σi

)

π
(
γ (k)|y) f (T )N

(
γ
(k)
i ; γ ∗

i , σi

)1{ξ∗>−β∗/ymax}

⎫
⎬

⎭ , (6.33)

where y is the vector of observations and π(γ ∗|y) is the posterior density. Also, here
γ ∗ = (γ

(k)
1 , . . . , γ

(k)
i−1, γ

∗
i , γ

(k−1)
i+1 , . . .); that is, γ ∗ is a new state, where parameters

1, 2, . . . , i −1 are already updated while i +1, i +2, . . . are not updated yet; finally,
ξ∗ and β∗ are components of γ ∗ corresponding to parameters ξ and β respectively.

The procedure is the same as in Example 5.2, except an indicator function

1{ξ∗>−β∗/ymax}
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Table 6.2 MLE and MCMC estimates of the Poisson(λ)-GPD(ξ, β)model. The data for datasets
1 and 2 were simulated from Poisson(10)-GPD(−0.1, 6) and Poisson(10)-GPD(0.25, 6) respec-
tively; see Table 6.1

Maximum likelihood estimates, dataset 1

ξ̂ = −0.210 ̂stdev[̂ξ ] = 0.156 β̂ = 7.485 ̂stdev[β̂] = 1.675
λ̂ = 9.250 ̂stdev[̂λ] = 1.521 ρ̂β̂,̂ξ = −0.824 ρ̂̂λ,̂ξ = 0.0 ρ̂̂λ,β̂ = 0.0

Q̂0.999 = 168.715 ̂stdev[Q̂0.999] = 28.369

Bayesian MCMC estimates, dataset 1

E[ξ ] = −0.12 stdev[ξ ] = 0.19 E[β] = 7.57 stdev[β] = 1.70
E[λ] = 9.51 stdev[λ] = 1.55 ρβ,ξ = −0.73 ρλ,ξ = 0.0 ρλ,β = 0.0
VaR0.25[Q0.999(γ )] = 165.9 VaR0.75[Q0.999(γ )] = 213.1
VaR0.5[Q0.999(γ )] = 186.8 E[Q0.999(γ )] = 228 Q P

0.999 = 292

Maximum likelihood estimates, dataset 2

ξ̂ = 0.177 ̂stdev[̂ξ ] = 0.197 β̂ = 7.578 ̂stdev[β̂] = 1.934
λ̂ = 9.250 ̂stdev[̂λ] = 1.521 ρ̂β̂,̂ξ = −0.662 ρ̂̂λ,̂ξ = 0.0 ρ̂̂λ,β̂ = 0.0

Q̂0.999 = 314.419 ̂stdev[Q̂0.999] = 145.757

Bayesian MCMC estimates, dataset 2

E[ξ ] = 0.26 stdev[ξ ] = 0.21 E[β] = 7.86 stdev[β] = 1.87
E[λ] = 9.50 stdev[λ] = 1.54 ρβ,ξ = −0.56 ρλ,ξ = 0.0 ρλ,β = 0.0
VaR0.25[Q0.999(γ )] = 297 VaR0.75[Q0.999(γ )] = 766
VaR0.5[Q0.999(γ )] = 399 E[Q0.999(γ )] = 1, 293(24) Q P

0.999 = 1, 614(21)

in acceptance probability (6.33). This indicator is to ensure that the proposed move
is rejected if γ ∗ is outside of the parameter domain 1 + ξ∗ymax/β

∗ > 0.
Note that the normalisation constant for posterior distribution is not needed here.

If under the rejection rule one accepts the move then the new state of the i-th
parameter at iteration k is given by γ (k)i = γ ∗

i , otherwise the parameter remains

in the current state γ (k)i = γ
(k−1)
i and an attempt to move that parameter is repeated

at the next iteration.
Using the chain samples γ (k), k = 1, 2, . . . from the posterior π(γ |x), we esti-

mate the characteristics of the posterior distributions. The results are presented in
Table 6.2 and Fig. 6.2.

6.7 Subexponential Severity

Operational risk losses are typically modelled by heavy-tailed or the so-called
subexponential distributions, for example lognormal, Weibull, Pareto. These are
formally defined as follows.

Definition 6.1 (Subexponential distribution) A distribution F(x), x ∈ (0,∞), is
subexponential if

lim
x→∞

F (n)∗(x)
F(x)

= n for all n ≥ 2. (6.34)
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Fig. 6.2 MCMC posterior distributions of the Poisson(λ)-GPD(ξ, β) model parameters:
ξ (shape); β (scale); λ (intensity); full predictive annual loss distribution and the distribution of
the 0.999 annual loss quantile. The data for datasets 1 and 2 were simulated from Poisson(10)-
GPD(−0.1, 6) and Poisson(10)-GPD(0.25, 6) respectively; see Table 6.1

Here, F(x) = 1 − F(x) and F (n)∗ = 1 − F (n)∗(x), where F (n)∗(x) is the n-fold
convolution of F(x), i.e. F (n)∗(x) = Pr[X1 + · · · + Xn ≤ x] with X1, . . . , Xn

independent with a common distribution F(x); also see Sect. 3.1.1 for definition of
a convolution.

The following results for subexponential distributions are of central importance
for operational risk.

� If F(x) is a subexponential distribution, then it can be shown that for all ε > 0,

exp(εx)F(x) → ∞, x → ∞. (6.35)

This property justifies the name subexponential because the severity distribution
tail decays to 0 slower than any exponential exp(−εx), ε > 0. For a proof, see
Lemma 1.3.5 in Embrechts, Klüppelberg and Mikosch [83].

� If X1, . . . , Xn are independent subexponential random variables with a common
distribution F(x), then
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lim
x→∞

Pr[X1 + · · · + Xn > x]
Pr[max(X1, . . . , Xn) > x] = 1, n ≥ 1. (6.36)

That is, the tail of the sum of subexponentially distributed random variables has
the same order of magnitude as the tail of the maximum of these random vari-
ables. This means that the tail (high quantiles) of the aggregated loss is mainly
determined by the tail (high quantiles) of the maximum loss. A popular interpre-
tation of this property is to say that the severe overall loss is due to a single large
loss rather than due to accumulated small losses. Another useful result closely
related to (6.36) is

Pr[max(X1, . . . , Xn) > x] → nF(x), x → ∞. (6.37)

� If X1, . . . , X N are independent subexponential random variables with a common
distribution F(x), where N is random with a probability mass function pn =
Pr[N = n] satisfying

∞∑

n=0

(1 + ε)n pn < ∞ (6.38)

for some ε > 0, then

Pr[X1 + · · · + X N > x] → E[N ](1 − F(x)), x → ∞; (6.39)

see Theorem 1.3.9 in Embrechts, Klüppelberg and Mikosch [83]. Examples
1.3.10 and 1.3.11 in Embrechts, Klüppelberg and Mikosch [83] demonstrate that
the conditions are satisfied when N is distributed from Poisson and negative
binomial respectively. As is shown in Böcker and Klüppelberg [29], approxima-
tion (6.39) can be used to get a closed-form approximation for the high quantiles
of the aggregate loss distribution FZ (x) = Pr[X1 + · · · + X N ≤ x], also see
(3.72):

F−1
Z (q) → F−1

(
1 − 1 − q

E[N ]
)
, q → 1. (6.40)

It is often referred to as the single-loss approximation because compound distri-
bution is expressed in terms of the single loss distribution (severity distribution).

� The tail of the sum of subexponential random variables with different tails
will typically follow the heaviest tail. This will be discussed more in Chap. 7.
That is, the risk measure over many risk cells will be mainly determined by
the risk cell with the heaviest tail.

� As shown in Embrechts, Goldie and Veraverbeke [82], the subexponential
class includes lognormal distribution LN (μ, σ ) whose tail satisfies
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1 − F(x) → σ√
2π(ln x − μ)

exp

(
− (ln x − μ)2

2σ 2

)
, x → ∞. (6.41)

� Subexponential class includes the distributions with regularly varying tail,
also referred to as Pareto type distributions

F(x) = x−αC(x), x → ∞, α ≥ 0, (6.42)

where α is the so-called power tail index and C(x) is slowly varying function.
The latter is defined as the function that satisfies

lim
x→∞

C(t x)

C(x)
= 1 for all t > 0. (6.43)

Examples of slowly varying functions include positive functions converging
to the constant and logarithm function ln(x). A mathematical theory of heavy-
tailed functions is Karamata’s theory of regular variation; for an excellent
summary, see Embrechts, Klüppelberg and Mikosch [83].

� It is convenient to characterise distributions by their tail behaviour. Two dis-
tributions F1(x) and F2(x) are said to be tail equivalent if

lim
x→∞

F1(x)

F2(x)
= C(x), (6.44)

where C(x) is slowly varying function. If the right hand endpoint of the dis-
tributions is finite then x → ∞ means x increasing to the right endpoint.

Of course the above definition and results for the subexponential distributions
are asymptotic properties that can be difficult to prove with limited data and thus
should be used with caution. In practice, heavy-tailed distribution for losses means
that the observed losses are ranging over several orders of magnitude. For example,
the largest losses are greater than the median by several orders of the magnitude;
see Table 6.1 for the case ξ0 = 0.25. This is typically observed in practice for
many operational risks. Usually, subexponential distributions provide a good in-
sample fit to the real datasets. Estimation of these distributions using limited data is
a difficult task because individual large losses can dominate over the impact of other
losses. As a result, the uncertainty of the estimates is very large. Results in Table 5.4
show that the uncertainty in the estimate of the 0.999 quantile is even comparable
with the actual estimate. Often, the estimates based on the observed losses are not
stable. The internal datasets for inference on the 0.999 quantile are nearly always
limited because we attempt to quantify a 1 in 1000 year event. The following simple
example demonstrates the instability of the sample averages for the heavy-tailed
distribution.

Example 6.5 Consider the losses simulated from Poisson(10)-GPD(0.25, 6) over
4 years and presented in Table 6.1. The mean of the losses is approximately USD 9.2
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million. Assume that the next loss observed is the 0.9999 quantile of GPD(0.25, 6)
which is approximately USD 216 million. Note that the 0.9999 quantile of the
severity in the case of Poisson(10) corresponds to the 0.999 quantile of the annual
loss approximately as implied by asymptotic formula (6.40). The new mean of the
observed losses is ≈ USD 14.6 million which is a 60% increase in the mean as a
result of a single loss.

6.8 Flexible Severity Distributions

It is important to remember that EVT is an asymptotic theory. Whether the con-
ditions validating the use of the asymptotic theory are satisfied is often a difficult
question to answer in operational risk practice. The convergence of some parametric
models to the EVT regime is very slow; see the lognormal and g-and-h distributions
studied in Mignola and Ugoccioni [164] and Degen, Embrechts and Lambrigger
[71] respectively. In general, EVT should not preclude the use of other parametric
distributions. Often other severity distributions are fitted to the datasets and com-
pared to the EVT. For example, g-and-h and GB2 four-parameter distributions were
used in Dutta and Perry [77] as a benchmark model alternative to EVT. Many para-
metric distributions are standard and can be found in textbooks; for example, see
Panjer [181]. Below, we present several less known severity distributions suggested
for use in operational risk.

6.8.1 g-and-h Distribution

A random variable X is said to have g-and-h distribution if

X = a + b
exp(gZ)− 1

g
exp(h Z2/2), (6.45)

where Z is a random variable from the standard normal distribution, N (0, 1), and
(a, b, g, h) ∈ R are the parameters. In the case of g = 0, it is interpreted as X =
a + bZ exp(h Z2/2), i.e. the limit of (6.45) as g → 0.

The g-and-h random variable is a strictly increasing transformation of the stan-
dard normal random variable, introduced by Tukey [235]. Thus it is trivial to sim-
ulate from the g-and-h distribution. The parameters a and b are the location and
scale parameters respectively. The g and h parameters are responsible for skewness
and kurtosis of the distribution. The advantage of this distribution is its ability to
approximate a variety of data and distributions as shown in Martinez and Iglewicz
[155]. Often g and h are constant but in general, if data do not fit well, one can
generalise g and h parameters to be polynomials of Z2. For example:

g = γ0 + γ1 Z2 + γ2 Z4 + · · · and h = η0 + η1 Z2 + η2 Z4 + · · · .
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In particular, Dutta and Perry [77] had to use h = η0 + η1 Z2 + η2 Z4 + η3 Z4 and
constant g to fit operational risk losses for some banks/business lines. One of the
main empirical findings in Dutta and Perry [77], analysing operational risk data of
the 2004 LDCE, is that g-and-h distribution is a good choice to model operational
risk losses. Typical estimates for g and h parameters obtained in Dutta and Perry
[77] are in the ranges g ∈ [1.79, 2.3] and h ∈ [0.1, 0.35]. It seems that only the case
g > 0 and h > 0 is relevant for operational risk.

If h > 0, the transformation (6.45) is strictly increasing. Thus the quantiles of
g-and-h distribution can easily be calculated as

F−1
X (α) = y

(
F−1

N (α)
)
, (6.46)

where

y(z) = a + b
exp(gz)− 1

g
exp(hz2/2)

is just a transformation (6.45), and F−1
N (α) is the inverse of the standard normal

distribution at the quantile level α. Also, the distribution of X can be found as

FX (x) = FN

(
y−1(x)

)
, (6.47)

where y−1(·) is the inverse of the function y(·).
Because calculation of the quantile is simple, typically a quantile-based method,

such as that presented in Hoaglin ([123], [124]), is used to fit g-and-h distribution.
This is the approach used in Dutta and Perry [77] too.

Differentiating (6.47) with respect to x , the density of the g-and-h distribution
can be calculated analytically as

fX (x) =
fN

(
y−1(x)

)

y′
(

y−1(x)
) , (6.48)

where fN (·) is the density of the standard normal distribution and y′(u) =
dy(u)/du. However, the inverse y−1(·) cannot be found in closed form and thus
numerical search procedure is required to calculate the density. If the density is cal-
culated numerically, then one can use maximum likelihood method to estimate the
g-and-h parameters. However, there are some shortcomings in this case, as discussed
in Rayner and MacGillivray [198], and quantile-based method is usually preferred.
Moments and other standard characteristics of the g-and-h distribution can be found
in the above referenced literature. For the case of h > 0, the g-and-h distribution is
heavy-tailed. It was shown in Degen, Embrechts and Lambrigger [71] that

1 − FX (x) = x−1/hC(x), (6.49)
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where C(x) is slowly varying function (6.43). For h = 0 and g > 0, the g-and-h
distribution is simply a scaled lognormal which is subexponential (6.35) but not
regularly varying. Degen, Embrechts and Lambrigger [71] demonstrated that for the
g-and-h distribution, convergence of the excess distribution to the GPD is extremely
slow. Therefore, if the data are well modelled by the g-and-h distribution, the quan-
tile estimation using EVT may lead to inaccurate results. This is consistent with
empirical findings in Dutta and Perry [77].

Conceptually, there is no problem with estimating the g-and-h distribution using
Bayesian inference. This can be done in the same way as for GPD in Sect. 6.6.
The posterior is not available in closed form and thus MCMC should be used to
get samples from the posterior distribution of the parameters. One can use RW-MH
algorithm as in Example 6.4; also see Sect. 2.11.3. However, the density of g-and-h
distribution (6.48) should be calculated numerically. This can make MCMC very
slow. Another approach is to use the MCMC-ABC method described in Sect. 2.11.4;
see Peters and Sisson [188]. This is because it is easy to simulate from the g-and-h
distribution by simple transformation of the standard normal random variable.

6.8.2 GB2 Distribution

The GB2 (the generalised beta distribution of the second kind) is another four-
parameter distribution that nests many important one- and two-parameter distribu-
tions. Its density is defined as

h(x) = |a|xap−1

bap B(p, q)(1 + (x/b)a)p+q
, x > 0, (6.50)

where B(p, q) =  (p) (q)/ (p + q) is the beta function,  (·) is the gamma
function and (a, b, p, q) are parameters. It is shown in Bookstabber and McDonald
[34] that GB2 nests many standard distributions for certain limits of parameters,
examples being the lognormal (a → 0, q → ∞) and Weibull/Gamma (q → ∞).
GB2 can accommodate a variety of values for skewness and kurtosis. The properties
and applications of GB2 can be found in McDonald and Xu [156]. In short: b is a
scale parameter; a is a location parameter that also determines the tail decay; a × q
drives the kurtosis; moments greater than a × q do not exist; p and q affect the
skewness.

The GB2 distribution has been used in Dutta and Perry [77] to analyse opera-
tional risk data. They found a good fit in many cases but also noted that all GB2
distributions that fitted the data well could be approximated to a very high degree
by the g-and-h distribution. Since the density is available in closed form (while the
quantile calculation requires numerical procedure), typically the maximum likeli-
hood method is used to fit GB2.

Note that simulation from GB2 can be achieved through the following represen-
tation of the GB2 random variable
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X = b

(
Y1

Y2

)1/a

, (6.51)

where Y1 ∼ Gamma(p, 1) and Y2 ∼ Gamma(q, 1) are independent; see Devroye
[76].

Estimation of the parameters using Bayesian inference requires calculation of the
posterior distribution that cannot be found in closed form in the case of GB2 distri-
bution. Thus MCMC should be utilised to estimate the posterior. Given that the GB2
density has closed form, the RW-MH or Metropolis-Hastings algorithms described
in Sect. 2.11.1 can successfully be used; for example, see Peters and Sisson
[188]. Given a simple simulation from GB2, MCMC ABC algorithms (see Sect.
2.11.4) can also be used but these might not be as efficient as Metropolis-Hastings
algorithms.

