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Foreword

By inviting me to write a preface, the organizers of the event in honour of
Edwin Diday, have expressed their affection and I appreciate this very much.
This gives me an opportunity to express my friendship and admiration for
Edwin Diday, and I wrote this foreword with pleasure. My first few meetings
with Edwin Diday date back to 1965 through 1975, days of the development of
French statistics. This was a period when access to computers revolutionized
the practice of statistics. This does not refer to individual computers or to
terminals that have access to powerful networks. This was the era of the first
university calculation centres that one accessed over a counter. One would
deposit cards on which program and data were punched in and come back a
few hours or days later for the results. Like all those who used linear data
analysis, the computer enabled me to calculate for each data set the value
of mathematical objects (eigenvalues and eigenvectors for example) whose
optimality properties had been demonstrated by mathematicians. It was al-
ready a big step to be able to do this in concrete experimental situations.
With Dynamic Clustering Algorithm, Edwin Diday allowed us to discover
that computers could be more than just a way of giving numerical values to
known mathematical objects. Besides the efficiency of the solutions he built,
he led us to integrate the access to computers differently in the research and
practice of data analysis. I think that quite a few works undertaken ever
since in France on statistical methods using computers intensively, benefited
knowingly or not from the path he had opened.

Thinking about Edwin Diday, I recall his qualities of initiative which greatly
benefited the community recognized under the banner of French Data Anal-
ysis between 1970 and 1990. He was the founder of club MODULAD, a place
of exchange and dissemination of software that each member had created
making the methods he had developed accessible to others. It was also a
place for valorisation, since these pieces of software put in a coherent package
and widely distributed allowed an easy access to recent developments. We
should also count Edwin Diday amongst the founders of the Société Franco-
phone de Classification. In this organization which he supported and fought
for, we recognize his concern to initiate exchanges between French and Fran-
cophone, who were preoccupied with the classification methods. These ex-
changes which sometimes appeared blunt were ultimately constructive. It is
surely this same concern but encompassing a larger field which led him in
1982 to take charge of coordinated research groups (GRECO) recognized by
the Centre National de la Recherche Scientifique (CNRS). Under the title
Data Analysis and Computer Science, GRECO offered to participate “in the
general renewal of the ways of thinking in the field of reduction, description,
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explanation and synthesis of variations observed on experimental data or ob-
servations”, which renewal was due to Computer Science. It brought together
“researchers from different backgrounds: statistics, numerical analysis, graph
theory, combinatorics and for the younger ones, training in the line of Com-
puter Science”. The above citation is an extract of a note that I had the
pleasure of co-signing with Edwin Diday and Yves Schektman to introduce
GRECO to CNRS. In this charge, Edwin Diday knew how to be a unifier who
gave everyone the opportunity to express themselves. Here, once again he was
a precursor. Due to his reputation and his work for the benefit of our associ-
ation, he got CNRS to accept the research subject of data analysis and had
thus prepared some of the teams to get a seal of approval by the organization.

I would like to recall a fourth initiative of Edwin Diday, that of the “Ver-
sailles congress” that he regularly organized between 1977 and 1985. Since
1970, the French statistics has tried to organize itself. The Association des
Statisticiens Universitaires (ASU) which later became Association for Statis-
tics and its Uses, maintaining the same acronym, contributed towards the
fight against isolation of its teams dispersed all over the territory. The Ver-
sailles Congress had the same vision but brought something more to it: an
opening to statisticians from abroad. We have had the opportunity, thanks to
Edwin Diday, to be able to listen to colleagues from all over Europe, United
States and Japan. Many joint initiatives and friendships were developed and
have continued by the way of exchange of persons or groups, for example with
our English, Italian or Japanese colleagues. Forever a researcher, forever an
innovator of ideas for the benefit of the community, Edwin Diday continues
even today with the same earnestness and the same success. His personal
page on his university website announces 12 articles in journals between 2000
and 2005 and I have not counted the other publications. He explores the field
of symbolic data analysis contributing to the extension of data analysis to
knowledge analysis. He was a man of the avant-garde in the beginning of his
career, and he continues to be so.

Please allow me to conclude this foreword by thinking about Edwin Diday as
a man and the enrichment one gets from being close to him. If his concerns of
research or service to the community make him sometimes inattentive, they
never prevented him from being attentive to other people, thoughtful of all
and always available to discuss a new idea, to evaluate a thesis, or to answer
favourably an invitation of scientific co-operation. This open-mindedness, this
generosity, are deeply rooted in a true humanism from which my relations
with Edwin Diday have always benefited. It is a pleasure for me to express
it here.

Montpellier, France, August 2007 Yves Escoufier
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In the year 1972 Edwin Diday presented a dissertation in which he proposed a
new method for clustering objects described by data, a very fashionable topic
at that time, often termed as ’automatic classification’. His approach was de-
signed for a multitude of data types and therefore had a great impact on the
development of data analysis in France and influenced the professional career
of many researchers in data analysis, pattern recognition, and informatics.
In particular, a large number of PhD students, naturally from France but
also from all over the world (e.g. Vietnam, Portugal, Brazil, Algeria, Turkey)
were supervised by Edwin Diday (among them the editors of this volume).
Since 35 years, Edwin Diday was active in the field of clustering and data
analysis, and by introducing the concept of ’symbolic data’ as early as in
1987, he has also shaped and developed the data-analytic approaches that
are known today under the name ’Symbolic Data Analysis’. Other important
contributions were the consideration of pyramids as an extension of classical
hierarchical classifications, and more recently, spatial clustering embedded
in three-dimensional space. During the last few years, he was intensively in-
volved in international projects related to symbolic data analysis.

Edwin Diday was also active in institutions and scientific societies and also
the organiser of many conferences and workshops. One of his important ac-
tivities was the foundation of the Société Francaise de Classification, later on
termed Société Francophone de Classification (SFC), and he was also one of
the presidents of this society. Given that the SFC was a founding member of
the International Federation of Classification Societies (IFCS), he was among
the organisers of the 3rd conference of the IFCS that took place in Paris in
the year 1993. Moreover, he was very much involved in establishing the series
of conferences 'Data Analysis and Informatics’ from 1977 to 1984, and later
on he organised two conferences on his favourite topic “Symbolic-numeric
data analysis and learning” (1989 and 1991).

Given such a broad range of activities, colleagues and friends wanted to hon-
our the outstanding work and the scientific career of Edwin Diday by editing
a Festschrift in which to collect a series of articles related to his scientific
work and its further developments. Many colleagues wanted to contribute to
this Festschrift and so we could compile an attractive and actual choice of
papers that provides a broad view on the domains were Edwin Diday was
active in research or practice, in particular on data analysis, knowledge ex-
traction, and symbolic data analysis. We have clustered these contributions
in the following seven chapters:
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Analysis of Symbolic Data

Clustering Methods

Conceptual Analysis of Data
Consensus Methods

Data Analysis, Data Mining, and KDD
Dissimilarities: Structures and Indices
Multivariate Statistics

Herewith, all authors, all editors and the members of the organising com-
mittee would like to congratulate Edwin Diday for his scientific work and his
commitment to the development of data analysis as well as to the education
of a large list of young (and meanwhile often established) students and re-
searchers. We all hope that Edwin will be active and healthy for many years
and influence the data analysis world also in the future.

Finally, the editors would like to thank all who have contributed to the design
and production of this Festschrift, to all authors for their cooperation, as well
as to Springer Verlag, in particular Dr. Martina Bihn and Christiane Beisel,
for their help concerning all aspects of publication.

Aachen, Montreal, Paris, Porto, Recife, Rennes
September 2007

Patrice Bertrand
Hans-Hermann Bock
Paula Brito

Guy Cucumel
Francisco de Carvalho
Ywes Lechevallier
Bruno Leclerc

Gilbert Saporta
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Dependencies and Variation Components of
Symbolic Interval-Valued Data

Lynne Billard

Department of Statistics, University of Georgia, Athens, GA 30602, USA
lynne@stat.uga.edu

Abstract. In 1987, Diday added a new dimension to data analysis with his funda-
mental paper introducing the notions of symbolic data and their analyses. He and
his colleagues, among others, have developed innumerable techniques to analyse
symbolic data; yet even more is waiting to be done. One area that has seen much
activity in recent years involves the search for a measure of dependence between two
symbolic random variables. This paper presents a covariance function for interval-
valued data. It also discusses how the total, between interval, and within interval
variations relate; and in particular, this relationship shows that a covariance func-
tion based only on interval midpoints does not capture all the variations in the
data. While important in its own right, the covariance function plays a central role
in many multivariate methods.

1 Introduction

Diday’s (1987) seminal paper introduced the concept of symbolic data, bring-
ing to data analysis a new way to think of data, their structures and how to
undertake appropriate statistical analyses.

In this paper, the focus is on descriptive statistics for quantitative data.
Bertrand and Goupil (2000) introduced expressions for the symbolic sample
mean and symbolic sample variance for interval-valued observations. Billard
and Diday (2003) extended these to histogram-valued observations. Many
examples with and without the presence of logical dependency rules can be
found in Billard and Diday (2006).

Finding an expression for the symbolic sample covariance Cov(Y},,Y},)
between the random variables Y}, and Y}, has been more elusive. While this
statistic is important in its own right, it is particularly important through
its role in a variety of statistical methodologies for multivariate data such
as regression and principal components. For example, if Y5 is a predictor
variable and Y; is a dependent variable, a simple linear regression model

Yi =01+ B2Ya+e 1)
has as its parameter estimators

Bo = Cov(Y1,Y2)/Sy,, (1 =Y1— oY, (2)
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where Yj is the sample mean of Y}, j = 1,2, and 3%2 is the sample variance
of Y5. For (p — 1) predictor variables, the linear regression model is

Vi=pfi+6Ya+ - +5Y, +e 3)

with 8 = (81, ..., 0p) estimated by
B=(X'X)"HX'Y). (4)

Equivalently, (3) can be written as
Vi-Yi=Mh2-Yo)+ 454, -F,) +e (5)

with 31 = }71—@2172—~ . ~—§p17p. Then, writing (X —X) = (YQ—YQ,...,YP—
Y,) and (Y —Y) = (Y1 — Y1), we have that the parameters 8 = (0, ..., p)
are estimated by

=X -X)(X-X) X -X)(Y-Y) (6)

where it is assumed (X — X)) is a nonsingular matrix. Since the theoretical
covariance is

OOU()/jl?)/jQ) = E{O/Jl - 17]1)(162 - 17j2)}7

it follows that the (data) terms in (4) or (6) are functions of, or directly
involve, the sample estimates of the covariance function.

