


The starting point of this book is Sperner's theorem, which answers the question:
What is the maximum possible size of a family of pairwise unrelated (with respect
to inclusion) subsets of a finite set? This theorem stimulated the development of
a fast growing theory dealing with extremal problems on finite sets and, more
generally, on finite partially ordered sets.

This book presents Sperner theory from a unified point of view, bringing combi-
natorial techniques together with methods from programming (e.g. flow theory and
polyhedral combinatorics), from linear algebra (e.g. Jordan decompositions, Lie-
algebra representations, and eigenvalue methods), from probability theory (e.g.
limit theorems), and from enumerative combinatorics (e.g. Mobius inversion).





ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

EDITED BY G.-C. ROTA

Editorial Board
R. Doran, M. Ismail, T.-Y. Lam, E. Lutwak, R. Spigler

Volume 65

Sperner Theory



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

4 W. Miller, Jr. Symmetry and separation of variables
6 H. Minc Permanents

I I W. B. Jones and W. J. Thron Continued fractions
12 N. F. G. Martin and J. W. England Mathematical theory of entropy
18 H. O. Fattorini The Cauchy problem
19 G. G. Lorentz, K. Jetter, and S. D. Riemenschneider Birkhoff interpolation
21 W. T. Tutte Graph theory
22 J. R. Bastida Field extensions and Galois theory
23 J. R. Cannon The one-dimensional heat equation
25 A. Salomaa Computation and automata
26 N. White (ed.) Theory of matroids
27 N. H. Bingham, C. M. Goldie, and J. L. Teugels Regular variation
28 P. P. Petrushev and V. A. Popov Rational approximation of real functions
29 N. White (ed.) Combinatorial geometries
30 M. Pohst and H. Zassenhaus Algorithmic algebraic number theory
31 J. Aczel and J. Dhombres Functional equations in several variables
32 M. Kuczma, B. Chozewski, and R. Ger Iterative functional equations
33 R. V. Ambartzumian Factorization calculus and geometric probability
34 G. Gripenberg, S: O. Londen, and O. Staffans Volterra integral and functional equations
35 G. Gasper and M. Rahman Basic hypergeometric series
36 E. Torgersen Comparison of statistical experiments
37 A. Neumaier Interval methods for systems of equations
38 N. Korneichuk Exact constants in approximation theory
39 R. A. Brualdi and H. J. Ryser Combinatorial matrix theory
40 N. White (ed.) Matroid applications
41 S. Sakai Operator algebras in dynamical systems
42 W. Hodges Basic model theory
43 H. Stahl and V. Totik General orthogonal polynomials
44 R. Schneider Convex bodies
45 G. Da Prato and J. Zabczyk Stochastic equations in infinite dimensions
46 A. BjSrner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler Oriented matroids
47 G. A. Edgar and L. Sucheston Stopping times and directed processes
48 C. Sims Computation with finitely presented groups
49 T. Palmer Banach algebras and the general theory of *-algebras
50 F. Borceux Handbook of categorical algebra I
51 F. Borceux Handbook of categorical algebra 11
52 F. Borceux Handbook of categorical algebra III
54 A. Katok and B. Hasselblatt Introduction to the modern theory of dynamical systems
55 V. N. Sachkov Probabilistic methods of discrete mathematics
56 V. N. Sachkov Combinatorial methods of discrete mathematics
57 P. M. Cohn Skew fields
58 Richard Gardner Geometric tomography
59 George A. Baker Jr. and Peter Graves-Morris Pade approximants
60 Jan Krajicek Bounded arithmetic, propositional logic, and complexity theory
61 H. Groemer Geometric applications of Fourier series and spherical harmonics
62 H. O. Fattorini Infinite dimensional optimization and control theory
63 A. C. Thompson Minkowski geometry



ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Sperner Theory

KONRAD ENGEL
Universitat Rostock, Germany

CAMBRIDGE
UNIVERSITY PRESS



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, United Kingdom
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1997

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

P.

II. Series.
QA 171.485.E537 1996

511.3'2 - dc20

ISBN 0 521 45206 6 (hardback)
1. Sperner theory. 2. Partially ordered sets.

First published 1997

Printed in the United States of America

Typeset in Times Roman

Library of Congress Cataloging-in-Publication Data

Engel, Konrad, 1956-

Sperner theory / Konrad Engel.

cm. - (Encyclopedia of mathematics and its applications; v. 65)

Includes bibliographical references and index.

I. Title.

96-20967

A catalog record of this book is available from
the British Library

ISBN 0 521 45206 6 hardback



CONTENTS

Preface page vii

1 Introduction 1

1.1 Sperner's theorem 1

1.2 Notation and terminology 4
1.3 The main examples 9

2 Extremal problems for finite sets 16
2.1 Counting in two different ways 16
2.2 Partitions into symmetric chains 29
2.3 Exchange operations and compression 33
2.4 Generating families 50
2.5 Linear independence 61

2.6 Probabilistic methods 71

3 Profile-polytopes for set families 84
3.1 Full hereditary families and the antiblocking type 86
3.2 Reduction to the circle 90
3.3 Classes of families arising from Boolean expressions 93

4 The flow-theoretic approach in Sperner theory 116
4.1 The Max-Flow Min-Cut Theorem and the Min-Cost Flow Algorithm 117
4.2 The k-cutset problem 125
4.3 The k-family problem and related problems 131

4.4 The variance problem 140
4.5 Normal posets and flow morphisms 148
4.6 Product theorems 166

5 Matchings, symmetric chain orders, and the partition lattice 179
5.1 Definitions, main properties, and examples 179
5.2 More part Sperner theorems and the Littlewood-Offord problem 187
5.3 Coverings by intervals and sc-orders 194
5.4 Semisymmetric chain orders and matchings 198

v



vi Contents

6 Algebraic methods in Sperner theory 208

6.1 The full rank property and Jordan functions 209
6.2 Peck posets and the commutation relation 229

6.3 Results for modular, geometric, and distributive lattices 248
6.4 The independence number of graphs and the Erdo"s-Ko-Rado Theorem 276
6.5 Further algebraic methods to prove intersection theorems 295

7 Limit theorems and asymptotic estimates 304
7.1 Central and local limit theorems 304

7.2 Optimal representations and limit Sperner theorems 317
7.3 An asymptotic Erdo"s-Ko-Rado Theorem 328

8 Macaulay posets 332
8.1 Macaulay posets and shadow minimization 333
8.2 Existence theorems for Macaulay posets 351

8.3 Optimization problems for Macaulay posets 356
8.4 Some further numerical and existence results for chain products 367
8.5 Sperner families satisfying additional conditions in chain products 378

Notation 390

Bibliography 395

Index 413



PREFACE

Sperner theory is a very lively area of combinatorics and combinatorial optimiza-
tion. Though nobody knows the exact age of it, we may assume that it was born in
the end of the 1920s and that at least F.S. Macaulay and E. Sperner belong to the
set of parents. Macaulay's contribution is discussed in the chapter on Macaulay
posets. Sperner's theorem is the starting point of this book. It answers the following
question: Given a family of pairwise unrelated (with respect to inclusion) subsets
of a finite set, what is the maximum size of this family? In the 1930s the set of
parents was enlarged by P. Erdo"s, C. Ko, and R. Rado, who studied intersection
conditions, and in the beginning of the 1950s, R.P. Dilworth entered this set by
proving his famous min-max theorem on partially ordered sets. We should not
forget the grandfather. At the end of the last century R. Dedekind failed to find an
explicit formula for the number of monotone Boolean functions, and this difficult
problem was later attacked by several authors. It is impossible to mention all the
offspring and descendants of Sperner theory. Many of them can be found in the
references. The list of names there shows that many well-known mathematicians
of this century have contributed to the development of the theory.

Several aspects make Sperner theory so interesting. The problems often may be
clearly and simply formulated. For the solutions one indeed needs creativity, and
the techniques are frequently surprising. Concerning applications and methods,
there are several unexpected relations to other branches of mathematics, such as
programming, algebra, probability theory, number theory, and geometry. Thus,
studying Sperner theory means learning many important techniques in discrete
mathematics and combinatorial optimization on a particular theme.

Ten years ago H.-D.O.F. Gronau and I wrote the monograph "Sperner theory in
partially ordered sets" [161]. This work was followed by the books of B. Bollobas
[73], I.A. Anderson [32], and C. Berge [50] that also discuss aspects of Sperner
theory. Since I saw that a revision of [161] would be insufficient, I decided to write
a new book. It has been my main goal to present a unifying theory that covers many
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viii Preface

seemingly distant and separate results, including as far as possible all important
and famous theorems related to the subject. To meet this goal, I took a completely
new approach toward selection, organization, and presentation of the material. Of
course I also tried my best in order to give an updated presentation reflecting the
modem development of the last ten years. More attention is paid to algorithmic
aspects and much more space is devoted to the study of the Boolean lattice.

Up to a small epsilon everything is given with complete proofs (matched to
the "theory"), so that the reader need not consult the original papers. The book is
self-contained, and the reader needs only basic knowledge of mathematics. I hope
that enthusiasm for the subject increases exponentially with the number of pages
read.

Recognizing that it is impossible to refer to all of the large number of papers
related to Sperner theory, I have put the emphasis on the main results and methods
of the theory and not on a complete survey of all related results. Consequently,
many topics are presented only in examples, and I apologize for omitting several
interesting results.

I also intended to keep intersections with existing and forthcoming books small.
For instance, I wrote nothing on dimension theory (W.T. Trotter [452]) and design
theory (e.g., T. Beth, D. Jungnickel, H. Lenz [53]). The probabilistic methods are
not discussed extensively because they are covered in the book by N. Alon and
J.H. Spencer [29]. Some further algebraic methods will be contained in the forth-
coming book by P. Frankl and L. Babai [35]; and L.H. Harper and J.D. Chavez
[261 ] are building up a theory for discrete isoperimetric problems. Since there exist
excellent books of problems as well as books containing problems with solutions
like those of G.P. Gavrilov and A.A. Sapozhenko [220] and L. Lovasz [354] and
I.A. Anderson [32], I did not include exercises. However, several theorems, lem-
mata, propositions, corollaries, and claims in this book are suitable for exercises
(which thus have complete solutions). Some open problems are mentioned in the
text, and the corresponding page numbers can be found using the index.

The "easiest" examples for an author are those the author has studied. So my
own list of references may seem inappropriately long. I included also some new
results that will not be published elsewhere. Thus I hope the book might shed new
light on some topics also for people who already do active research in the field.

I wish to thank Larry Harper, who initiated this project and who contributed with
stimulating discussions. Many other mathematicians gave hints and indications to
new results, and I gratefully acknowledge their contributions. Beyond that, I wish
to express my gratitude to all my teachers, direct and indirect. In particular I would
like to thank Christian Bey, Frank Ihlenburg, and Uwe Leck, who read the whole
or at least parts of the manuscript very thoroughly. They found several unpleasant
typographical and substantive errors, and I hope that their number is minimized
now.
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I am indebted to all involved in the production of this book. Cynthia Benn and
Rena Wells were of great assistance in improving the style in many ways.

My deep thanks go to my parents Helga and Wolfgang Engel for (among many
other things) introducing me early into mathematics as well as encouraging and
supporting my occupation with it.

Above all I am grateful to my own family for opening widely happy new pages
of my life, for their continuous encouragement and understanding. I leave it as an
exercise to discover the names of my wife and my children in the book.





1

Introduction

1.1. Sperner's theorem
We start our investigations with the theorem that was the cornerstone for the whole
theory. In the thirties, forties, and fifties few further results of a similar kind were
published. But beginning with the sixties, the combinatorics of finite sets has
undergone spectacular growth. Not only have subsets of a finite set been studied,
but also more general objects like partially ordered sets. Many important results
in this area can be found in this book.

Theorem 1.1.1 (Sperner [436]). Let n be a positive integer and .E be a family
of subsets of [n] :=I 1, ... , n) such that no member of Y is included in another
member of F, that is, for all X, Y E F we have X Y. Then

(a)

I.FI<

(b) Equality holds iff

(Xc[n]:IXI=2}

(XC[n]:IXI="-21}or(XC[n]:IXI=n21}

if n is even,

if n is odd.n-I

if n even,

if n odd.

Proof. The following presents Sperner's original approach. Clearly the families
given in (b) satisfy the conditions of the theorem and have the corresponding size.
Hence we must show that there do not exist "better" (resp. "other") families. Let

1



2 Introduction

F be any family of maximum size satisfying the conditions of the theorem. Let

1(F) := min{i : there is some X E F with IXI = i},

u(.F) := max{i : there is some X E F with IXI = i}.

For brevity we write 1 instead of 1(F) if J7 is clear from the context. Let

9 {X E J : IXI =11,

{Y -C [n] : IYI =1 + 1 and there is some X E 9 with X C Y},

(F-g)UH.

Claim 1. The family F' satisfies the conditions of the theorem.
Proof of Claim 1. The only obstacle could be the existence of some Y E N

and some Z E F - 9 such that Y C Z. But by definition of N we would find
also some X E 9 c F with X C Y. Thus X C Z, contradicting the fact that F
satisfies the conditions of the theorem.

Claim 2. Let 1 < 21 Then I7I ? IFI, and IF'I = IFI implies l = 2tt

Proof of Claim 2. Let us count the number N of pairs (X, Y) with X E c,
Y E 7-1, X C Y in two different ways. For a fixed member X of 9, we can find
exactly n - l corresponding sets Y since Y can be obtained in a unique way from
X by adding one element of [n] - X. Thus

N = I GO (n -1). (1.1)

For a fixed member Y of N, we can find analogously 1 + 1 sets X with X C Y,
I X1 = 1. But it is not necessary that all these sets X belong to 9. Thus

N<<17-11(1+1). (1.2)

By (1.1) and (1.2) and because of 1 < "211

IQI(n-1) < 1NI(1+1), (1.3)

INI n-1 n--"21 _
191

>1+1'n21+1

where the last inequality is only an equality if 1 =21. Since 'r satisfies the

conditions of the theorem, F n N = 0. Thus

IF'I = IFI -191 + 17.11 ? I. F1 (equality implies 1 =

0



1.1 Sperner's theorem 3

Recall that we have already chosen F as a family of maximum size that satisfies
the conditions of the theorem. We obtain from Claims 1 and 2

21(F) > n 2 and (analogously) u (.F)
<-}-

because otherwise we could construct a family F' of larger size. If n is even, we
are already done. So let n be odd. If 1(F) = u(F), both values are either n21 or
nn 21 and, consequently,

2 .n1I-1n21

Thus assume that 1(F) = n 2 1 , u (.F) = nn 21 . In this case we will obtain a contra-
diction. By Claim 2,

ICI

(n+n

1 I.

2

(1.5)

Since F is of maximum size, we must have equality in (1.5), thus also in (1.2),
and this is possible only if for every Y E l each 1-element subset of Y belongs
to 9. But consider under all pairs (Y, Z) with Y E 7-1, Z E F - 9 such a pair for
which I Y fl Z I is maximum. Since I Y I = I Z I = I + 1, Y # Z, there exist some
y E Y - Z and some z E Z - Y. In view of the preceding remarks, Y - {y} must
belong to 9; thus Y' := (Y - {y}) U {z} belongs to R. Now I Y' fl Z I = I Y f1 z j + 1

is a contradiction to the maximality of I Y fl Z I.

This result (or at least part (a)) was obtained independently by several other
mathematicians. As examples we mention here Gilbert [223] and the succeeding
paper of Mikheev [369]. Using

[2J =
z if n is even,

12 11 if n is odd,

part (a) of Theorem 1.1.1 reads: ICI (LnJ)'

Sperner's theorem can be always applied if one works with families of subsets
that are pairwise incomparable with respect to inclusion. Here we consider only
one example. It was found by Demetrovics [ 130] in a study of the relational model
of data structures proposed by Codd [118] and Armstrong [33]. Suppose we are
given m persons P1, ..., Pm and n attributes Al, ..., An like last name, first name,
date of birth, place of birth, weight, and so forth. For each person, each attribute
takes on a unique value. Using a right coding, we may suppose that each such
value is a natural number. Thus all data on the persons can be represented by an
m x n-matrix D = (did), where d;j is the value of Aj for person P;. We say that
a set of attributes {Aj : j E X), and, briefly, the set X C [n], is a key if for fixed
values of Aj, j E X, there exists at most one person P; that has these values - that



4 Introduction

is, if

d;j = d;'j for all j E X implies i = it

(one already "knows" the person if one knows his values of the attributes of a key).
A key X C [n] is called a minimal key if there is no key X' with X' C X.

Corollary 1.1.1. For n attributes the number of minimal keys is not greater than
and this bound is the best possible.

Proof. It is trivial to see that the family .F of minimal keys satisfies the conditions
of Theorem 1.1.1, which proves the upper bound. To see that this bound can be
attained, we must construct a corresponding matrix D. We do this here in a simple
way with a large m, namely m := (1 _1) + 1. Set all entries of the first row of D
equal to 1. Then order all n-dimensional rows with [" J - 1 ones and n + 1 - [n j
zeros in any way, but count them from 2 up to L7J-t) + 1. Define the ith row
of D to be the ith row from above, but with all zeros replaced by the number
i, i = 2, ... , ( -t) + 1. Then every [2 J-element subset of [n] is a key since
either we find in the corresponding places only ones - and this can be the case
only in the first row, or we find some number i # 1 - and this can be the case only
in the ith row. Moreover, it is easy to see that there is no key of size smaller than

'n minimal keys.[
z

J ; thus we have indeed (L7

The preceding construction is due to Demetrovics and Katona [131]. For more
information on similar combinatorial problems of data structures, see, for example,
Demetrovics and Katona [131] and Demetrovics and Son [132].

1.2. Notation and terminology
The main objects considered in this book are partially ordered sets (abbreviated
as posets), which are sets equipped with a reflexive, antisymmetric, and transitive
relation (order relation). Throughout we suppose that the posets are finite. For
the sake of brevity we will not distinguish between the poset and the underlying
set. For two comparable (i.e., related) elements p, q of a poset P, we write in
the usual way p < q or, equivalently, q > p. Two posets P and Q are called
isomorphic (denoted by P = Q) if there is a bijective mapping co from P onto Q
(called isomorphism) such that p < q if (i.e., if and only if) ap(p) < rp(q). An
automorphism of P is an isomorphism from P onto P.

Sometimes we study more general objects, namely graphs. An (undirected,
simple) graph G = (V, E) is a set V, called the vertex set or point set, together
with a set E of two-element subsets of V, called the edge set. The degree d(v)
of a vertex v E V is defined as the number of edges containing v. The graph
is called regular of degree d if d (v) = d for all v E V. We speak of directed
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graphs (digraphs) G = (V, E) if E consists of (ordered) pairs (p, q) of different
elements p, q of V and we call the elements of E arcs. For e = 1p, q) (p, q are
the endpoints of e) (resp. e = (p, q), p is the starting point, q is the endpoint), we
write briefly pq, and in the directed case we use the notation e- := p, e+ := q.
Moreover in the directed case we allow more than one arc between points p and
q; thus E is a multiset of arcs.

The element q of a poset P is said to cover the element p (denoted by p < q
and q > p) if q > p and if q > q' > p implies q = q'. Obviously, the order
relation is the reflexive and transitive closure of the cover relation. A poset P can
be illustrated by its Hasse diagram, which is a digraph H(P) = (P, E(P)) whose
vertex set is P and whose arc set E(P) consists of all pairs (p, q), where p < q.
In figures we always have q > p if p and q are joined by a straight line and q lies
higher than p. The Hasse graph is the underlying undirected graph of the Hasse
diagram. An element p of P is called minimal (maximal) if q < p (q > p) implies
q =' p. For two elements p, q of P, we define the interval [p, q] to be the set of
all elements of P lying between p and q; that is, [p, q] = {v E P : p < v < q}.

A subset of pairwise comparable elements of a poset P is said to be a chain. We
denote chains by C = (co < < ch), which gives us not only the elements but
also the relation between them. The number h is called the length of C. The height
function assigns with each element of P the length of a longest chain with p at the
top. A chain is called saturated if it has the form C = (co < < ch), and it is
called maximal if, in addition, co and ch are minimal and maximal elements of P,
respectively.

An antichain is a subset of pairwise incomparable elements of P. Subsets of a
poset will often be called families too (motivated by families of subsets of a set).
Antichains are also called Sperner families. A k family is a family in P containing
no chain of k + 1 elements in P, thus a 1-family is an antichain. Usually we denote
families by roman letters F, G, and so on. If P is the Boolean lattice (to be defined
in the next section) or if P is very similar to the Boolean lattice we also use script
letters F, C, and so forth.

We speak of maximal families and maximum families satisfying various condi-
tions. "Maximal" means not contained in any other; "maximum" means maximum-
sized.

For graphs G = (V, E), we define a subset C of V to be a clique if any two
elements of C are joined by an edge (i.e., are adjacent), and a subset I of V is
called independent if no two elements of I are adjacent. A matching in a graph
G = (V, E) is a subset M of E of pairwise nonadjacent edges; that is, no two
edges of M have a common endpoint.

We often consider extremal problems not in a poset but in a weighted poset
(P, w), which is a poset P together with a function (called a weight function) w
from P into the set R+ of nonnegative real numbers. If w(p) > 0 for all p E P,
then (P, w) is called a positively weighted poset. The weight w (F) of a family F of
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(P, w) is defined by w(F) :_ >pEF w(p). Every poset P can be considered as a
weighted poset (P, w) where w - 1; that is, w(p) = 1 for all p E P. We identify
P and (P, 1). The maximum weights of an antichain and a k-family in (P, w) are
denoted by d(P, w) and dk(P, w), respectively. The parameter d(P, w) is called
the width of (P, w).

Given a weighted poset (P, w) and a subset F of P, the poset whose underlying
set is F and whose elements are ordered and weighted as in (P, w) is called the
poset induced by F. The dual (P*, w) of (P, w) has the same underlying set and
the same weight function as (P, w), but it is ordered by p <p* q if p > p q.

The (direct) product P x Q of the posets P and Q is defined to be the set of
all pairs (p, q), p E P, q E Q, with the order given by (p, q) < p x Q (p', q') if
p <p p' and q <Q q'. Moreover, the product (P, v) x (Q, w) of the weighted
posets (P, v) and (Q, w) is the product of P and Q together with the weight
function v x w defined by (v x w) (p, q) := v(p)w(q), p E P, q E Q. We denote
a product of n copies of (P, w) by (P, w)", and for (PI, wt) x . . . x (P,,, we

write briefly r["=1(P;, w;).
Given a group G of automorphisms of a poset P, a nonempty subset A of P is

called an orbit if for all p, q E A there is some cp E G such that cp(p) = q and
if A is maximal with respect to this property. It is easy to see that the union of all
orbits is a partition of P. Now the quotient of P under G (denoted by P/G) is
the poset of all orbits ordered in the following way: A <PIG B iff there are some
a E A, b E B such that a <p b (it is easy to see that P/G is really a poset). The
weighted quotient is the quotient together with the weight function wIG defined
by w/G(A) := JAI, A E PIG.

Given two posets P and Q, a mapping cp : P -+ Q is called order preserving
if p < q implies cp(p) < co(q). If Q is the set 1I8 with the natural ordering, we
speak of increasing functions. Decreasing functions are defined in an analogous
way. The characteristic function of a subset S of P is defined and denoted by

cos(p)
0 otherwise.

(1 if p E S,

1

The support of a function f : P - R is the set supp(f) := (p E P : f (p) 0}.

A subset F of a poset P is called a filter (ideal) if p E F and q p (q < p)
imply q E F. Sometimes filters (ideals) are also called upper ideals (lower ideals).
A filter (ideal) F is said to be generated by a subset S of P if F = (p E P : p >
q (p < q) for some q E S}. If S contains only one element we speak of principal
filters and ideals.

Given two elements p, q of P, the element v is called supremum (infimum) of p
and q - denoted by v = p V q (v = p A q) - if v > p, v > q and if w > p, w > q
imply w > v (if v < p, v < q and if w < p, w < q imply w < v). In an
analogous way we define the supremum (infimum) of any subset A of P, which
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we denote by sup A (inf A). Most of the examples considered in this book are
lattices, that is, posets P in which p v q and p A q exist for all p, q E P.

Further, almost all posets that we will study are ranked posets, that is, posets
together with a rank function. Here a rank function of a poset P is a function
r from P into the set N of all natural numbers such that r(p) = 0 for some
minimal element p of P and p < q implies r(q) = r(p) + 1. Note that we do
not suppose - as traditionally - that r (p) = 0 for all minimal elements p of P. If
in a ranked poset every minimal element has rank 0 and every maximal element
has the same rank, we speak of a graded poset (note that in any poset there is at
most one rank function with this property). Given a ranked poset P, rp denotes
throughout its rank function, but generally we omit the index P and merely write
r. The number r(P) := max{r(p) : p E P} is called the rank of P (note the
difference from the weight w(P) of a weighted poset (P, w), which we defined
by w(P) :_ EpEP w(p)). Very often we set for the sake of brevity n := r(P).

A subset F of a graded lattice is called t -intersecting (t-cointersecting) if r (p A
q) > t (r(p V q) < r(P) - t) for all p, q E F. Intersecting (cointersecting) is an
abbreviation for 1-intersecting (1-cointersecting).

The dual of a ranked poset P is the dual P* of P together with the rank function
r p* := rp(P) - rp(p) for all p E P. Moreover, the product of two ranked posets
P, Q is defined to be the poset P x Q together with the rank function rp,< Q
given by rpxQ(p, q) := rp(p) + rQ(q). For a ranked poset P, we define the ith
level by N,(P) := {p E P : r(p) = i}; its size W1(P) := 1N;(P)I is called
the ith Whitney number, i = 0, ... , r(P) (when there is no danger of ambiguity,
we write briefly Ni and W,). It is useful to define Ni := 0 and W; := 0 if
i V {0, ... , r(P)}. Obviously, each level of a ranked poset is an antichain, and the
union of k levels is a k-family. The rank-generating function F(P; x) of a ranked
poset is defined by F(P; x) JpE p xr(P)(_ _i o) W,x`). It is easy to see that
F(P x Q; x) = F(P; x)F(Q; x) if P and Q are ranked. For S c {0, ... , r(P)},
we define the S-rank-selected subposet (PS, ws) as the subposet induced by PS
JP E P : r (p) E S} together with the induced weights ws.

For ranked posets P, Q of the same rank, we define the rankwise (direct) product
P Xr Q to be the set Ul (

o
Ni (P) x Ni (Q) together with the relation (p, q) < p x,. Q

(p', q') if p <p p' and q <Q q'. If we have, in addition, weights v and w on P
and Q, resp., then, as for usual products, (v X r w)(p, q) := v(p)w(q).

Given a family F in a ranked poset P, the set of rank i elements of F is denoted
by F,, and the numbers f, :_ IF,I are called parameters of F, i = 0, . . . , r(P).
The vector f = (fo, ... , fry p))T is called the profile of F. If F = F, for some i
then we call F i-uniform.

For an element p of P, we define and denote the upper (resp. lower) shadow
of p by V(p) :_ {q E P : q > p} (resp. /(p) := {q E P : q < p}). More
generally, if P is ranked, let the upper (resp. lower) k-shadow of p be defined and
denoted by V.k(p) :_ {q E Nk : q > p} (resp. A- k(p) :_ {q E Nk : q < p}).
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The (k-) shadows of a subset of P are the unions of the (k-) shadows of its
elements.

More generally, given a weighted and ranked poset (P, w), the weight w(N,) of
the ith level Ni of P is called the weighted ith Whitney number. We mostly use the
following definitions in the w - 1 case (where W1 = w(N1)). The weighted and
ranked poset (P, w) is said to have the k-Sperner property if the maximum weight
of a k-family in (P, w) equals the largest sum of k weighted Whitney numbers in
(P, w), that is, if

dk(P,w)=max{w(N;,)+...+w(N,,):0<ii < <ik <r(P)}.

In the k = 1 case we also say briefly that (P, w) has the Sperner property or
(P, w) is Sperner. Further, (P, w) has the strong Sperner property ((P, w) is
strongly Sperner) if (P, w) has the k-Sperner property for all k = 1, 2, ... .

A sequence of nonnegative real numbers {an } is called unimodal if there is a
number h such that al < a;+I for i < h and a; > a;+1 if i > h. It is called
logarithmically concave (or log concave) if a? > a;_Ia,+1 for all i. For a fi-
nite sequence (ao, ... , an), we say that it is symmetric if ai = for all i.
If the (weighted) Whitney numbers of (P, w) are unimodal (resp. symmetric),
then (P, w) is said to be rank unimodal (resp. rank symmetric). If {an} and {bn}
are two infinite sequences of real numbers, the following notations for n -* co
are well known: an b if limn,,an/bn = 1; an = 0(bn) if there exists
some c E 118 such that Ian I < clbn I for all n; an = o(bn) if 0
and an < b, if an < bn(1 + o(1)). All logarithms in this book are to the basis
e = 2.718....

As usual, we denote the largest integer that is not greater than a given real
number x by [x J . For the smallest integer that is not smaller than x, we write [x].
The set {1, . . . , n} we abbreviate by [n]. For the family of k-element subsets and
for the power set of [n], we use the notation (m) (resp. Pj), which is motivated
by the corresponding sizes. A C_ B means that A is a subset of B, whereas strict
inclusion is denoted by A C B. For the set difference of sets A and B, we write
A - B. Moreover, we denote the complement of A in [n ] by A; that is, A [n ] - A.

For.F C 2[n1, let F := {A : A E F) be the complementaryfamily.
Before considering some concrete examples of posets and lattices in the next

section, let us look at some larger classes of ranked posets. For a general study of
these lattices, see, for example, Aigner [21] and Stanley [441]. In a lattice P, the
elements covering the minimal element are called atoms. The rank function of P
is called modular (resp. semimodular) if

r(pAq)+r(pvq) = (resp. <)r(p)+r(q) f o r all p,q E P.

A (finite) lattice is called modular if it has a modular rank function. Moreover,
a lattice is said to be geometric if it has a semimodular rank function and every
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element is a supremum of atoms. Finally a lattice is called distributive if the
following identities hold for all p, q, v E P:

p A (q v v) = (p A q) v (p n v),

pv(gnv) _ (pvq)n(pvv).

We note that each of these identities implies the other. All (finite) distributive lat-
tices are ranked, for the proof see, for example, [21, p. 38]. Obviously, distributivity
implies modularity.

1.3. The main examples
The following are several examples of posets we will consider in this book. Most
of these posets can easily be shown to be lattices. Hence in all traditional examples
the word lattice will be used instead of poset. Further, it is mentioned without
proof that all following posets are ranked. The reader will learn in the book that
all posets up to the last one have the Sperner property.

Example 1.3.1. The Boolean lattice B.

The poset of all subsets of an n-element set, ordered by inclusion, is the Boolean
lattice. Obviously, B is isomorphic to (0 < 1)" as well as to the poset of all faces
of an (n - 1)-dimensional simplex (including the empty set as a face), ordered
by inclusion. It is easy to see that Nk(Bn) consists of all k-element subsets; thus
Wk(B") = (k). The Hasse diagrams of B3 and B4 are illustrated in Figure 1.1.

B3

Figure 1.1

Example 1.3.2. Chain products S(kl, ... , k" ).

B4

The poset S(kl,... , k") consists of all n-tuples of integers a = (a l, ... , a")
such that 0 < a, < k,, i = 1, ... , n, and we have a < b iff a1 < b, for all
i. We will adopt the convention kl > > k" . Obviously, S(kl, . . , kn)
nj-1(0 < 1 < < k;), and therefore S(kl, ... , kn) is called a chain product.
Given n distinct primes pl, ... , p , , S(kl, ... , kn) is isomorphic to the lattice
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of all divisors of pn", ordered by divisibility. The Boolean lattice Bn is
isomorphic to S(1, ... , 1). From the product representation we obtain that the
rank of an element a of S(k1, ... , kn) is given by r(a) = al + + an, and the
rank-generating function is fl= 1(1 + X + + xk' ).

Example 1.3.3. The cubical poset Qn.

Qn is the poset of all faces of an n-dimensional cube (not including the empty set
as a face), ordered by inclusion. Here we consider only the discrete cube (a =
(a1, . . . , an) : ai E {0, 1}). Its faces are all subsets of the form {a : ai E {0, 1} if
i 0 I, ai = ai ifi E I(i = 1, ..., n)}, where I is a subset of [n] and a1(i E I) are
fixed elements of (0, 11. Clearly the faces are exactly the intervals in the Boolean
lattice Bn. If one notes that a face corresponds to an n-tuple b = (b1, ... , bn)
where bi = 2 if i 0 I and bi = ai if i E I, then it is not difficult to see that Qn
is isomorphic to a product of n factors given in Figure 1.2. Thus we consider Qn

2

mostly as the set of all n-tuples b = (b1, ... , bn) with b, e 10, 1, 2} for all i and
ordered by b < c if ci = 2 or bi = ci for all i. Obviously, the rank of b equals
the number of "twos" in b and Wk(Qn) = (k)2n-k.

We get the cubical lattice Qn if we add to Qn a minimal element (which is
smaller than all elements of Qn).

Example 1.3.4. The function poset Fk .

Fn consists of all partially defined functions of an n-element set into a k-element
set. For a function f of Fk, let D(f) be its domain. Two elements of Fk are
ordered in the following way: f < g if D(f) c_ D(g) and f (x) = g(x) for
all x E D(f ) . A partially defined function of {x1, ... , xn } into {yl , ... , yk } can
be represented as an n-tuple a = (a1, ... , an), where ai = 0 if xi 0 D(f) and
ai = j if xi E D(f) and f(xi) = y,. Thus Fk is isomorphic to a product of n
factors given in Figure 1.3. It follows that FF is isomorphic to the dual of Qn. The
rank of an element a of the poset Fk is given by the number of nonzero elements
in a, and we have Wi(Ff) = (n) ki. If we add a maximal element to Fk, we get
the function lattice Fk .

Example 1.3.5. Star products T (k1, ... , kn ).
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1 2 k

0

Figure 1.3

This poset consists of all n-tuples of integers a = (a 1, . . . , a,) such that k - k; <
a, < k,,, i = 1, . . . , n, and we have a < b if, for all i, ai = b; or bi = k,,. We
suppose throughout that k1 < ... < k . Obviously, T (k1, ... , is isomorphic
to a product of stars presented in Figure 1.4. Thus it is a natural generalization
of the cubical poset and the dual of the function poset. The rank of an element
a of T (k1, . . . , is given by the number of components equal to k, and the
rank-generating function is 11n (k, + x).

k

kn-kik, -ki+1

Figure 1.4

Example 1.3.6. The poset Int(S(k1,... ,

kn-1

This is the poset of all nonempty intervals in S(kl, ..., ordered by inclusion;
that is, its elements are sets of n-tuples of the form {a : a; < a, < i4, (i =
1 , ... , n)}, where a, and $, are fixed integers, 0 < a; < ,P, < ki (i = 1, ... , n).
It is easy to see that Int(S(k,)) is isomorphic to the "upper half" of S(k,, k,)
(see Figure 1.5). The corresponding isomorphism is the mapping that assigns
the interval {a, a + 1, . . . , $}, 0 < a < P < k,, to the pair (,B, k, - a). If
we interpret the elements of S(k1, . , as points of a discrete (rectangular)
parallelepipedon, then Int(S(k1, ... , consists of all subparallelepipedons of
a parallelepipedon, ordered by inclusion. Note that Int (S(1, ... , 1)) is isomorphic
to Q,, .

Example 1.3.7. The poset M(kl,... ,

The elements of this poset are subsets of S(kl, ... , of the form {a E S(k1, ... ,
a, E A, , i = 1 , ... , n j where the A, are nonempty subsets of {0, ... , k, },

n, and the ordering is again by inclusion. It is easy to see that M(kl .... ,
kn) is isomorphic to Bk,+1 x x Bkn+1 where B;, denotes the Boolean lattice
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Int(S(4))

Figure 1.5

B without the minimal element. In the case n = 2, this poset can be interpreted
as the poset of submatrices of a matrix with (k1 + 1) rows and (k2 + 1) columns,
ordered by containment. We speak also for n > 2 of the poset of submatrices of a
matrix.

Example 1.3.8. The posets SQk,n and SMk,n.

The elements are subsets of S(k, ... , k) of the form {a E S(k, ... , k) : ai E
A1, i = 1, ..., n} where the Ai are for SQk,n intervals in [0, k] of same sizes
and for SMk,,, subsets of [0, k] of same sizes, and the ordering is by inclusion.
If we consider S(k, . . . , k) as a discrete cube, then SQk,n can be interpreted as
the poset of subcubes of a cube. In the case n = 2, SMk,,, can be interpreted
as the poset of square submatrices of a square matrix (with k + 1 rows (resp.
columns)), but we use this notation also for n > 2. It is easy to see that SQk,n
Int(S(k)) x,. xr Int(S(k)) and SMk,n -' Bk+1 x,. x,. Bk+1 (rankwise
product).

Example 1.3.9. The linear lattice L (q).

This is the poset of all subspaces of an n-dimensional vector space over a field
of q elements (the Galois field GF(q)), ordered by inclusion. The rank of an
element V of Ln (q) equals its dimension dim V (as a subspace). In Figure 1.6
we illustrate L3(2) (the triples indicate the coordinates of vectors that generate
the corresponding one-dimensional subspace). It is not difficult to see that each
nonempty interval [V, W] in Ln(q) is isomorphic to Ldimw-dirnv(q) (consider
the mapping that assigns to each U E [V, W] the factor space U/ V). It is well
known (cf. [21, p. 78]) that the ith Whitney number of L (q) equals the Gaussian
coefficient (n)q, which is defined by

(n\
:=

(qn - 1)(qn-1 - 1) ... (qn-i+l - 1)
1\

JJ
0 < i <

t q (q` - 1)(qi-t _ 1) ... (q _ 1)

The linear lattice Ln (q) (as also Bn and S(k1, ..., kn)) is isomorphic to its dual:
If the vector space is realized as the set of all n-tuples with components from
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L3(2)

Figure 1.6

GF(q), then an isomorphic image of some subspace V is the subspace {x =
all V}.

Example 1.3.10. Projective space lattices.

A projective space lattice is the poset of all subspaces of a projective geometry,
ordered by inclusion. For a definition of a projective geometry and its subspaces,
see references [21, pp. 55ff] and [450, pp. 105ff]. Note here that if such a poset has
rank > 4, then it is isomorphic to some linear lattice L (q) (see [450, p. 203] and
note that we have the general supposition that all posets are finite). In the rank =
3 case, the projective geometry is a projective plane [450, Theorem 13.7]. Finally,
in the rank = 2 case, projective space lattices have the form given in Figure 1.7.

Figure 1.7

Example 1.3.11. Modular geometric lattices.

These are lattices that are both modular and geometric. We only need the fact that
the modular geometric lattices are exactly the products of a Boolean lattice and
projective space lattices, which was proved by Birkhoff (cf. [21, p. 64], where
two-element chains are also considered as projective space lattices).

Example 1.3.12. The affine poset A (q).

The poset of cosets of subspaces (affine subspaces) of an n-dimensional vector
space over G F(q), ordered by inclusion, is the affine poset A (q). The rank of an
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element a + V equals the dimension of V, and the ith Whitney number is given by
W, (An (q)) = qn-i (n)y. Every nonempty interval [a + V, b + W] (i.e., we may

suppose a = b) is obviously isomorphic to Ldim W-dimv(q) If we add a unique
minimal element, we obtain the affine lattice A, (q).

Example 1.3.13. The poset L(m, n).

The elements of the poset L (m , n) are the n-tuples a = (a I , ... , an) with 0 < a t <
... < a, < in. They are ordered componentwise; that is, a < b iff ai < bi for
all i. L(m, n) is isomorphic to the poset of all ideals in S(m - 1, n - 1), ordered
by inclusion (note that the mapping which assigns a E L(m, n) to the ideal in
S(m - 1, n -1) generated by the set { (a l - 1, n- 1), (a2- 1, n -2), ..., (an -1, 0) }
- an element (-1, i) is considered nonexistent - is an isomorphism). The rank
function is given by r(a) = aI + + an.

Example 1.3.14. The poset M(n).

This is the poset of all n-tuples a = (ai, ... , an) with 0 = al = = ah <
ah+1 < . . < an < n, h E {0, ... , n} (h = 0 means aI > 0), with the order
given by a < b if ai < bi for all i. For the rank of an element a, we have
r(a) = aI + +an; thus r(M(n)) = n(n+I)

2

Example 1.3.15. The graph poset Gn.

The elements of the graph poset Gn are the simple graphs on n unlabeled vertices
(i.e., the isomorphie classes of the graphs on the vertex set [n] without loops and
multiple edges). These graphs are ordered by containment (embedding). The rank
of such a graph (as an element of the poset Gn) equals the number of edges in it.

Example 1.3.16. The partition lattice IIn.

The elements of this lattice are the partitions of [n], and they are ordered by
refinement. We denote, for example, the partition {4} U {2, 5, 6} U {1, 3} of [6]
briefly by 41256113 (or 52611314, ...), and this partition covers 412156113,
412516113, 415126113, 412561113. Let b(7r) stand for the number of blocks in ir.
Then the rank function is given by r(7r) = n - b(7r). Figure 1.8 illustrates 114 (the
two-element blocks of the atoms are depicted). For the Whitney numbers, we have
Wi (nn) = Sn,n-i, where Sn,k is the corresponding Stirling number of the second
kind, which is defined by the number of partitions of [n] into exactly k blocks. If
7r < a and a = BI I ... l Bk, where Bi contains ni blocks of 7r, then obviously
[ir, a] 1-In

i
x ... X Ilnk The following basic recurrence holds for the Stirling

numbers:

Sn,k = kSn-l.k + Sn_l,k-1, n, k > 1, (1.6)
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114

Figure 1.8

and the Bell numbers B := I II I (do not confuse them with the Boolean lattices
can be determined by the formula of Dobinski (cf. [354, pp. 14f]):

1 °O in
B _ - - (1.7)

I*
e i_o 1.

It is well known [441, p. 127f] and can be easily proved directly that 171, is a
geometric lattice.



2

Extremal problems for finite sets

Many results in Sperner theory have their origin in theorems on families of subsets
of a finite set, that is, in the special case of the Boolean lattice. So we start our
investigations with the Boolean lattice. Because of the richness of the literature,
we must be selective. In particular, this chapter presents several important methods
(together with related results). The linear programming approach is discussed in
a separate chapter.

2.1. Counting in two different ways
We have already seen this method in the proof of Claim 2 of Sperner's theorem.
It can be illustrated with a bipartite graph, which is a graph G = (V, E) whose
vertex set V can be partitioned into two sets A and B such that I e fl A I= I e f B I = 1

for all e E E. The method of counting in two different ways is then given by the
trivial equality

IEI = Ed(v) = Y'd(v).
VEA VEB

But the problem is the construction of the "right" vertex set V = A U B and of
the "right" edge set E. Edges in a bipartite graph can be written also as pairs of
vertices. If we say in the following proofs that we count the number of pairs with
"..." in two different ways, then the set A (domain of the first coordinate), the
set B (domain of the second coordinate), and the edge set E (all pairs with the
corresponding property) are implicitly given. For the sake of brevity the graph will
not be presented (and drawn) explicitly.

2nd Proof of Theorem 1.1.1(a). Let Sn be, as usual, the set of all permutations
of [n]. We count the number N of pairs (X, 7r) where X E .17, n E Sn, X =
{n(1),...,;r(IXI)}, in two different ways. For fixed X E F, a corresponding

16
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permutation must map { 1, ... , I X I } bijectively onto X and { I XI +1, ... , n } bijec-

tively onto [n] - X. Thus we find IXI!(n - IXI)! such permutations (this is also
true for X = 0), and it follows that

N = IXI!(n - IXI)!. (2.1)
XE.F

However, for fixed n we find at most one corresponding X E F because of the
inclusion condition. Thus

N< E 1=n!. (2.2)

irES,,

From (2.1) and (2.2) we obtain (after division by n!)

1E /-<1.( n
)

(2.3)
I

XE.F

It is trivial to verify that the binomial coefficients are rank unimodal and rank
symmetric; that is,

(n
nn>(n)

Thus (2.3) implies

n1
< 1, i.e., IFI _< n

X [J [j

This proof is due to Lubell [357]. The inequality (2.3) was also found (in a
different way) by Yamamoto [471], and Meshalkin [364], and therefore inequality
(2.3) is known as the LYM-inequality. Generalizations to other posets are discussed
in Section 4.5.

Note that each permutation 7r c: S, corresponds in a bijective way to a maximal
chain C = (0 < {n(1)} < {n(1),,r(2)} < < {n(1), ir(2), ... , 7r (n))) in the
Boolean lattice (realized on 21"1). Thus, in another interpretation, we counted the
number of pairs (X, C) with X E F, C a maximal chain, X E C, in two different
ways. In (2.2) we had only an inequality because there might exist maximal chains
C that do not contain any member of F. Now we change the situation in order
to meet every chain exactly once. Let D be an ideal in 2M, and U := 21"1 - D.
Clearly, U is a filter. Moreover, let

E(D,U):={(Y,X):YED,XEU,Y<X}.

In the Hasse diagram of the Boolean lattice, this set is the set of arcs that leave D
and enter U.
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Lemma 2.1.1. If 0 E D and [n] E U, then

E IYI!(n - IXI)! = W. (2.4)
(Y,X)eE(D,U)

Proof. We count the number of pairs ((Y, X), C) with (Y, X) E E(D, U), C a
maximal chain, Y, X E C, in two different ways. As before, we obtain that for
fixed (Y, X) E E(D, U) there exist exactly I YI !(n - IXI)! such chains. But since
each maximal chain C starts in D and ends in U and since D is an ideal, C must
leave D in a unique element Y and enter U in the next element X. Thus, for fixed
C, there exists exactly one corresponding (Y, X) E E(D, U).

The following identity was found by Ahlswede and Zhang [18], and can be
considered a sharpening of the LYM-inequality.

Theorem 2.1.1 (AZ-identity). Let .F be a family of nonempty subsets of [n]. Let
w : 2[n] -+ N be the weight function defined by

w(X) := 1 n Al, where X c [n]
AEY:ACX

(here the intersection is defined to be empty if there is no A E F with A c_ X).
Then

w(X)
\=1.

XC[n]

Proof. Let U be the filter generated by F, and let D := 2[n] - U. Then we may
apply Lemma 2.1.1 to obtain (2.4). For fixed X, let N(X) be the number of pairs
(Y, X) E E(D, U). It is easy to see that

N(X) =
J0 ifXED,

1 I{xEX:X-{x}ED}I ifXEU.

Clearly, X E D iff there is no A E F with A C X.
For X E U and X E X, we have X - {x } E D if x E A for all A E F with

A c X, that is, iff x E nAEF:ACXA. Consequently,

w(X) = N(X) for all X C [n].

From (2.4) and (2.5) we obtain

E N(X)(IXI - 1)!(n - IXI!) = n!,
XC[n]

w(X)
n

= 1.

XC[nl

(2.5)
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Note that the LYM-inequality follows indeed from Theorem 2.1.1 since for a
Sperner family F and a member X of F clearly w (X) = I X1.

In the preceding investigations we worked with a set of arcs in the Hasse diagram
that intersect (the arcs of) each maximal chain. Deletion of the set E(D, U) means
that we "cut" every maximal chain. Instead of arcs we may consider also vertices.
We say that a family C of subsets of [n] is a cutset if each maximal chain meets C.
For instance, {0} and { [n ] } are cutsets that are, in addition, minimum and, of course,

minimal. Since we will study cutsets in more detail in Section 4.2, we consider
here also one result for cutsets, though in the proof the method of counting in two
different ways is not really used. Answering a question of Lih (see also [342]),
Furedi, Griggs, and Kleitman [210] discovered that there exist "large" minimal
cutsets. Let c(n) be the maximum size of a minimal cutset in 2[n].

Theorem 2.1.2. We have

c(n) ' 2n as n -+ oo.

Proof. First we will show that we may restrict ourselves to "special" values of n.
1)+

for all n.Claim 1. We have
c(n)2n < c(2nn+1

Proof of Claim 1. Let C be a minimal cutset in 2[n] of size c(n). Then clearly
0, [n] V C. It is easy to verify that C U {C U (n + 1) : C E C} is a minimal cutset
in 21n+13Thus c(n + 1) > 2c(n), which yields the assertion.

By Claim 1, it is sufficient to find a sequence nk with nk - oo as k oo such
that

c(nk) > 1 - o(1) as k -+ oo. (2.6)
2nk

Let us fix some k c N and let n := ak where a is some natural number that we
will specify later. Let U° 1 Si be a partition of [n] into classes of size k and let

C := {CC[n]:0<JSinC1 <kforalli}
U{CC[n]:IS,nCI=0,JSj nCl=kforsome iandj}.

Claim 2. The family C is a cutset.
Proof of Claim 2. Let (0 = Xo < X1 < . . < Xn = [n]) be any maximal

chain and define t as the largest integer such that Xt is still disjoint from some Si.
Then X1+1 intersects all Si. If Xt+1 does not contain any Sj, then it belongs to the
first part of C; otherwise XX belongs to the second part of C.

Let

Co := {Cc[n]:0<iSinC< k for all ii
n{Cc[n]: JS;nCJ=1,JSj nCl=k - l forsomeiandj}.
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Claim 3. For any C E Co, the family C - {C} is not a cutset.
Proof of Claim 3. Let C E Co where I Si * n C1 = 1, I Sj* n C1 = k - 1.

Consider any chain of the form ( < C - Si. < C < C U Sj* < .). Assume
that this chain contains a member X with X E C - {C}. For brevity we assume that
X < C (the case X > C can be treated analogously). Obviously, IX n S;* I = 0;
thus X could only belong to the second part of C. But I Sj n X1 = k would imply
I Sj n Cl = k, a contradiction to C E Co.

By deleting certain members of C step by step, we obtain finally a minimal
cutset Cl. By Claim 3, Cl 2 Co; that is (using inclusion-exclusion),

c(n) ? ICoI = (2k - 2)° - 2(2k - k - 2)° + (2k - 2k - 2)°

((
)a)

-2)° -2I1- k
2k(2k2)°-2(2k-k)°2n \\1

2

With a := L 2k kg k J we obtain for the second factor

2 logk+o(1)-+0(1)
k l-(i_)T2-211-
2k/

Thus, for nk 2kW J k, the inequality (2.6) holds.

In fact, Fiiredi, Griggs, and Kleitman [210] strengthened the lower bound (using
some random construction, for a similar result see Theorem 2.6.2) to

c(n) > 2n (1 - y (log n
where y is some constant.

n

Let us return to the LYM-inequality and generalize it in another direction.

Theorem 2.1.3 (Bollobas [71]). Let {(XI, Yl), ... , (Xm, Ym)} be a family of
pairs of subsets of [n] such that for all 1 < i, j < m, Xi n Yj = 0 iff i = j. Then

m

1 1.
//IXrI+I Y,1

<
i=1 ( IXrI

Proof. We count in two different ways the number N of pairs (i, jr), where
i E [m],1r E Sn with the following property:

For all k, l E [n], n(k) E Xi, n(1) E Y; imply k < 1. (2.7)

Let i be fixed. We may classify corresponding permutations by those sets Zi that
Possibilities to choose Z;. Ifare mapped onto Xi U Yi. Clearly, we have (IX; I+IY;1)

Z; is fixed, then (because of property (2.7)) the first IX; I elements of Z; must be
mapped onto Xi (i.e., I Xi 1! possibilities), the rest of Zi must be mapped onto Y;
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(i.e., 1 Y 1 1 ! possibilities), and [n] - Z; must be mapped onto [n] - (Xi U Y,) (i.e.,
(n - (IXiI + IY, I))! possibilities). Thus,

1mN=
n

IX,I!IY1!(n-IXiI-IYYI)!= IXiI+IYiI
(2.8)

(XiI
+ IYiI ( IXiI )

Now let Jr be fixed. Assume that there are two different numbers i, j corresponding
to 7r. Since, by supposition, X, n Yj 0, we find some h E [n] such that n (h) E Xi
and 7r (h) E Yj. But then in view of property (2.7), ir(k) E Xj implies k < h, and
7r(1) E Y, implies h < 1. Consequently, Xj n Y, = 0, a contradiction. Thus

N < >2 1 = W. (2.9)
]r ES,,

The assertion follows from (2.8) and (2.9).

Let us emphasize that the LYM-inequality is a special case of Theorem 2.1.3.
Indeed, let F = {X1, ... , Xm} be a Sperner family of subsets of [n]. Then it is
easy to verify that {(XI, TI), ... , (Xm, Xm)} satisfies the conditions of Theorem
2.1.3. Consequently,

m
1r _ < 1.

XEY XI) ii=1 (IXiIIX,lIXi l)

Bollobas's theorem was published (as a lemma in a slightly modified version)
one year before Lubell's proof of Sperner's theorem. As for the LYM-inequality,
Ahlswede and Zhang [ 18] lifted the inequality in Theorem 2.1.3 to an identity, and
Ahlswede and Cai [4] gave a further generalization. We omit the details. Instead, we
consider another generalization. Earlier we worked with ordered partitions (X, X)
of [n] into two classes. Now we look at ordered partitions (XI, ... , Xk) of [n] into
k classes where empty classes are allowed. We speak of ordered k -partitions of
[n ]. Two such partitions (XI, ... , Xk), (YI, ... , Yk) are called inclusion-unrelated
(resp. cross-unrelated) if there is no i E [k] such that X, C Y, or Y, C X, (resp.
if there are i, j, h, l such that i < j, h > 1, X, n Yj 0, Xh n Y, # 0).

Theorem 2.1.4. Let {(X;, ... , Xk), ... , (XI , ... , X' )I be a family of ordered
k-partitions of [n] that are pairwise inclusion-unrelated or cross-unrelated. Then

m I
< 1.

i=1 IXjl.n..lXkE
Proof. The proof is analogous to the proof of Theorem 2.1.3. We only replace
condition (2.7) by the following condition:

X1 = {ir(1), .... r(I Xf I)}, X' = {n(I X, I + 1), ... , n(I X,'I + IXz I)}, ... ,
Xk = {7r(IXII r(n)).
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Then it is easy to see that for fixed i there are exactly I Xi I ! ... I X k I ! corresponding
permutations, and for fixed n there is at most one i. This yields

m

IXIII...IXkI! <n!,
i=1

and finally the assertion.

It is an easy exercise to verify that (a1 %j with al + + ak = n attains
its maximum if all numbers aj are "almost" equal. Since the ordered k-partitions
(XI( X I ,. Xk) of [n] with I Xj I = [n+k-I J , j = 1, ... , k, are pairwise inclusion-
unrelated as well as pairwise cross-unrelated, there follows a corollary.

Corollary2.1.1. The maximum size of a family of pairwise inclusion- or cross-
unrelated ordered k-partitions of [n] equals `ai n ak) where aj = [" J j =
1,...,k.

In the case of pairwise inclusion-unrelated ordered k-partitions Corollary 2.1.1
(resp. Theorem 2.1.4) is due to Meshalkin [364] (resp. Bollobas [74]). For cross-
unrelated ordered k-partitions, the results were obtained (in a slightly different
notation) by Bandt, Burosch, and Drews [37].

Of course, one may assume also other conditions on the ordered (resp. un-
ordered) k-partitions of [n]. For example, motivated by the study of independent
random variables, Renyi [397, p. 16] called two unordered k-partitions {XI , ... ,
Xk), {YI, ... , Yk} of [n] qualitatively independent if X, n Yj 0 0 for all 1 < i,
j < k (more generally, also k must not be constant). The determination of the max-
imum size of a family of k-partitions which are pairwise qualitatively independent
is very difficult. Only for k = 2 is an exact answer known (see the Profile-Polytope
Theorem 3.3.1 and the third remark after it). For k > 3, only asymptotic bounds
and estimates are known (see Poljak and Tuza [383], and Gargano, Ko"rner, and
Vaccaro [216, 217]). As an example we study the following condition: Two or-
dered 3-partitions (XI, X2, X3), (YI, Y2, Y3) of [n] are called KS-independent if
XI n Y3, X2 n Y3, YI n X3, Y2 n X3 # 0. Let KS(n) be the maximum size of
a family of pairwise KS-independent ordered 3-partitions of [n]. The following
result is due to Ko""rner and Simonyi [314]:

Theorem 2.1.5. We have KS(n) =

Proof. First we show the inequality "<." Let F be a family of size KS(n).
We classify the members (Xl, X2, X3) of J with respect to the cardinalities of
IXI and IX21. Since these cardinalities belong to {0, ... , n} (more exactly to
{ 1, . , n - 1)), (I XI 1, 1 Xz 1) can take on only (n + 1) 2 different pairs of values.
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Thus there are numbers a, b, and a subfamily Fi of F such that IXl I = a and
IX2I = b for all (X1, X2, X3) E F1 and

::i;2.FiI (2.10)

The families of pairs (X1, X3) and (X2, X3), where (X1, X2, X3) E .F1, satisfy
the conditions of Theorem 2.1.3; thus

IF1l <
(a+(n_(a+b)))_(n_b) (2.11)

a '

(b+(n_(a+b))) (n_a)
Iii I b = b (2.12)

Let H(A) -A log A - (1 - A) log(1 - A), 0 < A < 1. In Section 2.6 (Corollary
2.6.2) we will prove that

(n) < nH(k1n)
k

From (2.11)-(2.13) we obtain (with a := n
, $ :=

n
)

I logIFiI < min{(1-a)H(1
Sa) (1-8)H(1

c'

< 1 2aH(1 + 2H 01

(2.13)

(2.14)

Since H(A) is concave (see, e.g., the proof of Claim 1 in Theorem 2.6.6), we derive
from Jensen's inequality (with y := "216 )

Y

Straightforward computations show that the RHS attains in (0, 1) its maximum at
y = z - 10 , and for this value we obtain (noting (2.10))

n
log IT11 < log

1+,15-

21+,"Ill 2

KS(n) < " (n + 1) 2
1 +2

.

Now we prove the inequality "a." We construct a family whose size is large
enough. Let F(n) be the family of all ordered 3-partitions (X1, X2, X3) of [n]
(empty classes are allowed) with the property

1 X2, n 0 X1 and i E Xl iff i + l E X2, i = 1, ... , n - 1.
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It is easy to verify that

I.E(1)I = 1, I.E(2)I = 2, I.E(n + 1)1 = I.E(n - 1)I + I.E(n)I

Consequently I.E(n)I equals the (n + 1)th Fibonacci number, implying

1+J"hm ° IF(n)I = 2

As before, we may argue that there are numbers a, b and a subfamily F1 (n) of
.F(n)such that IXil =aandIX21 =b for all (XI, X2, X3) E Fi(n)andlfi(n)I
(") , which implies limn_, " Fi (n) = 1+2 . Finally we classify the members
(n+1)
(XI, X2, X3) E F1 (n) with respect to the sum of the elements of Xi. Clearly, the
sum can take on at most n(2+l) different values. Thus there exist a number c and
a subfamily.E2 (n) of F1 (n) such that Ej,X, i = c for all members (XI, X2, X3)

of F2(n) and 1F2(n)I ? n(n+ j, which implies limn-+Oo " F2(n) = '+'15. Now
it is sufficient to show that the members of F2 (n) are pairwise KS-independent.
Let (XI, X2, X3), (YI, Y2, Y3) be different members of F2 (n). We have to show
that XI n Y3 # 0 and X2 n Y3 # 0. To show the first relation, let j be the
smallest integer from [n] such that j V (XI n YI) u (X2 n Y2) u (X3 n Y3).
Then j 0 X2 U Y2, since otherwise j could be replaced by j - 1. If j E X1,
then j E Y3, and XI n Y3 # 0 follows. Thus let j E X3 and j E Y. Let
XI = {u1, ... , ua}, where ul < < ua, and YI = {vi..... va}, where vi <

< vk_ l < Vk = j < < va for some k. By the choice of j, we have u i =
V1, ... , uk_1 = vk_1, j = Vk < Uk, and by construction of .E2(n), F'j=1 u; _

vi. Thus there must exist a smallest integer 1 such that vi > ul. Then it is
easy to verify that ul E Y3, hence also in this case XI n Y3 0 0. The relation
X2 n Y3 ,A 0 can be proved in the same way by looking at the correspond-
ing largest integers from [n] (note that also the sum of all elements in X2 is
constant for all (XI, X2, X3) E .72(n) because of the construction of .fi(n)).

Gargano, Ko"rner, and Vaccaro [216]-[218] studied more general problems of
the following kind: Let G = (V, E) be a directed graph. What is the maximum size
of a family of n-tuples of vertices of G such that for all (vi, ... , v"), (wj, ... ,
wn) E F there are i, j E [n] such that vi w; E E and wj vj E E (resp. for all
(vi, ... , vn), (wl, ... , wn) E F, and for all e E E there are i, j E [n] such that
e = vi w1 = wj vj).

Now we study a class of families that is as important as the Sperner families. In
the Boolean lattice the family Y of subsets of [n] is intersecting if for all X, Y E .E
it holds Xn Y # 0. In the case of cutsets we have seen that minimal families may
have very different sizes. For maximal intersecting families, Erd6s, Ko, and Rado
[ 170] observed that we have a completely different situation:

Theorem 2.1.6. Each maximal intersecting family in 21"1 has size 2n-1.



2.1 Counting in two different ways 25

Proof. Let F be a maximal intersecting family in 2["'. We count in two different
ways the number N of pairs (X, (A, A)) with X E F, A C [n], X E {A, A). On
the one hand, for fixed X, there exist exactly two "second components," namely
(X, X) and (X, X). Thus

N=21FI. (2.15)

On the other hand, for fixed (A, A) there exists at most one X E F with X E (A, A )
(note that A, A cannot both belong to F because of A n A = 0). Since we have
2" pairs (A, A) it follows that

N < 2" (2.16)

From (2.15) and (2.16) we derived JFl < 2". Assume that we have strict in-
equality. Then there must exist some A such that A, A F. Since F is maximal,
we cannot add A and A to Y. Thus there must exist some X, Y E F such that
X fl A = 0, Y fl A = 0. But then X C A, Y C A; that is, X fl Y = 0, a

contradiction.

Now we restrict ourselves to one level. The following result is a classical one.
Erdo"s, Ko, and Rado [170] discovered it as early as in the thirties (see Erdo"s [169]).

More than twenty years later it was published.

Theorem 2.1.7 (Erdo"s-Ko-Rado Theorem). Let F be a k-uniform intersecting
family in 2["l. Then

IFl <

ifk < n
2'

otherwise,
(k)

and the bound is the best possible.

Proof. In order to see that the bound cannot be improved take

I

{X E ([kl) : 1 E X)
k(h

ifk< 2

otherwise.

Now we prove that the bound is true. The case k > i is trivial. Thus let k < 2
In contrast to the second proof of Sperner's theorem, we are working this time not
with the set S,, of all permutations of [n], but only with the set C" of all cyclic
permutations of [n]. Recall that a permutation of [n] is cyclic if n is the smallest
integer with " (1) = 1. We count the number N of pairs (X, ), where X E F, E

C, and there is some i E [n] with X = i;'+I(1) ..., .`+k-I(1)} in two
different ways. For fixed X, we must determine the number of cyclic permutations
in which the elements of X (i.e., also the elements of [n ] - X) appear consecutively.
We obtain k! (n - k) ! such permutations since we may permute the elements of X



26 Extremal problems for finite sets

and of [n] - X independently, and each such ordering on X and [n] - X yields a
unique cyclic permutation. Consequently,

N = IFIk!(n - k)!. (2.17)

Next we have to estimate the number d of members X of F for which there is
i+k-1(1)1.some i E [n] such that X = { ' ( 1 ) . . . . .

Claim. If k < z then k.

Proof of Claim. Supposing that 0, we may - after a suitable renumber-

ing - assume that is the cycle (12 ... n), that is, (i) = i + 1(mod n) and,
moreover, that X* := {1, ... , k} E Y. Then {i E [n] : {i, i + 1, ... , i +
k - 1} E F} (the addition is always modulo n). Let

S:= {jE[k]:{j,j+1,...,j+k-1}EF,
E {j E [k] : {j, j - 1, ..., j -k+ 1} E.F.

IfX={i,i+1,...,i+k-1} EF,then wemusthaveiESori+k-1EE
since X must intersect X*. Note that for X * we have 1 E S as well as l +k-1 E E.
Thus

(2.18)

Further, because of the intersection property of F and k < 2 , j E E implies
j + 1 S. Thus

ISI <k-(IEI-1) (2.19)

(we cannot exclude k + 1). Together with (2.18) we obtain the assertion d k.

Since there are exactly (n - 1)! cyclic permutations, it follows from the claim
that

N<k(n-1)!.
Finally, from (2.17) and (2.20) we derive

I.Flk!(n - k)! < k(n - 1)!,

IEI < (k-1).

(2.20)

The method of proof is due to Katona [295] and known as Katona's circle
method. It is fundamental for a whole theory that is presented in Chapter 3. The
situation is more difficult if one replaces the condition X fl Y 0 0 by I X fl Y I > t,
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where t is some natural number. This case of t-intersecting families is treated in
Sections 2.4, 2.5, 6.4, and 6.5.

Let .T be a family in 21n1. We say that a subfamily F1 of T is a star if there is
some i E [n] such that i E X for all X E .T1. Let Zk := ([o) U . . U (n]). From
Theorems 2.1.6 and 2.1.7, it easily follows that the maximum size of an intersecting
family in Ik equals yk-1 (n-1) if k < 2 or k = n (by the way, this result is also truei-1 -
for the remaining values of k, which follows from the Profile-Polytope Theorem
3.3.1). Obviously, the size of each maximal star in Ik also equals -i= r-1)

Thus we have seen that a special case of the following conjecture of Chvatal
[101] is true: Let Z be any ideal in 21n1. Then the maximum size of an intersecting
family in.T equals the maximum size of a star in Z. For more information on this
conjecture, we refer to Anderson [32], Berge [50], and Snevily [432]. Frankl [192]
also mentions this and many other interesting problems.

Let s be a positive integer. We say that a family .T of subsets of [n] is lc-wise
intersecting (resp. µ-wise cointersecting) if, for all X1, ... , X1. E F, there holds
Xl fl fl XN, 0 (resp. X1 U U. . . U XN, # [n]). It is easy to see that the maximum
size of a It-wise intersecting (µ-wise cointersecting) family is 2n-1 if µ > 2. The
restriction to one level gives the following generalization of the Erd6s-Ko-Rado
Theorem, our 2.1.7, which was proved by Frankl [187] and in a different way by
Gronau [247].

Theorem 2.1.8. Let .T be a k-uniform family in 21n1 and let µ > 2.

(a) If .T is It-wise intersecting, then

IFIs
(n- I of k < "n,

(k) otherwise.

(b) If .T is It-wise cointersecting, then

(nk) ifk>>n

(k) otherwise.

Both bounds are the best possible.

Proof. First observe that (a) and (b) are equivalent since .T is It -wise intersecting
if T (the complementary family) is µ-wise cointersecting. Thus it remains to
prove (b). The bound cannot be improved since

{X E (m)
: 1 X} ifk > µ,

.T*
D'])k ifk <
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is /.t-wise cointersecting. Further we follow the proof of Theorem 2.1.7. We have to
replace 2 by µ and (with the same notations) we then have to prove the following
new claim:

Claim. If k > then d n - k.
Proof of Claim. Suppose again that _ (12 ... n) and X* = {1, ... , k}. Let

this time

S : = E [ n ]: { i , i + l , . . . , i + k - 1 } E

ISI. (2.21)

Note that 1 E S. We partition [n] into k sets S1, ... , Sk, namely, the residue classes
modulo k. We show that

ISj n Sl < ISjI - 1 for all j E [k]. (2.22)

Assume the contrary, that is, Sj = S n Sj for some j E [k]. Then (with addition
modulo n) the sets XI := { j, j + 1, ..., j + k - 1}, X2 := (j + k, ..., j +
2k - 1}, ..., Xa := t j + (a - 1)k, ..., j + ak - 1} would belong to .T', where
j + (a - 1)k < n, j +ak - 1 > n. From the first inequality we derive a - 1 < k
that is, a < µ. If ak > n, then Ua1=1X1 = [n] in contradiction to the fact that F is
µ-wise cointersecting. But if ak < n then a < µ, hence a + 1 < t and we have
Ua,=I XI U X* = [n], which is again a contradiction. From (2.21) and (2.22) we
obtain

k k

nSjI <T(ISj I - 1) = n - k.
j=1 j=1

The rest of the proof is analogous to the proof of Theorem 2.1.7.

If both conditions are combined we have the following result [162], which is a
refined version of a result of Gronau [248] (based on a method of Frankl [188]).

Theorem 2.1.9. Let F be a k-uniform p-wise intersecting and v-wise cointer-
secting family in 2111, and let µ, v > 4. Then

ifk<nV1+

ifnvl+l<k< (n - 1),

ifk > µ l (n - 1).
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The proof is omitted, but note that the first and third case follows from The-
orem 2.1.8 and that in the second case an exchange operation is applied that is
discussed in Section 2.3. For example, for µ = v = 3 a complete solution is not
known.

2.2. Partitions into symmetric chains
The following fact can be considered as a special case of the method of counting
in two different ways. Suppose we are given a set S and look for the maximum
size of a subset F of S satisfying a certain condition. To obtain an upper bound
we partition S in an appropriate way into subsets S1, ... , Sk such that a "good"
upper bound for I F n Sj 1, j E [k], can be proved. If, for example, I F n Sj I < aj
for all j, then IFI < aj follows. Actually, we applied this method already
in the proof of Theorem 2.1.8. Here we show that Sperner's theorem can also be
proved in this way.

3rd Proof of Theorem 1.1.1(a). Take the set S to be 2113, and the classes Sj will
be chains of the form C = (Xo < . . . < Xh) such that I Xo I + I Xh I = n. These
chains are called symmetric.

Claim. There exists a partition of 21"1 into symmetric chains.
Proof of Claim. We proceed by induction on n and look only at the step n -

n + 1. So let (t(n) be a symmetric chain partition of 21"l. For each chain C =
(Xo < . . . < Xh) E tt(n), we construct new chains

C':=(Xo<...<Xh<XhU{n+l}), (2.23)

C":_ (XoU{n+1}< <Xh_1U{n+1}), (2.24)

but C" must be omitted (it does not exist) if h = 0. Now it is easy to verify that
all these new chains form a partition t(n + 1) of 2[n+i] into symmetric chains
(distinguish the cases where members X of 2["+1] contain (resp. do not contain)
n+1). O

Since each symmetric chain in 21"1 contains exactly one member X E 21"1
with I XI = [J, each symmetric chain partition (t(n) of 2ln3 contains exactly
(nl) chains. If Jr is a Sperner family in 2[ni, then I9 n Cl < 1 for each chain.
Accordingly,

I.FI<_ E
IFncl=(n

f.
CEe2(n)

Ln/
zJ

M

This proof is due to de Bruijn, Tengbergen, and Kruyswijk [87] (who considered,
more generally, chain products) and, independently, to Hansel [252]. Since there
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are many generalizations and related results, a separate chapter (Chapter 5) is

devoted to this topic. Griggs [241] collected many interesting problems. Here only
two applications will be presented. Let co(n) be the number of order-preserving
maps from B into Bt, that is, the number of functions f : 21"1 --+ {0, 1) such that

X C_ Y implies f (X) < f (Y) for all X, Y E 21"l. If we interpret f : 21"1 {0, 11

as the characteristic function of a family F, then obviously f is order preserving iff
F is a filter. Since there is a bijection between filters and antichains (associate with
a filter the set of its minimal elements), our number p(n) also equals the number
of filters and the number of Sperner families in 21"l. The problem of determining
cp(n) goes back to Dedekind [127] and is very difficult. The following bounds are
due to Hansel [252].

n

Theorem 2.2.1. For all n > 1, 2(11) < (p (n) < 3(121).

Proof. The lower bound is trivial since every subset of is a Sperner family.

To prove the upper bound, let (E(n) be the symmetric chain partition of 21"l, which
was constructed inductively in the third proof of Theorem 1.1.1(a).

Claim. For each chain C of (E(n) and three consecutive members Xa _ 1 < Xa <
Xa+l of C, there is some Xa such that Xa_1 < Xa < Xa+l and Xa is contained
in a chain D of (E(n) with IDI = ICI - 2.

Proof of Claim. We proceed by induction on n and study the step n --> n + 1.
Case 1. The three members Xa_l, Xa, Xa+1 belong to the chain C' of type

(2.23). If n + 1 V Xa+1, then the three members belong to the chain C of ("(n),
and we can find by the induction hypothesis a corresponding chain D E (E(n) with
the corresponding member Xa which also belongs to the chain D' E (E(n + 1).
Since IDI = ICJ - 2, also ID'J = IC'I - 2. If n + 1 E Xa+l, then Xa = Xh, and
we can take la := Xh_1 U In + 1}. The corresponding chain is C".

Case 2. The three members Xa_1, Xa, Xa+t belong to a chain C" of type
(2.24). Then Yj := Xj - in + 1}, j = a - 1, a, a + 1, belong to C E (t (n), and
we find, by induction, a corresponding chain D E t(n) with the corresponding
member Ya. Because Ya+1 cannot be the maximal element of C, the member Ya
is not the maximal element of D (otherwise we would have I D I < ICI - 2).
Thus Xa := Ya U in + 11 belongs to D", and Xa is the desired element since
ID"I=IDI-I=ICI-3=IC"I -2.

We order the members of Q(n) by increasing size; that is, (E(n) = {Cj : 1 < j <
d j and ICI I .. < I Cd 1, where d :_ (n We construct (in a nondeterministicLZJ'
way) step by step all filters Fin 21n1 by deciding whether the members of Cj, j =
1, . . . , d, should belong to F or not. For the chains of size at most two, we have
at most three choices, namely, taking no, the maximal, or both members into F.
Suppose that we are done with all chains before C = (X0 < < Xh) and
we have fixed some part of a filter F. Let X1. ... , Xh_ 1 be the corresponding
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members described in the claim. Of them we know already whether they belong to
.F or not. Let 1(resp. u) be the largest (resp. smallest) index such that Xi V F (resp.
X,, E F) (if there is no such index put I := 0 (resp. u h)). Clearly, u - 1 < 1.
In order to obtain a filter, we need that X1..... XI- 1 F and Xh E
F since X1 < ... < X1_1 < X1 and X < Xu+1 < < Xh. Thus we have at
most three choices to extend the fixed part of T. This is clear if 1 > u. If l + 1 = u
at most X1 and Xu are free, but if X1 E F, then certainly XZ, E F. Thus, all in all,

we have at most 3(121) possibilities for constructing all filters.

From this theorem it follows that

n

C[L
log2 < log(P(n) <log 3.

L2 L

Kleitman [301] found the asymptotic formula

log(n) ^ n -oo,([J)log2asn

considering not only one fixed symmetric chain partition but all such partitions
that arise by permuting the elements of [n], and using complicated averaging argu-
ments. An improvement of the remainder was given by Kleitman and Markowsky
[308], and an asymptotic formula for cp(n) itself was finally found by Korshunov
[317] in a very complicated way. A simplification (in a more general form) was
given by Sapozhenko [413]. More details on the history of this and related problems
are contained in the survey of Korshunov [319].

Theorem 2.2.2 (Korshunov Theorem). We have for n

resp. odd n
r(n n

1)\2n/2+
z

2n+5 2n2n+4

lp(n)

oo in the case of even

n2 n
2(nn 21)-(-1 a (n 232(n+3)/2 2^+'

Let us conclude this section by a game. Suppose there is given a filter F in 21"1
(resp. an order-preserving map from B into B1), but only a stage manager (our
oracle), say Heidrun, knows it. Someone, say Sebastian, wants to get to know F.
He may pick, step by step, members of 21"l, and Heidrun will tell him whether they
belong to .F or not. The clever Sebastian will certainly not test all elements of 2[n].
For example, if 0 E F, then automatically F = Pi. Let tr(F) be the smallest
number of Heidrun answers that enable (using the right sequence of Sebastian
questions) the determination of Y. Finally let

>U(n) := max{i(.F) : F is a filter in 2Eu3}.
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The number tlr (n) is sometimes called the Shannon complexity of the problem of
the recognition of monotone Boolean functions. It was studied the first time by
Korobkov and Reznik [316]. The following result is again due to Hansel [252],
who improved an earlier estimation of Korobkov [315].

Theorem 2.2.3. We have *(n) = (l"_Ti_) + (l'i).

Proof. Let J :_ {X c [n] : I X I > ["21 J I. Obviously, for all X c
[n] with M = L"21t J, also F* - [X] is a filter, and, for all X C_ [n] with

IXI = L"21 J, .2 U {X} is a filter. Thus, knowing the Heidrun answers for all

Y E 21"1 - {X), where X E (L [n; j) U Sebastian cannot determine the

filter uniquely. Consequently, he must ask eidrun about all these X.
"<" Sebastian asks Heidrun, step by step, about the members of the chains

Cj of the symmetric chain partition considered in the proof of Theorem 2.2.1.
From this proof it follows that at most two elements of C are "suspicious" if he
already inspected all chains ahead of C. Thus, for chains of more than one element,
two answers suffice. For one-element chains, Sebastian needs of course only one
question. It is easy to see that there are ( n+ 1 i ) - ( j) one-element chains.

L

Thus

*(n) <
n n n)

Gn-l J) + 2 (G nG n+lj) -2

n n ).
J/ + (L" 2'J(L'

(+ (L:1J))

Sokolov [434] found another algorithm that achieves this bound. Alekseev [25]
provided estimations f o r the recognition of order-preserving maps from S(kl, ... ,
k") into {0, 1} (in special cases, such as kl = . . . = k" = 2, he has exact val-
ues) and Gronau [244] slightly generalized the above proof to the recognition of
order-preserving maps from B" into {0, . . . , k}. Moreover, independently, Serzhan-
tov [424] and I [151] each found exact values for the case of order-preserving
maps from S(kl, ... , k") into S(k) if k1 = k2, k3 = k4, ... , k2J_ I = k21 for
some j < z and k; < 2 for all 2j < i < n, where still some further gen-
eralization, for example, with results of Mahnke [359] can be formulated. Fi-
nally, Serzhantov [425] solved completely the case of order-preserving maps
from S(k, ... , k) into (0, 1). Applications and similar problems appear in the
maximization of submodular functions on discrete structures; see, for example,
Kovalev and Moshchenski [323]; and in many other areas, see the survey of
Sapir [411].
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2.3. Exchange operations and compression
In the first proof of the Sperner Theorem 1.1.1 we selected a subfamily 9 of
a Sperner family F and constructed a new family N (namely 7-l := V(9) or,
though not explicitly mentioned, 7-l := A(9)) such that F' := (F - g) U 7-l is
still a Sperner family. Moreover, we had 71 n F = 0, so that IFI and I.T-' I are
related in the same way as ICI and IRI. In other words, we exchanged the Sperner
family by a new Sperner family, or we pushed (shifted) the old family upward (resp.
downward). The general idea of exchanging something works in many cases. Here,
we study that operation which was introduced by Erd6s, Ko, and Rado [170]. Let
for i, j E [n] the mapping 4,j : 21"] -+ 21"l be defined by

4ij(X) := (X - U D U (i},

and, as usual, for a family F c 21"1 let

4ij(.T):={4ij(X):XE.F).

We will apply this operator only to a part of F, namely to

1i1(X) F).

Finally, the i j-shifting of the family F is defined by

S,j(.T') := (F-.77,j) U 4ij(.T'ij

Hence.T'i j and aij (.T', j) play the role of C and N from above. Note that by definition

I-Fiji = I<ij(.Fij)I and aij(.T'ij) n .F = 0 implying

Isij(F)I = IFI.

Lemma 2.3.1. Let i, j c [n], i # j, and let .T' be intersecting (resp. cointersect-
ing). Then sij (F) is intersecting (resp. cointersecting), too.

Proof. We prove the assertion only for intersecting families. Thus let X, Y E
sij (.T' ). If X, Y E .F - .T'ij, then x n Y # 0 by supposition, and if X, Y E
ai1(Fij), then i E X n Y. Thus it remains to study the case X E F - Tij, Y =
4,j (Z) for some Z E F, j.

Case 1. i E X. Then i E X n Y.
Case 2. i 0 X.

Case 2.1. j 0 X. Then X n Y = X n Z# 0 by supposition.
Case 2.2. j E X. Then 11(X) E F because otherwise X E Tij. Since F is

intersecting, there is some 1 E aij (X) n Z where obviously 10 {i, j}. But then
also IEXnY.
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Lemma 2.3.2. Let i, j E [n], i 0 j, and let .T' be k-uniform. Then

A(sij(.T )) C sij(0(F))

Proof. Let X E sib (.T-) and Y E .(X ). We must show that Y E sib (0(F )). Let
X= YUJlj'Y= X- Ill.

Case 1. X E F - Fij . Then clearly Y E 0 (Y). We will show that

Y V (A(F))i j. (2.25)

which implies that Y E si1(A(.F)).
Case 1.1. 1 = j. Then j 0 Y, which shows (2.25).
Case 1.2.1=i.

Case 1.2.1. j E Y. Then <ij (Y) = X - {j} E 0 (X) C 0 (Y). Thus
(2.25) holds.

Case 1.2.2. j 0 Y. Then (2.25) is trivial.
Case 1.3. 10 {i, j}. We may suppose that i 0 Y, j E Y because otherwise

(2.25) is clear. But then also i 0 X, j E X. Since X 0 Tip, we have <ij(X) E Y.
But then also <ij (Y) E A(F), which shows (2.25).

Case 2. X = <ij (Z) for some Z E Yij. Then j 0 X; that is, 10- j.
Case 2.1. 1 = i. Then Y = Z - {j}; that is, Y E 0(Z) C A(F). Since

j 0 Y, it follows that Y V (A(.T-))i1 and consequently Y E sij (A (y)).
Case 2.2.1 i. Then Y = <i j(Z - {l}) and Z - {l} E 0(.T').

Case 2.2.1. Y E A(Y). Then Y E sib (0 (.T' )) since clearly <ij(Z - {1}) 0

(o(.F))ij.
Case 2.2.2. Y 0 0(J7). Then (Z - {1}) E (0(.T7))i j, which shows that

Y = <ij(Z - {1}) E sij(0(J7)).

Now several results can be proved by applying induction and considering fam-
ilies that are invariant with respect to certain ij-shiftings. For F C 21"l, let

E(F) E >i.
XEY i EX

2nd proof of Theorem 2.1.7. The only difficult part is the upper bound in the case
k < z. For n = 2k, the proof is trivial since from each pair (X, X) with IX1 = k
at most one component may belong to a k-uniform intersecting family F; that is,
T < 1(k k) = (2k- I). Now we proceed by induction on n and consider the step

n -> n + 1 > 2k. Of all maximum k-uniform intersecting families, we choose
such a family F for which E (F) is minimum. Then

si.,,+I (.T') = F for all i < n + 1 (2.26)
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since otherwise, in view of Lemma 2.3.1, F could be replaced by si,n+1 (F) for
some i. Let

l
.F2 {XE.F:n+IEX}, F2:={X-{n+l}:XE.F2}.

By the induction hypothesis (note that F1 C 2[n]),

111_<(k-1). (2.27)

Claim.F2 is intersecting.
Proof of Claim. Assume that there are X1, X2 E F2 such that Xl n x2 = 0.

Since J XI I + I X21 = 2(k - 1) < n - 2, there are different numbers it, i2 E [n] such
that ilV X1,i20X2.LetYl:=XIU{n+1},Y2:=X2U{n+1},Z1:=XiU
{il}, Z2 := X2U{i2}. Then Y1, Y2 E FandZ1 = dii,n+l(Yi), Z2 = di2,n+l(Y2)
We have Z1, Z2 E F in view of (2.26). But obviously Z1 n Z2 = 0, a contradiction.

The induction hypothesis applied to F2 yields

I.F21 = IF21 (i) (2.28)

By (2.27) and (2.28),

IFI = I-F1 I + 1F21
n - I n - 1 n 1).

(k -1)+(k-2)(k-

From (1.3) in the proof of Theorem 1.1.1 it follows that

IV(Q)I ? I.Il+1'

if 9 is an 1-uniform family. Analogously,

o(.F)I >- IFI n -k+ 1
if F is a k-uniform family. Now we ask for a better lower bound for the size of the
shadow if the size of F is fixed. First we prove a result of Lovasz [354] which is a
weaker version of the Kruskal-Katona Theorem, 2.3.6, but often easier to handle.
Denote for real x and natural k,

1 ifk=0,
(x) := x(,x-1) .kIx-k+l) if k > 0,

k

0 ifk < 0.

k
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Theorem 2.3.1. L et F be a k-uniform family in 21"land let IFI = (k), k < x < n.
Then

IA(.T )I ? (k x 1)'

Proof. We proceed by induction on the parameter t := k + I.FI. Note that we
suppose I.T'I > 1. If t = 1 we have k = 0, IFI = 1, and all is trivial. Consider
hence at the step t -* t + 1 = k + I.I. Obviously, we may suppose k > 0.
Under all k-uniform IFI-element families with minimum shadow we choose such
a family for which E (F) is minimum. It is enough to prove the assertion for this
family. We have

s1,1 (F) _ .T' for all i E 12, ... , n) (2.29)

since otherwise, in view of Lemma 2.3.2-F could be replaced by s1.1 (F) for some
i. Let, similar to the previous proof,

F, IX E.T':1V X},

.T'2 {XEF:1 EX},.F2{X-{I}:XE. T'2}.

Claim. We have A (F1) C F.
Proof of Claim. Let Y E L(.TI); that is, X := Y U (1) E .T71 for some I E

(2, ... , n). Since, by (2.29), 41,1(X) = Y U {1} E F, it follows that Y E F.
0

.Since .F 0 0 we have, in view of the claim, ,F2 '00
Case 1. I.F2'1 < (k-i). Then I.F2'1 < (k) = IFI; that is, J71 # 0.

Case 1.1. k < x < k + 1. Then IF21 < k. But I 0 (Ft) I > k, since one
member of F1 already produces a k-element shadow. Thus the claim yields the
contradiction I.F2'1 > k.

Casel.2.k+1 <x.WehaveFil = IFI-IF21 >
I < IF, I < IFI we may apply the induction hypothesis to obtain I0 (F1) I
and again the claim yields the contradiction I.F2'1 > (k-i).

Case 2. I.F2'1 (x-11). By the induction hypothesis, Io(F2)I > (x-2'). Hence

IL(T)1=1O(.Fz)I+IJ721-(k-2)+(k-1)=(kz 1).

The preceding proof is due to Frankl [191]. Let us look at some consequences.
Repeated application of Theorem 2.3.1 gives the following estimation:
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Corollary 2.3.1. Let F be a k-uniform family in 2In] With I FI = (k), where
k<x <n.LetO<i <k. Then

x

i

Daykin [121] observed that the Erdo"s-Ko-Rado Theorem 2.1.7 can be easily
derived from this corollary. Indeed, if k < 2 and F is a k-uniform intersecting
family, then obviously F fl /,k(y) = 0. The assumption IFl > (k- (i.e.,
ICI > (n-k)) would yield in view of Corollary 2.3.1 (with x > n - 1, k := n - k,
i := k)

(k) > I I + IA,k(.T')I > (k - 1) + (n k 1) = (k).

But in our approach this is only an apparent simplification of the (original) second
proof of Theorem 2.1.7, since we needed the exchange operation also to prove
Theorem 2.3.1.

Corollary 2.3.2. Let .T be a nonemply k-uniform family in P3, n > 3.

(a) Ifk > 2 + 1 then I I - I .F1 >

(b) I f k < - I then I V (F) I - 1 FI > Z.

Proof. (a) Let k > 2 + 1 and IFl = (k), where k < x < n. By Theorem 2.3.1

IA(F)I-IFI> (kx 1)-(k)=k(kx 1)(2k-1-x)=: f(x).

The polynomial f (x) of degree k has the k simple roots 0, 1, ... , k - 2, 2k - 1.
Then f(x) obviously has in each interval between these roots a simple root. This
shows that f(x) is in [k - 2, 2k - 1] increasing up to some value l; and then
decreasing. Consequently, for k < x < n (note that n < 2k - 2),

f(x) > min{f(k), f(2k-2)} = k - 1 > 2

(b) Let k < 7 - 1. Then by (a)

Corollary 2.3.3. Let .T' be a Sperner family in 21ni, 1 := min{i : there is some
X E F with IXI = i }, u := max{i : there is some X E F with IXI = i }.
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(a) If 1 < n
2

< u then

ICI

(b)

(u-1)n
2

(u-1- I )n
2

Q22]-1)n
2

n (u-L-J)n
2

if n is even,

if n is odd.

ifu<2

ifl> 2

Proof. The cases n = 1, 2 are trivial, hence let n > 3. The proof is analogous to
the proof of Theorem 1.1.1. If we replace .7' by .7'' := (.7' - 9) U V(g), where

n (1;1) (resp..:' := (.7' - 9) U A(9) where g := rT n (1"i)), then we
obtain a Sperner family for which by Corollary 2.3.2

+2

An induction argument concludes the proof.

Let us again play a game. This time suppose that there is given an ideal I in
21n1. Only our amiable stage manager Heidrun knows it. Jana is more modest than
Sebastian. She does not want to get to know Z completely; she is only interested
in an element of Z of maximum rank. The rules are the same as in Section 2.2. Let
X (Z) be the smallest number of Heidrun answers which enable the determination
of an element of Z of maximum rank. Then

X (n) := max{X (Z) : Z is a nonempty ideal in 21"11

is the Shannon complexity of our problem. The following result is due to Ka-
terinochkina [287]:

Theorem 2.3.2. We have x (n) _ ( L z J) + 1.

Proof. Let m : = L J.

">." Let T* := {X c [n] : 1XI < m}. Obviously, for all X E 1* U X is
an ideal; moreover, I* - (m'I,) is an ideal. Thus Jana must ask Heidrun about all
elements of ([Mn) and about at least one element of ([nil) in order to be sure.

"<" Jana proceeds as follows. She chooses an arbitrary member Xm of (1m1). If
Heidrun says that Xn, V Z, she takes an element Xm-t of A(Xm ); if the answer for
Xm-I is Xm-1 V Z, she takes an element Xm-2 of A(Xm_i), and so on. Since we
suppose that I 0 (which is not really essential), Jana eventually chooses some
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X1_1 E 0(X1) for which Heidrun says: X1_1 E Z (1 > 1). Put Y1_1 := X1_1.
Now Jana inspects step by step the members of (1i1) different from X1. Say, for
the members of the family .P1, Heidrun's answers were X Z, but Y1 is the first
element of ([j1) for which Jana hears Y1 E Z. Then Jana inspects the members of
(1+i) that are not in the upper shadow of.F1 U {XI} (they cannot be in I- here the
ideal property is used). Let.F1+1 be the family of those X for which the answer is
X V I and let YI+1 be the first member with the answer Y1+1 E Z. Further Jana
inspects members of (l+2) that are not in the upper shadow of F1 U { XI } U T1+1
(they cannot be in Z) and soon. This procedure leads to families.F j, .F1+1, . . . , and
sets Y1_1, YI, Y1+1..... Let us say that the procedure stops in the level (1n1\, that

is, either Jana found some Y,, E I but the (u + 1)-shadow of Y' U {X1} U . U.F,,

is the complete level («+11) or, though Jana inspected some family T, she could
not find an element Y E Z. Obviously, Y,, (resp. YL,_1) is the desired element of
I of maximum rank. It is easy to see that

.:':=.PIU{X1}U.E1+1

is a Sperner family (XI and Y may not exist). The number of Heidrun answers is
equal to I.71 + (m - 1) + (u - 1) + 1, and this number is not greater than (m) + 1
by Corollary 2.3.3 if n > 4 (in the case that already E Z, that is, I - 1 = m,
one may delete the summand m -1, and in the case n odd, 1 = in, u = in + 1 one
may apply Theorem 1.1.1(b)). The cases n < 3 can be easily settled separately.

Note that the problem of finding an element of an ideal with maximum rank
occurs, for example, if one looks for solutions of the integer programming problem

where A and b contain nonnegative numbers only, B is realized as the set of n-
dimensional 0,1-vectors, and 1T = (1, ... , 1). Katerinochkina [288] generalized
her result to chain products S(k, ... , k), and Kuzyurin [330] found an asymptotic
formula for powers P" of a finite poset P.

Now we look for the "best" lower bound for the shadow size. Instead of solving
this problem directly, we study a more general problem. Let G = (V, E) be an
undirected graph and A C_ V. The boundary B(A) of A is defined to be the set of
vertices not in A that are adjacent to vertices in A; that is,

B(A) :_ {v E V - A : there is some w E A with vw E E}.

Moreover, let E1 (A) and (A) be the set of inner edges (resp. of outer edges);
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that is,

Note that

E;,, (A) {e E E: e C A},

E E : Ie fl AI = 1}.

1:d(v) = 21 Ein(A)I + I Eout(A)I. (2.30)
VEA

Now the following problems are of interest (applications will be discussed later):
Given G = (V, E) and a natural number m, find

mm n { I Eo,,t (A) I : A c V, I A I = m } edge-isoperimetric problem (EIP),
min (I B(A) I : A C V, I A I = m) vertex-isoperimetric problem (VIP),
max{ I E;,, (A) I : A C V, I A I = m) maximum-edge problem (MEP).

If the graph G is regular, then in view of (2.30) the EIP and the MEP are
equivalent. In general, these problems are difficult from an algorithmic point of
view (NP-complete [215]). However, there is a whole theory for the solution of
these problems for several classes of graphs and we recommend the surveys (resp.
papers) of Aslanyan [34], Bezrukov [57, 58], and Ahlswede and Cai [5] as well
as the forthcoming book of Harper and Chavez [261]. We will restrict ourselves
to one special case, namely to the Hasse graph of the Boolean lattice B (which
is regular of degree n). Let N be a finite set of natural numbers. On 2N we define
two new linear orders: For X, Y C N, X # Y, let

X <rl Y if max(X - Y) < max(Y - X),
X if IXI <IVIor (IXI=IYIand Y<,IX)

(here we define max(Z) := maxi : i E Z} and set max(0) := 0). The (reflexive)
order <r1 is called the reverse lexicographic order (if we write the sets as 0,1-words,
the most important letter is the last one). The two orders are illustrated in Figure
2.1 for B4. Let Cr1(m, 2N) (resp. C ip(m, 2N)) be the families of the first m subsets
of N with respect to <rl (resp. < ip) (we omit in the following the indices rl (resp.

1234

12

0

order rl

1234

12 34

1

0

order _vip

Figure 2.1
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vip) if we mean both cases or if the case is clear from the context). The family
C(m, 2N) is called compressed and the operation of exchanging an m-element
family .F by C(m, 2N) is called compression. Similarly, we define C(m, (k)) and
G(m, (k)) , where 1 < m < (kI), to be the set of the first (resp. last) m elements
of (k), here only with respect to <rl. Families of the form G(m, (k)) are called

G-compressed. If Ek=o
(n) < m < Ei=o ('), and I := m - :k=o ("), then

obviously,

C,,,p(m, 2N) = G(1, (k)) U {X C N : IXI < k}, (2.31)

B(Cvip(m, 2N)) = ((k) - G(1, (k))) U V(G(1, (k))). (2.32)

Lemma 2.3.3. For any m, 1 < m < 21 N1, there exists some m' such that

Cvip(m, 2N) U B(Cvip(m, 2N)) = Cvip(m', 2N).

Proof. In view of (2.31) and (2.32) it is enough to show that (with the notations
from above) V(L(l, (k))) is G-compressed. We suppose N = [n] and proceed by
induction on n. Look at the step n - 1 -+ n. Let.F := G(1, (k)) and let

.F2 := {XE.F:n EX}, .F2:=(X-{n}:XE.F2).

Case 1..F1 = 0. Then V(.F) = {Y U {n} : Y E V'(.F2)}, where V' means
that we consider the upper shadow in P-11. Since .F is G-compressed, .F2' is also
G-compressed in (`k=jl). By the induction hypothesis, V'(.F2) is L-compressed in

(fink 1), and consequently also V (T) is L-compressed in (k+11

Case 2..F1 # 0. Then.F contains all members of (lkl that contain n. It follows
that V (Y) = V' (.F1) U (X E (k+ll) : n E X}. Since .F is G-compressed, T,
is also L -compressed in

(Ink- 1]).
The induction hypothesis implies that V'(.F1) is

G-compressed in (`k+iI) and consequently V(T) is G-compressed in (k+11

The solutions of the MEP (i.e., also of the EIP) and of the VIP are given by
the following theorem, which is mainly due to Harper [254, 255] (the optimality
of the ordering for the MEP was conjectured by Hales [254], and the MEP was
also solved by Bernstein [51] and Hart [263]; the VIP was independently settled
by Ahlswede, Gacs, and Korner [11], Wang and Wang [459], and Gavrilov and
Sapozhenko [220, Ch. I]).
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Theorem 2.3.3. Let N be a finite set of natural numbers, V := 2N and E :=
{XY:X,YCN,IX-YI+IY-X1 =1}. Further let1 <m < 2 IN 1. Then, for
any m-element family .F in 2N,

(a) IEin(.T)I < IEin(Crl(m,2N))I,

(b) IB(F)I > IB(C,,ip(m, 2N))1.

Geometrically, part (b) can be interpreted as follows: For given "discrete volume"
(i.e., size), the minimum boundary is attained at an incomplete sphere.

Proof. We prove (a) and (b) simultaneously and proceed by induction on n := I N 1.
The cases n = 1, 2 are trivial, so we consider the step n - 1 - n > 3. Obviously,
we may suppose that N = [n]. For X c_ [n], let o(X) be the position of X in the
linear order {; that is, X is the o(X)th element in -<. Further let, for .F c 21"],

0(.F):= Y, o(X).
XE.F

Of all m-element families that have the maximum number of inner edges (resp.
minimum) boundary, we choose a family F for which o(.F) is minimum. It is
enough to show that .F = C(m, 21"]). For i E [n], let

.FJ(i):=IX E.F:iVX},

.F2(i) := {X E T: i E X), .F2(i) := {X - {i} : X E .F2(i)}.

Moreover, let ml(i) := I.FI(i)I,m2(i) := IF2(i)I(= I.F2(i)I). Note that F =
.Fl (i) U F2 W, m = m t (i) + m 2 (i) for each i.

Claim. We have, for every i,

.F1 (i) = C(m 1 (i), 2[n]-1i))

and

F2(i) = C(m2(i), 2[n]-]t))

Proof of Claim. For brevity, we set

91(i) := C(m t (i), 21"]-(i]),

g2(i) := C(m2(i), 21"]-]il), 92(i) {X U {i} : X E 91(i)).

Finally let 9 := 91 U) U 92(i). We will show that the objective functions for g are
at least as good as for T. Since obviously o(g) < o(.F ), the choice of .F leads to
the result .F = 9, which is our assertion. Here we study both parts of the theorem
separately. The notations Ei" and B' mean that they are considered in 21n]-10.
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(a) We have

Ein(T)I = IEin(F1(i))I + Ein(F2(i))I + F1(i) nF2(i)I

_< I Ein(91(i))I + I Ein(c2(l))I + I9i(i) n 92(t)I = Ein(9)1

(for the first two summands apply the induction hypothesis, and for the third
summandnote that IF1(i)nj'z(i)I <min{mI(i),m2(i)}= 191(i)nQz(i)Isince
both parts of the last intersection are related by inclusion).

(b) Let, without loss of generality (w.l.o.g.), m 1(i) < m 2 (i ); that is, 91 (i) c
92 (i ). Because of Lemma 2.3.3, 91(i) U B'(91 (i)) and 92 '(i) are related by inclu-
sion.

