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Foreword

By inviting me to write a preface, the organizers of the event in honour of
Edwin Diday, have expressed their affection and I appreciate this very much.
This gives me an opportunity to express my friendship and admiration for
Edwin Diday, and I wrote this foreword with pleasure. My first few meetings
with Edwin Diday date back to 1965 through 1975, days of the development of
French statistics. This was a period when access to computers revolutionized
the practice of statistics. This does not refer to individual computers or to
terminals that have access to powerful networks. This was the era of the first
university calculation centres that one accessed over a counter. One would
deposit cards on which program and data were punched in and come back a
few hours or days later for the results. Like all those who used linear data
analysis, the computer enabled me to calculate for each data set the value
of mathematical objects (eigenvalues and eigenvectors for example) whose
optimality properties had been demonstrated by mathematicians. It was al-
ready a big step to be able to do this in concrete experimental situations.
With Dynamic Clustering Algorithm, Edwin Diday allowed us to discover
that computers could be more than just a way of giving numerical values to
known mathematical objects. Besides the efficiency of the solutions he built,
he led us to integrate the access to computers differently in the research and
practice of data analysis. I think that quite a few works undertaken ever
since in France on statistical methods using computers intensively, benefited
knowingly or not from the path he had opened.

Thinking about Edwin Diday, I recall his qualities of initiative which greatly
benefited the community recognized under the banner of French Data Anal-
ysis between 1970 and 1990. He was the founder of club MODULAD, a place
of exchange and dissemination of software that each member had created
making the methods he had developed accessible to others. It was also a
place for valorisation, since these pieces of software put in a coherent package
and widely distributed allowed an easy access to recent developments. We
should also count Edwin Diday amongst the founders of the Société Franco-
phone de Classification. In this organization which he supported and fought
for, we recognize his concern to initiate exchanges between French and Fran-
cophone, who were preoccupied with the classification methods. These ex-
changes which sometimes appeared blunt were ultimately constructive. It is
surely this same concern but encompassing a larger field which led him in
1982 to take charge of coordinated research groups (GRECO) recognized by
the Centre National de la Recherche Scientifique (CNRS). Under the title
Data Analysis and Computer Science, GRECO offered to participate “in the
general renewal of the ways of thinking in the field of reduction, description,
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explanation and synthesis of variations observed on experimental data or ob-
servations”, which renewal was due to Computer Science. It brought together
“researchers from different backgrounds: statistics, numerical analysis, graph
theory, combinatorics and for the younger ones, training in the line of Com-
puter Science”. The above citation is an extract of a note that I had the
pleasure of co-signing with Edwin Diday and Yves Schektman to introduce
GRECO to CNRS. In this charge, Edwin Diday knew how to be a unifier who
gave everyone the opportunity to express themselves. Here, once again he was
a precursor. Due to his reputation and his work for the benefit of our associ-
ation, he got CNRS to accept the research subject of data analysis and had
thus prepared some of the teams to get a seal of approval by the organization.

I would like to recall a fourth initiative of Edwin Diday, that of the “Ver-
sailles congress” that he regularly organized between 1977 and 1985. Since
1970, the French statistics has tried to organize itself. The Association des
Statisticiens Universitaires (ASU) which later became Association for Statis-
tics and its Uses, maintaining the same acronym, contributed towards the
fight against isolation of its teams dispersed all over the territory. The Ver-
sailles Congress had the same vision but brought something more to it: an
opening to statisticians from abroad. We have had the opportunity, thanks to
Edwin Diday, to be able to listen to colleagues from all over Europe, United
States and Japan. Many joint initiatives and friendships were developed and
have continued by the way of exchange of persons or groups, for example with
our English, Italian or Japanese colleagues. Forever a researcher, forever an
innovator of ideas for the benefit of the community, Edwin Diday continues
even today with the same earnestness and the same success. His personal
page on his university website announces 12 articles in journals between 2000
and 2005 and I have not counted the other publications. He explores the field
of symbolic data analysis contributing to the extension of data analysis to
knowledge analysis. He was a man of the avant-garde in the beginning of his
career, and he continues to be so.

Please allow me to conclude this foreword by thinking about Edwin Diday as
a man and the enrichment one gets from being close to him. If his concerns of
research or service to the community make him sometimes inattentive, they
never prevented him from being attentive to other people, thoughtful of all
and always available to discuss a new idea, to evaluate a thesis, or to answer
favourably an invitation of scientific co-operation. This open-mindedness, this
generosity, are deeply rooted in a true humanism from which my relations
with Edwin Diday have always benefited. It is a pleasure for me to express
it here.

Montpellier, France, August 2007 Yves Escoufier
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In the year 1972 Edwin Diday presented a dissertation in which he proposed a
new method for clustering objects described by data, a very fashionable topic
at that time, often termed as ’automatic classification’. His approach was de-
signed for a multitude of data types and therefore had a great impact on the
development of data analysis in France and influenced the professional career
of many researchers in data analysis, pattern recognition, and informatics.
In particular, a large number of PhD students, naturally from France but
also from all over the world (e.g. Vietnam, Portugal, Brazil, Algeria, Turkey)
were supervised by Edwin Diday (among them the editors of this volume).
Since 35 years, Edwin Diday was active in the field of clustering and data
analysis, and by introducing the concept of ’symbolic data’ as early as in
1987, he has also shaped and developed the data-analytic approaches that
are known today under the name ’Symbolic Data Analysis’. Other important
contributions were the consideration of pyramids as an extension of classical
hierarchical classifications, and more recently, spatial clustering embedded
in three-dimensional space. During the last few years, he was intensively in-
volved in international projects related to symbolic data analysis.

Edwin Diday was also active in institutions and scientific societies and also
the organiser of many conferences and workshops. One of his important ac-
tivities was the foundation of the Société Française de Classification, later on
termed Société Francophone de Classification (SFC), and he was also one of
the presidents of this society. Given that the SFC was a founding member of
the International Federation of Classification Societies (IFCS), he was among
the organisers of the 3rd conference of the IFCS that took place in Paris in
the year 1993. Moreover, he was very much involved in establishing the series
of conferences ’Data Analysis and Informatics’ from 1977 to 1984, and later
on he organised two conferences on his favourite topic “Symbolic-numeric
data analysis and learning” (1989 and 1991).

Given such a broad range of activities, colleagues and friends wanted to hon-
our the outstanding work and the scientific career of Edwin Diday by editing
a Festschrift in which to collect a series of articles related to his scientific
work and its further developments. Many colleagues wanted to contribute to
this Festschrift and so we could compile an attractive and actual choice of
papers that provides a broad view on the domains were Edwin Diday was
active in research or practice, in particular on data analysis, knowledge ex-
traction, and symbolic data analysis. We have clustered these contributions
in the following seven chapters:
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Analysis of Symbolic Data
Clustering Methods
Conceptual Analysis of Data
Consensus Methods
Data Analysis, Data Mining, and KDD
Dissimilarities: Structures and Indices
Multivariate Statistics

Herewith, all authors, all editors and the members of the organising com-
mittee would like to congratulate Edwin Diday for his scientific work and his
commitment to the development of data analysis as well as to the education
of a large list of young (and meanwhile often established) students and re-
searchers. We all hope that Edwin will be active and healthy for many years
and influence the data analysis world also in the future.

Finally, the editors would like to thank all who have contributed to the design
and production of this Festschrift, to all authors for their cooperation, as well
as to Springer Verlag, in particular Dr. Martina Bihn and Christiane Beisel,
for their help concerning all aspects of publication.

Aachen, Montreal, Paris, Porto, Recife, Rennes
September 2007

Patrice Bertrand
Hans-Hermann Bock
Paula Brito
Guy Cucumel
Francisco de Carvalho
Yves Lechevallier
Bruno Leclerc
Gilbert Saporta
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Analysis of Symbolic Data



Dependencies and Variation Components of

Symbolic Interval-Valued Data

Lynne Billard

Department of Statistics, University of Georgia, Athens, GA 30602, USA
lynne@stat.uga.edu

Abstract. In 1987, Diday added a new dimension to data analysis with his funda-
mental paper introducing the notions of symbolic data and their analyses. He and
his colleagues, among others, have developed innumerable techniques to analyse
symbolic data; yet even more is waiting to be done. One area that has seen much
activity in recent years involves the search for a measure of dependence between two
symbolic random variables. This paper presents a covariance function for interval-
valued data. It also discusses how the total, between interval, and within interval
variations relate; and in particular, this relationship shows that a covariance func-
tion based only on interval midpoints does not capture all the variations in the
data. While important in its own right, the covariance function plays a central role
in many multivariate methods.

1 Introduction

Diday’s (1987) seminal paper introduced the concept of symbolic data, bring-
ing to data analysis a new way to think of data, their structures and how to
undertake appropriate statistical analyses.

In this paper, the focus is on descriptive statistics for quantitative data.
Bertrand and Goupil (2000) introduced expressions for the symbolic sample
mean and symbolic sample variance for interval-valued observations. Billard
and Diday (2003) extended these to histogram-valued observations. Many
examples with and without the presence of logical dependency rules can be
found in Billard and Diday (2006).

Finding an expression for the symbolic sample covariance Cov(Yj1 , Yj2 )
between the random variables Yj1 and Yj2 has been more elusive. While this
statistic is important in its own right, it is particularly important through
its role in a variety of statistical methodologies for multivariate data such
as regression and principal components. For example, if Y2 is a predictor
variable and Y1 is a dependent variable, a simple linear regression model

Y1 = β1 + β2Y2 + e (1)

has as its parameter estimators

β̂2 = Cov(Y1, Y2)/SY2 , β̂1 = Ȳ1 − β̂2Ȳ2, (2)
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where Ȳj is the sample mean of Yj , j = 1, 2, and S2
Y2

is the sample variance
of Y2. For (p− 1) predictor variables, the linear regression model is

Y1 = β1 + β2Y2 + · · · + βpYp + e (3)

with β = (β1, . . . , βp) estimated by

β = (X ′X)−1(X ′Y ). (4)

Equivalently, (3) can be written as

Y1 − Ȳ1 = β2(Y2 − Ȳ2) + · · · + βp(Yp − Ȳp) + e (5)

with β1 = Ȳ1−β2Ȳ2−· · ·−βpȲp. Then, writing (X−X̄) ≡ (Y2− Ȳ2, . . . , Yp−
Ȳp)

′ and (Y − Ȳ ) ≡ (Y1 − Ȳ1), we have that the parameters β = (β2, . . . , βp)
are estimated by

β̂ = [(X − X̄)′(X − X̄)]−1[(X − X̄)′(Y − Ȳ )] (6)

where it is assumed (X − X̄) is a nonsingular matrix. Since the theoretical
covariance is

Cov(Yj1 , Yj2) = E{(Yj1 − Ȳj1)(Yj2 − Ȳj2)},

it follows that the (data) terms in (4) or (6) are functions of, or directly
involve, the sample estimates of the covariance function.

Studies to date are generally based on the form (3) and hence (4) starting
with Billard and Diday (2000, 2002) and most recently with De Carvalho
et al. (2004) and Lima Neto et al. (2004, 2005). Published results in effect
use a version of the midpoint of the intervals to calculate these covariance
related terms. Billard and Diday (2000, 2002) then fit the resulting regression
equation to the interval endpoints of the predictor variables X to obtain
interval predictions for Y = Y1. De Carvalho et al. (2004) and Lima Neto
et al. (2004, 2005) transform each Yj variable into Yj = (Y1j , Y2j) where Y1j

is the interval midpoint and Y2j is the interval length; and then undertake
a classical analysis on these 2p variables. This is clearly an improvement
over the Billard and Diday approach. Unlike Billard and Diday (2002), this
range approach has not yet been extended to histogram-valued data. Neither
approach however fully accounts for the internal variation of the observed
intervals.

More recently, Marino and Palumbo (2003), Lauro and Gioia (2006) and
Corsaro and Marino (2006) have used the interval arithmetic results of Moore
(1966) to fit a linear regression model to interval-valued data. This produces
a set of regression lines, each fitted to specific values inside the observed
interval(s). This is computationally intensive. This approach brings in the
internal variations indirectly through this set of regressions. The ideas of
interval arithmetic unfortunately can only be applied to ”short” intervals;
nor do they extend to histogram-valued data.
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These methods have also been applied to principal components. The De
Carvalho and Lima Neto et al. approach, using both the interval midpoints
and lengths, was used in a principal component analysis by Palumbo and
Lauro (2003); and the interval arithmetic method was used by Gioia and
Lauro (2006) and Lauro and Gioia (2006). The same limitations encountered
in the respective regression methodologies apply here.

Clearly, a covariance measure that more truly reflects the internal vari-
ations of each observation is needed. One such measure is introduced for
interval-valued data in Section 2. The proposed covariance function reflects
both the variations internal to the observations and those across the obser-
vations. They are then compared with those based on the mid-point values
only in Section 3.

2 Dependence for interval-valued observations

Let Y = (Y1, . . . , Yp) be a p-dimensional random variable with realizations
Y u = ξu = (ξu1, . . . , ξup) where ξuj = [auj , buj], j = 1, . . . , p, and u ∈ E =
{1, . . . ,m}. These [auj , buj ] intervals can be opened or closed at either end.
When auj = buj , the particular realization is a classical point observation.

Bertrand and Goupil (2000) obtained, under the assumption that possible
realizations on [a, b] are uniformly distributed U ∼ (a, b), the symbolic sample
mean as

Ȳj =
1

2m

∑

u∈E

(buj + auj), (7)

and the symbolic sample variance as

S2
j =

1

3m

∑

u∈E

(b2uj + bujauj + a2
uj) −

1

4m2
[
∑

u∈E

(buj + auj)]
2. (8)

The expression for the sample variance S2
j in (8) can be rewritten as

S2
j =

1

3m

∑

u∈E

[(auj − Ȳj)
2 + (auj − Ȳj)(buj − Ȳj) + (buj − Ȳj)

2]. (9)

Then, by analogy with (9), for j = j1, j2, for interval-valued random variables,
we let the symbolic sample covariance between Yj1 and Yj2 be

Cov(Yj1 , Yj2) =
1

3m

∑

u∈E

Gj1Gj2 [Qj1Qj2 ]
1/2 (10)

with

Qj = (auj − Ȳj)
2 + (auj − Ȳj)(buj − Ȳj) + (buj − Ȳj)

2 (11)

Gj =

{
−1, if Ȳuj ≤ Ȳj ,
1, if Ȳuj > Ȳj ,

(12)
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where the overall sample mean Ȳj is given in (7) and the observation mean
is

Ȳuj = (auj + buj)/2. (13)

The symbolic sample correlation coefficient is

r(Yj1 , Yj2) = Cov(Yj1 , Yj2)/(Sj1Sj2). (14)

Special cases
By comparing (9) and (10), we observe that the special case

Cov(Yj , Yj) = S2
j

holds. Also, when the data are all classically valued, i.e., when auj = buj for
all u and j, (10) becomes

Cov(Yj1 , Yj2) =
1

m
Σ(Yj1 − Ȳj1)(Yj2 − Ȳj2) (15)

which is the familiar formula for the covariance function for classical data.

The sign coefficient Gj

It is first noted, by comparing (9) and (11), that Qj is always positive as
it is simply the squared term that enters into the expression for the sample
variance S2

j for each observation u. However, covariance functions can take
positive or negative values.

To understand that the Gj of (12) satisfy this property, let us consider
the two sets of classical data shown in Fig. 1(a) and Fig. 1(b). Also shown
is the fit of the simple regression line (1). For classical data, the estimator of
the slope β2 (as in equation (2)) can be written as

β̂2 =
∑

u

(Yu1 − Ȳ1)(Yu2 − Ȳ2)/
∑

u

(Yu2 − Ȳ2)
2 (16)

The sample means (Ȳ1, Ȳ2) fall on the regression line itself. Consider the
data of Fig. 1(a) for which the slope is β2 > 0. It is easy to see that whenever
a particular observation is such that Yu1 < Ȳ1, the factor (Yu1 − Ȳ1) in (16)
is negative, and it is positive whenever Yu1 > Ȳ1; likewise for Y2. In this case,
the tendency is that the (Yu1− Ȳ1) and (Yu2− Ȳ2) terms will be both positive
or both negative so that the contribution to the numerator is positive. The
reverse tendency holds for the data in Fig. 1(b) where β2 < 0. Here, for
observations with Yu2 < Ȳ2, the (Yu1 − Ȳ1) terms tend to be positive, to give
contributions to the numerator in (16) that are negative; and likewise, for
observations with Yu2 > Ȳ2. (This ”tendency” for the +/- sign value is just
that, a tendency and not an absolute; see the observation ”z” in each case
where the signs do not take these ”tendency” values). Finally, note that for
classical data, Yuj = Ȳuj , so that (12) pertains.
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Fig. 1. Classical regression slopes.

Fig. 2. Interval data regression slope.

Fig. 2 shows a set of interval-valued data (Y1, Y2) along with the sample
means (Ȳ1, Ȳ2) and the simple linear regression line (1). Note that, unlike for
classical data, (Ȳ1, Ȳ2) does not necessarily take a value exactly on this regres-
sion line. However, the discussion for classical observations in the previous
paragraph carries through analogously where now the observation midpoints
Ȳuj replace Yuj , j = 1, 2.
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An example
The data of Table 1 relate to six sets of performers engaged in a certain

dance activity. The random variable Y2 = Oxygen Intake is a measure of the
oxygen capacity of a person and Y1 = Duration is the time a performer can
keep performing (before a prescribed level of exhaustion sets in). Typically
the better a person’s oxygen capacity (i.e., the less required per unit time),
the fitter that person is and so is able to perform longer than those with less
capacity.

Y1 Y2

Duration Oxygen Intake
u [au1, bu1] [au1, bu1]

1 [11, 11.2] [67, 68]
2 [10.3, 11.3] [62, 64]
3 [11, 11.2] [57, 59]
4 [11.5, 12.0] [53, 55]
5 [11.1, 11.6] [55, 57]
6 [12, 12.1] [50, 52]

Table 1. Dance Activity.

Substituting into (7), we obtain the sample means

Ȳ1 = 11.358, Ȳ2 = 58.250,

and substituting into (10) we obtain the sample covariance function as

Cov(Y1, Y2) = −1.963.

The symbolic sample variances are found from (9) as

S2
1 = 0.202, S2

2 = 30.938.

Hence, from (14) the symbolic sample correlation coefficient is

r(Y1, Y2) = −0.786.

An adjustment
A feature that is not uncommon for interval-valued data is that a few

of the observations can be such that one or both of the means Ȳj1 and Ȳj2

can fall inside an observation. Fig. 3 plots the actual observations for the
data of Table 1, and also shows the respective means Ȳ1 and Ȳ2. The mean
Ȳ1 = 11.358 bisects the fifth (u = 5) observation with regard to its Y1 =
(a15, b15) = (11.1, 11.6) value; and the mean Ȳ2 = 58.250 bisects the third
(u = 3) observation on its Y2 = (a23, b23) = (57, 59) value.
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Y2 = 58.25

Y1 = 11.358

Y
2 =

 O
xy

ge
n 

in
ta

ke
 

Y1 = Duration

Fig. 3. Dance dataset.

Consider the Y2 random variable for this (u = 3) observation. Here, Ȳ2 =
58.250. From (12), for this observation, G2 = −1; and as written G2 = −1 for
all Y2 values. A refinement is to bisect this observation into two components
viz., u = 31 (say) with observed values ([11.0, 11.2], [57, 58.25]) and u =
32 with observed values ([11.0, 11.2], [58.25, 59]). These components carry
weights w = 0.625 and w = 0.375, respectively. Likewise, the fifth (u = 5)
observation is bisected with regard to the Y1 random variable, to give two

”observations” u = 51 and u = 52 taking values, ([11.1, 11.358], [55, 57]) and
([11.358, 11.6], [55, 57]) with weights 0.516 and 0.484, respectively. The re-
maining observations take weight w = 1. This is summarized as the adjusted
data of Table 2.

Also shown in Table 2 are the signs Gj for the unadjusted and adjusted
data. In this way, the adjusted data have signs that now more accurately
reflect the sign needed for all possible observations in an interval. When,
both Ȳj1 and Ȳj2 fall inside an observed rectangle, then bisection relative to
both Yj1 and Yj2 occurs, to give four components on an observation, in a
completely analogous manner for two observation components. Clearly, for
classical observations, this step does not apply.

Substituting the refined values into (10) and using the weight factor w,
we obtain the adjusted covariance and hence correlation coefficient as

Cov(Y1, Y2) = −2.035, r(Y1, Y2) = −0.815.

The sample means and variances are unchanged.
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Adjustment
Duration Oxygen Intake Weight No Yes

u Y1 Y2 w G1 G2 G1 G2

1 11.0 11.2 67 68 1 -1 1 -1 1
2 10.3 11.3 62 64 1 -1 1 -1 1
31 11.0 11.2 57 58.25 .625 -1 -1 -1 -1
32 11.0 11.2 58.25 59 .375 -1 1
4 11.5 !2.0 53 55 1 1 -1 1 -1
51 11.1 11.358 55 57 .516 -1 -1 -1 -1
52 11.358 11.6 55 57 .484 1 -1
6 12.0 12.1 50 52 1 1 -1 1 -1

Table 2. Adjusted Dance Dataset.

3 Within, between and total variations

Let us return to the symbolic sample variance expression (9). We can show
that, writing Sum of Squares for Yj as SSj ,

TotalSSj = WithinSSj + BetweenSSj (17)

where TotalSSj = mS2
j , with S2

j defined as in (9),

WithinSSj =
1

3

∑

u∈E

[(auj − Ȳuj)
2 +(auj − Ȳuj)(buj − Ȳuj)+(buj − Ȳuj)

2] (18)

and
BetweenSSj =

∑

u∈E

[(auj + buj)/2 − Ȳj ]
2 (19)

where Ȳuj and Ȳj are as defined in (13) and (7), respectively.
Each term of the summation in (18) corresponds to the internal varia-

tion of the single observation u. When auj = buj = Ȳuj for all u, we have
WithinSSj = 0 reflecting that for classical data there is no internal variation.
The BetweenSSj of (19) is the sum of squares between the midpoints of all
the observations in E. Therefore, methods based on the interval midpoints
are using this BetweenSSj to express the variation across the observations,
when it is the total variation (i.e., TotalSSj) that should be used. A similar
expression to (17) holds for the Sum of Products SP between Yj1 and Yj2 .

An example
This phenomenon is illustrated by the data of Table 1. Table 3 gives

the TotalSS, WithinSS and BetweenSS for each of the random variables Y1

and Y2, and also the corresponding SP s for the joint (Y1, Y2) variable. It is
evident that these satisfy the relationship (17). Dividing each by m (= 6 here),
we obtain the respective Total, Within and Between variances/covariances.
Again, it is clear that use of the interval midpoints in any subsequent analysis



Dependencies and Variation Components of Symbolic Data 11

does not take into account the internal variations (i.e., the WithinSSj is
neglected).

Duration Oxygen Joint
Y1 Intake Y2 (Y1, Y2)

Total SS (SP 1.212 185.628 -12.210
Within SS (SP) 0.132 1.752 -0.570
Between SS (SP) 1.080 183.876 -11.640
Total Variation 0.202 30.938 -2.035
Within Variation 0.022 0.292 -0.095
Between Variation 0.180 30.646 -1.940

Table 3. Within, Between and Total Variations.

4 Conclusion

The relationship (17) is one mathematical proof that basing covariance (or
functions of covariance) functions on the interval midpoints fails to capture
all the variance in the data. Though not discussed herein, it is also a truism
that a covariance function based on the BetweenSS does not simplify to the
variance (9) for the special case that Yj1 = Yj2 , as it should. The covariance
function given in (10) has the property that all the variations in the data are
utilized and that the special case Cov(Yj , Yj) = S2

j holds.
Therefore, regression and principal component analyses (among others)

which depend in some way on a function of the covariance function can
now proceed. For example, the Billard and Diday (2000, 2002) regression
approach should use the format (10) to estimate the regression parameters.
This produces a single prediction equation, but all the data variations have
been incorporated into that analysis. Interval predictors can then be found by
fitting this prediction equation to the lower and upper interval values for the
various predictor variables. The range and midpoint method and the interval
arithmetic method can also be suitably adapted.
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Abstract. Symbolic data extend the classical tabular model, where each indi-
vidual, takes exactly one value for each variable by allowing multiple, possibly
weighted, values for each variable. New variable types - interval-valued, categorical
multi-valued and modal variables - have been introduced, which allow representing
variability and/or uncertainty inherent to the data. But are we still in the same
framework when we allow for the variables to take multiple values? Are the defini-
tions of basic notions still so straightforward? What properties remain valid? In this
paper we discuss some issues that arise when trying to apply classical data analysis
techniques to symbolic data. The central question of the measurement of disper-
sion, and the consequences of different possible choices in the design of multivariate
methods will be addressed.

1 Symbolic data

In the classical tabular model, n individuals ωi, i = 1, . . . , n, take exactly one
value on each of p variables, Y1, . . . , Yp, which may be of quantitative (values
are elements of IR of some subset of IR) or qualitative (values are categories of
a generally finite set) nature. However, it is often the case that information is
too complex to be represented in such a data table. This situation may arise
when variables take more than just a single value for one individual. As an
example, consider the time used for studying by a given student which varies
from day to day, or the means of transportation used in a given year, which
may be car, bus, etc. In the first case, the “value” for this variable is an inter-
val (e.g., [20min., 2h]), and in the second case, a frequency distribution (e.g.,
car 20%, bus 80%). It may also be the case that the described elements are
not single individuals but classes of individuals for which internal variability
must be taken into account, or that there is some inaccuracy or uncertainty
in recording a value which should be considered in the data analysis. In all
these cases, the data go beyond the classical paradigm, and we get what has
been called Symbolic Data (Bock and Diday (2000)).
To represent symbolic data, new kinds of variables have been introduced:
multi-valued variables, interval-valued variables and modal variables (Bock
and Diday (2000)). A variable is called set-valued if its “values” are nonempty
sets of the underlying domain, it is multi-valued if its values are finite subsets
of the domain and it is an interval-valued variable if its values are intervals
of IR. A modal variable Yj with a finite domain Oj = {m1, . . . ,mkj} is a
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multi-state variable where, for each element, we are given a category set and,
for each category, a frequency or probability which indicates how frequent or
likely that category is for this element. In the case where an empirical dis-
tribution is given, the variable is called histogram variable (Bock and Diday
(2000)).
Let Y1, . . . , Yp be the set of variables, Oj the underlying domain of Yj and Bj

the range of Yj , j = 1, . . . , p. If Yj is a classical variable, then Bj = Oj ; if Yj

is an interval-valued variable, than Bj is the set of intervals contained in Oj ;
if Yj is a categorical multi-valued variable Bj is P (Oj), the system of subsets
of Oj ; and if Yj is a modal variable then Bj is the set of distributions on Oj .
A description of an individual or a class is defined as a p-tuple (d1, . . . , dp)
with dj ∈ Bj , j = 1, . . . , p.
Let E = {ω1, . . . , ωn} be the observed entities to be analysed, then Yj(wi) ∈
Bj for j = 1, . . . , p, i = 1, . . . , n. So, the data array consists in n descriptions,
one for each entity ωi ∈ E : (Y1(ωi), , Yp(ωi)), i = 1, . . . , n.

By allowing for new kinds of variables, which take variability or uncertainty
explicitly into account, data no longer fit in the classic p-dimensional vector
model. The question is then how multivariate data analysis techniques should
be extended to the new data types, which properties remain valid, and which
notions have to be re-defined. In this paper we address some of these issues,
trying to put in evidence the special characteristics of symbolic data.

2 Clustering of symbolic data: dissimilarity versus
generalization based methods

Clustering is a multivariate statistical technique that aims at collecting sim-
ilar individuals in homogeneous classes, on the basis of observed values in a
set of variables. The resulting classes may be organized according to different
structures. Hierarchical and pyramidal clustering methods produce a struc-
ture of nested clusters, in the case of a hierarchy each level corresponds to a
partition (i.e. by “cutting” a hierarchy at an appropriate level - according to
some given criteria - we get a partition of E); in the case of a pyramid we get,
at each level, a family of overlapping clusters (family of non-empty subsets
of E which together cover E but are not necessarily disjoint), but all clusters
are intervals of a total linear order. Partitional (non-hierarchical) clustering
methods produce directly, by means of an iterative process, a partition of
E on a generally pre-defined number of disjoint classes, by - most generally
locally - optimizing some given criteria.

The consideration of data that go beyond the classical tabular model led
to the need of defining, or adapting, clustering methods to the new kinds of
data. Moreover, it was intended that the clusters found should be represented
within the same formalism as the input data, since symbolic variables allow
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describing classes, taking into account their internal variability (Diday (1988,
1989)).

Since the initial formalization of Symbolic Data and the first steps in Sym-
bolic Data Analysis (Diday (1988, 1989)), a multitude of methods for clus-
tering symbolic data has been proposed and studied, and applied in different
domains. We categorize these methods into two distinct groups:

A Methods that result from adapting classical clustering methods based on
dissimilarities to the new kind of data, by properly defining dissimilarity
measures for symbolic data. In this case, the clustering methodologies
and criteria remain almost unchanged (only necessary adaptations have
to be performed) and are applied to the obtained dissimilarity matrices.

B Methods that do not rely on dissimilarities and use the data (i.e., the
descriptions of the elements of E) explicitly in the clustering process.
The criterion to form classes is to get a “meaningful” class description,
and we are in the scope of the so-called conceptual clustering methods.

It should be noticed that this categorization is not specific to the clustering
of symbolic data, the same applies in the case of clustering classical data
arrays. But the purpose here is to put in evidence what is particular to the
case of symbolic data, that does not arise when the data follow the classical
paradigm.

Clustering methods of type A will tend to cluster together entities with sim-
ilar descriptions - this similarity being evaluated by one of the proposed
measures - irrespective to the intrinsic variability of the underlying descrip-
tions. In other words, however large is the variability inherent to two given
descriptions, if they are alike, their dissimilarity will have a low value - and
the corresponding entities will tend to be clustered together. On the other
hand, methods of type B will tend to concentrate on the description of each
newly formed cluster, and minimize its inherent variability. This means that
this kind of methods may favor the grouping of entities whose descriptions are
less alike, if the description of the resulting cluster presents a lower variability.

What we wish to bring forward is that this duality is specific to symbolic
data, it does not arise if we are in presence of classical - quantitative or qual-
itative - data. In the latter case, the closer the values of a given variable, the
more specific is their generalization - so both dissimilarity and generalization
based methods will tend to elect the same candidate pairs to be aggregated.

Example 1:
Let’s consider the following small illustrative example:
Let Y be a quantitative interval-valued variable, O = [0, 100], B is the set of
intervals defined in O.
Let Y (ω1) = I1 = [10, 20] , Y (ω2) = I2 = [30, 40], Y (ω3) = I3 = [10, 100] ,
Y (ω4) = I4 = [9, 99] .
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Which are the more dissimilar pairs, ω1, ω2 or ω3, ω4 ???
Let Gen be a generalizing operator, that associates to a pair of intervals the
smallest interval containing them both. Then, Gen(I1, I2) = [10, 40], which
covers 30% of O ; Gen(I3, I4) = [9, 100], which covers 91% of O. So, general-
izing ω3 and ω4 leads to a class with a much larger description interval than
the one formed by ω1 and ω2.
However, if we consider, for instance, the L2 distance between intervals, then

L2(I1, I2) =
[
(30 − 10)2 + (40 − 20)2

] 1
2 =

√
800 and

L2(I3, I4) =
[
(100 − 99)2 + (10 − 9)2

] 1
2 =

√
2

Analogously, for the Hausdorff distance, dH([a, b] , [a′, b′]) =
Max{|a− a′| , |b− b′|}, we have:
dH(I1, I2) = Max {|30 − 10| , |40 − 20|} = 20 and
dH(I3, I4) = Max {|10 − 9| , |100 − 99|} = 1
So, in a dissimilarity-based clustering algorithm (using for instance L2 or
dH), ω3 and ω4 would be preferred to be clustered together rather than ω1

and ω2, and the opposite would happen for generalization-based methods.
Notice, however, that no such dichotomy occurs in the presence of classical
quantitative data, for instance, L2(10, 30) > L2(10, 20) and also Gen(10, 30) =
[10, 30] ⊃ Gen(10, 20) = [10, 20] (where we identify a real number x with the
interval [x, x]).

Example 1 deals with interval-valued data, however, the same could easily
be illustrated with multi-valued or modal variables. This dichotomy shows
that, when clustering a data set described by symbolic variables, it should
not be expected that dissimilarity-based methods yield results comparable
to those obtained by generalization-based methods. The criteria are different
and, in this case, they point in different directions. Therefore it makes no
sense to compare results issued by the two kinds of methods: they simply
do not have the same objective, since they start from a different concept of
“what a cluster is”.

3 Dissimilarity based clustering: the standardization
problem

When clustering is based on dissimilarities and the underlying variables are
quantitative, then the question of comparability of the measurement scales
of the different variables is a major issue. In the context of symbolic data
analysis, the problem arises when entities are described by interval-valued
variables, i.e. Yj(ωi) = [lij , uij ], j = 1, . . . , p, i = 1, . . . , n. It is well known,
and may often be verified in practical applications, that dissimilarity values
and, consequently, clustering results are strongly affected by the variables’
scales. So, to make it possible to obtain an ‘objective’ or ‘scale-invariant’
result, some standardization must be performed prior to dissimilarity com-
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putations in the clustering process. In the symbolic data case, the problem
of standardizing interval-valued variables must then be addressed.

It seems reasonable to consider that, since variable values are intervals, the
standardization of an interval-valued variable should be performed in such a
way that the same transformation is applied to both the lower and the upper
bound of all n observed intervals - since they concern one and only variable.
In De Carvalho, Brito and Bock (2006), three alternative standardization
methods for the case of interval data have been proposed. In all three cases,
the variables Yj , j = 1, . . . , p are standardized separately, each one in a linear
way, with the same transformation for both the lower and the upper bound of
all n component intervals Iij := [lij , uij ], i = 1, ..., n. These methods mainly
differ in the way dispersion of an interval-valued variable is evaluated.

Standardization 1: Using the dispersion of the interval centers The
first method considers the mean and the dispersion of the interval midpoints
(lij + uij)/2 and standardizes such that the midpoints of the transformed
intervals have zero mean and dispersion 1 in each dimension.
The mean value of all interval midpoints is mj := 1

n

∑n
i=1(lij + uij)/2 and

their dispersion is evaluated by the empirical variance around this mean:
s2

j := 1
n

∑n
i=1 ((lij + uij)/2 −mj)

2
. With this notation, the data interval Iij

is transformed into the interval I
′

ij = [l
′

ij , u
′

ij ] with bounds l
′

ij := (lij −mj)/sj

and u
′

ij := (uij −mj)/sj , i = 1, ..., n, where automatically l
′

ij ≤ u
′

ij for all i, j.

As desired, the new intervals I
′

ij are standardized with m
′

j = 0 and s
′2
j = 1.

Standardization 2: Using the dispersion of the interval bounds An-
other alternative consists in evaluating the dispersion of an interval-valued
variable by the dispersion of the interval bounds. This joint dispersion of a
variable Yj is defined by s̃2

j := 1
n

∑n
i=1((lij −mj)

2 + (uij −mj)
2)/2. Conse-

quently, the second standardization method transforms, for each variable j,
the intervals Iij = [lij , uij ] as in the first case, and such that the mean and
the joint dispersion of the rescaled interval bounds are 0 and 1, respectively.

Standardization 3: Using the global range A third standardization
method transforms, for a given variable, the intervals Iij = [lij , uij ] (i =
1, ..., n) such that the range of the n rescaled intervals I ′ij = [l′ij , u

′
ij ] , with

l
′

ij :=
lij−Minj

Maxj−Minj
and u

′

ij :=
uij−Minj

Maxj−Minj
where Minj = Min{l1j, ..., lnj}

and Maxj = Max{u1j, ..., unj} is the unit interval [0, 1].

Simulation studies (De Carvalho, Brito and Bock (2006)) showed that stan-
dardization greatly improves the quality of the clustering results in terms of
recovery of an imposed structure. Standardization 2 performed slightly better
for ill-separated clusters where intervals have large ranges.
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In Chavent (2005), an alternative approach for the standardization of interval
data is proposed, when a Hausdorff distance is used. In this paper, the author
points out that to compute distances between standardized observations is
generally equivalent to using a normalized version of the corresponding dis-
tance, and determines normalized L1 and L∞ Hausdorff distances.

Normalized L1 Hausdorff distances Let µ̂ be the median of the mid-
points of the n intervals Iij , i = 1, . . . , n and λ̂ the median of the n intervals’
half lengths; in the first case, dispersion of an interval-valued variable is de-

fined by σj =
∑n

i=1 max
(∣∣∣lij − µ̂ + λ̂

∣∣∣ ,
∣∣∣lij − µ̂− λ̂

∣∣∣
)
.

The Normalized L1 Hausdorff distance between two individuals ωi and ωi′

is then defined by d1(ωi, ωi′) = 1
σj

∑p
j=1 dH(Iij , Ii′j), where dH(Iij , Ii′j) =

Max{|lij − li′j | , |uij − ui′j |} is the Hausdorff distance between Iij and Ii′j .

Normalized L∞ Hausdorff distances Alternatively, dispersion of an

interval-valued variable is defined by σj = maxi=1,...,n

(∣∣∣lij − l̂ij

∣∣∣ , |uij − ûij |
)

where l̂ij = (maxilij +minilij)/2 and ûij = (maxiuij +miniuij)/2. The nor-
malized L∞ Hausdorff distance between two individuals ωi and ωi′ is then
d1(ωi, ωi′) = 1

σj
maxjdH(Iij , Ii′j).

The way standardization should be performed depends hence on how disper-
sion of an interval-valued variable ought to be evaluated and interpreted. Dif-
ferent definitions of dispersion lead to different standardization procedures,
and consequently to possibly different results. A question that is not so crit-
ical in the analysis of real data.

4 Clustering methods for symbolic data: a
generalization based method

A method for “symbolic” hierarchical or pyramidal clustering has been pro-
posed in (Brito (1991, 1994)), allowing clustering for multi-valued data. This
method was subsequently developed in order to allow for modal variables
(Brito (1998)); later on, Brito and De Carvalho extended this work so as to
allow for the existence of hierarchical rules between multi-valued categorical
variables (Brito and De Carvalho (1999)) and between modal variables (Brito
and De Carvalho (2002)).

The method may be seen within the framework of conceptual clustering,
since each cluster formed is associated to a conjunction of properties in the
input variables, which constitutes a necessary and sufficient condition for
cluster membership. Clusters are hence associated to concepts, since they are
described, both, extensionally by the set of its members, and intentionally by
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a symbolic description expressing the variability of each variable within the
cluster.

The criterion that guides cluster formation is this duality intent-extent:
each cluster of the hierarchy or pyramid should correspond to a concept, that
is, each cluster is by construction associated with a symbolic description, that
provides a generalized description of its members, and no element outside the
cluster should fit this description.

An additional criterion must then be considered to choose among the dif-
ferent aggregation possibilities meeting the above condition. The principle is
that clusters associated to less general descriptions should be formed first.
Since this generality relation is just a partial order relation, a measure has
been defined that allows to quantify the generality of a given description: this
is the so-called generality degree, G. For interval-valued and categorical multi-
valued variables, it evaluates the proportion of the underlying domain that is
covered by the symbolic description; for modal variables, it evaluates in how
much the given distribution is close to the uniform distribution, by computing
the affinity between the given distribution and the uniform distribution (see
Brito and De Carvalho (2007)). The generality degree is computed variable-
wise; the values for each variable are then combined in a multiplicative way
to get a measure of the variability of the symbolic description.

Example 2:
Let Y1 be an interval-valued variable, say percentage of daily time used
to study, O1 = [0, 100], B1 is the set of intervals defined in O1, and Y2

a categorical multi-valued variable, say, spoken languages, B2 is the power
set of O2 = {Portuguese, Spanish, Italian, French, English, German}, and
let d1 = (Y1(ω1), Y2(ω1)) = ([10, 25] , {French,English}). Then, G(d1) =
15

100
× 2

6
= 0, 05, i.e., d1 covers 5 % of the description space O1 ×O2.

Let us comment on this definition. First, the fact that generality is evaluated,
for interval-valued and categorical multi-valued variables, as the proportion
of the description space covered by the given description, corresponds im-
plicitly to assuming that all values within the description space are equally
probable: there is hence an underlying uniformity hypothesis in this defini-
tion. Secondly, by using a ratio, there is no need to standardize quantitative
(real or interval-valued) variables. The question remains however whether
this ratio should be evaluated with respect to the whole variable domain or
to the variability observed in the analysed sample. In either case, since val-
ues for different variables are computed separately and may be combined,
the method allows easily for clustering data described by variables of mixed
types. By combining values for different variables in a multiplicative way, we
consider that variables are independent. As concerns modal variables, mea-
suring generality by the affinity with the uniform distribution, corresponds
to considering that the more general case arises when all categories of the
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underlying set are equally probable. The more we deviate from this situation,
the more specific is the given description. Finally, such a criterion will favor
the formation of clusters with less general descriptions, that is, presenting a
global lower variability as respects the underlying variables.

5 Dispersion, association and linear combinations of
interval-valued variables

Duarte Silva and Brito (Duarte Silva and Brito (2006)) have addressed the
problem of the definition of a linear combination of interval-valued variables,
with the aim of establishing conditions under which usual properties hold.
Let I be an n × p matrix representing the values of p interval-valued vari-
ables Y1, . . . , Yp on a set E = {ωi, i = 1, . . . , n} where each ωi ∈ E is
represented by a p-uple of intervals, Ii = (Ii1, . . . , Iip), i = 1, . . . , n, with
Iij = [lij , uij ], j = 1, . . . , p. Let SI be a covariance matrix of measures of
dispersion (s2

j ) and association (sjj′ ) for interval data and Z = I
⊗

β be
r appropriately defined linear combinations of the Y ′s based on p × r real
coefficients βj�, j = 1, . . . , p; � = 1, . . . , r, stacked in a matrix β.

If we consider a linear combination of interval-valued variables as an ex-
tension of the definition of linear combinations of real-valued variables, then
it seems natural to stipulate that such a linear combination should satisfy
the following basic properties, which are straightforward for the real case:

(P1) Ii

⊗
β� =

p∑

j=1

βj� × Iij where β� denotes the �-th column of matrix β

and βj� × Iij = {βj� x : x ∈ Iij} ; Iij + Ii′j = {x + y : x ∈ Iij , y ∈ Ii′j};
that is, the resulting interval for individual ωi is a “linear combination of
the intervals” corresponding to each variable, Yj(ωi).

(P2) SZ = SI
⊗

β = βtSIβ
that is, the covariance between interval-valued variables should be a sym-
metric bilinear operator w.r.t.

⊗
.

But do these properties hold in general ? What do we exactly mean by
“linear combination of interval-valued variables” ?

One possible, and quite natural definition of linear combination of interval-
valued variables is given by

Definition A: Ii

⊗
A β� = zi�A = [zi�A, zi�A], i = 1, . . . , n, with

zi�A =

p∑

j=1

βj� lij ; zi�A =

p∑

j=1

βj� uij (1)

i.e., the resulting interval for individual ωi is obtained by applying the same
linear combination to both the lower and upper bounds of the intervals cor-
responding to each variable, Iij = Yj(ωi).
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Unfortunately, this quite straightforward definition does not satisfy property
(P1) if at least one element of β� is negative, since in this case the resulting
interval bounds are interchanged (e.g. (−1)[2, 4] = [−4,−2]).
A definition of a linear combination of interval-valued variables that takes
the sign of the elements of β� into account is given by:

Definition B: Ii

⊗
B β� = zi�B = [zi�B, zi�B ], i = 1, . . . , n, with

zi�B =
∑

βj�>0

βj� lij +
∑

βj�<0

βj� uij ; zi�B =
∑

βj�>0

βj� uij +
∑

βj�<0

βj� lij

(2)
Definition B is the definition we would obtain by applying the rules of Inter-
val Calculus (Moore (1966)) since the resulting intervals include all possible
values that are scalar linear combinations of the values within the intervals
Iij . However, this definition ignores any connection that may exist between
corresponding interval bounds in the original data. The existence (or lack of
it) of such connection (and therefore the relevance of property (P1)) depends
on how a set of interval data ought to be interpreted.
Interval-valued variables generally arise in one of two following situations: ei-
ther each element ωi ∈ E represents a group of individuals of a set Γ , whose
elements are described by real variables yj , and the interval-valued variables
Yj represent the variability of yj in each group; or else the interval-valued
variable Yj represents the possible values of an uncertain real variable yj .
In both cases, correlations between underlying real variables may lead to a
connection between values within the intervals associated to the correspond-
ing interval-valued variables. When such a connection is present, we say that
the variables Yj , Yj′ are inner correlated. In the case where two underlying
real variables yj and yj′ have a perfect positive ordinal correlation, then the
lower bound (resp. upper bound) of Yj will always be associated with the
lower bound (resp. upper bound) of Yj′ (and reciprocally for a perfect neg-
ative ordinal correlation). Definition A is appropriate when there is Positive
Inner Correlation in the data which ought to be taken into account; Defini-
tion B is appropriate in the absence of inner correlation and it satisfies (P1).
Duarte Silva and Brito (2006) have established that when dispersion s2

j and
association sjj′ measures depend on lij and uij symmetrically, then both
Definition A and Definition B satisfy (P2). It follows that variances of lin-
ear combinations are given by quadratic forms, and ratios are maximized
by a traditional eigenanalysis. Classical multivariate methods, such as linear
discriminant analysis, may then be adapted in a straightforward way.

6 Conclusions and perspectives

The extension of classical multivariate data analysis methodologies to sym-
bolic data raises new problems: How to evaluate dispersion? How to define
linear combinations? Which properties remain valid?
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The definition of dispersion is a central one, and the way to evaluate dis-
persion is not straightforward as in the case of real-valued data. Different
alternatives are possible, and the choice of one of these often determines the
type of model to be used subsequently.
The important issue remains however the need for statistical models which
would allow for estimation and hypothesis testing. This is the real challenge
that will surely motivate new research and lead to interesting developments
in the analysis of symbolic data in the near future.
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Abstract. Monitoring Internet traffic in order to both dynamically tune network
resources and ensure services continuity is a big challenge. Two main research issues
characterize the analysis of the huge amount of data generated by Internet traffic:
1) learning a normal adaptive model which must be able to detect anomalies, and 2)
computational efficiency of the learning algorithm in order to work properly on-line.
In this chapter, we propose a methodology which returns a set of symbolic objects
representing an adaptive model of ‘normal’ daily network traffic. The model can
then be used to discover traffic anomalies of interest for the network administrator.

1 Introduction

In the Information Society, it is essential to guarantee the continuity of
Internet-based services for both large critical infrastructures and private en-
terprises. This makes necessary monitoring cybertraffic in order to identify
and/or to prevent anomalous behaviors which can be caused by either devices
malfunctioning or real intrusion attempts. However, the huge amount of data
logged by hosts prevents full human monitoring of network traffic and raises
the need of anomaly detection tools.

The realization of effective anomaly detectors requires the consideration
of some research issues. First of all, it is important to distinguish between
various types of anomalies in order to facilitate their analysis by human op-
erators. In particular, two main types are represented by outliers and change
points. Roughly, outliers are isolated and exceptional points, independently of
the temporal dimension, while change points correspond to changing patterns
whose semantics is essentially temporal. The difference between outliers and
change points is well captured both by Ghoting et al. (2004), who consider
two different behaviors when analyzing static or dynamic datasets, and by
Takeuchi and Yamanashi (2002), who deal with the issue of detecting outliers
and change points from time series. Similarly, also Wang and Stolfo (2004)
consider the adaptive property for intrusion detection systems.

In addition, classical supervised learning algorithms are hardly useful for
anomaly detection tasks. They are designed for classification tasks and need
labeled examples belonging to all the classes the analyzed system can present.
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In anomaly detection, we are typically given unlabeled data. In some cases,
we can have normal (clean) data, i.e. data we know to be generated from
the system in a normal operating condition, and we learn the model from
this single class. However, it is difficult to have clean data because they can
contain attacks if they are real, while they represent only a partial view of
the system if they are simulated.

Works on anomaly detection reported in the literature can be classified
by their modeling techniques: distance-based, statistical (probabilistic) ap-
proach, and profiling techniques. Distance-based methods (Knorr and Ng
(1998), Ramaswamy et al. (2000), Breunig et al. (2000), Lazarevic et al.
(2003), Eskin et al. (2002)) are widely used for unsupervised data: they
can work properly without previous knowledge. The idea in distance based
methods is to represent every observation by means of a feature vector and
to apply a distance function to measure how much the two observations
are far/close. Statistical approaches (Shmueli (2005), Yamanishi (2000), Ma-
honey and Chan (2002), Mahenshkumar et al. (2005)) are used for both
multi/single-class data and unlabelled data. Data points are modeled using a
stochastic distribution, which is however difficult to estimate for high dimen-
sional mixed-mode data. Profiling techniques (Hofmeyr et al.(1998), Tandon
and Chan (2003), Wang and Stolfo (2003)) are applied when observation units
concerning either human or machine or system behavior are both supervised
and arranged in sequences or time series.

Differently from these works, where a single monolithic learning tech-
niques is applied to solve the anomaly detection problem, we propose a two-
staged methodology, initially outlined in (Caruso et al. (2007)), which aims
to build a normal model of network traffic from real unlabeled observations
(i.e. daily network connections). In the first stage, observations are clusterized
and sets of rules are generated to describe each cluster. Rules are transformed
into symbolic objects (SOs), which represent a static daily normal model. To
build the adaptive normal model of network traffic (second stage), we com-
pute similarities between SOs belonging to subsequent daily normal static
models. An anomaly is defined to be a symbolic object which deviates too
much from the normal adaptive model; a ranking mechanism is used to dif-
ferentiate anomalies in order to identify more precisely change points, which
express an evolution of the system, and true outliers which can be caused
by either malfunctioning or intrusions. The result of the methodology is a
longitudinal adaptive normal model of cybertraffic which can be used by a
network administrator to identify deviations in network traffic patterns.

In this chapter, after presenting extensively our methodology, we analyze
its dependability on the first preprocessing step, i.e. clustering. We show that,
by using two different techniques, namely distance-based and probabilistic,
the methodology returns comparable results even though the aggregated data
are different. This suggests that our methodology could be applied to different
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data sources by only changing the aggregation technique and leaving the
adaptive and anomaly detection phases unchanged.

2 The methodology

2.1 Generating the static model

The first preprocessing step of the methodology has to be based on an Ex-
ploratory Data Analysis technique, since we know nothing about our system
and we have no labeled examples. This justifies the use of clustering as our
starting point. Clusters are an extensional form of knowledge representation,
but in our context intensional descriptions are essential since they are both
human-interpretable (at least for the network administrator) and computa-
tionally light (since a rule synthesizes the properties of many connections).
Therefore, we adopt a two-stepped approach. First, we apply a clustering
algorithm in order to decrease the size of the problem. Then we generate a
set of rules whose consequents represent the cluster membership. The rules
provide an intensional description of clusters.

The rules set R(t) generated for the time unit t is a static representation
of the network traffic observed in t . It should be noted that in this way we
can drastically reduce data to treat and to store: the daily network traffic is
given by few hundreds of rules vs. thousands of network connections.

A rule R corresponds to homogeneous groups of connections, that is,
to second-order objects, or symbolic objects, according to the terminology
used in symbolic data analysis (Gowda and Diday (1991)). Symbolic objects
simplify the change mining process on our data streams because we can easily
compare them by means of dissimilarity measures. Therefore, to provide the
network administrator with a dynamic representation of network traffic, we
propose to transform rules into symbolic objects and then to compute the
dissimilarities between SOs of different days. The transformation of a rule R
into the corresponding symbolic object is illustrated in (Caruso et al. (2005))
and represents the last step of the pre-processing phase.

The set So(t) of symbolic objects generated for the time unit t is the
static normal model of network traffic observed at time t.

2.2 Detecting anomalies

To build an adaptive model of network traffic M(t), we compare SOs belong-
ing to the subsequent daily normal static models So(t). More precisely, let
M(t) be the adaptive normal model at time t1 whose cardinality is |M(t)|
and let So(t) be the static normal model at time t whose cardinality is

1 The time unit we choose in our experiments is the entire day but the approach
is general and the most suitable time unit can be used: seconds, minutes, hours
or years and so on.
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|So(t)|. Given a threshold T and a symbolic object So in M(t), all the SOs
in So(t) whose dissimilarity from So is less then T are considered similar
to So , otherwise they are tagged as anomalies.

Let SojM(t) be the j-th symbolic object in M(t) and Sok(t) the k-
th symbolic object in So(t) and let D be a dissimilarity measure between
symbolic objects.

Definition 2.1. The symbolic object Sok(t) in So(t) is an anomaly if

Djk = D(SojM (t), Sok(t)) > T for each j=1,.., |M(t)|

Therefore, if Djk ≤T for some j, the symbolic object Sok(t) is considered
a manifestation of a “known” behavior (it is already modeled by M(t)),
otherwise it is considered an “unknown” behavior, i.e. an anomaly.

2.3 Ranking anomalies

We need to differentiate anomalies on the fly in order to adapt the model
only by means of novel events of the system and not by real outliers. In most
research works, outlier detection and change point detection have not been
related explicitly and the adaptive properties, when considered, are built-in
in the model. We consider this approach unsound and we propose an explicit
ranking mechanism between anomalies.

When analyzing SOs at time t , it is significant to know how much a
SO is similar to all the SOs belonging to the adaptive model M(t) in order
to rank its level of dissimilarity. This information about a symbolic object
Sok(t) can be obtained by computing its dissimilarity mean value defined
as follows:

Dmean(Sok(t)) =

|M(t)|∑
j=1

D(Sok(t), SojM(t))

|M(t)|
Another interesting parameter is the minimum value of dissimilarity of a

SO; indeed, a SO with high mean dissimilarity could be similar to few others
but very dissimilar from the remaining ones and the mean value is not able
to capture this situation. Therefore we compute the minimum dissimilarity
between a fixed SO and all the SOs belonging to M(t):

Dmin(Sok(t)) =
|M(t)|

min
j=1

D(Sok(t), SojM(t))

2.4 The normal adaptive model M(t)

The notions of mean and minimum dissimilarity are used to give the complete
definition of normal model. Let Tmean and Tmin be two system-defined
threshold values.

Definition 2.2. A symbolic object Sok in So(t) is an anomaly of preva-
lent type PAk if and only if the following condition holds:
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(Dmean(Sok(t))) ≤ Tmean) ∧ (Dmin(Sok(t))) ≤ Tmin)

Definition 2.3. A symbolic object Sok in So(t) is a anomaly of sec-
ondary type SAk if and only if the following condition holds:

(Dmean(Sok(t)) > Tmean) ∧ (Dmin(Sok(t)) ≤ Tmin)

Definition 2.4. A symbolic object Sok in So(t) is an outlier Ok if and
only if the following condition holds:

(Dmean(Sok(t)) > Tmean) ∧ (Dmin(Sok(t)) > Tmin)

Let ChPoints(t) = {the set of all PAk and SAk found in So(t)}. Then
the normal adaptive model M(t) at time t is defined as follows:

M(t) = M(t-1) ∪ ChPoints(t).

that is, it is obtained by adding the set of all change points found in So(t)
to the normal adaptive model at time (t-1).

3 Experiments and results

3.1 Data collection and preprocessing

We tested the proposed methodology on a real dataset obtained from the
firewall logs of the Department of Computer Science of our University. Logs
refer to twenty-eight days, from May 31st to June 27th, 2004. Starting from
a file per day with all logged packets, we reconstruct all connections opened
and closed in that day. Indeed, if we did not try to reconstruct connections,
it would be impossible to understand what is going on by looking at one
packet at a time. In this work, only ingoing connections are analyzed, since we
assume that possible attacks to network services come from outside. The total
number of ingoing connections reconstructed for the four weeks is 406,773.

Each connection is described by the following attributes:

1. Proto (nominal): the protocol used for the connection (udp or tcp);
2. StartHalfHour (integer between 0 and 47): the time when a connection

begins;
3. Dst (integer between 0 and 255): the Internet Protocol (IP) number of

public servers of the Department;
4. SourceIP (nominal): the IP of external clients;
5. Service (nominal): the requested service (http, ftp, smtp and many other

ports);
6. NumPackets (integer): the number of connection packets;
7. Length (integer): the time length of the connection;
8. NationCode (nominal): the two digit code of the nation associated to the

source IP.
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Data carried by each packet (i.e. the payload) in the connection is not
considered in this work.

In Fig. 2 the statistical profiles of two significant attributes (Proto and
Dst) are represented. Days are reported on the x-axis while the number of
connections is reported on the y-axis. The Proto graph shows the temporal
distribution of the two main protocols considered in this work (udp and tcp),
while the Dst graph shows the distribution for a subset of possible destination
IP values, namely {8, 135, 10, 45, 153}, which identify five public servers of
our Department.
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Fig. 1. Distribution of two attributes used for connection description.

3.2 Validation of the normal adaptive model

To demonstrate that the normal adaptive model generated by the proposed
methodology is actually able to represent the network traffic and its evolution,
we cannot resort to ROC curves as well as to other standard performance
measure (e.g., error rate), since we assume to know nothing about network
traffic model. We can only consider the statistical profiles of the single at-
tributes to know the prevalent aspects of the network traffic along the four
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analyzed weeks. For this reason, we aggregated the twenty-eight days in two
groups according to their statistical profiles: group A formed by days 31, 1, 4,
5, 6, 22, 23, 24, and group B with all remaining days. The different behavior
is ought to the P2P connections explosion we observe for days in group A.
We expect that the model retuned by the proposed methodology should be
able to differentiate these two groups. More precisely, the normal adaptive
model M(t) is meaningful if new SOs are added to it only when the statisti-
cal profile of the analyzed day is different from that one of the previous days.
The model should not be modified when we face days whose statistical profile
is already known. We expect that the model will be significantly modified in
the first week while new SOs are less and less added as days go on. Moreover,
the network traffic behavior of the days with an already known profile has to
be represented mainly by SOs generated in similar previous days.

3.3 Building and comparing the normal adaptive models

The start-up model M(0) is initialized to the entire set of symbolic objects
generated for the first day (May 31st). Then, for each day, the first ten rules
with maximum support and confidence ≥ 0.9, are selected and transformed
into SOs. Due to this selection, the SOs we obtain for each day represent the
most prevalent aspects in the network traffic and can capture only change
points, i.e. points which represent a natural evolution of the network traffic.
In a practical application whose final aim is to identify not only the changing
points but also true outliers, all rules had to be included in the model since
outliers should typically correspond to rules with small support.

In this study, rules are generated by means of the algorithm PART (Wit-
ten and Frank (1998)) and provide an intensional description of clusters,
while the dissimilarity measure D used to compare SOs is that proposed by
Gowda and Diday (1991).

In the experiments, the threshold values for T , Tmean and Tmin vary in
the following intervals:

• T = [avgmin, avgmean],
• Tmean = [avgmean − n, avgmean + n],
• Tmin = [avgmin − n, avgmin + n]

where avgmin and avgmean correspond to the minimum and the mean of all
dissimilarity quantities, while the value of n is obtained by a tuning process.
In this work the following intervals are considered: T = [2,5], Tmean =[3,8],
Tmin=[1,4].

For the clustering step, both k-means (Jain et al.(1999)), which is a dis-
tance based clustering technique, and EM (McLachlan and Krishan (1997)),
which is a probabilistic clustering technique, have been applied to the same
data. We observed that the two clustering methods tend to cluster observa-
tions differently, which implies the generation of quite different sets of rules
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and SOs. However, as reported above, we are not interested in the way the net-
work traffic is characterized, but in differentiating the traffic in the two groups
of days, i.e. we are interested in checking whether the proposed methodol-
ogy is able to discover the change points. This implies that network traffic
behavior of the days characterized by an already known profile, has to be
represented mainly by means of SOs generated in similar previous days.

Fig. 2 shows the models we obtain for K-means and EM; they represent
subsequent group A days by means of group A’s SOs and subsequent group
B days by means of group B’s SOs.
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Fig. 2. Number of SOs generated by days in groups A and B for different clustering
techniques and triples of the parameters T , Tmean and Tmin.

As observed before, the model should not be modified when we face days
whose statistical profile is already known. We expect that the model will be
significantly modified in the first week, while fewer and fewer SOs are added
to the model as days go on. This is well shown in the Fig. 3.

4 Conclusions

In this chapter we presented a methodology for network traffic monitoring
where symbolic data analysis plays a key role for two main reasons: first, it
helps to reduce the size of data to be analyzed from millions of packets per day
to a few dozens of SOs, and second, it provides a suitable theoretical frame-
work to deal with similarities between this kind of aggregated data. Symbolic
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Fig. 3. Number of new SOs generated for different clustering techniques.

objects are obtained from rules representing clusters of connections, and the
analysis of similarities between SOs of subsequent days aims to identify a
specific class of anomalies, namely change points.

The proposed methodology has been applied to monitor the network traf-
fic of our Department and some promising results confirm its validity. The
generality of the features used to describe the network connections in this
study also allows us to conclude that the proposed methodology can be ap-
plied to monitor the traffic of every network active device. This is an impor-
tant aspect, since anomaly detectors are often data dependent and hence not
portable.

As a future study, we plan to extend our analysis to several dissimilar-
ity measures defined for symbolic data (Esposito et al. (2000)). Moreover,
we intend to investigate both the automated selection of the parameters for
anomaly detection and the validity of the proposed methodology in identify-
ing outliers.
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Abstract. This paper introduces a dynamic clustering method to partitioning
symbolic interval data. This method furnishes a partition and a prototype for each
cluster by optimizing an adequacy criterion that measures the fitting between the
clusters and their representatives. To compare symbolic interval data, the method
uses a single adaptive Hausdorff distance that changes at each iteration but is the
same for all the clusters. Experiments with real and synthetic symbolic interval
data sets showed the usefulness of the proposed method.

1 Introduction

Cluster analysis aims at organizing a set of items into clusters such that
items within a given cluster have a high degree of similarity, whereas items
belonging to different clusters have high degree of dissimilarity (Jain and
Flynn (1999)).

The partitioning dynamic cluster algorithms (Diday and Simon (1976))
are iterative two steps relocation algorithms involving at each iteration the
construction of the clusters and the identification of a suitable representa-
tive or prototype (mean, factorial axe, probability law, etc.) of each cluster
by locally optimizing an adequacy criterion between the clusters and their
corresponding prototypes. This optimization process begins from a set of pro-
totypes or an initial partition and interactively applies an allocation step (the
prototypes are fixed), in order to assign the items to the clusters according
to their proximity to the prototypes, and a representation step (the partition
is fixed), where the prototypes are updated according to the assignment of
the patterns in the allocation step, until the convergence of the algorithm is
achieved, when the adequacy criterion reaches a stationary value.

The adaptive dynamic clustering algorithm (Diday and Govaert (1977))
also optimizes a criterion based on a measure of fitting between the clusters
and their prototypes, but the distances to compare clusters and their proto-
types change at each iteration. These distances are not determined once and
for all, and moreover, they can be different from one cluster to another. The
advantage of these adaptive distances is that the clustering algorithm is able
to recognize clusters of different shapes and sizes.
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The main difference between these adaptive and non-adaptive algorithms
occurs in the representation step which has two stages in the adaptive case:
a first stage, where the partition and the distances are fixed and the proto-
types are updated, is followed by a second one, where the partition and their
corresponding prototypes are fixed and the distances are updated.

Often, objects to be clustered are represented as a vector of quantita-
tive data. However, the recording of interval data has become popular and
nowadays this kind of data is often used to describe objects. Symbolic Data
Analysis (SDA) is an area related to multivariate analysis, data mining and
pattern recognition, which has provided suitable data analysis methods for
managing objects described as vectors of intervals (Bock and Diday (2000)).

Concerning dynamical cluster algorithms for symbolic interval data, SDA
has provided suitable tools. Verde et al (2001) introduced an algorithm con-
sidering context dependent proximity functions and Chavent and Lechevalier
(2002) proposed an algorithm using an adequacy criterion based on Haus-
dorff distances. Souza and De Carvalho (2004) presented a dynamic cluster
algorithm for symbolic interval data based on L1 Minkowsky distances. More
recently, De Carvalho et al (2006) proposed an algorithm using an adequacy
criterion based on adaptive Hausdorff distances for each cluster.

This paper introduces a new method of dynamic clustering for symbolic
interval data based on Hausdorff distances. This method furnishes a partition
of the input data and a corresponding prototype (a vector of intervals) for
each class by optimizing an adequacy criterion which is based on a single
adaptive Hausdorff distance between vectors of intervals. In this method,
the prototype of each cluster is represented by a vector of intervals, whose
lower bounds, for a given variable, are the difference between the median of
midpoints of the intervals computed for the objects belonging to this class
and the median of their half-lengths, and whose upper bounds, for a given
variable, are the sum of the median of midpoints of the intervals computed
for the objects belonging to this class plus the median of their half-lengths.
In order to show the usefulness of this method, synthetic interval data sets
ranging from different degrees of difficulty to be clustered and an application
with a real data set were considered. The evaluation of the clustering results
is based on an external validity index.

This paper is organized as follow. Section 2 presents the previous dynamic
clustering methods based on Hausdorff distances and introduces the model
based on a single adaptive Hausdorff distance. In Section 2 it is presented the
evaluation of this method in comparison with previous dynamic clustering
methods having adequacy criterion based on Hausdorff (non-adaptive and
adaptive for each cluster) distances. The accuracy of the results furnished by
these clustering methods is assessed by the corrected Rand index (Hubert
and Arabie (1985)) considering synthetic interval data sets in the framework
of a Monte Carlo experience and an application with a real data set. Finally,
Section 4 presents the conclusions and final remarks.
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2 Clustering symbolic interval data based on Hausdorff
distances

In this Section we recall the previous dynamic clustering methods based on
Hausdorff distances and we introduce the model based on a single adaptive
Hausdorff distance.

Let Ω be a set of n objects indexed by i and described by p interval
variables indexed by j. An interval variable X (Bock and Diday (2000)) is
a correspondence defined from Ω in 
 such that for each i ∈ Ω,X(i) =
[a, b] ∈ �, where � is the set of closed intervals defined in 
. Each object i is
represented as a vector of intervals xi = (x1

i , · · · , xp
i ), where xj

i = [aj
i , b

j
i ] ∈

� = {[a, b] : a, b ∈ 
, a ≤ b}. A prototype yk of cluster Pk is also represented
as a vector of intervals yk = (y1

k, · · · , y
p
k), where yj

k = [αj
k, β

j
k] ∈ �.

Here, the distances chosen to compare two intervals are the Hausdorff
distances. The Hausdorff distance is defined to compare two sets of objects A
and B. In this work, A and B are two intervals xj

i = [aj
i , b

j
i ] and xj

i′ = [aj
i′ , b

j
i′ ]

and in that case the Hausdorff distance is (Chavent and Lechevallier (2002))

dH(xj
i , x

j
i′ ) = max{|aj

i − aj
i′ |, |b

j
i − bj

i′ |} (1)

2.1 Clustering of symbolic interval data based on a non-adaptive
Hausdorff distance

Here we present a clustering method for symbolic interval data based on a
non-adaptive Hausdorff distance (labeled as HNAD). This method has been
introduced in Chavent and Lechevallier (2002).

The HNAD method looks for a partition of Ω into K clusters {P1, . . . , PK}
and a corresponding set of prototypes {y1, . . . ,yK} such that an adequacy
criterion J1 measuring the fitting between the clusters and their prototypes
is locally minimized. This criterion J1 is based on a non-adaptive Hausdorff
distance and it is defined as:

J1 =

K∑

k=1

∑

i∈Pk

φ(xi,yk) =

K∑

k=1

∑

i∈Pk

p∑

j=1

[
max{|aj

i − αj
k|, |b

j
i − βj

k|}
]

(2)

where

φ(xi,yk) =

p∑

j=1

dH(xj
i , y

j
k) =

p∑

j=1

[
max{|aj

i − αj
k|, |b

j
i − βj

k|}
]

(3)

is a (non-adaptive) Hausdorff distance measuring the dissimilarity between
an object xi (i = 1, . . . , n) and a cluster prototype yk(k = 1, . . . ,K).

The algorithm sets an initial partition and alternates a representation
step and an allocation step until convergence when the criterion J1 reaches
a stationary value representing a local minimum.
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Representation step: definition of the best prototypes. In the repre-
sentation step, the partition of Ω in K clusters is fixed. Let {(aj

i + bj
i ) / 2 :

i ∈ Pk} be the set of midpoints of the intervals xj
i = [aj

i , b
j
i ], i ∈ Pk and

let {(bj
i − aj

i ) / 2 : i ∈ Pk} be the set of half-lengths of the intervals xj
i =

[aj
i , b

j
i ], i ∈ Pk. The prototype yk = (y1

k, . . . , y
p
k) of cluster Pk (k = 1, . . . ,K),

which minimizes the clustering criterion J1, has the bounds of the inter-
val yj

k = [αj
k, β

j
k] updated according to the following: αj

k = µj − γj and

βj
k = µj + γj , where µj is the median of the set {(aj

i + bj
i ) / 2 : i ∈ Pk} and

γj is the the median of the set {(bj
i − aj

i ) / 2 : i ∈ Pk}.

Allocation step: definition of the best partition. In the allocation step,
the prototypes are fixed and the clusters Pk (k = 1, . . . ,K), which minimizes
the criterion J1, are updated according to the following allocation rule: Pk =
{i ∈ Ω : φ(xi,yk) ≤ φ(xi,yh), ∀h 
= k (h = 1, . . . ,K)}.

2.2 Clustering symbolic interval data based on a single adaptive
Hausdorff distance

This Section presents a clustering method for symbolic interval data based
on a single adaptive Hausdorff distance (labeled as SHAD). The main idea
of these methods is that there is a distance to compare clusters and their
representatives (prototypes) that changes at each iteration but that is the
same for all clusters.

This adaptive method looks for a partition of Ω into K clusters
{P1, . . . , PK} and a corresponding set of prototypes {y1, . . . ,yK} such that
an adequacy criterion J2 measuring the fitting between the clusters and their
prototypes is locally minimized. This criterion J2 is based on a single adap-
tive Hausdorff distance and it is defined as:

J2 =
K∑

k=1

∑

i∈Pk

ϕ(xi,yk) =
K∑

k=1

∑

i∈Pk

p∑

j=1

λj
[
max{|aj

i − αj
k|, |b

j
i − βj

k|}
]

(4)

where

ϕ(xi,yk) =

p∑

j=1

λj
[
max{|aj

i − αj
k|, |b

j
i − βj

k|}
]

(5)

is a single adaptive Hausdorff distance measuring the dissimilarity between
an object xi (i = 1, . . . , n) and a cluster prototype yk(k = 1, . . . ,K), parame-
terized by the weight vector λ = (λ1, . . . , λp), which changes at each iteration
but is the same for all clusters.

The algorithm sets an initial partition and alternates a representation
step and an allocation step until convergence when the criterion J2 reaches
a stationary value representing a local minimum.
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The representation step has now two stages.

Representation step: definition of the best prototypes. In the first
stage, the partition of Ω in K clusters and the weight vector λ are fixed.

Proposition 1. The prototype yk = (y1
k, . . . , y

p
k) of cluster Pk (k = 1, . . . ,K),

which minimizes the clustering criterion J2, has the bounds of the inter-
val yj

k = [αj
k, β

j
k] (j = 1, . . . , p) updated according to: αj

k = µj − γj and

βj
k = µj + γj where µj is the median of the set {(aj

i + bj
i ) / 2 : i ∈ Pk} and γj

is the the median of the set {(bj
i − aj

i ) / 2 : i ∈ Pk}.

Representation step: definition of the best distance. In the second
stage, the partition of Ω in K clusters and the prototypes are fixed.

Proposition 2. The vector of weights λ= (λ1, . . . , λp), which minimizes the
clustering criterion J2 under λj > 0 and

∏p
j=1 λ

j = 1, is updated according
to the following expression:

λj =

{∏p
h=1

(∑K
k=1

[∑
i∈Pk

(
max{|ah

i − αh
k |, |bh

i − βh
k |}

)])} 1
p

∑K
k=1

[∑
i∈Pk

(
max{|aj

i − αj
k|, |b

j
i − βj

k|}
)] , j = 1, . . . , p

(6)

Allocation step: definition of the best partition. In the allocation step,
the prototypes and the weight vector λ are fixed.

Proposition 3. The clusters Pk (k = 1, . . . ,K), which minimize the crite-
rion J2, are updated according to the following allocation rule:

Pk = {i ∈ Ω : ϕ(xi,yk) ≤ ϕ(xi,yh), ∀h 
= k (h = 1, . . . ,K)} (7)

2.3 Clustering symbolic interval data based on an adaptive
Hausdorff distance for each cluster

Here we present a clustering method for symbolic interval data based on
an adaptive Hausdorff distance for each cluster (labelled as HADC). This
method has been introduced in De Carvalho et al (2006). The main idea of
these methods is that there is a different distance associated to each cluster to
compare clusters and their representatives (prototypes) that changes at each
iteration, i.e., the distance is not determined once for all, furthermore it is
different from one cluster to another. Again, the advantage of these adaptive
distances is that the clustering algorithm is able to find clusters of different
shapes and sizes.
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The HADC adaptive method looks for a partition of Ω into K clusters
{P1, . . . , PK} and a corresponding set of prototypes {y1, . . . ,yK} such that
an adequacy criterion J3 measuring the fitting between the clusters and their
prototypes is locally minimized. This criterion J3 is based on an adaptive
Hausdorff distance for each cluster and it is defined as:

J3 =

K∑

k=1

∑

i∈Pk

ψ(xi,yk) =

K∑

k=1

∑

i∈Pk
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(8)

where

ψ(xi,yk) =
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j=1

λj
k
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i − αj
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j
i − βj

k|}
]

(9)

is an adaptive Hausdorff distance measuring the dissimilarity between an
object xi (i = 1, . . . , n) and a cluster prototype yk(k = 1, . . . ,K), defined for
each class and parameterized by the vectors of weights λk = (λ1

k, . . . , λ
p
k) (k =

1, . . . ,K), which change at each iteration.

The algorithm sets an initial partition and alternates a representation
step and an allocation step until convergence when the criterion J3 reaches
a stationary value representing a local minimum.

The representation step has also two stages.

Representation step: definition of the best prototypes. In the first
stage, the partition of Ω in K clusters and the vectors of weights λk =
(λ1

k, . . . , λ
p
k) (k = 1, . . . ,K), are fixed.

The prototype yk = (y1
k, . . . , y

p
k) of cluster Pk (k = 1, . . . ,K), which mini-

mizes the clustering criterion J3, has the bounds of the interval yj
k = [αj

k, β
j
k]

updated according to the following: αj
k = µj − γj and βj

k = µj + γj , where

µj is the median of the set {(aj
i + bj

i ) / 2 : i ∈ Pk} and γj is the the median

of the set {(bj
i − aj

i ) / 2 : i ∈ Pk}.

Representation step: definition of the best distances. In the second
stage, the partition of Ω in K clusters and the prototypes are fixed. The
vectors of weights λk = (λ1

k, . . . , λ
p
k) (k = 1, . . . ,K), which minimizes the

clustering J3 under λj
k > 0 and

∏p
j=1 λ

j
k = 1, is updated according to the

following expression:

λj
k =

{∏p
h=1

[∑
i∈Pk
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k |, |bh

i − βh
k |}

)]} 1
p
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) , j = 1, . . . , p
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Allocation step: definition of the best partition. In the allocation step,
the prototypes and the vectors of weights λk = (λ1

k, . . . , λ
p
k) (k = 1, . . . ,K)

are fixed. The clusters Pk (k = 1, . . . ,K), which minimize the criterion J3,
are updated according to the minimum distance allocation rule: Pk = {i ∈
Ω : ψ(xi,yk) ≤ ψ(xi,yh), ∀h 
= k (h = 1, . . . ,K)}.

3 Experimental results

To show the usefulness of these methods, experiments with synthetic sym-
bolic interval data sets with different degrees of clustering difficulty (clusters
of different shapes and sizes, linearly non-separable clusters, etc) and an ap-
plication with a real data set are considered.

3.1 Synthetic data sets

In each experiment, we considered two standard quantitative data sets in 
2.
Each data set has 450 points scattered among four classes of unequal sizes
and elliptical shapes: two classes of size 150 each and two classes of sizes 50
and 100. Each class in these quantitative data sets were drawn according to
a bi-variate normal distribution.

We consider two different configurations for the standard quantitative
data sets: 1) data drawn according to a bi-variate normal distribution where
the class covariance matrices are unequal and 2) data drawn according to a
bi-variate normal distribution where the class covariance matrices are almost
the same.

Each data point (z1, z2) of each one of these synthetic quantitative data
sets is a seed of a vector of intervals (rectangle): ([z1 − γ1/2, z1 + γ1/2], [z2 −
γ2/2, z2+γ2/2]). These parameters γ1, γ2 are randomly selected from the same
predefined interval. The intervals considered in this paper are: [1, 10], [1, 20],
[1, 30] and [1, 40].

Symbolic interval data set 1 (Figure 1, left side) were constructed from
standard data drawn according to the following parameters (configuration
1):

a) Class 1: µ1 = 28, µ2 = 23, σ2
1 = 144, σ2

2 = 16 and ρ12 = 0.8;
b) Class 2: µ1 = 62, µ2 = 30, σ2

1 = 81, σ2
2 = 49 and ρ12 = 0.7;

c) Class 3: µ1 = 50, µ2 = 15, σ2
1 = 49, σ2

2 = 81 and ρ12 = 0.6;
d) Class 4: µ1 = 57, µ2 = 48, σ2

1 = 16, σ2
2 = 144 and ρ12 = 0.9;

Symbolic interval data set 2 (Figure 1, right side) were constructed from
standard data drawn according to the following parameters (configuration
2):

a) Class 1: µ1 = 28, µ2 = 23, σ2
1 = 100, σ2

2 = 9 and ρ12 = 0.7;
b) Class 2: µ1 = 62, µ2 = 30, σ2

1 = 81, σ2
2 = 16 and ρ12 = 0.8;



42 F.A.T. De Carvalho

Fig. 1. Symbolic interval data: config. 1 (left side) and config. 2 (right side).

c) Class 3: µ1 = 50, µ2 = 15, σ2
1 = 100, σ2

2 = 16 and ρ12 = 0.7;
d) Class 4: µ1 = 57, µ2 = 37, σ2

1 = 81, σ2
2 = 9 and ρρ12 = 0.8 ;

It is expected, for example, that the SHAD clustering method performs
well if the data are drawn considering configuration 2.

The evaluation of these clustering methods was performed in the frame-
work of a Monte Carlo experience: 100 replications are considered for each
interval data set, as well as for each predefined interval. In each replication
a clustering method is run (until the convergence to a stationary value of
the adequacy criterion) 50 times and the best result, according to the corre-
sponding criterion, is selected.

The average of the corrected Rand (CR) index (Hubert and Arabie (1985))
among these 100 replications is calculated. The CR index assesses the degree
of agreement (similarity) between a a priori partition (in our case, the par-
tition defined by the seed points) and a partition furnished by the clustering
algorithm. CR can take values in the interval [-1,1], where the value 1 indi-
cates a perfect agreement between the partitions, whereas values near 0 (or
negative) correspond to cluster agreements found by chance.

Table 1 shows the values of the average and standard deviation of CR
index according to the different methods and data configurations.

Table 1. Comparison between the clustering methods for interval data sets 1 and
2.

Range of values Interval Data Set 1 Interval Data Set 2
of γi i = 1, 2 HNAD SHAD HADC HNAD SHAD HADC

0.478 0.473 0.542 0.312 0.410 0.375
γi ∈ [1, 10] (0.002) (0.002) (0.002) (0.002) (0.013) (0.006)

0.480 0.479 0.524 0.301 0.362 0.350
γi ∈ [1, 20] (0.002) (0.002) (0.002) (0.001) (0.010) (0.005)

0.475 0.473 0.518 0.323 0.324 0.344
γi ∈ [1, 30] (0.002) (0.002) (0.002) (0.002) (0.004) (0.003)

0.475 0.467 0.511 0.329 0.328 0.328
γi ∈ [1, 40] (0.002) (0.002) (0.002) (0.001) (0.002) (0.002)

As expected, in data configuration 1 (the class covariance matrices are
unequal) the method based on an adaptive distance for each cluster (HADC)
outperforms the method based on a single adaptive distance (SHAD). For
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this configuration, the method based on a non-adaptive distance (HNAD)
presented a similar performance to SHAD method.

Data configuration 2 presents class covariance matrices that are almost
the same. In this case, the method based on an adptive distance for each
cluster (HADC) outperforms the method based on a single adaptive distance
(SHAD) only for γi ∈ [1, 30]. The method based on a non-adaptive distance
(HNAD) has the worst performance.

In conclusion, for these data configurations, the methods based on adap-
tive distances outperform the HNAD method. Concerning the adaptive meth-
ods, their performance depend on the intra-cluster structure: the method
based on a single adaptive distance performs well when the a priori classes
have similar dispersions whereas the method based on an adaptive distance
for each cluster performs well when the a priori classes have dissimilar dis-
persions.

3.2 Application to a real data set

A data set with 33 car models described by 8 interval variables is used in this
application. These car models are grouped in four a priori classes of unequal
sizes: Utilitarian (size 10), Berlina (size 8), Sporting (size 7) and Luxury (size
8). The symbolic interval variables are: Price, Engine Capacity, Top Speed,
Acceleration, Step, Length, Width and Height.

Concerning this symbolic interval data set, each clustering method is run
(until the convergence to a stationary value of the adequacy criterion) 60
times and the best result, according to the adequacy criterion, is selected.

HNAD, SHAD and HADC clustering algorithms have been applied to
this data set. The 4-cluster partitions obtained with these clustering methods
were compared with the 4-cluster partition known a priori. The comparison
index used is the corrected Rand index CR which is calculated for the best
result. The CR indices were 0.385, 0.558 and 0.558, respectively, for these
clustering methods. In conclusion, for this interval data set, the adaptive
methods (SHAD and HADC) present the best performance.

4 Conclusions

In this paper, a dynamic clustering method for symbolic interval data is
introduced. This method furnishes a partition of the input data and a corre-
sponding prototype for each class by optimizing an adequacy criterion which
is based on a single adaptive Haudorff distance between vectors of intervals.
Moreover, the prototype of each cluster is represented by a vector of inter-
vals, whose lower bounds, for a given variable, are the difference between
the median of midpoints of the intervals computed for the objects belonging
to this class and the median of their half-lengths, and whose upper bounds,
for a given variable, are the sum of the median of midpoints of the intervals
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computed for the objects belonging to this class plus the median of their
half-lengths.

The evaluation of this method in comparison with dynamic clustering
methods having adequacy criterion based on (non-adaptive and adaptive for
each cluster) Hausdorff distances have been carried out. The accuracy of the
results furnished by these clustering methods was assessed by the corrected
Rand index considering synthetic interval data sets in the framework of a
Monte Carlo experience and an application with a real data set. Concerning
the average CR index for synthetic and real symbolic interval data sets, the
methods with adaptive distances outperform the method with non-adaptive
distance. Regarding the adaptive methods, their performance depend on the
intra-cluster structure: the method based on a single adaptive distance per-
forms well when the a priori classes have a similar dispersion whereas the
method based on an adaptive distance for each cluster performs well when
the a priori classes have a dissimilar dispersion.
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Abstract. One of the main novelties of the Symbolic data analysis is the intro-
duction of symbolic objects (SOs): ”aggregated data” that synthesize information
concerning a group of individuals of a population. SOs are particularly suitable
for representing (and managing) census data that require the availability of aggre-
gated information. This paper proposes a new (conceptual) hierarchical agglom-
erative clustering algorithm whose output is a ”tree” of progressively general SO
descriptions. Such a tree can be effectively used to outperform the resource retrieval
task, specifically for finding the SO to which an individual belongs to and/or to
determine a more general representation of a given SO. (i.e. finding a more general
segment of information which a SO belongs to).

1 Introduction

The aim of symbolic data analysis (SDA) Bock (2000) is to provide a bet-
ter representation of the variation and imprecision contained in real data.
The unit for the SDA concerns homogeneous classes or groups of individuals
(second-order objects) described by symbolic variables that are set-valued
(interval, multi-valued, taxonomic or dependent) or modal variables. Data
aggregations by census tracts or by enumeration districts are examples of
second-order objects. SOs are particularly suitable for representing census
data that generally raise privacy issues in all governmental agencies that
distribute them.

To face this new formalism and the resulting semantic extension that
SDA offers, new approaches for processing and interpreting data are neces-
sary. In this context, several data analysis methods (exploratory, graphical
representations, clustering, classification) have been extended for coping with
symbolic data. Some examples have been presented in Appice et al. (2004)
where a classification method for SOs has been defined, or in Appice et al.
(2006), where new visualization techniques for SOs are proposed. Also clus-
tering methods for SOs have been developed. In Brito (1994a), Brito (1994b)
a pyramidal clustering algorithm is presented. In Meneses and Rogriguez-
Rojas (2006): a hard partitional clustering algorithm is proposed.
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Ravi and Gowda (2004) set up a nonhierarchical clustering procedure to im-
prove the generation of SOs. A survey of different techniques for handling
symbolic data can be found in Diday (1988).

Several clustering approaches have been formalized in the literature. One
of these is the hierarchical clustering approach that is characterized by pro-
ducing a nested series of partitions based on similarity criteria for merging
or splitting clusters. The obtained clustering structure is called dendrogram.
The basic algorithms for this approach are the single-link Sneath and Sokal
(1973) and the complete-link King (1967) algorithms that are suitable for
performing clustering on data sets containing non-isotropic clusters (includ-
ing well-separated clusters), chain-like clusters, and concentric clusters Jain
et al. (1999). Hierarchical algorithms are also appealing for the dendrogram
produced at the end of the clustering process, as it can be effectively exploited
to outperform the resource retrieval task.

Generally, given a resource to find within a set of available resources, it
is searched by matching every resource with the requested one. With the
increasing number of the resources, such an approach could clearly be inef-
ficient. To solve this problem, the retrieval task can be subdivided in two
different steps: 1) resources are clustered and a dendrogram is returned; 2)
the requested resource is found by following the paths of the dendrogram
that satisfy the matching condition, while the others are discarded. In this
way the search space is drastically cut, thus improving the effectiveness of
the retrieval process. Anyway, to make feasible such an approach, intensional
cluster descriptions have to be defined at every step of the clustering process.

In this paper a (conceptual) hierarchical agglomerative algorithm for clus-
tering SOs is presented. It is based on a modified version of the single-link
and complete-link algorithms. At each step of the process, an intensional clus-
ter definition is built and it is used for the further execution of the task. In
this way, a cluster is always made by a single object rather than a collection
of objects, making possible to overcome the drawbacks of the single-link and
complete-link algorithms, namely the chaining effect in presence of noisy data
(see Jain et al. (1999) for more details).

Hence, the result of the algorithm can be exploited to improve the effec-
tiveness of the retrieval of a SO, namely in order to find the SO that better
represents a new element and/or a new SO. Particularly, such an approach
could be very useful for managing census data. Indeed, quite common issues
in this context are: 1) determine the SO to which a new individual belongs to;
2) give a more general description of a (new) given SO. Both these problems
can be regarded as a resource retrieval task.

In the next section the clustering algorithm will be presented. In Section 3
the usage of the clustering algorithm for improving the resource retrieval
process will be detailed, while conclusions and future work proposals will be
discussed in Section 4.
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2 A hierarchical agglomerative algorithm for clustering
symbolic objects

Given a data collection, clustering algorithms return a set of meaningful
clusters obtained by the use of a similarity criterion. Hence, a clustering al-
gorithm generally requires the availability of (dis-)similarity measures able
to cope with and capture the semantics of the objects to cluster. General
distance functions for SOs have been defined by Esposito et al. (2000) and
Ichino (1988), Ichino and Yaguchih (1994).
Gowda and Diday (1991), Gowda and Diday (1992) have proposed new sim-
ilarity and dissimilarity measures jointly with an agglomerative clustering
method applied to SO representation.

In this paper a hierarchical agglomerative algorithm for clustering SOs
is presented. It is a modified version of the single-link and complete-link
algorithms, returning as output a dendrogram made in the following way: the
actual SOs are the leaves of the structure. Each intermediate node represents
an intensionally described superset of children nodes. The root node is the
intensional description of all SOs.

The main difference of the proposed algorithm w.r.t. single and complete-
link is given by the fact that the latter cannot exploit intensional cluster
descriptions. Indeed the used criterion for merging clusters is based on dis-
tances among elements belonging to the clusters. Such criterion could some-
times cause drawbacks (chaining effect) in presence of noisy data (see Jain et
al. (1999) for more details). Furthermore, even if intensional cluster descrip-
tions are built, they can be only used for further applications (i.e. resource
retrieval). In order to overcome these limitations, the realized clustering al-
gorithm generates intensional cluster descriptions at each step of the process,
so that clusters are made by a single object that is its description (rather
than a collection of objects).

Moreover, differently from the agglomerative hierarchical-pyramidal clus-
tering for SOs Brito (1994a). where cluster aggregations is based on the com-
pleteness condition and coarse partition criteria, the algorithm proposed here
is strongly based on a (dis-)similarity clusters criterion which would ensure
clusters homogeneity. The algorithm is detailed in the following.

Let S = {S1, . . . , Sn} a set of available SOs.

1. Let C = {C1, . . . , Cn} the set of initial clusters obtained by considering
each SO as a single cluster

2. n := |C|
3. For i := 1 to n− 1 consider cluster Ci

(a) For j := i + 1 to n consider cluster Cj

i. compute the dissimilarity values dij(Ci, Cj)
4. compute minhk = mini,j=1,...,n dij where h and k are the clusters with

minimum distance
5. create the intensional cluster description Cm = gen(Ch, Ck)
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Fig. 1. Dendrogram returned by the algorithm (Section 2) applied to the SOs A,
B, C, and D. gen is the generalization procedure that given two SOs returns a new
general one.

6. link Cm to Ch and Ck

7. insert Cm in C and remove Ch and Ck from C
8. if |C| 
= 1 go to 2

The algorithm starts considering each SO in a single cluster, hence the
couple of SOs having the lowest dissimilarity value1 is found, and a new
SO, generalizing the chosen ones, is created by means of a generalization
procedure gen Bock (2000). Specifically, given two symbolic objects s1 and
s2, gen procedure returns a new object s that is computed as the union
of s1 and s2, namely as the union of each couple of variable values of s1

and s2 (s =
⋃p

i=1(si1 , si2) where p is the number of symbolic variables of a
SO). Since a SO can be made by several kinds of symbolic variables (single
value, multi-value, numerical, interval, taxonomic, probabilistic, dependent-
hierarchical rule), a generalization procedure for every kind of variable is used.
The new object, obtained by generalization, is first linked to the objects that
it generalizes and then it is inserted in the list of the available clusters, while
the selected ones are removed from such a list. The generated description
is considered as a cluster made by a single element (SO) and the objects
that it describes are represented as its children in the dendrogram under
construction. Such a process is repeated iteratively until a unique cluster
(describing all SOs) is available.

An example of dendrogram returned by the presented algorithm is shown
in Fig.1. Looking at the figure, it is straightforward to note that the dendro-
gram is a binary tree. This is because, at every step, only two existing clusters
are merged into a single one. The clustering process could be speeded up by
finding a way for merging more than two clusters at every step. An important
result, in this direction, has been shown in Ding and He (2005), where it is
proved that, if the measure used for performing the clustering process satisfies

1 The dissimilarity measure is chosen depending on the the type of SO (boolean
or probabilistic). For a survey on the available measures for SO in literature
and their behavior w.r.t. different kinds of data-sets see Malerba et al. (2001),
Malerba et al. (2002).
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the cluster aggregate inequality property (namely dA,B+C ≥ min(dA,C , dA,B)),
then more than two clusters can be merged at the same level. Moreover, it
has also been proved that such speed up preserves the equivalence of the ob-
tained clusters w.r.t. those obtained without using any speed up. Since most
of the measures for SOs (see Bock (2000)) are based on the amount of the
information that they share, it can be easily concluded that the amount of
information shared by a SO, let us say A, and a generalized SO (let us say
B + C) is equal or greater than the amount of information shared by A and
B or by A and C.

3 Clustering symbolic objects for improving resource
retrieval

The dendrogram obtained as result of the clustering algorithm (see Section 2)
can be effectively used to outperform the resource retrieval task. This can
be particularly useful when resources are represented by SOs synthesizing
census data. Indeed, given a set of available SOs representing a sample of a
population, a new element can occur. The problem, in this case, is to find
the SO to which it belongs to. In the same way, considered a set of available
SOs, a new SO object can occur. In this case the problem is to find the most
general information that represents it. These two problems can be regarded as
a resource retrieval task w.r.t. the set of all available SOs, namely as finding
the (most specific) SO that generalizes a new object that occurs .

The most intuitive way to accomplish this task is by checking if each
available SO ”covers” the new occurred element or SO. The ”coverage” test
can consist in checking if the value of each symbolic variable of the new
object belongs to the set of values of the symbolic variable of the considered
SO (see coverageTest procedure below). Such an approach could be clearly
inefficient with the increasing number of available SOs, as it requires a linear
complexity in the number of all available SOs. The resource retrieval could be
performed more effectively as detailed in the following, namely by exploiting
the dendrogram obtained by clustering the available SOs.

Let Q be a new symbolic object (or equivalently let q a new element) and let
C the root of the dendrogram C, output of the clustering process

discoveryProcedure(Q,C)

1. returnedSO := null
2. if coverageTest(Q,C) = false then

(a) return returnedSO
3. else

(a) returnedSO = C
(b) if C has left child node Cl then

i. returnedLeftSO = discoveryProcedure(Q,Cl)
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(c) if C has right child node Cr then
i. returnedRightSO = discoveryProcedure(Q,Cr)

(d) if (returnedLeftSO != null) and (returnedRightSO != null) then
i. compute the Genrality Degrees:

genDegLeft = G(returnedLeftSO,Q),
genDegRight = G(returnedRightSO,Q)

ii. if genDegLeft ≤ genDegRight then
A. returnedSO = returnedLeftSO

iii. else
A. returnedSO = returnedRightSO

(e) else
i. if returnedLeftSO != null then

A. returnedSO = returnedLeftSO
ii. else if returnedRightSO != null then

A. returnedSO = returnedRightSO
(f) return returnedSO

coverageTest(Q,C)
Let Q = {q1, . . . , qn} and C = {c1, . . . , cn}
boolean covered := true
i := 1
While (i ≤ n) and (covered)

1. if qi single value variable then
(a) if valueOf(qi) != valueOf(ci) then

i. covered := false
2. if (qi multi-valued variable) or (qi ordinal variable) or (qi interval vari-

able) or (qi taxonomic variable) then
(a) if valueOf(qi) not in valueOf(ci) then

i. covered := false
3. if qi modal variable then

(a) for j := 1 to numValueOf(qi)
i. if prob(valuej(qi)) > prob(valuej(ci)) then

A. covered := false
4. i++

return covered

In the following the discoveryProcedure is analyzed. Given a new sym-
bolic object Q (or equivalently a new element q) it is compared w.r.t. the root
of the dendrogram in order to test if Q is covered by the available SOs or not.
If the test is verified, the same coverage test is performed for each child node
of the root (remember that the dendrogram is a binary tree). If the coverage
condition is not satisfied by a child node, the branch rooted in this child
node is discarded, otherwise all the children nodes are recursively explored,
until a leaf node is reached or until there are no children nodes that satisfy
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Fig. 2. Retrieval of the query SO Q. Bold boxes represent nodes satisfying the
”coverage” test.

the coverage condition. In this case, the last node satisfying the coverage
condition represents the searched SO. An example of application of discov-
eryProcedure is reported in Fig. 2 where SOs are described by the symbolic
variables: knownLanguage that is a multi-valued variable representing the
known languages by a set of persons and Age that is an interval variable.

It is important to note that, at the same level, more than one node could
satisfy the coverage condition. Once that all SOs covering the request have
been found, the most specific one is selected (and returned). It is determined
by recurring to the computation of the Generalization Degree of the node
w.r.t. the request, introduced in Bock (2000). As an alternative to the ex-
haustive search in the tree, an heuristic could be adopted for choosing the
path to follow. In this case the dissimilarity value between the requested ob-
ject and the nodes (at the same level) covering the request can be computed.
Hence the most similar node can be chosen as the path to follow.

The proposed approach for resource retrieval drastically reduces the di-
mension of the search space. Indeed the search is restricted only to the
branches of the dendrogram whose nodes satisfy the coverage conditions w.r.t.
Q. Specifically, a good clustering of n available SOs may reduce the number
of necessary comparisons for finding the right SO from O(n) to O(log n),
thus strongly improving the retrieval time.

4 Conclusions and future work

A new hierarchical agglomerative clustering algorithm has been presented
for homogeneously grouping a set of available SOs. It is a modified version
of the well known single-link and complete-link algorithm. Its main novelties
are given by its application to SO representation (by exploiting proper (dis-
)similarity measures) and by defining intensional cluster descriptions during
the clustering process, thus obtaining a conceptual clustering algorithm.
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The algorithm has been mainly proposed in order to improve the resource
retrieval task. Specifically, it has been analytically showed that, by exploiting
the dendrogram returned by the algorithm, the complexity of the retrieval
task can decrease from O(n) to O(log n) in the best case. Such an application
of the clustering process is particularly useful in the case of census data, where
Symbolic Objects are used to sample group of elements of a given population.
Indeed, in this context, a quite often problem is given by finding the SO that
represents a new element or finding the most general information to which a
new symbolic object refers to.

A possible extension of the algorithm can be given by allowing a phase of
incremental clustering. Specifically, once that the SO satisfying the request Q
has been found, its description can be updated including also the description
of Q. This is in order to enrich the amount of available information and so
in order to better accomplish the further requests.
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Abstract. Multidimensional scaling aims at reconstructing dissimilarities between
pairs of objects by distances in a low dimensional space. However, in some cases the
dissimilarity itself is not known, but the range, or a histogram of the dissimilarities
is given. This type of data fall in the wider class of symbolic data (see Bock and
Diday (2000)). We model three-way two-mode data consisting of an interval of
dissimilarities for each object pair from each of K sources by a set of intervals of
the distances defined as the minimum and maximum distance between two sets
of embedded rectangles representing the objects. In this paper, we provide a new
algorithm called 3WaySym-Scal using iterative majorization, that is based on an
algorithm, I-Scal developed for the two-way case where the dissimilarities are given
by a range of values ie an interval (see Groenen et al. (2006)). The advantage of
iterative majorization is that each iteration is guaranteed to improve the solution
until no improvement is possible. We present the results on an empirical data set
on synthetic musical tones.

1 Introduction

Classical multidimensional scaling (MDS) models the dissimilarities among a
set of objects as distances between points in a low dimensional space. The aim
of MDS is to represent and recover the relationships among the objects and to
reveal the dimensions giving rise to the space. To illustrate: the goal in many
MDS studies, for example, in psychoacoustics or marketing is to visualize
the objects and the distances among them and to discover and reveal the
dimensions underlying the dissimilarity ratings, that is, the most important
perceptual attributes of the objects.

Often, the proximity data available for the n objects consist of a single
numerical value for the dissimilarity δij between each object pair. Then, the
data may be presented in a single dissimilarity matrix with the entry for
the i-th row and the j-th column being a single numerical value represent-
ing the dissimilarity between the i-th and j-th object (with i = 1, . . . , n and
j = 1, . . . , n). Techniques for analyzing this two-way, one-mode data have
been developed (see, e.g., Kruskal (1964), Winsberg and Carroll (1989), or
Borg and Groenen (2005)). Sometimes proximity data are collected from K
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sources, for example, a panel of K judges or under K different conditions,
yielding three-way two-mode data and an n×n×K array of single numerical
values. Techniques have been developed to deal with this form of data permit-
ting the study of individual or group differences underlying the dissimilarity
ratings (see, e.g., Carroll and Chang (1972), Winsberg and DeSoete (1993)).

All of these above mentioned MDS techniques require that each entry of
the dissimilarity matrix, or matrices be a single numerical value. However,
the objects in the set under consideration may be of such a complex nature
that the dissimilarity between each pair of them is better represented by a
range, that is, an interval of values, or a histogram of values rather than a
single value. For example, if the number of objects under study becomes very
large, it may be unreasonable to collect pairwise dissimilarities from each
judge and one may wish to aggregate the ratings from many judges where
each judge has rated the dissimilarities from a subset of all the pairs. Then,
rather than using an average value of dissimilarity for each object pair one
would wish to retain the information contained in the interval or histogram
of dissimilarities obtained for each pair of objects. Or, it might be useful to
collect data reflecting the imprecision or fuzziness of the dissimilarity between
each object pair. Then, the ij-th entry in the n× n data matrix, that is, the
dissimilarity between objects i and j, is either an interval or an empirical
distribution of values (a histogram). In these cases, the data matrix consists
of symbolic data.

By now, MDS of symbolic data can be analyzed by several techniques.
The case where the dissimilarity between each object pair is represented by
a range or interval of values has been treated by Denœux and Masson (2000)
and Masson and Denœux (2002). They model each object as alternatively a
hyperbox (hypercube) or a hypersphere in a low dimensional space and use
a gradient descent algorithm. Groenen et al. (2006) have developed an MDS
technique for interval data which yields a representation of the objects as
hyperboxes in a low-dimensional Euclidean space rather than hyperspheres
because the hyperbox representation is reflected as a conjunction of p prop-
erties where p is the dimensionality of the space. We shall follow this latter
approach here.

The hyperbox representation is interesting for two reasons. First a hyper-
box is more appealing because it allows a strict separation between the units
of the dimensions it uses. For example, the top speed of a certain type of car
might be between 170 and 190 km/h and its fuel consumption between 8 and
10 liters per 100 km. These aspects can be easily described alternatively as
an average top speed of 180 km/h plus or minus 10 km/h and an average fuel
consumption of 9 liters per 100 km plus or minus 1. Both formulations are
in line with the hyperbox approach. However, the hypersphere interpretation
would be to state that the car is centered around a top speed of 180 km/h
and a fuel consumption of 9 liters per 100 km and give a radius. The units
of this radius cannot be easily expressed anymore. A second reason for using
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hyperboxes is that we would like to discover relationships in terms of the
underlying dimensions. The use of hyperboxes leads to unique dimensions,
whereas the the use of hyperspheres introduces the freedom of rotation so
that dimensions are not unique anymore.

Groenen and Winsberg (2006) have extended the method developed by
Groenen et al. (2006) to deal with the case in which the dissimilarity between
object i and object j is an empirical distribution of values or, equivalently, a
histogram.

All of the methods described above for MDS of symbolic data treat the
two-way one-mode case. That is, they deal with a single data matrix. Here, we
extend that approach to deal with the two-mode three-way case. We consider
the case where each of K judges denote the dissimilarity between the i-th and
j-th object pair as an interval, or a histogram thereby giving a range of values
or a fuzzy dissimilarity. So, the accent here will be on individual differences.
Of course, the method also applies to the case where data is collected for K
conditions, where for each condition the dissimilarity between the i-th and
j-th pair is an interval, or a histogram.

In the next section, we review briefly the I-Scal algorithm developed by
Groenen et al. (2006) for MDS of interval dissimilarities based on iterative
majorization. Then, we present an extension of the method to the three-way
two-mode case and analyze an empirical data sets dealing with dissimilar-
ities of sounds. The paper ends with some conclusions and suggestions for
continued research.

2 MDS of interval dissimilarities

We now review briefly the case of two-way one-mode MDS of interval dissim-
ilarities. In this case, an interval of a dissimilarity will be represented by a
range of distances between the two hyperboxes of objects i and j. This ob-
jective is achieved by representing the objects by rectangles and approximate
the upper bound of the dissimilarity by the maximum distance between the
rectangles and the lower bound by the minimum distance between the rect-
angles. An example of rectangle representation is shown in Figure 1. It also
indicates how the minimum and maximum distance between two rectangles
is defined.

By using hyperboxes, both the distances and the coordinates are ranges.
Let the coordinates of the centers of the rectangles be given by the rows of
the n × p matrix X, where n is the number of objects and p the dimen-
sionality. The distance from the center of rectangle i along axis s, denoted
by the spread, is represented by ris which is by definition nonnegative. The
maximum Euclidean distance between rectangles i and j is given by

d
(U)
ij (X,R) =

(
p∑

s=1

[|xis − xjs| + (ris + rjs)]
2

)1/2

(1)
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Fig. 1. Example of distances in MDS for interval dissimilarities where the objects
are represented by rectangles.

and the minimum Euclidean distance by

d
(L)
ij (X,R) =

(
p∑

s=1

max[0, |xis − xjs| − (ris + rjs)]
2

)1/2

. (2)

This definition implies that rotation of the axes changes the distances be-
tween the hyperboxes because they are always parallel to the rotated axes.
This sensitivity for rotation can be seen as an asset because it makes a so-
lution rotational unique, which is not true for ordinary MDS. In the special
case of R = 0, the hyperboxes become points and the rotational uniqueness
disappears as in ordinary MDS.

Symbolic MDS for interval dissimilarities aims at approximating the lower
and upper bounds of the dissimilarities by minimum and maximum distances
between rectangles. This objective is formalized by the I-Stress loss function

σ2
I (X,R) =

n∑

i<j

wij

[
δ
(U)
ij − d

(U)
ij (X,R)

]2
+

n∑

i<j

wij

[
δ
(L)
ij − d

(L)
ij (X,R)

]2
,

where δ
(U)
ij is the upper bound of the dissimilarity of objects i and j, δ

(L)
ij is

the lower bound , and wij is a given nonnegative weight. σ2
I (X,R) can be

minimized by iterative majorization (see Groenen et al. (2006)).
Iterative majorization has the advantage that I-Stress is guaranteed to

reduce in each iteration from any starting configuration until a stationary
point is obtained. In practice, the algorithm stops at a stationary point that
is a local minimum. Another important property for the purpose of this paper
is that, in each iteration, the algorithm operates on a quadratic function in X
and R. Groenen et al. (2006) have derived the quadratic majorizing function
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for σ2
I (X,R) as the one at the right hand side of

σ2
I (X,R) ≤

p∑

s=1

(x′
sA

(1)
s xs − 2x′

sB
(1)
s ys)

+

p∑

s=1

(r′sA
(2)
s rs − 2r′sb

(2)
s ) +

p∑

s=1

∑

i<j

(γ
(1)
ijs + γ

(2)
ijs), (3)

where xs is column s of X, rs is column s of R, ys is column s of Y (the pre-

vious estimate of X). The matrices A
(1)
s ,B

(1)
s ,A

(2)
s , vectors b

(2)
s , and scalars

γ
(1)
ijs , γ

(2)
ijs all depend dependent on previous estimates of X and R, hence

they are known at the present iteration. Their exact definition can be found
in Groenen et al. (2006). For our purposes, it is important to realize that the
majorizing function at the right of (3) is quadratic in X and R, so that an
update can be readily derived by setting the derivatives equal to zero.

Another important feature of the majorizing function being quadratic is
that it becomes easy to impose the constraints that we will need for the
extension to two-mode three-way symbolic MDS proposed in this paper. For
more details on iterative majorization and its use in three-way MDS, see, for
example, De Leeuw and Heiser (1980) and Borg and Groenen (2005).

3 Two-mode three-way MDS of interval data

The I-Scal algorithm developed by Groenen et al. (2006) can be extended
quite easily to two-mode three-way interval data. In this case, we have an
interval available of the dissimilarities available for replication � = 1, . . . , L.

Then, δ
(L)
ij� and δ

(U)
ij� are the lower and upper boundary of the interval of δij for

replication �. Of course, a normal I-Scal solution could be computed for every
replication separately. However, here we impose restrictions of the weighted
Euclidean model similar to the Indscal approach of Carroll and Chang (1972).

The main idea is to have a single common space of hyperboxes and allow
each replication � to stretch or shrink the dimensions to fit its ranges of
dissimilarities as good as possible. Let X and R denote here the centers
and spreads of the hyperboxes in the common space. Then, the weighted
Euclidean model restrictions imply that the hyperboxes for the individual
replication � are modelled as

X� = XV� (4)

R� = RV�, (5)
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where V� is a p×p diagonal matrix with dimension weights for replication �.
This objective can be obtained by minimizing the 3Way-IStress loss function

σ2
3Way(X,R,V1, . . . ,VL) =

∑

�

n∑

i<j

wij

[
δ
(U)
ij� − d

(U)
ij (XV�,RV�)

]2

+
∑

�

n∑

i<j

wij

[
δ
(L)
ij� − d

(L)
ij (XV�,RV�)

]2

. (6)

Note that without loss of generality, we may require that all diagonal weights
in V� are nonnegative. The reason is that a negative element only reflects an
individual axis, but it does not change the distances between the hyperboxes.
As the X and R are both multiplied by V�, there is nonuniqueness between
the scale of the s-th column of X and R and the s-th diagonal value of the
V�s denoted by vss�. To identify them, we impose the restriction

∑
� v

2
ss� = L

to (6), although it is sufficient to impose these restrictions after the algorithm
has converged.

To find an algorithm for minimizing 3Way-IStress, we use the majoriza-
tion results obtained for I-Stress. The first step is to apply the majorizing
inequality of (3) to (6). Let Y� and Y be the previous estimates of X� and
X. Then,

σ2
3Way(X,R,V1, . . . ,VL) ≤

p∑

s=1

(
∑

�

x′
s�A

(1)
s� xs� − 2

∑

�

x′
s�B

(1)
s� ys�

)

+
∑

�

p∑

s=1

(
r′s�A

(2)
s� rs� − 2r′s�b

(2)
s�

)
+

∑

�

p∑

s=1

∑

i<j

(γ
(1)
ijs� + γ

(2)
ijs�). (7)

To find updates it is convenient to substitute X� = XV�, R� = RV�, and

γ =
∑

�

∑p
s=1

∑
i<j(γ

(1)
ijs� + γ

(2)
ijs�) in (7), that is,

σ2
3Way(X,R,V1, . . . ,V�) ≤

p∑

s=1

(
∑

�

v2
ss�x

′
sA

(1)
s� xs − 2

∑

�

vss�x
′
sB

(1)
s� ys�

)

+
∑

�

p∑

s=1

(
v2

ss�r
′
sA

(2)
s� rs − 2vss�r

′
sb

(2)
s�

)
+ γ. (8)

The latter majorizing inequality shows that for fixed V�, the updates of X
and R are independent because there is no cross product of elements of X and
R in the quadratic majorizing function (8). The 3WaySym-Scal algorithm
defined later updates X and R for fixed V� followed by updating V� for fixed
X and R both using the majorizing function at the right of (8).
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We start with deriving the update for X. Rewriting the terms of (8) that
are dependent on X gives

p∑

s=1

(
x′

s

[
∑

�

v2
ss�A

(1)
s�

]
xs − 2x′

s

[
∑

�

vss�B
(1)
s�

]
ys

)
. (9)

Setting the derivatives equal to zero yields the linear system
[
∑

�

v2
ss�A

(1)
s�

]
xs =

[
∑

�

vss�B
(1)
s�

]
ys

Axs = b

for all s where the second line is used for notational simplicity. As each matrix

A
(1)
s� (and B

(1)
s� ) has the matrix 11′ in its null-space, it follows that A is not

of full rank and b is column centered. Therefore, solving Axs = b is the same
as solving

(A + 11′)x+
s = b or x+

s = (A + 11′)−1b, (10)

for each dimension s, where x+
s denotes the update.

For the update for R, we rewrite the terms of (8) that are dependent on
R as

p∑

s=1

(
r′s

[
∑

�

v2
ss�A

(2)
s�

]
rs − 2r′s

[
∑

�

vss�b
(2)
s�

])
. (11)

Setting the derivatives of (11) equal to zero yields the update

r+
s =

[
∑

�

v2
ss�A

(2)
s�

]−1 [∑

�

vss�b
(2)
s�

]
(12)

for each dimension s that is easily computed as each A
(2)
s� is diagonal.

For an update of V� for fixed X and R, consider rewriting the terms of
(8) as

p∑

s=1

∑

�

(
v2

ss�

[
x′

sA
(1)
s� xs + r′sA

(2)
s� rs

]
− 2vss�

[
x′

sB
(1)
s� ys� + r′sb

(2)
s�

])

for which the update becomes

v+
ss� =

[
x′

sA
(1)
s� xs + r′sA

(2)
s� rs

]−1 [
x′

sB
(1)
s� ys� + r′sb

(2)
s�

]
(13)

for all � and s.
The 3WaySym-Scal algorithm for minimizing σ2

3Way(X,R,V1, . . . ,VL)
using iterative majorization is shown in Figure 2.
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1 Initialize X(0), R(0), and V
(0)
� = I for all �.

Set k := 0, X(−1) := X(0), R(−1) := R(0), and V
(−1)
� = V

(0)
� for all �.

Set ε to a small positive value.
2 While k = 0 or σ2

3Way(k − 1)− σ2
3Way(k) ≤ ε

3 k := k + 1.
4 For s = 1 to p
5 Compute the update of xs by (10).
6 Compute the update of rs by (12).
7 For � = 1 to L
8 Compute the update of vss� by (13).
9 End for

10 End for

11 Set X(k) := X, R(k) := R, and V
(k)
� = V�.

12 End

Fig. 2. The 3WaySym-Scal algorithm.

Instead of reporting σ2
3Way, we shall report σ2

3Way/η
2 with

η2 =
∑

�

∑

i<j

wij([δ
(U)
ij� ]2 + [δ

(L)
ij� ]2)

because σ2
3Way/η

2 will be between 0 and 1 at a local minimum and is in-
dependent of the number of objects, the size of the dissimilarities, or the
weights.

4 Synthesized musical instruments

To illustrate our method, we consider an empirical data set where the entries
in each of two dissimilarity matrices are an interval of values. These two
dissimilarity matrices represent dissimilarities among the same set of objects,
given by the same expert on two different occasions; thus combined these two
dissimilarity matrices to form a three-way two-mode array. The objects in the
study are ten sounds differing with respect to only two physical parameters:
the spectral center of gravity and the log attack time. Many previous studies
of musical timbre have demonstrated that these two physical parameters
are highly correlated with the perceptual axes uncovered when dissimilarity
judgments are collected for sounds from different musical instruments playing
the same note with the same loudness for the same duration of time.

Until some 35 years ago timbre was considered to be a perceptual param-
eter of sound that was complex and multidimensional, defined primarily by
what it was not, that is what distinguishes two sounds presented in the same
manner equal in pitch, subjective duration and loudness (see Plomp, 1970).
MDS studies have shown that these two attributes of sound, namely spectral
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center of gravity and log attack time explain the factors we use to distinguish,
say, middle C on the piano from middle C on some other instrument when
they are played at the same loudness and the same duration of time (see,
for example, McAdams, Winsberg, Donnadieu, DeSoete & Krimphoff, 1995;
McAdams & Winsberg, 1999). So, when middle C is played on the piano the
sound has some unidimensional attributes such as pitch, corresponding to
the fequency of the fundamental, loudness, and duration. In addition, it is
characterized by its timbre, that is, a note played by a piano and not some
other musical instrument. This last attribute, timbre, is perceptually multidi-
mensional with two important underlying perceptual dimensions relating to
spectral center of gravity and log attack time. The spectral center of gravity
is the weighted average of the harmonics generated when a note is sounded
averaged over the duration of the tone with a running time window of, say,
12ms, and is higher for the harpsichord than for the piano, for example. The
log attack time is the logarithm of the rise time measured from the time the
amplitude envelope reaches a threshold of 2% of the maximum amplitude to
the time it takes to reach the maximum amplitude, and is longer for a wind
instrument like the trumpet than for a string instrument like the harp. The
ten sounds in this study were generated artificially to represent the range of
values found in natural instruments according to the design in Figure 3. The
data represents dissimilarity judgments from the same expert listener taken
on two occasions. The data are given in Table 2 of Groenen et al. (2006).
On each occasion the expert listened to each pair of sounds and indicated
a range of dissimilarity for each pair on a calibrated slider scale going from
very similar to very different.
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Fig. 3. Design of the ten sounds according to spectral center of gravity (vertical
axis) and log attack time (horizontal axes).
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The data were analyzed by 3WaySym-Scal for both occasions simul-
taneously. To reduce the probability of a bad local minimum we have used
100 random starts and chose the best one. The resulting solution with Stress
0.05194421 is shown in Figure 4. Here, the common space with X and R is
shown in the left panel. The right panel shows the weights for the two oc-
casions. We see that at Occasion 1, the first dimension is emphasized more
than the second, whereas this situation is reversed at Occasion 2. Another
representation of this very same solution can be obtained by showing the
individual spaces for each of the occasions, thus using the XV1 and RV1 for
the first occasion and XV2 and RV2 for the second occasion. This represen-
tion of the individual spaces is shown in Figure 5. We also present the results
obtained analyzing the data from occasion one and occasion two separately
using the I-Scal algorithm that is two separate two-way analyses in Figure
6.
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Fig. 4. Common space and dimension weights for the 3WaySym-Scal solution for
judgements on synthesized musical instruments for judgements on two occasions by
a single professional judge.

It is informative to examine and compare the three-way solution treating
the two data matrices simultaneously obtained with 3WaySym-Scal with
the solutions obtained for each occasion separately using the two-way I-Scal

algorithm. In each case, the horizontal axis represents log attack time and
the vertical axes the spectral center of gravity. Without imposing any restric-
tions, each version of SymScal seems to be able to reconstruct the physical
space. The results for the 3WaySym-Scal in Figure 4 indeed reflect the
physical space. Notice the groupings 10, 9, 4, 1 and 2, 5, 7 and 3, 6, 8 reflect
how these stimuli are grouped in the physical space. Moreover, the relation
of these groups to one another approximates their disposition in the physical
space reasonably well. The results for the second occasion analyzed alone
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a. Occasion 1 b. Occasion 2
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Fig. 5. Three-way interval MDS solution for judgements on synthesized musical
instruments for judgements on two occasions by a single professional judge.
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Fig. 6. Unconstrained I-Scal solutions for the sound data obtained by Groenen et
al. (2006). Panel (a) gives the results for Occasion 1 with I-Stress .02861128 and
Panel (b) for Occasion 2 with I-Stress .04893295.

reflect the physical space the best, and the solution from the first occasion
alone shows the most deviations from the physical space: 8, 3, 6 are too far
to the left, 3 is too low, 7 is too far to the left, and 1 is too far to the right.
Note that these differences from one occasion to another are greater than the
range of uncertainty reflected in the solutions. Analyzed alone without look-
ing at the three-way solution one might want to conclude that the improved
results on the second occasion indicate that the task is better performed with
some practice and with greater familiarity with the group of sounds. How-
ever, the expert spent much time familiarizing himself with the sounds before
undertaking the task. The results of the three-way analysis combined with
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the two-way solutions point to the much more interesting idea that greater
attention to the spectral center of gravity was necessary to better reproduce
the physical space. This additional most interesting information about sound
perception could only be teased out by examining all the results. Of course,
it also appears from the figures that sounds with long attack times are more
difficult to localize, than those with short attack times (with exception to
sound number 10).

5 Discussion and conclusions

We have presented an MDS technique for symbolic data that deals with three-
way two-mode fuzzy dissimilarities consisting of a interval of values observed
for each pair of objects, for each source. In this technique, each object is rep-
resented as a series of hyperboxes in a p dimensional space. By representing
the objects as hypercubes, we are able to convey information contained when
the dissimilarity between the objects or for any object pair needs to be ex-
pressed as a interval of values not a single value, and when one has data from
more than one source. It may be so, moreover, that the precision inherent
in the dissimilarities is such that the precision in one recovered dimension is
worse than that for the other dimensions. Our technique is able to tease out
and highlight this kind of information.

The 3WaySym-Scal algorithm for MDS of interval dissimilarities is
based on iterative majorization, and the I-Scal algorithm created to deal
with the case when dissimilarities are two-way, one-mode data and are given
by a range or interval of values. The advantage is that each iteration yields
better 3Way-IStress until no improvement is possible. Simulation studies have
shown that I-Scal and Hist-Scal upon which this algorithm is based, com-
bined with multiple random start and a rational start yields good quality
solutions.

Denœux and Masson (2000) discuss an extension for interval data that
allows the upper and lower bounds to be transformed. Although it is techni-
cally feasible to do so in our case, we do not believe that transformations are
useful for symbolic MDS with interval or histogram data. The reason is that
by having the available information of a given interval for each dissimilarity,
it seems unnatural to destroy this information. Therefore, we recommend
applying symbolic MDS without any transformation.

The present model can be extended along at least two lines. First, one
could allow for individual rotations of the common space. It remains to be
studied how this could be implemented. For example, one could only rotate X
and not R or one could do both. A second line of extensions could study the
use of intervals for V� as well. The consequences also require further study.
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Abstract. The paper addresses the problem of assessing the validity of the clus-
ters found by a clustering algorithm. The determination of the ”true” number of
”natural” clusters has often been considered as the central problem of cluster vali-
dation. Many different stopping rules have been proposed in the research literature
but most of them are applicable only to classical data (qualitative or quantitative).
In this paper we investigate the problem of the determination of the number of clus-
ters for symbolic objects described by interval variables. We consider five classical
methods and two hypothesis tests based on the Poisson point process. We extend
these methods to interval data. We apply them to the meteorological stations data
set.

1 Introduction

The aim of cluster analysis is to identify a structure within a data set and to
validate that structure. When hierarchical algorithms are used, an important
problem is then to choose one solution in the nested sequence of partitions of
the hierarchy. On the other hand, optimization methods for cluster analysis
usually require the a priori specification of the number of classes. So most
clustering procedures demand the user to fix the number of clusters, or to
determine it in the final solution.

In this paper we describe two hypothesis tests for the number of clus-
ters based on the Hypervolumes clustering criterion: the Hypervolumes test
(Hardy (1996)) and the Gap test (Kubushishi (1996)). These statistical meth-
ods are based on the homogeneous Poisson process (Karr (1991)). We also
consider the five best stopping rules for the number of clusters analysed by
(Milligan and Cooper (1985)). We show how these methods and tests can be
extended to interval data (Bock and Diday (2000)).

In order to generate partitions, we use symbolic clustering procedures:
the module SHICLUST (Hardy (2004)) of the SODAS 2 software and the
dynamical clustering method SCLUST (Verde, de Carvalho and Lechevallier
(2000)).

2 Statistical models based on the Poisson processes

The clustering problem we are interested in is the following.
E = {x1, x2, ..., xn} is a set of n objects. On each of the objects we
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measure the value of p interval variables Y1, Y2, ..., Yp. The objective is to
find a ”natural” partition P = {C1, C2, ..., Ck} of the set E into k clusters.

2.1 The Hypervolumes clustering criterion

The Hypervolumes clustering method (Hardy and Rasson (1982)) assumes
that the n p-dimensional observation points x1, x2, ..., xn are generated by
a homogeneous Poisson process in a set D included in the Euclidean space
Rp where the set D is supposed to be the union of k disjoint convex domains
D1, D2, ..., Dk. We denote by Di ⊂ {x1, x2, .., xn} the subset of the
points belonging to Di (1 ≤ i ≤ k). The Hypervolumes clustering criterion is
deduced from that statistical model, using maximum likelihood estimation.
It is defined by

Wk ≡
k∑

i = 1

m(H(Di)) =

k∑

i = 1

∫

H(Di)

m(dx)

where H(Di) is the convex hull of the points belonging to Di and m(H(Di)) is
the multidimensional Lebesgue measure of that convex hull. That clustering
criterion has to be minimized over the set of all the partitions of the observed
sample into k clusters.

2.2 The generalized Hypervolumes clustering criterion

The generalized Hypervolumes clustering method (Rasson and Granville
(1996)) assumes that the n p-dimensional points x1, x2, ..., xn are gen-
erated by a nonhomogeneous Poisson process in a set D. D is the union of
k disjoint convex domains D1, D2, ..., Dk. The generalized Hypervolumes
clustering criterion is deduced from that statistical model, using maximum
likelihood estimation. It is defined by

WGk ≡
k∑

i = 1

�(H(Di)) =

k∑

i = 1

∫

H(Di)

q(x)m(dx)

where q(x) is the intensity of the nonhomogeneous Poisson process and
�(H(Ci)) the integrated intensity of the process on the convex hull of the
points belonging to Di.

3 Statistical tests for the number of clusters based on
the homogeneous Poisson point process

The Hypervolumes test and the Gap test are presented in the case of classical
quantitative data. In Section 6 we’ll extend these tests to interval data.
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3.1 The Hypervolumes test

The statistical model based on the homogeneous Poisson process allows us to
define a likelihood ratio test for the number of clusters (Hardy (1996)). Let
us denote by D = {D1, D2, ..., D�} the optimal partition of the sample into �
clusters and C = {C1, C2, ..., C�−1} the optimal partition into �− 1 clusters.
We test the hypothesis H0: t = � against the alternative HA: t = �−1, where
t denotes the number of ”natural” clusters (� ≥ 2). The test statistic (Hardy
(1996)) is defined by

S(x) =
W�

W�−1

where W� is the value of the Hypervolumes clustering criterion associated to
the best partition into � clusters.

Unfortunately the sampling distribution of the statistic S is not known.
But S(x) belongs to [0, 1[. Consequently, for practical purposes, we can use
the following decision rule: reject H0 if S is close to 1. We apply the test in
a sequential way: if �0 is the smallest value of � ≥ 2 for which we reject H0,
we choose �0 − 1 as the best number of ”natural” clusters. Let us mention
that in order to compute p-values associated to the Hypervolumes statistic,
we use permutation tests (Hardy (2006)).

3.2 The Gap test

The Gap test (Kubushishi (1996)) is based on the same statistical model. We
test H0 : the n = n1 +n2 observed points are a realization of a homogeneous
Poisson process in D against HA: n1 points are a realization of a homogeneous
Poisson process in D1 and n2 points in D2 where D1 ∩ D2 = ∅. The sets
D,D1,D2 are unknown. D (respectively D1 , D2) is the set of points belonging
to D (respectively D1, D2). The test statistic can be written as

Q(x) =

(
1 − m(�)

m(H(D))

)n

where � = H(D)\(H(D1)∪H(D2)) is defined as the ”gap space” between the
clusters. The test statistic is the Lebesgue measure of the gap space between
the clusters.

The decision rule is the result of an asymptotic distribution (Kubushishi
(1996)). We reject H0, at level α, if

nm(�)

m(H(D))
− logn− (p− 1) log logn ≥ − log(− log(1 − α)).
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4 Classical stopping rules for the number of clusters

Many different methods for the determination of the number of clusters have
been published in the scientific literature. The most detailed and complete
comparative study has been undertaken by Milligan and Cooper (1985). They
analysed and classified thirty indices for the determination of the number of
clusters, and they investigated the extent to which these indices were able
to detect the correct number of clusters in a series of simulated data sets
containing a known structure. The five rules investigated in this study are
defined below in the case of classical quantitative data, in the order in which
they were ranked in the Milligan and Cooper’s investigation. In Section 6
we’ll extend these methods to interval data.

The Calinski and Harabasz method The (Calinski and Harabasz (1974))
index is given by

CH =
B

c−1
W

n−c

where n is the total number of objects, and c the number of clusters in
the partition. W and B denote, respectively, the total within-cluster sum of
squared distances (about the centroids), and the total between-clusters sum
of squared distances.

The maximum value of the index is used to indicate the true number of
clusters in the data set.

The J-index Duda and Hart (1973) proposed a hypothesis test for deciding
if a cluster should be subdivided into two sub-clusters. The test statistic is
based on the comparison between W1, the within-cluster sum of squared
distances, and W2, the sum of within-cluster sum of squared distances when
the cluster is optimally partitioned into two clusters. The null hypothesis of
a single cluster is rejected if

J ≡
−W2

W1
+ 1 − 2

πp√
2(1 − 8

π2p )

np

> z1−α

where p denotes the number of variables, n the number of objects in the
cluster being investigated, and z1−α a standard normal quantile specified by
the significance level of the test.
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The C-index That index needs the computation of the sum of all within-
cluster pairwise dissimilarities. If the partition has r such dissimilarities, we
denote by Vmin (respectively, Vmax) the sum of the r smallest (respectively,
largest) pairwise dissimilarities. The C-index (Hubert and Levin (1976)) is
then defined by

C =
V − Vmin

Vmax − Vmin

where V is the sum of the within cluster dissimilarities.

The minimum value of that index across the partitions into � clusters (� =
1, ..., K) is used to indicate the optimal number of clusters. The best minimal
value is 0 corresponding to V = Vmin.

The Γ -index Here comparisons are made between all within-cluster pair-
wise dissimilarities and all between-cluster pairwise dissimilarities. A com-
parison is defined as consistent (respectively, inconsistent) if a within-cluster
dissimilarity is strictly less (respectively, greater) than a between-cluster dis-
similarity. The Γ -index (Baker and Hubert (1975)) is computed as

Γ =
Γ+ − Γ−

Γ+ + Γ−

where Γ+ (respectively Γ−) represents the number of consistent (respectively,
inconsistent) comparisons.

The maximum value of the Γ -index indicates the correct number of clus-
ters. Let us remark that the absolute maximum of that index is 1, when
Γ− = 0.

The Beale test Beale (1969) proposed a hypothesis test in order to decide
if a cluster, at a level of a hierarchy, should be divided into two clusters. The
test involves the statistic

W1 −W2

W2(
n− 1

n− 2

)
2

2
p − 1

where W1,W2, n and p are defined as in the J-index above.

Under the null hypothesis that the cluster should not be subdivided, that
statistic has a Fisher and Snedecor distribution with p and (m− 2)p degrees
of freedom.

A comparative analysis of these five stopping rules for the determina-
tion of the best number of natural clusters has been undertaken for classical
quantitative data by Hardy and André (1998).
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5 Dissimilarity measures for interval data

Clustering algorithms and methods for the determination of the number of
clusters are usually based on a dissimilarity matrix D which reflects the sim-
ilarity structure of the n objects. Such a dissimilarity matrix can be defined
for interval data.

Let E = {x1, . . . , xn} be a set of n objects described by p interval variables
Y1, . . . , Yp with domains Y1, . . . ,Yp respectively.

p dissimilarity indices δ1, ..., δp are defined on the ranges Bj

δj : Bj × Bj → R+ : (xkj , x�j) �−→ δj(xkj , x�j)

where Bj is the set of intervals of R.

If xkj = [αkj , βkj ] and x�j = [α�j , β�j ], we consider in this paper the three
following distances for interval data.

- The Hausdorff distance:

δj (xkj , x�j) = max{ | αkj − α�j |, | βkj − β�j | }

- The L1 distance :

δj (xkj , x�j) = | αkj − α�j | + | βkj − β�j |

- The L2 distance :

δj (xkj , x�j) =
√

(αkj − α�j)2 + (βkj − β�j)2.

The dissimilarity indices δ1, ..., δp are combined in order to obtain a global
dissimilarity measure on E

d : E × E −→ R+

(xk, x�) �−→ d(xk, x�) =

( p∑

j=1

δ2
j (xkj , x�j)

)1/2

where δj is one of the dissimilarity measures defined above.

In order to generate hierarchies or sets of partitions, we apply symbolic
clustering methods to interval data: SHICLUST (Hardy (2004)) and SCLUST
(Verde, de Carvalho and Lechevallier (2000)). SHICLUST is a module of the
SODAS 2 software containing the symbolic extensions of four well-known
classical clustering methods: the single link, complete link, centroid and Ward
procedures. The symbolic clustering method SCLUST is a generalization of
the Dynamic clustering method (Diday (1972)).
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6 Determination of the number of clusters for interval
data

6.1 Methods based on a dissimilarity matrix

The five best methods for the determination of the number of clusters from
the (Milligan and Cooper (1985)) study are based on a dissimilarity matrix.
Such a dissimilarity matrix can be computed for interval data (Section 5).

Consequently, the five corresponding stopping rules can be used for inter-
val data, in order to determine the best number of natural clusters. These five
methods have been included in a module of the SODAS 2 software named
NBCLUST. The indices are computed at each level of the four hierarchies of
SHICLUST.

Concerning SCLUST, we select the best partition into � clusters, for each
value of � (� = 1, · · · ,K) (K is a reasonably large integer fixed by the user)
and we apply the three stopping rules available for nonhierarchical classifi-
cation (the Calinski and Harabasz method, the C-index and the Γ -index)
(Hardy, Lallemand and Lechevallier (2002)).

The analysis of these indices should provide the ”best” number of clusters.

6.2 Statistical tests based on the Poisson point processes

The Hypervolumes test and the Gap test are not based on the existence of a
dissimilarity matrix. They need the computation of convex hulls of points. In
order to extend these tests to interval data, we use the following modelling: an
interval is summarized by two numbers: its center and its half length ((C,L)
modelling). So each object can be represented as a point in a 2p-dimensional
space where p is the number of interval variables measured on each object.

For practical purposes, the Hypervolumes test and the Gap test are ap-
plied to the points obtained thanks to the (C,L) modelling, in the p two-
dimensional spaces associated to each of the p interval variables.

When the Hypervolumes test is applied to the hierarchies of partitions
generated by each of the four hierarchical methods included in SHICLUST,
it computes, in each of the p (C,L) representations, the areas of the convex
hulls corresponding to the generated partitions, at the corresponding level of
the hierarchy. Consequently the number of clusters obtained with one interval
variable can be different from the number of clusters obtained with another
interval variable.

In order to solve that problem we select from the set of all the variables
the most discriminant one and we apply the Hypervolumes test and the Gap
test in the two-dimensional (C,L) space associated to that variable.

The total inertia (Celeux et al. (1989)) of the set E of objects is defined
by

T =

n∑

i=1

(xi − g)′ (xi − g)



76 A. Hardy and J. Baune

where g is the centroid of E.
It is possible to compute the contribution of the class C� or of the j-th

variable to the total inertia T .

T =

n∑

i=1

(xi − g)′ (xi − g) =

k∑

�=1

p∑

j=1

∑

xi∈C�

(xij − gj)
2 =

k∑

�=1

p∑

j=1

T
(�)
j =

k∑

�=1

T (�)

where T (�) =
p∑

j=1

T
(�)
j .

We also have

T =

n∑

i=1

(xi − g)′ (xi − g) =

k∑

�=1

p∑

j=1

∑

xi∈C�

(xij − gj)
2 =

k∑

�=1

p∑

j=1

T
(�)
j =

p∑

j=1

Tj

where Tj =
k∑

�=1

T
(�)
j .

So T (�) is the contribution of class C� to the total inertia T . Tj is the
contribution of variable j to the total inertia T .

We have a similar decomposition for the inter-class inertia B.

B =

k∑

�=1

n� (g(�) − g)′ (g(�) − g) =

k∑

�=1

p∑

j=1

n� (g
(�)
j − gj)

2 =

k∑

�=1

p∑

j=1

B
(�)
j =

=

k∑

�=1

B(�) where B(�) =

p∑

j=1

B
(�)
j and g(�) is the centroid of C�.

We also have

B =

k∑

�=1

n� (g(�)−g)′ (g(�)−g) =

k∑

�=1

p∑

j=1

n� (g
(�)
j −gj)

2 =

k∑

�=1

p∑

j=1

B
(�)
j =

p∑

j=1

Bj

where Bj =
k∑

�=1

B
(�)
j .