Studies to date are generally based on the form (3) and hence (4) starting
with Billard and Diday (2000, 2002) and most recently with De Carvalho
et al. (2004) and Lima Neto et al. (2004, 2005). Published results in effect
use a version of the midpoint of the intervals to calculate these covariance
related terms. Billard and Diday (2000, 2002) then fit the resulting regression
equation to the interval endpoints of the predictor variables X to obtain
interval predictions for Y = Y;. De Carvalho et al. (2004) and Lima Neto
et al. (2004, 2005) transform each Y; variable into Y; = (Y1,, Ya;) where Y7,
is the interval midpoint and Y3; is the interval length; and then undertake
a classical analysis on these 2p variables. This is clearly an improvement
over the Billard and Diday approach. Unlike Billard and Diday (2002), this
range approach has not yet been extended to histogram-valued data. Neither
approach however fully accounts for the internal variation of the observed
intervals.

More recently, Marino and Palumbo (2003), Lauro and Gioia (2006) and
Corsaro and Marino (2006) have used the interval arithmetic results of Moore
(1966) to fit a linear regression model to interval-valued data. This produces
a set of regression lines, each fitted to specific values inside the observed
interval(s). This is computationally intensive. This approach brings in the
internal variations indirectly through this set of regressions. The ideas of
interval arithmetic unfortunately can only be applied to ”short” intervals;
nor do they extend to histogram-valued data.
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These methods have also been applied to principal components. The De
Carvalho and Lima Neto et al. approach, using both the interval midpoints
and lengths, was used in a principal component analysis by Palumbo and
Lauro (2003); and the interval arithmetic method was used by Gioia and
Lauro (2006) and Lauro and Gioia (2006). The same limitations encountered
in the respective regression methodologies apply here.

Clearly, a covariance measure that more truly reflects the internal vari-
ations of each observation is needed. One such measure is introduced for
interval-valued data in Section 2. The proposed covariance function reflects
both the variations internal to the observations and those across the obser-
vations. They are then compared with those based on the mid-point values
only in Section 3.

2 Dependence for interval-valued observations

Let Y = (Y1,...,Y,) be a p-dimensional random variable with realizations
Y, =&, = (..., up) where &,; = [au;j,buj], j=1,...,p,and u € E =
{1,...,m}. These [ay;, by;] intervals can be opened or closed at either end.

When a,; = by, the particular realization is a classical point observation.
Bertrand and Goupil (2000) obtained, under the assumption that possible
realizations on [a, b] are uniformly distributed U ~ (a, b), the symbolic sample

mean as )
Y; :%Z(buj+auj)7 (7)

ueE

and the symbolic sample variance as

1

1
5]2 = 3m Z(bij + bujau; + aij) - W[Z(buy‘ + ay;))? (8)
uelE uek

The expression for the sample variance sz in (8) can be rewritten as

L S (G = )% + (0 — Vi) (bug — V) + (buy — V)2 (9)
uekR

S2

77 3m

Then, by analogy with (9), for j = j1, ja, for interval-valued random variables,
we let the symbolic sample covariance between Y;, and Y;, be

1
COU(}/}l’}/}z) = Im Z G, Gj, [le Qj2]1/2 (10)

ueE

with
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where the overall sample mean Y; is given in (7) and the observation mean
is

Y, = (auj + buj)/2. (13)

The symbolic sample correlation coefficient is

r(Yji, Yse) = Cov(Yy, ¥5,)/ (S,550)- (14)

Special cases
By comparing (9) and (10), we observe that the special case

Cou(Y;.Y;) = 52

holds. Also, when the data are all classically valued, i.e., when a,; = b,,; for
all u and 7, (10) becomes

1 _ _
COUO/J'UE/JQ) = Ez(ifjl - )/Jl)()/J - 1/J2) (15)

which is the familiar formula for the covariance function for classical data.

The sign coefficient G

It is first noted, by comparing (9) and (11), that Q; is always positive as
it is simply the squared term that enters into the expression for the sample
variance S’j2 for each observation u. However, covariance functions can take
positive or negative values.

To understand that the G; of (12) satisfy this property, let us consider
the two sets of classical data shown in Fig. 1(a) and Fig. 1(b). Also shown
is the fit of the simple regression line (1). For classical data, the estimator of
the slope 32 (as in equation (2)) can be written as

Bo = Z(Yul — Y1) (Yuz — Y2)/ Z(Yu? ~Ys)? (16)

u

The sample means (Y7, Ys) fall on the regression line itself. Consider the
data of Fig. 1(a) for which the slope is 82 > 0. It is easy to see that whenever
a particular observation is such that Y,; < Y3, the factor (Y1 — Y1) in (16)
is negative, and it is positive whenever Y,; > Yi; likewise for Y». In this case,
the tendency is that the (Y,; — Y1) and (Yy2 — Y2) terms will be both positive
or both negative so that the contribution to the numerator is positive. The
reverse tendency holds for the data in Fig. 1(b) where 82 < 0. Here, for
observations with Yo < Ys, the (Y1 — }71) terms tend to be positive, to give
contributions to the numerator in (16) that are negative; and likewise, for
observations with Yo > Ys. (This "tendency” for the +/- sign value is just
that, a tendency and not an absolute; see the observation ”z” in each case
where the signs do not take these "tendency” values). Finally, note that for
classical data, Y, = Y,;, so that (12) pertains.
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Fig. 1. Classical regression slopes.
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Fig. 2. Interval data regression slope.

Fig. 2 shows a set of interval-valued data (Y7,Y2) along with the sample
means (Y1, Y5) and the simple linear regression line (1). Note that, unlike for
classical data, (Y1, Ys) does not necessarily take a value exactly on this regres-
sion line. However, the discussion for classical observations in the previous
paragraph carries through analogously where now the observation midpoints
Yuj replace Yy, 7 = 1,2.
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An example

The data of Table 1 relate to six sets of performers engaged in a certain
dance activity. The random variable Y5 = Oxygen Intake is a measure of the
oxygen capacity of a person and Y; = Duration is the time a performer can
keep performing (before a prescribed level of exhaustion sets in). Typically
the better a person’s oxygen capacity (i.e., the less required per unit time),
the fitter that person is and so is able to perform longer than those with less
capacity.

Yi Y,
Duration |Oxygen Intake
u| [@ut, bui] [@u1, bul]
1] [11, 11.2] [67, 68]
2([10.3, 11.3] [62, 64]
3| [11, 11.2] [57, 59]
4([11.5, 12.0] [63, 55]
5|[11.1, 11.6] [65, 57]
6| [12, 12.1] [50, 52]

Table 1. Dance Activity.

Substituting into (7), we obtain the sample means
Yi =11.358, Y, = 58.250,
and substituting into (10) we obtain the sample covariance function as
Cov(Y1,Ys) = —1.963.
The symbolic sample variances are found from (9) as
S? =0.202, S37 = 30.938.
Hence, from (14) the symbolic sample correlation coefficient is

r(Y1,Ys) = —0.786.

An adjustment

A feature that is not uncommon for interval-valued data is that a few
of the observations can be such that one or both of the means Y;, and Yj,
can fall inside an observation. Fig. 3 plots the actual observations for the
data of Table 1, and also shows the respective means Y; and Y. The mean
Y; = 11.358 bisects the fifth (u = 5) observation with regard to its Y =
(a15,b15) = (11.1,11.6) value; and the mean Yo = 58.250 bisects the third
(u = 3) observation on its Yo = (az3, beg) = (57,59) value.
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Fig. 3. Dance dataset.

Consider the Y3 random variable for this (u = 3) observation. Here, Y5 =
58.250. From (12), for this observation, Go = —1; and as written Go = —1 for
all Y5 values. A refinement is to bisect this observation into two components
viz., u = 31 (say) with observed values ([11.0, 11.2], [567, 58.25]) and u =
32 with observed values ([11.0, 11.2], [58.25, 59]). These components carry
weights w = 0.625 and w = 0.375, respectively. Likewise, the fifth (u = 5)
observation is bisected with regard to the Y7 random variable, to give two
”observations” u = 51 and u = 52 taking values, ([11.1, 11.358], [55, 57]) and
([11.358, 11.6], [65, 57]) with weights 0.516 and 0.484, respectively. The re-
maining observations take weight w = 1. This is summarized as the adjusted
data of Table 2.

Also shown in Table 2 are the signs G; for the unadjusted and adjusted
data. In this way, the adjusted data have signs that now more accurately
reflect the sign needed for all possible observations in an interval. When,
both Y;, and Y}, fall inside an observed rectangle, then bisection relative to
both Y}, and Y}, occurs, to give four components on an observation, in a
completely analogous manner for two observation components. Clearly, for
classical observations, this step does not apply.

Substituting the refined values into (10) and using the weight factor w,
we obtain the adjusted covariance and hence correlation coefficient as

Cov(Y1,Ys) = —2.035, r(Y1,Ys) = —0.815.

The sample means and variances are unchanged.
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Adjustment
Duration |Oxygen Intake|Weight| No Yes
u Yy Y w |G1 G2|G1 G2
1(11.0 11.2 (67 68 1 11 -1 1
2110.3 11.3 (62 64 1 11 |-11
31{11.0 11.2 |57 58.25 625 -1 -1 (-1 -1
32(11.0 11.2 |[58.25 59 .375 .11
4|11.5 2.0 |53 55 1 1 -1|1 -1
51({11.1 11.358|55 57 516 -1 -1 -1 -1
52(11.358 11.6 |55 57 484 1 -1
6112.0 121 |50 52 1 1 -1|1 -1

Table 2. Adjusted Dance Dataset.

3 Within, between and total variations

Let us return to the symbolic sample variance expression (9). We can show
that, writing Sum of Squares for Y; as S5},

TotalSS; = WithinSS; + BetweenSS; (17)

where TotalS.S; = mS?, with S? defined as in (9),

. 1 _ f _ _
WithinS5; = 2 D U@wj = Yag)® + (@us = V) (buj = Yag )+ (buj = V)] (18)
uekr

and
BetweenSS,; = Z[(auj +buj)/2 — YJ]Q (19)
uek

where Y,,; and Y; are as defined in (13) and (7), respectively.

Each term of the summation in (18) corresponds to the internal varia-
tion of the single observation u. When a,; = by; = Yuj for all u, we have
WithinS'S; = 0 reflecting that for classical data there is no internal variation.
The BetweenSS; of (19) is the sum of squares between the midpoints of all
the observations in E. Therefore, methods based on the interval midpoints
are using this BetweenSS; to express the variation across the observations,
when it is the total variation (i.e., TotalSS;) that should be used. A similar
expression to (17) holds for the Sum of Products SP between Y}, and Yj,.

An example

This phenomenon is illustrated by the data of Table 1. Table 3 gives
the TotalSS, WithinSS and BetweenSS for each of the random variables Y;
and Y, and also the corresponding SPs for the joint (Y7, Ys) variable. It is
evident that these satisty the relationship (17). Dividing each by m (= 6 here),
we obtain the respective Total, Within and Between variances/covariances.
Again, it is clear that use of the interval midpoints in any subsequent analysis
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does not take into account the internal variations (i.e., the WithinSS; is
neglected).

