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The starting point of this book is Sperner’s theorem, which answers the question:
What is the maximum possible size of a family of pairwise unrelated (with respect
to inclusion) subsets of a finite set? This theorem stimulated the development of
a fast growing theory dealing with extremal problems on finite sets and, more
generally, on finite partially ordered sets.

This book presents Sperner theory from a unified point of view, bringing combi-
natorial techniques together with methods from programming (e.g. flow theory and
polyhedral combinatorics), from linear algebra (e.g. Jordan decompositions, Lie-
algebra representations, and eigenvalue methods), from probability theory (e.g.
limit theorems), and from enumerative combinatorics (e.g. Mobius inversion).
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PREFACE

Sperner theory is a very lively area of combinatorics and combinatorial optimiza-
tion. Though nobody knows the exact age of it, we may assume that it was born in
the end of the 1920s and that at least F.S. Macaulay and E. Sperner belong to the
set of parents. Macaulay’s contribution is discussed in the chapter on Macaulay
posets. Sperner’s theorem is the starting point of this book. It answers the following
question: Given a family of pairwise unrelated (with respect to inclusion) subsets
of a finite set, what is the maximum size of this family? In the 1930s the set of
parents was enlarged by P. Erdds, C. Ko, and R. Rado, who studied intersection
conditions, and in the beginning of the 1950s, R.P. Dilworth entered this set by
proving his famous min—-max theorem on partially ordered sets. We should not
forget the grandfather. At the end of the last century R. Dedekind failed to find an
explicit formula for the number of monotone Boolean functions, and this difficult
problem was later attacked by several authors. It is impossible to mention all the
offspring and descendants of Sperner theory. Many of them can be found in the
references. The list of names there shows that many well-known mathematicians
of this century have contributed to the development of the theory.

Several aspects make Sperner theory so interesting. The problems often may be
clearly and simply formulated. For the solutions one indeed needs creativity, and
the techniques are frequently surprising. Concerning applications and methods,
there are several unexpected relations to other branches of mathematics, such as
programming, algebra, probability theory, number theory, and geometry. Thus,
studying Sperner theory means learning many important techniques in discrete
mathematics and combinatorial optimization on a particular theme.

Ten years ago H.-D.O.F. Gronau and I wrote the monograph “Sperner theory in
partially ordered sets” [161]. This work was followed by the books of B. Bollobds
[73], I.A. Anderson [32], and C. Berge [50] that also discuss aspects of Sperner
theory. Since I saw that a revision of [161] would be insufficient, I decided to write
anew book. It has been my main goal to present a unifying theory that covers many

vii



viii Preface

seemingly distant and separate results, including as far as possible all important
and famous theorems related to the subject. To meet this goal, I took a completely
new approach toward selection, organization, and presentation of the material. Of
course I also tried my best in order to give an updated presentation reflecting the
modern development of the last ten years. More attention is paid to algorithmic
aspects and much more space is devoted to the study of the Boolean lattice.

Up to a small epsilon everything is given with complete proofs (matched to
the “theory™), so that the reader need not consult the original papers. The book is
self-contained, and the reader needs only basic knowledge of mathematics. I hope
that enthusiasm for the subject increases exponentially with the number of pages
read.

Recognizing that it is impossible to refer to all of the large number of papers
related to Sperner theory, I have put the emphasis on the main results and methods
of the theory and not on a complete survey of all related results. Consequently,
many topics are presented only in examples, and I apologize for omitting several
interesting results.

I also intended to keep intersections with existing and forthcoming books small.
For instance, I wrote nothing on dimension theory (W.T. Trotter [452]) and design
theory (e.g., T. Beth, D. Jungnickel, H. Lenz [53]). The probabilistic methods are
not discussed extensively because they are covered in the book by N. Alon and
J.H. Spencer [29]. Some further algebraic methods will be contained in the forth-
coming book by P. Frankl and L. Babai [35]; and L.H. Harper and J.D. Chavez
[261] are building up a theory for discrete isoperimetric problems. Since there exist
excellent books of problems as well as books containing problems with solutions
like those of G.P. Gavrilov and A.A. Sapozhenko [220] and L. Lovész [354] and
LA. Anderson [32], I did not include exercises. However, several theorems, lem-
mata, propositions, corollaries, and claims in this book are suitable for exercises
(which thus have complete solutions). Some open problems are mentioned in the
text, and the corresponding page numbers can be found using the index.