So B(�) is the contribution of class C� to the inter-class inertia B and Bj

is the contribution of the j-th variable to the inter-class inertia B.

Thanks to these decompositions, we can determine the most discriminant
variable by the following indices:

cor(j) = 100.
Bj

Tj
ctr(j) = 100.

Bj

B
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where Bj is the contribution of the jth variable to the inter-class inertia B,
and Tj the contribution of the jth variable to the total inertia T .

We proceed in the following way: the symbolic clustering method SCLUST
is applied to the original interval data. We consider the successive partitions
of E into � clusters (� = 1, ...,K where K is a reasonably large integer fixed
by the user). We transform the symbolic objects into classical data using the
(C,L) modelling. We apply the Hypervolumes test and the Gap test in the
two-dimensional space associated to the most discriminant interval variable.

7 Example: The meteorological stations data set

That data set is extracted from the Long-Term Instrumental Climatic
Database of the People’s Republic of China. It contains, among other vari-
ables, the temperatures observed in 60 meteorological stations. We will con-
sider 12 interval variables: the monthly temperatures observed during the
year 1988. Each observation is coded as the interval of the minima and max-
ima temperatures for each month.

7.1 Application of clustering algorithms

We apply the SCLUST procedure to the interval data with the Hausdorff
distance; we consider the best partitions into � clusters (� = 1, ..., 7). The
results given by the application of the three stopping rules of NBCLUST
available for nonhierachical clustering methods are presented in Tables 1 and
2.

Number of Calinski and C-index Γ -index
clusters Harabasz

k=7 91.71558 0.00905 0.93729
k=6 90.40053 0.01282 0.91742
k=5 88.03642 0.02192 0.86976
k=4 84.52790 0.02980 0.87722
k=3 77.88730 0.05797 0.80540

k=2 95.14143 0.07597 0.83494
k=1 - - -

Table 1. SCLUST and NBCLUST.

The application of the Calinski and Harabasz method lead to the conclu-
sion that the natural structure contains two clusters. The values of the two
other indices are not relevantly interpretable.

We’ve also applied the SHICLUST and NBCLUST modules with the
Hausdorff distance. The results are given in Table 3 for the centroid clus-
tering method.
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SCLUST C.&H. C Γ

Number of clusters 2 - -

Table 2. SCLUST and NBCLUST.

Centroid Calinski and J-index C-index Γ -index Beale
clustering Harabasz test

k=7 56.55797 3.10151 0.01634 0.91143 2.44697
k=6 56.31483 3.77347 0.01907 0.90563 3.64673
k=5 62.09626 2.04255 0.02406 0.89001 1.66512
k=4 66.62522 3.70170 0.03645 0.84857 2.92233
k=3 59.45751 6.19180 0.05254 0.84709 5.22437

k=2 94.37150 3.96272 0.05598 0.83883 3.58061
k=1 - 11.12716 - - 11.47337

Table 3. Centroid and NBCLUST.

The Calinski and Harabasz index, the Duda and Hart test and the Beale
test, applied on the hierarchies of partitions given by the centroid method,
lead to the conclusion that there are two clusters in the data set.

If we consider the other hierarchical clustering methods included in the
SHICLUST module, we get the following results (Table 4).

SHICLUST C.&H. D.&H. C Γ Beale

Single link 6 6 6 6 6
Complete link 2 2 - - 2

Centroid 2 2 - - 2
Ward 2 2 - - 2

Table 4. SHICLUST and NBCLUST.

Summarizing all these results, we conclude that the most interesting parti-
tions contain respectively two and six clusters, the partition into two clusters
appearing more often than the one into six clusters. For the partition into
two clusters, the first one is composed of seaside or low-lying stations, and
the second one to landlocked stations or at high altitude.

7.2 The zoom-stars

This graphical tool (Noirhomme and Rouard (2000)), available in the SO-
DAS 2 software, is relevant for the visualization and the interpretation of the
clusters. For each variable, the limits (min/max) of the interval of its values
is represented. These limits are both linked and the whole surface is filled.
If we examine the partition into two clusters (Figure 1), we can see that the
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Fig. 1. Visualisation of the interval data.

two clusters of meteorological stations have different temperatures, and that
the stations in cluster 1 have higher temperatures than those in cluster 2.
The zoom-star associated to the partition into 6 clusters is more difficult to
interpret, but further investigations prove the interest of that classification
(Baune (2006)).

7.3 Stability measure and selection of the number of clusters

Some indices have been developed by (Bertrand and Bel Mufti (2006)) for
measuring the stability (isolation and cohesion) of a partition. The module
”STATCLUST” of the SODAS 2 software computes these stability indices in
the case of interval variables. For the meteorological stations data set, the
results are presented in Table 5.

k 2 3 4 5 6 7 8

Stability

measure 0.998 0.787 0.804 0.971 0.991 0.949 0.885
of partition

validity

Table 5. Stability indices.

The partition into two clusters is characterized by the highest value of
the stability indice.
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8 Conclusion

In this paper we were interested in the determination of the number of clusters
for symbolic objects described by interval variables. In order to generate
partitions we have applied the four hierarchical procedures included in the
module SHICLUST, and the dynamical clustering method SCLUST. The
determination of the best number of natural clusters has been undertaken, by
proposing and using a symbolic extension to interval data of two hypothesis
tests based on the homogeneous Poisson process and five classical stopping
rules well-known in the scientific literature. The stopping rules were applied
to a real data set: the meteorological stations data set.
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classification automatique. Statistique et Analyse des Données 23, 41-56.

HARDY, A.(1996): On the number of clusters. Computational Statistics and Data
Analysis 23, 83-96.

HARDY, A. and ANDRE, P. (1998): An investigation of nine procedures for detect-
ing the structure in a data set. In: A. Rizzi, M. Vichi and H.-H. Bock (Eds.):
Advances in Data Science and Classification. Springer, Berlin, 29-36.

HARDY, A., LALLEMAND, P. and LECHEVALLIER, Y. (2002): La
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55.

HARDY, A. (2006): Application of permutation tests to clustering. Technical Re-
port, Department of Mathematics, FUNDP - University of Namur, Namur,
Belgium.

HUBER, L.J. and LEVIN, J.R. (1976): A general statistical framework for assessing
categorical clustering in free recall. Psychological Bulletin 83, 1076-1080.

KARR, A.F. (1991): Point Processes and their Statistical Inference, Marcel Dekker.
KUBUSHISHI, T. (1996): On some Applications of the Point Process Theory in

Cluster Analysis and Pattern Recognition. PhD Thesis, FUNDP - University
of Namur, Namur, Belgium.

MILLIGAN, G.W. and COOPER, M.C. (1985): An examination of procedures for
determining the number of clusters in a data set. Psychometrika 50, 159-179.

NOIRHOMME-FRAITURE, M. and ROUARD, M. (2000): Visualizing and editing
symbolic objects. In H.-H. Bock and Diday, E. (Eds.): Analysis of Symbolic
Data. Springer, Berlin, 125-138.
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Abstract. With the increase of computer use in all sectors of activity, more and
more data are available as streams of structured records so that it is not possible
to store all data before analyzing them in a data mining perspective. New data
management systems have been studied to handle such data streams and new algo-
rithms have been developed to perform stream mining. In this paper, we propose
approaches to extend the construction of symbolic objects to data streams: sym-
bolic objects are built and maintained as a representation of a complete stream or
a sliding window on the stream.

1 Introduction

More and more data are available today with the development of comput-
erized applications to support human activity. In this context the volume of
data submitted to data mining or statistical data analysis methods becomes
so large that sometimes all the data necessary for an analysis cannot be stored
in a file or in a data base beforehand. Moreover more and more systems (for
instance remote sensors) produce data as streams of structured records (i.e.
tuples) at a rate which prevents from storing them in a file before analyzing
them. This suggested the development of data stream management systems
and ’on the fly’ data mining algorithms (see Babcock et al. (2002) and Golab
and Oszu (2003)).

Similarly to the data mining approach, stream data are not collected for
a statistical analysis purpose but are available just because of the comput-
erized nature of the management of human activities. So, goals of statistical
analyses are usually not defined before the streams to begin or before the
maximum storage of data to be reached. Consequently, there is a strong need
for summarizing data streams in order to enable future rich analyses without
storing all the available data. Several approaches have been proposed to sum-
marize data streams, for instance: micro-clustering techniques are described
in Aggarwal et al. (2003), sampling techniques are described in Csernel et al.
(2006).
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One important characteristic of data streams is that the distributions of
variables evolve with time: this modifies the underlying assumptions of several
statistical methods, i.e. samples are issued from the same distribution. In
order to solve this problem, summaries are split into separate pieces figuring
different periods of time. The constraint of storing the summaries in limited
storage has motivated the development of storage approaches with less details
for older data than for recent data.

Another way of getting over the problem of data stream volume is to
restrict the scope of analyses by defining sliding windows on the streams,
for instance applying the analysis on the last 24 hours data or on the last
1000 records. This approach also eliminates the problem of distribution drift.
When applying analyses to a sliding window, there are two possibilities: (1)
there is enough available storage to memorize all detailed data of the current
window ; (2) the size of detailed data belonging to the current window is too
large and cannot be stored. In case (1) standard algorithms can be applied
but in case (2), algorithms must be incremental and support deletions in
order to forget older detailed data getting out of the window as time goes on.

In this paper, we propose approaches to maintain symbolic objects de-
scribing the contents of a stream or a sliding window defined on a stream.
Symbolic objects are good summaries of detailed data because they can be
analysed by methods developed in the context of symbolic data analysis (see
Bock and Diday (1999)). To do so, we adapt the algorithms developed in
Stephan et al. (1999) to the case of data available in the form of data streams
instead of data bases.

In Section 2 we recall the principles of generation of symbolic objects from
relational databases. Recent work on data streams suggest some extensions
both on existing generalization operators and on the symbolic object struc-
ture itself: these extensions are described in Section 3. Section 4 proposes
approaches to build and maintain symbolic objects describing a data stream
or a sliding window on a data stream. Section 5 is conclusion and suggests
new directions of further work.

2 Generation of symbolic objects from relational
databases

We use the two-level-paradigm where symbolic objects are created quite natu-
rally when aggregating single individuals (described by classical single-valued
variables) into classes, and describing the more or less complex properties of
these classes. Here, we focus on the generalization process from a classical
data set extracted from a relational database.

In this two-level paradigm the DB2SO software (see Stephan et al. (1999))
generates Symbolic Objects (called SO’s) from the contents of a database.
As described in Bock and Diday (1999), a SO is defined by a triple (a,R, d)
where d is a description, R is a comparison operator between descriptions,
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and a is a mapping which defines the extension of the SO. We focus here
on the construction of the description part of SO’s. Each description of SO
generated by DB2SO is the representation of a group of individuals by some
symbolic variables. Symbolic variables describe variations among each group
of individuals by figuring:

• The interval of observed values on individuals in the group for numerical
variables,

• The list of observed values on individuals in the group for nominal vari-
ables,

• The probability distribution of observed values on individuals in the
groups for nominal variables, when the user asks for a modal SO.

2.1 Standard basic process

Input of the basic process is a table describing individuals from a popula-
tion. Individuals are described either by numerical or nominal variables. The
user writes an SQL query which returns such a table with the following ex-
pected structure: the first column describes the individual ID, the second
one the group ID the individual belongs to, and the other columns represent
characteristics of individuals.

As an example, we consider here a click stream data set featuring log files
of web sites. Each log file contains all requests over a continuous day period
and is formatted in the CLF format (Common Log Format, see Mobasher
(2000)). Some data preprocessing is done in four steps: data fusion, data
cleaning, data structuration, data summarization. Generally, in the data fu-
sion step, log files from different web servers are merged into a single log file.
During data cleaning, non-relevant resources (e.g. jpg, js, gif files) and robots
are eliminated (Arnoux et al., 2003) (Tanasa and Trousse, 2004). Then, pre-
processed data are stored in a relational database. Tab.1 shows an example
of one table of this relational data base: the REQUEST table. Each row of
this table is a web site request from one user: the IDrequest column iden-
tifies each request, IPaddress contains the IPaddress of the user issuing the
request, Protocol is the type of request, Date and Time are the ones of the
request, Code indicates the return code of the request, Size is the number of
bytes transmitted.

Another table of the data base is the ERRORCODE table (see Tab.2)
containing the labels of different error codes.

In this example, the goal is to build one SO per user session where a user
session is defined by an IP address. So groups are user sessions and individ-
uals are requests associated with each user session. An SQL query is written
to provide data submitted to DB2SO in the right form, for instance here to
transform the error code by its label:
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IDrequest IPaddress Protocol Time Date Code Size

1 88.121.0.121 HTTP/1.1 11:02:26 +0200 01/Oct/2006 200 9670
2 83.123.93.164 HTTP/1.1 11:02:27 +0200 01/Oct/2006 200 7534
3 80.100.0.101 HTTP/1.1 11:02:28 +0200 10/Oct/2006 200 7534
... ...
10987 88.121.0.121 HTTP/1.1 17:26:24 +0200 10/Oct/2006 200 7016
10988 88.122.1.141 HTTP/1.1 17:28:26 +0200 01/Oct/2006 304 5950
... ...

Table 1. Data table REQUEST.

Code Label

200 OK
... ...
304 Not Modified
305 Use Proxy
... ...
510 Not Extended

Table 2. Data table ERRORCODE.

select IDrequest, IPaddress, Label, Size from REQUEST, ERRORCODE
where REQUEST.Code = ERRORCODE.Code;

The description of each Symbolic Object (SO) is generated using a gen-
eralization operator to aggregate individuals of each group:

• Numerical variables describing individuals lead to interval variables de-
scribing groups: generally the set of variable values is generalized by
the minimum and maximum values (see for instance the Size variable
in Tab.3),

• Nominal variables describing individuals lead either to boolean or modal
multi-valued variables describing groups. If the user chooses to generate
a boolean multi-valued variable, the generalization operator is simply
building the list of observed values within the group. If the user chooses
to generate a modal multi-valued variable, the generalization operator
builds the discrete probability distribution of the nominal variable among
individuals of the group (see for instance the Code variable in Tab.3).

sessionID OS Code Size

1 88.121.0.121 ”OK” (12), ”Not Modified” (2) [547,23781]
2 83.123.93.164 ”OK” (6) [5240,9320]

... ...

Table 3. Symbolic Data Table.

As a summary of the approach, all data necessary to build symbolic ob-
jects are assumed to be stored in the database. The user writes an SQL
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query in order to gather in a unique relational structure all the necessary
information to build SO’s even if information is scattered among different
tables.

2.2 Generalization operator

Ω = {1, . . . , n} is defined as the set of individuals on which SO’s are built.
The properties of each individual are characterized by p classical single-value
variables Y1, . . . , Yp. So, each i ∈ Ω corresponds to one vector whose descrip-
tion is (Y1(i), . . . , Yp(i)). We associate with Ω a partitioning structure into
K classes: C1, . . . , CK .

We define a generalization operator g in a formal way, thereby using a
coordinate-wise construction. This operator provides a description for each
class Ck in the form of a new symbolic object. Let us define S = {s1, . . . , sK}
the set of symbolic objects where each sk is the result of generalization applied
on Ck.

Generalization operator g, based on Y1, . . . , Yp is defined as g = (g1, ..., gp)
with coordinate-wise generalization operators which express common prop-
erties of variable values in class Ck:

dk = g(Ck) where dk = (dk1, . . . , dkp) with dkj = gj(Ck)

We define gj as a union operator such as:

dkj =






[mini∈Ck
(Yj(i)), maxi∈Ck

(Yj(i))] Yj quantitative
{v ∈ Yj | ∃i, i′ ∈ Ck, Yj(i) ≤ v ≤ Yj(i

′)} Yj ordinal
{v ∈ Yj | ∃i ∈ Ck, Yj(i) = v} Yj nominal

where Yj is the domain of variable Yj .

An important property of the generalization operator is the distributive
property: g(Ck ∪ Ch) depends only on g(Ck) and g(Ch), i.e. the generalized
value of the union of two disjoint subsets of individuals can be computed
from the generalized values of the two subsets.

3 New generalization operator and symbolic object
structure

In this section, we describe two extensions of SO structure and generaliza-
tion operators which are suggested by recent work on data streams. These
extensions are not specific to data streams and can be applied as well to the
standard construction of symbolic objects described in the previous section.
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3.1 New generalization operator

The first extension is a new generalization operator which applies to nominal
variables. For each class this operator only selects the values with a frequency
within the class above a fixed threshold defined a priori, instead of keeping all
values appearing among the individuals belonging to the class. Recalling the
term used in the data stream community (see Cormode and Muthukrishnan
(2004)) this operator will be called the Heavy Hitters (HH) generalization
operator. It is defined formally below.

For each v ∈ Yj , let fv,k be the frequency of value v in class Ck:

fv,k = Card({i ∈ Ck | Yj(i) = v})/Card(Ck)

Let φ be a positive real (φ ∈]0, 1]) then the Heavy Hitters HHkj of class
k on variable Yj are defined as follows:

HHkj = {v ∈ Yj | fv,k ≥ φ}
HHkj is a set of values from the domain of Yj . It can be shown easily

that its cardinality is less than 1/φ. So this new operator has the property to
limit the number of values appearing in a boolean or modal SO, even if the
underlying data set of individuals is very large.
HHkj can be easily computed if the descriptions of all individuals are avail-
able in a file or in a database: the computation has to be done for each of the
p variables. Pointed as the Hierarchical Heavy Hitters problem in Cormode et
al. (2003), it is not possible to compute exactly Heavy Hitters of the union of
two disjoint subsets of individuals from the Heavy Hitters of the two subsets
(this generalization operator is not distributive). However an approximate so-
lution can be given by using a Count-Min Sketch with parameters (ε, δ) (see
Cormode and Muthukrishnan (2004)). A Count-Min Sketch with parameters
(ε, δ) is represented by a two-dimensional array of counts C with w =

⌈
e
ε

⌉

columns and d =
⌈
ln(1

δ )
⌉

rows with d hash functions chosen uniformly at ran-
dom from a pairwise-independent family. The Count-Min Sketch data struc-
ture gives an estimation of fv,k by f̂v,k = minm=1,...,dC[m,hm(v)]/Card(Ck)
with the following properties:

fv,k ≤ f̂v,k

P [f̂v,k ≤ fv,k + ε] ≥ 1 − δ

The estimate f̂v,k verifies fv,k ≤ f̂v,k ≤ fv,k + ε with a guarantee proba-
bility larger than 1 − δ.

Let HHu
kj and HHs

kj the Heavy Hitters of two disjoint subsets u and s of
individuals. Then approximate Heavy Hitters HHu∪s

kj of the union of subsets
u and s can be constructed using the following three rules :

For each v ∈ Yj we have:
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• 1 - if v ∈ HHu
kj and v ∈ HHs

kj then v ∈ HHu∪s
kj and the frequency of v

in u ∪ s is obtained by combining the frequencies in u and s.
• 2 - if v /∈ HHu

kj and v /∈ HHs
kj then v /∈ HHu∪s

kj

• 3 - otherwise the missing frequency is replaced by its estimate: v ∈ HHu∪s
kj

if its estimated frequency is higher than φ.

This new generalization operator can thus be used for the construction
of symbolic objects from databases, either for building boolean or modal
symbolic descriptions.

3.2 New symbolic object structure

A new symbolic object structure is suggested by work describing two cluster-
ing algorithms: BIRCH (see Zhang et al. (1996)) which is an algorithm for
clustering very large files, and CLUSTREAM (see Aggarwal et al. (2003))
which is an algorithm for clustering stream data. Both algorithms use a two-
step approach. The first step is to build a summary of the file (resp. the
stream) in the form of a large number of micro-clusters (typically 1000 to
10000) which are updated by an on-line algorithm. The second step is to
perform a clustering using the micro-clusters instead of the original data.

The central structure to describe and maintain micro-clusters is the Clus-
ter Feature Vector (CFV) first introduced by Zhang et al. (1996). A CFV
is a description of a set of individuals described by numerical variables: it
includes the cardinality of the set and for each variable the sum of values and
the sum of squares of values within the set. More formally, if C is a subset of
Ω, we have:

CFV (C) = (n,CF1(Y1), CF2(Y1), ..., CF1(Yp), CF2(Yp))

where CF1(Yj) =
∑

i∈C Yj(i) and CF2(Yj) =
∑

i∈C Y 2
j (i).

CFV’s have interesting properties: (1) they support easily union opera-
tions (by just adding up field by field the CFV values), (2) they represent
the set as independent Gaussian distributions.

We propose to extend the CFV structure to represent a multivariate Gaus-
sian distribution. This can be done by adding, for each couple of variables
(Yj , Yj′) (j < j′), the following sum to the CFV structure:

∑
i∈C Yj(i)∗Yj′(i).

This extended CFV structure also supports easily union operations.

This suggests to add a new generalization operator for building sym-
bolic object from individuals described by quantitative variables. First dkj

is defined as [mj(Ck), vj(Ck)] where mj(Ck) =
∑

i∈Ck
Yj(i)/Card(Ck) and

vj(Ck) =
∑

i∈Ck
(Yj(i) −mj(Ck))2/Card(Ck). Secondly dk is defined as

[Mk, Vk] where Mk is a mean vector Mk =
∑

i∈Ck
Y (i)/Card(Ck) and Vk

is a covariance matrix.
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This enables to build a set of symbolic objects modeled by multivariate
Gaussian distributions. It is easy to show that this generalization operator is
distributive. We will see in the next section that the property of supporting
union operations is important in the context of data streams.

4 Building symbolic objects from data streams

Data streams are often referred as infinite sequences of time ordered data,
structured in the form of tuples which arrive in a continuous way. We assume
here that the result of the query used in DB2SO to build symbolic objects
from a database (see Section 2) is only available in the form of a stream, thus
not stored nor storable in a database. If the expected query is not directly
available in a stream, a DSMS (Data Stream Management System) can be
used to transform available streams into new streams, applying SQL-like
queries possibly joining raw stream data to some static standard tables. See
Golab and Oszu (2003) for more information on DSMS’s.

4.1 Incremental computation of generalization operators

Since stream data cannot be stored in a database, the generalization process
to build symbolic objects must be done ’on-the-fly’, i.e. incrementally. It can
be easily proved that all generalization operators described in Section 2 and
Section 3 can be computed incrementally, due to the fact that the result of a
generalization operator on a set can be computed from the result of the same
operator applied to any two disjoint subsets forming a partition of the set. In
some cases, some intermediate results need to be maintained instead of the
result of the generalization operators, as for instance the sum of values and
number of values must be maintained to compute incrementally the mean of
values.

Incremental computation of generalization operators can be done either
whenever a new tuple appears in the stream or at some refreshment points
where all tuples between two refreshment points are processed together. The
definition of refreshment points is related to the definition of windows on
a data stream. A window is a portion of the stream either expressed by a
number of tuples (for instance 1000 tuples) or by a time period (for instance
one hour). Windows defined by a number of tuples are called logical windows
while those defined by a time period are called physical windows.

Another characteristic of incremental computation of generalization oper-
ators is the amount of memory needed to compute them. For instance, com-
puting the minimum and maximum values for building an interval symbolic
variable requires only the storage of these two values, whatever the number
of tuples read from the stream. On the contrary, building a boolean or modal
symbolic variable requires the storage of all possible values appearing in the
stream for the attribute: this may become very large and intractable. That is
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the reason why we suggested in Section 3.1 to extend existing generalization
operators to build boolean and modal objects based on Heavy Hitters (HH)
instead of on all values appearing in the stream. We have shown in Section 3.1
that the HH generalization operator is distributive if we accept an approxi-
mate result. HH’s can be computed incrementally on a stream with limited
fixed storage (the size is smaller than [1/φ]) and in an approximated way:
the precision of the approximation increases with the available storage.

4.2 Building symbolic objects from a sliding window

In Section 4.1, it has been shown how to build symbolic objects incremen-
tally from a data stream. At each refreshment point current symbolic objects
reflect the contents of the stream since its beginning. As mentioned in the in-
troduction, the distribution of data may evolve with time introducing concept
drift. A simple solution to solve this problem is to build and maintain sym-
bolic objects over a sliding window on the stream, for instance the contents
of the stream over the last 24 hours.

Sliding windows on data streams can be either defined in a logical way
(for example the last 1000 tuples of the stream) or in a physical way (for
instance the tuples produced during the last hour). Algorithms for comput-
ing the generalization operators will differ depending on the type of sliding
window.

Case of a physical sliding window

In this case, the sliding window is defined by a time period F and a
refreshment period f . Both F and f are expressed as durations in seconds,
hours or days. For instance, if F = 24 hours and f = 1 hour, this means that
the symbolic objects should represent the contents of the stream during the
last 24 hours and be updated every hour. For simplicity, we assume that F is
a multiple of f , i.e. the sliding window can be exactly divided into F/f slices
of time duration f .

A simple algorithm for maintaining symbolic objects over such a sliding
window is to maintain (F/f) + 1 results of generalization operators covering
(F/f)+1 consecutive sliding periods of length f . Within each time period of
length f , the generalization operators are computed incrementally to avoid
the storage of the tuples appearing during the period. Then, at every refresh-
ment point, the oldest result is deleted and a new one is created. Thanks to
the distributive property of generalization operator computation, symbolic
objects of the complete sliding window of size F can be computed from the
last complete F/f results. This is illustrated in Fig.1 with F = 5 hours and
f = 1 hour.

As for the new generalization operator introduced in Section 3.1 comput-
ing Heavy Hitters for a variable, it would be interesting to study an extension
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of the algorithm to assess the quality of the approximation when F/f partial
results are aggregated to compute Heavy Hitters on the whole sliding win-
dow.

Fig. 1. Maintaining SO over a physical sliding window.

Case of a logical sliding window

In this case, the sliding window is defined by a number l of tuples and a
refreshment number m of tuples. For simplicity we assume as before that l is
a multiple of m. The sliding window is being defined by the l last tuples and
the result of generalization operators are produced every m tuples.

As before, a simple algorithm is to maintain (l/m)+1 results representing
m tuples each and on which the generalization operators have been applied
incrementally. Then, every m tuples, it is easy to produce the result of the
generalization operators for the sliding window as the union of the already
computed partial results.

If the stream produces tuples at a very high rate, we may need to choose
a very large value for l: the number of partial results will become as well
very large since its size is also in O(l). The consequence is that the proposed
algorithm may become very inefficient. A good solution is to apply the al-
gorithms developed in Datar et al. (2002) and Babcock et al. (2003) which
compute mean, variance, k-median on logical sliding windows of size l using
only O(log(l)) space. Another approach would be to apply the generalization
operators to a sample maintained incrementally on the sliding window, using
the algorithms described in Babcock, Datar and Motwani (2002).
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More generally, it would be interesting to study how to compute all gen-
eralization operators on a logical sliding window of size l using storage less
than O(l).

5 Conclusion and perspectives

Research on data stream management and mining has been very active these
last 5 years. Recent results first suggest two extensions to symbolic data
analysis:

• a new generalization operator computing Heavy Hitters of a nominal
variable,

• a new symbolic object structure describing a multivariate Gaussian dis-
tribution when all variables are numeric.

Since more and more data will be either only available as data streams or
too voluminous to be stored in databases before being analyzed, it is neces-
sary to extend the standard generation of symbolic objects from databases to
data streams. We have shown that the generalization operators used to build
symbolic objects can be applied to streams because they can be computed
incrementally (distributivity property). Symbolic objects are built either on
the whole stream since the beginning of its observation or on a sliding win-
dow representing the recent past of the stream in order to capture drift in
data distributions.

This paper is just an overview of possible extensions of symbolic data
analysis to data available as streams. This constitutes only a preliminary
study on this subject and much work remains to be done, for instance:

• study carefully and formally all suggestions made in this paper to extend
the construction of symbolic objects to data available as streams,

• study if it is possible to transpose the concept of tilted time windows
(proposed in Aggarwal et al. (2003)) to allow the construction of symbolic
objects from any portion of the past of the stream with limited storage.
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Abstract. Finding a linear structure in multidimensional data is a main purpose of
the principal component analysis (PCA). This paper describes a feature clustering
method to detect monotonic chain structures embedded in symbolic data tables
based on the Cartesian system model (CSM ) which is a mathematical model to
manipulate symbolic objects.

1 Introduction

Symbolic data analysis (SDA) is a new direction to generalize standard sta-
tistical methods (Bock and Diday(2000). For example, the generalization of
classical PCA is an interesting research theme. A main purpose in classical
PCA is to find a linear structure in multidimensional data. In this paper,
we present a feature clustering method to find monotonic chain structures
embedded in symbolic data tables. We assume a finite set U of objects de-
scribed in the Cartesian system model (CSM ) which is a mathematical model
to manipulate symbolic objects (Ichino and Yaguchi (1994,1998)). We briefly
describe the CSM in Section 2. In Section 3, we define relative neighbor-
hood sets for each object in U under a selected set of features. Then, based
on the relative neighborhood sets, we present a formulation and interpreta-
tion of chain connected covering for the set U . As special classes of chain
connected covering, we study monotonic chain structures in the relation to
the nested coverings of U . In Section 4, we define the similarity between
features as the average Marczewski-Steinhaus distances for relative neighbor-
hood sets. A simple measure is also defined to evaluate monotonicity of chain
connected structures. Section 5 describes a feature clustering method to de-
tect monotonic chain structures in symbolic data based on our similarity and
monotonicity measures. We illustrate our approach based on the Fats and
Oils data (Ichino and Yaguchi (1994)). Section 6 is a summary.

2 Cartesian system model

Let U be a finite set of K objects as:

U = {ω1, ω2, ..., ωK}. (1)
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Let each of K objects be described by d features (attributes). Let Di be the
domain of feature Fi, i = 1, 2, ..., d. Then, the feature space is defined by the
product set

D(d) = D1 ×D2 × · · · ×Dd (2)

Since we permit the simultaneous use of various feature types, we use the
notation D(d) for the feature space in order to distinguish it from usual d-
dimensional Euclidean space Dd.
Each object ωi in the set U is represented in the feature space D(d) as:

Ei = Ei1 × Ei2 · · · ×Eid or Ei = (Ei1, Ei2, ..., Eid), (3)

where Eij , j = 1, 2, ..., d, are feature values taken by d features.
The CSM is able to manipulate the following feature types.

1) Continuous quantitative feature: The height and the weight for a person
are examples of this feature type.
2) Discrete quantitative feature: The number of cities in a state and the num-
ber of family members of a person are examples of this feature type.
3) Ordinal qualitative feature: One’s academic background {junior high school,
high school, college or university, graduate school} and military rank are ex-
amples of this feature type. We assume an appropriate numerical coding.
4)Nominal qualitative feature: The distinction of sex {male, female} and
blood type of a person {A,B,AB,O} are examples of this feature type.
We permit interval values for feature types 1) - 3), and finite set values for
feature type 4). ( In the CSM , some tree-type features are also manageable
(Ichino and Yaguchi, (1994, 1998)). The Cartesian product of the form (3)
described in terms feature types 1) - 4) is called an event.

The Cartesian join, A � B, of a pair of events A = (A1, A2, ..., Ad) and

B = (B1, B2, ..., Bd) in the feature space D(d), is defined by

A � B = [A1 �B1] × [A2 �B2] × · · · × [Ad �Bd] (4)

where [Ai � Bi] is the Cartesian join of feature values Ai and Bi for feature
Fi and is defined as follows.
When Fi is a quantitative or an ordinal qualitative feature, Ai�Bi is a closed
interval given by

[Ai �Bi] = [min(AiL, BiL),max(AiU , BiU )], (5)

where AiL and AiU , respectively, are the minimum and the maximum values
of the interval Ai, and min(AiL, BiL) and max(AiU , BiU ) are the operators
which take the minimum and the maximum values, respectively, among sets
{AiL, BiL} and {AiU , BiU}.
When Fi is a nominal feature, [Ai �Bi] is the union:

[Ai �Bi] = Ai ∪Bi. (6)
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The Cartesian meet, A � B, of a pair of events A = (A1, A2, ..., Ad) and

B = (B1, B2, ..., Bd) in the feature space D(d), is defined by

A � B = [A1 �B1] × [A2 �B2] × · · · × [Ad �Bd] (7)

where [Ai �Bi] is the Cartesian meet of feature values Ai and Bi for feature
Fi defined by

[Ai �Bi] = Ai ∩Bi (8)

When the intersection (8) takes the empty value φ, for at least one feature,
the events A and B have no common part. We denote this fact by

A � B = Φ (9)

and we say that A and B are completely distinguishable.
We call the triplet (D(d),�,�) the Cartesian system model (CSM) (Ichino
and Yaguchi (1994, 1998)).

3 Relative neighborhood and neighborhood set

In the following discussion, we treat various subsets of the given set of fea-
tures. To clarify this, let F0 be the set of feature numbers given by

F0 = {1, 2, ..., d}, (10)

and be called the feature set. For a feature subset F = {p1, p2, ..., pm} of F0,
an object ωk in the set U = {ω1, ω2, ..., ωK} may be given as follows:

Ek = Ekp1 × Ekp2 × · · · ×Ekpm or Ek = (Ekp1, Ekp2, ..., Ekpm). (11)

Definition 1 Join region
For a pair of objects ωp, ωqεU , let J(ωp, ωq|F ) be the Cartesian join region

in the feature space spanned by a feature subset F of F0 i.e.,

J(ωp, ωq|F ) =
∏

rεF

[Epr �Eqr ], (12)

where
∏

is the operator for the Cartesian product and square brackets [ and
] mean here that the boundary values of the Cartesian join for feature Fr are
included in the join region (i.e., a closed region).

Definition 2 Relative neighborhood
Two objects ωp, ωqεU are called the relative neighbors under a feature

subset F of F0, if the following condition is satisfied:

J(ωp, ωq|F ) �Ek 
= Ek for all k 
= p, q (13)



98 M. Ichino

Table 1 shows eight objects under five features {F1, F2, ..., F5}. In this
table, object pairs (1, 2), (3, 4), (5, 6), and (7, 8) are relative neighbors under
F1, F3, F5, and F2, respectively.

A neighborhood set of an object ωεU under a feature subset F , denoted
by n(ω|F ), is a non-empty subset of U . The operator n(·|F ) is a mapping
n : U → 2U , where 2U denotes the power set of U .

Definition 3 Neighborhood set
For each ωεU , let n(ω|F ) be defined by the set of all neighbors of ω. We

assume that each n(ω|F ) includes ω as a neighborhood.

Example 1
In Table 1, n(1|F3) = {1, 2, 4}, n(2|F3) = {1, 2}, n(3|F3) = {3, 4, 5},

n(4|F3) = {1, 3, 4}, n(5|F3) = {3, 5, 6, 8}, n(6|F3) = {5, 6}, n(7|F3) = {7, 8},
n(8|F3) = {5, 7, 8} are neighborhood sets.

4 Chain, chain connected covering, and monotonic
chain

We define several notions concerning chains.

Definition 4
Two objects ωp, ωqεU are called chain connected (or simply connected)

under F , if
ωp, ωqε n(ωp|F ) ∩ n(ωq|F ). (14)

Definition 5 Chain
A series of objects ωp1, ωp2, ..., ωpm, is called a chain under F if the fol-

lowing conditions are satisfied:

ωpk, ωp(k+1)ε n(ωpk|F ) ∩ n(ωp(k+1)|F ), k = 1, 2, ...,m− 1, (15)

where ωp1 and ωpm are called the terminal points, and m is the length of the
chain.

Definition 6 Chain connected covering (CCC)
A chain ωp1, ωp2, ..., ωpm is called a chain connected covering (CCC) of

U under F if

U ⊆
m⋃

k=1

n(ωpk|F ). (16)

Example 2
In Example 1, the series of 2, 1, 4, 3, 5, 8, 7 becomes a CCC of the set

U of eight objects under feature F3. In fact, from Example 1, we have
2, 1ε n(2|F3)∩n(1|F3) = {1, 2}, 1, 4ε n(1|F3)∩n(4|F3) = {1, 4}, 4, 3ε n(4|F3)∩
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n(3|F3) = {3, 4}, 3, 5ε n(3|F3) ∩ n(5|F3) = {3, 5}, 5, 8ε n(5|F3) ∩ n(8|F3) =
{5, 8}, 8, 7ε n(8|F3)∩n(7|F3) = {7, 8}, and U ⊆ n(2|F3)∪n(1|F3)∪n(4|F3)∪
n(3|F3) ∪ n(5|F3) ∪ n(8|F3) ∪ n(7|F3) = {1, 2, 3, 4, 5, 6, 7, 8}. Therefore, this
chain is a CCC of U .

Example 3
For a nominal feature F , we are able to illustrate a CCC. Suppose

the following five objects composed of nominal values ak, k = 1, 2, ..., 7:
ω1 = {a1, a2, a3}, ω2 = {a2, a3, a4}, ω3 = {a3, a4, a5},ω4 = {a4, a5, a6}, and
ω5 = {a5, a6, a7}. The neighborhood sets become: n(ω1|F ) = {ω1, ω2, ω5},
n(ω2|F ) = {ω1, ω2, ω3}, n(ω3|F ) = {ω2, ω3, ω4}, n(ω4|F ) = {ω3, ω4, ω5},
n(ω5|F ) = {ω1, ω4, ω5}. Then, we see that ωk, ωk+1ε n(ωk|F )∩n(ωk+1|F ), k =
1, 2, ..., 5, and U ⊆ n(ω1|F ) ∪ n(ω2|F ) ∪ · · · ∪ n(ω5|F ) = {ω1, ω2, ω3, ω4, ω5}.
Therefore these five objects yield a CCC under F , where ω1 and ω5 are
terminal points.

Specific Freezing Iodine Saponifica- Major
gravity F1 point F2 value F3 tion F4 acids F5

1.Linseed 0.930 ∼ 0.935 −27 ∼ −18 170 ∼ 204 118 ∼ 196 L,Ln,O,P,M
2.Perilla 0.930 ∼ 0.937 −5 ∼ −4 192 ∼ 208 188 ∼ 197 L,Ln,O,P,S
3.Cotton 0.916 ∼ 0.918 −6 ∼ −1 99 ∼ 113 189 ∼ 198 L,O,P,M,S
4.Sesame 0.920 ∼ 0.926 −6 ∼ −4 104 ∼ 116 187 ∼ 193 L,O,P,S,A
5.Camellia 0.916 ∼ 0.917 −21 ∼ −15 80 ∼ 82 189 ∼ 193 L,O
6.Olive 0.914 ∼ 0.919 0 ∼ 6 79 ∼ 90 187 ∼ 196 L,O,P,S
7.Beef 0.860 ∼ 0.870 30 ∼ 38 40 ∼ 48 190 ∼ 199 O,P,M,S,C
8.Hog 0.858 ∼ 0.864 22 ∼ 32 53 ∼ 77 190 ∼ 202 L,O,P,M,S,Lu

Table 1. Fats and Oils data.

L: Linoleic acid, Ln: Linolenic acid, O: Oleic acid, P: Palmitic acid,
M: Myristic acid, S: Searic acid, A: Arachic acid, C: Capric acid,

Lu: Lauric acid

Definition 7 Monotonic chain
A chain ωp1, ωp2, ..., ωpm is called a monotonic chain under F , if the chain

satisfies the nesting property:

J(ωp1, ωk|F ) ⊆ J(ωp1, ωk+1|F ), k = 1, 2, ...,m− 1. (17)

Example 4
Suppose the following five objects composed of nominal values ak, k =

1, 2, ..., 8: ω1 = {a1, a2, a3, a4}, ω2 = {a2, a3, a4, a5}, ω3 = {a3, a4, a5, a6},
ω4 = {a4, a5, a6, a7}, and ω5 = {a5, a6, a7, a8}. The neighborhood sets be-
come: n(ω1|F ) = {ω1, ω2}, n(ω2|F ) = {ω1, ω2, ω3}, n(ω3|F ) = {ω2, ω3, ω4},
n(ω4|F ) = {ω3, ω4, ω5}, n(ω5|F ) = {ω4, ω5}. Then, we see that ωk, ωk+1

ε n(ωk|F )∩n(ωk+1|F ), k = 1, 2, 3, 4, U ⊆ n(ω1|F ) ∪n(ω|F ) ∪ · · · ∪ n(ω5|F ) =
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{ω1, ω2, ω3, ω4, ω5}, and J(ωp1, ωk|F ) ⊆ J(ωp1, ωk+1|F ), k = 1, 2, 3, 4. There-
fore, these five objects compose a CCC and a monotonic chain under F .

5 Similarity measure and feature clustering

Let U = {ω1, ω2, ..., ωK} be the set of objects described by the feature set
F0. For an object ωkεU , let n(ωk|F1) and n(ωk|F2) be neighborhood sets
for feature subsets F1 ⊆ F0 and F2 ⊆ F0, respectively. Then, the similarity
between F1 and F2 with respect to object ωk is defined by

S(F1, F2|ωk) = |n(ωk|F1) ∩ n(ωk|F2)|/|n(ωk|F1) ∪ n(ωk|F2)|, (18)

where | ∗ | denotes the cardinality of a set ∗, and 1 − S(F1, F2|ωk) is called
the Marczewski-Steinhaus metric between two neighborhood sets [4]. Then,
we define the similarity between two feature subsets F1 and F2 over the set
of objects U as follows.

Definition 8 Similarity measure
The similarity between feature subsets F1 and F2 is defined by

S(F1, F2|U) =
1

K

K∑

k=1

|n(ωk|F1) ∩ n(ωk|F2)|/|n(ωk|F1 ∪ n(ωk|F2)|). (19)

This similarity measure satisfies the inequality:

1/K ≤ S(F1, F2|U) ≤ 1. (20)

Suppose that objects in U compose a monotonic chain ω1, ω2, ω3, ..., ωK

under a feature set F . Then, two terminal points ω1 and ωK have two relative
neighbors, and other objects, ωk, k = 2, 3, ...,K−2, have three relative neigh-
bors, respectively. Therefore, as the total, K objects have 2×2+3×(K−2) =
3K − 2 relative neighbors. Based on this fact, we define a monotonicity mea-
sure for a set of objects U under F as follows.

Definition 9 Monotonicity measure

M(U |F ) =
1

3K − 2

K∑

k=1

|n(ωk|F )|, (21)

where | ∗ | denotes the cardinality of a set ∗. This measure satisfies the in-
equality:

1 ≤ M(U |F ) ≤ K2/(3K − 2). (22)

The minimum value is achieved when all objects in U compose a complete
monotonic chain, while the maximum value is achieved when all objects in
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F1 F2 F3 F4 F5

Specific gravity (F1) 1 0.254 0.696 0.542 0.318
Freezing point (F2) 0.254 1 0.352 0.287 0.343
Iodine value (F3) 0.696 0.352 1 0.419 0.352
Saponification (F4) 0.542 0.287 0.419 1 0.458
Major acids (F5) 0.318 0.343 0.352 0.458 1

Table 2. Similarity matrix.

U have the same K relative neighbors.

Example 5 Feature clustering of the Fats and Oils data

Table 2 shows the similarity matrix based on our similarity measure.

In this table, S(F1, F3|U) = 0.696 is the maximum. We can easily verify
that we have a CCC of U with length 7 under features F1 and F3, and the
monotonicity is M(U |F1, F3) = 1.263.

Then combining features F1 and F3, we have Table 3.

F1, F3 F2 F4 F5

F1, F3 1 0.235 0.409 0.352
F2 0.235 1 0.287 0.343
F4 0.409 0.287 1 0.458
F5 0.352 0.343 0.458 1

Table 3. Reduced similarity matrix.

In this reduced similarity matrix, S(F4, F5|U) = 0.458 is the maximum.
However, eight objects in U are not able to compose a CCC under these
features. We see that features {F1, F3, F4} yield CCC of length 7, and their
monotonicity is M(U |F1, F3, F4) = 1.684. Similarly, features {F1, F3, F4, F5}
yield again CCC of length 7, and their monotonicity is M(U |F1, F3, F4, F5) =
1.894. Finally, the overall feature set {F1, F2, F3, F4, F5} yields CCC of length
8, and the monotonicity becomes M(U |F1, F3, F4, F5) = 2.455.

In the above example, we should point out the following facts:
1) Our measures of similarity and monotonicity work well for different feature
types.
2) Monotonic chain structures are detectable by using our simple feature
clustering method.
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6 Concluding remarks

We presented notions of the chain connected covering and the monotonic
chain structures. Then, we defined a similarity measure between feature sets,
and a simple monotonicity measure. In order to show the effectiveness of
these measures, we presented a feature clustering method based on the fats
and oils data. These measures may be useful tools in the generalization of
the classical PCA.
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Abstract. Stochastic processes have, since a long time, large applications in quite
different domains. The standard theory considers discrete or continuous state space.
We consider here the concept of Stochastic Process associated to all the cases of
symbolic variables: quantitative, categorical single and multiple, interval, modal.
More particularly, we adapt the definition of Markov Chain and give the equivalent
of the Chapman-Kolmogorov theorem in all cases.

1 Introduction

Frequently, we have to consider systems which develop in time or space in
accordance with probabilistic laws. The study of such systems is called the
theory of Stochastic Processes. More precisely, a Stochastic Process is a ran-
dom variable which depends on time or space.

The aim of this paper is to propose theoretical bases for generalisation of
Stochastic Processes to Symbolic variables.

Indeed, Stochastic Processes are defined for variables for which the state
space (or values) is a countable or finite set or the real line (−∞,∞). In the
first case, the process is called a Chain. Here, we want to extend this concept
to variables which can be multivalued, interval or even modal.

This problem is practically meaningful. For example, let us consider the
evolution of the value of stock. Usually, each day, the stock has several val-
ues: open, close, mean, maximum, minimum. The stock value can thus be
characterised by an interval of values and not by a unique number.

If we consider daily audience of a TV channel, the audience for a family
is given by the percentage of time spent at watching different broadcasts and
not by a single category. In this case, the variable is modal.

This paper does not deal with the statistical analysis of symbolic data
from Stochastic Processes. We try only to modelise the problem from a prob-
abilistic point of view.

We will concentrate our study to a special case of Stochastic Process which
is Markov Chains. We will first recall the definition and principal character-
istics of Markov Chain in the case of categorical and continuous variables
and we will extend them to the case of multivalued categorical, interval and
modal variables.
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To simplify the presentation, we will speak only about time and not space.
This choice is motivated by the fact that it concerns the more frequent ap-
plications.

We have also chosen to present here only the case of discrete time. But
continuous time could also be considered, in an extended paper.

Numerous books have been written about Stochastic Processes. From
others, let us quote Cox and Miller (1965), Bartlett (1978), Prabhu (1965),
Karlin (1966), Neveu (1964), Feller (1968), Bailey (1964) and more recently,
Stierzaker (2005), Lawler (2006), Beichelt (2006), Meyn & Tweedie (1993),
Girkhman and Skorokhod (2004). On the other hand, in Symbolic Data Anal-
ysis, very few has been done in Stochastic Processes. Diday et al. (2004) and
De Carvalho et al. (2004) have studied linear symbolic regression. Prudencio
et al. (2004) have considered time series. We can also mention the work of
Soule et al. (2004) in flow classification.

2 Definitions

Let us consider (Ω,A, P r) a probability space and {Xt, t ∈ T } a Stochastic
Process defined on this space, i.e. a random variable depending upon the
parameter t, considered as the time.

We will consider the particular case where the time is discrete, with values
represented by the positive integers. In this case, the Stochastic Process is
often written {Xn, n ∈ N }.

The set of values of Xt is the state space. In the standard theory, it can
be continuous or discrete. The study of a Stochastic Process is very complex
except if we make hypothesis on the behavior of the process.

One common hypothesis is the Markovian one. A Markov process is a
process with the property that, given the value Xt, the values of Xs, s > t,
do not depend on the values of Xu, u < t.

In formal terms, a process is said to be Markovian if

Pr[a < Xt ≤ b | Xt1 = x1, Xt2 = x2, . . . , Xtn
= xn]

= Pr[a < Xt ≤ b | Xtn
= xn]

whenever t1 < t2 < · · · < tn < t.
The function

Pr[Xt ∈ A | Xs = x] , t > s

is called the transition probability function and is basic to the study of the
structure of Markov processes.

A Markov process is said to have stationary transition probabilities
if the transition probabilities are function only of t − s and not s. We say
also “homogeneous in time”. A Stochastic Process Xt for t in T is said to
be stationary if the joint distribution function of the families of random
variables (Xt1+h, Xt2+h, . . . , Xtn+h) and (Xt1 , Xt2 , . . . , Xtn) are the same for
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all h > 0 and arbitrary selections t1, t2, . . . , tn of T . This property means that
the particular times at which we examine the process are of no relevance. In
particular, the distribution of Xt is the same for each t. Let us note that there
is no reason to expect that a Markov process with stationary probabilities is
a stationary process (Karlin (1966), p 204).

3 Single valued categorical variables

Let us consider the case where Xn means belonging to one category among
s at time n.

We can modelise this case in writing Xn = k, 1 ≤ k ≤ s. The process
{Xn, n ∈ T } is thus a classical Stochastic Process whose state space is the
finite set (1, 2, . . . , s). We will suppose that the process is Markovian, with
stationary transition probabilities.

The stationary transition probabilities are defined by:

Pij(n) = Pr[Xm+n = j | Xm = i] .

For such probabilities, it can be shown easily the Chapman-Kolmogorov prop-
erty:

Pij(m + n) =
∑

k

Pik(n) Pkj(m) , ∀ i, j

or
P (m + n) = P (m) P (n)

with P (n) the matrix with element Pij(n) and

P ≡ P (1) .

¿From this, we have
P (n) = Pn

which allows the computation of the matrix P (n) when n is small.
With some properties on transition probabilities, it is possible to show

that the Markov Chain is stationary and to compute easily lim
n→∞

P (n) (Cox

and Miller (1965)), (Prabhu (1965)).

4 Multivalued categorical variables

In this case, the variable
−→
Xt indicates belonging to several categories, among

s (C1, . . . , Cs).
We can modelise this case in considering the multidimensional variable−→

Xt with state −→ = (j1, . . . , js) where

jk =

{
1 if the category Ck is present,

0 elsewhere.
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−→
Xt is here a s-vector process.

Such a process is a Markov process if

Pr[
−−−→
Xtn+1

= −−→an+1 | −−→Xt1 = −→a1, . . . ,
−−→
Xtn

= −→an] = Pr[
−→
X tn+1 = −−→an+1 | −−→Xtn

= −→an]

for all t1 < t2 < · · · < tn < tn+1 .

If we suppose that the transition probabilities are stationary, let us define:

P−→ı −→ (n) = Pr[
−−−→
Xt+n = −→ | Xt = −→ı ] .

The Chapman-Kolmogorov property is still valid :

P−→ı −→ (n + m) =
∑

−→
k

P−→ı
−→
k
(n) P−→

k −→
(m)

which allows to compute P−→ı −→ (n) from P−→ı −→ (1).

5 Single quantitative variable

In this case, the state space of the Markov Chain Xn is (−∞,+∞). As
previously, we restrict to chains with stationary transition probabilities.

Pn(x; y) = Pr[Xm+n ≤ y | Xm = x] (1)

defines the n-th order transition distribution function.
In particular, let

P1(x; y) ≡ P (x; y) = Pr[Xm+1 ≤ y | Xm = x] .

The Chapman-Kolmogorov equation can be written:

Pm+n(x; y) =

∫ +∞

−∞

dz P [Xm ≤ z | X0 = x] Pr[Xm+n ≤ y | Xm = z] (2)

or

Pm+n(x; y) =

∫ +∞

−∞

dz Pm(x; z) Pn(z; y) . (3)

If pm(x; y) denotes the probability densities, if they exist, this relation can
be written

Pm+n(x; y) =

∫ y

−∞

pm+n(x;u) du =

∫ +∞

−∞

pm(x; z)

∫ y

−∞

pn(z;u) du dz

and thus, it can be proven that (Cox and Miller (1965), p 134) :

pm+n(x;u) =

∫ +∞

−∞

pm(x; z) pn(z;u) dz . (4)
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A Markov process is specified by giving the initial distribution and transition
probabilities P (x; y).

The use of Kolmogorov equation gives all the other transition probabilities
Pn(x; y) and the state distributions.

An alternative approach is given by the use of Copulas (Nelsen (1999)).
A Copula function C is a multivariate uniform distribution (a multivariate
distribution with uniform margins).

It can be shown, from Sklar’s theorem, that if F is a N -dimensional dis-
tribution function with continuous margins F1, . . . , FN , then F has a unique
Copula representation

F (x1, . . . , xN ) = C(F1(x1), . . . , FN (xN )) .

The product of Copulas is defined by

C1 � C2(u, v) =

∫ 1

0

∂
∂v C1(u, z)

∂
∂u C2(z, v) dz .

Darsow et al. (1992) prove that if Xt is a Markov process and let Cm,n

denote the Copula of the random variables Xm and Xn, then the Chapman-
Kolmogorov equation is equivalent to

Ct,t+m+n = Ct,t+m � Ct+m,t+m+n (5)

where � denotes the product of Copulas.
With this approach, a Markov process is specified by giving all the marginal

distributions and a family of 2-Copulas satisfying (5) (Joe (1997)).

6 Interval symbolic variable

Let us suppose that, at each time, the variable is known only by its belonging
to an interval of the real line.

It means that we are here interested by the transition probabilities

Pr[a2 ≤ Xm+n ≤ b2 | a1 ≤ Xm ≤ b1]

which we will write

Pr[Xm+n ∈ A2 | Xm ∈ A1] = Pn(A1;A2) (6)

if A1 and A2 are intervals of ] − ∞,+∞[ and if this probability does not
depend on m.

We will define an Interval Markov Chain, a chain such that

Pr[Xtn+1
∈ An+1 | Xt1 ∈ A1, . . . , Xtn

∈ An]

= Pr[Xtn+1
∈ An+1 | Xtn

∈ An] (7)
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where Aj = [aj , bj].
Let us note that we have a particular case

Pr[Xtn+1
∈ An+1 | Xt1 = a1, . . . , Xtn

= an] = Pr[Xtn+1
∈ An+1 | Xtn

= an]

when aj = bj .
Let A1 = [a1, b1] and

Pm(A1; z) = Pr[Xt+m ≤ z | Xt ∈ A1]

which is supposed not depending on t.
Then,

Pm(A1;A2) = Pm(A1; b2) − Pm(A1; a2)

for an interval A2 = [a2, b2] and continuous Pm function.
If the derivative of Pm(A1; z) exists, we will note

pm(A1;u) = ∂
∂u Pm(A1;u) .

Theorem: For an Interval Markov Chain with stationary transition proba-
bilities, we have the relation

Pm+n(A1;A2) =

∫ ∞

−∞

dz Pm(A1; z) Pn(z;A2) (8)

and, if the probability density exists,

pm+n(A1;u) =

∫ +∞

−∞

pm(A1; z) pn(z;u) dz . (9)

Proof. From conditional probability property, we know that

Pr[Xt+m+n ∈ A2 | Xt ∈ A1]

=

∫ ∞

−∞

dz Pr[Xt+m ≤ z | Xt ∈ A1] Pr[Xt+m+n ∈ A2 | Xt ∈ A1, Xt+m = z] .

Using the Markovian property (7) we have

Pr[Xt+m+n ∈ A2 | Xt ∈ A1]

=

∫ ∞

−∞

dz Pr[Xt+m ≤ z | Xt ∈ A1] Pr[Xt+m+n ∈ A2 | Xt+m = z]

and using the fact that the transition probabilities do not depend on time
and notations (6)

Pm+n(A1;A2) =

∫ +∞

−∞

dz Pm(A1; z) Pn(z;A2) .
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If the densities pm(A1;u) and pn(z;u) exist, then

Pm+n(A1;A2) =

∫ b2

a2

pm+n(A1;u) du =

∫ +∞

−∞

pm(A1; z)

∫ b2

a2

pn(z;u) du dz .

Thus

pm+n(A1;u) =

∫ +∞

−∞

pm(A1; z) pn(z;u) dz .

Remark: It is possible to modelise an interval by two values : its center
and its half-length. In this case, Xt is in fact a two dimensions continuous
variable.

7 Modal variable

A Modal variable is known by the belonging probability to classes C1, . . . , Cs

(Bock and Diday (2000)).

For a Modal Stochastic Process, it means that the variable
−→
Xt is defined

by Π1(t), . . . , Πs(t) with

Π1(t) + · · · + Πs(t) = 1 , 0 ≤ Πj(t) ≤ 1 , ∀ j .

−→
Xt is thus in fact a multidimensional continuous process whose value will be

written
−→
Π t and whose state space is the hypercube [0, 1] × · · · × [0, 1] with

constraint
s−1∑
j=1

Πj ≤ 1.

The Markov hypothesis is still

Pr[{−−−→Xtn+1
≤ −→

Π (n + 1) | −−→Xt1 =
−→
Π (1),

−−→
Xt2 =

−→
Π (2), . . .

−−→
Xtn

=
−→
Π (n)]

= Pr[
−−−→
Xtn+1

≤ −→
Π (n + 1) | −−→Xtn

=
−→
Π (n)] .

If the process is homogeneous in time (has stationary transition probabilities),
using a multidimensional analog of (1) and (2), we have

Pn(
−→
Π ;−→y ) = Pr[

−−−−→
Xm+n ≤ −→y | −−→Xm =

−→
Π ] with yj ≤ 1

Pn(
−→
Π ;−→y ) = 0 if

s−1∑

j=1

Πj > 1

Let

pn(
−→
Π ;−→y ) =

d

d−→y Pn(
−→
Π ;−→y ) .

It can be proved that

pm+n(
−→
Π ;−→y ) =

∫
pm(

−→
Π ;−→z ) pn(−→z ;−→y ) d−→z



110 M. Noirhomme-Fraiture and E. Cuvelier

where the integral is an s − 1 multiple integral on the space [0, 1] × [0, 1] ×
· · · × [0, 1].

Let us notice that for two categories, as Π1(t) + Π2(t) = 1, X(t) is a
one-dimensional process, so that the problem is a particular case of §5 where
the state space is [0, 1] and not ] −∞,+∞[.

Conclusion

In this paper, we have defined Symbolic Markov Chain for all the cases of
Symbolic variables: quantitative, categorical single and multiple, interval,
modal. We have also given the equivalent of Chapman-Kolmogorov equa-
tions in all cases. This property is the bases of the theoretical study of Markov
Chains. We intend to continue this work in giving the more interesting re-
sults which give the knowledge of the state probabilities in interval and modal
cases.

Let us note that in the case of continuous state space, we get interesting
results with continuous time. In particular, the Kolmogorov equations are
then known as the Fokker-Planck diffusion equations.
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Abstract. Symbolic Data Analysis is an extension of Classical Data Analysis to
more complex data types and tables through the application of certain conditions,
where underlying concepts are vital for their further processing. Therefore, the
assessment of the quality of Symbolic Data depends extensively on the quality of
the collected classical data. However, even though various criteria and indicators
have been established to assess quality in classsical statistics, the specificities of
Symbolic Data construction challenge the efficacy of the classical quality assessment
components. In this paper we initially refer to the quality dimensions that can be
considered for the classical data and then emphasize on the extent that these can be
applied to symbolic data, taking into account the peculiarities of symbolic approach.

1 Introduction

Quality was defined in the ISO 8402 - 1986 as: “the totality of features and
characteristics of a product or service that bear on its ability to satisfy stated
or implied needs” and slightly changed in ISO updates. However, regard-
ing quality in statistics, “stated or implied needs” are mainly identified by
considering several quality dimensions, criteria or components for the col-
lection, processing and dissemination of statistical information to the public
(see for example OMB (2002), Eurostat (2002a) and (2002b), OECD (2003),
IMF (2002), Statistics Canada (2003), Statistics Finland (2002), Viggo et al.
(2003)).

The amount of information collected and processed by National and Inter-
national Statistical Organisations is constantly growing, as demands of high
quality statistics are steadily increasing. The quality of statistics is commonly
assessed by Statistical Institutes with the use of quality dimensions/criteria,
like for example, relevance (the degree to which statistics meet current and
potential users’ needs), accuracy (refers to the closeness between the values
provided and the (unknown) true values), timeliness, accessibility of informa-
tion, comparability of the statistics (over time, across domains and between
countries), etc. However Institutes, operating under strict budgets, try to
manage the huge sets of collected data together with their underlying con-
cepts keeping at the same time a satisfactory quality level.

An attempt to tackle the problem of huge datasets control has been made
by Symbolic Data Analysis (SDA), thus extending the Classical Data Anal-
ysis into SDA through the mathematical design of concepts. Symbolic Data
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serve not only to summarize large sets of information (Billard and Diday
(2003)), but they also lead to more complex data tables, thus enabling the
manipulation of huge datasets (Bock and Diday (2000)). Using the Sym-
bolic Data technique, data are aggregated into macrodata, forming Symbolic
Objects (SO) and Symbolic Data Tables (SDT) (Bock and Diday (2000),
Noirhomme (1997)).

In order to assess the quality of these complex data files, a number of
quality criteria should be satisfied. Since, as mentioned, symbolic data depend
on the classical/original data, their quality assessment is associated with the
quality of the original data collected and mainly on their underlying concepts
and procedures required for their extension into Symbolic data.

In this paper we refer to the quality criteria/dimensions used to assess
classical statistics, mentioning some of the quality indicators frequently used
for this purpose. Then, we examine which of these criteria can be applied to
Symbolic Data emphasizing on the prerequisites of their eligibility. The main
part of the paper stress on preservation of quality in two stages of symbolic
data items creation, i) during the construction of a SO and a SDT and ii)
during transformations of the already constructed SOs.

2 Classical and Symbolic Data Analysis

In classical data analysis, the statistical population, the sample derived
through a sampling method, as well as the individual sampling units ex-
amined (called individuals thereafter) and the related (classical) variables,
are the key issues to be evaluated when conducting a survey. In SDA, Sym-
bolic Objects are the central items. SOs are triplets (α, R, d), where d is
the descriptions of individuals (from a set of descriptions D), R the relation
between the descriptions and α is a mapping from the set of individuals Ω
in L. For further details see Bock and Diday (2000).

In addition, a classical (micro)data table refers to individuals and to clas-
sical variables. A Symbolic Data Table looks like a (micro)data table in the
sense that it contains rows that correspond to (groups of) individuals and
columns that correspond to (symbolic) variables.

3 The classical quality assessment framework

When carrying out a classical survey, the quality of statistics produced can be
evaluated with the use of certain quality dimensions/criteria, like for example
in Eurostat (2002a, 2002b):

- Relevance - the degree to which statistics meet current and potential
users’ needs,

- Accuracy - refers to the closeness between the values provided and the
(unknown) true values,
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- Timeliness - reflects the length of time between its availability and the
event or phenomenon it describes,

- Punctuality - refers to the possible time lag existing between the actual
delivery date of data and the target date when it should have been de-
livered,

- Accessibility of information - refers to the physical conditions in which
users can obtain data: where to go, how to order, delivery time, clear
pricing policy, convenient marketing conditions (copyright, etc.),

- Clarity - mainly refers to additional information provided together with
the statistics (graphs, maps, etc) for their better understanding,

- Coherence of statistics - their adequacy to be reliably combined in differ-
ent ways and for various uses,

- Comparability of the statistics (over time, across domains and between
countries) - aims at measuring the impact of differences in applied sta-
tistical concepts and measurement tools/procedures when statistics are
compared between geographical areas, non-geographical domains, or over
time. We can say it is the extent to which differences between statistics
are attributed to differences between the true values of the statistical
characteristic.

The breakdown of quality into components is not unique neither invari-
ant over time. Organizations use slightly different sets of quality dimensions.
Some examples can be the following (see also Vardaki and Papageorgiou
(2006)): the European Statistical Service, (Eurostat), follows six components
to assess quality in statistics namely: Relevance, Accuracy, Timeliness and
punctuality, Accessibility and clarity, Coherence and finally Comparability
(Eurostat (2000b)). The Organization of Economic Cooperation and De-
velopment (OECD) proposes eight quality criteria (OECD (2003)) namely:
Relevance, Accuracy, Credibility, Timeliness, Punctuality, Assessibility, In-
terpretability and Coherence; the International Monetary Fund (IMF) has
developed its own Data Quality Assessment Framework (IMF (2002)). In
addition, National Statistical Institutes (NSIs) and other organizations have
also developed their own quality framework mainly taking into account the
criteria proposed by the International Organization they are obliged or willing
to report their results (see for example, Statistics Finland (2002), Statistics
Canada (2003), Viggo et al (2003)).

In order to proceed towards a unified approach, at least among European
Union and candidate countries, a list of “Standard Quality Indicators” (Lin-
den and Papageorgiou (2004)) has been proposed. These producer-oriented
indicators intend to measure the quality of classical statistics in relation to
one or more of the above-mentioned quality criteria. Examples of such indica-
tors can be the following: “Coefficient of Variation”, “The unit non-response
rate”, “Average size of revisions”, etc, measuring accuracy, “Length of compa-
rable time-series”, “Punctuality of time schedule of effective publication”, etc,
measuring timeliness, “Rate of available statistics” and ”User satisfaction in-
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dex” for relevance, “Length of comparable time series” for comparability, etc.

Except from these indicators a number of others can be considered when
specific requirements should be met. The best way for these indicators to be
applied on a dataset, is to incorporate them automatically in the workflow
process of the production of classical statistics with the use of a metadata
model (Vardaki and Papageorgiou (2004)). For example, in Figure 1 we il-
lustrate part of a metadata model resembling the one in (Papageorgiou and
Vardaki (2006)) where a number of indicators have been modeled. Examples
include indicators measuring the following:

i) Accuracy - Non-response rate, Missing Values, Seasonal Adjustments,
Sampling errors and corrections, Reporting method.

ii) Timeliness - Time elapses between event and processing, Date of avail-
ability of publication, Punctuality of time schedule.

iii) Accessibility and Clarity - Clarity of contents.
iv) Completeness - Rate of completeness.

PUBLICATION
isbn
number
punctuality of time schedule
title
result's format
brekdown available
rate of completeness
data of availabili ty
clari ty of contents

SOURCE AGENCY
id
name
legal basis
contact persons
statistical domain
kind

0..*

1..*

0..*

1..*

produces

SURVEY
id
ti tle
description
reference period
legislative framework
type
frequencey
geographical coverage

1..*1..* 1..*1..*

is responsible for

DATACOLLECTION
collection method
non-response rate
missing values
data validation procedure
imputation method
seasonal adjustments
other manipulations
sampling errors and correction
reporting date
timeLapseEvent&Process
reporting method

1..*

1..*
is performed by

1..*

1..*

Fig. 1. Modeling quality issues for classical data.
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4 Defining the symbolic data analysis quality
framework

Since Symbolic Data are created from Classical Data satisfying specific condi-
tions, the quality issues examined in the previous sections are a pre-requisite
for any further quality assessment. In order to examine the role of quality in
Symbolic Data Analysis we should consider it regarding two dimensions:

a) Quality assessment of the construction of a SO and a SDT.
b) Quality preservation during transformations of the already constructed

SOs.

We elected to examine each of the two above cases according to the qual-
ity criteria used from Eurostat for the classical data (Eurostat (2002b)):
Relevance, Accuracy, Timeliness and punctuality, Accessibility and clarity,
Comparability and finally, Coherence.

4.1 Quality issues when modeling the construction of SO and
SDT

Figure 2 illustrates the construction of SOs and SDTs after the creation of
Symbolic Variables (SVars). It also depicts how Symbolic Data depend on
the Individuals, the Statistical Population and other elements of the Orig-
inal/Classical Data (Papageorgiou and Vardaki (2006)). In this part of the
model it is presented that a group of individuals satisfying a set of conditions
on the original/classical variables describes a symbolic object.

It is also important to consider that Symbolic data are constructed and/or
managed by various sources (indicated by ‘Multiple sources’ class in the
model). That enables the model to keep information about each person or
institute attempting to use the already stored data and create new sym-
bolic objects. In such cases, quality standards followed by this source (quality
framework integrated in the processes, quality criteria, etc) play a crucial role
in SOs’ quality assessment. In order to proceed with implementation of the
quality criteria on Symbolic Data, we need to examine the specific require-
ments for the creation of SVars, SOs and SDTs.

Groups of Individuals

In composing groups of individuals the need to describe them and their pro-
cess of synthesis, provides useful information both for the interpretation of
the results and for the handling of the output for further processing. Essen-
tial knowledge on the SOs is the number of individuals from the sample that
compound the SO, as well as the related number of individuals that corre-
spond to the whole population using the sampling weights.

Symbolic Variables (SVars)

The SVars are produced from the operation of creation of groups of individ-
uals. Each group is associated with a set of values, rather than a single one,
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STATISTICAL POPULATION
definition
population size

CONDITION
id
type : {classical, groupby}
description
relation (R)
threshold (or description d)
threshold áo (min percentage recognised by property_description)
reduction algorithm

apply_condition()

MULTIPLE SOURCES
Id
name
location
status

execute SOs()

INDIVIDUAL
id
name
description

SAMPLE
sampling fraction
sampling method
sample size

ORIGINAL VARIABLE
id
name
definition
kind : {quantitative, qualitative}
domain

GROUP
id
name
number of members
property_description
generalisation operators (gi)

apply_operators()
SYMBOLIC VARIABLE

id
name
description
domain
kind : {interval, multi-valued, modal}
number of components
SDT column number

change_name()

TRANSFORMATION FOR SO

execute_transformation()

SYMBOLIC OBJECT
id
number of individuals
id_group (of individuals)
type : {boolean, modal}
mapping association (a)
SDT row number
s ize
label
name
number of generalisations performed

apply_mapping()
change_label()

TRANSFORMATIONS FOR SDT

execute_operation()

SYMBOLIC DATA TABLE
number of symbolic objects

+satisfies

1..*0..*

+consists of
0..*

+consists of
*

+derives of

1..*

1..*

*

1..*

1..*

1..*

1..*

+through

1..*

0..*

1..*

1..*

0..*

1..*

1..*

1..*

1..*

+is described by

1

1..*

1

1

1

produces as output

+has

1..*

1..*

1..*

+input+output

+compose
1..*

+input

1..*1..*

1..*

+output

Fig. 2. Modeling SO and SDT construction.

as in classical data. An operation on this set forms the symbolic variable.
The underlying concepts which should be evaluated include information on
how these variables were created from the original variables, their nature,
components and domain (see also Vardaki (2005a)).

Symbolic Objects (SOs)

The quality of the process of the symbolic object creation should be assessed
by denoting the class membership variables, the operator applied to those
variables (Average, sum etc.), the type of condition, the concept to which
the SO is associated and the corresponding values (upper and lower limits,
thresholds etc.). One notable difference with the classical setting is that in-
formation about individuals (now groups of individuals) is very important in
symbolic analysis while in the classical setting information about the indi-
viduals themselves is not of primary interest. By composing sets (groups) of
individuals the need to describe them and the process of synthesis, provides
useful details both for the interpretation of the results and for the handling
of the output for further processing.

Symbolic Data Tables (SDT)

A SDT looks like a (micro)data table in the sense that it contains rows that
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correspond to (groups of) individuals and columns that correspond to (sym-
bolic) variables.

The quality assessment of the constructed SOs and SDTs pre-supposes
the assessment of SOs and SVars quality. Regarding the quality components
mentioned in classical setting, we can observe the following similarities and
differences:

- Since relevance is associated with user needs the “Rate of Available SDT
and SOs” will always be of interest, as well as the “User Satisfaction
Index”. However, these indicators should be mainly considered on the
produced SDTs and SOs and not too much on SVars and groups of indi-
viduals themselves.

- Accuracy plays a more important role on the collection of original statis-
tics and in symbolic analysis it mainly concerns the methods of SO and
SDT creation. Therefore, since the SO is described by the ‘Groups of
individuals’, then the ‘Condition’ that should be satisfied for their con-
struction should be evaluated (threshold, reduction algorithm, etc) as
well as the method for the generalization of operators of each Group. In
addition, a number of accuracy indicators of classical data can be applied.
The “Over coverage and misclassification rates” may be applied to eval-
uate if the Group of individuals was formed properly. Also the “Average
size of revisions” is always applicable in all kinds of data.

- Timeliness and Punctuality mainly affects classical data and seems that
there is no need to examine them in symbolic analysis. However, the only
possible effect on timeliness is when symbolic statistics are expected from
multiple sources and should be delivered on time in order to contribute
to a publication.

- Comparability can be considered from two perspectives: i) symbolic data
constructed by different sources and ii) when a SDT is constructed by
time series of SOs. In both cases, a high accuracy level of the constructed
SOs is a precondition in order to further examine comparability. In addi-
tion, differences in the underlying concepts of individuals will be directly
related to lack of comparability. Therefore, the ‘property description’ at-
tribute of the class ‘individual’ of the model (see Figure 2) as well as the
‘description’ of the ‘condition’ should be equivalent to ensure comparabil-
ity when SOs are created by different sources. In the second case, for SOs
constructed by time series, although comparability is influenced mainly
by changes in the original surveys, comparability over time may be also
endangered by the underlying concepts of symbolic variables, as well as
by any structure effects or administrative rules. Indicators like “Length
of comparable time-series”, “Number of comparable time series” etc, may
also be used for quality assessment of Symbolic Data.

- Coherence can be mainly influenced by the various compilation data
sources (‘Multiple sources’ in the model) which may apply different stan-
dards when they construct a SO and a SDT.
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- Assessibility and Clarity are critical for symbolic data mainly since users
are not yet very familiar with the concept of SDA and the notion of SO
and SDT.

- Regarding completeness, the indicator “Rate of completeness” refers to
available information regarding the specific symbolic statistics includ-
ing mainly information on related metadata accompanying the symbolic
datasets. It is worth noticing to refer to the latest version of the SODAS
software developed in the framework of the ASSO Eurostat project (Anal-
ysis System of Symbolic Official data, IST-2000-25161) where metadata
both for original and symbolic data have been incorporated in its Library
and can accompany SDTs and SOs creation.

Finally, it should be also noted that, although not usually identified as a
measure of quality, the cost involved in the production and dissemination of
statistics as well as the burden of respondents - both of which in the case of
Symbolic Setting may be critical to a non-trained analyst - act as a constraint
of quality.

4.2 Quality preservation in transformations of SOs and SDTs

Except from the above considerations, quality assessment should be consid-
ered also in the case of possible operations (called transformations in the
model of Figure 2 and thereafter) that a user can apply on a symbolic ob-
ject and corresponsing tables. There are transformations for SOs, such as
the selection, the addition or deletion of a symbolic variable, etc and for the
SDT, such as the addition or deletion of a symbolic object, the selection or
projection of symbolic objects, or the sorting of symbolic objects contained
in a specific SDT. All these operations maintain the property of closure (Pa-
pageorgiou et.al. (2000)), that is, when applied on symbolic data tables, the
result is a new SDT.

Considering these transformations, we deduce that mainly relevance, co-
herence, comparability and clarity may be affected. Relevance can be in-
creased when more symbolic data will be available and thus users can retrieve
more information to satisfy their requirements; however, this may have severe
implications to clarity if the new SDTs created are not propertly accompa-
nied by explanations and definitions of any new concept that may emerge.
Furthermore, in the case of any “deletion transformation” either of of a SVar
from a SO or a SO from a SDT (for more information on such transforma-
tions see Papageorgiou and Vardaki (2006)), this omission may limit useful
information for the understanding of the particular symbolic setting and thus
lower the clarity levels. Regarding comparability and coherence, mainly the
“addition” transformations in the previously mentioned cases may severely
affect these two quality dimensions if the underlying concepts of the new
SVar or SO are not fully compatible with the ones of the already existing SO
and SDT respectively.
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5 Conclusions and suggestions for a standard
framework of Symbolic Data

In this paper we discussed that a number of quality criteria evaluating the
quality of classical statistics can be implemented also in symbolic data and
it appears that quality assessment for SDA has been considered for the first
time.

On this basis, we can lead towards a standard quality framework for
symbolic statistics defining a set of quality indicators and guidelines for their
quality assurance. Some of the indicators, initially proposed and given below,
are also part of the Standard Quality Indicators examined in Linden and
Papageorgiou (2004):

- User satisfaction index (assessing Relevance)
- Rate of available statistics (assessing Relevance)

- Over-coverage and misclassification rates (assessing Accuracy) - Average
size of revisions (assessing Accuracy)

- Length of comparable time-series (assessing Comparability)
- Number of comparable time series (assessing Comparability)

Further steps should include the definition of an entire quality framework,
extending any guidelines used for classical statistics. Then the basic quality
issues should be included, in the form of metadata, in the model described in
previous section to ensure automatic quality assessment in all stages of SDA
processes.
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Abstract. In this paper we present a review of some metrics to be proposed as
allocation functions in the Dynamic Clustering Algorithm (DCA) when data are
distribution or histograms of values. The choice of the most suitable distance plays
a central role in the DCA because it is related to the criterion function that is
optimized. Moreover, it has to be consistent with the prototype which represents
the cluster. In such a way, for each proposed metric, we identify the corresponding
prototype according to the minimization of the criterion function and then to the
best fitting between the partition and the best representation of the clusters. Finally,
we focus our attention on a Wassertein based distance showing its optimality in
partitioning a set of histogram data with respect to a representation of the clusters
by means of their barycenter expressed in terms of distributions.

1 Introduction

In many real experiences, data are collected and/or represented by frequency
distributions. If Y is a numerical and continuous variable, many distinct
values yi can be observed. In these cases, the values are usually grouped
in a smaller number H of consecutive and disjoint bins Ih (groups, classes,
intervals, etc.). The frequency distribution of the variable Y is obtained con-
sidering the number of data values nh falling in each Ih. The histogram is
then the typical graphical representation for the variable Y.

The interest in analyzing data expressed by frequency distributions, as
well as by histograms, is evident in many fields of research. In particular, we
may refer to the treatment of experimental data that are collected in a range
of values, whereas the measurement instrument gives only approximated (or
rounded) values. An example can be given by sensors for air pollution control
located in different zones of an urban area. The different distributions of
measured data about the different levels of air pollutants across a day, allow
us to compare, and then to group into homogeneous clusters, the different
controlled zones.

In a different context of analysis, histograms are the key to understanding
digital images. A digital image is basically a mosaic of square tiles or ”pixels”
of uniform color that are so thin that the composite image appears uniform
and smooth. Instead of sorting them by color, they can be sorted into 256
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levels of brightness from black (value 0) to white (value 255) with 254 gray
levels in between. The height of each vertical ”bar” tells you how many pixels
there are for that particular brightness level.

In the present paper, we aim to analyze data expressed by distributions
represented in form of “histograms”. The clustering of this kind of data can
be useful to discover typologies of phenomena on the basis of the similarity
of the frequency distributions.

Dynamic Clustering (DC) (Diday (1971), Diday and Simon (1976)) is here
proposed as a suitable method to partition a set of frequency distributions
data. We recall that DC is based on the definition of a criterion of the best
fitting between the partition of a set of elements and the representation of
the clusters of such partition. The algorithm simultaneously searches for the
best partition into k clusters and their best representation. Thus, the DC
needs to define a proximity function, to assign the individuals to the clusters,
and a way to represent the clusters that is consistent with the optimized
criterion. In the context of Symbolic Data Analysis (SDA), the clustering is-
sued from a DCA on symbolic data (i.e., data characterized by multi-valued
attributes) have to be represented by the so-called prototypes (Irpino et al.
(2006)). The idea was to synthesize in the most suitable way the characteris-
tics of the objects belonging to each cluster. The choice of the prototype was
done according to the dissimilarity function used in the algorithm to allo-
cate the elements to the cluster, in order to minimize a criterion of internal
homogeneity. The consistence between the representation and the allocation
function guarantees the convergence of the algorithm to a stationary value
of the criterion. Moreover, the choice of a proximity (similarity or distance)
function plays a central role in the DC algorithm. Issues that can affect a
good proximity measure include their capability to be interpretable for the
problem at hand, to have important theoretical properties.

In section 2, we outline the general scheme of DC. In section 3 we give the
main definitions for histogram data. In section 4, we present the metrics gen-
erally used to compare histograms, their proprieties, and their usefulness in
the context of DCA. Among the different proposed measures we emphasize
the use of the Wasserstein distance for the DC of histogram data in sec-
tion 4.5. In the case of DC on barycenters (known as Algorithm of “centres
mobiles”, Benzécri (1973)), we prove that it is possible to define an inertia
measure among data that satisfies the Huygens theorem of decomposition
of inertia, considering the prototypes as barycenters. In section 5 we report
some concluding remarks.

2 Dynamic clustering algorithm

The proximity measure assumes a great relevance for the interpretability of
the problem at hand. Let E be a set of n data characterized by p continuous
variables Yj (j = 1, . . . , p). The dynamic clustering algorithm looks for the
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partition P ∈ PK of E in K classes among all the possible partitions PK ,
and the vector L ∈ LK of K prototypes representing the classes in P such
that the ∆ fitting criterion between L and P is minimized:

∆(P ∗, L∗) = Min{∆(P,L) | P ∈ PK , L ∈ LK}. (1)

Such a criterion is defined as the sum of dissimilarity or distance measures
δ(yi, Gk) of fitting between each element yi belonging to a class Ck ∈ P and
the class representation Gk ∈ L:

∆(P,L) =

K∑

k=1

∑

i∈Ck

δ(yi, Gk). (2)

A prototype Gk associated with a class Ck is an element of the space of
description of E, and it can be represented, in this context, as a histogram.

In order to introduce the next sections, we recall the general scheme of
the DCA:

a) Initialization: Start from a random partition P = (C1, . . . , Ck, . . . , CK)
of the set E in K clusters,

b) representation step: for k = 1 to K, look for the prototype Gk which
minimizes the criterion:

fCk
(G) =

∑

i∈Ck

δ(yi, G), G ∈ L (3)

c) allocation step

- test ←− 0

- for i = 1 to n do:

∗ Find the cluster Cm to which i belongs
∗ Find the index k such that: k = argmink=1,...,KD(yi, Gk)
∗ if k 
= m

· test ←− 1
· Ck = Ck ∪ {i} and Cm = Cm − {i}

d) if test = 0 then stop, otherwise go to b)

At each iteration of the algorithm, a new couple (P,L) is found and the
decrease of the ∆ criterion can be proven under the following conditions:

• uniqueness of the cluster allocation for each object i ∈ E

• uniqueness of the prototype Gk which minimizes the criterion fCk
in (3)

for all the clusters Ck of the partition P of E.
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3 Histogram data

Let Y be a continuous variable defined on a finite support S = [y; y], where
y and y are the minimum and maximum values of the domain of Y. The
variable Y is supposed partitioned into a set of contiguous intervals (bins)
{I1, . . . , Ih, . . . , IH}, where Ih = [y

h
; yh). Given N observations on the vari-

able Y, a function Ψ(Ih) =
∑N

u=1 Ψyu(Ih), where Ψyu(Ih) = 1 if yu ∈ Ih and
0 otherwise, is associated with each semi-open interval Ih. Thus, it is possible
to associate to Ih an empirical distribution πh = Ψ(Ih)/N .

A histogram of Y is then the graphical representation where each pair
(Ih, πh) (for h = 1, . . . , H) is represented by a vertical bar, with base the
interval Ih along the horizontal axis and the area proportional to πh. Having
so defined histogram data, we assume E as a set of n empirical distributions
Y(i) (i = 1, . . . , n).

In the case of a histogram description it is possible to assume that S(i) =
[y

i
; yi], where yi ∈ 
. Considering a set of uniformly dense intervals Ihi =[

y
hi
, yhi

)
, such that:

i. Ili ∩ Imi = ∅; l 
= m ;
ii.

⋃
s=1,...,ni

Isi = [y
i
; yi]

the support can also be written as S(i) = {I1i, ..., Iui, ..., Inii}. We denote
with ψi(y) the (empirical) density function associated with the description of i
and with Ψi(y) its distribution function. It is possible to define the description
of Y(i) as:

Y (i) = {(Iui, πui) | ∀Iui ∈ S(i); πui =

∫

Iui

ψi(y)dy ≥ 0} where

∫

S(i)

ψi(y)dy = 1.

Let U (a, b) be a uniform density defined on the interval [a, b], we may also
interpret a histogram description as a particular mixture density distribution,
i.e.:

Y (i) =
∑

h=1,...,H

πhi U(y
hi
, yhi)

4 Metrics for histogram data

Several distances defined between histograms can be proposed as allocation
functions in a classical DCA scheme. According to such proposal, it needs to
associate suitable prototypes to represent the obtained partition such that it is
optimized a best fitting criterion between the partition and the representation
of the clusters. As usually, in DCA the prototype is an element at minimum
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Fig. 1. An example of histogram description: the temperature in Fahrenheit degrees
observed in Alabama in January from 1895 to 2004.

distance from all the elements of the cluster. A set of metrics, defined in
probability measure spaces, seems particularly interesting to measure the
similarity between distributions. So, they can be proposed in the DCA when
data are considered as (empirical) distributions. These metrics were born in
the framework of convergence theory. In particular we focus our attention
on those metrics which respect the usual properties of distance measures. In
the following, we present: the f -divergence based measures, the discrepancy
metric, the Kolmogorov (or Uniform metric), the Prokhorov-Lévy distance
and the Wasserstein-Kantorovich-Monge-Gini distance.
Let Ω be a measurable space with a σ-algebra B, in our case Ω is a convex
subset of R such that S(i) ⊂ Ω and then Isi ⊂ Ω. Let M be the space of all
probability measures on (Ω,B). In the following, we denote with µ and ν two
probability measures (like the πih are) on Ω. Let f and g be the corresponding
density functions with respect to a σ-finite dominant measure λ. If Ω = R,
F and G denote the corresponding distribution functions.

4.1 F-divergence based measures

The f-divergence indexes (Csiszar (1967)) are based on a family of metrics
where for every convex function φ one may define:

dφ (µ, ν) =
∑

ω

ν (ω)φ

(
µ (ω)

ν (ω)

)

• φ(x) = (x − 1)2 yields dχ2 , the Chi-square measure that, unfortunately
is not symmetric and, thus cannot be considered as a dissimilarity,

• φ(x) = x log x yields dI ,the Kullback-Leibler (or Relative entropy) diver-
gence, that is not symmetric and, then, it is not a dissimilarity measure,

• φ(x) = |x− 1|/2 yields dTV , the Total variation distance,
• φ(x) = (

√
x− 1)2 yields d2

H , the Hellinger distance.

Total variation For any measurable space is defined as:

dTV (µ, ν) := sup
A⊂Ω

|µ (A) − ν (A)| =
1

2
max
|h|≤1

∣∣∣∣
∫

h dµ−
∫

h dν

∣∣∣∣
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where h : Ω → R satisfies |h (x)| ≤ 1.
For countable spaces it is:

dTV (µ, ν) :=
1

2

∑

x∈Ω

|µ (x) − ν (x)|

which is the half L1 norm between two measures. It assumes values in [0, 1].
Without loosing in generality, it is possible to define a prototype of a set of
histograms as an histogram having the same support of the union of the sup-
ports of the clustered histogram and weights equal to the median of weights.
Naturally there are not guarantees that the sum of weights of the prototype
is equal to 1. Indeed, being the criterion of DC equal to:

∆(P,L) =

K∑

k=1

∑

i∈Ck

dTV (yi, Gk). (4)

the definition of the distribution of the prototype Gk

Gk ∼
∑

h=1,...,H

πGkhU(y
h
, yh)

where H is the minimum number of the intervals partitioning the support,
is done according to the minimization of the within simple variation of the
cluster k:

min{
∑

i∈Ck

∑

h=1,...,H

|πih − πGkh|}

In this case, it is possible to show that

πGkh = Med {πih|i : yi ∈ Ck} for h = 1, . . . , H

it is not assured that ∑

h

πGkh = 1,

then the prototype distribution of a set of histograms belonging to the clus-
ter k is only a linear combination of their distributions but not a convex
combination (as a mixture) of them.

Hellinger The distance is attributed to Hellinger (1901) that firstly used the
quantity

(
1 − 1

2d
2
H

)
known as Hellinger affinity. For any measurable space,

the distance can be formalized as:

dH (µ, ν) :=

[∫

Ω

(√
f −√

g
)2

dλ

]1/2

=

[
2

(
1 −

∫

Ω

√
fgdλ

)]1/2

.
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For countable space its version is:

dH (µ, ν) :=

[
∑

ω∈Ω

(√
µ (ω) −

√
ν (ω)

)2
]1/2

It assumes values in [0,
√

2]. Without loosing in generality, it is possible to
define the distribution of a prototype of a set of histograms as an histogram
having the same support of the union of the supports of the clustered his-
tograms and the optimal weights are equal to the squares of the square root
averages of the weights. Indeed, the definition of the weights of Gk

Gk ∼
∑

h=1,...,H

πGkhU(y
hi
, yhi)

is done according to the minimization of the within to cluster k sum of
distances:

min{
∑

i∈Ck

∑

h=1,...,H

(√
πih −√

πGkh

)2}

In this case it is possible to show that

πGkh =

[
1

nk

∑

i∈Ck

√
πih

]2

Similarly to dTV it is not assured that
∑

h πGkh = 1. For these kind of
distances that violate the sum to one of weights, it is possible to introduce the
constraint

∑
h πGkh = 1 in the minimization formula and, then, solving, when

possible, the constrained optimization problem. Otherwise, the normalization
of the πGkh to one by the

∑
h πGkh, can arise from the lost of the optimality

of the solution.

4.2 Discrepancy

It is defined on any metric space as:

dD (µ, ν) := sup
all closed balls B

|µ (B) − ν (B)|

It assumes values in [0, 1]. Diaconis (1988, p. 34) showed that it can be used to
study weak convergence on random walks on groups and show some bounds
for particular distributions using Fourier transformations of probability mea-
sures on compact sets. For univariate support the definition of the prototype
is similar to the case of the total variation.
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4.3 Kolmogorov (or Uniform) metric

It is defined on any metric space as:

dK (F,G) := sup
x

|F (x) −G (x)| , x ∈ R

It assumes values in [0, 1]. The definition of the prototype is done accordingly
to the definition of the Gk minimizing the within to cluster k sum of distances:

arg min
Gk(x)

{
∑

i∈Ck

sup
x

|Fi (x) −Gk (x)|
}

. (5)

In this case, the solution is not unique. We can show that with a simple
example. Let us consider two distributions functions with uniform densities:
U(10, 20) and U(30, 40). According to the Kolmogorov distance formulation,
their distance is equal to 1. If we need to find their prototype, we have to
identify a distribution function satisfying the equation (5). If we limit our
search only on the best mixture of the two uniforms it is possible to verify
that the equation (5) has this kind of solution:

Gk ∼ α U(10, 20) + β U(30, 40)

where α ≥ 0, β ≥ 0 and α+β = 1. Then, we have infinite solutions according
to the pairs (α, β) that are linked by the constraint β = 1 − α.

4.4 Prokhorov (or Lévy-Prokhorov) metric

It is defined on any metric space as:

dP (F,G) := inf {ε > 0 : µ (B) ≤ ν (Bε) + ε, for all Borel setsB}

where Bε = {x : infy∈B d(x, y) ≤ ε}. It can be also rewritten as:

dP (µ, ν) = inf {ε > 0; inf P [d(X,Y ) > ε] ≤ ε} .

It generalizes the Lévi distance that is defined on R

dL (F,G) := inf {ε > 0 : G (x− ε) − ε ≤ F (x) ≤ G (x + ε) + ε, ∀x ∈ R}

While not easy to compute, this metric is theoretically important because
it permits to compute rate of convergence between two distributions on any
separable metric space (Huber (1981)). The Prokorov distance between two
random variables can be considered as the minimum distance in probability
between the two random variables generated by µ and ν. In order to find a
prototype between two distributions The definition of the prototype is done
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accordingly to the definition of the Gk that minimizes the within to cluster
k sum of distances:

arg min
Gk(x)

{
∑

i∈Ck

inf {ε > 0; inf P [d(Y (i), Gk) > ε] ≤ ε}
}

. (6)

Until now we have not found a way to represent Gk and assure a single
solution for the minimization of (6).

4.5 Wasserstein metric for histogram data

If F and G are the distribution functions of µ and ν respectively, the
Kantorovich-Wasserstein metric is defined by

dW (µ, ν) :=

+∞∫

−∞

|F (x) −G(x)| dx =

1∫

0

∣∣F−1(t) −G−1(t)
∣∣ dt.

In particular, we focus our attention on the following distance:

dM (Y (i), Y (j)) :=

√√√√√
1∫

0

(
Ψ−1

i (w) − Ψ−1
j (w)

)2
dw (7)

also known as Mallow’s (Mallow (1972)) distance in L2, derived from the
Wasserstein metric. Given a histogram description of Y(i) by means of Hi

weighted intervals:

Y (i) = {(I1i, π1i) , ..., (Iui, πui) , ..., (IHii, πHii)} ,

we define the following quantities wli

wli =

{
0 l = 0∑

h=1,...,l

πhi l = 1, . . . , Hi . (8)

in order to represent the cumulative weights associated with the elementary
intervals of Y (i). Assuming a uniform density for each Ih, we may write the
empirical distribution function as:

Ψi(y) = wi +
(
y − y

li

) wli − wl−1i

y li − y
li

iff y
li
≤ y ≤ yli.

Thus, the quantile function is given by the following piecewise function de-
fined as:

Ψ−1
i (t) = y

li
+

t− wl−1i

wli − wl−1i

(
yli − y

li

)
wl−1i ≤ t < wli.
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To compute the distance between two histogram descriptions Y(i) and Y(j)
we need to identify a set of uniformly dense intervals to be compared on the
basis of the two quantile functions. Let w be the set of the cumulated weights
of the two distributions:

w =
{
w0i, ..., wui, ...., wHii, w0j , ..., wvj , ...., wHjj

}

we extract a vector w of the sorted (without repetition) values of w

w = [w0, ..., wl, ...., wm]

where w0 = 0 , wm = 1 and max(Hi, Hj) ≤ m ≤ (Hi + Hj − 1). Then, the
squared distance between two histogram descriptions is:

d2
M (Y (i), Y (j)) :=

m∑

l=1

wl∫

wl−1

(
Ψ−1

i (t) − Ψ−1
j (t)

)2
dt. (9)

Each couple (wl−1, wl) allows us to identify two uniformly dense intervals,
one for i and one for j, having respectively the following bounds:

Ili = [Ψ−1
i (wl−1);Ψ

−1
i (wl)] and Ilj = [Ψ−1

j (wl−1);Ψ
−1
j (wl)].

For each interval, the centers and the radii are:

cli = (Ψ−1
i (wl) + Ψ−1

i (wl−1))/2 ; rli = (Ψ−1
i (wl) − Ψ−1

i (wl−1))/2.

Because intervals are uniformly distributed, we may express them, using the
function of the center and of the radius as: c + r(2t − 1) for 0 ≤ t ≤ 1. The
equation (9) can be rewritten as:

d2
M (Y (i), Y (j)) :=

m∑

l=1

πl

[
(cli − clj)

2
+

1

3
(rli − rlj)

2

]
. (10)

Given a set of n histogram data, it is possible to define its “barycenter” as a
histogram itself (the so-called prototype). The prototypal histogram Y(b) is
computed minimizing the following (sum of distance) function:

f(Y(b)|Y(1), . . . ,Y(n)) = (11)

=
n∑

i=1

d2(Y (i), Y (b)) =
n∑

i=1

m∑

j=1

πj

[
(cji − cjb)

2 +
1

3
(rji − rjb)

2

]
.

It is easy to prove that the function (11) holds a minimum when:

cjb = n−1
n∑

i=1

cji ; rjb = n−1
n∑

i=1

rji.
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The barycenter (prototype) of the n histogram data is expressed by the cou-
ples: ([cjb − rjb; cjb + rjb], πj) of intervals with associated weighted by πj .
The identification of a barycenter permits us to show a second property of the
criterion distance. Being d2

M a squared Euclidean distance, the total inertia
with respect to the barycenter Y(b) of a set of n histogram data is given by:

TI =
n∑

i=1

d2
M (Y(i),Y(b)).

The TI can be decomposed into within (WI) and between (BI) clusters in-
ertia, according to the Huygens’ theorem:

TI = WI + BI =
K∑

k=1

∑
i∈Ck

d2
M (Y(i),Y(bk)) +

K∑
k=1

|Ck|d2
M (Y(bk),Y(b))

(12)
where Y(bk) is the barycenter of the k-th cluster. The decomposition of
the inertia allows to use the classical criteria to interpret the quality of the
obtained partition (Celeux et al., 1989).

Fig. 2. Five histograms belonging to the same cluster (Top figure). Mixture-based
prototypes (Center right and bottom figures). Average prototype histogram (Center
left figure).

5 Conclusions: two different types of prototypes

In this paper we have presented a set of distances which can be used to cluster
data represented by histograms. We here briefly summarize the kinds of pro-
totypes of the clusters of a partition in DCA that have been identified using



134 R. Verde and A. Irpino

the different metrics. In Fig. 2 is presented an example of different proto-
types computed according to different distances. We started our application
considering five histograms that describe five artificial datasets consisting
each one of 1,000 observations randomly extracted from five normal distribu-
tions (N(20, 5),N(40, 9),N(60, 15),N(70, 5),N(85, 10)). The five histograms
are represented at the top of Fig. 2, while the prototypes associated with four
metrics are represented at the bottom of the figure. All metrics, except for
the Wasserstein based one, allow to find prototypes that are represented by a
combination of density distributions in a mixture-like representation. In this
way, the description of a cluster k is done accordingly to a suitable choice
of a set of weights to be associated with the intervals Iki that partition the
domain of the histograms: Iki are fixed while πGki

have to be found. The use
of Wasserstein metric in the DC criterion allows to find the prototype as a
histogram that is barycentric with respect the elements of the cluster, or as
showed an average histogram (at the center left side of Fig. 2). A possible
extension of the proposed distances to the multivariate case can be performed
in the sense of Minkowski considering data as described by bivariate (or mul-
tivariate) uncorrelated histograms.
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Abstract. This paper is devoted to, more or less new extensions of the notion of
pyramid introduced by Diday (1984, 1986) and Fichet (1984, 1986). It is related
to the notion of “rigid clustering system” or “rigid hypergraph” (topics related to
combinatorial theory). Pyramids are representations of clusterings systems whose
classes are connected subgraphs of a path (or, in other words, intervals of some
linear order). More generally, we shall consider clustering systems whose classes are
connected components of some graph. After reviewing some classical results, we
shall emphasize relations between rigidity and minimal spanning trees.

1 Introduction

Pyramids are representations of clustering systems whose clusters are con-
nected classes of a path (or, equivalently intervals of some linear order).
In that framework the notion was introduced independently by Diday (1984,
1986) and Fichet (1984, 1986, under the name of “pseudo-hierarchies”). It has
been intensively studied by many researchers like Batbedat (1990), Bertrand
(1986, 1992, 1995), Durand and Fichet (1988) and many others . . . As far as
we know, this notion has several origins and many extensions:

Seriation in archeology (Robinson (1951)). The idea is that a dissimilarity
(or similarity) matrix between archaeological objects, built on common (and
different) morphological characters can reveal their chronology.

Observations in cluster analysis. The classes of a hierarchy are intervals
of some linear order (Batbedat (1990); Bertrand (1992, 1995); Bertrand and
Diday (1985, 1990, 1991); Janowitz (1995); Bertrand and Janowitz (2002);
Bertrand (2002); Barthélemy et al. (2004); Brito (1991); Brossier (1980);
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Brucker (2005); Brucker et al. (2003); Diday and Bertrand (1996); McMorris
and Powers (1996); Diday (1983) and others).

Similarity analysis has been essentially developed in the context of social
sciences. The idea is to account for the internal structure of clusters of sim-
ilar objects. Here the paths are replaced by graphs (Flament (1962, 1976);
Flament et al. (1971, 1979); Degenne and Verges (1973)). A hypergraph H is
said to be rigid on a graph G whenever every hyperedge of H is a connected
class of G. Within similarity analysis, relevant applications have been devel-
oped (Vergès (1970); Degenne (1973); Flament (1967, 1978, 1979, 1981)) as
well as significant mathematical tools (Flament (1962, 1976, 1978); Flament
et al. (1971, 1976, 1979)).

The mathematical approach to rigidity. It corresponds to interval hyper-
graphs (i.e. hypergraphs rigid on a path, like pyramids are): Berge (1972);
Duchet (1978, 1979, 1984, 1995); Tucker (1972); Lehel (1983). It has also been
extended to the case where G is a tree: Ryser (1969); Duchet (1976); Slater
(1978); Leclerc (1984); Lehel (1983, 1985); Brucker (2005). Rigidity on a cycle
has been developped by Quillot (1984) and Osswald (2003a, 2003b). Some
intractability results and polynomial cases are given in Osswald (2003b),
Brucker (2003a), and Brucker et al. (2003).

This paper is divided in three parts. The first one is devoted to basic
considerations on clustering systems. The second provides some (more or less)
known results about rigidity. They are essentially extracted from Osswald’s
PhD thesis (2003b). The last one gives recent advances from Gusho’s PhD
thesis (2007) linking rigidity with the minimum spanning tree of a graph.

2 Basic considerations on clustering systems

2.1 Hypergraphs and clustering systems

A hypergraph is a pair H = (X, E) consisting of a set X and set E of non-
empty subsets of X : E ⊆ 2X . The set X is called the vertex set of H and the
set E its hyperedge set. A hypergraph H is said to be closed for intersection,
if for any A and B two hyperedges of H with a non-empty intersection, then
A ∩B is a hyperedge of H.

A clustering system (CS) is a hypergraph K, admitting the whole set X
and each singleton {x} as hyperedges. The hyperedges of K are called its
clusters. In the following, we shall not distinguish between the CS K as a
hypergraph and the set of its clusters. They will be both denoted by K.

A hierarchy is a CS K such that A,B ∈ K implies A ∩B ∈ {A,B, ∅}.
A pyramid (Diday (1984); also called a pseudo hierarchy by Fichet (1984))

is a closed CS, whose clusters are intervals of some linear order on X . Fol-
lowing the terminology presented in the introduction, pyramids are rigid on
a path.

An indexed CS is a pair (K, f), where the CS K = (X, E) is associated to
a real valued mapping f defined on E . The mapping f ,called an index, verifies
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f({x}) = 0 for each singleton {x} of X and is monotone towards inclusion
lattice: if A is strictly included into B, then f(A) < f(B).

2.2 Clustering systems associated with dissimilarity measures

A dissimilarity on the set X is a function d from the cartesian product X×X
to the set of real numbers, such that:

- d(x, y) = d(y, x),
- d(x, y) ≥ 0 and d(x, x) = 0.

The dissimilarity d is said to be proper whenever d(x, y) = 0 implies x = y.
Hereafter, a dissimilarity d will be assumed to be proper. Recall that d is a
distance, whenever d(x, z) ≤ d(x, y) + d(y, z).

Ultrametrics constitute a particular type of dissimilarities. They fulfill the
inequality: d(x, z) ≤ max{d(x, y), d(y, z)}. Obviously an ultrametric is a dis-
tance.

There are many ways to associate a CS with a dissimilarity d. A canonical
one is to consider the maximal cliques of the threshold graphs induced by d.
The threshold graph G(d, σ) induced by d is defined as having X as vertex
set and {x, y} is an edge if and only if d(x, y) ≤ σ.

As is well known, the maximal cliques of the various graphs G(d, σ) con-
stitute a clustering system, written Kd. The clusters of Kd are also called
the clusters of d. Variants are the balls (Benzécri (1973)), the 2-balls (Diatta
and Fichet (1994, 1998)) and the realizations which are defined for every two
vertices x and y as being the intersection of all the maximal cliques of the
threshold graphs containing x and y (Brucker (2003a)).

Bijection theorems make dissimilarities equivalent to class models. The
most famous links hierarchical clustering systems and ultrametric distances
(Johnson (1967); Jardine et al. (1967); Benzécri (1973); cf. also Hartigan
(1967)). Many others has been designed, in particular the equivalence between
pyramids and the so-called strong Robinson dissimilarities (Diday (1984);
Fichet (1984)).

Recall that a dissimilarity d on X is a strong Robinsonian on X if and
only if there exists a linear order ≤ on X such that:

(i) x ≤ y ≤ z implies max{d(x, y), d(y, z)} ≤ d(x, z);
(ii) x ≤ y ≤ z ≤ t and d(x, z) = d(y, z) implies d(x, t) = d(y, t);
(iii) x ≤ y ≤ z ≤ t and d(y, t) = d(y, z) implies d(x, z) = d(x, t).



140 J.-P. Barthélemy et al.

3 An overview on rigidity

3.1 Rigid hypergraphs

As stated in the introduction, an hypergraph H = (X, E) is said to be rigid on
a graph G with X as vertex set whenever each hyperedge of H is a connected
class of G.

We say that a graph G = (X,E) is a minimum rigidity graph, whenever
H is rigid on G and for any graph G′ = (X,E′), with |E′| < |E|, H is not
rigid on G′.

3.2 NP-hardness results

Proposition 1. (Osswald (2003b))The following problem is NP-complete:

Name: Rigidity Graph Decision Problem (DEC-RIG).

Instance: A hypergraph H with X as vertex set, an integer k.

Question: Does there exist a graph G, with X as vertex set and at most k
edges such that H is rigid on G?

It follows that the construction problem MIN-RIG is NP-hard.

Name: Minimum rigidity graph (MIN-RIG).

Instance: A hypergraph H with X as vertex set.

Construction: A graph G, with X as vertex set and a minimum number of
edges such that H is rigid on G.

Remark that, if we set n = |X | and H = (X, E), for k < max{|A| | A ∈ E},
there is obviously no solution to DEC-RIG. If k ≥ n(n− 1)/2, the complete
graph with n vertices is a trivial solution of DEC-RIG.

3.3 A polynomial instance

A hypergraph is said to be prebinary (Barthélemy (2003)) whenever, for each
two vertices x, y, with x 
= y, the set of all hyperedges containing both x and
y admits a smallest element for inclusion.

Prebinary hypergraphs are very usual in hierarchical clustering: hierar-
chies and more generally pyramids and quasi-hierarchies (Bandelt and Dress
(1989); Diatta and Fichet (1994, 1998); Diatta (1996)).

Proposition 2. (Osswald (2003b); Barthélemy et al. (2004)).

When H is a prebinary hypergraph, the problems DEC-RIG and MIN-RIG
can be solved in polynomial time.
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3.4 Squeletons and rigidity on hypergraphs

A hypergraph H = (X, E) is said to be connected if there exists an order on
its hyperedges such that we can index them A1, A2, . . . , Am and have these
two conditions :

- ∀ 2 ≤ i ≤ m, Ai ∩ (∪{Aj | j < i}) 
= ∅
- ∪{Ai | i ≤ m} = X .

A hypergraph H = (X, E) is said to be rigid on a hypergraph H′ = (X, E ′)
if, for any hyperedge A of H and E ′

A = {B ∈ E ′ | B ⊆ A}, the hypergraph
H′|A = (A, E ′

A) is connected.

Like the problems linked to rigidity on graphs, finding a minimum rigidity
hypergraph is NP-hard.

Name: Minimum rigidity hypergraph (HRIG-MIN).
Instance: A hypergraph H with X as vertex set.
Construction: A hypergraph H′, with X as vertex set and a minimum number

of hyperedges such that H is rigid on H′.

However, if we search a minimum rigidity hypergraph of H = (X, E)
among its partial hypergraphs, H′ = (X, E ′) with E ′ ⊆ E , the solution is
unique and can be found in polynomial time: O(|X |2|E|2) operations. This
partial hypergraph is called the squeleton of H: Sq(H) (Flament et al. (1979)).

4 Rigidity and minimal spanning trees, some recent
results

The results of this part concern some approximations of a dissimilarity d on
a set of objects X . It is well known that an unique ultrametric ud on X
such that ud ≤ d, named subdominant ultrametric, is associated with d. On
the other hand, different strong Robinsonians on X named lower maximal
strong Robinsonians can be associated with the same dissimilarity (Brucker
(2001)). We note rd each one of them. In general, any lower maximal strong
Robinsonian associated with a dissimilarity d provides a better approximation
than the respective subdominant ultrametric: ud ≤ rd ≤ d.

We study the hierarchy corresponding to the subdominant ultrametric ud

and the pyramids corresponding to the lower maximal strong Robinsonians
rd. The dissimilarity d is represented as it is by its realizations (Brucker,
2003a). The classes of the hierarchy and the classes of any pyramid are ex-
actly the realizations of, respectively, the subdominant ultrametric ud and
the corresponding lower maximal strong Robinsonian rd (Brucker, 2003b). In
general, there exist several minimum rigidity graphs associated with the real-
ization of a dissimilarity d (Brucker (2003a), Osswald (2003b), Gusho (2005)).
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In the definition of a rigidity graph (Flament et al. (1979)), the edges rigid-
ifying the hypergraph are not weighted. In our context, for the hypergraph
corresponding to a dissimilarity d, we value the edges of the corresponding
rigidity graphs by the dissimilarity d (the weight of the edge xy is d(x, y)).
The first result concerns the length of a minimum rigidity graph which is the
sum of all the weights of the edges presented in the graph.

Proposition 3. (Gusho (2005)).
Among all the rigidity graphs of the realizations of a dissimilarity d, the

minimum rigidity graphs have the same length which is the minimum one.

4.1 Minimum spanning trees (MSTs) associated with a
dissimilarity

There are many algorithms for constructing minimum spanning trees associ-
ated with a connected weighted graph (Kruskal, Prim, etc.). A dissimilarity
d on X is represented by a complete graph on X whose edges are weighted by
the corresponding values of d. Then, we can talk about minimum spanning
trees associated with the dissimilarity d. Figure 1 shows a dissimlarity which
will be used for the illustration of all the results.

d 2 3 4 5 6 7

1 88 88 86 85 87 73
2 69 88 88 89 85
3 85 80 80 88
4 10 15 82
5 16 87
6 86

Fig. 1. Dissimilarity d on X = {1, 2, 3, 4, 5, 6, 7}.

We use the Kruskal algorithm to compute these trees. First, we range the
values of d in increasing order and consider every object of X as a connected
component. For x, y ∈ X such that d(x, y) is minimum, we call xy an edge of
Kruskal algorithm only if it links two different connected components Cx and
Cy containing, respectively, x and y. At the end of this step of the algorithm,
we add the new connected component C = Cx ∪ Cy and erase the old ones,
Cx and Cy, from the list of the connected components. The algorithm ends
when we obtain X as a connected component. It is easy to see that all the
edges of Kruskal algorithm form a minimum spanning tree of d.

A minimum spanning tree associated with d is computed in polynomial
time O(|X |2log|X |) and, in general, is not unique. Their number will depend
on the different choices we have, in any step of the algorithm, among the
equal values of d linking two different connected components.
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In Figure 2 are represented the two minimum spanning trees associated
with d.
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Fig. 2. Minimum spanning trees associated with the dissimilarity d.

4.2 Subdominant ultrametric and minimum spanning trees

First Gower and Ross (1969) and after Leclerc (1981, 1996a, 1996b) and
many others showed that subdominant ultrametrics are strongly related with
the minimal spanning trees associated with a dissimilarity d. For every two
objects x and y, the value of the subdominant ultrametric ud(x, y) associated
with the dissimilarity is calculated from each minimum spanning tree as being
the greatest weight of the edge in the unique path of the tree linking x with
y. In Figure 3, the bold numbers represent the values of the subdominant
ultrametric ud which are also values of d.

ud 2 3 4 5 6 7

1 82 82 82 82 82 73
2 69 80 80 80 82
3 80 80 80 82
4 10 15 82
5 15 82
6 82

Fig. 3. Sub-dominant ultrametric ud asssociated with d.

More than a way for computing the subdominant ultrametric, the minimum
spanning trees have another role, this time concerning its clusters. In fact,
the clusters of the subdominant ultrametric which form the corresponding
hierarchy, are the components of all the threshold graphs of any minimum
spanning tree. Thus, subdominant ultrametric clusters are rigid on every min-
imum spanning tree of d. Moreover, from the minimality of a tree structure
for the number of edges and the connectivity, every minimum spanning tree
associated with a dissimilarity d is a minimum rigidity graph for the hierarchy
corresponding to the subdominant ultrametric ud.
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All the minimum spanning trees of d are also minimum spanning trees of
the subdominant ultrametric ud and they all have the same length. Thus,
we join the result of Proposition 3 for the realizations of the subdominant
ultrametric ud. On the other hand, these trees are not the only ones rigidifying
the clusters of the subdominant ultrametric. Because of the approximation
procedure, other minimum spanning trees whose edges are weighted by values
proper to the subdominant ultrametric rigidify its classes.
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Fig. 4. Minimum rigidity graphs of the hierarchy associated with ud.

In Figure 4 are represented three minimum spanning trees of ud and the
corresponding hierarchy. The MST below the hierarchy corresponds to the
path for which the clusters of the hierarchy are intervals of the induced order.
In general, this path is not an MST of d. The MSTs on the left and on the
right of the hierarchy are at the same time MSTs of d.

As follows, we show that from the path we can obtain all the minimum
spanning trees of d by replacing its edges weighted by ud with edges weighted
by d. In our example, if we replace in the path of Figure 4 the edges 72, 34
and 56 by, respectively, the edges in dotted lines 74, 35 and 46 weighted by
d, we obtain the MST of d on the left. Identically, if we replace in the same
path the edges 72, 34 and 56 by, respectively, the edges in dotted lines 74, 36
and 46 weighted by d, then we obtain the other MST of d on the right.

4.3 Lower maximal strong Robinsonians and minimum spanning
trees

Robinsonians are dissimilarities such that all their clusters are intervals of
some linear order on the set X . Thus, for a Robinsonian on X , the path
formed by the ordered vertices is a minimum rigidity graph for the clusters of
the associated pyramid. In general, for any lower maximal strong Robinsonian
rd associated with a dissimilarity d, this path which is a minimum spanning
tree of rd, is not a minimum spanning tree of d.
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Figure 5 shows the unique lower maximal strong robinsonian rd associated
with the dissimilarity d and the bold numbers represent the values of d kept
unchanged in rd. As we can see by comparing Figure 3 and Figure 5, there are
in rd other bold numbers in addition to those presented in ud which justify
that lower maximal strong Robinsonians provide better approximations than
the subdominant ultrametric.

rd 2 3 4 5 6 7

1 85 85 82 85 82 73
2 69 85 85 85 85
3 80 80 80 85
4 10 15 82
5 16 85
6 82

Fig. 5. Lower maximal strong Robinsonian rd asssociated with d.

In Figure 6 are represented the path for which the clusters of rd are intervals,
the two minimum spanning trees of d which are also minimum spanning trees
of rd and the pyramid associated with rd. In the path, the weight of the edge
76 is rd(7, 6) = 82 which is different from d(7, 6) = 86. Thus, the path is not
a minimum spanning tree of d. In the same way than for the subdominant
ultrametric, we show that from the path we can obtain all the MSTs of d. If
we replace in the path of the Figure 6 the edge 76 by the edge in dotted line
74 which is weighted by d, we obtain the MST of d on the left. Moreover, if
we replace the edge 53 by the edge 36 then we obtain the other MST of d on
the right. In both cases, the clusters of rd remain rigid on the MSTs of d.
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Proposition 4. (Gusho (2007)).
Every MST of d is a minimum rigidity graph of the pyramid associated

with any lower maximal strong Robinsonian rd.

Sketch of Proof. For each lower maximal strong Robinsonian rd, we study
the squeleton of the associated pyramid. For any cluster B of the pyramid
squeleton, we note A the union of all the pyramid squeleton clusters strictly
included in B. The following property concerns the height of B in the pyramid:

diamrd
(B) = Min{d(x, y) : x ∈ A and y ∈ B −A}

From the last property and the maximality of rd, we prove that all the pyra-
mid squeleton clusters are rigidified by the edges of Kruskal algorithm which
form a minimum spanning tree. In that way, we obtain all the minimum
spanning trees of d.

4.4 Realizations, subdominant ultrametric and lower maximal
strong Robinsonians associated with a dissimilarity

As follows, Proposition 5 shows the relation between the minimum rigidity
graphs of the realizations of a dissimilarity d and the MSTs of d.

Proposition 5. (Gusho (2005)).
Every minimum rigidity graph of the realizations of d contains at least

one of the MSTs of d.

In general, there are some MSTs of d which are not included in any minimum
rigidity graph of the realizations of d. Figure 7 shows the unique minimum
rigidity graph of the realizations of d. It contains the MST on the left of
Figure 2 but not the MST on the right. The dotted lines represent the edges
we have to add to the MST of d in order to obtain the minimum rigidity
graph of the realizations of d.
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Fig. 7. Minimum rigidity graphs of the realizations of d.

Theorem 1 shows one way to obtain the MSTs of d included in a minimum
rigidity graph of the realizations of d.

Theorem 1. (Gusho (2005)).
Each MST of any minimum rigidity graph of the realizations of d is an

MST of d.
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Conclusion

Usually, classification theory is devoted to external structures of classes: par-
titions, hierarchies, weak-hierarchies and so on... Following a very long tradi-
tion, the problem of the internal structure of classes has been emphasized in
archeology (Robinson (1951)) and similarity analysis (Flament et al. (1976,
1979)). Moreover, the notion of internal structure of a class has been pointed
by many botanists and zoologists like Linné, Tournefort, Cuvier, Buffon and
others. In this paper, we have tried to make links between old questions and
some, more or less, recent ones. The notion of rigidity inheriting from graphs
and applying to clustering systems in order to look at the internal structure(s)
of classes allows to account for this kind of problem.
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Abstract. An approach to the indirect blockmodeling of 3-way network data is
presented for structural equivalence. This equivalence type is defined formally and
expressed in terms of an interchangeability condition that is used to construct a
compatible dissimilarity. Using Ward’s method, the three dimensional partitioning
is obtained via hierarchical clustering and represented diagrammatically. Artificial
and real data are used to illustrate these methods.

1 Introduction

One of the tasks specified under ‘extending generalized blockmodeling’ Dor-
eian et al. (2005) is the blockmodeling of 3-way networks – a 3 dimensional
matrix defined on 3 sets of units. If 2 sets are equal we speak about 3-way
2-mode network. Here, we present work on a sub task, the indirect approach
to structural equivalence blockmodeling in 3-way networks. Indirect means
embedding the notion of equivalence in a compatible dissimilarity and deter-
mining a clustering based on that dissimilarity. The idea of blockmodeling
3-way data was proposed in an ad hoc fashion in Baker (1986) and in Everett
and Borgatti (1992). We present a more systematic and general approach.

Two units are structurally equivalent iff they can be interchanged without
producing change in the structure – the equivalent units have the same
connection pattern to the same neighbors Batagelj et al. (1992).

In a usual 2-way 1-mode network N = (U, R), R ⊆ U × U, x and y are
structurally equivalent iff:

s1. xRy ⇔ yRx s3. ∀z ∈ U \ {x, y} : (xRz ⇔ yRz)
s2. xRx ⇔ yRy s4. ∀z ∈ U \ {x, y} : (zRx ⇔ zRy)

The blockmodeling of 2-way 2-mode networks is discussed in Doreian et al.
(2004).

2 Structural equivalence in 3-way networks

A 3-way network N over the basic sets X , Y and Z is determined by a ternary
relation R ⊆ X × Y × Z.
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The relation R can be represented by a 3-dimensional binary matrix
RX×Y ×Z

R[i, p, u] =

{
1 R(i, p, u)

0 ¬R(i, p, u)

We define the following items:
Plane: R(i, ·, ·) = {(i, p, u) : p ∈ Y ∧ u ∈ Z ∧R(i, p, u)}
Line: R(i, ·, u) = {(i, p, u) : p ∈ Y ∧R(i, p, u)}
Truncated line: R(i,−T, u) = {(i, p, u) : p ∈ Y \ T ∧R(i, p, u)}
Representations of these elements by binary vectors will be indicated by

replacing braces with brackets.
The subsets X1 ⊆ X , Y1 ⊆ Y , Z1 ⊆ Z determine a block R(X1, Y1, Z1) =

R ∩ X1 × Y1 × Z1. If R(X1, Y1, Z1) = ∅ the block is called a null block ; if
R(X1, Y1, Z1) = X1 × Y1 × Z1 the block is called a complete block.

In the following we shall also need a dissimilarity D(a, b) between vectors
a and b defined in R–like notation as

D(a, b) = sum(abs(a− b))

For example, for a = [0, 1, 1, 0, 1] and b = [1, 1, 0, 0, 0] we have

D(a, b) = sum(abs([−1, 0, 1, 0, 1])) = sum([1, 0, 1, 0, 1]) = 3

The notion of structural equivalence depends on which of the sets X , Y
and Z are (considered) the same. There are three basic cases: 1) all three sets
are different – 3-mode network; 2) two sets are the same – 2-mode network;
and 3) all three sets are the same – 1-mode network.

3 Case 1: All three sets are different

In this case we have a structural equivalence on each of the sets X , Y and
Z. This is defined on the set X as follows:

The units i, j ∈ X are structurally equivalent, i ≈ j, iff

∀p ∈ Y ∀u ∈ Z : (R(i, p, u) ⇔ R(j, p, u))

This is equivalent to the conditions that the ’planes’ corresponding to i and
j are equal R(i, ·, ·) = R(j, ·, ·). The corresponding dissimilarity

d(i, j) = D(R[i, ·, ·], R[j, ·, ·])
is compatible with structural equivalence

i ≈ j ⇔ d(i, j) = 0

The other two cases can be reduced to this one by permuting dimensions.
The solution consists of three structural equivalences ≈X , ≈Y and ≈Z ,

corresponding to three partition functions (π, σ, τ): i ≈X j ⇔ π(i) = π(j),
etc.

If R is a 3D structural equivalence the only possible blocks in R with
respect to clusters determined by this solution are null and complete blocks.
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4 Case 2: Two sets are the same

Assume that Y = Z and X is (considered as) different. The other two cases
can be reduced to this one by permuting dimensions. The solution consists
of two equivalencies / partitions (π, σ). The first equivalence is defined in the
same way as in Case 1.

For the second equivalence the conditions are less trivial. Conceptually
two units p and q are structurally equivalent if they are interchangeable –
but in our case if we swap units p and q in the set Y we have to swap them
also in the set Z.

The interchangeability condition – definition of structural equivalence,
p ≈ q, is now

∀i ∈ X : ( ∀r ∈ Y \ {p, q} : (R(i, p, r) ⇔ R(i, q, r))
∧ ∀r ∈ Y \ {p, q} : (R(i, r, p) ⇔ R(i, r, q))
∧ (R(i, p, q) ⇔ R(i, q, p))
∧ (R(i, p, p) ⇔ R(i, q, q)) )

The corresponding compatible dissimilarity is

d(p, q) = D(R[·, p,−{p, q}], R[·, q,−{p, q}])
+ D(R[·,−{p, q}, p], R[·,−{p, q}, q])
+ D(R[·, p, q], R[·, q, p])
+ D(R[·, p, p], R[·, q, q])

If R is a 3D structural equivalence the blocks in R with respect to the
partitions (π, σ) are null and complete blocks, but on Y × Z diagonals can
be also zero diagonal planes in complete blocks and one diagonal planes in
null blocks.

5 Case 3: All three sets are the same

In this case X = Y = Z. The units i and j are swapped in all three sets.
They are structurally equivalent, i ≈ j, iff

∀u, r ∈ X \ {i, j} : (R(i, u, r) ⇔ R(j, u, r))
∧ ∀u, r ∈ X \ {i, j} : (R(u, i, r) ⇔ R(u, j, r))
∧ ∀u, r ∈ X \ {i, j} : (R(u, r, i) ⇔ R(u, r, j))
∧ ∀r ∈ X \ {i, j} : (R(i, j, r) ⇔ R(j, i, r))
∧ ∀r ∈ X \ {i, j} : (R(i, r, j) ⇔ R(j, r, i))
∧ ∀r ∈ X \ {i, j} : (R(r, i, j) ⇔ R(r, j, i))
∧ ∀r ∈ X \ {i, j} : (R(i, i, r) ⇔ R(j, j, r))
∧ ∀r ∈ X \ {i, j} : (R(i, r, i) ⇔ R(j, r, j))
∧ ∀r ∈ X \ {i, j} : (R(r, i, i) ⇔ R(r, j, j))
∧ (R(i, i, j) ⇔ R(j, j, i))
∧ (R(i, j, i) ⇔ R(j, i, j))
∧ (R(j, i, i) ⇔ R(i, j, j))
∧ (R(i, i, i) ⇔ R(j, j, j))
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The corresponding compatible dissimilarity is

d(i, j) = D(R[i,−{i, j},−{i, j}], R[j,−{i, j},−{i, j}])
+ D(R[−{i, j}, i,−{i, j}], R[−{i, j}, j,−{i, j}])
+ D(R[−{i, j},−{i, j}, i], R[−{i, j},−{i, j}, j])
+ D(R[i, j,−{i, j}], R[j, i,−{i, j}])
+ D(R[i,−{i, j}, j], R[j,−{i, j}, i])
+ D(R[−{i, j}, i, j], R[−{i, j}, j, i])
+ D(R[i, i,−{i, j}], R[j, j,−{i, j}])
+ D(R[i,−{i, j}, i], R[j,−{i, j}, j])
+ D(R[−{i, j}, i, i], R[−{i, j}, j, j])
+ D(R[i, i, j], R[j, j, i])
+ D(R[i, j, i], R[j, i, j])
+ D(R[j, i, i], R[i, j, j])
+ D(R[i, i, i], R[j, j, j])

We illustrate the indirect approach to structural equivalence for 3-way
data with two examples. One is an artificial data set (with known properties)
and one real example drawn from the social network literature.

To support the indirect approach to 3-way blockmodeling based on struc-
tural equivalence the package ibm3m was developed in R (see references).

6 Example 1: Artificial dataset

The first 3-mode dataset consists of randomly generated ideal structure (5
clusters in X , 6 clusters in Y , and 4 clusters in Z; each set has 35 units) ob-
tained using the function rndMat3m(c(5,6,4),c(35,35,35)) from the pack-
age ibm3m.

Figure 1 shows the generated data with no obvious patterned structure.
The right part of Figure 1 and Figure 2 show the dendrograms obtained for
each of the three modes using Ward’s method and Figure 3 shows the re-
ordered three mode data. The complete three dimensional blocks are shown
clearly on the upper left with the remaining three diagrams showing some
slices with block structures.

7 Example 2: Krackhardt’s dataset

The real example of a social network is taken from Krackhardt (1987) and
takes the form of a 21 × 21 × 21 cube. The dimensions X and Y correspond
to individuals in the management team of a high-tech company. The X mode
consists of choices made by individuals (with regard to advice getting), the
Y mode has the received choices for individuals. The Z mode consists of each
individual’s perception of the advice getting network for the management
team.
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Fig. 1. Artificial dataset – original data and dendrogram on X.

Fig. 2. Artificial dataset – dendrograms on Y and Z.

Figure 4 shows the dendrogram for each of the three dimensions. The
dendrogram on the left depicts (approximate) structural equivalence for the
sending of help seeking choices and the middle dendrogram depicts structural
equivalence for the receipt of these choices. The right hand dendrogram shows
structural equivalence for the perceptions of the help seeking relation. The
full structural equivalence partition is shown in Figure 5 together with a slice.
We can notice that the solution is very far from an ideal structural solution,
but some structure can be seen.
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Fig. 3. Artificial dataset – reordered data; complete and some slices.

Fig. 4. Krackhardt – dendrograms (X, Y, Z).
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Fig. 5. Krackhardt – Structural Equivalence Partition.

8 R code for the analyses (ibm3m)

Here is a test procedure using the package ibm3m to generate and cluster ran-
dom ideal datasets. For hierarchical clustering of the obtained dissimilarities
and dendrograms drawing the functions agnes and plot from the R-package
cluster (Kaufman and Rousseeuw (1990)) are used. The 3D pictures of the
data matrix and its slices are exported into kinimages format (see references).

rndTest <- function(m=c(3,3,3),n=c(30,30,30),p=0.35){
t <- rndMat3m(m,n,p)
saveTriplets3m(’test.tri’,t,tit="random test")
rx <- agnes(dist3m(t,0,1),method=’ward’)
ry <- agnes(dist3m(t,0,2),method=’ward’)
rz <- agnes(dist3m(t,0,3),method=’ward’)
pdf(’testXD.pdf’)
plot(rx,which.plots=2,nmax.lab=50,cex=0.6); dev.off()
pdf(’testYD.pdf’)
plot(ry,which.plots=2,nmax.lab=50,cex=0.6); dev.off()
pdf(’testZD.pdf’)
plot(rz,which.plots=2,nmax.lab=50,cex=0.6); dev.off()
kin3m(’testOrg.kin’,"test - original",t,

seq(n[1]),seq(n[2]),seq(n[3]))
kinBlocks3m(’testXYZ.kin’,"test - all different",t,rx,ry,rz,m)
if (n[2]==n[3]){

rb <- agnes(dist3m(t,1,1),method=’ward’); pdf(’testBD.pdf’)
plot(rb,which.plots=2,nmax.lab=50,cex=0.6); dev.off()
kinBlocks3m(’testXYY.kin’,"test - two equal",t,rx,rb,rb,m)

}
if ((n[1]==n[2])&(n[2]==n[3])){

ra <- agnes(dist3m(t,2,0),method=’ward’); pdf(’testAD.pdf’)
plot(ra,which.plots=2,nmax.lab=50,cex=0.6); dev.off()
kinBlocks3m(’testXXX.kin’,"test - all equal",t,ra,ra,ra,m)

}
}
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The procedure for analysis of Krackhardt’s data is similar – only we have
to read the data files:

kr <- readDL3m(’krack.dat’)
la <- paste(’A’,1:21,sep=’’); dimnames(kr) <- list(la,la,la)

The computation of dissimilarities is quite time consuming – it is of order
O(n4). But for small networks as in the above examples it takes only some
seconds.

9 Discussion

We have presented an approach to blockmodeling 3-way network data using
indirect methods. The indirect approach is feasible only when an appropriate
compatible dissimilarity can be defined, as is the case for structural equiva-
lence. When a compatible dissimilarity cannot be defined, direct and graph
theoretical methods are appropriate. Both approaches to blockmodeling 3-
way data are the focus of ongoing work.
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Abstract. This paper surveys some historical issues related to the well-known
k-means algorithm in cluster analysis. It shows to which authors the different ver-
sions of this algorithm can be traced back, and which were the underlying applica-
tions. We sketch various generalizations (with references also to Diday’s work) and
thereby underline the usefulness of the k-means approach in data analysis.

1 Introduction

Cluster analysis was a main topic in the beginning of Edwin Diday’s
scientific career. In fact, the monograph ’Principles of numerical taxonomy’ by
Sokal and Sneath (1963) motivated world-wide research on clustering meth-
ods and initiated the publication of books such as ’Les bases de la classifica-
tion automatique’ (Lerman (1970)), ’Mathematical taxonomy’ (Jardine and
Sibson (1971)), ’Cluster analysis for applications’ (Anderberg (1973)), ’Clus-
ter analysis’ (Bijnen (1973)), ’Automatische Klassifikation’ (Bock (1974)),
’Empirische Verfahren zur Klassifikation’ (Sodeur (1974)), ’Probleme und
Verfahren der numerischen Klassifikation (Vogel (1975)), ’Cluster-Analyse-
Algorithmen (Späth (1975, 1985)), and ’Clustering algorithms’ (Hartigan
(1975)). With the consequence that the basic problems and methods of clus-
tering became well-known in a broad scientific community, in statistics, data
analysis, and - in particular - in applications.

One of the major clustering approaches is based on the sum-of-squares crite-
rion and on the algorithm that is today well-known under the name ’k-means’.
When tracing back this algorithm to its origins, we see that it has been pro-
posed by several scientists in different forms and under different assumptions.
Later on, many researchers investigated theoretical and algorithmic aspects
and modifications of the method, e.g., when considering ’continuous’ ana-
logues of the SSQ criterion (Cox (1957), Fisher (1958), Bock (1974)), by
investigating the asymptotic behaviour under random sampling strategies
(Hartigan (1975), Pollard (1982), Bock (1985)), and by extending its domain
to new data types and probabilistic models. Certainly, Diday’s monograph
(Diday et al. 1979), written with 22 co-authors, marks a considerable level
of generalization of the basic idea and established its usage for model-based
clustering.
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This article surveys the origins and some extensions of the k-means algorithm.
In Section 2 we formulate the SSQ clustering problem and the k-means algo-
rithm. Section 3 describes the most early papers proposing the SSQ criterion
and the k-means algorithm. Section 4 concentrates on extensions of the SSQ
criterion that lead to generalized k-means algorithms. Section 5 deals with
one- and two-parameter criteria and shows how a ’convexity-based’ clustering
criterion can be minimized with a k-tangent algorithm.

2 k-means clustering for the SSQ criterion

There are two versions of the well-known SSQ clustering criterion: the ’dis-
crete’ and the ’continuous’ case.

Discrete SSQ criterion for data clustering: Given n data points x1, ..., xn

in IRp and a k-partition C = (C1, ..., Ck) of the set O = {1, ..., n} of underly-
ing ’objects’ with non-empty classes Ci ⊂ O, the discrete SSQ criterion (also
termed: variance criterion, inertia, or trace criterion) is given by

gn(C) :=

k∑

i=1

∑

�∈Ci

||x� − xCi ||2 → min
C

(1)

where xCi denotes the centroid of the data points x� ’belonging’ to class
Ci (i.e. with � ∈ Ci). We look for a k-partition of O with minimum criterion
value gn(C). The one-parameter optimization problem (1) is related, and even
equivalent, to the two-parameter optimization problem

gn(C,Z) :=

k∑

i=1

∑

k∈Ci

||x� − zi||2 → min
C,Z

(2)

where minimization is also w.r.t. all systems Z = (z1, ..., zk) of k points
z1, ..., zk from IRp (class representatives, class prototypes). This results from
part (i) of the following theorem:

Theorem 1:
(i) For any fixed k-partition C the criterion gn(C,Z) is partially minimized
w.r.t. Z by the system of class centroids Z∗ = (xC1 , ..., xCk

) =: Z(C):

gn(C,Z) ≥ gn(C,Z∗) =

k∑

i=1

∑

k∈Ci

||xk − xCi ||2 = gn(C) for all Z. (3)

(ii) For any fixed prototype system Z the criterion gn(C,Z) is partially min-
imized w.r.t. C by any minimum-distance partition C∗ := (C∗

1 , ..., C
∗
k) =:

C(Z) induced by Z, i.e. with classes given by C∗
i := {� ∈ O | d(x�, zi) =
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minj=1,...,k d(x�, zj)} (i = 1, ..., n) where d(x, z) = ||x − z||2 is the squared
Euclidean distance:

gn(C,Z) ≥ gn(C∗,Z) =

n∑

�=1

min
j=1,...,k

{ ||x� − zj||2 } for all C. (4)

A broad range of methods has been designed in order to minimize the discrete
criteria (1) and (2), either exactly or approximately. They can be roughly
grouped into enumeration methods, mathematical and combinatorial pro-
gramming for exact minimization (Hansen and Jaumard (1997), Grötschel
and Wakabayashi (1989)), integer, linear, and dynamic programming (Jensen
(1969), Vinod (1969), Rao (1971)), heuristical and branch & bound methods
(see also Anderberg (1973), Mulvey and Crowder (1979)).