Case 1.9i(i) U B'(91(i)) c c2(i). Then

B(9)I = I92(i)I - I9,(i)I + IB'(92(i))I

(the elements of 92 (i) that are not in 9i(i) are in the boundary of 9, I B'(92' (i)) I
counts the members of the boundary of 9 that arise from 92(i) and contain i).
However,

IB(F)I > IT2(i)I - IF1(i)I + IB'(F2(i))

and the induction hypothesis gives I B(F) I > I B(9) I
Case 2. 91 (i) U B'(91 (i)) D 9'2(i). Then

IB(9)I = IB'(91(i))I + IB'(92(i))I.

Clearly, however,

IB(F)I > IB'(.Fl(i))I + IB'(.EZ(i))I,

and again the induction hypothesis yields I B(F) I > I B(9) I

From this claim we derive that

XEF,Y<X,Y#XimplyYEF (2.33)

since, if Y X, there is an i X U Y or a j E X n Y (.171(i) (resp..F2(j))
are compressed). Now we assume that .F ¢ C(m, 2N). Then there must be a set
A C [n] with A 0 F for which the next set E (with respect to <) belongs to T.
In view of (2.33), E = A, and no further set X with A -< X can belong to F.
Moreover, every set X except A with X < E belongs to F. It is easy to see that a
set A for which the next set is its complement is uniquely determined, namely

{1,...,n - 1}

A ({1,...,121} if n is odd,

{l{l,...,2-l,n} ifniseven

for {,1,

for - ip .
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Without difficulties we may verify that for the family {E}) U {A} we

have, respectively,

IEin(9)I = IEin(F)I - 1 +n - 1 > IEin(F)I,

IB(Q)I = IB(.F)I - Ln
2

< IB(F)I

This is a contradiction to the choice of F.

As we have seen, the sets

Sm := C(m, 2N)

are solutions of the EIP and MEP (resp. VIP). Obviously (we used this fact already),

SO

We say that there is a nested structure of solutions (NSS) (which need not exist for
other graphs). The existence of an NSS of the EIP for a graph G = (V, E) enables
the solution of an optimal numbering problem: Let I V I = n. We wish to minimize

aG(l) := > I1(w) - l(v)I
vwEE

over all bijective mappings 1 : V -- [n].

Theorem 2.3.4. Let So c . . . c Sn be an NSS for the EIP of G = (V, E), and let
v, be the (unique) element o f Si - S i _ 1 , i = 1, ... , n. Define the bijective mapping
1*:V [n]byl*(vi):=i,i = I__ n. Then

aG (1 *) < aG (1) for all bijective mappings 1 : V -* [n].

Proof. Let 1 : V -+ [n] be bijective. We orient the edges of G such that 1(e+) >
1(e-). This leads to a directed graph G = (V, E). Let T, := {v E V : 1(v) < i}.
We have

aG(1) = 1: 1(e+)-1(e )
eeE

n-I
_ 1 = 1

eEE i:1(e-)<i<1(e+) 1=1 eEE:1(e-)<i<1(e+)

n-I n-1
Eout(Ti)I Eonr(Si)I = aG(1*).

1=1 i=1
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Theorems 2.3.3 and 2.3.4 have the following application in coding theory: We
want to encode the integers 0, ... , 2" - 1 by binary 0-1-vectors; that is, we look
for a bijective mapping 21"1 H {0, ... , 2" - 1).

We suppose that during the transmission at most one digit may be received
falsely, with the result that after the decoding a false integer is obtained. Our goal is
that the difference to the right integer be small. More exactly, we want to minimize
the expected value of the difference under an equidistribution assumption. It is
easy to see that this expected value is ag(l) times a constant (we have here 1 :

21"1 -. {0, ... , 2" - 1 } instead of 1 : 21n1 -> [2"], but this does not influence the
solution). Theorems 2.3.3 and 2.3.4 show that, interestingly, the binary expansion
of an integer is an optimal encoding (more exactly, Theorem 2.3.3 leads to the
binary expansion, which must be read from the right to the left, but it does not
matter to reverse all vectors). In [52] Bernstein, Hopcroft, and Steiglitz also admit
other sets of integers to be encoded.

In addition to the NSS we have in the case of the VIP for the Hasse graph of
the Boolean lattice in view of Lemma 2.3.3 an additional property:

for all i there is some j such that Si U B(S,) = Sj.

We speak of the strong nested structure of solutions (SNSS). Now we wish to
minimize

bG(1) := max I1(w) - l(v)I
VWEE

over all bijective mappings 1 : V -. [n].

Theorem 2.3.5. Let So c . . . c S" be an SNSS for the VIP of G = (V, E) and
let 1* be defined as in Theorem 2.3.4. Then

bG (l*) < bG (1) for all bijective mappings 1 : V -- [n].

Proof. Let l : V -+ [n] be bijective and T; := {v E V : 1(v) < i}, i = 1, ... , n.
Let B(T,) # 0. Since for all w E B(T,), clearly 1(w) > i, there must exist some
w E B(T,) with l(w) > i + I B(Ti) I. By definition of the boundary, w is adjacent to
somev E T. We have 1(w)-1(v) > i+IB(T,)I-i = IB(T,)I and thus (including
also the cases B(T,) = 0)

bG(1) > max{IB(T,)I, i = 1, ... , n} > max{IB(S,)I, i = 1, ... , n}. (2.34)

Furthermore, let vw be an edge with Il*(w) - 1*(v)I = bG(l*), where w.l.o.g.,
1*(v) < 1*(w). Let i := 1*(v). Then v E Si, W E B(S,). By the SNSS there is
some j such that Si U B(S1) = Sj. Consequently, 1*(w) < j = i + IB(S,)I, which
implies (noting (2.34))

bG(1*) = 1*(w) -1*(v) < IB(Si)I < max{IB(S,)I, i = 1, ... , n} < bG(1)
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With a graph and a numbering 1 of its vertices we may associate its adjacency
matrix AG, which is defined by

aij :=
1

1 if vw E E, where l(v) = i,1(w) = j,

0 otherwise.

Now the (horizontal and vertical) distance of the entry a;j to the main diagonal is
I i - j I. The bandwidth problem, which is related to the efficiency of numerical
algorithms, consists of finding such a numbering for which the maximum distance
of a nonzero entry to the main diagonal is minimal. Thus Theorems 2.3.3 and 2.3.5
yield a solution of the bandwidth problem in the case of the Hasse graph of the
Boolean lattice.

Theorems 2.3.4 and 2.3.5 are also due to Harper [254, 255], whose main goal
was the solution of the optimal numbering problems that led to Theorem 2.3.3.
As noticed by Bjorner [64] (see also [253, 336]), the following classical result
was formulated (also in its numerical version, see Corollary 2.3.4) the first time
by Schiitzenberger [422] (he used (i, i + 1)-shiftings, but this need not result in
a compressed family). Independently Kruskal [325], Harper (though not explic-
itly mentioned in [255]), Katona [292], and Clements and Lindstrom [117] (see
Theorem 8.1.1) found the following theorem.

Theorem 2.3.6 (Kruskal-Katona Theorem). Let F c (lk1), IFl = m. Then

(a) IV(F)I > IV(G(m, (tk')))I,

(b) Io(F)I ? Ii.(C(m, (Ikl)))I

Proof. (a) Let

F1 FU{X: IXI <k},

.T72 := L(m, (Ikl)) U IX: IXI < k}.

Then, by (2.32) and Theorem 2.3.3(b),

Io(F)I = IB(Fi)I+m - (k) > IB(F2)I +m - (k) = lo(L(m, (Ik,)))I

(b) Note that X {rt Y if Y <rl X. Thus, by (a),

Io(F)I = IV(L(m, (n'k)))I = . (C(m,

Other proofs of this theorem were given by Hansel [253], Daykin [ 121 ], Eckhoff
and Wegner [141], Hilton [267], and Frankl [191]. Mors [374] and Fiiredi and
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Griggs [209] determined the values of m = JFl such that C(m, (lkl)) is up to
permutations of the elements the only family with minimum lower shadow.

We may calculate also the minimum size of the lower shadow of an m-element
k-uniform family numerically. If m = (k), then F = (lkl) and IA(F)I _ (kn

So let 1<m<(k).Let X*=fit, ...,ik}, where
(m + 1)th element in (lkl) with respect to -<rl. Further, let t be the smallest integer

for which it - 1 > t. Obviously,

CI M, ([;1)) = (xc ([k]) : max(X) < ik }

(C(m,
([k])))

U j X U {ik} : X C rkIn]1 I, max(X) < ik_1 }

U ... U {XU {it+1, ... , ik} : X C \[n]/I
t

max(X) < it }, (2.35)

{Xc(kl):max(X)<ikj[n]U
{XU {ik} : X C (kIn]2 I , max(X) < ik_1 }

U ... U }X U {it+l, ... , ik} : X C I\t [n]
l -1

max(X) < it}. (2.36)

Since on the RHS there are disjoint unions, we have

m C
(m,

\[k]) /

OI C(m,
([k])))

= (tkk 1)+(i k1 11)
-+-...+(it

t
1),

- (k-1)+(lkl 21)+...+(t-1)

Thus, we found a representation of m, called k-representation of m, in the form

m=()+(kk-1)+...+(at) where n > ak > ... > at > t > 1 (2.37)

(in fact we have for m < (k) the relation n - 1 > ak, but we may include also
m = (k)). The minimum size of the shadow of an m-element family in (m) is then

mt (kaki)+(kk-2)+...+Itat1). (2.38)



48 Extremal problems for finite sets

Lemma 2.3.4. The k-representation (2.37) of an integer m with 1 < m < (k) is
unique.

Proof. We use the following identity, which can be easily proved by induction:
For natural numbers u, v,

u\l /u+1 u+v( u+v+1
v =(o) + I 1 -}.....+

Assume that there exists a second representation

v (2.39)

m=(kk) +...+(bs) where n>bk>...>bs>s> 1.

It is easy to see that we may suppose, w.l.o.g., that there exists an integer I such
that ak = bk, . . . , at+I = bt+I , al > bj. Then

1+...+\at/_\\I1/+...+
Is)

a

`/ - C')
.. - (bs)

(I

(7)
-(atI 1)-(It-1)-...- (at 01-1)=p,

a contradiction.

By the interpretation from which we derived the k-representation of in, it is
obvious that ak is the largest number for which ( k) < in, ak_ I is the largest
number for which (kk-i) < m - (k), and so forth.

If t > 1, then
l(2.38)

is the (k - 1) -representation of the minimum size of
the shadow, and we may compute the minimum-size m" of the shadow of the
minimum-sized shadow:

rr atM ("ak') +...+ t2
However, if t = 1, we first must find the (k - 1) -representation of m'. Let 1 be the
smallest integer for which al+I > al + 1 (with ak+I := oo). Then, in view of the
identity (2.39),

m' = (kak 1) + ... + (al l
which implies (again using (2.39))

m"= (kak2) +...+(1t+111

\k-2) +...+
ar

+...+(tar2)
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(with 0 if v < 0). Iterated application of the preceding arguments leads to
the following numerical version of the Kruskal-Katona Theorem:

Corollary2.3.4. LetFbe a k-uniform family in 2["l, and let ITI = () + +(°')
with n > ak > > at > t > 1 be the k-representation of the size of T. Then,
forO<i <k,

/ak 1 a,
IA,i(F)I?I i J+...-}-(t+i-k

and the bound is the best possible.

Looking back at (2.35) we see that we may stop the classification of C(m, (v))
already at that stage where the containment of i[+t, ... , ik is fixed (1 > t). This
leads to

ik-1 i[+1-1 xm=(
k

I+ +( l+l )+ l) where i[-1<x<i[.

Now the same arguments as above combined with Theorem 2.3.1 (resp. Corollary
2.3.1) yield:

Corollary 2.3.5. Let F be a k-uniform family in 2F"1, and let IFI = ( k) + +
( 1+i)+(l) where n>ak> >ai+i >x>1.Then, for0<i k,

(i)++ a[+i
IA-.j(Y)I>

ak
(l+l+i-k + l+

x

i-k
We encourage the reader to prove this corollary (for i = k - 1) directly by the
proof method for Theorem 2.3.1. Katona [292] found the Kruskal-Katona Theorem
when solving a problem of Erdo"s:

Theorem 2.3.7. Let F = {Xi , ... , X,,, } be a k-uniform family in 21"I , 0 < i < k,
and let

m*:-(k k')+(k k' 12)+.(kkZ 24) +... { (k-i).

I f 0 < m < m * then there exist distinct sets Y 1 , Y,,, in (M) such that Yj c Xj
for all j. The bound is the best possible.

Proof. Because of Hall's theorem (Theorem 5.1.2) we only must show that

IA-,i(T) I ? IF'I for each subfamily F' of Y.

Since I.T" I < I FI < m *, there exist an integer 1 E {k - i, ... , k} and a real x with
1 <x <21+i - ksuchthat

(k
i) 12).+....+(21+2+1i-k)+(Il.
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By Corollary 2.3.5,

k+i k+i -2 +...+ 21+2+i -k x

>( i ) +
(k+

i-1 1+1+i-k +l+i-k
Note that ( ') > (U) for 0 < u < v < x < u + v, which can be checked in a
straightforward manner. Hence

Io ? (i+_) - () '-0.

The bound is the best possible since the i-shadow of C(m* + 1, (kl)) is obviously
smaller than m * + 1.

Leck [333] studied the problem of minimizing the size of the i-shadow of
F = {XI, ... , Xm } c_ ("') for m > m* under the supposition that there are sets
Yl, ... , Ym E (nl) such that Yj C Xj for all j.

2.4. Generating families
In the last decades several methods for proving theorems on families satisfying a
certain intersection condition have been worked out. We have seen some of them in
the previous sections. We will not discuss those methods that yield the maximum
size of the families under consideration if n is sufficiently large. We refer here only
to Frankl [189] and Schmerl [416] who built up a theory that is based on a theorem
of Erd6s-Rado [171]. The powerful method that is described in this section is very
new. It was developed by Ahlswede and Khachatrian [15]. Though it is much more
far-reaching, we will restrict ourselves to the highlight in extremal set theory: the
complete determination of the maximum size of k-uniform t-intersecting families
by Ahlswede and Khachatrian [15].

Let F C (lkl)
.

A family 9 C 21n1 is called a generating family for F if
V +k (G) = F. Let O (JI) be the class of all generating families for F. Note
that F E 15 (F ). We will study generating families for special families. A family
.F is called left (resp. right) shifted if

sij (F) = F for all 1 < i < j < n (resp. for all 1 < j < i < n).

We may also define these families in an equivalent way as follows: On 21n] we
consider the relation -s which is the reflexive and transitive closure of the relation
Ul<i< j<n( (X, Y) : X = di j(Y), i V Y, j E Y}. Clearly, (2[n], -<s) is a poset, and
the following proposition is immediate:

Proposition 2.4.1. A family F is left (resp. right) shifted if F is an ideal (resp.
filter) in (2l"1, -<s)
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In Section 2.3 we defined for F c 2l"] the number E (.T) := >_X,.. i. In
addition, we introduce for X E 2h1, F c 2[n] the number

max(F) := max max(X) = max maxi.
XE.F XE.F icX

Moreover, for F c (k), let

ak(F) := min max(Q).
BEe5(.F)

Thus, ak(.F) denotes the smallest number i such that there is a family Q c 21il
which is generating for .T'.

Proposition 2.4.2. Let .F c (kl) be left shifted. Then there is a left-shifted family
Q that is generating for F such that max(Q) = ak(F ).

Proof. Under all families Q E Q5(.17) with max(g) = ak(.T ), take one of max-
imum size. This family Q is left shifted. Assume the contrary. Then there are
X Q, Y E Q such that for some 1 < i < j < n, X = di j (Y) where i Y, j E Y.
If we can show that V +k(X) c F, we obtain the desired contradiction, since
then Q U {X} is also generating for F (recall that Q is of maximum size). So let
X CZ E (kl). If j E Z then Y C Z, which implies Z E F since Y E Q; that
is, V k(Y) c Y. If j V Z, let W := 1 (Z). It is easy to see that Y C_ W E F.
Because F is left shifted, it follows that Z = aid (W) E F.

Since with each family Q, also the (Sperner) family Q* of minimal elements of
is generating for . F, we derive from Proposition 2.4.2:

Proposition 2.4.3. Let F c (lkl) be left shifted. Then there exists a Spernerfamily
that has the following properties:

(a) Q* is generating for F,

(b) max(g*) = ak(-F),

(c) if Y <S X and X E Q* then there exists some Z E Q* such that Z C Y.

We call a family Q* that has the properties described in Proposition 2.4.3 an
Ahlswede-Khachatrian family (briefly AK family) for .T'. For X E g*, let

V'' k(X):={YE I [k}I:XcY and Y-Xc{max(X)-I-1,...,n}},

and, as usual, we define UXEG o',k(X)

Proposition 2.4.4. Let T- c (m) be left shifted and Q* an AK-family for Y. Then
the sets V.' k (X), where X E Q*, partition the family Y.
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Proof. Since Q* is generating, 0' k (X) C_ F for all X E G*. First we show
that all members of F are covered. Let Z E Y. Since Q* is generating, there
is some X E C* with Z E V_,k(X). Under all such sets X we take one for
which I XI is minimal and, in second instance, J (Z - X) fl { 1, ... , max(X)JI
is minimal. It is enough to show that this intersection is empty. Assume there
is some i E (Z - X) n (1..... max(X)}. Note that i < max(X). Let Y :_
<i,max(X)(X). Obviously, Z E V k(Y) and I(Z - Y) n {1, ... , max(Y)}I is
smaller than the previous value for X. Moreover, Y E 9* by Proposition 2.4.3(c)
and the minimality of IXl. Thus we obtain a contradiction to the choice of X. Now
we show that we have indeed a partition. Assume that there are different X, Y E 9*
and some Z E (kl) such that Z E 0',k(X) n If max(X) = max(Y),
then clearly Z - X = Z - Y, which implies X = Y, a contradiction. If, for
example, max(X) < max(Y), then it is easy to see that X C Y, which is again a
contradiction since G* is a Sperner family.

Proposition 2.4.5. Let F C_ (k) be left shifted and 1* an AK family for Y.
Moreover, let7{i := {X E 9* : JXi = i and max(X) = ak(F)(= max(G*))}.
Let 0-hi be the family of those members from F that are generated only by hi;
that is,

Oxi :_ V k(xi) - O->k(c* - 7{i).

Then

Oxi = O'*k(7-li) and lOxr1 = JxtI
n - ak(.7-)

k-i

Proof. The second equality is an immediate consequence of the first one, which
we will prove now. Let Z E V',k(Hi), that is, Z E O',k(X) for some X E 7-li.
Assume that Z E V k(Y) for some Y E Q* - 7-li. Then Z - Y 3 Z - X since
max(Y) < max(X) = max(g*). Consequently, Y C X, and since g* is a Sperner
family, Y = X, a contradiction. Thus Z E 0-Hi. Let, conversely, Z E Oxi . Assume
that Z V',.k(7-li). Then by Proposition 2.4.4, there is some Y E 9* - Hi such
that Z E V.' k(Y), a contradiction.

Now we specialize the investigations to maximum k-uniform t-intersecting
families. We may suppose throughout that n > 2k - t since for n < 2k - t every
k-uniform family is automatically t-intersecting. As a candidate for a maximum
family we have

So:={XE (1) [t] X}.

Erd3s, Ko, and Rado [170] have already shown that So is indeed a solution if n is
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sufficiently large. But there are other candidates, namely the families

Sr:={XE (In]):IXn[t+2r]I >t+r}, r=0,...,k-t

which are easily seen to be t-intersecting. Frankl [188] conjectured that for any
n the "best" of these families Sr is the solution. So let us first determine the best
family Sr.

Lemma 2.4.1. We have

r t+2r n-t-2r
(a) ISr) t+r+i)(k t r

(b) ISri < (resp. =)ISr+l l iff n < (resp. _) (k - t + 1) 2+ r + 1).

Proof. (a) Sr is the disjoint union of the sets {X E (n])
: IX n It + 2r]I

t +r + i),i = 0,...,r.
(b) It is easy to see that

Sr+l - Sr = {X E ([k]) : ix n [t + 2r]I = t + r -

{t+2r+1,t+2r+2} C X},

Sr - Sr+1 = {X E ([k]) : I X n It + 2r]I = t + r,

{t+2r+ 1,t+2r+2)nX=0}.

Thus ISr I < (resp. _) ISr+l I is equivalent to the following relations:

Sr I- Sr+11
ISr+1 - SrI

< (resp.

t+2r n-t-2r-2t+r k-t-r )
< (resp.t+2r /n-t-2r-2(t+r-,k-t-r-1)

n < (resp.=) (k-t+1)2+r+1)

In particular it follows for n > (k - t + 1) (t + 1) that ISO I ? IS, I > IS21 >
Frankl [188] (for t > 15) and Wilson [470] (for any t) proved that So is indeed
a maximum k-uniform t-intersecting family if n > (k - t + 1)(t + 1). We will
present Wilson's algebraic approach in Section 6.4. Some further special cases of
Frankl's conjecture were settled by Frankl [188] and Frankl and FUredi [196]. But
the complete solution is due to Ahlswede and Khachatrian [15]:
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Theorem 2.4.1 (Complete Intersection Theorem). Let 1 < t < k < n, n >
2k - t. Let r E {0, ... , k - t } be that number for which

(k-t+1)(2+r+1) <n <(k-t+1)(2+t r
1)

(2.40)

(with the definition oo o for all i c N). Then Sr is a maximum k-uniform
t-intersecting family.

Before we prove this theorem we need some further preparations.

Lemma 2.4.2.

(a) Let i, j E [n], i # j, and let F be k-uniform t-intersecting. Then sib (F) is
k-uniform t-intersecting, too.

(b) There exists a maximum k-uniform t-intersecting family that is left shifted.

Proof. (a) Generalize in an obvious way the proof of Lemma 2.3.1.
(b) Look at maximum families for which E (F) is minimum.

Lemma 2.4.3. Let F be a left-shifted k-uniform t-intersecting family and let Q*
be an AK family for Y. Let n > 2k - t. Then for all X1, X2 E 9*,

(a) ix, n X21 >> t,

(b) IXInX21 > t+1 ifthereare i, j E [n]withi < j, i XIUX2, j E XInX2.

Proof. (a) Assume that there are X1, X2 E G* with i XI n X2I < t - 1. For the
set A :_ [n] - (XI U X2), we have

JAI =n-IXIUXi1 >2k-(t-1)-IXIUX21
= k-IXII+k-IX2I+IXInX2l-(t-1).

Thus we find in A two subsets Y1, Y2 with I Yi l = k - I Xt 1, l = 1, 2, and I YI n Y21 <

(t - 1) - IX, n X2 1. Since 9* is generating for T, for 1 = 1, 2, Zj := X1 U Yt
belongs to F. Obviously, I Z1 n Z2 J < t - 1, a contradiction.

(b) Assume that there are X1, X2 E 9*, i, j E [n] with IXI n X21 = t, i <
j, i XI U X2 j E XI n X2. Let YI : _ <ij (XI). Then I Yl n Xz 1 = t - 1, and by
property (c) of Proposition 2.4.3, there is some ZI E Q* with ZI C_ Yl implying
J Z1 n X2 J < t - 1. This contradicts (a).

Now we formulate the main lemma:
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Lemma 2.4.4. Let F be a left-shifted maximum k-uniform t-intersecting family
and let n > 2k - t , t > 1 . I f f o r some r E [0, ... , k - t}

(k-t+1)(t 2r+1) (=(k-t+l)(2+r+1))'
(2.41)

then

ak(F) < t + 2r. (2.42)

Proof. If n = 2k - t + 1, then by (2.41), r > k - t + 1, and hence (2.42) trivially
holds. Thus let n > 2k - t + 2. Let G (we omit the asterisk) be an AK-family for
J7 (see Proposition 2.4.3). Assume that

max(Q) = t + 2r + 8 for some S > 0. (2.43)

Let

91

92 {XEc:t+2r+SEX}, 92:={X-{t+2r+8}:XE92}.

Since g is a Sperner family, 91 and 92 are disjoint.
Claim 1. If X1, X2 E 91UQ'2andlXlflX21 < t,then Xl, X2 E g2, IX1nX21 =

t-1, 1X11+IX21 =2t+2r+S-2andlXil >k-(n-t-2r-S),1=1,2.
Proof of Claim 1. By Lemma 2.4.3(a), I Xl n X21 < t can hold only if X1, X2 E

Q'2and(XIU{t+2r+8})n(X2U{t+2r+3})=t,thatis,IX1nX2I=t-1.
But Lemma 2.4.3(b) implies that there is no i < t + 2r + 8 with i 0 X1 U X2.
Thus

IXll+1X21 = IX1nx21+IXiuX21

= t- 1+t+2r+S- 1 =2t+2r+S-2.
If, for example, 1X1 I < k - (n - t - 2r - S) - 1, then IX2I > n - k + t - 1 > k
(recall n > 2k - t). This is a contradiction since obviously IX2I < k - 1.

Now we classify 92 and g' with respect to the size of the elements (and use a
new letter):

7-t, :={XE92: IXI =i}, f; :={XE9':IXI =i-1}
(thus we make an exception from our general rules: The members of 7-l' have size
i - 1, but note that they can be obtained from the members of 7.1, by deleting the
element t + 2r + 8). Clearly we may restrict i to t < i < t + 2r + S.

If Ht 0, then 191 = 1 since g is a Sperner family that is by Lemma 2.4.3(a)
t-intersecting. From Proposition 2.4.3(c) it follows that 9 = {[t]}, in contradiction
to (2.43).
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If 7-lt+2r+a 0, then 92 = {[t + 2r + S]} = 9 because g is a Sperner family
and max(g) = t + 2r + S. Since F has maximum size, necessarily 8 = 0, in
contradiction to (2.43).

Thus we may suppose that

92 = U 7-1, and 92 = U 7{;
t<i<t+2r+S t<i<t+2r+S

If li = 0 for all i > k - (n -t-2r-S), then by Claim l, g, U92' is t-intersecting,
and thus also F' := V_,k(Q1 U C2) is t-intersecting. Obviously, F c P. By the
maximality of F we have F But 91 U 9'2 is generating for F = F', and
max(g1 U 92) < max(G) = ak(-F), a contradiction to the definition of ak(F). If
'Hi = 0 for all i, then 92 = 0; that is, max(G) < t + 2r + S, a contradiction to
(2.43). Thus we may suppose that there is some i, such that

k-(n-t-2r-3)<i<t+2r+S and 7{i#0. (2.44)

Case 1. i 4 2t+22r+S Let

9t 91 U (JC2 - (Hi U x2t+2r+S-i )) U f'j,

9"
91 U (92 - (xi U x2t+2r+S-i)) U x2t+2r+8-i

In view of Claim 1, g' and g" are both t-intersecting. Thus also

F' := V- k(g') and F" := o-,k(g")

are t-intersecting. The next claim yields the desired contradiction to the maximality
of IFI.

Claim 2. We have max{IF'I, IF"I} > IFI
Proof of Claim 2. The family F - .7=' contains exactly those sets that are

extensions only of the members of 7{2t+2r+s-i. By Proposition 2.4.5,

IF - F' l= I x2t+2r+S-i I
n - t - 2r - S

(2.45)
G - 2t - 2r - 8 +i

Next we estimate 137' - .771. Let X E 7-'. We have X U {t + 2r + S} E 9, hence
X 0 g. Consequently, f o r all Y C It + 2r + S + 1 , ... , n) with I Y I = k- i + 1 we
have XU Y E P- .7 (if we had XU Y E .7=', then in view of max (C) = t + 2r + S,
it could be generated only by a set Z E 9 with Z c_ X, but this is impossible since
9 is a Sperner family). Moreover, we have obviously

XUY # X' U Y' for all X, X' Ef;,Y,Y' E {t+2r+S+1,...,n}

with (X, Y) (X', Y').

Therefore

n-t-2r-S
1 1( k-i+l (2.46)
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In the same way we may derive

n - t - 2r - S
k - i

(2.47)

n-t-2r-S
Imo" - YI ? I x21+2r+s-i I (k - 2t - 2r - S + i + .

(2.48)

Now assume that our claim is false; that is, < and IF' - .FI <
IT - -T" I. In view of (2.45)-(2.48) it follows that

n-t-2r-S n-t-2r-S
Ixi l k - i + 1 I xzr+2r+s-i l (k - 2t - 2r - S + i ' (2.49)

n-t-2r-S \ n-t-2r-S
I x2t+2r+S-i 1) :!S Ix`I k - i (2.50)

Because of (2.44) we have x21+2r+S-i 0. Thus (2.49) and (2.50) imply

(n+t-k-i)(n -t-2r-S-k+i)
< (k-i+l)(k-2t-2r-8+i+l).

But this is a contradiction since n > 2k - t + 2 implying n + t - k - i > k - i + 1
as well asn-t-2r-S-k+i > k-2t-2r-S+i+1.

Case 2. i = 21+2r+s . Recall that for all X E R+,+I, I X1 = t + r + 2 - 1 and

XC[t+2r+S- 1]. Let 2

jE[t+2r+S-1].

Counting the number of pairs (X, j) with X E 'Ht+r+z' j c [t+2r+S -1 ], j V X

in two different ways we obtain

t+2r+S-1

IkiI = Ixt+r+81(r+2).

j=1 /
Consequently, there is some j such that

r+2 ,
IKjI t+2r+3-11x1+r+21

By Lemma 2.4.3(b), Kj is t-intersecting. In view of Claim 1

xt+r+S) U Icj

is t-intersecting; thus also

(2.51)

-F' V--,,k (g')
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is t-intersecting. The next claim also yields in this case the desired contradiction
to the maximality of I.7 I.

Claim 3. We have IF'I > I. 1
Proof of Claim 3. We partition F into the sets

Li := o->k(9 - xt+r+2),

G2 := V_ k(xt+r+2) - 7-lt+r+2 ),

and F' into the sets G I and

G3 := 0,k(Kj) - 0,k (9J - xt-+.r+

Our claim is equivalent to

1L31 > 1L21 (2.52)

By Proposition 2.4.5,

IL21 =
I7it+r+sI(n-t-2r-s)

k-t-r-2 (2.53)

Similarly to the estimation of IF' - F1 in Case 1 we lower estimate ,C3: For any
X E i j , X 9. Consequently, f o r all Y C {t + 2r +S, ... , n j with I Y I = k - i + 1
we have X U Y E G3, and different pairs (X, Y) yield different sets X U Y. Thus

1

1L31?IKiI
n -t -2r -8 +
k-t-r-2+1 (2.54)

According to (2.51), (2.53), and (2.54) the following (equivalent) inequalities are
sufficient for (2.52):

r+2 n-t-2r-8+1 n-t-2r-S
t+2r+S-1 k-t-r-2+1 k-t-r-2
S\ (k_t_r_+1)(t+2r+8_1)r+)(n-t-2r-S+l) >

((k-t+1)(t+2r+S-1)
(2.55)r+2

Since 8 is even (i is an integer) it follows that 8 > 2. Consequently (noting t > 1)

t+2r+1 > t+2r+S-1
(2.56)r+l r+2

From (2.41) and (2.56) we derive that (2.55) is true; hence also (2.52) and the
claim are proved.
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Thus in both cases we obtained a contradiction. Hence our assumption 6 > 0
was false, and we have 6 < 0.

Lemma 2.4.5. Let F be any k-uniform t-intersecting family and F the comple-
mentary family. Let and 7I be generating for F and F, respectively. Then, for
allXEg,YE7i,wehaveIXUYI >n-k+t.

Proof. Assume the contrary, that is,

IXUYI <n-k+t-1 forsomeXEg,YE7-l.

Choose any Z Q XU Y with I Z I = n - k+t -1. The inequalities n > 2k-t, t > 1
imply that n - k + t - 1 > max{k, n - k}. Thus we find some X* E V.+k(X)
and some Y* E V.+n_k(Y) such that X* C Z and Y* C Z. Since 9 and 7-l are
generating, we have X* E F and Y* E F, that is, Y* E Y. Now the inequality

IX*n *I=IX*UY*I-IY*I <n-k+t-l-n-k=t-1
contradicts the fact that F is t-intersecting.

After all we are able to prove the Complete Intersection Theorem:

Proof of Theorem 2.4.1. By Lemma 2.4.2(b) and Lemma 2.4.4 we find a maximum
k-uniform t-intersecting family . r that is left shifted and a generating family 9 for
F such that

t+2r ifn > (k-t+l)(2+;.+i),
max(g) <

t+2r+2 ifn =(k-t+1)(2+;+i).

It is easy to see that the complementary family F is a right-shifted maximum
(n - k)-uniform (n - 2k + t)-intersecting family. If we replace in the members
of F every element i by n + 1 - i, then we obtain a maximum (n - k)-uniform
(n - 2k + t)-intersecting family F* that is left shifted. It is easy to verify that
under our suppositions the inequality (2.40) is equivalent to

/
(k-t+1)(2+ n-2k+t-1

k-t-r+1
1<n<(k-t+1) 2+ n - 2k + t - 1
J (2.57)k - t - r

(also the case r = k - t is covered by our definition oo := o for i E N). If we set
k':=n-k,t':=n-2k+ t, r' := k - t - r, then (2.57) reads:

(k'-t'+1)I2+r .'+1) <n <(k'-t'+1)12+t r'
1)

(2.58)
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By Lemma 2.4.4 we find a generating family G* for.F* such that

max(Q*) < t' + 2r'.

Making again a replacement i - + n + 1 - i, we obtain a generating family 7-l for
7 such that (note n+l - t' - 2r' = t + 2r + 1)

7l 2{t+2r+l.....n)

Case 1. Both inequalities in (2.40) are strict. If IXI > t + r for all X E G, then
clearly F = Sr. Analogously, if I YI > t' + r' = n - k - r for all Y E g* then
.7='* = Sr'; that is, 1FI = IF* I = I Sr' I = I Sr I = I Sr 1. Thus we may assume that
there is some X E 9 with I XI < t +r -1 and some Y E 71 with I Y J < n -k- r -1.
But then I X U YI < n - k + t - 2, which is a contradiction to Lemma 2.4.5.

Case 2. The first inequality in (2.40) is an equality. If IXI > t + r + 1 for all
X E 9, then F = Sr+l, which by Lemma 2.4.1 has the same size as Sr. The
arguments of Case 1 explain here as well that we may assume that there is some
XE 9with X<t+r and some YE'Hwith iYJ <n-k-r-1. But then
I X U Y I < n - k + t - 1, and we obtain again a contradiction to Lemma 2.4.5.

We mention that Ahlswede and Khachatrian [15] proved with some additional
effort that the sets Sr (and in case of equal size also the sets Sr+l) are - up
to permutations of the elements - the only maximum k-uniform t-intersecting
familiesifn > 2k-t+2orn =2k-t+l andt > 2.

For the special case t = 2, n = 4m, k = 2m, we have obviously r = m - 1.

Thus { X C ([Zm1) : I X n [2m] I > m + 1 } is a maximum 2m-uniform 4m-

intersecting family. This was a famous conjecture of Erd6s, Ko, and Rado [170].
Some previous results concerning this conjecture were obtained by Calderblank
and Frankl [89].

A t-intersecting family F is called nontrivial if I nXE.F XI < t. By Theorem
2.4.1, in the case n < (k - t + 1)(t + 1), there exist maximum k-uniform t-
intersecting families that are nontrivial. For the remaining cases, the following
family is also a candidate of a maximum nontrivial family:

S'l :={XE (1) : [t]cX,Xn {t+1,...,k+1}0}

U {[k + 1] - {i} : i E [t]}.

With the method of generating families Ahlswede and Khachatrian [16] found the
following result, mentioned here without proof:

Theorem 2.4.2. Let n > (k - t + 1) (t + 1). Then in the case k < 2t + 1 the
family Si, and in the case k > 2t + 1 one of the families Sl, Si is a maximum
nontrivial k-uniform t-intersecting family.
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This generalizes earlier results of Hilton and Milner [268] (t = 1) and Frankl [ 189]
(n sufficiently large).

2.5. Linear independence
An important method for finding an upper bound for a family F of combinatorial
objects can be described as follows: Try to find a vector space V of a certain
dimension d and to associate with the elements of F injectively certain vectors
of V. If the associated vectors are linearly independent, then clearly IFI < d.
In this section we will present some examples where this method can be applied
successfully. Further algebraic methods, in particular the use of eigenvalues, are
studied in Chapter 6. A systematic treatment of algebraic methods, including, for
example, exterior algebra methods, can be found in the forthcoming book of Babai
and Frankl [35].

The following result has its origin in the design of experiments. Fisher [181]
found an inequality that was later reproved by Bose [80] in a very short way using
the algebraic approach (in terms of matrices) sketched previously. First uniform
families were considered, only. Nonuniform families were investigated starting
with the paper of de Bruijn and Erdo"s [86]. Majumdar [360] and, independently,
Isbell [276] adapted Bose's method to prove the succeeding theorem.

Theorem 2.5.1 (Nonuniform Fisher Inequality). Let F be a family in 2["I with
the propertythat IXfl YI = t for all X, Y E F, X Y. If t > 0 then IFI < n.

Proof. The "easiest" vector space is the vector space V = W of all column vectors
with n real entries over the field K = R, and the "easiest" way to associate a vector
with a set X c_ [n] is to take the characteristic vector. Let F = ( X1, ... , Xm ) and
x I, ... , xm be the associated characteristic vectors. It is enough to show that these
vectors are linearly independent for t > 0. Assume the contrary, that is (with
0:_ (0,...,0)T),

(2.59)

where not all coefficients are zero. Obviously,

xT xi =

Consequently,

IXii ifi = j,

t otherwise.
(2.60)

0=0T0 (crixT) aix.i _aIXiI+ aiait
i=1 (=1 / i=1 1<i, j<m,iJ 0J

m m 2

=Ea;(IXii-t)+t(ail .

i=t i=1

(2.61)
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Clearly, I Xi I > t for all i and I Xi I = t for at most one i, since otherwise the
intersection condition would not be satisfied. But then the RHS is greater than 0,
a contradiction.

It is interesting that we may generalize this theorem significantly if we restrict
ourselves to uniform families. Let L = {ll, ..., ls} be a set of integers, 0 <_
ll < < is < n. A family .F in 2111 is called L-intersecting if IX fl YI E L
for all X, Y E .F, X # Y. In the previous theorem we found a bound for {t}-
intersecting families. Note that intersecting families are exactly the {1, 2, ... ,
n - 1)-intersecting families. For L c [n], let gcd(L) denote the greatest common
divisor of the elements of L. The next result was found by Babai and Frankl [36]
(for further information, refer also to Deza and Frankl [135]).

Theorem 2.5.2. Let r be a k-uniform L-intersecting family in 2111 and let k
0 (mod gcd(L)). Then I.FI < n.

Proof. We start as in the previous proof, but we work with V = Q1, K = Q,
that is, over the field of rational numbers. Then in (2.59) we may suppose that
all coefficients ai are integers (otherwise multiply by the least common multiple),
and, in addition, we may suppose that

gcd({al, ... , am}) = 1 (2.62)

(otherwise divide by the LHS). Instead of (2.61) we discuss the equalities (i =
m)

m m

0 = xTO = XT (>aixi) = kai + > ajxTxj. (2.63)
j=1 J=l.loi

With 1 := gcd(L) we may write (2.63) also in the form

kai + ail = 0, i = 1, ..., m, (2.64)

where ai is some integer. Since k # 0 (mod 1), there is some prime power pb such
that 1 = 0 (mod pb), but k # 0 (mod pb). Now (2.64) implies that ai - 0 (mod p)
for all i, a contradiction to (2.62).

Up to now we worked with infinite fields. We want to emphasize that in particular

in the case of finite fields linear independence is not the only way to obtain bounds.
The following observation can be considered also as a "method": If the elements
of a family F can be injectively associated with the elements of a d-dimensional
vector space over the Galois field GF(q), then I.FI < qd. As an example we
consider a variant of a theorem of Ahlswede, El Gamal and Pang [12] on pairs
of binary codes (for generalizations and related problems, see Ahlswede [2] and
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Ahlswede, Cai, and Zhang [7]). In the succeeding proof we follow the paper of
Delsarte and Piret [129].

Theorem 2.5.3. Let .F and 9 be families in 21"1 with the property that I X n Y I
has the same parity for all X E .F, Y e 9. Then

I9II9I
2" for even parity,

2`1 for odd parity.

Proof. Let V be the n-dimensional vector space over GF(2) whose elements
are the n-dimensional 0,1-column vectors. With each X C [n] we associate its
characteristic vector x as an element of V. Let F and G be the sets of characteristic
vectors of F and 9, respectively. Clearly, we may suppose that F, G# 0. Let yo
be a fixed element of G and Go := { y + yo : y E G}. Moreover, let F and Go be
the subspaces generated by F and Go, respectively. Then

I.FII9I = IFIIGI = IFIIGoI < IFIIGoI = 2dimF2dimGo (2.65)

The key point is that (in GF(2))

xTz=0 for allxEF,zEGo

since (with z = y + yo, y E G) in view of the supposition

XTZ =xTy+xTyo=XnYI+IXnYol -0(mod2).

Consequently,

(2.66)

dim Go < n - dim F (2.67)

(the vectors xT, x E F, form a coefficient matrix of rank dim F, and all z E Go
are solutions of the system (2.66) of linear equations). The inequalities (2.65) and
(2.67) already yield I.FI 191 < 2". Thus let Ix n YI be odd for all X E .F, Y E 9.
Let xo be a fixed element of F and Fo := {x + xo : x E .F}. We have F n Fo = 0,
since otherwise x + xo = x' for some x, x' E .F, which implies for ally E G

0=IXnYI+IXonYI=(x+xo)Ty=x'Ty-1 X'nYI-1(mod 2),

a contradiction. Let F' := F U Fo and let F' be the subspace generated by F'.
Then in (2.66) and (2.67) obviously F can be replaced by F'. As before, we obtain
I F' j I G I < 2". Now I F I =

2

I F' I , and the assertion follows.

Let us come back to linear independence. In the next examples the basic vector
space is more difficult, so we need some preparation. We will work with subspaces
of the vector space R[xi, ... , x, ] of all polynomials in the independent variables
xi, ... , xn over some field R (usually the real or rational numbers).
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Lemma 2.5.1. Let pi (x l , ... , xn ), i = be polynomials. Suppose that
there exist m n-tuples ai = (ail , ... , ain) such that

pi(aj)

0 if 1 <i < j <m,

00 ifl<i=j<m.
Then the polynomials pi, i = 1, ... , m, are linearly independent.

Proof. Assume the contrary. Then we find coefficients al, . . . , a,,,, not all equal
to zero, such that Fm l ai pi is the zero polynomial. Let i * be the largest index
with al # 0. Then

M

E ai pi(ai*) = ai*pi*(ai*) 0 0,
i=l

a contradiction.

Lemma 2.5.2. 1,...,m,andgh(xl,...,xn),h = 1,...,
t, be polynomials. Suppose that there exist m n-tuples ai and t n-tuples bh such
that for all possible i, j, h

-
pi (aj)

=0 ifi#j,
qh (aj) = 0, gh(bj)

0 ifh<j,
#0 ifi=j, #0 ifh=j.

Then the polynomials pi, i = 1, ... , m, and qh, h = 1, ... , t, are linearly inde-
pendent.

Proof. Assume the contrary. Then we find coefficients al , , am , fii , , fit,
not all equal to zero, such that rm l ai pi + Eh=l fhgh is the zero polynomial.
In particular, f o r j = 1, ... , m,

m t /
0 = aipi(aj) + Phgh(aj) = ajpj(aj)

i=1 h=l

implying aj = 0 for all j. Thus F-ti=l fhgh is a nontrivial linear combination of
the zero polynomial, a contradiction to Lemma 2.5.1.

A polynomial p(xl , . . . , xn) is called homogenous of degree k if

P(axl, ... , axn) = 1,kp(XI, ... , Xn).

The homogenous polynomials of degree k form a subspace Rk [x1, ... , xn I of
R[xl, ... , x,,]. All monomials of the form xl' x, with i l + + in = k ob-
viously yield a basis of this vector space. Consequently, for the dimension we have

dim Rk[Xl,....Xn] =
Cn +

k

1)
(2.68)

(k-combinations with repetitions; cf. [441, p. 15]).
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The following theorem was stated by Frankl [190] and Kalai [283], but it was
essentially prepared by a result of Lovasz [353] who introduced exterior algebra
methods. Fortunately the proof can be formulated in a more elementary way (we
follow Babai and Frankl [35]).

Theorem 2.5.4. Let {(A1, BI), ... , (Am, Bm)} be a family of pairs of subsets of
[n] such that l Ai l = a, I Bi I = b for all i, and

1#0 ifl<i<j<m,
AI fl Bj =0 ifl<i=j<m.

Then

m< ).

If n > a + b, the bound is the best possible.

Proof. We associate with each member (A1, BI) of the given family the homoge-
nous polynomial in the variables xo, ... , Xb of degree a (over R = R)

pi(x0,...,xb) 11(lOx0+llxi .+... +lbxb),
1EA,

In view of (2.68) it is sufficient to prove that these polynomials are linearly inde-
pendent. With every i we associate a nontrivial solution yl = (yio, , Yib) of the
system of b equations

loYio+l1yi1 + +lbyib =0, 1 E B1. (2.69)

Then

pi (yj) = 0 for 1 < i < j < n (2.70)

since we find by supposition some 1 E Ai fl Bj, and loyjo + + lbYjb = 0 by
construction. However,

pi(yi):A0 fort <i <n, (2.71)

because otherwise there is some 1b+1 E Ai such that yi is a solution of (2.69) and,
in addition, of

1b+1Ylo+Ib+1yi1+...+lb+lYib=0. (2.72)

But the determinant of the coefficient matrix of the system (2.69), (2.72) is Vander-
monde's determinant, that is, nonzero; hence y1 = 0, a contradiction. Now (2.70),
(2.71), and Lemma 2.5.1 imply that pl, ... , pm are linearly independent.

In order to see that the bound is best possible for n >_ a + b, take the family
1(A, [a + b] - A) : A c t[a+b]) i

a J
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Note that the result follows for the stronger condition Ai fl B, = 0 if i = j
from Theorem 2.1.3. Blokhuis [70] and in a similar way Yu [472] used resultants of
polynomials (resp. Bezoutians) to prove these results and further a generalization
of Alon [26]. For related questions, see Tuza [453].

We call a polynomial in the variables xl, ..., xn multilinear if it has the form

al a"P(xl,...,xn) = aaxI ...xn
aEB,,

where Bn is realized as the set of all n-tuples a = (aI , ... , an) with entries
0,1, and the coefficients aa belong to the given field R. In other words, in a
multilinear polynomial no variable appears in a power greater than 1. The degree
of p is the largest value of r(a) = al + + an, extended over all a E Bn with
as 0 0. Again, the set of all multilinear polynomials of degree at most k forms a
subspace Rk, I [XI, ... , xn ] of R [xl , ... , xn ]. Since the monomials xj' xn" with

a 1 + + an < k, a E B, form a basis, we have
k

(2.73)
i=O

We will reprove the following result of Frank! and Wilson [202] and its predecessor,
the theorem of Ray-Chaudhuri and Wilson [394], in a more general setting in
Section 6.5.

Theorem 2.5.5. Let .T be an L-intersecting family in 21n1. Then

ILI (n).
i=O

Proof. Let jr _ {A 1, ... , An, } and let a 1, ... , an, be the associated characteristic
vectors. We may assume, w.l.o.g., that I A I > I An, 1. With each Ai we
associate first the polynomial

pi(XI,...,xn):= fl (aTx-1) (2.74)
1EL:1<IA;I

where, as usual, x = (xl, ..., xn)T. Then we expand pi (theoretically) and re-
place every power xb with b > 1 by xi. This leads to a multilinear polynomial
pi (x I , ..., xn) of degree not greater than ILI . Note that for a E B,, i E [M],

pi (a) = pi(a) (2.75)

since x2 = x for x E {0, 1}. In view of (2.60), (2.75), and the ordering of the Ai,
we have

0 ifl <i < j <m,
pi(aj) = pi(aj) (2.76)#0 ifl<i=j<m.
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According to Lemma 2.5.1 these polynomials are linearly independent. Now the
asserted inequality follows from (2.73).

The proofs of this and the next theorem are due to Alon, Babai, and Suzuki [28].
Snevily [433] conjectures that the upper bound can be improved to ;LI0 (n t 1) if L

contains only positive integers. This conjecture is a generalization of a conjecture
of Frankl and Furedi [193], who considered the special case L = {1, . . . , k}. Up
to now Snevily has proved his conjecture only for sufficiently large n as well as
the Frankl-Furedi Conjecture for k = 2 (see [433]), and, after a result of Pyber
[393], together with Lichtblau [340] for n < 2k + 3.

Theorem 2.5.6 (Ray-Chaudhuri and Wilson [394]). Let.F be a k-uniform L-in-
tersecting family in 21n1 where k > ILI. Then

Proof. Clearly we may suppose that 1 < k for all 1 E L. We start as in the previous
proof and obtain polynomials pl, ... , pm and n-tuples a1, ... , am. Note that, in
view of the uniformity, (2.74) can be rewritten as

pi (xl , ... , xn) = fl(aTx - 1).
IEL

Following an idea of Blokhuis [69], we introduce more polynomials. Let
[BI, ... , Bt) be the family of all subsets of [n] of size less than ILI (do not con-
found these sets with the Boolean lattices), and let b l, ... , bf be the associated
characteristic vectors. Thus we have t = ILI-1 (n Here we suppose that the
members are numerated in such a way that I B1 I > . . > I Bt 1. We define the

polynomials gh, h = 1, . . . , t, by

gh(x1,...,xn):= xj - k fl xi,
j=1 iEBh

and reduce them, as before, using xj? = xj, to the multilinear polynomials
qh (x1, ... , xn). It is easy to verify that the conditions of Lemma 2.5.2 are sat-
isfied. This lemma together with (2.73) implies

m+t`
ILI

E(>)j=0
n

M ` (ILI)
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Note that for "bad" sets L the bound may be far from being best possible. If
L = {0, 2, 4, ... , 2t}(t > 1) and if k is odd, k > 2t, then according to Theorem
2.5.2 we get ICI < n whereas Theorem 2.5.6 gives IFI < (t+l) only. As for
Theorem 2.5.1, there exist several modular variants of the preceding theorems,
which are sometimes not as "easy" to prove as Theorem 2.5.2. We mention here
only one "easy" variant:

Theorem 2.5.7. Let p be a prime and L be a set of integers from {0, ... , p - 1).
Let.F be a family in 21"3 with the property that for all different members X, Y of
.F there is some l E L with IX fl YI = 1 (mod p) and for all members X of F
there is no 1 E L with I X1 =_ 1 (mod p). Then

ICI
n

ICI < (i)
i=O

Proof. We modify slightly the proof of Theorem 2.5.5. First of all we are working
this time over the Galois field G F(p). We need not order the members of F by
decreasing size. We may (again) define (instead of (2.74))

pi(xl,...,xn) = fl(aTx - 1),
IEL

and obtain as before the polynomials pi. Then we have a still stronger relation
than (2.76):

pi(aj)

0 if i: j,
0 ifi=j

(note that aT a, __ IAi I # 1 (mod p) for all 1 E L by supposition). Lemma 2.5.1
and (2.73) yield the assertion. \

Theorem 2.5.7 and related results have interesting geometric applications. Es-
sential contributions in that direction were given by Frankl and Wilson [202]. The
constructions may be often restricted to the case of primes because of the Prime
Number Theorem (see, e.g., Kratzel [324, p. 116]):

Theorem 2.5.8 (Prime Number Theorem). Let 7r(x) be the number of primes
less or equal to x. Then

x
7r(x) ^ asx -* oo.

log x

Corollary2.5.1. Let p, be the largest prime lessor equal to n. Then

pn n as n -> oo.
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Proof. Choose any c > 0. We have to show that there exists some no such that
p > (1 - e)n for all n > no. By Theorem 2.5.8,

7r(n) n logn + log(l - E)
n((1 - E)n)

ti
(1 - E)n logn 1

if n is sufficiently large. Thus there exists a prime in the interval ((1 - E)n, n].

The diameter of a finite set of points in the n-dimensional Euclidean space Rn
is the maximum distance between any two points of the given set. Let bd (n) be the
smallest number such that every finite set in 1[l;" of diameter d can be partitioned
into bd(n) sets of diameter smaller than d. Using contractions one can easily see
that bd(n) does not depend on d, so we write briefly b(n). Moreover, it is left
to the reader to show that b(n) is finite. Taking the vertices of a regular simplex
in Rn one immediately obtains b(n) > n + 1. In 1933 Borsuk [79] conjectured
that equality holds (also for infinite, closed sets). Not until sixty years later did
Kahn and Kalai [281] kill this conjecture and show that the lower bound can be
significantly improved:

Theorem 2.5.9. We have b(n) ti as n - oo.

Proof. First we prove the relation for a subsequence of the natural numbers.
Note that b(n) is clearly increasing. Let p be a prime (tending to infinity) and let
m := 4p. We will construct a set T of points in the m2-dimensional Euclidean
space of diameter d := 12-m. Let S be the set of points x = (xi, ..., xm)T for
which xi E {-1, 1} for all i, xl = 1, and the number of negative components
equals z . Obviously, ISI = 2 m. With each x E S we associate the set X

{i E [m] : x; = 1) E (ll). For any x, we put

x *x :_ (XIXI,XIx2,...,xlxm,x2xl....,x2xm....,xmxm)T

Now let T{x*x:xES}.Since x*x/ y*yifx:y,

ITI = 2I m)
2

(2.77)

In order to compute distances, we must be able to calculate the standard scalar
product (, ). In a straightforward way one may verify the identity

(x * x, y * y) = (x, y)2. (2.78)

It is easy to see that for x, y E S and the associated sets X, Y (with
[m]-X,Y:=[m]-Y)

(x, y) = IXnYI+IxnYI-(IX-YI+IY-XI)
= m - 2IXI - 2IYI + 4IXfl YI;
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that is,

(x,y)=41XnYI-m. (2.79)

Thus we have for the distance p between two points x * x and y * y of T :

p2(x *x,y *.Y) = (x,x)2+(y,y)2 -2(x,y)2

= m2 +M 2 - 2(41x n Yj - m)2 < 2m2,

and equality; that is, the diameter d = 12-m is attained iff I X fl Y I = a = p.
Let U be a subset of T of diameter smaller than d and let r be the family of

those sets X that are associated with the vectors x for which x * x E U. From
the preceding discussion we know that .T' is a 2p-uniform family in 21' with the
property given in Theorem 2.5.7, where L p - 11. Consequently,

+...)
ICI <

(mp/ l

\(

p
+

p p

;=p (M)im-p+m-p+lm-p+2
\P! (3 + (3)2

+...)
2 \p/

Thus, in order to partition T into sets of smaller diameter, we need at least I T 1/ 2 ( p)
sets. Accordingly (noting 2.77))

3
(m2)

(m) ~ 2 \2 /m 2 (1. 140)' (asp oo)

(here we make an anticipation - the asymptotics follow from (7.7) or by Stirling's
formula (Theorem 7.1.7)). Though we constructed Tin the m2-dimensional space,
it is in fact contained in an affine subspace of dimension (z) since we have for
the components the equalities x;x; = 1 for all i and x;xj = xjx; for all i, j. This
gives, with n' (Z),

(
lm

(
nr

b(n) ti 2 \2/ > 2
[\2),/2-]

ti (1.203),/n-' as p oo.

Finally, if n is arbitrary, let p be the largest prime such that n' (42) < n. From
Corollary 2.5.1 one obtains easily that n' = n - o(n). Consequently,

b(n) > b(n) N (1.203) ' ti (1.2)' as n -+ oo.

The construction is a reformulation of that given by Kahn and Kalai [281 ]. For
the computations, we used ideas of Nilli and his best friend Alon [378], who also
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noticed that one can enlarge the set S by taking those x for which the number of
negative components is even (instead of

2
).

Let cd (n) be the smallest number of colors with which the points in I[8" can be
colored such that no two points of the same color have distance d. Again, cd(n)
does not depend on d, so we write c(n). It is an easy exercise to show that c(n) is
finite.

Corollary 2.5.2. We have c(n) ti (1.2) " as n oo.

Proof. Take a set of points of diameter d that cannot be partitioned into less than
b(n) sets of diameter smaller than d. Every "good" coloring (with respect to the
distance d) of this set needs at least b(n) colors since the color classes are sets of
diameter smaller than d. Thus (by Theorem 2.5.9)

c(n) > b(n) Z (1.2)'In- as n --> oo.

This result is due to Frank! and Wilson [202], who proved a conjecture of
Larman and Rogers [332] more than ten years before Kahn and Kalai [281] found
Theorem 2.5.9. The original proof of Frank! and Wilson is similar to the proof of
Theorem 2.5.9, only the construction is easier.

2.6. Probabilistic methods
Our general aim is the maximization of the size of families satisfying certain
conditions. For example, for Sperner families and k-uniform intersecting families
we could first "guess" a maximum family of the kind in question, and then prove
that these families are optimal. But sometimes we do not have an idea how to
produce such a large family. Here it is useful to apply the probabilistic method,
sometimes also called the Erdds method in honor of P. Erdos, who not only is the
founder of this area but also developed it with numerous deep results and still more
intriguing problems. This method can be described as follows: In order to prove
the existence of a family of "large" size satisfying the given condition, one has
to construct an appropriate probability space and to show that a randomly chosen
element (corresponding to a family) in this space has the desired properties with
positive probability. Only a few instructive examples are presented here together
with modifications of the method. The interested reader may learn much more in
the monographs of Erd6s and Spencer [172] and Alon and Spencer [29]. Certainly,
also other facts from probability theory are useful in combinatorics. One example
is the entropy inequality (Theorem 2.6.5). The application of limit theorems is
studied in Chapter 7, where some standard definitions and results can also be
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found. Working in this area, one must be clever in calculus; in particular, it is
useful to have many inequalities at hand. Here is an important one:

Proposition 2.6.1.

(a) For all x E IR, 1 + x < ex, and equality holds only for x = 0.

(b) For ally > 0, logy < y - 1, and equality holds only for y = 1.

Proof. (a) The function f (x) := ex - x - 1 has a unique minimum at x = 0.
(b) By (a), y < ey-1; that is, for y > 0, logy < y - 1.

Our first example is due to Kleitman and Spencer [311] and also presented in
the survey of Alon [27]. A family F in 21"] is called k-independent if, for every k
distinct members X1, ... , Xk of F, all the 2k intersections nk_1 Y; are nonempty
where each Y; is either Xi or Ti.

Theorem 2.6.1. The maximum size of a k-independent family in 21"3 is at least
[Zkll/ken1(k2k)J for all k > 2.

Proof. Let, for X c [n], X1 : = X and X0 := X. Consider the random family F =
{X1, ... , Xm}, where (X1, ... , Xm) is a sequence of m randomly, independently
chosen subsets of [n] and equidistribution is assumed (i.e., the probability of the
choice of any particular subset equals 2-" ). More precisely, the elements of our
probability space are the n x m-arrays whose entries take on only the values 0,1,
and the (classic) probability of such an array equals 2-"m . The columns of the
array are the characteristic vectors of the members of Y. Note that up to now the
members are not necessarily different. We have

P(F is not k-independent)

< P({Xi...... Xjk} is not k-independent)
1<il<...<ik<m

P(Xi'f1...nXikk=0).
1<i1 <...<ik5m E=(Ei,...,Ek)E(o,l)k

It is easy to see that fl . . . fl Xikk = 0 if the corresponding subarray does not
contain e as a row. Hence the probability of this event equals (1 - 2-k)", and we
conclude

P(F is k-independent) = 1 - P(.F is not k-independent)

> 1 - (rn)2k(l - 2-k)n.
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If m = L k! Il kenl (k2k) J then, in view of Proposition 2.6.1,

/ \ k

k 12k(1 - 2-k)" < ki 2ke-"12k < 1,

and finally,

P(F is k-independent) > 0.

The members of a k-independent family are automatically pairwise different; thus
we find indeed a k-independent family of the size given in the assertion.

We already mentioned in Section 2 that for k = 2 (qualitative independence of
unordered 2-partitions) the exact maximum size can be extracted from the

Profile-Polytope Theorem 3.3.1.
Before the next example we will consider the probabilistic method in a more

general form. Let S be an at most countable subset of R and let = (41, ..., Son) be a
discrete random vector which takes on only values from S1. Further let g : R" -+ R
be given. Then is a discrete random variable whose expected value
equals

E(g(g)) = 5 7, g(sl, ... , sn)
(SI ,...,Sn)ES"

if the sum on the RHS is absolutely convergent. The "generalized" probabilistic
method is the application of the trivial fact that there exist sl , ... , s" E S such that

g(sl, ... , sn) > (resp. <)

In Theorem 2.3.3(b) there is given an exact solution of the vertex-isoperimetric
problem for the Hasse graph of the Boolean lattice: Find

min{I(A(.F) U V(J?)) -.Fl :.F C 21nl and I.FI = m}.

A related problem of Zuev [474] is the following: Find

max{IA(.F)I :.F c 2Ln) and .7 is a Sperner family}.

If we take .F to be a complete level in the middle of the Boolean lattice, then A (.F)
is again a complete level and using

r,2- 2(i)

(which follows from (7.6)) we obtain

2n
1 A (F )1 ? C7 for some constant c.

n
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It was shown by Kospanov [320] and Furedi, Kahn, and Kleitman [211] that this
bound can be improved significantly. The strongest lower bound is due to Chukhrov
[100] (factor 0.2), but we follow the simpler proof of Furedi, Kahn, and Kleitman:

Theorem 2.6.2. For sufficiently large n, there exists a Sperner family F c 21n1
such that I A (.F) I > 0.059 * 2n .

Proof. Let k := L 2 J ,1 :_ I2 - s -]'and u := I2 + $ We will restrict

the shadow to the [l, u]-rank-selected subposet of B which we denote by Q. For
its size, we have by (7.1)

11

IQ, = ,E (n)

z,,+ z +2

\ \ 2/
- d> (_/)) n 0.5204 * 2n. (2.80)

We will see that for sufficiently large n there exists a Sperner family F in 21n1 such
that

I0(Jc)I>0.1146*IQI. (2.81)

Together with (2.80), this yields for sufficiently large n,

IA(F)I > 0.059*2n.

Let t := u + 1 -1, c := e(log(e + 1) - 1) = 0.8515... , and p be the solution of

tp(k) = c.

Clearly, limn + (k) = oo; thus,

lim tp = 0. (2.82)
n-*oo

Let l; be a random variable taking on values from S {1, . . . , t, t + 1} such that

p if i = 1,...,t,
1-tp ifi=t+1.

Let {I;K : K E (1k)} be a set of (completely) independent copies of 4 (in the
following K always belongs to (1k)). For j = 1 + 1, ..., u + 1, we define the
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random families

,Fj := {X E ([nI)
: K c X) = j

'17:= U F.
j=1+1

Note that then the random family A (.F) is contained in Q and that I A (F) J is a
random variable which is a function of the i;K, K E (kl).

Claim.F is a Sperner family in 2(").
Proof of Claim. The existence of some j, j' with l + 1 < j < j' _< u + 1 and

of some X E Fj, X' E .Pj, such that X C_ X' could be the only obstacle. Since
X E F j, there is some K C_ X such that K = j - 1. But then also K C X' and
min 14K : K C X'} < j -1 < j' -1 in contradiction to X' E Jj'.

For each A E Q, we define the random variable 1)A by

71A =

Then

1 ifAEA(,r),

10 if A 0(F).

E(Io(F)U = E E 71A) _ E(11A) = P(A E 0(F)).
\AEQ AEQ AEQ

If we can show that P(A E .(F)) > 0.1146 for all A E Q, then there must be
a realization of the K, K E ((k)), that is, also a realization of F, such that (2.81)
holds.

Claim. P(A E A(F)) > 0.1146 if A E Q.
Proof of Claim. For sake of abbreviation, always let i j + 1 - 1. Let

A C [n], JAI = j, I < j < u. Then

P(A E 0(F)) = P(3b E [n] - A : min{l;K : K C A U {b}} = i)

> P(min{K:KCA}>iand
3bE[n]-A:min{I;K:KCAU{b}}=i)

= P(min{'K:KCA}>iand
3bE[n]-A:minRK'u(b):K'C A, K'E(k")l)) =i).

In the following, K' always denotes an element of ( kn)1). The events in the last
conjunction are independent since the index sets of the corresponding random
variables, namely {K : K C A} and (K' U {b} : K' C A, b E [n] - A} are disjoint
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and the K, K E ([k1) are (completely) independent. Thus we may continue:

P(A E 0(.F)) = K C A) > i)P(2b E [n] - A :

u {b) : K' C A} = i). (2.83)

Now we compute and estimate both factors. We have (note (2.82))

P(min{K : K C_ A} > i) = fl i) = (1 - ip)(k) > (1 - tp)(j)
KcA

> (1 - tp)(k) = (1 - tp)`It' = e-`(1 + o(1)).

For the second factor, we need a little bit more effort:

P(2b E [n] - A : min{4K'u{b} : K' C A) = i)

= 1 - P(Vb E [n] - A :min{4K'u(b) :K'CA}¢i)

= 1 - fl P(min{K'u{b}:K'CA)#i)
bE[n]-A

=1- fl (1-P(min{i;K'u{b}:K'cA}=i). (2.84)
bE[n]-A

Next we estimate for all b E [n] - A the probability in the RHS of formula (2.84).
We have u (b) : K' C- A) = i if for all K' C_ A, K' u {b} > i and not for
all K' C A, 4K' U {b} > i. Thus

P(min{ K'u(b) : K' C A) = i) _ (1 - (i - (1 - ip)(k1)

> (1 - ip)(k'i) >

(k- 1
P

(for the last estimation we used the Binomial Theorem and the relation 0 < 1-ip <
1 for sufficiently large n in view of (2.82)). For the first factor of the RHS, we have
by Bernoulli's formula,

1 > (1-ip)(k''1)> 1-(k, 1)ip>
(k u

l)tp

1-(k)tpu-k+l =1+0(1).

To estimate the second factor, we first observe

(k) -
(U)]

u u-k+1 (k)
(u-k+1)k

(k)
(u-k+1)k

u-k+1 a-!
- 1 +i-

(u)(' u - k + 1) _ (uk)e-1 ( 1 + 0(1)).
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Thus

(k
> J) p

- (k) j - k
k

+ 1 p

tp(k)t(j k+ 1)
1e-1(1 +o(1)) = 1(1 +o(1)),

and we derive

P(min {'K'U(b} : K' C A} = i) > el (1 +o(1)).

Insertion into (2.84) yields

P(3b E [n] - A : K' C A} = i)

> 1 - (I - C (1
+o(l))n-j > 1 - e ei(1+o(1))("-j)

- el
C

e-e)(,+a(,))

(here we used Proposition 2.6.1(a)). Thus the estimation of both factors in (2.83)
yields

P(A E A(.F)) > (1 +o(1))e-`(1 - e-e).

For c = e(log(e+ 1) -1), the function on the RHS attains its maximum 0.1147... .
Thus, for sufficiently large n,

P(AEA(.T'))>0.1146.

Without proof we mention the following upper bounds of Kostochka [322]:

Theorem 2.6.3. If n is sufficiently large then for any Sperner family Fin 2(nl

(a) I A (F) I < 0.725 * 2",

(b) IA (F) U V(.P)I < 0.9994 * 2".

A related result for the boundary of a filter was previously obtained by Kostochka
[321]. The next modification of the probabilistic method for the construction of
large families without forbidden configurations has the following basic idea (see,
e.g., Kleitman [305]): Construct a collection (i.e., repetitions are allowed) of m
members entirely at random. Then compute the expected number of forbidden
configurations in it (e.g., comparable elements, nonintersecting members, etc.). If
this number is at most km, then there must be some collection having no more
than Am forbidden configurations, so that, by omitting at most elm members, we
can obtain a collection (often automatically without repetitions, i.e., a family) of
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the desired form of size (1 - A)m. Now let us illustrate this idea (with a slight
modification). We are looking for large (p, q)-Sperner families in Bn (see [157]).
Here a family .F of subsets of [n] is called a (p, q )-Sperner family if the intersection
of any p members of F is not contained in the union of any other q members of
F. Note that a (1, 1)-Sperner family is a usual Sperner family. Let d"; p,q be the
maximum size of a (p, q)-Sperner family in B".

Theorem 2.6.4. We have
n

2p+q p+q-1

dn;p,q C (2p+q - 1)

P+9-1where c:=(p+q-1) app+-+q

Proof. Let (X1, ... , Xp, 1 ,---... , Xp+q) be a sequence of p + q randomly,
independently chosen subsets of [n], where equidistribution is assumed (analogous
to the proof of Theorem 2.6.1). Let a := 2p+q

2p+q -1
Claim. The probability of the event X1 fl . . fl Xp c Xp+l U . . U Xp+q equals

(Q )n.

Proof of Claim. As in the proof of Theorem 2.6.1, we consider the random
sequence as a random 0, 1 -array with n rows and p + q columns where the jth
column is the characteristic vector of X. We have X1 fl fl XP c Xp+1 U . . U

Xp+q if in the corresponding array there is no row of the form (1, ... , 1, 0, ... , 0)

(p ones and q zeros). This gives the probability (2p+g-1 )"
Zp+q

Now we construct at random a sequence (X1, ... , Xm) of m subsets of [n] and
after that we pick, step by step, p + q of them in all possible ways, which gives
m (m - 1) ... (m - p - q + 1) sequences of the form (Xi1..... Xip, Xip+l , ... ,
Xi p+9 ). By Claim 1 we obtain for the expected number µ of events Xi 1 fl ... fl X; p c

Xip+1 U . . . U Xip+q the value

For.k > 0, we choose the largest m such that µ < Am. We then have
1

m > (.ka") p+g-1

since form < r(Aa") p+q-1 1

µ
/

< m(m - 1)p+q-1 I
a)n

< m(,la") (!)n = ,lm.

Clearly there must be a fixed sequence (X1, ... , Xm) with at most Am "bad" events
described above. We may destroy such an event by taking away, for example, X,1.
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Then simultaneously p!q! events are destroyed, namely those that are obtained
by permuting it, ... , i p and 1p+1 , ... , i p+q, respectively. After all these events
are destroyed, we retain a sequence whose members form a (p, q)-Sperner fam-
ily of size at least m - ``(note that repetitions always yield a "bad" event).
Consequently,

{
n

dn; p,q f(A)a P+9-T

where fo,) = (1 - ;' , )A v+a The function f (,l) attains its maximum in R+ at

A = p+9 . The corresponding value of f equals the constant c from the assertion.

The concluding example of this section shows that other parts of probability
theory also can be applied successfully. First we need some preparations. Let S
again be an at most countable subset of R. Let = (v'1, .. . , ln) be a discrete
random vector that takes on only values from S. Further let (i i, ... , 1Jr) be that
random vector which takes on values from Sr with probabilities

P(771=Sl,...,rlr=sr)= E P(1=s1,...,4.=sn)
(Sr+l,...,S,,)ESf-r

Here we call this vector marginal random vector. Clearly, it can be considered as
the restriction of the old vector to the first r components, so we denote also the new
vector by(1;1,...,lr)instead of(rll,...,>)r).For1 <il < <ir <n, we may
define in the same way the marginal random vector (j..... , ,r). The components
l4, can also be considered as one-dimensional marginal random vectors. It is easy
to see that "being marginal" is transitive, in particular we have:

Proposition 2.6.2. If (41, ..., l ,_I) is marginal to (1;1, ..., fin) and 4 l is marginal
to ( t ; t , ... , 4n _ 1), then l ; l is marginal to (1;1, ... , W.

The entropy of any n-dimensional discrete random vector taking on values from
Sn is defined and denoted by

P( = s) log P( = s)
S ES"

Here 0 log 0 is defined to be 0.

Theorem 2.6.5 (Entropy Inequality). Let bean n-dimensional discrete random
vector and let 1, ... , Sin be its components, that is, the one-dimensional marginal
vectors. Then

n

H(W.
i-1
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Proof. We proceed by induction on n. The case n = 1 is clear. For the step
n - 1 -+ n, let rl := i n_1) be the corresponding (n - 1) -dimensional
marginal random vector. We write briefly t := (sl, , Sn-1)1 Pt,s" P(rl =
t, Sn = Sn), pt P(17 = t), ps" := sn). Then we have

T pt's 109
(t,s")ES"

H(i7) + Pt log Pt - Ps" log An
tES"-' S"ES

pt's" log Pt - E Pt,s" log PS" .
(t,s")ES" (t,s")ES"

We restrict the summation to those elements (t, sn) for which pt,,,, > 0. Then
(noting Proposition 2.6.1(b))

(H(rl) + Pt's" log (?L?) 1
P1,s"s"

Pt, S.

Pr PtPss"" -

_ PtPs" -TP:,s" = 1-1=0.

From the induction hypothesis and Proposition 2.6.2 we infer finally

H(i7) + H(s4n) < (H(1) + ... + H(n_1)) + H(n)

The notion of entropy stems from physics and is also used in information theory.
The entropy inequality has many applications, for example, in search theory, cf.
Aigner [22]. Here we will reflect briefly the set theoretic point of view. We use
again the letter H for the definition of the function H(.k) -.1log,l - (1 -
A) log(1 - A), 0 < ), < 1.

Corollary2.6.1. Let.T' be a family of subsets of [n], .P(i) := {X E T: i E X),
and a1 :_ 1`). Then

n

log
I.FI

< H(al)
t-1

Proof. Let m := I.T'I. We identify F with the set C, of its characteristic vectors,
that is, C,,- c {0, 1}n and m = I I . Let = (1, ... , fin) be the discrete random
vector that takes on values from {0, 1}" with probabilities

ifs E C,F,

0 otherwise.
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Then obviously P (l i = 1) = ai, P 0) = 1 - ai, i = 1, ... , n. We have

1 1H() _ - log
-=
= log m

'EC7

-ai logai - (1 - ai) log(1 - ai) = H(ai).

Now the asserted inequality is a direct consequence of Theorem 2.6.5.

Frankl (see [27]) observed that the following frequently used inequality can be
easily derived:

Corollary 2.6.2. For every 0 < p < and for every natural number n,

(n) nH(P)

i<np

Proof. We use the notations from Corollary 2.6.1.Let.F := {X c [n] : IXI < np}.
Counting the number of pairs (i, X) with i E [n], X E .T', i E X in two different
ways, we get

n

I.F(i)I = X. (2.85)
i=1 XE.F'

According to I.F(1) l = = I.F(n) I and IXI < pn, we obtain for all i

nlF(i)I < pnl.Fl,

ai < p.

Since H(A) is increasing in [0,
2

], it follows by Corollary 2.6.1 that

n

log ICI < H(ai) < nH(p),
i=1

which is equivalent to the assertion.

As a "real" combinatorial application of Corollary 2.6.1, we present a result of
Kleitman, Shearer, and Sturtevant [310] answering a question of Erd6s.

Theorem 2.6.6. Let k > 1 and let.F be a k-uniform family in 21n1 such that all
intersections of two different members of .F are pairwise different. Then there is
some c > 0 such that

I.FI < (2 - E)k.

Before we look at the proof of this theorem, note that the bound 2k is trivial since
for some fixed X* E F the sets X n X*, X E F, are pairwise different subsets of
X*, and IX*I = k.
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Proof. Let us define F(i) and a,, i = 1, ... , n, as in Corollary 2.6.1, and let
m := IFI. Observe that we may suppose

m > 2k2, (2.86)

since otherwise the proof is trivial. Moreover, we can suppose that 0 < a; < 1 for
all i; otherwise delete the corresponding element in the basic set [n]. Let C be the
family of intersections of two different members of F,

g(i) :_ (Y E 9 : i E Y), i = 1, ... , n.

It is easy to see that

11/mICI=
1)I

(I21) ai(1 -ai)
2

/) i = l 121 l2) - a m -1

We apply Corollary 2.6.1 to the family 9 with the corresponding numbers iii and
obtain

log 12 (2.87)

In order to estimate the RHS we need some preparations: The equality (2.85) reads
in the present case

n n

klFl, i.e., a, = k. (2.88)
i=t i=t

Claim 1. We have for all i, H(i4,) < H(a3) + m/e1 a,.
Proof of Claim 1. We have for 0 < < 1, H'(,l) log,. + log(1 -

+ 1 1) < 0; thus H'(,l) is decreasing, and by the mean-value
theorem,

H(a?) - H(pi) 2

M-1

Hence

H(a?)-H(1i) >
m ,

a, (1-a,)log(1- a,)> a; 1

-m , 1

.2
Claim 2. We have E"=1 H(a?) < k where ,L* n=t k )at .

Proof of Claim 2. Let f (?) := H(A2) , 0 < ,l < 1. We have for 0 < ,l <
1, f"(A) _ -3t12 X2) (2,12 + (1 -.l2) log(1 _'X2)) < 0 since for the function
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g(1) := 21 + (1 -1) log(1 -1) there holds g(0) = 0 and g'(1) = 1 - log(1 -1) >
0, 0 < 1 < 1. Thus f is concave and by Jensen's inequality and (2.88) we have

H(a2) = k
k
Cli f(a,)) < kf E kai) = kf(,l*) = k

r=1 =t =1

From (2.87), (2.88), Claim 1, and Claim 2, we infer

(m)
n *2

)log2<H(a2)+
n

1 elat<k H,* +mletr=1
r-1

The function f (,.) attains its maximum at.X = 0.4914... , and its value is there
1.1249.... With (2.86) we obtain for k -* oo

2

< e1.125k+o(k) < 3.08k+o(k)
2 -

Thus

m < 2 + 4 + 2 * 3.08k+o(k) < (2 - e)k for some e > 0.



3

Profile-polytopes for set families

In this chapter we will discuss from a linear programming point of view profiles of
families of subsets of [n] belonging to certain classes. Concerning the terminology
we refer to Schrijver [421] and Nemhauser and Wolsey [377]. The investigations
were initiated by Erd6s, Frankl, and Katona [175].

With each family F we associate its (reduced) profile f = p(F), where f =
(fl, ..., fn-1)' and, as always, fi :_ i{X E F: JXi = ill, i = 0, ... , n. Since
in some cases the empty set 0 and the whole set [n] play a special role, we will
restrict ourselves to the reduced profiles - without fo and f, - although for the
sake of brevity we omit the word "reduced" In applications, one should not forget
to add these special sets if possible and necessary. Given a class 2t of families,

µ(`.2l):=(p(F): FE 21)

is a finite set of points in Rn-1. The convex hull of a set µ C Rn-1 is denoted as
conv(A). (The convex hull of a set µ of points is the set of all convex combinations
of finite subsets of µ, that is, the set {A,1 f 1 + + ?, f,. where if,, ..., fl c It
and 0 < Xi for all i and Fi_1 ki = 1).) The set conv(µ(2t)) is called the profile-
polytope of 2t. (A polytope is the convex hull of a finite set of points. The dimension
of a polytope is the smallest dimension of an affine subspace of the Euclidean space
containing the given polytope.) Let E(µ) be the set of extreme points of conv(µ).
(A point of a convex set is an extreme point if it cannot be written as a convex
combination of two other points from the given set.) Clearly E(µ) c A. It is easy
to see that

conv(µ) = conv(E(µ)).

The profile-polytopes conv(µ(21)) for the class of Sperner families and the class
of intersecting families, respectively, are illustrated for n = 3 in Figure 3.1 (the
encircled points are the essential extreme points, which will be introduced later).
Often there arise optimization problems of the following kind:

84
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f2 f2

fl

Sperner

Figure 3.1

Let w = (w 1, ... , w, _ 1)T be a given vector. Determine for a class 2t of families

M(2t, w) := max { E wIXI E 2t = max{wTf : f E µ(2t)}. (3.1)
l XEF

Obviously,

M(2t, w) < max{wTf : f E conv(A(2t))}

= max{wTf : f E conv(E(p(21)))}.

Let f* E E(µ(21)) be chosen such that

wTf * > wTf' for all f' E E(it(2t)).

For f = Ef'EE(N( )) Aff E conv(E(A(2t))) (where 0 < Af' for all f' and
E ,Xf, = 1), we then have

wTf = ;f'wT.f' I: Af'
wTf* = wTf*,

f'EF(N-(`2)) f'EE(µ(2t))

hence

M(2t, w) = max{wTf : f E E(µ(21))}. (3.2)

In general we have far fewer extreme points than profiles and the maximization on
the extreme points is only a numerical problem. So it is of great interest to have
an overview of the extreme points for several classes. This is the main aim of this
chapter.

Note that a polytope may be also defined as a bounded polyhedron where
a polyhedron is the set of solutions of a system Ax < b; cf. [421, p. 89]. As
before, any linear objective function attains its maximum at some extreme point.
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A point x E Rn is an extreme point if it satisfies all constraints and n independent
constraints (i.e., the corresponding rows of A are linearly independent) are satisfied
as equalities, cf. [421, p. 104].

Moreover, we would like to know "all" inequalities that are satisfied by all
profiles of families belonging to some class. For instance, if 2l is the class of
Sperner families in 21n1 we have derived the LYM-inequality ;`_ f,/(n) < 1.
The strongest inequalities are those which represent facets of conv(µ(21)). An
inequality cTx < b defines a facet F of a polytope P if this inequality is satisfied
by all x E P and if F := {x E P : cTx = b} is one dimension lower than P. All
other valid inequalities (i.e., those that are satisfied by all elements of the polytope)
can be obtained by taking a nonnegative linear combination of these facet-defining
inequalities and by increasing the RHS; cf. [377, p. 88 ff] and [421, p. 93]. Note
that, if the polytope P is given by a system P := {x : Ax < b}, then all facets
can be defined in the form aT x = bi for some i where aT (resp. bi) is the ith row
of A (resp. the ith coordinate of b); cf. [377, p. 89]. The second objective of this
chapter is to derive the facet-defining inequalities.

3.1. Full hereditary families and the antiblocking type
Let µ be a finite set of points in N. This set µ is called full if all unit vectors ei
(with 1 at coordinate i) belong to µ, and it is called hereditary if x E µ, x' <
x, x' E Nn imply x' E µ (i.e., if it is an ideal in the direct product Nn, where N
is, as usual, linearly ordered). We will study full hereditary sets of points since we
will investigate later on only full hereditary classes of families of subsets of [n].
Here a class 21 is called full if for all X c_ [n] the one-element family [X J belongs
to 2l, and it is called hereditary if g c_ . E 21 implies 9 E 21. It is obvious that
the set µ(2l) of points from Nn-1 is full hereditary if 21 is full hereditary (in our
general investigations we work with Nn instead of Nn-1). In fact, we may also
replace everywhere N by I[8+, then in the definition of fullness we only need that
aei E Aforsomea > 0(i = l,...,n).

Lemma 3.1.1. Let A be full and hereditary.

(a) For all i, xi > 0 is a facet-defining inequalityfor conv(µ).

(b) All other facet-defining inequalities for conv(µ) have the form alxl + +
anxn < b with ai > 0 for all i and b > 0.

Proof. (a) Let us consider the inequality xl > 0, which is true for all x E conv(µ).
Let F := {x E conv(µ) : xl = 0). The points 0, ei, i = 2, ... , n, are affine
independent (i.e., e2, ..., en are linearly independent) and belong to F. Hence
dim F= n- 1 and F is a facet.
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(b) Since g is full, for all i, xi < 0 cannot be a valid inequality, so all other
facet-defining inequalities for conv(g) must have the form a t x t + + anxn < b,
where at least two coefficients, say al and a2, are nonzero. Assume, for example,
that at < 0. Let F := {x c conv(g) : aixi + + anxn = b} be a facet. There
exists some extreme point x of F (which is also an extreme point of conv(g),
i.e., belongs to g) with xl > 0 since otherwise F would satisfy two independent
equalities Ei=1 aixi = b, xl = 0 and thus have dimension less than n - 1. Now
let x' be the vector that can be obtained from x by changing the first coordinate
into zero. Then X' E g, but aixi + + anxn = b - alxt > b, a contradiction.
From a t> 0 we may derive b > 0 since e t E g.

Of course, we can divide the facet-defining inequalities of the form (b) in
Lemma 3.1.1 by b, and the RHS becomes 1. Furthermore, for each i there must
be some facet-defining inequality with ai > 0, since otherwise there would be no
restriction from above for xi and conv(g) would be unbounded. Thus we obtain:

Theorem 3.1.1. Let g be a full hereditary set of points in Nn. Then there exists a
nonnegative matrix A with no zero column such that

conv(g) = {x E 118+ : Ax < 1}.

A full-dimensional polytope (i.e., a polytope of dimension n) in Rn of the form
given in Theorem 3.1.1 is said to be of antiblocking type. The theory of blocking
and antiblocking polyhedra was developed by Fulkerson in [206, 207, 208].

If, in general, P is any polytope of antiblocking type, P = {x e 118+ : Ax < 1 },
where A is a nonnegative matrix with no zero columns, then the antiblocker P`
of P is the polytope

P` y E l[8+ : yTx < l for all x E P}.

Let c i , ... , Cr be the extreme points of P and let C be the (r x n) -matrix whose
rows are cT,...,CT .

Theorem 3.1.2. We have

(a) P`={yER+:Cy<1},
(b) (P`)` = P.

Proof. (a) Let Y E PC. Then cT y = yTCi < 1 for all i since the ci are
special elements of P. Hence C y < 1. Conversely, let y E 118+, C y < I.
Every point x of P can be written as a convex combination of the extreme
points: x = Fi=1 aici, ai > 0 for all i, ai = 1. Consequently, yTx =
Ei=1 a,(yTCi) < Ei=t ai = 1. Hence y E P.
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(b) Let x c- P. Then xT y = yTx < 1 for all y E P'. Thus X E (P')'
The rows aT of A belong obviously to P`. Thus, if, conversely, x E (P')`, then
xT a t = aTx < 1 for all i ; hence Ax < 1, that is, x E P.

In Figure 3.2, we illustrate the antiblockers (conv(p (2t)))` where 21 is - as for
Figure 3.1 - the class of Sperner (resp. intersecting) families and n = 3.

Y2 Y2

1

3

i

3

Yi

3

Sperner intersecting

Figure 3.2

We call an extreme point c of a polytope P essential if there is no other point
d of P with c < d.

Theorem 3.1.3. Let A be a nonnegative matrix with no zero column and define
P:={xEIIB+:Ax<1).

(a) If c is an extreme point of P, then there exists some essential extreme point d
of P such that, for all j, cj > 0 implies cj = dj .

(b) Besides y > 0 the facet-defining inequalities for P` are given by

dTy<1, i=1....,s,
where d 1, ... , ds are the essential extreme points of P (these are called the
essential facet-defining inequalities for P').

Proof. (a) Let c be an extreme point of P. Without loss of generality, we assume
that ct+l = . . = c = 0, but cl, ..., ct > 0. Let c' :_ (cl, ... , ct)T and
c" := (ct+1, ... , c )T . In Ax < 1 there must be t inequalities that are satisfied
by c as equalities, and these equalities together with xt+l = = x, = 0 must
be independent. Consequently we can divide A into the form A = (A'IA") and,
more precisely,

A=
(A1 r All

A' All
2 2
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where Arc' = 1, rank Al = t, A'c' < 1. Since A does not contain a zero
column (otherwise we would have rank A, < t), we cannot increase in c one
of the coordinates j = 1, ..., t without changing the others. Now consider the
coordinates j = t + 1,...,n.

Case 1. The jth column of A',' is not a zero column. Then we cannot increase
coordinate j without changing the others.

Case 2. The jth column of A" is the zero column, for example, for j = t + 1.
Then we can increase the (t + 1)th coordinate until a strict inequality becomes a
new equality (note that the (t + 1)th column of A2 cannot be the zero column).
The resulting point d is an extreme point since

Ai 0
rank =t+ 1,

and we have, together with xt+2 = = x" = 0, n linear independent equalities.
So we have seen: Either there is nod E P with d > c, d ,-b c (and thus c is an
essential extreme point) or there is some extreme point d with the property that
for all j, cj > 0 implies cj = dj and d has one more nonzero coordinate than c.
Now we can argue for d in the same way and since there are at most n nonzero
coordinates we find after a finite number of steps the desired essential extreme
point.

(b) The inequalities y > 0 are facet defining by a similar reason as in Lemma
3.1.1(a). Let c be an extreme point of P that is not essential and let d be an
essential extreme point with the properties of (a). Suppose, w.l.o.g., that cl = 0
but dl > 0 and assume that F :_ { y E P` : cT y = 1 } is a facet. Then there must
be some y* E F with y, > 0, since otherwise we would have two independent
equalities cT y = 1, yl = 0 for F, and thus F would be at most n - 2 dimensional.
But obviously y*Td = dT y* > cT y* = 1, a contradiction to y* E P'. Now
let c be an essential extreme point and assume that F := { y E P` : cT y = 11
is not a facet. We shall use the notations before Theorem 3.1.2 and suppose that
c = Cr. Let P' be the convex hull of c 1, ..., c,_1 and let C' be obtained from
C by deleting the last row. Of course, P' (; P. But if F is not a facet, then
P` = { y E ][8+ : C' y < 1} and by Theorem 3.1.2(a), P" = PC. In view of
Theorem 3.1.2(b), P = (P`)` = (P")c = P', a contradiction.

In form of Theorems 3.1.2 and 3.1.3 the facet-defining inequalities for P are
given by the essential extreme points of Pc. So our goal in this section is the
following: Given a full hereditary set A of points in N, find the essential ex-
treme points of conv(A) and (conv(A))°. Suppose we are given candidate lists
lei, ... , c,) and {y 1.... , yQ } for these extreme points. How can we prove that
these lists are correct and complete? Let p' be the hereditary set in N" (resp. R+)
determined by c l , ..., c,s; that is, let A' be the ideal generated by c 1, ..., c,s,
and let P := conv(A'). All our lists will have the property that A' is full; thus
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by Theorem 3.1.1, P is of antiblocking type. Note that, by the definition of P,
its essential extreme points belong to (c I, ... , cs}. Moreover, we define Q analo-
gously, using -y t . ... . rye . Our method of proof is as follows:

Step 1. Verify that ci E it for all i. This yields P C conv(µ).
Step 2. Verify that -I x < 1 for all j and for all x c it. This yields A c Qc;

that is, conv(z) c Qc.
Step 3. Show that Qc _c P or Q 2 P. This yields (using Theorem 3.1.2(b))

that P c conv(t) c Qc c_ P; that is, P = conv(,tt) and Q = (conv(t))'. Either
we can show that for every element x of Qc there exists a convex combination of
c 1, . . . , cs which majorizes x (it suffices, of course, to test the maximal elements
x of Qc) or we can determine algebraically the essential extreme points of Pc
by considering the corresponding system of inequalities. We are done if these
essential extreme points are contained in {y1, ... , ye}.

Step 4. Show that the candidate points are in fact essential extreme points. The
test of being essential will be in our cases trivial. To see that the points from the
list are extreme points we need only verify that they cannot be majorized by a
nontrivial convex combination of other points from the same list, and this will
also be easy. Of course, we could also verify that the points satisfy n (resp. for
the reduced profiles of set families n - 1) independent equalities in the system of
linear inequalities defining Qc (resp. Pc).

Now let us come back to our set families. We denote the set of essential extreme
points of conv(µ(2t)) (resp. of conv(µ(2t))') by E*(µ(2t)) (resp. iP*(t(21))). Note
that our objective function (3.1) satisfies by (3.2) and Theorem 3.1.3(a),

maxjci,O)fi:M(21, c) = max f E E*(it(%)) .

The determination of E* and o* is still too difficult. But we can reduce the problem.

3.2. Reduction to the circle
We start with a general fact for polytopes of antiblocking type. For a matrix D and
a polytope P, let D P :_ {Dx : x E P}.

Theorem 3.2.1. Let P := {x E ]R+ : Ax < 11 and P' := {x e : A'x < 11,
where A and A' are nonnegative matrices with no zero columns. Further let
D := diag(dl,... , dn) be a diagonal matrix with positive diagonal elements.
Let c l , ... , cs be the essential extreme points of P. If P c D P' and Dci E P
for all i then

(a) P = D P' and Dc 1, ... , Dcs are the essential extreme points of P.
(b) Pc = D-lP'c
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Proof. (a) Let x = Dx' with x' E P'. We have to show that x E P. Since
x' can be written as a convex combination of extreme points of P' we have by
Theorem 3.1.3(a):

S s

x' < > aici with ai > 0 for all i and ai = 1.

Then x = Dx' < F_i-1 a; Dc, . Since P is convex and in view of the supposition,
the sum on the RHS belongs to P, but then obviously x belongs to P. The point
Dc 1 is an extreme point of P since otherwise it could be written as a nontrivial
convex combination Dcl = Axl + (1 - A)x2 with xl, x2 E P. With xi = Dx'i,
X' E 1, 2, we obtain Cl = Ax'1 + (1 - A)x2, a contradiction. Moreover,
Dc 1 is essential by an analogous argument.

(b) We have

PC={yER" :yTx<1forallxE P)
_ {y EIR+: yTDx'<1forallx'E P'}

_ {D-1z E ll8+:zTx' < 1 for all X' E P'}=D-1 Pa'.

We use Katona's circle method [295] together with this theorem to solve a much
easier problem for set families. Let be a cyclic permutation of [n]. A subset X
of [n] is called consecutive in if its elements are consecutive on the circle; see
Figure 3.3. If 21 is a class of families of subsets of [n], let 21(x) be the class of

Figure 3.3

those families from 21 whose elements are consecutive in and let µ(21G)) :=
{p(F) : F E 2((4)). For a permutation r of [n], a subset X of [n], a family F
of subsets of [n] and a class 21 of such families we put 7r(X) := {7r(i) : i E X),
n(.F) := {7r(X) : X E F), and 7r(%) := {7r(.F) : F E 20. The class 21 is said to
be permutation invariant if 7r (%) = 21 for every permutation n of [n].
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Lemma 3.2.1. Let 2t be permutation invariant and let l , 2 be two cyclic per-
mutations. Then µ(2t01)) = µ(21G2)).

Proof. Let r be the permutation that sends i (1) onto (1), i = 1..... n. Then
F E iff,r(.F) E

In the following we consider only permutation-invariant classes, so we restrict
ourselves to the permutation

C :_
1 2 ... n- 1 n

2 3 ... n I

As for 21, we can introduce the sets conv(µ(2t(C))), e(µ(21(C))), e*(µ(21(C))). If
21 is hereditary then also 21(C) is hereditary. If 21 is full, then for every X c_ [n] that
is consecutive in C, the family {X } belongs to 21(C). Thus under these two suppo-
sitions, conv(µ(2t(C))) also has the form of Theorem 3.1.1, and moreover there
exists the antiblocker (conv(µ(21(C))))` and the set p*(µ(2t(C))) of its essential
extreme points.

Theorem 3.2.2. Let 21 be a full hereditary permutation-invariant class and let
D := n diag((i), ... , (n" )). Then conv(µ(2t)) C Dconv(µ(21(C))).

Proof. Let cl, ... , Cr be the extreme points of conv(µ(2((C))). Let F E 2t and
let f be its profile. We have to show that f can be written as a convex combi-
nation of Dcl,... , DCr. For any cyclic permutation , {X E F :
X is consecutive in } and let f be its profile. Since f belongs to µ(21(C)),
we can write f in the form

r r
f ai with ai 0 for all i, E ai G) = 1.

With each X E .T' we associate the profile fX of the family {X }, which is a unit
vector with 1 at coordinate IXI. Finally, let

E :_ {(X, X E F, is a cyclic permutation, X is consecutive in

Obviously,

f=Tfx
XE.F

For fixed ,
f (o = T fx.

X X X (n -- 1) !
(i

cyclic
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permutations with the property that X is consecutive in . Hence

(n-1)1 D .fx =fx
:(X,()EE

Summarizing we obtain

(n 1
1) 1

E Df (n 1 I)! D.fx
X:(

x (n

1

1)! D.fx= 1:fx=f
XE.F

So we have

93

f = (n 1 I)i E E
(n

1)! Eai(O Dc,,

which is obviously a convex combination of the vectors Dc; since there are in
total (n - 1) ! cyclic permutations.

3.3. Classes of families arising from Boolean expressions
We say that a two-element family {X, Y} of subsets of [n] has the property

S if X Z Y and Y X (Sperner),
I if X n Y 0 (Intersecting),

C if XU Y 0 [n] (Cointersecting).

We speak of property S, I, C if {X, Y} does not have property S, I, C, re-
spectively. Let B = B(S, I, C) be a Boolean expression of S, I, C; for example,
B = (S n I) v C (we write briefly B = SI v C). A family Y of subsets of [n] is said
to be a B -family if each two-element subfamily of F satisfies the Boolean expres-
sion B. For instance, F is an (SI V C)-family if for all different X, Y of F, X, Y are
not comparable with respect to inclusion and have a nonempty intersection or their
union is the whole set. Note that the class 2tB of B-families is full, hereditary, and
permutation invariant for every Boolean expression B. Determining the maximum
size of B-families, Gronau [246] developed a reduction technique that allows us
to consider only a small number of Boolean expressions instead of all 223 Boolean
expressions. This reduction method was generalized by Derbala and me [134] in
connection with the study of profile-polytopes. I will not address these technical
questions here. Instead we will study only those Boolean expressions that are most
interesting from the point of view of profile-polytopes. Interesting, but unsolved,
are the questions for B = IC (cf. [199]) and B = IC v 1 C (cf. [246]), so we will
not discuss these expressions. The following theorem consists of a list containing
the sets a*(µ(2tB)) and cP*(µ(21B)) and the maximum size of B-families for eight
Boolean expressions B. From the preceding section we know that this list gives
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deep informations for B-families. Certainly the complete proof will be tiring for
the reader. Skipping the "long" cases at first reading is recommended. Later one
can look, if necessary, at the other cases. We use the following notations for vectors
and families of i-element subsets of [n]:

ei (0, ... , 0, 1, 0, ... , 0)T, where 1 is at coordinate i, i = 1, ... , n - 1,

u, li)ei v,
//

:= In-l)e1 x'1 lni
1\e,

µi M
/1e, L,

(/ li

1 1

l

-I)
e, 41i (nl) eis

Ui(i" Vi{XE(E"1):1EX} 10X}.

Clearly, ui, vi, wi are the profiles of U1, Vi, Wi. Note that vi + wi = ui, i =
1, ,n-1.

Theorem 3.3.1 (Profile-Polytope Theorem). Let 2tB be the class of B -families.
Then we have the following essential extreme points and essential facet-defining
inequalities (given by the vector of coefficients) of the convex hull of the profiles
of families from 2tB; see Table 3.1.

Here (and in the following proof) all vectors with index 2 (resp. Z 1) must be
deleted if n is odd (resp. even). Sums in which the lower bound is greater than the
upper bound are defined to be zero.

Before we start with the proof let us make several remarks.

(1) Throughout we may suppose that the B-families do not contain 0 and [n] as
members since we are only considering reduced profiles (without fo and

(2) The difference between an I- and an I V C-family is that pairs of comple-
mentary sets are allowed in the second one. The same is true for SI and
SI v C-families, which are both Sperner families.

(3) SIC-families are also called families of qualitatively independent sets. Here,
two subsets X and Y of [n] are said to be qualitatively independent if they
divide [n] into four nonempty parts (X - Y, Y - X, X fl Y, [n] - (X U Y)).
(It is easy to see that a family with the property that any two members are
qualitatively independent is an SIC-family and vice versa.)

(4) It is easy to see that one can add to each member X of an SIC V 71 -C-family its
complement X :_ [n]-X such that the new family is still an SICv7 C-family.
A self-complementary Spernerfamily is a Sperner family.F with the property
that X E F implies X E F. Obviously, F is a maximal self-complementary
Sperner family if it is a maximal SIC V 7 C-family.