The “easiest” examples for an author are those the author has studied. So my
own list of references may seem inappropriately long. I included also some new
results that will not be published elsewhere. Thus I hope the book might shed new
light on some topics also for people who already do active research in the field.

I wish to thank Larry Harper, who initiated this project and who contributed with
stimulating discussions. Many other mathematicians gave hints and indications to
new results, and I gratefully acknowledge their contributions. Beyond that, I wish
to express my gratitude to all my teachers, direct and indirect. In particular I would
like to thank Christian Bey, Frank Ihlenburg, and Uwe Leck, who read the whole
or at least parts of the manuscript very thoroughly. They found several unpleasant
typographical and substantive errors, and I hope that their number is minimized
now.
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I am indebted to all involved in the production of this book. Cynthia Benn and
Rena Wells were of great assistance in improving the style in many ways.

My deep thanks go to my parents Helga and Wolfgang Engel for (among many
other things) introducing me early into mathematics as well as encouraging and
supporting my occupation with it.

Above all I am grateful to my own family for opening widely happy new pages
of my life, for their continuous encouragement and understanding. I leave it as an
exercise to discover the names of my wife and my children in the book.






1

Introduction

1.1. Sperner’s theorem

We start our investigations with the theorem that was the cornerstone for the whole
theory. In the thirties, forties, and fifties few further results of a similar kind were
published. But beginning with the sixties, the combinatorics of finite sets has
undergone spectacular growth. Not only have subsets of a finite set been studied,
but also more general objects like partially ordered sets. Many important results
in this area can be found in this book.

Theorem 1.1.1 (Sperner [436]). Let n be a positive integer and F be a family
of subsets of [n] := {1, ..., n} such that no member of F is included in another
member of F, that is, forall X, Y € F we have X ¢ Y. Then

(@
7 < (g) if n is even,
( " ) ifn is odd.

n

2l
(b) Egquality holds iff

{xcn: x| =1} ifn even,
{(xcml:1XI=2t}or{X S nl: 1 XI =2} ifnodd.
Proof. The following presents Sperner’s original approach. Clearly the families

given in (b) satisfy the conditions of the theorem and have the corresponding size.
Hence we must show that there do not exist “better” (resp. “other’””) families. Let

1



2 Introduction

F be any family of maximum size satisfying the conditions of the theorem. Let
I(F) := min{i : there is some X € F with | X| = i},
u(F) := max{i : there is some X € F with | X| =i}.

For brevity we write / instead of /(F') if F is clear from the context. Let

G:={XeF: |X|=1)},

H :={Y C[n]:|Y|=1[+1 and there is some X € G with X C Y},
F = (F -G UH.

Claim 1. The family F satisfies the conditions of the theorem.
Proof of Claim 1. The only obstacle could be the existence of some ¥ € H
and some Z € F — G such that Y C Z. But by definition of H we would find

also some X € G C F with X C Y. Thus X C Z, contradicting the fact that 7
satisfies the conditions of the theorem.

a

Claim 2. Let/ < 15—' Then |F’| > |F|, and |F'| = |F| implies / = "—;—'
Proof of Claim 2. Let us count the number N of pairs (X, Y) with X € G,
Y € H, X C Y in two different ways. For a fixed member X of G, we can find

exactly n — I corresponding sets Y since Y can be obtained in a unique way from
X by adding one element of [n] — X. Thus

N =|G|(n =1. (1.1)
For a fixed member Y of H, we can find analogously / + 1 sets X with X C Y,

| X| = 1. But it is not necessary that all these sets X belong to G. Thus

N < [HI( + D). (1.2)
By (1.1) and (1.2) and because of | < %51,
IG1(n — 1) < IHIT+ 1), (1.3)
H| - n—l>n-—-15—1 _1,
gl —1+1 7 2>

where the last inequality is only an equality if / = ﬂgl Since F satisfies the
conditions of the theorem, F N'H = @. Thus