Duration| Oxygen| Joint
Y1 Intake Y5 (Yl, Yz)

Total SS (SP 1.212| 185.628|-12.210
Within SS (SP) 0.132 1.752| -0.570
Between SS (SP) 1.080| 183.876|-11.640
Total Variation 0.202 30.938| -2.035
Within Variation 0.022 0.292| -0.095

Between Variation 0.180 30.646| -1.940
Table 3. Within, Between and Total Variations.

4 Conclusion

The relationship (17) is one mathematical proof that basing covariance (or
functions of covariance) functions on the interval midpoints fails to capture
all the variance in the data. Though not discussed herein, it is also a truism
that a covariance function based on the BetweenSS does not simplify to the
variance (9) for the special case that Y}, =Yj,, as it should. The covariance
function given in (10) has the property that all the variations in the data are
utilized and that the special case Cov(Y},Y;) = S7 holds.

Therefore, regression and principal component analyses (among others)
which depend in some way on a function of the covariance function can
now proceed. For example, the Billard and Diday (2000, 2002) regression
approach should use the format (10) to estimate the regression parameters.
This produces a single prediction equation, but all the data variations have
been incorporated into that analysis. Interval predictors can then be found by
fitting this prediction equation to the lower and upper interval values for the
various predictor variables. The range and midpoint method and the interval
arithmetic method can also be suitably adapted.
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Abstract. Symbolic data extend the classical tabular model, where each indi-
vidual, takes exactly one value for each variable by allowing multiple, possibly
weighted, values for each variable. New variable types - interval-valued, categorical
multi-valued and modal variables - have been introduced, which allow representing
variability and/or uncertainty inherent to the data. But are we still in the same
framework when we allow for the variables to take multiple values? Are the defini-
tions of basic notions still so straightforward? What properties remain valid? In this
paper we discuss some issues that arise when trying to apply classical data analysis
techniques to symbolic data. The central question of the measurement of disper-
sion, and the consequences of different possible choices in the design of multivariate
methods will be addressed.

1 Symbolic data

In the classical tabular model, n individuals w;,7 = 1,...,n, take exactly one
value on each of p variables, Y1, ...,Y,, which may be of quantitative (values
are elements of IR of some subset of IR) or qualitative (values are categories of
a generally finite set) nature. However, it is often the case that information is
too complex to be represented in such a data table. This situation may arise
when variables take more than just a single value for one individual. As an
example, consider the time used for studying by a given student which varies
from day to day, or the means of transportation used in a given year, which
may be car, bus, etc. In the first case, the “value” for this variable is an inter-
val (e.g., [20min., 2h]), and in the second case, a frequency distribution (e.g.,
car 20%, bus 80%). It may also be the case that the described elements are
not single individuals but classes of individuals for which internal variability
must be taken into account, or that there is some inaccuracy or uncertainty
in recording a value which should be considered in the data analysis. In all
these cases, the data go beyond the classical paradigm, and we get what has
been called Symbolic Data (Bock and Diday (2000)).

To represent symbolic data, new kinds of variables have been introduced:
multi-valued variables, interval-valued variables and modal variables (Bock
and Diday (2000)). A variable is called set-valued if its “values” are nonempty
sets of the underlying domain, it is multi-valued if its values are finite subsets
of the domain and it is an interval-valued variable if its values are intervals
of IR. A modal variable Y; with a finite domain O; = {my,...,my,} is a
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multi-state variable where, for each element, we are given a category set and,
for each category, a frequency or probability which indicates how frequent or
likely that category is for this element. In the case where an empirical dis-
tribution is given, the variable is called histogram variable (Bock and Diday
(2000)).

Let Y7,...,Y), be the set of variables, O; the underlying domain of Y; and B
the range of Y;,j = 1,...,p. If Y} is a classical variable, then B; = O;; if Y}
is an interval-valued variable, than B; is the set of intervals contained in Oj;
if Y; is a categorical multi-valued variable B; is P(O;), the system of subsets
of Oj; and if Y} is a modal variable then B; is the set of distributions on O;.
A description of an individual or a class is defined as a p-tuple (di,...,d,)
Withdj S Bj,j:].,...,p.

Let E = {w1,...,wy} be the observed entities to be analysed, then Yj(w;) €
Bjforj=1,...,p,i=1,...,n. So, the data array consists in n descriptions,
one for each entity w; € E : (Y1(w;),,Yp(wi)),i=1,...,n.

By allowing for new kinds of variables, which take variability or uncertainty
explicitly into account, data no longer fit in the classic p-dimensional vector
model. The question is then how multivariate data analysis techniques should
be extended to the new data types, which properties remain valid, and which
notions have to be re-defined. In this paper we address some of these issues,
trying to put in evidence the special characteristics of symbolic data.

2 Clustering of symbolic data: dissimilarity versus
generalization based methods

Clustering is a multivariate statistical technique that aims at collecting sim-
ilar individuals in homogeneous classes, on the basis of observed values in a
set of variables. The resulting classes may be organized according to different
structures. Hierarchical and pyramidal clustering methods produce a struc-
ture of nested clusters, in the case of a hierarchy each level corresponds to a
partition (i.e. by “cutting” a hierarchy at an appropriate level - according to
some given criteria - we get a partition of F); in the case of a pyramid we get,
at each level, a family of overlapping clusters (family of non-empty subsets
of E which together cover E but are not necessarily disjoint), but all clusters
are intervals of a total linear order. Partitional (non-hierarchical) clustering
methods produce directly, by means of an iterative process, a partition of
E on a generally pre-defined number of disjoint classes, by - most generally
locally - optimizing some given criteria.

The consideration of data that go beyond the classical tabular model led
to the need of defining, or adapting, clustering methods to the new kinds of
data. Moreover, it was intended that the clusters found should be represented
within the same formalism as the input data, since symbolic variables allow
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describing classes, taking into account their internal variability (Diday (1988,
1989)).

Since the initial formalization of Symbolic Data and the first steps in Sym-
bolic Data Analysis (Diday (1988, 1989)), a multitude of methods for clus-
tering symbolic data has been proposed and studied, and applied in different
domains. We categorize these methods into two distinct groups:

A Methods that result from adapting classical clustering methods based on
dissimilarities to the new kind of data, by properly defining dissimilarity
measures for symbolic data. In this case, the clustering methodologies
and criteria remain almost unchanged (only necessary adaptations have
to be performed) and are applied to the obtained dissimilarity matrices.

B Methods that do not rely on dissimilarities and use the data (i.e., the
descriptions of the elements of E) explicitly in the clustering process.
The criterion to form classes is to get a “meaningful” class description,
and we are in the scope of the so-called conceptual clustering methods.

It should be noticed that this categorization is not specific to the clustering
of symbolic data, the same applies in the case of clustering classical data
arrays. But the purpose here is to put in evidence what is particular to the
case of symbolic data, that does not arise when the data follow the classical
paradigm.

Clustering methods of type A will tend to cluster together entities with sim-
ilar descriptions - this similarity being evaluated by one of the proposed
measures - irrespective to the intrinsic variability of the underlying descrip-
tions. In other words, however large is the variability inherent to two given
descriptions, if they are alike, their dissimilarity will have a low value - and
the corresponding entities will tend to be clustered together. On the other
hand, methods of type B will tend to concentrate on the description of each
newly formed cluster, and minimize its inherent variability. This means that
this kind of methods may favor the grouping of entities whose descriptions are
less alike, if the description of the resulting cluster presents a lower variability.

What we wish to bring forward is that this duality is specific to symbolic
data, it does not arise if we are in presence of classical - quantitative or qual-
itative - data. In the latter case, the closer the values of a given variable, the
more specific is their generalization - so both dissimilarity and generalization
based methods will tend to elect the same candidate pairs to be aggregated.

Example 1:

Let’s consider the following small illustrative example:

Let Y be a quantitative interval-valued variable, O = [0, 100], B is the set of
intervals defined in O.

Let Y(wl) = Il = [10,20]7Y(WQ) = IQ = [30,40], Y(w;g) = I3 = [10, 100],
Y(LU4) = I4 = [97 99} .
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Which are the more dissimilar pairs, wi,ws or ws,wq 777

Let Gen be a generalizing operator, that associates to a pair of intervals the
smallest interval containing them both. Then, Gen(I3,Iz) = [10,40], which
covers 30% of O ; Gen(I3, 1) = [9,100], which covers 91% of O. So, general-
izing w3 and wy leads to a class with a much larger description interval than
the one formed by w; and ws.

However, if we consider, for instance, the Lo distance between intervals, then

Ly(I1, I) = [(30 — 10)? + (40 — 20)2] ¥ = /800 and

Lo(Is, 1) = [(100 — 99)% + (10 — 9)?]* = V2

Analogously, for the Hausdorff distance, dg ([a,b], [a’,V']) =

Maz{|a — d'|,|b—V'|}, we have:

dy (I, I2) = Max {|30 — 10|, |40 — 20|} = 20 and

dy(Is, I4) = Max {|10 — 9|, |100 — 99|} =1

So, in a dissimilarity-based clustering algorithm (using for instance Lo or
dp), ws and wy would be preferred to be clustered together rather than w;
and ws, and the opposite would happen for generalization-based methods.
Notice, however, that no such dichotomy occurs in the presence of classical
quantitative data, for instance, L2(10,30) > L2(10, 20) and also Gen(10, 30) =
[10,30] D Gen(10,20) = [10,20] (where we identify a real number x with the
interval [z, z]).

Example 1 deals with interval-valued data, however, the same could easily
be illustrated with multi-valued or modal variables. This dichotomy shows
that, when clustering a data set described by symbolic variables, it should
not be expected that dissimilarity-based methods yield results comparable
to those obtained by generalization-based methods. The criteria are different
and, in this case, they point in different directions. Therefore it makes no
sense to compare results issued by the two kinds of methods: they simply
do not have the same objective, since they start from a different concept of
“what a cluster is”.

3 Dissimilarity based clustering: the standardization
problem

When clustering is based on dissimilarities and the underlying variables are
quantitative, then the question of comparability of the measurement scales
of the different variables is a major issue. In the context of symbolic data
analysis, the problem arises when entities are described by interval-valued
variables, i.e. Yj(w;) = [lij,ui5),5 = 1,...,p,i = 1,...,n. It is well known,
and may often be verified in practical applications, that dissimilarity values
and, consequently, clustering results are strongly affected by the variables’
scales. So, to make it possible to obtain an ‘objective’ or ‘scale-invariant’
result, some standardization must be performed prior to dissimilarity com-
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putations in the clustering process. In the symbolic data case, the problem
of standardizing interval-valued variables must then be addressed.

