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Preface

A course in angular momentum techniques is essential for quantitative 
study of problems in atomic physics, molecular physics, nuclear physics 
and solid state physics. This book has grown out of such a course given 
to the students of the M.Sc. and M.Phil. degree courses at the University 
of Madras. An elementary knowledge of quantum mechanics is an essential 
pre-requisite to undertake this course but no knowledge of group theory 
is assumed on the part of the readers. Although the subject matter has 
group-theoretic origin, special efforts have been made to avoid the group-
theoretical language but place emphasis on the algebraic formalism devel-
oped by Racah (1942a, 1942b, 1943, 1951). How far I am successful in this 
project is left to the discerning reader to judge. 

After the publication of the two classic books, one by Rose and the other 
by Edmonds on this subject in the year 1957, the application of angular 
momentum techniques to solve physical problems has become so common 
that it is found desirable to organize a separate course on this subject to 
the students of physics. It is to cater to the needs of such students and 
research workers that this book is written. A large number of questions 
and problems given at the end of each chapter will enable the reader to 
have a clearer understanding of the subject. Solutions to selected problems 
are added so that the students can refer to them in case they are unable 
to solve those problems by themselves and also seek guidelines for solving 
other problems. 

The angular momentum coefficients,. the rotation matrices, tensor op-
erators, evaluation of matrix elements, the gradient formula, identical par-
ticles, the statistical tensors, traces of angular momentum matrices, the 
helicity formalism and the spin states of the Dirac particles are some of the 
topics dealt with in this book. These topics cover the entire range of angu-
lar momentum techniques that are being widely used in the study of both 
non-relativistic and relativistic problems in Physics. Application to physical 
problems that are given in this book are mostly drawn from the author’s 
own experience and hence may appear lop-sided in favour of nuclear and 
particle physics. 

There is a bewildering variety of notations and phase conventions used 
in the literature and those adopted in this book correspond mostly to those 
used by Rose with some exceptions. A square bracket has been used for the 
Clebsch-Gordan coefficient and the author has found this notation more 
convenient for working out complicated problems involving Clebsch-Gordan
coefficients. This notation has been used earlier by a few authors. For the 



xiv

convenience of readers, a list of symbols and notations used in this book is 
given separately in Appendix G. 

The author has originally thought of including computer programs in 
FORTRAN for the calculation of angular momentum coefficients and for 
the evaluation of certain important matrix elements but since the usage 
of computers has become so common and each has his own choice of lan-
guage, it is felt more appropriate to give general expressions that can be 
used for computer programming rather than giving the program in any one 
particular language. 

The author has worked extensively on problems involving angular mo-
mentum algebra in the early stages of his research career and is indebted to 
Prof. Alladi Ramakrishnan and Prof. M.E. Rose for having inspired him to 
take to research in this area. The author has benefited greatly with discus-
sions with his earlier collaborators Prof. M.E. Rose, Prof. H. Überall, Prof. 
G. Ramachandran, Prof. K. Srinivasa Rao, Prof. R. Parthasarathy, Prof. 
G. Shanmugam and Prof. N. Arunachalam. The author is grateful to Prof. 
P.R. Subramanian, Dr. V. Girija, Dr. M. Rajasekaran, Dr. S. Karthiyayini, 
Dr. G. Janhavi, Dr. K. Ganesamurthy, Dr. S. Ganesa Murthy, Mr. P. Ratna 
Prasad, Mr. S. Arunagiri for many interesting discussions and careful read-
ing of the manuscript at different stages of writing and to a host of students 
who have been a source of inspiration. The book had gone through many 
drafts and the initial drafts were prepared by Mr. L. Thulasidoss with great 
patience and the final version was prepared with meticulous care with the 
help of Mr. S. Ganesa Murthy and Ms. D. Sudha and the software support 
received from Mr. K. Shivaji, Mr. T. Samuel and Dr. G. Subramonium. 
The author is grateful to the University Grants Commission and to the 
Tamil Nadu State Council for Science and Technology for sponsoring this 
book under the book writing scheme and to Professors P. Ramasamy, P.R. 
Subramanian, R. Ramachandran and K. Subramanian for extending all 
the facilities for completing the manuscript. The author acknowledges with 
thanks the facilities offered by the Department of Nuclear Physics of the 
University of Madras, the Crystal Growth Centre of the Anna University, 
the Institute of Mathematical Sciences and the Tamil Nadu Academy of 
Sciences for the preparation of the manuscript. It is a pleasure to thank 
Professor Krishnaswami Alladi for suggesting the Kluwer Academic Pub-
lishers for publication of this book and Mr. D.J. Larner, the Publishing 
Director and Ms. Margaret Deignan of the Kluwer Academic Publishers 
for rapidly processing the manuscript and undertaking the publication. 

V. Devanathan 



CHAPTER 1 

ANGULAR MOMENTUM OPERATORS AND THEIR 

MATRIX ELEMENTS 

1.1. Quantum Mechanical Definition 

In classical mechanics, the angular momentum vector is defined as the cross 
product of the position vector r and the momentum vector p. i.e.

(1.1)

Both r and p change sign under inversion of co-ordinate system and so they 
are called Polar Vectors. It is easy to see that L behaves differently and 
will not change sign under inversion of coordinate system and it is known 
as a Pseudo-Vector or an Axial Vector. 

The transition to quantum mechanics can be made by incorporating the 
uncertainty principle into the classical definition and L becomes a Hermi-
tian operator. Introducing the uncertainty principle expressed in the form 
of commutators, 

(1.2)

we obtain the commutation relations (Schiff, 1968) for the components of 
angular momentum operator. 

(1.3)

These commutators define the angular momentum in quantum mechanics 
(Schiff, 1968; Rose, 1957; Ramakrishnan, 1962) and this definition is more 
general and admits half integral quantum numbers. For this purpose, let 
us denote the quantum mechanical angular momentum operator by J and
also use the convention that the angular momentum is expressed in units 
of

In a compact notation, the three Eqs. (1.4) become 

(1.4)

(1.5)

1
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Equation (1.5) is the starting point of our investigation and our aim is to 
draw as much information as possible from this definition. 

1.2. Physical Interpretation of Angular Momentum Vector 

Although the components of the angular momentum operator do not com-
mute among themselves, it is easy to show that the square of the angular 
momentum operator 

(1.6)

(1.7)

Equations (1.4) and (1.7) are amenable to simple physical interpretation. 
It is possible to find the simultaneous eigenvalues of J2 and of one of the 
components, say Jz alone but it is impossible to find precisely the eigenval-
ues of Jx and Jy at the same time. Representing the operators by matrices, 
one can say that J2 and Jz can be diagonalized in the same representation 
but not the other components Jx and Jy. Physically this means that one 
can know at the most, the magnitude of the angular momentum vector and 
its projection on one of the axes. The projections on the other two axes 
cannot be determined. This is illustrated in Fig. 1.1, in which the angular 
momentum vector is depicted to be anywhere on the cone. If ψ jm is the 
eigenfunction of the operators J2 and Jz, then

(1.8)
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and

(1.9)

In the above equations, j and m are the quantum numbers used to define 
the eigenfunctions and the corresponding eigenvalues of the operators are 
ηj and m. We are interested in finding the spectrum of values that j and
m can take and also the eigenvalue ηj

1.3. Raising and Lowering Operators 

Let us define two more operators J+ and J- which we shall call raising and 
lowering operators. 

(1.10)

This nomenclature will become obvious, once their roles are understood. 
The following commutation relations can be easily obtained. 

using Eq. (1.11) 

(1.11)

Let us now generate a new function Φ by allowing J± to operate on 
and examine whether this new function is an eigenfunction of J2 and Jz

operators. If so, what are their eigenvalues ? 
Let

(1.12)

Then

(1.13)

and

(1.14)

Thus we find that Φ± is an eigenfunction of J2 and Jz operators. The 
eigenvalue of the operator J2 remains unchanged but the eigenvalue of 

using Eq. (1.11) 
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the operator Jz is stepped up or stepped down by unity. It is precisely 
for this reason, the operator J± is called the raising or lowering operator. 
Sometimes they are also known as ladder operators. 

1.4. Spectrum of Eigenvalues 

From the above discussion, it is obvious that m can take a spectrum of 
values differing by unity for a given value of j. It is easy to show that the 
values that m can take are bounded for a given j. For this, consider the 
following relation: 

(1.15)

Since the diagonal elements of the squares of Hermitian operators Jx and
Jy are either positive or zero, 

(1.16)

This means that the values of m are bounded for a given value of j. Let
us denote the lowest value of m by m1 and the highest value of m by m2,
the spectrum of values that m can take being 

(1.17)

(1.18)

(1.19)

Then it follows that 

Since

Operating J- on the left of Eq. (1.18) and J+ on the left of Eq. (1.19), we 
obtain

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

we get the following relations: 
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From Eqs. (1.24) and (1.25), we obtain 

i.e., (1.26)

Since m2 - m1 is positive by our choice, it follows that m1 = -m2. If we 
label the highest value of m by j, then the spectrum of values that m can
take can be written down as follows, 

(1.27)

There are 2 j +1 values of m and hence 2 j + 1 should be an integer. That 
means 2 j is an integer and hence j can be either an integer or half integer. 
Using Eq. (1.24) or Eq. (1.25), we obtain the eigenvalue of J2 operator

(1.23)

Let us now summarize the results so far obtained. Starting from the 
quantum mechanical definition of angular momentum given by Eq. (1.5), 
we have shown that the eigenvalue of J2 operator is j(j + 1) where j can
take integral or half integral values and for a given j, the eigenvalues of Jz

operator, viz., m can take a spectrum of values from -j to +j in steps of 
unity. It is to be emphasized that all these results follow directly from the 
definition of angular momentum operator (Eq. (1.5)) and no assumption or 
approximation has been made in deducing these results. 

1.5. Matrix Elements 

Having deduced the eigenvalues of J2 and Jz operators, let us now proceed 
to determine the matrix elements of Jx and Jy operators or equivalently 
J± in the same representation in which J2 and Jz are diagonal. Then 

(1.29)

(1.30)

Equations (1.13) and (1.14) clearly show that Φ± is an eigenfunction of J2

and Jz operators with eigenvalues ηj and m ± 1. That means that Φ ± and
the normalized function may differ at the most by a constant factor. 

(1.31)

(1.32)

Taking the scalar product, we get 
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Expanding the left hand side and using Eqs. (1.22) and (1.23), we obtain 

(1.33)

(1.34)

(1.35)

From Eqs. (1.32), (1.33) and (1.28), it follows that 

Taking the square root, we get 

There is an uncertainty with respect to the phase factor which is fixed 
usually by convention. Now we have at our disposal all the required matrix 
elements.

(1.36)

(1.37)

(1.38)

(1.39)

The above matrix elements are sufficient to construct all the angular mo-
mentum matrices. 

1.6. Angular Momentum Matrices 

Since all the matrix elements (1.36)-(1.39) connect states with the same 
j but different m values, it is usual to construct angular momentum ma-
trices for a given j value. It is customary to label the rows by m' val-
ues ( m' = j, j - 1, . . . , -j+ 1, -j) and the columns by m values ( m =
j, j - 1, . . . , -j+ 1, -j). So, for a given j, the angular momentum matrices 
are of dimension (2 j + 1)  x (2 j + 1) .  

For j = 1/2, m can take only two values 1/2 and -1/2. Using Eqs. 
(1.36)-(1.39) and labeling the rows and columns by the eigenvalues m of
the Jz operator, we obtain the following matrices for j = 1/2. 

(1.40)
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(1.41)

From J+ and J- matrices, we can obtain Jx and Jy using Eqs. (1.29) and 
(1.30).

(1.42)

We find that the matrices Jx, Jy and Jz for j = 1/2 are related to the 
well-known Pauli spin matrices ( σ ).

(1.43)

(1.44)

In a similar way, we can construct the angular momentum matrices for 
j = 1. 

(1.45)

(1.46)

(1.47)

Construction of angular momentum matrices for higher values of j can be 
done following the same procedure. 
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Review Questions 

1.1 Define angular momentum in classical mechanics and incorporating 
the uncertainty principle, obtain the quantum mechanical definition of 
angular momentum as a set of commutation relations. 

1.2 Starting from the commutation relations of angular momentum op-
erators, determine the allowed spectrum of eigenvalues of J2 and Jz

operators.
1.3 Define the raising and lowering angular momentum operators and ob-

tain their matrix elements between any two angular momentum states. 
Are these operators Hermitian? 

1.4 Assuming the following commutation rules obeyed by the angular mo-
mentum operators [ Jx , Jy ] = iJz, [Jy , Jz ] = iJx, [Jz , Jx ] = iJy, show
that J+ = Jx + iJy is a raising operator for the eigenvalue of Jz.

1.5 Obtain the matrix representation of the angular momentum operators 
for j = Establish their connection with the Pauli matrices. 

Problems

1.1 Given the commutation relations (1.2), obtain the commutation rela-

1.2 Evaluate the commutators Jz ] and [Jy
2, Jz ] and show that 

tions (1.3). 

1.3 Given that J x J = i J, obtain the following commutation relations: 

where J± = Jx ± iJy.
1.4 Evaluate (a) Jx and (b) Jy

1.5 For j = show that = = = 
1.6 For j = 1, show that = Jx, Jy

3 = Jy and = Jz.
1.7 Show that the Pauli matrices obey the following relations: 

1.8 If σ denotes the Pauli vector and A a vector, write down explicitly 

1.9 If σ denotes the Pauli vector and A and B are polar vectors, show 
σ. A in the form of a 2 x 2 matrix. 

that

1.10 Construct the angular momentum matrices for j = .
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Solutions to Selected Problems 
1.1 The components of angular momentum operator L are

The commutator [ Lx ,Ly ] is given by 

Similarly, the other cyclic commutation relations are obtained. 
1.2

Similarly,

Hence

1.8

Using the matrix representation (1.43) for the Pauli operators, we ob-
tain

1.9 The Pauli matrices obey the following relations: 

Expanding (σ • A )(σ • B ) in terms of the Cartesian components, 

and using the above relations for the Pauli matrices, the final result 

is obtained after rearrangement. 
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COUPLING OF TWO ANGULAR MOMENTA 

2.1. The Clebsch-Gordan Coefficients 

Problems involving the addition of two angular momenta abound in physics. 
They may be the angular momenta of the two particles in a system or the 
orbital and spin angular momenta of a single particle. 

If J1 and J2 are the operators corresponding to the two angular mo-
menta, then the resultant angular momentum operator J is obtained by 
the vector addition 

(2.1)

(2.2)

(2.3)

It follows that 

Squaring (2.1) we obtain, 

Since by our construction J is an angular momentum operator, it should 
obey the same commutation relations as J1 and J2.

(2.4)

The other cyclic relations follow. The commutation relations (2.4) can be 
deduced from the commutation relations obeyed by J1 and J2. It is to be 
noted that J1 and J2 are two independent operators and hence they should 
mutually commute. However, it is found that 

(2.5)

Thus we have two sets of mutually commuting operators. 

set I: 

set II: (2.6) 

10
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So, it is possible to find the simultaneous eigenvalues of either the first set 
of operators or the second set but not both. The eigenfunctions, denoted by 
their quantum numbers corresponding to the first set of opera-
tors are said to be in the uncoupled representation and the eigenfunctions 

corresponding to the second set belong to the coupled represen-
tation. These representations are connected by a unitary transformation. 
The functions can be expanded in terms of functions 
and vice versa. 

(2.7)

The quantity is the expansion coefficient whose depen-

dence on the quantum numbers is explicitly denoted. This coefficient is 
known as the Clebsch-Gordan (C.G.) coefficient (Condon and Shortley, 
1935) or the vector addition coefficient and it is the unitary transformation 
coefficient that occurs when one goes from the uncoupled to the coupled 
representation. Although there is a variety of notations for the Clebsch-
Gordan coefficient (Condon and Shortley, 1935; Rose, 1957; Pal, 1982), the 
author has found the above notation very convenient to work out compli-
cated problems involving C.G. coefficients. From Eq. (2.7), we get 

(2.8)

This C.G. coefficient can be determined without the phase factor and the 
standard phase convention is such as to make the C.G. coefficient real. Then 
taking the complex conjugate of Eq. (2.8), we get 

(2.9)

(2.10)

from which the inverse relation of Eq. (2.7) is obtained. 

2.2. Some Simple Properties of C.G. Coefficients 

It is easy to show that + m2 = m. Otherwise the C.G. coefficient will 
vanish. Operating Jz on Eq. (2.7) from the left and using (2.2), we obtain 

(2.11)
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Expanding once again in terms of using Eq. (2.7), we 
get

(2.12)

Since the functions are linearly independent, it follows that 
each of the coefficients in the summation should be identically zero. 

(2.13)

Thus it is evident that unless m = m1 + m2, the C.G. coefficient should 
vanish. There are in total (2 j1 + 1)(2 j2 + 1) linearly independent functions 

Since the total number of linearly independent functions is pre-
served in any unitary transformation, the number of independent functions 

in the coupled representartion should be the same. Hence, 

(2.14)

The maximum value of j i.e., jmax should be obviously ( j1 + j2) since the 
maximum value of m is j1 + j2, j1 and j2 being the maximum values of 
m1 and m2. By simple enumeration, one can find jmin = Thus j
can assume a spectrum of values from to in steps of unity. 
Thereby j1, j2 and j obey the triangular condition ∆ ( j1 j2j ). Otherwise the 
C.G. coefficient will vanish. 

The distinction between the uncoupled and the coupled representations 
vanishes if one of the two angular momenta were to vanish and hence the 
C.G. coefficient which is the element of the unitary transformation becomes 
unity.

(2.15)

(2.16)

(2.17)

The functions and are orthonormal. 

Using the expansion (2.7), we obtain 

(2.18)
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Application of Eqs. (2.16) and (2.17) yields 

(2.19)

In a similar way, starting from Eq. (2.16) and applying the expansion (2.10) 
twice, we get one more relation. 

(2.20)

The relations (2.19) and (2.20) are known as orthonormality relations of 
the C.G. coefficients. 

It may be observed that in Eqs. (2.7) and (2.19), although there are 
two summations m1 and m2, one is redundant because of the constraint 
m1 + m2 = m.

2.3. General Expressions for C.G. Coefficients 

General expressions for C.G. coefficients have been derived by Racah using 
the algebraic methods. Since these derivations are complicated, the reader 
is referred to the original literature. Here we give only Racah’s closed ex-
pression (Rose, 1957) for C.G. coefficients, since it is more convenient for 
writing a computer program for numerical evaluation of C.G. coefficients. 

(2.21)

with

The summation index v assumes all integer values for which the factorial 
arguments are not negative. A computer program for the C.G. coefficients 
based on the above formula can be written and the reader will find it useful 
for any numerical study of any physical problem involving C.G. coefficients. 

Algebraic formulae for particular values of j2(j2 = 1) are given in 
Tables B1 and B2 in Appendix B since their occurrence is very common in 
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physical problems. For higher values of J2, the reader is referred to Condon 
and Shortley (1935) and Varshalovich et al. (1988). Several numerical tables 
of C.G. coefficients are also available. But these have become obsolete after 
the proliferation of fast electronic computers. 

2.4. Symmetry Properties of C.G. Coefficients 

A study of the general expressions for the C.G. coefficients will reveal the 
following symmetry properties. 

where the symbol [ j] is defined by 

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

Relations (2.22)-(2.25) bring out the symmetry properties of the C.G. 
coefficients under the permutations of any two columns or the reversal of 
the sign of the projection quantum numbers. Note that when the third 
column is permuted with the first or the second, there is a reversal of the 
sign of the projection quantum numbers of the permuted columns. This is 
essential to preserve the relation m1 + m2 = m. By using symmetry relation 
(2.22), one finds 

(2.27)

(2.28)

Thereby one obtains the condition 

if j1 + j2 - j is odd. Moreover) the quantum numbers j1 , j2 and j should
all be integers; otherwise the projection quantum numbers cannot be zero. 
This special C.G. coefficient is known as parity C.G. coefficient since in 
physical problems such a coefficient contains the parity selection rule. 
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The reader is referred to Biedenharn (1970) and Srinivasa Rao and Ra-
jeswari (1993) for further study of symmetry properties of C.G. coefficients. 

2.5. Iso-Spin

It is observed that the nuclear forces are charge independent and, as a con-
sequence, it is found advantageous to treat proton and neutron (neglecting 
the small mass difference between them) as the two charge states of one and 
the same particle, nucleon. To distinguish the two charge states of the nu-
cleon, a new quantum number1, iso-spin, has been introduced in analogy
with the spin quantum number. The iso-spin is a vector in an hypothetical 
space known as iso-spin space and its projection on the quantization axis 
distinguishes the different charge states of a particle. For the nucleon, τ is
equal to with two possible projections, mτ = corresponding to the
proton and mτ = corresponding to the neutron2. The iso-spin wave
function of a nucleon can be written in the two-component form, the first 
component giving the amplitude of probability of finding the nucleon to be 
a proton and the second component giving the amplitude for finding it to 
be a neutron. 

(2.29)

Further, in analogy with the three Pauli spin matrices, we introduce three 
iso-spin operators in iso-spin space. 

(2.30)

These operators operate on the two-component iso-spin wave function (2.29). 
The iso-spin wave function of the two-nucleon system can be constructed 

in the same way as the spin wave function of a system of two parti-
cles.

Since the pion has three charge states, π +, π 0, π − , it can be described
by giving an iso-spin τ = 1 with projections mτ = 1,0, -1. Given the iso-
spin projection, the charge q of the pion or the nucleon is given by a simple 
relation

(2.31)

1It is sometimes called isotopic spin or isobaric spin or simply I-spin
2This convention is used in particle physics. In nuclear physics, it is customary to take 

mτ = for neutron and mτ = for proton since most nuclei contain more neutrons
than protons so that the iso-spin projection quantum number for most nuclei will be 
positive.
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where B is the baryon number. For the nucleon, B = 1 and for the pion, 
B = 0. If the strange particles are also included in the scheme by introduc-
ing another quantum number, called strangeness quantum number S, then
Eq. (2.31) can be modified to read 

(2.32)

This is known as the Gell-mann-Nishijima relation. 
The iso-spin of the pion-nucleon system can be constructed by coupling 

the iso-spins of the pion and the nucleon in the same way as we do the 
coupling of two angular momenta by means of C.G. coefficients. 

2.6. Notation 

Different notations have come into vogue for the C. G. coefficient. Some 
of the notations commonly used in literature (Condon and Shortley, 1935; 
Brink and Satchler, 1962; Schiff, 1968; Rose, 1957; Varshalovich et al., 1988) 
are C ( j 1j 2j ,m 1m 2m ) and The Wigner 3j sym-

bol (Edmonds, 1957), is related to the C.G. coefficient 

by the relation 

(2.33)

(2.34)

(2.35)

The value of 3j is unchanged under an even permutation of the columns. 

Review Questions 

2.1 (a) In case of coupling of two angular momenta J = J1 + J2 , evaluate 
the following: commutator brackets [ J2 , J1z] and [ J2 , Jz].
(b) For a two-particle system, explain why there are two different an- 
gular momentum representations. How are the eigenfunctions in the 
two representations connected? 

2.2 (a) Define the Clebsch-Gordan coefficient and discuss their symmetry 
properties.
(b) Deduce the orthonormality relations of C. G. coefficients. 

The 3j symbol has higher symmetry. 
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vanishes unless 2.3 (a) Show that the C.G. coefficient 

m1 + m2 = m.
(b) What are the characteristics of the parity C.G. coefficients and 
why are they so called? 
(c) How is the C.G. coefficient related to the Wigner 3j symbol? 

Problems

2.1 Using the general properties, determine the values of the following C.G. 
coefficients:

2.2 Two particles are in the triplet state (S=1). Construct their 
coupled spin function in terms of the spin states of the individual 
particles. Identify the non-vanishing C.G. coefficients and find their 
values.

2.3 Write down the spin-orbit coupled wave function for a p-electron in an 
atom. Use the table of C.G. coefficients. 

2.4 Construct the spin-orbit coupled wave function for a d-electron in an 
atom using the table of C.G. coefficients. 

2.5 Obtain the following relations: 
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2.6 Starting from the spin-orbit coupled wave function of spin- particle

and using the lowering operator 

repeatedly, determine the coupled wave functions, 

denotes the spherical harmonic and a the spin-up state. Identify 
the relevant C.G. coefficients. 

2.7 Starting from the spin-orbit coupled wave function of particle 

and using the raising operator 

repeatedly, determine the coupled wave functions, 

denotes the spherical harmonic and β the spin-down state. Identify 
the relevant C .G. coefficients. 

2.8 Show that a two-particle system with total angular momentum J = 2 j
is symmetric under exchange. It is given that each particle carries with 
it an angular momentum j.

2.9 Show that a system of two phonons, each carrying an angular mo-
mentum 2 can exist only in the angular momentum states 0, 2 and 4. 
Explain why the odd angular momenta are excluded. 

2.10 Construct the possible spin wave functions of a system consisting of 
two particles and examine their symmetry under exchange of 
particles. Find the eigenvalues of the operator σ1 • σ2 for that system 
and hence construct the spin exchange operator. 

2.11 Construct the iso-spin wave function for a system consisting of a pro-
ton and π meson.
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2.12 Show from iso-spin considerations that the cross-section for the reac-
tion p + p d + π+ is twice that of the reaction n + p d + π0. 

Solutions to Selected Problems 

2.1 (a) Using the symmetry property (2.24), we obtain 

(b) It is a stretched case. So, it follows that 

(c) This C.G. coefficient and another with reversed magnetic quantum 
numbers alone occur in the expansion of the eigenfunction 
and hence the sum of their squares should be unity. Hence it follows 
that

(d) This is a parity C.G. coefficient and it is zero since j1 + j2 - j is
odd. It follows from Eq. (2.28) that 

(e) The C.G. coefficients are the expansion coefficients and the sum of 
their squares should be unity since the eigenfunctions are normalized. 

In the present case, 

In the expansion, there are three C.G. coefficients, of which one is the 

which is zero. The other two C.G. parity C.G. coefficient 
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coefficients are determined using the above property and the symmetry 
relation.