6.8.3 Lognormal-Gamma Distribution

A random variable X is said to have the lognormal-gamma distribution if

Y ≡ ln X = μ+ σ
√

W Z , (6.52)

where μ ∈ R, σ > 0, Z is a random variable from the standard normal distribution,
W is a random variable from the gamma distribution Gamma(1/α, α), and Z and
W are independent. It is another well-known heavy-tailed distribution. It is used
for modelling insurance losses and pricing of catastrophe bonds where heavy-tailed
distributions are used for modelling large losses; see, for example, Ibragimov and
Walden [125], and Burnecki, Kukla and Taylor [47]. Recently, Ergashev [90] sug-
gested using this distribution for operational risk. Fitting this distribution using MLE
or quantile methods is difficult because the density (and quantile) does not have
closed form. In particular, the density of random variable Y in (6.52) is the integral

f (y|θ) = α−1/α

 (1/α)
√

2πσ

∫ ∞

0

1√
w

exp

(
− (y − μ)2

2σ 2w

)
w−1+1/α exp(−w/α)dw

that should be evaluated numerically. Here, θ = (μ, σ, α) are model parame-
ters. This difficulty can be avoided by using MCMC under the Bayesian infer-
ence approach. Consider the independent and identically distributed log-losses
Y = (Y1, . . . ,Yn)

′ from the model (6.52). Denote the corresponding independent
gamma shocks as W = (W1, . . . ,Wn)

′. The gamma shocks are latent (not observ-
able) variables. The posterior density of the parameters is

π(θ |y) ∝ π(y|θ)π(θ) = π(θ)

n∏

i=1

f (yi |θ),
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where evaluation of the density π(y|θ) requires numerical integration. However, this
integration can be avoided by sampling (�,W) from the joint density

π(θ ,w|y) ∝ π(y|w, θ)π(w|θ)π(θ),

where π(y|w, θ) and π(w|θ) are in closed form. This is because f (y|w, θ) is just the
density of N (μ, σ

√
w). Then, marginally taken samples of� are the samples from

π(θ |y). Of course, as usual, specification of the prior π(θ) is required. Sampling
from π(θ ,w|y) can be accomplished using different MCMC procedures. For exam-
ple, Ergashev [90] derives the conditional densities for all parameters and gamma
shocks:

π(wi |y, μ, σ, α) ∝ π(yi |wi , μ, σ, α)π(wi |α),
π(μ|y,w, σ, α) ∝ π(y|w, μ, σ )π(μ),
π(σ 2|y,w, μ, α) ∝ π(y|w, μ, σ 2),

π(α|y,w, μ, σ ) ∝ π(w|α)π(α).

Then, the Gibbs sampler algorithm is used (simulating from the above conditional
distributions iteratively) to get the samples of (�,W), where the samples from
π(wi |y, μ, σ, α) and π(α|y,w, μ, σ ) are obtained using the Metropolis-Hastings
algorithm; see also Sect. 2.11.

6.8.4 Generalised Champernowne Distribution

The density function of the generalised Champernowne distribution (GCD) is

f (x |α, M, c) = α(x + c)α−1((M + c)α − cα)

((x + c)α + (M + c)α − 2cα)2
, x ≥ 0, (6.53)

with three parameters α > 0, M > 0, c ≥ 0. This distribution was suggested
in Buch-Larsen, Nielsen, Guillen and Bolance [41] for semi-parametric fitting of
heavy-tailed distributions. In the case of c = 0, it is a distribution introduced by
Champernowne [51] and used in Clements, Hurn and Lindsay [57]. For recent
use of GCD in operational risk, see Gustafsson and Thuring [115] and Buch-
Kromann [40].

The GCD behaves as lognormal in the middle and as Pareto in the tail – an
appealing feature for modelling operational risk. In particular:

f (x |α, M, c) → const × x−α−1, x → ∞, (6.54)

where const = α ((M + c)α − cα). The distribution of GCD is available in
closed form
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F(x |α, M, c) = (x + c)α − cα

(x + c)α + (M + c)α − 2cα
, x ≥ 0. (6.55)

The properties and estimation using the maximum likelihood method can be found
in the above referenced literature. To estimate the model parameters using the
Bayesian inference approach, the standard MCMC (e.g. RW-MH Algorithm 2.4)
can be used.

6.8.5 α-Stable Distribution

A random variable X is said to have an α-stable distribution, denoted as X ∼
αStable(α, β, σ, μ), if its characteristic function is

E[eit X ] =

⎧
⎪⎪⎨

⎪⎪⎩

exp
(
−σα|t |α

(
1 − iβsign(t) tan

(
1
2πα

))
+ iμt

)
, α = 1,

exp
(
−σ |t |

(
1 + iβ 2

π
sign(t) ln |t |

)
+ iμt

)
, α = 1,

(6.56)

where α ∈ (0, 2] is the shape parameter (also called stability index), β ∈ [−1, 1]
is skewness parameter, σ > 0 is the scale parameter, μ ∈ (−∞,∞) is the location
parameter and sign(t) = t/|t |.

An attractive property of this distribution class is that if X1, . . . , Xn are indepen-
dent random variables from the alpha stable distribution, then

X1 + · · · + Xn = cn X + dn,

where X is a random variable from the same α-stable distribution for some constants
cn > 0 and dn . Equality in the above formula means the equality in distribution.

The case α = 2 corresponds to the normal distribution, N (μ, σ ). Also, there are
few other cases when α-stable distribution has a closed-form density. However, in
general, the closed-form density is not available that makes the use of this distri-
bution difficult in practice. Still, their flexibility in modelling heavy-tailed distribu-
tions is very attractive and their use in modelling operational risk has been receiving
increasing recognition. Early applications of the α-stable distributions to financial
data can be traced back to 1960s. The detailed analysis of α-stable distributions can
be found in Rachev and Mittnik [197]. For application to modelling heavy-tailed
distributions in insurance, see Embrechts and Klüppelberg and Mikosch [83]. The
use of α-stable distributions in operational risk is relatively new; here we refer to
Chernobai, Rachev and Fabozzi ([55], chapter 7), Chernobai and Rachev [54], and
Giacometti, Rachev, Chernobai and Bertocchi [104] and references therein.

The distribution has four parameters and is very flexible in modelling nonsym-
metric and heavy-tailed data. For 0 < α < 2, it has a power tail decay property

Pr(|X | > x) → const × x−α, x → ∞.



6.8 Flexible Severity Distributions 231

That is, it belongs to the subexponential family of distributions (see Sect. 6.7) and
thus allows capture of extreme events in the tails. The k-th moment is infinite when
k ≥ α, i.e. E[X ] = μ for α > 1 and E[X ] = ∞ for 0 < α ≤ 1. For 0 < α < 2, the
variance and higher moments are infinite.

The density has no closed form and thus the estimation of the parameters is non-
trivial task. Several approaches can be used here:

� Estimate the parameters by minimising the distance between the sample and the-
oretical characteristic functions; for example, see Kogon and William [137].

� Use a traditional maximum likelihood method where the density is evaluated
numerically by the Fourier inversion of the characteristic function, using for
example FFT method; see Menn and Rachev [160] and Nolan [177].

� Though the density has no closed form, simulation from the model is relatively
simple; see Appendix B.2. Thus one can use ABC-MCMC methods, described
in Sect. 2.11.4; see also Peters, Sisson and Fan [189].

There are different parameterisations for the α-stable distribution. The repre-
sentation (6.56) is often not convenient for estimation purposes because it is not
jointly continuous with respect to parameters. The parameterisation typically used
for numerical purposes, denoted as αStable0(α, β, σ, μ0), is

E[eit X ] =

⎧
⎪⎨

⎪⎩

exp
(−|σ t |α(1 + iβsign(t) tan

(
πα
2

)
(|σ t |1−α − 1))+ iμ0t

)
, α = 1,

exp
(
−σ |t |

(
1 + iβ 2

π
sign(t) ln(σ |t |

)
)+ iμ0t

)
, α = 1;

see Nolan [177]. This representation is continuous in all four parameters and related
to the parameterisation (6.56) through the change of location parameter

μ =

⎧
⎪⎨

⎪⎩

μ0 − βσ tan
(

1
2πα

)
, α = 1,

μ0 − βσ 2
π

ln σ, α = 1.

(6.57)

Under this representation X = μ0 +σ Z , where Z ∼ αStable0(α, β, 1, 0). Note that
under parameterisation (6.56): X = μ+σ Z if α = 1; and X = μ+σ Z + 2

π
βσ ln σ

if α = 1, where Z ∼ αStable(α, β, 1, 0).
Since the operational losses take positive values only, α-stable distribution is

typically transformed before applying to the data. The following transformations
are popular:

� Symmetric α-stable distributions: the original data set X is symmetrised to get
the dataset Y = {X,−X}. Then αStable(α, 0, σ, 0) is fitted to the dataset Y.
Only two parameters α and σ should be fitted in this case that simplifies the
procedure. Analysis of real operation loss data in Giacometti, Rachev, Chernobai
and Bertocchi [104] reported a good fit for symmetric alpha stable distributions.
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� Log-α-stable distribution: logarithm transform is applied to the data X and then
αStable(α, β, σ, μ) is fitted to the transformed data ln X1, . . . , ln Xn .

� Truncated α-stable distribution: fitting the original dataset X using α-stable dis-
tribution truncated below zero, that is, fitting the density

fT (x) = f (x)

1 − F(0)
1{x>0},

where f (x) is the density of αStable(α, β, σ, μ) and F(0) is its distribution at
zero.

Problems1

6.1 (�) Assume that the annual number of losses follows to a negative binomial
distribution NegBin(r, p) and the loss severities are independent random variables
from the exponential distribution F(x) = 1 − exp(−x/β). Find the distribution of
the maximum loss for a 1-year period. Assuming that the annual number of losses
over m years are independent, find the distribution of the maximum loss over m-year
period.

6.2 (���) Simulate K = 100 independent realisations xk , k = 1, . . . , K from GB2
distribution with parameters (a = 1, b = 1, p = 3, q = 4); see Sect. 6.8.2.
Assume now that all distribution parameters are unknown. Using simulated samples
xk , k = 1, . . . , K as the observed data, estimate parameters (a, b, p, q) utilising
the Metropolis-Hastings within Gibbs algorithm; see Sect. 2.11.3. Assume vague
priors.

6.3 (� � �) Simulate K = 100 independent realisations xk , k = 1, . . . , K from
g-and-h distribution with parameters (a = 0, b = 1, g = 2, h = 0.3); see Sect.
6.8.1. Assume now that g and h distribution parameters are unknown. Using simu-
lated samples xk , k = 1, . . . , K as the observed data, estimate parameters g and h
utilising ABC algorithm; see Sect. 2.11.4. Assume vague priors.

6.4 (�) Simulate K = 10,000 independent realisations xk , k = 1, . . . , K from the
generalised Champernowne distribution with parameters α = 3, M = 5 and c = 4;
see Sect. 6.8.4. Using the simulated sample, estimate the 0.9 and 0.99 quantiles.
Compare with the true values. Plot the histogram of the simulated sample and com-
pare with the true density function.

6.5 (��) Simulate K = 10,000 independent realisations xk , k = 1, . . . , K from
the α-stable distribution αStable(α, β, σ, μ), defined by (6.56). Assume that α =
1.5, β = 0.5, σ = 1 and μ = 0. Using the simulated sample, plot the empirical
distribution and histogram for the density. Compare with the distribution and density
calculated from the characteristic function (6.56) using FFT; see Sect. 3.4.

1 Problem difficulty is indicated by asterisks: (�) – low; (��) – medium, (� � �) – high.
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6.6 (��) Suppose that the risk annual frequency is Poisson(λ) distributed and the
severities are GPD(ξ, β) distributed, where ξ = 0.5 and β = 1 are known. Assume
that past data imply that the posterior distribution for λ is Gamma(α, β) with mean
20 and standard deviation 10. Find the predictive distribution for the frequency.
Using Monte Carlo, calculate the 0.999 quantile of the predictive distribution for the
annual loss and compare with the result obtained from a closed-form approximation
(6.40).

6.7 (��) Suppose that the risk annual frequency is Poisson(λ) distributed and the
severities are GPD(ξ, β) distributed, where all parameters are unknown. Assume
that past data imply that the posterior distribution for λ is the gamma distribution
with mean 20 and standard deviation 10; the posterior for ξ is the gamma distribu-
tion with mean 0.5 and standard deviation 0.2; and the posterior for β is the gamma
distribution with mean 1 and standard deviation 0.5. Using Monte Carlo, calculate
the 0.999 quantile of the annual loss predictive distribution and compare with the
result obtained in Problem 6.6.

6.8 (�) Prove a stability property of the GPD, that if X ∼ Gξ,β(x), x > 0, then

Pr[X − L ≤ y|X > L] = Gξ,β+ξL(y), y > 0.

Here, Gξ,β(x) is GPD(ξ, β). That is, the distribution of the conditional excesses
X − L|X > L over the threshold L is also the GPD with the same shape parameter
ξ and changed scale parameter from β to β + ξL .

6.9 (�) Simulate K = 10,000 realisations xi > 0, i = 1, . . . , K from GPD(ξ, β)
with ξ = 0.2 and β = 1. Calculate the mean of the exceedances over the threshold L
and plot it vs the threshold L . Find when the plot displays linear behaviour. Repeat
the calculation and graphical analysis for realisations sampled from LN (0, 2).



Chapter 7
Modelling Dependence

Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful.

George Box and Norman Draper

Abstract Aggregation of operational risks in order to estimate a bank’s capital is a
challenging problem. This chapter considers how dependence between operational
risks can be modelled. It presents different approaches and issues debated in the
literature. It also discusses conceptual problems with the dominance of the heavy-
tailed risks in the capital charge and possible failed diversification.

7.1 Introduction

The aim of this chapter is to address the issue of aggregation across many opera-
tional risks. The LDA model discussed throughout this book so far has focused on
the case of a single risk. This chapter considers modelling of dependence between
the risks. The LDA for a bank’s total loss in year t is calculated as

Zt =
J∑

j=1

Z ( j)
t , (7.1)

where Z ( j)
t is the annual loss in the j-th risk cell (business line/event type) modelled

as a compound random variable,

Z ( j)
t =

N ( j)
t∑

s=1

X ( j)
s (t) . (7.2)

Here:

� t = 1, 2, . . . , T, T +1 is discrete time (in annual units) with T +1 corresponding
to the next year. For simplicity of notation in this chapter, this subscript is often
dropped.

P. Shevchenko, Modelling Operational Risk Using Bayesian Inference,
DOI 10.1007/978-3-642-15923-7_7, C© Springer-Verlag Berlin Heidelberg 2011
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� The upper script j is used to identify the risk cell. Formally for operational risk
J = 56 (eight business lines times seven event types), but this may differ depend-
ing on the financial institution and type of problem.

� The annual number of events N ( j)
t is a random variable distributed according

to a frequency distribution Pj (·|λ( j)
t ), typically Poisson, which also depends on

parameter(s) λ( j)
t that can be time-dependent.

� The severities, in year t , are represented by random variables X ( j)
s (t), s ≥ 1,

distributed according to a severity distribution Fj (·|ψ( j)
t )with parameter(s)ψ( j)

t .
� The index j on the distributions Pj (·) and Fj (·) reflects the fact that distribu-

tion type can be different for different risks. For simplicity of notation, often we
shall omit this j if the parameter index is presented, that is, using P(·|λ( j)

t ) and
F(·|ψ( j)

t ).
� The variables λ( j)

t andψ( j)
t generically represent distribution (model) parameters

of the j th risk that we refer to hereafter as the risk profiles.
� Typically, it is assumed that given λ( j)

t and ψ( j)
t , the frequency and severities

of the j th risk are independent, and the severities within the j th risk are also
independent.

Modelling dependence between different risk cells and factors is an important
challenge in operational risk management. The difficulties of correlation modelling
are well known and, hence, regulators typically take a conservative approach when
considering correlation in risk models. For example, the Basel II operational risk
regulatory requirement for the Advanced Measurement Approach, BCBS ([17],
p. 152), states as follows1:

Risk measures for different operational risk estimates must be added for purposes of
calculating the regulatory minimum capital requirement. However, the bank may be per-
mitted to use internally determined correlations in operational risk losses across indi-
vidual operational risk estimates, provided it can demonstrate to the satisfaction of the
national supervisor that its systems for determining correlations are sound, implemented
with integrity, and take into account the uncertainty surrounding any such correlation esti-
mates (particularly in periods of stress). The bank must validate its correlation assumptions
using appropriate quantitative and qualitative techniques.

The current risk measure specified by regulatory authorities is Value-at-Risk
(VaR) at the 0.999 level for a 1-year holding period. In this case simple summation
over VaRs corresponds to an assumption of perfect dependence between risks. This
can be very conservative as it ignores any diversification effects. If the latter are
allowed in the model, it is expected that the capital may reduce, providing a strong
incentive to model dependence in the banking industry. At the same time, limited
data do not allow for reliable estimates of correlations and there are attempts to

1 The original text is available free of charge on the BIS website www.BIS.org/bcbs/publ.htm
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estimate these using expert opinions. In such a setting a transparent dependence
model is very important from the perspective of model interpretation, understanding
of model sensitivity and with the aim of minimising possible model risk.

However, it is important to note that VaR is not a coherent risk measure; see Def-
inition 2.12 in Sect. 2.6. This means that, in principle, dependence modelling could
also increase VaR; see Embrechts, Nešlehová and Wüthrich [86] and Embrechts,
Lambrigger and Wüthrich [84]. This issue will be discussed in Sect. 7.3.