It seems reasonable to consider that, since variable values are intervals, the
standardization of an interval-valued variable should be performed in such a
way that the same transformation is applied to both the lower and the upper
bound of all n observed intervals - since they concern one and only variable.
In De Carvalho, Brito and Bock (2006), three alternative standardization
methods for the case of interval data have been proposed. In all three cases,
the variables Y}, j = 1,...,p are standardized separately, each one in a linear
way, with the same transformation for both the lower and the upper bound of
all n component intervals I;; := [l;;, us;], ¢ = 1,...,n. These methods mainly
differ in the way dispersion of an interval-valued variable is evaluated.

Standardization 1: Using the dispersion of the interval centers The
first method considers the mean and the dispersion of the interval midpoints
(lij + us5)/2 and standardizes such that the midpoints of the transformed
intervals have zero mean and dispersion 1 in each dimension.

The mean value of all interval midpoints is m; = L 3" (l;; 4+ u;;)/2 and
their dispersion is evaluated by the empirical variance around this mean:
s2:= 250 ((lij +uig) /2 — m;)*. With this notation, the data interval I;;
is transformed into the interval I;; = [I;;, u;;] with bounds l;; := (l;; —m;)/s;
and u;; 1= (uij —myj)/s;, i = 1,...,n, where automatically lij <y foralli, j.
As desired, the new intervals I;j are standardized with m; =0 and 5;2 =1

Standardization 2: Using the dispersion of the interval bounds An-
other alternative consists in evaluating the dispersion of an interval-valued
variable by the dispersion of the interval bounds. This joint dispersion of a
variable Y; is defined by 53 = L5 ((Lij — my)* + (ui; — my)?)/2. Conse-
quently, the second standardization method transforms, for each variable j,
the intervals I;; = [lij7uij} as in the first case, and such that the mean and
the joint dispersion of the rescaled interval bounds are 0 and 1, respectively.

Standardization 3: Using the global range A third standardization

method transforms, for a given variable, the intervals I,; = [l;;,ui;] (¢ =
1,...,n) such that the range of the n rescaled intervals I{j = [lgj, u;j] , with
’ 1 —Min; r ii—Min ; . . .

lij = wr—ari and ug; = grl=—rrl- where Min; = Min{lj, ..., In;}

and Max; = Maz{uy;,...,un;} is the unit interval [0, 1].

Simulation studies (De Carvalho, Brito and Bock (2006)) showed that stan-
dardization greatly improves the quality of the clustering results in terms of
recovery of an imposed structure. Standardization 2 performed slightly better
for ill-separated clusters where intervals have large ranges.
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In Chavent (2005), an alternative approach for the standardization of interval
data is proposed, when a Hausdorff distance is used. In this paper, the author
points out that to compute distances between standardized observations is
generally equivalent to using a normalized version of the corresponding dis-
tance, and determines normalized L; and L., Hausdorff distances.

Normalized L; Hausdorff distances Let i be the median of the mid-
points of the n intervals I;;,% = 1,...,n and A the median of the n intervals’
half lengths; in the first case, dispersion of an interval-valued variable is de-
—a+&),)zﬁ-—g—ﬂ’

The Normalized L; Hausdorff distance between two individuals w; and w;
is then defined by dq(w;,wir) = lj p 1 di(Lij, Iyvy), where dy(Iij, Iyj) =
Maz{|l;j — lirj], |uij — wirj|} is the Hausdorff dlstance between I,; and I ;.

fined by o; =Y ", max ( i

Normalized L., Hausdorff distances Alternatively, dispersion of an
s uij — i |)
where [Zj = (mawx;li; +min;l;;)/2 and 4;; = (max wi; +min;u;;)/2. The nor-

malized L., Hausdorff distance between two individuals w; and w; is then
dy (wi,wir) = UijmaxjdH(I”,I ).

interval-valued variable is defined by 0; = maz;—1,. ( li; — [

The way standardization should be performed depends hence on how disper-
sion of an interval-valued variable ought to be evaluated and interpreted. Dif-
ferent definitions of dispersion lead to different standardization procedures,
and consequently to possibly different results. A question that is not so crit-
ical in the analysis of real data.

4 Clustering methods for symbolic data: a
generalization based method

A method for “symbolic” hierarchical or pyramidal clustering has been pro-
posed in (Brito (1991, 1994)), allowing clustering for multi-valued data. This
method was subsequently developed in order to allow for modal variables
(Brito (1998)); later on, Brito and De Carvalho extended this work so as to
allow for the existence of hierarchical rules between multi-valued categorical
variables (Brito and De Carvalho (1999)) and between modal variables (Brito
and De Carvalho (2002)).

The method may be seen within the framework of conceptual clustering,
since each cluster formed is associated to a conjunction of properties in the
input variables, which constitutes a necessary and sufficient condition for
cluster membership. Clusters are hence associated to concepts, since they are
described, both, extensionally by the set of its members, and intentionally by
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a symbolic description expressing the variability of each variable within the
cluster.

The criterion that guides cluster formation is this duality intent-extent:
each cluster of the hierarchy or pyramid should correspond to a concept, that
is, each cluster is by construction associated with a symbolic description, that
provides a generalized description of its members, and no element outside the
cluster should fit this description.

An additional criterion must then be considered to choose among the dif-
ferent aggregation possibilities meeting the above condition. The principle is
that clusters associated to less general descriptions should be formed first.
Since this generality relation is just a partial order relation, a measure has
been defined that allows to quantify the generality of a given description: this
is the so-called generality degree, G. For interval-valued and categorical multi-
valued variables, it evaluates the proportion of the underlying domain that is
covered by the symbolic description; for modal variables, it evaluates in how
much the given distribution is close to the uniform distribution, by computing
the affinity between the given distribution and the uniform distribution (see
Brito and De Carvalho (2007)). The generality degree is computed variable-
wise; the values for each variable are then combined in a multiplicative way
to get a measure of the variability of the symbolic description.

Example 2:

Let Y7 be an interval-valued variable, say percentage of daily time used
to study, O; = [0,100], B; is the set of intervals defined in Op, and Y,
a categorical multi-valued variable, say, spoken languages, By is the power
set of Oy = {Portuguese, Spanish, Italian, French, English, German}, and
let di = (Y1(w1),Y2(w1)) = ([10,25], {French, English}). Then, G(d1) =
100 X 6= 0,05, i.e., di covers 5 % of the description space O1 x O,.

Let us comment on this definition. First, the fact that generality is evaluated,
for interval-valued and categorical multi-valued variables, as the proportion
of the description space covered by the given description, corresponds im-
plicitly to assuming that all values within the description space are equally
probable: there is hence an underlying uniformity hypothesis in this defini-
tion. Secondly, by using a ratio, there is no need to standardize quantitative
(real or interval-valued) variables. The question remains however whether
this ratio should be evaluated with respect to the whole variable domain or
to the variability observed in the analysed sample. In either case, since val-
ues for different variables are computed separately and may be combined,
the method allows easily for clustering data described by variables of mixed
types. By combining values for different variables in a multiplicative way, we
consider that variables are independent. As concerns modal variables, mea-
suring generality by the affinity with the uniform distribution, corresponds
to considering that the more general case arises when all categories of the
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underlying set are equally probable. The more we deviate from this situation,
the more specific is the given description. Finally, such a criterion will favor
the formation of clusters with less general descriptions, that is, presenting a
global lower variability as respects the underlying variables.

5 Dispersion, association and linear combinations of
interval-valued variables

Duarte Silva and Brito (Duarte Silva and Brito (2006)) have addressed the
problem of the definition of a linear combination of interval-valued variables,
with the aim of establishing conditions under which usual properties hold.

Let I be an n X p matrix representing the values of p interval-valued vari-

ables Y3,...,Y, on a set E = {w;,i = 1,...,n} where each w; € E is
represented by a p-uple of intervals, I; = (L1,...,I;p),4 = 1,...,n, with
I = [lij,uij],j = 1,...,p. Let S; be a covariance matrix of measures of

dispersion (s?) and association (s;;/) for interval data and Z = I Q[ be
r appropriately defined linear combinations of the Y’s based on p x r real
coefficients Bj¢,j =1,...,p;£ =1,...,7, stacked in a matrix 3.

If we consider a linear combination of interval-valued variables as an ex-
tension of the definition of linear combinations of real-valued variables, then
it seems natural to stipulate that such a linear combination should satisfy
the following basic properties, which are straightforward for the real case:

p
P1) LKPe = Zﬁjg x I;; where ; denotes the ¢-th column of matrix
j=1
and ﬁjg X Iij = {ﬁjg x.x € Iij} ; Iij +Ii/j = {x +y:x € Iij,y S Ii/j};
that is, the resulting interval for individual w; is a “linear combination of
the intervals” corresponding to each variable, Y;(w;).
(P2) Sz = S]@ﬁ = 3198
that is, the covariance between interval-valued variables should be a sym-
metric bilinear operator w.r.t. ).

But do these properties hold in general 7 What do we exactly mean by
“linear combination of interval-valued variables” 7

One possible, and quite natural definition of linear combination of interval-
valued variables is given by

Definition A: I; Q 4 B¢ = ziea = [2ipa, Zieal,i = 1,...,n, with
p P
Ziga = Zﬁje lij 5 Zua= Zﬁjz Usj (1)
i=1 =1

i.e., the resulting interval for individual w; is obtained by applying the same
linear combination to both the lower and upper bounds of the intervals cor-
responding to each variable, I;; = Y;(w;).
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Unfortunately, this quite straightforward definition does not satisfy property
(P1) if at least one element of 3, is negative, since in this case the resulting
interval bounds are interchanged (e.g. (—1)[2,4] = [—4, —2]).

A definition of a linear combination of interval-valued variables that takes
the sign of the elements of 3, into account is given by:

Definition B: I; ®B Be = ziyp = [giEB’EifBLi =1,...,n, with
zup= Y Biely+ Y, Bewy 5 Zus= Y, Bieuy+ »_ Biely
Bje>0 Bje<0 Bje>0 Bje<0

(2)
Definition B is the definition we would obtain by applying the rules of Inter-
val Calculus (Moore (1966)) since the resulting intervals include all possible
values that are scalar linear combinations of the values within the intervals
I;;. However, this definition ignores any connection that may exist between
corresponding interval bounds in the original data. The existence (or lack of
it) of such connection (and therefore the relevance of property (P1)) depends
on how a set of interval data ought to be interpreted.
Interval-valued variables generally arise in one of two following situations: ei-
ther each element w; € E represents a group of individuals of a set I', whose
elements are described by real variables y;, and the interval-valued variables
Y; represent the variability of y; in each group; or else the interval-valued
variable Y; represents the possible values of an uncertain real variable y;.
In both cases, correlations between underlying real variables may lead to a
connection between values within the intervals associated to the correspond-
ing interval-valued variables. When such a connection is present, we say that
the variables Y}, Y are inner correlated. In the case where two underlying
real variables y; and y; have a perfect positive ordinal correlation, then the
lower bound (resp. upper bound) of Y; will always be associated with the
lower bound (resp. upper bound) of Y}/ (and reciprocally for a perfect neg-
ative ordinal correlation). Definition A is appropriate when there is Positive
Inner Correlation in the data which ought to be taken into account; Defini-
tion B is appropriate in the absence of inner correlation and it satisfies (P1).
Duarte Silva and Brito (2006) have established that when dispersion 8? and
association s;; measures depend on l;; and wu;; symmetrically, then both
Definition A and Definition B satisfy (P2). It follows that variances of lin-
ear combinations are given by quadratic forms, and ratios are maximized
by a traditional eigenanalysis. Classical multivariate methods, such as linear
discriminant analysis, may then be adapted in a straightforward way.