The k-means algorithm tries to approximate an optimum k-partition by it-
erating the partial minimization steps (i) and (ii) from Theorem 1, in turn.
It proceeds as follows1:

t = 0: Begin with an arbitrary prototype system Z(0) = (z
(0)
1 , ..., z

(0)
k ).

t → t + 1:
(i) Minimize the criterion gn(C,Z(t)) w.r.t. the k-partition C, i.e., determine

a minimum-distance partition C(t+1) := C(Z(t)).
(ii) Minimize the criterion gn(C(t+1),Z) w.r.t. the prototype system Z, i.e.,

calculate the system of class centroids Z(t+1) := Z(C(t+1)).

Stopping: Iterate the steps (i) and (ii) until stationarity.

By construction, this algorithm yields a sequence Z(0), C(1),Z(1), C(2), ... of
prototypes and partitions with decreasing values of the criteria (1) and (2)
that converge to a (typically local) minimum value.

Remark 1: In mathematical terms, the k-means algorithm is a relaxation
method for minimizing a function of several parameters by iterative partial
minimization steps (see also Mulvey and Crowder 1979), and also called an
alternating optimization method.

Continuous SSQ criterion for space dissection: Considering x1, ..., xn

as realizations of a random vector X with distribution P in IRp, we may
formulate the following ’continuous’ analogues of (1) and (2): We look for a
k-partition B = (B1, ..., Bk) of IRp with minimum value

g(B) :=

k∑

i=1

∫

Bi

||x− E[X |X ∈ Bi]||2 dP (x) → min
B

. (5)

As before we can relate (5) to a two-parameter optimization problem:

g(B,Z) :=
k∑

i=1

∫

Bi

||x− zi||2 dP (x) → min
B,Z

(6)

1 This is the batch version of the k-means algorithm; see Remark 2.
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and formulate the analogue of Theorem 1:

Theorem 2:
(i) For any fixed k-partition B of IRp the criterion g(B,Z) is partially
minimized w.r.t. Z by the prototype system Z∗ = (z∗1 , ..., z

∗
k) =: Z(B) given

by the conditional expectations z∗i := E[X |X ∈ Bi] of Bi:

g(B,Z) ≥ g(B,Z∗) =

k∑

i=1

∫

Bi

||x− E[X |X ∈ Bi]||2 = g(B) for all Z. (7)

(ii) For any fixed prototype system Z the criterion g(B,Z) is partially mini-
mized w.r.t. B by any minimum-distance partition B∗ = (B∗

1 , ..., B
∗
k) =: B(Z)

generated by Z, i.e. with classes given by B∗
i := {x ∈ IRp | d(x, zi) =

minj=1,...,k{d(x, zj)} } (i = 1, ..., n):

g(B,Z) ≥ g(B∗,Z) =

∫

X

min
j=1,...,k

{||x− zj ||2} dP (x) for all B. (8)

It is obvious that Theorem 2 can be used to formulate, and justify, a contin-
uous version of the k-means algorithm. However, in contrast to the discrete
case, the calculation of the class centroids might be a computational problem.

3 First instances of SSQ clustering and k-means

The first formulation of the SSQ clustering problem I know has been pro-
vided by Dalenius (1950) and Dalenius and Gurney (1951) in the framework
of optimum ’proportional’ stratified sampling: For estimating the expectation
µ = E[X ] of a real-valued random variable X with distribution density f(x)
(e.g., the income of persons in a city), the domain (−∞,+∞) of X is dissected
into k contiguous intervals (’strata’, ’classes’) Bi = (ui−1, ui] (i = 1, ..., k+1,
with u0 = −∞ and uk+1 = ∞) and from each stratum Bi a fixed number ni

of persons is sampled where ni = n ·P (Bi) is proportional to the probability
mass of Bi. This yields n real data x1, ..., xn. The persons � with income value
x� in Bi build a class Ci with class average z∗i := xCi (i = 1, ..., k). The linear

combination µ̂ :=
∑k

i=1(ni/n) ·xCi provides an unbiased estimator of µ with
variance given by the SSQ criterion: V ar(µ̂) = g(B)/n. Dalenius wants to
determine a k-partition B with minimum variance, i.e., maximum accuracy
for µ̂ – this means the continuous clustering problem (5).

Dalenius did not use a k-means algorithm for minimizing (5), but a ’shooting’
algorithm that is based on the fact that for an optimum partition B of IR1

the class boundaries ui must necessarily lie midway between the neigbouring
class centroids such that ui = (z∗i + z∗i+1)/2 or z∗i+1 = 2ui − z∗i must hold for
i = 1, ..., k − 1. Basically, he constructs a sequence z1 < u1 < z2 < u2 < · · ·
of centers and boundaries by

– choosing, for i = 1, an initial value z1 ∈ IR1
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– determining, for i = 1, the upper boundary ui of Bi = (ui−1, ui] from the

equation E[X |X ∈ Bi] = [
∫ ui

ui−1
xf(x)dx]/[

∫ ui

ui−1
f(x)dx]

!
= zi (the expec-

tation is an increasing function of ui)
– then calculating the next centroid by zi+1 = 2ui − zi

– and iterating for i = 2, 3, ..., k.

By trial and error, the initial value z1 is adapted such that the iteration stops
with k classes and the k-th upper boundary uk = ∞. A ’data version’ of this
approach for minimizing (1) has been described, e.g., by Strecker (1957),
Stange (1960), and Schneeberger (1967).

Steinhaus (1956) was the first to propose explicitly the k-means algorithm
in the multidimensional case. His motivation stems from mechanics (even if
he refers also to examples from anthropology and industry): to partition a
heterogeneous solid X ⊂ IRp with internal mass distribution f(x) into k sub-
sets B1, ..., Bk and to minimize (6), i.e., the sum of the partial moments of
inertia with respect to k points z1, ..., zk ∈ IRp by a suitable choice of the
partition B and the zi’s. He does not only describe the (continuous version
of the) k-means algorithm, but also discusses the existence of a solution for
(6), its uniqueness (’minimum parfait’, examples and counterexamples), and
the behaviour of the sequence of minimum SSQ values for k → ∞.

The first to propose the discrete k-means algorithm for clustering data, i.e.,
for solving (1), was Forgy (1965)2, Jancey (1966a) was the first to mention
it explicitly in a publication (see also Jancey (1966b)). The k-means method
became a standard procedure in clustering and is known under quite differ-
ent names such as nuées dynamiques (Diday 1971, 1972), dynamic clusters
method (Diday 1973; Diday and Schroeder 1974a), iterated minimum-distance
partition method (Bock 1974), nearest centroid sorting (Anderberg 1973), etc.

Remark 2: The name ’k-means algorithm’ was first used by MacQueen (1967),
but not for the ’batch algorithm’ from Section 2. Instead he used it for his se-
quential, ’single-pass’ algorithm for (asymptotically) minimizing the continu-
ous SSQ criterion (5) on the basis of a sequence of data points x1, x2, ... ∈ IRp

(sampled from P ): The first k data (objects) defined k initial singleton classes

C
(k)
i = {i} with class centroids z

(k)
i := x

C
(k)
i

= xi (i = 1, ..., k). Then, for

� = k+1, k+2, ..., the data x� were sequentially observed and assigned to the

class C
(�−1)
i with closest class centroid z

(�−1)
i := x

C
(�−1)
i

and (only) its class

centroid was updated: z
(�)
i := x

C
(�)
i

= z
(�−1)
i + (x� − x

C
(�−1)
i

)/|C(�)
i |. When

stopping at some ’time’ T , the minimium-distance partition B(Z(T )) of IRp

induced by the last centroid system Z(T ) = (x
C

(T )
1

, ..., x
C

(T )
k

) approximates a

(local) solution of (5) if T is large. This single-pass interpretation of ’k-means

2 Forgy’s abstract of his talk does not mention the k-means algorithm, however,
details of his lecture were given by Anderberg (1973), p. 161 and MacQueen
(1967) p. 294.
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algorithm’ is used in many monographs. – In Späth (1975) the batch-version
of k-means is called HMEANS, whereas KMEANS denotes an algorithm that
exchanges single objects between classes in order to decrease (1). Hartigan
(1975) uses the term ’k-means’ for various algorithms working with k class
centroids, e.g. for Späth’s exchange algorithm (on page 85/86), and k-means
as described in our Section 2 is one of several options mentioned on page 102
of Hartigan (1975) (see also Hartigan and Wong (1979)).

In computer science and pattern recognition communities the k-means algo-
rithm is often termed Lloyd’s algorithm I. Lloyd (1957) considers the contin-
uous SSQ clustering criterion (6) in IR1 in the context of pulse-code mod-
ulation: ’Quantization’ means replacing a random (voltage) signal X by a
discretized approximate signal X̂ that takes a constant value zi (’quantum’)
if X belongs to the i-th class Bi of the partition B = (B1, ..., Bk) of IR1

such that X̂ = zi iff X ∈ Bi (i = 1, ..., k). Optimum quantification means
minimization of the criterion (6). Lloyd reports the optimality of the class
centroids z∗i = E[X |X ∈ Bi] for a fixed partition B and describes the one-
dimensional version of the k-means algorithm as his ’Method I’ whereas his
’Method II’ is identical to the ’shooting method’ of Dalenius.

4 Generalized k-means methods

The two-parameter SSQ clustering criteria (2) and (6) have been generalized
in many ways in order to comply with special data types or cluster properties.
In the discrete case, typical criteria have the two-parameter form

gn(C,Z) :=

k∑

i=1

∑

�∈Ci

d(�, zi) → min
C,Z

(9)

where d(�, z) measures the dissimilarity between an object � and a class pro-
totype z (sometimes written as d(x�, z) or d�z etc., depending on the context).
There is much flexibility in this approach since

(1) there is almost no constraint on the type of underlying data (quantitative
and/or categorical data, shapes, relations, weblogs, DNA strains, images)

(2) there are many ways to specify a family P of appropriate or admissi-
ble ’class prototypes’ z to represent specific aspects of the
clusters (points, hyperspaces in IRp, subsets of O, order relations),

(3) there exists a wealth of possibilities to choose the dissimilarity measure
d, and we may, additionally, introduce weights w� for the objects � ∈ O.

In all these cases, the following generalized k-means algorithm can be applied
in order to attain a (locally or globally) optimum configuration (C,Z):

t = 0: Begin with an arbitrary prototype system Z(0) = (z
(0)
1 , ..., z

(0)
k ).

t → t + 1:
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(i) Minimize the criterion gn(C,Z(t)) w.r.t. the k-partition C from P .
Typically, this yields a minimum-distance partition C(t+1) = C(Z(t))

with k classes C
(t+1)
i := {� ∈ O | d(�, z(t)

i ) = minj=1,...,k d(�, z
(t)
j ) }.

(ii) Minimize the criterion gn(C(t+1),Z) w.r.t. the prototype system Z.

Often, this amounts to determining, for each class Ci = C
(t+1)
i , a ’most

typical configuration’ z
(t+1)
i in the sense:

Q(Ci, z) :=
∑

�∈Ci

d(�, z) → min
z∈P

. (10)

Stopping: Iterate the steps (i) and (ii) until stationarity.

The first paper to propose the general criterion (9) and its generalized k-
means method is Maranzana (1963): He starts from a n × n dissimilarity
matrix (d�t) for n factories � = 1, ..., n in an industrial network where d�t

are the minimum road transportation costs between � and t. He wants to
partition the set of factories into k classes C1, ..., Ck and to find a selection
Z = (z1, ..., zk) of k factories as ’supply points’ such that when supplying
all factories of the class Ci from the supply point zi ∈ O, the overall trans-
port costs are minimized in the sense of (9) where d(�, zi) = d�,zi means the
dissimilarity between the factory (object) � and the factory (supply point)
zi ∈ O (where we have omitted object-specific weights from Maranzana’s
formulation). So the family P of admissible prototypes consists of all single-
tons from O and (ii) means determining the ’most cheapest supply point’ in
Ci. Kaufman and Rousseeuw (1987, 1990) termed this method ’partitioning
around medoids’ (the medoid or centrotype of a class Ci is the most typical
object in Ci in the sense of (10)).

Many authors, including Diday (1971, 1972, 1973) and Diday et al. (1979),
have followed the generalized clustering approach via (9) in various settings
and numerous variations and thereby obtained a plethora of generalized k-
means algorithms, e.g., by

– using Mahalanobis or Lq distance in (1) instead of the Euclidean one, even-
tually including constraints (Diday and Govaert (1974, 1977): méthode
des distances adaptatives)

– characterizing clusters by prototype hyperplanes, resulting in principal
component clustering (Bock (1974) chap. 17, Diday and Schroeder (1974a))
and clusterwise regression (Bock (1969), Charles (1977), Späth (1979)).

– projection pursuit clustering where class centers are located on a low-
dimensional hyperplane (Bock (1987, 1996c), Vichi (2005)),

– characterizing a class by the most typical subset (pair, triple,...) of objects
from this class (Diday et al. (1979)).

A major step with new insight was provided by Diday and Schroeder (1974a,
1974b, 1976) and Sclove (1977) who detected that under a probabilistic ’fixed-
partition’ clustering model, maximum-likelihood estimation of an unknown
k-partition C leads to a clustering criterion of the type (9) and can there-
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fore be handled by a k-means algorithm3. The fixed-partition model con-
siders the data x1, ..., xn as realizations of n independent random vectors
X1, ..., Xn with distributions from a density family f(·;ϑ) (w.r.t. the Lebesgue
or counting measure) with parameter ϑ (e.g., a normal, van Mises, loglinear,...
distribution). It assumes the existence of a fixed, but unknown k-partition
C = (C1, ..., Ck) of O together with a system θ = (ϑ1, ..., ϑk) of class-specific
parameters such that the distribution of the data is class-specific in the sense
that X� ∼ f(·;ϑi) for all � ∈ Ci (i = 1, ..., n). Then maximizing the likelihood
of (x1, ..., xn) is equivalent to

gn(C, θ) :=

k∑

i=1

∑

�∈Ci

[− log f(x�;ϑi)] → min
C,θ

, (11)

this is the criterion (9) with zi ≡ ϑi,Z ≡ θ, and d(�, zi) = − log f(x�;ϑi).
The minimum-distance assignment of an object � in (i) means maximum-
likelihood assignment to a class Ci, and in (ii) optimum class prototypes

are given by the maximum-likelihood estimate ϑ̂i of zi ≡ ϑi in Ci. A major
advantage of this approach resides in the fact that we can design meaningful
clustering criteria also in the case of qualitative or binary data, yielding,
entropy clustering and logistic clustering methods (Bock 1986), or models
comprizing random noise or outliers (Gallegos (2002), Gallegos and Ritter
(2005)). – A detailed account of these approaches is given, e.g., in Bock
(1974, 1996a, 1996b, 1996c) and Diday et al. (1979).

5 Convexity-based criteria and the k-tangent method

The derivation of the k-means algorithm in Section 2 shows that it relies on
the fact that the intuitive SSQ optimization problem (1) for one parameter
C has an equivalent version (2) where optimization is w.r.t. two parameters
C and Z. In order to extend the domain of applicability of the k-means algo-
rithm we may ask, more generally, if for an intuitively defined one-parameter
clustering criterion we can find a two-parameter version such that both re-
sulting optimization problems are equivalent and a k-means algorithm can
be applied. A general investigation of this problem has been given by Wind-
ham (1986, 1987) and Bryant (1988). In the following we describe a situation
where the answer is affirmative and leads to a new k-tangent algorithm (Bock
(1983, 1992, 2003), Pötzelberger and Strasser (2001).

We consider the following ’convexity-based’ clustering criterion for x1, ..., xn ∈
IRp that should be maximized w.r.t the k-partition C:

kn(C) :=

k∑

i=1

(|Ci|/n) · φ(xCi) → max
C

(12)

3 This fact was already known before, e.g., in the case of SSQ and the normal
distribution, but these authors recognized its importance for more general cases.
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Here φ(·) is a smooth convex function, and (12) is a generalization of the SSQ
clustering problem (1) since for φ(x) := ||x||2 (12) reduces to (1). Similarly,
the continuous version

k(B) :=

k∑

i=1

P (Bi) · φ(E[X |X ∈ Bi]) → max
B

(13)

is equivalent to (5), its generalization

K(B) =
k∑

i=1

P0(Bi) · φ(E0[λ(X)|X ∈ Bi])) → max
B

(14)

looks for an optimum dissection of IRp such that, for two equivalent alterna-
tive distributions P0, P1 on IRp with likelihood ratio λ(x) = (dP1/dP0)(x) =
f1(x)/f0(x), the discretized distributions (P0(B1), ..., P0(Bk)) and (P1(B1), ...,
P1(Bk)) will be as different as possible. (Note that K is Cszizar’s φ-divergence
and reduces, e.g., to Kullback-Leibler and χ2 distance for φ(u) = − logu and
φ(u) = (u − 1)2, respectively; for other functions λ see Bock (2003).) Some
analysis based on the convexity of φ shows that maximizing K(C) is equiva-
lent to the two-parameter minimization problem

G(B,Z) :=

k∑

i=1

∫

Bi

[φ(λ(x)) − t(λ(x); zi)] dP0(x) → min
B,Z

(15)

where Z = (z1, ..., zk) ∈ IRk
+ and t(λ; z) := φ(z) + φ′(z)(λ− z) is the tangent

(support plane) of y = φ(λ) in the support point z > 0 ([....] is the weighted
’volume’ between the curve and the corresponding segments of the tangents).
Therefore we can apply the alternating partial minimization device. The re-
sulting method is termed ’k-tangent algorithm’ and comprizes the steps:

(i) For a given support point system Z, determine the ’maximum-tangent
partition’ B with classes defined by maximum tangent values:

Bi := { x ∈ IRp | t(λ(x); zi) = max
j=1,...,k

t(λ(x); zj) } (16)

(ii) For a given k-partition B determine the system Z of class-specific discrete
likelihood ratios:

zi := E0[ λ(X)] | X ∈ Bi ] =
P1(Bi)

P0(Bi)
i = 1, ..., k. (17)

Iteration of (i) and (ii) yields a sequence of partitions with decreasing values in
(14). – Pötzelberger and Strasser (2001) investigate the theoretical properties
of the optimum partitions of (12) and (13), Bock (2003) shows, e.g., how the
k-tangent method can be applied to the simultaneous classification of the
rows and columns of a contingency table.
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SPÄTH, H. (1979): Algorithm 39: Clusterwise linear regression. Computing 22,

367-373. Correction in Computing 26 (1981), 275.
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Abstract. In this article, we design an overlapping clustering method in a graph in
order to deal with a biological issue: the proteins annotation. Given an unweighted
and undirected graph G, we search for subgraphs of G that are dense in edges.
The method consists in three steps. First we determine some intial kernels of the
classes by means of a local density function; then we improve these kernels using a
k-means process; last the kernels are extended to overlapping classes. The method
is tested on random graphs and finally applied to a protein interactions network.

1 Introduction

This work deals with a tricky problem of overlapping clustering (Arabie
(1996), Brossier (2003), Hansen (1997)). We consider an unweighted and
undirected graph G = (X,E), each edge representing a similarity between its
extremities. Our objective is to detect some areas with high density of edges,
corresponding to a set of similar vertices. Since we want to find some natural
classes, we relax the too strict partition constraints and we accept a vertex
to be in several classes as well as in none.

The resolution of this problem can contribute to solve a current and fun-
damental biological issue: to understand the cellular mechanisms identifying
the involved proteins and their different roles in these processes. The pro-
tein interaction networks are unweighted and undirected graphs in which the
vertices represent proteins and there is an edge between two vertices if the
corresponding proteins are known to interact. Since the proteins involved in
a same cellular function interact, it is likely that if two proteins have a lot of
common interactors in the protein interaction network, then their functions
should be related (Brun et al. (2002, 2004)). The detection of high density
areas in such a graph should therefore allow the annotation of some proteins
of unknown functions by assigning to them common functions of the proteins
of the same class. Since proteins may have several distinct functions, it is
justified to look for overlapping classes.

The proposed method is an extension of the work proposed in Colombo
et al. (2003) and consists in two steps. The first determines the number of
classes and builds disjoint kernels of the classes. Some initial kernels are given
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by the mean of a local density function (it is precisely explained in Colombo
and Guénoche (submitted)). Then we use an adaptation of the method of
k-means, developped in France by E. Diday (1971), under the French name
of nuées dynamiques), in order to improve these kernels. During the second
step, the kernels are extended to overlapping classes following some criterion
related to the quality of the classes.

In Section 2, we present the method more precisely. Then we prove its
efficiency by applying it on random graphs containing some classes in Section
3. Section 4 is dedicated to an application of the method to a real protein
interaction network. Finally, we conclude in Section 5.

2 Presentation of the method

The method consists in two main steps. The first one constructs the kernels
of the classes, the second extends these kernels to overlapping classes. In this
section, we present these two steps in details.

2.1 Creation of the kernels

In order to create the kernels of the classes, we first find some initial kernels
by means of a local density function defined on the vertices of the graph. Then
this solution is improved by a k-means algorithm, allowing the modification
of the number of kernels.

Initial kernels We use a method of classification by density (introduced by
Wishart (1976)) in order to build initial kernels of the classes. Let d(s) be the
degree of the vertex s, Nt(s) the number of triangles in the neighbourhood
of s (number of edges between two neighbours of s) and ∆ the maximum
degree in the graph. Let Γ (s) be the set of the neighbours of s (notice the
equality |Γ (s)| = d(s)). We define the function De on the set X by:
• if d(s) > 1,

De(s) =
Nt(s)

1
2 ∆ (d(s) − 1)

• otherwise,

De(s) = 0.

(Other density functions have been tested in Denœud (2006); the function
above is the one which seems to provide the best results.) The function De
evaluates the local density of edges in the neighbourhood of any vertex. This
function takes into account the degree of the vertex s and the percentage of
edges in Γ (s). Its values belong to [0, 1]. The value 1 corresponds to a vertex
of degree ∆ and such that all its neighbours are connected with each other:
the subgraph of G induced by s and Γ (s) is complete.
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We use the function De in order to create the initial kernels of the classes.
More precisely, we select the vertices s achieving local maxima of De and with
a density larger than the average density of the graph, i.e. such that:

∀s′ ∈ Γ (s), De(s) ≥ De(s′) and De(s) ≥ De

where De is the average density on the graph: De = 1
|X|

∑
s∈X De(s). The

initial kernels are the connected components of the subgraph induced by these
vertices.

Improvement of the kernels We improve these initial kernels using a k-
means method. Such a method permits to build partitions of sets of items and
consists in the alternation of a recentring step (computation of the centers
of the classes) and an allocation step (creation of a partition of the items
by assigning each item to the closest center) (Diday (1971)). We adapt this
principle in order to allow the modification of the number of classes and to
relax the partitioning constraint: some vertices may not be clustered.

Let consider two vertices s and s′ of the graph G. Let S (resp. S′) denote
the set s ∪ Γ (s) (resp. s′ ∪ Γ (s′)). We consider the distance of Dice (1945),
denoted Dice, defined on X2 as:

Dice(s, s′) =
|(S ∪ S′) \ (S ∩ S′)|

|S| + |S′| .

(See Denœud (2006) for a study involving another distance.) The center c
of a class C is chosen, according to this distance, as the vertex achieving
the mimimum of the sum of the distance from the other vertices of the class:
c = argmins∈C(

∑
s′∈C Dice(s, s′)). We remark that several vertices can some-

times be centers of a same class.
During the assignment step, we compute, for any vertex s and any class

C, the average distance between s and the centers belonging to C. Then we
assign s to the class achieving the minimum average distance, but only if it
is unique. Otherwise the vertex s remains unclustered for the moment.

The modification of the number of classes is done by means of three pro-
cesses, applied after the stabilisation of the solution in the k-means method:

• If the average distance between the centers of two classes is lower than
or equal to the average distance within any class, the two classes merge.

• If a vertex is at maximum distance of any center (which implies that it
has not been clustered during the previous allocation step), this vertex
becomes a new center.

• We check the connectivity of the classes; if not connected, each connected
component becomes a class.

The method consists then in the repetition of the k-means algorithm followed
by these three processes until the stabilisation of the classes, or during a given
number of iterations.
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This first main step creates k disjoint classes, that will be extended in
overlapping classes in the second main step. It is fundamental since it deter-
mines the number of classes and the kernels of the classes.

2.2 Extension of the classes

We consider a function evaluating the quality of a class. The principle of the
extension is to deal with each class independently, adding iteratively to a
class the vertices that are the most connected with it if the quality of the
class increases. This quality function must depend on :

• the percentage of edges in the subgraph induced by the class;
• the cardinality of the class.

Indeed the objective of the method is to find high edge-density areas in the
graph, but between two classes of equal density, we want to favour the largest
class. It seems then immediate to consider the average degree as the quality
function:

d̄(C) =

∑
s∈C d(s)

|C| =
2q

p

where p denotes the cardinality of C and q the number of edges between
vertices of C. According to this criterion, a class C will be extended by
the set S of candidate vertices (that is to say the set of vertices the most
connected to the class C) if and only if:

d̄(C ∪ S) ≥ d̄(C).

Let e be the number of edges between any vertex of S and vertices of C
(notice that e is the same for all the vertices of S). If |S| = 1, the average
degree criterion can be rewritten as: e ≥ q

p . We generalize the average degree
criterion by considering the following extension rules, for any given positive
factor α:

C becomes C ∪ S if and only if e ≥ αq

p
.

The greater α, the stricter the extension criterion. We obtain then a family
of extension rules more or less strict according to the value of α, which could
be chosen following the graph and the user requirements.

3 Validation of the method

In this section, we test the proposed method on random graphs that contain
initial classes. First we present the method used to generate the random
graphs; then we apply the first step of the classification method on these
graphs and validate the k-means process. The second step is not tested in
this section, but its behaviour will be analysed on a real protein interaction
network in Section 4.
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3.1 Generation of random graphs

In order to validate the method, we build some random graphs that contain
some initial edge-dense classes (our process is close to the one developed in
Colombo et al. (2003)). The graphs are generated following four parameters:
n (number of vertices), nbc (number of classes), pi (probability of initial
edges) and pr (probability of recabling an edge). The generation process is
the following:

• we split the vertices uniformly the n vertices in the nbc classes;
• between any pair of vertices belonging to a same class, we set an edge

with probability pi;
• we reconnect each edge with a probability pr (we exchange one extremity

of the edge with a vertex randomly selected).

Finally we check the connectivity of the graph; if not, we add some edges
until it becomes connected.

3.2 Validation of the kernels

In order to validate the first step and the use of k-means, we set n to 100, pr

to 0 and we vary pi from 1 to 0.25 with a step of 0.25. The generated graphs
have nearly no edges outside the classes, and the density within the classes
decreases with pi. We vary moreover the number of initial classes nbc which
takes the values 2, 5, 10 and 20. For each set of parameters, we generate 100
graphs on which we apply the first step of the classification method.

In order to evaluate the quality of the kernels, we compute the average
number of classes, the average percentage of clustered vertices and the av-
erage percentage of preserved pairs (percentage of pairs of vertices clustered
together in the initial partition that are also together in the kernels). Ta-
ble 1 gives the results obtained for the initial kernels (provided by the local
function density) and the final kernels (after the application of the k-means
method). We first observe that the lower the initial density of the classes and
the greater the number of initial classes are, the more difficult it is to find
the classes. Indeed the internal density of the corresponding classes is smaller
and the classes themselves are less clear in the graph.

The initial creation of kernels does not produce the right number of kernels
(except for the case pi = 1). This number of classes is generally overestimated
for nbc = 2 and nbc = 5 and underestimated for greater values of nbc.

The k-means process permits a significant improvement of the kernels,
that are exactly or almost exactly found for pi = 1, pi = 0.75 with nbc = 2, 5
and 10, pi = 0.5 with nbc = 2 and 5. The results remain good for the cases
pi = 0.75 with nbc = 20, pi = 0.5 with nbc = 10 and pi = 0.25 with
nbc = 2 and 5. For the other cases, that correspond to fuzzier initial classes,
the method gives satisfying results and the almost exact number of classes
even if the initial kernels were bad (for instance, for the case pi = 0.25 with
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pi = 1 nbc = 2 nbc = 5 nbc = 10 nbc = 20

initial kernels 2—98—100 5—92—100 10—82.8—100 19.9—67—100

final kernels 2—100—100 5—100—100 10—100—100 19.9—99.9—99.8

pi = 0.75 nbc = 2 nbc = 5 nbc = 10 nbc = 20

initial kernels 2.04—47—100 4.99—49.9—100 8.8—51.9—99.8 15.4—51.2—69.5

final kernels 2—100—100 5.01—99.8—99.99 9.99—99.9—99.9 19.5—99.5—64.9

pi = 0.5 nbc = 2 nbc = 5 nbc = 10 nbc = 20

initial kernels 2.25—36.8—100 5.1—44—99.8 10.2—46.6—85.2 12.5—45—65.1

final kernels 2.02—100—99.5 5.1—100—99.1 11.2—99.7—80 18.8—98.5—46.3

pi = 0.25 nbc = 2 nbc = 5 nbc = 10 nbc = 20

initial kernels 2.9—28.3—77 9.3—35.9—57.8 9.3—35.5—51.6 2.6—11.8—67.3

final kernels 2.8—99.5—82.1 10.3—98.6—52.4 15.4—97.9—35.6 18.6—97.1—27

Table 1. Application of the first step to random graphs (pr = 0): average numbers
of classes, percentages of clustered vertices, percentages of preserved pairs.

nbc = 20, there exist in average 2.6 initial kernels, but the k-means method
permits to increase this number until 18.6). In every case, k-means increases
considerably the percentage of clustered items, always located between 95%
and 100%. We do the same study with pi fixed to 1 and pr varying from 0.1

pr = 0.1 nbc = 2 nbc = 5 nbc = 10 nbc = 20

initial kernels 2—50—100 5—52—100 9.8—50—100 16.7—57.6—100

final kernels 2—100—100 5—100—100 9.99—99.98—99.96 19.2—99.6—97.4

pr = 0.3 nbc = 2 nbc = 5 nbc = 10 nbc = 20

initial kernels 1.5—33.9—97.5 4.6—40.5—98.9 9—44.6—99.8 15.4—51.2—99.9

final kernels 1.5—100—100 4.5—99.4—95.3 9.2—98.8—95.2 17.4—97.1—76.6

pr = 0.5 nbc = 2 nbc = 5 nbc = 10 nbc = 20

initial kernels 1.25—32—89.9 3.5—29.9—90.2 7.6—34.7—95 13.1—38.4—76.2

final kernels 1.1—100—97.8 3.4—99.3—79.5 8.5—97.9—74.6 18.8—95.6—45.8

Table 2. Application of the first step to random graphs (pi = 1): average numbers
of classes, percentages of clustered vertices, percentages of preserved pairs.

to 0.5 with a step of 0.2. The results are given in Table 2. The increasing of pr

makes the classes less dense but also the external density higher. The classes
become quickly fuzzy with the augmentation of pr. We notice once again
the capacity of the k-means method to find back the initial classes since
the number of found kernels is close to nbc and the values of the average
percentage of preserved pairs are large.
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3.3 Behaviour of the extension step

In order to validate the second main step of the method, we studied its
behaviour on two sets of 100 random graphs, with 100 vertices and 10 initial
classes, generated as describes previously; the set A with pi = 1 and pr = 0.5
and the set B with pi = 0.5 and pr = 0. These two cases correspond to classes
of density around 0.5; for the set A, the density in the graph is equal to 0.09,
for the set B, the graphs are twice less dense with a density of 0.04. On an
average, the first step of the method builds 8.5 kernels for the set A and 11.2
for the set B.

We apply the second step on these kernels, α varying in [0.1; 2.5] with a
step of 0.1. We first notice that when the parameter α increases, the classes
become smaller (the average cardinality decreases from 100 to 12 for the set
A and from 100 to 9 for the set B), less overlapping (the average number of
classes per vertex decreases from 8.5 to 1 for the set A and from 11 to 1 for
the set B) and denser (the average density of the classes increases from 0.1
to 0.4 for the set A and from 0.05 to 0.5 for the set B). Indeed, if α is close to
0, the criterion is totally relaxed, and the classes are extended to the whole
graph. If, on the contrary, α is large, there is no extension and the classes are
reduced to the kernels given by the first step. We notice that the behaviour
of the extension is quite the same for the two sets of graphs, except that the
classes builded on the set A are larger and more overlapping than those of
set B.

The value of the parameter α must be chosen according to the initial graph
and the requirement of the user. We must then select values that correspond
to classes of limited cardinality but with a sufficient overlapping.

The parameter α allows to build a hierarchy of the classes, the classes ob-
tained for increasing values of α being included one into another (see Denœud
(2006) for more details).

4 Application to a protein interaction network

In this section, we apply the proposed method to a small protein interac-
tion network from drosophilia. This graph has 149 vertices and 229 edges,
corresponding to a low density of 0.02.

The first step of the method provides 18 classes, with 96 % of clustered
vertices, an average cardinality of the classes of 8 and an average density of
0.35. Once again, we notice that the k-means method permits a clear increase
of the number of kernels since there were only 8 initial kernels and 21% of
clustered vertices. Concerning the extension step, we found that the value
1.5 for the parameter α is adapted for this graph (see Denœud (2006)). It
produces classes with 9.1 vertices on the average and with moderate overlap
(1.14 classes per vertex). The average density is equal to 0.33, which is large
compared with the graph density. Figure 1 represents the whole graph, and
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three classes extracted by the method (the vertices are labelled by the name
of the corresponding proteins).

In order to validate the method from a biological point of view, we com-
pared the classes with cellular processes (we used the on-line database Go-
ToolBox (Martin et al. (2004))). We found that 14 classes among the 18
correspond to cellular processes since they contain a majority of proteins
belonging to a same biological function.

Whole graph Class 16

Class 18 Class 15

Fig. 1. A real interaction network and three classes.

For instance, Class 15 contains 15 proteins, of which 14 are anotated (in
the biological sense; see the Introduction). All these 14 proteins belong to the
cellular process of signal transduction. In the neighbourhood of this class, only
50% of the proteins have also this function. Class 16 contains 9 proteins in
which 8 are anotated: 7 belong to the process of nervous system development,
and none in the neighbourhood of the class shares this function. Class 18
contains, among its 10 proteins, 7 anoted proteins which belong in majority
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to the function of exocytosis, while only one protein in the neighbourhood of
the class is involved in this process.

5 Conclusion

The presented method permits to build an overlapping clustering in a graph,
without imposing the number of classes. It consists in two steps, the first
uses an adaptation of k-means in order to find disjoint kernels of the classes,
the second consists in the extension of the kernels to overlapping classes.
We found that the first step was effective to find dense classes initially set
in random graphs. The second step permits, according to the value of the
parameter α, to adapt the method following the characteristics of the graph
or the application.

The method behaves also well when applied to real protein interaction
networks. Some extended studies about the biological interpretation of the
classes built by the method have been conducted, confirming that a large
majority of the classes corresponds indeed to cellular functions.
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Abstract. Consider a data table where n objects are described by p numerical
variables and a qualitative variable with m categories. Interval data representation
and interval data clustering methods are useful for clustering the m categories. We
study in this paper a data set of fish contaminated with mercury. We will see how
classical or interval data representation can be used for clustering the species of
fish and not the fishes themselves. We will compare the results obtained with the
two approaches (classical or interval) in the particular case of this application in
Ecotoxicology.

1 Introduction

Interval data representation can be very useful to study groups of objects
described by quantitative variables. Describing a group of objects on each
variable by an interval of values rather than by a mean value, allows to re-
flect the variability that underlies the observed measurement. Many data
analysis techniques have been extended to treat such new data description
(see for instance Bock and Diday (2000)). But a question frequently asked
while applying these techniques is the following: ‘Are the results obtained
with intervals different than those obtained with means?’. Of course it is
very difficult to answer this question not only because the data tables are
different but also because the techniques are different. We will however try
to answer this question in the particular case a real application in Ecotoxicol-
ogy and in the context of clustering. This application is concerned by mercury
contamination of fish in rivers of French Guyana (Chavent et al. (2000)). Our
problem was to define a partition of the different species of fish according to
their mercury concentrations in fives organs (gills, liver, intestine, stomach,
kidney). A first partition was calculated with point-valued data and a sec-
ond one with interval-valued data. The two partitions were compared not
numerically (because no numerical comparison between the two partitions is
possible) but according to an external partition (the diet of the species) and
according to a fuzzy partition of the species (obtained by clustering the fishes
themselves).
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Let consider the general case of a data table where n objects are described
by p variables, one of them is qualitative with m categories and the p − 1
others are quantitative. The problem is to find a partition in K clusters, not
of the n objects, but of the m categories. In the application, the data table
describes n = 67 fishes of m = 10 different species by 5 quantitative vari-
ables (their mercury contaminations in fives organs). We present here three
different approaches to find a partition of the 10 species into homogeneous
clusters.

• clustering the 67 fishes described by the five quantitative variables. It
gives a fuzzy clustering of the 10 species,

• clustering the 10 species described by mean values on the five variables,
• clustering the 10 species described by intervals on the five variables.

2 The data

The data were collected by researchers of the EPOC1 laboratory: 265 fishes
of 36 different species were catch in 1997 in several French Guyana rivers and
a sample of 67 fishes of 10 species and 3 diet were selected (see Table 1).

Carnivorous Omnivorous Detritivorous

Ageneiosus brevifilis (7) Leporinus fasciatus (3) Doras micropoeus (8)
Cynodon gibbus (7) Leporinus frederici (3) Platydoras costatus (10)
Hoplias amara (10) Pseudoancistrus barbatus (7)
Potamotrygon hystrix (4) Semaprochilodus varii (8)

Table 1. Diet and frequency of each species in the sample

The researchers of the EPOC laboratory measured for each of the 67 fishes
the length, the weight and the mercury concentration in µg/g in the muscle
and in 5 organs. After several pre-treatments (descriptive statistics, variable
selection....), we retained the data table described Table 2.

species diet ln(liver/muscle) . . . ln(stomach/muscle)

1 Ageneiosus brevifili Carnivorous -0,12 . . . NA
2 Cynodon gibbus Carnivorous 1,59 . . . 0,22
3 Leporinus frederici Omnivorous -0,04 . . . -1,77
...

...
...

... . . .
...

66 Doras micropoeus Detritivore 0,8 . . . -0,89
67 Doras micropoeus Detritivore 1,34 . . . -1,45

Table 2. Extract of the data table

1 UMR CNRS 5805 EPOC (Environnements et Paloenvironnements OCéaniques)
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The five quantitative variables of this data table are based on the ra-
tio between the mercury concentration in the five organs and the mercury
concentration in the muscle. These ratios were used because of the positive
correlation between the mercury concentration variables. In a second time,
the skewness of the distributions of the ratios has motivated the logarithmic
transformation.

Figure 1 represents the 67 fishes in the first factorial plane calculated with
these five quantitative variable. Each fish is numbered according to its species
(from 1 to 10).
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5 Leporinus fasciatus
6 Leporinus frederici

2 Cynodon gibbus

10 Semaprochilodus varii
9 Pseudoancistrus barbatus
8 Plarydoras costatus
7 Doras micropoeus

4 Potamotrygon hystrix

1 Ageneiosus brevifili

3 Hoplias aimara

Fig. 1. The 67 fishes in the first factorial plane, numbered from 1 to 10 according
to their species.

We notice on this figure that the fishes of the same species are rather close
in the first factorial plane. As we will see in the next section when clustering
the fishes, those in the same species are mostly in same clusters. The partition
of the 67 fishes will then define a kind of fuzzy partition of the 10 species.

3 Fuzzy partition of the species

A partition in 4 clusters of the 67 fishes described by the five quantitative
variables of Table 2, was performed by Ward hierarchical clustering. The
Table 3 gives the proportion of fish of each species in each cluster. The diet
of the species is also indicated. We notice that all the fishes of the three
carnivorous species are in cluster1, and that this cluster contains no fish from
another species. Obviously, a clustering of the 10 species should put the three
carnivorous species in the same cluster. It means also that the carnivorous
fishes have the same kind of behavior in term of mercury concentration. In
the same way, we see that cluster2 contains only omnivorous fishes, and the of
the omnivorous fishes are almost in cluster2 (only one of the three Leporinus
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fasciatus fishes is in cluster1). The two omnivorous species should then be
in the same cluster in a partition of the species. Five species of detritivorous
are in two different clusters and two species of detritivorous are difficult to
assign to one of the four clusters. This result is not surprising because a doubt
remains concerning the diet of these species.

cluster1 cluster2 cluster3 cluster4 Diet

Ageneiosus brevifili 100 0 0 0 carnivorous
Cynodon gibbus 100 0 0 0 carnivorous
Hoplias aimara 100 0 0 0 carnivorous
Doras micropoeus 0 0 100 0 detritivorous
Leporinus fasciatus 33.33 66.67 0 0 omnivorous
Leporinus frederici 0 100 0 0 omnivorous
Pseudoancistrus barbatus 14.29 0 0 85.71 detritivorous
Semaprochilodus varii 0 0 0 100 detritivorous
Platydoras costatus 20 0 40 40 detritivorous ?
Potamotrygon hystrix 50 0 25 25 detritivorous ?

Table 3. Proportion of fish of each species in each cluster and the diet of the species

Table 4 gives the crisp partition of 8 of the 10 species deduced from Table
3. The two species Platydoras costatus and Potamotrygon hystrix are not
assigned to one of those clusters.

cluster1 cluster2 cluster3 cluster4
(carnivorous) (omnivorous) (detritivorus) (detritivorus)

Ageneiosus brevifili Leporinus fasciatus Doras micropoeus Pseudoancistrus barbatus
Cynodon gibbus Leporinus frederici Semaprochilodus varii
Hoplias aimara

Table 4. Crisp partition of 8 of the 10 species

4 Classical data description and divisive clustering

In order to describe the 10 species with the 5 mercury concentration vari-
ables, a new data table was constructed. The fishes of the same species were
aggregated by calculating the mean value on each variable and Table 5 is the
resulting classical data table.

The descendant hierarchical clustering method DIV (Chavent (1997)) was
then applied to this data table and after three divisions, a four clusters par-
tition of the 10 species was obtained (see Figure 2). This partition is not
satisfactory according to the diet partition and according to the partition
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species ln(liver/musc) ln(kidn/musc) ln(gills/musc) ln(intest/musc) ln(stom/musc)
Ageneiosus brevifili -0,39 -0,25 -1,54 -0,89 -1,25
Cynodon gibbus 1,05 0,24 -1,61 -1,29 -1,06
Hoplias aimara 0,26 0,764 -1,73 -1,36 -1,55
Doras micropoeus 1,72 2,11 -2,21 -0,78 -0,90
Leporinus fasciatus -0,82 -0,28 -2,81 NA -1,93
Leporinus frederici -0,47 -0,65 -2,87 -1,61 -1,55
Pseudoancistrus barbatus 2,29 -1,00 NA 0,38 -0,24
Semaprochilodus vari 3,43 1,49 -1,64 0,02 -0,25
Platidoras costatus 1,58 1,51 -1,98 -0,28 -1,00
Potamitrigon hystrix 1,15 1,25 NA -0,13 -0,76

Table 5. Point-type description of the 10 species

obtained by clustering the fishes (Table 4). The two omnivorous species (Lep-
orinus fasciatus, Leporinus frederici) are not in the same cluster and the two
clusters of detritivorous species (Doras micropoeus against Pseudoancistrus
barbatus and Semaprochilodus varii) highlighted Table 3 and Table 4, do not
appear in this partition.

> −0,44

Hoplias aimara 
Leporinus frederici

Ageneiosus brevifilis Leporinus fasciatus Doras micropoeus
Semaprochilodus varii
Platydoras costatus

Pseudoancistrus barbatus
Potamotrigon hystrix

Cluster1: Cluster2: Cluster3: Cluster4:

ln(liver/musc)

ln(gills/musc)

<=−0,82

<=1 > 1

> 0,82

ln(intest/musc)

<=−0,44

Cynodon gibbus

Fig. 2. Dendrogram of the upper hierarchy for classical data description.

The question was then: is this unsatisfactory result due to way the data
were aggregated or to the clustering method itself? On order to answer this
question, we applied an other clustering method, the Ward ascendant hierar-
chical clustering method, to the same data table. Figure 3 represents the 10
species described in Table 5, in the first factorial plane. Each species is num-
bered according to its cluster in the 4-clusters partition obtained with Ward.
In this partition the two species (Leporinus fasciatus, Leporinus frederici) are
in the same cluster. The inappropriate separation of these two species by DIV
was perhaps due the monothetic constraint of this method. The three carniv-
orous species (Hoplias aimara, Cynodon gibbus, Potamotrygon hystrix) are
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well gathered in one cluster but the separation of the detritivorous species
Doras micropoeus from the two other detritivorous species Pseudoancistrus
barbatus and Semaprochilodus varii, again do not appear in this partition.

4

3 3

2

2

2

2

1

1

1

Semaprochilodus varii

Platydoras costatus

Doras micropoeus
Cynodon gibbus

Leporinus fasciatus

Hoplias aimara

Leporinus frederici

Ageneiosus brevifili

Potamotrygon hystrix

Pseudoancistrus barbatus

Fig. 3. First factorial plane of the 10 species (aggregated by the mean), numbered
from 1 to 4 according to its cluster in the Ward partition.

5 Interval data description and divisive clustering

In a second time, the fishes of the same species were aggregated by calcu-
lating an interval of values on each variable. Table 6 is the resulting interval
data table calculated with the DB2SO method (see Stephan (1998)) and the
SODAS software (see for instance Diday and Esposito (2003)).

species ln(liver/musc) ln(kidn/musc) ln(gills/musc) ln(intest/musc) ln(stom/musc)
Ageneiosus brevifili [-0.80:0.34] [-1.50:0.35] [-1.88:-1.21] [-1.45:-0.48] [-1.49:-1.05]
Cynodon gibbus [0.12:1.59] [-0.51:1.18] [-1.91:-1.44] [-1.75:-0.68] [-1.61:0.22]
Hoplias aimara [-0.44:0.90] [-0.17:1.60] [-1.98:-1.53] [-2.17:-0.71] [-2.36:-0.93]
Doras micropoeus [1.34:2.12] [1.47:2.69] [-2.38:-2.21] [-1.99:0.39] [-1.45:-0.24]
Leporinus fasciatus [-0.98:-0.58] [-0.32:0.35] [-3.00:-2.63] NA [-2.11:-2.76]
Leporinus frederici [-0.82:-0.04] [-0.95:-0.19] [-3.27:-2.55] [-1.74:-1.42] [-2.03:-0.55]
Pseudoancistrus barbatus [1.26:2.84] [-1.00:1.00] NA [-0.31:0.68] [-0.71:0.12]
Semaprochilodus vari [2.70:3.96] [1.11:1.91] [-1.79:-1.40] [-0.91:0.52] [-0.74:0.22]
Platidoras costatus [0.41:2.42] [-0.02:2.75] [-2.90:-1.27] [-1.22:0.38] [-1.41:-0.49]
Potamitrigon hystrix [0.66:2.01] [0.77:2.15] NA [-0.50:0.23] [-0.80:-0.69]

Table 6. Interval type description of the 10 species

The divisive clustering method DIV for interval data description (Chavent
(1997)), was applied to the 10 species described in Table 6. After three di-
visions, a four clusters partition of the 10 species was obtained (see Figure
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4). This partition is more in adequation with the fuzzy partition obtained
by clustering the fishes (Table 4) than those obtained with the classical de-
scriptions. The two omnivorous species are alone in one cluster. The three
carnivorous species are alone in one cluster and the two clusters of detri-
tivorous species (Doras micropoeus against Pseudoancistrus barbatus and
Semaprochilodus varii) are found. The two detritivorous species Platydoras
costatus and Potamitrigon hystrix that were not assign clearly to one clus-
ter in the fuzzy partition (Table 3), are put together with the detritivorous
species Doras Micropoeus. For all these reasons, this partition is more satis-
factory than the one obtained with the classical data representation.

ln(stomach/musc)

Doras micropoeus Pseudoancistrus barbatus
Cluster1: Cluster2: Cluster3: Cluster4:

ln(liver/musc)

<=−0,82

<=1 > 1

> 0,82

ln(gills/musc)

<=−2,2 > −2,2

Cynodon gibbus
Hoplias aimara 

Ageneiosus brevifilisLeporinus frederici
Leporinus fasciatus Potamotrigon hystrix

Platydoras costatus
Semaprochilodus varii

Fig. 4. Dendrogram of the upper hierarchy for interval data description.

Figure 5 gives an idea of the variation of the fishes of the 10 species. Rect-
angles were drawn on the Figure 1 in order to represent the min-max variation
of the fishes of each species (numbered from 1 to 10) in each dimension of the
first factorial plane. This figure helps understanding the partition obtained
with DIV and the interval data description. The Semaprochilodus varii and
the Pseudoancistrus barbatus for instance are in the same cluster because
of the similarity between their positions and between their dispersions. The
rectangle Platydoras castatus (8) shows an broad variability of the fishes of
this species. It was assigned to the same cluster than the rectangle Doras
micropoeus (7) but this important variability questions on the signification
of the proximity between the two species. The fuzzy partition of the species
gives more precise results concerning the difficulty of clustering this species.



190 M. Chavent

10 10

10
10

10
10

10

10
9

9

9
9

9
9 9

8

8

8

8

8

8

8

8

8
87

77 7

7

7
7

7

6

6

6
5

5

5

4

44

4

3
3

3

3

3

3

3 3

3

3

22

2
2

2

2
2

1

1 1

1

1

1

1

5 Leporinus fasciatus
6 Leporinus frederici

2 Cynodon gibbus

10 Semaprochilodus varii
9 Pseudoancistrus barbatus
8 Plarydoras costatus
7 Doras micropoeus

4 Potamotrygon hystrix

1 Ageneiosus brevifili

3 Hoplias aimara

Fig. 5. Min-max variation of the fishes of each species in the two dimensions of the
first factorial plane.

6 Conclusion

This case study in Ecotoxicology was a good illustration of the use of inter-
val data representation for clustering aggregated data. We proposed a three
steps methodology: clustering the 67 fishes to find a fuzzy partition of the
species, clustering the species with point-type descriptions and clustering the
species with interval-type descriptions. We compared the three partitions and
we concluded that the partition obtained with the interval-type description is
more in adequation with the diet of the species and with the fuzzy partition.
This is a good result in a particular case showing the interest of interval data
representation. Concerning the Ecotoxicological application, this study high-
lighted the discriminant power of the diet in term of mercury concentration
and the existance of two clusters of detritivorous species.
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Abstract. The aim of this paper is to introduce new methods to build dense
classes of vertices in a graph. These classes correspond to connected parts having
a proportion of inner edges which is higher than the average on the whole graph.
They are progressively built ; a kernel of each class is first established, then they are
extended to connected elements and finally to a partition. Several density fonctions
are compared. A Monte-Carlo validation of this method is made from random
graphs fulfilling some density conditions.

1 Introduction

With the development of the sequencing of complete bacterial genomes, we
know all the gene sequences of more than a hundred species. But in many
cases, their protein functions remain unknown. Establishing these functions
is one of the priority tasks in genomics. The biological hypothesis is that
proteins encoded by genes inherited from a common ancestor have identical
or similar functions. Hence, the detection of these phylogenetic links, and the
clustering of the related sequences, is an essential step for the identification
of protein functions.

This evolutionary relation, called homology (Fitch (1970)), can be de-
composed in two types of phylogenetic events : paralogy and orthology. They
depend on the fact that the evolutionary path between homolog genes goes
through a duplication event or not. This distinction is important since it is
generally admitted that the proteins encoded by orthologous genes (without
duplication) have conserved the same function whereas the proteins from par-
alogous genes (with duplication) have generally acquired different functions.
Thus, the distinction between these two types is a fundamental step for the
functional prediction process.

One way to bypass this pitfall is to analyse the links between genes,
orthology being estimated using an evolutive distance. All the gene sequences
included in genome G1 are compared to those of G2 and only pairs of genes
having the smallest distance values are retained ; this relation is denoted
BH (for best hit). It is not symmetrical and only nearest reciprocal neighbors
are retained, making a BBH relation (for best bidirectional hit). It has been
reinforced by Fitch (2000), defining isorthology. It is inferred between BBH
genes A and B, respectively from genomes G1 and G2, looking for the nearest
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genes, A′ from A in G1 and B′ from B in G2, considered as their paralogs.
If d(A,A′) > d(A,B) and d(B,B′) > d(A,B), then A and B are qualified
isortholog.

These relations enable us to construct a graph Γ where the vertices are
all the genes of the considered genome set. As the orthology relation is by
definition a transitive one, the graph Γ should consist of disjoint complete
subgraphs, that are disjoint cliques. Because of errors estimating evolution-
ary distances, the connected components are generally not cliques and genes
having different functions may be observed in the same component because of
artificial edges. Consequently, the orthologous classes can be detected looking
for dense zones in Γ , that are classes of vertices having a high percentage
of internal edges. These zones, also called quasi-cliques (Matsuda and al.
(1999)), may constitute hypothetical functional classes.

The clustering methods based on density have been introduced by Wishart
in 1976; the idea is to build classes around elements having many neighbors
in a threshold graph associated to a distance value. They have not been
largely used, because the simple degree as density function gives unexpected
results. Recently, (Bader and Hogue (2003)) for simple graphs, have reac-
tivated this approach, without comparison between density functions. The
proposed method is also based on the evaluation of a density function for
each vertex. Our algorithm is progressive with, in a first step, the identifica-
tion of kernels defined as connected vertices having a locally maximal density
and, in a second step, the extension of the kernels through out the addition
of connected vertices according to two strategies ; the first one establishes
partial classes, and the second one builds a complete partition. The num-
ber of classes is not required as in many other clustering methods since the
number of kernels is kept as the number of classes.

The choice of a density function is critical for the efficiency of the algo-
rithm. So, we will first describe in section 2 four density functions, testing
them on simple graphs with a given number of dense zones to be recovered.
The algorithm is detailed in section 3. Performances of the different functions
are compared by simulations on random graphs in section 4.

2 Density functions

Let X be the set of the n vertices, E the set of the m edges and Γ = (X,E)
the corresponding graph. It is assumed to be connected. For any part Y of
X , let Γ (Y ) be the set of vertices out of Y that are adjacent to Y

Γ (Y ) = {x ∈ X − Y such that ∃y ∈ Y, (x, y) ∈ E}.

The neighborhood of x is Γ (x). The degree of a vertex x is denoted Dg(x) =
|Γ (x)| and let δ be the maximum degree in the graph.

For each vertex x, we evaluate a density value denoted De(x). The density
function De is a map from X to R+ varying increasingly with the number (or
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the percentage) of edges in the neighborhood of a vertex. By definition, all the
vertices having degree 1 will get a density equal to 0, to avoid inappropriate
or undefined values in the following computations. We propose four functions,
which will be compared in section 4 :

• The Wishart’s one was the simple degree ; here, we normalize it :

De1(x) =
Dg(x)

δ
.

This function gives a central place to vertices with a high degree, a place
they don’t necessarily have, especially in protein graphs.

• The average degree in the neighborhood of x :

De2(x) =
Dg(x) +

∑
y∈Γ (x) Dg(y)

(1 + Dg(x))
.

This function counts the same way the edges adjacent to x and those that
are adjacent to a neighbor of x. In order to overcome this drawback, we
consider :

• The rate of triangles going through x. Let Nt(x) be the number of trian-
gles containing x :

Nt(x) = |{(y, z) ∈ E such as (x, y) ∈ E and (x, z) ∈ E}|.

This number is divided by the maximum value expected for a vertex of
degree Dg(x).

De3(x) =
Nt(x)

1
2 .Dg(x).(Dg(x) − 1)

.

This function is the most often used in similar approaches (Bader and
Hogue (2003)). A vertex having only connected neighbors, making so a
clique, will have a maximum density value equal to 1.0. At the contrary,
when some vertex pairs in Γ (x) are not connected, this function decreases
very quickly. In order to give more density to the vertices which have
many links, we introduce a new function :

• The percentage of edges in the neighborhood of x, that is the number of
edges adjacent to x plus those making triangle, divided by the maximal
number of edges in the neighborhood of a vertex of degree Dg(x).

De4(x) =
Dg(x) + Nt(x)

1
2 .Dg(x).(Dg(x) + 1)

.

Other density functions have been tested : For the first one the Czekanovski-
Dice distance on Γ is evaluated and the density is estimated from the average
distances in the neighborhood of any vertex. It provides also satisfying re-
sults very similar to those of De4. The second one, based on the core index
of vertices (Batagelj et al. (1999)), gives poor results.
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3 Algorithm for dense classes

The searched classes have to be connected in Γ , their elements sharing high
density values. Our initial idea was to select a density threshold and to con-
sider the partial subgraph whose vertices have a density greater than this
threshold ; thus the classes would be the connected components of this thresh-
old graph. This approach does not give satisfactory results and we adopt a
progressive strategy, considering the local maximum values of the density
function.

3.1 Kernels of the classes

A kernel, denoted K, is a connected part of Γ , obtained by the following
algorithm : we start from the local maximum values of the density function
that are larger than the average and we consider the partial subgraph of Γ
reduced to those vertices.

∀x ∈ K, ∀y ∈ Γ (x) we have De(x) ≥ De(y).

The initial kernels are the connected components of this graph. More pre-
cisely, if several vertices with equal maximum value are adjacent, they belong
to the same kernel ; otherwise the initial kernels are singletons. Then, we as-
sign recursively to each kernel K all the vertices (i) having a density greater
than or equal to the average density value over X and (ii) that are adjacent
to only one kernel. Doing so, we avoid any ambiguity in the assignment, post-
poning the decision when several are possible. Let p be the number of initial
kernels that establishes the number of partial and complete classes.

3.2 Extensions to dense classes

In a second step, we extend the kernels by adding other elements, those that
could be assigned to several ones or those having a density lower than the
average. We have implemented the following two strategies :

Partial extension The principle of this extension rule is to aggregate to a
kernel all the connected elements while its average degree increases. Let C
be a class initially restricted to its kernel K ; we compute :

• Dg(C) the average degree of C, considering only the internal edges,
• for each element x of Γ (C), its number cx of connections to C and
• cmax the maximum of the cx over Γ (C).

If cmax ≥ Dg(C) all the elements having cmax connections are added to C.
If at least one element is added, this procedure is repeated until there is no
element increasing the average inner degree.
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Thus, the classes are still connected. Generally, at the end of this proce-
dure all the vertices are not clustered, but these zones would have a density
value higher than those making a complete partition. We also observe that
an element may be added to several kernels and so the final classes are not
necessarily disjoint.

Complete extension In order to cluster all the vertices, we have developed
another strategy for the kernel extension. Let us consider that we have p
kernels denoted Ki with ki elements. Let L be the set of the vertices that
remain to be classified; they are examined in the decreasing density order.
We assign each element to the kernel to which it is mainly connected. Let x
be the current vertex :

• for each kernel Ki we compute the number ci(x) of its connections to x:
ci(x) = |Γ (x)

⋂
Ki|.

• x is connected to the kernel Kj such that cj(x) is maximal and, in case of
ties, to the one for which kj is minimal or to both if overlapping classes
are admitted ;

• the quantities ci and ki are updated.

Doing so, each element is assigned to a single kernel. The decision in case
of ties to place x in the class with the smallest number of internal edges tends
to give balanced classes.

3.3 Complexity

Kernel computation is in O(m) ≈ O(nδ). For the extension step we start
by evaluating the average internal degree of each kernel and the number of
connections of the adjacent elements ; this step is in O(pδ).

• In the first case, at each iteration, we retain the elements having a suf-
ficient degree and we update the average class degree ; this procedure
has complexity O(nδ). The number of iterations being bounded by δ, the
time complexity of the first extension rule is in O(nδ2);

• in the second case, we assign at each iteration only one element, and we
update the p values ci and si examining at most δ edges, which gives
O(nδ) for all the classes.

Thus, the complexity of the whole extension procedure is in O(npδ2).

Compared to other methods computing first the minimum number of
edges between vertices or a score function, as the number of shortest paths
going through any edge (Newman (2001)), this algorithm is very efficient. It
allows the treatment of large graphs (n ≈ 10000), for which the linearity in
n is essential.
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4 Validation by simulation

In order to evaluate the ability of this method to recover high density areas
in a graph, we compare the performances of the four density functions and
the two extension procedures. First, we have developed a random generator
of graphs in which there are classes having more internal edges than the
external ones, according to given probabilities.

4.1 Generator of random graphs

The generator of random graphs depends on four parameters :

• N : the number of vertices,
• p : the number of wanted classes in the graph,
• di : the average internal density within the classes,
• de : the average density of the external edges.

In order to get such a random graph, we begin with a random partition
of the N elements in p classes, denoted C1, .., Cp. This initial partition P is
stored in a vector p1, ..pN , where pk is the class number of the k-th element.
Next, for each pair of elements, we select at random a real number between
0 and 1, and we add the corresponding edge if and only if this number is
lower than or equal to de (resp. di) when the two elements are in different
(resp. identical) classes. This procedure does not guarantee that our graphs
will have precisely p dense zones ; they may be decomposed, or rearranged
according to the random edges. Similarly, the real density values are not
necessarily equal to di and de but we have observed that, on average, these
parameters are correctly fitted.

4.2 Quality of the classes compared to the initial partition

There are three levels of classes successively built :

• the initial kernels,
• the partial classes corresponding to the extended kernels (we have sup-

pressed the multiple assignment possibility which is very rare),
• the complete classes obtained by full assignment to the most connected

kernel.

Let Nc be the number of classified vertices at each level. They are dis-
tributed in p′ classes denoted C′

1, ..C
′
p′ realizing a partition P ′. We first aim

at mapping the classes of P ′ onto those of P evaluating ni,j = |Ci

⋂
C′

j |. We
set that the corresponding class to C′

j is the class Ck in P , that contains the
greatest number of elements of C′

j , that is the one such that nk,j ≥ ni,j for
all i from 1 to p.

In order to measure the accuracy of the computed classes, we evaluate
three criteria.
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• τc : the percentage of clustered elements in P ′ (Nc

N ).
• τe : the percentage of elements in one of the p′ class which belong to its

corresponding class in P .
• τp : the percentage of joined pairs in P ′ coming from the same class in

P .

Remark : The last two criteria may reach their maximum value (1.0)
even when partitions P and P ′ are not identical, but when two classes of P ′

are included in one of P . These classes of P ′ will have the same corresponding
class in P and all their elements will be considered as well classified and the
rate of pairs will be equal to 1.

4.3 Results

These results are average values obtained from 200 graphs of 100 vertices
distributed in 3 classes, with an internal density di = 0.5 and an external
density de = 0.1. Such a gap seems to give easy problems, that are classes
easy to recover. But assuming that the p classes have the same cardinality,

there are di
n(n−p)

2p intra-class edges and de
n2(p−1)

2p inter-class edges. So there
will be around 808 + 333 edges in our graphs, corresponding to an average
density of 0.232. It means that the internal density is approximatively twice
the average over the whole graph.

The rows of Table 1 correspond to the three types of computed classes
and the columns to the four density functions. Each cell contains the values
of the three criteria τc, τe and τp. The last row indicates the average number
of classes obtained in P ′.

De1 De2 De3 De4

τc τe τp τc τe τp τc τe τp τc τe τp

Kernels .26 .78 .65 .21 .89 .80 .26 .96 .93 .25 .95 .92

Partial extension .42 .84 .74 .38 .91 .85 .48 .97 .95 .50 .97 .95

Complete extension 1.0 .68 .59 1.0 .65 .55 1.0 .93 .91 1.0 .95 .93

Nb. of classes 2.4 3.5 4.6 5.4

Table 1. Average results of the 4 density functions obtained from 200 graphs of
100 vertices distributed in 3 classes. They are randomly generated with internal
density di = 0.5 and external density de = 0.1.

The superiority of functions De3 and De4 is obvious. The function De1

is not enough discriminant to generate a sufficient number of local maximum
values. Since they determine the number of kernels, the classes are badly
defined compared with the initial ones. The performances of functions De3

and De4 are satisfying, at each level. On average, 25% of the elements belong
to the kernels and 50% are the extended classes. More than 95% of the joined
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elements come from the same initial class. For the complete extension, more
than 90% of the assignments are correct.

4.4 Extended results

In order to study the variation of the results on more difficult problems we
fix the external density (equal to .1 then .2) and the internal one varies from
.4 to .7 (an internal density greater than .7 always gives easy problems). The
average results of function De4 are established again on 200 graphs of 100
vertices (cf Table 2).

Kernels Partial Complete
extension extension

de di τc τe τp τc τe τp τc τe τp

.1 .4 .25 .93 .88 .44 .94 .90 1.0 .89 .84

.1 .5 .27 .96 .93 .48 .97 .95 1.0 .94 .91

.1 .6 .28 .97 .96 .52 .98 .97 1.0 .95 .93

.1 .7 .31 .98 .97 .59 .99 .98 1.0 .95 .93

.2 .4 .24 .74 .57 .42 .74 .60 1.0 .62 .49

.2 .5 .25 .85 .75 .44 .88 .80 1.0 .76 .66

.2 .6 .25 .91 .85 .45 .93 .89 1.0 .80 .72

.2 .7 .27 .93 .90 .50 .96 .93 1.0 .81 .74

Table 2. Average results for function De4 obtained from 200 graphs of 100 vertices
distributed in 3 classes when the internal density varies.

When there are few connections between classes (de = .1) whatever is the
internal density, the results are satisfying : 25% to 31% of the elements are
classified in kernels and 44% to 59% in the extended classes. Globally, more
than 90% of the assignments are correct. But when the number of external
edges increases (de = .2), the results are not so good, except when the internal
density is high. When the gap between the density values is lower than .3,
one can expect that the classes will not be precisely recovered.

Other simulation results and biological applications can be read in the
Colombo thesis (2004). They permit to clarify the orthology relation between
genes inherited from a common ancestor and to predict some biological cel-
lular functions.

Acknowledgements Thanks to Yves Quentin who makes clear the motiva-
tions of this work which has been realized with the help of the ACI-IMPBio,
provided by CNRS.
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Abstract. When the data consists of a set of objects described by a set of bi-
nary variables, we have embedded the block clustering problem of binary table in
the mixture approach. In using a Bernoulli model and adopting the classification
maximum likelihood principle we perform an adapted version of the block CEM
algorithm. In this paper, we propose different parsimonious models by imposing
constraints on the Bernoulli parameter.

1 Introduction

Although many clustering procedures such as hierarchical clustering, k-means
(Forgy, 1965) or the dynamic cluster method (nuées dynamiques) (Diday,
1971, 1974), aim to construct an optimal partition of objects or, sometimes,
of variables, there are other methods, called block clustering methods, which
consider simultaneously the two sets and organize the data into homogeneous
blocks.

A wide variety of procedures have been proposed for finding patterns in
data matrices. These procedures differ in the pattern they seek, the type of
data to which they apply, and the assumption on which they rely. Let us
mention the works of Hartigan (1975), Bock (1979), Marchotorchino (1987),
Govaert (1983, 1984, 1995), Arabie and Hubert (1990) and Rirschard et al.
(2001) who have proposed some algorithms dedicated to different kinds of
matrices.

These last years, block clustering has become an important challenge in
data mining context. These kinds of methods have practical importance in a
wide of variety of applications such as text mining and market basket data
analysis. Typically, the data that arise in these applications are arranged as
a two-way contingency or co-occurrence table. In some cases the values of
data are binary indicating for example the presence or absence of a word in
a document.

In this paper, we will focus on these kinds of data. The data which we
consider is noted x ; it is a n × d data matrix defined by x = {(xij); i ∈
I, j ∈ J}, where I is a set of n objects and J a set of d variables. We will
study the block clustering problem in embedding it in the mixture approach.
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We will review the block mixture model (Govaert and Nadif, 2003) which
takes into account the block clustering situation and describe a co-clustering
algorithm. This one is based on the alternated application of Classification
EM (Celeux and Govaert, 1992) on intermediate data matrices. To propose
this algorithm, we set this problem in the classification maximum likelihood
(CML) approach (Symons, 1981).

The paper is organized as follows. In Section 2, we review the Crobin
algorithm proposed by Govaert (1983) for block clustering binary data. In
Section 3, we give the necessary background CML approach and describe
the different steps of the CEM algorithm. In Section 4, as we focus on binary
data, we start by recalling the block general Bernoulli model and describe the
associated block CEM algorithm. Section 5 is devoted to parsimonious mod-
els obtained by imposing some constraints on the general Bernoulli mixture
model. Some numerical experiments are reported in the Section 6. Finally,
the last section summarizes the main points of this paper.

For convenience, we represent a partition of I into g clusters by z =
(z1, . . . , zn) where zi, which indicates the component of the row i, is rep-
resented by zi = (zi1, . . . , zig) with zik = 1 if row i is in cluster k and 0
otherwise. Then, the kth cluster corresponds to the set of rows i such that
zik = 1. The term nk. =

∑
i zik denotes the cardinality of the kth cluster. We

will use similar notation for a partition w into m clusters of the set J and
the term n.� =

∑
j wj� denotes the cardinality of the �th cluster. In the fol-

lowing, to simplify the notation, the sums and the products relating to rows,
columns, row clusters or column clusters will be subscripted respectively by
letters i, j, k or � without indicating the limits of variation, which will be
thus implicit. For example, the sum

∑
i stands for

∑r
i=1 and

∑
i,j,k,� stands

for
∑r

i=1

∑s
j=1

∑g
k=1

∑m
�=1.

2 Crobin algorithm

When the data are binary, we can define the values of x by xij = 1 if the
object i possesses the jth attribute and xij = 0 otherwise. Given x, the
problem consists in optimizing the following criterion

W (z,w,a) =
∑

i,j,k,�

zikwj�|xij − ak�|,

where ak� ∈ {0, 1}. To this end, Govaert (1983) has proposed the Crobin
algorithm described hereafter.

1. Start from an initial position (z(0),w(0),a(0)).
2. Compute (z(c+1),a(c+1)) starting from (z(c),w(c),a(c)):

(a) Compute z(c+1),a(c+ 1
2 ) starting from z(c),a(c).

(b) Compute w(c+1),a(c+1) starting from w(c),a(c+ 1
2 ).

3. Iterate the steps 2 until the convergence.
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In steps 2(a) and 2(b), for finding optimal partitions z(c+1) and w(c+1), we
used respectively the dynamic cluster algorithm (Diday et al. (1980)) to op-
timize the following criteria deduced from W (z,w, a)

W (z,a|w) =
∑

i,k

zik

∑

�

|ui� − n.�ak�|,

where ui� =
∑

j wj�xij , and

W (w,a|z) =
∑

j,�

wj�

∑

k

|vkj − nk.ak�|,

where vkj =
∑

i zikxij .
The step 2(a) is carried out by the application of the dynamic cluster

algorithm using the n × m matrix (ui�), the L1 distance and kernels of the
form (n.1ak1, . . . , n.makm). Alternatively, the step 2(b) is carried out by the
application of the dynamic cluster algorithm using the g × d matrix (vkj),
the L1 distance and kernels of the form (n1.a1�, . . . , ng.ag�). Thus, at the
convergence, we obtain homogeneous blocks of 0 or 1 by reorganizing rows
and columns according to the partitions z and w. Hence, each block xk�,
defined by the elements xij for i belonging to the kth cluster and j to the
�th cluster is characterized by ak� which is the highest frequency value. To
interpret the results, some empirical statistics can be performed to evaluate
the quality of the partition into blocks. For instance, we can define easily
values (1− εk�), each one of them corresponds to the proportion of block xk�

values equal to ak� and measures therefore the degree of homogeneity of xk�.
Note that different variants of this algorithm can be proposed, for example

(1) start from an initial position (z(0),w(0), a(0)) (2) Compute
(z(c+1),w(c+1),a(c+1) starting from (z(c),w(c), a(c)): (2a) Compute z(c+1)

starting from (w(c),a(c)) (2b) Compute w(c+1) starting from (z(c+1), a(c))
(2c) Compute a(c+1) starting from (z(c+1),w(c+1)). (3) Iterate the steps (2)
until the convergence. ¿From our experiments, this version and Crobin give
similar results.

One of the advantages of block clustering methods is to summary the ini-
tial data matrix x by a simpler data matrix (ak�) having the same structure.
Moreover, these methods are scalable. On the other hand, as for the k-means
method the hypothesis which are implicitly supposed are often ignored. Here,
for instance, the results of the Crobin algorithm are bad when the propor-
tions of partitions are dramatically different which leads to think that Crobin
assumes equal proportions of clusters. Moreover the degree of homogeneity
obtained are generally very close. It is one of the aims of this paper to ex-
plore this aspect and to propose a general framework allowing to formalize the
hypothesis we need to define the block clustering approach. Some parsimo-
nious models will be described and allows us to take into account particular
constraints on the proportions and the degree of homogeneity. Numerical ex-
periments will be presented to show the interest to handle different variants
of a model in the block clustering context.
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3 Mixture model and clustering

In the model-based clustering (see for instance McLachlan and Peel, 2000), it
is assumed that the data are generated by a mixture of underlying probability
distributions, where each component k of the mixture represents a cluster.
Thus, the density of the observed data x is expressed as

f(x; θ) =
∏

i

∑

k

πkϕk(xi; αk) (1)

with xi = (xi1, . . . , xid) and θ = (π1, ..., πg,α1, ...,αg) where (π1, ..., πg)
are the mixing proportions and (α1, ...,αg) the parameters of the density
components.

The clustering problem can be studied under mixture model using two
different approaches: the maximum likelihood (ML) approach and the classi-
fication maximum likelihood (CML) approach (Symons, 1981). In this paper
we focus on the second approach.

The ML approach estimates the parameters of the mixture and the parti-
tion is derived from these parameters using the maximum a posteriori princi-
ple (MAP). In the CML approach, the partition is added to the parameters to
be estimated. The maximum likelihood estimation of these new parameters
leads to optimize in θ and z the complete data log-likelihood

LC(z,θ) = L(θ;x, z) = log f(x, z; θ) =
∑

i,k

zik log (πkϕk(xi;αk)) .

This optimization can be done by the Classification EM (CEM) algorithm
(Celeux and Govaert, 1992), a variant of EM (Dempster, Laird and Rubin,
1977), which converts the posterior probabilities tik’s to a discrete classifica-
tion in a C-step before performing the M-step.

In clustering context, the use of the mixture model deals to find the
component from which each row arises. The CEM algorithm allows us to
achieve this goal and the different steps of CEM in this situation are

• E-step: compute the posterior probabilities t
(c)
ik ∝ πkϕk(xi; αk);

• C-step: the kth cluster of z(c+1) is defined with z
(c+1)
ik = 1 if

k = argmaxk=1,...,g t
(c)
ik and z

(c+1)
ik = 0 otherwise;

• M-step: by standard calculations, one arrives at the following

re-estimations parameters π
(c+1)
k =

n
(c+1)
k.

n where n
(c+1)
k. is the cardinality

of the kth cluster of z(c+1), and αk which depends on the used distribu-
tion.

4 Block mixture model for binary data

To study the block clustering problem, we have extended (Govaert and Nadif,
2003) the mixture model to propose a block mixture model defined by the
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following probability density function (pdf)

f(x; θ) =
∑

(z,w)∈Z×W

∏

i

πzi

∏

j

ρwj

∏

i,j

ϕ(xij ; αziwj )

where θ = (π,ρ,α11, . . . ,αgm), π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρm) are
the mixing proportions and ϕ(x,αk�) is a pdf defined on the real set R. In
our situation, we assume that for each block k� the values xij are distributed
according the Bernoulli distribution B(αk�) for which the probability mass
function is ϕk�(xij ;αk�) = (αk�)

xij (1 − αk�)
(1−xij).

To tackle the simultaneous partitioning problem, we will use the CML ap-
proach, which aims to maximize the complete data log-likelihood associated
to the block mixture model. With our model, the complete data are (z,w,x)
and the classification log-likelihood is given by

Lc(z,w,θ) =
∑

i,k

zik log πk +
∑

j,�

wj� log ρ�

+
∑

i,k,j,�

zikwj� log
αk�

1 − αk�
+

∑

k,�

nk.n.� log(1 − αk�)

The maximization of the Lc criterion can be performed with an alternated
optimization using the following maximizations:

1. Maximization of Lc(z,w,θ) w.r. to z for fixed θ and w : Lc(z,w,θ) can
be written

∑
i,k zikAik +

∑
� n.� log ρ� where

Aik = log πk +
∑

�

ui� log
αk�

1 − αk�
+

∑

�

n.� log (1 − αk�),

ui� =
∑

j wj�xij and nk. =
∑

i zik. It can be easily shown that zik = 1 if
k = argmaxkAik and 0 otherwise ∀i.

2. Maximization of Lc(z,w,θ) w.r. to w for fixed θ and z : in a similar way,
Lc(z,w,θ) can be written

∑
j,� wj�Bj� +

∑
k nk. log πk where

Bj� = log ρ� +
∑

k

vjk log
αk�

1 − αk�
+

∑

k

nk. log (1 − αk�),

vjk =
∑

i zikxij and n.� =
∑

j wj�. It can be easily shown that wj� = 1 if
� = argmax�Bj� and 0 otherwise ∀j.

3. Maximization of Lc(z,w,θ) w.r. to θ for fixed z and w : Lc(z,w,θ) takes
the following form

∑

k

nk. log πk+
∑

�

n.� log ρ�+
∑

k�

(
yk� log

αk�

1 − αk�
+ nk.n.� log (1 − αk�)

)

where yk� =
∑

ij zikwj�xij . We obtain πk = nk.

n , ρ� = n.�

d and αk� =
yk�

nk.n.�
.

The two first maximizations (1 and 2) correspond to the E-step and C-step
of the CEM algorithm, they allow us to construct the pair partition (z,w)
before the M-step (3). We obtain a block version of CEM called block CEM.



208 G. Govaert and M. Nadif

5 Parsimonious Bernoulli models

From the classical Gaussian mixture model, Banfield and Raftery (1995) have
proposed different variants of this model. They have considered a
parametrization of the covariance matrix Σk in terms of its eigenvalue decom-
position, Σk = λkDkAkD

T
k (the superscript T denotes matrix transposition),

where λk defines the volume of the kth cluster, Dk is an orthogonal matrix,
which defines its orientation and Ak is a diagonal matrix with determinant
1, which defines its shape. This parametrization allows one to propose many
general criteria and the simplest one corresponds to spherical clusters and
equal volumes that lead to the famous k-means criterion. From our block
Bernoulli models, we can apply a similar parametrization on the parameters
αk�. Next, we propose some parsimonious models.

5.1 Model [εk�]

The Bernoulli parameter can be break down into two parameters ak� and εk�.
With this formulation ak� indicates the majority value in the block k� and
εk� the degree of homogeneity. The Bernoulli pdf can be written

ϕk�(xij ; (ak�, εk�)) = (εk�)
|xij−ak�|(1 − εk�)

1−|xij−ak�|

if we replace each αk� by ak� ∈ {0, 1} and εk� ∈ [0, 1/2] with

{
ak� = 1 and εk� = 1 − αk� if αk� ∈ [1/2, 1]
ak� = 0 and εk� = αk� if αk� ∈ [0, 1/2(.

After simple calculations, the associated complete data log-likelihood can be
written as

Lc(z,w,θ) =
∑

i,j,k,�

zikwj�|xij − ak�| log
εk�

1 − εk�

+
∑

i,j,k,�

zikwj� log(1 − εk�)

+
∑

k

nk. log πk +
∑

�

n.� log ρ�, (2)

and the different steps of the algorithm become

1. Maximization of Lc(z,w,θ) w.r. to z for fixed θ and w: the term Aik can
be written

Aik = log πk +
∑

�

|ui� − n.�ak�| log
εk�

1 − εk�
+

∑

�

n.� log (1 − εk�).
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2. Maximization of Lc(z,w,θ) w.r. to w for fixed θ and z : the term Bj�

can be written

Bj� = log ρ� +
∑

k

|vkj − nk.ak�| log
εk�

1 − εk�
+

∑

k

nk. log (1 − εk�).

3. Maximization of Lc(z,w,θ) w.r. to θ for fixed z and w : Lc(z,w,θ) can
be written

∑

k

nk. log πk +
∑

�

n.� log ρ�

+
∑

k�

(
|yk� − nk.n.�ak�| log

εk�

1 − εk�
+ nk.n.� log (1 − εk�)

)
.

Then we obtain πk = nk.

n , ρ� = n.�

d , ak� = 0 if yk�

nk.n.�
< 0.5 and 1 otherwise

and εk = |yk�−nk.n.�ak�|
nk.d

.

5.2 Model [εk]

In this model, we impose that the εk�’s of the kth cluster are equal for � =
1, . . . ,m, then Lc becomes

Lc(z,w,θ) =
∑

i,k

zik log πk +
∑

i,k

wj� log ρ�

+
∑

i,j,k,�

zikwj�

(
|xij − ak�| log

εk

1 − εk
+ log (1 − εk)

)
,

and the different steps of the algorithm are

1. Maximization of Lc(z,w,θ) w.r. to z for fixed θ and w : the term Aik

can be written Aik = log πk + log εk

1−εk

∑
� |ui� − n.�ak�| + d log (1 − εk).

2. Maximization of Lc(z,w,θ) w.r. to w for fixed θ and z : the term Bj� can
be written Bj� = log ρ� +

∑
k |vkj −nk.ak�| log εk

1−εk
+
∑

k nk. log (1 − εk).

3. Maximization of Lc(z,w,θ) w.r. to θ for fixed z and w : Lc(z,w,θ) can
be written as

∑

k

nk. log πk +
∑

�

n.� log ρ�

+
∑

k,�

(
|yk� − nk.n.�ak�| log

εk

1 − εk
+ nk.n.� log (1 − εk)

)
.

The parameters of the model are defined in this case by πk = nk.

n , ρ� =
n.�

d , ak� = 0 if yk�

nk.n.�
< 0.5 and 1 otherwise and εk =

∑
� |yk�−nk.n.�ak�|

nk.d
.

Note that the same model can be used when the parameter ε depends only
on w. It suffices to consider the data matrix xT .
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5.3 Model [ε]

With this model, the expression of Lc(z,w,θ) takes the form

log
ε

1 − ε
W (z,w,a) + D,

where W (z,w,a) =
∑

i,j,k,� zikwj�|xij − ak�| is the criterion optimized by
Crobin and D, equal to nd log(1− ε)− n log g− d logm, does not depend on
(z,w). So that, maximizing Lc(z,w, θ) is equivalent to maximizing
log ε

1−εW (z,w,a) or minimizing W (z,w,a) because log ε
1−ε ≤ 0.

Notice that at the convergence, the parameter ε can be estimated from the
optimal pair (z∗,w∗) by

∑
i,j,k,� z

∗
ikw

∗
j�|xij−ak�|/nd and (1−ε) represents the

global degree of homogeneity. The value 1 corresponds to a perfect clustering
into blocks. In steps 2(a) and 2(b), for finding an optimal z(c+1) and w(c+1),
we used respectively the dynamic cluster algorithm to optimize the following
criteria W (z,a|w) =

∑
i,k zik

∑
� |ui� − n.�ak�|, where ui� =

∑
j wj�xij , and

W (w,a|z) =
∑

j,� wj�

∑
k |vkj − nk.ak�|, where vkj =

∑
i zikxij .

6 Synthetic data

To illustrate these models and the performance of associated algorithms, we
carried out Monte Carlo simulations. In our experiments we selected nine
types of data arising from 3× 2-component mixture model corresponding to
three degrees of cluster overlap (well separated (+), moderately separated
(++) and ill-separated (+++)), and three data dimensions (n×d = 50×30,
n× d = 100 × 60 and n× d = 200 × 120 ).

Parameters were selected so as to obtain error rates respectively in [.01, .05]
for the well-separated, in [.12, .17] for the moderately and in [.20, .24] for the
ill-separated situations. For each of these 27 data structures we generated
30 samples, for each sample we ran the block CEM algorithm according the
models [ε], [εk] and [εk�] 500 times starting from random situations, and
then selected the best solution for each variant in comparing the obtained
partitions and the simulated ones. In our experiments the used parameters
are π = (0.2, 0.3, 0.5), ρ = (0.7, 0.3) and a = (1, 0; 0, 1; 1, 1). Moreover, we
consider the following situations:

• M1: (εk� = ε; ∀k, �),
• M2: (εk� = εk; ∀�),
• M3: (εk�) without constraint.

The simulation results are summarized in Table 4 which displays the error
rates for each situation. The main findings arising from these first experiments
are:

• It appears clearly that the simplest model [ε] is interesting when the size
of data is small (see, n × d = (50, 30)). It outperforms [εk] and [εk�]
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in all situations of overlap even when the data are simulated according
these models. This difference is reduced when the size increases (see,
n × d = (100, 60), (200, 120)) and the performances of [εk] and [εk�] are
close. Furthermore, when the clusters are not separated and the degrees of
overlap are dramatically different, the model [ε] has difficulties to propose
a clustering into 3 × 2 blocks.

• When the data size is medium (n × d = (100, 60)), the model [εk] is
frequently better than [ε] when the data are not distributed according
M1.

• When the data are large enough and without any information about the
clusters, the general model [εk�] could be recommended.

Table 1. Means and standard errors (in parentheses) of error rates from the same
random situations by the block CEM algorithm applied with the three models on
data simulated according M1, M2 and M3.

size degree of M1 M2 M3
overlap

[ε] [εk] [εk�] [ε] [εk] [εk�] [ε] [εk] [εk�]

+ .03(.01) .06(.01) .07(.04) .08(.05) .08(.05) .10(.05) .09(.03) .12(.07) .13(.08)
(50,30) ++ .14(.04) .26(.13) .34(.19) .15(.04) .18(.07) .19(.07) .20(.05) .27(.12) .29(.13)

+++ .23(.01) .35(.13) .36(.10) .24(.03) .26(.05) .32(.05) .27(.10) .42(.14) .39(.15)

+ .04(.00) .05(.01) .05(.03) .04(.01) .03(.01) .04(.03) .09(.03) .05(.05) .04(.08)
(100,60) ++ .15(.02) .18(.02) .20(.05) .13(.03) .12(.03) .15(.03) .13(.03) .12(.03) .15(.08)

+++ .23(.03) .26(.08) .31(.12) .26(.04) .27(.06) .31(.06) .25(.04) .30(.06) .29(.07)

+ .04(.01) .02(.00) .02(.00) .02(.01) .02(.01) .01(.01) nr∗ .02(.01) .01(.00)
(200,120) ++ .15(.01) .16(.02) .18(.05) .18(.03) .17(.02) .17(.03) nr .14(.03) .14(.02)

+++ .22(.02) .22(.02) .27(.05) .24(.03) .24(.03) .30(.05) nr .32(.06) .27(.08)

∗nr indicates no result.

7 Conclusion

Setting the problem of block clustering under the CML approach, we have
proposed parsimonious Bernoulli block models. Then we have compared the
different associated block CEM algorithms. Numerical experiments show the
interest to handle different variants of a model in the block clustering con-
text according the size data. For the small size, the simplest is recommended.
When we have not any information about the degree of overlap according the
clusters and the size of data is large enough, the general model is appropri-
ated. Then it will be necessary to study the problem of the choice of the
model. In this paper, we have considered the block clustering for binary data
under the CML approach and, as in Govaert and Nadif (2005, 2006), it would
be interesting to study the block clustering approach under the ML and fuzzy
approaches and to extend to other models.
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Abstract. When dissimilarities are measured in a space other than the reals, it
is argued that previous models for cluster analysis are not adequate. Possible new
models will be explored. It is also shown that formal concept analysis may be viewed
as a special case of a Boolean dissimilarity coefficient. A persistent underlying
theme involves generalized notions of adjoints of order preserving mappings between
posets.

1 Background

A basic knowledge of cluster analysis will be assumed at the outset. This can
be obtained by consulting where needed one of the standard references (Gor-
don (1999), Jain and Dubes (1988), Mirkin (1996)). Any needed background
from the theory of partially ordered sets may be obtained from Birkhoff
(1967), Davey and Priestley (1990), Szasz (1963). An interesting mathemat-
ical model for cluster analysis was presented in Jardine and Sibson (1971).
We shall not reproduce it here, but do point out that the current discussion
has its origins in that text. The basic input to a clustering algorithm is a
finite nonempty set E equipped with a finite collection of attributes that the
members of E may possess. These attributes can be numerical, nominal or
binary. The attributes are then converted to a dissimilarity coefficient (DC).
This is a mapping d : E×E → 
+

0 , the non-negative reals, that satisfies
d(a, b) = d(b, a), and d(a, a) = 0 for all a, b ∈ E. To say that d is definite is
to say that also d(a, b) = 0 =⇒ a = b. Finally, the DC d is an ultrametric if
it also satisfies

d(a, b) ≤ max{d(a, c), d(b, c)} for all a, b, c ∈ E.

The idea is that lower values of d correspond to pairs of members of E that
are more similar (i.e., less dissimilar).

The T-transform: Let Σ(E) denote the set of reflexive symmetric
relations on E, ordered by set inclusion. Associated with any DC d, there is a

� Talks based on preliminary versions of short portions of this paper were given at
Ecole Nationale Supérieure des Télécommunications de Bretagne on October 30,
2004, at DIMACS on March 9, 2005, at the SFC meeting at the Université du
Quebec à Montréal on May 31, 2005, at the IFCS meeting at the University of
Ljubljana in August, 2006, at the University of Louisville on September 27, 2006
and at the joint BCS-CSNA meeting at Brunel University on February 2, 2007.
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mapping Td : 
+
0 → Σ(E) defined by Td(h) = {(a, b) : d(a, b) ≤ h} for all h ∈


+
0 . It is easy to show and well known that Td(h) is an equivalence relation

for all h ∈ 
+
0 if and only if d is an ultrametric. Thus ultrametrics yield nested

sequences of equivalence relations. For that reason, a cluster algorithm may
be viewed as a transformation d �→ C(d) of a DC d into an ultrametric C(d).

In Janowitz (1978), we replaced 
+
0 with a join semilattice L having a

smallest member 0 having more than one member. The join of x and y is
denoted by the symbol x ∨ y. We defined an L-dissimilarity coefficient to
be a mapping d : E×E → L such that d(a, b) = d(b, a), and d(a, a) = 0
for all a, b ∈ E. d is definite if also d(a, b) = 0 =⇒ a = b. Finally, the
DC d is an ultrametric if it also satisfies d(a, b) ≤ d(a, c) ∨ d(b, c) for all
a, b, c ∈ E. The T -transform associated with an L-dissimilarity coefficient d
is defined as expected by taking it to be the mapping Td : L → Σ(E) defined
by Td(h) = {(a, b) : d(a, b) ≤ h} for all h ∈ L. This was the original setting,
but it is not quite what is needed.

Single-linkage clustering is one of the standard clustering algorithms. Here
is how it operates. If u = C(d), we take Tu(h) = γ ◦ Td(h), where γ is the
transitive closure operator. It was shown in Janowitz (1978) that if u is to be
an ultrametric and if h∧k exists in L, then Tu(h∧k) must equal Tu(h)∩Tu(k).
This says that γ ◦ Td(h ∧ k) must equal γ ◦ Td(h) ∩ γ ◦ Td(k). But γ defined
on Σ(E) does not have this property (Janowitz (1978), Lemma 6.1, p. 65).
Thus we must either abandon single linkage clustering as a cluster method
or modify our model.

2 The modified model

We choose here to change our perspective a bit. First of all, we assume nothing
past the fact that the place L in which dissimilarities are measured should be
a partially ordered set (poset) having a smallest member 0 and having more
than one member. The idea behind the concept of a dissimilarity coefficient
is that d(a, b) should provide an ordinal measure in L of the dissimilarity
between a and b. To say that d(a, b) ≤ d(x, y) is to say that the pair {a, b}
is more similar (less dissimilar) then the pair {x, y}. Another way of viewing
this is that at level d(a, b), we deem the pair {a, b} to be a candidate for
clustering. If h ≥ d(a, b), we want (a, b) also to be a candidate for clustering.
The idea of a clustering algorithm then is that at each level h, it somehow
decides which candidates for clustering actually get clustered. This will all be
clarified later in the paper by examining a specific algorithm. The point to
the model introduced in Jardine and Sibson (1971) is that a cluster algorithm
may be viewed as a transformation from one type of DC to a second type.
We need to modify this be introducing the notion of a general dissimilarity
coefficient. Before doing this, we need to mention some machinery from the
theory of partially ordered sets.
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Order filters of L will play an important role in what follows. An order filter
of L is a subset F of L such that h ∈ F, h ≤ k =⇒ k ∈ F. If L has a largest
member, we require that any order filter be nonempty; otherwise, we allow
the empty set to be an order filter. The set F(L) of order filters of L is
ordered by the rule F ≤ G ⇐⇒ G ⊆ F. This may seem strange but the point
is that we want x �→ Fx to be an embedding. Here Fx is the principal filter
generated by x, and is defined by Fx = {y ∈ L : y ≥ x}. Since F ∨ G = F ∩ G
and F∧G = F∪G, it is true that F(L) is a complete distributive lattice with
smallest element the order filter F0, and largest element the empty filter or
a filter consisting of the largest member of L.

Definition 1. The terminology ordinary DC will be used to denote a dis-
similarity d : E×E → L. We now define a general dissimilarity coefficient to
be a mapping D : E×E → F(L) that satisfies

(GD1) D(a, b) = D(b, a).
(GD2) D(a, a) = F0 for all a ∈ E.

Definite DCs are those that also satisfy

(GD3) D(a, b) = D(a, a) = D(b, b) implies a = b.

Note that we are using a capital letter D to clearly distinguish this type of
DC from the usual d : E×E → L. It will sometimes be useful to replace
(GD2) with

(GD2′) D(a, a) =
∧{D(a, b) : b ∈ L, a 
= b}, or

(GD2′′) Calculate D(a, a) using the same formula as for D(a, b) with b 
= a.

An ordinary DC d : E×E → L has an associated general DC Dd : E×E →
F(L) defined by Dd(a, b) = Fd(a,b), For that reason, we can be sloppy about
terminology, and just use the notation d versus D to specify whether we are
dealing with ordinary or general DCs. Unless otherwise specified, the reader
should assume that any given DC is a general DC.

Here then is the situation for a given general DC D taking values in
F(L). The poset L is where the dissimilarities are measured, and it is where
the clusters are indexed. The DC D takes values in F(L) because D(a, b)
designates the members of L at which {a, b} is a candidate for forming a
cluster. These values naturally constitute an order filter of L. We let Σ(E)
denote the symmetric relations of E. If D satisfies (GD2), there is no harm
in specifying that Σ(E) should in fact represent the reflexive symmetric re-
lations of E. We now define a mapping SD : E×E → Σ(E) by the rule
SD(h) = {(a, b) : h ∈ D(a, b)}. Thus SD(h) yields the pairs (a, b) that are
candidates for clustering at level h. Evidently

h ≤ k =⇒ SD(h) ⊆ SD(k).
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Such a mapping will be called an L-stratified clustering. For any L-stratified
clustering S, there is an associated general DC DS defined by DS(a, b) =
{h ∈ L : (a, b) ∈ S(h)}. Evidently D �→ SD is a bijection whose inverse is
given by S �→ DS. There is a fundamental connection between a general DC
D and its associated L-stratified clustering SD. It is given by

h ∈ D(a, b) ⇐⇒ (a, b) ∈ SD(h). (1)

A moment’s reflection should convince the reader that to say that SD(h) is
a transitive relation for all h is equivalent to saying that

(GD4) D(a, b) ≤ D(a, c) ∩D(b, c) = D(a, c) ∨D(b, c) for all a, b, c ∈ E.

The point is that h ∈ D(a, c) ∩D(b, c) should force h ∈ D(a, b). In terms of
the binary relation S(h), we are saying that (a, c), (b, c) ∈ S(h) should imply
that (a, b) ∈ S(h). This leads us to call a general DC an ultrametric if it
satisfies (GD1), some variant of (GD2), and (GD4). A cluster method may
now be taken as a mapping D �→ C(D), where D is a general DC and C(D)
an ultrametric. Please recall that there is nothing that precludes the original
DC D from having the property that each D(x, y) is a principal filter. Indeed,
suppose d : E×E → L is an ordinary DC, and D is its associated general DC.
The notation is consistent because

(a, b) ∈ Td(h) ⇐⇒ d(a, b) ≤ h ⇐⇒ h ∈ Fd(a,b) = D(a, b) ⇐⇒ (a, b) ∈ SD(h).

The design of useful clustering algorithms when faced with dissimilarities
measured in an arbitrary poset L is of course a critical issue to be dealt with.
Only rudimentary progress has been made. We deal here primarily with two
types of algorithms. Those that can be lifted from existing cluster algorithms
based on real-valued dissimilarities, and those that ignore L, and concentrate
entirely on calculations whose input consists of the relations of the form
{S(h) : h ∈ L}. The prime example of the latter is single-linkage clustering
which takes each S(h) and calculates its transitive closure.

3 Boolean dissimilarities

With the introduction of the notion of a general dissimilarity coefficient, we
now have the possibility of having a dissimilarity taking values in the same
space as that of the attributes specified by the data. The formation of an or-
dinary DC inevitably forms a summary of the attribute data, thus destroying
information. By using a general DC, one can retain the underlying attribute
information before doing any clustering, albeit at some cost in computing
efficiency. When dealing with binary attributes, we agree to call D a Boolean
dissimilarity when L is a Boolean algebra. We now consider a rather special
situation. Suppose the set E is equipped with k binary attributes. We want to
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use these attributes to define a DC taking values in L = 2k. Let a, b ∈ E with
a 
= b. If a has attributes (a1, a2, . . . , ak) and b has attributes (b1, b2, . . . , bk),
we want to define a dissimilarity D(a, b) = (d1, d2, . . . , dk) ∈ 2k, where di

is computed entirely from ai and bi. How shall we do this? Since a DC is
supposed to be a measure of how dissimilar a and b are, it is clear that if
ai 
= bi, we want xi = 1. There are now only two remaining cases to consider:
ai = bi = 0 and ai = bi = 1. Eliminating the trivial case where every di is
necessarily 1, there are only three possibilities for distinct a, b:

D1(a, b) = (x1, x2, . . . , xk) where xi = 1 if ai 
= bi and 0 otherwise.
D2(a, b) = (y1, y2, . . . , yk) where yi = 0 if ai = bi = 1 and 1 otherwise.
D3(a, b) = (z1, z2, . . . , zk) where zi = 0 if ai = bi = 0 and 1 otherwise.

Note that we need not really consider D3, as D2 and D3 are symmetric with
respect to negation of attributes. Note further that the definitions of the out-
put DC may vary from coordinate to coordinate of 2k. Routine computation
establishes the following result. thus showing that each Di is an ultrametric.

Theorem 1. For i = 1, 2, or 3 and h = (h1, h2, . . . , hk), {(a, b) : Di(a, b) ≤
h} is a transitive relation.

An ordinary DC called the ”simple matching coefficient” for objects a and
b is related to our D1. It just counts up the number of attributes in which
x, y differ and divides by the total number of attributes. Thus if we compute
D1(a, b) and just add up the resulting vector and divide by k, we have the
result of the simple matching coefficient. There are of course other rather
different ways of measuring a dissimilarity between binary attributes.

Example 1. We illustrate with an intuitive, easily understood example. Con-
sider the set E consisting of the first nine integers. We wish to classify E by
considering various properties that these integers might enjoy. These proper-
ties are the attributes we shall utilize. Here are some we might consider:

o odd
s perfect square
p prime
c perfect cube
t multiple of three

This leads to the attributes presented in Table 1. The idea is that an entry
of 1 indicates presence of the attribute, while 0 denotes absence.

The reader should bear in mind that cluster analysis does not give a
definitive structure for a data set; it just suggests plausible clusters. The D1

DC appears in Table 2, and the D2 DC in Table 4. Table 3 puts in bold
type the links that are made at level 11100, thus demonstrating the induced
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clusters {18}, {2457}, {369}. Let’s look at the effect of D1 and D2 at level
11110. Here D2 has as its only nontrivial cluster {369}, while D1 has this
cluster together with its complement {124578}. To obtain the clusters for
01110, one would intersect the clusters for 01111 with those for 11110.

object o s p c t

1 1 1 0 1 0
2 0 0 1 0 0
3 1 0 1 0 1
4 0 1 0 0 0
5 1 0 1 0 0
6 0 0 0 0 1
7 1 0 1 0 0
8 0 0 0 1 0
9 1 1 0 0 1

Table 1. Attributes for the first nine integers.

D1 1 2 3 4 5 6 7 8 9

1 00000 11110 01111 10010 01110 11011 01110 11100 00011
2 11110 00000 10001 01100 10000 00101 10000 00110 11101
3 01111 10001 00000 11101 00001 10100 00001 10111 01100
4 10010 01100 11101 00000 11100 01001 11100 01010 10001
5 01110 10000 00001 11100 00000 10101 00000 10110 01101
6 11011 00101 10100 01001 10101 00000 10101 00011 11000
7 01110 10000 00001 11100 00000 10101 00000 10110 01101
8 11100 00110 10111 01010 10110 00011 10110 00000 11011
9 00011 11101 01100 10001 01101 11000 01101 11011 00000

Table 2. Illustration of the D1 coefficient for the nine integers.

D1 1 2 3 4 5 6 7 8 9

1 00000 11110 01111 10010 01110 11011 01110 11100 00011
2 11110 00000 10001 01100 10000 00101 10000 00110 11101
3 01111 10001 00000 11101 00001 10100 00001 10111 01100
4 10010 01100 11101 00000 11100 01001 11100 01010 10001
5 01110 10000 00001 11100 00000 10101 00000 10110 01101
6 11011 00101 10100 01001 10101 00000 10101 00011 11000
7 01110 10000 00001 11100 00000 10101 00000 10110 01101
8 11100 00110 10111 01010 10110 00011 10110 00000 11011
9 00011 11101 01100 10001 01101 11000 01101 11011 00000

Table 3. D1 clusters at level 11100.
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There are of course many other ways of defining a Boolean dissimilarity.
For example, one could use a symmetric order preserving Boolean function
f : 2k×2k → 2j where 1 ≤ j ≤ k.

D2 1 2 3 4 5 6 7 8 9

1 00101 11111 01111 10111 01111 11111 01111 11101 00111
2 11111 11011 11011 11111 11011 11111 11011 11111 11111
3 01111 11011 01010 11111 01011 11110 01011 11111 01110
4 10111 11111 11111 10111 11111 11111 11111 11111 10111
5 01111 11011 01011 11111 01011 11111 01011 11111 01111
6 11111 11111 11110 11111 11111 11110 11111 11111 11110
7 01111 11011 01011 11111 01011 11111 01011 11111 01111
8 11101 11111 11111 11111 11111 11111 11111 11101 11111
9 00111 11111 01110 10111 01111 11110 01111 11111 00110

Table 4. Illustration of the D2 coefficient for the nine integers.

4 Formal concept analysis

It turns out that the notion of Boolean dissimilarity fits nicely into a general
theory designed to help gain insight into the structure of complicated data
sets. Before seeing how this works, we present a quick general introduction to
the subject. An early reference to what we discuss can be found in Birkhoff
(1967). An elegant, but much more formal treatment occurs in Ganter and
Wille (1999). A concise lattice theoretic introduction may be found in Davey
and Priestley (1960). The elementary treatment we give here will be self-
contained, and will follow that of Davey and Priestley (1960). Let G and M

be nonempty sets, with ⊥⊆ G×M a binary relation from G to M. The triple
(G,M,⊥) is called a formal context. The members of G are called objects and
the members of M are called attributes. For A ⊆ G, B ⊆ M, we let

A⊥ = {m ∈ M : a ⊥ m for all a ∈ A}, B⊥ = {g ∈ G : g ⊥ b for all b ∈ B}.

The pair (A,B) is called a formal concept of the context (G,M,⊥) if B = A⊥

and A = B⊥. A is called the extent and B the intent of (A,B). We agree
to let B = B(G,M,⊥) denote the collection of all concepts of the context
(G,M,⊥).

Example 2.

(a) Take G and M to be the set I of integers, and a ⊥ b to mean that a−b is a
multiple of 2. If E is the set of even integers and O the set of odd integers,
assume A 
= ∅. Then if A ⊆ E, A⊥ = E, if A ⊆ O, A⊥ = O, and otherwise
A⊥ = ∅. Thus B has four elements: (∅, I), (I, ∅), (E,E), and (O,O).
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(b) Now let G = M denote the positive integers. Write g ⊥ m to indicate
that g is a factor of m. For A 
= ∅, A ⊆ G, A⊥ is then the set of common
multiples of A, and if B ⊆ M, B⊥ is the set of common divisors of the
members of B.

(c) Let G be a collection of real-valued functions, and M the real numbers.
Define ⊥ by f ⊥ x if f(x) = 0. Let A 
= ∅. Thus if A ⊆ G, A⊥ is the
set of numbers that are roots of all functions in A. If B is any set of real
numbers, B⊥ is the set of functions that have every member of B as a
root.

(d) Here is an example with a slightly different flavor. Let G denote the first
9 integers, and M the following set of attributes: {odd (o), perfect square
(s), prime (p), perfect cube (c), multiple of three (t) }. Say that i ⊥ m if
the integer i has the property m. Thus ⊥ is given by Table 1. The number
1 in row i and column j denotes the fact that object i has attribute j,
while a 0 denotes the fact that it does not have attribute j. This of course
is just Example 1 from Section 3 recast into a Formal Concept Analysis
problem. We will have more to say about this example in a moment, but
first we need to develop some machinery.

There is nothing new in the next Theorem. All of it can be found in
Birkhoff (1967), for example, in the discussion of Galois connections. For
completeness, we include a proof of this theorem.

Theorem 2. Let (G,M,⊥) be a formal context. For A ⊆ G, B ⊆ M, the
following assertions are true:

(i) A1 ⊆ A =⇒ A⊥ ⊆ A⊥
1 , and B1 ⊆ B =⇒ B⊥ ⊆ B⊥

1 .
(ii) A ⊆ A⊥⊥ and B ⊆ B⊥⊥.
(iii) A⊥ = A⊥⊥⊥ and B⊥ = B⊥⊥⊥.
(iv) A = A⊥⊥ ⇐⇒ A = B⊥ for some B ⊆ M, and B = B⊥⊥ ⇐⇒ B = A⊥

for some A ⊆ G.

Proof: (i) If A1 ⊆ A, and a ⊥ b for all a ∈ A, then surely a ⊥ b for
all a ∈ A1. This shows that A⊥ ⊆ A⊥

1 ; a similar argument establishes the
remaining assertion of (i).

(ii) If a ∈ A, then a ⊥ b for all b ∈ A⊥. But this says that a ∈ (A⊥)⊥ =
A⊥⊥. Similarly, B ⊆ B⊥⊥.

(iii) By (ii), A ⊆ A⊥⊥. Apply ⊥ to this and use (i) to get that A⊥⊥⊥ ⊆ A⊥.
A second application of (ii) shows that A⊥ ⊆ (A⊥)⊥⊥. Similarly, B⊥ =
B⊥⊥⊥.

(iv) If A = A⊥⊥, take B = A⊥, and note that A = B⊥. If A = B⊥ for
some B ⊆ M, then A = A⊥⊥ follows from (iii). The final assertion follows in
a symmetric way.
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For A ⊆ G, B ⊆ M, we say that A is closed if A = A⊥⊥; similarly, B is
closed if B = B⊥⊥. The closed sets are often of interest. Theorem 2 has a
number of important consequences. If A ⊆ G, then A⊥ is a closed subset of
M, and if B ⊆ M, then B⊥ is a closed subset of G. The mapping A �→ A⊥

from the closed subsets of G onto the closed subsets of M is one-one and
order inverting. It has as its inverse the mapping B �→ B⊥ from the closed
subsets of M into the closed subsets of G. An easily understood (but not
computationally efficient) method for finding all closed sets can be based on
the following observations:

Corollary 1. If A ⊆ G, then A⊥ =
⋂
{a⊥ : a ∈ A}.

If B ⊆ M, then B⊥ =
⋂{b⊥ : b ∈ B}.

Thus to determine all sets of the form A⊥⊥, we simply form the closed sets
m⊥ with m ∈ M, and then look at all nonempty intersections of these sets.
We illustrate the technique with Example 2 (d). We begin by considering the
singleton members of M.

o⊥ = {1, 3, 5, 7, 9} s⊥ = {1, 4, 9}
p⊥ = {2, 3, 5, 7} c⊥ = {1, 8}
t⊥ = {3, 6, 9}

If we form nonempty intersections of these sets, we can find the remaining
closed subsets. This will establish the extents of the various formal concepts.

{o, s}⊥ = {1, 9} {o, p}⊥ = {3, 5, 7}
{o, c}⊥ = {1} {o, t}⊥ = {3, 9}
{s, c}⊥ = {1} {s, t}⊥ = {9}
{p, t}⊥ = {3}

To obtain the corresponding intents, we note that

{1, 3, 5, 7, 9}⊥ = {o} {1}⊥ = {o, s, c} {1, 4, 9}⊥ = {s}
{3, 9}⊥ = {o, t} {2, 3, 5, 7}⊥ = {p} {3, 5, 7}⊥ = {o, p}
{1, 8}⊥ = {c} {9}⊥ = {o, s, t} {3, 6, 9}⊥ = {t}
{3}⊥ = {o, p, t} {1, 9}⊥ = {o, s}

Because of Theorem 2, the concepts can be partially ordered by the rule
(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2. When this is done, the set B(G,M,⊥)
forms a complete lattice with meet operation ∧ and join operation ∨ such
that

(A1, B1) ∧ (A2, B2) = (A1 ∩A2, (B1 ∪B2)
⊥⊥)

(A1, B1) ∨ (A2, B2) = ((A1 ∪A2)
⊥⊥, B1 ∩B2).

When this is done, the largest element of B is (G, ∅) and its smallest element
is (∅,M). The immediate goal for a given formal context will generally be
to explicitly determine the lattice B of formal concepts. For the nine integer
example, the nonempty extents of this lattice are depicted in Figure 1. The
effect of making D2(x, x) = 0 for all x is illustrated in Figure 2. Note that it
just involves the insertion of six new singleton clusters to Figure 1.
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Fig. 1. Nonempty extents of the nine integer example.
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Fig. 2. Clusters for the nine integer example. with D2(x, x) = 0.

But something interesting has happened. If we define D2 using (GD2′′),
the cluster analysis results coincide with the formal concept approach. Since
this is generally true, Formal Concept Analysis may be viewed as a special
case of a Boolean dissimilarity. This also suggests that in the formal concept
setting, it may be useful to associate with selected singleton attributes a
bipartition. This would relate the analysis to D1 as well as D2.

The connection between Boolean dissimilarities and formal concept anal-
ysis may now be easily described. Starting with a Boolean DC D : E×E → 2k,
we form a formal concept by taking as objects the pairs of members of E, and
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saying that xy has attribute i if the i-th component of D(x, y) is 1. Suppose
on the other hand that (G,M,⊥) is a formal context. The associated Boolean
DC is what we called D2 in Section 3. Though this relates formal concept
analysis to a type of cluster analysis, it most certainly does not imply that
the subject should be approached from that vantage point.

5 Complete linkage clustering with DCs measured in a
poset

We just sketch a possible algorithm for complete linkage clustering based on
a poset L. We assume we are working with a finite set, and that L is the
image of the input DC D.

Step 1. At each minimal element m of L, form S(m) by making all
possible mergers of objects linked at level m.

Step 2. At each level k, assume all levels h < k have been processed,
and that S(h) has been formed. Preserve all clusters formed by any S(h),
where k covers h in the sense that k > h and there is no j such that
k > j > h. When clusters A, B have a nonempty intersection, we merge
them to form a single cluster A∪B, repeating this as needed. Now look at
the extra links implied by level k. If they lead to any new clusters, form
them. The complete linkage algorithm states that A and B are merged
only if all links between members of A and members of B have been
formed, or if A, B overlap.

We mention that this implementation is based on the Jardine-Sibson algo-
rithm for complete linkage clustering as explained in Jardine and Sibson
(1971).
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Abstract. This paper further extends the ‘kernel’-based approach to clustering
proposed by E. Diday in early 70s. According to this approach, a cluster’s centroid
can be represented by parameters of any analytical model, such as linear regression
equation, built over the cluster. We address the problem of producing regression-
wise clusters to be separated in the input variable space by building a hybrid
clustering criterion that combines the regression-wise clustering criterion with the
conventional centroid-based one.

1 Introduction

This paper addresses the issues emerging in regression-wise prediction when
the sample is not homogeneous or the dependence between the response and
input variables is not linear. This type of problem emerges, for example, in the
quantitative analysis of relationships between structural features of chemical
compounds and their biological activities; this field of research is convention-
ally referred to as Quantitative Structure-Activity Relationships (QSAR). In
such a situation traditional methods of cluster-analysis such as k-means clus-
tering may not work very well because they capture overall similarities rather
than those related to the prediction. In early 70s, E. Diday proposed that a
similar way of carrying out cluster analysis can be performed in such situa-
tions too (see, for example, Diday (1974)). The nature of the ‘centroid’ must
just be redefined in such a way that any analytical data model, including
those of regression or principal component analyses, can become the ‘cen-
troid’, or ‘kernel’ of a cluster of entities under consideration (Diday (1974,
1989)).

It is exactly this approach that we are going to pursue for building a clus-
tering better suited for prediction. There is an issue in using the regression-
wise clustering for predicting compound activities: the clusters are built in
the augmented space of input-response variables, but prediction is to be made
based on only the input variables. When, in a typical situation, projections
of the clusters to the input variables space overlap, the determination of
which of the regression models to apply to an observation may become of an
issue. To address this, we further advance in the kernel-based approach to
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combine the regression-wise with conventional centroid-based clustering so
that the clusters found may be more separated in the space of input vari-
ables. The combined clustering criterion is referred to as the hybrid k-means
criterion here. To assure that no overlaps may occur at all, we supplement
the hybrid model with a post-processing option involving one iteration of
the centroid-based k-means applied to the results of the hybrid model in the
input variables space so that the resulting clusters are indeed separated in
the input space. Another post-processing option involves application of the
conventional k-means until convergence.

We present experimental results showing that such a modification indeed
reduces the prediction error and find that there is an intermediate value of
the hybrid model mixing coefficient leading to the best results.

The remainder is organised as follows. The hybrid criterion is introduced
in section 2, after the conventional and regression-wise k-means clustering are
defined. Our extension of k-means methods to the hybrid model is described
in section 3. Section 4 presents experimental results and conclusions based
on them.

2 The hybrid k-means criterion

We first present a brief recap on the formulation of the k-means algorithm, in
preparation for deriving the variants that we shall use. The k-means family
of algorithms iteratively optimise a model (of the dataset under consider-
ation) as K clusters. This cluster model comprises a membership element,
assigning each member of the dataset to one of the clusters, and a centroid
element, which describes each cluster. Iteration of the algorithm proceeds by
alternately optimising memberships (leaving centroids fixed) and optimising
centroids (leaving memberships fixed).

The optimisation within the k-means algorithm is performed according to
a loss function or ‘criterion’ to be minimised. In the standard ‘distance-wise’
formulation of k-means in the linear space of some finite feature set V , the
loss function is the summary squared Euclidean distance from each point xi

in the dataset to the centroid ck(i) of its assigned cluster k(i).

Ldist (X,C, k) =
N∑

i=1

∑

v∈V

(xi,v − ck(i),v)2 (1)

At each step the minimisation of this loss function can be solved directly.
With the membership function k fixed, the optimal ck,v is the mean value of
xi,v over those points for which k(i) = k; in other words the optimal ck is the
centroid of cluster k, justifying the terminology. On the other hand, with the
centroids fixed, the optimal cluster k(i) to which point xi may be assigned
is the cluster k whose centroid ck is closest to xi. The algorithm terminates
when the loss function fails to decrease, so the cluster model has ‘converged’
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to a local (although not in general global) optimum. (Termination will nec-
essarily occur eventually because there are only finitely many configurations
of the membership function k.)

Variants of the k-means algorithm can be constructed by introducing
different loss functions (Diday (1974)). To remain within the ‘alternating
optimisation’ spirit of the k-means algorithm, we consider loss functions of
the following form:

L(X,C, k) =

N∑

i=1

l(xi, ck(i)) (2)

This formulation encompasses standard distance-wise k-means via taking
l to be the squared Euclidean distance. Note that in general, however, the
generalised ‘centroids’ ck need not lie in the same space as the data points
xi as explained in Diday (1974, 1989).

Regression-wise k-means fits perfectly within this form. This variant of
k-means applies to data points xi in the linear space of some feature set V
as before, but augmented with an associated output or ’activity’ value yi.
The intention is that the activity values will be modelled as functions of the
feature values xv. Instead of approximating each point in a cluster k by the
cluster’s centroid ck, we model the cluster using a linear regression model
y ≈ ∑

v ak,vxv + bk. We then use a squared-error loss function, measuring
the summary squared distance along the activity component in augmented
feature-activity space from each point to its cluster’s regression hyperplane:

Lreg([X,y], [A,b], k) =

N∑

i=1

(yi − (aT
k(i)xi + bk(i)))

2 (3)

With the membership function k fixed, the optimal cluster regression
models [ak, bk] can again be computed directly, in this case by solving the
following linear system (which is none other than the normal equations for
multivariate linear least squares regression; see, for example, Tabachnik and
Fidell (2006)):

∑

i:k(i)=k

xix
T
i ak +

∑

i:k(i)=k

xibk =
∑

i:k(i)=k

xiyi

∑

i:k(i)=k

xT
i ak +

∑

i:k(i)=k

bk =
∑

i:k(i)=k

yi (4)

As usual, with the generalised ‘centroids’ fixed, the optimal membership
assignment k is that which assigns each point [xi, yi] to the cluster k minimis-
ing the loss (yi−(aT

k(i)xi+bk(i)))
2, i.e. the cluster whose regression hyperplane

is closest (along the activity axis).
If (for a cluster k) the linear system (4) turns out to be singular, for ex-

ample because the size of the cluster has fallen below the number of features,
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then the only option is to ‘dissolve’ the cluster: its generalised centroid [ak, bk]
is left undefined, and it is excluded from the pool when cluster memberships
are reassigned in the next and subsequent iterations.

It is straightforward to see that k-means criteria are additive in the sense
that, given two loss functions of the above form, their sum is also a valid
k-means criterion of this form, distributing over the contributions from each
point in the dataset. We may then define ‘hybrid k-means’ to be k-means
clustering performed according to the following combined loss function:

Lhyb = (1 − p)Ldist + pLreg (5)

3 Methods

Regression-wise k-means can be viewed as training a composite model for
activity (y) values in terms of the feature values (x). The model is composite
in the sense that, on each cluster, a separate linear model is computed to be
applied on that cluster.

This approach is particularly useful if the activity depends on the fea-
ture values via a number of distinct mechanisms, with different mechanisms
applying in different regions of feature space. It can also be useful if activ-
ity depends on the feature values in a non-linear fashion: the regression-wise
clustering will effectively partition the model’s non-linear hypersurface in
augmented feature-activity space into approximately linear regions.

It should therefore, in principle, be possible for such a composite model
resulting from regression-wise k-means to be used for prediction of activity
for new points in feature space (whose activity value is not a priori known).
Applying the composite model to a new point x would consist of the following
steps:

1. Classification: Determine the cluster k to which x should belong.
2. Evaluation: Evaluate the predicted activity as y = aT

k x + bk according
to the regression model for cluster k.

The difficulty with this approach, when based on regression-wise clus-
tering, lies in the classification step. Determination of cluster membership
according to the regression-wise k-means criterion (3) is defined for a point
[x, y] in the augmented space, but this dependence on y is circular as y is the
unknown we are trying to predict in the first place.

The essence of the problem is that the clusters are defined in augmented
space, and so can overlap substantially when projected onto feature space.
The solution is to use the hybrid k-means criterion defined in the previous
section: the algorithm will then run with a dominant element of distance-wise
k-means, promoting separation of clusters in feature space, but retaining
a contribution (proportion p) of the regression-wise criterion to guide the
clusters towards regions of linearity.
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To enable the prediction-time classification in feature space only, we can
then follow the hybrid k-means (once it has converged) with one additional it-
eration with p = 0, i.e. according to the distance-wise criterion only. This sup-
plementary iteration – updating memberships then updating centroids/models
– will guarantee that the cluster partitioning is defined in terms of feature
space only (with no dependence on activity), and that the cluster-specific
linear regressions are optimal for the clusters thus defined.

An alternative resolution to compare would be to follow the hybrid k-
means (again once it has converged) with as many additional iterations with
p = 0 as are required until it converges again. This is effectively pure distance-
wise k-means, but with hybrid k-means run as a preprocessing step; this is
an attempt to orient the initial clusters towards regions of feature space on
which separate linear models for activity apply.

Regression-wise and hybrid k-means share with standard distance-wise
k-means the requirement for an initial cluster assignment k.

We propose that this initialisation be achieved using Anomalous Pattern
Clustering (which also determines the number K of clusters to use), as incor-
porated into the so-called Intelligent k-means Algorithm by Mirkin (2005).
This Anomalous Pattern Clustering, which itself makes use of a variant of
2-Means to extract the initial clusters, should be applied using the standard
distance-only criterion Ldist .

4 Results

Ten datasets, each with 5000 points in ten-dimensional feature space aug-
mented with one activity component, were generated randomly. Each dataset
was generated with an underlying structure of five clusters, with the clusters’
sizes chosen uniformly at random within the simplex of possible relative sizes.
Each cluster was assigned a randomly generated mean and spread tensor,
based on which the cluster contents were generated according to the multi-
variate normal distribution. Each cluster was also randomly assigned a linear
activity model and an activity error variance; activity values for the points
in the cluster were generated according to this linear model with random
perturbations according to the error variance.

Each dataset was clustered according to the hybrid k-means algorithm
using the criterion derived in section 2, the clustering having first been ini-
tialised according to Anomalous Pattern Clustering. Results were output at
this stage, and again after one supplementary iteration of k-means, the Min-
imum distance assignment, was performed with no regression-wise contribu-
tion. The k-means algorithm was then allowed to proceed with no regression-
wise contribution until convergence was achieved again, after which the re-
sults were output for a third and final time.

This procedure was repeated (for each dataset) for several values of p, the
relative proportion of the regression-wise contribution.
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At each stage, the following results were generated:

1. Regression-wise criterion, expressed as an explained proportion:

1 − Lreg/Lreg(worst)

2. Hybrid criterion, expressed as an explained proportion:

1 − Lhyb/Lhyb(worst)

3. Distance-wise criterion, expressed as an explained proportion:

1 − Ldist/Ldist(worst)

4. Mean relative error of prediction: mean value of

|yi;predicted − yi|/yi

over all structural features i, where the predicted value is according to the
regression model of the structure’s cluster in the current configuration.

In the above, the ‘worst’ configuration (used for normalising the criterion
values) is that obtained using a single cluster and a constant (flat) regression
model, leading to the maximum (worst) possible value of the criterion.

Table 1 below presents the mean relative errors of prediction for all
datasets at all three stages, for the various values of p under consideration.
Mean values over all ten datasets are also included.

The prediction results for the ’original’ hybrid k-means (top value in each
cell) show a strong decreasing trend (i.e. improvement) as p starts to increase
from zero. This is unsurprising, as the relative prediction error closely cor-
responds to the regression-wise k-means criterion (3). Note that this stage’s
‘prediction’ results have a somewhat artificial advantage as they are based
on a cluster assignment that in turn depends on prior knowledge of the ac-
tivity values. Even so, as p continues to increase towards 50%, the decreasing
trend in prediction errors is not maintained (and even reversed for several
datasets), suggesting that a relentlessly large regression-wise contribution is
not aiding the modelling, and that retaining a distance-wise contribution is
significantly beneficial in divining the underlying structure of the dataset.

As we would expect, performing the supplementary distance-only itera-
tion of k-means causes the predictive results (centre value in each cell) to
worsen. This is because we are now effectively forgoing our ’unfair’ prior
knowledge of the activity values and basing the cluster selection on fea-
ture values and cluster centroids alone. Here we observe, for most of the
datasets (and for the mean), a trend in which the predictive power improves
as p starts to increase from zero then worsens again as p becomes too large.
For any dataset, a value of p specific to that dataset should then be chosen
to minimise the prediction errors, expressing the optimal trade-off between
regression-wise guidance and distance-wise cluster separation.
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Mean Relative Prediction Error
Dataset p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5

1 2.0865 1.5636 1.3256 0.6849 0.5302 0.5673
2.0865 2.0125 1.9633 1.9708 2.0743 2.1780
2.0865 2.0839 2.0534 2.0534 2.0560 2.0560

2 0.8609 0.5667 0.5353 0.5582 0.5423 0.5381
0.8609 0.9819 0.8698 1.0281 0.9231 0.9405
0.8609 0.8909 0.8902 0.7512 0.7509 0.9148

3 0.4919 0.4072 0.4075 0.4104 0.4080 0.3762
0.4919 0.5639 0.5516 0.5514 0.5533 0.5389
0.4919 0.4919 0.4919 0.4919 0.4919 0.4919

4 0.5529 0.4333 0.4219 0.4185 0.4197 0.4200
0.5529 0.5528 0.5628 0.5153 0.5456 0.5564
0.5529 0.5528 0.5628 0.5327 0.5330 0.5328

5 0.3150 0.1817 0.1864 0.1747 0.1545 0.1539
0.3150 0.3199 0.3152 0.3202 0.3149 0.3157
0.3150 0.3200 0.3200 0.3201 0.3201 0.3200

6 0.8154 0.5500 0.3196 0.3512 0.3738 0.3651
0.8154 0.8012 0.5979 0.5677 0.5954 0.5942
0.8154 0.8214 0.5770 0.4339 0.4048 0.5913

7 0.7504 0.4859 0.3332 0.4152 0.5957 0.5252
0.7504 0.5733 0.5748 0.5082 0.5879 0.6339
0.7504 0.5743 0.5539 0.5583 0.5814 0.5814

8 0.3790 0.2697 0.2257 0.2110 0.2088 0.2026
0.3790 0.4102 0.4276 0.4605 0.4666 0.4322
0.3790 0.3964 0.3955 0.3997 0.3960 0.3584

9 0.1625 0.1607 0.1624 0.1628 0.1633 0.2831
0.1625 0.1625 0.1625 0.1625 0.1605 0.2176
0.1625 0.1625 0.1625 0.1625 0.1625 0.1625

10 1.5186 0.5604 0.5875 0.4545 0.4115 0.5007
1.5186 0.9123 0.9341 0.8754 0.9154 1.0462
1.5186 0.8755 0.9003 0.9253 0.9155 0.9140

Mean 0.7933 0.5179 0.4505 0.3841 0.3808 0.3932
0.7933 0.7290 0.6959 0.6960 0.7137 0.7453
0.7933 0.7170 0.6908 0.6629 0.6612 0.6923

Table 1. Mean Relative Prediction Errors at different values p. Three reals in
each cell present: original error of the hybrid model (top), that after one distance-
wise iteration (middle), and the error of the hybrid model post-processed with the
distance-wise k-means until convergence (bottom).
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The alternative scheme of carrying through the supplementary distance-
only k-means until convergence is achieved again yields similar, even slightly
better, results. (See bottom value in each cell.) The point at which contin-
uing to increase the proportion p of regression-wise contribution starts to
have a detrimental effect tends to occur later than it did with only a single
supplementary distance-only iteration (around 0.4 rather than 0.3). This can
be explained by the fact that performing a greater amount of distance-based
post-processing is better able to overcome a heavier regression-wise bias in
the initial processing.

Overall, the following conclusions can be made from these experiments:

1. The proposed hybrid-based method indeed allows for a significant, 10%-
20%, reduction of the relative prediction error. On average, the error
decreases from 79% at only the centroid-based k-means to 66%.

2. On average, the option of post-processing with the conventional centroid-
based k-means works better. However, when the error of the hybrid model
is high (as at datasets 1 and 10), the option of applying the Minimum
distance rule once only leads to better results.

3. The best reduction of the error is achieved with the value of the compro-
mise coefficient p at about 0.3.

Table 2 presents the values of the regression-wise, hybrid, and distance-
wise k-means criteria (averaged over the ten datasets) at the three stages
of analysis. The values in this table demonstrate the degree to which the
distance-wise criterion is boosted, to the detriment of the regression-wise cri-
terion, as the supplementary distance-only k-means iterations are performed.

Values of the criteria at
Criterion p=0 p=0.1 p=0.2 p=0.3 p=0.4 p=0.5

regression- 0.9777 0.9954 0.9962 0.9965 0.9967 0.9967
wise 0.9777 0.9806 0.9798 0.9792 0.9783 0.9783

0.9777 0.9812 0.9828 0.9816 0.9817 0.9825

hybrid 0.6533 0.9672 0.9824 0.9880 0.9910 0.9927
0.6533 0.9548 0.9676 0.9719 0.9736 0.9751
0.6533 0.9555 0.9707 0.9744 0.9771 0.9794

distance- 0.6533 0.6388 0.6239 0.6108 0.5979 0.5814
wise 0.6533 0.6512 0.6494 0.6461 0.6455 0.6442

0.6533 0.6531 0.6529 0.6514 0.6540 0.6540

Mean 0.7933 0.5179 0.4505 0.3841 0.3808 0.3932
predictive 0.7933 0.7290 0.6959 0.6960 0.7137 0.7453
error 0.7933 0.7170 0.6908 0.6629 0.6612 0.6923

Table 2. Values of the criterion of each of the considered models, centroid-wise,
regression-wise and the hybrid one, at different values p. Three reals in each cell
present: the criterion value after running the hybrid k-means to convergence then
stopping (top), that after a supplementary step of one distance-wise iteration (mid-
dle), and the error of the hybrid model post-processed with the distance-wise k-
means until convergence (bottom).
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Obviously our conclusions are based on a rather limited set of experi-
ments. In the future, we are going to, first, extend the simulated data models
to other common distributions and, second, apply the hybrid model to real
data.
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Abstract. We propose a clustering algorithm using particle swarm optimization
(PSO) for partitioning a set of objects in K clusters, by defining a familiy of agents–
partitions, each agent is defined by K centroids in a p–dimensional space; a centroid
has an associated cluster, which is defined by the allocation of the objects to the
nearest centroid. The agents move in the space according to PSO principles, that
is, they move with random intensity in the direction of a vector called velocity,
which results from the random sum of the best past position of this agent, the best
overall agent, and the last direction. We compare the performance of the method
with other heuristics also proposed by the authors, and with two classical methods.

1 Introduction

Let Ω = {x1, . . . ,xn} ⊂ Rp be a set of n objects described by p quantitative
or numerical variables. The search of the best partition P = (C1, . . . , CK) of
Ω in K classes is generally made by the minimization of the within–clusters
inertia or variance criterion:

W (P ) =

K∑

k=1

∑

i∈Ck

‖xi − gk‖2 (1)

where gk is the centroid or barycenter of cluster Ck and g is the overall
center of gravity or barycenter of Ω, ‖ · ‖ being a norm that defines an
Euclidean distance. It is well known that this minimization is equivalent to the
maximization of the between–clusters inertia: B(P ) =

∑K
k=1 ‖gk − g‖2/|Ck|,

where g is the overall center of gravity or barycenter of Ω and |Ck| is the
cardinality of Ck. The monotonicity of criterion (1) implies that the number
K of clusters must be defined in advance.

The search of the best partition in K clusters of Ω is a combinatorial
problem with exponential complexity, and hence efficient heuristics should
be used in order to find good quality solutions in a reasonable amount of
time. Among the most popular methods, there is the k–means or dynamical
clusters, or any of its variants; it has the disadvantage that is is deterministic
and therefore depends directly on the initial partition, hence it may often
be traped in local minima. Some authors use also hierarchical clustering (for
example, using Ward’s criterion) and cut the dendrogram in an appropriate
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level in order to have the desired number of clusters; however, hierarchical
methods also obtain local minima because most ascending algorithms are
greedy, and moreover the hierarchical tree imposes inclusion constraints and
makes an approximation of the original distance by an ultrametric distance
(see Diday et al. (1982)).

Trejos et al. (1998) deal with the problem of partitionng using mod-
ern combinatorial optimization heuristics, such as simulated annealing, tabu
search and genetic algorithms, obtaining clearly better results than k–means
and Ward’s hierarchical methods. Pacheco et al. (2004) has made an ex-
haustive comparison, with a Monte–Carlo simulation study, confirming the
results. More recently, Trejos et al. (2004) have used the ant colony optimiza-
tion heuristic with very good results. We have also applied these techniques
in some other clustering problems, such as binary data in Piza et al (2000),
and two–mode or crossed classification (Trejos and Castillo (2000), Castillo
and Trejos (2002)), obtaining always better results than traditional methods.
We have also studied the use of these heuristics in some other data analysis
problems, such as multidimensional scaling (Groenen et al. (2000), Trejos
et al. (2000)), non linear regression (Villalobos et al. (2006)) and oblique
varimax rotations (Trejos (1993)), with good results.

In this article, we deal with the problem of minimizing W (P ) by the use
of Particle Swarm Optimization (PSO), Kennedy and Eberhart (2000). Next
section contains a brief description of the methods to be compared. In section
3 we present the general model of PSO. In section 4 we show the details of our
implementation of PSO in partitioning, and we present comparative results
in section 3. Finally, in section 6 we conclude and suggest some forthcoming
work.

2 Methods and heuristics in partitioning

We will not describe the well known k–means and Ward’s hierarchical meth-
ods which are very well presented in Diday et al. (1982). We will only de-
scribe shortly the methods defined by the authors, based on combinatorial
optimization heuristics.

2.1 Simulated annealing

It is an iterative optimization method that uses an external parameter T
called temperature, that controls the acceptation of new states that give worse
cost values, by the use of the so called Metropolis rule: a new state is accepted
if W (P ) decreases, otherwise it is accepted with probability exp(−∆W/T ).
It can be demonstrated —with a Markov chain modeling— that the method
converges asymptotically to the global optimum. For a good implementation,
four parameters must be handled (initial temperature, final temperature,
decreasing rate of temperature, and length of Markov chains), as well as an
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easy way to compute ∆W . In partitioning (see Trejos et al. (1998)), a new
partition (or state) P ′ is generated from a current partition P by a transfer:
(i) an object xi is chosen at random in Ω, (ii) a class index k is chosen at
random, (iii) put xi in class Ck. For convergence, reversibility (P can be
generated from P ′ with the same probability that P ′ is generated from P )
and connectivity (any partition can be generated from the current partition
by a finite number of transfers) are satisfied; also, all neighborhoods have the
same size n(K − 1).

2.2 Tabu search

It is an optimization technique based on the search of neighbors of a state
and the choice of the best neighbor, whether or not it is better than the
current state. A tabu list is handled, in order to avoid the access to states
similar to states recently visited. It may include some variants that improve
the technique (aspiration criteria, use of elite states, random generation of
neighbors, ...) For partitioning (see Trejos et al. (1998)), we define a state as a
partition of Ω in K classes and a move consists in building a neighborhood of
partitions defined by the transfer of a single object into a new class. The tabu
list contains the indicators of classes where the transfered objects belong.

2.3 Genetic algorithm

It is a multiagents method that handles symultaneously a set of solutions that
are combined. First, by a roulette wheel mechanism the best solutions are
selected, and then they are combined by means of two operations: crossover
and mutation. In partitioning (see Trejos et al. (1998)), states are represented
by a string of n characters in {1, 2, . . . ,K}, and the fitness function to be
maximized is B(P ), which is used when the roulette wheel is applied. We have
defined the following crossover: with probability pc two parents are chosen
and a class index is randomly chosen for the better one; then, this class index
is imposed to the corresponding objects of the second parent, defining a son.
For the mutation, choose an agent at random with probability pm1 and choose
an object with probability pm2 , then modify randomly the class membership
of that object (this corresponds to a single transfer).