Another potential problem debated in the literature is that the capital is mainly
determined by the risk with the heaviest tail severity. This will be discussed in
Sect. 7.2.

The pitfalls with the use of linear correlation as a measure of dependence are now
widely known and copula functions to model dependence structures are now widely
used in financial risk management. This was not the case until the publication of the
highly influential paper by Embrechts, McNeil and Straumann [85], that was first
available as a RiskLab (ETH Zurich) report in early 1999. These will be discussed
throughout this chapter. A textbook reference for modelling dependence between
financial risks is McNeil, Frey and Embrechts [157] that also contains an extensive
bibliography on this subject.

Conceptually, under model (7.2), the dependence between the annual losses Z ( j)
t

and Z (i)t , i = j, can be introduced in several ways:

� Modelling dependence between frequencies N ( j)
t and N (i)

t directly through cop-
ula methods; see Frachot, Roncalli and Salomon [97], Bee [25] and Aue and
Klakbrener [12]. Here, we note that the use of copula methods, in the case of
discrete random variables, needs to be done with care.

� Common shocks; see Lindskog and McNeil [145] and Powojowski, Reynolds
and Tuenter [194]. The approach of common shocks is proposed as a method
to model events affecting many cells at the same time. Formally, this leads to a
dependence between frequencies of the risks if superimposed with cell internal
events. Dependence between severities occurring at the same time is considered
in Lindskog and McNeil [145].

� Modelling dependence between the k-th severities or between k-th event times
of different risks; see Chavez-Demoulin, Embrechts and Nešlehová [52] (e.g.
1st, 2nd, etc losses/event times of the j-th risk are correlated to the 1st, 2nd, etc
losses/event times of the i-th risk respectively). This can be difficult to interpret
especially when one considers high-frequency versus low-frequency risks.

� Modelling dependence between annual losses directly via copula methods; see
Giacometti, Rachev, Chernobai and Bertocchi [104], and Embrechts and Puc-
cetti [88]. However, this may create irreconcilable problems with modelling
insurance for operational risk that directly involves event times. Additionally,
it will be problematic to quantify these correlations using historical data, and the
LDA model (7.2) will lose its structure. One can, however, consider dependence
between losses aggregated over shorter periods.

� Using the multivariate compound Poisson model based on Lévy copulas as sug-
gested in Böcker and Klüppelberg [30] and Böcker and Klüppelberg [31].
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� Using structural models with common (systematic) factors that can lead to the
dependence between severities and frequencies of different risks and within risk;
see Sect. 7.11 below.

� Modelling dependence between severities and frequencies from different risks
and within risk using dependence between risk profiles, as considered in Peters,
Shevchenko and Wüthrich [187].

� In the general case, when no information about the dependence structure is avail-
able, Embrechts and Puccetti [87] work out bounds for aggregated operational
risk capital; see also Embrechts, Nešlehová and Wüthrich [86].

Below, we describe the main concepts and issues behind some of these
approaches. The choice of appropriate dependence structures is crucial and deter-
mines the amount of diversification – it is still an open challenging problem.

Remark 7.1 (Dependence on macroeconomic factors) It is important to note that
there is empirical evidence, as reported in Allen and Bali [8], that some opera-
tional risks are dependent on macroeconomic variables such as GDP, unemploy-
ment, equity indices, interest rates, foreign exchange rates, regulatory environment
variables and others. For example, some operational risks typically increase dur-
ing economic downturns, high unemployment and low interest rates. This will be
discussed more in Sect. 7.11.

7.2 Dominance of the Heaviest Tail Risks

It is a well-known phenomenon in operational risk practice that most of the capital
estimate and its uncertainty are due to a few low-frequency/high-severity risks. For a
methodological insight, consider J independent risks, where each risk is modelled
by a compound Poisson. Then, the sum of risks is a compound Poisson with the
intensity and severity distribution given by the following proposition.

Proposition 7.1 Consider J independent compound Poisson random variables

Z ( j) =
N ( j)∑

s=1

X ( j)
s , j = 1, . . . , J, (7.3)

where the frequencies N ( j) ∼ Poisson(λ j ) and the severities X ( j)
s ∼ Fj (x), j =

1, . . . , J and s = 1, 2, . . . are all independent. Then, the sum Z =
J∑

j=1
Z ( j) is

a compound Poisson random variable with the frequency distribution Poisson(λ)
and severity distribution

F(x) =
J∑

j=1

λ j

λ
Fj (x),

where λ = λ1 + · · · + λJ .
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Proof The characteristic function of the compound Poisson with the intensity λ j

and severity distribution function Fj is χ j (t) = exp(−λ j + λ jφ j (t)), where φ j (t)
is the characteristic function of the severity. Then the characteristic function of the
sum Z is

χ(t) =
J∏

j=1

χ j (t) = exp

⎛

⎝−
∑

j

λ j +
∑

j

λ jφ j (t)

⎞

⎠

= exp

⎛

⎝−λ
⎛

⎝1 −
∑

j

λ j

λ
φ j (t)

⎞

⎠

⎞

⎠ .

This is easily recognised as a characteristic function of the compound Poisson ran-
dom variable with the intensity λ = λ1+· · ·+λJ and severity characteristic function
φ(t) = ∑

j λ jφ j (t)/λ. The latter corresponds to the severity distribution function

F(x) = ∑J
j=1

λ j
λ

Fj (x), completing the proof. Note that F(x) is simply a mixture
distribution.

Suppose that all severity distributions Fj (x) are heavy-tailed, that is,

F j (x) = x−α j C j (x),

where α1 < · · · < αJ and C j (x) are slowly varying functions; see Sect. 6.7. Then,

F(x) = ∑J
j=1

λ j
λ

Fj (x) is a heavy-tailed distribution too, with the tail index α1 for
x → ∞. Thus, using the result (6.39) for heavy-tailed distributions, we obtain that

lim
x→∞

Pr[Z > x]
1 − F1(x)

= λ1. (7.4)

This means that high quantiles of the total loss are due to the high losses of the risk
with the heaviest tail.

Example 7.1 Real data example. For illustration of this phenomenon with the real
data from ORX database, see Cope, Antonini, Mignola and Ugoccioni [62]. In their
example, LN (8, 2.24) gave a good fit for 10 business lines with average 100 losses
per year in each line using 10,000 observations. The estimated capital across these
10 business lines was Euro 634 million with 95% confidence interval (uncertainty
in the capital estimate due to finite data size) of width Euro 98 million. Then, extra
risk cell (corresponding to the “Clients, Products and Business Practices” event type
in the “Corporate Finance” business line) was added with one loss per year on aver-
age and the LN (9.67, 3.83) severity estimated using 300 data points. The obtained
estimate for the capital over the ten business units plus the additional one was Euro
5,260 million with 95% confidence interval of the width Euro 19 billion. This shows
that one high-severity risk cell contributes 88% to the capital estimate and 99.5% to
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the uncertainty range. In this example, the high-severity unit accounts for 0.1% of
the bank’s losses.

7.3 A Note on Negative Diversification

As has already been discussed in Sect. 2.6, VaR is not a coherent risk measure;
see Artzner, Delbaen, Eber and Heath [10]. In particular, under some circumstances
VaR measure may fail a sub-additivity property

VaRq [Z ] ≤
J∑

j=1

VaRq [Z ( j)]; (7.5)

see Embrechts, Nešlehová and Wüthrich [86] and Embrechts, Lambrigger and
Wüthrich [84]. That is, dependence modelling could also increase VaR. Note that
if there is a perfect positive dependence between risks, that is, Z ( j) = H−1

j (U ),

j = 1, . . . , J , where U ∼ U(0, 1) and Hj (·) is a distribution of Z ( j), then

VaRq [Z ] =
J∑

j=1

VaRq [Z ( j)]. (7.6)

That is, the failure of the subadditivity means that the VaR for the sum of risks
is larger than the VaR in the case of perfectly dependent risks. This is very coun-
terintuitive given a typical expectation of diversification benefits. In particular, the
diversification

Dq = 1 − VaRq [∑ j Z ( j)]
∑

j VaRq [Z ( j)] (7.7)

is expected to be positive while the subadditivity failure corresponds to the negative
diversification. The latter may occur even for independent risks when the risks are
heavy-tailed. It was shown and discussed in Nešlehová, Embrechts and Chavez-
Demoulin [174] that if independent risks are Pareto type, Z ( j) ∼ Fj (x) = 1 −
x−α j C j (x), with the tail indexes 0 < α j < 1, then

VaRq [Z ] >
J∑

j=1

VaRq [Z ( j)], (7.8)

at least for sufficiently large q. The case of 0 < α j ≤ 1 corresponds to infinite mean
distribution, that is, E[Z ( j)] = ∞.
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Remark 7.2 To simplify notation, the index of discrete time (year) is dropped.
Implicitly, in the above discussion of diversification issues, we refer to the next
year.

Example 7.2 Assume that we have two independent risks, X ∼ Pareto(β, 1)
and Y ∼ Pareto(β, 1), where Pareto(β, a) = 1 − (x/a)−β . Calculating the
VaR0.999[X + Y ] using for example FFT, we can easily find the diversification Dq

as defined in (7.7). Figure 7.1 shows the results for D0.999 vs β that demonstrate
negative diversification for β < 1.

Example 7.3 In the previous example, we found that the diversification is positive
for β > 1. In particular, D0.999 ≈ 0.27 when β = 4, that is mean, variance and
skewness are finite. It is important to realise that diversification depends on the
quantile level. Figure 7.1 shows the results for Dq vs q in the case of β = 4. One
can see that diversification is positive for high level quantiles but may become zero
and negative for lower quantiles.

7.4 Copula Models

Copula functions have become popular and flexible tools in modelling multivari-
ate dependence among risks. In general, a copula is a d-dimensional multivariate
distribution on [0, 1]d with uniform marginal distributions. Given a copula function
C(u1, . . . , ud), the joint distribution of random variables Y1, . . . ,Yd with marginal
distributions F1(y1), . . . , Fd(yd) can be constructed as

F(y1, . . . , yd) = C(F1(y1), . . . , Fd(yd)). (7.9)

The well-known theorem due to Sklar, published in 1959, says that one can always
find a unique copula C(·) for a joint distribution with given continuous marginals.
Note that in the case of discrete distributions this copula may not be unique. Given
(7.9), the joint density can be written as

diversification at the 0.999 quantile
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Fig. 7.1 Left figure: the diversification for random variables X ∼ Pareto(β, 1) and Y ∼ Pareto
(β, 1) vs β. Right figure: the diversification for random variables X ∼ Pareto(4, 1) and Y ∼
Pareto(4, 1) vs quantile level q
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f (y1, . . . , yd) = c(F1(y1), . . . , Fd(yd))

d∏

i=1

fi (yi ). (7.10)

where c(·) is a copula density and f1(y1), . . . , fd(yd) are marginal densities. There
are many different copulas discussed in the literature and these can be found in many
textbooks; for example, see McNeil, Frey and Embrechts ([157], section 5). Below,
for illustration of the concept and notation, we give definitions for the Gaussian,
Clayton, Gumbel and t copulas (Clayton and Gumbel copulas belong to a so-called
family of the Archimedean copulas). An important difference between these three
copulas is that they each display different tail dependence properties. The Gaussian
copula has no upper and lower tail dependence, the Clayton copula will produce
greater lower tail dependence as ρ increases whereas the Gumbel copula will pro-
duce greater upper tail dependence as ρ increases.

For a general description of copulas and their properties in the context of finan-
cial risk modelling, see McNeil, Frey and Embrechts ([157], chapter 5) and Panjer
([181], chapter 8); multivariate extreme value copulas are described in McNeil, Frey
and Embrechts ([157], sections 7.5 and 7.6).

For a model choice of copula using frequentist goodness-of-fit testing, see Klug-
man and Parsa [135] and Panjer ([181], section 14.5). One can also use Akaike
information criterion (AIC) to choose a copula. However, formally it does not hold
for copulas fitted using data marginally transformed into [0, 1]d – a proper correc-
tion, referred to as copula information criterion, is derived in Grønneberg and Hjort
[113]. Under the Bayesian approach, model choice can be done using Bayesian
criteria presented in Sect. 2.13; for a case study of t-copula choice, see Luo and
Shevchenko [150].

7.4.1 Gaussian Copula

The d-dimensional Gaussian copula is obtained by transformation of the multivari-
ate normal distribution:

C (u1, . . . , ud) = F�N

(
F−1

N (u1), . . . , F−1
N (ud)

)
(7.11)

and its density is

c (u1, . . . , ud) =
f �N

(
F−1

N (u1), . . . , F−1
N (ud)

)

d∏
i=1

fN

(
F−1

N (ui )
) . (7.12)

Here, FN (·) and fN (·) are the standard normal distribution and its density respec-
tively; f �N (·) and F�N (·) are the standard multivariate normal density and distribution
respectively with zero means, unit variances and correlation matrix �.
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Simulation of the random variates from a Gaussian copula is very simple and can
be done as follows.

Algorithm 7.1 (Simulation from Gaussian copula)
1. Simulate d-variate (x1, . . . , xd)

′ from the standard multivariate normal
distribution Nd (0,�) with zero means, unit variances and correlation
matrix �.

2. Calculate u1 = FN (x1), . . . , ud = FN (xd). Obtained (u1, . . . , ud)
′ is a

d-variate from a Gaussian copula.

7.4.2 Archimedean Copulas

The d-dimensional Archimedean copulas can be written as

C (u1, . . . , ud) = φ−1 (φ (u1)+ · · · + φ (ud)) , (7.13)

where φ is a decreasing function known as the generator for the given copula; see
Frees and Valdez [98]. Important members of this family are Clayton and Gumbel
copulas defined as follows:

Clayton copula. The Clayton copula is given by

C (u1, . . . , ud) =
(

1 − d +
d∑

i=1

(ui )
−ρ
)− 1

ρ

(7.14)

and its density is

c (u1, . . . , ud) =
(

1 − d +
d∑

i=1

(ui )
−ρ
)−d− 1

ρ d∏

i=1

(
(ui )

−ρ−1 {(i − 1) ρ + 1}
)
,

(7.15)

where ρ > 0 is a dependence parameter. The generator and inverse generator for
the Clayton copula are given by

φC (t) = (
t−ρ − 1

) ; φ−1
C (s) = (1 + s)−

1
ρ . (7.16)
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Gumbel copula. Tee Gumbel copula and its density are

C (u1, . . . , ud) = exp

{
−
(∑d

i=1
(− ln ui )

ρ

) 1
ρ

}
, (7.17)

c (u1, . . . , ud) = ∂d

∂u1 . . . ∂ud
C (u1, . . . , ud) , (7.18)

where ρ ≥ 1 is a dependence parameter. In the bivariate case the explicit expression
for the Gumbel copula is given by

c (u1, u2) = ∂2

∂u1∂u2
C (u1, u2)

= C (u1, u2) u−1
1 u−1

2

[
2∑

i=1

(− ln ui )
ρ

]2
(

1
ρ
−1

)

(ln u1 ln u2)
ρ−1

×
⎡

⎢⎣1 + (ρ − 1)

[
2∑

i=1

(− ln ui )
ρ

]− 1
ρ

⎤

⎥⎦ .

The generator and inverse generator for the Gumbel copula are given by

φG (t) = (− ln t)ρ ; φ−1
G (s) = exp

(
−s

1
ρ

)
, (7.19)

where ρ is a copula parameter.

Simulation from Archimedean copulas can be accomplished using the algorithm
provided in Melchiori [158]:

Algorithm 7.2 (Simulation from Archimedean copula)
1. Sample d independent random variates v1, . . . , vd from a uniform distribu-

tion U(0, 1).
2. Simulate y from distribution D(·) such that D (0) = 0 and Laplace trans-

form of D(·) is L (D) = φ−1.
3. Find si = − (ln vi ) /y for i = 1, . . . , d.
4. Calculate ui = φ−1 (si ) for i = 1, . . . , d.

The obtained (u1, . . . , ud)
′ is a d-variate from the d-dimensional Archimedean

copula. What remains is to define the relevant distribution D(·) for the Clayton
and Gumbel copulas. For the Clayton copula, D(·) is a gamma distribution with
the shape parameter given by ρ−1 and unit scale. For the Gumbel copula, D(·) is
from the α-stable family αStable (α, β, γ, δ) with the following parameters: shape



7.4 Copula Models 245

α = ρ−1, skewness β = 1, scale γ = (cos( 1
2π/ρ))

ρ , and location δ = 0. In
the Gumbel case, the density for D(·) has no analytic form and the simulation
from this distribution can be achieved using the algorithm from Nolan [176] to
efficiently generate the required samples from the univariate stable distribution; also,
see Appendix B.2.

7.4.3 t-Copula

In practice, one of the most popular copula in modelling multivariate financial data
is perhaps the t-copula, implied by the multivariate t-distribution; see Embrechts,
McNeil and Straumann [85], Fang, Fang and Kotz [91] and Demarta and McNeil
[72]. This is due to its simplicity in terms of simulation and calibration, combined
with its ability to model tail dependence, which is often observed in financial returns
data. The t-copulas are most easily described and understood by a stochastic repre-
sentation, as discussed below. We introduce notation and definitions as follows:

� Z = (Z1, . . . , Zn)
′ is a random vector from the standard n-variate normal distri-

bution F�N (z) with zero mean vector, unit variances and correlation matrix �;
� U = (U1,U2, . . . ,Un)

′ is defined on [0, 1]n domain;
� V is a random variable from the uniform (0,1) distribution independent of Z;
� W = G−1

ν (V ), where Gν(·) is the distribution function of
√
ν/S with S dis-

tributed from the chi-square distribution with ν degrees of freedom, that is, ran-
dom variables W and Z are independent; and

� tν(·) is the standard univariate t-distribution and t−1
ν (·) is its inverse.