6 Conclusions and perspectives

The extension of classical multivariate data analysis methodologies to sym-
bolic data raises new problems: How to evaluate dispersion? How to define
linear combinations? Which properties remain valid?
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The definition of dispersion is a central one, and the way to evaluate dis-
persion is not straightforward as in the case of real-valued data. Different
alternatives are possible, and the choice of one of these often determines the
type of model to be used subsequently.

The important issue remains however the need for statistical models which
would allow for estimation and hypothesis testing. This is the real challenge
that will surely motivate new research and lead to interesting developments
in the analysis of symbolic data in the near future.
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Abstract. Monitoring Internet traffic in order to both dynamically tune network
resources and ensure services continuity is a big challenge. Two main research issues
characterize the analysis of the huge amount of data generated by Internet traffic:
1) learning a normal adaptive model which must be able to detect anomalies, and 2)
computational efficiency of the learning algorithm in order to work properly on-line.
In this chapter, we propose a methodology which returns a set of symbolic objects
representing an adaptive model of ‘normal’ daily network traffic. The model can
then be used to discover traffic anomalies of interest for the network administrator.

1 Introduction

In the Information Society, it is essential to guarantee the continuity of
Internet-based services for both large critical infrastructures and private en-
terprises. This makes necessary monitoring cybertraffic in order to identify
and/or to prevent anomalous behaviors which can be caused by either devices
malfunctioning or real intrusion attempts. However, the huge amount of data
logged by hosts prevents full human monitoring of network traffic and raises
the need of anomaly detection tools.

The realization of effective anomaly detectors requires the consideration
of some research issues. First of all, it is important to distinguish between
various types of anomalies in order to facilitate their analysis by human op-
erators. In particular, two main types are represented by outliers and change
points. Roughly, outliers are isolated and exceptional points, independently of
the temporal dimension, while change points correspond to changing patterns
whose semantics is essentially temporal. The difference between outliers and
change points is well captured both by Ghoting et al. (2004), who consider
two different behaviors when analyzing static or dynamic datasets, and by
Takeuchi and Yamanashi (2002), who deal with the issue of detecting outliers
and change points from time series. Similarly, also Wang and Stolfo (2004)
consider the adaptive property for intrusion detection systems.

In addition, classical supervised learning algorithms are hardly useful for
anomaly detection tasks. They are designed for classification tasks and need
labeled examples belonging to all the classes the analyzed system can present.
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In anomaly detection, we are typically given unlabeled data. In some cases,
we can have normal (clean) data, i.e. data we know to be generated from
the system in a normal operating condition, and we learn the model from
this single class. However, it is difficult to have clean data because they can
contain attacks if they are real, while they represent only a partial view of
the system if they are simulated.

Works on anomaly detection reported in the literature can be classified
by their modeling techniques: distance-based, statistical (probabilistic) ap-
proach, and profiling techniques. Distance-based methods (Knorr and Ng
(1998), Ramaswamy et al. (2000), Breunig et al. (2000), Lazarevic et al.
(2003), Eskin et al. (2002)) are widely used for unsupervised data: they
can work properly without previous knowledge. The idea in distance based
methods is to represent every observation by means of a feature vector and
to apply a distance function to measure how much the two observations
are far/close. Statistical approaches (Shmueli (2005), Yamanishi (2000), Ma-
honey and Chan (2002), Mahenshkumar et al. (2005)) are used for both
multi/single-class data and unlabelled data. Data points are modeled using a
stochastic distribution, which is however difficult to estimate for high dimen-
sional mixed-mode data. Profiling techniques (Hofmeyr et al.(1998), Tandon
and Chan (2003), Wang and Stolfo (2003)) are applied when observation units
concerning either human or machine or system behavior are both supervised
and arranged in sequences or time series.

Differently from these works, where a single monolithic learning tech-
niques is applied to solve the anomaly detection problem, we propose a two-
staged methodology, initially outlined in (Caruso et al. (2007)), which aims
to build a normal model of network traffic from real unlabeled observations
(i.e. daily network connections). In the first stage, observations are clusterized
and sets of rules are generated to describe each cluster. Rules are transformed
into symbolic objects (SOs), which represent a static daily normal model. To
build the adaptive normal model of network traffic (second stage), we com-
pute similarities between SOs belonging to subsequent daily normal static
models. An anomaly is defined to be a symbolic object which deviates too
much from the normal adaptive model; a ranking mechanism is used to dif-
ferentiate anomalies in order to identify more precisely change points, which
express an evolution of the system, and true outliers which can be caused
by either malfunctioning or intrusions. The result of the methodology is a
longitudinal adaptive normal model of cybertraffic which can be used by a
network administrator to identify deviations in network traffic patterns.

In this chapter, after presenting extensively our methodology, we analyze
its dependability on the first preprocessing step, i.e. clustering. We show that,
by using two different techniques, namely distance-based and probabilistic,
the methodology returns comparable results even though the aggregated data
are different. This suggests that our methodology could be applied to different
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data sources by only changing the aggregation technique and leaving the
adaptive and anomaly detection phases unchanged.

2 The methodology

2.1 Generating the static model

The first preprocessing step of the methodology has to be based on an Ex-
ploratory Data Analysis technique, since we know nothing about our system
and we have no labeled examples. This justifies the use of clustering as our
starting point. Clusters are an extensional form of knowledge representation,
but in our context intensional descriptions are essential since they are both
human-interpretable (at least for the network administrator) and computa-
tionally light (since a rule synthesizes the properties of many connections).
Therefore, we adopt a two-stepped approach. First, we apply a clustering
algorithm in order to decrease the size of the problem. Then we generate a
set of rules whose consequents represent the cluster membership. The rules
provide an intensional description of clusters.

The rules set R (t) generated for the time unit ¢ is a static representation
of the network traffic observed in t. It should be noted that in this way we
can drastically reduce data to treat and to store: the daily network traffic is
given by few hundreds of rules vs. thousands of network connections.

A rule R corresponds to homogeneous groups of connections, that is,
to second-order objects, or symbolic objects, according to the terminology
used in symbolic data analysis (Gowda and Diday (1991)). Symbolic objects
simplify the change mining process on our data streams because we can easily
compare them by means of dissimilarity measures. Therefore, to provide the
network administrator with a dynamic representation of network traffic, we
propose to transform rules into symbolic objects and then to compute the
dissimilarities between SOs of different days. The transformation of a rule R
into the corresponding symbolic object is illustrated in (Caruso et al. (2005))
and represents the last step of the pre-processing phase.

The set So(t) of symbolic objects generated for the time unit ¢ is the
static normal model of network traffic observed at time t.

2.2 Detecting anomalies

To build an adaptive model of network traffic M(t), we compare SOs belong-
ing to the subsequent daily normal static models So(t). More precisely, let
M(t) be the adaptive normal model at time ¢! whose cardinality is |[M ()|
and let So(t) be the static normal model at time ¢ whose cardinality is

! The time unit we choose in our experiments is the entire day but the approach
is general and the most suitable time unit can be used: seconds, minutes, hours
or years and so on.
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|So(t)|. Given a threshold T and a symbolic object So in M(t), all the SOs
in So(t) whose dissimilarity from So is less then T are considered similar
to So, otherwise they are tagged as anomalies.

Let So;M(t) be the j-th symbolic object in M(t) and Soy(t) the k-
th symbolic object in So(t) and let D be a dissimilarity measure between
symbolic objects.

Definition 2.1. The symbolic object Soy(t) in So(t) is an anomaly if

D, = D(So;M (t), Soy(t)) > T for each j=1,.., |M(t)|

Therefore, if D, <T for some j, the symbolic object Soy () is considered
a manifestation of a “known” behavior (it is already modeled by M(t)),
otherwise it is considered an “unknown” behavior, i.e. an anomaly.

2.3 Ranking anomalies

We need to differentiate anomalies on the fly in order to adapt the model
only by means of novel events of the system and not by real outliers. In most
research works, outlier detection and change point detection have not been
related explicitly and the adaptive properties, when considered, are built-in
in the model. We consider this approach unsound and we propose an explicit
ranking mechanism between anomalies.

When analyzing SOs at time ¢, it is significant to know how much a
SO is similar to all the SOs belonging to the adaptive model M(t) in order
to rank its level of dissimilarity. This information about a symbolic object
Soy (t) can be obtained by computing its dissimilarity mean value defined
as follows:

N
A
2
=

|
D(Sok(t), So; M(t))

1

Dinean(Sox(t)) = = )]

Another interesting parameter is the minimum value of dissimilarity of a
SO; indeed, a SO with high mean dissimilarity could be similar to few others
but very dissimilar from the remaining ones and the mean value is not able
to capture this situation. Therefore we compute the minimum dissimilarity
between a fixed SO and all the SOs belonging to M (t):

[M(¢)]
Diin(Sog(t)) = min D(Sog(t), So; M(t))

Jj=1

2.4 The normal adaptive model M (t)

The notions of mean and minimum dissimilarity are used to give the complete
definition of normal model. Let T,,eqn and T.,;, be two system-defined
threshold values.

Definition 2.2. A symbolic object Soj, in So(t) is an anomaly of preva-
lent type PAj if and only if the following condition holds:
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(Dmean(sok (t))) S Tmean) A (szn(sok (t))) S Tmzn)

Definition 2.3. A symbolic object Soy in So(t) is a anomaly of sec-
ondary type SAy if and only if the following condition holds:

(Dmean(sok(t)) > Tmean) A (szn(sok (t)) S Tmzn)

Definition 2.4. A symbolic object Soy, in So(t) is an outlier Oy, if and
only if the following condition holds:

(Dmean(sok(t)) > Tmean) A (szn(sok (t)) > Tmzn)

Let ChPoints(t) = {the set of all PA) and SAj, found in So(t)}. Then
the normal adaptive model M(t) at time t is defined as follows:

M(t) = M(t-1) U ChPoints(t).

that is, it is obtained by adding the set of all change points found in So(t)
to the normal adaptive model at time (¢-1).