2.2 If α and β denote the spin-up and spin-down states respectively, then 

The non-vanishing C.G. coefficients are 
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2.3 For a p -e lectron, the allowed values of j are and The spin-orbit
coupled wave function is denoted by 

2.5 (a)

Hence the result follows from Eq. (2.19). 

(b)

Substituting this and summing over m1, we obtain the result. 
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(c) Multiply the L.H.S. by which is unity. 

(d) Multiply the L.H.S. by which is unity. 

2.10 A system consisting of two particles can exist in triplet spin 
(S = 1) or singlet spin ( S = 0) state. Denoting the spin-up and spin-
down states of the particle by α and β, the spin wave function 
in the coupled representation can be written as 

From an inspection of the above wave functions, it can be seen that 
the spin triplet state is symmetric and the spin singlet state is anti-
symmetric under exchange. For the construction of the spin exchange 
operator, first we need to determine the eigenvalues of the operator 
σ • σ corresponding to the spin triplet and spin singlet states. 
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The spin exchange operator is since it yields the 
eigenvalue +1 for the spin triplet state and -1 for the spin singlet 
state.

2.11 The iso-spin wave functions of proton, π+, π0 and π− are

The iso-spin wave functions of pπ+, pπ0 and pπ− are
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VECTORS AND TENSORS IN SPHERICAL BASIS 

3.1. The Spherical Basis 

It is more convenient to describe the vectors and tensors in the spherical 
basis since they can be easily expressed in their irreducible forms and their 
law of transformation under rotation also becomes much simpler. 

Denoting the unit vectors in the Cartesian basis as ex , ey and ez and
in the spherical basis as and we can express any vector A as
follows.

(3.1)

(3.2)

(3.3)

It follows from Eqs. (3.2) that the complex conjugate of is 

where

and

We will have occasions to use later the spherical cornponents of the 
position vector r in terms of the spherical harmonics of order 1. Using 
(3.1), we obtain 

(3.4)

(3.5)

where

24
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(3.6)

Equation (3.6) can be obtained from an inspection of Fig. 3.1. Substituting 
(3.6) into (3.5), it follows that 

(3.7)

(3.8)

(3.9)

where Y1µ are spherical harmonics of order 1. 

(3.10)

Using the above relations, we finally obtain the position vector r in terms 
of the spherical harmonics of order 1. 

(3.11)
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3.2. Scalar and Vector Products in Spherical Basis 

Given any two vectors A and B, we can construct a scalar or a vector 
(tensor of rank 1) or a tensor of rank 2. Let us express the scalar product 
of A and B separately in terms of Cartesian and spherical components. 

(3.12)

This follows from the orthogonality of the unit vectors defined in a self 
consistent way in these two bases. 

Cartesian basis: 

Spherical basis: 

where

Let C denote the vector product of A and B.

C = A x B.

Expanding in terms of spherical components 

(3.13)

(3.14)

(3.15)

The vector product of any two unit vectors in Cartesian basis is given by 

ei x ej = ek, (i,j,k in cyclic order) (3.16)

and using this, the vector product of any two unit spherical vectors can be 
obtained.

(3.17)

where S(µ - v) denotes the sign of the quantity (µ - v), if µ v and
zero if µ = v. From an inspection, it can be seen that the C.G. coefficient 

can be used to play the same role as the function S( µ - v).
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Incorporating this, we obtain, 

(3.18)

where

Introducing this definition to the vector product in Eq. (3.15), we get 

(3.19)

(3.20)

(3.21)

Thus the sherical components of C are given by 

where is defined by Eq. (3.20). In the discussion to follow, is called 
a component of the spherical tensor of rank 1 formed by taking the tensor 
product of two vectors A and B and it is to be noted that this differs by 
a factor of from the spherical component of the vector obtained 
by taking the vector product of A and B. From Eq. (3.20), it follows that 
the complex conjugate of is given by 

(3.22)

3.3. The Spherical Tensors 

Now consider the direct product of the two vectors A and B. The products 
of their Cartesian components represented below in a matrix form denote 
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the nine components of a Cartesian tensor of rank 2 

(3.23)

This is said to be in a reducible form since it is possible to group the 
linear combinations of these components with different sets which transform 
among themselves under rotation. The trace 

(3.24)

transforms as a vector since 

is the scalar product A • B and hence invariant under rotation. The anti-
symmetric tensor having three components 

(3.25)

(3.26)

The symmetric tensor with zero trace (traceless symmetric tensor) 

(3.27)

having six components, of which only five are linearly independent because 
of the constraint of zero trace, transform among themselves under rotation. 

Although the quantities S, V and T are in irreducible forms and trans-
form in the same way as spherical harmonics of order 0, 1 and 2, it is 
more convenient to express them in the spherical basis rather than in the 
Cartesian basis. The tensors expressed in the spherical basis are known as 
spherical tensors. The spherical tensor of rank k has (2k+1) components 
and they transform under rotation in the same way as with j = k. 

(3.28)

The position vector r changes into r' in the rotated coordinate system. The 
quantities are the elements of the rotation matrix defined in the 
next chapter. 
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3.4. The Tensor Product 

Given any two tensors and , we can define a tensor product of 
these two tensors. 

(3.29)

The allowed values of k lie between and . We also give 
below the inverse relation which we will have occasion to use later. 

(3.30)

Now let us, for illustration, construct spherical tensors of rank 0, 1 and 2, 
given the two vectors A and B.

(3.31)

(3.32)

(3.33)

In Table 3.1, we explicitly give the components of and in terms 
of the spherical components of the vectors A and B. Note that 

(3.34)

when the spherical tensor is constructed from any two vectors A and
B. In general, when the spherical tensor is constructed by taking a 
tensor product of two tensors and as illustrated in Eq. (3.29), the 
complex conjugate of is given by 

(3.35)
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Review Questions 

3.1 (a) Define unit vectors in spherical basis and show that they are or-
thogonal.
(b) Given any two vectors, construct a scalar, a spherical tensor of 
rank 1 and a spherical tensor of rank 2. 

3.2 Write down the scalar product of two vectors in terms of their cartesian 
and spherical components. 

3.3 If r is the position vector, express it in terms of its spherical components 
and hence show that 

where is a spherical harmonic of order 1 and r is the modulus 
of the vector r.

3.4 Given any two vectors A and B, construct a vector product and a 
tensor product of rank 1. How are their spherical components related? 

3.5 If C = A x B , show that the spherical component of the vector 
C is given by 

where

is a component of the spherical tensor of rank 1 formed by taking the 
tensor product of the two vectors A and B.
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Problems

3.1 Given any two vectors A and B, find their scalar product and compare 
it with the tensor of rank 0 constructed by taking their tensor product. 

3.2 Given the three vectors A, B and C, construct a spherical tensor of 
rank 3. 

3.3 Given the three vectors A, B and C, construct a spherical tensor of 
rank 0 using all the three vectors. 

3.4 Given the three vectors A, B and C, construct a spherical tensor of 
rank 2 using all the three vectors. 

3.5 Given any two spherical tensors Tk1 and Tk2 of rank k1 and k2 respec-
tively, construct a spherical tensor Tk of rank k and hence show that 
the complex conjugate of is given by 

3.6 If J is the angular momentum vector operator, express the spherical 
components of this vector operator in terms of the Jz operator and 
the raising and lowering operators J+ and J-. Hence determine the 
effect of with µ = 1, 0, -1 operating on the angular momentum 
state

Solutions to Selected Problems 

3.1 The scalar product: 

The tensor product of rank 0: 

3.2 To construct a tensor of rank 3, given the three vectors A, B and C,
first construct a tensor of rank 2 with vectors A and B and then 
take the tensor product of with C.
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Imposing the constraints on the magnetic quantum numbers and find-
ing the values of the C.G. Coefficients from the tables, the tensor com-
ponents of of rank 3 are obtained. The allowed values of M are
3, 2, 1, 0, -1,-2, and -3.

It can easily be verified that for each component of the tensor, the sum 
of the squares of the coefficients of all the terms is unity. This property 
can be used to check the correctness of ones calculation. 

3.5 The spherical components of the vector operator J are:

From Eqs. (1.37) - (1.39), the effect of operation of Jz, J+, J- on the 
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angular momentum state are known. Hence it follows that 

33
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ROTATION MATRICES - I 

4.1. Definition of Rotation Matrix 

The rotation matrices define the transformation properties of angular mo-
mentum eigenfunctions under rotation of coordinate system. 

(4.1)

where denotes an element of the rotation matrix, the rota-
tion being described by a set of three Euler angles α,β,γ. The angular 
momentum eigenfunctions are in the rotated coordinate system S', 
whereas the functions denote the eigenfunctions in the original co-
ordinate system S. Hence these functions should be related by a unitary 
transformation. For integer values of j, it is easy to show that the func-
tions transform as the spherical components of an irreducible tensor 
of rank j. In this chapter, we shall obtain the rotation matrices from a con-
sideration of the transformation properties of a vector (spherical tensor of 
rank 1) and spherical tensors of higher rank. 

4.2. Rotation in terms of Euler Angles 

Consider a right handed coordinate system. Any general rotation R in the 
three dimensional space can be conveniently described in terms of the three 
Euler angles α , β and γ (0 < α < 2 π , 0 < β < π, 0 < γ < 2 π ).

(4.2)

RZ (α ) denotes a rotation through an angle α about the Z axis1. This results 
in the change of the reference frame XYZ X1Y1Z1, Z1 axis coinciding 
with the Z axis. This is followed by a rotation through an angle β about
the Y1 axis and then through an angle γ about the Z2 axis. The complete 

1Normally, lower case letters are used for the suffixes but. in chapters 4 and 5, upper 
case letters are used for suffixes in certain cases for the purpose of clarity. 

34
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rotation R can be denoted explicitly in the following sequence. 

4.3. Transformation of a Spherical Vector under Rotation of 
Coordinate System 

Let us now consider the transformation of the spherical components of 
a vector A under a general rotation R of the coordinate system and obtain 
the transformation matrix. This is done in three steps. First let us make 
a rotation through an angle a about the Z axis as illustrated in Fig. 4.1. 
The Cartesian components of A transform as follows: 

In matrix notation, 

(4.3)

(4.4)

To know how the spherical components transform, we need to express the 
spherical components in terms of the Cartesian components. The transfor-
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mation of the Cartesian components is already given in Eq. (4.4). 

Similarly,

(4.5)

(4.6)

(4.7)

The transformation of the spherical components can now be conveniently 
written in a matrix form. 

In a concise notation, 

(4.8)

(4.9)

where MZ (α ) is the transformation matrix for rotation about the Z axis
through an angle α. 

Next let us consider a rotation through an angle β about the Y1 axis.
The Cartesian components AX1, AY1, AZ1 transform into AX2, AY2, AZ2

and the equations of transformation are given below: 

(4.10)

This transformation can be expressed more elegantly in the matrix form as 
follows.

(4.11)
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The equations for transformation of the spherical components can be 
obtained following the same procedure as before. 

Denoting the transformation matrix by MY ( β ),

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

Lastly, we have to perform a rotation through an angle γ about the Z2 axis.
The resulting transformation matrix is the product of the three transfor-
mation matrices obtained for rotations through the three Euler angles. 

(4.18)

(4.19)

we obtain 

and the transformed vector A' is given by 
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4.4. The Rotation Matrix D1(α, β, γ )

It is to be pointed out that the transformation matrix M is not the rotation 
matrix defined in this book. According to the law of matrix multiplication, 
any component of the transformed vector A' +-is given by 

(4.20)

whereas the rotation matrix D1(α, β, γ ) is defined such that 

(4.21)

Hence the rotation matrix D is the transpose of the transformation matrix 
M defined in Eq. (4.18). We give below explicitly D1(α , β, γ ) in a matrix 
form

(4.22)

Above we have shown explicitly how to construct the rotation matrix 
D1 (α, β, γ ) which defines the transformation properties of a vector (spher-
ical tensor of rank 1). In the same way, we can construct the rotation 
matrices for spherical tensors of higher rank. 

There are in vogue different conventions2 for the definition of D func-
tions. The convention that is used here is identical with the convention of 
Rose (1957) and is widely used in elementary particle physics. For instance, 
Jacob and Wick (1959) use this convention in the formulation of helicity 
formalism3 for the description of scattering theory. 

4.5. Construction of other Rotation Matrices 

In Table 3.1, the spherical components of a spherical tensor of rank 2 are 
explicitly given in terms of the spherical components of two vectors A and
B. Since we know how the spherical components of a vector transform, it is 
a straight-forward procedure to construct the rotation matrices D2 (α, β, γ )
for the transformation of a spherical tensor of rank 2. Although this pro-
cedure is straight forward, it is rather tedious and rarely one will opt for 

2For the different conventions used by several authors, please refer to Varshalovich et 

3The helicity formalism is discussed in Chapter 13. 
al. (1988), p118. 
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this exercise. Also this method is restricted to the construction of Dj for
only integer values of j. However there is an alternative, simple and elegant 
way of constructing the elements of rotation matrices of higher dimensions 
from the elements of rotation matrices of lower dimensions using the in-
verse of the C.G. series (Eq. (5.55)). This latter procedure is applicable for 
constructing the rotation matrices of both integer and half-integer ranks. 
For this purpose, we require the rotation matrix and starting 
from this all the Dj matrices can be obtained by successive application of 
the inverse C.G. series (Eq. (5.55)). 

Review Questions 
4.1 Define the Rotation Matrix and explain how the rotation about an ar-

bitrary axis can be expressed in terms of the Euler angles of rotation. 
4.2 Show how the spherical components of a vector transform under rota-

tion and hence obtain the rotation matrix corresponding to a rotation 
through an angle β about the Y axis.

4.3 Check whether the transformation matrix M(β ) given by Eq. (4.15) is 
unitary.

Problems
4.1 Show that a rotation of the coordinate system about an arbitrary axis 

is equivalent to Euler angles of rotation. Hence obtain a relation 
between the two sets of rotation parameters. 

4.2 Given any two vectors A and B, construct a spherical tensor of rank 
2 and obtain the rotation matrix D2(α ) for a rotation about the Z axis 
from the known transformation properties of spherical components of 
vectors A and B under rotation. 

4.3 Given any two vectors A and B, construct a spherical tensor of rank 
2 and obtain the rotation matrix D2 (β ) for a rotation about the Y axis 
from the known transformation properties of spherical components of 
vectors A and B under rotation. 

4.4 Given any two vectors A and B, construct a spherical tensor of rank 
2 and study its transformation properties under rotation of coordinate 
system. Hence obtain the rotation matrix for j = 2. 

Solutions to Selected Problems 

4.1 This problem is dealt with in the Appendix A, to which the reader is 

4.2 Components of spherical tensor of rank 2 are constructed from 
referred.

vectors A and B.
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These components are explicitly given in Table 3.1. If the coordinate 
system is rotated through an angle α about the Z axis, the components 
of the second rank tensor are transformed as given below. 

Similarly,

Thus, the transformation matrix M (α ) for for rotation through an 
angle α about the Z axis is obtained from the relation 

The rotation matrix is the transpose of the transformation matrix. 
Since the transformation matrix is a diagonal matrix, the rotation 
matrix coincides with transformation matrix for rotation about the Z
axis.

4.3 The transformation matrix for for rotation through an angle β 
about the Y axis is a little more complicated since it is non-diagonal.
But the method is essentially the same. 

M(β ) = 

The rotation matrix is the transpose of the transformation matrix 

M (β ).
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4.4 The rotation matrix D2 (α, β, γ ) is the transpose of the transformation 
matrix M(α, β, γ ).

The transformation matrix M(α ) for rotation about the Z axis is 
worked out in Problem (4.2) and the transformation matrix M(β ) for 
rotation about the Y axis is given in Problem (4.3). 



CHAPTER 5 

ROTATION MATRICES - II

5.1. The Rotation Operator 

Let us consider an infinitesimal rotation δα about the Z-axis of a right-
handed coordinate system and investigate how the wave function trans-
forms.

(5.1)

where RZ(δα ) is the rotation operator which causes a rotation of the coor-
dinate system S S' through an infinitesimal angle δα about the Z-axis.
Under rotation, 

(5.2)

(5.3)

Under the rotation of coordinate system S S', the coordinates of a phys-
ical point changes from r to r' and the function Ψ (r) transforms to Ψ (r'),
which, in turn, becomes a new function Ψ '(r) when expressed in terms of 
the old coordinate r.

(5.4)

The last step is obtained by applying the Taylor series expansion and ne-
glecting terms involving higher powers of δα. Since the Z-component of the 
orbital angular momentum operator LZ is given by 

(5.5)

(5.6)

we have 

42
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Let us now generalize the relation (5.6) and replace the operator L by J.

(5.7)

Equation (5.7) gives the transformation of the function due to an infinitesi-
mal rotation through an angle δα about the Z-axis. Making a large number 
(n) of such infinitesimal rotations, one can obtain a finite rotation α about
the Z-axis.

(5.8)

where α = n δα. In a similar way, we can find the rotation operator corre-
sponding to a rotation about the Y-axis.

where

and

(5.9)

It is to be noted that J2 commutes with the rotation operators and hence 
j is a good quantum number under rotation. 

Any general rotation can be described in terms of three parameters 
(Goldstein, 1980; Bohr and Mottelson, 1969). They may be the three Euler 
angles α, β, γ or they may correspond to a rotation about an axis which 
is fixed by the two parameters θ and

(5.10)

(5.11)

(5.12)

We have the following relation between the parameters specifying the single 
rotation and the Euler angles (vide Appendix A). 

(5.13)
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through an angle α is carried out about the Z-axis of the original coordi-
nate system but the rotations β and γ are carried out about the axes Y1

and Z2 of the new coordinate systems obtained in successive rotations. 

Since the rotations are unitary transformations, we can subject the op-
erators to unitary transformations successively in order to denote all the 
rotations with respect to the original coordinate system. For instance, 

(5.14)

(5.15)

Substituting Eq. (5.14) in Eq. (5.12), we get 

Once again, we can subject the operators in the coordinate system X1 Y1 Z1

to a unitary transformation and obtain the corresponding operators in the 
coordinate system XYZ.

(5.16)

Substituting (5.16) into (5.15), we get finally, 

(5.17)

In the expression (5.17) for R(α, β, γ ) all the rotations are carried out in 
the original coordinate system and its usefulness will be seen in the next 
section. The rotation operator R is unitary, that is 

(5.18)

5.2. The Matrix

The rotation matrix has been defined in Eq. (4.1) of the pre-
vious chapter and now we can express its elements as the matrix elements 
of the rotation operator R (α, β, γ ).

(5.19)

In the expansion for R(α,  β, γ) given by Eq. (5.12), only the rotation 
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or

(5.20)

Using the explicit form (5.17) for R (α, β, γ ) and remembering that the 
angular momentum functions are eigenfunctions of JZ operator, we obtain 

(5.21)

The last step was obtained by allowing the operator to operate on 
the left state and the operator on the right state. This was possible 
only because both the operators and the states correspond to the same 
coordinate system. 

In our representation, JY is purely imaginary and hence the matrix ele-
ment is real. Denoting this matrix element by 
we have 

(5.22)

Since is unitary and real, the following symmetry relations are 
satisfied.

(5.23)

(5.24)

(5.25)

Once we obtain the matrix the construction of the full rotation 
matrix is simple because of Eq. (5.22). Also, the construction 
of for higher j-values1 can be done starting from the lower j-values
using the coupling rule for rotation matrices (inverse C.G. series) to be 
discussed in Sec. 5.5 

5.3.

We shall now obtain the rotation matrix for j = For a rotation about 
the Y-axis, the rotation operator is given by 

The Rotation Matrix for Spinors 

(5.26)

1Rotation matrices for j = 1 are given in Eqs. (5.33) and (5.98). For the explicit, 
j values, the reader is referred to Varshalovich forms of the rotation matrices higher 

et al. (1988). 
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where SY is the Y-component of the spin operator. .Expressing it in terms 
of the Pauli spin operator σ y , we have 

(5.27)

Recalling the following series expansions 

(5.28)

(5.29)

(5.30)

(5.31)

and the property of the Pauli matrices, 

we obtain a simple form for the rotation matrix. 

(5.32)

Substituting the matrix elements of σ y , we obtain the matrix representation 
for the operator RY (β ) and it is denoted by d 1/2 (β ).

(5.33)

In a similar way, we can obtain the rotation matrices for rotations about 
the X or Z-axis.

(5.34)
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(5.35)

Let us now investigate the effect of rotation of the coordinate system 
on the eigenfunction Ψ m . A rotation through an angle β about the Y-axis
yields

(5.36)

In Eq. (5.36)) an explicit mention of the quantum number j is omitted but 
it is understood that j = in the following discussion. If we wish to express 
the eigenfunctions Ψ and χ as column vectors and d as a matrix, and use 
the usual rule of matrix multiplication, then we find the matrix dT which
is the transpose of the d matrix to be more convenient. 

(5.37)

(5.38)

Writing explicitly, we have 

If we start with a pure state which is a spinor with spin up 

a rotation through an angle 2π about the Y-axis yields 

, then 

(5.39)

This is in contradiction to the case of a vector for which the rotation through 
an angle 2π leaves the vector undisturbed. In the case of spinor, a rotation 
through an angle 4π is necessary to get the same spinor. That is why the 
spinors are sometimes referred to as ‘half-vectors’.

Also there is an interesting feature that a spinor exhibits. For a spinor 
located at the origin of the coordinate system, a rotation through an angle 
π about the X-axis is not equivalent to a rotation through an angle π about
the Y-axis.

(5.40)

(5.41)
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For a vector located at the origin, these two rotation will invert the vector. 
But it is not so in the case of spinors. However, it can be shown that the 
two spinors ϕ and ϕ ' differ by a rotation through an angle π about the 
Z-axis.

(5.42)

(5.43)

That is why a spinor can be considered as a vector with a thickness. 

5.4. The Clebsch-Gordan Series 

In this section, we shall obtain a coupling rule for rotation matrices and it 
is deduced from the coupling scheme of two angular momenta. 

(5.44)

Rotating the coordinate system through the Euler angles (α,β,γ), we ob-
tain

(5.45)

where the argument ω of the D matrix stands for the set of Euler angles 
α, β, γ. The state on the right hand side can be expanded as 

(5.46)

Inserting this into Eq. (5.45) and taking the scalar product with 
we obtain 

(5.47)
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The sum over µ on the right-hand side of Eq. (5.47) can be replaced by 
= µ - Now, performing the summation over the projection quantum 

numbers, we obtain 

(5.48)

This is known as the Clebsch-Gordan series (C.G. series). 

5.5. The Inverse Clebsch-Gordan Series 

Starting from the C.G. series (Eq. (5.48)), an inverse series can be obtained 
using the orthogonality of the C.G. coefficients. Multiplying both sides of 

Eq. (5.48) by and summing over m1 , we obtain 

Once again, multiplying both sides by 

over µ1, we obtain 

(5.49)

Equation (5.49) was obtained by applying the orthonormality condition 
(Eq. 2.19) of C.G. coefficients. 

and summing 

This is known as the inverse C.G. series. There is an alternative way of 
obtaining this series. 

The alternative method is to start from the following coupling rule of 
two angular momenta. 

(5.51)
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Rotate the coordinate system through the Euler angles α, β, γ. Applying
the transformation, we now have 

(5.52)

Taking the scalar product on both sides with we obtain 

(5.53)

Replacing the summation index µ2 by M' and summing over M' and j' on
the right and over m' on the left, we obtain 

(5.54)

Finally, we obtain 

(5.55)

which is the same as Eq. (5.50). The inverse C.G. series can be used to 
generate the elements of all the matrices Dj(ω ), ( j (j > if the rotation 

matrix is given. 

5.6. Unitarity and Symmetry Properties of the Rotation 
Matrices

Rotation of a coordinate system is equivalent to performing a unitary trans-
formation on the functions. 

(5.56)
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(5.57)

Taking their scalar product and summing over m', we obtain 

(5.58)

The inverse relation of (5.56) is 

(5.59)

Taking the scalar product with on both sides of Eq. (5.59), we 
obtain

(5.60)

Equations (5.58) and (5.60) are the mathematical expressions denoting the 
unitarity of the D -matrices.

It is easy to see that two successive rotations through Euler angles ω1 

and ω2 is equivalent to a single Euler rotation ω. This yields a relationship 
between the D -matrices.

Hence

(5.61)

(5.62)

The D -matrices exhibit the following symmetry properties: 

(5.63)

(5.64)
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If ω denotes the Euler angles of rotation (α,β,γ), the inverse rotation 
ω−1 is denoted by the Euler angles ( −γ, −β, −α ). The symmetry property 
(5.64) follows from the unitary nature of the transformation and Eq. (5.63) 
directly follows from Eqs. (5.22) and (5.24). 

Using the group theory, a general expression for has been 
obtained by Wigner and it is also given by Rose (1957). 

The sum over x is over all integer values for which the factorial arguments 
are greater than or equal to zero. 

5.7. The Spherical Harmonic Addition Theorem 

Consider any two points P1 and P2 on a unit sphere. In a certain coordinate 
system S, their coordinates are and In a rotated coordinate 
system S', let their coordinates be and (See Table 5.1.) 
Then we can show that 

(5.66)

In other words, the quantity is invariant under rotation of coordinate 
system.

To prove this, consider the quantity defined in the rotated coordinate 
system S' 

(5.67)

The spherical harmonics given in frame S' can be obtained from the spher-
ical harmonics defined in frame S using the rotation matrices (Eq. (5.19)). 

(5.68)
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Summing over m and applying the orthonormality of rotation matrices, 

(5.69)

(5.70)

we obtain 

thereby proving that is invariant under rotation. 
Now let us choose a convenient coordinate system S0, in which P1 lies

on the Z-axis and P2 in the X-Z plane. Their coordinates in the frame S0 are
(0,0) and (θ, 0). The invariant quantity in this frame has a simple structure 

(5.71)

Equating in the two frames S0 and S, we arrive at the well-known theorem 
known as the spherical harmonic addition theorem. 

or

(5.72)
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The angle θ is the angle subtended by the two points P1 and P2. Expressing
in terms of Legendre function, 

(5.73)

we obtain an aIternative form for the spherical harmonic addition theorem. 