Then we have the following representations:

Standard t-copula. The random vector

X = W × Z (7.20)

is distributed from a multivariate t-distribution and random vector

U = (tν(X1), . . . , tν(Xn))
′ (7.21)

is distributed from the standard t-copula.

Grouped t-copula. The standard t-copula is sometimes criticised due to the restric-
tion of having only one parameter for the degrees of freedom ν, which may limit its
ability to model tail dependence in multivariate cases. To overcome this problem,
Daul, De Giorgi, Lindskog and McNeil [69] proposed the use of the grouped t-
copula, where risks are grouped into classes and each class has its own t-copula with
a specific degrees-of-freedom parameter. Specifically, partition {1, 2, . . . , n} into m
non-overlapping sub-groups of sizes n1, . . . , nm . Then the copula of the distribution
of the random vector

X = (W1 Z1, . . . ,W1 Zn1 ,W2 Zn1+1, . . . ,W2 Zn1+n2 , . . . ,Wm Zn)
′, (7.22)
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where Wk = G−1
νk
(V ), k = 1, . . . ,m, is the grouped t-copula. That is,

U = (tν1(X1), . . . , tν1(Xn1), tν2(Xn1+1), . . . , tν2(Xn1+n2), . . . , tνm (Xn))
′

is a random vector from the grouped t-copula. Here, the copula for each group is a
standard t-copula with its own degrees-of-freedom parameter.

Generalised t-copula with multiple degrees-of-freedom parameters. It is not always
obvious how the risk factors should be divided into sub-groups. An adequate choice
of grouping configurations requires substantial additional effort if there is no natural
grouping, for example by sector or class of asset. The above described grouped
t-copula can be generalised, so that each group will have only one member; see Luo
and Shevchenko [148]. The generalised t-copula has the advantages of a grouped
t-copula with flexible modelling of multivariate dependencies. At the same time, it
overcomes the difficulties with a priori choice of groups. Specifically, the copula of
the random vector

X = (W1 Z1, W2 Z2, . . . ,Wn Zn)
′ (7.23)

is said to have a t-copula with multiple degrees-of-freedom parameters, which we
denote as t̃ν-copula, that is,

U = (tν1(X1), tν2(X2), . . . , tνn (Xn))
′ (7.24)

is a random vector distributed according to this copula. Note, all Wi are perfectly
dependent.

Given the above stochastic representation, simulation of the t̃ν-copula is straight-
forward. In the case of a standard t-copula ν1 = · · · = νn = ν; and in the case
of grouped t-copula the corresponding subsets have the same degrees-of-freedom
parameter. Note that the standard t-copula and grouped t-copula are special cases
of t̃ν-copula.

From the stochastic representation (7.23), it is easy to show that the t̃ν-copula
distribution has the following explicit integral expression

C�
ν (u) =

1∫

0

F�N (z1(u1, s), . . . , zn(un, s))ds (7.25)

and its density is

c�ν (u) = ∂nC�
ν (u)

∂u1 . . . ∂un
(7.26)

= 1
n∏

k=1
fνk (xk)

1∫

0

f �N (z1(u1, s), . . . , zn(un, s))
n∏

k=1

(wk(s))
−1ds.
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Here

� zk(uk, s) = t−1
νk
(uk)/wk(s), k = 1, 2, . . . , n;

� wk(s) = G−1
νk
(s);

� f �N (z1, . . . , zn) = exp(− 1
2 z′�−1z)/

(
(2π)n/2(det�)1/2

)
is the standard multi-

variate normal density;
� xk = t−1

νk
(uk), k = 1, 2, . . . , n; and

� fν(x) = (
1 + x2/ν

)−(ν+1)/2  ((ν+1)/2)
 (ν/2)

√
νπ

is the univariate t-density.

The multivariate density (7.26) involves a one-dimensional integration that
should be done numerically. This makes the calculation of the copula density more
demanding computationally in comparison with the standard t-copula. However,
it is still practical, because fast and accurate algorithms are available for the one-
dimensional numerical integration; see Sect. 3.5.2. If all degrees-of-freedom param-
eters are equal (i.e. ν1 = · · · = νn = ν) then it is easy to show that the copula
defined by (7.25) becomes the standard t-copula; see Luo and Shevchenko [148] for
a proof.

7.5 Dependence Measures

Measuring dependence between risks is of critical importance for capital calcula-
tions. Several popular scalar measures of dependence are discussed below.

7.5.1 Linear Correlation

Linear correlation is a measure of linear dependence between random variables

ρ[Xi , X j ] = Cov[Xi , X j ]√
Var[Xi ]Var[X j ]

. (7.27)

It is invariant under strictly increasing linear transformations

ρ[αi + βi Xi , α j + β j x j ] = ρ[Xi , X j ], βi , β j > 0.

The problems with using the linear correlation coefficient as a measure of depen-
dence between operational risks can be summarised as follows.

� It is defined if variances of Xi and X j are finite. As has already been discussed,
some operational risks are modelled by heavy-tailed distributions with infinite
variance and even the cases of infinite mean are reported.

� It is not invariant under strictly increasing nonlinear transformations T (·) and
T̃ (·). In general, ρ[T (Xi ), T̃ (X j )] = ρ[Xi , X j ].
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� Independence between random variables implies that linear correlation is zero.
However, in general, zero linear correlation does not imply independence. For
example if X ∼ N (0, 1) and Y = X2, then ρ[X,Y ] = 0 while it is obvious
that there is as strong dependence between X and Y . Zero linear correlation and
independence are equivalent only in the case of a multivariate normal distribution
as a joint distribution for random variables.

� The linear correlation is bounded to the region [ρmin, ρmax], where −1 ≤ ρmin ≤
ρmax ≤ 1. For example, if X ∼ LN (0, 1) and Y ∼ LN (0, σ ), then the minimum
and maximum bounds for correlation are plotted in Fig. 7.2a as functions of σ ;
for more details, see McNeil, Frey and Embrechts ([157], Example 5.26). Figure
7.2b presents the correlation bounds for the case of X ∼ Pareto(2.1, 1) and
Y ∼ Pareto(β, 1), where Pareto(β, a) = 1 − (x/a)−β ; for more details see
Nešlehová, Embrechts and Chavez-Demoulin ([174], Example 3.1).
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Fig. 7.2 Left figure: The minimum and maximum possible linear correlation between the random
variables X ∼ LN (0, 1) and Y ∼ LN (0, σ ). Right figure: The minimum and maximum possible
linear correlation between the random variables X ∼ Pareto(2.1, 1) and Y ∼ Pareto(β, 1)

7.5.2 Spearman’s Rank Correlation

Spearman’s rank correlation (often referred to as Spearman’s rho) is a simple scalar
measure of dependence that depends on the copula of two random variables but
not on their marginal distributions. More precisely, Spearman’s rank correlation for
two random variables X1 and X2 with marginal distributions F1(x1) and F2(x2) is
given by

ρS[X1, X2] = ρ[F1(X1), F2(X2)]. (7.28)

That is, Spearman’s rank correlation is simply the linear correlation of the probabil-
ity transformed random variables. For multivariate case (X1, . . . , Xd), Spearman’s
rho matrix is defined by the matrix coefficients ρS[Xi , X j ] = ρ[Fi (Xi ), Fj (X j )].
The main properties can be summarised as follows.

� The range for possible values of ρS[X1, X2] is [−1, 1].
� For independent random variables ρS[X1, X2] = 0. However, zero Spearman’s

rank correlation does not necessarily imply independence.
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� ρS[X1, X2] = 1 if X1 and X2 are comonotonic (perfect positive dependence);
and ρS[X1, X2] = −1 if X1 and X2 are countermonotonic (perfect negative
dependence). Note that this is not the case for the linear correlation coefficient
ρ[X1, X2].

� In the case of bivariate Gaussian copula with correlation parameter ρ, the fol-
lowing relation is true:

ρS[X1, X2] = 6

π
arcsin

(
1

2
ρ

)
≈ ρ; (7.29)

see McNeil, Frey and Embrechts ([157], Theorem 5.36). This relationship
between Spearman’s rank correlation and the Gaussian copula correlation param-
eter is often used to calibrate the Gaussian copula. The error in approximating
the right-hand side of the above equation by ρ itself is very small:

∣∣∣∣
6

π
arcsin

(
1

2
ρ

)
− ρ

∣∣∣∣ ≤ (π − 3)|ρ|/π ≤ 0.0181.

7.5.3 Kendall’s tau Rank Correlation

Kendall’s tau rank correlation for random variables X1 and X2 is

ρτ [X1, X2] = Pr[(X1 − X̃1)(X2 − X̃2) > 0] − Pr[(X1 − X̃1)(X2 − X̃2) < 0]
= E[sign((X1 − X̃1)(X2 − X̃2))], (7.30)

where (X̃1, X̃2) and (X1, X2) are independent random vectors from the same distri-
bution. It can also be written as

ρτ [Xi , X j ] = Cov[sign(Xi − X̃i )sign(X j − X̃ j )]. (7.31)

Similar to Spearman’s rank correlation, Kendall’s tau rank correlation is a simple
scalar measure of dependence that depends on the copula of two random variables
but not on their marginal distributions.

� The range for possible values of ρτ [X1, X2] is [−1, 1].
� For independent random variables ρτ [X1, X2] = 0, although zero Kendall’s tau

does not necessarily imply independence.
� ρτ [X1, X2] = 1 if X1 and X2 are comonotonic (perfect positive dependence);

and ρτ [X1, X2] = −1 if X1 and X2 are countermonotonic (perfect negative
dependence).

� In the case of the bivariate Gaussian copula with correlation parameter ρ, the
following relation is true:

ρτ [X1, X2] = 2

π
arcsin (ρ) ≈ ρ; (7.32)
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see McNeil, Frey and Embrechts ([157], Theorem 5.36). This relationship is also
true for a general class of normal variance mixture distributions such as t-copula
(it is often used to calibrate t-copula). Strictly speaking, it is true for the bivariate
case only. That is, for the multivariate case (X1, . . . , Xd), if Kendall’s tau rank
correlation is found for all pairs ρτ [Xi , X j ], then the correlation matrix coefficients
ρi j calculated using (7.32) may not form a positive definite matrix. If this is the case,
then eigenvalue method can be used to adjust the correlation coefficients so that the
matrix is well defined; see McNeil, Frey and Embrechts ([157], Example 5.54 and
Algorithm 5.5).

7.5.4 Tail Dependence

Similar to rank correlations, the tail dependence coefficient is a simple scalar mea-
sure of dependence that depends on the copula of two random variables but not on
their marginal distributions. Formally, the coefficient of the upper tail dependence
between random variables X1 ∼ F1(x1) and X2 ∼ F2(x2) is defined as

λu = lim
q→1

Pr[X2 > F−1
2 (q)|X1 > F (−1)

1 (q)]. (7.33)

The lower tail dependence coefficient is defined similarly as

λl = lim
q→0

Pr[X2 ≤ F−1
2 (q)|X1 ≤ F (−1)

1 (q)]. (7.34)

Both λu and λl belong to the range [0, 1], provided that the above limits exist.
Essentially, these coefficients are measures of the dependence in the tails of bivariate
distribution. For operational risk purposes, the upper tail dependence (a chance that
X1 is very large if X2 is very large) is of primary importance.

If the marginal distributions F1(·) and F2(·) are continuous, then the tail depen-
dence coefficients can be expressed in terms of the unique copula C(u1, u2) between
X1 and X2:

λu = lim
q→1

1 − 2q + C(q, q)

1 − q
, (7.35)

λl = lim
q→0

C(q, q)

q
. (7.36)

Detailed discussion of tail dependence can be found in McNeil, Frey and
Embrechts ([157], section 5.2.3). Here, we just mention that the tail depen-
dence coefficient can be very useful for comparing different copulas. In particular:

� For the bivariate Gaussian copula, defined by (7.11): λl = λu = 0, if the corre-
lation coefficient of the copula ρ < 1;
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� For the bivariate t-copula, defined by stochastic representation (7.20) and (7.21):

λl = λu = 2tν+1

(
−
√
(ν + 1)(1 − ρ)

1 + ρ

)
, (7.37)

which is positive if ρ > −1. Here, ρ is a correlation coefficient parameter of the
t-copula and ν is a copula degrees-of-freedom parameter.

� For the bivariate Clayton copula defined by (7.15): λu = 0 and λl = 2−1/ρ , for
ρ > 0;

� For the bivariate Gumbel copula defined by (7.18): λl = 0 and λu = 2 − 21/ρ

for ρ > 1.

7.6 Dependence Between Frequencies via Copula

The most popular approach in operational risk practice is to consider a depen-
dence between the annual counts of different risks via a copula. Assuming a
J -dimensional copula C(·) and the marginal distributions Pj (·) for the annual

counts N (1)
t , . . . , N (J )

t leads to a model

N (1)
t = P−1

1 (U (1)
t ), . . . , N (J )

t = P−1
J (U (J )

t ), (7.38)

where U (1)
t , . . . ,U (J )

t are the uniform U(0, 1) random variables from a copula C(·)
and P−1

j (·) is the inverse marginal distribution of the counts in the j-th risk. Here,
t is discrete time (typically in annual units but shorter steps might be needed to
calibrate the model). Usually, the counts are assumed to be independent between
different t steps.
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Fig. 7.3 Spearman’s rank correlation between the annual losses ρS[Z (1), Z (2)] vs the Gaussian
copula parameter ρ: (�) – copula between counts N (1) and N (2); (•) – copula between inter-
arrival times of two Poisson processes. Marginally, the frequencies are from Poisson(5) and
Poisson(10) respectively and the severities are from LN (1, 2) for both risks
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The approach allows us to model both positive and negative dependence between
counts. As reported in the literature, the implied dependence between annual losses
even for a perfect dependence between counts is relatively small and as a result
the impact on capital is small too. Some theoretical reasons for the observation that
frequency dependence has only little impact on the operational risk capital charge
are given in Böcker and Klüppelberg [30].

As an example, in Fig. 7.3 we plot Spearman’s rank correlation between the
annual losses of two risks, Z (1) and Z (2), induced by the Gaussian copula depen-
dence between frequencies. Marginally, the frequencies N (1) and N (2) are from the
Poisson(λ = 5) and Poisson(λ = 10) distributions respectively and the severities
are from LN (μ = 1, σ = 2) distributions for both risks.

7.7 Common Shock Processes

Modelling operational risk events affecting many risk cells can be done using com-
mon shock process models; see Johnson, Kotz and Balakrishnan ([128], section 37).
In particular, consider J risks with the event counts

N ( j)
t = N (C)

t + Ñ ( j)
t ,

where Ñ ( j)
t , j = 1, . . . , J and N (C)

t are generated by independent Poisson processes
with the intensities λ̃ j and λC respectively. Then, N ( j)

t , j = 1, . . . , J are Poisson
distributed marginally with the intensities

λ j = λ̃ j + λC

and are dependent via the common events N (C)
t . The linear correlation and covari-

ance between risk counts are

ρ[N (i)
t , N ( j)

t ] = λC/
√
λiλ j

and

Cov[N (i)
t , N ( j)

t ] = λC

respectively.
Only a positive dependence between counts can be modelled using this approach.

Note that the covariance for any pair of risks is the same though the correlations are
different. More flexible dependence can be achieved by allowing a common shock
process to contribute to the k-th risk process with some probability pk ; then

Cov[N (i)
t , N ( j)

t ] = λC pi p j .

This method can be generalised to many common shock processes; see Lindskog
and McNeil [145] and Powojowski, Reynolds and Tuenter [194]. It is also reason-
able to consider the dependence between the severities in different risk cells that
occurred due to the same common shock event.
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7.8 Dependence Between Aggregated Losses via Copula

Dependence between aggregated losses can be introduced in a manner similar to
(7.38). In this approach, one can model the aggregated losses as

Z (1)t = F−1
1 (U (1)

t ), . . . , Z (J )t = F−1
J (U (J )

t ), (7.39)

where U (1)
t , . . . ,U (J )

t are uniform U(0, 1) random variables from a copula C(·) and
F−1

j (·) is the inverse marginal distribution of the aggregated loss of the j-th risk.
Note that the marginal distribution Fj (·) should be calculated using the frequency

and severity distributions. Typically, the data are available over several years only
and a short time step t (e.g. quarterly) is needed to calibrate the model.

This approach is probably the most flexible in terms of the range of achievable
dependencies between risks, for example, perfect positive dependence between the
annual losses is achievable. However, it may create difficulties with incorporation
of insurance into the overall model. This is because an insurance policy may apply
to several risks with the cover limit applied to the aggregated loss recovery; see
Sect. 2.4.

7.9 Dependence Between the k-th Event Times/Losses

Theoretically, one can introduce dependence between the k-th severities or between
the k-th event inter-arrival times or between the k-th event times of different risks.
For example, 1st, 2nd, etc losses of the j-th risk are correlated to the 1st, 2nd, etc
losses of the i-th risk respectively while the severities within each risk are inde-
pendent. The actual dependence can be done via a copula similar to (7.38); for an
accurate description we refer to Chavez-Demoulin, Embrechts and Nešlehová [52].
Here, we would like to note that a physical interpretation of such models can be
difficult. Also, an example of dependence between annual losses induced by depen-
dence between the k-th inter-arrival times is presented in Fig. 7.3.