3 Experiments and results

3.1 Data collection and preprocessing

We tested the proposed methodology on a real dataset obtained from the
firewall logs of the Department of Computer Science of our University. Logs
refer to twenty-eight days, from May 31%¢ to June 27", 2004. Starting from
a file per day with all logged packets, we reconstruct all connections opened
and closed in that day. Indeed, if we did not try to reconstruct connections,
it would be impossible to understand what is going on by looking at one
packet at a time. In this work, only ingoing connections are analyzed, since we
assume that possible attacks to network services come from outside. The total
number of ingoing connections reconstructed for the four weeks is 406,773.
Each connection is described by the following attributes:

1. Proto (nominal): the protocol used for the connection (udp or tep);

2. StartHalfHour (integer between 0 and 47): the time when a connection
begins;

3. Dst (integer between 0 and 255): the Internet Protocol (IP) number of
public servers of the Department;

4. SourceIP (nominal): the IP of external clients;

5. Service (nominal): the requested service (http, ftp, smtp and many other

ports);

NumPackets (integer): the number of connection packets;

Length (integer): the time length of the connection;

8. NationCode (nominal): the two digit code of the nation associated to the
source IP.

e
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Data carried by each packet (i.e. the payload) in the connection is not
considered in this work.

In Fig. 2 the statistical profiles of two significant attributes (Proto and
Dst) are represented. Days are reported on the x-axis while the number of
connections is reported on the y-axis. The Proto graph shows the temporal
distribution of the two main protocols considered in this work (udp and tcp),
while the Dst graph shows the distribution for a subset of possible destination
IP values, namely {8, 135, 10, 45, 153}, which identify five public servers of
our Department.

Proto
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Fig. 1. Distribution of two attributes used for connection description.

3.2 Validation of the normal adaptive model

To demonstrate that the normal adaptive model generated by the proposed
methodology is actually able to represent the network traffic and its evolution,
we cannot resort to ROC curves as well as to other standard performance
measure (e.g., error rate), since we assume to know nothing about network
traffic model. We can only consider the statistical profiles of the single at-
tributes to know the prevalent aspects of the network traffic along the four
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analyzed weeks. For this reason, we aggregated the twenty-eight days in two
groups according to their statistical profiles: group A formed by days 31, 1, 4,
5, 6, 22, 23, 24, and group B with all remaining days. The different behavior
is ought to the P2P connections explosion we observe for days in group A.
We expect that the model retuned by the proposed methodology should be
able to differentiate these two groups. More precisely, the normal adaptive
model M(t) is meaningful if new SOs are added to it only when the statisti-
cal profile of the analyzed day is different from that one of the previous days.
The model should not be modified when we face days whose statistical profile
is already known. We expect that the model will be significantly modified in
the first week while new SOs are less and less added as days go on. Moreover,
the network traffic behavior of the days with an already known profile has to
be represented mainly by SOs generated in similar previous days.

3.3 Building and comparing the normal adaptive models

The start-up model M(0) is initialized to the entire set of symbolic objects
generated for the first day (May 315%). Then, for each day, the first ten rules
with maximum support and confidence > 0.9, are selected and transformed
into SOs. Due to this selection, the SOs we obtain for each day represent the
most prevalent aspects in the network traffic and can capture only change
points, i.e. points which represent a natural evolution of the network traffic.
In a practical application whose final aim is to identify not only the changing
points but also true outliers, all rules had to be included in the model since
outliers should typically correspond to rules with small support.

In this study, rules are generated by means of the algorithm PART (Wit-
ten and Frank (1998)) and provide an intensional description of clusters,
while the dissimilarity measure D used to compare SOs is that proposed by
Gowda and Diday (1991).

In the experiments, the threshold values for T', T jeqn and T, vary in
the following intervals:

o T = [avgmin, avgmean],
o Trean = |avgmean — n, avgmean + 1],
e T,.;n = [avgmin — n, avgmin + n]

where avgmin and avgmean correspond to the minimum and the mean of all
dissimilarity quantities, while the value of n is obtained by a tuning process.
In this work the following intervals are considered: T = [2,5], Timean =[3,8],
T nin=[1,4].

For the clustering step, both k-means (Jain et al.(1999)), which is a dis-
tance based clustering technique, and EM (McLachlan and Krishan (1997)),
which is a probabilistic clustering technique, have been applied to the same
data. We observed that the two clustering methods tend to cluster observa-
tions differently, which implies the generation of quite different sets of rules
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and SOs. However, as reported above, we are not interested in the way the net-
work traffic is characterized, but in differentiating the traffic in the two groups
of days, i.e. we are interested in checking whether the proposed methodol-
ogy is able to discover the change points. This implies that network traffic
behavior of the days characterized by an already known profile, has to be
represented mainly by means of SOs generated in similar previous days.

Fig. 2 shows the models we obtain for K-means and EM; they represent
subsequent group A days by means of group A’s SOs and subsequent group
B days by means of group B’s SOs.

Kmeans - 2,5,4

PR A

o N & O

DO D3 D6 D9 D12 D15 D18 D21 D24 D27

C—Group B ——Group A

EM-3,7,5

P e . e,

Do D3 D6 D9 D12 D15 D18 D21 D24 D27

‘I:IGroup B —&—Group A ‘

Fig. 2. Number of SOs generated by days in groups A and B for different clustering
techniques and triples of the parameters T, T mean and T pin.

As observed before, the model should not be modified when we face days
whose statistical profile is already known. We expect that the model will be
significantly modified in the first week, while fewer and fewer SOs are added
to the model as days go on. This is well shown in the Fig. 3.

4 Conclusions

In this chapter we presented a methodology for network traffic monitoring
where symbolic data analysis plays a key role for two main reasons: first, it
helps to reduce the size of data to be analyzed from millions of packets per day
to a few dozens of SOs, and second, it provides a suitable theoretical frame-
work to deal with similarities between this kind of aggregated data. Symbolic
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Fig. 3. Number of new SOs generated for different clustering techniques.

oN & O

objects are obtained from rules representing clusters of connections, and the
analysis of similarities between SOs of subsequent days aims to identify a
specific class of anomalies, namely change points.

The proposed methodology has been applied to monitor the network traf-
fic of our Department and some promising results confirm its validity. The
generality of the features used to describe the network connections in this
study also allows us to conclude that the proposed methodology can be ap-
plied to monitor the traffic of every network active device. This is an impor-
tant aspect, since anomaly detectors are often data dependent and hence not
portable.

As a future study, we plan to extend our analysis to several dissimilar-
ity measures defined for symbolic data (Esposito et al. (2000)). Moreover,
we intend to investigate both the automated selection of the parameters for
anomaly detection and the validity of the proposed methodology in identify-
ing outliers.

References

BREUNIG, M., KRIEGEL, H., NG, R., SANDER, J. (2000): LOF: Identifying
Density-Based Local Outliers. In Proceedings of the 2000 ACM SIGMOD In-
ternational Conference on Management of Data, Dallas, Texas, United States.

CARUSO, C. (2007): A Data Mining Methodology for Anomaly Detection in Net-
work Data: Choosing System-Defined Decision Boundaries. Proceedings of the
15" TItalian Symposium on Advanced DataBase Systems. SEBD2007. To ap-
pear.



32 C. Caruso and D. Malerba

CARUSO, C., MALERBA, D., PAPAGNI, D. (2005):Learning the daily model of
network traffic. Proceedings of ISMIS 2005, 15th International Symposium,
Saratoga Springs, NY, USA, May 2005. Springer, LNAT 3488; Foundations of
Intelligent Systems; pagg. 131-141.

CARUSO, C., MALERBA, D. (2007): A Data Mining Methodology for Anomaly
Detection in Network Data. Proceedings of the 11" International Confer-
ence on Knowledge-Based and Intelligent Information € Engineering Systems.
KES2007. To appear.

ESKIN, E., ARNOLD, A., PRERAU, M., PORTNOY, L., STOLFO, S. (2002): A
Geometric Framework for Unsupervised Anomaly Detection: Detecting Intru-
sions in Unlabeled Data. In Workshop on Data Mining for Security Applica-
tions.

ESPOSITO, F., MALERBA, D., TAMMA V. (2000): Dissimilarity Measures for
Symbolic Objects. Chapter 8.3 in H.-H. Bock and E. Diday (Eds.), Analysis of
Symbolic Data. Exploratory methods for extracting statistical information from
complex data, Series: Studies in Classification, Data Analysis, and Knowledge
Organization, vol. 15, Springer-Verlag:Berlin, 165-185.

GHOTING, A., OTEY, M.E., PARTHASARATHY, S. (2004): Loaded: Link-based
Outlier and Anomaly detection in Evolving Data Sets. In Proceeedings of the
IEEE International Conference on Data Mining.

GOWDA, K.C., DIDAY, E. (1991): Symbolic Clustering Using a New Dissimilarity
Measure. In Pattern Recognition, Vol. 24, No. 6, 567-578.

HOFMEYR, S., FORREST, S., SOMAYAJI, A. (1998): Intrusion Detection using
Sequences of System Calls. Journal of Computer Security 6(1-2), 151-180.
JAIN, A.K., MURTY, M.N., FLYN, P.J. (1999): Data Clustering: a Review. ACM

Computing Surveys, Vol.831, No.3.

KNORR, N., NG, P.(1998): Algorithms for Mining Distance-Based Outliers in Large
Datasets. Proceedings of 24th International Conference on Very Large Data
Bases, VLDB.

LAZAREVIC, A., OZGUR, A., ERTOZ, L., SRIVASTAVA, J., KUMAR, V. (2003):
A comparative Study of Anomaly Detection Schemes in Network Intrusion
Detection. Proceedings of Third SIAM Conference on Data Mining.

MAHENSHKUMAR, R.S., NEILL, D.B., MOORE, A.W. (2005): Detecting
Anomalous Patterns in Pharmacy Retail Data. KDD-2005 Workshop on Data
Mining Methods for Anomaly Detection..

MAHONEY, M., CHAN, P. (2002): Learning Nonstationary Models of Normal
Network Traffic for Detecting Novel Attacks. Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining.
ages: 376 - 385.

McLACHLAN, G.J., KRISHAN, T. (1997): The EM Algorithm and Extensions.
John Wiley & Sons.

RAMASWAMY, S., RASTOGI, R., KYUSEOK, S. (2000): Efficient Algorithms for
Mining Outliers from Large Data Sets. Proceedings of the 2000 ACM SIGMOD
international conference on Management of data. Pages: 427 - 438 .

SHMUELI, G. (2005): Current and Potential Statistical Methods for Anomaly De-
tection in Modern Time Series Data: The Case of Biosurveillance. KDD-2005
Data Mining Methods for Anomaly Detection.

TAKEUCHI, J., YAMANASHI, K. (2006): A Unifying Framework for Identifying
Changing Points and Outliers. IEEE Transactions on Knowledge and Data
Engineering. Vol.18, No.4.



Symbolic Analysis to Learn Evolving CyberTraffic 33

TANDON, G., CHAN, P. (2003): Learning Rules from System Call Arguments and
Sequences for Anomaly Detection. Workshop on Data Mining for Computer
Security. ICDM 2003.