(5.74)

5.8. The Coupling Rule for the Spherical Harmonics 

Now let us consider a rotation of the frame from S to S0. In the frame S, 
the coordinates of the points P1 and P2 are and . In the new 
frame S0, P1 lies on the Z - a x i s and P2 in the X-Z plane with coordinates 
(θ, 0). This rotation corresponds to the Euler angles 

(5.75)

Let us investigate how the spherical harmonic associated with 
the point P2 transforms under this rotation 

(5.76)

Comparing this equation with Eq. (5.72) obtained for the spherical har-
monic addition theorem, we get the relation 

(5.77)

This is a very useful relation giving the connection between the rotation 
matrices for integral j and the spherical harmonics and this relation can 
be directly used to obtain a coupling rule for the spherical harmonics with 
the same arguments. 

Consider the Clebsch-Gordan series 

(5.78)
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Replacing the rotation matrices by spherical harmonics using Eq. (5.77), 
we obtain 

(5.79)

Taking the complex conjugate of the above equation and remembering that 
the C.G. coefficients are real, we have 

This is the coupling rule for the spherical harmonics with the same 

argument. The C.G. coefficient is the parity C.G. coefficient 

which is nonvanishing only if l1 + l2 - l is even. This implies that the 1 values 
in the summation take either all even values or all odd values depending 
upon l1 and l2.

The above rule permits an easy evaluation of the integral involving three 
spherical harmonics, 

(5.81)

First let us couple the two spherical harmonics 
and then integrate, applying the orthonormality condition of the spherical 
harmonics.

Since the last integral simply yields δ ll3 δ mm3, we obtain 

(5.82)

(5.83)
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where the notation 

is used. 

(5.84)

5.9. Orthogonality and Normalization of the Rotation Matrices 

In this section, we shall show that the functions are orthogonal 
on the surface of the unit sphere and evaluate the integral 

where

Since

and

we have 

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

We can now evaluate the integral occurring in Eq. (5.89) by expanding 
in terms of 
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Since the projection quantum numbers µ and m are zero, j can assume 
only integer values and hence can be expressed in terms of 
using Eq. (5.77). 

(5.92)

(5.93)

(5.94)

Substituting this value of the integral in Eq. (5.89), we obtain 

(5.95)

The summation over j is equivalent to replacing j by 0. Since µ = m = 0, 
it follows that µ1 = µ2 and m1 = m2.

Thus, we obtain 

(5.96)

Using the symmetry properties of C.G. coefficient, we finally obtain 

(5.97)

Review Questions 

5.1 Construct the rotation operator in terms of Euler angles of rotation 
and deduce the rotation matrix for j = 

5.2 What is a spinor? A spinor is sometimes referred to as ‘half vector’ or 
‘vector with thickness’. Explain why? 

5.3 Define the rotation matrix and deduce the Clebsch-Gordan series and 
its inverse. Indicate the significance of the inverse Clebsch-Gordan se-
ries.



58 CHAPTER 5 

5.4 Define the rotation matrix and deduce its unitary and symmetry prop-
erties.

5.5 Given the rotation matrix for j = explain how the rotation matrices 
of higher order can be constructed using the inverse Clebsch-Gordan
series.

5.6 State and prove the spherical harmonic addition theorem and therefrom 
deduce .the coupling rule for spherical harmonics. Apply the results 
so obtained to evaluate the matrix element of a spherical harmonic, 

5.7 Evaluate the integral 

where ω denotes the Euler angles of rotation α,β,γ. Show that the 
rotation matrices are orthogonal. 

Problems

5.1 For j = 1, show that = JY. Using this relation and the definition 
of the rotation operator, obtain the rotation matrix d1 ( β ) for rotation 
through an angle β about the Y axis.

5.2 Using the inverse Clebsch-Gordan series, construct the rotation matrix 
D1 ( α, β, γ ) given that 

The following C.G. coefficients are given: 

5.3 Using the inverse C.G. series, construct the rotation matrix for j =

5.4 Given the rotation matrix for j = 1, construct the rotation matrix for 

Solutions to Selected Problems 

5.1 For j = 1, write down explicitly the matrices for JY, and

given the rotation matrices for j = 1 and j =

j = 2, using the inverse Clebsch Gordan series. 
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where I denotes the unit matrix. A simple addition of the matrices 
yields the rotation matrix d1 ( β ).

(5.98)

5.2 Using the inverse C.G. series, the elements of the rotation matrix d1(β )
can be obtained. 

For the elements and , there is only one non-
vanishing term in the expansion. Substituting the values of the C.G. 
coefficients and the elements of the rotation matrix we obtain 

For the elements and there are two terms in the 
expansion and substituting the values of C.G. coefficients and the ele-
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ments of the rotation matrix we obtain 

The element of the rotation matrix has four terms in the expan-
sion. Substituting the values of the C.G. coefficients and the elements 
of the rotation matrix, we find 

The calculated elements are exactly the elements of the rotation matrix 
given in Eq. (5.98). 



CHAPTER 6

TENSOR OPERATORS AND REDUCED MATRIX 

ELEMENTS

6.1. Irreducible Tensor Operators 

We have seen that the angular momentum functions, Ψ jm transform as irre-
ducible tensors of rank j. In a similar way, the irreducible tensor operators1

are defined by their transformation properties under rotation. If UR is the 
Unitary transformation operator corresponding to a rotation R of the co-
ordinate system, then the angular momentum functions Ψ jm ( r ) and the 
irreducible tensor operators transform as follows. 

(6.1)

(6.2)

The operators obeying Eq. (6.2) is said to be an irreducible tensor 
operator of rank k and it has 2 k + 1 components (µ = -k, . . . , 0, . . . k). The 
above definitions are such that the equations involving tensor operators 
and also the matrix elements of the tensor operators retain the same form 
under rotation of coordinate system. 

The spherical harmonics play a dual role, sometimes as angular 
momentum eigenfunctions of a particle moving under the influence of a 
spherically symmetric potential and in many cases they also occur as irre-
ducible tensor operators inducing transitions. Depending upon their role, 
the spherical harmonics transform according to Eq. (6.1) or Eq. (6.2). 

6.2. Racah’s Definition 

Racah (1942b) defines the irreducible tensor operators in terms of their 

1For supplementary study of irreducible tensor operators and angular momentum 
coefficients, the reader is referred to Biedenharn and Van Dam, 1965 and Biedenharn 
and Louck, 1981. 

61
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commutation relations with the angular momentum operators Jz and J±.

(6.3)

(6.4)

The equivalence of the two definitions (6.2) and (6.3, 6.4) can be shown 
by considering an infinitesimal rotation of the coordinate system. For an 
infinitesimal rotation δφ about the Z-axis, the rotation operator UR is given 
by

(6.5)

(6.6)

and consequently Eq. (6.2) becomes 

where the element of the rotation matrix is expressed as the matrix 
element of the rotation operator UR. Expanding the exponentials and 
neglecting the second and higher order terms of we obtain (suppressing 
the argument for the operator hereafter) 

(6.7)

(6.8)

Simplifying, we get 

Since is an eigenstate of the operator Jz with eigenvalue µ, we get at 
once the relation (6.3) from Eq. (6.8). 

Equation (6.8) was obtained by considering an infinitesimal rotation 
about the Z-axis. We will get similar relations if we consider infinitesimal 
rotations about the X and Y axes. 

Combining Eqs. (6.9) and (6.10), we obtain 

(6.9)

(6.10)

(6.11)
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which in turn, yields Eq. (6.4). Thus we have shown that the two definitions 
of the irreducible tensor operators are equivalent. 

In deriving Eq. (6.9), it was assumed that the element of the rotation 
matrix corresponding to a rotation δθ about the X-axis is given by 

(6.12)

This will yield the rotation matrix 

This is of course true, but the usual practice is to express the rotation 
in terms of the Euler angles α, β, γ. The Euler angles corresponding to an 
infinitesimal rotation about the X-axis are given by 

(6.13)

(6.14)

which when substituted in Eq. (6.2) gives the following relation 

(6.15)

which' is equivalent to Eq. (6.9). 

6.3.   The  Wigner-Eckart  Theorem 

The Wigner-Eckart theorem states that the matrix element of an irreducible 
tensor operator between any two well-defined angular momentum states 
can be factored out into two parts, one part depending on the magnetic 
quantum numbers and the other part completely independent of them. 
The first part contains the entire geometry or the symmetry properties 
of the system and the second part is concerned with the dynamics of the 
physical process. The theorem states that the entire dependence of the 
matrix element on the magnetic quantum numbers can be factored out as a 
C.G. coefficient and the other factor which is independent of the projection 
quantum numbers is known as the reduced matrix element or the double-
bar matrix element. 

(6.16)

Equation (6.16) is the mathematical statement of the Wigner-Eckart the-
orem. Unfortunately there is no uniformity in the precise statement of 
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the Wigner-Eckart theorem and consequently the reduced matrix element 
differs from one to another. The reduced matrix element as defined in 
Eq. (6.16) is identical with that of Rose but differs from that of Edmonds 
(1957) by a factor. 

It can be easily seen that the first factor viz., the C.G. coefficient de-
pends on the coordinate system that is used to evaluate the matrix element 
and it also implies the law of conservation of angular momentum. If this fac-
torization is possible in one coordinate system, then it is easy to show that 
it is possible in every other coordinate system obtained by rotation. The 
matrix element in the rotated coordinate system (writing the coordinates 
explicitly) is given by 

The coordinate r pertains to the original coordinate system and the coordi-
nate r', to the rotated coordinate system. If we assume such a factorization 
as given in Eq. (6.16) in the original coordinate system, then we have 

Coupling the two rotation matrices by applying the C.G. series 

(6.19)

and substituting it into Eq. (6.18), we obtain after summing over and 
µ' (Note that = + µ' = M' ),
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Summing over J is equivalent to replacing J by jf and the summation over 
yields as a result of unitarity of D-matrices. Finally we obtain 

(6.21)

Thus we have shown that if the matrix element can be written as a 
product of C.G. coefficients and the reduced matrix element in one coor-
dinate system, then it can be factorized in the same way in every other 
coordinate system. 

The foregoing discussion cannot be considered strictly as the proof of the 
Wigner-Eckart theorem, although it serves as a consistency check. There 
are three different proofs of the Wigner-Eckart theorem, one due to Wigner 
(Brink and Satchler, 1962), another due to Schwinger (Edmonds, 1957) and 
the third due to Racah (Rose, 1957a). The first of the proofs make use of 
the definition Eq. (6.2) and the third rests on the commutation relation 
(6.3) and (6.4). 

6.4. Proofs of the Wigner-Eckart Theorem 

6.4.1. METHOD   I 

We shall first write down explicitly the matrix element Q of an irreducible 
tensor operator of rank k.

(6.22)

The angular integration in Eq. (6.22) can be carried out either by rotating 
the functions in a fixed coordinate system or by rotating the coordinate 
system, keeping the functions fixed. We shall opt for the latter method. Let 
us consider a rotation of the coordinate system through the Euler angles 
such that the angular coordinate goes from (0,0) to . 

(6.23)

We shall first couple the two D-matrices using the C.G. series. 

(6.24)

Substituting this into Eq. (6.23), we obtain 
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where

(6.25)

(6.26)

(6.27)

Inserting (6.27) into (6.25) and summing over J and we obtain 

The integration over dΩ can be carried out easily. 

The quantity within the curly bracket in Eq. (6.28) is independent of the 
projection quantum numbers because of the summation over and µ'. 
Thus the matrix element Q depends on the projection quantum numbers 
only through the C.G. coefficients. The reduced matrix element is the quan-
tity within the curly bracket and, as we have shown, it is independent of 
the projection quantum numbers. 

(6.29)

It will be instructive to calculate the reduced matrix element in the 
special case of the spherical harmonics. From Eq. (6.29), we have 

(6.30)



Eq. (6.30) simplifies to 
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Since

(6.31)

(6.32)

Thus, according to the Wigner-Eckart theorem, the matrix element of 
is

(6.33)

where the reduced matrix element is given by Eq. (6.32). This result is 
identical with the result obtained earlier using the coupling rule of the 
spherical harmonics. 

6.4.2. METHOD II 

This proof is originally due to Schwinger and it is also given by Edmonds 
(1957). First let us consider the effects of operation of an irreducible ten-
sor operator on the angular momentum eigenfunction and 
study the transformation property of the resulting function under rotation 
in order to obtain its structure. Let 

(6.34)

(6.35)

The result (6.35) is obtained using Eqs. (6.1) and (6.2). Using the C.G. 
series for coupling the two rotation matrices, we obtain 

Under rotation of the coordinate system, changes to . 
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Rearranging and replacing the summation over µ' by M', we get 

(6.36)

We see that the quantity within the curly bracket transforms under rotation 
as a tensor of rank J and the function Φ can be expressed as a linear sum 
of such tensors of rank J, J taking the spectrum of values from to 
ji + k. Let

(6.37)

where η denotes the additional quantum numbers ji and k. Now Eq. (6.36) 
becomes

(6.38)

and it gives the transformation property of the function under rotation. 
From this study, we obtain the structure of the function 

(6.39)

This result can be used to evaluate the matrix element of a tensor 
operator.

(6.40)

To find the scalar product, , let us expand 
in terms of the complete set of functions 

(6.41)

This is because the two functions and may be in different 
representation and so they must be connected by a unitary transformation. 
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The quantities a η jm are the coefficients of such unitary transformation and 
the summation η is over the additional quantum numbers such as ji and k
which define the function First we shall show that the coefficient 
a η jm is independent of the magnetic quantum number m. For this, consider 
the expansion of the two functions and . 

(6.42)

(6.43)

Allowing the operator J+ / { ( j - m)( j + m + 1)} to operate on both sides 
of Eq. (6.41), we obtain 

(6.44)

(6.45)

Comparing (6.43) and (6.44), we see that 

where N is the normalization constant of the function . 

Using the relation (6.46) in Eq. (6.40), we finally obtain 

Therefore the expansion coefficient a η jm is independent of m and hence can 
be simply written as aη j. Now the scalar product becomes 

(6.46)

(6.47)

(6.48)

where the quantity N a η jf is independent of the projection quantum num-
bers and is known as the reduced matrix element. 

6.4.3. METHOD III 

This method is originally due to Racah and rests on the commutation rela-
tions (6.3) and (6.4). For details, reference may be made to Rose (1957a). 
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First let us find the matrix elements of the commutators (6.3) and 
(6.4) between the two angular momentum states and From 
Eq. (6.3), we have 

(6.49)

The operator Jz may be allowed to operate on the left or the right state, 
as the case may be, yielding their eigenvalues. The resulting equation is 

(6.50)

Equation (6.49) simply states that the matrix element of the tensor operator 
will be non-vanishing only if 

(6.51)

In a similar way, the commutation relation (6.4) will yield another equation 
for the matrix element. 

with the notation 

(6.52)

(6.53)

Remembering that the Hermitian conjugate of J+ operator is J- and vice 
versa and allowing the operator J± to act on the left or the right state, we 

get

where

(6.55)

(6.56)

It can be shown that the C.G. coefficient obeys the same Eqs. (6.49) and 
(6.54) obtained by replacing the matrix elements by the corresponding C.G. 
coefficients and hence we infer that the dependence of the matrix elements 
on the projection quantum numbers is the same as that of the C.G. coeffi-
cients.
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To obtain equations similar to Eqs. (6.49) and (6.54) for C.G. coeffi-
cients, consider the coupling of two angular momenta and to 
yield the resultant angular momentum 

(6.57)

and allowing them to operate on Eq. (6.57), we get 

The summation indices mi and µ are dummy indices and hence it does not 
matter if these indices are replaced by and µ' or and µ" depending 
on the convenience. Remembering that 

(6.58)

(6.59)

Substituting the expansion (6.57) on the left hand side of Eq. (6.59) and 
taking the scalar product of both sides with we get 

In a similar way, the operators 

operating on Eq. (6.57) yield 

Expanding in terms of uncoupled states, 

and substituting it in Eq. (6.61), we obtain 

(6.61)

(6.62)

(6.63)
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Taking the scalar product with on both sides of Eq. (6.63), 
we get 

since

(6.64)

(6.65)

(6.66)

Transposing the first term on the right to the left, we get an equation which 
is similar to Eq. (6.54). This study shows that the matrix elements of tensor 
operators have the same dependence on projection quantum numbers as 
the C.G. coefficients. Therefrom it follows that the dependence of a matrix 
element on projection quantum numbers can be factored out as a C.G. 
coefficient, and so the remaining factor called the reduced matrix element 
should be independent of those projection quantum numbers. 

6.5. Tensors and Tensor Operators 

In this section, we shall discuss some relations involving tensors and tensor 
operators (Racah, 1942b). 

The effect of a tensor operator operating on which is a tensor 
of rank j is to yield a linear sum of tensors of rank λ, λ varying from 
 j - k to j + k.

(6.67)

and its inverse relation 

Just as one can write the tensor product of two tensors Uλ1 and Uλ2, 

(6.68)

(6.69)



and
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we can also write similar relations for tensor operators and 

(6.70)

(6.71)

The complex conjugate of a tensor is given by (for integer values 
of λ and U real)

(6.72)

(6.73)

and if U is complex, the corresponding relation is 

This choice of phase coincides with that for spherical harmonics. However, 
sometimes in quantum mechanical applications, it is convenient to redefine 
irreducible tensors as 

(6.74)

(6.75)

for which the complex conjugate is given by 

The choice of this phase can be used for tensors of integer as well as half-
integer rank j.

For a tensor operator of integer rank k, the complex conjugate is given 
by

(6.76)

The scalar product of two tensor operators Tk and Sk of equal rank is given 
by

(6.77)

and it can also be expressed as a zero rank tensor obtained by taking the 
tensor product; of Tk and Sk.
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(6.78)

In the derivation of the above result, the symmetry property of the C.G. 
coefficient has been used. The inverse relation is 

(6.79)

The concrete examples of spherical tensors are the angular momentum 
eigenfunctions. The spherical harmonic operator Yl,m, the spherical compo-
nents of the position vector operator r, the momentum operator p = -i
and the Pauli spin operator σ may be cited as examples of spherical tensor 
operators. For instance, the position vector operator r can be written as 

(6.80)

Review Questions 

6.1 Define irreducible tensor operators (a) using the transformation prop-
erties under rotation and (b) using their commutation relations with 
angular momentum operators. Establish the equivalence of these two 
definitions.

6.2 State and prove the Wigner-Eckart theorem. Explain its importance. 
6.3 Construct a function by operating an irreducible tensor opera-

tor on the angular momentum eigenfunction Study 
the transformation property of the function under rotation of 
coordinate system and hence deduce the Wigner-Eckart theorem. 

6.4 Give Racah’s definition of irreducible tensor operators and show that 
the matrix elements of such tensor operators have the same dependence 
on projection quantum numbers as that of C.G. Coefficients. Hence 
deduce the Wigner-Eckart theorem. 

6.5 Given any two tensor operators and construct their tensor 
product. What are the allowed values for the rank of the tensor oper-
ator so constructed? If k1 = k2, construct their tensor product of rank 
zero and show how it differs from their scalar product. 
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Problems

6.1 Evaluate the matrix element where is the spher-
ical component of the angular momentum operator J.

6.2 Write down the spherical components of the position vector r regard-
ing them as spherical tensor operators. Evaluate their matrix elements 
between orbital angular momentum eigenfunctions and deduce the se-
lection rules. 

6.3 Evaluate

6.4 Show that the tensor potential 

of the nucleon-nucleon interaction is a scalar product of two tensor 
operators, each of rank 2, as given below. 

Solutions to Selected Problems 

6.1 Using the Wigner-Eckart theorem, 

6.2

Using the Wigner-Eckart theorem, we obtain 
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The reduced matrix element involves the parity C.G. coefficient 

Parity C.G. coefficient gives the selection rule 

since the parity C.G. coefficient vanishes if li = lf.

6.3 Using the Wigner-Eckart theorem, 

The square of the matrix element will involve cross terms with indices 
k and k'. The resulting C.G coefficients can be simplified by performing 
the summation over the magnetic quantum numbers mi, mf.

The summation over µ and µ' are redundant since 

The final result is 
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COUPLING OF THREE ANGULAR MOMENTA 

7.1. Definition of the U-Coefficient

When there are three angular momenta, we have six mutually commut-
ing operators 

(7.1)

for which one can find simultaneous eigenvalues. We can find a coupled 
representation by successive addition of two angular momenta. This can be 
done in more ways that one as shown in Fig. 7.1. For instance 

(7.2)

(7.3)

It is possible to go from the uncoupled representation to any one of the cou-
pled representations by a unitary transformation and in the same way it is 
possible to go from one coupled representation to another coupled repre-
sentation by means of a unitary transformation. The commuting operators 
in the two coupled representations are respectively 

or alternatively
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and

and

(7.5)

for which simultaneous eigenvalues can be determined. Denoting the cor-
responding eigenstates by and we can 
relate them by a unitary transformation. 

(7.6)

(7.7)

where U ( j1j2jj3 ; j12j23 ) is a unitary transformation coefficient. 
The U-coefficient is the unitary transformation coefficient which enables 

one to go from one scheme of coupling to another scheme of coupling, and 
so it is to be anticipated that the U-coefficient should reduce to unity when 
the two schemes of coupling become identical due to the vanishing of one 
of the three angular momenta j1, j2 and j3.

(7.8)

It is our purpose here to express the U-coefficient as products of C.G. 
coefficients with a summation over projection quantum numbers. It can 
be seen that the U-coefficient is independent of the projection quantum 
numbers. This offers a great advantage. In many problems involving prod-
ucts of a large number of C.G. coefficients, reduction can be made to the 
U-coefficient which does not involve the projection quantum numbers and 
hence independent of the choice of the frame of reference. 

7.2. The U-Coefficient in terms of C.G. Coefficients 

We shall now explicitly write the eigenstates in the two representations in 
terms of the eigenstates in the original uncoupled representation. 
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Substituting Eqs. (7.9) and (7.10) into Eq. (7.6) and taking the scalar 
product on both sides with , we obtain 

(7.11)

Equivalent relations can be obtained by using the orthonormality of C.G. 

and summing over coefficients. Multiplying both sides by 

µ2, we obtain 

(7.12)

Replace by j23 and once again multiply both sides by the C.G. coefficient 

Then sum over µ1. Using again the orthogonality of C.G. 

coefficients, we obtain, 

(7.13)

Equation (7.13) can be obtained directly from Eq. (7.6) or Eq. (7.7) by 
expressing the coefficient as a scalar product of the two eigenstates obtained 
in the two schemes of coupling. 

(7.14)

Now expanding the two coupled states in terms of uncoupled states using 
Eq. (7.9) and Eq. (7.10) and applying the orthonormality condition for the 
uncoupled states, we obtain the relation (7.13). 

7.3. Independence of U-Coefficient from Magnetic Quantum 
Numbers

Out of the six projection quantum numbers µ1, µ2, µ3, µ12, µ23 and m that
occur on the right hand side of Eq. (7.13), m is fixed by the definition of 
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U-coefficient (Eqs. (7.6), (7.7) and (7.14)) and consequently only two are 
free variables due to the following three constraints. 

(7.15)

Since there is a summation over the only two free variables µ1 and µ2

in Eq. (7.13), the U-coefficient is independent of the projection quantum 
numbers.

The independence of the U-coefficients from the projection quantum 
numbers can also be seen in an alternative way (Ramachandran, 1962). 
In Eq. (7.14), the U-coefficient is expressed as a scalar product of the two 
eigenstates obtained in the two coupled representations. The scalar product 
can also he treated as a matrix element of the unit operator between these 
states. Applying the Wigner-Eckart theorem, we obtain the reduced matrix 
element which is independent of projection quantum numbers. 

Thus we find that the U-coefficient is in fact the reduced matrix element 
of the unit operator taken between the eigenstates in the two coupled rep-
resentations and hence independent of the projection quantum numbers. 

7.4. Orthonormality of the U-Coefficients

Each of the coupled states and obey the 
orthonormality property and hence by using Eq. (7.6), we arrive at the 
orthonormality property of the U-coefficients.

In a similar way, the inverse relation (7.7) yields 

(7.17)

(7.18)
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7.5. The Racah Coefficient and its Symmetry Properties 

The U-coefficient is related to the Racah coefficient W which has some 
simple symmetry properties1.

(7.19)

The U-coefficient and the Racah coefficient will vanish if the four trian-
gular conditions ∆ (abe), ∆ (cde), ∆ (acf) and ∆ (bdf) are not satisfied. The 
parameters a, b, c, d, e and f in the Racah coefficient can be interchanged 
as one likes provided these four triangular relations are preserved and the 
new Racah coefficient thus obtained differs from the old one utmost by a 
phase factor. 

(7.20)

(7.21)

(7.22)

(7.23)

Also a new coefficient T(abcd,ef) can be defined such that it is invariant 
under permutation of any of its arguments provided all the four triangular 
relations are preserved. 

(7.24)

The wigner 6-j symbol is related to the Racah coefficient as follows. 

(7.25)

Algebraic as well as numerical tables of Racah coefficients are available. 
Also a closed expression for the Racah coefficient has been deduced by 
Racah and it is widely used for computer programming. 

1For a detailed study of the symmetry properties, the reader may refer to Biedenharn 
et al. (1952, 1965, 1981) and Srinivasa Rao and Rajeswari (1993). 
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where ∆ (abc) is the triangle coefficient, symmetric in its arguments. 

(7.27)

This coefficient vanishes unless the triangle condition in a, b and c is sat-
isfied. The summation index x assumes all integer values for which the 
factorial arguments are not negative. 

7.6. Evaluation of Matrix Elements 

The following matrix elements can be evaluated using the concept of U-
coefficient s. 

(7.28)

(7.29)

(7.30)

In a two-particle system, a transition occurs from its initial coupled state 
to its final coupled state due to a tensor operator 

operating on particle 1 or operating on particle 2 or a scalar product 
of two tensor operators, one acting on particle 1 and the other acting on 
particle 2. 