7.10 Modelling Dependence via Lévy Copulas

An interesting approach was suggested in Böcker and Klüppelberg [30, 31] to model
dependence in frequency and severity between different risks at the same time using
a new concept of Lévy copulas; see Sects. 5.4, 5.5, 5.6, and 5.7 in Cont and Tankov
[61]. It is assumed that each risk follows to a univariate compound Poisson process
(that belongs to a class of Lévy processes). Then, the idea is to introduce the depen-
dence between risks in such a way that any conjunction of different risks constitutes
a univariate compound Poisson process. It is achieved using the multivariate com-
pound Poisson processes based on Lévy copulas. Note that if dependence between
frequencies or annual losses is introduced via copula as in (7.38) or (7.39), then the
conjunction of risks does not follow to a univariate compound Poisson.
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The precise definitions of Lévy measure and Lévy copula are beyond the scope
of this book and can be found in the above-mentioned literature. Here, we would
like to mention that in the case of a compound Poisson process, Lévy measure is
the expected number of losses per unit of time with a loss amount in a pre-specified
interval,

Π j (x) = λ j Pr(X j > x).

Then the multivariate Lévy measure can be constructed from the marginal measures
and a Lévy copula C̃ as

Π(x1, . . . , xd) = C̃(Π1(x1), . . . ,Πd(xd)). (7.40)

This is somewhat similar to (7.9) in a sense that the dependence structure between
different risks can be separated from the marginal processes. However, it is quite a
different concept. In particular, a Lévy copula for processes with positive jumps is
[0,∞)d → [0,∞) mapping while a standard copula (7.9) is [0, 1]d → [0, 1] map-
ping. Also, a Lévy copula controls dependence between frequencies and dependence
between severities (from different risks) at the same time.

The interpretation of this model is that dependence between different risks is
due to the loss events occurring at the same time. An important implication of this
approach is that a bank’s total loss can be modelled as a compound Poisson process
with some intensity and independent severities. If this common severity distribution
is sub-exponential then a closed-form approximation (3.72) can be used to estimate
the VaR of the total annual loss.

7.11 Structural Model with Common Factors

Common (systematic) factors are useful for identifying dependent risks and for
reducing the number of required correlation coefficients that must be estimated; for
example, see McNeil, Frey and Embrechts ([157], section 3.4). Structural models
with common factors to model dependence are widely used in credit risk; see indus-
try examples in McNeil, Frey and Embrechts ([157], section 8.3.3). For operational
risk, these models are qualitatively discussed in Marshall ([154], sections 5.3 and
7.4) and there are unpublished examples of practical implementation. As an exam-
ple, assume a Gaussian copula for the annual counts of different risks and consider
one common (systematic) factor Ωt affecting the counts as follows:

Y ( j)
t = ρ jΩt +

√
1 − ρ2

j W ( j)
t , j = 1, . . . , J ;

N (1)
t = P−1

1

(
FN (Y

( j)
t )

)
, . . . , N (J )

t = P−1
J

(
FN (Y

(J )
t )

)
. (7.41)
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Here, W (1)
t , . . . ,W (J )

t and Ωt are independent random variables from the standard
normal distribution. All random variables are independent between different time
steps t . Given Ωt , the counts are independent; unconditionally, the risk profiles
are dependent if the corresponding ρ j are nonzero. In this example, one should
identify J correlation parameters ρ j only instead of J (J − 1)/2 parameters of the
full correlation matrix.

Extension of this approach to many factors Ωt,k , k = 1, . . . , K is easy:

Y ( j)
t =

K∑

k=1

ρ jkΩt,k +
√√√√1 −

K∑

k=1

K∑

m=1

ρ jkρ jmCov[Ωt,kΩt,m]W ( j)
t , (7.42)

where (Ωt,1, . . . ,Ωt,K )
′ is from the standard multivariate normal distribution with

zero means, unit variances and some correlation matrix.
This approach can also be extended to introduce a dependence between both

severities and frequencies. For example, in the case of one factor, one can structure
the model as follows:

Y ( j)
t = ρ jΩt +

√
1 − ρ2

j W ( j)
t , j = 1, . . . , J ;

N ( j)
t = P−1

j

(
FN (Y

( j)
t )

)
, j = 1, . . . , J ;

R( j)
s (t) = ρ̃ jΩt +

√
1 − ρ̃2

j V ( j)
s (t), s = 1, . . . , N ( j)

t , j = 1, . . . , J ;
X ( j)

s (t) = F−1
j

(
FN (R

( j)
s (t))

)
, s = 1, . . . , N ( j)

t , j = 1, . . . , J.

Here W ( j)
t , V ( j)

s (t), s = 1, . . . , N ( j)
t , j = 1, . . . , J and Ωt are independent random

variables from the standard normal distribution. Again, the logic is that there is a
factor affecting severities and frequencies within a year such that conditional on this
factor, severities and frequencies are independent. The factor is changing stochas-
tically from year to year, so that unconditionally there is dependence between fre-
quencies and severities. Also note that in such setup, there is a dependence between
severities within a risk category.

Often, common factors are unobservable and practitioners use generic intuitive
definitions such as changes in political, legal and regulatory environments, economy,
technology, system security, system automation, etc. Several external and internal
factors are typically considered, so that some of the factors affect frequencies only
(e.g. system automation), some factors affect severities only (e.g. changes in legal
environment) and some factors affect both the frequencies and severities (e.g. sys-
tem security).

It is possible to derive a full joint distribution for all data (frequencies and sever-
ities) given model parameters; however, in general it will not have a closed form
because the latent variables (factors) should be integrated out. Thus standard meth-
ods cannot be used to maximise corresponding likelihood function and one should
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use more technically involved methods, for example a slice sampler used in Peters,
Shevchenko and Wüthrich [187].

The common factor models are supported by empirical evidence, reported
in Allen and Bali [8], that some operational risks are dependent on macroeco-
nomic variables such as GDP, unemployment, equity indices, interest rates, foreign
exchange rates and regulatory environment variables.

7.12 Stochastic and Dependent Risk Profiles

Consider the LDA for risk cells j = 1, . . . , J :

Z j (t) =
N j (t)∑

s=1

X (s)
j (t), t = 1, 2, . . . , (7.43)

where N j (t) ∼ P(·|λ( j)
t ) and X (s)

j (t) ∼ F(·|ψ( j)
t ). It is realistic to consider that

the risk profiles λt = (λ
(1)
t , . . . , λ

(J )
t ) and ψ t = (ψ

(1)
t , . . . , ψ

(J )
t ) are not constant

but changing in time stochastically due to changing risk factors (e.g. changes in
business environment, politics, regulations). That is, we may model risk profiles

λt =
(
λ
(1)
t , . . . , λ

(J )
t

)
and ψ t =

(
ψ
(1)
t , . . . , ψ

(J )
t

)
by random variables 	t =

(
Λ
(1)
t , . . . , Λ

(J )
t

)
and � t =

(
Ψ
(1)
t , . . . , Ψ

(J )
t

)
, respectively.

Now consider a sequence (	1,�1) , . . . , (	T +1,�T +1). It is naive to assume
that risk profiles of all risks are independent. Intuitively these are dependent,
for example, due to changes in politics, regulations, law, economy, technology
(sometimes called drivers or external risk factors) that jointly impact on many
risk cells. One can model this by assuming some copula C(·) and marginal dis-
tributions for the risk profiles 	t and � t (as developed in Peters, Shevchenko
and Wüthrich [187]), that gives the following joint distribution of the risk
profiles

F
(
λt ,ψ t

) = C
(

G1(λ
(1)
t ), . . . ,G J (λ

(J )
t ), H1(ψ

(1)
t ), . . . , HJ (ψ

(J )
t )

)
,

where G j (·) and Hj (·) are the marginal distributions of λ( j)
t and ψ( j)

t respectively.
Dependence between the risk profiles will induce a dependence between the

annual losses. This general model can be used to model the dependencies between
the annual counts; between the severities of different risks; between the severities
within a risk; and between the frequencies and severities. The likelihood of data
(counts and severities) can be derived but involves a multidimensional integral with
respect to latent variables (risk profiles). Advanced MCMC methods (such as the
slice sampler method described in Sect. 2.11.5 and used in Peters, Shevchenko and
Wüthrich [187]) can be used to fit the model.
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Stochastic modelling of risk profiles may appeal to intuition. For example, con-
sider the annual number of events for the j th risk modelled as random variables from

the Poisson distribution Poisson
(
Λ
( j)
t = λ

( j)
t

)
. Conditional on Λ( j)

t , the expected

number of events per year is Λ( j)
t . The latter is not only different for different banks

and different risks but also changes from year to year for a risk in the same bank.
In general, the evolution of Λ( j)

t , can be modelled as having deterministic (trend,
seasonality) and stochastic components. In actuarial mathematics this is called a
mixed Poisson model.

Remark 7.3 The use of common (systematic) factors is useful to identify dependent
risks and to reduce the number of required correlation coefficients that must be
estimated. For example, assuming a Gaussian copula between risk profiles, consider
one common factor Ωt affecting all risk profiles as follows:

Y (i)
t = ρiΩt +

√
1 − ρ2

i W (i)
t , i = 1, . . . , 2J ;

Λ
( j)
t = G−1(FN (Y

( j)
t )), Ψ

( j)
t = H−1(FN (Y

( j+J )
t )), j = 1, . . . , J,

where W (1)
t , . . . ,W (2J )

t and Ωt are independent random variables from the stan-
dard normal distribution and all random variables are independent between differ-
ent time steps t . Given Ωt , all risk profiles are independent but unconditionally
the risk profiles are dependent if the corresponding ρi are nonzero. One can con-
sider many factors: some factors affect frequency risk profiles, some factors affect
severity risk profiles, and some factors affect both frequency and severity risk
profiles.

As an example, consider the following possible model setup for stochastic and
dependent risk profiles, proposed in Peters, Shevchenko and Wüthrich [187].

Model Assumptions 7.1 Consider J risks each with a general model (7.2) for the
annual loss in year t , Z ( j)

t , and each modelled by severity X ( j)
s (t) and frequency

N ( j)
t . The frequency and severity risk profiles are modelled by random vectors

	t = (Λ
(1)
t , . . . , Λ

(J )
t )′ and � t = (Ψ

(1)
t , . . . , Ψ

(J )
t )′

respectively and parameterised by risk characteristics

θΛ = (θ
(1)
Λ , . . . , θ

(J )
Λ )′ and θΨ = (θ

(1)
Ψ , . . . , θ

(J )
Ψ )′

correspondingly. Additionally, the dependence between risk profiles is parame-
terised by θρ . Assume that, given θ = (θΛ, θΨ , θρ):
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1. The random vectors

(
�1,	1, N ( j)

1 , X ( j)
s (1) ; j = 1, . . . , J, s ≥ 1

)′

...(
�T +1,	T +1, N ( j)

T +1, X ( j)
s (T + 1) ; j = 1, . . . , J, s ≥ 1

)′

are independent. That is, between different years the risk profiles for frequencies
and severities as well as the number of losses and actual losses are independent.

2. The vectors (Ψ1,Λ1)
′ , . . . , (ΨT +1,ΛT +1)

′ are independent and identically dis-

tributed from a joint distribution with marginal distributions Λ( j)
t ∼ G

(
·|θ( j)

Λ

)
,

Ψ
( j)
t ∼ H

(
·|θ( j)

Ψ

)
and 2J -dimensional copula C(·|θρ).

3. Given 	t = λt and � t = ψ t , the compound random variables Z (1)t , . . . , Z (J )t

are independent with N ( j)
t and X ( j)

1 (t) , X ( j)
2 (t) , . . . independent; frequencies

N ( j)
t ∼ P

(
·|λ( j)

t

)
; and independent severities X ( j)

s (t) ∼ F
(
·|ψ( j)

t

)
, s ≥ 1.

Calibration of the above model requires estimation of θ . It can be treated within
a Bayesian framework as a random variable � to incorporate expert opinions and
external data into the estimation procedure (in Sect. 7.13, we describe the estimation
procedure for frequencies). Also note that for simplicity of notation, we assumed
one severity risk profileΨ ( j)

t and one frequency risk profileΛ( j)
t per risk – extension

is trivial if more risk profiles are required.
In general, a copula can be introduced between all risk profiles. For illustra-

tion, consider the bivariate case (J = 2). That is, we assume that the above Model
Assumptions 7.1 are fulfilled for the aggregated losses

Z (1)t =
N (1)

t∑

s=1

X (1)
s (t) and Z (2)t =

N (2)
t∑

s=1

X (2)
s (t) . (7.44)

As marginals, for j = 1, 2 we choose:

� N ( j)
t ∼ Poisson(λ( j)

t ) and X ( j)
s (t) ∼ LN (μ j (t), σ j (t));

� λ
(1)
t ∼ Gamma(2.5, 2), λ(2)t ∼ Gamma(5, 2), μ j (t) ∼ N (1, 1), σ j (t) = 2;

� The dependence between λ(1)t , λ(2)t , μ1(t) and μ2(t) is a Gaussian copula.

The parameters in the above marginal distributions correspond to θΛ and θΨ in
Model Assumptions 7.1. Here, we assume the parameters are known a priori.
In Sect. 7.13 we will demonstrate the Bayesian inference model and associated
methodology to perform an estimation of the model parameters.
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Given marginal and copula parameters
(
θΛ, θΨ , θρ

)
, the simulation of the annual

losses for year t = T + 1, when risk profiles are dependent via a copula, can be
accomplished using the following procedure.

Algorithm 7.3

1. Simulate 2J -variate u1, . . . , u J , v1, . . . , vJ from a 2J dimensional copula
C(·|θρ).

2. Calculate λ( j)
t = G−1

(
u j |θ( j)

Λ

)
andψ( j)

t = H−1
(
v j |θ( j)

Ψ

)
, j = 1, . . . , J .

3. Sample n( j)
t from P

(
·|λ( j)

t

)
, j = 1, . . . , J .

4. Sample independent x ( j)
s (t), s = 1, . . . , n( j)

t , j = 1, . . . , J from

F
(
·|ψ( j)

t

)
.

5. Calculate annual losses z( j)
t =

n( j)
t∑

s=1
x ( j)

s (t) , j = 1, . . . , J .

6. Repeat steps 1–5 K times to get K random samples of the annual losses z( j)
t .

Remark 7.4 Simulation of the random variates from a copula in step 1 is easy for
many types of copulas. In the case of Gaussian, t , Clayton and Gumbel copulas it
can be done using algorithms from Sect. 7.4; for other types, see McNeil, Frey and
Embrechts ([157], chapter 5) and references therein.

Using the above simulation procedure we can examine the strength of depen-
dence between the annual losses if there is a dependence between the risk profiles.
Figure 7.4 shows the induced dependence between the annual losses Z (1)t and Z (2)t
vs the copula dependence parameter for three cases:

� only λ(1)t and λ(2)t are dependent;
� only μ1(t) and μ2(t) are dependent;
� the dependence between λ(1)t and λ(2)t is the same as between μ1(t) and μ2(t).

In all cases the dependence is the Gaussian copula (7.12) denoted as C(u1, u2|ρ)
and parameterised by one parameter ρ which controls the degree of dependence. In
the case of the Gaussian copula, ρ is a non-diagonal element of correlation matrix
� in (7.12). The parameter ρ corresponds to θρ in Model Assumptions 7.1.

In each of these examples we vary the parameter of the copula model ρ from
weak to strong dependence. The annual losses are not Gaussian distributed and
to measure the dependence between the annual losses we use a non-linear rank
correlation measure, Spearman’s rank correlation, ρS[Z (1)t , Z (2)t ]. The Spearman’s
rank correlation between the annual losses was estimated using 10,000 simulated
years for each value of ρ. These numerical experiments show that the range of
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Fig. 7.4 Spearman’s rank correlation ρS[Z (1), Z (2)] between annual losses vs the Gaussian copula
parameter ρ: (�) – copula for the frequency profiles Λ(1)

t and Λ(2)
t ; (•) – copula for the severity

profiles Ψ (1)
t and Ψ (2)

t that correspond to μ1 and μ2 in the severity distribution respectively; (�) –
copula for λ1 and λ2 and the same copula for Ψ (1)

t and Ψ (2)
t

possible dependence between the annual losses of different risks induced by the
dependence between risk profiles is very wide and should be flexible enough to
model dependence in practice. Note that the degree of induced correlation can be
further extended by working with more flexible copula models at the expense of
estimation of a larger number of model parameters.

7.13 Dependence and Combining Different Data Sources

We have noted several times (see Chap. 4) that Basel II operational risk models
have to combine information from internal data, external data and expert opinions.
We should also note that experts in financial institutions often attempt to specify not
only frequency and severity distributions but also correlations between risks.

Combining of expert opinions with internal and external data is a difficult prob-
lem and complicated ad-hoc procedures are used in practice. Some prominent risk
professionals in industry have argued that statistically consistent combining of these
different data sources is one of the most pertinent and challenging aspects of opera-
tional risk modelling.

A Bayesian model to combine three data sources (internal data, external data
and expert opinion) for the case of a single risk cell was presented in Lambrig-
ger, Shevchenko and Wüthrich [141]. Then Peters, Shevchenko and Wüthrich [187]
extended this to a multivariate case. The main idea was to utilise Bayesian inference
to estimate the parameters of the model through the combination of expert opinions
and observed loss data (internal and external).