(5) A complement free Sperner family is a Sperner family F with the property that
X E F implies X V F. The S(IvC)-families are exactly the complement-free
Sperner families.
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Table 3.1
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® Essential extreme Essential facets

max J.Fl points E*(/L(2B)) *(µ(` a))

1n-1

n {ui :l <i <n-1} S µi
lL2J)

1

l 1

n-i n-1
vl'+ uj:l< <i<2}U

2
n_1 J=i j=n-i+l {n_

< n 2 1 1 2, i + j < n}

IVC
(n-i-1 n-1

f
v+ u:l< {"µ:1<i<U

21 + j=i j=n-i j
n

n

SIC {vi:l<i<2}U
(L$J n-1+ E wjl

l n 2
{w < j < n- 1j : 2

`=1 j=L2J+1
L 2 J

SICVIC {vi+wn-i:1<i<2}U vi+
I

2( n-2)LZJ {u" }
2

t ET

wj+Z
Z<j<n-L:n-j¢T

T C {1,..., L2-1i)1

S(IVC) {ui:l<i<n-1} n-1 µi
n

LZ J) if n is odd,
i=t

if n is odd,
{ui : l < i < n -

( + A ) +
Ii 2}U Aj n-j

=1j
{vi+wj:l<i<2,j=2 (1-n)vn+
on=2,2 < j<n-1} "

if n is even n (vj + wn_ j)
j=i+1

1<i<2}U{vn)
if n is even
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Table 3.1 (cont.)

Fs _I { ui " < i < n - 1 } U2 -
it-1 r

1 r v + r (1 - `k=1) *
1 n

{Vi + - Wj : 1 < I <_ z,
i=1 k=l

ik+1-1
1+j>n}U{V1} E Vi+n'

i=ik

n-ik+l
E Wj +

J=n-ik+I +2

µn+I

l
tr+1 = [n21 ] }

_
SIvC {ui :"-<1<n-1)U

2

it-1 rvi +k)
nl i {vi + w1 1 <

i=1 k=1

ik+l-1i<n,i+jn} Vi+n
i=ik

n-ik
F Wj+µn

J=n-ik+1+l

1l1 < it < ... < it+1 = [21
1

(6) For B = I and B = I v C, we could have written in the third column vi
instead of E µi . However, we prefer our notation because of the nice analogy
with e*(it (21stvc)) (resp. cP*(µ(21sj)))

(7) If B is the Boolean expression that can be obtained from B by interchanging
the letters C and I, then obviously F is a B-family if -F:= [X: X E F} is
a B-family since X n Y# 0 if X U Y 0 [n]. Thus the extreme points for B-
families can be obtained by reversing the extreme points for B-families; that
is, (xt, x2, . , Xn-1)T + (xn-1,... , x2, xl)T (note that ui vi -+
Wn-i, Wi -+ Vn-i, µi -+ µn-i, Vi --* Wn-i, Wi -+ Vn-i).

(8) Since many mathematicians contributed to this theorem, it cannot be attributed
to any author in particular. Some historical remarks follow the proof.

Proof. The maximum sizes in the left column of the table follow from a calcula-
tion of max{lTc : c E E*(µ(2tB))}, using the symmetry and unimodality of the
binomial coefficients (by this maximization we find only maximum B-families
that do not contain 0 and [n] since we consider only reduced profiles; only in
the cases I and I v C we have to add [n] to the families in order to obtain the
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real maximum). As an example we show this for B = I V C. Let c; be the ith
vector in the set E*(µ(2t)). Then we have c;+l - ci = -vi + wn_i_l; that is,
1T(ci+t - ci) _ -("-i) + (n i l) > O iff l < i < Z. Hence

max{1TC : c E E*(11(2t))} = 1TC[7.j = 2`1 +
n

(ii2) - 1LZ]

and the addition of 1 (corresponding to [n]) gives the maximum.
Let us note here, that the vectors given in the second column of the list are

profiles of B-families. Indeed, all these vectors have the form

C=1: ui+1: vi+1: wi,
iEJ3

and it is easy to see that, in each case, c is the profile of the B-family

(uue)u(uv)u(uw).I2 l3

To proceed with the proof, we introduce new vectors

u1 := nei v' := iei w/ (n - i)ei

A' nei vi = lei wi = nliei.
Obviously, ui = Du:, vi = Dv'., wi = Dw:, µi = D-1µ'., vi = D-lv:,

wi = D-l w 1 , i = 1 , ..., n - 1, where D :=
n

diag((i), ... , (nn Let us
replace in the list of the theorem every vector by its "dashed" vector, for example,
ui -+ u'. If we can show that the "dashed" list is the list for the classes %B (C),
then we are done by Theorem 3.2.2, Theorem 3.2.1, and the fact that the undashed
vectors belong to µ(2(B), that is, also to conv(µ(2[B)) - see the remarks earlier. So
let us restrict ourselves to the classes 2tB(C) and read the list always as a dashed
list. Fork, I E [n], let

{k,k+1,...,1} ifk <1,

(k,k+1,...,n, 1,...,1) ifk> 1.

Thus [k, l]modn is consecutive in C. For the sake of brevity, we will omit below
the index mod n since this will be clear from the context. We say that k is the
starting point and 1 is the endpoint of [k,1]mod n Conversely, every consecutive
set different from [n] has a unique representation [k, l]modn

For the proof, we have to verify that the dashed list is correct and complete.
We are doing this by the method described after Theorem 3.1.3. We use also the
notations P and Q. Step 1 is easy to verify since we can argue as before for the
undashed vectors. We have only to use the sets Ui', Vi', Wi', which are defined
the same as Ui, Vi, Wi but with the additional condition that the elements are
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consecutive in C. Step 4 is easy, too, and therefore omitted here. We still have to
verify Steps 2 and 3. As a warm-up, we start with the easiest case.

Case B = S.
Step 2. We have to show that"=11 f /n < 1 for every Jr E 2ls(C), that is, for

every Sperner family of being subsets of [n] consecutive in C. This inequality is
true since no point can be a starting point more than once.

Step 3. We have f E QC if f > 0 and Ei=i f /n < 1. The convex com-

bination _i=, (1 - _i=1 .f ln) un_1 majorizes f . This proves the
case.

Before we consider the other cases, we will prove two lemmas. Let Ni (C) be
the family of all i-element subsets of [n] that are in C consecutive. For .F c N1(C),
let

Vc(r):={YEN,+1(C): YDXforsome XE.r},

and let AC be defined analogously. We say that a set B of starting points of members
of .T forms a block if B = [k,1 ] for some k and l but k -1(mod n) and 1 + l (mod n)
are not starting points of any member of Y.

Lemma 3.3.1. Let Jr c N1(C), i = 1, . . . , n - 1, and suppose that the set of
starting points of members of Jr consists of m blocks. Then

IVc(Jr)I = IJI +m if i < n - 2,

IAc(r)I = I.71 +m if i > 2.

Proof. Under the conditions on i, a block [k, 1] of starting points for Jr yields the
block [k -1(mod n), 1] of starting points for VC (Jr) and the block [k, 1 + 1(mod n) ]
of starting points for L1 (.E), and these new blocks are disjoint for different old
blocks.

Lemma 3.3.2. Let Jr C N1(C), 1 < i < 2, and let .T' be intersecting. Then

(a) IJI < i,
(b) w`+1 )l > L

Proof. (a) Suppose, w.l.o.g., that [1, i] E.F. By the suppositions of the lemma
every member of Jr must have a starting point or an endpoint in [ 1, i ]. Let S (resp.
E) be the set of starting points (resp. endpoints) of elements of Jr lying in [1, i].
In particular, 1 E S, i E E. Clearly, [1, i] is the only element of Jr having both
a starting point and an endpoint in [1, i]. Consequently, IJI =ISI +IEI - 1.
The elements of E + 1 :_ {k + l(modn) : k E E} cannot be starting points
by the suppositions. Thus ISI i - (IEI - 1) (we cannot exclude i + 1) and
IJI <-i-IEI+I+IEI-1=i.
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(b) Since I.FI < i and, by Lemma 3.3.1, I Vc (.F) I > IJ7I + 1, there holds

IVC (.F)I > 1 +
1 > i + 1

IFI I.FI i

Cases B=I and B=IvC.
We treat these cases together. The proof is outlined for B = I ; the particularities

for B = I v C are attached in boxes.
Step 2. The inequalities < 1 are true for all i < 2

Lemma 3.3.2(a)

i < 2 , F E 21B (C) by

note that Fi is intersecting for i < 2;
f,-t < n is clear

over, we have to verify the inequalities

nj
f` +

1 f -<lfor j >n,
ni n 2

and, equivalently,

i+j<n

(n - j)

l
+ f < n.

. More-

j> "-2,i+j <n

Using Lemma 3.3.2(b) we obtain for our i and j

i i - n -j

No element of 0cn---` (Ji) can be a complement of an element from Yj by our
suppositions. Accordingly,

and we conclude

IV -3-`(.Fi)I <n-f,

nj
i

f <n - f.
Step 3. Let f be a maximal vector satisfying the inequalities

nj 1

ni f` + n
f < 1,

n1 <i < -, 1 <i < n

j> 2,i+j<n

j ,i + j < n, and f_i < n41,

Since f is maximal we have

f-t < f' 2 < i < n
i-1 i' 2

2<i <a

(otherwise we could increase f up to r-i without disturbing the inequalities).
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We denote the points from the list by

n-i n-1
ti',jr +Ci 1: E

j=i j=n-i+l

1 <i < n+l
2

C, n-i-1 yr + n-1 ur 1< i<t = 1=i J `J=n-, J,

With

fl
a1 i,
a,: if-1' 2<i<Ln21J

fLyJ-1
aLn ,J := 1-

Ln21J-1
L

L

nJ

J-1-alJ :=1- -"

we obtain the desired convex combination, satisfying

L+J
f E aici

i=1

f Fi!laici

2<i<L2nJ

To see this, consider the kth coordinate of the RHS. We have in the kth coordinate
fort<k<Ln21J-1 1<k<LZJ-1

k(ai +...+ak)=k kk =A,

and form <k<n-1 < k < n - 12

k(ai +...+an-k)+n(an-k+1 +'''+aLY)

k(al + + an-k-1) + n(an-k + ... + aLlJ)

which equals

k fn-k + n 1 - fn-k
n-k n-k) kA-k-' +n (1 - fn_k-I )n-k-1 n- -1

and these terms are not smaller than fk since f satisfies, in particular, the inequality

n-k 1

n(n-k)fn-k+nfk <_ 1 n(-11)fn-k-1+nfk:1

If k = n - 1, we arrive at the inequality fn-1 < n, which is evident.

even odd there remains the value k = n k -

If n is

. Here we obtain for the kth

coordinate k, which is not smaller than fk by 4 < 1.
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Case B = SIC.
Step 2. We have to show that

l J n-1
f` + f < 1 for all .F E A(% (C)).

i=l+ln-1

Let r := min{IXI : X E .77) and s := max{IXI : X E F}. We may suppose
that r + s < n, because otherwise we could consider the complementary family
T which is an SIC-family, too. Suppose further that [1, r] E F. By the Sperner
property, every i E [n ] can be at most once a starting point (resp. an endpoint) of a
member of F. Since.F is an SIC-family, every member of .F different from [1, r]
must have either the starting point or the endpoint in [ 1, r]. Let S (resp. E) be these
sets of starting points (resp. endpoints) in [1, r]. The elements of E + 1 cannot be
starting points since F is intersecting and cointersecting. By the arguments used
in Lemma 3.3.2, IFI < r. Consequently, using r + s < n,

L J f + f <SE i=ICI<
i=1 1

i=LJ+In - j i=r r r

Step 3. Since we have, besides f > 0, only one facet-defining inequality for
Q`, the essential extreme points of Q` must have exactly one nonzero coordinate
and they must satisfy the essential facet-defining inequality. This gives the points
from the list.

Case B=SICvIC.
Step 2. As mentioned in the fourth remark after Theorem 3.3.1, we can add the

complements of members of F to F, and the resulting family is still a B-family.
So we may suppose that f = fn;, 1 < i < 2. Consequently we only need to
prove that

nf f+-<1.
1<t< I n

Let

(3.3)

F1:={xEF:IXI<21

U {XEF: lXI = 2, 1 E X}, .F2 :=.r-F1.

Then F1 and.F2 are SIC-families. From Step 2 of the preceding case we obtain

f f
+ + f <2.

1<i< t 2 3<i<n_1

n- i

This verifies (3.3) because f, = fn_;, 1 < i < .
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Step 3. We have f E Q` if f > 0 and

c[n-I l
+ +f2 <1for all T

2 JieT Z<i<n-I nn
n-iOT

Let
n

ai := 1 max{ fi, fn-j), 1 < i <
n

, ac --.
1 2 2 n

Then f is majorized by rI<i<n ai(vi + wn_i) + anug and we have
E1<i< ai < 1 (take the set T {i E {1,..., [n21 J} : f > fni}). Now
we can increase one of the a's such that the sum becomes 1 and we get the desired
convex combination majorizing f.

Case B = S(I V C).
Let n be odd. Since the points ui, 1 < i < n - 1, belong to µ(Qts(1vC)) we have

conv(s(2(s(JvC))) 2 conv(p (215)). Every S(I v C)-family is an S-family; hence
conv(µ(2ts(tvc))) c conv(µ(2ts)). Thus we can apply the results for B = S.

In the following let n be even, n = 2m.
Step 2. We have to verify that fn m (this follows directly from Lemma 3.3.2)

and that
i m-I

T ( + f"-j) + i (_+_ /
+ (n - i) m< n for all F E 2tB(C),

j=1 1=i+1 J J /
1 <i <m. (3.4)

Take a family F for which the LHS is maximum. If f,,, = 0 then the LHS is not
greater than n, since we already derived for S-families the relation Ej-,' f < n.
So assume that fn > 0.

Claim 1. If [1, m] E .T', then either [2, m + 1] or [m + 2, 1] is in T.
Proof of Claim 1. Suppose that [m + 2, 1 ] F. We try to add [2, m + 1 ] to .T' (if

it is not already there). The only obstacle could be a member X of F that is either
contained in [2, m + 1] or contains [2, m + 1]. In the first case, X has to contain
m + 1, because otherwise it would be a subset of [1, m]. Thus X = [j, m + 1] for
some 2 < j < m + 1. Similarly, if X contains [2, m + 1 ] then X = [2,1] holds for
some m + 1 < 1 < n. Since F is an S-family, at most one of these possible sets
X can be in F. Delete this X and add [2, m + 1] to F. This change increases the
LHS of (3.4), which is a contradiction to our choice of F, and the claim is proved.

A pair of complementing, in C consecutive, m-element subsets is called an
equipartition. We say that an equipartition is represented in F iff one of the parts
is a member of F. Claim 1 states that if an equipartition is represented in F then
the neighboring equipartition is also represented. By induction, this results in
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Claim 2. All equipartitions are represented in .F; that is, fm = m.

Claim 3. Let X and Y be members of F with sizes different from m. Then
X n Y 0.

Proof of Claim 3. Let J Xi < J Y J and, w.l.o.g., Y = [1, j]. First suppose j < m.
By Claim 2 and since F is an S-family we have [j + 1, j + m], [m + 1, n] E .T'.
If X is disjoint to Y, then X must be contained in the union of [j + 1, j + m] and
[m + 1, n ], but neither of these sets can contain it alone. Hence [m, j +m + 1 ] c X
follows. But then JXi > j, a contradiction. The case j > m is easier. The set
[m + 1, n] (belonging to F, as above) covers the complement of Y; therefore X
cannot be a subset of Y since F is an S-family.

Claim 4. Let X and Y be members of F with sizes different from m. Then
XU Y :A [n].

Proof of Claim 4. In Claims 1-3 we may replace everywhere the family F by
the family T. However, Claim 3 with F is equivalent to Claim 4 with F.

The last two claims result in:
Claim 5.F - .gym is an SIC-family.

Now we are in position to prove inequality (3.4). We use the corresponding
inequality in Step 2 for B = SIC. We have

i ' m-1
i) mE(fj+fn-j)+i Y (4+i)+_

4 jj=1 j=i+1
M-1 <

Z

JJ + fn j + (n - i) A < i + (n - i) fm

j=1 j j m m
= n.

Step 3. We use the algebraic method to determine the essential extreme points
of P`. The polytope is characterized by the system

nnyi<1,1<i<n-1, 21

iyt +mym < 1, 1 < i <
n
2,

mym + (n - j)Yj < 1,
n

2
< j < n -

Y i > 0, 1 <i <n-1.

Suppose that y is an essential extreme point. We have

Yk =
min{n, k(1 - mym)}, if 1 < k < 2,

{min{n, -n (1-mym)}, if -<k < n2 -1,
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because otherwise we could increase yk. If y,,, = 0 then y is obviously not essential.
If Y" = m thenyj = 0, 1 < j < n-1, j 0 Z;thatis, y = vm.Solet0 < Ym < m
Then there must exist some i with 1 < i < 2 or some j with 2 < j < n - 1 such
that

nyi=1andiyi+mym=1(resp.nyj=1andmym+(n-j)yj=1),

since otherwise we had at most n - 2 linearly independent equalities for y. For the
case 1 < i < 2 (the case 2 < j < n - 1 can be treated analogously), we derive

I

i

(n-j)n

ifj=m,
ifI<j<iorn-i<j<n-
if i < j <m,

ifm < j <n - i,

that is, y has the form given in the table.
Cases B = SI and B = SI v C.
We treat these cases again together, the particularities for B = SI v C are

attached in boxes. This time we change slightly our method of proof. In Step 2
we show that f E (P`)` for all .F E 2tB(C). This yields the desired inclusion
conv(t(2tB(C))) c P. In Step 3 we determine the extreme points of P', which
will be exactly the points from the table. For both steps, the following lemma is
useful.

Lemma 3.3.3. Let y be an essential extreme point of P'. Then

(a) Yi = l and yy = n

(b) (i - 1)yi-1 ?: iYi,

Y2 =
t
n

2<i 2 2 < i < 2

(c) (n - j) y > (n - j - 1) yj+l , 2 < j < n - 2,

(d) iYi + Y - 1)Yn-i+l = 1, 2 < i < 2 iYi + iyn-i = 1, 1 < i z

Proof. PC is characterized by the following system:

Yi < 1,

nyj < l, 2<j<n-1

iYi + (n - j)yj < 1,

2 < j < n - 1

<i<n i+j>n
<i<2, i+j>n

Yi?0, 1 <i <n-1.

(3.5)

, (3.6)

(3.7)

(3.8)
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Let y be an essential extreme point of P'.

(a) These equalities are satisfied, because we could otherwise increase the com-
ponent up to 1 (resp.

n)
and no other inequality would be violated.

(b) If we had (i - 1) Yi-1 < i yi, then we could increase yi-1 until we get equality
in the last inequality without violating any other inequality, so y could not be
essential.

(c) If we had (n - j)yj < (n - j - 1)yj+1, then we could increase yj and use
analogous arguments.

(d) Suppose that iyi + (i - 1)yn-i+1 < 1 1 iyj + iyn-i < 11 for some i. Then
we have by (c),

y,,-1 < 2yn-2 < ... < (i - 1)Yn-i+1 < 1 - iyi

Yn-1 -< ... < iYn-i < 1 - iyi

so that we can increase yi such that the supposed inequality becomes an
equality without violating any other inequality of our system.

Step 2. In order to prove f E (P`)` it is sufficient to show that

YTf < 1, i.e., E ylxl < 1 (3.9)
XEY

for all y satisfying the inequalities in Lemma 3.3.3 and the inequalities (3.5)-
(3.8). Let r := min{IXI : X E .P} and s := max{IXI : X E F}. Recall that we
may exclude the whole set [n] to be a member of Y. Thus an SI V C-family is
always an S-family.

Ifr > 2 then, by our conditions on y, we have ixl <r > n
2

EXE.F n , and the last sum is not greater than 1 since F is a Sperner family (look
at the case B = S). The case r = 1 is trivial. So we can suppose that

n2<r<2 2<r<

Let, w.l.o.g., [1, r] E F.
Case 1. r + s < n + 1 r + s < n . (For B = SI v C, we can suppose that

[r + 1, n] E F, since we could otherwise add this member to F.) By the Sperner
property no i E [n] can be more than once a starting point (resp. an endpoint) of
a member of Y. By the intersecting property of F every member (up to [r + 1, n]
in the case B = SI v T) must have either a starting point or an endpoint in [1, r].
Let S (resp. E) be these sets of starting points (resp. endpoints) in [1, r]. Let

ylxl if i E E,

0ei : {l
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where in the first case X is the unique member of 1' having endpoint i,

I

yIxI ifi E S,

0 ifi V S,

where in the first case X is the unique member of T with starting point i.
Claim 1. We have

ei + si+1 < I + Yn-r+1
r r

ei +si+1 < r ,1<i<r-1.
Proof of Claim 1. The case e; = si+1 = 0 is clear. If e; > 0, si+1 = 0, we have
= Ylxl for some X E F and consequently ei <

n

< r for 2 < IXI < n - 1e;

2<IXI<n-1 andei<Xl <1for 1<IXI<2 1<IXI<1 .If
1

e; = 0 and si+1 > 0 we can use the same arguments.
So let ei = ylxl and s;+1 = Ylzl for some X, Z E Y. We must have

IXI + I Z I > n I I XI + I Z I> n I in order to ensure the condition x n z 0

or X U Z = [n] . If X and Z have both cardinalities >

then e1 + si+1 < n < .

So let us, w.l.o.g., assume that r < IXI 2

IZI > 1 . Since we are in Case 1 we have

IZI<s<n+1-r
If I Z I < n - r then by (3.7)

r<XI <2

IZI <s<n - r

n
2

> n
2

and IZI > i

r(Ylxl + Ylz) < I Xlyixi + (n - IZUYIzi < 1,

that is, e; + si+l < r . If IZI = n + 1 - r, then by the inequalities in Lemma 3.3.3,

r(Ylxl +YIzI) < IXIYIxI +ryn-r+l

< ryr + (r - 1)yn-r+1 + Yn-r+1 = 1 + Y,,-r+l,

that is, e; + si+1 < r (1 + Y,,-r+1)

Now we can use this claim to derive for B = SI (note Lemma 3.3.3(d))

r-1
Ylxl =Yr+T(ei+si+1)

xE.F i=1

< r (ryr + (r - 1)(1 +Yn-r+l))

= 1(r-1+1)=1
r
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and for B = SI v e
r-1

1 1

YIXI=Yr+yn-r+Y(e1+si+1)<+(r-1)Y=1.
XE1 i=1

This shows (3.9).
Case 2. r + s > n+ 1 r + s > n . We proceed by induction on r + s. We

can start at r + s = n + 1 Ir + s = n I, which we settled already in Case 1.

So let r + s > n + 2 1 r + s > n + 1 I. Consider the subfamily Fs := {X E
F : I X I = s} of Y. We can divide the set of starting points of members of F,s into
blocks as before Lemma 3.3.1. Suppose we have m such blocks.

Case 2.1. Every block contains at most n -s elements. It is easy to see that.'

F - Fs U is a B-family, too (the Sperner property is clear and property

I resp. C follows by the inequality r + s > n + 2 r+s
Claim 2. We have

IF51 <
n-sn-s+1

Proof of Claim 2. By Lemma 3.3.1, I Dc I = 1Fs 1 + m .
supposition of Case 2.1, 1Fs I < m(n - s); hence

m = Ioc(Fs)I -1Fs1,n-s
(n - s + 1)1Fs1 < (n - s) I Ac (.F,) 1.

Now we have

T YiXi = YjXI + IFslys - I oc(Fs)IYs-1
XE.F XE.F"

=L"YIXI+

In view of the

( 1
1 1

XE.F'

by the induction hypothesis, Claim 2 and Lemma 3.3.3(c).
Case 2.2. There exists some block B of starting points of members of J7, with

I > n - s. In this case we do not need the induction hypothesis. Let us remember
that [1, r] E F. The following starting points are possible for s-element members
of F in order to ensure that the corresponding sets do not contain [1, r]:

2,3,...,n - s+l andn -s+2,n -s+3,...,r
andr+ 1,r+2,..., r+n -s.

>n+1

Since B contains more than n - s elements, there must be some member of Fs
with starting point u E B satisfying n - s + 2 _< u < r. Denote R := [1, r], Z :=
[u, u + s - 1 - n]mod n Let us use the notion boundary point for either starting
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point or endpoint. Note that we have

R U Z = [n], (3.10)

any element of [n ] - Z is a boundary point of a member from F,s

(consider the members having starting points in 13), (3.11)

R fl z is the union of two nonempty intervals

I :_ [1, u + s - 1 - n] and J:= [u, r]. (3.12)

Claim 3. There are at most r + s + 1 - n members of F containing [n] - Z.
Proof of Claim 3. Let W R be a member of .F satisfying W D [n] - Z. One

boundary point of W must be in I U J U {u - 1, u + s - n) because otherwise one
of the conditions W [n] - Z, W 0 Z, W R would be violated. Moreover, if
both boundary points of W belong to I U J U {u - 1, u + s - n}, then they are
both either in I U {u + s - n) or in J U {u - 1). Let *(W) denote the boundary
point of W being in I U J U fu - 1, u + s - n) if there is only one. If there are two
such boundary points, let t1t (W) denote the one that is closer to [n] - Z; in other
words, the boundary point that is larger in I U {u + s - n} and that is smaller in
J U J u -1). It is easy to check that *(W) is an injection and that' (W) cannot be 1
orr.Therefore t/r(W)canhaveatmostiIUJI = u+s-l-n+r-u+1 = r+s-n
different values. Consequently, the number of sets W 0 R, W D [n] - Z, W E F
is at most r + s - n. Including R, we obtain the claim.

Claim 4. For all X E F, there holds

1

YIXI < -(I - (r - 1)Yn-r+1)
r

Proof of Claim 4. If IX1 < 1

(3.7). If IX1 > z lXI > z

YIXI Y (1 - ryn-r)

lXI<z then the inequality follows from

then y l X l< n and Yn-r+1 n

yield the desired inequality since n <
r

(1 - r--1 )

Yn-r <n

1 < 1(1 - r)n r n
13

Claim 5. There are at most 2(n - s - 1) sets X E F satisfying X U Z # [n]
and X Z, and at least n - s - 1 of them are of sizes.

Proof of Claim 5. Such a set X must have one of its boundary points in [n] - Z
(otherwise either X U Z = [n] or X C Z). As always, by the Sperner property,
every point of [n ] - Z is a starting point (resp. an endpoint) of at most one member
of F. The point u + s - n cannot be a starting point and u -1 cannot be an endpoint.
Hence we have at most 2(n - s) - 2 such sets. By (3.11) at least n - s > n - s - 1
of them are of sizes.
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Now we have finally by Claims 3-5 and Lemma 3.3.3(c) (note s > n - r + 1
s>n - r ) for B = SI

YIXI = YIZI + >2 YIXI + E YIXI
XEF XEF:XUZ=[n] XE.F:XUZ#[n],X#Z

r+s+1-n
<Ys+ (1-(r-1)yn-r+l)+(n-s-1)ys

r
n-s-1

+ (1 - (r - 1)yn-r+1)
r

_ (n-s)ys+1-(r-1)yn-r+1 <1

and for B = SI V C
r+s+l-n

yjXi <
Ys

+ r (1 - ryn-r)
XEF

n-s-1
+ (n - s - 1)y' + (1 - ryn-r)

r
_ (n-s)ys+1-ryn-r <1.

Step 3. We know already that every essential extreme point of P` must sat-
isfy the inequalities in Lemma 3.3.3 and (3.5)-(3.8). So there must exist integers

1 < it < < it < LZ J I 1 < it < < it < L12I J l such that with the

definition lr+l := Fn±I l2 it+l 121

1
=Y1=2y2=...=(il-1)yi,-t>ilyi,=...

= (i2 - 1)Yi2-1 > ... > ikyik = ...

= (ik+l - 1)Yik+l-1 > ... > iryir = ...

= (ir+1 - 1)Yir+,-1

and, for B = SI,

lYn-1 = ... = (il - 2)Yn-i,+2 < (i1 - 1)Yn-i,+l =
= (i2 - 2)Yn-i2+2 < ... < (ik - 1)Yn-ik+l =

= (ik+1 - 2)Yn-ik+1+2 < ... < Or - 1)Yn-ir+1 = . .

= (ir+l - 2)Yn-it+,+2

and, for B = SI v C,

lYn-l = (il - l)Yn-i,+1 < ilYn-i,

= (i2 - l)Yni2+1 < ... < ikYn-ik =

= (ik+l - 1)Yn-ik+,+I < ... < irYn-ir = ..

_ (ir+1 - l)Yn-it+,+I

(3.13)

(3.14)

(3.14)
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We must find n - 1 linearly independent equalities satisfied by y in (3.5)-(3.8).
We already have by Lemma 3.3.3(a) and (3.14)

1

Yn-ik+1+1

y7 - n (3.15)

and for the variables yl, ... , Yil-1, Yn-i1+2 Yn-i1+1

dent equalities (with the definition yn := 0) for B = SI

iyi + (i - 1)yn-i+l = 1,

and, for B = SI v C,

iyi + iyn-i = 1,

.. , yn-I the indepen-

Yn-i+1 = 0 (1 < i < il)

Yn-i = 0 (1 < i < i0-

Let us consider the 2(ik+1 - ik) variables Yik, ... , Yik+1-1, Yn-ik+1

... , Yn-ik+1+2
(3.13),

nYIP =

(3.16)

(3.16)

Yn-ik

k = 1, ... , r. We have by Lemma 3.3.3(d) and

iyi+(n-j)yj = Ifor ik<i <ik+1-1
andn-i<j<n-ik+1

n - i < j <n - ik (3.17)

and these are the only equalities in the inequalities (3.7) for the variables consid-
ered. If, conversely, (3.17) is satisfied then, for B = SI,

ZkYik = ... = (ik+1 - 1)Yik+l-1,

(tk - ')Yn-ik+l (ik+1 - 2)Yn-ik+1+2, ZkYik + (Zk 1)Yn-ik+l = 1,

and, for B = SI v C,

ikyik = ... = (ik+1 - 1)Yik+,-1,

ZkYn-ik = = (Zk+1 - l)Yn-ik+1+1,

ZkYik + ZkYn-ik = 1.

Accordingly, in the system (3.17) we can choose arbitrarily yn-tk+1 Yn-ik

and then the other variables are uniquely determined. Thus the rank of the system
(3.17) is exactly 2(ik+1 - ik) - 1 and we need one more equality in (3.5)-(3.8)
(independent from the others) for one of the considered variables. By (3.13) this
can only be the equality

Yn-ik+1 = -
n

Yn-ik = n

which implies
1 / ik - 1 ik (3.18)Yik = ik

I 1 n yik = k (1 - n )



3.3 Boolean expressions 111

We have seen: If y is an essential extreme point with associated indices i 1, ... , i,.,

then it must satisfy (3.15)-(3.18). Conversely, (3.15)-(3.18) yield a unique y,
which satisfies (3.5)-(3.8), so it is an extreme point, which is easily seen to be
essential. In detail, (3.15)-(3.18) yield

1Yi= -1<i<il-1,i'
yj =0, n-1> j>n-il+2 n-1> j>n-ii+1

and fork= 1,...,r,

- JYi =1r1
- ikn l/

and in the case B = SI,

ik<i <ik+1-1,

_ 1 ik-1
Y n-j n

, n - ik+l> j >n-ik+1+2

whereas in the case B = SI V C,

1 ik

Yj = ik n - ik> j >n-ik+1+1.n -jn
Consequently, we obtain the extreme points given in the "dashed" list. Thereby
the Profile-Polytope Theorem is proved.

Before examining some applications, let us consider the origins of this theorem.
First the maximum size (together with some inequalities) of families satisfying
certain condition was determined. The starting point was Sperner's theorem (B =
S, easily this gives also the solution for B = SI V C), and the trivial case B = I
was mentioned in [170]. The case B = SI was settled by Milner [370] and the
case B = I V C follows from a result of Erdo"s [167]. The problems for B = SIC
and B = SIC V I C were solved by Brace and Daykin [83], Bollobas [72],
Katona [297], Kleitman and Spencer [311], and Schonheim [418]. The solution
for B = S(I V C) was given by Purdy [392] (see also Greene and Hilton [231]).
Concerning polytopes the case B = S is trivial. As already mentioned, extreme
points have been determined for the first time by Erdo"s, Frankl, and Katona [ 175]
(B = SI), [176] (B = I). This was continued by Erdo"s and me [158] (B = SIC,
B = SI C v I C, B = S(I v C), by Derbala and me [133] (B = SI v C), and by me
[ 153] (B = I V C). The first nontrivial complete description of essential facets was
obtained by Katona and Schild [298] (B = SI). The rest was completed by me. We
considered here only some conditions, though there exist several other interesting
results. Concerning the maximum size of families satisfying various conditions we
refer to West [464] and the references therein. Sometimes the polytopes may be
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studied also without Katona's circle method; see the papers of Frankl and Katona
[199] and of Erdo"s and me [159].

Now let us come to some applications. As in the proof of the theorem we can find
the maximum size of B-families F with the additional property that a < IXI < b
for all X E .P where a and b are some fixed numbers. To do so, one has to use in
(3.2) the objective function given by the vector w with

I

I ifa <i <b,
0 otherwise.

I will not list all the formulas here (for reference cf. [249]). Moreover, we can
derive several LYM-type inequalities (originally not proved in this context) by
specializing some facets, but this is not my aim. I provide instead four examples
with a more interesting objective function w.

Let 1;1, ..., n be independent random variables, each taking value 1 with prob-
ability p and value 0 with probability 1 - p. Liggett [341] proved the following
lower bound for a convex combination of the , s, I [153] added the upper bound.

Theorem 3.3.2. Let al, ... , a, be positive real numbers with E"=1 a; = 1, and
letp> 2. Let

R :=

Then

0

n_1 _1 n+I
n' 1)pY(1 - P) _T_

if n is even,

if n is odd.

n

p < P(a1 1 + ... + I
n\

p' (1 - p)n-' + R,
t=LT_

and the bounds are the best possible.

Proof. Let F1 := {X C [n] : F_1Exai < 2) and F2 := {X C_ [n] : >2iExai >
2 }. Obviously, F1 is a C-family (containing 0) and .T72 is an I V C-family (con-
taining [n]). We have

P(a11 + ... +anAn < 12) _ pI XI (1 -
p)n-IXI

XE. 1

2) = E pIXI(1 - p)n-IXI

XEF2

Let f; be the full profile of Xi (i.e., with coordinates fo and fn), and let w =
(wo, ... , wn )T be given by wi := pi (l - p)n-', i = 0, ... , n. In order to ob-
tain the lower bound (resp. the upper bound) we have to maximize wTf for
f E it (%C) (resp. for f E µ(2(Iv-E)). For the lower bound, we take the "re-
versed" vectors from the table (extreme points) for B = I, add a 1 at a new
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0-coordinate, a 0 at a new n-coordinate, yielding the vector

ci (n f ,
(n)(n_l)(fl-_i)0 ' ...' 0)T ,

/ 1<i<n+

2

We then have to maximize wTC,, 1 < i < 21. It is easy to calculate

wT(ci+1 - Ci) = (i - 1)pi(I -
p)n-l

-
(nn

-
i)pn-,(I

- p),
n

= (i-1) (P1(1 -)n-` 1-\I
J_2i))

<0,
n+1

J2
- 1.

Hence the maximum is attained at the vector c and we have

n-1wTc1 = '(n-l)pi(1-p)n-' =I - p.
i=0

Consequently,

112) = 1-P(a1 2

> 1-(1-p)=p.
For the upper bound, we take the vectors from the table (extreme points) for
B = I V C, add a 0 at a new 0-coordinate, a 1 at a new n-coordinate. By the same
method we find that the maximum is attained at the last vector of the list (i = L

2
J).

This gives the value mentioned in the assertion. To see that the bounds are the best
possible, take for the lower bound a 1 := 1, a2 : _ : = an : = 0 and for the upper
bound at an

n

if n is even and al := n+1 a2 an = n+l
if n is odd.

Let P = { p1, ... , p,) be a set of pairwise different primes. Let k be a positive
integer and m = pI pn. We say that two divisors z and z' of m are qualitatively
independent if there exist p, q E P with plz, pl z', q { z, q { z' and if the existence
of some r E P with rIz, r { z' implies the existence of some s E P with s { z, sIz'.

Theorem 3.3.3. Let Q be a set of pairwise qualitatively independent divisors of

n-1 k
I QI -

j*
kt where j* [(n - 1)k k 11,

and the bound is the best possible.
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Proof. For Z E Q, let D(z) := {i E [n] : p, Iz}. Obviously, .FQ := {D(z) : z E Q}
is an SIC-family. For X c_ [n], there are exactly k1X1 divisors z of m with X =
D(z). Thus I QI < k1 x1. We take w = (wi,... , wn_1)T with w; := k`.
To obtain an upper bound for I Q I we have to maximize wTf for f E It (21sic)
Consider the extreme points of the list for B = SIC. It is not difficult to show that
the upper bound is attained at w j* with j * _ r (n - 1) k+t 1. To see that the upper
bound is the best possible, take Q := {zl m : I D(z) I = j* and pl t z).

A family F in S = S(k1, ..., kn) is called statically t-intersecting if for all
x, y E F there exist t coordinates i 1 , ... , i t such that x,j, y i j > 1 for j = 1, ... , t.
For X E S, we define the support of x by supp(x) := (i E [n] : xi > 1) and the
support of F by supp(F) := {supp(x) : x E F}. The following fact is immediately
clear:

Proposition 3.3.1. F C S is statically t-intersecting iff supp(F) is t-intersecting.

For an application of the polytope method, we consider the special case t = 1 and
k = kl = . . . = kn and look for maximum statically 1-intersecting families in
N1(S), 1 < i < kn. Examples of such statically 1-intersecting families are the
families Fj := {x E N1(S) : j < I supp(x)I < n - j and xl > 1} U {x E Ni(S)
I supp(x) I > n - j}.

Theorem 3.3.4. One of the families Fj is a maximum statically 1-intersecting
family in Ni (S).

Proof. Let W ; (k, n) : = I N i (S(k, ... , k)) I. For any statically 1-intersecting family
in Ni (S) and for any A E supp(F), we can add to F all x E Ni (S) satisfying
supp(x) = A. This gives Wj_JAI(k - 1, IAI) possibilities. Thus the maximum size
of a statically 1-intersecting family is given by

max j E W,_I AI (k - 1, IAI) : Q c 21"1 is intersecting I
AE9

Theorem 3.3.1, case I, shows that the maximum is attained at one of the families Fj.

It appears to be difficult to determine the right value of j exactly. In Section 7.3
we treat the problem (also fort > 1) from an asymptotic point of view. We will see
that for i = [.ln j in almost all cases the desired maximum is either asymptotically
equal to F1 or to W, (k, n).

The following fourth application was given by Erdo"s, Frankl, and Katona [175].
Consider injective words with letters from the alphabet 1, . . . , n, that is, sequences
x =X1 ... xk with xi E [n] for all i and xi # xj whenever i j. A subword of x
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is a sequence of the form xi, ... xi1 , 1 < i 1 < .. < it < k. Let W, be the poset
of injective words over [n] ordered by "being subwords"

Lemma 3.3.4. The width of W, is given by dl (We) = n!.

Proof. Writing the n! permutations of [n] as injective words gives an antichain of
size n!; hence dl (Wn) > n!. Then! chains x1 < x1x2 < < x1 ... x,,, where
xl ... xn is a permutation of [n], cover the whole poset Wn; hence dl (Wn) < n!.

Theorem 3.3.5. Let A be an antichain in Wn with the property that for any
x, y E A there is some letter i being neither in x nor in y. Then I A I < (n - 1)! + 1,

and the bound is the best possible.

Proof. With each word x = xl ... xk we associate the set of its letters L (x) _
{xl, ... , xk}. Let A be an antichain with the aforementioned properties, let 9
(L(x) : x E A), and let F be the family of maximal elements in Q. If X E F,
then by Lemma 3.3.4, A can contain at most I XI ! members x with L (x) c X.
Consequently,

IAI E IXI!.
XE.F

Obviously, .T' is an SC-family, and we can suppose 0, [n] V T. This time we take
the weight-vector w = (wl, ..., wn_1)T with w, := i!, and we have to maximize
wTf for f E A(2(sc). We take the reversed vectors from the list (extreme points)
for B = SI. For the vectors u j, 1 < i < i , we have

(n)
< (n - 1)! + 1,

i

and for the vectors vi + wj, i + j < n, i < j < n - 1 we have

n-1
+ j

n-1 i(n-1)!
+

(n-1)!
i. _i-1 j (n-i)! (n-1-j)!

< (n- j-1)(n-1)!+ (n-1)!
(j+ 1)! (n-1-j)!

(n-1)!+l
(for j = n -1 and j = n - 2 this can be calculated directly and for 2 < j < n - 2
one uses 1 < z and n_11_i), < 2). Also the vector Wn_1 gives only the value

(n - 1) ! (n -1) < (n - 1) ! + 1. Consequently we derived the upper bound. To see
that it is the best possible, take all words with n - 2 letters from [n - 1] and the
one-letter word n. 0
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The flow-theoretic approach in
Sperner theory

The general Sperner problem consists in determining the maximum weight of an
antichain or a k-family in a weighted poset and in describing all or at least some
optimal families (in the k-family case it is sometimes called the Sperner-Erdo"s
problem - as early as in 1945 Erdo"s [165] proved that the Boolean lattices have
the k-Sperner property). There are several other min (resp. max) problems related
to the Sperner problem, and we will discuss them in this chapter, too.

If the poset is not specialized in any way, we can, of course, only derive some
general formulas for the maximum weight. Min-max theorems are very impor-
tant. In order to give the reader an impression of such theorems we discuss Dil-
worth's theorem, which is as fundamental as Sperner's theorem. It relates an-
tichains of a poset to partitions of P into chains - that is, to sets D of pairwise
disjoint chains in P such that each element of P is contained in exactly one such
chain.

Theorem 4.0.1 (Dilworth's theorem [136]). The maximum size of an antichain
in a finite poset P equals the minimum number of chains in a chain partition.

Proof (Perles [381]). The inequality "<" follows from the fact that each chain can
contain at most one element from some fixed antichain. Thus it is sufficient to find
for each P an antichain A and a chain partition Z with I A I chains. We prove this
existence by induction on IPI. The case IPI = 1 is trivial. So consider the step
< IPI -+ IPI.

Case 1. There is a maximum antichain A that is different from the set of minimal
elements and from the set of maximal elements of P. Let F (resp. I) be the
filter (resp. ideal) generated by A. Clearly, F C P and I C P (strict inclusion).
Moreover, F fl I = A (p E F fl I implies the existence of al, a2 E A with
al < p < a2, i.e., al = p = a2 E A; A c F fl I is clear) and F U I = P

116
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(if there was some p c P - (F U I) then A U (p) would be a larger antichain).
Since A is also a maximum antichain in the posets induced by F and I there are
chain partitions OF and DI of F and I into IAI chains. Obviously, each chain of
OF (resp. 0I) must start (resp. end) in A. Thus we may glue them together in the
elements of A, which gives a chain partition of P into I A I chains.

Case 2. If A is a maximum antichain, then A consists of all minimal or of all
maximal elements of P. We choose a minimal element p and a maximal element
q with p < q. Obviously, the maximum size of an antichain decreases from P to
P - (p, q) by 1. The induction hypothesis gives us a chain partition of P - {p, q),
which together with the chain p < q is a desired chain partition of P.

Generally, min-max theorems can be derived from the Duality Theorem in lin-
ear programming together with often nontrivial considerations on integer optimal
solutions. Instead of this Duality Theorem our starting point will be the Max-Flow
Min-Cut Theorem of Ford and Fulkerson [183] and Elias, Feinstein, and Shannon
[145] and its generalization to min-cost flow problems.

Pioneering work in this direction was undertaken by Ford and Fulkerson [184]
deriving Dilworth's theorem from the Max-Flow Min-Cut Theorem, and by Gra-
ham and Harper [228] relating the shifting technique to flow problems. Another
pioneer, Frank [186], proved with the min-cost flow approach simultaneously
deep min-max results for k-families (i.e., unions of k antichains) by Greene and
Kleitman [233] and for unions of k chains by Greene [229]. The advantage of
this method is that it not only gives the min-max results in question, but it also
provides algorithms that efficiently determine the optima. Though this method
was used mainly in the nonweighted case, I present it here for the weighted case
because in several circumstances large posets can be reduced to small posets by
flow morphisms, a notion that was introduced and first investigated by Harper
[258]. The algorithms then run much more quickly if they are applied to the
small weighted posets. For instance, if the small weighted posets are chains, the
problems become more or less trivial and structural results can be derived for
the original poset. Because of the importance of these flow techniques, we will
not refer to other books but present main results in a separate section.

4.1. The Max-Flow Min-Cut Theorem and the
Min-Cost Flow Algorithm

Let G = (V, E) be a directed graph. Let s and t be two distinguished points of
V, the source (resp. the sink), and let c : E R+ be a given nonnegative valued
function, the capacity. Then the 5-tuple N = (V, E, s, t, c) is called a network;
in the following we are dealing with such networks. A flow on N is a function
f : E -+ II8 satisfying the following conditions:



118 The flow-theoretic approach

E f (e) = 1] f (e) for all p E V - IS, t } (conservation of flow) (4.1)

e=P e+=P

and,

0 < f (e) < c(e) for all e E E (capacity constraints). (4.2)

For any A, B C V, put

f(A, B) := E f(e),
e EA,e+EB

and let us define c(A, B) analogously. An ordered partition (S, T) of V (i.e.,
S n T = 0, S U T = V, and S, T # 0) is called a cut if s E S and t E T. For
example, ({s}, V - {s}) and (V - {t}, {t}) are cuts. The value v(f) of the flow f
is defined by

v(f) := f({s}, V - {s}) - f(V - {s}, {s}).

Moreover, c(S, T) is called the capacity of the cut (S, T). Not surprisingly, the
flow f is called maximal and the cut (S, T) is called minimal if v(f) > v(f')
for all flows f' and c(S, T) < c(S', T') for all cuts (S', T'). We speak of integral
flows f (resp. integral capacities c) if f, c : E -± N.

Lemma 4.1.1.

(a) For any cut (S, T) and any flow f in N, we have f (S, T) - f (T, S) _
v(f) <c(S,T).

(b) If for the flow f and the cut (S, T) the equalities

f(e) =
J c(e) if e- E S, e+ E T, i.e., if e is saturated,

to if e+ E S, e- E T, i.e., if e is void

are satisfied then f is maximal and (S, T) is minimal. Furthermore, v (f) _
c(S, T).

Proof. (a) In view of (4.1), (4.2), and t 0 S we have

v(f) = f({s}, V - {s}) - f(V - {s}, {s}) + 0

_ f (e) - > f (e) + I T f (e) - E f (e)
e =s a+=s `e-ES-{s) a+ES-(s)

_ f(e)-57, f(e)
e-ES e+ES

= f(S, S) + f(S, T) - (f(S, S) + f(T, S))

= f(S, T) - f(T, S) c(S, T) - 0.
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(b) From the proof of (a) we observe that v (f) = c(S, T) if f (S, T) = c(S, T)
and f (T, S) = 0 - that is, if the conditions of the lemma are satisfied. But then
for any other flow f' and cut (S', T') because of (a)

v(f') < c(S, T) = v(f) < c(S', T').

Remark 4.1.1. Note that we do not need the capacity constraints (4.2) to define
v(f ). Also without these constraints we have f (S, T) - f (T, S) = v(f ), since
in the proof of (a) we needed for this equality only the conservation of flow (4.1).

Now we are able to prove the central result of Ford and Fulkerson [183] and Elias,
Feinstein, and Shannon [ 145], which we formulate first only for integral capacities
since this case is interesting for combinatorial applications.

Theorem 4.1.1 (Max-Flow Min-Cut Theorem). Let N = (V, E, s, t, c) be a
network with integral capacity. The maximum value of an integral flow in N equals
the minimum capacity of a cut in N.

Proof. By Lemma 4.1.1 we only have to show that there is an integral flow f and
a cut (S, T) such that the condition of Lemma 4.1.1(b) is satisfied. We determine
f recursively. We start with fo = 0 and assume that we have already constructed
integral flows fo, ... , f . Then we build recursi'--cly a vertex set Si which we
consider later as a set of labeled vertices. We start with Sio {s} and assume that
Sio, ... , Sid are given. Let

Fib := {q c V - Sij : there is some p E Sid such that pq e E and

c(pq) or qp E E and 0}.

Case 1. Fib 0. Then we take some q E Fij and set Si,j+l := Si j U {q}; that
is, we label vertex q.

Case 2. F,,j = 0; that is, for all p e Sij, q E V - Sid

.f(pq)=
c(pq) if pq E E,

0 ifgpEE.

Since V is finite, Case 2 must hold for some j. At that moment or if earlier t E Sid
we put Si := Si j.

Now again two cases are possible:
Case 2.1. t E S; . Then there must be a sequence of pairwise distinct points

(po, pl, ... , pk) (called the flow-augmenting path) with an associated sequence
(el, ... , ek) of arcs such that po = s, pk = t and

either et = pi-1 pi and f, (el) < c(ei) (ei is a forward arc)
or el = pipe-t and fi(ef) > 0 (el is a backward arc).
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Let
E+ := min{c(ei) - f (ei) : el is a forward arc, 1 = 1, ... , k},
E- .= min{ fi (el) : el is a backward arc, 1 = 1, ... , k},
E min{ E+, E-}.

Then we obtain the new flow fi+t by

f(e) + E if a is a forward arc,

f +1(e) := f (e) - e if e is a backward arc,

f (e) if e is not an arc in the flow-augmenting path.

As illustrated in Figure 4.1, the flow conservation condition (4.1) is satisfied by
J. The capacity constraints (4.2) are satisfied by definition of E. Obviously,
f +1 is an integral flow since E is an integer, and v (f +i) = v(f) + E. Note that
E is positive, hence c > 1.

t t t t

Figure 4.1

Case 2.2. t 0 S; . Then f = f and (S, T) = (Si, V - Si) are a flow and a
cut satisfying the conditions of Lemma 4.1.1(b).

Since the value of any flow is bounded, for example, by the finite capacity of
the cut c({s}, V - {s}) and since the flow value increases in each step by at least
1, after a finite number of steps Case 2.2 must appear.

Remark 4.1.2. (a) The Max-Flow Min-Cut Theorem remains true if there is not
given for any arc e a capacity constraint f (e) < c(e). For such arcs, we write
c(e) := oc. But we must suppose that there is at least one cut of finite capacity
(this was the only condition we needed at the end of the proof).

(b) Instead of integral flows and capacities we can work with rational flows
and capacities. The result remains true since we can multiply by the common
denominator of the capacities.

From the practical point of view it is enough to consider rational capacities. If
we have real capacities we do not have a better lower bound for c than 0. So
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we cannot show that the preceding procedure terminates. Moreover, there exist
examples (cf. Lovasz and Plummer [356, p. 47]) where the flow values v(f)
do not converge to the maximum flow value. But we still have some indeter-
minacy in our procedure. We have not specified which point q we label, that
is, include into Si,j+l in Case 1 of our procedure. The possible points, the el-
ements of are called fringe vertices. We collect iteratively the fringe ver-
tices in a queue and take them by the principle "first in, first out" (FIFO). Tak-
ing the point q from the queue and putting it into the set Si,j+1, we obtain
the following new fringe vertices, which we append at the end of the queue:
jr E V - Si,j+l : qr E E and c(qr), orrq E E and fi(rq) > 0}. In
order to find the flow-augmenting path in Case 2.1, we store in the queue together
with the fringe vertices r the point q (with + or -) which led to r (by a forward,
resp. backward, arc). Then the path can be determined recursively beginning from
t. Moreover, we store together with r the largest possible e = e(r) with which
the flow change works. Obviously we have e(r) := min{e(q), c(qr) - f (qr)},
for a forward arc (resp. e(r) := min{E(q), f (rq)}, for a backward arc). In Case
2.1 we have then e := E(t). This is the so-called labeling algorithm using breadth
first search (BFS).

Without proof we mention the result of Edmonds and Karp [144]:

Theorem 4.1.2. The labeling algorithm using BFS determines after O(I V I I E I2)

steps the maximum flow and minimum cut in the network N = (V, E, q, s, c) with
c : E -+ R+.

Since by this theorem the algorithm terminates (or because of a continuity argu-
ment) we have in particular:

Corollary 4.1.1. Let N = (V, E, s, t, c) be a network with c : E -+ I[8+. Then
max{v(f) : f is a flow in N} = min{c(S, T) : (S, T) is a cut in N}.

The presented algorithm is easy to understand and to implement; see also Sedge-
wick [423] and Syslo, Deo, and Kowalik [449]. For more refined versions of flow
algorithms, we refer to Tarjan [451], Jungnickel [279], and Mehlhorn [363].

Now let us assume that we have for N a further integral function a : E - * N,
the cost function. The cost a (f) of the flow f is defined by

a (.f) .f (e)a (e),
eEE

and we are interested in a flow having minimal cost and some value vo given
in advance. The idea of Ford and Fulkerson [184] is to use a further function
n : V -. N, the so-called potential function, for a primal-dual approach. Let us
first prove an important lemma.
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Lemma 4.1.2. Let f be a flow of value vo in the network N with integral cost a.
Then f has minimum cost with respect to all other flows of value vo if there is a
function it : V -+ N with the following property:

f(pq) =

and

0 i f 7(q) - ir(p) < a(pq),

c(pq) i f n(q) - n(p) > a(pq)
for all pq E E, (4.3)

7r (s) = 0. (4.4)

Proof. For all pq E E, define a(pq) := a(pq) + 7r (p) - ir(q). Further let g be
any flow of value vo. Then (using Lemma 4.1.1(a) and the conservation of flow)

a(g) _ g(e)a(e) - E 7r (p) E g(e) + E 7r (q) E g(e)
eEE pEV a-=p qEV a+=q

_ g(e)a(e) + ir(p)(g(V - (p), {p}) - g({p}, V - {p}))
eEE PEV

_ E g(e)a(e) + rr(t)vo - 7r(s)vo
eEE

1: g(e)a(e) + von(t)_
eEE

Consequently,

a(g) - a(f) J:(g(e) - f(e))a(e) > 0
eE E

since every item of the last sum is nonnegative:
If a(pq) < 0, i.e., ir(q) - n(p) > a(pq) then f(pq) = c(pq) > g(pq).
If a(pq) > 0, i.e., ir(q) - ir(p) < a(pq) then f(pq) = 0 < g(pq).

Remark 4.1.3. If f and it satisfy the conditions of Lemma 4.1.2, then we derive
from the proof

a(f) = E c(e)a(e) + voJr(t).
eEE:U(e)<O

The following theorem shows that the converse of Lemma 4.1.2 is also true. Its
algorithmic proof is of practical (and for us also of theoretical) interest.

Theorem 4.1.3. Let N be a network with integral cost a. Let v* be the maximum
value of a flow in N and let 0 < vo < v*. Then there are a flow f in N of value
vo and a function 7r : V -* N such that (4.3) and (4.4) hold.
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Proof. We will construct f and it iteratively, starting with fo - 0 and 7ro = 0.
For fixed it, consider the network N,r = (V, E,r, s, t, c), where En := {e E E :
it (e+) -7r (e-) = a (e) }. Observe that changing a flow satisfying (4.3) and (4.4) on
N,r does not violate these two conditions. Assume that we are given some flow fk
and some potential function Irk. Now we apply the preceding labeling algorithm to
N,rk, but starting with fk. More exactly, in looking for a flow-augmenting path we
admit only arcs from E,rk ; that is, a point q is a fringe vertex if there is some labeled
point p such that pq E E,rk and fk(pq) < c(pq) orgp E Elk and fk(gp) > 0. As
before, we come after finitely many steps (repeatedly augmenting the flow along
paths) to a flow fk+l, a set Sk+1 of labeled vertices and a set Tk+l of unlabeled
vertices with t E Tk+1 such that

fk4_l (e) =
c(e) if7rk(e+) -7rk(e-) = a(e) and e- E Sk+l, e+ E Tk+1,

I 0 if 7rk(e*) - 7rk(e-) = a(e) and e- E Tk+1, et E Sk+1

(4.5)

(the finiteness is clear if we have rational capacities, and for real capacities we can
use the arguments of Edmonds and Karp in Theorem 4.1.2).

We change in this phase the flow value from v(fk) to v (fk+l ). Note that we
can also obtain every value between these two values since in Case 2.1 we need
not change the flow by the maximum possible value E (we can take every c' with
0 < E' < E). Given fk+i, Sk+1, and Tk+1, we change the potential function
defining

nk+1(p)
7rk(p) if p E Sk+1,

7rk(p) + 1 if p E Tk+1l
It is important to note that (4.3) and (4.4) remain valid in this case: (4.3) could be
violated (using the integrality of a and 7r) only if Irk (q) - Irk (p) = a (pq) and
p E Sk+1, q E Tk+1 (but then (4.5) gives fk+l (e) = c(pq)) or if7rk(q) -7rk(p) =
a(pq) and p E Tk+1,q E Sk+1 (but then by (4.5), fk+1(e) = 0). Now we
may continue with the labeling algorithm on the new network N,,+,. We show
that if fk+l is not maximal in N, then we change the potential function only
a finite number of times. Assume the contrary. Then we obviously have Sk+1 C
Sk+2 c .... So there must be an index 1 such that S1 = S1+1 = .... But fk+1 is not
maximal; hence by Lemma 4.1.1 there exists an edge e E E such that f (e) < c(e)
and e- E S1, e+ E Tt or f (e) > 0 and e+ E Si, e- E T1. In view of (4.3), (4.4),
and (4.5) (with l instead of k + 1), we must have 7ri(e+) - 7rl(e-) < a(e) (resp.
7rt (e+) -7r((e-) > a (e) ). So after a finite number of changes of the potential, the arc
e is included into the network N,,,, for some m > 1, but then 5m+1 Q S1 U {e+} j St
(resp. Sm+1 2 S1 U {e-} D St), a contradiction.

Summarizing, the algorithm works as follows: We change the flow a finite
number of times, then the potential a finite number of times, then the flow a finite
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number of times, and so on such that (4.3) and (4.4) are satisfied. It is easy to see
that there cannot be a flow-augmenting path in N,r from s tot if r (t) > E,e E a (e).
By the preceding remarks we come to the maximal flow after at most >eEE a(e)
changes of the potential function and then the algorithm terminates.

Remark 4.1.4. If for fixed potential 7r the flow value in the network N,r is in-
creased by e, then the cost increases by 7r(t)E since the first sum in Remark 4.1.3
remains constant.

Let us prove finally a technical lemma concerning flows in networks on directed
acyclic graphs (dags). Here a dag is a digraph G = (V, E) in which there are no
points po,... , pk such that pi pt+1 E E,i = 0, ... , k - 1, and pk po E E. For
example, the Hasse diagram of a poset is a dag. A directed elementary flow (def)
in a network N is a flow f for which there exist points s = po, pl, ..., pi = t
(forming a directed chain) such that pipi+1 E E, i = 0, ... ,1 - 1, and

f (e) =
(1 ife=pipi+l,i =0,...,1- 1,

0 otherwise.

We define and denote the support of a flow in N by supp(f ):={e E E
f (e) > 01.

Lemma 4.1.3. Let N be a network on a dag with a directed chain from the source
to the sink, and let f be a flow in N. Then f is a nonnegative combination of
directed elementary flows; that is, there are defs fl, ... , f and nonnegative real
numbers ).1, . . . , Ai such that f = .1 ft + + Aifi. If f is integral, the 's can
be taken to be integral, too.

Proof. We construct this combination by decreasing recursively I supp(f) 1. We
may assume that I supp(f) I > 0. Then there is some arc pipi+1 such that
f (pipi+i) > 0. Suppose first that pi ¢ s and pi+1 # t. By the conservation
of flow, (4.1), there must be arcs pi_1 pi and Pi+tPi+2 with positive flow. In the
same manner we find arcs Pi_2pJ_1 and Pi+2Pi+3 and so on. No point can appear
twice, because we have a network on a dag. Thus the procedure must end after
finitely many steps, say at pops and pk_ 1 pk. Stop is possible only if p0 = s and
pk = t. Now define ,1.1 := min{ f(pi pi+1), i = 0, ... , k- 1). Obviously, ,l1 > 0.
Further set

fi (e) :_
r 1 ife=pipi+1,i =0,...,k- 1,

0 otherwise.

Evidently f := f - ,k l fl (e) is a flow on N with smaller support. Now we do the
same for f', finding A2 and f2 and so on. We are done if supp(f) = 0. The claim
concerning integrality is clear by construction.
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4.2. The k-cutset problem
Although we are more interested in k-families, we start with k-cutsets (defined in
this section) since the application of the flow method is a little bit easier for them,
and of course we also need them later. For the poset P, let tt(P) be the set of all
maximal chains in P. A subset F of P is called a k-cutset if I F fl C I > k for
all C E C(P). Let ko be the smallest number of elements in a maximal chain of
P. Obviously, k-cutsets exist only for 0 < k < ko. The k-cutset problem is the
following: Given a weighted poset (P, w), determine

ck(P, w) := min{w(F) : F is a k-cutset}.

Here we set ck(P, w) := oo if k > ko. The k-cutset problem can be considered as
an integer linear programming problem. If we relax it we arrive at the definition
of a fractional k-cutset. This is a function x : P - III; such that

x(p) > k for all C E t(P),
pEC

0 < x(p) < 1 for all p E P.

In the fractional k-cutset problem we have to determine

ck(P, w) := min IpEP w(p)x(p) x is a fractional k-cutset
JJJ

Note that the fractional k-cutset problem reduces to the k-cutset problem if we
require, in addition, that the solutions are integral.

Here and in the following we deal simultaneously with the given problem and
its dual. Given a general primal linear programming problem of the form

Ax+By+Cz < a
Dx + Ey + Fz = b

Gx+Hy+Kz > c
x > 0
z < 0

d'x+eTy+fTz _* max

where A, ... , K are matrices and a, ... , f are vectors of suitable dimension, its
dual is defined to be the problem

ATU+DTV+GTw > d

BTU+ETV+HTw = e



126 The flow-theoretic approach

CTU+FTV+KTw < f

u > 0
W < 0

aTu+bTV+CTW -a min.

It is easy to verify that the objective function at an admissible solution of the primal
problem cannot be greater than the objective function at an admissible solution
of the dual problem. The Duality Theorem in linear programming (cf. Schrijver
[421]) states that both optima are equal to each other provided that both problems
have admissible solutions or that one problem has an optimal solution.

The dual problem to the fractional k-cutset problem is the following: Find
y : ((P) - R+ and z : P -* 1R+ such that

E y(C) - z(p) < w(p) for all p E P, (4.6)
CEr(P): pEC

and the function

Yk(Y> z) := k Y(C) - z(P)
CEQ(P) pEP

is maximized.
By duality we have for any fractional k-cutset x (resp., in particular, for any

k-cutset F) and any functions y, z satisfying (4.6)

w(P)x(P) > Yk(Y, z) (resp. w(F) ? Yk(Y, z)). (4.7)
pEP

We can see this inequality also directly: We have

k Y(C) - z(P)
CE(E(P) pEP

(x(P)Y(C)) - z(P)
CEE(P) pEC pEP

1: ( 1: x(P)Y(C) - z(P) I :SEX(P)W(P)-
PEP CEC(P):pEC / pEP

Theorem 4.2.1. Let ko be the smallest number of elements in a maximal chain of
the weighted poser (P, w). Then for each 0 < k < ko - 1 there exist a k-cutset
Fk, a (k + 1)-cutset Fk+1 and functions y : tt(P) -> R+, z : P -* IR+ satisfying
(4.6) such that

w(Fk) = Yk(Y, z) and w(Fk+1) = Yk+1(y, z)
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Fk and Fk+1 are optimal k- (resp. (k + 1)-) cutsets and y, z are optimal solutions
of the dual to the fractional k- and (k + 1)-cutset problem. In the case k = 0, we
can choose z = 0.

If w is integral then y and z can be chosen integral, too.

Proof. We will apply the algorithm of the proof of Theorem 4.1.3 in order to
find Fk, Fk+1, y, and z. With our poset (P, w) we associate the network N =
(V, E, s, t, c) with cost function a as follows: V := Is, t} U (p : p E P) U f p'
p E P} (where s and t are new vertices), E := {sp : p is minimal in P} U { p't
p is maximal in P} U {epl = pp' : p E P) U (ep2j = pp' : p E P) U { p1 p2 :
PI < P2}.

Here the union is understood in the multiset sense; we have two arcs from p to
p', one denoted by epthe other by ep ). The capacity and cost are defined by

c(e)
w(p) if e = epl) for some p E P,

00 otherwise ,

a(e) :_
1 if e = ep2) for some p E P,

10 otherwise .

The construction of the graph is presented in Figure 4.2 (the arcs are directed
upward). Obviously, G = (V, E) is a dag. Moreover, with a directed elementary

t

5t

P

5

S

G = (V, E)

Figure 4.2

flow f along s, pi, p'1, P2, p'2, ... , pt, pt, t of value I we can associate the (max-
imal) chain C = (po < pl < < Pt) E t(P). If f is any flow in N then, by
Lemma 4.1.3, f can be written in the form

f=Alfi At > 0, f, is a def for all i.
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Thus we may associate with f the function y : 1t(P) -* R+ defined by

Y(C)
otherwise.

if C corresponds to f as above,

10

Note that in this correspondence

f(ep1)) + f(ep2)) = Y(C),
CEt(P):pEC

a(f) = 1: f(ep2))
PEP

V(f) = E Y(C)
CEC(P)

(4.8)

(4.9)

(4.10)

Moreover, if it is a fixed potential function and n (t) < ko, then N, has a cut of finite
capacity, because otherwise there would have to be a flow with arbitrary large value.
That is, there must be a def s, pl, p...... pi, p;, t going through ep,), ... , epr)
and this is by the construction of N,r only possible if 7r(pi) - 7r(s) = 0, n (p') -

n(Pi) = 1, n(P2) - n(P'l) = 0, . , ir(p') - n(Pt) = 1, n(t) - n(p) = 0
which implies 7r Q) - 7r (s) = ir(t) = 1 > ko = minimal number of elements in a
maximal chain, a contradiction to it (t) < kp.

Accordingly, the finiteness of our algorithm is ensured until ir(t) is changed
from ko - 1 to ko. Now consider a situation where n is some actual potential with
ir(t) = k, 0 < k < ko, and f is a corresponding actual flow. Define F := {p E
P : n(P') - 7r (P) = 1}.

Claim 1. F is a k-cutset.
Proof of Claim 1. During the algorithm, condition (4.3) is always satisfied;

hence (since c(ep2)) = oo) ir(p') - n(p) < 1 for all p E P and n(e+) -
ir(e-) < 0 for all arcs in E which are not of the form pp'. Consequently, if
C = (p1 < p2 < < ps) is a maximal chain in P then 7r(s) = 0, r(pl) -
it(s) < 0, Tr(P') - n(PI) _ < 1 , n(P2) - ir(p'1) < 0, ... , n(p) - n(P[)
1, 7r(t) - rr(pl) < 0. Because the sum of the values on the LHS is ir(t) = k, we
must have at least k-times on the RHS a one; that is, we find at least k points p in
(pl, ..., pi) with n(p') - it(p) = 1. Therefore IF n C > k.

Claim 2.w(F)=kv(f)-a(f).
Proof of Claim 2. Let F, := {p E F : 7r(p) = i (i.e., ir(p') = i + 1)), i =

0, ... , k - 1. Of course,
k-1

w(F) = E
i-o

(4.11)

The set Si of all points of V having potential value < i and the complement
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T; := V - Si define a cut (Si, Ti) in the network N,r. By Lemma 4.1.1(a) we have

v(f)=f(S1,T,)-f(T1,S1), i=0,...,k-1. (4.12)

Moreover, we have

f(TT, Si) = 0 (4.13)

since for every arc e E E with e- E Ti, e+ E Si there holds ,r (e+) - 7r (e-)
(i + 1) < 0, which implies by (4.3) that f (e) = 0. We have f (Si, Ti) _

F-pEF, f(ePlt) + f since (see the proof of Claim 1) the potential difference
of the arcs can be at most 1, and it is equal to 1 only for arcs of the form pp'.
Moreover, we know by (4.3) that the arcs ep with p E Fi must be saturated;
consequently f (e4l)) = w(p) for all p E Fi and

f(Si, Ti) = w(Fi) + f(e4Zi). (4.14)
pEF;

From (4.11)-(4.14) we derive that

kv(f) = w(F) + f (eP21).
pEF

Because of (4.3) we have

a(f) .f(eP21) .f(e(2)),
PEP pEF

which yields the assertion.

The actual flow f corresponds to a function y : (E(P) --> R+ as presented
earlier. Define z : P -+ R+ by z(p) := f(epi). Then, in view of (4.8) and
f (ePl)) c(eP(1) ) = w(p), y and z satisfy condition (4.6). Because of (4.9) and
(4.10),

yk (y, z) = kv(f) - a (.f)

Claim 2 then yields w(F) = yk(y, z).
In the situation where the potential oft changes from k to k+ 1, 0 < k < ko - 1,

the actual flow fk+l defines the functions y and z, and the two potentials nk
(before the change) and nk+l (after the change) define as previously a k-cutset
Fk and a (k + 1)-cutset Fk+j with the desired properties. Since by (4.7), for
any other k-cutset Fk and for any other functions y', z' satisfying (4.6) it holds
w(Fk) > yk(y, z) = w(Fk) > yk(y', z'), Fk and y, z are optimal, and the same
is true for Fk+l. Until ir(t) changes from 0 to 1, the arcs e(2), p E P, are still void
since they are not included in the graph G,r. Thus for k = 0 the defined function
z satisfies z(p) = 0 for all p E P.

If w is integral, then the flow algorithm and the algorithm of Lemma 4.1.3 work
only with integer values; thus also y and z are integral.
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Many min-max theorems of this nature can be found in the survey of Schrijver
[420]. The fact that there are y and z corresponding to a k-cutset as well to a
(k + 1)-cutset is called t-phenomenon by Hoffman and Schwartz [270]. The flow-
theoretical approach gives a natural insight into this t-phenomenon.

Corollary 4.2.1.

(a) We haveck(P,w)=ck(P,w)for0<k<k0.
(b) There is a function y : ct(P) IR+ such that c1(P, w) = y1(y, 0).

Proof. (a) Obviously, ck(P, w) > ck(P, w). Take from Theorem 4.2.1 some
k-cutset Fk and functions y, z. This gives, in view of (4.7),

Ck(P, w) w(Fk) = Yk(Y, z) < ck(P, w).

(b) We have in our construction co(P, w) = yo (y, z) and cl (P, w) = yi (y, z)
withz=0.

Let us finally look at the important case when w =- 1 - that is, at unweighted
posets P.

Corollary 4.2.2. We have

(a) min{IFI : F is a k-cutset in P) = max{kt + ICI U .. U Ct I I Ci 1)

where the maximum ranges over all t > 0 and collections of maximal chains
C1..... Cr in P. Moreover, the chains C1..... Ct can be chosen in such a
way that for them the maximum in the above equation is attained not only for
the parameter k but also for the parameter k + 1.

(b) The minimum size of a 1-cutset equals the maximum number of pairwise
disjoint maximal chains.

Proof. (a) The LHS equals w(Fk) (resp. w(Fk+l)) in Theorem 4.2.1. So we
have to show that the RHS equals yk(y, z) (resp. yk+1(Y, z)) in Theorem 4.2.1.
Given our optimal integral y and z satisfying (4.6) we find a collection C1, ... , Ct
of maximal chains by taking each chain C E (E(P) exactly y(C) times; that is,
t = ECE(E(P) y(C). Let us put gy(p) := I {i : p E C;}I. Then because of (4.6),
0 (p) -< 1 + z(p). Moreover,

IU

and

(P) _ (P) _ Ici I
pEP i=1
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Thus

Yk(y,z) = kt - z(p) - z(p) < kt - E (gy(p) - 1)
pEP:f(p)>1

t

=kt-EICil+IU;=1C;I.
i=1

This means that the optimum yk(y, z) is not greater than our RHS.
Conversely, if C1, ..., Ct is such an optimal collection of maximal chains,

we define y'(C) to be the number of times that C occurs in that collection and
z'(p) := max{0, gy(p) - 1), where gy(p) is defined as above. Then y' and z' satisfy
(4.6) and

Yk(y',z')=kt- (gy(p)-1)=kt-ICil +IUt=1 Cil.
i=1

This means that our RHS is not greater than yk(y', z') < yk(y, z) where y and z
are the optimal functions.

(b) Clearly, the maximum number of pairwise disjoint maximal chains is a lower
bound for the minimum size of a 1-cutset. To prove that it is an upper bound we
use (a). Consider an optimal collection Cl, ... , Ct for the RHS in (a) with k = 1
where t is minimal. Then these chains are pairwise disjoint. Assume the contrary,
for example, Ct_ 1 f1 Ct # 0. Then J C1 U ... U Ct J - J C1 U U. . U Ct_ 1 I < I Ct I - 1;
hence, (t-1)+IC1U...UCt-tl-Ft-1 ICil ? t+ICiU...UCtl-F-1=1 ICil,

contradicting the optimality of Cl, ..., Ct and the minimality of t.

By the way, it is not true that the minimum size of a family F in P meeting
every maximal antichain at least once (called fibre) equals the maximum number
of pairwise disjoint maximal antichains. This is shown by the following example
of Lonc and Rival [351]; see Figure 4.3.

Figure 4.3

4.3. The k-family problem and related problems
In contrast to a k-cutset, a k -family is a subset F of P satisfying I F fl c I < k for all
C E *(P), where t *(P) is the set of all chains in P. This definition is obviously
equivalent to the one in Section 1.2. It is also easy to see that we could restrict
ourselves to the set t(P) of all maximal chains, but in the succeeding construction
we find also some nonmaximal chains. Recall that the k -family problem is the
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following: Given a weighted poset (P, w) determine

dk(P, w) := max( w(F) : F is a k-family).

Before we proceed further with k-families, note that in a certain sense the k-family
problem is nothing more than the 1-family problem - that is, the Sperner problem.
Let 2t(P) be the class of all antichains in P. It is easy to verify that 2((P) becomes
a poset if we define for A, A' E 21(P) that A < A' if for all p E A there is some
p' E A' with p < p'.

Lemma 4.3.1. If F is a k -family in P, then there exist k pairwise disjoint an-
tichains A1, ... , Ak such that Ak < ... < Al and F = Uk 1 A;. Conversely, the
union of k pairwise disjoint antichains is a k -family.

Proof. The second claim is trivial and the first one follows by induction on k: Let
A 1 be the set of all maximal elements of F (which is an antichain). Then F - A 1
is a (k - 1)-family and by the induction hypothesis we find the corresponding
antichains A2, ..., Ak.

Let Ck be the chain (0 < 1 < . . . < k - 1). Given the poset (P, w) we define
the poset (Pk, wk) by Pk := P X Ck, wk(p, i) := w(p) for all p E P, i E Ck.
The following theorem goes back to an idea of Saks [405].

Theorem 4.3.1. We have dk(P, w) = dl(Pk, wk) fork = 1, 2, ... .

Proof. ">" Let A be an antichain in (Pk, wk) such that wk(A) = dl(Pk, wk).
Define F := (P E P : (p, i) E A for some i }. Then F is a k-family in P with
w(F) = Wk(A).

"<. " Let F be a k-family in P with w (F) = dk (P, w). We partition F according
to Lemma 4.3.1 into k (possibly empty) antichains, where Ak < ... < At. Then
we define A := Uk 1(A;, i) where (A1, i) := {(p, i) : p E A,). Then A is an
antichain in Pk with wk(A) = w(F).

In the preceding construction we have constructed a "larger" poset. Berenguer,
Diaz, and Harper [46] proposed a flow algorithm for the determination of dk (P, w)
where the number of vertices is essentially (k + 1)IPI. We may avoid the factor
k + 1 in the size of the network if we use the method described below, which also
gives more theoretical insight into the optimization problems.

A fractional k -family is a function x : P - . R such that

Y' x(p) < kfor all C E *(P),
peC

0 < x(p) < 1 for all p E P,
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and the fractional k family problem consists in the determination of

dk (P, w) := max f E w(p)x(p) : x is a fractional k-family
pEP

Dual to this linear programming problem is the following: Find y : t (P) R+
and z : P -+ IR+ such that

y(C) + z(p) > w(p) for all p E P (4.15)
CEe*(P):pEC

and the function

Sk(Y,z):=k 1, Y(C)+Ez(p)
CEV(P) pEP

is minimized. It follows by duality (and can be seen, as for the k-cutsets, directly)
that for any fractional k-family x (resp. in particular for any k-family F)

E w(p)x(p) Sk(Y, z) (resp. w(F) 8k (Y, z)). (4.16)
PEP

Theorem 4.3.2. For each k = 0, 1, ..., there exists a k family Fk, a (k + 1)-
family Fk+1 and functions y : ct*(P) -+ R+, z : P -* R+ satisfying (4.15) such
that w(Fk) = Sk(y, z) and w(Fk+1) = 8k+1(Y, z). The families Fk and Fk+1 are
optimal k- (resp. (k + 1)-) families and y, z are optimal solutions of the dual to
the fractional k- and (k + 1) family problem. If w is integral, then y and z can be
chosen integral, too.

Proof. Let us apply again the algorithm of the proof of Theorem 4.1.3. This time
we consider the following network N = (V, E, s, t, c) with cost function a:

V {s, t) U {p: p E P) U {p': p E P) (s and t are new vertices),

E {sp:pEP}U{p't: pE P}U{pp': pE P)U{qp': p<q}.

The capacity and cost are defined by

w (p) if e = sp ore = p't for some p E P,
c(e) := _

00 otherwise,

a(e) :_
1 if e = pp' for some p E P,

0 otherwise.

For the construction of the network, see Figure 4.4. First of all we will discuss
a correspondence between flows f in N and functions y : V(P) --* R+ and
z:P-aR+.
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t

P
s

G = (V, E)

Figure 4.4

Let f be given with value v (f) and cost a (f ). Let fp be the directed elementary
flow (def) through s, p, p', t. Obviously,

f' f-Tf(pp')fp
peP

is a flow in N of value v (f') = v (f) - a (f ). Since f' (pp') = 0 for all p E P we
can consider f' also as a flow in the network N' which arises from N by deleting
all arcs pp'.

Now consider a third network Np = (Vp, Ep, sp, tp) (without a capacity),
where Vp := P U {sp, tp}, Ep := {spp : p E P} U {ptp : p E P} U
{pq: p<q}.

For the construction of the new network, see Figure 4.5. For given f' in N'

tp

Sp

Np

Figure 4.5

(which was obtained from f in N), we define a flow fp E Np as follows: We set

f'(qp') if e = pq,

fp(e) w(p) - f(pp') - f'(sp) if e = spp,

w(p) - f(pp') - f'(p't) if e = ptp.
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Then the conservation of flow is satisfied for fp, since for all p E P

fp(e) = w(p) - f(pp') - f'(P't) + f'(qp')
e -=p q>p

= w(P) - f(pp'),

fp(e) = w(p) - .f (pp') - .f'(sp) + f '(pq')
e+=P q<p

= w(p) - f(pp'),

(4.17)

(4.18)

and the capacity constraints fp (p) > 0 are satisfied by the definition of the capacity
in N (resp. N'). We have

v(fP) _ fp(spp) = w(P) - a(f) - v(f') = w(P) - v(f). (4.19)
PEP

(Vp, Ep) is a dag; hence we can write again fp as a nonnegative combination of
defs:

fP = Aifl 0.

Each f goes through certain vertices sp, pl, ... , pl, tp where C := (P1 < <

Pt) E *(P)-
Thus we may define

,li if C corresponds to f as above,
Y(C)

0 otherwise.

Then

v(.fP) = Xi + ... + X. = Y(C), (4.20)
CEO*(P)

and in view of (4.17) and (4.18)

w(p) - f(pp') _ Y(C). (4.21)
CEt* (P): pEC

Finally, if we define z(p) f(pp') for all p E P, we have y : *(P) R+
and z : P -a 1+ satisfying (4.15) with equality and

8k(Y, z) = kv(fp) + a(f) = k(w(P) - v(f)) + a(f). (4.22)

Of course, we can also go this way backward; that is, having functions y and z we
can construct a flow f in our original network N such that (4.22) holds.

So our final task is the construction of a k-family Fk, a (k + 1)-family Fk+l as
well as a flow f in N such that

w(Fk) = k(w(P) - v(.f )) + a(.f ),
w(Fk+l) = (k + 1)(w(P) - v(f)) + a(f).
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Now let us run the algorithm of the proof of Theorem 4.1.3. Consider some actual
potential n with ,r(t) = k and some actual flow f. Define F := {p E P
n(P') - n(P) = U.

Claim 1. F is a k-family.
Proof of Claim 1. Assume that there are Pi , ... , Pk+l E F such that pt <

_1, i = k + 1, ... , 2, have infinite capacity< Pk+t Since the arcs pip'
and because of (4.3) we have n (p'i_,) - it (pi) < 0 for all i. Consequently,
0 <n(Pt) =n(Pi)-1 <7r(p2)-1 =7r(pz)-2 <... <n(Pk+1)-k=
n(pk+1) - (k + 1) < 2r(t) - (k + 1) < 0, a contradiction.

Claim 2. w(F) = k(w(P) - v(f)) + a(f ).
Proof of Claim 2. Let F := {p E F : n(p) = i (i.e. n(p') = i + 1)},

i = 0, . . . , k - 1. We repeat the beginning of the proof of Claim 2 for k-cutsets
(Theorem 4.2.1) and find that

v(f) = f(St, Ti), (4.23)

where Si is the set of all points of V having potential value < i, T; := V - Si,
=0 , . . . ,k-1 .
LetA;:=(pEP:ir(p)>i), B; := (pEP:ir(p')<i}.Then

.f (S1, T,) = E f(sp) + E f(pt) + E .f (Pq')
pEA; PEB; PEP-A1,gEP-Bt,g<P

= w(A1) + w(Bi) + f (pp') (4.24)
pEF;

since the arcs sp, p E Ai, and p't, p E Bi, are saturated by (4.3) (note ,r(s) =
0, 7r(t) = k), and the only arcs pq' with 7r(p) < i, n(q') > i are arcs pp' with
.7r(p) = i, 7r(p') = i + 1, again by (4.3) (these arcs all have infinite capacity). We
have

F, = P - (Ai U B;), (4.25)

since p E P - (A; U Bi) iff 7r (p) 7r (p') > i - that is, iff 7r (p) = i, 7r (p') _
i + 1. Moreover,

w(A1 fl Bi) = 0. (4.26)

Assume the contrary. Then there is some p E Ai fl Bi with w(p) > 0 and
7r(p) > i, 7r (p') < i. The arcs sp and p't are saturated and the arc pp' has zero
flow by (4.3). Thus there must be further points q, r E P such that f (pq') > 0
and f(rp') > 0 implying 7r(q') = n(p) > i and 7r(r) = it(p') < i. But by
the construction of the network, q < p and p < r; that is, q < r and rq' E E.
This is impossible since 7r(q') - 7r(r) > 0 and rq' has infinite capacity. From
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(4.23)-(4.26) we derive

v(f) = w(P) - w(F) + T f(pp'),
pEF,

and summing up these equalities f o r i = 0, ... , k - 1 gives

kv(f) = kw(P) - w(F) + a(f),

w(F) = k(w(P) - v(f)) + a(f ).

In the situation where the potential of t changes from k to k + 1 we get our
desired k-families Fk and Fk+1. The additional assertions in the theorem follow
as for k-cutsets.

Corollary4.3.1. We have dk(P, w) = dk (P, w) for all k.

Let us look also at the case of unweighted posets - that is, w - 1. Here Dilworth's
Theorem 4.0.1 comes out very easily.

Corollary 4.3.2. We have

(a) (Greene and Kleitman [233]).

max{IFI : F is a k family in P}

= min {min{ICI, k} : D is a chain partition of P
CED

Moreover, the chain partition D can be chosen in such a way that the minimum
in the above equation is attained not only for the parameter k but also for the
parameter k + 1.

(b) (Dilworth [136]). The maximum size of an antichain equals the minimum
number of chains in a chain partition of P.

Proof. Of course, (b) follows from (a) with k = 1. So let us prove (a). If F is any
k-family and D is any chain partition, then

IFI = IF n CI s min{ICI, k}.
CED CED

Furthermore, let y and z be our optimal functions from Theorem 4.3.2. In the proof
we noted that y and z satisfy (4.15) with equality. Since w - 1, y : (* (P) --+ {0, 11
and z : P -- {0, 1}. If y(C) = 1, then ICI > k, since otherwise we could change
y(C) to zero and z(p), p E C, to 1 obtaining a smaller value in the objective
function. The functions y, z provide the chain partition 0 whose chains are all
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C E V (P) with y(C) = 1 and the one-element chains {p} with z(p) = 1. Finally,

E min( ICI, k} = 6,(y, z) = max{BFI : F is a k-family),
CE's

which proves the claim.

A partition 0 is called k-saturated if the minimum on the RHS of Corollary
4.3.2 is attained at 0. This corollary says that for each k there exist chain partitions
that are simultaneously k- and (k + 1)-saturated. There are posets for which chain
partitions being k-saturated for every k do not exist. An example was given by
Greene and Kleitman [233]; see Figure 4.6. Moreover West [466] constructed

Figure 4.6

posets having no chain partition that is k-saturated for any two nonconsecutive
values of k (not exceeding the largest number of elements in a chain).

Corollary 4.3.3. The difference dk+1(P, w) - dk(P, w) is decreasing.

Proof. Again take the optimal families Fk, Fk+1 from Theorem 4.3.2 and consider
the flow f yielding these families. Then (note Claim 2 in the proof of Theorem
4.3.2)

dk+1(P, w) - dk(P, w) = w(Fk+1) - w(Fk)
= (k + 1)(w(P) - v(f)) +a(f)

-(k(w(P) - v(f)) + a(f)) = w(P) - v(f).

Since the flow value increases during the algorithm with increasing k, the difference
w(P) - v(f) decreases.

We still continue the discussion of the proof of Theorem 4.3.2. An antichain
partition 21 of P is defined similarly to a chain partition. Remember that every
k-family is a union of k antichains.

Corollary 4.3.4. We have

(a) (Greene [229])

max{BFI : F is a union of k chains in P}

= min J - min( CAI, k} : 2l is an antichain partition of Pl
AE2t
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Moreover, the antichain partition 2t can be chosen in such a way that for it
the minimum in the preceding equation is attained not only for the parameter
k but also for the parameter (k + 1).

(b) (Mirsky [371]) The maximum size of a chain equals the minimum number of
antichains in an antichain partition of P.

Proof. Again (b) can be derived from (a) with k = 1, but I encourage the reader
to prove (b) directly.

For any union of k chains and any antichain partition 2t, we have IFI =
EAE2l IF fl Al < F-AE21 min{IAI, k} since each antichain A can contain at most
min{ I A 1, k} elements of F. Consequently, max < min. Let us look at the proof of
Theorem 4.3.2 in order to prove max > min. Since w =_ 1, we are working with
integral flows and integral functions y, z. For fixed potential n, let us increase the
flow value always only by 1 (one could possibly do more along flow-augmenting
paths, but in that case increase iteratively by 1). The maximum flow value in N is
w (P) = IPI . We achieve a situation where v (f) = I P I - k. Let n be the actual
potential. Then by (4.19)

v(fp) = IPI - (IPI -k)=k.

In view of (4.20) there are at most k chains C with y(C) > 0. Thus the union F of
these chains is a union of k (possibly empty) chains. Because of (4.15) F contains
at least all elements p with z(p) = 0, hence

IFI >- IPI -Ez(p)=IPI -a(f)
pEP

(remember that z(p) = f(pp')).
We find as follows the partition into antichains: Suppose that ko :_ 7r(t). In

the proof of Claim 2 we worked with sets F, i = 0, ... , ko - 1. Each F is an
antichain, since otherwise there would be p, q E F with p < q and ir(p) _
7r(q) = i, 7r(p') = 7r(q') = i + 1, which is impossible since qp' is an arc of
infinite capacity but having potential difference greater than its cost. Look at the
antichain partition 2t whose antichains are FO, ..., Fkp_1 and the one-element
classes { p} with p E P - F. Then, noting Claim 2,

min{IAI, k} < kko +IPI - IFI
AE21

= kko+IPI -ko(IPI -v(f))-a(.f)
= kko+IPI -kok-a(.f) = IPI -a(,f)

Thus we found F and 2t with

IFI > E min{IAI, k}
AE21

yielding the desired inequality max > min.
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The situation where for fixed potential it the flow value f changes from I P I
- (k + 1) to I PI - k yields the antichain partition 2t, which is optimal for the
parameters k and k + 1.

There exist several proofs of the results in Corollaries 4.3.2-4.3.4. Let us men-
tion here Fomin [182], Hoffman and Schwartz, [270], Saks [405], and in partic-
ular Frank [186], whose proof for the unweighted case is the basis of our proof
of the weighted case. Generalizations and related results are by Edmonds and
Giles [143], Linial [348], Berge [48], Hoffman [269], Saks [404], Gavril [219],
Cameron [91], Cameron and Edmonds [90], Felsner [180], and Sarrafzadeh and
Lou [414]. In particular for Dilworth's theorem there are a lot of different proofs,
for example, by Dantzig and Hoffman [120], Fulkerson [205], Tverberg [454],
and Harzheim [264]. For more informations, we refer to the above paper of Saks
[404] and to the surveys of Hoffman [269], Schrijver [420], Berge [49], and
West [465].

4.4. The variance problem
Given a poset P, a function x : P -). 1[8 is called a representation of P if

x(q) - x(p) > 1 for all q > p.

This notion was introduced by Alekseev [23] in order to find an asymptotic formula
for the width of products of posets; see Section 7.2. An example of a representation
is the rank function r if P is ranked, and, in general, the height function h. Note
that h can be calculated as a special case of the critical path method (cf. Sedgewick
[423]): Label the minimal elements p of P with h (p) := 0. Let, after some steps,
S be the set of labeled vertices. Then look in the next step for some minimal
unlabeled point q (i.e., there is no unlabeled point below q) covering a labeled
point p with largest label and put h (q) : = h (p) + 1. Continue until all points are
labeled. By induction it follows easily that the calculated value h (p) is really the
height of p.

The height function of a small poset is illustrated in Figure 4.7. Now consider
again positively weighted posets (P, w). For the representation x of (P, w) (i.e.,
x is a representation of P), we define the expected value (also called mean) µx
and the variance ax by

AX w(P) E w(P)x(P)
pEP

1

C1;11 W(P)1

Y, w(P)(x(P) - µx)2 = w(P) E w(P)x2(P) - p ,
pEP pEP
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h

3

2

1

0

Figure 4.7

respectively. Note that µx and ax can be defined for any function x : P -+
R. The variance problem is the following: Given a weighted poset (P, w), find
a representation x such that aX is minimal with respect to all representations.
Such a representation is then called optimal. Though it follows easily from a
compactness argument that optimal representations really exist - in other words,
that the minimum is attained - we will derive this fact from the finiteness of the
algorithm below. The variance of an optimal representation is called the variance
of (P, w) and denoted by a2(P, w). First we need some technical details. The
following lemma is obvious.

Lemma 4.4.1. Let x be a representation of (P, w), and let y(p) = x(p) + c
for all p E P. Then also y is a representation of (P, w), and µy = µx + c,

2 = 2ay ax.

For a nonempty subset F of P, we define its expected value by

l,Lx(F) w(F)
n

W(P)X(P),

and put µx (0) := oo. Note that it, = µx (P).

Lemma 4.4.2. Let x : P -+ R be any function and let F and I be disjoint subsets
of P with µx (F) < µx, and µx (I) > µx. Define yE : P -> R by

x(p) + ew(I) if p E F,

YE(P):= x(P) - ew(F) if p E I,

x(p) otherwise.

Then µyE = µx and a2 is strongly decreasing for 0 < e -< w(F)+w(I) (µx (I) -

Proof. The equality µyE = µx is easy. Moreover, if 0 < E < X(F) x(F)w(
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d
(ax 2

+ (P)
(

w(P)((x(P) + Ew(I))2 - x2(P))
dEa AE = dE pEF

+ E w(p)((x(p) - Ew(F))2 - x2(p))/
pE/

2w(I)w(F) Ax (I) - Ax (F)
w(P)

(w(F) + w(I)) E -
w(F) + w(I)

< 0.

Lemma 4.4.3. If g is an increasing (resp. decreasing) function from P into I[8,
then g is the sum of a constant and a nonnegative combination of characteristic
functions of filters (resp. ideals); that is, there are filters (resp. ideals) F1, ... , F1
and real numbers Ao, A1, . . . , Al with X 1, ... , Al > 0 such that

g=Ao+ tAicoFi.

Proof. We consider only increasing functions, the other case is analogous. It is
enough to prove the statement for nonnegative functions g with Ao = 0 since
each function can be written as a nonnegative function plus a constant, say A0.
Now we prove this special case by induction on the support I supp(g) I. The case
I supp(g)l = 0 is clear. If I supp(g)l > 0, put F1 := supp(g). Obviously, F1 is a
filter. Furtherput A i := min{g(p) : p E Fl). Then g' = g-Ai pF, is nonnegative,
increasing, and has smaller support size. The induction hypothesis applied to g'
gives the result.

Let E be the arc set of the Hasse diagram H(P) of P. For a given representation
x, define

Ex:={eEE:x(e+)-x(e-)=1).

The graph Gx = (P, Ex) is said to be the active graph. The poset whose Hasse
diagram is Gx is called the active poset and denoted by Px. Finally, a function
f : P - IR+ such that

f (e) - f (e) = w (p) (x (p) - µx) for all p E P,
e+=p e-=p

f (e) = 0 for all e E E- Ex

is called a representation flow on (P, w) relative to x. For the sake of brevity, we
set

pf .f(e)
of=p

The following theorem was proven for unweighted posets by Alekseev [23]. We
present our own proof of the weighted case.
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Theorem 4.4.1. Let x be a representation of (P, w). Then the following conditions
are equivalent:

(i) x is an optimal representation.

(ii) >pE p w(p)g(p)(x(p) - µx) > O for all increasing functions g : Px _+ R.

(iii) ltx(F) > µx for allfilters Fin P.
(iv) lµx (I) < Ax for all ideals I in P.

(v) There exists a representation flow on (P, w) relative to x.

Proof. In view of Lemma 4.4.1 we may restrict ourselves to representations x
with µx = 0.

(ii) - (i). Let y be another representation of P with l y = 0. Then g = y - x is
an increasing function from Px into R since fore E Ex we have y(e+) - y(e-) > 1
(y is a representation) but x(e+) - x(e-) = 1. We want to show that Qy > o ;

that is,

w(P)Y2(P) > w(P)x2(P)
PEP pEP

From (ii) with µx = 0 and g = y - x we obtain

(4.27)

2 w(p)y(p)x(p) > 2 w(P)x2(P). (4.28)
PEP pEP

Evidently,

w(P)(Y(P) - x(P))2 > 0.
pEP

(4.29)

Addition of (4.28) and (4.29) gives the desired inequality (4.27).
(i) -* (iii). Let x be optimal and assume that there is some F in Px with

gx(F) < 0 = /2g. Let I := P - F. Then obviously µ.x(I) > 0. Let

1

E1
:=

w(I) + w(F)
min{x(e+) - x(e-) - 1 : e c E - Ex}.

By definition of Ex, El > 0. Now consider the function yE from Lemma 4.4.2 for
0 < e < min{EO, E1). By the following reason, yE is a representation: Since x is a
representation we must consider only arcs pq with p E F, q E I. The set F is a
filter in Px, thus pq E E - Ex. Finally

yc(q) - y, (p) = x(q) - x(P) - e(w(I) + w(F))

> x(q) - x(p) - min{x(e+) - x(e-) - 1 : e E E - Ex} > 1.

From Lemma 4.4.2 we obtain oyE < ax, a contradiction.
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(iii) -> (ii). Write g in the form of Lemma 4.4.3. Then

! 1
Y" w(P)g(P)x(P) w(P) Ao + E.licPF I x(P)
pEP pEP i=1 /

-+
Xi L(W(P)X(P)(P))

i=1 pEP

!

_ EAiw(Fi)1tx(Fi) ? 0.
i=1

(iii) H (iv). This assertion follows from the facts that F is a filter in Px if
I = P - F is an ideal in Px and Ax (F) > gx iff Ax (P - F) < µx.

(iii) H (v). For each representation x with µx = 0, let us define the network
N = (VN, EN, s, t, cx), where VN := P U Is, t}(s and t are new vertices), EN
EU{sp: pEP}U {pt:pEP}(remember that E={pq: p<q}),

cx(e) :_

max{0, -w(p)x(p)} if e = sp, p E P,

max{0, w(p)x(p)} if e = pt, P E P,

0 ifeEE - Ex,

00 if e E Ex.

An example of the new network is illustrated in Figure 4.8.

t

P

s

GN = (VN, EN)

Figure 4.8

Claim. Condition (iii) holds if ({s}, VN - {s}) and (VN - (1), {t}) are minimal
cuts in N.
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Proof of Claim. First note that

c(V - {t), {t}) - c({s}, V - {s}) = max{0, w(p)x(p)}
PEP

- max{0, -w(p)x(p))

_ 1, w(P)x(P) = 0;
pEP

that is, both these cuts have equal capacity. Let (S, T) be any cut of finite capacity
in N and let F := S - {s}, I := T - It) (= P - F). Then F and I area filter and
an ideal in P, respectively, since otherwise there would be some p E F, q E I
with p < q and pq E Ex, but then c(pq) = oo in contradiction to the finiteness
of the cut capacity. Conversely, if F is a filter in Px and I := P - F, then
S := F U (s}, T := I U {t} define a cut of finite capacity. For these cuts, we have
c({s}, V - {s}) < c(S, T) if

Y' cx (SP) :S 1: cx (SP) + cx (Pt),
pEP pEI pEF

1: cx(sP) E cx(Pt),
pEF pEF

0 < E (max{0, w(p)x(p)} - max{0, -w(p)x(p)}),
pEF

µx = 0 < w(F')ux(F) W(P)X(P).
PEP

Thus ({s}, V - {s}) has minimal capacity iff µx (F) > 0 for every filter F in P.

By the real version of the Max-Flow Min-Cut Theorem (Corollary 4.1.1) and
in view of Lemma 4.1.1, the cuts ({s}, VN - {s}) and (VN - {t}, {t}) are minimal
if there exists a flow fN in N (the maximal flow) such that the arcs sp and pt
(p E P) are saturated. Given such a flow fN, its restriction to E has the properties
of a representation flow since for e E E

cx (sP) + p f = PJ + cx (Pt ),

pf pf = max{0, w(p)x(p)} - max{0, -w(p)x(p)} = w(p)x(p)

and, of course, f (e) = 0 (since c(e) = 0) for all e E E - Ex. Conversely, given a
function f satisfying the condition of a representation flow, we can extend f in a
natural way to a flow fN in N such that the arcs sp and pt (p E P) are saturated.