A straight-forward method is to write down the coupled angular mo-
mentum wave functions in the uncoupled representation using the C.G. 
coefficients and then apply the Wigner-Eckart theorem to obtain the re-
duced matrix elements. For instance, 

The summation over is redundant since = m1 + µ and the matrix 
element Q1 exists only if j2 = and m2 = The three C.G. coefficients 
in Eq. (7.31) can be suitably rearranged using the symmetry properties to 
yield
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Substituting Eq. (7.32) into Eq. (7.31) and simplifying the phase factor, we 
obtain

Using a similar procedure, we can evaluate the matrix element Q2.

(7.34)

To evaluate Q3, we observe that the transition operator is a scalar in 
the two-particle space and hence j' = j and m' = m.

(7.35)

Expanding the initial and final two-particle states into uncoupled single 
particle states and applying the Wigner-Eckart theorem, we obtain a prod-
uct of four C.G. coefficients which when summed over magnetic quantum 
numbers yield a U-coefficient as shown in Eq. (7.13). After some rearrange-
ment, we finally obtain 

(7.36)

It is instructive to obtain the matrix element Q2 by applying the Wigner-
Eckart theorem to the combined two-particle space and then use a simple 
argument with respect to the coupling scheme. 

(7.37)
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The kronecker delta in Eq. (7.37) arises since the particle 1 does not un-
dergo any transition because the operator acts only on the particle 2. By a 
simple argument, it can be shown that the matrix element in the coupled 
representation can be expressed in terms of the matrix element in uncou-
pled representation using the U-coefficient.

Coupling scheme adopted in 

the coupled representation 

Coupling scheme adopted in 

the uncoupled representation 

In a similar way, we can evaluate Q1.

If we switch the order of coupling of particles 1 and 2, we get 

We at once observe that the above two coupling schemes are exactly the 
two coupling schemes, we studied earlier in the coupling of three angular 
momenta

(7.38)

and one can go from one scheme to the other scheme by means of unitary 
transformation denoted by the U-coefficient. So, it follows that 

(7.39)

(7.40)

(7.41)

using the symmetry properties of C. G. coefficients. The reduced matrix 
element occurring on the left hand side of Eq. (7.39) is identical with the 
reduced matrix element occurring on the right hand side of Eq. (7.41) except 
for the interchange of the particle labels 1 and 2. So from Eq. (7.39), it 
follows

(7.42)

Combining Eqs. (7.40), (7.41) and (7.42), we obtain the result given in 
Eq. (7.33). 
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Review Questions 

7.1 (a) In the coupling of three angular momenta, show that there is more 
than one coupling scheme. Define the unitary transformation coeffi-
cient U that connects one coupling scheme with another and express 
it in terms of C.G. coefficient. 
(b) Show that the U-coefficient is independent of the magnetic quan-
tum numbers and deduce the orthonormality of the U coefficients. 

7.2 Define the Racah coefficient and state its symmetry properties. How is 
it related to the 6-j symbol? 

7.3 Evaluate the following two-particle matrix elements and express them 
in terms of single particle matrix elements. 

Problems

7.1 Determine the following Racah coefficients using their general proper-
ties:

7.2 Evaluate the following reduced matrix elements: 

7.3 Evaluate the matrix element: 

7.4 Find the expectation value of the operator in the single nucleon 
state Consider both the possible values of j(= l ±

Solutions to Selected Problems 

7.1 (i) U(1021, 11) = 1 since the two coupling schemes are identical 
because one of the angular momenta to be added is zero. 
From Eq. (7.19), it follows 
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Hence the result W (1021 , 11) = follows. 

(ii) W (1232, 11) = 0 since the triangular condition is not satisfied 
in one case. 

(iii) W ( 1111 , 10 ) = -W (1101 , 11 ) = - W ( 1011 , 11 ) = 

7.2 (a) Using Eqs. (7.28) and (7.33), we obtain 

where

The above result can be deduced from Eq. (5.82). 

(b) Since σ • is a scalar (strictly a pseudoscalar) in the combined 
space of configuration and spin, jf should be equal to ji. So, let us 
impose the condition ji = jf = j.

Applying the result (7.36), we obtain 

with

Substituting the algebraic expressions for the U-coefficient and the 
C.G. coefficient and simplifying, we finally obtain 

The above result can be obtained from a simple consideration. Since 
σ • is a pseudo-scalar in the j-space, its parity is -1. Therefore 

In other words, if li = j + then lf = j - or vice versa. 
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Since the square of the operator 

it follows that 

remembering that σ • is a pseudo-scalar.



CHAPTER 8 

COUPLING OF FOUR ANGULAR MOMENTA 

8.1. Definition of LS-jj Coupling Coefficient 

If there are two particles with spin, then the determination of their resultant 
angular momentum involves the addition of four angular momenta. Two of 
them are their orbital angular momenta l1 and l2 and the other two, their 
spin angular momenta s1 and s2. Their resultant angular momentum can 
be found in more than one way. One way is known as the L-S coupling 
scheme and there is another way called the j-j coupling scheme. 

Just as one can go from the uncoupled representation to anyone of 
the coupled representation by means of unitary transformation, it is also 
possible to go from one coupled representation to another coupled repre-
sentation, by unitary transformation. In each representation, there are a set 
of eight mutually commuting operators for which simultaneous eigenvalues 
can be determined and they are given below. 

a) Uncoupled representation 

b) L-S coupled representation 

c) j-j coupled representation 

Let us denote the state in each representation by their quantum num 
bers, and expand the state in the j-j coupled representation in terms of a 

88
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complete set of L-S coupled states. 

(8.1)

The coefficients are the elements of the unitary transforma-

tion matrix. They are known as the LS-jj coupling coefficient and can be 
expressed as the scalar product of the states in the two coupling schemes. 

(8.2)

These coefficients can be expressed in terms of products of six C.G. co-
efficients and, like U-coefficients, these LS-jj coupling coefficients are also 
independent of projection quantum numbers. Since the C.G. coefficients 
are chosen to be real, it follows that the LS-jj coupling coefficients are also 
real. Consequently by taking the complex conjugate of Eq. (8.2) we obtain, 

(8.3)

8.2. LS-jj Coupling Coefficient in terms of C.G. Coefficients 

The LS-jj coupling coefficients can be expanded in terms of products of 
six C.G. coefficients using either Eq. (8.2) or Eq. (8.3). For this purpose, 
each of the coupled states and (which 
hereafter will be referred to simply as and has to be 
expressed in terms of uncoupled states. 
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Substituting Eqs. (8.4) and (8.5) in Eq. (8.2), we obtain 

In the above equation, the summation over mL = m1 + m2 is equivalent 
to summation over m2 and similarly, the summation over M1 = λ1 + v1 is
equivalent to summation over v1. Therefore

Summing over the magnetic quantum numbers λ1, λ2 and v1 is equivalent 
to replacing them by m1, m2 and µ1 because of the δ functions. The last δ 
function in Eq. (8.7) is redundant since 

Hence it follows that 

(8.8)

In Eq. (8.8), the LS-jj coupling coefficient is expressed as a product of six 
C.G. coefficients with a summation over three projection quantum numbers 
m1, m2 and µ1. 
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8.3. Independence of the LS-jj Coupling Coefficients from the 
Magnetic Quantum Numbers 

It is easy to see that the LS-jj coupling coefficients will not depend on the 
projection quantum numbers. In Eq. (8.8) there are altogether 9 projection 
quantum numbers viz., m1, m2, µ1, µ2, mL, mS, M1, M2 and M. Of these, 
the four quantum numbers mL, mS, M1 and M2 are not independent since 

Also the projection quantum number M is fixed as per the definition of 
LS - jj coupling coefficient given by Eq. (8.2). Out of the remaining four 
quantum numbers m1, m2, µ1 and µ2, only three are free variables since 

On the right hand side of Eq. (8.8), there is a. summation over these three 
variables, thereby making the LS-jj coupling coefficient independent of the 
projection quantum numbers. 

The independence of the LS-jj coupling coefficient from the projection 
quantum numbers can also be shown in a more elegant way using the defi-
nition (8.2). 

(8.9)

Above, we have considered the scalar product as the ma-
trix element of the unit operator taken between the two coupled states. Rec-
ognizing the unit operator as a zero rank tensor and applying the Wigner-
Eckart theorem, we obtain the desired result that the LS-jj coupling co-
efficient is, in fact, a reduced matrix element which is independent of the 
magnetic quantum numbers. 
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8.4. Simple Properties 

Putting s1 = 0 and s2 = s in Eq. (8.2), we obtain 

(8.10)

Thus we find that the LS-jj coupling coefficient will reduce to a U-
coefficient if one of the four angular momenta were to be zero. This is what 
we should expect since there is effectively only three angular momenta to 
be coupled. 

Using the property of the orthonormality of the functions, one can ob-
tain the orthonormality of the LS-jj coupling coefficients. 

(8.11)

(8.12)

Instead of the LS-jj coupling coefficient, we can define the Wigner 9-j
symbol (sometimes referred to as the X-coefficient) which has a better 
symmetry property under permutation of columns or rows. 

(8.13)

The curly bracket in Eq. (8.13) is referred to as the Wigner 9-j symbol or 
the X-coefficient. The 9-j symbol is invariant under even permutation of 
rows or columns but odd permutation will introduce a phase factor (-1)T 
where T = l1 + s1 + j1 + l2 + s2 + j2 + L + S + J.

(8.14)

Also an interchange of rows and columns will leave the Wigner 9-j symbol 
as well as the LS-jj coupling coefficient invariant. 
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8.5.

Consider the expression (8.8) for the LS-jj coupling coefficient. There are 
six C.G. coefficients which can be grouped into three pairs. Applying the 
relation Eq. (7.10) to each pair, we obtain 

Expansion of 9-j Symbol into Racah Coefficients 

(8.15)

(8.16)

(8.17)

Substituting Eqs. (8.15), (8.16) and (8.17) into Eq. (8.8), we can now 
perform the summation over the three projection quantum numbers in the 
order m2,µ1 and m1. Of the six C.G. coefficients, we now have, (a) and 
(e) alone depend on m2. Similarly (c) and (f) alone depend on µ1. The 
summation over m2 and µ1 are carried out using the symmetry and the 
orthonormal properties of C.G. coefficients and they yield the δ functions
as shown below: 
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(8.18)

(8.19)

Thus we obtain 

(8.20)

Summing over u and v is equivalent to replacing u and v by t. Then
the summation over m1 simply yields unity. It is to be stressed here that 
the summation over m1 is to be done last since M has a fixed value in the 
definition (8.2). Hence 

(8.21)

Replacing the U-coefficient by W-coefficients and the LS-jj coupling 
coefficient by the 9-j symbol, we finally obtain 
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In Eqs. (8.21) and (8.22), there is a summation over t, the upper and 
lower bounds of which are determined by the triangular condition to be 
satisfied by all the three Racah coefficients. 

Numerical tables for the 9-j symbol are available. Once we have a com-
puter program for the Racah coefficients, it can be extended to the 9-j
symbols using the formula (8.22). It will be useful to write a computer 
program for the 9-j symbols based on the formula (8.22). 

8.6. Evaluation of Matrix Elements 

The following matrix element can be evaluated using the concept of LS-jj
coupling coefficient. 

(8.23)

In the above reduction, the Wigner-Eckart theorem is used. 
The reduced matrix element does not depend on the projection quantum 

numbers and it can be expressed as a product of two single particle reduced 
matrix elements using the concept of recoupling scheme that arises in the 
addition of four angular momenta j' = j1 + j2 + k1 + k2.

Scheme A corresponds to the two-particle reduced matrix element given 
in Eq. (8.23) and scheme B is what we require to express the two-particle
reduced matrix element in terms of two single particle reduced matrix ele-
ments. One can go from scheme A to scheme B by means of LS-jj coupling 
coefficient.

(8.24)

The matrix elements Q1, Q2 and Q3 denoted by Eqs. (7.28), (7.29) and 
(7.30) and evaluated in the last chapter using U-coefficients can be con-
sidered as special cases (i) k2 = 0, (ii) k1 = 0 and (iii) k1 = k2 = K with
k = 0. 
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For the purpose of illustration, we shall indicate below how Q3 can be 
obtained.

(8.25)

From Eq. (8.23), it follows that 

(8.26)

From Eqs. (8.24) and (8.25), we deduce the result given in Eq. (7.36). 

Review Questions 

8.1 Define the Unitary transformation coefficient that occurs in the cou-
pling of four angular momenta and express it in terms of C.G. coeffi-
cients.

8.2 Show that the LS-jj coupling coefficient that occurs in the addition of 
four angular momenta is independent of the magnetic quantum num-
bers.

8.3 Define the 9-j symbol and derive an expression for it in terms of Racah 
coefficients.

Problems

8.1 Evaluate the following matrix element: 
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8.2 Denoting the angular momentum wave function of the deuteron by 
show that 

where S12 is the tensor potential 

8.3 Show that 

Solutions to Selected Problems 

8.1 The matrix element can be evaluated directly by using Eq. (8.23). 

with

8.2 Let us denote the matrix elements in (a) and (b) by Q1 and Q2.
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Substituting explicitly the operator S12,

This can be written as a product of two matrix elements using the 
relation (7.36). 

The matrix element can be evaluated using the coupling 
scheme for spherical harmonics. 

The evaluation of the other matrix element involves the LS-jj coupling 
coefficient.

The LS-jj coupling coefficient can be written in terms of the 9-j symbol. 

substituting the value for the 9-j symbol occurring in the above 
equation. Each matrix element of the Pauli spin operator yields a value 

Thus
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Substituting the values of the matrix elements obtained, we finally get 

The other matrix element Q2 can be evaluated by a similar procedure. 

The reduced matrix element is given by 

The numerical value of the Racah coefficient W (2121, 12) is obtained 
from the tables. 

Substituting the numerical values, we finally obtain 

Q2 = -2.



CHAPTER 9 

PARTIAL WAVES AND THE GRADIENT FORMULA 

9.1.

The plane wave can be expanded into partial waves and this expan-
sion is familiarly known as Rayleigh’s expansion. 

Partial Wave Expansion for a Plane Wave 

(9.1)

where jl(kr) is the spherical Bessel function (vide Appendix E). 

wave equation 
To obtain the relation (9.1), we shall seek the solution of the free particle 

(9.2)

in the Cartesian coordinate system as well as in the spherical coordinates. 
In the Cartesian coordinate system, the solution can be written as 

(9.3)

In the spherical polar coordinates, the wave equation can be separated 
by the usual technique and the solution with azimuthal symmetry can be 
written as a product of the radial function jl (kr ) and the angular function 
Pl(cosθ). The general solution is a linear combination of jl (kr) Pl(cosθ). 
Thus

(9.4)

(9.5)

Combining Eqs. (9.3) and (9.4), we obtain 

100
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where al is a coefficient which has to be determined. For this, multiply both 
sides of Eq. (9.5) by PL(cosθ) and integrate over the polar angle. Denoting 
cos θ by x and using the orthogonality relation 

(9.6)

(9.7)

we obtain 

Integrating by parts, the left hand side of Eq. (9.7) becomes 

(9.8)

Thus,

The first term on the right hand side of Eq. (9.8) can be evaluated remem-
bering that 

(9.9)

(9.10)

The second term on the right hand side of Eq. (9.8) can be further inte-
grated by parts but they yield contributions of order and as a 
consequence they are negligible as r Asymptotically, Eq. (9.7) reads 

since

as r From Eq. (9.11), we obtain 

(9.11)

(9.12)

(9.13)
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Substituting the value of this coefficient in Eq. (9.5), we get the desired 
result (9.1). 

9.2. Distorted Waves 

Now let us consider how a plane wave gets distorted by a spherically sym-
metric potential. 

The Schrödinger equation for the scattering of a particle of mass m by
a spherically symmetric potential V(r) is given by 

(9.14)

(9.15)

(9.16)

the solution of which is a plane wave 

or, equivalently 

where

In the absence of potential (i.e. V(r) = 0 for all values of r), the 
Schrödinger equation (9.15) reduces to 

(9.17)

(9.18)

Denoting the direction of the incident particle to be along the z-axis and 
expanding the plane wave in terms of angular momentum eigenfunctions 
(the Rayleigh expansion), we obtain 

(9.19)

where jl(kr) is the spherical Bessel function and Pl(cosθ) is the Legendre 
polynomial. Equation (9.19) is known as the partial wave expansion of the 
plane wave. 

A similar partial wave expansion is possible for the solution of the 
Schrödinger equation (9.15) with the potential. Introducing the spherical 
coordinates into Eq. (9.15) and separating the variables, it can be seen that 
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the eigenfunction is a linear combination of the products of radial and 
angular momentum eigenfunctions. 

(9.20)

where α l and β l are the coefficients in the expansion. Comparing (9.20) 
with Eq. (9.19), we find that the coefficient 

(9.21)

since the radial function Rl(r) should tend to jl(kr) in the limit of zero 
potential. In Eq. (9.20), the z-component of angular momentum is taken to 
be zero because the incident wave is assumed to be along the z-direction and 
the spherically symmetric potential will not disturb the angular momentum. 
The radial function Rl (r ) is the solution of the radial equation, 

whose solution corresponds to the spherical Bessel function, 

(Potential V ( r ) = 0 everywhere) 

(9.22)

If the potential V(r) is zero everywhere, then the radial equation reduces 
to

(9.23)

(9.24)

which is regular at the origin. 
Thus we see that the effect of the spherically symmetric potential is 

only the modification of the radial function. If the potential is not spheri-
cally symmetric, it is not possible to separate the equation in the spherical 
coordinates.

9.3. The Gradient Formula 

There are many physical situations in which one needs the effect of the 
gradient operator operating on a system described by where 

is a radial function and the spherical harmonic denoting the 
angular momentum eigenfunction. The multipole fields and the transitions 
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induced by the momentum operator are specific instances which require the 
use of the gradient formula. So, in this section, we shall derive the following 
well known gradient formula1:

where

(9.25)

(9.26)

and is the vector spherical harmonic (Blatt and Weisskopf, 1952; 
Rose, 1957) defined by 

(9.27)

In some cases, one may require the result of operation of one of the spherical 
components of the gradient operator and we give below this particular 
case also. 

(9.28)

Equation (9.28) can be thrown into a more general and symmetric form 
(Devanathan and Girija, 1985) by defining an unit operator and allowing 
the quantum number n to take either the value 0 or 1. 

with the notation [ L] = (2 L + . For n = 1, 1 can take only two values 
l = L + 1 and l = L - 1 because of the parity C.G. Coefficient. Substituting 

1For several applications of the gradient formula in Nuclear Physics, the reader may 
refer to Eisenberg and Greiner (1976). 
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the algebraic value (Eq. (9.49) of the parity C.G. Coefficient in Eq. (9.29), 
we retrieve Eq. (9.28). On the other hand, for n = 0, l L and consequently 
Eq. (9.29) reduces to 

(9.30)

9.4. Derivation of the Gradient Formula 

To derive the gradient formula (9.25), we require a convenient form for ∇. 
The direct representation of ∇ in spherical basis,

(9.31)

is not very convenient but the expansion of the triple vector product, 

a x (b x c) = b(a • c ) - c(a • b), (9.32)

suggests a more convenient form 

with

and

(9.33)

where is the unit radius vector and L , the orbital angular mo-
mentum operator. On operation of ∇ on the wave function, we obtain a
decomposition into two parts, one radial and the other tangential. 

(9.34)

(9.35)

(9.36)

The evaluation of the radial part ( A) is simple whereas the evaluation of 
the tangential part ( B ) is a bit complicated. 

To evaluate A, we need to express in terms of the spherical harmonic 
of order 1, 

(9.37)
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and then use the coupling rule for spherical harmonics to obtain 

(9.38)

The notation [ J] = is used in the above equation. Using the defi- 
nition of vector spherical harmonics (Eq. (9.27)), we obtain after simplifi-
cation

(9.39)

where

with

To evaluate B, we need to express the vector product x L in terms of 
the spherical tensor T1 of rank 1 obtained by taking the tensor product of 
r and L.

It is to be emphasized here that the vector obtained by taking the cross 
product of any two vectors differs by a factor from the spherical tensor of 
rank 1 constructed by taking the tensor product of these two vectors as 
shown in Eq. (3.21). 

(9.40)

(9.41)

(9.42)

(9.43)

The operation of on yields 
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Next we couple the two spherical harmonics and to obtain 

The summation over the projections µ and λ can now be performed in 
succession.

Note that l + 1 - L should be even due to the parity C.G. Coefficient 
occurring in Eq. (9.44). Expressing the U coefficient in terms of the Racah 
coefficient, we obtain 

(9.47)

In the summation over l that occurs in Eqs. (9.39) and (9.47), l can
take only two values and L + 1 due to the occurrence of the parity 
C.G. coefficient. Algebraic expressions are available for both the Racah 
coefficients and the parity C.G. coefficients and they are given below. 

(9.48)

(9.49)



108 CHAPTER 9 

Using these algebraic expressions in Eqs. (9.39) and (9.47), we obtain 
finally

and

(9.50)

(9.51)

Adding A and B, we get the gradient formula given by Eq. (9.25). 
Equation (9.29) can be obtained from Eq. (9.25) by taking the dot 

product of both sides of Eq. (9.25) with the unit spherical vector . We 
have

and

(9.52)

(9.53)

Using equations (9.52) and (9.53), we get the relation (9.28). 

9.5. Matrix Elements Involving the Operator 

In this section, let us evaluate the following two single particle matrix ele-
ments which involve the gradient operator. 

The matrix element (9.54) denotes the transition of a particle from the 
initial state to the final state . The func-
tions and are the radial functions and the angular func-
tions and are the spherical harmonics and 
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To evaluate the matrix element (9.54), first we have to expand the tensor 
product and then apply the gradient formula (9.28). 

In Eq. (9.56), the summation can he made either over m or over µ. Substi-
tuting (9.57) into (9.56), we have 

where

and

with the notation 

and

(9.58)

(9.59)

(9.60)

(9.61)

(9.62)
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By the Wigner-Eckart theorem, 

and

(9.63)

(9.64)

Substituting (9.63) and (9.64) into Eq. (9.58)) we find that each term in 
(9.58) consists of three C.G. coefficients and the summation over µ can be 
performed as indicated below. Considering only the factors that depend on 
the projection quantum numbers, we obtain 

Similarly,

(9.65)

(9.66)

Equations (9.65) and (9.66) are obtained by using the symmetry relation 
(2.23) for C.G. coefficient and the relation (7.12). Using Eqs. (9.65) and 
(9.66)) we obtain 
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In the matrix element (9.54), we recognize that the transition operator is 
a tensor of rank λ and projection mλ and as a consequence, the Wigner-
Eckart theorem can be directly applied to obtain 

(9.68)

Comparing Eqs. (9.67) and (9.68), we get the relation 

where

and

Substituting Eqs. (9.70) and (9.71) into Eq. (9.69) and expressing the 
U-coefficients in terms of the Racah coefficients, we finally obtain 

(9.72)

The matrix element Q2 can be evaluated by recognizing the transition 
operator to be a tensor of rank λ and projection mλ . The initial and final 
single particle states are the spin-orbit coupled wave functions. The radial 
part of the wave function is assumed to depend only on l and not on j as
in the case of the oscillator potential. Even if it depends on j as in the case 

(9.70)

(9.71)
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of Wood-Saxon spin-orbit coupled potential, there is very little change in 
the procedure. Further N can assume only the value 0 or 1. If N = 0, then 
σ0 is the unit operator which is a zero rank tensor. If N = 1, then σ1 is the 
Pauli spin operator which is a tensor of rank 1. 

Applying the Wigner-Eckaat theorem, we get 

The reduced matrix element occurring in Eq. (9.73) can be separated out 
into the orbital and spin parts by introducing the LS-jj coupling coefficient 
discussed in chapter 8. Thus, 

The reduced matrix element 

is given by expression (9.72) whereas 

(9.75)

It will be useful to write a computer program to evaluate the reduced matrix 
element

using Eq. (9.74). 

Review Questions 

9.1 Expand the plane wave into partial waves and deduce Rayleigh’s 

9.2 Evaluate
9.3 State and prove the gradient formula. 

formula.
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9.4 Evaluate the following matrix elements using the gradient formula: 

Problems

9.1 Expand into partial waves and evaluate the integral 

Verify your result by direct integration. 

that
9.2 Evaluate the integral where q = k1 - k2 and hence show 

(9.76)

9.3 Using the Rayleigh expansion for the plane wave 

evaluate the integral I involving the momentum operator Ρ op by ap-
plying the gradient formula. 

The following relations will be useful. 

(9.77)

(9.78)

Verify your result by direct evaluation. 
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9.4 Evaluate the integral 

where q = k1 - k2 and obtain the following expression for the spherical 
Bessel functions jL ( qr ) in terms of jl1 ( k1r ) and jl2 ( k2r ).

(9.79)

9.5 Using the Rayleigh expansion for the plane wave and the gra-
dient formula, show that 

The following useful relations are given2:

Since

(9.80)

(9.81)

(9.82)

(9.83)

Solutions to Selected Problems 

9.1

2The relations (9.81) and (9.82) can be deduced from Eq. (E.10). 
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and

we obtain 

The same result can be obtained by direct evaluation as follows: 

9.2 From the previous problem 9.1, we have 

To obtain the required relation, we need to use the partial wave ex-
pansions for exp ( i k1 • r) and exp ( -i k2 • r) separately and integrate. 

Using the orthonormality of the spherical harmonics 

and the spherical harmonic addition theorem 

we obtain the required result, 
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9.3 The momentum operator Ρ op can be written as 

(9.84)

Using the Rayleigh expansion for the plane wave and the above expan-
sion for the momentum operator, we obtain 

(9.85)

Thus the problem reduces to the evaluation of the following integral 
by the application of the gradient formula. 