2.4 Ant colonies

Ant colony optimization is based on the metaphore of the way that ants search
for food. It is also a multiagent method and is based on a reinforcement step,
for growing up the probability of good solutions (or parts of solutions). This
is performed with a pheromone trail and a visibility part, that define the
probability of changing from state. Applied to partitioning (see Trejos et al.
(2004)), we handle a population of ants that modify its associated partition,
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local visibility is the inverse of the distance between two objects, and the
pheromone trail is reinforced if two objects belong to the same class and
the between–inertia B(P ) of the corresponding partition is big. The last two
terms are used in the definition of the probability of choosing an object from
another one.

3 Particle swarm optimization

Particle swarm optimization (PSO) as presented in Kennedy and Eberhart
(2000) is based on the iterative use of a set of agents or particles that corre-
spond to states in an optimization problem, moving each agent in a numerical
space looking for the optimal position. A particularity of PSO is that agents
communicate and hence —as in a social system— an agent with a good posi-
tion (measured by its objective function value) influences on the other ones,
attracting them.

3.1 Principles of PSO

A set of M particles is handled in a multidimensional space and it is inteded
to model social behavior, in the sense that each particle tries to improve
its performance according to its own experience and the experience of its
environment. Indeed, each particle has three tendencies: (i) remember its
best historial position, so that in a conservative way the particle will try to
go back to this position; (ii) following the particle’s inertia, will try to continue
with its present tendency; and (iii) will try to imitate its best neighbor.

3.2 Modeling PSO

If zm(t) represents the m–th particle, then its velocity in iteration t + 1 is
defined as

vm(t + 1) = αvm(t) + r1(z
m∗ − zm(t)) + r2(z

∗ − zm(t)) (2)

where vm(t) is the velocity in the preceding iteration, zm∗ is the best historial
position ever obtained by m, z∗ is the best particle ever obtained during the
algorithm, r1 and r2 are random numbers, and α is a parameter. So, we define
the new position of particle m as

zm(t + 1) = zm(t) + vm(t + 1). (3)

Some authors (see Clerc (1998)) have studied conditions for non diver-
gence of PSO. However, there is not yet a proof of convergence to the global
optimum.
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4 Use of PSO in numerical clustering

In Goddard et al. (2002) we had stated the basic ideas about the application
of PSO in partitioning.

We propose an algorithm for the minimization of W (P ) using PSO. For
this, the user defines M agents which correspond to M partitions of Ω in K
classes, agent m being a set of K centroids gm

1 , . . . ,gm
K ∈ Rp. Centroid gm

k

has a class Cm
k associated, by the allocation of the objects in Ω to the nearest

centroid. The centroids move according to the principles of PSO described
in equations (2) and (3), and each partition is redefined by allocation to the
nearest centroid. PSO consists then in moving, by a random intensity, K
centroids in Rp for each agent (or particle), in the direction resulting for the
velocity; there is a parameter Vmax that bounds the move in order to avoid
explosion in the space.

Algorithm PSOClus.
Initiate: read data; define M , Vmax, α, maxiter
Do M times: select at random K objects in Ω as initial centroids and allocate
the remaining objects to the nearest centroid; this makes K classes.
Calculate the barycenters g1

1, . . . ,g
1
K , . . . ,gM

1 , . . . ,gM
K of the classes

Initialize the best value of each particle (denoted (gm∗
1 , . . . ,gm∗

K ))
Initialize the overall leader according to (1), denoted (g∗

1, . . . ,g
∗
K)

Repeat for t = 1, 2, . . . until convergence or maxiter times:
For m = 1 until M do:

Let r1 = random(0, 1), r2 = random(0, 1), rs = r1 + r2
Let r1 = 4.1 ∗ r1/rs, r2 = 4.1 ∗ r2/rs

For k = 1 until K do:
For j = 1 until p do:

Let vm
kj(t) := αvm

kj(t−1)+ r1(g
m∗
kj − gm

kj(t−1))+ r2(g
∗
kj − gm

kj(t−1))
If vm

kj(t) > Vmax then vm
kj(t) := Vmax

Else, if vm
kj(t) < −Vmax then vm

kj(t) := −Vmax

enf-if
gm

kj(t) := gm
kj(t− 1) + vm

kj(t− 1)
end-for(j)

end-for(k)
Allocate all n objects in Ω to the nearest centroid gm

k .
Update vector (gm∗

1 , . . . ,gm∗
K )

end-for(m)
Update vector (g∗

1, . . . ,g
∗
K)

end-repeat-for(t)

5 Comparative results

We have compared our PSOClus algorithm with other partitioning methods
based on heuristics: simulated annealing (SA), tabu search (TS), genetic al-
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gorithm (GA), and ant colony optimization (ACO), as well as with k–means
(KM) and Ward’s hierarchical ascending method (cutting the dendrogram
at the level with the desired number of clusters). Table 4 contains the re-
sults of running the methods on 4 data tables: Scholar notes, Amiard’s fishes,
Thomas’ sociomatrix and Fisher’s iris. Each method has been applied a num-
ber of times indicated in parentheses under the method’s name. K denotes
the number of classes and W the best value of within-inertia obtained in
all runs. The table contains the percentage of times that the corresponding
method has obtained the best value of W in all runs; column corresponding
to Ward’s method indicates whether or not this method has obtained the
best solution.

Scholar Notes (9× 5)

K W PSO SA TS GA ACO kM Ward
(100) (150) (1 000) (100) (25) (10 000)

2 28.2 92 100 100 100 100 12 No
3 16.8 57 100 100 95 100 12 No
4 10.5 51 100 100 97 100 5 Yes
5 4.9 29 100 100 100 100 8 Yes

Amiard’s fishes (23× 15)

K W PSO SA TS GA ACO kM Ward
(100) (150) (200) (100) (25) (10 000)

3 32213 51 100 100 87 100 8 No
4 18281 23 100 100 0 100 9 No
5 14497 6 100 97 0 68 1 Yes

Thomas’ sociomatrix (24 × 24)

K W PSO SA TS GA ACO kM Ward
(100) (150) (200) (100) (25) (10 000)

3 271 7 100 100 85 100 2 No
4 235 7 100 100 24 96 0.15 No
5 202 7 100 98 0 84 0.02 No

Fisher’s Iris (150 × 4)

K W PSO SA TS GA ACO kM Ward
(100) (150) (1 000) (100) (25) (10 000)

2 0.99 76 100 100 100 100 100 No
3 0.52 79 100 76 100 100 4 No
4 0.38 55 55 60 82 100 1 No
5 0.32 28 0 32 6 100 0.24 No

Table 1. Comparative results for PSOClus with simulated annealing (SA), tabu
search (TS), genetic algorithm (GA), ant colonies (ACO), k–means (kM) and
Ward’s dendrogram cut at K clusters on 4 real data tables; W is the best value of
criterion obtained for all methods and the table contains the percentage of times
that value W was obtained for each method.
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We also performed a Monte Carlo study by the generation of random
Gaussian tables in [0, 1]6, with four factors and each one with two levels: the
number of objects (105,525), the number of classes (3,7), the cardinality of
the classes (equal vs. different cardinalities), and the variance of the variables
(equal vs. different variances). The PSOClus method was tested over these
16 tables, as well as the other partitioning methods. All methods used the
same initial partition (those based on multipagents used this partition for
the first element of the population and the remaining initial partitions were
at random).

Table 4 contains the best value of W (P ) found by any method and the
percentage of times (in 100 runs) that any method reached this value; for
Ward’s hierarchical method, it is reported only if the method found the best
value.

n K W ∗ PSO SA TS GA ACO kM Ward

Equal cardinalities
Equal variances

105 3 5,42 100 100 99 100 100 91 yes
105 7 5,15 1 100 74 82 100 19 yes
525 3 5,99 94 100 100 100 100 98 yes
525 7 5,34 1 100 82 88 100 45 yes

Different variances
105 3 13,15 1 100 99 100 100 13 no
105 7 9,90 0 100 51 69 75 1 no
525 3 15,81 1 100 51 82 99 2 no
525 7 8,26 0 100 100 94 100 53 no

Different cardinalities
Equal variances

105 3 5.01 99 100 100 100 100 91 yes
105 7 5.55 1 0 0 35 36 3 yes
525 3 5.67 84 8 100 100 100 95 yes
525 7 5.65 1 0 0 22 38 2 yes

Different variances
105 3 11.73 12 100 100 100 100 95 no
105 7 7.63 0 0 0 37 85 6 no
525 3 13.82 1 3 100 100 100 59 no
525 7 7.46 0 0 0 21 54 0 no

Table 2. Best value of W (P ) for 100 runs of simulated annealing (SA), tabu search
(TS), genetic algorithm (GA), ant colonies (ACO), k–means (KM) and Ward’s
dendrogram cut at K clusters (one single run), on 16 simulated data tables; W
is the best value of criterion obtained for all methods and the table contains the
percentage of times that value W was obtained for each method.

Table 3 contains the average values of W (P ) for the 100 runs.
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n K W ∗ PSO SA TS GA ACO kM Ward

Equal cardinalities
Equal variances

105 3 5.42 5.42 5.42 5.53 5.42 5.42 6.42 5.42
105 7 5.15 6.21 5.15 5.97 5.29 5.15 7.78 5.15
525 3 5.99 5.99 5.99 5.99 5.99 5.99 6.15 5.99
525 7 5.34 6.87 5.34 5.87 5.65 5.34 7.20 5.34

Different variances
105 3 13.15 13.31 13.15 13.18 13.15 13.15 13.50 13.85
105 7 9.90 11.26 9.90 10.10 9.95 9.90 12.79 10.17
525 3 15.81 15.88 15.81 15.81 16.01 15.81 16.14 16.41
525 7 8.26 9.61 8.26 8.26 8.36 8.26 8.63 9.37

Different cardinalities
Equal variances

105 3 5.01 5.01 5.01 5.01 5.01 5.01 6.38 5.01
105 7 5.55 7.62 7.77 11.72 6.77 6.75 10.26 5.55
525 3 5.67 5.67 5.70 5.67 5.67 5.67 5.89 5.67
525 7 5.65 7.49 8.11 10.71 6.89 6.35 8.48 5.66

Different variances
105 3 11.73 11.77 11.73 11.73 11.73 11.73 12.23 11.86
105 7 7.63 9.77 8.65 9.82 8.37 7.68 9.76 7.69
525 3 13.82 13.84 13.87 13.82 13.82 13.82 14.12 14.2
525 7 7.46 9.18 9.76 10.17 8.53 7.72 9.27 8

Table 3. Average of W (P ) for 100 runs of simulated annealing (SA), tabu search
(TS), genetic algorithm (GA), ant colonies (ACO), k–means (KM) and Ward’s
dendrogram cut at K clusters (one single run), on 16 simulated data tables; W
is the best value of criterion obtained for all methods and the table contains the
percentage of times that value W was obtained for each method.

All programs are in Delphi using Pascal code. We do not make an ex-
haustive report on running times, but we can say the k–means is very fast (a
few seconds for 100 runs), simulated annealing may last 30 seconds, PSOClus
and the genetic algorithm may last in average about 2 minutes in 100 runs,
and the slower is tabu search, which may last 16 minutes on the same data
sets.

6 Concluding remarks

From Tables 4 and 3, it can be seen that PSO obtains generally better results
than classical methods, like k–means and Ward’s hierarchical. But, compared
to other heuristics, simulated annealing, genetic algorithm and ant colonies
behave much better. Table 4 shows also that PSOClus has problems in some
situations, mainly when variances are different among clusters, but also when
dealing with a large number of clusters.
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However, there is still some work to be done on calibrating the parameters
that could improve these results. Indeed, as with all this kind of heuristics,
there is some dependence on the parameters, which in PSOClus are α, r1 +
r2, maxiter, Vmax and M , the population size. At the present time, we are
studying the behavior of the method with respect to these parameters, and
possibly this study may improve the performances of the PSOClus.

References

CASTILLO, W. and TREJOS, J. (2002): Two-mode partitioning: review of meth-
ods and application of tabu search. In: K. Jajuga, A. Sokolowski and H.H. Bock
(Eds.): Classification, Clustering and Data Analysis. Springer, Berlin: 43-51.

CLERC, M. (1998): Some math about particle swarm optimization, internet docu-
ment at http://clerc.maurice.free.fr/pso/

DIDAY, E., LEMAIRE, J., POUGET, J. and TESTU, F. (1982): Eléments
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Abstract. A formal concept is defined in the literature as a pair (extent, intent)
with respect to a context which is usually empirical, as for example a sample of
transactions. This is somewhat unsatisfying since concepts, though born from expe-
riences, should not depend on them. In this paper we consider the above concepts
as ’empirical concepts’ and we define the notion of concept, in a context-free frame-
work, as a limit intent, by proving, applying the large number law, that :
Given a random variable X taking its value in a countable σ-semilattice, the ran-
dom intents of empirical concepts, with respect to a sample of X , converge almost
everywhere to a fixed deterministic limit, called a concept, whose identification
shows that it only depends on the distribution PX of X . Moreover, the set of such
concepts is the σ-semilattice generated by the support of X and has even a struc-
ture of σ-lattice: the lattice concept of a random variable.
We also compute the mean number of concepts and frequent itemsets for a hierar-
chical Bernoulli mixtures model. Last, we propose an algorithm to find out maximal
frequent itemsets by using minimal winning coalitions of PX .

1 Introduction

An important component of data mining is rule induction, that is extraction
of useful if-then rules from data, and a key step in this induction consists
in mining what is usually called frequent itemsets (FI’s) as introduced in
Agrawal et al. (1993 and 1994). In order to understand the ideas beyond
these mining algorithms, it is helpful to use the notions of Galois connec-
tions, intent, extent, closed sets and so on.
A pair (extent, intent) was called concept by Wille (1980) but this notion of
concept, widely used in various domains (artificial intelligence, robotics, psy-
chology, software engineering, text mining and so on), depends on the extent
which is, roughly speaking, a random sample. In the present paper we call
it (random) empirical concept and we define concepts as limit of empirical
intents, showing that these limits are no more random and do not depend on
the sample. In other words concepts are defined with respect to a random
variable rather than to a sample of this random variable.
The paper is organized as follows: Random variables taking their values in a
σ-semilattice are introduced in Section 2. Random empirical Galois lattices
are defined in Section 3 where is also proved the convergence of random in-
tents and is defined the concept lattice of a random variable. In Section 4, the
average number of empirical concepts and of frequent itemsets is computed
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for a hierarchical Bernoulli mixtures model. Frequent itemsets and winning
coalitions are studied in Section 5, providing an algorithm for mining maxi-
mal frequent itemsets.
The present paper answers a question of Edwin Diday who has also a defi-
nition of concept as an intent (Bock et al. (2000)). It is dedicated to Edwin
Diday who introduced us to several interesting problems.

2 Notations and terminology

2.1 σ-semilattice

Our set of observations, say L, is taken very general in order to cover a
wide area of applications. It can be a subset of real numbers, real vectors,
real functions, fuzzy sets, power set, words of a language, real cumulative
distribution functions, real stochastic processes, and so on.
Let (L,≤,∧) be a countable semilattice, that is

• L is a countable set
• ≤ is a partial order relation on the set L
• ∧ is an infimum operator .

We will asume in addition that L is a σ-semilattice : for any (countable)
subset A ⊆ L, there exists a largest element in L, denoted by

∧
L∈AL, which

is lower than any L ∈ A.
Without loss of generality, it can also be assumed that there exists a largest
element in L, denoted by 1, and by convention

∧

L∈A

L = 1 if A = ∅.

If (Ln)n≥1 is a decreasing sequence in L, then we will say that this sequence
is convergent and that its limit is

∞∧

n=1

Ln.

2.2 L-valued random variable

Let (Ω, B, P ) be a probability space. Let

X : Ω −→ L

be a (discrete) L-valued random variable (r.v.) whose distribution probability
PX is a probability measure on L defined as usual as follows:

∀L ∈ L, PX (L) = P (X = L) = P (ω ∈ Ω : X (ω) = L).
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The support of PX will play a key role: it is defined as the set

SX = {L ∈ L : PX(L) > 0}.

For any n ∈ {1, 2, 3...} a n−sample of X is a sequence X1, . . . ,Xn where the
Xi’s are independent and identically distributed (iid) r.v.’s distributed as X .

2.3 Data mining context

To join the terminology of data mining (which comes from marketing) with
the preceding setting, it suffices to take

L = (P(J),⊆,∩),

the power set of a (large) finite set J of items. Any any L ∈ L is then a subset
of J and is usually called an itemset.
The random variable X modellizes random transactions made by customers,
the itemset X(ω) ∈ L representing the random set of items bought by a
customer.
The following simple example illustrates what is usually called a binary con-
text. Take J = {a, b, c, d, e} and n = 10 transactions (1 means that the item
was bought and 0 not). The last column in Table 1 below contains the random
set that will be considered in our approach.

a b c d e random set

0 1 0 0 1 X1(ω) = {b, e}
1 1 0 0 1 X2(ω) = {a, b, e}
0 1 1 1 0 X3(ω) = {b, c, d}
1 0 0 1 0 X4(ω) = {a, d}
0 1 1 0 1 X5(ω) = {b, c, e}
1 1 1 1 0 X6(ω) = {a, b, c, d}
0 0 1 1 1 X7(ω) = {c, d, e}
1 1 0 1 0 X8(ω) = {a, b, d}
0 1 1 1 1 X9(ω) = {b, c, d, e}
0 0 1 1 0 X10(ω) = {c, d}

Table 1. Binary context and random set.

3 Galois lattice for semilattices

The notion of Galois connection (GC) was early introduced in Ore (1944), it
is also mentionned in the book by Birkhoff (1967), chapter 5. We first note
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that Barbut and Monjardet elegant and general definition of a Galois lattice
(GL), stated for a GC between lattices (Barbut et al. (1970), pages 13 and
25), can be extended to a GC between semilattices:
Let < E ,≤,∧ > and < F ,≤,∧ > be two semilattices, a GC between E and
F is a pair of mappings (f, g) verifying

f : E −→ F and g : F −→ E are decreasing, (1)

h = g ◦ f : E −→ E and k = f ◦ g : F −→ F are extensive, (2)

i.e. ∀x ∈ E , x ≤ h(x) and ∀y ∈ F , y ≤ k(y).

These definitions imply that

f ◦ h = f, h ◦ h = h, g ◦ k = g, k ◦ k = k. (3)

Let

Ih = {x ∈ E : h(x) = x} (resp. Ik = {y ∈ F : k(y) = y})

be the set of closed (or invariant) elements of E (resp. of F ).
It can be seen that the restriction of f to Ih is a one-to-one mapping into Ik,
its inverse being the restriction of g to Ik.
The Galois lattice (GL) G induced by the GC (f, g) is defined as the set of
nodes

G = {(x, f(x)), x ∈ Ih},

which has a lattice structure if ≤,∨ and ∧ are defined as follows:

(x, f(x)) ≤ (x′, f(x′)) iff x ≤ x′ and f(x′) ≤ f(x),

(x, f(x)) ∨ (x′, f(x′)) = (g(f(x) ∧ f(x′)), f(x) ∧ f(x′)),

(x, f(x)) ∧ (x′, f(x′)) = (x ∧ x′, f(x ∧ x′)).

It is easily seen that

G = {(x, f(x)), x ∈ Ih} = {(g(y), y), y ∈ Ik}.

The mapping f (resp. g) is called an intent (resp. an extent).
As any pair (x, y) of the GL satifies y = f(x) and x = g(y), Wille (1980)
then proposed to call such a pair a concept.
It is worthwhile to mention that the name of Galois appears here because of
the analogy with a fundamental result in the celebrated Galois theory on the
one-to-one correspondance between the intermediate fields of a field exten-
sion and the subgroups of its Galois group (see e.g. Stewart (1975), page 114).



Concepts of a Discrete Random Variable 251

3.1 Binary GL

Let I be a set of objects and J a set of properties. Let R be a binary relation
on I ×J : iRj iff object i has property j.
For any non-emptyset A ∈ E = P(I) let

f(A) = {j ∈ J : iRj for all i ∈ A} and f(∅) = J (4)

be the the intent or the description of A, that is the set of properties satisfied
by all objects of A. For any non-empty set B ∈ F = P(J ) let

g(B) = {i ∈ I : iRj for all j ∈ B} and g(∅) = I (5)

be the extent of B, that is the set of objects satisfying all the properties given
by B. The pair (f, g) is a popular example of GC, it is called a binary GC.

3.2 Explicit formulas for a general GC

Let E = P(I), where I) denote a countable set of objects. In most con-
crete situations, only the descriptions d(i), i ∈ I, which belong to a general
σ−semilattice L, are given. A natural question to ask is the existence of a
GC (f, g) such that f({i}) = d(i) with explicit fomulas generalizing formulas
(4) (5) of the binary case. The solution exists, and is unique if the GC is
supposed maximal (that is not dominated by a GC):

Theorem (Diday - Emilion (1997), (2003)) There exists a unique maximal
GC (f, g) between E = P(I) and L verifying f({i}) = d(i). It is given by the
formulas:

f(A) = ∧i∈Ad(i) for any non-empty A ∈ E , (6)

f(∅) = 1,

g(L) = {i ∈ I : L ≤ d(i)} for any L ∈ L. (7)

Note that (6) and (7) imply

h(A) = g(f(A)) = {i ∈ I :
∧

j∈A

d(j) ≤ d(i)} for any A ∈ E , (8)

k(L) = f(g(L)) =
∧

i∈I:L≤d(i)

d(i) for any L ∈ L. (9)

In the binary case, L = (P(J ),⊆,∩) is isomorphic to ({0, 1}#J ,≤,∧),
therefore (6) and (7) generalize (4) and (5)
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4 Random Galois lattices

4.1 Random empirical Galois lattices

As above, let X : Ω −→ L be a (discrete) L-valued random variable (r.v.).
Let X1, . . . ,Xn, . . . be a sequence of iid r.v.’s distributed as X .
For any n = 1, 2, . . ., consider the following random Galois connections:

< En,≤,∧ >=< P{1, 2, . . . , n},⊆,∩ >,

< F ,≤,∧ >= (L,≤,∧),

fn(A) =
∧

i∈A

Xi, gn(L) = {i ∈ {1, 2, . . . , n} : L ≤ Xi},

hn = gn ◦ fn, kn = fn ◦ gn

for any A ∈ En and L ∈ L.
Note that

hn(A) = {i ∈ {1, 2, . . . , n} :
∧

j∈A

Xj ≤ Xi}

while
kn(L) =

∧

i∈{1,2,...,n}:L≤Xi

Xi.

4.2 Convergence of random empirical intents

We are now in a position to state the announced result on the convergence
of random empirical intents with the identification of the deterministic limit.

Theorem 1. For any L ∈ L the random intents kn(L) =
∧

i=1,...,n:L≤Xi
Xi

converge a.e. towards the following deterministic limit:

k∞(L) = lim
n→∞

↓ kn(L) =
∧

L′∈SX :L≤L′

L′.

Proof. For any L ∈ L, let 1(Xi=L)(ω) = 1 if Xi(ω) = L and = 0 otherwise.
Since the r.v.’s 1(Xi=L) so defined are i.i.d. with expectation PX (L), the large
number law provides a nullset NL ⊆ Ω, NL ∈ B, such that P (NL) = 0,
which satisfies

∀ω /∈ NL,
1

n

n∑

i=1

1(Xi=L)(ω) −→ PX (L).

In particular for any L ∈ SX , since PX (L) > 0, we have

∀ω /∈ NL,

n∑

i=1

1(Xi=L)(ω) ≥ 1
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for n large enough. Therefore

∀ω /∈ NL, ∃i ≥ 1 : Xi(ω) = L

that is
∀ω /∈ NL, L ∈ {Xi(ω), i = 1, 2, . . .}.

As SX is countable, the set N =
⋃

L∈SX
NL belongs to B, P (N) = 0 and

∀ω /∈ N, SX ⊆ {Xi(ω), i = 1, 2, . . .}. (10)

On the other hand, for any i = 1, 2, . . ., let

Ni = {ω : Xi(ω) /∈ SX}.

Then, we have
P (Ni) = 0

since L\SX is countable and

P (Ni) = P (Xi /∈ SX ) = P (X /∈ SX ) =
∑

L/∈SX

P (X = L) = 0

by definition of SX . Now, by definition of the Ni’s we have

∀ω /∈
∞⋃

i=1

Ni, Xi(ω) ∈ SX ∀i = 1, 2, . . .

or equivalently

∀ω /∈
∞⋃

i=1

Ni, {Xi(ω), i = 1, 2, . . .} ⊆ SX . (11)

So, if we let N0 = N ∪⋃∞
i=1 Ni, then P (N0) = 0 and (10), (11) imply

∀ω /∈ N0, {Xi(ω), i = 1, 2, . . .} = SX ,

that is, shortly,
{Xi, i = 1, 2, . . .} = SX a.e. (12)

Note that (12) holds for any random variable taking its value in a countable
set. Observe now that (12) implies that for any L ∈ L

{Xi, i = 1, 2, . . . : L ≤ Xi} = {L′ ∈ SX : L ≤ L′} a.e.

and thus ∧

i=1,2...,:L≤Xi

Xi =
∧

L′∈SX :L≤L′

L′ a.e..

This completes the proof.
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4.3 Limit GL

Obviously, the above closure operator k∞ can be obtained by the following
limit GC

< E ,≤,∧ >=< P{1, 2, . . . , },⊆,∩ >,

< F ,≤,∧ >= (L,≤,∧),

f∞(A) =
∧

i∈A

Xi,

g∞(L) = {i ∈ {1, 2, . . .} : L ≤ Xi},
h∞ = g∞ ◦ f∞, k∞ = f∞ ◦ g∞

for any A ∈ E and L ∈ L.
So,

h∞(A) = {i ∈ {1, 2, . . .} :
∧

j∈A

Xj ≤ Xi},

while
k∞(L) =

∧

i∈{1,2,...}:L≤Xi

Xi.

Hence the random limit GL can be defined as the lattice:

G∞ = {g∞(L), k∞(L)), L ∈ L}.

Note that the extent g∞(L) is random and depends on the sample (Xi)i=1,2,...

while the intent is deterministic and does not depend on the sequence
(Xi)i=1,2,....

4.4 Concepts, concept lattice

Definition: A concept of the r.v. X is an element of L such that

L =
∧

L′∈SX :L≤L′

L′.

The set of concepts will be denoted by C(X ,L), shortly, C. The random
set of empirical intents w.r.t. a sample X1, . . . ,Xn of X will be denoted by
C(X1, . . . ,Xn,L), shortly, Cn:

Cn = kn(L) = {kn(L), L ∈ L}.

The above theorem states that

k∞(L) = {k∞(L), L ∈ L} = C(X ,L) a.e..

Since we have L ≤ k∞(L) ≤ kn+1(L) ≤ kn(L) we see that kn(L) = L ⇒
k∞(L) = L, in other words

kn(L) ⊆ kn+1(L) ⊆ k∞(L). (13)
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Proposition 1. C(X ,L) is the σ-semilattice generated by SX .
In particular, if P (X = L) > 0 then L is a concept.

Note however that L such that P (X = L) = 0 can be a concept:
let L = {0, c, a, b, 1} where 0 (resp. 1) is the lowest (resp. largest) element
of L, a 
≤ b, b 
≤ a, c = a ∧ b and let X be such that P (X = a) = 1/2,
P (X = b) = 1/2. Then c is a concept and P (X = c) = 0.
Further, observe that

Proposition 2. i) If L < 1 is a concept then P (L ≤ X ) > 0
ii) {L′ ∈ SX : L ≤ L′} = {L′ ∈ SX : k∞(L) ≤ L′}
iii) P (L ≤ X ) = P (k∞(L) ≤ X )
iv) If k∞(L) < 1 then P (L ≤ X ) > 0
v) 1 is a concept iff P (X = 1) > 0
vi) If k∞(L) = 1 then P (L ≤ X ) > 0 iff P (X = 1) > 0

Note that P (L ≤ X ) > 0 means that for a.a. sample, L appears infinitely
often within an itemset. Also, the converse of i) need not be true (use iv)).

Proposition 3. C(X ,L) is a σ-lattice.

5 Average number of concepts for hierarchical
Bernoulli mixtures

Consider the case where
L = (P(J),⊆,∩)

the power set of a (large) finite set J = {1, . . . , r} of r items, P(J) being
identified to {0, 1}r. Suppose that the distribution of the r.v.

X = (X (1), . . . ,X (j), . . . ,X (r))

is a finite mixture of products of Bernoulli’s ⊗r
j=1B(pU,j), where the r.v. U ∈

{1, . . . ,K} is a latent class variable and the weight vector q = (q1, . . . , qK) of
the mixture has a Dirichlet distribution D(γ1, . . . , γK). This precisely means
that we have the following hierarchical mixture model (HMM):

X|U=u,q ∼
K∑

u=1

qc ⊗r
j=1 B(pu,j), (14)

P (U = u|q) = qu, (15)

q ∼ D(γ1, . . . , γK). (16)

The following generalizes some results in Lhote et al. (2005) and Emilion et
al. (2005):
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Proposition 4. For the HMM defined by equations (14), (15), (16)

E(#Cn) =
K∑

u=1

γu

γ

n∑

i=0

∑

B∈P(J)

(
n

i

)
(1 −

∏

j∈B

pu,j)
n−i

∏

j∈B

pi
u,j

∏

j /∈B

(1 − pu,j)
i,

and

lim
n→∞

↑ E(#Cn) = 2r = #C.

For such a model we can similarly compute the mean number of closed fre-
quent itemsets.

6 Maximal frequent itemsets

6.1 Empirical frequent itemsets

We return now to the case of a general σ-semilattice whose elements are still
called itemsets.
Let α ∈ (0, 1) be a fixed treshold.
An itemset L is said empirically frequent (w.r.t the empirical context Xi, i =
1, . . . n) iff

#gn(L) = #{i ∈ {1, . . . , n} : L ≤ Xi} ≥ nα.

As

#gn(L) =
n∑

i=1

1L≤Xi, (17)

and the Xi’s are i.i.d., we see that the r.v. 1L≤Xi are Bernoulli i.i.d. and the
r.v. #gn(L) has a binomial distribution:

#gn(L) ∼ Binom(n, pL)

where

pL = P (L ≤ X ).

Hence

P (L empirical frequent) = P (#gn(L) ≥ nα) =
∑

k≥nα

(
n

k

)
pk

L(1 − pL)n−k.

The average number of empirical frequent itemsets is then equal to

Proposition 5.

∑

L∈L

P (L (n, α) − frequent) =
∑

L∈L

∑

k≥nα

(
n

k

)
pk

L(1 − pL)n−k.
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6.2 Frequent itemsets

By the large number law, (17) implies:

lim
n→∞

#gn(L)

n
= P (L ≤ X ) a.e.

so that we are lead to the following:

Definition: L ∈ L is an α-frequent itemset iff

P (L ≤ X ) ≥ α.

A maximal α-frequent itemset is an α-frequent itemset which is maximal (for
the order ≤ in L) among the α-frequent itemsets.

6.3 Minimal winning coalitions

We now propose an algorithm to find out maximal frequent itemsets by using
minimal coalitions of PX .
Since X is countable, let

SX = {L1, . . . , Lr, . . .},

and let

pr = P (X = Lr) > 0.

An α-winning coalition is a subset of {1, . . . , r, . . .}, say A, such that

∑

r∈A

pr ≥ α.

A minimal α-winning coalition is an α-winning coalition which is minimal
(for the inclusion order) among the α-winning coalitions.
Algorithms for finding minimal coalitions were intensively studied in games
theory (see e.g. Matsu et. al (2000)). They can be applied to find out maximal
frequent itemsets due to the following:

Theorem 2. i) If L is a maximal frequent itemset then L =
∧

r∈A Lr where
A is an α-minimal coalition.
ii) Conversely if A is an α-minimal coalition then L =

∧
r∈A Lr is frequent.

It is easy to construct an example where A is an α-minimal coalition but
L =

∧
r∈A Lr is not maximal.
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6.4 Algorithm

The above theorem can be applied to the empirical measure (which is an
estimator of PX ), from a finite table of observed itemsets such as the one in
Subsection 2.3:

• Find the distinct itemsets L1, . . . , Lk, and their respective frequency
p1, . . . , pk

• Find the α-minimal winning coalitions from p1, . . . , pk

• For each of such a coalition, say A, compute L =
∧

r∈A Lr

• The list of such L contains all the maximal frequent itemsets which can
be extracted from this list.

Such an algorithm will be of interest if the number r of distinct itemsets is
much lower than the total number of observed itemsets. Note that the step
where are found minimal winning coalitions should be fast since it does not
require any access to the dataset.
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3 Dépt. d’informatique, UQAM, CP 8888, succ. Centre-Ville, Montréal, Canada,
H3C 3P8, valtchev.petko@uqam.ca

Abstract. Symbolic objects were originally intended to bring both more structure
in data and more intelligibility in final results to statistical data analysis. We present
here a framework of similar motivation, i.e., combining a data analysis method, —
the concept analysis (fca) — with a knowledge description language inspired by
description logic (dl) formalism. The focus is hence on proper handling of relations
between individuals in the construction of formal concepts. We illustrate the re-
lational concept analysis (rca) framework which complements standard fca with
a dedicated data format, a set of scaling operators, an iterative process for lattice
construction, and translations to and from a dl language.

1 Introduction

Symbolic objects (so) (Diday (1998)) were designed to meet the urgent need
for processing of more realistically structured data, i.e., beyond mere real
number vectors, in statistical data analysis, while representing the final re-
sults in a more intelligible manner. On data formats, beside the variety of
value domains of the descriptive variables (taxonomic, interval, histogram,
etc.), higher-level structure is also provided for, e.g., in hordes which provide
for nesting of individuals. In the broader field of knowledge discovery from
data, structure and intelligibility have been pursued through a symbiosis with
knowledge representation (kr) (Brachman and Anand (1996))

Formal concept analysis (fca) (Ganter and Wille (1999)) as data anal-
ysis paradigm also endorsed kr concerns. In fact its target fca structure,
the concept lattice, represents a natural framework for both taxonomies and
conceptual hierarchies. While the standard fca framework barely admits
structure in the input datasets, recent trends targeted the complexly struc-
tured data. For example, a first trend admits explicit inter-individual links
which, once expressed as first-class objects within a power context family,
are dealt in a straightforward way, i.e., grouped into formal concepts repre-
senting new, and compound, relations (Prediger and Wille (1999)). Indepen-
dently, and somewhat closer to the so approach to structure, logic-based kr
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has been tentatively introduced in the conceptual scaling mechanism which
enables the processing of non-binary data in fca. Thus, in (Prediger and
Stumme (1999)), a language of the description logic dl family (Baader et
al. (2003)) was used to express conditions involving domain concepts and
relations, which were then applied to individuals as binary attributes. It is
noteworthy that the symbiosis of so and fca, i.e., the concept analysis of
symbolic datasets, has been investigated as well (Polaillon (1998)).

Our own study on concept analysis of complex datasets is motivated
by the rapidly growing need for interoperability between mining mechanism
and modern kr environments, especially in the wake of the Semantic Web
launch. In simple terms, this means mining tools must be able to process data
expressed in languages, such as OWL and SWRL, and output the discov-
ered knowledge in equally compatible formats. In this respect, our concerns
combine, on the one hand, the adequate clustering of relational datasets,
as logically-founded languages describe individuals by means of both unary
predicates (concepts) and binary ones (relations, or properties), and, on the
other hand, the design of compound expressions to intentionally describe the
discovered clusters. As an approach for the concept analysis of relational
data, we proposed a dedicated framework, called relational concept anal-
ysis (rca), which offers simple solutions to both concerns. Moreover, the
framework relies on three original components: a data format inspired by the
entity-relationship conceptual data model, a scaling method applying various
policies in the translation of inter-individual links into binary attributes, and
an iterative lattice construction process allowing many separate individual
sorts to be analyzed simultaneously.

The present paper summarizes the rca theoretical foundations and illus-
trates its modus operandi using a small-size, albeit realistically structured
dataset. The following Section 2 provides minimal background on fca and
then rca, and briefly examines the composition of a dl language. Section 3
introduces the sample dataset, which is then analyzed w.r.t. two different
scaling policies. The analysis processes based on wide and on narrow scaling
are followed in Section 4 and Section 5, respectively.

2 From FCA to RCA

The following is a brief presentation of the rca framework. Details may be
found in (Huchard et al. (2007)) while an implementation is available within
the Galicia platform1.

2.1 Standard FCA

fca is the process of abstracting conceptual descriptions from a set of individ-
uals described by attributes (Ganter and Wille (1999)). Formally, a context K
1 http://sourceforge.net/projects/galicia/
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associates a set of objects (O) to a set of attributes (A) through an incidence
relation I ⊆ O×A, i.e., K = (O,A, I). For example, in Section 3, a context is
presented where objects are scientific publications (e.g., monographs, journal
articles, conference papers, theses, etc.), whereas attributes are general top-
ics (e.g., software engineering, lattice theory, etc.). The represented incidence
relation is therefore to be interpreted as “speaks about” or “deals with”.

In this settings, fca focuses at the way objects group together on grounds
of shared attributes. Intuitively, each subset of objects is examined together
with the respective set of shared attributes (e.g., a set of publications deter-
mines a list of all common topics). Among all object sets, only maximal ones
are kept, i.e., sets comprising all objects incident to the shared attributes.
This is formalized by two applications mapping object sets to attribute ones
and vice versa, both denoted ′ hereafter. For instance, on objects, the ′ appli-
cation is defined as follows: ′ : P(O) → P(A); X ′ = {a ∈ A | ∀o ∈ X, oIa}.

A basic result states that maximal sets of objects, called extents in fca,
are in one-to-one correspondence to maximal sets on attributes, or intents.
Furthermore, the pairs (X,Y ) ∈ P(O) × P(A), of mutually corresponding
sets, i.e., such that X = Y ′ and Y = X ′, called (formal) concepts, form a
complete lattice with respect to the inclusion of the extents, i.e., the X part.
Extracting the concept lattice L of a context K is the key task in fca. Fig. 2
shows, on its right-hand side, the concept lattice of the publication context
which is itself embedded in the table on the left-hand side (only the first four
columns).

The classical fca apparatus is limited to datasets that either originally
represent binary relations or can be easily, i.e., with no significant precision
loss, transformed to such relations. Indeed, the conceptual scaling mecha-
nism translating non-binary attributes (e.g., numerical or nominal) into bi-
nary ones, amounts to replacing attribute values by predicates on them. For
instance, the domain of nbOfPages attribute in publications could be split
into the ranges short, standard, and long (paper), each of them expressed as
a predicate (e.g, nbOfPages≤ 6 for short one). Observe that the definition
of the predicates precedes the scaling process and is usually the charge of a
domain expert.

Unsurprisingly, the data stored in a relational database remains well be-
yond the reach of the above approach, and for some good reasons. First,
the underlying entity-relationship (er) conceptual data model admits several
entities, i.e., sorts of individuals, that are connected by relationships, i.e., n-
ary predicates on entities, whereas fca typically focuses on a single set of
individuals (although these may generate a family of contexts) and yields
a single concept lattice. As an illustration, imagine a database modeling a
collection of scientific publications, researchers, topics, author-to-paper links,
references among publications, etc. Moreover, a natural way of analyzing such
data would be to form concepts that reflect commonalities both in individual
properties and in their links to other individuals, following, for instance, the
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way dl concepts are defined (see Section 2.3). Although approaches dealing
with relations have been studied in fca, none of them allows links and prop-
erties to be mixed in concept intents. To bridge the gap, we have proposed
a relational fca framework, called relational concept analysis (rca), that
basically adds a new data format, a set of scaling mechanisms for relational
links and an iterative method for the simultaneous construction of a set of
concept lattices.

2.2 RCA summary

The rca data format, a relational context family (rcf), combines fca and er

as it consists of a set of contexts and a set of binary relations, each involving
the objects from two contexts of the rcf.

Definition 1. A relational context family R is a pair (K,R), where K is a
set of contexts Ki = (Oi, Ai, Ii), R is a set of relations rk ⊆ Oi ×Oj , where
Oi and Oj are the object sets of the formal contexts Ki and Kj .

Let now a relation r (e.g., authoring of papers by researchers) link objects
from a context Ki, the domain of r, to those of Kj , its range. In order to scale
upon r so that one can use the information it conveys in the concept anal-
ysis upon Ki, we consider the conceptual structure, i.e., all (known) formal
concepts, of Kj . The concepts are turned into binary predicates just as in
classical scaling. The key difference is that in assigning such a predicate to
an object oi from Ki, instead of comparing an attribute value to a range of
such values, a set of objects, i.e., the links of type r for oi, denoted r(oi),
is compared to the extent of a concept cj on Kj . For instance, to describe
researchers with respect to the authored papers, these will be compared to
the extents of the formal concepts on the entire papers collection (e.g., jour-
nal papers on statistics). Various relationships between r(oi) and the extent
of cj (e.g., inclusion, non-empty intersection, intersection of a certain size,
etc.) may be required in order for oi to acquire the corresponding attribute,
invariably denoted by r : cj . These are discussed in the next paragraph.

Relational scaling opens the way to lattice construction. However, the
global analysis process is not one-shot, it rather proceeds iteratively, i.e.,
by successive steps alternating scaling and concept formation. Indeed, as no
restriction is imposed in the relational structure of a rcf, there may well
be circuits in the way contexts are related by relations, hence the mutual
dependence between such contexts in the sense that each of them requires
the other(s) to be processed first in order to provide the formal concepts re-
quired for scaling. To break the deadlock, a bootstrapping step is performed
in the beginning of each rca process, in which all object sorts get the lat-
tice corresponding exclusively to their local properties (from the underlying
contexts). In the subsequent steps, scaling is used to translate the already
available structure, i.e., formal concepts, from the range context of a rela-
tion to the domain one. More precisely, the current lattices are first used to
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scale upon the relations of the rcf thus generating new attributes in the
respective domain contexts. The lattices of the extended contexts are then
constructed, possibly triggering a new scaling/construction step. Indeed, as
the new attributes may yield new extents, the lattices and hence the scales
they represent may evolve, hence the need to re-scale in order to keep the
domain contexts in line with the evolution. The global process of iterative
lattice construction, called Multi-fca, nevertheless converges to a set of
lattices representing a fixed-point. Section 4 and Section 5 illustrate the way
Multi-fca unfolds.

2.3 Description logics and relational scaling

Description logics (dl) are kr formalisms rooted in first order predicate
logic that offer means to structure the otherwise flat logical representation,
namely in terms of concepts, roles, and individuals (Baader et al. (2003)).
dl languages allow expressions, or descriptions, to be composed out of other
descriptions up to an arbitrary depth. A dl language is built on top of a
collection of primitive concept and role names which denote the meaningful
concepts and relations from a domain (e.g., Human, Female, Doctor, child,
father, etc.), individual names (e.g., Ann) and constants (' and ⊥).

Concepts are interpreted as sets of individuals (their instances) and roles
as sets of individual pairs2. Further concepts and roles are defined by com-
bining concept and role names, either primitive or already defined, via a set
of constructors, e.g., conjunction (�), disjunction (�), negation (�). By def-
inition, a role has a domain and a range concept and is inherited by the
sub-concepts of the domain concept. It may be further restricted for every
concept it applies to, for instance, by applying universal or existential quan-
tifiers to the set of links. Thus, given a role r and a concept C, the following
concept expressions can be composed: (i) ∀r.C (value restriction), (ii) ∃r.C
(full existential quantification), and (iii) ∃r.' (limited existential quantifica-
tion). All these work as filters on the individuals: (i) collects those whose
links of type r, if any, point exclusively to instances of the concept denoted
by the expression C, (ii) those with at least one r link to such an instance,
and (iii) those with at least one r link, regardless of the underlying concept.
As an illustration, consider the expression of the concept of “all fathers and
all parents of a female child whose children are all doctors” in dl:

Male � ∃child.' � Human � ∃child.Female � ∀child.Doctor

Individuals are represented in a dl language as constants (e.g., Ann) and
characterized by a set of ground predicates, unary for the concepts they be-
long to and binary for the roles they possess (e.g., Human(Ann), Female(Ann),
child(Ann, Mary)). Consequently, the translation of a collection of dl indi-
viduals into an rcf is immediate: First, each individual is assigned a unique

2 See Baader et al. (2003) for formal definitions for dl syntax and semantics.
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concept to express its very nature (e.g., Human) in the same way entities
within an er schema do. Such concepts are translated as contexts while their
instances become the respective formal objects. Next, the remainder of the
concepts an individual belongs to are translated as binary attributes and
attached to the underlying context (e.g., Female for the context modeling
Human). Finally, all roles become relations in the rcf whose domain and
range contexts are determined following the individuals in the role pairs and
the contexts comprising their respective translations.

The dl formalism has a direct impact on the rca scaling mechanism as
well. Indeed, as mentioned previously, given a relation r that connects ob-
jects from Ki to those from Kj , the various ways to assign an attribute r : cj ,
where cj is a concept on Kj , to objects oi from Ki follow restriction con-
structors from dl. More precisely, we defined several scaling policies, termed
encoding schemes, including a value-restriction-like scheme, called strict nar-
row, a full existential-like one, or wide, and a third one, called simply narrow,
that amounts to a combination of both. Indeed, while strict narrow scheme
only requires r(oi) ⊆ extent(cj), the narrow adds the condition r(oi) 
= ∅.
The latter condition is implied by the requirement of a wide scheme, i.e.,
r(oi) ∩ extent(cj) 
= ∅. The way narrow and wide encoding scheme work is
illustrated below.

Given the forward translation from a dl language to an rcf and the
above scaling policies, the reverse translation of the formal concepts yielded
by rca into a dl knowledge base is immediate.

3 Running example

The sample rcf is made of a single context and two binary relations. The
Papers context assigns publications, as objects, to the topics they refer to
— software engineering (se), lattice theory (lt) and man machine interface
(mmi) — as attributes. The relation cites models citations while develops
connects a long publication, e.g., a thesis, to a paper whose key ideas the
former extensively develops. Fig. 2 depicts the rcf both as a conceptual
schema and as a data graph made of links and individuals (to whom codes
are assigned for subsequent use in the text). In order to eases the tracking of

Papers

cites

develops a (gw99)

b (bm70)

g (bot91))

h (moo96)

c (are03)

d (dic96)

e (arePHD)

f (huchHDR)

i (val02)k (rouaPHD)

l (leberHDR) j (leber02)

develops

develops

develops

develops

cites

cites

cites

cites

Fig. 1. Sample rcf. Left: As UML schema; Right: As data graph.
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the gradual emergence of formal concepts, the example was stripped of a large
number of papers and citation links. It nevertheless shows a complex, three-
level link structure: Indeed, a set of four papers (level one) are substantial
developments of four other papers (level two) which cite papers on level
three. Moreover, though cycles in links are avoided, these are dealt with in
much the same way. The rcf corresponds to a dl knowledge base with two
roles (develops and cites) and four concepts, i.e., Papers, AboutLatticeTheory,
AboutSoftwareEngineering, and AboutManMachineInterface.

With an object set O = {a..l} and attribute set A = {lt,mmi, se} the
information content of the rcf can be summarized as follows (see Fig. 2):

• I ⊆ O ×A ; I = {(a, lt), (b, lt), (g,mmi), (h, se)},
• cites ⊆ O ×O ; cites = {(c, a), (c, g), (d, b), (d, h), (i, a), (j, b)},
• develops ⊆ O ×O ; develops = {(e, c), (f, d), (k, i), (l, j)}.

Thus, initially, only level-three papers share descriptions and hence form con-
cepts, e.g., a and b share the lt topic and therefore form the lattice theory
publication concept. The lattice yielded by the paper context, regardless of
the existing links, is given in Fig. 2 (on the right). Obviously, the aforemen-
tioned concept c0= ({a, b}, {lt}) is the only non-trivial one. This lattice, once
translated into binary attributes by scaling, enables new groupings, e.g., of
c, d, i, j which cite at least one paper on lattices. The resulting concept trig-
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Fig. 2. Left: Initial rcf on papers; Right: Lattice 1 on papers.

gers yet further sharing, this time at level one, and the whole process goes
on. The way the analysis process unfolds and its final result depend on the
exact scheme used for scaling, as shown by the next two sections.
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4 Narrow scaling-based RCA

Intuitively, the narrow scheme favors compact lattices as potentially less ob-
jects will get the new attributes due to the stronger requirements.

Step 1 Narrow scaling upon cites and w.r.t. lattice in Fig. 2 adds five
new attributes of the type cites:c to the context. However, given the non-
empty citation link sets (cites(c) = {a, g}, cites(d) = {b, h}, cites(i) = {a},
cites(j) = {b}), only two of them, i.e., cites:c2 and cites:c0, are effectively
assigned to a paper. Thus, all level-two papers, i.e., c, d, i, j, get the attribute
cites:c2 in the scaled context as c2 comprises the entire dataset, whereas
only i and j get cites:c0 as well. Correspondingly, the relation I is extended
with the pairs (c,cites:c2 ), (d,cites:c2 ), (i,cites:c2 ), (j,cites:c2 ), (i,cites:c0 ),
and (j,cites:c0 ) (see Fig. 3).
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Fig. 3. Narrow scaling, step 1. Left: The scaled context; Right: Lattice 2.

Narrow scaling upon develops ranges only over papers having such links,
i.e., e, f , k, and l. As none of the developed papers, i.e., c, d, i, and j, belongs
to a non-trivial concept in the scaling lattice (i.e., other than c2 ), level-one
papers only get the attribute develops:c2. The resulting scaled context and
its lattice are given in Fig. 3. Three new concepts appear in the lattice:

• c5=({c,d,i,j},{cites:c2}) – papers citing only papers of the rcf,

• c6=({i,j},{cites:c0, cites:c2}) – papers citing only papers about lattice
theory, i.e., in c0, as c2 is redundant,

• c7=({e,f,k,l},{develops:c2}) – developments of papers citing papers of
the rcf.
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Step 2 Given Lattice 2, richer than the initial one, narrow scaling is applied
again upon cites and develops. While scaling upon cites does not add any-
thing new, develops makes new incidences appear. First, as all the developed
papers belong to the extent ofc5, all the level-on papers also get the devel-
ops:c5 attribute. Moreover, k and l also get develops:c6. The scaling yields a
new rcf and its corresponding lattice, both given in Fig. 4.
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Fig. 4. Narrow scaling, step 2. Left: The scaled context; Right: Lattice 3.

The only new abstraction discovered at this stage is c8 comprising pub-
lications that develop papers citing only papers about lattice theory. Step
four terminates the analysis process, as no new concepts will be produced
by further scaling. The interpretations of the formal concepts from the final
lattice and their respective translations into dl are provided in Table 1.

5 Wide scaling-based RCA

The trace of the process with a wide scaling scheme starts immediately after
the basic step of lattice construction on the unscaled context (see Fig. 2).

Step 1 When the inital lattice is used to scale upon cites, only the descriptions
of papers c, d, i, j evolve. Hence all level-two papers get the attributes cites:c0
and cites:c2, whereas c gets cites:c3 as well, and d cites:c4. The result is to
be seen in the scaled context in Fig. 5.

Applying wide scaling to develops and the initial lattice yields the same
results as in the identical step of the narrow scaling-based process. Thus,
c2 being the only one whose extent comprises developed papers, all level-
one papers get the attribute develops:c2. This yields the rcf depicted in
Fig. 5 together with its lattice. The newly constructed concepts c5, c6, and c7
represent, respectively, papers citing at least one paper about lattice theory,
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Id textual interpretation translation into dl

c0 papers on lattice theory AboutLatticeTheory

c1 papers having all properties ⊥
c2 all papers of the dataset Paper

c3 papers on man machine interface AboutManMachineInterface

c4 papers on software engineering AboutSoftwareEngineering

c5 papers citing papers of the dataset C5 ≡ ∃cites.� � ∀cites.Paper

c6 papers citing only papers on lattice
theory

C6 ≡ ∃cites.�
� ∀cites.AboutLatticeTheory

c7 papers developing only papers that
cite only papers of the dataset

∃develops.� � ∀develops.C5

c8 papers developing only papers that
cite only papers on lattice theory

∃develops.� � ∀develops.C6

Table 1. Narrow scaling. Interpretation of the mined concepts.

papers citing at least one paper both about man machine interface and lattice
theory, and papers citing at least one paper both about software engineering
and lattice theory. Furthermore, c8 represents papers that develop at least
one paper of the experiment.
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Fig. 5. Wide scaling. Left: rcf 2; Right: Lattice 2 on papers.

Step 2 Applying wide scaling to cites and the lattice of Fig. 5 does not bring
any new incidence pair to the context. In contrast, scaling upon develops
creates new attributes out of the concepts discovered at the previous step,
i.e., c5 to c8, and hence abstractions. Thus, all level-one papers get the
develops:c5 attribute as the extent of c5 comprises all level-two concepts. In
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addition, e gets develops:c6 and f develops:c7. The rcf of step 2 is drawn in
Fig. 6 together with its lattice.
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Fig. 6. Wide scaling. Left: rcf 3; Right: Lattice 3 on papers.

The newly formed concepts c9 and c10 represent papers that develop
papers citing: papers about man machine interface and lattice theory and
papers about software engineering and lattice theory, respectively. Moreover,
the already existing concept c8 gets more focused as it turns out to represent
papers that develop papers citing work on lattice theory. The interpretation
and the translation into a dl format of all the concepts from the final lattice
is presented in Table 2.

Id textual interpretation translation into dl

c5 papers citing one+ paper on lattice theory ∃cites.AboutLatticeTheory

c6 papers citing one+ paper on lattice theory
and one+ on man machine interface

∃cites.AboutLatticeTheory
� ∃cites.AboutManMachineInterface

c7 papers citing one+ paper on lattice theory
and one+ paper on software engineering

∃cites.AboutLatticeTheory
� ∃cites.AboutSoftwareEngineering

c8 papers developing one+ paper that cites
one+ paper on lattice theory

∃develops.∃cites.AboutLatticeTheory

c9 papers developing one+ paper that cites
one+ paper on both lattice theory and man
machine interface

∃develops.∃cites.(AboutLatticeTheory
� AboutManMachineInterface)

c10 papers developing one+ paper that cites
one+ paper on both lattice theory and soft-
ware engineering

∃develops.∃cites.(AboutLatticeTheory
� AboutSoftwareEngineering)

Table 2. Wide scaling: interpretation of concepts (only unseen in Table 1).
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6 Conclusion

The rca framework illustrated here is a first step towards the complete in-
teroperability between data mining and kr tools. Indeed, its input is fully
compatible with the standard data models, e.g., the relational one, while
its results are easily expressible in terms of a dl language. Therefore, the
knowledge mined from the input data is directly available for reasoning and
problem-solving.

Many issues with rca are yet to be tackled: First, the scalability is still
an open issue, since the size of lattices grows rapidly w.r.t. the growth of
relations between contexts. Various tracks for preventing combinatorial ex-
plosion are currently explored, e.g. using reduced structures such as iceberg
lattices or Galois sub-hierarchies. Next, algorithmic aspects are among pri-
mary concerns. For instance, efficiency could be further improved by replacing
construction from scratch by incremental lattice maintenance. Finally, we are
currently studying further scaling policies, e.g., the quantified existential re-
strictions providing upper/lower limits of the number of links to lay in a
concept.
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Abstract. Mathematical representation of complex data knowledge is one of the
most important problems in Classification and Data Mining. In this contribution
we present an original and very general formalization of various types of knowledge.
The specific data are endowed with biological descriptions of phlebotomine sandfly
species. Relative to a descriptive categorical variable, subsets of categories values
have to be distinguished. On the other hand, hierarchical dependencies between
the descriptive variables, associated with the mother → daughter relation, have to
be taken into account. Additionally, an ordinal similarity function on the modality
set of each categorical variable. The knowledge description is formalized by means
of a new type of descriptor that we call “Taxonomic preordonance variable with
multiple choice”. Probabilistic similarity index between concepts described by such
variables can be built.

1 Introduction

An early work (Lerman and Peter (1988), Lerman and Peter (1989)) is revis-
ited here in a clearer, more synthetic and more accurate manner. In order to
build similarity indices between complex descriptions, a mathematical repre-
sentation of structured data by a knowledge expert is needed. This subject
is becoming more and more important in Classification and Data Mining
(Batagelj (1989), Bock and Diday (2000), Lerman (2000), Pennerath and
Napoli (2006)). This work results from a collaboration with the late Jacques
Lebbe.

This collaboration took place when Diday introduced the general idea of
logical knowledge data analysis that he called “symbolic” data analysis Di-
day (1989). In this case and for a description of an objects set by attributes,
the attribute value on a given object is not necessarily reduced to a single
element of the scale associated with the concerned attribute. In other words
the description system (attribute, single value) is left and substituted by the
system (attribute, knowledge value). For example let us consider a knowledge
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value of a categorical attribute on a given object; this can be endowed with
a logical formula on the category set, satisfied by the described object. An-
other example can be given by a probability distribution over the category
set expressing uncertainty for the attributed value. In our subsequent devel-
opment we consider only qualitative descriptions. A categorical attribute will
also be called qualitative variable and a category value is expressed in terms
of modality of the concerned qualitative variable.

Often, in “symbolic” data analysis papers qualitative data analysis is
improperly interpreted as belonging to the “symbolic” domain. For this rea-
son we prefer to speak in terms of “knowledge” data analysis. Furthermore,
the notion of a classical data table which crosses an object set with an at-
tribute set, is neglected and even rejected for knowledge description in (Di-
day (1989)). However, some evolution can be noticed in (Billard and Diday
(2003)). From the begining (1988) the general notion of data table has played
a fundamental part in our approach of knowledge data analysis. The only dis-
tinction considered is defined by the difference in nature of the cell content
corresponding to the value of a descriptive variable on a given object. Seman-
tic data relative to the scale associated with the value set of a given attribute
can be recorded separately. On the other hand, logical relationships between
descriptive variables have to be integrated in order to build the most synthetic
attributes. In this paper we will be concerned by this type of construction
leading to a very general and multivalued structured attribute called “taxo-
nomic preordonance variable with multiple choice”.

This type of descriptive variable or “descriptor” has been obtained by
a formalization of the expert knowledge of the biological descriptions of phle-
botomine sandflies of French Guiana (Lebbe et al. (1987)). Descriptions are
very complex. Each species is a class of specimens and its description must
represent not only a prototype, but all possible variations in the species.
Thus, the description by a qualitative variable of a given species, requires -
most often - a subset of possible modalities. For sake of generality, we as-
sume that the value of a given variable on a given species is defined by a
probability distribution on a collection of modality subsets of this variable.
Moreover, descriptive attributes are related by the mother → daughter rela-
tion; that is to say, if (v0, v1) is a such ordered pair of variables, v1 is only
defined when v0 takes some of its values. Finally, we assume an ordinal sim-
ilarity function on the modality set of each variable. A mathematical coding
of this function in terms of a binary weighted relation is given in Section 3.
In order to address the problem of conceptual knowledge description, Section
2 introduces the general notion of qualitative variable with multiple choice.
The mother → daughter relations among the descriptive attributes lead to
taxonomic variables organizing the initial qualitative variables (Section 4).
By combining this structuration with local ordinal similarities, established on
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the respective modality sets of the different qualitative variables, we obtain
the “taxonomic preordonance variable”. Its construction and its mathemat-
ical coding are discussed in Section 5. In our description the components of
a taxonomic preordonance variable are qualitative attributes with multiple
choice. By integrating this descriptive property, “taxonomic preordonance
variable with multiple choice” is derived. Section 6 is devoted to clarify the
value set of a such variable. A similarity index between two concepts (or
classes) described by this variable, has been proposed in (Lerman and Pe-
ter (1988), Lerman and Peter (1989)). Relative to a description by many
taxonomic preordonance variables with multiple choice, a statistical normal-
ization process was considered in order to establish a probabilistic similarity
index. The latter is employed in the LLA (Likelihood of the Linkage Anal-
ysis) hierarchical classification method (Lerman (1993), Lerman and Peter
(1988), Lerman and Peter (1989)). For concision reasons, these last aspects
cannot be reported in this paper.

2 Qualitative variable with multiple choice

As mentioned above the data which have motivated this work are knowledge
biological descriptions of species of phlebotomine sandflies of French Guiana
(Lebbe et al. (1987)). Let us consider the 33rd variable of this description:
“Aspect of individual duct”. Its modalities are:

1. Smooth non-sclerotized
2. Smooth sclerotized
3. Transversely striated or annulated
4. With small prominent tubercles

The knowledge description of a given species (e.g. Lutzomyi carvalhoi)
can be expressed as follows: “Specimens of this species have the value 1 and
others of the same species have the value 3”.

In these conditions, the value of the qualitative variable with multiple
choice is defined by the modality subset {1, 3}, or equivalently by the con-
junction 1&3. Thus, a qualitative variable with multiple choice is directly
deduced from an ordinary qualitative (categorical) variable, for concept (one
may also say class) description. For this, a given value is then defined in
terms of a modality subset of the initial variable, or equivalently, in terms of
a modality conjunction.

More formally, let us consider a universe U of elementary units (the whole
set of phlebotomine sandflies specimens in our case) and suppose defined on
U a partition where a distinct concept is associated with each of its classes.
Let us denote by C the set of concepts or classes (the set of species in our
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case). Now, let us consider a classical qualitative (categorical) variable v de-
fined on U . For u belonging to U , v(u) is a single value of the modality set
of v. Now, J coding this modality set, assume a collection of subsets of J :

Pv(J) = {J1, J2, ..., Ji, ..., Jk} (1)

so that for each concept c of C, only one subset Ji of modality values can
be met in c. The qualitative variable with multiple choice deduced from v
and which we denote by vC , is defined as a mapping of C onto Pv(J)

vC : C −→ Pv(J) (2)

For generality reasons, we will consider a higher description level intro-
ducing a probability distribution {pi | 1 ≤ i ≤ k} on Pv(J). Therefore the vC
value can be written as follows:

(J1, p1)&...&(Ji, pi)&...&(Jk, pk) (3)

or, more explicitly:

(&{j | j ∈ J1}, p1)&...&(&{j | j ∈ Ji}, pi)&...&(&{j | j ∈ Jk}, pk) (4)

This type of description introduces uncertainty in the concept recogni-
tion or can be associated with a partition of C in higher concepts (genus in
our case) which can be described by (3). In this richer case the descriptive
variable can be expressed in terms of probabilistic qualitative variable with
multiple choice.

Because of the generalized data table formalization, the included value
in the entry situated at the intersection of the c row and the vC column is
given by expression (3) or by that (4).

3 Preordonance structure on the modality set of a
qualitative variable. Representation

A “preordonance” qualitative variable is a qualitative (categorical) variable
whose modality set is endowed with an ordinal similarity. Formally, a pre-
ordonance is a total preorder (ranking with ties) on the set of unordered
(or ordered) modality pairs. By denoting J = {1, 2, ..., j, ...,m} the modality
codes of the concerned variable, the total preorder is defined on the following
set:

J{2} = {(j, h) | 1 ≤ j ≤ h ≤ m} (5)

(Lerman and Peter (1985), Lerman (1987), Ouali-Allah (1991), Lerman
(2000), Lerman and Peter (2003)). This total preorder is established by the
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expert knowledge by going from the highest ordinal similarity pairs to the
lowest ones. For two pairs (j, h) and (j′, h′), two cases have to be considered:
either

(j, h) > (j′, h′) (6)

or

(j, h) ∼ (j′, h′) (7)

In the first case j and h are assumed, without loss of generality, to be
more similar than j′ and h′ and in the second case, j and h are assumed to
be equally similar as j′ and h′.

Let us consider the above example of the previous section (“Aspect of
individual duct”) where J = {1, 2, 3, 4}. By going from the most similar
modality pair to the least similar one, the submitted preordonance by the
expert is the following:

11 ∼ 22 ∼ 33 ∼ 44 > 12 ∼ 13 ∼ 23 > 14 ∼ 24 ∼ 34 (8)

where jh represents the pair {j, h}, 1 ≤ j ≤ h ≤ 4.

The total preorder on J{2} is coded by means of the “mean rank function”
given by the table:

{rjh | 1 ≤ j ≤ h ≤ m} (9)

where the rank rjh is computed with the following equation:

rjh = l1 + l2 + ... + lp−1 +
1

2
× (lp + 1) (10)

where lq denotes the qth class size of the total preorder on J{2} according
to an increasing order and where jh belongs to the pth class.

Then, in our example, the above table (9) becomes in our example:

{8.5, 5, 5, 5, 2, 8.5, 5, 2, 8.5, 2, 8.5} (11)

4 Taxonomic variable organizing a set of dependent
variables. Representation

Let us begin by an example and consider the variables 1, 18, 19 and 20 of
Lebbe et al. (1987) that we denote v1, v21, v31, and v32, respectively. v1 is
the “Sex” attribute, v21 is defined by the “Number of style spines”, v31 in-
dicates the “Distribution of 4 style spines” and v32, the “Distribution of 5
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style spines”. The value sets of these variables are:

{1: male, 2: female}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5, 6} and {1, 2, 3, 4, 5},
respectively, where each integer code is associated with a modality value.

We obtain the following taxonomic structure:

v1

m, 1, v21 f, 2, 15

1, 1 2, 2 3, 3 v31, 4 v32, 5

1, 4 2, 5 3, 6 4, 7 5, 8 6, 9 1, 10 2, 11 3, 12 4, 13 5, 14

1

2

3

4

Fig. 1. Taxonomic variable.

Clearly, the variable v21 is defined only when the v1 value is 1. On the
other hand, the variables v31, and v32 are defined only when the values of
v21 are 4 and 5, respectively. The mother variable of v31 and v32 is v21.

More generally, a taxonomic variable denoted ω, organizing a set of log-
ically dependent variables consists of a sequence of collections of qualitative
variables of the following form:

ω = ({v1}, {v21, v22, ..., v2k2}, ..., {vp1, vp2, ..., vpkp},
..., {vq1, vq2, ..., vqkq}) (12)

The first collection is necessarily reduced to one element: the variable v1.
This corresponds to the root of the tree representing the taxonomic variable
ω. The variables vp1, vp2, ..., vpkp are represented at the pth level of this tree
built in a descendant fashion. The set of variables {vp1, vp2, ..., vpkp} can be
divided into disjoint subsets (classes) according to mother variable concerned.
More precisely, if {vpi, ..., vpi′} (i′ > i) denotes a such subset, two of its el-
ements vpj and vpj′ are characterized by the same mother variable v(p−1)h.
They are respectively defined on two distinct subsets of the described objects
(specimens of phlebotomine sandflies in our case), where each subset is de-
fined by one modality of v(p−1)h.

In the above example ω is instanciated as follows:

ω = ({v1}, {v21}, {v31, v32}) (13)

The structure associated with this variable is represented in terms of a
“ultrametric preordonance” (Lerman (1970), Lerman (2000)) on the set of
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taxonomy leaves (in the above example the cardinality of this set is 15). By
considering a decreasing construction of the taxonomic tree from the root to
the leaves, this total preorder on the set of unordered leaf pairs is such that,
the higher the rank of a given pair, the lower the first node which underlies
the two concerned leaves. Thus, in the above example, the pair {6, 8} has
the same rank as that of {10, 12}. The latter is greater than that of {7, 12},
which is equal to the {2, 3} rank and so on ...

Now, let us denote by L the set of the taxonomy leaves, a ranking func-
tion r coding the total preorder defined by the utrametric preordonance is
characterized by the following equation:

(∀{x, y, z} ∈ P3(L)), r(x, z) ≥ min(r(x, y), r(y, z)) (14)

where P3(L)designates the set of all 3-subsets of L.

As in the general case (see Section 3), we adopt the notion of “mean
rank” for the ranking function. Mathematical formula can be derived, relat-
ing the tree shape with the mean rank function (Lerman and Peter (1988)).
The highest rank is assigned to the elements of the preorder class consti-
tuted by the the pairs having the form: {x, x}, x ∈ L. In these conditions,
the taxonomic variable is interpreted as a particular case of a preordonance
variable.

5 Taxonomic preordonance variable. Representation

Let us reconsider here the above ordinal similarity structure endowed with a
taxonomic variable ω organizing a set of logically dependent qualitative vari-
ables. We further assume that the modality set Mpi of a given qualitative
variable vpi (see 12) is endowed with a total preordonance (see Section 3),
1 ≤ i ≤ kp, 1 ≤ p ≤ q. These preordonances are locally defined variable by
variable, they have to be integrated in the taxonomic structure.

In these conditions, we have to build a total preordonance on the set
of the taxonomy leaves, or - equivalently - on the set of the associated com-
plete chains, going from the root to the leaves. This preordonance must take
into account both the preordonance defined in the above Section 4 and those
we have just mentioned.

Such a preordonance is built step by step, decreasingly, with respect to
the resemblance between terminal modalities corresponding to the taxonomy
leaves. The general principle consists in refining the ultrametric preordonance
associated with the taxonomy by means of the preordonances locally defined
on the modality sets of the different variables.
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More clearly, let us begin by the above example (see Figure 1) and con-
sider the leaf sets A = {4, 5, 6, 7, 8, 9} and B = {10, 11, 12, 13, 14} associated
with the modality sets of the variables v31 and v32, respectively. By denoting
P2(A) (resp., P2(B)) the unordered pairs from A (resp., B), P2(A) ∪ P2(B)
determines a unique class of the total preorder defined by the tree structure.
This class comprises all the element pairs joined at the level 3 of the taxon-
omy. Preordonance structures on the modality sets of the variables v31 and
v32 provide total preorders on P2(A) and P2(B), respectively. These, can be
represented by rank functions. Specifically, one may consider the mean rank
functions rA and rB defined on P2(A) and P2(B), respectively. In these con-
ditions, a ranking function rA∪B on P2(A) ∪ P2(B) is deduced from rA and
rB as follows:

rA∪B : P2(A) ∪ P2(B) −→ V al(rA) ∪ V al(rB) (15)

where V al(rA) (resp., V al(rB)) is the value set of rA (resp., rB ). Con-
sequently, rA∪B({x, y}) is defined by rA({x, y}) if {x, y} ∈ P2(A) and by
rB({x, y}) if {x, y} ∈ P2(B).

Therefore, according to the value scale of rA∪B , a total preorder on
P2(A) ∪ P2(B) is induced. This substitutes the unique class P2(A) ∪ P2(B).

Let us continue with the above illustrative example. The next preorder
class construction is given by the preordonance variable v21. Its modality set
C appears at the level 3 of the taxonomy. P2(C) is endowed with a total
preorder. In the latter we have to do the following substitutions:

(∀x ∈ {1, 2, 3}), {x, 4} ← {{x, y} | y ∈ A}
(∀x ∈ {1, 2, 3}), {x, 5} ← {{x, y} | y ∈ B}

for {4, 5} ← {{x, y} | {x, y} ∈ A×B} (16)

where the different pairs included in a given class substitution are inter-
preted as equally similar.

Now, let us give a general expression of the construction of a taxonomic
preordonance variable. We begin by ordering the set

∆(L) = {{x, x} | x ∈ L} (17)

according to the leaf depth in the taxonomy: in other words, the deeper
the leaf, the higher the ordinal similarity between the represented category
and itself. Thus, in the above example, for these pairs we have

{4, 4} ∼ {5, 5} ∼ {6, 6} ∼ {7, 7} ∼ {8, 8} ∼ {9, 9}
∼ {10, 10} ∼ {11, 11} ∼ {12, 12} ∼ {13, 13} ∼ {14, 14}

> {1, 1} ∼ {2, 2} ∼ {3, 3} > {15, 15}
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(18)

Let us reconsider here the general expression 12 of the taxonomic variable
ω. Let us indicate by M(vqj) the modality set of the variable vqj , 1 ≤ j ≤ kq.
These modality sets are figured by the deepest leaves of the tree depicting
ω. Then the next step of refining the ω taxonomic preordonance consists in
introducing the total preorders defined by the preordonance variables vqj on
the set of unordered modality pairs of M(vqj), that we denote by P2(M(vqj)),
1 ≤ j ≤ kq. The unique class

P =
⋃

{P2(M(vqj)) | 1 ≤ j ≤ kq} (19)

is refined according to the mean rank functions defined on the sets
P2(M(vqj)), 1 ≤ j ≤ kq, respectively. The global ranking function rP on

the union P is defined directly from the partial mean rank functions (see the
example above in this Section):

(∀j, 1 ≤ j ≤ kq), (∀{x, y} ∈ P2(M(vqj))), rP ({x, y}) = rqj({x, y}) (20)

where rqj designates the mean rank function on P2(M(vqj)) associated
with the preordonance variable vqj .

Additionally, the ranking function, that we denote by RU has to take into
account the taxonomic structure. Consequently it can be written as follows:

(∀{x, y} ∈ P2(M(vqj))), RP({x, y}) = rqj({x, y}) + card(L) (21)

For all j, 1 ≤ j ≤ kq.
Thus, two modality pairs {x, y} and {z, t}, belonging to two different sets

P2(M(vqj)) and P2(M(vqj′ )) (j 
= j′) are compared on the basis of their
respective rank functions defined independently on the modality pairs of vqj

and on those of vqj′ . This is consistent with the similarity index construction
(Lerman and Peter (1988), Lerman and Peter (1989)).

Now, let us consider the variable set {vp1, vp2, ..., vpk} introduced at the
pth level of the taxonomy (see 12). The respective modalities of each of these
variables arise at the (p + 1)th level.

⋃{P2(M(vpi) | 1 ≤ i ≤ kp} determines
a unique class of the taxonomic preorder. For a given i (1 ≤ i ≤ kp), a total
preorder is provided on P2(M(vpi) by the preordonance variable vpi. This re-
fines the subclass P2(M(vpi). Moreover, for {x, y} belonging to P2(M(vpi),
if x (resp., y) is a node tree from which branches issue, the class of the ter-
minal tree chains passing by x (resp., y) is substituted for x (resp., y) (see
16 in the above example). All the concerned pairs are interpreted as equally
similar and the mean rank function value rpi({x, y}) deduced from the pre-
ordonance variable vpi, is applied to all of these pairs. Denote M′(vpi the
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extended value set and r′pi the extended definition of the mean rank function

rpi on P2(M′(vpi). From the set, denoted R′
p, of rank functions

R′
p = {r′pi | 1 ≤ i ≤ kp} (22)

a unique rank function rP is induced on

P =
⋃

{P2(M′(vpi)) | 1 ≤ i ≤ kp} (23)

as follows:

∀i, 1 ≤ i ≤ kp, ∀{x, y} ∈ P2(M′(vpi)), rP ({x, y}) = r′pi({x, y}) (24)

In these conditions, according to the rP values, a total preorder on P is
provided. Besides, rP enables a consistent construction of a similarity index
between described objects or concepts (Lerman and Peter (1989)). For this
purpose we substitute for rP a ranking function RP which takes into account
all the leaf pairs preceeding P in the taxonomic order, strictly. More clearly,
by denoting Pp+1 this set of leaf pairs

∀{x, y} ∈ P2(M′(vpi)), RP({x, y}) = rP({x, y}) + card(Pp+1) (25)

For all i, 1 ≤ i ≤ kp.
In the case of the above example we have

P3 = {{4, 10}, {4, 11}, ..., {4, 14}, {5, 10}, {5, 11}, ..., {9, 13}, {9, 14}} (26)

The above ranking function RP is defined for all leaf pairs joined at pth

level (first junction). Each leaf can be associated with a terminal tree chain
from the (p + 1)th level. In these conditions, a global ranking function R is
built from its RP restrictions.

At the final step, the set of all complete chains of the tree represented by
the leaf set, is provided with a total preorder. Consequently, the taxonomic
variable is enriched and becomes a “taxonomic preordonance variable”, that
we code by means of the ranking function R.

6 Taxonomic variable with multiple choice

The descriptive structure of the global variable considered here is defined
in the previous Section 4. Nevertheless, the “value” of a given component
variable vpi of the taxonomy p level on a given concept is defined by a prob-
abilistically weighted conjunction of conjunctions on the set J = M(vpi) of
its modalities (see Formula (4) in Section 2). In Lebbe et al. (1987), only
deterministic values are considered and, then, the value of such a variable vpi
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on a given concept is defined by a unique conjunction whose terms belong to
J (or equivalently, as a subset of J) having the following form

&{j | j ∈ G} (27)

where G is a subset of J .

Let us begin with an example and imagine that for the above descriptive
variables v1, v21, v31 and v32, introduced in Section 4, one has the following
values on a given concept (species in our case) c:

v1(c) = 1

v21(c) = (1&2, 0.4)&(2&3&4, 0.2)&(4&5, 0.4)

v31(c) = (1&2, 0.4)&(2&3, 0.6)

v32(c) = (2&3&4, 0.8)&(3&5, 0.2) (28)

Denote here by w the taxonomic variable organizing the preceeding vari-
ables (see Figure 1). One possible value of w on an element u drawn from
c may be: w(u) = 11&12, corresponding to v1(u) = 1 and v21(u) = 1&2.
Another possible value of w may be w(u) = 12&13&141&142 corresponding
to v1(u) = 1, v21(u) = 2&3&4 and v31(u) = 1&2.

The probability of the v21 value is 0.4 and that of the v31 value is 0.2 ×
0.4 = 0.08. These values are obtained according to computational principle
of a conditional probability.

More precisely, denoting ∨ the logical disjunction, the w value on a ran-
dom unit u∗ provided from the concept c, can be written:

w(u∗) = (11&12, 0.4)∨ (12&13&141&142, 0.08)

∨(12&13&142&143, 0.12)∨ (141&142&152&153&154, 0.128)

∨(141&142&153&155, 0.032)∨ (142&143&152&153&154, 0.192)

∨(142&143&153&155, 0.048) (29)

or, by using the coding of the taxonomy leaves with the integers 1 to 15
(see Figure 1 ),

w(u∗) = (1&2, 0.4)∨ (2&3&4&5, 0.08)

∨(2&3&5&6, 0.12)∨ (4&5&11&12&13, 0.128)

∨(4&5&12&14, 0.032)∨ (5&6&11&12&13, 0.192)

∨(5&6&12&14, 0.048) (30)

The weight sum is a probability sum and consequently, is equal to 1.
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Now, the associated value of w on the concept c, can be put in the fol-
lowing form:

w(c) = (1&2, 0.4)∧ (2&3&4&5, 0.08)

∧(2&3&5&6, 0.12)∧ (4&5&11&12&13, 0.128)

∧(4&5&12&14, 0.032)∧ (5&6&11&12&13, 0.192)

∧(5&6&12&14, 0.048) (31)

where ∧ is another notation for a conjunction.

Thus w(c) consists of a probability distribution on a collection of leaf
subsets of the taxonomic tree or, equivalently, on complete chain subsets of
this tree.

The general case can be easily derived from the above illustration. Rela-
tive to the modality set M(vqi) of the qualitative variable vqi appearing in
the taxonomic variable ω (see 12), let us consider the possible values of vqi.
These values, can be put as follows (see Section 2):

{(Jl, pl) | 1 ≤ l ≤ mqi} (32)

where {Jl | 1 ≤ l ≤ mqi} is a collection of mqi modality subsets and where
Jl occurs with the probability pl, 1 ≤ l ≤ mqi, (

∑{pl | 1 ≤ l ≤ mqi} = 1).

Now, consider for a given l, a modality xl belonging to Jl for which a
vqi daughter variable v(q+1)j is defined. With its modality set designated by
M(v(q+1)j) associate its values in the above form:

{(J ′
l′ , p

′
l′) | 1 ≤ l′ ≤ m(q+1)j} (33)

where J ′
l′ is a modality subset of M(v(q+1)j) occuring in c with the prob-

ability p′l′ , (
∑{p′l′ | 1 ≤ l′ ≤ m(q+1)j} = 1).

The joint probability of Jl and J ′
l′ is obtained according to conditional

probability principle by pl × p′l′ . This can also be expressed as follows:

Pr(&{xl&x′
l′ | (xl, x

′
l′) ∈ Jl × J ′

l′}) = pl × p′l′ (34)

Thus pl×p′l′ is the probability assigned to the conjunction of partial chains
of the two elements xl and x′

l′ belonging to Jl and J ′
l′ , respectively.

Finally and recursively, the value set of the taxonomic variable ω on c
is obtained. This value set consists of a probabilized set of conjunctions of
complete chains of the taxonomic tree. Note that each complete chain can
be represented by its terminal leaf. Denoting as J the set of all leaves, one
can easily see that the probabilized value of the concerned variable has the
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same general structure as that presented in Section 2 (see 3). More specifi-
cally, a given leaf conjunction is concerned by a unique sequence of the initial
qualitative variables, totally ordered by the mother → daughter relation.

7 Conclusion

As claimed above, the conceptual notion of a data table remains fundamental
in analyzing logical data knowledge. And, the only difference concerns the
logical nature of a cell content, describing an object or a concept (class) with
respect to a descriptive variable. In case of absence of missing data, the de-
scription complexity proceeds from two main causes. The first is associated
with the complexity of the relation on the value set of the description endowed
with the expert knowledge. The second results from the level knowledge of
the description on the entities (objects or concepts) to be clustered according
to their similarities. For a concept description by taxonomic preordonance
variables with multiple choice, the structural aspects of the value scale have
been studied in Sections 3, 4 and 5. Whereas, the formalization of the expert
knowledge relative to the values of such descriptive variables on the described
concepts, is given in Sections 2 and 6.

A rough similarity index between described concepts has been built in
order to minutely take into account the two complexity origins mentioned
above (Lerman and Peter (1988), Lerman and Peter (1989)). In case of a
description by many multivalued taxonomic preordonance variables, the in-
tegration process of the rough similarity indices (taken variable by variable),
into the LLA hierarchical classification method (Lerman (1993)), follows a
general principle given in (Lerman and Peter (1985), Lerman (1987), Lerman
(2000) Lerman and Peter (2003)). This approach is comprised in the hier-
archical classification software named CHAVLH (Classification Hiérarchique
par Analyse de la Vraisemblance des Liens en cas de variables Hétérogènes).
Significant and interesting results have been obtained in the hierarchical clas-
sification of 142 species described by 61 taxonomic preordonance variables
with multiple choice (Lerman and Peter (1988)).

Let us end by a general remark: taking into account the expert knowledge
in building structured descriptive attributes enables to obtain more synthetic
and more robust cluster organization; however, “explaining” the general fea-
tures of a given “significant” cluster becomes more difficult.
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LERMAN, I.C. and PETER, P. (1985): Élaboration et logiciel d’un indice de simi-
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Abstract. Conceptual clustering is a form of unsupervised learning that seeks clus-
ters in data that represent simple and understandable concepts, rather than group-
ings of entities with high intra-cluster and low inter-cluster similarity, as conven-
tional clustering. Another difference from conventional clustering is that conceptual
clustering produces not only clusters but also their generalized descriptions, and
that the descriptions are used for cluster evaluation, interpretation, and classifica-
tion of new, previously unseen entities. Basic methodology of conceptual clustering
and program CLUSTER3 implementing recent advances are briefly described. One
important novelty in CLUSTER3 is the ability to generate clusters according to
the viewpoint from which clustering is to be performed. This is achieved through
the view-relevant attribute subsetting (VAS) method. CLUSTER3’s performance is
illustrated by its application to clustering a database of automobile fatality acci-
dents.

1 Introduction

Clustering is a fundamental methodology for discovering structure in data.
A conventional approach to clustering seeks clusters of entities with high
intra-cluster similarity and low inter-cluster similarity. The results of such
clustering are therefore strongly dependent on the predefined similarity mea-
sure between entities. The similarity measure is typically computed on all
attributes that characterize entities in the dataset. If it happens that some
entities are very similar in terms of attributes that are irrelevant to the pur-
pose of clustering, these entities may be put incorrectly into the same clusters,
while entities that truly belong to the same cluster may be put into differ-
ent clusters. Another aspect of conventional clustering is that its results are
collections of clusters without any cluster descriptions. In many practical ap-
plications, however, the user seeks such descriptions, as they are useful for
interpreting the obtained clusters and for classifying future entities.

There exists a large body of literature on clustering. The developed meth-
ods differ in terms of the similarity measures they use, the ways they generate
clusters, and the way they represent them. For example, Gowda and Diday
(1992) described a hierarchical clustering method which defines similarity
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Fig. 1. Would you group points A and B, or C and D to the same of different
clusters?

based on the position, span, and content of entities. Huang (1998) presented
the k-modes algorithm as an extension to the well-known k-means algorithm
and handles categorical data types. A popular AutoClass system (Cheeseman
and Stutz (1996)) employs a Bayesian approach to partition the data into the
most probable groupings. Conley et al. (2005) used a genetic algorithm ap-
proach to locate clusters of spatial point data with maximum density, and
map the results geographically. The above examples are just a very small
sampling of the many clustering methods that has been developed. A review
of earlier clustering techniques can be found in Michalski and Stepp (1986)
and a more recent one at Berkhin (2002).

This chapter presents recent advances in conceptual clustering that groups
entities on the basis of their cohesion to concepts inherent in the data set,
rather than a predefined measure of similarity among entities. Clustering
entities in this manner attempts to reflect ways in which people group objects
in a collection, when presented with clustering tasks. To illustrate conceptual
clustering, consider Figure 1.

If clustering of entities represented as points in Figure 1 is done on the
basis of their ”similarity” defined by the reciprocal of the distance from each
other, the points A and B, and C and D would be grouped into the same clus-
ter, as they are closer to each other than to their other neighbors. A person,
equipped with concepts of different shapes, however, would usually notice
that these points are parts of two different ellipse-like configurations, and
therefore would cluster them to different clusters. A program for conceptual
clustering in which basic shapes are concepts in its background knowledge
would also recognize the elliptical configurations of the points and cluster
them accordingly. The above is a very simple illustration of the conceptual
clustering approach, originally introduced by Michalski (1979).

The rest of this paper is organized as follows. Section 2 consists of sev-
eral subsections, which present successively the cluster description language,
the top-level algorithm for conceptual clustering, a multi-criterion cluster-
ing quality measure, and finally the view-relevant attribute subsetting (VAS)
method that guides the clustering process according to its pre-defined goal.
VAS and some other features have been implemented in CLUSTER3 that em-
bodies recent advances in conceptual clustering. Section 3 illustrates CLUS-
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TER3’s performance by its application to a real-world problem of clustering
fatality accidents. Conclusions and future directions are described in Section
4.

2 Conceptual clustering methodology

2.1 Cluster representation

The complexity of problem spaces and the overwhelming amount of data
available for human interpretation creates the need for presenting results of
clustering in easily interpretable forms. Conventional methods of clustering
typically produce a collection of clusters or a hierarchy of clusters, without
any description or explanation of the clusters. Such explanation-free results
are often insufficient in practical applications, especially when the number of
entities or the number of attributes describing them is large.

This chapter is concerned with conceptual clustering that seeks clusters
in data that represent concepts described in a predefined form. It outputs
a hierarchy of clusters as well as their generalized descriptions. The gener-
ated descriptions facilitate cluster interpretation and are useful for classi-
fying future entities. In the method presented here, descriptions are in the
form of conjunctive expressions in Attributional Calculus, a logic and simple
representation language that combines elements of propositional, predicate
and multi-valued calculus to facilitate inductive inference (Michalski (2004)).
Such cluster descriptions are directly translatable to simple natural language
statements, and thus are easy to interpret and understand. Geometrically,
attributional descriptions correspond to one or more hyper-rectangles in a
subset of the multi-dimensional space spanned over attributes present in the
descriptions.

The fundamental building block of Attributional Calculus is an attribu-
tional condition or selector, whose simple form is:

[L rel R],
where L is an attribute, rel is relation, and R defines a subset of values from
the attribute domain. Here are a few examples of selectors and their inter-
pretation in natural language:

[house type = colonial] (the house type is colonial)
[color = blue ∨ red] (the color is blue or red)
[size = 14..16] (the size is between 14 and 16, inclusively)
[length ≥ 30] (the length is greater than or equal 30)

where the measurement units for attributes ”height” and ”length” are spec-
ified in the attribute domain.

A logical conjunction of selectors constitutes an attributional statement
or complex, and is used to form a description of a single cluster. Here is an
example of a cluster description derived from the automobile fatality acci-
dents dataset (see Section 3):
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Cluster 1: [Road profile = level] & [Road cond = dry] & [Light cond 
= dawn]

2.2 Cluster hierarchies

To describe a large collection of objects in a simple and understandable way,
people frequently organize it into a hierarchy. Biological taxonomies, govern-
ment structures, and library catalogue systems are but a few examples of such
hierarchical organizations. In data analysis, structuring dataset into a hierar-
chy is called clustering or unsupervised learning. For example, Ciampi et al.
(2000) describe a method for creating hierarchies of data items and present-
ing them in the form of dendrograms that graphically illustrate similarities
between entities. In data analysis and machine learning, it is often useful to
also structure domains of attributes into hierarchies, e.g., see Michalski and
Stepp (1983); Gowda and Diday (1992); Michalski (2004)).

This chapter concerns a conceptual clustering method that structures
datasets into hierarchies of clusters accompanied by their generalized descrip-
tions. The method described here assumes that the dataset is in the form of
a collection of events, which are vectors of attribute-value pairs (alternatively
called records or datapoints). The height, h, of the hierarchy to be created is
specified by the user. When h=1, the dataset is partitioned into groups ac-
companied by logically disjoint generalized descriptions of the groups. When
h=2, the original dataset is partitioned into clusters, and then each cluster is
partitioned again into the next-level clusters and again accompanied by their
descriptions. This process continues at each level of the hierarchy in the case
of larger values of h.

Descriptions of clusters that stem from the same parent in the hierarchy
are logically pairwise disjoint. Because these descriptions are generalizations
of events, when a new, previously unseen event needs to be classified, it
is matched against all cluster descriptions at the lowest level, and the de-
scription it matches determines the conceptual lineage to which the event is
classified.

2.3 The CLUSTER3 method

The most recent version of conceptual clustering has been implemented in
the CLUSTER3 program. The program conducts a divisive process that iter-
atively applies the top-level algorithm presented in Figure 2 to consecutively
smaller subsets of data at each level of hierarchy being developed. The num-
ber of clusters to be created, k, at each level of the hierarchy is a user-provided
parameter, or is determined by the system (see explanation below).

Let us briefly explain the algorithm. It starts by selecting k events, called
seeds, that serve as initial representatives for each of the desired k clusters. In
the first iteration, seeds are selected randomly, but in subsequent iterations
they are selected by interchangeably applying the principle of representation
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Fig. 2. The CLUSTER3 top-level algorithm.

or the principle of adversity. The principle of representation calculates clus-
ters’ centers, defined by the most frequent values of attributes in the events
within each cluster. Events closest to the centers are selected as new seeds.
The principle of adversity chooses as new seeds the events that are furthest
from the centers of cluster descriptions (Michalski (1979)) in order to see if
the current clustering is stable.

For each seed, the algorithm creates a set, called a star, of generalized
descriptions of the seed that do not cover other seeds, but cover the maximal
number of other events. The next step assembles different clusterings (data
clusters and their descriptions) by selecting different combination of descrip-
tions from each of k stars. Descriptions of clusters in the obtained clusterings
often logically overlap. The NID procedure (”Non-disjoint Into Disjoint”) is
then used to contract the descriptions to eliminate these overlaps. The events
in the overlaps are assigned to single clusters determined as the best ”hosts”
for them on the basis of a multi-criterion measure of clustering quality, called
LEF (see Sec. 2.4). The best clustering according to LEF is determined. New
seeds are selected from the clusters, and the above steps are repeated until
the generated clusterings stop improving. When this happens, the program
outputs the best clustering found so far. To make the above process efficient,
various heuristics are applied. If the assumed height of the hierarchy, h, is
greater than 1, the above procedure is applied multiple times, each time to
the clusters obtained at the previous step.

If the value of k (the desired number of clusters at each level) is not
provided by the user, for each node of the hierarchy the program executes
the clustering algorithm for k=2, 3, . . ., MAX, and then selects the globally
best clustering according to the global LEF (Sec. 2.4). A justification of this
procedure is that people typically like to split data into a relatively small
number of clusters (MAX ≤ 7) at each level of hierarchy. Since MAX is
small, CLUSTER3 simply repeats the procedure for values of k within the
indicated range, and determines the best clustering among all clusterings
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that have been generated, according to a measure of clustering quality that
takes into consideration both the simplicity of cluster descriptions and their
number.

2.4 Clustering quality measure

As described above, at each step of the process, clusterings (sets of clusters
and their descriptions) are ranked according to a multi-criterion measure
that takes into consideration the properties of the cluster descriptions and
the relation of descriptions to events being clustered. This feature represents
an important difference between conceptual and conventional clustering, as
the latter evaluates clustering quality solely on the basis of intra-cluster and
inter-cluster similarities. Several criteria are used, such as:

• Sparseness: the reciprocal of the density of events within the
area defined by the union of cluster descriptions. The program
tries to minimize the sparseness by seeking clusters with the high-
est density, defined by the ratio of the number of observed events
to the number of all events covered by the cluster.

• Simplicity : the average simplicity of cluster descriptions in the
clustering, measured by the reciprocal of the number of selectors
in the descriptions and the complexity of selectors.

• Balance : the deviation of the distribution of events in clusters
from an equal distribution, measured by the sum of squares of
differences between the number of events covered by each cluster
and the average number of events in the clusters.

• Disjointedness: the degree of difference between cluster descrip-
tions, measured by the sum of the number of attributes across ev-
ery pair of cluster descriptions sharing no values in the selectors.

A user combines some or all of these criteria into a single multi-criterion
called Lexicographic Evaluation Functional (LEF). In a LEF, individual cri-
teria are ordered based on their estimated relative importance, and each
criterion i is accompanied by a tolerance τi in percentage. The tolerance on
criterion i means that every clustering scoring more than τi percentage worse
than the best scoring clustering on this criterion is rejected. Therefore, two
clusterings are considered equivalent if for all criteria defined in the LEF they
evaluate to within τ% of the best result evaluation for each respective ele-
mentary criterion. Equivalent clustering results are further evaluated based
on the sum of the evaluation percentages for each measure, retaining the
clustering with the highest overall percentage. More details on LEF used for
clustering are in (Michalski and Stepp (1983)).

Figure 3 presents an abstract example of evaluation of three candidate
clusters on a LEF consisting of three criteria, listed in individual rows, in
the order defined by parameter ”Order”. The higher score indicates greater
quality. After evaluating clusterings on criterion α, Clustering 3 is eliminated
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Criterion Tolerance(τ ) Order Clustering1 Clustering2 Clustering3
Evaluation Evaluation Evaluation

α τα = 10% 1 10.0 9.5 8.5

β τβ = 10% 2 18.5 20.0 −
γ τγ = 10% 3 5.6 4.8 −

Fig. 3. An example of applying LEF to three clusterings.

because it scored below 10% worse than the best score on this criterion (ob-
tained by Clustering 1). The evaluation of the remaining clusterings on the
second criterion (β) did not eliminate any clustering, because their score was
within 10% from each other. After evaluating them on the 3rd criterion, γ,
Clustering 1 was found to be the best.

When clustering with different number of clusters are evaluatated, a global
LEF is used that involves an additional criterion, ”global simplicity” that
prefers clusterings with fewer clusters to those with more clusters.

2.5 View-relevant attribute subsetting

One class of enhancements in guiding the clustering process involves pro-
viding additional information about attributes beyond defining their domain
and type. To affect the amount of influence that each attribute (e.g. Zhao
et al. (2004)) or a type of attribute, i.e., numerical vs. categorical (Huang
(1998)) has on the evaluation of cluterings, an attribute ”weight” is assigned
to attributes or attribute types. A more advanced type of enhancement is em-
bodied in symbolic data analysis, described by Diday and Esposito (2003).
The method employs symbolic variables whose values may include in addi-
tion to conventional values, also more complex values such as histograms,
intervals, or membership functions.

This section briefly describes another type of enhancement, called view-
relevant attribute subsetting (VAS), introduced in Seeman and Michalski
(2006). The VAS method selects subsets of attributes that are most rele-
vant to the viewpoint from which clustering is performed. It leverages the
knowledge of the experimenter who has deep understanding of the nature
of the attributes and their relationship to the intended goal of the clus-
tering process. Based on this knowledge, a viewpoint meta-attribute Mv is
defined for a viewpoint v as a higher level attribute that categorizes origi-
nal attributes according to their relevance to the viewpoint. Each viewpoint
meta-attribute bisects the attribute space into two subsets - the set of at-
tributes Mv associated with the viewpoint and the complement to this set
MC

v . Viewpoint meta-attributes are combined using set operators to deter-
mine which attributes are to be included in the projection space for clustering.
For example, consider the attributes describing automobiles and viewpoint
meta-attributes presented in Figure 4.
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Attributes Performance Aesthetic Convenience

#Cylinders + − −
#Gears + − +

HasSpoiler + + −
Color − + −
HasCruiseControl − − +

Fig. 4. Viewpoint categorization of attributes describing automobiles.

A collection of automobiles can be classified from different viewpoints,
such as performance, aesthetic criteria or convenience of driving. A ”+” or
”-” in a cell indicates that an attribute is viewed as relevant or irrelevant,
respectively, for the given viewpoint. From Figure 4, the following definitions
are derived:

Mperformance = {#Cylinders,#Gears,HasSpoiler}
MC

performance = {Color,HasCruiseControl}
Mperformance ∪MC

Aesthetic = {#Cylinders,#Gears}

Given a viewpoint, CLUSTER3 selects from the original set of attributes
a subset that is relevant for this viewpoint and uses only relevant attributes
for clustering. This operation allows the program to cluster data from the
given viewpoint, and also simplifies the process of clustering.

3 Initial experiments with CLUSTER3 on FARS Data

3.1 Problem description

The Fatality Analysis Reporting System (FARS) is a national data gathering
initiative sponsored and maintained by the U.S. Department of Transporta-
tion National Highway Traffic Safety Administration and is described by
Tessmer (2002) and the FARS Coding and Validation Manual (2004). FARS
reports records of accidents with fatalities annually, and makes them publicly
available under the URL: www-fars.nhtsa.dot.gov. Every accident record is
described by groups of attributes referring to various aspects of the accident,
called levels:

1)Accident level, which specifies general accident information (39
attributes)

2)Vehicle level, which specifies information about each vehicle in-
volved in the accident (33 attributes)

3)Driver level, which specifies information referring to each driver’s
qualifications, history and relevant physical characteristics (20 at-
tributes)

4)Person level, which specifies relevant characteristics about each
person (including drivers) and their involvement in the accident
(28 attributes).
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Attributes Domain Values

Type

AccidentMonth Ordinal Jan−Dec

RoadProfile Nominal Level; Grade; Hillcrest;Sag

RoadSurface Nominal Concrete; Blacktop; Brick; Gravel; Dirt; Other

RoadCondition Nominal Dry; Wet;Snow; Ice;SandorDirtorOil; Other

LightCondition Nominal Daylight; Dark; DarkbutLighted;Dawn; Dusk

DrunkDrivingInvolved Nominal Y es; No

Fig. 5. FARS attributes used in disjoint and balanced clustering.

In the initial experiments described here, we used data from the 2004
reporting period and only relevant to the accident level. At the level, each
record consists of values of 39 multi-type attributes. We pre-processed the
data by only including records where the accident occurred in the state of
New York during the month of April, reducing the dataset to 93 events.

The experiments described below explored some of the many possible
clustering viewpoints (goals) related to these data. Goals are determined by
changing the available parameters (number of clusters, number of hierarchy
levels, etc.), modifying the LEF criterion, and using the VAS method. Specific
goal-related information is provided in the next sections.

3.2 Experiments seeking disjoint and balanced clusterings

The first set of experiments sought a clustering with cluster descriptions that
maximize disjointedness of cluster descriptions (by minimizing the number of
shared values between attributes among cluster descriptions) while trying to
maintain equal distribution of the data amongst the clusters. We selected the
six attributes presented in Figure 5, which were judged as being independent.
For example, there is most likely a high dependence between atmospheric con-
ditions (rain, snow, etc) and road conditions (wet, dry, ice, etc.), therefore
only the road condition attribute was included, and the atmospheric condi-
tion attribute was omitted. The multi-criterion clustering quality measure,
LEF, consisted of the disjointedness criterion with tolerance τ = 10%, and
then the balance criterion with tolerance τ = 20%. The initial experiments
clustered data into varying numbers of clusters, (k), ranging from 2 to 6, and
leaving all other parameters at their default levels. The clustering obtained
for k=2 was influenced significantly by the values of the ”Road profile” at-
tribute. The clustering obtained for k=3 proved to be the most interesting.
The resulting cluster descriptions show a dependence not on the three pos-
sible values of the ”Road profile” attribute, as was expected based on the
results for k=2, but rather on a combination of values from three attributes.
This result demonstrates the ability of CLUSTER3 to discover complex re-
lationships and present the results as easily interpretable descriptions.
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Fig. 6. A CAG visualizing clustering obtained in the initial experiments.

The results obtained and their visualization in the form of a Concept
Association Graph (CAG) are displayed in Figure 6. In a CAG used for vi-
sualizing results from CLUSTER3, the top node represents a clustering, the
nodes below represent data clusters, rectangular nodes below represent clus-
ter descriptions. Links to nodes representing selectors constituting a cluster
description are connected by arches to indicate that selectors are combined
by conjunction. Remaining nodes represent attributes.

Links between attribute nodes and cluster descriptions are marked with
the relation and the subset of attribute values from the corresponding se-
lector. The graph shows a multi-attribute dependence for determining the
clusters that maximize the combined disjointedness and balance criteria. The
hierarchy obtained for k=4 through k=6 are further divisions of the result
obtained for k=2. Figure 6 is a simplified form of a CAG, as it uses links
of the same thickness, unlike CAGs representing results of supervised learn-
ing in which links’ thickness represents some property associated with the
condition, e.g., its consistency (Kaufman et al. (2006)).

3.3 Clustering data from the road state viewpoint

Results of previous experiments suggest a high dependence of cluster de-
scriptions on attributes relevant to the state of the road viewpoint. There-
fore, the next experiments involved building a hierarchy of clusters from the
road state viewpoint. A meta-attribute Mroadstate was defined whose values
include original attributes relevant to this viewpoint, such as Road profile,
Road condition, Road surface and Road alignment. The ”Road alignment”,
with values {straight, curve} was not in the original set of attributes listed
in Figure 5, but was added as also relevant to the road state viewpoint. The
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Fig. 7. Hierarchy of Clusters and Cluster Descriptions Generated by CLUSTER3
From the Roadway Viewpoint.

hierarchy depth was set to 2. The results are shown in the dendrogram-like
diagram in Figure 7.

The hierarchy shows a clear division based first on the newly added at-
tribute, ”Road alignment,” and then secondarily on either ”Road profile”
or ”Road surface.” The inclusion of the ”Road profile” attribute as a key
attribute in the second level strengthens the result of the first set of exper-
iments, which relied heavily on this attribute. The inclusion of the ”Road
surface” as a key attribute is surprising given that it did not play a signifi-
cant role in the previous experiments. It is also worth noting the difference
in relevance of attributes at the second level in the hierarchy. The attribute
with the greatest contribution to minimizing sparseness with respect to fatal
accidents on curved roads is ”Road surface”; whereas the attribute with the
greatest contribution to minimizing sparseness with respect to fatal accidents
on straight roads is ”Road profile”. The hierarchy presented in Figure 7 ap-
pears quite elegant and informative classification of accidents from the road
state viewpoint.

4 Conclusion

This chapter reviewed the conceptual clustering methodology and presented
some of its recent advances implemented in CLUSTER3. The program was
illustrated by applying it to the problem of clustering of fatalities data from
different viewpoints. The clustering generated consisted of clusters and cluster
descriptions that are easy to interpret and understand. The obtained results
appear highly satisfactory, and indicate that conceptual clustering can be a
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useful tool in practical applications, in particular in situations in which not
only clusters but also their generalized descriptions are required.
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Abstract. Following a symbolic encoding of selected terms used in text, we de-
termine symmetries that are furnished by local hierarchical structure. We develop
this study so that hierarchical fragments can be used in a concept hierarchy, or
ontology. By “letting the data speak” in this way, we avoid the arbitrariness of
approximately fitting a model to the data.

1 Introduction

1.1 Symmetry Group and Alternating Permutation Ordinal
Encodings in Symbolic Dynamics

In symbolic dynamics, we seek to extract symmetries in the data based on
topology alone, before considering metric properties. For example, instead of
listing a sequence of iterates, {xi}, we may symbolically encode the sequence
in terms of up or down, or north, south, east and west moves. This provides a
sequence of symbols, and their patterns in a phase space, where the interest of
the data analyst lies in a partition of the phase space. Patterns or templates
are sought in this topology. Sequence analysis is tantamount to a sort of
topological time series analysis.

Thus, in symbolic dynamics, the data values in a stream or sequence are
replaced by symbols to facilitate pattern-finding, in the first instance, through
topology of the symbol sequence. This can be very helpful for analysis of a
range of dynamical systems, including chaotic, stochastic, and deterministic-
regular time series. Through measure-theoretic or Kolmogorov-Sinai entropy
of the dynamical system, it can be shown that the maximum entropy con-
ditional on past values is consistent with the requirement that the symbol
sequence retains as much of the original data information as possible. Al-
ternative approaches to quantifying complexity of the data, expressing the
dynamical system, is through Lyapanov exponents and fractal dimensions,
and there are close relationships between all of these approaches (Latora and
Baranger (1999)).
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Later in this work, we will use a “change versus no change” encoding,
using a multivariate time series based on the sequence of terms used in a
document.

From the viewpoint of practical and real-world data analysis, however,
many problems and open issues remain. Firstly (Bandt and Pompe (2002)),
noise in the data stream means that reproducibility of results can break down.
Secondly, the symbol sequence, and derived partitions that are the basis
for the study of the symbolic dynamic topology, are not easy to determine.
Hence Bandt and Pompe (2002) enunciate a pragmatic principle, whereby the
symbol sequence should come as naturally as possible from the data, with
as little as possible by way of further model assumptions. Their approach is
to define the symbol sequence through (i) comparison of neighboring data
values, and (ii) up-down or down-up movements in the data stream.

Taking into account all up-down and down-up movements in a signal
allows a permutation representation.

Examples of such symbol sequences from Bandt and Pompe (2002) follow.
They consider the data stream (x1, x2, . . . , x7) = (4, 7, 9, 10, 6, 11, 3). Take the
order as 3, i.e. consider the up-down and down-up properties of successive
triplets. (4, 7, 9) −→ 012; (7, 9, 10) −→ 012; (9, 10, 6) −→ 201; (6, 11, 3) −→
201; (10, 6, 11) −→ 102. (In the last, for instance, we have xt+1 < xt < xt+2,
yielding the symbolic sequence 102.) In addition to the order, here 3, we may
also consider the delay, here 1. In general, for delay τ , the neighborhood con-
sists of data values indexed by t, t− τ, t− 2τ, t− 3τ, . . . , t− dτ where d is the
order. Thus, in the example used here, we have the symbolic representation
012012201201102. The symbol sequence (or “itinerary”) defines a partition
– a separation of phase space into disjoint regions (here, with three equiv-
alence classes, 012, 201, and 102), which facilitates finding an “organizing
template” or set of topological relationships (Weckesser (1997)). The prob-
lem is described in Keller and Lauffer (2003) as one of studying the qualitative
behavior of the dynamical system, through use of a “very coarse-grained” de-
scription, that divides the state space (or phase space) into a small number
of regions, and codes each by a different symbol.

Different encodings are feasible and Keller and Sinn (2005a, 2005b) use the
following.Again consider the data stream(x1, x2, . . . , x7)=(4, 7, 9, 10, 6, 11, 3).
Now given a delay, τ = 1,we can represent the above by (x6τ , x5τ , x4τ , x3τ , x2τ ,
xτ , x0). Now look at rank order and note that: xτ > x3τ > x4τ > x5τ > x2τ >
x6τ > x0. We read off the final permutation representation as (1345260).
There are many ways of defining such a permutation, none of them best, as
Keller and Sinn (2005a) acknowledge. We see too that our m-valued input
stream is a point in IRm, and our output is a permutation π ∈ Sm, i.e. a
member of the permutation group.

Keller and Sinn (2005a) explore invariance properties of the permuta-
tions expressing the ordinal, symbolic coding. Resolution scale is introduced
through the delay, τ . (An alternative approach to incorporating resolution



Symbolic Dynamics in Text 301

scale is used in Costa et al. (2005), where consecutive, sliding-window based,
binned or averaged versions of the time series are used. This is not entirely
satisfactory: it is not robust and is very dependent on data properties such
as dynamic range.) Application is to EEG (univariate) signals (with some
discussion of magnetic resonance imaging data) (Keller et al. (2005)). Sta-
tistical properties of the ordinal transformed data are studied in Bandt and
Pompe (2002), in particular through the S3 symmetry group. We have noted
the symbolic dynamics motivation for this work; in Bandt (2005) and other
work, motivation is provided in terms of rank order time series analysis, in
turn motivated by the need for robustness in time series data analysis.

Fig. 1. Left: dendrogram with lower ranked subtree always to the left. Right: ori-
ented binary tree associated with the non-terminal nodes.

Given the permutation representation used, let us note in passing that
there is an isomorphism between a class of hierarchic structures, termed un-
labeled, ranked, binary, rooted trees, and the class of permutations used in
symbolic dynamics. Each non-terminal node in the tree shown in Figure 1 has
one or two child nodes. This is a dendrogram, representing a set of n− 1 ag-
glomerations based on n initial data vectors. A packed representation (Sibson
(1980)) or permutation representation of a dendrogram is derived as follows.
Put lower ranked subtree always to the left; and read off oriented binary tree
on non-terminal nodes (see Figure 1). Then for any terminal node indexed by
i, with the exception of the rightmost which will always be n, define p(i) as the
rank at which the terminal node is first united with some terminal node to its
right. For the dendrogram shown, the packed representation is: (125346879).
This is also an inorder traversal of the oriented binary tree. The packed rep-
resentation is a uniquely defined permutation of 1 . . . n. Dendrograms (on n
terminals) of the sort shown in Figure 1, referred to as non-labeled, ranked
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(NL-R) in Murtagh (1984), are isomorphic to either down-up permutations,
or up-down permutations (both on n− 1 elements).

1.2 Motivation for an Alternative Ordinal Symbolic Dynamics
Encoding

In some respects we follow the work of Keller, Bandt, and their colleagues
in using an ordinal coding to provide for an encoding of the data sequence.
However in the following areas we need to adopt a different approach.

• We need to handle multivariate time series.

• We need to bypass the two alternative analyses that the ordinal symbolic
encoding necessarily leads to, viz. either up-down or down-up.

• Biological verisimilitude is not strong with the ordinal encoding as dis-
cussed so far.

We look at each of these in turn.

To handle multivariate time series, Keller and Lauffer (2003), and Keller
and Wittfeld (2004) find the best composite time series, using projections on
the first factor furnished by correspondence analysis. Correspondence analysis
uses a weighted Euclidean distance between profiles (or, using the input data,
the χ2 distance) and for time-varying signals such as EEG signals, it is a
superior choice compared to, say, principal components analysis.

In Bandt and Groth (2005), the need for multivariate analysis is estab-
lished. Among tentative steps towards this are window-based averages of
distances.

It is immediate in any inequality, xt > xt−1, that reversing the inequal-
ity (e.g. through considering an axial symmetry in the time axis) can lead
to a new and different outcome. When we have multivariate data streams,
enforcing symmetry is very restrictive. We bypass this difficulty very sim-
ply by instead using a change/no change symbolic representation. Financial
verisimilitude is lost in doing this (if up = gain, down = loss); but biological
verisimilitude, and that of other areas, is aided greatly.

Based on their EEG analysis, Keller and Sinn (2005a) ask: “Does there
exist a basic (individual) repertoire of ‘ordinal’ states of brain activity?”. As
opposed to this, we target the hierarchy or branching fragment as the pattern
that is sought, which suits the dendritic structures of the brain. While rank
order alone is a useful property of data, we seek to embed our data (globally or
locally) in an ultrametric topology, which also offers scope for p-adic algebraic
processing. We move from real data, we take account of ordinal properties,
and we end up with a topological and/or algebraic framework. This implies
a data analysis perspective which is highly integrated and comprehensive.
Furthermore, as an analysis pipeline, it is potentially powerful in bridging
observed data with theoretically-supported interpretation.
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2 The topological view: ultrametric embedding

1. We seek uncontestable local hierarchical structure in the data. The tra-
ditional alternative is to impose hierarchical structure on the data (e.g.
through hierarchical clustering, or otherwise inducing a classification tree).

2. We seek to avoid having any notion of hierarchical direction. In practice
this would imply that hierarchical “up” (e.g. agglomerative or bottom-
up) and hierarchical “down” (e.g. divisive or top-down) should each be
considered independently.

3. We may wish to accommodate (i.e., include in our analysis) outliers and
random exceptional values in the data. More particularly: we want to
handle power law distributions, characterized by independent but not
identically distributed values. An example is Zipf’s law for text.

4. Therefore, for text we will use the property of linearity of text: words
are linearly ordered from start to finish. (Note that a hypertext could be
considered as a counter-example.)

The approach to finding local hierarchical structure is described for time
series data in Murtagh (2005). We use the same approach here. The algorithm
is as follows. The data used is the sequence of frequencies of occurrence of
the terms of interest – nouns, noun-substantives – in their text-based order.
These terms are found using TreeTagger (Schmid (1994)).

In seeking to use free text, we will also take into consideration the strongest
“given” in regard to any classical text: its linearity (or total) order. A text is
read from start to finish, and consequently is linearly ordered.

A text endowed with this linear order is analogous to a time series. (This
opens up the possibility to generalize the work described here to (i) speech
signals, or (ii) music. We will pursue these generalizations in the future.)

3 Quantifying hierarchical structure in a linear ordered
set: application

We proceed now to particular engineering aspects of this work. We require
a frequency of occurrence matrix which crosses the terms of interest with
parts of a free text document. For the latter we could well take documentary
segments like paragraphs.

O’Neill (2006) is a 660-word discussion of ubiquitous computing from
the perspective of human computing interaction. With this short document
we used individual lines (as proxies for the sequence of sentences) as the
component parts of the document. There were 65 lines.

Based on a list of nouns and substantives furnished by the part-of-speech
tagger (Schmid (1994)) we focused on the following 30 terms:

support= { “agents”, “algorithms”, “aspects”, “attempts”, “behaviours”,
“concepts”, “criteria”, “disciplines”, “engineers”, “factors”, “goals”, “inter-
actions”, “kinds”, “meanings”, “methods”, “models”, “notions”, “others”,
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“parts”, “people”, “perceptions”, “perspectives”, “principles”, “systems”,
“techniques”, “terms”, “theories”, “tools”, “trusts”, “users” }.

This set of 30 terms was used to characterize through presence/absence
the 65 successive lines of text, leading to correspondence analysis of the 65×30
presence/absence matrix. This yielded then the definition of the 30 terms in a
factor space. In principle the rank of this space (taking account of the trivial
first factor in correspondence analysis, relating to the centering of the cloud
of points) is min( 65−1, 30−1). However through all zero-valued rows and/or
columns, the actual rank was 25. Therefore the full rank projection of the
terms into the factor space gave rise to 25-dimensional vectors for each term,
and these vectors are endowed with the Euclidean metric.

Define this set of 30 terms as the support of the document. Based on their
occurrences in the document, we generated the following reduced version of
the document, defined on this support, which consists of the following ordered
set of 52 terms:

Reduced document = “goals” “techniques” “goals” “disciplines” “mean-
ings” “terms” “others” “systems” “attempts” “parts” “trusts” “trusts” “peo-
ple” “concepts” “agents” “notions” “systems” “people” “kinds” “behaviours”
“people” “factors” “behaviours” “perspectives” “goals” “perspectives” “prin-
ciples” “aspects” “engineers” “tools” “goals” “perspectives” “methods” “tech-
niques” “criteria” “criteria” “perspectives” “methods” “techniques” “princi-
ples” “concepts” “models” “theories” “goals” “tools” “techniques” “systems”
“interactions” “interactions” “users” “perceptions” “algorithms”

This reduced document is now analyzed using the algorithm described
earlier. Each term in the sequence of 52 terms is represented by its 25-
dimensional factor space vector.

For successive triples, if the triple is to be compatible with the ultramet-
ric inequality, we require the recoded distances to be one of the following
patterns: 1,1,1 or 2,2,2 for an equilateral triangle; and 1,2,2 in any order for
an isosceles triangle with small base.

The only other pattern is 1,1,2 (in any order) which is not compatible
with the ultrametric inequality. (It is seen to represent the case of an isosceles
triangle with large base.)

Out of 43 unique triplets, with self-distances removed, we found 31 to
respect the ultrametric inequality, i.e. 72%. The ultrametricity of this docu-
ment, based on the support used, was thus 0.72.

For a concept hierarchy we need an overall fit to the data. Using the Eu-
clidean space perspective on the data, furnished by correspondence analysis,
we can easily define a terms × terms distance matrix; and then hierarchically
cluster that. Consistent with our analysis we recode all these distances, using
the mapping onto {1, 2} for unique pairs of terms.

Note that this is tantamount to having a window encompassing all of the
reduced document. It is also interesting to check the ultrametricity coefficient
here. This means therefore the ultrametricity coefficient in the window length
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n case, versus the ultrametricity coefficient in the window length 3 case.
The latter was seen to be (from exhaustive calculation) above, 0.72. For the
window length n case, we sampled 2000 triplets, and found the ultrametricity
coefficient to be 0.56. Since the linear order is of greater ultrametric (hence,
hierarchical) structure, an evident question arises as to whether it should be
used as the basis for a retrieved overall or global hierarchy. We do not do this,
however, because the greater hierarchical structure comes as the cost of being
overly fragmentary. Instead, we adopt the approach now to be described.

Approximating a global ultrametric from below, achieved by the single
linkage agglomerative hierarchical clustering method (this best fit from be-
low is optimal), and an approximation from above, achieved by the complete
linkage agglomerative hierarchical clustering method (this best fit from above
is non-unique and hence is one of a number of best fits from above), will be
identical if the data is fully ultrametric-embeddable. If we had an ultrametric-
ity coefficient equal to 1 – we found it to be 0.72 for this data – then it would
not matter what agglomerative hierarchical clustering algorithm (among the
usual Lance-Williams methods) that we select.

In fact, we found, with an ultrametricity coefficient equal to 0.72, that
the single and complete linkage methods gave an identical result. This result
is shown in Figure 2.

to
ol

s
te

ch
ni

qu
es

m
et

ho
ds

us
er

s
tr

us
ts

th
eo

rie
s

te
rm

s
sy

st
em

s
pr

in
ci

pl
es

pe
rc

ep
tio

ns
pe

op
le

pa
rt

s
ot

he
rs

no
tio

ns
m

od
el

s
m

ea
ni

ng
s

ki
nd

s
in

te
ra

ct
io

ns
fa

ct
or

s
en

gi
ne

er
s

di
sc

ip
lin

es
cr

ite
ria

co
nc

ep
ts

be
ha

vi
ou

rs
at

te
m

pt
s

as
pe

ct
s

ag
en

ts
al

go
rit

hm
s

go
al

s
pe

rs
pe

ct
iv

es

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Cluster Dendrogram

H
ei

gh
t

Fig. 2. Single (or identially, complete) linkage hierarchy of 30 terms, comprising
the support of the document, based on (i) “no change/change” metric recoded (ii)
25-dimensional Euclidean representation.
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Abstract. Consensus methods are widely used to combine hierarchies defined on
a common set of n object. Many methods have been proposed during the last
decade to combine hierarchies. One of these, the average consensus method, allows
one to obtain a consensus solution that is representative of the initial profile of
trees by minimizing the sum of the squared distances between this profile and the
consensus solution. This problem is known to be NP-complete and one has to rely
on heuristics to obtain a consensus result in such cases. As a consequence, the
uniqueness and optimality of the solution is not guaranteed. The L∞-consensus
that yields to a universal solution in a maximum of n2 steps is an alternative to the
average consensus procedure. The two methods will be presented and compared on
a numerical example.

1 Introduction

Given a profile P = (H1, . . . , Hl, . . . , Hk) of k hierarchical classifications (e.g.,
n-trees or ultrametric trees) defined on a common set of n objects S, a con-
sensus hierarchy Hc is a single hierarchy that is representive, in a “certain
sense” (Barthélemy and McMorris (1986)) of the entire profile P (Leclerc
(1998) and Leclerc and Cucumel (1987)). Since the first algorithm proposed
by Adams (1972), the use of consensus hierarchies has increased and methods
and algorithms to combine classifications have been developed during the last
decades of which some apply to ultrametric trees (Margush and McMorris
(1981), Neumann (1983), Stinebrickner (1984), Finden and Gordon (1985),
Barthélemy and McMorris (1986), Cucumel (1990) and Lapointe and Cuc-
umel (1997)). In this paper we present two approaches: the average consensus
(or L2-consensus) and the infinite norm consensus (or L∞-consensus).

2 The average consensus method

The average consensus originally proposed by Cucumel (1990) returns a con-
sensus solution that minimizes the sum of distances, in the sense of Hartigan’s
(1967) distance, between each of the indexed hierarchies of the profile P and
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the consensus hierarchy. As there exists a one to one correspondence between
dendrograms and ultrametrics defined on S = (1, . . . , i, . . . , n) it is equivalent
to deal with dendrograms or with their corresponding ultrametric matrices.
Let H1 and H2 be two ultrametric trees. Let u1 and u2 be the two associ-
ated ultrametrics. Let ∆ be a distance between ultrametric trees (Hartigan
(1967)):

∆(H1, H2) =

n∑

i=1

n∑

j=1

[u1(i, j) − u2(i, j)]
2

(1)

Now, let Hc be the average consensus hierarchy. Hc is the hierarchy H
among all hierarchies defined on S that minimizes:

k∑

l=1

∆(Hl, H) (2)

Let uc be the ultrametric associated with Hc. Problem (2) is equivalent to
finding the ultrametric uc among all ultrametrics defined on S that minimizes:

k∑

l=1

n∑

i=1

n∑

j=1

[u1(i, j) − u2(i, j)]
2 (3)

This problem is equivalent to find the ultrametric the closest (in the sense
of the L2 norm) to the obtained dissimilarity by computing the mean term
to term of the ultrametrics associated to the hierarchies of the initial profile
P (Lapointe and Cucumel(1997)). It is a NP-complete problem which can be
resolved only by using a “ branch and bound ” algorithm (Chandon and De
Soete (1984)). This algorithm, which is a generalization of the average linkage
algorithm, leads to a solution which is not necessarily unique. When the
number of objects to be classified is big, it is necessary to find an approached
solution. The ultrametric associated to the hierarchy of the average linkage,
to which leads one of the branches of the algorithm developed by Chandon
and De Soete is a possible approached solution.

3 The L∞-consensus

A new approach has been developed by Chepoi and Fichet (2000) who have
proposed an algorithm which has a complexity in n4 and leads to a unique so-
lution: the consensus in infinite norm (L∞-consensus). This method proceeds
in the construction of two sequences of ultrametrics w1 < w2 < . . . < wq and
v1 > v2 > . . . > vq such that at the convergence of the algorithm wq=vq. We
present it in the steps below1.

1 We thank Bernard Fichet to have communicated to us a detailed version of the
algorithm.
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Let u1, u2, . . . , uk be the k ultrametrics associated to the k indexed hier-
archies of the profile P and let ‖ . ‖ be the infinite norm.

Step 1

• compute w = inf(u1, u2, . . . , uk), minimum term to term
• compute v = sup(u1, u2, . . . , uk), maximum term to term
• compute w∗ the subdominant of w
• compute e =‖ v − w ‖ /2
• compute w1 by deducting e to each term of v
• compute v1 by adding e to each term of w∗

• let m be equal to 1

Step 2

• compute em =‖ vm − wm ‖ /2
• if em = 0, end of the algorithm, wm = vm is the L∞-consensus

Step 3

• compute tm by deducting em to each term of vm

• compute wm+1 = sup(wm, tm)
• compute sm by adding em to each term of wm

• compute vm+1 the subdominant of inf(vm, sm)
• let m be equal to m + 1 and go back to step 2

The algorithm converges to a solution in a maximum of n2 steps. As the
complexity of the calculation of the subdominants is in n2 also, the algorithm
has a complexity in n4.

4 Example

Both methods are applied for the search of a consensus between the three
indexed hierarchies H1, H2 and H3 of Figure 12 defined on the set S=
{x1, x2, x3, x4, x5, x6}. We also show an approached solution obtained by the
algorithm of the average linkage (Figure 2).

The consensus in infinite norm (Figure 2) has the same structure as the
majority consensus (Margush and McMorris (1981)) and retains only two
subsets {x1, x2} and S and thus accepts few compromises. The level associ-
ated with S (2.5) is lower than those who are associated to it in the initial
hierarchies. As a result certain objects as x4 and x6 or x2 and x5 are much
closer in the consensus than in the hierarchies of the initial profile.

The average consensus and its approached solution by the average link-
age algorithm have both the same structure (Figure 2). It is interesting to

2 This example was used by Chepoi and Fichet for computing a consensus in infinite
norm.
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Fig. 1. Hierarchies H1, H2 and H3.

note that in that case the approached solution is excellent because only the
level associated to the subset S differs slightly from a consensus with the
other one. The average consensus is inevitably binary by construction, what
presents the inconvenience to force certain groupings. As for the consensus
in infinite norm, the proximity of x1 and x2 in the hierarchies H1 and H3 is
well represented. The relative proximities of x1 and x3 in the hierarchies H1

and H2 on one hand and of x5 and x6 in the three initial hierarchies on the
other hand are also well represented in the consensus. The binary structure
of the average consensus let represent x2 and x3 rather close one to the other
what is questionable considering the relative positions of these two objects
in the initial hierarchies (they are only close in H1). It is the same for x4 and
x5 who are only close in H1.

Another way to compare the obtained consensus is to use the cophenetic
correlation coefficient introduced by Sokal and Rohlf (1962) who measures
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Fig. 2. L∞-consensus and average consensus.

the similarity between two indexed hierarchies and who is independent of
the consensus methods. This coefficient has been computed to measure the
adequacy between each of the hierarchies H1, H2 and H3 and each of the
consensus (Table 1). For each consensus method, the mean of the cophenetic
correlation coefficients associated to H1, H2 and H3 has also been computed.
As the results are very similar for the average consensus and its approached
solution, we will only comment the cophenetic correlation coefficients ob-
tained for the average consensus and the infinite norm consensus.

The average consensus is very similar to H1 (0.993), and in fact both
hierarchies have the same structure in terms of subsets, but is rather different
from H2 (-0.077) and from H3 (0.082). The infinite norm consensus for its
part is rather close to H1 (0.531) and more close to H3 (0.661) and different
from H2 (-0.077). Both methods derive solutions that are rather different
from H2 which is a waited result as H1 and H3 are more similar one to each
other than they are to H2. The means of the coefficients associated to H1,
H2 and H3 are 0.333 and 0.331 respectively for the average consensus and
the infinite norm consensus. If we consider these means as global mesures of
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L∞-consensus Average consensus Average consensus
(approached)

H1 0.531 0.993 0.993
H2 -0.199 -0.077 -0.076
H3 0.661 0.082 0.080

Mean 0.331 0.333 0.332

Table 1. Cophenetic correlation coefficients.

the similarity between each consensus solution and the profile P, the results
are very similar.

5 Conclusion

On this example, when one considers the subsets obtained in the two con-
sensus, the consensus in infinite norm seems a little bit drastic while the
average consensus seems for its part too tolerant. When comparing the two
methods with the cophenetic correlation coefficient, the L∞-consensus seems
to be more faithful to the profile P. The algorithm of construction of the
consensus in infinite norm presents nevertheless the indisputable advantage
to be polynomial. Empirical studies with real data and simulations would be
necessary to highlight the advantages and the inconveniences of each of the
methods.
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Abstract. Let D∗ = (D1,D2, ...,Dk) be a profile of classifications of a given set
X. We aim to aggregate D∗ into a unique consensus classification D. Classifications
considered here are sets of classes which are not included into each other. To any
integer p comprised between 1 and k (both included), one makes correspond a
frequent grouping consensus function Fp which returns the maximal subsets of X
included in elements of at least p of the Di’s. We give some properties and three
characterizations of such consensus rules.

1 Introduction

In his celebrated work on the “nuées dynamiques”, Edwin Diday (1971) em-
phasized the importance of groupings appearing in many iterations of his
algorithm, that he called “formes fortes”. The present paper may be thought
of as a study of the systems of classes obtained on this way, that will be called
frequent groupings.

Considerations issued from another background will play a major role in
this study. Let X be a finite set, and R ⊆ (P(X))2 a binary relation on
the set of all subsets of X . In previous papers and communications (Dom-
enach and Leclerc (2004b), Leclerc (2004), Leclerc (2005)), we established
the uniqueness of a classification D (on the Moore family form) satisfying
two conditions related with R and generalizing conditions stated by Adams
(1986); such conditions ensure an admissible fitting of the nesting order of
D (see Section 5 below) to R. It remains an existence problem, since such a
classification D does not exist for any relation R. Indeed, Adams pointed out
the existence in a specific case, related to hierarchies and to a unanimity rule.
Here, we show that frequent groupings correspond to a generalized Adams
consensus situation, in a fairly general frame. Moreover, the obtainment of the
consensus classification D is close to the determination of “frequent items”,
now a major topic in association rules mining (cf. Hipp et al. (2000), Han
and Kamber (2001)).

The paper is organized as follows. Main definitions, including frequent
groupings consensus functions, are given in Section 2. In Section 3, we briefly
mention the relation between our frequent groupings and the frequent items
of the literature, with its interesting algorithmic consequences. Section 4
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presents some properties of frequent groupings consensus functions, with a
first characterization result, in the spirit of Arrow. In Section 5, we first recall
the definitions of the implication and the nesting relations associated with a
set of classes. Then, a characterization in terms of nestings (that is, in the
spirit of Adams) is obtained, and its variant in tems of implications (or exact
association rules) is stated.

2 Definitions

A classification, as considered here, consists of a family D of subsets (classes)
of a given finite set X with n elements (n ≥ 2). Moreover, the classification D
is supposed here to be a proper Sperner family, that is D 
= {X} and D 
= ∅,
and classes of D are pairwise incomparable for inclusion. The classification
D is a covering of X if the union of its classes is X and a partition of X if,
moreover, any pair of classes has empty intersection. The set of all proper
Sperner families on X is denoted as S. A subset A of X is said to be a group-
ing of D if there exists at least one class C of D containing A.

Besides the elements of S, another type of families will be considered be-
low. A family M of subsets of X is a Moore family (or a closure system) if it
satisfies the following two properties: (i) X ∈ M, and (ii) for all A,B ∈ M,
A ∩B ∈ M. The Moore family µ(D) = {∩D′ : D′ ⊆ D} is associated to any
(Sperner or not) family D (the obtainment of M = {X} corresponding to
D′ = ∅).

Let D∗ = (D1,D2, ...,Dk) ∈ Sk be a profile of such classifications. We
aim to aggregate D∗ into a unique Sperner family D. Set K = {1, 2, ..., k}.
We associate to the profile D∗ a grouping index gD∗ on the set P(X) of all
subsets of X , by setting, for any A ⊆ X ,
gD∗(A) = |{i ∈ K : A ⊆ C for at least one class C of Di}|
So, gD∗(A) is the number of those classifications in the profile D∗ admitting
A as a grouping.

We associate a consensus function Fp : Sk → S to the gD∗ index and to any
integer p ∈ K. A subset A of X is said a p-frequent grouping if gD∗(A) ≥ p,
and the p-frequent groupings consensus of D∗, denoted Fp(D∗), is the Sperner
family of all the maximal p-frequent groupings. Note that Fk(D∗) is the set
of the subsets C of X with the form C =

⋂
1≤i≤k Ci, with Ci ∈ Di for all

i ∈ K, and maximal with this property. Then, if D∗ is a profile of partitions,
one finds the meet of the partitions of D∗. On the other hand, F1(D∗) is the
set of those classes of

⋃
1≤i≤k Di which are maximal for inclusion.
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Though they are somewhat natural, such frequent groupings do not seem
to have been often considered in the literature. As we mention in the in-
troduction, the “formes fortes” of Edwin Diday (Diday (1971)) constitute a
noticeable exception.

3 Frequent groupings and frequent items

Consider the special case where, in the profile D∗, the family Di reduces to a
unique class Ci, for all i = 1, ..., k. It is equivalent to consider a database D∗

whose transactions are the Ci’s. Then, our frequent groupings correspond to
the so-called frequent itemsets of D∗.

The determination of frequent itemsets is an important topic in data
mining (association rules mining). Many algorithms have been designed to
obtain them, even in large databases. According to the previous observation,
frequent groupings, as defined above, constitute a generalization of frequent
itemsets. This observation has important consequences for algorithmic issues.
Here, we just give the example of the adaptation of the “prototypal” algo-
rithm Apriori (Agrawal and Srikant (1994)).

This algorithm proceeds with a tree exploration of P(X). The cutting
of many branches, which allows to deal with great amounts of data, corre-
sponds to a selection of potentially frequent itemsets. For each such itemset
B, the database D∗ is scanned to determine whether it has at least p elements
Ci containing B. The adaptation of this procedure to frequent groupings is
straightforward: one scans successively the families Di’s, with the new in-
struction to jump to family Di+1 as soon as a class containing B is found in
Di.

The adaptation of other algorithms should be examined case by case.

4 Some properties, with an arrowian characterization

We first give some properties of the consensus function Fp. This function from
Sk to S associates the Sperner family Fp(D∗) to any profile D∗ of Sperner
families. One easily verifies that, moreover:

• if all the Di’s are coverings of X , then Fp(D∗) is a covering of X ,
• if all the Di’s are families of intervals of a fixed linear order L on X , then

Fp(D∗) is a family of intervals of L,
• if all the Di’s are partitions of X , then Fk(D∗) is a partition of X ,

For p < k, the consensus Fp(D∗) of a profile D∗ of partitions of X is gener-
ally not a partition. For an example, set X = {a, b, c, d}, k ≥ 3, and consider
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a profile D∗)) of partitions, k− 2 of them being equal to {{a, b, c}, {d}}, and
the remaining two being {{a, b}, {c}, {d}} and {{a}, {b, c}, {d}}. One gets
Fk−1(D∗) = {{a, b}, {b, c}, {d}}, not a partition.

The conclusion about the fact that a subset A of X is or is not a grouping
of Fp(D∗) depends only on the value of the index gD∗(A), and not on the
elements or subsets of X − A. More precisely, consider the following three
properties for a consensus functions F from Sk to S (see, e.g., Monjardet
(1990), Day and McMorris (2003)). The property (S) of symmetry ensures
that the output of F does not depend on the order of the elements of a
profile; here, given a permutation σ of K, and a profile D∗ = (D1,D2, ...,Dk),
we set D∗

σ = (Dσ(1),Dσ(2), ...,Dσ(k)). The properties (UG) of unanimity for
groupings and (NMG) of neutral-monotony for groupings are “arrowian” ones,
where groupings are taken as elementary constituents of a Sperner family:

(S) For any profile D∗ and permutation σ of K, F (D∗) = F (D∗
σ);

(UG) [A ⊆ X and gD∗(A) = k] ⇒ [A is a grouping of F (D∗)];

(NMG) [D∗, E∗ ∈ Sk, A,A′ ⊆ X and {i ∈ K : A is a grouping of Di} ⊆
{i ∈ K : A′ is a grouping of Ei}] ⇒ [A is a grouping of F (D∗) ⇒ A′ is a
grouping of F (E∗)].

