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Preface

The study of classical electromagnetic fields is an adventure. The theory is complete
mathematically and we are able to present it as an example of classical Newtonian
experimental and mathematical philosophy. There is a set of foundational exper-
iments on which most of the theory is constructed. And then there is the bold
theoretical proposal of a field–field interaction from James Clerk Maxwell, the
validity of which was established in Heinrich Hertz’ laboratory.

It is my intention here to present the theory of classical fields as a mathematical
structure based solidly on laboratory experiments. I try to introduce the reader – the
student – to the beauty of classical field theory as a gem of theoretical physics.

To keep the discussion fluid I placed the history in a beginning chapter and some
of the mathematical proofs in the Appendices. Helmholtz’ Theorem determines
the form that will be taken by the field equations and the way in which we must
understand each experiment. To obtain Maxwell’s field equations is the goal. If the
reader also learns to work through exercises that is good. But that is not the goal.
The problems the reader will encounter as a practioner will require thinking that
must be based on a deep understanding of classical field theory.

And so I have tried to obtain Maxwell’s Equations as soon as possible. I have not
been completely successful because of my concerns about the reader’s mathematical
development. I felt compelled to include a rather extensive chapter on mathematical
background for readers unfamiliar with some of the language. I have also included
chapters on Green’s Functions and Laplace’s Equation between the static form of
Maxwell’s Equations and a discussion of Faraday’s Experiment. These may be
avoided by the reader already fluent in the mathematics.

The chapter on Einstein’s relativity is an integral necessity to the text. This
chapter is historically accurate and fairly complete for the level of the text. My
treatment is based on original papers by Einstein, Hendrik A. Lorentz, and Hermann
Minkowski, on the excellent historical analysis of Abraham Pais, and on some
more modern treatments such as Wolfgang Pauli’s and Wolfgang Rindler’s. My
goal is to demonstrate the covariance of Maxwell’s Equations and to present the
transformation theory, while not losing sight of the “step” that had been introduced.
I do not suggest ignoring this chapter. It is good for the physicist’s or engineer’s
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vi Preface

soul to know about this step. But it is not absolutely required for much of the use to
which a practitioner will put field theory.

I have tried to be honest with the reader about our microscopic picture of matter.
I avoid quantum mechanical descriptions, but not the fact that these lie behind our
treatment of matter.

Our models of plasmas provide a good testing ground for electrodynamic theory
that does not require quantum mechanics. I have used this at points in the text. This
has been my guide in the chapter on particle motion and in my final chapter on
waves in a dispersive medium.

My discussions of particle motion are based on Hamiltonian mechanics, which
I outline. This results in a symmetry, as well as simplicity in the equations of
motion. My treatment of magnetic mirrors relies on numerical solutions, which are
simplified by the canonical equations. And I have based my discussion of coherent
particle motion verbally on what is known of the dynamics of plasmas.

I have not intended this treatment to be exhaustive. The topics I have chosen
reflect my interests as well as what I felt my own education lacked. I will, probably,
readily agree with any criticism claiming that I have missed an indispensable topic.
I do, however, believe that after finishing this text the reader should be able to
encounter that topic with confidence.

I am grateful to generations of students who have helped in the development
of my course in classical field theory. Their patience and enthusiasm has been an
inspiration.

I am also grateful to my teachers and the directors of programs in which I have
been involved. Among these I particularly want to acknowledge Leslie Foldy, David
Mintzer, Marvin Lewis, and Günter Ecker. From each of these people I have learned
to be thorough, unrelenting, and even confident. The first three of these people were
inspiring teachers, Lewis was my doctoral mentor, and Ecker was my director in
Jülich.

I have discussed modern plasma theory, of which I am no longer a part,
extensively with my friend Wei-li Lee of the Princeton Plasma Physics Laboratory.
Lee contributed directly to my discussions of gyrokinetic theory and its application
to magnetically confined fusion plasmas.

I am grateful for the patience and understanding of my wife, Betty Jane, who
has endured more than I could have expected as I wrote this, and who remained a
constant source of encouragement.

I am thankful for the encouragement and positive discussions from Dr. Thorsten
Schneider and Ms. Birgit Münch of Springer-Verlag and the very careful work of
Ms. Deepthi Mohan of SPi Technologies India.

Complete and detailed solutions to all the exercises in this text are available to
qualified instructors at springer.com on this book’s product page. To obtain access
instructors may click on the link additional information to register.

Goshen, Indiana Carl Helrich
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Chapter 1
Origins and Concepts

Gravity must be caused by an Agent acting constantly according
to certain Laws; but whether this agent be material or
immaterial, I have left to the Consideration of my Readers.

Isaac Newton

The field concept is the product of a highly original mind, a
mind which never got stuck on formulas.

Albert Einstein

1.1 Introduction

Classical field theory possesses a striking beauty in part because it comes to us as
a complete theory in which we can tie almost each law and concept directly to a
single experiment. Except for the qualifying “almost” we can present the subject as
based on hard laboratory data and a very limited number of guiding ideas. But there
is too much human thought that lies behind the word “almost” for us to drop it in
our pursuit of understanding.

The history of science is a history of human thought. Because there is no
simple understanding of the origin of ideas there can be no simple understanding
of the development of any branch of science. And our understanding of a branch
of science is linked to how well we comprehend the origin of the ideas on which it
rests.

Classical field theory began as a logical extension of what we already knew
from Isaac Newton’s experimental and mathematical philosophy [79, pp. 214–215]
and the mechanics that resulted. Newton, however, knew that his law of universal
gravitation begged an explanation that lay beyond the experimental data.

Michael Faraday (1791–1867), whom we acknowledge as the greatest among
experimentalists, imagined that lines of force permeated space and were responsible
for electric and magnetic phenomena. This was heresy. But it was believed by
William Thomson (1824–1907) and James Clerk Maxwell (1831–1879). Maxwell’s
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2 1 Origins and Concepts

mathematical development of Faraday’s ideas, and the conviction that light waves
must emerge from the theory, will bring us to a point where theory presses
experiment.

Heinrich Hertz (1857–1894), in the laboratory in Karlsruhe, carried out the
experiments that identified propagating electromagnetic waves. But this alone did
not reveal the full truth, as Hertz knew.

We must also encounter the crisis in scientific thought that marked the beginning
of the twentieth century. The answers presented by Albert Einstein in 1905

required a revision of the bedrock of Newtonian thought: the concept of time and
consequently of space.

Classical field theory will then bring us new ideas that we could not have
anticipated. In this chapter we will trace the twisted historical path with the intention
of seeing the origin of ideas and the consequences. To fully understand classical
field theory as a product of human thought we must encounter these origins and
consequences.

We will have many occasions to reference this chapter.

1.2 Magnetism

In 1849 Thomson first used the term field of force, or simply field, in reference to
magnetic effects [18, p. 146]. He was providing new words for Faraday’s idea of
lines of force. He was also, at least in part, giving words to the same phenomenon
that had such an impression on Einstein when he was four years of age. Einstein had
marveled at the fact that a compass needle responded to a magnet although there was
nothing between the needle and the magnet [65, p. 3].

Faraday was a mature scientist in 1849. His lines of force gave expression to a
conviction that we should not simply accept a description in the language of action at
a distance. In Faraday’s mind the space surrounding a magnet or an electrical charge
was not empty. It was penetrated by magnetic or electric lines of force. These lines
of force are responsible for what we experience when we bring the like poles of two
permanent magnets close to one another. But Faraday also believed that such lines
of force were present around any mass and were the source of the gravitational force
[18, p. 147].

In a lecture he gave at the Royal Institution in 1834, three years after his discovery
that electric currents result from variations in magnetism, Faraday claimed that,
“We cannot say that any one is the cause of the others, but only that they are
connected and due to a common cause” [18, p. 145].

In 1845 Faraday found the effect of magnetism on the polarization of light.
In the paper reporting this effect he stated his conviction that the various forms
of the forces of matter have one common origin. This was a great scientist and a
very careful experimentalist speaking out of his experience. Faraday saw a universe
permeated by fields where the nineteenth century theoreticians saw Newtonian
particles and action at a distance.
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Albert Einstein, the great twentieth century field theorist, wrote that the field
concept was the product of “a highly original mind, a mind which never got stuck
on formulas [18, p. 147].”

1.3 Gravitation

Isaac Newton had realized that there was a difficulty in his description of the
universal gravitational force between two masses. The mathematical form of
Newton’s law of universal gravitation provides only the dependence of the force on
the masses and the distance between them. There is no information about any agent
that may cause the attractive force. Richard Bentley (1662–1742), who delivered the
first of the Boyle Lectures in 1692, communicated with Newton about gravitation.
In a letter to Bentley dated 25th February, 1692, regarding the origin of gravitation
Newton expressed his own thoughts rather clearly.

That gravity should be innate, inherent and essential to Matter . . . is to me so great an
Absurdity, that I believe no Man, who has in philosophical Matters a competent Faculty
of thinking, can ever fall into it. Gravity must be caused by an Agent acting constantly
according to certain Laws; but whether this agent be material or immaterial, I have left to
the Consideration of my Readers [77, p. 302].

Newton refused to speculate. Faraday, however, did not refuse to speculate.
Our physical understanding of the universe was more developed when Faraday
was trying to give expression to his observations than when Newton expressed his
ideas.

1.4 Faraday, Thomson, and Maxwell

Faraday’s background was not remarkably unusual. Almost all great physicists have
come from the broad economic region called the middle class. Faraday was only
slightly below the bottom of that spectrum. He was born in a London slum and his
schooling was, in his own words, “of the most ordinary description, consisting of
little more than the rudiments of reading, writing, and arithmetic at a common day-
school”[18, p. 137]. The result of this background was that Faraday did not express
himself in the mathematical language of nineteenth century theoretical physics. His
grasp and creation of theoretical ideas were those of a superb experimental scientist.

Faraday’s ideas of fields were not immediately grasped, and certainly not imme-
diately appreciated. He was considered a heretic by some of his contemporaries.
This may have been a result of the fact that Faraday expressed ideas that were those
of theoretical physics without the use of mathematics. It may also have been based
in part on Faraday’s firm belief that electric, magnetic and gravitational fields were
united. But there were two younger scientists that believed Faraday’s ideas to be
correct. They were Thomson (Lord Kelvin) and Maxwell.
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In more modern terminology Faraday’s fields are vector fields. If a vector field
permeates a certain region of space, then at each point in that region of space the
field will have a magnitude and a direction. The value of the magnitude and the
direction will normally change from point to point.

1.5 Gravitation a Vector Field

The gravitational field surrounding the sun is an example of a vector field. The earth
is attracted to the sun, so the lines of force associated with the gravitational field
point toward the sun. These force lines actually point toward the center of the sun
and for our purposes we can replace the sun with a point mass. Newton’s Fourth
Law specifies that the magnitude of the gravitational force is proportional to the
inverse square of the distance from this point.1

If we specify the (vector) direction Oer as radially outward from the point mass
representing the sun, then the force from the gravitational field, which we designate
as Fgrav, has the form

Fgrav .r/ D �G
MS

r2
Oer; (1.1)

where r is the general (vector) point in space, G is the universal gravitational
constant, and MS is the mass of the sun. The corresponding force on the earth is

Fsun on earth .r/ D �G
MSME

r2
Oer; (1.2)

where ME is the mass of the earth.
Because the earth also has a gravitational field, which is of the same form as

(1.1), the net field at the location of the earth will be slightly different from (1.1).
But, since the earth is much less massive than the sun, we may neglect the effect of
the gravitational field of the earth on the form of the gravitational field of the sun.
The earth is then the small “test mass”2 we use to measure the gravitational field.
That is we can only observe the presence of a gravitational field by observing the
effect of the field on a test mass.

The difference between this picture and that of action at a distance is fundamen-
tal, as was pointed out by John A. Wheeler (1911–2008) (quoted in [18], p. 147).
The action at a distance picture identifies the two ponderable masses MS and ME

and specifies their locations from which the magnitude and direction of the force is
determined. In the field picture the sun creates a spherically symmetric field, which
spreads out through space, decreasing in magnitude with distance. The test mass

1We shall treat here only Newtonian gravitation.
2A test mass is a small mass used to measure a gravitational field. The field is found as the force
on the test mass divided by the mass of the test mass in the limit as the mass of the test mass goes
to zero.
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(earth) senses this field experiencing a force. The test mass does not, however, need
to “know” that it is being attracted toward the sun. The origin of the field is of no
importance.

But the field is real and contains an energy. The space is no longer a pure vacuum.
In our ordinary discourse we may then speak of a vacuum as a region free of matter,
but not free of fields.

1.6 Charges and Electric Fields

Analogously to the dependence of the gravitational field on mass, the time indepen-
dent or static electric field is the result of the presence of electric charge. And a small
“test charge”3 will respond to the presence of an electric field just as our test mass
responded to the gravitational field. Electric charge may, however, be either positive
or negative. The force on the charge in an electric field will be in the direction of the
field (positive charge) or opposite to the direction of the field (negative charge).

These electrostatic forces were known, although not understood in the eighteenth
century by scientists like Charles du Fay (1698–1739) and Benjamin Franklin
(1706–1790). The lack of understanding is indicated by the fact that du Fay
and Franklin proposed different fundamental bases for what they were observing.
Du Fay considered that the phenomena he was observing indicated the presence
of two fluids, while Franklin decided that a single fluid was sufficient. Franklin
thought that what du Fay had considered a second fluid was only the absence
of the single fluid. Because the positive charges present in matter (protons) are
not transferred at the energies associated with electrical experiments, Franklin was
correct in claiming that only one fluid was present. And it would seem logical to
identify that fluid as positive, as Franklin did. Electric current then became the flow
of positive charge. We still use this convention. But we realize that in almost all
circumstances the charges flowing are actually electrons, which are negative in sign.
This is a peculiarity we now simply live with. It is not a problem that requires a
solution [97, pp. 39–51].

Franklin also proposed that charge is conserved . The positive fluid may permeate
matter, but it was neither created nor destroyed in the process [97, p. 51].

A real understanding of the nature of the electric force resulted from the
experiments of Charles Augustin Coulomb (1736–1806). Coulomb was not a
supporter of Franklin’s single fluid picture. He considered that there were two fluids
that flowed and that the presence of a negative charge on a conductor was just that.
The conductor had an excess of negatively charged electricity. It was not simply
lacking in the positive charge of Franklin. And we shall later (tentatively) take this
point of view in our analysis of Coulomb’s experiment.

3The field is found from the force on the test charge divided by the charge of the test charge in the
limit as the charge goes to zero.
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Fig. 1.1 Basic apparatus
designed and used by Charles
Augustin Coulomb to
discover the force law
between electric charges

In 1785 Coulomb published three papers reporting his work on electric and
magnetic interactions. Only the first of these three papers interests us here. This first
paper carried a complete description of the apparatus he had designed and the exper-
imental results for the force between two electrically charged spherical bodies [14].

In Fig. 1.1 we have drawn a picture of the basic torsion apparatus Coulomb
designed and used to determine the form of the force law between electric charges.

He required only one charge q1 mounted on the torsion arm and a single
stationary charge q2 because the electrostatic force is large. The second mass on
the suspended bar balanced the charged body.

Coulomb could measure the distance r separating the centers of the two spherical
charges. The force between the charges he could then find from the angle of twist
in the suspension cord. The relationship between torque in the cord and the angle of
twist had to be measured separately.

In fact, however, the suspended bar did not come to rest in a reasonable time and
measurements were made on the slowly swinging bar.

In Fig. 1.2 we present a facsimile of the apparatus as it appeared in Coulomb’s
paper.

Coulomb’s law is essentially identical to Newton’s law of universal gravitation
except for the fact that the force may be either attractive or repulsive. In the field
picture this fact provides the directionality of the force experienced by a test charge
in the electric field.

Henry Cavendish (1731–1810) used a much larger version of the torsion
apparatus to conduct similar measurements to determine the average density of the
earth. His results were reported in 1798 [10].

1.7 Priestly’s Speculation

Joseph Priestly (1733–1804) actually anticipated Coulomb’s result. He published
this in his book The History and the Present State of Electricity with Original
Experiments, which was printed in London in 1767. Priestly’s experiment had been
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Fig. 1.2 Coulomb’s original apparatus from his 1785 paper. Source: Cnum – Conservatoire
Numérique des Arts et Métiers, reprinted with the kind permission of The Bibliothèque centrale
du Conservatoire National des Arts et Métiers

with a metal cup. He found no electrification inside the cup after it had been charged
and compared this to the fact that “. . . were the earth in the form of a shell a body
in the inside of it would not be attracted to one side of it more than another [98].”
From that comparison he inferred that the electrical force must be of the same form
as the gravitational, that is it must vary as 1= jr2 � r1j2. This represents masterful
physical and theoretical insight on the part of Priestly. Nevertheless, in this text we
shall continue to accept Coulomb’s Law as the result of original experimental work
carried out by Coulomb in 1785.

1.8 Voltaic Cell

The voltaic cell or voltaic pile was invented in 1800 by the Italian physicist
Alessandro (Giuseppe Antonio Anastasio) Volta (1745–1827). Based on a
scientific disagreement with his friend the physician and physicist Luigi Galvani
(1737–1798), who had studied the electrically induced twitching of a frog’s leg in
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Fig. 1.3 Three cells of a
voltaic pile. In modern
terminology the voltaic pile is
a series connection of
batteries

1786, Volta found that zinc and copper plates separated by cardboard soaked in
brine produced a current. We have drawn three cells of a voltaic pile in Fig. 1.3.

The voltaic pile transferred energy to charges using a chemical reaction.
The importance of Volta’s invention can hardly be over stated. With a voltaic

pile a scientist could produce a current that could be regulated at the closing of a
switch.

Modern batteries still carry the terminology electromotive force, which was
applied originally to the voltaic pile. And we will apply this term to the induced
electromagnetic field discovered by Faraday. These so-called electromotive forces
are not conservative. The action of these electromotive forces through a closed
circuit or contour is not zero.

The electrostatic force discovered by Coulomb is conservative. Electrical charges
passing through wires lose energy in the heating of the wires. We can store energy
in the separation of charges, which can be accomplished using an electrostatic
generator, as Coulomb did. And we can dissipate that energy if we allow the charge
to flow in a rapid pulse through a wire. But we cannot produce a continuous current
of electrical charge through a circuit using only a conservative force. We must have
a nonconservative energy input in the circuit to balance the energy losses. This we
can accomplish with an electromotive force.

1.9 Currents and Magnetic Fields

1.9.1 Oersted

The origins of our acquaintance with magnetism are ancient. Lodestone was known
to the Greeks in 800 BCE. Thales and Anaxagoras (ca. 500 BCE–ca. 428 BCE)
spoke of Lodestone as having a soul. More sophisticated theories considered
effluvia, invisible emanations, or of a sort of dynamical field [65, p. 1]. There is also
evidence, or weight of opinion, that the Chinese used a compass as early as 2637

BCE [65, p. 3]. What we may consider modern experimental study of magnetism,
however, began with the discovery of the force caused by electric current on
a magnetic compass needle by Hans Christian Oersted (Ørsted) (1777–1851) in
Denmark in April of 1820 [50, p. 11].

Oersted had first begun to investigate the magnetic effects of electricity in 1807.
But he apparently had no success until he was delivering a set of lectures on
“Electricity, Galvanism, and Magnetism” in the winter of 1819–1820.
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Fig. 1.4 Schematic drawing
of Oersted’s experiment. The
magnetic field B is circular
around the current with
orientation determined by the
right hand rule

Oersted seems to have been inspired by the effect that electrical storms have on
magnetic compass needles. He was able to demonstrate, and apparently did in one of
the lectures, that a magnetic needle oriented perpendicularly to a wire experienced
no force if an electric current was passed through the wire. Then after the lecture it
occurred to him to place the needle parallel to the wire and then close the circuit to
produce a current in the wire. The effect was dramatic. The needle quickly rotated
to an orientation perpendicular to the wire. He had established the action of an
electrical current on a (permanent) magnetic needle.

Oersted withheld publication of the results until July of 1820, after he had
conducted confirming experiments with larger apparatus.4 At that point he made
no attempt at quantitative measurements of the forces and contented himself with a
qualitative description of the observations.

We illustrate the situation schematically in Fig. 1.4.
What we would now call the magnetic field Oersted called the conflict of

electricity. He showed that this magnetic field formed circles around the wire
through which the current passed. These magnetic fields, as Oersted reported,
passed through materials without affecting the electrical particles. They affected
only magnetic particles.

Oersted explored as well the question of whether conductors carrying currents
would experience forces from magnets and, subsequently, whether two conductors,
each carrying a current, would experience forces from one another. This he
confirmed by (qualitative) experimental test.5

Oersted published his results in Latin. Translations into common languages
followed immediately and the reaction could even be called feverish [65, p. 12].

4Schweigger’s Journal für Chemie und Physik, xxix (1820), p. 364; Thomson’s Annals of
Philosophy, xvi (1820), p. 375; Ostwald’s Klassiker der exakten Wissenschaften, Nr. 63. (cited
by [97]).
5Schweigger’s Journal für Chemie und Physik, xxix (1820), p. 364; Thomson’s Annals of
Philosophy, xvi (1820), p. 375 (cited by [97]).
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1.9.2 Ampère

In September of 1820 Dominique F.J. Arago (1786–1853) reported the news of
Oersted’s experiments to the French Academy of Science. Within a week of hearing
the report André-Marie Ampère (1775–1836) presented a paper on magnetism to
the Academy which established the force between two wires through which electric
currents were passed. This identification of a force between two wires is now
known as Ampère’s law and, together with Oersted’s result, forms the basis of our
understanding of static magnetic fields [65, p. 13].

Ampère continued to pursue the questions of what he called electro-dynamics
and published the collected results in a memoir in 1825,6 which is considered to be
one of the greatest in the history of science. Maxwell said that in this memoir “The
whole, theory and experiment, seems as if it had leaped, full-grown and full-formed,
from the brain of the ‘Newton of electricity [97, p. 92].’”

Ampère began the memoir by claiming that he was of the school for which all
physical phenomena can be understood in terms of forces between particles. But
then he hedged. He admitted that the forces between circuits carrying currents may
be due to the reaction of the elastic fluid extending throughout all of space, the
vibrations of which are responsible for light. This is the aether. Then he admitted
the possibility of an intermolecular fluid in a metallic conductor, which consisted
of non-equal amounts of the particles of electricity. This was an attempt to explain
electric current ([97, pp. 87–88].

But the memoir did not dwell on speculation. The objective was to describe the
experimental results. And there it succeeded.

In Fig. 1.5 we have drawn a basic representation of the principle Ampère was
investigating.

In Fig. 1.5 we have only drawn the magnetic field produced by I1 (cf. Fig. 1.4)
intersecting the current I2. This causes, as Ampère found, a force F12 of I1 on
I2. In field terminology, the magnetic induction B1 causes a force on current I2.
Because of symmetry and Newton’s third law, this is identical to the situation viewed
from the perspective of wire 1, with the magnetic field caused by wire 2. In either
case we interpret the magnetic field as the intermediary agent producing the force,
rather than simply claiming that the experiment determined a force between two
currents.

Slightly over a month after Arago’s report to the Academy on Orsted’s exper-
iment Jean-Baptiste Biot (1774–1862) and Félix Savart (1791–1841) reported the
results of their analysis of the magnetic force on a magnetic needle from a straight
wire carrying an electrical current [97, p. 86].

Biot and Savart expressed their law in terms of an element of the current in an
infinitesimal length of the straight wire. The force on a magnetic needle in the plane
perpendicular to this infinitesimal length was at right angles to the length of wire and

6Mém. de l’Acad., vi, p.175 (cited by [97]).
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Fig. 1.5 Ampère’s
Experiment. The wires 1 and
2 carry currents I1,2 in the
directions specified by the
unit vectors Ò1,2 respectively.
The wires are separated by a
distance r12, and each are of a
length `. We have represented
the results in terms of the
force on wire 2 from wire 1

to the line from the length to the point at which the magnetic needle was located.
And it was inversely proportional to the distance from the wire to the location of the
needle.

1.9.3 Electrical current

There was no way to measure electrical current in 1820. Oersted published
his results in the Journal für Chemie und Physik of which Johann Schweigger
(1779–1857) of the University of Halle was editor. Schweigger immediately
recognized the possibilities of using the phenomenon for the measurement of
electrical current [52]. His device measured the deflection of a magnetic needle
in the magnetic field produced by a coil through which the current to be measured
passed.

The first mirror galvanometer was constructed in 1826 by Johann Christian
Poggendorff (1796–1877). The name galvanometer, selected by Poggendorff,
honors Luigi Galvani.

In 1879 Edwin Herbert Hall (1855–1938), then a doctoral student at the Johns
Hopkins University in Baltimore, conducted a set of experiments that had been
suggested to him by his thesis adviser, Henry A. Rowland (1848–1901).

In the experiments Hall placed a leaf of conductor (gold in the final experiments)
in a magnetic field. As a current passed through the leaf the charge carriers
experienced a force from the magnetic field. The electrical charge on the charge
carriers could be deduced from the potential difference perpendicular to the current
and the magnetic field.

Hall’s experiments showed that the charge carriers were negative [38]. These
would later be identified as electrons.



12 1 Origins and Concepts

1.10 Induced Electric Field

Oersted’s discovery that electric currents produced magnetism caused Faraday to
wonder if there may be a corresponding relation between magnetism and electricity.
Does magnetism produce electric currents? Faraday finally discovered the effect
in 1831.

The path from any thoughts Faraday may have had in 1820 to the final set of
experiments Faraday conducted over a period of ten days in 1831 was, however,
not direct. In 1821 Faraday was working with gases, not electricity. He was also a
consummate experimentalist and not a theorist or one given to hypotheses beyond
the experimental facts [33, pp. 83–100].

In the experiments of 1831 Faraday first wound helices of wire around a wooden
cylinder. In each helix the wire of one spire was isolated from the next by an
interposed wrapping of twine. And each helix was covered with calico to isolate
it from the next helix, which Faraday wound around it. The result was 12 helices
superposed on one another.

The length of the wire in each of the helices was 27 ft. The first, third, fifth,
seventh, ninth, and eleventh helices were connected as were the second fourth, sixth,
eighth, tenth, and twelfth. The result was equivalent to two very long helices with
one inside of the other. One set of helices Faraday connected to a galvanometer and
the other he connected to a voltaic battery with ten pairs of plates each four inches
square.

There was no observable deflection of the galvanometer [27, p. 2].
In another experiment Faraday wound 200 ft of copper wire around a wooden

block with 200 ft of copper wire wound around that. The windings were isolated
from one another as in the first experiment. One helix was again connected to a
galvanometer and the other to a voltaic battery with 100 pairs of plates.

In this experiment Faraday observed a small deflection of the galvanometer when
the battery was connected and an equally small deflection in the opposite direction
when the battery was disconnected. He also observed that the battery heated the
primary coil indicating that a current was flowing even when there was no longer
any deflection in the secondary coil connected to the galvanometer [27, p. 3].

In a third experiment Faraday formed a circle of a soft iron bar and welded the
ends together. He then wrapped two lengths of wire to form coils A and B around
the iron ring.7 In Fig. 1.6 we have a drawing of the basic apparatus used in this
experiment.

The ends of coil A he connected through a switch to a battery. The ends of coil
B he passed over a magnetic needle a distance of three feet from the iron ring. This
distance ensured that the needle was not affected by any magnetic fields produced
by coil A.

7These lengths of wire actually consisted of multiple lengths which could be connected together to
change the effective length of the wire.
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Fig. 1.6 The apparatus used by Faraday in the discovery of electromagnetic induction

Faraday observed that the magnetic needle responded (oscillated) for a short time
as the switch was closed or opened. But then the needle “settled at last in [its]
original position.” That is there was a current in coil B only during the brief time
required for the magnetic field in the soft iron ring to increase to its steady state value
upon closing the switch, or to decrease from its steady state value upon opening the
switch. A magnetic field alone does not cause a current [27, pp. 7–8].

Faraday also showed that he could produce the same transient current in a coil
wrapped around a cardboard tube if he thrust a permanent magnet into the cardboard
tube. The conclusion from this series of experiments was that a change in the number
of magnetic lines of force, in Faraday’s terminology, penetrating the central area of
a coil of wire induced a current in the wire.

This induced current rapidly died out as the current in the primary coil reached a
steady state or as the motion of the magnet ceased. The electric current was produced
by a change in the magnetic field and not by the mere presence of the field. Faraday
had discovered the importance of time in electromagnetism.

Only electric fields can cause charges to move. Magnetic fields can only deflect
charges already in motion. So the presence of the current Faraday observed indicated
that an electric field had been produced by the change in the magnetic field. But
the wire provided a resistance to the flow of current in the wire, as had long been
known.

Measurements of conductivity had been carried out by Humphry Davy
(1778–1829) in 1821 and a theory had been developed by Georg Simon Ohm
(1787–1854) in 1826 [97, pp. 94–98]. So the electrical field Faraday had discovered
was of a different character from that studied by Coulomb.

1.11 The Mathematical Theory

1.11.1 The field equations

Our discussion in Sects. 1.6–1.10 outlined the discovery of four fundamental
facts about the electric and magnetic fields. These are almost the four basic field
equations. To arrive at the field equations we must cast these statements in a
particular mathematical form that we will develop in this text.
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Fig. 1.7 Illustration of the divergence and the curl. If the divergence of a field is nonzero in the
neighborhood of a point the field lines diverge out from the point. If the curl of the field is nonzero
in the neighborhood of a point the field lines form a countour around the point

The form that we require is not the form in which they were first obtained
for historical reasons. The vector notation was not developed until later by Oliver
Heaviside and Josiah Willard Gibbs [18, p. 162]. But the notation of the vector
calculus, to which we refer here, is more transparent than the original form. And the
discussion here will preserve the spirit of Maxwell’s ideas.

The field equations involve the mathematical operations divergence (div) and
curl (curl). Both of these operations represent the behavior of the field lines.

If the field lines diverge from sources, as discovered by Coulomb for electric
fields produced by charged particles, then the field has zero curl and nonzero
divergence. If the field lines form closed contours around the sources, as discovered
by Oersted and Ampère for magnetic fields produced by electric currents, then the
fields have zero divergence and nonzero curl.

This is, perhaps, best illustrated by a drawing first produced by Maxwell [68, p.
265]. We have a modification of this drawing in Fig. 1.7.

Maxwell’s original notation is somewhat different from ours. And he spoke of
a convergence, rather than a divergence, for which the field lines converged on the
point rather than diverging from the point. But Maxwell’s choice of the method to
illustrate the meaning of these operations on vector fields is timeless.

In the language of fields, Coulomb discovered experimentally that electric
charges cause electric fields. The result is that Faraday lines of electrical force E
originate on positive charges and terminate on negative charges. The electric field
lines then diverge from positive charges as

div E D 1

"0

�; (1.3)

where � is the density of charge. This is the result of Coulomb’s experiment in the
notation of the vector calculus.

In the language of fields, Oersted discovered that magnetic field lines form closed
loops. They do not originate at one point nor do they terminate at another and so
have zero divergence. That is

div B D 0; (1.4)
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where B is the magnetic field induction. This is Oersted’s Result8 in the notation of
the vector calculus.

From the experimental studies of Ampère and the mathematical work of Biot
and Savart we have the relationship between the magnetic field induction B and the
current density J causing the induction as

curl B D �0J: (1.5)

This is Ampère’s Law in the notation of the vector calculus.
Faraday discovered that a variation in the number of magnetic field lines passing

through an area defined by a loop of wire produced an electromotive force9 and a
current in the wire. The induced field, which produced the current, is

curl E D �@B
@t

: (1.6)

This is Faraday’s Law in the notation of the vector calculus.
Equations (1.3)–(1.6) are almost the complete field equations. There is one

statement missing from this set of equations that has roots in Maxwell’s thinking.
This will emerge from our considerations here of Maxwell’s contributions.

1.11.2 Maxwell

1.11.2.1 The Aether

Maxwell was deeply impressed by Faraday’s idea of lines of force. Indeed Maxwell
could be considered a faithful follower of Faraday in the development of a field
theory. But as a trained mathematician Maxwell was able to do what Faraday could
not. Maxwell placed Faraday’s ideas on a firm mathematical basis.

We must, however, recognize that Maxwell’s goals were not to form the field
theory we presently have. For Maxwell the fields and the medium in which the fields
existed, the aether, or luminiferous aether, were the primary quantities. The particles
and the currents were secondary concepts that were manifestations of the aether [97,
p. 279].

The aether has a nuanced history, as do many scientific concepts, which even-
tually become replaced by others. The aether has roots in an Aristotelian concept

8This is a fundamental statement regarding the geometry of the magnetic field lines, but does not
define a physical relationship among measurable physical quantities.
9The modern term electromotive force (emf) is the integral around a contour of this E. That the
integral does not vanish indicates that E resulting from the rate of change of the magnetic field
intensity H is not conservative.
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to avoid the vacuum. We are tempted to claim that the aether was reintroduced
into scientific discussion with the discovery that light was a transverse wave
phenomenon [79, pp. 48, 188, 269] and then dropped with the failure of Albert A.
Michelson (1852–1931) and Edward W. Morley (1838–1923) to measure the aether
drift in 1887 [71], [79, p. 277]. But this story is inaccurate. Any attempt to gloss
over the role of the aether in the development of Maxwell’s theory does an injustice
to his ideas and, as a consequence, to our understanding of the revolution in thought
that accompanied the removal of the aether of the nineteenth century from modern
physics.

If we attempt to make light of the aether we must also ignore the statement of
Einstein’s regarding the aether in a lecture at the University of Leyden in 1920. The
aether made no appearance and was unnecessary in Einstein’s 1905 paper on special
relativity. But that paper considered only electromagnetic fields and not gravitational
fields. The general relativity theory of 1915 resulted in an effect of mass on space.
This effect Einstein noted was the equivalent of an aether, although not of an aether
in the form developed in the nineteenth century.

. . . according to the general theory of relativity space without aether is unthinkable; for
in such a space there would be not only no propagation of light, but also no possibility
of existence for standards of space and time (measuring-rods and clocks), nor therefore any
space-time intervals in the physical sense. But this aether may not be thought of as endowed
with the physical quality characteristics of ponderable media . . . The idea of motion may not
be applied to it [79, p. 303], [78, p. 313].

For Faraday the particles were manifest only as terminus points of the lines
of force. And currents were states of the aether. Then in Maxwell’s theory the
pressure of the particles on one another corresponded to the electrical potential,
while the displacement of the particles from equilibrium resulted in a tangential
action on the cells in the aether. Variations in the displacement of these cells
was regarded as current. Displacement of the particles alone was not current
[97, p. 278].

For Faraday and Maxwell the concepts of particles and currents emerged from
the field dynamics, which involved the mechanics of the aether. The particles were
not the sources of the fields.

Maxwell himself was never completely successful at keeping the fields primary
and the particles and currents secondary. Charges and currents do appear as
independent quantities in his later work. This, as D.M. Siegel points out, makes
the totality of Maxwell’s work difficult to interpret [86, p. 115]. We shall not labor
over the details of Maxwell’s development. But we shall not pass lightly to what we
now refer to as Maxwell’s Equations.

Hendrik A. Lorentz10 combined the Maxwellian tradition with the Continental
tradition, which regarded the particles and currents as primary. It is this mixed
tradition that comes to us now [86, p. 115].

10Hendrik Antoon Lorentz (1853–1928) was a Dutch theoretical physicist.
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1.11.2.2 The Field Theory

Maxwell’s theory, as we consider it here, appeared as a paper entitled On Physical
Lines of Force, which was published in a series of installments over an 11-month
period between 1861 and 1862. This is a theory of molecular vortices and was
a detailed and elaborate mechanical theory of the aether which was the medium
sustaining the fields. Maxwell was influenced by Thomson’s11 arguments that
magnetism was a rotational phenomenon. Tubes of force or vortices consisted of
lines of magnetic force and each tube contained a fluid in motion about the tube
axis [97, p. 276].

Thomson’s ideas led him to an energy per unit volume in the magnetic field as
.1= .8�// �H 2 by identifying � (the permeability) as the medium density and H
(the magnetic intensity12) as the tangential velocity at the surface of the tube. To
allow the rotating tubes to be close to one another Maxwell introduced idler wheels
between the tubes.

In addition, as we pointed out above, Maxwell regarded electrical current to
be a translational phenomenon (displacement of cells in the aether) with a current
density J. He was then able to obtain a kinematical relationship between H and J as

4�J D curl H: (1.7)

This is Ampère’s Law in the form it attained in the middle of the nineteenth century.
In the third installment of “Physical Lines,” Maxwell modified (1.7) to

J D 1

4�
curl H � 1

4�c2

@E
@t

; (1.8)

where c is a constant, which is equal to the speed of light [86, p. 112]. This is
a notable, and perhaps curious, equation. If we take the divergence of (1.8) and
use Coulomb’s Law we get the correct form of charge conservation for the time-
dependent case. But there is no direct evidence that obtaining a consistency of this
sort was foremost in Maxwell’s mind. Had that been the case he would surely have
mentioned this in the paper. But he did not.

Maxwell’s primary concern was to develop a mechanically based theory of
molecular vortices in the aether. In Maxwell’s theory the variation of E produced
variations in the displacement of cells in the aether, which he considered to be the
current. The description of this mechanism is in Faraday’s Law

�
@

@t
H D � curl E: (1.9)

11William Thomson, later Lord Kelvin, was a personal friend of Maxwell’s, as well as a scientific
collaborator.
12The magnetic field is designated by magnetic induction B or as magnetic intensity H. These are
related by the permeability � as H D .1=�/ B.
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A time dependence of H will, through (1.9), produce a time dependence of E, which
will result in a current J through (1.8) [86, p. 139].

Faraday had only applied this idea to the polarization of dielectrics. In a constant
electric field the dielectric medium becomes polarized with a positive charge
concentration at one end and a negative charge concentration on the other. For
Faraday, as we recall, charge was associated with the terminus of electric field lines.

In a modern picture polarization arises from shifts in electron charge densities on
molecules and shifts in sublattices of ionic crystals, which result from variations in
the external electric field. The variation in polarization charge density is a current.

Maxwell’s picture is of an aether-based phenomenon and goes beyond this. For
Maxwell the change in electric field is the source of the current.

If we write the polarization vector as P then Maxwell is saying that in the
presence of the dielectric there is a (polarization) current

J D @P
@t

; (1.10)

and Ampère’s Law (1.7) must be modified to acknowledge this. That is (1.8) must
become

J D 1

4�
curl H C @P

@t
: (1.11)

Comparing this with (1.8) we can identify the displacement as the vector

D D P D � 1

4�c2
E (1.12)

and the displacement current as

@

@t
D D � 1

4�c2

@

@t
E: (1.13)

Here E is a (vector) electromotive force. It is a nonconservative electric field. We
have kept the signs consistent with Maxwell’s picture in which �@E=@t is the source
of a current. It is not itself a current.

With

div H D 0; (1.14)

Maxwell had the complete set of equations of motion for the system of charges and
vortices.

Considering a medium in which J D 0, Maxwell was able to show that (1.8),
(1.9) and (1.14) combined to give

@2

@t2
HDc2r2H; (1.15)
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with the same basic equation for E except that E ? H. Equation (1.15) is the
wave equation. The mathematical solutions to (1.15) are oscillatory (sinusoidal)
disturbances propagating through the aether at a speed c. From the electromagnetic
experiments of Wilhelm Weber (1804–1891)and Friedrich Kohlrausch (1840–1910)
[95] Maxwell was able to calculate this speed of the disturbance in the aether
(3:107 � 108 m s�1). This was very nearly the value Hippolyte Fizeau (1819–1896)
[29] had found for the speed of light in air (3:14858 � 108 m s�1) and the more
accurate value found by Léon Foucault (1819–1869) [30] (3:08 � 108 m s�1).
Maxwell did not hesitate to point to the identity of this disturbance and light [97,
p. 283], [66, p. 499].

In his memoir of 1865, “A Dynamical Theory of the Electromagnetic Field,”
Maxwell removed the aether-based architecture beneath the fields. The field equa-
tions alone remained [66]. And in 1868 he proposed to base the electromagnetic
theory of light solely on the equations [67], [68, p. 125]

curl H D 4�S; (1.16)

where

S D J C 1

4�c2

@E
@t

(1.17)

is the total current, and

� curl E D �
@

@t
H: (1.18)

This is an essentially modern picture of the fields. At the end of the 1868 paper
Maxwell provided a detailed demonstration that the velocity of light is calculable
from the equations of the electromagnetic field.

Maxwell’s 1868 paper also provides us with the letters that we now use to
designate the field vectors. Maxwell used an alphabetical order as the fields appeared
in the text [44, p. 232]. These are

• Vector potential A
• Magnetic induction B
• Displacement D
• Electric field E
• Magnetic intensity H

Maxwell used C to designate the current density and F to designate electromag-
netic force.

Here we see the source of the difficulty in trying to fit Maxwell’s theory
completely into the modern picture of classical field theory. As a theoretical
physicist Maxwell realized that (1.16) and (1.17) must apply in empty space. If they
did not there would be no consistent electromagnetic theory for light.
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Maxwell based his argument for (1.17) on the reality of the aether and the belief
that currents were manifestations of the motion of the aether. If we discard the aether
we are left with no solid mechanistic argument that results in the pair of equations
(1.16) and (1.17), except for the fact that they are together necessary for agreement
with Hertz’ experiments that we discuss in the succeeding section.

Physicists agree that the displacement current must appear in Ampère’s
Law even in free space. We cannot, however, point to a classical mechanistic
basis for this current. The same difficulty occurs with Faraday’s Law in empty
space.

1.12 Experimental Evidence

1.12.1 Waves in the laboratory

Heinrich Hertz was able to produce electromagnetic oscillations at one point in the
laboratory at the Karlsruhe Technische Hochschule in Baden, Germany, where he
had just arrived as professor in 1887. He was 30 years old, but rising rapidly in
German academia [9, pp. 217–218].

Hertz was interested in the experimental problems set forth by the Berlin
Academy (Preussische Akademie der Wissenschaften zu Berlin) in 1879 [19, p. 234].
The Berlin Academy had singled out the central problem in the Maxwell theory as
that of treating the displacement current in (1.13) as an actual current.

A prize was offered for decisive experimental proof that (1) changes of dielectric
polarization in nonconductors produce the same electromagnetic forces as do
the currents which are equivalent to them, (2) electromagnetic forces as well as
electrostatic are able to produce dielectric polarizations and (3) in all these respects
air and empty space behave like all other dielectrics [46, p. 6].

The Academy had contented itself requiring confirmation of either one of the
first two.

Hermann von Helmholtz, Hertz’ doctoral advisor and post doctoral mentor,
brought the prize to Hertz’ attention and promised the assistance of the Physical
Institute in Berlin should he take up the work. But, upon study of the experimental
possibilities, Hertz reluctantly concluded that the effects would be just within the
limits of observation and, therefore, decided against the undertaking [46, p. 1]. But
Hertz wrote he was still “ambitious to discover it by some other method,” and was,
therefore, becoming interested in electrical oscillations.

Hertz’ experiments at Karlsruhe began as lecture demonstrations with Riess or
Knochenhauer spirals, which demonstrated induction between two spiral conductors
in parallel planes. A group of Leyden jars (a Leyden battery) was charged to a
high voltage, which was discharged across the primary coil. The voltage appearing
in the secondary coil resulted in a spark between the terminals of the secondary
[19, p. 239].
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Fig. 1.8 Hertz’ apparatus for investigating the polarization of a dielectric. R is the Ruhmkorff
coil. The primary circuit is the capacitor with plates P and P 0. D is the dielectric. And SC is
the secondary, which is a rectangle of 2 mm copper wire with a gap for sparking. [Permission by
Dover Publications, Inc.]

Hertz eventually found that small Leyden jars sufficed. And he used a Ruhmkorff
coil13 to drive the primary Riess coil [46, p. 2], [19, p. 239].

Hertz became intrigued by the sparks appearing across the terminals in secondary
Riess coil, which he termed side sparks. At first he thought the sparking was too
irregular to be of any use beyond demonstration until he identified a neutral point
(node) in one of the conductors. That meant that the oscillations were regular and
the wavelength could be measured. He then believed that the first question of the
Berlin Academy could be answered [46, p. 2].

We have drawn Hertz’ apparatus for investigating the polarization of a dielectric
in Fig. 1.8 (cf. [46], p. 5).

The Ruhmkorff coil R produced high frequency (10 kHz) oscillating voltage
across the dielectric D located between the plates P and P 0. Hertz termed the
secondary circuit SC a Nebenkreis (side circuit).

If the oscillating voltage across D produced a polarization current in D the result
would be an oscillating magnetic field in SC and an electromotive force in SC by
Faraday’s Law. The electromotive force would produce sparks across the gap in
SC .

Hertz observed strong sparks across the gap in SC [46, p. 5]. This was the
experimental result he reported to the Berlin Academy on 10th November, 1887.
The first experimental proof asked for by the Berlin Academy had been provided.
The polarization current in the dielectric had produced the same effect as a standard
current.

Hertz then prepared to provide the second experimental proof when it occurred
to him that the central issue was not in the first two hypotheses. The third hypothesis
contained the essence of Faraday’s and, therefore, of Maxwell’s position. What
Hertz needed to do was demonstrate the propagation of electromagnetic waves at
a finite velocity in air.

13A Ruhmkorff coil is an induction coil with a few turns in the primary, many turns in the
secondary, and a core of iron threads.
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Fig. 1.9 Hertz’ circuit with
Primary circuit connected to
secondary [Permission by
Dover Publications, Inc.]

Fig. 1.10 Hertz’ apparatus
with Nebenkreis SC

separated from discharge
(primary) circuit by a small
distance [Permission by
Dover Publications, Inc.]

In this Hertz elected to be guided only by experiment. In part this was because
of the difficulty in interpreting Maxwell. Hertz remarked, just as Siegel would a
century later, that the difficulty in grasping the totality of Maxwell’s ideas has caused
many “to abandon the hope of forming . . . an altogether consistent conception of
Maxwell’s ideas.”

Hertz said that he fared no better. He also adamantly claimed that the difficulty is
not mathematical. Maxwell’s theory, he wrote finally, is Maxwell’s set of equations.
It is not Maxwell’s particular conceptions or methods [46, pp. 20–21].

In his book Electric Waves Hertz recounted in detail his reasoning and the
series of experiments he conducted as he moved toward establishing the existence
of Maxwellian electromagnetic waves in air. He began by linking the Nebenkreis
SC directly to a pole of the Ruhmkorff coil. We have drawn the apparatus in this
configuration in Fig. 1.9 (cf. [46, p. 34]).

In this experiment Hertz moved the contact point for the wire with the Nebenkreis
SC and noted the sparks at the gap 1–2. If the contact point was equally distant from
the points 1 and 2 the sparks disappeared.

This experiment convinced Hertz that a wave was excited in the parts of the
Nebenkreis SC . This wave had a finite velocity in the wire of the Nebenkreis, or
else it would have been impossible to regulate its appearance at the points 1 and 2

by shifting the contact point.
Hertz reasoned that the current in the discharge of the Ruhmkorff coil could then

induce an electromotive force in the Nebenkreis SC by mutual induction without
the wire connecting the two. We have drawn the apparatus for this experiment in
Fig. 1.10 (cf. [46, p. 37]).
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Fig. 1.11 Hertz’ symmetrized primary circuit. The distance d was increased from 50 to 150 cm
and sparks, although diminished, were still observed. [Permission by Dover Publications, Inc.]

Hertz formed a lengthened section of heavy (2 mm diameter) copper wire of the
primary circuit and added a large insulated conductor to the end to increase the
current in this extension. He observed sparks in the gap 1–2.

It also became clear to Hertz that the regularity of the oscillations was critical.
So he symmetrized the experiment as we have shown in Fig. 1.11 (cf. [46, p. 40]).

In this experiment Hertz observed sparks at the gap 1–2 in the Nebenkreis when
the separation d was as much as 150 cm. He even walked between the primary and
the Nebenkreis and noted no change in the sparks.

To us, from our perspective, it seems clear that Hertz had established the
existence of electromagnetic waves that propagated through space. These had been
produced by the antenna with its two insulated conductors C and C 0 and had been
picked up by the receiving antenna SC . But Hertz was a careful experimentalist and
jumped to no conclusions without experimental justification.

He followed these experiments with demonstrations that the waves had finite
velocity, he showed that the waves could be reflected, could be focused, and could
be diffracted. These were electromagnetic waves that behaved in the same manner
as do light waves.

The concept of action at a distance, we may say, died in Hertz’ laboratory at
Karlsruhe. The electromagnetic fields could no longer be considered a mathematical
crutch for calculations.

1.12.2 Wave energy and momentum

Whether we consider them to move in the aether or in empty space we should
expect that electromagnetic waves will have energy and momentum. The energy
transported by electromagnetic fields had been discovered mathematically by John
H. Poynting in 1884 [19, p. 182]. Hertz was aware of this and calculated the energy
coming from his primary circuit [9, p. 320].

By implication there will be a momentum associated with this energy, which is
transported at the speed of light. This momentum may be observable if we can direct
a high energy light beam on a very light suspended object using a balance similar to
Coulomb’s.



24 1 Origins and Concepts

Maxwell had also identified a momentum in the waves. He treated matter as an
extension of the aether to be distinguished from the aether only by altered values of
the constants. Particularly Maxwell made no distinction between stress in a material
body and stress in the aether [97, p. 302].

From his theory of stresses in the aether Maxwell was able to deduce that an
electromagnetic wave would exert a pressure on a conductor. Energy would then be
transported to matter when an electromagnetic (Maxwellian) wave was incident on
the matter.

At one time the adherents to the Newtonian corpuscular theory of light believed
that demonstrating the pressure of light on a surface would be the final vindication
of the corpuscular theory of light. And measurements to demonstrate the pressure
of light had been conducted in the eighteenth century. These used intense beams of
light and delicately suspended bodies. Light pressure was not observed in these
experiments.

Final experimental confirmation of the pressure of light was in 1899 [97, p. 307].
By then the validation was not of Newton’s, but of Maxwell’s theory.

1.13 Michelson and Morley Experiment

A blow, but not the final blow, to the aether picture came with the failed attempt by
Albert A. Michelson (1852–1931) and Edward W. Morley (1838–1923) to measure
the aether drift in 1887 [71], [79, p. 277].

Michelson was Professor of Physics at Case School of Applied Science
(presently the engineering and scientific school of Case Western Reserve University)
and Morley was Professor of Chemistry at Western Reserve College (presently the
liberal arts school of Case Western Reserve University).

Michelson was young and unknown and needed the prestige of Morley to fund
the experiment he wanted to do. He had tried the experiment in Germany on a
modest form of his interferometer in 1881. The idea now was to expand the size
of the interferometer arms by introducing multiple reflections.

The issue was fundamental. The aether had become a central part of the Maxwell
theory. However, as Hertz had noted in his attempts to understand exactly what
the theory entailed, Maxwell’s theory was Maxwell’s Equations. That is, when you
finally had the equations there was no need to mention the complex scaffolding of
the aether that presumably was so critical. We may then ask whether or not we can
actually measure effects of the aether. And the first thing that comes to mind is the
effect the ether drift should have on the propagation of light.

The experimental problem had been to measure the speed of light in two
directions and to compare the results. We have illustrated the experimental problem
in Fig. 1.12.

If the aether is at rest in the universe (in Newtonian terms) the earth must be
moving with respect to this stationary aether. Then at some time during the year
the aether drift will be along the axis of our apparatus, as we have shown. If we
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Fig. 1.12 The speed of light
in two directions

Fig. 1.13 Schematic of
Michelson and Morely
apparatus

can measure the times taken for the light to pass first with the aether drift and then
against it we will be able to see the effect of the aether drift on the speed of light.

We accept that light has a speed c in the aether and that the earth has a speed v
in the aether. Then the light moves down the arm of our apparatus (with the aether
drift) at a speed c C v and it returns (against the aether drift) at a speed c � v and our
clocks located at the light source and at the mirror will record two times of passage
for the light. These are the time for passage with the aether t1 D L= .c C v/ and
the time of passage against the aether t2 D L= .c � v/. The difference in these two
measured times is t2 � t1 D �

2Lv=c2
�

=
�
1 � v2=c2

�
.

We knew the speed of light from Fizeau’s measurements at the middle of the
nineteenth century. And we knew the velocity of the earth in orbit. So we knew the
value of v=c. No pair of clocks could measure the time differences required for this
experiment to be carried out.

But Michelson had a different approach that did not require clocks. Michelson
decided to measure phase shifts. In Fig. 1.13 we have drawn the basic apparatus.

Again we assume that when the measurement is made, at some time during the
year, the aether drift is to the right. Then the motion of light along the axis (1) is
affected by the aether drift, but not along axis (2).

We split the single light beam coming from the source into two beams by the
half-silvered mirror at a. One of these beams travels along axis (1) and the other
along axis (2) and we view the recombination of the beams in the telescope.

What we see is a set of concentric rings. We can align a viewing micrometer with
one of the rings, rotate the apparatus, and note any shift in the position of the ring.

There were practical experimental issues to be overcome.

• The arms (1) and (2) need to be long. This was accomplished by using sets of
four mirrors each.

• The apparatus needed to be very stable so that the fringes remained stationary,
but must be easily rotated. This was accomplished by mounting the apparatus on
a stone block and floating the block in mercury.
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Fig. 1.14 Michelson and Morely apparatus

• The light must be intense. For this an Argand burner was used, which has a
central air flow to enhance the burning. The light was then very bright.

We show the resulting apparatus in Fig. 1.14, which is redrawn from Fig. 3 from
the paper in which the results were reported.

This is a premier example of nineteenth century research in the physical sciences.
The idea and the design of the apparatus represent genius. The conduct of the
experiment was very carefully carried out. Michelson and Morley were also able
to demonstrate that they would be able to detect the motion of the earth in the aether
by measuring the motion of the fringes.

But they detected no motion of the earth in the aether. This is interpreted as the
statement that there is no aether.

Again, however, the result is nuanced. In 1895 Hendrik A. Lorentz (1853–1928)
analyzed the Michelson–Morley experiment showing that their null result could
have been obtained even if the aether were present [24, pp. 3–7]. The molecular
interactions, which are electromagnetic, would also be transmitted through the
aether. This would result in a contraction of the length of the interferometer arms in
the direction of motion. The Michelson–Morley experiment would then be unable to
detect any aether drift because the apparatus dimensions simply changed to cancel
out any possible effect.

Therefore, in spite of the fact that the Michelson–Morley experiment is a premier
example of research in the physical sciences, it may have actually demonstrated
nothing of great importance. At the end of the nineteenth century we at least had no
definitive proof or refutation of the aether.
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1.14 Relativity

The inability of Michelson and Morley to measure an aether drift was distressing
to the physics community at the end of the nineteenth century. And some of the
great minds of theoretical physics were occupied with the problem. In addition to
Lorentz, Henri Poincaré (1854–1912) also contributed to attempts at resolution, as
did George Francis FitzGerald (1851–1901), who in 1889 published a remarkable
single paragraph paper14 clarifying the Michelson–Morley result using the same
mechanism for contraction that Lorentz would later (independently) use.

But there was also another problem that seemed to escape many familiar with
electromagnetic fields. There was something deeply troubling about Faraday’s Law.
An electric field could be induced in a loop of wire by moving a magnet toward it.
And the same result could be obtained by moving the wire loop while the magnet
was stationary. The difficulty was that the interpretation of the experiment was
different in the two cases.

If the magnet is in motion an electric field is produced in the vicinity of the
magnet, with a definite energy, which produces a current in the wire. But if the
magnet is stationary and the loop is moving there is no electric field. The charges
experience a force and move in a direction perpendicular to the magnetic field and
the motion of the wire resulting in a current. In this motion there is no energy
imparted directly from the magnetic field to the charges.

It was this asymmetry in Faraday’s Law that disturbed Einstein.
Einstein was also aware of the question of the aether drift. At least he also

mentioned the unsuccessful attempts to discover any motion of the earth relatively to
the “light medium,” which was the aether. But Einstein drew a different conclusion
from the inability to measure an aether drift than did FitzGerald, Lorentz, or
Poincaré. Einstein suggested that electrodynamics as well as Newtonian mechanics
possess no properties corresponding to the idea of absolute rest.

Einstein then wrote that “the same laws of electrodynamics and optics will
be valid for all frames of reference for which the equations of mechanics hold
good.” This he elevated to the status of a postulate and called it the Principle of
Relativity.

To this he added a second postulate, which he admitted is only apparently
irreconcilable with the first. This second postulate is “that light is always propagated
in empty space with a definite velocity c that is independent of the state of motion
of the emitting body [24, p. 38].”

Besides an acknowledgement at the beginning of the paper, there is no mention
of the aether at any other point. The aether, on which Maxwell had labored, was
an unnecessary construct for Einstein. He was certainly not basing his ideas on the
failure of Michelson and Morley to discover an aether drift [71]. Einstein also later

14The paper was The Ether and the Earth’s Atmosphere, published in the American journal Science
[Science, 1889, 13: 390].
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denied any direct influence of the Michelson and Morley result on his thought [78,
pp. 114–117].

Einstein had discovered that the problem lay in our lack of understanding of
time. He began the first part of the paper, the kinematical part, with a discussion
of time and the meaning of simultaneity. In a few short sentences he removed the
Newtonian concept of absolute time [79, p. 231] and replaced it with the realization
that all statements about time deal with simultaneous events. One of those events is
something physical occurring in our immediate vicinity and the other is the number
indicated on our timepiece.15

Here Einstein referred to the arrival of a train and the location of the hands on
a clock (appearance of a number on a timepiece) [24, p. 39]. This defines what we
mean by time in our immediate vicinity. But for time to have a meaning to us beyond
that we must have a way of synchronizing our timepiece with timepieces located at
points remote from us.

To do this Einstein defined the synchronization of timepieces. Two timepieces
remote from one another are synchronized if the time taken for a light ray to travel
from one to the other is the same as the time taken for the return. This requires the
second postulate regarding the constancy of the velocity of light.

The frames of reference for which the laws of mechanics hold good, which are
those traveling at constant velocity relatively to one another [24, p. 45], are called
inertial frames. We may consider one such inertial frame to be fixed and the other(s)
to be moving with respect to that frame at constant velocitie(s). Each inertial frame
is equivalent as far as the laws of physics are concerned. But an event observed
in one inertial frame will have a different appearance when viewed from another
inertial frame, if they are moving relatively to one another.

Einstein considered particularly a timepiece synchronization experiment
observed in two inertial frames and experiments in which light beams were sent
down various axes. These were thought experiments. But thought experiments are
not fantasy. It must be possible to perform each of the measurements required.

The result of these thought experiments was a space and time transformation
between inertial reference frames that was mathematically the same as the Lorentz
Transformation [24, pp. 11–34]. In 1905 Einstein was not aware of the Lorentz
Transformation [78, p. 133]. The basis, however, was completely different. Einstein
had recognized that time was the basis for the new kinematics.

The curious results of this transformation were the fact that timepieces in a
moving inertial frame, when observed from a stationary inertial frame, appeared
to be running slowly. The time intervals in different inertial frames were then
not the same. Similarly the length of a rod in a moving inertial frame appeared
shortened in the direction of motion, when observed from a stationary inertial
frame.

15The terminology Einstein used was clock. We have used timepiece because the clock with hands
is becoming less common.
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The most important result was, however, that the Maxwell–Hertz16 Equations for
the electromagnetic field remained the same in all inertial frames [24, pp. 51–53].
That is Einstein’s concept of time and the constancy of the speed of light provided
the basis for what Einstein had called the Principle of Relativity. This also resolved
the asymmetry of Faraday’s Law.

The apparent asymmetry in Faraday’s Law was not the result of a difficulty in
the Maxwell Equations. It was a result of the fact that we did not understand time,
and as a consequence, space.

Einstein’s recognition that time was suspect and that an understanding of time
resolved the issue came suddenly to him during an afternoon’s discussion with
his friend Michele Besso. Einstein said he returned the next day and, without
even first greeting his friend, said to him, “Thank you. I’ve completely solved the
problem.”

The paper, which was completed five weeks later, contained a note of thanks to
Besso, but no other acknowledgements or references.

The Principle of Relativity is of more importance than is apparent. The actual
issue is, as we will later discuss, the covariance of the laws of physics. The laws of
mechanics and of electrodynamics are covariant under Lorentz Transformation.

Nowhere in the paper is the aether introduced as a part of the argument. That is
Einstein had effectively removed the aether from consideration. There was no need
for it as long as we accept that space and time no longer exist as separate entities and
that only a union of the two is preserved as an independent reality, as was pointed
out by Hermann Minkowski [24, p. 75].

This is also the issue raised by Einstein in the Leyden lecture of 1920 referred to
above. The aether is no longer a ponderable medium. Its existence is in the geometry
of space-time.

1.15 Summary

In this chapter we have introduced the concept of a vector field and provided
a brief overview of the history of the development of classical field theory.
In this we have included a discussion of the basis of Maxwell’s mathematical
theory using the vector equations which will be completely developed in the
text.

We culminated our discussion with Hertz’ laboratory experiments, that demon-
strated the reality of the fields ending serious discussion of action at a distance, and
with Einstein’s realization that classical field theory requires a new understanding
of time and of space. A new door had opened at the back of the laboratory.

16Einstein used the form of the Maxwell equations employed by von Helmholtz and Hertz [46,
p. 201].
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Our intention in the remainder of the text will be to develop the theory
mathematically. In this we will show that Maxwell’s field equations result logically
from the experiments that we have outlined here. We will use a modern picture with
no reference to the aether. Our presentation of Einstein’s theory will also be based
on a modern approach.

For the reader who wishes to understand classical field theory philosophically as
well as mathematically, however, this chapter is an important step.

Questions

1.1. Define the concept of the vector field and carefully note how it differs from the
simpler concept of a vector.

1.2. How does the idea of vector field differ from that of action at a distance, or are
they both really the same?

1.3. What, briefly, were Newton’s thoughts on action at a distance? Why did
Newton not propose the field?

1.4. Is there any part of Coulomb’s experiment that requires the field concept?
Oersted’s experiments? Ampère’s Experiment?

1.5. Faraday first used the term field in reference to magnetism after his discovery
of induction. Why do you suppose Faraday would begin to think that a field was a
viable concept? He clearly had not needed this concept for his work on induction.

1.6. The aether is not a trivial concept. Why did it seem necessary? Do you think
Newton would have liked it?

1.7. Maxwell labored with the aether as a primary concept. Maxwell’s ideas were
ahead of his time, but he was also a product of nineteenth century science. As his
friend William Thomson (Lord Kelvin) Maxwell believed in a mechanical universe.
Why was the aether so important in the mechanical picture of the universe?

1.8. Faraday’s Law is based on hard experimental data. We simply must accept it
as fact. If we remove the aether from consideration what is the interpretation of
Faraday’s Law? Can you reconcile this with a mechanical universe?

1.9. The existence of the displacement current is critical in Maxwell’s theory.
The Prussian Academy recognized this and called for experimental proof. Why is
the displacement current central to Maxwell’s theory? Why not just drop it and avoid
controversy?

1.10. Critique Hertz’ comment that Maxwell’s theory is Maxwell’s Equations.
Is something deep being revealed here? Or is this a throwaway comment? To what
are we committing ourselves if we agree with Hertz?



Exercises 31

1.11. Why were the results of the Michelson–Morley experiment considered
important?

1.12. What was the principal concern of Einstein in his 1905 paper on special
relativity? What was the role of the Michelson–Morley result?

1.13. Einstein himself spoke of special relativity as being the “step.” He had
realized something that set his ideas apart from those of FitzGerald, Lorentz, and
Poincaré. What was this? Einstein’s ideas resulted in the same transformation as
Lorentz’. What was different?

1.14. The Prussian Academy realized that the displacement current was critical
in field theory. Einstein realized that there was a problem with Faraday’s Law.
Faraday’s experimental discovery of induction brought time into field theory as a
variable. The displacement current is a time dependent something. Special relativity
emerged from a new realization of the meaning of time. Write an essay tying these
neatly together scientifically.





Chapter 2
Mathematical Background

The place of mathematics in the physical sciences is not
something that can be defined once and for all. The
interrelations of mathematics with science are as rich and
various as the texture of science itself.

Freeman Dyson

2.1 Introduction

In its present form, after the intense intellectual effort that we outlined in the
preceding chapter, classical field theory comes to us as an essentially complete
science. We may now develop it as a masterpiece of absolute, mathematically based
science, studying only the final form of the theory as a set of mathematical equations
linked completely to a set of identifiable experiments.

Our study, of necessity, must then begin with an outline of the mathematics we
will use. We have devoted this chapter to that task. Here we include the topics

• Vector analysis
• Multivariate functions and coordinate systems
• Vector calculus
• Laplace and Poisson partial differential equations
• Helmholtz’ Theorem for the vector field
• The Dirac Delta Function

We have placed proofs and vector identities in the appendices in order to keep the
discussion fluid. The reader who is already familiar with these topics may choose to
only look over this chapter. Because coordinate notations and the representation of
some vector operators are not universal, however, we do not recommend ignoring
this chapter.

We will take up further mathematical developments as we need them. These
include, for example, Green’s Functions for the solution of nonhomogeneous
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differential equations,1 Fourier transforms for the study of waves, and tensors for
the study of relativity.

2.2 Vectors

2.2.1 The Vector Space

We begin with the concept of an abstract vector space, which is defined through a
set of postulates. This concept contains the familiar displacement, momentum, and
force vectors as special cases.

In modern physics vectors are the Dirac ket vectors, or simply kets introduced
by Paul A.M. Dirac (1902–1984) in the first edition of his monograph on quantum
theory [21]. The vector analysis and the vector calculus we shall use in classical
field theory, however, retains the dyadic form of the vectors, such as a, b, . . . . Both
ket vectors and dyadic vectors are examples of representations of the vectors in a
space.

The dyadic representation and the vector calculus of three dimensions were the
invention of Josiah Willard Gibbs (1839–1903), professor of mathematical physics
at Yale College in the last decades of the nineteenth century. In Gibbs’ own words,

One of the principal objects of theoretical research in any department of knowledge is to
find the point of view from which the subject appears in its greatest simplicity.

The dyadic notation did this for vector quantities in three dimensions and was a
great step forward in the application of mathematics to physics.

The set of quantities a, b, . . . are elements of a vector space V if they satisfy the
postulates of a vector space, which are [20]

1. Closure under addition: for each a and b which are elements of V there is a
unique sum aC b that is a vector in the space. That is2

For a 2 V and b 2 V 9 a C b D c 2 V : (2.1)

2. Addition is associative:

.a C b/C c D a C .b C c/ : (2.2)

3. Addition is commutative:

a C b D b C a: (2.3)

1The terms nonhomogeneous or inhomogeneous are equivalent for describing differential equa-
tions with sources.
2The symbol 2 means “is an element of” and 9 means “there exists.” These symbols are commonly
used as shorthand in physics just as in mathematics.
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4. There exists a zero vector 0 defined by the requirement that the addition of this
zero vector to any vector in the space results in the original vector. That is3

9 0 3 a C 0 D a 8 a 2 V . (2.4)

5. There exists a negative of a vector, �a, defined by the requirement that the sum
of any vector in the space and the negative of that vector produces the zero vector.
That is

8 a 2 V 9 � a 3 a C .�a/ D 0: (2.5)

6. Closure under multiplication by a scalar: For every number from the field of
complex numbers,C (a real number is a complex number with an imaginary part
equal to zero), and every vector from the space, a, there is a unique vector Ca
that is also contained in the space. Multiplication by a scalar satisfies

(a)

C .a C b/ D Ca C Cb: (2.6)

(b)

.C CD/ a D Ca CDa: (2.7)

(c)

.CD/ a D C .Da/ : (2.8)

(d)

1a D a: (2.9)

In the last expression 1 is the number one, known as unity.
We will also require that our vector space has a scalar product, which, between

two vectors u and v, we write as u � v. The scalar product of real vectors has the
properties that

u � v D v � u; (2.10)

u � .v C w/ D u � v C u � w; (2.11)

.au/ � v D a .u � v/ ; (2.12)

3The symbol 8 means “for all” and the symbol 3 means “such that.”
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u � u � 0; (2.13)

u � u D 0 if and only if u D 0: (2.14)

In (2.12) a is a scalar.
The reader will recognize familiar manipulations in these postulates. Position and

displacement vectors, with magnitude and direction, constitute a possible vector
space defined by these postulates. Thinking of a vector as a quantity possessing
magnitude and direction is often helpful in our mental picture of vectors in two
or three spatial dimensions. But we will be prepared to extend our concept of
vector space beyond the limits of two and three dimensions when we consider the
representation of continuous functions, which also satisfy these postulates.

2.2.2 Representation

2.2.2.1 Basis

We can make general statements in terms of abstract vectors. This includes the
formulation of physical laws. The transition from abstract vectors to the forms of
these vectors which we can apply to concrete situations requires that we represent
the abstract vectors in a basis.

In rectangular Cartesian representation, with the familiar .x; y; z/ axes, the basis
vectors are

˚ Oex; Oey; Oez
�
. These are unit vectors, which means they are normalized to

one, i.e. have magnitude one. This is the requirement that

Oex � Oex D Oey � Oey D Oez � Oez D 1: (2.15)

They are also orthogonal which means

Oex � Oey D Oex � Oez D Oey � Oez D 0: (2.16)

Basis vectors satisfying (2.15) and (2.16) are termed orthonormal. They are
orthogonal and normalized.

We may combine the statements (2.15) and (2.16) into a single statement if we
introduce the Kronecker4 delta ı�� . The Kronecker delta is simply a counting index
defined by

ı�� D
(
1 if � D �;

0 if � ¤ �:
(2.17)

4Leopold Kronecker (1823–1891) was a German mathematician and logician who argued mathe-
matics (arithmetic and analysis) must be founded on whole numbers. He claimed that “God made
the integers,” and that “all else is the work of man”[6].
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With (2.17) we can write our conditions of orthonormality (2.15) and (2.16) as

Oe� � Oe� D ı��: (2.18)

We may represent a three dimensional vector a (such as a distance, velocity, or a
force) in the basis

˚ Oex; Oey; Oez
�

as

a D ax Oex C ay Oey C az Oez: (2.19)

For three dimensional vectors we may also choose cylindrical or spherical repre-
sentations. The basis vectors in cylindrical and spherical systems are f Oer; Oe#; Oezg and˚ Oer; Oe#; Oe�

�
, respectively.

We represent the vector a in the basis
˚ Oex; Oey; Oez

�
by projecting the vector a onto

the basis
˚ Oex; Oey; Oez

�
. If we write the projector P as

P D Oex Oex C Oey Oey C Oez Oez; (2.20)

the projection of a onto the basis
˚ Oex; Oey; Oez

�
is

P � a D � Oex Oex C Oey Oey C Oez Oez
� � a

D ax Oex C ay Oey C az Oez; (2.21)

where a� D a � Oe� is the �th component of the vector a.

2.2.2.2 Complete Basis

Vectors, the vector calculus (see [15, vol. II, pp. 88–93])5, and vector analysis are
all independent of the basis in which we represent the vectors, provided that basis is
complete.

The mathematical question of completeness is not trivial if we are dealing with
a vector space of arbitrary dimension (cf. [20, p. 37], [8, p. 302]). The requirement
for completeness is finally, however, quite simply that the original (abstract) vector
and the representation of that vector in the basis do not differ from one another.

If we have a complete representation of a vector in a basis we may then conduct
all the required mathematical operations in that basis. For example, if we represent a
three dimensional position vector a in the rectangular Cartesian basis

˚ Oex; Oey; Oez
�
, we

may conduct our mathematical operations on the algebraic quantities
˚
ax; ay; az

�
,

which are the components of the vector.
For vectors that we may already realize remain in a plane (two dimensions) or in a

three dimensional space, the requirement of completeness is that we have either two

5Courant’s treatment of the independence of vector calculus on basis is particularly clear.
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(for the planar vectors) or three basis vectors (for the spatial vectors). It is also very
convenient, for our purposes, to require the basis vectors to be orthonormal. That is
not, however, convenient in crystallography, where the basis vectors are imposed by
the crystal symmetry.

Until we discuss relativity our spaces will be limited to two or three dimensions
and we may avoid questions of completeness. In the four dimensional space of
relativity time will become a dimension rather than a parameter. But that will not
raise any questions of completeness. So we shall simply assume completeness for
all of our representations of vectors.

When we come to the representation of continuous functions in the continuous
basis of the Fourier transform we will have developed a simple proof of complete-
ness specific for the Fourier transform.

In terms of the projector (2.20) our assumption of completeness means that the
projector is the identity, i.e. P D 1. If the projector is the identity then P � a D a,
which is what is implied in (2.19).

Our development will be simpler if we are less explicit about the identity of our
basis vectors. Therefore, we shall specify our basis vectors as f Oe1; Oe2; Oe3g or simply
as
˚ Oe�

�3
�=1.

The vector a is then represented as

a D
3X

�=1

a� Oe�: (2.22)

A general representation in N dimensions is

a D
NX

�=1

a� Oe�: (2.23)

The dimension of a vector space is equal to the number of basis vectors required
to represent a vector on the space.

2.2.2.3 Sum Convention

In his publication The Foundation of the General Theory of Relativity in 1916,
Einstein noted that in the equations he was obtaining repeated indices were always
summed over three spatial coordinates and the one temporal coordinate, i.e. from 1

to 4 [24, p. 122]. These are the basis vectors in relativity.
It may appear premature to make the observation that Einstein made based

only on what we have done so far. Nevertheless it is true that in our vector
spaces repeated indices will always be summed from 1 to the number of basis
vectors. In the interest of simplicity we shall, therefore, introduce this Einstein sum
convention.
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We will make clear instances when the sum convention is not used by either
introducing Latin subscripts or by indicating that the sum convention is not used.
Otherwise we will always sum repeated Greek indices from 1 to the number of
basis vectors.

We may then write both (2.22) and (2.23) as

a D a� Oe� (2.24)

as long as we remember the number of basis vectors that we have.
Introducing the Kronecker delta we may write (2.24) as

a D ı��a� Oe�: (2.25)

2.2.2.4 Linear Independence

The vectors Oe� in the set of basis vectors
˚ Oe�

�N
�=1 are linearly independent if

a D a� Oe� D 0 (2.26)

results only when

a� D 0 8�:

That is only when none of the vectors in the set
˚ Oe�

�N
�=1 can be represented in terms

of the others. This is a requirement for any complete set of basis vectors.
We can always construct a set of orthonormal basis vectors from a set of linearly

independent basis vectors. The procedure by which we accomplish this is the
Gram–Schmidt procedure.6 We will not discuss this procedure here, since we have
no direct use for it.

2.2.3 Scalar Product

Using (2.24) and an equivalent representation for b we write the scalar product of a
and b as

a � b D �
a� Oe�

� � .b� Oe�/
D ı��a�b�

D a�b�; (2.27)

6The Gram–Schmidt procedure is named for Jørgen Pedersen Gram and Erhard Schmidt, although
but it appeared earlier in the work of Laplace and Cauchy.
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using (2.18). We can show that (2.27) satisfies the requirements for the scalar
product (see exercises).

In elementary texts the scalar (or dot) product is defined in terms of the
magnitudes of the vectors involved and the cosine of the angle between them. This
definition of the scalar product and (2.27) are equivalent (see exercises).

2.2.4 Vector Product

The vector or cross product is defined only for three dimensional vectors. Two
symbols are commonly used to designate the cross product. These are � and ^.
We will use the symbol �. And we will designate the cross product of two vectors
a and b as a � b.

For two vectors a and b, represented in the basis f Oe1; Oe2; Oe3g with components
.a1; a2; a3/ and .b1; b2; b3/, the cross product is defined by the determinant

a � b D det

2

6
4

Oe1 Oe2 Oe3

a1 a2 a3

b1 b2 b3

3

7
5

D Oe1 .a2b3 � b2a3/C Oe2 .b1a3 � a1b3/C Oe3 .a1b2 � b1a2/ : (2.28)

The determinant of a square matrix may be written in terms of the Levi-Civita
density7 "˛ˇ� [20], which we may consider here to be a counting index with slightly
more complex properties than the Kronecker delta. The Levi-Civita density "˛ˇ� is
defined by

"˛ˇ� D

8
<̂

:̂

C1 if ˛ˇ� is an even permutation of .1; 2; 3/;

�1 if ˛ˇ� is an odd permutation of .1; 2; 3/;

0 if two or more of the indices ˛ˇ� are identical.

(2.29)

Even permutations of .1; 2; 3/ are .1; 2; 3/, .2; 3; 1/ and .3; 1; 2/. Odd permutations
are .1; 3; 2/, .2; 1; 3/, and .3; 2; 1/.

In terms of the Levi-Civita density the determinant of a 3 � 3 matrix is

det

2

6
4

a1 a2 a3

b1 b2 b3

c1 c2 c3

3

7
5� "˛ˇ�a˛bˇc�

D a1 .b2c3 � b3c2/C a2 .b3c1 � b1c3/C a3 .b1c2 � b2c1/ : (2.30)

7Tullio Levi-Civita (1873–1941) was an Italian mathematician most noted for his work on absolute
differential calculus (tensor calculus).
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Therefore, the cross product (2.28) is

a � b D "˛ˇ� Oe˛aˇb�: (2.31)

In elementary texts the cross product is defined in terms of the magnitudes of the
vectors involved and the sine of the angle between them. We can show that (2.31)
reduces to the elementary definition (see exercises). Equation (2.31) is the more
general definition.

We notice that in (2.31) the presence of the symbol for the basis Oe˛ only indicates
that "˛ˇ�aˇb� is the ˛th component of the cross product. That is

Œa � b�˛ D "˛ˇ�aˇb� D "ˇ�˛aˇb� ; (2.32)

by a double (even) permutation of the ˛ among the subscripts of the Levi-Civita
density. Because it is usually only necessary to deal with individual components,
(2.32) is often sufficient for a definition of the cross product.

We will find the subscript notation for the scalar and vector products indispens-
able when dealing with complex relationships or when establishing the validity of
a vector identity. But we will often find that the physics is more clearly expressed
in the dyadic notation. We will then elect to work generally in the dyadic notation.
And we will use the subscript notation when convenient.

Among three vectors a, b; and c we can form two types of triple products. The
scalar triple product is a � .b � c/ and the vector triple product is a � .b � c/.

The scalar triple product has a geometrical interpretation. It is the volume of the
parallelepiped defined by the vectors a; b, and c. Because it is a volume

a � .b � c/ D .a � b/ � c, (2.33)

which is referred to as “exchanging the dot and the cross.”
The vector triple product has no simple geometrical interpretation. But it can be

expanded into a form that is easily remembered and very useful. This is the so-called
bac � cab rule

a � .b � c/ D b .a � c/� c .a � b/. (2.34)

We leave the proof of both of these to the exercises.

2.3 Multivariate Functions

We will deal with mathematical functions of spatial coordinates and the time. We
will generally indicate the three spatial coordinates using a position vector r with
components .x; y; z/. In our treatment of relativity this will be replaced by a four
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vector with the additional component ct , which is the fourth (time) dimension in
spatial form. In Fourier, or wave vector space the position vector r will be replaced
by the wave vector k with the three components

�
kx; ky; kz

�
and the time t will be

replaced by the angular frequency !. We must then have an understanding of the
treatment of these multivariate functions.

2.3.1 Differentials

The differential of a function ˚ , dependent on three spatial coordinates x, y and z
and the time t , is Pfaff’s8 differential form (see e.g. [40], p. 43), or the Pfaffian9

d˚ D .@˚=@x/ dx C .@˚=@y/ dy C .@˚=@z/ dz C .@˚=@t) dt, (2.35)

in rectangular Cartesian coordinates .x; y; z/ and with the time t .
The Pfaffian is a linear differential form. That is the dependence of d˚ on

the differential of each coordinate is linear. We may think of the Pfaffian as the
differential change in the function ˚ resulting from a translation in coordinates
(x1 ! x1 C dx1; x2 ! x2 C dx2; x3 ! x3 C dx3) in the time interval t ! t C dt .
In this translation the differential d˚ has a value, which is linearly dependent on the
translation in each of the coordinates and the time. This is not different in principle
from the expression of the differential of a function of a single variable y D y .x/

expressed in the form dy D y 0dx, where y0 is the derivative of y .x/. We must now
only think in more general terms.

In the other common spatial coordinate systems, cylindrical .r; #; z/ and spherical
.r; #; �/, the Pfaffians are

d˚ D @˚

@r
dr C @˚

@#
d# C @˚

@z
dz C @˚

@t
dt (2.36)

and

d˚ D @˚

@r
dr C @˚

@#
d# C @˚

@�
d� C @˚

@t
dt; (2.37)

with the time indicated by t .

8Johann Friedrich Pfaff (1765–1825) was one of Germany’s most eminent mathematicians during
the nineteenth century. He is noted for his work on partial differential equations of the first order,
which became part of the theory of differential forms. He was also Carl Friedrich Gauss’s formal
research supervisor.
9Pfaff’s differential form for the function � .�1; : : : ; �n/ is defined as

d� D
nX

j

@�

@�j
d�j :
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Each of the partial derivatives is the differential change in ˚ with respect to
a single coordinate while all other coordinates are held constant. Each partial
derivative is, in general, a function of all the independent variables. The geometrical
meaning of each partial derivative as a slope is valid if we think in terms of a
plot of ˚ holding all but one variable constant, which is a planar representation
of ˚ .

Relative extrema of a function ˚ , considered for the moment to be a function
only of spatial coordinates, are points for which d˚ D 0 for all infinitesimal
(differential) changes in the coordinates.

For example

d˚ D 0 D @˚

@r
dr C @˚

@#
d# C @˚

@�
d� (2.38)

for all possible variations .dr; d#; d�/. If the coordinates .r; #; �/ are linearly
independent of one another, i.e. the system is not constrained by a particular
relationship among these coordinates, then (2.38) can only be satisfied if each of
the partial derivatives is independently equal to zero.

The spatial portions of the Pfaffians in (2.35)–(2.37) are the directional deriva-
tives of the quantity ˚ along directions specified by the differentials .dx; dy; dz/
in the rectangular coordinate system, .dr; d#; dz/ in the cylindrical system, and
.dr; d#; d�/ in the spherical system. We shall assume that the reader is familiar
with the rectangular system and consider here details for only the cylindrical and
spherical systems.

2.3.2 Cylindrical Coordinates

There is no ambiguity in the choice of coordinate definitions for the cylindrical
coordinate system, which we have drawn in Fig. 2.1.

Fig. 2.1 Cylindrical
coordinates. The differential
volume (shaded) and the
vector triad .Oer; Oe# ; Oez/ are
shown. The triad is separated
from the vector point to limit
clutter
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Fig. 2.2 Spherical
coordinates. The differential
volume (shaded) and the
vector triad

�Oer; Oe#; Oe�� are
shown. The triad is separated
from the vector point to limit
clutter

The angle # is the azimuthal angle10 in the .x; y/ plane and z is the vertical.
We have drawn the differential volume and the vector triad . Oer; Oe# ; Oez/ in Fig. 2.1.
The differential volume, which is shaded in Fig. 2.1, is

dV D rdr d# dz: (2.39)

2.3.3 Spherical Coordinates

There is an ambiguity in the definitions of the angles # and � in spherical
coordinates. Authors differ in their choices of the symbols for the azimuthal and
the polar angles. The reader must be aware of this and carefully note the form used
in any particular text or table.

Here we shall use # as the definition of the azimuthal angle in both cylindrical
and spherical coordinates. The angle � is then the polar angle, or angle measured
down from the z-axis of the rectangular system. This is sometimes called the zenith
angle or the colatitude. We have drawn the spherical coordinate system we will use
in Fig. 2.2. The differential volume, which is shaded in Fig. 2.2, is

dV D r 2 sin � d# d� dr: (2.40)

10Azimuth comes from the Arabic word as-simt, which means direction, referring to the direction
a person faces. The equatorial angle is the azimuthal angle defined such that a person facing East
has an azimuthal angle of 90ı, and a person facing South has an azimuthal angle of 180ı.
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2.4 Analytic Functions

When we are dealing with a function representing a physical quantity, for example
a field component, we normally assume that the function will be continuous and
have continuous derivatives, at least in a certain region of space, because we expect
that of the field. Even when we consider fields produced by what we shall call
point particles, we realize that the particle is still a physical particle and not a
mathematical point.

We are using mathematics to represent what we observe in the universe. A one-to-
one correspondence between our mathematical theory and the observable universe
is not guaranteed by our intuition. At the very minimum, however, we must make
certain that our mathematical theory is correct. In the next sections we develop the
theorems of the vector calculus and for solutions to the most important differential
equations we will encounter in our study.

Here we will assume that all functions are analytic (see [8, p. 59]). In the simplest
language, a function is analytic in a certain domain if it can be expanded in a Taylor
Series at every point within that domain (see [39, p. 23]).

2.4.1 Taylor Series

A Taylor series is a representation of the function in a power series. We cannot
assume that this representation is valid everywhere. So let us assume that we want
an approximation to the function f .x/ in a domain surrounding a point x D a. The
Taylor Series near x D a is

f .x/ D
1X

nD0
cn .x � a/n ;

where the coefficients cn are

c0 Df .a/ ; c1 D 1

1Š

d

dx
f

�

xDa

; c2 D 1

2Š

d 2

dx2
f

�

xDa

; � � � cnD 1

nŠ

d n

dxn
f

�

xDa

; � � � :

The subscript x D a indicates that the derivatives are all to be evaluated at the point
x D a. These coefficients are normally written with the shorthand notation

f (0) .a/ D f .a/ ;

f 0 .a/ D d

dx
f

�

xDa
; f 00 .a/ D d 2

dx2
f

�

xDa
; � � �f (n) .a/ D d n

dxn
f

�

xDa
� � � :
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Fig. 2.3 Fluid flowing
toward a constriction in a
tube. The flow velocity
increases in inverse
proportion to the tube area

Then with the definition 0Š � 1, we can write the Taylor Series as

f .x/ D
1X

nD0

f (n)

nŠ
.x � a/n : (2.41)

2.4.2 Analyticity

The definition of analyticity is (see [8, p. 59])

Definition 2.1. Analytic function. A function is called analytic in a domain D
when it can be expanded in a Taylor Series11 at any point withinD and is convergent
in some neighborhood of that point.