The first term on the R.H.S. vanishes because l cannot take negative 
values. The integral in the second term is given by 

Hence,

(9.86)

The last step is obtained by substituting the value of the C.G. coeffi-
cient and using the relation D+j1 ( kr ) = kj0 ( kr ).
Substituting (9.86) into (9.85) and recalling that the momentum vector 
k can be written as (following Eq. (9.78)), 
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we finally obtain 

(9.87)

The result (9.87) can also be obtained by direct evaluation as shown 
below:

Now the integral I becomes

9.5 Using the Rayleigh expansion for the plane wave and the expansion 
(9.84) for the momentum operator, we obtain 

(9.88)

Using the gradient formula, we get
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In the last step, we have made use of the relations (9.80) - (9.82).
Substituting (9.89) into (9.88) replacing m + µ by mL and rearranging, 
we obtain 

(9.90)

Because of the parity C.G. coefficient, the only two possible values of l
are L - 1 and L + 1 and hence the δ functions within the curly brackets 
are redundant. Summing over l, we obtain 

Substituting (9.91) into (9.90), we get 

(9.91)

(9.92)

The first curly bracket in (9.92) denotes the vector k and the second 
curly bracket is the Rayleigh expansion for the plane wave Thus 
we retrieve the familiar result 



CHAPTER 10 

IDENTICAL PARTICLES 

10.1. Fermions and Bosons 

Particles can be broadly classified into two categories, fermions and bosons. 
Fermions are particles with half-integral spin quantum numbers and the 
wave function of a system of identical fermions is antisymmetric with re-
spect to exchange of any two particles. Bosons are particles with integral 
spin quantum numbers and the wave function of a system of identical bosons 
are symmetric with respect to exchange of any two of them. Below we 
shall consider how to construct the wave function of a system of fermions 
or bosons with appropriate symmetry in the angular momentum coupling 
scheme (Rose, 1957a; Racah, 1943). 

10.2. Two Identical Fermions in j-j Coupling 

Consider two fermions in equivalent orbits denoted by the quantum num-
ber j. Since their j -values are the same, their magnetic quantum numbers 
should be different according to the Pauli exclusion principle. The coupled 
wave function of two identical fermions in equivalent orbits can be written 
as

(10.1)

Defining P12 as the permutation operator which exchanges the particle 
indices 1 and 2, we have 

(10.2)

119
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Equation (10.2) is obtained using the symmetry property of C.G. coeffi-
cients. The quantity within the curly bracket is identically equal to 
given in Eq. (10.1) since m is only a dummy summation index. Thus 

(10.3)

Since 2 j is odd, J should be even to assure the antisymmetry of the wave 
function with respect to exchange of particles. Hence in the angular mo-
mentum coupling scheme, the antisymmetry of the wave function of two 
fermions in equivalent orbits is automatically taken into account if the to-
tal angular momentum J is restricted to even integers. 

10.3. Construction of Three-Fermion Wave Function 

Now let us try to extend the foregoing discussion to the construction of 
three-particle wave function with proper symmetry. This can be done by 
first coupling the angular momenta of particles 1 and 2 and then adding the 
resultant angular momentum j12 so obtained to the angular momentum of 
the third particle. 

(10.4)

The wave function will be antisymmetric with respect to 
exchange of particles 1 and 2 if j12 is even. In general, more than one 
value of j12 is possible and the permitted even integer values of j12 can be 
obtained from the following two conditions. 

(10.5)

So. a proper three-particle wave function will he a linear sum of wave func-
tions with different j12 values. In addition, it is to be en-
sured that the wave function so constructed is antisymmetric with respect 
to exchange of particles 2 and 3. If this is done, then the wave function will 
be automatically antisymmetric with respect to exchange of particles 1 and 
3 since the permutation operator P13 can be expressed in terms of P12 and
P23.

(10.6)
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Let be the properly normalized three-particle wave function which 
is antisymmetric with respect to exchange of any two particles. Then, 

(10.7)

where the coefficients Fj12 are known as the coefficients of fractional parent-
age (c.f.p) with normalization condition 

(10.8)

We adopt the convention that all the fractional parentage coefficients are 
real. The customary notation for the three-particle c.f.p. denoted by Fj12

defined in equation (10.7) is 

(10.9)

We require that should be antisymmetric with respect to exchange 
of any two particles. Then 

(10.10)

We follow the construction scheme already outlined to obtain the above 
wave functions. 

(10.11)

(10.12)

Using the symmetry properties of C.G. coefficients, we can change the order 
of coupling j23 and j to obtain 
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(10.13)

Note that j23 is even since the wave function is constructed 
so as to be antisymmetric with respect to exchange of particles 2 and 3. 
Hence

(10.14)

(10.15)

Taking the scalar product with on both sides, we obtain 

According to Eqs. (10.10) (10.11a) and (10.14), 

(10.16)

The above result is obtained simply because the two coupled wave functions 
and are obtained following the two differ-

ent coupling schemes outlined in Chapter 7 and hence the scalar product of 
these two wave functions is just the recoupling coefficient 
Replacing by j12, Eq. (10.16) can be written as 

(10.17)

(10.18)

(10.19)

Using the notation 

we can rewrite Eq. (10.17) as 
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Equation (10.19) can be solved to obtain the solution for F, only if 

(10.20)

The condition (10.20) gives the permissible values of J for which the three 
particle wave function will have the required antisymmetric property under 
exchange of particles. Once the permitted J values are determined, the 
fractional parentage coefficients are calculated using Eq. (10.19). 

The fractional parentage coefficients can also be calculated following an 
alternative procedure outlined below. 

Starting from Eq. (10.7), it is possible to rewrite the wave function 
in terms of using the recoupling coefficient 

U(j j J j ;j 1 2 j 2 3 ) .

(10.21)

The function will be antisymmetric with respect to ex-
change of particles 2 and 3 only if j23 is even. Using Eq. (10.21) in Eq. (10.7), 
we get 

(10.22)

The antisymmetric three fermion wave function exists only if both j12

and j23 are even integers. If j23 is odd, then the coefficient of 
should vanish. 

( j23 odd integer). (10.23) 

Equation (10.23) along with Eq. (10.8) can also be used to determine Fj12.

10.4. Calculation of Fractional Parentage Coefficients 

We shall calculate, for the sake of illustration, the fractional parentage 
coefficients for a simple configuration ( j)3 of equivalent particles. In a given 
state j, the maximum number of particles that can be accommodated is 
2j + 1. The lowest value of j which allows the configuration ( j)3 is j =
Below we compute the fractional parentage coefficients for the three-particle
configuration with j =

The allowed values of j12 and j23 are 0 and 2. Among the various possible 
values of J, only J = satisfies the condition (10.20). This can be easily 
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checked with the following values of the Racah coefficients. 

With the help of these coefficients, the quantities Aj12,j23 are evaluated. 

They satisfy the determinantal equation (10.20). 

The c.f.p. can be calculated from the matrix equation 

and the normalization condition 

The corresponding values of F0 and F2 are

For J = and j23 = 3, the corresponding equation is 

(10.25)

(10.26)

(10.27)

(10.28)

(10.29)

The same result can be obtained in an alternative way by using Eq. (10.23). 
For J = and j23 = 1, we have 

(10.30)

(10.31)

The values of the corresponding Racah coefficients are found from the ta-
bles.

(10.32)
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Using these values, Eqs. (10.30) and (10.31) become 

(10.33)

(10.34)

(10.35)

This relation along with the normalization condition (10.28) yields the same 
value (10.29) obtained earlier. 

For values of J other than j12 = 0 will not be permitted and hence 
there exists only one term in the summation of Eq. (10.23). 

Both these equations yield the relation 

If the U-coefficient vanishes, then the equation becomes trivial. On the 
other hand, if the U-coefficient is non-vanishing, then we get a trivial result 
that the c.f.p. is zero. 

10.5. The Iso-Spin

Instead of considering separately the protons and neutrons, we can con-
sider the nucleons as identical particles if we include the iso-spin quantum 
numbers in the description of their states. The proton and the neutron are 
considered as the two states of one and the same particle called nucleon with 
iso-spin quantum number the proton having the projection and the 
neutron having the projection (Some authors use the opposite conven-
tion for neutrons and for protons). The iso-spins are compounded 
in the same way as angular momenta but it is to be remembered that the 
iso-spin space is an hypothetical space, different from the space in which 
the angular momenta are coupled. Using the j - j coupling scheme, the 
two-nucleon wave function in the coupled representation can be written as 

where τ is the total iso-spin quantum number and µ the iso-spin projection. 
Operating P12 on the wave function, we get 

(10.37)
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Since 2 j is odd, we get the condition that the two-nucleon wave function is 
antisymmetric if J + τ is an odd integer. 

10.6. The Bosons 

Bosons are particles with integral spins and their total wave function is 
symmetric with respect to exchange of particles. The analysis made in 
section (10.2) can be repeated with small modifications. The two-boson
spin wave function can be written as 

(10.38)

Here j is an integer. Allowing the exchange operator P12 to operate on 
we get 

(10.39)

For bosons, 2 j is an even integer. Since the bosons are symmetric under 
exchange, J should be even if their spatial wave function is symmetric, and 
odd, if their spatial wave function is antisymmetric. Since the spatial wave 
function of the two particles depend upon their relative orbital angular 
momentum L, it follows that L + J should be even for two bosons. Thus 
in the case of deuterons with spin 1, we have two possibilities: (i) J = 0 
or 2 and L is even (ortho-deuterium molecule) (ii) J = 1 and L is odd 
(para-deuterium molecule). 

10.7. The m-scheme

Here we follow a simple scheme by which the total angular momentum 
of a system of particles can be determined by enumerating the possible 
m-states. In section (10.3), we have seen that only certain values are per-
mitted for the total angular momentum if a certain symmetry is assumed 
under exchange of particles. The permitted angular momentum of a sys-
tem of particles can be obtained by enumerating first the m-states in the 
uncoupled representation and obtaining thereby the m -states in the cou-
pled representation. It is to be emphasized that the total number of states 
should remain unaltered when we go from one representation to another. 

Let us consider two fermions in equivalent states with j = Since 
their j-valuesare the same, they should differ at least in their m-values.
In Table 10.1, the possible m-states are enumerated. 
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The total number of states is six, of which J = 2 will account for 5 
states and the remaining one state will correspond to J = 0. Thus we find 
that the permitted values of the total angular momentum of two fermions 
in j = state are 2 and 0. This result is the same as was obtained earlier 
but here it is obtained by simple enumeration. 

This method can be extended to find the total angular momentum of 
three or more fermions. Now let us illustrate the method for the case of 
three fermions in j = state and present the results in Table 10.2. Thus 
we find that the total angular momentum J = will account for all the 
four possible m-states in the last column. 

This method is equally applicable to bosons. Let us consider in Ta-
ble 10.3 three bosons, each with angular momentum j = l. All the three 
single particle states can have the same m value unlike the case of fermions. 
There are in total 10 states, of which seven of them belong to J = 3 and 
the remaining three belong to J = 1. Thus the permitted values of the 
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total angular momentum of a system of three bosons each of j = 1, are 
J = 3 and 1. 

Thus the m-scheme is applicable to bosons as well as fermions and is 
useful to obtain the permitted values of total angular momentum by simple 
enumeration of the m -s ta tes .

Review Questions 
10.1 Three fermions are in equivalent orbitals, defined by the quantum 

number j. Construct their antisymmetric wave functions and find the 
permitted J values.

10.2 What is meant by coefficient of fractional parentage (cfp). Find the 
cfp values for three particles in equivalent orbitals j = . 

10.3 How do you explain the existence of two types of deuterium molecule 
on the basis of the symmetry of the wave functions? 

10.4 Using the m-scheme,find the permitted values of the total angular 
momentum for three identical fermions in the equivalent orbital state 
j =

10.5 Find the permitted values of total angular momentum for three iden-
tical bosons with j = 1, using the m -scheme.

Problems
10.1 Two identical fermions are in j = state. Using the m-scheme,

show that the permitted values of the total angular momentum of 
two-fermion system are J = 0,2,4. 
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10.2 Three identical fermions are in j = state. Using the m - scheme,
find the permitted values for the total angular momentum of the three-
fermion system. 

10.3 Using the m-scheme, find the permitted values of angular momenta 
for (a) 2-phonon system and (b) 3-phonon system, if each phonon 
carries an angular momentum of j = 2. 

Solutions to Selected Problems 

10.2 A table similar to Table 10.2 can be constructed for three identical 
fermions in j = orbitals. From the table, it can be inferred that 
the permitted values of total angular momentum for the three fermion 
system are 

10.3 Constructing tables similar to Table 10.3, we can obtain the permitted 
values J of angular momenta. For two-phonon state, we obtain J =
4,2,0 and for three-phonon state, J = 6,4,3,2,0. 



CHAPTER 11

DENSITY MATRIX AND STATISTICAL TENSORS 

11.1. Concept of the Density Matrix 

The concept of density matrix is introduced in the study of the behaviour 
of a system consisting of an aggregate of particles. When we are consider-
ing the emission of light by atoms or the emission of γ -rays by nuclei, we 
are not experimentally investigating the emission by a single particle but 
by a group of particles. Similarly, when we are investigating the scattering 
process, we are considering the scattering of a beam of particles on a target 
having many scattering centres. Thus we are lead inevitably to deal with 
aggregates of particles and statistical distribution of those particles in dif-
ferent states. Although the concept of density matrix is broad-based, we are 
more interested in its application to the study of the statistical distribution 
of particles with spin j into the various magnetic substates denoted by the 
quantum number m ( m = -j, -j + 1,. .., + j ) . 

The discussion that follows is equally applicable to the consideration of a 
single particle with probability distribution of its occupation in a complete 
set of orthonormal states or to an aggregate of particles with a statistical 
distribution in various states. 

An arbitrary wave function Ψ can be expanded in terms of a complete 
set of orthonormal eigenfunctions . 

(11.1)

(11.2)

From the expansion coefficients, we can form a matrix ρ known as the 
density matrix. 

(11.3)

Then

130
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The properties of the density matrix can be deduced. It is a Hermitian 
matrix and, when diagonalized, the diagonal elements ρ ii gives the proba-
bility of finding the system in the eigenstate If the wave function Ψ is
normalized, then 

We have obtained the result that 

(11.4)

(11.5)

Since the trace of a matrix is invariant under unitary transformation, the 
density matrix is amenable to easy physical interpretation when thrown 
into a diagonal form by unitary transformation. The diagonal elements 
correspond to the statistical weights or probability of finding the system 
Ψ in the various substates and the total probability (the trace of the 
density matrix) adds up to one. 

If we make a measurement of some dynamical variable F of the system 
described by the wave function Ψ, then the expectation value is given by 

(11.6)

The concept of density matrix will become clearer when we consider its 
application to a beam of particles with spin The wave function Ψ in this 
case will consist only of two terms 

(11.7)

where and describe the two states of polarization and 

(11.8)
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Thus the wave function of the beam is 

The density matrix 

(11.9)

(11.10)

completely characterizes the beam since the diagonal elements denote the 
intensities of the polarization states whereas the off-diagonal elements fur-
nish the relative phase. 

The expectation values of the unit matrix and the Pauli matrices are 

(11.11)

(1 1.12) 

(1 1.13) 

(1 1.14) 

The quantities Px, Py and Pz can be considered as the components of the 
polarization vector P and the density matrix can be written in terms of P .

Writing explicitly, 

(11.15)

(11.16)

Substituting the values of and from Eqs. (11.12 - 11.14) into 
Eq. (11.16), we retrieve the result (11.10). The density matrix is diagonal, 
only when the polarization vector P is along the z-axis.
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Having introduced the concept of density matrix and applied it to the 
simple case of particles, we are now in a position to construct the 
density matrix for a general case and apply it to study the oriented systems 
(Blin-Stoyle and Grace, 1957). 

11.2. Construction of the Density Matrix 

The density matrix is a Hermitian matrix and it is of dimension n x n where 
n is the number of basic states. Hence the density matrix can be expressed 
as a linear combination of n2 independent matrices Sµ (of order n) which 
may be chosen suitably. 

The expectation value of Sµ is

The linear independence of the base matrices is expressed by the orthogo-
nality relation 

(11.18)

(11.19)

(11.20)

Then,

(1 1.17) 

One of the Sµ can always be chosen to be the unit matrix I so that 

(11.21)

In the case of particles, the density matrix can be written as 

(11.22)

since Tr ρ = 1 and the polarization vector P = This is identical with 
Eq. (11.15) obtained earlier for the system. 
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Choosing the base matrices Sµ to represent the components of the spher-
ical tensors ( k = 0,1, . . . , n - 1) , the density matrix can be written 
as

(11.23)

(11.24)

It is easy to see that 

The spherical tensors can be constructed out of angular momentum 
operators

(11.25)

where c1, c2 and c3 are constants that are determined from the normaliza-
tion condition 

(11.26)

The spherical tensor parameters (hereafter called ) are the ex-
pectation values of the tensor operators 

The matrix element of the tensor operator is given by 

(11.27)

(1 1.28) 

using the notation [ k] = 

11.3. Fano’s Statistical Tensors 

In a representation in which the density matrix is diagonal, the nuclear 
orientation is completely defined by a set of parameters defined in the 



DENSITY MATRIX AND STATISTICAL TENSORS 135 

last section or equivalently through Fano’s statistical tensors Gk ( j ) (Fano 
and Racah, 1959; Rose, 1957b). 

(11.29)

Instead of the statistical weights pm, it is found more convenient to use 
Gk ( j ) in the study of the effect of the initial emitting state on the angular 
distribution and polarization of the emitted radiation. It is not the weight 
factors pm of the initial nuclear state but certain moments of pm that are 
of importance in determining the effect of the anisotropy of the initial state 
on the emitted radiation. Since pm is normalized to unity i.e., 

it follows that 

(11.30)

(11.31)

for unoriented system. Substituting the value of pm given by Eq. (11.31), 
we obtain the statistical tensor for the unoriented system. 

(11.32)

Multiplying the right hand side of Eq. (11.32) by the C.G. coefficient 

which is unity and simplifying, we obtain 
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It is shown that for unoriented system, the statistical tensor with k = 0 
alone exists. The oriented system is characterized by the existence of higher 
rank statistical tensors. But G0 ( j) is always equal to even for ori-
ented systems. 

(11.34)

It can be shown that the higher rank statistical tensors depend upon the 
higher moments of the statistical weights pm.

(11.35)

using the symmetry property of the C.G. coefficient. Substituting the value 
of the C.G. coefficient 

(11.36)
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we obtain 

(11.37)

When the orientation of the nucleus is such that the first moment of pm is
non-zero i.e., 

then

such that 

and the nucleus is said to be polarized with the polarization defined by 

(11.38)

(11.39)

In a similar way, G2(j) can be shown to depend upon the second moment 
of the statistical weights pm.

Substituting the value of the C.G. coefficient 

we obtain 

When G2(j) 0, the nucleus is said to be aligned. 

(11.40)

(11.41)

(11.42)
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It can be observed that Fano’s statistical tensor Gk ( j ) and the statistical 
weights pm are transforms of each other. 

Multiply both sides by the C.G. coefficient 

summation over k first and then over m.

Replacing m' by m, we obtain 

(11.43)

and do the 

(11.45)

Thus we find from Eqs. (11.43) and (11.45) that pm and Gk(j) are trans-
forms of each other. 

It can be easily seen that the statistical tensors of odd and even rank 
correspond to physical situations with different types of symmetry. Oriented 
systems that can be described by statistical tensors of odd rank are said to 
be polarized whereas those described by statistical tensors of even rank are 
said to be aligned. In polarized systems, the positive and negative directions 
about the axis of symmetry can be distinguished. But alignment is that type 
of orientation which does not distinguish between the positive and negative 
directions of the axis of symmetry. Sometimes in the literature, the terms 
polarization and alignment are used to denote specifically the orientations 
G1 ( j ) and G2 ( j ) respectively. Since for any system, the statistical tensors 
with k > 3 are usually quite small, there is no practical distinction between 
the two terminologies although the former is preferable since it avoids the 
need for introducing new names for describing orientations with higher rank 
statistical tensors. 
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11.4. Oriented and Non-Oriented Systems 

Unoriented, oriented and non-oriented spin systems have been discussed 
in some detail in preceding sections but it is desirable to stress on their 
distinguishing features since the nomenclature is not followed uniformly 
(Ramachandran, 1987; Ramachandran et al., 1984, 1986, 1987a, 1987b). 

In an unoriented spin system, the particles are distributed uniformly 
among the various sub-states with different projection quantum numbers. 
In other words, the statistical weight pm is 1/(2 j+ 1) for a particle with spin 
j. The density matrix is a scalar matrix with each of the diagonal elements 
equal to 1/(2 j + 1). This is often referred to as unpolarized system. A spin 
zero system is always an unoriented or unpolarized system. 

For a oriented system, the density matrix is diagonal and the diagonal 
elements denote the statistical weights pm for the occupation of the various 
magnetic sub-states. It is this system that can be conveniently described 
in terms of the tensor parameters or Fano’s statistical tensors Gk ( j )
discussed in Sec. 11.3. It has a unique axis of orientation and if it is chosen 
as the quantization axis, the density matrix becomes diagonal. A 
system has always a unique axis of orientation and the density matrix can 
be diagonalized by a rotation of coordinate system. 

For j 1, the density matrix ρ (of dimension n x n, n = 2 j + 1) cannot 
always be diagonalized by a rotation of coordinate system and such spin 
systems are known as non-oriented spin systems. The density matrix is, 
in general, Hermitian and it can always be diagonalized through a unitary 
transformation but it is only in the case of n = 2, this unitary transfor-
mation can be identified with a rotation of coordinate system. In all other 
cases with n > 2, the unitary transformations generated by rotations in 
three-dimensional space constitute only a subset of su(n). Hence, a non-
oriented spin system is defined as a system with spin j 1 if its density 
matrix cannot be diagonalized through a rotation of coordinate system or 
equivalently if the system cannot be characterized by a set of statistical 
weights pm. Such a system cannot be described in terms of Fano’s statis-
tical tensors Gk( j) alone but requires a complete set of spherical tensor 
parameters ( k = 1, ..., n - 1; mk = -k, -k+ 1,..., + k ).

One can gain some insight by considering a geometrical method of con-
structing a spherical tensor Given a unit vector, a spherical tensor of 
rank 1 can be constructed. Given two unit vectors, a spherical tensor of 
rank 2 can be constructed. In a similar way, to construct a spherical tensor 
of rank k, a set of k unit vectors are required. 

(11.46)
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where rk is a scalar and are unit vectors, each of which can 
be defined by two parameters (polar angles) θ, Thus, we find that a total 
number of 2 k + 1 parameters are required to construct a tensor of rank 
k.

For system, the density matrix consists only of spherical tensor 
of first rank and hence the system appears as a uniaxial system. For 
j 1 system, the density matrix includes spherical tensors of second and 
higher ranks which are built out of two and more number of unit vectors and 
hence the system appears as a multiaxial system. Unless the multiple axes 
coincide and the system becomes uniaxial, the density matrix cannot be 
diagonalized by rotation in three-dimensional space. The multiaxial system 
with j 1 is known as non-oriented system. To make it oriented, the system 
should be made uniaxial. 

11.5. Application to Nuclear Reactions 

In any nuclear reaction, the final nucleus will, in general, be oriented even 
though the initial nucleus may not be oriented. To be specific, let us consider 
a nuclear reaction in which a nucleus makes a transition from an initial state 

to a final state The density matrix ρ f for the final nuclear 
state is defined such that its elements are given by (Devanathan et al., 
1972)

where ρ i is the density matrix describing the initial nucleus and and HI is
the interaction Hamiltonian that causes the nuclear transition. The density 
matrix ρ f completely describes the reaction cross section σ and the spin 
orientation of the final nucleus . 

(11.48)

(11.49)

(11.50)

where C is a constant. If the initial nucleus is unoriented, then 
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The interaction Hamiltonian is a, scalar and its general structure should be 

(11.51)

where is a, spherical tensor operator in nuclear coordinates inducing 
nuclear transition and the spherical tensor component may refer to 
the radiated field. Substituting Eqs. (11.50) and (11.51) into Eq. (11.47), 
the elements of the density matrix ρ f for the final state of the nucleus are 
obtained.

(11.52)

Given the density matrix ρ f, we can evaluate the traces, Tr ρ f and Tr 

First let us sum over Mi. The product of three C.G. Coefficients that occurs 
in Eq. (11.54) can be expressed as a product of U-Coefficient and a C.G. 
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Coefficient, using the techniques developed in Chap, 7. 

(11.55)

The summations over Mf and in Eq. (11.54) are redundant since Mf =
Mi + m λ and = Mi + m λ '. Substituting (11.55) into (11.54)) we obtain 

Let us now perform the summation over m λ and m λ '.

(11.57)

Substituting the above result and after rearrangement, we obtain 

(11.58)

Equation (11.58) can be equally used to obtain Tr ρ f by substituting k = 0. 

(11.59)
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As an another example, let us consider a reaction in which the nucleus 
makes two successive transitions. It is a cascade process (Devanathan and 
Subramanian, 1975; Racah, 1951; Devons and Goldfarb, 1957) in which 
the nucleus first makes a transition from an initial spin state Ji to an 
intermediate spin state JI due to an interaction Ha and subsequently to 
a final spin state Jf due to another interaction Hb. Assuming the initial 
nucleus to be unpolarized, the density matrix ρ f for the nuclear state is 
given by 

The interaction energy is a scalar and hence the interaction Hamiltonians 
Ha and Hb must have the structure 

(11.61)

In the above expansions, refer to spherical tensor operators in 
the nuclear coordinates and the spherical tensor components 
refer to the radiated field. 

The tensor moments of the spin orientation of the final nuclear 
state is given once again by 

(11.62)

where

The summation index S stands for a set of 15 variables 
and Mi. To obtain Eq. (11.63), the ex-

pansions (11.61) of the interaction Hamiltonians Ha and Hb are used. 
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There are five matrix elements in Eq. (11.63) and applying the Wigner-
Eckart theorem, we obtain five C.G. Coefficients and five reduced matrix 
elements. After several regroupings of C.G. Coefficients, we obtain three 
U-Coefficients and the tensor components of the radiated fields A and B
are suitably coupled to obtain a tensor of rank k and projection quantum 
number µ by a judicious summation over magnetic quantum numbers. Here, 
we only give the final result. 

where the summation index R stands for a set of nine variables 

Equation (11.64) is very general and can be applied to obtain the nuclear 
transition probability and the spin orientation in any cascade involving a 
two-step process. By substituting k = 0 and µ = 0, one can obtain Tr ρ f
which is a measure of the cross section for this cascade process. 