If we consider the variance problem as a quadratic optimization problem with
linear constraints and convex objective function then the equivalence (i) H (v)



146 The flow-theoretic approach

follows from the theory of Kuhn and Tucker (cf. Martos [362, pp. 123 ff ]): The
Lagrange function is L(x, f) := Q.,2 + f (e) (1 - x(e+) + x (e)), and the
necessary and sufficient conditions for an optimal solution read:

x(e+) - x(e-) > 1 for all e c E,

P J - P f = w(P)
w(P)(x(P) - I-Lx) for all p E P,

f (e) ( 1 - x (e+) + x (e )) = 0
eE E

with f : E - R+. Of course, we may omit the factor w2 in the second condition,
so the arc-values of the representation flow can be interpreted as the Lagrange
multipliers.

We can use condition (iv) and the flow algorithm to construct an optimal rep-
resentation together with the function f yielding then also o2(P, w). In order to
do this we need some further condition:

Let us say that (P, w) is in equilibrium with respect to the representation x if
for every connected component C of the active graph Gx there holds ttx (C) = 0.
Recall that a (connected) component in a directed graph is a maximal set C
of vertices such that for any two elements v, w in C there exists a sequence
(v = v0, vl, ... , v = w) of vertices with the property that v, v,+l is an edge
in the underlying undirected graph for all i E {0, ..., k - 1). The graph is called
connected if it has only one connected component.

Lemma 4.4.4. Let (P, w) be in equilibrium with respect to x. Then the values
x(p), p E P, can be uniquely determined from the active graph.

Proof. The value of x on any point of any component C determines the values of
x on all other points of C. The value of the first point must be chosen in such a
way that the expected value of C becomes zero.

Lemma 4.4.5. Given a representation x, we can construct in a finite number of
steps a representation y such that o > and (P, w) is in equilibrium with
respect to y.

Proof. Noting Lemma 4.4.1, we may assume that gx = 0. Let C1, ..., Ckx be the
components of G. Let

ix` {jE{l,...,kx}:gx(Cj)<0}; F:=UjEJ,,Cj,

Jx [j E {1, ... , kx} : gx(Cj) = 0}; R := UjEJX Cj,

J s :_ { j E {1, ... , kx} : µx(Cj) > 0}; 1 := UjEJ,>Cj
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We may assume that F 0, that is, I * 0 since otherwise (P, w) is already in
equilibrium with respect to X. We put

E1 w(I) + w(F)
min{x(e+) - x(e-) - 1 : e+ E I, e- E F),

w(I)
min{x(e+) - x(e-) - 1 : e+ E R, e- E F),

E3 w 1

rmn{x(e+) - x(e ) - 1 : e+ E I, e E R},

E4 := w(I) min{-/tx(Cj) : j E J,`1,

E5 :=
w(F)

min{µx(Cj) : j E JX

and carry out the shifting yE defined in Lemma 4.4.2 with E := min{E1, E2, E3, E4,
65), which is obviously greater than 0. By checking all types of arcs we see that
yE is indeed a representation. Moreover,

E <- E5 w(F) Ax (I) = w(F) + w(I) (Ax(I) - Ax(F))

Lemma 4.4.2 implies that a 2 2< o,;.
Consider the parameter = 2kx - I Jx I (kx = number of components of G,

Jx I = number of components of Gx in equilibrium). Of course, 1 < x < 21 P1.
Claim. 4YE < x.
Proof of Claim. Consider the new (undirected) graph G, = (Va, Es), where

V V := { 1, ... , kx } and fl' E E, iff there is some arc e E E such that e+ E Cj, e- E
C/ and yy(e+) - y,(e-) = 1 (i.e., c = E1, E2 or E3). If E, = 0 then E = E4 or
E5, hence I JyE I > I Jx I (the component for which the minimum is attained in the
calculation of 64 (resp. E5) has after the shifting yE the expected value zero), but
kyE = kx implying the statement in the claim.

If E, 0 let a be the number of elements of Jx that are an endpoint of some
edge of G, If a = 0, then I JyE I = I Jx I but kyE < kx and we are done. If a > 0, then
1 JyE I > I Jx I - a (if a component in equilibrium is joined with a component that
is not in equilibrium, then the resulting set is not in equilibrium), but kyE < kx - a
(a components Cj with j E Jx are joined with other components). Consequently,
tyE <2(kx-a)-(IJx

If we repeat this shifting several times, then, in view of the claim, after at most
21 P1 steps we must arrive at a representation y such that (P, w) is in equilibrium
with respect to y. We observe that in each shifting step the variance decreases;
hence vy < ax.
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Theorem 4.4.2. For any poset (P, w) and any real number tt, there is exactly
one optimal representation with expected value µ, and this optimal representation
can be constructed in a finite number of steps.

Proof. We may suppose µ = 0. Uniqueness: Assume that x and y are distinct op-
timal representations with expected value 0. Then z = x is also a representation
with expected value 0. But

0,1 = w(P) E w(P)z(P) = w(P) w(P)
(x(P)

2

Y(P)12

pEP pEP J
x2(P) + y2 (P)

1 2 2 z
,<w(P)>2 2

=2(0,;+0,y =Qx
pEP

which contradicts the assumption that x is optimal.
Existence and algorithm: Construct the height function h as in the beginning

of this section and shift it down by the value 12h to obtain a representation with
expected value 0. Moreover, apply the procedure discussed in Lemma 4.4.5 to
obtain a representation x such that (P, w) is in equilibrium with respect to x. Now
iterate as follows: Apply the labeling algorithm to obtain a maximal flow in the
network Nx defined in the proof of (iii) H (iv) of Theorem 4.4.1. If every arc
sp, p E P, is saturated, then stop because by this proof the actual representation
is optimal. Otherwise we find in Nx a cut (S, T) of smaller capacity than the
capacity of ({s}, V - {s}); that is, a filter F := S - {s} with µx(F) < 0. Carry
out a shifting as in the proof of (i) -+ (iii) of Theorem 4.4.5 and change the
resulting representation by the procedure from Lemma 4.4.5. This yields a new
representation x' with the property that (P, w) is in equilibrium with respect to
x', but 0,x2,, < 0,x . Since the variance strongly decreases, in view of Lemma 4.4.4
active graphs cannot appear twice in this iteration. There is only a finite number
of subgraphs of H(P) = (P, E) (which are candidates for active graphs); hence
this iteration ends after a finite number of steps.

In [156] we proved for the unweighted case that we have to call the max-flow
algorithm at most

i
I P 16 times to obtain the optimal representation. Test examples

of Stendal [447] suggest that 0(1 PI) calls already suffice. We do not know whether
the algorithm of Theorem 4.4.2 is strongly polynomial, whether it has complexity
O(1PIk) for some k.

4.5. Normal posets and flow morphisms
The following definition of a class of posets has its origin in the proof of Sperner
[436] that the Boolean lattices possess the Spemer property (see the proof of
Theorem 1.1.1). It was introduced by Graham and Harper [228].
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Let (P, w) be a positively weighted poset with rank function r. For the sake
of brevity we put throughout n := r(P). We say that (P, w) has the normalized
matching property (NMP) if

w(A) < w(0(A))
f o r all A C_ Ni, i = 0, ... , n - 1. (4.30)

w(N1) w(Ni+l)

Briefly a poset with the NMP is called a normal poset.

Proposition 4.5.1. Let (P, w) be a normal poset. Then all minimal and maximal
elements of P have rank 0 and n, respectively; that is, (P, w) is graded.

Proof. Assume p E P is minimal, r(p) = i > 0. Then

w(Ni-1) w(V(Ni-1))
a contradiction.

1 r_1) > w(Ni)w(N

Assume q E P is maximal, r(q) = j < n. Then

w({q}) > w(V({q})) _ 0
w(Nj) w(Nj+1)

contradicting the NMP.

Proposition 4.5.2. A ranked and positively weighted poset (P, w) is normal iff it
has the dual normalized matching property, that is, iff

w(A) < w(A(A))
for all A C Ni, i = 1, ..., n. (4.31)

w(N1) w(Ni-1)

Proof. We only prove that (4.30) implies (4.31). Let A c Ni, i = 1, ... , n, and
observe that V(Ni-1 - A(A)) c Ni - A. Thus by (4.30)

1 -
w(A(A)) = w(Ni-1 - 0(A))

<
w(V(Ni-1 - 0(A))) < w(Ni - A)

w(Ni-1) w(Ni-1) w(Ni) w(Ni)

w(A)= 1 -
w(Ni)'

and (4.31) follows immediately.

Proposition 4.5.3. Let (P, w) be normal. Then for any S c_ [0, n] the S-rank-
selected subposet is normal, too.

Proof. We get the upper shadow in the subposet by taking several times (as often
as necessary) the upper shadow in P.
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Now we will discuss two other criteria of the NMP. Let (P, w) be ranked. For
the sake of brevity let NP := Nr(p) (the level containing p). A regular covering
of (P, w) is a function f : t(P) -+ R+ such that

E f (C) = w(p) for all p E P,
CEQ(P):pEC w(NP)

E f(C) = I.
CEC(P)

Moreover, we say that (P, w) satisfies the k-LYM inequality or briefly (P, w) is
k-LYM if for all k-families F of P

1: w(p) < k.
PEF w(NP)

_ (4.32)

In the case k = 1 we speak of LYM instead of 1-LYM. The following theorem
is in the unweighted case due to Kleitman [304]. For arbitrary weights see also
Harper [257] and [150].

Theorem 4.5.1. Let (P, w) be graded and positively weighted. The following
conditions are equivalent:

(i) (P, w) is a normal poset,

(ii) (P, w) satisfies the LYM-inequality,

(iii) (P, w) satisfies the k-LYM inequalityfor every k = 1, 2, ... ,
(iv) there exists a regular covering of (P, w).

Proof. (i) -+ (ii). Let F bean antichain (1-family). Let l:= min{i : F fl N1 # 01.
We prove (4.32) (for k = 1) by induction on 1 = n, n - 1, .... The case I = n
is trivial. Thus consider the step 1 + 1 -f 1 < n. Let A := F fl N1. We have
V(A) fl F = 0 because F is an antichain. Obviously, F* := (F - A) U 0(A) is
an antichain, too. Using (4.30) and the induction hypothesis we obtain

w(p) _ w(A) w(p)r
+pEF w(NP)

L
w(Ni) PEF-A w(NP)

w(O(A)) r w(P) w(P) < 1
w(Nt+i) + pEF-A w(NP) pEF'* w(NP)

.

(ii) ->( iii). This implication is clear since every k-family is a union of k an-
tichains (see Lemma 4.3.1).

(iii) -+ (iv). We define the new weight v on P by v(p) := w(NP) for all p E P.
Claim. c1(P, v) = 1.
Proof of Claim. Obviously No is a 1-cutset of weight v(No) = 1. Let F be

any other 1-cutset of P. Then P - F is an n-family in P. By condition (iii) with
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k = n, v(P - F) = EpEP-F v(p) < n, hence, v(F) = v(P) - v(P - F) >
(n + 1) - n = 1.

In view of Corollary 4.2.1(b), there exists f : i(P) -+ R+ such that

f (C) < v(p) for all p E P, (4.33)
CE(P): pEC

f(c) = I.
CEC(P)

Assume that strict inequality holds for some p* E Ni in (4.33). Since each maximal
chain has exactly one member in the ith level of P, we conclude

1 = E .f (C) = E E .f (C) < E v(p) = E w(p) = 1
CEt(P) pENi CEE(P):pEC pEN; pEN1

W(NP)

a contradiction.
(iv) -> (i). Let A C Ni, B := Ni+1 - V (A), and let y be a regular covering of

(P, w). Since each maximal chain in P contains at most one member of A U B,

1 = f(C) >- w N) + w(Np)1)CEIE(P) pEAUBCEt(P):pEC pEA pEB

_ w(A) w(V(A))
w(Ni)

+ 1 -
w(Ni+1)'

and (4.30) is proved.

Note that Wei [461] found a further equivalent condition in terms of solutions
of a certain convex programming problem and its dual.

Let G i _ (Pi, Ei) be the Hasse diagram of the {i, i + fl-rank-selected subposet
of the graded poset (P, w); that is, Pi = Ni U Ni+1, E; pq : pEN, , p < q }.
Let wi be the induced weight.

Corollary 4.5.1. Let (P, w) be graded and positively weighted. Then (P, w) is
normal iff for i = 0, ... , n - 1 there exist functions f : Ei -+ R+ such that

w(p)pf = E J(e)=w(Ni)forallpEN1,
eEEi:e =p

w(p)Pji _ E f (e) = w(Ni+1)
for all p E Ni+1

eEEi:e+=p

Proof. (P, w) is normal if (Pi, wi) is normal for all i, by definition. The arcs of Ei
are exactly the maximal chains in (Pi, wi ). The result follows from the equivalence
(i) -* (iv) in Theorem 4.5.1.
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We encourage the reader to derive Corollary 4.5.1 directly from the real version
of the Max-Flow Min-Cut Theorem (Corollary 4.1.1).

An unweighted poset P is called regular if P is graded and both the number
of elements that cover any element p of P and the number of elements that are
covered by p depend on the rank of p, only.

Corollary 4.5.2. Let P be a regular poset. Then P is normal.

Proof. Define fore E Ei, i = 0, ... , n - 1,

j(e)
lE-.i l

Then it is easy to see that the conditions of Corollary 4.5.1 are satisfied (with
w-1).

Example 4.5.1. The following posets are regular: The Boolean lattice B, the
linear lattice L (q), the affine poset A (q), projective space lattices, the cubical
poset Q and the function poset Fk.

Using the existence of regular coverings we can estimate the weight of subsets (with
certain properties) of normal posets by considering only the maximal chains.

Theorem 4.5.2 (Kleitman [304]). Let (P, w) be a normal poset and G C P.
Then

w(G) < max w(N").
CEQ(P) pECnG

Proof. Let f be a regular covering of (P, w) that exists by Theorem 4.5.1. Then

w(G) = E w(p) = E E w(NP) f(C)
pEG pEG CEt(P):pEC

= E f(C) E w(N°) < max > w(Np).
CEC*(P) pECnG

c
pECnG

In analogy to the k-Sperner property, we say that (P, w) (with n = r(P)) has
the k-cutset property if

ck(P, w) = min (w(N,,) + ... + w(N,,t)).
p<i, <... <ik <n

It has the strong cutset property if it has the k-cutset property for every k =
1,2,...,n+1.
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Lemma 4.5.1.

(a) (P, w) has thek-cutsetpropertyiff(P, w) has the (n+1-k)-Spernerproperty.

(b) (P, w) has the strong cutset property iff (P, w) has the strong Sperner prop-
erty.

Proof. Observe that F is an (optimal) k-cutset if P - F is an (optimal) (n + 1- k)-
family.

Corollary 4.5.3. Let (P, w) be normal. Then it has the strong Sperner and the
strong cutset property.

Proof. Let F be a k-family, 1 < k < n + 1. Then every C E (E(P) contains at
most k elements. By Theorem 4.5.2

w(F) < max (w(N;,) + + w(N,k)).
p<i <...<ik<n

The bound is attained by the union of the corresponding levels for which the
maximum is attained. The strong cutset property follows from Lemma 4.5.1.

A subset F of the graded poset P is called a mod-k family if pl, P2 E F, pl <
P2 imply r(p2) - r(Pl) > k.

Corollary 4.5.4 (Katona [293]). Let (P, w) be normal and rank unimodal. Then
the maximum weight of a mod-k family equals the largest sum of the form
>; w(Nh+xi)

Proof. Again by Theorem 4.5.2 the weight of any mod-k-family can be bounded
by maxj>jEJ w(Nj), where the maximum is extended over all J c [0, n] with
the property that ji, j2 E J imply I j' - j2 I > k. The unimodality permits the
restriction to subsets J of the form {h, h + k, h + 2k, ...}. The union of the
corresponding levels for which the maximum is attained gives the optimal mod-
k-family.

Up to now we used normality for upper estimates of certain families. Let us
consider two results for lower estimates with the assumption of log concavity of
the Whitney numbers. Examples of such posets can be found in the next section.
First we need some preparations. Let I be an interval of integers.

Lemma 4.5.2. Let Jai }, i E I, be a log concave sequence of positive numbers.
Then the sequence (1) } is convex.
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Proof. We have for i - 1, i + 1 E I

7ar-1 + ai+1

2

hence

1 1 + 1
a; 2

Lemma 4.5.3. Let {bi } be a convex sequence of positive numbers. Then for all
j,k,IEIwith j<k<l

(1- k)bj + (k - j)bi > (1- j)bk.

Proof. Though this inequality follows from a discrete version of Jensen's in-
equality, we give a direct proof. We may suppose j < k < 1. We have by the
convexity

bj+l - bj < bj+2 - bj+1 < ... < bk - bk-1 < bk+1 - bk.

Summation of the k - j terms on the left yields

(bk - b3) < (k - j)(bk+1 - bk)

which is equivalent to

bk - b j < bk+l - bj
k-j - k+l-j'

This gives finally an inequality which is equivalent to the asserted one:

bk - bj bi - bj
k-j - 1- j

Lemma 4.5.4. Let {ai }, i E I, be a log concave sequence of positive numbers.
Let the new sequence {bi }, i E I, be defined by

bi := E ai.
jEI:j<i

Then for j, k, I E I with j< k< 1

(al - ak)bj + (ak - ai)bt 2: (al - aj)bk

Proof. Let j < k < 1. From the log concavity we derive easily

aj+l - aj > aj+2 - aj+l > > ak - ak-1 ak+1 - ak
aj+1 aj 2 ak ak+1
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Similarly to Lemma 4.5.3 we obtain

ak - of > ak+l - ak

bk - bj - bk+t - bk
hence

ak - of > ak+t - aj

bk - bj - bk+l -bf
This gives an inequality equivalent to the asserted one:

ak - a j a/ - a j
bk - bj bi - bj

Theorem 4.5.3. Let (P, w) be normal with log concave weighted Whitney num-
bers. Let {w(Ni)}, i = 0, ... , h, be strictly increasing, let 0 < k < h, and let
A C P be an antichain such that w(A) > w(Nk). Finally let I be the ideal
generated by A. Then

(a) (Kleitman and Milner [309]) A r (A) > k.

(b) (Kleitman [302]) w(I) > rk 0 w(N1).

Proof. Let ai := w(Ni) and xi := w(A fl Ni), i = 0, ... , n. Then

0 < xi < ai, (4.34)

in view of the supposition

n

E xi > ak,

and by the LYM-inequality, see Theorem 4.5.1,

n
xi
- <

i=o ai

(a) We have to prove that

(4.35)

(4.36)

n n

>ixi > k E xi. (4.37)

i=0 i=0

Thus it is enough to show that the minimum of the objective function F =o (i -k)xi
under the constraints (4.34), (4.35), and (4.36) is not less than zero. Because the
minimum is attained at an extreme point of the polytope defined by (4.34)-(4.36)
we have to prove (4.37) only for all these extreme points. Let x = (xo, ... , xn)
be such an extreme point. It satisfies n + 1 independent inequalities from (4.34)-
(4.36) as equalities, cf. p. 86.
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Case 1. (4.35) or (4.36) is a strict inequality. Then in view of (4.34) and (4.36)
at most one component of x, say xi, is nonzero. Moreover al > xl > ak which
implies I > k. Consequently,

n

T(i - k)xi > (1 - k)ak > 0.
i=o

Case 2. (4.35) and (4.36) are satisfied as equalities. Then it is easy to see that
at most two components of x are nonzero, say xj and xi. If j, I > k then trivially
E =o(i - k)xi > 0. If j,1 < k, then by the equations (4.35) and (4.36) and the
strict monotony

1-xj+xl<xj+xl=1,
a j al ak

a contradiction. Thus we may assume that j < k < 1. Assertion (4.37) reduces to

(j - k)xj + (1 - k)xl > 0

and we know that by (4.35) and (4.36)

xi+xl=ak,x+xl = 1.
aj al

Solving this system of equations and inserting into the reduced assertion yields

(j - k)aj(al - ak) + (1 - k)ai(ak - aj) > 0,

which is equivalent to

(k- j) 1 +(1 -k)1 > (I -j)1 ,
al aj ak

but this inequality is true because of Lemma 4.5.2 and Lemma 4.5.3.
(b) Let yi := w(I fl Ni), i = 0..... n. Obviously, Aj := (P E A : r(p) >

j) U { p E N j : p I), j = 0, ... , n, is an antichain. Again by the LYM-inequality

x`+yi <
ai aj

i=j

that is,

n
xi < yj

ai aj

We have, using bi := Ej=0 aj,

a' aj=> bi.
j=0 j=o =j i=o j=o i=o
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Consequently it is sufficient to prove that the minimum of the objective function
=0 a b1 under the constraints (4.34)-(4.36) is not less than bk. Let us look again

at an extreme point x of the polytope defined by (4.34)-(4.36). The Case 1 of (a)
can be treated easily, so assume that (4.35) and (4.36) are satisfied as equalities.
Moreover, as for (a), we may assume that

xJ - aat - aj, xl=at al - a
and all other components of x are zero. Inserting these values into the objective
function yields the asserted inequality

(al - ak)bj + (ak - aj)bi > (al - aj)bk,

which is true by Lemma 4.5.4.
In the original proofs (in Greene and Kleitman [234] partially attributed to

Odlyzko), duality arguments were used; that is, by an inspired guess one finds
an admissible solution of the dual problem with a corresponding large value of
the (dual) objective function. We used the primal approach to be a little bit more
straightforward. In [174] Erd6s, Faigle, and Kern generalized part (a) of Theo-
rem 4.5.3 to the case of k-families.

In the proofs of Corollary 4.5.3 and 4.5.4, we considered instead of the poset P
only chains C. This idea of reduction to smaller posets was generalized by Harper
[258], who introduced the notion of flow morphisms: Let (P, v) and (Q, w) be
weighted posets. A flow morphism is a mapping rp : P - Q such that

(i) rp is surjective,

(ii) Pt < PP2 implies cp(pt) < Q(P(P2),
(iii) w(q) = v((p-1(q)) for all q E Q,
(iv) the poset induced by rp-' (q1) U rp(q2) is a normal poset of rank 1 for all

g1, g2 E Qwith g1 < Qq2

Here rp-' (q) is, as usual, the set of all p E P with W(p) = q. We note that
from condition (ii) it follows that the poset considered in (iv) cannot contain three
distinct elements lying on a chain in P, but without (iv) it could be an antichain.
Moreover, in view of Proposition 4.5.1, in that poset the elements of rank 0 and
1 are the elements of rp-' (ql) and (p-' (q2), respectively. Immediately from the
definition we obtain:

Proposition 4.5.4. The graded poset (P, v) is normal iff the rank function r is
a flow morphism from (P, v) onto (C, w), where C = (0 < 1 < . . . < n) and
w(i) = v(N1(P)), i = 0, ... , n.

Part (a) of the next theorem is due to Harper [258]. In the proof we use the approach
of [150], [154].
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Theorem 4.5.4. If there is a flow morphism cp from (P, v) onto (Q, w), then for
all k

(a) dk(P, v) = dk(Q, w),

(b) ck(P, v) = ck(Q, w).

Proof. We prove only (a) since the proof for (b) is similar. We have

dk(P, v) ? dk(Q, w)

since for any k-family F in Q, its preimage V-1(F) is a k-family in P and
v((p-1(F)) = w(F). Thus we must show that

dk(P, v) dk(Q, w).

Claim. If D is any chain in Q then the poset induced by cp-1 (D) is normal.
Proof of Claim. Let D' be any maximal chain in Q containing D. Then, by

our conditions, the poset induced by (p-1 (Y) is normal. Since (gyp-1(D), v) is a
rank-selected subposet of (gyp-1(D'), v) (v is restricted to the corresponding sets),
(gyp-1(D), v) is normal, too (see Proposition 4.5.3).

Let fD be a regular covering of (gyp-1(D), v) which exists by Theorem 4.5.1.
This means that we have

Y f(C) = wV (P) )
for all p E (p-1(D),

CEQ2(rp-1 (D)):pEC

11 f(c) = I.
CEe(W-' (D))

Let further yQ : *(Q) --) R+ and zQ : Q -+ R+ be functions such that

1: yQ(D) + zQ(q) w(q) for all q E Q,
DES*(Q):gED

k yQ(D) + E zQ(q) = dk(Q, w),
DEE*(Q) qEQ

which exist by Theorem 4.3.2.
Define yp : *(P) -+ R+ and zp : P -> R+ by

yp(C) fw(C)(C)yQ(cO(C)), C E (E*(P),

zp(p)
v(P) zQ(V(P)), P E P.

w (Op) )
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Then we have for all p E P (with the notation q := (p(p))

E YP(C) + zP(P) _ E YQ(D) ffD(C)
CEO*(P):pEC DE.t*(Q) CEIr(rp-'(D)):pEC

+ v(P) zQ(q)
w (q)

v(P) v(P)
L.. YQ(D)w(q) + w(q)zQ(q)DES*(Q):gED

v(p)
w(q) = v(p);

w(q)

that is, yp, zp satisfy the inequality (4.15).
Moreover,

3k(YP, zP) = k E YP(C) + E zP(P)
CEV*(P) PEP

= k fD(C)yQ(D)
DES*(Q) CE4E*(P)xp(C)=D

+ v(P) zQ(q)

qEQ pEP:rp(P)=q w(q)

= k YQ(D) + zQ(q) = dk(Q, w).
DES*(Q) qEQ

From Theorem 4.3.2 we finally derive

dk(P, v) _< Sk(YP, ZP) = dk(Q, w).

The reader should observe that we also may obtain Corollary 4.5.3 from Propo-
sition 4.5.4 and Theorem 4.5.4 since the k-family problem on a chain is solved by
taking those k elements of the chain whose weight sum is maximal (analogously
for the k-cutset problem).

Let us weaken slightly condition (ii). We say that (p : P -+ Q is a weak flow
morphism if it satisfies (i), (iii), (iv), and

(ii') Pi <P P2 implies (p(pl) <Q (p(p2).
An example of a weak flow morphism that is not a flow morphism is given in

Figure 4.9. Note that in this example cl (P, v) = 6:0 cl (Q, w) = 3. But:

Corollary4.5.5. If there is a weak flow morphism (p from (P, v) onto (Q, w),
then dk(P, v) = dk(Q, w) for all k = 1, 2. ... .

Proof. Let (P*, v) be the poset that has the same elements and weight as (P, v),
but where pl < P*P2 if p1 < PP2 and (p(pl) < Q(p(p2) (we omit in the Hasse
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2 2 2

Figure 4.9

diagram of P those arcs that are not mapped onto an arc of the Hasse diagram of
Q). By construction, V is a flow morphism from (P*, v) onto (Q, w). Accordingly,
by Theorem 4.5.4 and the fact that each k-family in P is a k-family in P*,

dk(P, v) dk(P*, v) = dk(Q, w).

However, as in the proof of Theorem 4.5.4, the preimage of a k-family in Q is a
k-family in P of the same weight; thus

dk(P, v) ? dk(Q, w).

Theorem 4.5.5 (Weighted Quotient Theorem). If G is a group ofautomorphisms
of P, then dk(P) = dk(P/G, w/ G) fork = 1, 2, ....

Proof. [ 150] The mapping p that assigns to each p E P the orbit containing p is a
weak flow morphism from (P, 1) onto (P/G, w/ G). Indeed, conditions (i)-(iii)
are satisfied evidently and condition (iv) is satisfied because the poset induced by
0-1(A) U (p-1(B), A, B E P/G, A < B, is a regular poset of rank 1 and hence

normal by Corollary 4.5.2. Theorem 4.5.4 yields the assertion.

Corollary 4.5.6 (Kleitman, Edelberg, and Lubell [306]). For everyposet P and
for every positive integer k there exists a maximum k -family that is invariant under
every automorphism of P.

Proof. Let G be the group of all automorphisms of P and let F' be a maximum
weighted k-family in (PIG, w/G). Here F' is a set whose elements are orbits of P
under G. Let F be the union of these orbits. Then F is a k-family in P that is invari-
ant under every automorphism of P, and JFl = w/G(F') = dk(P/G, w/G) =
dk(P) by Theorem 4.5.5. Thus F is even a maximum k-family in P.

Freese [204] observed that this corollary can be derived in the k = 1 case
from the result of Dilworth [137] that the maximum antichains of a poset form a
distributive lattice.
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In [152] we proved that not only the k-family problem but also the variance
problem is preserved by weak flow morphisms:

Theorem 4.5.6. Let x and y be optimal representations of (P, v) and (Q, w)
with µX = µy. If there is a weak flow morphism cp from (P, v) onto (Q, w), then
x(p) = y((p(p)) for all p E P. In particular, o2(P, v) = a2(Q, w).

Proof. If we define the function z : P -* 1R by z(p) := y((p(p)) for all p E P,
then we must prove z = x. Since cp is a flow morphism we have v(P) = w(Q),

Az = v(P) E v(P)z(P) = v(P)
E v(cp-1(q))y(q)

PEP qEQ

= 1 E w(q)y(q) = µy,
w(Q) qEQ

vZ = v(P) v(P)z2(P) - ,u = w(Q)
w(q)y2(q) - A2 = 2

P EP qEQ

By Theorem 4.4.2 it remains to show that z is an optimal representation. Since q is a
flow morphism, p' > pimplies p(p') > gp(p).Thus forall p' > p, z(p')-z(p) =
y(cp(p')) - y(cp(p)) > 1; that is, z is a representation. In order to show that z is
optimal we use the equivalence (i) H (v) of Theorem 4.4.1. It is easy to see that cP
is a flow morphism from (Pz, v) onto (Qy, w). For q, q' E Q, q < q' let hqq' be
a regular covering of the poset induced by cp-1(q) U (p-1 (q') (note Theorem 4.5.1
and the definition of a flow morphism). So we have

E hgq'(PP') =
v(P) for all p E 0-1(q),

w((P(P))

E vW)hggt(pp) = for all p' E W (q).
p:p<p',(p(p)=q w((P(P ))

Let g be a representation flow on (Q, w) relative to y. We define f : E(P) -* JR
by

f (pp') := h,(p),(p')(PP')g((P(P)w(P)) for all pp' E E(P).

Then z(p') - z(p) > 1 implies V (p') - (p (p) > 1; that is, g(cp(p)cp(p')) = 0 and
f (pp') = 0. Moreover, by simple computation we obtain

+ - v(P) +

pf - Pf = (W (P)g - O(P)g) = V (P)(z(P) - liz)

Consequently, f is a representation flow on (P, v) relative to z and hence by
Theorem 4.4.1, z is an optimal representation.
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We define a graded poset (P, v) to be rank compressed if the rank function r is
an optimal representation of (P, v) (of courser is a representation). It is easy to see
that, for example, weighted chains are rank compressed. Note that the existence of
a flow morphism (not of a weak flow morphism) implies that (P, v) is graded if
(Q, w) is graded. Directly from Theorem 4.5.6 and Proposition 4.5.4 we derive:

Corollary 4.5.7. If there exists a flow morphism from the graded poset (P, v)
onto the graded poset (Q, w), then (P, v) is rank compressed iff (Q, w) is rank
compressed. In particular, normal posets (P, v) are rank compressed.

In connection with Section 4.3, consider the following conjecture of Griggs [235]:
If P is a normal poset, then there is a partition into chains which is k-saturated for
allk= 1,2,....

Automorphisms are not only useful in the study of k-families (see Corollary
4.5.6), but they can be applied also to other classes of families. Let P be a ranked
poset. We say that a group G of automorphisms of P is rank transitive if G acts
transitively on the levels of P, that is, if P/G is a chain. For p E P, let FP be the
principal filter generated by p, that is, FP := {q E P : q > p}, and let GP be the
subgroup of G that fixes the element p; that is, GP := {rp E G : (p(p) = p}. If
there exists a rank-transitive automorphism group G of P, then obviously FP = F9
if r(p) = r(q). In the following we use the notation Q := F, for some po E No
(up to isomorphism Q does not depend on the concrete element po of No).

Lemma 4.5.5. Let G be a rank-transitive automorphism group of P. We have

Wi (P) = IG II for all p E N, (P), i = 0, ... , n.
PI

Proof. We find a bijection between Ni (P) and the left cosets of G relative to GP
by taking for q E N1(P) the coset { E G (p) = q 1. By Lagrange's Theorem
the number of left cosets equals 511, which implies the equality.

For a subset (family) F of P and an automorphism gyp, let rp(F) := {cp(p) : p E
F). Given an automorphism group G of P, we say that a class 2t of families in P
is G-invariant if p(F) E Qt for all F E 2t. Let us recall that F; := F f1 N1(P) and
that the parameters of F are defined by f, := IF I. The following theorem is (in a
different formulation) due to Erd6s, Faigle, and Kern [173].

Theorem 4.5.7. Suppose that there exists a rank-transitive automorphism group
of P. Let C = (po < pl < < pn) be a fixed maximal chain in P, let Q be the
filter generated by po, and let R be a system of representatives of the left cosets of
G relative to GPo (i.e., No(P) = {Q(po) : Q E R}, Q1(po) 0 Q2(po)forQi 4-` Q2).
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Let w : P -). R+ be defined by

w(p) -
Wo(P) Wi (Q)

tf p E Ni (P),

and let 2( be a G-invariant class of families. If for all F E 21

Ew(Q(C)flF) <1,
pER

then for all F E 21

nE f <
O Wi (Q)

163

(4.38)

(4.39)

Proof. Since 21 is G-invariant we have, by the supposition, that for all cp E G

w(Q(C) nW-(F)) < 1;

that is,

pER

w((pQ(C) n F) <1,
pER

n

w(coo (pi) f1 Fi) < IGI,
(PEG pER i=o

n Wi (P) 1E
pE Wo(P) W1(Q)

E I'Q(pr) n Fil < IGI

For a fixed element q E Fi there are I Gp (pi) I many elements cp of G that map o (pi)
onto q (they form a left coset relative to Gp(p )). By Lemma 4.5.5, I Gp(p I = G p, I
for every Q E R. Consequently,

pp (pi)nFI =fIGp;I;
,pEG

hence we may rewrite the last inequality (using Lemma 4.5.5 and IRI = WO (P)):

n Wi (P) 1
EIRIWo(P)Wi(Q)JtIGp,l < IGI,

i=o

n
f <

Wi(Q)

This theorem is relatively abstract. In applications we have to choose the chain
C, the group G, and the system R of representatives in a convenient way.
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A family F in the affine poset Aq (n) is called intersecting if for all X, Y E Aq (n)
the infimum X A Y exists - that is, if in a realization of the poset as affine subspaces
of an n-dimensional vector space V, we have X fl Y # 0.

Corollary 4.5.8 (Erd6s, Faigle, and Kern [173]). Let F C Aq (n) be an inter-
secting Sperner family. Then

n fi <1.
((n

i=0 li)q

Proof. Each bijective affine transformation of the underlying space V, induces an
automorphism of P := Aq (n), and all such automorphisms form a rank-transitive
automorphism group G. Note that the class of intersecting Sperner families is G-
invariant. Let C = ({O} = Xo < X, < . < Xn = Vn) be a chain of linear (i.e.,
also affine) subspaces of V, . Finally let R be the set of automorphisms Q of Aq (n)
that are induced by translations Ta : Vn -> V, , where r. (x) := x + a for all
x E Vn (a E Vn ).

The filter FXo contains all affine subspaces with the zero vector; thus Q = FXo
is isomorphic to the linear lattice Ln(q). Accordingly, W1(Q) = (")q. Thus we
must verify condition (4.38) of Theorem 4.5.7. For an affine subspace X of rank i
we have

Wi (P) 1 qn-` n)q 1 1

W = WO (P) Wi(Q) qn ("li)q q `

The set (UQERQ(C)) fl F contains at most one element: Assume the contrary;
then there exist a, b, i, j such that different affine subspaces Y = a + X, and
Z = b + Xj belong to F. Since F is intersecting, there is some c such that
Y = c + X1, Z = c + Xj, and because F is a Sperner family we have i = j
and thus Y = Z, a contradiction. If the preceding set is empty, then (4.38) clearly
holds, so let

{Y} = (UQERQ(C)) fl F, r(Y) = i.

We may obtain Y by a translation from Xi ; that is, Y = a + X; , in exactly I Y I

ways (we need a E Y); hence in this case

w(Q(C) f1 F) = IYI = 1,YI
QER

and (4.38) is verified.

For a second example let us look at the function poset Fk . A family F in Fk
is called intersecting if for all a, b E F, a A b # 0 holds (equivalently, if for
all a, b E F there is some index i E [n] such that ai = bi E {1, ... , k}). The
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following corollary, which was proved by me in [147], was the predecessor of
Theorem 4.5.7.

Corollary 4.5.9. Let F C Fk (k > 2) be an intersecting Sperner family. Then

n

n_ ;i_1 < 1.
i=1 (n-1

Proof. We will apply Theorem 4.5.7 to the poset P which can be obtained from
Fk by deleting the minimal element 0. In our usual terminology we then have
W; (P) = W;+1(Fk ), i = 0, ... , n - 1. But in order to avoid this shift of the
index we make the exception that the minimal elements of P have rank 1, and
in Theorem 4.5.7 we work with C = (p1 < . . . < pn ), GP, and so on. Then
W1(P)=Wi(FF)=(;) k`, i=1...,n.

Let Sn be the symmetric group on [n] and Sk,O the set of permutations of
{0, 1, ... , k} that leave 0 invariant. For 7r = (7ro, 7rl, ... , 7rn) E Sn X Sk,o x ... X
Sk,o define cp, : Fk -* Fk by

va(al,...,an) = (b1,...,bn) iffbo(;) =7ri(ai),i = 1,...,n.

Thus cp, (a) can be obtained by applying simultaneously 7ri to the ith component
of a, i = 1, ... , n, and then permuting the components according to no. It is
easy to see that cp., is an automorphism of Fk and that the set G of all such auto-
morphisms is rank transitive. Again the class of all intersecting Sperner families
is G-invariant. Let C := (al < ... < an), where ai = (1, ..., 1, 0, ... , 0) (i
ones), i = 1, ... , n.

The filter Q= F., is obviously isomorphic to Fk -1, thus W, (Q) = (n- 1')ki-1,

1, . . . , n (here again the minimal element is considered to have rank 1). Let t
be the identical permutation of {0, 1, ..., k} and define

1 2 ... n- 1 n

O
2 3 ... n 1

,

0 1 2 ... k- 1 k

0 2 3 ... k 1

Finally let C := c, ..., t, cn). The automorphism cps acts as follows on
the elements of P: It first increases (modulo k) the nth component if it is not
zero and it then shifts the components cyclically. We introduce for an element
(0, . . . , 0, 1, 0, . . . , 0), where 1 is at the mth component, the short notation (1, m).
So a 1 = (1, 1). If we iteratively apply cps to a 1 we obtain the "cycle" (1, 1), (1, 2),
... , ( 1 , n), (2, 1 ) , ... , (2, n), ... , (k - 1 , n), (k, 1), ... , (k, n), (1, 1). Thus R =
{cpI, W2, ... , co")kis a system of representatives of the left cosets of G relative to
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G. 1. It remains to verify (4.38). For a E N1(P) we have

(n)k'
1

w(a) = i = 1, ... , n.(n)kt (n-,)ki-1 i,
`1 i-1

Let a be such an element of J :_ (UQERQ(C)) fl F that has smallest rank, say
r(a) = j.

Claim. I JI < j.
Proof of Claim. Obviously ai = (1, cpS(ai) =rp'((1, 1))v
V cs((1, i)); that is, pf (a j) corresponds to i consecutive elements from the

preceding cycle, i = 1, ... , n, I = 1, ... , kn. Moreover, two such consecutive
sets that belong to two different elements of J cannot have the same starting point
or endpoint, because F (thus also J) is a Sperner family, and they must intersect
since F (thus also J) is intersecting. Now we may use the arguments from the first
proof of the Erd6s-Ko-Rado Theorem (Theorem 2.1.7) to convince ourselves that
I JI < j (take for X the consecutive set corresponding to a and note that in the
proof of the claim in the proof of Theorem 2.1.7 we needed only that the sets have
size not greater than ?, which is in our case 2 ).

Now we quickly see that (4.38) is satisfied since

w(Q(C)nF)< .IUPERQ(C)flFI<
PER J J

In the special case that F C Ni (Fk) is intersecting, we clearly have I FI <
"_')ki-t . This result was independently obtained by Frankl [135] and up to some

details by Meyer [368].

4.6. Product theorems
Let us first study the direct product in connection with flow morphisms.

Theorem 4.6.1 (Harper [258]).

(a) Ifcpi isa (weak) flow morphismfrom (Pi, vi) onto (Qi, wi), i = 1, 2, then the
mapping cp defined by co(P1, P2) (0 (Pt), O PD), Pi E Pi, i = 1, 2, is a
(weak) flow morphism from (PI, v1) x (P2, 112) onto (Qt, wi) x (Q2, w2).

(b) If rp and * are (weak) flow morphisms from (P, v) onto (Q, w) and from
(Q, w) onto (R, u), respectively, then the mapping X defined by X(p)
t/r((p(p)), p E P, isa (weak) flow morphism from (P, v) onto (R, u).
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Proof. In both cases it is easy to check that the conditions (i), (ii) resp. (ii'), (iii)
of a (weak) flow morphism are satisfied. We prove (iv).

(a) Let (qt, q2) < Q1 X Q2 (q, q2), that is, without loss of generality

q1 < Q1g1 and q2 = q2. (4.40)

We have to show that

(vl x v2)(A) (vl x v2)(O(A))
(wl x w2)(Rt, g2) (Wi X w2)(gi, q2)

for all A c -1(R1, q2)

where the upper shadow V is taken in the poset induced by cp-' (ql, q2) U

-' (qi, qz). Let {pi', p2, ... , p) be the list of second components appearing
in A. In particular, 02(p2J) = q2, j = 1, ... , s. Our set A can then be written
as a disjoint union A = (A1, pZ) U ... U (A,s, p2), where Aj c_ rp-'(ql) and
(Aj,p2):_{(pt,p2):pi EAR}, j S. We have

V(A) 2 (V(A1), pi) U ... U (V(A,), p2) (4.41)

where this time the shadows O(AS), j = 1, ... , s, are taken in the poset induced
by Q

(q1)
U (p (q',). Since cpt is a (weak) flow morphism we have

v1(Aj)
< v1(O(AS)) j = 1, ... , s. (4.42)wl(gi) w1(g1)

Eventually, from (4.40)-(4.42) we obtain

(VI x v2)(A) _ vi

(wl x w2)(g1,R2) wt(g1)w2(g2)

S v1(V(Aj))v2(p2) (vl x v2)(O(A))
w ( )w ( ) - ( x )( )

1
l 2 w2w1 gi,g2q g2j_J 1

(b) Let rl < Rr2. By Theorem 4.5.1 we only have to show that there exists a
regular covering of the poset induced by X -1(r1) U X-1 (r2) whose two levels are
obviously X - (ri) and x -(r2).(r2). Let

and

E := {PIP2 : P1 < PP2, X(Pi) = r11, i=1,2}

Finally, let

F :_ {g1g2 : q1 < Qq2, *(qi) = ri, i = 1, 2}.

Eg192 {plp2 E E : cp(pi) = qi, i = 1, 2).

Then E = U9192EFE9192 (disjoint union). Since * is a (weak) flow morphism,
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there exists a regular covering of the poset induced by 1/!-1(rl) U >/!-1(r2) - that
is, a function g : F -+ R+ such that

E g(glg2) = u(ql) for all Q1 E
q2:qlq2EF

E g(glg2) = u(q) for all 92 E -l(r2),

ql:glg2EF

E g(glg2) = 1.
qlq2EF

Analogously, for all g1Q2 E F there exists a regular covering fq, q2 : Eqj q2 -' R+
of the poset induced by cp-1(ql) U cp-1(Q2). We define f : E -+ R+ by

f(PiP2) fro(PI)w(P2)(P1P2)g((P(Pl)ip(P2))

Then f is a regular covering of the poset induced by X-1(rl) U X(r2) since
(with q1 := p (pi))

f(PIP2) _ .fg1g2(P1P2)g(qlq2)
P2:PlP2EE q2:glg2EF P2:PIP2EEglg2

1: v(Pl) = w(ql) v(Pl) _ v(Pl)

42-9142EF

g(9t42) w(gl) u(rl) w(ql) u(ri)

for all p1 E X -1(rl ), the corresponding inequality for all p2 E X-1(r2) holds
analogously, and

E f(PIP2) _ fglg2(PIP2)g(glq2) _ g(glg2) = 1.
PIP2EE q,g2EF P1P2EEglg2 glg2EF

Using these results for flow morphisms, we are able to prove in a relatively
short way the following result of Harper [257], which was re-proved in a different
way by Hsieh and Kleitman [273].

Theorem 4.6.2 (Product Theorem). If (P, v) and (Q, w) are normal posets with
log concave weighted Whitney numbers, then (P, v) x (Q, w) also is a normal
poset with log concave weighted Whitney numbers.

Proof. For the sake of brevity, we set ai := v(Ni(P)), bi := w(Ni(Q)), ci :=
(v x w)(Ni(P x Q)), i E Z. At first we prove the statement (cf. Karlin [285,
p. 394]) about the log concavity of the sequence {c1 } (more information on log
concavity (2-positivity) can be found, for instance, in the books of Karlin [285]
and Brenti [84] as well as in the papers of Chase [99] and Bender and Canfield
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[44]). Obviously, ci = r_n,° 0 ambi-m (there is only a finite number of nonzero
items). We must prove that c, > ci+1 c1_1 for all i E Z; that is,

0000 00 00 00

E L amb'-manbi-n E Tambi-m+lanbi-n-1
m=0 n=0 m=0 n=0

(4.43)

Since the sequences Jai) and {bi } are log concave and we admit only positive
weights,

al , a2 ar(P)
ao at ar(P)-1

bl b2 br(Q)bo-bi-...-br
(Q)-1

Consequently,

(aman - am-lan+l)(bi-mbi-n - bi-m+lbi-n-1) ? 0

(4.44)

(4.45)

(4.46)

for all integers m, n since the term in each parenthesis is nonnegative if m < n
and nonpositive, otherwise. The inequality (4.46) is equivalent to

ambi-manbi-n +am-lbi-m+lan+lbi-n-1

> am-lbi-man+lbi-m +ambi-m+lanbi-n-1

Summing up the last inequality over all integers m, n and dividing the resulting
inequality by 2 we obtain (4.43).

Now we prove the statement about normality. By Proposition 4.5.4 there exist
flow morphisms iPl and ip2 from (P, v) onto (C, v') and from (Q, w) onto (D, w')
where C = (0 < 1 < . . . < r(P)), D = (0 < 1 < < r(Q)), v'(i) = ai,
w'(i) = bi, i = 0, 1, ... , and we have to show that there is a flow mor-
phism X from (P, v) x (Q, w) onto (E, u) where E = (0 < 1 < < r(P) +
r(Q), u(i) = ci, i = 0, 1, .... By Theorem 4.6.1(a) there exists a flow morphism
ip from (P, v) x (Q, w) onto (C, v') x (D, w'), and by Theorem 4.6.1(b) we must
show only that there is a flow morphism ( from (C, v') x (D, w') onto (E, u); that
is, we must prove that (C, v') x (D, w') has the normalized matching property.

Let A C Nk(C x D) = {(i, k - i) : max{0, k - r(Q)} < i < min{r(P), k}}.
Suppose at first that

A = {(m,k-m),(m+1,k-m-1),...,(n,k-n)},
m < n. (4.47)

Then

O(A) _ {(m,k-m+1),(m+1,k-m),...,(n+1,k-n)), (4.48)
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and, if we set Sk(h, j) :_ >i=h a;bk-;, we have to show the inequality in

(v' x w')(A) - Sk(m, n) < Sk+1(m, n + 1)
(v' x w')(Nk(C x D)) Sk(0, oo) Sk+l(0, oo)

(v' x w')(V(A))
(4.49)

(v' x w')(Nk+l(C x D))

There holds

Sk(m, n) _ Sk(m, n) Sk(m, n + 1)

Sk(m,00) Sk(m, n + 1) Sk(m, n + 2)
...,

Sk(m, n) _ Sk(m, n) Sk(m, 00) Sk(m - 1, 00) Sk(l, 00)
Sk(0, oo) Sk(m, oo) Sk(m - 1, oo) Sk(m - 2, 00)

...
Sk(0, oo)

After writing Ssk+ (o .) as a telescoping product, too, we see that it suffices to
prove that

Sk(m,j) < Sk+1(m,j+1) for all j > n (4.50)
Sk (m , j + 1) Sk+1(m , j + 2)

( hi h i li dS (m '00 S ))mpw c es an( ) - Sk+1(m,00)

Sk(j, 00) Sk+1(j, 00)< for all 1 < j < m. (4.51)
Sk(j - 1, 00) Sk+l (j - 1, 00)

The inequality (4.50) is equivalent to

j
L(ai+laj+l -aiaj+2)bk-ibk-j-1 +amaj+lbk+1-mbk-j-1 0,
i =m

and (4.51) is equivalent to

00

Y(bk-i+lbk-j+l - bk-ibk-j+2)aiaj_1 > 0.

i=j

These two inequalities are true because of (4.44) and j > i (i = m, m + 1, . . . , j)
and because of (4.45) and j < i (i = j, j + 1, ...), respectively. Hence (4.49) is
true and the theorem is proved for the special case that A has the form (4.47). If
A does not have that form we partition A into sets (blocks) A 1, ... , At such that
each A j has the form

Aj ={(mj,k-mj),(mj+1,k-mj-1),...,(nj,k-nj)},
ml <nl <m2 <n2 <... <mt :5 nr,



4.6 Product theorems 171

and t is minimal with respect to this property (i.e., m j+l - n j > 2, j = 1, ... ,
t - 1). Then V (A 1) U ... U V (At) is a partition of 0(A), and we have

(v' x w')(A) = t (v' x w')(Aj)

Ck j=1 Ck

t (v' x w')(V(Aj)) (v' x w')(V(A))T
Ck+1 Ck+1

since each A j has the form (4.47). Thus (C, v') x (D, w') is normal, and the proof
is complete.

Since the Product Theorem can be generalized by induction in a natural way to
a product of n normal posets with log-concave (weighted) Whitney numbers, we
can apply it to the following classes of (unweighted) posets:

Example 4.6.1. The following posets are normal (i.e., also strongly Sperner) and
have log-concave Whitney numbers: chain products S(kl, . . . , kn), the function
poset Fk , star products T (kl , .. . , the poset Int (S(kl , ... , kn )) (note that
Int(S(kI, . . . , kn)) is a product of "halved" posets S(ki, ki)), modular geometric
lattices (see Examples 1.3.11 and 4.5.1; the log concavity can be easily verified).

The case of chain products was already settled by Anderson [30]. See Section 6.3
for examples of a modular and of a geometric lattice that are not Sperner, hence,
also not normal. In [259] Harper proved further that Int(Ln(q)), the poset of all
nonempty intervals in the linear lattice L,, (q) ordered by inclusion, is a normal
poset with log-concave Whitney numbers.

Let us discuss further the unweighted posets. A ranked poset P is said to have
the strict k-Sperner property if all maximum antichains are unions of complete
levels. In [146, 149] we sharpened the definition of normality and log concavity
to prove the strict k-Sperner property for several posets. In the following we de-
note the intervals {a, a + 1, ... , . - 1) and {a + 1, ... , 8 - 11 by [a, p) and
(a, 0), respectively, and consider them to be empty if a > P or a > # - 1, re-
spectively. A graded poset P is said to be I-normal (I C_ [0, n)) if it is normal
and if

JAI < IV(A)I for all 0 # A C Ni, i E [0, n) - I.
Wi Wi+1

A strictly normal poset is an 0-normal poset. There is an easy criterion for (-
normality. Look at the Hasse diagram Gi = (Pi, Ei) of the (i, i + 1)-rank-selected
subposet of P. We say that P is I-level connected if Gi is connected for all
i E [0, n) - I. In the case I = 0 we speak of strictly level connected posets.
Strengthening Corollary 4.5.1 we have:
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Theorem 4.6.3. Let P be a normal poset. The following conditions are equivalent:

(i)

(ii)

P is I-normal,

P is I-level connected and for all i E [0, n) - I there exist functions f,,
Ei -- R+ - {0} such that

E f (e)
eEE;:e-=p

E f (e)
eEE;:e+=p

1

for all p E Ni,
Wi

I

Wi+1
forallpEN,+1.

Proof. Throughout let i E [0, n) - I.
(i) -+ (ii). Assume that Gi is not connected. Let F be a component of Gi.

Then 0 # A := F fl Ni # Ni. Moreover, V(A) C F, but V(N1 - A) fl F = 0.
Consequently,

1 = JAI + INi -
Al IV(A)I + IV(N1 - A)I < 1,

Wi Wi+1

a contradiction.
Consider the network N = (V, E, s, t, c), where V := Ni UNi+I U Is, t}, E

EiU{sp: pENi}U{pt: pENi+1},

1 if fe = sp or some p E Ni,w;

c(e) oo ife E Ei,
t f f

wi+1
i e=qt orsome q E Ni+1

Let c > 0. Send, for every pq E E1, c units of flow through s, p, q, t. This gives
a flow fE with fE (e) = E > 0 if e E Ei and limE.+o fE (e) = 0 for every e E E.
Now change the capacity of N by defining the new capacity

cE (e) := c(e) - fE (e) for all e E E.

Claim. If e is small enough, ({s}, V - {s}) (and (V - {t}, {t})) is a minimal
cut.

Proof of Claim. We have cE({s}, V - {s)) = 1 - EpEN, fE(sp) < 1. In
looking for cuts of smaller capacity we must consider only those cuts (S, T) for
which 0 A := S fl Ni # Ni and V(A) C S. But we have

c, (S, T)
I

N, - Al - .ff(sp) + I

V(A)I - .f6(gt)
W,

PENT-A Wi+1 qEV(A)

+ IV(A)J JAI fE(sp) - E .ff(gt)= 1 -
Wi+1

-
W, pEN;-A qEV(A)
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tending to

1+ IV(A)I JAI

Wi+1 W,

if a 0. Since there is only a finite number of subsets A of Ni and for every
proper subset there holds W'4 - w.1 > 0, we find some small a such that for
every cut in question cE(S, T) > 1 > cE({s}, V - {s}).

By the Max-Flow Min-Cut Theorem (Theorem 4.1.1 and Corollary 4.1.1) and
in view of Lemma 4.1.1(a), this claim implies that there is some flow gE in the
new network such that the arcs sp, p E Ni, and qt, q E N1+ t, are saturated. The
restriction of fE + gE to the set E; gives the desired function f .

(ii) -s (i). Assume that there is some A C Ni such that 0 0 A # Ni and
W _ °H,t Consider again the (first) network N. The cut (S, T) with S

{s}UAUV(A), T := (N1-A)U(N;+1-V(A))U{t}has capacity l'y'W,4I +I (A )I =
i+1

1. Extend in a natural way the function f to a flow f in N which has value
v(f) = 1. By the suppositions there must be some arc from Ni - A to V(A)
which is not void, that is, having positive flow. From Lemma 4.1.1(a) we obtain
1 = f(S, T)-f(T, S) with f(T, S) > 0. Consequently,c(S, T) > f(S, T) > 1,
a contradiction.

From the proof of Corollary 4.5.2 we easily derive:

Corollary4.6.1. A graded poset P is I-normal if it is regular and I-level con-
nected.

It is straightforward to verify that all posets given in Example 4.5.1 are strictly
level connected and consequently strictly normal.

The Whitney numbers of a ranked poset P are called I-log concave if they are
log concave and if W`2 > W1 -I W1+1 for all i E (0, n) - I. If I = 0 we also
say strictly log concave. In looking carefully for strict inequalities in the proof
of the Product Theorem, we found the following result whose proof (with several
technical details) is given in [149].

Theorem 4.6.4 (Strict Product Theorem). Let P be an [a1,#,,)-normal poset
with (a2, 82)-log-concave Whitney numbers, where 0 < al < r(P), 0 < f1 <
r(P), 0 < a2 < r(P), 0 < lg2 < r(P). Further, let Q be a strict normal poset
with log-concave Whitney numbers. Then P x Q is [a, T) -normal with (a, T)-log-
concave Whitney numbers, where

r r(P) r r(Q) if r(P) < r(Q),
Q

jl r(Q) + min{al, a2} jl max{fit,,BZ} if r(P) > r(Q).
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From this theorem one can derive by induction (see again [149]):

Corollary 4.6.2. Let Q1, ... , Q", n > 2, be strict normal posets and let P

l ii-1 Qi, r(Q1) < ... < r(Qn)

(a) If the Whitney numbers of the posets Qi, i = 1, ..., n, are log concave,
then P is [a,18)-normal and has (a, /3)-log-concave Whitney numbers, where

a := Ei=1 r(Qi), /3 := r(Qn)
(b) If the Whitney numbers of the posets Qi, i = 1, ... , n, are strictly log con-

cave, then P is strictly normal and has strictly log-concave Whitney numbers.

This corollary is helpful in proving the strict k-Sperner property:

Theorem 4.6.5. If P is an [a,18)-normal poset with (a, /B)-log-concave Whitney
numbers, then P has the strict k-Sperner property for all k > max(1, /3 - a + 1 ).
For these k, there are at most two maximum k -families.

Proof. Let us look first at the case k = 1 and a > /3 - that is, P is strictly
normal and has strictly log-concave Whitney numbers. It is easy to see that there
is some index h such that WO < WI < . . . < Wh > Wh+1 > > W". From the
LYM-inequality (see Theorem 4.5.1), we derive for every antichain F

F n NiIFI < "

n E
I I < 1, and hence, IFI < Wh,Wh -

i_o
Wi -

where the first inequality is an equality if F C_ Nh and Wh > Wh+1 or F C
Nh U Nh+l and Wh = Wh+1. In the first case we have only one maximum antichain,
namely F = Nh. Assume that in the second case there is some maximum antichain
different from Nh and Nh+1. Then 0 F n Nh # Nh, consequently

IFnNhI IV(FnNh)I

Wh Wh+1

but 0(F n Nh) and F n Nh+1 are disjoint since F is an antichain. Thus IFI =
IFnNhI+IFnNh+11 < IV(FnNh)I+IFnNh+ll INh+1l,acontradiction
to the maximality of F.

Now let 1 < k < n and consider the chain Ck = (0 < 1 < < k - 1). Then
Pk := P x Ck is strictly normal and has strictly log-concave Whitney numbers
by Theorem 4.6.4. Let F be any maximum k-family in P. Then we construct the
antichain A as in the proof of Theorem 4.3.1, which is by that theorem a maximum
antichain in Pk. From the case k = 1 we know that we have at most two possibilities
for A, and A must be a complete level in Pk. Thus F is a union of k complete
(neighboring) levels in P, and there are at most two possibilities for F.
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Example 4.6.2. From Theorem 4.6.5, Corollary 4.6.2, and the remark after Corol-
lary 4.6.1, we obtain that the following posets have the strict k-Sperner prop-
erty and that there are at most two maximum k families for all k = 1, 2. ...:
B,,, L (q ) , A (q), projective space lattices, Q,, , F k, Int (S(k1, ... , k,)), modu-
lar geometric lattices and S(k1, ... , if k1 > ... > k, and k2 + + k > k1
(the last result is due to Clements [110], other proofs can be found in Katerinoch-
kina [289] and Griggs [240]).

In [239] Griggs proved the Sperner property for the following poset PG : Suppose
that [n] is partitioned into sets A 1 , ... , Am, and let I ; :_ [ai, bi ] , i = 1, ... , m, be
nonempty intervals of numbers (we could also consider arithmetic progressions).
Let PG be the class of all subsets X of [n] with the property IX fl A; l E Ii,
i = 1, . . . , m, and order these elements (i.e., subsets) by inclusion.

Corollary 4.6.3. The Griggs poset PG is strictly normal and has strictly log-
concave Whitney numbers.

Proof. Let Pi be the poset of all subsets Xi of A; with JXi I E Ii, ordered by
inclusion. Obviously, Pi is isomorphic to the Ii-rank-selected subposet of the
Boolean lattice BIA; I, which by the preceding remarks is strictly normal and has
obviously strictly log-concave Whitney numbers. Moreover, PG is isomorphic to
P1 x x P m where the isomorphism is given by X c [n ] H (X1 fl A 1, ... ,
Xfl Am). The statement follows from Corollary 4.6.2(b).

Instead of partitions, West, Harper, and Daykin [467] took chains A 1 C A2 C
C Am c_ [n] and defined similarly to the above poset PWHD of all subsets X

of [n] with l X fl Ai I E Ii, i = 1, ... , m, ordered by inclusion.

Corollary 4.6.4. The West-Harper-Daykin poset PWHD is strictly normal and
has strictly log-concave Whitney numbers.

Proof. Observe at first that we can assume, w.l.o.g., that for our intervals Ii =
[ai, bi] the inequalities al < ... < am and bl < ... < bm hold and that Am = [n]
(otherwise add [n] as a new element of the chain together with the last interval
I m ). Let P k be the poset of all subsets X of Ak with I X f1 Ai I E Ii, i = 1, ... , k.

Obviously, PWHD = Pm. We prove by induction on k that Pk is strictly normal
and has strictly log-concave Whitney numbers. The case k = 1 is easy. Now
consider the step 1 < k - 1 -+ k < m. Let Qk be the poset of all subsets
of Ak - Ak_1, ordered by inclusion; that is, Qk = BIAkI-IAk-1I By induction
and Corollary 4.6.2(b) Pk_1 X Qk is strictly normal and has strictly log-concave
Whitney numbers. But Pk is that rank-selected subposet of Pk_1 X Qk whose
members have cardinality in Ik; thus the result follows.
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The variance problem can be easier handled with respect to the direct product
[152].

Theorem 4.6.6. Let x and y be optimal representations of (P, v) and (Q, w),
respectively. Then the function z : P x Q - R defined by z (p, q) := x(p)+y(q) is
an optimal representation of (P, v) x (Q, w). In particular, or 2((P, v) x (Q, w)) _
0`2(P, v) + a2(Q, w).

Proof. Obviously, z is a representation of P x Q. Further it is easy to verify that
µz = µx + Ay. Let f and g be representation flows on (P, v) relative to x and on
(Q, w) relative to y, respectively, which exist by the supposition and by Theorem
4.4.1. Define the function h : E(P x Q) --). lR+ by

w(q)f(pp') if pp' E E(Px) and q = q',

h((p, q)(p', q')) v(p)g(qq') if qq' E E(Qy) and p = p',

0 otherwise.

Then ((p, q)(p', q')) E E(P x Q) and z(p', q') - z(p, q) > 1 imply x(p') -
x(p) > 1 and q = q' or y(q') - y(q) > 1 and p = p'; that is, h((p, q)(p' q')) _
0. Moreover,

(p, q)h - (p, q)h = w(q)pi + v(p)q+
g

- (w(q)pf + v(p)q9 )

= w(q)v(p)(x(p) - µx) + v(p)w(q)(y(q) - µy)

= (v x w)(p, q)(z(p, q) - µz);

that is, h is a representation flow relative to z, and by Theorem 4.4.1 z is an optimal
representation. Finally,

Q2((P, v) x (Q, w))
1

(v x w)(P x Q) (v x w)(p, 9)z2(p, q) - µz
(p,q)EPxQ

1 v(p)w(q)(x(p) + y(q))2 - (µx + µy)2
v(P)w(Q) peP,gEQ

= v2(P, v) +Q2(Q, w),

and the proof is complete.

We have seen that the direct product of normal posets is normal under some
suppositions on the Whitney numbers. One cannot totally omit these suppositions.
The product of the two unweighted normal posets in Figure 4.10 does not have
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x

Figure 4.10

the Sperner property; that is, it is not normal. Because of Theorem 4.6.6 the direct
product of rank-compressed posets is rank compressed. The situation is different
if we consider rankwise direct products (this result is essentially due to Sali [409]).

Theorem 4.6.7. If (P, v) and (Q, w) are normal posets of same rank, then
(P, V) Xr (Q, w) is normal, too.

Proof. Let f : Ei (P) -+ R+ and gi : E; (Q) - 118+ be functions satisfy-
ing the conditions of Corollary 4.5.1, correspondingly. Define h1((p, q)(p'q'))
Ei(PXrQ)-SIR+,i=0,...,r(P)-1, by

hi ((p, q)(p', q')) := f (pp')gi (qq'), pp' E Ei (P), qq' E Ei (Q)

Then

v(p) w(q)
(p, q) h; _ f (Pp')gi(gg') = pf.ggi = v(Ni(P)) w(Ni(Q))

p' >p,
q'>q

_ (V Xr w)(p,q)

(V Xr w)(N,(P Xr Q))'

and the corresponding equality for (p, q)h holds, too. By Corollary 4.5.1,
(P, V) Xr (Q, w) is normal.

More generally, using Theorem 4.6.3 and straightforward calculations, we ob-
tain that the rankwise direct product preserves I-normality and I-log concavity.

Example 4.6.3. The poset of subcubes of a cube SQ(k, n) and the poset of square
submatrices of a square matrix SM(k, n) are strictly normal with strictly log
concave Whitney numbers.

However, the rank-compression property is not preserved by rankwise direct prod-
uct that can be seen by the unweighted rank-compressed poset given in Figure 4.11
(see [59]): The indicated elements form a filter F. It is easy to see that F xr F in
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P x, P does not satisfy the inequality (iii) in Theorem 4.4.1; that is, P x, P is
not rank compressed.

Figure 4.11



5

Matchings, symmetric chain orders,
and the partition lattice

This chapter should be considered as a link between the preceding flow-theoretic
(resp. linear programming) approach and the succeeding algebraic approach to
Sperner-type problems. The main ideas are purely combinatorial. The powerful
method of decomposing a poset into symmetric chains not only provides solutions
of several problems, it is also very helpful for the insight into the algebraic machin-
ery in Chapter 6. In particular, certain strings of basis vectors of a corresponding
vector space will behave like (symmetric) chains.

5.1. Definitions, main properties, and examples
Throughout let P be a ranked poset of rank n := r(P). We say that the level Ni
can be matched into the level Ni+i (resp. Ni_1) if there is a matching of size Wi
in the Hasse diagram Gi = (Pi, Ei) (resp. G;_1 = (P1_1, Ei_1)) of the {i, i + 1}-
(resp. {i - 1, i }-) rank-selected subposet (recall that a matching is a set of pairwise
nonadjacent edges or arcs).

Theorem 5.1.1. If there is an index h such that Ni can be matched into Ni+1
for 0 < i < h and Ni can be matched into N!_1 for h < i < n, then P has the
Sperner property.

Proof. If we join the arcs of the corresponding matchings at all points that are both
starting point and endpoint, we obtain a partition of P into saturated chains (isolated
points are considered as 1-element chains). Each such chain has a common point
with Nh. Consequently, we have Wh chains and Dilworth's Theorem 4.0.1 implies
d(P) < Wh, that is, d(P) = Wh.

There exist several criteria for the existence of such matchings.

179
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Theorem 5.1.2 (Hall's Theorem [251]). Let P be a poset of rank n = 1. Then
No can be matched into N1 i,/fforall A C No there holds Al I< IV(A)I.

Proof. The inequality I A I < I V (A) I for every A C No is clearly necessary, so let
us look at the sufficiency. Let S be a maximum antichain in P, A := No n S, B :_
N1 fl S. Then V(A) fl B = 0; that is, ISI Al + IBI IV(A)I+IBI W1.

Consequently, d(P) = W1. By Dilworth's Theorem 4.0.1, P can be partitioned
into W1 chains. Obviously, every chain must contain exactly one element of Ni.
The 2-element chains form the desired matching.

Theorem 5.1.3 (R. Canfield [96]). Let P be a poset of rank n = 1 without iso-
lated minimal points. If for all p, q E P with p < q there holds I V (P) 12: I A (q)

then No can be matched into N1.

Proof. We consider the network N = (V, E, s, t, c) where V := No U Ni U
{s, t}, E := (sp : p E No) U {pq : p < q} U {qt : q E Ni} and c(sp) := 1 for
pENo,c(pq):=ooforp<q,c(qt):=1forgEN1.Wedefine
by f(sp) := 1 for p E No, f(pq) for p < q, f(qt) LP<q Iv(P)I
for q E N1. Then it is easy to see that f is a flow (note that by supposition

f(qt) < E
p<q

1 1 _
IL(q)I

= lo(q)I
Io(q)I

1).

We have v(f) = Wo. Consequently, the minimum capacity of a cut in N equals
Wo, and by Theorem 4.1.1 there exists an integral, that is, 0,1-flow in N of value
Wo. The arcs between No and Ni of flow value 1 form the desired matching.

We will apply this condition only later. First we will study cases where the
construction of the matchings can be carried out in a certain global and symmetric
way.

A chain C of P is called symmetric if it has the form C = (po < < ph )
with r(po) + r(ph) = n. A set of chains of P is called a symmetric chain
partition (or symmetric chain decomposition) if all chains C E it are symmetric
and each element of P is contained in exactly one chain of C Finally, our ranked
poset P is said to be a symmetric chain order (briefly sc-order) if there exists a
symmetric chain partition (E of P. We have already seen an example of an sc-order:
From the third proof of Theorem 1.1.1 in the beginning of Section 2.2 it follows
that the Boolean lattice is an sc-order. But we will find many more sc-orders. In
the following we use the notation

(Ei:={CEe: :ICI=i}, i=1,...,n+1.
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Lemma 5.1.1. If P is an sc-order then P is rank symmetric and rank unimodal.

Proof. Wi equals the number of chains of a symmetric chain partition of P meeting
Ni, i = 0, ... , n. Now the rank symmetry follows from the fact that a symmetric
chain meets Ni if it meets N,-j. The rank unimodality can be derived in the same
way: If a symmetric chain has a rank i member, i < 2, then it contains also a rank
i + 1 member.

Lemma 5.1.2. Let C be a symmetric chain partition of P. Then, for i = 1, ... ,
n + 1,

IC I =
0

W(n-i+1)/2 - W(n_,_1)/2

if n - i is even,

otherwise.

Proof. Let C = (po < < pi _ 1) be any symmetric chain with ICI = i. Then
r(po)+r(pi_1) = 2r(co)+i-1 = n; thatis,n - i is odd. Consequently,(ri = 0if
n - i is even. Moreover, C must start in N(n_;+1)/2 and end in N(n+i-1)/2 In order
to count the number of such chains, observe that this number equals the number
of chains meeting N(n_i+1)/2 (i.e., W(n_i+1)/2) reduced by the number of chains
meeting N(n_i_1)/2 (i.e., W(n_;_1)/2).

Let us order the Whitney numbers such that they are decreasing. We can use
the permutation n of {0, . . . , n + 1) defined by

0 1 2 3 4 .. n-1 n n+1
n n-2 n+2 n-4 n+4 0 n n +( 1
2 2 2 2 2

if n is even,

0 1 2 3 4 n-1 n n+1
n-1 n+1 n-3 n+3 n-5 0 n n + 1
2 2 2 2 2

if n is odd.

The formula in Lemma 5.1.2 reads:

I(Eil =Wn(i_1)-Wr(i),i=l,...,n+1

(recall that Wn+1 = 0 and note Lemma 5.1.1).
Now we present the key theorem.

Theorem 5.1.4. If P is an sc-order, then P has the strong Sperner property.

Proof. We must prove that the size of any k-family F in P is not greater than
the largest sum of k Whitney numbers of P. In view of Lemma 5.1.1 we have to
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show that IFI < _i p W,,(1). Let t be a symmetric chain partition of P. Clearly,
IC fl FI < min{ICI, k} for all C E (t. Accordingly,

k-1 n+1

IFI < Emin{ICI,k} = Eil(til + Ekl(til
CEC i=1 i=k

k-1 n+1

= E i (Wa(i-1) - Wn(i)) + k E(W,r(i-1) - W,r(i))
i=1 i=k

k-1

E W'rw -
i=0

Remark 5.1.1. Note that we proved more: Every symmetric chain partition is
k-saturated for every k = 1, 2.... (see the remarks after Corollary 4.3.2 and note

-1N,r(i) is a maximum k family).that Uki=O

Now, of course, it is interesting to have examples of sc-orders. A large class can
be obtained in applying the following product theorem. The key idea goes back to
de Bruijn, Tengbergen, and Kruyswijk [87], who considered products of chains.
The product theorem was then proved (resp. re-proved) by Alekseev [24], Aigner
[20], Griggs [236], Koester [313], and others.

Theorem 5.1.5. If P and Q are sc-orders, then P x Q is an sc-order, too.

Proof. Let and 0 be symmetric chain partitions of P and Q, respectively. For
each pair (C, D), where C = (p0 < ... < Ph) E t and D = (qo < ... < qk) E
0, we form the following chains of P x Q (see Figure 5.1).

Ej(C, D) ((po, qj) < ... < (Ph-j, qj) < (ph-j, qj+1)
< < (ph- j, qk)), j = 0, .. , min{h, k}.

Then we have

r(po,gj) + r(ph-j, qk) = r(po) + (r(qo) + j) + (r(ph) - j) + r(qk)

= r(P) + r(Q) = r(P x Q);

that is, the chains E j (C x D) are symmetric. Moreover, (E := U j E j (C, D) is a
partition of C x D; that is, UCEC UDED U j Ej (C, D) is a symmetric chain partition.

Example 5.1.1. Clearly, Theorem 5.1.5 can be extended to the case of a product
of n sc-orders. Hence the Boolean lattice Bn and, more generally, chain products
S(k1, ... , kn) are sc-orders.
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(ph, qk)

(ph, qo)

(po, qo)

Figure 5.1

Using Theorem 5.1.5 we obtain a recursive procedure to determine a symmetric
chain partition of S(kl, ... , But there are also direct methods to do this.
We present here the parenthesization method of Leeb (unpublished), Greene and
Kleitman [232] and then calculate explicitly the upper and lower neighbors in such
symmetric chains. This is closely related to the so-called lexicographic method of
Aigner [19] (see also [21, pp. 432ff ]).

With every a = (a l , ... , E S(ki, ... , (here we do not need the general

supposition kl > ... > we associate a sequence of Et-1 ki left and right
parentheses as follows: first al right parentheses, then kl - at left, then a2 right,
k2 - a2 left, and so forth. For example, for a = (1, 2, 0, 1, 3) E S(2, 3, 1, 2, 5)
we obtain the following sequence:

( ) ) ( ( ) ( ) ) ) ( (

Note that the number of right parentheses equals the rank of a. Every sequence of
left and right parentheses has a unique parenthesization obtained in the following
way: Close all pairs of left and right parentheses that are either adjacent to or
separated by other such pairs, repeating the process until no further pairing is
possible (one may use stacks to produce this parenthesization algorithmically).
The remaining unpaired parentheses form a sequence of right followed by left
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parentheses; in our example we have

( (

Now we define the partition of S(k1, . . . , k,) by saying that two elements are in
the same block iff they have the same parenthesization. Considering the remaining
sequences of parentheses it is not difficult to see that each block is a symmetric
chain (if we have 2x paired and y unpaired parentheses, then the first element of
the chain has rank x, the last has rank x + y, and x +x +y = 2x +y = k,),

and thus we have obtained a partition into symmetric chains. In the following table
we see which elements lie in the same symmetric chain as a (in our example).

remaining sequence sequence element rank

((I) ((1(I) (1)) ((( 11 0 2)(0 4,, , ,

)(((( )(1)((1(1)(1))((( (1,1,0,1,2) 5

))((( )(1))(1(1)(1))((( (1,2,0,1,2) 6

)))(( )(1))(1(1)(1)))(( (1,2,0,1,3) 7

)(1))(1(1)(1))))( (1,2,0,1,4) 8

))))) )(1))(1(1)(1))))) (1,2,0,1,5) 9

How do we find for an element a the element b (if it exists) that covers a and lies
in the same symmetric chain as a? We already mentioned that one can use stacks,
but it is also possible to calculate explicitly that component i for which ai = bi -1
(for the other components we must have equality because of a < b). At least one of
the ki - ai left parentheses belonging to the ith component must remain unpaired
if we build the parenthesization sequence from the left to the right. So we must
have ki - a; > ai+1. At the (i + 1)th component we close ai+1 right parentheses
with the preceding left parentheses and create ki+1 - ai+1 new left parentheses.
If we recall that at least one left parenthesis from the ith component must remain
unpaired, we see that we must have ki - ai + k;+1 - ai+1 > ai+1 + ai+2. At the
(i + 2)th component we close ai+2 right parentheses and create ki+2 - ai+2 new
left parentheses. If we continue in the same way, we see that we must have

r-1 r

J(kj - aj) > aj for every i < t < n. (5.1)

j=i j=i+1

Since we come from a to b by changing the leftmost unpaired left parenthesis into
a right parenthesis, the desired index i is the smallest integer in [n] satisfying (5.1)
(if there is not such an integer, we put i := n + 1). Let for a E S(k1, ... , kn),

i-1 i

1,...,n+1,
j=1 j=1
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where an+l := 0. It is easy to see that the searched after index i can be found by
determining the largest integer i for which f (a) attains its minimum. In a similar
way we find for our element a the element c (if it exists) that is covered by a and
lies in the same symmetric chain as a (we have to look into the sequences from
the right to the left and must note that (k1 - aj) - aj is constant). The
index i for which a; = c; + 1 is the smallest integer in [n] for which f (a) attains
its minimum (here i = 0 means that there is no such c).

Note that the chains that are constructed by the parenthesization (resp. explicit)
method are the same as those chains that are obtained if one applies Theorem 5.1.5.
This follows easily by induction on n. From a more theoretical point of view,
Gansner [214] studied the parenthesization and explicit methods in distributive
lattices as well. Of course, we may specialize the preceding results to the Boolean
lattice. Let us represent it as subsets of [n] (a E S(1, ... , 1) is the characteristic
vector of the corresponding subset). We call the symmetric chain partition from
above the parenthesization partition of B, Moreover, if S and S' := S U {i}
belong to the same symmetric chain, we speak of a link S S' in a chain of the
parenthesization partition. Later we will need the following proposition.

Proposition 5.1.1. Let it be the parenthesization partition of B,

(a) In each chain of (t, elements are added in increasing order.

(b) n is an element of the last set in each chain.

(c) If S S U Ii } is a link in a chain of tr, then i + 1 S and either i = 1 or
i-1ES.

Proof. (a) We turn the unpaired parentheses from the left to the right.
(b) Either the last parenthesis is paired, and then it must be a right parenthesis,

and thus n belongs to every set of the chain, or the last parenthesis is unpaired,
and then we change it in the last step into a right parenthesis, and thus n belongs
to the last set of the chain.

(c) Since i S, the ith parenthesis is a left one. If we had i + 1 E S then
the (i + 1)th parenthesis would be a right one; that is, the ith and the (i + 1)th
parentheses were paired and thus the ith parenthesis could not be changed into a
right one. If we had i > 1 and i - 10 S, then the (i - 1)th parenthesis would be
a left one. It cannot be paired since otherwise the ith parenthesis had also to be
paired. Hence the next link would be S - S U {i - 1) instead of S -+ S U {i }.

Metropolis and Rota [365], [366], and Metropolis, Rota, Strehl, and White
[367] worked out an analogous parenthesization algorithm to partition Q and Fk
into chains. Vogt and Voigt [457] presented a similar explicit, but more difficult
partition of L (q). Not only with the help of the product theorem may we construct
sc-orders. We also have a nice link to the normal posets.



186 Symmetric chain orders

Theorem 5.1.6 (Griggs [235]). Every rank-symmetric and rank-unimodal nor-
mal poset P is an sc-order.

Proof. We proceed by induction on n := r(P). The case n = 0 is trivial. For
n = 1 or n = 2, let 0 be a 1- (resp. 2-) saturated partition of P into chains that
exists by Corollary 4.3.2. We will show that Z is a symmetric chain partition. Let
Di := {D E 0 :IDI = i}, i = 1, 2. .... We recall that P has the strong Sperner
property by Corollary 4.5.3. In the case n = 1 we have

Wo=W1 =di(P)= E min{IDI,1}=IVII+ID21,
DED

and since Z is a partition of P, the following holds:

Wo+W1=IV1I+21D21,

from where we derive IV 11 = 0; that is, all chains of Z are symmetric.
In the case n = 2 we have

Wo+W1 =W1+W2=d2(P)_ mini IDI,2}=IV11+21221+21231
DE:il

and

Wo+W1 + W2 = 1011+21021+31031

We conclude that 1031 = WO = W2; that is, all elements of No U N2 are covered
by 3-element chains. Consequently, there cannot be 2-element chains, and the 1-
element chains consist of elements of rank 1. Thus all chains of 11 are symmetric.

Now we consider the step n - 2 -+ n, where n > 3. By the induction hypothesis
for the { 1, . . . , n - 1 }-rank-selected subposet (which is of course rank symmetric,
rank unimodal, and normal) there exists a partition it* into symmetric chains.
Again put (En_1 := {C E (E* : ICI = n - 11. Let P' be the poset of rank 2 for
which No(P') := NO(P), N1(P') N2(P') := Nn(P) holds and which
is ordered in the following way: Let po c- NO(P'), C = (p1 < < pn_1) E
Ni(P'), pn E N2(P'). Then

po < p C iff po < p p1, and C < pp, iff pn_ 1 < pp,

It is easy to see that P' is rank symmetric, rank unimodal, and normal. Conse-
quently, by the already proved case n = 2, there is a symmetric chain partition
0 of P'. If we consider the 1- and 3-element chains of t* in the obvious way as
(n - 1)- (resp. (n + 1)-) element chains of P and add all chains of (-31* - (rn _ 1 we

obtain the searched after symmetric chain partition of P.

Example 5.1.2. The following posets are sc-orders: Ln (q), projective space lat-
tices, and modular geometric lattices (use Theorem 5.1.5).
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Sc-orders also behave nicely with respect to the rankwise direct product:

Theorem 5.1.7 (Sali [409]). If P and Q are sc-orders (of the same rank) then
P X r Q is an sc-order, too.

Proof. Let n := r(P) = r(Q) and consider chains C = (pi < .. < p"-i),
r(pi) = i, and D = (qj < <gn_j),r(pj)=j. WedefineCxrDtobethe
chain ((pk, qk) < . . . < (A -k, q, -0) where k := max{i, j}. Note that C X r D is
really a symmetric chain in P x r Q. Now it is easy to see that for given symmetric
chain partitions C and Z of P and Q, respectively, the set UCEIE UDEZ C Xr D is
a symmetric chain partition of P X r Q.

It is still open whether the poset L(m, n) and related posets are sc-orders as
asked by Stanley [439]. Up to now the conjecture is confirmed for min{m, n} < 4
by Riess [399], Lindstrom [346], and West [463].

5.2. More part Sperner theorems and the
Littlewood-Offord problem

Symmetric chain partitions allow us to prove stronger forms of Sperner's theorem.
These observations go back to Katona [291 ] and Kleitman [299]. We define a subset
F of a product P x Q of two posets P and Q to be a semiantichain if there are no
(pl, ql), (p2, q2) E Fsuchthatp1 = p2 andgl < q2 orpl < p2 and q1 = q2. We
say that a product P x Q of two ranked posets has the two-part Sperner property
if the largest size of a semiantichain equals the largest Whitney number of P x Q.

Theorem 5.2.1 (Katona [294]). If P and Q are sc-orders, then P x Q has the
two-part Sperner property.

Proof. Let h = L r(P)+r(Q)J. ZClearly, Nh (P x Q) is a semiantichain since it is
an antichain. Moreover, Wh (P x Q) is the largest Whitney number of P X Q
(by Lemma 5.1.1 and Theorem 5.1.5). Let F be a semiantichain in P x Q. We
must prove I FI < Wh(P x Q). Let t1 and 0 be symmetric chain partitions of
P and Q, respectively. In the proof of Theorem 5.1.5 we formed for every pair
(C, D) of chains of the corresponding partitions min (I C 1, I D 1) chains Ej (C, D),
and taking these chains together we obtained a symmetric chain partition of P x Q
that consists of exactly Wh (P x Q) chains since each chain meets Nh (P x Q).
Consequently,

E E min{ICI, IDI} = Wh(P x Q).
Ce DED

Since F is a semiantichain, we have for everyC E C, D E Z

IF n (C x D)I < min{ICI, IDI}
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(use Dirichlet's principle). Accordingly,

IFI = T IFn (C x D) I < min{ICI, IDI} = Wh(P x Q).
CEE DED CEQ2 DED

U

More generally, one may consider products P := P1 x . . x PM of M ranked
posets P1, ... , PM. A subset F of P is called an M -part k -family if there are no
k + 1 elements of F lying on a chain in P that are identical in M - 1 components
(thus a semiantichain is a two-part 1-family). In contrast to the k-family problem,
Theorem 5.2.1 cannot be generalized to two-part k-families. All elements of a
product P of two 3-element chains form a two-part 3-family, but its size is larger
than the largest sum of three Whitney numbers of P (if one changes the definition
of an M-part k-family such situations can be avoided, see Katona [294]). Also
three-part 1-families do not behave as nicely. Look at a product P of three 2-
element chains (0 < 1). The elements (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 0) form
a three-part 1-family, but its size is greater than the largest Whitney number of
P. Katona [296] and Griggs and Kleitman [243] added further conditions on a
three-part 1-family in order to bound their size by the largest Whitney number
of P.

Theorem 5.2.2 (Sali [407]). Let P1..... PM be sc-orders and let F be an M -part
k-family in P := P1 x x Pm. Then

I F I < Mkd(P).

Proof. First we consider the special case that Pi is a chain of length ki, i =
1 , ... , M; that is, P = S(kl, ... , km). Take any chain of the symmetric chain
partition that is constructed by the parenthesization method. If we are going from
the bottom to the top we see (as in Proposition 5.1.1(a)) that the first component
is changed (or not changed at all), then the second component is changed (or
not changed at all), and so on. Hence the intersection of F and this chain cannot
contain more than Mk elements. We have exactly d(P) chains in the symmetric
chain partition; hence,

IFI < Mkd(P) = MkWL J,

where as always n := r(P).
In the general case we work with symmetric chain partitions (; of Pi, i

1, ... , M. If C; E (t;, i = 1, . . . , M, we have by the preceding special case

nIFn(C1 x...xCM)I <Mk {pEC1 x...xCM:r(p)=[]J
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Hence by the pairwise disjointness of the chain products

IFI= E IFn(C1x...xCM)I
CIEC'J,...,CMEtM

<Mk [ n ] 1 1

E 11 2
C1Elf1,.... CME(EM

= MkWL J = Mkd(P).

In [408] Sali observed that one can replace the factor M by c'IM, where the
constant c is independent of P, M, and k. Moreover, infinitely many P's show
that this result is best possible for every M and apart from the constant factor c.
We postpone an analogous asymptotic result to Section 7.2 where we consider
products of arbitrary posets of bounded size. P.L. Erd6s, and Katona [177] and
Sali [410] studied convex hulls of M-part k-families.

There is another class of posets which allows the determination of the maximum
size of semiantichains. A ranked poset P is called a skew chain order if it can be
partitioned into Wo saturated chains (which then must contain an element of rank 0).

Theorem 5.2.3 (West and Kleitman [468]). Let P and Q be skew chain orders.
Then the (ground set of the) rankwise direct product P xr Q is a semiantichain
of maximum size.

Because the proof is analogous to the proof of Theorem 5.1.5, it is left to the reader
as an exercise. The result can be applied to Int(S(kl, k2)). Thus, in the poset of
subrectangles of a rectangle (we speak of rectangles instead of parallelepipedons),
the squares form a maximum semiantichain. Again one cannot generalize the
result to higher dimensions, for example, to Int(S(k1, k2, k3)). For example, in
Q3 (- Int(S(1, 1, 1))) Ni is an antichain - that is, a three-part 1-family of size
12 - but Q 1 xr Q 1 xr Q 1 is of size 9. Peck [379] modified the conditions slightly
to obtain a bound of this kind.

If one considers semiantichains as optimal integral solutions of a corresponding
linear programming problem (packing problem) one has to ask also for the dual
(covering) problem. The dual objects here are chains in which one of the coordi-
nates remains fixed, called unichains. The following interesting problem of West
and Saks (see [465]) is still open: Is it true that the largest size of a semiantichain
in P x Q equals the minimum number of unichains needed to cover P x Q? For
several related results, we refer to West [465].

One of the earliest examples where Sperner-type theorems were applied is
the Littlewood-Offord problem from 1943: Given complex numbers z1, ... , z
such that Izj I > 1 for each j, how many sums of the form F_=I EjZJ, where
Ej E {-1, +1} for each j, can lie inside any circle of radius r?
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Littlewood and Offord [349] themselves found an upper bound of the form
Cr2' log and in 1945 Erd6s [165] showed - using Sperner's theorem - that
the log term can be omitted. After that many further results were obtained. In the fol-

lowing we present some of the nicest. Instead of complex numbers we consider vec-
tors z 1, ... , zn in the d-dimensional space Rd; that is, z j = (z1, j, , zd, j), j =
1, ... , n. Let L 0 (n, d, r) be the smallest natural number such that for any choice
of vectors Z1, ... , zn E Rd with Ilzj II > 1 for each j and any choice of an
open sphere of radius r there are no more than L 0 (n, d, r) sums of the form
j=1 Ejzj, where Ej E 1-1, +1}, in that sphere. We realize the Boolean lattice
Bn as the chain product (-1 < 1)n and for e = (El, ... , En) E Bn we put briefly

Ej=1 Ejzj, where it is assumed that z 1, ... , Zn are clear from the context.s (e) :=
First we study the case r = 1. Taking zj :_ (1, 0, . . . , 0) for each j we see that

LO(n, d, 1) > I n I (5.2)

(note that s(e) remains constant if a runs through a fixed level of Bn).
If d = 1 the vectors zj are real numbers (we write zj), and we may assume that

z j > 1 for each j (if z j < -1 for some j one has to take in the sums -E j instead of
). Fore < e', we have s(e')-s(E) > 2since s(e')-s(e) = 2zj for some j. Thus
for each open (or half closed) interval I of length 2, the set {e E Bn : s(e) E I} is
an antichain. Sperner's theorem immediately yields (together with (5.2)):

Proposition 5.2.1. We have LO(n, 1, 1) _ n,).

Let us mention that our functions divided by 2 is a representation of the Boolean
lattice. In Section 7.2 we will define antichains in the same way using representa-
tions.

In the case d = 2 the two-part Sperner Theorem yields the same bound.

Theorem 5.2.4 (Katona [291], Kleitman [299]). LO(n, 2, 1) _ ( LJ).

Proof. As before, we may assume that z1, j > 0 for each j. Moreover, we may
assume z2,1, ... , Z2,p > 0 and z2,p+1, ... , z2,n < 0. We consider the n-tuples E
as elements of Bp x Bn-p. For different n-tuples E, E' with Ej < E J
{p + 1, . . . , n) and c j = e otherwise, we have

s(E) - s(e) = 2 E(z1,j> Z2,j).
jEJ

Let j* E J. Clearly, r_jEJ z1, j > z1, j* > 0 and > jE J Z2, j < z2, j* < 0. Conse-
quently,

IIs(e') - s(e)112 > 2211(z1,j*, z2,j*)112 > 4;
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that is, s(E) and s(E') cannot both lie in an open sphere S of radius 1 (diameter 2).
The same holds if Ej < E for j E J c 11, ... , p} and E j = E otherwise. Thus
the set {E E Bp x Bn-p : S(E) E S} is a semiantichain that has by Theorem
5.2.1 (recall that Bn is an sc-order for any n) cardinality not larger than the largest
Whitney number of Bp x Bn-p, that is, (L ).

In the general case (d > 1) we define for a fixed choice of z 1, , zn the graph
G = (V, E), where

V {E = (E1, ...,En) : Ej E {-1, 11 for all j},

E {EE : IIs(E') - s(E)112 > 4).

For d = 1 and d = 2, any independent set of G (which is an antichain (resp.
semiantichain) in Bn) has cardinality not greater than This is also true for
d>2:

Theorem 5.2.5 (Kleitman [303]). We have L O (n , d , 1) _ l

Proof. By (5.2) all we have to do is to show that our graph G = G (n; z 1, ... , Zn )
can be covered by ([J) cliques. We construct our cliques in a similar way as the

chains in a symmetric chain partition of Bn (see third proof of Theorem 1.1.1 in
Section 2.2 and Theorem 5.1.5). Let us only look at the step n -* n + 1 and let
C = {E0, ... , Eh} be a clique that was produced for the parameter n. We assume,
w.l.o.g., that (s(Eh), Zn+1) ? (s(Ej), zn+1), j = 0, ... , h (here denotes the
standard scalar product in Rd). We define the new sets

C :_ {(Ep, -1), ... , (Eh-1, -1), (Eh, -1), (Eh, +1)),

C' := {(E0, +1), ... , (Eh-I, +I)}.

We claim that C and C' are cliques in G := G (n + 1; z 1, ... , Z,, Zn+1). This is
clear for C' because for 0 < i < j < h - 1 there holds

IIS(Ej, +1) - S(Ei, +1)112 = IIS(Ej) + Zn+1 - (S(Ei) +Zn+1)112

IIS(Ej) - S(Ei)112 > 22.

Up to the last element we can apply the same arguments to C. Finally, for 0 <-
i <h, we have

IIS(Eh, +1) - S(Ei, -1)112 = IIS(Eh) - s(Ei) + 2Zn+1 112

= IIS(Eh) - S(Ei)112 + 4IIZn+I 112

+ 4(S(Eh) - S(60, Zn+1) > 0 + 4 + 0 = 4.
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Thus, as in the Boolean case, we obtained for a clique (chain) of size h + 1 a new
clique (chain) of size h (if h > 1) and a new clique (chain) of size h + 2. It follows
that the total number of cliques equals the total number of chains in a symmetric
chain partition, and for B this number is (L T J

Now we study the case r > 1. As for r = 1 we obtain the lower bound

LO(n, d, r) > sum of the [r] middle binomial coefficients. (5.3)

If d = 1 this bound is best possible:

Proposition 5.2.2 (Erdo"s [1651). We have LO(n, 1, r) = L i=1 (L"- J+i)'

Proof. It is easy to see that for each open (or half closed) interval I of length
2r, the set {E E B : s(E) E I} is an [r]-family. Thus the result follows from the
k-family property of B for every k (see Corollary 4.5.3 and Example 4.5.1).

For d > 1, we prove only an upper bound, which can be derived from the
M-part Sperner Theorem and ideas of Griggs [237].

Theorem 5.2.6 (Sali [407]). We have LO(n, d, r) < 2d-I [r.] (LzJ)

Proof. As in the proof of Theorem 5.2.4 we assume that zl,i > 0 for each i. We
can partition the index set [n] into M := 2d-I subsets (empty sets are allowed)
such that for each such subset J the components z2, j, j E J, all have the same
sign,..., the components Zd,j, j E J, all have the same sign. Let S be any open
sphere of radius r.

Claim. F :_ (E : s(E) E S) is an M-part [r/]-family.
Proof of Claim. Let us look at one of the M subsets J. We suppose, w.l.o.g.,

that zi, j > 0 for i = 1, ... , d, j E J. Let k :_ [rV'] and assume that there is a
chain co < < Ek in F such that the components of the members are identical
outside J. Then

S(Ek)-S(EO)=2Ez for some J'CJ,IJ'I>k.
jEJ'

Geometrically we look at the projections onto the vector 1 = (1, ... , 1). We have

d

(Zj+ 1) = Zi,l VZl,j +... +Zd'j ?.' 1, j E J
i=1

It follows that

(s (4) - s(60), 1) = 2 1: (Zj, 1) ? 21 fl,
jEJ'
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and finally by Cauchy's inequality

i2 2

Ils(Ek) - s(EO) IIZ >
111112

(S (4) - S(EO),
1)2

> 41 d I > 4 d d
,

that is,

IIS(Ek) - S(EO)II > 2r,

a contradiction.

The statement in the theorem now follows immediately from the claim and
Theorem 5.2.2.

An almost final answer to the Littlewood-Offord problem was given by Frankl
and FUredi [195].

Theorem 5.2.7. Suppose that r is not an integer. Then

(a) LO(n, d, r) = ([r] + 0(1)) (Ln1) as n -* oo.

(b) If there is an integers such that s -1 < r < s -1 + tom, then L O (n, d, r) _
LO(n, 1, r) if n is sufficiently large.

We omit the proof but mention that deeper geometrical insight is necessary to
establish this result. Frankl and Fiiredi [195] posed the problem to determine
limn. LO(n, d, r)/(tn) for integers r.

If one considers closed spheres instead of open spheres one has the same formula
as in Theorem 5.2.7. One can use these formulas also for integers r if one replaces

[r] by [r j + 1.
Note also a "dual" variant of the Littlewood-Offord problem which goes back

to Erd6s, Sark6zy, and Szemeredi [168]: Change the condition llzj II > 1 into
ll z j l l < 1 for all j and ask for the number of sums F I E j z j (where Ej E 1-1, +1)
for all j) which lie in a sphere of radius r. The following result is presented without
proof:

Theorem 5.2.8 (Beck [41]). Let z l , ... , zn be vectors in Rd with II z j II < 1 for all
j. Then at least c(d)2nn-d/2 sums of the form Ejt EjZj, where Ej E {-1, +1},
lie in a closed sphere of radius vfd- around the origin. The constant c(d) depends
only on the dimension.

Sarkozy and Szemeredi (unpublished) showed that for d = 1 this bound can be
replaced by i1) which has asymptotically the same order.
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5.3. Coverings by intervals and sc-orders
Let us recall that Dilworth's Theorem 4.0.1 tells us how many chains we need to
cover a given poset P. What is the situation if we replace chains by intervals? In
[81 ] we showed together with Bouchemakh that the corresponding problems are in
general NP-complete (cf. [215]). But if we restrict ourselves to special symmetric
chain orders, we find some Sperner-type theorems.

Let P be a ranked poset and let 0 < 1 < u < n := r(P). Consider the
[1, u]-rank-selected subposet P[1,u] of P (i.e. Pll,ul = Uu 1N1). Let Q(Pli,,,l) be the
minimum number of intervals of the form [p, q] := {v E P : p < v < q}, where
1 < r(p) < r(q) < u, which cover P[i,u]. Since no two elements of NJ (resp. Nu)
can be covered by one such interval, we have clearly

Q(Pll,,]) > max{W1, (5.4)

We say that the ranked poset P has the strong interval covering property (briefly
strong IC-property) if equality holds in (5.4) for all 0 < 1 < u < n. To find
examples, we introduce the following class: A ranked poset P is called a special
symmetric chain order (briefly ssc-order) if there exists a symmetric chain partition
C of P with the additional property (*):

If C = (pi < - < Ph) is a chain of the partition that has less than maximum
length then there exists a chain D of the partition such that D = (qo < < qh+i )
and qo < pt as well as Ph < qh+I

Theorem 5.3.1. If P is an ssc-order, then P has the strong IC-property.

Proof. First we consider the special case 1 + u = n (i.e., W1 = max{ W1, Wu } _
Wu). Let (E be a symmetric chain partition of P satisfying property (*). With each
p E Ni we associate the element f(p) of Nu_i that lies on the same chain of
tt, 0 < i < S. Then the W1 intervals [p, f(p)], p E N1, cover Pll,ul. This can be
proved by induction on n - 21: The cases n - 21 = 0 or 1 are easy. For the induction
step, consider any element v of P[i,n_1]. If V E NI or Nn -1 then v is clearly covered.
Thus let p E P[1+1,n-(I+1 )] By the induction hypothesis v is covered by an interval
[q, f(q)], where q E N1+1. Let C be the chain of (E containing q and f(q). If
q has on C a predecessor p then v is covered by [p, f(p)]. If q is the starting
point - that is, f(q) is the endpoint of C - then there is, because of property
(*), some chain D of (E of the form D = (p < . . . < f(p)), where p E N1 and
p < q < f(q) < f(p). Hence v is covered by [p, f(p)].