2.5 Vector Calculus

2.5.1 Field Quantities

In mathematical terms a vector field has components which are functions of the
position vector r. As an example of a vector field, in Fig. 2.3 we have drawn the
velocity vector in a fluid flowing toward a constriction in a tube. We have indicated
the flow velocity vector by arrows at each location in the tube. For an incompressible
fluid mass conservation requires that the flow velocity is inversely proportional to
the cross sectional area of the tube. Therefore the velocity increases toward the
throat of the constriction and is greatest at the throat. The direction of the flow
velocity also changes with the position in the tube.

We have then a vector, the fluid velocity v, which is a function of each point,
designated by a position vector r. In a general three dimensional situation

v D Oe1v1 .r/C Oe2v2 .r/C Oe3v3 .r/

D Oe�v� .r/ :

11We have used Taylor Series in place of power series.
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Fig. 2.4 Magnetic field
around a wire with constant
current I forms closed loops
around the wire

We are primarily interested in electric and magnetic field vectors. The electric
field vector near a stationary electric charge has the same form as the gravitational
field vector discussed in Chap. 1. That is the magnitude of the field decreases
as 1=r2, where r is the distance from the charge. The direction of the electric
field vector is either away from the charge (positive charge) or toward the charge
(negative charge). The magnetic field from a steady electrical current has the form
of circular loops in the plane perpendicular to the current. The magnitude of the
magnetic field decreases in inverse proportion to the radius of the loop, i.e. as 1=r .
We have illustrated this situation in Fig. 2.4.

Because field quantities depend on general coordinates they can be differentiated
with respect to those quantities. There are three differential operators in the vector
calculus. These are the gradient, the divergence, and the curl. We shall consider
these in detail here.

2.5.2 The Gradient

The gradient is a differential operator that operates on a scalar function of position
to produce a vector field. In the rectangular Cartesian basis f Oe1; Oe2; Oe3g the gradient
is defined as

grad˚ D Oe1
@˚

@x1
C Oe2

@˚

@x2
C Oe3

@˚

@x3

D Oe� @˚
@x�

; (2.42)

using the summation convention.
For any function ˚ .r/ there are surfaces for which ˚ .r/D constant. For

example, if ˚ .r/ is the temperature at a point in a system, we can identify the
surfaces of constant˚ .r/ by measurement of temperature. Geometrically the vector
grad˚ is perpendicular to the surfaces ˚ .r/ (see exercises). In Fig. 2.5 we have
drawn a set of ˚ .r/ D constant surfaces and the direction of grad˚ at three points
on the surfaces. If ˚ .r/ is a temperature then � grad˚ is the direction of the
heat flow (vector). The negative sign indicates that heat flow is from high to low
temperature.
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Fig. 2.5 Three surfaces on
which ' .r/ is constant. The
direction of grad ' is shown
by the arrows. This direction
is a function of the particular
' .r/ D constant surface and
the location on that surface

We can obtain a more complete understanding of the gradient if we recall that
the Pfaffian for the differential change in rectangular Cartesian coordinates, with no
time dependence, is

d˚ D @˚

@x1
dx1 C @˚

@x2
dx2 C @˚

@x3
dx3

D @˚

@x˛
dx˛: (2.43)

From our discussion in Sect. 2.3 we know that (2.43) is the differential change in ˚
along the differential displacement

dr D Oe1dx1 C Oe2dx2 C Oe3dx3

D Oeˇdxˇ: (2.44)

And we see that if we take the scalar product of (2.42) with (2.44) we obtain (2.43).
The differential change in a general function ˚ in a specified direction dr is then
given by the scalar product of the gradient with that direction.

2.5.3 The Divergence

The divergence is a differential operator which operates on a vector field to produce
a scalar. In rectangular Cartesian coordinates the divergence of the field vector

F D Oe�F� (2.45)

is

div F D @

@x�
F�: (2.46)
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Fig. 2.6 A vector field F
penetrating a differential
region of space

using the summation convention. Equation (2.46) is the form of div F only for
rectangular Cartesian coordinates. It is not the form for cylindrical or spherical
coordinates.

Because vectors are independent of coordinates chosen for their representation,
we may choose to base proofs of propositions on a representation in rectangular
Cartesian coordinates. Therefore (2.46) is a very practical form for the divergence.
To understand the general form and the physical meaning of the divergence we must,
however, turn to Gauss’ Theorem.

2.5.3.1 Gauss’ Theorem

In our development of Gauss’12 Theorem (also known as the divergence theorem)
we assume that the general vector field (2.45) has continuous components F� with
continuous first derivatives, which are functions of the spatial coordinates. This is a
less stringent condition than analyticity.

We consider a differential volume, dV D dx1dx2dx3 which is penetrated by

the field F. That is
*

F passes through this differential volume. We have drawn
the situation in Fig. 2.6. The reference point .x1; x2; x3/ is at the back, lower left
hand corner of the differential volume. The three components of the vector field F
have the values F1, F2 and F3 at the point .x1; x2; x3/. The values of each of the
components of F change in the intervals .dx1; dx2; dx3/ to

F1 C
�
@F1

@x1

�
dx1; (2.47)

F2 C
�
@F2

@x2

�
dx2 (2.48)

12Carl Friedrich Gauss (1777–1855) was a German mathematician, astronomer and physicist. From
1807 Gauß was director of the Göttingen observatory and professor at the University of Göttingen.
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and

F3 C
�
@F3

@x3

�
dx3: (2.49)

The partial derivatives in (2.47)–(2.49) are all evaluated at the reference point
.x1; x2; x3/.

We now define the differential vector area for each of the faces of the differential
volume in Fig. 2.6 as the product of the differential facial area and the unit vector
in the direction perpendicular to the face. The positive direction chosen for the unit
vector is pointed outward from the differential volume.

For example the differential vector area facing us in Fig. 2.6 is dx1dx2 Oe3.
We shall designate each of these vector areas as dS.
We then define the differential flux of F out of the differential volume dV through

a particular face as the scalar product F�dS for that face. Then the differential flux
out of the left face of area dS D �dx2dx3 Oe1, i.e. that face nearest the reference point
.x1; x2; x3/, is

F � dS D �F1dx2dx3; (2.50)

with the minus sign appearing because we have represented the vector F as having a
positive x1-component F1 on this face. We do not consider any variation of F1 over
the area dx2dx3, since this will only introduce fourth order differentials in our final
expression, which we would then drop.

The differential flux out of the face of area dS D dx2dx3 Oe1 on the right, i.e.
farthest from the reference point, using (2.47), is

F � dS D
�
F1 C

�
@F1

@x1

�
dx1

�
dx2dx3: (2.51)

We again do not consider any variation of F1or @F1=@x1 over the area dx2dx3.
The sum of the fluxes out of these two faces, which we designate as d˚Sx is the

sum of (2.50) and (2.51), or

d˚Sx D
�
@F1

@x1

�
dx1dx2dx3: (2.52)

Similarly for the remaining fluxes out of the differential volume dV ,

d˚Sy D
�
@F2

@x2

�
dx1dx2dx3 (2.53)

and

d˚Sz D
�
@F3

@x3

�
dx1dx2dx3: (2.54)
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The total differential flux out of the differential volume dV is the sum of (2.52)–
(2.54). This we designate as

d˚out D
X

all faces i

d˚Si D
X

all faces

F � dS: (2.55)

Carrying of the summation over (2.52)–(2.54) we have

d˚out D
�
@F1

@x1
C @F2

@x2
C @F3

@x3

�
dx1dx2dx3:

From (2.46) we recognize the term in the brackets . / as div F. Then

d˚out D div FdV: (2.56)

Equating d˚out in (2.55) and (2.56) we have

div FdV D
X

all faces of dV

F � dS: (2.57)

To extend (2.57) to finite volumes we construct the finite volume from differential
volumes. In doing this we must ask what happens to the flux at the boundaries
between our differential volumes. In Fig. 2.7 we illustrate the situation between
neighboring differential volumes. The flux out of the differential volume (A)
through the face dSA is equal to the flux entering the differential volume (B) through
the face dSB. Because the differential volumes (A) and (B) fit together, dSA D �
dSB. Upon summation over the differential blocks making up the finite volume, then,
the fluxes over all faces that are joined in this fashion to another differential face
cancel. Only the faces forming the outside surface of the closed volume contribute
to the result of the summation. Then (2.57) results in

X

dV in V

.div F/ dV D
Z

V
div FdV D

X

dV in V

 
X

all faces of dV

F � dS

!

D
I

S

F � dS; (2.58)

Fig. 2.7 Cancellation of
fluxes in adjoining
differential volumes
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where the symbol
H

S indicates closed integration over the entire surface containing
V . Writing only the equality of the two integrals in (2.58) we have

R
V div FdVD

I

S

F�dS. (2.59)

Equation (2.59) is Gauss’ theorem. Gauss’ Theorem is valid for a general vector
field F for which the components F� and their first derivatives are continuous
functions of the spatial coordinates.

As an example of the application of Gauss’ Theorem to a quantity for which there
are no sources, we consider the conservation of mass in a flowing fluid.

Example 2.1. Fluid Mass Conservation. We consider a flowing fluid with mass
density 	 .r; t/ and velocity v .r; t/, which vary with position and time. The mass
flux in kg m�2 s�1 is 	v. The net flow of mass out of an arbitrary volume due to
the flux of fluid out of the volume is equal to the decrease of mass in the volume
because mass is conserved. That is

I

S

.	v/ � dS D �dm

dt
D � d

dt

Z

V
	dV:

We choose the volume V to be fixed in space. We may then bring the time derivative
inside the integral as a partial derivative.

I

S

.	v/ � dS D
Z

V

�
@	

@t

�
dV:

Gauss’ Theorem requires

Z

V
div .	v/ dV D �

Z

V

�
@	

@t

�
dV;

or

Z

V
dV

�
div .	v/C @	

@t

�
D 0:

Since V is an arbitrary volume, the vanishing of the integral implies that the
integrand Œ � must vanish and, hence

@	

@t
D � div .	v/ : (2.60)

Equation (2.60) is the general mass conservation equation for a fluid.
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2.5.3.2 Divergence: General Definition

From (2.57), which is the differential form of Gauss’ Theorem, we obtain a general
formulation of the divergence of a vector field. This is

div F D lim

V!0

1


V

X

all faces 
S of 
V

F �
S: (2.61)

Here the faces 
S are differential areas normal (perpendicular) to the basis vectors
of the system chosen.

As an example we consider cylindrical coordinates (see Sect. 2.3).

Example 2.2. Divergence in Cylindrical Coordinates. In the cylindrical basis the
vector field is

F D Fr Oer C F# Oe# C Fz Oez:

From Fig. 2.1 we notice that the face area ? Oer changes from a distance r to the
distance rCdr from the z-axis. At r the area of the face is rd#dz and at rCdr it is
.r C dr/d#dz. The other facial areas do not change from one side of the differential
volume to the other. The face area ? Oe# is drdz on both sides of dV . And the face
area ? Oez is rd#dr on the top and bottom of dV . Then

lim

V!0

X

all faces 
S of 
V

F �
S D �Fr rd#dz C
�
Fr C @Fr

@r
dr

�
.r C dr/ d#dz

C@F#

@#
d#drdz C @Fz

@z
rdzdrd#

D Frdrd#dz C @Fr

@r
rdrd#dz C @F#

@#
d#drdz

C@Fz

@z
rdzdrd#:

The differential volume is (2.39). Then

div F D lim

V!0

1


V

X

all faces 
S of
V

F �
S

D 1

r
Fr C @Fr

@r
C 1

r

@F#

@#
C @Fz

@z

D 1

r

@ .rFr/

@r
C 1

r

@F#

@#
C @Fz

@z
:
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2.5.4 The Curl

The curl is a differential operator that operates on a field quantity to produce another
field quantity. In rectangular Cartesian coordinates the curl of the field quantity
(2.45) is

curl F D "˛ˇ�
@

@x˛
Fˇ Oe�

D det

2

4
Oe1 Oe2 Oe3

@=@x1 @=@x2 @=@x3

F1 F2 F3

3

5

D
�
@F3

@x2
� @F2

@x3

�
Oe1 �

�
@F3

@x1
� @F1

@x3

�
Oe2

C
�
@F2

@x1
� @F1

@x2

�
Oe3: (2.62)

In rectangular Cartesian coordinates the curl has the form of a cross product.

2.5.4.1 Rotation

To obtain a physical understanding of the curl and to formulate a general differential
expression for the curl we borrow a term known as the rotation or vorticity from
fluid mechanics (see [81, p. 88] and [57, p. 16]). In fluid mechanics the rotation
is a measure of the swirling or vortex motion of the fluid velocity field. The field
quantities of interest to us here are not velocities. But the intuition we have for
swirling fluids can be helpful in gaining an understanding of the curl.

The rotation R of a vector field quantity is a vector, which is defined in terms of
an imaginary, small open area. An open area must be distinguished from the closed
area we introduced with the divergence operator in Sect. 2.5.3. An open area is an
area bounded by a closed contour, which may be a single closed curve or formed
from interconnected segments of curves. A closed area, which encloses a volume,
cannot be bounded by a closed contour.

For the sake of simplicity we pick the open area 
a D 
x1
x2 in the .x1; x2/

plane perpendicular to the unit vector Oe3. We have drawn this open area and the
contour bounding it in Fig. 2.8. The reference point for which the coordinate values
are x1, and x2 is the intersection of the three unit vectors at the back left hand corner
of the open area 
a. The closed contour, which we designate as 
C, bounding
a
is the vector sum


C D 
x1 Oe1 C
x2 Oe2 �
x1 Oe1 �
x2 Oe2
D 
x˛ Oe˛ (2.63)
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Fig. 2.8 Rotation of a field
quantity

of the segments around the open area beginning and ending at the reference point
.x1; x2/. We have indicated the direction for the contour
C in (2.63) by the curved
arrow in Fig. 2.8.

For the open area 
a in Fig. 2.8 the magnitude of the rotation jR
aj is defined
by

jR
aj 
a D
X

bounding contour

F �
xi Oei; (2.64)

where 
xi Oei is one of the set of vector segments 
x1 Oe1, 
x2 Oe2, �
x1 Oe1, �
x2 Oe2
forming
C. In the limit as
a ! 0 the area
a shrinks down to the reference point
.x1; x2/ and the term on the left hand side of (2.64) is the value of the rotation at
the reference point. We designate the magnitude of the rotation at the point .x1; x2/

simply as jRj. That is

lim

a!0

jR
aj 
a D jRj da D lim

a!0

X

bounding contour

F �
xi Oei: (2.65)

The vector direction of the rotation is defined by the direction around which we
choose to follow the contour
C (i.e. the curved arrow in Fig. 2.8) when evaluating
the sum in (2.64) and the right hand rule. If we curl the fingers of our right hand
in the direction of the curved arrow, the thumb of our right hand will point in the
direction indicated by the vertical arrow in the drawing. This is the vector direction
of the rotation. In Fig. 2.8 the direction of the rotation is the unit vector Oe3.

We use the direction of the contour 
C to define a vector differential open
area da. The magnitude of da is the limit of the open area 
a, i.e. da, and the
direction is given by the right hand rule from the direction chosen for 
C. The
directions of da and R are then the same. Therefore

jRj da D R � da

and (2.65) becomes

R � da D lim

a!0

X

bounding contour

F �
xi Oei: (2.66)
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Because we have chosen the area 
a perpendicular to Oe3 only the components
of F in the Oe1 and Oe2 directions have non-zero scalar products with the segments
of 
C. At the reference point .x1; x2/ in Fig. 2.8 these components have the values
F1 and F2. At the distances 
x2 and 
x1 from the reference point the values of
these components are F1 C .@F1=@x2/
x2 and F2 C .@F2=@x1/
x1. The partial
derivatives are all evaluated at the reference point.

Then the scalar product F �
xi Oei along the first segment of 
C is

CF1
x1; (2.67)

and along the third segment of 
C the scalar product F �
xi Oei is

�
�
F1 C @F1

@x2

x2

�

x1: (2.68)

Similarly the scalar product F �
xi Oei along the second segment of 
C is

C
�
F2 C @F2

@x1

x1

�

x2; (2.69)

and along the fourth segment of 
C is

�F2
x2: (2.70)

Adding (2.67)–(2.70) and taking the limit as 
a ! 0 results in the (magnitude) of
the rotation at the reference point

jRj D lim

a!0


x1
x2


a

�
@F2

@x1
� @F1

@x2

�

D
�
@F2

@x1
� @F1

@x2

�
: (2.71)

From (2.62) we see that (2.71) is the Oe3 component of the curl in rectangular
Cartesian coordinates.

We have then shown that if we pick an imaginary area in space and evaluate
the rotation about that area as the area shrinks down to a single point we have the
magnitude of the component of curl F at that point in the direction found by the
right hand rule. But rather than picking first the area we can first evaluate curl F at a
point in space. We know then that curl F, in both magnitude and direction, is equal
to the rotation (vector) R about that point from an infinitesimal contour in a plane
perpendicular to the vector direction of curl F. That is, from (2.66), we have

curl F � da D lim

a!0

X

contour bounding 
a

F �
`
a; (2.72)

where
`
a is a segment of the contour around the open area 
a.



2.5 Vector Calculus 57

We have then a physical understanding of the curl of a vector field F in terms of
the rotation of F. We have also found a method of calculating curlF in (2.72) that
is analogous to our method of finding the divergence in (2.61).

2.5.4.2 Stokes’ Theorem

For the sake of visual simplicity we first used an open area with contour segments
oriented along axes. But in the limit taken in (2.71) the area 
a may have any
arbitrary form. The right hand side of (2.72) is then

lim

a!0

X

contour bounding 
a

F �
`
a D lim

a!0

I

C.
a/

F � d`; (2.73)

where d` is a differential along the contour C
a defining 
a and the integral is a
contour integral. Then (2.72) becomes

curl F � da D lim

a!0

I

C.
a/

F � d` (2.74)

for each open area 
a.
What is the result if we construct an arbitrary (finite) open area a from small, and

eventually infinitesimal areas
a? To answer this question we have drawn two small
areas neighboring one another in Fig. 2.9. The scalar products along the adjoining
segments cancel one another where areas join. The only contours that do not cancel
are those on the outside of the finite area a. These form the bounding contour of the
finite area a.

This is true also for areas that are not planar, but are of arbitrary shapes. We may
construct any arbitrary finite open area a as a summation of the open areas 
a in
the limit as these areas go to zero (i.e. become differential open areas da).

In Fig. 2.10 we have drawn a surface constructed from small open areas
a (da)
to illustrate the principle. The contributions from the neighboring areas cancel as in
Fig. 2.9 leaving only the exterior contour, as we have shown by the arrow markedC
in Fig. 2.10.

Fig. 2.9 Cancelation of
neighboring components in a
general area
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Fig. 2.10 An arbitrary area constructed from small open areas 
a. The small contours 
C used
to calculate rotations R
a are indicated by small circles with arrows. The contributions to the total
rotation from neighboring segments cancel

If we sum (2.74) over da we have a mathematical representation of what we have
pictured in Fig. 2.10.

X

da

curl F � da D
X

da

lim

a!0

I

C.
a/

F � d`: (2.75)

The summation on the left hand side of (2.75) is the integral over the open area of
curl F�da, i.e.

Z

a
curl F � da D

X

da

curl F � da: (2.76)

Because the integrals over neighboring contours cancel, as we saw in Figs. 2.9 and
2.10 the integral on the right hand side of (2.75) is the contour integral around the
closed contour defining the arbitrary area a,

I

C

F � d` D
X

da

lim

a!0

I

C.
a/

F � d`: (2.77)

Combining (2.76) and (2.77) into (2.75) we have

R
a curl F�da D

I

C

F�d`. (2.78)
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Equation (2.78) is Stokes’ Theorem.13 Stokes’ Theorem is the integral form of the
differential expression in (2.74).

In the construction in Fig. 2.10 we saw that the area a was completely arbitrary.
The only requirement is that the area a is bounded by the contour C . We can think
of this in terms of a wire that we have bent into a loop to form a contour. We dip this
wire into soapy water to form a film as the area bounded by the loop. As we move
the loop through the air the film takes on arbitrary shapes all of which are defined
by the wire loop. Any of these film areas is appropriate for Stokes’ Theorem.

Example 2.3. Conservative Force Field. As an example of the application of
Stokes’ Theorem, we consider a force field F. The scalar product F�d` is the work
done by the force field in moving a body the distance d`. If the force field is
conservative there is no work done in moving a particle around a closed contour
or path. That is for a conservative force field

I

C

F � d` D 0:

Therefore, from Stokes’ Theorem (2.78),

Z

a
da � curl F D 0:

Because the area a in Stokes’ Theorem is arbitrary this means that

curl F D 0

everywhere. Since (see exercises)

curl grad' D 0

for arbitrary ', curl F D 0 is satisfied if

F D � grad':

The negative sign is by convention. A conservative force field can then always be
written as the negative gradient of a scalar potential.

13George Gabriel Stokes (1819–1903) was an English mathematician and physicist. He was
appointed to the Lucasian Chair in Mathematics at Cambridge in 1849. He did fundamental work
in fluid dynamics and optics.
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2.5.4.3 Curl: General Definition

From the differential form of Stokes’ Theorem (2.72) we obtain a general formula-
tion of the curl of a vector field. This is

curl F �
a D
X

contour bounding 
a

F �
`
a: (2.79)

We may use this formulation to obtain each component of curl F from the corre-
sponding open areas 
a perpendicular to the components.

As an example we consider cylindrical coordinates (see Sect. 2.3).

Example 2.4. Curl in Cylindrical Coordinates. We shall evaluate curl F at the
point .r; #; z/ (see Fig. 2.1). In the cylindrical basis the vector field is

F D Fr Oer C F# Oe# C Fz Oez:

For the Oer component of curl F the area perpendicular to Oer is 
a D rd#dz and the
sum around the contour of F �
`
a in a direction determined by the right hand rule
for the direction Oer is

X

contour bounding 
a

F �
`
a D F#rd# C
�
Fz C @Fz

@#
d#

�
dz

�
�
F# C @F#

@z
dz

�
rd# � Fzdz

D
�
1

r

@Fz

@#
� @F#

@z

�
rd#dz:

The Oer component of curl F is then

Œcurl F�r D 1

r

@Fz

@#
� @F#

@z
:

For the Oe# component of curl F the area is 
a D drdz and the sum around the
contour is

X

contour bounding 
a

F �
`
a D Fzdz C
�
Fr C @Fr

@z
dz

�
dr

�
�
Fz C @Fz

@r
dr

�
dz � Frdr

D
�
@Fr

@z
� @Fz

@r

�
drdz:
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The Oe# component of curl F is then

Œcurl F�# D @Fr

@z
� @Fz

@r
:

For the Oez component of curl F the area is 
a D drdz and the sum around the
contour is

X

contour bounding 
a

F �
`
a D Frdr C
�
F# C @F#

@r
dr

�
.r C dr/ d#

�
�
Fr C @Fr

@#
d#

�
dr � F#rd#

D
�
1

r
F# C @F#

@r
� 1

r

@Fr

@#

�
rdrd#

D 1

r

�
@

@r
.rF#/� @Fr

@#

�
rdrd#:

The Oez component of curl F is then

Œcurl F�z D 1

r

�
@

@r
.rF#/� @Fr

@#

�
:

The final result for the curl F in cylindrical coordinates is

curl F D Oer

�
1

r

@Fz

@#
� @F#

@z

�
C Oe#

�
@Fr

@z
� @Fz

@r

�
C Oez

1

r

�
@

@r
.rF#/� @Fr

@#

�
:

2.5.5 The Laplacian Operator

In some circumstances the laws for a vector field will result in a vanishing curl and
a nonvanishing divergence. An example is the electrostatic field. For such a field

div F D g;

where g .r/ is some scalar function of spatial coordinates.
If the curl of a vector field F vanishes then the vector field can be written as

F D � grad ˚;

where ˚ is a scalar function of the spatial coordinates.
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Then for a vector field for which div F D g and curl F D 0,

div grad˚ � r2˚ D �g .r/ ;

where r2 is the Laplacian Operator, or simply the Laplacian, and

r2˚ D �g .r/ (2.80)

is Poisson’s Equation.14 Poisson first published this equation in the Bulletin de la
société philomatique in 1813.

If g .r/ D 0,

r2˚ D 0; (2.81)

which is Laplace’s equation.
The actual forms taken by the Laplacian for the various Cartesian systems are

• Rectangular

r2˚ D
�
@2

@x2
1

C @2

@x2
2

C @2

@x2
3

�
˚: (2.82)

• Cylindrical

r2˚ D 1

r

@

@r

�
r
@˚

@r

�
C 1

r2

�
@2˚

@#2

�
C @2˚

@z2
: (2.83)

• Spherical

r2˚ D 1

r2

@

@r

�
r2 @˚

@r

�
C 1

r2 sin �

@

@�

�
sin�

@˚

@�

�
C 1

r2 sin2 �

�
@2˚

@#2

�
:

(2.84)

2.6 Differential Equations

Maxwell’s Equations will lead us to two potentials from which the fields can be
most easily obtained. At each step in the development we will find that these
two potentials are solutions to the same nonhomogeneous (or inhomogeneous, see
footnote 2.1) partial differential equation with either charge or current densities
appearing as sources. These partial differential equations for the potentials will then

14Siméon-Denis Poisson (1781–1840), was a French mathematician and physicist.
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be central to the theory. Therefore it is absolutely critical that we know we can solve
these equations and that the solutions we obtain are unique.

In time independent, static situations the equations for the potentials are Pois-
son’s equation (2.80) and Laplace’s Equation (2.81). Time dependence introduces
wave phenomena and the partial differential equation will be Helmholtz’ Equation

�52 CK2
�
˚ D �h .r/ : (2.85)

The properties of Laplace’, Poisson’s, and Helmholtz’ Equations are contained
in a set of theorems, which we establish in Appendices E, F, and G. We have placed
the proof of these theorems in the Appendices, rather than in the present chapter, to
keep the discussion fluid. From the set of theorems for these equations we have that

• The solution of Laplace’s Equation exists and is unique in a spatial region V if
the value of the potential is specified on the boundary surface S of V .

• The solutions of Poisson’s and Helmholtz’ Equations exist and are unique for
specific functions g .r/ and h .r/ in a spatial region V if the value of the potential
is specified on the boundary surface S of V .

• Laplace’s, Poisson’s, and Helmholtz’ Equations are linear. Therefore the solution
to Poisson’s or Helmholtz’ Equation for a sum of functions gi .r/ or hi .r/ is the
sum of the solutions for each gi .r/ or hi .r/. And a solution to Laplace’s equation
can always be added to a solution of Poisson’s equation.

The final theorem for Poisson’s equation F.3 establishes that the particular
solution to Poisson’s equation in a region V (2.80) is

˚ .r/ D 1

4�

Z

V

g .r0/
jr � r0jdV 0; (2.86)

and the final theorem for Helmholtz’ Equation establishes that the particular solution
to Helmholtz’ Equation in a region V (2.85) is

˚ .r/ D 1

4�

Z

V

h .r0/ exp .˙iK jr � r0j/
jr � r0j dV 0 (2.87)

independent of the value of ˚ on the surface S bounding the region V .
In the text we will develop (2.86) and (2.87) as the general solution to Poisson’s

equation using Green’s Functions. This approach will differ from the method used
in Appendices F and G to obtain (2.86). In the appendices we base the proof of our
theorems on Green’s Theorem (see Appendix D). The Green’s Function approach
is more modern and indispensable as a general approach to the solution of any
nonhomogeneous differential equation. For these reasons we will devote more space
in subsequent chapters to a study of Green’s Functions.
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2.6.1 Helmholtz’ Theorem

The equations we will identify as the field equations will be those for the divergence
and the curl of the vector fields. This will provide a definitive structure for our
study. But the reason that these are the field equations is deeper than our desire for
structured simplicity. Helmholtz’ Theorem guarantees that the field is completely
determined if the divergence and the curl of the field are known.

Helmholtz’ Theorem and proof are presented here. The proof requires the fact
that the solution to Poisson’s partial differential equation is unique, which is proved
in Appendix F, as was discussed in Sect. 2.6.

Theorem 2.1. (Helmholtz’ Theorem. ) Any vector field, F, which is finite, uniform,
and continuous, may be expressed as

F D � grad ' C curl A; (2.88)

where

' is any scalar function of r

A is any vector function of r

div A is some specified function.

Proof. To prove this theorem, we must show that ' and A are uniquely determined
by F as provided in (2.88). Because div curl � 0 and curl grad � 0 (see exercises)
we can obtain separate equations for ' and A by operating on F with the div and the
curl.

div F D � div grad ' C div curl A

D �r2' (2.89)

and

curl F D � curl grad ' C curl curl A

D �r2A C grad div A: (2.90)

By hypothesis
*

F and div A are known. Since F is known, we know div F and curl F.
We shall identify these as

� .r/ D div F

and

ƒ .r/ D curl F:
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And we shall identify div A as

f .r/ D div A

Then, using (2.89) we have

r2' D �� .r/ : (2.91)

And using (2.90) we have

r2A D grad f .r/� ƒ .r/ : (2.92)

Both (2.91) and (2.92) are Poisson’s equations. Equation (2.92) is a vector Poisson’s
equation. It is a collection of three Poisson’s equations; one for each component. As
we know from Sect. 2.6 the solution of Poisson’s equation is unique and for (2.91) is

' .r/ D 1

4�

Z

V

� .r0/
jr � r0jdV 0: (2.93)

For (2.92) the solution is

A .r/ D 1

4�

Z

V

Œƒ .r0/� grad f .r0/�
jr � r0j dV 0: (2.94)

Therefore ' and A are uniquely determined by F. This establishes Helmholtz’
Theorem. ut

The corollary to Helmholtz’ Theorem provides the claim that the divergence and
curl specify the field uniquely.

Corollary 2.1. If � .D div F/, ƒ .D curl F/, and f
	
D � div A



are known then

the vector field is completely specified.

That is, if we know � , ƒ, and f we know ' and A and, therefore, F. Noting the
definitions of � , ƒ, and f it follows that F is completely determined provided we
also specify div A.

2.6.2 The Del Operator

Many authors use the operator r (del), which is defined so that the gradient of a
scalar function ' may be written as

grad' D r' D Oe� @

@x�
': (2.95)
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The divergence and the curl of a vector field F are then written as

div F D r � F (2.96)

and

curl F D r � F: (2.97)

The dot and cross product forms of these differential operators are appropriate
if the coordinate system is rectangular Cartesian. However, as we have indicated
in detail in Sects. 2.5.3.2 and 2.5.4.3, the formulation is not a simple dot or cross
product if the systems are either cylindrical or spherical.

Some authors have formulated the curl operations in cylindrical and spherical
coordinates in a manner that allows them to be written as determinants of matrices
(e.g. [17, p. 314]). This requires, however, a first row of the matrices that are not
sets of basis vectors.

We have chosen to use the left rather than the right hand sides of (2.95)–
(2.97). We do this primarily because the physical meaning of the operators is better
conveyed in the written form.

2.6.3 Dirac Delta Function

In his monograph on the quantum theory [21], first published in 1930, Dirac
developed a transformation theory among vector spaces capable of handling both
discrete and continuous vectors. A product that produced a Kronecker delta for the
discrete vector case resulted in a very interesting situation for the case of continuous
vectors. Dirac pointed out that we had to relax the expectation that the scalar
products of vectors would be finite or the theory “would be too weak for most
practical problems [21, p. 39].”

In a later section [21, p. 58] Dirac introduces a function ı .x/ with the property
that

ı .x/ D
�
0 if x ¤ 0

1 if x D 0

and that

Z C1

�1
ı .x/ dx D 1:

The function ı .x/ he says is so large in the domain " around the origin as to make
the integral finite. He said that the exact shape of ı .x/ in this domain “does not
matter, provided there are no unnecessarily wild variations...” But he believed that
“ı .x/ is not a function of x according to the usual mathematical definition of a
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function, which requires a function to have a definite value for each point in its
domain, but is something more general, which we may call an ‘improper function’
to show up its difference from a function defined by the usual definition.” This is the
Dirac Delta Function, which we shall refer to simply as the ı-function.

However, more recently we have been able to show that ı .x/ can be obtained as
the limit of a sequence of what are known as test functions [89, pp. 97–129]. Test
functions are continuous and infinitely differentiable. Such sequences are known as
delta sequences.

An example of a delta sequence is

yn .x/ D 1

�

sin .nx/

x
:

Each of the functions yn .x/ is continuous and infinitely differentiable. The function
ı .x/ is obtained in the limit

ı .x/ D lim
n!1

1

�

sin .nx/

x
:

In Fig. 2.11 we plot yn .x/ for n D 1; 3; 5 and 10.
We may shift the location of the point of the infinity of ı .x/ by writing

ı .x � x0/. The infinity is still at ı .0/, but now the argument becomes zero when
x D x0. We then speak of ı .x � x0/.

If the function f .x/ is analytic in the region in which ı .x � x0/ goes to infinity,
then

Z C1

�1
f .x/ ı

�
x � x0� dx D f

�
x0�

Z C1

�1
ı
�
x � x0� dx

D f
�
x0� :

Fig. 2.11 Plot of the function yn D .1=�/ sin .nx/=x for n D 1; 3; 5; and 10
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We may also reduce the limits of integration to include only the region containing
x0. That is if a < x0 < b then

R b
a f.x/ ı .x � x0/ dx D f .x0/. (2.98)

We may then take

ı .x � x0/=
�
0 if x ¤ x0
1 if x D x0 (2.99)

and (2.98) as the two statements defining the ı-function. To establish that a
particular sequence of test functions is a ı-sequence we must show that both (2.99)
and (2.98) are satisfied.

The property (2.98) is the mapping property of the ı-function. The ı-function
ı .x � x0/ is a generalized function that maps f .x/ into its value at the point xDx0.
We may use the mapping property of the ı-function to prove general properties of
the ı-function.

Example 2.5. Evenness of the ı-function. We can prove that the ı-function is an
even function, i.e. that ı .x � x0/ D ı .x0 � x/, by showing that

Z b

a
f .x/ ı

�
x � x0� dx D f

�
x0�

D
Z b

a
f .x/ ı

�
x0 � x� dx; (2.100)

where x0 is a point on the interval a ! b. The even property of the ı-function has
been established if we can show that the last integral on the right hand side results
in f .x0/. We first substitute � D x0 � x in (2.100) with the result

Z b

a
f .x/ ı

�
x0 � x

�
dx D �

Z x0�b

x0�a
f
�
x0 � �

�
ı .�/ d�

D
Z x0�a

x0�b
f
�
x0 � �� ı .�/ d�: (2.101)

We note, since b > x0 > a, that x0 �b < 0 and x0 �a > 0. The range of integration
in the second line of (2.101) then includes the origin of �. Therefore

Z x0�a

x0�b
f
�
x0 � �� ı .�/ d� D f

�
x0�

by (2.98). We have then established the even nature of the ı-function.
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We may extend the concept of a ı-function to three dimensions by requiring that
ı .r � r0/ is zero everywhere in space except at the point r D r0 at which point it is
infinite. The infinity is such that

Z

V
ı
�
r � r0� f .r/ dV D f

�
r0� :

We see, with dV D dxdydz, that

ı
�
r � r0� D ı

�
x � x0� ı

�
y � y0� ı

�
z � z0� : (2.102)

Then, from the example 2.5 we have

ı
�
r � r0� D ı

�
r0 � r

�
:

Example 2.6. Derivative of the ı-function. Using (2.98) we can show that the
derivative of the ı-function is

d

dx
ı
�
x � x0� D � 1

.x � x0/
ı
�
x � x0� :

We do this by showing that, for a function f .x/, which is analytic in a small region
containing x0, that

Z 1

�1
dx

�
d

dx
ı
�
x � x0�

�
f .x/ D

Z 1

�1
dx

�
� 1

.x � x0/
ı
�
x � x0�

�
f .x/ :

(2.103)

Using the product rule, the integral on the left of (2.103) is

Z 1

�1
dx

�
d

dx
ı
�
x � x0�

�
f .x/

D
Z 1

�1
dx

d

dx

�
ı
�
x � x0�f .x/

 �
Z 1

�1
dxı

�
x � x0� d

dx
f .x/

D �
Z 1

�1
dxı

�
x � x0� d

dx
f .x/

D � d

dx
f .x/

�

xDx0

; (2.104)

since the ı-function vanishes except at x D x0. Because the function f .x/ is
analytic at x D x0, we can write it as a Taylor Series
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f .x/ D f
�
x0�C d

dx
f .x/

�

xDx0

�
x � x0�

C 1

2Š

d2

dx2
f .x/

#

xDx0

�
x � x0�2 C � � � :

The integral on the right hand side of (2.103) can then be written as

Z 1

�1
dx

�
� 1

.x � x0/
ı
�
x � x0�

�
f .x/

D �
Z 1

�1
dx

�
1

.x � x0/
ı
�
x � x0�

�
f
�
x0�

�
Z 1

�1
dx
�
ı
�
x � x0� d

dx
f .x/

�

xDx0

�
Z 1

�1
dx
�
ı
�
x � x0� 1

2Š

d2

dx2
f .x/

#

xDx0

�
x � x0�C � � � : (2.105)

Because the ı-function is even and .x � x0/ is odd the first integral on the right hand
side of (2.105) vanishes. All integrals on the right hand side of (2.105) beyond the
second also vanish because they are of the form

Z 1

�1
dxı

�
x � x0� �x � x0�n

with n � 1:

Only the second integral on the right hand side of (2.105) remains, so

Z 1

�1
dx

�
� 1

.x � x0/
ı
�
x � x0�

�
f .x/ D � d

dx
f .x/

�

xDx0

: (2.106)

The equality of (2.106) and (2.104) establishes the identity.

There are two representations of the ı-function that will be used extensively in
our study of classical field theory. The first of these is

ı
�
r � r0� D �r2 1

4�

1

jr � r0j : (2.107)

In the exercises we show that (2.107) satisfies (2.99) by direct calculation. We can
show that (2.98) is also satisfied if we use the solution to Poisson’s equation (2.86).
If we operate on both sides of (2.86) with the Laplacian operator, we have

r2˚ .r/ D
Z

V
g
�
r0�
�
r2 1

4�

1

jr � r0j
�

dV: (2.108)
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Since we began with the general solution to Poisson’s equation, (2.108) must result
in

Z

V
g
�
r0�
�
r2 1

4�

1

jr � r0j
�

dV D �g .r/ ; (2.109)

which requires that

r2 1

4�

1

jr � r0j D �ı �r � r0� : (2.110)

The second representation of the ı-function that we will use extensively is

ı
�
x � x0� D 1

2�

Z C1

�1
exp

�
ik
�
x � x0� dk: (2.111)

This may be extended to three dimensions using (2.102).

ı
�
r � r0� D ı

�
x � x0� ı

�
y � y0� ı

�
z � z0�

D
�
1

2�

�3 Z C1

�1
dkx

Z C1

�1
dky

Z C1

�1
dkz � � �

� � � exp
�
ikx

�
x � x0�� exp

�
iky

�
y � y0�� exp

�
ikz

�
z � z0��

D
�
1

2�

�3 Z C1

�1
d3k exp

�
k � �r � r0� ; (2.112)

where d3k D dkxdkydkz and k D Oe˛k˛ .

2.7 Summary

In this chapter we have presented the basic mathematical principles employed in the
study of classical field theory. We have been particularly careful in our treatment
of the vector calculus because the reader should have a good understanding of
the physical meaning of the differential operators and of the coordinate systems
frequently employed in classical field theory.

Helmholtz’ Theorem, provides the guiding principle we shall follow in our
development of Maxwell’s Equations. For each field in both the static and dynamic
(time dependent) cases we shall seek the divergence and the curl equations. These
are the field equations, as required by Helmholtz’ Theorem.

We ended the chapter with a study of the Dirac ı-function.
Additional mathematical principles and techniques will be developed as we need

them in the rest of the text.
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Exercises

2.1. Show that the even permutations of 1, 2 and 3 are .1; 2; 3/, .2; 3; 1/ and
.3; 1; 2/. Odd permutations are .1; 3; 2/, .2; 1; 3/, and .3; 2; 1/ by carrying out the
permutation steps.

2.2. Show that the general definition of the scalar product a � b D ı��a�b� is
equivalent to the elementary definition a � b D jaj jbj cos#ab where #ab is the angle
between a and b.

2.3. Show that the general definition of the vector or cross product

a � b D "˛ˇ� Oe˛aˇb�
D Oe1 .a2b3 � b2a3/C Oe2 .b1a3 � a1b3/C Oe3 .a1b2 � a2b1/

is equivalent to the elementary definition a � b D jaj jbj sin#ab where #ab is the
angle between a and b.

2.4. Show that

a � .b � c/ D b .a � c/ � c .a � b/

for three arbitrary vectors. This is called the “bac � cab” rule and is very useful. It
is simplest to show this if you use the Levi-Civita density formulation for the cross
product.

2.5. Show that a � b is numerically equal to the area of the parallelogram formed
by the vectors a and b, that is the parallelogram whose sides are a and b.

2.6. The triple scalar product is

a � .b � c/ :

Show that this is the volume of the parallelepiped with base formed by b and c and
slant height a.

2.7. Show that grad' is always perpendicular to the surface ' .r/ D constant.
Hint: consider a general displacement

d` D Oe˛dx˛

and show that grad'�d` D 0 if d` is on a surface ' .r/ D constant.

2.8. Consider a plane containing the points .x0; y0; z0/ and .x; y; z/. Let the unit
vector perpendicular to the plane be

On D n� Oe�:
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Show that the points .x; y; z/ satisfy the equation

.x � x0/ nx C .y � y0/ ny C .z � z0/ nz D 0;

which is then the equation for the plane.

2.9. If A is a constant vector and r is the vector from the origin to the point .x; y; z/,
show that

.r � A/ � A D 0

is the equation of a plane.

2.10. If A is a constant vector and r is the vector from the origin to the point
.x; y; z/, show that

.r � A/ � r D 0

is the equation of a sphere.

2.11. Using the dot product, find the cosine of the angle between the body diagonal
of a unit cube and one of the cube edges.

2.12. Show that

A � .B � C/ D .A � B/ � C:

The dot and cross products may then be exchanged in the scalar triple product.

2.13. If A;B;C are vectors from the origin to the points A;B;C; show that the
vector D defined by the expression

D D .A � B/C .B � C/C .C � A/

is perpendicular to the plane ABC .

2.14. (a) Show that A;B; and C are not linearly independent if

A � .B � C/ D 0

(b) Are the following vectors linearly independent?

A D Oey C 3 Oez

B D Oex � 2 Oez

C D Oex C Oey C Oez

2.15. Is curl F necessarily perpendicular to F for every vector function F? Justify
your answer.



74 2 Mathematical Background

2.16. For the scalar functions ' and  show that

r2' D 'r2 C  r2' C 2 grad' � grad :

2.17. Let r be the magnitude of the vector from the origin to the point .x; y; z/ and
let f .r/ be an arbitrary function of r . Show that

gradf .r/ D r
r

df .r/

dr
;

curl Œrf .r/� D 0:

2.18. The vector field

F D f .r/ Oe#
is a vector field oriented circularly around the z-axis. Such a field may be a magnetic
field, as we shall see, arising from a current density along the z-axis.

Show that Stokes’ and Gauss’ Theorems are valid for this field. Carry out the
calculations.

2.19. Show that

curl grad˚ D 0

for any scalar function ˚ .

2.20. Show that

div curl F D 0

for any vector field F.

2.21. Show that

curl curl F D grad div F � r2F:

This is most easily done using the subscript notation in Cartesian Coordinates.

2.22. Show that

(a) div r D 3;

(b) curl r D 0;

(c) grad r D Oex Oex C Oey Oey C Oez Oez;

(d) and, therefore that G � grad r D G;

(e) r2r D 0;
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where

r D x Oex C y Oey C z Oez:

2.23. Obtain 502 .1= jr � r0j/ in rectangular Cartesian coordinates. Show first that

grad0 1

jr � r0j D � grad
1

jr � r0j
and then that

502 1

jr � r0j D 52 1

jr � r0j D
�
0 if r ¤ r0
1 if r D r0 :

2.24. Assume that you have measured the components of a conservative field in a
region of space to be of the form

Fx D 6x C y;

Fy D x:

Out of curiosity you want to know the potential that might have resulted in this
field.

(a) How would you go about finding this potential?
(b) Find it.

2.25. Which (if any) of the following force fields is/are conservative?

(a)

Fx D �4 exp
��y2�

Fy D 8xy exp
��y2

�

Fz D 0

(b)

Fx D �8xyz

Fy D �4xz

Fz D �4x2y

(c)

Fx D �2xy2z2 � y2z C 2xy

Fy D �2x2yz2 � 2xyz C x2

Fz D �2x2y2z � xy2
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(d)

Fx D �yz exp
��x2y2

�C 2x2yz exp
��x2y2

�

Fy D �xyz exp
��x2y2

�C 2x3y2z exp
��x2y2

�

Fz D �xy exp
��x2y2

�

(e)

Fx D � z

x

Fy D � z

y

Fz D � ln .xy/

2.26. The Laws of physics are generally formulated as integral equations. Our
experiments, which are the basis on which those laws rest, are conducted on large
systems such as glasses of water or blocks of metal.

Two such laws familiar to the students of elementary physics are Gauss’ and
Ampère’s laws of electromagnetism in integral form

I

S
E � dS D Q

"0
D 1

"0

Z

V
	dV

and
I

C
B � d` D �0I D �0

Z

a
J � da:

In these integral expressions 	 is the charge density defined such that the integral
of the charge density over the volume contained in the surface S produces the total
charge,Q and J is the current density defined such that the integral of the differential
flux of the current density (J�da) over the open area defined by the loop, C , is the
current passing through that area. That is

Q D
Z

V
	dV

and

I D
Z

a
J � da:

From Gauss’ and Ampère’s laws of electromagnetism obtain differential laws for
the electric and magnetic fields using Gauss’ and Stokes’ Theorems of the vector
calculus.
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2.27. Evaluate the following integrals:

Z 1

�1
dxı .x � 1/ exp

��˛x2 C ˇx
�

Z 1

0

dxı .x C 1/ exp
��˛x2 C ˇx

�

Z 1

�1
dxı .x C �/ cos

�
2�

�
x

�
exp

�
�x

2

�2

�

Z 10

0

dxı .x C 5/
�
6x2 C 2x � 3�

Z 0

�1
dxı .x C 5/

�
6x2 C 2x � 3�

Z 1

�1
dxı .x C �/ sin

�
2�

�
x

�
exp

�
�x

2

�2

�

Z 1

�1
dxı .x � 1/ Jn .x/ where Jn .x/ is a Bessel Function of order n.

Z 1

�1
dxı .x/ erf .x/ where erf .x/ is the Error Function.

2.28. Begin with the formula we have for the ı-function,

ı
�
x � x0� D 1

2�

Z 1

�1
dk exp

�
ik
�
x � x0��

and show that the ı-function is even. That is, show that

ı
�
x � x0� D ı

�
x0 � x

�
:

2.29. Using the conventional manner of proof, show that

ı .ax/ D 1

a
ı .x/ :

2.30. Establish that

div grad

�
1

jr � r0j
�

D �4�ı �r � r0� :
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You should be able to show that the result vanishes unless the points r and r0 are
identical. The integral property requires that

Z

V

dV

�
� 1

4�

�
div grad

�
1

jr � r0j
�

D 1:

To show this, choose the (arbitrary) point r0 to be the origin and integrate over a
vanishingly small sphere centered on the origin.

2.31. Show that

lim
˛!0

�
1

˛
p
�

�
exp

��x2=˛2� D ı .x/ :



Chapter 3
Electrostatics

Experiment is the sole source of truth. It alone can teach us
something new; it alone can give us certainty.

Jules Henri Poincaré

3.1 Introduction

In this chapter we obtain the mathematical equations which completely describe the
electrostatic field from the results of a single experiment: that of Coulomb.

Because of the mathematical form of Coulomb’s Law the formulation of the
electrostatic field will emerge in a natural fashion, although it is a philosophical
step. We will introduce a superposition Ansatz to cast the results of Coulomb’s
Experiment in terms of distributions of charges. And from these we will be able to
find the divergence and the curl equations required to specify the field according to
Helmholtz’ Theorem (see Sect. 2.6.1).

Using Gauss’ and Stokes’ theorems we will be able to also obtain the field
equations in integral form.

3.2 Coulomb’s Law

3.2.1 Coulomb’s Experiment

Coulomb’s experiment to determine the force between two electric charges was the
first truly quantitative experiment in the study of electricity. We discussed the details
of the experiment in Chap. 1, Sect. 1.6.

The situation that Coulomb studied is illustrated in Fig. 3.1. In Fig. 3.1 we have
removed Coulomb’s apparatus and represented the charges q1 and q2 with their
centers located at two arbitrary positions in space defined by the position vectors

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 3, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 3.1 Coulomb’s
Experiment. Charge q1 is
located by the vector r1 and
charge q2 is located by the
vector r2. The vector
r12 D r2 � r1 is between
centers of the charges

r1 and r2. The vector between the centers of the charges q1 and q2 is r12 D r2 � r1.
which is directed from q1 to q2. Coulomb found that the force between two charges
is directly proportional to the product of the magnitudes of the charges q1q2 and
inversely proportional to the square of the distance between the charge centers
jr12j D jr2 � r1j. In mathematical terms the force law is

F12 D Ke
q1q2

jr2 � r1j2

.r2 � r1/

jr2 � r1j ; (3.1)

where Ke > 0 is an empirical constant. Equation (3.1) is the empirical equation1

describing the experiment and is known as Coulomb’s Law.
We note that if the value of the force F12 is positive then the force is directed

from q1 toward q2 and is repulsive. If F12 is negative then the force is attractive.
Because Ke is positive, the algebraic sign of the product q1q2 determines whether
the value of the force F12 is positive or negative. If the two charges are alike in sign
then the product q1q2 is positive and the force F12 is repulsive. If the two charges
are opposite in sign then the product q1q2 is negative and the force F12 is attractive.

In Chap. 1 we pointed out that du Fay considered that there were two types of
electric charge, while Franklin believed that there was but one. Coulomb was very
clearly a believer in the two fluid theory. The natural state of matter, according to
Coulomb, was that in which both fluids were present in an equal amount ([97],
p. 59).

Although we can understand Coulomb’s experiment in terms of a single fluid,
provided the charged bodies are sufficiently large for the density of charges to be
considered as a fluid density, the point of view Coulomb adopted is more natural.
Using Coulomb’s position we can interpret the results of the experiment in terms
of single charges. In that case our development of a modern theory of classical
fields, which acknowledges elementary charges, and which can be used in modern
applications, is unhindered. So we shall adopt the two fluid picture and assume that
the fluids are composed of charged particles.

1Empirical results are those obtained from laboratory measurements. The mathematical equation
the experimenter obtains to represent the data in terms of known or defined and measurable
quantities is the empirical equation describing the experiment.
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3.2.2 Units

The value of the constant Ke in (3.1) depends on the units chosen. In this text we
shall use the Système International d’Unités (SI) system of units. This is the most
common system of units for experimental work in the sciences and engineering,
which is the basis for our choice. In this system

Ke D 9 � 109 N m2 C�2 (3.2)

and the charge unit C is called the coulomb. By conventionKe is written as

Ke D 1

4�"0

where

"0 D 1

36� � 109
N�1 m�2 C2 (3.3)

is the permittivity of free space.
In the SI system Coulomb’s Law takes the form

F12 D 1

4�"0

q1q2

jr2 � r1j2

.r2 � r1/

jr2 � r1j ; (3.4)

The Gaussian system of units is an alternative to the SI system. The Gaussian
system is favored by theoreticians because the equations written in this system have
a cleaner look to them.

The SI was formerly known as the MKSA (Meter, Kilogram, Second, Ampere)
system. Here the ampere is the unit of electrical current. One ampere of current
flows in a wire if the rate at which charge flows past a point on the wire is one
coulomb per second.

3.3 Superposition

In (3.4) we have an experimental law that we have chosen to cast in terms of charged
particles. That we can do that is not a priori self evident. We are using the well-
established results of Coulomb’s work to write the law for point charges because it
suits our purpose to do so.

The point particles we are considering are not necessarily protons or electrons. It
is better not to be so specific. The localization of protons and electrons, as well as
claims that they are at rest, are issues that involve a quantum description. We shall
rather consider the classical charged particle to be a very small sphere of charged
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matter with a radius that is infinitesimal compared to any measurable dimensions
for any situation.

Using this concept of point charge we can construct any sort of charge dis-
tribution we choose provided we first make an Ansatz2 regarding the interaction
of a single charge with a number of other charges. Our Ansatz will be that the
interaction of any single charge with any other single charge is independent of all
other charges that are in the vicinity of that charge. The total force of interaction
of any single charge with a collection of charges is equal then to the sum over two
particle coulomb force terms.

This is known as the principle of superposition. It is an Ansatz because we have
no direct proof, at this stage in our development, of the validity of this principle. We
may later infer its validity from the fact that our final field equations, which will be
based on this Ansatz, are correct in that they provide a complete understanding of
Classical Fields, which agrees with experimental results.

3.4 Distributions of Charges

We may produce distributions of charges by transferring charge from rubbed amber
or an electrostatic generator to a solid body. As a result the charges become
distributed in and on the solid body. The distribution of charge on or throughout
the body depends on the geometrical shape and the chemical composition of the
body.

We can also create a distribution of charge just outside of a solid body, such as the
filament of an incandescent lamp, by heating the body. The electric current flowing
through the filament heats the filament. As the temperature of the filament increases
the average energy of the electrons increases, and some electrons will overcome
the binding force holding them to the filament. There will then be a distribution of
electrons in the region outside of the filament and a corresponding distribution of
positive charge within the filament.

In a fluorescent tube light is emitted by atoms which have been struck by free
electrons moving through the tube. The density of the electrons varies as a function
of the distance down the tube.

At very high temperatures, such as that within stars, matter becomes a plasma,
which is he fourth state of matter beyond the solid, liquid, and gas. Generally a
plasma consists of free electrons, ions, and atoms. At extreme temperatures no
atoms or partially ionized atoms remain and the plasma consists of free electrons
and nuclei.

2The German term Ansatz, which has entered American physics and mathematics, means that
we are going to consider a certain construct or point of view to be correct and shall seek results
consistent with this construct. In effect the Ansatz defines the world we consider. Lack of agreement
with experiment would force us to consider a new Ansatz.
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Primarily because of the present interest in the energy that can be obtained from
fusion reactions taking place in plasmas, which occur when bare nuclei collide with
sufficient energy to fuse, the study of the physics of plasmas is a major research
area.

In any case we may consider that spatial regions containing densities of
charges are not unusual. Since these charge densities result from electron or ion
concentrations, which in either case are particles, we shall model these charge
densities as clusters of the sorts of charged particles we introduced in Sect. 3.3 and
use the results of Coulomb’s experiment in the form (3.4), with the caveat that
Coulomb’s experiment only holds for time-independent conditions.

3.4.1 Distribution of Point Charges

With our Ansatz (superposition) we may generalize Coulomb’s Law (3.4). We
consider that in a specific volume in space V there is a number of point charges˚
qj
�

located at the points
˚
rj
�
. And we focus our attention on a charge qi located at

the point ri, which is outside of the volume V . This situation is shown in Fig. 3.2.
In this case our Ansatz results in the total force on the charge qi given by

Fi D qi

4�"0

X

j in V 0

qj
ˇ
ˇri � rj

ˇ
ˇ2

�
ri � rj

�
ˇ
ˇri � rj

ˇ
ˇ : (3.5)

If the charge qi is one of the set of charges
˚
qj
�

in the volume V we may remove it
to the outside of the volume V with a geometrical construction. We construct a small
sphere centered on the point ri encompassing the charge qi. We then connect this
small sphere to the outside of the volume V by constructing a small tunnel, which
passes between all the charges

˚
qj
�
. This situation is shown in Fig. 3.3. Consistent

with our Ansatz the total force on qi for the situation in Fig. 3.3 is again (3.5).
Equation (3.5) is then the total electrostatic force on a point charge qi located at the
point ri from a collection of discrete point charges

˚
qj
�

located at points
˚
rj
�

in an
identifiable region of space V whether ri is outside or inside of the region V .

Fig. 3.2 The charge qi is at a
distance from the volume V
containing the charges qj
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Fig. 3.3 The charge qi is one
of the charges

˚
qj

�
contained

within volume V

We have introduced the designation electrostatic because Coulomb’s experiment
was performed on static, or stationary charges. This designation is not crucial here.
But it will become particularly important when we consider dynamic or time-
dependent fields.

3.4.2 Volume Charge Density

If our classical point charges in the volume V are brought close enough together
that it is no longer possible to consider them discrete, then the charge densities in
Figs. 3.2 and 3.3 become continuous charge densities. Instead of considering a set of
discrete points

˚
qj
�

in the volume V , let us divide the volume V into a large number
N of small volumes �V 0 located at the points r0. Each of these small volumes will
contain an amount of charge �q0. We say that the charge distribution in V is a
continuous distribution if

�
�
r 0� � lim

�V0!0

�q .r 0/
�V 0 (3.6)

is a continuous function of r0. The function � .r0/ defined by (3.6) is then the
continuous charge density in the volume V .

We now ask for the force on a charge q located at the point r at a distance from
the continuous distribution in the volume V . The spatial or geometrical relationship
between the point charge q at r and the element of charge density�q0 D � .r0/�V 0
at r0 is shown in Fig. 3.4. The description of the situation is the same as that in the
case of discrete charges if we replace the discrete charges qj with�q0 D � .r0/�V 0
and sum over r0. Consistent with our Ansatz, the total force on q at r is then

Fq .r/ D q

4�"0

X

all r 0 in V

� .r0/�V 0

jr � r 0j2

.r � r 0/
jr � r 0j : (3.7)

Each r0 locates a small volume �V 0 so we may consider the summation in (3.7)
to be over the volume elements �V 0, which we now label as �V 0

j . As the size
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Fig. 3.4 The spatial
(geometrical) relationship
between the charge q at r and
the element of charge density
�q0 D � .r0/�V 0 at r0

of the volume elements goes to zero and the number of volume elements goes to
infinity the summation in (3.7) goes over into a Riemann integral over the volume
V containing the charge density. Here, and in most situations, we extend the region
of integration to an arbitrary volume V , which will include at least the volume
containing the charges. That is

Fq .r/ D q

4�"0
lim

�V0

j !0 and N!1

NX

�V 0

j

� .r0/�V 0
j

jr � r 0j2
.r � r 0/
jr � r 0j

D q

4�"0

Z

V

� .r 0/
j r � r 0j3

�
r � r 0� dV 0 (3.8)

With (3.8) we introduce a notation that we will maintain throughout the text. We
designate source coordinates, which locate the charges or charge densities, as r0 and
the coordinates where the force, or the field, is to be evaluated as r.

3.4.3 Surface Charge Density

If we distribute charge on a conductor it will, in the static situation, be confined to
the surface of the conductor. We find the reason for this in the physical properties of
a conductor.

A conductor is a material in which (some of) the electrons are free to move. This
is a result of the properties of the atoms and the regular array (crystal) they form in
the solid state. If we consider an isolated atom of the conductor quantum mechanics
tells us that the electrons are in discrete bound energy states. But when the atoms
are linked together in the solid state, quantum mechanics tells us that the energies of
the (outer) electrons are no longer discrete, but continuous. The electrons belong to
the entire crystal rather than to individual atoms. If there were a net charge at some
point within the conducting solid these conduction electrons would experience an
electrostatic force and would move. The situation in the conductor would no longer
be static. Therefore there can be no free charge within a conductor under static
conditions. All charge must be on the surface of the conductor.

There can also be no electrostatic force tangential to the surface of a conductor
because a tangential force would result in charge motion on the surface. Under static
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conditions, then, the charge density on the surface of a conductor will be such that
the electrostatic force vector is perpendicular to the conductor surface.

There is then a real physical reason to consider surface charge densities. Because
even our classical point charges are vanishingly small we may consider that the
surface (of the conductor) on which the charges are located has no thickness. It
is a two dimensional area covering the volume of the conductor. The manner in
which the charge becomes distributed on the surface of the conductor depends on
the geometrical shape of the surface.

We divide the surface into small areas �S 0 located at the tips of the vectors r0.
Each area �S 0 at r0 will contain an amount of charge �q0 .r0/. Just as in the case
of the continuous (volume) distribution, we say that there is a continuous surface
distribution of charge if the function

�
�
r 0� D lim

�S0!0

�q .r 0/
�S 0 (3.9)

is a continuous function of r0. The function � .r 0/ is the surface density of the
charge.

We now consider a classical point charge q located at r, which is distinct from all
the points r0 on the surface of the conductor. We have shown the spatial relationship
between the point charge q at r and the element of charge density�q0 D � .r 0/�S 0
at r0 in Fig. 3.5. The mathematical description of this situation is the same as that
in the case of discrete charges if we replace the discrete charges qj with �q0 D
� .r 0/�S 0 and sum over all r0 on the surface of the conductor. Consistent with our
Ansatz, the total force on q at r is then

Fq .r/ D q

4�"0

X

all r 0 on S

� .r 0/�S 0

jr � r 0j2
.r � r 0/
jr � r 0j : (3.10)

Each r0 locates an element of area on the surface�S 0. We have designated the total
surface area of the conductor as S . We may, therefore, consider the summation in
(3.10) to be a summation over theN area elements�S 0

j on the surface S . As the size
of the area elements go to zero and the number of these elements goes to infinity,
the summation in (3.10) becomes a Riemann integral over the surface S . That is

Fig. 3.5 The spatial
relationship between a
classical point charge q at r
and the element of surface
charge density
�q0 D � .r 0/�a0 at r0
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Fq .r/ D q

4�"0
lim

�S 0

j !0 and N!1

NX

�a0

j

� .r 0/�S 0
j

jr � r 0j2
.r � r 0/
jr � r 0j

D q

4�"0

I

S

� .r 0/
j r � r 0j3

�
r � r 0� dS 0 (3.11)

The integral symbol
I

S

indicates that the integration is to be over the entire surface

enclosing the volume of the conductor.
As in (3.8) we again designate the source coordinates as r0 and the coordinates

where the force, or the field, is to be evaluated as r.
We now have three formulations for the force on a charge q located at a point

r under static, time independent conditions based on our Ansatz of superposition.
These are equation (3.5) for the case in which the charges can still be treated as
individual points, equation (3.8) for the case in which the charges are distributed in
such a way that the charge density is a continuous function of the coordinates within
a volume, and equation (3.11) for the case in which the charges are distributed on
the surface of a (conducting) body in such a way that the charge density on that
surface is a continuous function of the coordinates of the surface.

3.5 The Field Concept

In (3.5), (3.8), and (3.11) we have an “action at a distance” formulation for the force
on a charge q. This is completely in keeping with a Newtonian experimental and
mathematical philosophy. Coulomb’s experimental results allow us to say no more.
If we remove q there is no longer a force.

In Chap. 1, Sect. 1.2 we discussed the ideas of Faraday, which were not legiti-
mately based on any principle that could, at the time, be considered scientific.

To Faraday, and to Thomson and Maxwell, it seemed reasonable that space
was affected by the presence of charge distributions. The separate charge q only
responded to that reality.

In effect, then, the charge q is our measuring instrument. And we attempt to min-
imize the effect of our measuring instrument on the object of the measurement. The
orbit of Mars, for example, was a good measuring instrument for the gravitational
force of the sun because the mass of Mars is so small compared to that of the sun.

We then choose to measure the force on a test charge qtest, which we introduce
at the point r, for numerous decreasing values of the magnitude of qtest. The force
will decrease as the magnitude of qtest decreases, so we divide the result of each
measurement by the magnitude of the test charge. If we obtain a non-zero result in
the limit qtest ! 0, we shall then have a measurement of the force per unit charge
resulting from a distribution of charges alone.
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We shall call this force per unit charge, defined in the limit

E .r/ D lim
q!0

.1=q/Fq .r/, (3.12)

the electric field E .r/ at the point r resulting from the sources at the points r0. In
the present situation this is the electrostatic field.

The actual measurement would be difficult in the extreme. But, fortunately,
because of the form of the force equations (3.5), (3.8), and ((3.11) we have
theoretical expressions for the electric field E .r/ without needing to actually make
the measurement. These are for

• Discrete Charges:

E .r/ D 1

4�"0

NX

j=1

qj
ˇ̌
r � rj

ˇ̌3
�
r � rj

�
; (3.13)

• Continuous volume density:

E .r/ D 1

4�"0

Z

V

� .r 0/
jr � r 0j3

�
r � r 0� dV 0; (3.14)

• Continuous surface density:

E .r/ D 1

4�"0

I

S

� .r 0/
jr � r 0j3

�
r � r 0� dS 0: (3.15)

We must, however, realize that in writing equations (3.13)-(3.15) we have stepped
outside of the confines of Newtonian experimental and mathematical philosophy
into a new area that we may correctly call field theory. We are claiming that the
electrostatic field exists based on the way in which we have chosen to interpret
Coulomb’s experiment.

There is nothing wrong with our mathematics. The hard core Newtonian may
still claim that all we are doing is using a formula for the action at a distance force
that will be experienced by a charge if one is placed at the point r and that any claim
regarding the reality of the field is purely a metaphysical choice we have made.

We will be able to eventually establish the reality of the fields. But we cannot do
that yet. As scientists and engineers, we must, at this point. consider the field to be
either an hypothesis or a convenient mathematical crutch.

Our (3.13)–(3.15) should still be considered empirical equations, with the
additional interpretation of the force in terms of a field. Equations (3.13)–(3.15)
are, however, not yet field equations. From Helmholtz’ Theorem we realize that the
field equations are equations for the divergence and curl of the field. We must now
derive the field equations.
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3.6 Divergence and Curl of E

We can obtain the field equations for E by directly taking the divergence and the
curl of the empirical equations (3.13)–(3.15).

We note first that each of the equations (3.13)-(3.15) contains a form of the term
.r � r 0/ = jr � r 0j3, which we recall is

r � r 0

jr � r 0j3 D � grad

�
1

jr � r 0j
�

(3.16)

(see exercises Chap. 2). And we know the form of the divergence and the curl of
grad f1= jr � r 0jg.

The curl of grad f1= jr � r 0jg vanishes because

curl grad �0 (3.17)

(see exercises Chap. 2). And in Sect. 2.6.3 we showed that

div grad

�
1

jr � r 0j
�

D �4�ı �r � r 0� : (3.18)

Using (3.17) the curl of the electrostatic field from a set of discrete charges (3.13)
becomes

• Discrete Charges:

curl E .r/ D � 1

4�"0

X

j=1

qj curl grad

(
1ˇ

ˇr � rj

ˇ
ˇ

)

D 0: (3.19)

In our treatment of the fields arising from continuous volume and surface
densities in (3.14) and (3.15) we recognize that the curl operates only on the
unprimed coordinates, while in each case the integration is over the primed
coordinates and the domain of integration is fixed. So we may bring the curl
operator inside the volume and the surface integrals. The results are

• Continuous Charge Density:

1. Volume density:

curl E .r/ D � 1

4�"0

Z

V
�
�
r 0� curl grad

�
1

jr � r 0j
�

dV 0 D 0 (3.20)
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2. Surface density:

curl E .r/ D � 1

4�"0

I

S

�
�
r 0� curl grad

�
1

jr � r 0j
�

dS 0 D 0 (3.21)

The curl of the electrostatic field is then zero in all situations.

The divergence of the electrostatic field is found in a similar fashion. Using (3.18)
the divergence of the electrostatic field from a set of discrete charges (3.13) becomes

• Discrete Charges:

div E .r/ D � 1

4�"0

X

j

qj div grad

(
1ˇ

ˇr � rj

ˇ
ˇ

)

D 1

"0

X

j

qjı
�
r � rj

�
(3.22)

• Continuous Charges Density

1. Volume density:

Because the divergence operates on the unprimed coordinates, while the integra-
tion in (3.14) and (3.15) is over the primed coordinates and a fixed domain, we may
bring the divergence inside the integrals in (3.14) and (3.15). Then, using (3.18) as
in the derivation of 3.22, we obtain the divergence of the electrostatic field from a
continuous distribution of charges (3.14) as

div E .r/ D � 1

4�"0

Z

V0

�
�
r 0� div grad

1

jr � r 0jdV 0

D 1

"0

Z

V0

�
�
r 0� ı

�
r � r 0�dV 0

D 1

"0
� .r/ : (3.23)

2 Surface density

We cannot perform the same mathematical operations on (3.15) because the ı�
functions resulting from div grad .1= jr � r 0j/ are infinite over the entire surface
of integration. We then no longer have the integral condition on the ı�function
(2.98). The surface charge density � .r/ in (3.15) is, however, nonzero only over a
(two dimensional) surface. We may then replace the surface integral in (3.15) by
a volume integral over the volume formed by adding thin sheets of thickness " on
both sides of the surface on which � .r/ ¤ 0. Because the charge density � .r/ � 0

in the interior of each of these sheets,
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div
I

S

� .r 0/
jr � r 0j3

�
r � r 0� dS 0 D div

Z

V(sheet)

� .r 0/
jr � r 0j3

�
r � r 0� dV 0

D �
Z

V(sheet)
�
�
r 0� div grad

�
1

jr � r 0j
�

dV 0

D 4�

Z

V(sheet)
�
�
r 0� ı

�
r � r 0� dV 0: (3.24)

We can now perform the integral in (3.24) over the volume V(sheet) using the
integral condition for the ı� function (2.98). The resulting field equation is

div E .r/ D .1="0/ �surface .r/. (3.25)

In (3.25) we have written the charge density as �surface .r/ rather than � .r/ to
emphasize that the mathematical form is identical to (3.23), with � .r/ ¤ 0 only
on the surface of the volume.

The right hand side of (3.22) is a rather strange mathematical function made up
of ı� functions. However, if we integrate this function over the entire volume shown
in Fig. 3.2 we have Z

V

X

j

qjı
�
r � rj

�
dV 0 D

X

j

qj;

which is the total charge in the volume V .
Therefore we may consider all of the divergence equations (3.22)–(3.25) to be of

the same form, i.e.
div E .r/ D 1="0 � .r/ . (3.26)

Equation (3.26) is known as Gauss’ Law.
The two field equations for the electrostatic field are then (3.26) and

curl E .r/ D 0. (3.27)

The source of the electrostatic field is a density of charges � .r/, which may consist
of discrete charges, or a continuous charge density and filling a volume or existing
only on a surface.

3.7 Integral Electrostatic Field Equations

From (3.26) and (3.27) we can obtain integral equations using Gauss’ and Stokes’
Theorems (see Sect. 2.5.3.1 (2.59) and Sect. 2.5.4.2 (2.78)).
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3.7.1 Gauss’ Theorem

If we integrate (3.26) over any arbitrary volume V , which contains the charges, and
apply Gauss’ Theorem we have

Z

V
dV div E D

I

S
E � dS D 1

"0

Z

V
� .r/ dV;

or H
S E�dS D .1="0/

R
V � .r/dV, (3.28)

where the surface S contains the volume V . Equation (3.28) is Gauss’ Law in
integral form, which is the form of Gauss’ Law found in most beginning texts on
physics.

We can apply (3.28) for the calculation of the electric (here electrostatic) field
if we can construct some imaginary surface S in the region of interest, which is
everywhere perpendicular to E and on which E is constant in magnitude. Then
E�dS D EdS with E Dconstant and

I

S
E � dS D E .S/

I

S
dS D E .S/AS;

where E .S/ is the constant value of E on the surface S and AS is the area of the
surface S . These situations of high geometrical symmetry result when � .r/ also has
this geometrical symmetry.

Example 3.1. Spherical Charge Distribution. If � .r/ is spherically symmetric
around the origin of coordinates the electrostatic field will be directed radially
outward from the origin and will be a function of radial distance alone. The
electrostatic field is then constant in magnitude and perpendicular to any spherical
surface we may construct that is centered on the origin. For a spherical charge
distribution with radius R we then have for r > R

I

S

E � dS D 4�r2E .r/ ;

and
1

"0

Z

V
� .r/ dV D q

"0
:

The electrostatic field is then

E .r/ D q

4�"0

1

r2
Oer: (3.29)

Cylindrically symmetric and planar charge densities produce electrostatic fields
perpendicular to, and constant on cylindrical and planar surfaces. We can then apply
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Gauss’ Law in integral form to these charge densities as well. With these three
examples we have, however, exhausted the possible applications of Gauss’ Law in
integral form.

We will not hesitate to use Gauss’ Law in integral form when symmetry permits.
For example a geometrical surface appears planar at points an infinitesimal distance
from the surface. We may then apply Gauss’ Law in integral form to find the
electrostatic field infinitesimal distances from a surface of any geometrical form
by constructing an infinitesimal cylindrical volume with axis perpendicular to
the surface. These infinitesimal surfaces are often called Gaussian pillboxes (see
exercises).

3.7.2 Stokes’ Theorem

If we integrate (3.27) over any arbitrary area A and apply Stokes’ Theorem we have

Z

A
curl E � da D

I

C
E � dl D 0;

or H
C E� dl D 0, (3.30)

where C is the contour that defines a in the sense that a is any area whose boundary
is C and da is defined by the right hand rule from C (see Sect. 2.5.4).

In summary we have, then the differential field (3.26) and (3.27) and the
equivalent integral field (3.28) and (3.30) for the electrostatic field.

3.8 Summary

This chapter dealt almost exclusively with the results of Coulomb’s experiment.
We introduced a superposition Ansatz, which allowed us to obtain more general
empirical equations for forces from charge distributions. And we introduced the
field concept in mathematical form, which permitted us to obtain empirical equa-
tions for the fields. Because of the mathematical form of the empirical equations for
the electrostatic field we could rather easily find equations for the divergence and
the curl of the electrostatic field. These are the electrostatic field equations.

This is generally the approach we will use with the introduction of each field. The
mathematical form of the empirical results from each experiment will determine the
exact steps we will follow. In most cases the task will become simpler as we gain
understanding of the structure of the fields. The goal will always be, however, the
field equations in the context of Helmholtz’ Theorem.
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At the beginning of the 21st century the reality of the field is not speculation. We
also know that our superposition Ansatz is valid.

Exercises

3.1. You have placed an arbitrarily shaped conductor. in a region in which there
is an electrostatic field. The electrostatic field will induce a surface charge density
� .r/ on the surface of the conductor sufficient to result in an electrostatic field that
is everywhere perpendicular to the surface of the conductor and vanishes within the
conductor. In Fig. 3.6 we have drawn an infinitesimal Gaussian pillbox extending
inside and outside of a conductor.

Use this infinitesimal Gaussian pillbox encompassing an area dSi of the conduc-
tor surface located at point ri on the surface of the conductor to find the relationship
between the electrostatic field just outside the conductor surface and the surface
charge density �i at ri.

[answer: E .ri/ D �i="0]

3.2. There is a region in space in which the electric field is in one direction. Choose
one of the Cartesian axes, say x to be the axis along which the field is oriented.

(a) Show that the electric field cannot depend on the other two coordinates .y; z/ in
this region.

(b) If the electrostatic field in this region is also constant what is the charge density
in the region?

(c) How would it be possible to generate such a field?

Answer:

(a) The curl of the electrostatic field vanishes. Then

curl E D 0

D Oex

�
@Ez

@y
� @Ey

@z

�
C Oey

�
@Ex

@z
� @Ez

@x

�

COez

�
@Ey

@x
� @Ex

@y

�
:

If Ey D Ez D 0 then

Fig. 3.6 Infinitesimal
Gaussian pillbox with area
dSi extending inside and
outside of the surface of a
conductor
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0 D Oey

�
@Ex

@z

�
� Oez

�
@Ex

@y

�
:

Both vector components must independently vanish. Therefore

�
@Ex

@z

�
D
�
@Ex

@y

�
:

(b) If Ex D constant, then Gauss’ Law is

div E D @

@x
Ex D 0 D 1

"0
�:

Therefore � D 0.
(c) This electrostatic field can only be generated by charges outside of the region.

A charged, flat conducting plate produces an electrostatic field that is constant
in the region above the plate. So two charged, flat conducting plates arranged
parallel to one another, with a positive charge on one and a negative charge on
the other will produce this electrostatic field.

3.3. In problems of spherical and cylindrical symmetry we will find it useful to
define charge densities for distributions that can be written as ı�functions. The
functional form of the charge distribution must be such that

Z

all space
� .r/ dV D Q;

whereQ is the total charge of the density. It is probably not a simple ı�function.
For a single charge located at the origin we are tempted to write

� .r/ D asphericalı .r/ ;

where we must determine the function ˛ .r/ such that the total charge is Q. But the
integral Z

V
asphericalı .r/ dV D

Z 1

0
asphericalı .r/ 4�r

2dr

vanishes.
We can find the correct representation of a point charge at the origin by

considering a tiny spherical shell of charge

� .r/ D asphericalı .r � "/
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and take the limit as " ! 0. Carry this out to show that

aspherical .r/ D Q

4�r2

3.4. In the preceding exercise you found the representation of a point charge at the
origin. The problem is similar if we seek to represent a line charge along the z�axis
using a ı�function. Consider now a cylindrical shell of charge with radius ". Using
the reasoning as in the preceding exercise show that the representation of a charge
density along the z�axis is

� .r/ D �

2�r
ı .r � "/ ;

where � is the charge per unit length.

3.5. For the two concentric spherical shells in the example of the spherical capacitor
find

(a) The electrostatic field inside the inner shell.
(b) The charge density on each shell and the location of the charge density.
(c) The electrostatic field for the region r > b.

3.6. Suppose the exponent in the Coulomb field was not exactly 2, but 2� ı;where
ı � 1. The Coulomb field would then be

E D q

4�"0

Or
r2�ı

Calculate Z

V
div EdV

over a spherical volume of radiusR centered on the charge q for this field. Is Gauss’
Law still valid for this field?

3.7. A very long, nonconducting circular rod of length L and radius R contains a
charge density

� D
	 �0

R2



r2:

Find the electrostatic field near the center of the rod for r > R and R < r . Limit
your calculation outside the rod to values of r � L so that the rod length appears
infinite.

3.8. A conducting object has an arbitrarily shaped hollow cavity in its interior. If a
point charge q is introduced into the cavity, prove that the charge �q is induced on
the surface of the cavity.

3.9. The electric field at the earth’s surface and in the atmosphere can be measured.
It is approximately 150 V=m and pointed downward toward the ground at the
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earth’s surface. At an elevation of 30 km this field has dropped to about 1 V=m. We
may expect that the electric field varies as 1=r2 above the earth’s surface. For very
small vertical distances y above the earth’s surface this implies a linear variation of
the electric field with y.

(a) What is the approximate charge density in the earth’s atmosphere between the
earth’s surface and 30 km?

(b) What is the charge density on the earth?
(c) What is the total charge on the earth (radius D 6; 371 km)?
(d) From where do you suppose the charge came?
(e) If you suppose electrical storms you are correct. What then must be the charge

of the lower part of the clouds in an electrical storm?

3.10. You have a nonconducting sphere of radius a in which there is a charge
density, which is a function only of the radial distance from the center of the sphere.
Around this nonconducting sphere you have a spherical conducting shell of inner
radius a and outer radius b. If

� .r/ D �0

a
r2

for r > 0,

(a) Plot the electrostatic field as a function of r from r D 0 to a value > b.
(b) What is the (surface) charge density on the inner and outer surfaces of the

conducting shell?

3.11. In a certain region of space you have found that there is an electrostatic field
only along the x�axis. Prove that there can be no dependence of this electrostatic
field on either the y� and z�coordinates in this region. If there is no charge in this
region, prove that the field is also independent of x:

3.12. In a certain region of pace you have measured a spherically symmetric
electrostatic field. The field depends on the radial coordinate as

Er .r/ D E0r exp .�˛r/

WhereE0 and ˛ are positive constant. What is the charge density that produced this
electrostatic field?





Chapter 4
The Scalar Potential

He who seeks for methods without having a definite problem in
mind seeks for the most part in vain.

David Hilbert

4.1 Introduction

In this chapter we introduce and develop the properties of the electrostatic scalar
potential. This is the first of two potentials in classical field theory both of which
appeared in the original work by Maxwell. We will find that these potentials are
central to the theory replacing the fields in advanced topics. The fact that a scalar
potential exists follows immediately from the second electrostatic field equation,
that for the curl of E. The electrostatic force is conservative and is, therefore,
obtainable from a potential energy.

From Gauss’ Law, the first of the field equations, we will find that the electrostatic
potential satisfies Poisson’s Equation, for which we know the solution. With the
electrostatic potential we then have the basis for calculating the electrostatic field in
realistic situations.

Our final step will be a formulation of the energy in space resulting from charge
densities.

4.2 Potential Energy

Because curl gradf .r/ D 0 for any scalar function f .r/ (see exercises Chap. 2),
the second electrostatic field (3.27), which is

curl E D 0; (4.1)

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 4, © Springer-Verlag Berlin Heidelberg 2012
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results in the fact that we can write the electrostatic field as

E D � grad' .r/ : (4.2)

The function ' .r/ is the electrostatic (scalar) potential. The negative sign is
convention resulting from our physical understanding of ' .r/.

In Example 2.3 we showed that the electrostatic field is conservative because it
satisfies (4.1). The work done by the electrostatic field on a charge in a differential
distance d` D Oe�dx� is then equal to a decrease in potential energy of the charge.
The work is done at the expense of the potential energy. That is

qE � d` D �q grad' .r/ � Oe�dx�

D �qı�� @'
@x�

dx�

D �qd'; (4.3)

since d' D @'=@x�dx� is the Pfaffian for '. The electrostatic potential is then
the potential energy in the electrostatic field per unit charge and has the units of
volt1 ( V).

From Newton’s Second Law for a charged particle of charge q and mass m we
have

qE � d` D mdv�
d`�
dt

D md

�
d`�
dt

�
d`�
dt

D d

�
1

2
mv2

�
; (4.4)

since the velocity in the direction d` is v Dd`=dt . Equating (4.3) and (4.4) we have

d

�
1

2
mv2 C q'

�
D 0: (4.5)

That is the quantity

H D 1

2
mv2 C q'

is a constant for the motion of a charge q of mass m in an electrostatic field. H is
the total energy of the charge2 in the electrostatic field.

1The unit of the volt honors Count Alessandro Volta who developed the first electrochemical cell
(see Sect. 1.8).
2We have designated the total mechanical energy of the charge as H rather than E to avoid
confusion with the designation for the field, and because H is the standard designation of the
Hamiltonian, which, for conservative systems, is the total energy.
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Fig. 4.1 Three of a family of
equipotential surfaces in
space. Each surface is defined
by ' .x; y; z/ D constant.
The electrostatic field is
everywhere perpendicular to
this family of surfaces

4.3 Potential Surfaces

The scalar potential function ' .x; y; z/ is a family of surfaces in .x; y; z/� space,
which, because of (4.2), are perpendicular to the electric field vector at each point.
In Fig. 4.1 we have drawn a set of general surfaces in .x; y; z/� space to illustrate
the situation. The surfaces in Fig. 4.1 are called equipotential surfaces because on
each of them ' .x; y; z/ D constant. Work is done on or by an electric charge in
moving from one equipotential surface to the other. But no work is done on a charge
moving on an equipotential surface.

4.4 Poisson’s Equation

By inserting (4.2) into the first electrostatic field (3.26), which is

div E D 1

"0
�; (4.6)

we obtain a differential equation for the scalar potential

r2' D � 1

"0
�; (4.7)

Equation (4.7) is Poisson’s Equation. We first encountered Poisson’s Equation in
Sect. 2.6. From (2.86) (see also Appendix F, Theorem F.3) the particular solution to
(4.7) is

' .r/ D 1

4�"0

Z

V

� .r0/
jr � r0jdV 0: (4.8)

To illustrate the use of (4.8) we present two examples. The first of these is the
potential from a point charge, for which we already know the answer.

Example 4.1. The point charge. We consider a point charge of magnitude q
located at the point x D a, y D b, z D c. The charge density is
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�
�
x0; y0; z0� D qı

�
x0 � a� ı �y0 � b

�
ı
�
z0 � c

�
;

which is a function of the source coordinates .x0; y0; z0/. We note that

Z

V
�
�
r0� dV 0 D q

Z

V0

ı
�
x0 � a

�
ı
�
y0 � b� ı �z0 � c� dx0dy 0dz0

D q:

We must also have a formulation of the distance jr � r 0j, which is

ˇ
ˇr � r 0ˇˇ D

n�
x � x0�2 C �

y � y0�2 C �
z � z0�2o

1
2
:

Then (4.8) becomes

' .r/ D q

4�"0

Z

V

ı .x0 � a/ ı .y0 � b/ ı .z0 � c/
n
.x � x0/2 C .y � y0/2 C .z � z0/2

o 1
2

dx0dy0dz0:

The integration over the ı� functions simply replaces the variables x0, y0, and z0
with a, b, and c. That is

' .r/ D q

4�"0

1
n
.x � a/2 C .y � b/2 C .z � c/2

o 1
2

(4.9)

for a single point charge located at .a; b; c/.

From the potential for a single charge and our superposition Ansatz we can obtain
the potential for an electric dipole. The electric dipole is an arrangement of two
opposite charges separated by a distance `. The electric dipole moment is pd D q`.
We show this in the drawing in Fig. 4.2. In Fig. 4.2 we have drawn the two charges
as finite for illustrative purposes. We located the center of the dipole at the point
.a; b; c/. The two charges are then located at .a; b; c C `=2/ and .a; b; c � `=2/.
Using (4.9) for each charge the potential for the dipole is

' .r/ D q

4�"0R

"�
1 � ` .z � c/

R2
C `2

4R2

� –1/2

�
�
1C ` .z � c/

R2
C `2

4R2

� –1/2
#

; (4.10)

where R D
q
.x � a/2 C .y � b/2 C .z � c/2. Expanding (4.10) in terms of `=R,

i.e. for small dipole spacing compared to observation distance,
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Fig. 4.2 Electric dipole pd

' .r/ D q

4�"0R

��
`

R

�
.z � c/
R

	
CO

"�
`

R

�3
#

D pd

4�"0R3
.z � c/CO

"�
`

R

�3
#

: (4.11)

If we place the center of the dipole at the origin and introduce spherical
coordinates with z D r cos�, where r replaces R as the distance to the field or
observation point, then (4.11) becomes

' .r/ D pd

4�"0

cos�

r2
; (4.12)

The electrostatic field is

E D � grad
pd

4�"0

cos�

r2
; (4.13)

which, using (A.9), is

E D pd

4�"0r3


 Oer2 cos� C Oe� sin �
�
: (4.14)

As our second example we consider a ring of charge. We ask first only for
the electrostatic potential along the z�axis. There will then be no difficulty in
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Fig. 4.3 Charged ring with
total charge Qring. We have
included the unit vector triads
.Oer; Oe# ; Oez/ and

�Oe0

r ; Oe0

#; Oe0

z

�
at

the tips of the field and source
vectors

the integration. We must, however, be careful about the formulation of the charge
density for the ring.