WANG, K., STOLFO, S. (2003): One Class Training for Masquerade Detection.
Workshop on Data Mining for Computer Security. [CDM 20083.

WANG, K., STOLFO, S. (2004): Anomalous Payload-based Network Intrusion De-
tection. In E. Jonsson,A. Valdes, M. Almgren (Eds.): Recent Advances in In-
trusion Detection. Springer, Berlin, 203-222.

WITTEN, 1., FRANK, E. (1998): Generate Accurate Rule Sets Without Global
Optimisation. Machine Learning: Proceedings of the 15th International Con-
ference, Morgan Kaufmann Publishers, San Francisco, USA.

YAMANISHI, K. (2000): On-line unsupervised outlier detection using finite mixture
with discounting learning algorithms. Proceedings of the 6th ACM SIGKDD
international conference on Knowledge discovery and data mining, 820-324 .



A Clustering Algorithm for Symbolic Interval
Data Based on a Single Adaptive Hausdorff
Distance

Francisco de A.T. de Carvalho

Centro de Informatica - CIn/UFPE, Av. Prof. Luiz Freire, s/n, Cidade
Universitaria, CEP 50740-540, Recife-PE, Brasil, fatc@cin.ufpe.br

Abstract. This paper introduces a dynamic clustering method to partitioning
symbolic interval data. This method furnishes a partition and a prototype for each
cluster by optimizing an adequacy criterion that measures the fitting between the
clusters and their representatives. To compare symbolic interval data, the method
uses a single adaptive Hausdorff distance that changes at each iteration but is the
same for all the clusters. Experiments with real and synthetic symbolic interval
data sets showed the usefulness of the proposed method.

1 Introduction

Cluster analysis aims at organizing a set of items into clusters such that
items within a given cluster have a high degree of similarity, whereas items
belonging to different clusters have high degree of dissimilarity (Jain and
Flynn (1999)).

The partitioning dynamic cluster algorithms (Diday and Simon (1976))
are iterative two steps relocation algorithms involving at each iteration the
construction of the clusters and the identification of a suitable representa-
tive or prototype (mean, factorial axe, probability law, etc.) of each cluster
by locally optimizing an adequacy criterion between the clusters and their
corresponding prototypes. This optimization process begins from a set of pro-
totypes or an initial partition and interactively applies an allocation step (the
prototypes are fixed), in order to assign the items to the clusters according
to their proximity to the prototypes, and a representation step (the partition
is fixed), where the prototypes are updated according to the assignment of
the patterns in the allocation step, until the convergence of the algorithm is
achieved, when the adequacy criterion reaches a stationary value.

The adaptive dynamic clustering algorithm (Diday and Govaert (1977))
also optimizes a criterion based on a measure of fitting between the clusters
and their prototypes, but the distances to compare clusters and their proto-
types change at each iteration. These distances are not determined once and
for all, and moreover, they can be different from one cluster to another. The
advantage of these adaptive distances is that the clustering algorithm is able
to recognize clusters of different shapes and sizes.
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The main difference between these adaptive and non-adaptive algorithms
occurs in the representation step which has two stages in the adaptive case:
a first stage, where the partition and the distances are fixed and the proto-
types are updated, is followed by a second one, where the partition and their
corresponding prototypes are fixed and the distances are updated.

Often, objects to be clustered are represented as a vector of quantita-
tive data. However, the recording of interval data has become popular and
nowadays this kind of data is often used to describe objects. Symbolic Data
Analysis (SDA) is an area related to multivariate analysis, data mining and
pattern recognition, which has provided suitable data analysis methods for
managing objects described as vectors of intervals (Bock and Diday (2000)).

Concerning dynamical cluster algorithms for symbolic interval data, SDA
has provided suitable tools. Verde et al (2001) introduced an algorithm con-
sidering context dependent proximity functions and Chavent and Lechevalier
(2002) proposed an algorithm using an adequacy criterion based on Haus-
dorff distances. Souza and De Carvalho (2004) presented a dynamic cluster
algorithm for symbolic interval data based on L; Minkowsky distances. More
recently, De Carvalho et al (2006) proposed an algorithm using an adequacy
criterion based on adaptive Hausdorff distances for each cluster.

This paper introduces a new method of dynamic clustering for symbolic
interval data based on Hausdorff distances. This method furnishes a partition
of the input data and a corresponding prototype (a vector of intervals) for
each class by optimizing an adequacy criterion which is based on a single
adaptive Hausdorff distance between vectors of intervals. In this method,
the prototype of each cluster is represented by a vector of intervals, whose
lower bounds, for a given variable, are the difference between the median of
midpoints of the intervals computed for the objects belonging to this class
and the median of their half-lengths, and whose upper bounds, for a given
variable, are the sum of the median of midpoints of the intervals computed
for the objects belonging to this class plus the median of their half-lengths.
In order to show the usefulness of this method, synthetic interval data sets
ranging from different degrees of difficulty to be clustered and an application
with a real data set were considered. The evaluation of the clustering results
is based on an external validity index.

This paper is organized as follow. Section 2 presents the previous dynamic
clustering methods based on Hausdorff distances and introduces the model
based on a single adaptive Hausdorff distance. In Section 2 it is presented the
evaluation of this method in comparison with previous dynamic clustering
methods having adequacy criterion based on Hausdorff (non-adaptive and
adaptive for each cluster) distances. The accuracy of the results furnished by
these clustering methods is assessed by the corrected Rand index (Hubert
and Arabie (1985)) considering synthetic interval data sets in the framework
of a Monte Carlo experience and an application with a real data set. Finally,
Section 4 presents the conclusions and final remarks.
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2 Clustering symbolic interval data based on Hausdorff
distances

In this Section we recall the previous dynamic clustering methods based on
Hausdorff distances and we introduce the model based on a single adaptive
Hausdorff distance.

Let 2 be a set of n objects indexed by ¢ and described by p interval
variables indexed by j. An interval variable X (Bock and Diday (2000)) is
a correspondence defined from 2 in R such that for each i € 2, X (i) =
[a,b] € 3, where S is the set of closed intervals defined in . Each object i is

represented as a vector of intervals x; = (z!,--- ,2?), where 2/ = [a/,b]] €
S = {la,b] : a,b € R, a < b}. A prototype y,, of cluster Py is also represented
as a vector of intervals y;, = (y},--- ,y}), where yi = [ak,ﬂk}

Here, the distances chosen to compare two intervals are the Hausdorff
distances. The Hausdorff distance is defined to compare two sets of objects A
and B. In this work, A and B are two intervals 2 = [a/, b]] and #, = [a),,0),]

and in that case the Hausdorff distance is (Chavent and Lechevallier (2002))
dp (2], x))) = maz{|a] — a}|, |b] = b],[} (1)

2.1 Clustering of symbolic interval data based on a non-adaptive
Hausdorff distance

Here we present a clustering method for symbolic interval data based on a
non-adaptive Hausdorff distance (labeled as HNAD). This method has been
introduced in Chavent and Lechevallier (2002).

The HNAD method looks for a partition of 2 into K clusters { P, ..., Pk}
and a corresponding set of prototypes {y;,...,yx} such that an adequacy
criterion J1 measuring the fitting between the clusters and their prototypes
is locally minimized. This criterion J1 is based on a non-adaptive Hausdorff
distance and it is defined as:

K D

A=Y Y ey =Y Y [maz{lal — ol -Gl @
k=1i€P; k=1icP; j=1
where
p

6(xi, 1) ZdH oyl =Y [mac{lal — ol W/ =8I} ©®)
j=1
is a (non-adaptive) Hausdorff distance measuring the dissimilarity between
an object x; (¢ =1,...,n) and a cluster prototype y,(k=1,..., K).
The algorithm sets an initial partition and alternates a representation
step and an allocation step until convergence when the criterion J1 reaches
a stationary value representing a local minimum.
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Representation step: definition of the best prototypes. In the repre-
sentation step, the partition of {2 in K clusters is fixed. Let {(a + bJ) /2:

i € Py} be the set of midpoints of the intervals ] = [a I b7),i € P, and
let {(bj —al)/2 : i € P} be the set of half-lengths of the intervals z7 =
[a],b]],i € Py.. The prototype y, = (yp,...,y}) of cluster Py (k =1,...,K),
which minimizes the clustering criterion J1, has the bounds of the inter-
val yi = [ai,ﬁi] updated according to the following: a{c = p;j —; and
B = u; + 7, where p; is the median of the set {(a} +b7)/2:i € P} and

~; is the the median of the set {(b) —al)/2:i € Py}.

Allocation step: definition of the best partition. In the allocation step,
the prototypes are fixed and the clusters Py, (k = 1,..., K), which minimizes
the criterion J1, are updated according to the following allocation rule: P =

{i € 2:¢xi,y1) < d(xi,¥4), VR£E(h=1,...,K)}.

2.2 Clustering symbolic interval data based on a single adaptive
Hausdorff distance

This Section presents a clustering method for symbolic interval data based
on a single adaptive Hausdorfl distance (labeled as SHAD). The main idea
of these methods is that there is a distance to compare clusters and their
representatives (prototypes) that changes at each iteration but that is the
same for all clusters.

This adaptive method looks for a partition of (2 into K clusters
{P1,...,Px} and a corresponding set of prototypes {y;,...,yx} such that
an adequacy criterion J2 measuring the fitting between the clusters and their
prototypes is locally minimized. This criterion J2 is based on a single adap-
tive Hausdorff distance and it is defined as:

K K P
J2=3" 0wl yi) = 30 0 DN [maadlal —afl bl - B} )

k=1icP; k=1i€P;, j=1

where

o(xi,v) ZAJ [maa{la] - of .16} - B1}] (5)

is a single adaptive Hausdorff distance measuring the dissimilarity between
an object x; (i = 1,...,n) and a cluster prototype y,(k = 1,..., K), parame-
terized by the weight vector A= (A1, ..., A\P), which changes at each iteration
but is the same for all clusters.

The algorithm sets an initial partition and alternates a representation
step and an allocation step until convergence when the criterion J2 reaches
a stationary value representing a local minimum.



A Clustering Algorithm Based on a Single Adaptive Hausdorff Distance 39

The representation step has now two stages.

Representation step: definition of the best prototypes. In the first
stage, the partition of {2 in K clusters and the weight vector A are fixed.

Proposition 1. The prototype y, = (Y}, ..., yh) of cluster P, (k =1,...,K),
which minimizes the clustering criterion J2, has the bounds of the inter-
val y = loq,B])(j = 1,...,p) updated according to: o, = pj —; and
Bl = pj +y; where pj is the median of the set {(al +b)/2:i € Py} and ~;
is the the median of the set {(b) —al)/2:i € Py}.

Representation step: definition of the best distance. In the second
stage, the partition of {2 in K clusters and the prototypes are fixed.