For the general case, let us assume, w.l.o.g., I + u < n, that is, Wu =
max{WI, Wu}. Restricting the chains of t to PI1,u_u] we find Wu chains of the
form (q < . . . < p), where p E Nn_u, which cover Pt1,n_u]. Now we join the
chains (q < < p) and (p < < f (p)) and replace the resulting chain by
the interval [q, f (p)]. By the first part of the proof these W intervals cover Pt,,ul.
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Theorem 5.3.2. Let P and Q be ssc-orders.

(a) Then P x Q is an ssc-order, too.

(b) If, in addition, r(P) = r(Q), then P x,. Q is an ssc-order, too.

Proof. (a) We take symmetric chain partitions it and D of P and Q, respec-
tively, which have property (*). Then we construct the symmetric chain partition
t of P x Q as in the proof of Theorem 5.1.5. All we need is the verification
of (*) for (E. Property (*) is evident for the nonmaximal chains in the partition
of each "rectangle" C x D. Let us consider the maximal chain E0(C, D) =
((po, qo) < < (ph, qk)) of such a rectangle. If it does not have maximum
length in (E, then C or D does not have maximum length in C or 3, respec-
tively. By symmetry, suppose this for C. Since has property (*), there must be
a chain C' _ (po < ... < ph+1) in C such that po < po and Ph < p'h+1 But
Eo(C', D) _ ((po, qo) < < (ph+1, qk)) belongs to (E and is thus the desired
chain for Eo(C, D).

(b) Here we use the construction in the proof of Theorem 5.1.7. The verification
of (*) is an easy exercise.

Since single chains are clearly ssc-orders we derive immediately:

Example 5.3.1. The following posets are ssc-orders, and thus have the strong
IC-property:

(a) the Boolean lattice Bn and chain products S(k1, ... ,

(b) the poset SMk,n of square submatrices of a square matrix.

We found the last two theorems together with Bouchemakh [81]. The IC-property
of Bn was first proved by Voigt and Wegener [458] using the parenthesization
method. They used this result for the construction of minimal polynomials of
symmetric Boolean functions. Let us describe this application in more detail:

Every Boolean function f : 10, 1)1 -* {0, 1) can be represented as a family .Tf
in B where B is represented as 10, 1)' and.Ff := {x : f (x) = 1). A monomial
is a conjunction of negated and nonnegated variables - for instance, x1x3x4x6
With each monomial we can associate in an obvious way a Boolean function f.
The corresponding family .Ff is obviously an interval in B. In Figure 5.2 we
illustrate Yf for our example in B6. A polynomial or disjunctive normal form is a
disjunction of monomials. The corresponding family in B is a union of intervals.
It is well known (and in this interpretation obvious) that each Boolean function can
be represented as a polynomial. Let d (f) be the smallest number k such that f can
be represented by a polynomial with k monomials. Thus.Tf is a union of d (f) but
not fewer intervals. Any polynomial representing f with the least possible number
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Figure 5.2

of monomials is called a minimal polynomial. Without proof we mention that by
a result of Korshunov [318] there exist constants Cl, c2 such that

Cl
log n log log n

< d (f) <
c2log n log log n

holds for almost all Boolean functions f. Sapozhenko [412] gave a simple algo-
rithm that provides a polynomial with 2" monomials for some constant c and

Fog-n

almost all Boolean functions. An exact result can be obtained for the following
special case: A Boolean function f is called symmetric if the number of ones in the
input completely determines its value (the value f (xl , ... , xn) does not change if
we permute the input variables). In other words, f is symmetric if ' f is a union
of complete levels of Bn. If, more precisely, .Ff = Bnl,1 ,j U ... U Bn[,k kl where
0 < l i <ui <n,i = 1,...,k,andui <li+l-2,i = 1,...,k-1, then by the
strong IC-property of Bn,

"n, n

\ui

Let us mention in this context another result on Boolean functions. Suppose we are
given some logical expression representing the function f. We say that a monomial
is a prime implicant of this expression if trueness of the monomial implies trueness
of the expression but deletion of variables in the monomial destroys this property.
Obviously, a monomial is a prime implicant if its corresponding interval belongs
to Ff and if no extended interval has this property. Let p(n) be the maximum
number of prime implicants of a Boolean function with n variables.

Theorem 5.3.3 (Vikulin [456]). For any e > 0, there is some no such that for
n > no

3n 3n
(Cl -c) < p(n) < (c2 + E)

In-n

where cl := 2n3 and c2 :=
2 3
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Proof. Let f be the symmetric Boolean function for which Ff = Bn11 n_1 with
l := L U j holds. Counting the maximal intervals in Bn[/ ,x_11 yields the lower bound
" which is by Stirling's formula (Theorem 7.1.7) asymptotically equal ton-21

the lower bound (one may derive this also from (7.7)).
For the upper bound, recall that the intervals in Bn are exactly the elements of the

cubical poset Qn. From the definition of a prime implicant we derive immediately
that the corresponding elements in Q,, form an antichain. Thus

p(n) < d(Q,,)

It is easily seen that the maximum Whitney number in Qn equals (1)2"-t with l
as in the beginning of the proof. From Example 4.5.1 and Stirling's formula (resp.
(7.7)) we obtain d (Q,) c2 f (which follows also directly from Theorem 7.2.1).
This proves the assertion.

See the end of this section for two further examples of ssc-orders.

Example 5.3.2 (Greene [230]). The poset of shuffles Wmn.

It is defined as follows: Let x = XI x2 ... xm and y = yl y2 ... y, be words formed
from in + n distinct letters. Now Wmn is the set of all words w with letters from x
and y such that the restriction of w to the letters of x (resp. toy) is a subword of x
(resp. of y), and we have w < w' if w' can be obtained from w by deleting letters
of x and adding letters of y. For example, if x = ABCDEFG and y = rstu then
BrDFuG < rDsuG in W7,4. Note that x is the minimal and y is the maximal
element in W. and that the structure of Wmn depends really only on in and n
and not on the words x and y. Given W E Wmn, the interface of w, denoted
by I (w), is the set of all pairs of letters (y, x) where x E x and y E y, and x
immediately follows y in w. For any set I of pairs (y, x), x E x, y E y, we set
Wmn[I] := {w E Wmn : I(w) = I}. In our example we haves = {(r, D), (u, G)}.
The minimal element of W7,4[I] is ABCrDEFuG and the maximal element is
rDstuG. In general, the minimal element of a nonempty Wmn[I] has rank III
and the maximal element has rank m + n - III. Thus Wmn[I] lies for every I
in the "middle" of Wmn. For any word w E Wmn, let Rx (w) and Ry (w) be the
set of letters of x (resp. of y) which do not appear as components in the pairs of
I (w). For fixed 1, we write also Rx (I) and Ry (I). It is not difficult to see that for
w, w' E Wmn (I) we have w < w' iff Rx (w) 2 Rx (w) and Ry (w) c Ry (w').
Thus Wmn [I] is isomorphic to the product of the dual of the subset lattice of Rx (I)
with the subset lattice of Ry (1), that is, to B n+n_211l . Since for different sets I and
I' the sets Wmn [I] and Wmn [I'] are disjoint and since each Wmn [I] is an sc-order
(the corresponding symmetric chains in W,nn [I] are also symmetric in Wmn), Wmn
is also an sc-order. Moreover, Wmn is an ssc-order: Since each Wmn[I] is an ssc-
order, for the proof we need only to examine the maximal chains C in the Boolean
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sublattices W,,, I maximal in W,,,,, ).

I the in
the a for

that of the
obtained by two

and of noncrossing parti-
tions NC(n).

The lattice NC(n) is an induced subposet (moreover, a sublattice) of the partition
lattice IIn. Here a partition of [n] is called noncrossing if, whenever 1 < a <
b < c < d < n with a, c in the same block and b, d in the same block, then in
fact all four elements are in the same block. Thus, for example, 138121415716 is a
noncrossing partition of [8] while 13812415716 is crossing. We decompose NC(n)
as U7=1R;, where R1 := {jr E NC(n) : {1} isablock of,r}, and Ri := {ir E
NC(n) : i = min{ j j 1, j is in the same block of r as 1 }} for i > 2. It is
easy to see that R1 R2 = NC(n - 1), and that R1 U R2 NC(n - 1) x
(0 < 1) since each partition R1 is covered by only one partition of R2, namely the
partition obtained by merging the block { 1 } with the block containing the element
2. Moreover, for i > 3, Ri - NC(i - 2) x NC(n - i + 1) (realized as noncrossing
partitions of {2, 3, ..., i - 1} and {i, i + 1, ..., n}). The posets R1 U R2 and
Ri, i > 3, lie in the "middle" of NC(n) since in R1 U R2 the minimal (resp.
maximal) element 1121 ... In (resp. 12 ... n) has rank 0 (resp. r(NC(n)) = n - 1)
and in Ri the minimal (resp. maximal) element 1 i 121 ... Ii - 11 i + 11 ... In (resp.
1i (i + 1) ... n 123... (i - 1)) has rank 1 (resp. n - 2). In a straightforward way we
may apply induction and Theorem 5.3.2(a) to derive that NC(n) is an ssc-order
(note that in the symmetric chain partition the maximal chain in R1 U R2 is a
desired chain concerning property (*) for the maximal chain in Ri, i > 3).

5.4. Semisymmetric chain orders and matchings
There exist some generalizations of sc-orders. For example, Griggs [238] intro-
duced the nested chain orders, which are posets that can be partitioned into sat-
urated chains such that for any two chains C = (po < . . . < ph) and D =
(qo < . . . < qk), the inequality r(po) > r(qo) implies r(ph) < r(qk). It is left
to the reader to prove that nested chain orders have the Sperner property. See also
Griggs [242] who listed several properties of ranked posets together with their mu-
tual relations. We consider in more detail another generalization, which implies
the strong Sperner property at least in the lower half of the poset.

Let P be a ranked poset of rank n := r(P). We call a chain C of P semisym-
metric if it has the form C = (po < . . . < Ph) with r(po) + r(ph) > n, and we
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call P a semisymmetric chain order (semi-sc-order) if P can be partitioned into
semisymmetric chains.

Theorem 5.4.1. If P is a semi-sc-order then Wp < W1 < < W r I1, and the

[0, 1] ]-rank selected subposet Q (induced by Ui !lNi) has the strong Sperner
property.

Proof. The inequality W1 < Wi+1, 0 < i < [ a ] , follows as in Lemma 5.1.1. Let
us restrict the chains of the semi-sc-partition to Q. This yields a collection t1 of
chains. Obviously C has W i - W i _ 1 chains of size [

2
] - i + 1 , i = 0, ... , f 21.

Thus for any k-family F in Q,

k-1
IFI < min{ICI,k} _ Ei(Wril-i+i - w1 1-i)

CeC i=1

fn1+1

+ E k(Wfil-i+1 - W1l-i)
i=k

k

_ Wf-l-i+1'
i=1

that is, Q has the strong Sperner property.

Theorem 5.4.2. Let P and Q be semi-sc-orders.

(a) Then P x Q is a semi-sc-order, too.

(b) If, in addition, r(P) = r(Q) then P x,. Q is a semi-sc-order, too.

Proof. The constructions in the proofs of Theorem 5.1.5 and Theorem 5.1.7 yield
the desired semi-sc-partitions.

Proposition 5.4.1. Let P be a ranked poset of rank n. If, for 0 < i < n, Ni can
be matched into N1+1 then P is a semi-sc-order.

Proof. If we join the matchings as in the proof of Theorem 5.1.1 we obtain a
partition of P into semisymmetric chains (each with top at level Na).

It is not known whether each geometric lattice is a semi-sc-order, but an attrac-
tive special case is covered by the next theorem.

Theorem 5.4.3 (Loeb, Damiani, and D'Antona [350]). The partition lattice II,
is a semi-sc-order.
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Proof. We will first partition nn (or better n,+1) into some smaller sets. In order
to explain this we need some further definitions. For each S c [n], we define
recursively

ci(S) :=
0 ifi E S,

i - cj(S) if i V S,

i = 1..... n + 1. The vector c(S) = (c1(S), ... , (S)) is called the code of
S. For example, the code of S = {1, 2, 3, 7, 11, 12, 16, 18, 19} c {1, ... , 20} is

c(S) = (0, 0, 0, 4, 1, 1, 0, 2, 1, 1, 0, 0, 3, 1, 1, 0, 2, 0, 0, 3, 1).

We call a vector a = (a1, ... , an+1) E 7Gn+1 a coding vector if 0
and for all i E {1, ... , n + 1} either ai = 0 or =t aj = i (in particular
E ±i aj = n + 1). Induction on i easily yields that each component of a coding
vector is nonnegative. Moreover, it is obvious from the definition that the code
of any set S is a coding vector and that ci (S) = 0 if i E S. Conversely, for
each coding vector a there exists exactly one set S such that c(S) = a, namely
S := {i : ai = 0}. Not only the zero elements of a coding vector a determine
the corresponding set S. It is enough to know the nonzero elements of a, since
a nonzero element a must be preceded by exactly a - 1 zeros. Let c'(S) be the
vector that can be obtained from c(S) by deleting all zeros. In our example we
have

c'(S) = (4, 1, 1, 2, 1, 1, 3, 1, 1, 2, 3, 1).

For a block B in a partition 7r, let m(B) := min{i : i E B}. W e will enumer-
ate the blocks B1, ... , Bk of 7r always in such a way that m(B1) < m(B2) <

< in (Bk). Under this supposition we may uniquely define the antitype of 7r by

at(7r) :_ (IBkI, I Bk-11, , IB1I). If, for example, it E n21 equals 112, 5, 713,
16141618, 10, 1219111113, 20114115117, 18, 19, 21, then at(7r) = (4, 1, 1, 2, 1, 1,
3, 1, 1, 2, 3, 1) = c(S) from our preceding example. Now we put for S c [n]

ns := {7r E nn+1 : at(7r) = c '(S)).

By the preceding considerations, the sets ns, S c {1, ... , n}, partition the lattice
nn+1. Each 7r E r Is has as many blocks as c' (S) has components; that is, n+ 1- I S1.
Consequently,

r(7r)=n+1-((n+1)-ISI)=1S1.
Let (E be a symmetric chain partition of 21n1 obtained by the parenthesization
method. For C = (So < . . . < Sh), let

FTC := h nsi.

We will consider the subposets that are induced by nc, C E t1 (they partition
also nn+t). If it (resp. a) is a minimal (resp. maximal) element in nc then
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r(7r) + r(a) = n = r(rln+1) since C is symmetric. Thus it is sufficient to show
that each llC is a semi-sc-order. For that, we may apply Proposition 5.4.1. We
have to find for each link S -* S' := S U {i} in a chain of (E a matching from
IIS into rls'. Let k := c, (S). Note that k # 0. By Proposition 5.1.1(c) we have
i + 1 V S, that is, c,+1(S) = 1. Now, it is easy to verify that

0 ifj=i,
cj (S')= k+1 ifj=i+1,

cj (S) otherwise.

Let it E rls and let A (resp. B) be the block of 7r that corresponds to the k (resp.
the 1) in the substring (... k, 1 ...) which is being replaced by (... 0, k+ 1 ...).
Let f(7r) be the partition that can be obtained from it by replacing the blocks A
and B with their union A U B. It is easy to see that it < f (n) and that f (n) E R S' .

Moreover, we can recover A and B from A U B since B contains only one element,
say b, and b = min{ j : j E A U B}. Thus we can also recover it from f(7r) and
consequently, {(n, f (ir)) : it E ll,s} is a desired matching from Its into II y'.

From the preceding theorem it follows in particular that in rln the level Ni can
be matched into N,+1 for i < 221. This was first proved by Kung [329] using an
algebraic machinery. We even have the following stronger result:

Theorem 5.4.4 (Canfield [96]).

(a) For every 8 > 0, there exists an no(8) such that, for all n > na(8), the
following holds: In the partition lattice lln, the level Ni can be matched into
Ni+1 ifi <n-(I+8)nlog4logn '

(b) In nn the level Ni can be matched into N,_1 ifi > n - jlogn2 and n > 5.

Proof. (a) Let e := (1 + 3)10-4, b (1 - i < n(1 - e). Without loss
of generality, we may assume 8 < 2. We consider the subposet Q, of rank 1
whose levels are Ni and N,+1, and where it < or (n E Ni, Cr E N,+1) if it can
be obtained from a by splitting a block B of size not larger than 2b into two
blocks BI and B2 each of whose sizes is not larger than b. Obviously, it E Ni
cannot contain more than b blocks whose size exceeds b. Thus it contains at least
n - i - > (n - i)(1 - tie) blocks of size not larger than b. By choosing any
two of them we derive for Q, that

IV(rr)I ((n_i)(1_))
2

We have be = (1 + 8) (1 - 8/3) that is, 1 - Let n be sufficiently

large such that a := 8 (n - i) > 30. An easy calculation shows that then ("2 > 20 .3)
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We conclude that
a2

IV(n)I > 20. (5.5)

Now consider any or E N,+1. It has n - i - 1 < n - i blocks. We find the
predecessors of a in Q; by splitting a block of size 2b or less under additional
conditions. Consequently,

IA(or)I < (n - i)22b = (n - i)n1-813. (5.6)

Let n be sufficiently large such that 826 > 20n-3/3. Then we obtain from (5.5)
and (5.6) by straightforward computation

IV(n)1 >_ Io(a)I

and by Theorem 5.1.3 the level Ni can be matched into Ni+1 in our poset Q, -
that is, also in II,,.

(b) Since there are 21 BI-1-1 possibilities to partition a block B into two blocks,
we have, for r E Ni and with k := n - i = number of blocks in n,

IA(n)I = (21B1-1 _ 1) > k(2n1k-1 _ 1)
B block in n

where the last inequality follows by applying Jensen's inequality to the convex
function f(x) = 2x-1 - 1. We have k > 11 g2, which implies 21'k > n and
further

IA(n)I>k(2-1).
Moreover, for a E N1_1 obviously,

IV(Q)I = \k

2
1).

We have (k21) < k(2 - 1) if k < n - 3, and this is true for n > 6. Thus in this
case I 0 (n) I > I V (or) I, and Theorem 5.1.3 (in its dual form) gives the matchings.
For n = 5, the assertion of the theorem is easily checked by inspection.

It is very interesting that the bounds in Theorem 5.4.4 are the best possible.

Theorem 5.4.5 (Canfceld [96]). For every 3 > 0, there exists an no (8) such that
for all n > no (8) there holds in the partition lattice II,,:

(a) The level N1 cannot be matched into Nr+1 if i > n - (1 - 8) jl

(b) The level Ni cannot be matched into Ni_1 if i < n - (1 + 3)
i1

We will prove only part (a) by a construction that is partly due to Shearer [428].
The proof of part (b) relies on the application of a local limit theorem (together
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with an estimation of the remainder). Since we will not use the result of part
(b) further in this book, the interested reader is referred to [96], but note that in
Chapter 7 we will discuss applications of local limit theorems.

Proof of (a). Let, w.l.o.g., S < 1 and let i > n - (1- 8)
i

log n . By Theorem 5.1.2

it is enough to find some A c Ni such that I V (A) I < I A 1. Let

log n

(1-8)log4

Every element of Ni has n - i < n (1-a) log 4 < n blocks. Let A be the set of those
togn - m

partitions from Ni at least n 1-s/2 of whose block sizes equal 2m, at least n
1-g/2 of

whose block sizes equal or exceed 3m, and all of whose block sizes belong to the
set M:= {m, 2m, 3m, 3m + 1, 3m + 2, ...}. Since we have for every fixed c > 0
and sufficiently large n that

1-s/2 clog n
n cm <nns/2(1-8)log4 <n,

our set A is not empty if n is large enough. Let 7r* E A and ir* < a. Since the
block in v that was created by joining two blocks of ir* and the blocks in or of
size 2m can be partitioned in at least (resp. exactly)

2

(2m) ways into two blocks

of sizes belonging to M, we have

{n E A : it < o r ) > 2 (2m)n1-s/2 for all a E 0(A).

(This bound is also easily seen to be true if a was obtained from ir* by merging
two blocks of size 2m because we have then an item z (zm).) Obviously,

n-i 1 (n l2{QEV(A):a ,r}I l= 2 2(m for all it E A.

Counting the pairs (n, a) with it E A, it < a in two different ways we obtain

JAI2 \m/2> IV(A)l2(2m)n(5.7)

Using the fact that (2m) is the largest of 2m + 1 binomial coefficients whose sum
is 22m we obtain

lo "n7) g2m > 1 22m > 1 22(1( -1 = 1 n1/(1-s)

M 2m+1 - 2m+1 4(2m+1)

Consequently, by straightforward computation,

1 2m nt-s/2 > 1 n> 1 (n)2 (5.8)2 m 8(2m + 1) 2 \m

if n is sufficiently large. Now from (5.7) and (5.8) we derive I A I > I V (A) I .
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In addition to this result, Canfield [96] proved, using some earlier results of
Mullin [376], that the transition from the existence to the nonexistence of matchings
between neighboring levels is not chaotic but abrupt - that is, there are sequences
Ln and Rn such that Ni can be matched (resp. cannot be matched) into Ni+1 if
i < Ln (resp. i > Ln), and analogously for Rn and Ni -> N1_1. Moreover, both
Ln and Rn grow by at most 1 when n is increased by 1.

We may use this result to show that the partition lattice rIn does not have the
Sperner property if n is large enough. Before doing so, we need a localization
of the largest Whitney number of rln, or, equivalently, of the maximum Stirling
number of the second kind.

Lemma 5.4.1. The sequence of Stirling numbers {Sn,k : k = 1, ... , n} is strictly
log concave.

Proof. We proceed by induction on n and use the basic recurrence Sn,k = kSn -1,k+
Sn_1,k_1 (applied to Sn,k, Sn,k_1, and Sn,k+1). The cases n = 1, 2 are trivial.
Concerning the induction step we have (for 2 < k < n - 1)

2 2Sn,k - Sn,k-1Sn,k+1 = (Sn-1,k-1 - Sn-1,k-2Sn-1,k)

+(k2Sn_l,k - (k2 - 1)Sn-l,k-1Sn-1,k+1)

+ (k + 1)(Sn-l,k-I Sn-l,k - Sn-1,k-2Sn-1,k+1)

The first two summands are positive by induction. Moreover, by induction,

2 2
Sn-1,k-1Sn-l,k >- (Sn-l,k-2Sn-l,k)(Sn-1,k+lSn-l,k-1),

which implies that the third summand is also nonnegative.

Note that this result shows that l1n is rank unimodal. Let kn be that number
for which Sn,I < Sn,2 < < Sn,k > Sn,n;
that is, Wn_k is the largest Whitney number of fIn. Canfield [94] determined
kn precisely for sufficiently large n. Almost the same formula was obtained by
Jichang and Kleitman [277]: Let x be the root of (x + 2) log x = n - 2. Then
kn E 1 LX + 12J, [x + 12J + 1). Moreover, kn = Lx J + 1 in "almost all cases."
The proof is very complicated. From a recent result of Benoumhani [45] on the
maximum coefficient of a polynomial whose roots are all negative real, it follows
that (for all n) Ikn - (n - A,(rln))I < 1 where lr(fn) is the expected value of
the rank function of 11n. With (6.50) this implies Ikn - BBn' + 11 < 1. Here we
need only a slightly weaker result:

Theorem 5.4.6 (Harper [256]). We have kn - o as n -> oo.T-n
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Proof. We present a short proof that is essentially due to Rennie and Dobson
[395].

It is enough to show that for every e > 0 we have

(1 - e)logn + 0(1) < kn < (1 +)logn +
0(1). (5.9)

Claim 1. If 1 < k < n, then kn-k Sn,k <

Proof of Claim 1. Let us construct partitions with k blocks by putting n balls
labeled with the numbers 1, ... , n into k indistinguishable boxes such that each
box obtains at least one ball. We put the balls with numbers 1, . . . , k into the
boxes such that in each box there is exactly one ball. For the remaining (n - k)
balls, we have kn-k possibilities for the distribution. This yields kn-k pairwise
different partitions. Thus the first inequality is proved. However, every partition
can be constructed in the following way. Put ball number 1 into one box. Choose
k - 1 other balls (in (k_i) different ways) and put them into the remaining boxes
such that in each box there is exactly one ball. Distribute the remaining n - k balls
as before. This yields the upper bound (n-I)kn-k

-
nnClaim 2. If 1 < k < n, then (k) < k tn

Proof of Claim 2. There are nn possibilities to put n balls labeled with 1, ... , n
into n boxes labeled with 1, . . . , n. Some of them can be obtained as follows:
Choose k balls ((k) possibilities). Put them into the boxes 1 , ... , k (kk possibil-
ities). Put the remaining n - k balls into the boxes k + 1, ... , n ((n - k)n-k
possibilities). Clearly we obtain pairwise different distributions. Consequently,
(k)kk(n - k)n-k < nn, and Claim 2 is proved.

Let

nkc :=
clog n + 0(1), (c is a positive constant),

k* .

lon
n + 0(1)

g

(we have the term 0(1) to ensure that k and k* are integers).
Claim 3. We have Sn,kc < Sn,k* if c 1 and n is sufficiently large.
Proof of Claim 3. We write briefly k := ke. In view of Claims 1 and 2 (together

with the trivial inequality (k-i) < (k)), it is enough to show that

nn kk

kk(n - k)n-k

which is equivalent to

< k*n-kn-

n log n + (n - 2k) log k - (n - k) log(n - k) < (n - k*) log k*.
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If we subtract the LHS from the RHS and use log(l + x) = x + o(x) we obtain
the term

n 1 -
1

to
(logn -log logn +o(1)) -n logn

t (1))-n I 1 -
o

c ) (log c + log n - log log n + o
\\\/

gn

+n I 1 - logn) (logn +o(1))

=n(c-logc- 1+0(1)).

From Proposition 2.6.1(b) it follows that for sufficiently large n the last term is
positive if c 0 1, and this proves the statement in the claim.

From Claim 3 we derive for E > 0 that k1_6 < k* < kl+E which is our desired
inequality (5.9).

As already mentioned we are now able to prove Canfield's result, which was a
markstone in the development of the Sperner theory. It answers a question of Rota
[402] negatively. Simplifications of the first complicated proof have been given by
Shearer [428] and Jichang and Kleitman [277].

Theorem 5.4.7 (Canfield [93]). For sufficiently large n, the partition lattice Iln
does not have the Sperner property.

Proof. Take some small 8 > 0 and let n be large enough such that (1 - 8) x
log 4 0 > kn + 1 (apply Theorem 5.4.6). Let i := n - kn - 1 (i.e., W;+1 is the
largest Whitney number of rln) and take the set A C_ Ni from the proof of Theorem
5.4.5(a). We have seen that for sufficiently large n, I A I > I V (A) I. Obviously, the
set S := A U (N;+1 - V(A)) is a Spemer family whose size is greater than W,+1.

Theorem 5.4.7 and Corollary 4.5.3 imply that IIn cannot be normal if n is
sufficiently large. There is a sharper result:

Theorem 5.4.8 (Spencer [435]). Thepartition lattice nn is not normal ifn > 20.

Proof. First let n be even. Let A be the set of those partitions from Nn-2 both of
whose block sizes equal

2.

Then A(A) consists of those partitions from Nn-3 that
have one block of size 2. We have

Wn-2 = Sn,2 = 1(2n - 2),

Wn-3 = Sn,3 = 3 (3n - 3 . 2n + 3),
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IAI = 2
(nn),

z

Ii (A)I = ()Sn,2.
2

In a straightforward way one obtains

A 0 A )I

Wn-2 wn-3
1ff3 <2 -2 -2 +3,

which is false iff n > 20. For n odd, we may use the same arguments if we work
with the set A of partitions from Nn-3 that have {n } as one block and whose other

11.block sizes both equal '2

With the partition lattice one can also associate the poset Pin of unordered
partitions of an integer, ordered by partitioning the items. More precisely, Pin
(a = (al, ... , an) E N : E"=1 io; = n}, and we have o < r if there are
i, j E [n] such that ai+j = ri+j - 1 and a; = ti + 1, aj = rj + 1 if i # j (resp.
a; = r; + 2 if i = j). The symmetric group Sn on [n] induces in an obvious way a
group G of automorphisms of Fln. It is easy to see that the quotient IIn/G equals
Pin. Moreover, if we define w : Pin - R+ by

n!

! n a;!(i!)O'i

then (Pin, w) is the weighted quotient of (IIn, 1), and it does not have the Sperner
property for large enough n by Theorem 4.5.6 and Theorem 5.4.7. However, the
following problem is still open: Does the unweighted poset Pin of unordered
partitions of an integer have the Sperner property?

I I I ( n-1 3n/2 n n/2+1



6

Algebraic methods in
Sperner theory

In this chapter we are concerned with unweighted, ranked posets only. Algebraic
characterizations for the existence of certain matchings in graphs have been known
for many years (cf. Lovasz and Plummer [356], and note in particular the results
of Kasteleyn [286], Perfect [380], and Edmonds [1421). We have seen that chains
in posets can be constructed by joining matchings between consecutive levels. By
Dilworth's theorem, the size of chain partitions is related to the width of a poset.
For these (and other related) reasons, it is worthwhile to develop an algebraic
machinery that answers many questions in Sperner theory. An essential step in
this direction was undertaken by Stanley [439], who used deeper results from
algebraic geometry (the Hard Lefschetz Theorem) in order to prove the Sperner
property of several posets. Further work (in particular that of Proctor [388]) allows
us to stay on a more or less elementary linear algebraic level. It is interesting that
Erdo"s-Ko-Rado type theorems can also be proved using this approach. Important
contributions were those of Lovasz [355] and Schrijver [419] and some culmination
was achieved by Wilson's [470] exact bound for the Erdo"s-Ko-Rado Theorem in
the Boolean lattice. Besides this result, Wilson strongly influenced, in general, the
development of the algebraic extremal set theory and, together with Kung (e.g.,
[327, 328]), the theory of geometric (and related) lattices. Kung's main tool is the
finite Radon transform discovered by E. Bolker (see [328]), but we will formulate
the results in the language of injective linear operators. Extremal set problems are
discussed in Section 2.5. In this chapter (Section 6.5) we apply the fundamental
observation that the image of a subspace of a vector space by a linear mapping has
dimension not greater than the dimension of the preimage. For further information,
the reader is referred to the book of Babai and Franki [35].

Though the theory is easier to present under the supposition of rank symme-
try we will consider first the general case and later specify the results to rank-
symmetric posets. An important tool is the Jordan decomposition of nilpotent
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maps considered by Saks [406] and Gansner [213]. We introduce here the Jordan
function in order to derive many results by algebraic manipulations only. We pre-
fer to work throughout this chapter with linear operators instead of (incidence)
matrices.

6.1. The full rank property and Jordan functions
Throughout, let P be a ranked poset with rank function r of rank n := r(P).
With P we associate the poset space P, which is the vector space of all functions
cp : P - R with the usual vector space operations. With the element p of P we
associate its characteristic function cop E P defined by

(pp(q)
0 otherwise.

(1 ifq=p,

For the sake of brevity, we write p instead of cpp, but 0 denotes the zero vector.
Obviously, [p : p E P} is a basis of P. Thus every element cp of P has the form
cp = F_pE p A p p, where g p is a real number, and P can be considered as the vector
space of all formal linear combinations of elements of P with real coefficients.
With the standard scalar product

CE APP E
V Pj

:=
f'LPV PpEP PEP pEP

the space P becomes a Euclidean space (here we are working only with the field
of real numbers). With a subset F of P we associate the subspace F of P, which
is generated by {: p E F). Obviously, the dimension of F, denoted by dim F,
equals IFI._Note that P = No ® ® N,,, where ® denotes the direct sum. Any
basis B of P with the property B = U"=oB fl N1, that is, all basis elements belong
to some N1, is said to be a ranked basis. In particular, {p : p E P} is a ranked
basis.

In the following we consider linear operators P P. We define VP to be the
operator for which 4)IP (cp) = 4)(41(cp)) for all cp E P. Further let (D ' :_ 4) ... 4)
(i times) if i > 1. It is useful to define (Di to be the identity operator I if j < 0.
For a subspace E of P, let 4'(E) := {cp(cp) : co E E} and 4)IE be the restriction
of 4) to E. Let V be the adjoint operator of 4), that is, 4)* P - P with
(4)(cp), fl = (cp, (D*(,lf)) for all cp, f E P.

If j 0 (0, ... , n), let Nj = {0}. A linear operator V P_ -> P (resp. A
P_ -- P) is called a raising (resp. lowering) operator if V (N,) c_ N;+1 (resp.
L (N;) c N,_ 1 for all i). A raising (resp. lowering) operator 0 (resp. i) defined
on the basis { p : p E P} by

/
V(P) 1: c(p, q)q I resp. O(q) d(p, q)P, f (6.1)

q:q>p \ p:p<q
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with c(p, q), d(p, q) E R, is called an order-raising (resp. order-lowering) op-
erator (here the empty sum is defined to be the zero vector). Thus order-raising
(resp. -lowering) operators are defined by functions E(P) -+ R, where E(P) is,
as before, the arc set of the Hasse diagram of P. If c(p, q) = 1 (resp. d (p, q) = 1)
for all p < q we speak of the Lefschetz raising (resp. lowering) operator. In all
that follows, V (resp. 0) denotes a raising (resp. lowering) operator, whereas
oL = VL(P) (resp. tL = LL(P)) denotes the Lefschetz raising (resp. low-
ering) operator in P. Intuitively speaking, the Lefschetz raising operator VL,
when acting on a poset element, produces the sum of poset elements covering
that element.

Lemma 6.1.1.

(a) Let V and 0 be an (order-) raising (resp. lowering) operator. Then 0* and
2K* is an (order-) lowering (resp. raising) operator.

(b) Let D and Z be defined as in (6.1). If c(p, q) = d(p, q) for all p < q, then
0 = 0*. In particular, OL = ;V L"

Proof. (a) We consider only V and*. Let q E Ni+1 for some i. Then (p,
0*(q))=(V(p),q)00only if pEN1and p<q.

(b) We have for all p, q E P

_ c(p, q) = d(p, q) if p < q,
(0(P), R)

0 otherwise

Let V/i3 (resp. OJi := DJ-'INS). Then Vij : Ni NJ (resp.
AJi : NJ -a N,). If we fix the bases {j5: p c N1) and {q : q c NJ }, we can, as
usual, associate with the linear operator Vij (resp. OJi) a matrix RiJ (resp. LJi)
whose columns (resp. rows) and rows (resp. columns) are indexed by rank i and
rank j elements and whose entry in p's column (resp. row) and q's row (resp.
column) equals (V (p), q) (resp. (p, OJi (W)), p E Ni, q E Nj. If O = V*, then

LJi = R, for all i, j. (6.2)

For a fixed raising (resp. lowering) operator V (resp. Z) and for 0 < i < j k < n,
we have

VJkViJ = Vik (resp. OJiLkj = ski), (6.3)

which implies

RJkRiJ = Rik (resp. LJ;LkJ = Lki) (6.4)

.
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If V (resp. A) is the Lefschetz raising (resp. lowering) operator, we use the notation
L Ri j (resp. L Lji) instead of Ri j (resp. L ji). In particular, L Ri,i+1 is the incidence
matrix of rank i + 1 versus rank i elements, and the entry in p's column (resp. row)
and q's row (resp. column) of LRij (resp. LLji) equals the number of saturated
chains from p to q, p E Ni, q E Nj, which can be easily derived from (6.4). Note
that, as above, L L ji = L R . We call the matrices L Ri j the Lefschetz matrices
of P.

Let keri j (V) be the kernel of Vi j, that is, keri j (0) {gyp E Ni : Vii (cp) = 0},

and let rank i j (V) be the rank of Vi j, that is, the dimension of Vi j (Ni ). Often we
use the shorthand notation kerij and rank i j . From linear algebra we know that
kerij is a subspace of Ni and that rank i j equals the matrix theoretical rank of the
matrix Ri j and, moreover,

rank i j + dim keri j = dim Ni = W., (6.5)

rankij = rankRij < min{ W, Wj}. (6.6)

If rank i j min { Wi, Wj } we say that Ri j and Di j have full rank. Moreover, we
say that 0 has the full rank property if all Di j, 0 < i < j < n, have full rank.
The definitions for lowering operators are analogous. For the sake of brevity, only
raising operators are mentioned in the following. From (6.2), (6.5), (6.6), and
Lemma 6.1.1 we derive immediately:

Lemma 6.1.2.

(a) Wi < W j and Vi j has full rank iff Vi j is injective,

(b) Wi > Wj and Vi j has full rank iff Obi is injective,

(c) V is of full rank if j" 0* is of full rank.

Lemma 6.1.3. If there exists in P a raising operator 0 of full rank, then P is
rank unimodal.

Proof. Assume that there are i < h < j such that Wh < min{Wi, Wj}. Then
by (6.4) Ri j = Rh j Rih, implying min{ Wi, Wj } = rank i j < min {rank Rh j ,
rank Rih } < Wh, a contradiction. U

Later we will see that the full rank property is a criterion for the strong Sperner
property. But let us look first at a weaker condition that already implies the Sperner
property.

Theorem 6.1.1. Let P be rank unimodal. If there exists an order-raising operator
0 in P such that Di,i+l is of full rank for all 0 < i < n - 1, then P has the
Sperner property.
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Proof. Let Wh be the largest Whitney number and let S C_ N; . We show that for
i < h, BSI < I V(S)I, and for i > h, BSI < IA(S)I. By Theorems 5.1.1 and 5.1.2
this is sufficient for the proof. Indeed, if i < h, W, < W,+1 implying that V,,1+1
is injective. Since V is order raising, V,,1+1 (S) is a subspace of V(S). Hence

ISO =dims= dimV1,,+1(S) :!S dim V(S) = IV(S)I.

If i > h, we may argue analogously using V*1,1.

For a product of two chains, there is a nice way to compute the rank of Lefschetz

matrices:

Theorem6.1.2. LetP=(0<1< <nl)x(0<1< <n2).Then VL
has the full rank property.

Proof. Though this result can be obtained by calculating determinants with bino-
mial coefficients as entries in an elementary, but nontrivial way, we will do a little
bit more by giving a combinatorial interpretation of corresponding determinants.
This approach is due to Gessel and Viennot [222]. Let n := r(P) = n 1 + n2. First
we show that the square matrices LRk,n_k, 0 < k <, have nonzero determi-
nant, that is, full rank. We index the elements in the kth resp. (n - k)th level from
left to right according to Figure 6.1. Thus we have the elements po, ... , pk (resp.
qo, , qk). Let 4,n-k be the set of all saturated chains C starting at some point
s(C) in the kth level and ending at some point e(C) in the (n - k)th level. For each
C E 4,n-k, let A(C) be a ((k + 1) x (k + 1))-matrix whose entry aid (C) equals
1 if s(C) = pj and e(C) = q,, and 0 otherwise. Obviously,

LRk,n-k = A(C).
CE'k,n-k

By Leibniz's definition of a determinant

det L Rk,n_k

1: X (7r) E ao,n(o) (C) 11 ak,n(k) (C)
7rESk+1 CE'k,n-k CEC!k,n-k

E E X (Jr)ao,n(0)(C0) ... ak,n(k)(Ck),
(C0....,Ck)E'k nl k 11ESk+l

where Sk+l is the symmetric group on {0, ... , k} and X (n) is the character of n.
It is easy to see that we may restrict the first sum to the set 0 of (k + 1)-tuples
(CO, ..., Ck) for which e(C,) = q, holds and for which the set of all starting
points is the whole kth level. For each (CO, ... , Ck) E Z, there exists exactly
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Figure 6.1

one permutation 7r E Sk+l such that ao,,(o) (Co) ... ak,,(k) (Ck) = 1 (we need
s(C;) = pr(i), i = 0, ... , k), all other items in the second sum are zero. Let
sgn(CO, ... , Ck) be the character of that permutation. So we have

det LRk,,i_k = sgn(Co, ... , Ck).
(C0.....Ck)ET)

Now we define a mapping r : 0 -+ 0 in the following way: Let (Co, ... , Ck) E
0. If the chains Co, ..., C k are pairwise disjoint, let r(Co, ..., Ck) := ( C O ,. .. ,
Ck). Since we indexed the elements in the corresponding levels from the left to the
right, this can be the case only if the corresponding permutation it is the identity
- that is, only if sgn(Co, ... , Ck) = 1 . If the chains C O ,..., Ck are not pairwise
disjoint, look at all intersection points and choose the lexicographically smallest
point p (first minimize the first coordinate, then the second coordinate). Let a be
the least integer for which Ca and Cy intersect in p for some y a, and let fi
be the least integer for which Ca and C, intersect in p. We construct C« by first
following Ca to p and then following Cp to the end. Similarly we construct C*
by following Cf to p and then Ca to the end. Now let

,Ca+ ..,Ck)

Noting that the set of intersection points is invariant with respect to r, it is easy
to see that r2 is the identity map, thus r is an involution. Moreover, in the case of
intersection

sgn(r(Co, ... , Ck)) = - sgn(Co, ... , Ck)
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since the corresponding new permutation is obtained by transposing two elements

in the corresponding original permutation. Thus

det LRk,n_k = E 1 + E sgn(Co, ... , Ck)

(C0,...,Ck)EJ (C0,...,Ck)E0
pairwise nonintersecting with intersections

= I { (Co, ... , Ck) E 1) : pairwise nonintersecting)

+ 2 E (sgn(Co, ... , Ck) + sgn(r(CO, ... , Ck)))
(C0,...,Ck)EM

with intersections

= I{(Co, ... , Ck) E 0 : pairwise nonintersecting)I.

Thus we obtained a nice combinatorial interpretation of our determinant. From our
results on symmetric chain partitions of products (see the proof of Theorem 5.1.5),
we know that there really exist k+ 1 pairwise nonintersecting saturated chains from
the kth to the (n - k)th level; hence

det L Rk,n -k 0 0.

Let us now consider all matrices L Ri j, 0 < i < j < n. We assume that i + j < n,
since the other case can be treated analogously. Obviously, Wi < Wj. From the
symmetric case solved previously and the rank inequality for products of matrices,
we obtain Wi = rankLRi,n_i = rankLRj,,,_iLR;j < rankLR;j < W;; that is,
rank L Ri j = Wi.

Now we will use this result to calculate the ranks of our matrices (resp. operators)
for products of arbitrary ranked posets. To do this, we need several preparations. Let
0 be a raising operator in P. Aset S = {b', bi+l , ... , bj } of elements of P is called
a r a n k e d J o r d a n string f r o m N i to N j with respect t o V if bk E Nk, k = I . . . . . j,
and O(bk) = bk+l k = i, ... , j - 1, O(bj) = 0. Note that a ranked Jordan string
generates an invariant subspace of P with respect to 0, denoted in the following
by Vi jh (h enumerates the ranked Jordan strings from Ni to Nj ). A basis of P that
is a union of ranked Jordan strings is said to be a ranked Jordan basis of P with
respect to V. Soon we will see that such a basis really exists. But let us first define

1rankij + ranki-l, j+l - ranki_1, j - ranki,j+l if 0 < i < j < n,
sij(O):=

0 otherwise

(if the operator V is clear from the context we will write briefly sij ).

Lemma 6.1.4. In every ranked Jordan basis B of P with respect to _V there
are exactly sij ranked Jordan strings from Ni to Nj with respect to 0, where
0<i<j<n.
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Proof. Let Bi := B n Ni. Obviously, B, is a basis of N; and the elements of
Bi belong to ranked Jordan strings starting in some N with u < i. Obviously,
Dij (Ni) is generated by the elements Dij (b) with b E _Bi. We have Dij (b) = 0
if b belongs to a ranked Jordan string ending in some N with v < j; otherwise
Vi j (b) belongs to B. Consequently, rank i j = dim Vi j (Ni) = number of ranked
Jordan strings from N1, to N with u < i, v >-j. Hence, rank i j - rank;, j+1
equals the number of ranked Jordan strings from Nu to Nj with u < i and finally
sij = (rank i j - rank i, j+1) - (rank j- 1, j - rank j- 1, j+1) equals the number of
ranked Jordan strings from N1 to Nj, 0 < i < j < n.

Theorem 6.1.3. Let V be a raising operator in P.

(a) We have sij > 0 for all i, j.

(b) There exists a ranked Jordan basis of P = No ® ... ® Nn with respect to V;
that is, P can be written in the form P = ®o<< j<n ®y' 1 Vi jh where each
Vi jh is a subspace generated by one of the sij ranked Jordan strings from Ni
to Nj.

Proof. Let 0 < i < j < n. Obviously, keri j c keri, j+1; hence we may look at
the factor space keri, j+1 / kerij. Its elements v are of the form v +kerij where v E
keri, j+i (v is a representative). Furthermore, O(keri_1, j) c kerij. So we define

the mapping Dij : keri_ t, j+1 / keri _ 1, j - * keri, j+1 /kerij by VJOY) :=
where v E keri_l, j+l. This mapping is well defined since, for v - w E keri_t, j,
we have V(v - w) = O(v) - O(w) E kerij. Furthermore Dij is injective since
Vij(v) = 0 if V(v) E kerij if v E keri_t, j iff v = 0. Consequently,

dimOij(ker!_1, j+l /keri_1, j) = dimkeri_l, j+1 /keri_1, j

= dimkeri_1, j+l - dimker!_1, j .

Let Bi j be a basis of keri, j+l / keri j/Dij (keri_1, j+1 / ker1_1, j). Then

Bi jj I = dim keri, j+l -dim keri j -dim keri_ 1, j+l + dim keri _ 1, j

= rank! j + ranki_l, j+l - ranki_ 1, j - rank!, j+l = sij.

In particular, 0 < I Bi j I = sij, so (a) is proved.

Now take for each element of Bi j (which is a class of classes) one representative
lying in keri, j+1 / kerij (which is a class), and then take for this class again a
representative lying in keri, j+1. This procedure gives us first a set B13 and then a
set Bi j of elements of Ni where I Bi j II = sij. Let

B := U U {b, V (b), ... , Oj-i (b)).
0<i<j<n bEB,j
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We have finally to show that B is the desired ranked Jordan basis. First of all, the

set {b..... Vj-i (b)}, b c B,1, is a ranked Jordan string from N, to Nj because

(1) its elements belong to_N,, ... , Nj, (2) they are not the zero vector because

of b ker, j, and (3) V (Vj-` (b)) = vj+l-r' (b) = V,,j+l (b) = 0 because of

b E ker,, j+l .
In the following we often use the fact that, if U is a subspace of a vector space

V and BU is a basis of U and BVIU is a set of representatives of all elements from

a basis of the factor space V1 U, then BU U BVI U is a basis of V. It is sufficient

to show that B n N, is a basis of N, for 0 < i < n. We proceed by induction on i.

First note that for all i

{0} = ker,i c ker,,,+1 C c ker,,n+1 = Ni.

In order to realize the induction we prove a little bit more:
Claim. For all 0 < i < j < n + 1, the set

j-1

B n ker,j = U (Bi, U {o(b) : b E B n (ker,_1,1+1 -ker1_1,,)})
1_i

is a basis of ker, j and B n (ker, j - ker,, j_1) is a set of representatives of a basis
of ker, j / ker,, j _ 1.

From this claim we obtain in particular that B n ker,,,+l = B n Ni is a basis
of N, and we are done.

Proof of Claim. Let i = 0. Note that ker_1, j = {0} for all j. So we have only
to prove that Bo,1 is a basis of kero, j, but this follows easily by induction on j.
In particular, Bo,j_1 = B n (kero, j - kero, j_1), j > 1, is a set of representatives
of a basis of kero, j / kero, j_1 by construction.

Now consider the step i - 1 -+ i. We prove our claim by induction on j.
Usually we have to start with j = i + 1. But we turn immediately to the induction
step j --o. j + 1 since the arguments are analogous. The set B n ker,, j+l can be
obtained from B n ker, j by adding the elements from B, j U {0(b) : b e B n
(ker,_1, j+l - keri_1, j)}. Since by induction (on i) B n (keri_1, j+1 - ker1_1, j) is

a set of representatives of a basis of ker, - 1,1+1 / ker, _ 1,j and since V ,j is injective,
the set {V (b) : b E B n (kerf_1, j+1 - ker,_1, j)} is a set of representatives of a
basis of Vi, j(ker,_1, j+1 / ker,_1,j) that is a subset of ker,,j+t /ker,,j. This basis
together with Bi j forms a basis of ker,, j+1 / ker, j. Thus B n (ker,,j+l - ker, j) =
B,j U {0(b) : b E B n (keri_1, j+l - ker,_l,j)} is indeed a set of representatives
of a basis of ker,, j+1 / ker, j, and these elements together with a basis of ker,j form
a basis of ker,, j+1.

W_ a call a subspace V of P a ranked subspace if V is the direct sum of subspaces
of N, , i = 0, ... , n - that is, if V n N,. If, moreover, V is invariant with
respect to some raising operator V, then by Theorem 6.1.3 there exists a ranked
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Jordan basis of V (in the proof of Theorem 6.1.3 we must only always take V f1 N;
instead of Ni ). _

With a raising operator 0 in P we associate now its Jordan function J(0, P;
x, y) defined by

J(V, P;x,Y) sij(x` +x`+1 +...+xj)Y`+i,
0<i < j <n

that is, a polynomial in the variables x and y with nonnegative (by Theorem
6.1.3(a)) integer coefficients. For an invariant ranked subspace V of P, we define
the Jordan function J(V, V ; x, y) in the same way; except that here sij counts the
number of ranked Jordan strings from Ni to Nj belonging to a ranked Jordan basis
of V. Let us write J(V, P; x, y) in the form

J(V, P; x, y) _ 57 akl (V)xk yl,

k,l

where here and in the following, the summation is extended over all pairs of integers
(resp. over all integers) (there is only a finite number ofnonzero items). We call
the numbers akl = akl (V) the Jordan coefficients of 0, whereas the numbers
sij = sij (V) are said to be the string numbers of V. Directly from the definitions
and Theorem 6.1.3(a) we obtain:

Lemma 6.1.5. The Jordan coefficients of 0 have the following properties:

(a) akl = 0 if not 0 < k < 1 < k + n < 2n,

(b) 0 < akll = al-k,i ak+1,l = al-k- 1,1 for all 0 < 2k < 1 < 2n,

(c) akl = Li<min(k,l-k) Sid-i

Knowing the Jordan coefficients, we may determine the string numbers, and from
both we may derive the rank numbers:

Lemma 6.1.6. Let akl, k, l E Z, be the Jordan coefficients of V. Then

(a) sij = ai,i+j - ai-l,i+j if i < j,
(b) rankij = :u<i,v>j Suv,
(c) rankij = El<i+j aji + F_l>i+j+1 ail if i < j.

Proof. (a) If i < j then by Lemma 6.1.5(c)

ai,i+j -ai-l,i+j = ESu,i+j-u - Su,i+j-u = sij.
u<i u<i-1

(b) This fact follows front the proof of Lemma 6.1.4. It can also be derived by
the observation that every other item is canceled in the summation if we write sn
in the form given by its definition.
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(c) From (a), (b), and Lemma 6.1.5(b) it follows that for i < j:

rank i j = E au,u+v - au-l,u+v
u<i,v> j

E aul - au-l,l = aul - au-1,l
u<i,l-u>j l u<min{i,i-j)

= E al-j,1 + E ail
1-j< 1-j>i

_ E ajl + : ail.
1<i+f 1?i+j+l

The preceding results hold analogously for invariant ranked subspaces. Fur-
thermore, if V is the direct sum of invariant ranked subspaces, V = VI ® V2, then
evidently, V is also an invariant ranked subspace and directly from the definition
it follows that

J(O, V1 (D V2; X, Y) = J(V, VI ; x, Y) + J(O, V2; X, Y). (6.7)

Let us consider chains of the form Ci j := (i < i + 1 < < j), where r(l) =
1, i < 1 < j. Here make an exception from the usual condition that r(p) = 0 for
some minimal element p. Obviously,

J(OL, Cij; X, Y) = (x` +x'+l + ... +xj)Yi+j.

Moreover, by Theorem 6.1.2, OL has in Ci,,j, x Ci2,12 the full rank property.
Hence, for il + i2 <k<<l <jl+j2,

rank ki =-
Wk if k+1 <il+i2+ji+j2,
W1 otherwise

(note that this chain product is rank symmetric and rank unimodal). Consequently,

Ski =

Since

ifk+l=it+i2+jl+j2,
0 otherwise.

(xtl +.... +XjI)(Xi2 +....+Xj2) = Wil+12X11+i2 + Wil+i2+lx°I+i2+1

+ + Wjl+j2xjl+j2

we obtain

J(OL, Cil,j. X Ci2,j2; X+Y) = J(OL, Cil,jl; X, Y)J(OL, Ci2,j2; X+ Y). (6.8)
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This product property can be generalized to direct products of ranked posets. In

order to avoid the notion of the tensor product, let t : Pt X P2 -+ Pt x P2 be the

bilinear mapping defined by

t

\
E aPipt, E Pp2P2I aPifipz(Pl p )

\piEPi P2EP2 / (P1,P2)EPj XP2

Since dim Pt X P2 = I Pl x P21 = I Pl I I P21 = dim Pt dim T2, it follows easily

by proving linear independence that for given bases Bm of Pm , m = 1, 2, the set

B :_ {t(b1, b2) : bl E Bt, b2 E B2} is a basis of Pt x . For the sake of brevity,

we omit in the following the letter t and write (b1, b2) instead of i(bl, b2) and so

on. If Vm is a subspace of Pm and Bm is a basis of Vm, m = 1, 2, then let Vl x V2

be the subspace of Pt x P2 generated by {(bl, b2) : bm E B,,,, m = 1, 2} (this
definition is independent of the basis). In particular we can then write P1 X P2
instead of Pi x P2.

For linear operators 'm : Am , Pm, m = 1, 2, we define their product
cl x 02 : Pl x -* Pt xP on the basis {(pl, p2) : (pl, p2) E Pt x P2} by

(01 X 02)((Pl, P2)) := (01(pl), (D2(P2))

If Vm is an (order-) raising operator and Im the identity operator on Pm, m = 1, 2,
then obviously VI x 12 + Il x V2 is an (order-) raising operator on P1 x P2.
Moreover, for the Lefschetz operators we have

VL(PI X P2) = VL(Pl) X 72 + It X VL(P2),

and analogous results hold for lowering operators.

Theorem 6.1.4. Let Vm be raising operators on Pm, m = 1, 2. Then

J(Vl X 72 + 71 x 02, Pl X P2; X, Y) = J(Vi, Pi; X, Y)J(V2, P2; X, Y)

Proof. Roughly speaking, we are concerned with the generating function statement
that a product of two direct sums of strings is the sum of the products. If we
have, for example, J(O1, Pt; x, y) = (x0 + xt + x2 + x3)y3 + (x3 + x4)y7
and J(V2, P2; x, y) = (x0 + xl + x2)y2, then multiplication with the result
(xc + x1 + x2 + x3 + x4 + x5)y5 + (xt + x2 + x3 + x4)y5 + (x2 + x3)y5 +
(x3 + x4 + x5 +x6)y9 + (x4 + x5)y9 can be illustrated as in Figure 6.2. Briefly,
let P := Pl x P2 and V := V1 X 72 + It X V2. Let us write each Pm, m = 1, 2,
in the form of Theorem 6.1.3, where each V1,Jmhm is generated by some ranked
Jordan string {bm, Vm(bm), ... , vmm_Im (bm)} (bm depends also on im, jm, hm)).
It is easy to see that V,1Jihi X V;2J2h2 is an invariant ranked subspace of P with
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Figure 6.2

respect to V. We have

J(Vm, Vimjmhm; X, Y) = (Xim +.... +. xJm)Yim+Jm (6.9)

As before, let Cim jm :_ (im < < jm) and D := Ci, j, x Ci2 j2. To calculate the
Jordan function of Vi, j,h, x Vi2j2h2 with respect to 0, consider the linear mapping

f : Viljih1 X Vi2j2h2 -+ D given by

f(Vj' (bl), V22 (b2)) :_ (u u2), 0 < um < jm - im, m = 1, 2.

Of course, f is bijective. But the most important fact is that f and the raising
operators commute in the following sense:

fV =VL(D)f, i.e., f-1(VL(D))f=V.

Consequently, applying f to a ranked Jordan basis of D with respect to VL (D)
gives a ranked Jordan basis of Vi,j,h, X Vi2j2h2 with respect to V with the same
string numbers. In view of (6.8) and (6.9) we obtain

J(V, Viijihi x Vi2j2h2 X1 Y) = J(VL, D; X, Y)

= J( O1, Viijih1; X, Vi2j2h2 X1 Y). (6.10)

For the sake of brevity, let for m = 1, 2,

Zm :_ {(im, jm, hm) : 0 < im < jm < r(pm), 1 < hm < Simjm (Om)}.

Now we have

® (ii,j,,hi)EZi Vi1jihi X Vi2j2h2
(12,j2,h2)EZ2
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From (6.7) and (6.10) we finally obtain

J(0, P; X, Y)

T J(V, Vililhl X Vi2i2h2; x, Y)

(i2,J2,h2)EZ2

J(V1, Vililhl; X, Y)J(V2, Vi2i2h2; X, Y)
(il,il,hl)EZI
(i2,i2,h2)EZ2

J(O1+ Vililhl; X, Y) I(02, Vi2i2h2; X1 Y)
1\ (i2,j2,h2)EZ2

= J(01, P1; X, Y)J(o2, P2; X, Y)

As in the case of normality, the situation is easier for rankwise direct products.
Let Pm be ranked posets, m = 1, 2, and let n := r(P1) = r(P2). As for direct
products we use, for i = 0, ..., n, the short notation

57 P1Pl, PP2P2 1 P1PP2(P1, P2)1 a
PIENi(PI) P2EN1(P2) / (PI P2)EN1(PI XrP2)

If Bm is a ranked basis of Pm, m = 1, 2, then B := Un_o{(bl, b2) : bl E Ni (PI) fl
Bl, b2 E Ni (P2) fl B21 is a ranked basis of Pi xr P2. Moreover, if (Dm : Pm
A. , in = 1, 2, are linear operators we may define 1 1 x r (D2 : P1 x r P2 - + P1 x r P2

on the basis U" 0{ (pl, P2) : (P1, P2) E Ni (P1) x Ni (P2)}, i = 0, ... , n, by

(I1 xr(b2)((Pl, P2)) (01 (PI), 02(P2)), P1 E Ni(Pi), P2 E Ni(P2)

If Vm is an (order-) raising operator on Pm, m = 1, 2, then V1 xr V2 is an (order )
raising operator on Pl xr P2; moreover,

OL(P1 X r P2) = ;k (PO xr VL(P2),

and analogous relations hold for lowering operators.

Theorem 6.1.5. Let be raising operators on P,,,, m = 1, 2, and let r(P1) _
r(P2).

(a) For i < j, rank ii(Vi xr V2) = rank ;i(Vi) rank ij (V2).

(b) If 01 and V2 have the full rank property, then Vl X r 02 has the full rank
property, too.
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Proof. Clearly (b) follows from (a), so let us prove (a). Let P := PI x, P2 and
V := V1 X, V2. Choose for each 0,,,, m = 1, 2, a ranked Jordan basis B,,, with
respect to ;0m. Then we obtain a ranked Jordan basis B of P with respect to V in the
following way: Take all pairs of Jordan strings from BI (resp. B2), for instance,
the Jordan strings b;,' . .. , m = 1, 2. Let i := max{ii, i2}, j
min{ jl, J2}, and form {(b', b2), (bi+, b2+'), ... , (b , bz)}. Then obviously

(bi, bk) E Nk(PI X, P2), 0((b', b2)) _ bl+l bk+i) k 1, and

V((2, b2)) = 0; that is, we obtain ranked Jordan strings. The union B of these
strings has the form B = U"_o{(bl, b2) : bl E N, (Pt) fl BI, b2 E N; (P2) n B2};
that is, it is a ranked Jordan basis. The construction gives a ranked Jordan string
meeting N; (PI X, P2) and Nj (PI x, P2) iff the taken ranked Jordan strings also
meet N; (Pi) and Nj (PI) (resp. N, (P2) and Nj (P2)). By Lemma 6.1.6(b) we have
rank;j(Vl) (resp. rank;j(V2)) (independent) choices. Consequently, we obtain
exactly rank; j (Vi) rank; j(V2) ranked Jordan strings meeting N; (Pi x, P2) and
Nj(Pi x, P2), and by Lemma 6.1.6(b) this number equals rank; j(Vi x, V2)-

The proof of Theorem 6.1.2 motivates the following definition. We say that the
ranked poset P of rank n := r(P) has property T if for all 0 < i < j < n there
exist min{ W;, Wj} pairwise disjoint saturated chains starting at some point in the
ith level and ending at some point in the jth level. The following theorem is mainly
due to Stanley [439] and Griggs [238] ((i) + (ii)); see also [391].

Theorem 6.1.6. Let P be a ranked poset. The following conditions are equivalent:
(i) P is rank unimodal and has the strong Sperner property,

(ii) P has property T,

(iii) there exists an order-raising operator V on P with the full rank property,

(iv) there exists an order-lowering operator 0 on P with the full rank property.

Before proving this theorem, we need a lemma that is interesting for itself.

Lemma 6.1.7. If P has the strong Sperner property then for any S c [0, n] the
S-rank-selected subposet PS has the strong Sperner property, too.

Proof. We order the Whitney numbers using a permutation it of [0, n] : W,r(o) <

. . < Let S = {ir(is), ..., n(it)} with it > > it and let 1 < k < 1.
Assume that PS has not the k-Sperner property. Then there is some k-family Fk in
Ps such thatIFkI > F_j_, W,r(,,).ButF' :=
(n - ik + 1)-family of size greater than JJ°'k W,r(j), contradicting the (n - ik + 1)-
Sperner property of P.

Proof of Theorem 6.1.6. (i) -+ (ii). Let 0 < i < j < n. By Lemma 6.1.7, in
particular the [i, j]-rank selected subposet has the (j - i)-Spemer property and
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by Lemma 4.5.1(a) the 1-cutset property. Moreover min{ W1, Wj} is the smallest

Whitney number of that subposet by rank unimodality. Now Corollary 4.2.2(b)

implies the existence of min{ W1, Wj} maximal chains in that subposet.
(ii) --> (iii). We proceed by induction on the rank n of P. If n = 0 we do not

have to prove anything. Let n = 1. By the supposition, there exist min{ Wo, Wl }

pairwise disjoint chains (pj < qj), pj E No, qj E N1, j = 1, . . . , min{Wo, W1}.

If we define 0 by

qj if p = Pi for some j = 1, ... , min{Wo, W1},
O(P) j

0 otherwise,

then V is obviously an order-raising operator with the full rank property. Now
consider the step n - 1 -+ n (n > 2). Suppose first that Wo _< W. Let P'
be the [1, n]-rank selected subposet of P. Obviously, P' has property T, and by
the induction hypothesis, there exists an order-raising operator V' on P with the
full rank property. We extend ' to an order-raising operator on P by setting
O'(p) := 0 if p E No. By the supposition there exist Wo pairwise disjoint chains
(po,h < < pn,h) such that Pk,h ENk, k = 0, ... , n, h = 1, ... , Wo. We
define the order-raising operator V = O(a) on P depending on a real number a
(to be defined later) in the following way: Let

O'()+apk+l,h ifP=Pk,h (k=0,...,n-1,h=1,...Wo),
V(P) :=

O'(p) otherwise.

Obviously, 0 is an order-raising operator for any a E R. We have to prove that a
can be chosen in such a way that 0 has the full rank property. Let 1 < i < j < n
and consider the associated matrix R/j = R/j(a). Since the entries of R;,/+1 are
linear functions of a and R/j = Rj_l,j . R/+1,/+2R/,/+1, the entries of Rij are
polynomials in a of degree not greater than j - i, in particular not greater than n.
By the choice of V' there exists in R/ j a minor of order min[ W1, W1 } which has
nonzero determinant if a = 0. Since this determinant is a polynomial in a of degree
not greater than n min{ W1, Wj}, it is nonzero for all but a finite number of values of
a. Thus all matrices R, j, that is, all operators V1 j, 1 < i < j < n, have full rank
for all but a finite number of values of a. Now consider Ro, j and Do, j, 1 < j < n.
If we write oo, j (po,k), k = 1, ... , Wo, as a linear combination of the basis vectors
of Nj, it is easy to see that the coefficient of pj,k is a polynomial in a of degree j
with leading coefficient 1, and all other coefficients are polynomials in a of degree
less than j. Thus the minor of Ro, j (of order WO) which is formed by the columns
indexed by Po,k and rows indexed by pj,k, k = 1, ..., Wo, has the property that in
each row and each column there exists exactly one entry that is a polynomial in a
of degree j while all other entries are polynomials in a less than j. Consequently
its determinant is a polynomial in a of degree jWo (and not the zero polynomial).
It is nonzero; that is, Ro, j and Vo, j are of full rank for all but a finite number
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of values of a. Since we have only a finite number of exceptions, we find some
a E R such that V is of full rank. If Wo > W, we may argue similarly using the
[0, n - 1]-rank-selected subposet.

(iii) (iv). This equivalence follows from Lemma 6.1.2(c).
(iii) -> (i). By Lemma 6.1.3, P is rank unimodal. Let Ck := (0 < 1 < <

k - 1) and Pk := P x Ck. By Theorem 4.3.1 we have dk(P) = dl (Pk). Since each
Whitney number of Pk equals the sum of at most k Whitney numbers of P, it is
enough to show that Pk has the Sperner property for each k. Let Wo(P) < ... <
Wh(P) > Wh+1(P) > ... > W,,(P). Since Wi(Pk) = Wi-(k-1)(P) + ... +

Wi (P), we have Wj(Pk) - Wi_1(Pk) = Wi (P) - Wi_k(P). Let hk be the largest
index such that this difference is nonnegative. Obviously, hk - k < h < hk. Let
vk := V X VL(Ck)

Claim. We have

(a) rankl,i+1(Ok) = Wi (Pk) if i < hk.

(b) rankl,i+1(Ok) = Wi+1(Pk) if i > hk.

These two equalities imply that Pk is rank unimodal and that Vk; ;+, is of full rank
for all i. Theorem 6.1.1 then gives the Sperner property and we are done.

Proof of Claim. We prove only (a) since (b) can be proved in the same way.
Let i < hk. In view of Theorem 6.1.4 we have

J(Ok, Pk; X, Y) (am1()xmY1) (1 + + ...
J

Hence the Jordan coefficients of Ok are

auv (Ok) = au,v-(k-1) (0) +a.- I, v-(k-l)(V) + ... +a,,-(k-1),v-(k-1)(V)-

From this equality and _Lemma 6.1.6(c) we may derive that our Claim(a),
rank ;,;+l (Vk) = ranki,i (ok) for i < hk, is equivalent to

Y, ai+1,1(Ok) + ai,l (Ok) _ ai,l (Ok),
1<2i+l 1>2i+2

(ai+1,l (Ok) - ai,l (Vk)) = 0,
1<2i+l

-ai-(k-1),l-(k-1)(0)) = 0,
1<2i+1

E (ai+1,1(0) -ai-(k-1),l(O)) = 0. (6.11)
1<2i+1-(k-1)

By the choice of hk we have Wi _(k_ 1) (P) < Wi+1(P), and since 0 is of full rank,
it follows that

ranki-(k-1),i+l (0) = rank i-(k- 1),i-(k-1) (0)
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which is in view of Lemma 6.1.6(c) equivalent to

Y' ai+1,1(0) + Y' ai-(k-1),1(0) = Eai-(k-1),1(;4
1<2i+1-(k-1) l>2i+2-(k-1) 1

E (ai+1,1(0) - ai-(k-l),l(V)) = 0.
1<2i+1-(k-1)
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Consequently, (6.11) and hence our claim are proved.

Theorem 6.1.7. Let P be a ranked poset and 0 an order-raising operator on P.
If Do,,, is injective, then there exist Wo pairwise disjoint maximal chains in P.

Proof. First note that WO is the smallest Whitney number in P since for all
0 < i < n, Vo,,, = Vi,,,V0,i and thus Do,i is injective, implying Wo < Wi. Using
the same arguments as in the proof (i) --> (ii) of Theorem 6.1.6, we see that it
is enough to prove that P has the n-Sperner property, and looking at the proof
(iii) - . (i) of that theorem, we see that we must prove the Sperner property of
P = P x C. But this follows also in the same way as in the aforementioned
proof. We have here k = n, hk = n, and for i := n - 1 we need our supposition
rank o,,,(V) = ranko,o(V).

The full rank property is preserved neither by direct product nor by rankwise
direct product (consider the Lefschetz operators in the posets of Figure 6.3). If

Y x
1

"I,\%/ X , /,\\. = ><
Figure 6.3

we have the additional condition that the posets are rank symmetric, then the full
rank property is preserved by these operations but such posets we study in detail
in the next section. In the case of rankwise direct product, a weaker condition is
sufficient.

Theorem 6.1.8. Let P1, P2 berankedposets with n := r(PI) = r(P2) and let
Ol, V2 be raising operators in Pl and P2, respectively. Moreover, let for all i < j,
Wi(Pl) < Wj(Pl) iff Wi(P2) < Wj(P2). Then the raising operator V1 x,. V2



226 Algebraic methods in Sperner theory

on Pl xr P2 has the full rank property if both V1 and V2 have the full rank
property.

Proof. Let, w.l.o.g., Wi(Pi xr P2) < Wj(PI X r P2), 0 < i < j < n. Since
Wk (PI xr P2) = Wk (PI) Wk (P2), k = i, j, by our condition Wi(PI) < Wj(PI)
and Wi (P2) < Wj (P2). Using Theorem 6.1.5 and the full rank property of V1 and
V2 we obtain

rank ij(Vi xr V2) = rank ij(V1)rank ij(V2)

= Wi (PI) Wi (P2) = Wi (P1 xr P2)

Example 6.1.1. The poset SQk,,, of subcubes of a cube has the full rank property,
and consequently SQk,n is strongly Sperner since it is a rankwise direct product of
"halved" posets S(k, k) and here the Lefschetz operator has the full rank property
by Theorem 6.1.2.

Let us finally study the full rank property with respect to quotients. We say that
a group G of automorphisms of the ranked poset P is rank preserving if r (p) =

(p)) for all p E P and cp E G. Note that by our definition of a rank function
not every automorphism group is rank preserving; see Figure 6.4. If G is rank

I

I

Figure 6.4

preserving we may define a rank function rP1G for the quotient PIG by

rP/G([p]) r(p), p E P

where [p] denotes the orbit containing p. The following theorem has its origin in
a work of Pouzet [384] who proved the Sperner property of the graph poser G
(see also Pouzet and Rosenberg [385]). Proofs were given by Harper [260] and
Stanley [440].

Theorem 6.1.9. Let G be a rank-preserving group of automorphisms of the ranked
poset P and suppose that the Lefschetz raising operator V L on P has the full rank
property. Then there exists an order-raising operator V in PIG with the full rank
property.
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Proof. The proof of the Weighted Quotient Theorem 4.5.5 mentioned that when-
ever [p] < PI G[q], the poset induced by {p* E P : p* E [p]} U {q* E P : q* E
[q]} is regular. We define for [p] < PIG[q],

c([P], [q]) := 1 {q* E [q] : p < q*}1

(by the regularity c([p], [q]) is independent of the representative p). Moreover,
we define the order-raising operator V by

oQP]) E c([p], [q])[q]
[q]:[q]>[p]

and we will show that 0 has the full rank property. Let us define linear mappings

f([PD P' and g([P]) p'.
I[Pll P'E[P] P'E[p]

Obviously, f and g are injective.
Claim. We have

(a) fV =VLf,
(b) gV*=AL9.

Proof of Claim. (a) We have for all [p] E PIG

f ([P]) = ru c([p], [q]) q,

[91 [9]>[P] I[gII q'E[q]

VLf([PD = 1 q'
11P11 p*E[P]q':q'>p*

In both cases we have linear combinations of elements q' with the property [q'] >
[p]. The coefficient of q' equals

1{q* E [q'] : p < q*}I for fv([p]),

and

I{p* E [p] : p* < q'}I for OLf([PD,
I[P]1

respectively. But these numbers are equal to each other by the regularity of the
poset induced by { p* E P : p* E [p]} U {q* E P : q* E [q']} (count the number
of pairs (p*, q*) with p* < q*, p* E [p], q* E [q'] in two different ways). So (a)
is proved. _

(b) As in (a) g0*([p]) and
OLg([_p])

are linear combinations of elements
with [q'] < [p]. The coefficient of q' equals in both cases I {p* E [p] : p* > q'} 1,
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so (b) is proved.

From our claim it follows for k > 0 that

fvk = OLf and gV*k = ALg.

Let 0 < i < j < r(P). Then we have in particular

fV, j = VLIJ f and gV = ALJ,g.

If W;(P) < Wj(P), then OL;j is injective by supposition and Lemma 6.1.2(a).
Since also f isinjective, 0j j must be injective, too - that is, of full rank. If
W, > Wj then L.Lj; is injective by supposition and Lemma 6.1.1(b) and Lemma
6.1.2(b). Since g is injective, V must be injective; that is, by Lemma 6.1.2(b),

Vi j is of full rank.

Applications of this theorem will be presented in the next section. We conclude
this section with a proposition we will need in Section 6.4.

Proposition 6.1.1. Let P be a ranked poset for which there exists a group G of
automorphisms of P whose orbits are the levels of P, and let 0 < i < j < r(P).
Ifrank ;j(VL) < Wj, then p c OL;j (N;) for all p E Nj.

Proof. Each element g of G defines a linear mapping yg : P --- P by yg(p)
g(p) for all p E P. We have

Yg'L = VLYgfor all gE G

since for any p E P

Yg'L(P) g(q) _ q = OLYg(p)
q:q>p q:q>g(p)

Consequently,

YgVL;j (0 = VL;;Yg(O for all lp E Ni. (6.12)

Assume that for some p E Nj there is a tp E N; such that VL, (rp) = p. Then
for each q E Nj, there exists by our supposition an element g of G such that
q = g(p). From (6.12) we obtain q = yg(p) = YgVL,; (cp); that is, q E OL;j (N1).

Thus Nj = VL11(N;), which contradicts Wj > rank; j(OL).

This proposition can be applied to B,, and L,, (q) (take the automorphisms gen-
erated by permutations of the elements (resp. by bijective linear transformations)).
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6.2. Peck posets and the commutation relation
In the preceding section we learned that in order to prove the strong Sperner prop-
erty it is enough to find an order-raising (resp. order-lowering) operator with the
full rank property. A first approach is given in Theorem 6.1.9. In this section we
mainly restrict ourselves to rank-symmetric posets, for which it is easier to find
such operators with the full rank property. In honor of the "dummy" mathemati-
cian G.W. Peck and his best friends Graham, West, Purdy, Erd6s, Chung, and
Kleitman, a ranked poset P is called a Peck poset if it is rank symmetric, rank
unimodal, and if it has the strong Sperner property. One finds equivalent condi-
tions in Theorem 6.1.6 where one has always to add rank symmetry. In particular,
P is Peck if it is rank symmetric and there exists an order-raising operator 0
with the full rank property. If, in particular, the Lefschetz raising operator has
the full rank property, then we speak (in the case of rank symmetry) of a unitary
Peck poset.

Lemma 6.2.1. Let P be a ranked poset of rank n. It is Peck iff there exists an order-
raising operator 0 such that for the Jordan function there holds J(V, P; x, y) =
F(P; x)yn where F(P; x) is the rank-generating function of P. The poset P is
unitary Peck if'J(OL, P; x, y) = F(P; x)yn.

Proof. Let P be Peck. Then we find a V with the full rank property. We have
sij =0ifi+j 0n,i < j. We verify this fori+j < n, the case i + j > n is
analogous. By Theorem 6.1.3 and Lemma 6.1.6, and in view of the supposition,

0 > Wi - Wj+i = ranki,i - ranki,j+i = T suv>_ sij
u<i,i<v<j

0;

that is, sij = 0. Consequently (using Lemma 6.1.5(b)),

min(j,n-j)
rank jj = suv = si,n-i = si,n-i,

u<j,v?j i<j,n-i>j i=0

and further

X, Y) _ E si,n-i (xi + ... + xn-i)Yn
0« <"

= /min{',n-j)
E 1/`

\ = n

//11L-+ si,n_; xjyn rank j j
j=0 i=0 j=0

E WixJ/ Yn F(P;
x)yn.
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Let, conversely, J(V, P; x, y) = F(P; x)y' for some order-raising operator V.

Then
10 ifl # n,

akl(V) -
Wk if l = n.

From Lemma 6.1.5(b) we derive 0 < ao,n = an,n < al,n = an-1,n < ;
that is, Wo = Wn < W1 = Wn_1 < , and thus P is rank symmetric and
rank uriimodal. By Lemma 6.1.6(c) we have for 0 < i < j < n, in the case
i + j < n, rank; j = ain = W, = min{W;,_Wj}, and in the case i + j > n,
rank; j = ajn = W j = min{ W, , W3}; that is, Vi j has full rank. The unitary case
follows easily from the general case.

Now we may derive quickly the following product theorem which was first
proved by Canfield [95], and then in different ways by Proctor, Saks, and Sturtevant
[391], by Saks [406] in a more general version, and by Proctor [388].

Theorem 6.2.1 (Peck Product Theorem). If P1 and P2 are (unitary) Peckposets,
then P1 x P2 is a (unitary) Peck poset, too.

Proof. Let D,n be the corresponding order-raising operator of full rank on Pm .
Applying Lemma 6.2.1 and Theorem 6.1.4, we obtain for the order-raising operator
01x72+I1xo2 on P1xP2:

J(Ol X 72 + 1 x 02; 6 X P2; X, Y) = J(V1, P1; X, Y)J(02, P2; X, Y)

= F(Pt; x)yr(P')F(P2; x)Yr(P2)

= F(P1 x p2; x) yr(P, x P2);

that is, by Lemma 6.2.1, P1 x P2 is (unitary) Peck.

Example 6.2.1. Since chains are clearly unitary Peck, we conclude from Theorem
6.2.1 that Bn and more generally S(kl, ..., k,) are unitary Peck.

The full rank of the Lefschetz (and, equivalently, incidence) matrices of Bn was
discovered by Gottlieb [226] and, independently, by Kantor [284], who considered
Ln(q) as well.

A consequence of Theorem 6.1.9 is the following quotient theorem:

Theorem 6.Z2 (Peck Quotient Theorem). Let P be a unitary Peck poset and G
a rank-preserving group of automorphisms of P. Then the quotient PIG is a Peck
poset.

Proof. The proof of Theorem 6.1.9 already presented an order-raising operator V
in P/ G with the full rank property. It remains to show that PIG is rank symmetric.
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Since P is Peck, W, (P) = (P), 0 < i_< L. In the-end of the proof of
Theorem 6.1.9 we found (with j := n - i) that 0;,,,_; and V j, i are injective; that

is, W,(P/G) < and W;(P/G), implying equality.

Let us mention that the quotient of a Peck poset is not necessarily a Peck poset
and the quotient of a unitary Peck poset is not necessarily a unitary Peck poset.
Examples are contributed by Stanley and can be found in [260].

Now we have the promised applications:

Example 6.2.2. Let P = S(m, ... , m). To each permutation 7r of {1, . . . , n}

there corresponds an automorphism n of P defined by n(al,... , an) := (a,,(»,
..., Let G be the group of all such automorphisms of P. It is not difficult
to see that P/G = L(m, n). Since chain products are unitary Peck, L(m, n) is a
Peck poset.

Example 6.2.3. Let V be a set of n elements and P be the powerset of the set of all
two-element subsets of V. Then an element of P can be considered as a (labeled)
simple graph with vertex set V. We order P by inclusion. Then P = B(Z). To
every permutation 7r of V there corresponds a permutation n of Ni (P) defined
by n({x, y}) := {jr(x), ir(y)}, which generates an automorphism of P. Then
each orbit can be considered as a simple graph on n unlabeled vertices; that is,
P/ G = G,,, the graph poset. Since B(Z) is unitary Peck, G is Peck.

In a straightforward way we obtain from Theorem 6.1.5 a further product theorem.

Theorem 6.2.3 (Peck Rankwise Product Theorem). If P1 and P2 are (unitary)
Peck posets, then Pl x,. P2 is a (unitary) Peck poset, too.

Example 6.2.4. The poset of square submatrices of a square matrix SMk,,, is
unitary Peck.

Though the poset of subsquares of a square SQk,,, is not Peck (it is not rank sym-
metric, because in the product representation the factors are not rank symmetric)
we mention here that these posets are rank unimodal and strongly Sperner, which
can be easily concluded from Theorem 6.1.2, Theorem 6.1.5, and Theorem 6.1.6.

From the definition of a Peck poset, Lemma 5.1.1 and Theorem 5.1.4, it follows
that an sc-order is Peck. Now we introduce a notion that generalizes semi-sc-orders.
We say that a ranked poset P of rank n is semi-Peck if there exists an order-raising
operator V such that rank; (V) = W, for all 0 < i < j < n with i + j < n (again
we add the word unitary if the preceding holds for VL).

Proposition 6.2.1. If P is a semi-sc-order, then it is semi-Peck.
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Proof. Let p E P and let C be the semisymmetric chain containing p. We set
V(p) := 0 if p is the maximal element of C and otherwise define V(p) := q,
where q is the element of C that covers p. Then it is easy to see that rank ij = W,
fori+j <n.

Theorem 5.4.1 remains valid also for this more general case.

Proposition 6.2.2. If P is semi-Peck, then WO < Wl < ... < Wral, and the
[0, [ 2 ] ]-rank selected subposet Q has the strong Sperner property.

Proof. For O < i < [21, we have W, = dim Di,i+l (Vi) < dim N,+l = Wi+l
The strong Sperner property now follows from Theorem 6.1.1.

Lemma 6.2.2. Let P be a ranked poset of rank n. It is semi-Peck if there is an
order-raising operator V such that y' divides J(0, P; x, y).

Proof. We have Si) = 0 if i + j < n, since by Theorem 6.1.3(a) and Lem-
ma 6.1.6(b), 0 = rankii - ranki,j+l = snv > Sid > 0.

In view of Theorem 6.1.4 and Lemma 6.2.2 there follows immediately:

Theorem 6.2.4. If Pi and P2 are (unitary) semi-Peck posets, then P1 x P2 is a
(unitary) semi-Peck poset, too.

From Theorem 6.1.5 we conclude that an analogous result holds for the rankwise
direct product, too.

Example 6.2.5. The posets Fk as well as the duals of the posets Q,,, Int(S(ki,
.... kn)), M(kl, ... , kn), SQk,n are semi-Peck.

Now return to the symmetric case; that is, to Peck posets. What can we do if there
is given a poset for which there does not exist a product or quotient representation
as above? We may try to work with comutation relations as follows. Let P be
aranked poset of rank n and let 0 and A- be a raising and lowering operator on
P, respectively. We say that the pair (V, 0) has the commutation property, briefly
property C (see [161]), if there are real numbers µo, . . . , µn such that

(00 - 00)(p) = µr (p) p for all p E P.

If in particular (OL, 0) has property C and if P has a unique minimal element,
then P is called by Stanley [442] µ-differential. If in particular µi = 2i - n, i =
0, ... , n, then we say that (V, i) has the Lie-property.
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Example 6.2.6. (VL, AL) has the Lie-property if P is the Boolean lattice Bn,
and it has property C with ir,i = (Dq - (n `)q if P is the linear lattice Ln (q).
We verify this for the latter case: Take U E Ni (Ln (q)) - that is, dim U = i -
and write VLAL(U) and ALVL(U) as a linear combination of the basis vectors
V, V E N(L(q)). Then the coefficient of V inVLAL(U) (resp. ALVL(U))isin
both cases 0 if dim V fl U < i - 1, it is 1 if dim V fl 1U = i(- 1, and (i)q (resp.

(n I )q) if V = U. Hence (VLAL - ALVL)(U) = 0119 - \n t

Example 6.2.7. Let C = (po < . . . < pn) be a chain and let (pi) i(n -
i + 1)pi-i, i = 1..... n, and A(po) :=0. Then (VL, A) has for P C the
Lie property.

After the following preparations we will see that property C of (V, A) together
with some additional conditions implies the full rank property of V (and A).

Lemma 6.2.3. Let f, g, h be natural numbers. If in P the pair (V, 0) has property
C with the numbers I.t,p, ... , An, then there exists a linear operator Q f g : P - P
such that f o r all c p E Nh, h = 0, ... , n,

4fV (O = WfgA+afg,hVg-f)(0 (6.13)

where

af,g,h =

0

1

7
1 1i 1 (Foi

-I-th+j

ifg>n-horf>g,
ifg<n -hand f =0,

if0< f <g<n-h.

Proof. First, recall that we defined g-f to be the identity operator if g < f. The
cases f = 0 or g = 0 are trivial, thus let f # 0 and g # 0. Since [p : p E P} is

a basis of P, it is sufficient to consider the special elements rp = p where p E P.
We define

nf,g(q) := 0 if r(q) > n - g.

Then (6.13) is satisfied for all p E P with r(p) > n - g since then V 9(p) = 0.
Thus it remains to define c2 fg(q) for r(q) < n - g and to verify (6.13) for all p
with r(p) < n - g.

We proceed by induction on f. Let f = 1. We proceed by induction on g. If
g = 1, we define

52ij (q):=V(q)ifr(q) <n-g=n-1.
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Then indeed, for r(p) < n - g, 2K 0(p) = 00(p) - Ah p by property C. Now
consider the step g -> g + 1 (g > 1). We set

S21,g+1(4) := OQi,g(4) if r(q) < n - g - 1.

Using property C and the induction hypothesis, we obtain for h := r (p) < n - g-1

Do(og(p)) = 00(Og(p)) - 1-ih+gog(p)

= V 21,gi(p) + l2h+gog(p)

= 01,9+1 005) +a1,g+1,hVg(p)

Finally consider the step f -+ f + 1 (f > 1). We set

S2f+1,g(q) := OfS21,g(q) +a1,g,hS2f,g-1 (q) if h < n - g.

We have (using the assertion for f = 1) for h := r(p) < n - g

Of+l pg(p) = Zf (OV (p)) = Of S21,gi(p) + Ofal,g,h;0-1()

The induction hypothesis yields further

Of al,g,h0g-l (p) = a1,g,h (S2fg-10(p) + afg-t hOg-l-f (p))

Consequently,

V+10g(p) = SZf+l,gI(p) +a1,g,hafg-l,hVg-l-f(p)

= Qf+l,g1(,)+af+l,g,h0g-(f+1)(p

We say that the sequence (µo, . . . , is regular if for 0 < l < k < n

Al +121+1 =0implies l+k=n,

that is, if every consecutive subsequence that is not symmetric with respect to 2
has nonzero sum.

Example 6.2.8. The sequences µi = 2i - n (appearing in the Lie property) and
µi = (1)q - (" i `)q (appearing in Example 6.2.6) are regular.

Lemma 6.2.4. Let af,g,h be defined as in Lemma 6.2.3 and suppose that (/20, ... ,
is regular. Then, for 0 < f < g < n - 2h, af,g,h # 0.

Proof. In the product representation for aj,g,h in Lemma 6.2.3, every factor is
nonzero by regularity.
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Similarly to the previous notations we write kert,t_ 1(ii) for the kernel of Ot,t-1
(i.e., of AI Nr ). Let

E1,I Ot,t(kert,t-1(O)), i > t. (6.14)

Obviously, Ei,t C Ni for all i > t.

Lemma 6.2.5. Suppose that (0, t,) has in P property C with the sequence
(lto, ..., Let i, j, t be natural numbers with i > t and let aj,g,h be defined
as in Lemma 6.2.3.

(a) All nonzero elements of Ei,t are eigenvectors of Aj Vj I N to the eigenvalue

a'j, j+i-t,t-

(b) All nonzero elements of Ei,t are eigenvectors of;MKijj to the eigenvalue

aj,i-t,t
(c) If, in addition, V = A* then Ei,t, is orthogonal to E1,t2 for all 0 < t1 < t2 < i.

Proof. For (a) and (b), let cp E Ei,t, that is, cp = Di_t (cp'), where cp' E Nt , 0 ((p') _
0. By Lemma 6.2.3,

(a) OJOf(gp) = &jVj+i-t((p') = a,Gj+t-t,roi-t((P') = aj,j+t-ta(co),
(b) OJOJ(tP) = VJEJ0i-t(tP) _ VJaj,i-t,tOi-t-J((P') aj,i-taco.
(c) Let cpi E E1, t,, that is, cp E Di-t!(coi) where tpi E Nt,, O(cpl) = 0, I = 1, 2.

We have

41, tp2) = (0`-t' (w1), o` t2((P2)) = (cPi ` t`O`-`2((P2)) = (cPi, 0) = 0

since i - t1 > i - t2 and O(cp'2) = 0 (use again Lemma 6.2.3).

Theorem 6.2.5. Under the supposition that (V, O) has in P property C with the
regular sequence (It.o, ... , we have

(a) Ni = E1,o ® ... ® Ei,, (direct sum) for all 0 < i < 2

(b) & VJ I is injective for all 0 < i < 2 and 0 < j < n - 2i.

Proof. In (b) we suppose j > 0 since the case j = 0 is trivial. We proceed by
induction on i_= 0, ... , L 2 J and prove (a) and (b) simultaneously. _Let i = 0.
Then Eo,o = No, and by Lemma 6.2.5(a), Eo,o is the eigenspace of AjVf INo to
the eigenvalue aj,j,o, which is nonzero for all 0 < j < n by Lemma 6.2.4 (resp.
(in the case j = 0) by definition). Thus AJVJN0 is injective for all 0 < j < n.
Now consider the step < i -* i (i < 2). From (6.5) (replace 0 by 0) we may
derive

dimkert,t_1(i) = Wt -rankt,t_t(0) > Wt - Wt- 1, t = 0, ...,n.

Thus

dim Ei,i = dim keri,i_ i (0) > Wi - WJ_1. (6.15)
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By the induction hypothesis, A"-2tVn-2tIN is injective for all 0 < t < i. Since

t < i < 2 there holds i - t < n - 2t; thus also is injective. By the

definition of E1,t (see (6.14)) we have

dim Ei,t = dim kert,t_1(A) > Wt - Wt-1, 0 < t < i. (6.16)

From (6.15) and (6.16) we derive

i

dim E1,t > Wi = dim Ni.
t=o

Thus for (a) it is sufficient to prove that the sum Ei,o + + E1,i is direct (note

that Ei,o + + Ei,1 c N1). Let cot E E1,t, t = 0, ..., i. We have to show that

tpo + + (pi = 0 implies (pt = 0 for every t = 0, ... , i. Let (pt = Di-`(cpt),

where c p i E Kt, A(tp') = 0, t = 0, ... , i. Hence tpo + + Vi = 0 is equivalent
with

0,

o + ... + Do(tpi-1)) + toj = 0.

Applying 0 to both sides we obtain

00 (cp'o' + ... + (pl'
1) = 0,

tpt = pi -r(cpt) E E1_ 1,t, 0 < t < i - 1. By the induction hypothesiswhere
AVON. , is injective; consequently,

coo
{ ...+toi 1 =01

and since by the induction hypothesis Ni_1 = Ei_l,o® ... ® E1_1,1_1, it follows
that tot' = 0 implying (since cpt = V (W' )) that tot = 0, t = 0, ... , i - 1. But then
clearly also coi = 0.

For (b), it is sufficient to look at the eigenvalues aj,j+i_t,t of A& VJ (see
Lemma 6.2.5(a) and use the proved part (a)). In our case 0 < i < 2 and 0 < j <
n - 2i, hence by Lemma 6.2.4 (note that j < j + i - t < n - 2t) our eigenvalues
are nonzero, implying the injectivity of A J V J i .

The following theorem is mainly due to Proctor [387], who proved the equiva-
lence (i) H (ii).

Theorem 6.2.6. The following conditions are equivalent for a ranked poset P of
rank n.

(i) Pisa Peck poset,
(ii) there exist an order-raising operator V and a lowering operator A such that

(0, A) has the Lie property,
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(iii) there exist an order-raising operator V and a lowering operator A such that

(V, 0) has property C with a regular sequence (µo, , An).

Proof. (i) -* (ii). Let be the order-raising operator on P with the full rank
property, which exists by the remarks in the beginning of this section. From The-

orem 6.1.3 and Lemma 6.2.1 it follows that we can write P in the form

P = (D0<-<"2
®h=1 V1,

where each Vi,h is generated by a ranked Jordan string from N, to Nn_,. We
define the lowering operator on the elements of these strings, that is, on the
corresponding ranked Jordan basis. To do so, consider any of the strings S =
{b, V (b), ..., On-2i (b)}. We put (similarly to Example 6.2.7)

Z(Ok(b)) := k(n - 2i - k + 1)Vk-1(b), k = 0, ... , n - 2i.

Then it is easy to verify the Lie-property of (V, 0).
(ii) - (iii). This is clear since the sequence it, = 2i - n is a special regular

sequence (see Example 6.2.8).
(iii) -+ (i). By Theorem 6.2.5, in particular 01 jNr is injective for all 0 <

i < Z, 0 < j < n - 2i. For the dual P* of the poset P, the operators V
(resp. 0) are lowering (resp. raising). It is easy to see that the pair (O, V) has
in P* property C with the regular sequence (-An, ... , -µo), hence again by
Theorem 6.2.5, O'INn is injective for all 0 < i < 20 < j < n - 2i. Taking
j := n - 2i in both injections, we obtain Wi < W,,_i (resp. Wn_i < Wi); that is,
Wi = Wn _i, 0 < i _<

i
; thus P is rank symmetric. It remains to prove that V has

the full rank property. Consider Vii = OJ'I N,, 0 < i < j < n. If i + j < n,
then Vii is injective by the preceding remarks; that is, it has full rank by _Lemma
6.1.2(a). If i + j > n, we look again at P*. We know already that (0*, 0*) has
in P* property C with (-µn, ... , -µo). Theorem 6.2.5 yields the injectivity of
(V*)J-i INV and by Lemma 6.1.2(b), Vii has full rank.

Remark 6.2.1. P is unitary Peck ¶conditions (ii) (resp. (iii)) in Theorem 6.2.6
hold, with V = OL.

Example 6.2.9. In light of Example 6.2.6 and Example 6.2.8 we conclude im-
mediately that the linear lattice Ln(q) (and again that the Boolean lattice Bn)
are unitary Peck. From the Peck Product Theorem 6.2.1 it follows, moreover that
modular geometric lattices are unitary Peck.

One has still much freedom in constructing (V, o) satisfying conditions (ii) (resp.
(iii)) of Theorem 6.2.6. But one has to solve a nonlinear (quadratic) system of
equations with a very large number of variables (the unknown coefficients in the
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corresponding linear combinations). So let us restrict ourselves to the special case
when V = OL and when 0 is an order-lowering operator. Moreover, we will
consider only modular lattices though the results can be given in a more general
form (see Proctor [387]). Note that whenever p and q are two elements that cover
(resp. which are covered by) a third element then necessarily this third element is
p A q (resp. p v q), and r(p) = r(q) = r(p A q) + 1 (resp. r(p v q) - 1). Since
r (p) + r (q) = r (p A q) + r (pvq ), p and q are covered by (resp. cover) a unique
fourth element, namely p v q (resp. p A q).

We say that the modular lattice P of rank n is edge-labelable if there is a
function f : E(P) -+ R such that

f(p,pvq)=f(pAq,q) forallp,gEPwithp,q<pvq (6.17)

and

f (e) - f (e) = 2r(p) - n for all p E P. (6.18)

e+=p e -=p

Corollary6.2.1. Every edge-labelable modular lattice is unitary Peck.

Proof. For p E P, we define

A(P) .f(gp)W.
q:q<p

It is easy to check that (VL, 0) has the Lie-property.

Before giving examples of edge-labelable modular lattices, let us study the
connection to the variance problem.

Theorem 6.2.7. Every Peck poset (with weight w - 1) is rank compressed.

Proof. A Peck poset P of rank n is rank symmetric and has property T (see
Theorem 6.1.6). Hence there are W, pairwise disjoint saturated chains from Ni to

(i < ?) and consequently there is a bijection cp : P -+ P such that

r(p) + r(cp(p)) =n and p < V(p) if r(p) < 2

(map a bottom element of such a chain onto its top element and conversely, the
elements of Nn one leaves invariant). We will verify condition (iii) of Theo-
rem 4.4.1. Note that P equals the active poset Pr. Let F be any filter in P and
define F' :_ (p E F : r(p) <

z
}. Obviously, cp(F') g F and F' n cp(F') = 0.
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Hence,

Ijr(F) = 1 > r(P) = 1 (E (r (p) + r(ct (P))) + E r(p)
I FI pEF 1 1 7 1 pEF' pEF-(F'U(p(F'))

FI(IF'In+(IFI-2IF'U2)=2=µr,

and the proof is complete.

A Peck poset with weight function w - 2 is of course also rank compressed;
hence by Theorem 4.4.1(i) H (v) there is a representation flow on (P, 2) relative
to r -that is, a function f : E(P) -> R+ such that

f(e) - f(e)=2(r(p)-2)=2r(p)-n forallpEP.
e+=P e -=p

In the definition of an edge-labelable modular lattice we have exactly the same
equation, but we did not require that f (e) > 0 for all e E E. It is interesting that
conditions (6.17) and (6.18) already imply this nonnegativity, which means that in
edge-labelable modular lattices, we are working with representation flows:

Theorem 6.2.8. Let P be a modular lattice and f a function from E(P) into R
satisfying (6.17) and (6.18). Then f is nonnegative.

Proof. Let e* E E(P) be any fixed arc with a := f(e*) # 0 and let A := {e E
E(P) : f(e) = a}. Let I be the set of those elements of P that can be reached
from a minimal element of P on a saturated chain not using arcs from A, and let
F:=P-I.

Claim 1. I is an ideal, that is, F is a filter.
Proof of Claim 1. Assume the contrary. Then there exist p, q E P with the

property p < q, p 0 I, q E I. We may assume that q has minimum rank with
respect to this property. Let v be the predecessor of q on a chain from a minimal
element of P to q, not using arcs from A. We have v < q and f(vq) a. Clearly,
v E I, hence v # p. In view of r(v) < r(q), p A v < v, and the choice of q we
have p A V E I. But because of (6.17), f (p A v, p) = f (V, p v v) = f(vq) ¢ a,
consequently also p E I, a contradiction.

Let B := (e E E : e- E I, e+ E F}. Obviously, B C A, that is, for all e E B,
f(e) = a.

Claim 2. B # 0.
Proof of Claim 2. From all arcs of A take an arc pq that has an endpoint q of

minimum rank. Then clearly p E I. Moreover, q E F; that is, pq E B: Assume
the contrary. Then there must be some v < q with f(vq) 36 a, that is, v 0 p. But
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then by (6.17), f(pq) = f(p, pvv) = f(pAV, v) = a implying (pAv, v) E A,
which is a contradiction to the choice of pq (note that r(v) < r(q)).

To conclude the proof of the theorem, consider again the network N = (VN,
EN, s, t) from the proof (iii) H (v) in Theorem 4.4.1, but without capacities
(VN := P U {s, t}, EN := E U {sp : p E P} U {pt : p E P}). We define
fN:EN ,Rby

f (e) if e E E,

fN(e) := max{O, n - 2r(p)} if e = sp, pEP,

max{O, 2r(p) - n} if e = pt, p E P.

Then fN satisfies, because of (6.18), the conservation of flow (4.1). Consider the
cut (S, T) in N where S := I U {s}, T := F U {t}. By Claim 1, fN(T, S) = 0. By
Remark 4.1.1 we have

v(fN) = T max{0, 2r(p) - n} = fN(S, T) - fN(T, S)
pEP

= fN({s}, F) + fN(I, F) + fN(1, {t})

= max{O, n - 2r(p)} +al BI + rmax{0, 2r(p) - n},
pEF pEl

which implies

Tmax{0,2r(p) - n} _ max{0,n -2r(p)}+aIBI,
pEF pEF

1: 2r(p)-n=aIBI,
pE F

JBI
.i-ir(F) - /2r = a21F1

Note that by Corollary 6.2.1 our poset P is Peck (we already replaced z by µr);
hence by Theorem 6.2.7 the LHS is nonnegative and from Claim 2 it follows that
a>0.