Example 4.2. The ring of charge. In Fig. 4.3 we have drawn a ring of charge of
radius a. The total charge on the ring is Qring C. Because the charge density is
located only on the ring � .r0/ is proportional to ı .r 0 � a/ ı .z0/. But � .r0/ might
depend also on some function of the magnitude of r 0. So we write

�
�
r0� D g

�
r 0� ı

�
r 0 � a

�
ı
�
z0� :

We find g .r 0/ from the requirement that
R
� .r0/dV 0 DQring. In cylindrical coordi-

nates dV 0 D r 0dr 0d# 0dz0. Then

Qring D
Z 2�

#=0
d# 0

Z C1

z=�1
dz0
Z C1

r=0
r 0dr 0g

�
r 0� ı

�
r 0 � a� ı �z0�

D 2�g .a/ a:

That is

g
�
r 0� D Qring

2�r 0
and

�
�
r0� D Qring

2�r 0 ı
�
r 0 � a

�
ı
�
z0� :

The source vector is
r0 D a Oe0

r;

where Oe0
r is the unit vector which locates the source point. If we only seek the

electrostatic potential on the z�axis the field point is

r D z Oez:
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The magnitude of the vector difference

r � r0 D z Oez � a Oe0
r

is ˇ̌
z Oez � a Oe0

r

ˇ̌ D
p

z2 C a2:

The scalar potential (4.8) is then

' .r/ D 1

4�"0

Z 2�

#0D0
d# 0

Z C1

z0D�1
dz0
Z C1

r0D0
r 0dr 0Qringı .r

0 � a/ ı .z0/
2�r 0pz2 C a2

D 1

4�"0

Qringp
z2 C a2

:

In the preceding example we see that the integrations over r 0 and z0 leave us with
an integral over # 0 of a charge dq0 D �ad# 0 on an infinitesimal length of the ring
where � D Qring=2�a is the linear charge density in the ring in units of C m�1.

With what is becoming common access to sophisticated mathematical software
packages, we can extend our study of the potential in the space around a ring of
charge. In doing so we will gain some insight into the electrostatic potential. Or we
may simply have our insight corroborated.

If we want to know the general form of the potential in the space surrounding the
charged ring we must use a general form for the field point vector in Fig. 4.3

r D r Oer C z Oez:

Because of symmetry around the z� axis the electrostatic potential will only depend
on .r; z/ and will be independent of # . We may then choose the orientation of the
unit field vector Oer to be fixed. It is convenient to choose the angle orienting Oer to be
# D 0.

The source point vector is still r0 D a Oe0
r, where now Oe0

r D Oer cos# 0 C Oe# sin# 0,
as we can see from Fig. 4.4 where the unit vectors have been placed in a unit circle.

The vector difference r � r 0 is then

r � r 0 D r Oer C z Oez � a
� Oer cos# 0 C Oe# sin# 0� :

Fig. 4.4 Unit circle with unit
vectors
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Then the magnitude of the difference between the field and source vectors is

ˇ̌
r � r 0 ˇ̌ D

p
r2 C a2 C z2 � 2ar cos# 0:

And the scalar potential (8.11) is

' .r/ D 1

4�"0

Z 2�

#0D0
d# 0

Z C1

z0D�1
d z0

Z C1

r0D0
r 0dr 0 Qringı .r

0 � a/ ı .z0/
2�r 0pr2 C a2 C z2 � 2ar cos# 0

D �a

4�"0

Z 2�

#0D0
d# 0

p
r2 C a2 C z2 � 2ar cos# 0 (4.15)

where � D Qring=2�a is the linear charge density on the ring.
The integral in (4.15) is known in terms of tabulated functions. The result for the

scalar potential is

' .r/ D �a

�"0

r
1

a2 C r2 C z2 � 2ar K
�
2

r
� ar

a2 C r2 C z2 � 2ar

�
; (4.16)

whereK .k/ is the complete elliptic integral of the first kind defined as

K .k/ D
Z 1

0

dxp
1 � x2

p
1 � k2x2 ; (4.17)

with no restrictions on k. In Fig. 4.5 we have plotted the potential (4.16) for radial
positions r with the vertical distance above the plane of the ring z as a parameter.

Lengths in these graphs are in units of the ring radius a and potentials are in units
of �=4�"0. All graphs of the potential have 100 data points. The values of z for the
potentials shown in Fig. 4.5 are 0:1� 0:5, 1:0, and 2:0. The values of z are indicated
on the plot.

The peak at the radial distance of 1:0 is from the ring. This is more evident as z
decreases.

In Fig. 4.6 we have plotted the single scalar potential for z D 0:1. On the plot
we have indicated the values of .@'=@r/z (z held constant) and included arrows to
indicate the direction of the radial field.

The radial field vanishes on the z� axis (radial distance D 0). The radial
field decreases as the radial distance becomes larger, which we have indicated by
decreasing the size of the arrow.

In Fig. 4.7 we have plotted both the scalar potential and the radial component of
the electrostatic field in units of �=4�a"0.

Inside the ring the radial field is negative (points toward the axis). Outside it is
positive (points away from the axis).

We note that the radial field outside of the ring decreases slowly. The electrostatic
field is long range. This makes it necessary to use a shielded potential in kinetic
theoretical studies of charged particles (see exercises).
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Fig. 4.5 Scalar potential ' from a charged ring. Radial dependence of potential is plotted with
vertical distance above the plane of the ring as a parameter. Each graph has 100 data points

Fig. 4.6 Scalar potential ' from a charged ring for a vertcal height above the plane of the ring
z D 0:1. Values of .@'=@r/z and direction of electric field are indicated
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Fig. 4.7 Scalar potential '
and radial component of
electrostatic field Eradial from
a charged ring for a vertical
distance z D 0:1. The electric
field was obtained
numerically from the
potential by three point
differentiation

Our more complete study of the potential from a ring of charge has then provided
graphical results that we can understand intuitively.

We have elected not to complete this study with parametric graphs for
' .z; r D constant/.

4.5 Multipole Expansion

In our study of the potential from the charged ring we chose to evaluate the integral
(4.15) numerically rather than expanding the integrand, as we did for the dipole,
to obtain an approximate analytical result. Moderate effort using a commercially
available software package (Maple) gained us graphical insight into the form of the
electrostatic potential near the ring.

But this was a textbook example. And the charge distribution was simple and
symmetric. In applications we will normally not know the charge distribution
� .r0/ and may have only measurements made at relatively large distances from
the distribution. Most applications are to charge densities of molecular or smaller
dimensions. Our objective then will not be to find the electrostatic potential, but to
infer the form of the charge distribution from measurements of the electrostatic field
made at great distances from the distribution.

So we seek the general form of the electrostatic potential at distances from a
charge distribution which are large compared to the dimensions of the distribution.
Particularly we seek characteristics of the charge density that can be identified in
the form of the electrostatic field at large distances from the density.

We begin with the solution to Poisson’s Equation (4.8) and place the charge
distribution at the origin. The magnitude r 0 of the vector to the source point r0 is
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then very small compared to the magnitude r of the vector to the field point r. And
we may expand 1= jr � r0j in terms of r 0=r . The result is

1

jr � r0j D 1

r
C r
r2

� r0

r

C1

2

1

r5


��
3x2 � r2

�
x0x0 C 3xyx0y0 C 3xzx0z0�

C ��
3y2 � r2�y0y0 C 3xyx0y0 C 3yzy0z0�

C ��
3z2 � r2� z0z0 C 3xzx0z0 C 3yzy0z0��

D 1

r
C r
r2

� r0

r
C 1

2

1

r5
x�x�

n
3x0

�x
0
� � �

r 0�2 ı��
o
; (4.18)

using subscript notation and the Einstein sum convention. The next term in the

expansion is O
h
.r 0=r/3

i
, which we drop.

With (4.18) the solution to Poisson’s Equation is

' .r/ D 1

4�"0r

Z

V
�
�
r0� dV 0 C 1

4�"0

r
r3

�
Z

V
r0�

�
r0� dV 0

C1

2

1

4�"0

1

r5
x�x�

Z

V

n
3x0

�x
0
� � �

r 0�2
ı��

o
�
�
r0� dV 0: (4.19)

In (4.18) we identify the terms characterizing the charge distribution as the total
charge

Q D
Z

V
�
�
r0� dV 0; (4.20)

the electrostatic dipole moment

pd D
Z

V
r0�

�
r0� dV 0; (4.21)

and the electrostatic quadrupole moment3

Q�� D
Z

V

n
3x0

�x
0
� � �

r 0�2
ı��

o
�
�
r0� dV 0: (4.22)

Our series solution to Poisson’s equation is then (cf. [48], p. 138)

' .r/ D 1

4�"0

�
Q

r
C r � pd

r3
C 1

2

1

r5
x�x�Q��

	
: (4.23)

3The quadrupole moment is a tensor.
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Measurements of the electrostatic field at (comparitively) great distances from
the charge density can then reveal total charge in the volume V and information
about the distribution of the charge in terms of dipole and possibly quadrupole
moments of the charge density.

4.6 Energy Storage

4.6.1 Electrostatic Energy Density

Charges located at an infinite distance from one another experience no force of
interaction. To assemble charges into a charge density, or densities, we must do work
against the Coulomb force between the charges. Any density of charge in a region
of space then results in energy stored in that region. We now seek a mathematical
expression for this stored energy.

From (4.8) we see that the electrostatic potential in a region of space depends
solely4 upon the distribution of charges in space � .r/. The energy required to bring
an additional infinitesimal amount of charge into a region in which ' .r/ ¤ 0

is, therefore, dependent only on the distribution of charge already present. And,
because the electrostatic field is conservative, it makes no difference how the final
charge density is assembled.

The mathematical development is simplified if we consider that the charges are
assembled in such a way that the charge density at each step is proportional to the
final density � .r/. We may then identify a parameter 0 � � � 1 and require that
during the charging process the charge density is �� .r/. A step in the charging
process increases � by d�. In this step the charge in the infinitesimal volume dV ,
centered on the point r, is increased by an amount � .r/d�dV .

Because the integrand in (4.8) is directly proportional to � .r/ the electrostatic
potential ' .r/ is also directly proportional to � at each step in the charging process.
The increase in potential energy which results from bringing the infinitesimal
charge � .r/d�dV from an infinite distance away to the point r is then dUE D
� .r/ ' .r/ �d�dV . The total potential energy of the charge distribution � .r/ is the
integral of dUE over the charging process, which is

UE D
Z 1

�D0
�d�

Z

V
� .r/ ' .r/ dV

D 1

2

Z

V
� .r/ ' .r/ dV; (4.24)

where V is a spatial volume containing all the charge density.

4The solution for ' in (4.8) is unique (see Appendices).
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From Gauss’ Law, (3.26), the charge density is

� .r/ D "0 div E: (4.25)

With the vector identity (A.19) we can write (4.25) as

� .r/ ' .r/ D "0' div E

D "0 div .'E/ � "0 .grad'/ � E: (4.26)

Then, using (4.26), (4.24) becomes

UE D 1

2
"0

Z

V
Œdiv .'E/� .grad'/ � E	 dV: (4.27)

If we apply Gauss’ Theorem (2.59) to the first term in the integrand in (4.27) we
have Z

V
div .'E/ dV D

I

S

'E � dS: (4.28)

The charge density occupies a finite spatial volume. And the electrostatic
potential, as well as the electrostatic field, vanishes at infinity. The volume V in
(4.27) is arbitrary. We may then take it to be all space with the surface S at infinity.
The integral over the surface S in (4.28) then vanishes. If we use (4.2) in (4.27) we
have

UE D
Z

V

1

2
"0E

2dV: (4.29)

The charge density � .r/ then results in an energy density

uE D 1

2
"0E

2 (4.30)

in space.
The potential energy is not confined only to the regions where � .r/ ¤ 0, as

would be the case in an action at a distance picture. Our result in equation (4.30)
is then fundamentally different from any result based on action at a distance. Our
result identifies an electrostatic field energy density.

We realize, based on our discussion of Hertz’ work, that electric and magnetic
fields are real. They can be detached from matter and propagate through empty
space. With our result we realize, even before we identify the energy in a
propagating wave, that there is an energy density in the electrostatic field.

4.6.2 Energy of a Set of Conductors

The charge densities we considered in Sect. 4.6.1 may be on a set of conductors
arranged in some arbitrary fashion in a region of space. This arrangement may have
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a geometrical symmetry as in two parallel plates, a plate and a sphere, or simply a
sphere. But we require no sort of symmetry.

In Sect. 3.4.3 we outlined the requirements for the distribution of surface charge
density on a conductor, which may result from an excess of charge or may
be induced by an external electrostatic field. The requirement that there is no
electrostatic force (field) within or on the surface of the conductor is satisfied if
the conductor is at a uniform, constant potential. The fact that the electrostatic field
must be perpendicular to the surface of the conductor is satisfied if the gradient the
electrostatic potential is

Œgrad' .ri/	n D �
i .ri/ ="0 (4.31)

at all points ri on the surface of the conductor (see exercises). These conditions on
the value of the electrostatic potential and its gradient on the surface of the conductor
are the boundary conditions required for the solution to Laplace’s Equation in a
region bounded by surfaces of constant potential.

We now ask for the electrostatic energy that can be stored on an arbitrarily
arranged set of conductors.

4.6.2.1 Coefficients of Potential

We place an excess charge on one of the conductors, which we label as j . There
are no free charges anywhere, except on the conductor j . The result will be an
electrostatic field in the region of space we are considering. And this field will
induce charge densities on all the other conductors.

The solutions to Laplace’s Equation are additive. The electrostatic potential ' .r/
at a point r is then a linear sum of the contributions from each of the conductors.
We designate the contribution from the conductor i at the point r as 'i .r/. If there
are N conductors the potential at the point r is then

' .r/ D
NX

i=1

˛i'i .r/ : (4.32)

If we multiply the potential (4.32) by a constant � (kappa) the result

�' .r/ D
NX

i=1

˛i�'i .r/ (4.33)

is also a solution to Laplace’s Equation in the region we are considering. In this
solution the contribution from each conductor to the total potential is also multiplied
by �, as we see in (4.33). Then grad'i .ri/ on the surface of each conductor is
multiplied by �, which, from (4.31) means that the value of the surface charge
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density on the i th conductor is multiplied by � as well. This includes the j th
conductor, which is the only one carrying a net charge.

We conclude then that increasing the net charge on the j th conductor by a factor
� results in an increase in the potential at each point in space by a factor � and an
increase in the contribution to this potential by each of the other conductors by the
same factor �. That is, whatever the net charge on the j th conductor may be, the
contribution to the potential 'i .r/ at any point r in space may be written as

'i .r/ D pijQj; (4.34)

where Qj is the net charge we have placed on the conductor j . The coefficients of
potential pij depend only on the geometry of the i th conductor and its location (cf.
[83], p. 76, [48], p. 48).

We may pursue the same argument if we add a charge to the kth conductor as
well. Our conclusion will be that the potential 'i .r/ at any point r in space may be
written as

'i .r/ D pijQj C pikQk; (4.35)

where Qj is the net charge we have placed on the conductor j and Qk is the net
charge we have placed on the conductor k. Continuing in this fashion we have

'j D
NX

i

pjiQi: (4.36)

The coefficients of potential are dependent only on the geometrical shape and
relative location of the conductors.

4.6.2.2 Capacitance

For a set of conductors carrying charges the integration of (4.24) is straightforward.
The charge density is only nonzero on the surfaces of the conductors where the
electrostatic potential is constant. Therefore (4.24) results in a sum of integrals over
the surfaces of the N conductors

UE D 1

2

NX

j

Z

a

j .r/ 'j .r/ da

D 1

2

NX

j

Qj'j: (4.37)

Using (4.36) equation (4.37) becomes
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UE D 1

2

NX

j

NX

i

QjpjiQi: (4.38)

Because the order of partial differentiation is immaterial pij D pji (see exercises).
If we consider two initially uncharged conductors and provide a conduction

pathway and an electromotive force so that charge may be transferred from one
conductor to the other we will have a system of two conductors one of which
carries a charge CQ and the other of which carries a charge �Q. We shall designate
Q1 D CQ andQ2 D �Q. Then from (4.38) the stored energy is

UE D 1

2
.p11 � 2p12 C p22/Q

2: (4.39)

From (4.36) the difference in the electrostatic potentials of the two conductors is

V12 D '1 � '2 D .p11 � 2p12 C p22/Q: (4.40)

Combining (4.39) and (4.40) we have

UE D 1

2
.p11 � 2p12 C p22/

–1 V 2
12: (4.41)

Equation (4.41) is a completely general result for two conductors with equal
charges of opposite signs. And the term .p11 � 2p12 C p22/

–1 depends only on
the geometry and relative location of the two conductors. It is independent of the
electrical charge. We define this term as the capacitance C of the two conductors.

From the energy storage (4.41) we have what we may consider to be the
fundamental definition of capacitance

UE D 1

2
CV 2: (4.42)

And from (4.40) we have what we may consider

CV D Q: (4.43)

to be a working definition of capacitance. Equation (4.43) is much easier to use in
calculations of capacitance.

Example 4.3. Spherical Capacitor. As an example we consider two thin spherical
conducting shells of radii a and b, with a < b. Each shell can be separated
into hemispheres so that they can be mounted concentrically by a very thin
nonconducting cord as we have drawn in Fig. 4.8. A voltage source (electromotive
force) removes charge from the outer shell and deposits it on the inner shell. To
find the capacitance of these spherical shells we must relate the potential difference
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Fig. 4.8 Concentric
spherical shells of radii a
and b

between the shells to the charge transferred. The electrostatic field in the space
between the inner and outer spherical shells we found in Example 3.1. The result is
(3.29). From (4.2) we have a differential equation for the electrostatic potential '

d'

dr
D � q

4�"0

1

r2
: (4.44)

Choosing the scalar potential to be Vab at r D a and 0 at r D b we may integrate
(4.44) to obtain

Vab D q

4�"0

�
1

a
� 1

b

�
; (4.45)

or

4�"0

�
ab

b � a
�
Vab D q:

The capacitance is then

C D 4�"0

�
ab

b � a
�

Because energy is required in the charging process and because a field permeates
the space around it, a single charged conductor also stores electrostatic energy and
will have a capacitance. As an example we consider a positive charge q distributed
on a spherical conductor of radius R.

Example 4.4. Single Sphere Capacitor. The electrostatic field in the space sur-
rounding a spherical conductor with a charge q is (see (3.29))

E .r/ D q

4�"0

1

r2

for r > R. And from the integral of (4.30) the electrostatic energy density in the
space surrounding the conductor is

uE D 1

2

q2

.4�/2 "0

1

r4
: (4.46)

The total electrostatic energy is the integral of (4.46) over all space surrounding the
spherical conductor
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UE D 1

2

q2

.4�/2 "0

Z 1

rDR

1

r4

�
4�r2� dr

D 1

2

q2

4�"0

1

R
: (4.47)

To find the electrostatic potential of the sphere we integrate (4.44) from r to 1, with
' .1/ D 0. The result is

' D q

4�"0

1

r
: (4.48)

The electrostatic potential on the surface of the sphere is then

VR D q

4�"0

1

R
: (4.49)

We may use (4.49) and (4.43) to obtain the capacitance, or we may calculate the total
energy in the space surrounding the sphere and use (4.42). For illustrative purposes
we choose the latter approach. Using (4.42) we can write (4.47) as

UE D 1

2

q2

4�"0

1

R

D 1

2
CV 2

R

D 1

2
C

�
q

4�"0

1

R

�2

:

The capacitance C is then
C D 4�"0R:

4.7 Summary

We devoted this chapter to the scalar electrostatic potential alone because it is a
vehicle for the study of some properties of the electrostatic field, which are not as
easily accessible in terms of the field equations alone.

The electrostatic scalar potential satisfies Poisson’s Equation, which is a great
simplification over any attempt to apply Coulomb’s Law directly in the actually
calculation of the electrostatic field. The properties of Poisson’s Equation are
thoroughly understood (see Appendix F) permitting us practical access to the
behavior of the electrostatic potential. And the calculation of a scalar quantity is
always easier than the calculation of a vector quantity.

The electrostatic potential is then the route of choice in any study of electrostatic
problems beyond the limits of the integral form of Gauss’ Law.
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The electrostatic potential was also the basis of our study of energy storage and
our discovery of an energy density in the electrostatic field. The practical energy
storage element, the capacitor, emerged naturally from this study.

This does not yet establish the reality of the electrostatic field. We can still claim
that the stored energy is only the result of separation of charges and not of the
presence of a field. The identification of a static field energy is, however, a major
step toward demonstrating the reality of fields.

Exercises

4.1. Why is the electrostatic field always perpendicular to the electrostatic potential
surfaces ' D constant?

4.2. In Fig. 4.1 the potential surfaces are

' .x; y; z/ D z � exp
��x2� sin .x C y/ :

What is the charge distribution required for this potential?

4.3. You have a spherical copper shell made of two hemispheres of outer radius R
that can be connected or disconnected from one another. You plan to mount a voltage
sensor within the sphere and then close it. The wires from the sensor you will wrap
around a nonconducting cord from which the sphere is suspended. You have also
mounted a second voltage sensor on a nonconducting rod that can be moved to any
location a distance r > R from the center of the sphere.

You plan to charge the sphere to QC and then to measure the potential inside
and outside the sphere.

You first do the theory to decide what you expect to measure before you go into
the laboratory.

(a) What will be the potential inside the sphere, i.e. r < R? [Consult the theorems
on Poisson’s Equation in the Appendices.]

(b) What will be the potential as a function of r for r > R? [Outside of the sphere
� D 0 and the potential must satisfy Laplace’s Equation r2' D 0. Use the
Laplacian for spherical coordinates in Appendix A.1, equation A.12. There is
spherical symmetry so partial derivatives of the potential ' with respect to �
and # vanish. Find the radial dependence of '. This will be the form of the
potential.]

4.4. Because the surface of a conductor is an equipotential surface, ' .r/ an
infinitesimal distance from the surface of a conductor has the geometry of the
conductor surface.

Consider that a conductor has a spikelike projection as we have drawn in Fig. 4.9.
The surface of the conductor is f D f .x; y; z/ which is also ' .x; y; z/ D constant.
An infinitesimal distance from the surface of the conductor the potential satisfies
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Fig. 4.9 Spike on the surface
of a conductor

Laplace’s Equation
@2'

@x2
C @2'

@y2
C @2'

@z2
D 0: (4.50)

At the peak the partial derivatives @2'=@x2 and @2'=@y2 are inversely proportional
to the radius of curvatureRC of the peak ([15], vol 1, p. 282-3), which is very small
if the peak is pointed. Use this fact and the requirement that ' satisfies (4.50) to show
that there will be a concentration of charge at the peak of the spikelike projection.

Note that at the peak of the spike there is only an electrostatic field Ez.

4.5. You have a very thin circular copper disk of radius R, which you have
suspended by nonconducting threads so that the plane of the disk is parallel to the
wooden laboratory floor. You intend to charge the disk withQC of charge. You have
also mounted a nonconducting support coming down from the ceiling to a point very
close to the surface of the disk, which will serve as a track for a probe measuring
the electrostatic potential. The tip of the probe will always be on the disk axis.

Assume that the charge is uniformly distributed over the disk surfaces.
What do you expect to measure as ' .z/ along the axis of the disk?
In an example we found the electrostatic potential on the axis of a ring of charge.

You may consider that your disk is made up of rings of charge and integrate this
result. But you should also consider the integral solution of Poisson’s Equation
directly realizing that the charge is distributed on the disk surface (it is copper).
If both approaches are equivalent you should get the same answer.

4.6. What is the electric field Ez .z/ along the axis of the disk in the preceding
exercise?

4.7. You have a right circular copper cylinder of radius R and length `, which you
have suspended by nonconducting threads so that ends of the cylinder are parallel to
the wooden laboratory floor. You intend to charge the cylinder with QC of charge.
You have also mounted a nonconducting support coming down from the ceiling to
a point very close to the surface of the disk, which will serve as a track for a probe
measuring the electrostatic potential. The tip of the probe will always be on the
cylinder axis.

Assume that the charge is uniformly distributed over the surfaces of the cylinder.
It is 
e on the ends of the cylinder and 
s on the side.

What do you expect to measure as ' .z/ along the axis of the cylinder?
In an example we found the electrostatic potential on the axis of a ring of charge.

And in a previous exercise we found the electrostatic potential from a plate. You
may consider that your cylinder is made up of rings of charge and end plates to find
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the result. But you should also consider the integral solution of Poisson’s Equation
directly realizing that the charge is distributed on the cylinder surface (it is copper).
If both approaches are equivalent you should get the same answer.

4.8. What is the electrostatic field along the axis of the cylinder in the preceding
exercise, but outside of the cylinder, for points z ˙ `=2 � R and z � `? Comment
on the answer referring to the Coulomb field from a point charge.

[Answer: 2�R`
s
4�"0

1
z2 ]

4.9. The general form of Poisson’s Equation for the electrostatic potential in three
dimensions is

r2' D � 1

"0
� .r/ :

You have shown that

div grad

�
1

jr � r 0j
�

D �4�ı �r � r 0� :

Using this, show that the general solution to Poisson’s Equation in three dimensions
is

' .r/ D 1

4�"0

Z

V
dV 0 � .r 0/

jr � r 0j ;

where the integration is over the volume containing all sources.

4.10. The screened Coulomb potential

' D q

4�"0

exp .�r=�/
r

for r > 0

is appropriate for a charge q (at the origin) in a semiconducting medium, where it is
termed Thomas-Fermi shielding, or in plasmas, where it is termed Debye shielding.

(a) What is the electrostatic field in the region r > 0? Compare your result to the
Coulomb field.

(b) What is the charge density for this potential in the region r > 0?
(c) Interpret physically what you have discovered in the charge density for r > 0.

Notice in your analysis that the origin must be avoided as a mathematical point.
The charge density, the potential, and the electrostatic field are all infinite at the
origin.

4.11. Lise Meitner analyzed the experiments of Otto Hahn in Berlin. Meitner
was then a refugee from (Nazi) Germany (She was an Austrian. Germany had
annexed Austria.) in Sweden. Hahn had discovered that after 238

92 U was bombarded
by neutrons (zero charge) Barium (Ba) could be found in the products. Meitner
realized that charge conservation meant that Krypton (Kr) was also there, although
Hahn’s radiochemistry technique did not pick up Krypton. Meitner imagined that
the nucleus had split. She knew the difference in masses of 238

92 U and 137
56 BaC83

46Kr.
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And she knew Einstein’s mass-energy relationship E D �mc2, where �m, is
the mass lost. The result was (about) 200 MeV. She then asked if this was
the potential energy of 137

56 Ba and 83
46Kr nuclei located at twice the nuclear radius

apart, which would be the potential energy just after splitting. If this potential
energy was 200 MeV, she understood fission (nuclear splitting). What would be the
approximate nuclear radius (assume the same for Ba and Kr) for her theory to work?
The nuclear charge on the 137

56 Ba nucleus is 56
�
1:60217733� 10�19 C

� D 8:

972 2 � 10�18 C and on the 83
46Kr nucleus is 46

�
1:60217733� 10�19 C

� D 7:

37 � 10�18 C. [Answer: nuclear radius Rnuclear � 9: 286 � 10–15 m]
[Meitner did this calculation sitting on a log in a snowy woods at Kungälv,

Sweden, with her Nephew Otto Frisch. Frisch would later be part of the Los Alamos
team of the Manhattan Project. Meitner would declare that she wanted nothing to
do with weapons.]

4.12. Using the general expression for the electrostatic dipole moment

pd D
Z

V
r0�

�
r0�dV 0

show that the electrostatic dipole moment of the charge density (centered at the
origin)

� D Qı .x/ ı .y/ ı

�
z � `

2

�

�Qı .x/ ı .y/ ı
�

z C `

2

�

is pd D OezQ`.

4.13. Using the general expression for the electrostatic quadrupole moment

Q�� D
Z

V

n
3x0

�x
0
� � �

r 0�2
ı��

o
�
�
r0� dV 0:

and the charge density (centered at the origin)

� D Qı .x/ ı .y/ ı

�
z � `

2

�

�Qı .x/ ı .y/ ı
�

z C `

2

�

to find the electrostatic quadrupole moment of this density.
[Answer: Q�� D 08�; �]
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4.14. Consider two conducting plates separated by a distance d , which very small
compared to the plate dimensions. We extract a charge q from one plate, which we
choose to have the reference electrostatic potential of V D 0, and deposit this charge
on the other plate, which will now have the electrostatic potential V . Except for a
(relatively) small curvature at the plate boundary (fringing), the electrostatic field is
uniform between the two plates.

What is the capacitance of this pair of plates?

4.15. Using the fact that the order of partial differentiation is immaterial in (4.38)
show that pij D pji.

4.16. You have a very thin, nonconducting circular disk of radius R has a uniform
charge density, which you may consider to be a surface charge 
 . Find the
electrostatic potential and the electrostatic field at a point on the axis of the disk
at a distance z from the plane of the disk.

4.17. You have a nonconducting, right circular cylinder of radius R and height L.
Inside this nonconducting cylinder is a nonuniform charge density �.z/ D �0 C ˇz,
where z is the axial coordinate and z D 0 at the center of the cylinder and �0 and ˇ
are constants. Accordingly you choose to use cylindrical coordinates with origin at
the center of the nonconducting cylinder and z�axis along the cylinder axis.

Using the electrostatic field you have obtained in the preceding exercise, find the
electrostatic field at the center of the nonconducting cylinder.

4.18. You have a nonconducting right circular cylinder of radius R and length L,
which you have charged to a uniform charge density � and hung by a thread from
the ceiling. The thread is well-insulated so that there is no loss of charge from the
cylinder.

Choosing the origin of your coordinates to be the base of the cylinder, find the
electrostatic potential at a point on the cylinder axis but external to the distribution.

4.19. You have a nonconducting sphere of radius R in which there is a uniform
charge density �0. Integrate the energy density over all space to obtain what is called
the self-energy of this charge distribution. Assume that you can use "0 inside the
nonconductor.

4.20. Biological membranes are lipid bilayers approximately 50 Å thick. In a nerve
cell the resting potential varies slightly from cell to cell. But in a healthy cell it
is about 100 mV. Experiments are conducted on planar lipid bilayers between
150�m�300�m in diameter. These planar bilayers are models for cell membranes.

(a) What is the capacitance of a bilayer with a diameter of 200 ¯am?
(b) What is the energy within the bilayer when the potential is 100 mV?
(c) What is the electrostatic field energy density?
(d) What is the electrostatic field?
(e) How does this compare with the electrostatic field required to breakdown air,

which is 1: 181 1 � 106 V=m.
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Fig. 4.10 Capacitors in
parallel

Fig. 4.11 Capacitors in
series

4.21. (a) What is the capacity of a capacitor that can store 1:0 J at 100 V?
(b) Assuming the capacitor has parallel plates separated by 10�5 m what is the

necessary area of the plates? Comment on the result.

4.22. You want to store a large electrostatic field energy and then use this energy
in an experiment requiring a rapid discharge. Your idea is to arrange a group of
parallel plate capacitors in a parallel connection as we have drawn in Fig. 4.10. You
plan to charge this arrangement, reasoning that you have added the energies in each
capacitor, and then to discharge the bank of capacitors across your apparatus.

(a) Show that the stored energy can be written in terms of an electrostatic potential
V applied to a single capacitor of magnitude CT D C1 C C2 C C3.

(b) Show that this addition of capacitances will result if you use our working
definition of capacitance CV D q on the arrangement in Fig. 4.10.
An alternative arrangement would have been the series combination we have
drawn in Fig. 4.11.

(c) Show that the energy stored in this arrangement of capacitors can be written in
terms of an electrostatic potential V applied to a single capacitor of magnitude
CT where C�1

T D C�1
1 C C�1

2 C C�1
3 .

(d) Show that the equivalent single capacitor for a parallel combination of capaci-
tors is always greater than that for a series combination.



Chapter 5
Magnetostatics

[Of] three people walking together, at least one can be my
teacher

Confucius, 551–478 B.C.E.

5.1 Introduction

In this chapter we will introduce the properties of the time independent magneto-
static field. The magnetostatic field is a result of electrical current densities similarly
to the manner in which the electrostatic field is the result of charge densities. And
so we must understand the flow of electrical current as well.

Two classic experiments lie behind our understanding of magnetism. These are
the experiments of Oersted and of Ampère. We will combine these to obtain a
formulation of the magnetic field resulting from moving charges and of the magnetic
force on moving charges.

We will again make a superposition Ansatz to formulate the fields and forces
arising from general charge densities. The result will be an equivalent, although
slightly more complex, integral formulation for the magnetostatic field than that
obtained from Coulomb’s Law for the electrostatic field. This is the Biot–Savart
Law, presented to the French Academy 6 weeks after Ampère presented the results
of his experiments.

But we will not follow the method of deriving the field equations that we used
for the electrostatic case. The direct use of the Biot–Savart Law to obtain the field
equations becomes tedious because of a cross product. But the result of Oersted’s
experiment introduces the concept of a vector potential. Basing our derivation
of the magnetostatic field equations on this vector potential simplifies our work
immensely.

Helmholtz’ Theorem requires that we know both the divergence and the curl
of the vector potential. This introduces the important concept of gauge and gauge
transformation into the formulation of field theory. We will discuss this carefully.

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 5, © Springer-Verlag Berlin Heidelberg 2012
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124 5 Magnetostatics

We will end the chapter with a formulation of the field equations for the
electrostatic and magnetostatic fields.

5.2 Current

5.2.1 Current Density

Electrical current results from the transport of electrical charge. The flow of a fluid
made up of charged particles, rather than molecules, produces an electrical current,
because the flow results in the transport of charge. This is analogous to the flow of
an ordinary fluid that results in the transport of mass.

There must be more than one species of charged particles present in the fluid in
order to preserve electrical neutrality. It is possible that only one species is actually
flowing while the other(s) is/are fixed in space, as will be the case in solids. But we
consider the general case here with more than one species in motion.

We shall approximate the motion of each species of charged particles by defining
an average velocity vector v(˛)

ave[ m s�1] and an average particle density n(˛)[ m–3] for
the ˛th species of charged particles with the charge q˛[ C].1 The current density
vector for the ˛th species is

J˛ D n(˛)q˛v(˛)
ave (5.1)

in units of [ C m–2 s–1]. And the total current density in the fluid is

J D P
˛n(˛)q˛v(˛)

ave. (5.2)

From (5.2) we see that J˛ is in the direction of v(˛)
ave if q˛ is positive and in the

direction of �v(˛)
ave if q˛ is negative. The current density vector is then in the direction

of the flow of positive charge whether the charge carriers are positive or negative, as
Franklin proposed.

We have illustrated this in Fig. 5.1, where we have drawn a section of conductor
through which the current flows. The vector J is tangent to the more darkly shaded
conductor boundary in Fig. 5.1. The current flows through the lightly shaded end
caps of the conductor and does not cross the darkly shaded boundary.

Fig. 5.1 Current density
vector J

1All particles of a particular species do not move at the average velocity. But we shall not conduct
a kinetic theoretical treatment here.
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We may associate a differential vector area da with the end cap, as we have
shown in Fig. 5.1. The rate at which charge passes through the differential end cap
area da is then the scalar product J�da [ C s–1]. The electrical current is the total
charge passing through the end cap, which is the integral

I D R
end cap J�da. (5.3)

If the amount of charge passing through the end cap area in time dt is dQ, then the
current can also be designated as

I D dQ

dt
; (5.4)

which is is the definition of current used in electrical circuits.

5.2.2 Charge Conservation

We now realize that Franklin’s supposition that charge is conserved is one of the
foundational physical laws. It shows no variation down to the level of elementary
particles. Our task here is to obtain a mathematical statement of charge conservation
that we can use at a macroscopic level.

We consider an arbitrary closed volume V with a surface area S . There is a
charge density � .r; t/ [ C m–3] in V and a current density J .r; t/ [ C m–2 s–1] passes
through the surface of the volume. At any instant the total charge contained in V is

Q.t/ D
Z

V
� .r; t/ dV: (5.5)

Since dS points out of the volume, the total rate at which charge is transported out
of the volume V in a time interval dt by the current density is

dQ.t/

dt

�

out
D
I

S

J � dS: (5.6)

Using (5.5) the rate of loss of the charge in V is

dQ.t/

dt

�

loss
D � d

dt

Z

V
� .r; t/ dV: (5.7)

If V does not change, i.e. if V is fixed, we can bring the time derivative inside the
integral where it becomes a partial derivative.



126 5 Magnetostatics

dQ.t/

dt

�

loss
D �

Z

V

@� .r; t/
@t

dV: (5.8)

Since charge is conserved , the charge in the volume V (5.5) can only change by
transport across the boundary. Therefore (5.8) must be equal to (5.6). That is

� RV @� .r; t//@tdV D
I

S

J .r; t/ �dS. (5.9)

Equation (5.9) is an integral statement of charge conservation. We need a
differential statement as well.

Application of Gauss’ Theorem to (5.9) yields

Z

V

�
@� .r; t/
@t

C div J .r; t/
�

dV D 0 (5.10)

for any arbitrary volume V: In (5.10) we have, an integral that always vanishes
for any arbitrarily chosen volume. This can only be true if the integrand vanishes
everywhere. Therefore

@� .r; t/ =@t C div J .r; t/ D 0. (5.11)

Equation (5.11) is the differential form of the equation of charge conservation.2

In the time independent case, (5.11) becomes

div J .r/ D 0: (5.12)

We get (5.12) from (5.6) if the surface S allows no charge to pass through it so that
I

S

J � dS D 0:

Such a surface is the dark shaded outside of the wire in Fig. 5.1. The current then
must flow in closed wire loops.

5.3 Oersted’s Experiment

We discussed Oersted’s experiments in a historical context in Sect. 1.9.1 of Chap. 1.
And we illustrated Oersted’s observation in Fig. 1.4. Our goal is now to cast these
experiments into mathematical language.

2This same equation, with J D �massvave, is that of mass conservation in fluid mechanics.
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Fig. 5.2 Cylindrical
coordinate representation of
the results of Oersted’s
experiment

Fig. 5.3 The Magnetic Field
lines form closed loops

In Fig. 5.2 we have drawn a cylindrical coordinate system .r; #; z/ in which we
may most easily represent the magnetic field lines Oersted observed. The vector B is
the magnetic field induction (see Sect. 1.11.2.2). The wire, and hence the current I ,
lies along the z� axis with current flowing in the positive Oez direction. For this case
the lines along which jBj D B is constant are concentric circles and the magnetic
field induction vector B has only an Oe# component. That is

B .r/ D B .r/ Oe# : (5.13)

We may produce magnetic fields with arbitrary geometrical forms by appro-
priately arranging wires and selecting the currents passing through them. This is
because magnetic fields resulting from currents satisfy a superposition principle as
do electric fields. We discuss this in detail in Sect. 5.6.

For example a magnetic field induction vector could have a geometrical form
such as we have drawn in Fig. 5.3.

The lines of magnetic field induction, or simply magnetic field lines, must,
however, always form closed contours, as we have shown in Fig. 5.3. This is the
result of Oersted’s experiment.

If we place a closed volume, real or imaginary, in the region shown in Fig. 5.3
the magnetic field line will then pass through the closed volume as we have shown
in Fig. 5.4.

Corresponding to every entry point of the field line there must be an exit point for
any arbitrary closed volume. Then the surface integral of the differential magnetic
flux d˚B D B�dS must vanish
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Fig. 5.4 Magnetic field line
passing through a closed
volume

I

S

B�dS D 0. (5.14)

Using Gauss’ Theorem (5.14) becomes

I

S

B � dS D
Z

V
div B dV D 0: (5.15)

That is the integral of div B over any arbitrary volume must always vanish. This can
only be true if

div B D 0. (5.16)

Equation (5.16) is Oersted’s Result and is the first of the magnetostatic field
equations.

Since
div curl � 0;

an immediate consequence of (5.16) is the fact that B can always be written as

B D curl A, (5.17)

where A is the vector potential. In the magnetostatic case A is a function only of the
spatial coordinates.

Equation (5.16) also means that there can be no magnetic monopoles. A magnetic
monopole would produce magnetic field lines that are not closed contours.

The existence of magnetic monopoles is a part of the Dirac theory of quantum
fields (cf. [28], p. 431). But these were never detected during Dirac’s lifetime.

Magnetic monopoles have possibly been recently detected in spin ices (2009)
[73]. But the detected monopoles are not those predicted by Dirac. These monopoles
seem to be an emergent (quasiparticle) phenomenon. The spin ice state is well
described by networks of aligned dipoles resembling solenoidal tubes. At the ends of
these tubes the defects appear as magnetic monopoles. The detection was by diffuse
neutron scattering with application of a magnetic field to manipulate the density and
orientation of the strings. The specific heat measurements in these spin ices, near the
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absolute zero of thermodynamic temperature, are describable as a gas of magnetic
monopoles interacting by a Coulomb interaction.

It is too early to speculate on what implications, if any, this may have for classical
field theory. At this point we shall continue to assume an absolute validity of (5.16).

5.4 Ampère’s Experiment

In Chap. 1 we pointed out that within a week of hearing Arago’s report on Oersted’s
experiment to the French Academy of Science Ampère presented a paper on
magnetism to the Academy in which he demonstrated the force between two
wires through which electric currents were passed. We presented the details of the
experiment in Fig. 1.5.

In Fig. 5.5 we present a vector diagram of the experiment.
The unit vectors Ò

1, 2 indicate the directions of the currents I1, 2, which are carried
by thin wires. The unit vector Or12 indicates the direction from wire 1 to wire 2 and
r12 is the distance between the wires. The force F12 is the force between the two
wires, which, in Fig. 5.5, is in the direction �Or12.

From Ampère’s experiment the empirical equation for the force between two
parallel wires of length ` carrying currents I1 and I2 and separated by a distance
r12, as we have illustrated in Fig. 5.5, is

F12 D �Km
I1I2`

r12
Or12; (5.18)

where Km > 0 is an empirical constant. The force F12 is attractive if the currents
in the wires are parallel (I1I2 > 0 in Fig. 5.5) and repulsive if the currents are
antiparallel (I1I2 < 0 in Fig. 5.5).

Equation (5.18) is an empirical result that can be demonstrated with moderate
care in an undergraduate laboratory if the wires are rigid, thin,3 and their separation
is not too great.

Fig. 5.5 Vector diagram
of Ampère’s experiment

3Thin is a relative term. The currents normally used are large and the wire must have a low
resistance to prevent melting.
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The result (5.18) is valid for very long thin conductors. We will implicitly assume
the wires to be very long in our analysis of the next sections. And we will implicitly
ignore the fact that the wires must form closed circuits.

In the field picture we claim that the current I1 is the source of a magnetic field
with induction B1, which we indicate in Fig. 5.5. From Oersted’s experiments we
know the form and orientation of this magnetic field. We then interpret Ampère’s
empirical result (5.18) as the force on a current I2 in a wire of length ` caused by a
magnetic field B1 produced by current I1.

The terms on the right hand side of (5.18) that refer to the current I2 and the wire
carrying that current are contained solely in the product I2`. In the field picture we
then interpret the force as a product of .I2`/ and the magnitude of the magnetic field
induction B1. Because we know, from Oersted’s experiments, that the field B1 is in
the azimuthal direction Oe# ,1 around wire I1, we can write

B1 D jB1j Oe# ,1 D Km
I1

r12
Oe# ,1 (5.19)

In the field picture the force F12 is then

F12 D �I2` jB1j Or12, (5.20)

which is perpendicular to both the magnetic field induction vector B1 and the
direction Ò

2 of the current I2. We must now resolve the direction of F12 in terms
of Ò

1, Ò
2, and Or12.

5.4.1 Direction of the Force

From Fig. 5.5 we see that we can write the unit vector �Or12 as

� Or12 D Ò
2 � Oe# ,1: (5.21)

And the unit vector Oe# ,1 is in the direction

Oe# ,1 D Ò
1 � Or12: (5.22)

Then (5.21) becomes the triple vector product

� Or12 D Ò
2 �

� Ò
1 � Or12

�
: (5.23)

With (5.23) the empirical equation for the force F12 in (5.18) can be written as

F12 D Km
I1I2

r12
`
h Ò

2 �
� Ò

1 � Or12

�i
: (5.24)
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If we use the result in (5.22) in (5.19) we find that the magnetic field induction
from current I1, which flows in the direction Ò

1, is

B1 D Km
I1

r12

� Ò
1 � Or12

�
: (5.25)

Then with (5.25) and (5.24) we see that the force of a magnetic field on a wire of
length ` in which there is a current I is

F D
�
I` Ò� � B (5.26)

where Ò is the direction of current flow.
Although we used the field picture in our discussion, the vector terms on the right

hand side of (5.24) are only unit vectors in the directions of the currents and between
the wires. None of these actually refers to a field.

5.4.2 The Constant

The constant of proportionalityKm appearing in (5.18) is can be obtained from the
definition of the unit of electrical current. The International Bureau of Weights and
Measures (Le Bureau international des poids et mesures (BIPM)) has defined the
ampere (unit of electric current).

The ampere is that constant current which, if maintained in two straight parallel conductors
of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum,
would produce between these conductors a force equal to 2 � 10�7; N of force per meter
of length.

Then, with I1 D I2 D 1 A, r12 D 1 m, and ` D 1 m, we have

F12 D Km D 2 � 10�7 N A�2: (5.27)

The constant Km is normally written as

Km D �0

2�
; (5.28)

where �0 is the permeability of free space, which, from (5.28) has the numerical
value

�0 D 4� � 10�7 N A�2: (5.29)

Then (5.24) becomes

F12 D �0

2�

I1I2

r12
`
h Ò

2 �
� Ò

1 � Or12

�i
: (5.30)
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Equation (5.30) is the final vector form of Ampère’s empirical result. It appears
formidable because of the triple vector product in the brackets Œ �.

Some authors abandon hope of obtaining detailed information from this empir-
ical equation (e.g. [12], p. 153) and some avoid the issue by beginning with the
Biot–Savart law without reference directly to the experimental details (e.g. [83],
p. 197).

Because we are developing field theory based on experiment, we shall work
with (5.30) as our fundamental experimental result and extract from it the force
on a charged particle, the form of the magnetic field from a current, and the Biot–
Savart Law for a magnetic field from a general current loop. The effort will not be
mathematically difficult and will leave us with a result that does not have glaring
gaps between experiment and theory.

5.5 Consequences of Ampère’s Experiment

5.5.1 Force on a Charge

We begin with (5.26), which gives the force on a straight wire of length ` carrying
a current I in the presence of a magnetic field with induction B.

Using (5.3) we can write

I` Ò D Ò
Z

a
J � `da D

Z

V
JdV; (5.31)

where dV D ` jdaj and Ò jJj D J for a straight wire. With (5.31) (5.26) becomes

F D
Z

V
J � BdV: (5.32)

From (5.32) we interpret
fmag D J � B (5.33)

as the magnetic force per unit volume inside the straight wire.
If we now use our particle based picture of current from equation (5.2) in (5.33)

we can find the form of the force on each charged particle.
If we consider that the particles of each species ˛ are point particles we may

represent them by ı�functions. Each of these point particles (i ) has a position,
which we designate as r(˛)

i and is moving with a velocity v(˛)
i , which may be distinct

for each particle. Then in a very small volume �V , which still contains a large
number of point particles,4 we have the particle number density

4The volume �V is infinitesimal compared to macroscopic dimensions but still contains an
enormous number of classical point particles.
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ın(˛) D 1

�V

X

all i in �V

ı
�

r � r(˛)
i

�
: (5.34)

We have designated this form of the number density as ın(˛) to indicate that
ı�functions are used for the particles. By the property of the ı�function (2.98),
the integral of ın(˛) over the volume �V is the number of particles of species ˛ in
the volume�V divided by �V , which is density n(˛) at the location of �V .

From (5.2) and (5.34) we then represent the current density in �V as

ıJ D 1

�V

X

˛

X

all i in �V

q˛v(˛)
i ı

�
r � r(˛)

i

�
; (5.35)

and we represent the magnetic force density in �V as

ıfmag D 1

�V

X

˛

X

all i in �V

q˛v(˛)
i ı

�
r � r(˛)

i

�
� B: (5.36)

The force density in the volume �V is then the integral of (5.36) over �V . Using
the integral property of the ı�function (2.98) the force density is then

fmag .�V / D 1

�V

X

˛

X

all i in �V

q˛v(˛)
i

�Z

�V

ı
�

r � r(˛)
i

�
dV 0

�
� B

D 1

�V

X

˛

X

all i in �V

q˛v(˛)
i � B; (5.37)

which is the sum of the forces on the individual particles in the volume�V divided
by the volume �V . Therefore from (5.37) we see that the magnetic force on an
individual charge q with velocity v is qv � B.

5.5.2 Field from a Straight Wire

From (5.19), with (5.28) and (5.3) the magnetic field induction from a long straight
wire at a distance r from the wire is

B D �0

2�

1

r
Oe#
Z

a
J � da: (5.38)

Because the magnitude of B in (5.38) depends only on r we can write

2�r jBj D
I

C

B � d`; (5.39)
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where C is the closed circular contour of radius r around the origin, i.e. d` D
Oe#rd# . Combining (5.38) and (5.39) we see that

I

C

B � d` D �0

Z

a
J � da (5.40)

Equation (5.40) is Ampère’s Circuital Law written for a straight wire. It is not yet
the final form of Ampère’s Circuital Law.

Using Stokes’ Theorem, (5.40) becomes

Z

a
.curl B � �0J/ � da D 0: (5.41)

Because we have obtained (5.41) for long, thin, straight wires, we cannot claim
that the integrand must always vanish for the integral to vanish. So this is not an
adequate derivation of the second magnetostatic field equation.

We shall nevertheless pursue the consequences of equation (5.41), accepting the
limitation to long straight wires. This will bring us to the Biot–Savart Law as it was
originally presented by Biot and Savart. And then we will generalize it.

5.5.3 Biot–Savart Law

If we limit considerations to the case of the magnetic field around a long, thin,
straight wire, we have from 5.41

curl B D �0J: (5.42)

Using (5.17) and (A.16) in (5.42) we have

curl curl A D grad div A � 52A D �0J: (5.43)

If we assume that div A D 0 (5.43) becomes

52 A D ��0J; (5.44)

which is a vector Poisson’s Equation.
A vector Poisson’s Equation is three Poisson’s Equations, one for each of the

components of A, i.e.
52 A� D ��0J� (5.45)

for � D 1 � 3. Each of these involves only the corresponding component of the
current density vector. If we can establish this result in general there will be a
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considerable simplification in our work. We will then have a single equation to solve
for all electrostatic and magnetostatic problems with sources.

In Sect. 5.9 we will discuss the choice of div A D 0. Here we simply introduce
our choice as an assumption.

We solved Poisson’s equation in Sect. 2.6. The solution of (5.44) is found from
the separate solutions of (5.45) and summing over components. The result is

A .r/ D �0

4�

Z

V

J0

jr � r 0jdV 0; (5.46)

where we have written J0 D J .r0/. At this stage in our development the volume V
in (5.46) includes only the central conductor carrying the current density J0.

We obtain the magnetic field from (5.46) using (5.17). Because the integral
is over primed (source) coordinates and the curl operates only on unprimed
coordinates, we can take the curl operator inside the integral in (5.46). Then using
the vector identity curl .'F/ D grad' � F C ' curl F (see(A.21)), and noting that
J 0 is a function only of the primed coordinates, we have

B .r/ D �0

4�

Z

V
grad

�
1

jr � r 0j
	

� J0dV 0

D �0

4�

Z

V
J0 � .r � r 0/

jr � r 0j3 dV 0: (5.47)

The volume V is defined by the region of space in which J0 ¤ 0, which is
the interior of a long thin conductor. The differential volume of this conductor is
dV 0 Dd`0da0, where d`0 is a differential length along the conductor and da0 is the
differential area of the conductor cross section perpendicular to the vector d`0. Since
J0 D J 0 .d`0=d`0/, we have

J0dV 0 D J 0da0d`0: (5.48)

Then, using (5.3), we can integrate over the area of the conductor in (5.47) to obtain
the current I in the conductor. Then (5.47) becomes

B .r/ D �0I

4�

Z

C

d`0 � .r � r 0/
jr � r 0j3 ; (5.49)

where C is the contour defined by the (thin) wire conductor. Similarly (5.46)
becomes

A .r/ D �0I

4�

Z

C

d`0

jr � r 0j : (5.50)

In the integrals (5.49) and (5.46) the contours are not closed. This is because we
have limited our treatment to long straight wires, as were used in Ampère’s 1820
experiment.
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Recall that we have implictly ignored the fact that someplace the circuit must be
closed. We assume that this closing of the circuit is sufficiently far from the region
we are considering that we can ignore any stray magnetic fields.

Equation (5.49), which is the curl with respect to the field coordinates of (5.50), is
the Biot–Savart Law for the magnetic field induction from a straight line conductor.
Biot and Savart first presented this as the differential magnetic field (induction) at
the point r resulting from the differential element of current Id`0 (see Chap. 1).
From (5.49) this differential field is

dB .r/ D �0I

4�

d`0 � .r � r 0/
jr � r 0j3

: (5.51)

Equation (5.51) is then the original form of the Biot–Savart Law as it was originally
presented to the French Academy of Science in 1820.

The original presentation by Biot and Savart to the French Academy was also
limited to long straight wires ([97], p. 86). We can obtain the presently accepted
form of the Biot–Savart Law by introducing a superposition Ansatz as we did in our
development of the electrostatics field equations (see Sect. 3.3).

5.6 Superposition

A superposition Ansatz was introduced in later work by Biot, Savart, and Pierre
Simon Marquis de Laplace. The final mathematical formulation was due to Laplace
([36], p. 187).

The superposition Ansatz is also a physical necessity. We pointed out that for
current confined to flow in conductors, such as wires in a laboratory, the current
density vectors J must form closed loops. In the general time independent case
@�=@t D 0. Charge conservation (5.11) then requires that div J D 0 for current
densities in more general regions of space. If div J D 0 the current density vectors
must form closed loops in these more general regions, if the situation is time
independent. Isolated lines of current simply cannot exist in the time independent
case. Therefore we must have a theory that includes curved conductors.

Basically the superposition Ansatz for the magnetostatic field is the same as
that for the electrostatic field. In both instances the Ansatz results in a field from
a sum of sources, which is equal to the sum of fields arising from each of the
sources separately. The sources of the magnetic field are, however, interconnected
differential lengths of conductors (wires) carrying currents rather than differential
volumes of charged matter. The visual pictures, therefore, differ.

In Fig. 5.6 we have an illustration of the differential magnetic field induction
dB resulting from a differential length of wire d`0 carrying a current I . This is the
situation described by (5.51). And in 5.7 we have drawn the contributions to the
magnetic field induction dB1 and dB2 resulting from two infinitesimal lengths of a
curved conductor d`0

1 and d`0
2.
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Fig. 5.6 The differential
magnetic field dB produced
by the differential length d`0

of a straight wire. The plane
in which dB lies is
perpendicular to d`0

Fig. 5.7 Two differential
magnetic fields dB1,2

produced by two differential
lengths d`1,2 of a curved wire
carrying a current. To avoid
cluttering the drawing we
have not labeled the separate
position vectors

According to the superposition Ansatz the magnetic field induction from
d`1 C d`2 is the vector sum dB1CdB2. We may use superposition in the same way to
provide a formulation for the vector potential from a general current density vector.

The drawing in Fig. 5.7 is purely illustrative. We have separated the fields dB1

and dB2 slightly because they lie in planes perpendicular to the segments d`1 and
d`2 of the conducting wire. The segments are, however, infinitesimal and changes
are not abrupt.

We have also made no attempt to draw the field resulting from superposition in
Fig. 5.7. Nor have we attempted to label all of the position vectors.

Using (5.51) the superposition Ansatz finally allows us to write

B .r/ D lim
dBj!0 and N!1

NX

j=1

dBj; (5.52)

which is the Riemann integral

B .r/ D �0I

4�

I

C

d`0 � .r � r 0/
jr � r 0j3 (5.53)
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for the entire magnetic field induction in the region of space near the now arbitrarily
curved wire. The integral in (5.53), which is the presently accepted form of the
Biot–Savart Law, is a closed contour integral.

The superposition Ansatz has allowed us to reform the volume V in (5.47) for
the very thin, straight wire of Ampère’s apparatus into the volume of a conductor
with arbitrary shape and dimensions without changing the basic mathematical form
of (5.47). In the same way (5.46) for the vector potential is also unchanged in
mathematical form, while the volume over which the integration is performed takes
on a general form. We now have

A .r/ D �0

4�

Z

V

J0

jr � r 0jdV 0 (5.54)

for any arbitrary volume V .

5.7 Multipole Expansion

In Sect. 4.5 we carried out a multipole expansion of the electrostatic field at a
large distance from a localized distribution of charge. There we pointed out that
in applications we are often not interested in calculating the potential from known
charge distributions. Rather we may have experimental measurements of dipole and
quadrupole moments from which we attempt to estimate the charge density. The
same is true here.

We may be able to measure magnetic fields at relatively large distances from
localized current densities in regions of possibly molecular size. In these situations
our interest is in finding the actual form of the current density from the field
measurements.

In the case of the electrostatic field we expanded the solution to Poisson’s
Equation for the scalar potential in terms of the size of the charge distribution
compared to the distance to the observation point r0=r . Here we will expand the
vector potential, which also satisfies Poisson’s Equation. The expansion of (5.54)
is then the same form as that we considered in Sect. 4.5. In the case of the vector
potential, however, we carry out the expansion of 1= jr � r0j only to first order in
r0=r , which is (see (4.19))

1

jr � r0j D 1

r
C r
r2

� r0

r
: (5.55)

The multipole expansion for the vector potential (5.54) is then

A .r/ D �0

4�r

Z

V
J0dV 0 C �0

4�r3
r �
Z

V
r0J0dV 0: (5.56)
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We now wish to convert the integrals on the right hand side of (5.56) to simpler
forms. Our general strategy will be to use Gauss’ Theorem and the fact that
div J D 0 in the time independent case. We will then write the integrands in terms
of a divergence.

The first integrand on the right hand side of (5.56) is simply J0, which can be
written as

Oe� div0 �x0
�J0� D Oe� grad0 x0

� � J0 C Oe�x0
� div0 J0

D Oe�J 0
� D J0 (5.57)

since div0 J0 D 0. Then, with (5.57) and Gauss’ Theorem, the first integral on the
right hand side of (5.56) is

Z

V
J0dV 0 D Oe�

Z

V
div0 �x0

�J0� dV 0

D Oe�
I

S

x0
�J0 � dS0

D 0; (5.58)

since any current on the surface of the volume V must be parallel to the surface, i.e.
perpendicular to dS. The first term on the right hand side of (5.56) then vanishes.

The second integral on the right hand side of (5.56) we shall write as

r �
Z

V
r0J0dV 0 D

Z

V
r � r0J0dV 0;

since r is a constant as far as the integration is concerned. In subscript notation the
dyadic product is

r0J0 D Oe� Oe�x0
�J

0
� :

And the scalar product of r with r0J0 is

r � r0J0 D . Oe�x�/ � Oe� Oe�x0
�J

0
�

D . Oe�/ ı��x�x0
�J

0
� : (5.59)

With (5.59) The second integral then becomes

Z

V
r � r0J0dV 0 D . Oe�/ ı��x�

Z

V
x0
�J

0
�dV 0: (5.60)

We are interested then in the integral of the product x0
�J

0
� over V 0. This we can

obtain with rather foresightful use of Gauss’ Theorem.
First we note that (A.19), with div0 J0 D 0, is
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div0 �x0
�x

0
�J0� D

h
grad0 �x0

�x
0
�

�i
� J0: (5.61)

And, since

grad0 �x0
�x

0
�

�
D Oe�x0

� C x0
� Oe�; (5.62)

we have h
grad0 �x0

�x
0
�

�i
� J0 D x0

�J
0
� C x0

�J
0
� : (5.63)

Now from (5.61) and (5.63) and using Gauss’ Theorem we have

Z

V
div0 �x0

�x
0
�J0� dV 0 D

Z

V

�
x0
�J

0
� C x0

�J
0
�

�
dV 0

D
I

S

x0
�x

0
�J0 � dS 0 D 0: (5.64)

since the current density is only parallel to the surface of the volume V .
Therefore Z

V
x0
�J

0
�dV 0 D �

Z

V
x0
�J

0
�dV

0: (5.65)

Equation (5.65) is the little gem we wanted from our foresightful use of Gauss’
Theorem.

With (5.65) we can write (5.60) as

Z

V
r � r0J0dV 0 D 1

2
. Oe�/ ı��x�

Z

V

�
x0
�J

0
� � x0

�J
0
�

�
dV 0: (5.66)

And, using the bac � cab rule,

1

2
. Oe�/ ı��x�

�
x0
�J

0
� � x0

�J
0
�

�
D 1

2
Oe�
�
x�x

0
�J

0
� � x0

�x�J
0
�

�

D 1

2



J0 �r � r0� � r0 �r � J0�

D �1
2

r � �r0 � J0� : (5.67)

Therefore

r �
Z

V
r0J0dV 0 D �1

2
r �

Z

V

�
r0 � J0� dV 0: (5.68)

The general definition of the magnetic moment of a current density is

m D .1=2/
R

V .r
0 � J0/dV0. (5.69)

And we may identify the magnetic moment density in the volume V as
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M D 1

2

�
r0 � J0� : (5.70)

This magnetic moment density in (5.70) is a result of the distribution of current in
the volume V .

With (5.58) and (5.68) our multipole expansion for the vector potential (5.56)
becomes

A .r/ D �0

4�

m � r
r3

: (5.71)

The magnetic field induction from the vector potential in (5.71) potential is (see
exercises)

B D �0

4�

h
3
�m � r
r5

�
r � m

r3

i
: (5.72)

5.8 Divergence and Curl of B

We could derive the magnetic field equations by taking the divergence and the curl
of B in (5.53). This approach would be mathematically the same as that used in
our study of the electrostatic field. However, because of its mathematical structure,
obtaining equations for the divergence and the curl of (5.53) requires tedious and
unnecessary vector manipulations. With the results of Sect. 5.6 we have an avenue
to a more elegant derivation using the vector potential in (5.54).

The first field equation
div B D 0 (5.73)

(see (5.16)) remains unaltered. The reasons for its validity have not been changed in
the discussion of Ampère’s results.

Equation (5.73) guarantees that B can be written as

B D curl A; (5.74)

where A is a vector field. According to Helmholtz’ Theorem we must also specify
div A as well. In Sect. 5.9 we show that the choice of div A is arbitrary. Once we have
specified div A the vector potential becomes a completely specified vector field and
we may work entirely with A as equivalent to B.

Because the solution of Poisson’s Equation is unique (5.54) is equivalent to the
statement

r2A D ��0J; (5.75)

where now the current density J is a general (divergenceless5) vector field quantity.
Using the vector identity (A.16) in (5.75) and choosing div A D 0 we have

r2A D � curl curl A D ��0J: (5.76)

5A vector field for which the divergence is zero is called a solenoidal vector field.
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Then with (5.74) equation (5.76) becomes

curl B D �0J (5.77)

Equation (5.77), which is Ampère’s Law, is the second magnetostatic field
equation. That (5.77) is identical to (5.42) for a long straight wire follows, since
the current density for a long straight wire is a special form of J in (5.77).

There has been no lack of mathematical rigor in our choice to use the vector
potential rather than the magnetic field induction in our derivation of (5.77). For the
interested reader, however, the field (5.73) and (5.77) are obtained from (5.47) in
Appendix C.

5.9 Gauge Transformation

The specific value we choose for div A is called the gauge. In Sect. 5.5.3 we chose
div A D 0. To keep our development of the magnetic field fluid we elected not to
discuss this choice there. We only noted that the choice div A D 0 resulted in Pois-
son Equations for both ' and A, which was a considerable simplification because we
have a solution to Poisson’s Equation. We shall now consider this question in detail.

The choice of div A is not a trivial issue. Fortunately most authors treat this
choice carefully (e.g. [87], p. 102, [58], p. 54, and [48], p. 176). We shall be careful
here as well.

The issue is one of complete determination of vector fields. We know from
Helmholtz’ Theorem that the magnetic field induction B is completely determined
by the field (5.73) and (5.77). And Oersted’s Result, expressed in (5.73), allows us
to identify B as the curl of the vector potential A. If we had no further interest in the
vector potential, however, and worked exclusively with B then A could be ignored.

But we have already used A in our derivation of the second magnetostatic field
equation. And at a later point we will consider the wave equations for the scalar and
vector potentials to be a complete representation of Maxwell’s Equations. So we
must consider the complete determination of A to be as critical as that of B.

The difficulty is that curl A D B is only one of the two field equations required
for the complete determination of A. We must have an equation for div A in order
to specify A completely.

Because curl gradf D 0 for any scalar function f whatsoever, knowing the curl
of A leaves A indeterminate to within the gradient of a scalar function. That is if

A1 D A C gradf; (5.78)
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then,

B D curl A1 D curl A C curl gradf

D curl A

We have then an infinity of possible choices for A each differing by the gradient
of a scalar potential f . And our question becomes one of specifying f . This
question will be resolved by our choice for div A.

We are dealing at this point in our development with only spatial dependencies.
The divergence of A is then at most a function of spatial coordinates. We specify
this function as g .r/. Then, since div A1 D div A, from (5.78) we have

div A1 D g .r/

D g .r/C r2f: (5.79)

Therefore
r2f D 0 (5.80)

and f satisfies Laplace’s Equation regardless of the choice of g .r/. Because the
solution to Laplace’s Equation is unique, the same result for f is obtained for any
and all choices of g .r/. And only f can have any effect on the value of A.

We have then complete freedom in our choice of g .r/ D div A. We make this
choice, therefore, on the basis of mathematical simplification of the equations for
the scalar and vector potentials. Here we have chosen what is called the Coulomb
Gauge

div A D 0; (5.81)

and the components of A satisfy Poisson’s Equation, as does '.

5.10 The Static Field Equations

In this chapter we have finished our derivation of the static field equations, which,
in differential form, are

div E D �="0 div B D 0

curl E D 0 curl B D �0J;
(5.82)

together with charge conservation for the static case

div J D 0: (5.83)
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We may integrate the divergence equations over a volume and the curl equations
over an open area defined by a contour and then apply Gauss’ and Stoke’s Theorems
to obtain the integral form of (5.82) and (5.83) as

I

S

E � dS D .1="0/

Z

V
�dV

I

S

B � dS D 0

I

C

E � d` D 0

I

C

B � d` D �0

Z

a
J � da;

(5.84)

together with charge conservation for the static case

I

S

J�dS D 0. (5.85)

The second magnetostatic field equation

I

C

B � d` D �0

Z

a
J � da (5.86)

is the final form of Ampère’s Circuital Law. The contour and the area are now
arbitrary.

The curl E and div B equations have resulted in the identification of scalar and
vector potentials ' and A which satisfy Poisson’s Equations

r2' D � 1

"0
� (5.87)

r2 A D ��0J (5.88)

provided we introduce the Coulomb gauge

div A D 0: (5.89)

The Poisson Equations for the potentials have the solutions

' .r/ D 1

4�"0

Z

V

� .r0/
jr � r0jdV 0 (5.90)

A.r/ D �0

4�

Z

V

J . r0/
jr � r0jdV 0: (5.91)

From these potentials we can calculate the electrostatic and electromagnetic fields as
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E D � grad' (5.92)

B D curl A: (5.93)

5.11 Summary

The magnetostatic field has a structural, and, hence, mathematical depth not present
in the case of the electrostatic field. If we chose we could still describe the force
between the current and the magnetic needle in Oersted’s experiment and between
the wires in Ampère’s experiment in terms of action at a distance. But the peculiar
direction of the force on the magnetic needle and of the force on a moving charge
qv � B makes the introduction of the magnetostatic field logical rather than just
convenient.

Because of the physics of the magnetic field we have found reasoning with the
vector potential to be much simpler than direct use of the magnetic field itself. The
magnetic force on currents or charges is based on the magnetic field induction. And
our intuition will be based on the magnetic field induction and not on the vector
potential. However, the vector potential will play an increasingly important role in
our development.

We introduced the Coulomb Gauge div A D 0 to guarantee that the potentials
each satisfied Poisson’s Equation. And we devoted the final section of the chapter
to an explanation of gauge and gauge transformation. We will change the choice of
gauge as we study time dependent fields and waves. But the concept will remain.

Exercises

5.1. In Chap. 1 we noted that Maxwell was able to calculate the speed of the
waves he had predicted from data obtained in the electromagnetic experiments of
Wilhelm Weber and Friedrich Kohlrausch. These data were for "0 and�0. Maxwell’s
prediction was for a wave passing through the aether with a speed of 1=

p
"0�0. You

now have values for "0 and �0 and can perform the calculation Maxwell performed,
although with probably less enthusiastic anticipation. Obtain a numerical value for
the product "0�0 and compare it to the value for the value of 1=c2, where c is
the speed of light. The value obtained by Hippolyte Fizeau in air was (3:14858 �
108 m s–1), the more accurate value found by Léon Foucault was (3:08�108 m s–1),
and the present experimental value is c D 2:99792458� 108 m s�1.

5.2. What is the magnetic induction resulting from the vector potential

A D �Oex
B

2
y C Oey

B

2
x‹

5.3. Show that the magnetic induction resulting from the vector potential
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Fig. 5.8 Magnetic induction
with z�dependence

Fig. 5.9 MHD generator

A D �Oexy
B

2
exp .Cˇz/C Oeyx

B

2
exp .Cˇz/

has the form shown in Fig. 5.8.
To discover the form of the magnetic field induction as a function of z you will

need to consider the geometrical form taken by B .x; y/ when z Dconstant. And
then you will need to ask for the size of this geometrical form for a constant value
of jBj as z increases.

5.4. In the 1960s and 1970s we were exploring many ideas for efficient and clean
energy conversion. One of these was a magnetohydrodynamic (MHD) generator that
worked on the Hall effect (see Sect. 1.9.3). We accelerated a gas thermodynamically
to high velocity and then (partially) ionized it to form a low density plasma. We
then passed this high velocity plasma into a region in which there was a uniform
magnetic field of induction B. We have drawn the situation in Fig. 5.9.

We may ignore the deflection of the ions by the magnetic field because they are so
massive compared to the electrons. You know the drift velocity ve of the electrons.
This is the flow velocity of the gas. And you know the electron density ne. The
channel width is a and the channel length in the region in which B ¤ 0 is `.

As in Hall’s experiment to determine the sign of the charges flowing in a
conductor, the magnetic force acts on the electrons, which is a non-electrostatic
force. This non-electrostatic force does work on the charges moving them to one
or the other side of the channel resulting in a potential difference. The electrical
current density in a plasma is related to the electric field by J D 	E, where 	 is
the conductivity of the plasma. It is proportional to the electron density. You may
assume that you know 	 .

(a) What is the Hall voltage, which is due to the charge separation in the direction
of the non-electrostatic force?
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(b) What is the Hall current, which is the current driven by the non-electrostatic
force?

(c) What is the power output per unit volume of the MHD generator? This is the
product of Hall current and Hall voltage. Show that the units are correct.

The channel size is limited by practical considerations. The thermodynamic
acceleration of the flow (before ionization) is produced in a nozzle after the gas
is heated. The flow will then be supersonic. The magnetic field is produced by coils
with an iron core. How would you increase MHD power? On what does the output
depend?

5.5. We can find a ı�function representation of a line current source along the
z�axis beginning with a cylinder with current density on the surface of radius ",
which is proportional to ı .r � "/, and then finding the limit as " ! 0. Then we can
use this representation in the evaluation of the vector potential from the solution of
Poisson’s Equation

A .r/ D �0

4�

Z

V

J0

jr � r 0jdV 0:

(a) Write
J D lim

"!0
I0˛ .r/ ı .r � "/ Oez

for the line current source and show that

˛ .r/ D 1

2�r
:

(b) Then use this result to show that

A D OezAz D Oez

�
I0�0

2�
ln .r/C constant

�

for a very thin wire carrying a current I0.

5.6. Show that curl A with

A D �
�0=

�
4�r2

��
m � Oer

yields
B D �

m�0=
�
4�r3�� 
 Oer2 cos
 C Oe
 sin



:

5.7. Show that Z

a
B � da D

I

C

A � d`;

where A is the vector potential and B is the magnetic field induction.
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5.8. Use the general definition of the magnetic moment

m D 1

2

Z

V

�
r0 � J0� dV 0

and the current density for the ring of wire

J D I0
1

r
ı .r �R/ ı

�

 � �

2

�
Oe#

to show that magnetic moment of the ring of current is �R2I0 in the direction
perpendicular to the plane of the wire.

[You will want to perform the calculation in spherical coordinates.]

5.9. The result of the multipole expansion of the vector potential was

A D �0

4�

m � r
r3

:

Find the general form of the magnetic field induction from this vector potential.
fAnswer: B D .�0=4�/



3
�
m � rr=r5

� � �
m=r3

�g
5.10. The long cylindrical solenoid is an example of a situation that is traditionally
considered to be very simple, but which is not if considered in detail.

(a) Show that application of Ampère’s Circuital Law to a long cylindrical solenoid
with N� turns of wire per unit length carrying a current I0 yields an axial
magnetic field induction inside the solenoid of Bz D �0N�I0 if we neglect
the magnetic field induction outside and close to the surface of the solenoid and
assume that the magnetic field induction is constant over the cross section of the
solenoid. .

(b) Show that this magnetic field induction requires a vector potential

A D Oe# �0N�I0

2
r:

(c) Show that the vector potential above requires a current density within the
solenoid of

J D �Oe# N�I0

2

1

r
:

The difficulty must be in the assumptions made in part (a). Comment on this.

5.11. The cylindrical solenoid is symmetric in azimuthal angle. So we must require
that @=@# D 0 and that there is no magnetic field induction in the Oe# .

(a) What requirements do these limitations place on @A#=@z, @Ar=@z, and @Az=@r?
(b) Show that div B D 0 requires that @A#=@z ¤ 0.



Chapter 6
Applications of Magnetostatics

Thunder in the hands of nature is electricity in the hands of
physicists.

Francois Arago

6.1 Introduction

This chapter we shall devote entirely to applications of the Biot–Savart Law and
the solution of Poisson’s Equation for the vector potential. All that we will do here
depends entirely on the results of the preceding chapter in which we developed the
basic theory of magnetostatic fields. We have chosen to separate this chapter from
the theoretical development primarily to keep the chapter lengths reasonable. We
hope that this will benefit the reader.

The integrals that appear in the Biot–Savart Law are complicated by the cross
product. This requires some care, but does not necessarily make them any more
formidable. The integrals required in the calculation of the vector potential are, in
principle, simpler than those in the Biot–Savart Law. However, we cannot stop with
the calculation of the vector potential. We must take the curl of the vector potential
to obtain the magnetic field induction. Because derivatives are sensitive to variations
in a function, this may limit some of the approximations that can be used in the
calculation of the vector potential.

The examples we have selected for this chapter are intended only to provide
an introduction into the calculation of magnetic fields and the use of current
arrangements to create fields of practical form.

6.2 Biot–Savart Law

In spite of the awkward appearance of the vector cross product in the integrand, it is
often not difficult to use the Biot–Savart Law directly to calculate the magnetic
field induction. This is particularly the case when the geometry of the current

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 6, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 6.1 ire loop of radius R
carrying a constant current I0

arrangement is simple and the general spatial dependence of the induction is not
required.

One example of a simple geometry is a ring of wire carrying a current. This is
particularly simple if we ask only for the magnetic field induction on the axis of the
ring.

Example 6.1. Magnetic Field Induction from a Wire Loop. As an example we
consider a circular loop of wire with radiusR carrying a constant current I0 and ask
for the magnetic induction B at points on the axis of the loop. We have drawn the
situation in Fig. 6.1.The position vector to the source, r0, is

r0 D Oex
�
R cos# 0�C Oey

�
R sin# 0�

and the vector to the field point is

r D Oezz:

Then
.r � r0/ D Oezz � Oex

�
R cos# 0� � Oey

�
R sin# 0�

and ˇ
ˇr � r0ˇˇ D

p
z2 CR2:

The differential length along the wire is

d`0 D Rd# 0 ��Oex sin# 0 C Oey cos# 0� :

So
d`0 � .r � r0/ D Oexz cos# 0 C Oeyz sin# 0 C OezR

Then the Biot–Savart law Chap. 5 equation (5.53) is

B .z/ D �0I0R

4�

Z 2�

0
d# 0

� Oexz cos# 0 C Oeyz sin# 0 C OezR
�

.z2 CR2/
3/2

D �0I0

2

R2

.z2 CR2/
3/2 Oez: (6.1)
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For the planar current loop in Example 6.1 the magnetic moment

m D �R2I0 Oez: (6.2)

is the product of the current in the loop I0, the area of the loop �R2, and the unit
vector Oez of the current loop. The sense of the magnetic moment is provided by the
right hand rule with respect to the direction of the current flow.

We can then write the magnetic field induction (6.1) along the z�axis as

B .z/ D �0m
2�

�
z2 CR2��3/2

:

The magnetic moment of the planar loop (6.2) is a special case of a more general
formulation of the magnetic moment

m D 1

2

Z

V

�
r0 � J0� dV 0; (6.3)

which emerged from our multipole expansion in Chap. 5. And in the exercises in
Chap. 5 we found that the identification we have made here also results from an
application of (6.3) to a current loop.

6.3 Vector Potential

As an example of the practical use of the magnetic vector potential we ask for the
vector potential for the circular wire ring of the preceding example.

Because we do not need to calculate the cross product d`0 � .r � r0/ before
performing the calculation, the integration appears less cumbersome. We require,
however, the curl of the result to find the magnetic field induction. So we must,
therefore, obtain a more complete form of the vector potential in order to use
the result to calculate the magnetic field induction. Derivatives of a function are
sensitive to any approximations we may make in evaluating the function.

If our goal is to find the magnetic field induction for a particular arrangement of
currents, basing the calculation on the vector potential is not necessarily simpler.
The role of the vector potential will, however, be increasingly important in our
development of field theory. We are not then faced with simply a personal preference
on which to base the calculation of a static magnetic field induction. We must gain
familiarity with the vector potential.

Example 6.2. Vector potential from a wire loop. We consider again a circular
loop of wire with radius R carrying a constant current I and ask for the vector
potential A in the space surrounding the loop. Because of symmetry we locate the
center of the wire loop at the origin of our coordinate system. We have drawn the
arrangement in Fig. 6.2. The current density vector is
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Fig. 6.2 Wire loop of radius R carrying a constant current I0

J D I0˛ .r/ ı .r �R/ ı
�
� � �

2

�
Oe#

in a spherical coordinate system. We have included ˛ .r/ in the definition of J to
account for any possible dependence on the radial coordinate. The differential area
in a plane perpendicular to Oe# is

da D rdrd� Oe# ;
so the current in the loop is

I0 D I0

Z C1

r=0

Z 2�

�D0
˛ .r/ ı .r �R/ ı

�
� � �

2

�
rdrd�

D I0R˛ .R/ :

Therefore ˛ .r/ D 1=r and the current density in the loop is

J D I0
1

r
ı .r �R/ ı

�
� � �

2

�
Oe# :

For clarity and ease of representation we shall write the vectors to the source and
field points in rectangular coordinates. These are the .x; y; z/ axes shown in Fig. 6.2.

Because of the rotational symmetry about the z� axis we need only consider field
points in a single plane containing the z� axis. We choose this to be the .x; z/ plane.
In this plane the field points are

r D Oexr sin� C Oezr cos�:
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The vector to the source points is the general vector

r0 D Oexr
0 sin � 0 cos# 0 C Oeyr

0 sin � 0 sin# 0 C Oezr
0 cos� 0:

Then

r � r0 D Oex
�
r sin� � r 0 sin�0 cos# 0� � Oeyr

0 sin � 0 sin# 0

C Oez
�
r cos� � r 0 cos� 0�

The form of the current density vector will limit the range of source point variables
.r 0; # 0; �0/.

The distance between field and source point is

ˇ
ˇr � r0ˇˇ D

h�
r sin � � r 0 sin � 0 cos# 0�2

C ��r 0 sin �0 sin# 0�2 C �
r cos� � r 0 cos� 0�2

i 1
2

D �
.r 0/2 C r2 � 2rr 0 cos� cos�0

� 2rr 0 cos# 0 sin � sin �0� 1
2 :

We note that the current density vector has no component in the z�direction. The
vector potential will then have no component in the z�direction.

From the diagram of the current density vector J and the components Jx and Jy

in the lower right hand corner of Fig. 6.2 we see that the current density represented
in rectangular coordinates is

J D �Oex jJj sin# 0 C Oey jJj cos# 0:

The rectangular components of the vector potential are then

Ax D �I0�0

4�

Z

V

ı .r 0 � R/ ı
�
�0 � �

2

�
sin# 0 .r 0/2 sin � 0dr 0d� 0d# 0

r 0 Œ.r 0/2 C r2 � 2rr 0 cos� cos� 0 � 2rr 0 cos# 0 sin � sin�0�
1
2

D �I0�0

4�
R

Z 2�

#0=0

sin# 0d# 0

fR2 C r2 � 2rR cos# 0 sin �g 1
2

D 0; (6.4)

and

Ay D I0�0

4�

Z

V0

ı .r 0 �R/ ı ��0 � �
2

�
cos# 0 .r 0/2 sin�0dr 0d� 0d# 0

r 0 Œ.r 0/2 C r2 � 2rr 0 cos� cos� 0 � 2rr 0 cos# 0 sin � sin�0�
1
2

D I0�0

4�

R

r

Z 2�

#0=0

cos# 0d# 0
n
1C .R=r/2 � 2 .R=r/ cos# 0 sin �

o 1
2

: (6.5)
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The integral in (6.5) is not easy to perform in general.1 We can, however, obtain
approximations for large distances from the current loop compared to the loop
radius, i.e. for R=r � 1.

Expanding part of the integrand of (6.5) we have

(

.1C
�
R

r

	2

� 2
�
R

r

	
cos# 0 sin �

)� 1
2

D 1C R

r
cos# 0 sin� C

�
R

r

	2 �
3

2
cos2 # 0 sin2 � � 1

2

	
CO

"�
R

r

	3
#

:

Then

Ay D I0�0

4�

R

r


Z 2�

#0=0
cos# 0d# 0 C R

r
sin �

Z 2�

#0=0
cos2 # 0d# 0

C
�
R

r

	2 Z 2�

# 0=0

�
3

2
cos3 # 0 sin2 � � 1

2
cos# 0

	
d# 0 CO

"�
R

r

	3
#)

D I0�0

4

�
R

r

	2

sin � CO

"�
R

r

	4
#

(6.6)

Recalling that we have used the symmetry of the problem to evaluate the
vector potential only in the plane .x; z/, we realize that this Ay is actually the
componentA# in spherical coordinates. So

A D Oe# I0�0

4

�
R

r

	2

sin� (6.7)

to within O
h
.R=r/4

i
.

We then find the magnetic field induction as

B D curl A D Oer
1

r sin �

@

@�
.A# sin �/ � Oe� 1

r

@

@r
.rA#/

D I0�0

4

"

Oer

�
R

r

	2
1

r sin �

d

d�

�
sin2 �

� � Oe�R2 sin �
1

r

d

dr

�
1

r

	#

D I0R
2�0

4r3

� Oer2 cos� C Oe� sin �
�

D m�0

4�r3

� Oer2 cos� C Oe� sin �
�

(6.8)

1Gradshteyn and Ryzhik (2.571, 7.) [34]. The integral is tabulated as a sum of a generalized
hypergeometric series and an elliptic integral of the thrid kind, provided r > 2a.
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in spherical coordinates, where m D I0�R
2 is the magnetic moment of the current

loop.

From Example 6.2 we retrieve the result found in Example 6.1 if we set � equal
to zero.

In terms of the magnetic moment m the vector potential in 6.7 is

A D
� �0

4�r2

�
m � Oer: (6.9)

And from (6.8) the magnetic induction B from a current loop, written in terms of
the magnitude of the magnetic momentm of the loop, is

B D �0m

4�r3

� Oer2 cos� C Oe� sin �
�
: (6.10)

Equation (6.10) bears some resemblance to the electric field arising from an
electric dipole pd, Chap. 4 (4.14), which we repeat here for continuity

E D pd

4�"0r3

� Oer2 cos� C Oe� sin �
�
: (6.11)

This resemblance between the magnetic moment and the electric dipole moment
has no practical implication at this point. When we discuss electric and magnetic
fields in matter in Chap. 15 this similarity will, perhaps, help our understanding as
we consider atomic properties. There we will construct our understanding of the
electric and magnetic properties of matter in part on the properties of the atoms
making up the matter.

Our present interest, however, is in constructing magnetic fields in space from
macroscopic elements. The ring of current we studied in Examples 6.1 and 6.2
is such a macroscopic element we may use to construct magnetic fields of more
general forms. The Helmholtz Coil is an arrangement of two current rings which
produces a uniform magnetic field in a region of space, which is accessible for
experiments.

Example 6.3. Helmholtz Coil. We form 2 wire coils by winding wire N times
around hoops of radius R. This results in a more practical wire loop than a single
thick wire. We then place these coils along a single axis z spacing them a distance
2a apart and, using an external power supply, cause a current I0 to flow in the wire
in each coil. The current in each coil is then NI . We have drawn this with the
lines of magnetic induction in Fig. 6.3. This arrangement is called a Helmholtz coil
(Hermann von Helmholtz).