To illustrate the approach, consider modelling frequencies only. The estimation
procedure is presented for frequencies only. However it is not difficult to extend
the actual procedure to include severities. The case of single risk was presented
in Sect. 4.5.3. Here we extend this single risk cell frequency model to the general
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multiple risk cell setting. This will involve formulation of the multivariate posterior
distribution.

Model Assumptions 7.2 (Multiple risk cell frequency model) Consider J risk
cells. Assume that every risk cell j has a fixed, deterministic volume V ( j).

1. The risk characteristic �Λ = (Θ
(1)
Λ , . . . , Θ

(J )
Λ )′ has a J -dimensional prior den-

sity π(θΛ). The copula parameters θρ are modelled by a random vector �ρ with
the prior density π

(
θρ
)
; �Λ and �ρ are independent.

2. Given �Λ = θΛ and �ρ = θρ: the vectors (	1,N1)
′, . . . , (	T +1,NT +1)

′
are independent and identically distributed; and the intensities 	t =
(Λ

(1)
t , . . . , Λ

(J )
t )′ have a J -dimensional conditional density with marginal dis-

tributions

Λ
( j)
t ∼ G

(
·|θ( j)

Λ

)
= Gamma

(
α( j), θ

( j)
Λ /α( j)

)

and the copula c(·|θρ). Thus the joint density of 	t is given by

π(λt |θΛ, θρ) = c
(

G(λ(1)t |θ(1)Λ ), . . . ,G(λ(J )t |θ(J )Λ )|θρ
) J∏

j=1

π(λ
( j)
t |θ( j)

Λ ),

(7.45)

where π
(
·|θ( j)

Λ

)
denotes the marginal density.

3. Given �Λ = θΛ and 	t = λt , the frequencies are independent with

N ( j)
t ∼ Poisson(V ( j)λ

( j)
t ), j = 1, . . . , J.

4. There are expert opinions �k = (Δ
(1)
k , . . . , Δ

(J )
k )′, k = 1, . . . , K . Given

�Λ = θΛ: �k and (	t ,Nt )
′ are independent for all k and t; and Δ( j)

k are all
independent with

Δ
( j)
k ∼ Gamma

(
ξ ( j), θ

( j)
Λ /ξ ( j)

)
.

Prior Structure π (θΛ) and π
(
θρ
)
. In the following examples, a priori, the risk

characteristics Θ( j)
Λ are independent gamma distributed: Θ( j)

Λ ∼ Gamma(a( j),

1/b( j)) with hyper-parameters a( j) > 0 and b( j) > 0. This means that a priori
the risk characteristics for the different risk classes are independent. That is, if the
company has a bad risk profile in risk class j then the risk profile in risk class i is not
necessarily bad. Dependence is then modelled through the dependence between the
intensitiesΛ(1)

t , . . . , Λ
(J )
t . If this is not appropriate then, of course, this can easily be

changed by assuming dependence within �Λ. In the simulation experiments below
we consider cases when the copula is parameterised by a scalar θρ . Additionally,
we are interested in obtaining inferences on θρ implied by the data only so we use
noninformative constant prior on the range [−1, 1] in the case of Gaussian copula.
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Posterior density. The marginal posterior density of random vector
(
�Λ,Θρ

)′
given data of counts N1:T = n1:T and expert opinions �1:K = δ1:K is

π
(
θΛ, θρ |n1:T , δ1:K

) =
T∏

t=1

∫
π
(
θΛ, θρ,λt |n1:T , δ1:K

)
dλt

∝
T∏

t=1

⎛

⎝
∫ J∏

j=1

exp
{
−V ( j)λ

( j)
t

} (V ( j)λ
( j)
t )n

( j)
t

n( j)
t !

π(λt |θΛ, θρ) dλt

⎞

⎠

×
K∏

k=1

J∏

j=1

(
(ξ ( j)/θ

( j)
Λ )ξ

( j)

 (ξ ( j))
(δ
( j)
k )ξ

( j)−1 exp
{
−δ( j)

k ξ ( j)/θ
( j)
Λ

})

×
J∏

j=1

(b( j))a
( j)

 (a( j))
(θ
( j)
Λ )a

( j)−1 exp
{
−b( j)θ

( j)
Λ

}
π
(
θρ
)
. (7.46)

Here, for convenience, we use notation x1:M = {x1, x2, . . . , xM }. For example,

N1:T =
{(

N (1)
1 , . . . , N (J )

1

)′
,
(

N (1)
2 , . . . , N (J )

2

)′
, . . . ,

(
N (1)

T , . . . , N (J )
T

)′}

are the annual number of losses for all risk profiles and years; and

�1:K =
{(
Δ
(1)
1 , . . . , Δ

(J )
1

)′
,
(
Δ
(1)
2 , . . . , Δ

(J )
2

)′
, . . . ,

(
Δ
(1)
K , . . . , Δ

(J )
K

)′}

are the expert opinions on mean frequency intensities for all experts and risk profiles.

7.13.1 Bayesian Inference Using MCMC

Posterior (7.46) involves integration and sampling from this distribution is dif-
ficult. The common trick is to sample from the desired target posterior density
π(θΛ, θρ,λ1:T |n1:T , δ1:K ). Then marginally taken samples of �Λ and Θρ are sam-
ples from π

(
θΛ, θρ |n1:T , δ1:K

)
which can be used to make inferences for required

quantities.
Sampling from π

(
θΛ, θρ,λ1:T |n1:T , δ1:K

)
via closed-form inversion or rejection

sampling is still not an option. To accomplish this task, one can develop a specialised
MCMC method. One possible way is to use Gibbs sampling methodology. This
requires the knowledge of full conditional distributions that can be derived for this
particular model (see Appendix B in Peters, Shevchenko and Wüthrich [187]) as:
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π(θ
( j)
Λ |θ (− j)

Λ ,λ1:T ,n1:T , δ1:K , θρ) ∝ π(λ1:T |θ (− j)
Λ , θ

( j)
Λ , θρ)π(δ1:K |θ (− j)

Λ , θ
( j)
Λ )

×π(θ (− j)
Λ |θ( j)

Λ )π(θ
( j)
Λ ), (7.47)

π(λ
( j)
t |θΛ,λ(−t,− j)

1:T ,n1:T , δ1:K , θρ) ∝ π(n1:T |λ(−t,− j)
1:T , λ

( j)
t )

×π(λ(− j)
t , λ

( j)
t |θΛ, θρ), (7.48)

π
(
θρ |θΛ,λ1:T ,n1:T , δ1:K

) ∝ π(λ1:T |θΛ, θρ)π
(
θρ
)
. (7.49)

Here, λ(−i,− j)
1:T , θ (− j)

Λ and λ(− j)
t are the exclusion operators:

� λ
(−2,−1)
1:T =

{(
λ
(1)
1 , . . . , λ

(J )
1

)′
,
(
λ
(2)
2 , . . . , λ

(J )
2

)′
, . . . ,

(
λ
(1)
T , . . . , λ

(J )
T

)′}

are frequency intensities for all risk profiles and years, excluding risk profile 1
from year 2;

� θ
(− j)
Λ =

{
θ
(1)
Λ , . . . , θ

( j−1)
Λ , θ

( j+1)
Λ , . . . , θ

(J )
Λ

}
; and similar for λ(− j)

t .

These full conditionals do not take standard explicit closed forms and typically
the normalising constants are not known in closed form. Therefore this will exclude
straightforward inversion or basic rejection sampling being used to sample from
these distributions. One may adopt a Metropolis-Hastings within Gibbs sampler to
obtain samples; see Sect. 2.11.3. To utilise such algorithm it is important to select
a suitable proposal distribution. Quite often in high dimensional problems such as
ours, this requires tuning of the proposal for a given target distribution. Hence, one
incurs a significant additional computational expense in tuning the proposal distri-
bution parameters off-line so that mixing of the resulting Markov chain is sufficient.
An alternative not discussed here would include an adaptive Metropolis-Hastings
within Gibbs sampling algorithm; see Atchade and Rosenthal [11] and Rosenthal
[205]. Here we take a different approach which utilises the full conditional distri-
butions, known as a univariate slice sampler described in Sect. 2.11.5. Note that we
only need to know the target full conditional posterior up to normalisation. This is
important in this example since solving the normalising constant in this model is not
possible analytically.

Algorithm 7.4 (Slice sampling)

1. For l = 0, initialise the parameter vector
(
θΛ,0,λ1:T,0, θρ,0

)
randomly or

deterministically.
2. Repeat while l ≤ L

a. Set
(
θΛ,l ,λ1:T,l , θρ,l

) = (
θΛ,l−1,λ1:T,l−1, θρ,l−1

)
.

b. Sample j uniformly from set {1, 2, . . . , J }.
Sample new parameter value θ̃ ( j)

Λ from the full conditional posterior dis-

tribution π
(
θ
( j)
Λ |θ (− j)

Λ,l , λ1:T,l ,n1:T , δ1:K , θρ,l
)

.

Set θ( j)
Λ,l = θ̃

( j)
Λ .
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c. Sample j uniformly from set {1, 2, . . . , J } and t uniformly from set
{1, . . . , T }.
Sample new parameter value λ̃( j)

t from the full conditional posterior dis-

tribution π
(
λ
( j)
t |θΛ,l, λ(−t,− j)

1:T,l ,n1:T , δ1:K , θρ,l
)

.

Set λ( j)
t,l = λ̃

( j)
t .

d. Sample new parameter value θ̃ρ from the full conditional posterior dis-
tribution π

(
θρ |θΛ,l, λ1:T,l ,n1:T , δ1:K

)
.

Set θρ,l = θ̃ρ .

3. l = l + 1 and return to 2.

The sampling from the full conditional posteriors in stage 2 uses a univariate
slice sampler. For example, to sample the next iteration of the Markov chain

from π
(
θ
( j)
Λ |θ (− j)

Λ,l ,λ1:T,l ,n1:T , δ1:K , θρ
)

:
� Sample u from a uniform distribution

U
(

0, π
(
θ
( j)
Λ,l |θ (− j)

Λ,l , λ1:T,l ,n1:T , δ1:K , θρ
))
. (7.50)

� Sample θ̃ ( j)
Λ uniformly from the intervals (level set)

A =
{
θ
( j)
Λ : π

(
θ
( j)
Λ |θ (− j)

Λ,l , λ1:T,l ,n1:T , δ1:K , θρ
)
> u

}
. (7.51)

The level sets A are determined, for example, by a stepping out and a shrink-
age procedure, the details of which can be found in Neal ([170], p. 713,
Figure 1); see also Sect. 2.11.5.

7.13.2 Numerical Example

Consider the model with Model Assumptions 7.2 in the case of two risks with
dependent intensities and set risk cell volumes V (1) = V (2) = 1. Here we estimate
Θ
(1)
Λ ,Θ

(2)
Λ and Θρ jointly. We set the true values of Θ(1)

Λ and Θ(2)
Λ to be θ(1)true = 5

and θ(2)true = 10 respectively. Also, we assume a Gaussian copula with ρ = 0.9, that
is, the true value ofΘρ is 0.9. For the expert opinions on the true parameters, assume

opinion that underestimates risk profile 1, Δ(1)
1 = 2, and opinion that overestimates

the risk profile 2, Δ(2)
1 = 13. The model parameters were set as follows:

� ξ (1) = ξ (2) = 2, α(1) = 2, α(2) = 2 – parameters of the conditional distributions
for the intensities and expert opinions,
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� a(1) = a(2) = 2, b(1) = 0.4, b(2) = 0.2 – parameters of the prior distribution for
Θ
(1)
Λ and Θ(2)

Λ .

Then, the simulation experiment steps are as follows:

1. Using the true values for the model parameters, simulate a dataset n1:T of the
annual number of events over T = 20 years.

2. Obtain correlated MCMC samples from the target posterior distribution after
discarding burnin samples,

{
θΛ,l ,λ1:T,l , θρ,l

}
, l = 1,001, . . . , 50,000. Here, we

use the slice sampler Algorithm 7.4.
3. Estimate desired posterior quantities such as posterior mean of parameters of

interest and posterior standard deviations.

Further analysis can be done by repeating steps 1–3 for independent data realisations
and then analysing average of the results; these can be found in Peters, Shevchenko
and Wüthrich [187].

Results for this simulation experiment as a function of data size are given in
Table 7.1. That is, we study the accuracy of the parameter estimates as the number
of observations increases. A typical run with 5 years of data and 1 expert in the
bivariate case for 50,000 simulations took approximately 50 s and for the case of 10
risk profiles it took approximately 43 min2. The standard errors in the estimates (due
to finite number of MCMC iterations) were in the range 1–5% and are not presented
in the table.

These results demonstrate that the model and estimation methodology are suc-
cessfully able to estimate jointly the risk profiles and the correlation parameter. It
is also clear that with few observations, for example T ≤ 5, and a vague prior for
the copula parameter, it will be difficult to accurately estimate the copula param-
eter. This is largely due to the fact that the posterior distribution in this case is
diffuse. However, as the number of observations increases the accuracy of the esti-
mate improves and the estimates are reasonable in the case of 15 or 20 years of

Table 7.1 Posterior estimates for Θ(1)
Λ ,Θ

(2)
Λ and copula parameter Θρ . In this case a single data

set is generated using Gaussian (ρ = 0.9) copula model as specified. Posterior standard deviations
are given in brackets next to estimate. Joint estimation was used

Year 1 2 5 10 15 20

E[Θ(1)
Λ ] 2.83 4.49 3.31 4.88 4.36 5.07

stdev[Θ(1)
Λ ] 1.74 2.02 1.38 1.29 1.10 1.09

E[Θ(2)
Λ ] 10.23 10.85 8.72 8.91 8.58 9.94

stdev[Θ(2)
Λ ] 3.92 3.52 2.95 2.12 2.04 1.85

E[Θρ ] 0.21 0.47 0.61 0.66 0.70 0.74
stdev[Θρ ] 0.54 0.39 0.30 0.24 0.19 0.15

2 Computing time is quoted for a standard PC, Intel Core 2 with 2.40 GHz CPU and 2.39 GB of
RAM.
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data. Additionally, we could further improve the accuracy of this prediction if we
incorporated expert opinions into the prior specification of the copula parameter,
instead of using a vague prior.

Other results presented in Peters, Shevchenko and Wüthrich [187] demonstrate
that, as expected from credibility theory, the joint estimation is better than the
marginal, that is, the posterior standard deviations for Θ(1)

Λ and Θ(2)
Λ are less when

joint estimation is used. In addition, the rate of convergence of the posterior mean
for ΘΛ to the true value is faster under the joint estimation and there is a strong
correlation between Θ(1)

Λ and Θ(2)
Λ . Thus the standard practice in the industry of

performing marginal estimation of risk profiles may lead to incorrect results.
Overall, this example demonstrates how the combination of all the relevant

sources of data can be achieved and that a sampling methodology has the ability to
estimate jointly all the model parameters, including the copula parameter. One can
extend this methodology to more sophisticated and flexible copula-based models
with more than one parameter. This should be relatively trivial since the method-
ology developed applies directly. However, the challenge in the case of a more
sophisticated copula model relates to finding a relevant choice of prior distribution
on the correlation structure.

7.14 Predictive Distribution

Conceptually, quantification of the predictive distribution (accounting both for pro-
cess and parameter uncertainties) for a bank’s annual loss in the case of many risks
is similar to the case of single risk considered in Sect. 4.7. If correlation modelling
cannot be done then, as required by Basel II, the 0.999 quantile should be quantified
for each risk cell as described in Sect. 4.7; the total capital is just a sum of these
quantiles. In this section, we assume that the dependence model between risks is
developed.

Consider the annual loss in a bank over the next year, ZT +1. Denote the density of
the annual loss, conditional on parameters θ , as f (zT +1|θ). Typically, practitioners
will take point estimates θ̂ of all model parameters; conditional on these point esti-
mates construct the predictive density f (zT +1 |̂θ). Then, the latter is used to calculate
risk measures such as the 0.999 quantile, Q0.999(̂θ). Typically, given observations,
the MLEs θ̂ are used as the “best fit” point estimators for θ .

However, the parameters θ are unknown and it is important to account for this
uncertainty when the capital charge is estimated (especially for risks with small
datasets) as discussed in Shevchenko [215]. If the Bayesian inference approach is
taken, then the parameter θ is modelled by random variable � and the predictive
density (accounting for parameter uncertainty) of ZT +1, given all data Y used in the
estimation procedure, is

f (zT +1| y) =
∫

f (zT +1|θ)π(θ |y)dθ . (7.52)
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Here, π(θ |y) is the posterior density for �. Also, it is assumed that, given parame-
ters �, ZT +1 and Y are independent. The 0.999 quantile of the predictive distribu-
tion

Q P
q = F−1

ZT +1|Y(q) = inf{z ∈ R : Pr[ZT +1 > z|Y] ≤ 1 − q}, (7.53)

where q = 0.999, can be used as a risk measure for capital calculations; also see
formula (4.125).

Another approach under a Bayesian framework to account for parameter uncer-
tainty is to consider a quantile Qq(θ) of the conditional annual loss density f (·|θ):

Qq(�) = F−1
ZT +1|�(q) = inf{z ∈ R : Pr[ZT +1 > z|�] ≤ 1 − q}, (7.54)

where we are interested in q = 0.999. Then, given that� is distributed from π(θ |y),
one can find the distribution of Qq = Qq(�) and form a predictive interval to
contain the true value of Qq with some probability3. Under this approach, one can
argue that the conservative estimate of the capital charge accounting for parameter
uncertainty should be based on the upper bound of the constructed interval. Note that
specification of the confidence level is required and it might be difficult to argue that
the commonly used confidence level 0.95 is good enough for estimation of the 0.999
quantile.