In [389] Proctor proved this result for distributive lattices. We generalized it
here to modular lattices.

Using the same construction of a representation flow in a product of two posets
as introduced in the proof of Theorem 4.6.6, one obtains easily:

Theorem 6.2.9. If P and Q are edge-labelable modular lattices, then P x Q is
an edge-labelable modular lattice, too.

Let us look now at some examples.
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Theorem 6.2.10. The posets L (m, n) and M(n) are edge-labelable modular lat-
tices.

Proof. Observe at first that, if b = (b 1, . . . , b,,) covers a = (a 1, ... , an) in either
L (m, n) or M(n), then there is some index i such that ai = b; - 1 and aj = bj for
all j # i. Put now for L (m, n)

f(a,b) := (m+n-a;-i)(a;+i)
and for M(n)

(n+1)
2

if a; = 0,

n (n + 1) - a; (a; + 1) otherwise.

We verify (6.17) and (6.18) only for M(n) (similar steps work for L (m, n), but we
know already from Example 6.2.2 that L(m, n) is Peck). Let a, b < c := a v b.
We pass from c to a by decreasing some component ci by 1 (i.e., a; = c; - 1) and
to b by decreasing some other component cj (i j) by 1. Moreover, we pass from
b to d := a A b by decreasing the component bi = c; by 1 (i.e., d; = c; - 1 = a;).
Consequently,

n(n+1) if 0
f(a, c) = f(d, b) =

l

2

n(n + 1) - a;(a; + 1)

a; = ,

otherwise;

thus (6.17) is satisfied. To verify (6.18) consider any a = (al, ... , an) E Nk
where 0 = al = . . . = ah < ah+1 < < an < n, h E {0, ... , n} and define
ao := 0, an+1 := n + 1. We have

f(e)=
e+=a h+1<i<n:

a;_1<ai-1

f(e)
e -=a h+1<i<n:

ai+1 <ai+1

.n(n+1)-(a;-1)a; +
n(n

2

+ 1) tfah+l=1
/

,

n(n+l)-ai(ai+1) +n(n2 1) ifah+I > 1 I

Now it is not difficult to see that in Ee+=a f(e) - >e=a f(e) we may drop
the extra conditions on the summation (any new terms appearing will cancel each
other), and we obtain

n(n + 1)f(e) - f(e) = -(a; - 1)a; +ai(a; + 1) -
2e+=a a-=a h+1<-i<n

n n(n + 1)2a; - = 2r(a) - r(M(n)).
i=h+1 2
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There is a nice application of the Peck property of M(n) to a number-theoretic
problem. Let R = {rl , ... , r,) be a set of n distinct positive real numbers and let
a be any real number. Moreover, let m (R, a) denote the number of subsets of R
adding up to a. Thus

m(R, a) := I Xc[n]: r1=a}
i EX JJ

In 1963 Erd6s and Moser [166] posed the problem of maximizing m(R, a) (in a
slightly different form). First observe that there is a natural bijection cp : 2M -+
M(n) given by ip(X) := (0, ... , 0, il, ..., it) for any set X = {il, ..., ill E 21"l

with il <... <i1.

Lemma 6.2.6 (Lindstrom [344]). If I R 1 = n, then for all a E R the set {cp(X)
X c [n] and >jEX ri = a} is an antichain in M(n).

Proof. Let, w.l.o.g., rl < . . < r". Assume, in the contrary, that there are
X={i1,...,ii} Y={jl,...,jm}E2[n],i1 <...<i1 jl <...<f j, suc
that

m

Erik=ErJk=a,
k=1 k=1

but cp(X) <M(") <p(Y). Then it is easy to see that l < m and it < .lm, It-1 <
jm-1, . . . , ii < jm-1+1 If there was some strict inequality under these inequalities,
then we would have a = 1:k=1 rik < >k=1 rjm-1+k < Ek 1 rjk = a with at least
one strict inequality, a contradiction. Consequently, l = in and it = j1, , i 1 =
jl, that is, W(X) = cp(Y), implying X = Y, a contradiction.

Theorem 6.2.11. If j R I = n, then fo[n(n+r all a E I18,I

m(R a) < m I [n]
41) Il

d(M(n))

Proof. From Lemma 6.2.6 we derive directly

m(R, a) < d(M(n)).

But M(n) is Peck and of rank "("Z 1) .Consequently,

d(M(n)) = Wln(n+1)/4J(M(n)) =

= m [n]' n(nL 4

and the proof is complete.

In(n+1)I
iEX 4
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This and the next result are due to Stanley [439], who studied M(n) from
another point of view, and partly to Harper, who noticed that the Peck property of
M(n) together with Lemma 6.2.6 solves the modification of the Erdo"s-Moser
problem. The original Erdo"s-Moser problem concerns integer sums including
negative numbers. Let S = {sl, ..., sn } be a set of n distinct real numbers and a
any real number. Let

em (S, a) :_ {xc [ n]:s,=a}
iEX JJJJJ

Theorem 6.2.12. For all a E R,

em(S,a) <em({-n,-n+1,...,0,...,n-1,n},0) if ISI=2n+1,

em(S,a) < em((-n+1,...,0,...,n-1,n), [21) if ISI=2n.

Proof. Let us first suppose that 0 0 S. Moreover, let

S1 < < Sv < 0 < Sv+1 < < Sn.

A subset of S is uniquely characterized by a pair (X1, X2) with X1 C [v], X2 C
{v + 1, . . . , n} and, as previously, by a pair (a1, a2) with al E M(v), a2 E
M(n - v). If we have another subset of S, characterized by (Y1, Y2) (resp. (b 1, b2))
and having the same sum of the elements, then one can check similarly to the proof
of Lemma 6.2.6 that we cannot have a 1 >,y(v) hi and a2 <M(v) b2. Consequently,
to a family of subsets of S that all have element sum a there corresponds an
antichain in M(v)* x M(n - v). Since with M(v) its dual M(v)* (which is by the
way isomorphic to M(v)) is also Peck, we have by Theorem 6.2.1,

em (S, a) < d (M(v) * x M(n - v)) = hn (v),

where

hn (v) := WL((v+1)v+(n-v+1)(n-v))/4J (M(v)* x M(n - v)).

Now consider the maximum of hn (v). Without loss of generality, we may assume
that v < n - v, that is, v < [2J, and we will show that the maximum of hn(v)
is attained at v = [2 J. Otherwise we would have some v < [2 J with hn (v) >
hn(v + 1). It is easy to see that the rank-generating function of M(n) is given by

F(M(n); x) = (1 +x)(1 +x2) . . . (1 +xn),

and consequently,

F(M(v)* x M(n - v); x) = (1 +x) ... (1 +x°)(1 +x) ... (1 +xn-v)



244 Algebraic methods in Sperner theory

Let

p(x) := F(M(v)* x M(n - v - 1); x) = 00 + fix + + fdxd

with d (v+1)v+(n2v)(n-v-1) By rank symmetry and rank unimodality,

00 = IBd Ill = fid-l , and hn(v) (resp. hn(v + 1)) is the largest (i.e.,
middle) coefficient in p(x)(1 +x"-v) (resp. p(x)(1 +xv+1)). We put ft := 0 if
i V {0,...,d}. We have

hn (v) = IBL(d+n-v)/2J + fL(d+n-v)/2J-(n-v)

fL(d+v+l)/2J + fL(d+v+1)/2J-(v+l) = hn (v + 1)

since

fL(d+n-v)/2J _ fL(d+v+1)/21

in view of d+2-v d+v+1 > 2 and fL(d+n-v)/2J-(n-v) fL(d+v+l)/2J-(v+l)

because of d+n-v-2(n-v) = d+v-n < d-v-1 = d+v+1-2(v+l) <
t 2 2 2 - 2' a contradic-

tion. Consequently, indeed hn 021) = max{hn (v) : 0 < v < L 2 J }.
Thus under the supposition 0 V S, for I SI = 2n, em (S, a) < h2n (n) _

em({-n, -n + 1, ... , -1, 1, ... , n}, 0) (note that the RHS counts the number
of pairs (al, a2) E M(n) x M(n) with -r(al) + r(at) = 0; that is, (n(n2 1) -
r(al)) + r(at) = "(nZ l)), and for ISO = 2n + 1, em(S, a) < h2n+1(n) _
em({-n, ... , -1, 1..... n + 1}, L11 J) (the RHS counts the number of pairs
(al, a2) E M(n) x M(n + 1) with -r(al) + r(at) = L'12-11; thus, (n(nz l) -
r(al)) +r(a2) = LZ(n("2 l) + ("+1z(n+2))J)

Finally we allow 0 to be an element of S. Clearly for S = S' U {0}, 0 V S',
em (S, a) = 2em (S', a) (we can take the subsets with and without zero). For
the sake of brevity, we consider only the case I SI = 2n + 1. From the pre-
ceding we know that the best we can achieve when 0 is included is 2h2n(n) =
em ({-n, ... , -1, 0, 1, ... , n}, 0) and, without including 0, the optimum is
h2n+1(n) = em((-n, ... , -1, 1, ... , n + 11, PIP]). But 2h2n (n) is twice the
largest (i.e., middle) coefficient in (1 + x) . . . (1 + x") (1 + x) . . . (1 + X"), which
is not less than the largest coefficient h2n+1 (n) in (1 + x) . . . (1 + x") (1 + x)
(1 + xn) (1 + x"+1) (which is the sum of two coefficients from the preceding
polynomial). Thus the result follows.

Let T(P) be the poset of all ideals of P ordered by inclusion. It is well known
(cf. Aigner [21, p. 33]) that 1(P) is a distributive lattice. Moreover, let 1k(P) :=
J( (1(P)) ...) (k-times). In Example 1.3.13 we already mentioned that L (m, n)
is isomorphic to the poset of all ideals of the product of two chains (with m
(resp. n) elements), ordered by inclusion, that is, L(m, n) = J(S(m - 1, n - 1))
(recall the isomorphism: An ideal in S(m - 1, n - 1) is uniquely characterized
by the number of elements with second coordinate i, 0 < i < n - 1; if we
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(4,3)

( ) (0,2,4,4)

(0,0)

S(4,3)

Figure 6.5

denote this number by we have 0 < al < ... _< a < m). Figure 6.5
illustrates the isomorphism for in = 5, n = 4. Moreover, M(n) is isomorphic to
32(S(n - 2, 1)) - 3(L(n - 1, 2)) (note that an ideal in L(n - 1, 2) is uniquely
characterized by the number of elements with first coordinate i, 0 < i < n -1. If we
denote this number by an_; we have 0 < at < < a < n with strict inequality
in a, < a;+i if a, # 0; for an illustration see Figure 6.6). Without proof, let us
note here that there are no other "interesting" edge-labelable distributive lattices:

(4,4)

(3,3)

(2,2)

(1,1) > (0,0,2,3,5)

(0,0)

3(S(3,1)) = L(4, 2)

Figure 6.6

Theorem 6.2.13 (Proctor [389]). The only edge-labelable distributive lattices
are 3(S(m, n)), in, n > 0, 32(S(n, 1)), n > 0, 3k (S(1, 1)), k > 1, 33(S(1, 2)),
34(S(1, 2)), and products of these lattices.
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Let P be any ranked poset of rank n. Consider a further operator H : P - P,
defined on the basis elements

H(p) := (2r(p) - n)p

If the pair of raising and lowering operators (V, A) has the Lie-property, then

VA-0V = H.

Moreover, it is easy to verify that

(6.19)

HV-VH=2V, (6.20)

HO - OH = -2A. (6.21)

The short notion "Lie-property" is used here because of an important connection
to Lie-algebras. The Lie-algebra sl(2, C) consists of all 2 x 2 trace zero complex
matrices with Lie-algebra multiplication given by [A, B] := A B - B A where
the dot product is the usual matrix product. The usual basis taken for sl(2, C) is

R -
0 0) ' L = \1 0/ , H= \0 1

(cf. Humphreys [275]), and the relations [R, L] = H, [H, R] = 2R, [H, L] =
-2L completely describe the algebra structure of sl (2, Q. Now our three operators
V , 0, H satisfying (6.19),(6.20),(6.2 1) are said to be a representation of sl (2, C)
on the vector space P. Since many such representations have been studied in
algebra, one can go "backward": Look at any one of these representations on a
vector space V and try to find a basis for V that is aposet P (i.e., P = V), and
in terms of which three operators on V behave like and H with regard to
P (do not forget that for our theorems to hold, V must be order raising). In this
way we can find old and new posets which are, by our results, Peck. Using this
approach, taking a certain subalgebra of the Lie-algebra gl(n, C) (consisting of
n x n complex matrices) and applying a construction of Gelfand and Zetlin [221 ],
Proctor [390] could prove the following result (in a slightly generalized form),
which is mentioned without proof:

Theorem 6.2.14. The poset J(S(m, n, r)), m, n, r > 0, of all ideals in a product
of three chains ordered by inclusion is Peck.

It is still an interesting open problem of Stanley, and independently of Harper [260],
whether the poset of all ideals in a product of more than three chains ordered by
inclusion is Peck. The rank unimodality is open as well.

The posets from Theorem 6.2.13 are special cases of a more general class,
namely Bruhat orders. These Bruhat orders (defined on Weyl groups) arise in
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the study of semisimple algebraic groups where they describe the inclusion rela-
tionships of certain subvarieties. A highlight in Sperner theory was the proof of
Stanley [439] that all such Bruhat orders are Peck. In his proof Stanley used the
Hard Lefschetz Theorem of algebraic geometry. Later Proctor developed the more
elementary Lie-algebra approach.

Let us examine finally a special class of Bruhat orders - the orders of type A.
The poset ofA-shuffles lk'2k2 ... mkm is the set of all (k1 + + k,,, )-tuples with
kl l's, ..., k,,, m's where the ordering is the transitive closure of

(...,si,...9sj,...) <(.. ,sj,.. ,si....)whensj <si.

If we interchange the entry si and the entry sj, then we go "upward" (resp. "down-
ward") if sj < si (resp. sj > si). Obviously, (m, ... , m, ... , 2, ..., 2, 1, ... , 1) is
the unique minimal element and (1, ... , 1, 2.... , 2, ... , m, ... , m) is the unique
maximal element. Let s be a fixed element. In s, we have exactly kj (ordered)
entries j. Let ai j be the number of those entries less than j that appear in s before
the ith entry j, 1 < i < kj, 2 < j < m. Obviously,

0 < ai,j < ... < akj,j S ki + + kj_1 for all j. (6.22)

Thus, for s, we find a unique (m -1)-tuple of k2-, ... , k,,, -tuples of integers satisfy-
ing (6.22) and, conversely, given such an (m - 1)-tuple, the element s is uniquely
determined. For example, we have in 15223342 the following correspondence:

(3, 1, 2, 1, 1, 4, 3, 3, 1, 1, 4, 2) H ((1, 5), (0, 4, 4), (5, 9)).

Thus the elements s of P := lki ... mkm can be bijectively associated with the
elements of Q := L (kl , k2) x L (kt +k2, k3) x . . x L (kl +. +k,u _ 1, k,,, ),which

we write in the form a = (a2, ..., a,,,) where ai is the corresponding ki-tuple,
i=2, ,m.

Claim 1. Let a, b E Q and s, t be the associated original elements in P. Then
a < b implies s < t.

Proof of Claim 1. Suppose that =buv - 1 and aij = bi j for all other pairs
of indices. Then s can be obtained from t by interchanging the uth entry v with
the last entry in t that appears in t before this entry v and is smaller than v (note
that all-1,v < auv implying bu_l,v < buv; consequently there must be an entry
smaller than v between the (u - 1)th and the uth entry v if u > 2).

Claim 2. P and Q have the same rank function; that is, ifs E P and a is the
associated element in Q, then rp(s) = rQ(a).

Proof of Claim 2. Lets, t E P and a, b be the associated elements of Q. Since
(m..... m, ... , 1'... , 1) and ((0, ... , 0), ... , (0, . . . , 0)) are the corresponding
unique minimal elements we must only show that s < t implies r(a) + 1 = r(b).
Thus let s < t. Then obviously t can be obtained from s by interchanging some
entry x := si and some entry v := sj (with v < x) and there is no k such that
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i < k < j and v = sj < sk < s, = x. It is easy to see that al = bi for
l E (2, ... , m) - {x, v}. Suppose that at coordinate i there appears the wth entry
x and at coordinate j there appears the uth entry v, and that there are a entries
smaller than v between si and sj (i.e., a :_ I(k : i < k < j and sk < v) 1). Then
buv = auv - a, bwx = awx + a + 1 and biv = aiv, bix = aix for all respective
other indices i. Consequently,

r(b) = bij= aid -a+a+1=r(a)+1.
ij 1,j )

By Claim 2, P has the same levels as Q, and by both claims, the Hasse diagram
of Q can be obtained by deleting some arcs from the Hasse diagram of P. We
say that Q is a rank preserving cover suborder of P (in general, we really have
to delete arcs; for example, in 11213141 we have (3, 1, 4, 2) < (2, 1, 4, 3), but
for the associated elements we do not have ((1), (0), (2)) < ((0), (2), (2))). Since
Q is a Peck poset by Theorem 6.2.1 and Example 6.2.2, ourposet of A-shuffles
p = lk' . . mkm is Peck, too. (Take the "same" operators (0, o), and note that an
order-raising operator 0 on Q remains order raising for P.)

In the special case kl = . . . = ku = 1, the poset Q is a product of chains.
By Example 5.1.1 and Example 5.3.1, we obtain that our poset of A-shuffles is in
this case an sc-order and has, moreover, the strong IC-property. Let us finally note
that, if we restrict ourselves again to the case kl = . . . = k,,, = 1 but allow only
interchanges between neighboring entries, then it is not known whether the thereby
defined poset has the Spemer property. The dual of this poset (called inversion poset
in [446] and pennutohedron lattice in [335]) is the weak Bruhat order on a special
Coxeter group, namely, the symmetric group. Answering a question of BjSrner
[62], Leclerc [335] showed that the weak Bruhat order on another Coxeter group
is not an sc-order. The more general unsolved problem is whether the weak Bruhat
order on any Coxeter group is Peck.

6.3. Results for modular, geometric, and distributive lattices
We know already that modular geometric lattices and modular edge-labelable lat-
tices are Peck (see Example 6.2.9 and Corollary 6.2.1). When restricting ourselves
to modular lattices (even to distributive lattices), we cannot derive the Spemer
property. The example in Figure 4.10 shows a rank-symmetric, rank-unimodal
distributive lattice without the Spemer property. Also for geometric lattices, the
Sperner property does not hold in general. The following example is due to Dil-
worth and Greene [138]. Other examples have been given by Kahn in [280].

Example 6.3.1. The Dilworth-Greene lattice.
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Construct the lattice DG, as follows: Take a disjoint union of a Boolean lattice B
(with elements of the form a = (a 1, ... , a,), a, E (0, 1) for all i) and of the dual
Qn of the cubical poset Q, (with elements of the form b = (b 1, ... , bn), bi E
{2, 3, 4} for all i, see Example 1.3.3 but replace 0, 1, 2 by 4, 3, 2, respectively).
Further, add the following covering relations and take the transitive closure:

a > b if for all i (ai = 0 q b, = 2), a E B, b E Q.

In Figure 6.7, we illustrate DG2.

DG2

Figure 6.7

22

It is easy to verify that every element of DG, is a supremum of atoms and that
r(pAq)+r(pvq) < r(p) + r(q) for all p, q E DG, that is, that DG, is indeed
a geometric lattice. Clearly,

Wk= (kn l)+(k /l2k, k=0,...,n+1.

Taking in Qn the kth level and in B /the (k - 2)th level (which is in DGn in level
k - 1), we obtain an antichain Ak of size

IAkI=Simple

computation shows that for n = 10, max{{Wk, k = 0, ... , 10) = W7 _
15,570, but I A71 = 15,612 > W7; that is, DG 10 does not have the Sperner property.

Moreover, DG does not have the Sperner property for all n > 12 since I Ak I > Wk
if k > {L+233, but W0 < Wl < ... c WL l+l if n > 12 (the computational
details are omitted).

Let us note that Dilworth and Greene introduced DG, in an "isomorphic way,"
namely, as the bond lattice of the graph given in Figure 6.8. Because of these
counterexamples we will look at a further property for modular lattices. Let d+ (p)
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n+2

n+1

Figure 6.8

(resp. d- (p)) be the indegree (resp. outdegree) of an element p of P in the Hasse
diagram H(P); that is,

I{e E H(P) : e: = p}1.

A modular lattice is said to have the degree-property if there is an integer h such
that

d-(p) > d+(p) for all p E P with r(p) < h,

d-(p) < d+ (p) for all p E P with r(p) > h.

Theorem 6.3.1 (Stanley [443]). Every modular lattice P with the degree-proper-
ty has the Spemer property.

Proof. In view of Lemma 6.1.2 and Theorem 6.1.1 it is enough to consider the
Lefschetz operators and to show that OL; ;+, is injective for i < h and that AL;+I.;
is injectivefor i > h. In addition to these operators, we introduce the operator
H : P -+ P defined on the basis {: p E P} by

H(P) := (d (P) - d+(p))P

Since P is modular we have

OLOL - OLOL = H, that is, VLVL - OLVL = H.

Let i < h and assume that there is some p E N; such that VL (gyp) = 0. Then

0 = (VL(cp), VL(cp)} = (V VL(0, W)

= ((VLOL + H) ((p), V) = (VL(W), V ((p)) + (H(ip), V).

If rp = E pEN, µ p p we obtain (noting that the scalar product is positive definite)

0 ? 57, µp(d (P) - d+(P))p, µnP (d (P) - d+(P))µp
PEN; pEN; PEN;
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which implies by our supposition d- (p) > d+ (p) if r (p) < h that A p = 0 for all
p E N,; that is, tp = 0. Consequently, V L, r+, is really injective if i < h. The case
i > h can be treated analogously.

We will apply this result to the lattice of subgroups of a certain group. First,
note that the lattice of normal subgroups of any group (ordered by inclusion) is
modular (cf. Kochendorffer [312, p. 293]). Consequently, the subgroup lattice of
an abelian group is modular. If we restrict ourselves to finite p-groups (i.e., groups
whose order is a power of a prime p) then a fundamental theorem about finite
abelian p-groups [312, p. 107] states that any such group G is the direct product
of cyclic p-groups:

G = (Z/px«) x ... x (Z/ z) =: G,\ (p)

where, w.l.o.g., ,l1 < ... < Xn and A = (A 1, ... , X,,). Thus any element of G,\(p)
can be written as an n-tuple a = (al, . . . , an) where ai E {0, 1, ... , pXi - 1) for
all i, and we have c = a + b iff c; = a; + bi (mod p1i) for all i. Let k = (k, . . . , k)

(n times) where k E N.

Proposition 6.3.1. The subgroup lattice of G1(p) is isomorphic to Ln(p).

Proof. Because the elements of G, (p) can be written as n-tuples, we may identify
G1(p) with an n-dimensional vector space V, over GF(p) (the addition is the
same, and multiplication by a scalar is defined by as := a + + a (a times,
a E {0, ... , p - 1})). Using the usual criteria it is easy to verify that a subset U
of G1 (with addition) is a subgroup if U (with addition and multiplication by a
scalar) is a subspace of Vn.

By Example 6.2.9, G 1 is unitary Peck and has, in particular, the Sperner property.
However, the subgroup lattice of G(1,2)(p) does not have the Sperner property;
see Figure 6.9. The nontrivial subgroups have the following form:

Ui ({(i, p)}), i = 0, ... , p - 1, Up := ({(1, 0)})

Vi ({(i, 1))), i = 0, ... , p - 1, Vp := ({(1, 0), (0, p)})

(where U = (S) means that U is generated by the elements of S).

Corollary 6.3.1 (Stanley [443]). The subgroup lattice of G2(p) has the Sperner
property.

Proof. By Theorem 6.3.1 it is sufficient to verify the degree property of the
subgroup lattice P of G2 (p). Every element a of G2 (p) has a unique representation
of the form a; = ri +a, p, 0 < r, , a; < p-1, 1 < i < n; that is, a = r +pcx with
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G(1,2)(P)

{(0,0)}

Figure 6.9

r, a E V (the vector space of n-tuples with entries 0, ... , p - 1 over GF(p)). If
U is a subgroup of G2(p) then obviously

R := jr E V, : there is some a E V with r + pa E U),

and

A := {aEV,,:Pa EU)

are subspaces of V with R C A. Moreover, for fixed r, the set {a E V : r + pa E
U} is a residue class in V, relative to A. Let rp denote the mapping that maps r
onto this residue class. Obviously, cp is uniquely determined by the images of the
basis elements of R.

It is easy to see that our subgroup U has the order

I U I= pdim R pdim A= pdim R+dim A

Conversely, if we are given subspaces R, A of V, with R C A, a basis B =
{b1, ... , bd} of R and a mapping W : B -+ V, 1A (suppose that ai is a represen-
tative of ip(bi), i = 1, ... d), then

(mod p2) :

is a subgroup of G2(p) (which then defines cp : R -* V, 1A completely; we have
= w1 B). It is not difficult to see that we have in our subgroup lattice a covering

relation Ul < U2 if for the associated triples (Ri, A;, (pi), i = 1, 2, there holds

(1) (R1 < Ln(p)R2 and Al = A2) or (R1 = R2 and Al <

and

(2) rpI (r) C c02 (r) for each r E R1.
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Assume that Ul is fixed. Let us count the number of successors of Ul ; that is,
d-(Ul). Let d, := dim Ri, e, := dim Ai, and Bi be a basis of Ri, i = 1, 2. For
the first conjunction in Case 1, we have (el d') p possibilities to choose R2 (note
that we need R2 C_ A2 = A 1). If then R2 is fixed, B2 is a basis of R2 that extends
B1, then we may arbitrarily choose 'P2 on the additional basis element (we need
cp1(b) = 'P2 (b) for all b E Bl ), thus there are p"-ej choices for '02. For the second
conjunction in Case 1, we have (" e')p possibilities to choose A2 and for each
basis element b of BI we must choose the residue class relative to A2 that contains
rpl (b). Consequently,

d (U1) =
peg-di - 1

pn-e' +
Pn-ej - 1 pn-d1 - 1

p-1 p-1 p-1

Now let U2 be fixed and let us determine d+ (U2). The first conjunction of Case 1
gives (dl2)p possibilities and the second conjunction of Case 1 (together with Case 2)

gives (e2 1d2)'P d2 possibilities (we need R1 = R2 c A 1 and may choose for every
basis element b of B1 a residue class relative to Al which is contained in cp2(b),
the residue class relative to A2). Consequently,

-1 = pe2-
d+ (U2) = pd2-1 + pe2-d2 pd2

p-1 p-1 p-1

If, finally, U is any subgroup of GA(p) with the associated vector spaces R and A
of dimension d and e, respectively, then r(U) = d + e and

d-(U) > d+ (U) iff pn-d > pe iffr(U) < n,

d-(U) < d+ (U) iff pn-d < pe iff r(U) > n;

thus, the degree-property holds.

It is conjectured (see [443]) that the subgroup lattice of Gk(p) has the Sperner
property for all positive integers k, but already the case k = 3 is open. On the other
hand, Butler [88] proved the rank symmetry and rank unimodality of Ga(p) for
every A.

Let us now turn to geometric lattices. We already know that they do not, in
general, have the Sperner property. But there is a nice conjecture of Kung [329]:
Let P be a geometric lattice of rank n. Then the Lefschetz raising operator OL in
P has the property that OL,,+, is injective (i.e., of full rank) for all 0 < i < z .

In addition, we conjecture that every geometric lattice is semi-Peck. Concerning
the conjecture, there exist up to now only partial results, which we present now.

Lemma 6.3.1. Let P be a geometric lattice of rank n and let p, q E P.

(a) Ifr(p)=1and p¢gthen q<pvq.
(b) if r(p) = 1 and p q then q < v, p < v imply v = p v q.
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(c) Ifr(q) < n - 2 then d-(q) > 2.

Proof. (a) Clearly, q < p V q. Moreover, r(p V q) < r(p) + r(q) - r(p A q)
r(q)+l; that is, p< pvq.

(b) q < v, p < v and (a) imply q < p v q < v; that is, p V q = v.
(c) Since q # 1 there must be some atom p with p q. By (a), q < p V q and

thus p V q # 1. Again there must be some atom p' with p' p v q. We have
q < p'vq and obviously p' V q ¢ pvq.

Theorem 6.3.2 (Kung [327]). Let P be a geometric lattice of rank n > 1. There
exists an order-raising operator 0 on P such that V 1, j is injective for all 1 < j <
n - 1.

Proof. We define 0 on the basis IT: p E P) by

0(P) := 1 q ifr(p) < n - 2,
(d-(p) - 1) p

and on the elements p with r (p) > n -1 arbitrarily. By Lemma 6.3.1(c), V is well
defined. In order to prove the injectivity we introduce some other linear operators
(see also Section 6.4). Let Tl, j : Nl - Nj be given by

gENj:gnp=0

Moreover, let rpi := EpEN, p; that is, rpl is a fixed element of N1, and let 4)1
N1 -+ N1 be given by

01(P) =(p1 - P
Finally, let a := *.

Claim. Oj,Iklij j = (D 1 for I < j < n -
Proof of Claim. We proceed by induction on j. The case j = 1 is trivial. Since

Aj+l, I `Y1, j+l = Oj, I (Aj+l, jYl, j+l ), we need only verify the equality

Aj+l,j`I`1,j+l = 411j, n - 2 (6.23)

for the induction step. Let p E N1, q E Nj be arbitrary. Then

(01Yl,j+1(P), q) = (`1`l,j+l (P), 0(9 ))

vENj+,:v^p=0 w>q v d (q) - I w

1 0 ifpAq=p,
v>q:vnp=O d -(q) - I 1 if p A q = 0
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since for p A q = p, the relation v > q implies v A p = p and for p A q = 0
by Lemma 6.3.1(b) all but one of the successors of q are not related with p. The
same RHS appears for (tIIj(p), W), thus (6.23) is true. 0

It is straightforward to verify that 1 t is injective for n >_1 (note that then
jV,,j and in particular Vi,j are injective.Wt > 1). Consequently, also V, = %P*

Corollary 6.3.2. In every geometric lattice of rank n there exist Wl pairwise
disjoint saturated chains from level Ni to level Na_t.

Proof. Consider the operator 0 of the preceding theorem restricted to the 11, ... ,
n - I)-rank selected subposet. It satisfies the condition of Theorem 6.1.7, which
yields the assertion.

In order to generalize this result we need some facts about the Mobius function
of a poset P introduced by Rota in [401]. The Mobius function P x P - Z
can be defined inductively in the following way:

µ(p, p) := 1 for all p E P,

µ(p, q) - 1] µ(p, v) for all p < q,
p<v<q

µ(p, q) :=0forallp,gEPwith pyq.

Lemma 6.3.2. We have µ(v, q) = O for all p < q.

Proof. We proceed by induction on I[p, q]I. The case I[p, q]I = 2; that is, p < q,
is trivial, and the induction step works as follows:

µ(v, q) = 1 + E µ(v, q) = 1 - µ(v, w)
p<v<q p<v<q p<v<q v<w<q

= 1- µ(v,w)=1-1=0.
p<w<q p<v<w

A key result for the Mobius function is the following formula:

Theorem 6 .3.3 (Mobius inversion formula). Let P be a finite poset and G an
additive abelian group. Further let f, g : P -+ G be two functions. Then

g(p) = E f (q) for all p E P (6.24)
q: q <p
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iff

f(p) = E g(q)p(q, p) for all p E P. (6.25)
q: q <P

We may replace in both cases "<" by ">" (and then, of course, µ(q, p) by

A(p, q)).

Proof. If (6.24) holds, then by Lemma 6.3.2

g(q)µ(q, p) f(v)µ(q, p) _ f(v) E µ(q, p) = f(p),
q<P q:SPv:5q vvp v<q:SP

and if (6.25) holds then by the definition of µ,

f(q) _ g(v)A(v, q) _ g(v) µ(v, q) = g(p).
q:sP v:5 P vSq:5P

It is easy to see that we may everywhere replace "<" by ">" together with the
coordinate changes in lc.

There exist several techniques to calculate the M6bius function; cf. Stanley
[441]. We need here only the following result.

Theorem 6.3.4 (Weisner [462]). Let P be a finite lattice, 0 < p < q. Then

µ(0, v) = 0.
vVp=q

Proof. We proceed by induction on I [p, q ] l . If I [p, q ] I = 1, that is, p = q > 0,
then >J=p j t(0, v) = Eo<v<p s(0, v) = 0 according to the definition of A. If
I [p, q]i > 1, that is, 0 < p < q, then by definition of A and by classifying with
respect to v V p

0 = E bt(O, v) = E '(0, v)J
o<v<q p<w<q \

In view of the induction hypothesis, each term is 0 for p < w < q; thus also the
term with w=gequals 0.

Theorem 6.3.5. Let P be a geometric lattice of rank n. Then we have
sgn(p (0, 1)) = (-1)" and in particular, s(0, 1) ,-f 0.

Proof. We proceed by induction on n. The case n = 1 is trivial. For the induction
step, consider a fixed atom p - that is, r(p) = 1. Then by Theorem 6.3.4

E µ(0, v) = 0. (6.26)
vvp=1
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We have v v p = 1 if either v = 1 or r(v) = n - 1, p 14 v (the sufficiency is
clear and for the necessity note that r(v) > r(p A v) + r(p v v) - r(p) > n - 1).
Moreover, it is easy to see that the interval [0, v] is a geometric lattice again.
Consequently, by the induction hypothesis and (6.26)

/1(0, 1) = - E µ(0, v), sgn(N-(0, 1)) = -(-1)n-I = (-1)n.
r(v)=n-I,p,v

0

Let us consider for a fixed geometric lattice P of rank n and a fixed number
k, 0 < k < n, the functions cp, t', 1X : P x P -+ ]R (depending on k) by

pp(p, q) :=
if r(q) < n - k,

ifr(q)>n-k,

(p, q) = : (P (P, v),
p<v<q

X (p, q) :=
µ(q, 1) i(p, q). (6.27)
Wp, 1)

Note that µ (p, 1) O by Theorem 6.3.5 since the interval [p, 1] is also a geometric
lattice.

Lemma 6.3.3. We have

(a) X(p,q)=0ifr(q) <n - k,
(b) >y:p<yX(p,Y) = 1,

(c) r-y:y>pvwX(p,y)=0ifr(w):! k, p.

Proof. (a) is clear, (b) and (c) we prove simultaneously by applying Mobius
inversion to the interval [x, 1], where briefly x := p V w. For x < q < 1, let

.fp(q) := E V(p, v),
v>p:vvx=q

gp(q) :_ T, .fp(Y)
x<y<q

Then

gp(q) = E (P(p, v) = V(p, v) = f'(p, q)
x<y<q v>p:vvx=y p<v<q

Consequently, by Theorem 6.3.3

.fp(q) _ E gp(Y)p(Y, q) *(p, Y)N-(Y, q)
x<y<q x<y<q
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In particular, for q = 1 it follows that

fp(1) = E 'l,(P, Y)µ(Y, 1) = µ(P, 1) E X (P, Y).
y: x <Y Y: x <Y

However,

(6.28)

.fp(1) = E OP, V) = E µ(p, v).
v>p:vvx=1 v>p:r(v)>n-k,vvx=1

Ifv > p, vvx = 1 andr(w) < k,thenr(v) > r(vvw)+r(vAw)-r(w) > n-k.
Hence we may continue, using Theorem 6.3.4 applied to the lattice [p, 1 ], yielding

1 0 if x > p (i.e., w p),

v>p:vvx=1 1 µ(p, 1) if x = p (i.e., w < p).
(6.29)

From (6.28) and (6.29) we may easily derive (c) and (with w = 0) also (b).

In addition to the Lefschetz operators we define the (linear) rank i lowering
(resp. raising) operator 0,i (resp. V,i): P -+ P as follows:

i,i(P) E q
g5p:r(q)=i

(resp. V_,t(P) Eq?P:r(q)=i q-)-

Moreore generally, if F, Gare subsets of P then we define the operator L F, G
F G and its adjoint VG,F (for p E F (resp. p E G)) by

4->G(P) :_ T, W (resP.GF():= ) . (6.30)
gEG:q<p gEF:g>p /

So L,i abbreviates OP,N1. Moreover, let 0i--,j := 2iN;-_,Nj and Vi, j
V Ni, N; . Note that the matrix of Di, j with respect to the bases f p : p E Ni } and
{ p : p E Nj ) is exactly the incidence matrix of rank j versus rank i elements.

Lemma 6.3.4. Let P be a geometric lattice of rank n, 0 < k < n, and let
X : P x P -+ R be defined as in (627). Then for 0 < i < k,

0,; (P) = 0,; (E X (P, Y)Y)
Y>P

Proof. Take any w E Ni. Then by Lemma 6.3.3 (noting i = r(w) < k)

1 ifw<p,
EX(P,Y)(0 E
Y> P y> pvw 10 if w p
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Theorem 6.3.6 (Dowling and Wilson [140]). Let P be a geometric lattice of rank
n,0<k<n.
(a) The linear operator VNoU...UNk +Nn_kU...UN, is injective.

(b) The linear operator is injective.

Proof. (a) Briefly let To ONOU...UNk->Nn_kU...UNn . Let rp >r(p)<k )'pp_ be
any element of N0 ® . . . ® Nk. We must show that TO (p) = 0 implies cp = 0. If
we define f, g : P -+ JR by

f (p)
X,, if r(p) < k,

0 otherwise,

g(q) := E f(p),
p<q

then To(cp) _ F-r(q)>n-k g(q)W. Let To((p) = 0; that is, g(q) = 0 for all q E P
with r(q) > n -k. We have to verify that f =- 0 (i.e., (p = 0). By Theorem 6.3.3 it
is enough to show that g =- 0, that is, g(q) = O also for all q E P with r (q) < n -k.
So let us consider such an element q. By Lemma 6.3.4 and Lemma 6.3.3(a) we
have

k k

D'i(9) = T
i=0 i=0

1: X(q,Y)0->i(Y)
y>q,r(y)>n-k

k

X (q, Y) > 0-> i (Y)
y>q,r(y)>n-k i=0

If we apply, finally, the linear operator F : P R defined by

F(p) := f(p) for all p E P

to the LHS and RHS (noting that F (rk0 >p<z,r(p)<k f(P) _
g(z)), we obtain

g(q) = >2 X (q, Y)g(Y) = O. (6.31)
y>q,r(y)>n-k

(b) We may argue as in (a), but we may suppose that f (0) = 0 and must admit
that g(1) # 0. Under these conditions, (6.31) reads

g(q) = x (q, 1)g(l) for all q E P.

For q = 0, we obtain in particular

0= f(0) = g(0) = X(O, 1)g(1) = g(l) > k(O, q)
p'(0' 1) r(q)?n-k
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If g(1) = 0 then, by the same reasons as in (a), f - 0. So it remains to show that

E µ(0,q)00.
r(q)>n-k

Let P+ be the lattice that can be obtained from P by identifying all elements of
rank at least n - k (the truncation to rank n - k). Let µ+ be the associated Mobius
function. It is easy to verify that P+ is a geometric lattice again; hence (using
twice the definition of the Mobius function)

µ(0, q) 57 µ(0,R) µ+(0, q) = µ+(0, 1),
r(q)>n-k r(q)<n-k r(q)<n-k

and the RHS is nonzero by Theorem 6.3.5.

We say that the geometric lattice P of rank n has the lowering property if for
all i, j, k with 0 < i < j < n - i < k < n - 1 there are linear operators
(Di,k, j : Nk -+ Nj such that

Oj-si(Di,k,f = Ak-si

For such lattices, we can prove a generalization of Kung's conjecture:

(6.32)

Theorem 6.3.7. Let P be a geometric lattice of rank n. It has the lowering
property iff Vi._., j is injective for all i, j with 0 < i < j, i + j < n.

Proof. Suppose that P has the lowering property. The case i = 0 is trivial, so let
i > 0. We have, by the lowering property,

n-1 n-1

1=n-i 1=n-i

Taking the adjoint, we obtain

n-1 n-1
4>1,j

i-+j = i >1
1=n-i I=n-i

It is easy to see that the RHS equals the operator T (with k = i) restricted to Ni N.
Since this operator is injective by Theorem 6.3.6(b), Vim j must be injective, too.
Now suppose the injectivity of all the Vi. j and let 0 < i < j < n - i < k < n - 1.
Let p E Nk. Since Vi.j is injective, its adjoint 0 j,i is surjective, consequently
there exists some lop E Nj such that 0 j,i ((Pp) = ilk+i (p). Thus we may define

Oi,k,j(P) := (Pp-

0
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We conjecture that every geometric lattice has the lowering property.

Example 6.3.2. The Boolean lattice B, the linear lattice Ln (q), the affine poset
A, (q), and the Dilworth-Greene lattice DG,, (see Example 6.3.1) have the low-
ering property.

For Bn, take Ci,k, j :_ / _ Ok- j, for Ln(q) and An(q), take Oi,k, j
_ l j-i)

(, g
Ak, j. For DG, we argue as follows: Let 1 < i < j < n - i < k < n and

let p E Nk. Then p belongs either to the Qn-part or to the Bn-part of DG, more
precisely:

p E Nk(Qn) or p E Nk-1(Bn)

We define
1

EgENj(Qn):q<P
-i

if p E Nk(Q*),
ci,k,j _

( q + 2`_f
gENi(Qn)!-i

if p E Nk-1(Bn).

Then (6.32) holds. This is easy to see for p E Nk(Qn) since the ideal generated
by p is a Boolean lattice. So let p E Nk_1(Bn) and take any v E Ni. It is clear that

(Lj'i( i,k,j(p),v)=0ifv p.

Now let v < p. If V E Ni_t(B,,), then

(Oj i i,k,j (p), v) = (kl i I (q E Nj-1(Bn) : v

k

1

,

k-1-(i-1))
( j-1-(i-1)l j-i/

<q<p]I

= 1,

and if v E Ni (Qn) then

1

(Aj-+i 4)i,k, j (p), v) = /k-i (I [q E Nj-1(Bn) : v < q p1 l

(j-i
+2iI[gENj(Qn):v<q<p]I)

=
1

/k i
-i) J-1-i j-i J Jlj

The same result holds for (Ok.._,i (p), V); thus (6.32) is verified.
It is not known whether the partition lattice nn has the lowering property, but

Kung proved in [329] that in n, the operators Di-si+1 = OLi.i+, are injective for
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all 0 < i < 2 . In addition to Example 6.3.2, Bey [54] proved the full rank property
of the Lefschetz operators on the affine lattice using some ideas we have examined

here.
We conclude the study of geometric lattices with a theorem that was found

by Vapnik and Chervonenkis [455] (in an implicit form), Sauer [415], Perles (see
[429]), and Shelah [429] for the Boolean lattice. After Frankl and Pach [201] had
given an algebraic proof for the theorem, it was Lefmann [338] who formulated
and proved the result for geometric lattices. Much more information can be found
in the survey by Fiiredi and Pach [212].

Theorem 6.3.8. Let P be a geometric lattice of rank n and F a subset of P with
IF I > F_i=p W;. Then there is some q E N,+l such that for every v E P with
v< q there is some p E F such that p A q = v.

Proof. Briefly, let G := Since dim F = BFI > IGI = dim G, there must
be some nonzero element cp in F with

OF-4G(co) = U.

Let cp = F pEF X p p and F' := (P E F : Xp # 0}. If we define for q E P

pE F: p>q

then obviously

(6.33)

AF,P(tp) _ sqq
qEP

There exist elements q E P such that 8q 0 0 because, for example, if q is a
maximal element of F' then Sq = ?.q 0 0. Under all elements q with 8q 0 0
we choose one with minimum rank. For this element q*, we have r(q*) > s + 1
because otherwise q* E G and thus (OF-p(ip), q*) = (AF->G('P), q* ) = 0 by
(6.33). Though it may be that r(q*) > s + 1, let us first prove the statement in
the theorem for this element. Take any v E P with v < q*. We will apply Mobius
inversion to the interval [v, q*]. Let f, g : [v, q*] -+ R be defined by

f(x) := E Ap, g(x) E .f (Y), X E [v, q*]
pEF:pAq*=x x<y<q*

We have

g(x) = XP = T a.p = sx.
pEF:x<pnq*<q* pEF:p>x

By Theorem 6.3.3,

,f(x) _ E A(x, Y)g(Y),
x<y<q*
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and in particular (noting the minimal choice of q *)

f(v) _ µ(v, Y)Sy = µ(v, q*)Sq*.
v<y<q*

Since the interval [v, q*] is also a geometric lattice, we derive from Theorem 6.3.5
that f (v) # 0. But f (v) = E pEF:pnq*=v AP; thus the sum on the RHS cannot
be empty. Consequently there really exists some p E F with p A q* = v. Finally
take any q < q* with r(q) = s + 1. For v < q < q*, there exists some p E F
with p A q* = v, which implies p A q = v.

Let us now study distributive lattices. Their width is "small" relative to their
cardinality. This is a result of Kahn and Saks [282] mentioned here without proof:

Theorem 6.3.9. For every c > 0, there exists an integer no(E) with the property:
If P is a distributive lattice of cardinality greater than no then d(p) < E.

Our main objective is the presentation of an inequality given by Ahlswede and
Daykin [8] that has numerous applications. Though this inequality has a simple
proof, much work preceded its publication. West [464] gave a good survey on the
history of this inequality (see also Ahlswede and Daykin [9] and Graham [227]).
Cornerstones of this theory are the starting result of Kleitman [300] on the intersec-
tion of ideals and filters in the Boolean lattice and the result of Fortuin, Kasteleyn,
and Ginibre [185] who generalized Chebyshev's inequality for nondecreasing se-
quences in order to unify several results in statistical mechanics. However, the
discovery of the Ahlswede-Daykin inequality was independent of these begin-
nings; it should be noted that there is a nonlattice theoretic background studied in
detail in Ahlswede and Daykin [9].

Lemma 6.3.5. Let ai, b1, ci, d1 (i = 1, 2) be nonnegative real numbers such that

aobo < codo, (6.34)

albo c1do, (6.35)

aobl < c1do, (6.36)

albs < cldl. (6.37)

Then

(ao + al)(bo + bl) < (co + cl)(do + dl). (6.38)

Proof. If at = 0 or bo = 0 the proof is trivial. Thus we may suppose al 0 0 and
bo 0. Then (6.35) yields cl # 0 and do # 0. We derive from (6.34) and (6.37)
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that
aoalbobl

< codi. (6.39)
c1 do

Further, (6.35), (6.36), and (6.39) imply

(atbo - cido)(aobi - cido) aoalbobt0 < - - albo - aobl + cido
cido cldo

< codi - albo - aobt + cido,

that is,

albo + aobl < ctdo + cods. (6.40)

Summing up (6.34), (6.37), and (6.40) we obtain the assertion (6.38).

Lemma 6.3.6. Let n E N and a, fi, y, 8 be functions from 21nl into R+ such that

a(X)p (Y) < y(X U Y)8 (X fl Y) for all X, Y E Pl. (6.41)

Then

a(2[nl)fl(2[n1) < Y(21n1)6(2[n'), (6.42)

where, as usual, a(2["1) = EXE21n1 a(X) and so on.

Proof. We proceed by induction on n. If n = 0, that is, 2[n1 = {0}, then (6.42) is
the same as (6.41). Now consider the step n -1 n. We define a' : 2[n-11 -+ R+
by

a'(X') := a(X') + a(X' U {n}) for all X' E 2[n-1]

and with f', y', S' we proceed analogously. Then

,'(2[n-11) = a(2m) and so on.

Thus, by the induction hypothesis, it is sufficient to prove that for all X', Y' E
2[n-1]

a'(X') fl'(Y') < y'(X' U Y')8'(X' fl Y');

that is,

(a(X') + a(X' U {n}))(fl(Y') + 0(Y' U {n}))

<(y(X'UY')+y(X'UY'U{n})(8(X'fl Y')+8(X'flY'U{n})). (6.43)

Let ao := a(X'), al := a(X' U {n}), bo := ,B(Y'), bi := 18(Y' U {n}), co :=
y(X' U Y'), cl := y(X' U Y' U {n}), do := 8(X' fl Y'), d1 := 8(X' fl Y' U {n}).
Then (6.34)-(6.37) are satisfied by our supposition (6.41). Lemma 6.3.5 yields the
asserted inequality (6.43).
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Theorem 6.3.10 (Four-Function Theorem ofAhlswede and Daykin). Let P be
a distributive lattice and a, P, y, S functions from P into R+ such that

a(p)fi(q) < Y(p v q)8 (p A q) for all p, q E P. (6.44)

Then

a(A)P(B) < y(A U B)S(A A B) for all A, B C P (6.45)

whereAvB:={pvq: pEAandq EB},AAB:=(pnq: pEAandgEB),
and a(A) := EpEA a(p) and so on.

Proof. By a theorem of Birkhoff (cf. [21, p. 33]), there is some set N, say [n], and
an injective mapping cp : P -+ 2[n] such that

W(p v q) = W(p) U W(q) and O(p A q) = ap(p) fl cp(q). (6.46)

Let A, B C P be fixed and let V(A) :_ {ap(p) : p E A) and so on. We define
functions a', fi', y', S' from 2[n] into R+ by

a'(X) :=

Y'(X)

a4-'(X)) if X E p(A),

{ 0 otherwise,

{

(X)) if X E cp(A U B),

0 otherwise

(a', S' are defined analogously). Then we have a(A) = a'(2[n]), ,B(B) = 0'(2[n]),
y(A V B) = y'(2[n]), and 8(A A B) = 6'(2[n]). By Lemma 6.3.6, we must only
prove that

a'(X)o'(Y) < y'(X U Y)S'(X fl Y) for all X, Y E 2[n],

This is trivially satisfied if X V rp (A) or Y rp (B), and otherwise the last inequality
follows from (6.46) and the supposition (6.44).

We will not discuss the questions of equality in this inequality. For a special
case, Beck [40] derived necessary and sufficient conditions for the equality to hold.

Corollary 6.3.3. Let P be the Boolean lattice B. Then

(a) (Kleitman [300]) I F fl ii I PI I FI I II for all filters F and ideals I in P.

(b) (Marica and Schonheim [361]) Al I< IA E) AI for all A C P = 2[n] where
AeA:={X- Y: X, Y E A).

Proof. Let in Theorem 6.3.10 a l3 - y = S =_ I. Then (6.44) is satisfied
automatically.
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(a) Put A := F n I and note that A V P C F and A A P C I. Then by Theorem
6.3.10 IAIIPI < IA v PIIA A PI < IFIIII.

(b) For a subset A of P, let A be the set of all complements of elements of A.
Then A e A = A A A = A A A. Now Theorem 6.3.10 yields 1 A 12 = I A I I P I<
IAvAIIAAAI =I(AvA)IIAeAI =IAA AIIAeAI=IAeA12.

Part (b) of the preceding corollary was generalized by Daykin and Lovasz
[126] and by Ahlswede and Daykin [10] in several ways. Let us look at some
nice implications of Part (a). Anderson [31] and Kleitman [234] observed that the
following result of Seymour [426], Schonheim [417], Daykin, and Lovasz [126],
and Hilton [266] can be proved easily with this "theory."

Corollary 6.3.4. Let 9 c_ 21n] be an intersecting, cointersecting family; that is,
x n Y # 0 and X U Y # [n] for all X, Y E 9. Then 191 < 2n-2, and this bound
is the best possible.

Proof. Let F (resp. I) be the filter (resp. ideal) generated by gin the Boolean lattice
P = B. It is easy to see that F (resp. I) is an intersecting (resp. cointersecting)
family and that g c F n I. Consequently, by Corollary 6.3.3 and Theorem 2.1.6,

191 < IF n II <
11,1

IFIIII < 2n 2n-12n-1 = 2n-2

Because a* := {X C 21"1 : 1 E X, n V X) is an intersecting, cointersecting
family of size 2n-2, the bound is the best possible.

Part (a) of Corollary 6.3.3 (one of the origins of the Four-Function Theorem)
originated when proving the following result:

Corollary 6.3.5 (Kleitman [300]). Let .F1...... F'k be intersecting families in 21n1.
Then for all k, n with 1 < k < n

U k .F .I < 2n -2n-k
i-1

Proof. We proceed by induction on k. The case k = 1 is given by Theorem 2.1.6.
So let us consider the step k - 1 -* k. We may assume that each .F; is a maximal
intersecting family. Then, for i = 1, . . . , k, I.F; I = 2n (see Theorem 2.1.6) and
.F'; is a filter. Clearly, F := Uk_i .F, is a filter, too, and I := 21"1 - .T'k is an ideal.
By the induction hypothesis, IFI < 2" - 2n-k+1 and by Corollary 6.3.3(a)

IF n II < 2-n2n-l(2n - 2n-k+1) = 2n-1 - 2n-k

Consequently,

IF n.F'kI = IFI - IF n II > IFI - 2n-1 +2"-k,
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and finally

Irk 1. l = IFU-FkI=IFI+I.FkI-IFn.Fkl
IFI + 2n-1 -IFI + 2n-1 _ 2n-k = 2n - 2n-k

Taking Fi {X C 21'1: i E X), i = 1, ... , k, we see that the bound is the best
possible.

On the LHS of the Four-Function Theorem we sum over all pairs (p, q) E A x B
and on the RHS over all pairs of (A v B) x (A A B). Reuter [398] showed that
one can restrict the summation to pairs (p, q) satisfying additionally p A q = v
and p V q = w where v and w are fixed elements of P. The following 2m-
Function Theorem is an impressive generalization of the Four-Function Theorem.
It was discovered by Rinott and Saks [400] and, independently, by Aharoni and
Keich [1].

Theorem 6.3.11. Let m > 1, let P be a distributive lattice, and let fi , gi, i E [m ],
be functions from P into R+ such that

m m

fj l (Pi) < rj gi
i=1 i=1

Then

V A for all pi E P, i = 1,...,m.
SC(Im]) jES

M m

flf i (Ai) < fl gi V A Aj f o r all Al C P, i = 1 , ... , m ,
t=1 i=1 SC(17) jES

where VSC(Im)/ \jES Aj {VSC(Im)/ \jES Pj : Pj E Aj}, and fi(Ai)
Y:p;EA; f (Pi) and so forth.

I omit the proof of this result which is a culmination after preparatory work in
particular by Daykin [ 124]. In fact, Rinott and Saks [400] proved more than Theo-
rem 6.3.11 presenting an integral version of their result. Older versions including
continuous versions of the inequalities are those of Harris [262], Holley [271],
Preston [386], Ruzsa [403], and Batty and Bollmann [39]. A further important
corollary of the Four-Function Theorem, due to Fortuin, Kasteleyn, and Ginibre
[185], is, historically, a predecessor of it.

Theorem 6.3.12 (FKG-inequality). Let f and g be both increasing (or both de-
creasing) functions on a distributive lattice P, and let w : P -* R+ satisfy the
condition

w(p)w(q) <w(pVq)w(pAq)forallp,q E P. (6.47)
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Then

(f(P)w(P))
E

((P)w(P)) (fPPw(P))(w(P)).
pEP pEP pEP PEP

Proof. We consider only the case of increasing functions. First we take character-
istic functions f = q,p and g = cOG, where F and G are filters of P (WOF and VG
are increasing). Taking a := := y := 8 := w, A := F, B := G in Theorem
6.3.10 and noting that F V G is the set intersection of F and G, we obtain

(cOF(P)wP))E (cOGPw(P))
PEP pEP

= w(F)w(G) < w(F v G)w(F A G)

< w(F v G)w(P)

1
= ( cPF(P)cPG(P)w(P) ( w(P)

pEP
)

EP )P

and the FKG-inequality is proved in that special case. Now let f and g be arbitrary
increasing functions. By Lemma 4.4.3 we can write f and g in the form

h k

.f =A0+XicPF;, g= v0+EVjcPG;,
i=1 j=1

where F and G j are suitable filters and Ai 0, vi > 0, i = 1, ... , h, j =
1, ... , k. After a simple computation, we derive

(E
f(P)w(P))

(PEP E
g(P)w(P)) - E f(P)g(P)w(P) w(P)

pEP / (PEP ) (PEP )

= xi vi ((E cPF (P)w(P)) (cOGJPwP)
i1 j1 PEP PEP

(cOPcOGJPWP)(WP))
PEP PEP

which is nonpositive by the special case we proved earlier.

Corollary 6.3.6 (Chebyshev's inequality). Leta1 < < a, andb1 < ... < bn.
Then

i=l i=1 i=1l

aj) (Ebi) < n >
ai bi .

(
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Proof. Let P be the chain (1 < < n), define w, f, g on P by w :- 1, f (i)
a;, g(i) := bi, and apply the FKG-inequality.

As mentioned earlier, there are many applications of such inequalities - even
in domains where one would not expect it. Concerning a result of Shepp [430] on
linear extensions of posets, we refer to Anderson [32, p. 100]. Recently, Ahlswede
and Khachatrian [14, 17] detected a remarkable connection to number theoretic
inequalities. Here we present an application to Bernstein polynomials. Let C[0, 11
denote the set of all continuous functions over [0, 1]. If f E C[0, 1], then the
corresponding Bernstein polynomial B n fis defined by

(Bn f)(x) :_ E f (n) (')x'(lkx)nk.
k=0 \

Theorem 6.3.13 (Seymour and Welsh [427]). Let f, g E C[0, 1] be increasing.
Then for all x E [0, 1]

(Bn.fg)(x) > ((Bnf)(x))((Bng)(x))

Proof. Let X E [0, 1] be arbitrary but fixed. We consider three functions w
2[n] -a 1[8+ and f, g : 2111 -). R, which are defined for all A c [n] by

w(A) := xJAI(1 -x)n-IAI,

n
,.f (A) .f

(I I)

g(A) := g(J nI).

If A C B c [n], then j (A) = f (I n l) < f(IBI) = f(B) since f is increasing.
Thus f (and analogously g) is an increasing function on the Boolean lattice, that
is, on 2["] ordered by inclusion. Moreover,

w(A)w(B) = xIAI+IBI(l _ x)2n-IAI-IBI

= xIAUBI+I AnBI (l - x)n-IAUBI+n-IAnBI

= w(A U B)w(A n B).

The FKG-inequality yields

E w(A)(E f(A)g(A)w(A) I (Ag[n]
AC[n] / /

( L, J(A)w(A) I g(A)w(A)
AC[n] / \AC[n]
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that is,

` l(;)f (nk-)g(
n IXk(1 -x)"-k/

\kE
(;)Xk(l -x)"-k)

kn (;)f(-Xk(l) -x)n-k/
\k=o \k/ g \k/

xk(1 x)"-k I

and finally,

(Bnfg)(x) ((Bnf)(x))((Bng)(x))

We say that a weighted poset (P, w) is an FKG-poset if for all increasing
functions f and g the inequality (6.48) is true. The FKG-inequality says that
(P, w) is an FKG-poset if P is a distributive lattice and w satisfies (6.47), for
example, if w - 1. It is interesting that we have again a product theorem:

Theorem 6.3.14 (Jones [278]). If (Pi, wi), i = 1, 2, are FKG-posets, then (PI,
wl) x (P2, w2) is an FKG poset, too.

Proof. Let P := Pl x P2 and w := wl X W2. Let f and g be increasing on P.
Then it is easy to see that the functions fl, gl : Pl -+ R defined for all pi E P1
by

fi(Pl)
P2EP2

f(Pl,P2)w2(P2),

gl(pl)
P2EP2

g(Pl,P2)w2(P2)

are increasing. Moreover, for fixed pi E Pl the functions f (pl, P2) and g(pl, P2)
are increasing on P2; hence (using the fact that (P2, w2) is an FKG-poset and that
w I, being a weight function, is nonnegative)

fi(Pi)gi(Pl) : (P2EP2 T f(Pl, P2)g(Pl, P2)w2(P2)) (
W2(P2)P2EP2

(6.
Using the fact that (Pl, wl) is an FKG-poset, we obtain

1
g(Pl, P2)w( f(Pi, P2)w(Pl, P2) I ((PI,P2)EP (Pl, P2)

(Pi,P2)EP / /

= ( 1 wl(Pi)fi(Pt)l wl(Pl)gt(P1)J

PiEPL / PiEP1

49)
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1: wl(Pl).fl(Pl)gl(P1)) WI(PI)
p'EP

1:

I

1
WI(PI) T. .f(Pl, P2)g(Pl, P2)w2(P2) I w2(P2)wl(Pl)

C P1EP1 P2EP2 /

= ( E f(P1, P2)g(Pl, P2)W(Pl, P2))
((PI,P2)EP

E w(Pl, P2)(P1,P2)EP

Let us conclude this section with a study of the variance problem for our lattices
(with weight w - 1). Because modular geometric lattices are normal, they are
also rank compressed by Corollary 4.5.7. Modular lattices are not necessarily rank
compressed, however. To see this, consider the subgroup lattice P of G(1,2)(p)
given in Figure 6.9 and take the filter F := {U1, ... , Up, VP, G(l,2)(p)}. We have

µr(F)=p+2 <2=1Lr(P) ifp>5.

Then by Theorem 4.4.1 the rank function is not an optimal representation if p >
5 (another counterexample was given by Stahl and Winkler (see [161, p. 84])).
Moreover, geometric lattices are not necessarily rank compressed: Let us look at
the Dilworth-Greene lattice DG, and take F := B (see Figure 6.7). Then

n (n + 2)2n-1 + 2n3i-1
l-tr(F) = + 1 < 2n

+ ± = µr(DGn) if n > 6;2

that is, DGn is not rank compressed if n > 6. However, we did not expect that
distributive lattices are rank compressed. More generally, we have (see [148]):

Theorem 6.3.15. If (P, w) is a positively weighted, ranked FKG-poset then
(P, w) is rank compressed.

Proof. Let r be the rank function of P. We verify condition (ii) of Theorem 4.4.1
in order to derive that r is an optimal representation. Let g : P = Pr -+ R be
increasing and take f : P -+ IR with f(p) := r(p) - µr, p E P. Clearly, f is
increasing, too. Because (P, w) is an FKG-poset, we have

1: w(p)g(p)(r(p) -Ar)
PEP

1

w(p)g(p)0w(I,) 7 w(p)(r(P) -
(PEPpeP

since Epee w(p)(r(p) - /1r) = 0.
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In Section 7.2 we will sketch a proof that the partition lattice nn is not rank
compressed if n is sufficiently large. Following my paper [155], first we ask for
filters F in n, that satisfy the necessary inequality µ,.(F) > µ,(11n). Because of
the bijectivity between antichains A and filters F (generated by A) we study, more
precisely, antichains.

Let A be a positive integer. A A-coloring of [n] is as usual a function c : [n]
[A]. Given an antichain A in II, we define a proper X-coloring of A to be a
A-coloring of [n] such that for each element of A (which is a partition of [n])
there exists at least one block that is not monochromatic. Let p(A, A) be the
number of proper,-colorings of A. If, for example, A consists only of one partition
r (with b(7r) := n - r(7r) blocks), then obviously p({ r}, A) = An - Ab(n)

Moreover, it is not difficult to see that for A = 17r, a), the equation p((n, a), A) =
An - Ab(rr) - Ab(a) + Ab(nva) holds. To obtain a more general formula, we define
for our antichain A the subposet LA of nn by

LA := (sup A: A' C A)

(here we put sup 0 := 0, where 0 = 1121 . . . In denotes the minimal element in
11n). In the following we must distinguish between the expected value µ(.) and
the Mobius function A(_).

Theorem 6.3.16. Given an antichain A in IIn, we have

p(A, A) _ (0,
aELA

Proof. For any coloring c of [n], let A (c) be the set of elements of A for which
all blocks are monochromatic. Further, let (p(c) := sup A (c). It is easy to see that
all blocks of a := sup A' are monochromatic if all blocks of each 7r c A' are
monochromatic - that is, if A' C A(c). Thus we have, for any fixed coloring c,

(p (c) > LA a if the blocks of a are monochromatic.

For a E LA, let f (a) be the number of A-colorings c of [n] with (p(c) = a. Obvi-
ously f(0) = p(A, A). Defining g(a) := L.fl>LAa f(,B), we see by the preceding

remarks that g(a) counts the number of ,l-colorings for which the blocks of a are
monochromatic. Hence g(a) = ,kb(,). By Mobius inversion (Theorem 6.3.3),

p(A, A) = f(0) = E µ(0, a)'X'00.
aELA

0

Hence p(A, X) is a polynomial in A that is called the chromatic polynomial of
A. It is a natural generalization of the chromadc polynomial p(G,,l) of a graph
G (cf. [354]). If A is a set of rank-1 elements of IIn, then A can be interpreted in
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the following way as a graph G = (V, E) on V = [n]: Each element of A is a
partition of [n] with n - 2 one-element blocks and 1 two-element block, and we
put ij into E if there is one element of A having ij as the two-element block.
Then p(A, A) = p(G, A).

Theorem 6.3.17. Let A be an antichain in fl, and F the filter generated by A.
Then

ILr(F) ? Lr(nn) iff - E (i - j) (P(Ai) - P(A j))
0.

i,j=1 J

Proof. We begin with the determination of p. (fu). We have I11n I = Bn (the Bell
number), and, using the recurrence of the Stirling numbers (1.6),

n-1 n

1: r(n) _ T i Sn,n-i = J](n - k)Sn,k
7rErln i=0 k=1

n

E nS5,k - Sn+l,k + Sn,k_1 = nBn - Bn+1 + Bn.
k=1

Thus

l2r(nn) = n + 1 - Bn+1
(6.50)

Bn

For F 0 nn - that is, A :A {0} - we determine now E7rEF r(n). For 7r E 17n,
let An := {a E A : or < 7r) and *(7r)(7r) := sup A,. Obviously, *(Jr) E LA and
r > * (ir); that is, 7r lies in the filter generated by tr(ir). For a E LA, let

.fl (a) := I{n E nn : f(n) = a}I , f2(a) := r(rr).
7r Erln:*(7r)=a

Obviously,

IF1 = .fi(a), r(7r) _ f2 (a)
aELA:a#0 7rEF aELA:a00

and with gi (a) := E.8_>LAa fi (p), i = 1, 2, we have

IFI = gl (0) - fl (0), Y' r(n) = g2(0) - .f2(0). (6.51)
7rEF

For fixed a E LA, the set F(a) := {8 E Fln : 6 > a) forms an induced subposet
of iln which is isomorphic to ilb(a). We have F(a) = {,B E nn a}
because # > a implies tr($) > a and 8 > *(f). We have

gl (a) = Bb(a) (6.52)
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because

gl(a) _ 1{rEnn:*(n)=P}I
?:LA a

= I{7r En, : r(7r)>a}1=lnb(a)I=Bb(a),

and

because

g2(a) _ r(n) _ r(n) _ r(n)

>LAa 7rEn.:* (7r)=# 7rEI1n:1,(7r)>a 7rElln:7r>a

n-1 b(a)

iSb(a),n-i = 57(n - k)Sb(a),k = nBb(a) - Bb(a)+1 + Bb(a)
i=r(a) k=1

where the last equality follows as in the beginning of the proof. From (6.51), (6.52),

and (6.53), we obtain via Mobius inversion

g2(a) = nBb(a) - Bb(a)+l + Bb(a) (6.53)

IFI = Bn - E µ(0, a)Bb(a), (6.54)
aELA

r(7r) = nBn - Bn+l + Bn
7rEF

- L..: µ(0, a)(nBb(a) - Bb(a)+l + Bb(a)).
aELA

(6.55)

From (6.50), (6.54), and (6.55) we obtain after a straightforward computation that

Ar(F) > /Lr(nn)

if

µ(0, a)(Bb(a)+l Bn - Bb(a)Bn+l) > 0. (6.56)
aE LA

By Dobinski's formula (1.7) a product Ba Bb can be written in the form

1 1 1
is b ib a

BaBb=2(BaBb+BbBa)=2e2 i,l +il
i,j=O 1

Thus (6.56) is equivalent to

00
1E (i - j) jn E µ(0, a)ib(a) - in µ(0, a)jb(a) 0,tl t

i,j=O ' aELA aELA
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and the last inequality is by Theorem 6.3.16 equivalent to

00

lnn (i - j) (p(A, i) - p(A, j)) > 0.
l i!j! \ in

n Jl=

We call an antichain A of fl, coloring-monotone if

p(A,A) < p(A, ; + 1)
for all A E N+.

a.n (A + 1)n

Hence A is coloring-monotone if the probability that there exists a nonmonochro-
matic block for a random coloring in each element of A increases with the number
of colors. Directly from Theorem 6.3.17 we may derive:

Corollary6.3.7. Let A be an antichain in nn and F the filter generated by A. If
A is coloring-monotone then

iir(F) ?: µ,(n,,)

Proposition 6.3.2. If I A I < 3 then A is coloring-monotone.

Proof. The cases I A I E 11, 2} are easy to verify, so let A = {a, 0, y). Generalizing
the case IA I E 11, 2} we may calculate p(A, A) also by the principle of inclusion
and exclusion:

p(A, A) _ An - a,b(a)r(a) - Ab(P)r(f) -;,b(Y)r(Y)

+ kb(avfl)r(a V fi) +.kb(avy)r(et V Y) + ab(Pvy)r(8 V y)
- Ab(avflvy)r(a V P V y).

We put f o,) := p(A, It is sufficient to prove that f'(),) > 0 for ,l > 2.
We replace everywhere b(ir) by n - r(n). In the calculation of f'(,k) we omit the
(positive) term with a V # V y and decrease ,l-r(a) by A-r(a\ ) + A-r(avy) (note

that r(a) + 1 < r(a V 0), r(a) + 1 < r(a v y), A > 2) and do the same for
),-r($) and X-r(y). We obtain

f'(A)
/A-r(avf)(r(a) + r(p) - r(a V ))

+,1-r(avy)(r(a) + r(y) - r(a V y))
+.l-r(RvY)(r(p) + r(y) - r(P v y)))

The RHS of this inequality is nonnegative because the partition lattice is semi-
modular.
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I leave it to the reader to verify for several classes of graphs (see [61] or [354]),
like complete graphs, trees, circuits, wheels, interval graphs, and so forth, the
coloring-monotonicity (recall that subsets of Ni (II,) are interpreted as graphs).
We studied the case I A I = 1 together with Bouroubi [82] in a direct way. Let me
end with the remark that not all antichains are coloring-monotone if n is sufficiently
large. Take for simplicity n even and A C N1, whose two-element blocks have the
form {i, j} with i < z, j > 2 (this can be interpreted as the complete bipartite
graph on the vertex set 11 , ... , 2 } U J!! + 1, ... , n}). Then it is easy to see that
p(A, 2) = 2 and p(A, 3) = 6 + 6(2 - 2); that is,

p(A, 2) < p(A, 3) iff 3n-l < 2 - 2",
2n 3n

and this is false if n > 20. Here is a nice analogy to the proof of Theorem 5.4.8.

6.4. The independence number of graphs and
the Erdo"s-Ko-Rado Theorem

In this section we consider more general objects, namely simple graphs G =
(V, E) instead of posets. Let us recall that a subset S c_ V is called independent
if vw 0 E for all v, w E S. The independence number of G is defined by

a(G) := max{ISI : S is independent}.

The determination of a(G) is, in general, difficult (NP-complete, cf. [215]), but
here we are looking at special graphs that are, in particular, regular. We will consider
an algebraic method for the the determination of upper bounds for a (G). It is based
on the work of Hoffman [119, p. 115], Delsarte [128], Lovasz [355], Schrijver
[419], Wilson [470], and others. Though there are theories related to these questions
- the theory of association schemes, cf. Bannai and Ito [38], and the theory of graph
spectra, cf. Cvetkovic, Doob, and Sachs [119] (see also Haemers [250]) - we shall
avoid building the whole machinery. Instead we'll examine some main ideas that
are sufficient for our purposes. As throughout this chapter, linear operators are
preferred to matrices. _

We associate with a graph G the graph space G in the same way as it was
done for posets (see Section 6.1). So G is freely generated by the vertices of G.
The standard basis of Z Y4 given by {v : v E V}. Moreover, we consider G as
a Euclidean space (with the standard scalar product). We will work with (linear)
operators from G into G. The identity operator on G is denoted by I. Let

IPG:=Ev.
vEV

We define the all-one-operator .7 by

J(v) := coG for all v E V.
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Finally, an operator A : G G is said to be an adjacency operator if for all
vEV

A(v) _ E c(v, w)w,
wEV:VwEE

where c(v, w) are real numbers depending on v and w. Note that (A (U), w) = 0
if vw E. If for all vw E E there holds c(v, w)_= c(w, v), then (A(v), w) _
(v, A (w) ); hence A is self-adjoint. For example, J is self-adjoint. If c(v, w) = 1
for all vw E E, we speak (as for posets) of the Lefschetz adjacency operator AL. It
is well known that all eigenvalues of a self-adjoint operator A are real and that there
exists a basis of G consisting of pairwise orthogonal eigenvectors of A. Recall that
a self-adjoint operator M is positive-semidefinite if (M(op), cp) > 0 for all cp E G
and that this is equivalent to the fact that all eigenvalues of M are nonnegative.

Lemma 6.4.1. _ Let A be _a self-adjoint adjacency operator on a graph space G
and let M := I + A - 1,7 be positive-semidefinite. Then a(G) < S.

Proof. Let S be any independent set in G and let cos := EVES v. Then

(A(ops), cos) _ (1: A(v), iu' _ E (A(v), w) = 0
VES WES V,WES

since vw V E for all v, w E S. Consequently,

0 < (M(ws), ws) _ (cPs, ccs) + (A(ws), ws) - s (J(ws), ccs)

=A- (J:.7(V),,os)
VES

= I SI - I SI 4G, ws) = ISI -
s

I SI2

This implies ISI < S.

Remark 6.4.1. Note that in Lemma 6.4.1 a(G) = S iff (M(ops), cps) = O for some
independent set S in G.

Up to now we have had much freedom in the choice of A, but we must choose A
and S such that the verification of the positive-semidefiniteness of M is possible.
One way to do this is the construction of A as a linear combination of "elementary"
adjacency operators for which the eigenvalues can be determined explicitly:

Lemma 6.4.2. Let A = >j"_ i fi j Bp where each Bj is a self-adjoint adjacency
operator on the graph space G of a graph G on n vertices. Suppose that the
eigenspaces of the operators Bj are independent of j, and let ?. j,,, i = 1, ... n, be
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the eigenvalues of Bj, j = 1, . , 1. Finally suppose that cpG is an eigenvector of
Bj to the eigenvalue ;lj,l, j = 1, ... ,1. Then the eigenvalues µi of M := I +

are given byA - s J-

1+:j=1PJ),J,1

1 +

ifi=1,
ifi =2,...,n.

Proof. By our suppositions, there exists a basis {cpl = cpG, cot, ... , cp } of pairwise
orthogonal eigenvectors of B j to the respective eigenvalues X j, 1, . . . , A j,,, j =
1,...,1.We have J(cpG)=EVEVJ(v)=EVEVEWEVncpGand J(cpi)=
0, i = 2, .. ., n, since for each v E V it holds ((pi, .7(v)) =
(0, cpG) = 0. Consequently,

M(cpG) = VG +PiBj(coG) - J(cpG) _ (1 +pjXj,1 - n VG,
j=1 \ J

1 l

M(cpi) = cpi + BjBj(cpi) - 1 J(cpi) = 1 + fijxj,i 0, i = 2, ..., n.E 8 )j=1 j=1

With the assumptions of Lemma 6.4.2 we obtain the smallest possible upper
bound on a(G) in determining

z:=max Epjxj,t
j=1

subject to

3jAj.i > -1, i =2,...,n.
j=1

Then we have µi > 0 for i = 2, ... , n and we may choose
n

+z
(this is the smallest S with the property µt > 0). We summarize the result:

Theorem 6.4.1. Let B1,..., BI be self-adjoint adjacency operators on G whose
eigenspaces are independent o f the index. Let A,,1 (i = 1, ... , n = IV (G) I), be
the eigenvalues of Bj, j = 1, . . . , 1, and let c°a be an eigenvector of Bj to the
eigenvalue of Aj,1, j = 1, . . . , 1. Define z := max{Ej -l - -1 1jAj,l : El J'-1 ijj,i >
-1, i = 2, ... , n). Then

a(G) < n

- 1+z
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Corollary 6.4.1 (Hoffman (unpublished)). Let G be regular of degree d,
IV (G) I = n, and let An be the smallest eigenvalue of the Lefschetz adjacency
operator AL. Then

a(G) < -na,n

Proof. In Theorem 6.4.1 we take I := 1 and B1 := AL. Our vector cPG is an
eigenvector of Bt to the eigenvalue d since

AL(cPG)=1: AL(v)=1: Y' w=d w-dcPG
VEV VEV WEV:VWEE WEV

We must calculate fi1d -* max = z subject to fi1X1,2 > -1, , thAi,n > -1
where A1,2, , X1,n = An are the eigenvalues of AL (a.n is the smallest one). To
obtain a maximum we must clearly have P1 > 0. Then the strongest restriction
is the last one, namely fl1An > -1. Since the sum of the eigenvalues equals the
trace of AL, which is 0, An is negative, and it follows that ,Bl < -1/An and
z = -(1/An)d. From Theorem 6.4.1 we derive

(G) <
n -nln

1-
d =

d -a,n

11

Now we will apply this method to prove Erd6s-Ko-Rado type theorems. We
will consider the Boolean lattice B and the linear lattice Ln (q) simultaneously.
More precisely, we will do the following calculations for Ln (q). If we let q --* 1
we obtain the corresponding formulas for B. If the reader is only interested in
B, he or she can prove some of the succeeding Lemmata more easily (again let
everywhere q -> 1). For Ln (q), we need the following theorem, which is due to
Goldman and Rota [225]:

Theorem 6.4.2 (q-binomial Theorem). Let fk (x, y) (x - y) (x - qy)
(x - qk-ly), k = 1, 2, ... , and fo(x, y) := 1. Then

/n l
fn (x+z) _ I f 1k (x+Y)fn-k(Y+z) for all x, y,z E R.

k=0 q

Proof. Let Vn be a vector space of dimension n and let X, Y, Z be vector spaces
of cardinalities x, y (resp. z) such that Z c_ Y C- X and n < dim Z. Let us count
the number I of injective linear mappings (D : Vn -+ X such that the intersection
of the image c (Vn) with Z equals the zero vector. Let v1, ... , vn be a basis of
Vn. We count the ways of mapping this basis into a set of n independent vectors
in X whose span [{c(vl), ... , (D(vn))] intersects Z in the zero vector. We need
c1(v1) E X- Z; consequently there are x - z choices for cb (v 1). Further we need
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c(v2) E X - [Z U {4 (vi)}], so we may choose c(v2) in x - qz ways. Now we
may continue witht1(v3) E X-[ZU{cD(vi),'(v2)}], that is, x-g2zpossibilities
and so forth, and we get on the one hand

I =(x-z)(x-qz)...(x-qn-lz)= fn(x,z)

On the other hand, we classify our mappings by c (Vn) f1 Y, which is clearly a
subspace of some dimension, say k, and hence it is the image of a k-dimensional
subspace of V. We obtain all such mappings by first choosing a k-dimensional
subspace W of Vn, then mapping W into Y in such a way that the intersection with
Z is only the zero vector, and finally mapping V, - W into X - Y. We have (k)q
choices for W. Let wt, ... , Wk be a basis of W and W I , . . . , wk, ..., w, a basis
of V. As before, we see that there are (y - z)(y - qz) . . . (y - qk-lz) = fk(y, z)
possibilities to define c(wt), ... , (D (Wk) and, independently, (x - y)(x - qy) . .

(x - qn-k-1 y) = A-k(x, y) choices for c(Wk+l), ... , t (wn). Consequently,

()q' z).fnk(x, ) _ E (;)f_k(Y z).fk(x, Y)
0 k=0 q

We prov ed our assertion for all numbers x = q', y = qb, z = qc such that
n < c < b < a. For fixed a and b such that b > 2n, we have on both sides
polynomials in z of degree at most n that are equal on n + 1 points, namely
z = qn, ... , q2n; hence they are identical. For fixed z and a such that a > 2n, we
may conclude in the same way that the assertion holds for all y, z and then finally
also for all x.

Corollary 6.4.2. We have

(a) xn = 1 + rk=1 lk)q(x - 1)(x - q) ... (x - qk-1),

(b) (x - 1) (x - q) ... (x - qtt-1) = rk=o lk)q (-1)kq (2)xn-k,

(a+b n ((a ((b (a-k)(n-k)() l n )q = k=0 In-k)qg

(d)
(b-a) = rk=o(-1)k a+k-1 / b q-ak-(2)-(a+k)(n-k).
l n q k )q In-k)q

Proof. (a) Put in Theorem 6.4.2 z := 0 and y := 1.
(b) Put in Theorem 6.4.2 z := 1 and y := 0 and use k := n - k.
(c) Put in Theorem 6.4.2 x qa+b, y qa, z := 1 and use k := n - k.
(d) Replace in (c) the variable a by -a and note that ( k)q = (-1)kq-ak-(2)

* (a+k-11
l k )q'

As always we will use the letter P for both lattices Ln (q) and Bn, and r denotes
the rank function. Elements of P are denoted by X (subspaces of an n-dimensional
vector space V over G F(q) (resp. subsets of the n-element set [n])). The standard
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basis of the poset space P is then {X : X E P}. Recall that r(X) = dim X (resp.
XI) and that a family.F C P is called k-uniform t-intersecting if r(X) = k for

all X E .F and r(X A Y) > t for all X, Y E Y. Let G = G,,,k,t(P) be the graph
on the vertex set Nk whose edge set E is given by E {XY : X, Y E Nk and
r(XAY) < t}. We call G briefly the Johnson graph because it arises in the Johnson
scheme (see [38]). In the case t = 1 our graph G is called the Knesergraph. Clearly
a(G) equals the maximum size of a k-uniform t-intersecting family in P. Our aim
is the determination of a(G). (In the case of B we know already the solution by
Theorem 2.4.1. We will derive this result again for n > (k - t + 1) (t + 1) since
the method gives in addition many interesting properties of the corresponding
linear operators.) We may suppose throughout that 0 < t < k < (n + t)/2 since
otherwise the problem becomes trivial. We have

a(G) > (n t)
k t

(6.57)
q

since we may take a fixed X0 E P with r(Xo) = t and obtain a k-uniform t-
intersecting family S := {X E Nk : X D Xo} of size (k-t) .The question is for

q
which parameters we have equality. We will see that this is the case if n > 2k for

(t+1)(k-t+1)forB,,.
In order to define the operators Bj of Theorem 6.4.1 (not to be confused

with the Boolean lattice for which we write P here) we work with the operators
Vi, j and Di, j introduced after (6.30). Recall that, for example, Di, j(X) :_
EYCX:r(Y)=j Y, where X E Ni. Moreover, in generalizing the operators from the
proof of Theorem 6.3.2, we introduce tPi, j : Ni -+ Nj as follows:

'Pi, j(X) where X E Ni, 0 < i, j < n.
YENj:XAY=O

Finally we define Bj : Nk - Nk by

Bj WJ kOk,j, .1 =0,...,k.

Lemma 6.4.3.

(a) Let X E Nk, Y E P, r(X A Y) = m, and 0 < j < k. Then I {Z E Nj : Z <
XandZAY=0}I =gmj(km)

(b) Bj(X) = Ei=0 EYENk:r(XAY)=i giJ(k jt)QY.

Proof. Obviously (b) follows from (a) with m := i. So let us prove (a). Let W :_
X A Y. The number we are looking for is a : _ I { Z E Nj : Z < X, Z A W = 0} I .
Since W consists of q' vectors we may find (qk - qm) . . . (qk - qm+j-1) ordered

bases for a subspace Z E Nj with Z < X, Z A W = 0. On the other hand, each
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subspace Z has (qj - 1) (qj - qj-1) ordered bases. Consequently,

_ (qk - qm) ... (qk _ qm+j-l)
= qmj k - ml

(qj - 1) ... (qj - qj-t) ` J Jq

Lemma 6.4.3(b) tells us that Bj is self-adjoint for j = 0, ..., k and that Bj is an
adjacency operator for our Johnson graph space if k - j < t; that is, j > k - t + 1.
So we may use Theorem 6.4.1 with Bk-1+1, , Bk if we are able to determine
their eigenspaces and eigenvalues. This can be done using several identities.

Lemma 6.4.4. We (have

(a) Aj->10i--rj =//lj-1qA1,1, 0 1 - j < i - n,

(b) Vj1Vi,j = lj-l)gVi-.l, 0 < 1 < j < i < n,

(c) gi(i-1)(nT )gTi,l, 0 < 1 j n, 0 < i < n,

(d)
i(j-1) n-1-ij >j = 9 l j-1 q411-ii, 0 1 < j n, 0 < i < n,

(e) Pi->l =
r_,'01,1)(-1)jq(z)pj-,lpl-.j, 0 < i,1 < n,

(t) i->l =
Ej_0(-1)jq(j}2 )

0 < 1 < i < n.

Proof. (a) and (b) follow from the fact that for X > Y, r(X) = i, r(Y) = 1 it
holds I

(c) and (d): With a method analogous to the proof of Lemma 6.4.3(a) we obtain
that, for fixed Y E N1, X E Ni with Y A X = 0, the equality I{Z E Nj : Y <
Z, Z A X = 0}1 = qi(j-1) holds. This yields the assertion.

(e)LetXE Ni, Y E N1, r(XAY) =m. We have

(Vp ii i_, j(X), Y) = IfZ E Nj : Z < X and Z < Y}l

={ZENjZ<XAY}l
=

\j/q.

Consequently, putting in the polynomial identity from Corollary 6.4.2(a) x := 0
and n := m we obtain

min(i,l) _1 m

(-1)iq(z)pj,101-,jl (X), YI = (-1)Jq(z) (in')

)qj=0 1 j=0 \
1 ifm =0,

1 0 otherwise

= hpl-,l(X), Y)
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(f) Let X E Ni, Y E N1, r(X A Y) = m. We have

(Oj,l,Pi,j(X),Y) = I{Z E Nj : Z < YandZAX=0}I

= I{ZENj:Z<YandZA(XAY)=0}I
mj(i_rn)=q j q

where the last identity follows from Lemma 6.4.3(a). Consequently,

1

E(-1)1q('z )-110j-qwi-,j I
j=o

283

1-m

_ (-l)jq(T')+(m-1) j
(1_rn)qj=0

We have to show that the RHS equals 1 if m = 1, that is, Y < X, and equals 0 if
m < 1, that is, Y X. Putting p 1- m and using the symmetry of the Gaussian
coefficients we conclude

E -P(P-j)(-1)jq('z1)-Pj(P) = E(-1)P-jq(P-Z+i)

j=0
l q (pj)qj=o

z P

= (-1)Pgq (-1)1q(z)
p

j=0 (j)q
1 ifp=0,
0 otherwise

by the proof of (e).

Lemma 6.4.5. We have for 0 < j,1 < k,

BjBl = BiBj

= ql(k-')
n - j min(j,1)

i k(j-i)+ , n - k - i k(
/q

(-1) q (z)(
i )q(i;)qBi.

Proof. In view of Lemma 6.4.4 we have

BjB, = (Pj,kOk-sj)(T1-->kOk-s1) _'Pj,k(Ok,j*l-+k)Ok-+l

= ql(k-j) (n - j - 11 4'j-.kT1-
jOk-+11\ k-j Jq



284 Algebraic methods in Sperner theory

and further
l}

qjj,k'Fl-->jAk,I = Wj-->k (-1)'q(2)Qi j(0! si0k >!)(mt
min{ j,l } (k-i)(-1)'q(2)

r=0
9

min{ j,1) k - k(j _i) (n - k - i
-1)'q((')

i qq \ ji )q'i+kt k+i
i=O

i 1m n(j, } n-k-1 k-iE (-1)igk(J-i)+(2) i.
1=0 j )q (1-i)q B

The product B1Bj can be calculated analogously.

Lemma 6.4.6. Let 0 < j < k < n and j + k < n. Then

(a) 4 j-+k is injective,

(b) Bj(Nk) = Vj-rk(Nj).

Proof. (a) By Lemma 6.4.4(c) and (f) we have

j _
Oj_j = L(-1)'q(12') ii

i=0

i+i - '(±(_l)jqc)_jk(fl
k
-) ijki) Wjk

Since 0 j.+j is the identity operator on Nj our operator W j ,k must be injective.
(b) By definition and Lemma 6.4.4(a) and (e) we have

i i)$ = j =
',(--1)'q(2) k - i

J ,k k,j
i=0 j -I q

hence

((_1)1q(ijki),
!=0

Bj(Nk) c Oj->k(Nj). (6.58)

Moreover, since k4 j is a scalar multiple of the Lefschetz lowering operator
restricted to Nk, we derive from Theorem 6.2.5 that Ok,j is surjective and Vj +k
is injective. Consequently (using (a)), dim Bj (Nk) = dim Tj,k(NJ) = Wj =
dim Vj,k(Nj). This gives equality in (6.58).
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Let us look at the spaces E11 defined in (6.14). For our purposes, we use here
other indices. Recall again that Disk and Di-+1_1 are scalar multiples of OLr.A
(resp. AL11_1). Consequently, we have

Ek,i = Ol->k(ker(0,-->1-1)), 0 < i < k, (6.59)

and by Theorem 6.2.5

Nk = Ek,O®...®Ek,k, 0<k< 2. (6.60)

Theorem 6.4.3. Let 0 < i, j < k < 2. The spaces Ek,i are the eigenspaces of
Bj to the eigenvalue

1=-1)`gJ(k-i)+(z)
n- i- j k-

i
j' k-i q j-q

(here we set 0; that is, ,l j i = 0 if j < i).
9

Proof. Let cp E Ek,i; that is, cp = Vi.+k(ip') for some ip' E ker(Li.1_1).
Case 1. j < i. We have as in the proof of Lemma 6.4.6(b)

Bj(W) = BjVi-,k(co')

1 r (k-1)_ (_1) q(z) 1 J Ol
1=0 J q

is a scalar multiple of OL-IOi-` (cp'). Since 0 < 1 < j < i we
have k - 1 > k - i. Lemma 6.2.3 implies that these terms equal the zero vector
(note OL(ip') = 0); that is, also Bj(cp) = 0 and aj,i = 0.

Case 2. j > i. Since iP E V1->k (Ni ), there is by Lemma 6.4.6(b) some ip" E Nk
such that Bi (cp") = cp. We first show that, for 0 < I < i, there holds Bi (ip") = 0:
In view of Lemma 6.4.5 and Case 1 we have

0 = Bl (cp) = B1 Bi (cG") = Bj BI ((p").

Again by Lemma 6.4.6(b) there is some iP"' E N1 such that Ol->k(ip...) =
Using the definition of Bi, we conclude that

0 =

But Ok,iVl-+k is injective according to Theorem 6.2.5 (note 1 < i < k) and Wi.+k
is injective by Lemma 6.4.6(a). Consequently, V'I' = 0 implying BI (cp") = 0. This
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result and Lemma 6.4.5 imply

Bj (co) = Bj Bi (c'") =
Bi Bj (tp")

= gj(k-i)
n - i - j r(-1)igk(i-i>+(z)

\>

k - i
B1(")C k)q(n-k_i)

q1(k-i)(n - i -j) (-1)`q(i)(j-ik-i)
cpk-i q q

For the application of Theorem 6.4.1, we need further that cPG = >XENk X is
an eigenvector. This is in the present situation the case because coG generates Ek,o.
The corresponding eigenvalue is X j,o := qjk (" k J)9 As mentioned previously,

9
we will work with an operator of the form A = ,Bk-r+1 Bk-t+1 + + iBk Bk. Here

we need numbers ,Bj, j = k - t + 1, . . . , k, such that

k

Pjaj,i > -1, i = 1, ... , k,
j=k-t+l

and Ei=k-t+l Pj'kj,o is as large as possible. To get an idea how to choose these
/3 j's, let us look back at the beginning of this section. We are looking for param-
eters n, k, t such that a(G) = (k-t)q So we take in Lemma 6.4.1 8 := (k=i)q
Independent sets S of this size were represented after (6.57). The correspond-
ing vector in Nk has the form cps = >XENk.X_Y X, where Y E Nt is arbitrary.
Obviously, cps = Ot_k(Y). By Remark 6.4.1, a(G) = 8 and S is maximum
if

(M(cPs), cos) = 0.

Moreover, M has to be positive-semidefinite. Hence the vectors cos are optimal
solutions of the problem (M(cp), cp) -> min, where cp E Nk. This implies that
M(cps) = 0 (either expand cos as a linear combination of eigenvectors or use the
fact that the gradient of the corresponding quadratic objective function must be
the zero vector).

Let X E Nk and Y E Nt be arbitrary. From the preceding remarks we obtain
the condition

X) = 0;

that is,

(Y, Ak_rM(X)) = 0.
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We have in view of Lemma 6.4.4(c)

t IPjItAk->j.Ok->tBj = j = qi(k-t) (n_j_tk -t

Hence

k n- I t 1-
Ok->tM = Ok-*t + pjgi(k-t) ( k t ) tl'j-tLk- j - s Ok- rJ.

j=k-t+l 1\ )q

Let m := r(X A Y). Then

(1 if Y < X, i.e.,m=t,
(Y, Ak,t(X)) _

0 otherwise,

(Y,4j.._,tOk,j(X))= I{ZENj:Z<XandZAY=O}I

qmj(k-m)
=

j 9

(this follows from Lemma 6.4.3(a)), and

(Y, Ok,tJ(X)) = I {Z E Nk : Z > Y}I
= (k - t) = S.

9

Accordingly,

0 = (Y, Ak-tM(X))

11 if m=t, k

_ + P qj(k-r) (n - j - t
qmj

k - m

0 otherwise j=k_t+l k- t q j q

So we transformed our condition into the following system of equations:

k 0 ifm = t,pjgj(k-t+m) n- j - t _
k-t

)q(k_rn)

3 q 1 if 0<m<t-1.j =k-t+1

For formal simplification, set j : = j - (k - t + 1) and introduce yj := Pj+(k-t+l) ,

j = 0, ... , t - 1. We have to solve

t-t - - -T yjq(j+(k-t+1))(k-t+m) ('1

k - t
k

- 1)q (j
+k

k -,t + 1)q

0 ifm = t,

1 if0<m<t-1.
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Let us verify that a solution of this system is given by

Yj := (-1)jq-(k-t+l)j-(2)-(k-t+l+j)(k-j-1)

(j+k-tV n-j-k-1* 1-j
k-t Jq

Indeed, insertion yields the LHS of our system:

r-1
1)jq-(k-t+l)j-(2J )-(k-t+1+j)((-1-m-j) (J + k - tl ( k - m

j[=moo \ j )q\j+k-t+l q

Ifm =tthis sumequals 0since (j+k m+l)q =0fork-m =k-t < j+k-t+l.
Let 0 < m < t - 1. By the same reason all summands with j > t - 1 - m are
zero, and thus we arrive at

t-1-m
(-1)jq-(k-t+l)j-(Z)-(k-t+l+j)(t-1-m-j)

j=0

>+k - tk-m
*( j q t-1-m-j q

If we put in Corollary 6.4.2(d) a := k- t + 1, b:=k-m,n:=t-1-m, k := j,
we see that the last sum equals (r_1_m)q = 1, and the verification of our solution
is complete.

Because we have chosen the y's, that is, the fl's, such that (M(tp), tp) = 0 for
all t p E V(-- k(Nt) = Vt +k(Et,o ® (D Et,t) = Ek,o ® ®Ek,r (see (6.59) and
(6.60)), we know already that

k (k)g - 1 if i = 0,.. = (o-t)j , - k-t q
j=k-t+l -1 if i = 1, ... , t.

In order to apply Theorem 6.4.1 we must finally investigate for which parameters
k and t the inequalities

k t-1

E fljXj,i = EYjAj+(k-t+l),i > -1,
j=k-t+l j=0

i = t + 1,...,k,

hold. Up to now all conclusions were true for Ln (q) as well as for B. From now
on we must distinguish between these cases.

Lemma 6.4.7. Let 1 < t < i < k < 2 and q > 2. Then

t-1
EYj,kj+(k-t+l),i > -I-
j=0
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Proof. With the substitution j := t - 1 - j and in view of Theorem 6.4.3 (recall
thatAk-j,i =0ifk- j <i,i.e., j > k - i),wehave

t-1 min(t-1,k-i}

Yj),j+(k-t+l),i = Y, Yt-1-jXk-j,i
j=0 j=0

min{t-1,k-i )
(-l)t-1-jq-(k-t+1)(t-1-j)-( 2 t)+(k-j)(t-i-j)+(2)

j=0

(k-1-j'\ (n-i-k+jl (k -i(n-t+j-kl-1
1l\ k-t q1\ k-i )qk j )q k - t Jq

This is an alternating sum. It is sufficient to show that the terms decrease in absolute
value and that the first term has absolute value smaller than 1. Note that

b-1q <qb-a for0<b<a, q>1,qa-1

q 1 < qb-a+1 for a > 1, q > 2.qa-1
The absolute value of the ratio of consecutive terms (with index j > 0 and j + 1 <
min{t - 1, k - i}) equals

qi+j-tqt-j-1 - I qn-i-k+j+l - 1 qk-i-j - 1 qn-2k+j+l - 1
qk-1-i - I qn-2k+j+1 - 1 qj+l - 1 qn-t+j+l-k - 1

< qi+j-tqt-kqk-i+lqk-i-2jgt-k = qt-i-j+l < q-f < 1

We are interested in the absolute value for j = 0. Considering the term as a

function g(i) where

r -1
g(i) := q-(k-t+1)(t-1)-(2)+k(t-i)+(2) k

k

- -t1q n
k

- i
-i

- k
)q

n

k

- t
-t

- k
q

we have to show that g(t + 1) < 1 and ( 1j < 1. Indeed,
8(i) -

g(t + 1) =
q-kt+t2 (k - 1) qk-t - 1

k - t
9 gn-k-t - 1

-t(k-t) (qk-1 - 1) ... (qt - 1) < -t(k_t) t(k_t) = 1
q (qk-t-1)...(q-1) q 9

and

g(i k-i -+ 1) - i-k 9 1 i-k-q <_q <1.
g(i) qn-i-k - 1

This finishes the proof.
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Theorems 6.4.1 and 6.4.3 as well as Lemma 6.4.7 (with the choice of the P's
from the preceding text) finally imply:

Theorem 6.4.4. Let 0 < 2k < n. Then the maximum size of a k-uniform t-
intersecting family in L (q) equals

This theorem was first proved by Hsieh [272] for n > 2k + 1, q > 3 and for
n > 2k + 2, q = 2 by difficult and lengthy combinatorial means. The case t = 1
can be treated more easily by first proving the theorem for n = 2k (see Greene and
Kleitman [234]) and then using an inductive argument (Deza and Frank! [135]).
The proof presented before Theorem 6.4.4 is due to Frank! and Wilson [203]. They
proved a little bit more:

Corollary 6.4.3. Let 2k - t < n < 2k. Then the maximum size of a k-uniform
t-intersecting family F in L (q) equals (2 k t)q.