The magnetic induction adds vectorially in the region between the two coils. The
induction from a single coil located at the origin is (6.1). For the coil at z D Ca we
have

B (+)
z .z/ D �0

�
�R2NI0

�

2�

1
�
R2 C .z � a/2

�3/2 (6.12)
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Fig. 6.3 Helmholtz coils

and for the coil at z D �a,

B.�/z .z/ D �0
�
�R2NI0

�

2�

1
�
R2 C .z C a/2

�3/2 : (6.13)

The total magnetic induction is the sum of (6.12) and (6.13), or

Bz .z/ D �0
�
�R2NcoilsI0

�

4�

2

6
4

1
�
R2 C .z C a/2

�3/2

C 1
�
R2 C .z � a/2

�3/2

3

7
5 (6.14)

In Fig. 6.4 we have plotted (6.12), (6.13) and (6.14) for selected values of
˛ D a=R. In each plot the top curve is the plot of (6.14) and the lower (crossed)
plots are for (6.12) and (6.13). The abscissa in each plot covers the distance between
the two coils.

From these plots we see that a high and relatively uniform induction is obtained
for ˛ D 0:5. That is we have solved the problem of creating a uniform and constant
magnetic field in a region accessible to an experimenter.

Another macroscopic element for constructing magnetic fields in space is the line
source of current. In our next example we calculate the vector potential from a line
current source.

Example 6.4. Vector potential from a long, thin wire. We call the constant current
I0 and choose coordinates such that the wire is parallel to the z� axis and passes
through the horizontal plane at the point .x0; y0/. We have drawn the situation in
Fig. 6.5.

The current density vector is then

J D I0˛ .x/ ˇ .y/ ı .x � x0/ ı .y � y0/ Oez:
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Fig. 6.4 Plots of magnetic
induction near the center of a
Helmholtz Coil for values of
˛ D a=R, where 2a D coil
separation and R D coil
radius

Fig. 6.5 Straight thin wire
with constant current

And the current flowing in the wire is

I0 D
Z

dxdyI0˛ .x/ ˇ .y/ ı .x � x0/ ı .y � y0/

D I0˛ .x0/ ˇ .y0/ ;

from which we see that ˛ D ˇ D 1.
The current density is then

J D I0ı .x � x0/ ı .y � y0/ Oez:

The field point is anywhere in space

r D x Oex C y Oey C z Oez

and the source point
r0 D x0 Oex C y0 Oey C z0 Oez
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is also anywhere in space, but it will be limited to points along the wire by the
current density.

The distance between the field and source points is

ˇ̌
r � r0ˇ̌ D

q
.x � x0/2 C .y � y0/2 C .z � z0/2

Using Chap. 5 (5.54) the vector potential is

A D Oez
I0�0

4�

Z

V

ı .x0 � x0/ ı .y
0 � y0/ dx0dy0dz0

n
.x � x0/2 C .y � y0/2 C .z � z0/2

o 1
2

D Oez
I0�0

4�

Z +1

–1
dz0

n
R2 C .z � z0/2

o 1
2

;

where
R2 D .x � x0/

2 C .y � y0/
2 :

Because the wire is infinitely long the vector potential is independent of z. We
may then set z equal to zero and

A D Oez
I0�0

4�
lim

L!1

Z +L/2

-L/2

dz0

fR2 C z02g 1
2

D Oez
I0�0

4�
lim

L!1 ln
�

z C
p
R2 C z02

�i+L/2

–L/2

D Oez
I0�0

4�
lim

L!1 ln

�
L=2C

q
R2 C .L=2/2

	

�
�L=2C

q
R2 C .L=2/2

	

D Oez
I0�0

4�
lim

L!1 ln

�
L2 CR2

R2

	

D �Oez
I0�0

2�
ln .R/C Oez

I0�0

2�
lim

L!1 ln .L/ :

The second term here is a constant, even though it is very large. Since we only
require the curl of the vector potential to obtain the magnetic field, we may then
drop this constant as of no importance. The vector potential from a very long wire
passing through the point .x0; y0/ is then

A D �Oez
I0�0

4�
ln
h
.x � x0/

2 C .y � y0/
2
i
: (6.15)
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In our next example we obtain the magnetostatic field induction from the vector
potential (6.15).

Example 6.5. Magnetic induction from a long, thin wire. For simplicity, since
we have a single wire, we choose x0 D y0 D 0, so that the wire passes through the
origin. From the preceding example the vector potential is then

A D �Oez
I0�0

2�
ln .r/ :

And the magnetic field is

B D curl A

D Oe# I0�0

2�

d

dr
ln .r/

D Oe# I0�0

2�r
: (6.16)

Equation (6.16) is identical to what we originally deduced from Ampère’s
experiment in Chap. 5 (5.39).

6.4 Summary

In this chapter we have provided an introduction to the use of the Biot–Savart Law
and the solution of Poisson’s Equation for the vector potential. We have not intended
that our treatment be exhaustive. We have considered two important building blocks
for the construction of magnetic fields in space. And we have considered the use of
current rings to form the Helmholtz Coil.

The importance of this chapter is primarily in what the reader will gain in
familiarity with magnetic fields and their geometry.

Exercises

6.1. Consider a thin strip of metal of width w and very long. The current in the
strip is uniform and directed along its length; the total current is I . Find the vector
potential using the result of the example in the text for the vector potential from a
thin wire with a constant current. Construct the metal strip of thin wires. You will
need to define a current per unit width of the strip and integrate.

6.2. Using the vector potential found for the metal strip in the preceding exercise
obtain the magnetic induction arising from the metal strip with a constant current.

Show that when x; y � w that the magnetic field becomes circular.
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6.3. Use the Biot–Savart result for the magnetic field on the axis of a loop of wire
with a constant current to obtain the magnetic induction near the center of a long
solenoid of radius R and length L with N windings and a current I0. For a long
solenoid R=L � 1.

[Answer: Oez�0N�I0 if R=L � 1]

6.4. In elementary texts it is shown that the magnetic field induction inside a long
cylindrical solenoid is

B D Oez�0N�I0;

whereN� is the number of wire windings per unit length around the solenoid and I0

is the current in the wire. Using the integral relationship you found in the preceding
exercise obtain the vector potential inside the solenoid required for this magnetic
field induction. The inner radius of the cylindrical solenoid is R.

Show that the curl of your result for A does produce the required constant
magnetic field induction above.

[Answer: A D Oe# .�0N�I0=2/ r]

6.5. From Poisson’s Equation find the current density that results in the vector
potential you found in the preceding exercise.

Comment on the relationship between this current density and that in the
solenoid.

6.6. We can find the way in which the magnetic field induction varies with small
axial displacements near the center by integrating dB in exercise 6.3 from a length
of �L1 to CL2. The solenoid will then have a length of L D L1 C L2 and the
lengthsL1 and L2 will measured from a point on the z�axis slightly displaced from
the center of the solenoid as shown in Fig. 6.6.

Find the magnetic field induction as a function of cos#2 and cos#1.
[Answer: B D Oez

�0N�I0
2

.cos#2 C cos#1/]

6.7. Since L1 D L� z and L2 D LC z, the result from the preceding exercise can
be used to obtain the axial magnetic field induction as a function of z near the center
of the solenoid, i.e. for small z.

Fig. 6.6 Long cylindrical solenoid
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[Answer: B D Oez�0N�I0 cos#0

�
1 � 3

2
R2z2=

�
L2 CR2

�2
�

where cos#0 D
L=

p
L2 CR2]

6.8. Use the result from the preceding exercise and the fact that div B D 0 to obtain
the radial component of the magnetic field induction near the center of the solenoid.

[Answer: Br D 3
2
�0N�I0 cos#0R

2zr=
�
L2 CR2

�2
]

6.9. From the results of the preceding the magnetic field induction within a long
solenoid with N� windings per unit length carrying a current I0 is

B D Oez
�
B0 � B1z2�C Oer .B1zr/

where
B0 D �0N�I0 cos#0

B1 D 3

2
�0N�I0 cos#0

R2

.L2 CR2/
2 :

Although we would normally calculate the magnetic field induction from the vector
potential, we may also find the vector potential, if we so choose, from the magnetic
field induction. That is from B D curlA. For the case of cylindrical symmetry, the
curl results in

curl A D �Oer

�
@A#

@z

	
C Oez

1

r

�
@

@r
.rA#/

�
:

Then
@A#

@z
D �B1zr

and
1

r

@

@r
.rA#/ D B0 � B1z2:

These two equations can be integrated to obtain A# . We must only realize that
integration of partial differentials results in arbitrary functions of r and z. Perform
the integration to find A# .

[Answer: A# D 1
2
B0r � 1

2
B1z2r]

6.10. You have a hollow plastic ball of radius a, which can be separated into two
hemispheres. Around each hemisphere you have wrapped insulated wire as tightly
as possible. At the equatorial end of each wire you have plugs. You can then fasten
the two hemispheres together and plug the wires together to have a continuous
wrapping around the plastic ball.

You have been careful in the wire winding so that when the hemispheres are
joined the wire winding is continuous between the hemispheres, i.e. the winding
does not reverse direction. There are N total windings around the hollow plastic
ball completely covering its surface.

In Fig. 6.7 we have drawn the hollow ball with a quadrant cut away. The cross
sections of the wires are represented by the dots. We have not drawn the plugs at the
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Fig. 6.7 Hollow plastic ball
with wire winding

equator nor the wires from the top and bottom to the power supply for the current.
The current in the winding is I0.

Using the magnetic induction from a single loop determine the magnetic
induction at the center of the sphere.

6.11. Use the fact that div B D 0 to get an approximate expression forBr (the radial
component of the magnetic induction) that is valid for points very near the axis of a
wire loop of radius a and a constant current I0.

6.12. Use the vector potential for the wire loop

A D
� �0

4�r2

�
m � Oer

to obtain the magnetic induction B for the loop, written in terms of the magnitude
of the magnetic momentm of the loop, as

B D �0m

4�r3

� Oer2 cos� C Oe� sin �
�
:

It will be easiest to first find the the product m � Oer in spherical coordinates and use
the curl in spherical coordinates in the Appendices.

6.13. In an example in the text we found the vector potential for a long, straight
wire carrying a current I0. You place two wires parallel to each other and a distance
2a apart. You then connect the two wires in series in a circuit with a single battery so
that the same current, again I0 flows through each wire, but in opposite directions.
What is the magnetic vector potential for this arrangement of wires in terms of the
distances r2 and r1 from the field point to the wires in a plane perpendicular to the
wires?

6.14. Laboratory measurements are of magnetic field induction and not of the
vector potential. The results of the preceding exercise provided the vector potential
for an arrangement of two parallel wires carrying currents of equal magnitude in
opposite directions. Find the magnetic field induction in a plane perpendicular to
these wires when the current in each is I0.
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Fig. 6.8 Soft conductor with
hole for rigid mounting rod

In the laboratory you cannot make measurements an infinite distance from
infinite parallel wires. But your mathematical result can be used to predict what
such a measurement would yield. Measurements made an infinite distance from the
parallel wires will be those obtained in the limit as a ! 0 in your expression for B.
What is this result? Does this make logical sense?

6.15. In an experiment you must mount a cylindrical conductor with radius b, that
is not negligibly small, horizontally. The conductor will be made of a soft material
and will bend. You are unable, because of the experimental design, to support the
soft conductor using external mountings. Your solution to the structural problem
is to form the cylindrical conductor with a rigid rod of nonconducting material of
radius a running axially down the conductor with center a distance s from the center
of the conductor. We have drawn the soft conductor in Fig. 6.8. What effect will
this solution have on the magnetic field geometry? In your experiment you are,
fortunately, only interested in the field directly below the conductor. So you only
need to calculate the field at a point r > b along the radius.

[Note: This is an exercise in the use of superposition.]





Chapter 7
Particle Motion

I regarded as quite useless the reading of large treatises of pure
analysis: too large a number of methods pass at once before the
eyes. It is in the works of application that one must study them;
one judges their utility there and appraises the manner of
making use of them.

Joseph Louis Lagrange

7.1 Introduction

The motion of charged particles in electric and magnetic fields is never appropri-
ately separated from a study of the fields. Plasma physics, with applications in
astrophysics and thermonuclear fusion, is an integral part of modern physics. In
this chapter we will introduce the treatment of the motion of charged particles in the
presence of electric and magnetic fields as a branch of analytical mechanics.

7.2 Analytical Mechanics

7.2.1 Euler–Lagrange Formulation

Joseph Louis Lagrange published the formulation which we shall use in 1788 under
the title of Analytical Mechanics (Mécanique Analitique) [56]. To emphasize that he
had abandoned the awkward methods of geometry used by Newton, Lagrange wrote
that “this book contains no diagrams”. The formulation of the laws of mechanics
appeared in the form of a variational principle.

The roots of this formulation lie in the ideas of Pierre-Louis Moreau de
Maupertuis (1698–1759) and Leonard Euler (1707–1783) [26].

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 7, © Springer-Verlag Berlin Heidelberg 2012
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The variational principle states that the functional

SD R t2
t1

dtL.fqg ; f Pqg ; t/, (7.1)

has an extreme value when the (generalized1) coordinates fqg and velocities f Pqg
satisfy the so-called Euler–Lagrange Equations [31], which are equivalent to
Newton’s laws.

Remark 7.1. Because generalized coordinates are traditionally designated as q, and
the letter q is normally used to indicate the charge on a particle, throughout this
chapter we will use Q as the designation of charge on a particle.

Dots will be used throughout this chapter to indicate differentiation with respect
to time. This is a standard notation.

The function
L.fqg ; f Pqg ; t/ D T .f Pqg/ � V .fqg/

is the Lagrangian. It is equal to the difference between the kinetic (T ) and
potential (V ) energies of the particle. Because the kinetic and potential energies
are usually easy to write down, the Euler–Lagrange formulation is much simpler
than a direct application of Newton’s laws. The Euler–Lagrange formulation is also
that appropriate to relativistic mechanics.

The Euler–Lagrange equations are the differential equations

�
@

@qr
� d

dt

@

@ Pqr

�
L.fqg ; f Pqg ; t/ D 0 (7.2)

for each coordinate qr. For a single particle moving in a potential V .q/, the
Lagrangian is L D .1=2/m Pq2 �V .q/. The Euler–Lagrange equation for this single
particle is then

�@V
@q

� d

dt
m Pq D 0;

which is Newton’s Second Law.
From here it is a short mathematical step to the formulation of (Sir) William

Rowan Hamilton, which results in the canonical, or fundamental equations. We will
base our treatment on the canonical equations.

7.2.2 Hamiltonian Formulation

The mathematical step is to perform a Legendre Transformation ([40], p. 51) of
the Lagrangian. The Legendre Transformation exchanges one set of independent

1Generalized here implies that the coordinates may include constraints.
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variables for another, which is obtained from a derivative of the original function.
The transformation then preserves information and adds nothing extraneous.

In the transformation of the Lagrangian to the Hamiltonian the dependence on
the velocities f Pqg is exchanged for a dependence on the canonical momenta fpg
defined as pr D @L=@ Pqr. In many applications the canonical momenta are simply
pr D m Pqr. This is not, however, the case for the motion of a charged particle in an
electromagnetic field.

The Hamiltonian is defined as

H .fqg ; fpg ; t/ D @L

@ Pq� Pq� � L

or
H .fqg ; fpg ; t/ D p�q̇��L, (7.3)

where we use the Einstein summation convention.
The canonical equations are

q̇� D @H=@p� (7.4)

and
ṗ� D �@H=@q�. (7.5)

We see that these are first order differential equations in the time t . This is a major
advantage particularly in the study of particle motion in an electromagnetic field.

7.3 Electrodynamics

7.3.1 The Langrangian

The simplest approach is to claim that the Lagrangian for a charged particle of mass
m and charge Q2 moving in a electromagnetic field with a scalar potential ' and a
vector potential A is

L D .1=2/mq̇�q̇� �Q' CQA�q̇�, (7.6)

where ' is the electrical (scalar) potential andA� is the�th component of the vector
potential. We recognize the first two terms here as the standard kinetic and electric
potential energies. The third term is the source of the magnetic field force.

2Our use of capital Q to designate charge, rather than lower case q, is a result of the fact that the
latter is traditionally used to designate generalized coordinate, as we do here.
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We can convince ourselves that (7.6) is the correct Lagrangian if we obtain the
Euler–Lagrange equations from this Lagrangian and compare them with Newton’s
Second Law for a charge moving in a region in which there are constant electric and
magnetic fields.

By partially differentiating the Lagrangian (7.6) with respect to Pq� we find that
the �th component of the canonical momentum is

p� D @L/@q̇� D mq̇�CQA�. (7.7)

Since the A� are independent of time, the time derivative of p�, defined in (7.7), is

d

dt
p� D d

dt

�
m Pq� CQA�

�

D m Rq�: (7.8)

Partially differentiating the Lagrangian (7.6) with respect to the coordinate q� we
have

@L

@q�
D �Q @'

@q�
CQ

@A�

@q�
Pq�: (7.9)

The Euler–Lagrange equations are then

m Rq� D @L

@q�

D �Q @'

@q�
CQ

@A�

@q�
Pq�: (7.10)

The first term on the right hand side of (7.10) is the product of the electric charge
and the �th component of the electric field. To show that

Q
@A�

@q�
Pq� D Q.v � B/�

requires some vector analysis, but is straightforward (see exercises). The Euler–
Lagrange equations (7.10) are then

m Rq� D �Q @'

@q�
CQ

@A�

@q�
Pq�

D QE� CQ.v � B/� : (7.11)

The right hand side of (7.11) is the �th component of the Lorentz Force, which
is the force acting on a charged particle in an electromagnetic field. Therefore our
Lagrangian has produced the accepted form of the equations of motion of a charged
particle in the presence of combined electric and magnetic fields.
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7.3.2 The Hamiltonian

With the canonical momenta (7.7), the Hamiltonian (7.3) for the charged particle in
the electromagnetic field is

H D .1=2m/
�
p� �QA�

�2 CQ', (7.12)

which is a function only of the coordinates, through ' and A�, and the canonical
momenta.

The canonical equations are

Pq� D @H
@p�

D 1

m

�
p� �QA�

�
; (7.13)

which is simply (7.7), and

Pp� D � @H
@q�

D � 1

m

�
p� �Q

dA�
dq�

�
�Q

@'

@q�
: (7.14)

The canonical (7.13) and (7.14) will be those on which we will base our study
of the motion of charged particles in an electromagnetic field. These are coupled
first order differential equations, which are easier to deal with than the second order
equations resulting from Newton’s Second Law.

7.4 Particle Motion

We will consider the motion of single charged particles in magnetic and
combinations of electric and magnetic fields by means of examples. Some examples
we will be able to treat analytically, but some of the more interesting will require
numerical solution. The analytic solutions will be simplified through the use of
complex valued functions.

7.4.1 Magnetic Fields

The first example we consider is the motion of a charged particle in the presence of
a constant and uniform magnetic field with induction B. We shall assume that the
initial particle velocity is perpendicular to the magnetic field so that motion is in a
plane perpendicular to B.
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Example 7.1. Motion in a Uniform Magnetic Field. We consider a particle of
chargeQ and massm in a uniform magnetic field of inductionB , which we choose
to be oriented along the z�axis. We consider that the particle is released from the
point x D R, y D 0 with a velocity in the negative Oey direction.

In the exercises of Chap. 5 we showed that a uniform constant magnetic field
with induction B D OezB results from the vector potential

A D �Oex
B

2
y C Oey

B

2
x: (7.15)

The Hamiltonian for a particle with charge Q and mass m moving in this uniform
magnetic field is then

H D 1

2m

�
px Cm

˝

2
y

�2
C 1

2m

�
py �m˝

2
x

�2
; (7.16)

where˝ D QB=m is the cyclotron frequency.3

The canonical equations are

Px D @H
@px

D 1

m

�
px Cm

˝

2
y

�
;

Py D @H
@py

D 1

m

�
py �m

˝

2
x

�
;

Ppx D �@H
@x

D ˝

2

�
py �m

˝

2
x

�
;

Ppy D �@H
@y

D �˝
2

�
px Cm

˝

2
y

�
: (7.17)

We can simplify the (7.17) by defining the complex valued functions

Z D x C iy (7.18)

and
PZ D px C ipy: (7.19)

Then, using (7.17), we obtain differential equations for Z

PZ D 1

m

�
px C ipy

� � 1

2
˝ .ix � y/

D 1

m
PZ � 1

2
˝iZ (7.20)

3˝ D QB=m is the frequency of gyration of a charge Q with mass m in a cyclotron.
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and for PZ

PPZ D �1
2
˝
�
ipx � py

� �m

�
1

2
˝

�2
.x C iy/

D �1
2
˝iPZ �m

�
1

2
˝

�2
Z: (7.21)

These equations are linear, first order differential equations with constant coeffi-
cients. Such equations are solved by exponentials.

We then choose as solutions

Z D QZ exp .˛t/

PZ D QPZ exp .˛t/ : (7.22)

This choice is an Ansatz. We choose our solutions to be of the form (7.22) and
then ask for the requirements imposed by (7.20) and (7.21) for this Ansatz to be
valid.

With the solutions (7.22) (7.20) and (7.21) become

˛ QZ D
�
1

m

�
QPZ � 1

2
˝i QZ (7.23)

and

˛ QPZ D �1
2
˝i QPZ �m

�
1

2
˝

�2
QZ: (7.24)

Equations (7.23) and (7.24) are linear algebraic equations for QZ and QPZ. In matrix
form (7.23) and (7.24) are

2

66
6
4

�
�
1

2
˝i C ˛

�
1

m

�m
�
1

2
˝

�2
�
�
1

2
˝i C ˛

�

3

77
7
5

� QZ
QPZ

�
D
�
0

0

�
(7.25)

The linear (7.25) have non-trivial solutions only when the determinant of the
coefficients vanishes. That is

det

2

6
66
4

�
�
1

2
˝i C ˛

�
1

m

�m
�
1

2
˝

�2
�
�
1

2
˝i C ˛

�

3

7
77
5

D i˝˛ C ˛2 D 0: (7.26)
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This is the condition on ˛ that results from our Ansatz. That is, we must have either
˛ D 0, in which case the charge is not moving, or

˛ D �i˝:

We choose the latter as the only truly nontrivial solution.
Our functionsZ and PZ are then

Z D QZ exp .�i˝t/
D QZ .cos .˝t/ � i sin .˝t// (7.27)

and

PZ D QPZ exp .�i˝t/
D QPZ .cos .˝t/ � i sin .˝t// ; (7.28)

where we have used Euler’s Identity4 (see exercises)

exp .i#/ D cos# C i sin#: (7.29)

If we put the value we have for ˛ .D �i˝/ into (7.25) we can obtain the
relationship between QZ and QPZ. That is

2

6
6
4

1

2
˝i

1

m

�m
�
1

2
˝

�2
1

2
˝i

3

7
7
5

� QZ
QPZ

�
D
�
0

0

�
; (7.30)

from which we find that
QPZ D �i m˝

2
QZ: (7.31)

To obtain the value of QZ we use the initial conditions.
At time t D 0 we have

x .t D 0/ D ReZ .t D 0/ D R;

and
y .t D 0/ D ImZ .t D 0/ D 0:

From (7.27) we have
Z .t D 0/ D QZ:

4Leonhard Euler (1707–1783) was a Swiss mathematician who spent most of his life in Germany
and Russia. He is known as the “Mozart of Mathematics.”
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Therefore Re QZ D R and Im QZ D 0. That is QZ D R, and is real. The solution (7.27)
is then

Z .t/ D R .cos .˝t/ � i sin .˝t// ;

And, from (7.18), the coordinates are

x .t/ D Re .Z/ D R cos .˝t/

y .t/ D Im .Z/ D �R sin .˝t/ ; (7.32)

From (7.31) and QZ D R we have

QPZ D �i m˝
2
R;

which is imaginary. The solution (7.28) is then

PZ .t/ D �m˝
2
R sin .˝t/ � i m˝

2
R cos .˝t/ :

And, from (7.19), the canonical momenta are

px .t/ D �m˝
2
R sin .˝t/

py .t/ D �m˝
2
R cos .˝t/ : (7.33)

Recall from (7.7) that the definitions of the canonical momenta include the vector
potential and are not simply products of mass and velocity.

The resultant motion is circular at a constant angular velocity � Oez˝ . This motion
is clockwise around the z�axis if Q is positive. The Lorentz Force is

F D Qv � B

D �QBv Oe# � Oez D �QBv Oer;

which is toward the center of the circular orbit.

In the next example we consider a magnetic field that varies in the z�direction.
This will result in a mirror-like effect on the motion of the charge.

Example 7.2. Motion in a Non-uniform Magnetic Field. We consider the motion
of a charge in a region of space in which there is a non-homogeneous magnetic
field5 with

A D �Oexy
B

2
exp .az/C Oeyx

B

2
exp .az/ (7.34)

5The vector potential must have zero divergence in the static case, i.e. div A D 0. This is true for
the potential given.
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Fig. 7.1 Magnetic field
induction B from the vector
potential
A D �Oexy

B
2

exp .az/C
Oeyx

B
2

exp .az/

The magnetic induction for this vector potential is found in the exercises in Chap. 5.
The result is

Bx D �x
�
a
B

2

�
exp .az/

By D �y
�
a
B

2

�
exp .az/

Bz D B exp .az/ :

This magnetic field induction has the form shown in Fig. 7.1.
The Hamiltonian is

H D 1

2m

"�
px C QB

2
y exp .az/

�2
C
�
py � QB

2
x exp .az/

�2#

C 1

2m
p2z :

With ˝ D QB=m the canonical equations are

:
x D @H

@px
D 1

m
px C 1

2
˝y exp .az/

:
y D @H

@py
D 1

m
py � 1

2
˝x exp .az/

:
z D @H

@pz
D 1

m
pz

:
px D �@H

@x
D 1

2
˝

�
py � 1

2
m˝x exp .az/

�
exp .az/

:
py D �@H

@y
D �1

2
˝

�
px C 1

2
m˝y exp .az/

�
exp .az/

:
pz D �@H

@z
D �1

2
˝a

��
px C 1

2
m˝y exp .az/

�
y

�
�
py � 1

2
m˝x exp .az/

�
x

�
exp .az/ : (7.35)
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Fig. 7.2 Motion of a charge
in a spatially varying
magnetic field. Trajectory on
the left is for positive charge,
on the right is for negative
charge

This set of six first order equations is complicated by the presence of the
z�dependence in the magnetic field. The solution must be obtained numerically.
But the numerical solution of (7.35) is not difficult with the mathematical packages
that are presently available.

The advantage of the first order canonical equations is that a Runge-Kutta
algorithm6 can be applied directly. We obtained the particle trajectory from a
numerical integration of the canonical (7.35) using a Runge-Kutta algorithm on
Maple 12. In the numerical solution we released the charged particle on the x�axis
at x D 1 with a momentum in the y�and z�directions. The result was the trajectory
shown in Fig. 7.2.

In Fig. 7.2 we have plotted results for both positive and for negative charges. The
charges spiral along the magnetic field lines moving in the positive z�direction until
they are deflected and then they spiral out with growing radius along the negative
z�direction. The top images are for a small initial momentum and the bottom for a
larger initial momentum.

We see a reflection for both charges. The larger momentum makes the spiral of
the charge more evident. These results show that we can create a magnetic mirror
which will reflect the charges of either sign.

Example 7.3. Magnetic Bottle. If we arrange two magnetic mirrors opposed to one
another we can create a magnetic bottle as we have shown in Fig. 7.3. In the left
panel of Fig. 7.3 we show the magnetic field required to produce the magnetic bottle
and in the right panel we show the motion of a charged particle in the magnetic

6These very important numerical techniques for the solution of first order differential equations
were developed around 1900 by the German mathematicians C. Runge and M.W. Kutta.
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Fig. 7.3 Magnetic bottle to trap charges in a region of space. The magnetic field arrangement is
shown in the left panel and the motion of the charged particle is shown in the right panel

bottle. The charged particle undergoes a spiral motion and is reflected at each end
of the magnetic bottle.

It is not difficult to create any magnetic field geometry we choose by the external
arrangement of coils carrying constant currents. A magnetic field with the spatial
structure of Fig. 7.3 can be produced. Magnetic bottles of this basic type were used
in some early experiments on magnetic confinement of fusion plasmas. Problems of
plasma leakage and instabilities have made these types of bottles impractical. Most
modern magnetic confinement uses toroidal geometries.

7.4.2 Electric and Magnetic Fields

If we add an electric field perpendicular to the magnetic field both the electric and
the magnetic forces will be in the same plane. The result must then be a distortion
of the circular motion we found for the uniform magnetic field.

Example 7.4. Motion in Perpendicular Fields. We consider the motion of a
charged particle in a region of space in which there is a uniform magnetic field
with induction B D OezB and a uniform electric field E D OeyE .

For a static magnetic field with induction B D OezB the vector potential is (7.15).
And for an electric field E D OeyE the electrostatic potential is

' D �Ey:
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The Hamiltonian is then

H D 1

2m
.px �QAx/

2 C 1

2m

�
py �QAy

�2 �QEy

D 1

2m

�
px Cm

˝

2
y

�2
C 1

2m

�
py �m˝

2
x

�2
�QEy: (7.36)

where˝ D QB=m.
Motion is then entirely in the .x; y/ plane.
The canonical equations are

Px D 1

m

�
px Cm

˝

2
y

�

Py D 1

m

�
py �m

˝

2
x

�

Ppx D ˝

2

�
py �m

˝

2
x

�

Ppy D �˝
2

�
px Cm

˝

2
y

�
CQE (7.37)

We again simplify the problem if we introduce the complex variablesZ andPz as
defined in (7.18) and (7.19). We can then combine the Canonical equations to give

PZ D 1

m

�
px C ipy

� � i 1
2
˝ .x C iy/

D 1

m
PZ � i 1

2
˝Z: (7.38)

and

PPZ D �1
4
m˝2 .x C iy/ � i 1

2
˝
�
px C ipy

�C iQE

D �1
4
m˝2Z � i 1

2
˝PZ C iQE; (7.39)

We must then solve (7.38) and (7.39) simultaneously.
In mathematical terms we now have a set of nonhomogeneous equations because

of the presence of the electric field term CiQE in (7.39).
We see from the set of canonical (7.37) that the termQE appears in the equation

for Ppy, which can be written as

Ppy D �˝
2
m Px CQE:
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It seems then that QE is related to a velocity in the Oex direction. The x�coordinate
is the real part of Z. We, therefore, choose to write

Z D Z0 C v0t; (7.40)

where Z0 is the solution for motion in only the magnetic field. Using (7.38) the
function PZ becomes

PZ D m PZ C im

�
˝

2

�
Z

D
�
m PZ 0 C im

�
˝

2

�
Z0
�

C mv0 C im

�
˝

2

�
v0t: (7.41)

From the first two of the canonical (7.37) we see that

PZ D m PZ C im

�
˝

2

�
Z; (7.42)

whether or not an electric field is present. Therefore, with (7.42), we may write
(7.41) as

PZ D P 0
Z C mv0 C im

�
˝

2

�
v0t: (7.43)

Equations (7.40) and (7.43) are then our proposed solutions, i.e. our Ansatz.
Putting (7.40) and (7.43) into (7.38) and (7.39) we have

PZ0 D 1

m
P 0

Z � i
˝

2
Z0: (7.44)

and

PP 0
Z D �m

�
˝

2

�2

Z0 � i ˝
2
P 0

Z � i˝mv0 C iQE: (7.45)

Since we are requiring that Z0 and P 0
Z satisfy the equations for motion in a

uniform magnetic field alone, (7.44) is an identity, and (7.45) becomes

� i˝mv0 C iQE D 0: (7.46)

For the equations of motion in a magnetic field alone see Example 7.1 (7.20) and
(7.21).

From ((7.46) we have

v0 D QE

m˝
D E

B
: (7.47)

Our Ansatz has then provided a correct solution. The motion is a combination
of circular motion and a uniform translation in a direction perpendicular to both the
electric and the magnetic fields. The translation velocity is v0 D E=B . Specifically
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Fig. 7.4 Trajectory of a
charge in crossed electric
E and magnetic B fields.
Trajectory is cycloidal

Fig. 7.5 Three cycloidal
forms the trajectory can take.
The tracing spot is
emphasized on each radial
arm

x .t/ D Re .Z/ D R cos .˝t/C E

B
t

y .t/ D Im .Z/ D �R sin .˝t/

This motion is cycloidal as we have shown in Fig. 7.4.
There are three cycloidal forms which the trajectory can take. These are plotted

in Fig. 7.5. Each of these cycloidal forms is traced by a spot on the radial arm of a
rolling disk. The prolate cycloid is traced by a spot on the radial arm at a distance
greater than the radius from the center of the disk. The cycloid is traced by a spot
at the circumference of the disk. And the curtate cycloid is traced by a spot at a
distance less than the radius from the center of the disk.
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Each of these three forms of the trajectory will result depending upon the
magnitude of the translational velocity v0 D E=B (see exercises). The drift is in
the direction of E � B.

7.5 Plasmas

A plasma is an ionized gas. Low temperature plasmas, with temperatures of the
order of 103 K, consist of ions, electrons, and neutral atoms. The greatest interest in
plasmas at the end of the twentieth and the beginning of the twenty-first centuries
has been in thermonuclear fusion.

Thermonuclear fusion is the process by which hydrogen is converted into atoms
of higher atomic number in stars. The hope is to produce a controlled thermonuclear
fusion reactor on the earth’s surface.

One of the most promising fusion energy sources is from the deuterium-tritium
(D-T) fuel cycle. Deuterium (2

1D) and tritium (3
1T) are isotopes of hydrogen with one

and two neutrons respectively. These are sometimes referred to as hydrogen-2 and
hydrogen-3. The D-T fusion reaction is

2
1D C3

1 T !4
2 He .3:5 MeV/C1

0 n .14:1 MeV/ : (7.48)

In (7.48) we have indicated the kinetic energies of the products in parentheses. At
the temperatures required for the D-T reaction (about 800 � 106 K) the plasma is
fully ionized.

A detailed description of the plasma begins with an approach developed by Yurii
Klimontovich ([53], pp. 409–488). In the Klimontovich approach the plasma density
is represented by a sum of ı�functions. For the N particles of the species ˛, for
example,

N˛ .r;p; t/ D
N˛00X

i=1

ı .r � ri˛ .t// ı .p � pi˛ .t// ; (7.49)

where N˛00 is the number of particles of the species ˛ and the trajectory of the
i th particle of the species ˛ is fri˛ .t/ ;pi˛ .t/g. The trajectories of each of these
individual charged particles are determined by the electric and magnetic fields at
the instantaneous location of the particle. These fields are in turn determined by
the charged particles themselves through the field equations. No approximations are
made regarding interactions among particles.

The equation of motion for the Klimontovich density (7.49) is

@

@t
N˛ C 1

m
p � gradN˛ C FL � gradpN˛ D 0: (7.50)
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where FL is the Lorentz Force

FL D Q

�
E C 1

m
p � B

�
: (7.51)

The fields E and B include externally imposed fields as well as those resulting from
the particles. The Klimontovich description contains then a complete (classical)
description of the plasma in which the particles are represented by ı�functions.

We may obtain a higher level description in terms of measured quantities by
ensemble averaging (7.50) and the field equations ([40], pp. 159–160). If we
consider the Lorentz Force to result only from ensemble averaged fields (a mean-
field approximation) then the ensemble average of (7.50) results in what is called the
Vlasov Equation, which has the appearance of a “collisionless” kinetic equation.7

When the plasma phenomena of interest occur on time scales larger than the
period of rotation of the particles about the magnetic field lines (i.e. the frequency
of interest is smaller than the gyro-frequency), and when the particle gyro-radius
is small compared with the spatial variation of the background magnetic field, then
the actual gyro-motion of a charged particle as it moves along the field line, which
we have shown in Fig. 7.6, can be approximated by the motion of a charged ring,
which we have shown in Fig. 7.7. This simple picture, which ignores the detailed
gyro-motion, signals the beginning of the modern gyrokinetic theory, which has had
profound influence in both analytical and numerical understanding of the behavior
of magnetized fusion plasmas (see e.g. [55, 60–62]).

We discuss these modern advances in plasma physics to show the importance
of an understanding of individual charged particle motion to the most advanced
topics in plasma physics. The gyrokinetic approach to the physics of fusion plasmas
replaces the very complex equations of the general Klimontovich theory with a
theory based on the Vlasov and Poisson equations. At the time of this writing the
gyrokinetic theory is being applied to studies of plasma turbulence.

Fig. 7.6 Gyromotion of a
charged plasma particle
around a magnetic field line

Fig. 7.7 Gyrokinetic theory.
The representation of the
particle is the moving
charged ring

7The field-particle correlation functions are neglected.
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7.6 Summary

In this brief chapter we have outlined the basic mechanics of the motion of charged
particles in the presence of magnetic and combined electric and magnetic fields.
We elected to treat the mechanics of the particle motion in terms of the canonical
equations of Hamilton, which are first order in the time, rather than the formulation
in terms of second order equations (F D md2r=dt2), which may be more familiar to
some readers.

The canonical equations provide a more natural basis for analytical studies of
magnetic field forces and can be treated directly by Runge-Kutta algorithms in more
complex situations.

Because the Hamiltonian formulation may be new to the reader we showed that
the Euler–Lagrange (7.11) are identical to the second order equations for the motion
of charged particles. And then we showed the transition from the Euler–Lagrange
approach to that of Hamilton.

With examples in the chapter and the exercises we have outlined the basic
forms of the motion of charged particles in magnetic and combined electric and
magnetic fields. The motion of charged particles in fields should not, however, be
considered as ends in themselves. We, therefore, presented a section connecting the
most modern approach in the study of fusion plasmas to the motion of individual
particles in the fields.

The gyrokinetic approach to the study of plasmas does not result from an
approximation imposed on the plasma, but from an ordering which emerged from
the plasma.

Exercises

7.1. In the text we claimed that to show

@A�

@q�
Pq� D .v � B/� (7.52)

required some steps in vector algebra. These steps are always easier if we use
subscript notation for cross products. It is also often easier to work with what we
anticipate as a final form and show that this arises from the initial form. In the final
form we have a cross product, which we write as

.v � B/� D "��� Pq�B�
and a curl, which relates B to A. This is

B� D "�˛ˇ
@Aˇ

@q˛
:
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For time independent magnetic fields we also know that

d

dt
A� D @A�

@q�
Pq� D 0:

Put these together to obtain (7.52).

7.2. Establish Euler’s identity exp .i#/ D cos# C i sin# using the expansions for
exp .i#/, cos# and sin# .

7.3. In example 7.1 we found solutions for the coordinates as (7.32) and for the
canonical momenta as (7.33). These were solutions to the canonical (7.17).

(a) From the first two canonical (7.17) solve algebraically for the canonical
momenta in terms of the coordinates to see that the canonical momenta are not
products of mass and velocity.

(b) Show by direct substitution that (7.32) and (7.33) satisfy these first two
canonical equations.

7.4. Write Newton’s Second Law in terms of acceleration a Dd2x=dt2 and the
Lorentz Force Qdx=dt � B with B D B Oez and initial velocity in the plane ?Oez.
Obtain a solution by introducing the complex variableZ D x C iy.

7.5. Show that for the vector potential and the magnetic field in example 7.2
div A D div B D 0.

7.6. Show that the motion of a charged particle with charge Q and mass m in
a uniform magnetic field with induction B D B Oez, that is with vector potential
A D �Oex

B
2
yC Oey

B
2
x, and initial momentum in the z�direction is as we have shown

in Fig. 7.8.
[This is a slight extension of Example 7.1. You will need in addition the Pz and Ppz

equations.]

7.7. Show that the motion of a charged particle with charge Q and mass m in a
uniform magnetic field with induction B D B Oez and a uniform electric field E D
OezE is as we have shown in Fig. 7.9.

[This is a slight extension of the preceding exercise.]

7.8. Consider a charged particle moving in a region in which there is both a
magnetic induction (field) and an electric field present, with the electric field at

Fig. 7.8 Motion of a positive
charge in a uniform magnetic
induction field with an initial
momentum pz
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Fig. 7.9 Motion of a charged
particle in parallel magnetic
induction and electric field
oriented along the z�axis

Fig. 7.10 Motion of a
charged particle in a region
with magnetic induction and
electric field that are neither
parallel nor at right angles

Fig. 7.11 Possible cycloidal orbits for a charged particle moving in uniform crossed electrostatic
and magnetic fields

an angle ¤ �=2 with respect to the magnetic induction. Show that the motion of the
charged particle is of the form shown in Fig. 7.10. Recall that for a static magnetic
field along the direction Oez the vector potential is
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A D �Oex
B

2
y C Oey

B

2
x;

and for an electrostatic field with components along the directions Oey and Oez the
electrostatic potential is

' D �Eyy � Ezz:

7.9. In Example 7.4 we found that the motion of a charged particle in perpendicular
electrostatic and uniform magnetic fields to be a combination of circular motion at
a constant angular velocity and linear motion along the x�axis at a constant linear
velocity, as we illustrated in Fig. 7.4. This motion is cycloidal. In Fig. 7.11 a, b, and
c we have plotted three possible basic forms that the orbit of the charged particle
may take.

The form of the orbit depends on the relationship among the magnitude of the
electrostatic field E , the magnitude of the magnetic field induction B , the charge
to mass ratio for the particle Q=m, and the radius of the orbit R. What is the
relationship amongE , B , Q=m, and R in each case?





Chapter 8
Green’s Functions

A mathematician may say anything he pleases, but a physicist
must be at least partially sane.

Josiah Willard Gibbs

8.1 Introduction

This chapter is devoted to the solution of Poisson’s Equation using a Green’s
Function.

We have already solved Poisson’s equation in Sect. 4.4 (see (4.8)). That solution
was the last of a set of theorems for Poisson’s Equation, which we proved in
Appendix F. Since the solution to Poisson’s equation is unique, the solutions we
obtain here will be identical to those that we would have obtained from (4.8). The
difference will only be in approach.

The Green’s Function method is, however, applicable beyond Poisson’s Equa-
tion. It is a systematic method for solving nonhomogeneous (or inhomogeneous, see
footnote 2.1) differential equations. Our treatment here will, therefore, be of a more
general nature. Our results will be applicable to any nonhomogeneous differential
equation.

The theorems we proved in Appendix F for the solution of Poisson’s Equation
were based on Green’s Theorem, which was published in Green’s Essay in 1828.
The Green’s Function solution is based on the Dirac ı� function. As we pointed out
in Sect. 2.6.3 the ı�function was initially proposed by Dirac in the first edition of
his monograph on quantum theory in 1928 [21]. Our present study of the Green’s
Function relies then on at least 100 years of mathematical development. The result
is a far more intuitive understanding of the solution. The more modern Green’s
Function approach will also prove indispensable when we treat radiation from
moving charges.

This chapter and the subsequent Chap. 9 on solutions of Laplace’s Equation are
strictly mathematical. In these chapters we treat solutions to the potential equations

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 8, © Springer-Verlag Berlin Heidelberg 2012
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for static fields. These chapters are integral to learning how to solve the equations
of static fields. They are not, however, absolutely necessary for an understanding of
the theory of classical fields.

8.2 General Formulation

We may write a general, nonhomogeneous linear differential equation in the form

L(n) .r/ f .r/ D g .r/ ; (8.1)

where g .r/ is the nonhomogeneous or source term. In the case of Poisson’s
Equation g .r/ is the charge density multiplied by .�1="0/. The general linear
differential operator L(n) .r/ contains partial derivatives up to order n.

Because L(n) .r/ is linear the general solution is a sum of individual solutions. If
there are two source terms g1 and g2 for which the solutions are f1 and f2, then the
solution for the source g D g1 C g2 is f D f1 C f2. And if g .r/ D 0, (8.1) will
have a homogeneous solution f (h) such that

L(n) .r/ f (h) .r/ D 0: (8.2)

The general solution to (8.1) will then be the sum of the nonhomogeneous solution
specific to g .r/ and the homogeneous solution.

The solution to the nonhomogeneous equation specific to g .r/ is called the
particular solution. We will designate the particular solution as f (p). The general
solution is then f D f (p) C f (h). It is this general solution that must satisfy the
boundary conditions imposed by the physical situation.

We will obtain the particular solution to (8.1) using a Green’s Function. The
Green’s Function G .rI r 0/ is dependent on two points r and r 0 and is a solution to
(8.1) when the source is a ı� function with singularity at r 0. That is, the Green’s
Function satisfies

L(n) .r/G.rI r 0/ D ı .r � r 0/. (8.3)

In terms of the Green’s Function we claim that the particular solution to the
nonhomogeneous equation (8.1) is

f(p) .r/ D R
VG.rI r 0/g.r0/dV0, (8.4)

where the integration is over all source coordinates r0. To show that (8.4) is the
particular solution for the source g .r/ we need only show that f (p) .r/ solves (8.1).
We can do this by operating on f (p) .r/ in (8.4) with L(n) .r/.

Because the linear differential operator L(n) .r/ operates only on the coordi-
nates r, and because the volume V in (8.4) is fixed, we can bring the operatorL(n) .r/
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inside the integral. Then

L(n) .r/ f (p) .r/ D
Z

V
L(n) .r/G

�
rI r 0�g

�
r0� dV 0: (8.5)

The only term inside the integral in (8.5) that depends on the coordinates r is the
Green’s FunctionG .rI r 0/. ThereforeL(n) .r/ only operates on G .rI r 0/ producing
ı .r � r 0/, according to (8.3). Then (8.5) becomes

L(n) .r/ f (p) .r/ D
Z

V0

ı
�
r � r 0�g

�
r0� dV 0

D g .r/ ; (8.6)

which is (8.1).
We then conclude that (8.4) is a general solution to (8.1) with the Green’s

Function defined as a solution to (8.3).
The Green’s Function solution (8.4) has a particularly appealing form for

physicists and engineers. The Green’s FunctionG .rI r 0/ is the response of a linear
system, represented by the operatorL(n) .r/, to a discrete unit source, represented by
ı .r � r 0/. The total solution is the sum over these sources weighted by the density
of sources g .r0/. P.M. Morse and H. Feshbach very clearly point this out in their
classic text on theoretical physics ([75], pp. 791–793).

8.3 Poisson’s Equation

We will now apply these general ideas to find the Green’s Function for Poisson’s
Equation. The Green’s Function G .rI r 0/ we seek will be a solution to Poisson’s
Equation when the source � .r/ is the ı� function ı .r � r 0/. That is

r2G
�
rI r 0� D � 1

"0
ı
�
r � r 0� : (8.7)

In Sect. 2.6.3 we found that (see (2.107))

r2 1

4�

1

jr � r0j D �ı �r � r0� : (8.8)

Comparing (8.8) and (8.7) we see that

G
�
rI r 0� D 1

4�"0

�
1

jr � r 0j
�

(8.9)

is the Green’s Function for Poisson’s Equation.
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The particular solution to Poisson’s Equation, corresponding to (8.4), is then

'(p) .r/ D 1

4�"0

Z

V

� .r 0/
jr � r 0jdV 0: (8.10)

To this particular solution we must add the homogeneous solution to Poisson’s
Equation, which is a solution to Laplace’s Equation. The sum must satisfy the
boundary conditions.

If we are considering an infinite spatial region the value of the potential at
infinity vanishes. The solution of Laplace’s equation that vanishes on the boundary
is '(h) .r/ D 0 (see Appendix E Theorem E.2). Therefore, in the infinite region the
total solution to Poisson’s Equation is the Green’s Function solution

' .r/ D 1

4�"0

Z

V

� .r 0/
jr � r 0jdV 0: (8.11)

8.4 Green’s Function in One Dimension

We now seek the solution to the nth order linear differential equation

L(n) .x/ f .x/ D g .x/ (8.12)

in the region a � x � b with boundary conditions on f .x/ specified at the end
points x D a and x D b. In what we will refer to as standard form the operator
L(n) .x/ in (8.12) is the nth order linear differential operator

L(n) .x/ D a0
dn

dxn
C a1

dn-1

dxn-1
C � � � C an; (8.13)

and the coefficients aq are generally functions of the independent variable, i.e. aq D
aq .x/.

The nth order homogeneous equation

L(n) .x/ h .x/ D 0: (8.14)

has n linearly independent solutions fhkgn
kD1 ([2], p. 191) and the general solution

to the homogeneous linear differential equation is a sum of these, i.e.

f (h) .x/ D
nX

k=1

˛khk .x/ ;

where ˛k are constants.
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We require that the one dimensional Green’s Function satisfies

L(n) .x/ G
�
xI x0� D ı

�
x � x0� : (8.15)

The particular solution to (8.12) is then

f (p) .x/ D
Z b

a
dx0G

�
xI x0�g

�
x0� : (8.16)

We recognize that according to (8.15)G .xI x0/ satisfies the homogeneous (8.14)
everywhere except at the point x D x0. We must, therefore, be able to construct the
Green’s Function from the set fhkgn

k=1 of solutions to the homogeneous differential
(8.14). The Green’s Function we construct will also satisfy the boundary conditions
at each end of the interval Œa; b�.1

In Fig. 8.1 we illustrate the interval and the location of the point x0. We have
left the region around the point x D x0 open in Fig. 8.1 because we have not yet
specified conditions that must hold at that point.

We begin by constructing functions U1 .x/ and U2 .x/ from linear sums of
functions in the set fhkgn

k=1 of solutions to the homogeneous (8.14). We construct
these functions such that U1 .x/ satisfies the boundary conditions at x D a and
U2 .x/ satisfies the boundary conditions at x D b. We do not require that U1 .x/

satisfies the boundary conditions at x D b or that U2 .x/ satisfies the boundary
conditions at x D a. We then write the Green’s Function in two separate regions as

G.xI x0 /=
�
A .x0 / U1 .x/ for a � x < x0
B .x0/ U2 .x/ for x0 < x � b

, (8.17)

and do not define the Green’s function at the point x0. The functions U1 .x/ and
U2 .x/ are, however, well behaved at x D x0. The functions A .x0/ and B .x0/
depend solely on the movable point x0, while U1 .x/ and U2 .x/ are independent
of x0. We will choose the functionsA .x0/ and B .x0/ based on the requirement that
the Green’s Function (8.17) satisfies (8.15).

Fig. 8.1 The interval Œa; b�
on the x� axis. The point of
discontinuity is x0. The
function U1 .x/ solves (8.14)
and satisfies the boundary
conditions at x D a. The
function U2 .x/ solves (8.14)
and satisfies the boundary
conditions at x D b

1These may be general, such as finite values of potentials, rather than specific.
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Fig. 8.2 Discontinuity in the
derivative
@n-1G .xI x0/ =@xn-1 at the
point x D x0

Remark 8.1. The choice of the functions U1 .x/ and U2 .x/ is usually not difficult.
We must only recall that the boundary conditions we have are normally expressed
for the electrostatic field, which is the negative gradient of the electrostatic scalar
potential for which we seek the Green’s Function.

A ı� function results from the derivative of a discontinuity ([89], p. 109).
Therefore we want all partial derivatives of the Green’s Function G .xI x0/ with
respect to x up to and including the n � 1st partial derivative to be finite in the
immediate neighborhood of the point x D x0. But we require a finite jump in the
n � 1st partial derivative between x D x0 � " and x D x0 C ", where " is an
infinitesimal. We have drawn this requirement in Fig. 8.2.

The partial derivative @nG .xI x0/ =@xn then results in a ı�function at the point
x D x0. In this way we can produce the apparently wicked behavior of (8.3) without
resorting to any unusual properties of the Green’s Function.

To discover the form of the discontinuity in the partial derivative @n-1G .xI x0/ =
@xn-1 at the point x D x0 we turn to the requirement that G .xI x0/ satisfies the
(8.15). Integrating both sides of (8.15) with respect to x over the interval Œa; b� we
obtain

Z b

a
dx

�
a0
@n

@xn
C a1

@n-1

@xn-1
C � � � C an

�
G
�
xI x0� D

Z b

a
dxı

�
x � x0�

D 1 (8.18)

Since G .xI x0/ satisfies the homogeneous (8.14) everywhere except at x0, the
integrand on the left hand side of (8.18) vanishes everywhere except at x D x0. So
we only need to consider the integral on the left hand side of (8.18) over the two "
intervals centered on x0. Therefore the (8.18) can be written as

lim
"!0

Z xDx0+"

xDx0�"
dx

�
a0
@n

@xn
C a1

@n-1

@xn-1
C � � � C an

�
G
�
xI x0� D 1 (8.19)

We require thatG .xI x0/ is continuous over this 2" interval in the limit as " ! 0.
That is we require that G .xI x0/ has the same value on both sides of the point x D
x0. Then

lim
"!0

Z xDx0C"

xDx0�"
dxanG

�
xI x0� D 	

an
�
x0�G

�
x0I x0�
 lim

"!0

Z xDx0C"

xDx0�"
dx

D 0; (8.20)
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since

lim
"!0

Z xDx0+"

xDx0�"
dx D 0: (8.21)

All the functions am .x/ are continuous over the interval Œa; b�. And all the partial
derivatives @mG .x; x0/ = @xm from m D 1 to m D n � 1 are continuous over the
two separate "� intervals x0 � " � x � x0 and x0 � x � x0 C " in the limit as
" ! 0. Therefore for each m fromm D 1 to m D n � 1 we have

lim
"!0

Z xDx0+"

xDx0�"
dxan-m .x/

@m

@xm
G
�
xI x0�

D an-m
�
x0� lim

"!0

"
@m

@xm
G
�
x0 � "I x0�

Z x0

xDx0�"
dx

C @m

@xm
G
�
x0 C "I x0�

Z xDx0C"

x0

dx

#

D 0; (8.22)

since

lim
"!0

Z x0

xDx0�"
dx D lim

"!0

Z xDx0C"

x0

dx D 0: (8.23)

The finite discontinuity in the partial derivative @n�1G .x; x0/ = @xn�1 over the 2"�
interval x0 � " � x � x0 C " in the limit as " ! 0 causes no difficulty because
the product of a finite number and the limits of the integrals in (8.23) still vanishes.
Equation (8.19) is then reduced to

lim
"!0

Z xDx0C"

xDx0�"
dxa0

@n

@xn
G
�
xI x0� D 1: (8.24)

We cannot treat the integral in (8.24) as we treated integrals of lower order
derivatives in (8.22) because the partial derivative @nG .xI x0/ =@xn becomes infinite
on the interval of integration in (8.24). We can, however, convert (8.24) to integrals
involving lower order partial derivatives by partial integration. That is

lim
"!0

Z xDx0C"

xDx0�"
dxa0 .x/

@n

@xn
G
�
xI x0�

D lim
"!0

Z xDx0C"

xDx0�"
dx

@

@x

�
a0 .x/

@n�1

@xn�1 G
�
xI x0�

�

� lim
"!0

Z xDx0+"

xDx0�"
dx

�
da0 .x/

dx

@n-1

@xn-1
G
�
xI x0�

�
: (8.25)
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Since da0=dx is a continuous function, the second integral on the right hand side
of (8.25) is of the same form as the integrals in (8.22) and, therefore, vanishes.
Combining (8.25) with (8.24) we have the form of our requirement (8.19) as

lim
"!0

Z xDx0C"

xDx0�"
dxa0 .x/

@n

@xn
G
�
xI x0�

D lim
"!0

Z xDx0C"

xDx0�"
dx

@

@x

�
a0 .x/

@n-1

@xn-1
G
�
xI x0�

�

D a0
�
x0� lim

"!0

�
@n-1

@xn-1
G
�
xI x0�

�xDx0C"

xDx0�"
D 1: (8.26)

From (8.26) we have the final requirement on the n � 1st order partial derivative of
the Green’s Function as

lim
"!0

�
@n�1

@xn�1 G
�
xI x0�

�xDx0C"

xDxD0�"

D
�
@n-1

@xn�1 G
�
xI x0�

�

xDx0C
�
�
@n�1

@xn�1 G
�
xI x0�

�

xDx0�

D 1

a0 .x0/
(8.27)

In (8.27) the subscripts x D x0C and x D x0� indicate that the partial derivatives
are to be evaluated just to the right and just to the left of the point x0. That is x D x0C
and x D x0� are values of x just to the right and just to the left of the point x0.

The n � 1st order partial derivative of the Green’s Function then has a disconti-
nuity equal to 1=a0 .x

0/, which is the value of the coefficient of the highest order
derivative in the linear differential operator (8.13) evaluated at the point x0. This
is called the jump condition on the n � 1st order partial derivative of the Green’s
Function.

If we agree to use the shorthand notation

G(q)
�
x0I x0� � lim

"!0

�
@q

@xq
G
�
xI x0�

�x0C"

x0�"
; (8.28)

our conditions on the Green’s Function can be written systematically.

1. The functions U1 .x/ and U2 .x/ are linear sums of the homogeneous solutions
that satisfy the boundary conditions for x < x0 and x0 < x respectively.

2. The Green’s Function is
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G
�
xI x0� D

�
A .x0/ U1 .x/ x < x

0
B .x0/ U2 .x/ x > x

0

with
3. G(m) .x0I x0/ D 0 for m D 0; 1; : : : n � 2 and
4. G(n-1) .x0I x0/ D 1=a0 .x

0/.

The conditions (3) and (4) we use to obtain linear algebraic equations for the
functions A .x0/ and B .x0/.

We are then able to obtain the Green’s Function for any differential equation for
which we can find the homogeneous solution(s).

The Green’s Function solution is the particular solution of the nonhomogeneous
differential equation. The complete solution is the sum of the particular solution and
a sum of the homogeneous solutions. That is

' .x/ D '(p) .x/C
nX

k=1

˛khk .x/ ; (8.29)

where the constants ˛k are chosen to satisfy the boundary conditions imposed on
the problem.

Example 8.1. Charged Spherical Shell. We consider a spherical shell of radius a
on which a total chargeQ is uniformly distributed, which we have drawn in Fig. 8.3.
We are interested in the electrostatic scalar potential for the regions r < a and r > a.
Because of the symmetry we use spherical coordinates .r; #; �/.

Since the charge density is uniform we have no # or � dependence and Poisson’s
Equation is (see Appendix A.1 equation(A.12))

r2' D 1

r2

d

dr

�
r2 d

dr
'

�
D � 1

"0
� .r/ :

Writing the differential operator in the standard form of (8.13) we have

1

r2

d

dr

�
r2 d

dr
'

�
D d2

dr2
' C 2

r

d

dr
':

Fig. 8.3 Thin charged
spherical shell of radius a
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Identifying the coefficients,

a0 D 1, a1 D 2

r
, and a2 D 0:

The (general) boundary conditions are

' .0/ D constant < 1
' .1/ D 0:

The homogeneous equation is

r2h D 1

r2

d

dr

�
r2 d

dr
h

�
D 0;

and the homogeneous solutions are

h1 D constant

and
h2 D constant

r
:

Of these solutions only h1 satisfies the condition at the origin and only h2 satisfies
the condition at infinity. That is U1 .r/ Dconstant and U2 .r/ Dconstant=r and our
Green’s Function has the form

G
�
r I r 0� D

�
A .r 0/ for 0 � r < r 0

B .r 0/ =r for r 0 < r < 1:

The constants are absorbed into the functions A .r 0/ and B .r 0/.
The differential operator is second order. The n � 1st derivative is then

@G .r I r 0/ =@r . The conditions (3) and (4), i.e. the continuity and jump conditions
on the Green’s Function, are then G(0) .r 0I r 0/ D 0 and G(1) .r 0I r 0/ D 1=a0 D 1.
The first partial derivative of the Green’s Function is

@G
�
r I r 0� =@r D

�
0 for 0 � r < r 0

�B .r 0/ =r2 for r 0 < r < 1:
:

Then our condition of continuity of the Green’s Function is

A
�
r 0� D B .r 0/

r 0 (8.30)

and the jump condition on the first partial derivative is
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� B .r 0/
.r 0/2

� 0 D 1: (8.31)

Solving (8.30) and (8.31) for A .r 0/ and B .r 0/ we obtain the Green’s Function as

G
�
r I r 0� D

(
�r 0 for 0 � r < r 0

� .r 0/2

r
for r 0 < r < 1:

(8.32)

We now need the form of � .r/.
If we consider that the shell has an infinitesimal thickness then � .r/ will be

proportional to a ı� function. The form of � .r/, which upon integration over all
space produces a total chargeQ, is

� .r/ D Q

4�r2
ı .r � a/ : (8.33)

The particular solution using our Green’s Function is found from an integration
over the source coordinates r 0. This corresponds to the integration in (8.11), which
was over the source coordinates. The integral here is, however, only over the single
coordinate r 0, not over a volume. The integration extends over the entire region
0 � r 0 < 1.

'(p) .r/ D � 1

"0

Z C1

r0D0
dr 0G

�
r I r 0� �

�
r 0� : (8.34)

Because the Green’s Function is not defined at the point r 0 D r , we remove this
from the integration and (8.34) becomes

' (p) .r/ D � 1

"0

Z r

r0D0
dr 0G

�
r I r 0� �

�
r 0�

� 1

"0

Z C1

r0Dr
dr 0G

�
r I r 0� �

�
r 0� : (8.35)

With the charge density (8.33) (8.35) is

'(p) .r/ D � 1

"0

Z r

r0D0
dr 0G

�
r I r 0� Q

4� .r 0/2
ı
�
r 0 � a�

� 1

"0

Z C1

r0Dr
dr 0G

�
r I r 0� Q

4� .r 0/2
ı
�
r 0 � a� : (8.36)

Now we must decide upon which part of the Green’s Function (8.32) is to be
used in which integral in (8.36).

The first integral in (8.36) is over 0 � r 0 < r . In this rangeG .r I r 0/ D � .r 0/2 =r ,
which is the lower line in (8.32). The second integral is over r < r 0 < 1. In this
range G .r I r 0/ D �r 0, which is the top line in (8.32). Then (8.36) becomes
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'(p) .r/ D 1

"0

Z r

r0=0
dr 0 .r 0/2

r

Q

4� .r 0/2
ı
�
r 0 � a�

C 1

"0

Z 1

r0=r
dr 0 �r 0� Q

4� .r 0/2
ı
�
r 0 � a� : (8.37)

To go farther we must decide if we are interested in r inside or outside the spherical
shell.

Inside the sphere r < a and the first integral in (8.37) vanishes because the ı�
function vanishes inside the sphere. The second integral in (8.37) produces

'(p) .r/ D 1

"0

Z 1

r0Dr
dr 0 �r 0� Q

4� .r 0/2
ı
�
r 0 � a

� D Q

4�"0a
: (8.38)

Outside the sphere r > a and the second integral in (8.37) vanishes because the ı�
function vanishes outside the sphere. The first integral in (8.37) produces

' (p) .r/ D 1

"0

Z r

r0D0
dr 0 1
r

Q

4�
ı
�
r 0 � a� D Q

4�"0r
: (8.39)

In this example we have carefully noted the forms of the Green’s Function in
each of the final integrals and the location of the spherical shell for each region
of r 0. We caution the reader to be as slow and methodical at this step as we have
been in this example.

Our example has shown us that the entire empty region inside the sphere (r < a)
is at a uniform potential. This is essentially what Priestly observed in his experiment
and from which he claimed that the potential for the electrostatic field must have the
same form as that of the gravitational field (see Sect. 1.7). We have then, without
necessarily intending to do so, shown that Priestly was correct. There is no evidence
that Priestly did anything resembling the calculation we have here. His insight was,
however, remarkable.

Example 8.2. Nonconducting Cylinder. We consider a long nonconducting cylin-
der with a charge density � .r/ as we have drawn in Fig. 8.4. The charge density
is symmetric around the z-axis. If we assume that the cylinder is very long and

Fig. 8.4 Charged
nonconducting cylinder
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that we are interested only in the electrostatic potential near the midpoint of the
cylinder, we may neglect any end effects and treat this as a problem with only a
radial dependence.

Poisson’s Equation is then

1

r

d

dr

�
r

d'

dr

�
D � 1

"0
� .r/ (8.40)

(see Appendix A.1 (A.8)). In standard form (8.40) is

d2'

dr2
C 1

r

d'

dr
D � 1

"0
� .r/ ; (8.41)

from which we can identify
a0 D 1: (8.42)

The homogeneous equation is

1

r

d

dr

�
r

d

dr
h

�
D 0: (8.43)

which has solutions h1 D constant and h2 D ln .r/.
The only homogeneous solution that will yield a finite result at the origin is h1 D

constant. Then U1 .r/ Dconstant. In the region r > r 0 the function U2 .r/ will then
be ln .r/. This does not satisfy the boundary condition as r ! 1. So our solution
will not be correct as r ! 1. This is acceptable, since the assumption that the
cylinder is very long can only hold for finite values of r .

The Green’s Function is then

G
�
r I r 0� D

�
A .r 0/ for 0 � r < r 0
B .r 0/ ln .r/ for r 0 < r

: (8.44)

And the first derivative of the Green’s Function is

G 0 �r I r 0� D
8
<

:

0 for 0 � r < r 0

B .r 0/
1

r
for r 0 < r

: (8.45)

The requirements on the Green’s Function are continuity at r D r 0

A
�
r 0� D B

�
r 0� ln

�
r 0� ;

and discontinuity of the first derivative at r D r 0

B
�
r 0� 1

r 0 � 0 D 1:
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Then B .r 0/ D r 0, A .r 0/ D r 0 ln .r 0/, and the Green’s Function is

G
�
r I r 0� D

�
r 0 ln .r 0/ for 0 � r < r 0
r 0 ln .r/ for r 0 < r : (8.46)

The electrostatic potential is obtained from

' .r/ D � 1

"0

Z r

r0D0
dr 0r 0 ln .r/ �

�
r 0�

� 1

"0

Z 1

r0Dr
dr 0r 0 ln

�
r 0� �

�
r 0� (8.47)

8.5 Vector Potential

Because the vector potential also satisfies Poisson’s Equation for the magnetostatic
field, we can also find a Green’s Function solution in one dimension for problems
involving the vector potential. We must only remember that the quantity measured
is the magnetic field induction and not the vector potential. Therefore boundary
conditions will be formulated in terms of magnetic field induction.

8.6 Summary

In this chapter we have presented a general method for solving linear, nonhomoge-
neous differential equations. There are other methods we can use, such as expansion
in eigenfunctions. These methods, however, often suffer from slow convergence, as
Morse and Feshbach point out ([75], p. 791). The Green’s Function provides an
alternative and completely general method of solution.

The generality lies in the fact that the Green’s Function, defined by the equation
L(n) .r/G .rI r 0/ D ı .r � r 0/, is the right inverse of the linear differential operator
L(n) .r/ ([8], p. 39, [75], pp. 869–886). If the nonhomogeneous differential equation
has a unique solution then that solution is the Green’s Function solution.

If we can find the solutions to the homogeneous differential equation the we can
construct the Green’s Function. We repeat the steps here for the reader’s convenient
reference.

1. The functions U1 .x/ and U2 .x/ are linear sums of the homogeneous solutions
that satisfy the boundary conditions for x < x0 and x0 < x respectively.

2. The Green’s Function is

G
�
xI x0� D

�
A .x0/ U1 .x/ x < x

0
B .x0/ U2 .x/ x > x

0
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with
3. G(m) .x0I x0/ D 0 for m D 0; 1; : : : n � 2 and
4. G(n-1) .x0I x0/ D 1=a0 .x

0/.

Exercises

8.1. In an example in the chapter we found the Green’s Function for a long
nonconducting cylinder in which there is a charge density dependent only on the
radial coordinate. For the Green’s Function found in that example, find the potential
inside the nonconductor (r < R) for the charge densities

(a) � .r/ D �0 Dconstant
(b) � .r/ D ˛r2

In each case check to see that Poisson’s Equation is satisfied by your solution.

8.2. For the two long nonconducting cylinders with the charge densities

(a) � .r/ D �0 Dconstant
(b) � .r/ D ˛r2

considered in the preceding exercise find the electrostatic potential and the
electrostatic field outside of the cylinder in each case. Use the same Green’s
Function.

Cast both answers in terms of charge density per unit length along the noncon-
ductors.

In each case check to see that Poisson’s Equation is satisfied by your solution.

8.3. You have a very long thin wire, which you have mounted in the laboratory
between two points separated vertically by a distance L. The mounting clamps are
insulators and we may assume that the humidity is low enough in the laboratory that
the charge leakage from the wire will be minimal. Your intention is to charge the
thin wire to a total charge ofQC. You realize that the total charge will reside on the
surface in this static case. So the charge density is

� .r/ D �

2�r
ı .r � R/ ;

where R is the radius of the thin wire and � D Q=L. You intend to measure the
electric potential in the region around the wire near the middle of the wire and to
reference that to the potential of the wire.

Using a one dimensional Green’s Function obtain a theoretical prediction for the
result.

Can the same Green’s Function used in the preceding exercise be used for a long
cylindrical conductor?
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8.4. You have a small conducting sphere of radius a concentrically enclosed by
a nonconducting sphere of radius R. The nonconducting sphere has a charge
density � .r/ D A=r with A a constant for a< r �R. The total charge in the
nonconductor is Q. Use a one dimensional Green’s Function to obtain the potential
for a < r � R and for r > R.

Choose the electrostatic potential, and hence the Green’s Function to be constant
at the origin. Is the Green’s Function from the example in the text then appropriate
for this exercise?

8.5. In the preceding exercise we required that the value of the Green’s Function
at the origin was constant. This is the choice of a boundary condition. We may
choose that constant to be zero. And we may argue that this is more legitimate for
the situation considered with no charge in the region 0 < r < a.

Show that requiring that the electrostatic potential and the Green’s Function
vanish at the origin produces the Green’s Function

G
�
r I r 0� D

(
0 0 � r < r 0

r 0 � .r 0/
2

r
r 0 < r � 1:

:

8.6. Use the Green’s Function obtained in the preceding exercise to obtain the
potential for the charge density charge density � .r/ D A=r with A a constant for
a < r � R. Compare this potential with that obtained from the boundary condition
requiring that the Green’s Function was a constant at the origin.

8.7. In the exercises in Chap. 6 we found that the magnetic field induction inside
a long solenoid (length L and internal radius R) is not a constant, even near the
center, but is (approximately)

B D Oez
�
B0 � B1z2

�C Oer .B1zr/

where
B0 D �0N�I0 cos#0;

B1 D 3

2
�0N�I0 cos#0

R2

.L2 CR2/
2
;

N� is the number of wire turns per unit length around the solenoid, I0 is the current
in the wire, and cos#0 D L=

p
L2 CR2.

So we cannot legitimately claim that obtaining the vector potential near the center
of the solenoid can be reduced to a one dimensional problem. We even calculated
the vector potential in the exercises of Chap. 5 and found that

A D Oe#A# D Oe
�
1

2
B0r � 1

2
B1z2r

�
:
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The vector potential is, however, independent of the azimuthal angle # . And
the dependence on z near the center will be weak. It may, then, be interesting to
investigate the consequences of treating the vector potential as dependent only on r .

If we assume dependence of the vector potential only on r is it again possible to
use the Green’s Function that we used in the preceding problems?

Find the vector potential at the center of a cylindrical solenoid using a Green’s
Function. From this obtain the magnetic field inside the solenoid. Compare this with
the value obtained from Ampère’s Circuital Law.

8.8. Consider a very large, flat, thin conducting plate of thickness 2a which you
have charged. You choose coordinates such that the x�axis is perpendicular to the
plate and paces through the center of the plate. The point x D a is the surface of the
plate. There is no external electrostatic field so you realize that the surface charge
density on both sides of the sheet will be the same and equal to �0 C m�2.

For small values of x you may consider that the electrostatic potential depends
only on the coordinate x. Poisson’s Equation for the potential in the region x > 0 is
then

d2

x2
' .x/ D � 1

"0
�:

For the surface charge density

� .x/ D �0ı .x � a/ :

Obtain the one dimensional Green’s Function for Poisson’s Equation and from
that Green’s Function obtain the electrostatic potential and the electrostatic field
near the plate.

8.9. Consider two concentric thin spherical conducting shells of radii a and b, with
a < b. The thickness of each is " � a. The shells carry charges Qa and Qb.
Using a Green’s Function find the potential in the regions r < a, .a C "/ < r < b,
b < r < .b C "/, and b < r .

We should not expect to know the charge on each of the shells. But we can set
the potentials. If these are Va and Vb, what are the chargesQa and Qb?

8.10. Consider a long hollow conducting cylinder of outer radius b and inner radius
a with a uniform current I0 flowing through it in an axial direction. That is the
current density is

J .r/ D Oez

�
J0 for a � r � b

0 otherwise

Use a one dimensional Green’s Function to find the vector potential and then the
magnetostatic field induction for 0 � r < a, a � r � b and r > R.

Note that only the component of the vector potentialAz is nonzero. Find the form
this must take at the origin to decide on form of the Green’s Function near the origin.





Chapter 9
Laplace’s Equation

TRUTH! JUSTICE! Those are the immutable laws.

Pierre Simon, Marquis de Laplace

9.1 Introduction

In this chapter we will consider the solution of Laplace’s Equation

r2˚ D 0 (9.1)

using separation of variables. We can claim that this chapter is required by the
preceding Chap. 8, which indicated the importance of the homogeneous solution to
Poisson’s Equation. However, as with Chap. 8 it is not integral to a study of the
theory of classical fields. The reader already familiar with the use of separation
of variables to solve Laplace’s Equation may skip this chapter without any loss in
continuity.

In Appendix E we have outlined the fundamental theorems for the solution of
Laplace’s Equation.

In each of the coordinate systems considered, rectangular, cylindrical and
spherical, we will show that the (unique) solution of Laplace’s Equation is a product
of functions dependent solely on the independent variables of each respective
system. That is in the rectangular system we have

˚ D XRect .x/ YRect .y/ZRect .z/ ;

in the cylindrical system

˚ D RCyl .r/�Cyl .#/ZCyl .z/

and in the spherical system

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 9, © Springer-Verlag Berlin Heidelberg 2012
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˚ D RSph .r/�Sph .#/˚Sph .�/ :

For the case of cylindrical coordinates we shall limit our considerations to
situations in which there is no dependence on z. This will simplify the solution of
the equation forRCyl .r/ considerably. If we include a dependence on z the equation
for RCyl .r/ becomes Bessel’s Equation ([48], p. 103). The solutions of Bessel’s
Equation are known and produce no difficulty in themselves. But the resulting
summations are more complicated in appearance. Since our objective here is not
a detailed study of Laplace’s equation it is prudent to limit the complexity.

For the case of spherical coordinates we will consider only situations with no
azimuthal dependence, i.e. symmetry about an axis. This limits the polar angle
solutions ˚Sph .�/ to the Legendre Polynomials rather than requiring the more
complicated associated Legendre Functions.

These properties of Laplace’s equation provide at least potentially interesting
situations. And a detailed study of the solutions of Laplace’s equation, we can
claim, is a legitimate part of the study of classical fields. Our objective in this text
is, however, to concentrate first on the derivation of the complete mathematical
description of the fields, which is contained in Maxwell’s Equations. So our
discussion of Laplace’s equation will be brief.

We will provide examples of the use of our separation of variables solutions.
However, in keeping with our objective in the text, we provide no exercises
following this chapter. Exercises which use the separation of variables solutions
directly may be found in Chap. 15.

9.2 Forms of Laplace’s Equation

We provided the forms of the Laplacian Operator in various coordinate systems in
Sect. 2.5.5. These are

• Rectangular �
@2

@x2
1

C @2

@y2
2

C @2

@z2
3

�
˚ D 0; (9.2)

• Cylindrical
1

r

@

@r

�
r
@˚

@r

�
C 1

r2

�
@2˚

@#2

�
C @2˚

@z2
D 0 (9.3)

• Spherical

1

r2

@

@r

�
r2 @˚

@r

�
C 1

r2 sin�

@

@�

�
sin �

@˚

@�

�
C 1

r2 sin2 �

�
@2˚

@#2

�
D 0: (9.4)

We shall now show that each of these equations is solved by a separation of
variables of the form indicated in Sect. 9.1.
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9.3 Rectangular Coordinates

We make the Ansatz that the function ˚ .x; y; z/ in (9.2) can be written as

˚ D XRect .x/ YRect .y/ZRect .z/ ; (9.5)

with XRectYRectZRect ¤ 0 and inquire into the conditions under which this is
possible. Inserting (9.5) into (9.2) and dividing through by XRectYRectZRect ¤ 0,
we have

X 00
Rect .x/

XRect .x/
C Y 00

Rect .y/

YRect .y/
C Z00

Rect .z/

ZRect .z/
D 0; (9.6)

where we have used the standard primed notation for derivatives. Each of the terms
in (9.6) is dependent only on one of the three independent variables x, y or z. We
have emphasized this by including the dependence explicitly.

If we write (9.6) as

X 00
Rect .x/

XRect .x/
D �Y

00
Rect .y/

YRect .y/
� Z00

Rect .z/

ZRect .z/
; (9.7)

we have on the left hand side a function only of the independent variable x and on
the right hand side a function of only the independent variables .y; z/. A function of
the independent variable x can be equal to a function of the independent variables
.y; z/ only if both functions are equal to a constant. That is

X 00
Rect .x/

XRect .x/
D �k2

x ; (9.8)

Proceeding in this fashion we conclude that our separation Ansatz (9.5)
is possible if and only if each of the individual terms X 00

Rect .x/ =XRect .x/,
Y 00

Rect .y/ =YRect .y/ and Z00
Rect .z/ =ZRect .z/ is independently equal to a constant.

We choose
Y 00

Rect .y/

YRect .y/
D �k2

y ; (9.9)

Z00
Rect .z/

ZRect .z/
D k2

x C k2
y : (9.10)

The (9.8)–(9.10) are then the requirements for our separation Ansatz. The
constants kx and ky are, at this point, arbitrary and will be determined by the
boundary conditions.

9.3.1 Eigenvalue Problems

The (9.8)–(9.10) are of a special type. The second derivative is a linear mathematical
operator. In each of the (9.8)–(9.10) we have the statement that action of this linear
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mathematical operator on a function, from a particular set of functions, results in a
product of that function and a certain constant. That is

Lf� D �f� (9.11)

where L is the linear operator, the function f� is the function from the set ff�g and
� is the constant.

To find this set of functions and the constants is to solve what is called
an eigenvalue problem. In German eigen means unique or singular. The term
eigenvalue is a partial Anglicization of the German Eigenwert. The solution to (9.11)
is a unique set of functions corresponding to the unique set of values for �. These
are known as eigenfunctions.

Because (9.11) is a linear equation the general solution is a sum over the
solutions, which are eigenfunctions. The solutions to (9.8) and (9.9) are sines and
cosines. We are then representing our solution in terms of sines and cosines. This
is known as a Fourier series representation of the solution. The solution itself is
neither a sine nor a cosine. But we can add the sines and cosines together to obtain
a representation of the solution.

Rather than sines and cosines we may also choose to represent our solutions as
complex exponentials.

Example 9.1. Representation of a Square Wave. As an example we consider an
attempt to represent a square wave by three sinusoidal functions. We show the result
graphically in Fig. 9.1. In the top panel of Fig. 9.1 we have shown the three sinusoids
separately as V1, 2, 3 and in the bottom panel we have shown the sum of these three
sinusoids as V . Before we had digital electronics this was the way square wave
forms were produced in the laboratory. But more than only three sinusoids were
used.

The expansion of a solution in eigenfunctions is a completely general approach
to the solution of differential and partial differential equations. The basic idea is very
physical. The eigenfunctions represent the natural types of motion characteristic of
the system. The physical argument is that the general motion is then a summation
of these characteristic motions. The problem becomes then one of adjusting the

Fig. 9.1 Fourier series
representation of a square
wave. The independent
variable is the time t . The
representation is in terms of
three sinusoidal functions.
These are plotted separately
in the top panel and as a
summation in the bottom
panel
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summation so that it fits the requirements (boundary and/or initial conditions)
imposed on the system.

The fact that the solution is a linear sum is a consequence of the linearity of the
operator. Our representation here of the square wave in terms of sinusoidal functions
is based on the fact that the circuit equations are linear and have sinusoidal solutions.

The separation in cylindrical and spherical coordinates will produce eigenvalue
problems as well.

In the late 1920s we discovered that the quantum theory was based on an
eigenvalue problem This was the key that opened a door. Our study here is not so
dramatic. We have only found that we are able to formulate a solution to Laplace’s
Equation in terms of eigenfunctions.

Example 9.2. As an example we consider a rectangular box as we have drawn
in Fig. 9.2. The box has metal sides and base, which are all grounded, i.e. the
electrostatic potential on the four sides and the base is equal to zero. The top is
a nonconductor which can contain any charge distribution we may choose. The
electrostatic potential on the top will then have some value, which is generally a
function of .x; y/. We call this V .x; y/.

The solutions for XRect and YRect are

XRect, kx D exp .˙ikxx/ or cos .kxx/ , sin .kxx/ ; (9.12)

and
YRect, ky D exp

�˙ikyy
�

or cos
�
kyy

�
, sin

�
kyy

�
; (9.13)

and the solution for ZRect is

ZRect, kx, ky D exp
�
˙z
q
k2

x C k2
y

�
: (9.14)

Fig. 9.2 Rectangular box
with metal sides and a
nonconducting top. The sides
are all grounded at
electrostatic potential equal to
zero and there is a charge
distribution on the top, which
results in a potential V .x; y/
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To satisfy the boundary conditions that ' .˙a/ D ' .˙b/ D 0 the functionsXRect, kx

and YRect, ky must be even, i.e. cosines, with

kx D kn D .2n � 1/�

2a
and ky D km D .2m � 1/�

2b
. (9.15)

We then have
XRect, n D cos .knx/ (9.16)

and
YRect, m D cos .kmy/ (9.17)

Then
ZRect, nm D exp .˙knmz/ (9.18)

with

knm D ˙
q
k2

n C k2
m D ˙�

2

s
.2n� 1/2

a
C .2n � 1/2

b
: (9.19)

The functionZRect is a sum of the solutions (9.18). We then write

ZRect, nm D Anm exp .knmz/CBnm exp .�knmz/ : (9.20)

the boundary condition at z D �c requires that

Anm D �Bnm exp .2knmc/ ;

and that

ZRect, nm D �Bnm exp .2knmc/ exp .knmz/C Bnm exp .�knmz/

D ˚nm sinh .knm .z C c// ; (9.21)

where˚nm is, at this point, completely arbitrary. The general solution to our problem
is then

' .x; y; z/ D
1X

n,m=1

˚nm cos .knx/ cos .kmy/ sinh .knm .z C c// : (9.22)

The coefficients ˚nm are chosen to satisfy the boundary condition at z D Cc. Then

V .x; y/ D
1X

n,m=1

˚nm cos .knx/ cos .kmy/ sinh .2knmc/ : (9.23)

Because
Z Ca

�a
cos

�
.2p � 1/�

2a
x

�
cos

�
.2q � 1/�

2a
x

�
dx D aıpq; (9.24)
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with p and q integer, we have

Z +a

-a
dx
Z +b

-b
dyV .x; y/ cos .krx/ cos .ksy/ D

1X

n,m=1

˚nm sinh .2knmc/ � � �

� � �
Z +a

-a
dx cos .knx/ cos .krx/ � � �

� � �
Z +b

-b
dy cos .kmy/ cos .ksy/

D ab

1X

n,m=1

˚nm sinh .2knmc/ ınrıms

D ab˚rs sinh .2krsc/ : (9.25)

Then

˚nm D 1

ab sinh .2knmc/

Z +a

-a
dx
Z +b

-b
dyV .x; y/ cos .knx/ cos .kmy/ (9.26)

9.4 Cylindrical Coordinates

We will limit our treatment of Laplace’s Equation in cylindrical coordinates to
situations in which there is no z�dependence. Then Laplace’s (9.3) becomes

r2˚ D 1

r

@

@r

�
r
@˚

@r

�
C 1

r2

@2˚

@#2
D 0: (9.27)

We make the Ansatz that the function ˚ .r; #/, which is a solution to (9.27), can
be written as

˚ D RCyl .r/�Cyl .#/ ; (9.28)

with RCyl .r/�Cyl .#/ ¤ 0. Inserting (9.28) into (9.27) and dividing through by
RCyl .r/�Cyl .#/, we have

1

RCylr

d

dr

�
r

dRCyl

dr

�
C 1

�Cylr2

d2�Cyl

d#2
D 0; (9.29)

or
r

RCyl

d

dr

�
r

dRCyl

dr

�
D � 1

�Cyl

d2�Cyl

d#2
(9.30)

The left hand side of (9.30) is a function only of the independent coordinate r and
the right hand side of (9.30) is a function only of the independent coordinate # .
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These must then both be equal to a constant, which we choose to be ˛2.

r

RCyl

d

dr

�
r

dRCyl

dr

�
D � 1

�Cyl

d2�Cyl

d#2
D ˛2: (9.31)

We have chosen the constant in (9.31) as a square because of the second
derivatives. And we have chosen a positive quantity because we desire sinusoidal
solutions in # . This is done with foresight. But the boundary conditions will finally
fix the values of the constants.

The solutions to the differential equation for�Cyl in (9.31) are

�Cyl, ˛ D cos .˛#/ , sin .˛#/ ; (9.32)

or a complex exponential. Regardless of the form of the potential ˚ it will be a
periodic function of # with period 2� . Then (9.32) must be periodic under a 2�
rotation. This will be sthe case if

˛ D n n D 0;˙1;˙2;˙3; :::. (9.33)

For a particular value of n the solution to (9.31) is then the sum

�Cyl, n D An cos .n#/C Bn sin .n#/ : (9.34)

We note that if n D 0 the function�Cyl, 0 D A0, a constant.
The differential equation for RCyl, from (9.31), is then

r
d

dr

�
r

dRCyl

dr

�
D n2RCyl: (9.35)

And if n D 0 we have

r
dRCyl

dr
D constant or 0, (9.36)

which results in
RCyl, 0 D C0 ln .r/CD0; (9.37)

whereD0 is a constant.
For n ¤ 0 (9.35) is

r2 d2RCyl

dr2
C r

dRCyl

dr
D �n2RCyl; (9.38)

which is solved by
RCyl, ˇ D r˙ˇ: (9.39)

That is, putting (9.39) into (9.38) we have

r2 .˙ˇ/ .˙ˇ � 1/ r˙ˇ�2 C r .˙ˇ/ r˙ˇ�1 D n2r˙ˇ; (9.40)
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or
r˙ˇ �.˙ˇ/ .˙ˇ � 1/C .˙ˇ/ � n2

	 D 0: (9.41)

from which we find that ˙ˇ D ˙n. That is the solutions to (9.38) are

RCyl, n D rn; (9.42)

where n may take on all positive and negative integer values excluding 0, for which
the solution is (9.37).