In operational risk, it seems that the objective should be to estimate the full pre-
dictive density (7.52) for the annual loss ZT +1 over next year conditional on all
available information and then estimate the capital charge as a quantile Q P

0.999 of
this distribution (7.53).

Consider all risk cells in the bank. Assume that multivariate model is specified.
That is, the frequency p(·|α) and severity f (·|β) densities for each cell are chosen
and the dependence structure between risks parameterised by some parameter vector
ρ is specified. Also, suppose that the posterior π(θ |y), θ = (α,β, ρ) is estimated.
Then, the predictive density (7.52) for the annual loss across all risk cells over next
year can be calculated using Monte Carlo procedure with the following logical steps.

Algorithm 7.5 (Monte Carlo predictive distribution for many risks)

1. For k = 1, . . . , K

a. Simulate all model parameters (including the dependence parameters)
from their joint posterior π(θ |y). If the posterior is not known in closed
form then this simulation can be done using MCMC (see Sect. 2.11). For

3 This is similar to forming a confidence interval in the frequentist approach using the distribution
of Q0.999 (̂θ), where θ̂ is treated as random.
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example, one can run MCMC for K iterations beforehand and simply
take the k-th iteration parameter values.

b. Given model parameters θ = (α,β, ρ), simulate the annual frequencies
N ( j) and severities X ( j)

s , s = 1, . . . , N ( j) for all risks j = 1, . . . , J
with a chosen dependence structure. Calculate the bank annual loss Zk =
Z (1)+· · ·+ Z (J ), where Z ( j) = ∑N ( j)

s=1 X ( j)
s is the annual loss due to the

j-th risk.

2. Next k

Remark 7.5 Obtained annual losses (total across all risks for next year) Z1, . . . , ZK

are samples from the predictive density (7.52). Full specification of the dependence
model is required. In general, sampling from the joint posterior of all model param-
eters can be accomplished via MCMC; see Peters, Shevchenko and Wüthrich [187],
and Dalla Valle [68]. The 0.999 quantile Q P

0.999 and other distribution characteristics
can be estimated using the simulated samples in the usual way; see Sect. 3.2.

Note that in the above Monte Carlo procedure the risk profile θ is simulated
from its posterior for each simulation. Thus we model both the process uncertainty,
which comes from the fact that frequencies and severities are random variables, and
the parameter risk (parameter uncertainty), which comes from the fact that we do
not know the true values of θ . Using samples from the joint posterior distribution of
the model parameters, we can construct the predictive distribution by removing the
parameter uncertainty from the model considered, including the uncertainty arising
from the dependence parameters.

Example 7.4 As an example, consider Model Assumptions 7.2. Then the predictive
density for the annual loss ZT +1 is

π (zT +1|n1:T , δ1:K ) =
∫
π
(
zT +1|θΛ, θρ

)
π
(
θΛ, θρ |n1:T , δ1:K

)
dθΛdθρ. (7.55)

Here, we used the model assumptions that given �Λ and Θρ we have that ZT +1
is independent from the data (N1:T ,�1:K ). To obtain samples from this predictive
distribution, add simulation of

(
θΛ, θρ

)
from the posterior distribution (e.g. using

slice sampler methodology) as an extra step before Step 1 in Algorithm 7.3. Specifi-
cally, if one wants to simulate L annual losses from the predictive distribution, then
this would involve first running the slice sampler for L iterations after burnin. Then,
for each iteration l one would use the state of the Markov chain

(
θΛ,l , θρ,l

)
in the

simulation Algorithm 7.3.
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Problems4

7.1 (��) Prove that the tail dependence λ for two risks whose dependence is specified
by the t-copula with ν degrees of freedom and correlation coefficient ρ is

λ = 2tν+1

(
−√(ν + 1)(1 − ρ)/

√
1 + ρ

)
,

where tν(·) is the standard univariate t-distribution.

7.2 (�) Assume that we have two independent risks, X ∼ Pareto(β, 1) and
Y ∼ Pareto(β, 1), where Pareto(β, a) = 1 − (x/a)−β and β = 2. Calculate
the VaRq [X + Y ] using Monte Carlo and find the diversification Dq as defined in
(7.7) for several values of the quantile level q in the range [0.5, 0.999].
7.3 (�) Assume that there are four independent risks: Xi ∼ LN (0, 2), i = 1, . . . , 4.
Calculate the VaRq [X1+· · ·+X4] using Monte Carlo and find the diversification Dq

as defined in (7.7) for several values of the quantile level q in the range [0.5, 0.999].
Repeat calculations for the case when the risk 4 is replaced by X4 ∼ LN (0, 4).

7.4 (��) Simulate 10,000 realisations of two risks

Z (1) =
N (1)∑

i=1

X (1)
i and Z (2) =

N (2)∑

i=1

X (2)
i ,

where

� X ( j)
s ∼ LN (0, 2), j = 1, 2, s ≥ 1, all independent

� N (1) ∼ Poisson(2) and N (2) ∼ Poisson(2); and the dependence structure of
(N (1), N (2)) is the Gaussian copula with correlation parameter ρ.

� Frequencies (N (1), N (2)) and severities X ( j)
s are independent.

Using the obtained sample, estimate: a) linear correlation ρ[Z (1), Z (2)]; b) Spear-
man’s rank correlation ρS[Z (1), Z (2)]; c) Kendall’s tau ρτ [Z (1), Z (2)]. Perform these
calculations for several values of the copula parameter ρ in the range [−1; 1].
7.5 (��) Simulate 10,000 realisations of three risks (X1, X2, X3), whose marginal
distributions are Xi ∼ LN (0, 1) and dependence structure is Gaussian copula
C�(·). Assume that all non-diagonal coefficients of the copula correlation matrix
� are the same and equal to ρ = 0.5. Using the obtained sample, estimate:
(a) linear correlations ρ[Xi , X j ]; (b) Spearman’s rank correlation ρS[Xi , X j ];
(c) Kendall’s tau ρτ [Xi , X j ]. Compare the estimated correlations with each other
and with ρ = 0.5. Explain the observed differences. Are these due to numerical
error (due to the finite number of simulations) only?

4 Problem difficulty is indicated by asterisks: (�) – low; (��) – medium, (� � �) – high.
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7.6 (��) Simulate 10,000 realisations of three risks (X1, X2, X3), whose marginal
distributions are Xi ∼ LN (0, 1) and dependence structure is t-copula C�

ν (·).
Assume that all non-diagonal coefficients of the copula correlation matrix � are
the same and equal to ρ = 0.5 and degrees-of-freedom parameter ν = 2. Using
the obtained sample, estimate: (a) linear correlations ρ[Xi , X j ]; (b) Spearman’s
rank correlation ρS[Xi , X j ]; (c) Kendall’s tau ρτ [Xi , X j ]. Compare the estimated
correlations with each other and with ρ = 0.5. Explain the observed differences.
Are these due to numerical error (due to the finite number of simulations) only?
Compare the results with corresponding estimates from Problem 7.5.

7.7 (��) Suppose that the dependence structure of three risks (X1, X2, X3) is the
Gaussian copula C�(·) and margins are Xi ∼ LN (0, 1). Suppose that Spearman’s
rank correlation is ρS[Xi , X j ] = 0.5 for all i = j . Find the Gaussian copula cor-
relation matrix � and simulate 10,000 realisations of these risks. Using simulated
samples, estimate ρS[Xi , X j ] and compare with the true value ρS[Xi , X j ] = 0.5.

7.8 (��) Suppose that the dependence structure of two risks (X1, X2) is the t-copula
C�
ν (·) with ν = 2, and margins are Xi ∼ LN (0, 1). Suppose that Kendall’s

rank correlation is ρτ [X1, X2] = 0.5. Find the t-copula correlation matrix �

and simulate 10,000 realisations of these risks. Using simulated samples, estimate
ρτ [X1, X2] and compare with the true value ρτ [X1, X2] = 0.5.

7.9 (��) Simulate 10,000 realisations of two risks (X1, X2) whose margins are
Xi ∼ LN (0, 1) and the dependence structure is Clayton copula with the parameter
ρ = 5. Using the simulated samples, estimate: (a) linear correlations ρ[Xi , X j ]; (b)
Spearman’s rank correlation ρS[Xi , X j ]; (c) Kendall’s tau ρτ [Xi , X j ]; (d) the lower
and upper tail dependencies.

7.10 (��) Simulate 10,000 realisations of two risks (X1, X2) whose margins are
Xi ∼ LN (0, 1) and the dependence structure is Gumbel copula with the parameter
ρ = 5. Using the simulated samples, estimate: (a) linear correlations ρ[Xi , X j ]; (b)
Spearman’s rank correlation ρS[Xi , X j ]; (c) Kendall’s tau ρτ [Xi , X j ]; (d) the lower
and upper tail dependencies.

7.11 (� � �) Simulate T = 200 independent realisations of two risks (X (1), X (2))

whose margins are X (i) ∼ LN (0, 1) and the dependence structure is Gaussian
copula with the correlation parameter ρ = 0.5. Assume now that ρ is unknown
while parameters of the marginal distributions are known. Using the simulated sam-
ples (x (1)t , x (2)t ), t = 1, . . . , T as the observed data, estimate parameter ρ and its
uncertainty utilising the posterior distribution obtained from the MCMC slice sam-
pler algorithm; see Sect. 2.11.5. Assume that the prior for ρ is U(−1, 1). Repeat
estimation using random walk Metropolis-Hastings algorithm; see Sect. 2.11.3.

7.12 (� � �) Simulate T = 200 realisations of two risks (X (1), X (2)) whose margins
are X (i) ∼ LN (μi , σi ) with μi = 0 and σi = 1; and the dependence structure is
Gaussian copula with the correlation parameter ρ = 0.5. Assume now that ρ,μi and
σi are unknown. Using the simulated samples (x (1)t , x (2)t ), t = 1, . . . , T as the data,
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estimate parameters ρ, μi , σi and their uncertainties utilising posterior distribution
obtained from the random walk Metropolis-Hastings algorithm; see Sect. 2.11.3.
Assume constant priors. Estimate predictive distribution of ZT +1 = X (1)

T +1 + X (2)
T +1

and its 0.999 quantile. Compare the estimated quantile with the true value of the
0.999 quantile.



Appendix A
List of Distributions

Here we list common statistical distributions used throughout the book. The often
used indicator symbol 1{.} and gamma function  (α) are defined as follows.

Definition A.1 The indicator symbol is defined as

1{.} =
{

1, if condition in {.} is true,
0, otherwise.

(A.1)

Definition A.2 The standard gamma function is defined as

 (α) =
∫ ∞

0
tα−1e−t dt, α > 0. (A.2)

A.1 Discrete Distributions

A.1.1 Poisson Distribution, Poi sson(λ)

A Poisson distribution function is denoted as Poisson(λ). The random variable
N has a Poisson distribution, denoted N ∼ Poisson(λ), if its probability mass
function is

p(k) = Pr[N = k] = λk

k! e−λ, λ > 0 (A.3)

for all k ∈ {0, 1, 2, . . .}. Expectation, variance and variational coefficient of a ran-
dom variable N ∼ Poisson(λ) are

E[N ] = λ, Var[N ] = λ, Vco[N ] = 1√
λ
. (A.4)
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A.1.2 Binomial Distribution, Bin(n, p)

The binomial distribution function is denoted as Bin(n, p). The random variable
N has a binomial distribution, denoted N ∼ Bin(n, p), if its probability mass
function is

p(k) = Pr[N = k] =
(

n
k

)
pk(1 − p)n−k, p ∈ (0, 1), n ∈ 1, 2, . . . (A.5)

for all k ∈ {0, 1, 2, . . . , n}. Expectation, variance and variational coefficient of a
random variable N ∼ Bin(n, p) are

E[N ] = np, Var[N ] = np(1 − p), Vco[N ] =
√

1 − p

np
. (A.6)

Remark A.1 N is the number of successes in n independent trials, where p is the
probability of a success in each trial.

A.1.3 Negative Binomial Distribution, Neg Bin(r, p)

A negative binomial distribution function is denoted as NegBin(r, p). The random
variable N has a negative binomial distribution, denoted N ∼ NegBin(r, p), if its
probability mass function is

p(k) = Pr[N = k] =
(

r + k − 1
k

)
pr (1 − p)k, p ∈ (0, 1), r ∈ (0,∞) (A.7)

for all k ∈ {0, 1, 2, . . .}. Here, the generalised binomial coefficient is

(
r + k − 1

k

)
=  (k + r)

k! (r) , (A.8)

where  (r) is the gamma function.
Expectation, variance and variational coefficient of a random variable N ∼

NegBin(r, p) are

E[N ] = r(1 − p)

p
,Var[N ] = r(1 − p)

p2
, Vco[N ] = 1√

r(1 − p)
. (A.9)

Remark A.2 If r is a positive integer, N is the number of failures in a sequence of
independent trials until r successes, where p is the probability of a success in each
trial.
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A.2 Continuous Distributions

A.2.1 Uniform Distribution, U(a, b)

A uniform distribution function is denoted as U(a, b). The random variable X has a
uniform distribution, denoted X ∼ U(a, b), if its probability density function is

f (x) = 1

b − a
, a < b (A.10)

for x ∈ [a, b]. Expectation, variance and variational coefficient of a random variable
X ∼ U(a, b) are

E[X ] = a + b

2
,Var[X ] = (b − a)2

12
, Vco[X ] = b − a√

3(a + b)
. (A.11)

A.2.2 Normal (Gaussian) Distribution, N (μ, σ)

A normal (Gaussian) distribution function is denoted as N (μ, σ ). The random vari-
able X has a normal distribution, denoted X ∼ N (μ, σ ), if its probability density
function is

f (x) = 1√
2πσ 2

exp

(
− (x − μ)2

2σ 2

)
, σ 2 > 0, μ ∈ R (A.12)

for all x ∈ R. Expectation, variance and variational coefficient of a random variable
X ∼ N (μ, σ ) are

E[X ] = μ, Var[X ] = σ 2, Vco[X ] = σ/μ. (A.13)

A.2.3 Lognormal Distribution, LN(μ, σ)

A lognormal distribution function is denoted as LN (μ, σ ). The random variable
X has a lognormal distribution, denoted X ∼ LN (μ, σ ), if its probability density
function is

f (x) = 1

x
√

2πσ 2
exp

(
− (ln(x)− μ)2

2σ 2

)
, σ 2 > 0, μ ∈ R (A.14)

for x > 0. Expectation, variance and variational coefficient of a random variable
X ∼ LN (μ, σ ) are
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E[X ] = eμ+ 1
2σ

2
, Var[X ] = e2μ+σ 2

(eσ
2 − 1), Vco[X ] =

√
eσ 2 − 1. (A.15)

A.2.4 t Distribution, T (ν, μ, σ 2)

A t distribution function is denoted as T (ν, μ, σ 2). The random variable X has a t
distribution, denoted X ∼ T (ν, μ, σ 2), if its probability density function is

f (x) =  ((ν + 1)/2)

 (ν/2)

1√
νπ

(
1 + (x − μ)2

νσ 2

)−(ν+1)/2

(A.16)

for σ 2 > 0, μ ∈ R, ν = 1, 2, . . . and all x ∈ R. Expectation, variance and varia-
tional coefficient of a random variable X ∼ T (ν, μ, σ 2) are

E[X ] = μ if ν > 1,

Var[X ] = σ 2 ν

ν − 2
if ν > 2, (A.17)

Vco[X ] = σ

μ

√
ν

ν − 2
if ν > 2.

A.2.5 Gamma Distribution, Gamma(α, β)

A gamma distribution function is denoted as Gamma(α, β). The random variable X
has a gamma distribution, denoted as X ∼ Gamma(α, β), if its probability density
function is

f (x) = xα−1

 (α)βα
exp(−x/β), α > 0, β > 0 (A.18)

for x > 0. Expectation, variance and variational coefficient of a random variable
X ∼ Gamma(α, β) are

E[X ] = αβ, Var[X ] = αβ2, Vco[X ] = 1/
√
α. (A.19)

A.2.6 Weibull Distribution, Weibull(α, β)

A Weibull distribution function is denoted as W eibull(α, β). The random variable
X has a Weibull distribution, denoted as X ∼ W eibull(α, β), if its probability
density function is

f (x) = α

βα
xα−1 exp(−(x/β)α), α > 0, β > 0 (A.20)
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for x > 0. The corresponding distribution function is

F(x) = 1 − exp
(−(x/β)α) , α > 0, β > 0. (A.21)

Expectation and variance of a random variable X ∼ W eibull(α, β) are

E[X ] = β (1 + 1/α), Var[X ] = β2
(
 (1 + 2/α)− ( (1 + 1/α))2

)
.

A.2.7 Pareto Distribution (One-Parameter), Pareto(ξ, x0)

A one-parameter Pareto distribution function is denoted as Pareto(ξ, x0). The ran-
dom variable X has a Pareto distribution, denoted as X ∼ Pareto(ξ, x0), if its
distribution function is

F(x) = 1 −
(

x

x0

)−ξ
, x ≥ x0, (A.22)

where x0 > 0 and ξ > 0. The support starts at x0, which is typically known and
not considered as a parameter. Therefore the distribution is referred to as a single
parameter Pareto. The corresponding probability density function is

f (x) = ξ

x0

(
x

x0

)−ξ−1

. (A.23)

Expectation, variance and variational coefficient of X ∼ Pareto(ξ, x0) are

E[X ] = x0
ξ

ξ − 1
if ξ > 1,

Var[X2] = x2
0

ξ

(ξ − 1)2(ξ − 2)
if ξ > 2,

Vco[X ] = 1√
ξ(ξ − 2)

if ξ > 2.