Theorem 1. A consensus function F : Sk → S is a p-frequent grouping
consensus function for some p ∈ K if and only if it satisfies properties (S),
(UG) and (NMG).

Proof. Obviously, every p-frequent grouping consensus function Fp satis-
fies properties (UG) and (NMG).

For the converse, consider a consensus function F satisfying conditions
(UG) and (NMG). We say that a subset J of K is decisive for a profile D∗

and for a subset A of X if J = {i ∈ K : A is a grouping of Di} and A is a
grouping of F (D∗). According to (NMG), we then have, for any profile E∗ ∈
Sk and for any A′ ⊆ X , J ⊆ {i ∈ K : A′ is a grouping of Ei} implies [A′

is a grouping of F (E∗)]. That is, J is decisive for any subset of X and any
profile, as well as any subset J ′ of K containing J . So, we just say that J is
a decisive set.

It remains to determine these decisive sets. According to (UG), K is a
decisive set. Let J be a decisive set of minimum cardinality p. If p = k, then
F = Fk. Otherwise, let J ′ be another subset of cardinality p of K, and con-
sider a permutation σ on K which maps J onto J ′. Let A ⊂ X and D∗ be a
profile such that J = {i ∈ K : A is a grouping of Di}. Then, since J is deci-
sive, A is a grouping of F (D∗). By property (S), A is a grouping of F (D∗

σ))

too, and J ′ is again a decisive set of F . So, any subset of K of cardinality
p (and, so, of cardinality at least p) is decisive while, by the minimality hy-
pothesis on p, a subset of K with less than p elements is not. In other terms,
F = Fp.
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The previous result may be also derived from a general one on the lat-
ticial consensus in distributive lattices (Monjardet (1990)). Even thought it
is generally interesting to obtain a specific result as a particularization of a
general one, it is not straightforward in this case to proceed on this way and,
for sake of brevity, we do not detail the involved steps.

5 Characterizations by nestings and implications

Two binary relations on P(X) are associated to any family D of subsets of
X (here, D is not assumed to be Sperner).

The implication relation I is defined by:

for all A,B ⊆ X , [(A,B) ∈ I] ⇐⇒ [for any C ∈ D, A ⊆ C ⇒ B ⊆ C].

So, (A,B) ∈ I (also denoted by A → B) means that every class con-
taining A contains B too. It is equivalently said that the pair A → B is an
(exact) association rule, or a functional dependency (see Caspard and Mon-
jardet (2003) for results and survey on these implication relations).

The nesting order Œ is defined by:

for all A,B ⊆ X , [(A,B) ∈ Œ ] ⇐⇒ A ⊂ B and there exists C ∈ D such
that A ⊆ C and B 
⊆ C.

So, (A,B) ∈ Œ (also denoted A Œ B) means that the subset B is more
general than A with regards to D. See Domenach and Leclerc (2004a) about
these nestings (or overhangings), introduced first by Adams (1986) in the
particular case of hierarchies.

An important remark is that, by definition, a Sperner family D and its
corresponding Moore family µ(D) have the same implication and nesting re-
lations.

Given a profile D∗ = (D1,D2, ...,Dk) of families of subsets of X , we denote
by Œi and →i, respectively, the nesting and implication relations associated
with the family Di. For p ∈ K, Œ(p) =

⋃
J⊆K,|J|≥p

⋂
i∈J Œi is the set of all

the pairs (A,B) ∈ (P(E))2 which belongs to at least p of the Œi’s. It was
observed that, generally, Œ(p) is not a nesting relation. Then, in the aggre-
gation of the profile D∗ into a unique proper Sperner family D, with nesting
relation Œ, the equality Œ = Œ(p) cannot be required. Instead, consider the
following two conditions, prompted by Adams ones.

(PN) Œ(p) ⊆ Œ;

(QN) For all C ∈ (D, (C,X) ∈ Œ(p);
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The inclusion (PN) corresponds to a preservation of nestings (those ap-
pearing in at least p elements of the profile). The condition (QN) of qualified
nestings may be thought of as a partial converse of (PN), where it is just
required that the distinguished pairs (C,E) (which obviously are in Œ ) are
already nestings for at least p elements of the profile.

Theorem 2. Let D∗ ∈ Skbe a profile of proper Sperner families on X.
Then, for each p ∈ K, the family D = Fp(D∗) is the unique Sperner family
on X satisfying Conditions (PN) and (QN) above.

Proof. We first show that Fp(D∗) satisfies Conditions (PN) and (QN). Let
A,B ⊆ X , with (A,B) ∈ Œ(p). We then have A ⊂ B, and there exists a subset
J of K with cardinality at least p such that, for any i ∈ J , there is a class Ci

of Di for which A ⊆ Ci and B 
⊆ Ci. Choosing J such that C =
⋂

i∈J Ci is
maximal for these properties, we obtain C ∈ Fp(D∗). We then have A ⊆ C
and B 
⊆ C. So, (A,B) ∈ Œ, which corresponds to Condition (PN).

For any class C of D, there exists by definition a subset J of K, with at
least p elements, such that, for any i ∈ J , there is some Ci ∈ Di with C ⊆ Ci.
This implies (C,X) ∈ Œi for any i ∈ J , and (C,X) ∈ Œ(p). So, the function
Fp satisfies Condition (QN).

The uniqueness is the consequence of previous results not detailed here.
One considers the Moore family µ(D), which has the same nesting relation
as D. One then applies a uniqueness result given in Domenach and Leclerc
(2004b) and Leclerc (2004).

Since implications are more popular than nestings, in the literature as
well as in applied fields, it is interesting to obtain a counterpart of Theorem
2 in terms of implications. We first derive two conditions (FI) and (NQI) from
Conditions (PN) and (QN) above. Condition (FI) means that any implication
pair of D is a frequent implication pair, in the sense that it is an implication
pair in enough (precisely, k− p) elements of the profile D∗. Condition (NQI)
of negatively qualified implications means that, for any C ∈ D, the pair (C,X)
(which is not an implication pair of D) cannot be an implication pair in many
elements of the profile.

(FI) For all A,B ⊆ X , A → B implies |{i ∈ K : A →i B}| ≥ k − p;

(NQI) For all C ∈ D, |{i ∈ K : C →i X}| < k − p.

Proposition 1. One has the equivalences (PN) ⇐⇒ (FI) and (QN)
⇐⇒ (NQI).

Proof. (PN) implies (FI): let A,B ⊆ X such that A → B. If B ⊆ A, then
(FI) is always satisfied. Otherwise, according to the properties of implication
relations (see, e.g., Caspard and Monjardet (2003)), A → B implies A →
A∪B, with A ⊂ A∪B. Then, (A,A∪B) /∈ Œ implies, by (PN), |{i ∈ K : A
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Œi A∪B}| < p and, so, |{i ∈ K : A →i A∪B}| ≥ k−p, which again implies
|{i ∈ K : A →i B}| ≥ k − p, that is, Condition (FI).

(FI) implies (PN): let A,B ⊆ X such that (A,B) ∈ Œ(p), that is A ⊂ B
and |{i ∈ K : A Œi B}| ≥ p. Then, |{i ∈ K : A →i B}| < k − p, which, by
(FI), implies that A → B is not satisfied, that is one has A Œ B.

(QN) ⇐⇒ (NQI): for C ∈ D, we have the equivalences (C,X) ∈
Œ(p) ⇐⇒ |{i ∈ K : C Œi X}| ≥ p ⇐⇒ |{i ∈ K : C →i X}| < k − p.

Corollary 1. Let D∗ ∈ Skbe a profile of proper Sperner families on X.
Then, for each p ∈ K, the family D = Fp(D∗) is the unique Sperner family
on X satisfying conditions (FI) and (NQI).

6 Conclusion

We defined a class of consensus rules by frequent groupings which apply to any
profile D∗ ∈ Sk of proper Sperner families. We gave three characterizations of
these rules. It remains to generalize these results by extending them to more
general classification models. Since hierarchies involved in Adams results are
not Sperner families, one may expect that such generalizations exist.

It was observed in Section 3 that reaching one of the corresponding sys-
tems of conditions requires to give up stability for partitions. In fact, in many
domains of application, the obtainment of overlapping classes is not at all a
drawback. The frequent groupings consensus may be a useful tool for the clas-
sification of data described by qualitative variables, less constraining than the
search of a consensus partition initiated by Régnier (1965) and Mirkin (1975)
(see also Barthélemy and Leclerc (1995)).
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Abstract. Popular methods for forming the consensus of several hypergraphs of
a given type (e.g., hierarchies, weak hierarchies) place a cluster in the output if it
appears sufficiently often among the input hypergraphs. The simplest type of tree
hypergraph is one whose clusters are subtrees of a star. This paper considers the
possibility of forming consensus by simply counting the frequency of occurances of
clusters for star hypergraphs.

1 Introduction and definitions

In a thought-provoking paper, Diday (2004) extends the usual notion of a
pyramid to the case of “spatial pyramids”. An example of this is where instead
of certain intervals of a path being considered as clusters, the clusters are
certain convex subsets of an underlying grid graph. In previous work of ours
(Lehel et al. (1998)), we have proposed the study of consensus of hypergraphs
where the clusters are taken as convex subsets (i.e.,subtrees) of a tree. It
would seem to be a reasonable research project to study the consensus of
various spatial pyramids. But before undertaking this project, in this short
note we study the consensus of the simplest type of tree hypergraph, namely
those defined on a star. Although general tree hypergraphs do not have the
nice visualization properties of Diday’s spatial pyramids perhaps on “tree-
like grids” a more spatial version may be possible. This too is left for future
investigation.

We first recall some basic definitions: A (simple) hypergraph on the set
S is a set of non-empty subsets (the edges) of S (the set of vertices). For
H a hypergraph, we also require S ∈ H and {x} ∈ H for all x ∈ S. Since
these kinds of hypergraphs result after applying standard clustering methods,
we call an edge A of the hypergraph H (A ∈ H) a cluster of H and if
1 < |A| < |S| it is a nontrivial cluster. A pyramid on S is a hypergraph P
with A ∩ B ∈ P ∪ {∅} for all A,B ∈ P , and there is a total ordering of S
such that each cluster of P is an interval in this ordering. In this definition
if “total ordering” is replaced by “tree” and “interval” by “subtree”, a tree
hypergraph on S results. A star tree hypergraph is a tree hypergraph where the
underlying tree is a star graph (a graph with n + 1 vertices, with n vertices
of degree one and one vertex of degree n, the central vertex). For example,
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H = {{x, a, d}, {x, b, c}} is a star tree hypergraph based on the tree shown
in the Figure 1.

x • • a
• b
• c
• d

Fig. 1. A star.

To extend this a step further, we will modify a star tree hypergraph into a
subdivided star tree hypergraph if the underlying star has each edge subdivided
once. For example, H = {{x, a}, {x, b, c, c′}, {a, a′}, {b, b′}} is a star-one tree
hypergraph based on the tree shown in Figure 2.

x

a   b   c 

a´ b´ c´

Fig. 2. A subdivided star.

2 Consensus of star tree hypergraphs

Let S be the set of all star tree hypergraphs with vertex set S and |S| ≥ 3.
We first make a couple of easy observations concerning star tree hypergraphs.
If H is a star tree hypergraph, then A∩B �= ∅ for any two nontrivial clusters
A,B ∈ H . In other words, there do not exist disjoint clusters. Indeed, the
following statements are easy to prove.

Proposition 1 A hypergraph H is a star tree hypergraph if and only if
the intersection of all the nontrivial clusters of H is nonempty.

Proposition 2 If H is a subdivided star tree hypergraph, then there exists
a bipartition (C1, C2) of the set of nontrivial clusters of H such that
i) if C1 �= ∅, then the intersection of all the elements in C1 is nonempty;
ii) if C2 �= ∅ and A ∈ C2, then |A| = 2 and A ∩B = ∅ for all B �= A in C2.
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For our example H = {{x, a}, {x, b, c, c′}, {a, a′}, {b, b′}}, the sets
C1 = {{x, a}, {x, b, c, c′}} and C2 = {{a, a′}, {b, b′}} satisfy items i) and ii) of
Proposition 2. Unfortunately, the converse of Proposition 2 is not true. For
example, if H = {{x, y, a}, {x, z, b}, {a, b}}, then C1 = {{x, y, a}, {x, z, b}}
and C2 = {{a, b}} satisfy items i) and ii) of Proposition 2 but it is easy to
see that H is not a subdivided star tree hypergraph. Therefore, in order to
simplify our discussion we will focus on star tree hypergraphs.

We are concerned with consensus functions on S, which are mappings

f : Sk → S

where k is a fixed positive integer. Elements of Sk are called profiles and are
denoted by P = (H1, . . . , Hk). One method of consensus is to implement a
counting rule, i.e. the definition of f is based on the existence of a nonnegative
number q such that

A ∈ f(P ) ⇔ |{i : A ∈ Hi}| > q

for all P = (H1, . . . , Hk) ∈ Sk. In this case, the consensus function f is
denoted by fq. In particular, f k

2
is called the majority rule. (See (Day and

McMorris, 2003) for these and other types of consensus rules.) Unfortunately,
in this case, the output of f k

2
need not be a star tree hypergraph.

Example 1 Let S = {x1, x2, x3} and consider the profile P = (H1, H2, H3)
where H1 = {x1x2, x1x3}, H2 = {x2x1, x2x3}, and H3 = {x3x1, x3x2}. (We
use the notation x1x2 . . . for {x1, x2, . . .}.) Then f k

2
(P ) = {x1x2, x1x3, x2x3}.

Since the three clusters that make up f k
2
(P ) have an empty intersection, it

follows from Proposition 1 that f k
2
(P ) is not a star tree hypergraph.

If we restrict the domain in a certain way, it is possible to force the output
of f k

2
to be a star tree hypergraph. This is similar to the situation we found

(Lehel, et al., 1998) when trying to construct counting rules for pyramids. In
that case we tried restricting each pyramid to fixed underlying linear order,
but then found that any selection of clusters from the input profile of pyra-
mids would result in a well-defined “consensus” pyramid. This required us
to abandon the counting approach for pyramids. For star tree hypergraphs,
we can make some progress. Towards this end, we first need some notation.
Let H0 denote the hypergraph on S with no non-trivial clusters and for any
H ∈ S with H 
= H0 and T ⊆ S, let

T ∩H = T ∩A1 ∩A2 ∩ . . . ∩Ar

where A1, A2, . . . , Ar are the nontrivial clusters of H . For any nonempty
subset S′ of S, let

c(S′) = min{|T | : T ⊂ S and T ∩H 
= ∅ ∀H ∈ S′ with H 
= H0}.
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If c(S′) = 1, then it is clear that f k
2
(P ) ∈ S for all P ∈ (S′)k.

Theorem 1 For any nonempty subset S′ of S, if c(S′) = 2, thenf k
2
(P ) ∈

S for all P ∈ (S′)k. Moreover, if k ≥ 3, then there exists a subset S′ of S
such that c(S′) = 3 and f k

2
(P ) 
∈ S for some P ∈ (S′)k.

Proof. If c(S′) = 2, then there exists T ⊆ S such that |T | = 2 and
T ∩ H 
= ∅ for all H ∈ S′ with H 
= H0. Let T = {x, y} for some x, y ∈ S.
Suppose A1, A2, . . . , Ar are the nontrivial clusters of f k

2
(P ) for a profile P ∈

(S′)k and that A1 ∩ A2 ∩ . . . ∩ Ar = ∅. Then there exist clusters Ai and Aj

such that x 
∈ Ai and y 
∈ Aj . Since each cluster belongs to more than half
the profile it follows that there exists H� such that Ai, Aj ∈ H�. But then
T ∩H� = ∅ contrary to the above.

The second part of the theorem is essentially covered in Example 1. �

So we have seen that majority rule leads to a well-defined consensus
method for star tree hypergraphs only if there is some restriction on the
domain.

The ideas used to prove Theorem 1 can be used to establish the following
result.

Theorem 2 For any nonempty subset S′ of S, if c(S′) = n where n < k,
thenf (n−1)k

n

(P ) ∈ S for all P ∈ (S′)k. Moreover, if |S| ≥ n + 1, then there

exists a subset S′ of S such that c(S′) = n + 1 and f (n−1)k
n

(P ) 
∈ S for some

P ∈ (S′)k.

For the “moreover” part, create the profile

P = (H1, . . . , Hn+1, H0, . . . , H0)

where f (n−1)k
n

(P ) contains the (n + 1) clusters An+1 = x1x2...xn, A1 =

x2x3...xn+1, A2 = x3...xn+1x1, ..., An = xn+1x1...xn−1 such that Ai ∈ Hj if
and only if i 
= j. Since the intersection of the A′

is is empty it follows that
f (n−1)k

n
(P ) 
∈ S.

The key idea for the first part is to use the pigeon hole principle which
forces any n nontrivial output clusters to belong to one of the input hierar-
chies.

Using Theorem 2, we can now propose a new type of consensus rule for star
tree hypergraphs. For any profile P = (H1, . . . , Hk) ∈ Sk define g : Sk → S
by

g(P ) = H1 ∩ . . . ∩Hk if c({P}) = k

or
g(P ) = f (n−1)k

n
(P ) if c({P}) = n < k
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where {P} = {H1, . . . , Hk}. The rule g is a counting rule where the threshold
depends on the input profile.

To gain a better understanding of the consensus rule g, we propose a small
list of axioms.

Anonymity (A) A rule f : Sk → S satisfies anonymity if
f(Hφ(1), . . . , Hφ(k)) = f(H1, . . . , Hk) for any profile (H1, . . . , Hk) and per-
mutation φ of {1, . . . k}.

Monotone Neutrality (MN) A rule f : Sk → S satisfies monotone
neutrality if for any two profiles P and P ′ and for any two nontrivial clusters
A and B,

c({P}) ≥ c({P ′}) and {i : A ∈ Hi} ⊆ {i : B ∈ H ′
i}

implies that
B ∈ f(P ′) whenever A ∈ f(P ).

The counting rule g satisfies the axioms (A) and (MN). However, these
axioms do not characterize g since the unanimity rule also satisfies (A) and
(MN). An interesting problem is to give a complete characterization of g.
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Abstract. Systematics, the scientific discipline that deals with listing, describ-
ing, naming, classifying and identifying living organisms is a central point in envi-
ronmental sciences. Expertise is becoming rare and for future biodiversity studies
relying on species identification, environmental technicians will only be left with
monographic descriptions and collections in museums.

With the emergence of knowledge management, it is possible to enhance the use
of systematician’s expertise, by providing them with collaborative tools to widely
manage, share and transmit their knowledge. Knowledge engineering in Systematics
means to revise taxa and descriptions of specimens. We have designed an Iterative
Knowledge Base System – IKBS – for achieving these goals. It applies the scien-
tific method in biology (conjecture and test) with a natural process of knowledge
management. The product of such a tool is a collaborative knowledge base of a do-
main, that can evolve (by updating the knowledge) and be connected to distributed
databases (bibliographic, photographic, geographic, taxonomic, etc.) that will yield
information on species after the identification process of a new specimen.

This paper presents an overview of the methodology, the methods (identification
tree and case-based reasoning) and the validation process used to build knowledge
bases in Systematics. An application on corals of the Mascarene Archipelago is
given as a case study.

1 Introduction

Today around the world, scientific databases are increasingly delivered on
CD-ROM or through Internet (e.g. World Biodiversity data-base from ETI
in Netherlands, Reefbase and Fishbase from ICLARM in the Philippines,
Hawaii Biological Survey databases, Coral Id at AIMS, etc.). These appli-
cations are taxonomic and bio-geographic information systems with some
identification keys for biologists (students, amateurs) and professionals (en-
vironment, tourism). In fact, they reproduce mostly electronically what al-
ready exists in books (i.e. textual descriptions, identification with diagnostic
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characters). This approach is interesting when the taxa are well known and
stable, but it is not sufficient when the knowledge of groups evolves rapidly,
which is particularly the case in the marine environment (corals, hydroids,
sponges, etc.).

In such domains, products for knowledge management in Systematics are
also needed, with a new methodology of knowledge extraction. This method
is based on the re-examination of specimens in various collection in order to
get more robust classifications (definition of the taxa) and identifications. In
fact, the description of specimens is the key point for engineering System-
atics: this descriptive information in the application can always be retrieved
in the future and compared again with the museum sample collections. For
young systematicians, this specimen-oriented approach brings more robust-
ness to the learning process than working with old monographs based on
conceptual species descriptions. Moreover, end-users of such a system (e.g.
environmental technicians) can directly compare a newly collected specimen
with the description of other specimens in collections.

We have developed a type of knowledge base that supports the above
methodology. The tool that generates such applications is called IKBS (It-
erative Knowledge Base System, Grosser (2002)). IKBS is a knowledge man-
agement system available on the Internet which is developed in the object-
oriented language Java. This tool was co-designed with specialists and end-
users for 15 years in different domains such as plant pathology diagnosis,
Manago (1992) and computer aided Systematics, Conruyt (1994). For mak-
ing descriptions, classifications and identifications, our knowledge bases rely
not only on observed things (the database of specimen descriptions) but also
on observable things (the knowledge of a descriptive model of the domain).

2 Knowledge acquisition

Three points have to be addressed for the knowledge acquisition process:
descriptive model definition, questionnaire generation and case acquisition.

2.1 The descriptive model

The descriptive model represents all the observable characteristics (objects,
attributes and values) pertaining to individuals belonging to a particular
domain. It is organized in a structured scheme, the name of the domain
being at the root of a description tree. Each node of the tree is an object
(a component of the individual) defined by a list of attributes with their
respective possible values. Designing a descriptive model is essentially an
expert task.

To help them, we have set up logical rules for case description covering: de-
composition, viewpoint, iteration, specialization, and contextual conditions,
Le Renard et al. (1994). These rules were constructed from the analysis of
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the process followed by the experts to create monographs of organisms or
diseases.

To serve as an example in coral Systematics, we present the descriptive
model of the family Pocilloporidae (Figure. 1). The expert has defined 51
objects and 120 attributes. With them, biologists are able to describe 4 genera
and 14 species and ecomorphs (see attribute called taxon in Figure 1).

Fig. 1. Part of the descriptive model of the Family Pocilloporidae.

There are multiple benefits in such a representation. Viewpoints divide
the descriptive model into homogeneous parts, thus giving a frame of refer-
ence for describing organisms at a particular level of observation (see object
identification, context, description, macro and micro structure in Figure 1).

Sub-components introduce modularity into the descriptions making it
possible to structure the domain from the more general to the more spe-
cific parts. This object representation of specimens is semantically better
than the flat feature-value representation: in the former, local descriptions of
attributes depend on the existence of parent objects, although in the latter
the defined characters are independent of one another. Some of the possibly
missing objects are marked with a minus sign (e.g. columella).

Figure 1 shows the partitioning dimension of objects (subpart links for
disjoint classes). For some of them (i.e. septa), other dimensions such as
multi-instantiation (× symbol) and specialization (∧ symbol) of objects can
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be seen. The former enables users to describe several sorts of the same object
by descriptive iteration (there are 4 possible instances for “septa” in Fig-
ure 1) and the latter lets users name each sort with the help of the following
classification tree of objects (specialization links in Figure 2).

Fig. 2. Classification tree of object septa.

In fact, one of the roles of the descriptive model is to bring an observation
guide to the end-user. The objects are linked together by relations that go
from the most general to the most specific (from left to right), making the
next description process easier for the non-specialist (see below).

2.2 The descriptions

The second phase of knowledge acquisition allows biologists less informed
than the experts to acquire personal descriptions and create a case base. An
identification name is associated to each specimen observation in order to
form a description or a case (Figure 3).

The description process generates sub-trees of the descriptive model (see
Figure 1 and Figure 3). Therefore, observed descriptions can be directly com-
pared to one another by leafing through page by page: this navigation process
is easier than viewing different lists of attribute-value pairs. In Figure 3, we
illustrate possibilities of IKBS for rendering complete and comprehensive
descriptions of a given sample. Different types of attribute are used: taxo-
nomic (e.g. general shape of object colony), numerical intervals (e.g. diameter
of apical parts) and multi-nominal values (e.g. section of apical parts). The
latter shows variation in objects displaying a set of multiple elements.

The visualization of objects differs graphically according to their status:
black if present, black with a cross if absent, symbol ? if unknown (see object
hoods at the bottom-right side of Figure 1 and Figure 3). And last, an object
can be specialized (e.g. the septa of corallites on branch ends, see Figure 1):
the result is a substitution of its name by a more precise one (e.g. primary
septa, see Figure 3) with its associated attributes (inherited or not, see Fig-
ure 2). It is important for the user to visualize structured descriptions: so
doing brings better clarity and comprehensibility to the acquisition phase.
Different sort of values can be used to inform each attributes according to its
type:
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Fig. 3. Part of the description tree of a case of the Family Pocilloporidae: Stylophora
subseriata.

textual type: Any character string is allowed by the system. See the first
attribute label of the object identification that corresponds to the case iden-
tifier. numerical type: simple discrete value, interval value (e.g. diameter
of the object apical parts between [7 14] mm) or set of values, noted {3, 14,
15} for instance. nominal or ordinal type: simple value in the attribute
domain, disjunction or conjunction of simple values are allowed. See section
of the object apical parts which is circular & flattened : this conjunction of
values (AND) means that both values are observed simultaneously for this
character. Conversely, a disjunction of values (OR) would be noted circular
| flattened, and means that the observator is not sure about his choice and
prefers to give an imprecise response. hierarchical type: hierarchical values
are the nodes of the definition domain of an attribute. As for nominal and
ordinal types, set of hierarchical values are allowed by IKBS (see attribute
localisation of object context : the sub-value fore reef zone of value outer
slope).

3 Knowledge processing

In Systematics, data to be processed may be more complex than those consid-
ered in conventional data analysis. This complexity cannot be captured by a
simple data matrix representation composed by a set of attributes and values.
Diversity and incompleteness must be taken into account, and the exception
is the only valid rule. The descriptions of specimens are often highly struc-
tured (composite or specialised objects), noisy (erroneous or unknown data)
and polymorph (variable or imprecise data). Consequently, the design of new
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symbolic/numeric methods of data analysis that masters this complexity is
a challenge for IKBS.

From the computer science viewpoint, we have adapted learning methods
from inductive learning algorithm C4.5, Quinlan (1994) and case-based rea-
soning, Aamodt et al. (1994) fields. IKBS can be compared with AcknoSoft’s
KATE, Isoft’s RECALL and TecInno’s CBR-Works. These decision support
systems have been designed to cope with industrial fields and very large
databases, Manago et al. (1993). Our contribution was to develop new al-
gorithms that exploit background knowledge to facilitate classification (class
definition) and identification of natural organisms with the representation
and processing of such reality.

IKBS proposes an easy-to-use on-line identification and classification
tool developed in the Java programming language. It integrates two main
approaches for finding the class (taxa) to which a specimen belongs. These
approaches are based on decision trees (monothetic selection of characters)
and case-based reasoning (polythetic selection of characters).

3.1 Identification Trees (IT)

The process of top-down induction of decision trees (DT) is well-known in the
machine learning research field since, Quinlan (1993). Classically, DT consti-
tute a particular sort of classifiers, i.e., solutions of the classification prob-
lem. For identification of biological objects needs, we propose an extension
of classical DTs called Identification Trees (IT). ITs are used by biologists
to: 1/ generate classification rules that correspond to conventional identifica-
tion keys or 2/ used by themselves as an interactive process to identify new
specimen.

Notations The input of the problem is made up of a set of variables (at-
tributes) A = {A1, . . . , Ap}. In our structured knowledge representation for-
malism, each attribute pertains to a structured object defined in a descriptive
model, and represents a function from a universe D to specific set of values,
dom(Ak), and a set of classes (categories) C = {C1, . . . , Cp}. The target clas-
sifier assigns one (or more) classes from C to each individual x from D. The
assignment is based on the values of x for the variables in A, x.Ai. Each ex-
ample x is usually viewed as a point of the description space ×i=1,kdom(Ai).
Within a typical application of ITs to specimen identification, the variables
Ai represent observable characters (or attributes) while the individuals are
specimens. In our case, all attributes can be continuous (numeric), discrete
(nominal or ordinal), and categorical (hierarchical).

Principles To guess correctly the class of a previously unseen individual x,
an IT checks a set of conditions on the attribute values in x, denoted x.Ai.
The “questions asked” by the IT have one of the following forms: x.Ai#v,
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where x.Ai ∈ dom(Ai), and # is a generic comparison operator depending
on the type of A.

If A is numeric then # ∈ {=, 
=, ≤, >}. In the case of hierarchi-
cal attributes (see for instance the attribute taxon in Figure 1) specific and
generic values have to be compared. This task is realized by a generalization
operator, noted � that tests if the input value x.Ai is generalized by (more
specific than) the output value v.

For example, the input value x.taxon = Pocillopora damicornis (species
name) is generalized by v = Pocillopora (genus name), because x is a kind-of
Pocillopora. x is thus assigned to the partition denoted by v, noted x.taxon �

v.
An IT is graphically represented by a tree where vertices are labeled by

variables Ai and edges by conditions. Moreover, all leaf nodes are labeled
by a class from C. When a new x is presented, the prediction engine walks
a particular path in the tree and once at a leaf node, it outputs the node’s
label as the predicted class for x. At an inner node, it checks which of the
conditions on adjacent edges holds to choose the next node and thus the next
variable to examine.

“Best” attribute But the key step of IT algorithm is the choice of the
“best” attribute that eventually leads to compact trees with high predictive
accuracy. As the domain of the attribute is split into subdomains, the pre-
dictive power of a split may be measured by the homogeneity of the obtained
subsets Dni with respect to the class labels of the member items. Information
theory-based criteria have been widely used in split comparison, e.g., entropy
reduction, Gini-index, χ2, and variance reduction. However, in the real appli-
cations, any attribute does not have necessarily the same cost as the others.
In order to take into account these differences, the best character selection
procedure is based on character weighting depending on a linear combination
of two factors:

1. The observation cost. Each descriptive model components (object or
attribute) is weighted in a range [0 1], corresponding to the capability to
easily observe the corresponding character.

2. The discrimination power of that character which is the entropy re-
duction.

“On-line” interactivity The user who consults the decision tree can come
back to a previous answered question. Another sub-tree is proposed when
selecting another character or answering unknown. This dynamic aspect is
achieved by the indexing of a sub-set of cases at each node of the decision
tree. At each node, the set of indexed cases can be viewed and the case-based
strategy can be used (see below).

IKBS ’s identification tree algorithm adds some important functionalities
to the well known decision tree builder C4.5 : it works not only on discrete and



340 N. Conruyt and D. Grosser

continuous attributes, but also on structured objects, taxonomic attribute-
values and multi-valued attributes, Conruyt et al. (1999).

3.2 Case-based reasoning

IKBS proposes an alternative method for specimen identification which
allows users to inform any characters in any order (random-access keys).
Characters which are not available for the specimen observation, or whose
interpretation is not clear, can be avoided. Then an interpretation of this in-
complete description is retrieved by selecting a subset of k-nearest cases from
the descriptions set and by reusing solutions found in the subset by maxi-
mizing the probability of obtaining a correct identification or by generating
a decision tree as seen above from the k selected cases.

The overall reasoning process behind CBR consists in solving new problems
by retrieving and adapting the solutions to similar problems that have oc-
curred in the past. The choice of the most appropriate case(s) from the case
base whose solution will be reused to construct the solution of the new case,
is driven by analogies in case descriptions, Aamodt (1994). These analogies
are detected by a matching mechanism, which typically relies on a similarity
assessment function. In cases where the target problem solution is restricted
to a single dependent variable, the case-based reasoner may be seen as a par-
ticular sort of classifier, and compares to what is known as instance-based
learning (IBL).

However, in the context of available background knowledge made up with
object, attributes, relations and hierarchical values, the solution have to be
situated in an ordered space and the cases structure must be taken into
account. Moreover, as the case-based reasoner is heavily dependent on the
structure and content of its collection of cases, the case search and matching
processes need to be both effective and reasonably time efficient. In this
context, two important issues have to be addressed: case retrieval and solution
reuse.

Case Retrieval The aim is to find the set of known cases that match the
new case at best, i.e., the BestMatch set. In our case, this amounts to look
for most similar cases (in terms of our similarity assessment function). These
cases are typically called nearest neighbors since they lay within a particular
neighborhood of the new case in the description space. Thus, the retrieve
task takes a (possibly partial) problem description, and ends with a complete
BestMatch set.

The retrieval algorithm performs a complete search through the case base.
Each case in the base is compared to the new case by means of similarity
function (see 3.2). Depending on the similarity value, the current known case
may be inserted into the set of current best matches.
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In order to increase the chances of a correct prediction, the set of nearest
neighbors BestMatch is considered of size greater than one. The exact value
of |BestMatch| is a parameter of the algorithm, the approach being known
as the k-nearest neighbors learning (k-NN ).

Similarity issues For the assessment of similarity between components in a
n-dimensional Euclidean space where coordinates are discrete values, several
measures have been proposed in the literature, including various metrics such
as the Euclidean distance, Manhattan distance, etc.

In our study, the similarity measure has been derived from the Minkowski
metrics to deals on the one hand with complex values such as unknown, hi-
erarchical, interval and set values, and on the other hand with structured
descriptions. Some aspects of the similarity measure that works with com-
plex values are developed here. The mathematical details of the complete
similarity measure definition can be found in Grosser (2002) and Grosser et
al. (2000).

The similarity measure for complex values is defined on two levels: at-
tribute or local level, and component or global level. For each variable Ai ∈ A,
the similarity factor between two descriptions x and y, denoted sim(x.Ai, y.Ai),
is defined as the combination of two factors dP and dC , reflecting respectively
the relative position assessment and the contents part assessment of the two
values.

The relative position factor dP translates the distance between the two
values x.Ai and y.Ai in an ordered (numerical values) or partially-ordered
(hierarchical values) space. The contents factor dC is based on the length of
the intersection of the two values, in order to measure the extent of interval or
set values common parts. The precise definition of these two factors depends
on the type of A.

Formally, the local similarity is computed by:

sim(x.Ai, y.Ai) = η dP (x.Ai, y.Ai)+
ζ dC(x.Ai, y.Ai)

(1)

where η, ζ ≥ 0, η + ζ = 1. η and ζ modulates the relative importance of dP

and dC . Thus, ∀(x, y) ∈ D2

sim(x.Ai, y.Ai) ∈ [0 1], dP and dC ∈ [0 1].
The contribution of each variable Ai is combined into a unique value

characterizing the overall similarity of all the components. For this purpose,
we use a linear combination of all attribute-level similarities.

Sim(x, y) =

∑i=p
i=1 βi sim(x.Ai, y.Ai)

p
(2)

where p is the number of attributes and βi ≥ 0 is the weight of the
attribute Ai.
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Solution reuse and adaptation The aim of solution reuse is to predict a
solution of the current problem from the solutions of the cases in the Best-
Match set. For this purpose, a combination of the solutions in BestMatch
is defined that represents a reasonable trade-off of several factors such as
frequency of particular class in the set, rank of best matches, etc. The com-
bination may be of type choice of one particular item. For example one may
systematically choose the most frequent solution in the best matching set.
Another way of combining is to use a weighted (linear) function of solutions
with a threshold (for a Boolean dependent variable).

However in complex domains, without adaptation, CBR systems are re-
stricted both in scope and application, Lieber et al. (1996). To reuse cases
effectively in new situations, solutions must be adapted to account for differ-
ences between the new target and the retrieved cases (Bergmann and Wilke
(1996)).

For classification of biological descriptions, the adaptation process may
be seen as refining the solutions by exploiting certain contextual information
of the new case but also available background knowledge of the domain. This
knowledge makes it possible to eliminate certain clearly inapplicable solutions
or maximizing the probability of obtaining a correct identification. In the ex-
ample of the Figure 3, properties of the object “context”, like depth of harvest
or biotic location of the specimen, are not relevant for the retrieval process
(they are not descriptive properties) but may be used to adapt the solutions.
Additional knowledge in the form of classification rules can be defined in the
descriptive model to express known facts like “only some particular species
can live at a depth of more than 30 meters” or “this specie has never been
found in outer slope”. This knowledge makes it possible to eliminate a priori
certain clearly inapplicable solutions.

4 Conclusion

This paper gives an overview that synthesizes different aspects of our re-
search works in artificial intelligence (knowledge representation, processing
and validation) developed for Systematics knowledge management. The con-
crete result of our research is the integrated object-oriented platform IKBS
available on the Web.

Nowadays, expertise in natural sciences is rare and precious. It is there-
fore urgent to develop tools that will ensure that expertise be collected and
safeguarded for transmission to future generations. If this is not done, we
will be left only with monographic descriptions and museum collections. The
Reengineering of Systematics with IKBS is our response among others, from
a computer science offer viewpoint, to this problem of enhancing scientific
databases and museum collections.
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Abstract. This paper presents a model characterizing unsupervised learning from
an information theoretic point of view. Under some hypothesis, it defines a theoret-
ical quality criterion, which corresponds to the informational limit that bounds the
learning ability of any clustering algorithm. This quality criterion depends on the
information content of the learning set. It is relevant when examples are sparsely
described, i.e. when most of the descriptors are missing. This theoretical limit of
any unsupervised learning algorithm is then compared to the actual learning qual-
ity of different clustering algorithms (EM, COBWEB and PRESS). This empirical
comparison is based on the use of artificial data sets, which are randomly degraded.
Finally, the paper shows that the results of PRESS, an algorithm specifically de-
signed to learn from sparsely described examples, are very closed to the theoretical
upper bound quality.

1 Introduction

Many works have been achieved on unsupervised learning, both in data anal-
ysis and in artificial intelligence. Among the numerous applications of unsu-
pervised learning, some are dealing with highly missing descriptions, i.e. with
examples that are described on a very tiny part of the description space. A
typical case consists in automatically classifying news items. There are many
applications of such classification process in sociology or in technology watch.
One of these applications we are working on was automatic stereotype learn-
ing.

The stereotype notion has been introduced by Walter Lippmann in his
famous book “Public Opinion” (1922) to characterize the way partial infor-
mation is crystallized in our mind. Lippmann says that each of us builds
stereotype folders from general and partial information we gather through
family discussions, school, newspapers, TV, rumors, etc. Then, these stereo-
types are used to form opinions concerning public events about which we
have in general no precise knowledge.

According to Lippmann’s hypothesis, stereotypes are constructed from
meagerly described data, which descriptions are mainly implicit. Therefore,
stereotype learning is a concrete illustration of an unsupervised learning from
sparsely described data. The aim here is precisely focused in exploring the
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Fig. 1. Stereotype reconstruction.

way such unsupervised learning techniques may automatically reconstruct
learning processes like, for instance, stereotype learning from examples.

However, since examples are sparsely described, the learning quality highly
depends on the complementarity of examples. In the extreme case of very tiny
descriptions, with one or two descriptors, it would be very difficult to learn
correlations among descriptors, especially if the total number of descriptors is
huge. How would it be possible to build correct classes from highly degraded
examples? Our goal here is to determine the information theoretic limita-
tions of such a learning process. In other words, it is to relate unsupervised
learning quality to the amount of information present in the examples.

Apart the introduction and the conclusion, the paper contains two main
parts: the first describes a theoretical model that defines the upper bound
limit of the learning quality while the second provides an empirical evaluation
of the theoretical model using artificial data sets.

1.1 Clustering as “Jigsaw Puzzle” reconstruction

The paper focuses on unsupervised learning from sparsely described exam-
ples. Our goal is to evaluate the limitations due to the sparseness, i.e. the
result of the learning procedures when example descriptions are reduced to
very few descriptors. In a word, it is like playing jigsaw puzzles. Let us precise
our insight: degraded information can be seen as the pieces of some stereo-
types, pieces which are mixed together (see step (1) in fig. 1).

Each fragment of information, i.e. a partially described example, is a
piece of this puzzle. Some fragments can be over-duplicated whereas other
fragments can be missing. Then, unsupervised learning corresponds to an at-
tempt to automatically reconstruct the original jigsaw puzzles, i.e. the origi-
nal stereotypes, from this mixing (see step (2) fig. 1). Our goal is to test the
ability of clustering techniques to retrieve stereotypes, which is equivalent
here to learn from a specific kind of sparsely described examples.

Let us note that this work is highly related to the notion of informational
limit. This notion was recently studied by Srebro et al. (2005; 2006) in the
context of Gaussian mixture learning. It can be viewed as the minimum infor-
mation amount that permits to learn the complete model having generated
the data. Underneath this amount of information, the problem is intractable,
whatever the algorithm used. If there is enough information, the clustering
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becomes an easy task. If you reuse fig. 1, the minimum information corre-
sponds to the minimum number of puzzle pieces that are required in order to
be able to reconstruct the three initial jigsaw puzzles. Testing the algorithm
learning ability is equivalent to compare two quality scores: the theoretical
score corresponding to the informational limit and the practical score that is
effectively obtained through the algorithms we use.

1.2 Evaluation on artificial data sets

Tests are done using randomly generated artificial data sets, which are de-
graded according to predetermined rules. Our goal is to confront the empirical
results obtained using degraded artificial data sets with the theoretical upper
bound of the learning quality computed within the theoretical model that is
proposed here. More precisely, a set of initial descriptions is initially being
given. It may also be randomly chosen, according to an initial attribute-value
language. These initial descriptions are duplicated δ time and then randomly
degraded (η is the proportion of descriptors that are destroyed) in order to
obtain a set of partially described descriptions characterized by both the du-
plication rate δ and the degradation rate η. Once those artificial data sets
have been built, the goal is to automatically reconstitute the initial descrip-
tions using different unsupervised learning techniques and to compare the
obtained clusters with the initial stereotypes. Undoubtedly, the quality of
the rebuilt stereotypes is limited by the information given in the dataset, as
we said in the former section. By making both the duplication rates δ of the
initial descriptions and the degradation factor η varying, we shall observe the
evolution of the learning quality. The main goal of this paper is to propose a
mathematical model for the theoretical limit of the learning quality L(δ, η),
i.e. the optimal quality of the learning procedure, and to compare it to the
actual quality of rebuilt descriptions q using different unsupervised learning
algorithms. It must be noted that this model is independent of the algorithms
used. The only condition is that the data have to be categorical data.

2 Unsupervised learning model

Our goal consists in estimating the informational limits of the learning qual-
ity. More precisely, it is to compute the quantity of information given through
the learning sets and then to evaluate the optimal learning quality L(δ, η), i.e.
the theoretical ability to retrieve the initial descriptions from sets of degraded
examples.

2.1 Artificial data sets

Given a description language D with na attributes, let us introduce a small
set of full consistent descriptions, I = {i1, i2, i3, . . . ini}, which stands, for
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instance, for the description of a stereotype set, as described in Velcin and
Ganascia (2005). Here is the formal definition of what we call a full consistant
description set:

Definition 1. A full consistent description set is a set S = {s1, s2, . . . sn, s�}
of non-redundant descriptions, i.e.:

• ∀i ∈ [1, n], si ∈ D,
• ∀d ∈ D, (d ∈ si ∧ d ∈ sj) ⇒ i = j (non-redundancy constraint),
• s� is the empty-description that covers the examples rejected by the

other stereotypes1.

These ni = |I| initial descriptions may be randomly generated. They have
to be full, with respect to the description language D (i.e. a value for each
attribute, also called a descriptor), and consistent (i.e. no contradiction be-
tween the descriptors). Furthermore, descriptions have to be non-redundant,
which means that they do not share any common descriptor (see def. 1).

At this step, let us note that two major simplifications are done:

1. The non-redundancy constraint is strong and may be relaxed in future
works. However, it permits us not to take into account the factor ni in
the proposed model.

2. The datasets are considered noiseless. As we shall see, it is a point that
is worthy of further considerations. But the noise problem seems to be a
too complex one for the goal of this paper. That is the reason why it will
be studied in future works.

The second step of the artificial data set generation is to duplicate the ni

descriptions δ times (δ is called the duplication rate), e.g. 150 times, making
nd artificial examples. Then, these ni×δ descriptions are arbitrarily degraded:
descriptors belonging to each of those duplications are chosen at random to
be destroyed. Here, the only parameter is the percentage of degradation η, i.e.
the proportion of initial description descriptors that are destroyed. Finally,
the generated learning set E contains nd = ni×δ example descriptions, which
altogether correspond to a degraded mixing of the ni initial descriptions.
Since there are na attributes, each initial description contains na descriptors
(i.e. a specific value for each attribute). After description degradation, each
example description contains on the average na×(1−η) descriptors. Knowing
that initial descriptions are randomly built and degraded, the information
content of the artificial data set determines the optimal learning quality.
Our purpose here is to evaluate the theoretical ability to retrieve the initial
descriptions through duplicated degraded descriptions that constitute the
new dataset E. Remember that the examples of this training set are similar
to jigsaw puzzle pieces (see fig. 1), which may help to rebuild the overall
initial images.

1 This specific description s�is handled in the PRESS algorithm, but useless in the
cases of the EM and COBWEB algorithms.
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Fig. 2. A stereotype description space.

2.2 Statistical estimation

As previously said, we are interested in rebuilding the initial descriptions. Let
us consider the descriptors of one of the initial descriptions as the vertices of
an undirected graph whose edges correspond to the simultaneous presence of
two descriptors in an example description of E. Fig. 2 presents the description
space of the stereotype s = {a0, b1, d2, . . .m2} associated to the examples E1

to E7, that is a subset E′ of E. Each of the δ degraded descriptions Ei is a
complete subgraph of the initial graph, which is equivalent to a fragment of
the initial description. The key point of our reasoning is that the recovered
descriptors are those that belong to a subpart of the examples that form a
kind of chaining. Consider examples E1, E2, E3, E7 on the left of fig. 2: they
can be merged because they share at least one descriptor in common two
by two. Nevertheless, the descriptors i0, h1 or g3 are lost and the learning
quality will not be optimal. This idea of “chaining” is exactly related to the
notion of cognitive cohesion developed in Velcin and Ganascia (2005).

2.3 Probability to belong to an example description

Let us now consider the probability p that a descriptor belongs at least to
one example description. The examples being randomly generated by degrad-
ing full initial descriptions containing na descriptors each, i.e. by keeping
na × (1 − η) among na descriptors, then p corresponds logically to (1 − η).
We now propose a first naive estimation L(δ, η) of the theoretical limit that
corresponds to the greater bound of the quality criterion L(δ, η).

Since the examples are duplicated δ times, we have to compute the proba-
bility that a descriptor belonging to an initial description belongs to at least
one degraded example among the δ copies of the stereotype. We may use
a binomial distribution B(δ; p). Let us recall that the binomial distribution
B(δ; p) gives the probability distribution of obtaining exactly k successes in
δ independent Bernoulli trials, where the result of each Bernoulli trial is true
with probability p and false with probability (1 − p). The binomial distribu-
tion is therefore given by the following formula:
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P (k) =

(
k
δ

)
pk(1 − p)δ−k

In particular, if k = 0 and k = 1:

P (0) =

(
0
δ

)
p0(1 − p)δ = (1 − p)δ

P (1) =

(
1
δ

)
p1(1 − p)δ−1 = δp(1 − p)δ−1

The first proposed estimation function L(δ, η) corresponds to the prob-
ability that an initial stereotype descriptor belongs to at least one of the
learning set examples:

L(δ, η) = 1 − P (0) = 1 − (1 − p)δ = 1 − ηδ

It can be seen as the upper bound of the expected quality of the recovered
stereotypes.

2.4 Learning quality L(δ, η)

This new step consists in refining this first estimation by evaluating the av-
erage number of merged examples of E′, i.e. the average number of examples
sharing two by two at least one descriptor of s (the examples E1 to E7 of
fig. 2). In other words, the probability calculated in L(δ, η) relies on the hy-
pothesis that the descriptors can be found in every example description in
E′. However, you have to take into account that a part of E′ can be lost and
that you have therefore to restrict your research area to the merged examples,
i.e. to the examples sharing at least one descriptor with another example of
the cluster. Having said this, it follows that the maximum number of merged
examples is lower than the number of descriptors shared by two examples
descriptions. Moreove, it appears that the number of merged examples is ob-
viously bounded by the number of initial examples. Consequently, the average
number of merged examples corresponds either to the minimal number ν of
descriptors belonging simultaneously to at least two example descriptions,
or to δ if δ < ν. Since na is the number of descriptors belonging to each
initial description, ν corresponds to [1 − P (0) − P (1)]na which is equivalent
to [1−(1−p)δ−1(1+δp−p)]na. So, we can define a new quality function that
is a better estimation for the learning capability, i.e. the probability that the
initial description descriptors belong to the learned class:

L(δ, η) = 1 − ηχ

where χ = min(δ, [1 − (1 − p)δ−1(1 + δp − p)] × na). Since p = (1 − η), this
formula can be rewritten:

L(δ, η) = 1 − ηmin(δ,[1−ηδ−1(η+δ(1−η))]×na)
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This evaluation will be confronted with the experimental quality q cal-
culated in the following part. Its notation will be sometimes simplified to
L.

3 Evaluation

This second part is dedicated to the evaluation of the theoretical learn-
ing quality L(δ, η) using randomly generated data sets and three cluster-
ing algorithms: COWEB (Fisher (1987)), EM (Dempster et al. (1977)) and
PRESS (Velcin and Ganascia (2005)). The platform WEKA (Witten and
Frank (2005)) was used for the experiments with the first two algorithms.

3.1 Quality criterion

In this section, we define a new quality criterion q that compares the set S
of clusters extracted with the clustering algorithms and the set I of initial
descriptions having generated the data. This criterion is intended to empiri-
cally compare the extracted clusters with the original stereotypes from which
the training examples where built. In the best case, if the original stereo-
types are retrieved, the quality criterion is equal to 1; otherwise it is lower.
This criterion was originally proposed in (Velcin, 2005) and relies both on
S and I, but also on the dataset E having as parameters the variables na,
ni, the duplication rate δ and the degradation rate η. Apart the attribute
number na, arbitrary fixed to 30, different values of the variables ni, δ and
η are tested in our experiments. The criterion q will be compared with the
theoretical quality limit L presented in the previous part.

In order to set this criterion properly, let us consider the function µ(s)
that relates each cluster s in S to a “most appropriate” initial description i
in I. A “most appropriate” means an initial description having generated the
major part of the examples covered by s. In the following, let us note E|s the
subset of E that is covered by s, i.e. the set of examples being more similar
to s than to the other clusters of S. Here is the definition of q(I, S, E), whose
notation is simplified by q(S):

q(S) =
∑

s∈S

sim(s, µ(s)) × |E|s|
|E|

where sim is the classical jaccard similarity measure. Note that each cluster
is weighted by its size. q is a way to evaluate the quality of the discovered
clusters thanks to the original descriptions. It is on purpose that we do not
compare the manner examples are clustered, as it is done by the entropy
criterion usually used in clustering validity (He et al. (2002)).
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3.2 Experiments

Experiments are conducted by varying the degradation and the duplication
rates, η and δ for different values of ni. The results are validated over 20
runs. First, let us consider table 1 showing the different values of L(δ, η), i.e.
the expected quality which will be compared to the values of the criterion q
presented above.

δ/η 0.7 0.8 0.9

5 0.83193 0.67232 0.227003
7 0.917646 0.790285 0.376967
10 0.971752 0.892626 0.565753
12 0.986159 0.931281 0.659667
15 0.995252 0.964816 0.759586
18 0.998372 0.981986 0.824050
20 0.999202 0.988471 0.853770
30 0.999977 0.998672 0.924240

Table 1. Some L(δ, η) values.

For three values of η, 0.7, 0.8 and 0.9, which corresponds respectively
to 70%, 80% and 90% of degradation, we evaluated the empirical learning
quality q of the learning process for three clustering algorithms. This quality
value is compared to the estimated learning quality L (in dashed line). The
duplication factor δ varies from 5 to 30, i.e. from a difficult task with poor
information to a (quite) easy task. Figure 3 presents in two graphs the results
obtained with COBWEB, EM and PRESS for η = 0.8 and η = 0.9 where
ni is equal to 5. The results for η = 0.7 are not presented here because it is
perfectly consistent with the results presented in this paper.

Finally, Figure 4 shows the practical influence of the number ni of initial
stereotypes. The value of ni does not effectively modify the q score, which
confirms the predictions of our model.

As shown by the different diagrams, the theoretical model fits particularly
well the PRESS program, while it is not the case with COBWEB and EM.
This is not a surprise because PRESS is precisely dedicated to unsupervised
learning from meagerly described examples. Its cognitive cohesion constraint
is probably a key point to translates the “chaining” effect of sparse data, in
its global search strategy. These results need three additional comments:

1. It clearly appears that PRESS actual learning quality is identical to the
estimated learning quality, while it is not the case with COBWEB and
EM. However, it must be recall that COBWEB and EM are not designed
to learn from sparsely described examples. Moreover, the result they pro-
vide is a classification procedure and not a collection of cluster descrip-
tions (like in conceptual clustering). The cluster description extraction
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Fig. 3. Comparative results for η = 0.8 and η = 0.9 with ni = 5.

from the clusterings they give (see the detailed technique in Velcin and
Ganascia (2005)) is done a posteriori. Furthermore, the number of classes
have to be discovered with a posteriori techniques (see Witten and Frank
(2005)).

2. According to the estimated learning quality evaluation, the number of
initial stereotypes does not seem to influence the learning quality. It seems
to be confirmed by the experiments with the three algorithms, even if this
is clearer with PRESS.

3. The PRESS algorithm is based on meta-heuristic optimization techniques.
The results show that these techniques, based on a tabu search strategy,
lead to a nearly optimal solution.
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Fig. 4. Comparative results for ni = 3, ni = 5 and ni = 7 with PRESS and
COBWEB.

4 Conclusion and perspectives

4.1 Conclusion

The main result of this paper is that unsupervised learning processes can deal
with very sparse descriptions and that the number of exemples compensates
the sparseness.

A second important point is that a theoretical evaluation of the upper
bound learning quality can be computed. We defined here a model to achieve
this evaluation. Our experimentations confirm that this model is relevant.

The third result concerns the PRESS algorithm that we developed to learn
from sparsely described examples. The experimentations show that PRESS is
appropriate in the context of unsupervised learning from sparsely described
data. Moreover, the obtained results show that the quality of the results
is better than with classical clustering algorithm, COBWEB and EM here.
Lastly, it appears that PRESS reaches the theoretical upper bound limit
of the learning quality while other clustering algorithms don’t. Undoubtedly,
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these empirical results are evidence for the relevancy of our model and confirm
the efficiency of PRESS on sparsely described data.

Furthermore, the paper shows that the unsupervised stereotype extraction
process can be modeled with algorithms. It can open many perspectives in
social science or in social psychology, where the notion of stereotype plays a
crucial role.

4.2 Perspectives

One of our future works will be to extend our model to noisy artificial data
sets. Let us recall that, in the presented experiments, the artificial data sets
are noiseless. As previously said, we are achieving some experimentations
with noisy data, but our goal is not only to test the robustness of learning
algorithms; it is to include the noise in the theoretical model. Once such
generalization to noisy data will be done, it will be possible to define an
evaluation criterion for unsupervised learning algorithms, which will not be
based on supervised learning or on a measure, but only on the ability to
recover an initial set of descriptions. Another perspective is to relax the non-
redundancy constraint of stereotypes in order to consider a more general
framework.
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Abstract. Data Analysis and Operations Research are two overlapping sciences as
there are, e.g., many data problems in which optimization techniques from Opera-
tions Research have to be applied to detect best fitting structures (under suitable
constraints) in the underlying data. On the other hand, Operations Research is
often based on model formulations for which some model parameters might be un-
known or even unobservable. In such cases Operations Research problems consist
of a data collection and analysis part and an optimization part in which solutions
dependent on model parameters (derived from available information via Data Anal-
ysis techniques) are calculated.

We give typical examples for research directions where Data Analysis and Op-
erations Research overlap, start with the topic of pyramidal clustering as one of the
fields of interest of Edwin Diday, and present methodology how selected problems
can be tackled via a combination of techniques from both scientific areas.

1 Introduction

When the data analysis community is the target group for a contribution
concerning Data Analysis (DA) and Operations Research (OR) it is not nec-
essary to present a list of topics that describe which kinds of data prob-
lems are of interest (see, e.g., the Springer series “Studies in Classification,
Data Analysis, and Knowledge Organization” the articles of which cover
nearly all aspects in this context). From a methodology-oriented point of
view most textbooks in OR deal with topics as Linear/Nonlinear (Convex)
Programming, Integer/Combinatorial Programming, Multicriteria Decision
Making/Goal Programming and the Analytic Hierarchy Process (AHP), Dy-
namic Programming, Stochastic Programming, Stochastic Processes’ Appli-
cations (e.g., Markov Decision Processes, Queueing Theory), Simulation and
Sensitivity Analysis, Forecasting as well as Graph Theory and Network Mod-
els (see, e.g., the 6th edition of Domschke, Drexl (2004) or the 8th editions of
Hillier, Lieberman (2004) or Taha (2007)). Sometimes, questions concerning
problem definition, data gathering, and OR model formulation (and depen-
dencies between these tasks) are addressed but a combination of tools from
DA and OR is rarely described, explicitly. Against this background the un-
derlying paper emphasizes situations where DA and OR overlap and presents
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methodology how selected problems can be tackled via a combination of tech-
niques from both scientific areas.

2 Situations for combining data analysis and
operations research

2.1 Mixed integer programming for pyramidal clustering

As starting point pyramidal clustering is selected because of the contributions
of Edwin Diday to this area (see, e.g., Diday(1986, 1987), Diday, Bertrand
(1986)).

The pyramidal generalization of hierarchical classification allows a certain
kind of overlapping of clusters (which the hierarchical counterpart does not)
where – based on a total order on the set of objects to be clustered – those
objects of different clusters that are minimal or maximal with respect to the
given order are candidates for overlapping.

Let I = {1, ...,m} denote the index set of objects of interest and δij

given non-negative empirical dissimilarities between pairs (i, j) of objects (a
transformation of any measure of association between pairs of objects to
non-negative dissimilarities is possible in all realistic empirical situations).

Empirical dissimilarities may not be available for all pairs of objects and
don’t have to fulfill conditions needed for representation of the objects via,
e.g., hierarchies (the ultrametric condition) or pyramids (the pyramidal con-
dition).

The PLSC (Pyramidal Least-Squares Classification) technique is based
on the following mixed integer optimization problem:

Denote by M ⊂ I2 the set of pairs of objects for which the empirical
dissimilarities are missing. Choose an initial total order ( on I. Describe this
total order and the total orders generated in subsequent steps of the solution
procedure by a vector x = (..., xij , ...), with

xij ∈ {0, 1}, ∀i, j ∈ I
xii = 1, ∀i ∈ I (reflexivity)
xij + xji = 1, ∀i, j ∈ I (antisymmetry and completeness)
xij + xjk − xik ≤ 1, ∀i, j, k ∈ I (transitivity)

(1)

and solve the problem

F (dx) =
∑

(i,j)∈I2−M

(δij − dx
ij)

2 = min (2)

dx
ik ≥ max{dx

ijxijxjk , dx
jkxijxjk} , ∀i, j, k ∈ I

dx
ij = 0 ⇔ i = j , dx

ij = dx
ji , dx

ij ≥ 0 , ∀i, j ∈ I
(3)

The procedure suggested in Gaul, Schader(1994) to tackle (2) under the con-
straints (1) and (3) can be described as follows:



Data Analysis and Operations Research 359

Select a total order x, set y = x, F = ∞. Step 1: Solve (2), (3). If F (dx) < F ,
update y = x, dy = dx, F = F (dx), and go to Step 2; otherwise got to Step
3. Step 2: Take y and create a new total order xnew from y by using the
DD (Doubles Décalages) method (the DD method updates an underlying
total order, for a description see, e.g., Gaul, Schader (1994), appendix c),
set x = xnew , and go to Step 1. Step 3: Take x and check whether the DD
method can be continued. If not, STOP with the results y and dy; otherwise
create a new total order xnew from x by using the DD method, set x = xnew ,
and go to Step 1.

Remark:

The data problem of subsection 2.1 is to find pyramidal dissimilarities
– that allow visualization of clustering structures in the set of underlying
objects – which best fit given empirical dissimilarities (perhaps with missing
values). For the solution OR methodology based on a mixed integer program-
ming formulation is suggested. The situation can be explained by Tables 1a,
b and Figures 1a, b taken from Gaul, Schader (1994).

1     0

1      2      3      4      5      6

2     7      0

3     1      7      0

4     5      4      5      0

5     7      2      7      5      0

6     4      6      4      3      6      0

3     0

1     1      0

6     4      4      0

4     5      5      3      0

2     7      7      6      4       0

5     7      7      6      5       2      0

3      1      6      4      2      5

Table 1a: Dissimilaritiy Data Table 1b: Rearranged Dissimi-
Between Pairs of Objects larity Data of Table 1a according
for I = {1, ..., 6}. to the Total Order

3 ≺ 1 ≺ 6 ≺ 4 ≺ 2 ≺ 5.

1

3        1         6         4         2         5
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Figure 1a: Pyramidal Classifi- Figure 1b: Hierarchical Classi-
cation (Indexed Pyramid) of fication (Indexed Hierarchy,
the Dissimilarity Data of Complete-Linkage) of the Dis-
Tables 1a,b. similarity Data of Tables 1a,b.

Notice that the dissimilarities of Table 1a don’t fulfill the ultrametric
condition and that the rearrangement of these dissimilarities in Table 1b
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(according to the total order 3 ≺ 1 ≺ 6 ≺ 4 ≺ 2 ≺ 5) can be represented by
the (indexed) pyramid of Figure 1a without any loss of information while the
(indexed) dendrogram of Figure 1b gives a “poor” fit (of the dissimilarities
of Table 1a (or Table 1b)).

2.2 Clustering of relations via combinatorial optimization

Let, again, I = {1, ...,m} denote the index set of objects under consideration,
and S = {1, ..., p} the index set of given binary relations R1, ..., Rp on I.
Different situations can be handled within this framework:

If S is a set of judging subjects, then R1, ..., Rp could be individual rela-
tions which result from paired comparisons with respect to the elements of I
or R1, ..., Rp could be individual total orders or preorders – in other words:
rankings – on the elements of I. R1, .., Rp could also be derived from a mixed
data matrix A = (ais), i ∈ I, s ∈ S, where ais is the value of variable s with
respect to object i. Here, S denotes a set of variables used to describe the
elements of I. In this case the relations Rs, s ∈ S, are usually defined by

iRsj :⇔ ais = ajs for a nominal variable s,
iRsj :⇔ ais ≤ ajs for an ordinal or a cardinal variable s,

where Rs is an equivalence relation or a complete preorder on I.
If for a relation R one uses the graph GR with node set N(GR) = I and

arc set A(GR) = {(i, j) : i, j ∈ I and iRj}, a well-known distance function
for two relations R1, R2 is

d(R1, R2) := |A(GR1 ) ∪A(GR2 )| − |A(GR1) ∩A(GR2)|.

With T = {1, ..., q} as index set of target segments, i.e.,

St = {t1, ..., tpt} ⊂ S, t ∈ T,

and Ct as so-called central relation that best represents the relations con-
tained in St one can now solve the problem

q∑

t=1

∑

s∈St

d(Rs, Ct) = min (4)

subject to constraints that, e.g., {S1, ..., Sq} is a partition of S and C1, ..., Cq

are central relations on I of some specific type(s) (described by constraints
similar to (1)).

Remark:
The data problem of subsection 2.2 is to find segments of similar relations

and segment-specific central relations – that allow visualization of important
relational structures – which best explain the information contained in a set
of given relations. For the solution OR methodology based on combinatorial
programming is suggested. A more detailed description and examples can be
found in Gaul, Schader (1988).
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2.3 Optimal positioning

Again, let I = {1, ...,m} denote the index set of objects, S = {1, ..., p}
the index set of judging subjects, and T = {1, ..., q} the index set of target
segments to which similar subjects are assigned.

In an r-dimensional perceptual space in which the objects are represented
by deterministic coordinate vectors xi = (xi1, ..., xir)

′, i ∈ I, the target seg-
ments are described by stochastic ideal points vt = (vt1, ..., vtr)

′, t ∈ T , which
are assumed to follow multivariate normal distributions N(µt,

∑
t). As it may

be difficult for subjects to report about their ideal objects, the idea behind
the presented perceptual space model is that subjects from a target segment
sample an ideal point from their corresponding segment-specific ideal point
distribution and give greater preferences to those objects that are nearer to
their ideal points. Consequently, the notation

Ri|I = {z ∈ IRr : (z − xi)
′(z − xi) ≤ (z − xj)

′(z − xj) ∀j ∈ I} (5)

describes what could be called preference subset for object i (which contains
all points in IRr for which i is the closest object with respect to I) and

pti|I = Pr(vt ∈ Ri|I) (6)

gives the probability that subjects from segment t prefer object i to any other
object from I.

Using λt as a relative size of segment t
( q∑

t=1

λt = 1
)

pi|I =

q∑

t=1

λtpti/I (7)

is the so-called overall share of choices for object i.
For |I| = 2 a closed form solution of the probability pti|I of (6) is

pti|{i,j} = Pr(vt ∈ Ri|{i,j}) = Φ(
x′

jxj − x′
ixi − 2(xj − xi)

′µt

4(xj − xi)′
∑

t(xj − xi)
),

where Φ denotes the standard normal distribution,
for |I| > 2 an analytical solution of the probability expression (6) is not

known (see, e.g., Baier, Gaul (1999), appendix, for hypercube approxima-
tion).
With Θt = (µt1, ..., µtr, σt11, σt12, ..., σtrr)

′ as parameter vector for N(µt, Σt),
t ∈ T , and Θ = (Θ′

1, ..., Θ
′
q)

′ as overall parameter vector the data collection
and parameter estimation part of the optimal positioning problem can be
described as follows:
Paired comparisons Y = (ysij), s ∈ S, i, j ∈ I, with

ysij =

{
1 , if subject s prefers object i to object j,
0 , otherwise,



362 W. Gaul

are collected (Note that this notation allows for missing values in the data.).
As segment-specific model parameters Θt are needed, an additional segmen-
tation matrix H = (hts), t ∈ T, s ∈ S, with

hts =

{
1 , if subject s belongs to segment t,
0 , otherwise,

is introduced (from which one gets the relative segment sizes, λt =

p∑

s=1

hts/p).

The parameter estimation part will not be explained in detail. A simultane-
ous technique for jointly determining Θ and H (based on the classification
maximum likelihood method which incorporates a quasi-Newton procedure)
is used. Notice that the negative log-likelihood function

−lnL(Θ,H |Y ) = −
q∑

t=1

m∑

i=1

∑

j∈I\{i}

( p∑

s=1

htsysij

)
ln(pti|{i,j})

= −
p∑

s=1

q∑

t=1

hts

( m∑

i=1

∑

j∈I\{i}

ysij ln(pti|{i,j})
)

= −
p∑

s=1

q∑

t=1

htsLts(Θt|Y )

(8)

allows simplifications for given H . The determination of H is improved by
allocating subjects to segments in such a way that (8) is minimized.
Based on the estimated parameters overall shares of choices for the given
objects (see (7)) can be predicted.
For optimal positioning of a new object assume that I is enlarged to I0 =
I ∪ {0} where 0 describes the additional alternative.
If the new object is positioned at x0 = (x01, ..., x0r)

′ one gets the preference
subset

R0|I0(xo) = {z ∈ IRr : (z − x0)
′(z − x0) ≤ (z − xj)

′(z − xj) ∀j ∈ I0}

and

p0|I0(xo) =

q∑

t=1

λtpt0|I0(xo) (9)

as overall share of choices for the new object (dependent on x0).
Now, optimal positioning options for the new object can be obtained through
maximizing (9) by one of the adequate positioning techniques listed in Baier,
Gaul (1999), Table 3, which gives a quite complete overview concerning ref-
erences up to the end of the nineties of the last century.

Remark:
The data problem of subsection 2.3 is to find segment-specific stochastic

ideal points described by multivariate normal distributions – that allow visu-
alization of the underlying choice situation in corresponding perceptual spaces
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– which best explain the preferences of segments of subjects contained in
given individual paired comparisons. OR methodology (e.g., a quasi-Newton
procedure) is already incorporated in the classification maximum likelihood
method for the estimation of the model parameters. For the generation of
positioning options of a new object in the given perceptual space a standard
hill-climbing algorithm of nonlinear programming was applied. A more de-
tailed description with Monte Carlo experiment and application can be found
in Baier, Gaul(1999).

2.4 Random variables in operations research models

This time, the starting point is an OR model – a linear program, say – in
which some model parameters have to be viewed as random variables, which
is the basic assumption of stochastic programming (see, e.g., Kall (1979) for
an early and Kall, Wallace (1994) for a more recent textbook concerning this
OR field). Let

c′x = min
Ax = b
x ≥ 0

(10)

be a standard linear program with known m × n−matrix A = (aij), b =
(..., bi, ...)

′ ∈ IRm, and c = (..., cj , ...)
′ ∈ IRn for which the decisions {x : Ax =

b, x ≥ 0} form a closed convex set. Assume there exist additional constraints

Bx = d (11)

with m̃ ×n-matrix B = (bij) and d = (..., di, ...)
′ ∈ IRm̃ where – for simplicity

– only d is assumed to be a random vector on a probability space (Ω, S, Pr)
for which the expectation Ed exists. If the realization d(ω), ω ∈ Ω, is known
before the decision x has to be calculated, the problem is “easy”. If x has to
be determined before the realization of d is known

Q(x, d) = inf{cc′+y+ + cc′−y− : y+ − y− = d− Bx, y+ ≥ 0, y− ≥ 0}

describes a possibility for compensation (a so-called simple recourse com-
pensation) with compensation costs cc+, cc− ∈ IRm̃ . If cc+ − cc− ≥ 0 the
so-called two-stage stochastic programming problem with simple recourse

c′x+ Ed[Q(x, d)] = min
Ax = b
x ≥ 0

(12)

solves (10) and (11) in the sense that x is selected in such a way that non-
conformity of Bx with d in (11) is optimally compensated.

Now, from the data problem point of view the probability distribution
of d is of importance for the solution of (12). Here, it is assumed that the
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components di have finite discrete probability distributions (or that the cor-
responding distributions are approximated by finite discrete probability dis-
tributions), i.e.,

pik = Pr(di = dik) , k = 1, ..., ri , i = 1, ..., m̃ ,

(with lower (upper) bounds di0 (diri+1) with pi0 = 0 (piri+1 = 0)) are taken
into consideration.

For a selected realization dk∗ = (d1k∗
1
, ..., dm̃ k∗

m̃
)′ of the vector d one

solves the following dual problems

PRIMAL (k∗)

n∑

j=1

(
cj +

m̃∑

i=1

(
− (cc+)i +

(
(cc+)i + (cc−)i

) k∗

i∑

k=1

pik

)
bij

)
xj = min

n∑

j=1

aijxj = bi , i = 1, ...,m

n∑

j=1

bijxj − s1i = dik∗
i

, i = 1, ..., m̃

−
n∑

j=1

bijxj − s2i = −di(k∗
i +1) , i = 1, ..., m̃

xij ≥ 0, s1i ≥ 0, s2i ≥ 0

DUAL (k∗)

m∑

i=1

biui +

m̃∑

i=1

dik∗
i
v1i −

m̃∑

i=1

di(k∗
i +1)v2i = max

m∑

i=1

uiaij +

m̃∑

i=1

v1ibij −
m̃∑

i=1

v2ibij ≤ cj , j = 1, ..., n

v1i ≥ 0 , v2i ≥ 0

with cj = cj +

m̃∑

i=1

(
− (cc+)i +

(
(cc+)i + (cc−)i

) k∗

i∑

k=1

pik

)
bij .

Notice that PRIMAL (k∗) and DUAL (k∗) are optimization problems on the
grid given by the realizations of the vector d. For a selected k∗ optimization
is performed between dk∗ and dk∗+e, e = (1, ..., 1)′.

If x̃ , s̃1, s̃2 (for PRIMAL (k∗)) and ũ , ṽ1, ṽ2 (for DUAL (k∗)) are com-
plementary optimal solutions and

ṽ1i ≤
(
(cc+)i + (cc−)i

)
pik∗

i
, i = 1, ..., m̃ (13)

ṽ2i ≤
(
(cc+)i + (cc−)i

)
pik∗

i
+1

, i = 1, ..., m̃ (14)
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then x̃ is optimal for the two-stage stochastic programming problem with
simple recourse (12), otherwise update

k
∗(new)
i = k

∗(old)
i +






(−1) , if (13) is violated,
1 , if (14) is violated, i = 1,..., m̃ ,
0 , otherwise,

(15)

and solve PRIMAL (k∗(new)), DUAL (k∗(new)). Under reasonable assump-
tions an optimal solution is obtained after a finite number of iterations.

Remark:
A stochastic programming problem is solved by a finite sequence of “easier

to handle” non-stochastic PRIMAL/DUAL problems. It is, of course, advan-
tageous, when the PRIMAL/DUAL problems are of a special form for which
fast solutions are already available.

Notice, that sometimes the dual problem of an initial linear program is
of the form described by (10), (11). For an application of the described OR
methodology to project scheduling via stochastic programming (in which
project activity times are random variables) see Cleef, Gaul (1982) where the
“easier to handle” PRIMAL/DUAL problems are based on network models
(e.g., solving minimal cost flow problems by the “out-of-kilter” algorithm).

2.5 Web mining and recommender systems

Nowadays, contributions concerning DA and OR have to cope with web min-
ing because the web as one of the fastest growing sources of information is
a challenge for data analysts. Here, a recent reference is Gaul (2006) (see
also Gaul (2004)) in which certain topics (concerning web data, data anal-
ysis techniques, and web mining applications) are presented that will not
be repeated in this paper. However, at least recommender systems, e.g., for
clickstream analysis (see, e.g., Gaul, Schmidt-Thieme (2000, 2002)), should
be mentioned, explicitly, as – in the narrow sense – these systems tackle data
problems. Here, data (input) has to be analysed in such a way by DA and/or
OR techniques that recommendations (output) for target segments can be
provided.

3 Conclusion

DA (Data Analysis) and OR (Operations Research) techniques are needed in
quite a number of situations in which on the basis of underlying data (some-
times with missing values) “optimal” solutions for target groups have to be
calculated. Thus, it seems to be worth while to consider research directions
where DA and OR overlap. In this paper, a constrained optimization formu-
lation for pyramidal clustering was the starting point for a collection of exam-
ples (in which, e.g., combinatorial programming, optimization techniques to
calculate maximum likelihood estimates, algorithms for optimal positioning,
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and stochastic programming were applied) that describe situations where a
combination of DA and OR has to be used to solve the underlying problems.
As KIT (Karlsruhe Institute of Technology, a merger of the Forschungszen-
trum Karlsruhe and the Universität Karlsruhe) was elected as one of the best
German universities in 2006, new courses will be established in 2007 and one
of it is “Data Analysis and Operations Research”. Here, hints and remarks
concerning additional examples, situations, and solutions are welcome.
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Abstract. Quasi-implications, also called association rules in data mining, have
become the major concept to represent implicative trends between itemset patterns.
To make their interpretation easier, two problems have become crucial: filtering the
most interestingness rules and structuring them to highlight their relationships.
In this paper, we put ourselves in the Statistical Implicative Analysis framework,
and we propose a new methodology for reducing rule sets by detecting redundant
rules. We define two new measures based on the Shannon’s entropy and the Gini’s
coefficient.

1 Introduction

“If a question is more complex than another, then each pupil who succeeds in
the first one should also succeed in the second one”. Every teacher knows that
this situation shows exceptions without throwing back the general tenden-
cies. The evaluation and the structuration of such implicative relationships
between didactic situations are the generic problems at the origin of the de-
velopment of the Statistical Implicative Analysis (SIA, Gras (1979)). These
problems, which have also drawn a great attention from psychologists in-
terested in tests of ability (e.g. Loevinger (1947), Bernard and Poitrenaud
(1999)), have known a significant renewed interest in the last decade in data
mining. Indeed, quasi-implications, also called association rules in this field,
have become the major concept in data mining to represent implicative trends
between itemset patterns. In data mining, the paradigmatic framework is the
so-called basket analysis where a quasi-implication Ti → Tj means that if
a transaction contains a set of items Ti than it is likely to contain a set
of items Tj too. For simplicity’s sake, in the following, let us call “rule” a
quasi-implication.

In data mining, rules are computed on large size databases. And, because
of this scale change, two problems have become crucial: filtering the most
interestingness rules and structuring them to highlight their relationships
and make their interpretation easier.
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From the seminal works of Agrawal et al. (1993) numerous algorithms
have been proposed to mine set of relevant rules. However it is now well-
known that they produce large sets which remain tricky to interpret. To
overcome this difficulty three different ways have been explored. The first one
consists in pruning rule sets by defining interestingness measures (Hilderman
and Hamilton (1999)) or pre-defined patterns (Klementtinen et al. (1994)).
The second one structures rule sets via clustering approaches (Lent et al.
(1997), Vaillant (2006)) or graphical representations (Kuntz et al. (2000)).
The third one considers the user as a full component of the discovery process
which guides the computing heuristics via well-adapted interactive interfaces
(Blanchard et al. (2007))

In this paper, we put ourselves in the SIA framework, and we propose a
new methodology for reducing rule sets by detecting redundant rules. One
of the major interest of SIA is to combine the two first approaches pre-
viously quoted in a coherent framework. A measure of interestingness, the
implicative intensity (Gras (1979), Gras et al. (1996, 2001)), has been de-
fined to evaluate the rule “surprisingness” i.e. the improbable small number
of counter-examples in comparison with the data number. And, two modes of
structuration have been developed: the implicative graph (Gras et al. (1996))
and the directed hierarchy (Gras and Kuntz (2005)). The directed hierar-
chy completes the graph model. It is composed of R-rules (rules of rules)
which are rule extensions: their premisses and their conclusions can be rules
themselves.

The work presented in this paper is a first attempt to characterize redun-
dant rules and redundant R-rules in the SIA framework. We have defined two
new measures based on the Shannon’s entropy and the Gini’s coefficient. For
each rule pair, we evaluate the information quantity brought by one of the
rules when the realization of the other is known.

The rest of the paper is organized as follows. Section 2 briefly recalls the
main results of SIA. Section 3 analyzes the information brought by one rule on
the other and measures this information by an adaptation of the conditional
Shannon’s entropy. In section 4, we propose a different measure based on the
Gini’s coefficient.

2 The SIA framework

Throughout this paper, we consider a set I of n individuals described by a
finite set A = {a, b, c, ...} of m attributes.

We first recall the definition of the implicative intensity proposed by Gras
(1979) for simple rules of the form a → b. Then, we present the generalization
to R-rules.
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2.1 The implicative intensity

Let us denote by A ⊂ I the subset of individuals for which a is present, A
its complementary in I and n(A) the cardinal of A. To accept or reject the
general trend to have b when a is present, it is quite common to consider the
number na∧b = card

(
A ∩B

)
of counter-examples of the rule a → b. However,

to quantify the “surprisingness” of this rule, this must be relativized according
to n,na and nb. Intuitively, it is all the more surprising to discover that a rule
has a small number of counter-examples as the database is large.

Hence, the objective of the implicative intensity is to express the unlike-
lihood of na∧b in I. We compare the observed number of counter-examples
na∧b with the expected number of counter-examples for an independent hy-
pothesis. Let us assume that we randomly draw two subsets U and V in I
with respectively na and nb elements. We denote by Xa∧b = card

(
U ∩ V

)

the random variable associated with the number of counter-examples in this
random model.

The distribution of Xa∧b depends on the random drawing pattern (Gras

et al. (1996)). In practice, we consider a normal distribution; let X̃a∧b be the
standardized random variable and ña∧b be the reduced-centered value of na∧b.

Definition 1. The implicative intensity of the rule a → b is defined by

ϕ (a, b) = 1 − Pr
(
X̃a∧b ≤ ña∧b

)

if nb 
= n ; otherwise ϕ (a, b) = 0. The rule a → b is retained for a certain
threshold α if ϕ (a, b) ≥ 1 − α.

Throughout this paper, we illustrate the numerical values obtained by
the different measures on a database given in appendix A. We consider 5
binary variables v1, v2, ..., v5observed on a set of 30individuals. The calcula-
tion of the implication intensity of the rule v3 → v1 requires the number of
counter-examples : nv3∧v1

= 1. Hence, by using the Poisson’s law of parame-

ter 21. (30 − 24) /30 = 4.2 we obtain ϕ (v3, v1) = 1−Pr
(
X̃v3∧v1 ≤ ñv3∧v1

)
=

1 − 0.06 = 0.94. Similarly, for the rule v5 → v4 the implication intensity is
equal to ϕ (v5, v4) = 0.92.

2.2 The R-rules

Roughly speaking, the R-rules are an extension of the classical binary rules
a → b to rules of rules which may be complex themselves. To guide the
intuition a parallel can be drawn from the proof theory with the logical im-
plication: (X ⇒ Y ) ⇒ (Z ⇒ W ) describes an implication between the two
theorems X ⇒ Y and Z ⇒ W previously established.

Definition 2. The R-rule of degree 0 are attributes of A. The R-rules of
degree 1 are the simple binary rules of the form a → b. A R-rule of degree i,
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1 < i ≤ p, is a rule R′ → R′′ between two R-rules R′ and R′′ whose respective
degrees satisfy j + k = i− 1.

The R-rules allow to express different levels of abstraction: (i) descriptions
(conjunction of R-rules of degree 0), (ii) implications between descriptors (R-
rules of degree 1), (iii) implications between implications (some R-rules of
degree greater than 1).

An extension of the implicative intensity, called cohesion, has been pro-
posed to discover the R-rules R′ → R′′ with a strong implicative relationship
between the components of R′ and those of R′′. Intuitively, for a R-rule
(a → b) → (c → d), the cohesion takes simultaneously into account the im-
plicative strength of a → b and c → d but also of a → c, a → d, b → c and
b → d. We refer to Gras and Kuntz (2005) for an exact definition. Moreover,

we have proposed a structuration of the R-rules by a directed hierarchy
−→
H

which is an adaptation of the classical hierarchy: the nodes of
−→
H are R-rules,

the intersection of two R-rules of
−→
H is either empty or equal to one of the

R-rules, and for each R-rule of
−→
H of non null degree there exists a unique

decomposition into two R-rules of
−→
H of lower degree.

3 Reduced and conditional Shannon’s entropy

In this section we restrict ourselves to simple rules but our reasoning remains
correct for R-rules. Our objective is to characterize redundant rules in rule
subsets defined by a significant implicative intensity: Sϕ = {R;ϕ (R) ≥ 1 − α},
where α ∈ [0, 1] is a fixed threshold.

Given any individual i ∈ I, we can associate with a rule R ∈ Sϕ the
random variable XR s.t. XR = 1 if R is true for i and XR = 0 otherwise. Let
I (R) be the subset of individuals with R true. The realization frequency of
XR in I is defined by pR = card (I (R)) /n. Let us remark that pR is different
from the confidence (estimation of the conditional probability) classically
used in rule mining. For instance, the confidence of the rule v3 → v1 is equal to
20/21 = 0.95 whereas the rule frequency is equal to pv3→v1 = 1−1/30 = 0.97.

The quantity of information contained in the realization of the rule R can
be measured by the classical Shannon’s entropy H (R):H (R) = −pR log2 pR−
(1 − pR) log2 (1 − pR). H (R) is the average information associated with the
knowledge of the result of the random experiment which realizes R.

In data mining we are interested in cases where counter-examples are rare
considering the database size; they correspond to great values of pR. Conse-
quently, we here restrict our analysis to rules R with pR ≥ 0.5. Theoretically,
we could obviously consider a higher threshold. However, this does not avoid
the discontinuity of the entropy in the vicinity of the threshold. The threshold
0.5 coincides with the first value for which the Shannon’s entropy is equal to 0.
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Definition 3. The reduced entropy of the rule R is

H (R) = −pR log2 pR − (1 − pR) log2 (1 − pR) if pR ≥ 0.5

and H (R) = 0 otherwise. If pR = 1 then H (R) = 0: the uncertainty is null as
the rule R is certain. If pR = 0.5 than H (R) = 1: the uncertainty is maximal.

Let us now consider two rules R ∈ Sϕ and S ∈ Sϕ and their asso-
ciated variables XR and XS with their respective frequencies pR and pS .
The frequencies of their negations are pR = 1 − pR and pS = 1 − pS . Let
I (RS) be the individual subset in I with R and S simultaneously true, and
I
(
RS

)
(resp. I

(
RS

)
) be the individual subset with R true (resp. false) and

S false (resp. true) . We define pRS = card (I (RS)) /n, pRS = 1 − pRS ,
pRS = card

(
I
(
RS

))
/n, pRS = card

(
I
(
RS

))
/n.

With the same argument as previously (definition 3), we can define the
reduced conditional entropy H (S | R) to measure the information growth in
XS when XR is known.

Definition 4. Given the rule R, the reduced conditional entropy of the
rule S is

H (S | R) = −pRS log2

pRS

pR
− pRS log2

pRS

pR
− pRS log2

pRS

pR

− pRS log2

pRS

pR

if p ≥ 0.5; and H (S | R) = 0 otherwise.

If H (S | R) = 0 then XR brings no information on XS. The difference
H (S) −H (S | R) is the information quantity on XS contained in XR when
pRS ≥ 0.5.

To make the analysis of a rule set easier, we look for a threshold value
which allows to automatically prune the redundant rules. We resort to a
normalization of the different reduced entropies.

We set h (R) = H (R) / log2 N where N is the number of values taken
by the random variable XR associated with a rule R. Here, XR = 0 or 1
and N = 2. Let us recall that H (R) ≤ log2 N (Roubine, 70). The equality
holds for the maximal incertitude (pR = (1 − pR) = 0.5). Then, h (R) ≤ 1.
Moreover, if h (S) is close to 0, the experiment associated with XR is super-
fluous: one of the two probabilities pR or pR is significantly greater than the
other and we are almost sure of the issue. Similarly we define h (S | R) =
H (S | R) / log2 N .

Definition 5. When R ∈ Sϕ is known, the rule S ∈ Sϕ is ε-superfluous
if r (S | R) = 1 − h (S | R) is greater than 1 − ε, where ε ∈ [0, 1].

By construction, r (S | R) ∈ [0, 1]. With a value of ε small enough, the
user can remove the superfluous rules in Sϕ.
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It is easy to show that H (S)−H (S | R) = H (R)−H (R | S): when XR is
known, the information growth in XS is equivalent to the information growth
in XR when XS is known. However, r (R) and r (S) are not necessarily equal.
Hence, when comparing two rules for pruning, we eliminate the rule with the
greatest r.

To compare the respective informational gains we introduce the ratio

G (S | R) =
H (S) −H (S | R)

H (S)
if H (S) 
= 0 and G (S | R) = 0 otherwise

Definition 5bis. When the rule R ∈ Sϕ is known, the rule S ∈ Sϕ is ε-
redundant if G (S | R) ≥ 1 − ε.

Property 1. G (S | R) ∈ [0, 1].

As H (S | R) ≤ H (S) for any R, G (S | R) ≤ 1. If G (S | R) = 1 than
H (S | R) = 0. In this case the information quantity on XS contained in XR

is maximal. And, XR and XS are probably closely linked; when R is already
given, S is redundant. If G (S | R) = 0 then knowing R brings no additional
information on S; XR and XS are probably independent.

If XR and XS are independent then H (S | R) = H (S) and G (S | R) = 0.
But the contrapositive is not necessarily true; nevertheless, in this case, the
independence can be suspected.

If H (S) = 0 then H (S | R) = 0 and it is easy to prove that H (R | S) = 0.
This remark justifies the continuity of G (S | R) on 0.

For illustration, let us compute the different coefficients for the rules R =
(v3 → v1) and S = (v5 → v4). We obtain

H (S) = − 1

ln 2

(
29

30
ln

29

30
+

1

30
ln

1

30

)
= 0.211 = H (R)

and,

H (S | R) =
1

ln 2

(
28

30
ln

28

29
+

1

30
ln

1

29
+

1

30
ln 1

)
= 0.209 = H (R | S)

and h (S | R) = 0.209/ (ln 30/ ln 2) = 0.043. With the threshold ε = 0.05
the rule S is ε-redundant. Moreover, as G (S | R) = 0.00948, S is also ε-
redundant when R is known. In this example, we do not distinguish the
respective roles of S and R as they have a similar conditional entropy. But,
in order to discover a possible implicative relationship between R and S we
compute the cohesions c (R) = 0.94 and c (S) = 0.877 and the rule impli-
cation Ψ (R → S) = 0.07 and Ψ (S → R) = 0. Consequently, although S
and R have the same conditional entropy, we can conclude that the tendency
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of implication of R on S is greater than the tendency of implication of S on R.

Application. Let us consider a series of R-rules extracted from a directed
hierarchy. The previous definitions provide operational tools for reducing in-
teractively (by the choice of ε) the rule set. The algorithm is incremental:

• Select the rule R with the greatest implication intensity and the greatest
frequency in I.

• Sort the remaining rules by decreasing order of their implication inten-
sities. For each rule S, compute r (S | R) and G (S | R) and reject S if
r (S | R) and G (S | R) are greater than the fixed threshold.

• Start again the process with a rule R′ with an implication intensity lower
than R. And so on.

4 Mutual information with the Gini’s coefficient

In this section we propose a different approach for rule reduction based on
the Gini’s coefficient. This coefficient is well-known to measure inequalities
in a population. For our problem, it is interesting to quantify the dispersion
of the distributions associated with rule realizations.

Let us first recall that the Gini’s coefficient is a particular case of the
Havrda and Charvat’s α-entropy (Havrda and Charvat (1967)). Let XR be
a discrete random variable with a probability distribution for its k values
defined by (p1, p2, ..., pk). The α-entropy is defined by

Hα (R) =
1

1 − α

(
k∑

i=1

pα
i − 1

)

The case α = 2 corresponds to the Gini’s coefficient: Gini (R) = 1−∑
i p

2
i .

Moreover, when α tends toward 1, the limit of the α-entropy is the Shan-
non’s entropy. Thus, the semantic of these two coefficients are close.

Interpretation 1. The Gini’s coefficient can be interpreted as a variance of
Bernoulli independent variables of respective parameters p1, p2, ..., pk. Indeed,
it is easy to show that 1 −

∑
i p

2
i =

∑
i pi (1 − pi).

Interpretation 2. The Gini’s coefficient 1 − ∑
i p

2
i can be interpreted as

a distance between the norms of two k-dimensional vectors: the components
of the first vector are equal to 1 and those of the second one are equal to
p1, p2, ..., pk.

Proposition 2. The difference between the reduced entropy H (R) and
the Gini’s coefficient Gini (R) is positive on the interval [0.5; 1].

In the binary case (k = 2) the Gini’s coefficient is equal to 1 − p2 −(
1 − p2

)
= 2p (1 − p). Then, the difference between H (R) and Gini (R) is a
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function of p defined by : F (p) = −p log2 p− (1 − p) log2 (1 − p) − 2p + 2p2.
The function F (p) decreases on [0.5; 1]and is equal to 0.5 and 0 when p = 1.
Consequently, H (R) −Gini (R) > 0 on [0.5; 1].

Let us precise the behavior of F (p) in the vicinity of p = 1. The develop-
ment of H (R) gives : H (R) ≈ 5

2 ln 2p (1 − p). Hence, in the vicinity of p = 1,
H (R) − Gini (R) ≈ 1.6p (1 − p) > 0. Consequently, the reduced entropy is
always greater than the Gini’s coefficient.

On the same way as for the Shannon’s entropy, we now consider the
conditional Gini’s coefficient. Generally speaking, our approach is close to
the proposition of Simovici and Jaroszewicz (2003). But it is adapted to R-
rules.

Definition 6. Let R and S be two rules and XR and XS be their asso-
ciated variables. Let us denote by pi, i = 1, 2, the frequencies of XR and pij

the frequencies of (XR, XS). The conditional Gini’s coefficient Gini (S | R)
is defined by

Gini (S | R) = 1 −
2∑

i=1

2∑

j=1

p2
ij

pj

Let us remark that this sum is similar to a sum of generalized conditional
variances, and it still can be interpreted as an information coefficient. Here,
the modalities of XS and XR are true and false. Consequently,

Gini (S | R) = 1 −
(
p2

RS

pR
+

p2
RS

pR
+

p2
RS

pR

+
p2

RS

pR

)

Hence,

Gini (S | R) =
∑

i=R,R

∑

j=S,S

pij√
pi

(
1 − pij√

pi

)

We can deduce from this formula the information growth in XS when XR

is known.

Definition 7. Let us consider two rules S and R. The Gini’s gain for S
knowing R is defined by GainG (S | R) = Gini (S) −Gini (S | R).

This gain is a difference of variances; it measures the information quality
brought by R on S. When XR and XS are independent, then Gini (S | R) =
Gini (S) similarly to the Shannon’s gain. However, the converse is false.

For illustration, let us consider again the rules R = (v3 → v1) and S =
(v5 → v4). Then, Gini (S) = 0.0644 < H (S) and Gini (S | R) = 0.0644.
There is no informational increasing on S when R is known. On this example,
the Gini’s coefficient is less discriminant than the conditional entropy.

5 Conclusion

In the SIA framework, we aim at improving the characterization of the re-
dundant rules in rule set produced by automatical algorithms. In particular,
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we here focused on simple rules of the form a → b and R-rules of the form
R1 → R2 associated with a directed hierarchy. For a rule pair, the idea con-
sists in measuring the gain of information brought by one rule on the other.
Intuitively, one rule is redundant when the whole information associated with
it is already known. In order to quantify this redundancy, we have proposed
two different measures: the first one is based on the Shannon’s entropy and
the second one is based on the Gini’s coefficient.

In the next future, we plan to make numerical simulations to experimen-
tally confirm the complementarity of these two measures, and to show their
efficiency for reducing rule sets. In particular, first experiments show that
the algorithmic complexity of the rule pruning algorithm described in the
application is significantly reduced thanks to the thresholds associated with
the new measures.
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statistique – Nouvelle méthode exploratoire de données. La Pensée Sauvage
editions, France.

GRAS, R. and KUNTZ, P. (2005): Discovering r-rules with a directed hierarchy.
Soft Computing, 1, 46–58.

GRAS, R., KUNTZ, P., and BRIAND, H. (2001): The foundations of the im-
plicative statistical analysis and some extensions for data mining (in french).
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A Appendix

v1 v2 v3 v4 v5

1 1 1 1 0 0
2 1 1 1 0 0
3 1 1 1 0 0
4 1 1 1 0 0
5 1 1 1 0 0
6 1 1 1 1 0
7 1 1 0 1 1
8 1 1 0 1 1
9 1 1 1 1 1
10 1 1 1 1 1
11 1 0 1 1 0
12 1 0 1 1 0
13 1 0 1 1 0
14 1 0 1 1 1
15 1 0 1 1 0
16 1 0 1 1 1
17 1 0 1 1 1
18 1 0 1 1 0
19 1 0 1 1 0
20 1 0 1 0 1
21 1 0 1 1 0
22 1 0 1 0 0
23 1 0 0 1 1
24 1 0 0 0 0
25 0 0 0 0 0
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 1 0
29 0 0 1 1 1
30 0 0 0 1 0

Total 24 10 21 19 10
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Abstract. Fraud detection in the retail banking sector poses some novel and chal-
lenging statistical problems. For example, the data sets are large, and yet each
transaction must be examined and decisions must be made in real time, the trans-
actions are often heterogeneous, differing substantially even within an individual
account, and the data sets are typically very unbalanced, with only a tiny pro-
portion of transactions belonging to the fraud class. We review the problem, its
magnitude, and the various kinds of statistical tools have been developed for this
application. The area is particularly unusual because the patterns to be detected
change in response to the detection strategies which are developed: the very success
of the statistical models leads to the need for new ones to be developed.

1 Background

The aim of this article is to review the application of statistical modelling
ideas in the detection of fraud in the personal banking sector. The area poses
some novel statistical challenges.

The Concise Oxford Dictionary defines fraud as ‘criminal deception; the
use of false representations to gain an unjust advantage. ’As such, fraud must
be as old as humanity itself. Indeed, one might go so far as to claim that it is
older, since even animals are known to behave in ways which deceive others,
although the notion of ‘criminal ’behaviour is uniquely human.

Banking fraud, in particular, has many faces. At one extreme, there is
money laundering, in which one tries to pass off illegally gained funds and
feed them into the legitimate banking system. At an intermediate level, there
is fraud against organisations, such as commercial or public organisations.
And at the far extreme there is fraud against an individual, such as through
stolen or cloned credit cards. Banking fraud also covers a vast range of sizes,
ranging from giant cases such as Enron and European Union fraud, to small
personal cases such as selling forged tickets to soccer matches. No day passes
without the national press mentioning cases of fraud - and, indeed, without
countless frauds being perpetrated throughout the world.

This paper is chiefly concerned with banking fraud, and in particular fraud
in the retail or personal banking sector. This covers credit cards, private
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residential mortgages, car finance, personal loans, current bank accounts,
savings bank accounts, and so on. It is a natural application domain for
statistics and related areas of data analysis, since it involves large numbers
of individual units - people.

The personal banking sector has witnessed something of a revolution in
recent decades. Instead of loans and other banking products being granted
by the decisions of individual bank managers, there has been a shift towards
the use of objective statistical models. Such models have many advantages
over humans: they do not tire or suffer from irrational changes of mood,
their performance can be monitored and improved in an evolutionary way by
comparing the performance of slightly modified versions, they are very quick
so that one does not have to wait for days for a decision, and above all, they
are consistent and no subjective or illegal prejudices can accidentally creep
in. These changes have been paralleled by other changes: nowadays huge
databases summarising the transaction, purchasing, and payment history of
individuals is stored in computer databases. Such data warehouses provide
sources of information which can be mined to better understand how people
behave, and to predict how they are likely to behave in the future. And
systems to obtain credit, in particular, have changed completely. In the US at
the end of 2005, outstanding consumer credit, excluding mortgages, exceeded
two trillion dollars. This is in large part the result of technical innovation. As
Alan Greenspan put it in Greenspan (2005): ‘Unquestionably, innovation and
deregulation have vastly expanded credit availability to virtually all income
classes. ’

2 Personal banking fraud

With such large sums of money involved, it would be surprising if fraudsters
were not attracted. The scale of the problem is illustrated by the 2005 UK
figures for plastic card fraud (one can find corresponding figures for any
country). The largest category of fraud was ‘cardholder not present ’fraud,
amounting to £183 million. This category includes phone, internet, and email
fraud. The next largest was counterfeit fraud, amounting to £97 million. This
includes skimming and cloning of cards, in which the electronic details are
read and duplicated on another card. Close behind this was stolen or lost
cards (£89 million), and this was followed by mail interception (£40 million),
card identity theft from account takeover (£18 million), and card identity
theft from fraudulent applications (£12 million). Of particular interest is that
only the first of these, cardholder not present fraud, shows an increase over
the 2004 figure. All the others show a decrease. This illustrates a particularly
important point, to which I shall return below.

The figures above might be regarded as the tip of the iceberg. They rep-
resent clear direct fraud. In fact, the total loss due to fraud is much larger
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because of the additional indirect components. Overall, plastic card fraud can
be regarded as being composed of several components:

1. immediate direct loss due to fraud - the figures given above;

2. cost of installing and running fraud prevention and detection systems;

3. cost of loss business, for example, while a stolen card is replaced;

4. the opportunity cost of fraud prevention and detection - the other, alter-
native, profitable things which the money might have been spent on;

5. the deterrent effect of public fraud on the spread of e-commerce.

Little wonder, then, that some estimates give total worldwide plastic card
fraud in the many billions of dollars.

3 An arms race

I commented above that all types of plastic card fraud apart from cardholder
not present had shown a decrease between 2004 and 2005. This is an impor-
tant point, and one which characterises statistical research in this area and
introduces novel challenges. When one develops a statistical model to under-
stand nature - in physics or biology, for example - discoveries remain true,
unless or until they are replaced by more elaborate descriptions of nature
which explain the data in a superior way. In fraud detection, however, this
is not the case. Fraud detection represents an ongoing arms race between
the fraudsters and those tasked with detecting and preventing fraud, so that
the problem is inherently non-stationary. Once systems are in place to pre-
vent a particular type of fraud, the perpetrators do not abandon their lives
of crime, but move onto some other approach. We have recently witnessed
a nice example of this with chip and PIN technology in the UK. Chip and
PIN technology replaces signatures and magnetic stripes on cards with Per-
sonal Identification Numbers and microchips on the cards. This system was
launched in the UK on 14th February 2006. Some predicted that it would
reduce credit card fraud by 90%. As a consequence, it was also predicted
that it would lead to an increase in identity theft (in which full financial and
personal details of the victim are stolen, so that loans and other financial
products, including credit cards, can be taken out without the victim being
aware of it) and in fraudulent credit card use in Europe, which still relied
on the signature and magnetic stripe technology. And these predictions came
true - Lloyds TSB, for example, observed an increased fraudulent use of UK
credit cards abroad. There was also an increase in ATM theft and cardholder
not present fraud. Worse than this, however, crooks also reverted to a new use
of an old technology. They had long installed ‘skimmers ’in ATM machines,
to record both the card details and the PIN numbers, and now they installed
these in the machines used in chip and PIN systems. Over £1 million was
stolen from Shell service stations before this scam was stopped.
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Sleeper fraud provides another nice illustration of nonstationarity. In this
scheme, fraudsters use the card in an apparently perfectly legitimate way,
making transactions and repayments as if they were law-abiding users. Grad-
ually, they ramp up their credit limit - until suddenly spending up to the
limit and disappearing. It takes patience, of course, but can be lucrative, and
it is very difficult to prevent.

At the time of writing, one of the newest technologies to be introduced
in this arms war is the one-time password. There are several variants of this,
but each involves using a unique password, different each time a transaction
is made. This can be by using an algorithm which calculates the new pass-
word from the last one, or via time synchronised algorithms in the card and
the authentication server, or in other ways. But how long will it be before
fraudsters find a way round this?

4 Other challenges

If the plastic card fraud detection problem is unusual in that the charac-
teristics of the fraud class of objects changes in response to the detection
algorithms being installed, then it is also challenging in several other ways.

Generally, plastic card transaction data sets are large, often very large. If
a bank has 10 million customers, making an average of 3 credit card trans-
actions a week, then a year ’s worth of transactions represents a lot of data.
When one then recognises that between 70 and 80 items of information are
recorded for each transaction (transaction type, date and time of transaction,
amount, currency, local currency amount, merchant category, card issuer,
ATM ID, POS type, number of times chip has been accessed, merchant city
name, etc.) then it is easy to see that scalable and highly efficient algorithms
are needed. In particular, unlike in statistical modelling, in which the aim is
to produce a summary of the data which captures its distributional charac-
teristics, so that one can use a sample of data, here it is absolutely necessary
to examine each and every transaction. Dynamic updating to capture the
intrinsic non-stationarity is a nice idea, but dynamic updating of millions of
separate models, one for each account, as each new transaction is made, is
likely to be impossible for advanced models such as support vector machines,
random forests, or neural networks. Multilevel models may provide a partial
answer here, in which the basic model form is the same for each customer,
with just a few (easily updated) parameters being varied.

Raw fraud data sets are also typically unbalanced, having many more
legitimate than fraudulent cases: an oft-quoted figure is that about 1 in a 1000
are fraudulent. This is crucial because of the familiar phenomenon, illustrated
below, that high sensitivity and specificity in such cases do not translate into
a high proportion of fraud cases amongst those predicted as fraudulent. The
implication is that the two types of misclassification should be weighted very
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differently. Multi-stage procedures can be effective approaches in such cases,
as outlined below.

There is also often a delay in learning the true class labels. In fact, this
is a familiar problem in the banking sector, where these labels often do not
become apparent until a later reconciliation or account checking stage. It can
mean a lag in updating of distributions. It is compounded with the problem
of incorrect labels. There is the obvious problems that account holders may
not check their statements very rigorously, so that fraudulent transactions
are mislabelled as legitimate. This is a one-way misclassification, and so may
not be too serious in terms of classification accuracy (its primary impact
being on the classification threshold). However, consider the case of an ac-
count holder making a series of legitimate transactions, and then deciding
to get the cost reimbursed by claiming that the card had been stolen and
the transactions were not theirs. Now the true labels become ‘fraud ’, even
though the transaction pattern may be indistinguishable from a legitimate
series of transactions. (Fortunately, in fact, such a series would typically be
distinguishable, since normally the account holder sets out to maximise their
gains, and so behaves differently from normal.)

5 Statistical tools

Various statistical approaches have been explored in the battle against fraud
(Bolton and Hand, 2002). Here I am using ‘statistics ’in the sense of Cham-
berss ‘greater statistics ’(see Chambers (1993) and the rejoinder to Bolton
and Hand (2002)), to mean ‘everything related to learning from data ’, so
that it includes machine learning, data mining, pattern recognition, and so
on. Provost (2002) makes a nice analogy with the classic parable of the blind
men and the elephant - each felt a different part of the creature and imagined
an entirely different sort of animal. So it is with fraud detection: there are
many different approaches. It is important to recognise that these approaches
are not in competition. They can (subject to scalability and computational
issues) be used simultaneously and in parallel. By this means, old weapons
in the fraudsters armoury will be defeated even while new ones are being
tackled.

The core approach is a rule-based or pattern matching approach. This
is applied when a particular type of transaction or transaction pattern is
known often to be indicative of fraud. For example, the pattern of two ATM
withdrawal attempts in which the first takes out the maximum allowed and
the second occurs within 24 hours is suspicious. It suggests that the second
attempt was not aware of the first - and that two people are using the account.
Another such intrinsically suspicious pattern is the credit card purchase of
many small electrical items in quick succession, since these can easily be sold
on the black market. We see from these examples that one cannot be certain,
merely from the transaction pattern, that fraud has occurred. A human has
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to be in the loop. We shall return to this point when we consider measures
for assessing the performance of fraud detection systems.

More generally, however, we will want to detect departures from normal
behaviour for an individual, in unpredictable ways, as well as in predictably
suspicious ways. This requires decisions about two aspects: what exactly is
the unit of analysis, and what is the ‘norm ’relative to which behaviour is
classified as ‘suspicious ’?

Superficially, the unit of analysis is simple enough: it is the transaction
(lying in a space with 70-80 dimensions). Sometimes people use their cards
in highly predictable ways (e.g. practicing ‘jamjarring ’, in which they use
different cards for different categories of purchase), but in other cases the
transactions are highly heterogeneous. Especially in the latter case, it can
be advantageous to work with groups of transactions, rather than individual
transactions. This can be done in various ways. We can, for example, sum-
marise the transactions within a group (e.g. the last 5 transactions). This
allows more flexibility of description and has the potential to capture more
unusual patterns of behaviour. Of course, it sacrifices the immediacy of in-
dividual transaction analysis. It also requires tools for rapid updating of the
summary descriptors.

Similarly, at a superficial level, the choice of norm is straightforward: we
should compare the new behaviour of a customer with his or her previous
behaviour. This requires sufficient data being available on that customer pre-
viously. It also enters the realm of scalability issues: if an entirely different
model has to be built for each customer then updating may be expensive. A
compromise may be the multilevel approach mentioned above.

A rather different approach is to compare the behaviour of a customer
with that of other similar customers. In ‘peer group analysis ’(Bolton and
Hand (2001), Ferdousi and Maeda (2006)), for example, we identify the k
customers who have behaved most similarly to a target customer in the past,
and then follow them to see if the behaviour of the target customers starts
to deviate from their ‘peer group ’. In its simplest form, this is done for each
customer separately.

In the above, modelling occurs at the level of the model of behaviour
which we expect a legitimate account to follow, but there is no deeper con-
ceptualisation possible. This is to regard the account as undergoing a state
change when a fraudster hijacks it, from the legitimate to the fraud state. In
the former, all transactions are taken to be legitimate, but in the latter there
will be fraudulent transactions, perhaps with some legitimate ones mixed in.
We can think of this as a latent variable model, this variable being the state,
and our aim is to detect when the state change occurs: it is a change point
problem. Such problems have been extensively explored, though most often
in situations in which a single manifest variable is undergoing a level shift.

Various kinds of multilevel models are particularly valuable in fraud de-
tection problems. A straightforward application of such models is multilevel
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screening. This can also help with the computation and scalability issues. In
this approach, one applies a simple and quick method to eliminate the clearly
non-fraudulent transactions: one computes a simple suspicion score and elim-
inates those with low values. Some frauds may get through, but one has to
recognise that perfection is not achievable and if this initial screen can adjust
the prior size of the fraud class from 0.001 to 0.01 or better then significant
progress has been made. The second level may then use the same descriptive
characteristics, combined in a much more elaborate and sophisticated way
(e.g. using a random forest, treenet, support vector machine, or neural net-
work) or may use additional data. The idea is analogous to the reject option,
although it is one-sided.

Stolfo et al. (1997a, b) described an alternative use of multiple models,
in which different fraud detection algorithms are used for different sectors,
with the results being combined. Given that certain areas are more subject
to fraud than others, this seems like a very sensible approach - why should
one believe that the same sort of detection algorithm should apply in each
area?

The aim is always to classify transactions or more general transaction
groups into one of two classes: fraudulent or legitimate. Systems to achieve
this can be based on supervised classification ideas, in which one uses samples
of known frauds and known non-frauds to construct a rule which will allow
one to assign new cases to a class (by comparing an estimated suspicion
score with a threshold). But an alternative would be to estimate contours of
the non-fraud class, classifying outlying points as potentially fraudulent. The
contours here will most probably best be based on an individuals previous
legitimate transactions. Breiman (2002) argues that the supervised approach
is likely to be more effective.

So far, all of the discussion has been in terms of individual transactions,
or groups of transactions within a given account, treating the accounts as
independent. However, while accounts may indeed generally be independent,
the ways fraudsters use accounts are not. Firstly, fraudsters tend to work in
gangs, not individually (for example, stealing, recycling, and cloning multiple
cards). And secondly, if a fraudster discovers a successful modus operandi,
then they are likely to repeatedly use that until stopped. This can be made
use of in detection systems. For example, if an account is known to have
switched to the fraud state (that is, some of the transactions on an account
are known to be fraudulent), one can look back at all of that accounts recent
transactions and examine other accounts which made transactions at the
same sites more carefully. Quite how effective this will be will depend on
what data are stored about the transactions. If individual ATM identifiers
are stored, it will be easy for ATM transactions, for example. If only high
level merchant codes are stored for credit card transactions, however, then
it would result in a much blunter instrument. The idea is a dynamic version
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of simple methods based on learning what merchant codes are intrinsically
more likely to be associated with fraud.

6 Assessing performance of fraud detection tools

Although different kinds of techniques may be used to process a transaction
or activity record, the aim in all cases is to assign them to one of two classes,
fraud or non-fraud. This is even the case if the problem is viewed as one
of detecting state change: one aims to classify those prior to the change as
legitimate and those after the change as fraudulent. This means that an
important class of performance assessment measures must be based on the
two by two cross-classification of true class (fraud, non-fraud) by predicted
class.

The classification community has developed many measures for such situ-
ations, tackling different aspects of performance. Simple ones include misclas-
sification rate and specificity and sensitivity. As we have already mentioned,
these are typically inappropriate in fraud detection problems because of the
dramatically unbalanced class sizes: a very low misclassification rate (0.1% if
only 0.1% of the transactions really are fraudulent) is achieved by assigning
every transaction to the legitimate class. But this, of course, defeats the ob-
ject. The point is that misclassifying a fraud case is much more serious than
misclassifying a legitimate case. The former means a real financial loss, which
could run into many thousands of pounds. The latter incurs only the cost of
checking that the transaction is legitimate, plus also some customer irrita-
tion if the account is temporarily suspended. This irritation can be managed
- after all, most customers like to know that the bank is looking out for them.
If the true fraud rate is 0.1% then a detection rule which successfully clas-
sifies 99% of the fraud cases as fraudulent, and 99% of the legitimate cases
as legitimate will in fact be correct in only 9% of the cases it predicts as
fraudulent. This could mean substantial customer irritation, not to mention
the cost ‘wasted ’on the 91 in every 100 suspected frauds which are really
legitimate.

There are also other aspects of fraud performance which one might want
to take into account. Hand et al. (2006) point out that whenever a fraud is
suspected, it incurs an investigation cost, regardless of whether a fraud has
actually been committed or not. Thus a suitable measure might be based
on minimising a suitably weighted combination of the total number of fraud
alarms and the number of real frauds which evade detection. Even more
elaborate measures may be based on the actual monetary losses incurred
when a fraud does occur.
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7 Conclusion

At a conference on banking fraud I attended not so long ago, a banker re-
marked to me that his bank ‘did not have any fraud ’. He was speaking tongue
in cheek, of course, but some important points underlie his comment.

The first is that it is very important, for customer and shareholder confi-
dence, to know that a bank is a reliable organisation, not subject to criminal
attacks, and to the costs that that would imply. The contrary assertion (or,
perhaps, admission) that the bank loses hundreds of millions of dollars per
annum to fraud would hardly inspire confidence.

Secondly, at a superficial level there would appear to be an appropriate
balance to be struck between the amount spent on detecting and preventing
fraud and the amount of fraud prevented. One might decide that a break-
even point was appropriate: it might be regarded as sensible to spend £x to
prevent £x of fraud, but foolish to spend £y to prevent £x if y > x. This
is all very well, but it ignores the deterrent effect: a fraud system costing
£y may prevent substantially larger amounts of fraud merely because it is
known to exist - merely because the bank is known to be able to detect fraud
attacks.

In any case, while one might be able to quantify the amount spent on
fraud detection and prevention systems, quantifying the amount saved by
these systems is difficult. After all, if fraud is not attempted by virtue of a
prevention strategy, how can its extent be measured? In general, quantifying
the value of fraud detection systems is difficult.

I commented above that once a particular avenue of fraud has been pre-
vented by an appropriate tool, fraudsters do not abandon their efforts, but
change tacks. This means that a Pareto principle applies. 50% of fraud is easy
to detect - the early methods used by those new to the game. But the next
25% is much harder, and the next 12% harder still. Indeed, it would be naive
to suppose that all fraud is prevented or could be prevented, no matter how
sophisticated the statistical models. Think of those previously law-abiding
customers who suddenly realise that, if they claim their card has been stolen
after a spending spree, they will be reimbursed. Think of sleeper fraud.

Other reviews of statistical approaches to fraud detection are given in
Fawcett and Provost (2002), Bolton and Hand (2002) and Phua et al. (2005).
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Abstract. In the first year of my preparation for doctor thesis at INRIA in the
group of Edwin, I worked on the construction of an inference engine and a knowledge
base, by consulting various group members, for building an expert system guiding
the data analysis package SICLA of the group. One day, Edwin asked me whether
one can automatically generate rules for expert systems from data, and I started my
new research direction. Since that time, my main work has been machine learning,
especially finding rules in data. This paper briefly presents some learning methods
we have developed.

1 Introduction

Twenty years ago, machine learning was in its infancy with few work and
applications. The wave of artificial intelligence (AI) in early of years 1980s
has fostered the development of machine learning. From the joined work on
conceptual clustering with Michalski, Edwin found his interest in this young
field of machine learning (Michalski et al., 1983). As a doctor candidate in
his group at that time, he suggested if I can work on finding new ways to
generate rules for expert systems from data, instead of working as knowledge
engineers who try to acquire knowledge from human experts.

There have been a great progress in the field of machine learning. It
has become an established area with sound foundation, rich techniques and
various applications. Machine learning becomes one of the most active areas
in computer science. This paper briefly presents some of our main work in
machine learning since those days in the group of Edwin, from supervised
learning (Ho et al., 1988), (Nguyen and Ho, 1999), (Ho and Nguyen, 2003)
to unsupervised learning (Ho, 1997), (Ho and Luong, 1997), and some recent
work on text clustering (Ho and Nguyen, 2002), (Ho et al., 2002), (Le and
Ho, 2005), bioinformatics (Pham and Ho, 2007), kernel methods (Nguyen and
Ho, 2007).

2 Rule induction from supervised data

In this section we briefly present three supervised learning methods of CABRO1
(Ho et al., 1988), CABRO2 (Nguyen and Ho, 1999), and LUPC (Ho and
Nguyen, 2003).
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2.1 CABRO1

CABRO1 (Construction Automatique à Base de Régles et à partir
d’observations) is a method of rule induction from supervised data.

Let D1, D2, ..., Dp be p finite domains and D1 ×D2 × ...×Dp. Elements
of D are called objects and denoted by ω = (d1, d2, ..., dp) where dj ∈ Dj

for j ∈ J = {1, 2, ..., p}. A variable-value pair (Xj , dj) defines an elemen-
tary assertion AXj=dj that determines the set ωXj=dj of objects of D which
have the value dj ∈ {dj1, dj2, ..., djq} for the variable Xj: AXj=dj : D −→
{true, false}, ω = (d1, ..., dp) �→ AXj=dj (ω) = true, if Xj(ω) = dj and
ω = (d1, ..., dp) �→ AXj=dj (ω) = false, if Xj(ω) 
= dj .

We consider an assertion as a conjunction of elementary assertions: A =∧
(Xj , dj), j ∈ J ′ ⊆ J and dj ∈ Dj, where

∧
denotes the logical conjunc-

tion. An assertion A is a Boolean function from D −→ {true, false}, and it
is also the identification function for the set: ωA = {ω ∈ D | A(ω) = true}.

Variables correspond to j ∈ J ′ are said to be tied to the assertion. Vari-
ables correspond to j ∈ J \ J ′ are said to be free from the assertion. Number
of tied variables is called length of the assertion. One says also that assertion
A covers the set ωA. Assertion A is said to be more general than asser-
tion B iff ωB ⊆ ωA. Assertion A is said to be better than assertion B iff
card(ωA) > card(ωB). A is a representative assertion generated from an ob-
ject ω ∈ E if A is one of the best assertions formed by elementary assertions
generated from ω.

Denote 
 = 
C ∪
′
C the set of assertions to be found for C and C’. Natu-

rally, assertions generated for each concept, for instance C, have to satisfy two
following constraints: (1) Covering: Each observed object of the learning set E
has to be recognized by an assertion of 
C : E ⊆ ⋃

A∈�C
ωA, and (2) Descrim-

inating: Assertions of C do not misrecognize members of E′ : ωA ∩ E′ = ∅.
It is clear that the less general an assertion, the more discriminant it is.

Depending on the data nature, one retains general but not perfect discrimi-
nant assertions or discriminant but not sufficient general assertions. The belief
measure µ(A) for the assertion A of C is estimated as the ratio of the number
of examples of C matched by A and the total number of examples of C and
C’ matched by A: µ(A) = card(ωA ∩ E)/card(ωA ∩Ω), (0 < µ(A) ≤ 1).

An assertion A is said β-discriminant if µ(A) ≥ β. In fact, instead of
finding discriminant assertions one finds β-discriminant assertions depending
on an acceptance threshold β (0 < β ≤ 1).

The main algorithm of CABRO1 is based on a general-to-specific search:
one starts from an ’empty’ assertion which is the ’most general’ because all
of its variables are free, then one ties the value Xj(ω) to this assertion so
that the assertion covers approximately a maximum number of objects of E
(the generality of the assertion will be diminished but it may remain non
β- discriminant). This phase is repeated with the remaining values until one
finds a β-discriminant assertion such that the next attempt does not improve
the covering of the assertion. We propose a dual algorithm of the CABRO1
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algorithm, based on a specific-to-general search strategy, in order to find a
representative assertion Aω from an object ω ∈ E. On the contrary with
CABRO1 algorithm, the dual algorithm starts from a ’full’ assertion which
is the ’most specific’ and covers only the object ω. One tries to increase its
generality and to diminish its speciality simultaneously in order to obtain a
representative assertion.

2.2 CABRO2

The starting point of rough set theory (Pawlak, 1991) is the assumption that
our “view” on elements of an object set O depends on an indiscernibility
relation among them, that means an equivalence relation E ⊆ O × O. Two
objects o1, o2 ∈ O are said to be indiscernible w.r.t E if o1Eo2. The lower
and upper approximations of any X ⊆ O, w.r.t. an equivalence relation E,
are defined as

E∗(X) = {o ∈ O : [o]E ⊆ X}, E∗(X) = {o ∈ O : [o]E ∩X 
= ∅}
where [o]E denotes the equivalence class of objects which are indiscernible
with o w.r.t the equivalence relation E. A subset P of the set of attributes
used to describe objects of O determines an equivalence relation that divides
O into equivalence classes each containing objects having the same values
on all attributes of P . A key concept in the rough set theory is the degree
of dependency of a set of attributes Q on a set of attributes P , denoted by
µP (Q) (0 ≤ µP (Q) ≤ 1), defined as µP (Q) = |

⋃
[o]Q

/P∗([o]Q)|/|O|.
If µP (Q) = 1 then Q totally depends on P ; if 0 < µP (Q) < 1 then

Q partially depends on P ; if µP (Q) = 0 then Q is independent of P . The
measure of dependency is fundamental in rough set theory as based on it
important notions are defined, such as reducts and minimal sets of attributes,
significance of attributes, etc.

This argument can be generalized and formulated for a measure of degree
of dependency of an attribute set Q on an attribute set P

µ′
P (Q) =

1

|O|
∑

[o]P

max[o]Q |[o]Q
⋂

[o]P |

Theorem. For every sets P and Q of attributes we have

max[o]Q |[o]Q|/|O| ≤ µ
′

P (Q) ≤ 1

We can define that Q totally depends on P iff µ
′

P (Q) = 1; Q partially

depends on P iff max[o]Q |[o]Q|/|O| < µ
′

P (Q) < 1; Q is independent of P iff

µ
′

P (Q) = max[o]Q |[o]Q|/|O|.
Given two arbitrary attribute sets P and Q, we define R-measure for the

dependency of Q on P

µP (Q) =
1

|O|
∑

[o]P

max[o]Q

|[o]Q
⋂

[o]P |2
|[o]P |
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Learn-Positive-Rule(Pos,Neg, mina, minc) BestRule(Pos,Neg,α, β)

1. RuleSet = φ 11.CandRuleset = φ
2. α, β ← Initialize(Pos,mina, minc) 12.AttValPairs(Pos, Neg,α, β)
3. while (Pos �= φ & (α, β) �= (mina, minc)) 13. while StopCond(Pos, Neg, α, β)
4. NewRule← BestRule(Pos,Neg,α, β) 14. CandRules(Pos,Neg, α, β)
5. if (NewRule �= φ) 15. BestRule←
6. Pos← Pos \ Cover+(NewRule) First CandidateRule
7. RuleSet← RuleSet ∪NewRule in CandRuleset
8. else Reduce(α, β) 16. return(BestRule)
9. RuleSet← PostProcess(RuleSet)
10. return(RuleSet)

Fig. 1. The scheme of algorithm LUPC

When consider Q as the class attribute and P a descriptive attribute, we
can use µP (Q) as a measure for attribute selection in decision tree learning.
CABRO2 is the decision tree induction using R-measure that has performance
as high as state-of-the-art methods such C4.5 (Nguyen and Ho, 1999).

2.3 LUPC

LUPC (Learning Unbalanced Positive Class) is a separate-and-conquer rule
induction method to learn minority classes in unbalanced datasets. LUPC
consequently learns a rule set from Pos and Neg given user-specified mini-
mum accuracy threshold (mina) and minimum cover ratio (minc). We can
partially order the goodness of rules in terms of accuracy or support. Given
two thresholds α and β, 0 ≤ α, β ≤ 1, on accuracy and support of rules,
respectively. A rule R is αβ-strong if acc(R) ≥ α and sup(R) ≥ β. An αβ-
strong rule Ri is said better than an αβ-strong rule Rj with respect to α if
Ri has accuracy higher than that of Rj . An αβ-strong rule Ri is better than
an αβ-strong rule Rj with respect to β if Ri has support higher than that
of Rj . LUPC distinguishes three alternatives that occur in practice and that
lead to the three corresponding types of search heuristics:

1. Bias on rule accuracy: It is to sequentially find rules with cover ratio
equal and greater than minc but accuracy is as large as possible.

2. Bias on rule cover ratio. It is to sequentially find rules with accuracy
equal and greater than mina but the cover ratio is as large as possible.

3. Alternative bias on rule cover ratio and accuracy. LUPC starts with high-
est values of α and β, and alternatively learns rules with bias on either
accuracy or cover ratio, then reduces one of the corresponding α or β
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while keeping the other. The search is done until reaching the stopping.
condition.

Note that cov+(R) can be quickly determined because |Pos| * |Neg|.
When searching for αβ-strong rules, a candidate rule will be eliminated with-
out continuing to scan though large set Neg if this property holds during
scanning.

Proposition 1. Given a threshold α, a rule R is not αβ-strong for any
arbitrary β if cov−(R) ≥ ((1 − α)/α) × cov+(R).

Figure 1 presents the scheme of algorithm LUPC that consists of two main
procedures Learn-Positive-Rule and BestRule (Ho and Nguyen, 2003). LUPC
has been applied to study stomach cancer and hepatitis with successes.

3 Conceptual clustering

A theory of concept lattices has been studied under the name formal concept
analysis (FCA) (Wille, 1982). Considers a context as a triple (O,D,R) where
O be a set of objects, D be a set of primitive descriptors and R be a binary
relation between O and D, i.e., R ⊆ O ×D and (o, d) ∈ R is understood as
the fact that object o has the descriptor d. For any object subset X ⊆ O,
the largest tuple common to all objects in X is denoted by λ(X). For any
tuple S ∈ T , the set of all objects satisfying S is denoted by ρ(S). A tuple S
is closed if λ(ρ(S)) = S. Formally, a concept C in the classical view is a pair
(X,S), X ⊆ O and S ⊆ T , satisfying ρ(S) = X and λ(X) = S. X and S are
called extent and intent of C, respectively. Concept (X2, S2) is a subconcept
of concept (X1, S1) if X2 ⊆ X1 which is equivalent to S2 ⊇ S1, and (X1, S1)
is then a superconcept of (X2, S2).

It was shown that λ and ρ define a Galois connection between the power
sets ℘(O) and ℘(D), i.e., they are two order-reversing one-to-one operators.
As a consequence, the following properties hold which will be exploited in
the learning process:

if S1 ⊆ S2 then ρ(S1) ⊇ ρ(S2) and λρ(S1) ⊆ λρ(S2)
if X1 ⊆ X2 then λ(X1) ⊇ λ(X2) and ρλ(X1) ⊆ ρλ(X2)

S ⊆ λρ(S), X ⊆ ρλ(X)
ρλρ = ρ, λρλ = λ, λρ(λρ(S)) = λρ(S)

ρ(
⋃

j Sj) =
⋂

j ρ(Sj), λ(
⋃

j Xj) =
⋂

j λ(Xj)

The basic theorem in FCA states that the set of all possible concepts from
a context (O,D,R) is a complete lattice1 L, called Galois lattice, in which
infimum and supremum can be described as follows:

∧

t∈T

(Xt, St) = (
⋂

t∈T

Xt, λρ(
⋃

t∈T

St))

1 A lattice L is complete when each of its subsetf X has a least upper bound and
a greatest lower bound in L.
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Table 1. Scheme of OSHAM conceptual clustering

Input concept hierarchy H and an existing splittable concept Ck.
Result H formed gradually.
Top-level call OSHAM(root concept, ∅).

1. While Ck is still splittable, find a new subconcept of it that corresponds to the
hypothesis minimizing the quality function q(Ck) among η hypotheses gener-
ated by the following steps (a) Find a “good” attribute-value pair concerning

the best cover of Ck.
(b) Find a closed attribute-value subset S containing this attribute-value pair.
(c) Form a subconcept Cki with the intent is S.
(d) Evaluate the quality function with the new hypothesized subconcept.
Form intersecting concepts corresponding to intersections of the extent of the
new concept with the extent of existing concepts excluding its superconcepts.

2. If one of the following conditions holds then Ck is considered as unsplittable

(a) There exist not any closed proper feature subset.
(b) The local instances set Cr

k is too small.
(c) The local instances set Cr

k is homogeneous enough.
3. Apply recursively the procedure to concepts generated in step 1.

∨

t∈T

(Xt, St) = (ρλ(
⋃

t∈T

Xt),
⋂

t∈T

St)

OSHAM (Making Automatically a Hierarchy of Structured Objects) is
our proposed conceptual clustering method (Ho, 1997), (Ho and Luong,
1997). OSHAM allow generating descriptive rules from symbolic unsuper-
vised datasets.

4 Tolerance rough set model and applications

The tolerance rough set model (TRSM) aims to enrich the document rep-
resentation in terms of semantics relatedness by creating tolerance classes
of terms in T and approximations of subsets of documents. The model has
the root from rough set models and its extensions. The key idea is among
three properties of an equivalence relation R in an universe U used in the
original rough set model (reflexive: xRx; symmetric: xRy → yRx; transitive:
xRy ∧ yRz → xRz for ∀x, y, z ∈ U), the transitive property does not always
hold in natural language processing, information retrieval, and consequently
text data mining. In fact, words are better viewed as overlapping classes
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Table 2. The TRSM nonhierarchical clustering algorithm

Input The set D of documents and the number K of clusters.
Result K clusters of D associated with cluster membership of each document.

1. Determine the initial representatives R1, R2, ..., RK of clusters C1, C2, ..., CK

as K randomly selected documents in D.
2. For each dj ∈ D, calculate the similarity S(U(R, dj), Rk) between its upper

approximation U(R, dj) and the cluster representative Rk, k = 1, ..., K. If this
similarity is greater than a given threshold, assign dj to Ck and take this
similarity value as the cluster membership m(dj) of dj in Ck.

3. For each cluster Ck, re-determine its representative Rk.
4. Repeat steps 2 and 3 until there is little or no change in cluster membership

during a pass through D.
5. Denote by du an unclassified document after steps 2, 3, 4 and by NN(du)

its nearest neighbor document (with non-zero similarity) in formed clusters.
Assign du into the cluster that contains NN(du), and determine the clus-
ter membership of du in this cluster as the product m(du) = m(NN(du)) ×
S(U(R, du),U(R,NN(du))). Re-determine the representatives Rk, for k =
1, ..., K.

which can be generated by tolerance relations (requiring only reflexive and
symmetric properties).

The key issue in formulating a TRSM to represent documents is the iden-
tification of tolerance classes of index terms. We employ the co-occurrence
of index terms in all documents from D to determine a tolerance relation
and tolerance classes. Denote by fD(ti, tj) the number of documents in D in
which two index terms ti and tj co-occur. We define an uncertainty function
I depending on a threshold θ as Iθ(ti) = {tj | fD(ti, tj) ≥ θ} ∪ {ti}.

It is clear that the function Iθ defined above satisfies the condition of
ti ∈ Iθ(ti) and tj ∈ Iθ(ti) iff ti ∈ Iθ(tj) for any ti, tj ∈ T , and so Iθ is both
reflexive and symmetric. This function corresponds to a tolerance relation
I ⊆ T × T that tiItj iff tj ∈ Iθ(ti), and Iθ(ti) is the tolerance class of
index term ti. A vague inclusion function ν, which determines how much X
is included in Y , is defined as ν(X,Y ) = |X ∩ Y |/|X |

This function is clearly monotonous with respect to the second argument.
Using this function the membership function, a similar notion as that in
fuzzy sets, µ for ti ∈ T , X ⊆ T can be defined as µ(ti, X) = ν(Iθ(ti), X) =
|Iθ(ti) ∩X |/|Iθ(ti)|.
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Table 3. TRSM-based hierarchical agglomerative clustering algorithm

Input A collection of M documents D = {d1, d2, . . . , dM}
Result Hierarchical structure of D

Given: a collection of M documents D = {d1, d2, . . . , dM}
a similarity measure sim : P(D)× P(D)→ R

for j = 1 to M do
Cj = {dj} end
H = {C1, C2, , . . . , CM}
i = M + 1
while |H | > 1

(Cn1 , Cn2) = argmax(Cu,Cv)∈H×Hsim(U(R, Cu),U(R, Cv)
Ci = Cn1 ∪ Cn2

H = (H \ {Cn1 , Cn2}) ∪ {Ci}
i = i + 1

With these definitions we can define a tolerance space as R = (T , I, ν, P )
in which the lower approximation L(R, X) and the upper approximation
U(R, X) in R of any subset X ⊆ T can be defined as

L(R, X) = {ti ∈ T | ν(Iθ(ti), X) = 1}
U(R, X) = {ti ∈ T | ν(Iθ(ti), X) > 0}

The term-weighting method is extended to define weights for terms in the
upper approximation U(R, dj) of dj . It ensures that each term in the upper
approximation of dj but not in dj has a weight smaller than the weight of
any term in dj .

wij =






(1 + log(fdj (ti))) × log M
fD(ti)

if ti ∈ dj ,

minth∈djwhj × log(M/fD(ti))
1+log(M/fD(ti))

if ti ∈ U(R, dj) \ dj

0 if ti 
∈ U(R, dj)

The vector length normalization is then applied to the upper approxima-
tion U(R, dj) of dj . Note that the normalization is done when considering a
given set of index terms. Denote the document set by D = {d1, d2, . . . , dM}
where dj = (t1j , w1j ; t2j , w2j ; . . . ; trj , wrj) and wij ∈ [0, 1]. The set of all
terms from D is denoted by T = {t1, t2, . . . , tN}. In information retrieval, a
query is given the form Q = (q1, w1q; q2, w2q; . . . ; qs, wsq) where qi ∈ T and
wiq ∈ [0, 1].

Table 2 and Table 3 describe two general TRSM-based nonhierarchi-
cal and hierarchical clustering algorithms. The TRSM-based nonhierarchical
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clustering algorithm can be considered as a reallocation clustering method
to form K clusters of a collection D of M documents. The main point of the
TRSM-based hierarchical clustering algorithm is at each merging step it uses
upper approximations of documents in finding two closest clusters to merge.

In (Ho et al., 2002), we have applied TRSM and TRSM-based clustering
algorithms to information retrieval and text analysis tasks. Interestingly, the
TRSM cluster-based retrieval achieved higher recall than that of full retrieval
in our experiments, especially the TRSM cluster-based retrieval usually offers
precision higher than that of full retrieval in most experiments, and achieves
recall and precision nearly as that of full search just after searching on one
or two clusters.
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Abstract. This paper is a review of promising applications of pyramidal classi-
fication to biological data. We show that overlapping and ordering properties can
give new insights that can not be achieved using more classical methods. We exam-
plify our point using three applications: (i) a genome scale sequence analysis, (ii)
a new progressive multiple sequence alignment method, (iii) a cluster analysis of
transcriptomic data.

1 Introduction

Biology has always benefited from advances in mathematics, more specifically
in statistics and classification. Conversely, mathematical discoveries are in-
terlinked with major challenges set down by biologists. Among the numerous
examples of this “co-evolution” of sciences one can cite G.-L. Leclerc (1707-
1788), known as Comte de Buffon, for his great work as both a naturalist and
a mathematician. Recent technology breakthroughs have successively driven
biology into the genomic and post-genomic eras. This quantum leap revealed
the high complexity of biological organisms. Consequently the numerous and
heterogeneous data produced every day require novel and efficient analysis
methods for the biologists to investigate new hypotheses.

In 1984, Edwin Diday introduced the Pyramidal classification (Diday
(1984)). It was one of the first methods that allowed determining and repre-
senting nested overlapping clusters. This approach became fully operational
in 1990 with the publication of the complete ascending pyramidal classifica-
tion algorithm (Bertrand (1990)).