Combining (9.42) with (9.34) we have the functions

˚0 .r; #/ D C0 ln .r/CD0; (9.43)

where we have incorporated A0 into the final values of C0 andD0, and

˚n .r; #/ D RCyl, n�Cyl, n (9.44)

D Anr
n cos .n#/C rnBn sin .n#/ ;

where n takes on all positive and negative integer values. The general solution for
˚ .r; #/ is then

˚ .r; #/ D C0 ln .r/CD0 C
1X

nD�1
Anr

n cos .n#/C Bnr
n sin .n#/ : (9.45)

Example 9.3. As an example we ask for the potential inside a nonconducting
cylindrical shell of radius a on which the potential is V .#/.

The potential within the cylinder cannot depend on negative powers of r or
on ln .r/ because at the origin these are infinite. Then the potential within the
cylindrical shell is of the form

˚ .r; #/ D ˚0 C
1X

nD1
Anr

n cos .n#/C Bnr
n sin .n#/

where ˚0 D A0 CD0.
We evaluate the constants ˚0, An and Bn from the potential V .#/ on the

nonconducting shell

V .#/ D ˚0 C
1X

nD1
Ana

n cos .n#/CBna
n sin .n#/ :

Here ˚0is equal to any constant term in V .#/.
Because Z 2�

0
cos .n#/ cos .m#/ d# D �ınm; (9.46)
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Z 2�

0
sin .n#/ sin .m#/ d# D �ınm (9.47)

and Z 2�

0
sin .n#/ cos .m#/ d# D 0

the constants An and Bn are

An D 1

�an

Z 2�

0
V .#/ cos .n#/ d#:

Bn D 1

�an

Z 2�

0
V .#/ sin .n#/ d#:

9.5 Spherical Coordinates

We make the Ansatz that the function˚ .r; �; #/, which is a solution to (9.4) can be
written as

˚ D RSph .r/ ˚Sph .�/�Sph .#/ ; (9.48)

with RSph .r/ ˚Sph .�/�Sph .#/ ¤ 0. This will require two separations. The first
separation is

˚ D RSph .r/ YSph .#; '/ : (9.49)

Then (9.4) results in

1

RSph

d

dr

�
r2 dRSph

dr

�
C 1

YSph



1

sin �

@

@�

�
sin �

@YSph

@�

�
C 1

sin2 �

@2YSph

@#2

�
D 0:

(9.50)
The term involving RSph depends only on the independent variable r and the term
involving YSph depends only on the independent coordinates .#; �/, Therefore each
of these terms must be equal to a constant.

1

RSph

d

dr

�
r2 dRSph

dr

�
D ˛2 (9.51)

1

YSph



1

sin �

@

@�

�
sin �

@YSph

@�

�
C 1

sin2 �

@2YSph

@#2

�
D �˛2: (9.52)

We now try a separation of (9.52) with the Ansatz that the function YSph .#; '/

can be written as
YSph .#; '/ D �Sph .#/˚Sph .'/ : (9.53)

Inserting (9.53) into (9.52) and multiplying through by sin2 � we have
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1

˚Sph
sin �

d

d�

�
sin �

d˚Sph

d�

�
C ˛2 sin2 � D � 1

�Sph

d2�Sph

d#2
: (9.54)

The term on the left hand side of (9.54) is a function only of the independent
coordinate� and the term on the right hand side is a function only of the independent
coordinate # . The equality of these two terms in (9.54) can only hold if they are
equal to the same constant. As in the case of cylindrical coordinates, regardless of
the form of the potential ˚ , the solution will be periodic in # with period 2� .

We, therefore, choose the constant to be the square of a numberm. Then

�Sph D cos .m#/ , sin .m#/ ; (9.55)

or a complex exponential. And

1

˚Sph
sin �

d

d�

�
sin �

d˚Sph

d�

�
C ˛2 sin2 � D m2 (9.56)

If we introduce
x D cos� (9.57)

we have

sin �
d

d�
D sin�

dx

d�

d

dx
D �

x2 � 1� d

dx

and (9.56) becomes

�
x2 � 1�

�
d

dx

�
�
x2 � 1� d˚Sph

dx

�
� ˛2˚Sph


D m2˚Sph (9.58)

We achieve a considerable simplification, and yet retain the ability to consider
interesting problems, if we limit our consideration to situations for which there is
no azimuthal dependence. That is

1

�Sph

d2�Sph

d#2
D m2 D 0: (9.59)

With m2 D 0, (9.58) becomes, since
�
x2 � 1� ¤ 0,

d

dx

��
x2 � 1� d˚Sph

dx

�
� ˛2˚Sph D 0; (9.60)

or
�
x2 � 1

� d2˚Sph

dx2
C 2x

d˚Sph

dx
� ˛2˚Sph D 0: (9.61)

This is Legendre’s Equation. It is an eigenvalue problem
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LLegendre˚Sph D ˛2˚Sph (9.62)

with

LLegendre D �
x2 � 1� d2

dx2
C 2x

d

dx
: (9.63)

The eigenvalues for this problem are

˛2 D n .nC 1/ with n D 0; 1; 2; : : : . (9.64)

And the eigenfunctions are polynomials

Pn .x/ D 1

2nnŠ

dn

dxn

�
x2 � 1�n : (9.65)

We show this in Appendix H. The first few Legendre Polynomials are

P0 .x/ D 1

P1 .x/ D x

P2 .x/ D 1

2

�
3x2 � 1

�

P3 .x/ D 1

2

�
5x3 � 3x

�

::: (9.66)

The Legendre Polynomials are orthogonal, as a result of the properties of
Legendre’s Equation ([20], p. 169, 170). But they are not normalizable. Specifically

Z C1

�1
Pq .x/ Pp .x/ dx D 2

2q C 1
ıqp: (9.67)

From Legendre’s Equation we can directly show that

Z C1

�1
Pn .x/ dx D 0: (9.68)

In the event that there is a dependence on # andm ¤ 0 we have

d

dx

��
1 � x2

� d˚Sph

dx


C
�
n .nC 1/� m2

.1 � x2/


˚Sph D 0; (9.69)

which is the associated Legendre Equation. The solutions are the associated
Legendre Functions. The associated Legendre Functions are ([20], p171)
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Pm
n .x/ D �

1 � x2
�m

2
dm

dxm
Pn .x/ ; (9.70)

with the additional requirement that

� n � m � Cn: (9.71)

The functions YSph .#; '/ D �Sph .#/˚Sph .'/ originally introduced in (9.53),
with m ¤ 0, are termed the Spherical Harmonics. These are

YSph .#; �/ D Pm
n .cos�/ ŒAm cos .m#/C Bm sin .m#/� (9.72)

The differential (9.51) for RSph is now, with ˛2 D n .nC 1/,

r2 d2RSph

dr2
C 2r

dRSph

dr
D n .nC 1/RSph: (9.73)

We try the solution
RSph D rq:

Substituting this into (9.73) we have

q .q C 1/ D n .nC 1/ ;

or q D n, and � .nC 1/. The solution for RSph is then

RSph D Dnr
n CGnr

–(n+1): (9.74)

If there is no azimuthal (#) dependence, i.e. if there is symmetry about an axis,
the solution to Laplace’s Equation in spherical coordinates is then a sum of the
solutions

˚n .r; �/ D RSph .r/ ˚Sph .�/

D �
Dnr

n CGnr
–(n+1)

	
Pn .cos�/ : (9.75)

If there is azimuthal dependence, i.e. there is no axis of symmetry, the solution
to Laplace’s Equation in spherical coordinates becomes

˚nm .r; �; #/ D RSph .r/ ˚Sph .�/�Sph .#/

D �
Dnr

n CGnr
–(n+1)

	 � � �
� � �Pm

n .cos�/ ŒAm cos .m#/C Bm sin .m#/� : (9.76)

Example 9.4. As an example of the application of (9.75) we consider a conducting
sphere of radius a in a uniform electric field oriented along the polar direction�D 0.
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Fig. 9.3 Conducting sphere
of radius a in a uniform
electric field

We have drawn the situation in Fig. 9.3. The value of the coordinate along the polar
axis is z D r cos� and the potential for the uniform electric field at great distances
from the conducting sphere is

lim
z!1˚ D �E0z

D �E0r cos�.

On the surface of the sphere the potential is a constant, which we shall call ˚C.
The general solution is a sum over all solutions of the form (9.75)

˚ .r; �/ D
1X

nD0

�
Dnr

n CGnr
�.nC1/	Pn .cos�/

D
�
D0 CG0

1

r


C
�
D1r CG1

1

r2


cos�

C
1X

nD2

�
Dnr

n CGnr
�.nC1/	Pn .cos�/ :

In the limit of large r this is

lim
r!1˚ .r; �/ D D0 CD1r cos� C

1X

nD2
Dnr

nPn .cos�/

D �E0r cos�:
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ThenD0 D 0,D1 D �E0, andDn D 0 for all > 2. On the surface of the sphere we
have

˚ .a; �/ D ˚C

D �E0aP1 .cos�/C
1X

n=0

Gna
�.nC1/Pn .cos�/ ;

identifying P1 .cos�/ D cos�.
We may now use the properties (9.67) and (9.68) to obtain equations for the

coefficientsGn. Equating first the constant terms,

G0 D a˚C:

Multiplying through by P1 .x/ and integrating we have

E0a

Z C1

�1
P 2

1 .x/ dx D
1X

n=0

Gna
�.nC1/

Z C1

�1
Pn .x/ P1 .x/ dx

D G1a
�2
Z C1

�1
P 2

1 .x/ dx;

or
G1 D E0a

3:

Multiplying through by Pm .x/ and integrating results in Gm D 0 for all m > 2.
Then

˚ .r; �/ D ˚C
a

r
C E0

�
a3 1

r2
� r

�
cos�:

The value of the potential˚C of the conducting sphere is arbitrary. Choosing˚CD 0

we have

˚ .r; �/ D E0

�
a3 1

r2
� r

�
cos�:

9.6 Summary

In this chapter we have presented separation of variables solutions to Laplace’s
Equation for each of the three coordinate systems that are important to our study
of classical fields. The electrostatic scalar potential solves Laplace’s Equation when
there are no free charge densities except on the surfaces, where they produce
boundary conditions. These are then the homogeneous solutions to Poisson’s
Equation and could form the basis for Green’s Functions in complex situations.

In the examples we worked through, the reader can see the general method to
be used in working with these solutions of Laplace’s Equation. We fit the general
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solutions to the boundary conditions of the particular problem of interest. This is no
specific methodology to follow. Experience and intuition help.

A primary interest in this text is, however, in the dynamical behavior of electric
and magnetic fields. We will, therefore, not use the results of this chapter until we
study the behavior of fields in matter in Chap. 15, when we encounter polarization
and magnetization.



Chapter 10
Time Dependence

What is Maxwell’s theory? Maxwell’s theory is the system of
Maxwell’s equations.

Heinrich Hertz

10.1 Introduction

In Chap. 1 Sect. 1.10 we discussed the history of Faraday’s discovery that a time rate
of change in the magnetic field induction causes an electric field.

In his experiments Faraday measured electrical current. The electrostatic field
is conservative (curl E D 0) and unable to move charges through a circular wire.
The electrodynamic field that that is induced by a sudden change in the magnetic
field induction is, therefore, of a different character than that resulting from charge
densities.

In this chapter we will transform the laboratory results Faraday obtained into
the mathematical language of classical field theory. And we will introduce the
displacement current proposed by Maxwell, which is mathematically the inverse of
Faraday’s Law. With Faraday’s Law and the displacement current our previous static
field equations will be transformed into Maxwell’s Equations and the prediction of
the electromagnetic wave.

10.2 Faraday’s Law

An electromotive force (emf ) is required to drive charges around a wire loop
producing a current. Electromotive force was not a clearly defined term in the 19th

century ([97], p. 192). And in modern terminology the emf is not a force at all, but
the work done per unit charge in a circuit. The emf, which we designate here as E is
defined as

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 10, © Springer-Verlag Berlin Heidelberg 2012
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E D
I

C

E � d`; (10.1)

where C is the contour (wire loop) in which the current resulting from the work
done by the field E flows.

In 1832 Faraday showed that the induced electromotive force in a wire loop is
independent of the nature of the wire and that the induced electric field is simply
proportional to the change in the number of magnetic lines of force intersecting
area bounded by the contour of any wire loop ([97], pp. 191–192).

From (10.1) this means that the component of the electric field along the contour
of the wire loop is dependent solely on the change in the magnetic field induction
penetrating the area of defined by the loop. This is the flux of magnetic field
induction through the area defined by the wire loop.

In Fig. 10.1 we have drawn an arbitrary contour C with the area defined by the
contour penetrated by a magnetic field induction B.

For visual clarity we have drawn the contour in a single plane and have drawn
the magnetic field induction lines perpendicular to that plane. The contour need not
be in a plane and the open area bounded by the contour is also arbitrary, as is the
direction and possible curvature of the lines of magnetic induction. The sense of the
differential area da is determined by the right hand rule (see Sect. 2.5.4) relatively
to the direction around the contour.

The differential flux of magnetic field induction is d˚B D B�da. The total flux of
magnetic field induction ˚B through the open area bounded by C is then

˚B D
Z

a
B � da: (10.2)

Expressed mathematically1 Faraday’s discovery (Faraday’s Law) is then that the
emf (10.1) is proportional to the change in ˚B. This change took place over the time
it took Faraday to throw the switch. His later experiments in which he pushed a

Fig. 10.1 Magnetic field
penetrating the area defined
by an arbitrary contour C

1Faraday did not speak the language of mathematics.
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permanent magnet into a cardboard tube with a coil wrapped around it gave him the
understanding that it was the rate at which ˚B changed, and not only the change,
that was important.

Equating (10.1) to the time derivative of (10.2) we have the mathematical form
of Faraday’s Law based strictly on laboratory results

I

C

E � d` D � d

dt

Z

a
B � da: (10.3)

The negative sign in (10.3) results from our choice of the sense of the differential
area da from the direction of the contour C according to the right hand rule.
Equation (10.3) is Faraday’s Law in integral form.

Because the area a in (10.3) is fixed, i.e. independent of the time, we can bring
the time derivative inside the integral as a partial derivative resulting in

H

C
E�d` D � Ra @B/@t�da. (10.4)

If we now apply Stokes’ Theorem (2.78) to the contour integral in (10.4) we have

Z

a

�
curl E C @

@t
B
�

� da D 0: (10.5)

Since the area a is arbitrary, the integral will always vanish if and only if the
integrand vanishes. That is

curl E D �@B/@t. (10.6)

This is Faraday’s Law in differential form.
Since it is an equation for the curl of a field E, (10.6) is a field equation. It replaces

(3.27) if the fields depend on the time.
The physical picture of the orientation of the induced electric field relative to an

increasing magnetic field is shown in Fig. 10.2.
The direction of the induced field is in accordance with (10.3) and a qualitative

law formulated by (Heinrich) Emil Lenz (1804–1865) published shortly after

Fig. 10.2 Electric field
induced by varying magnetic
field
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Fig. 10.3 Magnetic field
BD .t / (possibly) induced by
a time dependent electric
field. The original magnetic
filed B .t/ and the induced
electric field E .t/ are both
increasing in the direction
shown

Faraday’s discovery [63]. Lenz claimed that when a conducting circuit is moved in a
magnetic field the induced current flows in such a direction that the ponderomotive
forces on it tend to oppose the motion ([19], p. 45; [97], p. 222).

If in Fig. 10.2 we consider that a loop of wire is placed at the location of the
induced electric field an electric current will flow in the direction of the field. This,
by Ampère’s Law (5.77), will result in a circular magnetic field around the current
that will oppose the direction of the original time-dependent magnetic field.

What happens if we elect not to place a wire at the location of the induced electric
field? We have drawn the situation if a magnetic field induction, which we labeled
as BD .t/ is induced by the electric field E .t/ alone in Fig. 10.3.

In Fig. 10.3 there is no current. If what is pictured in Fig. 10.3 actually occurs then
charges are not necessary for the existence of the fields in the time dependent case.
The original field B .t/ was, in Faraday’s experiments, produced by moving charges.
But his experiments also indicated that the induced field E .t/ was independent
of matter. If the time rate of change of this electric filed produces also a (time
dependent) magnetic field time dependent fields will fill the space in the immediate
vicinity of the initial magnetic field.

We should then ask whether or not @E .t/ =@t acts like a current.

10.3 Displacement Current

As we saw in Sect. 1.11.2.2, Maxwell proposed the displacement current

JD � "0@E/@t (10.7)

in his third installment of “Physical Lines.” If we introduce this idea here we find
an answer to our question. The induced field in Fig. 10.2 varies with the time in
accordance with Faraday’s Law (10.6). If we claim that the rate of change of the
electric field is equivalent to a current, as in (10.7), then a time-dependent electrical
field alone will produce a magnetic field in accordance with Lenz’ Law.

This approach may attribute more credence to Lenz’ qualitative law than we
wish. There is, however, more reason to add the displacement current than a desire
to retain Lenz’ Law. If we neglect the displacement current and take the divergence
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of Ampère’s Law (5.77) we have

div curl B D 0 D �0 div J; (10.8)

which is in violation of charge conservation (5.11) for the time-dependent case.
But if we add the displacement current to Ampère’s Law obtaining

curlB D �0

�
J C "0

@

@t
E
�
; (10.9)

we arrive at mathematical consistency with charge conservation.
Taking the divergence of (10.9) and using Gauss’ Law (3.26) we have

div curl B D 0 D �0

�
div J C @

@t
"0 div E

�

D �0

�
div J C @

@t
�

�
: (10.10)

The final bracket . / on the right hand side in (10.10) vanishes by charge
conservation (5.11).

To demand charge conservation as the requirement for the introduction of the
displacement current places us on surer footing than requiring that Lenz’ Law be
satisfied. But the argument based on charge conservation fails in empty space. In
empty space � D 0 and J D 0 and neither of the sets of equations

div E D 0 div B D 0

curl E D �@B=@t curl B D �0"0@E=@t;
(10.11)

nor
div E D 0 div B D 0

curl E D �@B=@t curl B D 0;
(10.12)

is mathematically inconsistent. So our argument for preferring the set (10.11) over
the set (10.12) must be based on another criterion in empty space.

Maxwell also did not claim that the reason for introducing the displacement
current was necessary for charge conservation. If this was his reason he certainly
would have mentioned it in print. But he did not. When he was writing “Physical
Lines” Maxwell was interested in what he called molecular vortices and a mechan-
ical picture based on elastic strain of the aether ([86], pp. 112–113).

The symmetry of the set (10.11) is more beautiful than the asymmetry of the set
(10.12). This may be sufficient reason for a theoretical physicist to choose (10.11)
over (10.12). But that is a metaphysical and not a scientific reason for the choice.
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The scientific reason is that (10.11) admits of wave solutions while (10.12) does
not. After Hertz’ experiments of 1887 [45], no equations that did not admit of a
wave solution in empty space could be considered.

10.4 Magnetostatic Energy

In no preceding chapter did we consider magnetostatic field energy. The reason for
this omission is that the magnetic field transfers no energy to charged particles in
motion. That left us no obvious way to compute the energy transfer in the static
case. Faraday’s Law, however, allows us to compute the energy required to establish
a magnetic field.

We consider a toroidal solenoid with a rectangular cross section, as we have
drawn in Fig. 10.4. We have chosen a rectangular cross section to simplify the
integration. The current to the toroidal solenoid is supplied by an external source.

We may choose the external source to vary (increase) very slowly so that at
any instant in the experiment the displacement current in Ampère’s Law may be
neglected compared to the current density J. At any time in the experiment we
may then use Ampère’s Circuital Law to obtain the magnetic field induction in the
solenoid.

Ampère’s Circuital Law shows us that the magnetic field is contained entirely
within the closed volume of the toroidal solenoid. Application of Ampère’s Circuital
Law to the contour C in Fig. 10.4 results in a magnetic field induction

B .r/ D N`�0I

2�r
; (10.13)

where N` is the number of wire windings in the solenoid, I is the current in the
wire, and R < r < RC w is the radius of the contour C .

The flux of the magnetic field induction inside the solenoid is the integral of
(10.13) over the cross section of the solenoid multiplied by the number of windings
in the solenoid

˚B D N 2
` �0I

2�
h

Z R+w

R

dr

r
D N`�0I

2�
h ln

�
RC w

R

�
: (10.14)

Fig. 10.4 Toroidal solenoid
with a rectangular cross
section



10.4 Magnetostatic Energy 227

The rate of change of ˚B is equal to the emf E required to increase the current in
the solenoid

E D N 2
` �0

2�
h ln

�
R C w

R

�
dI

dt
: (10.15)

The emf in (10.15) results in an incremental work ıW done on each increment
of charge ıQ charge passing through the solenoid, which is

ıW D EıQ: (10.16)

The rate at which work is done to produce the magnetic field in the solenoid is then

dW

dt
D EI

D N 2
` �0

2�
h ln

�
RC w

R

�
d

dt

�
1

2
I 2
�
: (10.17)

We may now integrate (10.17) over the time from the beginning of the experiment
when I D 0 to the final time when we have a current I in the solenoid. The result
is the total work done to increase the magnetic field induction in the solenoid from
B D 0 to a final value of B . This total work done is the magnetic energy in the
solenoid

UB D 1

2

N 2
`
�0

2�
h ln

�
RC w

R

�
I 2: (10.18)

We now ask if we can formulate this total energy in terms of the magnetic field
induction. From (10.13) the square of the magnetic field induction along the contour
C is �

N 2
`
�2

0

4�2r2

�
I 2 D B2 .r/ (10.19)

If we integrate (10.19) over the volume of the solenoid we have

�
N 2
` �

2
0

4�2

�
I 2h

Z 2�

0
d#
Z R+w

R

dr

r
D
�
N 2
` �

2
0

2�

�
I 2h ln

�
RC w

R

�

D h

Z 2�

0
d#
Z a+h

a
r2drB2 .r/ (10.20)

Combining (10.18) and (10.20) we see that the total magnetic field energy in the
solenoid is

UB D h

Z 2�

0
d#
Z a+h

a
r2dr

�
1

2

1

�0
B2 .r/

�
: (10.21)

The density of the magnetic field energy uB per unit volume is then

uB D .1=2/ .1=�0/B2. (10.22)

This is the magnetostatic field energy in the toroidal solenoid.
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This magnetostatic energy density bears mathematical resemblance to the elec-
trostatic field energy density

uE D .1=2/ "0E
2;

which we obtained in Sect. 4.6.1. At this point in our development the resemblance
is only incidental. The basis for this resemblance will be revealed as we study wave
motion and energy transport by waves.

10.5 Maxwell’s Equations

For classical electromagnetic fields the set of (10.11) is the valid set of equations for
free space with charge and current densities absent. These are the equations referred
to, in modern terminology, as Maxwell’s Equations.

In what follows we have a list of Maxwell’s Equations in which we identify
the individual field equations by the names normally associated with them and
provide the experimental evidence on which they are based. We have done this to
emphasize the fact that classical field theory has the structure which Newton and
Barrow decided was correct for an experimental and mathematical philosophy.

For the electric field we have

• Gauss’ Law

div E D 1

"0
� (10.23)

is a result of Coulomb’s Experiment in which the force between two charges was
measured.

• Faraday’s Law

curl E D �@B
@t

(10.24)

is a result of Faraday’s Experiment in which the induction of an electric field by
a changing magnetic field was discovered.

and for the magnetic field we have

• Oersted’s Result
div B D 0 (10.25)

is a result of Oersted’s Experiment identifying electric current as the source of
magnetic fields and the fact that the geometrical form of the magnetic field is a
closed loop.

• Ampère’s Law

curl B D �0

�
J C "0

@

@t
E
�

(10.26)
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is a result of Ampère’s Experiment in which the force between two parallel wires
carrying currents was measured. Here we have added Maxwell’s displacement
current to the original form of Ampère’s Law.

and then for the charges and currents we have

• Charge conservation
@

@t
� C div J D 0 (10.27)

is a mathematical expression of Franklin’s proposal that charge is conserved.

Using Gauss’ Theorem and Stokes’ Theorem Maxwell’s Equations may be
written in integral form.

• Gauss’ Law I

S

E � dS D 1

"0

Z

V
�dV (10.28)

• Faraday’s Law I

C

E � d` D �
Z

a

@B
@t

� da (10.29)

• Oersted’s Result I

S

B � dS D 0 (10.30)

• Ampère’s Law I

C

B � d` D �0

Z

a

�
J C "0

@

@t
E
�

� da (10.31)

• Charge conservation I

S

J � dS D �
Z

V

@

@t
�dV: (10.32)

The integral form of Maxwell’s Equations is useful in applications to situations
for which the integrals may be replaced by algebraic expressions. That is the fields
must be constant along the contours or over the surfaces of integration.

Maxwell’s equations do not, however, form a mechanical picture, such as
Maxwell sought, based on the aether (see Chap. 1). His friend Thomson saw no
way for the earth to move freely through the elastic aether ([79], p. 274). And,
now, after the failure to measure the motion of the earth through the aether and
Einstein’s development of a theory in which aether plays no role (see Sect. 1.14),
we realize that the hope of 19th century British physicists for a mechanical picture
of electromagnetic fields failed.

Hertz recognized the philosophical difficulty. He posed the question: “What is
Maxwell’s theory?” and answered that: “Maxwell’s theory is Maxwell’s system of
equations ([46], p. 21).” Once we remove all of the architecture of the aether, that
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Maxwell considered important, we are left with the same theory and the same results
that are tested in the laboratory without any reference to the aether. Hertz even said
that his experiments were not guided by Maxwell’s ideas ([46], p. 20).

Einstein’s answer to the asymmetry in our understanding of Faraday’s Law does
not alter the fact that in a stationary laboratory we observe an induced electric field
from a change in a magnetic field. And we know that the existence of an electro-
magnetic wave in that stationary laboratory is evidence that what we have called the
displacement current is the result of a real physical law. We know that Maxwell’s
Equations are valid. But we cannot explain them in terms of a mechanical picture.

10.6 Summary

As we began this chapter we had the complete static field equations. At the end of
the chapter we had the complete Maxwell Equations.

Faraday’s experimental discovery of electromagnetic induction as a time depen-
dent phenomenon was the crucial initial step. This was then followed by Maxwell’s
proposal that a time varying electric field is equivalent to a current in the sense
that the time rate of change of the electric field induces a magnetic field. The
combination of Faraday’s Law and Maxwell’s displacement current completed the
theory.

Based on Faraday’s Law we were, at last, able to logically introduce magnetic
field energy. Before we inderstood Faraday’s Law we could not speak of the work
required to produce a magnetic field.

We devoted some space to an analysis of Maxwell’s displacement current. If
charges and currents are present the displacement current is required by charge
conservation. But in empty space we are left with only the proposal that the field
equations must be symmetric, which is a proposal waiting verification.

At the end of the chapter we have Maxwell’s Equations as a theory waiting for
verification or falsification.

Exercises

10.1. Simplifying the arrangement Faraday used, you have placed a wire loop of
radius b coaxial with and at the center of a long straight solenoid of a radius a.
The solenoid has N� turns per unit length and a length of LS. We have drawn the
arrangement in Fig. 10.5. You have made b only slightly larger than a so that you
may neglect any complications from the magnetic field external to the solenoid.
You also assume that the magnetic field induction inside the solenoid is uniform
and can be found from Ampère’s Circuital Law. You will close a switch on a battery
(with emf of V V/ connected to the solenoid to produce a current. After you close
the switch the emf produced in the solenoid opposes the flow of current.
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Fig. 10.5 Solenoid with
coaxial wire loop

(a) Using Ampère’s Circuital Law, and assuming that the magnetic field induction
is uniform within the entire solenoid, show that the emf E produced in the
solenoid is related to the changing solenoid current I by E D LdI=dt where
L D �a2�0N

2
�LS. This is called the self inductance of the solenoid.

(b) If there is a resistance R� in the battery circuit supplying the current to the
solenoid, then I will satisfy the differential equation

V D RI C L
dI

dt
:

Show that the current

I .t/ D V

R

�
1 � exp

�
�R
L
t

��

solves this differential equation.
(c) You obtain a recording of the current in the wire loop Ib .t/. What do you expect

the result to be if the loop has resistance Rb �?

10.2. In the preceding exercise you used a loop with radius b not much larger that a.
What happens if you increase the loop radius b considerably? For example, assume
that you have a solenoid of inner radius 0:5 cm and a length of 10 cm and you try
an outer loop of radius 50 cm.

10.3. In a region of space we have a uniform magnetic field of induction B . We
can produce this field between closely spaced, parallel poles of a magnet. We then
drag a rectangular wire loop through this region as we have illustrated in Fig. 10.6.
The motion of the loop is uniform, i.e. the velocity of the loop is a constant, which
we identify as v. The resistance of the loop is R� The current measured by the
galvanometer shown in the drawing is then E=R, where E is the emf.

(a) Using Faraday’s Law find the emf E in the loop.
(b) The charges in the part of the wire loop still in the magnetic field are moving

in the magnetic field and will experience a force. From this force calculate the
emf that will result from this effect.

10.4. In the preceding exercise you calculated the emf appearing in the loop using
two distinct methods and got the same result. Is this just an interesting result, or is
this an intolerable situation?

10.5. An industrial generator, driven by a turbine, consists of anN -turn coil of area
A, which rotates in a magnetic field with induction B about an axis perpendicular
to the field, with a frequency of rotation �. Find the emf in the coil.

10.6. You have arranged the system in Fig. 10.7.
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Fig. 10.6 Moving a
rectangular loop through a
magnetic field

Fig. 10.7 Test of Faraday’s
Law with SHM

Fig. 10.8 Flip-coil magnetometer

In the vertical wire you have a dc current I . To the right of this wire you have
a vertical wire loop with a recording ammeter A. The resistance R is that internal
to the ammeter. You have then suspended a copper bar of mass m by a spring with
constant k mounted to a solid support. By tilting the wires in your loop slightly
forward you assure that the copper bar always contacts the loop.

In equilibrium the bar hangs at a distance ` from the top of your wire loop. You
can then pull it down a distance x0 and release it and the bar will oscillate. The
oscillation coordinate you call x. You consider only simple harmonic motion of
your copper bar.

What do you expect for the record from the ammeter? Find the current as a
function of time and any other parameters. You may neglect losses.

10.7. A typical flip-coil magnetometer consists of a (usually small) wire loop
attached to the end of a rod. The leads from the loop are twisted together to avoid
any further emf other than from the loop. We position the loop at the point we want
to measure the magnetic field with the field perpendicular to the plane of the flip
coil. Then, using the rod, we flip the coil. There will be an emf in the coil from
Faraday’s Law that we can measure by connecting the leads to a meter. We have
illustrated the flip-coil magnetometer in Fig. 10.8.

The coil radius is a and there are n turns in the coil.
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Fig. 10.9 Hand-operated
generator

Fig. 10.10 Betatron toroidal
accelerating chamber
showing Magnetic induction
inside the torus

During the flip of the coil you record the emf as a function of time so you can
perform a numerical integration. Assume that the coil rotates at a constant rate
during the flip.

(a) What is the emf you record as a function of time?
(b) What is the magnetic induction?

10.8. You have built a hand-operated generator, which we have drawn in Fig. 10.9.
There is a uniform magnetic field of induction B into the paper.

You crank at as constant a rate as possible ! ( rad s-1). The only resistance in the
loop is the internal resistance of the ammeter R.

Find the current that the ammeter measures.

10.9. A betatron is an accelerator for electrons. The cyclotron does not work for
electrons because the mass of the electron increases as the velocity approaches
that of light. As a consequence the cyclotron frequency changes by a considerable
amount making acceleration impossible. The betatron is an ingenious answer to
this problem. In the betatron there is no natural frequency that must be maintained
constant. The accelerating field is produced by induction through a change in the
strength of a magnetic field outside of the betatron.

The betatron is shown schematically in Fig. 10.10. The electrons are accelerated
in a toroidal vacuum chamber of mean radius R. There is only a z�component of
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the magnetic field induction B D OezBz .r/, which is a function of the radial distance
r from the axis. In Fig. 10.10 we have only drawn the magnetic field induction lines
inside the torus. The chamber is also immersed in the magnetic field.

(a) Show that the electron’s tangential velocity is vt D qBz.R/R=m, where q is the
electron charge.

(b) If the magnetic field is slowly increased in magnitude, show that the emf
induced around the electron’s orbit is such as to accelerate the electron.

(c) Show that in order for the electron to stay in a single orbit, the radial variation of
Bz inside the orbit must be such that the spatial average of the increase in Bz.r/

(averaged over the area enclosed by the orbit) is equal to twice the increase in
Bz.R/ during the same time interval.

Your analysis will be based on Faraday’s and Newton’s Laws. It will be easiest to
write Newton’s Second Law in simple vector form, rather than using the canonical
equations, since you are looking for velocities.

10.10. Faraday’s homopolar generator consists of a metal disk that rotates in a
uniform magnetic field perpendicular to the plane of the disk. Show that the potential
difference produced between the center of the disk and its periphery is V D �˚B

where ˚B is the flux through the disk and � is its frequency of rotation.

10.11. You have a long solenoid wrapped with thick copper wire so that large
currents can be carried. There are N� windings per unit length. In the center of
the solenoid you have mounted a cylindrical nonmagnetic conductor of length L
and radius R with axis coinciding with that of the solenoid. The mountings are of a
nonconducting material with a high melting point. You intend to heat the conductor
by inducing a current in it. If you pass an alternating electrical current through the
wire of the solenoid you expect to obtain an alternating electrical current in the
conductor, which will result in internally heating the conductor.

Assume that near the center of the solenoid the magnetic field induction is
spatially uniform and varies only with the time.

(a) What is the electric field inside the conductor?
(b) Assuming Ohm’s Law so that the current density is J D �E, what is the current

in the conductor?

10.12. In a prior exercise you obtained the self inductance of a cylindrical solenoid
based on the assumptions that the magnetostatic field induction was vanishingly
small immediately outside the solenoid and uniform inside. But you know that
the field inside the solenoid is not uniform. The form is closer to that shown in
Fig. 10.11.

In Fig. 10.11 we have also drawn the differential cross sectional area of the
solenoid da. The number of turns of wire per unit length of the solenoid is N` and
the current in the wire is I .

For the more realistic situation shown in Fig. 10.11 that the flux of the magnetic
induction inside the solenoid is still of the form
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Fig. 10.11 Solenoid with
magnetostatic field lines
drawn

˚B D LI

so that the emf is still

E D L
dI

dt

and the energy present in the solenoid is still

UB D 1

2
LI 2:

Show that the inductance is
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10.13. The preceding exercise shows that we may still define an inductance for a
cylindrical solenoid in the actual situation encountered in electrical circuits. As a
consequence we also find that the expression for the energy in the magnetic field,
in terms of the inductance, was identical to that obtained for the toroidal solenoid,
even though the magnetic field is confined in the toroidal case and permeates the
space around the cylindrical solenoid.

Comment on this apparent paradox.

10.14. In his first experiments Faraday formed sets of solenoids by wrapping
layered helices of wire concentrically around a wooden dowel (Sect. 1.10). The
result was a pair of magnetically coupled, concentric solenoids. In Fig. 10.12 we
have drawn a simplified version of Faraday’s solenoids. Here we have reduced the
windings to the two separate solenoids that were actually there. We shall consider
that the solenoids have the same total length ` and have radii R1 < R2. The
number of windings in the inner solenoid we chose to be N1 and that in the outer
solenoid N2.
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Fig. 10.12 Concentric
cylindrical solenoids

Fig. 10.13 Two loops of
approximately equal radii, but
different numbers of turns

Show that the emf in the solenoid i .D 1; 2/ coil is

Ei D �
2X

j=1

Mij
dIj

dt

where Mii D Li is the self inductance of solenoid i and M12 D M21 is the mutual
inductance between the solenoids. The relationship M12 D M21 is an example of
Neumann’s2 Formula.

For simplicity assume, as in a prior exercise, that the magnetic field induction
produced by currents in each solenoid is uniform throughout that solenoid and that
the external magnetic field may be neglected.

10.15. In Fig. 10.13 we have drawn two circular wire loops, which we have placed
concentrically on the laboratory table.

The radii R1 and R2 of the loops are almost the same, i.e. R1 � R2, although
R1 < R2. There are N1 turns in the loop of radius R1 and N2 turns in the loop of
radius R2. You want to know the self inductance of the loop of radius R1 and the
mutual inductance of the two loops.

2Franz Ernst Neumann (1798–1895) was a German mathematician and physicist. He became
professor of mineralogy and physics at the University of Königsberg in 1829.
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The magnetic field induction for all points within the area of a single loop is
not easy to calculate, as we saw in examples. Symmetry tells us, however, that the
lines of magnetic field in the plane of the loop must be perpendicular to that plane.
The magnetic field induction will vary as a function of the radial distance from the
center. But we can define an average induction NB such that the flux through the area
of a loop of radiusR is

˚B D N
�
�R2

� NB;
where N is the number of turns in the loop.

We also know that the magnetic field induction in the plane of the loop increases
with current in the loop I and with the number of turns. We assume that the relation
is linear and write

NB D �0
NI

2�R
g .R/ ;

where g .R/ is some function that may vary with R.
Using these ideas show that Neumann’s Formula requires that g .R/ _ R.





Chapter 11
Electromagnetic Waves

God runs electromagnetics on Monday, Wednesday, and Friday
by the wave theory, and the devil runs it by quantum theory on
Tuesday, Thursday, and Saturday.

William Lawrence Bragg

11.1 Introduction

In Chap. 10 we obtained the full Maxwell Equations in the presence of charges and
currents as sources. And in Chap. 1 Sect. 1.12.1 we encountered the experiments
of Hertz, which identified the electromagnetic waves predicted by Maxwell. In this
chapter we will solve Maxwell’s Equations in free space, without the presence of
charges or currents as sources. This solution will provide us with a detailed picture
of the structure of the electromagnetic waves that are possible in the context of
classical electromagnetic field theory.

Until Hertz’ discovery of electromagnetic waves in the laboratory we could
legitimately consider the field concept to be a useful mathematical construct with
no reality beyond the vision of Faraday and Maxwell. We could also have been
profoundly skeptical of the field concept, as many scientists were in the latter part
of the 19th century (see e.g. [18], p. 164). But Hertz’ discovery was of a reality that
was transported from one part of the laboratory to another. And with our realization
that the elastic material aether of the 19th century does not exist, we acknowledge
Hertz’ discovery as verification that electromagnetic fields could be transported
across empty space.

In this chapter we will find that, in the context of Maxwell’s Equations, the
simplest propagating waves are plane waves. These are mathematical functions
of a single spatial coordinate and the time. We will discover that the electric and
magnetic field vectors of these plane waves must be perpendicular to the direction
of wave motion making them transverse waves like water waves. But we will also

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
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240 11 Electromagnetic Waves

find that the phenomenon known as polarization results in a rotation of these field
vectors around the direction of propagation.

The quantum mechanical impossibility of obtaining single frequency plane
waves means that we must consider a superposition, which will lead us to the Fourier
transformation and a more general formulation of wave propagation.

We will find that with the Lorentz Gauge both the scalar and vector potentials
satisfy wave equations with sources.

11.2 Wave Equations

Maxwell’s Equations (see Sect. 10.5) are

div E D �="0 div B D 0

curl E D �@B=@t curl B D �0 .J C "0@E=@t/ ;
(11.1)

Taking the curl of Faraday’s Law and of Ampère’s Law and using (A.16) we have

curl curl E D grad div E � r2E

D � curl
@

@t
B: (11.2)

and

curl curl B D grad div B � r2B

D curl�0

�
J C "0

@

@t
E
�
: (11.3)

Since curl is an operator containing partial derivatives and the order of partial
differentiation makes no difference1

curl
@

@t
D @

@t
curl : (11.4)

With (11.4), and using Gauss’ and Ampère’s Laws, (11.2) becomes

r2E � 1

c2

@2

@t2
E D 1

"0
grad�C �0

@

@t
J: (11.5)

With (11.4), and using Oersted’s Result and Faraday’s Law, (11.3) becomes

1A proof of this property of partial derivatives may be found in any text on multivariate calculus
(e.g. [15], volume II, pp. 55–56).
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r2B � 1

c2

@2B
@t2

D ��0 curl J: (11.6)

In (11.5) and (11.6) we have used the fact that "0�0 D 1=c2.
Equations (11.5) and (11.6) are the electromagnetic wave equations with sources.

The sources are the charge density � .r; t/ and the current density J .r; t/. We
will study the production of wave fields from the motion of charged particles in
a subsequent chapter.

If we consider a region of space in which there are neither currents nor charges,
i.e. a region of space in which J D 0 and � D 0, then (11.5) and (11.6) become

r2E � 1

c2

@2

@t2
E D 0; (11.7)

and

r2B � 1

c2

@2B
@t2

D 0: (11.8)

Before proceeding we recall that if we choose empty space with J D 0 and � D 0

we are dealing with vector fields E and B for which the divergence vanishes. Such
vector fields are termed solenoidal. This is the situation considered by Maxwell for
the light wave in 1868, with the exception that he kept J in Ampère’s Law (see
Sect. 1.11.2.2). We, therefore, try plane wave solutions to (11.7) and (11.8).

11.3 Plane Waves

The functions
sin .!t � kxx/ (11.9)

and
cos .!t � kxx/ (11.10)

represent propagating sinusoidal (oscillatory) disturbances around ambient condi-
tions. These disturbances may be, for example, waves on the surface of water or
sound waves in air. The disturbance we measure is the rising and falling of the
water surface or the oscillating pressure of the sound wave. If we are sufficiently far
from the source of the disturbance, such as a pebble dropped into a calm pond or a
plucked guitar string, the water or sound waves passing us appear to be going in one
direction, which we have called x in (11.9) and (11.10).

In Fig. 11.1 we have plotted (11.10) for two different times. At the initial time
the function (disturbance) is that represented by the dashed line and at the later time
the disturbance is represented by the solid line. In the case of either the water or
sound waves the disturbance propagates at a constant velocity to the right along the
x�axis.
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Fig. 11.1 Sinusoidal disturbance cos .!t � kxx/ moving along the x�axis. The dashed line
represents the distrurbance (a plane wave) at a certain time and the solid line is at a later time

We can simplify our mathematical treatment of general oscillatory disturbances
in space by introducing Euler’s Identity

exp .i#/ D cos# C i sin#: (11.11)

That is
sin .!t � kxx/ D Im Œexp .i!t � ikxx/� (11.12)

and
cos .!t � kxx/ D Re Œexp .i!t � ikxx/� (11.13)

We see the mathematical simplification when we differentiate exp .i!t � ikxx/.
The first partial derivatives of the complex exponential representation are

@

@t
exp .i!t � ikxx/ D i! exp .i!t � ikxx/ ; (11.14)

and
@

@x
exp .i!t � ikxx/ D �ikx exp .i!t � ikxx/ : (11.15)

And the second partial derivatives are

@2

@t2
exp .i!t � ikxx/ D �!2 exp .i!t � ikxx/ ; (11.16)

and
@2

@x2
exp .i!t � ikxx/ D �k2

x exp .i!t � ikxx/ : (11.17)

With (11.16) and (11.17) we have

�
@2

@x2
� 1

c2

@2

@t2

�
exp .i!t � ikxx/

D �
�
k2

x � !2

c2

�
exp .i!t � ikxx/ (11.18)
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and we see that exp .i!t � ikxx/ satisfies the one-dimensional form of (11.7) or
(11.8) provided c D !=kx.

When we choose to represent the disturbances by complex exponentials rather
than the real functions sine and cosine we have greater simplicity, which will be
indispensable in our discussions. We do, however, then elect to work in the complex
plane. This presents no problem if we are studying the characteristics of wave
motion, which involve only permitted values for frequency ! and wave vector k.
If we need actual values of electric and magnetic fields we must then find the real
parts of our complex valued functions.

In the complex plane we represent the wave solutions as

E .k; !/ exp .i!t � ik � r/ (11.19)

B .k; !/ exp .i!t � ik � r/ ; (11.20)

The real parts of (11.19) and (11.20) are

E .r; t/ D 1

2
ŒE .k; !/ exp .i!t � ik � r/

C E*
�
k*; !*

�
exp

��i!*t C ik* � r
��

(11.21)

B .r; t/ D 1

2
ŒB .k; !/ exp .i!t � ik � r/

C B*
�
k*; !*

�
exp

��i!*t C ik* � r
��
; (11.22)

which are the actual physical solutions. If the waves are not damped (do not decrease
with time at a point in space) or dispersed (do not decrease spatially at an instant in
time) ! and k will be real.

If we substitute (11.19) and (11.20) into (11.7) and (11.8) we have

�
k2 � !2

c2

�
ŒE .k; !/ or B .k; !/� exp .i!t � ik � r/ D 0; (11.23)

where
k2 D k2

x C k2
y C k2

z (11.24)

is real. That is our complex exponential solutions are valid provided the relationship
between ! and k is

! .k/ D c
q
k2

x C k2
y C k2

z ; (11.25)

which is real as well. There is no damping or dispersion of plane waves in empty
space. From (11.25) we see that the wave velocity is c D != jkj, where jkj Dq
k2

x C k2
y C k2

z , which is the velocity we found for the one-dimensional wave.
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Equation (11.25) is the dispersion relation for plane electromagnetic waves
in empty space. In general a dispersion relation provides the frequency ! as a
function of the wave vector k that is required for the waves to propagate. Since
the dispersion relation (in empty space) requires that ! and k are real, taking the
complex conjugate of (11.23) we have

�
k2 � !2

c2

� 	
E* .k; !/ or B* .k; !/

�
exp .�i!t C ik � r/ D 0: (11.26)

But we can also obtain (11.26) from (11.23) by replacing .k; !/ by .�k;�!/.
Therefore

E* .k; !/ D E .�k;�!/
and

B* .k; !/ D B .�k;�!/
for the wave in empty space. And the electric and magnetic waves fields in empty
space (11.21) and (11.22) are

E .r; t/ D 1

2
ŒE .k; !/ exp .i!t � ik � r/

C E .�k;�!/ exp .�i!t C ik � r/� (11.27)

B .r; t/ D 1

2
ŒB .k; !/ exp .i!t � ik � r/

C B .�k;�!/ exp .�i!t C ik � r/� ; (11.28)

11.4 Plane Wave Structure

We begin our investigation of the structure of plane waves in empty space with
Maxwell’s Equations in the absence of charges and currents (10.11), which are

div E D 0 div B D 0

curl E D �@B
@t

curl B D 1

c2

@

@t
E: (11.29)

For the plane wave solutions (11.19) and (11.20) we have

div ŒE .k; !/ exp .i!t � ik � r/�

D �ik � E .k; !/ exp .i!t � ik � r/ ; (11.30)
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curl ŒE .k; !/ exp .i!t � ik � r/�

D �ik � E .k; !/ exp .i!t � ik � r/ ; (11.31)

and

@

@t
ŒE .k; !/ exp .i!t � ik � r/�

D i! � E .k; !/ exp .i!t � ik � r/ (11.32)

and corresponding expressions for the magnetic field. Then Maxwell’s Equations
(11.29) for waves in empty space become

k � E D 0 k � B D 0

k � E D !B k � B D � !
c2

E: (11.33)

From Gauss’ Law (k � E D 0) and from Oersted’s Result (k � B D 0) in (11.33)
we see that the wave vector k is perpendicular to both E and B.

From Faraday’s Law, or from Ampère’s Law, we have

E � .k � E/ D 0 D E � .! B/ ;

or
B � . k � B/ D 0 D �B �


 !
c2

E
�
:

So E is perpendicular to B. Then k, E and B are mutually perpendicular (orthogo-
nal).

If we cross E into Faraday’s Law and use the bac � cab rule with E � k D 0 we
have

E � .k � E/ D k
�
E2
� D !E � B: (11.34)

The wave vector k is then in the direction of E � B. We may obtain the same result
from Ampère’s Law.

Since k=! D 1=c, (11.34) is

1

c
E2 D jEj jBj ;

or

jBj D 1

c
jEj (11.35)

Therefore the electromagnetic waves in empty space are transverse waves, i.e.
the fields are perpendicular to the direction of wave motion (the wave vector k). The
orientation of the wave vector with respect to the fields is given by E � B and, in the
SI system of units the magnitudes of the fields are related by jBj D jEj =c.
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11.4.1 Polarization

The vector functions E .k; !/ and B .k; !/ are complex. If we choose k to be
oriented along the z�axis E .k; !/ and B .k; !/ have complex vector components
in the Oex and Oey directions Ex .k; !/, Ey .k; !/ and Bx .k; !/, By .k; !/. We may
always write a complex number as the product of a real number and the exponential
of a phase angle. We then write

Ex .k; !/ D E (r)
x exp .i'x/

Ey .k; !/ D E (r)
y exp

�
i'y
�

Bx .k; !/ D B (r)
x exp .i x/

By .k; !/ D B (r)
y exp

�
i y

�
;

where the superscript (r) indictaes a real quantity. The complex vector quantities
E .k; !/ and B .k; !/ then become

E .k; !/ D OexE
(r)
x exp .i'x/C OeyE

(r)
y exp

�
i'y
�

(11.36)

and
B .k; !/ D OexB

(r)
x exp .i x/C OeyB

(r)
y exp

�
i y

�
: (11.37)

In (11.36) and (11.37) the angles 'x,y and  x,y are real. Then (11.19) and (11.20)
become

E .k; !/ exp .i!t � ikz/

D OexE
(r)
x exp .i!t � ikz C i'x/

COeyE
(r)
y exp

�
i!t � ikz C i'y

�
(11.38)

and

B .k; !/ exp .i!t � ikz/

D OexB
(r)
x exp .i!t � ikz C i x/

COeyB
(r)
y exp

�
i!t � ikz C i y

�
; (11.39)

The real vector fields E .z; t/ and B .z; t/ associated with the wave are the real parts
of (11.38) and (11.39). Since the only complex quantities on the right hand sides of
(11.38) and (11.39) are the exponentials, the real vector fields are

E .z; t/ D OexE
(r)
x cos .!t � kz C 'x/

COeyE
(r)
y cos

�
!t � kz C 'y

�
(11.40)
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and

B .z; t/ D OexB
(r)
x cos .!t � kz C  x/

COeyB
(r)
y cos

�
!t � kz C  y

�
(11.41)

In general the phase angles 'x,y and  x,y are all distinct from one another and may
take on any values. From Sect. 11.4 we know, however, that E .z; t/ and B .z; t/
are always perpendicular to one another and are related in magnitudes by (11.35).
Therefore we need only analyze either E .z; t/ or B .z; t/ in detail. We choose to
consider E .z; t/.

We now choose a point on the z�axis, along which the wave propagates, to be
the origin with z D 0. At the origin the electric field associated with the plane wave
is then

E .z D 0; t/ D OexE
(r)
x cos .!t C 'x/

COeyE
(r)
y cos

�
!t C 'y

�
: (11.42)

Equation (11.42) provides the components of the field in the two directions Oex

and Oey.
The relationship between the phase angles 'x and 'y determines the form of the

wave. We may choose one of the phase angles to orient the wave at time t D 0 and
then consider the other to be a parameter.

We shall choose 'x D �=2 so that at time t D 0 the electric field is oriented
along the y�axis.

We then divide the wave period into a number of time intervals and calculate the
values of the x� and y�components of the electric field from (11.42) for various
values of the second phase angle 'y. A plot of the electric field vector for these time
steps provides a visual picture of the form of the electric field vector over a wave
period.

We divided the wave period into 25 equal parts so that the plot of the result will
clearly show the circular and elliptical forms traced by the tip of the electric field
vector. We also plotted only 20 of the wave vectors so that the pattern does not close
and the direction of rotation of the vector can be readily seen.

We plot the results of our calculations in Fig. 11.2.
In each of the panels of Fig. 11.2 we are looking into the oncoming wave.

Our first observation is of the wave with only a y�component. In panels (a)–(c)
this first observation is in the positive y�direction. In panels (d)–(f) it is in the
negative y�direction. The rotation is counterclockwise if 'x > 'y (panels (a–c)) or
clockwise if 'y > 'x (panels (d)–(f)). The polarization of the wave is elliptical in
panels (b), (c), (e) and (f) and circular in panels (a) and (d).

If 'x D 'y or 'y˙� the polarization is linear. Panels (c) and (f) are close to linear
polarization. We chose to show conditions close to linear polarization because only
a line appears at the linear condition.
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Fig. 11.2 Electric field vector of polarized electromagnetic wave. Polarization is ellliptical in
panels (b), (c), (e) and (f) and circular in panels (a) and (d). Rotation is counterclockwise if 'x > 'y

(panels (a–c)) or clockwise if 'y > 'x (panels (d–f)). If 'x D 'y or 'y ˙ � the polarization is
linear. Panels (c) and (f) are close to linear polarization

In Fig. 11.3 we have drawn a more representative picture of the rotation of an
elliptically polarized electric field vector.

We chose the polarized electric field of Fig. 11.2b as our example. The wave is
travelling at a velocity c down the z�axis. The inset in the upper right hand corner
of Fig. 11.3 repeats panel (b) from Fig. 11.2 for clarification. We have also indicated
the rotation direction in this inset.

The electric field vector indicated as .1/ in Fig. 11.3 is the first observation at time
t D 0, which is followed by observations .2/, . . . .20/ with .20/ as the observation
that has “just been made” in Fig. 11.3.

The polarization we have shown in Fig. 11.3 is called left-hand elliptical
polarization ([83], p. 420; [48], p. 274). In the terminology of modern physics this
is called positive helicity. The original terminology comes from the fact that the
electric field vector in Fig. 11.3 forms a left-handed screw.

In the first time step the electric field vector .2/ moves to the point on the z�axis
occupied by field vector .1/. This requires a counterclockwise rotation around the
z�axis, which would be the advance of a left-handed screw.

The term positive helicity indicates that if the fingers of the right hand are
permitted to rotate in the (counterclockwise) direction of rotation of the electric field
then the thumb of the right hand points in the direction of propagation of the wave.

The wave is still a plane wave. The spatial disturbance is still along the z�axis.
The electric field still varies sinusoidally along the z�axis at any time. and the
vectors E, B, and k are still mutually orthogonal at any instant of time. But we
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Fig. 11.3 Polarized wave moving along the z�axis. The field vector is plotted at equal time
intervals. The inset is a plot of the vectors projected onto the .x; y/�plane. The direction of
rotation is indicated by the arrows in the insert. The angles are 'x D �=2 and 'y D 0:2�

have discovered that the electromagnetic components E and B of the disturbance
are not generally simply oriented in single spatial directions. They rotate around the
propagation vector k. Only if the wave is linearly polarized are E and B fixed in
spatial orientation. The magnitudes of the vectors E and B also generally change
during the rotation (elliptical polarization). The ratio of the magnitudes remains,
however, always jBj D jEj =c as required by (11.35).

It is the solenoidal character of the electric and magnetic fields (see Sect. 11.2)
that requires that the E and B fields are always perpendicular to the wave vector k.
The magnetic field is always solenoidal. And the electric field is solenoidal as long
as there is no free electric charge to be taken into account. We will consider the
possibility of longitudinal waves, those for which the electric field vector is not
solenoidal, when we consider transport in dispersive media.

11.5 General Wave Solutions

11.5.1 Spread of Waves

We have considered a plane wave solution to Maxwell’s Equations in empty
space with a particular wave k vector and frequency !. Such a wave is called
monochromatic (single color or frequency). Maxwell’s Equations tell us that the
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only propagating solutions in empty space are these monochromatic waves. But a
monochromatic wave is an idealization unattainable in reality.

Light from a laser is very close to monochromatic as are the components of the
spectrum in a gas discharge. But the limitations of quantum mechanical uncertainty
between the lifetime and energy of a quantum state deny the possibility of a wave
with a single frequency ([70], pp. 499–500). A formula for the quantum limited
line width (Full Width at Half Maximum – FWHM) in a laser was first obtained
by Arthur Schawlow and Charles Townes before the experimental demonstration of
the laser [84].

Even the limit in which the only broadening is quantum mechanical is difficult to
reach in practice. In gas discharges collisions of the emitting atom with particularly
electrons cause shifts in the energy levels (perturbations) resulting in collisional or
pressure broadening of the emitted spectral line.

11.5.2 Representation in Plane Waves

To reconcile the apparent difficulty between the mathematical requirement that only
monochromatic waves are allowed by our theory and the experimental fact that there
exist no monochromatic waves, we have the linearity of Maxwell’s Equations. We
can always construct a general solution to Maxwell’s Equations from a sum over
monochromatic plane wave solutions.

Mathematically we can represent a function g .x/ in a space if we have a
complete set of functions

˚
 j .x/

�
that span that space. This set of functions is the

basis for representation of functions in the space. That is

g .x/ D
X

j

gj j .x/ :

If the index j varies continuously, as in our case when the index is a wave vector k,
the sum becomes an integral.

11.5.3 Fourier Transform

We are using complex exponentials for the plane wave. So our mathematical
problem is to show that the complex exponential functions f .k/g Dn
exp .˙ikx/ =p2�

o
, dependent on the continuous index k, form a complete basis

in which we can represent the sorts of functions we may expect to encounter as
electromagnetic field components of waves.
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The field components of waves will be finite continuous functions with contin-
uous derivatives.2 We will integrate over all values of the index k from positive to
negative infinity to obtain the complete representation of the wave field. And we
will integrate over all values of the spatial coordinates to obtain the coefficients in
the representation. We must, therefore, place requirements on the integrability of the
field components.

The fields will be produced in a finite, often small, region of space. With no
dispersion or damping the intensity of the electromagnetic wave, which we will
find is proportional to the square of the wave field, decreases at a rate proportional
to 1= .distance/2. We may then realistically claim that the field components of
waves produced in a finite region of space vanish at infinity, and that the wave
fields are absolutely integrable, i.e.

RC1
�1 jf .x/jdx < 1, and square integrable,

i.e.
R C1

�1 jf .x/j2dx < 1. These are the mathematical requirements for the
representation we seek ([20], p. 267), which is

f.x/ D


1=

p
2�
� R C1

�1 f.k/ exp .�ikx/dk (11.43)

This representation is exact and the set f .k/g is complete if the right hand side of
(11.43) is identical to f .x/. This is true if the function f .k/ is

f.k/ D


1=

p
2�
� R C1

�1 f.x/ exp .ikx/dx, (11.44)

since then, substituting f .k/ from (11.44), written as an integral over x0, into
(11.43), we have

f .x/ D 1

2�

Z C1

�1

Z C1

�1
f
�
x0� exp

�
ik
�
x0 � x

��
dx0dk

D
Z C1

�1
f
�
x0� ı

�
x0 � x� dx0

D f .x/ : (11.45)

where we have used (2.111), which we repeat here for reference.

ı
�
x0 � x

� D 1

2�

Z C1

�1
exp

�
ik
�
x0 � x�� dk: (11.46)

2Functions satisfying Maxwell’s Equations must have continuous first derivatives and those
satisfying the wave equation must have continuous second derivatives.
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The representation of the ı�function in (11.46) is a consequence of the complete-

ness of the set of functions
n
exp .˙ikx/ =p2�

o
. If (11.46) holds then the functions

n
exp .˙ikx/ =p2�

o
are a complete set. We shall refer to this as the completeness

relation for the set
n
exp .˙ikx/ =p2�

o
:3

The integral in (11.44) results in a unique value f .k/ for each f .x/. Because
k takes on continuous values this results in a continuous mapping of the function
f .x/ into f .k/. This is a Fourier Transform and the two (11.44) and (11.43) are
referred to as a Fourier Transform pair.

We can represent a general spatial function f .x; y; z/ D f .r/, which is
absolutely integrable and square integrable over all space, in terms of integrals over
three separate sets of basis functions. That is

f.r/ D .2�/–3/2 R C1
�1

R C1
�1

R C1
�1 dkxdkydkzf.k/ exp .�ik � r/. (11.47)

The coefficients f .k/ are then

f.k/ D .2�/–3/2 R C1
�1

R C1
�1

R C1
�1 dxdydzf.r/ exp .ik � r/. (11.48)

Equations (11.47) and (11.48) are also a Fourier Transform pair.
For shorthand we introduce the notation

Z
d3k D

Z C1

�1

Z C1

�1

Z C1

�1
dkxdkydkz; (11.49)

and Z
d3r D

Z C1

�1

Z C1

�1

Z C1

�1
dxdydz: (11.50)

This notation simplifies the appearance of our expressions without sacrificing
clarity.

We can demonstrate completeness by substituting f .k/ from (11.48), written as
an integral over r0, into (11.47). That is

f .r/ D
�
1

2�

�3 Z
d3r0d3kf

�
r0� exp

	
ik � �r0 � r

��

D
�
1

2�

�3 Z
d3r0f

�
r0� ı

�
r0 � r

�

D f .r/ ; (11.51)

3This is a specific form of the general requirement for the completeness of a set of continuous
vectors first proven by Dirac [21].
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where we have used (2.112), which we repeat here for reference.

ı .r0 � r/ D .1=2�/3
R

d3k exp Œik � .r0 � r/�. (11.52)

Equation (11.52) is the completeness relation for the set of functions

8
<̂

:̂

1

p

2�
�3 exp .˙ik � r/

9
>=

>;
:

Similarly we may also perform a Fourier Transform over the time as

f.!/ D


1=

p
2�
� R C1

�1 f.t/ exp .�i!t/dt, (11.53)

with the inverse

f.t/ D


1=

p
2�
� R C1

�1 f.!/ exp .i!t/d!. (11.54)

The completeness relation is

ı .t � t 0/ D .1=2�/
R C1

�1 exp .i! .t � t 0//d!. (11.55)

Therefore, in the language of the Fourier Transform, our general wave solutions
in empty space are

E .r; t/ D
�
1

2�

�2 Z
E .k; !/ exp .i!t � ik � r/ d!d3k (11.56)

B .r; t/ D
�
1

2�

�2 Z
B .k; !/ exp .i!t � ik � r/ d!d3k: (11.57)

The vector field components E .k; !/ and B .k; !/ are then

E .k; !/ D
�
1

2�

�2 Z
E .r; t/ exp .�i!t C ik � r/ dtd3r (11.58)

B .k; !/ D
�
1

2�

�2 Z
B .r; t/ exp .�i!t C ik � r/ dtd3r: (11.59)

In (11.56) and (11.57) we have representations of propagating wave forms in
empty space, which are not themselves plane waves. The plane waves out of which
we have constructed the wave forms, however, satisfy the dispersion relation for
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propagation in empty space. The wave forms are then carried by propagating plane
waves.

11.6 Fourier Transformed Equations

The Fourier transform replaces derivatives by algebraic expressions. We can see this
using (11.56) as an example. Because the integrals are over all values of k and ! we
may bring partial derivatives with respect to space and time inside the integrals. The
only part of the integrand dependent on space and time is the complex exponential
exp .i!t � ik � r/, and (see exercises)

@

@t
exp .i!t � ik � r/ D i! exp .i!t � ik � r/

div ŒE .k; !/ exp .i!t � ik � r/� D �ik � E .k; !/ exp .i!t � ik � r/

curl ŒE .k; !/ exp .i!t � ik � r/� D �ik � E .k; !/ exp .i!t � ik � r/ :

Then

@

@t
E .r; t/ D

�
1

2�

�2 Z
i!E .k; !/ exp .i!t � ik � r/ d!d3k

div E .r; t/ D
�
1

2�

�2 Z
.�ik/ � E .k; !/ exp .i!t � ik � r/ d!d3k

curl E .r; t/ D
�
1

2�

�2 Z
.�ik/ � E .k; !/ exp .i!t � ik � r/ d!d3k:

The Fourier Transform of Maxwell’s Equations results then in the set of algebraic
equations

�ik � E D �="0 k � B D 0

k � E D !B �ik � B D �0 .J C i!"0E/ ;
(11.60)

where all dependent variables, including the charge and current densities, are
functions of .k; !/.

The set of (11.60) is fundamental for the study of wave propagation in empty
space, even in the presence of charges and currents. The quantities E D E .k; !/
and B D B .k; !/ are the field components of the general wave form in a continuous
(complete) basis of plane waves.

If we set the charge and current densities to zero in (11.60) the result is (11.33),
as we expect. In that case both sets of equations are for the field components of
plane waves.

In a plasma the charges and currents result from ions and electrons, which satisfy
a set of particle equations (see Sect. 7.5). The basic form of the (11.60) for the
electromagnetic wave components remains, however, unchanged.
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11.7 Scalar and Vector Potentials

Oersted’s Result that the divergence of the magnetic field induction vanishes is
unaffected by any time dependent variations in the fields. Therefore, the magnetic
field induction is still equal to the curl of a vector potential.

But in the time dependent case the curl of the electric field is not zero. So the
electric field is no longer simply the negative gradient of a scalar potential. If we
use B D curl A in Faraday’s Law, however, we have

curl

�
E C @

@t
A
�

D 0: (11.61)

Since curl grad � 0, (11.61) indicates that

E D � grad' � @

@t
A; (11.62)

where now ' D ' .r; t/. And the electric field is found from the negative gradient
of a scalar potential and the time rate of change of the vector potential.

To find an equation for the scalar potential we use the electric field in (11.62)
with Gauss’ Law. The result is

r2' D � 1

"0
� � @

@t
div A: (11.63)

And if we use B D curl A, which is equivalent to Oersted’s Result, in Ampère’s
Law we get

r2A D grad div A � �0

�
J C "0

@E
@t

�
: (11.64)

If we now introduce the electric field from (11.62) into (11.64) we obtain

1

c2

@2A
@t2

� r2A D �0J � grad

�
div A C 1

c2

@

@t
'

�
; (11.65)

which is a wave equation with sources for the vector potential.
We also get a wave equation with sources for the scalar potential if we subtract�

1=c2
�
@2'=@t2 from both sides of (11.63) .

1

c2

@2'

@t2
� r2' D 1

"0
�C @

@t

�
div A C 1

c2

@'

@t

�
: (11.66)

If we choose
div A+

�
1=c2

�
@'/@t D0 (11.67)
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the equations (11.65) and (11.66) are identical in form.

1

c2

@2'

@t2
� r2' D 1

"0
� (11.68)

and
1

c2

@2A
@t2

� r2A D �0J (11.69)

But can we choose the divergence of A arbitrarily in the time dependent case?
We introduced the concept of gauge and of gauge transformation in Sect. 5.9. Our

argument there involved only Oersted’s Result and the requirements of Helmholtz’
Theorem. Neither Oersted’s result nor Helmholtz’ Theorem has been affected by
time dependence of the fields. Therefore the results of Sect. 5.9 are valid here as
well. We then have complete freedom in our choice of div A. Therefore the choice
of div A specified by (11.67) is completely legitimate in the time dependent case.

Equation (11.67) is the Lorentz Gauge. And (11.68) and (11.69) are the wave
equations for the scalar potential ' .r; t/ and the vector potential A .r; t/.

The form of (11.68) and (11.69) is particularly convenient because the wave
equation for ' .r; t/ has only � .r; t/ as a source while the wave equation forA .r; t/
has only J .r; t/ as a source.

The operator on the left hand side of the (11.68) and (11.69) is often called the
d’Alembertian after Jean-Baptiste le Rond d’Alembert.4 The designation of this
wave operator takes on various forms. The form we will use in our discussion of
special relativity is

� D 1

c2

@2

@t2
� r2

because we will designate the time coordinate the first of the four coordinates in
Minkowski space. This is also the designation used by Jackson [48]. There is,
however, no particular reason to introduce this notation here.

11.8 Summary

In this chapter we have shown that the solutions to Maxwell’s Equations in empty
space is a set of plane waves moving at the speed of light. These are transverse
waves in which the electric and magnetic field components are perpendicular to one
another and both are perpendicular to the direction of motion of the wave, defined
by the wave vector k.

4Jean-Baptiste le Rond d’Alembert (1717–1783) was a French mathematician, mechanician,
physicist, philosopher, and music theorist.
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We found that the electric and magnetic field components of the wave generally
rotated around the direction of propagation resulting in circular and elliptically
polarized waves. In a linearly polarized wave the fields do not rotate.

Quantum uncertainty rules out the existence of monochromatic plane waves.
We showed how more general (real) waves could be constructed using a Fourier
Transformation. The Fourier transformed form of Maxwell’s Equations gave us a set
of equations which we can use to study more general wave propagation, including
that in plasmas.

In the final section we introduced the Lorentz Gauge and obtained wave
equations for both the scalar and vector potential. In these equations the source
terms are separated. The source term for the scalar potential is the charge density
and the source term for the vector potential is the current density. This form of the
field equations will become particularly useful in some of the subsequent chapters.

Exercises

11.1. Show that the functions (11.9) and (11.10) are both sinusoidal functions that
move to the right along the x�axis with undiminished amplitude at a velocity v D
!=k. Do this by picking a point where each function is constant and showing that
the point moves to the right with this velocity.

11.2. Consider that an electromagnetic wave in empty space has a magnetic field
component

B D OexB sin .!t C ky/

with no magnetic components in either the y� or z�directions.

(a) What is the direction of propagation of this electromagnetic wave?
(b) For B with this orientation what is the orientation of E?

11.3. Begin with the equations for curl curl E and curl curl B. Carry out the details
of the derivation of both (11.5) and (11.6).

11.4. You may always orient your coordinates so that the propagation of a
disturbance or wave form in empty space is along a rectangular Cartesian axis.
Designating this axis to be z the general equation to be satisfied by the electric
or magnetic fields, which we designate here generally as f , of an electromagnetic
wave form in empty space is

1

c2

@2f

@t2
� @2f

@z2
D 0:

(a) Show that this wave equation is satisfied by any arbitrary f D f .p/ where
p D .!t ˙ kz/ provided c D ˙!=k.

(b) In the laboratory you have an electronic flashlamp that produces a flash of very
short duration, which you collimate to produce a directed pulse. You assume
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that the shape of the pulse is Gaussian, i.e. f D K exp
��t2=�2

�
, at the location

of the lamp. Does your result in part (a) indicate that this pulse will propagate
to the target in your laboratory?

11.5. Show that for any vector field function F.r/

div F .r/ D
�
1

2�

�3/2 Z
.�ik/ � F .k/ exp .�ik � r/ d3k

curl F .r/ D
�
1

2�

�3/2 Z
.�ik/ � F .k/ exp .�ik � r/ d3k

by bringing the divergence and curl inside of the integrals.
[You will need the differential operator relations in the Appendix.]

11.6. Show that

div ŒE .k; !/ exp .i!t � ik � r/�

D �ik � E .k; !/ exp .i!t � ik � r/ ;

curl ŒE .k; !/ exp .i!t � ik � r/�

D �ik � E .k; !/ exp .i!t � ik � r/ ;

and

@

@t
ŒE .k; !/ exp .i!t � ik � r/�

D i! � E .k; !/ exp .i!t � ik � r/

for plane waves. [You will need to use the differential identities in the Appendix.]

11.7. Show that for any vector field function F.r/ that vanishes at infinity and
satisfies the conditions of absolute and square integrability the Fourier Transform
of div F .r/ is

�
1

2�

�3/2 Z
Œdiv F .r/� exp .ik � r/ d3r D �ik � F .k/

by Fourier Transforming div F .r/ directly, i.e. by evaluating the integral directly.
This exercise will require use of Gauss’ Theorem. You will also need the

differential operator relations in the Appendix.

11.8. Show that for any vector field function F.r/ that vanishes at infinity and
satisfies the conditions of absolute and square integrability the Fourier Transform
of curl F .r/ is
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�
1

2�

�3/2 Z
Œcurl F .r/� exp .ik � r/ d3r D �ik � F .k/

by Fourier Transforming curl F .r/ directly, i.e. by evaluating the integral directly.
This can be shown by writing out the curl in rectangular Cartesian coordinates

and integrating over separate coordinates.

11.9. In the preceding exercise we showed that Maxwell’s Equations allow the
propagation of disturbances that are not distinctly wavelike in nature. Yet we have
found in the chapter that the general solution of Maxwell’s Equations in empty space
is a plane wave in which E , B , and k are mutually orthogonal.

Supposedly we reconciled this in terms of a Fourier Transformation. And we
found that the Fourier Transformed Maxwell Equations in empty space are

k � E D 0 k � B D 0

k � E D !B �k � B D �
!=c2

�
E:

These equations then determine which solutions are allowed.
Explain how the reality of the propagating very short light pulse is reconciled by

the Fourier Transformation.

11.10. If charges and currents are present we must deal with the full Maxwell
Equations. In the chapter we showed that the Fourier Transform of these full
Maxwell Equations is

�ik � E D �="0 k � B D 0

k � E D !B �ik � B D �0 .J C i!"0E/ :

Assume that the current density is related to the electric field by

J D �E;

which is a general form of Ohm’s Law.
Show that the field vectors E and B must satisfy

	
i!�0�1 C �

k2 � !2=c2� 1 � kk
� � .E or B/ D 0:

11.11. Begin with the Fourier Transform of the full Maxwell Equations in a
conducting medium (� ¤ 0)

�ik � E D �="0 k � B D 0

k � E D !B k � B D �
i�0� � !=c2

�
E:

and show that for transverse waves to propagate in a conducting medium it is
necessary that

i!�0� C �
k2 � !2=c2� D 0:
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11.12 Begin with the Fourier Transform of the full Maxwell Equations in a
conducting medium (� ¤ 0)

�ik � E D �="0 k � B D 0

k � E D !B k � B D �
i�0� � !=c2

�
E:

and show that for longitudinal waves to propagate in a conducting medium it is
necessary that

i�0� � !=c2 D 0

and that there is no magnetic field associated with the longitudinal wave.



Chapter 12
Energy and Momentum

It is not that we propose a theory and Nature may shout NO;
rather, we propose a maze of theories and Nature may shout
INCONSISTENT.

Imre Lakatos

12.1 Introduction

In the preceding chapter we saw that the propagation of electromagnetic waves
in empty space is a mathematical consequence of Maxwell’s Equations. And in
Sect. 1.12.2 we saw that Maxwell and Hertz were aware that the waves would
transport energy and momentum. Hertz also calculated the energy in the waves he
observed using the theory of Poynting. And final experimental confirmation that
light waves carry momentum was in 1899 ([97], p. 307). In this chapter we will
develop a consistent formulation of field energy and momentum based on the fact
that the reality of the fields must be reflected in general energy and momentum
theorems.

Because we are considering the propagation of waves in vacuum, we shall require
that all matter is point like. The charged particles we consider are then free electrons
and ions.

Energy and momentum are collective properties of a system made up of particles
interacting with one another through the fields that result from the densities and
currents of those particles. From the First Law of Thermodynamics we know that
the energy of an isolated system is conserved ([40], p. 6). And from the laws of
mechanics we know that the momentum of an isolated system is conserved ([32],
p. 55). Our goal is now to extend these fundamental principles to combinations
of fields and particles and finally to obtain general equations for field quantities
alone.

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 12, © Springer-Verlag Berlin Heidelberg 2012
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We begin our discussion with a theorem for a system property that can be
transported and has sources (and sinks). We will then apply this theorem to the
energy and momentum exchange represented by the basic dynamics of the field-
particle interaction.

12.2 Transport Theorem

We consider a general system property, which we designate by the subscript �. We
require only that this property be identifiable in terms of particle quantities such as
velocities, densities, and charges or field quantities such as E and B.

We designate the density of the quantity � at the point r at the time t as �� .r; t/.
The amountQ� of � in an arbitrary volume V at time t is then

Q� D
Z

V
�� .r; t/ dV: (12.1)

If the quantity � is a particle property it will be transported by the particles as
they move from one point to another. If it is a field quantity it will be transported by
the propagating waveform. We designate the flux density of � at the point r and the
time t as �� .r; t/. The rate of flow of � out of the arbitrary volume V is then

P̊
� .t/ D

I

S

�� .r; t/ � dS; (12.2)

where S encloses V .
In general the quantity � has sources. Specifically we may speak of the rate

of production of � per unit volume at the point r and the time t , which we shall
designate as Pw� .r; t/. We shall consider this to be a net production term and shall
not attempt to distinguish between losses and gains. Then the rate at which the
amount Q� increases in the arbitrary volume V is the difference between the total
production rate of � in the volume and the loss of � due to flux out of the volume.
That is Z

V

@

@t
�� .r; t/ dV D

Z

V
Pw� .r; t/ dV �

I

S

�� .r; t/ � dS: (12.3)

Applying Gauss’ Theorem to the integral over S on the right hand side of (12.3)
and collecting terms into a single integrand we have

Z

V

�
@

@t
�� .r; t/C div �� .r; t/ � Pw� .r; t/

�
dV D 0: (12.4)
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Equation (12.4) is the integral equation for the production and transport of the
quantity �. Because the volume V is arbitrary the integral in (12.4) can only vanish
if the integrand vanishes. That is

@�� .r; t//@t C div �� .r; t/ D Pw� .r; t/ (12.5)

Equation (12.5) is then a general differential equation for a physical quantity that
has a source and is transported within the system. This equation will be key to the
identification of terms.

12.3 Electromagnetic Field Energy

We begin our discussion of the electromagnetic field energy by considering an
arbitrary closed, isolated system containing electromagnetic fields and matter. The
total energy of this system must be constant by the First Law of thermodynamics.
Energy will be transferred between the fields and the particles but no energy is lost
in the transfer.

We require that the matter is particulate. And, as we did in Sect. 5.5.1, we
represent the number density ( m–3) of the species ˛ of particles in a small volume
�V of the system as

ın(˛) D 1

�V

X

all i in �V

ı
�

r � r(˛)
i .t/

�
; (12.6)

using the notation ın(˛) to indicate that we are representing the particles by
ı�functions. The vector r(˛)

i .t/ is the trajectory of the i th particle of the ˛th species.
By the property of the ı�function (2.98), the integral of ın(˛) over the volume �V
is the number of particles of species ˛ in the volume �V divided by �V , which is
density n(˛) of the particles of species ˛ at the location of �V .

We consider that the particles of the species ˛ have a charge q˛ . We ignore
uncharged particles. In this model we are explicitly neglecting the atomic structure
of matter. Atoms, and molecules, absorb and emit electromagnetic energy (light) at
certain frequencies corresponding to the differences between quantum energy levels.

In gas discharges, which are low temperature (electron temperature �104 K)
and low density plasmas, only the atomic spectrum is detected. The probability of
exciting electron levels in the ions by collisions with free electrons is negligibly
small. Because they are unaffected by the fields the atoms in the discharge are at
room temperature and can be considered stationary with respect to the electrons.
We neglect these inelastic electron-atom collisions and the spectral emission.

To be absolutely consistent in our picture, we must also claim that the energy
of interaction between particles and fields is conserved in any small volume of
the system. Logically this is no problem for volumes that are small compared to
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macroscopic variations in system properties. The very small size of electrons and
ions essentially assures the validity of this claim.

The Lorentz force acting on each particle of the ˛th species is

F(˛)
i D q˛

�
E C v(˛)

i � B
�
:

We may then identify the electromagnetic force per unit volume acting on particles
of the ˛th species in the volume�V as

ıf(˛)
em D 1

�V

X

all i in �V

q˛

�
E C v(˛)

i � B
�
ı
�

r � r(˛)
i .t/

�
: (12.7)

The rate at which work is done by the electromagnetic fields on these particles is

ı Pw(˛)
part D 1

�V

X

all i in �V

h
q˛

�
E C v(˛)

i � B
�

� v(˛)
i

i
ı
�

r � r(˛)
i .t/

�

D E �
"
1

�V

X

all i in �V

q˛v(˛)
i ı

�
r � r(˛)

i .t/
�
#

; (12.8)

since
�

v(˛)
i � B

�
� v(˛)

i D 0:

The current density (5.1), carried by the ˛th species of particle in the volume
�V is

ıJ(˛) D 1

�V

X

all i in �V

q˛v(˛)
i ı

�
r � r(˛)

i

�
; (12.9)

where the velocity of the i th particle is v(˛)
i . Then, with (12.9) (12.8) becomes

ı Pw(˛)
part D E � ıJ(˛): (12.10)

The total rate at which work is done by electromagnetic fields on the all the particles
in �V is then a summation of (12.10) over ˛, which is

ı Pwpart D E � ıJ; (12.11)

where

ıJ D 1

�V

X

˛

X

all i in �V

q˛v(˛)
i ı

�
r � r(˛)

i

�
(12.12)

is the total current in �V .
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If we integrate (12.11) over�V we have an equation for the rate at which work is
done by the electromagnetic fields on all of the particles in the volume�V divided
by the volume�V . By the integral property of the ı�function this results in

Pwpart D J � E; (12.13)

which is the total rate at which work is done per unit volume on the particles at
the location of the small volume �V at a particular time. This is the rate at which
energy is transferred from the fields to the particles (per unit volume). In our system
this is the negative of the rate at which particles transfer energy to the fields (per
unit volume). That is the rate of increase in the electromagnetic field energy (per
unit volume), at the position of the volume�V is

Pwem D �J � E (12.14)

We now require an equation that provides �J � E and contains all the information
in Maxwell’s Equations

div E D �="0 div B D 0

curl E D �@B=@t curl B D �0 .J C "0@E=@t/ :
(12.15)

From Faraday’s Law we have

� 1

�0
B � curl E D @

@t

1

2

1

�0
B2: (12.16)

And from Ampère’s Law

1

�0
E � curl B D J � E C @

@t

1

2
"0E

2 (12.17)

Adding (12.16) and (12.17) and using (A.20) we have an equation for �J � E

@

@t

1

2

�
"0E

2 C 1

�0
B2
�

C div

�
1

�0
E � B

�
D �J � E; (12.18)

which is the equation we sought. If we compare (12.18) with (12.5) we can identify

Eem D .1=2/
�
"0E

2 C .1=�0/ B
2
	

(12.19)

as the electromagnetic field energy density and

S D .1=�0/E � B (12.20)
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as the flux vector for the electromagnetic field energy. The vector S defined in
(12.20) is the Poynting Vector (see Sect. 1.12.2). We then have a general differential
form of the electromagnetic energy equation as

@Eem/@t C div S D �J � E. (12.21)

We will not pursue the particle energy equation at this point. To correctly treat
the interaction of a system of particles with the electromagnetic field we would have
to pursue the development we began in Sect. 7.5 with (7.50).

12.4 Electromagnetic Field Momentum

We will develop an equation for the field momentum from the same point of view
as that used in the preceding section. We consider an arbitrary isoltated system
in which the only important forces are electromagnetic. Specifically we ignore all
gravitational field forces as insignificant compared to the Lorentz Force. The total
momentum of this system is conserved and in a small volume �V the gain in
momentum by a particle is transferred from the fields. This will allow us to identify
the rate of change of field momentum (per unit volume) as we did the rate of change
of field energy in Sect. 12.3.

Newton’s Second Law tells us that the Lorentz Force acting on the particles of the
˛th species (12.7) is the rate of increase of momentum of these particles (per unit
volume). Summing equation (12.7) over all species of particles ˛ and integrating
over the volume �V we have the total force (per unit volume) of the fields on the
particles at the location of the small volume�V .

fem D �E C J � B (12.22)

We now turn to Maxwell’s Equations to obtain �E and J � B.
To obtain an equation for �E we combine Gauss’ and Faraday’s Laws. The

result is

"0 .div E/E C "0

�
curl E C @B

@t

�
� E D �E: (12.23)

We can obtain an equation for J � B from Ampère’s Law alone. To include
the information of Oersted’s result and to symmetrize our equation with (12.23),
however, we add .div B/B=�0 D 0 obtaining

1

�0
.div B/B C

�
1

�0
curl B � "0

@E
@t

�
� B D J � B: (12.24)
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With (12.23) and (12.24) (12.22) becomes

@

@t
."0E � B/�

�
"0 .div E/E C 1

�0
.div B/B C "0 .curl E/ � E C 1

�0
.curl B/ � B

�

D �fem: (12.25)

Since �fem is the source term for the electromagnetic field momentum density,
we may compare (12.25) with (12.5). On doing so we see that the first term on the
left hand side of (12.25) is the partial time derivative of the electromagnetic field
momentum density. That is the electromagnetic field momentum density is

Pem D "0

!
E � !

B: (12.26)

According to (12.5), the remaining term (� Œ� � � �) on the left hand side of (12.25)
is the divergence of the momentum flux. We must now convert this term to a
divergence in order to identify the momentum flux. Since this divergence term is
itself a vector, the momentum flux must be a tensor with two indices, rather than a
vector with one index.

We shall work here in a rectangular Cartesian basis for simplicity. The results
will be valid for all systems (see Sect. 2.2.2).