Proposition 2. The vector of weights A= (AL, .. “y AP), which minimizes the
clustering criterion J2 under M > 0 and Héj:l N =1, is updated according
to the following expression:

=

{Th_, (T [Sier, (maz{lal —ofl, bt - 821)]) }

VTSR Yicp, (mazlal - of|,16] - BlI})]

7j:17"'7p

Allocation step: definition of the best partition. In the allocation step,
the prototypes and the weight vector A are fixed.

Proposition 3. The clusters Py (k = 1,..., K), which minimize the crite-
rion J2, are updated according to the following allocation rule:

Pk:{iEQ:ga(mi,yk)gw(mi,yh),Vh#k(h:1,...,K)} (7)

2.3 Clustering symbolic interval data based on an adaptive
Hausdorff distance for each cluster

Here we present a clustering method for symbolic interval data based on
an adaptive Hausdorff distance for each cluster (labelled as HADC). This
method has been introduced in De Carvalho et al (2006). The main idea of
these methods is that there is a different distance associated to each cluster to
compare clusters and their representatives (prototypes) that changes at each
iteration, i.e., the distance is not determined once for all, furthermore it is
different from one cluster to another. Again, the advantage of these adaptive
distances is that the clustering algorithm is able to find clusters of different
shapes and sizes.



40 F.A.T. De Carvalho

The HADC adaptive method looks for a partition of {2 into K clusters
{P,..., Pk} and a corresponding set of prototypes {y;,...,yx} such that
an adequacy criterion J3 measuring the fitting between the clusters and their
prototypes is locally minimized. This criterion J3 is based on an adaptive
Hausdorff distance for each cluster and it is defined as:

K K p
J3=30 % vy = 3 > DN, [maaflal — ofl. b} - 1] (®)

k=14€Py k=1i€Py j=1

where

P
Vi yi) = YN, [max{lal — o, b} - 511}] 9)
j=1
is an adaptive Hausdorff distance measuring the dissimilarity between an
object x; (i =1,...,n) and a cluster prototype y,(k =1, ..., K), defined for
each class and parameterized by the vectors of weights Ay = (A}, ..., A}) (k =
1,..., K), which change at each iteration.

The algorithm sets an initial partition and alternates a representation
step and an allocation step until convergence when the criterion J3 reaches
a stationary value representing a local minimum.

The representation step has also two stages.

Representation step: definition of the best prototypes. In the first
stage, the partition of {2 in K clusters and the vectors of weights A, =
Aty s AD) (B =1,..., K), are fixed.

The prototype yj, = (y}, . ..,y4) of cluster Py (k =1,..., K), which mini-
mizes the clustering criterion J3, has the bounds of the interval yi = [ai7 ﬁi]
updated according to the following: a{c = pj — 7, and ﬁi = pj +;, where
1 is the median of the set {(a} +bJ) /2 :i € Py} and ; is the the median
of the set {(b) —al)/2:i € P}

Representation step: definition of the best distances. In the second
stage, the partition of {2 in K clusters and the prototypes are fixed. The
vectors of weights Ay = (A},...,A\)(k = 1,..., K), which minimizes the
clustering J3 under A} > 0 and H?:l Al = 1, is updated according to the
following expression:

(Tl [Siep, (maz{|a® — all, b — 811})]}?

N, = —
Sien, (maa{lal - o], 1b] - A1)

7j:17"‘7p
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Allocation step: definition of the best partition. In the allocation step,
the prototypes and the vectors of weights Ay, = (AL,..., X)) (k =1,...,K)
are fixed. The clusters Py (k = 1,..., K), which minimize the criterion J3,
are updated according to the minimum distance allocation rule: P, = {i €
2: ¢(XiaYk) < ¢(XiaYh)7 Vh #k (h =1,.. vK)}

3 Experimental results

To show the usefulness of these methods, experiments with synthetic sym-
bolic interval data sets with different degrees of clustering difficulty (clusters
of different shapes and sizes, linearly non-separable clusters, etc) and an ap-
plication with a real data set are considered.

3.1 Synthetic data sets

In each experiment, we considered two standard quantitative data sets in R2.
Each data set has 450 points scattered among four classes of unequal sizes
and elliptical shapes: two classes of size 150 each and two classes of sizes 50
and 100. Each class in these quantitative data sets were drawn according to
a bi-variate normal distribution.

We consider two different configurations for the standard quantitative
data sets: 1) data drawn according to a bi-variate normal distribution where
the class covariance matrices are unequal and 2) data drawn according to a
bi-variate normal distribution where the class covariance matrices are almost
the same.

Each data point (21, 22) of each one of these synthetic quantitative data
sets is a seed of a vector of intervals (rectangle): ([z1 —v1/2, 21 +71/2], [22 —
Y2/2, z2472/2]). These parameters 71, y2 are randomly selected from the same
predefined interval. The intervals considered in this paper are: [1,10], [1, 20],
[1,30] and [1,40].

Symbolic interval data set 1 (Figure 1, left side) were constructed from
standard data drawn according to the following parameters (configuration
1):

a) Class 1: pug = 28, o = 23, 07 = 144, 03 = 16 and p1a = 0.8;
b) Class 2: p1 = 62, uz = 30, 02 =81, 03 =49 and pip = 0.7;
c) Class 3: p1 = 50, g = 15, 02 =49, 02 =81 and pjo = 0.6;
d) Class 4: p1 = 57, uz = 48, 02 = 16, 03 = 144 and p12 = 0.9;

Symbolic interval data set 2 (Figure 1, right side) were constructed from
standard data drawn according to the following parameters (configuration
2):

a) Class 1: pug = 28, o = 23, 07 = 100, 03 =9 and p12 = 0.7;
b) Class 2: p1 = 62, g = 30, 02 =81, 03 =16 and pjo = 0.8;
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Fig. 1. Symbolic interval data: config. 1 (left side) and config. 2 (right side).

c) Class 3: p3 = 50, ug = 15, 07 = 100, 05 = 16 and p1z = 0.7;
d) Class 4: py = 57, up = 37,07 =81, 03 =9 and p,12=0.8;

It is expected, for example, that the SHAD clustering method performs
well if the data are drawn considering configuration 2.

The evaluation of these clustering methods was performed in the frame-
work of a Monte Carlo experience: 100 replications are considered for each
interval data set, as well as for each predefined interval. In each replication
a clustering method is run (until the convergence to a stationary value of
the adequacy criterion) 50 times and the best result, according to the corre-
sponding criterion, is selected.

The average of the corrected Rand (CR) index (Hubert and Arabie (1985))
among these 100 replications is calculated. The CR index assesses the degree
of agreement (similarity) between a a priori partition (in our case, the par-
tition defined by the seed points) and a partition furnished by the clustering
algorithm. CR can take values in the interval [-1,1], where the value 1 indi-
cates a perfect agreement between the partitions, whereas values near 0 (or
negative) correspond to cluster agreements found by chance.

Table 1 shows the values of the average and standard deviation of CR
index according to the different methods and data configurations.

Table 1. Comparison between the clustering methods for interval data sets 1 and
2.

Range of values| Interval Data Set 1 Interval Data Set 2

of v; 1 =1,2 |[HNAD[SHAD [HADC|HNAD|SHAD [HADC
0.478 | 0.473 | 0.542 | 0.312 | 0.410 | 0.375
~; € [1,10] {(0.002)[(0.002)|(0.002)[(0.002)](0.013)|(0.006)
0.480 | 0.479 | 0.524 | 0.301 | 0.362 | 0.350
~; € [1,20] [(0.002)[(0.002)|(0.002)[(0.001)](0.010) |(0.005)
0.475 | 0.473 | 0.518 | 0.323 | 0.324 | 0.344
~; € [1,30] [(0.002)[(0.002)|(0.002)[(0.002)](0.004) |(0.003)
0.475 | 0.467 | 0.511 | 0.329 | 0.328 | 0.328
~; € [1,40] {(0.002)[(0.002)|(0.002)[(0.001)](0.002) |(0.002)

As expected, in data configuration 1 (the class covariance matrices are
unequal) the method based on an adaptive distance for each cluster (HADC)
outperforms the method based on a single adaptive distance (SHAD). For
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this configuration, the method based on a non-adaptive distance (HNAD)
presented a similar performance to SHAD method.

Data configuration 2 presents class covariance matrices that are almost
the same. In this case, the method based on an adptive distance for each
cluster (HADC) outperforms the method based on a single adaptive distance
(SHAD) only for ~; € [1,30]. The method based on a non-adaptive distance
(HNAD) has the worst performance.

In conclusion, for these data configurations, the methods based on adap-
tive distances outperform the HNAD method. Concerning the adaptive meth-
ods, their performance depend on the intra-cluster structure: the method
based on a single adaptive distance performs well when the a priori classes
have similar dispersions whereas the method based on an adaptive distance
for each cluster performs well when the a priori classes have dissimilar dis-
persions.

3.2 Application to a real data set

A data set with 33 car models described by 8 interval variables is used in this
application. These car models are grouped in four a prior: classes of unequal
sizes: Utilitarian (size 10), Berlina (size 8), Sporting (size 7) and Luzury (size
8). The symbolic interval variables are: Price, Engine Capacity, Top Speed,
Acceleration, Step, Length, Width and Height.

Concerning this symbolic interval data set, each clustering method is run
(until the convergence to a stationary value of the adequacy criterion) 60
times and the best result, according to the adequacy criterion, is selected.

HNAD, SHAD and HADC clustering algorithms have been applied to
this data set. The 4-cluster partitions obtained with these clustering methods
were compared with the 4-cluster partition known a priori. The comparison
index used is the corrected Rand index CR which is calculated for the best
result. The CR indices were 0.385, 0.558 and 0.558, respectively, for these
clustering methods. In conclusion, for this interval data set, the adaptive
methods (SHAD and HADC) present the best performance.

4 Conclusions

In this paper, a dynamic clustering method for symbolic interval data is
introduced. This method furnishes a partition of the input data and a corre-
sponding prototype for each class by optimizing an adequacy criterion which
is based on a single adaptive Haudorff distance between vectors of intervals.
Moreover, the prototype of each cluster is represented by a vector of inter-
vals, whose lower bounds, for a given variable, are the difference between
the median of midpoints of the intervals computed for the objects belonging
to this class and the median of their half-lengths, and whose upper bounds,
for a given variable, are the sum of the median of midpoints of the intervals
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computed for the objects belonging to this class plus the median of their
half-lengths.

The evaluation of this method in comparison with dynamic clustering
methods having adequacy criterion based on (non-adaptive and adaptive for
each cluster) Hausdorff distances have been carried out. The accuracy of the
results furnished by these clustering methods was assessed by the corrected
Rand index considering synthetic interval data sets in the framework of a
Monte Carlo experience and an application with a real data set. Concerning
the average CR index for synthetic and real symbolic interval data sets, the
methods with adaptive distances outperform the method with non-adaptive
distance. Regarding the adaptiv