The aim of this paper is to point out the potentiality of pyramids for
the analysis of biological data. We present three applications dealing with
genomic and transcriptomic data analysis. This examples illustrate that the
inherent pyramid properties of overlapping and partial ordering can help with
the interpretation of data.

This paper is organized as follows: first, two applications of pyramidal
clustering are discussed on genomic data. One concerns genome scale se-
quence analysis, the other, the computation of multiple sequences alignments;
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second, an application of pyramidal clustering is described with transcrip-
tomic data obtained by DNA chips.

2 Genomic data

2.1 Genome scale sequence analysis

For several years, the success of numerous sequencing projects and their ap-
plications (e.g. transcriptom analysis) has led to the exponential increase of
biological data. Thus, the availability of different genomes brought about the
need for comparisons. For instance, by comparing the human genome with
the genomes of different organisms, researchers can better grasp the struc-
ture and function of human genes and thereby develop new strategies in the
battle against human diseases. In addition, comparative genomic (Konning et
al. (1997), Park and Teichmann (1998)) provides a powerful new tool for the
study of evolutionary changes among organisms, helping to identify genes
that are conserved among species and genes giving each organism its own
unique characteristics. In the context of comparative genomic, and among
other methods, the pyramidal classification provided new interesting results
(Codani et al. (1999), Aude et al. (1999)). More precisely, it allowed us to im-
prove the representation and the analysis of the biological data. This point
is fundamental: for example, it allowed to decipher the domain structure
(functional subunit) of genes and to annotate genes (Louis et al. (2001)).

The following example deals with data from PHYTOPROT (Louis (2001)).
This database is dedicated to the study of plants proteomes in order to eluci-
date functional relationships between genes of different species. All pairs of se-
quences have been compared and globally partitioned (Codani et al. (1999));
resulting clusters has been studied in details. Let study a family with the fol-
lowing proteins sequences: APY SOLTU sequence of potato; NTPA PEA sequence
of garden pea; OO4519, O04520, O22204, O24091, O23505, O49676 sequences
of Arabidopsis thaliana.

On figure 1.A, we have a dendogram obtained with the UPGMA cluster-
ing algorithm. We can observe two distinct clusters: the first one with the
sequences APY SOLTU, NTPA PEA, O49676; the second one with all the others
sequences. On figure 1.B, we have a pyramid computed on the same data. We
rediscover both clusters, with an additional information. Indeed, the pyramid
highlight the sequence O49676 as a link between both clusters.

Then the domains decomposition of the sequences is computed using MK-
DOM (see figure 2). In the first cluster, the sequences APY SOLTU, NTPA PEA

have all their domains in common and share one of them with sequence
O49676. In addition O49676 shares two domains with the sequences of the sec-
ond cluster. Therefore, domains decomposition confirm that sequence O49676
is a link between both clusters, as previously seen on the pyramid. The do-
main decomposition leads to the hypothesis that this sequence may be the
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Fig. 1. A) The hierarchy obtained by the UPGMA method applied on a family of
protein sequences from different plant organisms. One can unambiguously delineate
two clusters, highlighted using grey boxes, from this hierarchy. B) The pyramidal
representation obtained with the CAP algorithm on the same dataset. We observe
two overlapping clusters, depicted by grey boxes. The intersection of both clusters
is the sequence 049676. Thus, we can make the assumption that this sequence is
the link between these two sets of sequences.

result of a gene fusion which is not detected by automatic syntactic annota-
tion.

As a result, we can notice that the hierarchical representation is not able
to determine links between two clusters. The pyramid with the properties of
partial ordering and overlapping offers great interest for biological data. In
this case, it permits to reconsider and correct the annotation of the sequence.

Fig. 2. This figure depicts the domains decomposition of protein sequences belong-
ing to a PHYTOPROT family. They appear in the order given by the pyramid of
figure 1.B. We observe that sequences of the first cluster (APY SOLTU, NTPA PEA,

O49676) have the domain A in common, and the second cluster (all sequences from
O49676 to O04519) the domains B. The intersection of both clusters is the sequence
O49676, which possesses both domains A and B. It demonstrates that this sequence
links both sets of sequences. Moreover it is revealed by a clear visual diagram.
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2.2 Multiple sequence alignments computations

Using a set of nucleotidic or peptidic sequences, one can try to identify con-
served sequence regions among them. The classic method to discover such
patterns is to compute a multiple sequence alignment (Feng and Doolittle
(1987)). A multiple alignment arranges the sequences in a scheme where po-
sitions believed to be homologous are written in a common column. Like in
a pairwise alignment, when a given sequence does not possess a nucleotide
or amino acid in a particular position an insertion (denoted by a dash) is
added. Multiple sequence alignment is certainly one of the most used method
in bioinformatic, and researches in this area are still undergoing development
(Batzoglou (2005)). In practice, it is a key step in various sequence analysis
and covers a wide field of applications,including: sequence annotation (Bu-
lyk (2003)); function and structure (secondary or tertiary) prediction (Jones
(1999)); phylogenetic studies (Phillips et al. (2000)).

Among the numerous algorithms available to compute such alignments,
a common strategy, called progressive, emerged from the vast majority of
these methods. This strategy is made of three steps: (i) a similarity matrix
is calculated using the scores of a pairwise alignment method applied on all
possible pairs of sequences; (ii) this matrix is used to compute a hierarchical
tree, usually named guiding tree; (iii) finally, the bottom-up exploration of
this tree is used to select the pair of sequences (or a previously aligned subset
of sequences) to align. All published progressive algorithm alter or refine one
or more of these steps (Lee et al. (2002), Edgar (2004), Do et al. (2005),
Katah et al. (2005)). Recently, Vescovo et al. (2005) has undertaken a study
to estimate the impact of selecting other guiding structure, using alterna-
tive algorithms and parameters (e.g. neighbor-joining, hierarchical tree build
using different aggregation criteria...), on the resulting alignment. Indeed,
until now we have little knowledge about the effect of this tree on the final
alignment.

Progressive alignments methods also differ in the way they compute each
pairwise alignments within steps (i) and (iii). Some of them use global align-
ments (e.g. ClustalW, Thompson (1994)) in which sequences are aligned on
their whole length. Others use local alignments (e.g. PIMA, Smith and Smith
(1992)) in which only subsequences are optimally aligned. Recently a third
way, usually called mixed, has been investigated that combined both global
and local alignments (e.g. M-Align, Van Walle et al. (2004)). This new ap-
proach seems to achieve better results using standard benchmark databases
(see Van Walle (2004)). Hereafter we will describe a new mixed progres-
sive alignment algorithm that uses pyramidal clustering as a key component
(Vescovo et al. (2004)).

This new method introduces some modifications in step (ii) and (iii) of the
progressive strategy described above. In step (ii) the modification is straight-
forward. The guiding tree, usually computed using the neighbor-joining al-
gorithm (Saitou and Nei (1987)) is replaced by a pyramid computed using
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the CAP algorithm (Bertrand (1990)). The key idea is to use the overlapping
properties of the pyramids to select the best alignment method (i.e global or
local) in the step (iii). The principle of this algorithm is discussed with the
example of sequences extracted from Thompson et al. (1994). The guiding
structure is given in figure 3. Indeed, it makes sense to use local alignments
when two set of sequences share a common pattern. This is precisely de-
scribed by a cluster with a non empty intersection between its successors (cf.
step 4 in figure 3). On the other hand, one can expect that successors with
an empty intersection (cf. successors of step 5 in figure 3) don’t reveal any
shared pattern. In the latter case we would use global methods to align both
sets of sequences. Moreover, the so-called local steps, such as step 4 in figure
3, require some adjustments in the definition of the two sets of sequences that
are locally aligned. Basically, we have to deal with sequences that are present
in each set, such as HBB HUMAN in our example. We advocate to remove shared
sequences from the largest set and to perform a local alignment. To preserve
the key role of these shared sequences we also increase their weights, in the
alignment procedure, to a significant extent.

Fig. 3. This figure depicts a pyramid used as the guiding structure of a mixed
progressive multiple sequence alignment algorithm. Labels on the right side of the
figure are the swiss-prot accession numbers of the set of protein sequences to align.
The pyramid is iteratively pruned by computing the consensus of the closest pair
of sequences/consensus, according to the dissimilarity index (the steps numbers are
indicated on each cluster). Solid lines indicate that the pair of sequences/consensus
are aligned using a global method (steps 1, 2, 3, 5, 6, 9), whereas dashed lines
indicate that sequences/consensus are aligned using a local algorithm (steps 4, 7,
8, 10).

We have successfully applied this new algorithm to the alignment of 11 ho-
mologous sequences from Saccharomyces cerevisae (see figure 4). All of them
have been gathered in the same group using the genome scale analysis ap-
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proach described in Codani et al. (1999) and previously explained. Querying
the PFAM database (Bateman et al. (2004)), one can established that they
have three domains in common: Exo endo phos (exonuclease-endonuclease-
phosphatase family) depicted as black box on figure 4; LRR (Leucine Rich
Repeat) as striped box; PP2C (Protein Phosphatase 2C ) as grey box. But
only YAL021C and YJL005W are composed of two distinct domains, respec-
tively (Exo endo phos, LRR) and (LRR, P2C). Thus, a good multiple sequence
alignment algorithm should not overlap these domains. To highlight the ben-
efits of our strategy we have performed a comparison between three different
softwares: ClustalW (Thompson et al. (1994)) the most used program to per-
form multiple sequence alignments that implements a global strategy; DiAlign
(Morgenstern et al. (1996)) the standard local strategy method; PyrAlign
(Vescovo et al. (2004)) the pyramid based mixed strategy described above.

Fig. 4. This figure depicts the alignment of 11 sequences from Saccharomyces cere-
visae computed by ClustalW, DiAlign and PyrAlign. The three domains, indicated
within the box on the bottom of this figure, are used to benchmark these algorithms.
ClustalW fails to correctly identify the domains: PP2C domain is split into many
parts; LRR domain is not aligned across sequences; domains LRR and PP2C are
overlapping. DiAlign also fails to build a correct alignment, domains are stacked
and difficult to identify without supplementary knowledge. On the other hand,
PyrAlign clearly delineates the domains and thus produces a better alignment.

On figure 4, one can easily notice that both ClustalW and DiAlign failed
to split the three domains. Indeed, DiAlign stacks the Exo endo phos and P2C

domains whereas ClustalW stacks all of them. PyrAlign is the only algorithm
that clearly separate the domains, even if some of them are split in several
parts such as P2C. Obviously all these programs fail to keep domains as
continuous sequences of amino acids. For example ClustalW adds a lot of
insertions within the P2C domain. DiAlign produces the same artifact when
aligning the LRR domain. In one way, PyrAlign almost succeeds in keeping



Mining Biological Data Using Pyramids 403

domains as single blocks, but is less effective in delineating their borders
(e.g. the left side of the Exo endo phos domain). We can also argue that
PyrAlign splits several domains, but domain borders are fuzzy and heavily
depend on the underlying algorithmic used to inferred them. For instance
the P2C domain depicted on gene YBR125C is defined as a single block in the
PFAM database and as three blocks in the Panther database (Paul et al.
(2003)). This example demonstrates the efficiency of the PyrAlign algorithm
and its pyramidal guiding structure. However, due to the highest number
of clusters in pyramids, this method has to compute more alignments than
the others. Consequently the complexity of this algorithm is higher than any
other progressive method. This could be an issue if one wants to compute
multiple alignments of large sets of sequences.

3 Transcriptomic data

In the mid 90’s, the DNA chip technology (Schena et al.(1995)) made a
breakthrough in analyzing gene expression on a genomic scale (i.e. the tran-
scriptom). It allowed to quantify the activity of hundred of thousands of
genes under various conditions of given cell extracts. Nowadays, after many
improvements, DNA chips are daily used by biologists around the world. As
a consequence, large amounts of data have been produced by this technol-
ogy. For instance, the GEO database already collected millions of expression
profiles for over 100 organisms, submitted by over 600 researchers (Barrett et
al. (2005)). A drawback of this technology is that measures are usually very
noisy. Therefore, exhibiting significant variations is a challenging task (see
(Speed (2003)) for details). Once these genes detected, one usually search for
delineating co-expressed sets of genes. In this context, numerous clustering
methods have been used (Eisen et al. (1998)). In this section we will detail
the advantages of using pyramids to analyze DNA chips.

Our motivations were to investigate the partial order, induced by the pyra-
midal clustering, to delineate co-expressed and co-localized genes in prokary-
otes. Indeed, such a set of genes, called operon, is regulated by the same pro-
moter and transcribed as single mRNA transcript. Because of their unique
operon structure, prokaryotes offer an additional feature to decipher the
global regulatory network under various conditions (e.g. oxidative stress, in-
activation of transcription factors...). Unfortunately, automatic discovery of
operons from the genome sequence is a difficult task and no universal method
has emerged yet. Thus, new approaches forged on the integration of other use-
ful informations, such as gene expression data, have been tried (Sabatti et
al (2002)). In the latter, authors have used a Bayesian classification scheme
to predict whether the genes are in an operon or not. Since genes in operons
are transcribed at the same level, Carpentier et al. (2004) have used this
property to benchmark several micro-array clustering methods on their ca-
pability to gather such genes. In this section we will show that pyramidal
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classification is a very efficient method to discover sets of genes that are po-
tentially transcribed as operon. Furthermore, pyramid graphs allow to easily
identify co-expressed operon neighbors, providing a helpful tool to decipher
regulatory mechanisms.

As part of the 2003-2006 French Nuclear Toxicology program (ToxNuc)
we have been involved in the study of the effects of cadmium on several organ-
isms. Cadmium and several cadmium-containing compounds are known car-
cinogens and can induce many types of cancer. This metal is used in many in-
dustrial processes such as metal plating and the production of nickel-cadmium
batteries, pigments, plastics and other synthetics. Among the several organ-
isms studied in this project, we focused our work on the cyanobacteria Syne-
chocystis. Synechocystis is a unicellular non-nitrogen-fixing cyanobacterium
and an inhabitant of fresh water. This organism has been one of the most
popular organisms for genetic and physiological studies of photosynthesis.
Our role in this project was to elucidate the molecular mechanisms involved
in the cell response to cadmium toxicity. The transcriptom approach, using
DNA chips, was used to characterize the kinetics of global changes in Syne-
chocystis gene expression in response to continuous exposure to cadmium.
Having processed all micro-arrays, we applied a linear model to exhibit sig-
nificantly regulated genes. Then, we used a non-stringent p-value threshold
(p < 10−2), thus selecting ≈ 800 genes (i.e. the fourth of the entire genome).
Finally a mixed hierarchical-pyramidal classification algorithm was designed
to compare gene expression profiles based on their correlation. As a result
we obtained a set of pyramids. The figure 5 is an excerpt of one of these
pyramids that we will discuss hereafter.

Now we are able to check the ability of pyramidal clustering to efficiently
report and predict operon genes. On figure 5 we have surrounded with grey
box genes that are co-expressed and co-localized according to the pyramid.
In addition we have checked that all genes of the same predicted operon
are on the same DNA strain and oriented in the same direction. The first
operon concerns genes involved in the motility of the cell. These proteins
seem to be involved in bacteria fibrous proteins. These proteins are actually
an operon (Yoshimura et al.(2002)) even if the gene slr2018 is not anno-
tated as a pilin-like protein. Furthermore these genes aren’t neighbors within
a hierarchy computed on the whole set of selected genes (data not shown).
The second set of genes, predicted as an operon by the pyramid structure,
reveal the efficiency of the method. On the figure we have manually anno-
tated this operon as “hypothetical protein” because all corresponding genes
have unknown functions according to Cyanobase (the cyanobacteria knowl-
edge reference database). But mining other databases such as KEGG and
the literature show that these genes are involved in the pilus assembly and
required for mobility. Thus additionally to the fact that the method correctly
predicts operon structures, it also gathers related operons. One more thing,
the gene sll1694 just below this operon is a known regulator of the pilus
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Fig. 5. This figure is an excerpt of the pyramidal classification of gene expression
profiles from the cyanobacteria Synechocystis. Rounded boxes gather co-expressed
and co-localized genes. These sets correspond to potential operons. Each of them
is manually annotated using the Cyanobase database.

structure (Yoshihara et al.(2001)). Again this new element proved the accu-
racy of this approach. On the other hand slr1274 has been missed, but one
has to remember that these data are very noisy. The last predicted operon
correctly gathered genes that are involved in the carbon dioxide concentrat-
ing mechanism. In this particular case our conclusions are motivated only by
the similarity of genes annotations. Again, one gene sll1031 is missing in
this putative operon, for the same reasons as discussed previously.

In this section we have demonstrated the meaningful contribution of pyra-
midal clustering to the transcriptomic data analysis. This method should be
considered with great interest for integrative approach of biological data anal-
ysis.

4 Discussion

In this article, we have shown the relevance of the pyramidal classification
for biological data analysis. We illustrated this point through three different
applications on genomic and post-genomic data. The first example discussed
genome scale sequence analysis. It settled out the significance of clusters
overlaps in deciphering links between families of proteins, thus improving se-
quences annotation. In the second example we used pyramids to specify a
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new algorithm for computing multiple alignment of sequences. This method
implements a mixed progressive approach that is very promising compared
to standard algorithms. The last example is about transcriptomic data clus-
tering using pyramidal classification. Here we demonstrate the potential of
the partial order, induced by the pyramid, to identify operons.

Thus, perspectives of using pyramids for the analysis of biological data
are very encouraging. Besides the examples given in this article, there are
still many fields, in biology, to investigate using pyramids. But some issues,
like the poor readability of pyramidal graphs, complicate its adoption by
researchers. This may be solved by both improving the mathematical frame-
work (Bertrand and Janowitz (2002)), and developping new suitable visu-
alization systems. Finally, we will have to overcome minds for considering
overlapping.

However, the pyramid concept is largely adopted by the biologists commu-
nity. Indeed, MEDLINE, the life science bibliographic information repository,
already indexes more than 500 articles with the word pyramid found in the
title. Futhermore, it is interesting to notice that one of the main systems
biology article is titled Life’s complexity pyramid (Oltvai and Barabasi
(2002)).
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Abstract. The association rule mining problem is among the most popular data
mining techniques. Association rules, whose significance is measured via quality
indices, have been intensively studied for binary data. In this paper, we deal with
association rules in the framework of categorical or tree-like-valued attributes.

1 Introduction

The association rule mining problem is among the most popular data mining
techniques (Agrawal et al. (1993), Pasquier et al. (2000)). An association rule
(AR) is an implication U → V that captures a certain relationship between
binary attributes. In this paper, we deal with association rules in the frame-
work of categorical or tree-like-valued attributes, using a meet-semilattice
structure. We recall that a meet-semilattice is a poset that any two of whose
elements have a greatest lower bound or ”meet”.

The paper is organized as follows:
Section 2 introduces AR and PQM in the context of characteristic functions
lattice. Section 3 presents a way to define AR and PQM in a meet-semilattice.
Section 4 an 5 respectively gives a language to represent categorical and
tree data in a meet-semilattice structure. The paper is closed with a short
conclusion and brief discussion about mining AR algorithms.

2 Association rules on binary data

2.1 The lattice of itemsets

Let U be a boolean map that represents a binary attribute, or a itemset that
is a conjunction of binary attributes defined on a set of objects O. U takes
its value in the domain B = {T,F}. The domain B is linearly ordered by
T < F. We will consider U as a characteristic function of a subset U ′ of
O, U : O −→ B. Let P(O) be the set of all subsets of O, and BO the set
of all characteristic functions, we will use the mapping ′ : BO −→ P(O) to
express that U ∈ BO is the characteristic function of the subset U ′ = U−1(T)
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(the ”extension” of U). The set of all characteristic functions has a structure
of boolean lattice

B = (BO;<,∨,∧,1,0, )

isomorphic to the boolean lattice P(O). For all o ∈ O:

• U ≤ V ⇐⇒ U(o) ≤ V (o).
• W = U ∨ V ⇐⇒ W (o) = U(o) ∨ V (o). We have W (o) = T only if

U(o) = T and V (o) = T. It means concerning the extensions that

(U ∨ V )′ = U ′ ∩ V ′. (1)

• W = U ∧ V ⇐⇒ W (o) = U(o) ∧ V (o). W (o) = T only if U(o) = T or
V (o) = T then (U ∧ V )′ = U ′ ∪ V ′.

• The smallest element of B is 0, the characteristic function of O i.e. ∀o ∈
O,0(o) = T.

• We denote by U the characteristic function complementary to U i.e.
U(o) = T ⇐⇒ U(o) = F and clearly 0 = U ∧ U.

An association rule (AR) is an ordered pair (U, V ) of itemsets denoted
U → V. A rule quality measure is needed to capture relevant and interesting
AR from the numerous number of potential candidates. We will be con-
cerned with the so-called ”Probabilistic Quality Measure” (PQM) (Diatta et
al. (2007)).

2.2 Probabilistic quality measures

Let U → V an AR where U and V are itemsets. A quality measure is a
real-valued function µ defined on B × B. We will write µ(U → V ). A quality
measure µ will be said to be probabilistic if it can be entirely expressed in
terms of the probabilities P (U ′), P (V ′) and P (U ′ ∩ V ′). All these probabil-
ities can be computed from the contingency table KU×V (Table 1) defined
from nU = |U ′|, nV = |V ′|, nUV = |U ′ ∩ V ′| et n = |O|. Some well-known
probabilistic quality measures are given below:

• The support: supp(U → V ) = |(U∨V )′|
|0′| = |U ′∩V ′|

|O| = P (U ′, V ′)

• The confidence: conf(U → V ) = |(U∨V )′|
|U ′| = |U ′∩V ′|

|U ′| = P (V ′|U ′)

• The MGK quality measure. The properties (i) and (ii) of the next remark
may help to understand the definition of the PQM MGK . Remark : Let
U and V be two itemsets. Then, the following properties hold.

(i) If U favors V , then 0 < P (V ′|U ′) − P (V ′) ≤ 1 − P (V ′).
(ii) If U disfavors V , then −P (V ′) ≤ P (V ′|U ′) − P (V ′) < 0.
(iii) “U disfavors V ” is equivalent to “U favors V ”; indeed

1 − P (V ′) < 1 − P (V ′|U ′) if and only if P (V ′) < P (V ′|U ′).
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Table 1. Contingency table KUV

V �V V V

U nUV = |U ′ ∩ V ′| nUV = |U ′ ∩ V
′
| nU

U nUV = |U
′
∩ V ′| nUV = |U

′
∩ V

′
| nU

nV nV n

Definition 1. The quality measure MGK is defined by

MGK(U → V ) =






P (V ′|U ′)−P (V ′)
1−P (V ′) , if U favors V

or U and V are independent

P (V ′|U ′)−P (V ′)
P (V ′) , if U disfavors V

or U and V are independent

It is easy to check that MGK is a non symmetric PQM. Moreover, MGK

satisfies the three Piatetsky-Shapiro principles (Fayyad et al. (1996)). For
more details, one can see (Diatta et al. (2007)). Now, we will define AR and
PQM to categorical and tree data. For this task, we will consider meet-lattice
structure.

3 Association rules on a meet-semilattice description
context

Let T the objects description space and a map δ : O −→ T which associates
every element o ∈ O with its description δ(o) ∈ T . We will notice that only
the operator ∩ is used in the contingency table (Table 1) to compute a PQM.
It means that only the structure of meet-semilattice (P(O);<,∩) may be
considered for AR and PQM. This remark motivates us to consider a space
of description T having a structure of meet-semilattice. More precisely, we
have

Proposition 1. Let O be a set of objects and δ ∈ T O a description func-
tion. (T ;<,∧) is a meet-semilattice, and define the map χ : T −→ BO that
associates to each u ∈ T the characteristic function U = χ(u) of the subset
U ′ = {o ∈ O|u ≤ δ(o)}, then

1. The map χ is a morphism between the semilattices (T ;<,∧) and
(BO;<,∨) such that:

χ(u ∧ v) = χ(u) ∨ χ(v). (2)

2. The map ′ ◦ χ is a meet-preserving homomorphism between the meet-
semilattices (T ;<,∧) and (P(O);⊂,∩) such that:

χ(u ∧ v)′ = χ(u)′ ∩ χ(v)′. (3)



412 H. Ralambondrainy and J. Diatta

Proof. We are going first to prove (3) before (2)
Observing that U ′ = {o ∈ O|u ≤ δ(o)} = U−1(T), we have

o ∈ U ′ = χ(u)′ ⇐⇒ U(o) = T ⇐⇒ u ≤ δ(o).

By definition χ(u ∧ v)′ = {o ∈ O|u ∧ v ≤ δ(o)}, since u ≤ u ∧ v and
v ≤ u∧ v, for each o ∈ χ(u∧ v)′, we have (3) χ(u∧ v)′ = χ(u)′ ∩ χ(v)′ holds.
u ≤ δ(o) and v ≤ δ(o), i.e. o ∈ χ(u)′ and o ∈ χ(v)′ then o ∈ χ(u)′ ∩ χ(v)′

and χ(u ∧ v)′ ⊂ χ(u)′ ∩ χ(v)′. Reciprocally, if o ∈ χ(u)′ ∩ χ(v)′, we have
u ≤ δ(o)} and v ≤ δ(o) and u ∧ v ≤ δ(o) then o ∈ χ(u ∧ v)′, and (3)
χ(u ∧ v)′ = χ(u)′ ∩ χ(v)′ holds.

The equality (1) (U ∨ V )′ = U ′ ∩ V ′ is also written (χ(u) ∨ χ(v))′ =
χ(u)′∩χ(v)′ then from (3) it follows χ(u∧v)′ = (χ(u)∨χ(v))′ ⇐⇒ χ(u∧v) =
χ(u) ∨ χ(v) (2) �

For (u, v) ∈ T 2, we then identify a association rule u → v, as the asso-
ciation rule U = χ(u) → V = χ(v). The set of itemsets is T to which is
associated the binary itemsets: M = {U = χ(u)|u ∈ T } ⊂ B. The quality
measure of µ(u −→ v) is µ(U −→ V ). A PQM can be computed for any AR
defined on T from the following indices

nU = |U ′| = |χ(u)′|, nV = |V ′| = |χ(v)′|, n = |O|.

and
nUV = |U ′ ∩ V ′| = |χ(u)′ ∩ χ(v)′| = |χ(u ∧ v)′|.

One important issue of the previous result is the following: it is not nec-
essary to compute a binary context to find AR when the description space is
a meet-semilattice. The research space for itemsets will be T and not the set
of binary itemsets M.

4 Association ules on categorical data

4.1 Representation of categorical data

An attribute Aq is said categorical, if its domain dom(Aq) is a finite set of
values. For example, the question ”The Hot-Line (HL) service is ...” may be
represented with a categorical attribute which domain is the following items
{”No satisfactory”, ”Satisfactory”, ”Very satisfactory”,”No answer”}. The
modality ”No answer” may mean two things: the asked person did not give
a response (the answer is ”unknown”) or the question has no sense because
the asked person has not called the Hot-Line. To take into account these two
possibilities we will denote by

• ”∗” an ”unknown value”, it also means that all the values are allowed
• ”⊥” an ”impossible value”, when an answer has no sense. If necessary,

this value may be added to the domain of an attribute.

r
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Yes           No                  No satisfactory    Satisfactory          Very satisfactory           

* *
Hot Line Call Hot Line Satisfactory

Fig. 1. Meet-semilattices on multivalued attributes.

The unknown value ”∗ ” will be included to the domain of each categorical
attribute: Dq = dom(Aq)∪{∗}. More precisely, each domain of any categorical
attribute will be structured as a meet-semilattice Tq by considering dom(Aq)
as an antichain and ∗ as the smallest element of Dq (Figure 1)

Tq = (Dq;<,∧, ∗).

The categorical data set is the description of the objects O with a set of
categorical attributes (Aq, Tq) for q ∈ Q. Typically the data set that contains
the answers of a poll conducted among a set of people is a good example of
categorical data set. The objects description space is

T = ΠqTq

which has a meet-semilattice structure as the product of the meet-semilattices
Tq. The description function is denoted δ : O −→ T then

δ(o) =< A1 : w1, . . . , Aq : wq, . . . , Ap : wp >∈ T

where wq ∈ Tq. An example of entity description is the following:

δ(Jones) =< sex : ”M”, Region : ∗, HLCall : ”no”, HLSatisfaction : ⊥ >

For worth reading, we will not mention in a description, unknown values. For
example, the previous description is written:

δ(Jones) =< sex : ”M”, HLCall : ”no”, HLSatisfaction : ⊥ >

Let u =< A1 : u1, . . . , Ap : up >∈ T and δ(o) =< A1 : w1, . . . , Ap : wp >.
We will give the expression of the characteristic function U = χ(u). Denote
by (Aq : uq) the characteristic function related to < Aq : uq >:

(Aq : uq) = χ(< Aq : uq >)

that is such as: (Aq : uq)(o) = T ⇐⇒ uq ≤ wq.
We have U(o) = T ⇐⇒ u ≤ δ(o) ⇐⇒ uq ≤ wq for q = 1, . . . , p, then it is
obvious that

U = (A1 : u1) ∧ . . . ∧ (Ap : up)
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Fig. 2. A specimen of coral from Pocilloporidae family.

where ∧ is ”the logical and”. An association rule

u =< A1 : u1, . . . , Ap : up >→ v =< A1 : v1, . . . , Ap : vp >

will be also written

U = (A1 : u1) ∧ . . . ∧ (Ap : up) → V = (A1 : v1) ∧ . . . ∧ (Ap : vp)

where U = χ(u) and V = χ(v). An example of AR on categorical data is
given below:

(sex : ”F”)∧(age : ”Old”) → (HLCall : ”Many”)∧(HLSatisfaction : ”No”)

5 Association rules on tree data

5.1 Representation of tree data

Many fields of real world applications, like biosystematics, deal with highly
structured objects. For example, the Iterative Knowledge Base System (IKBS)
(Conruyt et al. (1997)) has been design to extract knowledge from complex
databases such as set of corals or sponges families. The Figure (2) displays a
partial description of a specimen coral from the Pocilloporidae family.

We can notice its tree structure, missing components related to micro
structure corallite, and some unknown values (”?”). To take into account all
these features, we need to define a new type of attribute called ”structured
attribute”, in contrast to categorical attributes that will be qualified as ”sim-
ple”. We assume that the domain of any attribute simple includes ”unknown
value” (∗) and ”impossible value” (⊥).
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Definition 2. Let (Aj , Dj), for j ∈ J, a set of simple attributes. A structured
(or tuple) attribute tuple is a sequence

A :< A1, . . . , Aq, . . . , Ap >

where Aq is a simple or structured attribute.

The domain D = dom(A) of A is a set of structured values defined by induc-
tion, as following:

• If the type of Aq is simple, for wq ∈ Dq then Aq : wq ∈ D
• Let A1, . . . , Ap a set of simple or structured attributes.

If A1 : w1 ∈ D, . . . , Ap : wp ∈ D then A :< A1 : w1, . . . , Ap : wp >∈ D
and is called ”structured value”.

Structured objects will be described using a tuple attribute
A :< A1, . . . , Ap > called data descriptive model (or schema in data base
theory) and a map δ : O −→ D such as

δ(o) =< A1 : w1, . . . , Aq : wq, . . . , Ap : wp >∈ D

with : wq ∈ Dq. The description δ may be graphically represented with a
tree, where edges are the names of the attributes and the values of simple
attributes are the leaves.

For example, the descriptive model of the Pocilloporidae family is the
following tuple attribute

Pocilloporidae :< identification, context, description >

where identification, context are simple attributes and description is a tuple
attribute:

description :< colony,macro− structure,micro− structure, ... >

A partial description of the entity ”case1” is given below as illustration:

δ(case1) =< . . . ,
micro− structure :< corallites :< size : 1, on− verrucae : ⊥, . . . >>,

. . . >

5.2 The meet-semilattice of tree data

The following proposition shows how to define a meet-semilattice on tree
data.

Proposition 2. Let A :< A1, . . . , Ap > a tuple attribute. If each domain of
the simple attributes Aj of A have a meet-semilattice structure Tj then the
domain of A is meet-semilattice T
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The proof is easy by induction. Let A :< A1 : v1, . . . , Ap : vp > and A :<
A1 : w1, . . . , Ap : wp >∈ D two structured values, the following properties
hold.

• If Aj is a simple attribute, then in Tj , we have:

– Aj : vj < Aj : wj ⇐⇒ vj < wj

– < Aj : vj) ∧ (Aj : wj) = Aj : vj ∧ wj

• If A1, . . . , Ap are simple attributes or structured attributes then
– A :< A1 : v1, . . . , Ap : vp > < A :< A1 : w1, . . . , Ap : wp >

⇐⇒ vj < wj pour j = 1 . . . p
– A :< A1 : v1, . . . , Ap : vp > ∧ A :< A1 : w1, . . . , Ap : wp >

= A :< A1 : v1 ∧w1, . . . , Ap : vp ∧ wp >

In the meet-semilattice T , RA can be defined and their significance mea-
sured with PQM.

An example of AR on corals from Pocilloporidae family is:

(description :< colony :< general− aspect : branching >>)
∧

(description :< macro− structure :< branches :< layout : free >>)
→

(micro− structure :< corallites :< on− verrucae : ⊥ >>>)

6 Conclusion

In this paper, we have dealt with association rules, mining with probabilis-
tic quality measures, in the framework of categorical or tree-like-valued at-
tributes. AR and PQM have been reformulated in the context of the lattice
of characteristic functions. Then, we have shown how AR and PQM can be
defined on a meet-semilattice. From this point of view, a way to structure
categorical and tree data in a meet-semilattice has been introduced.

Next work will concern in developing algorithms to discover AR from cat-
egorical and tree data. Several approach has been proposed to extract AR
from binary data sets. The A-priori (Agrawal and Srikant (1994)) or Close
(Pasquier et al. (2000)) algorithm discovers relevant rules using support and
confidence PQM constraints. Close extracts more efficiently frequent itemsets
(itemsets which support are at least equal to user given minimum threshold)
for AR using a Galois connection. As a huge number of redondeous rules
may be extracted, methods for generating bases (Zaki and Ogihara (1998))
for association rules has been developed. A base is a minimal set of AR from
which all rules, valid from a given quality measure, can be generated. When
the objects description space has a meet-semilattice structure, the problem
of discovering association rules and bases, will be addressed from theoreti-
cal results related to meet-semilattice: Galois connection (Brito (1994)) and
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conceptual weak hierarchy (Diatta and Ralambondrainy (2002)), multiway
clustering (Diatta (2006), Diatta (2007)).
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Abstract. Induction graphs, which are a generalization of decision trees, have a
special place among the methods of Data Mining. Indeed, they generate lattice
graphs instead of trees. They perform well, are capable of handling data in large
volumes, are relatively easy for a non-specialist to interpret, and are applicable
without restriction on data of any type (qualitative, quantitative). The explosion
of softwares based on the paradigm of decision trees and more generally induction
graphs is a rather strong evidence of their success. In this article, we present a
complete method of induction graphs; the method SIPINA.

1 Introduction

In numerous domains such as Medicine, Sociology, Psychology, Meteorology,
... the specialists seek to predict a phenomenon. For this they use other phe-
nomena which are easily accessible and supposed to be related to the phe-
nomenon they aim to predict. In toxicology for example, the doctor attempts
to identify the toxic agent absorbed by a patient in the coma by examin-
ing clinical-biological symptoms. He may wish to make available a prediction
model that could help doctors to identify better and faster the cause of an in-
toxication at a patient. The objective of a modeling by induction graphs is to
build a prediction model linking an attribute to be predicted, the toxic agent
absorbed by the patient for example, to the explanatory attributes: pulse,
temperature, state of consciousness, etc. Many approaches have been pro-
posed so far. The nature (quantitative and/or qualitative) of the attributes
used defines the choice of the mathematical framework in which one will place
oneself. For example, if all attributes are quantitative, we can consider the
techniques which are based on the linear algebra like the methods of linear re-
gression or of discriminant analysis, whose detailed presentation can be found
in various books such as Auray et al. (1991), Devijver and Kittler (1982) or
Duda and Hart (1973). When the attributes are heterogeneous (certain are
quantitative while others are qualitative) the decision trees such as CART
(Breiman et al. (1984)) or with ID3 (Quinlan (1986)) and C4.5 (Quinlan
(1993)) constitute suitable tool. The induction graphs generalize the decision
tree concepts. All decision trees as well as induction graphs are based on very
simple algorithms which lead to structures (tree or lattice) where each node
corresponds to a subpopulation of individuals and where each branch corre-
sponds to a value of a selected predictive attribute among all the others. The
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selection of the predictive attributes is based on a mathematical criterion.
These selection criteria are based on information theory such as the entropy
measures or statistic like the Chi-square.

The origin of research on induction graphs, certain authors, like Terrenoire
(1970) and Tounissoux (1980), have based their research on Wald (1947) and
Picard’s works (1965). But the first algorithms which have led to decision
trees as a particular structure of induction graphs, could be found in Morgan
and Sonquist (1963). To select the attributes, these authors have used a sta-
tistical criterion. The consideration of a criterion resulting from information
theory, to select the best attributes, has been proposed in the works of Picard
(1965) and Terrenoire (1970). It is toward the end of the seventies that Quin-
lan (1986) began his work on the induction trees by publishing algorithm
ID3. We have to mention that this algorithm was known and already used by
Tounissoux (1974) and Routhier (1978). Some other approaches have been
proposed among them we can mention the works of Ciampi et al. (1988).

The applications of induction graphs in the domains such as the diagnostic
in medicine, sociology, marketing or archeology appeared at the begining of
the seventies (Bertier and Bouroche (1981), Bouroche and Tenenhaus (1970),
Laumon (1979), Ciampi (1989)).

In an induction graph, each path corresponds to a rule expressed in the
form : If conditionA then conclusionB . The conditionA represents a disjunc-
tion of a set of conjunctions. A conjunction is a set of logical propositions of
type attribute X=valuey. The whole number of rules constitute the prediction
model, thus the rules are generally expressed in the formalism of the logic of
propositions.

2 Framework and notations

Let Ω be a population of individuals or objects concerned with the problem
of the prediction. To the members of this population is associated a particular
attribute C, called class attribute. The determination of the forecast model
φ is related to the assumption according to which the values taken by the
statistical variable C are not due randomly but to particular situations that
one can characterize. For that, the expert of the application domain draws
up a list of statistical variables a priori called the exogenous variables which
one notes X = (X1, X2, . . . , Xp). The exogenous variables take their values
on a representation space Σ that does not have any particular mathematical
structure.

X : Ω �−→ Σ (1)

ω �−→ X(ω) = (X1(ω), X2(ω), . . . , Xp(ω))

The objective is to seek a forecasting model φ such as, for an individual
ω ∈ Ω for which we do not know the class C(ω) but of which we know the state
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of all the exogenous variables X(ω), we can predict his class of membership
by means of φ. We expect to get for a large number of individuals of Ω:

φ(X(ω)) = C(ω) (2)

3 Principle of induction graphs

The algorithm proposed by Zighed (1985), Zighed et al. (1992), Zighed and
Rakotomalala (2000) we are going to describe, provides a set of successive
partitions built on a learning sample Ωl. These partitions are not necessarily
hierarchical, but represent a lattice graph which acyclic. The construction
algorithm is an heuristic which builds a succession of partitions by means of
two operations : fusion and splitting. These operations are carried out on the
terminal nodes of the induction graph. The terminal nodes define a partition
on Ωl. The objective of the algorithm of induction graphs is to optimize
a criterion which evaluates the quality of the partition thus induced. This
criterion will be defined later on.

In Figure 1, the main steps of construction are illustrated. Let us look at
this graph as if it were a final result without being concerned with the details
on how we exactly obtained it. We see that in the last partition we have 2

Fig. 1. Lattice graph.

relatively contrasted terminal nodes. In s7 we have 4 individuals out of 5 who
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belong to the class c1, whereas in s8 we have 9 individuals out of 10 who are
in the class c2. While following these two operations of splitting and fusion,
we managed to build a partition in which almost all individuals of the same
class are grouped in the same node. The process stops because none of the
operations (splitting or fusion) generates a better partition. Provided that
our sample is the representative of the original population, we can derive the
prediction rules, R1 and R2, which are of the form :

If condition Then conclusion (coef.)

where condition is a logical expression composed of disjunction of con-
junctions, and conclusion the majority class in the node described by the
condition.

From the graph shown in Figure 1, we can naturally derive the two pre-
diction rules that follow :

R1 : (X1 = 1 ∧X2 = 1)
∨ (X1 = 1 ∧X2 = 2 ∧X3 = 1)
∨ (X1 = 2 ∧X3 = 1) ⇒ C = c2(0.9)

(3)

R2 : (X1 = 1 ∧X2 = 2 ∧X3 = 2)
∨ (X1 = 2 ∧X3 = 2) ⇒ C = c1(0.8)

(4)

A coefficient (coef.) is generally associated to a rule. It reflects the degree
of relevance of the rule. The proposed indicator is generally the proportion
of individuals of the learning sample or the test sample associated to the
majority class, but it could be any statistical coefficient such as τ of Goodman
for example.

For instance, in the node s8, the value of coef is 9/10 = 0.9. That means
that, 90% of the individuals of the learning sample verifying the condition
of the rule, belong to the c2 class. We hope naturally that such an assertion
remains true for the general population.

4 Quality measure of partitions in the induction graph

Any partition S of the learning sample Ωl, is perfectly described by a contin-
gency table of m rows (m > 1) that correspond to classes ci(i = 1 . . . ,m) and
K columns (K > 0) that correspond to its nodes sk(k = 1, . . . ,K). K = 1
means that all the individuals are in the same element (root node). In the
example of Figure 1, the table T2 associated to the partition S2 is given by a
contingency table :

We recall some notations and properties related to contingency tables.

• nij ≥ 0 the size of population of the class ci which is found at the node
sj

• ni. the total number of individuals belonging to the class ci; ni. =
∑K

j=1 nij



Induction Graphs 423

Classes (Rows) x Nodes (Col.) s2 s3 s4

c1 2 0 3
c2 3 5 2

Total per column 5 5 5

Table 1. Contingency table associated with the partition s2 of Figure 1.

• n.j the total number of individuals belonging to the node sj ; n.j =∑m
i=1 nij

• n size of the whole sample n =
∑m,K

i,j nij

In the process of construction of induction graph, we have found, in an
iterative manner, a succession of partitions. We pass from the partition St to
St+1 if we improve the value of the criterion.

In other words, our criterion enables us to compare two partitions. Since
to each partition St we associate a contingency table Ts with m rows and
K columns, the criterion I that we seek to build must be a function of the
contingency table Ts and takes its values in R+ :

I :
∞⋃

k=1

Rmk �−→ R+ (5)

∀T ∈
∞⋃

k=1

Rmk �−→ I(T ) ∈ R+

Let S be a partition of Ω characterized by its contingency table T . The
criterion I will have to verify the following properties:

• Property 1 - Minimality : The criterion I shall become minimal if in
each node sk of the partition S, all individuals belong to same class, i.e.

∀j ∈ {1, . . . ,K}∃i ∈ {1, . . . ,m} : nij > 0 and ∀q 
= i;nqj = 0.

On each column there is only one non null value.
• Property 2 - Maximality : The criterion I shall become maximal

if in each node sj of the partition S, all classes have same number of
individuals.

∀j ∈ {1, . . . ,K}∀(i, q) ∈ {1, . . . ,m}2;nij = nqj .

It also means that all values of each column are equal.
• Property 3 - Sensitivity to the size of the sample : If we increase the

size of the sample, for instance by multiplying the elements of contingency
table T by a factor α > 1, the value of the criterion I should decrease.
For a given contingency table T relative to a partition S,

∀α > 1; I(αT ) ≤ I(T )
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• Property 4 - Symmetry : For a given contingency table T , all per-
mutations σ among the columns of T have no effect on the value of the
criterion: I(Tσ) = I(T ). This constraint must be valid also for rows, i.e.
all permutations δ among the rows of T have no effect on the value of
the criterion : I(Tδ) = I(T ).

• Property 5 - Fusion : If, among all columns of T , there exist two
columns u and v which have the same probability distribution over the
classes, then to merge these columns should lead to decrease of the value
of the criterion. More formally, let’s note by Tj the column j of the con-
tingency table (distribution of the classes on the node sj). The criterion
I(T ) may be written as I(T1, . . . , Tj, . . . , TK). For a given contingency ta-
ble T = (T1, . . . , Tj , . . . , TK) we require: if ∃u, v ∈ {1, . . . ,K} and α > 0
such that : Tu = αTv then

I(T1, . . . , Tu, . . . , Tv, . . . , TK) ≥ I(T1, . . . , Tu + Tv, . . . , TK) (6)

This property enables us to reduce the complexity, number of nodes of
the final partition, by merging nodes. this is the process which leads to
a lattice structure.

• Property 6 - Independence :
If we merge nodes which corresponds to adding the two respective columns
in the contingency table, or if we create two columns by a split of one
node, the change in the criterion must depend only on the merged columns
or on the new nodes resulting from the segmentation.

I(T1, . . . , Tu, . . . , Tv, . . . , TK) − I(T1, . . . , Tu + Tv, . . . , TK) = f(Tu, Tv)
(7)

On the basis of these six properties, we have built a family of evalua-
tion criteria for a partition. The new criteria are derived from the classical
measures of entropy such as the Shannons entropy or the Gini index.

Let’s consider the parameter λ fixed by the user at a positive value. All
following criteria check the six required properties.

• Criterion based on Shannon’s entropy :

I(S) =

K∑

j=1

n.j

n

(
−

m∑

i=1

nij + λ

n.j+mλ
log2

nij + λ

n.j+mλ

)
(8)

• Criterion based on Gini’s Index :

I(S) =
K∑

j=1

n.j

n

(
m∑

i=1

nij + λ

n.j+mλ

(
1 − nij + λ

n.j+mλ

))
(9)
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Many other similar functions may be built on the basis of the entropy
measures.

The parameter λ > 0 controls the development of the graph and penalizes
the nodes of weak size and so supports fusions between similar nodes. Many
strategies could be adopted to fix it. The user may for instance fix this value
arbitrarily , say 2. We have proposed an other more constructive procedure
(cf. Zighed and Rakotomala (2000)).

5 The method SIPINA

5.1 Taking into account continuous attributes

There are many strategies for taking into account the continuous variables
in the construction process of induction graphs. In the section below, we
describe a very simple technique.

Let us consider the case where we wish to generate a partition from a
node, say the root s0 to simplify, using the continuous variable Xj . The only
manner for reaching that point is to transform it into a discrete variable.
Since all individuals of the learning sample Ωl are in the root, the set of the
values taken by the variable Xj is X−1

j (Ωl) = {xj1, . . . , xjαj}.
If we consider all these observed values on an axis, we note δjk the center

of interval which has the boundaries xjk and xj,k+1

δjk =
xj,k+1 − xj,k

2
(10)

We define αj − 1 medi-points in this way. Each one of them defines a
bipartition of Ωl that permits to transform the continuous variable Xj in an
another binary variable X ′

j in the following manner :

X ′
j(ω) = { 1 if Xj(ω) ≤ δjk

2 if Xj(ω) > δjk
(11)

Thus, each bipartition defines two subpopulations Ωk
1 = {ω ∈ Ωl :

Xj(ω) ≤ δjk} and Ωk
2 = {ω ∈ Ωl : Xj(ω) > δjk}, from which we can form a

contingency table that shall serve to calculate the value of the criterion I.
The point of ”optimal” discretization shall be the value δjk which leads

to the minimum value of the criterion I. This point is sequentially searched
among the all the possible values δjk; k = 1, . . . , αj − 1.

5.2 How to go from the partition Si to the partition Si+1

The Segmentation (Splitting) and the Fusion (Merging) of nodes will be the
basic operations for building an induction graph. The algorithm aims there-
fore to seek, by mean of the two previous operations, the successive partitions
such that at each iteration the uncertainty gain is maximized.
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If we proceed systematically at splittings, we would take the risk of having
a tree structure which might lead us to a too large number of nodes in the
partition. More over, each node would have few individuals for being relevant
from statistical point of view.

For this reason, we favor the merging. If no fusion enables us to obtain
a new better partition, we proceed by fusion immediately followed by a seg-
mentation.

Let’s consider the example given by the Figure 2

Fig. 2. Current partition.

The partition Si has three nodes {s1, s2, s3}. Let’s assume that we have
three binary exogenous variables X1, X2, X3.

The passage of the partition Si to partition Si+1 is carried out in three
steps :

• Step 1- Passage by Fusion :

On the example shown on Figure 3, one can note that from the parti-
tion Si and by grouping pairs of nodes we can produce three different
partitions :

– S1
i+1 = {s3, s1 ∪ s2} which gives an uncertainty gain of ∆(S1

i+1)

– S2
i+1 = {s1, s2 ∪ s3} which gives an uncertainty gain of ∆(S2

i+1)

– S3
i+1 = {s2, s1 ∪ s3} which gives an uncertainty gain of ∆(S3

i+1)

We denote by S∗
i+1 the partition with:

∆I(S∗
i+1) = max

j=1,...,3
∆(Sj

i+1) (12)

If the uncertainty gain is positive then Si+1 = S∗
i+1. The algorithm can

then go back to the step 1 for generating one new partition. We will detail
a bit more the general algorithm later; otherwise, i.e. if the uncertainty
gain isn’t positive (∆(Sj

i+1) ≤ 0) then, one goes to step 2. Let’s note, by
the way, that the fusion is always carried out on a pair of nodes as shown
in the Fig3
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Fig. 3. Fusion.

• Step 2 - Passage by Fusion / Segmentation : Like in the step 1,
we carry out all groupings between each pair of nodes. As shown on the
Figure 4, we obtain three possibilities. On each node resulting from a
merge, we look for the best variable Xj that leads, by segmentation, to
the best partition which has the highest positive uncertainty gain. For
example, on the same Figure, with three variables, we produce for each
node, three partitions; That provides us nine partitions in all shown in
the Figures 4.

Then, among all the acceptable partitions, we will retain the one that
leads to the positive highest value of uncertainty gain. Afterward, we can
go back to step 1 to seek a new partition. If no partition resulting from
this process has a positive value of uncertainty gain, then we will go at
step 3.

• Step - 3 Passage from Si to Si+1 by segmentation :

On each terminal node Si, we seek, by segmentation with all variables
Xj , the best admissible partition. On the example shown by the Figure 5,
with three variables, we derive, from each terminal node, three partitions,
associated respectively to the three variables as indicated in the Fig5.

Then, among all acceptable partitions, we will retain the one that has the
highest positive value of uncertainty gain. Afterward, we can go back to
step 1 to seek a new partition. If no partition resulting from this process
has a positive value of uncertainty gain, then the algorithm stops and
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Fig. 4. Fusion followed by segmentation.

Fig. 5. Segmentation.
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that means that, among the possible operations described above, none
can improve the criterion.

6 Conclusion

Method SIPINA belongs to the family of the methods largely exploited in the
field of Data Mining. It provides a methodological framework which enables
to generalize the concept of decision tree. It tries to bring rigorous answers
to the concepts of minimal size of the nodes, of size of the tree, sensitivity to
the size of the population. Let us say that SIPINA exploits the data much
better than the other tree methods do and carries out some kind of pre-
pruning. Even if a tree structure is simpler to read for a user, the graphs
remain nevertheless an easy access. In book by Zighed and Rakotomalala
(2000) we listed the totality of the methods containing graphs of induction
and we provided many comparison tests among methods. We refer the reader
to this book which exists unfortunately only in French for the moment.
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Abstract. In this paper, we present the results of an experimental study to analyze
the effect of various similarity (or distance) measures on the clustering quality of a
set of molecules. We mainly focused on the clustering approaches able to directly
deal with the 2D representation of the molecules (i.e., graphs). In such a context,
we found that it seems relevant to use an approach based on asymmetrical measures
of similarity. Our experiments are carried out on a dataset coming from the High
Throughput Screening HTS domain.

1 Context

The discovery or the synthesis of molecules that activate or inhibit some
biological systems is a central issue for biological research and health care.
The High Throughput Screening (HTS) of a chemical library is a systematic
approach to deal with this problem that has been used since twenty years by
the pharmaceutical industry and more recently by academic researchers.

The objective of HTS is to rapidly evaluate, through automated ap-
proaches, the activity of a given collection of molecules on a given biolog-
ical target that can be an enzyme or a whole cell. In practice, the results
of a HTS test allow to highlight some tens of active molecules, named the
”hits”, representing a very small percentage of the initial collection. Indeed,
the size of this collection, in academic laboratories, is typically between 103

and 106 molecules. However, these tests are just the beginning of the work
since the identified molecules generally do not have some good characteristics
in terms of sensitivity and specificity (a relevant molecule must by specific to
the biological target and should be efficient with a small concentration). In
addition, the results of HTS tests contain relatively high rates of false pos-
itives (molecules wrongly selected) and false negatives (molecules wrongly
rejected).

In such a context, it is crucial to provide the chemists with some tools to
explore the contents of the chemical libraries and especially to make easier
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the search for molecules that are structurally similar to the hits. A possible
approach, given a relevant distance, is to seek the nearest neighbors of those
hits. More broadly, chemists have a need for methods to automatically orga-
nize the collections of molecules in order to locate the active molecules within
the chemical space. Above all, they would like to evaluate the real diversity
of the chemical structures contained in a collection (this aspect is meaningful
to decide the purchase of a set of molecules: the higher the diversity is, the
smaller the collection to buy is). For all these constraints, the size of the
collections makes manual approaches unfeasible.

Clustering methods (Berkhin (2002)) are well suited to carry out this
type of task. However, with structurally complex objects such as molecules,
it is obvious that the quality of the results depends on the capacity of the
distance used by the clustering method to grasp the structural likeness and
dissimilarities. Thus, in this article, we give an experimental study of the
behavior of some classical structural distances proposed for the problem of
molecule clustering. The outline of this paper is the following: in Section 2,
we will present the distances we want to compare. In Section 3, we will detail
the experimental material as well as the methodology employed to evaluate
the clustering results. Finally, the results of our experiment will be described
and commented in Section 4.

2 State of the art

2.1 Distances between molecules

The evaluation of a distance between two objects such as molecules (and
more generally graphs) is a complex problem insofar as it requires, directly
or indirectly, the search for partial isomorphic graphs. However, this difficulty
can be overcome by using some alternative representations. For example, we
can linearize the molecule as in the language SMILE of Weininger (1988)
or, in an even more drastic way, we can turn the molecule into a collection
of set of fragments (molecule subset), chosen by the system (Chemaxon)
or specified by a set of criteria as in MolFea (Helma et al. (2003)). In the
latter, the compounds can be represented by a vector of structural descriptors
(named ”structural keys”), each descriptor corresponding to one fragment of
the molecule.

More recently, in the context of the Support Vector Machines, several
kernel functions (comparable to distances) were proposed to deal with graph
structures. These approaches obtain good performances in supervised learn-
ing to predict the activity of a molecule (Mahé et al. (2005)). Gartner et al.
(2003) proposes a survey about the kernels that can be used with different
kinds of structured representation and it is interesting to check if these ker-
nels are directly usable within the framework of molecules clustering. Among
recent works, we can also mention the marginalized kernels developed by
Kashima et al. (2003) and extended by Mahé et al. (2004). In all of these
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approaches, the molecule representation is carried out globally by building
an explicit or implicit collection of paths (linear fragments of the molecule)
selected by the user or randomly drawn. The multiplication of the paths
ensures a good sampling of the molecular structures.

However, it is also possible to assess the distance between molecules in a
more dynamic way according to the actual possible matching between a given
pair of molecules A and B (or graphs). Here, the idea is first to evaluate the
quality of the local mapping between each pair of atoms in A and B and
second, to find the best global matching. Such approach has been proposed
by Frölich et al. (2005) who developed a kernel named ”optimal matching”
in order to predict the molecules activity on HTS tests. In the same way, we
propose here an index, named Ipi, based on a close strategy (Wieczorek et
al. (2006)), even though our motivations are different.

In the rest of the current section, we introduce the kernel function and
how to derive a distance from them. First, we describe two kernels using a
linear representation of the molecules, namely the Tanimoto kernel and the
extension of the marginalized kernel. Then, we describe the optimal matching
kernel and the Ipi index.

2.2 Kernel function and distance

Kernel functions are the basis of machine learning methods such as Sup-
port Vector Machines (SVMs). These functions map a set of objects from
their input space (the space in which the objects are described) to a higher
dimensional space, the so-called feature space F , where the inner prod-
uct between the images of the objects is evaluated. To do so, one consid-
ers the set X = x1, ..., xn of n objects and the feature map φ defined by:
Φ : x ∈ X �→ Φ(x) ∈ F . A kernel is a function k such that for all (x, y) ∈ X2

that satisfies: k(x, y) = 〈φ(x), φ(y)〉 where 〈..., ...〉 is the inner product. One
can derive the Euclidean distance between φ(x) and φ(y) in the feature space
as follows:

‖φ(x) − φ(y)‖2 = φ(x).φ(y) − 2φ(x).φ(y) + φ(x).φ(y)
= k(x, x) − 2k(x, y) + k(y, y)

2.3 Tanimoto kernel

The Tanimoto kernel (Ralaivola et al. 2005) counts and compares walks in
the underlying graphs. The idea is to represent each graph by a vector where
each position is a boolean indicating the presence or not of a possible walk
(a sequence of atoms) in the graph. Given two graphs x and y, the kernel
kd(x, y) counts the number of common walks between x and y (i.e the number
of bits simultaneously equal to 1). The Tanimoto kernel kt

d is defined as:

kt
d(x, y) =

kd(x, y)

kd(x, x) + kd(y, y) − kd(x, y)
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The only parameter to set is the maximum length of walks in the graphs.
In our experiments, we have set this value to 8 that is a classical value in
chemoinformatics. This measure is similar to the Jaccard index.

2.4 Extension of the marginalized kernel

In the marginalized kernel (Kashima et al. (2003)), or MG-kernel, descrip-
tors correspond to sequences randomly extracted from each molecule. Thus,
the molecules are implicitly described by a vector of sequences as in the
Tanimoto kernel, leading to some information loss when, for instance, some
physicochemical properties are known about the atoms (charge, etc.). The
marginalized kernel is defined as the sum of the similarities between all pairs
of sequences extracted from each molecule. Each of these similarities is given
by a kernel function, defined by the user: a simple definition consists in as-
signing a similarity of 1 if the sequences are equal and 0 if not.

We notice that Mahé et al. (2004) propose two extensions of this def-
inition. First, the introduction of the Morgan index (that gives an addi-
tional knowledge about the atoms) helps to discriminate the atoms accord-
ing to their environment. Second, in the new definition, the exploration of
the graphs avoids to take into account any vertices (atoms) that have been
previously visited; in this way, the extracted paths are more significant when
the molecules contain many rings. We will use these extensions (implemented
in the extMG-kernel) in our tests. This method has two main parameters:

• the number of iterations used to compute the Morgan index. We have used
the value of 3 which gives the best results in the classification experiment
in Mahé et al. (2004),

• the probability pq of the search termination for the walks in the graphs.
A value close to 1 (resp. close to 0) will generate short walks (resp. long
walks). In our experiment, we tested three values: 0.1, 0.5 and 0.9.

2.5 Optimal assignment kernel

The Optimal Matching kernel (OA-kernel), introduced by Frölich et al. (2005),
is based on a dynamic and local exploration of the molecular graphs. Contrary
to the Tanimoto kernel and, to some extend, to the extMG-kernel, the repre-
sentation language can take into account, in addition to the 2D structure, all
the physicochemical knowledge concerning the properties of the atoms and
their bonds. The kernel is computed in two steps that are conceptually close
to those proposed in Bisson (1995). During the first one, the system assesses
the value of the kernel knei between each pair of atoms in the two molecules.
Once the matrix knei has been calculated, the second step consists of finding
the best mapping between the atoms of molecules A and B in order to max-
imize the sum knei(ai, bj) over the atomsai and bj . This phase corresponds
to the search of the maximum weight matching in a bipartite graph.
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2.6 Structural similarity index Ipi

The index Ipi is based on the works of Bisson (1992), Bisson (1995) and
Wieczorek et al. (2006) concerning the calculus of similarities between two
any graphs. As in Frölich et al. (2005), the evaluation of the similarity relies
on two steps, a local and a global one, but with two differences.

Local similarities between atoms. This step aims to compute a local simi-
larity between each pair of atoms (ai, bj) belonging respectively to the mole-
cules A and B. The key idea is to consider that two atoms ai and bj are more
similar as they share common physicochemical properties, but also that the
neighboring atoms to which they are bound by covalent bonds are themselves
similar to each other. This recursive definition allows to express the problem
in the form of an equation system (the algorithm is detailed in Wieczorek
et al. (2006). During the resolution of this system, the structural similari-
ties and dissimilarities A and B are automatically taken into account. The
difference with the previously described approaches is that, here, we do not
compute one local similarity but two: the (asymmetrical) similarity of ai with
respect to bj and those of bj with respect to ai. The general motivation is
the following. Let us consider two molecules A and B whose sizes (in terms
of the number of atoms) are very different and such that A is included in
B (in a representation by graphs, that means that A is a subgraph of B).
From the point of view of A, the molecule B is very similar since it contains
the same information. It is obviously not the case for B. In the context of
a classical symmetrical similarity, the similarity between A and B should be
mainly influenced by their difference of size. In our approach, using the mean
of both inclusion values (those of A in B and vice versa) leads to a more
realistic similarity allowing to break this size bias and to focus deeper on the
existence of common substructures.

Global similarities between molecules. The goal of this step is to compute
a global inclusion between two molecules A and B, denoted Ipi(A,B). For
that, we search, for each of the two inclusion matrices previously built (the
one taking the atoms of A as reference and the other taking the atoms of
B), a matching that maximizes the global inclusion. However again, we do
not use the method of Frölich et al. (2005) because it leads to increase er-
roneously the value of inclusion between the molecules. Indeed, during the
evaluation of the local inclusions, the values obtained between each pair of
atoms (ai, bj) correspond to an optimum matching from a local point of view.
Thus, the maximum weight matching can lead to choosing a set of matching
decisions between atoms that are globally pairwise exclusive (see Subsection
4.1). Therefore, our search of the best matching is based on an heuristic par-
allel exploration of the two molecular graphs, guided by the similarity values
between the atoms. That leads to identify the greatest common substructure
between A and B. Finally, as we said earlier, the global similarity between
the two molecules is then the mean of Ipi(A,B) and Ipi(B,A).
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3 Experimental material and methodology

3.1 Chemical libraries

Two different chemical datasets have been used in the tests. They come from
Sutherland et al. (2003) and contain the 2D structure of molecules and the
main physicochemical properties of the atoms (using the SDF format). Those
bases present the benefit of being already divided into well-defined chemical
families, based on the molecular structures. The Cox2 library contains a
set of 467 molecules tested as inhibitors of the cyclo-oxygenase-2, divided
into 13 families and the Dhfr library contains a set of 756 inhibitors of the
dihydrofolate reductase, divided into 18 families.

3.2 Representation of the molecules

In the clustering, the quality of the discovered classes depends first on the
significance of the features selected to represent the data and second on the
adequacy between this representation and the current problem. The goal of
this study is to carry out a clustering of molecules into chemical families based
on the 2D structural properties of the molecules rather than on the interaction
properties (for example, the topological distance between pharmacophores
points).

The representation used is identical to those used in Frölich et al. (2005):
one considers each molecule as a labeled graph whose nodes and edges cor-
respond respectively to the atoms and the bonds; each atom is described by
ten structural properties. In the case of the Tanimoto kernel and the extMG-
kernel, the descriptions, in the form of walks in the graphs, are automatically
collected by the methods.

3.3 Clustering methods

Many attempts have been done to use kernels in clustering algorithms and
more generally to the domain of unsupervised learning. The main idea con-
sists of mapping the instances in the feature space by means of kernels (func-
tions) and to search clusters in this space. Ben-Hur et al. (2001) has modified
the SVM algorithm to realize the clustering task by means of a Gaussian ker-
nel. Another approach, proposed by Dhillon and Guan (2004), consists to use
the k-means algorithm directly in the feature space. This is done by turning
the Euclidean distance (usually used by k-means) to the distance between
two objects in the feature space (i.e. the distance calculated from the kernel).

As for the latter, we have combined kernels (or similarity for Ipi) described
in Section 3 with two standard clustering algorithms: the well-known Hierar-
chical Ascendant Classification (Berkhin (2002)) and Jarvis-Patrick (Jarvis
and Patrick (1973)). The latter is largely used in chemoinformatics where it
is the basis of commercial tools for clustering of molecules. Both methods
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need to adjust different parameters. As it is not a priori possible to identify
the values leading to the best clustering, we have tested several combinations
within ranges of values for each parameter.

3.4 Evaluation of the clustering

As emphasized in Candellier et al. (2006), it is difficult to evaluate the quality
of clustering results without any validation criteria. That is fortunately not
the case here since we know, for each dataset, the number of families (classes)
that must be found by the system as well as the extensional description of
these classes. We can then evaluate the results provided by the different dis-
tances and methods by measuring the difference between the original clusters
and the learnt ones. The result of a categorization may be represented quan-
titatively in the form of a confusion matrix (Figure 1).

In this matrix, where the Ci represent the original classes and Lj the
classes learnt by the system, each value ni,j represent the number of molecules
that are simultaneously present in the classes Ci and Lj. There is a perfect
match between the clustering when this matrix contains only one non-zero
value for each line and each column.

A simple way to quantify the quality of a clustering is then to evalu-
ate the mean of conditional entropies, which are associated to the lines and
the columns of the matrix. It is necessary to distinguish between lines and
columns since they contain different informations, as illustrated by Figure 1).

Fig. 1. Confusion matrix to evaluate a clustering.

In the case of the class Cm, the categorization built by the system is not
incorrect: this class has just been split in two new classes Lu and Lv, what
is not open to criticism. However, in the case of Lw, the problem is quite
different because the initial classes Co and Cn have been merged. Thus, we
have to consider two measures: the Confusion Index (CI) that quantifies the
number of merged classes and the Segmentation Index (SI) which quantifies
the number of split classes.
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4 Experimental results

4.1 Evaluations on the basis of the CI and SI indexes

We experimentally observe that there is a clear consensus between the two
clustering methods as for the quality of the clustering induced by the different
distances. In other words, the qualitative ranking between the distances is
independent of the tested algorithms. Thus, we only present here the results
obtained with the Hierarchical Ascendant Classification. Figure 2 shows the
evolution of the indexes CI and SI for the two datasets Cox2 and Dhfr. The
ranking between the distances obtained with the 2 datasets is the following:
Ipi, Tanimoto kernel, OA-kernel and extMG-kernel. The advantage of Ipi is
clear for Dhfr, at least for a few number of classes, but less for Cox2. However,
in the latter, the confusion index CI becomes quickly low for both distances,
indicating that the classification agrees with the one provided by the experts.
In both tests, the CI and SI values of OA-kernel and extMG-kernel are always
worst, OA-kernel being significantly better than extMG-kernel.

This ranking is interesting for two reasons. First, the good behavior of
Tanimoto is surprising since it has been compared with new methods, well-
suited to deal with graphs. Second, from the knowledge representation, there
are two categories: both Tanimoto kernel and extMG-kernel represent the
molecules by means of walks in the graphs contrary to OA-kernel and Ipi
that take into account the whole structure of the graphs. When looking at
the result, it seems that these representational bias is not determining since
both Ipi and Tanimoto obtain similar scores. In fact, there is another point
that could explain the current ranking.

Both extMG-kernel and OA-kernel only consider the similarities between
atoms, bonds and more globally between molecules: it is a purely symmetri-
cal measure. In Ipi, we have explained that the measure is a function of two
asymmetrical indexes. For the Tanimoto kernel, the numerator corresponds
to the common walks to the molecules A and B and the denominator corre-
sponds to the sum of the walks present in one molecule but not in the other
and vice versa. So, we retrieve here a notion of asymmetrical measure. Then,
we could suggest that, independently of the representation of molecules, the
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Fig. 2. Indexes SI and CI for the 4 distances used with the HAC on the datasets
Cox2 and Dhfr. The vertical line marks the original number of chemical families.
The distance calculated from the extMG-kernel is made with pq = 0.1 which gives
the best results among the three values 0.1, 0.5, 0.9.

introduction of asymmetrical measures in the distance is very helpful to ob-
tain some good clustering. Indeed, as discussed in Subsection 2.6, such kind
of distance is less influenced by the difference of size of the molecules.

This hypothesis is confirmed by another experimental study (not de-
scribed here) between OA-kernel and our measure Ipi. By replacing in our
method the asymmetrical index by a symmetrical one, the behavior of the
OA-kernel and Ipi becomes very close, Ipi remaining a little bit better. The
two measures becomes quite identical, if we replace also the search of an
optimal matching between the atoms by the maximum weighted matching
calculus. Thus, the relevant factors seem to be the asymetrical aspect of the
measure, and in some extend the better matching.
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4.2 Quality of the classes learnt

By looking at the evolution of the values of CI and SI, it is quite difficult
to have a reliable idea of the quality of the classes that have been built by
the different approaches. For a given number of classes, one can represent CI
(resp. SI) by a histogram showing the way the classes learnt (resp. the initial
classes) organize the original classes (resp. the classes learnt).

Fig. 3. Distribution of the initial families of molecules in the clusters learnt by the
clustering algorithms.

Figure 3 shows this representation for the distances Ipi and Tanimoto for
the expected number of families. Thus, each bar of the histogram represents
the size of a class learned, and the color(s) correspond to the different families
defined by the chemists (A, B, C, etc.). Ideally (for IC = 0), one should have
only bars with one color. In the case of Cox2, the distance Ipi is able to
retrieve most of the classes, the problems being restricted to the classes G,
H, I, J which have very similar structures. Some classes such as B are split in
several subclasses (2, 3, 4) that correspond to a clustering of the radicals (i.e.
peripheral fragments), which are fixed on the general scaffold (the skeleton)
of the family. Comparatively, the results obtained with the Tanimoto kernel
are slightly worst with the emergence of the miscellaneous class 7 of great size
(54 molecules). We can see also that the competencies of the two distances
are a bit different: Ipi retrieves correctly the class D and Tanimoto retrieves
the class J. In the case of Dhfr, one observes that the initial families are
more fragmented, but in the case of Ipi, the families that have been retrieved



Clustering of Molecules 443

correspond always in majority to one of the initial families. This result is
good in the sense that i) as we said in the introduction, there is not a priori
any universal distance and ii) the information used to compute the distances
are principally extracted from a 2D structural representation of molecules.

Finally, we realized some experiments (not detailed here) in which the
distance used to categorize is the mean of Ipi and Tanimoto. With Cox2 and
Dhfr, the results are always quite better that with each distance separately,
what tends to suggest that the two distances catch different informations.

5 Conclusion

The analysis of the experimental results of High Throughput Screening (HTS)
is a complex task. Thus, the chemists are eager of automatic methods of
clustering that could put the light on structural analogs of hits and to evaluate
the chemical diversity of their libraries. In this article, we have experimentally
studied four distances (or index) on two well-known chemical datasets in order
to evaluate the capacity of the algorithms to retrieve the families of molecules
defined by the chemists.

The relatively disappointing results obtained with extMG-kernel and OA-
kernel seems to indicate that the distances having some good performances
in the supervised case are not always applicable with classical clustering algo-
rithms. Moreover, by comparing the definition of the different distances, we
have shown that the distance measures based on asymmetrical comparisons
lead to better results than the one based on a plain symmetric definition.

It should be interesting to complete this study with the work that uses
the SVM clustering methods, among others: (Finley and Joachims (2005),
Ben-Hur et al. (2001)).

In this work, in spite of the simplicity of the approach, the good result of
the Tanimoto kernel are somewhat surprising, since it is clearly less complete
than the Ipi index. However, the latter present the advantage to take into
account easier all the knowledge about the molecules and it is not necessary
to manually choose the size of the structural keys to use. One still has to
confirm with other data the good results obtained with Cox2 and Dhfr.

References

BEN-HUR, A., HORN, D., SIEGELMANN, H.T. and VAPNIK, V. (2001): Support
vector clustering. Journal of Machine Learning Research, vol 2, 125-137.

BISSON, G. (1992): Learning in FOL with a similarity measure. In: Proceedings of
10th AAAI Conference. San-Jose, 82–87.

BISSON, G. (1995): Why and how to define a similarity measure for object-based
representation systems. In: Proceedings of 2nd Int. Conf. on Building and Shar-
ing Very Large-scale Knowledge Bases (KBKS). IOS press, 236–246.

BERKHIN, P. (2002): Survey of Clustering Data Mining Techniques. Tech. rep., Ac-
crue Software, San Jose, CA. http://citeseer.nj.nec.com/berkhin02survey.html.



444 S. Aci et al.

CANDELLIER, L., TELLIER, I., TORRE, F. and BOUSQUET, O. (2006): Cas-
cade evaluation of clustering algorithms, In: Proceedings of ECML. Berlin, 574–
581.

CHEMAXON. http://www.chemaxon.com/
DHILLON, I.S. and GUAN, Y. (2004): Kernel k-means, spectral clustering and

normalized cuts, In: Proceedings of KDD. Seattle, 551–556.
FINLEY, T. and JOACHIMS, T. (2005): Supervised clustering with support vector

machines, In: Proceedings of ICML. Bonn, 217–224.
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Abstract. The set of Euclidean distance matrices has a well-known representation
as a convex cone. The problems of representing the group averages of K distance
matrices are discussed, but not fully resolved, in the context of SMACOF, Gen-
eralized Orthogonal Procrustes Analysis and Individual Differences Scaling. The
polar (or dual) cone representation, corresponding to inner-products around a cen-
troid, is also discussed. Some new characterisations of distance cones in terms of
circumhyperspheres are presented.

1 Introduction

An n×n matrix D = {d2
ij} of squared Euclidean distances is symmetric, with

zero diagonal and m =
(
n
2

)
essentially different non-negative off-diagonal val-

ues and hence may be represented by a point with coordinates d = vec(D)
in m-dimensional Euclidean space. D denotes the set of all such m-vectors
d. Here, vec denotes stringing out the subdiagonal values of D as a vec-
tor. It is well known that D forms a convex cone. Writing N = 11′/n, the
centered distance matrix B = − 1

2 (I − N)D(I − N) is symmetric with zero
row-sums, and is positive semi-definite (p.s.d.) (Schoenberg (1935)). Thus, B
is a member of B, a sub-cone of the convex cone of all p.s.d. matrices; this
result is sometimes stated as −D is p.s.d. on x′1 = 0. Because B has zero
row and column sums, B also has dimensionality m, a property that allows
the coordinates b = vec(B) to be represented, without loss of information,
by only the m elements below the diagonal, with a corresponding redefinition
of B. B consists of all the vectors making an obtuse angle with everything
in D, and conversely, so that the smallest angle between b ∈ B and d ∈ D
is 90 degrees. This representation has been found useful for demonstrating
some basic least-squares properties of minimising Sstress in multidimensional
scaling (Critchley (1980)) and in developing MDS algorithms (Haydn et al.
(1991)), whose terminology of referring to EDMs (Euclidean Distance Ma-
trices) we adopt. Recently, Dattorro (2006) has given a masterly account of
the properties of convex squared-distance cones. One line of development ex-
presses the cone of EDMs as the intersection of two simpler convex cones,
e.g. the cone of matrices p.s.d. on x′1 = 0 and the cone of symmetric ma-
trices with zero diagonal. Then, efficient algorithms such as that of Dykstra
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(1983) may be used to find the best EDM D that approximates any observed
symmetric ∆. Similarly, Critchley (1980) noted that D is characterized by
the properties (i) that δ − d ∈ B, where δ = vec(∆) and (ii) d′(δ − d) = 0.
However, if, as is usual, one is interested in r-dimensional (r small) approx-
imations, we encounter difficulties because r-dimensional EDMs, although
occurring as extremal rays of D, do not themselves form a convex cone.

We shall not explore approximation here but shall be concerned with
some problems arising from the simultaneous representation of K EDMs,
D1,D2, . . . ,DK . The analysis of K EDMs is common in statistics where each
Dk is modeled as a simple function of a common matrix D, i.e. Dk = fk(D)
k = 1, 2, . . . ,K. The precise forms of the functions and of D vary among
statistical methods but the central idea is that there is some group-average,
represented by D, to which each Dk is simply related. It would be interesting
to know the location in the cones D and B of the group average relative to
the K EDMs. The methods which we examine are (i) SMACOF (Heiser and
De Leeuw (1979)) (ii) Generalised Procrustes Analysis (e.g. Gower and Dijk-
sterhuis (2005)) and Individual Differences Scaling, INDSCAL (Carroll and
Chang (1972)). All these methods are well-established with supporting soft-
ware. Computation of the group-averages pertaining to the different methods
is not a major difficulty but our hope is that their cone representations may
give further insight into the properties of such methods. Thus, this paper is
concerned with the positioning of the group-average in D and B; we shall see,
the problem is far from trivial and much remains to be done.

Not only are EDMs, with their cones D and B, important but also con-
figurations of n points that generate the EDMs. Thus, any decomposition
B = XX′ gives a matrix X whose rows generate the distances comprising the
elements of D. Of course, X is determined only up to an arbitrary orthogonal
transformation. How then can these configuration matrices be fitted into the
cone representations? Using the singular value decomposition X = UΣV′,
we note that the orthogonal transformation Y = XVU′ = UΣU′ is symmet-
ric and, because singular values are non-negative, Y is p.s.d.. Furthermore,
because B is centred, so is Y. Thus Y is a member of B. It follows that any
centred configuration matrix X may be represented uniquely in the same cone
B as its inner-product XX′. Indeed because XX′ = UΣ2U′ and Y = UΣU′

the points representing these matrices in B are different weighted sums of
the same elementary inner-product matrices uru

′
r, represented by points Ur

(r = 1, 2, . . . , R), say, where R is the dimensionality of X. Being of deficient
rank, these points are necessarily on the surface of the cone, whose interior
only contains full rank matrices. The geometry is shown in Figure 1.

The linkage between the point D representing an EDM D in D and its
inner-product counterpart B, represented by B in B, is suggested in Figure 1.
The algebraic expression of the linear transformation b = Td and its inverse
d = Kt have been given by Critchley (1988) and Gower and Groenen (1991)
and it is not difficult to interpret them in terms of geometric orthogonal
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Fig. 1. The point D represents an EDM with inner-product matrix represented by
the point B. X represents the symmetricised configuration matrix that generates
B and hence D. B and X are different weighted sums of the same elementary
inner-product matrices represented by U1, U2, . . . , UR.

projections onto the direction 1, representing the unit ray of both cones, and
onto an n-dimensional subspace orthogonal to 1 that generates the symmetric
matrix D11′ + 11′D which may be recognized from the expansion −2B =
(I − N)D(I − N) = D − ND − DN + (1′D1/n)N. The term 1

2 (1′D1/n)
is the total sum-of-squares about their centroid of all configurations that
generate D, a quantity that is proportional to the length of the projection
of d onto 1. Apart from this simple representation, the remainder of the
geometry of projections does not seem to lend itself to elegance. Nevertheless,
corresponding to every set of points in B is another set of points in D which,
in principle, allows any geometry in the one space to be transformed into a
dual geometry on the other space.

2 Special cases

We now look at some of the detailed geometry of the statistical methods
under discussion.

2.1 SMACOF

Here, we present a variant of the method that minimises
∑K

k=1 ||Dk − D||2
which is, of course, given by D = 1

K

∑K
k=1(Dk). Actually, SMACOF (Scal-
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Fig. 2. SMACOF. The cone D of EDMs with its polar cone B of centred inner-
product matrices B. The EDM D is shown at the centroid of K EDMs. Also shown
on the surface of the cone is the nearest r-dimensional approximation Dr to D
together with the linkage of B to D.

ing by Majorizing a Complicated Function) operates on distances and not
squared distances but the mean of K matrices of (unsquared) distances is
not necessarily another distance matrix, implying that matrices of unsquared
distances do not define a convex cone. In terms of the EDM cone D, D is
simply at the centroid of the points representing the K matrices of squared
distances. This is probably the simplest representation of a group-average.
Of course, SMACOF, being an MDS method, is interested in r-dimensional
configurations X that approximate D where r is small. These can be found by
a variety of MDS algorithms; in the case of true SMACOF by using a majori-
sation algorithm to minimise the Stress criterion and in our variant by min-
imizing Sstress. Geometrically, this means finding the nearest r-dimensional
EDM to D and this lies on the surface of D. However, corresponding to the
group-averages in D there is a complementary set of points B1,B2, . . . ,BK

with their group-average in B. The geometry is shown in Figure 2.

2.2 Generalised Procrustes Analysis (GOPA)

Gower and Dijksterhuis (2005) discuss many variants of GPA but here we are
concerned with the most popular method, Generalised Orthogonal Procrustes
Analysis (GOPA) which is confined to orthogonal transformations Qk (k =
1, 2, . . . ,K), so preserving distances among the configurations. Specifically, we
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are given centred configurations Xk (k = 1, 2, . . . ,K), all assumed to have
the same number of columns, and we require to find the Qk (k = 1, 2, . . . ,K)
that minimize:

K∑

k=1

||XkQk − G||2 where G =
1

K

K∑

k=1

(XkQk) , the group average.

As explained above, every centered configuration may be regarded as a point
in B. However, the symmetricising orientations of the configurations given
by VU′ derived from the singular value decomposition are very unlikely to
coincide with those given by the optimal estimates of Qk derived by GOPA. If
the two orientations do coincide, G would be at the centroid as in SMACOF.
We are thus led to consider where the GOPA group average lies relative
to the individual configurations in the cones D and B. Every configuration
Xk defines a unique EDM Dk, so it would be interesting to know how the
EDM of the group average generated by the GOPA G relates to the centroid
derived from SMACOF. Because the symmetricised configurations of B are
not optimally oriented they are not likely to lead to anything useful. However,
they do have a centroid which is also a member of B. Is this configuration
and the EMD it generates of any interest?

A further property of GOPA is more encouraging. It is known that nec-
essary and sufficient conditions for the optimal GOPA fit is that G′XkQk

(k = 1, 2, . . . ,K) is symmetric and p.s.d. (see e.g. Gower and Dijksterhuis
(2005)). It follows that the matrices G′XkQk are members of B that do in-
corporate their optimal GOPA rotations; these points have a centroid G′G.
All these points have their complementary EDMs in D. Furthermore, the
residual sum-of-squares arising from the kth configuration is:

trace (X′
kXk + G′G − 2G′XkQk) .

It is usual to pre-scale the data so that trace(X′
kXk) = 1, so that the first

two terms are constant for all settings of k. The third term is the projection
of G′XkQk onto the unit ray, so giving a neat geometrical representation of
the residual sum-of-squares.

2.3 INDSCAL

This method defines a group-average configuration matrix X specified in
a few dimensions R that are weighted in such a way that X generates an
approximation to the individual centred inner product matrices Bk (k =
1, 2, . . . ,K). Specifically, we require that approximately:

Bk = XWkX
′

where each Wk is a diagonal matrix with positive elements. Usually, the
approximations are found by minimizing

∑K
k=1 ||Bk − XWkX

′||2 using an
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Fig. 3. The inner-product matrices B1,B2, . . . ,BK are different weighted means of
the elementary group-average inner-product matrices C1,C2, . . . , CR ; the group-
average B is itself an unweighted mean of these points. A similar geometry exists
in D but for simplicity is not shown in detail.

ALS algorithm called CANDECOMP (Carroll and Chang, 1972). So far as the
cone B is concerned, each column of X defines an elementary inner-product
matrix Cr = xrx

′
r represented by a point Cr (r = 1, 2, . . . ,R). Thus, each

Bk is at a weighted mean
∑R

r=1 wkrCr while unit weights generate a group-
average inner product matrix B = XX′. Figure 3 illustrates the geometry,
where dotted lines indicate the group-averageB. Similar lines may be thought
of as joining each Bk to C1,C2, . . . ,CK .

3 Other representations

In the above, we have concentrated on the relationship between D and B
defined by B = − 1

2 (I−N)D(I−N) or, equivalently, by B = − 1
2 (I−1s′)D(I−

s1′) where s = 1/n. It is this choice of s that ensures that the row and columns
sums of B are zero and that generating coordinates of X are centered at the
centroid. This choice also defines a linear transformation of D and ensures
that the cones D and B are orthogonal. Despite these nice properties it may
be worth considering other choices of s that give different centrings (Gower
(1982)). Of special interest is to choose s to centre at the circumcentre. Gower
(1985) showed that: for every EDM D, there exists a circumhypersphere iff
1′D−1 
= 0 given by s = D−1/(1′D−1). This has radius R2 = −(1′D−1)−1.
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Furthermore, if 1′D−1 = 0 there exists a g-circumhypersphere 0 given by
s = (D2)−1/(1′(D2)−1). This has radius R2 = (1′(D3)−1)/(1′(D2)−1)2.

Here, D− represents any g-inverse of D, and a g-circumhypersphere is one
whose radius minimizes the sum-of-squares of the differences between a sphere
and the actual, unequal, squared radii. Thus, we have three situations, (i) D
is non-singular, has a circumhypersphere, and, as usual lies in the interior of
the cone D, (ii) D is singular so lies on the exterior of D but 1′D−1 
= 0,
and so there continues to be a true circumhypersphere and (iii) 1′D−1 = 0
so D lies on the exterior of D and there is no circumhypersphere, although
there is a g-circumhypersphere. One may say that when 1′D−1 = 0, the
circumhypersphere has infinite radius, so that the generating coordinates lie
on a flat. An important property is that circumcentres are defined for all
points in the interior of D and for some points on extremal rays.

Substituting for s the transformation is found to have the particularly
simple form C = − 1

2D + R211′ but this does not represent a linear function
because R is the above-mentioned function of D. The dimensionality of C
remains m and, as with B, we may work with c = vec(C). Next, we show how
to recover the complete form of D, at least for interior points of D, from the
sub-diagonal elements, C0, of C. We know that C = − 1

2 (I − 1s′)D(I − s1′)
for some s = D−1/(1′D−1) and some unknown D, which we require to
construct. Thus, C = C0 +KI for some K equal to the unknown R2. Because
Cs = 0, it follows that C0s = −Ks and we may set K = −λ where λ is
the smallest (necessarily negative) eigenvalue of C0. Note that this setting
ensures that C is p.s.d., which it would not be if any other negative eigenvalue
were chosen. Having identified R2 we may construct C = C0 + R2I and
D = 2(R211′ − C) = 2{R2(11′ − I) − C0}.

The above shows that every C0 corresponds to a unique EDM D. To in-
crease understanding of this geometry, we investigate contours of constant R2

in D. A full study is not possible here and we content ourselves with examin-
ing the cross-section of D that contains the unit ray 1 and the fundamental
rank-2 EDM which consists of two sets of p and q (n = p + q) points coinci-
dent at points P and Q, say, respectively. We assume that P and Q are unit
distance apart, defining a vector r giving the squared distances (all equal to
unity or zero). Although D is only of rank-2, P and Q lie on a ‘circle’ centred
at their midpoint and so have a circumcircle with R2 = 1

4 . Other points λr on
the same ray will replace R2 by λR2. The unit ray 1 corresponds to an EDM
of a regular simplex and has R2 = (n− 1)/2n. Also, r has pq unit values so
that r′(r− 1) = 0, showing that r is the orthogonal projection of 1 onto the
ray through r. This is shown in Figure 4(a), which gives the basic geometry
of the cross-section of the EDM cone. We wish to find the circumradius of
any EDM in the plane defined by 1 and r. Writing D1 and D2 for the matrix
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forms of these EDMs, we have:

−2D = −2(λD1 + µD2) = λ(I − 11′) − µ

(
0 11′

11′ 0

)

=

(
λ(I − 11′) −(λ + µ)11′

−(λ + µ)11′ λ(I − 11′)

)

where the lengths of the vectors 1 are assumed defined by context and where,
without loss of generality, we have assumed that the p and q points are
labeled consecutively. After detailed algebraic manipulations we find that
the circumradius R2

λµ of (λD1 + µD2) is given by:

2R2
λµ = λ +

µ2pq − λ2

2µpq + nλ
= µ

(
λ

µ
+

pq − λ2/µ2

2pq + nλ/µ

)
.

The right-hand form is valid only when µ 
= 0, when it shows that for constant
λ/µ the value of R2 increases proportionally to µ. This result merely confirms
that R2 increases with µ as one proceeds along the ray defined by the ratio
λ/µ. When λ = 0 and µ = 1 we define r and correctly obtain R2 = 1

4 ; when
λ = 1 and µ = 0 we define 1 and correctly obtain R2 = n(n − 1)/2. When
2pq + nλ/µ = 0 the circumradius becomes infinite, so λ/µ = −2pq/n defines
the extremal ray other than r the cross-section under consideration, as is
shown in Figure 4(a).

We can derive the contours for constant R2 = 1
4 , other contours are easily

obtained by proportion. The values of p and q affect these contours. Generally
the contour is hyperbolic as is shown in Figure 4(d) for p = 2 and q = 6. One
branch of the hyperbola is outside the cone so is irrelevant. For emphasis we
have high-lighted the part of the relevant branch that is inside the cone. This
state of affairs is modified when p = 1 or p = q. When p = 1 the formula
simplifies to:

2R2
λµ =

(λ + µ)2(n− 1)

nλ + 2(n− 1)µ

which represents a parabola, shown in Figure 4(b) for p = 1 and q = 7. When
n is even and p = q, µp + λ is a common factor and provide this is not zero
we have:

2R2
λµ =

(2p− 1)λ + µp

2p

which represents a single straight line; the contours are then a set of parallel
lines which may be shown to be orthogonal to the unit ray; the extremal ray
µp+λ, R2

∞, provides a further, pathological, contour. This is shown in Figure
4(c) for p = q = 4.

Although Figure 4 is based on the case n = 8, the results are completely
general. Of course, different labeling of the n points will give different rays but
their geometry is identical. Also, different settings of p and q will change scales
but not the more fundamental geometry of hyperbolas, parabolas and pairs of



Group Average Representations in Euclidean Distance Cones 453

Fig. 4. Figure (a) shows the basic geometry of the cross-section of the EDM cone
containing the vectors r and 1. The remaining figures give contours of constant
circumradius R2 = 1

4
for various choices of p and q where p + q = n = 8. We

introduce m = n(n + 1)/2 = 28. The part of the contour in the EDM cone is
highlighted in grey. Figure (d) shows the usual hyperbolic contour found (here p = 2
and q = 6). Figures (b) and (c) show the special parabolic and linear solutions found
when p = 1 and p = q, respectively.

lines. These results confirm the complexity of the geometry of the EDM cone,
especially in the vicinity of the extremal rays. The formula C = − 1

2D+R211′

readily allows the contours in D to be transformed into contours in a space
C, analogous to the cone B. One merely has a reflection of an EDM 1

2D in
the origin, together with a translation R2 in the direction of the unit ray.
Unfortunately, R2 varies with D but it is constant along the contour for
constant R2, so scaled versions of the same contours persist. It seems that
although C, like B is part of the cone of p.s.d. matrices, it is not itself a cone.
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However, in the context of group average representations things are similar
to the representations in B. The main change is that configuration matrices
Xk first have to be centred at their circumcentre before being symmetricised
by rotating their singular value forms. There is then a special difficulty when
a circumcentre does not exist when the translation term becomes infinite.
This situation will be common when Xk is a data-matrix but not when Xk is
derived from similarities. The spaces C and D are not orthogonal and, indeed,
may intersect.
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Abstract. The weakly indexed paired-hierarchies (shortly, p-hierarchies) provide
a clustering model that allows overlapping clusters and extends the hierarchical
model. There exists a bijection between weakly indexed p-hierarchies and the so-
called paired-ultrametrics (shortly, p-ultrametrics), this correspondence being a re-
striction of the bijection between weakly indexed pyramids and Robinsonian dis-
similarities. This paper proposes a generalization of the well-known HAC clustering
method to compute a weakly indexed p-hierarchy from a given dissimilarity d. More-
over, the p-ultrametric associated to such a weakly indexed p-hierarchy is proved
to be lower-maximal for d and larger than the sub-dominant ultrametric of d.

1 Introduction

Clustering models do not generally allow overlapping clusters. The widely
used hierarchical clustering model is a typical example: if A and B are any two
clusters, then A∩B ∈ {φ,A,B}. Some clustering models have been developed
to allow overlapping clusters like weak-hierarchies (Bandelt and Dress (1989))
or pyramids (Diday (1969); Fichet (1986)) but they may produce a lot of
clusters. More precisely, a hierarchy has at most 2n − 1 clusters if n is the
number of objects, whereas a weak hierarchy or a pyramid may have at most
n(n + 1)/2 clusters. The p-hierarchies (Bertrand (2002)) can be seen as an
intermediary model. Indeed, they are a generalization of hierarchies and a
particularization of pyramids. They allow overlapping clusters, but admit at
most the integer part of 5(n− 1)/2 clusters.

This paper shows an algorithm that generalizes the HAC (Hierarchical
Agglomerative Clustering) algorithm in order to produce a p-hierarchy from
a given dissimilarity. Moreover, the dissimilarity associated to this p-hierarchy
is lower-maximal with respect to the original dissimilarity, generalizing the
relationship between the single-linkage algorithm and the sub-dominant ul-
trametric.

The rest of the text is organized as follows. We will first introduce most
of the definitions we will need, and define p-hierarchies and p-ultrametrics.
Then, after having characterized p-ultrametrics through a kind of intersection
graph, we will describe an algorithm which aim is to approximate a given
dissimilarity by a p-ultrametric. Finally, an example shows the differences
between the ultrametric sub-dominant and the computed p-ultrametric.
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2 Basic definitions and properties

In what follows, E will designate a finite ground set, and as usual, P(E) will
be the set of all subsets of E. A collection F on E will be defined as any subset
of P(E). To work with collections, we will implicitly endow each collection
with the inclusion order, thus maxF will denote the maximal elements of F
for the inclusion order. Moreover, F̂ will denote the closure under intersection
of F , and F will be said to be closed whenever F̂ = F . For all A ⊆ E, we
will set:

F ↓ A = {B ∈ F | B ⊆ A}.
A clustering system on E will designate any closed collection on E that

contains E and its singletons. This paper is concerned with a particular kind
of clustering systems on E called p-hierarchies. In order to define them, we
have to introduce some definitions and notations. Let A,B ∈ P(E). The set
A is said to be hierarchical with B if A∩B ∈ {φ,A,B}, and properly intersects
B (A ∩ B /∈ {φ,A,B}) otherwise. By extension, a collection F1 on E is said
to be hierarchical with another collection F2 on E if A is hierarchical with
B for all A ∈ F1 and all B ∈ F2. The set A is called hierarchical with a
collection F on E if {A} is hierarchical with F . Then, a collection F on E is
said to be hierarchical if F is hierarchical with itself. Moreover, a collection
F on E is called paired-hierarchical (shortly p-hierarchical) if each element of
F properly intersects at most one element of F (Bertrand (2002)).

Within this terminology, note that a hierarchy is any hierarchical cluster-
ing system. Similarly, a paired-hierarchy (shortly, p-hierarchy) is defined as
any p-hierarchical clustering system.

A main feature in classification is the equivalence between dissimilarity
models and clustering system models. Let us detail this equivalence. A dissim-
ilarity d on E is an application from E2 to 
+ such that d(x, y) = d(y, x) ≥
d(x, x) = 0 for all x, y ∈ E. Moreover, a dissimilarity d on E is said to be
proper if and only if d(x, y) = 0 implies x = y. In what follows, all dissim-
ilarities will be assumed to be proper, so that ”dissimilarity” will must be
understood as synonymous with ”proper dissimilarity”.

To state the equivalence we have to associate clustering systems with
dissimilarities. First recall that the diameter of a subset A, denoted diamd(A),
is defined by diamd(A) = max{d(x, y) |x, y ∈ A}. A maximal linked set of
d is then a subset A of E such that it does not exist A′ with A ⊂ A′ and
diamd(A) = diamd(A

′). In other words, a maximal linked set of d is a subset
of E that is maximal at a given diameter.

Let’s denote by Ld(h) (with h ∈ 
+) the set of all maximal linked sets of
d with diameter equal to h, and note that

⋃Ld(
+) is the set of all maximal
linked sets of d. In addition, for all h ∈ 
+, let Md(h) = max

⋃Ld([0, h])
and, when h is strictly positive, let Md(h

−) = max
⋃
Ld([0, h[).

It can be noted that Ld(h) = Md(h)\Md(h
−). Moreover, since d(x, x) =

0 for all x ∈ E, the collection Md(h) is always non empty for all h ≥ 0.



Lower-Maximal Paired-Ultrametrics 457

Then the above-mentioned equivalence between dissimilarities and clus-
tering systems consists of the correspondence Φ defined by Φ(d) = (Ĉ, diamd),
with C =

⋃
Ld(
+). More precisely, the map Φ is injective from the set of all

dissimilarities on E into the set of all weakly indexed clustering systems on
E (Batbedat (1988); Bertrand (2000)), where a clustering system F is said
to be weakly indexed if it is equipped with a map f : F → 
+ that satisfies:

• f(A) ≤ f(B) if A ⊆ B,
• f(A) = f(B) and A ⊆ B implies that A =

⋂
{C ∈ F |A ⊂ C}.

Since in this paper we consider only proper dissimilarities, we must also
consider only weakly indexed clustering systems (F , f) on E such that f−1(0)
coincides with the collection of singletons of E (cf. Bertrand (2000)). More-
over, note also that an indexed clustering system designates any weakly in-
dexed clustering system (F , f) such that f is strictly monotone, i.e., f(A) <
f(B) if A ⊂ B.

The map Φ induces various bijections, in particular the well-known bijec-
tion between the set of ultrametrics (an ultrametric is any dissimilarity d on
E such that max{d(x, y), d(y, z)} ≤ d(x, z) for all x, y, z ∈ E) and the set
of indexed hierarchies (cf. Johnson (1967); Benzécri (1973)). A bijection of
interest in this paper is the bijection (also induced by Φ) between the set
of paired-ultrametrics (shortly, p-ultrametrics) and the set of all weakly in-
dexed closed p-hierarchies (cf. Bertrand (2002)). A dissimilarity d on E is a
p-ultrametric if and only if for all 4-element subset A of E, it exists a non
trivial part B of A such that d(b, b′) ≤ d(a, b) = d(a, b′) for all a ∈ A and all
b, b′ ∈ B.

Note that when F is a p-hierarchy, so are F̂ and F ∪{{x} |x ∈ E}∪{E}.
It follows that a dissimilarity d is a p-ultrametric if and only if

⋃Ld(
+) is
p-hierarchical.

Let us now focus again on dissimilarities. The aim of this paper is to
approximate a given dissimilarity d by a p-ultrametric. To do this, we will
mainly use properties of

⋃Ld(
+), and this involves some new notations.
Let d be a dissimilarity on E and A and B two subsets of E. We define

d(A,B) by d(A,B) = min{d(a, b) | a ∈ A \B, b ∈ B \A}.
We denote by Ip(F) = (F , F ) the graph with the collection F as vertex

set and AB ∈ F if and only if A ∩ B /∈ {φ,A,B} (this graph is sometimes
known as the overlap graph of F).

If G is a graph whose vertex set is a collection on E, we will write:

Part (G) = {
⋃

C |C is a connected component of G}

It is clear that the collection Part (G) is a partition of the vertex set of
G. Since Part ( ) will be mainly used for graph G = Ip(F), we will write
Part (F) instead of Part (Ip(F)). Finally, for a collection F on E, we denote
also Gd[F ](h) the graph (F , F ) defined by AB ∈ F if and only if d(A,B) = h,
and we write Gd[h] instead of Gd[Part (Md(h

−))](h).
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The following lemma, which uses many previous definitions, is the base-
ment of the hereafter development.

Lemma 1. Let d be a dissimilarity on E and h > 0. If C1 and C2 are two
distinct elements of Part (Gd[h]), then d(C1, C2) > h.

Proof. If d(C1, C2) < h, it exists x ∈ C1 and y ∈ C2 such that d(x, y) < h.
Since {x, y} can be extended into a maximal linked set with diameter d(x, y),
x and y must be in the same set in Part (Md(h

−)), thus C1 = C2, which is
not possible.

If d(C1, C2) = h, it exists an element A of Part (Gd[h]) such that C1 ⊆ A
and C2 ⊆ A. Thus again C1 = C2, which is not possible.

3 A characterization of p-ultrametrics and ultrametrics

We will characterize, in this section, p-ultrametrics and ultrametrics through
conditions involving Gd[h] graphs, where h > 0 and d designates an arbitrary
dissimilarity on E.

We will write childFA = max {B ∈ F |B ⊂ A } for any collection F on
E and any subset A of E. Moreover, we will write childd(A) instead of
child⋃

Ld(�+)
(A). First, one can remark that:

Remark 1. Let A be a subset of E such that diamd(A) = h. We have that
childd(A) = childF (A) where F =

⋃Ld([0, h[).

Lemma 2. Let d be a p-ultrametric on E and h > 0. If C ∈ Part (Gd[h])
then | Md(h) ↓ C | ∈ {1, 2} and | Ld(h) ↓ C | ∈ {0, 1, 2}.

Proof. Let us prove that | Md(h) ↓ C | ∈ {1, 2}. Since C 
= φ it is clear that
1 ≤ |Md(h) ↓ C|. Suppose that |Md(h) ↓ C| > 2 and let A ∈ Md(h) ↓ C. We
must have A ⊂ C, and thus B ∈ Md(h) ↓ C exists such that A ∩B 
= φ, by
definition of C ∈ Part (Gd[h]). Since |Md(h) ↓ C| > 2 and d is p-ultrametric,
A ∪ B ⊂ C. Therefore, it must exist D ∈ Md(h) ↓ C such that either
A ∩D 
= φ or B ∩D 
= φ because C ∈ Part (Gd[h]). This cannot be possible
because

⋃Ld(
+) is a p-hierarchy.
The second assertion derives then from Ld(h) = Md(h) \Md(h

−).

To investigate properties of the connected components of Gd[h] when d
is a p-ultrametric (proposition 1) we introduce two more notations. Let C be
a connected component of Gd[h] (with h ≥ 0), and C =

⋃
C. We denote:

• Bd(A, h) = {B ∈ Part (childd(A)) | d(C \A,B) > h}, for A ∈ C;
• Kd(C, h) = {(A,B) | A,B ∈ P(C), A∩ B = φ, d(

⋃A,
⋃B) > h}.
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Proposition 1. Let d be a p-ultrametric on E, h > 0 a value taken by d,
C a connected component of Gd[h] and C =

⋃
C. One and only one of the

following five assertions is satisfied:

(i) | C |= 1 and Ld(h) ↓ C = φ,

(ii) | C |= 1 and Ld(h) ↓ C = {C},
(iii) | C |> 1, Kd(C, h) = φ,

⋃
A∈C Bd(A, h) = φ, and Ld(h) ↓ C = {C}

(iv) | C |> 1, Kd(C, h) = φ,
⋃

A∈C Bd(A, h) 
= φ,
and Ld(h) ↓ C = {C \ (

⋃
A∈C Bd(A, h))},

(v) | C |> 1, Kd(C, h) 
= φ, Ld(h) ↓ C = {C \ (
⋃A∗), C \ (

⋃B∗)}
with {(A∗,B∗)} = maxKd(C, h), and

⋃
A∈C Bd(A, h) = φ.

Proof. 1 By definition, C = {A1, . . . , Ar} where each Aj ∈ Part (Md(h
−)).

Since d is p-ultrametric, Aj is the union of one or two elements of Md(h
−).

Assume first that r = |C| = 1, thus C = A1. If A1 ∈ Md(h
−), then we

have Ld(h) ↓ C = φ. Otherwise, it must exist M1,M2 ∈ Md(h
−) such that

A1 = M1 ∪ M2. In this case, if d(M1,M2) > h then Ld(h) ↓ C = φ, and
if d(M1,M2) = h then Ld(h) ↓ C = {C} since each element of Ld(h) ↓ C
cannot properly intersects both M1 and M2 which form a non hierarchical
pair. Thus (i) or (ii) must hold when | C |= 1.

We now assume that r =| C |> 1. Since d(x, y) = h for some x ∈ A1 and
y ∈ A2, we have Ld(h) ↓ C 
= φ, and so | Ld(h) ↓ C | ∈ {1, 2} by Lemma 2.

Assume first that | Ld(h) ↓ C |= 1 and denote as N the unique element of
Ld(h) ↓ C. Observe that N intersects each Aj in C and thus Kd(C, h) = φ.
Moreover, since d is p-ultrametric, N contains at least all but one of the Aj ’s.

Suppose first that N contains all the Aj ’s. Then Ld(h) ↓ C = {C} and
thus d(C \ Aj , B) ≤ h for all B ∈ Part (childd(Aj)) and all j ≤ r. Conse-
quently,

⋃
A∈C Bd(A, h) = φ and (iii) holds. Suppose now that N contains all

the Aj ’s except A1. Consider B ∈ Part (childd(A1)). Since d is p-ultrametric,
we have either B ⊆ A1 \N and then d(C \ A1, B) > h, or B ⊆ A1 ∩N and
then d(C \ A1, B) ≤ h. It follows that

⋃
A∈C Bd(A, h) = A1 \ N 
= φ. Since

A1 \N = C \N and thus N = C \ (A1 \N) = C \
⋃

A∈C Bd(A, h), it follows
that (iv) holds.

Finally, assume that | Ld(h) ↓ C |= 2 and let Ld(h) ↓ C = {N1, N2}. Note
that N1 ∩N2 
= φ and N1 ∪N2 = C, otherwise | Ld(h) ↓ C |> 2. Therefore,
each Aj is hierarchical with {N1, N2} and

⋃
Aj∈C Bd(Aj , h) = φ. Moreover,

denoting N �
j = {A ∈ C |A ⊆ Nj \N3−j for j ∈ {1, 2}, it is easily checked that

(N �
1 ,N �

2 ) = maxKd(C, h). In addition, N1 = C \ (N2 \ N1) = C \ (
⋃N �

2 ),
and similarly N2 = C \ (

⋃N �
1 ), which proves (v).

Figure 1 depicts the five possible cases of proposition 1.

Since a dissimilarity u is a p-ultrametric if and only if
⋃Ld(
+) is p-

hierarchical, the following characterization is clear.
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d(A,B) = h

M (h )
d

-

i ii

iii iv v

L (h )
d

Fig. 1. The five cases of proposition 1.

Corollary 1. A dissimilarity u an E is a p-ultrametric if and only if for all
h ∈ u(E2) \ {0} and all connected component C of Gu[h] one and only one
of the five assertions of proposition 1 is satisfied.

Corollary 1 may be particularized to characterize ultrametrics, as shown
in corollary 2.

Corollary 2. A dissimilarity u on E is an ultrametric if and only if for all
h ∈ u(E2) \ {0} and all connected component C of graph Gu[h], we have
Lu(h) ↓ C ∈ {φ,C}, with C =

⋃
C.

4 Construction of a lower-maximal p-ultrametric

We will here propose an algorithm which constructs a p-ultrametric u that
is lower-maximal for a given dissimilarity d.

Recall that a dissimilarity d on E is smaller than a dissimilarity d′ on
E (d′ ( d) if and only if d(x, y) ≤ d′(x, y) for all x, y ∈ E. Given a set D
of dissimilarities on E, a dissimilarity d′ in D is lower-maximal for a given
dissimilarity d if and only if d′ ∈ max{d′′ | d′′ ( d, d′′ ∈ D}. It is well known
that the set of ultrametrics admits a unique lower-maximal ultrametric for
any given dissimilarity d and that, in addition, this lower-maximal ultrametric
u[d] is indeed the maximum of all ultrametrics u such that u ( d.

The hereunder algorithm will show that it exists a lower-maximal p-
ultrametric for all given dissimilarity d that is also larger than u[d]. It can be
shown that this lower-maximal p-ultrametric is never a maximum. The algo-
rithm constructs a weakly indexed p-hierarchy associated to a p-ultrametric
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through the map Φ−1. One can show that for a given weakly indexed p-
hierarchy (F , f) and for any x, y ∈ E we have (cf. Batbedat (1988); Bertrand
(2000)): [Φ−1(F , f)(x, y) = min{f(A) |A ∈ F , x, y ∈ A}.

Algorithm. Construction of a lower-maximal p-ultrametric (up) for dissi-
milarity d on E.

begin
i ← 0
Fi ← {{x} |x ∈ E} (elements of Fi will be called clusters)
fi({x}) ← {0} for all x ∈ E (values taken by fi will be called levels)
di ← d
while |Part (maxFi) | > 1
Fi+1 ← Fi ; fi+1 ← fi ; di+1 ← di

i ← i + 1
hi ← min{d(A,B) | A 
= B, A,B ∈ maxFi}
let C1, . . . ,Cri be the connected components of Gd[Part (maxFi)](hi)
for 1 ≤ j ≤ ri

C ←
⋃

Cj ; M1 ← C ; M2 ← C
if (maxFi) ↓ C contains A,B such that d(A,B) = hi then
J ← {A ∈ C ∩ Fi | Bd(A, hi) 
= φ}
K ← Kd(Cj , hi)

(1) if J or K is not empty then
choose one which is not empty.

(2) if J was chosen
then let M1 ∈ J ; M2 ← C \⋃Bd(M1, hi)

(3) if K was chosen
then let (A�,B�) ∈ maxK ; M1 ← C \⋃A�; M2 ← C \⋃B�

end (if)
(4) for k = 1, 2: if Mk 
∈ Fi then

Fi ← Fi ∪ {Mk}; fi(Mk) ← hi

for x, y ∈ Mk : di(x, y) ← min{di(x, y), hi}
end (if) ; end (for)

(5) if M1 ∩M2 
∈ Fi then
Fi ← Fi ∪ {M1 ∩M2}; fi(M1 ∩M2) ← min{fi(M1), fi(M2)}

end (if)
end (if)

end (for)
end (while)
N ← i ; up ← dN

end

Lets show an example. On right part of Figure 2, the depicted p-hierarchy
represents (via the bijection Φ) a lower-maximal p-ultrametric obtained by
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the algorithm from the dissimilarity of Table 1. On left part, the single link hi-
erarchy represents the ultrametric sub-dominant of this dissimilarity. Showing
overlapping clusters, the p-hierarchy clearly refines the single link hierarchy.

Table 1. A dissimilarity (taken from Bandelt and Dress (1989)).

1 2 3 4 5 6 7
1. H. Sapiens 0 0.19 0.18 0.24 0.36 0.52 0.77
2. P. Paniscus 0 0.07 0.23 0.37 0.56 0.80
3. P. Troglodytes 0 0.21 0.37 0.51 0.77
4. G. Gorilla 0 0.38 0.54 0.75
5. P. Pygmæus 0 0.51 0.76
6. H. Lar 0 0.74
7. Cercopithecids 0
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Fig. 2. Pyramids associated with the ultrametric sub-dominant (left) and a lower-
maximal p-ultrametric (right) for the dissimilarity given in table 1.

Theorem 1. For any dissimilarity d, the hereabove algorithm computes in
a finite number N of iterations both (FN , fN ), which is a weakly indexed
p-hierarchy, and its associated p-ultrametric up = dN . Moreover,

(i) up is greater than or equal to the sub-dominant ultrametric u[d] of d,
(ii) up is a lower-maximal p-ultrametric of d.
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Proof. First, we show by induction on i ≥ 0 that Fi is closed and p-hierarchical.
It is obviously true for i = 0. Suppose it true for i−1 with i ≥ 1, and consider
the step i.

Indeed, at step i at most two maximal clusters and their intersection are
added to Fi−1 for each connected component Cj (1 ≤ j ≤ ri). More precisely,
denoting Cj =

⋃
Cj :

• Cj is added if | Cj | = 1, maxFi−1 ↓ Cj = {A,B} and d(A,B) = hi,
• Cj is added if | Cj |> 1 and J and K are empty (note that it then exists
{A,B} ⊆ maxFi−1 ↓ Cj such that d(A,B) = hi),

• A, Cj \
⋃

Bd(A, hi) (with A ∈ J ) and their intersection are added if J
is not empty and chosen,

• Cj \
⋃A, Cj \

⋃B (with (A,B) ∈ maxK) and their intersection are added
if K is not empty and chosen.

In all these cases, the added clusters satisfy the p-hierarchical condition,
and are such that Fi is closed whenever Fi−1 is closed. Thus Fi is closed and
p-hierarchical by the hypothesis of induction, as required.

Let us now consider the end of step i. According to the clusters added
during step i, for all A,B distinct in maxFi, d(A,B) = di(A,B) > hi. This
implies that for all i ≥ 0, we have hi+1 > hi and di+1 ( di (by definition of
di+1). Therefore, the series (hi) is strictly growing, the series (di) is decreasing
and both take their values in those taken by d. It results that the algorithm
will stop in a finite number N of iterations. For the last iteration N , we will
then have | maxFN | = 1, and thus E ∈ FN , which proves that FN is p-
hierarchy on E. Using again a proof by induction on i ≥ 0, it is easily checked
that (FN , fN ) is a weakly indexed p-hierarchy. Now, by definition of dN , it
it is clear that dN = Φ−1(FN , fN ), and thus dN is a p-ultrametric.

(i). We have to prove that u[d] ( up = dN . Proceeding by induction on i ≥ 0,
we will prove that u[d] ( di for all i ≥ 0.

First, it is clear that u[d] ( d0 for d0 = d. Now, suppose that u[d] ( di−1

with i ≥ 1 and let us prove that u[d] ( di. Since di ( di−1, it suffices to
prove that u[d](x, y) ≤ di(x, y) only when di(x, y) < di−1(x, y). Let us then
assume di(x, y) < di−1(x, y). By definition of di, it must exist some connected
component Cj such that x, y ∈

⋃
Cj . Thus it exists a path x = u1, . . . , up = y

(p ≥ 2) where uk ∈ Ak ∈ Cj for every 1 ≤ k ≤ p, and two consecutive vertices
Ak and Ak+1 are either equal or linked. Therefore di−1(uk, uk+1) ≤ hi for all
1 ≤ k < p because for all A ∈ Cj and all x′, y′ ∈ A, di−1(x

′, y′) ≤ hi−1 <
hi and Cj is a connected component of Gd[Part (maxFi−1)](hi). Using the
hypothesis of induction, we then obtain the required inequality:

u[d](x, y) ≤ max
1≤k<p

u[d](uk, uk+1) ≤ max
1≤k<p

di−1(uk, uk+1) ≤ hi ≤ di(x, y).

(ii). Let d′ be a p-ultrametric such that d′ ( d. It suffices to set that d′ ( di

for all i ≥ 0. Clearly d′ ( d0. Now suppose that it exists i ≥ 1 such that
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d′ ( di−1 and d′ 
( di. Thus x, y exist in E such that di(x, y) < d′(x, y). At
step i, let Cj0 be the connected component such that x, y ∈ ⋃

Cj0 . Let us
prove that there exists x′, y′ ∈ E such that dN (x′, y′) > d′(x′, y′), which will
prove that dN and d′ are not (-comparable, and thus that (ii) holds. We will
distinguish three cases.

Case 1. Assume it exists x′ ∈ ⋃
Cj and y′ /∈ ⋃

Cj such that d′(x′, y′) ≤
hi. Since di(x

′, y′) > hi and hk > hi for all k > i we have dN (x′, y′) =
up(x

′, y′) > d′(x′, y′), as required.
Case 2. Assume it exists x′, y′ in some A ∈ Fi−1 such that d′(x′, y′) 
=

di−1(x
′, y′). Since up(x

′, y′) = di(x
′, y′) = di−1(x

′, y′) for all x′, y′ ∈ A (be-
cause A ∈ Fi−1) and d′ ( di−1, we must have d′(x′, y′) < di−1(x

′, y′) =
up(x

′, y′), as required.
Case 3. Assume cases 1 and 2 do not hold. We give the main lines of the

proof in this case. First, the connected components of Gdi−1 [hi] and Gd′ [hi]
coincide. Since Gdi−1 [hi] = Gd[Part (maxFi−1)](hi), all the connected com-
ponents Cj’s at step i coincide with the connected components of Gd′ [hi].
Moreover, case 2 does not hold, thus for all z, t ∈ ⋃

Cj0 , di(z, t) < hi ⇒
d′(z, t) = di(z, t). Then, using the definition of the algorithm, a routine check
shows that the set d−1

i (]hi,+∞[) ∩ (
⋃

Cj0)
2 either contains or is uncompa-

rable with the set d′−1(]hi,+∞[) ∩ (
⋃

Cj0)
2. Since d′(x, y) > di(x, y) = hi,

there exists x′, y′ ∈ ⋃
Cj0 such that di(x

′, y′) > d′(x′, y′). Thus we have
up(x

′, y′) > d′(x′, y′), as required.
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Abstract. This note is devoted to three-way dissimilarities defined on unordered
triples. Some of them are derived from two-way dissimilarities via an Lp-trans-
formation (1 ≤ p ≤ ∞). For p <∞, a six-point condition of Menger type is estab-
lished. Based on the definitions of Joly-Le Calvé and Heiser-Bennani Dosse, the
concepts of three-way distances are also discussed. A particular attention is paid to
three-way ultrametrics and three-way tree distances.

1 Introduction

During the last two decades, we have witnessed a growing interest in three-
way data analysis. Many results and methods have been established. See, for
instance, the book of Coppi-Bolasco (1989). In this note, we pay attention
to three-way dissimilarities, following the axiomatization given in the ba-
sic articles of Joly-Le Calvé (1985), Heiser-Bennani Dosse (1997) and Deza-
Rosenberg (2000). We also refer to the dissertation thesis of Bennani Dosse
(1993) and the talk of Joly-Le Calvé on ternary distances at IFCS meeting,
Charlottesville, 1989.

A three-way dissimilarity t on a finite set I of size n indicates the (com-
mon) lack of resemblance between all of triples and is a natural extension of
the usual (two-way) dissimilarities. As for two-way dissimilarities, symmetry
is required. However, the following main question is raised: are we concerned
with triples of the type {i, i, j}? The answer is “yes” in the models proposed
by the above-mentioned authors, except the model in a paragraph of Ben-
nani Dosse (1993). Here we deal with three-way dissimilarities only defined
on unordered triples, as in the pioneering work of Hayashi (1972).

We denote by P3(I) (resp. P2(I)) all subsets of I with three (resp. two)
elements. Then a two-way predissimilarity d may be regarded as a mapping
from P2(I) into R. We similarly define a three-way predissimilarity t as a
mapping from P3(I) into R. Those are dissimilarities if they are nonnegative.
For brevity, the value of t on {i, j, k} is noted tijk, and the value of d on {i, j}
is noted dij . Of course, three-way dissimilarities t may be constructed from
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a two-way dissimilarity d via some transformations. For instance, Hayashi
(1972) proposes to use the area of triangles derived from two-way Euclidean
distances. In the present note, we pay attention to the Lp-transformation
(1 ≤ p ≤ ∞) :

tijk = [dp
ij + dp

jk + dp
ki]

1/p for every {i, j, k} ∈ P3(I).

When p = 1, the formula remains valid for predissimilarities, and in that case
we say that t is of perimeter type. The following six-point condition will be
established.

Theorem 1. A three-way predissimilarity t is of perimeter type if and only
if for every subset {i1, i2, i3, j1, j2, j3} of six distinct elements the following
equality (1) holds

3(ti1i2i3 −tj1j2j3) =
∑

k

[(ti
1
i
2
j
k
+ti

2
i
3
j
k
+ti

3
i
1
j
k
)−(ti

k
j
1
j
2
+ti

k
j
2
j
3
+tikj

3
j1)].

The authors referred in this text have introduced different types of three-way
metricity, employing several conditions on distinct or non-distinct elements.
In our context, we keep two main definitions and exhibit some properties.
Ultrametricity and tree-metricity are evoked in the same sense. In particular,
there is a six-point condition for tree-metricity and a counter-example shows
that such a condition is sharp.

Most of the results given here, have been presented by the authors at dif-
ferent meetings, namely these of the International Federation of Classification
Societies, held in Rome, 1998, and those of the Ordinal and Symbolic Data
Analysis, held in Darmstadt, 1997, and in Amherst, Massachusetts, 1998.

2 The perimeter model

We note by D and T the sets of two-way and three-way predissimilarities on
n points, respectively. Clearly, those are real vector spaces with respective
dimension n(n−1)/2 and n(n−1)(n−2)/6. A function t in T is of perimeter
type if there is d in D such that

for every {i, j, k} ∈ P3(I), tijk = dij + dik + djk . (2)

Denote by f : D → T the mapping associated with the perimeter model:
namely, t = f(d) if and only if (2) holds. Clearly, f is linear.

A simple example is given by star predissimilarities. Recall that a two-
way star predissimilarity d is defined by real coefficients {wi : i ∈ I}. We
have dij = wi +wj . Similarly, we define a three-way star predissimilarity t by
setting tijk = ai + aj + ak for given coefficients {ai : i ∈ I}. Then, for every
two-way star predissimilarity d, f(d) is a star one and, conversely, for every
three-way star predissimilarity t, there exists a star one d such that t = f(d).
It is well-known that for n = 3, every d in D is a star predissimilarity.
Analogously, we have:
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Proposition 1. For n = 4, every t ∈ T is a star predissimilarity.

Proof. A simple calculation shows that 3a1 = t123 + t124 + t134 − 2t234, and
that similar equalities hold for a2, a3, a4. �

Thus for n = 4, and hence for n = 3, the mapping f is surjective.
The following equations lead us to a necessary condition for the perimeter

model. They have been established by Bennani Dosse (1993) and rediscovered
by the authors of this note. Dots mean summation over all possible units,
unordered pairs or triples.

Summing in (2) for fixed i, j over all k 
= i, j gives:

tij. = (n− 4)dij + di. + dj. (3)

Now, for fixed i, summing over all j 
= i give ti.. = (n − 3)di. + d.., whence
summing up over all i gives t... = (n− 2)d... Notice that the previous equa-
tions are obvious for n = 3, 4. As a result, we obtain the following necessary
condition for a t of perimeter type:

(n− 3)(n− 4)dij = (n− 3)tij. − (ti.. + tj..) + 2t.../(n− 2). (4)

The following proposition is similar to the one of Joly-Le Calvé (1995).
This is an immediate consequence of (4).

Proposition 2. For n > 4, t ∈ T is of perimeter type if and only if for all
{i, j, k} ∈ P3(I) we have

(n−4)tijk = (tij. + tik. + tjk.)−2(ti.. + tj.. + tk..)/(n−3)+6t.../(n−2)(n−3).

Checking if t is of perimeter type can be done by solving a linear system
with O(n3) rows and O(n2) columns, with a (0, 1)-matrix. Let us observe
that (4) provides an O(n3)-time algorithm for answering this question.

We can complete now the proof of Theorem 1. First, Proposition 1 shows
that the statement is true for n ≤ 4. So, suppose n > 4. Condition (4) shows
that f is injective. Consequently, f is a bijection for n = 5, since D and T
have the same dimension (equal to ten). Thus, the statement of the theorem
is true for n = 5, and we may suppose that n > 5.

Now, we prove that t is of perimeter type if and only if its restriction
to every subset of six points is. Necessity is obvious. Conversely, suppose
that t obeys the announced six-point criterion. Let i1, ..., i5 be five distinct
elements of I and i6 and i′6 be two other elements different from i1, ..., i5.
Let J = {i1, ..., i5, i6}, J ′ = {i1, ..., i5, i′6}, and let u, u′ be the restrictions
of t to J and J ′, respectively. By hypothesis, there exist (unique) two-way
predissimilarities d and d′ on J and J ′, associated with u and u′ via the
perimeter model. Since f is a bijection for n = 5, u and u′, hence d and d′,
share a common restriction on {i1, ..., i5}. Thus di1i2 does not depend of the
choice of i6 in J and, by finite induction, di1i2 does not depend of the choice
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of i3, i4, i5, and i6 either. So, a two-way predissimilarity d has been (well-)
defined for every pair {i1, i2} and clearly t obeys the perimeter condition for
every triple.

Now, for every system of six distinct elements i1, i2, i3, j1, j2, j3, the con-
dition of Proposition 2 can be written as

12ti1i2i3 = 6(ti1i2. + ti1i3. + ti2i3.) − 4(ti1.. + ti2.. + ti3..) + 3t...

Checked on all triples, this condition appears to be equivalent to the one of
the theorem. This concludes the proof of Theorem 1.

Now, we specify scalar products on D and T , by considering the corre-
sponding canonical bases as orthonormal. Then we may introduce the Moore-
Penrose generalized inverse f+ of f (f+ = f−1 when n = 5). For n > 5, f+

defines a least squares approximation of perimeter type.

Proposition 3. For n > 5 and for every t ∈ T , d = f+ (t) is characterized
by (4).

Proof. Let t′ be the orthogonal projection of t into f (D). Then, by definition,
f(d) = t′. The projection t′ is the solution of the minimization problem

min
∑

{(tijk − t′ijk)2 : t′ ∈ f(D)},

or equivalently

min
∑

{(tijk − dij − dik − djk)2 : d ∈ D}.

For every pair {i, j}, taking the partial derivative with respect to dij , gives:

∑

k �=i,j

[tijk − dij − dik − djk] = 0.

This is (3), which also yields (4). �

In fact, for n ≤ 4, f+ characterizes the unique solution in the subspace
orthogonal to Ker(f). The following lemma will be used. We denote by Dst

the subspace of D of all star predissimilarities and by D∗ the subspace of D
of all d obeying di. = 0 for every i ∈ I.

Lemma 1. For every n ≥ 3, the orthogonal decomposition D = Dst ⊕ D∗

holds.

Proof. It is well-known that Dst is n-dimensional, a basis of which is given
by the 1-dichotomies δi, i ∈ I. All coefficients wj defining δi are null, except
wi, which is equal to 1. Moreover, it is easy to see that the 1-dichotomies
are orthogonal to D∗. Thus Dst and D∗ are orthogonal. In order to prove the
direct decomposition, define g : D → RI , where g(d) has the components di.

for all i ∈ I. Then D∗ =Ker(g), so that dim(D∗) ≥ n(n− 1)/2 − n. �
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Note that this lemma remains valid when the basis of D is only orthogonal,
with a precise norm on the basis vectors. Precisely, the basis vector, associated
with the pair {i, j} has a squared norm equal to mimj , for fixed positive
weights {mk : k ∈ I}. In that case, the quantities di. are weighted sums.

Proposition 4. For n = 4 and for every t in T , d = f+(t) is the two-way
star predissimilarity (associated with the three-way star one t).

Proof. By Proposition 1, t is a three-way star predissimilarity associated with
a two-way star one d. But equations (3) and (4) show that Ker(f) ⊆ D∗. Thus
d is orthogonal to Ker(f) and d = f+(t). �

For n = 3, Ker(f) = {d : d.. = 0}. Consequently, f+ maps onto the line
defined by all d with equal coordinates. If d = f+(t), then dij = dik = djk =
tijk/3.

We end this section with a few remarks. First, observe that t = f(d) is a
three-way dissimilarity when d is a (two-way) dissimilarity, but the converse
is no longer true whenever n ≥ 4. For n = 4, the three-way star dissimilarity
defined by the coefficients (−2, 1, 1, 1) does not admit any dissimilarity d
such that f(d) = t; in contrast, the dissimilarity defined by the coefficients
(−1,−1, 4, 4) admits a (non-star) dissimilarity d such that f(d) = t.

Regarding the Lp-transformation (1 ≤ p < ∞) in terms of pth-power, the
previous results apply. A three-way dissimilarity t is the Lp-transformation
of a two-way dissimilarity if and only if tp can be derived from a dissimilarity
via the perimeter model. For n > 5, t obeys this condition if and only if its
restriction to every subset of six points does. Notice that most of the preceding
results do not hold for p = ∞. For example, the L∞-transformation d → t is
never injective.

3 Three-way metrics

In this section we deal with some extensions of two-way metrics
(semi-distances), i.e. dissimilarities obeying the well-known triangular in-
equality. In the above-mentioned papers, an axiomatization has been dis-
cussed in details. In particular, Heiser-Bennani Dosse (1997) develop the
relationship with a parametrized triangle inequality sensu Andreae-Bandelt
(1995). In the context of three-way dissimilarities only defined on triples of
distinct elements, axiomatization is simpler.

3.1 Definitions

We keep two main definitions:
- the weak metricity (Joly-Le Calvé (1995)): for distinct i, j, k, l ∈ I,

tijk ≤ tikl + tjkl, or equivalently, max[tijk, tjkl] ≤ tijl + tikl.
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-the strong metricity (Heiser-Bennani Dosse (1997)):

2tijk ≤ tijl + tikl + tjkl (tetrahedral inequality).

Let us note that Deza-Rosenberg (2000) define, in the multiway case,
a so called n−semimetricity. Using the same terminology, their simplex in-
equality for n = 2 (three-way case) is the tetrahedral inequality, except a
coefficient 1 in the left-hand inequality. So, their definition turns out to
be weaker than our weak-metricity. If we denote β1 ≤ β2 ≤ β3 ≤ β4

the values of t on the four triples of a given quadruple, weak-metricity is
equivalent to β4 ≤ β1 + β2 and strong metricity to 2β4 ≤ β1 + β2 + β3

(β4 ≤ β1 + β2 + β3 sensu Deza-Rosenberg). Thus strong metricity implies
weak metricity and both imply nonnegativity, like the usual triangle inequal-
ity.

Proposition 5. Every three-way dissimilarity derived from a two-way met-
ric via an Lp-transformation (1 ≤ p ≤ ∞) is a strong metric.

The proof of Heiser-Bennani Dosse (1997), established in a different model,
holds here. In contrast, in our context, the converse is not true, even for p = 1:
consider a two-way dissimilarity with the constant value 2 on every pair, ex-
cept one pair, the value of which is 5.

Of course, there are three-way weak/strong metrics which are not of
perimeter type. Consider the strong metric t with constant values and t′

in a neighborhood of t and not in the subspace f(D). However, for n > 5,
Theorem 1 shows that a three-way (strong) metric derives from a two-way
metric via the perimeter model if and only if its restriction to every subset
of six points does. More precisely, using (4) and Theorem 1, one may prove
after some computations the following proposition.

Proposition 6. A three-way dissimilarity derives from a two-way metric via
the perimeter model if and only if for every system (i1, i2, i3, j1, j2, j3) of six
distinct elements, the condition (1) of Theorem 1 and the following condition
are fulfilled:

∑

k

(ti1i3jk
+ ti2i3jk

− ti1i2jk
) ≥ (ti3j1j2 + ti3j1j3 + ti3j2j3) − tj1j2j3 .

An example of metrics is given by a star three-way predissimilarity t, with
coefficients a1 ≤ . . . ≤ an. Then t is a strong metric if a1 ≥ 0, a weak metric
if 2a1 + a2 ≥ 0, and a dissimilarity if a1 + a2 + a3 ≥ 0.

The inequalities occurring in the definitions of metricity show that the
sets of weak and strong metrics are polyhedral cones. Consequently the sets
of those metrics of perimeter type are too. Thus, different types of least
squares approximations may be solved by some usual procedures, such as the
algorithms of Lawson and Hanson (1974) or Dykstra (1983).
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3.2 Three-way ultrametrics

Ultrametricity is treated in the same spirit. Recall that a two-way ultrametric
is a dissimilarity fulfilling the ultrametric inequality dij ≤ max[dik, djk] for
every triple. For a three-way dissimilarity t, we here define:

-weak ultrametricity (Joly-Le Calvé (1995)): for distinct i, j, k, l ∈ I,

tijk ≤ max[tijl, tikl, tjkl].

-strong ultrametricity (Bennani Dosse (1993)): for distinct i, j, k, l ∈ I,

tijk ≤ max[tijl, tikl], or equivalently, max[tijk , tjkl] ≤ max[tijl, tikl].

Denoting by β1 ≤ β2 ≤ β3 ≤ β4 the four values of t on the four triples of
a given quadruple, weak ultrametricity is equivalent to β3 = β4 and strong
ultrametricity is equivalent to β2 = β3 = β4. Thus a strong ultrametric is a
weak ultrametric. This is also a strong metric. However a weak ultrametric
is not always a weak metric (it is a metric sensu Deza-Rosenberg). For this
reason, we pay more attention to the strong condition. Notice that some
strong ultrametrics are not of perimeter type: with Theorem 1, consider t
verifying ti1i2i3 < tj1j2j3 < c and tuvw = c otherwise.

Proposition 7. If d is a two-way ultrametric, then the L∞-transformation
of d is a strong ultrametric.

Proof. Using the well-known indexed hierarchy associated with (I, d), check
all configurations on four points. �

It is easy to see that for n = 4, every strong ultrametric is the L∞-
transformation of an ultrametric. For n > 4, we have the following charac-
terization (we recall that the subdominant of a two-way dissimilarity d is the
greatest ultrametric less than d).

Proposition 8. A three-way strong ultrametric t is the L∞-transformation
of some ultrametric if and only if it coincides with the L∞-transformation of
δ∗, where δ∗ stands for the subdominant of δ defined by δij = mink tijk for
every pair.

Proof. Observe that δ is the greatest dissimilarity with L∞-transformation
less than t, and δ∗ is the greatest ultrametric with an L∞-transformation less
than t. �

The following counter-example shows that the condition is not always
fulfilled for n > 4. Namely, choose t verifying tikl = tjkm = 1 and tuvw = 2
otherwise, for five units {i, j, k, l,m}.

It is quite easy to show that every 3-way dissimilarity t admits a subdomi-
nant weak and a subdominant strong ultrametrics. Both may be computed by
recursively shrinking some values of t over all quadruples, in order to fulfil the
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constraints of the respective definitions. This is a pure extension of the algo-
rithm developed by Roux (1968) for the 2-way ultrametric subdominant. See,
also, Benzécri (1973). Clearly, there also exists a subdominant ultrametric of
t, L∞-transformation of some ultrametric, namely the L∞-transformation of
δ∗ defined in Proposition 8.

The previous three subdominant approximations yield, by a simple trans-
lation, three approximations according to the supremum norm on T , in their
own context. For this, apply the general result linking subdominants and
L∞-approximations, as established by Chepoi-Fichet (2000).

3.3 Three-way tree-metrics

Recall that a two-way metric d is said to be of tree-type, if the metric space
(I, d) embeds isometrically in some weighted tree, endowed with the usual
distance. A necessary and sufficient condition is given by the famous four-
point condition:

dij + dkl ≤ max[dik + djl, dil + djk],

for every quadruple of distinct elements; see, for instance, Buneman (1974).
We define here a three-way strong metric t of tree-type as a three-way strong
metric derived from a metric of tree-type via the perimeter model. Equiva-
lently t is of tree-type if and only if it derives from a metric via the perimeter
model and it obeys the following five-point condition:

tijm +tklm ≤ max[tikm +tjlm, tilm+tjkm] (5)

for every subset of five distinct elements.
Theorem 1 shows that for n > 5, t is of tree-type if and only if its re-

striction to every subset of six points is too. The following counter-example
shows that the condition cannot be weakened. It exhibits a three-way strong
metric t on six points i, j, k, l, u, v, which is not of perimeter type, hence not
of tree-type, whose restrictions to all subsets of five points are of tree-type.
Figure 1 and symmetrical ones define the restrictions.

It is well-known that every two-way ultrametric obeys the four-point con-
dition. Similarly, one may prove:

Proposition 9. Every three-way strong ultrametric obeys condition (5).

Proof. Without loss of generality one may suppose that tijk is the smallest
value among the ten values taken by t on the five points i, j, k, l,m. Again,
one may suppose that tijl ≤ tijm. Thus, by ultrametricity we obtain:

tijk ≤ tijl = tikl = tjkl =: A ≤ tijm = tikm = tjkm =: B.