Writing the components of the momentum flux density as T�� , the divergence of
the momentum flux is then

ı��
@

@x�
T�� D @

@x�
T��;

using the Einstein summation convention. The �th components of the two terms
making up the second term on the left hand side of (12.25) are

�
�
"0 .div E/E C 1

�0
.div B/B

�

�

D �
�
"0
@E�

@x�
E� C 1

�0

@B�

@x�
B�

�
: (12.27)

and

�
�
1

�0
.curl B/ � B C "0 .curl E/ � E

�

�

D � 1

�0
"���"˛ˇ�

@Bˇ

@x˛
B� � "0"���"˛ˇ�

@Eˇ

@x˛
E�; (12.28)

where "��� and "˛ˇ� are Levi-Civita densities (see Sect. 2.2.4). Since "˛ˇ� D �"�ˇ˛,
(12.28) becomes

�
�
1

�0
.curl B/ � B C "0 .curl E/ � E

�

�

D 1

�0
"���"�ˇ˛

@Bˇ

@x˛
B� C "0"���"�ˇ˛

@Eˇ

@x˛
E� (12.29)
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In (12.29) we can have ˇ D � and ˛ D � with a positive result, because then "��� D
"�ˇ˛ , or ˇ D � and ˛ D � with a negative result, because then "��� D �"�ˇ˛. Then
(12.29) is

�
�
1

�0
.curl B/ � B C "0 .curl E/ � E

�

�

D 1

�0

@B�

@x�
B� C "0

@E�

@x�
E�

� 1

�0

@B�

@x�
B� � "0

@E�

@x�
E� (12.30)

Combining the terms from (12.27) and (12.30) we have

@

@x�
T�� D �

�
"0
@E�

@x�
E� C 1

�0

@B�

@x�
B�

�

C 1

�0

@B�

@x�
B� C "0

@E�

@x�
E�

� 1

�0

@B�

@x�
B� � "0

@E�

@x�
E�: (12.31)

Now

"0
@E�
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And the stress tensor we sought is

T�� D ı��
1

2

�
1

�0
B2 C "0E

2

�
� "0E�E� � 1

�0
B�B�: (12.33)

In dyadic notation this is ([85], p. 23; [48], p. 239; [97], p. 303)

T D .1=2/
�
"0E

2 C 1
�0
B2
�

1 � "0EE � .1=�0/BB. (12.34)
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Combining (12.26) and (12.34) in (12.25) our final equation for field momen-
tum is

@Pem/@t C div T D ��E � J � B (12.35)

There is some ambiguity regarding the algebraic sign that appears on the stress
tensor. Our definitions here agree with that of Schwinger, et al. ([85], p. 23). But
Jackson’s definition is the negative of ours ([48], p. 239). The difference lies in the
placement of the divergence term in the conservation theorem (12.5). Schwinger,
et al. place the term as we do, while Jackson places it on the other side of the
equation. The result is a difference in the algebraic sign. The final equations written
for transport of the field momentum are, however, identical.

Equations (12.33) and (12.34) are forms of Maxwell’s Stress Tensor. Maxwell’s
understanding of the detailed dynamics of the interaction of, for example, a light
wave with a material surface differed from ours ([97], p. 307). In the end, however,
the force from an electromagnetic wave on a material surface is the result of the
flux of momentum to the surface of the material. And that is the integral of the
scalar product of the stress tensor (momentum flux tensor) with the surface area.
Maxwell’s prediction of light pressure on a material surface was the same as ours
would be with a different understanding, but with the same mathematical equations.

We may relate the momentum density (vector) Pem in (12.26) to the energy flux
vector (Poynting Vector) S in (12.20). Using "0�0 D 1=c2 we have

Pem D 1

c2
S (12.36)

This result differs by a factor of two from the relationship obtained for a beam of
material particles (see exercises).We do, however, obtain this result for a relativistic
beam of massless particles.

12.5 Static Field Energies

In Sects. 4.6.1 and 10.4 we obtained equations for the electrostatic and magneto-
static energy densities. These were (4.31)

uE D 1

2
"0E

2

for the electrostatic energy density and (10.22)

uB D 1

2

1

�0
B2
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for the magnetostatic energy density. These are the same equations as those we
obtained in this chapter for the energy densities for the electromagnetic (dynamic)
fields.

There is no particular mystery in the fact that these equations are identical. In
both Sect. 4.6.1 and in the present chapter we based our derivation on the transfer of
energy from the fields to the particles by the action of the electric field. The electric
field energy densities should logically then be the same.

In this chapter the magnetic field energy appeared because we included Faraday’s
Law and the displacement current, which govern the field-flield interaction in our
derivation. In our derivation of the magnetostatic field in Sect. 10.4 we also used
Faraday’s Law and the work done by the induced emf on the charged particles. We
only slowed the time scale in order to be able to ignore the displacement current.

So the derivation of the magnetic field energy was actually the same in both cases
as well.

12.6 Summary

In this chapter we have identified the energy and momentum carried by electromag-
netic waves. If the waves in fact represent a transport of electromagnetic fields from
one spatial point to another, then there must be a description, consistent with the
theory of these fields, for the transport of energy and momentum.

We were able to obtain energy and momentum densities and fluxes based solely
on Maxwell’s Equations. That is the field picture in Maxwell’s Equations has,
inherent within it, a consistent description of energy and momentum transport within
the waves it predicts. Although the laboratory detection of waves assures us of their
reality, the theory would not be complete if an understanding of the energy and
momentum transport did not emerge naturally from it.

Exercises

12.1. Consider a stream of material particles, with a density n m–3, all moving in
a single direction with a velocity V . The energy flux density is the rate at which
particle kinetic energy is transported past an area perpendicular to the stream. This
has units

�
kg m2 s–2

	
m–2 s–1. The momentum density in the stream of particles is

the momentum per particle multiplied by the density of particles in the stream. This
has units

�
kg m s–1

	
m–3. Find the algebraic relationship between the momentum

density and the energy flux density for this stream of material particles.
Your stream of particles is basically the Newtonian picture of light. Compare

your relationship to that for an electromagnetic wave from Maxwell’s Equations in
(12.36). How would you decide experimentally between the two pictures based on
a momentum/energy measurement?
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12.2. Show that the term Pwem in the equation

Pwem D E � J

has the units of work per unit time per unit volume.

12.3. Show that the Lorentz Force density

fem D �E C J � B

has the units of momentum per unit time per unit volume.

12.4. A straight cylindrical metal wire of conductivity 	 and radius R carries an
axial current density J D J Oez, which is constant across the cross section and does
not vary in time. Assume Ohm’s Law is valid in the wire

J D 	E:

Find the Poynting vector at the surface of the wire and the energy flux across the
surface for a length L of the wire. How does this compare to the so-called Joule
heating rate in the wire I 2Res, where here Res is the resistance of the wire and is

Res D L

	
R2

12.5. In a certain region of space there is an electrostatic field and also a magne-
tostatic field. There are no charges or currents in the region. Show that although
the Poynting vector may be nonzero, the surface integral of S � On vanishes over an
arbitrary closed surface inside the region.

12.6. The electric field component of an electromagnetic wave is

E D OexE0 cos!
�p
�0�0z � t

	C OeyE0 sin!
�p
�0�0z � t

	

where E0 is a constant and
p
�0�0 D 1=c. Find the Poynting vector.

12.7. Consider a spherical shell of charge with radiusR and uniform surface charge
density 	0: Determine the self-energy of the distribution by integration over the field

energy density, 1
2
"0

Z

V

E � E dV .

12.8. Show that the energy flux (energy per unit area) of an electromagnetic wave
emitted from a small (point) source decreases as 1=r2, where r is the distance
from the source, provided there is no damping or dispersion of the wave. That is
provided there is no loss of wave energy as a function of time or distance. This is
the requirement for energy conservation.

If there is damping and/or dispersion of an electromagnetic wave there must
be a path for the energy. Can you describe a path for energy transport from an
electromagnetic wave in empty space?





Chapter 13
Special Relativity

Henceforth space by itself, and time by itself, are doomed to
fade away into mere shadows, and only a union of the two will
preserve an independent reality.

Hermann Minkowski

13.1 Introduction

Prior to this point we have accepted a Euclidean geometry and a Newtonian concept
of space and time. Newton said, “Absolute space, in its own nature, without relation
to anything external, remains always similar and immovable.” And regarding time
he said, “Absolute, true, and mathematical time, of itself, and from its own nature,
flows equably without relation to anything external ...” ([77], p. 6). And we have
allowed ourselves to imagine that we can observe all frames of reference from some
separate position, perhaps at rest in the universe.

Albert Einstein realized that our concept of time in this picture was flawed and,
as a consequence, so was our concept of space. It is simply not possible to occupy
a separate position in the universe and observe the occurrences in separate frames.
We are present in a frame of reference and our measurements, which are the basis
of our science, are dependent on that fact.

We will begin this chapter with an outline of Einstein’s ideas in his 1905
paper on special relativity entitled On the Electrodynamics of Moving Bodies. Then
we will formalize these ideas using the four dimensional framework of Hermann
Minkowski. Minkowski’s four dimensional union of space and time provides a
simplifying structure in which we can cast Einstein’s ideas.

The laws of physics must be independent of coordinate system. This Ansatz led
Einstein to base his considerations of general relativity (1916) on tensors. Because
of their importance in the modern relativistic treatment of electromagnetic fields we
will provide an introduction to some of the basic properties of tensors in this chapter.

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 13, © Springer-Verlag Berlin Heidelberg 2012

273
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We will then be able to show that the laws of electrodynamics are covariant under
any transformation consistent with Einstein’s concepts of time and space.

Conventions and notations in relativity are changing. This is fortunate because
the notation is becoming simpler and more understandable. But this is also
unfortunate because not all authors use the same notation. We have chosen here
to use the basic notation of J.D. Jackson [48] in our development.

13.2 The New Kinematics

We do not completely understand Einstein’s thinking before 1905. Pais has outlined
what we know ([78], pp. 130–133). There we can find what was understood by the
European scientific community before 1905 and what was not.

The Michelson and Morley result was disturbing to physicists. The Irish physicist
George Francis FitzGerald wrote a single paragraph paper “The Ether and the
Earth’s Atmosphere”, which was published in the American journal Science in 1889.
Pais publishes this paper in full ([78], p. 122). FitzGerald believed that the only
hypothesis that could reconcile the results of the Michelson-Morley experiment was
one which claimed there was a shortening of the length of material bodies as they
moved in the aether. He suggested that it was “not improbable” that the electric
molecular forces are affected by motion through the aether.

Lorentz cites an exchange with FitzGerald in his 1895 paper “Michelson’s
Interference Experiment” ([24], p. 4) and again when he presented what are now
known as the Lorentz or Lorentz-FitzGerald transformation equations in 1904

([24], pp. 11–34). Lorentz also suggested the same origin for the shortening in the
molecular interactions is transmitted through the aether. For Lorentz as well as for
FitzGerald the problem was one of mechanics and of interactions. It was not one of
time and space. Pais wrote that Lorentz never fully made the transition from the old
dynamics to the new kinematics ([78], p. 167). Einstein was not familiar with the
work of Lorentz beyond 1895 ([78], p. 125).

The great French mathematician and physicist Henri Poincaré understood the
difficulties of time and simultaneity. He wrote that, “... we have not even direct
intuition of the simultaneity of two events occurring in different places ...” [Pais,
p. 133] Einstein and his friends in their Akademie Olympia1 studied Poincaré in
detail. But Poincaré did not carry this idea farther, as Einstein did. Rather Poincaré
suggested that the difficulty might lie in Newtonian mechanics and added the
hypothesis of FitzGerald and Lorentz to the mechanics ([78], p. 128).

1The Akademie Olympia was a small group of three friends: Maurice Solovine, Konrad Habicht,
and Einstein, who “met regularly to discuss philosophy, physics, and literature, from Plato to
Dickens. They solemnly constituted themselves as founders and sole members of the ‘Akademie
Olympia,’ dined together, typically on sausage, cheese, fruit, and tea, and generally had a wonderul
time. ” [Pais, p. 47].
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Einstein presented the new kinematics in the first part of his June of 1905 paper
On the Electrodynamics of Moving Bodies. In the second part of the paper he treated
electrodynamics.

Einstein based his theory on only two postulates ([24], pp. 37–38)

1. The same laws of electrodynamics and optics will be valid for all frames of
reference for which the equations of mechanics hold good. (These are inertial
frames.)

2. Light is always propagated in empty space with a definite velocity c which is
independent of the of the state of motion of the emitting body.

The first postulate Einstein called the “Principle of Relativity.” This is the
postulate that the laws of electromagnetism require no modification to account for
uniform motion. This will become part of the postulate that the laws of physics are
covariant. As we shall see the second postulate is inescapable, since we need to
synchronize clocks or timepieces.

The step that Einstein brings to the discussion is the formulation of the concept
of time. Time is not as Newton claimed, an absolute quantity. Time is defined by
the interval between events as determined by measurement. The problem was then
“to evaluate the times of events occurring at places remote from the” measuring
instrument2 ([24], p. 39).

As we will find in our treatment, all that is actually necessary is the new concept
of time, that Einstein called “the step.” Einstein made this claim in a review paper
in 1907 ([78], p. 141). That is the Principle of Relativity is a statement about the
meaning of time. So we shall begin our discussion of (special) relativity as Einstein
did with the concept of time.

13.2.1 Time

Einstein said that all judgements in which time plays a part are judgements of simul-
taneous events. An event occurs at a certain time te if the occurrence of that event
and the event that the time te appears on our timepiece are simultaneous. We can
then define the time at the location of the timepiece to be what is registered by the
timepiece. This is satisfactory if we only need a definition of time in the immediate
vicinity of the timepiece. It fails when we try to define time at a remote location.

For example someone with a timepiece may be at some point, which we call A.
And someone else, with an identical timepiece, may be at another pointB a distance
from A. We can then define the time at A and the time at B . But we cannot define a
universal time unless we synchronize the timepieces at A and B .

2Einstein used the term “watch” here. The reader in the 21st century may, however, not as readily
think in terms of the hands of a watch as did Einstein’s readers. So we use the term “timepiece,”
which is probably digital.
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Fig. 13.1 Synchronization of
the timepieces at points A and
B

Fig. 13.2 Timepiece
synchronization experiment
conducted in the moving
inertial system k0 and
observed from the stationary
system k

By Einstein’s second postulate we know that the time required for a light pulse
to travel from A to B is always the same as the time required for a pulse to travel
fromB to A. We consider a light pulse emitted from A at time tA. This pulse is then
reflected from point B at time tB, and arrives back at point A at the time t 0A. We
have drawn a picture of the synchronization process in Fig. 13.1. The timepieces are
synchronized if

tB�tA Dt0A-tB (13.1)

In this fashion we may synchronize all timepieces in a single inertial frame in
which all points A and B are stationary with respect to one another. Furthermore if
timepiece A synchronizes with timepiece B and with timepiece C then timepiece
B synchronizes with timepiece C . The time of an event is then the time noted on
a timepiece in the vicinity of the event and, because all timepieces in the frame
are synchronized, we can speak about simultaneity of events in a particular inertial
frame.

To connect the times measured in two inertial frames, Einstein devised a thought
experiment.3 He asked how a time synchronization experiment, conducted by a
person in a moving inertial frame, would appear if observed by a person4 in a
stationary inertial frame.

We designate the stationary frame as k and the moving frame as k0. Frame k
has coordinates .x; y; z/ and the time t and the moving frame k0 has coordinates
.�; �; �/ and the time � . We choose the axes x and � to be aligned with one another
and with the velocity v. We have drawn the inertial frames and the synchronization
experiment in Fig. 13.2. The the light source is located at the origin of frame k0.
A person in frame k measures the distance between the light source and the
reflector as

3From the German Gedankenexperiment. In a thought experiment it must be possible to construct
the required apparatus and to perform all the measurements. A thought experiment is not fanciful.
4The standard term is “observer” for the German Beobachter. The use of person seems less
awkward here.

With modern timepieces a single person can gather the data.
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x0 D x � vt: (13.2)

At time �0, registered on a timepiece located at the origin of k0, a light pulse is
sent from the light source down the ��axis. This pulse is reflected from a mirror
at a point on the ��axis. A timepiece at this point registers the time �1. The pulse
returns to the origin arriving at time �2. The synchronization (13.1) requires that

�1 D 1

2
.�0 C �2/ (13.3)

The person in frame k seeks a functional relationship between the time � of the
moving frame k0 in terms of measurements made in frame k. In general this will be

� D �
�
x0; y; z; t

�
: (13.4)

Because of the situation being considered here, the x�coordinate is replaced by a
point x0, which is at rest in frame k0. Because space and time are homogeneous, this
relationship, Einstein claimed, will be linear.

For the experiment yD z D 0. The person in frame k records a time t for the
beginning of the experiment, and observes that the light pulse moves down the
x�axis at a velocity c � v relatively to the apparatus in k0arriving at the reflector in
k0 at time t C x0= .c � v/. This person in k then observes that the returning pulse
moves at a velocity cC v relatively to the apparatus in k0 arriving at the origin of k0
at time t Cx0= .c � v/Cx0= .c C v/. The experimental data recorded by the person
in frame k result in three values for the function � . These are

�0 D � .0; 0; 0; t/

�1 D �

�
x0; 0; 0; t C x0

c � v

�
D �0 C x0 @�

@x0 C x0

c � v

@�

@t

�2 D �

�
0; 0; 0; t C x0

c � v
C x0

c C v

�
D �0 C

�
x0

c � v
C x0

c C v

�
@�

@t
:

With Einstein, we now choose x0 to be infinitesimal. Then (13.3) becomes

@� /@x0 C �
v=
�
c2 � v2

��
@� /@tD0 (13.5)

This is a linear partial differential equation with constant coefficients. Since � is a
linear function, for a specific v the solution of (13.5) is

� D a
�
t � v

c2 � v2
x0
	
; (13.6)

where a is a function of the velocity v. Equation (13.6) is the functional relationship
(13.4).
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Fig. 13.3 Time
synchronization experiment
conducted by someone in the
k0�frame along the ��axis
and observed by someone in
the k�frame

To find the dependence of � on the coordinates y and z of frame k we consider
that the person in frame k observes time synchronization experiments carried out by
the person in frame k0 in which a light pulses are sent down the � and then down the
� axis. In Fig. 13.3 we have drawn a picture of the time synchronization experiment
on the ��axis, which shows the path of the light pulse from the perspective of the
person in frame k. The time ty is that recorded by the person in frame k.

From Fig. 13.3 we can show that

@�

@y
D 0

(see exercises). By symmetry we also have

@�

@z
D 0:

After we determine the function a (13.6) will be the general form of the relation
between the time � measured in frame k0 and the time t measured in frame k.

13.2.2 Space

Einstein also used thought experiments to obtain functional relationships among
spatial coordinates. In these experiments he considered that light pulses were again
sent down axes in frame k0 and observed in frame k as well. He used the (13.6) to
relate the observations in the two frames.

In one such thought experiment a person in the inertial frame k0 sends a light
pulse down the ��axis. The pulse covers a distance � D c� in the time � . If a
person in k measures this distance as x0 then, using (13.6), we have the description
of the experiment in terms used by the person in k as

� D c�

D ca
�
t � v

c2 � v2
x0
	
: (13.7)
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Because of the constancy of the velocity of light, the person in k observes that the
light pulse has a velocity c � v relatively to the ��axis. Then, for the person in k,
the time duration of the experiment is

t D x0

c � v
: (13.8)

With (13.8) (13.7) becomes

� D a

�
c2

c2 � v2
x0
�
: (13.9)

And then with (13.2) (13.9) results in

� D a
1

1 � v2=c2
.x � vt/ : (13.10)

For a thought experiment in which a person in frame k0 sends a light pulse down
the ��axis the picture, as seen by someone in frame k, we have drawn in Fig. 13.4.
A person in frame k observes that a light pulse sent from the origin of frame k0
down the ��axis propagates at the velocity

p
c2 � v2 (see exercises) and records a

time
t D yp

c2 � v2
(13.11)

for the duration of the experiment.
The result of the experiment as recorded in frame k0 is

� D c�: (13.12)

With (13.6) (13.12) becomes

� D ca
�
t � v

c2 � v2
x0	 : (13.13)

Since the pulse originates at the origin of k0, we have x0 D 0. Then, using (13.11),
equation (13.13) is

� D a
cp

c2 � v2
y: (13.14)

Fig. 13.4 Thought
experiment in which a person
in frame k0sends a light pulse
down the ��axis
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By symmetry we also have

� D a
cp

c2 � v2
z; (13.15)

By considering a transformation from frame k to frame k0 and back to frame k
Einstein was able to show that the quantity

� .v/ D a
cp

c2 � v2
(13.16)

is equal to unity (i.e. � .v/ D � .�v/ D 1). Then

a .v/ D
r

1 � v2

c2
(13.17)

13.2.3 Lorentz Transformation

From the preceding section we have the complete transformation equations for the
time and spatial coordinates between the inertial frames k and k0. These are the
Lorentz Transformation equations as Einstein presented them.

We shall, however, replace .�; �; �; �/ with .t 0; x0; y0; z0/ to obtain a more modern
representation.

t 0 D �

�
t � ˇx

c

�

x0 D � .x � ˇct/

y0 D y

z0 D z;

(13.18)

where

� D 1
p
1 � ˇ2

; (13.19)

and ˇ D v=c.

13.3 Minkowski Space-Time

13.3.1 Four Dimensions

The space of four coordinates, in which time is treated on an equal footing
with spatial coordinates, is referred to as Minkowski Space because it was first
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proposed by Hermann Minkowski5 (1864–1909). Minkowski’s paper Space and
Time, delivered to the 80th Assembly of German Natural Scientists and Physicians,
at Cologne, September, 1908, is printed in translated form in ([24], pp. 75–91).
There Minkowski claimed that

Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve an independent reality.

Minkowski’s formalism is a great simplification to special relativity. Initially,
however, Einstein was unimpressed. He called this “superfluous learnedness” ([78],
p. 152). But later, Einstein adopted the Minkowski formalism. And in 1916 he
acknowledged his debt to Minkowski. The formalism was instrumental in the
transition from special to general relativity.

We define the coordinates of Minkowski Space using a scheme which preserves
x1, x2, and x3 for the spatial coordinates and identifies x0 as the time coordinate,
which is ct . Specifically

x0 D ct

x1 D x

x2 D y

x3 D z: (13.20)

We then have the four dimensional position vectors

x D

2

6
6
6
4

ct

x

y

z

3

7
7
7
5

D

2

6
6
6
4

x0

x1

x2

x3

3

7
7
7
5

and x0 D

2

6
6
6
4

ct 0

x0

y0

z0

3

7
7
7
5

D

2

6
6
6
4

x00

x01

x02

x03

3

7
7
7
5

(13.21)

for points in four dimensional inertial frames k and k0.
Points in this four dimensional space are called world points. In three dimen-

sional terms a world point joins or associates a spatial point .x; y; z/ with a temporal
point ct registered on a timepiece. The world point is then an event. World points
are connected by world lines. For example the first part of a time synchronization
experiment consists of the events 1) light pulse leaves point A at time tA and
2) light pulse arrives at point B at time tB. The world line connects these two
events.

5Hermann Minkowski was a German mathematician of Lithuanian Jewish descent. He was one of
Einstein’s professors at the Eidgenössische Polytechnikum in Zürich.
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13.3.2 Four Vectors

The vectors in (13.21) are called four vectors or 4�vectors6. This designation is not
simply because they have four dimensions. It is a result of the way they transform
under Lorentz Transformation. We discuss this in Sect. 13.6.

In this terminology the Lorentz Transformation (13.18) becomes

x00 D �
�
x0 � ˇx1

�

x01 D �
�
x1 � ˇx0

�

x02 D x2

x03 D x3:

(13.22)

The inverse of the Lorentz Transformation may be found by simply replacing ˇ
with �ˇ and exchanging the k and k0 coordinates, since a person in frame k0 sees k
receding in the x01 direction at a velocity v.

x0 D �
�
x00 C ˇx01�

x1 D �
�
x01 C ˇx00�

x2 D x02
x3 D x03:

(13.23)

13.3.3 The Minkowski Axiom

From the Lorentz Transformation (13.22) we find that the differential lengths of a
world line, observed from two inertial frames, are related as

˙
h�

dx0
�2 � �

dx1
�2 � �

dx2
�2 � �

dx3
�2
i

D ˙
h�

dx00�2 � �
dx01�2 � �

dx02�2 � �
dx03�2

i
(13.24)

(see exercises). The equality in (13.24) holds regardless of the sign we may attach
to the square bracket. Minkowski introduced a fundamental axiom, which we shall
refer to as the Minkowski Axiom, that requires the positive sign to be chosen.
Minkowski said

The substance at any world point may always, with the appropriate determination of space
and time, be looked upon as at rest ([24], p. 80).

6The designation 4-vector is that used by Jackson. We choose it here as well.
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That is in some inertial frame k0 we will have dx0 Ddy0 Ddz0 D 0 for a
substantive, material body. Then, since c2dt 02 > 0, we realize that the square of
the differential world line in frame k0 is ds02 D c2dt 02 > 0. But from (13.24) we
know that ds2 Dds02. That is ds2 is an invariant scalar on Lorentz Transformation
between inertial frames, which we must take to be positive for a material body.

For the world line of a light beam we can never have dx0 Ddy 0 Ddz0 D 0 in any
frame whatsoever. For the world line of a light beam

dx02 C dy02 C d z02 D c2dt 02 (13.25)

and ds02 D 0. We may then write the mathematical form of Minkowski’s Axiom as

ds2 D �
dx0

�2 � �
dx1

�2 � �
dx2

�2 � �
dx3

�2 �0. (13.26)

Using (13.20), the inequality (13.26) requires that

c2 �
�

dx

dt

�2

C
�

dy

dt

�2

C
�

dz

dt

�2

:

for any material body. Therefore, according to the Minkowski Axiom, the velocity
c of light is a limiting velocity for material bodies.7 And the limiting case ds2 D 0

holds only for light.
This limit on velocity can be retrieved from results we shall develop. The

Minkowski Axiom is, however, the foundational statement of this limitation.

13.3.4 The Light Cone

We cannot picture Minkowski four dimensional space. We can, however, picture
the Minkowski space representation of the motion of a material particle and a light
pulse in a two dimensional spatial plane. We choose the motion to be in the x1, x2

plane and construct the time axis x0 of our Minkowski space perpendicular to this
plane.

In two dimensional Cartesian space the wave front of a light pulse emitted from
the origin forms an expanding circle of radius ct . In our limited Minkowski space
the wave front of the light pulse emitted from the origin 0 D �

x0; x1; x2
� D .0; 0; 0/

is represented by a circular cone with axis x0. We call this the light cone. The
Minkowski Axiom requires that the world line of a material particle passing through
the origin must lie within the light cone. If we extend the light cone into the past

7Separate inertial frames must contain (material) measuring instruments, i.e. rods and timepieces.
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Fig. 13.5 Minkowski space
with two spatial dimensions.
The third dimension is ct .
The world line for a material
particle is that from 1 to 2

�
x0 < 0

�
the earlier world line of the material particle must lie within this extension

of the light cone.8

In Fig. 13.5 we have drawn this limited, three dimensional Minkowski space, and
have drawn a representative world line of a material particle within the light cone
passing from point 1 in the past, through the origin, to point 2 in the future.

Intervals on the light cone, for which ds2 D 0, are accessible only by light. We
call these lightlike intervals. If ds2 > 0 we call the interval a timelike interval.
Timelike intervals satisfy the Minkowski Axiom and lie inside the light cone in
Fig. 13.5. World points on a timelike interval are possible future world points for
the particle. All points within the extension of the light cone along the negative x0

axis are possible past world points for a particle. If ds2 < 0 we call the interval
a spacelike interval. Spacelike intervals violate the Minkowski Axiom and are
not accessible to material particles. We refer to these world points collectively as
elsewhere ([48], p. 519).

13.4 Formal Lorentz Transform

We may write the general Lorentz Transformation of the differential of a world line
dx from one inertial frame into its form dx0in another as

dx0 DA�dx, (13.27)

where A is the dyadic form of the (tensor) transformation operator. Equation (13.27)
is a general differential (a Pfaffian) for dx0. That is, for example, the differential of
the time coordinate dx00 in the frame k0 is

dx00 D @x00

@x�
dx�

8The geometrical definition of a cone includes both x0 > 0 and x0 < 0.
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using the Einstein sum convention for repeated (Greek) indices � D 0, : : :, 4.
The elements of the Lorentz Transformation matrix are then the partial deriva-

tives @x0˛=@xˇ . Because the Lorentz Transformation is linear, the partial derivatives
@x0˛=@xˇ are constants, dependent only on the relative velocity of the inertial
frames. We obtain the elements of A and A-1 from the Lorentz transform (13.22)
and the inverse Lorentz transform (13.23). We write these elements as

.A/˛ˇ D @x0˛

@xˇ
(13.28)

and
�
A–1

�˛
ˇ

D @x˛

@x0ˇ : (13.29)

In this notation the Kronecker delta is

ı˛ˇ D @x0˛

@x	
@x	

@x0ˇ D @x˛

@x0	
@x0	

@xˇ
: (13.30)

For translation of frame k0 along the axis x1 of frame k the matrices A and A–1

are

A=

2

6
6
4

� ��ˇ 0 0
��ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5 (13.31)

and

A–1=

2

6
6
4

� �ˇ 0 0

�ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5. (13.32)

The choice of the spatial axis along which we orient the relative velocity of
the inertial frames is arbitrary. We will stay with Einstein’s original choice of the
x�axis, as does Jackson.

13.5 Time and Space

With our formalization of the Lorentz Transformation we are now in a position to
discover the differences between specific world lines observed in different inertial
frames. In this section we will consider two fairly simple world lines that will
provide an understanding of the measurements of time and length in different
inertial frames. But our goal is also to show the use of the Lorentz Transformation
matrix.
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13.5.1 Time Dilation

We consider two inertial frames k and k0 such as pictured in Fig. 13.2. The times
t and t 0 are measured by stationary timepieces in frames k and k0. These times are
appropriate to either of those frames and may be called local times. We can most
easily find the relationship between these local times from the invariance of ds2.

The people in frame k0 observe an event occurring at, or in the immediate vicinity
of the origin of k0 as having a duration dt 0 measured by the timepiece at the origin.
According to the people in k0 the differential world line of the event is

ds0 D

2

6
6
4

cdt 0
0

0

0

3

7
7
5 : (13.33)

The people in k observe the same event. They measure the duration of this event
to be dt on their timepiece at the origin of k and determine that, during the event in
question, the origin of k0 has moved a spatial distance Oexdx C Oey0C Oez0. The event
at the origin of k0 then has the differential world line

ds D

2

6
6
4

cdt
dx
0

0

3

7
7
5 : (13.34)

The invariance of ds2 requires that

c2dt 02 D c2dt2 � dx2: (13.35)

Then

dt0 D dt
p
1 � ˇ2, (13.36)

is the relationship between the differential local times measured in the two inertial
frames. This is the relationship obtained by Einstein ([24], p. 49). Since (13.36)
requires that dt 0 <dt , the timepiece in k0 is slower that the timepiece in k. This is
referred to as time dilation.

We can use the Lorentz Transformation matrix (13.31) to analyze this experiment
as well. Here frame k0 moves at a velocity v in the direction of the x�axis. Then
dy Ddz D 0 and dx D vdt , which is the distance that the origin of k0 moves in the
time dt . From (13.34) the differential world line in k is then

ds D

2

6
6
4

cdt
vdt
0

0

3

7
7
5 : (13.37)
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This differential world line is transformed into the differential world line ds0 in k0
by

ds0 D A � ds: (13.38)

Then using (13.31) and (13.37) in (13.38) we have

ds0 D

2

66
4

� ��ˇ 0 0
��ˇ � 0 0

0 0 1 0

0 0 0 1

3

77
5

2

66
4

cdt
vdt
0

0

3

77
5

D

2

6
6
4

�cdt � �ˇvdt
�vdt � �ˇcdt

0

0

3

7
7
5 : (13.39)

That is
cdt 0 D �cdt � �ˇvdt: (13.40)

And, since the timepiece is at the origin in k0,

0 D �vdt � �ˇcdt: (13.41)

Equation (13.41) is an identity. And (13.40) is identical to (13.36).
The term local time was first used by Lorentz ([24], p. 15). However, as

Minkowski points out, Einstein first recognized that the times t and t 0 are equivalent
([24], p. 82). Minkowski then defines

d� D dt
p
1 � ˇ2 (13.42)

as the proper time of the world point along the world line in Fig. 13.5. This is the
time indicated by a timepiece at rest with respect to the material particle on the
world line. The time interval dt is the corresponding time measured in an inertial
frame considered to be at rest.

13.5.2 Space Contraction

To discover the effect of motion on the dimensions of a body we consider that in
frame k0 there is a rod of length L0 lying along the x0 axis. We consider that the rod
is measured by someone in frame k0 and also by someone in frame k. For simplicity
we assume that the measurements begin when the origins of k and k0 coincide.

To make the measurement the person in frame k0 sends a pulse of light from
the origin of k0 down the rod and records the time dt 0 taken for the pulse to reach
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the end of the rod. In frame k0 the rod length is L0 D cdt 0. A person in frame k
observes that light pulse traversing a rod of lengthL D .c � v/dt in a time dt , since
the person in frame k observes the light pulse to move at a velocity c � v relatively
to the rod.

In frame k0 the differential world line that results from the light pulse moving
from the origin to a point at the end of the rod of length L0 is

ds0 D

2

6
6
4

cdt 0
L0

0

0

3

7
7
5 D

2

6
6
4

L0

L0

0

0

3

7
7
5 : (13.43)

For the person in frame k the differential world line is that of the light pulse moving
from the origin to a point at the end of the rod of length L. At the end of the
measurement the end of the rod is at the point vdt C L. The differential world
line in k is then

ds D

2

66
4

cdt
vdt C L

0

0

3

77
5 D

2

66
4

L= .1 � ˇ/

L= .1 � ˇ/

0

0

3

77
5 ; (13.44)

where we have used cdt D L= .1 � ˇ/ for the time the person in frame k measures
for the light to traverse the distance L.

In this case the differential world line is lightlike. For a lightlike line ds2 D 0, as
we can see from (13.43) and (13.44). So we cannot use the invariance of ds2 to find
a relation between L and L0. We, therefore, turn directly to the Lorentz transform
(13.22). The equation x00 D �x0 � �ˇx1 is, with (13.43) and (13.44),

L0 D �
L

1 � ˇ
� �ˇ L

1 � ˇ D �L: (13.45)

And the equation x01 D �x1��ˇx0 is, with (13.43) and (13.44), identical to (13.45).
Therefore the relationship between the length of the rod as seen by people in frames
k and k0 is

LDL0

p
1 � ˇ2 (13.46)

The length of the moving rod appears shorter to the person in frame k than it does
to the person moving with the rod. The dimensions of the body in the directions
perpendicular to the relative velocity are not affected. This is referred to as length
contraction.

We can also analyze the measurement using the Lorentz Transformation matrix
(13.31). Using (13.31) and (13.44) in (13.38) we have
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ds0 D

2

66
4

� ��ˇ 0 0
��ˇ � 0 0

0 0 1 0

0 0 0 1

3

77
5

2

66
4

L= .1 � ˇ/

L= .1 � ˇ/

0

0

3

77
5

D

2

6
6
4

Lˇ�= .ˇ � 1/� L�= .ˇ � 1/

Lˇ�= .ˇ � 1/� L�= .ˇ � 1/

0

0

3

7
7
5 ; (13.47)

which, by comparing the second line of (13.47) with (13.43), results again in
(13.45).

Equation (13.46) is the FitzGerald-Lorentz contraction, which we discussed in
Sect. 13.2. Minkowski correctly considered this hypothesis ungrounded, claiming
it had been introduced “as a gift from above ([24], p. 81).” The resolution is in
Einstein’s idea regarding time.

13.5.3 Velocities

The velocity of a particle is defined in terms of displacement and time. We then
expect that the velocity of a moving particle will be seen differently in different
inertial frames.

Let us consider that we are in the stationary inertial frame k. Someone in the
inertial frame k0 moving at the constant velocity v D v Oex with respect to us observes

a particle moving with a velocity u0 with components
�

u0
x; u

0
y; u

0
z

	
. In a short time

dt 0 that person observes the differential world line ds0 of the particle to be

ds0 D

2

6
6
4

cdt 0
u0

xdt 0
u0

ydt 0
u0

zdt 0

3

7
7
5 : (13.48)

We observe that the differential world line ds of this particle as

ds D

2

6
6
4

cdt
uxdt
uydt
uzdt

3

7
7
5 : (13.49)

The displacements (13.48) and (13.49) are related by the Lorentz Transformation

ds D A–1 � ds0: (13.50)
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Carrying out the matrix multiplication we have

ds D

2

6
6
4

� �ˇ 0 0

�ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

2

6
6
4

cdt 0
u0

xdt 0
u0

ydt 0
u0

zdt
0

3

7
7
5 D

2

6
6
4

�
�
1C ˇˇ0

x

�
cdt 0

�
�
ˇ0

x C ˇ
�
cdt 0

ˇ0
ycdt 0
ˇ0

zcdt 0

3

7
7
5; (13.51)

where we have introduced ˇj D uj=c for j D 1, 2, 3. Then

ds D

2

6
6
4

cdt
ˇxcdt
ˇycdt
ˇzcdt

3

7
7
5 D

2

6
6
4

�
�
1C ˇˇ0

x

�
cdt 0

�
�
ˇ0

x C ˇ
�
cdt 0

ˇ0
ycdt 0
ˇ0

zcdt 0

3

7
7
5 (13.52)

By equating components in (13.52) and solving for the velocity components in
the second inertial frame (k) we have

ux D u0
x C cˇ

1C ˇu0
x=c

; (13.53)

uy D u0
y

�
�
1C ˇu0

x=c
� ; (13.54)

and

uz D u0
z

�
�
1C ˇu0

x=c
� : (13.55)

We realize that the Minkowski Axiom requires that particle velocities are always
less than the speed of light. Using (13.53) we can show that if the inertial frame k0
has a velocity v < c and if the particle moving in k0 also has a velocity ux < c, the
velocity of the particle as measured in k is also < c regardless of how close v and
ux are to c. We have drawn the situation in Fig. 13.6.

If we choose ˇ0
x D 1 � 
 and ˇ D 1 � 	 then (13.53) always results in

ˇx D ˇ0
x C ˇ

1C ˇˇ0
x

D 2 � 
 � 	
2 � 
 � 	C 
	

< 1: (13.56)

Fig. 13.6 A body moving
with a velocity u0 D u0

x Oex

relatively to the inertial frame
k0, which has a velocity
v D vOex relatively to inertial
frame k
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This is the argument that Einstein provided ([24], pp. 50–51).
If we choose ˇ0

x D 1, so that we are considering a light pulse in frame k0 rather
than a particle. Then 
 D 0 and (13.56) results in ˇx D 1, which is Einstein’s second
postulate.

13.6 Tensors

If we take seriously Minkowski’s claim that we need a unity of space and time
as a representation of reality then we should be prepared to accept an expanded
geometry. This will also simplify our mathematical treatment of relativity.

In the Minkowski Axiom we have a statement that begins our new understanding
of geometry. The square of the distance along a world line is, in analytic geometry,
a scalar or dot product between two vectors. We are then led to consider a scalar
product between general 4�vectors A and B. We write this as

A � B D A˛B
˛; (13.57)

In (13.57) we have introduced a superscript on the elements of B in keeping with
the notation for the four dimensional world point (13.21). The use of a subscript on
the elements of A is because we anticipate (correctly) that the form of this vector
will be different from that of B.

We are interested in the conditions which make A � B an invariant under Lorentz
Transformation. That is

A˛B
˛ D A0

�B
0� (13.58)

We require first that the elements of the vector B transform in the same way that the
coordinates transform, which is

dx0˛ D @x0˛

@xˇ
dxˇ; (13.59)

with the inverse

dxˇ D @xˇ

@x0˛ dx0˛; (13.60)

That is we require that

B 0� D @x0�

@x�
B� (13.61)

with the inverse

B� D @x�

@x0� B
0� : (13.62)

Then (13.58) becomes

A˛B
˛ D A�

@x�

@x0� B
0� : (13.63)
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The invariance expressed in (13.58) results provided the vector A transforms as

A0
� D @x�

@x0� A�: (13.64)

The vectors A and B must then transform differently in order for the scalar product
to be an invariant. This is a distinguishing characteristic of Minkowski space.

Vectors that transform according to (13.61) are contravariant vectors. The
indices on a contravariant vector are superscripts. Vectors that transform according
to (13.64) are covariant vectors. The indices on a covariant vector are subscripts.

The character of vectors in Minkowski space is defined by the way in which they
transform from one inertial frame to another. The invariance of the scalar ds2 is also
defined by the properties of the Lorentz Transformation. Both the vectors and the
(invariant) scalars we have encountered in the theory of relativity are defined more
restrictively than what we may have previously considered to be (general) vectors
and scalars. Such quantities are called tensors.

An invariant scalar is a tensor of rank zero. A contravariant or covariant vector is
a tensor of rank one. The rank of the tensor is the number of indices required in its
definition. Accordingly we have contravariant and covariant tensors of rank two,
which transform as

A0�� D @x0�

@x�
A��

@x0�

@x�
(13.65)

and

A0
�� D @x�

@x0� A��
@x�

@x0� (13.66)

respectively.
Tensors may also be of higher rank and we may have mixed tensors, which

transform as, for example

A0�
� D @x0�

@x�
A��

@x�

@x0� :

Because vectors are a subset of tensors, we have moved beyond our previous
treatment in terms of the vector calculus. Einstein realized that this move was
necessary while he was working on the general theory of relativity. In 1912, at
the time of his call (back) to Zürich, he realized that he needed a mathematics
beyond what he understood at that time. His friend, Marcel Grossmann, Dean of
the mathematics and physics section of the Eidgenössische Technische Hochschule
(Swiss Federal Institute of Technology), the ETH, and the one who had called him
to Zürich, introduced Einstein to tensors ([78], p. 212).

The overriding question was the form which the laws of physics take in order to
make them independent of coordinate system. Special relativity provides a kinemat-
ics that guarantees the invariance of the laws of mechanics and electrodynamics in
inertial frames. But the question goes beyond inertial frames. It also goes beyond
uniformly translating frames ([80], p. 149). Euclidean geometry has to be abandoned
([24], p. 116) and we must think of coordinates as associated with the world points
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in a unique and continuous manner ([80], p. 149). Such coordinate frames are called
Gaussian.

What sort of form do the general laws of physics take? Einstein said that

The general laws of nature are to be expressed in equations which hold good for all systems
of coordinates, that is are covariant with respect to any substitutions whatever (generally
covariant).

Pauli points out that we cannot prove that this claim is valid. It must be made as
an Ansatz or postulate ([80], p. 149).

There seems to be little gained in attempting to stay within the confines of the
ordinary vector calculus as we consider the general implications of relativity. We
expect that the reader will eventually go beyond our development in this book. We
will, therefore, introduce the basic ideas and concepts in a manner that will facilitate
an easy transition to more advanced study of electrodynamics and mechanics.

13.7 Metric Space

To form the invariant quantity ds2 (see (13.26)) from the differentials of (13.21) we
write

ds2 Ddx˛g˛ˇdxˇ. (13.67)

Here g˛ˇ are the elements of the metric tensor for Minkowski space.
The form of ds2 in (13.67) is forced upon us by the Lorentz Transformation

and the Minkowski Axiom, unless we choose to introduce the imaginary quantity i
into the time components of the vectors (13.21). We have chosen here to keep the
components of the vectors real and to introduce the metric tensor.

Einstein introduced the metric or fundamental tensor in the paper on the general
theory of relativity in 1916 ([24], pp. 127–131). From our introduction of the metric
tensor in (13.67) we see that the values of the elements of g˛ˇ will provide the
structure to be taken on by the four dimensional space. This is integral to the general
theory of relativity.

The space of the special theory is what is termed flat. For flat Minkowski space
the metric tensor is

gD

2

6
6
4

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3

7
7
5. (13.68)

From (13.57) we know that a scalar product is a product of a covariant and a
contravariant vector. Then, from (13.67) we see that

dx˛ D g˛ˇdxˇ (13.69)
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and
dxˇ D gˇ˛dx˛; (13.70)

where gˇ˛ is the inverse of g˛ˇ . That is

g�	g	� D ı�� : (13.71)

The (13.69) and (13.70) show us, then, that g˛ˇ raises and g˛ˇ lowers the index of
a vector in Minkowski space. The metric tensor then transforms the contravariant to
the covariant form of a vector. And the inverse of the metric tensor transforms the
covariant to the contravariant form of a vector.

13.8 Four-Velocity

In Sect. 13.5.3 we considered the transformation of the velocities

u� D dx�

dt
(13.72)

in the inertial frame k, with � D 1, 2, 3. These velocities have meaning for someone
in a particular inertial frame. Equation (13.72) is not, however, a reasonable
definition of velocity for use in relativistic mechanics.

If we use the proper time (13.42) in place of dt in (13.72) we have a 4�velocity
(vector)

U� � dx�

d�

D �u

2

6
6
4

c

dx=dt
dy=dt
dz=dt

3

7
7
5 (13.73)

where � D 0, 1, 2, 3 and

�u D
 

1 � u2
x C u2

y C u2
z

c2

!–1/2

D �
1 � ˇ2

u

�–1/2
: (13.74)

The square of the magnitude of the 4�velocity is

U�U� D dx�

d�
g��

dx�

d�
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D �2
u

�
c2 � u2

x � u2
y � u2

z

	

D c2; (13.75)

which is an invariant.

13.9 Mass, Momentum, and Energy

13.9.1 Mass

Einstein treated mass in the last section of his paper on special relativity. There
he analyzed the slow acceleration of a charged particle, which he considered to be
an electron, in an electric field, and related the observations of the motion of the
electron in the inertial frames k and k0.

From the requirements of Newton’s Second law, and the transformation of the
electric field, he concluded that the mass of the electron was velocity dependent
([24], pp. 61–63). The longitudinal mass, for motion along the axis of translation of
k0, Einstein found to be �3m, and the transverse mass, for motion perpendicular to
the axis of translation of k0, he found to be �2m. This peculiarity he noted was a
result of the “definition of force and acceleration” he had chosen. That the mass is
velocity dependent is, nevertheless, fundamental.

Max Jammer points out that Gilbert N. Lewis and Richard C. Tolman picked
up the discussion of relativistic mass in 1909 ([49], p. 161; [64]). Rather than
Newton’s Second Law, Lewis and Tolman based their discussion on conservation
of momentum and concluded that the relativistic mass is generally �m.

Conservation of momentum is the appropriate covariant law. Conservation of
momentum is an integral part of the Euler–Lagrange formulation of analytical
mechanics, on which any complete consideration of relativistic mechanics must be
based. So we may accept the result of Lewis and Tolman.

Wolfgang Rindler has a particularly lucid treatment of the relativistic mass ([82],
pp. 70–72). He considers a totally inelastic collision as viewed in two inertial
frames. We follow Rindler’s presentation here.

We consider that in frame k, which is at rest, there is a particle with mass m
moving at a velocity of �u Oey and an identical particle coming toward the first with
velocity w D Qu Oey C v Oex. The particles collide and stick together. The resultant
velocity of the combined particle is in the Oex direction. There is no motion in the Oey

direction after the collision.
This collision is seen by someone in the inertial frame k0 moving with a velocity

v D v Oex relatively to the inertial frame k. As seen by the person in frame k0 the
second particle is moving only in the COe0

y direction and the collision appears as a
mirror image of the collision seen by the person in frame k. Specifically the person
in frame k0 measures the velocity of the particle moving in the COe0

y direction as u Oe0
y.
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Fig. 13.7 Collision between
two particles of equal rest
mass observed by people in
two inertial frames

We have drawn the collision as seen by people in the two frames in Fig. 13.7.
After the collision there is no motion in the Oey or Oe0

y directions, as viewed from
either frame.

In the frame k0 the particle moving in the COe0
y direction has no component of

velocity in the Oe0
x direction. Then, using (13.54) we see that a person in frame k

measures the Oey component velocity of the particle moving in the COey direction to
be Qu D u=�v. Therefore, momentum conservation in the direction Oey, as required by
the person in frame k, is

0 D m.w/
u

�v
�m.u/ u: (13.76)

We have included a possible velocity dependence of the masses of the particles by
writingm.w/ andm.u/.

For arbitrary u ¤ 0, (13.76) requires that

m.w/
1

�v
D m.u/ : (13.77)

Equation (13.77) holds for all velocities u. As u becomes small, but not zero, we may
drop the velocity dependence in m.u/ and m.w/ ! m.v/. Then (13.77) becomes

m.v/ D m�v D m
p
1 � ˇ2

v

: (13.78)

This is the Lewis and Tolman result.
Equation (13.78) is the dependence of mass on velocity. The mass m is the mass

of the particle as measured by someone at rest with respect to the particle. This is
sometimes referred to as the rest mass of the particle. We see from (13.78) that the
mass of the particle becomes infinite as the velocity approaches that of light.

13.9.2 Four-Momentum

The 4�momentum is defined logically in terms of the 4�velocity (13.73) as

P� � mU�
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D m�u

2

66
4

c

ux

uy

uz

3

77
5 ; (13.79)

This is sometimes called the energy-momentum 4�vector ([37], p.510; [49], p. 164).
Because the rest mass and the square of the 4�velocity U� are invariants, the

square of the 4�momentum P� is as well. Specifically, using (13.75) we find that

P�P� D m2U�U�

D m2�2
u

�
c2 � u2

x � u2
y � u2

z

	

D m2c2; (13.80)

or q�
P�P�

�
c2 D mc2 (13.81)

is an invariant under Lorentz Transformation. From (13.81) and the second line of
(13.80) we find �

P�P�
�
c2 D m2c4 D �

m�uc
2
�2 � p2c2 (13.82)

where
p2 D p2

x C p2
y C p2

z (13.83)

is the square of the three spatial components of the momentum vector. Using (13.78)
the momenta px,y,z are

px,y,z D m.u/ ux,y,z D m�uux,y,z: (13.84)

13.9.3 Energy

Einstein introduced the relationship between mass and energy in September of 1905
with the publication entitled Does the Inertia of a Body Depend on its Energy
Content ([24], pp. 69–71). This appeared three months after the paper on special
relativity, which was published in June. In this three page paper he showed that
if the energy of a body changes through the emission of electromagnetic radiation
there is a proportional loss in the inertial mass of the body.

In the June paper Einstein found equations for shifts in frequency and energy
of a light wave as observed by a person in a moving frame. Then, in September,
he considered what would happen if electromagnetic waves were emitted from a
body stationary in frame k, as we have illustrated in Fig. 13.8. The two light waves
propagate in opposite directions but at an arbitrary angle � relatively to the x�axis.



298 13 Special Relativity

Fig. 13.8 Electromagnetic waves emitted in opposite directions by a body at rest in the (station-
ary) inertial frame K

Each wave carries an energy 1
2
L so that the total energy emitted by the body is L.

With the results from the June paper, Einstein showed that the kinetic energy of the
body as measured in frame k is diminished in this process by an amount

L

 
1

p
1 � v2=c2

� 1

!

� 1

2

�
L

c2

�
v2: (13.85)

That is if a body gives off the energy L in the form of radiation its mass diminishes
by m D L=c2. This is not yet E D mc2. There were also no data in 1905 on
which to test the theory. Einstein suggested radium salts as a source of data. But
actual experimental data were 34 years in the future9 [69].

Here we shall follow Pauli ([80], pp. 116–117) to obtain the Einstein mass-energy
relation we seek.

We begin with Newton’s Second Law

d

dt
.m�uu/ D F; (13.86)

where F is the Lorentz Force. Performing the derivative indicated in (13.86) we have

d

dt
.m�uu/ D m�uc

�
�2

uˇu � d

dt
ˇu

�
ˇu Cm�uc

d

dt
ˇu: (13.87)

The rate at which work is done on a particle of (relativistic) mass m.u/ D m�u

moving with velocity u is F � u. Taking the scalar product of (13.86) with u and
using (13.87)

u � d

dt
.m�uu/ D m�3

u c
2ˇu � d

dt
ˇu

D F � u: (13.88)

9Lise Meitner’s analysis of the Hahn and Strassmann experiments used Einstein’s mass-energy
relationship to show that nuclear fission had occurred.
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From straightforward differentiation we also find that

d

dt

�
m�uc

2
� D m�3

u c
2ˇu � d

dt
ˇu: (13.89)

Therefore
d

dt

�
m�uc

2
� D F � u: (13.90)

The kinetic energy of the particle is then

Ekin D m�uc
2 C constant. (13.91)

To identify the constant we expand �u in powers of ˇu. Carrying the expansion to
second order in ˇu we have

Ekin � mc2 C 1

2
mu2 C constant: (13.92)

We then retrieve the known classical result for the kinetic energy if we choose
the constant to be �mc2. This we term the rest energy (rest mass was defined in
Sect. 13.9.1) of the particle. This is the energy present in the particle when at rest.

Equation (13.91) then becomes

Ekin D m�uc
2 �mc2 . (13.93)

If we identify

EDm�uc2 (13.94)

as the total energy of the particle then (13.93) indicates that the kinetic energy is the
difference between the total energy and the rest energy.

We are now able to identify the componentP 0 in the 4�momentum (13.79). It is

P 0 D m�uc D E

c
: (13.95)

The condition of invariance of P�P� (13.82) then becomes

E2 Dp2c2Cm2c4, (13.96)

which is a general relationship between momentum and energy. From (13.80) we
also see that

P�P� D m2c4

c2
D E2

0

c2
;

where E0 D mc2 is the particle rest energy.



300 13 Special Relativity

13.10 Electrodynamics

13.10.1 Field Equations

We recall (Sect. 11.7) that if we choose the Lorentz Gauge

1

c2
@'

@t
C div A D 0; (13.97)

the equations for the vector and scalar potential take on the form

1

c2

@2A
@t2

� r2A D �0J; (13.98)

and
1

c2

@2'

@t2
� r2' D 1

"0
�: (13.99)

The electric and magnetic fields are then

E D �@A
@t

� grad'; (13.100)

and
B D curl A: (13.101)

Equations (13.98) and (13.99) together with the Lorentz Gauge (13.97) we may
consider to be the general form of the Maxwell field equations. We then obtain the
electric and magnetic fields from the vector and scalar potentials. In this picture it
appears that the electric and magnetic fields, with which we began our study, have
become secondary quantities. This is not actually the case, however. We are simply
adopting a simpler and, perhaps, more elegant approach. If we can show that the
(13.97–13.99) are of the same form in all inertial frames we have established the
covariance of Maxwell’s theory.

Einstein showed the covariance of the Maxwell Equations in detail using the
Maxwell, or Maxwell-Hertz Equations. His development was quite clear with
the caveat that the notation in 1905 was very awkward. Here we will show the
covariance of Maxwell’s equations using the same basic approach Einstein used, in
the modern notation. But first we need some derivative relationships and some new
4�vectors.

13.10.2 Derivatives

To write the (13.97–13.99) in the terms of tensors and Minkowski space coordinates
we must have Minkowski space forms for the partial derivatives.
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Using the chain rule we obtain

@˚

@x0˛ D @xˇ

@x0˛
@˚

@xˇ
(13.102)

for the elements of the partial derivative of a function ˚ with respect to the
contravariant coordinate x0˛ . Comparing (13.102) with (13.64) we see that @˚=@xˇ

is a covariant vector. Differentiation with respect to contravariant component
transforms as a covariant vector operator. That is

@

@x0˛ D @xˇ

@x0˛
@

@xˇ
(13.103)

is a covariant differential operator. Some authors (see e.g. [48], pp. 535–6) choose
to write the covariant differential operator in shorthand as

@˛ � @

@x˛
D

2

6
6
4

@=@x0

@=@x1

@=@x2

@=@x3

3

7
7
5

D
�
@

c@t
; grad

�
; (13.104)

which then transforms as (13.103).
Using the chain rule we write the divergence in Minkowski space as

@A0�

@x0� D @x�

@x0�
@

@x�
A0�: (13.105)

Since the elements @x�=@x0� are independent of coordinates, (13.105) can be
written as

@A0�

@x0� D @

@x�
@x�

@x0�A
0�: (13.106)

Using (13.62) (13.106) becomes

@A0�

@x0� D @A�

@x�
: (13.107)

The divergence in Minkowski space is then invariant under Lorentz Transformation.
In the inertial frame k the four dimensional Laplacian is the operator is what we

have called the d’Alembertian. In Minkowski space we designate this operator as

� D 1

c2

@2

@t2
� r2
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D @2

@x0@x0
� @2

@x1@x1
� @2

@x2@x2
� @2

@x3@x3
: (13.108)

We obtain this operator as the square of the differential operator (13.103). Although
it may appear unnecessarily pedantic with our present understanding of the Lorentz
Transformation, we can show, by carrying out the partial derivatives and using the
chain rule, that the partial derivative operator � is an invariant (see exercises).

We also observe that formally we may write

� D @

@x�
g��

@

@x�
D @2

@x0@x0
� r2; (13.109)

which, in matrix form, is

�
@=@x0 @=@x1 @=@x2 @=@x3

�

2

6
6
4

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3

7
7
5

2

6
6
4

@=@x0

@=@x1

@=@x2

@=@x3

3

7
7
5

D @2

@x0@x0
� r2: (13.110)

If we use the shorthand notation of (13.104) we may write (13.109) as

� D @�g
��@� D @�@

� (13.111)

where

@� � @

@x�
D g��@�

D

2

6
6
4

@=@x0

�@=@x1

�@=@x2

�@=@x3

3

7
7
5

D
�
@

c@t
;� grad

�
(13.112)

is the contravariant differential operator. The use of @� and @� is only a simplifying
notation. It is convenient and common. But there is no new physics here.

13.10.3 Current and Potential Vectors

We can make our treatment more systematic if we define two new 4�vectors in
Minkowski space. These are the current (density) 4�vector
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JD

2

6
6
4

c�

J 1

J 2

J 3

3

7
7
5, (13.113)

and the 4-potential vector

AD

2

6
6
4

'=c

A1

A2

A3

3

7
7
5. (13.114)

Here � is the charge density, J ˛ are the components of the current density, ' is the
electric potential, and A˛ are the components of the vector potential.

13.10.4 Electrodynamic Covariance

With (13.104) and (13.114) we see that the Lorentz Gauge (13.97) is

@˛A
˛ D

�
@'

c2@t
;
@A�

@x�

�
D 0; (13.115)

which, from (13.107) we see is invariant under Lorentz Transformation. We then
have invariance of the Lorentz Gauge.

Using (13.104) and (13.113) we see that charge conservation is

@˛J
˛ D

�
@�

@t
;
@J �

@x�

�
D 0: (13.116)

Therefore, charge conservation is also invariant under Lorentz Transformation.
Now we can see the reason that we elected to treat the potentials as primary.

Using (13.108) and (13.114) we see that the combination of (13.98) and (13.99)
into 4�vector form can be written as

�A=�0J. (13.117)

We know that the d’Alembertian � is an invariant. And Lorentz transforming
the current 4�vector and 4�potential vector we find that the second and third
components of the current density and the potential vectors are J 02 D J 2, J 03 D J 3,
A02 D A2, A03 D A3. Therefore the equations

�A˛ D �0J
˛ (13.118)
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for ˛ D 2; 3 transform to
�A0˛ D �0J

0˛: (13.119)

That is the form of the second and third components of (13.117) is unaltered by
Lorentz transform.

The zeroth and first elements of A and J transform as

' 0 D �
�
' � cˇA1

�
; (13.120)

A01 D �

�
A1 � 1

c
ˇ'

�
; (13.121)

�0 D �

�
� � 1

c
ˇJ 1

�
; (13.122)

and
J 01 D �

�
J 1 � cˇ�� : (13.123)

If the form of the zeroth and first components of (13.117) is unaltered by Lorentz
Transformation then

�'0

c
D �0c�

0 (13.124)

and
�A01 D �0J

01: (13.125)

Using (13.120)-(13.123) and the fact that

�'

c
D �0c� (13.126)

and
�A1 D �0J

1; (13.127)

the validity of (13.124) and (13.125) follows.
We have then established that the form of Maxwell’s Equations is invariant under

Lorentz Transformation. That is Maxwell’s Equations are covariant.

13.10.5 Field Strength Tensor

We obtain the electric and magnetic fields from the potentials A and ' using
(13.100) and (13.101). The spatial derivatives in the grad and curl appearing
in (13.100) and (13.101) are found in the first through third elements of the
contravariant derivative @� in (13.112) and the time derivative @=@t is found in
the zeroth element of @�. Specifically if we define the antisymmetric contravariant
tensor

F ˛ˇ D @˛Aˇ � @ˇA˛ D �F ˛ˇ; (13.128)
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we find, for example, that

F 10 D @1A0 � @0A1 D � @'

c@x
� @Ax

c@t
D Ex

c
(13.129)

and

F 12 D @1A2 � @2A1 D �@Ay

@x
C @Ax

@y
D �Bz (13.130)

This is the field strength tensor.
Evaluating the elements (see exercises) we can represent the field strength tensor

as the matrix

FD

2

66
4

0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 �Bx

Ez=c �By Bx 0

3

77
5 (13.131)

This contravariant tensor transforms as (13.65), which we repeat here for the sake
of continuity.

F 0�� D @x0�

@x�
F �� @x

0�

@x�
: (13.132)

We may evaluate each of the terms in the matrix representation of F 0�� (see
exercises) or we may transform F using the Lorentz Transformation matrix (13.31).
To carry this out we first recall that .A/˛ˇ D @x0˛=@xˇ are the elements of the
Lorentz Transformation matrix (see (13.28)). Then, in matrix form, (13.132) is

F0 D AFA: (13.133)

Because ı˛
ˇ D �

@x0˛=@x	
� �
@x	=@x0ˇ� D �

@x˛=@x0	� �@x0	=@xˇ
�

(see (13.30)), we
have

@x˛

@x0� F
0�� @xˇ

@x0� D @x˛

@x0�
@x0�

@x�
F �� @x

0�

@x�
@x	ˇ

@x0�

D ı˛�F
��ıˇ�

D F ˛ˇ (13.134)

We now recall that
�
A–1

�˛
ˇ

D @x˛=@x0ˇ are the elements of the inverse of the
Lorentz Transformation matrix (see (13.29)). Then, in matrix form, (13.132) is

F D A–1F0A–1: (13.135)

We may now carry out the transformation of the Field Strength Tensor using
matrices. The result is
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F0 D

2

6
6
4

� ��ˇ 0 0
��ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

2

6
6
4

0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 �Bx

Ez=c �By Bx 0

3

7
7
5

2

6
6
4

� ��ˇ 0 0
��ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5 (13.136)

D

2

66
4

0 �Ex=c � .�=c/
�
Ey � cˇBz

� � .�=c/
�
EzCcˇBy

�

1
c
Ex 0 �� �Bz � .ˇ=c/Ey

�
�
�
By C .ˇ=c/Ez

�

.�=c/
�
Ey � cˇBz

�
�
�
Bz � .ˇ=c/Ey

�
0 �Bx

.�=c/
�
Ez C cˇBy

� �� �By C .ˇ=c/Ez

�
Bx 0

3

77
5:

Although the same laws of electrodynamics and optics are valid for all inertial
frames of reference, the electric and magnetic fields a person measures depend on
the relative state of motion of the person. This we see in (13.136). For example, if
in the stationary inertial frame k we have only an electrical field E D Ez Oez then
in an inertial frame k0 moving with a velocity v D v Oex a person will detect an
electric field E0 D �Ez Oez and a magnetic field induction B0 D .ˇ=c/ �Ez Oey. We
may identify these fields by comparing the form of F0 that we have in final matrix
in equation (13.136) with F in (13.131).

Similarly if we have only a magnetic field B D By Oey in the stationary frame k
then in the moving frame k0 a person will detect a magnetic field with induction
B0 D �By Oey and an electric field E0 D cˇBy Oez.

13.11 Moving Charges

With what we now know about the effect of motion on the electric and magnetic
fields we can consider some aspects of particle motion. We shall later treat the
emission of electromagnetic radiation from accelerated charges. Here we treat only
uniform motion. The fields measured by someone in an inertial frame k0 in which
the charge is at rest, as we may expect from the discussion in the preceding section,
will differ from those measured by a person in a stationary frame k.

Example 13.1. Two stationary, identical classical point charges located a distance
from one another only interact via a Coulomb force. But if these two charges move
uniformly in a direction perpendicular to the distance between them we may expect
the charges to be subject to a magnetic force as well as the Coulomb force. In
Fig. 13.9 we place the two charges in the inertial frame k0 moving at a velocity
v along the x�axis of the stationary frame k. In the moving inertial frame k0 the
electrostatic field from the two charges penetrates the space between them. But at
the location of each charge the electrostatic force is repulsive and directed between
the centers. At the point .0; 0; a/ the electrostatic field is CE 0

z and at the point
.0; 0;�a/ the electrostatic field is �E 0

z. We can calculate the magnitude of the
electrostatic field E 0

z in frame k0 from Coulomb’s Law. The result is

E 0
z D Q

4�"0

1

.2a/2
: (13.137)
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Fig. 13.9 Two moving
charges observed in two
frames

The field strength tensor in k0 at the location of each point charge is

F0 .0; 0;˙a/ D

2

6
6
4

0 0 0 �E 0
z=c

0 0 0 0

0 0 0 0

˙E 0
z=c 0 0 0

3

7
7
5 : (13.138)

Since lengths in the y and z�directions are unaffected by the motion, we evaluate
the field strength tensor at the points .0; 0;˙a/ as measured by someone in the k
frame. The result is

F .vt; 0;˙a/ D A–1F0 .0; 0;˙a/A–1

D

2

6
6
4

� �ˇ 0 0

�ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

2

6
6
4

0 0 0 �E 0
z=c

0 0 0 0

0 0 0 0

˙E 0
z=c 0 0 0

3

7
7
5

2

6
6
4

� �ˇ 0 0

�ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

D

2

6
6
4

0 0 0 � .�=c/E 0
z

0 0 0 �ˇ .�=c/E 0
z

0 0 0 0

˙ .�=c/E 0
z ˙ˇ .�=c/E 0

z 0 0

3

7
7
5 : (13.139)

Someone in frame k then measures both a magnetic and an electric field. At the
point .vt; 0;Ca/ the electric field is in the positive z�direction and increased by a
factor � and the magnetic field induction is

By D �1
c
ˇ�E 0

z:

The results for the fields are the same in magnitude, but with reversed directions at
point �a. As measured by someone in the inertial frame k the force on the charge
at .vt; 0;Ca/ is the Lorentz Force

F+a D Q�E 0
z �QcˇBy
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D Q�
�
1 � ˇ2�E 0

z

D Q
p
1 � ˇ2E 0

z;

and the force on the charge at .vt; 0;�a/ is the Lorentz Force

F-a D �Q�E 0
z CQcˇBy

D �Q
p
1 � ˇ2E 0

z:

The person in frame k then observes that the repulsive force between the charges is
diminished by a magnetic attractive force.

We may also ask for the field resulting from the motion of a single charged
particle moving in empty space with no external fields acting on it. We consider the
charge to be positive and the motion to be relativistic. The charge does not radiate
as it moves with a constant velocity and our detectors will not register energy lost
from the charge in the form of radiated electromagnetic (wave) fields.

Example 13.2. We have drawn a picture of the experiment in Fig. 13.10. A person
in the inertial frame k0, stationary relatively to the charged particle, will only detect
a Coulomb field

E D Q

4�"0

r 0

.r 0/3
: (13.140)

in the space surrounding the charge. The field strength tensor in k0 is

F0 D

2

6
6
6
4

0 �E 0
x=c �E 0

y=c �E 0
z=c

E 0
x=c 0 0 0

E 0
y=c 0 0 0

E 0
z=c 0 0 0

3

7
7
7
5

(13.141)

The field strength tensor in frame k, which we find from matrix multiplication, is

F D A–1F0A–1 D

2

6
6
4

� �ˇ 0 0

�ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

2

6
6
6
4

0 �E 0
x=c �E 0

y=c �E 0
z=c

E 0
x=c 0 0 0

E 0
y=c 0 0 0

E 0
z=c 0 0 0

3

7
7
7
5

2

6
6
4

� �ˇ 0 0

�ˇ � 0 0

0 0 1 0

0 0 0 1

3

7
7
5

Fig. 13.10 Single moving
charge
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D

2

6
6
6
4

0 � 1
c
E 0
x � .�=c/E 0

y � .�=c/E 0
z

� 1
c
E 0
x 0 �ˇ .�=c/E 0

y �ˇ .�=c/E 0
z

.�=c/E 0
y ˇ .�=c/E

0
y 0 0

.�=c/E 0
z ˇ .�=c/E

0
z 0 0

3

7
7
7
5
: (13.142)

And F has the general form

F D

2

6
6
4

0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 0

Ez=c �By 0 0

3

7
7
5 : (13.143)

We can then identify the fields as a person in frame k will see them.

The coordinates r0 are transformed according to (13.22). In frame k the distances
.x0; y0; z0/ become Œ� .x � ˇct/ ; y; z�. The magnitude of the transformed r0 is

r D
q
�2 .x � ˇct/2 C y2 C z2 (13.144)

The components of the electric field, as seen by someone in frame k, are then

Ex D Q

4�"0

� .x � ˇct/

r3
; (13.145)

Ey D Q

4�"0

�y

r3
; (13.146)

and

Ez D Q

4�"0

�z

r3
: (13.147)

And the components of the magnetic field induction, as seen by someone in frame
k, are

By D �ˇ�2 Q

4�c"0

z

r3
(13.148)

and

Bz D ˇ�2 Q

4�c"0

y

r3
: (13.149)

For simplicity we shall consider that measurements are made by the person in
frame k with detectors set up at the origin of k. Then measurements are made for
only small values of .x; y; z/. We shall also set the time t D 0 when the charge
crosses the plane at x D 0.

The velocity of the charge is close to c. Therefore, as the charge approaches and
passes the origin, i.e. for small values of .x; y; z/, we have jˇct j � jxj, jyj, and jzj.
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Fig. 13.11 Electric field Ex

from positive charge passing
the origin at relativistic
velocity

Fig. 13.12 Electric field Ey

from positive charge passing
the origin at relativistic
velocity

Then x � ˇct � �ˇct and from (13.145) the x�component of the field is

Ex D � Q

4�"0

�ˇct
h
�2 .ˇct/2 C y2 C z2

i3/2 : (13.150)

As the charge passes the origin the instrument measuring Ex then records first a
large field in the positive x�direction (t < 0 during the approach) and then a large
field in the negative x�direction (t > 0). We have plotted this in Fig. 13.11.

From (13.146) the y�component of the electric field is

Ey D Q

4�"0
�

y
h
�2 .ˇct/2 C y2 C z2

i3/2

This is the y�component of a Coulomb field for each x � �ˇct . The instrument
measuringEy at the origin will record data for a Coulomb field for each value of the
time t . The value of Ey will, however, change very rapidly as the charge passes the
origin at a velocity close to c. So the instrument measuringEy will register a single
positive pulse in the direction of COey for y > 0 and a symmetric single negative
pulse for y < 0. We have plotted the positive pulse in Fig. 13.12.

The instrument measuring Ez will register a similar result, as we see by
comparing (13.146) and (13.147).

We see from the spatial similarity of the magnetic field induction components
(13.148) and (13.149) to the electric field components (13.146) and (13.147) that the
instruments at the origin of k measuring the magnetic field induction components
will register a rapid pulse, similar to that in Fig. 13.12, as the charge passes. We can
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deduce the basic geometrical form of the magnetic field induction from equations
(13.148) and (13.149). At the time t D 0 when the charge passes the origin the
magnetic induction is a maximum. At t D 0,

By D � ˇ

1 � ˇ2
Q

4�c"0

z

Œy2 C z2�
3/2 (13.151)

and

Bz D ˇ

1 � ˇ2
Q

4�c"0

y

Œy2 C z2�
3/2
: (13.152)

Then,

B2
y C B2

z D
�

ˇ

1 � ˇ2

�2 �
Q

4�c"0

�2
1

Œy2 C z2�
2
: (13.153)

That is B D
q
B2

y C B2
z is a constant when the radial distance from the origin of

k is a constant. From (13.151) and (13.152) we can see that the direction of the
magnetic field induction obeys the right hand rule. That is the single charge moving
at a velocity close to c behaves as a single charge current. The dependence of B on
the radius is, however, not the same.

13.12 Summary

We cannot speak of relativity without encountering the ideas of Einstein. In this
chapter we elected to present those ideas as Einstein presented them. As a result
the beginning section approximates an outline of Einstein’s June, 1905, paper. And
where we lift out examples that Einstein also treated we have indicated similarities.
It is our hope that in this way the reader will receive a more concrete understanding
of the theory of relativity.

We have taken a similar approach to the melding of space and time that
Minkowski brought about. Minkowski understood Einstein’s ideas completely, as
well as the efforts, successes, and failures of those who preceded Einstein. As
Einstein, Minkowski is present throughout the chapter.

The Lorentz or FitzGerald-Lorentz Transformation is central to the mathematical
discussion. In 1905 Einstein was unaware of the existence of the Lorentz
Transformation. And the path Einstein took to obtain the transformation is
fundamentally different than that taken by Lorentz. FitzGerald and Lorentz
introduced a mechanical postulate, while Einstein had discovered something about
the meaning of time that no one had seen.

We pursued tensors for the simplicity they bring to the subject. With tensors we
were able to show the covariance of Maxwell’s Equations on Lorentz Transforma-
tion. This was what Einstein originally wanted in 1905, and what he had shown in a
rather more awkward form. We ended the chapter with the form that the fields take
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in different inertial frames. And then we applied these to evaluating the fields from
moving charges. This is not radiation. Radiation from accelerating charges will be
the subject of a subsequent chapter.

Exercises

13.1. For the time synchronization experiment in Fig. 13.3 define the times for the
emission of light from the origin of frame k0, reflection from the point �, and return
of the light to the origin of frame k0 as �0, �1, and �2 respectively. Using equation
(13.3) and the approach used to find @�=@x0, show that @�=@y D 0 and @�=@z D 0.

13.2. The Lorentz Transformation equations for the differential coordinates of a
world line are

dx00 D �
�
dx0 � ˇdx1

�

dx01 D �
�
dx1 � ˇdx0�

dx02 D dx2

dx03 D dx3:

Using this these equations to show that

c2 .dt/2 � .dx/2 � .dy/2 � .dz/2

D c2
�
dt 0
�2 � �

dx0�2 � �
dy0�2 � �

dz0�2
:

13.3. Events which are measured as occurring simultaneously in one inertial frame
are not necessarily simultaneous in another inertial frame. Consider, for example,
that someone in frame k0 places a flash lamp at the origin and detectors at points
� D CL and � D �L on the ��axis. For clarity we identify two events. Event (1) is
the arrival of the light pulse at the � D CL detector and event (2) is the arrival of the
light pulse at the � D �L detector. In frame k0 events (1) and (2) are simultaneous.

Show that the events (1) and (2) are not simultaneous in frame k.

13.4. Show by direct use of the matrix product with (13.31) and (13.32) that

AA–1 D A–1A D 1;

where 1 is the identity, which in matrix form is

1 D

2

6
6
4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7
7
5 :
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13.5. Show, using a matrix product, that the covariant vector with elements x˛ D
g˛ˇx

ˇ is

x˛ D

2

6
6
4

ct

�x
�y
�z

3

7
7
5 :

13.6. Show, using a matrix product, that the contravariant vector with elements xˇ

can be obtained from x˛g
˛ˇ .

13.7. Show that the inverse of the metric tensor is

g-1 D

2

6
6
4

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3

7
7
5

by demonstrating that gg–1D g–1g D 1.

13.8. Beginning with the equation for the addition of velocities in the direction of
motion of the inertial frame k0, show that

(a) If wx D c then ux D c and indicate why this demonstrates the validity of
Einstein’s second postulate.

(b) If wx < c then ux < c.

13.9. In the Princeton Tokamak Fusion Test Reactor (TFTR) an electron tempera-
ture of Te D 6:5 	 103 eV was measured in a neutral beam injection experiment in
1987 [91]. Statistical mechanics teaches us that the kinetic energy of the electrons is
.3=2/ kBTe D .3=2/Te . eV/, where Te . eV/ is the electron temperature in eV. The
rest energy of an electron is mc2 D 0:51099906 MeV. What was the relativistic
mass of the electrons in this experiment? What was the electron thermal velocity as
a factor of the speed of light? (i.e. what was ˇu?)

13.10. Obtain the Lorentz Transformation of the current 4�vector and 4�potential
vector to show that the second and third components of the current density and the
potential vectors are J 02 D J 2, J 03 D J 3, A02 D A2, A03 D A3.

13.11. In the text we said that evaluating the elements of the field strength tensor

F ˇ˛ D @ˇA˛ � @˛Aˇ D �F ˛ˇ:

we can write F ˇ˛ as the matrix

F ˛ˇ D

2

6
6
4

0 �Ex=c �Ey=c �Ez=c

Ex=c 0 �Bz By

Ey=c Bz 0 �Bx

Ez=c �By Bx 0

3

7
7
5:
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The first two elements, for example, are

F 00 D @0A0 � @0A0 D 0

and

F 01 D @0A1 � @1A0

D @Ax

c@t
C @'

c@x
D �Ex

c
:

Carry out the evaluation of the remaining terms.

13.12. Using the Lorentz transform in the form (13.22) and the inverse (13.23)
show that the four dimensional Laplacian in Minkowski space

� D 1

c2

@2

@t2
� r2

D @2

@x0@x0
� @2

@x1@x1
� @2

@x2@x2
� @2

@x3@x3
:

is an invariant.
In this you will need to recognize that x0 and x1 are functions of x00 and of x01.

The chain rule requires then that the partial derivatives are

@

@x0
D @x00

@x0

@

@x00 C @x01

@x0

@

@x01

@

@x1
D @x00

@x1

@

@x00 C @x01

@x1

@

@x01 ;

with
@x00

@x0
D �;

and so forth. The second partial derivatives are then

@2

@x0@x0
D
�
@x00

@x0

@

@x00 C @x01

@x0

@

@x01

��
@x00

@x0

@

@x00 C @x01

@x0

@

@x01

�

@2

@x1@x1
D
�
@x00

@x1

@

@x00 C @x01

@x1

@

@x01

��
@x00

@x1

@

@x00 C @x01

@x1

@

@x01

�
;

13.13. We consider that in frame k (stationary) we have a only a uniform and
constant magnetic field (induction) B D Bz Oez in a certain area of the .x; y/�plane.
We move a square loop of wire through this region. When the area of the loop is only
partially penetrated by the magnetic field induction, as we have shown in Fig. 13.13,
we measure a current on the galvanometer.
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Fig. 13.13 Rectangular loop of wire being moved through a region in which there is a constant
and uniform magnetic field with induction B D Bz Oez. A current appears in the wire if the loop area
is partially penetrated by the field

Prior to 1905 this experiment was described either by using Faraday’s Law or
by claiming that the charges in the wire experienced a force in the direction �Oey by
the magnetic force qv 	 B in the direction shown. For a person in frame k0 moving
with the wire, the magnetic force argument fails because the charges are stationary.
There is no magnetic force in frame k0.

(a) Using the transformation properties for the fields, what is the force acting on
the charges in the length a of the wire?

(b) Is the emf generated in the loop by this force identical to that of Faraday’s Law?
(c) Comment on this whether or not this experiment demonstrates a resolution to

the asymmetry Einstein pointed out.





Chapter 14
Radiation

The scientist, if he is to be more than a plodding gatherer of bits
of information, needs to exercise an active imagniation.

Linus Pauling

14.1 Introduction

In some of the preceding chapters we have considered the structure and transport
of waves without speaking directly to the origin of those waves. That the origin of
the waves is ultimately in the charges and their motion was, perhaps, evident in our
treatment of the electromagnetic energy, as well as in the form of the wave equations
for the electric and magnetic fields in the presence of � and J. But we have not yet
considered the details of the process of the emission of electromagnetic energy by
moving charges. This will be the subject of the present chapter.

We will base our treatment in this chapter on the wave equations for the vector
and scalar potentials with sources � and J. We can obtain general solutions to these
equations using a Green’s Function. These solutions are known in the literature
as the Liénard–Wiechert potentials. We shall then consider the use the Liénard–
Wiechert potentials in the study of specific examples.

14.2 Waves from Sources

As in Sect. 13.10.1 we will again base our discussion on the Lorentz Gauge

div A C 1

c2

@'

@t
D 0 (14.1)
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and wave equations for the scalar and vector potentials

�
r2 � 1

c2

@2

@t2

�
' D � �

"0
(14.2)

and �
r2 � 1

c2

@2

@t2

�
A D ��0 J : (14.3)

Equations (14.2) and (14.3) are a consequence of the full Maxwell Equations
and are, therefore, an equivalent expression of the full Maxwell Equations. We
use a different order for the time and spatial derivatives in (14.1–14.3) than that
of Sect. 13.10.1. In Minkowski Space the time coordinate precedes the spatial
coordinates. In our work here the placing the spatial variables first will make the
solution of these equations appear more orderly.

Equations (14.2) and (14.3) are partial differential equations in the three spatial
variables and the time. A Fourier Transform with respect to the time will eliminate
the time derivatives in (14.2) and (14.3) and will introduce a dependence on the
angular frequency !. We will then have equations in the spatial coordinates alone,
which we will be able to solve using a Green’s Function.

For continuity we repeat here the Fourier transform pair for the time. The Fourier
Transform is

f! .r/ D 1p
2�

C1Z

�1
dt 0f

�
r; t 0

�
exp

�
i!t 0

�
(14.4)

and the inverse is

f .r; t/ D 1p
2�

C1Z

�1
d!f! .r/ exp .�i!t/ : (14.5)

Noting that

@2

@t2
f .r; t/ D 1p

2�

C1Z

�1
d!
��!2

�
f! .r/ exp .�i!t/ ;

and using (14.5) (14.2) and (14.3) become

1p
2�

C1Z

�1
d!

��
r2 C !2

c2

�
'! .r/C �! .r/

"0

�
exp .�i!t/ D 0 (14.6)

1p
2�

C1Z

�1
d!

��
r2 C !2

c2

�
A! .r/C �0J! .r/

�
exp .�i!t/ D 0 (14.7)
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Because the integral is over all !, the integrals in (14.6) and (14.7) vanish if and
only if the integrands vanish. We have, therefore, the Fourier transformed form of
the wave equations for the potentials

�
r2 C !2

c2

�
'! .r/ D � 1

"0
�! .r/ (14.8)

and �
r2 C !2

c2

�
A! .r/ D ��0J! .r/ ; (14.9)

where the Fourier transform of the charge density �! .r/ is

�! .r/ D 1p
2�

Z C1

�1
dt 0�

�
r; t 0

�
exp

�
i!t 0

�
(14.10)

and of the current density J! .r/ is

J! .r/ D 1p
2�

Z C1

�1
dt 0J

�
r; t 0

�
exp

�
i!t 0

�
(14.11)

The partial differential (14.8) and (14.9) are Helmholtz Equations. The general form
of the Helmholtz Equation is

�r2 CK2
	
� .r/ D �f .r/ : (14.12)

In the exercises we show that

div grad
exp .˙iK jr � r0j/

jr � r0j D �K2 exp .˙iK jr � r0j/
jr � r0j

if r ¤ r0. That is

FH
�
r; r0� D exp

�˙iK ˇˇr � r0ˇˇ� =
ˇ
ˇr � r0ˇˇ

solves the homogeneous Helmholtz Equation when r ¤ r0.
If we can now show that

lim
jr�r0 j!0

�r2 CK2	


1

4�

�
FH
�
r; r0� D �ı �r � r0�

we will have demonstrated that


1

4�

�
FH
�
r; r0� D exp

�˙iK ˇˇr � r0ˇˇ� =
�
4�
ˇ
ˇr � r0ˇˇ�
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is a Green’s Function for the Helmholtz Equation. Because we have shown that
FH .r; r0/ satisfies the homogeneous Helmholtz Equation we need only consider the
limit as jr � r0j ! 0 for this final step.

Euler’s identity results in

lim
jr�r0j!0

exp
�˙iK ˇˇr � r0ˇˇ� D lim

R!0
cos .KR/ D 1:

Then

lim
jr�r0j!0



div grad

exp .˙iK jr � r0j/
jr � r0j CK2 exp .˙iK jr � r0j/

jr � r0j
�

D lim
jr�r0j!0



div grad

1

jr � r0j CK2 1

jr � r0j
�

Using (2.107), which is

ı
�
r � r0� D �r2 1

4�

1

jr � r0j ;

and neglecting limjr�r0j!0K
2 .1= jr � r0j/ compared to the ı�function, we have the

result
�
div grad CK2

� exp .˙iK jr � r0j/
jr � r0j D �4�ı �r � r0� :

Therefore 

1

4�

�
FH
�
r; r0� D exp .˙iK jr � r0j/

4� jr � r 0j ; (14.13)

is the Green’s Function for the Helmholtz Equation.
With the Green’s Function (14.13) we may immediately write down the solutions

of (14.6) and (14.7) for the potentials as

'! .r/ D 1

4�"0

Z

V (all sources)

dV 0 �! .r 0/ exp .˙i! jr � r0j =c/
jr � r 0j (14.14)

and

A! .r/ D �0

4�

Z

V (all sources)

dV 0 J! .r 0/ exp .˙i! jr � r0j =c/
jr � rj ; (14.15)

Here we have reintroducedK D !=c from (14.6) and (14.7).
By inverting the Fourier transform using (14.5) we obtain the potentials as

functions of .r; t/. For the scalar potential
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' .r; t/ D 1

4�"0



1p
2�

� Z

V (all sources)

dV 0 �! .r 0/
jr � r 0j � � �

� � �
Z C1

�1
d! exp

�
i!



�t ˙ jr � r 0j

c

��
(14.16)

and similarly for A .r; t/ :
With (14.10) (14.16) becomes

' .r; t/ D 1

4�"0



1

2�

� Z

V (all sources)

dV 0 1

jr � r 0j
Z C1

�1
dt 0�

�
r 0; t 0

� � � �

� � �
Z C1

�1
d! exp

�
i!



t 0 � t ˙ jr � r 0j

c

��
: (14.17)

We note the representation of the ı�function



1

2�

� C1Z

�1
d! exp

�
i!

�
t 0 � t ˙ jr � r 0j

c

��
D ı



t 0 � t ˙ jr � r 0j

c

�
: (14.18)

(see (B.1)) that appears in (14.17). Upon integrating over the ı�function equation
(14.17) becomes

' .r; t/ D 1

4�"0

Z

V (all sources)

dV 0 1

jr � r 0j
Z C1

�1
dt 0�

�
r 0; t 0

�
ı



t 0 � t ˙ jr � r 0j

c

�

D 1

4�"0

Z

V (all sources)

dV 0 � .r 0; t ˙ jr � r 0j =c/
jr � r 0j (14.19)

The time t is the time at which we measure the field from this potential at the
point r. The principle of causality requires that only the motion of the charges at
the point r0 that occur at the earlier time t � jr � r 0j =c < t can affect the field
measured at the field point r at the time t . For historical reasons this is termed the
retarded time. The advanced time tCjr � r 0j =c is of no interest to us here, because
this time is later than the time of observation of the wave. We then drop the C sign
in (14.19) as not physically realistic.