A.2.8 Pareto Distribution (Two-Parameter), Pareto2(α, β)

A two-parameter Pareto distribution function is denoted as Pareto2(α, β). The ran-
dom variable X has a Pareto distribution, denoted as X ∼ Pareto2(α, β), if its
distribution function is

F(x) = 1 −
(

1 + x

β

)−α
, x ≥ 0, (A.24)
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where α > 0 and β > 0. The corresponding probability density function is

f (x) = αβα

(x + β)α+1
. (A.25)

The moments of a random variable X ∼ Pareto2(α, β) are

E[Xk] = βkk!
∏k

i=1(α − i)
; α > k.

A.2.9 Generalised Pareto Distribution, GPD(ξ, β)

A GPD distribution function is denoted as G P D(ξ, β). The random variable X has
a GPD distribution, denoted as X ∼ G P D(ξ, β), if its distribution function is

Hξ,β(x) =
{

1 − (1 + ξ x/β)−1/ξ , ξ = 0,
1 − exp(−x/β), ξ = 0,

(A.26)

where x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when ξ < 0. The corresponding
probability density function is

h(x) =
{

1
β
(1 + ξ x/β)−

1
ξ
−1
, ξ = 0,

1
β

exp(−x/β), ξ = 0.
(A.27)

Expectation, variance and variational coefficient of X ∼ G P D(ξ, β), ξ ≥ 0, are

E[Xn] = βnn!∏n
k=1(1 − kξ)

, ξ <
1

n
; E[X ] = β

1 − ξ
, ξ < 1;

Var[X2] = β2

(1 − ξ)2(1 − 2ξ)
, Vco[X ] = 1√

1 − 2ξ
, ξ <

1

2
. (A.28)

A.2.10 Beta Distribution, Beta(α, β)

A beta distribution function is denoted as Beta(α, β). The random variable X has a
beta distribution, denoted as X ∼ Beta(α, β), if its probability density function is

f (x) =  (α + β)

 (α) (β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, (A.29)

for α > 0 and β > 0. Expectation, variance and variational coefficient of a random
variable X ∼ Beta(α, β) are
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E[X ] = α

α + β
, Var[X ] = αβ

(α + β)2(1 + α + β)
, Vco[X ] =

√
β

α(1 + α + β)
.

A.2.11 Generalised Inverse Gaussian Distribution, GIG(ω, φ, ν)

A GIG distribution function is denoted as G I G(ω, φ, ν). The random variable X
has a GIG distribution, denoted as X ∼ G I G(ω, φ, ν), if its probability density
function is

f (x) = (ω/φ)(ν+1)/2

2Kν+1
(
2
√
ωφ

) xνe−xω−x−1φ, x > 0, (A.30)

where φ > 0, ω ≥ 0 if ν < −1; φ > 0, ω > 0 if ν = −1; φ ≥ 0, ω > 0 if ν > −1;
and

Kν+1(z) = 1

2

∫ ∞

0
uνe−z(u+1/u)/2du.

Kν(z) is called a modified Bessel function of the third kind; see for instance
Abramowitz and Stegun ([3], p. 375).

The moments of a random variable X ∼ G I G(ω, φ, ν) are not available in a
closed form through elementary functions but can be expressed in terms of Bessel
functions:

E[Xα] =
(
φ

ω

)α/2 Kν+1+α
(
2
√
ωφ

)

Kν+1
(
2
√
ωφ

) , α ≥ 1, φ > 0, ω > 0.

Often, using notation Rν(z) = Kν+1(z)/Kν(z), it is written as

E[Xα] =
(
φ

ω

)α/2 α∏

k=1

Rν+k

(
2
√
ωφ

)
, α = 1, 2, . . .

The mode is easily calculated from ∂
∂x xνe−(ωx+φ/x) = 0 as

mode[X ] = 1

2ω

(
ν +

√
ν2 + 4ωφ

)
,

that differs only slightly from the expected value for large ν, i.e.

mode[X ] → E[X ] for ν → ∞.
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A.2.12 d-variate Normal Distribution, Nd(μ,�)

A d-variate normal distribution function is denoted as Nd(μ,�), where μ =
(μ1, . . . μd)

′ ∈ R
d and � is a positive definite matrix (d × d). The corresponding

probability density function is

f (x) = 1

(2π)d/2
√

det�
exp

(
−1

2
(x − μ)′�−1(x − μ)

)
, x ∈ R

d , (A.31)

where�−1 is the inverse of the matrix�. Expectations and covariances of a random
vector X = (X1, . . . , Xd)

′ ∼ Nd(μ,�) are

E[Xi ] = μi , Cov[Xi , X j ] = &i, j , i, j = 1, . . . , d. (A.32)

A.2.13 d-variate t-Distribution, Td(ν, μ,�)

A d-variate t-distribution function with ν degrees of freedom is denoted as
Td(ν,μ,�), where ν > 0, μ = (μ1, . . . μd)

′ ∈ R
d is a location vector and �

is a positive definite matrix (d × d). The corresponding probability density function
is

f (x) =  
(
ν+d

2

)

(νπ)d/2 
(
ν
2

)√
det�

(
1 + (x − μ)′�−1(x − μ)

ν

)− ν+d
2

, (A.33)

where x ∈ R
d and �−1 is the inverse of the matrix �. Expectations and covariances

of a random vector X = (X1, . . . , Xd)
′ ∼ Td(ν,μ,�) are

E[Xi ] = μi , if ν > 1, i = 1, . . . , d;
Cov[Xi , X j ] = ν&i, j/(ν − 2), if ν > 2, i, j = 1, . . . , d. (A.34)



Appendix B
Selected Simulation Algorithms

B.1 Simulation from GIG Distribution

To generate realisations of a random variable X ∼ GIG(ω, φ, ν) with ω, φ > 0, a
special algorithm is required because we cannot invert the distribution function in
closed form. The following algorithm can be found in Dagpunar [67]:

Algorithm B.1 (Simulation from GIG distribution)
1. α = √

ω/φ; β = 2
√
ωφ,

m = 1
β

(
ν +√

ν2 + β2
)

,

g(y) = 1
2βy3 − y2

(
1
2βm + ν + 2

)
+ y

(
νm − β

2

)
+ 1

2βm.

2. Set y0 = m,
While g(y0) ≤ 0 do y0 = 2y0,
y+: root of g in the interval (m, y0),
y−: root of g in the interval (0,m).

3. a = (y+ − m)
( y+

m

)ν/2 exp
(
−β

4

(
y+ + 1

y+ − m − 1
m

))
,

b = (y− − m)
( y−

m

)ν/2 exp
(
−β

4

(
y− + 1

y− − m − 1
m

))
,

c = −β
4

(
m + 1

m

)
+ ν

2 ln(m).

4. Repeat U, V ∼ U(0, 1), Y = m + a U
V + b 1−V

U ,

until Y > 0 and − ln U ≥ − ν
2 ln Y + 1

4β
(

Y + 1
Y

)
+ c,

Then X = Y
α

is GIG(ω, φ, ν).

To generate a sequence of n realisations from a GIG random variable, step 4
is repeated n times.
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B.2 Simulation from α-stable Distribution

To generate realisations of a random variable X ∼ αStable(α, β, σ, μ), defined by
(6.56), a special algorithm is required because the density of α-stable distribution
is not available in closed form. An elegant and efficient solution was proposed in
Chambers, Mallows and Stuck [50]; also see Nolan [176].

Algorithm B.2 (Simulation from α-stable distribution)
1. Simulate W from the exponential distribution with mean = 1.
2. Simulate U from U

(−π
2 ,

π
2

)
.

3. Calculate

Z =

⎧
⎪⎪⎨

⎪⎪⎩

Sα,β
sin(α(U+Bα,β ))
(cos U )1/α

(
cos(U−α(U+Bα,β ))

W

)−1+ 1
α
, α = 1,

2
π

((
π
2 + βU

)
tan U − β ln

(
πW cos U
π+2βU

))
, α = 1,

where

Sα,β = (1 + β2 tan2(πα/2))
1

2α ,

Bα,β = 1

α
arctan(β tan(πα/2)).

The obtained Z is a sample from αStable(α, β, 1, 0).
4. Then,

X =
⎧
⎨

⎩

μ+ σ Z , α = 1,

μ+ σ Z + 2
π
βσ ln σ, α = 1,

is a sample from αStable(α, β, σ, μ).

Note that there are different parameterisations of the α-stable distribution. The
algorithm above is for representation (6.56).
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Problems of Chapter 2

2.1 The likelihood function for independent data N = {N1, N2, . . . , NM } from
Poisson(λ) is

�n(λ) =
M∏

i=1

e−λ λni

ni ! ,

ln �n(λ) = −λM + ln λ
M∑

i=1

ni −
M∑

i=1

ln(ni !).

The MLE Λ̂ maximising the log-likelihood function ln �N(λ) is

Λ̂ = 1

M

M∑

i=1

Ni .

Using the properties of the Poisson distribution, E[Ni ] = Var[Ni ] = λ, it is easy to
get

E[Λ̂] = 1

M

M∑

i=1

E[Ni ] = λ;

Var[Λ̂] = 1

M2

M∑

i=1

Var[Ni ] = λ

M
.

To estimate the variance of Λ̂ using a normal approximation, find the information
matrix

I(λ) = − 1

M
E

[
∂2 ln �N(λ)

∂λ2

]
= 1

Mλ2
E

[
M∑

i=1

Ni

]
= 1

λ
.
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Thus, using asymptotic normal distribution approximation,

Var[Λ̂] ≈ I−1(λ)/M = λ/M.

In both cases the variance depends on unknown true parameter λ that can be esti-
mated, for a given realisation n, as λ̂.

2.4 Consider

L(u) = u1L1 + · · · + u J L J ,

where u ∈ R
J and set

φu(t) = �[t L(u)]], t > 0.

Then using homogeneity property �[t L] = t�[L],
dφu(t)

dt
= �[L(u)].

From another side

dφu(t)

dt
=

J∑

j=1

�[L(x)]
∂x j

∣∣∣∣
x=tu

u j =
J∑

j=1

�[L(u)]
∂u j

u j ,

where to get the last equality we used homogeneity property. Thus

�[L(1)] =
J∑

j=1

�[L1 + · · · + L j + hL j ]
∂h

∣∣∣∣
h=0

completes the proof.

2.5 The sum of risks is gamma distributed:

Z1 + Z2 + Z3 ∼ Gamma(α1 + α2 + α3, β).

Thus VaR0.999[Zi ] = F−1
G (0.999|αi , β) and

VaR0.999[Z1 + Z2 + Z3] = F−1
G (0.999|α1 + α2 + α3, β),

where F−1
G (·|α, β) is the inverse of the Gamma(α, β). Using, for example, MS

Excel spreadsheet function GAMMAINV(·), find

VaR0.999[Z1] ≈ 5.414, VaR0.999[Z2] ≈ 6.908,

VaR0.999[Z3] ≈ 8.133, VaR0.999[Z1 + Z2 + Z3] ≈ 11.229.
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The sum of VaRs is VaR0.999[Z1] + VaR0.999[Z2] + VaR0.999[Z3] ≈ 20.455 and
thus the diversification is ≈ 45%.

Problems of Chapter 3

3.1 By definition of the expected shortfall we have

E[Z |Z > L] = 1

1 − H(L)

∞∫

L

zh(z)dz

= E[Z ]
1 − H(L)

− 1

1 − H(L)

L∫

0

zh(z)dz.

Substituting h(z) calculated via characteristic function (3.11) and changing vari-
able x = t × L , we obtain

∫ L

0
zh(z)dz = 2

π

L∫

0

z

∞∫

0

Re[χ(t)] cos(t z)dtdz

= 2L

π

∞∫

0

Re[χ (x/L)]
[

sin(x)

x
− 1 − cos(x)

x2

]
dx .

Recognizing that the term involving sin(x)/x corresponds to H(L), we obtain

E[Z |Z > L] = 1

1 − H(L)

⎡

⎣E[Z ] − H(L)L + 2L

π

∞∫

0

Re[χ(x/L)]1 − cos x

x2
dx

⎤

⎦ .

Problems of Chapter 4

4.1 The linear estimator θ̂tot = w1θ̂1 + · · · + wK θ̂K is unbiased, i.e. E[θ̂tot ] = θ , if
w1 + · · · + wK = 1 because E[θ̂k] = θ . Minimisation of the variance

Var[θ̂tot ] = w2
1σ

2
1 + · · · + w2

Kσ
2
K

under the constraint w1 + · · · + wK is equivalent to unconstrained minimisation of
the

Ψ = Var[θ̂tot ] − λ(w1 + · · · + wK ),
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which is a well-known method of Lagrange multipliers. Optimisation of the above
requires solution of the following equations:

∂Ψ

∂wi
= 2wiσ

2
i − λ = 0, i = 1, . . . , K ;

∂Ψ

∂λ
= −(w1 + · · · + wK ) = 0.

That gives

1

2
λ =

(
K∑

k=1

(
1/σ 2

k

))−1

, wi = 1/σ 2
i

∑K
k=1

(
1/σ 2

k

) .

4.2 Given Θ = θ , the joint density of the data at N = n is

f (n|θ) ∝
T∏

i=1

θni (1 − θ)Vi −ni .

From Bayes’s theorem, the posterior density of θ is π(θ |n) ∝ f (n|θ)π(θ), where
π(θ) is the prior density. Thus

π(θ |n) ∝ θα−1(1 − θ)β−1
T∏

i=1

θni (1 − θ)Vi −ni

= θαT −1(1 − θ)βT −1,

where

αT = α +
T∑

i=1

ni , βT = β +
T∑

i=1

Vi −
T∑

i=1

ni .

Thus the posterior distribution of Θ is Beta(αT , βT ).

Problems of Chapter 5

5.1 Denote the data above L as X̃ = (X̃1, X̃2, . . . , X̃k)
′. These random variables are

independent with a common density f (x |ξ)/(1 − F(L|ξ)), x ≥ L , where f (x |ξ) is
the density of the Pareto distribution F(x |ξ) = 1 − (x/a)−ξ , x ≥ a > 0. Thus the
likelihood function for given data above L is
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�̃x(ξ) =
k∏

i=1

f (̃xi |ξ)
1 − F(L|ξ) .

Substituting the Pareto density

f (x |ξ) = ξ

a

( x

a

)−ξ−1

gives

ln �̃x(ξ) = K ξ ln(L/a)+ K ln(ξ/a)− (ξ + 1)
K∑

i=1

ln(̃xi/a).

Then, solving ∂ ln �̃x(ξ)/∂ξ = 0, we obtain

ξ̂MLE =
(

− ln(L/a)+ 1

K

K∑

i=1

ln(̃xi/a)

)−1

.

Problems of Chapter 6

6.1 The probability generating function of the negative binomial, NegBin(r, p), is
ψ(t) = (1 − (t − 1)(1 − p)/p)−r . Then, using formula (6.29), we obtain that the
distribution of the maximum loss over one year is

FM (x) = ψ(F(x)) =
(

1 + 1 − p

p
(1 − F(x))

)−r

,

where F(x) = 1 − exp(−x/β) is the severity distribution. The distribution of the
maximum loss over m years is simply

(FM (x))
m =

(
1 + 1 − p

p
(1 − F(x))

)−r×m

.

Problems of Chapter 7

7.1 Consider random variables U1 and U2 from the t-copula C (t)
ν,ρ(u1, u2). By defi-

nition, the lower tail dependence is

λL = lim
q→0+

C (t)
ν,ρ(q, q)

q
.
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Due to the radial symmetry of the t-copula, the upper tail dependence λU is the
same as λL . Applying L’Hôpital’s rule, that is, taking derivatives of the nominator
and denominator,

λL = lim
q→0+

dC (t)
ν,ρ(q, q)

dq
= lim

q→0+{Pr[U2 ≤ q|U1 = q] + Pr[U1 ≤ q|U2 = q]}.

Let X1 = F (−1)
ν (U1) and X2 = F (−1)

ν (U2), where Fν(·) is a standard univariate
t-distribution with ν degrees of freedom, T (ν, 0, 1). Thus (X1, X2)

′ is from a bivari-
ate t-distribution T2(ν, 0,�), where � is a correlation matrix with off-diagonal
element ρ. Then, one can calculate the conditional density of X2 given X1 = x1:

f (x2|x1) = f (x1, x2)

f (x1)
∝
(

1 + ν + 1

(1 − ρ2)(ν + x2
1)

(x2 − ρx1)
2

ν + 1

)−(ν+2)/2

.

This can be recognised as a univariate t distribution T (ν + 1, μ, σ 2) with the mean

μ = ρx1, σ 2 = (1−ρ2)(ν+x2
1 )

ν+1 and ν + 1 degrees of freedom. Thus

Pr[X2 ≤ x |X1 = x] = Fν+1

(
(x − xρ)

√
ν + 1√

(1 − ρ2)(ν + x2)

)
.

Finally, using that Pr[X1 ≤ x |X2 = x] = Pr[X2 ≤ x |X1 = x] and taking limit
x → −∞ we get

λ = 2Fν+1

(
−
√
(ν + 1)(1 − ρ)

1 + ρ

)
.
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