Proof. For X, Y E F, we have by the modularity of the rank function r (X V Y) =
r(X) + r(Y) - r(X A Y) < 2k - t. If we consider F as a family in the dual
poset of L (q) (which is isomorphic to L,, (q)), then F is an (n - k) -uniform
n - (2k - t)-intersecting family. Since n < 2k, we have 2(n - k) < n. By
Theorem 6.4.4

n - (n - (2k
- t))

2k-t
=

2k -t
ICI < n - k - (n - (2k - t)))q = (k - t )q - ( k )q

The bound is attained by the family F {X < Y : r(X) = k}, where Y is fixed
with r(Y) = 2k - t.

Now we will consider the Boolean lattice B. For the sake of brevity, we use
(see the proof of Lemma 6.4.7)

k
ppBi E fj?j,i

j=k-t+l

tt-1
1)r-l-j (k-1-j)(n-i-k+j)

j=0 k-t k-i
*(k i)(n-t+i-k)-t

Let us recall that we have to prove Oi > -1 for 1 < t < i < k < n

Lemma 6.4.8. Let n = (t + 1) (k - t + 1) and 1 < t < k - 2. Then Bt+2 = -1.
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Proof. Direct computation seems to be hopeless, so again we need some more
theoretical insight. Let Y E Nt+2 be fixed and let S : _ (X E Nk : I Xfl Y I > t+ 1 ) I.

It was mentioned already (before Lemma 2.4.1) that S is t-intersecting and from
Lemma 2.4.1(b) it follows that BSI = Thus we work with

cps:=EX= X+ X.
XES XENk:IXf1YI=t+1 XENk:XDY

It is easy to see that

cos = Ot+l-.kOt+2,t+l (I') - (t + 1)Vt+2,k(Y). (6.61)

Hence, VS E (note Lemma 6.4.4(b)). Because Vt+2.+k(Nt+2) =
(40 ®' ® Ek,t) ® Ek,t+I ® Ek,t+2 and Ek,O ® ... ®Ek,t = ot.+k(Nt), we
can write cps in the form

cos = cp +'Pt+1 + 0+2, where cp E Vt.+k(Nf),'Pt+1 E Ek,t+1, tpt+2 E Ek,t+2

Claim 1. 9t+2 :` 0. _
Proof of Claim 1. We have Ot+2,k(Y)_ Ek,o® ..®Ek,t+1 = Ot+1 +k(Nt+1)

because otherwiseVt+2 +k(Y) = Ot_+2 +kVt+1-*t+2(')_forsomecpE Nt+l,which
would imply by the injectivity of that Y E Ot+1-),t+2(Nt+1), and this
contradicts Proposition 6.1.1 since rank(VL,+1.1+2) = Wt+1 < Wt+2.On the other
hand, the first term on the RHS in (6.61) belongs to Ek,0 ® . . . ® Ek,t+l; thus
cPt+2 0.

Claim 2. cpt+I = 0.
Proof of Claim 2. The eigenvalue of Bt+l to the eigenspace Ek,t+1 equals

Xt+i,t+i - (-1)t+1 I k - (tt+ 1))) (k -
(0t

1) 00

by Theorem 6.4.3. So it is sufficient to show that

Bt+1(cpt+1) = 0.

Because

Bt+l ((p) E Ek,O ® . . ® Ek,t, Bt+l (cpt+l) E Ek,t+1, Bt+1(cpt+2) E Ek,t+2,

it is enough to show that

Bt+1((ps) S Ek,O ® ® Ek,t = t-.k(Nt)-

By Lemma 6.4.4(b), (d), and (e) and because Bt+1 is self-adjoint, we have
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fort+l <i <k

Bt+10i,k = Wt+1->k2ik 4t+10i->k

= Vt+1,k(Wk t+10i,k)

= (n-i-(t+l))Or+l,01i-.r+l
k-i

_ n-i-(t+l) t++1` kj
= ( k i ) O(-1) (t

+ 1 .j)
vj-'k0i->j.

With i = t + 1 and i = t + 2 we obtain

Bt+1((Ps) = Br+lVt+l,kOt+2,r+1(Y) - (t + 1)Br+1Vt+2--k(Y)
r+1 k- j O()[(n_2t_2)(t+2_f"

k - t - 1t + 1 -jn-2t-3
-(t+1)(k-t-2)

We may restrict the summation to j = 0, ... , t, since for j = t + 1 the coefficient
in brackets equals

n -tt-1)1-(t+1)(k-tt-2) =0 for n = (t + 1)(k - t + 1).(k
Consequently, Bt+l (cos) E lI 0

Now we may conclude the proof of our Lemma. From the proof of Lemma
6.4.1 it follows that (M(cps), cps) = 0 (we have here S = BSI (nk-')). Further
more, (M(cp), cp) = 0 since we determined the numbers #j from this equation.
Because M(cp) E E_k,O ® .. ® Ek,t and Wt+2 E Ek,t+2, we have (M(cp), cOt+2) =
(cp, M(0+2)) = Wt+2) = 0 (recall that the eigenspaces Ek,O, , Ek,k
are pairwise orthogonal; see Lemma 6.2.5(c)). Thus,

0 = (M(cp + 0+2), ((G + (pt+2)) = (M(0+2), 0+2)

_ (1 + Br+2)(cPt+2, cpt+2)

By Claim 1, Bt+2 = -1.

Lemma 6.4.9. Let 0 < i < k < 2. Then

0i(i-1)r-; i-t>(tj
1)('

k-tj; j
t-1 i - t+ t-t+ i - t+
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Direct computation yields

Ckkl t j)(n
ki 1)(n-k+j-k)

(ti--1I)(t-iI)(k-il-I j)(n-l+j-k)-1

Consequently,

(-1)E
JCtj1)(k111,)Cn-k-t+j)-1

Bi = (-1)t-1-i(t-1
j=p

(6.62)

Consider the function

f = f (x, y; a, b) :=
b

(a) (b) -1
with x, y E R, a, b E N, y > b.

Let If := f and

Xf (x, y; a, b) := f (x - 1, y; a - 1, b),

Yf(x, y; a, b) := f(x - 1, y+ 1; a, b + 1),

Zf(x,y;a,b) f (x - 1, y + 1; a, b).

In a straightforward way one may verify that

XYf = YXf,

(I - Z) f = (X + Y) f.

Accordingly,

(I - Z)t-lf = (X+Y)t-If;
that is,

t - 1)Z j f - t
j
- 1)Xt-1-JYjj,

j=0 1\ j j=0

t-1 j(t-1)
j=0

=l(t-1) f(x-t+l,y+j; a-t+1+j,b+j).
j=0 j

If we put here x := k - 1, y := n - k - t, a := i - 1, b := i - t, then the
LHS becomes the same sum as in (6.62) divided by i - t, and the RHS becomes
the sum in the assertion divided by i - t.
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Lemma 6.4.10. Let l < t < i < k < z and n > (t + 1) (k - t + 1). Then
0i>-1.

Proof. From Lemma 6.4.9 we know that 0t+1, t + 3 , . . . are nonnegative and that
Ot+2 increases (let+21 decreases) if n increases. Lemma 6.4.8 says that 0t+2 > -1
(if t < k - 2 and n > (t + 1)(k - t + 1)). So it is sufficient to show that

IOiI> IOi+1I fori>t+2.

We work with the formula from Lemma 6.4.9. If t = 1, then

lei+l I
ik-1`in-k-1` k - i_ i i-1 - < 110i I- /n-k-1 n -k- i

since n > 2k. Thus let t > 2. We show that the ratio of the summands with index
j (j < min{k - (i + 1), t - 1}) in the formulas for Oi+l and Oi is smaller than 1.
We have

It//i

1) (i + 1 - t) \(t

j1)(i+1-t+ j) (i - t +/ j) In i k-t )
It-1)(i + 1 - t+ f) (i+1-t+j)(i - t)(t j1(i kt+j)

i -t+j i(k - i - j) \ i(k-i)
i+1-t + j (i - t)(n - k - i) (i-t)(n-k-i)

We have further

n - k - i > ((t+1)(k-t+1)-k-i)-(t-1)(i-(t+1))=t(k-i),

and, because i - t > 2, t > 2,

(i-t)t>(i-t)+t=i.
Hence we may continue the estimation of our ratio:

i(k - i) i(k - i) < 1.(i-t)(n-k-i) - (i-t)t(k-i) -

All in all we proved (the special case of Theorem 2.4.1):

Theorem 6.4.5. Let 0 < (t + 1) (k - t + 1) < n. Then the maximum size of a
k-uniform t-intersecting family in Bn equals (n-t).k-t

This theorem is due to Wilson [470] (and to Franki [188] for t > 15). Schrijver
[419] had come close to the solution before (using Delsarte's and Lovasz's ideas).
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Of course, the presented method can also be applied to other structures. See, for
example, the papers of Stanton [445], Moon [373], and Huang [274].

Finally, note that one may derive with this method that, for n > 2k (resp.
n > (t + 1) (k - t + 1)) in the case of L (q) (resp. B,), every maximum k-
uniform t-intersecting family S has the structure S = {X E Nk : X > Xo} for
some Xo E N. This can be shown using Remark 6.4.1. Strict inequalities in our
estimates imply that EXES X E for every maximum family and then
an induction argument yields this structure. We avoid detailed presentation and
refer to Wilson [470].

6.5. Further algebraic methods to prove
intersection theorems

As in the previous section, we will regard in the following the Boolean lattice B
and the linear lattice L (q) simultaneously and we will use the letter P for both
B and L,, (q). We have formally limq.1 L (q) = B. Recall that for a family F
in P, .F denotes the subspace of P generated by {X : X E .F}. Assume that we
have a second family 9 in P. In this section we will often work with the operator
O,F,g :.F 9 and its adjoint Vg. f : G -> F, which were defined in (6.30)
by

Y (resp. Og (X) :_ Y
YEc:Y<X \ YE.F:X<Y

(empty sums are defined to be the zero vector). The following idea allows us to
compare the sizes of F and 9:

Proposition 6.5.1. Suppose that there are operators A :.F .F and : g - F
such that A is injective and A(.F) c 4 (g). Then I.FI < 19 1.

Proof. We have

I.F1 = dim.F = dim A(.F) < dim (D(U) < dim C = Ici.

The operator A is determined by the matrix MA = ((A (56, Y)), whose rows
and columns are indexed by the elements X, Y of Y. The following fact is obvious:

Proposition 6.5.2. The operator A is injective ijf its matrix MA has nonzero
determinant, for instance, if MA is a triangular matrix for which each diagonal
element is nonzero.
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We will apply this idea to prove (or re-prove) some intersection theorems. Let
L = {11,...,ls}beasetofintegers, 0 <11 < ... <I < n. As in Section 2.5 we
say that afamily.T' in P is L-intersecting if r (XAY) E L for all X, Y E F, X # Y.
Note that a t-intersecting family is the same as a {t, t + 1, ... , n - 1) -intersecting
family.

The following theorem is due to Frankl and Wilson [202] in the Boolean case
(see Theorem 2.5.5). Lefmann [339] generalized it to L (q).

Theorem 6.5.1. Let .F be an L-intersecting family in L (q). Then

ILIy 9

i=O

(n)

The same result is true for B if we let q -+ 1.

Proof. The set 9 := Ut ONi plays the role of 9 in Proposition 6.5.1. We define
the operator A by

7 r(XAY) - 1

(A(X), Y) 1 1 q 1 q, X, Y E F,q
IEL:1<r(X)

and for (D we choose If we order the elements of .F = {X1, ... , X,,, }
(without repetitions) by nonincreasing rank, r(X1) ? > r(X,n), then

r(Xi AXE) <r(Xi) if 1 <i < j <m.

Clearly r(Xj A Xj) = r(Xj); hence

0 ifl<i<j<m,
(A(X1), X )

0 ifl<i=j<m,
hence Proposition 6.5.2 can be applied for the verification of the injectivity of A.
It remains to show that

A(j5) c vg-,.er(g). (6.63)

To see this, we work with the operators E and their adjoints

Di'.F :_ VN; +F
Claim. There exist real numbers ai, x, i = 0, ... , L 1, X E F, such that

ILI

A(X) =
i=0

Proof of Claim. First observe that we have

Y) = I{Z E Ni : Z < XAY}I _ (r(Xi Y)) (6.64)
9
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By the definition of A, for any X E F there exists a polynomial fx of degree at
most I L I such that

(A(X), Y) = .fX(gr(XtY)). (6.65)

By Corollary 6.4.2(a) every monomial xk can be written as a linear combination
of the functions

(x - 1)...(x - qi-1)
i = 0,.... k

(q` - 1)...(qi - qi-1)

(for i = 0 this is the constant 1), that is, there exist numbers ai,x such that

fx =

ILI ai'x (x - 1)...(x - q`-1)

i=o
(qi - 1)...(qi _

qi-1).

This implies by (6.64) and (6.65) that

Imo (r(X A Y)) _ I
(A (X), Y) = «i,x J

i-o q i=o

which yields the claim.

Clearly,

Di E Di-->y(Ni) COG i =0,..., ILI.

Thus also

A(X) c oc- (Q),

and (6.63) is proved.

Corollary 6.5.1. Let.F be a k-uniform L-intersecting family in L (q), k > I L I.
Then

ICI
< (ii)q

The same result is true for B if we let q -> 1.

Proof. In Proposition 6.5.1 we take G := NILI, A and CD as in the proof of
Theorem 6.5.1; that is, 4) As in Lemma 6.4.4(b), we have for 0 <
i << ILI

Thus Vi-+,(NN) c and the claim in the proof of Theorem 6.5.1
implies A(F) 9 OILI- (g) 0
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Originally this theorem was proved by Ray-Chaudhuri and Wilson [394] only
for B (see Theorem 2.5.6); Frankl and Graham [198] generalized it to L (q).

Now we admit more than one "special" size for the members of T. The next
result was again originally proved for B (but here in a more general version).

Corollary 6.5.2 (Alon, Babai, and Suzuki [28]). Let .T be an L-intersecting
family thatr(X) E Kforevery XE.T'whereK={k1,...,kr},n >
k1 >...>kr> ILI-r+1.Then

r
n

I.FI

(lLI1_j)q
The same result is true for B if we let q - 1.

Proof. We take U N1 NIL I+l - j , A and (D as in the proof of Theorem 6.5.1.

If i > ILI + 1 - r then Dj +r(Ni) c Vg+.(C). Thus let i < ILI - r; that is,
i < kr. Recall that Tk, :_ {X E Y : r(X) = kj}.

Claim. There are numbers Pi, l = 1, ... , r, such that for
E1=1 81( 1.

Before proving this claim, let us first finish the proof of the corollary. We have
for X E Ni

j=1

(X)

r kj - i
X

- j=1 1=1o1(ILI 1-1-i)9 (56

r r

_ >2 > P1V jLI+1-1->.F'k1 ViILI+1-1(X)
j=1 1=1

j=1 !=l

= 09-sF (ElIL+1_1) C
1=1

which implies as previously A (.j5) c (note that the summands with
1 < I L I + 1 - kj are zero (resp. the zero vector)).

Proof of Claim. We must prove only that the columns of the matrix of our
system of equations are linearly independent. Assume the contrary. Then there
exists a nontrivial solution of the system

Y/.fa-!(qhl) _ O, j = 1, ... , r, (6.66)
1=1
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where

(x - 1) ... (x - qm-1)
fm (x) := m-lm"'

h := k-- ia :_ ILI + 1 - i , i)'- q- 1) ... (q(q

(in the Boolean case we have to work with the functions m, x (x -1) (x -m + 1)
and to insert hj instead of qhi). Because kj ELI - r + 1, we have qhi > qa-r-l

for all j. Dividing (6.66) by (qhi -1) ... (qhj -qa I )-we obtain that then there

also exists a nontrivial solution of the system

SO + S1(ghi - qa-r) + ... + Sr-1(ghi - qa-r) ... (qhi - qa-2) = o,

But this is impossible since the nonzero polynomial 80 + 31 (x - qa-r) + +
Sr_1(x - qa-r) . . . (x - qa-2) can have at most r - 1 roots.

Under some injectivity suppositions we may estimate shadows in B (Frankl
and Fiiredi [194]) and L (q) (Frankl and Graham [198]):

Theorem 6.5.2. Let 0 < s < I < k < n, T- a k-uniform family in L (q) and let
A.F,,s be injective. Then

k+s
I )q

(k+s)
l s q

The same result is true for B if we let q -* 1.

Proof. Let P = L (q) (resp. For s = 1, we may use the standard observation
that

ICI = dimOF, (9) < dim A" (Y) = Ii -->s(f)I,

and for k = 1, the result is trivial. We apply induction on k and suppose that
s < 1. Let us fix some element Y in N1. The filter generated by Y is again a linear
lattice (resp. Boolean lattice) with the parameter n - 1. We denote this filter by
Py. Moreover, let.T'y := F fl Py. The notations AY, Dy, and soon mean that we
consider the shadow (resp. shadow operator) only in Py (resp. Py). Observe that
.Fy is a (k - 1)-uniform family in Py and that N5 1 fl Py is the sth level in Py
which we denote by Ns y.

Claim. L ry..+s is injective. _
Proof of Claim. We know that A,,,,s is injective, which implies that also

O7Y,s is injective; that is, is surjective. It suffices to show that OS fY is
surjective, and this is the case if

Ds-. Y (X) E VS (Ns) for all X E NS. (6.67)
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If X V Py then

Vs->.ry(X) = V .jy(XV Y)
since for Z E Fy we have Z > X iff Z > X V Y. If X E Py then as in Lemma
6.4.4(b)

1 Y YOs->.-y(X) = k-l-(s-1)
Os-,.FyVS-I"(X).

(
l q)

Thus in both cases (6.67) is proved.

We may apply the induction hypothesis to the (k - 1) -uniform family Fy in
Py to infer

k-l+s

10Y+1-1(.FY)I > IFYI l+s) q (6.68)
k-l )q

If we count the number of pairs (Y, X) with Nl D Y < X E .P in two different
ways we obtain that

IFYI =
(k)

(6.69)
YENI q

and counting the number of pairs (Y, X) with Nl D Y < X E &+1(.T') gives

E IAY,i-1(FY)I = (') (6.70)
YEN1 q

Summing up (6.68) over Y E N1 yields, with (6.69) and (6.70),

k l+s

(
9 k-1 q

which is equivalent to the statement in the theorem.

Note that the bound in Theorem 6.5.2 is the best possible. Taken := k + s, F :=
Nk and note that Ok-+s is injective since and B are unitary Peck (see
Example 6.2.9). Part (b) of the next corollary is a result of Katona [290] in the
Boolean case, which was proved by him without the algebraic approach. Frankl
and Graham [198] also considered L (q).

Corollary 6.5.3. Let .P be a k-uniform t-intersecting family in L (q), k - t <
1 < k. Then

(a) 0 f,l is injective,

(b)
o1 .F)I >

(2k
I
-t)

The same result is true for B if we let q -+ 1.
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Proof. (a) Obviously .T' is L -intersecting where L = [t, t + 1, ... , k -1 } ; that is,

I L I= k - t. From the proof of Corollary 6.5.1 it follows that Ok-t..+ is surjective,
because the corresponding operator A F is injective - that is, bijective.
Consequently, O.'+k-t is injective. Because (1-k+t)q &F-.k-t = Zl-+k-t
therefore O.F->l is also injective.

(b) From (a) we know that 0.F,k-t is injective. The result follows from The-
orem 6.5.2 with s := k - t.

The following classical theorem is due to Katona [290] in the Boolean case. I
treated the linear lattice for t = 1 in [161], and Lefmann [337] generalized this to
arbitrary t.

Theorem 6.5.3. Let .T' be a t-intersecting family in L" (q), t > 1. Then

IFI <
Ek>M? (k)q if n + t is even,

n+t-I + k> !±j± Dq if n + t is odd,
q

and the bound is the best possible. The same result is true for B" if we let q -+ 1.

Proof. Under all maximum t-intersecting families in L" (q) (resp. B"), we choose
a family for which k* := min{k : Fk 0} is maximal. If k* > (n +t - 1)/2, we
are done. If k* = (n + t - 1)/2, we only have to prove

Claim 1..T'"+t-I)/21 // n 1

If k* < (n + t - 1)/2 we will construct below a new t-intersecting family F'
with IF'I > IFI and min(k : Fk' 0- 0) > V. This is then a contradiction to the
choice of F.

For k* < (n + t - 1)/2, let

c:_{XEN"+t-k*-I:r(XnY)=t-1 forsome YE.Tk*}.

Because F is t-intersecting,

Fnc=0. (6.71)

Claim 2. We have
2k*-t

lk*-t+l)q
ICI - (2k*-t) IFk`I

k* q

Proof of Claim 2. Let 7l := (Fk*) We have

{XEN"+t-k*-t : there is some Z E H with X A Z = 0)
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because for X, Z from the RHS the existence of some Y E Fk* with Z
follows, and we have r(X v Z) = n; that is, also r(X v Y) = n, hence

r(XAY) = r(X)+r(Y)-r(XVY)

_ (n+t-k*-1)+k*-n=t-1.
Recall the definition of W;+j before Lemma 6.4.3. Obviously

tk*-t+1-sn-k*+t-1 (x) C Q.

Because Wk*-t+1-sn-k*+t-I is injective by Lemma 6.4.6(a), it follows that

191 >- In l.

Moreover, by Corollary 6.5.3(b),

/2k* t

I HI '- t2k*-t IFk* I.
k* q

Y

0

Proof of Claim 1. For Ln (q), the assertion follows directly from Corollary
6.4.3. For Bn, we work with k* :_ (n + t - 1)/2 and 9 from above. Because of
(6.71)

IJ7 k* I + IQI < (k*

and in view of Claim 2 we infer

(n-1l"" tt l
n+t-I

which is equivalent to the assertion.

For k* < (n + t - 1)/2, let '' := (.F-.Fk*) UC9. Because of (6.71) and Claim
2 (note k* - t + 1 + k* > 2k* - t) we have IF'I > I.FI (by the way, this can be
proved also in an elementary way, see [337]). Thus it remains to prove the third
claim.

Claim 3..F' is t-intersecting.
Proof of Claim 3. Let X, Y E F'. If X, Y E .F, then r(X A Y) > t because .F

is t-intersecting. If X E F, Y E 9, then r(X A Y) = r(X) + r(Y) - r(X v Y) >
k*+1+n+t-k*-1-n = t. IfX,Y E c, we have also r(XA Y) _
r(X)+r(Y)-r(XVY) = 2(n+t-k*-1)-n > n+2t-(n+t-1)-2 = t-1.



6.5 Further algebraic methods 303

To see that the bound is the best possible, fix some Y E Ni_1 and take

I

{X : r(X) > "zt }

{X:r(X)> "+t+
z

if n + t is even,

1

I ] U { X E N - , :X<Yl ifn+tisodd.



Limit theorems and asymptotic
estimates

Combinatorial formulas are often quite difficult and one has no idea of the growth
of the corresponding functions. Therefore one is interested in asymptotic results
where one or several parameters tend to infinity. In particular, this can be helpful in
the production of counterexamples to some conjectures. With regard to our general
theme we will restrict ourselves to the estimation of the (largest) Whitney numbers
(or sums of them) and of antichains and related families in posets. The main idea
is the application of corresponding limit theorems from probability theory as well
as the use of variants of the saddle point method (cf. Berg [47] and de Bruijn [85]).
This chapter lists some important theorems and then describes their application
by means of some examples. Omitted are the proofs of those results contained
in standard books on probability theory like Feller [178], [179], Renyi [396],
and Petrov [382]. Bender's papers [42] and [43] are very helpful for asymptotic
enumeration. In this chapter we will also see how the Sperner and the variance
problems are related to each other.

7.1. Central and local limit theorems
In the following, we will be working mostly with discrete random variables, which
are random variables t; that take on at most countable many (in our cases only a
finite number of) values xo, x1.... with probabilities po, p1, ... (P(t; = xi) _
A, i=0,1,...,and>ipi=1).

Recall that the distribution function F(x) of l; is given by F(x) := Ei:x; <x pi.
As limit distributions, there appear also continuous random variables - that is,
random variables for which there exists a densityfunction f such that the dis-
tribution function F(x) := P(l; < x) can be calculated as an integral: F(x) _
fX,, f(t)dt.

304
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If g is a continuous (possibly complex) function, then g(4') is also a discrete
(resp. continuous) random variable. The expected value of g(4) is given by

oo

E(g(g)) := f-00 g(x)dF(x),

which is the same as E, g(xi) p, in the discrete case and as f oo g(x) f (x)dx in the
continuous case (here it is supposed that the sum (resp. the integral) are absolutely
convergent). E(4) and V(l:) := E((4' - E(l:))2) are called the expected value or
the mean of l; and the variance of l; , respectively.

From the list of continuous distributions we need only the Gaussian distribution
or normal distribution whose density function f (x) and distribution function (here
denoted by (D (x)) are given by

f(x) =
1 e-x2/2

fi(x) -
1

f X
e-t2/2dt.

2n 2n oo

Given a sequence of random variables with distribution functions Fn (x) and
sequences [A,) and {a } of real numbers, we say that (or briefly 4n) is asymp-
totically normal with mean An and variance a,, if the distribution function of

A,)lan tends to (D (x) - that is, if
OnX+µn

lim f dFn(t) = 4) (x) for every x.
n-+oo oo

It is easy to see that this convergence is uniform for x E ll since c (x) is continuous.
The characteristic function tp (t) of a random variable l; is defined by

oo
E(eigt) = f eixtdF(x).

00

This is the Fourier-Stieltjes Transform of F(x). It is well defined because IeiXt I =
1. Conversely, the distribution function is uniquely determined by the characteristic
function. We have

The characteristic function of the normal distribution is a-t2/2. The Continuity
Theorem (see, e.g., Feller [179, p. 508]) implies:

Theorem 7.1.1. The sequence {4n } is asymptotically normal with mean An and
variance a,, if

-t2/2lim (p4n=µn (t) = e
n Oo an

The random variables l;l, ... , In are called (completely) independent if for all
xl,...,xn ER

P(4l <xn)=P(4'1 <xl)...P(4n <xn)
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In the discrete case, this is equivalent to the equality

xn) = P(41 = x1)... xn)

(of course it is enough to consider only those values xi E R for which P(4i =
xi)>0).

Theorem 7.1.2. Let 1;1, ... , n be independent random variables and let

'1 + + fin. Then

(p 1

(t)... (P,(t).

Corollary 7.1.1. If 1, ... , In are independent random variables with the com-
mon distribution F, mean µ and variance a2 then n = 1 + + l;'n is asymp-
totically normal with mean nµ and variance nat.

As an example we consider the poset P = S(k, ... , k) which is a product of
n (k + 1)-element chains (the succeeding result may be generalized in a straight-
forward way to a product of n copies of any finite ranked poset). Each such (k + 1)-
element chain C has the rank-generating function F(C; x) _ xj; hence
F(P; x) = Ejko Wjxj = (F(C; x))n. We introduce the discrete independent
random variables j, i = 1, . . . , n, which take on the values 0, . . . , k each with

.
Let l; be one of i;1, ..., 4'n . Note thatprobability k+1

tP (t) = k + 1
e`jt

= k + 1 F(C; e").
j=0

Moreover, n := 1 + + n takes on the values j = 0, ... , nk each with
probability Wj (P)/(k + 1)n. We have indeed

tP (t) = (F(C;
eit)/

n = 1

n
F(P; eit).

l (k+ 1)n

By Corollary 7.1.1, n is asymptotically normal with mean ttn := n i and variance
an := n (k(k + 2)/12).

In particular it follows that

yyj ^ (41 (b) - 0 (a))(k+ 1)", (7.1)
Qn a+µn :Sj <an b+ ,,

and for a sequence xn - 00

E Wj ^- (k + 1)n.

nk/2-xn fn < j <nk/2+xn

The last result states that almost nothing is far away from the mean. There exist
better estimates for the portion that is far away; see Renyi [396, p. 324]:



7.1 Central and local limit theorems 307

Theorem 7.1.3. Let t; l , ... , n be independent random variables with the com-
mon distribution function F(x), expected value it, and variance a2. Suppose that
there exists some M such that 4j takes on only values in the interval [g - M,
g+M]. ThenforO < E <a2/M

ngl > ne) <
2e-nee/2az(1+eM/2a2)2

If we apply to our preceding example this result with a := n - 1/2xn , where xn - * 00
but xn = o(/), we obtain, with some constant c > 0,

W

J-nk/2I xnJi

Up to now we could only estimate sums of Whitney numbers. To obtain asymptotic
formulas for single Whitney numbers we use local limit theorems. In the following,
we work only with discrete random variables that take on only integer values. We
call them briefly integral random variables. A sequence of integral random
variables is said to be locally asymptotically normal with mean An and variance
n ifa

lim an P( = Lanx + /-fin J) = I
e-x2/2

uniformly for x E R . (7.2)

Under certain conditions, asymptotic normality implies local asymptotic normali-
ty. We say that a sequence {an (k) } is properly log concave in k if an (k) >
an (k - 1)an (k + 1) for all k and the nonzero members an (k), where n is fixed
but arbitrary, appear consecutively.

Theorem 7.1.4 (Bender [42]). Suppose that the integral random variables n are
asymptotically normal with mean gn and variance a2 and that an -+ oo. If the
sequence an (k) := k) is properly log concave in k, then n is locally
asymptotically normal with mean tin and variance an .

Proof. First observe that for a, fi E R, a < P,

P(Lgn+aanJ Lgn+PanJ)=40)-0(a)+o(1) (7.3)

(here and in the following the convergence of the functions o(1) is uniform over
R). In this formula also any relation "<" can be replaced by

Let us fix some e > 0 and put y := 4, S 2. From (7.3) we obtain for
sufficiently large n:

E an(k) > E an(k)
LAnJ<k<LAm+YanJ LA,+YanJ<k_< LA +2YoJ

On the LHS we have Lgn + yan J - Lgn J - 1 summands and on the RHS LA, +
2YaaJ - Lgn + YanJ + 1, that is, not less, summands. Consequently, one item
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of the first sum is greater than one item of the second sum, and the unimodality
of the numbers an (k) (which follows from the proper log concavity) implies that
an (k) is nonincreasing for k > LA, + San J if n is large enough. In the same way,
we infer that an (k) is nondecreasing fork < LA, - San J and large n.

Case 1. IxI > E. We study only x > E. Using (7.3) and the just proved mono-
tonicity of the an (k) for k > An + (x - 8)an we derive

(Lµn + xanj - Lµn + (X - 8)anj + 1)an(Lµn + xanj)

< E an(k)=fi(x)-fi(x-S)+o(1) (7.4)
Li n+(x-S)onJ<k<LA +xonJ

and

(LA, + (x + S)anJ - Lµn + xanj - 1)an(Lµn + XanJ)

> E an (k)=fi(x+8)-0(x)+o(1). (7.5)
Liin+xonJ <k< Li +(x+S)on J

By Taylor's formula, for some 0 < tS < 1,

fi(x) - fi(x - 8) = 1 Se-x2/2 - 32

1 (x + t9S)e-(x+68)2/2
2n 2 2n

The function to-t2/2 has its maximum at t = 1, consequently

fi(x) - 4)(X - S) =
1

8e-x2/2 + 0(82),

and analogously

fi(x + S) - fi(x) =
I

Se-x2/2 + 0(82),

where 0(82) = 0(E2) can be bounded independently of n. The first factors on
the LHS of (7.4) and (7.5) are both (1 + o(1))San. We obtain

anan(Lµn +xanJ) = (
I

e-x2/2 + 0(E) 0+00)).

Case 2. Ix 1 < E. We study only 0 < x < E. Clearly x /+ 2E > x + E > E. Since
Lµn + xan J + (Lµn + (x + 2E)an J + 2) > 2 Lµn + (x + E)an J , the proper log
concavity, the monotonicity, and Case 1 yield

anan(Lµn + XanJ)

an(Lµn + (x + E)anJ)
anan(Lµn + (x + E)anJ)an(Lµn

+ (x + 2E)an + 2J)

< \ I

a-x2/2

+
0(E)J (I +O(I)).
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However, by analogous arguments,

(O'nan(LI-tn +xo'nj))2

>- anan(LAn + (x + 2c)QnJ)onan(Lµn + (x - 2e)Qn] - 1)

> (e!2 (1 +0(1))2.
2n

Letting e -- 0, we obtain the desired result.

Because the Whitney numbers of our example P = S(k,... , k) are properly log
concave, we obtain by setting x : = 0 in (7.2) (using Corollary 7.1.1, Theorem 7.1.4,
and Example 4.6.1):

1

d(P) Wink/2J Srnk(k+2)/12
(k + 1)" as n -* oo. (7.6)

In order to have estimates of other Whitney numbers of P, for example, of WLAnJ,
we may shift the mean: We take the discrete independent random variables 4j
where P(4; = j) = aj/(1 +a + +ak). We determine a as the solution
of > =o jaj/ aj = ,l; then each 4i has expected value ,l and a certain
variance a2 depending on ? and k. For n := 41 + we have j) =
(aj/(1 + a + + ak)n W j), and we obtain as before

YW I
X

as n -+ oc. (7.7)
Q a[J2trn

Now we discuss how the condition on proper log concavity can be replaced. A
random variable l: is said to have a lattice distribution if there exist constants a
and h > 0 such that (l; - a)/ h is an integral random variable. The quantity h is
called the span of the distribution. If, additionally, there are no numbers a' and
h' > h such that (l; - a')/h' is an integral random variable, the span It is said to
be maximal.

Theorem 7.1.5 (Gnedenko [224, p. 249]). Let l; l, ..., In be independent random
variables with a common lattice distribution, constant a, span h, expected value p,
and variance a2 > 0, and let 1 + Then the sequence { ((i n - na) / h)
is locally asymptotically normal with mean n (/) and variance n (hZ) iff the span
h is maximal; this means we have uniformly in N E Z

na + Nh) - 2e-(na+Nh-nµ)12o.f 0lim
(!n

P
n+oo h

iff h is maximal.

Corollary 7.1.2. Let n be defined as in Theorem 7.1.5 and let the span h of
l ; ; be maximal, i = 1, ... , n. Let b1, b2 be fixed constants, bt < b2, such that
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b2 - bi = jh for some natural number j. Then

P(bt + n1t < b2 + nµ) b2 -
bi

as n -* oo.
27rnv

Proof. Let

INEz:

bi+n(a-a) <Nb2+n(i-a)1

Since = j we have III = j. For N E I, the following holds:

bi <na+Nh - np < b2

o / Q i o In-

Hence "a+a nt` -> 0 uniformly in N E I. Theorem 7.1.5 implies

h
P(b1 + nµ < " < b2 + nµ) _ na + Nh) ^- III

NE! 27rna

b2 - bi
27r na

A counterpart of this corollary is the following theorem, which is a direct
consequence of a result of Shepp (see [382, p. 214]).

Theorem 7.1.6. Let l; 1_., l;" be independent random variables with a common
nonlattice distribution, + + " Let b l, b2 be fixed constants, b i < b2.
Then

P(bl + nµ < " < b2 + nµ) b2 - bt as n -* oo.
27rna

Finally we study how the asymptotic normality of certain random variables can be
shown using Theorem 7.1.1. We present a method of Hayman [265] on an example
and investigate in detail the behavior of the Stirling numbers of the second kind.
Let us recall Taylor's formula for holomorphic functions:

f'(0) f(")(0) /'z f (n+t)(t) "
(z - t) d t, n E N..f (z) = .f (0) + 1 z + ... +

n! z" + f oz
(7.8)

Theorem 7.1.7 (Stirling's formula). We have

n ! - 2nn (n-)" asn - oo.
e
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Proof (Model for the method of Hayman). Since

0 Zn
ZEC,

n-o n.

Cauchy's formula yields for every r > 0

1 _ 1 ez
dz.

n! 27ri IzI=r Zn+l

Substituting z = rein, we obtain

rn 1 'r re'-nip
n I - 2n f,r a d(p.

We divide the integral on the RHS into two parts Il + 12, where

otn)Il = f and 12 = ere"r-nicpdco.

S(n) S(n)<Iwl«

Expanding the exponent by Taylor's formula, we have

(p2 V 2

2
(cp - t) dt) - nireico - nice = r (1 + i(p -

2
- it Jeu

2

= r + icp(r - n) -2 + O(r(p3).

We determine r such that the (complex) linear term vanishes; that is, r := n.
Finally we look for a S(n) such that the omission of 0(r(p3) and of 12 does not
influence the asymptotic behavior and Il can be easily approximated. Assume that
we have such a 8(n). Then (with i/i := lr-cp)

f8(n)
2

erg
J S(n)

f\/8(n) e-2/2d.
lr-S(n)

Because, for sufficiently large T,

Tf0
e-Vf2/2di/i

< j d =

e 1Il r e-'l'2led ))e_
/r + O

n

2n
r -00 756 (n)

ti
n

if
Condition 1: ITS(n) --* oo.
The omission of O(r(p3) in the integral Il has no influence if eo(rs3(n)) _

1 + o(1), that is, if
Condition 2: r83(n) -* 0.
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Finally 12 has to be small. We have

1121 f(

27remax(Re(re'(o -ntW):8(n)<IWI<n)

27reremax(r(cosW-1):8(n)<IWI<,r)

= 27rener(cos8(n)-1) < 27re"e-2r82(n)17r2

(here we used that cos(cp) < 1 - R (p2 if IwI < 7r). Thus 12 = o(It) if

and this is the case if
Condition 3: r82(n) > nE for some e > 0.
It is easy to see that the three conditions on 8(n) with r = n are satisfied if, for

example, 8(n) = n-5112. Consequently,

n" 1 1 e"

n !
ti

27r
It -

27r
27r,

In-

which proves the assertion.

For us, it is sufficient to take the "simple" circle as the contour of integration.
Of course, we could replace it by other contours around the origin. Moreover, in
the saddle point method one looks for contours through the saddle point, which
can be obtained by setting the derivative of the logarithm of the integrand to 0. In
our case this is f log( n+,) = 0; that is, z = n + 1, thus we have integrated only
"near" the saddle point.

This approach works not only for our function eZ but for a large class of holo-
morphic functions, called admissible functions. I will not present their definition
(see [265]), but will introduce a sufficiently large subclass: Let p(z) be a polyno-
mial with real coefficients.

Basic functions: eP(z) is admissible if the coefficients a" in the Taylor series
eP(z) = F_n°_o a"z" are positive for sufficiently large n.

Let f (z) and g(z) be admissible and let h (z) be holomorphic and real for real z.
Construction 1: of (z) and f (z)g(z) are admissible.
Construction 2: If there is some 8 > 0 such that

max Ih(z)I = O(f1-6(r)), r -+ oc,
Izl=r

then f (z) + h (z) is admissible. One can show that, in particular, f (z) + p(z) is
admissible.

Construction 3: If the leading coefficient of p(z) is positive, then p(z) f(z)
and p(f (z)) are admissible.
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Theorem 7.1.8 (Hayman [265]). Let f (z) be an admissible holomorphicfunc-
tion with Taylor series f (z) = En° O anzn. Let a (r) := r 'r)) = r dr log f (r)
and b(r) := ra'(r). Let rn be the largest root of a(r) = n (which can be shown to
exist). Then

1 f(rn)
an asn -+ o0.

27rb(rn) rn

We will not develop here the theory of generating functions (cf. Aigner [21],
Stanley [441], and Wilf [469]). As an example, we consider the Stirling numbers
of the second kind.

Lemma 7.1.1. We have

Proof. Obviously,

Sn kYkzn =
ey(ez-1)

I

n,k=O n

00 keyW-1) (ez - 1)k
1

k=O k

Y
Z2 Z200

=kE ki \z21...1... (z2i+...1

00
1 1

= L
k,n=O 1l+...+Ik=n

il,...,ik>l

Now the assertion follows from the fact that

k!Sn,k = I (f : [n] - [k] : f surjective}I

E I{f: [n] - [k]: If-1(1)1 =i1,..., If-1(k)I =ik}I
i l +...+ik =n
iI,...,ik>1

E
i I +...+ik=n
il,...,ik>1

n!

i11...ik!

If we set y := 1, we obtain

kZn
il!...ik!

000 B

L: zn = ee -1.
n=0 n.
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Obviously, this function is admissible. Thus we obtain from Theorem 7.1.8 for the
size of the partition lattice 11,,

1
ee'-1

Bn n! where re' = n.
27r(r2 + r)er rn

Finally, using Stirling's formula (Theorem 7.1.7) and er = ?, we derive a formula
of Moser and Wyman [375]:

Bn I en(r+l/r-I)-1
r+1 (7.9)

The following theorem is due (in a slightly different form) to Harper [256]. In the
proof we follow Canfield [92] using Hayman's method.

Theorem 7.1.9. Let the integral random variable be defined by PQn = k) =
Let µn := er - 1 and Qn := r+l - 1 = An - r+l, where r is the root of

re' = n. Then n is asymptotically normal with mean An and variance

Proof. Let pn (y) := Ek o Sn,kyk. Then the characteristic function of 4n is given
by cps,, = pn(eit)/pn(1). Moreover,

to(5n-l2n)/Qn(t) = e-' "QnPn(e't/an)/pn(1) (7.10)

By Theorem 7.1.1 it is sufficient to prove that the RHS tends to e_t2/2 if n -+ oo.
Thus we will determine an asymptotic formula for pn (e't /°n ). In view of Lem-
ma 7.1.1

00 Zn

E Pn (Y) . II
= ey(e-- I )

n=0

which implies

Pn (Y)
eY(e`-1) n jr

dz = r eY(ere -1)-ntcpdcp.
n! 27ri Izj=r zn+1 27r ,/_n

As in the proof of Stirling's formula, we write the integral on the RHS as a sum
I1 + 12, where II is the integral over f cp l < 8(n) =: 8 and 12 is the integral over
8 < I tp1 < ir. First we investigate II. From (7.10) we know that we must later
put y := e't/°ry (resp. y := 1); that is, in both cases y := e's where Isi is small
(s = t/Un or s = 0). Hence we expand also e'5 (at least for members of higher
order) in the Taylor expansion of the exponent of the integrand

g(s, (P) :=
e's(er,"' - 1) - nice.
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We have

app g(s, 0) = e`sirer - in = i(rer - n) - srer + rer O(s2).

We determine r such that the imaginary constant term vanishes; that is, rer = n.
Then

a
apg(s, 0) = -sn + O(ns2),

Wg(s, 0) = -e`ser(r2 + r) = -n(r + 1) + O(nrs),

a3 , 3 3' 2 2' 3 2

a2

g(s, (p) = -ie'sere (r a 9 + 3r a ' + re"') = O(err) = O(r n).

We will take a S such that IsI < S for large n. This is clear for s = 0. For s = a
this inequality is satisfied if

Condition 0. S2(r+l+l - 1) -+ oo, that is, S2r -+ 00.
Moreover we have k I < S. Thus Taylor's formula gives

2

g(s, cp) = eis(er - 1) - snrp - n(r + 1) 2 + O(nr233)

= eis(er - 1) + s2n2 _ ( n(r + sn/ n(r + 1))2
2n(r + 1) 2

The substitution tr := n (r + 1)cp + sn / n (r + 1) yields the bounds of inte-
gration n(r + 1)(±8 + r+l+l ), which are in absolute value not less than

n -(r+ 1)8 (1 -
r
). If we integrate from -oo to oo we obtain the value

1 eei's(er-1)+szn/2(r+1) 2n,
n(r+1)

and this is the asymptotic value for Il uniformly for Isl < 8 if
Condition 1. n(r + 1)8(1 -

r)
--+ oo; that is, In-r8 -> oo, and (omission

of O(nr283))
Condition 2. nr283 -+ 0.
Again we want to make 12 small. We have

12 = eg(s,O) 1 e9(s,w)-g(s,o)dW.

s<IwI<n

g(s, 0) = e's(er - 1),

a

The absolute value of the second factor is not less than

2lr emax(Re eis (ere"° -er), S <I. l <n )
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Using 1 - < coscp < 1 - n lp2, 8 < IwI < n, and Isl < 8, we conclude

Re(eis (erer 'P - er)) = er cos p cos(r sin q .+ s) - er cos s

< er(er(cosW-1) _ coss)

62
< er \e-2r82/n2 _

\1 2))

< er

((1 - 2 )62+ O(r284)) _< -82er
2 n2

if n is large and
Condition 3.1. r82 -) 0.
Under the preceding conditions on 8, we have, uniformly in IsI < 8,

1121 < I n(r +
1)e-s2n/2(r+1)27re-62e'

= o(1)
IIi I

rv
2n

if
nre-82er

- 0, and this is the case if
Condition 3.2.

r
82 > nE for some e > 0.

It is easy to see that the conditions 0, 1, 2, 3. 1, and 3.2 on 8 = 8 (n) with rer = n
are satisfied if, for example, 8 = e-3r/8. Consequently, for s = 0 and s =

n

n! r is r 1 2 2 lee (e - )+s n/ (r+ )p ti -(r+ 1)27r n

Finally, by (7.10), using ett/°n = 1 + o - 2tQ,? + 0 ( ) and An = er - 1,

(e"(er-1)+(t2/2)(
2 ne-it/b" "e an(r+l)

on

(t2/2)(n-(r+l)µn +o(1) 2= e an(r+l) a-t /2

Corollary 7.1.3. For the partition lattice lln, we have

I1In1max{Wi(fl ),i=0,...,n-1}

r
where 1 and rer = n.

27r Qn
asn -+oc

Proof. The assertion follows from Theorem 7.1.4, Theorem 7.1.9, and Lem-
ma 5.4.1.

Finally let us mention without proof some important generalizations of Theo-
rem 7.1.8 and Theorem 7.1.9.
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_Theorem 7.1.10 (Canfield [92]). Let g(z) be a holomorphic function with g(O)

0 and let
00

eY8(z) _ an,k kZn.

n,k=O
n

Further, suppose that g(z) is either admissible or a polynomial (different from z)
with real nonnegative coefficients such that the greatest common divisor of the
indices of the nonzero coefficients equals 1. Let A(r) := rg'(r), B(r) := rA'(r),
and rn be the largest root of A (r) = n. Then the random variable n defined
by k) an,k is asymptotically normal with mean I-tn := g(rn) and

i an,,
A' (r,,)variance an := g(rn) - B(rnj

Theorem 7.1.11 (Canfield and Harper [98]). Let vo be the ratio x ofthe larger
to the smaller of the two mots of the equation x(1 - logx) = 6. Let Q and v be
positive numbers with v < vo and let K be the (compact) set of sequences {Aj}
satisfying o < Aj < vQ for every j. Let

A. =j 00
Y -r an,a a n

n=0 aEZ,
Z

n.

where 1,k=1,2,...},
and let rer = n. Then the random variable n defined by P(in = a) = nBn , a E

Zn, is, uniformly over K, asymptotically normal with mean An Aj
2

and variance Qn r°°=1 Aj 2 J
r i

n(r+11) j( jAj rj)
Remark 7.1.1. In [97] Canfield and Harper proved that we have for the variance
of n from Theorem 7.1.11

V a, + 0(1) uniformly over K.

The proof is based on a more precise formula for the Bell numbers (cf. (7.9)) which
is mainly due to Moser and Wyman [375].

7.2. Optimal representations and limit Sperner theorems
Throughout this section let (P, v) be a positively weighted poset. For a represen-
tation x and a real number a, let

Ax(a):= {pE P:a- z <x(p) <a+21.

Clearly, Ax(a) is an antichain. Thus we have:
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Proposition 7.2.1. For every x and every a c R,

d(P, v) > v(Ax(a)).

We will apply this lower bound to direct products of posets and to the partition
lattice nn. First we need an auxiliary lemma that is similar to the shifting method.
In contrast to the usual definition of a ranked poset Q, we work with generalized
rank functions; that is, we admit also negative ranks. Hence Q can be partitioned
into levels Ni := {q E Q : r(q) = i} with i = ..., -2, -1, 0, 1, 2. .... We only
require that q < q' implies r(q') = r(q) + 1. In [152] we proved:

Lemma 7.2.1. Let (Q, w) be a (generalized) ranked and weighted poset. Further
letg: E(Q) -* R+ besuchthatforallq E Q

E g(e) < 1 and g(e) < 1. (7.11)

e+=q a-=q

Define the new weights V w and A w on Q by

Ow(q) := max 0, w(q) - E g(qq')w(q')
q':q'>q

(7.12)

Aw(q) := max 0, w(q) - E g(q'q)w(q) . (7.13)
q':q'<q

Then, for all j,

d(Q, w) < w(N,)+EVw(N,)+EAw(N,).
i<j i>j

Proof. We proceed by induction on I QI. If Q is an antichain, the proof is trivial;
thus suppose the contrary. Let A be a maximum weighted antichain in (Q, w). It
cannot contain all minimal and maximal elements of Q (otherwise Q would be an
antichain). Suppose, w.l.o.g., that q* is a minimal element of Q that is not a member
of A. Let q* E Nh. Further let (Q', w') be the poset induced by Q' := Q - {q*};
that is, w'(q) = w(q) for all q E Q' (the levels of Q' are the sets Ni - {q*} if
i = h and Ni if i h). Obviously,

w(A) = d(Q, w) = d(Q', w'). (7.14)

In order to apply the induction hypothesis to (Q', w'), let g' be the restriction of g
to E(Q') (c E(Q)). Then the corresponding inequalities (7.11) are satisfied. We
define, analogously to (7.12) and (7.13), the new weights V wandand A w'. Obviously,
Vw(q) = Vw'(q) for all q E Q', Aw'(q) Aw(q) + g(q*q)w(q*) if q* < q
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and Aw'(q) = Aw(q) otherwise. Let j be fixed. If h < j, then by the induction
hypothesis and (7.14)

d(Q, w) = d(Q', w')

< w'(Nj) + EVw'(N1 - {q*}) + Y, Aw'(Ni)
i<j i>j

< w(N3) + Y, Vw(N;) + E Aw(N;).
i<j i>j

Also, if h > j, in view of the induction hypothesis and (7.14) (note that A w (q *) _

w(q*))

d(Q, w) = d(Q', w')

< w'(Nj - {q*}) + 57, Vw'(N1) + Aw'(N; - {q*})
i<j i>j

< w(N3) + EVw(N;) + E Aw(N1) - w(q*)
i<j i>j

+ g(q*q)w(q*)
q:q>q*

< w(Nj)+EVw(N;)+EAw(N;)
i<j i>j

since Eq:q>q* g(q*q) < 1 because of (7.11).

The following theorem is in the case v - 1 due to Alekseev [23]. We proved
the general case [152].

Theorem 7.2.1 (Asymptotic Product Theorem). Let (P, v) be any positively
weighted poset and assume that P is not an antichain. Then

d((P v)") (v(1'))" asn -->oo,
2nno,(P, v)

where v(P) := v(p) and v2(P, v) is the variance of (P, v).

Proof. First observe that we may make the general supposition that v(P) = 1
(i.e., the weight function v is normalized) because d((P, cv)n) = cnd((P, v)n)
for any positive constant c, n = 1, 2, .... Let x be an optimal representation of
(P, v) with Ax = 0 and define y : P" -> R by y(p) :_ yi_1 x(p;), where
p = (pl, ... , pn) E P" (by Theorem 4.6.6, y is an optimal representation of
(P, v)n). To get a lower bound we take in (P, v)n the antichain A := Ay(0) as
defined at the beginning of this section. We consider the discrete random variable

defined by P(r; = a) = v({p E P : x(p) = a}). The expected value it of
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equals it, = 0, and the variance a2 of equals aS = a2(P, v). Let i, ... , " be
independent copies of and let n := + + ". Then

(v x ... x v)(A) = PH-2 < n < 2

If has a nonlattice distribution, we can derive directly from Theorem 7.1.6 that

1 asn -)- oo. (7.15)
Ji27rna(P, v)

If has a lattice distribution, the same follows from Corollary 7.1.2 if the maximal
span h of l; has the form h = 1 for some natural number j. Since P is not an
antichain and x is an optimal representation of (P, v), there must be two elements
p, p' E P such that x(p') - x(p) = 1. Because, by definition, £ is an integral
random variable for some a E R, we have for some natural number N

x(p') - a x(p) - a - N, i.e., h = N.

Thus (7.15) is also proved in the case of a lattice distribution and we infer

d((P, v)') > 1

2nna(P, v)

It remains to show that

d((P, v)") < 1 (7.16)
,12-.7r nor (P, v)

Let pi, ..., pk be the elements of P and define v, := v(p,), x; := x(p,), i =
1, ... , k. For an element p E P", let ai (p) be the number of occurrences of the
element p, in p, i = 1, ... , k. Let rp be the mapping that assigns to p E P" the
k-tuple (al (p), ... , ak(p)). Let Q = Q(n) be the set of all such k-tuples; that is,

Q {q=(gt,...,qk):qt+...+qk=n,giE{0,...,n}}.

We define a partial order on Q by setting q' <Q q iff there are indices i # j such
that

Pi <P Pi

q1 if 1 # i, j,

and gi= ql-1 ifl=i,
q1+1 ifl=j

(later it will be clear that there cannot be "cycles"; that is, the reflexive and transitive
closure of "<" is really an order relation). Let tr be the mapping from E(Q) into
E(P) that assigns the arc (pi <p pj) to the arc (q' <Q q). Finally we define a
weight w = w (n) on Q by setting

n uq1 vqkw(gl,...,gk) =
9ii...gki l k
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It is not difficult to see that the mapping cp defined after (7.16) is a flow morphism
from (P, v)n onto (Q, w). (Note that for q = (ql, . . . , qk) all elements of tp-1 (q)

have the weight vq' . . . vkk and that for q' < q the poset induced by cp-1(q') U
iP-1(q) is after a suitable normalization a regular, i.e., normal poset of rank 1.) By
Theorem 4.5.4(a),

d((P, v)") = d(Q, w). (7.17)

Define the function z : Q -* R by

k

z(gl,...,gk) gixi.
i=1

Since x is a representation of P, we have, for q' < q the inequality z(q) - z(q') >
1; that is, there really cannot be cycles in the relation " <Q " (using Theorem
4.5.6 one can prove easily that z is even an optimal representation of Q, but we
do not need this fact here). We consider the active poset Qz (see Section 4.4).
Obviously,

d(Q, w) < d(Qz, w). (7.18)

The function r : Qz -* R defined by r(q) := Lz(q) + i j is a (generalized) rank
function because q' < Q.q implies z(q) - z(q') = 1; that is, r(q) = r(q') +
1. Let Ni := }q E Q : r(q) = i} be the levels of Qz. Further, let f be a
representation flow on (P, v) relative to x (note Theorem 4.4.1) and set F :=
LeEE(Px) f(e). Obviously, if e = q'q E E(Qz), then tr(e) = PiPj E E(Px). To
apply Lemma 7.2.1, define g : E(Qz) - J+ by setting

g(e) :=
f(* (e))

e E E(Qz)

Then, for all q = (q1,... , qk) E Qz,

.f(PiPj) < 1
( )' (7 19)_g q q F

.

q':q'gEE(Qz) i,j:p1p1EE(Px),
ti <n,tj>0

and, analogously,

g(qq') < 1, (7.20)
q':qq'EE(Q2)

where equality holds if 0 < qi < n for all i. Accordingly, by Lemma 7.2.1

d(Qz, w) < w(No) + E Vw(q) + E Ow(q). (7.21)
gEQz: gEQz:

z(q)<-21 z(q)>11

It is not difficult to see that rp(A) = No for A = Ay(0), where Ay(0) is again the
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antichain defined in the beginning of the section. Since rp is a flow morphism,

(v x ... x v)(A) = w(NO). (7.22)

To prove (7.16) it is sufficient to show that

/ \
Vw(q) + Ow(q) = o I I (7.23)

\\\ n
q:z(q)<-21 q:z(q)? 71

(note (7.15), (7.17), (7.18), (7.21), and (7.22)). Let r = r(n) := ,fn- logn and
G = G (n) := {q E Qz : I qj - vi n I < r for all i = 1, ... , k}. First we prove that
we may restrict both sums in (7.23) to elements q of G. To do so, let A') be the
random variable that takes on the values 1 and 0 with probabilities vi and 1 - vi,
respectively. Note that E(A(')) = vi and V(0)) = v;(1 - vi). Let a,j'), ... , .')
be independent copies of .l('). Finally, let w,(,`) ') + + ,(,'), i = 1, . . . , k.

Note that

P(o)(') = T) = (,)viT(l - v)n-T

+vn)n-T= (;)vrui + ... + v_ + + ...

= v({p E Pn : ai (p) = TI)

= w({q E Q : qi = T}).

This implies

w(Q - G) = P(Ico,(1) - vlnI > r or or a)(,k) - vknI > r)

k

< L vinI > r).
i=1

By Theorem 7.1.3, for all i and sufficiently large n (we take M := 1, e := I

and need c < vi (1 - vi) ),

P(Ic),(,') - vine > r) < 2e-Iog2n/(8vi(I-vi)) = o 1 J .

Hence,

Vw(q) + E Ow(q) < E w(q) = w(Q - G) = o (k).
q:gVG: q:goG: q:gVG

z(q)<-21 z(q)?71

We conclude the proof of (7.23) by showing that

Ow(q) < w(q)o (7n) (7.24)
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uniformly in q E G, z(q) >
2

(the corresponding inequality for Vw(q) can be
proved analogously). Then the proof will be complete because (7.24) yields

E Vw(q) + E Ow(q) E w(q)o (
I

) _ o (1 )
qEG: qEG: q:qEG V V

z(q)<-q z(q)>2

(note that w(Q) = (v x x v) (P") = (V (p)), = 1 by the general supposition).
Let q E G, z(q) > 2. If Ow(q) = 0, then (7.24) is trivially true; thus let tw(q) >
0. Then

Ow(q) = w(q) 1 -
w(q) )

(7.25)

Here and in the following, the sums are extended over all q' such that q' <Q. q,
that is, over all pairs (i, j) such that qj < n, qj > 0, pi <p,, p3. Note that qj < n
and qj > 0 are satisfied automatically for sufficiently large n since q E G. Hence
we have equality in (7.19):

E g(q'q) = 1. (7.26)

We have (for q'=(qt,..., qi+1, ..., qj-1,...,qk))

w(q') _ yigj
w(q) vj(gi + 1)

vi
I

qi + 1 + (qt + 1)n (vj vi) (n vi vi

1 (qj _qi
+n vj vi

It can be easily checked that, uniformly in q E G,

1 < 1 =1 )
(7.27)

qj + 1 vin

o(

Vi qj _ qj qjn --
(qi + 1)n vj vi v; v,

logenvi+uj =O( 1 )
n V? vi

(7.28)

With (7.25)-(7.28) we have already obtained

7 )) ,w(q) < w(q) (o ( I ) - 1 T g(q'q)
(gj - TL

n V j v;

uniformly in q E G, and it suffices to show

g(q'q) (Uj - q,) > 0 for all q with z(q) > 2 .
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Since f is a representation flow on (Px, v) we have by definition of g

g(4'4) qJ J

- 9i / = u Ff(P JjPJ) \Jv vi /

i
(Pa - Pi) _

qj vixi = -z(q) > 0.F t-t vi r t F vi F

Thus not only the proof of (7.24), but also the proof of (7.16) and the proof of the
theorem are complete.

In fact, in the case v =- 1, Alekseev used this result to derive an asymptotic
formula for the number ipp,Q(n) of order-preserving maps from Pn into Q: Let
SQ be the (finite) set of all finite sequences (Ho, H1, ... , H,s) of subsets of Q such
that IHol=1,HI=1andforalli=0,...,s-1,pEHi,gEHi+l we have
p q. Let

r(Q) := max{IHoIIH1I ... IHs I : (Ho, ... , Hs) E SQ}.

Theorem 7.2.2 (Alekseev [23]). If P and Q are not antichains, then
IPIn O+oO)

wPP,Q = T (Q) 2nna(P)

In the proof, a method of Kleitman [301] is used. We will omit the proof but
construct as many functions as given in the theorem: Let r(Q) be attained by
the sequence ({qj}, H1, ... , H5_1, {q1,}) and let x be an optimal representation of
P = (P, 1). We take again the antichains

Ax(i):={pEP':i-2 <x(P)<i+2},
i = 1,...,s- 1, and put

Ax(< 0) {p E Pn : x(p) < -2
Ax (> s-1) {p E Pn :x(p)>s-2}.

Obviously, any function that maps Ax(< 0) onto {qj}, Ax(i) in any way into
Hi, i = 1, ... , s - 1, and Ax (> 0) onto {qu}, is order preserving. Consequently,

(PP,Q IHI I IAx(1)I ... IHs-1 IIAx(s-1)I.

Exactly as in the proof of Theorem 7.2.1, we may derive from Corollary 7.1.2 that
n

Ax(i)I= IPI (1+0(1)) for every i=l,...,s-1.
27rna(P)

Consequently,

(I+o(1))o(P) (I+o(t))
2nnPin

a (P)(PP,Q(n) ? (IH1I ... IHS_I I) 2an = r(Q)
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Also without proof we mention another variant of Theorem 7.2.1 which we found
together with Kuzyurin [163]:

Theorem 7.2.3. Let { P" } be a sequence of posets (v =_ 1) that are not antichains
and whose sizes are bounded by some fixed constant. If k = k(n) = o(J), then

dk(Pl x x P") kIP1I I P" I^ as n --> oo.
21r n-1 U2(P,)

For a ranked and weighted poset (P, w), let

b(P, w) := max w(N1).
t

Proposition 7.2.2. If r(P) > 0 then

b((P _)n) ti (w(P))",

v'2-nna,.

where oY is the variance of the rank function.

asn -moo

Proof. Apply Theorem 7.1.5 to the independent random variables j, j = 1, ...
n, where P(t; j = i) = W(P) i = 0, ... , r(P).

Note that no; is the variance of the rank function of (P, w)". Moreover, recall
that we proved in Corollary 7.1.3 for the partition lattice II" with w - 1 that also

b(IIn) Innl
Bn (7.29)

21rQn 2ncrf

In contrast to the usual notation, we write Q f instead of Q, in order to avoid
confusion with the number r (the solution of re' = n). Here we may replace or,
by o,- f because of Remark 7.1.1.

Let {(P,,, wn)} be a sequence of ranked and weighted posets. We say that
(Pn, wn) has the asymptotic Sperner property if

d(Pn, w,,) b(P,, wn) as n -* oo.

Corollary7.2.1. Let (P, w) be a ranked and positively weighted poset. (P, w) is
rank compressed iff (P, w)" has the asymptotic Sperner property.

Proof. The case r(P) = 0 is trivial; for r(P) > 0 apply Theorem 7.2.1 and
Proposition 7.2.2.

Note that not all rank-compressed posets have the Sperner property and that
the strong Sperner property does not imply rank compression; see Figure 7.1.
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Figure 7.1

The question whether the partition lattice IIn is asymptotically Sperner or rank
compressed had been open for a long time. Finally Canfield and Harper [98] found
that the answer in both cases is no.

Theorem 7.2.4 (Canfield and Harper). We have for sufficiently large n

d(IIn)
> n1/35 and Q(nn) < 1

b(nn) Qrf(nn) 1 335

Proof. Let r and r be the solution of rer = n. We define the sequence
by

if [rrJ < j < [2trJ,

otherwise.

Then we introduce the function x : nn - R by

+ + A(n) if 7r En, consists of the blocks B1, ... , Bk.x(7r) := A(n)
B11 I&

Note that if Ann) was proportional to all j, then x(7r) would be constant; that is, it
would have variance 0. By checking several cases, one finds that x is a represen-
tation of IIn (the dual of IIu). The large interval in which Ann) is proportional to
j yields a sufficiently small variance. If we define

Zn := {x(7r) : 7r E 1-ln}

and

an,a := I{7r E 11n : x(7r) = all,

then we may prove analogously to Lemma 7.1.1 that

00 [
e_j=1 Y A JD = E L an

n!
),p Zn.

k=0 UeZ

By Theorem 7.1.11 (noting 2 < vo), the random variable cn, where
a) = I{7r E IIn : x(7r) = a)I/Bn, is asymptotically normal with mean µn and
variance on given in Theorem 7.1.11. Using Remark 7.1.1, we may calculate
V (which is the variance arx2 of the representation x) with high precision: Let
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J := Lrrj, K := L2rrj. Then
00 j

j=l

(n) 2 r
j

)
j!

1 00 j2

rJ J , 2 rJ

00 (12

rJ /(1 - r)2 ( r2 j1 + (1 - r2)
j!

r2 - 1) j!

j=KJ

(1

r)2
\\1+r/er+O\J+O\K!//

since the second and third sum are bounded by geometric series whose ratios are
bounded away from 1. In a similar manner,

00

1 r ((r +1)er+rOl I+r0()).Ki
j=l ./ \ /

Consequently,

x\ x

V 0 jl + Kl l +
n

r
0 ((Jl +

Kl)2) + O(1).

\
/

rJ K 4er/4
By Stirling's formula we find that both J! and

r
K, are of order O ( ) (it was the

-117

aim to attain the same order during the determination of r). Thus,

rJ K er/2 (re log 2)/2lr(2? (e (fl(elo2)/2

rs

where := 11+e2 g 2 (we replaced er by
r
11). Hence we are also able to express the

variance as a power of n:

n (e log 2)/2

r
By Theorem 7.1.9 and Remark 7.1.1, o f(IIf) ^ , which yields

2

= n
./35

forn large enough. (7.30)
rf //

Accordingly, the second inequality in the statement of the theorem is proved.
To verify the first inequality, we apply Chebyshev's inequality: We have (with
ox = V(W)

P06, - EQn) I < tax) > y.

The interval (E(on) - 2Qx, E(on) + 2ox) can be covered by disjoint half open
intervals of length < 1, using at most 40x + 1 such intervals. Hence there exists
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at least one interval I = [a - 2, a + 2) such that

3
4

4vx+1'
and Proposition 7.2.1 yields

3

d(nn) > Bn 4

4ax+1
With (7.29) and (7.30) we derive for some constant c > 0

d(IIn) Qrf 1/35>c>n
b(nn) cr

For arbitrary posets, the ratio d(P)Wp) can be bounded from above in the following
way (we omit the proof, see [164]).

Theorem 7.2.5. Let P be a ranked poset of size k. Then

(a) d (P) 1 [k+2
'b(P) 2 2

kk+2

(b) li
d(P") 4

m <
n-*oo

b(Pn) k+2+1 k
4

and these bounds are the best possible.

if k is even,

ifkis odd,

7.3. An asymptotic Erd6s-Ko-Rado Theorem
In this section we study maximum statically t-intersecting families in Ni (S) where
S = S(kl, ... , kn) and k1 = ... = kn = k (see the end of Section 3.3). The
results we found together with Frankl [160]. Instead of Ni (S) we write Ni (n, k).
Examples of statically t-intersecting families include the families FX := {x E
N1(n, k) : supp(x) X), where X c [n], IX1 = t. In the following, we often
take X = [t] = {1, ..., t}. Let i = [),nJ where 0 < A < k. Moreover, let Pt be
the unique positive solution of the equation

\
x + x2 + ++--x1' = t = x ( + 1 I -

t1)
and define

t k jj=0 t
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Theorem 7.3.1. Let k, t, and), (0 < k < k) be fixed, and consider n ---> oo. Let
F C Ni (n, k) be a maximum statically t-intersecting family with i = [,ln J. Then
we have

(a) IFI IF[til if), <Ai,

(b) I F I > c I F[tj I if l > At , where c > 1 is some constant,

(c) I FI Wi (k, n) if A >

Proof. Let a = a().) be the unique positive solution of

k=1
[,k -
Ej'I=0aJ

(observe that g(x) := jxJ/ Eg=o xJ is continuous and increasing for 0 <
x < oo with g(0) = 0 and limx._.,m g(x) = k). Obviously we have

a<fitif),<A anda>fitifA>A . (7.31)

From (7.7) we know that

1 (l+a+...+ak)n
W, (n, k)

27rnor ai
(7.32)

where or depends an k and A, only. Let po := 1/ aJ. For x e S, let z(x) be
the number of zero coordinates of x; that is, z(x) = n - I supp(x)I. Finally, for
c > 0 let

N11,E(n, k) := {x E Ni(n, k) : z(x) V [(po - E)n, (po +E)n]},

Wi,E (n, k) := I Ni,E (n, k) I

Claim 1. Let 0 < E < po(1 - po). Then there exists some constant c such
that Wi,E (n, k)/ Wi (n, k) < e-`n, that is, the number of elements x of Ni (n, k)
containing fewer than (p0 - E)n or more than (pp + E)n zero coordinates is
exponentially small in n with respect to Wi (k, n).

Proof of Claim 1. Let n be a random variable with P(ro) = 1 - po and
P (rl = 1) = po. Let rj i ... , rin be independent copies of ri and let wn : = n i +

+ rln. Then

P(wn - h) - Ph(1 - po)h
(a + a2 + + ak)n-h(n) h(n)

h(1 + a + + ak)n
kknn aj

0(l+a+ +ak)IIXENj (n,k):z(x)=h}I.
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Furthermore, in view of Theorem 7.1.3, for some constant d > 0,

2e-dn > p(Ipon - con I > En) _ E P(wn = h)
h¢[(p0-E)n,(p0+E)n]

krn aj
= ` (l + a + + ak)"

I {x E Nj (n, k)
j=0 hV[(po-E)n,(po+E)n]

a'
> (1 + a + ... +. ak)n Wi (n' k)'

With (7.32) we obtain, for some constant 0 < c < d

W1,e(n, k) < e-cn
W; (n, k) -

z(x) = h}I

Claim 2. IF[r]I > W;(n,k)/(r) if i > kt.
Proof of Claim 2. If i > kt then I supp(x) I > t for all x E N1(n, k). Thus

Ni (n, k) = UFX, implying W; (n, k) < I Fx I =
(n) I F[r] I (the union and the sum

are extended over all X E El

(a) Let k < Ai . Then, by (7.31), a < fir and, in view of the definition of ,Br,
a + a2 + +01k < 1. Consequently, po > t+-L1 . Let 0 < e < min{po(1 - po),

} Finally let F' := F - N1,E(n, k) and F,r] F[r] - N,,E(n, k). Sincepo - t+1
by Claim 1 and 2

WI,E(n, k) < Wi,E(n, k) < c) - 0
IFI IF[t]I ecn

it follows that

IF'I^-IFIandF[r]-,F[r].

Obviously, we have (compare with the proof of Theorem 3.3.4)

IFI = E IQjIW,-j(k - 1, j) (7.33)
jE[(1-po-E)n,(l-po+E)n]

where 9j is some t-intersecting family of j-element subsets of [n]. However,

IF[t]I (.I)wJk_li.
jE[(1-po-e)n,(1-po+e)n] 3 t

- 3, the values j satisfyBecause there is some 3 > 0 such that 1 - po + E < t+1
the inequality

7 (t+1 t+1 +t-1.
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Theorem 6.4.5 implies 19j I < ("_') and thus I F' j < I F tt] I. Consequently, IFI
I F[t] 1, and the obvious relation IFI > I F[t] I yields the assertion.

(b) Let a, > k*. We obtain (7.33) in the same way, but this time we work with
some c, 3 > 0 such that

1

t+1
+3<l-po-E<l-po+E<1-3 and E<po(1-po).

As on p. 53 we take the "Boolean" t-intersecting families

Cl, j := {X E
[n]

I X n [t + 2] I > t + 1}

and define the statically t-intersecting family in Ni (n, k) by

F* := {x E N1(n, k) : SUPP(x) E UjE[(1-po-E)n,(1-po+E)nj91,j}.

The size of F* is given by (7.33), where we have to replace 19j I by I c1, j I . A simple
computation shows that, for j := In,

lim I1'i I =1(t + 2 -1(t + 1)) > 1 uniformly in + 3 < 1 < 1 - S.n *oo (n-t) t + 1

Thus there exists some constant c > 1 such that ICI, jI > for j E [(1 -
po - E)n, (1 - po + E)n] and n large enough. Consequently, for these n, IFI >
IF*I > cJF,t]l - cIF[t]I.

(c) Let ,l > X*. Analogously to (a) we obtain po < 2 , and we find thus some
8, E > 0 such that z - 8 > po + E and e < po(1 - po). We put

F* := {x E N; (n, k) : I supp(x) I > (2 + 6)n}.

Then, for sufficiently large n, F* is a statically t-intersecting family because
for x, y E F* it follows that I supp(x) n supp(y) I > 28n > t. By Claim 1,
IF*I.W;(k,n).

0
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Macaulay posets

In this final chapter a theory is presented that is based on the Kruskal-Katona
Theorem (Theorem 2.3.6) and its predecessor, the Macaulay Theorem (Corol-
lary 8.1.1). The central objects are the Macaulay posets, and the main theorem
says that chain and star products are Macaulay posets. These theorems provide
solutions of the shadow-minimization problem, but several other existence and
optimization problems can be solved in this theory as well. We restrict ourselves
to chain and star products (and their duals) because these have many applica-
tions, and both posets are very natural generalizations of the Boolean lattice.
Recall that we already know much about these special posets S(ki, ..., and
T(kl, ..., We proved that they are normal and have log-concave Whit-
ney numbers; see Example 4.6.1. In particular, they have the strong Sperner
property. Furthermore, chain products are symmetric chain orders; see Example
5.1.1 (and, moreover, ssc-orders; see Example 5.3.1), and are unitary Peck; see
Example 6.2.1.

A more detailed study of isoperimetric problems, also in other structures,
such as toroidal grids, de Bruijn graphs, and so forth, will be presented in the
forthcoming book of Harper and Chavez [261]. We refer also to Bezrukov [57,
58] and Ahlswede, Cai, Danh, Daykin, Khachatrian, and Thu [6]. In the case
of chain products, we will further investigate two types of intersecting (resp.
cointersecting) Sperner families and discuss some other properties. A complete
table for several classes of families, as it was given in Chapter 3 for the Boolean
lattice B, is not known and seems to be difficult to find since Katona's circle
method does not work here. However, in some cases the succeeding theory
may replace the circle method. Further results for families in chain products
that satisfy certain conditions but are not Sperner families can be found, for
example, in [161].

332
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8.1. Macaulay posets and shadow minimization
Let P be a ranked poset and -< a new linear order on P. Clearly, -< induces also a
linear order on each level N; For a subset F of P and a number m, let C(m, F)
(resp. £(m, F)) be the set of the first (resp. last) m elements of F with respect to -<.
For a subset F of a level Ni, we abbreviate C(I FI, Ni) by C(F) (and, analogously,
£(I FI, Ni) by £(F)). For a still shorter notation, we will often write just CF (resp.
L F). Thus CF consists of the first IFI elements in Ni. It is called the compression
of F. Clearly, we have CCF = CF; thus C can be interpreted as an idempotent
operator on 2N1. The set F c N; is called compressed if F = CF.

The ranked poset P is said to be a Macaulay poset if there exists a linear order
such that

A(CF) c C(A(F)) for all F C N; and all i > 1. (8.1)

Though there may exist several linear orders such that (8.1) holds, we assume in the
following that with a Macaulay poset always some fixed linear order < satisfying
(8.1) is given; that is, we consider Macaulay posets as triples (P, <, -<) and speak of
Macaulay posets P with associated linear orders -<. The first proposition contains
an equivalent definition of Macaulay posets:

Proposition 8.1.1. Suppose that there is given a linear order on the ranked
poset P. Then (8.1) holds iff a compressed subset has minimum shadow with
respect to all subsets of the same size; that is,

ID(CF)I < lA(F)I forall F C Ni, i > 1, (8.2)

and the shadow of every compressed subset is compressed; that is,

A(CF) = C(A(CF)) forall F C Ni, i > 1. (8.3)

Proof. Assume that (8.1) holds. Then (8.2) is trivial. Moreover, since C is idem-
potent,

A(CF) = A(CCF) c C(A(CF)),

and (8.3) holds since A(CF) and C(A(CF)) have the same size by definition.
Now assume that (8.2) and (8.3) hold. Then

A(CF) = C(A(CF)) c C(A(F))

since by (8.2) A(CF), that is, C(A(CF)) also has no more elements than
C(A(F)).

The following fact was observed by Bezrukov in [55].
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Proposition 8.1.2. If P is a Macaulay poset of rank n, then so is its dual P*.

Proof. If < is the associated linear order on P, take the dual <* as the associated
linear order for P*. By definition of the dual, it is enough to prove that

o(GF)cL(o(F)) forallFcN;, i=0,...,n-l. (8.4)

Let G := N,+1 - V(F). Obviously, we have O(G) c Ni - F. Accordingly, by
(8.1),

O(CG) c C(O(G)) c C(N1 - F) = Ni -,CF,

and consequently,

Ni - O(CG) 2 ,CF. (8.5)

Furthermore,

V (N1 - O(CG)) c N;+l - CG = ,C(O(F)). (8.6)

Now (8.5) and (8.6) yield (8.4).

The following proposition is an immediate consequence of the definition and
Proposition 8.1.1.

Proposition 8.1.3. Let P be a Macaulay poset with associated linear order
Then, for every F c Ni,

(a) O,k(CF) c C(O +k(F)) if k < i,
(b) V,k(GF) c G(V ,k(F)) if k > i.

In the following we will show that chain products S(kl, . . . , k,) and star products
T (kl, ... , kn) are Macaulay posets. Recall that we always suppose kl > > k
for S(kl,... , k,) and kl < ... < k, for T (kl, ..., kn). For the levels, we use
sometimes the notation Ni ( k 1 . . . . . kn) to indicate the parameters (from the context
it will be clear whether chain products or star products or both are considered).
Note that the rank of S(k1, ... , kn) is not n, but s := kl + + k,,. First we need
the corresponding linear orders <. Let a ¢ b.

In the case of S(kl, ..., k,) we put

a -< b if aj < bj where j is the largest index with aj bj. (8.7)

This is the reverse lexicographic order on S(kl, ... , kn). It is illustrated for
S(3, 2, 1) in Figure 8.1. For a E T (kl , ... , kn ), we first define the sets a (1) := {i E

[n] : ai = 1}. Recall that in Section 2.3 we already met the reverse lexicographic
order on the subsets of [n]:

X <,t Y if max(X - Y) < max(Y - X).
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Now, in the case of T (kl , . . . , k,), we put

a < b if b (l) <,l a (1) where 1 is the smallest number with a (1) b (1). (8.8)

This is illustrated for T(1, 2, 3) in Figure 8.2. For kl = . . . = kn = 1, these
orders coincide. The following theorem is due to Clements and Lindstrom [117]
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for S(kl, ... , essentially to Lindstrom [345] for T(2,..., 2), to Leeb [336]
and Bezrukov [56] for T (k, . . . , k), k > 2. Leeb [336] also mentioned without
proof that the generalization to T (kl , . , is possible. Leck [333] gave an
explicit proof for this general case. In an early paper, Kruskal [326] stimulated the
study of the cubical poset Q, = T(2, ... , 2).
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Theorem 8.1.1. Chain products S(kl, ... , kn), and star products T (k1, ..., kn)
are Macaulay posets where the associated linear orders are given by (8.7) (resp.
(8.8)).

Proof. This proof is based on the original ideas of Clements and Lindstrom.
Claim 1. The shadow of every compressed family in Ni, i > 1, is compressed.
Proof of Claim 1. We use induction on n. The case n = 1 is trivial. Let a be

the last element of the compressed family F.
First we consider S(k1, . . . , kn). We may suppose kn > 1. Let

F1 {b E N, : bn < an },

F2 _ {(b1, , bn-1) E Ni-an (kl,... , k1) : (b1, ... , bn-1, an) E F).

Since F is compressed, we have F1 C F. Moreover, F2 is compressed, too.
Obviously,

Li(Fi) _ {C E Ni_1 : cn < an}

and

A(F) = O(F1) U {(c1, ... , cn-1, an) : (ci,... , cn-1) E A(F2)1.

By the induction hypothesis, O(F2) is compressed; thus A(F) is also compressed.
Now we consider T (kl , ... , kn ). For any vector b and any number 1, let b T I

be the vector that can be obtained from b by deleting all components equal to 1.
Let 1 := min{aj : j E [n]}. Let

Fl :={bEN;:b(j)#0for some jE{0,...,1-1))
U{bEN1:a(1)<rlb(1)},

F2:=(bTI:bEFandb(j)=0foralljE{0,...,1-1)
and b(1) = a(1)}.

Since F is compressed, F1 C F. Let { J1, ... , jt} = [n] - a(l), where j1 <
< jj. Note (for the induction) that t < n. The elements of F2 have the

form (bj...... bj,) where max{kn - kjh, l + 1} < bjh < kn, h = 1, ... , t. Let
µ := max{kn - kj,, l + 1). Let FZ be the family that can be obtained from F2 by
reducing each component of every element of F2 by t. It is easy to see that Fz is
a subset of Ni (kn - max{kn - kj, 1 + 1), ... , kn - max{kn - Icy,, 1 + 1)), and FZ
is compressed since F is compressed. Obviously,

o(Fl) := {c E Ni-1 : c(j) 0 0 for some j E {0, ... ,1 - 1}}

U {c E Ni_1 : a(l) <r1 b(1)}
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and

O(F) _ A(FI) U {c E Ni_1 : c(j) = 0 for all j E {0, ... ,1 - 1)

and c(1) = a(1) and c T 1 E A(F2)}. (8.9)

The second set on the RHS results from A(F2) by adding to each component of
every element the number a (which is at least 1 + 1) and by introducing the new
component I at the jth coordinate with j E a (1). By the induction hypothesis,
O(F2) is compressed. Now it is not difficult to see that the RHS of (8.9), that is,
A(F), is also compressed.

By Proposition 8.1.1 it is now sufficient to prove (8.2).
Claim 2. The inequality (8.2) is true for n = 1, 2.
Proof of Claim 2. The case n = 1 is trivial; thus let n = 2.
S(kl, k2): If F CNi (S(ki, k2)) has the form F = {(m, i - m), (m +

m - 1), ... , (p, i - p)} (called block) then

1 ifm>0,i-p>0,
IA(F')I - IFI = -1 ifm = 0, i - p = 0, (8.10)

0 otherwise.

Observe that the difference can only be negative if F is a complete level - that is, if
F is compressed. If F is not compressed and not of this special form, we partition F
(similarly as A is partitioned in the proof of Theorem 4.6.2) into maximal blocks
B1, ..., Bt. Then the sets A(B;), i = 1, ..., t, partition O(F), and in view of
(8.10)

IA(F)I - IFI > IA(BI)I - IBII >- IA(CF)I - ICFI.

T (kl, k2): The only interesting case is i = 1. Let a := I{a E F : al = k2}1, a'
CF:a2=k2}I.It

is easy to see that

IA(F')I = kla + k2p - al

= k1k2 - (kl - 9)(k2 - a),

IA(CF)I = klk2 - (kl - P')(k2 - a').

Hence

IA(CF)I IA(F)I iff (kl - fi')(k2 - a') > (k1 - P)(k2 - a). (8.11)

Note that a + fi = a' + f'; that is, (kl - ,B) + (k2 - a) = (ki - P') + (k2 - a').
We have CF = {(k2, 0), (k2, 1), ... , (k2, k2 - kl), (k2 - kl, k2), (k2, k2 - kl +
1), (k2 - k1 + 1, k2), ...}. If Cl' < k2 - kl + 1 and ,8' = 0, then (8.11) follows
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immediately. If a' > k2 - k1 + 1, then (k1 -,8') - (k2 - a') E {0, 1). A product
with integral factors of constant sum attains its maximum if the factors are almost
equal; thus (8.11) is proved also in this case.

Now we prove (8.2) by induction on n. The cases n = 1, 2 are settled. So let
us look at the step n - 1 n > 3. We still need some preparations. For F C Ni,
we put

Fj:d {(al,...,an) E F: aj =d},

Fjjd {(al,...,aj-1,aj+l,...,an) E Fj:d}.

Let, forS(kl,...,kn) andd> 1,

Aj:d(Fj:d) := {(al,...,d - 1,...,an): (at,...,d,...,an) E Fj:d}

and, for T (kl, . . . , kn) and d = k,

Oj:d(Fj:d) := {(al,...,e,...,an) : (al,...,d,...,a.) E Fj:d,

kn-kj<e<kn-1).

In all other cases let

Aj:d (Fj:d) := 0.

Furthermore, let

AJId(Fj:d) := {(bl, ..., bj-1, d, bj+1, ..., bn) :

(bl, ..., bj-1, bj+1, ... , bn) E A(Fjld)}.

Note that

A(Fj:d) = Aj:d(Fj:d) U Ojld(Fj:d)

The set C(IFj;d1, (N;)j:d) of the first I Fj.dI elements of (N;)j:d is briefly denoted
by Cj:dFj;d. We say that F is j-compressed if, for all possible d,

Cj:d Fj:d = Fj:d

(all possible d means d E {0, ..., kj } for S(kl, ..., kn) and d E {kn - kj, ..., kn }
for T (k1, ..., kn)). For an element a, let o(a) be the position of a in the linear
order -<; that is, a is the o(a)th element in -<. Further let

o(F) := E o(a).
OEF

Assume that (8.2) is not true. Then let F c Ni be a family for which

IA(CF)I > IA(F)I and o(F) is minimum. (8.12)
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Claim 3. F is j-compressed for every j.
Proof of Claim 3. Assume the contrary, that is,

Fj:d* Cj:d* Fj:d*

for some j and d*. Let G := O(F), and define

F':= UCj:dFj:d, G' := UCj:dGj:d
d d

Note that IF'I = IFI and IG'I = IGI.Obviously, o(F') < o(F). In the following
we will show that

O(F') C G'. (8.13)

By the choice of F, this will be a contradiction to (8.12) because

IA(CF)I = lo(CF')I < IA(F')l _< IG'I = IGI = lo(F)I

So let us prove (8.13). We have

Ajld(Fj:d) C Gj:d.

The induction hypothesis (together with Claim 1 and Proposition 8.1.1) yields

OjId(Cj:dFj:d) C Cj:dGj:d. (8.14)

Furthermore we have (recall G = O(F))

Aj:d(Fj:d) C

Thus also

r Gj:(d-1) f o r S(kl, ... , kn), d > 1,

Ukn-ki<e<kn-1Gj:e for T(kl, ... , kn), d = k .

Cj:(d-1)Gj:(d-1)
Oj:d (Cj:d Fj:d) C

Ukn-kj <e<kn-1Cj:eGj:e

Now (8.14) and (8.15) imply for S(kl, . . . , kn )

I Cj:dGj:d
O(Cj:dFj:d) C

Cj:dGj:d

and forT(kl,...,kn)

for S(kl, ... , kn), d > 1,

for T (kl, ... , kn) , d = kn .

(8.15)

U Cj: (d- 1) Gj:(d- 1)

O(Cj:dFj:d) C
Cj:dGj:d

Cj:dGj:d

if d = 0,

ifd> 1,

U (Ukn-kj<e<kn-1 Cj:eGj:e)

ifd <kn,

if d =kn.



340 Macaulay posets

If we take the union over all possible d we obtain

A(F') C G'.

Claim 4. F is compressed.
Then clearly I A (CF)I = I A (F) I in contradiction to (8.12), and the induction

step is complete.
Proof of Claim 4. Assume that F is not compressed. Let, with respect to <, a be

the first element of Ni that is not contained in F and e be the last element of F. By
our assumption, a -< e. Claim 3 yields that aj # ej for every j because otherwise
e E F would imply a E F. Let F* := (F - {e}) U {a}. Clearly, o(F*) < o(F).
We will show that

IA(F*)I Ii(F)I. (8.16)

As in the proof of Claim 3 this yields, by the choice of F, a contradiction to (8.12):

IL (CF)I = IA(CF*)I < IA(F*)I -< JA(F)j.

Thus it remains to prove (8.16).
Here we separate the proof into two parts. At first we consider S(ki, ... , kn ).
Claim 5. We have el > 0 and al < k1.
Proof of Claim 5. Assume el = 0. Let

(0,k2,...,kn-1,i -(k2+...+kn-1)) ifk2+...+kn-1 <i -an,

(0,f2,...,fn-1, an) ifk2+...+kn-1>i-an,f:=jl
where in the second case (f2, ... , fn-I) is, with respect to <, the last element in
Ni_an (k2, ..., kn_I). In the first case we have f, = i - (k2 + + kn-1) < en
because i = e2 + - + en_I + en < k2 + + kn_1 + en. Here equality holds
only if e j = k j for all j c {2, ... , n - 1} - that is, if e = f. Thus f < e. In the
second case we also have! < e, because an < en, which follows from a -< e and
an en. Thus, in both cases, f E F, because F is 1-compressed. In the second
case we obviously have a < f, which implies a E F because F is n-compressed,
a contradiction. For the first case, we need a further intermediate element:

g := (i - (k2+....+kn-1 +a,),k2,...,kn-l,an).

Note that g belongs to S(k1, ..., kn) because i = al +. +an -1 +an < kl +. +
k1. It is easy to see that a _<g -< f.

It follows that g, a E F because F is 2- and n-compressed, a contradiction. Thus
we know that eI > 0.
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Assume al = kl. We may argue analogously. The intermediate element is this
time

f (k1,0,...,0,i-k1) if i - k1 <en,

(k1,f2,...,.fn-1, en) ifi-k1 >en,
where in the second case (f2, ..., fn_l) is, with respect to -<, the first element
in N, _k, _en (k2, ... , k,-,), and for the first case we need the further intermediate
element

g _ (i -en,0,.. ,0,en).

Now we continue the proof of Claim 4.
Case 1. a1 = 0. We will show that A(F*) C A(F), which implies (8.16). It is

enough to verify that A(a) C A(F). Thus let a' :_ (at, . . . , aj - 1, ... , an) E
A(a), j E {2, ... , n}. Let a* := (al + 1, ... , aj - 1, ... , an). Clearly, a* -< a.
Since a is the first element not belonging to F, we have a* E F. Hence a' E
A(a*) C A(F).

Case 2. al > 0. Let

G := (A(F) - {(el - 1, e2, . . . , en)}) U {(al - 1, a2, . . . , an)}.

We will show that A(F*) c G, which implies IA(F*)I < I GI < IA(F)1. Obvi-
ously, (el - 1, e2, ..., en) E A(x) implies e { x. Thus e is the only element of
F whose shadow contains (el - 1, e2, ... , en), and therefore it is again enough
to verify that A(a) c A(F) U {(at - 1, a2, ... , an)). But this follows from the
arguments in Case 1.

Now we consider T (k1, ... , kn ). Let 1 be the smallest number with a (1) 0 e (1).
Then a (1) -<rl a (1), since a -< e. Let j be the largest index such that a j = 1 e j.

Then, aj+1, ... , an, ej+1, . . . , en belong to {1 + 1, ... , kn} because of aj+1
ej+l,..., an e,,.

Case 1. es = kn for some s, s ,-E j.
We will show that A(F*) c A(F), which implies (8.16). It is enough to verify

that A(a) c_ A(F). Let a' :_ (al,... , ar_1, a, ar+l, ..., an) E A(a) where
ar = kn. Note that s # r and that as ¢ kn . Let a* = (a*, . . . , an) where

kn ifh=s,
ah a ifh = r,

ah otherwise.

We have a* < e since e(u) = a*(u) for U E {0, .-1 - 1} - {a) and in the case
a < 1, e(a) <r1 a*(a), whereas in the case a > 1, e(1) -<rl a*(1). Since F is s-
compressed and as = es = kn, it follows that a* E F. Thus a' E A(a*) C A(F).
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Case 2. es < k for all s 0 j. Since we are working at least in the first level,
that is, i > 1, we have ej = k and i = 1. Let a, = k, r j. Obviously,

li(F')I = lo((F - {e}) U {e))I _ Ji(F - {e})I + li(e) - i(F - {e})j,

li(F*)I = l i((F - {e}) U {a})I = Ji(F - {e})I + li(a) - i(F - {e})j.

Thus, in order to prove (8.16), we only must verify that

Ii(a) - i(F - {e})I < Ii(e) - i(F - {e})I. (8.17)

Let µ(x) := max{xh : h E [n] - {r, j}}.
Claim 6. We have Ii(a) - i(F - {e})I < k - µ(a).
Proof of Claim 6. It is enough to show that a' (al, ... , ar_1, a, ar+l, ... .

a E {0, ... , µ(a) - 1}. Let a,s = µ(a) (note s 0 r), and
define a* by

ifh=s,
if h = r,

otherwise.

Since a and a* coincide in all but two components and a < µ(a), it follows
that a* -< a. By the choice of a, a* E F - {e}. Consequently, a' E i(a*) c
i(F - {e}).

Claim 7.Wehave Iz(e)-i(F-{e})l >k,,-µ(e)-1.
Proof of Claim 7. It is enough to show that e' := (el, ..., ej_1, e, ej+l, .. .

e (= {µ(e) + 1, ... , k - 1). Thus assume that e' E i(e*)
for some e * E F - { e } where

k ifh=s,
= e ifh = j,

eh otherwise.

Since e and e* coincide in all but two components and e > µ(e), it follows that
e -< e*. By the choice of e, e* V F, a contradiction.

By Claim 6 and Claim 7, (8.17) is proved if we can show that

k,, - µ(e) - 1 >- k, - g (a),

that is,
E.c(a) > fc(e) + 1.
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Assume the contrary. Then there must be some index s E [n] - jr, j} such that

es=ti (e)> s(a)>as.

Let a be that element which can be obtained from e by replacing the sth component
es by as. Then clearly e -< e, and since F is j-compressed, e E F. Obviously,
e (0) = a (0), ... , e (1- 1) = a (1- 1). Moreover, it is easy to verify that i(l) <rt
a (1). Thus a e. Since F is s-compressed, e E F implies a E F, a contradiction.

Now the proof of Claim 4 for T (kl, ... , kn ), that is, the whole proof of the
theorem, is complete.

In the case of chain products, Theorem 8.1.1 is known as the Clements-Lind-
strom Theorem. In the following we discuss some immediate consequences of
Theorem 8.1.1. Let Mon (n) be the set of all monomials in the variables xl , ... , x ;
thus, each element m of Mon(n) has the form m = xI' a; E N for all i.
Mon(n) becomes a poset by defining m < m' if m Im', that is, we have

m = xn" < m' =
axl' .

. x " iff a; < a' for all i.

Obviously, Mon(n) is isomorphic to the infinite poset S(oo, ... , oo), where 00
means that we do not have upper bounds for the components of the n-tuples. The
reverse lexicographic order given in (8.7) is also a linear order on S(oo, ... , 00)
(here the "priority" of the variables decreases from xl to x", but obviously one
could also take any other priority order, or permutation, of the variables). Each
level Ni of S(oo, ... , oo) is clearly finite and equal to N1(S(k, ... , k)) where k is
large enough (k > i). Moreover, the compression of some F C_ Ni considered in
S(oo, ... , oo) is the same as considered in S(k, . . . , k). Hence:

Corollary 8.1.1 (Macaulay Theorem [358]). The poset Mon (n) is a Macaulay
poset.

A shorter proof of this (probably oldest) result in our (Macaulay-)Sperner theory
was obtained by Sperner [437] (to be precise; Mon (n)* was considered).

Note that the linear order for T(2,..., 2) on No(T (2, ... , 2)) coincides with
the linear order for S(1, ... , 1) = B. Bezrukov [57] observed that Propositions
8.1.2, 8.1.3, and Theorem 8.1.1 yield (after exchanging 0 and 1):

Corollary 8.1.2. Let F be a set of points in {0, 1}" and let facet(F) be the
number of 1-dimensional faces of the n-dimensional cube which contain at least
one element of F. Then, for fixed size of F, facet (F) attains the minimum if F
consists of the first I Fl elements with respect to the reverse lexicographic order.
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This result was proved by Bollobas and Radcliffe [78] without the use of Theo-
rem 8.1.1 (for generalizations to T (k, ... , k) see Bollobas and Leader [75]).

For the next corollary, we first need another interpretation of the dual of T (kl ,

.... Suppose we are given a set A of kl + + k elements (kt < ... < kn)
that is partitioned into n sets (color classes) Aj of size kj, j E [n], respectively.
Look at the family of subsets of A which have with each Aj at most one element
in common. Without loss of generality, we may assume that Aj = { j, n + j, 2n +
j, ... , ( k j - 1)n + j}, j = 1, ... , n. Thus our family can be defined by

Col (kl, . . . , kn) {X C [nkn] : for all x, x' E X and,

for all r E [n], x = x' r(mod n) implies x = x' < krn}.

With the inclusion relation, Col (kl , ..., kn) becomes a ranked poset that we call
the poset of colored subsets. The rank is given by r (X) = I X1. The reverse lexi-
cographic order -<rl is a linear order on Col (kt, . . . , kn).

Lemma 8.1.1. The posets Col (kl , ..., kn) and T (kl , ..., are isomorphic.

Proof. We define cp : Col (kl , ... , kn) -+ T (kl , ... , kn) * by setting (p (X) = a
where

aj
kn if there is no x E X with x = j (mod n),

:={l
k, - 1 - if there is some x E X with x j (mod n).

It is an easy exercise to verify that a = rp(X) is well defined and that qp is an
isomorphism.

Note that we have for a = rp(X) and I E {0, ... , kn - 1}

jEa(1)iff(kn-1-1)n+jEX.

Lemma 8.1.2. Let cp be the isomorphism introduced in the proof of Lemma 8.1.1,
and let X, Y E Col (kt, ... , kn ). Then

X <rl Y ifW(Y) tO(X)

where -< is defined by (8.8).

Proof. Let X -<rl Y, a := rp(X), b := tp(Y). It is enough to show that b -< a. Let
y:=max(Y-X),y=(kn-1-q)n+j,where

j E j V a (q). We show that for I < q, a (1) = b (1). Assume the
contrary.

Case 1. a (1) <rl b (1) for some I < q. Then there is some t E b (1) - a (1). This
implies (kn-1-1)n+t E (kn-1-q+1)n+t =
y + n + t - j > y, in contrast to the definition of y.
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Case 2. b (l) <,1 a(/) for some I < q. In the same way we find an element x
in X - Y which is greater than y. This is a contradiction to X <rl Y.

Finally we show that a(q) <r1 b(q). We know already that j E b(q) - a(q).
Assume that there is some h E a(q) - b(q), h > j. Then (kn - 1 - q)n + h =
y - j + h E X - Y, but since y - j + h > y, we have again a contradiction to
X <ri Y.

The following theorem was proved by Frankl, Fdredi, and Kalai [197] in the
case kn - kl < 1, without the use of Theorem 8.1.1 (another proof was given by
London [352]).

Corollary 8.1.3 (Colored Kruskal-Katona Theorem). For all F c N1(Col (k1,
...,k)), A(CF) c_ C(A(F)), that is, Col(kl, ..., kn) is a Macaulay poset with
<rl as the associated linear order.

Proof. By Lemmas 8.1.1 and 8.1.2 we have (with p (F) :_ {(p(X) : X E F))

A(CF) c C(A(F)) iff V(G(p(F)) S; G V((p(F))),

and the last inclusion is true by Theorem 8.1.1 and Proposition 8.1.2.

Let P be a Macaulay poset with associated linear order <. We say that a family
F C_ Ni is a segment if it consists of elements that are consecutive in Ni with
respect to <. If F = CF (resp. F = GF) then F is an initial (resp. a final)
segment. The shadow function sfi assigns with each F C Ni the number

sf (F) := IA(CF)I

Obviously, sfi depends only on the cardinality of F. We say that the shadow
function sfi is little-submodular if

sf,(F1nF2)+sf(F1UF2)forallF1,F2CN;

withF1 nF2=0orF1 UF2=N,. (8.18)

Let F C Ni be a segment and G (resp. H) be the set of elements in Ni that precede
(resp. succeed) each element of F with respect to -<. The new lower (resp. upper)
shadow of F is defined by

Anew(F) := A(F) - A(G) (resp. Vnew(F) :_ V(F) - V(H)).

Note that Onew (F) in P equals Anew (F) in the dual P*. Thus we restrict ourselves
to the lower shadows. Clearly,

IAnew(F)I = IA(F U G)I - IA(G)I.
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The shadow function sf is called additive (cf. Clements [114]) if

Anew(FI)I ? I&ew(F2)I ? IOnew(F3)I (8.19)

for all segments F1, F2, F3 c Ni with I Fl I = I F21 = I F31 where Fl is initial and
F3 is final.