The physically realistic solutions for the potentials are

' .r; t/ D 1

4�"0

Z

V(all sources)

dV 0 � .r 0; t � jr � r 0j =c/
jr � r 0j (14.20)
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and

A .r; t/ D �0

4�

Z

V(all sources)

dV 0 J .r 0; t � jr � r 0j =c/
jr � r 0j : (14.21)

Equations (14.20) and (14.21) are the scalar and vector potentials for which the
charge and current densities appearing in the integrals are sources. These equations
include the familiar solutions to Poisson’s Equation if jr � r 0j =c � t , which is the
case if the field point is close to the source point. This reduction to the solution to
Poisson’s equation must be the case.

Equations (14.20) and (14.21), however, must also include the fields that may be
observed at great distances from the sources. These are the radiated waves generated
by the motion of the charged particles.

Wave solutions are those whose sinusoidal periodicity may be identified over a
large number of wavelengths, which is true if the damping is small. And waves must
carry energy. So radiative wave solutions are those for which there is an identifiable
loss of energy from the moving charges.

To obtain workable forms for (14.20) and (14.21) we must integrate over the
charge and current densities. The equations we will obtain were first developed by
Alfred-Marie Liénard in 1898 and independently by Emil Wiechert in 1900 with
work continuing into the early 1900s.

14.3 Liénard–Wiechert Potentials

In this section we shall obtain the form of (14.20) and (14.21) which can be applied
directly to specific forms of charged particle motion. These will be the Liénard–
Wiechert potentials.

Because we are interested only in the behavior of charges at the retarded time
t 0 D t � jr � r 0j =c, we write (14.20) and (14.21) as

' .r; t/ D 1

4�"0

Z

V(all sources)

dV 0 � .r 0; t 0/
jr � r 0j (14.22)

A .r; t/ D �0

4�

Z

V(all sources)

dV 0 J .r 0; t 0/
jr � r 0j ; (14.23)

We also consider that the volume containing the radiating charges is small compared
to the distance from the charges to the field point jr � r 0j. The point r 0 locates
a (charged) particle in the small volume V .all sources/. If we choose some
representative point r1 in the volume V .all sources/ we may write

ˇ
ˇr � r 0ˇˇ � jr � r 1j D R; (14.24)

and bring this factor outside of the integrals in (14.22) and (14.23).
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But we still face a difficulty in the evaluation of the integrals in (14.22) and
(14.23). The difficulty is that the charges are moving and the volume V.all sources/
in (14.22) and (14.23) is a function of the retarded time t 0. The motion of the charged
particles is subjected to the fields at their locations. These fields are, in turn, caused
by the charged particles. So the difficulty cannot be easily removed.

Some authors discuss the integration problem at length. These discussions are
good for clarifying the physical origin of the problem (see e.g. [37], pp. 429–33).
We shall, however, resolve the problem mathematically (see e.g. [83], pp. 545–7),
which seems, finally, to be the simplest approach.

In (14.24) we introduced a representative point r1 located within the volume
V .all sources/, which covers the moving charges at the time t 0. We can remove the
dependence of the integration on the time t 0 if we consider a volume V1 centered
on the point r1 which covers the trajectories of the charged particles over the
time interval say �t 0 of interest for the calculation. We then finally introduce a
representative time t1 to replace the times t 0 in the interval �t 0. This scheme will
allow us to write the difficult integrals over V .all sources/ by integrals independent
of the time. That is

Z

V(all sources)

dV 0 � .r 0; t 0/
jr � r 0j H) 1

jr � r 1j
Z

V1

dV1� .r 1; t1/ (14.25)

and Z

V(all sources)

dV 0 J .r 0; t 0/
jr � r 0j H) 1

jr � r 1j
Z

V1

dV1J .r 1; t1/ : (14.26)

Our problem is then to find the dependence of .r1; t1/ on .r0; t 0/ and the
dependence of the differential volume dV1 on dV 0. The dependence of .r1; t1/ on
.r0; t 0/ we obtain from a Taylor expansion involving the trajectories of the particles.
And we obtain the relationship between the differential volumes from the Jacobian
for the transformation between .r1; t1/ and .r0; t 0/.

The point r1 is close to r0 and the time t1 is close to t 0. Because the spatial point
r1 and the time t1 are fixed we perform the Taylor expansion for the spatial point r0
about r1 with the time difference .t 0 � t1/ as the expansion parameter. That is

r0 �t 0
� D r1 C dr0

dt 0

�

t1

�
t 0 � t1

�C 1

2

d2r0

d2t 0

#

t1

�
t 0 � t1

�2 C � � �

D r1 C v1
�
t 0 � t1

�C 1

2
a1
�
t 0 � t1

�2 C � � � ; (14.27)

where v1 and a1 are the representative velocity and acceleration of the charges at the
representative time t1.
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Equation (14.27) is our transformation of the trajectory r0 .t 0/ to the representa-
tive point r1. That the transformation involves representations of the velocity and
acceleration should come as no surprise to us.

We now turn to the problem of transforming the volume differential dV 0. This
problem is not difficult. The technique is, however, often only treated in pure
mathematics courses, which are not necessarily taken by physics and engineering
students. We have included a brief, but sufficient discussion of the technique in
Appendix I. There we show how we may convert variables of integration using
what is called the Jacobian determinant, or simply the Jacobian.1

The differential volumes dV 0 D dx0dy0dz0 and dV1 D dx1dy1dz1 are related by

dV1 D J dV 0; (14.28)

where the Jacobian J is defined by

J D @ .x1; y1; z1/

@ .x0; y0; z0/

D det

2

4
@x1=@x

0 @x1=@y
0 @x1=@z0

@y1=@x
0 @y1=@y

0 @y1=@z0
@z1=@x

0 @z1=@y
0 @z1=@z0

3

5 : (14.29)

We can compute the partial derivatives appearing in the Jacobian (14.29) from
(14.27) written for r1 in terms of the actual trajectory r0 .t 0/. From the Taylor series
(14.27) we obtain r1 in terms of the actual trajectory r0 .t 0/ and the representative
velocity v1 and acceleration a1 as

r1 D r0 �t 0
� � v1

�
t 0 � t1

� � 1

2
a1
�
t 0 � t1

�2 � � � � : (14.30)

The derivatives appearing in (14.29) are then

@x1

@x0 D 1 � vx,1
@t 0

@x0 � ax,1
�
t 0 � t1

� @t 0

@x0 � � � � ; (14.31)

@x1

@y0 D 1 � vx,1
@t 0

@y0 � ax,1
�
t 0 � t1

� @t 0

@y0 � � � � ; (14.32)

@x1

@z0 D 1 � vx,1
@t 0

@z0 � ax,1
�
t 0 � t1

� @t 0

@z0 � � � � ; (14.33)

with similar equations for @y1=@x
0, @y1=@y

0, � � � . We evaluate the partial derivatives
of the time t 0 with respect to the coordinates, such as @t 0=@x0, from the general
equation expressing t 0 in terms of t , which is

1Carl Gustav Jacob Jacobi (1804–1851) was a German mathematician and inspiring teacher.
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t 0 D t � jr � r 0j
c

: (14.34)

we have, for example
@t 0

@x0 D Oe0
Rx

c
; (14.35)

where Oe0
Rx is the x�component of the unit vector in the direction of R D r � r0 .

The evaluation of the Jacobian is then not difficult, although tedious. The result
is

J D 1 � 1

c
v0 � Oe0

R � 1

c

dv0

dt
� Oe0

R

�
t 0 � t

�C � � � (14.36)

(see [83], p. 547). In (14.36) we have written v0 � v1. If we neglect the third term
on the right hand side of (14.36) as small compared to 1 we have

dV1 D J dV 0 D


1 � 1

c
v0 � Oe0

R

�
dV 0; (14.37)

and the potentials (14.22) and (14.23) become

' .r; t/ D 1

4�"0R

1
�
1 � v0 � Oe0

R=c
�
Z

V1

� .r 1; t1/ dV1 (14.38)

A .r; t/ D �0

4� R

1
�
1 � v0 � Oe0

R=c
�
Z

V1

J .r 1; t1/ dV1: (14.39)

We can now perform the integrals in (14.38) and (14.39) obtaining the total
charge in the distribution,

Z

V(all sources)

� .r 1; t1/ dV1 D
X

Q (14.40)

and the total current density of the distribution

Z

V(all sources)

J .r 1; t1/ dV1 D
X

Qv0: (14.41)

We have written a general summation sign in each of the (14.40) and (14.41) to
indicate that there may be a distribution of charges. We may readily also limit these
to a single charge.

For a single charge the Liénard–Wiechert potentials are then

' .r; t/ D ŒQ= .4�"0/� Œ1= .R � v � R=c/� (14.42)
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A .r; t/ D Œ�0Q= .4�/� Œv= .R � v � R=c/�, (14.43)

where we have dropped the prime on the velocity of the charge to obtain the most
familiar form these take in the literature (cf. [58], p. 186).

14.4 Plane Waves

We may consider that the emitted electromagnetic radiation is in the form of plane
waves if the field point is a great distance from the radiating charged particles
producing the potentials (14.42) and (14.43). Far from the sources the potentials
satisfy wave equations without sources,

�
r2 � 1

c2

@2

@t2

�
' D 0; (14.44)

�
r2 � 1

c2

@2

@t2

�
A D 0; (14.45)

and the Lorentz Gauge (14.1).
The divergence of the magnetic field induction B always vanishes, so we must

have
B D curl A: (14.46)

There is, however, an ambiguity in the potentials for the plane wave. For plane waves
we have the relationships among the fields, wave vector k and angular frequency !
as

k � E D !B (14.47)

and
k � B D � !

c2
E (14.48)

(see Sect. 11.4).
The electric field may always be obtained from the magnetic field for plane

waves. A separate calculation of the scalar potential is then, for plane waves,
superfluous. And it is possible to choose the potentials such that the scalar potential
vanishes (see e.g. [57], p. 55). Therefore for plane waves a distance from the charges
generating them we are able to simply choose ' D 0. The Lorentz Gauge then
requires that

div A D 0: (14.49)

This is the Coulomb Gauge, which we have now obtained from the Lorentz Gauge
for plane waves. The Coulomb Gauge is also called the radiation gauge ([85], p.
342) (see exercises).

With (14.46) we can write Faraday’s Law as

curl E D � @

@t
B D � @

@t
curl A: (14.50)
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Then, neglecting arbitrary constants,

E D � @

@t
A: (14.51)

Using (14.46) and (14.51) we can solve for B and E if we have A.
From (14.47) and (14.48) and using the dispersion relation for plane waves c D

!=k (see (11.25)) we find that

E � B D Ok


1

c
E2
�
; (14.52)

and
E � B D Ok .c/ �B2� ; (14.53)

where Ok is the unit vector in the direction of wave propagation.
The Poynting Vector is then either

S D 1

�0
E � B

D Okc 1

�0c2

�
E2
�
: (14.54)

or

S D 1

�0
E � B

D Okc 1
�0

�
B2� (14.55)

We may combine (14.54) and (14.55) with c2 D 1="0�0 to give

S D Okcuem (14.56)

where uem D .1=2/
�
"0E

2 C .1=�0/ B
2
�

is the electromagnetic energy density in
the wave.

Because we are basing our treatment on the vector potential, we choose to work
with the magnetic field. We then identify the electromagnetic energy flux as (14.55).

14.5 Sources

We continue to consider field points that are far from the source points, i.e. the
charged particles emitting the radiation. The emitted radiation is, however, not
necessarily uniform in all directions. The motion of the charged particles may be
of any arbitrary form depending on the fields at their location and on their identities.
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We consider a spherical surface with radius equal to the distance between the
source and field points and specify the direction of the unit vector On in terms of the
spherical azimuthal and polar angles (see Sect. 2.3.3). In order that we can identify
the amount of energy radiated into a differential area of the sphere, we choose the
direction of On to lie within a cone specified by the limits sin�d�d# . This we define
to be the solid angle d	. That is

d	 D sin �d�d#; (14.57)

and we note that Z

sphere
d	 D 4�; (14.58)

The differential area of a sphere of radiusR is then

dSsphere D R2d	: (14.59)

Using (14.55) for the Poynting vector we then have the rate at which electromagnetic
energy is radiated into the area subtended by the solid angle d	 as

d PUem D c

�0

�
B2
�
R2d	 (14.60)

From (14.47) and (14.51) we obtain the magnetic field induction from the vector
potential as

B D 1

!
k � E D �



1

c

�
Ok � @

@t
A; (14.61)

where the vector potential is the Liénard–Wiechert potential (14.43). For the non-
relativistic case this is

A .r; t/ D �0

4�R

X
Qivi: (14.62)

We may now consider specific types of possible motion of the charges emitting
the radiation.

14.5.1 Dipole Radiation

We consider a group of charges fQig located at the points frig. The dipole moment
of this group of charges is

pd D
X

Qiri: (14.63)

Assuming that the magnitude of each charge is constant, the summation appearing
on the right hand side of (14.62) is
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X
Qivi D d

dt

X
Qiri D Ppd Oev; (14.64)

where Oev is a unit vector in the direction of dpd=dt . Then (14.62) is

A .r; t/ D �0

4�R
Ppd Oev: (14.65)

From (14.65) we obtain the partial time derivative of the vector potential as

@

@t
A D �0

4�R
Rpd Oea; (14.66)

where Oea is the unit vector in the direction of d2pd=dt2. From (14.61) the magnetic
field induction in the plane wave at the field point is then

B D �0 Rpd

4�Rc
Oea � On: (14.67)

Combining (14.60) and (14.67) the energy radiated by the moving group of charges
into the solid angle d	 is

d PUem D �0 Rp2
d

.4�/2 c
. Oea � On/2 d	 (14.68)

We are free to orient the axes of our reference frame in any way we choose. We
orient them so that Oea lies along the polar axis and Oea � On D sin�. With (14.57)
(14.68) then becomes

d PUem D �0 Rp2
d

.4�/2 c
sin3 �d�d#: (14.69)

Integrating (14.69) over the azimuthal angle # from 0 to 2� and over the polar angle
� from 0 to � we have the total rate at which energy is lost by the charged particles
to radiation. This is

dUem

dt
D �0 Rp2

d

6�c
: (14.70)

We can now specialize this result to a single charged particle by identifying

Rpd D Q2 . Rr/2 :

Then (14.70) becomes
dUem

dt
D �0Q

2 .Rr/2
6�c

: (14.71)

The (14.70) and (14.71) are general expressions of the rate at which energy is
emitted by electromagnetic radiation from a group of charged particles or a single
charged particle. We have restricted the permittivity and permeability to be "0
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and �0, which means we have neglected dielectric and magnetic media. We then
exclude Cherenkov radiation, which can result from the motion of a charged particle
through a dielectric medium. Cherenkov radiation is emitted if a charged particle
has a velocity exceeding the phase velocity, not the group velocity, of light in the
dielectric medium (see e.g. [48], p. 638).

The rather clear message in both of the (14.70) and (14.71) is that the charge
radiates only when it is accelerated (cf. [58], p. 200).

14.5.2 Charge in a Magnetic Field

A charged particle moving in a circle in a magnetic field is accelerated. The
acceleration in this case is .Q=m/v � B (see Chap. 7, Sect. 7.4.1). Equation (14.71)
then becomes

dUem

dt
D �0Q

4v2B2

6�m2c
: (14.72)

If we are interested also in the direction of the radiation we cannot integrate over
the solid angle we did to obtain (14.70). The acceleration of the charge is toward the
center of the circle and cannot be considered to be along the polar axis. For clarity
we have drawn the situation in Fig. 14.1. The magnetic field and the direction from
the center of the particle orbit to the observation point, which is the direction of the
unit vector On, are now separated by the polar angle � and not the azimuthal angle
# . The calculation, which is lengthy, although no more difficult than before, may be
found in the text by Landau and Lifshitz ([58], p. 227). The ratio of the radiation
emitted into the plane of the orbit to that emitted in the direction of the external
magnetic field (i.e. perpendicular to the particle orbit), for the relativistic case, is

d PUem
	
�D�=2

d PUem
	
�D0

D 4C 3ˇ2

8 .1 � ˇ2/
5/2 (14.73)

Fig. 14.1 Motion of a
charged particle in a constant
and uniform magnetic field.
We have oriented the
coordinates so that the
magnetic field is along the
polar axis z and motion is in
the .x; y/�plane
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Fig. 14.2 Radiation intensity
emitted by a charge moving
in a uniform magnetic field
([58], p. 227 (74.4))

with ˇ D v=c. We see that as ˇ ! 0, the ratio in (14.73) approaches 1=2. In the
nonrelativistic case most of the radiation is then emitted perpendicular to the plane
of motion. As ˇ increases toward unity the radiation intensity becomes concentrated
in the plane of the orbit. In Fig. 14.2 we have plotted the radiation intensity as a
function of the polar angle � for an assortment of values of the parameter ˇ. In the
extreme relativistic case (ˇ ! 1) we may consider that the radiation is entirely in
the plane of the orbit.

14.6 Summary

In this chapter we have developed the theory to deal with the emission of radiation
from moving charges and applied the theory to a general and then a specific
example. We began with a complete electrodynamic description, which the Lorentz
Gauge allows us to cast in terms of wave equations for the scalar and vector
potentials. For situations in which the field point is at a large distance from the
source point we obtained the Liénard–Wiechert potentials for a connection between
the wave fields and the motion of the charges causing them. At great distances from
the sources the potentials also result in approximately plane electromagnetic waves,
for which we can express the energy flux (Poynting) vector in terms of the square of
either the magnetic field induction or the electric field. Because we can also choose
the scalar potential to be zero for plane waves we based our development on the
magnetic field.

Our final equations for the radiated energy showed rather clearly that the
radiated energy resulted only from the acceleration of the charges. We applied
these equations to the study of radiation from a time varying electric dipole and
from a charge moving in a uniform magnetic field. Our use of the permittivity and
permeability of free space has prevented any discussion of Cherenkov radiation.
This is, however, not a limitation for many very practical applications.
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Because we have relied on the results of selected preceding chapters, this
treatment is not self-contained. We also used a Jacobian determinant for the
transformation of an integral in our development of the Liénard–Wiechert potentials.
Because this may not be familiar to the reader we have included a brief, but
sufficient, discussion of the Jacobian in the appendices.

Exercises

14.1. Show that

div
�
r � r0� D 3

grad
ˇ
ˇr � r0ˇˇ D r � r0

jr � r0j

grad



1

jr � r0jn

�
D �n r � r0

jr � r0jn+2 ;

With these find grad and grad0 of

exp .˙iK jr � r0j/
jr � r0j

[Answer: grad .exp .˙iK jr � r0j/ = jr � r0j/ D .r � r0/
h
� 1

jr�r0j3 ˙ iK 1

jr�r0j2
i

exp .˙iK jr � r0j/]
14.2. Using the result of the preceding exercise, show that

div grad
exp .˙iK jr � r0j/

jr � r0j D �K2 exp .˙iK jr � r0j/
jr � r0j

and that

div grad
exp .˙iK jr � r0j/

jr � r0j D div0 grad0 exp .˙iK jr � r0j/
jr � r0j :

14.3. We claimed that for plane waves the scalar potential could be chosen to be
zero, which resulted in the radiation gauge div A D 0. Our point was that for plane
waves we required no separate calculation of the electric field. Only the magnetic
field was required.

Go back to Maxwell’s Equations. Choose ' Dconstant. Show then that

E D � @

@t
A
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and that
1

c2

@2A
@t2

� r2A D �0J � grad div A

so that we can, indeed, choose ' DconstantD 0 and div A D 0 for the case of the
plane wave.

14.4. Someplace in the preceding exercise you may have neglected something.
This depends on the point at which you set ' Dconstant. The radiation gauge is
appropriate for the study of plane waves radiated from moving charges a distance
from the observation point. At what point did you either implicitly or explicitly
introduce this restriction? Look at the general equation for '.

14.5. In the last section of this chapter we considered dipole radiation from either a
group of charges or from a single dipole. We recall from our multipole expansions
that a general charge density may have a net dipole moment

pd D
X

Qiri:

We found that it is only accelerating charges that radiate electromagnetic energy.
At which point in our discussion did we decide that acceleration was what was

required? Do not simply give an equation number. Discuss what happened.

14.6. We considered as well the energy radiated from a charge moving in a uniform
magnetic field. We studied this motion in the chapter on particle motion and
realize that the frequency of the radiation is the cyclotron frequency ˝ D QB=m.
Cyclotron radiation is an important source of energy loss in magnetically confined
fusion plasmas. In the exercises in the preceding chapter you calculated the velocity
of the electrons in the Princeton Tokamak Fusion Test Reactor (TFTR).

Would you expect the cyclotron radiation to be emitted radially outward from the
Tokamak (perpendicular to the magnetic field) or axially (along the magnetic field)?

14.7. In 1912 Niels Bohr was a post doctoral student with the Ernest Rutherford
group in Manchester, England. Rutherford. Rutherford had discovered the nucleus
based on experimental studies by Geiger and Marsden of the scatter of ˛�particles
from gold foil. This meant that the elaborate atomic model of J.J. Thomson, in which
the electrons were immersed in a positive fluid was untenable. But how then could
the electrons be located around the nucleus?

What is wrong with the planetary model?





Chapter 15
Fields in Matter

If there is anything more wonderful than matter in the sheer
versatility of its behavior, I have yet to hear tell of it.

Sir Fred Hoyle

15.1 Introduction

Up to this point in our development we have considered matter only in the form
of point particles in a predominately empty space. This treatment is appropriate
to gases and to plasmas, but is not appropriate to solid or liquid matter. In this
chapter we will discuss the effect that polarizable and magnetizable matter have on
electromagnetic fields.

In Maxwell’s Equations electric and magnetic fields result from two separate
sources. The fields may be produced by matter in the form of charge or current
densities (Chaps. 4 and 5). In this case the fields produced may be slowly varying
fields. And we may obtain the fields from Poisson’s Equations for the scalar and
vector potentials. Or they may be wave fields resulting from acceleration of particles
(Chap. 14). The fields may also be obtained from one another according to Faraday’s
Law and the displacement current in Ampère’s Law.

This latter electromagnetic interaction between the fields is independent of the
presence of matter, except for the effect matter may have on the speed of light
appearing as a coefficient of the displacement current in Ampère’s Law.

If we ignore radiation fields, which will propagate as waves, we may consider
the effect of matter on the fields as a slowly varying phenomena, which is described
by Poisson’s Equation.

Any detailed modern treatment of matter must be quantum mechanical. And the
transition from the microscopic to the macroscopic requires statistical mechanics
([40], Chaps. 9 and 10; [47]). We will discuss the quantum and statistical mechanical
results. But we will not work through any of the details.

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 15, © Springer-Verlag Berlin Heidelberg 2012
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15.2 Experiments

Direct measurement of fields in solid matter is not possible. But we can measure
the effects of these fields indirectly. Our problem is then to identify properties of
matter that determine the magnitude of the fields inside matter and can be found by
measurements made outside of the matter.

In Maxwell’s Equations the empirical constants "0 and �0 determine the electric
and magnetic fields resulting from charge and current densities. We may anticipate,
then, that these constants will change in the presence of matter. The result would be
a change in magnitudes of the fields resulting from charge and current densities. So
our goal is to design an experiment that will measure any change in these constants
resulting from the presence of matter.

We introduced the spherical capacitor and toroidal solenoid inductor in our
discussions of electrostatic and magnetostatic field energies. In these, as well as in
capacitors and inductors generally, the capacitance and inductance are proportional
to "0 and �0 in the absence of matter. We may then expect that filling a capacitor or
inductor with matter will allow us to measure the new constants by determining the
new values of capacitance and self inductance.

Faraday conducted experiments on parallel plate capacitors with various
dielectrics [72]. We may then attribute the first investigations of the effect of using
dielectric material in capacitors to Faraday. As we discussed in Sect. 1.10 Faraday
also conducted experiments on wood and iron core inductors. We may then also
attribute the first investigations of the effect of magnetic material on self inductance
to Faraday.

For more accurate experiments, however, we may turn to more modern experi-
ments in which bridge circuits are used. Bridge circuits are still used at the National
Institute of Standards and Technology (NIST) for precision measurements [25].
Alternating current bridges can be used to accurately measure capacitance and
inductance.

So we have experimental measurements of the constants " and �, that replace
"0 and �0 when dielectric or magnetic material is introduced into capacitors or
inductors. The capacitance increases with the addition of a dielectric material
between the conductors and the inductance increases with the addition of magnetic
material into the volume of the solenoid. From these experimental results we
conclude that " > "0 and � > �0.

We may now ask for some understanding of the behavior of matter that would
result in these experimental results.

15.2.1 Dielectrics in Capacitors

From our working definition of capacitance C D Q=V we know that an increase
in capacitance will be the result of a decrease in the potential V if we hold the
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Fig. 15.1 Charged capacitor, dielectric and gold leaf electroscope

charge on the capacitor constant. In Fig. 15.1 we have drawn a picture of a simple
bench top (Faraday vintage) experiment to demonstrate the effect of a dielectric
(nonconductor) on the capacitor voltage.

We assume that we have carefully prepared a sheet of homogeneous, isotropic
dielectric (nonconducting) material for the experiment. To guarantee a constant
charge on the capacitor plates we slide the dielectric in place between them without
allowing it to touch either plate.

For the demonstration we use a gold leaf electroscope to indicate a change
in voltage between the capacitor plates. A decrease in voltage is registered by a
decrease in the angle between the gold leaves of the electroscope, which is what we
observe.

Since the dielectric is homogeneous and isotropic, the electrostatic field within
the dielectric, when it is fully inserted between the plates, will be constant and
directed vertically downward in Fig. 15.1. Because the potential has decreased, this
constant electrostatic field within the dielectric will be less than the electrostatic
field between the plates without the dielectric. From an application of Gauss’ Law
in integral form we know that this will result from a uniform negative surface charge
density on the top of the dielectric and an equal positive surface charge density on
the bottom of the dielectric.

We may then ask for the property of the dielectric that would result in these
charge densities.

15.2.2 Solid Dielectrics

We will consider only solid dielectrics. Most solids are crystals characterized
by atoms ordered in a regular (Bravais1) lattice. The chemical bonding, which
determines the form of the crystal lattice occurs because the energy of the bonded

1The Bravais lattice is named for Auguste Bravais (1811–1863) who was a French physicist.
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atoms in a regular array is less than that of the separate atoms. In solid dielectrics
the electrons are not free to move throughout the crystal.

Although we may understand some aspects of the chemical bonding among
atoms in semi-classical terms, the reason that the energy is lowered by bonding is
quantum mechanical (see e.g. [47], pp. 3–12). The quantum states of the electrons
are determined by the symmetry of the crystal and the charges on the nuclei. The
crystal structure is then also a part of the energy minimization problem.

We can, however, find the crystal structure separately by x-ray diffraction. And
we are left with a problem of using a linear combination of atomic orbitals (LCAO)
to minimize the energy.

The electronic states of isolated atoms are associated with specific quantum
numbers. In a crystal these distinct states become energy bands (see e.g. [70], pp.
166–176).

In somewhat general terms the spatial extension of the electron wave function
distinguishes between conductors and dielectrics. When the electron wave function
has an extension beyond the neighboring atoms in the crystal then the exact location
of the nearest neighbor atoms becomes unimportant and packing density becomes a
determining characteristic of the crystal. This is metallic bonding. We will neglect
metallic bonding here.

Bonds which localize the wave functions of the electrons are particularly the
covalent and the ionic bonds. We can understand the covalent bond only quantum
mechanically. The ionic bond is, however, more dependent on coulomb forces and
we may understand much of the ionic bond in classical terms. In general the bonding
is not exclusively of covalent or ionic, but sometimes may be considered a hybrid
between these extremes.

The covalent crystal has an electronic band structure that is actually similar to
that of a conductor. The difference is that there is a large energy gap between the
valence band and the conduction band so that considerable energy is required to
transport electrons ([3], p. 376).

If we apply electric fields to covalent crystals the electrons will move relatively
to the nucleus in each atom polarizing the electric charge of the atom. This motion
of the electrons on an atom is termed atomic polarization. In an ionic crystal, in
addition to atomic polarization, there will be an opposing motion of the sublattices,
such as, for example, the Na and Cl sublattices of the ionic crystal NaCl. The
opposing motion of the sublattices is termed displacement polarization ([3], pp.
542–547). Both atomic and displacement polarization contribute to the polarization
of the ionic crystal.

We may think of this in terms of a simplified atomic or molecular basis in which
atoms or molecules in the crystal become polarized upon application of a field. In
Fig. 15.2 we have drawn this picture.

Each of the polarized atomic or molecular units is identical. If we consider a
small volume of length d and area A from within the bulk dielectric, as we have
drawn in the upper left hand corner of Fig. 15.2, the small volume will be a miniature
model of the whole. We may then speak of a dipole moment per unit volume for the
crystal.
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Fig. 15.2 Polarization of a dielectric

Fig. 15.3 Solenoid with a bar of magnetic material inserted

15.2.3 Magnetic Cores in Inductors

Faraday found that by using a magnetic material instead of wood he increased the
induced electric field in the secondary loop of a transformer (see Fig. 1.6). This will
occur if the magnetic field induction is increased by the magnetic material.

In Fig. 15.3 we have drawn a cylindrical solenoid with a core of magnetic
material inserted.

The magnetic core in In Fig. 15.3 results in an increase in the self inductance
of the solenoid. We can understand this in terms of Ampère’s Law if there is a
magnetization current Im circulating around the bar of magnetic material, as we have
drawn in Fig. 15.3. That is the external magnetic field induction from the solenoid
results in a current around the magnetic core, which increases the magnetic field
induction within the core above what would be present without the core.

This effect is in agreement with Ampère’s original idea about the cause of
permanent magnetism ([97], p. 92).
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Fig. 15.4 Ampère’s theory
of permanent magnetism

15.2.4 Magnetism in Solids

According to Ampère permanent magnetism is caused by microscopic current loops
within a magnetic material. This was more than simply an idea. It was a developed
theory. Ampère introduced the concept of a magnetic molecule with a current
flowing perpetually within it. The current was the primary cause of the magnetism,
which Ampère considered to be an electrical phenomenon. Magnetic matter then
contained magnetic molecules, which could be oriented by an applied field.

The total magnetization would be zero if the magnetic molecules were randomly
oriented. In that case the net current would also vanish. In the magnetized condition
the magnetic molecules would align in a particular direction as we have illustrated
in Fig. 15.4.

In this magnetized state the net current within the material would be zero because
of the cancellation of all of the molecular currents when molecules are adjacent to
one another. On the boundary of the magnetized sample, however, there would be a
net current oriented around the sample. This net electrical current on the boundary
was the sum of the electrical currents from the magnetic molecules. The theory was
a beautiful appreciation of the atomic basis of matter with the implication that even
atoms possessed an internal structure.

As atomic theory developed at the beginning of the 20th century we believed that
we could identify these currents as a result of the orbital motion of electrons. But
the path to truth is not constructed solely on simple arguments.

Pierre Curie studied the magnetization as a function of the magnetic field
intensity H finding them proportional ([65], p. 18). The proportionality constant
�, which is the magnetic susceptibility, Curie found was inversely proportional
to the thermodynamic temperature T . In diamagnetic substances � is negative. In
paramagnetic and ferromagnetic substances it is positive.

With the statistical mechanics of Maxwell, Rudolf Clausius, Ludwig Boltzmann,
and J. Willard Gibbs we had a method to treat large numbers of particles (atoms
or molecules) and obtain thermodynamic properties (see e.g. [40]). Paul Langevin
conducted a statistical mechanical analysis of the magnetized state. He considered
that in a diamagnetic material Lenz’ Law holds at an atomic level producing
a microscopic magnetic field that opposed the external field. In a paramagnetic
material the atoms had permanent magnetic moments, which were free to rotate and
were aligned by the external magnetic field. The result was an internal, microscopic
field that added to the external field. The resulting expression Langevin obtained for
� yielded Curie’s result from a Taylor expansion ([65], p. 19).
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Pierre Weiss then proposed that the interactions among the microscopic magnetic
moments in a paramagnetic material could be described by a molecular magnetic
field. The result was the so-called Curie-Weiss Law, which predicted a nonzero
Curie temperature at which the ratio of � to the magnetic field intensity becomes
infinite ([65], p. 20). An explanation of ferromagnetism was farther in the future
and required an understanding of the quantum description of the electron.

The electron presented intellectual problems because it is an elementary particle
and cannot be understood in classical terms. In 1921 Arthur Compton proposed
that the electron possessed a spin and a magnetic moment [13]. These were intrinsic
properties of the electron and were independent of any orbital motion of the electron.

Based on the experimental evidence available to them, George Uhlenbeck and
Samuel Goudsmit showed that internal angular momentum of the electron, the spin,
had the value „=2 [92]. This was half the quantum of orbital angular momentum.

The intrinsic magnetic moment of the electron was twice the value expected for
this angular momentum. This apparent problem resolved by Dirac in his 1928 paper
The Quantum Theory of the Electron [22]. The electron spin emerged naturally from
Dirac’s theory ([28], p. 143).

Ferromagnetism is a phenomenon resulting from the spin of the electron and
does not exist as a classical phenomenon ([65], p. 39). In classical physics the
magnetic interaction is between two current loops and was described by Ampère.
This is a dipole interaction. The interaction between spin magnetic moments is not
a dipole interaction. It is an exchange interaction. The exchange interaction can be
understood in terms of wave function overlap and the Pauli exclusion principle ([65],
p. 39).

The exchange interaction among a collection of atoms in which the j th atom
is located at the point rj and has the total spin operator Sj is described by the
Heisenberg, or Heisenberg-Dirac Hamiltonian operator

Hspin D �Pi¤jJijSi � Sj. (15.1)

The quantities Jij are the exchange coupling constants, or exchange parameters, or
exchange coefficients ([43], [3], p. 681; [65], p. 139). For ferromagnetic systems
Jij > 0.

In general we must also consider that the collection of atoms is in an external
magnetic field with an intensity H. In this case there is an additional contribution to
the Hamiltonian

� g�BH �
X

i

Si; (15.2)

where g is the Landé g�factor and �B is the Bohr magneton, which is the magnetic
moment of the lowest state in the Bohr model of the hydrogen atom ([3], pp. 646,
654). The spin operator Sj is a vector operator with two quantum states.

The Heisenberg Hamiltonian (15.1) results in a magnetization of the material
that does not vanish even after an external magnetic field is removed. At thermal
equilibrium there are domains in a ferromagnetic material with spins aligned as
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a result of the exchange interaction. An external magnetic field results in the
alignment of these according to (15.2). Removal of the field does not return all
of the domains to a random orientation.

Because it is nonlinear in the spins the Heisenberg Hamiltonian (15.1) presents
difficulties in any theoretical treatment.

The quantum mechanical picture of paramagnetism results in a spin contribution
to the magnetic susceptibility. The susceptibility has both a diamagnetic contri-
bution and a spin contribution, that accounts for what is known as Van Vleck
paramagnetism ([3], p. 653; [93]). Paramagnetism is then also a phenomenon that
results from the electron spin and is quantum mechanical. Paramagnetism, however,
does not persist if the magnetic field is removed.

We now have a basic understanding of the response of solid matter to electric and
magnetic fields in terms of atomic structure.

The atoms occupying the crystal sites of a dielectric will be polarized by the
application of an external electric field. This polarization will result from motion of
the electrons on the individual atoms and from the motion of sublattices depending
on the ionic character of the chemical bonds in the crystal.

The atoms occupying the crystal sites in a magnetic material will have net spins,
which come from the addition of unpaired electron spins. These materials will be
paramagnetic or ferromagnetic depending ultimately on the overlap of electron wave
functions between atoms.

In either the dielectric or the magnetic material we may then consider that the
atoms have either an electrical dipole moment or a magnetic moment.

15.3 Potentials from Slowly Varying Fields

In slowly varying fields the scalar and vector potential satisfy Poisson’s Equation.
The solutions of Poisson’s Equation for the potentials are

' .r/ D 1

4�"0

Z

V

� .r 0/
jr � r 0jdV 0 (15.3)

A .r/ D �0

4�

Z

V

J .r 0/
jr � r 0jdV 0 (15.4)

In (15.3) and (15.4) we integrate over the volume containing the matter. Classically
this is the matter containing all charge and all current densities.

15.3.1 Atoms and Multipole Expansions

In the preceding sections we identified polarization and magnetism in solids as
atomic and electronic phenomena. Our integration of (15.3) and (15.4) must take
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Fig. 15.5 Integration over
bulk matter considered as
summation over molecular
integrals

this into account. To accomplish this we write the integrals in (15.3) and (15.4) as
sums of integrals over individual atoms or molecules depending upon the form of
the crystal. We have shown the situation pictorially in Fig. 15.5.

We locate the j th atomic site with the vector r0
j. Then we define a vector r00

j from
r0

j to points within the atom or molecule. For example if we are dealing with an ionic
crystal such as NaCl our integration will be over the molecule NaCl and our vector
r0

j will be to the lattice site of either the Na or the Cl sublattice. The position vector
r0

j is constant during the integration of r00
j over the volume Vj of the j th atom. For

each atom or molecule identified by r0
j we have then

1

jr � r 0j H) 1
ˇ
ˇ
ˇr � r0

j � r j
00
ˇ
ˇ
ˇ
: (15.5)

In Sects. 4.5 and 5.7 we carried out multipole expansions for both the charge and
the current density. The expansion of (15.5) around the point r � r0

j follows from
these multipole expansions. The result is

1
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We will drop the third term on the right hand side of (15.6) as small, since
ˇ
ˇ
ˇr00

j

ˇ
ˇ
ˇ is of

atomic dimensions. Then the multipole expansions for the potentials are
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Within the j th atom or molecule the charge density is �
�

r00
j

�
and the current

density is J
�

r00
j

�
. The charge density must finally be determined by the quantum

mechanical density of the electrons and the separation of the nuclei. In this sense
the quantum mechanical charge density has a classical analog and we may think of
the charge density in classical terms.

In (15.7) then Z

Vj

�
�

r00
j

�
dV 00 D Qj D 0 (15.9)

is the total charge on the j th atom or molecule, which is zero. And

Z

Vj

r00
j �
�

r00
j

�
dV 00

j D p(a)
d,j (15.10)

is the electric dipole moment for the j th atom or molecule.
We must treat the vector potential in (15.4) with more caution.
The susceptibility � is a macroscopic thermodynamic property of the material.

The calculation of � must then be based on statistical mechanics. Because the
Hamiltonian is a sum of diamagnetic, paramagnetic, and possibly ferromagnetic



15.3 Potentials from Slowly Varying Fields 345

contributions we can still, however, speak of these as separate contributions to what
we can refer to as a molecular magnetic moment.

There are lucid treatments of these magnetic effects by H. Ibach and H. Lüth [47]
and by N.W. Ashcroft and N.D. Mermin [3] based on quantum statistical mechanics.
In both of these the authors particularly consider the difficulties associated with the
Heisenberg Hamiltonian (15.1), which is nonlinear in the spins.

In (15.8) then
Z

Vj

J
�

r00
j

�
dV 00

j D 0 (15.11)

form charge conservation, as we showed in Sect. 5.7. And
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3 ; (15.12)

where m(a)
j is the magnetic moment of the j th atom or molecule, which includes

diamagnetic, paramagnetic, and possibly ferromagnetic contributions.
The (15.7) and (15.8) are then
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and
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(15.14)

15.3.2 Polarization and Magnetization Densities

The summations in (15.13) and (15.14) extend over all atoms or molecules. For
mathematical convenience we want to write these as integrals. To do this we
consider an infinitesimal volume element �Vj centered on r0

j . This volume element
is infinitesimal with respect to all macroscopic dimensions or spatial variations
in the system. But it is sufficiently large to contain a vast number of molecules
(dimension � 10–8 m). Then in place of the quantities p(a)

d,j and m(a)
j evaluated for

molecules located at rj , we write
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d,j
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�
�Vj; (15.15)
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in which P
�

r0
j

�
and M

�
r0

j

�
are the dipole moment and magnetic moment densities

at the point r0
j.

Then (15.13) and (15.14) can be written as
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and
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As �Vj ! 0 and j ! 1; these become Riemann integrals.
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jr � r 0jdV 0; (15.19)

where we have used

grad0 1

jr � r 0j D .r � r 0/
jr � r 0j3 (15.20)

From the vector relationship (A.19) we have
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jr � r 0j C 1
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Then using (15.21) in (15.18) and applying Gauss’ Theorem the scalar potential
becomes
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From the vector relationship (A.21) we have
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Then using (15.23) in (15.19) and the integral relationship

Z

V
curlf .r / v .r / dV D �

I

S
f .r / v .r / � dS (15.24)

(see exercises) the vector potential becomes
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Z
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1

jr � r 0j curl0 M
�
r 0� dV 0; (15.25)

15.3.3 Polarization Charges and Magnetization Currents

Comparing (15.22) with (15.3) we see that

�p D P .r / �n̂, (15.26)

where On is the unit vector normal to the surface of the matter, is a surface polarization
charge density and

�p D � div P .r / (15.27)

is a volume polarization charge density.
As Fig. 15.2 indicates there will always be a surface polarization charge density

in dielectrics. There will be a volume polarization charge density, however, only if
the polarization varies inside the dielectric.

Comparing (15.25) with (15.4) we see that

J(s)
M D M .r /�n̂ (15.28)

is a surface magnetization current density and

JM D curl M .r / (15.29)

is a volume magnetization current density.
For diamagnetism, which we have illustrated in Fig. 15.4, we can show that J(s)

M
is a current per unit length appearing only on the surface of the matter. This is
Ampère’s idea that the current loops produce a net current only on the surface of
matter.
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For paramagnetic and ferromagnetic materials the classical argument for the
surface current density cannot be used. However, J(s)

M still takes on the role
mathematically of a current per unit length on the surface of the matter. And, for
the case in which the magnetization varies inside the material, JM still takes on the
role of current density within the material.

With the volume polarization charge density �p and the volume magnetization
current density JM we identify the charge density in a dielectric as

� .r/ D �f .r/� div P .r / ; (15.30)

and the current density in a magnetizable material as

J .r/ D Jf .r/C curl M .r / (15.31)

where �f .r/ and Jf .r/ are the free charge and current densities.
And with �p and JM the corresponding (static) field equations are

div E .r/ D 1

"0
�f .r/� 1

"0
div P .r / (15.32)

and
curl B .r/ D �0Jf .r/C �0 curl M .r / ; (15.33)

or
div Œ"0E .r/C P .r /� D �f .r/ (15.34)

and

curl

�
1

�0
B .r/ � M .r /

	
D Jf .r/ : (15.35)

In empty space the displacement is D D "0E. And in empty space (or in air)
Gauss’ Law can be written as

div D .r/ D �f .r/ : (15.36)

Therefore, comparing (15.36) and (15.34) leads us to identify

D .r/ D "0E .r/C P .r / (15.37)

as the displacement vector in a dielectric.
We also define the magnetic field intensity vector H as

H .r/ D 1

�0
B .r/ � M .r / ; (15.38)

so that (15.35) becomes
curl H .r/ D Jf .r/ : (15.39)
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15.4 Interaction of Fields

In the preceding section we limited our treatment to slowly varying fields. We could
then use Poisson’s Equation for the potentials. We now wish to extend our treatment
to the time dependent case.

In the introduction to this chapter we pointed out that fields may be obtained from
one another according to Faraday’s Law and the displacement current in Ampère’s
Law. This field–field interaction is time dependent and takes place independently of
matter.

We must, however, also consider the possibility that an additional, apparent field–
field interaction will result within matter employing the matter as an intermediary.
This would be the case if the time rate of change in the polarization charge density,
caused by a time dependent electric field, results in a current density. Such a current
density would cause a magnetic field according to Ampère’s Law and the result
would be indistinguishable from a field–field interaction.

Or this would be the case if the magnetization current density, caused by a time
dependent magnetic field, results in a time dependent charge density. Such a charge
density would cause a time dependent electric field according to Gauss’ Law and
the result would be indistinguishable from a field–field interaction.

To investigate these possibilities we turn to charge conservation, which we have
already shown is a fundamental concept invariant under Lorentz Transformation.

If the polarization charge density �p D � div P .r / results in a polarization
current density Jp then

div Jp D � @

@t
�p D @

@t
div P

D div
@

@t
P: (15.40)

That is
Jp D @P=@t (15.41)

and the polarization of matter does result in a polarization current density provided
the electric field depends on time.

At the molecular level this can be understood in the terms of time dependent
motion of electrons on molecules. This differs from Faraday’s and Maxwell’s
original understanding of the displacement current in matter in that our treatment
here is based on a modern picture of matter and has no reference to an aether.
Maxwell was an atomist (see e.g. [40], Chap. 8). But his interest, in this case, was
in the aether.

The charge, �M, produced by a magnetization current density

JM D curl M (15.42)



350 15 Fields in Matter

must satisfy

@�M

@t
D � div JM D � div curl M

D 0; (15.43)

since div curl D 0. The magnetization of the material, then, produces no charge
density.

We must then include a polarization contribution to the current appearing in
Ampère’s Law. But no magnetization term must be added to Faraday’s Law.

15.5 Maxwell’s Equations in Matter

In the presence of matter, therefore, the charge and current densities are

� .r; t/ D �f .r; t/ � div P .r; t/ (15.44)

and

J .r; t/ D Jf .r; t/C curl M .r; t/C @

@t
P .r; t/ : (15.45)

Then, with (15.44) and (15.37), Gauss’ Law becomes

div D .r; t/ D �f .r; t/. (15.46)

And, with (15.45), Ampere’s Law becomes

curl

�
1

�0
B .r; t/ � M .r; t/

	
D Jf .r; t/C @

@t
Œ"0E .r; t/C P .r; t/� : (15.47)

Then, including (15.38) and (15.37), equation (15.47) is

curl H .r; t/ D Jf .r; t/C @D .r; t//@t. (15.48)

Faraday’s Law and Oersted’s Result are unchanged by the presence of matter.
In summary, then Maxwell’s Equations in the presence of matter are

div D D �f div B D 0

curl E D �@B=@t curl H D Jf C @D=@t:
(15.49)

In integral form these are
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(15.50)

These forms of Maxwell’s Equations contain only free charges and currents. The
polarization and magnetization are contained in the definitions of D and H.

15.6 Constitutive Equations

15.6.1 Polarization

The polarization of a dielectric P .r / is related to the electric field inside the
dielectric. From our brief discussion of polarization in Sect. 15.2.2 we realize that
in a general dielectric crystal the relation may not be simple. The direction of
polarization resulting from an electric field will be dependent on the orientation
of the axes of the crystal with the electric field. And the relation of the polarization
to the electric field may not be linear. In general there is a constitutive equation of
the form

P .r / D "0� .E/ � E, (15.51)

where � .E/ is the electric susceptibility2. The electrical susceptibility is generally
a tensor of rank two (see Sect. 13.6). Here we will assume that the dielectric is linear
so that � is not a function of the electric field. We will also assume that the dielectric
is isotropic, so that � D � is a tensor of rank zero, i.e. a scalar. And we will consider
only homogeneous dielectrics and neglect any dependence of � on position.

15.6.2 Magnetization

In a similar fashion the magnetization M .r / will depend on the magnetic field
intensity H in the magnetic material. Based on our discussion of magnetization
in Sect. 15.2.4 we should not expect the dependence of the magnetization on the
magnetic field intensity to be simple either. The magnetization will depend on
the crystal orientation in the magnetic field. And, in the ferromagnetic case, the

2There is some discrepancy in this definition. Some authors write polarization as � � E [83] and
others as "0� � E [76]. We choose the latter in keeping with the AIP Handbook [35].
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dependence of magnetization on magnetic field intensity is strong and nonlinear.
The constitutive equation in magnetizable matter is

M .r / D �M .H/ � H, (15.52)

where �M .H/ is the magnetic susceptibility. We shall assume that the diamagnetic
and paramagnetic materials we treat here are isotropic and homogeneous and that
�M .H/ D �M is a constant scalar. We will consider ferromagnetic systems
separately below.

15.6.3 Permittivity and Permeability

The susceptibilities are not convenient in themselves. More convenient parameters
are the permittivity

" D "0 .1C �/ (15.53)

in the dielectric and the permeability

� D �0 .1C �M/ (15.54)

in magnetizable matter.
Then

D D "E: (15.55)

and

H D 1

�
B (15.56)

In each case we define dimensionless quantities to indicate the relative polariza-
tion and magnetization of materials upon application of electric and magnetic fields.
These are the dielectric constant

K D "

"0
D 1C � (15.57)

and the relative permeability

KM D �

�0
D 1C �M: (15.58)

15.7 Boundary Conditions on Fields

We cannot measure the fields E, D, B, and H inside matter. We can obtain these
fields from external measurements, however, if we know the conditions that govern
the changes in these fields as the boundary from free space (air) into the solid matter
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is crossed. We can find the general boundary conditions that must be satisfied by the
vector fields E, D, B, and H upon transition from one substance into another by
applying Maxwell’s Equations in integral form to infinitesimal Gaussian pillboxes
or contours constructed on the boundaries between the substances. One of these
substances may be air.

15.7.1 Electric Field

From (15.50) the integral field equations for D and E are

I

S

D � dS D
Z

V
�fdV (15.59)

and I

C

E � d` D �
Z

a

@B
@t

� da: (15.60)

In Fig. 15.6a and b we have drawn the boundary between two dielectrics.
On the boundary we have constructed an infinitesimal Gaussian pillbox (panel

(a)) and a contour (panel (b)). The pillbox is a right circular cylinder with end caps
parallel to the surface. And the contour is a rectangle with horizontal sides parallel
(tangential) to the surface. The height of the pillbox and the length of the sections
of the contour perpendicular to the surface are vanishingly small.

We may also choose the dimensions of the end caps of the Gaussian pillbox
and the sections of the contour parallel to the surface arbitrarily small compared to
macroscopic dimensions, such as surface curvatures. Then we may consider that, as
far as the pillbox or contour are concerned, the boundary surface is planar.

As we shrink the axial length of the Gaussian pillbox to zero only the surface
charge remains within the pillbox and

Z

V
�fdV D �facap;

Fig. 15.6 The surface of a dielectric with (a) a Gaussian pillbox having ends within and without
the dielectric (b) a rectangular contour having sides within and without the dielectric
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where �f is the (net) surface charge density on dielectric boundary and acap is the
area of the end cap of the pillbox.

Applying (15.59) to the Gaussian pillbox in Fig. 15.6 panel (a) we have then

I

S

D � dS D .D2,n �D1,n/ acap D �facap; (15.61)

where D2,n and D1,n are the components of the displacement vector normal
(perpendicular) to the surface of the end caps. From (15.61) we see that

D2,n� D1,n D �f. (15.62)

The difference in the normal components of the displacement vector on two sides
of a dielectric is equal to the density of the free surface charge on the boundary. If
there is no free charge on the dielectric surface then the normal component of the
displacement vector is continuous across a boundary between two dielectrics or
between free space and a dielectric.

Since the legs of the contour in Fig. 15.6 panel (b) are vanishingly small, the
area enclosed by the contour becomes zero as we shrink the sections of the contour
perpendicular to the surface to zero. Then

lim
aC!0

Z

aC

@

@t
B � da D lim

aC!0

@

@t
B � nCaC D 0 (15.63)

where nC is the unit vector perpendicular to the plane of the contour and aC is the
area enclosed by the contour.

Therefore, even in the presence of a time dependent magnetic field, (15.60) is

I

C

E � d` D .E2,T �E1,T/ LT D 0; (15.64)

whereE2,T andE1,T are the components of the electric field tangential to the surface
and LT is the length of the tangential sections of the contour. Then

E2,T D E1,T (15.65)

and the tangential component of the electric field vector is continuous across a
boundary between two dielectrics or between free space and a dielectric.

The boundary conditions on the component of the electric field tangent to the
surface between dielectrics results in a boundary condition on the electrostatic scalar
potential '. In Fig. 15.7 we have labeled the end points of the contour of Fig. 15.6
panel (b).
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Fig. 15.7 Boundary
conditions on the scalar
potential

For arbitrarily small LT

E1,TLT D � .grad'/LT

D �'b � 'a

ab
LT D 'a � 'b (15.66)

and, similarly,
E1,TLT D 'd � 'c: (15.67)

With (15.66) and (15.67) then (15.64) is the requirement that

'a � 'b D 'd � 'c: (15.68)

In the limit as the lengths of the contour perpendicular to the surface go to zero
the points a and d become a single point ad and b and c become a point bc. The
equality in (15.68), for any locations of the points ad and bc, then requires that
'a D 'd and that 'b D 'c.

The electrostatic potential is then constant across a boundary between two
dielectrics.

15.7.2 Magnetic Field

From (15.50) the integral field equations for B and H are

I

S

B � dS D 0 (15.69)

and I

C

H .r/ � d` D
Z

aC

Jf .r/ � da; (15.70)

where, as above, aC is the area enclosed by the contour C .
In Fig. 15.8a and b we have drawn the boundary between two magnetic materials.
On the boundary we have again constructed an infinitesimal Gaussian pillbox

(panel (a)) or contour (panel (b)). As before the pillbox is a right circular cylinder
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Fig. 15.8 Boundary conditions on B and H

with end caps parallel to the surface. And the contour is a rectangle with horizontal
sides parallel (tangential) to the surface.

The height of the pillbox and the length of the sections of the contour perpendic-
ular to the surface are vanishingly small. The pillbox and the contour are also very
small compared to curvatures in the boundary, as in the case of the dielectric.

Applying (15.69) to the Gaussian pillbox in Fig. 15.8 panel (a) we have

I

S

B � dS D .B2,n � B1,n/ acap D 0; (15.71)

where B2,n and B1,n are the components of the magnetic field induction vector
normal (perpendicular) to the surface and acap is the area of the pillbox end cap.
From (15.71) we have

B2,n�B1,n D 0. (15.72)

Then the normal component of the magnetic field induction vector is continuous
across a boundary between two magnetic materials or between free space and a
magnetic material.

Since the legs of the contour in Fig. 15.8 panel (b) are vanishingly small, the
area enclosed by the contour becomes zero as we shrink the sections of the contour
perpendicular to the surface to zero. Then

lim
aC!0

Z

aC

Jf � da D Jf,SLT (15.73)

where Jf,S is the free surface current density on the boundary and LT is the length
of the section of the contour parallel to the boundary.
Therefore (15.70) is

I

C

H � d` D .H2,T �H1,T/LT D Jf,SLT; (15.74)
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where H2,T and H1,T are the components of the magnetic field intensity tangential
to the boundary, or

H2,T�H1,T D Jf,S, (15.75)

in the presence of a surface current on the boundary.
In the absence of a surface current

H2,T D H1,T (15.76)

and the tangential component of the magnetic field intensity vector is continuous
across a boundary between two magnetic materials or between free space and a
magnetic material.

We may write the boundary condition (15.75) in vector form. Choosing On2 as the
normal to the boundary and pointing in the direction of H2 the vector relationship is

On2 � .H2 � H1/ D Jf,S: (15.77)

15.8 Ferromagnetism

A straightforward discussion of the classification of magnetic systems may be found
in the text Physics of Magnetism by Soshin Chikazumi ([11], pp. 6–19). For the sake
of simplicity we have elected to distinguish only among diamagnetic, paramagnetic,
and ferromagnetic systems.

Ferromagnetic systems are characterized by spontaneous magnetization, which
is a result of the Heisenberg exchange interaction between or among spins. The
presence of an exchange interaction is, however, not limited to ferromagnetic
materials. The magnetic interactions among the spins of atoms in diluted magnetic
semiconductors (DMS) are based on exchange (see e.g. [88]).

In ferromagnetic materials there are domains in which the spins of atoms are
aligned in a certain direction (see e.g. [96], p. 317; [76], p. 298; [11], p. 10). In the
nonmagnetized state these domains are randomly aligned. When a magnetic field is
applied to a ferromagnetic material the domains line up with the field as a result of
the contribution (15.2) to the Hamiltonian.

The energy of the interaction among spins at the domain boundaries provides an
additional contribution to the Hamiltonian that is very complicated and depends on
domain boundary structures.

We can obtain the functional dependence of the magnetic field induction on the
magnetic field intensity in a ferromagnetic material experimentally using a Rowland
Ring.3 The Rowland Ring is a toroidal solenoid in which the wire is tightly wrapped

3The Rowland Ring was developed by Henry Augustus Rowland (1848–1901).
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Fig. 15.9 Rowland Ring. The connections (1) are to the primary coil, which produces the magnetic
field in the ring. The connections (2) are to the secondary coil, in which the current is a result of
Farady’s Law

around a ring made of the material under investigation. In Fig. 15.9 we have drawn
the basic form of the Rowland Ring.

In Fig. 15.9 the primary coil is (1) and the secondary coil is (2). The current in the
primary coil produces the magnetic field in the ring and the current in the secondary
coil results from Faraday’s Law. If the radius of the ring is considerably larger than
the radius of the cross section we can consider the magnetic field inside the material
making up the ring to be uniform.

There is no free charge current density Jf on the skin of the Rowland ring. And
the magnetic field at the outer surface of the ferromagnetic material of the Rowland
Ring, produced by the current in the wound wire, is parallel to the surface of the ring.
Therefore, from the boundary condition on the magnetic field intensity (15.76), the
intensity produced by the primary coil outside of the ferromagnetic material of the
ring

Hout D 1

�0
Bout (15.78)

is equal to the magnetic field intensity Hin inside the ring.
The magnetic field induction within the ring is, therefore,

Bin D �Hin D �Hout

D �

�0
Bout D KMBout: (15.79)

We can, then, measure directly the dependence of the magnetic field induction on
magnetic field intensity in the material from which the ring is made. And from this
we can find the dependence of the relative permeability KM on the magnetic field
intensity for the material.

In Fig. 15.10 we have plotted the general form of the functional dependence
of the magnetic field induction on the magnetic field intensity in a ferromagnetic
material.

Fig. 15.10 is the basic form of the magnetization curve for annealed iron.
We can find the permeability of the material graphically using (15.56) and

the magnetization curve. In Fig. 15.11 we have plotted the results of a graphical
determination of the permeability and the magnetization curve together against the
magnetic field intensity.
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Fig. 15.10 Magnetization
curve of a ferromagnetic
material

Fig. 15.11 Magnetic field
induction and permeability as
functions of magnetic field
intensity in a ferromagnetic
material

Fig. 15.12 Magnetization curve of a ferromagnetic material with regions labeled

Chikazumi devotes four chapters of his text to detailed discussions of the magne-
tization of ferromagnetic systems ([11], pp. 245–302). There are two mechanisms
that determine the form of the magnetization curve of a ferromagnetic material.
The spins in a particular magnetic domain will rotate in response to the magnetic
field intensity. And the domain boundaries will be displaced as the magnetic field
intensity is increased. Here we provide only an overview of how these mechanisms
affect the form of the magnetization curve.

In Fig. 15.12 we have labeled the regions of the magnetization curve of Fig. 15.10
that can be characterized by the importance of certain mechanisms (see e.g. [11], pp.
245, 6).

The magnetization curve is reversible for low values of the intensity. In this initial
reversible range the magnetic domains rotate reversibly from the stable directions
and the domain boundaries are reversibly displaced. This is the first region indicated
in Fig. 15.12.

This initial reversible range is followed by a region in which the slope of the
magnetization curve is very steep. This is the irreversible magnetization range. In
this region the domain boundaries undergo irreversible displacement and there is an
irreversible domain rotation, which varies with domain sizes and heterogeneity of
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the sample. Here there is considerable energy transfer from the magnetic field to the
sample. Depending on the rate of magnetization, there may be a rise in temperature
of the sample.

In the region of rotation magnetization the magnetization is primarily from
rotation of spins within domains.

The region indicated as approach to saturation is a region also of spin rotation.
When saturation is attained there is only a gradual increase in magnetization with

magnetic field intensity and the permeability becomes constant.

15.8.1 Hysteresis

In Fig. 15.13 we show the magnetization curve for a ferromagnetic material
beginning in an initially demagnetized state and the subsequent demagnetization
curve from the saturated state. The arrows on the curves indicate magnetization and
demagnetization.

The demagnetization curve will only follow the magnetization curve if we
demagnetize the sample in the initial reversible range. If we apply a sufficient
magnetic field intensity to the sample to produce irreversible domain boundary
displacements and domain rotations then a magnetization of the sample will remain
even after we decrease the external magnetic field intensity to zero.

From (15.38) we have
B .r/ D �0M .r / (15.80)

when H D 0. Therefore the nonzero value of B at H D 0 indicates a residual
magnetization in the sample.

In Fig. 15.13 we have designated the point known as retentivity or remanence
as r . At this point the residual magnetization is B=�0. This is the characteristic
property of ferromagnetic materials.

In Fig. 15.13 we have indicated the magnetic field intensity required to bring the
magnetic induction in the sample back to zero as c. This value of the magnetic field
intensity is the coercive force or coercivity. From (15.38) we see that at the point c
we have

H .r/ D �M .r / (15.81)

when B D 0.

Fig. 15.13 Hysteresis in a
ferromagnetic material. The
point r is the remanence and
c is the coercivity
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Fig. 15.14 Hysteresis loop
for ferromagnetic material

If we plot the general form of the magnetic field induction B as a function of
magnetic field intensity H we have a graph as in Fig. 15.14. In Fig. 15.14 we have
shown the initial magnetization curve as a dashed line from B D H D 0.

The fact that the sample does not follow the initial magnetization curve as we
decrease the magnetic field intensity is called hysteresis. The term hysteresis is from
the Greek word 	�
"���� meaning “deficiency” or “lagging behind.”

Based on our discussion in the preceding section we have a fairly solid
understanding of the physics of hysteresis in ferromagnets.

15.8.2 Modern Directions

Some important engineering applications, such as in the design of efficient electric
motors in vehicles and the production of electric power from wind turbines, depend
on permanent magnets of increasing remanence [51].

Magnets are ranked in terms of their energy product in kJ m–3, which is a
combination of how easily the material is magnetized (the magnetization curve)
and resistance to demagnetization. Modern high energy product magnets are made
of alloys such as iron-aluminum-nickel-cobalt (Alnico) and neodymium-iron-boron
(NIB).

The physics of the problem involve the same considerations as our discussion
in the preceding section: spin rotation and domain boundary effects. Both of these
mechanisms are dependent on crystal structure.

Nanoparticles are becoming important in the research at the time of this writing.
The use of nanoparticles alters the boundary effects that we saw are very important
in magnetization and in demagnetization.

15.9 Summary

In this chapter we have investigated the behavior of electric and magnetic fields
in matter and deduced the form of Maxwell’s Equations in matter. The field–field
interaction, expressed in Faraday’s Law and the displacement current are unaffected
by the presence of matter. This fact allowed us to introduce the effects of matter
based on multipole expansions of the integral solutions to Poisson’s Equation into
which we introduced an atomic picture of matter.
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We based our initial discussion on the macroscopic, experimentally observed
effects of introducing dielectric and magnetic matter into capacitors and inductors.
We introduced the modern understanding of the microscopic, atomic and molecular
picture of matter to produce the final forms of our multipole expansions. This served
to clarify the sources of polarization and magnetization in matter.

In the final section of the chapter we discussed ferromagnetism. There we
coupled experimental observations with an understanding of the origins of those
observations in terms of spin rotations and domain boundary mechanics. The
phenomenon of hysteresis is dependent on both of these.

Exercises

15.1. Begin with

a �
Z

V
curl vdV D

Z

V
a � curl vdV

for a D constant vector and

div .v � a/ D a � curl v � v � curl a

to show that Z

V
curl vdV D �

I

S

v � dS:

15.2. In a dielectric experiment you have a carefully prepared dielectric (permittiv-
ity ") sheet with thickness equal to half the separation you have set for a parallel
plate capacitor. The sheet area and the plate area of the capacitor are the same. We
have shown the situation in Fig. 15.15.

What is the ratio of the capacitance with and without the dielectric?

15.3. You have another sheet of dielectric with permittivity " and thickness y that
just fits between the plates of your parallel plate capacitor. But then you decide to
only push it in halfway. We show this is Fig. 15.16.

You then charge this capacitor.

(a) How is the charge distributed over each half of the plates?
(b) What are the electric fields in the dielectric and in the empty space between the

plates?
(c) What is the total capacitance?

Fig. 15.15 Capacitor with
dielectric sheet
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Fig. 15.16 Capacitor with
dielectric inserted halfway

Fig. 15.17 Inserting a
dielectric into a parallel plate
capacitor

15.4. The capacitance of a parallel plate air capacitor increases if we insert a
dielectric with dielectric constant K between the plates. If we maintain a constant
potential between the plates of the parallel plate capacitor, the energy stored is
then increased upon insertion of the dielectric. According to the First Law of
Thermodynamics we must then do work on the system to insert the dielectric. We
have drawn the situation in Fig. 15.17. The area of the square capacitor pates is L2.
The dielectric is a solid rectangular block of thickness y and length and width equal
to L. In Fig. 15.17 the dielectric block has been inserted a distance x into the space
between the capacitor plates. When completely inserted the dielectric block will
totally occupy the volume between the capacitor plates.

(a) What is the stored energy in the capacitor as a function of x?
(b) If we neglect frictional forces and any temperature change in the dielectric, what

is the force required to insert the dielectric as a function of x?

15.5. Consider a solid dielectric cylinder of radius a and length L made of a
material with permittivity ". You have chosen to define the z�axis of your coordinate
system to be aligned with the cylinder axis. Let us assume that you are able to
establish an electric field oriented in the Oez direction which varies as a function of z
in such a way that the polarization in the dielectric cylinder is

P D �
˛z2 C ˇ

� Oez:

(a) What is the volume polarization charge density within the cylinder?
(b) What is the surface polarization charge density on all surfaces?
(c) What is the total polarization charge in and on the cylinder?

15.6. You have a spherical conductor of radius a, which you have contained
within a spherical dielectric shell. The dielectric material making up the shell has a
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dielectric constant K . You have provided a thin wire to the conductor so that you
may charge it to any desired potential. That is you may place an arbitrary free charge
on the conducting sphere.

You charge the conductor to QC.

(a) What is the polarization in the dielectric?
(b) What is the polarization charge density?
(c) What is the surface polarization charge density on the inner and outer surfaces

of the dielectric shell?
(d) What is the total polarization charge on the shell?

15.7. Assume that in the previous exercise the dielectric shell around the conduct-
ing sphere has an electrical susceptibility that is a function of the radial coordinate
� D ˛r . You again charge the conducting sphere to Q C.

(a) What is then the polarization charge density?
(b) What is the surface polarization charge density on inner and outer surfaces?
(c) What is the total polarization charge in the dielectric?
(d) Does your answer to (c) make physical sense?

15.8. You have a sphere of solid dielectric material with dielectric constant K and
radius a. The sphere is polarized by an external electrostatic field and the resultant
polarization inside the sphere is P D P0 Oez.

(a) What is the polarization charge density inside the sphere?
(b) What is the surface polarization charge density on the sphere?
(c) Show that the total charge on the sphere is zero.

15.9. Using the definitions of polarization charge density

�p D � div P

and
�p D P � On

show that in general the total polarization charge within and on any closed dielectric
body must vanish.

15.10. You have hung a small uncharged dielectric sphere of radius a on a thread
between two plates of a parallel plate capacitor. When you charge the plates the
small dielectric sphere will be suspended in a uniform electric field

E D E0 Oez

oriented vertically. the dielectric constant of the material from which the sphere is
made is K .

You wonder what the polarization charge density is within and on the sphere.
You can calculate the polarization charge density from the constitutive relationships
in Sect. 15.6 once you have the electric field within the sphere. You can obtain the
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electric field from the negative gradient of the electrostatic scalar potential, which
satisfies Laplace’s Equation inside and outside of the sphere.

Fortunately we have already obtained the general solution to Laplace’s Equation
for spherical geometry in Chap. 9. The result is

' .r; �; #/ D
X

n,m



Dnr

n CGnr
–(n+1)

� � � �

� � �Pm
n .cos�/ ŒAm cos .m#/CBm sin .m#/� ;

where Pm
n .cos�/ are the associated Legendre Functions. For your suspended

sphere there will be no dependence on the azimuthal angle # . Then

' .r; �; #/ D
1X

n=0



Dnr

n CGnr
–(n+1)�Pn .cos�/ ; (15.82)

wherePn .cos�/ are the Legendre Polynomials. The first few Legendre Polynomials
are

P0 .x/ D 1

P1 .x/ D x

P2 .x/ D 1

2

�
3x2 � 1

�

P3 .x/ D 1

2

�
5x3 � 3x

�

:::

So all you must do is use the limiting requirements and the boundary conditions
for the electrostatic scalar potential to find the constants in (15.82).

You may consider that the electric field is equal to E0 Oez at z D ˙1. And you
want the potential to remain finite at the origin. In Sect. 15.7 we showed that the
electrostatic scalar potential was continuous across boundaries between dielectrics.
These observations will give you sufficient information to restrict the number of
terms in (15.82) that you need for the solution and to solve for those constants.

What are the terms in (15.82) that you will need for the electrostatic scalar
potentials 'in within and 'out in the space surrounding the dielectric sphere?

[Answer: 'in D D
(in)
0 CD(in)

1 r cos�, 'out D D
(out)
0 C

h
D

(out)
1 r CG

(out)
1

�
1
r2

�i
cos�]

15.11. For the functions you obtained for 'in and 'out in the preceding exercise use
the condition that

lim
r!1' D constant �E0z;
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Fig. 15.18 Cavity left by
removal of an atom from a
crystal site in a polarized
dielectric

the continuity of 'in and 'out on the surface of the sphere, and the continuity of the
normal component of the displacement vector to obtainD(in)

1 , D(out)
1 , and G(out)

1 .
Write the potentials.
[Answer: 'in D V0 � 3 E0

KC2r cos�, 'out D V0 C 
�E0r C K�1
KC2a

3E0
�
1
r2

��
cos�]

15.12. To obtain some understanding of the polarization process we consider a
simplified model. We assume that if we remove a single atom or molecule from
a crystal site in a polarized dielectric that a spherical cavity is left. The polarization
of the dielectric is P. We assume further that there will be a surface polarization
charge on the surface of the cavity resulting from the polarization of the sites
surrounding the now empty site. We have drawn the cavity in Fig. 15.18. The angle
� is measured from the horizontal (dashed) line. In Fig. 15.18 the charge on the
infinitesimal spherical surface area dS through which the vector in the direction Oe0

r
passes contains the charge �pdS . The differential electrostatic field in the direction
Oe0
r resulting from the surface polarization charge is

dEp D �Oe0
r

P cos�

4�"0a2
dS; (15.83)

where a is the radius of the spherical cavity.

(a) Show that the sign of the polarization surface charge density charge density is
correct as we have shown in Fig. 15.18.

(b) Show that the total field at the empty atomic site (center of the sphere) from the
surface polarization is Ep D P= .3"0/.

(c) If the externally applied field at the empty atomic site is E, what is the total
microscopic field at the site?

15.13. The polarization of the atom occupying the site atom is proportional to the
microscopic field. That is the dipole moment of an atom is

p(a)
d D ˛Em;

where ˛ is the proportionality factor. If there are n atoms per unit volume then the
polarization is

P D n˛Em:

In the preceding exercise we found that
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Em D E C P
3"0

:

(a) obtain an equation for ˛ as a function of the macroscopic parameters "0, n, and
the dielectric constantK for the dielectric.

(b) Obtain the equation for the electric susceptibility � as a function of "0, n, and
˛. This is called the Clausius-Mossotti equation.

15.14. A material for which P ¤ 0 when the applied field E D 0 is a ferroelectric
material. Using

P D n˛Em:

and

Em D E C P
3"0

:

(a) Find the condition which, in the context of our simplified theory, P ¤ 0 when
the applied field E D 0.

(b) Accept that the result you have is approximate. What does the Clausius-
Mossotti equation

� D ˛n="0

1 � n˛= .3"0/

predict for the electrical susceptibility of a ferroelectric material?

15.15. You have a cylindrical shell made of a ferroelectric material. The inner
radius of the shell is a and the outer is b. the cylinder has a length of L. You have
chosen a coordinate system with the z�axis along the central axis of the cylinder.
Because of the form you used for the polarizing electric field the polarization after
the removal of the field is

P D OerA
1

r
C OezB:

(a) What is the polarization charge density within the cylinder?
(b) Show that the total polarization charge density on the curved surfaces vanishes.
(c) What is the dipole moment of the cylinder?

15.16. You have a long straight wire of radius a. You have insulated the wire with
a very thin insulating material, the thickness of which you neglect. You have a large
number of rings made of ferromagnetic material. The rings have inner radius slightly
greater than a, to accommodate the insulation on the wire, and outer radius b. These
rings stack very nicely on top of one another with the long insulated wire down the
center. You plan to pass a large current through the central wire, magnetizing the
rings. The result will be a collection of Permanent magnetic rings. See Fig. 15.19.
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Fig. 15.19 Magnetizing of
rings

Fig. 15.20 Cross section of a
magnetized ring

The total current in the wire, during the magnetization of the rings, is to be I .
The rings form a sheath around the wire.

(a) During the magnetization process what is the magnetization current within the
sheath made up of the rings?

(b) What is the surface current density on the inner and outer curved surfaces of the
sheath?

(c) After the magnetizing current is switched off the magnetization in each ring
decreases to a factor of � times what it was during the magnetization process.
Find the current densities on the surfaces of the magnetic rings. See Fig. 15.20.
Comment on this result and Ampère’s theory of permanent magnetism.

15.17. If we have a time independent situation in which there are no real current
densities then Ampère’s Law requires that

curl H D curl B D 0:

(a) Show that this means that H and B can be written as

H D � grad'm

B D �� grad'm;

where 'm is a scalar function that satisfies Laplace’s Equation. The function 'm

is known as the magnetic scalar potential.
(b) Show that 'm satisfies Laplace’s Equation.
(c) Show that 'm is continuous across the boundary between two magnetizable

media.

Because the solutions of Laplace’s Equation are known (see Chap. 9) this is a
useful formulation for treating magnetized systems with no free currents. But we
should emphasize that there is only a scalar magnetic potential when free charge
current densities are absent.
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There is another cautionary note. The fact that 'm satisfies Laplace’s equation
depends on the spatial independence of the permeability �, or equivalently on the
constancy of the magnetic susceptibility �M. The magnetic scalar potential is not a
generally useful concept.

15.18. As a, perhaps, cautionary example we consider the function

'm D � I

2�
# (15.84)

in the space surrounding a vertical wire oriented along the z�axis in which we have
a current I . If we consider only the space surrounding the wire we have no current
density in the region of interest. The limitations for the applicability of a magnetic
scalar potential will, then, be satisfied.

(a) Show that B D � grad'm results in the correct magnetic field induction in the
space around the wire.

(b) Does 'm satisfy Laplace’s Equation?
(c) Is equation (15.84) a form of

˚ .r; #/ D C0 ln .r/CD0 C
1X

n=-1
Anr

n cos .n#/C Bnr
n sin .n#/ ;

which in Chap. 9 we showed solved Laplace’s Equation?
(d) Comment on the apparent paradox we have here. The function 'm that we

proposed works for calculating the magnetic field induction, but it is not a
cylindrical harmonic, which is the general solution. What is wrong? You will
have to consider carefully our requirements on the separation of variables in
Sect. 9.4. We required that

� 1

�Cyl

d2�Cyl

d#2
D ˛2 (15.85)

where ˛ is a constant. Is this true for (15.84)?
In considering the mathematical aspect of the answer to (d) recall from Sect. 2.6

that the solution of Laplace’s Equation is unique.

15.19. The magnetic scalar potential promises to be useful particularly in situations
involving permanent magnetized material with no free current. We can be more
careful in our search for a magnetic scalar potential if we begin with the equation
we have for the vector potential in the presence of magnetized material.

A .r/ D �0

4�

Z

V
M0 �r 0� � grad0 1

jr � r 0jdV 0; (15.86)

where
M0 D M

�
r 0�
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Then the magnetic field induction is

B .r/ D ��0

4�

Z

V
curl

�
M0 � grad

1

jr � r 0j
	

dV 0;

where we have used

grad0 1

jr � r 0j D � grad
1

jr � r 0j :

Then

(a) Using (A.20) show that

curl

�
M0 � grad

1

jr � r 0j
	

D 

M0 � grad

�
grad0 1

jr � r 0j

C M0 div grad
1

jr � r 0j :

(b) And that



M0 � grad

�
grad0 1

jr � r 0j D grad

�
M0 � grad0 1

jr � r 0j
	

(c) And finally that

B .r/ D � grad
�0

4�

Z

V

�
M0 � grad0 1

jr � r 0j
	

dV 0

��0

4�

Z

V
M0 div grad

1

jr � r 0jdV 0

D ��0 grad
1

4�

Z

V

�
M0 � grad0 1

jr � r 0j
	

dV 0

C�0M

[Hint: seek a ı�function]
This establishes that we can generally write

B .r/ D ��0 grad'm C �0M; (15.87)

where

'm D 1

4�

Z

V

�
M0 � grad0 1

jr � r 0j
	

dV 0

15.20. Using Oersted’s Result and the result of the preceding exercise (15.87) show
that
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r2'm D div M

and that, therefore,

'm D � 1

4�

Z

V

div0 M0

jr � r 0jdV 0: (15.88)

15.21. Show that (15.88) becomes

'm D 1

4�

Z

V

�
M0 � grad0 1

jr � r 0j
	

dV 0

for the space outside of a magnetized region.

15.22. As an example that satisfies the requirements for the use of a magnetic scalar
potential we choose a uniformly magnetized sphere of radius a in empty space. The
magnetization is

M D M0 Oez

D erM0 cos� � e�M0 sin �;

and
div M D 0:

We seek a solution to
r2'm D 0

in spherical in spherical coordinates with no dependence on the azimuthal angle # .
The general solution is

' .r; �; #/ D
1X

n=0



Dnr

n CGnr
–(n+1)

�
Pn .cos�/

D D0 CG0
1

r
CD1r cos� CG1

1

r2
cos�

C
1X

n=2



Dnr

n CGnr
-(n+1)

�
Pn .cos�/ ;

wherePn .cos�/ are the Legendre Polynomials. The first few Legendre Polynomials
are

P0 .x/ D 1

P1 .x/ D x

P2 .x/ D 1

2

�
3x2 � 1�
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P3 .x/ D 1

2

�
5x3 � 3x

�

:::

(a) By considering requirements (e.g. finiteness at the origin and vanishing at
infinity) argue the potentials inside and outside of the magnetized sphere must
be

'(in)
m D D

(in)
1 r cos�

' (out)
m D G

(out)
1

1

r2
cos�:

(b) Use the continuity of 'm on the boundary between inside and out to obtain the
condition

D
(in)
1 a D G

(out)
1

1

a2
:

(c) Use the continuity of the magnetic field induction across the boundary to obtain
the condition [recall (15.87) in magnetized matter]

�D(in)
1 C M0 D 2G

(out)
1

1

a3
:

(d) Solve for D(in)
1 and G(out)

1 to obtain

'(in)
m D 1

3
M0r cos�

and

'(out)
m D 1

3
a3M0

1

r2
cos�:

(e) Show that the magnetic field intensities are

Hin D �1
3
M0 Oez

and

Hout D 1

3
M0

a3

r3

� Oer2 cos� C Oe� sin�
�
:

And that the magnetic field induction is

Bin D 2

3
�0M0 Oez

and

Bout D 1

3
�0M0

a3

r3

� Oer2 cos� C Oe� sin �
�
:



Chapter 16
Waves in Dispersive Media

Available energy is energy which we can direct into any desired
channel. Dissipated energy is energy which we cannot lay hold
of and direct at pleasure, such as the confused agitation of
molecules which we call heat.

James Clerk Maxwell

16.1 Introduction

In this chapter we consider the propagation of slightly damped waves in nonmag-
netic dispersive media. In a dispersive medium electromagnetic wave fields interact
with charges and the energy originally present in the electromagnetic fields flows,
i.e. is dispersed, to the medium.

The first step in this dispersion process is the transfer of energy from the
electromagnetic fields to the kinetic energy of particles moving coherently with
the wave. The total wavelike disturbance propagating in the medium then consists
of electromagnetic and particle kinetic components. The loss of energy from the
particles moving coherently with the wave to the bulk medium causes the dispersion
of the wave energy.

Max von Laue first recognized that any description of the total energy of a wave
in a medium must consider the motion of particles in 1905 [94]. Specifically von
Laue pointed out that the wave energy must involve the energy of the oscillators,
which, in 1905, were considered to be the source of electromagnetic energy emitted
by matter (see e.g. [54]). The discussion has been taken up in more detail by
numerous authors [1,4,5,23,41,42,59,90], and [7]. Bekefi, for example, has shown
that neglect of particle energies leads, in some cases, to nonsensical results, such as
negative values of total energy in thermal equilibrium.

The majority of these contributions deal solely with the consequences of
Maxwell’s Equations. The result is a mathematical formula for the total wave
energy, proof that this total energy is propagated at the group velocity of the wave,

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3 16, © Springer-Verlag Berlin Heidelberg 2012
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and the loss term for the wave energy. To identify the forms of the particle energies,
which are coherent with the wave, and the loss mechanism requires a consideration
of the particle kinetics.

Except for our verbal description of the basis and some of the recent results of
plasma kinetic theory in Chap. 7, we have avoided the kinetic description of matter.
Here we shall again only outline the results verbally.

16.2 Waves in Matter

In empty space a propagating electromagnetic wave is a transverse plane wave and
the dispersion relation is !=k D c. The dispersion relation in a dispersive medium
depends on the capability of the medium to sustain free charge and polarization
currents. There are also separate dispersion relations for transverse and longitudinal
waves.

16.2.1 Representation of Waves

In Sect. 11.5 we considered waves that were not monochromatic because we realized
that we could not produce monochromatic waves, even with lasers, in the laboratory.
We are now encountering a situation in which the waves are damped and energy is
finally lost to the medium through which the waves pass. These waves are farther
from monochromatic than any we can produce in empty space. Therefore we must
again resort to a representation in terms of integrals over a continuum of plane waves
of the form

ŒE .k; !/ or B .k; !/� exp .i!t � ik � r/ : (16.1)

And we have again the representation of the wave fields as Fourier Transforms,
which are

E .r; t/ D
�
1

2�

�2 Z
E .k; !/ exp .i!t � ik � r/ d!d3k (16.2)

and

B .r; t/ D
�
1

2�

�2 Z
B .k; !/ exp .i!t � ik � r/ d!d3k (16.3)

(see (11.56) and (11.57)).
We may also Fourier Transform the charge and current densities as

� .r; t/ D
�
1

2�

�2 Z
� .k; !/ exp .i!t � ik � r/ d!d3k (16.4)
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and

J .r; t/ D
�
1

2�

�2 Z
J .k; !/ exp .i!t � ik � r/ d!d3k: (16.5)

16.2.2 Dispersion Relation in Matter

In Sect. 11.5 we also showed that the electric and magnetic field components of
the plane waves E .k; !/ and B .k; !/ satisfy the Fourier Transformed form of
Maxwell’s Equations, i.e. (11.60), which we repeat here as well for continuity

�ik � E D �=" k � B D 0

k � E D !B �ik � B D �0 .J C i!"E/ :
(16.6)

In (16.6) the terms � and J are � .k; !/ and J .k; !/ in (16.4) and (16.5).
Replacing "0 with " makes the equations (16.6) applicable to polarizable matter

and keeping�0 unchanged is appropriate for nonmagnetic matter. If we also assume
that the matter being considered satisfies Ohm’s Law, i.e.

J .k; !/ D � .k; !/E .k; !/ ; (16.7)

then equations (16.6) become

�ik � E D �=" k � B D 0

k � E D !B �ik � B D �0 .� C i!"/E;
(16.8)

which are the Fourier Transformed Maxwell Equations in polarizable, nonmagnetic
matter in which there are charges that are free to move.

The cross product of k with either Faraday’s or Ampère’s Law results, after a few
steps of vector algebra, in

D .k; !/ � .E or B/ D 0; (16.9)

where
D .k; !/=

�
k2 � !2K=c2

�
1-kk+i!�0�1. (16.10)

In (16.10)K is the dielectric constant of the matter.
Equation (16.9) is the requirement imposed by Maxwell’s Equations on the wave

fields. This is the wave equation in Fourier .k; !/ space.
Choosing the propagation direction to be the z�axis, we can represent D .k; !/

in matrix form as
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D .k; !/=

2

4
i!�0� C �

k2 � !2K=c2
�

0 0

0 i!�0� C �
k2 � !2K=c2

�
0

0 0 i!�0� � !2K=c2

3

5

(16.11)
Equation (16.9) has a nonzero solution for E and B only if the determinant of

D .k; !/ vanishes (see e.g. [20], p. 18).
The determinant of D .k; !/ is

det D .k; !/ D �
i!�0� C �

k2 � !2K=c2
��2 �

i!�0� � !2K=c2
�
: (16.12)

The general dispersion relation is then

�
i!�0� C �

k2 � !2K=c2
��2 �

i!�0� � !2K=c2
� D 0: (16.13)

This dispersion relation specifies ! D ! .k/ that must hold for the propagating
wave in a nonmagnetic medium.

16.2.3 Transverse and Longitudinal Waves

Only transverse waves are possible in empty space. In matter, however, we have the
possibility also of longitudinal waves for which the wave vector k and the electric
field vector E are parallel. For longitudinal waves Faraday’s Law requires that B D 0
and there is no magnetic field component associated with a longitudinal wave.

From the Fourier Transform of Maxwell’s Equations in (16.8) we see that Gauss’
Law forbids the association of any charge density � with a transverse wave in matter,
for which

k � .E or B/ D 0: (16.14)

The assumption of Ohm’s Law, however, results in a current density associated with
a transverse wave.

Gauss’ Law requires a charge density associated with a longitudinal wave in
matter, for which

k � E D 0: (16.15)

and k � E D kE. And Ampère’s Law, or the assumption of Ohm’s Law, requires a
current density associated with a longitudinal wave in matter.