Putting v = v' = 0, we obtain the result of the single step process. 

v', λ, λ ', Λ, Ω arid Γ. 

This is identical with Eq. (11.58) since 

(11.66)

Review Questions 

11.1 Define and explain the concept of the density matrix. For a spin-
1/2 system, write down explicitly the density matrix in terms of the 
polarization parameters Px, Py and Pz. Find the expectation value of 
a dynamical variable F in terms of the density matrix. 
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11.2 Construct the density matrix for a system of arbitrary angular mo-
mentum J and express it in terms of the statistical or multipole pa-
rameters

11.3 What are Fano’s statistical tensors and how are they related to the 
statistical parameters Express Fano’s statistical tensors in terms 
of the moments of statistical weights pm which denote the occupancy 
probabilities of different m states.

11.4 Show that the statistical weights pm and Fano’s statistical tensors 
are transforms of each other. Distinguish between polarization 

and alignment of an oriented system. 
11.5 What are unoriented, oriented and non-oriented systems? Explain 

their distinguishing features. 
11.6 A non-oriented system is a multiaxial system and hence its density 

matrix cannot be diagonalized by a rotation of coordinate system. 
Explain this statement and deduce the conditions under which it can 
be diagonalized. 

11.7 In a nuclear reaction, the nucleus makes a transition from an ini-
tial state of spin Ji to a final state of spin Jf due to an interaction 
Hamiltonian HI. Deduce an expression for the cross section and the 
polarization of the final nucleus if the initial nucleus is unpolarized. 

11.8 In a cascade process, the nucleus makes a transition from an initial 
spin state Ji to an intermediate spin state JI and then to a final spin 
state Jf by successive interactions defined by interaction Hamiltoni-
ans Ha and Hb. Deduce an expression for the cross section and the 
polarization of the final nucleus, if the initial nucleus is unpolarized. 

Problems

11.1 In a certain coordinate system, a system is in a pure state 
with spin-up. Find the rotation matrix that transforms the state 
into that has the polarization vector with polar angles (θ, 0).

Hence obtain the density matrix corresponding to the state 
11.2 Construct the density matrix and determine the polarization vector 

for a system defined by the spinor 

Find the matrix UR which rotates this state into 

11.3 Construct the simultaneous eigenvectors of J2 and for the states 
with j = 1. Show that if a measurement of Jz is made on a state in 
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which is certainly unity, the eigenvalues 1, 0, -1 of Jz are ob-
tained with relative probabilities respec-
tively where 6 is the angle between and the z-axis.

11.4 The scattering amplitude for the scattering of a particle is 
given by σ • K + L, where K denotes the spin-dependent amplitude 
and L, the spin-independent amplitude. If the incident particle is unpo-
larized, show that the scattered particle is polarized with polarization 

11.5 If the scattering amplitude for the scattering of a particle is 
given by σ • K + L, where K denotes the spin-dependent amplitude 
and L, the spin-independent amplitude, deduce an expression for the 
scattering cross section if the incident beam is polarized. 

11.6 Deduce Eq. (11.64) from Eq. (11.63) by using angular momentum 
recoupling coefficients. 

Solutions to Selected Problems 

11.1 Let the frame of reference be X, Y, Z in which the system is in a pure 
state

This ket has to be rotated through an angle 6 about the Y-axis. Then 
the polar angles of the polarization vector of this ket will be (θ,0). This
is equivalent to rotation of the coordinate system through an angle −θ 
about the Y-axis. The corresponding rotation matrix is obtained from 
(5.33).

Then

Explicitly,
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To obtain the density matrix, one can use either expression (11.10) or 
(11.15). The third method is to find the density matrix in the rotated 
coordinate system by using the rotation operator. 
Method 1: 
Using Eq. (11.10), we obtain the density matrix ρ. 

Method 2: 
From Eq. (11.15), we have 

where Pz = cos θ, Px = sin θ, Py = 0. Substituting these values, we 
obtain the density matrix. 

Method 3: 
In the X, Y, Z frame, let us denote the density matrix as ρ0. 

To bring to a rotation of the coordinate system through an 
angle −θ is to be made about the Y-axis. ( UR = [ d 1/2(−θ)] T .)

11.2 The density matrix ρ is given by 
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If the direction of the polarization vector is given by then the 
density matrix can be written as 

Comparing this with the density matrix obtained earlier, we find that 

The required matrix UR that rotates the state χ such that 

is

with φ = β − α. 

are
11.3 Choose the quantization axis as Then the eigenvectors of J2 and

The density matrix ρ n in this basis is diagonal and it is given by 

The rotation matrix UR that transforms ρ n into ρ z to the basis in 
which the unit vector makes an angle θ with the z-axis is 
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The density matrix ρ z in the new basis is given by 

The diagonal elements of the above matrix give the relative probabili-
ties of obtaining the eigenvalues 1, 0, -1 for Jz in any measurement. 
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PRODUCTS OF ANGULAR MOMENTUM MATRICES AND 

THEIR TRACES 

12.1. General Properties 

Let us first recall the general properties of angular momentum matrices, 
products of angular momentum matrices and their traces. 

1. Of the angular momentum matrices, J2 is a scalar matrix 

(12.1)

where η denotes the eigenvalue j(j + 1) of J2 operator and I, the unit 
matrix. The trace of the matrix J2 is

(12.2)

2. The remaining angular momentum matrices are the Cartesian compo-
nents Jx, Jy, Jz of angular momentum, the ladder operators J+, J- and
the spherical components of angular momentum. These are 
traceless matrices and they obey the following commutation relations: 

(12.3)

(12.4)

(12.5)

Although these matrices are traceless, their products can have a non-
vanishing trace. 

3. The matrices Jx, Jy, Jz are Hermitian matrices. If the matrices J2 and
any one of the components are diagonalized simultaneously, then, in 
that representation, one of the two remaining matrices has only real 
elements and the other has only imaginary elements. It is possible to 
go from one representation in which J2 and one of components, say Jz

are diagonal to another representation in which J2 and Jx are diagonal 
by unitary transformation but the trace is invariant under such unitary 
transformation.

150
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4. The trace of a product of matrices is not changed under cyclic permu-
tation of matrices. 

(12.6)

5. Consider a product of Cartesian components Jx, Jy, Jz of angular mo-
mentum.

(12.7)

If Jx occurs α times, Jy occurs β times and Jz occurs γ times in A,
then

Tr A is real, if α, β, γ are all even integers, 

Tr A is purely imaginary, if α, β, γ are all odd integers, 

Tr A is zero, if α, β, γ are of mixed type. (12.8)

The above simple result regarding the nature of the trace is obtained 
using the property (3) that in a given representation, two of the three 
matrices consist of real elements whereas the third consists of purely 
imaginary elements. 
If α, β, γ are of mixed type, then, in one representation it is possible 
to choose the matrix that occurs odd number of times as the one 
that contains purely imaginary elements. In another representation, 
one can choose the matrix that occurs even number of times as the 
one that contains purely imaginary elements. In the first case, Tr A
is purely imaginary and in the second case, Tr A is real. Since this is 
in contradiction with the property that the trace is invariant under 
unitary transformation, Tr A should be identically zero, if α, β, γ are
of mixed type. 
If α, β, γ are all even (odd) integers, then the matrix that has purely 
imaginary elements will occur even (odd) number of times in any rep-
resentation. Since i even ( i odd ) is real (imaginary), Tr A is real (imagi-
nary).

6. (a) is invariant under an interchange of powers of JL, JM

and JN which are the Cartesian components of angular momentum. 
(b)

7. Consider a product B of angular momentum matrices with J+, J- and
Jz.

(12.9)

with Ja, Jb, Jc, Jd, ... standing for any one of the angular momentum 
matrices J+, J-, Jz. Let J+ occur p times, J- occur q times and Jz
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occur r times. The J+ operator steps up the projection quantum num-
ber m by 1, the J- operator steps down the m value by 1 and the Jz

operator leaves the m value unaffected. Since Tr B is the sum of the 
diagonal matrix elements of B,

(12.10)

the trace exists only when p = q.

sis.
8. Consider a product C of angular momentum matrices in spherical ba-

(12.11)

where Ja, Jb, Jc, Jd, ... denote any one of the spherical components 
of angular momentum, Since 

it follows from our earlier consideration that for non-vanishing trace of 
C, the number of matrices should be equal to the number of 
in the product of matrices. 

9. It has been shown by Subramanian and Devanathan (1974) that Tr A,
Tr B and Tr C are polynomials in η, the eigenvalue of the J2 opera-
tor and recursion relations for these polynomials have been developed 
by De Meyer and Vanden Berghe (1978) and Subramanian and De-

vanathan (1980). 

Ambler et al. (1962a, 1962b) have obtained the traces of a limited num-
ber of angular momentum matrices for systems of arbitrary spin and the 
study has been extended by Subramanian and Devanathan (1974, 1979, 
1980, 1985), De Meyer and Vanden Berghe (1978a, 1978b), Thakur (1975), 
Rashid (1979), Kaplan and Zia (1979), Ullah (1980a, 1980b) and Witschel 
(1971, 1975). 

12.2. Evaluation of Tr 

The evaluation of Tr is of fundamental importance1 since any trace of 
products of Cartesian components of angular momentum can be expressed 
in terms of this. Also, the trace is invariant under unitary transformation 

1Subramanian (1986a, 1986b) has evaluated the Tr using the Brillouin function 
and also obtained a generating function for the trace. 
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and so the same result will be obtained for any other Cartesian component 
of angular momentum. In other words, 

(12.12)

Choose a representation in which Jz is diagonal. Then 

We need to evaluate the trace for only even powers, since the trace of odd 
powers vanish as is evident from the property (5) discussed in Sec. 12.1. 
Accordingly, with α = β = 0 and γ odd should 
vanish, since α, β, γ are of even and odd mixture, zero being considered as 
even integer. Hence, 

(12.13)

(12.14)

where B 2 p +1 (j + 1) is the Bernoulli polynomial of the first kind of degree 
(2p + 1) in ( j + 1). A brief description of the Bernoulli polynomials is given 
in Appendix F. The reader may refer to Miller (1960) for more details. 

We shall illustrate the usefulness of the result obtained above by giving 
a few examples. From Eq. (12.14), we obtain 

(12.15)

(12.16)

The required Bernoulli polynomials B3 (x ) and B5 (x ) are taken from Ap-
pendix F. 

(12.17)

(12.18)

We shall give two more examples, the evaluation of Tr ( Jx Jy Jz) and Tr 

(12.19)
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Taking the trace on both sides and using the property (6b) and the result 
(12.15), Tr( Jx Jy Jz ) is evaluated. 

(12.20)

Let us now evaluate the other trace, which requires a knowledge 
of Tr and 

(12.21)

Thus, we see that to evaluate the trace of any product of Cartesian com-
ponents of angular momentum, we require only a knowledge of the trace of 
even powers of Jz.

It has been shown by Subramanian (1974) that the Bernoulli polynomial 
in s can be expressed as another polynomial in u = s2 - s.

(12.22)

In Eq. (12.22), Fp -1(u) is a polynomial of degree ( p - 1) in u. Hence,

(12.23)

where η = j(j + 1) is the eigenvalue of the J2 operator, Ω = η (2j + 1) is 
the trace of the J2 matrix and Fp -1 (η), Gp -1 (η) = [2/(2 p + 1)] Fp -1 (η) are
polynomials of degree ( p - 1) in η. It is an important observation made by 
Subramanian and Devanathan (1974) that is a polynomial2 in η and

2This property has been used by Pearce (1976) for the study of spin correlations in 
the Heisenberg model. 
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they obtained a recursion relation for the polynomial Gp (η) (Subramanian
and Devanathan, 1980). 

The last step is obtained using the relation 

Starting from the lowest order 

(12.24)

(12.25)

(12.26)

traces of higher orders ( 2 p ) can be obtained successively using the aforesaid 
differential recurrence relation. 

12.3. Evaluation of Tr 

For the trace of the product of J- J+ matrices to exist, the power of J+

should be the same as the power of J-, since

(12.27)

The J+ operator steps up the m value by unity and the J- operator steps 
down the m value by unity. 

(12.28)

By repeated application of J+ and J- operator, we obtain 
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Hence,

(12.31)

In the above summation, m > j - k will not contribute since ( j - m - k)!
will become negative which is not allowed. Therefore, 

Let us now define new variables t and u,

(12.32)

Since m is a dummy index, over which summation is performed, one can 
replace m by -m in Eq. (12.32). 

(12.33)

(12.34)

such that the summation extends from t = 0 to t = u. Replacing the 
variables j and m by the new variables t and u, we get 

(12.35)

where = a!/{b!(a - b)!} denotes the binomial coefficient. Using the 

identity,

we finally obtain the result 

(12.36)

(12.37)
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This result was first obtained by Subramanian and Devanathan (1974) using 
the concept of statistical tensors discussed in Chap. 11. Subsequently, it was 
rederived by De Meyer and Vanden Berghe (1978) using the above algebraic 
method. Ullah (1980a, 1980b) also obtained Eq. (12.37) using the angular 
momentum operator identities and rotation operators. 

12.4.

It is possible to express the trace of any product of a definite number 
of angular momentum operators J+, J- and Jz as a sum of traces of the 
type De Meyer and Vanden Berghe (1978) have obtained a 
recurrence relation for the trace with respect to the number of Jz operators.

Recurrence Relations for Tr 

It is convenient to introduce the shorthand notation 

(12.38)

for developing a recurrence relation starting from Tr ( k,0) for which an 
analytical expression (12.37) 

has been obtained. It turns out that a distinction has to be made between 
even and odd l values, leading to a different type of recurrence relation for 
either case. Here, we only give the final results. 

For odd l,

(12.39)

(12.40)

Both Eqs. (12.39) and (12.40) are recurrence relations, either of which can 
be used to express Tr ( k, l ) for odd l as a sum of quantities Tr ( k, i ) with i <
l. For the purpose of illustration, let us calculate Tr ( k, l ). From Eq. (12.40), 
it follows that for n = 1 

(12.41)

(12.42)

or

The same result is obtained using Eq. (12.39) also. 
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For even l,

Since

The above equation can be used to evaluate Tr ( k, l ) for even l, in terms of 
quantities Tr ( k, i ) with i < l. 

Let us calculate Tr ( k, 2) with the help of Eq. (12.43). 

(12.44)

(12.45)

12.5. Some Simple Applications 

12.5.1. STATISTICAL TENSORS 

We have seen in Chap. 11 that the final nuclear spin orientation in any 
nuclear reaction can be completely described by a set of parameters 
using the density matrix ρ f and the statistical tensors 

(12.46)

The statistical tensor is a spherical tensor of rank k in the spin space 
of the final nucleus that satisfies the normalization condition 

(12.47)

subject to the condition 0 k 2 j, where j is the spin of the final nucleus. 
Using the Wigner-Eckart theorem, we have 

(12.48)

Since J2 commutes with i.e., = 0, j' = j. Consequently, 
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The last step was obtained by summing over the magnetic quantum num-
bers and using the symmetry and orthonormality properties of C.G. coef-
ficients.

Comparing Eqs. (12.47) and (12.49), we get the value of the reduced matrix 
element assuming it to be real and positive. 

(12.51)

12.5.2. CONSTRUCTION OF 

It is possible to construct the spin tensor using the angular momentum 
operator J.

(12.52)

where Gk is a constant that depends upon k. To determine this constant, 
let us first find the matrix elements of the spin tensor and the ladder 
operator ( J+ ) k between the states and 

(12.53)
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Substituting Racah’s expression for the C.G. coefficient, 

(12.54)

and the value of the reduced matrix element from Eq. (12.51), we obtain 

(12.55)

Starting from the matrix element of J+ operator, we can obtain the matrix 
element of ( J+) k by successive operation of J+, k times.

Putting m = j in the above equation, 

(12.58)

and substituting Eqs. (12.55) and (12.58) in Eq. (12.52), we finally obtain 
the value of Gk.

(12.59)

12.5.3. ANALYTICAL EXPRESSION FOR 

The spin tensor is normalized according to Eq. (12.47) such that 

(12.60)

Expressing the spin tensor in terms of J+ using Eq. (12.52), we obtain 

(12.61)
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Substituting the value of Gk from Eq. (12.59), we get a compact analytical 
expression for Tr ( J-

k J+
k ).

(12.62)

This result was first obtained by Subramanian and Devanathan (1974) using 
the method outlined above and is identical with Eq. (12.37) obtained using 
the algebraic method of De Meyer and Vanden Berghe (1978) discussed in 
Sec. 12.3. 

12.5.4. ELASTIC SCATTERING OF PARTICLES OF ARBITRARY SPIN 

Let us consider the scattering of particles of arbitrary spin j by a target 
nucleus of zero spin. The transition operator for this scattering can be of 
the general form 

(12.63)

since a tensor of maximum rank 2 j is necessary to connect one projection 
of j to another projection of j.

The density matrix ρ f of the scattered beam completely describes the 
spin orientation which can be represented conveniently by a set of param-
eters defined by Eq. (12.46). The spherical tensor operator of 
rank k is in the spin space of the scattered beam and it satisfies the normal-
ization condition (12.47). The differential cross section is given by Tr ρ f,

(12.64)

(12.65)

(12.66)

(12.67)

In a similar way, it is possible to evaluate 
but = 0 for k 3.

For the special case, 

we give below Tr ρ f and Tr 
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Review Questions 

12.1 What are the properties obeyed by the product of Cartesian compo-
nents of angular momentum matrices? Find the trace of where λ 
stands for any one of the Cartesian basis x, y or z and p an integer. 
Show that the trace is a polynomial in η which is the eigenvalue of the 
operator J2.

12.2 Evaluate (a) (b) (c) Tr( Jx Jy Jz), (d) in 
terms of the angular momentum quantum number j.

12.3 Find the condition for the trace of a product of angular momentum 
matrices in spherical basis to be non-vanishing. Evaluate 
where J+ and J- are the ladder operators and k, an integer. 

12.4 Construct the spin tensor operator using J+ operator and hence 
evaluate The following C.G. coefficient is given: 

12.5 Discuss briefly how the elastic scattering of particles with arbitrary 
spin by a spin zero target nucleus can be investigated using the trace 
techniques of angular momentum matrices. Assuming the transition 
operator to be of the form J • C + D, obtain expressions for the scat-
tering cross section and the polarization of the scattered beam. 

Problems

12.1 Using the general properties of traces of products of angular mo-
mentum operators, choose from the following, the products of angular 
momentum operators whose trace is zero. 

Give reasons for your answer. 

trices.
12.2 Evaluate the following traces of products of angular momentum ma-

12.3 Evaluate the following traces. 
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12.4 Evaluate the traces of the following: 

where J denotes the angular momentum operator and A and B are
ordinary polar vectors. 

12.5 Using the trace techniques of angular momentum operators, construct 
the spin tensor operators µ = 2, 1, 0, -1,-2.

Solutions to Selected Problems 

12.1 (a) Tr( Jx Jy ) = 0, 
since for the non-vanishing trace, the powers of Jx, Jy and Jz should
all be even or odd. 

(e) = 0, (g) = 0, 
since the powers of J- should be equal to the power of J+, for the 
trace to be non-vanishing.

(d) = 0, 

12.4 (a) Tr( J • A ) = Tr( Jx Ax + Jy Ay + JZ Az ) = 0. 

Expanding and retaining only the non-vanishing terms, 
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12.5 The spin tensor can be constructed from the basic angular mo-
mentum operator J in spherical basis. 

The constant k can be determined from the normalization condition 

Let us give below the explicit forms of the spin tensor operators. 

In the above equations, the spherical tensor operators are 
expressed in terms of the ladder operators J+, J- and Jz operator.
In a similar way, the explicit forms of the other spin tensor operators 

can be given. The constant k that occurs in each of the 
spin tensor operators is the same and can be determined using the 
normalization condition of anyone of them. For instance, 

Using the normalization condition, 

Since Ω = j(j + 1)(2 j + 1), it follows that 

It can be verified that the same result will be obtained if we choose 
instead the or 
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THE HELICITY FORMALISM 

13.1. The Helicity States 

The component of spin s along the direction of motion of a particle is known 
as its helicity and the helicity quantum number is usually denoted by the 
symbol λ. It is also the component of total angular momentum J along
the direction of motion since the orbital angular momentum L = r x p is
perpendicular to the direction of motion and consequently its projection 
ml on the momentum axis is zero. 

The helicity formalism has been developed by Jacob and Wick (1959) for 
relativistic description of scattering of particles with spin and the decay of 
particles and resonant states. It is equally applicable to massless particles. 
The helicity formalism leads to simpler intensity and polarization formula 
over the conventional method in the study of scattering and reaction of 
particles. The advantages of using the helicity states are many. 

1. There is no need to separate the total angular momentum J into orbital 
and spin parts and hence avoid the difficulties and complications that 
arise in the treatment of relativistic particles. 

2. The helicity λ is invariant under rotations and so states can be con-
structed with definite J and helicities. 

3. The helicity λ is well defined also for massless particles and so there is 
no need for separate treatment for massless particles. 

4. The helicity states are directly related to individual polarization prop-
erties of the particles and hence convenient for the polarization study 
over the conventional formalism of choosing a reference frame with a 
fixed quantization axis, say z - a x i s . In the conventional scheme, one has 
to shuttle back and forth between two representations, one in which 
the scattering or reaction is conveniently described and the other in 
which the states are labeled with individual spin components. 

In order to specify the helicity states of a particle of mass m and spin 
s, it is not necessary to know the relativistic wave equation for such a 
particle. It is enough to know that such a wave equation exists and their 
plane wave solutions, representing states of definite linear momentum p

165
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and corresponding positive energy E = ( m2 + p2 )1/2, have the following 
properties:

1. For each p, there are 2s + 1 linearly independent solutions which can 
be characterized as states of definite helicity λ. 

(13.1)

These states characterized by p and λ form a complete set of orthog-
onal states for a free particle of mass m. If m = 0, the number of 
independent solutions reduces to two: λ = ± s. For example, a photon 
has only two independent helicity states λ = ± 1. 

2. In the case of ordinary rotation in three dimensional space, the direc-
tion of p changes but the helicity λ remains unchanged. 

3. Under space reflection about the origin (i.e. parity operation), the he-
licity λ of a moving particle changes sign. 

4. When a Lorentz transformation is applied in the direction of p, the
magnitude of p changes and in some cases, the direction of p also, if 
m 0. If the direction of p is not reversed, the helicity λ remains
unchanged under Lorentz transformation. 

Let denote the state of a particle with momentum p in the positive 
z -direction. By Lorentz transformation, all states with fixed λ and
variable p can be generated. If m 0, it is possible to reach the rest state 
with p = 0 by Lorentz transformation. In the rest state, since the total 
angular momentum of the particle is equal to its spin, it is possible to 
obtain the relative phases of the states by the requirement 

(13.2)

In the above equation, Jx, Jy, Jz are the standard spin matrices. For a 
massless particle, no finite Lorentz transformation can reduce p to zero. 
For this, we have only two helicity states with λ = ± s and it is possible to 
go from one state to another by means of a reflection, 

(13.3)

where denotes the parity operator corresponding to reflection with re-
spect to the origin ( x, y, z -x, -y,-z), the operator denotes a 
rotation about the y axis through an angle π and Y, the reflection in the 
xz plane. The operator Y transforms the state into apart from 
a phase factor. 

(13.4)



Furthermore

where the matrix element is given by 

The phase factor (-1) s- λ is introduced such that 
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Since Y commutes with a Lorentz transformation in the z direction, η 
should be independent of p. It is therefore a constant which we shall call 
the “parity factor” of the particle. For example, the λ = ±1 solutions 
for a photon are A± = such that YA± = 
Comparing this with Eq. (13.4), we obtain η = -1.

It is instructive to check the consistency of Eq. (13.4) with Eq. (13.2) for 
m 0. In this case, transforms into itself apart from a phase-factor
which must be independent of λ ( commutes with J). Hence 

(13.5)

(13.6)

(13.7)

Comparing Eqs. (13.5) and (13.6) and applying a Lorentz transformation 
in the z direction on both sides, we get 

(13.8)

which for λ = s reduces to (13.4). 
If denotes a state with momentum in the positive z direction, how 

can we define a state χ p λ with momentum in the negative z direction? We 
will have occasion to use the state χ p, λ in the treatment of two-particle
scattering in centre of momentum frame wherein one particle moves in the 
positive direction while the other particle moves in the negative direction. 
A rotation through an angle π about the y axis corresponds to a transfor-
mation x, y, z -x, y, -z and hence 

(13.9)

(13.10)

The result (13.10) is obtained from Eqs. (13.6) and (13.7). 
It is possible to generate states with momentum in 

an arbitrary direction specified by polar angles θ, φ by means of a suitable 



168 CHAPTER 13 

Figure 13.1. 
coinciding with the direction ).

The fixed frame of reference x, y, z and the helicity frame x',y',z' ( z' 

rotation R (α,β,γ) applied to states having a momentum p in the 
positive z -direction.

(13.11)

In the present notation, the state can be equivalently denoted as 
Two different conventions are in vogue for the choice of angles 

of rotation in R. Jacob and Wick (1959) used α = φ, β = θ, γ = −φ, corre-
sponding to a rotation through an angle θ about the normal to the plane 
containing p and p'. It is found more convenient to adopt the convention of 
Jacob (1964) and choose α = φ, β = θ, γ = 0. In this case, the x' and y' axes
to be associated with the helicity direction as z' axis are as indicated in 
Fig. 13.1. The positive x' direction is along the direction and 
the positive y' direction coincides with the unit vector 

The state is a plane wave state with momentum p in
the direction of z -axis (chosen coordinate system) and it can be expanded 
in terms of states of definite angular momentum j and projection 
m. In the chosen coordinate system, m = λ for all j

(13.12)



where stands for 

The orthogonality relations of d -matrices are given by 
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where Cj are the coefficients of expansion. Applying a rotation operator 
R (φ,θ,0) on both sides, we obtain 

(13.13)

The expansion coefficients Cj are determined by specifying the normaliza-
tions of the plane wave states and the angular momentum eigen-
states and by using the orthogonality relations of the rotation 
matrices. The plane wave state is normalized such that 

(13.14)

(13.15)

The eigenstates of total angular momentum obey the normalization 

(13.16)

(13.17)

(13.18)

Using the normalizations (13.14) and (13.16) of the plane wave states and 
the angular momentum states and the orthogonality of d -matr ices (13.18),
we obtain the expansion coefficient Cj.