Proposition 8.1.4. The shadow function sfi is little-submodular iff it is additive.

Proof. Let sf be little-submodular. To prove (8.19), we associate with F the sets
Gi, i = 2, 3, as shown previously. Then the assertion is equivalent to

IA(Fi)I ? IA(F2 U G2)1 - IA(G2)1 ? IA(F3 U G3)I - IA(G3)1-

The first inequality follows from (8.18) applied to F2 and G2, and the second in-
equality follows from (8.18) applied to F2 U G2 and Ni - F1 (note that
INi-Fit=IG31 andI(F2UG2)n(Ni-Fl)1=1(F2UG2)-F1I=1G21)

Let, conversely, s f be additive.
Case 1. F1nF2=0. Put H1 :=CF1andH2:=C(F1UF2)-CF2.Then

IHl I = IH21, and by (8.19)

IAnew(Hi)I I Dnew(H2)I ,

that is,

ID(CFi)I > IE(C(Fi U F2))I - Io(CF2)1

Case 2. F1 UF2=N1.PutH1 :=CF1 -C(F1 nF2),H2:=Ni -CF2.Then
IH1I=IFtI-IF1nF2I=IF1UF2I-IF21=IH21,andby(8.19)

IA(CFI)l - IL(C(Fl n F2))I > IO(C(Fi U F2))I - IA(CF2)1.

We call a Macaulay poset (with associated linear order <) little-submodular if
the shadow functions sf are little-submodular for all i > 1.

Proposition 8.1.5. If Pisa graded little-submodular Macaulay poset, then so is
its dual P*.

Proof. As in the proof of Proposition 8.1.2 we take the dual -<* of -< as the
associated linear order for P*. By Proposition 8.1.4 it is enough to show that

Ionew(G1)I ? IVnew(G2)I ? IVnew(G3)I

for all segments G1, G2, G3 c Ni with IG1I = IG21 = IG31 where G1 is final
and G3 is initial, and for all i < r(P) - 1. Let IG1I > 0 and F1 := Vnew(G3),
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F2 := Vnew(G2), F3 := Vnew(G1). It is easy to see that Fl, F2, and F3 are
segments where Fl is initial and F3 is final. Moreover, Anew(F3) D G1 and if
Fl # 0 then Onew(Fi) = G3. Assume that the first inequality is false, that is
I F31 < I F21. Let FZ be the set of the last I F31 elements of F2 with respect to <.
Then Onew (FF) (; G2 since the first element of F2 (which does not belong to F2)
is related to some element of G2. Consequently,

IAnew(F2)I < IG21= IG11 < 1Anew(F3)I,

a contradiction to the additivity of the shadow function sf . Now assume that the
second inequality is false, that is, I Fi I > J F21. In view of the first inequality, G2;
hence also F2, cannot be final. Let Fz be a segment of size I F1 I containing F2
and at least the next element p after the last element of F2 with respect to <. This
element p must be related to some element q after G2 because otherwise p is
related to some element in G2 and therefore belongs to Vnew (G2). It is easy to see
that

Onew(F2) ? G2 U {q}.

Consequently,

IOnew(Fi)I = IG31 < IG2 U {q}I < IOnew(F2)I,

a contradiction to the additivity of s f, .

The following result is for S(kl, . . . , k,) and T (k, ... , k) mainly due to
Clements [106, 115]. In the proof we use an idea of Kleitman (cf. [116, 112]),
which significantly simplifies the original proofs of Clements [106, 115].

Theorem 8.1.2. The Macaulayposets S(kl, ... , kn ), Col (kt , ... , kn ), and T (ki ,
.... kn) are little-submodular.

Proof. For an n-tuple a and numbers i, j, let (a, i) (a1, ... , an, i) and
(a, i, j) := (al, ... , an, i, A.

Case 1. P = S(kl, ... , kn). We put Q := S(kl, ..., kn, 1, 1). Let Fl, F2 c
N1(P) and define

G1 {(a, 1, 0) : a E CF1},

G2 {(a, 0, 1) : a E CF2},

G3 {(a, 0, 0) : a E Ni+1}.

Then

1o(G1 U G2 U G3)I = Io(G3)I + I (CFi)I + IA(CF2)I. (8.20)
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Further,

G3U{(a,1, 0) : aEC(F1UF2)}
if F1nF2=0,

G3U{(a,1, 0):aEN;} U {(a,0
if F1UF2=N

C(Gi U G2 U G3)

(note that in the second case I F1 I + I F21 = I Ni I + I F1 n F2 1). Moreover,

Io(C(G1 U G2 U G3))I

Io(G3)I + Io(C(F1 U F2))I if F1 n F2 = 0,

lo(G3)I+IO(C(F,UF2))I+Io(C(F1nF2))I if F1UF2=N;.

(8.21)

Now the little-submodularity of sf, follows from Theorem 8.1.1, and Equations
(8.20) and (8.21).

Case 2. P = T (kl, ... , kn). We may suppose kn > 1, because otherwise P =
T(1,...,1)=S(1,...,1).WeputQ:=T(kl,...,kn,kn).LetFl,F2SN1(P)
and define

G1:={(a,0):aECFI},

G2 := {(a, 1) : a E CF2}.

Then

Further,

, 1):aEC(F1nF2))
;

Io(G1 U G2)I = Io(CFi)I + Io(CF2)I. (8.22)

C(GI U G2)

{(a,0):aEC(FjUF2)} ifFInF2=0,
{(a,0):aEN;}U{(a,l):aEC(F1fF2)} ifF1UF2=N;.

Moreover,

IA(C(F1 U F2))I

ID(C(F1 U F2))I

lo(C(G, U G2))I

+ IA(C(F, n F2))I

if F1nF2=0,
(8.23)

if F1UF2=N;,

and the little-submodularity of sfi follows from Theorem 8.1.1, (8.22), and (8.23).
Case 3. P = Col (kl , . . . , kn ). This case follows directly from Case 2, Lemmas

8.1.1, 8.1.2, and Proposition 8.1.5.
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The following example shows that submodularity (i.e., without the additional
condition Fl n F2 = 0 or Fl U F2 = N1) does not hold. Let Fj C B
S(1, ... , 1) = T(1, ... , 1) = Col(l,... , 1), j = 1, 2, be defined by

F l :_ {{1, 2}, {1, 3}, {2, 3}}, F2 :_ {{1, 3), {2, 3}, {1, 4}}.

Then

3 + 3 = sf2(Fi) + sf2(F2) sf2(Fi n F2) + sf2(Fi U F2) = 3 + 4.

One could not expect submodularity since the Takagi function as a limit function
of a normalization of the function sf (F) - I FI is not convex; for more details see
Frankl, Matsumoto, Ruzsa, and Tokushige [200].

Finally, we call a Macaulay poset (with associated linear order <) shadow
increasing if

sfi(F2)<sf+l(Fi) for all i>1,FlCN,+l,F2CN;with IF'iI=IF2I

(8.24)

Proposition 8.1.6. Let P be a graded shadow increasing Macaulay poset. Then
P is rank unimodal and

sf (F2) < sf,(Fi) for all 1 < 1 < u < r(P),

F1 CNu,F2CN1with IF1I =IF2I.

Proof. Assume that there is some h such that Wh_1 > Wh < Wh+l . Let F2 := Nh
and F1 C Nh+l such that IF1 I = IF2I. Then, using that P is graded, O(CF2) =
Nh_1 and O(CF1) C Nh. Consequently, sfh(F2) = Wh_1 > Wh ? sfh+l (Fl), a
contradiction. Now the asserted inequality follows from an iterated application of
(8.24).

The following theorem is for S due to Clements [106] and for T and Col due
to Leck [334].

Theorem 8.1.3. The Macaulay posets S(kl, ... , k,), Col (kl , ... , k,), and T (kl ,
.... kn) are shadow increasing.

Proof. We again study the posets separately.
Case 1. P = S(kl, ... , kn ). We put Q := S(kl, ..., kn, 1). For Fl C Ni+l (P)

and F2 C N1(P), we define

G1 :_ {(a, 0) : a E CFl},

G2 :_ {(a, 1) : a E CF2}.
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Clearly, G 1, G2 c N1+i (Q), and both families are segments where G, is initial.
Obviously,

Onew(G1) _ {(b, 0) : b c 0(C Fl)},

Onew(G2) _ {(b, 1) : b E 0(CF2)}.

Theorem 8.1.2 and Proposition 8.1.4 imply for I Fl I= I F21, that is, I G 1 I= I G21,

sj (F2) = IA(CF2)I = Ionew(G2)I Ionew(G1)I = Ii(CFi)l = sJ+1(Fi).

Case 2. P = T(kl,... , kn). We put Q := T(kl,... , kn, kn). For F1 C_

Ni+1(P) and F2 C Ni (P) with I Fl I = I F21, we define

Go {(a, 0) : a E CFI),

Gkn {(a, kn) : a E CF2}.

Then Go, Gkn c N,+1 (Q). Let (e, kn) be the last element of Gkn with respect to
.Let, fori=1,...,kn-1,

G, (e, kn)},

G1 (a E P : (a, i) E G,),

G := Ukn1 Gi.

It is easy to see that each G;, i = 1, ... , kn - 1, is compressed, that G is a segment
in N,+1(Q), and that

Onew(G) ? {(b, k,,) : b E A(CF2)} U (Uk° i'{(b, i) : b E 0(G;)}) . (8.25)

Note that G has size Fl I + F k " i' 1 G, I . W e partition CG into consecutive seg-
ments Ho__ , H k n _ 1 such that I H o I = 1 F l l and I H i I = I G i l , i = 1, ... , kn - 1.
Then CHo = Go and, for i = 1, ... , kn - 1, CHi = ((a, 0) : a E G'). Conse-
quently,

IO(CHo)I = lo(CFi)I, I A(CHi)l = lo(G;)l, i = 1, ... , kn - 1. (8.26)

From (8.25), (8.26), Theorem 8.1.2, and Proposition 8.1.4 we derive

kn-1 kn-1

Ii(CFi)l + Ik(G;)l = E Io(CHi)I
i=1 i=0

lo(Uk"o'H1)I = Ii(CG)I
kn-1

lonew(G)l >- 1o(CF2)I + Iz(G;)l
i=1



8.2 Existence theorems for Macaulay posets 351

and finally

Sf+1(F) = IA(CF1)I >_ IA(CF2)I = sf (F2)

Case 3. P = Co1(kl, ... , kn ). We put Q := Co1(kl, ... , kn , kn + 1), that is,
kn+1 := kn + 1. Let t/r : [nkn] [(n + 1)(kn + 1)] be defined by

i/i(gn+r):=q(n+l)+r (rE[n]).

For X c [nkn], let '(X) := {fi(x) : x E X}. It is easy to verify that X E P
implies i(X) E Q. Thus can be also considered as a function 1 : P - Q.
For a family F, let >r(F) {i(X) : X E F}. Obviously, for F C N1(P),

ik(0(F)) = o(*(F))

For F1 c N;+1(P), F2 c Ni (P), we define

G1 :_ {,/f(X) : X E CF1},

G2 := {t/r(X) U {(n + 1)kn+1} : X E CF2}.

Then G1, G2 c N1+1(Q) and G2 is a segment. Obviously,

Lnew(G2) = {Y U {(n + 1)kn+1} : Y E o(tp'(CF2))}.

Theorems 8.1.1, 8.1.2, and Proposition 8.1.4 imply for I Fl I = 1 F21, that is, I G 1 I =
IG21,

Sf (F2) = Io(CF2)1= Io( (CF2))I = Ionew(G2)I < Ionew(CG1)I

= Io(CG1)I < It (G1)I = Io(1(CFI))I = IA(CF)1 = sf.+l(F1)

8.2. Existence theorems for Macaulay posets
In this section we will mainly characterize the profiles of ideals and antichains in
Macaulay posets. Recall that

F={pEF:r(p)=i}, f=1F11

We say that a family F c P is compressed if CF = F, for all i. Obviously,

F is an ideal if 0(F;) C F_1 for all i > 1. (8.27)

For a natural number 1, let E , (1) be the value of the shadow function of an 1-element
family in Ni, that is,

Ai(l) := IO(C(1, N1))I
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Theorem 8.2.1. Let P be a Macaulay poset. The following conditions are equiv-
alent:

(i) f is the profile of an ideal in P,

(ii) f is the profile of a compressed ideal in P,

(iii) A; (j) < f_1 for all i > 1.

Proof. (i) -+ (ii). Let F be an ideal with profile f. Let G := UjCF1. Then G is
compressed and has also the profile f. Moreover, by (8.1),

A(Gr) = A(C1) C C(A(F)) S CF-1 = Gi-1, i > 1;

thus, in view of (8.27), G is an ideal.
(ii) H (iii). Let F = N1). Then F is compressed, and F is by (8.27)

an ideal if

A(C(fi,N,)) cC(fi-1,Ni_1)foralli > 1.

Since by Proposition (8.1.1) the shadow of an initial segment is an initial segment,
the last inclusion is equivalent to (iii).

(ii) -> (i) is trivial.

Now we will derive a generalization of the equivalence (i) H (ii). Let (P1,
<1), ... , (P,s, <s) be Macaulay posets with associated linear orders :1, ... , <s.
Let (Q, <) := (P1, <1) x x (P,s, <i). We define on Q a new partial order by

(Q, -<) := (Pt, <_1) x ... x (P" -<s)

For a vector i = (i1, ... , is), let

N1(Q) := Ni1(PI) x ... x NI,(PP)

If we restrict -< to Ni (Q), then Ni becomes a poset. For a family F CQ and a
vector i, let

F:= (pEF:pEN1(Q)}, .f :=IFI.
The s-dimensional array whose entries are the numbers f, is called the generalized
profile of F. We say that the family F in Q is compressed if F1 is an ideal in N1(Q)
for each possible i. The following theorem was proved by Bjomer, Frankl, and
Stanley [66] for the case that each P j has the form S(oo, ... , oo).

Theorem 8.2.2 (Colored Macaulay Theorem). The array is the generalized
profile of an ideal in Q iff it is the generalized profile of a compressed ideal in Q.

Proof. It is enough to show that one can construct for each ideal F in Q a
compressed ideal with the same generalized profile. Let, as in the proof of Theorem
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8.1.1, for pj c- Pj, oj (pj) denote the position of pj in the linear order <j, j =
1, ... , s. Moreover, forp = (pl, ... , Ps) E Q let o(p) := Fi-l oj(pj) and, for
F C Q, o(F) := >PEF o(p)

Now, given an ideal F in Q with generalized profile let G be an ideal
in Q with generalized profile for which o(G) is minimum. Such a G exists
since F is given. It remains to show that G is compressed. Assume the contrary.
Then there are some i *, some u E G 1 * and some v E Ni * (Q) - G 1 * such that
v < u. We may assume, w.1.o.g., that vl <1 u1, v2 = u2, ... , vs = us. For each

Gil,(P2,...,Pn) {(al, P2.... pn) E G : r(at) = it},

Gi, (P2,...,Pn) {al E Ni, (Pi) : (al, P2, ... , Pn) E G).

Taking all possible it and (P2, ... , pn) yields a partition of G. We are going to
compress each such class individually; that is, let

(compression in Ni, (F1)),

Hi1,(P2,...,Pn) := {(bl, P2, ... , pn) : bi E Hi' I,(P2,...,Pn)}.

Note that and that at least for it = ii, p2 =
u2, ... , Ps = us we have strict inequality. Let

H := U U Hil,(p2,...,Pn)-
it (p2,....pn)

Then o(H) < o(G). We finally show that H is an ideal, in contradiction to
the choice of G (minimality of o(G)). So let

(PI, , Pn) E Hil.(Pz....P,), ('it,... , qs) < (pie..., ps).

Case 1. ql = pl. Let t := ol(pl). Then G;I (P2 pn) has at least t ele-
ments. These elements must belong to G'

(gz qn) since G is an ideal. Thus

G' i1 (q2 qn) has at least t elements, which implies that q1 E
(qz qn) - that is,

(ql, q2, ... , qn) E Hil,(g2,...,gn) S H.
Case 2. ql < pl. Then q2 = P2, ... , qs = ps Since G is an ideal we have

!1 Gil,(P2,...,Pn) - Gil-1,(P2.....pn)'

The relation (8.1) (P1 is a Macaulay poset) yields

A(H.(Pz,...,Pn) ) = A(CG, ll c C(A(G;il ))

C CG'i1-1,(P2,---,P.) = Htl-1,(P2,...,Pn)'

Thus (ql, P2, ... , pn) E Hil-1,(P2,...,p,,) 9 H.
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Now we look at antichains in Macaulay posets P of rank n. We say that a Sperner
family F in P is canonically compressed if each Fi consists of, with respect to -<,
the first f, elements of Ni which are not in the (lower) shadow of Ui>, Fj. Thus
(by induction and Proposition 8.1.1), F is canonically compressed if A,i (F) is
compressed f o r every i. The following result is in the case of S(kl, ... , kn) due to
Clements [104], and in the case of Bn to Daykin, Godfrey, and Hilton [125].

Theorem 8.2.3. Let P be a Macaulay poset of rank n. The following conditions
are equivalent:

(i) f is the profile of a Sperner family in P,

(ii) f is the profile of a canonically compressed Sperner family in P,

(iii) for all i E {0, . . . , n} we have

Di+1( An-2(1 n-1(1n(fn) + fn-1) + fn-2) " + fi+1) + i < W,.

Proof. (i) -> (ii). We construct for a given Sperner family F with profile f the
canonically compressed Sperner family G with profile f as follows: We define

Gn := C(fn, Na),

and fori=n-l,n-2,...

Gi := C(fi, N1 - A .i(U;=i+1Gj)) (8.28)

(soon it will be clear that the construction works).
Claim. For all i = n, n -1, ... for which the construction (8.28) is still possible

(i.e., f < I N i l - I .i (U 1+1 G j) I ), there holds

(a) H, A,;(Unj=i+1Gj) is compressed,

(b) Hi c CA-.i (U j=i+1 Fj ).

Proof of Claim. We proceed by induction on i = n, n - 1, .... The case i = n
is trivial (note Hn = 0). Thus look at the step i + 1 -+ i.

(a) By the induction hypothesis and construction, Hi+1 U Gi+t is compressed.
Since O.+ (Gj) = 0(O,i+1(Gj)) for j > i, it follows that

Hi = i(Hi+l U G1+1)

and because of Proposition 8.1.1, Hi is compressed.

(b) A-.i+1(U j. 2Fj) fl Fi+1 = 0 since F is a Sperner family. Together with
the induction hypothesis this provides

Hi+l U Gi+1 9 C(&-.i+1 (Uj=i+1 Fj)).
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Thus,

Hi = A(Hi+1 U Gi+l) C A(C(A i+l (U' 1 F'i)))

C C(A(A +l (U j=i+I Fj)) = C(0->i (U j=i+1 Fj)).

Here the second inclusion follows from the fact that P is a Macaulay poset.

As already mentioned, F, fl A,i Fj) = 0; hence

f 5 INil-A,j(U=i+,F'j)I:5 1N11 - Phil.

This shows that Gi can really be constructed for all i > 0. By construction, G is
a Sperner family, and by (a) of the claim, O,i (G) = Hi U Gi is compressed for
all i > 0.

(ii) -* (iii). Induction on i = n, n - I.... easily yields that the LHS equals
A-4i (F) I, where F is the canonically compressed Sperner family with profile f.

(iii) - (ii). The condition says that the construction (8.28) is possible up to
i=0.

(ii) - (i) is trivial.

We use the notation CF for the canonically compressed Sperner family which
has the same profile as F. From the proof of Theorem 8.2.3 (in particular Claim
(b)) it follows easily that

A,i(CF) c C(A i (F)) for all i. (8.29)

Without going into details we mention some applications in polyhedral combina-
torics. Theorem 8.2.1 gives in the case P = B a characterization of f-vectors
(profiles) of simplicial complexes (Kruskal [325], Katona [292]) and of polyhe-
dral complexes (Wegner [460]). In the case P = S(oo,... , oc), Theorem 8.2.1
together with Theorem 8.1.1 permits a characterization of the f -vectors of Cohen-
Macaulay complexes (Stanley [438]), and in the case P = Col (d, ... , d), these
theorems allow a characterization of the f-vectors of (d - 1)-dimensional com-
pletely balanced Cohen-Macaulay complexes (Frankl, Fiiredi, and Kalai [197]).
A structural characterization of the f-vectors of balanced Cohen-Macaulay com-
plexes is given by Theorem 8.2.2 applied to Pi = S(oo,... , oo), where the number
of components may differ (Bjorner, Frankl, and Stanley [66]). Finally, in the case
P = B, Theorem 8.2.3 provides a characterization of Betti sequences over some
field of some simplicial complex and of some polyhedral complex on at most
n + 1 vertices (Bjorner and Kalai [67]). We refer the reader to the surveys of
Bjorner [63, 65], Bjorner and Kalai [68], and to the books of Stanley [444] and
Ziegler [473].
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8.3. Optimization problems for Macaulay posets
For F C P, q E P, we write in the following F -< q (resp. q -< F) if p -< q (resp.
q -< p) for all p E F. We call a Macaulay poset P rank greedy if the associated
linear order - is a linear extension of the ordering < of P - that is, if

p < q implies p : q,

and if

A(P) -< q, r(p) > r(q) imply p -< q. (8.30)

The motivation for this notion comes from the construction of linear extensions.
Suppose that we have constructed already a set F of first several elements. The
next element p E P - F must have the property A(p) C F. From all elements
with this property we take one with largest rank as the next element.

Proposition 8.3.1. If Pisa rank-greedy Macaulay poset, then so is its dual P*.

Proof. As in the proof of Proposition 8.1.2 we take the dual of < as the
associated linear order for P*. Since - is a linear extension of trivially also
-<* is a linear extension of <*. We have to show that

q -< 0(p), r(p) < r(q) imply q -< p.

We look for a counterexample (i.e., q -< V(p), r(p) < r(q), p { q) where
r(q) - r(p) is minimal. We cannot have 0(q) -< p because otherwise q -< p by
(8.30). Hence there is some q' with q' < q and p < q'. Note that q' < q; that is,
q' -.< 0(p). If r(q) - r(p) > 1, we may replace the counterexample (p, q) by the
counterexample (p, q'). This is a contradiction to the minimality of r (q) - r (p). If
r(q) - r(p) = 1, we obtain also a contradiction because the shadow of the initial
segment with last element q is an initial segment which contains q' and hence also
p (see Proposition 8.1.1). Thus q -< V (p) is impossible. Consequently, there is no
counterexample.

Proposition 8.3.2. The posets S(kl , ... , k ), T (kl , ... , k ), and Col (kl , ... , k, )
are rank greedy Macaulay posets.

Proof. Obviously, the linear orders -< (resp. <*) given in (8.7) and (8.8) are linear
extensions of the corresponding posets. Now we prove (8.30) (in Cases 1 and 2)
for a = p and b = q. Let c be the last element with respect to -< which belongs
to A(a).

Case 1. P = S(kl, . . . , k,). Clearly, for some m E [n],

= (a;-1 ifi=m,
c;

{I ai otherwise.
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It is easy to see that a; = 0 for all i < m (otherwise c would not be the last
element in A(a)). Since c -< b, there must be some index j such that cj < bj and
c; = b; for i > j. If j > m then a -< b is obvious. If j < m then r(a) - 1 =
r(c) = am + Ei=m+l ai = am - 1 + m+l b; < r(b), a contradiction to
r(a) > r(b).

Case 2. P = T (kl, ... , kn). Clearly, for some m E [n],

ci =
a; otherwis e.

It is easy to see that ai # k for all i < m. Since c -< b, there must be some
number 1 with b (1) <rl c (1), b (i) = c (i) for i < 1. If I < k, - 1 then a -< b is
obvious. If 1 = kn - 1 then there must be some index j such that cj = k - 1,
bj = kn, and ci = b; for i > j. If j > m then a -< b is obvious. If j < m then
r(a) - 1 = r(c) < r(b), a contradiction.

Case 3. P = Col(kl, . . . , kn). This case follows directly from Case 2, Lem-
mas 8.1.1, 8.1.2, and Proposition 8.3.1.

For rank-compressed posets, we already derived the inequality

A, (F) < µr for every ideal Fin P

(see Theorem 4.4.1). Now we ask for the maximum of µr(F) over all ideals of
given size; that is, we are looking for

max IPEF E r(p) : F is an ideal in P with IFI = m }
JJJ

We will answer this question in a slightly generalized form:

Theorem 8.3.1. Let P be a rank-greedy Macaulayposet, let w : {0, ... , r (P) } -+

R be increasing and let x : P - R be defined by x(p) := w(r(p)), that is, x is
constant on the levels of P. Then, for all ideals F in P,

x(F) < x(C(IFI, P)).

Thus, taking the first I FI elements in P with respect to the associated linear order
gives the largest weight of an ideal of given size.

Proof. Again, let o(p) denote the position of p in the linear order -<, and, for
F c P, o(F) := EpEF0(p). Of all ideals F of given size for which x(F) is
maximum, take such an ideal F* for which o(F*) is minimum. We will show
that F* = Q F1, P). From Theorem 8.2.1 it follows that F* is compressed (if
we exchange an ideal by a compressed ideal with the same profile, we do not
change the weight, but decrease the value o(F)). Let a be the first element of
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P with respect to -< that is not contained in F*, and let e be the last element of
F*. Assume that F* # C(IFI, P). Then a -< e. Moreover, 0(a) c F* - {e}
and e is a maximal element of F* since { is a linear extension. Consequently,
F' := (F* - {e)) U {a} is an ideal.

Claim. r(e) < r(a).
Using this claim, we derive

x(F') = x(F*) - x(r(e)) + x(r(a)) > x(F*).

The relation

o(F') = o(F*) - o(e) + o(a) < o(F*)

yields the desired contradiction.
Proof of Claim. Assume that r(e) > r(a). Let E be the ideal generated by

e. Note that E C F*. For all f E E with r(f) = r(a), we have f -< a since
otherwise a E F* (recall that F* is compressed). Let e* be a minimal element of
E with the property a e*. By the preceding remarks, r(e*) > r(a). The choice
of e* yields A(e*) -< a. By (8.30), e* -< a, a contradiction.

Several authors contributed to this theorem. Ahlswede and Katona [13] studied
Bn and considered also other types of weight functions. Bezrukov and Voronin [60]
then gave a generalization to S(kl, ..., k,). After preparatory work of Kruskal
[326] and Lindstrom [345], Bezrukov [56] settled T (k, ... , k). He finally also
proved Theorem 8.3.1 in an equivalent formulation [57]. Earlier special weight
functions like w (i) = i have been considered (e.g. for S(kl, . . . , kn)) by Lindstrom
and Zetterstrom [347] (k1 = ... = kn) and Clements and Lindstrom [117]).

This theorem provides a solution of the maximum-edge problem for certain
graphs; see p. 40. First let G be the Hamming graph of S(kl, ... , k,); that is, the
vertex set V of G equals S(kl, ... , kn ), and we have a b E E iff I {i : ai 0 bi) I = 1.
Recall that for Fc V,E(F):={eE E:ec F).

Theorem 8.3.2. For the Hamming graph of S(ki, ... , k,) and for 0 < m <
(k1+1)...(kn+1),wehave

max{IE(F)I : F C S(kl, . . . , kn), I FI = m} = I E(C(m, S(kl, . . . , kn)))I .

Thus, the maximum is attained by the set of the first m elements with respect to the
reverse lexicographic order.

Proof. We proceed by induction on n. First we will show that we may assume that
F is an ideal. Then we will apply Theorem 8.3.1 to prove the assertion. Let

F(i) {a E F : an = i},

F'(i) _ {(al, , an-l) E S(kl, ..., kn-l) : (al, ..., an_l, i) E F).
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Obviously, I F(i) I= I F'(i) I. Let jr be a permutation of {O..... k } for which

IF(n(0))I > ... > I F(n(kn))I

We have

k
IE(F)I = L IE(F(i))I + I{ab E E : a E F(i), b E F(j)}I

i=0 0<i<j<kn

k
_ L I E(F'(i))I + I F'(i) n F'(j)I

i=0 0<i<j<kn

k

_< I E(F'(i))I + E min{IF'(i)I, I F'(j)I }
i=0 0<i<j<kn

(note thata E F(i),b E F(j),i j,ab E Eimply (at,...,an-1) =
bn_1)). Now we construct a new family G of the same size m. We use the same
notations as for F, thus also G (i) and G'(i). The family G is uniquely determined
if G'(i) is given for i = 0, ... , kn. We put

G'(i) C(I F'(n(i))I, S(k1, . . . , kn-1))

Then, as above (and since G'(i) and G'(j) are related by inclusion),

kn

E(G) E(G'(i))I + min{IG'(i)I, IG'(j)I},
i=0 0<i<j<kn

and the induction hypothesis together with I G' (i) I = I F' (ir (i )) I gives

IE(G)I >_ IE(F)I

The sets G(i) are ideals by construction (recall that -< is a linear extension; that
is, the first elements of S(kl, ..., kn) with respect to -< always form an ideal).
Moreover, I G' (0) I > ... > I G (kn) I ; that is (a,, ..., an-1, i + 1) E G implies also
(a 1, ... , an_ 1, i) E G. Consequently, G is an ideal. For any ideal G, I E(G) I can
be written also in the form

IE(G)I = E I{b E G : b < a, ab E E(G)}I = E r(a).
aeG aEG

Finally, by Theorem 8.3.1 and Proposition 8.3.2, we have I E(G) I E(C(m, S(kt ,

.... kn)))I.

Since the Hamming graph of S(kl, ... , kn) is regular of degree ki + + kn,
Theorem 8.3.2 provides also a solution of the edge-isoperimetric problem; see
p. 40. This is a result of Lindsey [343] (see also Clements [103] and Kleitman,
Krieger, and Rothschild [307]).
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Now let G be the Hasse graph of T (kl , ... , kn ), which is the same as the Hasse
graph of Col (kl , . . . , kn ) . I prefer the formulation with T (kl, ... , kn) because of
a succeeding application. Thus the vertex set of G equals T (kl, . . . , kn ), and we

have ab E E if for all but one i, a, = bi, and for the exceptional i, ai = kn and
bi # kn or ai # kn and bi = kn .

Theorem 8.3.3. We have in the case of the Hasse graph of T (kl, ... , k,) for
0<m <(k1+1)...(kn+l),

max{IE(F)I : F C T(kl,... , kn), I FI = m} = I E(L(m, T(k1,... , kn)))I

Proof. The inductive proof is analogous to the proof of Theorem 8.3.2. With the
same notations we get

k
IE(F)I IE(F'(i))I + min{IF'(i)I, IF'(kn)I}.

i=o i=o

Let i * be an index for which I F(i *) I > I F(i) I for all i. We define the new family
G by

G(IF(i)I,T(kl,...,kn-1)) ifi {i*,kn},

G'(i) G(I F(kn)I , T (kl, ... , k1)) ifi = i*,

G(IF(i*)I, T(kl,... , k1)) if i = kn.

Then

k k - I

IE(G)I = I E(G'(i))I + E min{IG'(i)I, IG'(kn)I}
i=o i=o

k 4-1
_ , I E(G'(i)) I + E I G'(i)I ? IE(F)I.

i=o i=o

The sets G'(i) are filters by construction. Moreover, I G' (i) I < I G' (kn) I , that is,
(al, ... , an-1, i) E G implies (a1, ... , an-1, kn) E G. Consequently, G is a filter
in T(kl, . . . , kn), that is, an ideal in T(kl, . . . , kn)*. Now we may conclude as in
the proof of Theorem 8.3.2.

Finally, let G be the Hasse graph of S(kl, ... , kn). Thus we have for a, b E V
that ab E E if Eni=1 Iai - bi I = 1. In order to formulate the result we first look
at a bijection ( p between S(kl, ... , kn) and T (k , ... , kl) given by

v(al,...,an) := (ki -an,...,kl -a2,k1 -al).

The following assertions are easy to prove:



8.3 Optimization problems for Macaulay posets 361

Lemma 8.3.1. We have:

(a) If (p (a) > (p (b), then a < b.

(b) If F is an ideal in S(kl,... , kn), then cp(F) is a filter in T (kn, ... , k1).

(c) If a < b then cp(b) < rp(a) (where -< is given by (8.8)).

(d) tp-1(G(m, T (kn, ..., k1))) is an ideal in S(k1, ..., kn) for each m.

Further, we will need the following lemma:

Lemma 8.3.2. Let ao, . . . , ak be real numbers and let 7r be a permutation of
{0, ... , k} such that a,r(o) > > a,r(k). Then

k k

L min{ai_1, a; } < 5 min{a,r(i_1), a,r(q}.
i=1 i=l

Proof. The RHS equals Ek=1 a,(,). Let s; := min{ai_1, ail, i = 1, ..., k, and
let or be a permutation of 11, ... , k} such that sa(1) > > Sa(k). We only must
show that s, (j) < a, (j) holds for j = 1, ... , k. Assume the contrary, that is,

sa(1) > ... > So(j) > a,(j) for some j.

In the following we consider the sets as multisets; that is, elements may appear
repeatedly. Let Si := Jai-1, ail, i = 1, ... , k. By our assumption, all elements
of Ui SS(i) are greater than a,r(j). Since a,r(j) > a,r(j+l) > , it follows that
U1 SQ(i) c {a,r(o), ..., a,r(j_1)}. However, Ui=1 Si clearly contains at least j + 1
elements, a contradiction.

Theorem 8.3.4. For the Hasse graph of S(k1,... , kn) and for 0 < m < (k1 + 1)
(kn+1),wehave

max{IE(F)I : F C S(kl, ... , kn), I FI = m}

= IE(1P-1(1(m,T(kn,...,kt))))I

Proof. We again use the approach and the notations from the proof of Theo-
rem 8.3.2. Here we obtain

k kn

IE(F)I L IE(F'(i))I +min[ IF'(i - 1)1, IF'(i)I}.
i=o ;=l

Let n be a permutation of {0, . . . , kn } for which

IF(n(0))I >_ ... > IF(ir(kn))I
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We define the new family G by

G'(i) := W-1(G(I F'(n(i)) I , T (kn-1, ... , kl)))

Then
k k

IE(G)I = ' I E(G'(i))I + L min{1G'(i -1)I, I G'(i) I }.
i-o i=1

By the induction hypothesis and Lemma 8.3.2, IE(G)I > IE(F)I. By Lemma
8.3.1(d) and construction, G is an ideal in S(k1,... , kn). We have for any ideal G
in S(k1, . . . , k,) in view of Lemma 8.3.1(a) and (b),

n

IE(G)I = I{b EG:b <aand Jai - bil = 1}l,
aEG i=1

=EI{iE[n]:ai>0}I,
aEG

1] I{i E [n] : ai < kl}I = IE(gP(G))I
aEr7(G)

From Theorem 8.3.3 we derive (noting Lemma 8.3.1(d))

IE(G)I = I E((P(G))I < I E(.C(m, T(kn, ... , kl)))I

= I E((P-1(G(m, T(kn,... , ki))))I.

In the case kl = . . . = kn this theorem was proved in a different way by Bollobas
and Leader [77]; the general case was settled by Ahlswede and Bezrukov [3]. The
preceding proof is extracted from a more general approach, called Variational
Principle by Bezrukov [55].

The graphs considered in the last two theorems are not regular (if not k1 =
= kn = 1), hence we cannot derive a solution of the edge-isoperimetric

problem. Moreover, this problem is here much more difficult because one has
not always a nested structure of solutions; see Bollobas and Leader [77]. It is an
interesting phenomenon, however, that omitting the bounds for the components
yields an NSS; see [3].

In Theorem 8.3.1 we have already found ideals of given size with maximum
weight. Now we study an analogous problem. Which antichain of given size
generates an ideal of minimum weight? First we present a structural result that
may be applied to S (which is selfdual by the succeeding Proposition 8.4.1)
and to the dual pair T and Col. For S, the theorem was obtained by Clements
[107], who significantly generalized preliminary results of Kleitman [302] (see
Theorem 4.5.3(b)) and Daykin [123].
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Theorem 8.3.5. Let P and P* be graded, little-submodular, and shadow-increas-
ing Macaulay posets. Let w : {0, ... , r(P)} -+ I[8+ be increasing, and let x :
P -> R+ be defined by x(p) := w(r(p)); that is, x is constant on the levels of
P. Let 0 < m < d(P), and let 21(m) be the class of all Sperner families in P
of size m. Further, let %I (m) be the subclass of Sperner families from 2t(m) that
generate ideals of minimum weight. Then there are integers i and 1 < a < W1 such
that

C(a, N1) U (Ni-1 - A(C(a, Ni))) E 211(m)

Proof. For any Sperner family F, let I (F) be the ideal generated by F. Let
F E 2t1 (m), and let F' := CF. Recall that by (8.29) for all i

A,i (F') c CA,i (F)

This implies

x(I(F')) _ w(i) IA,i (F')I < w(i)I A_i (F) I = x(I (F))
i i

Consequently, F' also belongs to %I (m).
Let 212(m) be the class of all canonically compressed Sperner families from

%I (m). We saw earlier that 212 (m) is not empty. Let 213 (m) be the class of fam-
ilies from 212(m) for which r(I(F)) = EpEI(F) r(p) (r is the rank function) is
minimum. For any F, let 1(F) := min{i : f,, # 0} and u(F) := max{i : f 01.

We write briefly 1 and u if F is clear from the context.
Claim 1. For anyFE213(m),A_,t(F)=Ni,orFcN1andA(F)=Nt_1.
Proof of Claim 1. Assume the contrary and let i be the largest index for which

A,i (F) = Ni (possibly i = -1). By our assumption, i < 1. Since A--,i+ I (F) is
compressed and not equal to Ni+1, the last element p of N1+1 (with respect to -<) is
not related to any element of F. Let q be any element from Fu. Then r (q) > r (p),
since otherwise F C Nt, A(F) = N1_1. Now, F': = (F - {q}) U (p) is a Sperner
family. Let F" := CF'. Then

x(I(F")) x(I(F')) = x(I(F)) -x(q)+x(p)

= x(I (F)) - w(r(q)) + w(r(p)) < x(I (F))

Consequently, F" E 212(m). But in the same way we derive r(F") < r(F), and
this is a contradiction to F E 2t3(m).

Claim 2. For any F E 213(m), u(F) -1(F) < 1.
Proof of Claim 2. Assume the contrary, and let F E 213 (m) with u -1 > 2.
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Case 1. I A (Fu) I < I F1 1. We will show that there exists a canonically compressed
Sperner family F' with parameters

0 ifi > uori <1,

IA(FJI + f,-1 if i = u - 1,

f':= f j ifl+l <i <u-1,
f+1+fu ifi=1+1,

f - IO(Fu)I if i = 1,

where in the case u - 1 = 2 the definition for i = u - 1 = 1 + 1 has to be
replaced by f' := f + fu. We only must convince ourselves that the
construction described in (8.28) of the proof of Theorem 8.2.3 can be carried out.
Fit-1 can be obviously constructed, and up to the level N1+2 the construction for
F' is the same as for F (if u - I > 2). In particular we have (for u - l > 2)
A 1+2(F) = A,1+2(F'). Let X := N1+1 - A,1+1(F). In order to see that
the construction works until level 1 + 1, we must verify that IXI > f,. Assume
the contrary, I X I < fu. By the construction of a canonically compressed Sperner
family we have F1 c Anew (X) (moreover, we have equality because of Claim 1).
Let X' be a compressed subset of Fu of size IXI. From Proposition 8.1.4 and
Proposition 8.1.6 we conclude

IA(Fn)I >- IA(X')I >- IA(CX)I = IAnew(CX)I >- IAnew(X)I >- IF1I

This is a contradiction since in our case I A (FF,) I < I F1 I. Finally, we must verify
that also F1 can be constructed. We have by construction Fl+1 = Fl+t UY (UA (Fu)
if u - 1 = 2), where Y consists of the next fu elements after the last element of
F1+1 (with respect to -<). The construction works on level N1 if

f - IA(Fu)I < W1 - IAA1(U (8.31)

The RHS equals

WI - i _.1(U ,=1+1FJ)I - I Anew(Y)I

Since we could construct F1, we have

f _< W1- I A, 1(Uj=1+1 Fr)I

(moreover, we have equality because of Claim 1). Thus the RHS of (8.31) is not
less than f - I Anew (Y) I. But this number is not less than the LHS of (8.31) since

IAnew(Y)I < I Anew(CY)I < IA(Fu)I

by Proposition 8.1.4 and Proposition 8.1.6. We have (noting Claim 1)

x(I(F')) < x(I(F)) - fuw(u) + fuw(1 + 1) < x(I(F)),
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and

r(I(F')) < r(I(F))

since u > 1 + 1 and fu > 0. This is a contradiction to F E 2t3(m).
Case 2. I 0 (Fu) I > I F1 I. Let X be the family of the last f elements of 0 (Fu)

(with respect to -<), and let Y := V(X) n F,,. We will show that there exists a
Sperner family F' with parameters

0 ifi > uori <1,

fu - IYI ifi=u,
A = fu-1+fi ifi=u-1,

f ifl+1 <i <u-1,
fi+l+IYI ifi=1+1,

where in the case u -1 = 2 the definition for i = u - 1 = 1 + 1 has to be replaced
by f' := fu-1 + fi + IYI. It is enough to find a family Z in Nl+t - 0->1+1(F)
with I Z I =IYI since then F' (F - Fl - Y) U X U Z is a desired family. We
have

IN1+t - 0-±i+t(F)I 2 IV(Ft)I. (8.32)

Note that F1 is a final segment in N1 (with respect to -<) by Claim 1. In view of
Proposition 8.1.4 and Proposition 8.1.6 applied to P*,

IV(F!)I >- IV(CX)I > lonew(X)I. (8.33)

We have

Vnew(X) 2 v(X) n Fu (8.34)

since V(Nu-t - A(Fu)) n Fu = 0, and Vnew(X) = V(X) - V(Nu-t A(Fu))
(note that Ni_1 - A(F,,) is a final segment). The relations (8.32) to (8.34) imply

IN1+1 - 0-,1+t(F)I >- IV(X) n F'ul = IYI,

and thus the family Z can be found. Let F" := CF'. We have

x(I(F")) 5 x(I(F'))-<x(I(F))-IYIw(u)+IYIw(1+1)5x(I(F)),
and

r(I(F")) = r(I(F')) < r(I(F))

since u > 1 + 1 and I Y I > 0. This is a contradiction to F E 213(m).

With Claim 1 and 2 the theorem is proved.
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We note that, for Theorem 8.3.5, we do not need little-submodularity com-
pletely. It is sufficient to suppose the first inequality in (8.19) for P and P*.

Corollary8.3.1. Let P and P* be graded, little-submodular and shadow-increas-
ing Macaulay posets. Then P and P* have the Sperner property.

Proof. Let m := d (P). By Theorem 8.3.5, there exists a Sperner family F of size
m such that for some i, F CN;_1 U Ni, A := F fl Ni is an initial segment and
B := F fl Ni _ 1 is a final segment. It is sufficient to show that m < max { W1_ 1, W;).

Assume the contrary. Then l A (A) I < IAI since otherwise IFI = JAI + IBI <
Ii(A)I + IBI < Wi-1. Analogously, IV(B)I < IBI.

Case 1. IAI < I Ni - A 1. Let A' be the set of the first IAI elements of N; - A
and let F' := F U A' - tnew(A'). Then F' is obviously a Sperner family and by
Proposition 8.1.4,

IF'I = IFI + IA'I - Ionew(A')l >- IFI + IAI - lonew(A)I > IFI,

a contradiction.
Case 2. 1 A I > I Ni - A 1. Let A' be the set of the last I N1- A I elements of A and

let F' :_ (F - A') U Anew(A'). Again, F' is a Sperner family and by the second
inequality in (8.19),

IF'I = IFI + I Anew(A')I - IA'I >- IFI + Ionew(Ni - A)I - INi - Al

= IFI + IBI - IV(B)I > IFI,

a contradiction.

Theorem 8.3.6. The numbers i and a in Theorem 8.3.5 are uniquely determined
if all weights are positive. We have i = mini j : m < Wj) and a = min{b : b +
Wi-1 - I A(C(b, N1))I = m}.

Proof. First note that i is well defined by Corollary 8.3.1. Let Wh be the largest
Whitney number. Then i < h. In order to see that a is also well defined, let

g(b) := b + Wi-1 - I A(C(b, Nt))I

We have g(O) = W1 -I < m < g(Wi) = Wi. Moreover, g(b + 1) - g(b) < 1 since
IA(C(b, N1)) I cannot strictly decrease. Thus there is some b with g(b) = m and
hence a is well defined. The Sperner family F := C(a, N1) U (Ni_1-A(C(a, Ni)))
has size m, and we have

i-1
w(I (F)) = E w(j)Wj + w(i)a. (8.35)

j=o
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Let F' be a Sperner family of size m that generates an ideal of minimum weight
and that has the form from Theorem 8.3.5:

F' = C(a', Ni') U (Ni'-t - O(C(a', Ni,))).

Claim 1. We have i' > i.
Proof of Claim 1. Assume the contrary. We consider the [0, i']-rank-selected

subposet Pio,,,1. Clearly, F' is a Sperner family in P[o,,!]. Moreover, P[o,i,] satisfies
all conditions of Corollary 8.3.1; hence it has the Sperner property. Since i < h
and because of Proposition 8.1.6, Wo < ... < W,'. Consequently, m = I F'I <
W,' < m, a contradiction.

Claim 2. We have i' < i.
Proof of Claim 2. Assume the contrary. Then

i'-I i

w(I(F')) = w(j)Wj + w(i')a' > E w(j)Wj > w(I(F)),
j=0 j=0

a contradiction.

Now we know that i' = i, and it remains to show that a' = a. Obviously,

w(I(F')) - w(I(F)) = w(i)(a' - a).

Consequently, a' < a. But a' < a and the definition of a imply IF'I # m, a
contradiction.

We conclude this section with some remarks: Sturmfels, Weismantel, and Zieg-
ler [448] used the preceding results (for S) to bound the cardinality of reduced
Grbbner bases of n-dimensional lattices in Z". For the Boolean lattice, Labahn
[331] determined the maximum size of Sperner families having a lower shadow
of exactly m elements in the ith level.

The solution of the vertex-isoperimetric problem for B" (see Theorem 2.3.3(b))
can be generalized in a natural way to the Hasse graph of chain products. This was
proved by Bollobas and Leader [76]. Chvatalova [102] (n = 2) and Moghadam
[372] solved earlier the related bandwidth problem for this graph (cf. Theorem
2.3.5). Again, see the forthcoming book of Harper and Chavez [261 ].

8.4. Some further numerical and existence results
for chain products

Until the end of this chapter, let S := S(kt, ..., k"), s := r(S) = kl + + k".
We may assume, w.l.o.g., that k" 1. Let -< always be the reverse lexico-
graphic order on S. We recall that the rank-generating function of S is given by
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F(S; x) = x + + xk'). For example, in S(4, 3, 2) we have the
following Whitney numbers:

9

E Wixi = (1 + x + x2 + x3 + x4)(1 + x + x2 + x3)(1 + x + x2)
i=o

= 1+3x+6x2+9x3+11x4+11x5+9x6+6x7+3x8+x9.

We know from Theorem 8.1.1 that

min{IA(F)I : F C Ni, I FI = m} = IO(C(m, Ni))I

So it is worthwhile to look for an algorithm that computes I A(C(m, Ni))I. For
brevity, we use the notation

(J)
Wi(ki,...,kj) if 1 < j <n,0 <i <ki +...+kj,

s:= 1 ifi=j=0,
0 otherwise.

Note that for S(oo, ..., oo) (resp. k1, ... , kj sufficiently large), (ji)s = (j+i-1)

since (,) counts the i-combinations of a j-element set with repetitions (i-multisets
on [j]); cf. Stanley [441, p. 15]. Moreover, note that in the case k1 = . . . = k = 1
we obtain the usual binomial coefficients (i). By definition, (i)s is the coefficient

of xi in the rank-generating function of S(kl, . . . , kj), that is, of ]-[I 1(1 + x +
+ xkI). It is easy to see that

Cj

i 1)s- \i/s+
1/s+...+

\i -kj+t)s,

(8.36)

which gives together with (o)s = 1 a recursive method for the computation of

(i)S

Algorithm. i -representation of m.
Input: k1,...,kn,i,m > 0.
Put 1 := 0;
Repeat

Putt:=1+1;
Let ji be the largest integer in [n] such that m >
Put m := m - (-i) si '
Put i := i - 1

until m = 0.
Output: jl, j2, , ji
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After the algorithm terminates, we have a representation of m in the form

m = (11)s+(t j21)s+....+(i
-11+1)s. (8.37)

The following theorem reflects results of Daykin [1222, 123], Greene and Kleitman
[234], and Clements [109].

Theorem 8.4.1. Let 1 < i < s and 1 < m < MY Then

(a) The algorithm "i -representation of m " terminates.

(b) Itproduces numbers J1, . . . , ji suchthatn > ji >- j2 j1, li_1+0s > 0
and i > 1, and moreover, jt = jt+l = = jt+u implies u < kj,+1

(c) The size of the shadow
of

the compressed m-element family in Ni equals
... li-tl)s(i-l)s + (iZ2)s +

/

Proof. Let F C N i, I F I = m, F = CF. If m = (")s then F = N; . The algorithm
terminates after the first step and obviously 0(F) = linl)S. So we suppose
throughout the contrary case - that is, m < (7)s. We assume that F contains all
elements of Ni with last component 0, 1, . . . , a - 1, but not all elements with
last component a (a < The number of the first mentioned elements clearly
equals" i l)s, (" i

)s
,

(i an+l)s (here and in the following these numbers are
considered as nonexistent if a = 0). In the first step (if a > 0) the algorithm
determines jl := n - 1 since (n

t 1) S < m < (n)S. Suppose that we know already
that

fi=...=jt-1=n-1, 2<t<an.
Then, in the tth step, the algorithm determines jt := n - 1 since

but

((n -1 n-1 > 1m- i s+... F i-t+2 s
(i-nt-()) +1)s

m - ((ni
1)s+...+ (int+2)S)

<

nt+

The last inequality is true because otherwise in view of (8.36)

n-1 n-1
m > +...+i

s

i-t+2 s
n-1 n-1 In

+ i-t+1)s+
Thus (i)s + + (_onn+l)s counts exactly the members of F having first coordi-
nate 0, 1, ... , or a - 1. Now we look for the members of F having last coordinate
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an and classify them with respect to the second last component. We put

m':=m- \\n i
1/s+...+(in

-an +-I J)S/
If m' = 0, we have no members with first coordinate an, and the proof for (a)
and (b) is complete. In the case m' > 0 assume that F contains all elements of
Ni ending with 0, an, 1, an, ... , an_1 - 1, an but not all elements ending
with an _ 1, an (an _ 1 < kn _ 1); that is, m' < (i Qi) s. The number of the first
mentioned elements equals (n-2) n-2 1 (. n-2 In the next1-an s, -an_1 s, ... > 1-an-an-1+1 s'
step the algorithm determines jan+1 := n - 2 since (i n)s -< m' < (i

an)s'
Suppose we know already that jan+1 jan+t_1 = n - 2, 2 < t < an-1.
Then in the (al + t)th step the algorithm determines jan+t := n - 2 since

((n -2 n-2 > n-2
M i -an

s+...+
i -an -t+2 s i -an -t+1 s

but
n-2 n-2
1-an S i-a-t+2 (_zi+1)s

Again the last inequality is true because otherwise in view of (8.36)

n-2 n-2
1-an s l'-an-t+2 s

n-2 n-2
+ -an-t+1 s+...+ an-t+lkn-1 s

n - 1
f>
S

Thus Jan+') + + ( _Jan+an-' ) counts exactly the members of F having
1 an S 1 an-an-1+1 S

last coordinates 0, an, 1, an , ..., an -I - 1, an. Now we may continue in the
same way, looking for members of F (which is compressed) having last coordinates
an_ 1, an and classifying with respect to the third last coordinate and so on.

If F # N, , (a 1, a2, ... , an) is the last element of F and if t is the largest index
such that F contains all elements of Ni ending with at, ... , a, (note that t > 2),
then induction (the first steps discussed earlier) easily yields the sequence of the
numbers j determined by the algorithm:

n - 1,...,n - 1,n - 2,...,n - 2,...,t - 1,...,t - 1.

an an-1 a1+1

Thus (a) and (b) are proved.
For (c), it is sufficient to observe that A (F) contains exactly all elements of Ni_ 1

with last coordinate 0, 1, . . . , an - 1, with last two coordinates 0, an, 1, an, ... ,
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an- 1, an, and so on; thus

n-1 n - ln -2
(i - 1)s

+...+
\i -an)s+ i -an - 1)s

C n-2 ) t-1 )

1 - an -
an-

i 3 1 - an - ... - at - 1 s

elements.

We emphasize that with the algorithm one may compute also the last vec-
tor of an m-element compressed family in Ni with respect to -: The numbers

an, , a1+1, at + 1 can be obtained by counting the numbers j equal to n - 1,
n - 2, ... , t - 1. Clearly (a1, ... , at-1) is the last vector in N;_an_..._at (k1, ... ,
kt_1), and thus we take at-1 as large as possible, then at-2 as large as possible
and so on up to a I.

The representation (8.37) of the number m with the properties of (b) in Theo-
rem 8.4.1 is called (as the algorithm) the i-representation of m; see also p. 47. It
is not difficult to see that this i-representation is unique (cf. [109]).

Example 8.4.1. Computation of the size of the shadow.

Consider N7(4, 3, 2) and m := 5. Note that F = {430, 421, 331, 412, 322} is
compressed and 0(F) = {420, 330, 411, 321, 231, 402, 312, 222}. The Whitney
numbers (l)s are given in the following table.

j=3 j=2 j

0 1

1 3 2

2 6 3 1

3 9 4 n
4 11 4 n
5 11 3 0
6 9 2 0

7 6 n 0

The algorithm determines ji := 2, j2 := 2, j3 := 1, j4 := 1, jg := 1, that is,

5 -
(72)s

+
(62)s

+
(51)s

+
(4I)s

+
(3I)S.

For the size of the shadow, we obtain

8 -
(62)s

+
(52),

+

(4I) s

+
(3I) s

+
(1)

2 s
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An analogous study of the i -representation of a number m for the poset T (k, ... , k)
was done by Clements [113] and by Leck [333]. The technical details are more
involved.

We have now an explicit formula for the minimum size of the shadow, but this
formula is sometimes difficult to handle. Thus we will present easier estimates of
the shadow. First recall that by the normality of S and in view of Proposition 4.5.2

IV(F)I > IFI f ll F C N s - 1i = 0 (8 38)i,or a
Wi+1(S) - Wi(S) - ,, ... , .

IA(F)l > IFI fo allFCN i = 1 s (8 39)1,r
Wi- I(S) - Wi(S)

,..., . .

From the rank symmetry and rank unimodality of S (cf. Proposition 5.1.1), we
infer immediately

s-
IV(F)I > IFI for all F c Ni, i <

2
(8.40)

IA(F)l > IFI for all F C Ni, i > s
2

1. (8.41)

But Theorem 8.1.1 gives for "small" sizes of F a "best" normalized matching
inequality:

Corollary 8.4.1. Let F C Ni(S(kl, . . . , kn)) and let a = (al, ... , an) E S be
the first vector in S such that al > > an and IFI < W1(S(al,... , an)). Then

Wi-1(S(al,...,an))IA(F)l - Wi(S(a1, . . . , an))
IFI.

Proof. W e must show that CF belongs to S(ai,... , an) since then A(CF) be-
longs to S(al, ... , an), too, and the assertion follows from Theorem 8.1.1 and
(8.39). So assume the contrary. Let i be the largest index such that there is some
b = (bl,...,b,) E CF withbi > a. Then CF ¢ S(ki,...,ki_l,ai,...,an);
that is, IFI = ICFI > Wi(S(kl,... , ki-1, ai, ... , an)) > W1(S(at,... , an)), a
contradiction.

Using a shifting technique similar to the proof of Lovasz's theorem (Theo-
rem 2.3.1) BjSrner, Frankl, and Stanley [66] found the following estimation for
S(oo, ..., oo) which we present without proof:

Theorem 8.4.2. Let F C Ni (S(co, ... , oo)), IFI = (x), x E R, x > i > 1. Then
IA(F)l >- ji)

By the way, Leck [333] used independently the shifting technique for another proof
of the Clements-Lindstrom Theorem.
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In Theorem 8.3.6 we provided formulas for the determination of i and a which
are necessary for the "ideal minimization." For S, we will present an algorithm
that computes a. In the case of B,,, Daykin [123] found an explicit formula for
the minimum size of an ideal generated by an m-element Sperner family (and,
more generally, m-element k-family). Clements [108, 111] also settled the case
of S. First we need a representation of a number m' which is similar to the i -
representation. Let

L i JS \i/s - \i J 1/s

Algorithm. i-difference representation of m'.
Input: kl,...,kn,i,m' > 0.
Put 1 := 0;
Repeat

Put 1:=1+1;
Let Ji be the largest integer in [n] such that the following conditions
hold:

[ii],(i) m' > (ii) j, j1-1 (if 1 > 1), (iii) ji < ji-+i (if 1 >
S

Putm'm'-
L

I ails;

Put i:=i-1
until m' = 0.
Output: jt,j2, ,j1

If the algorithm terminates, we have a representation of m' in the form

m'=[i]s+[i-2l]s+...+[i-11+1]s (8.42)

Theorem 8.4.3. Let 0 < w(0) < ... < w(s), and let x : S -* R be defined
by x(a) := w(r(a)). Let (i"I)S < m < (i)s i < 2. Then the algorithm i
difference representation of m' terminates for m' := m - (i n 1) s, m' > 0, and
yields a representation (8.42). The minimum weight of an ideal generated by an
m-element Sperner family equals

E
i-I

w(j)(n)s+w(i)((i1)s+...-}-(i1+1)s/

Proof. The claim is essentially a reformulation of Theorems 8.3.5 and 8.3.6
(specialized to S). We have to show only that the algorithm terminates and that
a = (,')s + + (i_i+I)s. The case m = (".)s is trivial; thus let m < (")S. Then,
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clearly, jl < n - 1. Let e be the last element in C(a, N1). Moreover, let t be the
largest index such that (el, ... , e,_ 1) is the last element in Nj_en _..._e, (S(k1, ... ,
kt_1)). From the proof of Theorem 8.4.1 we know that

n - 1 , . . . , n - 1 , n - 2 , . . . , n - 2,...,t - 1,...,t - 1 (8.43)

en en-1 e,+1

is the j-sequence for the i-representation of a. For the proof, it is enough to verify
that the algorithm i-difference representation of m' determines exactly the same
j-sequence. For brevity, we use the notation

h(b) IC(b, N;)I - I A(C(b, N1))I = b - I A(C(b, N1))I.

Note that h (a) = m' and a is the smallest natural number with this property. Let
us assume that the algorithm i-difference representation of m' determined already
the numbers

n - 1,...,n - 1,...,u - 1,...,u -

en V

in the right way, that is, as in (8.43) and with u > t. We have to show that the
algorithm terminates in the next step with the number u - 1 if u = t and v = e
and that otherwise the next number is

u-1 ifv<e,,,

u-2 ifv=e,,,u>t, andeu_1 > 0,

u - z ifv = eu, u > t, and eu_I = = eu_z+2 = 0, eu-z+1 > 0.

Case 1. v < e or u = t and v = eu. Let (fl, ... , f,_ 1) be the last element in
N'-en-..._e,,+i_v(S(kl, ..., and let f := (fl, ..., fu-1, v, eu+1, ..., en).

Let f be the bth element in Ni with respect to {. Then b < a and by definition of
a, h (b) < h (a). Consequently,

h(b) =
Ln-11 +Ln-11 +...+I u-1
I i S i-

S Js

+...+L u-1 1 <mr

Thus, if v < e,, (< the next element in the j-sequence in the algorithm
i-difference representation of m' is u - 1. If u = t, v = eu, we have f = e.
Furthermore, by definition of t, e < k . Thus the algorithm produces a last
number u - 1, the updated number m' becomes zero, and the algorithm terminates
with the right sequence.

Case 2. v = e and u < t. Then the algorithm still works since we had
otherwise a contradiction to the definition of a and e. We assume here, w.l.o.g.,
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that ei_l > 0 (otherwise we have to replace u - 1 by u - z and to add in the
following vector f correspondingly more zeros). Let it := i - e - - e and
let f = (fl -, A-2, 0, e....... et) where (fl -, fu-2) is the last element in
N1'(S(ki, ... , k, -2)). The arguments from Case 1 show also in this case that the
next element in the j-sequence in the algorithm i-difference representation of m'
is at least u - 2. We only must prove that the next element cannot be u - 1.
This is clear if e = k (see condition (iii) in the algorithm). Thus let e < ku.
Let g = (gi, ..., e,,, ..., et) where (gi, ..., gt) is the last element in
N1 , (S(kl , ... , 1)). Let g be the bth element in Ni with respect to -<. Obviously,
a <b.Let

A :_ {(at,...,au-I) E N,'(S(kl,...,ku-1)):

(al, ... , au-1, eu, ... , en) E C(a, N;)}.

It is not difficult to see that

h(a) = In

i J
+ [n-i] +...+[i

+1]IS
i s s

h(b) = In
i

+[n--l +...+[u+1] [u_li
i,

S s

s+
s

So it remains to show that

Al I- IA(A)l < (8.44)

Let S' := S(k1, ... , k1). Note that [ u L _ [ u

]
= Wj(S'). Since

> c'
S' is normal we have

IAI < lo(A)I
Wi,(S') - W;'-1(S')

This implies

IAI - JA(A)I:< IAI 1 - Wr-1(S')
We W) )

<0

<WitW)(1-WW,,(sjl)=L '1]Is

if W1'-1(S') ? WW'(S'),

otherwise.

In the first case we have a contradiction since we assumed that our algorithm
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worked until i' + 1; that is, we have

n-1 u-1
t +...+

i'+1 <m
IS s

implying I A I - I A (A) I > 0, and equality means that the algorithm has already
terminated. The second case yields the desired inequality (8.44).

We conclude this section with a further existence theorem. For an element
a = (at,...,an) E S, let a` := newelement iscalled
the complement of a. For F C S, let F` := {a` : a E F) (the complementary
family).

Proposition 8.4.1.

(a) The mapping a H ac is an isomorphism between S(ki, ..., k,) and its dual;
thus chain products are self-dual.

(b) If a < b then b` < a`.

We omit the trivial proof. The following theorem of Daykin, Godfrey, and Hilton
[125] (for (resp. of Clements [105] (for S)) says that with each Sperner family
in S we may associate a "reflexed" Sperner family. The result had been conjectured
by Kleitman and Milner [309].

Theorem 8.4.4. If f is the profile of a Sperner family in S then so is f', where

0 ifi<z,
f ; ' = I i if i = 2 ,

f+fs-i ifi>2.

Proof. We assume s to be even. For s odd, the arguments are analogous. Let m
be the largest integer for which ff+m + ff_m > 0. We proceed by induction on
m. If m = 0, we may take F' := F. Now consider the step m - 1 --* m where
1 < m < s/2. Let F' := CF (recall that Ft is the canonically compressed Sperner
family with profile f which exists by Theorem 8.2.3). By the construction of F,
we have

(F'),+m = C(.ff+m,

Let

F2 :_ (F' - C(.f +m, N, +m)) U A(C(f +m, N +m))

Since F' is a Sperner family, F2 is a Sperner family, too. Next let us turn to
the complements. Let F3 := (F2)`. We again replace F3 by the canonically
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compressed Sperner family F4 CF3. As for F1 we have

(F4)7,

+m = C(f -m, N,+m)

Let

F5 :_ (F4 - C(f -m, Ni+m)) U A(C(f-m, N+m))

For the parameters fo , f5 , f5 of the Sperner family F5, we have

f5 =
r

0

fs-i +IA(C(f+m,N,+m))I

fs-1 + I A(C(f -m,

fs-i

377

ifi<2-m+Iori>Z+m-
ifi=2-m+1,
ifi=2+m-1,
if2-m+1 <i < 2+m-1.

Application of the induction hypothesis to F5 gives a Sperner family F6 with
parameters f

o,
f6,

, f 6 satisfying

0 ifi < 2,

f6= f5 if i=2

45+fs; ifi>2.

These parameters already coincide with the asserted parameters f.' for i 11+m-
2

1, 2 +m). For the remaining indices, we have, with a:= I A (C ( f +m , N.Z +m )) I +

I A(C(ff-m, N,+m))I,

6 _f 2+m-1 = f +m-l + f -m+l + a,

6 =+m 0.
fz

Let F7 := CF6. In F7 we omit, with respect to <, the first a elements of
(F7) +m-1 and add the first ff-m + f +m elements of N, +m. This gives a family
F8, which already has the required parameters. We must show only that F8 is a
Sperner family. This is obviously the case if

A(C(fj-m + fZ+m, Ng+m)) C C(a, (8.45)

But by Theorem 8.1.2,

IA(C(f -m + f +m, Ns+m))I S I A(C(f -m, Ns+m))I

+IA(C(f;)+m,N{m))I = a.

This gives (8.45). So we may indeed take F' := F8.



378 Macaulay posets

8.5. Sperner families satisfying additional conditions
in chain products

Recall that by the normality of S and because of Theorem 4.5.1, for any Sperner
family F in S,

E fi (8.46)
i=OWi

First we study complement free Sperner families; that is, Sperner families for
which a E F implies ac V F. In the Boolean case kl = k = 1 we have by
the Profile-Polytope Theorem 3.3.1 (note, in particular, Remark 5 following that
theorem) a complete overview on LYM-type inequalities for such families. In the
general case, we present only one inequality:

Theorem 8.5.1 (Clements and Gronau [116]). If F C_ S is a complement free
Spernerfamily with parameters fo, fl, ..., fs, then

1s f + f2 < 1'

O W, WL 1

44 S

where ff := 0 if s is odd.

Proof. If s is odd, the assertion is equivalent to (8.46). Thus let s be even. Let
F C_ S be a complement-free Spemer family. By Theorem 8.4.4, there exists a
Sperner family Fl whose parameters satisfy

0

fl = f
f + fs-i

Let F2 (Fl)c. For the parameters of F2, there holds f2 = fsi, i = 0, ... , s.
Let F3 := CF2 be the canonically compressed Sperner family with the same
profile as F2. Since F is complement free we have 412 = fs12 < 2 W s.12. Because,

moreover, f3 = f2 = 0 for i > 2, the subfamily (F3)s/2 consists of the first f 12
elements of Nsi2 (with respect to -<). This implies that no vector of (F3 )s12 has
k as last coordinate (more exactly, k, k - 1, ... , 1 1 all can be excluded).
Consequently,

(F3) U 0((F3),) c S(kl, k2, ... , k - 1) =: S'.

Since r(S') = s - 1, it follows that z > 1r(S'), and by (8.41),

lo((F3),)I >- I(F3)7I = ff (8.47)
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Let F4 := (F3 - (F3),s12) U 0((F3)s/2). Then F4 is again a Sperner family, and
its parameters are given by

ff + fs-i if i < 1 - 2,

f4 = fl, -1 + ff+t + IA((F3), )I if i = i - 1,

0 ifi > 2.

By (8.46), (8.47), and in view of the rank symmetry,

-' f,. _S f IA((F3))I S f fsE
Wi - ;o Wi + WS-1 i=o Wi R'L J1 > i=o

i I i#I

Corollary 8.5.1. The maximum size of a complement free Sperner family in S
equals W,s-,i

Proof. The upper bound follows from Theorem 8.5.1 and the rank symmetry and
rank unimodality of S. Clearly, N,l is complement free; that is, the bound is
really attained.

Note that Clements and Gronau [116] and Gronau [161] determined in several
cases all maximum complement-free Sperner families.

A family F C_ S is called self-complementary if F = F'. In the Boolean
case ki = k = 1 we know much about self-complementary Sperner families
because of the Profile-Polytope Theorem (Theorem 3.3.1) and Remark 4 after it.
In order to present some results for S we need some further notations. Let t := 0
if ki, . . . , k, are even, and otherwise let t = t (S) be the largest index such that kt
is odd. W e define, f o r max{t, 1 } < i < n, subsets S = 5 ' ( k 1 . . . . . of S as
follows:

S; := I a E S : ai < 2' and aj = 2 for all i + 1, ... , n

(in the case i = n the second part of the conjunction has to be omitted). Moreover,
we set

if t > 0,

if t = 0.
(8.48)

For a self-complementary Sperner family F in S, let

F-.= {aEF:a=a°}.
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Clearly,

F= C S.

We partition F - F= into two sets

F- := {aEF-F=:r(a)<2}U{aEF-F=:r(a)=2anda`<a

F+:= {aEF-F=:r(a)> 2}U{aEF-F=:r(a)=2and a<a'I.

Obviously, for each pair of complementary elements in F - F=, exactly one
member belongs to F+ and the other belongs to F-. The following result and its
consequences are due to Gronau [245].

Theorem 8.5.2. If F C S is a self-complementary Sperner family, then

n

C(F+) c U S= .

i=max(t,1)

Proof. By construction of the canonically compressed Sperner families and the
definition of F+, we have C(F+) _c CF. Let a be the last vector of C(F+)
(with respect to -<), and let a E Nm where m > i by definition of F+. It is
easy to see that a is the last vector of Aim (C(F+)). Let b be the first vector of
G := CF - C(F+ U F=). Repeated application of (8.30) shows that a -< b.

Claim. We have also a -< b`.
Proof of Claim. Since F is a self-complementary Sperner family, G` is a

Sperner family having the same parameters as F+. Hence C(F+) = C(G`). From
(8.29) we infer

1 O-->m (C(F+)) l = IO-*m (C(G`)) I < I tX-,m (G`) 1.

If c is the last vector of O,m (G`) then clearly a -< c. Moreover, c -< b` since b`
is the last vector of G`'. Hence a -< b`.

The relations a -< b, a < b` imply a j < k j /2 for all j = 1, ... , n and
a; < ki/2 for some 1 < i < n. Obviously, the largest i with this property satisfies
i > t. Thus

n

C(F+) c U S; .

max(t,1 )

Obviously,
/

S; =SI k1,...,ki-l, [k12 1]), (8.49)
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but note that the minimal elements in SJ have rank hi := 2 kj. Moreover,
the sets Si are pairwise disjoint. If F is a self-complementary Sperner family,
then by Theorem 8.5.2, the sets Gi := C(F+) fl S* are pairwise disjoint an-
tichains whose union is C(F+). Let & 0, ... , gi,s be the parameters of Gi. Note
that

gi, j = 0 if j < 2 or j > s - hi-1, (8.50)

and that F-"=max(t, I) gi,j, j = 0, ... , s, are the parameters of F+. The LYM-
inequality (8.46) in each S! yields

gi,j <1.
Wi(S` )

(8.51)

In the special case t = n; that is, kn is odd, there is only one set Sn, and we have
F= = 0. Moreover, F is the disjoint union of F+ and F- and F+ = (F-)'.
Hence we proved:

Corollary 8.5.2. Let F C S be a self-complementary Sperner family and let kn
be odd. Then

fT, 1

<i <. W3-i (S(k1, ... , kn-1, kn-2))

+ 1: f`
k

1

1+1=2.
<i<s k Wi(S(k1,...,kn_1,2))

In the Boolean case this inequality reads

f f < 2,
(n + (n-1)

<i<2 !i-1) 2- t

which is a result of Bollobas [72} and which can be also easily derived from
the Profile-Polytope Theorem 3.3.1 (sum up for B = SIC V I C, two essential
facet-defining inequalities with any T and its complement { 1, ... , [ n 2' J } - T).

The preceding approach gives also the maximum size of the families under
consideration:

Theorem 8.5.3. If F C S is a self-complementary Sperner family then

WZ ifs is even,
IFI <

2 W,+i (S!) ifs is odd,

and this bound is the best possible.
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Proof. We use the notations from above. If s is even then by the Spemer property,
the rank symmetry and rank unimodality of S the inequality I FI < W,,12 is true
for any Sperner family. Thus let s be odd. Then t > 1 and F- = 0. Since
I F I = I F+ I + I F- I and I F+ I = IF-1, it is enough to show that each G1 has size at
most W(S+1)/2 (S; ). Recall the isomorphism (8.49). The Whitney numbers Wj (S* )
are decreasing for 2 < j < s - h i _ 1 since S is rank symmetric and rank unimodal,
and the largest level of S! is at rank h i + L

2
(kl + + ki _ 1 + 2 J ) < 2

Because of (8.50) and (8.51) it follows that

IGdd = 57 gr,j W. (S,*).
P < j<s-hi+1

That this bound is the best possible can be easily seen by taking F := N., if s is
even and F := G U GC where G := U"_tNs (Sr) if s is odd.

We say that a family F in S is dynamically intersecting (resp. dynamically
cointersecting) if for all x, y E F there exists an index i such that x; + y; > k;
(resp. xi + y; < k;). In the Boolean case kl = k = 1 these notions coincide
with the notions intersecting (resp. cointersecting). The following propositions are
obvious.

Proposition 8.5.1. A family F is dynamically intersecting iff its complement Fc
is dynamically cointersecting.

Proposition 8.5.2. If the family F is dynamically intersecting then it is comple-
ment free.

These propositions and Corollary 8.5.1 immediately imply:

Theorem 8.5.4. The maximum size of a dynamically intersecting (resp. dynami-
cally cointersecting) Sperner family in S equals WLJ.

Proposition 8.5.3. Let F be a dynamically intersecting and cointersecting Sper-
ner family. Then F fl F` = 0, and F U Fc U So is a self-complementary Sperner
family, where So is given by (8.48).

Proof. The disjointness of F and F` follows from Proposition 8.5.2. Clearly, F
and F` are Sperner families and F U Fc is self-complementary. Moreover, no
element x of F (resp. F`) is related to (z , ... , 2) because otherwise the pair
x, y with y := x cannot satisfy the dynamic intersecting as well as the dynamic
cointersecting condition. Hence it remains to show that there are no x E F, Y E F`
such that

x<yorx>y.
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Assume the contrary. We have y = z° for some z E F. Thus, for all i, xi < ki - zi,
or, for all i, xi > ki - zi. In the first case F would not be dynamically intersecting,
in the second case it would not be dynamically cointersecting, a contradiction.

Theorem 8.5.5. If F is a dynamically intersecting and cointersecting Sperner
family, then

1 WI if s is even and t > 0,

IFI < 2 (W7g - 1) if s is even and t = 0,

=t Wsi (S!) ifs is odd,

and the bound is the best possible.

Proof. The bound follows from Proposition 8.5.3 and Theorem 8.5.3. To see that
it is the best possible take, for even s, from each pair of different complementary
elements of Ns12 exactly one member, and, for odd s, the set G from the end of
the proof of Theorem 8.5.3.

In the light of the Erdo"s-Ko-Rado Theorem we study also the restriction to one
level (here in the cointersecting case).

Theorem 8.5.6. Let F be an 1-uniform dynamically cointersecting family in S.
Then

W ifl<2,
IFI<_ yi=max(t,1} W1(SI) ifl > 21

and the bound is the best possible.

Proof. The case 1 < 2 is trivial, thus consider 1 > 2. In this case F is auto-
matically also dynamically intersecting, hence, by Proposition 8.5.3, F U F` is a
self-complementary Sperner family (not containing (2 , ... ,

2
)), and, by Theo-

rem 8.5.2,
n

CF C U S.
i=max(t,1 }

Consequently,

n

IFI = CFI < E Wt(SI )
i=max{t, 1)

The family is obviously dynamically cointersecting; that is, the
bound is the best possible.
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In Section 7.3 we already studied statically t-intersecting families (see also
Theorem 3.3.4). Here we investigate the case t = 1 repeating and extending
the definition. A family F in S is called statically intersecting (resp. statically
cointersecting) if for all x, y E F there exists some coordinate i such that x; , yi > 1
(resp. xi, yi < ki - 1). Recall also the definition of the support as supp(x) :_ {i E
[n] : xi > 11, supp(F) := (supp(x) : x E F). The cosupport is defined similarly:
cosupp(x) := {i E [n] : xi = ki}, cosupp(F) := {cosupp(x) : x E F}. As in
Proposition 3.3.1 we have:

Proposition 8.5.4. The family F C_ S is statically intersecting (resp. statically
cointersecting) iff supp(F) (resp. cosupp(F)) is intersecting (resp. cointersect-
ing).

The following propositions are obvious and need no proof.

Proposition 8.5.5. A family F C S is statically intersecting iff its complement
F` is statically cointersecting.

Proposition 8.5.6.

(a) If x, y E S satisfy the statically intersecting (resp. cointersecting) condition,
and if z > x (resp. z < x), then z, y also satisfy the corresponding condition.

(b) If r(x) + r(y) > s (resp. r(x) + r(y) < s), then x, y satisfy the statically
intersecting (resp. cointersecting) condition.

If ki = kn = 1; that is, if S is the Boolean lattice B, the statically intersecting
(resp. cointersecting) condition coincides with the usual intersecting (resp. coin-
tersecting) condition. In this case, the Profile-Polytope Theorem 3.3.1 gives us
enough information about our families. In general, the statically intersecting and
cointersecting conditions are more difficult to handle than the dynamic intersect-
ing and cointersecting conditions. The reader may get an idea of the difficulties
from the related Theorem 7.3.1. Only some partial results are presented here. In
particular, we restrict ourselves to the case k := kl = = k,,. For even n,
the set

S :_ {x E N, : xi E {0, k}, i = 1, ... , n}

plays an exceptional role. Obviously, BSI = G12)'
The last theorem in this section we obtained together with Gronau in [161].

Theorem 8.5.7. Let k, = kn = k > 2.
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(a) If F C S is a statically intersecting (resp. statically cointersecting) Sperner
family then

Wfzl
IFI<-

W, - 1(n)

if n is odd,

if n is even and k > 2n - 1.

(b) The same assertion is true if F C S is a statically intersecting and cointer-
secting Sperner family.

Proof. First we show that the bound can be attained. For odd n, let F := N15i21.
Then, for all x E F, I supp(x) I > 2, which implies that F is statically intersecting.
Moreover, we have for all x E F, I cosupp(x)I < 2 since otherwise (recall that
n is odd), r(x) > n21k > 121. Hence F is also statically cointersecting. If n is
even, S consists of pairs of complementary elements. We partition S into two sets
Si and 32 by putting for each such pair one member into Si and the other into
S2. Then ISiI = 1321 = 2(nj2) and supp(S1) (resp. cosupp(S1)) is intersecting
(resp. cointersecting). Let F := N512 - 32. Then, for all x E F, I supp(x) I > 2,
but I supp(x)I = 2 only if x E St. Hence I supp(F) I is intersecting; that is, F is
statically intersecting. In the same way it follows that F is statically cointersecting.
Hence (a) and (b) are proved if we can show that the upper bound for (a) is correct.
Because of Proposition 8.5.5 we may restrict ourselves to the cointersecting case.

For odd n, the upper bound is trivial since Wl5121 is the maximum size of a
Sperner family by the Sperner property of S. Thus let n be even. The case n = 2
can be checked easily; thus let n > 4.

For each family F, let 1 = 1(F) (resp. u = u(F)) be the smallest (resp. largest)
index i such that f > 0. Let F be a maximum statically cointersecting family for
which u -1 is minimum. It is enough to prove that I = u = 2 since for F C N512,
there holds IF n SI < z ISI (from each pair of complementary elements of S at
most one member may belong to F).

Claim 1. We have u < '2'
Proof of Claim 1. Assume u > 2 + 1. With the usual shifting we define the

new family

F':=(F-Fu)UA(Fa)
which is, in view of Proposition 8.5.6(a), still a statically cointersecting Sperner
family whose size is at least as large as the size of F by (8.41). Since u(F') -
I (F') < u(F) - l(F), we have a contradiction to the choice of F.

Using the same arguments and Proposition 8.5.6(b) we obtain immediately:
Claim 2. We have l > 2 - 1.

So up to now it is clear that F consists only of fs/2 elements of rank and
A/2-1 elements of rank 2 - 1. We add one more condition on F: Of all maximum
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statically cointersecting families in Ns/2-1 U N,12 we choose F such that fs/2 is
maximal (it remains to show that A/2-1 = 0).

Claim 3. We have

k, k - 1)) and f,' -1 k))
n-1 n-1

Proof of Claim 3. Assume that f < Ws (S(k, ... , k, k - 1)). We consider the

n-l
canonically compressed Sperner family CF with the same profile as F. Because
of the assumption, (CF), and A((CF) s) are subsets of S(k, ... , k, k - 1). But

n-l
22 - 1 = s - 1 = k - 1 + (n - 1)k. Hence, by (8.41) with s replaced by s - 1

IA((CF),)I > I(CF)2- 1.

Consequently (noting that CF is a Sperner family; that is, A((CF)s12) n
(CF)s12-1 = 0),

W,s-1 >- Ii ((CF),)I + I(CF)2-ll

I(CF), I + I(CF),-11 = ICFI = IFI. (8.52)

However, consider the family F' = Fs U F; where

FZ _1 := {x E Ns-1(S) : x1 = k} and Fs' := Nz (S(k^ k, k - 1)).
n-1

It is easy to see that F' is a statically cointersecting Sperner family. Since

Ns (S) = Ns-1(S(k....,, k, k - 1)) U FF-1

n-1

and

W _1(S(k,...,k,k- 1)) = Ws(S(k,...,k,k- 1))

it follows that

n-1 n-l

IF'I =

Hence, by (8.52) and (8.53), IF'I > IFI, and for the parameters we have

f Ws(S(k...,k,k-1))> fs
n-1

(8.53)

by our assumption. This contradicts the choice of F since A12 has to be maximal.
Thus the first inequality is proved. In particular we know that (CF),12 contains

all elements of Nsl2(S) whose last coordinate is less than or equal to k - 1. By
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the construction of the canonically compressed Sperner family, every member of
(CF),12_1 ends with k. Hence

f12 -t = (CF)s-11 < k)) = Ws+1(S(k,.kk)).
n-1 n-1

Claim 4. If k > n and 0 < i < (n - 1)k, then

Wi(S(k,...,k)) < W1(S(k - 1,...,k - 1,n - 1)).

n-1 n-1

Proof of Claim 4. Let, for 0 < a < n - 1,

Sa := S(k,...,k,k- 1,...,k- 1, a).
n-a-1 a

Obviously, it is enough to prove Wi (Sa) < Wi (Sa+1) for 0 < a < n - 2, and this
can be accomplished by constructing an injection cp from N, (Sa) into N, (Sa+1).
Here is such an injection: We put cp(x) := x if x E Sa n Sa+l and cp(x) :=
(X1,...,xn-a-2,xn-a-1-(a+l)+Xn,xn-a,...,xn_1,a+1)ifx E Sa-Sa+1
Since we have for X E Sa - Sa+1 the relations Xn < a < n - 1, Xn_a_ l = k > n,
it follows that 0 < Xn-a-1 - (a + 1) + Xn < k - 1. Thus, indeed cp(x) E Sa+1
The injectivity can be easily verified, and r(x) = r(rp(x)) is obvious.

We conclude the proof of the theorem by showing that fs/2_1 > 0 yields a
contradiction. With our assumption fs/2-1 > 0 there must exist some set I c [n]
of minimum size such that

G := {x E FF-1:cosupp(x) = I} 0.

Let

H := {x E V(G) : cosupp(x) = I}.

Claim 5. The family F' := (F - G) U H is a statically cointersecting Sperner
family.

Proof of Claim 5. By construction, cosupp(F) = cosupp(F'). Since F is
cointersecting, Proposition 8.5.4 implies that also F' is cointersecting. The only
obstacle to F' being a Sperner family could be the existence of some x E F -1- G
and some y E H with x < y. But by the choice of I,

I cosupp(x)I cosupp(y)I =III and cosupp(x) 1.

Hence, x ¢ y.

Claim 6. We have I F' J > I FI
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Proof of Claim 6. Since H fl F = 0 (F is a Sperner family), the assertion is
equivalent to IGI < I HI. Let i := III. With each x E G U H we associate an
element x' of S(k - 1, ..., k - 1) by deleting all coordinates xj of x for which

n-i
xi = k. Note that

r(x') = r(x) - ik. (8.54)

We obtain families G' and H' with the obvious properties

IG'I = IGI, IH'I = IHI, V(G') = H',

where the upper shadow is considered in S(k - 1, ... , k - 1). Thus the assertion

n-i
is equivalent to

IG'I < IV(G')I.

By (8.40) and (8.54), the inequality (8.55) is satisfied if

2(2 -1-ik)+1 < (n-i)(k-1),
which is equivalent to

(8.55)

k> n - i -1
i

and this is true under our supposition k > 2n - 1 (i.e., k > n - 2) for i > 1.
It remains to consider the case i = 0. We turn to the complements in
S(k - 1, ... , k - 1) and estimate the lower shadow. We have

n

(GY C NZ+1-n(S(k - 1, ... , k - 1)). (8.56)

n

Clearly, I (G')` I = I G' I = IGI < .fl, -1, and using Claim 3 and Claim 4 we obtain
(note 0 < 2 + 1 < (n - 1)k because of n > 4, k > 2)

I (G')`I < WZ+1(Sn-1) (8.57)

Moreover,

WZ+l(Sn-l) < Wi+1-n(Sn-1) (8.58)

since(2+1)+(2+1-n)>n-1+(n-1)(k-1)byk>2n-1>n-2.
From (8.56) to (8.58), we derive for the compression that

C((G')`) C Nj,+1-n(Sn-1),

and using (8.41) and Theorem 8.1.1, we obtain

IV(G')I = IA((G')`)I >- IL(C((G')`))I > IC((G')c)I = I(G')`I = IG'I
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since 2(2:! + 1 - n) - 1 > n - 1 + (n - 1)(k - 1) is equivalent to k > 2n - 1.
Hence (8.55) is verified.

Claim 5 and Claim 6 complete the proof of the theorem since
2 2

contradicting the choice of F.

We conjecture that Theorem 8.5.7 remains true for even n and 2 < k < 2n - 1.



NOTATION

We omit in the following list those symbols that are very well known, self-
explanatory, or not used often enough to be worth listing.

Sets and Families

R+ nonnegative real numbers

N natural numbers (nonnegative integers)
[n] set{1,...,n}

k k-element subsets

2[n] all subsets (power set)
A C B inclusion
A C B strict inclusion
A - B set difference
A complement of A

complementary family
di,j j exchanged by i

Si.i (F) i j-shifting

E (F) sum of elements of members of F
X <rl Y reverse lexicographic order
X -.< p Y vip-order
C(m, 2N) compression in the Boolean lattice
C(m, (N)) compression in one level

£(m, (k)) G-compression in one level
max(F) maximal element of members of F
ak(.F) ak-number
µ(f2!) set of profiles of members of 2t
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z

cosupp

convex hull of profiles

extreme points of conv(µ)
antiblocker

essential extreme points
essential facets

support

integers

cosupport

Posets
p < q p is covered by q

H(P) Hasse diagram of P
E (P) arc set of the Hasse diagram of P
[p, q] interval between p and q

(P, w) weighted poset

w (F) weight of the family F

d(P, w) width of (P, w)
dk(P, w) maximum weight of a k-family

P* dual poset

P X Q direct product

PIG quotient of P under the group G
p v q supremum of p and q
pAq infimumofpandq
r (p) rank of the element p
r(P) rank of the poset P

Ni (P) ith level

W; (P) ith Whitney number

F(P; x) rank-generating function

P x r Q rankwise direct product
F; rank i elements of F
f parameters of F
f profile of F
V, 0 upper, lower shadow

V ,k, t -- k upper, lower k-shadow
(r(P) maximal chains in P
ck(P, w) minimum weight of a k-cutset
ck(P, w) fractional k-cutset number
(r. (P) chains in P
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84

87

90

90

114

168
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21(P)

dk (P, w)
h (p)

2Qx

a2(P, w)
I-px(F)

µ(P, q)
C(m, F)
G(m, F)
CF
GF
s fi

Vnew, Anew

CF
a`

F`

Bn

S(kl,...,kn)

Qn

Fnk
T(kt,...,kn)
Int(S(k1,...,kn))

M(kl,...,kn)
SQk,n
SMk,n

Ln (9)
An (q)

L(m, n)
M(n)
Gn

nn

Col(ki, ... , kn)

Notation

antichains in P
fractional k-family number

height of p
expected value of representation x

variance of representation x

variance of (P, w)
expected value of F w.r.t. x

Mobius function

first m elements of F
last m elements of F
compression of F in a level
.C-compression of F in a level

shadow function

new upper, lower shadow

canonical compression of an antichain

complement of a in S
complementary family in S

Examples

Boolean lattice

chain products

cubical poset

function poset

star products

poset of subparallelepipedons

of a parallelepipedon

poset of submatrices of a matrix

poset of subcubes of a cube

poset of square submatrices
of a square matrix

linear lattice

affine poset

the poset L(m, n)
the poset M(n)
graph poset
partition lattice
poset of colored subsets

132

133

140

140

140

141

141

255

333

333

333

333

345

345

355

376

376

9

9

10

10

10

11

11

12

12

12

13

14

14

14

14

344



Notation

d(v)
e- e+
B(A)

Etn (A)

Eout (A)
v(f)
c(S, T)
a(f)
P±I
d±(P)

a(G)

F
V®W
G

Graphs
degree of vertex v

starting point, endpoint of an arc
boundary

inner edges

outer edges

value of flow

capacity of cut
cost of flow

inflow, outflow

indegree, outdegree

independence number

Structures
Galois field of q elements

polynomials in the variables xt, ... , x
standard scalar product
posetspace
poset space element corresponding to p

subspace generated by the "elements" of F
direct sum

graph space

Sequences and Functions
supp support

an b asymptotically equal
an = 0(b,) Ooh of b,
an = little ooh of b
an b asymptotically not greater
log logarithm to the basis e = 2.718.. .

LX J greatest integer < x

fxl least integer > x
(")q Gaussian coefficient

S,,,k Stirling numbers of the second kind
B Bell numbers

(k) generalized binomial coefficient
fi(x) Gaussian distribution function

393

4

5

39

39

39

118

118

121

142

250

276

12

63

69

209

209

209

209

276
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q,4 (t) characteristic function 305

(iii)s Whitney number in S 368

V, o
VL, AL

o,,, A;i

Operators

restriction of 4 to a subspace E 209

adjoint operator 209

raising, lowering operator 209

Lefschetz raising, lowering operator 210

successive application of the raising,

lowering operator 210

ker;j kernel of Vj3 211

rank; rank of 0!i 211

Sid string numbers 214

J(0, P; x, y) Jordan function 217

aki Jordan coefficients 217

kert,t_i(i) kernel of A 235

Olt, rank i lowering, raising operator 258

OF-G, VG->F (F, G) lowering, (G, F) raising operator 258

J all-one-operator 276

AL Lefschetz adjacency operator 277

fi.-+ i empty intersection operator 281

Bj Bj-operator 281

Marks
end of proof of claim (as part of a proof of a theorem) 2

end of proof 3
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EIP, 40
endpoint, 5
entropy, 79
entropy inequality, 79
equilibrium, 146
equipartition, 102
Erdo"s method, 71
Erdo"s-Ko-Rado Theorem, 25
essential extreme point, 88
essential facet-defining inequality, 88
Euclidean space, 209
expected value, 140, 305
extreme point, 84

Index

facet, 86
family, 5
fibre, 131
filter, 6
final segment, 345
Fisher's inequality, 61
FKG-inequality, 267
FKG-poset, 270
flow, 117
flow-augmenting path, 119
flow morphism, 157
forward arc, 119
Four-Function Theorem, 265
fractional k-cutset, 125
fractional k-family, 132
fringe vertex, 121
full, 86
full-dimensional, 87
full rank, 211
function lattice, 10
function poset, 10, 152, 164, 171, 175, 185, 232

Gaussian distribution, 305
generalized profile, 352
generalized rank function, 318
generated filter, 6
generated ideal, 6
generating family, 50
geometric lattice, 8, 248
graded poset, 7
graph, 4
graph poset, 14, 231
graph space, 276

Hall's theorem, 180
Hamming graph, 358
Hasse diagram, 5
Hasse graph, 5
Hayman's method, 310
height function, 5
hereditary, 86
homogenous polynomial, 64

i-difference representation, 373
I-level connected, 171
I-log concave, 173
I-normal, 171
i-representation, 368
ideal, 6
incidence matrix, 211, 258
inclusion-unrelated, 21
increasing function, 6
indegree, 250
independence number, 276
independent, 5
independent random variables, 305
induced poset, 6
infimum, 6
initial segment, 345
injective word, 114
inner edges, 39
integral capacity, 118
integral flow, 118
integral random variable, 307
interface, 197
intersecting, 7, 24, 27, 93, 164
interval, 5
inversion poset, 248
involution, 213
isomorphic, 4
isomorphism, 4

j-compressed, 338
Johnson graph, 281
Jordan coefficient, 217
Jordan function, 217

k-cutset, 125
k-cutset property, 152
k-family, 5, 131
k-family problem, 131
k-independent family, 72
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k-LYM inequality, 150
k-representation, 47
k-saturated, 138, 182
k-shadow, 7
k-Spemer property, 8
k-uniform, 281
Katona's circle method, 26, 91
kernel, 211
key, 3
Kneser graph, 281
Korshunov Theorem, 31
Kruskal-Katona Theorem, 46
KS-independent, 22

L-intersecting, 62, 296
labeled vertex, 119
labeling algorithm, 121
Lagrange function, 146
Lagrange multiplier, 146
lattice, 7
lattice distribution, 309
lattice of noncrossing partitions, 198
Lefschetz adjacency operator, 277
Lefschetz lowering operator, 210
Lefschetz matrix, 211
Lefschetz raising operator, 210
length, 5
level, 7
Lie-algebra, 246
Lie-property, 232
linear lattice, 12, 152, 175, 186, 187, 233, 237,

261, 279, 295
link, 185
little-submodular, 345
Littlewood-Offord problem, 189
locally asymptotically normal, 307
log concave, 8
logarithmically concave, 8
lower shadow, 7
lowering operator, 209
lowering property, 260
LYM-inequality, 17

Mobius function, 255
Mobius inversion, 255
Macaulay poset, 333
Macaulay Theorem, 343
marginal random vector, 79
matching, 5, 179
Max-Flow Min-Cut Theorem, 119
maximal chain, 5
maximal element, 5
maximal family, 5
maximal flow, 118
maximum family, 5
maximum-edge problem, 40, 358
mean, 140, 305
MEP, 40
minimal cut, 118
minimal element, 5

minimal polynomial, 196
mod-k-family, 153
modular, 8
modular geometric lattice, 13, 171, 175, 187,

237
modular lattice, 8, 248
monomial, 195
multilinear polynomial, 66

nested chain order, 198
nested structure of solutions, 44
network, 117
new shadow, 345
noncrossing partition, 198
nontrivial intersecting, 60
normal distribution, 305
normal poset, 149
normalized matching property, 149
NSS, 44

open problems, 27, 29, 67, 93, 114, 148, 162,
187, 189, 193, 199, 207, 246, 248, 253,
261, 389

oracle, 31
orbit, 6
order-lowering operator, 210
order preserving, 6, 324
order-raising operator, 210
ordered k-partition, 21
outdegree, 250
outer edges, 40

p, q-Spemer family, 78
p-group, 251
parameters, 7
parenthesization, 183
parenthesization partition, 185
partially ordered sets, 4
partition lattice, 14, 199, 201, 272, 314, 316,

326
Peck poset, 229
Peck product theorem, 230
Peck quotient theorem, 230
Peck rankwise product theorem, 231
permutation invariant, 91
permutohedron lattice, 248
polyhedral complex, 355
polyhedron, 85
polynomial, 195
polytope, 84
poset, 4
poset of colored subsets, 344
poset of ideals, 244
poset of shuffles, 197
poset of subcubes of a cube, 12, 177, 232
poset of submatrices of a matrix, 12, 232
poset of unordered partitions of an integer, 207
poset space, 209
positive semidefinite, 277
positively weighted, 5
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potential function, 121
primal problem, 125
prime number theorem, 68
principal filter, 6
principal ideal, 6
probabilistic method, 71
product, 6
product theorem, 168
profile, 7
profile-polytope, 84
Profile-Polytope Theorem, 94
projective space lattice, 13, 152, 175, 187
properly log concave, 307
property C, 232
property T, 222

q-binomial theorem, 279
qualitatively independent, 22, 94, 113
quotient, 6

raising operator, 209
rank, 211
rank compressed, 162, 271, 326
rank function, 7
rank greedy, 356
rank i lowering operator, 258
rank i raising operator, 258
rank of a poset, 7
rank preserving, 226
rank symmetric, 8
rank unimodal, 8
rank-generating function, 7
rank-preserving cover suborder, 248
rank-selected subposet, 7
rank-transitive, 162
ranked basis, 209
ranked Jordan basis, 214
ranked Jordan string, 214
ranked poset, 7
ranked subspace, 216

rankwise product, 7
recognition of order-preserving maps, 32
reduced profile, 84
reflexed Sperner family, 376
regular covering, 150
regular graph, 4
regular poset, 152
regular sequence, 234
relational model, 3
representation flow, 142, 239
representation of sl(2, (C), 246
reverse lexicographic order, 40, 334

saddle point method, 312
saturated arc, 118
saturated chain, 5
sc-order, 180
scalar product, 209
segment, 345
self-adjoint, 277

Index

self-complementary, 94, 379
semi-Peck poset, 231
semi-sc-order, 199
semiantichain, 187
semimodular, 8
semisymmetric chain, 198
shadow, 7
shadow function, 345
shadow increasing, 349
Shannon complexity, 32, 38
shifted family, 50
shifting, 33
simplicial complex, 355
sink, 117
skew chain order, 189
source, 117
span, 309
special symmetric chain order, 194
Spemer family, 5
Sperner problem, 116, 132
Sperner property, 8, 93
Sperner's theorem, 1
Sperner-Erdos problem, 116
square submatrices of a square matrix, 12, 177,

195, 231
ssc-order, 194
star, 27
star product, 10, 171, 332
starting point, 5
statically cointersecting, 384
statically intersecting, 384
statically t-intersecting, 114
Stirling number, 14, 273
Stirling's formula, 310
strict k-Sperner property, 171
strict product theorem, 173
strictly level connected, 171
strictly log concave, 173
strictly normal, 171
string number, 217
strong cutlet property, 152
strong IC-property, 194
strong nested structure of solutions, 45
strong Sperner property, 8
strongly Sperner, 8
subgroup lattice, 251
subparallelepipedons of a parallelepipedon, 11,

171, 175, 232
subword, 114
support, 6, 114, 124, 384
supremum, 6
symmetric Boolean function, 196
symmetric chain, 29, 180
symmetric chain order, 180
symmetric chain partition, 180
symmetric sequence, 8

t-cointersecting, 7
t-intersecting, 7, 281
t-phenomenon, 130



Takagi function, 349
Taylor's formula, 310
truncation, 260
two-part Sperner property, 187

uniform, 7
unimodal, 8
unitary Peck poset, 229
unitary semi-Peck poset, 231
upper shadow, 7

valid inequality, 86
value of flow, 118
variance, 305
variance of a poset, 141
variance problem, 141

8.7 Index

variational principle, 362
vertex set, 4
vertex-isoperimetric problem, 40, 367
VIP, 40
void, 118

weak flow morphism, 159
weight function, 5
weight of a family, 5
weighted poset, 5
weighted quotient, 6
weighted quotient theorem, 160
Weisner's formula, 256
Whitney number, 7
width, 6
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