For transverse waves (16.9) becomes

D .k; !/ � .E or B/ D �
i!�0� C �

k2 � !2K=c2
��
.E or B/ D 0 (16.16)

and the condition for nonzero E and B is

i!�0� C �
k2 � !2K=c2

� D 0. (16.17)
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For longitudinal waves (16.9) becomes

D .k; !/ � E D !
�
i�0� � !K=c2

�
E D 0; (16.18)

which is simply the product of ! and Ampère’s Law when B D 0. The condition
for nonzero E for the longitudinal wave is then

i�0� � !K/c2 D 0. (16.19)

Equations (16.17) and (16.19) are the requirements that first or the second of the
terms in the product in (16.13) vanishes. We can understand the general dispersion
relation in equation (16.13) as a product of the dispersion relation for transverse
waves (16.17) and the dispersion relation for longitudinal waves (16.19) in nonmag-
netic matter. One or the other of these terms must vanish for the wave to propagate.

16.2.4 Wave Conductivity

From (16.17) we have

!2 D c2

K

�
i!�0� C k2

�
: (16.20)

The wave is undamped and ! is real if the conductivity is a purely imaginary
function of .k; !/.

From (16.19) we have

! D i
c2

K
�0�: (16.21)

And again the wave is undamped if the conductivity is a purely imaginary function
of .k; !/.

We shall designate
� .k; !/ D i�0 .k; !/ ; (16.22)

where �0 .k; !/ is a real valued function of k and !, as the form of � .k; !/ for both
transverse and longitudinal waves. The value of the function �0 .k; !/ is determined
by the range of k and ! appropriate to either the transverse or longitudinal form of
the propagating wave.

16.2.5 Wave Energy

We know from our discussions of energy and momentum in waves (Chap. 12) that
the general field energy equation is

@

@t
Eem .r; t/C div S .r; t/ D �J .r; t/ � E .r; t/ : (16.23)



378 16 Waves in Dispersive Media

in which the field energy density in nonmagnetic matter is

Eem .r; t/ D 1

2

�
"E2 .r; t/C 1

�0
B2 .r; t/

�
(16.24)

and the Poynting vector is

S .r; t/ D 1

�0
E .r; t/ � B .r; t/ : (16.25)

Equation (16.23) indicates that the rate of loss of energy from the wave is contained
in the term �J �E, which is the rate of transfer of energy from the fields to the matter.

We shall now consider the consequences of (16.23) when we apply it to waves
in dispersive matter. Our goal is to gain an understanding of the total energy of a
wave in dispersive matter and the details of the energy transport from the waves to
the particles.

16.3 Nearly Monochromatic Waves

16.3.1 Dispersion of Monochromatic Waves

We have represented the general wave in a dispersive medium as an integral
over monochromatic waves, each of which must satisfy the dispersion relation
for the medium. The monochromatic wave is a mathematical fiction in that we
cannot produce it in the laboratory. But it is the basis of our representation of
the actual laboratory wave. We may then study the energy transport from a single
monochromatic wave to obtain a general understanding of the physics.

In our study we will assume that each monochromatic wave is slightly damped
and slightly dispersed. That is we assume that both the angular frequency ! and
the wave vector k have small imaginary parts so that the wave exists in the general
form of (16.1) for a large number of wave periods �wave D 2�=!r or wave lengths
�wave D 2�=kr, where !r is the real part of the angular frequency and kr is the
magnitude of the real part of the wave vector.

Specifically we consider that !i � !r D Re! and jkij � kr D jRe kj. If this
were not the case we could not logically consider the disturbance to be a wave.

The real parts of ! and k corresponding to the undamped and undispersed wave
will satisfy the general dispersion relation (16.13) with � D i�0. These may be
either transverse or longitudinal waves with the distinction based on whether the
real values of ! and k satisfy (16.20) or (16.21).

To illustrate the situation we are considering we have drawn a wave for which
jkij D 0:01 jkrj in Fig. 16.1.
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Fig. 16.1 Slightly dispersed
wave with jkij D 0:01 jkj

The dispersion factor ki D 0:01kr, which does not satisfy ki � kr, has been chosen
only so that the exponential envelope can be easily seen in Fig. 16.1.

The electric and magnetic field components of the (almost) monochromatic wave
will have the general forms

E .r; t/ D 1

2
ŒE exp .i!t � ik � r/

C E* exp
��i!*t C ik* � r

��
(16.26)

and

B .r; t/ D 1

2
ŒB exp .i!t � ik � r/

C B* exp
��i!*t C ik* � r

��
; (16.27)

or B .r; t/ D 0 for the longitudinal wave. Ohm’s Law results in the same space and
time dependence for the current density and Gauss’ Law results in the same space
and time dependence for the charge density.

In the Fourier Transforms (16.2–16.5) the terms E .k; !/ : : : J .k; !/ have defi-
nite magnitudes determined by the requirement that the functions E .r; t/ : : : J .r; t/
are well represented. That is, for example, E .k; !/ is actually a function of k and !.

When we are considering plane waves, such as those in (16.26) and (16.27),
however, the vectors E and B of the right hand sides of (16.26) and (16.27) have
magnitudes determined by E .r; t/ and B .r; t/, but they are not functions of .k; !/.

16.3.2 Time and Space Averages

To study energy damping and dispersion we want to obtain the form of (16.23)
that is dependent on the imaginary parts of the wave vector k and the angular
frequency !. Because the terms in (16.23) are quadratic in the vectors, this is most
easily accomplished by averaging (16.23) over a time T equal to an arbitrary number
of wave periods �wave and over a length L equal to a number of wavelengths �wave
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along the direction Ok of propagation of the wave. We are interested then in terms
such as

�
@

@t
E .r; t/2

	

T,L
D 1

L

1

T

TZ

0

dt

LZ

0

drk
@

@t
E .r; t/2 ; (16.28)

where rk is the spatial coordinate in the direction of wave propagation.
This time and space averaging is simply a mathematical device to eliminate the

oscillatory behavior of the equations. We can, however, argue that this approach is
logical physically.

The wave period is normally very short compared to the variation of any
thermodynamic properties of the matter. And measurements we make of absorption
and dispersion of wave energy are normally performed over times long compared
to the period using probes with dimensions large compared to the wavelength of the
wave. The actual experimental measurements are then time and space averages.

Using (16.26) we have

@

@t
E .r; t/2 D 2i!

4
ŒE � E exp .2i!t � 2ik � r/

� E* � E* exp
��2i!*t C 2ik* � r

��

�2!i

4

�
E* � E C E � E*

�
exp .�2!it � 2ki � r/ : (16.29)

The time average involves only the exponential terms. For the first two terms on the
right hand side of (16.29) we have

hexp .2i!t � 2ik � r/iT,L or
˝
exp

��2i!*t C 2ik* � r
�˛

T,L

D 1

LT

TZ

0

dt

LZ

0

drk exp .2i!t � 2ik � r/ or exp
��2i!*t C 2ik* � r

�

D 0

for !i=!r � 1 and jkij = jkrj � 1.
We will designate the time and space average of the last term on the right hand

side of (16.29) as

hexp .�2!it � 2ki � r/iT,L D 1

LT

TZ

0

dt

LZ

0

drk exp .�2!it � 2ki � r/

D ˚ .!i; ki; T / : (16.30)

Then



16.3 Nearly Monochromatic Waves 381

�
@

@t
E .r; t/2

	

T,L
D �2!i

1

4

�
2E2�˚ .!i; ki; T / : (16.31)

Similarly �
@

@t
B .r; t/2

	

T,L
D �2!i

1

4

�
2B2

�
˚ .!i; ki; T / : (16.32)

In (16.31)E2 D E � E * and in (16.32) B2 D B � B*.
In a like manner the part of the cross product in the Poynting Vector that will

survive the time and space average is

E .r; t/ � B .r; t/ D 1

4

�
E* � B C E � B*

�
exp Œ�2!it C 2ki � r� : (16.33)

The divergence of (16.33) is

div .E � B/ D 2ki � 1
4

�
E* � B C E � B*

�
exp Œ�2!it C 2ki � r� : (16.34)

Performing the time and space average of (16.34)

hdiv .E � B/iT,L D 2ki � 1
4

�
E* � B C E � B*

�
˚ .!i; ki; T / : (16.35)

And the time and space average of the term J � E is

hJ � EiT,L D 1

4

�
J* � E C J � E*�˚ .!i; ki; T / : (16.36)

With Ohm’s Law (16.36) becomes

hJ � EiT,L D 1

4

�
�* C �

�
E � E*˚ .!i; ki; T / : (16.37)

where
� D � .k; !/ and �* D �*

�
k*; !*

�

In the succeeding discussion we will simply write !r D ! and kr D k.

16.3.3 Field Energy

With (16.31), (16.32), (16.35), and (16.37) the time and space average of the energy
transport (16.23) becomes

�2!i



"E2 C 1

�0
B2

�
C 2

*

k i �


1

�0

�
E* � B C E � B*

��

D � ��* C �
�
E2; (16.38)
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since the common factor
1

4
˚ .!i; ki; T / ¤ 0:

Equation (16.38) is the time and space averaged field energy equation for the wave.
In the presence of slight damping we may expand � .k; !/ around the real values

of k and ! and the form of the conductivity � D i�0 at propagation. The result is

� D .i�0/C i!i
@

@!
.i�0/C iki � @

@k
.i�0/C ı�; (16.39)

where we have used the shorthand notation gradk D @=@k and all the derivatives are
evaluated at the undamped condition. The term ı� is the change in the structure of
� due to damping and dispersion. The form of this change is dependent upon the
kinetic description of the matter.

With (16.39) equation (16.38) becomes

� * C � D �2!i
@

@!
.�0/ � 2ki � @

@k
.�0/C 2ı�: (16.40)

Then using (16.40) in equation (16.38) results in

�2!i



"E2 C 1

�0
B2
�

C 2ki �


1

�0

�
E* � B C E � B*�

�

D 2!i
@�0

@!
E2 C 2ki � @�0

@k
E2 � 2ı�E2: (16.41)

Combining the terms in (16.41) we have

� 2!i



"E2 C 1

�0
B2 C @�0

@!
E2

�

C 2 ki �


1

�0

�
E*B C E � B*

� � @�0

@k
E2

�

D �2ı�E2 (16.42)

We will able to simplify (16.42) if we find equations forB2 and E* �B + E�B*,
which involve only the electric field vector E.

From Faraday’s law in (16.8) we have

B* � .k � E/ D !B2: (16.43)

And from Ampère’s law, at the propagation condition (real k and !) we have
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k � B* D ��0�0E* �K !

c2
E* (16.44)

Then
E � �k � B*

� D ��0�0E
2 �K !

c2
E2: (16.45)

Exchanging the dot and the cross in the scalar triple product in (16.45) results in

E � �k � B*
� D .E � k/ � B*

D �B* � .k � E/ :

Then (16.45) becomes

B* � .k � E/ D �0�0E
2 CK

!

c2
E2: (16.46)

Using (16.43) in (16.46) we have

B2 D
�
�0

!
�0 C K

c2

�
E2: (16.47)

Then equation (16.42) becomes

�2!i



2K"0 C �0

!
C @�0

@!

�
E2

C2 ki �


1

�0

�
E*B C E � B*

� � @�0

@k
E2

�

D �2ı�E2 (16.48)

To obtain the second term on the left hand side of (16.48) in a form involving
only E2 is more involved. From Faraday’s Law

E* � B C E � B* D 1

!

�
2kE2 � �

E* � k
�

E � .E � k/E*
�
: (16.49)

Since E2 is not a function of k,

@

@k

�
E2k2

� D 2E2k (16.50)

and
@

@k
.E � k/

�
E* � k

� D �
E* � k

�
E C .E � k/E*: (16.51)
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Then

1

�0

�
E* � B C E � B*� D 1

�0!

@

@k

�
E2k2 � .k � E/

�
E* � k

��

D 1

�0!

@

@k

�
E � �1k2 � k k

� � E*
�
: (16.52)

From (16.10) we have

k21 � kk D D .k; !/C
�
!�0�0 C !2

c2
K

�
1: (16.53)

Then, using (16.9), equation (16.52) becomes

1

�0

�
E* � B C E � B*

� D 1

�0!

@

@k


�
!�0�0 C !2

c2
K

�
E2

�
(16.54)

Since ! depends on k and properties of the medium, carrying out the k�gradient in
(16.54) results in

1

�0

�
E* � B C E � B*

� D

�
2K"0 C �0

!
C @�0

@!

�
@!

@k
C @�0

@k

�
E2: (16.55)

Then the second line in (16.48) becomes

2 ki �


1

�0

�
E* � B C E � B*

� � @�0

@k
E2

�

D 2 ki �

�
2K"0 C �0

!
C @�0

@!

�
E2

�
@!

@k
; (16.56)

With (16.56) equation (16.48) becomes

�2!i



2K"0 C �0

!
C @�0

@!

�
E2

C2 ki �

�
2K"0 C �0

!
C @�0

@!

�
E2

�
@!

@k

D �2ı�E2: (16.57)

From (16.31), (16.32), and (16.35) we know that the factors .�2!i/ and .2 ki/

result respectively from the time and space average of the rate of change and
divergence of quadratic wave quantities.

The first line in (16.57) is then h@Ewave=@tiT,L, where
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hEwaveiT,L D Œ2K"0 C �0=! C @�0=@!�E2 (16.58)

is the time and space average of the wave energy Ewave in matter.
The second line in (16.57) is hdiv SwaveiT,L, where

hSwaveiT,L D �
.2K"0 C �0=! C @�0=@!/E

2
�
@!/@k (16.59)

is the time and space average of the flux of Ewave.
And the third line in (16.57) is then the time and space average of the loss of

Ewave to another form of the energy. Because total energy (electromagnetic field
plus particle energy) is conserved the loss term �2ı�E2 must logically represent
the transport of wave energy to the particles.

From (16.59) we see that

hSwaveiT,L D hEwaveiT,L @!/@k. (16.60)

The energy Ewave is then transported at a velocity

vgroup D @!/@k, (16.61)

which is the group velocity of the wave.
From our derivation of (16.57) we realize that only .2K"0 C �0=!/E

2 is the
field energy in the wave. We have, however, no understanding yet of the energy
.@�0=@!/E

2.
Traditionally this is identified as the particle energy coherent with the wave. That

must be true because this term is quadratic in the space and time dependence of the
wave and it vanishes if �0 D 0. But recognizing this does not serve to identify the
portion of the particle energy involved.

We also must ask for the meaning of the loss term �2ı�E2. How is the energy
transported to the particles?

These questions are considered in detail in [42] for a plasma.
As we pointed out in Chap. 15 a treatment of the motion of charged particles

in condensed matter requires quantum mechanics. We shall, therefore, content
ourselves with the treatment of a plasma.

16.3.4 Particle Energy

In Chap. 7 Sect. 7.5 we introduced a Klimontovich level description of a plasma.
If we ensemble average the Klimontovich level equations we obtain a kinetic
description of the plasma [23].



386 16 Waves in Dispersive Media

At the ensemble averaged level we can identify macroscopic quantities such as
particle densities

˝
N (˛)

˛
, particle velocities

˝
v(˛)

˛
, and particle kinetic energies

˝
T (˛)

˛
,

for the ˛th species of particle in the plasma. The brackets h� � � i with no subscripts
indicate ensemble average. These macroscopic, ensemble averaged quantities are
functions of spatial coordinates and the time.

In kinetic theory we traditionally separate the velocity v of particles of the ˛th
species into what is called the peculiar velocity V(˛) and the average velocity

˝
v(˛)

˛

according to
V(˛) D v � ˝

v(˛)
˛
: (16.62)

We can then separate the kinetic energy into a hydrodynamic kinetic energy of the
˛th species of particle, defined as

T
(˛)

hydro D 1

2
m(˛)

˝
N (˛)

˛ ˝
v(˛)

˛ � ˝v(˛)
˛

(16.63)

and a thermal kinetic energy, or simply thermal energy,

T
(˛)

thermal D 1

2
m(˛)

˝
N (˛)

˛ ˝
V(˛) � V(˛)

˛
: (16.64)

When the average velocity results from a wave perturbation on the background
plasma, with properties which vary on longer time and space scales than the waves,
then both T (˛)

hydro and T (˛)
thermal contain contributions that are second order in wave

quantities.

There will then be contributions to
D
@T

(˛)
hydro=@t

E

T,L
and

D
@T

(˛)
thermal=@t

E

T,L
that result

in functions proportional to ˚ .!i; ki; T /, as we found in our treatment of the field
equations.

We must simply acknowledge that the traditional separation of the particle kinetic
energy into T (˛)

hydro and T (˛)
thermal does not neatly separate wavelike contributions from

background contributions.
Our time and space average does, however, permit us to separate particle kinetic

energy terms from changes in the state of the background plasma, which involve
longer space and time scales. The result is that the coherent particle energy term
appearing in Ewave is

@�0

@!
E2 D

X

˛

�D
T

(˛)
hydro

E

T,L
C
D
T

(˛)
thermal

E

T,L

�
: (16.65)

We then identify Ewave as the total energy in the (almost) monochromatic wave,
which is the sum of the electromagnetic field energy and the coherent particle
energy.

The changes in the state of the background plasma can be separated into
contributions to the particle density and to the contribution of the ˛th particle
species to the electrical conductivity � (˛), which vary on time and space scales long
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compared to those of the wave. We can finally identify the loss term �2ı�E2 in
(16.57) as a change in the state of the background plasma.

The absorption process of the electromagnetic wave energy in a plasma then
follows a logical path beginning with the excitation of a particle motion coherent
with the wave, which is not separable into traditional hydrodynamic and thermal
contributions. This energy then passes to the background plasma, changing the
particle density and temperature.

The transport of the coherent particle energy to the heating of the background
matter results as this coherence is lost. This is a result of shearing forces in the
plasma [42].

16.4 Note on Group Velocity

We consider an electromagnetic pulse moving in a dispersive medium. The pulse,
which we take to have a finite spatial extent, is not a plane wave, but we may use a
Fourier representation of the pulse in terms of waves of the form

exp Œi! .k/ t � ikx� : (16.66)

We will write the wave pulse in terms of waves (16.66) for a range of wave vectors
ranging between k0 � 	k and k0 C 	k where k0 is real and 	k � k0. We define
!0 D ! .k0/. The properties of the dispersive medium and the form (transverse or
longitudinal) of the wave will determine the function ! .k/.

We then represent the electric field vector as the real part of

E .x; t/ D 1p
2�

Z k0+	k

k0-	k
dkC .k/ exp Œi! .k/ t � ikx� : (16.67)

The amplitudes of the waves will vary only slightly if the dispersion is small. So we
may take C .k/ � C .k0/.

Because the frequency differs only slightly from !0, we write a Taylor series for
! .k/ and hold only first order terms.

! .k/ � !0 C @!

@k

ˇ
ˇ
ˇ̌
0
.k � k0/ ; (16.68)

where the derivative in (16.68) is evaluated at k D k0. Then the waves in (16.66)
can be written as

exp Œi! .k/ t � ikx�

� exp Œi!0t � ik0x� exp



i
@!

@k

ˇ
ˇ
ˇ
ˇ
0
.k � k0/� i .k � k0/ x

�
: (16.69)
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We began with a set of carrier waves, which are the plane waves in the integrand
in (16.67). The approximation in (16.69) limits us, however, to a single carrier wave,
whose complex exponential expression is exp Œi!0t � ik0x�. This will make our
final result more easily understood. But we must acknowledge the approximation.

The integral for the electric field in (16.67) then has the form

E .x; t/ � ReC .k0/ exp Œi!0t � ik0x� � � �

� � �
Z 	k

-	k
d
 exp

h
iv(0)

groupt � ix
i

; (16.70)

where we have introduced the dummy of integration 
 D k � k0 and

v(0)
group D @!

@k

ˇ
ˇ̌
ˇ
0

(16.71)

is the group velocity for the pulse we are considering. The group velocity is
a consequence of the dispersion relation for plane waves propagating in the
medium. That is, it is a property of the medium and of the character (transverse
or longitudinal) of the propagating plane waves.

The integral in (16.70) results in

Z 	k

-	k
d
 exp

h
iv(0)

groupt � ix
i



D 2	k
1

	k
h
v(0)

groupt � x
i sin

h
	k

�
v(0)

groupt � x
i
: (16.72)

With (16.72) our representation of the electric field (16.70) is

E .x; t/ � 2
h
v(0)

groupt � x
i sin

h
	k

�
v(0)

groupt � x
i

� � �

� � � ReC .k0/ exp
h
k0

�
iv(0)

phaset � ix
i
; (16.73)

where
v(0)

phase D !0

k0

is the phase velocity of the carrier wave.
In Fig. 16.2 we have plotted (16.73) for the initial time t D 0 and a subsequent

time t > 0.
From Fig. 16.2 we see that both the pulse and the carrier wave move to the right.

The phase velocity v(0)
phase of the carrier wave exceeds the pulse velocity v(0)

group. But
the carrier wave itself does not transport the energy.
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Fig. 16.2 The envelope and
carrier wave for a finite wave
pulse in a dispersive medium
plotted for time t D 0 (solid)
and t > 0 (dotted)

16.5 Application

To apply what we have learned in this chapter to the motion of waves and the
transport of energy in dispersive media we must identify the electrical conductivity
for the medium. This requires having a kinetic description for the medium from
which we may calculate the velocities of the charge carriers in the presence of a
field associated with a propagating electromagnetic wave.

When we have the (wavelike) velocities of the charge carriers v(˛) we can obtain
the electrical current from each species of charge carrier as

J(˛) D N (˛)Q˛v(˛) C n(˛)Q˛u(˛) (16.74)

In (16.74) the quantities J(˛), v(˛), and the particle density n(˛) are wave quantities
with time and space dependence of the form exp .i!t � ik � r/. The particle density
N (˛) is the background, unperturbed density of the particle species ˛ and u(˛) is a
possible streaming velocity of the particles of species ˛, which is not a wavelike
quantity.

The current density in (16.74) is then the first order contribution in wavelike
quantities arising from the presence of a propagating wave in the medium. The first
order wavelike current density in (16.74) will be proportional to the wave fields and
can be written, using Maxwell’s Equations, as proportional to the electric field of
the wave. That is

J(˛) D � (˛)E (16.75)

At the propagation condition we have relationships between the wave vector k
and the electric field component E for either longitudinal or transverse waves and for
their orientation with respect to streaming velocities and possible magnetic fields.
We can then obtain the appropriate form of the conductivity for the undamped,
propagating condition for a particular wave. We identify this as i� (˛)

0 for the
species ˛. For the plasma

�0 D
X

˛

�
(˛)
0
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With the electrical conductivity we are then in a position to calculate the field
and particle energies in the wave. With the help of (16.58) we have the field energy

Efield D
�
2"C �0

!


E2; (16.76)

in the transverse wave or
Efield D ."/E2 (16.77)

in the longitudinal wave. And we have the particle energy

Eparticle D


@�0

@!

�
E2 (16.78)

in the wave.
We have limited our discussion to a plasma in order to avoid entering into

discussions of the quantum theory. These would simply take us beyond the scope of
this text.

We can simplify our treatment of the plasma in order to obtain equations that
are tractable for exercises by considering what is called a cold plasma. In the cold
plasma the ions are consider stationary (their temperature is then 0 K).

The electrons are then the only charge carriers free to move.We then drop
the designation ˛ for the separate species. We consider further that the electrons
have a dominant background density, which is uniform in space and Maxwellian
in velocities. The background electron density is N and the perturbed, wavelike
contribution to the density is n.

We assume that there is also a constant external magnetic field B0 present in the
plasma and define a cyclotron frequency vector

� D QB0

m
: (16.79)

And we assume that the electrons have a streaming velocity u.
We consider that the plasma is perturbed by an almost monochromatic, propagat-

ing wave. Electric field associated with the propagating wave is of the form (16.26),
which serves to define the vector E.

The wavelike component of the perturbed electron velocity, which has the time
and space dependence of the wave, is ([74], p. 120)

v D �Q
m

1

˝2 � .! � k � u/2

�
�i .! � k � u/



E C 1

!
u � .k � E/

�

C� �



E C 1

!
u � .k � E/

�

Ci ��

.! � k � u/
�



E C 1

!
u � .k � E/

��
: (16.80)
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wherem is the electron mass and the expansion has been carried out to first order in
the wave quantities.

Conservation of charge in this perturbed, cold plasma is

i!n � iNk � v � ink � u D 0

from which the wavelike number density is

n D Nk � v
.! � k � u/

(16.81)

From (16.74) is

J D NQv CQ
Nk � v

.! � k � u/
u: (16.82)

Using (16.75) we can identify the electrical conductivity and calculate the field
and particle energies in the wave.

The character of the wave we consider, whether longitudinal or transverse, and
the properties of the plasma supporting the wave will enter the dispersion relation
for the wave, equation (16.20) or (16.21).

A useful parameter in considering electron waves in a plasma is the electron
plasma frequency

!p,e D
s
NQ2

"0m
: (16.83)

If the ions are allowed to move in the model, then there will be a corresponding ion
plasma frequency with ion variables replacing the electron variables in (16.83).

16.6 Summary

In this chapter we have taken up a detailed picture of the transport of electromagnetic
energy in dispersive media. To avoid the quantum mechanical treatment of the
charge motion that would be necessary in the solid state of matter, we conducted our
final treatment for a plasma. This provided us insight into the form of the coherent
particle energy associated with the wave and the mechanism by which the coherent
energy is finally lost to the background plasma.

The mathematical form of the expression for the total wave energy, however,
emerges from Maxwell’s Equations and requires no particle kinetic description.
Therefore, we can still claim that there is a coherent particle kinetic energy
associated with a wave moving through solid matter. We are simply lacking an
understanding of what part of the particle kinetic energy is the coherent energy.

We recognize that in a solid the loss of energy from a wave to the background
state is a loss to the vibrational energy of the crystal. This is an electron-phonon
scattering (see e.g. [47], p. 175).
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In Appendix J we present a more general derivation of the total wave energy
density and transport. The derivation there does not consider an explicit time and
space average and holds the tensor character of the conductivity. The physics
remains, however, unchanged for the plasma.

Exercises

16.1. We consider a simplification of the cold plasma. We set � D u D 0. Under
these circumstances,

(a) What is the electrical conductivity of the plasma?
(b) For the longitudinal wave find the wave frequency, the coherent particle energy

associated with the wave, and the total wave energy.
(c) For the transverse wave find the wave frequency, the group velocity (and show

it is < c), the coherent particle energy associated with the wave, and the total
wave energy.

16.2. Consider now a cold plasma with u ¤ 0 but still with � D 0. And choose
the direction of propagation to be along the stream velocity u. Then k � u D ku.

(a) What is the electrical conductivity of the plasma for the longitudinal wave? For
the transverse wave?

(b) For the longitudinal wave find the wave frequency, The coherent particle energy
associated with the wave, and the total wave energy.

(c) For the transverse wave find the wave frequency, the group velocity (and show
it is < c), the coherent particle energy associated with the wave, and the total
wave energy.

16.3. Consider now a cold plasma with u ¤ 0 and with � ¤ 0. Choose uk� and
the direction of propagation of the wave to be along the stream velocity u. Then
k � u D ku. Consider only longitudinal waves.

a) What is the electrical conductivity of the plasma for the longitudinal wave?
b) For the longitudinal wave find the wave frequency, the coherent particle energy

associated with the wave, and the total wave energy.



Appendix A
Vector Calculus

A.1 Differential Operators

Rectangular Coordinates

grad˚ D Oex
@˚

@x
C Oey

@˚

@y
C Oez

@˚

@z
(A.1)

div F D @Fx

@x
C @Fy

@y
C @Fz

@z
(A.2)

curl F D Oex

�
@Fz

@y
� @Fy

@z

�
C Oey

�
@Fx

@z
� @Fz

@x

�

C Oez

�
@Fy

@x
� @Fx

@y

�
(A.3)

r2˚ D @2˚

@x2
C @2˚

@x2
C @2˚

@x2
: (A.4)

Cylindrical Coordinates

grad˚ D Oer
@˚

@r
C Oe# 1

r

@˚

@#
C Oez

@˚

@z
(A.5)

div F D 1

r

@

@r
.rFr/C 1

r

@F#

@#
C @Fz

@z
(A.6)

curl F D Oer

�
1

r

@Fz

@#
� @F#

@z

�
C Oe#

�
@Fr

@z
� @Fz
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�

C Oez
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r

�
@

@r
.rF#/ � @Fr

@#

�
(A.7)
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r2˚ D 1

r

@

@r

�
r
@˚

@r

�
C 1

r2

@2˚

@#2
C @2˚

@z2
: (A.8)

Spherical Coordinates

grad˚ D Oer
@˚

@r
C Oe# 1

r sin �

@˚

@#
C Oe� 1

r

@˚

@�
(A.9)

div F D 1

r2

@
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�
r2Fr

�C 1
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C 1

r sin�

@

@�

�
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�
(A.10)

curl F D Oer
1

r sin �

�
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@�
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C Oe# 1
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(A.11)

r2˚ D 1

r2

@

@r

�
r2 @˚

@r

�
C 1

r2 sin2 �

@2˚

@#2

C 1

r2 sin �

@

@�

�
sin �

@˚

@�

�
: (A.12)

A.2 Differential Operator Identities

div grad˚ D r2˚ (A.13)

div curl F D 0 (A.14)

curl grad˚ D 0 (A.15)

curl curl F D grad div F � r2F (A.16)

grad .˚�/ D � grad˚ C ˚ grad� (A.17)

grad .F � G/ D .F � grad/G C F � .curl G/

C .G � grad/F C G � .curl F/ (A.18)

div .˚F/ D .grad˚/ � F C ˚ div F (A.19)

div .F � G/ D .curl F/ � G � .curl G/ � F (A.20)

curl .˚F/ D .grad˚/ � F C ˚ curl F (A.21)

curl .F � G/ D .div G/F � .div F/G

C .G � grad/F � .F � grad/G (A.22)



Appendix B
Dirac Delta Sequences

Here are some examples of ı� sequences. The most useful in physics are the first
three.

(a.)
1

2�

Z C1

�1
dk exp

�
ik
�
x � x0�	 D ı

�
x � x0� (B.1)

(b.)

�
1

2�

�3 Z C1

�1

Z C1

�1

Z C1

�1
d3k exp

�
ik � �r � r0�	 D ı

�
r � r0� (B.2)

(c.)

div grad

�
1

jr � r0j
�

D �4�ı �r � r0� (B.3)

(d.)

lim
a!0

�
1

�1=2˛

�
e

� x2

a2 D ı .x/ (B.4)

(e.)

lim
a!0


˛
�

� sin2
�
x
˛

�

x2
D ı .x/ (B.5)

(f.)

lim
a!0


˛
�

� 1

.x2 C ˛2/
D ı .x/ (B.6)
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Appendix C
Divergence and Curl of B

We begin with the integral form of the magnetic field (5.47)

B .r/ D �0

4�

Z

V
grad

�
1

jr � r 0j
�

� J0dV 0 (C.1)

Using (A.20) the divergence of (C.1) is

div B .r/ D �0

4�

Z

V
J0 � curl grad

�
1

jr � r0j
�

dV 0

D 0; (C.2)

since curl grad � 0. Therefore
div B D 0 (C.3)

Taking the curl of B with respect to the field coordinates, we have

curl B .r/ D ��0

4�

Z

V;
dV 0 curl

�
J0 � grad

�
1

jr � r0j
��

(C.4)

Since J0 is independent of r, using (A.22) we have

� curl

�
J0 � grad

�
1

jr � r0j
��

D �J0 div grad

�
1

jr � r0j
�

C �
J0 � grad

�
grad

�
1

jr � r0j
�

D 4�J0ı
�
r � r0� � �

J0 � grad0� grad

�
1

jr � r0j
�
: (C.5)

Where we have used (2.110) and the fact that grad f .r � r0/ D � grad0 f .r � r0/.
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Now, we note that

div0
�

J0 grad

�
1

jr � r0j
��

D �
div0 J0� grad

�
1

jr � r0j
�

C �
J0 � grad0� grad

�
1

jr2 � r1j
�

D �
J0 � grad0� grad

�
1

jr2 � r1j
�
; (C.6)

since, in the static situation
div0 J0 D 0: (C.7)

Then (C.5) becomes

�curl
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��

D 4�J0ı
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J0 grad
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1
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(C.8)

and

curl B .r/ D �0

Z

V
J0ı
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r0 � r
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dV 0 � �0
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V
div0

�
J0 grad
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1

jr � r0j
��

dV 0
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r; r0�	 dV 0: (C.9)

where

G˛
�
r; r0� D @

@x˛

�
1

jr2 � r1j
�

(C.10)

is a scalar. Applying Gauss’ Theorem,

Z

V
div0 �J0G˛

�
r; r0�	 dV 0 D

I

S

J0G˛
�
r; r0� � dS0: (C.11)

But here S is the surface of the conductor carrying the current density J0. The current
density vector is parallel to this surface everywhere. Therefore J0G˛ .r; r0/ �dS0 D 0

everywhere and
curl B .r/ D �0J .r/ : (C.12)



Appendix D
Green’s Theorem

Green’s Theorem is a valuable integral theorem involving analytic functions.

Theorem D.1. Green’s Theorem. If ˚ and � are analytic everywhere within V
then Z

V

�
˚ 52 � � � 52 ˚

	
dV D

I

S

Œ˚ grad� � � grad˚� � dS

Proof. The divergence of the product ˚F is

div˚F D ˚ div F C grad˚ � F: (D.1)

With F D grad� we then have

˚ 52 � D div .˚ grad�/ � grad˚ � grad�;

and
� 52 ˚ D div .� grad˚/ � grad� � grad˚:

Then, using Gauss’ Theorem

Z

V

�
˚ 52 � � � 52 ˚

	
dV D

Z

V
div Œ˚ grad� � � grad˚� dV

D
I

S

Œ˚ grad� � � grad˚� � dS:
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Appendix E
Laplace’s Equation

Theorem E.1. If˚1 and˚2 are solutions of Laplace’s equation, then .a˚1 C b˚2/

is as well.

Proof. Since the Laplacian is a linear operator

52 .a˚1 C b˚2/ D a 52 ˚1 C b 52 ˚2

D 0:

Theorem E.2. If 52˚ D 0 in a region V and ˚ D 0 on the surface S of V , then
˚ D 0 everywhere in V .

Proof. Since 52˚ D 0,
˚ 52 ˚ D 0;

and Z

V
˚ 52 ˚dV D 0:

From (D.1)

˚ 52 ˚ D div .˚ grad˚/ � grad˚ � grad˚ D 0:

by hypothesis. Then

0 D
Z

V
Œdiv .˚ grad˚/ � grad˚ � grad˚� dV

D
I

S

.˚ grad˚/ � dS �
Z

V
jgrad˚ j2 dV (E.1)

using Gauss’ Theorem.
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402 E Laplace’s Equation

Since ˚ D 0 on S , I

S

.˚ grad˚/ � dS D 0;

and Z

V
jgrad˚ j2 dV D 0 (E.2)

Now jgrad˚ j2 � 0. Therefore, in order for the volume integral (E.2) to vanish,

grad˚ D 0

in V . That is ˚ D constant in V . But ˚ D 0 on the boundary. Therefore ˚ D 0

in V .

Corollary E.1. If 52˚ D 0 in a region V and @˚=@n D 0 on the surface S of V ,
then ˚ D constant in V .

Proof. As in the proof of Theorem E.2,

0 D
I

S

.˚ grad˚/ � dS �
Z

V
jgrad˚ j2 dV:

Since @˚=@n D On � grad˚ D 0; grad˚ D 0 on S . Therefore

I

S

.˚ grad˚/ � dS D 0;

and Z

V
jgrad˚ j2 dV D 0:

So ˚ D constant in V .

Corollary E.2. If 52˚ D 0 in all space and r˚ .r/ ! function of .#; �/ alone as
r ! 1 then ˚ D 0 everywhere.

Proof. By hypothesis

˚ D f .#; �/

r

on S . Then
@˚

@r
D �f .#; �/

r2

on S . On the surface at infinity

@˚

@r
D @˚

@n
D On � grad˚
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and
On � grad˚dS D grad˚ � dS:

Therefore I

S

˚ grad˚ � dS _ �
Z

˝

f .#; �/

r

f .#; �/

r2
r2d˝:

Here we have written the differential surface area as r2d˝ where ˝ is the solid
angle with d˝ D sin �d#d�. Then

I

S

˚ grad˚ � dS _ �1
r

Z

˝

jf .#; �/j2
r

d˝;

and

lim
r!1

1

r

Z

˝

jf .#; �/j2
r

d˝ D 0:

Therefore I

S

˚ grad˚ � dS D 0:

Then, using (E.1), which is valid if ˚ satisfies Laplace’s Equation, we have

Z

V
jgrad˚ j2 dV D 0

and, as a consequence,
grad˚ D 0

and
˚ D constant

in V . Then, since we require also that limr!1 r˚ is independent of r , the only
constant value of ˚ that is possible is ˚ D 0.

Theorem E.3. If 52˚ D 0 in V and ˚ takes on specified values on the surface S
bounding V , then if a solution exists for ˚ it is unique.

Proof. Assume ˚1 and ˚2 are two distinct solutions. Define

˚ D ˚1 � ˚2:

Then
52˚ D 52˚1 � 52˚2 D 0:

Since ˚1 and ˚2 are solutions to the same problem they have the same values on
the boundary. Therefore ˚ D 0 on S . Then from Theorem E.2 ˚ D 0 everywhere
in V . This is true if and only if ˚1 D ˚2.



404 E Laplace’s Equation

Theorem E.4. If r and r0 are position vectors from the origin in V , then

52 1

jr � r0j D 0

if r ¤ r0.

Proof. See exercises in Chap. 2.

Theorem E.5. If˚ is continuous and has continuous first derivatives at r D r0 and
SR is the surface of a sphere of radius R centered at r0 then

lim
R!0

I

SR

�
˚ grad

1

jr � r0j � 1

jr � r0j grad˚

�
� dS D �4�˚ �r0�

Proof. Since ˚ is continuous and has continuous first derivatives, R can be chosen
so small that ˚ is a constant (or deviates from a constant value by an amount < ")
over S . Then the integral above is

˚
�
r0�
I

SR

grad
1

jr � r0j � dS � grad˚
�
r0� �

I

SR

1

jr � r0jdS:

Here ˚ .r0/ is the value of ˚ at r and, therefore, the value of ˚ on SR.
Now (see exercises in Chap. 2)

grad
1

jr � r0j D r0 � r

jr � r0j3 :

And, since dS points outward from the volume centered on r0, and the point r is the
location of dS,

dS D r0 � r
jr � r0jdS:

Then

grad
1

jr � r0j � dS D � 1

R2
dS D �d˝;

the differential solid angle (see proof of corollary E.2), and the first integral becomes

˚
�
r0�
I

SR

grad
1

jr � r0j � dS D �˚ �r0�
I

SR

d˝

D �4�˚ �r0� :

The second integral is
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grad˚
�
r0� �

I

SR

1

jr � r0jdS D grad˚
�
r0� �

I

SR

1

R

r0 � r
R

dS

D grad˚
�
r0� �

I

SR

�
r0 � r

�
d˝:

This integral vanishes by symmetry. For every r on the surface there is another point
diametrically opposed, which produces a contribution which is the negative of that
from r.
Therefore

lim
R!0

I

SR

�
˚ grad

1

jr � r0j � 1

jr � r0j grad˚

�
� dS D �4�˚ �r0�

Theorem E.6. If 52˚ D 0 in V and r0 is a point in V , then

˚
�
r0� D � 1

4�

I

S

�
˚ grad

1

jr � r0j � 1

jr � r0j grad˚

�
� dS;

where S bounds V .

Proof. We divide V into the regions V � O and O , where the region O is a very
small spherical region centered on r0 that we will shrink to zero. Green’s Theorem,
written for the region V �O is

Z

V-O

�
˚ 52 � � � 52 ˚

	
dV D

I

S+O

Œ˚ grad� � � grad˚� � dS:

The region V � O is bounded by the original boundary S and the surface
surrounding r0.
We now choose

� D 1

jr � r0j :

Since the small sphere surrounding the point r0 has been eliminated, from Theo-
rem E.4 we have then

52� D 0:

And, because 52˚ D 0,

Z

V-O

�
˚ 52 � � � 52 ˚

	
dV D 0:
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Then

0 D
I

S

�
˚ grad

1

jr � r0j � 1

jr � r0j grad˚

�
� dS

�
I

O

�
˚ grad

1

jr � r0j � 1

jr � r0j grad˚

�
� dS;

the negative sign coming from the the convention on dS as pointing out of the
original volume, i.e. into O . From Theorem E.5 the integral over O is �4�˚ .r0/.
Then

˚
�
r0� D � 1

4�

I

S

�
˚ grad

1

jr � r0j � 1

jr � r0j grad˚

�
� dS



Appendix F
Poisson’s Equation

Theorem F.1. If 52˚1 D �g1 and 52˚2 D �g2 then

52 .˚1 C ˚2/ D � .g1 C g2/ :

Proof. The proof is obvious.

Theorem F.2. If 52˚ D �g and ˚ takes on specified values on the surface S of
V , then ˚ is uniquely determined in V .

Proof. Assume that there are two separate solutions ˚1 and ˚2 satisfying

52˚1 D �g

and
52˚2 D �g

in V . If we define
˚ D ˚1 � ˚2;

then
52˚ D 0

from Theorem F.1. Because˚1 and˚2 have the same values on the surfaceS ,˚ D 0

on the surface S . Therefore, from Theorem E.2 ˚ D 0 throughout V .

Theorem F.3. If 52˚ D �g in V , then

˚ .r/ D 1

4�

Z

V

g .r0/
jr � r0jdV 0

is a particular solution.

Proof. We again exclude the point r0 from the volume V by enclosing r0 within a
small volume O . Then, if the theorem is valid we have
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408 F Poisson’s Equation

52˚ .r/ D 1

4�

Z

V-O
g
�
r0�52 1

jr � r0jdV
0

C 1

4�

Z

O
g
�
r0�52 1

jr � r0jdV
0:

Since the integral is over the primed coordinates, 52 can be brought inside the
integral where it does not operate on g .r0/. The first integral on the right hand side
is zero from Theorem E.4, since throughout the volume V �O we have r ¤ r0.
Since

52 1

jr � r0j D 502 1

jr � r0j
(see exercises Chap. 2), we can write the second integral on the right hand side as

1

4�

Z

O
g
�
r0�52 1

jr � r0jdV 0 D 1

4�

Z

O
g
�
r0�502 1

jr � r0jdV
0:

Since this integral vanishes everywhere except when r D r0, we can exchange the
primed and unprimed variables in the integration and

1

4�

Z

O
g
�
r0�52 1

jr � r0jdV 0 D 1

4�

Z

O
g .r/52 1

jr � r0jdV:

The volume O is a very small (infinitesimal) volume, and, since � is a continuous
function of spatial coordinates, we may consider it to be constant throughout the
volumeO . Gauss’ Theorem then results in

1

4�

Z

O
g .r/52 1

jr � r0jdV

D 1

4�
g .r/

I

S0

grad
1

jr � r0j � dS

where SO is the surface around the volume O . Since

grad
1

jr � r0j � dS D �d˝

(see Theorem E.5), the integral becomes

1

4�
g .r/

I

S0

grad
1

jr � r0jdS D �g .r/ :

And the result is equal to 52˚ .r/. This establishes the theorem.



Appendix G
Helmholtz’ Equation

Theorem G.1. If
�52 CK2

�
˚1 D �h1 and

�52 CK2
�
˚2 D �h2 then

�52 CK2
�
.˚1 C ˚2/ D � .h1 C h2/ :

Proof. The proof is obvious.

Theorem G.2. If
�52 CK2

�
˚ D �h and ˚ takes on specified values on the

surface S of V , then ˚ is uniquely determined in V .

Proof. Assume that there are two separate solutions ˚1 and ˚2 satisfying

�52 CK2
�
˚1 D �h

and �52 CK2�˚2 D �h
in V . If we define

˚ D ˚1 � ˚2;

then �52 CK2
�
˚ D 0

from Theorem G.1. Because ˚1 and ˚2 have the same values on the surface S ,
˚ D 0 on the surface S . Therefore, from Theorem E.2 ˚ D 0 throughout V .

Theorem G.3. If
�52 CK2

�
˚ D �h in V , then

˚ .r/ D 1

4�

Z

V

h .r0/ exp .˙iK jr � r0j/
jr � r0j dV 0

is a particular solution.

Proof. We again exclude the point r0 from the volume V by enclosing r0 within a
small volume O . Then, if the theorem is valid we have
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410 G Helmholtz’ Equation

�52 CK2
�
˚ .r/ D 1

4�

Z

V�O
h
�
r0� �52 CK2

� exp .˙iK jr � r0j/
jr � r0j dV 0

C 1

4�

Z

O
h
�
r0� �52 CK2

� exp .˙iK jr � r0j/
jr � r0j dV 0:

Since the integral is over the primed coordinates, 52 can be brought inside the
integral where it does not operate on h .r0/. The first integral on the right hand side
is zero from Theorem E.4, since throughout the volume V �O we have r ¤ r0.
Since

�52 CK2
� exp .˙iK jr � r0j/

jr � r0j D �502 CK2
� exp .˙iK jr � r0j/

jr � r0j
(see exercises Chap. 2), we can write the second integral on the right hand side as

1

4�

Z

O
h
�
r0� �52 CK2� exp .˙iK jr � r0j/

jr � r0j dV 0

D 1

4�

Z

O
h
�
r0� �502 CK2

� exp .˙iK jr � r0j/
jr � r0j dV 0:

Since this integral vanishes everywhere except when r D r0, we can exchange the
primed and unprimed variables in the integration and

1

4�

Z

O
h
�
r0� �52 CK2

� exp .˙iK jr � r0j/
jr � r0j dV 0

D 1

4�

Z

O
h .r/

�52 CK2� exp .˙iK jr � r0j/
jr � r0j dV:

The volume O is a very small (infinitesimal) volume, and, since � is a continuous
function of spatial coordinates, we may consider it to be constant throughout the
volumeO . Gauss’ Theorem then results in

1

4�

Z

O
h .r/

�52 CK2
� exp .˙iK jr � r0j/

jr � r0j dV

D 1

4�
h .r/

I

S0

grad
exp .˙iK jr � r0j/

jr � r0j � dS

CK2

4�

Z

O
h .r/

exp .˙iK jr � r0j/
jr � r0j dV (G.1)

where SO is the surface around the volume O . As the volume O shrinks to zero
the distance between the points jr � r0j also shrinks to zero. Then, as the volumeO
shrinks to zero
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exp
�˙iK ˇˇr � r0ˇˇ� D 1; (G.2)

and the first integral on the right hand side of (G.1) becomes

1

4�
h .r/

I

S0

grad
exp .˙iK jr � r0j/

jr � r0j � dS D 1

4�
h .r/

I

S0

grad
1

jr � r0jdS: (G.3)

Since

grad
1

jr � r0j � dS D �d˝

(see Theorem E.5), the integral on the right hand side of (G.3) is

1

4�
h .r/

I

S0

grad
1

jr � r0jdS D �h .r/ : (G.4)

With (G.2) the second integral on the right hand side of (G.1) becomes

K2

4�

Z

O
h .r/

exp .˙iK jr � r0j/
jr � r0j dV D K2

4�

Z

O
h .r/

1

jr � r0jdV: (G.5)

For infinitesimal O and analytic h .r/ the integral on the right hand side of (G.5) is

K2

4�

Z

O
h .r/

1

jr � r0jdV D K2h .r/ lim
R!0

Z

O
RdR D 0.

Therefore using (G.4), (G.1) is

�52 CK2
� � 1

4�

Z

O
h .r/

exp .˙iK jr � r0j/
jr � r0j dV


D �h .r/ ;

which establishes the theorem.





Appendix H
Legendre’s Equation

The differential equation

d

dx

��
x2 � 1

� d

dx
Pn

�
� n .nC 1/Pn D 0 (H.1)

or
�
x2 � 1

� d2

dx2
Pn C 2x

d

dx
Pn � n .nC 1/Pn D 0 (H.2)

is Legendre’s Equation. It is solved by the polynomials

Pn .x/ D 1

2nnŠ

dn

dxn

�
x2 � 1

�n
; (H.3)

Which are the Legendre Polynomials. Our proof of this will follow the suggested
approach in ([16], p. 86).

We define the function
u .x/ D �

x2 � 1
�n
; (H.4)

for which we have the identity

�
x2 � 1� du

dx
D 2nx

�
x2 � 1

�n D 2nxu: (H.5)

We shall now show that the .nC 1/ order derivative of (H.5) produces Legendre’s
equation (H.2) for the polynomial

yn .x/ D dnu

dxn
D dn

dxn

�
x2 � 1

�n
; (H.6)

which differs from the nth order Legendre polynomial (H.3) by the constant factor
1= .2nnŠ/, which has no effect on the solution.

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3, © Springer-Verlag Berlin Heidelberg 2012

413



414 H Legendre’s Equation

By carrying out the derivatives we see that

d

dx

��
x2 � 1� du

dx

�
D 2x

du

dx
C �

x2 � 1� d2u

dx2
;

d2

dx2

��
x2 � 1� du

dx

�
D 2

du

dx
C 4x

d2u

dx2
C �

x2 � 1
� d3u

dx3
;

d3

dx3

��
x2 � 1� du

dx

�
D 6

d2u

dx2
C 6x

d3u

dx3
C �

x2 � 1� d4u

dx4
;

d4

dx4

��
x2 � 1� du

dx

�
D 12

d3u

dx3
C 8x

d4u

dx4
C �

x2 � 1
� d5u

dx5
;

:::

dn+1

dxn+1

��
x2 � 1� du

dx

�
D n .nC 1/

dnu

dxn

C 2 .nC 1/ x
dn+1u

dxn+1
C �

x2 � 1� dn+2u

dxn+2
: (H.7)

and

d

dx
.2nxu/ D 2nu C 2nx

du

dx
;

d2

dx2
.2nxu/ D 4n

du

dx
C 2nx

d2u

dx2
;

d3

dx3
.2nxu/ D 6n

d2u

dx2
C 2nx

d3u

dx3
;

:::

dn+1

dxn+1
.2nxu/ D 2n .nC 1/

dnu

dxn
C 2nx

dn+1u

dxn+1
: (H.8)

Then, equating the identities (H.7) and (H.8), we have

�
x2 � 1

� dn+2u

dxn+2
C 2x

dn+1u

dxn+1
� n .nC 1/

dnu

dxn
D 0: (H.9)

with (H.6) equation (H.9) becomes

�
x2 � 1� d2yn

dx2
C 2x

dyn

dx
� n .nC 1/ yn D 0: (H.10)

Multiplying (H.10) by 1= .2nnŠ/, we have
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�
x2 � 1

� d2Pn

dx2
C 2x

dPn

dx
� n .nC 1/ Pn D 0; (H.11)

which is Legendre’s Equation (H.2).





Appendix I
Jacobians

The Jacobian or Jacobian determinant is used to transform the integral

Z Z

R
f .x; y/ dxdy

performed over x and y in a region R in the .x; y/ plane into

Z Z

R0

f .u; v/ dudv

over u an v in a regionR0 defined by those variables.
Here we will perform the transformation in two steps for the sake of clarity. The

first step will transform only the y and the second only the x. We designate the first
transformation as from R to B and the second as from B to R0.

We write the first transformation step as

x D x

y D ˚ .v; x/ : (I.1)

We have illustrated this in the Fig. I.1, where we have drawn cells �Rij and�Bij in
the two regions R and B indicated in panels (a) and (b) of Fig. I.1.

In panel (a) we have the rectangular Cartesian grid of the .x; y/ plane. In panel
(b) we have the transformed grid. In this we assume that the partial derivative
@˚=@v D ˚v ¤ 0 everywhere.

The Riemann integral is

Z Z

R
f .x; y/ dxdy D lim

N!1;�Rij!0

NX

i,j

fij�Rij (I.2)
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418 I Jacobians

ΔRij ΔBij
a b

xi xi+w xi xi+w

yj+h

yj

y = Φ(vj + h, x)

y = Φ(vj, x)

Fig. I.1 Cells (a) �Rij and (b) �Bij in the regions R and B

D lim
N!1;�Bij!0

NX

i,j

fij�Bij (I.3)

where
fij D f

�
xi; yj

�
(I.4)

and

�Bij D
Z xiCw

xi

�
˚
�
vj; x

� �˚ �vj C h; x
�	

dx: (I.5)

Now

lim
h!0

˚ .v; x/ � ˚ .v C h; x/

h
D @˚

@v
D ˚v .v; x/ ; (I.6)

which, from (I.1) is

˚v .v; x/ D @y

@v
: (I.7)

Using (I.6) (I.5) becomes

�Bij D h

Z xi+w

xi

˚v
�Nvj; x

�
dx; (I.8)

in which Nvj is a point within the range of v chosen to best approximate the area.
Integrating over x we have

�Bij D hw˚v
�Nvj; Nxi

�
; (I.9)

where Nxi provides the best approximation to the area. We may recognize that (I.9)
is the central limit theorem. With (I.9) equation (I.3) becomes

Z Z

R
f .x; y/ dxdy D lim

N!1Ih;w!0

NX

i,j

f
� Nxi; ˚v

�Nvj; Nxi
��
hw˚v

�Nvj; Nxi
�
; (I.10)

since Nyj D ˚v
�Nvj; Nxi

�
. Taking the limits specified in (I.10) we have
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Z Z

R
f .x; y/ dxdy D

Z Z

B
f .x; v/ ˚v .v; x/ dxdv: (I.11)

We can now transform x in the same fashion. We define this step by

v D v

x D � .u; v/ : (I.12)

The result is
Z Z

R
f .x; y/ dxdy D

Z Z

R0

f .u; v/˚v�ududv; (I.13)

where

�u D @x

@u
: (I.14)

The Jacobian determinant is defined as

@ .x; y/

@ .u; v/
D det

2

6
6
4

@x

@u

@x

@v
@y

@u

@y

@v

3

7
7
5

D

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌

@x

@u

@x

@v
@y

@u

@y

@v

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ̌
: (I.15)

Then

@ .x; y/

@ .x; v/
D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

@x

@x

@x

@v
@y

@x

@y

@v

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

1
@x

@v

0
@y

@v

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

D @y

@v
; (I.16)

since x and y are independent variables. Likewise
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@ .x; v/

@ .u; v/
D

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

@x

@u

@x

@v
@v

@u

@v

@v

ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

D

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

@x

@u

@x

@v

0 1

ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ

D @x

@u
; (I.17)

since u and v are independent variables.
Jacobians obey a chain rule of the form

@ .x; y/

@ .u; v/
D @ .x; y/

@ .	; 
/

@ .	; 
/

@ .u; v/
: (I.18)

To establish the validity of (I.18) we consider the transformations

	 D � .x; y/ I 
 D  .x; y/

and
u D ˚ .	; 
/ I v D � .	; 
/ :

The partial derivatives in the Jacobian are then

@u

@x
D @˚

@	

@	

@x

@˚

@


@


@x

D ˚	�x C ˚
 x;

@u

@y
D ˚	�y C ˚
 y;

@v

@x
D �	�x C �
 x;

and
@v

@y
D �	�y C �
 y:

The Jacobian is then

@ .u; v/

@ .x; y/
D

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

@u

@x

@u

@y

@v

@x

@v

@y

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
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D @u

@x

@v

@y
� @u

@y

@v

@x

D �
˚	�x C ˚
 x

� �
�	�y C �
 y

�

� �˚	�y C ˚
 y
� �
�	�x C �
 x

�

D �
˚	�
 � ˚
�	

� �
�x y � �y x

�

D
ˇ
ˇ
ˇ
ˇ
˚	 ˚

�	 �


ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
�x �y
 x  y

ˇ
ˇ
ˇ
ˇ

D @ .u; v/

@ .	; 
/

@ .	; 
/

@ .x; y/
;

which establishes the chain rule for Jacobians.
Combining (I.7), (I.14), (I.16), (I.14), with (I.18) we then have

@ .x; y/

@ .u; v/
D @ .x; y/

@ .x; v/

@ .x; v/

@ .u; v/

D ˚v�u: (I.19)

With (I.19) (I.13) becomes

Z Z

R
f .x; y/ dxdy D

Z Z

R0

f .u; v/
@ .x; y/

@ .u; v/
dudv: (I.20)

Equation (I.20) provides a transformation from one integral into another.
This result can be extended in the same fashion to any number of variables. That

is

dx1dx2 � � �dxn D @ .x1; x2; � � � ; xn/
@ .	1; 	2; � � � ; 	n/ d	1d	2 � � �d	n:





Appendix J
Dispersion

This treatment of the energy in a damped and dispersed wave in a nonmagnetic
medium will be more general than the treatment in Chap. 16 Here we will consider
the tensor character of the conductivity and conduct an expansion of the wave
equation in Fourier space. Our discussion parallels that of [4] and [90]. Abraham
Bers has also provided a short treatment of this general situation in [7].

Our treatment here may be considered to be more elegant than that in Chap. 16.
But the results are fundamentally unchanged.

As in our treatment in Chap. 16, we will again consider waves

E .r; t/ D 1

2
ŒE exp .i!t � ik � r/

C E* exp
��i!*t C ik* � r

�	
(J.1)

and

B .r; t/ D 1

2
ŒB exp .i!t � ik � r/

C B* exp
��i!*t C ik* � r

�	
; (J.2)

that are very nearly monochromatic. As we pointed out in Chap. 16 the field vectors
E and B in (J.1) and (J.2), which are not functions of .k; !/.

We accept Ohm’s Law

J .k; !/ D � .k; !/ � E (J.3)

as valid and base our treatment on the Fourier transformed form of Maxwell’s
Equations in (16.8). The wave vectors E or B must then satisfy

D .k; !/ � .E or B/ D 0; (J.4)

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
DOI 10.1007/978-3-642-23205-3, © Springer-Verlag Berlin Heidelberg 2012

423



424 J Dispersion

where

D .k; !/ D
�
k2 � !2

c2
K

�
1 � kk C i!�0�; (J.5)

whereK is the dielectric constant for the matter.
Equation (J.4) is the wave equation in Fourier space. Written for the electric field

in Einstein subscript notation the wave (J.4) is

��
k2 � !2

c2
K

�
ı˛ˇ � k˛kˇ C i!�0�˛ˇ

�
Eˇ D 0 (J.6)

For the undamped and undispersed case, k and ! are real. Taking the Hermitian
conjugate (adjoint) of (J.6) for real k and ! we have

Eˇ

��
k2 � !2

c2
K

�
ıˇ˛ � kˇk˛ � i!�0� *

ˇ˛

�
D 0 (J.7)

The wave (J.6) and (J.7) are identical if

� *
ˇ˛ D ��˛ˇ; (J.8)

which is the requirement that the conductivity tensor is antihermitian at the
undamped condition.

The dispersion relation for undamped and undispersed plane waves is

det D D 0: (J.9)

We are interested in wavelike solutions that differ only slightly from the
undamped and undispersed solutions. For these waves there will be imaginary
contributions to k and !, which we shall simply identify as �k and�!. There will
also be a change in the conductivity tensor � resulting from the imaginary additions
to k and ! as well as the addition of a small structural change to the form of � . The
wave (J.6), for the slightly damped wave is

0 D
("

.k C�k/2 � .! C�!/2

c2
K

#

1 � .k C�k/ .k C�k/

Ci .! C�!/�0 .� C�� /
o

� E: (J.10)

If we multiply (J.10) on the left by E* and hold terms to first order in � we have

0 D E* �
��
2k ��k � 2!�!

c2
K

�
1 � k�k ��kk

C i�!�0 � C !�0�� � � E: (J.11)
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From the Fourier Transformed form of Maxwell’s Equations (16.8) we find that

!�k � �E* � B C E � B*
�

D 2�k � kE2 � E* � k�k � E � E � k�k � E*; (J.12)

and

!

�
"E2 � 1

�0
B2

�
D iE* � � � E (J.13)

for real k and !.
With (J.12) and (J.13) equation (J.11) becomes

��!
�
"E2 C 1

�0
B2

�
C�k � 1

�0

�
E* � B C E � B*

�

D �iE* ��� � E (J.14)

We now identify
�! D i!i and �k D iki: (J.15)

Then equation (J.14) is

�!i

�
"E2 C 1

�0
B2

�
C ki � 1

�0

�
E* � B C E � B*

�

D �E* ��� � E: (J.16)

If we add (J.16) to its complex conjugate we obtain

�2!i

�
"E2 C 1

�0
B2

�
C 2ki � 1

�0

�
E* � B C E � B*

�

D �E � .� � C�� +/ � E*; (J.17)

where�� + is the Hermitian conjugate of �� .
Upon comparing (J.17) with (16.38) from Chap. 16 we see that (J.17) is the field

energy equation for waves in dispersive media.
The perturbation of the conductivity tensor � is

�� D �!
@

@!
� C�k � @

@k
� C�0�

D i!i
@

@!
� C iki � @

@k
� C�0� ; (J.18)

where we have used (J.15). In (J.18) we have designated the slight structural change
in � that results at the damped condition as �0� . In (J.18) we have evaluated �0�
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using the undamped, real values of k and !. With (J.18) we find that

�� C�� C D i!i
@

@!

�
� � � C�C iki � @

@k

�
� � � C�C �

�0� C�0� C�

D �2!i
@

@!
� � 2ki � @

@k
� (A) C 2�0� (H): (J.19)

The antihermitian and Hermitian parts of the tensors � and �0� are defined by

� (A) D 1

2i

�
� � � C� (J.20)

and

�0� (H) D 1

2

�
�0� C�0� C� : (J.21)

We recall that the conductivity tensor is antihermitian at the undamped condition.
And we see that the Hermitian part of the structural change in � enters the energy
equation as a loss term. With (J.19) the energy (J.17) becomes

�2!i

�
"E2 C 1

�0
B2 C E � @

@!
� (A) � E*

�

C2ki �
�
1

�0

�
E* � B C E � B*

� � E � @�
(A)

@k
� E*

�

D �2E* ��0� (H) � E; (J.22)

Using Faraday’s Law we can show that

1

�0

�
E* � B C E � B*� D 1

�0!

@

@k

�
E2k2 � .k � E/

�
E* � k

�	

D 1

�0!

@

@k

�
E � �1k2 � k k

� � E*
	

(J.23)

(see equation (16.52)). Then using (J.5) at the propagation condition, we find that
(J.23) becomes

1

�0

�
E* � B C E � B*�

D 1

!

@

@k

�
E � �!� (A) C !2"1

� � E*
	

D
��

E � � (A)

!
� E* C E � @�

(A)

@!
� E* C 2"1W E*E

�
@!

@k

C E � @�
(A)

@k
� E*

�
(J.24)
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Then, using Faraday’s and Ampère’s Laws, we find that we can obtain B2 in
terms of the electric field as

!B2 D �E* � .i�0� � !�0"1/ � E;

which, after some lines of algebra, becomes

1

�0
B2 D E � 1

!
� (A) � E* C "E2: (J.25)

With (J.24) and (J.25) the energy (J.22) becomes

�2!i

�
2"E2 C E � 1

!
� (A) � E* C E � @

@!
� (A) � E*

�

C 2ki � @!
@k

�
2"E2 C E � � (A)

!
� E* C E � @�

(A)

@!
� E*

�

D �2E* ��0� (H) � E: (J.26)

Upon comparison with the treatment in Chap. 16 we see that (J.26) is the general
form of (16.57) for slightly damped waves in nonmagnetic matter.

We can then identify the total energy in the damped and dispersed wave as

hEwaveiT,L D 2"E2 C E � 1
!

� (A) � E* C E � @

@!
� (A) � E* (J.27)

and the total Poynting Vector as

hSwaveiT,L D @!

@k

�
2"E2 C E � � (A)

!
� E* C E � @�

(A)

@!
� E*

�
: (J.28)

By comparing (J.27) and (J.28) that the total Poynting Vector is equal to the total
energy multiplied by the group velocity, i.e.

hSwaveiT,L D hEwaveiT,L
@!

@k
: (J.29)

Although we have not used a time and space average in the derivation of (J.26), it
is identical to the equation we obtain from the time and space average. And, as we
point out in Chap. 16, the time and space average has an experimental meaning. We,
therefore, include the subscript T,L notation here.

The understanding of

E � @�
(A)

@!
� E* D

X

˛

�D
T

(˛)
hydro

E

T,L
C
D
T

(˛)
thermal

E

T,L

�
(J.30)
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the coherent particle energy is unchanged. And the loss term �2E* � �0� (H) � E
in (J.26) is the transport of the coherent particle energy to the heating of the
background matter results as the coherence is lost remains unchanged.



Appendix K
Answers to Selected Exercises

2.11 cos˛ D 1=
p
3

2.14 (b) These vectors are not linearly independent.
2.15 F is generally not perpendicular to curl F.
2.19 Note that the order of partial differentiation makes no difference.
2.20 Note that the order of partial differentiation makes no difference.
2.24 (a) Perform a contour integration between two distinct points. The result is

contour independent. So choose the contour to make the integration as simple
as possible.

b) ' .x; y/ D �3x2 � xy

2.25 (a), (c), and (e) are conservative.
2.26 div E D �="0, curl B D �0J
2.27

R1
�1dxı .x � 1/ exp

��˛x2 C ˇx
� D exp .ˇ � ˛/,

R1
0

dxı .x C 1/ exp
��˛x2 C ˇx

� D 0,
R1

�1dxı .x C �/ cos .2�x=�/ exp
��x2=�2� D exp .�1/,

R 10
0

dxı .x C 5/
�
6x2 C 2x � 3

� D 0,
R 0

�1dxı .x C 5/
�
6x2 C 2x � 3� D 137,

R1
�1dxı .x C �/ sin .2�x=�/ exp

��x2=�2� D 0,
R1

�1dxı .x � 1/ Jn .x/ D Jn .1/,
R1

�1dxı .x/ erf .x/ D 0 since erf.0/ D 0

3.2 (b) � D 0 (c) two charged, flat conducting plates arranged parallel to one
another, with a positive charge on one and a negative charge on the other will
produce this electrostatic field.

3.5 (a) zero (b) �a D q=
�
4�a2

� D ."0V=a/ .b= .b � a//, �b D Qb=
�
4�b2

� D
� ."0V=b/ .a= .b � a// c) electrostatic field is equal to zero for r > b.

3.6
R
V

div EdV D q

"0
Rı Gauss’ Law is then no longer valid.

3.7 E .r/ D �0R
2= .4"0r/

C.S. Helrich, The Classical Theory of Fields, Graduate Texts in Physics,
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Fig. K.1 E(r)

radial distance

3.8 The charge induced on the surface of the small hollow in the conductor must
be �q to counterbalance the q inserted.

3.9 (a) 4: 397 6 � 10–14 C m-3 b) �1: 328 1 � 10–9 C m-2 c) �6: 774 2 � 105 C:
d) This charge comes from lightning striking the earth. In a plasma we can
consider the massive ions to be immovable and the electrons to be the charge
carriers. So in a lightning bolt electrons carry the negative charge to the earth.
Positive and negative lightning can exist, but positive is rarer. In the negative
case the upper part of a cloud becomes positively charged and the lower
negative. When the negative charge on the cloud is high enough lightning is
formed providing a flow of negative charge to the earth.

3.10 (a)
b) �i D .�0=5/ a

2, �o D .�0=5/
�
a4=b2

�

3.12 "0E0 Œ3 � ˛r� exp .�˛r/
4.1 If the differential distance d` is on the surface of constant potential then d' D

0 and qE�d` D 0. If E�d` D 0 then E?d`.
4.2 �4"0e

�x2 �sin .x C y/C x cos .x C y/� x2 sin .x C y/
�

4.3 (a) Laplace’s Equation, Theorem II applies and the potential is zero inside the
sphere. (b) �VRR=r

4.5
�
Q=

�
2�"0R

2
�� 
p

z2 CR2 � z
�

4.6
�
Q=

�
2�"0R

2
�� 


1 � z=
p

z2 C R2
�

4.7 .�sR= .2"0// ln

��
2 .z C `=2/C 2

q
R2 C .z C `=2/2

�
=
h
2 .z � `=2/

C2
q
R2 C .z � `=2/2

i�
C .�e= .2"0//

�q
.z � `=2/2 CR2

C
q
.z C `=2/2 CR2 � .2z/

�

4.8 This is a Coulomb electrostatic field for a small very thin cylinder with
negligible charge on the end plates, which is consistent with z ˙ `=2 � R.

4.10 (a) Er D .q= .4�"0//
�
1= .�r/C 1=r2

�
exp .�r=�/ (b) � D � �q= �4��2r��

exp .�r=�/ c) c) This is a negative charge density, which deceases rapidly
away from the origin. The positive charge then has attracted negative charges
to its vicinity. These negative charges shield the positive charge.

4.14 C D "0A=d
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4.16 E .z/ D Oez .�"= .2"0//


1 � z

�
z2 CR2

�–1/2
�

for z > "=2 and E .z/ D
�Oez .�"= .2"0//



1C z

�
z2 CR2

�–1/2
�

for z < �"=2

4.17 E0 D Oez .ˇ= .8"0//
h
�L2 C L

p
L2 C 4R2

C 2R2 ln




�LC p
L2 C 4R2

�
=


LC p

L2 C 4R2
��i

4.18 ' D � .�= .4"0//

��
.z �L/

q
R2 C .z � L/2

CR2 ln

��
z �LC

q
R2 C .z �L/2

�
=

�
z C

q
R2 C .z/2

���
�.z �L/2

�
�
.z/
q
R2 C .z/2

�
˙ z2



4.19 UE D .1:2=2/
�
Q2= .4�"0R/

�

4.20 (a) C D 55:6 pF b) UE D 2: 781 7 � 10�13 J c) 1
2
"0E

2 D 442: 73 J
m3 d)

E D 1: 0 � 107 V
m e) E=Ebreakdown D 8: 47

4.21 (a) C D 200 ¯F (b) A D 225: 88 m2 c) This is somewhat large for
microcircuits.

4.22 (d) C (s)
T =C

(p)
T D C1C2= .C1 C C2/

2 D C1C2=
�
C 2

1 C C 2
2 C 2C1C2

�
< 1

5.1
�
1=9 � 1016

�
m�2 s2

5.2 B D OezB

5.3 Bx D �xˇB
2

exp .Cˇz/, By D �yˇB
2

exp .Cˇz/, Bz D B exp .Cˇz/

5.4 (a) VHall D aveB b) IHall D �veBa` c) PMHD D �`a2v2
eB

2

5.11 (a) @A#=@z is small but ¤ 0, @Ar=@z D @Az=@r b) � 1
r
.@=@r/ .r@A#=@z/ C

.1=r/ .@=@r/ .r@A#=@z/ D 0

6.1 A D Oez
I��0
4�

n
w C x ln

h

.x � w=2/2 C y2

�
=


.x C w=2/2 C y2

�i

� w
2

ln
h

.x � w=2/2 C y2

� 

.x C w=2/2 C y2

�i

C2y arctan Œ.x � w=2/ =y� � 2y arctan Œ.x C w=2/ =y�g
6.2 B D .I0�0= .2�r// Oe# for x; y � w

6.3 B D Oez�0N�I0



1C 4 .L=R/2

�–1/2 	 Oez�0N�I0 if R=L 
 1

6.5 J D �Oe# .�0N�I0= .2r//

6.10 B D .�0I0N= .2a// Oez:

6.11 Br D 3
4
a2�0I0

�
a2 C z2

�–5/2
zr

6.13 A D �Oez .I0�0= .2�// fln Œr1=r2�g
6.14 B D � .I0�0a=�/

h
a4 � 2a2

�
x2 � y2

�C �
x2 C y2

�2
i–1 ˚ Oex2xy C Oey

�
a2�

�
x2 �y2

�	�
As a ! 0 this becomes zero for all values of .x; y/. In the limit of

small a. This is directly proportional to a. The magnetic field induction should
become zero as the wires coalesce into a single wire.
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6.15 B .r/ D .�0J=2/
�
b2=r � a2= .r C s/

	 Oe#
7.3 (a) he canonical momenta are px D m Px � m.˝=2/y and py D m Py C

m.˝=2/x

7.6 The canonical equations are
Px D .1=m/ .px Cm.˝=2/y/,
Py D .1=m/

�
py �m.˝=2/x

�
,

Pz D .1=m/pz,
Ppx D .˝=2/

�
py �m.˝=2/x

�
,

Ppy D � .˝=2/ .px Cm.˝=2/y/,
Ppz D 0

The result is motion in the z�direction
7.7 The canonical equations are

Px D .1=m/ .px Cm.˝=2/y/

Py D .1=m/
�
py �m.˝=2/x

�

Pz D .1=m/pz

Ppx D .˝=2/
�
py �m.˝=2/x

�

Ppy D � .˝=2/ .px Cm.˝=2/y/

Ppz D QE:

7.8 The canonical equations are
Px D .1=m/ .px Cm.˝=2/y/

Py D .1=m/
�
py �m.˝=2/x

�

Pz D pz
m

Ppx D .˝=2/
�
py �m.˝=2/x

�

Ppy D � .˝=2/ .px Cm.˝=2/y/CQEy

pz D QEz

7.9 (a) .E=B/ < R .QB=m/ (b) .E=B/ D R .QB=m/ c) .E=B/ > R .QB=m/
8.1 (a) ' D � .�0= .4"0//

�
2R2 lnR �R2 C r2

�
(b) ' D � .˛= .16"0//

�
4R4 ln

R �R4 C r4
�

8.2 (a) ' D � .�0= .2"0// R
2 ln r b) ' D � .˛= .4"0// R

4 ln r
8.3 ' D � .�= .2�"0// ln .r=R/
8.4 For a < r < R, ' D .A= .2"0r//

�
r2 � a2

� C .A="0/ .R � r/ For r > R,
' D .A= .2"0r//

�
R2 � a2

�

8.6 For a < r < R, ' D � .A="0/ .r � a/ C .A= .2"0r//
�
r2 � a2

�
For R < r ,

' D � .A="0/ .R � a/C .A= .2"0r//
�
R2 � a2

�

8.7 A# D ��0N�I0R ln .R/, B D �ez�0N�I0R ln .R/ 1
r

8.8 ' D � .�0="0/ x and E D Oex .�0="0/

8.9 For .a C "/ < r < b, ' D � .Qa= .4�"0r// � .Qb= .4�"0b//, For
b < r < .b C "/, ' D � .Qb CQa/ = .4�"0b/, For b < r , ' D
� .Qa CQb/ = .4�"0r/, and Qa D 4�"0 .Va � Vb/ .ab= .a � b//, Qb D
�4�"0 .b= .a � b// .aVa � bVb/

8.10 For r < a Az D ��0J0
�
1
2
b2 ln b � 1

2
a2 ln a � 1

4

�
b2 � a2

�	
, For a � r � b

Az D �0J0
�
a2=2

�
ln .r/ � �0J0 .1=4/ r

2 � �0J0
�
.1=2/ b2 ln b � .1=4/ b2

�
,

For b < r Az D ��0J0 .1=2/
�
b2 � a2

�
ln .r/, For r < a
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B D �Oe#dAz=dr D 0, For a � r � b B D Oe# .�0J0=2/
��
r2 � a2

�
=r
�
, For

b < r B D �Oe#�0J0 .1=2/
�
b2 � a2

�
.1=r/

10.1 (a) E D �a2�0N
2
�LSdI=dt c) Ib .t/ D �a2�0 .V= .RbL// exp .�Rt=L/

10.2 the current will decrease.
10.3 (a) E D Bav (b) E D Bav
10.4 If Faraday’s Law is actually a Law of physics, which it is, then this is an

intolerable situation.
10.5 E D BA! sin!t
10.6 I` D .�0I= .4�R//! ln .b=a/ x0 sin .!t/
10.7 (a) E .t/ D n�a2B! sin!t b) B D �

1=
�
2n�a2

�� R  /2
0 E .t/dt

10.8 I D .Bab!=R/ sin .!t/
10.11 (a) E# D .1=2/ r�0N�I0 sin!t (b) Iconductor D .�=4/R2L�0N�I0 sin!t
10.13 In the case of the cylindrical solenoid there is an energy density. But the field

energy is spread over larger regions of space and a density cannot be easily
calculated.

The fact that we can, in each case, identify an inductance L, which is
a function only of the geometric properties of the solenoid is a result of
Faraday’s Law and the Biot–Savart Law.

11.2 (a) y�axis and move in the negative direction b) OE D �Oez

11.4 (b) The Gaussian pulse is a laboratory reality. Our result in (a) indicates that
it will propagate at the speed c into the space beyond the lamp as a function
of p D !t � kz.

11.9 The Fourier Transformation is a representation of the disturbance in
terms of a particular set of basis functions, the complex exponentials
exp .i!t ˙ ik � r/. In physical terms these are propagating plane waves.

12.1 Momentum density is �P D 2�E=V2 where �E D kinetic energy flux.
12.4 S D � .1=�0/ .J=�/ .�0JR=2/ Oer

12.6 S D OezE
2
0
p
�0�0

12.7 Q2=24�"0R

13.9 m�uc
2 D 0:520 75 MeV, ˇu D 0:192 70

13.13 (a) F D �qE 0
yey b) E D ˇaB 0

z Faraday’s Law then predicts the same emf as
that resulting from the electric field Ey.

14.4 If we are in a region of space close to the moving charges the radiation gauge
cannot be used and we must use the Lorentz Gauge.

14.5 It happened when @A=@t D .�0= .4�R// Rpd Oea

14.6 The dominant emission is axial.
14.7 The orbiting electron will radiate energy and will eventually fall into the

nucleus. The electron falling into the nucleus will radiate energy at the
frequency with which it traverses the orbit. This will change continuously.
There can be no line spectrum.

15.2 .CT=C / D 2 ."= ."C "0//

15.3 (a) �1 D .2Q=A/ "0= ."0 C "/, �2 D .2Q=A/"= ."0 C "/ b) E1 D E2 D
.2Q=A/1= ."0 C "/ c) CT D .A= .2y// ."0 C "/

15.4 (a) U D "0L= .2y/ V
2 Œ.K � 1/ x C L� (b) F D "0L= .2y/ V

2 .K � 1/
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15.5 (a) �p D �2˛z b) �p .z D 0/ D �ˇ, �p .z D L/ D ˛L2 C ˇ c) Qp D
Qp .inside/CQp .end caps/ D 0

15.6 (a) P .r / D .K � 1/Q=
�
K4�r2

� Oer b) �p D 0 c) �p .a/ D � .K � 1/Q=�
4�Ka2

�
, �p .b/ D .K � 1/Q=

�
4�Kb2

�
d) Qp, total D 4�a2�p .a/ C

4�b2�p .b/ D 0

15.7 (a) �p D � �Q= �4�r2
�� 


˛= .˛r C 1/2
�

(b) �p .a/ D � .˛a= .1C ˛a//
�
Q=

�
4�a2

��
, �p .b/ D .˛b= .1C ˛b//

�
Q=

�
4�b2

��
c) Qp, total D 0 (d)

There has been no real charge transferred to the dielectric.
15.8 (a) �p D 0 b) �p D P0 cos� c) Qs D 0

15.10 'in D D
(in)
0 CD

(in)
1 r cos�, 'out D D

(out)
0 C

h
D

(out)
1 r CG

(out)
1

�
1=r2

�i
cos�

15.12 Em D E C P= .3"0/

15.13 (a) ˛ D .3"0=n/ .K � 1/ = .K C 2/ b) � D .˛n="0/ .1 � n˛= .3"0//

15.14 (a) n˛ D 3"0 b) � D .˛n="0/ =	

15.15 (a) �p D 0 c) BL�
�
a2 � b2

�

15.16 (a) JM D 0 b) J(s)
M D �Oez .KM � 1/ .I=2�b/ for the outer surface and J(s)

M D
COez .KM � 1/ .I=2�a/ for the inner surface c) J(s)

M Oer� .KM � 1/ .I=2�r/for
the top surface and J(s)

M D �Oer� .KM � 1/ .I=2�r/ for the bottom surface
15.18 (b) yes (c) no

16.1 (a) � D �iNQ2= .m!/ (b) ! D !p,e, Eparticle D "0



!2

p,e=!
2
�
E2, Ewave D

"0



1C



!2

p,e=!
2
��
E2 c)!D

q
!2

p,eCk2c2, @!=@kDkc2=
q
!2

p,e C k2c2 <c,

Eparticle D "0



!2

p,e=!
2
�
E2, Ewave D 2"0E

2

16.2 (a) longitudinal: � D �i"0!
2
p,e!= .! � ku/2, transverse: � D �i"0!

2
p,e=

.! � ku/ b) ! D ku ˙ !p,e, Eparticle D "0!
2
p,e



.! C ku/ = .! � ku/3

�
E2,

EwaveD"0



1C!2

p,e .! C ku/ = .! � ku/3
�
E2 c) !2 D !2

p,e C k2c2as u ! 0,

@!=@k D kc2=! as u ! 0, Eparticle D "0



!2

p,e= .! � ku/2
�
E2, Ewave D



2"0 C "0!

2
p,e .ku/ =



! .! � ku/2

��
E2

16.3 (a) � D �i"0!
2
p,e!= .! � ku/2 b) ! D ku ˙ !p,e, Eparticle D "0!

2
p,e


.!Cku/ = .! � ku/3
�
E2, Ewave D "0



1C !2

p,e .! C ku/ = .! � ku/3
�
E2
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Index

Absolutely integrable, 251
Action at a distance, 2, 4, 87, 111
Adjoint, 424
Advanced time, 321
Aether, 10, 15, 24, 29
Aether drift, 27
Amber, 82
Ampère’s Circuital Law

general form, 144
for a straight wire, 134

Ampère’s experiment, 229
Ampère’s law, 10, 15, 17, 224, 225, 228, 335,

339, 349
differential form, 142

Ampère, André-Marie, 10, 14, 15, 129, 341
electro-dynamics, 10

Ampere
unit of current, 81, 131

Analytic function, 45
Analytical mechanics, 165
Analyticity, 46
Anaxagoras, 8
Annealed iron, 358
Ansatz, 82, 83, 87
Antihermitian

conductivity tensor, 424
Arago, D.F.J., 10, 129
Area

closed, 54
Arether, 229
Aristotle, 15
Ashcroft, N.W., 345
Associated Legendre equation, 216
Associated Legendre functions, 206, 216
Asymmetry

Faraday’s law, 27

Atomic polarization
dielectrics, 338

Atomic theory, 340

Bac-cab rule, 41
Basis

representation of functions, 250
vector space, 36

Bekefi, G., 373
Bentley, R., 3
Berlin Academy, 20
Bers, A., 423
Bessel’s equation, 206
Besso, M., 29
Biot, J.-B., 10, 15, 136
Biot–Savart law, 136, 138
Bohr magneton, 341
Boltzmann, L., 340
Boundary conditions, 188

electric field, 353
magnetic field, 355

Boyle Lectures, 3
Bravais lattice, 337
Bridge

alternating current, 336
circuits, 336

Canonical equations, 166, 167, 169
Canonical momenta, 167, 169
Capacitance, 114

fundamental definition, 114
working definition, 114

Capacitor, 336
Cavendish, H., 6
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Charge conservation, 126, 225, 229
Lorentz transformation, 303
time dependent fields, 17

Charged particles
classical, 81
Faraday and Maxwell, 16

Charges, 18
classical point, 86
coulomb, 81
density, 335

surface, 86, 354
Chemical bonding, 337
Cherenkov radiation, 330
Chikazumi, S., 357, 359
Chinese

compass, 8
Clausius, R., 340
Coefficients of potential, 113
Coercive force, 360
Coercivity, 360
Coherent particle energy

waves in matter, 385
Colatitude, 44
Complete

basis, 37
set of functions, 250

Completeness
set of functions, 252

Completeness relation
set of functions, 252, 253

Complex exponentials, 243
Compton, A.H., 341
Conduction band, 338
Conduction electrons, 85
Conductivity

undamped waves, 377
Conductor, 85
Conflict of electricity, 9
Conservation of charge

Franklin, 5
Conservation of momentum, 295
Conservative force field, 100
Constitutive equation, 351
Contour

closed, 54
Contravariant

derivative, 304
differential operator, 302
tensor of rank 2, 292
vectors, 292, 294

Coordinate systems, 205
Coulomb gauge, 143–145, 326
Coulomb’s experiment, 5, 79, 83, 87, 88,

228

Coulomb’s law, 17, 80, 83
Coulomb, C.A., 5, 13, 14, 79
Covalent bonds, 338
Covariant

differential operator, 301
tensor of rank 2, 292
vector operator, 301
vectors, 292, 294

Cross product, 40
definition, 40

Crystals, 337
solid state, 85
sublattices, 338

Curie temperature, 341
Curie, P., 340
Curie-Weiss law, 341
Curl, 14, 54

general form, 54
Currents

density, 124, 335
surface, 356

Faraday and Maxwell, 16
four vector

Minkowski space, 302
Cylindrical coordinate system, 43, 211

D’Alembert, Jean-Baptiste le Rond, 256
D’Alembertian, 256

in Minkowski space, 301
D-T fusion, 180
Davy, H., 13
Delta function

Dirac delta function, 67
Delta sequence, 67
Demagnetization curve, 360
de Maupertuis, P.-L.M., 165
Density

continuous charge, 84
discrete point charges, 83

Determinant
cross product, 40

Diadic representation
vector space, 34

Diamagnetic substance, 340
Diamagnetic systems, 357
Dielectrics, 18, 337

constant, 352
material, 336

Differential equation
general solution, 188
homogeneous solution, 188
linear, nonhomogeneous, 188
linear, one dimension, 190
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nonhomogeneous, 187
particular solution, 188

Differential operator
linear, nth order, 190

Diluted magnetic semiconductors, 357
Dimension

vector space, 38
Dipole interaction

current loop, 341
Dipole moment

crystal, 338
electrostatic, 109
molecular, 344
polarization density, 346

Dirac delta function
delta function, 67

Dirac, P.A.M., 34, 187, 341
magnetic monopoles, 128

Dispersion relation, 244, 424
longitudinal waves in matter, 377
matter, 376, 378
transverse waves in matter, 377

Dispersive media
nonmagnetic, 373

Displacement, 18
cells in the aether, 16, 17
current, 18, 20, 224, 229, 335
dielectric boundary, 354
polarization, dielectrics, 338
vector, in dielectric, 348

Divergence, 14, 48
Minkowski space, 301
theorem, 49

Domain boundary displacement
ferromagnetism, 359
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