To establish the five-point condition, we must prove, for every specific point,
that among the three possible sums of two values, two are equal and greater
than the third one. We distinguish two cases.
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Fig. 1. A three-way strong metric which is not of tree-type, but whose restrictions
to all subsets of five points are of tree-type.

First suppose A < B. By ultrametricity on {i, j, l,m}, tilm = tjlm = B.
Similarly, by symmetry, tklm = B. Using symmetry between i, j, k, we observe
that the condition is satisfied, for m, l or i, as specific point. Now suppose
A = B. By ultrametricity on {i, j, l,m}, we obtain max[tilm, tjlm] = B.
Similarly, by symmetry, max[tilm, tklm] = max[tjlm, tklm] = B. If tilm =
tjlm = tklm = B, the five-point condition is satisfied (using symmetry), for
every specific point i or l. If say tilm < tjlm = tklm = B, the five-point
condition is still fulfilled (using symmetry) whatever the specific point is i, j
or l. �

As an immediate consequence, we have:

Corollary 1. Every three-way strong ultrametric derived from a metric via
the perimeter model, is of tree-type.

3.4 r-Way dissimilarities

All concepts introduced above extend to the r-way case, by defining r-way
dissimilarities or r-way metrics, even if a vast variety of definitions may be
suggested for metricity or ultrametricity. In particular, denoting by Pr (I) the
set of all subsets of size r, we define an r-way predissimilarity, as a mapping
t from Pr(I) into R. The value t on A ∈ Pr(I), is noted tA.

As a basic example, one has the r-way star predissimilarity related to a
family {wi : i ∈ I} : for all A ∈ Pr(I), tA = Σ{wi : i ∈ A}. From an s-way
predissimilarity d, (s < r), we generalize the perimeter model by introducing
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the L1-transformation: for all A ∈ Pr(I), tA = Σ{dB : B ∈ Ps(A)}. We have
the following immediate proposition.

Proposition 10. If an r-way predissimilarity is the L1-transformation of an
s-way predissimilarity, then it is the L1-transformation of an s′-way one, for
every s < s′ < r.

In particular, every r-way star-predissimilarity is the L1-transformation
of an s-way one, for every 2 ≤ s < r.

Let us note that strange as it may seem, our definition applies for r = 1. In
that case, any (1-way) predissimilarity is defined by the quantities t({i}) = wi

(say), i ∈ I. This is a star one, and any (two-way) star predissimilarity is the
L1-transformation of such a (1-way) one.

Many results may be extended. For instance, we have the following propo-
sition.

Proposition 11. Let f be the (linear) function, mapping the set (vector
space) of r-way predissimilarities into the set (vector space) of (r + 1)-way
ones, via the L1-transformation. Then:

(i) f is injective if n > 2r + 1;
(ii) f is a bijection if n = 2r + 1;
(iii) f is surjective if n < 2r + 1.
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Abstract. We place ourselves in a setting where singletons are not all required
to be clusters, and we show that the resulting cluster structures and their corre-
sponding closure under finite nonempty intersections still have the same minimal
members. Moreover, we show that indexed cluster structures and weakly indexed
closed cluster structures correspond in a one-to-one way.

1 Introduction

The most known cluster structure is certainly the hierarchical one whose
specificity lies in the absence of overlapping clusters, which makes it suitable
for data visualization. However, the absence of overlap prevents the hierar-
chical cluster structure from being able to figure out situations where an
entity shares features with entities from different clusters. To cope with this,
overlapping cluster structures have been introduced or considered by several
authors (Diday (1884), Batbedat (1988), Durand and Fichet (1988), Bandelt
and Dress (1989), Diatta and Fichet (1994)). Some of these cluster structures
are closed under finite nonempty intersections.

In this note, we place ourselves in a setting where singletons are not all
required to be clusters, and we show that the resulting cluster structures and
their corresponding closure under finite nonempty intersections still have the
same minimal members. Moreover, we show that indexed cluster structures
and weakly indexed closed cluster structures correspond in a one-to-one way.
This result generalizes the one obtained by Batbedat (1988) in the particular
case where each singleton is assumed to be a cluster. The paper is organized
as follows.

Cluster structures are introduced in Section 2 within the general setting
where singletons are not all required to be clusters. In Section 3, we consider
closed cluster structures and show that they have the same minimal mem-
bers as their corresponding cluster structures. Finally, the bijection between
weakly indexed closed cluster structures and indexed cluster structures is
given in Section 4 before a short conclusion.
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{5}{1, 2} {3} {4}

Fig. 1. A Hasse diagram representing a cluster structure.

2 Cluster structures

Let E be a finite nonempty set. A cluster structure on E is a collection C of
subsets of E, satisfying conditions (CS1), (CS2) and (CS2’), where:

(CS1) the empty set is not a member of C whereas the ground set E is, i.e.,
∅ /∈ C and E ∈ C;

(CS2) the set of minimal members of C (w.r.t. set inclusion) partitions E;
in other words, these minimal members are non-empty, pairwise disjoint,
and they cover E (i.e. their union equals E);

(CS2’) every non-minimal member of C is the union of members of C it
properly contains, i.e., for all X ∈ C: ∪{Y ∈ C : Y ⊂ X} ∈ {∅, X}.

The pair of conditions (CS2) and (CS2’) is often replaced by a stronger
condition requiring each singleton to be a member of C. Actually, a clus-
ter structure satisfying this strong requirement is said to be total or defi-
nite. Figure 1 represents a cluster structure C1 on the 7-element set E1 :=
{1, 2, 3, 4, 5, 6, 7}.

3 Closed cluster structures

To every subset collection can be associated its closure consisting of arbi-
trary intersections of its members. As we are concerned with collections of
nonempty subsets of finite sets, we will consider only finite nonempty inter-
sections. The closure of a subset collection C under finite nonempty intersec-
tions will be denoted by C, and C will be said to be closed when it satisfies
the condition (CS3) below:

(CS3) the intersection of two members of C is either empty or a member of
C, i.e., X,Y ∈ C implies X ∩ Y ∈ C ∪ {∅}.

It may be noted that conditions (CS2) and (CS2’) are equivalent under
conditions (CS1) and (CS3). Moreover, for any subset X of E, conditions
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{4}{1, 2} {3} {5}

Fig. 2. A Hasse diagram representing a closed cluster structure.

(CS1) and (CS3) guarantee the existence of the least member of C containing
X .

A closed cluster structure is a cluster structure satisfying Condition (CS3)
above. As an example, Figure 2 represents a closed cluster structure which is
the closure of the cluster structure presented in Figure 1; incidentally, it can
be noticed that if the pair {1, 2} is considered as a singleton, then the above
closed cluster structure is nothing else than a pyramid in the sense defined
by Diday (1884).

To show that C is a closed cluster structure when C is a cluster structure,
we just need to prove that every minimal member of C is also a minimal
member of C. This will result from the two following lemmas.

Lemma 1. The following conditions are equivalent for a collection C of
nonempty subsets of E.

(a) C,C′ ∈ C and C minimal in C imply C ∩ C′ ∈ {∅, C}.
(b) Every minimal member of C is minimal in C.

Proof. (a) implies (b). Let C be a minimal member of C and let C1, . . . , Cp

be members of C such that (C1∩· · ·∩Cp)∩C 
= ∅. Then for each i = 1, . . . , p,
C ∩Ci 
= ∅, so that, by (a), C ⊆ C1 ∩ · · · ∩Cp. Then C is minimal in C since
we cannot have C1 ∩ · · · ∩ Cp ⊂ C.
(b) implies (a). Let C be a minimal member of C and let C′ ∈ C such that
C ∩C′ 
= ∅. Then C ∩C′ ∈ C, so that C ∩C′ = C since, by (b), C is minimal
in C.
��

Lemma 2. The conjunction of conditions (CS2) and (CS2’) is equivalent to
the conjunction of conditions (a) and (c), where:

(a) C,C′ ∈ C and C minimal in C imply C ∩ C′ ∈ {∅, C};
(c) minimal members of C cover E.

Proof. Let C satisfy conditions (CS2) and (CS2’) and let C be one of its
minimal members. We just need to derive condition (a). Let C′ ∈ C such
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that C ∩ C′ 
= ∅. If C′ is minimal in C, then, by (CS2), C = C′, proving (a).
If C′ is not minimal, let x ∈ C∩C′. Then, by condition (CS2’), there exists a
finite maximal sequence (C′

i)1≤i≤p of members of C such that x ∈ C′
1 ⊂ · · · ⊂

C′
p ⊂ C′. Then C′

1 is minimal, so that, by condition (CS2), C = C′
1, proving

(a).
Conversely, let C be a non-minimal member of C and let x ∈ C. Let C′ be

a minimal member of C containing x (C′ exists by condition (c)). Then, by
condition (a), C′ ⊂ C since C is not minimal, proving (CS2’). To complete the
proof we just have to show that minimal members of C are pairwise disjoint.
This follows from condition (a).
��
Let a reducible member of a cluster structure C be a non-minimal member

which can be obtained as the intersection of other members of C. Let Co be
the subset collection obtained from C by removing the reducible members of
C. Then, the result below shows that the closure of a cluster structure is a
closed cluster structure.

Proposition 1. The following hold for any cluster structure C:

(a1) C is a closed cluster structure;
(a2) C and C have the same minimal members;
(a3) (C)o ⊆ C.

Conversely, the following hold for any closed cluster structure C:

(b1) Co is a cluster structure;
(b2) C and Co have the same minimal members;
(b3) Co = C.

Proof. According to Lemmas 1 and 2, to prove assertions (a1) and (a2), it
is sufficient to show that minimal members of C are minimal in C. Now, this
follows from the fact that minimal members of C are minimal in C as well as
they partition the ground set. The other assertions are immediate.
��
It may be noticed that, for a cluster structure C, (C)o = C if and only if

C has no reducible member.

4 Indexed cluster structures and weakly indexed
closed cluster structures

Let C be a cluster structure on E. A pre-index on C is an order preserving
map f : (C,⊆) → (R+,≤) taking the zero value on minimal members of C,
i.e.,

(i) C minimal implies f(C) = 0;
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(ii) C ⊆ C′ implies f(C) ≤ f(C′).

In the sequel, we will assume that a pre-index f takes the value zero only
on minimal members, hence, f(C) = 0 if and only if C is minimal. A canonical
pre-index fc can be obtained by letting fc(C) be the number of elements of
the union of members of C properly contained in C. An index on C is a strict
pre-index, i.e., a pre-index f such that C ⊂ C′ implies f(C) < f(C′). A weak
index (Bertrand, 2000) on C is a pre-index f such that

C ⊂ C′ and f(C) = f(C′) imply C = ∩{C′′ ∈ C : C ⊂ C′′}.

When f is a pre-index (resp. an index, a weak index) on a cluster structure
C, the pair (C, f) is called a pre-indexed (resp. an indexed, a weakly indexed)
cluster structure. Let (C, f) be a pre-indexed cluster structure on E. Let
Inter(C, f) denote the pair (C, f), where f is defined on C by

f(C) = min{f(C′) : C′ ∈ C and C ⊆ C′}.

On the other hand, define an f -maximal member of C to be a non-minimal
member C ∈ C such that there is no member C′ ∈ C such that C ⊂ C′ and
f(C) = f(C′). Let Strict(C, f) denote the pair (C, f), where C is composed of
minimal and f -maximal members of C, and f the restriction of f on C. Then
Strict(C, f) is clearly an indexed cluster structure. Moreover, Proposition 2
below, proven by Batbedat (1988) in the particular case of definite cluster
structures, still holds in the setting adopted in the present paper, since each
of the maps Strict and Inter preserves minimal members.

Proposition 2.

(i) If (C, f) is an indexed cluster structure, then Strict(Inter(C, f)) = (C, f).
(ii) If (C, f) is a pre-indexed closed cluster structure, then Inter(Strict(C, f)) =

(C, f) if and only if any irreducible member of C is f -maximal.

The next proposition shows that indexed cluster structures and weakly
indexed closed cluster structures correspond in a one-to-one way.

Proposition 3.

(i) If (C, f) is an indexed cluster structure on E, then Inter(C, f) is a weakly
indexed closed cluster structure on E. Moreover, Strict(Inter(C, f)) =
(C, f).

(ii) Conversely, if (C, f) is a weakly indexed closed cluster structure on E,
then Strict(C, f) is an indexed cluster structure on E. Moreover,
Inter(Strict(C, f)) = (C, f).

Proof. (i). We just have to prove that f is a weak index on C. Indeed, f(C) =
0 if and only if C is minimal in C. Now, as minimal members of C coincide
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with those of C, f(C) = 0 if and only if C is minimal in C. On the other
hand, let C1, C2 ∈ C such that C1 ⊂ C2. Then clearly f(C1) ≤ f(C2). If,
in addition, f(C1) = f(C2), then C1 /∈ C since, otherwise, there would be
C ∈ C such that C1 ⊂ C2 ⊆ C with f(C1) = f(C1) = f(C2) = f(C), which
is impossible since (C, f) is indexed. Hence C1 = ∩{C′ ∈ C : C1 ⊂ C′}, as
required. The second assertion derives from Proposition 2 (i).
(ii). Here again, we only have to prove that f is an index on C. Now, this
derives from the following: (1) C and C have the same minimal members, and
(2) there are no two members C1, C2 of C such that C1 ⊂ C2 and f(C1) =
f(C1) = f(C2) = f(C2). The second assertion follows from Lemma 2 (ii)
because, by definition of a weak index, a non-minimal cluster C1 belonging
to C is necessarily reducible if it is not f -maximal.
��

5 Conclusion

We discussed the relationships between cluster structures and closed cluster
structures within a setting where singletons are not all required to be clus-
ters. Moreover, we proved a bijection between indexed cluster structures and
weakly indexed closed cluster structures, generalizing the result obtained by
Batbedat (1988) in the particular case where each singleton is assumed to be
a cluster.
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Abstract. DNA microarray technology allows to monitor simultaneously the ex-
pression levels of thousands of genes during important biological processes and
across collections of related experiments. Clustering and classification techniques
have proved to be helpful to understand gene function, gene regulation, and cellular
processes. However the conventional proximity measures between genes expression
data, used for clustering or classification purpose, do not fit gene expression speci-
fications as they are based on the closeness of the expression magnitudes regardless
of the overall gene expression profile (shape). We propose in this paper an adaptive
dissimilarity index which would cover both values and behavior proximity. The ef-
fectiveness of the adaptive dissimilarity index is illustrated through a classification
process for identification of genes cell cycle phases.

1 Introduction to microarray technology

Though most cells in our bodies contain the same genes, not all of the genes
are used in each cell. Some genes are turned on, or ”expressed” when needed.
Such specific genes define the ”molecular pattern” related to a specific func-
tion of a cell and in most cases appear as organized in a molecular regulation
network. To know how cells achieve such specialization, scientists need a way
to identify which genes each type of cell expresses. Microarray technology now
allows us to look at many genes at once and determine which are expressed in
a particular cell type (Eisen and Brown (1999)). DNA molecules representing
many genes are placed in discrete spots regularly organized in a line/column
matrix on a microscope slide. This is called a DNA microarray. Thousands of
individual genes (clones) can be spotted on a single square inch slide surface.
Next, total messenger RNA (the working copies of genes within cells, indica-
tors of which genes are being used) is purified from cells. The RNA molecules
are then labeled by attaching a fluorescent dye and spread over the DNA dots
on the microarray. Due to a phenomenon termed base-pairing, RNA will stick
to the gene it came from (this is the hybridization process). After washing
away all of the unstuck RNA, we can look at the microarray under a micro-
scope and see which RNA remains stuck to the DNA spots. Fluorescent mea-



484 A. Douzal Chouakria et al.

surements are performed using specific scanners and related spot fluorescent
values are extracted from images (http://genomewww.stanford.edu/Human-
CellCycle/HeLa/). Since we know which gene each spot represents, we can
determine which genes are turned on in the cells. Some researchers are us-
ing this powerful technology to learn which genes are turned on or off in
diseased versus healthy human tissues for example. The genes that are ex-
pressed differently in the two tissues may be involved in causing the disease.
In other experiments time-course DNA microarray analysis are necessary
to determine temporal genomic expression profiles relative to the dynamic
progression of a specific biological process or to response at stimulation or
treatment. In this paper we will be interested in the dynamic progression of
cell division cycle. Additionally, in order to take in account systematic biases
in the measured expression levels related to experimental factors, two-channel
array experiments are usually performed. It consists in using a reference ma-
terial in parallel to the tested material. For example: normal cells used as
references versus pathological ones being the tested cells. Both materials are
labeled using two different colors (green and red) and are mixed in equal
proportion prior to hybridization. The final expression measured is given as
log(base2)ratio between the tested material against the reference one.
The purpose of clustering or classification tasks is to determine co-expressed
genes which indicate co-function and co-regulation. Because different genes
are usually functionally implied in a same regulation network, users of mi-
croarrays data may not only be interested in clustering or classifying genes,
but also be interested in the relationship between these clusters (e.g. which
clusters are most close to each other), and the relationship between the genes
within the same cluster (e.g. which gene can be considered as the represen-
tative of the cluster and which ones are at the boundary area of the cluster).

2 Proximity measure between genes expression data

For clustering or classifying a set of genes expression profiles evolving over
time, the commonly used proximity measures are the euclidean distance or
the person’s correlation coefficient. Let g1 = (u1, ..., up) and g2 = (v1, ..., vp)
be the expressions levels of two genes g1, g2 observed at the instant of times
(t1, ..., tp). On the one hand, the Euclidean distance δE between g1 and g2 is

defined as: δE(g1, g2) =
(∑p

i=1(ui − vi)
2
) 1

2 . It stems directly from the above
definition that the closeness between two expression profiles depends on the
closeness of the values observed at corresponding points of time. δE ignores
the information of interdependence among the observed values. However, for
genes expression data, the overall shapes of gene expression patterns are of
greater interest than the individual magnitudes at corresponding instants of
time.
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2.1 Shape proximity measures

The alternate conventional measure to estimate the similarity between gene
expression shapes is Pearson’s coefficient correlation (called classical correla-
tion). Unfortunately, we will illustrate in the following that the classical corre-
lation do not score well for proximity between shapes either. For shape prox-
imity measure, we propose the temporal correlation coefficient introduced in
Chouakria Douzal (2003), Chouakria Douzal and Nagabhushan (2006) and
defined as follows:

cort(g1, g2) =

∑p−1
i=1 (u(i+1) − ui)(v(i+1) − vi)√∑p−1

i=1 (u(i+1) − ui)2
√∑p−1

i=1 (v(i+1) − vi)2

The temporal correlation coefficient cort ∈ [−1, 1] presents an interesting
property, it allows to estimate the linear dependency between the growths
of two gene expression profiles, observed at corresponding times. A value of
cort = 1 means that the growths (positive or negative) observed on both
expression profiles, at any corresponding instant of time, are similar in direc-
tion and rate (similar behavior). On the contrary a value of -1 means that the
growths observed on both expression profiles, at any corresponding instant
of time, are similar in rate but opposite in direction (opposite behavior). Fi-
nally, a value of 0 expresses that the growths observed on both expression
patterns are stochastically linearly independent (different behaviors).

2.2 Adaptive dissimilarity index for gene expression proximity

Our aim is to provide a new dissimilarity index model D which would cover
both proximity on values δE(g1, g2) and on behavior cort(g1, g2). The model
would allow to adjust the weights of behavior (shape) or values components.
The proposed model is based on an adaptive tuning function which modu-
lates the proximity on values according to the proximity on behavior. The
modulating function will increases the proximity on values if the proximity
on behavior (i.e the temporal correlation) decreases from 0 to -1. The re-
sultant dissimilarity D approaches the proximity on values if the temporal
correlation is zero (different behaviors). Finally, the modulating function will
decreases the proximity on values if the proximity on behavior (i.e temporal
correlation) increases from 0 to +1. The formulation to compute the resultant
dissimilarity index D is:

D(S1, S2) = f(cort(S1, S2)).δE(S1, S2)

where f(x) is an exponential adaptive tuning function fitting the above prop-
erties:

f(x) =
2

1 + exp(k x)
k ∈ 0, 1, ...
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Figure 1 shows the adaptive tuning function effect for several values of k.
The parameter k defines the weights, in the dissimilarity index D, of both
behavior and values components as summarized in the Table 1. For instance
for k=5, D � 2 δE when cort � −1 and decreases until D � 0 when
cort � 1, finally when cort � 0 D � δE . Figure 1 illustrates that higher is
the value of k, higher will be the temporal correlation weight and lower will
be δE weight.

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

CORT

k=0

k=1

k=2

k=3
k=5

f(x)=2/(1 +exp(k x))

Fig. 1. The adaptive tuning effect.

Behavior weight (%) Values weight (%)
k=0 0% 100 %
k=1 50% 50%
k=2 80% 20%
k=3 90% 10%

k ≥ 5 � 100% � 0%

Table 1. Behavior (cort) and Values (δE) weights according to k.

3 Classification for genes expression profiles

We propose to compare the adaptive dissimilarity index with the classical cor-
relation through a genes classification (assignment) approach. For the genes
classification purpose, we define first two conventionally used genes assign-
ment approaches: a supervised and an unsupervised approaches. Two genes
samples are considered: a learning sample based on a set of well-studied genes,
and a test sample based on a set of published genes compiled from the litera-
ture. Let’s give briefly the algorithmic details of these assignment approaches,
first in the case of the classical correlation Cor as a genes proximity measure,
then in the case of the adaptive dissimilarity index D.
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3.1 Supervised and unsupervised assignment approaches based
on the classical correlation Cor

The supervised assignment approach based on the classical correlation noted
(SupAss− Cor) consists to assign each gene to the most similar prior class
(Average-Link, Centroid-Link,...) of the well-studied genes. The assessment
step consists to evaluate the rand index between the obtained and the prior
classes of the published genes. The unsupervised assignment approach based
on 1−Cor noted (UnsupAss− cor) consists first to perform an hierarchical
clustering of the whole genes to classify, then each obtained cluster is assigned
to the most similar prior class as detailed in the following:

1 Begin UnsupAss-Cor
% assignment part %

2 - Perform an Hierarchical clustering (Average-Link) of the whole genes
3 - Extract the Nb clusters partition,
4 - Estimate the proximity between each obtained cluster

5 and the Nb prior classes of the well-studied genes,
6 - Assign each cluster to the most similar class,

7 - Assign each gene to the cluster’s class it belongs in.
%assessement part%

8 - Evaluate the rand index between the obtained and prior classes

9 of the published genes
10 End

3.2 Supervised and unsupervised assignment approaches based
on the adaptive dissimilarity index D

The main idea of the assignment approach based on the adaptive D, is to
learn the weights of both values and behavior components of D to fit best
the prior partition of the well-studied genes. Let’s give the algorithmic steps
of the supervised assignment approaches based on D and noted SupAss−D.

1 Begin SupAss-D based on the adaptive D

% assignment part %
2 - For each value of k from 0 to 6 per 0.1 %(61 values)

3 - Assign each gene to the most similar class
(Average-Link, Centroid-link,...)

5 - Evaluate the rand index between the obtained

6 and the prior classes of the well-studied genes.
7 - End For

8 - Let k* be the value of k maximizing the rand index
9 and Pk* the corresponding obtained assignments

% assessement part%
10 - Evaluate the rand index between the obtained and prior
11 classes of the published genes

12 End

Similarly the unsupervised assignment approach based on D noted UnSupAss−
D algorithmic steps are:

1 Begin UnsupAss-D

% assignment part %
2 - For each value ok k from 0 to 6 per 0.1 %(61 values)

3 - Perform an Hierarchical clustering (Average-Link) of the whole genes
4 - Extract the Nb clusters partition,
5 - Estimate the proximity between each obtained cluster

6 and the Nb prior classes of the well-studied genes,
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7 - Assign each cluster to the most similar class,

8 - Assign each gene to the cluster’s class it belongs in.
9 - End For

10 - Let k* be the value of k maximizing the obtained rand
11 index and Pk* the corresponding obtained assignments

%assessement part%

12 - Evaluate the rand index between the obtained and prior classes
13 of the published genes 19 End

4 Application and results

4.1 Data description

In this paper we will focus on the specific biological events occurring dur-
ing cell proliferation, this process insuring the multiplication or reproduction
of cells and which is drastically aberrant in cancer cells. The cell cycle, or
cell-division cycle, is the series of events between one cell division and the
next one. The cell cycle consists of progression along four distinct phases:
G1 phase, S phase (DNA synthesis or DNA replication), G2 phase and M
phase. A molecular surveillance system monitors the cell’s progress through
the cell cycle and checkpoints help to ensure that a cell divides only when
it has completed all of the molecular prerequisites for producing healthy
daughter cells. These restriction points mark the transition from one phase
to another : the transition from G1 to S phase is the first such transition
(G1/S). According to that, we will focus on the G1/S, S, G2, G2/M and
M/G1 phases and transitions we will short cut named ”cell cycle phases”
in the text. The genome-wide program of gene expression during the cell
division cycle has been investigated in a wide range of organisms Spellman
et al. (1998), Cho et al. (2001), Oliva et al. (2005), using DNA microar-
rays. In this paper we will focus on a set of genes expression data recorded
in the third experimentation of Whitfield et al. published data Whitfield
et al. (2002) (http://genome-www.standford.edu/Human-CellCycle/Hela/).
The dataset describes 1099 genes, periodically expressed in the human cell
cycle. RNA was isolated from Hela cells et 1 hour intervals after release from
a synchronous arrest in S phase. Two lists of genes are considered respectively
for learning and assessment steps. On the one hand a list of 20 well-studied
genes composed of 4 referenced genes for each of the 5 phases is used for learn-
ing step (Table 2, Figure 4). On the other hand, and for assessment step, a list
of 39 genes was compiled Whitfield et al. (2002) from the literature that had
been shown to be cell cycle regulated by traditional bio-molecular methods
(Table 5).

4.2 Identification of genes cell cycle phases results

To illustrate the efficiency of the adaptive dissimilarity index D against the
classical correlation, we compare their effectiveness to identify the cell cycle
phases of the 39 published genes, through the supervised and unsupervised
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Fig. 2. Gene expression profiles for the 20 well-characterized cell cycle genes whose
expression peaks in each phase of the cell cycle : G1/S, S, G2, G2/M and M/G1.
The double arrowed lines delimit the time duration for each cell cycle phase : G1,
S, G2 and M.

Phase G1/S S G2 G2/M M/G1
Name CCNE1,E2F1 RFC4,DHFR CDC2, TOP2A STK15,BUB1 PTTG1, RAD21

CDC6,PCNA RRM2, RAD51 CCNF, CCNA2 CCNB1, PLK VEGFC, CDKN3

Table 2. List of the 20 genes assigned in Whitfield et al. (2002) to the 5 cell cycle
phases.

assignment approaches. On the one hand, we have performed a supervised
assignment SupAss for centroid and average link. We have then compared
the obtained assignments when the supervised approach is based on the clas-
sical correlation and on the adaptive D. The obtained results of the assign-
ments of the 39 published genes and the corresponding corrected rand index
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are reported in the Table 5 at the columns 3-4 for average-link and 5-6 for
centroid-link. On the other hand, we have performed the unsupervised as-
signment approach UnsupAss based respectively on the classical correlation
and on the proposed dissimilarity index D. First an hierarchical clustering is
performed on the whole 1099 genes based respectively on 1 − Cor and Dk.
A 5 clusters partition is then extracted. For each extracted cluster we esti-
mate it’s dissimilarity to each of the well-referenced phases. The dissimilarity
values between the 5 clusters and the 5 phases are reported in the Tables
3 and 4. The obtained dendrograms illustrating the 5 obtained clusters and
the identified cell cycle phases are given in the Figure 3. Each gene is then
assigned to the cluster’s phase it belongs in. The assignments of the 39 pub-
lished genes obtained through UnsupAss − Cor and UnsupAss − Dk are
reported in the last two columns of the Table 5.

Fig. 3. The unsupervised approach: the dendrograms of the 1099 genes and their
phases identification based on Cor(left) and D(right).

5 Discussion and future scope

5.1 Comparative analysis

Let’s note that the assignments obtained in Whitfield et al. (2002) corre-
sponds to the centroid-linkage SupAss−Cor (3rd column). We can first show,
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G1/S S G2 G2/M M/G1
Cluster 1 0.755 0.416 0.806 1.236 1.461
Cluster 2 0.404 0.632 1.314 1.589 1.512
Cluster 3 1.461 0.976 0.345 0.451 0.663
Cluster 4 1.500 1.056 0.540 0.475 0.694
Cluster 5 1.494 1.411 0.737 0.457 0.426

Table 3. Unsupervised approach based on Cor: similarity between the 5 extracted
clusters and the 5 well-referenced phases.

G1/S S G2 G2/M M/G1
Cluster 1 1.520 0.762 3.284 5.016 4.123
Cluster 2 0.502 1.180 6.374 7.238 4.936
Cluster 3 5.709 2.194 0.761 0.907 1.161
Cluster 4 6.688 3.565 0.989 0.464 0.521
Cluster 5 4.264 3.025 2.873 1.755 1.158

Table 4. Unsupervised approach based on Dk* (k*=3.9): similarity between the 5
extracted clusters and the 5 well-referenced phases.

that whatever is the considered variant of the supervised approach, the rand
index of SupAss−D is greater than the one obtained through SupAss−Cor,
as illustrated at the last row of the Table 5. Hence, the genes cell cycle
phases of the 39 published genes are better identified through the adaptive
dissimilarity index D than through the classical correlation. Through the
both assignment approaches UnsupAss − Cor and UnsupAss − Dk, each
cluster is assigned to a distinguish phases. However the 20 referenced genes
are not well distributed through the 5 extracted clusters. Indeed, through
UnsupAss − Cor, 7 referenced genes 4 from M/G1 and 3 from G2/M are
merged in a same cluster labeled as M/G1, with one cluster including no
referenced genes (Figure 3 on left) and labeled as G2/M. A nearly similar
distribution is obtained through UnsupAss − D, 8 referenced genes 4 from
M/G1 and 4 from G2/M are merged in a same cluster labeled as G2/M, with
one cluster including non referenced genes (Figure 3 on right) and labeled
as M/G1. Finally, all the obtained assignment results show that whatever is
the assignment approach (supervised or unsupervised) the identification of
the genes cell cycle phases is better through the adaptive dissimilarity index
than through th classical correlation.

5.2 The unsupervised classification: a promising tool for better
understanding of dynamic cell cycle events

Considering the actual fast progression in the acquisition of new biological
data, mainly due to recent developments in high throughoutput experimen-
tal methods (such as DNA microarrays), biological concepts and knowledge
are undergoing drastic and rapid evolution. Keeping this in mind it appears
quite reasonable to expect some invaluable assistance from unsupervised clas-
sification methods rather than supervised ones to help in understanding the
complexity of life. The results obtained in this specific study, dedicated to
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Name Published Supervised Supervised UnSupervised
Phase Average-Link Centroid-Link

COR Dk∗ COR Dk∗ COR Dk∗

E2F5 G1 G2/M M/G1 G2/M M/G1 G2/M G2/M

CCNE1 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CCNE2 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CDC25A G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CDC6 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

CDKN3 G1/S M/G1 M/G1 M/G1 M/G1 M/G1 G2/M

E2F1 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

MCM2 G1/S G1/S G1/S G1/S G1/S G1/S S

MCM6 G1/S G1/S G1/S G1/S G1/S G1/S G1/S

NPAT G1/S G1/S G1/S G1/S G1/S G1/S G1/S

PCNA G1/S G1/S G1/S G1/S G1/S G1/S S

SLBP G1/S G1/S G1/S G1/S G1/S G1/S G1/S

BRCA1 S S S S S G1/S S

CDKN2C S G2 S G2 S G2 G2

DHFR S S S S S S S

MSH2 S G1/S S G1/S S G1/S S

NASP S G1/S G1/S G1/S G1/S G1/S G1/S

RRM1 S S S S S S S

RRM2 S S S S S S S

TYMS S S S S S S S

CCNA2 G2 G2 G2 G2 G2 G2 G2

CCNF G2 G2 G2 G2 G2 G2 G2

CENPF G2 G2/M G2/M G2/M G2/M M/G1 G2M

TOP2A G2 G2 G2 G2 G2 G2 G2

BIRC5 G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

BUB1 G2/M G2/M G2/M G2/M G2/M M/G1 G2/M

BUB1B G2/M G2/M G2/M G2/M G2/M G2/M G2/M

CCNB1 G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

CCNB2 G2/M G2/M M/G1 G2/M G2/M M/G1 G2/M

CDC2 G2/M G2 G2 G2 G2 G2 G2

CDC20 G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

CDC25B G2/M G2/M M/G1 G2/M M/G1 M/G1 G2/M

CDC25C G2/M G2 M/G1 G2 M/G1 G2/M G2

CDKN2D G2/M M/G1 M/G1 G2/M M/G1 M/G1 M/G1

CENPA G2/M G2 G2 G2/M G2 G2 G2/M

CKS1 G2/M G2 G2 G2 G2 G2 G2

CKS2 G2/M G2/M G2/M G2/M G2/M M/G1 G2/M

PLK G2/M G2/M G2/M G2/M G2/M M/G1 G2/M

STK15 G2/M G2/M G2/M G2/M G2/M G2 G2/M

Rand Index 0.760 0.830 0.790 0.818 0.757 0.771

Table 5. The assignment cell cycle phases of the 39 published genes.

better understanding cell cycle progression and regulation, bring some sup-
port to such an expectation. For example, considering results obtained by the
unsupervised classification associated to D (Fig.5 right) it’s possible to draw-
back three interesting and encouraging remarks. Note first, the classification
process lead to the 5 expected cell cycle phases, then the PCNA gene which
has been chosen by Whitfield et al. (2002) as representative of G1/S phase
has been classified by the UnsupASS−D approach in the S phase. And effec-
tively it’s quite well established that PCNA is a DNA polymerase expressed
at the highest levels in the S-phase. Indeed if PCNA is first expressed in mid-
G1, PCNA expression peaks in S phase and continues to be weakly expressed
in G2 and M phases of the cell cycle. Finally, among the four misclassified
M/G1 genes as G2/M by the UnsupASS −D approach we will just discuss,
as an example, on the PTTG1 gene. It has been recently demonstrated, by
classical molecular biology methods, that the PTTG1 expression peaks at
the S-G2 transition and declined thereafter Vlotides et al. (2006). According
to that, it makes sense to work out PTTG1 gene as classified in the G2/M
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cluster rather than in the M/G1 one. On the basis of all these encouraging
remarks our future works will focus on the biological processes related to the
different genes obtained in the 5 clusters including new biological knowledge
and the genes implication in regulation cell cycle molecular network.

6 Conclusion

This paper focuses on a new application domain of the microarrays and genes
expression profile analysis. We introduce the microarrays technology, discuss
main challenges of genes expression profile analysis and the great need of
clustering and classification techniques. For genes expression profile classifi-
cation, we propose an adaptive dissimilarity index which would cover both
values and behavior proximity. We show it’s effectiveness for genes identifi-
cation cell cycle phases , whatever is the considered assignment approach.
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Abstract. Edwin Diday, some two decades ago, was among the first few individuals
to recognize the importance of the (anti-)Robinson form for representing a proximity
matrix, and was the leader in suggesting how such matrices might be depicted
graphically (as pyramids). We characterize the notions of an anti-Robinson (AR)
and strongly anti-Robinson (SAR) matrix, and provide open-source M-files within
a MATLAB environment to effect additive decompositions of a given proximity
matrix into sums of AR (or SAR) matrices. We briefly introduce how the AR (or
SAR) rank of a matrix might be specified.

1 Introduction

Various methods have been developed in the classification literature for rep-
resenting the structure that may be present in a symmetric proximity ma-
trix. The motivating bases for these strategies have been diverse, and include
the reliance on spatial analogues (e.g., in multidimensional scaling), graph-
theoretic concepts (e.g., in hierarchical clustering and the construction of
additive trees), and order-constrained approximation matrices (e.g., matrices
that satisfy the set of (anti-)Robinson (AR) order restrictions, characterized
by a pattern of entries within each row and column never decreasing when
moving away from the main diagonal in any direction; for historical prece-
dents, see Robinson (1951)). It is within this last category of approximating
a given proximity matrix by another that is order-constrained (and where,
for convenience, proximity is now assumed keyed as a dissimilarity, so smaller
values reflect more similar objects) in which Diday’s contributions loam large.
In the early 1980’s and culminating in Diday (1986), he introduced the field
to how (anti-)Robinson matrices may generally be represented through what
are called pyramidal indices and their associated graphical display, or more
broadly, to the relevance of the (graph-theoretic) literature on object seri-
ation and its relation to the notion of an (anti-)Robinson form. We briefly
review in this short paper a few of the advances in the last two decades,
emphasizing, in particular, how sums of AR matrices might be identified and
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fitted through the minimization of a least-squares loss criterion. For a very
comprehensive and current review of the whole area of hierarchical repre-
sentations and their various extensions, the reader is referred to Barthélemy,
Brucker, and Osswald (2004).

2 Some definitions

Given an arbitrary symmetric n × n matrix, A = {aij}, where the main
diagonal entries are considered irrelevant and assumed to be zero (i.e., aii = 0
for 1 ≤ i ≤ n), A is said to have an anti-Robinson (AR) form if after some
reordering of the rows and columns of A, the entries within each row and
column have a distinctive pattern: moving away from the zero main diagonal
entry within any row or any column, the entries never decrease. The entries
in any AR matrix A can be reconstructed exactly through a collection of M
subsets of the original object set S = {O1, . . . , On}, denoted by S1, . . . , SM ,
and where M is determined by the particular pattern of tied entries, if any,
in A. These M subsets have the following characteristics:

(i) each Sm, 1 ≤ m ≤ M , consists of a sequence of (two or more) consecu-
tive integers so that M ≤ n(n−1)/2. (This bound holds because the number
of different subsets having consecutive integers for any given fixed ordering
is n(n− 1)/2, and will be achieved if all the entries in the AR matrix A are
distinct).

(ii) each Sm, 1 ≤ m ≤ M , has a diameter, denoted by d(Sm), so that for
all object pairs within Sm, the corresponding entries in A are less than or
equal to the diameter. The subsets, S1, . . . , SM , can be assumed ordered as
d(S1) ≤ d(S2) ≤ · · · ≤ d(SM ), and if Sm ⊆ Sm′ , d(Sm) ≤ d(Sm′).

(iii) each entry in A can be reconstructed from d(S1), . . . , d(SM ), i.e., for
1 ≤ i, j ≤ n,

aij = min
1≤m≤M

{d(Sm) | Oi, Oj ∈ Sm},

so that the minimum diameter for subsets containing an object pair Oi, Oj ∈
S is equal to aij . Given A, the collection of subsets S1, . . . , SM and their
diameters can be identified by inspection through the use of an increasing
threshold that starts from the smallest entry in A, and observing which sub-
sets containing contiguous objects emerge from this process. The substantive
interpretation of what A is depicting reduces to explaining why those subsets
with the smallest diameters are so homogenous.

If the matrix A has a somewhat more restrictive form than just be-
ing AR, and is also strongly anti-Robinson (SAR), a convenient graphical
representation can be given to the collection of AR reconstructive subsets
S1, . . . , SM and their diameters, and how they can serve to retrieve A. Specif-
ically, A is said to be strongly anti-Robinson (SAR) if (considering the above-
diagonal entries of A) whenever two entries in adjacent columns are equal
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(aij = ai(j+1)), those in the same two adjacent columns in the previous row
are also equal (a(i−1)j = a(i−1)(j+1) for 1 ≤ i−1 < j ≤ n−1); also, whenever
two entries in adjacent rows are equal (aij = a(i+1)j), those in the same two
adjacent rows in the succeeding column are also equal (ai(j+1) = a(i+1)(j+1)

for 2 ≤ i + 1 < j ≤ n− 1).
The reconstruction of an SAR matrix through the collection of consecu-

tively defined object subsets, S1, . . . , SM , and their diameters, and how these
serve to reconstruct A can be modeled graphically (see Figure 1). Internal
nodes would be at a height equal to the diameter of the respective subset; the
consecutive objects forming that subset are identifiable by downward paths
from the internal nodes to the terminal nodes corresponding to the objects in
S = {O1, . . . , On}. An entry aij in A can be reconstructed as the minimum
node height of a subset for which a path can be constructed from Oi up to
that internal node and then back down to Oj .

As a few final introductory historical notes, there is now a rather exten-
sive literature on graphically representing a matrix having an AR or SAR
form. The reader interested in pursuing some of the relevant literature might
begin with the earlier cited reference by Diday (1986) and his introduction
to graphically representing an AR matrix by a ‘pyramid’, and then continue
with the review by Durand and Fichet (1988), who point out the necessity of
strengthening the AR condition to one that is SAR if a consistent graphical
(pyramidal) representation is to be possible with no unresolvable graphical
anomalies. For further discussion and development of some of these represen-
tations issues, the reader is referred to Diatta and Fichet (1998), Critchley
(1994), Critchley and Fichet (1994), and Mirkin (1996, Chapter 7).

2.1 An illustrative numerical example

The proximity matrix given in Table 1 was published by The New York Times
(July 2, 2005), and contains the percentages of non-unanimous cases in which
the U.S. Supreme Court Justices disagreed from the 1994/95 term through
2003/04 (known as the Rehnquist Court). The (upper-triangular portion of
the) dissimilarity matrix is given in the same row and column order as the
Times data set, with the justices ordered from “liberal” to “conservative”:

1: John Paul Stevens (St)
2: Stephen G. Breyer (Br)
3: Ruth Bader Ginsberg (Gi)
4: David Souter (So)
5: Sandra Day O’Connor (Oc)
6: Anthony M. Kennedy (Ke)
7: William H. Rehnquist (Re)
8: Antonin Scalia (Sc)
9: Clarence Thomas (Th)

The lower-triangular portion of Table 1 is a best-fitting (least-squares) SAR
matrix obtained with the MATLAB M-file sarobfnd.m mentioned in the
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next section. The variance-accounted-for is 98.62%, so there is little residual
variability left. A graphical representation is given in Figure 1; the ‘pyramidal’
structure would be more apparent if the vertical lines were tilted slightly
inward toward the internal nodes.

St Br Gi So Oc Ke Re Sc Th

1 St .00 .38 .34 .37 .67 .64 .75 .86 .85
2 Br .36 .00 .28 .29 .45 .53 .57 .75 .76
3 Gi .36 .28 .00 .22 .53 .51 .57 .72 .74
4 So .37 .29 .22 .00 .45 .50 .56 .69 .71
5 Oc .66 .49 .49 .45 .00 .33 .29 .46 .46
6 Ke .70 .55 .55 .53 .31 .00 .23 .42 .41
7 Re .70 .55 .55 .53 .31 .23 .00 .34 .32
8 Sc .86 .74 .74 .70 .46 .42 .33 .00 .21
9 Th .86 .74 .74 .70 .46 .42 .33 .21 .00

Table 1. Dissimilarities among the nine Supreme Court justices above the diagonal;
best-fitting SAR values below the diagonal.

3 Computational procedures within MATLAB

The recent monograph by Hubert, Arabie, and Meulman (2006) provides a
collection of open-source M-files (i.e., the code is freely available) within a
MATLAB environment to effect a variety of least-squares structural repre-
sentations for a proximity matrix. Among these are strategies to search for
good-fitting AR and SAR forms, including additive decompositions of up to
two such structures for a single given proximity matrix. We do not give the
algorithmic details here on how these M-files are built, and instead, refer the
reader to the Hubert et. al (2006) monograph. We have collected all the rel-
evant M-files together at http://cda.psych.uiuc.edu/diday_mfiles. The
three M-files, arobfnd.m, biarobfnd.m, triarobfnd.m, fit respectively, one,
two, and three AR matrices to a given input proximity matrix; the three M-
files, sarobfnd.m, bisarobfnd.m, trisarobfnd.m, are for the strengthened
SAR forms. The two files, triarobfnd.m and trisarobfnd.m, are unique to
this site, and should provide a programming template to extend easily, when
needed, the additive decomposition to four or more matrices.

We give the help header for the representative file triarobfnd.m below,
along with an application to a randomly constructed 10 × 10 proximity ma-
trix (obtained from the contributed M-file randprox.m). As can be seen,
the (random) matrix is perfectly reconstructed by the three AR matrices
(a variance-accounted-for of 1.0 is achieved). For example, the (4,6) entry
in prox of .7948 is reconstructed based on the given output permutations,
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outpermone, outpermtwo, and outpermthree; explicitly, we use the (4,10)
entry in targone (.8290), the (8,9) entry in targtwo (−.0515), and the (3,9)
entry in targthree (.0173): .7948 = .8290 + (−.0515) + (.0173).

>> help triarobfnd

TRIAROBFND finds and fits the sum of three anti-Robinson

matrices using iterative projection to a symmetric

proximity matrix in the $L_{2}$-norm based on permutations

identified through the use of iterative quadratic assignment.

syntax: [find,vaf,targone,targtwo,targthree,outpermone, ...

outpermtwo,outpermthree] = triarobfnd(prox,inperm,kblock)

PROX is the input proximity matrix ($n \times n$ with a zero

main diagonal and a dissimilarity interpretation);

INPERM is a given starting permutation of the first $n$

integers; FIND is the least-squares optimal matrix (with

variance-accounted-for of VAF to PROX and is the sum of the

three anti-Robinson matrices TARGONE, TARGTWO, and TARGTHREE

based on the three row and column object orderings given by

the ending permutations OUTPERMONE, OUTPERMTWO, and

OUTPERMTHREE. KBLOCK defines the block size in the use of

the iterative quadratic assignment routine.

>> prox = randprox(10)

prox =

0 0.6979 0.3784 0.8600 0.8537 0.5936 0.4966 0.8998 0.8216 0.6449

0.6979 0 0.8180 0.6602 0.3420 0.2897 0.3412 0.5341 0.7271 0.3093
0.3784 0.8180 0 0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946

0.8600 0.6602 0.8385 0 0.6213 0.7948 0.9568 0.5226 0.8801 0.1730
0.8537 0.3420 0.5681 0.6213 0 0.9797 0.2714 0.2523 0.8757 0.7373

0.5936 0.2897 0.3704 0.7948 0.9797 0 0.1365 0.0118 0.8939 0.1991
0.4966 0.3412 0.7027 0.9568 0.2714 0.1365 0 0.2987 0.6614 0.2844
0.8998 0.5341 0.5466 0.5226 0.2523 0.0118 0.2987 0 0.4692 0.0648

0.8216 0.7271 0.4449 0.8801 0.8757 0.8939 0.6614 0.4692 0 0.9883
0.6449 0.3093 0.6946 0.1730 0.7373 0.1991 0.2844 0.0648 0.9883 0

>> [find,vaf,targone,targtwo,targthree, ...
outpermone,outpermtwo,outpermthree] = ...

triarobfnd(prox,randperm(10),2)

find =

0 0.6979 0.3784 0.8600 0.8536 0.5936 0.4966 0.8998 0.8216 0.6449
0.6979 0 0.8180 0.6602 0.3420 0.2897 0.3412 0.5341 0.7271 0.3093
0.3784 0.8180 0 0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946

0.8600 0.6602 0.8385 0 0.6213 0.7948 0.9568 0.5226 0.8801 0.1730
0.8536 0.3420 0.5681 0.6213 0 0.9797 0.2714 0.2523 0.8757 0.7373

0.5936 0.2897 0.3704 0.7948 0.9797 0 0.1365 0.0118 0.8939 0.1991
0.4966 0.3412 0.7027 0.9568 0.2714 0.1365 0 0.2987 0.6614 0.2844
0.8998 0.5341 0.5466 0.5226 0.2523 0.0118 0.2987 0 0.4692 0.0648

0.8216 0.7271 0.4449 0.8801 0.8757 0.8939 0.6614 0.4692 0 0.9883
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0.6449 0.3093 0.6946 0.1730 0.7373 0.1991 0.2844 0.0648 0.9883 0

vaf =

1.0000

targone =

0 0.6591 0.6591 0.6601 0.6601 0.7509 0.7754 0.7755 0.8757 0.8801

0.6591 0 0.3569 0.5849 0.6601 0.7509 0.7509 0.7755 0.8290 0.8290
0.6591 0.3569 0 0.3704 0.6601 0.6720 0.6851 0.7755 0.7840 0.8290

0.6601 0.5849 0.3704 0 0.1030 0.2063 0.2661 0.3883 0.7840 0.8290
0.6601 0.6601 0.6601 0.1030 0 0.2063 0.2418 0.3883 0.4269 0.8290

0.7509 0.7509 0.6720 0.2063 0.2063 0 0.0283 0.3290 0.3290 0.6651
0.7754 0.7509 0.6851 0.2661 0.2418 0.0283 0 0.2702 0.3290 0.5290
0.7755 0.7755 0.7755 0.3883 0.3883 0.3290 0.2702 0 0.2963 0.5263

0.8757 0.8290 0.7840 0.7840 0.4269 0.3290 0.3290 0.2963 0 0.5263
0.8801 0.8290 0.8290 0.8290 0.8290 0.6651 0.5290 0.5263 0.5263 0

targtwo =

0 -0.1489 0.0312 0.0312 0.0312 0.0492 0.0578 0.1813 0.2296 0.4148

-0.1489 0 -0.1392 -0.0471 -0.0333 0.0492 0.0578 0.0578 0.1344 0.1344
0.0312 -0.1392 0 -0.0537 -0.0333 0.0281 0.0376 0.0376 0.0376 0.0620

0.0312 -0.0471 -0.0537 0 -0.2446 0.0281 0.0376 0.0376 0.0376 0.0620
0.0312 -0.0333 -0.0333 -0.2446 0 -0.2488 -0.1600 0.0376 0.0376 0.0620
0.0492 0.0492 0.0281 0.0281 -0.2488 0 -0.1600 -0.0080 0.0160 0.0160

0.0578 0.0578 0.0376 0.0376 -0.1600 -0.1600 0 -0.3058 -0.0080 0
0.1813 0.0578 0.0376 0.0376 0.0376 -0.0080 -0.3058 0 -0.0515 -0.0426

0.2296 0.1344 0.0376 0.0376 0.0376 0.0160 -0.0080 -0.0515 0 -0.3495
0.4148 0.1344 0.0620 0.0620 0.0620 0.0160 0 -0.0426 -0.3495 0

targthree =

0 -0.1217 -0.0376 -0.0312 0.0346 0.0346 0.1510 0.1958 0.1962 0.1962

-0.1217 0 -0.1345 -0.1345 0.0346 0.0346 0.0364 0.1113 0.1113 0.1675
-0.0376 -0.1345 0 -0.1345 -0.0065 -0.0065 -0.0065 -0.0065 0.0173 0.0964
-0.0312 -0.1345 -0.1345 0 -0.2651 -0.0065 -0.0065 -0.0065 0.0145 0.0145

0.0346 0.0346 -0.0065 -0.2651 0 -0.0065 -0.0065 -0.0065 0.0080 0.0145
0.0346 0.0346 -0.0065 -0.0065 -0.0065 0 -0.0917 -0.0243 -0.0243 0

0.1510 0.0364 -0.0065 0.0065 -0.0065 -0.0917 0 -0.1680 -0.0243 -0.0229
0.1958 0.1113 -0.0065 -0.0065 -0.0065 -0.0243 -0.1680 0 0.0289 -0.0239

0.1962 0.1113 0.0173 0.0145 0.0080 -0.0243 -0.0243 -0.0289 0 -0.1362
0.1962 0.1675 0.0964 0.0145 0.0145 0 -0.0229 -0.0239 -0.1362 0

outpermone =

9 1 3 6 7 8 10 2 5 4

outpermtwo =

5 7 1 2 9 3 8 6 4 10

outpermthree =

9 8 4 5 3 7 10 1 6 2
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4 The concept of minimum AR (or SAR) matrix rank

Based on the type of M-file (triarobfnd.m) illustrated in the previous sec-
tion, a rather natural question arises as to the number of AR (or SAR)
components necessary to exhaust perfectly any given proximity matrix. The
minimum such number will be referred to as the AR (or SAR) rank of a
symmetric proximity matrix. As we saw for the random 10 × 10 matrix in
the example of the last section, we usually can do quite well with many
fewer components than the order of the matrix. Although we might expect
this to be true for a data matrix that is well-structured (and where two or
three AR or SAR components are all that is needed to effectively exhaust the
given proximity matrix), the same also appears to hold for merely randomly
structured matrices.

To make this last point even more clear, a small Monte Carlo analysis was
carried out in which 1000 random proximity matrices (with entries uniform
on (0,1)), of sizes 10, 20, 30, 40, and 50, were approximated by sums of AR
matrices to the point where at least a VAF of 99% was achieved. The fre-
quency results (out of 1000 such randomly generated matrices) are tabulated
below:

Number AR Components Needed
Matrix Size 2 3 4 5 6 7 8 9 10

10 37 959 4
20 316 684
30 994 6
40 205 795
50 995 5

Figure 2 illustrates, by means of box-and-whisker plots, the incremental gain
in VAF as a function of the number of fitted AR components.
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Fig. 1. A ‘pyramidal’ representation for the SAR matrix given in Table 1 having
VAF of 98.62%.
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Fig. 2. Incremental VAF Gains for Differing Numbers of AR Components.
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BARTHÉLEMY, J.-P., BRUCKER, F. and OSSWALD, C. (2004): Combinatorial
optimization and hierarchical classifications. 4OR: A Quarterly Journal of Op-
erations Research 2 (3), 179–219.

CRITCHLEY, R. (1994): On exchangeability-based equivalence relations induced
by strongly Robinson and, in particular, by quadripolar Robinson dissimilarity
matrices. In: B. van Cutsem (Ed.): Classification and Dissimilarity Analysis.
Springer-Verlag, New York, 173–199.

CRITCHLEY, R. and FICHET, B. (1994): The partial order by inclusion of the
principal classes of dissimilarity on a finite set, and some of their basic prop-
erties. In: B. van Cutsem (Ed.): Classification and Dissimilarity Analysis.
Springer-Verlag, New York, 5–65.

DIATTA, J. and FICHET, B. (1998): Quasi-ultrametrics and their 2-ball hyper-
graphs. Discrete Mathematics 192 (1-3), 87–102.

DIDAY, E. (1986): Orders and overlapping clusters by pyramids. In: J. De Leeuw,
W. Heiser, J. Meulman and F. Critchley (Eds.): Multidimensional Data Anal-
ysis. DSWO Press, Leiden, 201–234.

DURAND, C. and FICHET, B. (1988): One-to-one correspondences in pyramidal
representations: A unified approach. In: H.-H. Bock (Ed.): Classification and
Related Methods of Data Analysis. North-Holland, Amsterdam, 85–90.

HUBERT, L., ARABIE, P. and MEULMAN, J. (2006): The Structural Represen-
tation of Proximity Matrices with MATLAB. SIAM, Philadelphia.

MIRKIN, B. (1996): Mathematical Classification and Clustering. Kluwer, Dor-
drecht.

ROBINSON, W.S. (1951): A method for chronologically ordering archaeological
deposits. American Antiquity 19 (4), 293–301.



Density-Based Distances: a New Approach for

Evaluating Proximities Between Objects.
Applications in Clustering and

Discriminant Analysis

Jean-Paul Rasson and François Roland

Statistical Unit, University of Namur,
8 Rempart de la Vierge, B-5000 Namur, Belgium, jean-paul.rasson@fundp.ac.be

Abstract. The aim of this paper is twofold. First it is shown that taking densi-
ties between objects into account to define proximities between them is intuitively
a right way to process. Secondly, some new distances based on density estimates
are defined and some properties are presented. Many algorithms in clustering or
discriminant analysis require the choice of a dissimilarity: two applications are pre-
sented, one in clustering and the other in discriminant analysis, and illustrate the
benefits of using these new distances.

1 Introduction

In many statistical studies, a common first step consists in determining how
two objects are close. This is the case for several cluster analysis techniques
or for nearest-neighbor classification. Similarity and dissimilarity coefficients
are numbers that measure and summarize the proximity between two objects
described by the same set of variables. In some situations, the set of simi-
larity or dissimilarity coefficients between the objects under investigation is
available (such an example is given in Kruskal and Wish (1978), page 30)
and can be use. But most of the time, the objects are described only by a
pattern matrix (or profile matrix) and the similarity or dissimilarity coeffi-
cients have to be computed. Many different ways have been proposed: see
for example Gower and Legendre (1986) for a list and discussion of their
properties. But it appears that none of them takes into account the density
functions from which objects are issued. In this paper, we propose to study
density estimation contributions in defining dissimilarity coefficients.

2 Similarity, dissimilarity and distance

Let us fix some notations that will be used throughout the paper. The n
objects under investigation are denoted by x1, · · · ,xn; they are described by
p variables Y1, · · · , Yp such that xij = Yj(xi) is the value observed for the
variable Yj on the object xi. The set of all possible values for the variable Yj
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(called the observation domain) is denoted by Yj (j ∈ {1, · · · , p}). With these
notations, let us define the concepts of similarity, dissimilarity and distance.

If E = {x1, · · · ,xn}, a similarity coefficient (or simply a similarity) on
the set E is an application s from E × E into IR+ satisfying:

P1 ∀(xi,xj) ∈ E × E, s(xi,xj) = s(xj ,xi);

P2 ∀(xi,xj) ∈ E × E, xi 
= xj) : s(xi,xi) = s(xj ,xj) > s(xi,xj).

A dissimilarity coefficient (or simply a dissimilarity) on the set E is an ap-
plication d from E × E into IR+ satisfying P1 and the following condition:

P2’ ∀xi ∈ E, d(xi,xi) = 0.

A metric dissimilarity (or simply a distance) on the set E is a dissimilarity
such that the triangle inegality holds:

P3 ∀xi,xj ,xk ∈ E, d(xi,xj) ≤ d(xi,xk) + d(xk,xj).

When the p variables are quantitative (i.e. Yj ⊆ IR, j ∈ {1, · · · , p}), Minkowski
metrics offer a convenient way for measuring proximities:

d(xi,xj) =

(
p∑

k=1

|xik − xjk|r
) 1

r

. (1)

When r = 2, the Equation (1) reduces to Euclidean distance that is certainly
the most popular choice. Other common alternatives are the City-block dis-
tance (obtained when r = 1 in Equation (1)), the Chebychev distance:

d(xi,xj) = max
1≤k≤p

|xik − xjk|. (2)

or the Mahalanobis distance1 that takes account of the variance-covariance
matrix S:

d(xi,xj) = (xi − xj)
′S−1(xi − xj). (3)

As written in the introduction, there exists many different measures of
dissimilarity. Most of them work as follow: they evaluate the difference dijk

between objets xi and xj along the kth variable (k ∈ {1, · · · , p}), and combine
these differences to obtain the dissimilarity. To our knowledge, no dissimilar-
ity measure use the distribution of the values x1k, · · · , xnk to compute the
dijk (k ∈ {1, · · · , p}) but we think that it could solve many problems. In the
next section, we present one situation amongst others that argue in that way.

1 We should prefer the term statistic because Equation (3) does not satisfy the
triangle inequality.
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3 Motivations

The problem is illustrated in Figure 1. Obviously, there are two ”clouds”
of objects: a dense one on the left and a sparse one on the right. What is
less obvious is the answer to the question: does the object x belong to the
lefthandside or to the righthandside group ? If the Euclidean distance and a
k nearest neighbor approach are used to answer this question, the object x
will be assigned to the lefthandside group. However, it seems more intuitive
to assign x to the righthandside group because it is sparse whereas the left
one is dense.
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Fig. 1. Necessity to use the density estimates to assign an object.

To solve the problem, the distance between two objects must take into
account not only their positions but also the local density where they are
located: if they belongs to the same high density region of the space, the
distance between them should be smaller than if it exist a low density region
between them. Using the eyes, one of the best classifier in dimension two, a
hole in a high density appears more important than a hole of the same size
in a sparse density group. A similar argument was used by Wong and Lane
(1983) to develop a hierchical clustering algorithm referred in litterature by
the terms density linkage clustering. Let us also note that Hartigan (1975)
uses the notion of density to define the term natural cluster. Because most
of the time the densities are unknown, they have to be estimated: this is the
subject of the next section.

4 Density estimation by the kernel method: the
univariate case

To estimate the p univariate densities, we have decided to use a non para-
metric method. We have chosen the kernel method because it is very popular
and well studied (Silverman (1986), Scott (1992)). But others methods are
imaginable such as histograms or wavelets.

If X is a real random variable whose density function is f , given n real-
izations x1, · · · , xn drawn from f , the kernel estimator f̂ is defined ∀x ∈ IR
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by

f̂(x) =
1

n

n∑

i=1

1

h
K(

x− xi

h
). (4)

The function K(·) is a kernel function. It means that K(·) is a continu-

ous, positive and symetric function and satisfies

∫ +∞

−∞

K(t)dt = 1. Common

choices for K(·) are given in the Figure 2.
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Fig. 2. Expression and shape of three different popular kernels.

The parameter h is called the bandwidth or the smoothing parameter. The
kernel estimator corresponds to a sum of bumps centered on the different
values x1, · · · , xn (the lefthand side graphic in Figure 3); the shape of the
bumps is determined by the kernel function K(·) and their width by the
smoothing parameter. The correct estimation of the value of h is crucial:
if it is too small, the estimator is unstable and presents modes that are
inexistent in reality; if it is too large, the main features of the density (such
as bimodality) are obscured. The three righthand side graphics in Figure 3
illustrate that behaviour. The optimal general bandwith has still not been
found. For a detailed discussion on the estimation of the smoothing parameter
h, see for example Silverman (1986), pages 43-61.
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Fig. 3. Lefthandside: interpretation of the kernel estimator as a sum of bumps
centred on the observations. Righthandside: importance of a correct choice for the
value of the smoothing parameter.



Density-Based Distances 509

5 Density-based distances

Given a set E of n objects x1, · · · ,xn described by p quantitative variables
Y1, · · · , Yp, we propose the two new following measures of dissimilarity:

d(xi,xi) =

(
p∑

k=1

∣∣∣∣

∫ xjk

xik

f̂Yk(t)dt

∣∣∣∣
r
) 1

r

(5)

and

d(xi,xi) = max
1≤k≤p

∣∣∣∣

∫ xjk

xik

f̂Yk
(t)dt|

∣∣∣∣ . (6)

The functions f̂Yk
(·) (k ∈ {1, · · · , p}) are the univariate kernel estimators

along each variable Yk. The kernel function is the Gaussian kernel but other
choices are possible and do not change much the results. For each estimator
f̂Yk

(·), the value of its smoothing parameter hk is given by:

hk = 1.06 min(sk, Rk/1.34)n−0.2 (7)

where sk is the empirical variance and Rk the interquartil range of the values
x1k, · · · , xnk. See Silverman (1986) page 47 for a justification. When the
number of objects n is large, the integrals in Equations (5) and (6) can be
replaced by

F̂Yk
(xik) − F̂Yk

(xjk). (8)

F̂Yk
(·) is the empirical cumulative distribution function defined as follow:

F̂Yk
(x) =

1

n

n∑

i=1

1I]−∞,x](xik) (9)

where 1ID(·) denotes the indicatrice function.
It is easy to demonstrate that the properties P1 and P2’ are satisfied.

The demonstration that the triangular inequality P3 also holds, and thus
that these new dissimilarities are distances, is nearly immediate if we notice
that for all k ∈ {1, · · · , p} and for all xi, xj , xl:

∣∣∣∣

∫ xjk

xik

f̂Yk
(t)dt

∣∣∣∣ ≤
∣∣∣∣

∫ xlk

xik

f̂Yk
(t)dt

∣∣∣∣ +

∣∣∣∣

∫ xjk

xlk

f̂Yk
(t)dt

∣∣∣∣ . (10)

Theses distances can be related to a statistical model based on non ho-
mogeneous Poisson processes, and developed by Rasson and Granville (1995,
1996) in clustering. If the n objects x1, · · · ,xn to be clustered are a realiza-
tion of a non homogeneous Poisson process with intensity2 f(·) on a convex
domain D ⊂ IRp that is the union of g unknown convex disjoint domains

2 If the intensity f(·) is unknown, it is estimated by the kernel method.
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Fig. 4. The hypervolums criterion when p = 1. The number of clusters g is fixed
to be four.

D1, · · · , Dg (D = ∪g
l=1Dl), the maximum likelihood solution indicates to

find a partition into g clusters C1 · · · , Cg such that

g∑

l=1

∫

H(Cl)

f(t)dt (11)

is minimal, where H(Cl) denotes the convex hull of the objects belonging
to the cluster Cl (l ∈ {1, · · · , g}). This criterion is known as the generalized
hypervolums criterion. If p equals one, the criterion reduces to the determi-
nation of g disjoints intervals D̂1, · · · , D̂g containing all objects such that

g∑

l=1

∫

D̂l

f(t)dt (12)

is minimal (Figure 4).
When p equals one, the distance defined in Equations (5) and (6) between

xi and xj reduce to

d(xi, xj) =

∣∣∣∣

∫ xj

xi

f̂(t)dt

∣∣∣∣ (13)

and the intervals D̂′
1, · · · , D̂′

g obtained by minimising

g∑

l=1

∑

xi,xj∈D̂′
l

d(xi, xj) (14)

are the same than the intervals D̂1, · · · , D̂g obtained from Equation (12).
Similar results have still to be found when p is greater than two and all our
attention is devoted to this question.
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6 Applications

The dataset under study in the first application consists of protein consump-
tion measurements in twenty-five European country for nine food groups
(Weber and Weber (1974)). If the usual Euclidean distance is used to com-
pute the dissimilarity matrix, no hierarchical clustering algorithm provides
easily interpretable results. For example, the Ward method provides the den-
drogram on the lefthandside in Figure 5. But, if the distance given either by
Equation (5) (r = 2) or by Equation (6) is used, the dendrograms provided
by the Ward method (respectively center and righthandside of Figure 5) re-
flects very well the geographical and political situation of these twenty-five
countries at that time. The main difference between these two dendrograms
is the level where Eastern Europe is merged with Western Europe.
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Fig. 5. Dendrogram obtained by the Ward method. Lefthandside: the Euclidean
distance. Center: the distance defined in Equation (5), r = 2. Righthandside: the
distance defined in Equation (6).

For example, in the righthandside dendrogram in Figure 5, the groups,
from top to bottom, are: Scandinavia (Finland, Norway, Denmark and Swe-
den), Eastern Europe (Belgium, United Kingdom, Ireland, West Germany,
Austria, Netherlands, France and Switzerland), the Balkans (Albania, Roma-
nia, Bulgaria and Yugoslavia), Eastern Europe (East Germany, Czechoslo-
vakia, Poland, Hungary and USSR), the Mediterranean (Greece and Italy)
and finally the Iberians (Spain and Portugal). A two-dimensional represen-
tation of the twenty-five coutries is given in Figure 6 by performing ordinal
multidimensional scaling on the dissimilarity matrix computed from the dis-
tance defined in Equation (6).

The second application relates to early enterprises bankruptcy detection.
The dataset contains 2727 Belgian enterprises that have sent their statement
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Fig. 6. A two-dimensional representation of the twenty-five country using ordinal
multidimensional scaling on the dissimilarity matrix computed from the distance
defined in Equation (6).

of account to the SPF Finance (Service Public Fédéral of Finance) in 1997.
Each enterprise is described by 28 financial ratios (quantitative variables) and
by a binary variable: it equals 1 if the enterprise was declared failed during the
next three year (from 1997 to 2000) and equals 0 otherwise. The objective is to
find a discriminant rule to distinguish the failed enterprises from the healthy
ones. The major problem is that among the 2727 enterprises, only a small
number (175 enterprises) went to bankruptcy (the risk group): a discriminant
rule declaring all enterprises as healthy presents a good classifications rate of
93.58% but no loaner will accept it. The discriminant rule has to maximize the
good classifications rates in the risk group while offering a acceptable good
classifications rate in the normal group. Using a k nearest neighbor approach
with our density-based distances encounters that requirement whereas the
use of the Euclidean distance fails completely. The Fisher linear discriminant
analysis performs better but the good classifications rate for the risk group
is still 10% lower than ours. All results are given in Table 1.

The last application is still in clustering but the dataset in this case con-
sists of eight objects described by four interval variables (Bock and Diday
(2000)): the well-known Ichino oils dataset (Ichino and Yagushi (1994)). From
the viewpoint of chemists, it is known that linseed and perilla oils are used
for paint, cottonseed, sesame, camellia and olive oils are used for foods and
cosmetics and endly beef-tallow and hog fat are fats. To be able to handle
with interval variables, our density-based distances have to be adapted: in the

Equations (5) and (6), the integrals

∣∣∣∣

∫ xjk

xik

fYk
(t)dt

∣∣∣∣ expressing the difference

between objects xi and xj along the kth variable are replaced by

(∣∣∣∣

∫ mjk

mik

fMk
(t)dt

∣∣∣∣
2

+

∣∣∣∣
∫ ljk

lik

fLk
(t)dt

∣∣∣∣
2
) 1

2

(15)
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k nearest neighbor (k = 5) k nearest neighbor (k = 5)
Distance defined in Equation (5) Distance defined in Equation (6)

Declared as Declared as
Healthy Bankruptcy Healthy Bankruptcy

Healthy 1769 783 Healthy 1724 828
Bankruptcy 36 139 Bankruptcy 30 145

Bankruptcy: 79.42% Bankruptcy: 82.85%
Healthy: 69.31% Healty: 67.59%

k nearest neighbor (k = 5) Fisher
Euclidean distance linear discriminant analysis

Declared as Declared as
Healthy Bankruptcy Healthy Bankruptcy

Healthy 2119 433 Healthy 1852 700
Bankruptcy 96 79 Bankruptcy 51 124

Bankruptcy: 45.14% Bankruptcy: 70.86%
Healthy: 83.03% Healty: 72.57%

Table 1. Results for the k nearest neighbor algorithm using the density-based
distances defined in Equations (5) and (6), the Euclidean distance and for the Fisher
linear discriminant analysis on the financial dataset. Good classification rates are
estimated by cross-validation.

Each interval variable Yk with Yk(xi) = [aik, bik] is transformed into two
classical variables Mk and Lk such that Mk(xi) = (aik + bik)/2 = mik and
Lk(xi) = (bik − aik)/2 = lik; Mk corresponds to the midpoint of the interval
and Lk to its the half-length. A other alternative sould have been to use some
kind of density-based Hausdorff distance (De Carvalho et al. (2006)). Com-
puting dissimilarities between oils thanks to the symbolic version of Equation
(6) and performing a complete linkage algorithm provides the dendrogram
shown in Figure 7. A two-dimensional representation of the objects obtained
by ordinal multidimensional scaling is also given in Figure 7. These results
are very interesting. For example a three clusters partition corresponds to
the chemical classification.

7 Discussion

With a two-dimensional example, we have motivated the fact that densities
must be taken into account to define proximity between objects. We propose
some new distances based on density estimates. We use the non parametric
kernel method to estimate the densities. It means that the new distances are
appropriate no matter of the distribution of the objects under study. The
theoretical properties of these new distances have still to be studied more
deeply but in practice, we can already affirm that they perform better than
the Euclidean distance in many situations.
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Fig. 7. Left: dendrogram obtained with the complete linkage algorithm and the
symbolic version of the dissimilarity defined in Equation (6). Right: two-dimensional
representation of the eight oils by ordinal multidimensional scaling.
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Abstract. A square similarity matrix is called a Robinson matrix if the highest
entries within each row and column are on the main diagonal and if, when moving
away from this diagonal, the entries never increase. This paper formulates Robin-
son cubes as three-way generalizations of Robinson matrices. The first definition
involves only those entries that are in a row, column or tube with an entry of the
main diagonal. A stronger definition, called a regular Robinson cube, involves all
entries. Several examples of the definitions are presented.

1 Introduction

Let A = {aij} be a m×m matrix. A similarity matrix A is called a Robinson

matrix if the highest entries within each row and column of A are on the
main diagonal (elements aii) and if the entries never increase when moving
away from the diagonal. If A is a dissimilarity matrix, then A is called a
Robinson matrix if the lowest entries are on the main diagonal and if the
entries never increase when moving away from this diagonal in any direction
(in this case Hubert et al. (1998) speak of an anti-Robinson matrix). Since
an object i has usually 0 dissimilarity with itself, this main diagonal consists
of 0s in the latter case. If the A is symmetric, that is, aij = aji, then A is a
Robinson matrix if we have

1 ≤ i < j ≤ m ⇒ aij ≤ ai+1j and 1 ≤ j ≤ i < m ⇒ aij ≥ ai+1j

for similarities, and

1 ≤ i < j ≤ m ⇒ aij ≥ ai+1j and 1 ≤ j ≤ i < m ⇒ aij ≤ ai+1j

for dissimilarities.
The Robinson property of a (dis)similarity matrix reflects an ordering of

the objects, but also constitutes a clustering system with overlapping clusters.
Such ordered clustering systems were introduced under the name pyramids by
Diday (1984, 1986) and under the name pseudo-hierarchies by Fichet (1984,
1986). The CAP algorithm to find an ordered clustering structure was de-
scribed in Diday (1986) and Diday and Bertrand (1986), and later extended
to deal with symbolic data by Brito (1991) and with missing data by Gaul
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Fig. 1. Some aspects of a cube.

and Schader (1994). Chepoi and Fichet (1997) describe several circumstances
in which Robinson matrices are encountered. For an in-depth review of over-
lapping clustering systems we refer to Barthélemy et al. (2004).

Let B = {bijk} be a m×m×m array. In the present paper the concept of
a Robinson matrix is extended to a three-way (dis)similarity cube B, which
will be called a Robinson cube. Whereas a matrix is characterized by rows
and columns, a cube consists of rows, columns and tubes. The eight elements
of B characterized by

bijk for i, j, k = 1 or m

are called the vertices of the cube. The twelve rows, columns and tubes
containing two vertices are called the edges of B. Some aspects of a cube are
demonstrated in Figure 1.

The remainder of the paper looks as follows. Several definitions and some
properties of a Robinson cube are presented in the next section. Various
examples are presented in Section 3. Section 4 contains the discussion.

2 Definitions and properties

Before defining a Robinson cube we turn our attention to two natural re-
quirements for cubes. Similar to a matrix A a cube B may satisfy three-way

symmetry :

bijk = bikj = bjik = bjki = bkij = bkji for all i, j and k.
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Another natural requirement for a cube B is the restriction

biji = bijj for all i and j.

The latter requirement is called diagonal-plane equality (Heiser and Bennani,
1997, p. 191) because it requires equality of the three matrices {biij}, {biji}
and {bijj}, which are formed by cutting the cube diagonally, starting at one of
the three edges joining at the vertex b111. A weak extension of the Robinson
matrix is the following definition.

Definition 1. A (dis)similarity cube B is called a Robinson cube if the highest
(lowest) entries within each row, column and tube of B are on the main
diagonal (elements biii) and moving away from this diagonal, the entries
never increase (decrease).

From Definition 1 it follows that a similarity cube B is a Robinson cube if
we have

1 ≤ i < j ≤ m ⇒






bijj ≤ bi+1jj

bjij ≤ bji+1j

bjji ≤ bjji+1

and 1 ≤ j ≤ i < m ⇒






bijj ≥ bi+1jj

bjij ≥ bji+1j

bjji ≥ bjji+1.

The inequalities for a dissimilarity cube are obtained by interchanging ≤ and
≥ in the right parts of both equations. If the similarity cube B satisfies the
diagonal-plane equality, then B is a Robinson cube if we have

1 ≤ i < j ≤ m ⇒
{
bijj ≤ bi+1jj

bjij ≤ bji+1j

and 1 ≤ j ≤ i < m ⇒
{
bijj ≥ bi+1jj

bjij ≥ bji+1j .

Moreover, if the similarity cube B satisfies three-way symmetry, then B is a
Robinson cube if we have

1 ≤ i < j ≤ m ⇒ bijj ≤ bi+1jj and 1 ≤ j ≤ i < m ⇒ bijj ≥ bi+1jj .

Note that, although this is perhaps suggested in the above argument, a Robin-
son cube that satisfies three-way symmetry does not necessarily satisfy the
diagonal-plane equality.

Note that not all entries of B are involved in Definition 1. More precisely,
only those entries that are in a row, column or tube with an entry of the
main diagonal are involved in Definition 1. A stronger definition compared
to Definition 1 is the following.

Definition 2. A cube B is called a regular Robinson cube if

1. B is a Robinson cube (Definition 1)
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2. all matrices, which are formed by cutting the cube perpendicularly, where
for each matrix A entry a11 is an element of one of the three edges joining
at the vertex b111 (with a11 = b111 if A is one of the three faces joining
at the vertex b111), are Robinson matrices.

An example of a regular Robinson cube is the bottom cube in Figure 2.
A regular Robinson cube has some interesting features. For example, if B is
a regular Robinson cube then it satisfies both three-way symmetry and the
diagonal-plane equality. These properties become clear from the following
result on the composition of a regular Robinson cube.

Proposition 1. Let q = min(i, j, k) and r = max(i, j, k). If B is a regular
Robinson cube, then its entries bijk equal

bqrs = brqs = bqsr = brsq = bsqr = bsrq for s = q, ..., r.

Proof. The idea for the proof is depicted in Figure 1. First, let A be the front
face of the cube, where a11 = b111. Since b221 is a diagonal element of A, A
is a Robinson matrix if b121 ≤ b221. Next, let A be the cutting perpendicular
on the front face of the cube, with a11 = b121. Since b121 is a diagonal element
of A, the latter is a Robinson matrix if b121 ≥ b221. Thus, if B is a regular
Robinson cube, then b121 = b221 (= b211 = b212 = b112 = b122). �

3 Examples

The most popular functions for triadic dissimilarities used in classification
literature are the symmetric Lp-transforms:

bijk = (ap
ij + ap

ik + ap
jk)1/p.

For example, for p = 1 we have the perimeter function, for p = 2 the general-
ized Euclidean function, and for p = ∞ the generalized dominance function,
that is, bijk = max(aij , aik, ajk). An alternative function for dissimilarities is
the variance function, defined by

b2ijk = var(aij , aik, ajk) = (a2
ij + a2

ik + a2
jk) − 1

3
(aij + aik + ajk)2

which is also symmetric in i, j and k (De Rooij and Gower, 2003, p. 188).

Proposition 2. Let A and B be respectively a dissimilarity matrix and cube.
Suppose bijk is defined as a Lp-transform or the variance function. Then B
is a Robinson cube if and only if A is a Robinson matrix.
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Proof. For 1 ≤ i < j ≤ m we have

bijj = (2ap
ij)

1/p ≥ (2ap
i+1j)

1/p = bi+1jj if and only if aij ≥ ai+1j

for a Lp-transform of aij , aik and ajk, and

b2ijj = 2a2
ij −

1

3
(2aij)

2 ≥ 2a2
i+1j −

1

3
(2ai+1j)

2 = b2i+1jj

if and only if

2

3
a2

ij ≥ 2

3
a2

i+1j if and only if aij ≥ ai+1j

for the variance function of aij , aik and ajk. A similar property holds for
bijj ≤ bi+1jj for 1 ≤ j ≤ i < m. �

A stronger property holds for the dominance function for dissimilarities, or
equivalently the minimum function bijk = min(aij , aik, ajk) for similarities.

Proposition 3. Let A and B be respectively a similarity matrix and cube. If
bijk = min(aij , aik, ajk), then B is a regular Robinson cube if and only if A
is a Robinson matrix.

Proof. If A is a Robinson matrix then the minimum function has the property

1 ≤ i ≤ j ≤ k ≤ m ⇒ bijk = min(aij , aik, ajk) = aik

which fulfills the second requirement in Definition 2. Moreover, we have

1 ≤ i < j ≤ m ⇒ bijj = aij ≤ ai+1j = bi+1jj and

1 ≤ j ≤ i < m ⇒ bijj = aij ≥ ai+1j = bi+1jj

which shows the first requirement of Definition 2. �

Suppose the data at hand are binary (0/1) scores and that there are n
records of i, j and k. Denote by

ni = the number of 1s in i

nij = the number of 1s common in i and j

nijk = the number of 1s common in i, j and k.

In the remainder of this paper we assume that all matrices and cubes are
of the similarity kind. However, the properties below could also have been
formulated for dissimilarities.
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Proposition 4. Let the Jaccard similarity coefficient be defined as

aij =
nij

ni + nj − nij
for pairs of objects, and

bijk =
nijk

ni + nj + nk − (nij + nik + njk) + nijk
for triples of objects.

(The latter definition comes from Heiser and Bennani, 1997, p. 196). Then
B is a Robinson cube if and only if A is a Robinson matrix.

Proof. The result follows from the fact that

aij =
nij

ni + nj − nij
= bijj . �

Proposition 5. If aij = nij and bijk = nijk, then the following statements are
equivalent:

1. A is a Robinson matrix
2. B is a regular Robinson cube
3. bijk = min(aij , aik, ajk).

Proof. The result follows from the fact that nijj = nij , and if A is a Robinson
matrix, then nijk has the property

1 ≤ i ≤ j ≤ k ≤ m ⇒ nijk = min(nij , nik, njk) = nik. �

The result in Proposition 5 applies to the Russel-Rao similarity coefficient
which is defined as nij/n for pairs of objects and nijk/n for triples of objects
(Heiser and Bennani, 1997, p. 197). A sufficient condition for A with elements
aij = nij to be a Robinson matrix can be found in Hodson et al. (1971, p.
279). Let the binary scores be in a n×m table X, for example

X =





1 0 0
1 1 0
0 1 0
1 1 1
0 1 1
0 0 1





where the objects i, j and k identify the columns of X. Suppose that the
columns of X are ordered such that in each row the 1s are bunched together:
X is said to posses the consecutive 1s property (see, for example, Hubert,
1974, p. 977 or Heiser, 1981, p. 73). If the rows of X contain consecutive
1s, then A with elements aij = nij is a Robinson matrix. It follows from
Proposition 5 that this condition is then also sufficient for B with elements
bijk = nijk to be a Robinson cube. Alternatively, it is also possible to gener-
alize the original proof in Hodson et al. (1971) for a matrix to a cube.
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Fig. 2. The sum of regular Robinson cubes is a regular Robinson cube.

Proposition 6. If the columns of a binary table are ordered such that the
rows contain consecutive 1s, then B with elements bijk = nijk is a regular
Robinson cube.

Proof. For the sake of an example consider the binary table X. The proof is
further depicted in Figure 2. The first six cubes are the similarity cubes with
elements nijk corresponding to the six rows of X. If a row has consecutive 1s,
the similarity cube corresponding to this row, is a Robinson cube. The seventh
and last cube in Figure 2, is the cube with elements nijk for the complete table
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X. Figure 2 visualizes an interesting property of regular Robinson cubes: the
sum of regular Robinson cubes is again a regular Robinson cube. �

4 Discussion

A data array arranged in a cube in which rows, columns and tubes refer
to the same objects has been called three-way one-mode, or triadic data.
Such data have been studied in attempts to identify higher order interactions
among objects (Heiser and Bennani, 1997). In this paper, we have shown
that we can recognize a simple order among the objects in triadic data, by a
generalization of the Robinson property for dyadic data. We have discussed
a general version of the Robinson cube, and a more specific one. Studying
several definitions of triadic (dis)similarities, we found that in most cases,
if a dyadic (dis)similarity is Robinsonian, then the triadic (dis)similarity is
Robinsonian, too. A regular Robinson cube occurs only with the Russel-Rao
coefficient calculated on an attribute matrix with the consecutive 1s property,
and with the dominance metric for dissimilarities.
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CHEPOI, V. and FICHET, B. (1997): Recognition of Robinsonian dissimilarities.
Journal of Classification 14, 311-325.

DE ROOIJ, M. and GOWER, J.C. (2003): The geometry of triadic distances. Jour-
nal of Classification 20, 181-220.

DIDAY, E. (1984): Une représentation visuelle des classes empiétantes: les pyra-
mides. Research report 291, INRIA.

DIDAY, E. (1986): Orders and overlapping clusters in pyramids. In: J. de Leeuw,
W.J. Heiser, J.J. Meulman and F. Critchley (Eds.): Multidimensional Data
Analysis. DSWO Press, Leiden, 201-234.

DIDAY, E. and BERTRAND, P. (1986): An extension of hierarchical clustering:
the pyramidal representation. In: E.S. Gelsema and L.N. Kanal (Eds.): Pattern
Recognition in Practice II. North-Holland, Amsterdam, 411-424.

FICHET, B. (1984): Sur une extension de la notion de hiérarchie et son équivalence
avec quelques matrices de Robinson. Actes des “Journées de statistique de la
Grande Motte”, 12-12.

FICHET, B. (1986): Data analysis: geometric and algebraic structures. In: Y.A.
Prohorov et al. (Eds.): First World Congress of the Bernoulli Society Proceed-
ings. V.N.U. Science Press, 123-132.

GAUL, W. and SCHADER, M. (1994): Pyramidal classification based on incom-
plete dissimilarity data. Journal of Classification 11, 171-193.

HEISER, W.J. (1981): Unfolding Analysis of Proximity Data. Leiden University,
Leiden.



Robinson Cubes 523

HEISER, W.J. and BENNANI, M. (1997): Triadic distance models: axiomatization
and least squares representation. Journal of Mathematical Psychology 41, 189-
206.

HODSON, F.R., KENDALL, D.G. and TAUTU, P. (1971): Mathematics in the
Archaeological and Historical Sciences. University Press, Edinburgh.

HUBERT, L.J. (1974): Problems of seriation using a subject by item response
matrix. Psychological Bulletin 81 (12), 976-983.

HUBERT, L.J., ARABIE, P. and MEULMAN, J.J. (1998): Graph-theoretic repre-
sentations for proximity matrices through strongly-anti-Robinson or circular
strongly-anti-Robinson matrices. Psychometrika 43, 81-91.



Part VII

Multivariate Statistics



Relative and Absolute Contributions

to Aid Strata Interpretation

M. Carmen Bravo1 and José M. Garćıa-Santesmases2
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Abstract. Strata generalisation by symbolic objects is presented when there is
a class variable to be explained simultaneously in all strata. This is attained by a
generalised recursive tree-building algorithm for populations partitioned into strata
and described by symbolic data, that is, more complex data structures than classical
data. Symbolic objects describe decisional nodes and strata. This paper presents
some measures to interpret strata and nodes. The method is integrated into the
SODAS Software (Symbolic Official Data Analysis System), partially supported by
ESPRIT-20821 SODAS and IST-25161 ASSO.

1 Introduction

Generalisation of strata is obtained by a generalised recursive tree-building
algorithm (Breiman et al. (1984)) for a population partitioned into strata,
such as individuals of a country divided into regions. Common predictors
(including modal probabilistic variables and variables presenting hierarchical
dependencies) and a class variable describe population in all strata. A modal
variable associates to input data units a probability distribution over a set
of categories. Hierarchical dependence between two variables occurs when a
variable is non applicable for specific values of the other one.

The algorithm considers the strata structure in all its steps. Symbolic
objects describe decisional nodes and strata. A stratum is described by a
set of symbolic objects that represent rules for prediction of the class vari-
able, obtaining a conjoint interpretation of strata in the context of all strata.
We define and show how relative and absolute contributions help to strata
interpretation pointing out strata with common and different rules and the
importance or distribution of rules for a stratum. Node identification detects
antagonistic rules, that is, the same antecedents of a rule predict a set of
classes or its complementary, depending on the stratum. General formalisa-
tion can be extended to other symbolic data.

The method incorporates some advantages of Symbolic Data Analysis:
treatment of complex data structures and aggregated data, symbolic data can
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be derived from data bases or given by an expert, confidentiality of individuals
is guaranteed, input and output language are the same understable language
to the user.

2 Algorithm

In this section, input and output data of the algorithm are presented, to-
gether to a brief summary of the algorithm. The main measures used by the
algorithm are also presented.

Input data. Let Ω be a set of individuals, E = {S1, ..., Sm} ⊂ P(Ω) a
partition of Ω. Thus, each element of E, Si ⊂ Ω is a group of individuals,
called a stratum (for ω ∈ Ω, M(ω) = i ⇐⇒ ω ∈ Si). Let individuals
ω ∈ Ω be described by the predictors Yj , j = 1, ..., p and the class variable Z.
Different input variable types are considered: (1) Ω a set of monoevaluated
data: Variables Yj are categorical single-valued mappings from Ω to Yj =
{1, ..., lj}; (2) Ω a set of multievaluated data: Variables Yj are mappings
from Ω to P(Yj); (3) Ω a set of probabilistic modal data: Variables Yj are
modal variables with finite domain Yj , that is, for ω ∈ Ω, Yj(ω) = qω

j is
a probability distribution over Yj , identified with (1 qω

j (1), ..., lj q
ω
j (lj)). The

symbolic data description Yj(ω) can represent either the uncertainty for an
individual or the variation for a group of individuals regarding categories in
Yj . Case (2) is considered a particular case of probabilistic data, defining the
uniform distribution for the categories given by Yj(ω). In all cases, Z is a
categorical single-valued mapping from Ω to Z = {1, . . . , s}.

The objectives are to explain the class variable by the predictors, affected
by stratum membership; obtain sets of strata where this explanation is the
same; describe a stratum by these class variable explanations together with
their importance.

Output data. A decision tree can be represented by an organised set of
assertions (Ciampi et al. (1996), Bravo and Garćıa-Santesmases (1997)). In
our case, each decisional node described by the assertion tk = βk ∧ αk ∧ µk,
represents a set of strata for which the same rule for prediction of the class
variable can be applied. The tree is represented by:

T = {βk ∧ αk ∧ µk}k=1,...,K (1)

where K is the number of decisional nodes; βk is a conjunction of events (each
of them belonging to B = {b = [Yj ∈ Dj ], b

c = [Yj ∈ Yj − Dj]|Dj ⊂ Yj};
Dj is a subset of the space of categories Yj ; for modal data, ∼ replaces ∈)
defined in the predictors Yj ; αk is a modal symbolic event describing the
prediction for Z; and µk = [M ∈ Sk] with Sk ⊆ {1, . . . ,m} is a Boolean
event in the variable M . The µk is true for all individuals ω ∈ Ω that belong
to a stratum indicated in Sk. Stratum indicators in Sk are identified in steps
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3 to 5 of the algorithm (see below). Function ∧ is the product. Assertion
βk ∧µk describes the population (its extension) for which the prediction of Z
is described by αk. For monoevaluated data, βk ∧µk(ω) takes value 1 when ω
belongs to the node k and value 0 otherwise ; for probabilistic data, βk∧µk(ω)
is the probability of node k given ω, that is, for stratum indicators in Sk,
the probability of descriptions Dj (in βk), given ω. For example, given the
assertion βk ∧ µk, with βk = [sex ∼ f ] ∧ [salh25 ∼ yes], µk = [M ∈ Sk], and
an individual ω ∈ Ω, defined by probabilistic data sex(ω) = (m(.3), f(.7)),
salh25(ω) = (yes(.2), no(.8)), M(ω) = i, then (βk ∧ µk)(ω) = [sex(ω) ∼
f ] ∧ [salh25(ω) ∼ yes] ∧ [M(ω) ∈ Sk] = .3 · .2 · 1 = .06, when the stratum
i ∈ Sk and zero otherwise. This value gives the probability, given ω, of being
female and with salh25 for individuals belonging to stratum Si, with i ∈ Sk.

An example of a decisional node in the case of input monoevaluated data,
is [sex = f ] ∧ [salh25 = yes] ∧ [clerk ∼ (no(0.10), yes(0.90))] ∧ [NACE ∈
{services, electric}]. This assertion gives for individuals in services and elec-
tricity NACE sectors the rule if sex is female and mean gross hourly earnings
is below the first quartile then the estimated probability to be clerk is 0.9.

Each stratum is also described by an organised set of weighted assertions,
the decisional tree node descriptions where the stratum belongs to (see Sec-
tion 3 and Bravo and Garćıa-Santesmases (2000b), Bravo (2004a)).

Algorithm. The aim is to build recursively an organised set of assertions
T = {tk}k=1...K (see (1)), by binary partitioning the population and com-
bining at each step maximisation of an extended information content (EIC)
measure of the tree with respect to Ω and selection of new decisional nodes.
The EIC criterion measures the quality of prediction for the class variable
in a new partition, taking into account stratum membership in the cut. For
modal predictors, we obtain uncertainty partitions, that is, an individual
ω ∈ Ω does not belong to an element of the partition with certainty but it
has a probability of belonging to it. The quality of prediction is tested for
subsets of strata in order to build decisional nodes. A decisional node is a leaf
for some strata, while the other strata follow the recursive method. For these
strata that follow the recursive method a stopping criterion is also checked.
In each step of the algorithm, T is composed of exploratory (obtained from
the recursive partition, they can be binary split further on) and decisional
nodes (split in a previous step from an exploratory node, they are terminal).
The quality of prediction for the class variable by the predictors and strata
is given by the information content measure (IC) of the tree with respect to
Ω (Bravo and Garćıa-Santesmases (2000a), Bravo (2004a)).

The IC measure is defined as:

IC{T,Ω} := −
K∑

k=1

P (βk ∧ µk)Ent(Z|βk ∧ µk) (2)
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The EIC measure when node r is split by b, bc is defined as:

EIC{T, r, b, Ω} := IC{T (r), Ω} (3)

−P (βr ∧ b ∧ µr)
∑

i∈Sr
P ([M = i]|βr ∧ b ∧ µr)Ent(Z|βr ∧ b ∧ [M = i])

−P (βr ∧ bc ∧ µr)
∑

i∈Sr
P ([M = i]|βr ∧ bc ∧ µr)Ent(Z|βr ∧ bc ∧ [M = i])

where T (r) = T −{βr∧αr∧µr} is the tree that results from T when the node
r is removed. The value P ([M = i]|a) is the estimated conditional probability
of the stratum Si to the node described by a and Ent(Z|.) is the entropy
(Quinlan (1990)) for Z in the corresponding node.

Given an assertion β ∧ µ (µ = [M ∈ S]), defining a node in Yj , Z, for
monoevaluated data β ∧ µ is a Boolean assertion and P (β ∧ µ) and P ([M =
i]|β ∧ µ) are estimated in a frequentist way as:

P (β ∧ µ) =
Card(ExtΩ (β ∧ µ))

Card(Ω)
; P ([M = i]|β ∧ µ) =

Card(ExtSi (β ∧ µ))

Card(ExtΩ(β ∧ µ))

For probabilistic data, probabilities are estimated by:

P (β∧µ) =

∑
ω∈Ω(β ∧ µ)(ω)

Card(Ω)
; P ([M = i]|β∧µ) =

{ ∑
ω∈Si

β(ω)
∑

ω∈Ω(β∧µ)(ω) i ∈ S

0 otherwise

Descriptions for Z in αk are given by probability distributions over {1, ..., s}.
For monoevaluated data, probabilities are estimated as relative frequencies
of each class in a node. For probabilistic data, the probability of class l ∈
{1, ..., s} in node k is estimated by:

P ([Z = l]|βk ∧ µk) :=

∑
ω∈Ω(βk ∧ [Z = l] ∧ µk)(ω)∑

ω∈Ω(βk ∧ µk)(ω)

The value of the information content measure is the negative of the value
of a weighted uncertainty for the Z variable in decisional nodes. The extended
information content measure is based on internal uncertainty in strata in
successor nodes and measures the lost of uncertainty of Z in each stratum
node when splitting a node of the tree. The decisional node criterion is based
on a threshold for these internal uncertainties.

Let X be the set of exploratory nodes in an algorithm iteration. The
algorithm main steps are shown in Figure 1 and very briefly described here:

Step 0: Initialisation and evaluation of IC at first algorithm iteration,
IC{T,Ω}, that is, the negative of the Z uncertainty in the whole population.
The only exploratory node contains the whole population (and all strata).

Step 1: Check admissibility condition. For each r ∈ X (if any), build
Br ⊆ B the set of admissible splitting statements to be explored from node r
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and considering maximum depth level permitted (and the information given
by NA rules when they occur).

Step 2: Obtain the best split. For each r ∈ X , maximise in b ∈ Br, the
EIC measure, EIC{T, r, b, Ω} of T expanded from node r by splits b and
bc with respect to Ω. Maximise in r ∈ X these measures and select the best
node r′ and split b. This node r′ is removed from X (given that we explore
it now). Make the split.

Fig. 1. Algorithm main steps.

Step 3: Decisional node criterion. For the new children nodes, i.e., the
new exploratory nodes, check the set of strata for which the decisional node
condition is satisfied (e.g. minimum probability for a class of Z in a stratum
to be split in a decisional node). These strata are split from an exploratory
node to form one or several decisional nodes.

Step 4: Strata terminal node condition. For the new exploratory nodes
(when at least one strata belongs to it), check the set of strata for which the
stopping propagation condition from the node is satisfied (e.g. low weight).
Remove these strata from an exploratory node to form a terminal node.

Step 5: Check minimum improvement of IC. If the improvement of the
value of IC for the new tree obtained in Steps 2-4, is relatively small to
the previous IC value, then: (1) algorithm Steps 2-4 are undone and; (2)
the explored parent node r′ is split into two terminal nodes, splitting the
subset of strata by their quality of prediction of Z. This latter action is also
taken when the maximum depth level is attained or an exploratory node has



532 M.C. Bravo and J.M. Garćıa-Santesmases

no admissible splits (in Step 1 ). These nodes are called terminal-divide in
Figure 1.

Update node descriptions. In this step, update of node descriptions and
IC measure are obtained. When Steps 2-4 have not been undone, the descrip-
tions of new exploratory/decisional/terminal nodes in Yj add to its parent
node descriptions in Yj , the description of split b, bc. The description in M
of exploratory/decisional/terminal nodes obtained in Steps 2-5 identify the
strata they contain. Initially, at Step 2, exploratory nodes contain the same
strata as parent r′ node. Obtain for all these nodes the description in Z.
Compute IC{T,Ω}, go to Step 1.

3 Symbolic object description of strata

The advantages of the method presented here are the analysis of symbolic
data, the generalisation of a stratum by symbolic objets that represent predic-
tion rules for the class variable by the predictors giving a conjoint interpreta-
tion of strata in the context of all strata and not isolatedly, and classification
of strata by common prediction rules. Also that inclusion of strata informa-
tion in all steps of the algorithm gives in only one tree common prediction
rules for strata and favors good predictors for some strata.

With the method, it is possible to identify strata with antagonistic rules,
that is, the same predictor values can predict a different class, depending
on the stratum; characterize some strata before others, that is, that go out
of the recursive process before; identify strata that predict the same class
with a common rule with the exception of the values of one predictor; and,
definitively, classify strata with common prediction rules and identify strata
with different prediction rules. The formalisation of the method allows for the
extension to other symbolic data. The measures presented here are extended
to other symbolic data in Bravo (2004a); these data are interval, fuzzy and
possibilistic data (Diday (1995), Bravo(2004a)).

As an output of the algorithm, a symbolic object description of each
stratum Si is obtained. This description is composed by the rules that can be
applied for the stratum and gives the relative importance they have in this
stratum. A stratum is described by different ’segments’ of objects described
by the values of the predictors and the value for the prediction of the class Z
in these segments, as well as by certain weights these segments have in the
stratum. Each stratum is described by an organised set of weighted assertions
(Bravo and Garćıa-Santesmases (2000a, 2000b), Bravo (2004a)). Stratum Si

(i = 1, ...,m), can be described by:

Si : {wi
k(βk ∧αk) | k = 1, . . . ,K} (4)

where: wi
k := P (βk ∧ µk|[M = i]) ∈ [0, 1] is the relative contribution of the

decisional node k (with µk = [M ∈ Sk]) to the stratum Si. For monoevaluated
data, the value of wi

k is given by:
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wi
k =

{
Card(ExtSi

(βk))

Card(Si)
i ∈ Sk

0 otherwise
for k = 1, ...,K (5)

For probabilistic data, the value of wi
k is given by:

wi
k =

{ ∑
ω∈Si

βk(ω)

Card(Si)
i ∈ Sk

0 otherwise
for k = 1, ...,K (6)

where
∑

ω∈Si
βk(ω) is the weight of stratum Si in node k.

In both cases, βk and µk are the assertion and event of decisional node k
in Yj and Z, respectively. These contributions verify:

∑

k∈{1,...,K}

wi
k = 1 for all Si ∈ E

Relative contributions help strata interpretation. wi
k measures the relative

importance of node k to stratum Si.
The absolute contribution of a stratum to a node measures the importance

of a stratum in a node and characterises nodes by strata. Let tk be a tree
node, absolute contributions of strata to node tk (with µk = [M ∈ Sk]) are
wak

i := P ([M = i]|βk ∧ µk) for i ∈ {1, ...,m}. For monoevaluated data, the
value of wak

i is given by:

wak
i =

{
Card(ExtSi

(βk))

Card(ExtΩ(βk∧µk)) i ∈ Sk

0 otherwise
for i ∈ {1, ...,m} (7)

while for probabilistic data, the value of wak
i is given by:

wak
i =

{ ∑
ω∈Si

βk(ω)
∑

ω∈Ω(βk∧µk)(ω) i ∈ Sk

0 otherwise
for i ∈ {1, ...,m} (8)

The value wak
i measures the relative importance of stratum Si in node k.

In both cases, these contributions verify:

∑

i∈{1,...,m}

wak
i = 1 for all k = 1, ...,K

High wak
i values identify strata that characterize a decisional node k.

Looking at relative contributions we may detect strata that share rules,
that is, those with non zero relative contributions in the same node. The
importance of these rules in each stratum is given by these relative contri-
butions. From another point of view, a node describes several strata with
the same prediction rule. The importance of strata in the nodes or rules
associated are given by absolute contributions.
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4 Example

The method, implemented in the SODAS software (Bravo (2000, 2004a,
2004b)), has been applied to probabilistic data obtained from T25IT Italy:
Monthly earnings by local unit size, NACE (economic activity) and ISCO
(profession) data about statistics on the structure and distribution of earn-
ings (SES) in 1995. Consolidated original data refers to 5.000.000 employees.
More details on original data may be found in Bravo & Garćıa-Santesmases
(2000), Bravo (2004a).

The set Ω consists in 720 data units described by modal probabilistic data,
considering input data weights of original data. The groups described come
from the combination of the categories of 22 economic sectors, 7 professions
and 7 company sizes. The set of strata, E ⊂ P(Ω), contains subsets of data
units that belong to the same NACE sector (m = 5). The NACE sectors
considered are: mining and quarrying; manufacturing; electricity, gas and
water supply; construction; and services. The class variable is the binary
(yes/no) variable manual (s = 2). Predictors are sex and binary (yes/no)
variables for thresholds in original variable quartiles: h50 for mean weekly
hours; sal75 for mean gross monthly earnings; b25 for mean monthly value
of periodic bonuses, salh50 for mean gross hourly earnings and cvm median
for monthly earnings coefficient of variation. An example of the description
of one data unit ω ∈ Ω is:

(sex(ω) = (f(0.64),m(0.36)), sal75(ω) = yes, b25(ω) = (yes(0.04), no(0.96))

salh50(ω) = (yes(0.64), no(0.36)), nace(ω) = services,manual(ω) = no)

that represents a set of individuals of the services sector, non − manual,
with mean gross salary below the third quartile and probability distribu-
tions for sex (f(0.64),m(0.36)), for b25, (yes(0.04), no(0.96)) and for salh50,

(yes(0.64), no(0.36)).
Figure 2 shows the decisional tree built in 3 levels. The initial informa-

tion content measure is −0.677260 and the final value is −0.432755. Round
nodes are exploratory nodes and square nodes are decisional nodes. At level
3, five terminal nodes are obtained because the maximum level condition is
attained (see steps 5 and 1 of the algorithm). Light grey nodes (on the left
side of an exploratory node) represent prediction rules for manual employ-
ees and dark grey nodes (on the right side) for non − manual employees.
Nodes show weights and estimated probabilities for non − manual employ-
ees. Decisional nodes show strata as well. The decisional nodes in this tree are:

11d1 : [sal75 ∼ no]∧ [manual ∼ (no0.96, yes0.04)]∧ [nace ∈ {manufact, services,

construc, mining, electric}]

30d0 : [sal75 ∼ yes]∧ [salh50 ∼ yes]∧ [b25 ∼ yes]∧ [manual ∼ (no0.18, yes0.82)]∧

[nace ∈ {manufact, services, construc, mining}]

31d1 : [sal75 ∼ yes]∧[salh50 ∼ yes]∧[b25 ∼ no]∧[manual = no]∧[nace = construc]
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Fig. 2. Decision Tree on SES data, 3 levels

32d1 : [sal75 ∼ yes] ∧ [salh50 ∼ no] ∧ [sex∼ f ] ∧ [manual ∼ (no0.89, yes0.11)]∧

[nace ∈ {manufact, services, construc, mining, electric}]

An illustration of a node obtained by the maximum tree level condition
is:

33td1 : [sal75 ∼ yes]∧ [salh50 ∼ no]∧ [sex∼ m]∧ [manual ∼ (no0.7, yes0.3)]∧

[nace ∈ {manufact, mining}]

Node identification is nmdx or nmtdx with d for decisional nodes ob-
tained in step 3 of the algorithm by the decisional node condition, td for
decisional nodes obtained in step 5 or 1 of the algorithm, n the node tree
level and x = 0 when the higher probability class is manual and x = 1 when
the higher probability class is non−manual. Then, two nodes with the same
nm and different values of x define antogonistic rules.

Table 1 gives relative and absolute contributions for these decisional
nodes. Columns under Cr and Ca are relative and absolute contributions.
The sum of the elements in a Cr column is not 1, because in the table only
the decisional nodes obtained by the decisional node condition are considered.
All NACE sectors share the 11d1 rule, with a relative importance around 30%
or 35%. Rule 30d0 is shared by mining, manufacturing, construction and
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services sectors, having a relative importance into the first three of 30%,
while in the services sector it decreases to 11%. NACE sectors with the
exception of construction share rule 32d1 with a relative importance of 4%.

mining manuf electr constr servic

Cr Ca Cr Ca Cr Ca Cr Ca Cr Ca

11d1 0.34 0.05 0.32 0.57 0.34 0.05 0.3 0.05 0.37 0.28

30d0 0.37 0.05 0.32 0.77 0.28 0.05 0.11 0.13

31d1 0.08 1

32d1 0.04 0.05 0.04 0.6 0.04 0.05 × 0.04 0.04 0.26

Symbol × specifies a value lower than 0.01

Table 1. Table of relative and absolute contributions for probabilistic SES data.

Mining and manufacturing sectors share 3 rules 11d1, 30d0 and 32d1
with similar relative importance in both strata (Cr = 0.34, 0.37 and 0.04 for
mining and Cr = 0.32, 0.32 and 0.04 for manufacturing). Thus, about 70%
of manual explanation in both sectors is for the same prediction rules. The
services sector also shares these rules, the first and third with similar relative
importance while the second decreases to 11%. The manufacturing sector
characterises more than the others rules 11d1, 30d0 and 32d1 (Ca = 0.57, 0.77
and 0.6), while services do it less (Ca = 0.28, 0.13 and 0.26) and mining and
construction do it much less (Ca bellow 0.06 in all cases). The construction
sector characterises by itself the rule 31d1 (Ca = 1), which has a relative
importance in this sector of 8% (Cr = 0.08).

As an example, the mining sector is described by:

mining : {0.34([sal75 ∼ no] ∧ [manual ∼ (no(0.96), yes(0.04)]),

0.37([sal75 ∼ yes] ∧ [salh50 ∼ yes] ∧ [b25 ∼ yes]∧
[manual ∼ (no(0.18), yes(0.82))]),

0.04([sal75 ∼ yes] ∧ [salh50 ∼ no] ∧ [sex ∼ f ]∧
[manual ∼ (no(0.89), yes(0.11))]),

0.25Other}

that is, by three rules with respective relative importance in the sector of
0.34, 0.37 and 0.04. In Figure 2, nodes with a double surrounding line show
nodes where the mining sector is present.

5 Conclusion

A classification of strata by common prediction rules is obtained with the
method presented here, which provides a conjoint interpretation of strata in
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the context of all strata. Relative and absolute contributions have been de-
fined to aid strata interpretation after the application of the method. We have
showed how these contributions identify common prediction rules in different
strata, together with their relative importance. Also rules can be character-
ized by some strata. Together with the generalisation of strata by symbolic
objects, these contributions identify the rules applicable to a stratum with
their relative importance. These measures contribute to the interpretation of
the results of the method.
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Abstract. In previous papers, we propose a generalized principal component anal-
ysis (GPCA) aimed to display salient features of a multidimensional data set, in
particular the existence of clusters. In the light of an example, this article evidences
how GPCA and clustering methods are complementary. The projections provided
by GPCA and the sequence of eigenvalues give useful indications on the number
and the type of clusters to be expected; submitting GPCA principal components to
a clustering algorithm instead of the raw data can improve the classification. The
use of a convenient robustification of GPCA is also evoked.

1 Introduction

Visualizing and classifying are complementary purposes of exploratory data
analysis. If the data consist of an objects × variables real matrix, principal
component analysis (PCA) and related techniques (e.g. correspondence anal-
ysis) are the most popular tools of visualization and are often used to com-
plement partition-type clustering techniques (e.g. k-means or other methods
belonging to the class of “nuées dynamiques” according to Diday’s terminol-
ogy). There are two main aspects of this complementary use.

• Low dimensional displays of the data set allow the user to verify whether
or not the groups obtained by a clustering algorithm make sense and/or
which kind of groups they are: do the data present a “natural” partition
into groups, or do they arise from a more or less artificial dividing of a
fairly homogeneous data set? In other words, does the data cloud look
like cumulus, stratus or cirrus? Moreover, by representing the variables on
the same display, biplots (Gabriel (1971)) highlight the variables or their
combinations that are the most responsible for the visualized structure.

• Since principal components are supposed to contain the most relevant
information, they can be submitted to the clustering algorithm instead of
the whole set of variables. This can be expected to eliminate uninteresting
noise and thus facilitate the retrieval of clusters. The efficiency of such an
approach has been investigated by many authors. To cite only one recent
paper, see e.g. Chae and Warde (2006).



540 H. Caussinus and A. Ruiz-Gazen

However, while clustering is related to the search of some data structure,
PCA displays the data according to the criterion of maximal dispersion, which
is not necessarily the best way to visualize clusters or any salient feature of
the data. On the contrary projection pursuit techniques aim to display the
data by maximizing a criterion of heterogeneity, which is more closely related
to the search of a partition. In previous papers (Caussinus and Ruiz-Gazen
(1993, 1995), Caussinus et al. (2003b)) we show that suitable generalizations
of PCA work as projection pursuit techniques able to display interesting
structures of the data. Among the various projection pursuit techniques, the
present paper further investigates our approach as a complement of clustering
methods through a real life example.

Combinations of cluster analysis and PCA have been considered for a
long time. Chapters 8 and 9 of Diday et al. (1979) are devoted to such devel-
opments. Bock (1987) draws attention to the fact that PCA is not designed
for the purpose of classification and proposes alternatives he calls “projec-
tion pursuit clustering”; he notes that one of his proposals is close to Di-
day’s “Analyse typologique discriminante” (Diday et al. (1979), chapter 9).
Stute and Zhu (1995) propose a “dimension-reducing k-means clustering”.
Our mathematical tools and our practical approach are a little different from
those of these authors but our aim is very close to theirs.

2 Generalized PCA

Let X be a n×p matrix (objects × variables). The transpose of the ith row is
denoted by Xi, the empirical mean of the Xi’s by X̄ and the empirical matrix
of variances and covariances by V , which is assumed non singular. For any
column p-vector x we set ‖x‖V −1 = x′V −1x where x′ is the transpose of x.
Let us set

T (β) =

∑n−1
i=1

∑n
j=i+1 wij(β) (Xi −Xj) (Xi −Xj)

T

∑n−1
i=1

∑n
j=i+1 wij(β)

with wij(β) = exp (−β
2 ‖Xi −Xj‖2

V̂ −1), β being a tuning parameter (in prac-
tice close to 2: see the above mentioned papers).

Generalized PCA (GPCA) consists in projecting the Xi’s onto the sub-
space spanned by the m eigenvectors of V T−1(β) associated with the m
largest eigenvalues. An important property of these projections is to be in-
variant under any affine transformation of the data rows. In particular, raw
or standardized data provide the same display.

Another useful property concerns the sequence of eigenvalues. Within a
fairly general probabilistic model, it can be shown that the dimensions as-
sociated with theoretical eigenvalues lower than β + .5 merely contain noise,
which gives a valuable information about the number of principal compo-
nents to take into consideration. In practice, due to sampling variability and
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possible inadequacy of the model, this cutting off value must be cautiously
used. Testing procedures have been developed and turn out to be interesting
in some cases (Caussinus et al. (2003b)), but they will not be used in the
exploratory data analysis framework of the present paper.

The biplots obtained by means of GPCA can be interpreted as usual ones
(Gabriel (2002)).

In practice, the presence of outliers may slant GPCA towards their detec-
tion rather than the detection of clusters (an outlier is a small cluster). To
get round this problem, we exchange V for the robust estimate of the vari-
ance proposed by Ruiz-Gazen (1996). This estimate S depends on a tuning
parameter α in such a way that S(0) = V and S(α) becomes more robust
when α increases; here, α will be set to .2 except when more robustification
will be required.

The next section emphasizes the interaction between plotting and cluster-
ing from an empirical point of view, while our previous papers were mainly
devoted to the production of displays and their theoretical properties. At
this place, it is worth mentioning Art et al. (1982) who consider the empiri-
cal properties of a “local variance” similar to T for cluster analysis.

3 Getting and visualizing clusters

The interaction between GPCA and clustering will now be analyzed through
an example. The olive oil data set has been analyzed by several authors:
Forina et al. (1983) seem at the origin of the statistical study of these
data; Glover and Hopke (1992) and Cook et al. (2004) use them to illus-
trate projection pursuit approaches. The data can be found on the web:
http://www2.chemie.uni-erlangen.de/publications/ANN-book/datasets/

The data consist of the percentage composition of p = 8 fatty acids found
in the lipid fraction of n = 572 Italian olive oils. The 572 samples come from
known regions subdivided into areas as shown in Table 1.

Region Area Size

A Southern Italia 1 Northern Apulia 25

A Southern Italia 2 Calabria 56

A Southern Italia 3 Southern Apulia 206

A Southern Italia 4 Sicily 36

B Sardinia 5 Inland Sardinia 65

B Sardinia 6 Coastal Sardinia 33

C Northern Italia 7 Eastern Liguria 50

C Northern Italia 8 Western Liguria 50

C Northern Italia 9 Umbria 51

Table 1. Regions and areas of olive oil samples
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Fig. 1. GPCA biplot of olive oil data with region labels.

Since the oils come from known areas, these data have been previously
processed by means of various supervised clustering techniques. For exam-
ple, Cook and al. (2004) describe how to combine classifiers (support vector
machines) with visual (tour) methods. The challenge in the present paper
will be to process the data by a visualization/classification method without
taking into account the provenience of the oils, except to evaluate the results
of the analyses.

Step 1. To get a first insight into the data, we project both objects (letters
corresponding to the region) and variables (arrows) onto the first principal
plane of the GPCA described in the previous section (Figure 1). It seems
clear that there are three well characterized clusters which correspond to the
regions up to very few cases (ordinary or standardized PCA are far from
giving so a comprehensive display). Moreover, the biplot shows that variable
8 is the most responsible for the separation of one region (South A) from the
two others (Sardinia B and North C). In fact, a look at the data shows that
variable 8 is zero for B and C and strictly positive for A. Variables 5 and - to
a lower extent - 2, 3 and 4, are the most relevant ones to distinguish between
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B and C. On the other hand, the sequence of eigenvalues (10.99, 7.23, 4.99,
4.02, 3.31, 2.89, 2.65, 2.52) indicates that higher principal components still
contain information about the structure of the data set at least up to the
fifth or sixth one. Since the inspection of further principal planes does not
clearly display such a structure, we shall study each of the three groups in a
second step of the analysis. Now, resting on the suggestions of Figure 1, the
data are subdivided into three classes by means of a clustering algorithm. In
all the paper we use k-means (Hartigan and Wong (1979)) with 100 random
starts. Although this is not suggested by Figure 1, a subdivision between nine
classes is also performed to be compared with the known prior subdivision
into nine areas. Table 2 shows the Rand coefficients (Rand (1971)) comparing
the known classification A, B, C (resp. 1 to 9) and the three (resp. nine)
classes found by applying the algorithm successively to the original data, the
six first principal components of ordinary and standardized PCA and the six
first principal components of GPCA.

Raw data PCA st. PCA GPCA

3 groups vs. regions 0.761 0.761 0.738 0.960

9 groups vs. areas 0.896 0.812 0.806 0.905

Table 2. Rand coefficients for four clustering approaches

Retrieval of the groups is fairly good with the original data, worse with
PCA components, better with the first 6 principal components of GPCA. To
save space, we do not discuss at length what happens with different numbers
of principal components: the results are very similar for 5 to 7 components,
with a slight improvement for recovering the 3 regions (resp. the 9 areas)
when the dimension is smaller (resp. larger).

Table 3 cross-classifies the true regions A, B and C versus the clusters (A∗,
B∗ and C∗) obtained by the algorithm with the first six principal components
of GPCA.

A B C Total

A∗ 319 0 0 319

B∗ 0 97 20 117

C∗ 4 1 131 136

Total 323 98 151 572

Table 3. Olive oil data: regions vs. retrieved clusters

Step 2. We analyse now the three groups obtained at the first step by
k-means from the six first principal components of GPCA.
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Fig. 2. GPCA biplot of olive oil data, class A∗, with area labels.

Let us first consider A∗. The first principal plane of GPCA (Figure 2) sug-
gests 3 clusters (subclusters of A∗) and the sequence of eigenvalues (5.84, 3.40,
3.16, 3.06, 2.90, 2.54, 2.47, 2.32) suggests the relevance of five dimensions.
In order to understand what we can expect from the clustering algorithm on
these 5 dimensions, the resulting classes from k-means (labeled 1∗, 2∗, 3∗)
are compared to the true areas (1, 2, 3, 4) in Table 4. While objects from
areas 1, 2 and 3 are put together with few exceptions, those from area 4 are
dispersed between the other classes, mainly between two of them, as can be
expected from the display (clustering into four classes does not recover area
4 but rather split the 2∗ class in two). A similar feature is pointed out by
Cook et al. (2004) in the context of supervised classification: we refer to these
authors for a possible explanation (importation of olives to Sicily from other
areas); the point is that the absence of a “Sicilian cluster” corresponds to
a real fact. The clustering algorithm has also been worked out on raw data
with similar but somewhat less satisfactory results; since three classes have
to be compared to four “expert” ones, the quality of the results is measured
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Fig. 3. GPCA biplot of olive oil data, class C∗, with area labels.

by an asymmetric Rand coefficient (Chavent et al. (2001)) whose values are
.97 for our proposal (Table 4) and .95 when clustering on raw data.

1 2 3 4

1∗ 21 0 0 16

2∗ 0 1 201 5

3∗ 1 54 5 15

Table 4. Olive oil data, class A∗: areas 1, 2, 3, 4 vs. clusters 1∗, 2∗, 3∗

Let us now consider C∗. Figure 3 shows the projections of the objects

on the first principal plane of GPCA together with the 7 variables (the 8th

variable takes the value 0 for all objects and thus has been dropped). The
display visualizes a compact cluster and a more scattered one which could
be thought of as one or two clusters. The clustering algorithm has thus been
performed to look for two or three classes. The results from the raw data or
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Fig. 4. Olive oil data, class B∗, GPCA biplots with area labels, α = .2 (left) and
α = .5 (right).

the first principal components of GPCA are very similar: the three classes are
very close to the three “true” areas. The subdivision into two classes heavily
depends on the clustering algorithm that, roughly speaking, can put together
7 and 8 or 7 and 9.

Let us finally consider B∗. Figure 4 (left) is the first two-dimensional
projection provided by GPCA with the same tuning parameters as in previous
analyses (α = .2, β = 2). The main feature of the display is now the presence
of overdispersed values. On the one hand, this fact is interesting by itself but
will not be discussed in detail here (note only that (i) Figure 4 (right) in Cook
et al. (2004) suggests a similar though less striking feature, (ii) almost all the
“outliers” belong to area 5). On the other hand, the display does not give a
good insight into the main set of objects concentrated around the centre of
the graphic. This drawback can be overcome by a more robust analysis, that is
by increasing α (see section 2). Figure 4 (right) gives the projection obtained
with α = .5 (and still β = 2). Three clusters appear. Up to only two “errors”,
the clustering algorithm from the principal components of GPCA finds the
two Sardinian areas and separates the 20 areas which “should not be in this
subgroup”. In a sense, this attenuates the major “misclassification” of step
1 (see Table 2). But is it a misclassification? It may also happen that these
oils of region C are somewhat different from the others in that region and
then the analysis would reveal a substantial feature. In this case, a supervised
classification fails to discover this aspect of the data (for such a discussion,
see Diday et al. (1979), p. 259-260); this can explain that previous analyzes
(Glover and Hopke (1992); Cook et al. (2004)) did not find it. However, this
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can also be an artefact: further analysis is necessary, e.g. the analysis of
B∗ + C∗.

To summarize the results, the method we advocate seems efficient to get
relevant clusters. In fact, the provenience of the oils is recovered to a large
extent with two notable exceptions. One of them, concerning Sicily, turns
out to point to a true problem: the cluster that is not found is likely not to
exist; the other addresses a question to the chemist by creating a class whose
specificity should be interesting to investigate.

4 Further comments and conclusion

Let us first draw the main lessons from the analysis of the example.
(i) Visual inspection of the data by means of GPCA is useful to get an idea of
the number of possible homogeneous classes and their major characteristics.
(ii) Clustering from the first principal components of GPCA rather than
the raw data improves efficiency in many circumstances; the sequence of
eigenvalues provides a good guideline for choosing the suitable number of
components; incidentally, using the results of GPCA gets round the problem
of possible linear transformations of the data, in particular standardization,
since GPCA is invariant under any affine transformation.
(iii) Robustification of GPCA gets rid of discording observations that are
likely to spoil the displays as well as the clustering (in fact, non robust GPCA
is useful to detect outliers, but another generalization of PCA is simpler and
more efficient for that: see Caussinus et al. (2003a)).

With its two steps, the analysis is basically hierarchical. It could then be
claimed that hierarchical clustering would be more appropriate. Nevertheless,
(i) from a formal point of view, when starting the analysis the structure of
the data is not known, (ii) from the practical point of view, the hierarchical
classifications which we did perform do not bring much more insight into the
data set. However, it would be interesting for further research to compare the
results of interacting GPCA with various clustering methods.

This paper deals with numerical data. Caussinus and Ruiz-Gazen (2006)
consider the projection pursuit approach for categorical data and its connec-
tion with the search for a latent class structure. As a further step, it would
certainly be worth considering a similar approach for symbolic data.
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Abstract. We review the concept of locally linear regression and its relationship to
Diday’s Nuées Dynamiques and to tree-structured linear regression. We describe the
calibration problem in microarray analysis and propose a Bayesian approach based
on tree-structured linear regression. Using the proposed approach, we analyze a
subset of a large data set from an Affymetrix microarray calibration experiment. In
this example, a tree-structured regression model outperforms a multiple regression
model. We calculated 95% Credible Intervals for a sample of the data, obtaining
reasonably good results. Future research will consider and compare several other
approaches to locally linear regression.

1 Introduction

In flexible modeling, the relationship between a variable y and a vector of
other variables x = (x1, x2, . . . , xp), is studied by a variety of tools, among
which linear regression plays a central role. One of the great merits of linear
regression is that it can be easily extended to provide even more flexible
tools. An important example of possible extension is what we will call in
this paper locally linear regression. Suppose we have a data set, (Y (i), X(i)),
i = 1, 2, . . . , N , where Y and X represent, respectively, N×1 and N×p vectors
of measurements of y, and x. If a linear model doesn’t fit the data sufficiently
well, it is natural to think of partitioning the data set into subsets, in the
hope that a set of linear models, one for each set of the partition, describes
the data better than a unique, global linear model. In the simplest case, if we
study the relationship between y and a single variable x, we might consider
partitioning the x axis so that on each portion of it a linear model seems
reasonable. This simple idea is currently used in many software packages as
the key step in the construction of smoothers, powerful tools which draw
smooth lines (instead of straight lines) through scatter plots.

The partitioning can be done in many different ways, but the original
idea, in its most general form, is due to Diday and collaborators (Charles
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(1977); Diday (1979)) as an application of the general approach to clustering
known as ’Nuées Dynamiques’, sometimes translated into English as ‘dynamic
clustering’. Independently, Späth (1979) proposed a similar approach, but
outside the framework of ‘nuées dynamiques’. In both works, the data set is
partitioned so that the global fit of the distinct regressions is optimal. This
justifies the expression cluster wise regression which is generally used in the
English literature to refer to this approach. The original French term was
regression typologique.

Both Diday’s and Späth works now appear as ground breakers and it is
hardly surprising that they have remained relatively obscure for several years.
It was the need for flexible tools in data mining that revamped interest in
cluster wise regression. There is a good deal of recent literature that aims
to reformulate the optimization problem of cluster wise regression and/or
to propose new, more efficient algorithms for its solution. See for example
Caporossi and Hansen (2005), and Mirkin (2005). Interestingly, Mirkin uses
the term regression wise clustering instead of cluster wise regression.

The approach to locally linear regression proposed here is based on tree-
growing. It starts from a more general formulation of the cluster wise regres-
sion problem, which, however, can easily be accommodated within the nuées
dynamiques framework. We consider one dependent variable y and two vec-
tors of independent variables x, and z = (z1, . . . , zm). While the relationship
between y and x is considered of primary importance and assumed linear,
the vector z is seen as background information that can affect y and the re-
lationship between y and x. Notice that it is possible that some or all of the
components of z are also components of x. In general, we will assume that
there is an important association between x, z, and y. Suppose we have data
in the form: (Y (i), X(i), Z(i)), i = 1, 2, . . . , N . Now, we can seek a partition
of z space such that, if we fit a regression model of y on x on each subset,
then the global fit of these local models is optimal. It is possible to develop
optimization algorithms of the K-means type, hence a particular case of the
Nuées Dynamiques. However we propose here a suboptimal, heuristic algo-
rithm for constructing a tree with linear regressions of y on x at its leaves.

This work was motivated by an important application: the calibration
problem in the analysis of microarray data. In section 2 we describe this
problem. In section 3 we outline our tree-based approach to linear regression
(also known as tree-structured regression). Section 4 is devoted to an example
of calibration using our approach. In section 5, a discussion concludes the
paper

2 Calibration in microarray analysis

The classical calibration problem concerns two measuring instruments for
the same quantity. These instruments produce measure y and x, and it is
assumed that x is considerably more expensive to obtain than y. A calibration
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experiments is the simultaneous measurement of y and x, performed in order
to extract the information that permits to predict x from y. In fact, in future
experiments, only y will be measured and x is to be inferred from y. There
are well-known solution to the problem of predicting x from y, based on
both classical (Draper and Smith, 1966) and Bayesian statistics (Hunter and
Lamboy (1981)).

In the last ten years microarray technology has become an essential tool
in genomic analysis. There are various types of microarray, but we will fo-
cus here only the Affymetrix array, one of the most popular. An Affymetrix
microarray is a 2-dimensional physical array of ‘spots’ on a small square sur-
face. Multiple identical copies of a 25 base pair oligonucleotide, called probes,
are fixed to each spot; each spot is assigned a unique probe sequence from
the genetic alphabet ACGT. A microarray is used to simultaneously perform
tens of thousands of hybridization experiments, one at each spot. A sample
containing fluorescently labeled mRNA is added to the array. The sample
contains many different mRNA’s that may reflect the state of gene expres-
sion within cells of a particular tissue. Hybridazation occurs when a probe,
which is chosen to be reverse complimentary to a sequence that only occurs
within one gene, binds to its matching mRNA in the sample.

In the typical microarray experiment, x is the log-concentration of mes-
senger RNA (mRNA) and y is a simple transformation of the intensity of
fluorescent luminance of a spot on the array. This luminance is proportional
to the amount of hybridization occurring at the spot. It will depend not only
on the concentration (x) of mRNA at the spot, but also on specific charac-
teristics of the probe sequence. These characteristics are summarized by a
vector of variables, which we will call z.

Microarray analysis generates a new type of calibration problem. Though
we are still interested in inferring x from y, it is clear that y will depend on z
as well as x, and this will be reflected in the inverse equation. While the first
idea would be to assume linearity of y in z as well as in x, this, depending
on the nature of z, may be an oversimplification. We propose a locally linear
model with the partition defined by z. Thus, conditional on z, we will still
assume linearity, but the effect of z on y may be highly non-linear. Clearly,
locally linear regression may be a useful approach to consider.

The first step of our approach consists of building a reasonably good
locally linear predictive model for y given x and z, assuming linear the re-
lationship between y and x. We present here a RECPAM tree-structured
regression of y on x, with the tree structure defined by z.

The second step consists in inverting the linear relationship between y
and x locally on each of the tree leaves. Since in future experiments x will be
unknown, while y and z will be known, a Bayesian approach will consider x
as a parameter and develop inference on it accordingly (Hunter and Lamboy
(1981)). We will need to impose a reasonable prior on x; this done, it is rel-
atively straightforward to obtain an expression for the posterior distribution
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of x given y and z. In what follows we choose a non informative (improper)
prior on x, and instead of calculating the theoretical expression, which would
be of limited usefulness in our case, we will calculate posterior Credible Inter-
vals (Bayesian equivalent of Confidence Intervals) by simulating the posterior
distribution.

3 Tree-structured regression in RECPAM

The term RECursive Partition and Amalgamation (RECPAM) refers to a
family of tree-growing algorithms. Given a data set (Y (i), X(i), Z(i)), i =
1, 2, . . . , N , as in the introduction, RECPAM may be used to construct a
tree with splits defined by the z-variables and having at its leaves a linear
regression equation of y on x. Therefore, when used this way, RECPAM is a
tool to construct locally linear models.

The RECPAM construction consists of three steps. In the first step, a
large tree is constructed recursively. The algorithm starts with the whole
data set, which is represented as the root node of a tree (a dark circle in the
diagram). All binary splits of the data set based on a single component of z
are considered. If zi, is a categorical predictor, then a split on zi is generated
by a binary question of the form: is ‘zi ∈ A’, where A is a subset of the levels of
zi. If zi is continuous, then the split-generating binary question has the form:
‘is [ zi ≤ a]?’. For each split, the algorithm computes the Likelihood Ratio
Statistic (LRS) comparing two separate regressions, one for each branch of
the split, to the single regression model fitted on the whole data set. The
split with the largest LRS is selected, and the data set is split accordingly
into two subsets. In the tree diagram, the question defining the best split
is represented under the root, from which two branches issue and point to
two nodes (clear circles), one for each subset. This same search is carried
out recursively on the nodes issuing from the root and on nodes issuing from
other nodes (parents), until node size falls below a user-defined threshold.
Then the nodes that cannot be split further are termed terminal nodes or
leaves and are represented by square boxes.

The second step is called pruning and consists of building a sequence of
sub-trees of the large tree, from which one is chosen, on the basis of the AIC
or similar criteria, as our ‘honest’ tree.

In the third step, amalgamation, one compares leaves from different par-
ents using the appropriate LRS, and then merges them starting from the pair
with the smallest LRS. This also leads to a sequence of amalgamations, going
from the large tree to the root. Again, AIC and/or BIC are used to select
where to stop, i.e. which element of the amalgamation sequence.

The result of the RECPAM construction is an induction diagram with
distinct linear regressions at its leaves. In the case of our calibration problems,
such a model is useful to represent a linear relationship between y and x with
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Fig. 1. RECPAM local regression tree.

coefficients varying according to the ‘environmental conditions’ described by
the z variables.

4 An example: Affimetrix data

The data we analyze here come from a series of microarray experiments
conducted by Affymetrix. The purpose was to identify probes that could best
be used to predict concentration from intensity. Thus, the probes constitute
the background within which the relationship between intensity y and log-
concentration x is studied. Our goal is to assess, through a locally linear
model, the effect of the background on this relationship, and construct a
good model for calibration.

Utilizing a Latin square design, 85 genes clustered in 16 groups were
assessed at each of 16 predetermined concentrations, ranging from 0 to 512
picomoles. The 16 experiments were replicated 4 times each, resulting in 64
intensity readings per probe.

Our data set contains data from a unique gene examined through 360
possibly overlapping probes. Its columns represent, log-concentrations (y),
intensity (x), and 58 continuous features extracted from the probe sequences



554 A. Ciampi et al.

Probe sequence Intensity True log-concentration Posterior 95% C.I.

ACCCCTCGTGACCGTCCTTCCCTTG 13.445403 5.0000000 (2.104, 5.416)
CCCGTCTGGGACGCTCGTCTTTCTG 9.236014 1.0000000 (-1.246, 2.059)
CCAGCCGTAGGTCCCTGCGGAGGAG 8.518850 0.5849625 (-0.883, 2.433)
TCTTTCTGACGGGTGTCGCGGGGAA 8.066089 0.0000000 (-0.140, 3.176)
CCAGAACGAGAGCCCGACGGAGGTC 7.748193 1.5849625 (0.0383, 3.350)
AATTTACTCTCGAACCAGAACGAGA 9.062856 4.0000000 (1.896, 5.528)
AGGGAAGGTTCGTGCCAGTGTTACG 8.906891 1.5849625 (0.507, 4.116)
TTACGTCTTCCACTACTACTCTTGT 8.954196 0.0000000 (-2.789, 0.841)
ACGGAGGTCTACTGCGGGCACTGGT 8.174926 0.5849625 (-0.972, 2.627)
TCGAACCAGAACGAGAGCCCGACGG 12.721313 7.0000000 (6.642, 10.264)
AGGTTCGTGCCAGTGTTACGTCTTC 10.270295 2.584963 (1.504, 4.320)
TCTCGAACCAGAACGAGAGCCCGAC 8.880502 1.584963 (0.996, 3.825)
TCAGGAACGAACCAGCCGTAGGTCC 10.237210 3.584963 (2.323, 5.162)
AGGTTCGTGCCAGTGTTACGTCTTC 13.206251 7.000000 (6.267, 9.083)
AGGTCCCTGCGGAGGAGCGACACGG 7.581201 0.000000 (-1.706, 1.137)
CTACGAGTCCTACCCCTCGTGACCG 11.728048 2.5849625 (0.653, 3.777)
GATATTCCGACCAACTTTACAAGTG 13.147523 9.0000000 (6.153, 9.275)
CGGGCACTGGTGCCGTGTCTCCTCC 9.221587 0.0000000 (-1.088, 2.028)
CGGTATCGGTTTCATCTACTACTTC 8.684749 0.5849625 (-2.036, 1.093)

CGTAGGTGTGTCGTTTGGCCTGGGT 11.187971 2.5849625 (1.866, 5.001)

Table 1. Posterior 95% credible intervals of log-concentration for randomly selected
values of log-intensity and feature vector z.

(z). The description of the features will appear elsewhere. It suffices here to
say that each feature captures certain statistical properties of the distribu-
tions of the ACGT letters, e.g. Skewness (S) in the probes or of pairs of
such distributions, e.g. Kolmogorov distance between the distribution of two
letters (K). After having excluded concentrations less than 1 pm, each probe
constituted 48 rows in our data matrix. We then randomly selected a subset
of 8640 rows from a total of 17,280.