(13.19)

Thus, we obtain the important result of the expansion of the plane wave 
state as a sum of angular momentum states for a particle of arbitrary spin s.

(13.20)

Since total angular momentum of the particle and its helicity are in-
variant under rotation, it is possible to obtain the inverse relation which 
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enables us to project states of definite total angular momentum and helicity 
from the plane wave state. 

(13.21)

(13.22)

Equivalently, the transformation matrix that corresponds to a transition 
from the angular momentum state to the plane wave state is 

(13.23)

It is easy to verify that the normalizations (13.14) and (13.16) are consistent 
with the definitions (13.20) and (13.21), using the orthogonality relations 
of d -matr ices . From Eq. (13.20), we find 

using the normalization (13.16) and the orthogonality relation (13.18) of the 
d -matr ices . Similarly, starting with Eq. (13.21) and using the normalization 
(13.14) and the orthogonality relation (13.17), we obtain 

Equation (13.20) is the expansion of the angular function of a plane 
wave. It may be noted that the angular dependence of the wave function 
is given by a D-function instead of a spherical harmonic function which 
occurs in the case of spin-zero particle. For spin-zero particle, 

(13.26)
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Hence, for spin-zero particle, Eqs. (13.20), (13.21) and (13.23) reduce to 

(13.27)

(13.28)

(13.29)

13.2. Two-Particle Helicity States 

In the two-body scattering such as a + b c + d, the initial and final 
states are two-particle states. A non-interacting two-particle plane wave 
state with helicities λ1 and λ2 can be written as a direct product of two 
one-particle states (Martin and Spearman, 1970; Jacob, 1964). 

(13.30)

It is advantageous to go to the centre of momentum (c.m) frame and 
analyse the wave function in terms of centre of mass motion and relative 
motion in c.m. system. 

(13.31)

where is the state vector denoting the c.m. motion and the 
relative motion of the two-particle system. 

In any physical problem, we are concerned only with the wave function 
denoting the relative motion in c.m. system and our aim is to construct the 
two-particle helicity states of definite total angular momentum. 

To start with, let us consider the relative motion of the two particles 
to be along the z -axis , one particle moving along the positive z -axis and
the other particle moving with the same momentum p along the negative 
z-axis . Then

(13.32)

where denotes the one-particle state with momentum p along the pos-
itive z-axis and helicity λ1, and χ pλ2 as defined in Eq. (13.9), denotes the 
state of the other particle with momentum p along the negative z -axis and
helicity λ2. The resultant helicity λ of the two-particle system is 

(13.33)

The two-particle state vectors , representing relative mo-
tion along any arbitrary direction can be generated by a suitable rotation 

(13.34)

R(φ,θ,0). 
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The plane wave state is a sum over all angular momentum eigenstates and 
conversely an angular momentum eigenstate can be obtained by angular 
momentum projection of plane wave state. Using the procedure followed 
in Sec. 13.1, expressions for two-particle plane wave state and angular mo-
mentum eigenfunctions are obtained. 

(13.35)

(13.36)

The normalizations of the state vectors in the two representations are given 
by

(13.37)

(13.38)

(13.39)

in the c.m. system as described in Fig. 13.2. The differential cross section 
is given by 

(13.40)

13.3. Scattering of Particles with Spin 

13.3.1. SCATTERING CROSS SECTION 

Consider a two-body scattering of particles with spin 
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where p denotes the relative momentum of the two particles along the z -axis
in the initial state and q denotes the relative momentum of the scattered 
particles in the final state making an angle φ,θ with the incident direction 
in the c.m. frame. The total energy in the c.m. system is denoted by W
and it is conserved in any reaction. 

(13.41)

For evaluating the T -matrix, it is transformed to jm representation.

(13.42)

The rotational invariance implies the conservation of angular momentum 
and hence j is a good quantum number. 

(13.43)

Using Eqs. (13.35), Eq. (13.42) becomes 

we obtain 

(13.44)

(13.45)

(13.46)

Denoting the scattering amplitude in the helicity basis by 
the differential cross section becomes 

(13.47)

(13.48)

From Eqs. (13.40), (13.46) and (13.47), we find 
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with

For scattering of spinless particles, 

(13.49)

(13.50)

(13.51)

(13.52)

The amplitude fl (W ) (= Tl (W )/2p ) is known as the partial wave scattering 
amplitude for spinless particles. When the particles considered have spin, 
the total angular momentum j is a good quantum number and for each j,
there are several scattering amplitudes which depend on helicity states but 
the number of independent amplitudes get reduced by invoking parity and 
time reversal invariance. 

Equations (13.47) and (13.48) are general expressions applicable for 
scattering of particles with arbitrary spin. These formulae are relativisti-
cally correct and they are applicable equally well to massless particles and 
to particles without spin. It is found that the D-functions that occur for 
particles with spin reduce to Legendre functions for particles without spin. 

Let us now explicitly square the scattering amplitude (13.48) and obtain 
an expression for the differential cross section and total cross section. 

(13.53)

where ρλ a λ b denotes the density matrix that describes the initial state. 
Using the symmetry property of the D -funct ions and using the C.G. series 
(5.48), we obtain 



THE HELICITY FORMALISM 175 

Note that 

(13.55)

If the incident and the target particles are not polarized and if the polar-
ization of the final particles are not observed, we need to sum over λ c and
λ d and average over λ a and λ b.

where the summation index (λ) stands for helicities λ a, λ b, λ c, λ d of all in-
cident and scattered particles and Re stands for real part of 

In the above formula, the statistical weight (2s + 1) has to be replaced by
2 for a massless particle. 

Integrating (13.56) over the solid angle, we obtain the total cross section 

(13.57)

(13.58)

(13.59)

using the following relations: 

13.3.2. INVARIANCE UNDER PARITY AND TIME REVERSAL 

From Eq. (13.56), we find that, for each value of j, there are in total 
(2sa + 1)(2 sb + 1)(2 sc + 1)(2 sd + 1) helicity amplitudes. Invariance under 
parity and time reversal reduces the number of independent amplitudes. 

The helicity defined by changes sign under space inversion. A state 
with helicity λ is transformed into a state with helicity −λ. If is the 
parity operator, 

(13.60)
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where η a, η b denote the intrinsic parities of the two particles with spin sa

and sb. is a unitary operator and invariance of the S -matrix under parity 
implies that Since S = 1 + iT, it follows that 

(13.61)

Under time reversal, both J and p change sign and hence the helicity 
does not change. By applying the time reversal operator T to the state 

we obtain a new state with the same angular momentum and 
helicities but with an opposite eigenvalue of Jz. With the phase conventions 
of Jacob and Wick (1959), 

(13.62)

The operator T is antiunitary and hence the invariance under time reversal 
implies

This yields the familiar result that under time reversal invariance, the tran-
sition a + b c + d is equal to the inverse transition c + d a + b. 

For identical particles, we have a further relation. 

(13.64)

13.3.3. POLARIZATION STUDIES 

Since the polarizations of the particles are considered separately, formulas 
giving polarizations take a simple form in the Helicity Formalism. The 
longitudinal polarization can obviously be introduced by giving different 
weights to the positive and negative helicity amplitudes in Eq. (13.56). 
However, it is the angular distribution of the transverse polarization that 
is more informative. 

Transverse polarization is usually defined by means of the expectation 
value of a transverse component of the spin. The definition of transverse 
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components of spin is somewhat arbitrary in the relativistic case and for a 
massless particle, the transverse component cannot be defined at all. So, in 
what follows, we consider only the transverse polarization of a particle with 
finite mass, for which one can go to the rest frame by Lorentz transforma-
tion. The helicity remains unchanged in Lorentz transformation and so also 
the density matrix in helicity basis. Using the known non-relativistic form 
for spin matrices, we obtain after simplification that (the reader is referred 
to solved problem 13.1 for derivation) 

(13.65)

where Im(...) denotes the imaginary part of the quantity within the bracket. 
Using the algebraic form of C.G. coefficient, 

Equation (13.65) can be rewritten as 

(13.66)

(13.67)

We shall consider two specific cases. 1. The incident particle a is trans-
versely polarized with the polarization What is the “polarized cross 
section” i.e., the part of the cross section dσ /dΩ which is proportional to 

? 2. The incident and target particles are unpolarized. What is the 
transverse polarization of the outgoing particle c in the reaction? 
Case 1 
If the incident particle a has transverse polarization then its spin 
density matrix can be written as (the reader is referred to solved problem 
13.2 for derivation) 

(13.68)

If we restrict our consideration to vector polarization and neglect higher 
order tensor contributions, the density matrix for the initial system is 

(13.69)
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The cross section depends on the density matrix for the final state which is 
evaluated if the scattering amplitude f and the density matrix of the initial 
state ρ i are known. 

(13.70)

where can be considered as the density matrix corresponding to the 
final state when the incident particles are unpolarized. Using Eq. (13.69) 
for the density matrix for the initial system, the polarized cross section 

that is propotional to is obtained from (13.70). 

(13.71)

Expanding as and substituting the ex-
pansion (13.48) for the scattering amplitude f, we obtain 

Equation (13.72) can be simplified by coupling the two D -matr ices by using 
C.G. series (5.48). 

with

(13.73)

(13.74)



THE HELICITY FORMALISM 179 

Using Eq. (13.66), we obtain the matrix element of say.

(13.75)

Substituting Eqs. (13.73) - (13.75) into Eq. (13.72), we obtain the polarized 
cross section arising from the transverse polarization of particle a.

Case 2 

Let us now consider the transverse polarization of one final particle, say c,
when the initial particles are not polarized and when the polarization of 
the other final particle d is not observed. The polarization of particle c of
spin sc normal to the production plane is 

where Tr ρ f is just the differential cross section dσ /dΩ. So,

Using Eqs. (13.65) and (13.67), we obtain 

(13.77)

(13.78)

(13.79)
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Since the particles in the initial state are not polarized, the elements of 
the spin density matrix of the final state is given by 

(13.80)

where, for brevity, single helicity quantum number is used to denote a two-
particle helicity state as shown below. 

(13.81)

Substituting Eq. (13.48) for the helicity amplitudes we obtain 

Coupling the two rotation matrices using C.G. series (5.48) and using Eq. 
(13.79), we obtain 

Using the analytical expression for the rotation matrix, 

(13.84)

we finally obtain 

A similar formula may be obtained for and may be shown to van-
ish, as one expects, if the scattering matrix satisfies the symmetry condition 
for parity conservation discussed in Sec. 13.3.2. 



Figure 13.3. 
coordinate system is the helicity frame for the decay products α and β. 

The unprimed coordinate system is the rest frame of γ and the primed 

13.4. Two-Body Decay 

Let us now investigate the two-body decay of an unstable resonance or, 
more generally, of a system of definite angular momentum and parity (Lee 
and Yang, 1958; Byers and Fenster, 1963; Jackson, 1965). The observables 
are the intensity and polarization of the angular distributions of the decay 
products. There are two main objectives. 1. One is to obtain information 
on the mechanism of production of a resonance. In this case, it is better 
to work in terms of the density matrix elements themselves since they give 
direct information on the population of the angular momentum substates. 2. 
The other is to determine the spin and parity of the resonance by studying 
various moments of angular distributions. For this, it is often convenient to 
express the density matrix in terms of multipole parameters. 

To be specific, we choose the rest frame of γ with a fixed z axis (quan-
tization axis) to describe its two-body decay into α and β (vide Fig. 13.3). 
If p and -p are the momenta of α and β in this frame, then the state 
vector of the two particles containing the angular and helicity informa-
tion is denoted by which can be expanded in terms of angular 
momentum eigenstates. 

(13.86)

(13.87)

with
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The amplitude for the decay ψ α + β from a definite state of γ is
given by (suppressing the label p hereafter)

(13.88)

Since the interaction Hamiltonian H is a scalar under rotation, its matrix 
element depends on λα and λβ but not on m. So, let us denote the matrix 
element by H (λα, λβ). 

If the resonant state γ is denoted by the density matrix ρ i, then the 
density matrix ρ f corresponding to the final state is given by 

with and λ f = λα - λβ .

taking the trace of ρ f.
The angular distribution I (θ,φ) of the decay particles is obtained by 

with the notation 

Separating the terms that depend on m and m', we get 

(13.90)

(13.91)

(13.92)



It is easy to show that 

since

and
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The rotation matrices dj (θ) are known and hence the angular distribution 
can be obtained in terms of the density matrix of the initial system. The 
normalized angular distribution is given by 

(13.93)

(13.94)

(13.95)

(13.96)

Let us now illustrate the above discussion by considering the decay of 
a spin-1 system into two spin-zero particles. For this, there is only one 
helicity matrix element H(0,0) since λα = λβ = 0. Since j = 1 and λ = 0, 
the required dj matrix elements are 

(13.97)

Substituting these values of d1 matrix elements, the normalized angular 
distribution of the decay particle is obtained in terms of the spin density 
matrix of the parent system. 

(13.98)

As discussed in Sec. 11.2, the density matrix can be expanded in terms of
spherical tensor parameters which are also known as multipole parameters.
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Using Eq. (11.23), the elements of the density matrix can be written as 

The product of two rotation matrices that occur in Eq. (13.90) can be 
simplified using the formula (5.48), familiarly known as the C.G. series. 

(13.100)

The resulting rotation matrix can have only integer values for 
L and it can be expressed as a spherical harmonic using Eq. (5.76). 

Substituting Eqs. (13.99 - 13.101) into Eq. (13.90), we obtain 

(13.101)

Equation (13.102) is simplified by performing first the summation over m
and then replacing the summation over m' by M.

(13.103)
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Also

(13.104)

Substituting these results in Eq. (13.102) and replacing k and mk by L and
-M because of the delta functions, we finally obtain 

(13.105)

Integrating over the solid angle and using the following identities 

(13.106)

(13.107)

(13.108)

we retrieve the result (13.94). 

By inspection of Eq. (13.105), it is seen that the statistical tensors 
are related to the spherical harmonic moments of I (θ,φ). 
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Case 1: Decay into two spinless particles 
In the case of decay into two spinless particles, 

Equation (13.109) now reduces to 

Here j is an integer and L should be even because of the parity C.G. 
coefficient. Since 

(13.111)

it follows that the normalized spherical harmonic moments of angular dis-
tribution is 

(13.112)

Case 2: Decay into a and a spin-zero particle 

From parity considerations, the two amplitudes and are 
related.

(13.113)

(13.114)

If parity is conserved in the decay, then corresponding to the orbital 
angular momentum of the ab system. The conservation of 
parity requires that the product of intrinsic parities ηαηβηγ = (-1) l. Thus
determines the intrinsic parity of the γ resonance. However 

(13.115)

(13.116)

where From (13.60), it follows that 

Consequently,
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and the normalized angular distribution is given by 

The C.G. coefficient ensures that the spherical harmonic moments with 
L > 2 j vanish, and so the observation of a statistically significant non-
vanishing average value of means that the spin of the γ resonance is 
at least 

The distribution of the longitudinal polarization of the particle 
that comes from the decay is 

(13.118)

The denominator is just equal to I (θ,φ). Hence

(13.119)

Using Eq. (13.105), we obtain the helicity distributions. 

After normalization, the longitudinal polarization of the angular distribu-
tion is 

(13.121)

gitudinal polarization yields information aboutIt is observed that the lon 
odd L multipole parameters while the particle distribution gives informa-
tion about even L multipole parameters. These studies do not throw any 
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light on the parity of the resonant (parent) state. Only the study of the 
transverse polarization of the decay products gives valuable information on 
the parity of the parent state. 

Since we are considering two-body decay, of which one particle has spin-
and the other spin zero, we need to consider only the transverse polariza-

tion of the particle. The transverse polarization is the expectation 
value of σ x or σ y operator. Let us illustrate the method by calculating the 
x component of polarization. 

Equivalently,

(13.122)

(13.123)

To evaluate Tr (σ x ρ f) we proceed in steps. First let us show that Tr (σ xρ f)
is just the real part of the spin density matrix element 

The last step is obtained by invoking the Hermitian property of the density 
matrix. For the particle, the helicity can assume only two values 
and and hence λ in the above expression can take only one value 
Hence we obtain a simple result that 

(13.125)
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Using Eq. (13.69), we obtain (suppressing for the present the Euler angles 
of rotation (φ,θ,0) in the rotation matrix) 

The above result is obtained using the C.G. series for the coupling of the 
rotation matrices and the relation between the helicity amplitudes, viz., 
. Expressing the density matrix of the initial resonant 
state in terms of the multipole parameters as given in Eq. (13.99), 

it will be convenient to separate the terms that depend upon m and m' and
perform the summation over m and replace the summation over m' by M.

(13.127)

Substituting the above result, we get after simplification 

In a similar way, one can calculate the transverse polarization Py.

(13.129)
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Following the same procedure as before, we can show that 

Under parity operation, 

This means that the matrix element is a sum of two terms, 

where He and Ho obeys the following relations: 

(13.130)

Thus the study of the transverse polarization, which depends on will 
yield the parity of the resonant state. 

Hitherto, we have considered only the parity conserving two-body decay. 
For parity non-conserving weak decay such as the decay of hyperons, only 
small modifications are necessary. The interaction Hamiltonian, in this case, 
is a sum of two terms, one scalar He and the other pseudoscalar Ho.

(13.131)

(13.132)

(13.133)

(13.134)

(13.135)

To be specific, let us consider a weak decay of a hyperon into a baryon 
of and a meson of spin zero. The various distributions involve the 
following combinations of and 

(13.136)

It is easy to observe that a2 + b2 + c2 = 1. The various changes that oc-
cur in our earlier study of parity conserving two-body decay can easily 
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be determined and we only quote the final results for normalized angu-
lar distribution and the longitudinal polarization. Equations (13.117) and 
(13.121) get modified to yield 

(13.137)

The reader may note the interchange of the roles played by even and odd 
L in the above equations. 

For the relativistic treatment of angular momentum states for three-
body system and for the three-body decay, the reader is referred to Wick 
(1962) and Berman and Jacob (1965). 

13.5. Muon Capture 

We shall now apply the helicity formalism to discuss the capture of muon 
by spin-zero target nucleus, 

(13.139)

and investigate the asymmetry in the angular distribution of the recoil 
nucleus B and its polarization. 

The usual source of muon is from π decay and it is polarized in the 
direction of its flight. When it is incident on a target, it is slowed down and 
caught in Bohr orbits. It cascades down to lower orbits emitting X-rays
known as muonic X-rays and ultimately reaches the 1s orbit before it is 
captured by the nucleus through weak interaction. It is observed that de-
polarization takes place during the process of slowing down and cascading, 
but yet there is a residual polarization of order 15 to 20% in the 1s orbit 
at the time of capture by spin zero nucleus. 

The muon polarization which coincides with the direction of incident 
muon is assumed as the z-axis of the rest frame of the initial system as 
shown in Fig. 13.4. This corresponds in the final state, to the centre of 
momentum system, with the recoil momentum p = -v, making an angle 
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Figure 13.4. The muon polarization is along the z-axis of the rest frame of the 
muon-nucleon system and the momentum of the recoiling nucleus is along the z'-axis
of the rotating frame which is otherwise called the helicity frame. 

θ,φ with the z -axis . For describing this process, we have two frames of 
reference, one is the fixed frame of reference with z -axis in the direction 
of muon polarization and the other, the rotating frame of reference with 
z'-axis coinciding with the direction of recoiling nucleus. The latter frame 
of reference is obtained from the former by rotation through Euler angles 

Since the target nucleus is of zero spin, the total angular momentum 
of the initial system (µ- + A) is and is described by the state vector 

The final state is the recoiling nucleus B with spin jf and helicity 
l f, and the muon neutrino vµ with and helicity Expanding the 
final state in terms of definite angular momentum following Eq. (13.35), 

(φ,θ,0) 

(13.140)

the transition amplitude can be obtained in the helicity basis. 

(13.141)

Since H is a scalar under rotation, j = and M = m, there can be only 
two partial wave helicity amplitudes corresponding to 
the total angular momentum These partial wave helicity amplitudes will 



THE HELICITY FORMALISM 193 

hereafter be represented by H λ where λ = λ f + = Thus, 

(13.142)

The elements of the density matrix for the final system is given by 

(13.143)

where ρ i denotes the density matrix for the initial system which is taken 
to be in the diagonal form in the rest frame. 

(13.144)

where σ denotes the Pauli spin operator, s the spin of the muon and Pµ

the polarization of the muon which is in the z direction. Substituting the 
eigenvalue of sz in the density matrix of the initial state, 

(13.145)

Using Eq. (13.142) and the explicit form of rotation matrices, we obtain 
the following results: 

Consolidating the above results, we obtain the angular distribution of the 
recoil nucleus I (θ,φ). 

(13.148)
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Writing it in a more compact form, 

with

The quantity Γ represents the capture rate. 
The longitudinal polarization of the recoil nucleus is 

Since

the longitudinal polarization becomes 

In the absence of muon polarization ( Pµ = 0), 

(13.149)

(13.150)

we find the asymmetry coefficient of the recoil angular distribution to be 

(13.151)

(13.152)

(13.153)

(13.154)

(13.155)

Thus we arrive at a well known relation for the observables in muon capture. 

(13.156)

Since the muon capture process is completely described by two helicity am-
plitudes and all the observables in muon capture can be expressed 
in terms of these amplitudes and their relative phase. Hence it follows that 
there cannot be more than three independent observables in muon capture. 
For further details of helicity formalism as applied to muon capture, the 
reader is referred to Bernabeu (1975) and Subramanian et al. (1976, 1979). 

2 2
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Review Questions
13.1 (a) Write down the non-interacting two-particle wave function in 

terms of the plane wave helicity basis and the angular momentum 
basis and obtain the transformation from one basis to the other. 
(b) Discuss the advantages of using the helicity formalism for the study 
of two-particle scattering and obtain expressions for the angular dis-
tributions and polarization of the scattered particles. 

13.2 (a) Consider the two-body decay of a resonant state and deduce an 
expression for the angular distribution of the decay products in terms of 
the decay products in terms of the statistical parameters defining 
the initial system. Also find the spherical harmonic moments of the 
angular distribution. 
(b) Apply the above consideration to the decay of a resonant state into 
(i) two spinless particles and (ii) one and the other spin-zero
particle.

13.3 Discuss how is it possible to determine the spin and parity of a res-
onant state by observing the angular distributions and polarization of 
the decay products. Restrict your considerations to the decay into two 
particles.

13.4 Consider muon capture by a spin-zero target nucleus and show that 
the asymmetry in the angular distribution of the final nucleus with re-
spect to the polarization vector of the initial muon is related to longitu-
dinal polarization of the final nucleus by a simple relation 
where α denotes the asymmetry coefficient and denotes the longi-
tudinal polarization of the final nucleus for muon polarization zero. 

Problems
13.1 If a particle with spin j has transverse polarization, show that 

13.2 A particle with spin s is transversally polarized. If the transverse 
polarization is denoted by then show that its spin density matrix 
is given by 

Show that the density matrix reduces to the familiar formula 

for the particle with vector polarization P.
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13.3 Discuss the pion-nucleon and nucleon-nucleon scattering using the he-
licity formalism and enumerate the number of independent scattering 
amplitudes in each case. 

13.4 Discuss the following decays 

and explain how you will determine the spin and parity of the parent 
systems. (These are parity conserving decays through strong interac-
tion. The spin of the hyperons Λ and Ξ is and the spin of π is zero.) 

Solutions to Selected Problems 

13.1 The transverse polarization of a particle with spin j is the expectation 
value of the operators Jx and Jy.

Since ρ is a Hermitian matrix, it follows that 

Since it can be shown in a similar manner that 
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13.2 Retaining only the first order term and neglecting higher order tensor 
orientations, the density matrix can be written as 

where the tensor operator is normalized such that 

The normalized operator is 

Substituting it in the expression for ρ, we get 

For particle, the density matrix reduces to 

13.3 For each partial wave scattering amplitude, the number of helicity 
amplitudes is (2 sa + 1)(2 sb + 1)(2 sc + 1)(2 sd +\ 1). But by the applica-
tion of invariance and symmetry principles, the number of independent 
amplitudes is considerably reduced. 
For pion-nucleon scattering, the number of helicity amplitudes is 4, 
since the pion spin is zero and the nucleon spin is Explicitly, the 
amplitudes are 

By application of parity conservation, the helicity amplitudes (i) and 
(iv) are equal and (ii) and (iii) are equal. The application of time 
reversal invariance implies that amplitudes (ii) and (iii) are equal and 
so it does not give any new relation. Hence the number of independent 
amplitudes required for describing the pion-nucleon scattering is only 
two.
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For describing the nucleon-nucleon scattering, the total number of he-
licity amplitudes required is 16, since the nucleon has The par-
ity invariance reduces the number of independent helicity amplitudes 
from 16 to 8 and the time reversal invariance reduces further the num-
ber of independent helicity amplitudes from 8 to 6. By invoking the 
relation for the identical particles, the number is further reduced to 5. 
The five independent partial wave helicity amplitudes are given below 
in a matrix form. 

The rows and columns denote the helicity states of the final and initial 
systems, using for brevity + for and - for helicity states. For 
instance, in the table, denotes the helicity amplitude 
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THE SPIN STATES OF DIRAC PARTICLES 

14.1. The Dirac Equation 

Starting with the relativistic equation for the energy-momentum of a par-
ticle

(14.1)

we obtain the Dirac Hamiltonian (Schiff, 1968; Ramakrishnan, 1962) for a 
free particle by linearizing the energy-momentum relation. 

(14.2)

where α and β, known as Dirac matrices, obey the following conditions 

(14.3)

so that the relation (14.1) is satisfied. In Eq. (14.3), I denotes the unit 
matrix and α x, α y, α z and β are 4 x 4 matrices which can be conveniently 
written in the 2 x 2 form using the Pauli matrices1.

(14.4)

Using natural units , the Dirac equation can be written as 

(14.5)

Writing it in a more simplified form = 0, a non-trivial solution for 
can be obtained by imposing the condition, det A = 0. 

(14.6)

1The transition from Pauli to Dirac matrices is investigated by Ramakrishnan (1967a, 
1967b, 1972) in a series of papers known as the L-matrix theory by developing a grammar 
of anti-commuting matrices and extending the formalism to a more general ω commuta-
tion relations involving the roots of unity. 
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This leads to the relativistic relation E2 = p2 + m2, i.e., the Eq. (14.1) 
in natural units. This guarantees that the Dirac equation satisfies the rela-
tivistic relation (14.1) and it is the linearized form of the relativistic energy-
momentum relation in operator formalism. It follows that the Dirac Hamil-
tonian has two eigenvalues ±E.

Since the Dirac Hamiltonian has two eigenvalues +E and -E with
we need to find the eigenfunctions corresponding to these 

two eigenvalues. The Dirac Hamiltonian is a 4 x 4 matrix and consequently 
the eigenfunction is a four-component column vector. It is found more con-

venient to write the solution in the two-component form = 

write the Dirac Eq. (14.5) using the Pauli matrices. 

and

(14.7)

This leads to two coupled equations, from which the ratio v/u can be de-
termined.

(14.8)

(14.9)

Since the Dirac equation gives only the ratio, one is free to choose either u

or v as χ+ = or χ− = Choosing u = χ ± in Eq. (14.9) and 

v = χ ± in Eq. (14.8), we obtain two sets of solutions for positive energy 
states.

(14.10)

The first set is the conventional one and the second set is identical with the 
negative energy solutions if E is taken as negative. For positive energy, the 
second set becomes indeterminate in the limit E m when p 0.

In a similar way, we can find the solution for the negative energy states 
of the Dirac equation. 

(14.11)
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which, in turn, leads to the following two coupled equations: 

(14.12)

(14.13)

These coupled equations, in a similar way, give two sets of solutions for the 
negative energy states. 

which yields a normalization factor 

(14.14)

For negative energy states, the first set of solutions is to be taken, the 
second set becoming indeterminate in the limit m as p 0.

14.2. Orthogonal and Closure Properties 

It can be easily verified that the solutions, of Dirac equation 
given in Eqs. (14.10) and (14.14) are orthogonal but they are not normal-
ized. Using the conventional normalization as in non-relativistic quantum 
mechanics, we have 

(14.15)

(14.16)

The solutions given in Eqs. (14.10) and (14.14) should be multiplied by N
to obtain normalized solutions for the positive and negative energy states. 
It may, however, be noted that E = for positive energy solutions and 
E = for negative energy solutions. The normalized solutions of the 
Dirac equation are 
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(14.17)

(14.18)

Above, each element of a column vector is itself a two-component column 
vector. For instance, 

Similarly,

(14.19)

(14.20)

Using the above results, we can write down the normalized solutions of the 
Dirac equation in the four-component form. 

(14.21)

with
The χ functions obey the following orthonormal and closure properties: 

(14.22)

(14.23)
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The normalized functions, in a similar way, obey the orthonormality 
condition and satisfy the closure relation. 

(14.24)

(14.25)

Instead of summing over all the four states in Eq. (14.25), a partial sum 
can be made either over positive energy states or negative energy states to 
yield (refer solved problems (14.1) and (14.2) for derivation) 

(14.26)

(14.27)

Summing Eqs. (14.26) and (14.27), we obtain once again Eq. (14.25). The 
operators in Eqs. (14.26) and (14.27) are sometimes re-

ferred to as projection operators for positive and negative energy states 
(Rose, 1961) since 

(14.28)

(14.29)

14.3. Sum Over Spin States 

We are now in a position to treat the scattering of Dirac particles when the 
spins of both the incident and scattered particles are not observed. To be 
specific, we shall consider the Coulomb scattering of electrons by a nucleus 
of charge ze but the formalism given below is sufficiently general and is 
applicable to any problem since each problem differs from the rest only in 
the choice of transition operator 

The transition matrix element Tfi is given by 

(14.30)

where = g0 and γ0 β. The square of the matrix element is obtained 
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by summing over the final spin states and averaging over the initial spin 
states.

(14.31)

where the summation indices i, f are over the two spin states denoted by 
and corresponding to positive energy states only. Using the algebra 

of matrix multiplication) 

In the above equation, Λ i and Λ f are the projection operators obtained 
after summing over the two spin states corresponding to the positive energy 
state.

(14.33)

(14.34)

For Coulomb scattering of electrons on nuclei of charge ze, the relevant 
transition operator is 

(14.35)

where q2 = ( p f - p i )2 is the three-momentum transfer. Substituting in 
Eq. (14.32) and remembering that = 1, we obtain 

(14.36)
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Substituting expressions (14.33) and (14.34) for the projection operators 
Λ i and Λ f, we get 

In deriving Eq. (14.37), the following relations were utilized. 

(14.38)

For elastic scattering, Ei = Ef and in c.m. frame. If θ is the 
scattering angle, 

(14.39)

where v = p/E is the velocity of the electron. The matrix element square 
now becomes 

with q2 = ( p f - p i )2 = 4 p2 sin2 (θ /2).
The scattering cross section is given by 

(14.40)

(14.41)
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where ρ f is the density of final states. 

(14.42)

Substituting the density of final states, we obtain the differential cross 
section after simplification. 

14.4. In Feynman’s Notation 

Multiply the Dirac equation (14.5) by β from the left 

Introducing γ matrices

Writing the characteristic equation for the matrix , 

(14.43)

(14.44)

(14.45)

we can rewrite the Dirac equation after rearrangement in the form 

(14.46)

(14.47)

(14.48)

This leads to two equations, one for ‘positive eigenvalue’ state and the other 
for ‘negative eigenvalue’ state. 

(14.49)

(14.50)

where and denote the positive and negative eigenvalue states. The 
equation for is obtained by reversing the sign of energy and momentum 
so that is changed into The state which represents the negative 
energy electron with momentum -p is to be associated with the state of a 

one finds the eigenvalues of the matrix . 



It can be easily verified that 

The normalized negative eigenvalue solutions are 

the normalization being 

It can be easily verified by matrix multiplication that 

It can be verified that 
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positron with positive energy and momentum +p, according to the Dirac 
hole theory. 

Earlier, we have normalized to 1 but this normalization is not 
relativistically invariant. Since (which is the fourth component of a 
four-vector current) transforms as the fourth component of a four-vector,
it is possible to make a relativistically invariant normalization by setting 
it equal to the fourth component of a suitable four-vector, say, energy-
momentum four-vector. Feynman (1962) has chosen the normalization2

(14.51)

for positive eigenvalue solutions. The normalized solutions are 

(14.52)

(14.53)

(14.54)

(14.55 j 

(14.56)

(14.57)

2Schweber et al. (1956) choose a slightly different normalization = 1 and =
-1 such that
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The operators and are the projection operators for the positive 
and negative eigenvalue states. 

(14.58)

It may be observed that the positive energy spinors of Dirac coincide 
with the positive eigenvalue spinors of Feynman, except for normalization 
factor, whereas the negative energy spinors of Dirac differ from the negative 
eigenvalue spinors of Feynman with respect to the sign of the momentum 
vector p. The source of this discrepancy can easily be traced. The negative 
energy solutions of the Dirac equation are obtained by changing the sign of 
energy alone and not momentum, whereas in Feynman’s negative eigenvalue 
equation, the signs of both energy and momentum are reversed. An electron 
with energy and momentum -pis equivalent to a positron with energy 

and momentum p.
Let us now reconsider the problem of summing over spin states using 

Feynman’s notation. The square of the matrix element (14.31) can be eval-
uated using Feynman’s projection operator for positive energy states. 

(14.59)

where denotes the summation over the positive energy spin states of 

the incident and scattered particle and stands for 

(14.60)

Replacing by which is the projection operator for positive 
energy states, we obtain 

(14.61)
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Using the algebra of matrix multiplication, we get 

The transition probability per unit time is given by Fermi’s golden rule 

Transition rate (14.63) 

where Π N denotes the normalization factor 2 E for each of the initial and 
final particles and ρ f is the density of states for the final particle. The cross 
section is the transition rate per unit incident flux. 

14.5. A Consistency Check 

We have deduced two different expressions (14.32) and (14.62), for the 
square of the transition amplitude one using the Dirac matrices and 
the other using Feynman’s notation. They must be equivalent. To show 
this, let us start with the projection operator A for positive energy states. 

Multiply by β2 = I from the right to obtain 

(14.64)

(14.65)

Substituting the expression (14.65) for Λ, into Eq. (14.32) and remembering 
that β γ 0 and Tr ( ABC ) = Tr ( BCA), we get 

(14.66)
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This is identical with Eq. (14.62) except for the additional factor 1/(4 Ei Ef )
which we include, in Feynman’s formalism, as normalization factor (Π N )-1,
as indicated in Eq. (14.63). 

14.6. Algebra of γ Matrices

The square of the transition matrix element given by Eq. (14.62) involves 
the trace of a product of γ matrices. So, it will be fruitful to study the 
algebra of γ matrices (Feynman, 1962; Ramakrishnan, 1962) for evaluating 

The γ matrices obey the following relations: 

Using a unified notation, Eq. (14.67) can be written as 

where gµv is a metric defined by 

(14.67)

(14.68)

(14.69)

Besides, the matrix γ0 is Hermitian whereas the matrices γ x, γ y, γ z are anti-
Hermitian.

It is convenient to define a matrix γ5 which occurs frequently. 

It is easy to verify that 

Following Feynman, we can define as follows: 

(14.70)

(14.71)

(14.72)

(14.73)
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It can be shown that 

(14.74)

(14.75)

(14.76)

(14.77)

(14.78)

(14.79)

It is important to recall the elementary properties of traces, 

(14.80)

for evaluating the traces involving a product of γ matrices. It is known that 
the trace of a γ matrix is zero. 

(14.81)

It follows that 

Also the trace of an odd number of γ matrices vanishes. To prove this, we 
start with the relation (14.72) which is equivalent to 

(14.82)

(14.83)

Taking the trace of both sides of Eq. (14.83) and using the elementary 
property of the trace that Tr ( ABC ) = Tr ( BCA ), we obtain immediately 
that

(14.84)

Equation (14.84) implies that the the trace of an odd number of gamma 
matrices vanishes. 

If n is even, it is always possible to reduce it to n - 2 factors. For 
example,

since Tr ( AB ) = Tr ( BA ) 

using Eq. (14.68) 

(14.85)
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In a similar way, it can be shown that 

The following traces which occur frequently are given. 

Substituting the operator in Eq. (14.62), we obtain 

(14.86)

(14.87)

We shall illustrate the foregoing discussion by evaluating the trace in 
Eq. (14.62). The relevant operator for Coulomb scattering of an electron 
by a nucleus of charge ze is

(14.88)

(14.89)

where = γ0 - γ • p. Since the trace of a product of an odd number of γ 
matrices vanishes, 

Equations (14.85) and (14.87) have been used in deducing the last step 
in the above equation. Expanding the scalar product of the four-vectors
pi • pf = Ei Ef - pi • pf and rearranging, we get 

(14.91)

where θ denotes the angle of scattering. Equation (14.91) is the same as 
Eq. (14.37), deduced earlier except for a factor that is accounted in Feyn-
man’s formulation as the normalization factor as indicated in Eq. (14.63). 
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Review Questions 

14.1 Write down the Dirac equation for a free particle and obtain its so-
lutions. How many solutions are there and how are they interpreted? 
Discuss the orthogonal and closure properties of such solutions. 

14.2 Obtain the projection operators for the positive and negative energy 
states of the Dirac Hamiltonian. How are they constructed and why 
are they called projection operators? 

14.3 Obtain the Dirac equation in Feynman’s notation and obtain its so-
lution. Show that the negative eigenvalue solutions of Feynman differ 
from the negative energy solutions of Dirac. How will you account for 
this discrepancy? 

14.4 In the case of scattering of Dirac particle, find the transition rate 
if the initial and the final spin states are not observed. Assume the 
transition operator to be 

14.5 In the case of Coulomb scattering of electron by a nucleus, deduce an 
expression for the cross section. 

Problems

14.1 Given the positive energy solutions and of free particle Dirac 
equation, find and show that it can be considered as the 
projection operator for positive energy solutions. 

14.2 Given the negative energy solutions and of free particle Dirac 
equation, find and show that it can be considered as the 
projection operator for negative energy solutions. 

14.3 Using the algebra of γ matrices, deduce Eqs. (14.73) - (14.78) in Feyn-
man’s notation. 

14.4 Given the transition operator = γ • A, where A is a vector but 
not an operator, calculate the square of the matrix element for the 
transition of an electron if the initial and final spin states are not 
observed.

14.5 Given the transition operator = γ µJµ, where Jµ is a four-vector
current, calculate the square of the matrix element for the transition 
of a Dirac particle if the initial and final spin states are not observed. 

Solutions to Selected Problems 

14.1 Using normalized wave functions and for positive energy Dirac 
particle as given in Eq. (14.17), the normalization being 

we find 
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Since p2 = E2 -m2, it follows that p2 / ( E+m ) = E -m. The resulting 
matrix can be written in terms of the Dirac matrices. 

Λ+ is called the projection operator for positive energy states since 

14.2 The normalized wave functions and corresponding to the neg-
ative energy eigenstates are given in Eq. (14.18). Use them and follow 
the same procedure as in Problem (14.1). Only the final result is given. 

Λ− is called the projection operator for negative energy states since 

14.4 From Eq. (14.62), we have 

where
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The transition operator in the present case is γ • A. Substituting
it, we shall write down the product of operators {...}. 

We have used above the relations = −γ l, γ0γ k = −γ k γ0 and = 1. 
Since the trace of a product of odd number of γ matrices is zero, 

The indices k and l denote the components of a three vector and the 
indices µ and v denote the components of a four-vector. We have earlier 
evaluated the traces of even number of γ matrices.

Using the above results, 



APPENDIX A 

EQUIVALENCE OF ROTATION ABOUT AN ARBITRARY 

AXIS TO EULER ANGLES OF ROTATION 

Rotation of the coordinate system through an angle about an arbi-
trary axis denoted by the unit vector (θ,φ) is equivalent to successive 
rotations through the Euler angles α, β, γ about the z-axis, the new y-axis
and the new z-axis respectively. In what follows, we shall try to obtain a re-
lation between the two sets of three parameters θ, φ, and α, β, γ describing
the rotation. 

The procedure is outlined below. First, we consider the rotation about 
an arbitrary axis and obtain the transformation matrix M ( e0, e ) in terms 
of certain parameters e0, e, known as the Euler parameters which are related 
to the rotation parameters θ, φ, Then we consider unitary transforma-
tions in a two-dimensional complex space, which is equivalent to a rotation 
in the three-dimensional real space. The unitary transformation matrix Q
in complex space when expressed in terms of certain parameters yields the 
same transformation matrix for three-dimensional rotation obtained earlier 
in terms of Euler parameters for rotation about an arbitrary axis Thus, 
we identify the parameters used in the description of unitary matrix Q in
complex space with the Euler parameters. Since the parameters describ-
ing the complex unitary matrix Q are related to Euler angles of rotation 
α, β, γ, we deduce the required relation between the two sets of rotation 
parameters θ, φ, and α, β, γ. 

It is also possible to obtain the transformation matrix M ( α,β,γ ) due 
to Euler angles of rotation directly, and comparing this with the trans-
formation matrix obtained by rotation through an angle about an axis 
denoted by the unit vector we deduce the required relations for 
their equivalence. 

A.1. Rotation About an Arbitrary Axis 

Rotation of the coordinate system through an angle about an axis in the 
anticlockwise direction is equivalent to a clockwise rotation of the object 
through the same angle about the same axis in the fixed coordinate system. 

216
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Figure A.1. (a) Effect of rotation about an arbitrary axis through an angle 
The point P moves to point Q and the vector r r'. (b) The section 

normal to the plane is shown separately. 

Consider a vector r denoted by OP rotated in the clockwise direction 
through an angle about the axis The new vector r' is denoted by OQ.
From Figure A.1, we obtain the following relations. 

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

Hence



such that 

or equivalently 

It follows that 
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Let us now introduce the Euler parameters e0, e1, e2, e3 and express the 
vector r' in terms of r and the Euler parameters. 

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

Using the above relations, r' can be written as a function of r and the Euler 
parameters e0 and e.

(A.14)

Using Eq. (A.14), the components x' y', z' can be explicitly written in terms 
of x, y, z. 

(A.15)

(A.16)

(A.17)

Writing more elegantly in the matrix form 

we obtain the transformation matrix M ( e0, e ),

(A.18)

(A.19)

with the Euler parameters expressed in terms of the rotation parameters 

(A.20)



and perform unitary transformation Q on it. 

The conditions (A.24) yields the relations 
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A.2. The Euler Angles of Rotation 

Rotation in a two dimensional complex space is equivalent to a rotation in 
the three-dimensional real space. 

Choose a matrix operator P 

(A.21)

(A.22)

Since Q is a unitary unimodular operator, one can obtain certain con-
ditions between the elements of this unitary matrix in the two-dimensional
complex space. 

(A.23)

(A.24)

(A.25)

(A.26)

and the matrix 

has only four parameters, of which only three are independent because of 
the unimodular condition (det Q = 1). 

The transformed operator P' is given by 

From Eq. (A.27), one can obtain the following relations: 

(A.27)

(A.28)

(A.29)

(A.30)
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from which one can deduce the transformation matrix M(a,b ) in the three 
dimensional real space. 

where,

(A.31)

(A.32)

The parameters a and b occurring in Eq. (A.32) are complex quantities and 
let us define them in terms of the real parameters e0, e1, e2 and e3.

(A.33)

The transformation matrix M (a,b ) can be rewritten in terms of e0, e1, e2

and e3 using the definition (A.33) of a and b. The transformation matrix 
M ( e0,e1,e2,e3 ) so obtained is identical with the transformation matrix 
given in Eq. (A.19) describing the rotation about an arbitrary axis and 
the quantities e0, e1, e2, e3 defined in Eq. (A.33) are identical with the Euler 
parameters introduced earlier in Eq. (A.9) or Eq. (A.20). 

For Euler angles of rotation, the unitary matrix Q can be written as a 
product of three unitary matrices 

(A.34)

The unitary matrices Q α, Q β, and Q γ can be deduced from the known prop-
erties of coordinate transformation under rotation. It is found on inspection 
that the matrices Q α, Q β and Q γ can be written in a compact form using 
the Pauli matrices. The matrices so obtained are 

(A.35)

(A.36)

(A.37)
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The product of these matrices is denoted by Q.

(A.38)

Comparing the unitary matrix (A.38) with (A.26) and expressing the com-
plex elements in terms of the real parameters e0, e1, e2, e3 defined in Eq. 
(A.33), we obtain 

(A.39)

From Eqs. (A.39) and (A.20), the required relations between the two 
sets of rotation parameters, θ, φ, and α, β, γ are deduced. 

(A.40)

(A.41)

(A.42)

(A.43)

Squaring Eqs. (A.41) and (A.42) and adding, we obtain 

the square root of which yields the relation 

Substituting this in Eq. (A.42), we get 

Thus

(A.44)

(A.45)

(A.46)

(A.47)

Equations (A.40), (A.45) and (A.47) relate the two sets of rotation param-
eters.
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A.3. Direct method of obtaining the transformation matrix 

The vector r in the original coordinate system becomes vector r' in the 
rotated coordinate system obtained by successive Euler angles of rotation 
α, β, γ. 

The transformation matrix for these rotations are discussed in Chap.4. 

(A.48)

where

By direct matrix multiplication, the matrix elements of M (α,β,γ) are ob-
tained as given below: 

(A.50)

(A.51)

(A.52)

(A.53)

(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

Using the trignometric relations, 
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(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

and defining the parameters as given in Eq. (A.39), it can be shown that 
the transformation matrix M (α,β,γ) is identical with the transformation 
matrix M (e0,e ) defined in Eq. (A.19). For the purpose of illustration, let 
us choose the matrix element M11 (α,β,γ). 

In a similar way, all the other matrix elements can be expressed in terms 
of the parameters e0, e1, e2, e3 and the resulting transformation matrix 
M (α,β,γ) is identical with the matrix (A.19). 
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TABLES OF CLEBSCH-GORDAN COEFFICIENTS 
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TABLES OF RACAH COEFFICIENTS 
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APPENDIX D 

THE SPHERICAL HARMONICS 

The spherical harmonics are the solutions of the differential equation 

(D.1)

and they can be expressed in terms of the associated Legendre functions 

(D.2)

where x = cos θ and the associated Legendre functions are the 
derivatives of the Legendre function Pl (x )

(D.3)

Note that = Pl(x) and the Legendre functions are defined by 

(D.4)

Substituting the expression for the associated Legendre functions, a general 
expression for the spherical harmonics is obtained. 

The spherical harmonics satisfy the relation 
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(D.5)

(D.6)



228 APPENDIX D 

and they are normalized such that 

(D.7)

The completeness relation for the spherical harmonics is given by 

(D.8)

Let us list some of the relations involving sums over m but with fixed l
for spherical harmonics. 

(D.9)

(D.10)

(D.11)

The spherical harmonics have an inversion symmetry property of great 
importance. The direction opposite to (θ,φ) is (π - θ,φ + π). From an 
examination of Eq. (D.5), we obtain a relation 

(D.12)

which means that the spherical harmonics have positive parity for even l
and negative parity for odd l.

It can be easily verified that 

(D.13)

The first four Legendre polynomials Pl(x) are given in Table D1 and the 
explicit forms of the spherical harmonics for l = 0, 1, 2, 3, 4 are presented in 
Table D2. 
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THE SPHERICAL BESSEL AND NEUMANN FUNCTIONS 

The spherical Bessel function jl (x ) and the spherical Neumann function 
nl(x) are defined in terms of the ordinary Bessel functions of odd-half-
integer order. 

(E.1)

(E.2)

where l is an integer. The spherical Bessel and Neumann functions are the 
solutions of the differential equation 

(E.3)

Explicit expressions for the fist few spherical Bessel and Neumann functions 
are given below: 

with

The spherical Bessel and Neumann functions take simple forms in the lim-
iting cases. As x 0,

(E.5)

(E.6)

(E.7)

In the asymptotic limit i.e., as 
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We give below some useful recurrence relations for jl(x):

(E.8)

(E.9)

(E.10)

(E.11)

(E.12)

The same recurrence relations are obeyed by the spherical Neumann func-
tions nl(x) also. The reader may find the following integarl formulas involv-
ing spherical Bessel functions useful. 

(E.13)

(E.14)

(E.15)

(E.16)
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THE BERNOULLI POLYNOMIALS 

The Bernoulli polynomial Bs(x) is defined by 

Bs (0) are called Bernoulli numbers Bs.

Equating coefficients of equal powers oft, we get 

(F.1)

(F.2)

With the exception of B1, all odd Bernoulli numbers vanish. From Eqs. 
(A.1) and (A.2), we get 

(F.3)

(F.4)

The first few Bernoulli numbers and Bernoulli polynomials (Miller, 1960; 
Subramanian, 1974) are listed below: 

Bernoulli numbers 

(F.5)
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Bernoulli polynomials 
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LIST OF SYMBOLS AND NOTATION 

Angular Momentum Coupling Coefficients 

Clebsch-Gordan coefficient or C.G. coefficient 

3-j symbol 

U-coefficient (Unitary transformation coefficient 
for the coupling of three angular momenta) 

Racah coefficient 

6-j symbol 

LS-jj coupling coefficient 

9-j symbol 

Angular Momentum Eigenstates and Operators 

Angular momentum eigenstate 

Eigenstate of two angular momenta in uncoupled 
representation

Eigenstate of two angular momenta in coupled 
representation
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Eigenstate of three angular momenta in one cou-
pled representation 

Eigenstate of three angular momenta in another 
coupled representation 

Eigenstate of four angular momenta in L-S cou-
pled representation 

Eigenstate of four angular momenta in j-j coupled 
represent at ion 

Spin-up state for the Dirac particle 

Spin-down state for the Dirac particle 

Helicity state of a particle moving with momen-
tum p (= p, θ, φ) and helicity λ 

Two-particle helicity state moving with relative 
momentum p and helicities λ1 and λ2 as described 
in centre of momentum frame 

Square of the angular momentum operator 

Components of angular momentum operator in 
Cartesian basis 

Raising and lowering angular momentum opera-
tors (Ladder operators) 

Components of angular momentum operator in 
spherical basis 

Pauli spin operators 

Iso-spin operators for nucleons 

Rotation Operator and Rotation Matrices 

Euler angles of rotation 

Rotation operators 

Rotation matrix 

Rotation matrix for rotation about the y-axis

Transformation matrix 
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Special Functions 

Bs Bernoulli number 

Bs(x) Bernoulli polynomial 

Jv ( x )

Nv ( x )

jl (x ) Spherical Bessel function 

Bessel function of order v 

Neumann function of order v 

nl (x ) Spherical Neumann function 

Pl(x) Legendre function 

Associated Legendre function 

Vectors, Tensors and Tensor Operators 

ex, ey, ez

Ax, Ay, Az

Spherical harmonic 

Vector spherical harmonic 

Unit vectors in Cartesian basis 

Unit vectors in spherical basis 

Polar basis vectors 

Unit vector with polar angles θ,φ 

Cartesian components of a vector A

Spherical components of a vector A.

Spherical tensor operator of rank k and projec-
tion µ 

Gk ( j ) Fano’s statistical tensor 

Spherical tensor parameter 

ρ Density matrix 
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Miscellaneous Symbols 

δ ij Kronecker δ -symbol

dΩ Element of solid angle 

dΩ = sin θ dθ dφ 

[ j]

Binomial coefficient 

α x, α y, α z, β 

γ x, γ y, γ z, γ0 

Dirac matrices 

Gamma matrices 

α 0  γ 0  - α  xγ  x - α  yγ  y - α  zγ  z
Matrix element of a tensor operator 

Reduced matrix element of a tensor operator of 
rank k

Coefficient of fractional parentage (c.f.p.) 
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