Our first step was to build a stepwise linear regression model to predict y
from x and the features z. Besides log-concentration, 29 features were selected
using the Bayesian model selection approach (Raftery (1995)). We obtained
a multiple adjusted R2 of 88.2%.

To improve the prediction, we used RECPAM to build a local regression
tree, with a linear regression equation of y on x at its leaves. Figure 1 gives
the tree structure. Finally, we constructed at each leaf of the tree a stepwise
linear regression model of y on x and z as above. Table 1 gives the posterior
credible intervals of log-concentration for randomly selected values of log-
intensity and feature vector z (we selected at random 5 probes from each
leaf).
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5 Discussion

We have reviewed the concept of locally linear regression, which is close to
Diday’s regression typologique, emphasizing the role of tree-growing in the
construction of such models from data. We have also analyzed a complex
data set, constructing a tree-structured linear predictor with good proper-
ties. Finally, we have applied the Bayesian calibration approach to obtain a
reasonable inverse prediction equation at each leaf of the tree.

Calibration in microarray experiments is a fundamental problem. While
we obtain impressive results for a small portion of a large experiment, we are
far from having solved the calibration problem, since we have not addressed
the generalizability of our model to the totality of genes. Further work is
necessary to adapt our approach to the full complexity of the Affymetrix
data. This will require extending the tree-growing algorithm to add random
effects describing genes.

Another important direction of research is to develop a Nuées Dynamiques
approach to locally linear regression for our problem and compare it with the
one presented in this paper.
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Abstract. A critical edition takes into account all the different known versions of
the same text in order to show the differences related to any two distinct versions.
The construction of a critical edition is a long and, sometimes, tedious work. In order
to make it easier, softwares helping the philologist are nowadays available for the
European languages. Because of its complex graphical characteristics, which involve
computationally expensive solutions to problems occurring in text comparisons,
such softwares do not yet exist for Sanskrit language.

This paper describes the Sanskrit characteristics that make text comparisons
different, presents computationally feasible solutions for the elaboration of the com-
puter assisted critical edition of Sanskrit texts, and provides, as a byproduct, a
distance between two versions of the edited text.

1 Introduction

When a text is known through a great number of manuscripts that include
non trivial differences, the critical edition looks often rather daunting for
readers unfamiliar with the subject. The edition is then formed mainly by
footnotes enlightening the differences between manuscripts, while the main
text (the text of the edition) is rather short, sometimes a few lines in a
page. Note that in either case, the main text is established by the editor
through his own knowledge. More explicitly, the main text can be either
a particular manuscript, or a ”mean” text built according to some specific
criteria chosen by the editor. Building a critical edition by comparing the texts
two by two, especially if they are manuscripts, is a task which is certainly long
and, sometimes, tedious. This is why, for a long time, computer programs have
been helping philologists in their work, but most of them are dedicated to
texts written in Latin (sometimes Greek) scripts. For example, the Institute
for New Testament Textual Research (2006) provides an interactive critical
edition of the gospels which have induced a considerable amount of studies.
In this paper we focus on critical edition of manuscripts written in Sanskrit.

� This paper was supported by the ACI CNRS ”histoire des savoirs” and the Asia
IT & C contract 2004/091-775.
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Sanskrit is an ancient Indo-European language mainly used as a liturgi-
cal language which enjoys nowadays, in the Indian subcontinent, a position
similar to that of Latin during the 19th century in Europe. The texts we will
have to deal with, are ancient, scientific, either mathematical or grammatical.
Our approach will be presented and illustrated on paragraphs and sentences
that are extracted from a collection of manuscripts of the ”Benares gloss”,
or kāśikāvr. tti in Sanskrit (Kāśi is the name of Benares). The Benares gloss,
which was written around the 7th century A.D., and is the most widespread,
the most famous, and one of the most pedagogical comments of the notorious
Pān. ini1 grammar.

Pān. ini grammar is known as the first generative grammar and was writ-
ten around the fifth century B.C. as a set of aphorisms. These aphorisms can-
not been understood without the explanation provided by a comment such
as the kāśikāvr. tti.

In what follows we will first describe the characteristics of Sanskrit that
matter for text comparison algorithms as well as for the classification of the
whole set of manuscripts. Notice that since some manuscripts have been dam-
aged by mildew, insects, rodents ... they are not all complete. In particular,
they do not include all chapters, generally around fifty different texts are
available for comparison at the same time. We will also present briefly the
textual features we use to identify and to quantify the differences between
manuscripts of the same Sanskrit text. We will show that such a comparison
requires to use a lemmatized2 Sanskrit text as the main text. The revealed
differences, which as a whole form the critical edition, provide all the informa-
tion required to build distances between the manuscripts, and consequently,
to build phylogenetic trees assessing filiations between these manuscripts.
Finally, we will thus discuss the definition of a method of computation of
faithful distances between any two Sanskrit texts, provided one of them is
lemmatized.

2 How to compare Sanskrit manuscripts

2.1 The Sanskrit and its graphical characteristics

Sanskrit is written mostly using a script called Devanāgari that has a 48 letter
alphabet, which can also be considered as a syllabary, because this alphabet
reveals the pronunciation in the writing.

Due to a long English presence in India, a tradition of writing Sanskrit
with the Latin alphabet (a transliteration) has been established for a long

1 The polysemy of the word Pān. ini, in Europe, is a surprise for Indian scholars.
2 The lematization is, roughly speaking, a morpho-linguistic process which makes

each word appears under its base form, generally followed by a suffix indicating
its inflected form. For example walking, consists of the base form walk followed
by the suffix ing which indicates the continuous form. After a lematization each
word will, at least, appear as separated from the others.
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time. Sanskrit transliteration was originally carried out to be used with tradi-
tional printing. It was adapted for computers by Frans Velthuis (1991), more
specifically for a TEX transliteration. According to the Velthuis transliter-
ation scheme, each Sanskrit letter is written using one, two or three Latin
letters.

A long time ago Sanskrit was written with the Brāhmı̄ script, but nowa-
days Devanāgari is the most common script. Other scripts may be used, such
as Bengali or Telugu in south India. In Europe, an equivalent (but fictive)
situation would be using either Latin, Cyrillic, or Greek alphabets to write
Latin.

In ancient manuscripts, Sanskrit is written without blanks, and from our
point of view, this is an important graphical specificity, because it increases
greatly the complexity of text comparison algorithms. One may remark that
Sanskrit is not the only language where blanks are missing in the text, Roman
epigraphies and European Middle Age manuscripts are also good examples.

2.2 The different comparison methods

Comparing manuscripts can be achieved in two ways:

• When building a critical edition, the notion of word is central, and an
absolute precision is required. For example, the critical edition must in-
dicate that the word gurave is replaced by the word ga.ne"saaya in
manuscripts 3 and 19, and that the word "srii is omitted in manuscripts
5, 8, 12, 19.

• When establishing some filiation relations between the manuscripts (or a
classification between them), the notion of word can be either ignored, or
taken into account. The only required information, is the one needed to
build a distance between texts. Texts can be considered either as letter
sequences, or as a sequence of words.

Considering each text as a letter sequence, Le Pouliquen (2007) proposed an
approach that determines the so called ”Stemma codicum” (in other words,
filiation trees) of a set of Sanskrit manuscripts. The first step consists in the
construction of a distance according to the Gale and Church (1993) algorithm.
This algorithm was first developed to provide sentence alignments in a multi-
lingual corpus, for example a text in German and its English translation.
It uses a statistical method based on the sentence length. Gale and Church
showed that the correlation between two sentence lengths follows a normal
distribution. Once the distance is computed, a phylogenic tree is built using
the N-J algorithm (Saitou and Nei (1987)).

On the other hand, each critical edition deals with the notion of word.
Since electronic Sanskrit lexicons such as the one built by Huet (2006) do
not cope with grammatical texts, we must be able to identify each Sanskrit
word within a character string, without the help of either a lexicon or blanks
to separate the words.
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The solution comes from the lemmatization of one of the two texts: the
text of the edition. The lemmatized text which is prepared by hand by the
editor is called the padapāt.ha, this name coming from a special kind of recita-
tion where the words are well separated.

From this lemmatized text, we will build the text of the edition, it is called
sam. hitapāt.ha according to the name given to an oral mode of recitation where
words are pronounced fluently one after the other. The transformation of the
padapāt.ha into the sam. hitapāt.ha is not straightforward because the Sanskrit
writing reflects the pronunciation. A text with separators (such as blanks)
between words, can look rather different (the letter string can change greatly)
from a text where no separators occur.

The typed text corresponding to each manuscript is called mātr.kāpāt.ha.
Each mātr.kāpāt.ha contains the text of the manuscript and some annotation
commands. These commands allow some elements visible on the manuscript,
but which are not part of the text, such as ink color, margin notes to be taken
into account. They provide a kind of meta-information.

3 Comparing the padapāt.ha with a manuscript

In this section we aim to compare the padapāt.ha and a mātr.kāpāt.ha, this
comparison cannot be simple.

• As previously seen, the padapāt.ha, must be transformed into a virtual
sam. hitapāt.ha before being compared with the mātr.kāpāt.ha.

• The comparison must be based on common words, so words must be
identified in the mātr.kāpāt.ha but with no lexicon available.

• Since only one text is lemmatized, if the texts differ in a simple way, it
would be easy to stress the words where differences occur. But as soon
as the differences include a lot of characters, the algorithmic complexity
may grow quickly, and if a new part of text is inserted in a manuscript,
no lemmatization will be possible and the software will find it difficult to
”take a decision”.

To cope with these difficulties, we propose the following two step procedure:

• First step: A twofold lexical preprocessing. On the one hand the padapāt.ha
is transformed into a virtual sam. hitapāt.ha. The transformation consists
in removing all the separations between the words and then in applying
some morpho-phonology rules called sandhi. Sandhi are perfectly defined
by the Sanskrit grammar. Not every language has sandhis, but French
does. A good example in French could be as if ”Les enfants” (= the chil-
dren) was written ”Lezenfants”. In English, an illustration is provided
when comparing the decomposed form ”syn + pathy” with its usual form
”sympathy”. This virtual sam. hitapāt.ha will form the text of the edition,
and will be compared to the mātr.kāpāt.ha. On the other hand, the lexi-
cal treatment of a mātr.kāpāt.ha consists mainly in keeping the collation
commands out of the texts to be compared.
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• Second step: Alignment of a mātr.kāpāt.ha and the virtual sam. hitapāt.ha.
The Longest Common Subsequence algorithm is applied to these two
texts. The aim is to identify, as precisely as possible, the words in the
mātr.kāpāt.ha, using the padapāt.ha as a pattern. Once the words of the
mātr.kāpāt.ha have being determined, we can see those that have been
added, replaced or suppressed.

The comparison is done paragraph by paragraph, the different paragraphs be-
ing perfectly determined in each manuscript by the scholar who collated it. In
a first stage, the comparison is performed on the basis of a Longest Common
Subsequence. Each of the obtained alignments, together with the lemmatized
padapāt.ha, suggests an identification of the words of the mātr.kāpāt.ha. How-
ever, due to the Sanskrit specificities, the answer is not straightforward, and
a consistent amount of the original part of this work concerns this identifica-
tion process. Surprisingly the different rules used for this determination are
not based on any Sanskrit knowledge, but on common sense. The result of
the application of these rules has been validated by Sanskrit philologists.

We remark that the kind of results expected for the construction of a
critical edition (which words have been added, suppressed, replaced in the
manuscript) is similar to the formulation of an edit distance, but in terms of
words. The results we obtain from the construction of the critical edition can
be transformed into a distance between the manuscripts.

3.1 The Longest Common Subsequence algorithm

The Longest Common Subsequence (LCS) algorithm is a well-known al-
gorithm3 used in string sequence comparison. The goal of this algorithm
is to provide a longest common substring between two character strings.
More precisely, given a sequence X = 〈x1, x2, ..., xm〉, another sequence Z =
〈z1, z2, ..., zn〉 is a subsequence of X if there is a strictly growing set of in-
dices 〈i1, i2, ...ik〉 such that zj = xij for each j ∈ [1 : k]. For example, if
X = 〈A,B,C,D,A,B,C〉 then Z = 〈B,D,B,C〉 is a subsequence of X .

A common subsequence to sequences X and Y is a subsequence of both
X and Y . Generally there is more than one LCS. Once the computation of a
LCS is achieved, one can compute an alignment of the two sequences. Most
of the time one considers any of the alignments as equivalent. It will not be
the case here, because the comparison should be based on words, not only
on characters.

In the following, we describe the LCS algorithm giving an example, then
we explain why the result cannot be a solution in our case. We will see how
we can improve this result by using the padapāt.ha. Finally we will see that
the LCS algorithm cannot overcome all the difficulties, because it works in
terms of characters whereas a critical edition is built in terms of words.

3 the Unix diff command is based on this algorithm.
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Computing the LCS is equivalent to the computation of an Edit distance
between two character strings. An Edit distance between sequences X and
Y is the minimum number of operations such as suppression, addition and
replacement (in term of characters) needed to change the sequence X into
Y . An Edit distance that is computed without the replacement operation, is
sometimes called LCS distance by some authors. This function is a kind of
dual of the length of a LCS between X and Y (see, for more details, chapter
7 of Crochemore et al. (2001)). The length of a LCS between X and Y will
be denoted lcs(X,Y) or simply lcs if there is no ambiguity. Edit distance and
lcs can be computed efficiently by the dynamic programming algorithm.

Example 1. Let us compute the lcs between two (simple) Sanskrit texts:
X = yamaan, Y = yamin. Note that according to the Velthuis transliteration
aa is a single letter: long a.

y a m i m

0 0 0 0 0 0
y 0 1 1 1 1 1

a 0 1 2 2 2 2

m 0 1 2 3 3 3

aa 0 1 2 3 3 3

m 0 1 2 3 3 4

Table 1. Computation of a LCS matrix T.

The value of the lcs, here 4, is displayed in the bottom right corner of the
matrix T. The matrix is initialised to zero, and each score is computed by:

T [i, j] =

{
T [i− 1, j − 1] + 1] if X [i] = Y [j],

max{T [i− 1, j], T [i, j − 1]} otherwise.

The score T [i, j] gives the value of lcs between subsequences X [i] and
Y [j], these subsequences being defined as the first i letters of X and j letters
of Y respectively.

Each score T [i, j] can be computed using some adjacent scores as shown in
the previous formula. The complexity of the matrix computation is obviously
in O(|X ||Y |). In this example, the LCS matrix generates exactly the two
following symmetrical alignments.

y a m i m

y a m aa m

y a m i m

y a m aa m

The alignment can be read in the following way: when letters are present
up and down, they belongs to the LCS When a letter l is present with an
opposite ’-’, then l can be considered either added in the line where it appears,
or suppressed from the line where the opposite ’-’ is present.

Example 2. The comparison between two short sentences as shown in Ta-
ble 2 describes the way we proceed and what kind of result can be expected.
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The sentences to compare in this example are tasmai "srii gurave namas

and "sriiga.ne"saaya nama.h. Note that the first sentence belongs to the
padapāt.ha, and that the character ’ ’ (underscore) is a lemmatization sign.

Table 2. A second example.

The rectangle in Table 2 contains all the possible alignments, one of them
being the alignment in Table 3. We can see that the word tasmai is missing in
the mātr.kāpāt.ha, that the word srii is present in both sentences, that gurave
is replaced by ga.ne”saaya, and that the word nama.h is present in both
sentences but under two different aspects: nama.h and namas. The rule that
states the equivalence between character ”.h” and character ”s” is one of the
sandhis. The following alignment is one of the possible results, the separation
between words of the padapāt.ha being represented by double vertical lines.

t a s m ai ”s r ii g u r a v e n a m a s

”s r ii g a .n e ”s aa y a n a m a .h

Table 3. The correponding alignment.

3.2 Sailing trough the LCS matrix

As already mentioned in the section 3.1, our approach uses the LCS matrix,
but only to find which words are different.

Note first that the matrix provides alignments in the following way.

1) if T [i, j] < T [i + 1, j + 1] then move (down and right) from T [i, j] to
T [i+1, j+1] and in this case, the score which is increased by 1, indicates
that a (common) letter is added to the alignment;
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2) otherwise, move either vertically down one row or horizontally right one
column, without increasing the current score. In this case, each vertical

move corresponds to the addition of a
(

X
-

)
to the alignment, and each

horizontal one to the addition of a
(

-
X

)
.

Table 4 presents the alignments provided by the LCS algorithm. The dark
grey line depicts the chosen alignment, and the clear grey lines represent other
alignments also provided by LCS algorithm. The sequence X belonging to
the padapāt.ha, the alignment is selected in order to maximize consecutive
letters belonging to X . This choice reduces the risk that two parts of the
same word in the padapāt.ha be identified with two different subsequences of
the mātr.kāpāt.ha.

Table 4. The different alignments within the matrix.

The chosen alignment corresponding to the dark grey line is:

v ai d i k aa n aa .m l au k i k aa n aa .m

l au k i k aa n aa .m v ai d i k aa n aa .m

We may remark that when the possible alignments form a square the number
of possible alignments grows very quickly. If N is the size of the square,

the number of different alignments generated by each square is
(

2N
N

)
. To

provide a good idea of the possible number of paths, if we have in a matrix
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which contains two ten by ten squares we got approximately 39∗109 different
possible alignments. This number expresses how complicated the comparison
of Sanskrit texts is, and excludes any method that requires all the solutions
generated by LCS algorithm to be examined.

3.3 Local improvement of the initial LCS alignment

The identification of words in the mātr.kāpāt.ha, as implicitly defined from the
previous alignments, is not completely satisfactory. Indeed the maximisation
of lcs cannot satisfy our purpose, because the value of lcs is related only to
the notion of character, whereas our aim is to compare the texts word by
word.

Once the alignment is obtained, the words of the mātr.kāpāt.ha are not
really identified. To improve this alignment we propose a procedure which
consists of a local change of the alignment to satisfy the following two rules:

(1) Two words cannot be considered as similar if they do not share at least
50% of their characters (very short words must be considered apart).

(2) Considering that words can be suppressed, added, or replaced in the
mātr.kāpāt.ha, the desired alignment has to minimize the number of these
operations.

Notice that the second rules matches exactly the definition of the edit dis-
tance, but in terms of words instead of characters as is usually the case. The
results provided by these two rules were approved by the philologist in charge
of the Sanskrit critical edition. To illustrate our approach let us compare the
following two texts:

padapāt.ha : upadïsyate mahaa .n
mātr.kāpāt.ha : upadi.syata.n
The LCS algorithm provides an alignment with a lcs of 10 that does not

fulfil rule (1).

¨ a .
u p a d i s y a t e m a h a n

. .
u p a d i s y a t a n

This involves the following conclusions:

• The word upadïsyate is substituted by upadi.syat
• The word mahaa is substituted by a

Next alignment it is not optimal for the lcs criterion, because its lcs is only
9, but is preferable because rule (1) is satisfied:

¨ a .
u p a d i s y a t e m a h a n

. .
u p a d i s y a t a n
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• the word upadïsyate is substituted by upadi.syata
• the word mahaa is missed

It appears that the improvement of the initial alignment consists of asserting
that the word maha is missing instead of stating that the word maha is
replaced by a.

4 Conclusion

Recent advances in information technology have been so great that computer
science has almost becomes essential for the studies of ancient manuscripts:
back-up and electronic transmission, interactive critical edition, computer
built phylogenetic trees, etc. In this paper we have proposed a method for
comparing two versions of the same Sanskrit text. The alignment provided by
the LCS algorithm between the two texts, considered as a sequence of char-
acters, is not always sufficient, but provides a good initialisation for further
processing that considers each of the two texts as sequences of words.

The critical edition provided such improved alignments has been submit-
ted to philologists and has been approved in its essential part. Nevertheless
a more intense use of the software should enable to improve and justify the
setting of our empirical approach.

However, the absence of a Sanskrit lexicon constitutes a limit to our ap-
proach: in case of addition of long sentences within a manuscript, it is im-
possible to detect words that are added, we can only consider the addition
in terms of sequence of characters.
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Hirschengraben 84, 8001 Zürich, Switzerland, rousson@ifspm.uzh.ch

Abstract. On the 6th of December, 1992, the Swiss population voted against the
“Adhesion of Switzerland to the European Economic Area”. Swiss German cantons,
except Basel-Stadt and Basel-Land, voted against, and all French speaking cantons
voted in favour of adhesion. Shocked by this outcome, the media, the politicians,
and the population itself took this date as the beginning of the divided Switzerland.
The purpose of this article is to show that what happened on that day was not a
new phenomenon but was in line with more than a century of votations.

1 Introduction

Switzerland is a small but diverse country. Although it has an area of only
about 41’000 km2 and a little more than 7 million inhabitants, four very dif-
ferent official languages are spoken and Catholics and Protestants are present
with similar proportions. Its geographical situation is particular too. Switzer-
land lies at the heart of Europe between countries with influential cultures
such as France, Germany, Austria and Italy. Consequently, it is a country
containing many different mentalities and it is divided in 26 cantons (or half-
cantons).

Swiss direct democracy gives the people (and its government) various
ways of expressing their opinions. The most frequent procedure used is the
compulsory referendum which concerns mainly constitutional amendments.
Another one is the popular initiative. For the acceptance of a referendum or a
popular initiative, the majority of the people and the majority of the cantons
must stand behind. Thus, all the cantons have equal weight (importance) in
the final decision, regardless of their population sizes. For example, a canton
like Zürich which in 1990 had more than one million inhabitants has the same
weight as Glarus with less than 40’000. According to the constitution, this
ensures representation of the minorities (small cantons).

A major problem with such a federal system of voting is cultural differ-
ences such as language, mentality and traditions. In particular there are only
6 French cantons whereas there are 16 Swiss-German ones (13 cantons and
6 half-cantons). If these two groups of cantons do not agree about an object,
there is no doubt about the final result. The only Italian speaking canton is
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still more minoritary. The famous vote of the 6th of December, 1992, about
the “Adhesion of Switzerland to the European Economic Area” is a typical
example of such a situation. A real linguistic cleavage was observed on this
occasion, and the media, the politicians and the population believed this to
be a new phenomenon.

The primary aim of this study is to show how official statistics can be
useful in the analysis of some cultural phenomena in a given country. The
official statistics are rarely used for decision making purposes. They are usu-
ally summarized in tables, percentages or graphical displays such as pies and
bar charts to be presented to the general public. In fact official statistics are
one of the best sources of information to understand the political, social,
economical or cultural behaviors of a nation when combined with some sim-
ple statistical techniques. More importantly, an attempt has been made to
“picture the mass of data” in a constructive way. The secondary aim of the ar-
ticle is to show that the linguistic cleavage has always existed in Switzerland.
To achieve this, we took into consideration all the voting results from 1866
to 1998 and used a simple multivariate statistical method, namely principal
components analysis.

This article is organized as follows. The data are presented in Section 2.
In Section 3, the main aspects of principal component analysis are recalled.
The analyses of the data for the three periods considered are given in Section
4. In Section 5, an attempt is made to compare the voting results with other
variables that describe Switzerland. Finally, some conclusions are drawn in
Section 6.

2 The data

The results of all federal votes from 1866 to 1998 are the basis of our study
(Bundesblatt, 1866, 1872, 1874–1876, 1878–1880, 1882, 1884-1885, 1887, 1889-
1898, 1900, 1902–1903, 1905–1908, 1912–1915, 1918–1935, 1937–1939, 1941–
1942, 1944–1998). These include the compulsory referendums, the popular
initiatives, as well as the optional referendums (although the latter do not
need the double majority to be accepted). The total number of topics voted
on is 405. For each votation and each canton, the percentage of “yes” has
been recorded. The blank and the nonvalid bulletins have been excluded since
they were in negligible quantities. A few examples of the data are given in
Table 1. We have divided the votes in three periods, and this for several
reasons. First, we wanted to observe if the voting behavior has changed with
time. Second, we had to consider the creation of the canton Jura in 1978, and
third, we wanted to see if the results of the votes since the 6th of December,
1992, were different. The three periods are:

1. From 1866 to 1978 (256 votations),
2. From 1979 (date of the entry of the canton of Jura into the Confederation)

to December 6, 1992 (96 votations),
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14.01.1866 14.01.1866 ... 25.10.1908 ... 14.03.1948 ... 06.12.1992 ...
vote #1 vote #2 vote #67 vote #143 vote #352

Cantons % of yes % of yes % of yes % of yes % of yes

Zürich (ZH) 92.71 92.94 93.63 33.66 48.48
Bern (BE) 38.59 37.19 83.21 40.55 47.59
Luzern (LU) 21.76 19.20 92.79 32.74 39.31
Uri (UR) 10.76 16.22 58.33 25.18 25.13
Schwyz (SZ) 23.06 25.20 59.62 31.79 26.69
Obwalden (OW) 73.74 71.37 79.97 37.83 28.20
Nidwalden (NW) 20.64 15.68 77.08 37.42 33.86
Glarus (GL) 78.66 65.48 89.23 31.88 31.95
Zug (ZG) 12.27 14.09 ... 85.97 ... 33.80 ... 43.83 ...
Fribourg (FR) 21.27 46.50 83.76 54.41 64.89
Solothurn (SO) 71.58 71.46 90.72 31.21 42.59
Basel-Stadt (BS) 53.02 53.97 97.66 18.36 55.43
Basel-Land (BL) 58.45 58.82 85.45 30.40 53.18
Shaffhausen (SH) 48.20 47.00 92.42 47.58 38.51
Appenzell-AR (AR) 41.51 40.38 82.92 18.12 36.73
Appenzell-IR (AI) 4.79 1.59 47.78 29.80 29.05
St.Gallen (SG) 26.32 20.22 75.43 32.36 38.44
Graubünden (GR) 11.05 8.12 ... 72.48 ... 43.80 ... 32.44 ...
Aargau (AG) 57.39 56.15 78.76 33.34 39.94
Thurgau (TG) 77.27 77.73 81.70 43.14 35.96
Ticino (TI) 66.87 78.45 73.61 43.99 38.46
Vaud (VD) 14.19 10.90 90.09 40.93 78.31
Valais (VS) 14.91 13.30 79.87 42.30 55.84
Neuchâtel (NE) 83.44 80.76 89.92 23.06 79.96
Genève (GE) 75.71 69.05 98.65 51.03 78.14
Jura (JU) ... 77.15 ...

Table 1. A subset of the Swiss votation data used in our study (source: Bundes-
blatt, 1866–1998).

3. From 1993 to June 7, 1998 (53 votations).

The 26 cantons are the units of the present analysis. One might think that
a large canton is too heterogeneous to serve as an interesting unit. However,
according to Joye (1987) if one wishes to observe extensive cultural divisions
like the linguistic, a canton is a good unit because it is most of the time a
geographical area well recognized by its inhabitants. Other analyses based on
smaller units such as the communities within cantons are certainly possible
and will be the subject of further investigation.

3 Principal Components Analysis (PCA)

This well-known methodology was originally proposed by K. Pearson in 1901
as a means of fitting planes by orthogonal least squares, and was developed
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by Hotelling in 1933 for the particular purpose of analyzing correlation struc-
tures.

A sample of p measurements X1, · · · ,Xp taken on n individuals can be
represented by a matrix X of n rows and p columns (an xij element of this
matrix being the jth measurement on the ith individual) or by a cloud of n
points in a p-dimensional space, which is hard to visualize if p is greater than
2 or 3. It is therefore difficult to summarize such a sample using elementary
descriptive statistics techniques and to get a global idea of what the data
contain. Principal components analysis allows to deal with this difficulty by
representing a p-dimensional cloud of points in a well chosen subspace of di-
mension smaller than p, for example in a 2-dimensional subspace. The idea is
to project the n individuals in a subspace in which the distances between the
(projected) individuals are the largest possible. The optimal 2-dimensional
subspace hence obtained is called the principal plane of the sample in ques-
tion, and the axes that generate it are the first two principal components.
The procedure for a principal components analysis is as follows:

1. Standardize the p variables Xj , i.e. replace the initial data matrix X by
the matrix Y with elements yij such that yij = (xij − xj)/sj, where xj

and sj are the estimated mean and standard deviation of the variable Xj

(for j = 1, · · · , p).
2. Compute C = Y′Y/(n − 1). This is the estimated correlation matrix of

the variables X1, · · · ,Xp.
3. Find the eigenvalues λ1, · · · , λp and the associated eigenvectors e1, · · · , ep

of C. Order them so that λ1 is the largest eigenvalue and λp the smallest
one (they are all positive). Retain the first two eigenvectors e1 and e2.

4. Calculate the variables Z1 and Z2 as
follows:

Z1 = e11Y1+e21Y2 + · · · + ep1Yp

Z2 = e12Y1+e22Y2 + · · · + ep2Yp

where eij is the ith coordinate of the jth eigenvector. These linear com-
binations of the p initial variables are the first two principal components
that we are searching for.

Thus, one has reduced the number of dimensions from p (X1,X2, · · · ,Xp)
to 2 (Z1 and Z2), and one can now visualize the n individuals in the principal
plane generated by Z1 and Z2. If one desires to add a third dimension, one
can consider the third principal component, i.e. the linear combination of the
original variables defined by the third eigenvector e3, and similarly for further
dimensions. Recall also that the eigenvalue λi associated with the principal
component Zi is the variance of the n individuals projected on Zi, while the
ratio λi/p is the percentage of total variance of the n individuals represented
(preserved) by the principal component Zi. For more details, see for example
chapters in the books of Diday et al. (1982), Manly (1986) or Jolliffe (2002).
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4 Data analysis

We performed a principal components analysis for each period. The Swiss
cantons are the n individuals (or units), and the voting results (the percent-
ages of “yes”) are the p variables. For the first period we have 25 individuals
in a 256-dimensional space, for the second period we have 26 individuals
(with the new canton of Jura) in a 95-dimensional space, and for the third
period we have 26 individuals in a 53-dimensional space. Actually, as there
are more variables than individuals, the real dimension of the cloud of points
is (n − 1) (that is 24 or 25 according to the period) in the same way that 2
points in a 3-dimensional space lie on a line (a one-dimensional subspace).

As explained in Section 3, PCA gives an approximate display in two di-
mensions of a cloud of points situated in a 24- or in a 25-dimensional space.
Figures given in next section represent the Swiss cantons in principal planes.
The horizontal axis represents the first principal component, and the vertical
axis the second one.

These principal planes give us an idea of voting similarities among the
different cantons. If two cantons are close to each other in such a plane, it
means that they voted similarly, and if they are distant from each other, they
voted differently (at least if the principal plane gives a good approximation
of the real situation, that is if λ1 and λ2 are high). Note also that cantons
situated near the origin of the graph were generally close to the Swiss mean
(their opinions were often in line with the majority).

4.1 Analysis of the period 1866-1978

Figure 1 represents the Swiss cantons in the principal plane for the period
1866-1978 (the abbreviations for the cantons are given in Table 1). The first
axis accounted for 36% of the total variance and the second axis for 17%.
This graph provides us with a summary picture of more than a century
of votations. Observe for example that the cantons of Basel-Stadt (at the
extreme top right of the graph) and Appenzell-IR (at the opposite side) voted
very differently from each other, while cantons like Zug or Graubünden were
the closest to the Swiss mean.

On the left side of Figure 1 we found the small and rural cantons like
Appenzell-IR, Obwalden, Nidwalden, Uri and Schwyz, while at the opposite
side, we found cantons with big cities like Basel-Stadt, Zürich and Genève.
Not surprisingly, cantons with small population densities voted in a different
way than those with higher population densities. Another factor correlated
with the first axis was religion. Cantons on the right side of the graph were
rather protestant, cantons on the left side were rather catholic and cantons
in the middle of the graph were often semi-protestant and semi-catholic. The
role played by religion in the voting results may for example explain the sur-
prising distance found between Appenzell-IR and Appenzell-AR. However,
this remark did not hold true for the non Swiss-German cantons. Genève
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Fig. 1. First two principal components of 112 years of federal votation from 1866
to 1978.

and Ticino, with catholic majorities were close to Neuchâtel and Vaud, with
protestant majorities. For a canton like Genève, this was not too much sur-
prising given its history.

Interpretation of the second axis was more straightforward. All Swiss-
German cantons were clearly situated in the top part of the graph whereas
the French cantons and Ticino were in the bottom part. From all French
cantons, the bilingual Valais and Fribourg were also the closest to the Swiss-
German ones. From this analysis one can conclude that the difference in
voting results between the German and the French cantons is a more deeply
rooted phenomenon than the December 6, 1992 voting result.

4.2 Analysis of the period 1979-1992

Figure 2 represents the Swiss cantons in the principal plane for the period
1979-1992. The first axis accounted for 37% of the total variance and the
second one for 29%.

Just entered into the Helvetic Confederation, the canton of Jura adopted
a very special position, lying at the very right bottom part of the graph, still
more extreme than Genève. All French cantons had actually quite special po-
sitions, each one being somewhat isolated in the plane. This was also the case
of Ticino. Fribourg was a bit closer to the other French cantons (especially
Vaud) than in Figure 1. The case of the Swiss-German cantons was quite
different. With the exception of the two Basels, Zürich and Appenzell-IR,
they were remarkably concentrated together.

Note that religion seems to have lost some of its influence. For example,
the protestant cantons Bern and Schaffhausen were found in the neighbor-
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Fig. 2. First two principal components of votation results from 1979 to 1992.

hood of the catholic cantons Luzern and Uri. This was actually not really
surprising since religion is nowadays less important in citizens’ lives than in
the past.

4.3 Analysis of the period 1992-1998

Figure 3 represents the Swiss cantons in the principal plane for the period
1993-1998. The first axis accounted for 39% of the total variance and the
second one for 27%.

The linguistic separation between cantons was again pronounced, even
more than for the previous periods, since the distinction was made here on
the first axis, not on the second one. The French cantons stood on the right
side of the graph whereas the Swiss-German cantons stood on the left side.
Ticino had an intermediary position between the two groups. The homogene-
ity among French cantons was here comparable to the homogeneity among
Swiss-German cantons. Valais was closer to French cantons than to Swiss-
German ones, even if still a bit extreme. Among Swiss-Germans, Basel-Stadt
and Basel-Land were the closest to the French cantons.

The linguistic factor seemed to play an important role among the Swiss-
Germans cantons themselves! Swiss-German cantons where the percentage
of German speaking people was particularly high (like Uri with 93.2%) were
generally found more on the left side of the graph than Swiss German cantons
where this percentage was smaller (like Basel-Stadt with 78.6%). Similarly,
among the French cantons, the bilingual Fribourg and Valais remained the
closest to the Swiss-German cantons. The correlation coefficient between the
percentage of German speaking people and the coordinates on the first axis
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Fig. 3. First two principal components of votation results from 1993 to 1998.

was −0.95! Thus the spoken language was very much related to Swiss citizens’
opinions.

5 Other description of Switzerland

In this section, we investigated how the Swiss cantons differ from each other
according to other characteristics than votations. We performed a PCA using
the 20 variables of general interest listed in Table 2 describing Switzerland
in 1990. These data were published by OFS (1990, 1991-1994). The principal
plane obtained is plotted in Figure 4. The first axis accounted for 32% of
the total variance and the second one for 22%. Interestingly enough, the
position of the Swiss cantons were very similar like in the principal plane
of Figure 1 (if we ignore the canton of Jura not present in Figure 1). As in
Figure 1, French cantons were found in the bottom part of the graph, with
Genève at the right extremity, and with Fribourg and Valais nearly close to
the Swiss-German cantons. The latter were covering the entire top part of the
graph with Basel-Stadt and Appenzell-IR at both extremities and with big
cities more on the right. The correlations between the canton’s coordinates
on Figure 1 and canton’s coordinates on Figure 4 (if we ignore Jura) were
of 0.87 for the first axis and of 0.85 for the second one! Thus, the picture
of Switzerland was quite similar by considering more than one century of
votations or by considering variables of general interest describing the Swiss
cantons.
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1. % of total population 11. % of 20 to 64 years old people
2. Population density (per km2) 12. % of unemployment
3. % of German speaking people 13. % of married people
4. % of French speaking people 14. % of women
5. % of Protestant 15. % of women in cantonal parliament
6. % of Catholics 16. Infantile mortality
7. % of foreigners 17. % of road accidents
8. % of Swiss from another canton 18. Inhabitant income
9. % of students in gymnasium 19. Fiscal charge

10. % of students in university 20. % of pure agriculture exploitation

Table 2. Twenty variables describing Switzerland.
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Fig. 4. First two principal components of 20 variables characterizing Switzerland.

6 Conclusion

An attempt has been made to answer the important question following the
federal vote of the 6th of December, 1992, whether this date has to be inter-
preted as the beginning of a divided Switzerland. Using official statistics (the
results of federal votations from 1866 to 1998) and a simple statistical tech-
nique (principal components analysis), we came to the conclusion that this
division is not a new phenomenon. The fact that voting results have always
been related to linguistic factors appears clearly in this analysis, even if other
cleavages are also important. One should admit that Switzerland has faced
such differences without too much difficulties during more than a century.
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Abstract. The paper outlines an efficient way to complement predictions, pro-
duced by new and traditional machine-learning methods, with measures of their
accuracy and reliability. These measures are not only valid and informative, but
they also take full account of the special features of the object to be predicted.
They are based on computable approximations of Kolmogorov’s algorithmic notion
of randomness. In using these measures it becomes possible to control the number
of erroneous predictions by selecting a suitable confidence level. Further develop-
ment of these ideas can lead to establishing useful links with the Diday’s Symbolic
Data Analysis.

1 Background

Symbolic Data Analysis (SDA) originally suggested by Edwin Diday has a
profound implication on the type of analysis that can be done. Among the
areas affected by the SDA is pattern recognition and machine learning. Ma-
chine learning has made significant progress and now have a wide range of
algorithms that often works very well in practice: decision trees, neural net-
works, nearest neighbours algorithms, and naive Bayes methods have been
used for decades. There are several new algorithms that have been developed
recently, including support vector machines and boosting.

From a theoretical point of view, machine learning’s most significant con-
tributions to learning are comprised by statistical learning theory. This theory,
which began with the discovery of VC dimension by Vapnik and Chervonenkis
in the late 1960s has produced both deep mathematical results and learning
algorithms that work very well in practice.

Given a training set of examples, statistical learning theory produces what
we call a prediction rule – a function mapping the objects into the labels.
Formally, the value taken by a prediction rule on a new object is a simple
prediction – a guess that is not accompanied by any statement concerning
how accurate it is likely to be. The theory does guarantee, however, that
as the training set becomes bigger and bigger these predictions will become
more and more accurate with greater and greater probability: probably ap-
proximately correct.

What is less clear is how probably and how approximately? This question
has not been answered as well as we might like. This is because the theoretical
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results that might be thought to answer it, the bounds that demonstrate
arbitrarily good accuracy with sufficiently large sizes of the training set, are
usually too loose to tell us anything interesting for training sets that we
actually have.

This happens in spite of the empirical fact that the predictions often per-
form very well in practice. Consider, for example, the problem of recognizing
hand-written digits. Here we are interested in giving an upper bound on the
probability that our learning algorithm fails to choose the right digit; we
might like this probability to be less than 0.05, for example, so that we can
be 95% confident that the prediction is correct. Unfortunately, typical upper
bounds on the probability of error provided by the theory, even for relatively
clean data sets such as the USPS data set are greater than 1. We outline be-
low how this problem can be solved and the advantages of using confidence
predictors.

2 Confidence predictors

Confidence estimation is a well-studied area of both parametric and non-
parametric statistics; however, usually only low-dimensional problems are
considered. In this paper we review the approach that has been developed at
the Computer Learning Research Centre, Royal Holloway, University of Lon-
don - see www.clrc.rhul.ac.uk/research/universaltransductionoverview.htm.

It is based on recently developed approximations to the universal measures
of confidence given by the algorithmic theory of randomness. The connection
between testing for randomness and prediction is, of course, well understood
and have been discussed at length by philosophers and statisticians.

In the recently published book by Vovk et al.(2005) it has been shown
how some popular prediction algorithms can be transformed into randomness
tests and, therefore, be used for producing so-called hedged predictions.

The problem of hedged prediction is intimately connected with the prob-
lem of testing randomness. Different versions of the “universal” notion of
randomness were defined by Kolmogorov, Martin-Löf and Levin based on
the existence of universal Turing machines. Adapted to our current setting,
Martin-Löf’s definition is as follows. Let Z be the set of all possible examples;
as each example consists of an object and a label, Z = X×Y, where X is the
set of all possible objects and Y, |Y| > 1, is the set of all possible labels. We
will use Z∗ as the notation for all finite sequences of examples. A function
t : Z∗ → [0, 1] is a randomness test if

1. for all ε ∈ (0, 1), all n ∈ {1, 2, . . .} and all probability distributions P on
Z,

Pn {z ∈ Zn, t(z) ≤ ε} ≤ ε; (1)

2. t is upper semicomputable.
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Fig. 1. An example of a nested family of prediction sets (casual prediction in black,
confident prediction in dark grey, and highly confident prediction in light grey.

The first condition means that the randomness test is required to be valid:
if, for example, we observe t(z) ≤ 1% for our data set z, then either the data
set was not generated independently from the same probability distribution
or a rare (of probability at most 1%, under any P ) event has occurred. The
second condition means that we should be able to compute the test, in a
weak sense (we cannot require computability in the usual sense, since the
universal test can only be upper semicomputable: it can work forever to
discover all patterns in the data that makes it non-random). Martin-Löf
(developing Kolmogorov’s earlier ideas) proved that there exists a smallest,
to within a constant factor, randomness test.

This new approach allows computing prediction and estimate confidence
of the prediction for high-dimensional data. This measure of confidence is
given as a number useful for solution of practical problems, and not some
asymptotic statement. The only assumption made is the iid assumption (the
examples are generated from the same probability distribution independently
of each other).

The main idea can be illustrated in case of regression as follows: let’s
choose a range of “confidence levels” 1 − ε, and for each of them specify a
prediction set, the set of labels deemed possible at the confidence level 1− ε.

A confidence predictor is a function that maps each training set, each new
object, and each confidence level 1− ε (formally, we allow ε to take any value
in (0, 1)) to the corresponding prediction set Γ ε. For the confidence predictor
to be valid the probability that the true label will fall outside the prediction
set Γ ε should not exceed ε, for each ε.

We might, for example, choose the confidence levels 99%, 95% and 80%,
and refer to the 99% prediction set Γ 99% as the highly confident prediction,
to the 95% prediction set Γ 95% as the confident prediction, and to the 80%
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prediction set Γ 80% as the casual prediction. Figure 1 shows how such a
family of prediction sets might look in the case of a rectangular.

The casual prediction pinpoints the target quite well, but we know that
this kind of prediction can be wrong with probability 20%. The confident
prediction is much bigger. If we want to be highly confident (make a mistake
only with probability 1%), we must accept an even lower accuracy; there is
even a completely different location that we cannot rule out at this level of
confidence.

In principle, a confidence predictor outputs prediction sets for all confi-
dence levels, and these sets are nested, as in the Figure 1. This approach
is a transductive one since we do not use any inductive rule to label new
examples, but move directly from old examples to the prediction about the
new object. These prediction sets also form some sort of “symbolic objects”
and can be interpreted as a symbolic computing approach. This approach is
being developed further, and the results will be reported.
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46 rue Barrault, 75013, Paris, France, lebart@enst.fr

Abstract. This paper deals with validation techniques in the context of exploratory
techniques involving singular values decomposition, namely: Principal Components
Analysis, Simple and Multiple Correspondence Analysis. We briefly show that, ac-
cording to the purpose of the analysis, at least five types of resampling techniques
could be carried out to assess the quality of the obtained visualisations: a) Partial
bootstrap, that considers the replications as supplementary data, without diago-
nalization of the replicated moment-product matrices. b) Total bootstrap type 1,
that performs a new diagonalization for each replicate, with corrections limited to
possible changes of signs of the axes. c) Total bootstrap type 2, which adds to the
preceding one a correction for the possible exchanges of axes. d) Total bootstrap
type 3, that implies Procrustean transformations of all the replicates striving to
take into account both rotations and exchanges of axes. e) Specific bootstrap, im-
plying a resampling at a different level (case of a hierarchy of statistical units). An
example is presented for each type of resampling.

1 Introduction

Our aim is to assess the results of principal axes methods (PAM), i.e.: multi-
variate descriptive techniques involving singular values decomposition (SVD)
such as principal components analysis (PCA), simple and multiple correspon-
dence analyses (CA and MCA). These methods provide useful data visualisa-
tions but their outputs (parameter estimates, graphical displays) are difficult
to assess. Computer intensive techniques allow us to go far beyond the cri-
terion of interpretability of the results that was frequently used during the
first phases of the upsurge of data analytic methods thirty years ago (see,
e.g., Diday and Lebart (1976)). To compute the precision of estimates, the
classical analytical approach is both unrealistic and analytically complex.
The bootstrap (see: Efron and Tibshirani (1993)), on the contrary, makes
almost no assumption about the underlying distributions, and gives the pos-
sibility to master every statistical computation for each sample replication
and therefore to deal with parameters computed through the most complex
algorithms.

2 Basic principles of the bootstrap, a reminder

The nonparametric bootstrap consists in drawing with replacement K sam-
ples of size n out of n statistical units. Then, parameter estimates such as
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means, variances, eigenvectors are computed on the K new obtained sam-
ples. A current value of K is 200, but it can vary from 10 to several thou-
sands according to the type of application. Empirical evidence suggests that
30 is an acceptable value for K in the context of PAMs. We have at this
stage K samples (the replicates) drawn from a new theoretical population
defined by the empirical distribution of the original data set, and, as a conse-
quence, K estimates of the parameters of interest. Briefly and under rather
general assumptions, it has been proved that we can estimate the variance
(and other statistical parameters) of these parameters directly from the set
of their K values. In the PCA case, variants of bootstrap do exist for active
variables and supplementary variables, both continuous and nominal. Nu-
merous papers have contributed to select the relevant number of axes, and
have proposed confidence intervals for points in the subspace spanned by the
principal axes. The sth eigenvector of a replicated correlation matrix is not
necessarily homologous of the sth eigenvector of the original matrix, because
of possible rotations, permutations or changes of sign of the axes. In addi-
tion, the expectations of the eigenvalues of the replicated matrices are not
the original eigenvalues (see, e.g., Alvarez et al.(2004), Lebart (2006)). Several
procedures have been proposed to overcome these difficulties (Chateau and
Lebart (1996)): partial replications using supplementary elements (partial
bootstrap), use of a three-way analysis to process simultaneously the whole
set of replicates and filtering techniques involving reordering of axes and Pro-
crustean rotations (Markus (1994), Milan and Whittaker (1995), Gower and
Dijksterhuis (2004)).

3 The illustrative example

An open-ended question has been included in a multinational survey con-
ducted in seven countries around 1990 (Hayashi et al. (1992)). The respon-
dents were asked: ”What is the single most important thing in life for you?”.
The illustrative example is limited to the British sample. The counts for the
first phase of numeric coding are as follows: Out of 1043 responses, there
are 13669 occurrences (tokens), with 1413 distinct words (types). When the
words appearing at least 16 times are selected, there remain 10357 occur-
rences, with 135 distinct words. The same questionnaire contained also the
socio-demographics of the respondents. In this example we focus on a parti-
tioning of the sample into 9 categories, obtained by cross-tabulating age (3
categories) with educational level (3 categories). Figures 1 to 5 will contain
an excerpt (four words) of the principal plane produced by a CA of the con-
tingency table cross-tabulating the previous 135 words with the 9 categories.
The entry (i, j) of such table is the number of occurrences nij of word i in the
responses of individuals belonging to category j (see: Lebart et al. (1998)).
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4 Partial bootstrap

The partialbootstrap makes use of projections of replicated elements onto
the original principal subspace provided by the eigen-decomposition of the
covariance matrix of the original data matrix. It has several advantages. From
a descriptive standpoint, this initial subspace is better than any subspace im-
plying the replicates. In fact, unlike the eigenvalues, this subspace is the ex-
pectation of all the replicated subspaces having undergone perturbations. The
plane spanned by the first two axes, for instance, provides an optimal two-
dimensional view on the data set. To apply the partial bootstrap to PCA, one
may project the K replicates of variables in the common reference subspace,
and compute confidence regions (ellipses or convex hulls) for the locations of
these replicates. Then, for each variable-point and each pair of principal axes,
a confidence ellipse is derived from a PCA of the two-dimensional cloud of
the K replicates. The lengths of the two principal diameters of these ellipses
are normatively fixed to four standard deviations. The corresponding ellipses
contain then approximately 90% of the replicates. Confidence ellipses may
also be replaced by convex hulls. Both ways of visualizing the uncertainty
around each variable-point are complementary: ellipses take into account the
density of the cloud of replicated points whereas convex hulls pinpoint periph-
eral points and possible outliers. Gifi (1980), Greenacre (1984) first addressed
a similar problem for CA and MCA.

Fig. 1. Partial bootstrap: Confidence ellipses for the location of 4 words in the
principal plane of a CA [contingency table crossing 135 words and 9 categories of
respondents].
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Figure 1 shows confidence ellipses for the location of four words.The
words corresponding to markedly overlapping ellipses could not be deemed
to be significantly distinct with regard to their distributions among the nine
categories. Thus, the words church and mind, despite their distinct loca-
tions, correspond to the same profile of respondents (profile described by the
nine categories). Such profile is significantly distinct from those of the words
nothing and things.

5 The total bootstrap and its three options

The totalbootstrap consists in performing a specific PAM for each replicate.
Evidently, the absence of a common reference subspace may induce a pes-
simistic view of the variances of the coordinates of the replicates on the
principal axes. The most obvious change concerns the directions of the axes,
which are in fact unpredictable. We can also observe exchange of axes from
one replicate to another, and also rotations of these axes (see: Milan et Whit-
taker (1995)). We have then to perform a series of transformations to identify
the homologous axes during the successive diagonalizations of the K repli-
cated covariance matrices Ck ( Ck corresponding to the k-th replicate). Three
types of transformations lead to three distinct tests for the stability of the
observed structure:

- 1. Total bootstrap type 1 (very conservative) : simple change (when nec-
essary) of signs of the axes found to be homologous (merely to remedy
possible reflections of the axes). A simple scalar product between homol-
ogous original and replicated axes allows for this elementary transforma-
tion.

- 2. Total bootstrap type 2 (rather conservative) : correction for possible ex-
changes of axes. Replicated axes are sequentially assigned to the original
axes with which the correlation (in fact its absolute value) is maximum.
Then, change of the signs of axes, if needed, as previously.

- 3. Total bootstrap type 3 (could be lenient if the procrustean rotation
is performed in a space spanned by many axes) : a procrustean rotation
(see: Gower and Dijksterhuis (2004)) aims at superimposing as much as
possible the original and replicated axes.

Total bootstrap type 1 ignores the possible exchanges and rotations of
axes. It allows for the validation of stable and robust structures. Each repli-
cate is supposed to produce the original axes with the same ranks (order of
the eigenvalues). Total bootstrap type 2 is ideally devoted to the validation
of axes considered as latent variables, without paying attention to the order
of the eigenvalues. Total bootstrap type 3 allows for the validation of a whole
subspace. If, for instance, the subspace spanned by the first four replicated
axes can coincide with the original four-dimensional subspace, one could find
a rotation that can put into coincidence the homologous axes. The situation
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Fig. 2. Total bootstrap type 1: Confidence ellipses for the same word-points in the
same original principal plane.

Fig. 3. Total bootstrap type 2: Confidence ellipses for the same word-points in the
same original principal plane after correction of the possible exchanges of axes.

is then somewhat similar to that of partial bootstrap. Figure 2 shows the case
of total bootstrap of type 1: evidently, the ellipses are much larger. Figure 3
introduces the corrections implied by possible exchange of axes. The pattern
observed in figure 1 reappears, albeit less clearly. This improvement means
that some axes exchanges were responsible for the perturbations of figure 2.
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Some stable dimensions may exist, but their order of appearance (order of
the corresponding eigenvalues) can vary from one replicate to another. Fig-
ure 4 is similar to figure 1 as far as the size of the ellipses is concerned. In
fact, the procrustean transformations depends on the number of axes taken
into considerations. They have been performed here in a 5-dimensional space,
and the original space can be retrieved without difficulty, leading to a pro-
cedure similar to the partial bootstrap. The lack of space does not allow for
displaying all the other dimensions.

Fig. 4. Total bootstrap type 3: Confidence ellipses for the same words in the same
original principal plane, with correction of the possible exchanges of axes and of
possible rotations (procrustean transformations).

6 Specific bootstrap

When dealing with textual data, resampling techniques can help to solve
the problem of plurality of statistical units (see, in the case of responses to
open questions: Tuzzi and Tweedie (2000)). In fact, two (or more) levels of
statistical units coexist in textual data analysis. On the one hand, the indi-
viduals (with their usual meaning in statistics) could be respondents (case of
sample surveys). On the other hand, within the produced corpus of textual
responses, the individuals could be the occurrences of words. Replications
can be obtained by drawing with replacement either respondents or words.
Owing to the discrepancies of responses sizes, the location of a word could be
significant when the statistical unit is the word, and not relevant if the statis-
tical unit is the respondent. Figure 5 shows again the same set of four words
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after a partial specific bootstrap consisting of drawings with replacement the
1043 respondents and projecting the replicates as supplementary points. If
we compare the ellipses with those of figure 1, we observe for example that
the location of the word things is now less precise: this is due to the fact
that some respondents use several times that word. Consequently, a drawing
of respondents induces a larger perturbation of the data. The specific boot-
strap is however the right procedure for inferring the results to the universe
of respondents.

Fig. 5. Specific two-level partial bootstrap: Bootstrapping the observations (i.e.:
respondents) instead of the words. This figure should be compared only with Figure
1 (both of them use partial bootstrap).

7 Conclusion

The bootstrap stipulates that the observed sample can serve as an approx-
imation of the population. It takes into account the multivariate nature of
the observations and involves simultaneously all the axes. Bootstrapping can
also be used to process weighted data (circumstances occurring in most sam-
ple surveys) and to draw confidence intervals around the location of supple-
mentary variables in PAM. In the case of multilevel samples (for example:
sample of respondents, and samples of words within the responses), the repli-
cations can involve separately the different levels, and allows for studying the
different components of the observed variance. From a practitioner’s stand-
point, PAM are particularly profitable when they consider the principal space
spanned by the first dimensions as a predictive map which purports to receive
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all the remaining information contained in the data file (set of supplemen-
tary questions).That approach, closely related to regression, is widely used in
practice. In all these cases, assessment procedures are difficult to carry out in
a classical statistical framework. Bootstrap techniques are the versatile tools
able confer to the obtained visualizations a scientific status.

Software note: The used software (DTM: Data and Text Mining) as
well as the data set serving as an illustration can be freely downloaded from:
http : //www.lebart.org.
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Abstract. Clusterwise regression is applied to functional data, using PCR and
PLS as regularization methods for the functional linear regression model. We com-
pare these two approaches on simulated data as well as on stock-exchange data.

1 Introduction

Clusterwise linear regression method provides classification of data such that
each cluster is generated by some linear regression model. More precisely, if
{Y,X1, . . . , Xq}, q ≥ 1, are real-valued random variables, the homogeneity
of subjects within a cluster is given not only by similarities of the observed
values of these variables but mainly by the proximity of subjects with respect
to some linear model. One can consider that data is generated by a mixture of
several regression models (DeSarbo and Cron (1988)), Hennig (1999),(2000)),
that is, there exists a latent categorical random variable G, G ∈ {1, . . . ,K},
K ≥ 2, defining the clusters such that for ∀k ∈ 1, . . .K, P(G = k) 
= 0 and

E(Y
∣∣X1 = x1, . . . , Xq = xq) = βk

0 + βk
1x1 + . . . + βk

q xq,

where {βk
i }i=0,...,q are the regression coefficients for the cluster defined by

{G = k} .

The estimation aspects in clusterwise linear regression was addressed
firstly by the pioneering works of Bock (1969) and Diday (1976) who propose
a piecewise linear regression algorithm as a special case of k-means clustering
with a criterion based on the minimization of the squared residuals instead
of the classical within-class dispersion. The problem of multicollinearity and
overfit under the least squares criterion is the subject of works of Charles
(1977) which establish properties and conditions for convergence of the alter-
nating algorithm proposed by Diday(1976) and introduce the ridge regression
as a regularization method for the clusterwise procedure. One can also men-
tion the works of Spaeth(1979) which propose an estimation procedure of
clusterwise regression models by an exchange algorithm.
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These clusterwise algorithms are largely used nowadays but few signif-
icant modifications have been done since then (Plaia (2004)). Recent con-
tributions in this area are due mainly to the development of techniques for
estimating the linear models within clusters subject to different inconsistency
issues : multicollinearity of predictors, number of observations within a cluster
smaller then the number of predictors, etc.

In this paper we are interested in clusterwise linear regression when the
set of explanatory variables (predictors) are of functional type, i.e., data are
functions or curves of some continuous parameter t (usually time or wave-
length). A well accepted model for this kind of data is to consider them as
paths of a stochastic process X = {Xt}t∈T taking values in a Hilbert space
H of functions on some set T. For example, a second order stochastic process
X = {Xt}t∈[0,1], L2–continuous with sample paths in L2([0, 1]) can be used
as model for index stock-exchange evolution during a time period or for the
knee flexion angle measure over a complete gait cycle.

There is a rich and recent literature devoted to functional data, the last
contributions being reported by the monographs of Ferraty and Vieu (2006),
Ramsay and Silverman (1997, 2002). As an alternative to the work of Abra-
ham et al. (2002) on unsupervised classification of functional data, Preda
and Saporta (2005b) proposed the PLS approach for clusterwise regression
on functional data.

We propose a comparative study of the partial least squares (PLS) and the
regression on principal components (PCR) approaches for estimating coeffi-
cient regression functions within clusters in the context of clusterwise linear
regression with predictors of functional type. The paper is divided into three
parts. After a brief introduction to PCR and PLS regularization methods
for functional data, we describe the clusterwise linear model using the esti-
mations given by PCR and PLS. In the last section we present a simulation
study as well as an application on stock exchange data.

2 PCR and PLS for functional data

Let us consider the functional data as sample paths of a stochastic process
X = {Xt}t∈[0,T ] with continuous time, and Y = (Y1, Y2, . . . , Yp), p ≥ 1, a ran-
dom vector defined on the same probability space as X, (Ω,A, P ). We assume
that {Xt}t∈[0,T ] and Y are of second order, {Xt}t∈[0,T ] is L2-continuous and
for any ω ∈ Ω, t �→ Xt(ω) is an element of L2([0, T ]). Without loss of general-
ity we assume also that E(Xt) = 0, ∀t ∈ [0, T ] and E(Yi) = 0, ∀i = 1, . . . , p.

The functional linear regression model assumes that

Y =

∫ T

0

β(t)X(t)dt + ε, (1)

where β is a Rp-valued function on [0, T ] and ε is the random error term.
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It is well known that the approximation of Y obtained by the classical

linear regression on X = {Xt}t∈[0,T ], i.e., Ŷ =
∫ T

0 β(t)Xtdt, is such that
β is in general a distribution rather than a function of L2([0, T ]) (Saporta
(1981)). This difficulty appears also in practice because one has generally
more predictors than the number of observations, the least squares criterion
providing inconsistent estimators (infinite number of solutions). Regression
on principal components (PCR) of X (Deville (1978)) and PLS approach
(Preda and Saporta (2005a)) give satisfactory solutions to this problem.

2.1 Linear regression on principal components (PCR)

The principal components of the stochastic process X = {Xt}t∈[0,T ] are
linear combinations of Xt, t ∈ [0, T ], given by the eigenfunctions of the co-
variance operator of X :

ξi =

∫ T

0

fi(t)Xtdt,

where {fi}i≥1 are solution of the eigenvalue equation

∫ T

0

C(t, s)fi(s)ds = λifi(t),

and C(t, s) = cov(Xt, Xs), ∀t, s ∈ [0, T ].
Observe that the principal components {ξi}i≥1 are eigenvectors of the

Escoufier operator, WX , defined by

WXZ =

∫ T

0

E(XtZ)Xtdt,

for any real-random variable Z in L2(Ω) (Escoufier (1970)).
As in the classical setting, the process {Xt}t∈[0,T ] and the set of its

principal components, {ξk}k≥1, span the same linear space. Thus, the re-
gression of Y on X is equivalent to the regression on {ξk}k≥1 and we have

Ŷ =
∑

k≥1

E(Yξk)

λk
ξk.

In practice one has to choose an approximation of order q, q ≥ 1 :

ŶPCR(q) =

q∑

k=1

E(Yξk)

λk
ξk =

∫ T

0

β̂PCR(q)(t)Xtdt, (2)

where

β̂PCR(q) =

q∑

k=1

E(Yξk)

λk
fk(t)
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is the estimator of the coefficient regression function β obtained with the first
q principal components.

Using the first q principal components raises a problem since they are
computed independently of the response. Principal components with a great
power of explanation yield generally stable models but could be uncorre-
lated with the response, whereas the principal components highly correlated
with the response could be less explanatory for X. Moreover, for functional
data, the number of principal components could be infinite. Thus, the choice
of principal components is a trade-off between stability of the linear model
and its predictive power (see also Escabias et al. (2004)). A solution to this
problem is the PLS approach.

2.2 Partial least squares regression (PLS)

The PLS approach offers a good alternative to the PCR method by re-
placing the least squares criterion with that of maximal covariance between
{Xt}t∈[0,T ] and Y (Preda and Saporta (2005a)).

One obtains a set of PLS components {ti}i≥1 using an iterative procedure.
At each step, the PLS component being defined as the linear combination of
Xt variables that attains maximum covariance with the response or between
residuals :

Let X0,t = Xt, ∀t ∈ [0, T ] and Y0 = Y. At step q, q ≥ 1, of the PLS

regression of Y on {Xt}t∈[0,T ], we define the qth PLS component, tq, by the
eigenvector associated to the largest eigenvalue of the operator WX

q−1W
Y
q−1,

where WX
q−1, respectively WY

q−1, are the Escoufier’s operators associated
to {Xq−1,t}t∈[0,T ], respectively to Yq−1. The PLS step is completed by the
ordinary linear regression of Xq−1,t and Yq−1 on tq. Let Xq,t, t ∈ [0, T ] and
Yq be the random variables which represent the error of these regressions :
Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq.

Then, for each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and
the following decomposition formulas hold :

Y = c1t1 + c2t2 + . . . + cqtq + Yq,
Xt = p1(t)t1 + p2(t)t2 + . . . + pq(t)tq + Xq,t, t ∈ [0, T ].

The PLS approximation of Y by {Xt}t∈[0,T ] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + . . . + cqtq =

∫ T

0

β̂PLS(q)(t)Xtdt. (3)

Notice that de Jong (1993) and Phatak (2001) show that for a fixed q,
the PLS regression fits closer than PCR, in that sense

R2(Y, ŶPCR(q)) ≤ R2(Y, ŶPLS(q)),

where R is the multiple correlation coefficient.
The number of PLS components used for regression is generally deter-

mined by cross-validation.
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3 Clusterwise regression model and functional data

Let us suppose that the response Y is one dimensional (p = 1). The clus-
terwise linear model assumes that there exists a random variable G, G ∈
{1, 2, . . . ,K}, K ≥ 2, such that for each cluster defined by {G = i} one has

E(Y
∣∣X = x,G = i) = αi +

∫ T

0 βi(t)x(t)dt,
V (Y

∣∣X = x,G = i) = σ2
i > 0, x ∈ L2([0, T ]), ∀i = 1, . . . ,K.

(4)

i.e.,

Y|G=i = αi +

∫ T

0

βi(t)X(t)dt + εi, ∀i = 1, . . . ,K.

Let us assume that K is known and the homoscedasticity hypothesis
holds, i.e. the variance of the random error term εi within each cluster are
equals, σ2

i = σ2, ∀i = 1, . . .K.
In such a model, the parameters that have to be estimated are the regres-

sion coefficient functions for each cluster {(αi, βi)}i=1,...,K and σ2. Charles
(1997) and Bock (1969) use the following criterion for estimating the linear
models within clusters, {αi, βi}K

i=1 :

min
{αi,βi}K

i=1,L(G)

{
V(Y − Ŷ L)

}
, (5)

where Ŷ L =

K∑

i=1

Ŷ i1G=i and Ŷ i = αi + 〈β̂i,X〉 is the approximation of Y

given by the linear regression of Y on X within the cluster i, i = 1, . . . ,K.
If n data points {xi, yi}n

i=1 have been collected, the cluster linear regres-

sion algorithm finds simultaneously an optimal partition of the n points, Ĝ
(as estimation of the distribution of G, L(G)), and the regression models for

each cluster (element of partition) (α̂, β̂) = {α̂i, β̂i}K
i=1, which minimize the

criterion :

V(K, Ĝ, α̂, β̂) =

K∑

i=1

∑

Ĝ(j)=i

(
yj − (α̂i + 〈β̂i, xj〉)

)2
. (6)

In order to minimize (6), the clusterwise linear regression algorithms it-
erates the following two steps :

i) For given Ĝ, V(K, Ĝ, α̂, β̂) is minimized by the LS-estimator (α̂i, β̂i) from
the points (xj , yj) with Ĝ(j) = i.

ii) For given {α̂i, β̂i}K
i=1, V(K, Ĝ, α̂, β̂) is minimized according to

Ĝ(j) = arg min
i∈{1,...,K}

(
yj − (α̂i + 〈β̂i, xj〉)

)2
. (7)
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That is, V(K, Ĝ, α̂, β̂) is monotonely decreasing if the steps i) and ii) are
carried out alternately :

Ĝ0 ⇒ (α̂0, β̂0)︸ ︷︷ ︸
V0

⇒
≥

Ĝ1 ⇒ (α̂1, β̂1)︸ ︷︷ ︸
V1

⇒
≥

. . . ⇒
≥

Ĝl ⇒ (α̂l, β̂l)︸ ︷︷ ︸
Vl

⇒
≥

. . . (8)

where the index of each term denotes the iteration step, Ĝ0 being an initial
partition of the n data points.

When the predictor is of functional type, the classical linear regression
is not adequate to provide estimators for the linear models within clusters,
{αi, βi}K

i=1. We propose to adapt the PLS and PCR regression approaches for
the clusterwise algorithm in order to overcome this problem. The convergence
of the clusterwise algorithm using these regularization methods is discussed
in Preda and Saporta (2005b).

Let us denote by {α̂i
PLS , β̂

i
PLS}K

i=1, respectively by {α̂i
PCR, β̂i

PCR}K
i=1 the

estimators for the coefficient regression functions within clusters.

As a quality measure of the fit in clusterwise regression one can use the
square of the correlation coefficient between the response (Y ) and the predic-
tor (X) within each cluster. If a clusterwise linear model underlies data, it is
interesting to compare each cluster regression quality with that obtained by
the linear model without clusters. For comparison of several techniques for
estimating the clusterwise model (for example, PLS and PCR) the criterion
given in (7) is a natural choice.

4 Numerical results

In this section we compare the clusterwise PLS and PCR approaches in the
context of functional data both on simulated and real data.

Firstly we consider simulated data with two clusters each having its own
linear structure with respect to a one dimensional response Y and a set of
curves {Xt, t ∈ [0, T ]} drawn from the one-dimensional Brownian motion.
The aim is to check the capability of the clusterwise regression to identify
these two clusters. The second application concerns stock exchange data and
the aim is to ”predict” the last five minutes of the evolution of a particular
share, considered on a certain interval of time.

We quote by CW-PLS(K) and CW-PCR(K) the clusterwise PLS, respec-
tively PCR, regressions with K clusters, by PCR and PLS, the global linear
regression models obtained with the principal components, respectively on
the first PLS components. The number of components considered for regres-
sion (PLS and PCR) is determined by cross-validation (leave-one-out) using
a significance level of 95%.
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4.1 Simulation study

Let us consider that the stochastic process underlying the functional data is
the standard Brownian motion on the interval [0, 1], X = {Xt}t∈[0,1], E(Xt) =
0, E(XtXs) = inf{t, s}, ∀t, s ∈ [0, 1]. The response variable Y is defined with
respect to a group variable, G, with two modalities in the following way :

Class 1 : Y =

∫ 1

0

tXtdt + ε1

Class 2 : Y =

∫ 1

0

(1 − t)Xtdt + ε2

where ε1 and ε2 are Gaussian noises such that σ2
1 = σ2

2 = σ2. We consider
two situations σ2 = 0.01 and σ2 = 0.02 which correspond to the following
ratios σ2/V(Y ):

σ2 = 0.01 σ2 = 0.02

Class 1 0.069 0.137

Class 2 0.167 0.285

Table 1. Noise to response ratio, σ2/V(Y ).

Our simulation is based on the following conditions:

- the trajectories of X are discretized in 101 equidistant points.
- values of Y as well as the principal and PLS components are computed

using integration by trapezoidal interpolation.
- the training sample sizes are identical for both groups, n = 500.
- 100 simulations.

Table 2 presents the performance values of PLS and PCR models in terms
of response variance explained by the predictor, i.e. the multiple correlation
coefficient, R2. For clusterwise models we present also the error classification
rate (ECR). Both measures are averaged over 100 samples.

Figure 1 plots β̂i
PLS , i = 1, 2., the two regression coefficient functions

obtained with the PLS approach attaining the best model with respect to
the criterion given by (7).

The results obtained on this example show that PLS fits slightly better
than PCR especially when the noise to response ratio is increasing. This is
mainly due to the fact that the PLS takes into account, for computing PLS
components, the correlation between the response and predictor, whereas
that is not the case for PCR. Notice that these results are in agreement with
those obtained by Barker and Rayens (2003) and Preda et al. (2007) on the
capability of PLS models for classification purpose.
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Model σ2 = 0.01 σ2 = 0.02

R2-PCR 0.718 0.597

R2-PLS 0.724 0.612

cluster 1 cluster 2 ECR cluster 1 cluster 2 ECR

CW-PCR(2) 0.882 0.794 0.112 0.752 0.625 0.322

CW-PLS(2) 0.908 0.812 0.103 0.826 0.674 0.260

Table 2. Model quality : R2 and error classification rate (ECR) averaged over 100
simulations.

cluster1
cluster2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

PLS coefficient regression functions

time

Be
ta

Fig. 1. Cluster-specific regression coefficient functions for PLS approach (σ2 =
0.01).

4.2 Application on stock exchange data

We have 84 shares quoted at the Paris stock exchange, for which we know
the whole behavior of the growth index during one hour (between 1000 and
1100). Notice that a share is likely to change every second. We also know the
evolution of the growth index of a new share (indexed 85) between 1000 and
1055.

Linear models for this data set were fitted with PLS and PCR regression
techniques in order to predict the way in which the new share will behave
between 1055 and 1100 (Preda and Saporta (2005a). We have shown (Preda
and Saporta (2005b)) that this prediction is improved when the clusterwise
approach is considered.

Since the curves are completely known, we use the time average approx-
imation developed in Preda (2000) by taking an equidistant discretization
of the interval [0, 3600] (time expressed in seconds) in 60 subintervals. The
forecasts obtained will then match the average level of the growth index of
share 85 considered on each interval [60 · (i− 1), 60 · i), i = 56, . . . , 60.

The results of the best models are presented in the Table 3.
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m̂56(85) m̂57(85) m̂58(85) m̂59(85) m̂60(85) SSE

Observed 0.700 0.678 0.659 0.516 -0.233 -

PLS 0.312 0.355 0.377 0.456 0.534 0.911

PCR 0.613 0.638 0.669 0.825 0.963 1.511

CW-PLS(3) 0.643 0.667 0.675 0.482 0.235 0.215
CW-PLS(4) 0.653 0.723 0.554 0.652 -0.324 0.044

Table 3. Forecasts for share 85.

Using the sum of squared errors (SSE) as measure of fit, let us observe
that the clusterwise models give better results than the global ones. The
clusterwise models predict better the crash of the share 85 for the last 5
minutes, whereas the global models do not. For the PLS model with 4 clusters,
the size of each cluster is given by the distribution (17

84 ,
32
84 ,

10
84 ,

25
84 ). Following

the K-NN procedure proposed by Charles (1977), the share 85 belongs to the
first cluster.

5 Conclusion

PLS and PCR approaches are regularization techniques for linear regression
used with success when the least squares criterion produces inconsistent esti-
mators, in particular, when multicollinearity and sample size problems occur.
This is the case for functional data (multicollinearity) and the clusterwise al-
gorithm (cluster size less than the number of predictors). We show by a
simulation study and an application on stock-exchange data the efficiency of
these two methods and point out the accuracy of PLS with respect to PCR.
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Abstract. In many research problems it is useful to summarize some indices or
indicators to express a synthetic, indirect measure of a concept which is revealed
by p variables observed in each statistical unit. This is because the p variables
are considered to be indirect measures of a complex (perhaps indefinable) concept.
Within this context and for ranking the n statistical units the author suggests the
index:

Ri = (sgn ci1)(
∑

r

c2
ir)

1/2

where the cir (i = 1, 2, . . ., n; r = 1, 2, . . ., p) represent the values of the p principal
components connected with the i-th statistical unit. This index is applied for rank-
ing the 20 Italian Regions for quality of life for the years 2000-2002. The results are
compared with those that are furnished by the single source method.

1 Introduction

When p quantitative characters are observed in a finite population P of n
statistical units, the information on the structure of the population is con-
tained in the matrix: Xn,p ≡ xi,j , (i = 1, 2, . . .n; j = 1, 2, . . ., p) where xi,j

represents the realization of variable j relative to the statistical unit i. Row i,
therefore, is related to unit i and column j is related to character j. The data
matrix Xn,p can be represented by n points in a vector space of p dimensions
or as p points on a vector space of n dimensions.

In applications of interest to statistics, n is nearly always greater than p
and no variable is proportional to or a linear combination of other variables.
Moreover, the rank of the matrix can be assumed to be equal to p.

Each of the p variables observed is defined by:

1. A set Θ called the space of the observations;
2. A algebraic structure s on the Θ ;
3. An mapping V of Ω into Θ, where Ω is the finite set of the statistical

units.

Different types of variables can be distinguished by the cardinality of the
set Θ and by the algebraic structure s; for example:

1. Quantitative ordinals, such as judgements, quality;
2. Quantitative measurements or intensities, such as income in dollars or

imported goods in quintals;
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3. Quantitative ordinals, such as location of home, socio-professional cate-
gory;

4. Absolute frequencies such as the number of inhabitants in a area at a
particular date.

We can also obtain other tables of great statistical interest from matrix
Xn,p. For example: contingency or frequency tables; standardized matrices
in their different forms; matrices of the deviations from the mean expressed
in terms of standard deviation; matrices of variance and covariance, matrices
of correlation, matrices of distances and similarity.

When a researcher collects an n× p data array Xn,p he generally has two
goals (Escoufier(2006)):

1. Comparison of the variables.
2. Comparison of the observations.

Generally to compute a distance between the observations in Rp, we need
a p × p symmetric positive definite matrix Qp,p = L’p,pLp,p, where Lp,p

is a p×p matrix of rank p which can be viewed as a linear transformation
of Xn,p such that Yn,p = Xn,pLp,p will replace Xn,p.

This paper considers the ranking of the observations which is a particular
case of comparing the observations.

2 Synthesis of the indicators

The following distinctions between the diverse methodologies for the design
of elementary indicators can be proposed:

• the ordinal approach;
• the cardinal approach (through the arithmetic mean of the values trans-

formed into index numbers, through the arithmetic mean of the values in
proportion with the field of variations, through the arithmetic mean of
the values transformed into standard deviations, through the sum of the
values transformed into percentages);

• the transformation of elementary indicators into comparative indicators;
• the synthesis of the elementary indicators through the taxonomic method

of Wraclaw which considers the distance of the units from an ideal unit
and the regrouping of homogenous territorial units through taxonomic
graphics;

• the synthesis of the elementary indicators through the method of principal
components (single source factor);

• factorial analysis.

The general problem of ranking n statistical units on which the modalities
of p characters have been observed was dealt with by V. Barnett, (1976), in
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an important article which appeared in the Journal of the Royal Statistical
Association in 1976. Following this article there were interesting discussions
by R.L. Plackett, K.V. Mardia, R.M. Loynes, G.M. Paddle, T. Lewis, G.A.
Barnard, A.M. Walker, F. Downton, P.J. Green, M. Kendall, A. Rizzi, M.
Robinson, Allen Scheult and D.H. Young. The concept of sub-ranking was
introduced and marginal ranking, reduced ranking, partial ranking and con-
ditioned ranking were defined. This approach was presented in both proba-
bilistic as well as descriptive terms. The research concluded with the affir-
mation that there was no reasonable basis for a complete ranking of a set of
multivariate modalities.

To rank statistical units through a synthetic index one could proceed, for
example, in the following way.

We add the values of every statistical unit after having standardized them
with the field of variation which leaves us with a value lying between 0 and
100. Calculating this index for every statistical unit gives us the ability to
rank them in function of their value. This will vary between zero and 100p
where p is the number of variables, taking the value 100p in the case of
a single unit which absorbs the total of each phenomenon. Dividing this
index by p yields a value of between 0 and 100. This procedure presents the
inconvenience of summing modalities which are highly correlated. In the case
of their application to Italian regions presented below, the economic variables
are very highly correlated. Therefore, summing the modalities by row leads
to duplication of the information characterizing the statistical units.

This redundancy in information is not, in itself, a negative element for sta-
tistical analysis. In some situations, for example in communication between
human beings, it is this redundancy of information itself which leads to bet-
ter understanding of diverse phenomena. In our case, however, the choice of
variables is nearly always conditioned by the availability of statistical data.
The correlation between the variables can derive, as is nearly always the case
in operative reality, from this choice conditioned by the availability of data.

For the statistical value of the unit i, the synthetic index used in the
applications can be written as:

Ii = (1/p)

p∑

j=1

xi,j100 (i = 1, 2, . . .n)

One has:
0 ≤ Ii ≤ 100, 0 ≤ xi,j ≤ 1 ∀i, j

This can be formally considered and written in the following way:

Ii =
∑

j=1

xi,jqj100 (i = 1, 2, . . .n)

where qj ( with
∑

qj = 1 ; 0 ≤ qj) is a generic weight to be attributed to
variable X . The choice of weights can be made in a subjective manner, there
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are no rules for their assignment in an objective manner. It is known that in
many researches the weights assigned are all equal.

Another method to obtain a synthetic index which allows the ranking of
statistical units is to substitute each category assumed by a variable with
an integer number equal to the position occupied in the ascending (or de-
scending) rank of variable Xj (j=1,2,. . . , p). Each statistical unit is therefore
assigned p integer between 1 and n, where n is the number of statistical units.

Therefore, the synthetic index is:

Ri =
∑

j

gi,j (i = 1, 2, . . . , n)

where gi,j is the positions assigned to ith unit in the ranking in question.
This index will vary between p and np (in the case in which the statistical

units are found in the nth position in each of the rankings), i. e.:

p ≤ Ri ≤ np

To have an index varying between 0 and 1 we can propose the following
index:

Ri = (Ri − p)/(np− p)

This index could require some type of standardization; it does not take
into account the value of the diverse modalities, only their relative positions.

In applications one uses particular short-cuts to adapt the general proce-
dure to specific situations. For example, the possible points are divided into
classes either a priori or after the fact according to particular quantiles of the
distributions or standard secondary intervals (for example, multiple prefixes
of the mean quadratic deviation).

Some situations have furnished interesting results both in graphical anal-
ysis and in the procedure of clustering statistical units based on the observed
characters and which can serve, in the judgement of the researcher, as an
indirect measure of complex concepts.

In social statistics these procedures are preceded by careful analysis of the
nature of the data, for example, whether the analysis in question are made in
descriptive or normative terms, whether the data are expressed in the same
units of measurement and/or ranking in size, whether the parameters are
scores of a subjective type, etc.

3 A new method for ranking n statistical units

It is known that an infinite number of linear transformations of data matrix
Xn,p exist which allow the elimination of correlations between the columns
of the matrix.
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From the geometric point of view this means relocating the origins of
the system of reference at the mean point and rotating the axes such that
the matrix of correlation is reduced to the unitary matrix (Pompilj (1952),
Casella and Berger (2002)).

Now, with matrix Xn,p we can consider the matrix of the percentages and
then the matrix S of the deviation from the mean.

Matrix:
Yn,p = SQΛ−1/2

has the unit matrix as correlation matrix; in this expression Q is the matrix
of the eigenvectors associated with the correlation matrix of Xn,p , Λ−1/2 has
on its principal diagonal the inverse of the square roots of the eigenvalues of
X

′

n,pXn,p.
The principal components are also equal to the number p of the variables

if, as is supposed here, matrix Xn,p has rank equal to p. These are well known
to be orthogonal. This means that the correlation coefficients calculated in
the components are always null.

The indices proposed here measure the distance of each statistical unit
from its origin. Each statistical unit is represented as a point in space of p di-
mensions. The distance is calculated with respect to the orthogonal reference
system of the principal components. The sign is that of the first principal
component.

Ri = (sgn ci1)(
∑

r

c2ir)
1/2

where cir(i = 1, 2, . . ., n, r = 1, 2, . . ., p) are the component scores associated
to the ith unit.

The proposed indices take into account of all essential information con-
tained in the matrix of the principal components in that considers all the
components and not just those concerning data on the percentage of vari-
ation. Therefore the problem of choosing the number of components to be
retained is overcome.

The sign of the first principal component is retained because it is, by
definition, that one which will account for the majority of the variability
with respect to the other components.

In general if there are p components, the n statistical units are represented
as n points in space singled out from the p non-correlated components. The
space is divided into two parts with p axes. The positive sign is assumed for
the points found in the second part of the space in which the first component
is positive.

4 Application

The goal is to measure the quality of life in Italian regions through the con-
struction of a multidimensional ranking based on a set of objective and de-
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scriptive social indicators and a methodology for the construction of their
syntheses. In this application, therefore, the study of the quality of life is
conceived as an analysis of the standard of living, that is, through directly
observable dimensions (objective) which can be analyzed in relation to the
regions in all their complexity.

The goal of these analyses is to rank the Italian Regions with regard
to many empirical social indicators of the quality of life through synthetic
indices of these very indicators.

Eighteen distinct indicators were considered relative to these seven areas:

a) Social-Demographic: indices of old-age, life expectancy at birth for
males and for females

b) Health: infant mortality, availability of hospital beds and their use

c) Jobs and Employment: non-members of the work force, members of the
work force, unemployed

d) Social Safety: assaults, traffic accidents

e) Stress and Social Hardship: suicide

f) Economic Well-Being: per capita income, food consumption, private
cars

g) Culture and Free Time: recreation consumption, TV subscription, uni-
versity graduates.

The source of all data is the Italian National Statistical Institute (ISTAT).
The period of reference is the three years of 2000, 2001 and 2002. The analysis
is based on the mean values within these three years.

In Table 1 we find the matrix Zn,p of the standardized deviation from the
mean of the three year period 2000-2002. These standardized deviations are
obtained, for every value, as ratios of the deviation from the mean and the
standard deviation.

Table 2 display the correlation matrix. The correlation coefficients vary
between -0.8 and 0.8. That means that many variables are strongly correlated.

In Table 3 we find the matrices of the 18 eigenvalues obtained with stan-
dard software. The first is the principal component reproducing a consistent
variance quota equal to 49.7% and together with the two successive ones we
obtain a percentage equal to 73.5% of the total.

With reference to the generic statistical unit ai, to calculate the index
proposed in paragraph 3 the quantity

∑
r c

2
ir is taken directly from the ma-

trix of principal components. This is given by the product of the matrix of
standardized deviation multiplied by the matrix of the normalized eigenval-
ues.

In Table 4 are reported the values of the indices in ascending order. The
first positions on the classification, which represent a higher quality of life,
are occupied by the central, northern regions, in particular and in this order:
Toscana, Valle D’Aosta, Liguria, Lazio, Umbria. At the bottom of the list we
find the southern regions, Calabria, Basilicata, Sicilia and Sardegna.
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In our application we have made reference to all of the principal compo-
nents, 18 variables in all. We are not limited to either the first or to the first
few principal components. In this way no information is lost, not even from
the less important principal components. Naturally one could ignore the com-
ponents where the calculation yields results which are truly negligible. For
example, in our case the sum of the contributions of the eleventh principal
component is less than one percent. Considering only the indices based on
the first eleven principal components yields substantially the same results as
does the calculation based on all the components.

The analysis was repeated but limited to only the first principal compo-
nent. This is known as the single source factor. In our case the first principal
components accounts for about 50% of the variance and therefore is highly
significant.

The ranking derived in this manner is: Emilia Romagna, Trentino-Alto
Adige,Veneto, Friuli-Venezia Giulia, Toscana, Valle D’Aosta, Marche, Um-
bria, Liguria, Piemonte, Lombardia, Lazio, Abruzzo, Molise, Sardegna, Puglia,
Basilicata, Calabria, Sicilia, Campania .

The two classifications presented do not show differences. The Spearman’s
rank coefficient is equal to 0.67. This low value indicates that there is no great
concordance between the two classifications. It is therefore undeniable that
the method that uses the sign of the first principal component offers more
complete information than that of the single source factor.

The southern regions hold the last positions in both methods. This occurs
because in such regions most of the information is contained in the first
principal component. For the northern regions the information is contained
in both the first and the second principal components. Therefore, for these
regions information is partially lost with the single source factor method.
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a b c d e f g h i j k l m n o p q r

Pie 0,71 -0,67 -0,42 -0,64 -0,14 0,43 -0,51 0,75 -0,62 0,25 0,10 0,37 0,22 0,72 -0,44 1,83 0,06 -0,23

VdA 0,15 -0,67 -0,42 0,57 -0,14 0,86 -0,19 1,51 -0,80 -1,57 0,91 3,70 1,60 1,23 -1,67 -1,67 0,02 -

Lom -0,15 -0,83 0,17 -0,64 0,19 0,40 0,48 1,00 -0,81 0,29 -1,51 0,04 -0,52 1,27 -0,59 0,71 0,39 0,33

TAA -0,86 0,31 1,48 -1,02 1,34 -1,09 0,09 1,27 -1,00 -1,63 0,27 -0,48 1,03 1,39 -1,90 -0,29 0,20 -0,89

Ven -0,19 -0,02 0,90 -1,20 1,01 0,19 0,14 0,97 -0,88 -1,70 0,10 -0,05 0,50 0,68 -0,92 0,96 0,50 -0,01

FVG 1,07 -0,83 -0,12 -1,39 1,01 -0,56 -0,08 0,53 -0,80 -0,38 0,27 0,07 1,85 0,62 -0,47 0,08 0,74 0,66

Lig 2,24 -0,50 -0,42 0,01 1,67 0,65 -1,36 -0,21 -0,41 0,51 -1,83 -0,60 0,46 0,48 -0,17 0,21 0,78 -0,01

Emi 1,19 0,31 0,46 -0,55 0,02 2,23 -1,60 1,37 -0,85 -1,40 -0,22 0,27 0,63 1,17 -0,88 1,71 0,76 1,77

Tos 1,10 0,80 0,46 -1,20 0,19 -0,07 -1,06 0,50 -0,64 0,62 -0,86 0,25 -0,11 0,53 -0,36 0,83 0,91 0,88

Umb 0,94 1,28 0,75 -1,02 -0,14 -0,27 -1,04 0,04 -0,57 -0,05 -0,06 0,54 1,16 -0,06 -0,29 0,21 0,55 0,88

Mar 0,57 1,77 1,48 -0,36 0,19 -0,73 -1,02 0,46 -0,72 -0,26 -0,86 0,16 -0,19 0,10 -0,17 1,33 0,79 0,88

Laz -0,45 -0,34 -0,56 0,20 -0,14 0,73 0,54 0,06 -0,02 -0,08 -0,86 0,71 -0,80 0,63 -0,25 -0,29 -0,31 1,43

Abr -0,01 0,80 0,75 0,20 0,02 -0,31 -0,42 -0,63 -0,46 1,18 0,10 -0,16 -0,43 -0,53 0,20 -0,29 0,48 0,22

Mol 0,08 0,80 0,75 0,57 0,68 1,44 -0,85 -0,63 0,46 1,40 0,10 -0,73 0,06 -0,84 0,69 -1,17 0,20 -1,22

Cam -1,61 -2,62 -2,61 0,76 -2,61 0,65 2,02 -1,39 1,67 0,44 0,27 -0,48 -1,62 -1,30 1,47 -0,54 -2,60 0,10

Pug -1,20 0,63 -0,27 1,41 -0,14 0,47 1,36 -1,37 0,71 -1,04 1,56 -0,91 -1,58 -1,28 1,21 -0,42 0,56 -0,56

Bas -0,66 0,31 -0,12 1,13 0,02 -1,45 0,31 -1,24 0,81 0,63 2,37 -0,93 -0,39 -1,14 1,17 0,08 -0,01 -2,22

Cal -1,03 0,96 -0,56 1,41 -1,79 -1,36 1,06 -1,14 2,07 0,48 0,27 -0,81 -1,41 -1,48 1,40 -0,79 -1,96 -1,45

Sic -1,15 -0,50 -1,88 2,06 -1,29 -1,70 0,76 -1,56 1,60 1,38 -1,03 -0,39 -1,00 -1,29 1,47 -1,54 -1,94 -0,45

Sar -0,75 -0,99 0,17 -0,27 0,02 -0,49 1,38 -0,28 1,25 0,92 0,91 -0,59 0,54 -0,91 0,50 -0,92 -0,10 -0,12

Table 1. Standardized values. a) indices of old-age, b) life expectancy at birth
for males c) life expectancy at birth for females d) infant mortality e) availability
of hospital beds f) occupancy of hospital beds g) non-members of the work force
h) members of the work force i) unemployed j) assaults k) traffic accidents l) sui-
cides m) per capita income n) food consumption o ) number of cars p) recreation
consumption q) TV subscription r) number university graduates.

a 1,00

b 0,24 1,00

c 0,38 0,71 1,00

d -0,59 -0,07 -0,60 1,00

e 0,60 0,28 0,71 -0,59 1,00

f 0,36 -0,19 0,01 -0,20 0,15 1,00

g -0,88 -0,52 -0,58 0,49 -0,59 -0,32 1,00

h 0,51 0,04 0,54 -0,77 0,54 0,37 -0,52 1,00

i -0,67 -0,23 -0,65 0,79 -0,72 -0,34 0,70 -0,86 1,00

j -0,07 -0,05 -0,31 0,37 -0,30 -0,27 0,10 -0,64 0,53 1,00

k -0,45 0,02 -0,01 0,27 -0,15 -0,17 0,38 -0,25 0,29 -0,19 1,00

l 0,26 -0,10 0,02 -0,19 0,03 0,31 -0,26 0,60 -0,46 -0,42 -0,05 1,00

m 0,60 0,04 0,48 -0,67 0,65 0,13 -0,55 0,72 -0,68 -0,41 0,01 0,49 1,00

n 0,56 -0,04 0,44 -0,73 0,59 0,38 -0,54 0,95 -0,89 -0,59 -0,39 0,56 0,65 1,00

o -0,49 -0,07 -0,57 0,74 -0,63 -0,30 0,52 -0,96 0,89 0,67 0,22 -0,60 -0,76 0,93 1,00

p 0,53 0,20 0,39 -0,63 0,30 0,24 -0,51 0,48 -0,58 -0,27 -0,26 -0,08 0,14 0,49 -0,36 1,00

q 0,69 0,47 0,79 -0,65 0,85 0,28 -0,69 0,58 0,81 -0,33 -0,07 0,15 0,58 0,57 -0,60 0,52 1,00

r 0,49 -0,04 0,12 -0,54 0,09 0,48 -0,38 0,53 -0,52 -0,27 -0,55 0,83 0,27 0,55 -0,47 0,48 0,33 1,00

Table 2. Correlation matrix (average 2000-2002) a) indices of old-age, b) life ex-
pectancy at birth for males c) life expectancy at birth for females d) infant mortality
e) availability of hospital beds f) occupancy of hospital beds g) non-members of the
work force h) members of the work force i) unemployed j) assaults k) traffic acci-
dents l) suicides m) per capita income n) food consumption o) number of cars p)
recreation consumption q) TV subscription r) number university graduates.
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ABS %VAR %CUM

1 8.95 49.69 49.69

2 2.40 13.31 63.01

3 1.90 10.53 73.54

4 1.08 5.99 79.52

5 0.97 5.40 84.92

6 0.85 4.73 89.66

7 0.58 3.22 92.88

8 0.45 2.49 95.37

9 0.31 1.75 97.11

10 0.27 1.48 98.59

11 0.08 0.46 99.06

12 0.07 0.40 99.45

13 0.04 0.22 99.67

14 0.02 0.12 99.80

15 0.02 0.10 99.90

16 0.01 0.06 99.96

17 0.01 0.03 99.98

18 0.00 0.02 100.00

Table 3. Matrix of Eigenvalues, percentage (simple and cumulative).

REGION Ri
Toscana 4,248

Liguria 4,248

Valle d’Aosta 4,248

Lazio 4,244

Umbria 4,218

Friuli Venezia Giulia 4,201

Lombardia 4,179

Emilia Romagna 4,162

Piemonte 4,121

Trentino-Alto Adige 4,083

Marche 3,660

Veneto 3,593

Abruzzo -4,026

Campania -4,168

Molise -4,170

Puglia -4,186

Calabria -4,203

Basilicata -4,203

Sicilia -4,217

Sardegna -4,248

Table 4. Ranking of Italian regions using index R.
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About Relational Correlations

Yves Schektman

1bis rue des potiers, 31000 Toulouse, France

Abstract. Using particular euclidean geometries called relational, one can go deep-
er into the usual concepts as well as the Data Analysis methods and even generalizes
or proposes new ones. Inner products in these particular euclidean spaces are built
using correlations between principal components of observed sets of variables. A
summary of the main topics on an essay in process is proposed.

1 Introduction

More than three years ago, E. Diday friendly advised me to leave my very
comfortable and self imposed retirement many years ago. So, an essay is in
process. Structured main ideas may be found here. Interval Data are naturally
treated in, because (i) this gives me the opportunity to acknowledge Edwin
who suggested me, in particular, to think about them (Cazes et al. (1997))
and (ii) what one might name Relational Geometry (RG), briefly described
here, needed a lightly deepening, in order to take into account these kind of data.

Observed and experimental data are collected on Statistic Units (SU)
through sets of variables. In the data array, both SU and variables define
each other. Moreover, in statistical interpretation, variables and SU mutu-
ally emphasize each other. In probability models, SU are at the service of
variables and SU subsets are at the service of controlled experiment factors.
In the sixties, thanks to the emergence of computing tools and following the
new practices, geometrical models rendered to SU its specific part in Data
Analysis.

Accepting that the role of SU as well as that of variables depends on the
kind of analyses, one had to go further. Since spaces associated to sets of
variables are put into a unique variable-space F, the same had to be done for
the corresponding sets of SU, i.e more precisely for sets of weighted points or
Massive Shape (MS). Let us recall the ”double duality schema” or the ”mixed
scatter-plots in Correspondence”, where matched MS were in different SU-
spaces. Besides, that embedding was usefull in order to extend my results on
constrained principal components.

To make the SU-space E useful, a semantic solution was chosen, i.e to
enrich it with an Inner Product (IP), called Relational (RIP), briefly defined
in $3. Interval Data may be studied in RG, because usual concepts (inertia, ...)
and well known results on finite MS are still valid with a well behaved weight-
function { f(t) ; (t∈ D)/ f(t)∈ [0,1] ,

∫
D

f(t) dt = 1}, when D is not finite. In the
properties described,weight-functions are naturally supposedwell behaved.
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For ”paper” saving reasons, mathematical singularities, mainly due to
qualitative variables, are generally avoided. The same symbol is used for a
vector and its image in a greater dimension space, similarly for a bilinear map-
ping and its associated matrix. The bounds on the domains of variation are
not given when they are not useful, symbolic notations are used like Py[ Nx]
instead of { Py(x) ;x ∈Nx}, as well as integrals on matrices and shorthand
notations. Finally, D means Definition, P Property, C Consequence, N Note,
iof ”if and only if”, ∀ j ”for all j”, ”⊂” means also ”is located in”.

2 Mahalanobis Inner Products (MIP) - Sterilized
variables and equalized Inertia Structure (IS)

In a RG, the role of MIP is of great importance. As far as usual Data Analysis
concepts and methods are concerned, MIP are a semantic reference which
guides us to formulate new view points.

To the set of variables { xj ; (j=1,p) } it corresponds:
(i) a vector function [x(t) = {xj(t) , (j=1,p) } ; (t∈D) ] from D to Ex =Rp

and it is denoted by Mx the IP in Ex or its matrix.
(ii) a MS Nx = { [xt = t[x1

t .. x
j
t .. x

p
t ] , f(t) ] ; (t∈D) }⊂Ex , where xj

t = xj(t).

Without lost of generality {
∫

D f(t) xj
t dt = 0 ∀ j } is supposed, that it is

written as
∫
f(t) xt dt=0 .

D1:The usual matrix for the MIP is V−1
x , where [ Vx]sr =

∫
f(t) [xt

txt]
s
r dt .

P1-D2: For the IS [Nx , Mx], Mx = V−1
x iof any orthonormalbasis in [ Ex , Mx]

is a Normalized Principal Vectors (NPV) basis, associated to the Principal
Moment (PM) of value 1 and order p. It is said that Nx is equalized by V−1

x .

D3-P2: For a given IS [ Nx , Mx] , denoting by { eMx

j } the dual basis of the
canonical basis {ej} in [ Ex , Mx] , by Pej the orthogonal projection operator
onto the ∆ej axis , by I the Inertia, by PI the Inertia Product, and as

-VE[xj/ Mx] =
∫

f(t) [ Mx(eMx

j / ‖ eMx

j ‖ , xt) ]2 dt (= I{PeMx
j

[ Nx] / Mx} )

= Var[xj ] if {ej} is an orthonormal basis

-PIere
Mx
s [ Nx/ Mx] =

∫
f(t) Mx( er/ ‖ er ‖ , xt) Mx( eMx

s / ‖ eMx
s ‖ , xt) dt

-AE[xr;xs/Mx] = PIere
Mx
s [Nx/Mx] / [ I{Per[ Nx] /Mx} VE[xs/Mx] ]1/2

= ρ[xr, xs] if {ej} is an orthonormal basis ,

where Var and ρ denote usual variance and correlation coefficients

then {VE[xj/ MIP] =1 ∀ j } and {AE[xr ;xs/ MIP] = 0 ∀(r, s) ; r 
= s } .

It is said : Mx =MIP eliminates the Variability (VE) and the Association
Effects (AE) of the set of variables {xj} on the MS Nx .

N1: One can show that if AE[xr;xs / Mx] = 0 (∀ s / s 
=r) then generally ∆er

is a principal axis of [ Nx , Mx] and {Mx = k2 MIP / (k ∈ R)}.
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So, to eliminate AE is ”quite nearly equivalent” to MIP.

D4-P3: Being A any regular linear operator in Ex , it is written

[Nx , MxA = tA Mx A]∼ [ NxA =A Nx = { xA
t =A(xt) ; (xt ∈Nx)} , Mx]

because these two IS , called similars, may be considered as two expres-
sions of the same IS in two different bases.

C1: [ Nx , MIP]∼ [ Nxn = {xn
t = (Vx Mx)−1/2(xt) ; (xt ∈Nx)} , Mx]. So Nxn is

equalized by any Mx . {xj
n = [ [(Vx Mx)−1/2 ]j xt ; (xt ∈Nx) ] ; (j=1,p)} is

so that Vxn = M−1
x . Thus it is said that variables {xj

n} are sterilized.

N2: If {xj} are items of a qualitative variable x then Vx is not regular. In

this case, the Khi-square IP (χ2
x) has the same properties as V−1

x , with
some minor differences. Both are denoted by MIP. The neutral IP , used
in $5 , whose matrix is the unity matrix, is called Canonical IP (CIP).

3 Relational Inner Products (RIP)

Let (i) { (λj 
= 0 , cj ∈ Ex) ; (j=1,p) } and { (µk 
= 0 , dk ∈ Ey ) ; (k=1,q) }
be the PM and the NPV of [ Nx , Mx ] and [ Ny , My ] respectively ,

(ii) { Cj = { Mx(cj , xt) ; (t∈D) } ; (j=1,p) } and { Dk = { My(dk , yt) ;

(t∈D) } ; (k=1,q) } be the corresponding PrincipalComponents (PC).

D5: In [ E = Ex ⊕ Ey , M[Mx ,My] ] , M is the RIP for ( [Nx ,Mx] , [Ny ,My] ),
denotedby Rxy , iof cosM ( cj , dk) = ρ[Cj , Dk] [∀ (j=1,p) , ∀ (k=1,q) ]. (1)

P4: ERxy[Mx ,My] being Extra-diagonal matrix of Rxy[Mx ,My] , it comes :
(1) ⇔ {ERxy[Mx ,My] = Mx (Vx Mx)−1/2 Vxy My (Vy My)−1/2 } . (2)

Syntactical Coherence: For bases changing in Ex and/or in Ey , the different

expressions for the matrix of Rxy[Mx ,My] are those of the usual change

of bases. Besides, if some PM are multiple then (2) remains the same.

Semantic Coherence: Fortunately the following equalities,

Q = R(x∪y)z[ Rxy[Mx ,My] , Mz ] = Rx(y∪z)[Mx , Ryz[ My , Mz ] ]
= Rxyz[ Mx , My , Mz ]

hold and are valid for any number of sets of variables.

N3: Having E = Ex ⊕Ey ⊕ ..⊕ Ez , in a well behaved mathematical con-
text , if Us is the local isometry from [ Es , Ms] into [ F , N ] , where N is the
covariance IP, so that the images of the NPV are the normalized PC , then
{M = Rxy..z[Mx ,My ,.., Mz ] } iof U=

∑
Us Prs , where Prs is the canonical

projection from E onto Es , is a local isometry from [ E , M ] into [ F , N ] .
Besides, (i) if {Ms = Vs} then the variable vectors of the set of variables s
are the images of the canonical basis vectors in Es , and (ii) if {Ms = MIP (∀ s)}
then the canonical variables are the images of the canonical vectors.
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C2-”Relational Meccano”: One may update any set of variables without
distorting the restriction of RIP to the remaining ones.

P5-RIPcharacterizations: Let Hρ be
∑

[ ρc
h(M) ]2 =

∑
[ ρc

h ]2, where { ρc
h}

are the usual canonical correlations and {ρc
h(M)} those of [ Ex , Ey , M ] de-

fined in $ 4., Py be the orthogonal projection operator onto Ey and yn
t

being defined in the same manner as xn
t ,

{M = Rxy[ Mx , My] } is true iof :

(i) (Hρ ) holds and
∫

f(t) ‖ yn
t − xn

t ‖2
M dt is minimum.

(ii)
∫

f(t) ‖ yn
t −Py(x

n
t ) ‖2

M dt is minimum ( = q - (
∑

[ ρc
h]2 ).

(iii) (Vy My )1/2 PryPy[ Nxn ] = Vyx V−1
x [Nx] , i.e iof the q coordinates of

(Vy My)1/2 Pry Py(xn
t ) are the adjusted values of { yk

t ; (k=1,q)}
obtained by the q multiple linear regressions [ yk/x1..xp ] (k=1,q).

Particular case: Using Pry Py[ Nx] in (iii) and (xt , yt) instead of (xn
t , yn

t )
in (i and ii) , if {Mx = MIP and My = MIP } then P5 holds.

P6-Strong property of RIP: If {M = Rxy[ Mx , My ] } then∫
f(t) ‖ yn

t − b Py(xn
t ) ‖2 dt is minimum for and only for b =1 .

As Nxn =
∑

Pcn
j
[ Nxn ] , where {cn

j } is any orthonormal basis in Ex , let set

Nxcn = {∑ aj Pcn
j
[ Nxn ] / (aj ≥ 0 ∀ j )} .

P7:(i) If ( cn
j = cj and aj =λ

1/2
j ∀ j ) then Nxcn = Nx .

(ii) { (aj)
2, cn

j } are the non ordered PM and NPV of [ Nxcn , Mx] .

(iii)Given Mx and [ Ny , My] then Rxy[ Mx , My] is an invariant for and
only for all the MS as Nxcn .

D6: All the IS as [Nxcn , Mx] are called Relationally Compatible (RC) and
all the IS as [ Nxcn+ = [ Nxcn / ( aj ≥ aj+1 ∀ j )] , Mx ] , i.e having {cn

j } as
common ordered NPV basis, are RelationallyHyper Compatible (RHC).

4 [Relational] Canonical Vectors (CV)

D7-P8: (αh ∈ Ex , βh ∈ Ey) are the CV of [ Ex , Ey , M[Mx , My] ]

iof Py(αh) = ρc
h(M) βh and Px(βh) = ρc

h(M) αh , where ρc
h(M) ≥ 0 ,

or iof M−1
x Mxy M−1

y Myx αh = [ ρc
h(M) ]2 αh

and M−1
y Myx M−1

x Mxy βh = [ ρc
h(M) ]2 βh , where Myx= Pry M Inx.

If {M = Rxy} then the CV, called relational CV, are the solutions

of (Vx Mx)−1/2 Vxy V −1
y Vyx Mx (Vx Mx)−1/2 αh = [ ρc

h ]2 αh

and of (Vy My)−1/2 Vyx V −1
x Vxy My (Vy My)−1/2 βh = [ ρc

h ]2 βh.

If {Mx = MIP and My = MIP} then the relational CVare identical to usual

CV (αu
h , βu

h) and (αh =(Vx Mx)1/2 αu
h , βh = (Vy My)1/2 βu

h ) .
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If the shapes of Nx or Ny , or the expressions of Mx or My , is modified, in
any fashion, then the relative location of Ex and Ey generally changes.This
is not the case for all the IS [ Nxcn , Mx]. Now P9 goes deeper and specifies P3.

P9: For any given {cn
j }, if Nx′

cn
= {

∑
a′j Pcn

j
[Nxn ] / a′j≥ 0 ∀j } then

[ Nx′
cn

, Mx′
cn

] ∼ [ Nxcn , Mx] for and only for Mx′
cn

= Mx

∑
( aj /a

′
j )2 Pcn

j
.

5 Relational correlations

Within a RG, one cannot generalize, for two multidimensional MS, the usual
angular point of view of correlation between two variables x and y , i.e
ρ[x, y] = cosR( ex , ey). On the contrary, one can generalize the usual vari-
ability point of view, i.e ρ2[x, y] = (V ar[x] − V ar[x/y] ) / V ar[x] , in terms
of inertia as : ( I[Nx] - I{P⊥

y [Nx] } ) / I[Nx] = I{Py[Nx] } / I[Nx] .

P10: If {M = Rxy[ Mx , My] } , then

(i) I{Py[ Nxn ] } =
∑

(ρc
h)2 .

(ii) I{Py[ Nxcn ] } =
∑

(ρc
h)2

∑
{ aj cos(cj , αh = [

∑
(aj)

2 Pcn
j
]1/2 αu

h )}2 (3)

(iii) I{Py[ Nx ] } = trace[Vxy V −1
y Vyx Mx]

= trace[Vxy χ2
y Vyx Mx] if y is a qualitative variable.

P11:
∑

(ρc
h)2 = I{Py[ Nxn ] / Mx} = I{Py[ Nx] / Mx = MIP }

= I{Px[Nyn =(Vy My)
−1/2 Ny] /My}= I{Px[Ny] /My = MIP}.

C3: According to the nature of the variables and the values of p and q ,
(i) P11 synthesizes the usual symmetrical association indices,
(ii) I{Py[ Nx] / Mx = CIP } synthesizes [cf. P10-iii] the usual dependence

indices (y → x) [ Stewart-Love,Goodman-Kruskal ].

If {cn
j 
= cj} then generally it is impossible to have Nxcn = Nx . So, if one wants

to define non symmetrical correlations, including the usual ones, then he has
to suppose {cn

j = cj} and to go away reasonably from [ Nxn , CIP] towards
[ Nx , CIP] using [ Nxcn , CIP] : starting from statistics for testing independence
in probability or no effect of a factor, one goes towards classical measures
of dependence, giving progressively life to AE and VE of {xj} via {aj}.
This process is reasonable because all the [ Nxcn , CIP] are RC, so (∀ {aj} )
orthogonal projections are calculated with the same RIP [cf. P7-(iii)].

D8: Given {aj} , RAC[Ny→Nx] = I{Py[ Nxcn ] / Mx = CIP} is the Relatio-
nal Association Coefficient (with respect to CIP and {aj} ).
RAC[Ny → Nx] / I[ Nxcn / Mx = CIP ] is the corresponding Relational
Correlation Coefficient (RCC).

N4: (i) One may use, extended CIP , i.e Mx so that [Mx]sr = δrs / V ar[xr ]
which eliminates VE of {xj} and also go further than Nxcn = Nx .

(ii) In order to simplify calculi one may use My = MIP [ cf.(2) and P10-(iii)].
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(iii) In a RG, (3) is one of the expressions of the algebraic structure of the RAC
and an illustration of the AE and the VE . Besides the maximum of (3)
is obtained for and only for {ch = αh ; ( ∀ h / ρc

h 
= 0 )} .

(iv)To choose the ”good” Nxcn , i.e the ”good” {aj}, one may , (a) want to
have RHC , so one must use Nxcn+ , in order to smooth the MS transfor-
mation with also the help of AE, VE and RAC gradient variations too,
(b) be helped by endogenous or exogenous criteria, etc...

(v) One can deduce from P12 below, that RAC[ Ny→Nx] is the part of
I[ Nxcn / CIP ] (= VP) ”viewed” from Ny , i.e linearly ”explained by Ey”,

OP =
∑

[ I{Pαh
[ Nxcn ] } ; ( ∀h / ρc

h 
= 0 ) ] is the ”observable” part ,
HP =

∑
[ I{Pαh

[ Nxcn ] } ; ( ∀h / ρc
h = 0 ) ] is the ”hidden” part

and finally NPP= OP -VP is the ”no perceived” part, i.e the part of OP
not linearly explained by Ey . Of course, VP, HP, OP and NPP change
with {aj} and may give useful complementary informations.

(vi) If p=1 then all the RCC[ Ny→Nx] are equal, besides if q=1 they are
equal to all the RCC[ Nx→Ny] . Note that for two variables x and y the
HP and the AE do not exist. In this case, one possibility to have non sym-
metrical RCC would be to code x and y into qualitative variables in order
to create HP and AE again and then to get ”richer association” too.

RAC decomposition into ”Russian dolls”: Briefly, one may do

N1
xcn

= Py[ Nxcn ] , I[ Nxcn ] = I[ N1
xcn

] + I{P⊥
y [ Nxcn ] } ,

..
Nτ+1

xcn
= Py[ Nτ

xcn
] , I[ Nτ

xcn
] = I[ Nτ+1

xcn
] + I{P⊥

y [ Nτ
xcn

] } , etc...

untill RAC[ Ny→ Nτ+..
xcn

] = I{Py[ N
τ+..
xcn

] } = 0 .

6 Scattering decompositions - basic relational models

From the IS [ Py[ Nxcn/Mx = CIP ] , My = MIP ] , one gets the PM of RAC and
the principal scatterplots to describe it, with respect to SU. One may also
analyse the other parts of Nxcn [cf. N4-v]. Note that Mxcn exists [cf. P9] so that:

[ Py[ Nxcn / CIP ] , MIP ]∼ [ Py[ Nx / Mxcn ] , MIP] (4).

In a RG, P12 illustrates the relational effect on the shape of Nxcn when one
orthogonally projects it onto Ey.

P12:Pβh
(xcn

t ) = ρc
h Mx(αh ,xcn

t ) βh , I{Pβh
[Nxcn ]} = (ρc

h)2 I{Pαh
[Nxcn ]}

Py(x
cn
t )=

∑
ρc

h Mx(αh ,xcn
t ) βh , I{Py[ Nxcn ] }=

∑
( ρc

h)2 I{Pαh
[ Nxcn ]}.

Particular cases: [ Py[ Nxn ] , MIP ] = [ Py[ Nx / MIP] , MIP ] has PM and
NPV which are the { (ρc

h)2} and the usual CV belonging to Ey. So, according
to the nature of variables, here are relational formal definitions of the usual
Discriminant or Correspondence Analyses in a RG :
[ Py[ Nxn ] , MIP ] is (i) one of the two IS of Correspondence Analysis (ii) a
new IS for defining Discriminant Analysis if y is the qualitative variable [cf.
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P5-iii] or the set of gravity centres if x is the qualitative one. Note that these
methods describe only the relational effect on equalized MS.

Two useful subspaces are introduced below. To have a more general prop-
erty, easier for reading, one uses Nx instead of Nxcn [cf.(4) ] and any Mx.

D9:Adjusted and residual subspaces, denoted by Exa and Exr are associated
to Nxa = {Vxy V

−1
y [ Ny] or Vxy χ2

y [ Ny] if y is a qualitative variable }
and to Nxr =Nx - Nxa , which is written : { [xt - xa

t , f(t) ] ; (t∈D) } .

P13: In E = Ex ⊕ Ey ⊕ Exa ⊕ Exr , it comes :

(i) Denoting θk =
∫

f(t) yk
t dt, if y is a qualitative variable then Nxa is the MS

of gravity centres: Gx/y = { [ gx/yk =
∫

[ f(t) / θk ] yk
t xt dt , θk ] ; (k=1,q) }.

(ii)Vxa = Vxy V−1
y Vyx (or Vxy χ2

y Vyx) , Vxr =Vx - Vxa , Vxaxr = 0=Vyxr .

(iii)Furthermore, if {Mxyxaxr = Rxyxaxr [ Mx , My , Mx , Mx ] } then

(a) Exa ⊥ Exr , Ey ⊥ Exr [ cf. (ii) then (2) ] .

(b) (∀xa ∈Exa) ‖ xa −Py(x
a) ‖= 0 , (∀x ∈ Ex) ‖Py(x)−Pxa(x) ‖ = 0

‖P⊥
y (x)−Pxr(x) ‖ = 0 and ‖ x− [ Pxa(x)+ Pxr(x) ] ‖ = 0 .

So, with respect to the RIP chosen, one may use Pxa [ Nx] and Pxr [ Nx]

instead of Py[ Nx] and P⊥
y [ Nx].

(c) [ Pxa [ Nx] ,Mx] and [ Nxa , Mx] [ resp. [ Pxr [ Nx] , Mx ] and [ Nxr , Mx] ]
have the same PM and the same NPV .

N5: (i)Vxr is the covariance matrix of { x/y} , so V−1
xr eliminates the AE

and the VE of {xj} not linearly explained by {yk} . It is meaningful to
note that the anti-RIP (ER−

xy =-ERxy) is so that R−
xy[V

−1
xr , V −1

yr ] is equal
to V−1

x∪y , i.e it eliminates, (a) the remaining part of AE and VE of {xj}
[resp.{yk}] linearly explained by {yk} [resp.{xj}], (b) the relational effect
due to {xj} and {yk}. This is a new manifestation of the geometrical sem-
antic coherence of RIP.

(ii) The same IP is chosen in Exa, Exr and Ex in order to ”look” Nxa and
Nxr in the same way that Nx is .

(iii) Rxyxaxr is obviously a non regular RIP.
(iv) One may imagine the projections one can do onto principal planes of

[Nxa , Mx] : for example, in relational Correspondence Analysis one has
all the following mixed simultaneous scatter-plots in Exa :
{Nxa = Gx/y } ∪ {Pxa[ Nx] = Gy/x} ∪ Pxa{Gx/y = Px[ Ny]}

where Gx/y is the ”clone” of Gx/y in Ex .

Some total variation and RAC decompositions

(i) I[ Nx] = {RAC[ Ny→Nx] = I{Pxa[ Nx]}=I[ Nxa ]}+ { I{Pxr [Nx]}= I[Nxr ]}
(ii) With three variables x , y and z , it comes:

I[Nx] = RAC[ Ny∪z→Nx] + { I[ Nxr ] = I{P⊥
y∪z[ Nx] } }

with RAC[ Ny∪z→Nx] = RAC[ Ny→Nx ] + RAC[ Nz→Nx]
+ linear relational effect (y,z).
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(iii) Deepening RAC decompositions when y and z are controlled experiment

factors: here are ways to extend MANOVA (Lawley criteria),

a)RAC[Ny→Nx] = I[Nxa ] = I{Pxa[ Nx]}=I{Pxa[Gx/y]}+
∑

θk I{Pxa[Nxk
]}

where Nxk
= { [xt − gx/yk , f(t)/ θk] ; [ (xt ∈Nx) / yk

t =1 ]}⊂ Ex .

b) I[ Nx] = RAC[ Ny∩z→Nx] + I[ Nxr ]

with RAC[ Ny∩z→Nx] = RAC[ Ny→ Nx] + RAC[ Nz→Nx]

+ { interaction effect (y×z) } .

N6: In (a), onemay calculate (i) the contributions of items {yk} to the RAC

with Nxa points and (ii) the SU absolute, average and differential contri-
butions with Pxa [ Nx] , Pxa [ Gx/y] and Pxa[Nxk

] points respectively.
In (b), if one has some troubles with non regular RIP, he may design the
shape of Nx as he likes via Mxcn , or by dilations or contractions ofNx along
its principal axes, then build its clone in F, having {∆Cj} as principal
axes, and finally does what he likes in F, using well knowngeometrical results.

7 Massive shapes designed under relational effect and
the influence of a given massive shape

Relational forecasts: To forecast linearly [ Ny , My] with [ Nx , Mx], one
should have in mind the formula given in P5-(iii). For avoiding the trivial
q usual regressions, in the same manner as for the RAC, one has to go away
from MIP according to the following process, in order ”to give live” to the
AE of {yk}. Having no condition to impose to Nx and to Mx let us take

Nxαn =
∑ { ah Pαh

[ Nx] ; (h / ρc
h 
=0)}, i.e the observablepart of Nx fromEy,

for example and choose MIP in Ex to simplify calculi.

(e1)Goaway fromNyn towardsNy (or further) usingNydn
=
∑

bk Pdk
[Nyn ] and

choose a ”good” Nydn
, with respect to a ”reasonable” RAC[ Nx→Ny] .

(e2) As yt =
∑

[µ
1/2
k / bk ] Pdk

(ydn
t ) , find the ”best” Nxαn by minimizing

∫
f(t) ‖ yt−ya

t ‖2 dt , to propose the best ya
t =

∑
[ µ

1/2
k / bk ] Pdk

(xαn
t ) . (5)

(e3)Having forced, (a) the relational effect to Nxαn by projection on Ey,

(b) the influence of Ny to Py[ Nxαn ] by applying (5) , one finally gets one

among the expressions of ya
t , the one where appear {αh} and {βh} :

ya
t =

∑ ∑
ah (µ

1/2
k / bk) ρc

h cos(dk , βh) Mx(αh , xn
t ) dk , where

ah =(ρc
h)−1{

∑
cos(dr , βh) cos(dr , αh)µr/br} /{

∑
[ cos(ds , βh)/bs]

2 µs}
N7: In this process Ny is partially equalized when one applies the relational

effect to a non equalized Nxαn . So, recovering a part of AE , more or less
important, in accordance with reasonable choices made, one hopes that ya

t

will be a multidimensional adjusted value of yt which will have some inte-
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rests in some specific contexts.

Relational roximities: One wants to determine the nearest Nxcn of a given
Nydn

. Here, one decides to respect at best the shape of Nx . One may want
to have [ Nxcn , Mx] and [ Nx , Mx] RHC, or if one is less demanding one may
accept a compromise between

∫
f(t) ‖ ydn

t − xcn
t ‖2 dt and a criteria like∫

f(t) | I{Pαh
[Nxcn ]} - I{Pαh

[Nx]}| dt or
∫
f(t) ‖

∑
Pαh

(xcn
t ) − xt ‖2 dt .

8 A elational odel for interval data

p intervals { [mj
i ,M

j
i ] ; (j=1,p)} of p quantitative variables {xj} are observed

on n SU { Ii ; (i=1,n) }. Besides, the SU are regrouped into (q ≤ n) clusters
by the q items { yk ; (k=1,q) } of a qualitative variable y . In accordance with
what one can learn from Chouakria (1998), three relational models may be
defined. Here one gives main elements for only one:

- Di =
∏

[mj
i ,M

j
i ] ⊂ Rp , Pi = Di ∀ (i=1,n) , D = ∪ Di , P = ∪ Pi

- f(t) is so that f(t) = θi fi(t) if (t∈Di) , with
∫

Di
fi(t) dt = 1 and

fi(t) = h(t ,ϕi) , where ϕi is a set of parameters specifying Ii

- Nx = { [xt = x(t) = t ∈ P , f(t) ] ; (t ∈D) } ⊂ Ex = Rp

- Ngx/I
= { [ gx/Ii

=
∫

Di
fi(t)xt dt , θi =

∫
Di

f(t) dt ] ; (i=1,n) } ⊂ P

- Nx/Ii
= { [xt − gx/Ii

, fi(t) ] ; (t∈Di) }
- Ny = { [ yt = y(t) , f(t) ] ; (t∈D) }⊂ Ey = Rq so that

∀ [ (t∈Di) , (i=1,n) ] [ yk
t =ψi ∈ {0,1} ∀ (k=1,q) ] and

∑
k yk

t =1

- gyk =
∫

D f(t) yk
t dt =

∑
Ik

θi = θy
k , with Ik = { i / ∀ (t∈ Di)⇒ yk

t = 1}
- gx/yk =

∫
D

[ f(t) / θy
k ] yk

t xt dt =
∑

Ik
[ θi / θ

y
k ] gx/Ii

- Nx/yk = { [xt - gx/yk , ( f(t) / θy
k ) ] ; ( t ∈ [∪Ik

Di ] ) }
- Ngx/y

= { [ gx/yk , θy
k ] ; (k=1,q) }

- Vx =
∫

D f(t) xt
txt dt

- [Vxy]k =
∫

D
f(t) xt (yk

t − θy
k) dt = θy

k gx/yk =
∑

Ik
θi gx/Ii

- [Vy ]sr =
∫

D
f(t) (yr

t − θy
r ) (ys

t − θy
s ) dt = θy

r (1 - θy
r ) if (r = s)

= - θy
r θy

s if (r 
= s).

So, (i) one may now define the RIP of this relational model and use all the
results described above. It is proposed to represent {Ii} by the concentration
ellipsoids with respect to the corresponding principal subspaces.

(ii) I[ Nx] = I[ Ngx/I
] +

∑
θi I[ Nx/Ii

] = I[ Ngx/y
] +

∑
θy

k I[ Nx/yk ]

with I[ Ngx/I
] = I[ Ngx/y

] +
∑

θy
k I[ N(gx/I)/yk ] .

(iii) One may enjoy using other relational models not described till now : for
example, onemaypropose clusters on {Ii}, by maximizing RAC[ Nx→Nz ] ,
where z is an unknown qualitative variable, then with the same relational
model compare y and z , (a) by analysing their RAC, (b) by determining

p

mr
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a central subspace Ew between Ey and Ez which minimizes

|RAC[ Ny→Nw] - RAC[ Nz→Nw] | ,
(c) by proposing changing clusters w(τ) between y and z which maximizes

at each step τ :

(1 - τ) RAC[ Ny→Nw] + τ RAC[ Nz→Nw] , for example.

(iv)Finally, one may also extract principal clusters z(τ) of [ Nx , Mx] , where

z(τ) is a qualitative variable, by maximizing at each step τ :

RAC[Nz(1)→Nx] , .. , RAC{Nz(τ+1)→P⊥
z(τ) oP⊥

z(τ−1) o .. o P⊥
z(1)[ Nx] } .

N8: As geometrical structure of RAC are those of their corresponding MS,
Correspondence Analysis, MANOVA got on changing time data or on sets of
statistic units virtually matched for example, one may analyse their RAC.

9 Conclusion

Some youthful ideas are organized and described here. I do that out of duty.
But now, what shall we do about, (i) a statistic unit-space which expands as
far as you want (principal clusters, Russian dolls, ...), (ii) deeper relational
scattering decompositions, (iii) relational association coefficients between re-
lational association coefficients [ see N8 ], ... In what frame of mind are we,
as we have to choose between an infinite numbers of choices (massive shapes
designed, relational association coefficients, ...), having to justify each deci-
sion! Wanting to restore the statistic units specific part in Data Analysis, as
a boomerang one gets results which give a bad headache.

Finally, one may say : (i) multiway tables methods can be defined in a re-
lational geometry, for Multiple Correspondence Analysis or STATIS, this job
has been done (Schektman (1989)), so understanding better their relational
structures perhaps one could extend them more easily, and (ii) relational
geometry are well fitted (a) to analyse data changing in time, mainly to fore-
cast as I indicated a long time ago in my thesis, (b) supposing that absolute
or differential contributions of statistic units to relational association coeffi-
cients are values of elementary attractive forces between matched points of
massive shapes, to propose, among others, new approaches to study stability
and protection of relational models, as it was done in theses I supervised.
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Abstract. By applying Symbolic Data Analysis (SDA), this paper investigates
the dynamic features of soybean futures market of Dalian Commodity Exchange
(DCE) of China during 2002 to 2004. First, interval data is created by classifying
mass futures contracts by different years and different maturity dates; and then DIV
clustering method is applied on these interval data which produces further simpli-
fied three-way interval symbolic data and greatly reduces the sample size. Based on
that, factor analysis of interval data is adopted to extract dynamic principal char-
acteristics of soybean futures, which reduces the dimension of the variable space.
The results of the empirical research, which are rightly coincident with the realities,
verify the application value of SDA in analyzing mass, dynamic and complex data.

1 Introduction

In the analysis of large scale data set, high dimension of both sample and
variable spaces leads to complex computation and it is also difficult to obtain
the integral structure of the data set. To solve the problem, E.Diday (1988)
proposed a brand-new way of data analysis - Symbolic Data Analysis (SDA),
which is a kind of multivariate statistic analysis technique oriented to large
scale database retrieval and capable of multilevel analysis. Extended from
traditional data, cells of data table in SDA could be not only quantitative or
qualitative but also a concept, multivalue, interval or distribution. Because
of those advantages of SDA, it is especially effective in knowledge exploring
to huge amounts of data.

In traditional multivariate statistic analysis, principal component analysis
provides an efficient way for dimension reduction. In the field of SDA, Cazes
(1997) presented Principal Component Analysis (PCA) on interval data, and
Lauro, Verde and Palumbo proposed factor discriminant analysis method on
symbolic data. Moreover, PCA has also been developed onto three-way inter-
val data and Wang, Hu (2003) successfully applied it in features extraction
in stock market of China. There are three advantages of this method: 1) SDA
realizes dimension reduction in sample space; 2) PCA performs dimension re-
duction in variable space; 3) analysis on three-way data set explores dynamic
features of the complex system.
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Based on that, this paper applies global PCA on three-way interval data
to the dynamic features extraction in soybean futures market of China. In
section 2, modeling method of global PCA on three-way interval data is intro-
duced. After that, section 3 adopts the method to analyze principal factors
of the soybean futures market of China. Finally, section 4 gives a conclusion
of the paper.

2 Global PCA on three-way interval data

The main idea of global PCA on interval data is: first, transform the three-way
interval data into a numerical matrix; and then apply the classical PCA on
the transformed numerical data table; finally, construct the interval principal
components from the numerical principal components. And the procedures
of its algorithm are summarized as follows:

(1) Three-way interval data and its transformation

Denote Z as a three-way interval data which is composed of T periods of
plane interval data table Zt (t = 1, · · · , T ), that is

Z =




Z1

...
ZT



 (1)

where Zt =




xt

1
...
xt

n



 =





[
xt

11, x
t
11

]
· · ·

[
xt

1p, x
t
1p

]

...
. . .

...[
xt

n1, x
t
n1

]
· · ·

[
xt

np, x
t
np

]



 , (t = 1, · · · , T ), and the

observation xt
i is an interval object with p dimension.

xt
i, a hyperrectangle in the p-dimension space, can be described by a matrix

with 2p rows and p columns where each row contains the coordinates of one
vertex of the hyperrectangle in Rp, which can be denoted as

V t
i =





xt
i1 xt

i2 · · · xt
ip

xt
i1 xt

i2 · · · xt
ip

· · · · · ·
xt

i1 xt
i2 · · · xt

ip





2p×p

(2)

Compile all the transformed numerical matrix V t
i (i = 1, · · · , n; t = 1, · · · , T )

as



Dynamic Features Extraction 621

V =




V 1

...
V T



 (3)

where V t =




V t

1
...
V t

n



 =








xt

11 · · · xt
1p

...
. . .

...
xt

11 · · · xt
1p





2p×p
...


xt

n1 · · · xt
np

...
. . .

...
xt

n1 · · · xt
np





2p×p





(n·2p)×p

, (t = 1, · · · , T ) is the

transformed numerical matrix at t.

(2) PCA on the transformed numerical matrix V

Apply the classical PCA on the transformed numerical matrix V and obtain
the first m numerical principal components F̃1, · · · , F̃m which can be denoted
as

F̃j =




F̃ 1

j
...

F̃T
j



 , j = 1, 2, · · · ,m (4)

where F̃ t
j =




f̃ t
1j
...

f̃ t
nj



 , f̃ t
ij =





f
(t,1)
ij
...

f
(t,2p)
ij



 , (i = 1, · · · , n; t = 1, · · · , T ; j =

1, 2, · · · ,m).

(3) Construct the interval principal components of Z

Let f t

ij
= min{f (t,1)

ij , · · · , f (t,2p)
ij }, f t

ij = max{f (t,1)
ij , · · · , f (t,2p)

ij }; then f t
ij =

[
f t

ij
, f

t

ij

]
is the interval value of the i interval object on the j principal compo-

nent at t. And the interval principal components of Z, denoted as F1, F2, , Fm,
are conducted by

Fj =




F 1

j
...

FT
j



 , j = 1, 2, · · · ,m (5)
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where F t
j =




f t
1j
...

f t
nj



 =





[
f t

1j
, f

t

1j

]

...[
f t

nj
, f

t

nj

]



 , (t = 1, · · · , T ; j = 1, 2, · · · ,m).

Finally, according to the loading plot and the rectangle projections of the
interval objects on the factorial plane, we can find the dynamic features of
the original complex system with much integrated and simplified results.

3 Factorial analysis on soybean futures market

In this section, global PCA on three-way interval data is applied to the soy-
bean futures of DCE to analyze the dynamic marketing features of different
contracts in different time. We select eight exchange indexes “open price,
maximum price, minimum price, closing price, balance price, trading vol-
ume, turnover, open interest” of the contract daily records from 2002 to 2004.

3.1 Classification of the futures contracts

In the futures market, futures contracts have particular characters: there are
more than one contracts of each kind of futures at the same time; besides,
every contract has a valid trading period of time. Therefore, from the static
point of view, contracts with different maturity dates need to be considered
in the meantime; and from the dynamic point of view, a single contract can’t
form a continuous time series, that’s the main problems in the research of
futures market.

Proposed solution to the above difficulties in this paper is: tag every con-
tract with its maturity date at every point of time; therefore, there are 19
classes each year from 2002 to 2004; finally, construct interval data table by
selecting the minimum and maximum values of every index in each class.
Obviously, it is a kind of dynamic classification that samples in each class
change as time goes on and every contract passes in and out of all classes
during its whole period of validity. Resultingly, 1) thousands of daily contract
records are transformed to 19 interval objects of each year which greatly re-
duces complexity of the research; 2) 19 classes cover the whole trading period
without missing information; 3) each class of contract can form a continuous
time series since there are new contract timely passing in and out; 4) class
features can be easily explored and compared which seems much integrated
and efficient.
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To further summarize and simplify the data set, DIV method is applied to
cluster the 19 interval objects. Variables of trading volume and open inter-
est are selected as the clustering criterion and the results are listed in table 1.

Table 1. DIV clustering results

Class ClassI ClassII ClassIII ClassIV ClassV

Contracts 1 ∼ 3 4 ∼ 6 7 ∼ 9 10 ∼ 12 13 ∼ 19
time to maturity dates months months months months months

To clearly illustrate different features of different classes, the mid values of
the 19 interval objects in trading volume and open interest are selected and
joint in fig.1, which shows a rightly discriminated result of the DIV clustering.

Fig. 1. Change tendencies of the contracts in trading volume and open interest.

3.2 Dynamic factor analysis of the five classes of contracts

Apply global PCA on three-way interval data of the five classes of the con-
tracts from 2002 to 2004. The cumulate contribution proportion of the first
two principal components is 77%, and the loading plot is shown in fig.2 which
exposes the relationships of the first two principal components and the orig-
inal variables.

It is clear in fig.2 that: 1) the price variables “open price, maximum price,
minimum price, closing price, balance price”, which are highly correlated
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Fig. 2. Loading plot.

with each other, reflect the most notable feature in the soybean futures mar-
ket of DCE. Actually, the balance prices of the five classes of soybean futures
contracts have been greatly increased during 2002 to 2004 (seen from fig.3);
2) the three trading variables “trading volume, turnover, open interest” also
have high correlations and show the second feature in the soybean futures
market of DCE.

Fig. 3. Price trendlines of the five classes of contracts.
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Furthermore, project the five classes of contracts from 2002 to 2004 on the
principal plane in fig.4 which illustrates the features and change tendencies of
the soybean futures market in price (component 1) and trading (component
2) aspects.

Fig. 4. Interval principal components of the five classes of contracts.

From the direction of the first component in fig.4, we can find the follow-
ing features of the futures market in price: 1) contracts are fairly divided
by time, which implies a yearly rise of the price in the futures market; 2)
contract intervals in 2003 range larger, which implies higher fluctuations of
contract price in 2003; 3) the disparities of the average price of different class
of contracts is enlarged in 2004, where class I, II, III are higher than class
IV, V.

Besides, we can see from the direction of the second component in fig.4 that:
1) contract trading of 2003 is more active than that of 2002 and 2004; 2)
from 2002 to 2003, trading activity of class II, III is higher than class IV, V
and the trading disparities between different classes tend to expand, while in
2004, the trading of class III and IV increased a little, which implies the trad-
ing time of the speculators in the soybean futures market generally advanced.

3.3 Radar-chart of the five classes of contracts in 2002 ∼ 2004

To compare with the above results of factor analysis, radar-graphs of the five
classes of contracts in 2002 ∼ 2004 are listed below. In fig.5, each row gives
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comparisons of the five classes of contracts in the variables of “balance price,
trading volume and open interest” at each year; while each column reflects
the dynamic change tendencies of the five classes of contracts through the
three years at each index.

Fig. 5. Comparisons of the five classes of contracts in 2002 ∼ 2004.

It is similar with the above results of PCA: in the same year, there is no great
difference between the five classes of contracts in price, but large disparity
in their trading volume and open interest where class II, III are more than
class IV, V; besides, the contract price has been increasing from 2002 to 2004,
while the transaction in 2003 is more active.

4 Conclusion

This paper applies SDA technique to overcome difficulties of traditional mod-
eling methods on large scale data set. Following the idea of “data package”,
it realizes the reduction in both sample and variable spaces but without
destruction to the original internal logic relationship of the dataset, which
efficiently solves the contradiction of difficult analysis on the mass data to its
easy collection.
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In this paper, SDA is applied to simplification and dynamic factor extraction
in the soybean futures market of DCE. By classifying and clustering mass
futures contracts by different years and different maturity dates, three-way
interval symbolic data is constructed, which greatly reduces scale of the data
set. Based on that, global PCA on interval data is adopted to extract dy-
namic principal characteristics of soybean futures. The results of the case
study are proved same with the actual status, which verifies the validity and
rationality of the modeling method in integrating and extracting information
of the multidimensional and dynamic complex system.
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