-1
|F'| = |F| = 1G] + IH| = |F| (equality implies / ? )



1.1 Sperner’s theorem 3

Recall that we have already chosen F as a family of maximum size that satisfies
the conditions of the theorem. We obtain from Claims 1 and 2

1
and (analogously) u(F) < ——;—

I(F) =2

because otherwise we could construct a family F’ of larger size. If n is even, we
are already done. So let n be odd. If /(F) = u(F ), both values are either "—5' or

241 and, consequently,
n n
171 = (,,__.)=(,,_+l) (1.4)
2 2

Thus assume that /(F) = 1'2‘—', u(F) = 'L}'- In this case we will obtain a contra-

diction. By Claim 2,
n
|FI < |F| < (m) (1.5)

2
Since F is of maximum size, we must have equality in (1.5), thus also in (1.2),
and this is possible only if for every Y € H each /-element subset of Y belongs
to G. But consider under all pairs (Y, Z) with Y € H, Z € F — G such a pair for
which |Y N Z| is maximum. Since |Y| = |Z| =1+ 1,Y # Z, there exist some
y€eY —Zandsome z € Z—Y.In view of the preceding remarks, ¥ — {y} must
belong to G; thus Y’ := (¥ — {y}) U{z} belongs to H. Now |[Y'NZ| = |[YNZ|+1
is a contradiction to the maximality of |Y N Z|. [ ]

This result (or at least part (a)) was obtained independently by several other
mathematicians. As examples we mention here Gilbert [223] and the succeeding
paper of Mikheev [369]. Using

nJ I 5 ifniseven,
|-2 . 1=l if n is odd,
part (a) of Theorem 1.1.1 reads: | F| < (L J)

Sperner’s theorem can be always apphed if one works with families of subsets
that are pairwise incomparable with respect to inclusion. Here we consider only
one example. It was found by Demetrovics [130] in a study of the relational model
of data structures proposed by Codd [118] and Armstrong [33]. Suppose we are
given m persons Py, ..., P, and n attributes 4, ..., A, like last name, first name,
date of birth, place of birth, weight, and so forth. For each person, each attribute
takes on a unique value. Using a right coding, we may suppose that each such
value is a natural number. Thus all data on the persons can be represented by an
m x n-matrix D = (d;;), where dj; is the value of 4; for person P;. We say that

a set of attributes {4, : j € X}, and, briefly, the set X C [n], is a key if for fixed
values of 4;, j € X, there exists at most one person P; that has these values — that
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is, if
d,'j = d,"j for all _] € Ximpliesi = il

(one already “knows” the person if one knows his values of the attributes of a key).
Akey X C [n] is called a minimal key if there is no key X’ with X’ C X.

Corollary 1.1.1.  For n attributes the number of minimal keys is not greater than
(Lg J), and this bound is the best possible.

Proof. Itis trivial to see that the family F of minimal keys satisfies the conditions
of Theorem 1.1.1, which proves the upper bound. To see that this bound can be
attained, we must construct a corresponding matrix D. We do this here in a simple
way with a large m, namely m := (L%]'_l) + 1. Set all entries of the first row of D
equal to 1. Then order all n-dimensional rows with | 5| — 1 onesandn + 1 — L3]
zeros in any way, but count them from 2 up to (Lijl— l) + 1. Define the ith row
of D to be the ith row from above, but with all zeros replaced by the number
ii=2,..., (L%T—l) + 1. Then every I_%J-element subset of [n] is a key since
either we find in the corresponding places only ones — and this can be the case
only in the first row, or we find some number i 7 1 — and this can be the case only
in the ith row. Moreover, it is easy to see that there is no key of size smaller than
L51; thus we have indeed (Lg J) minimal keys. (]

The preceding construction is due to Demetrovics and Katona [131]. For more
information on similar combinatorial problems of data structures, see, for example,
Demetrovics and Katona [131] and Demetrovics and Son [132].

1.2. Notation and terminology

The main objects considered in this book are partially ordered sets (abbreviated
as posets), which are sets equipped with a reflexive, antisymmetric, and transitive
relation (order relation). Throughout we suppose that the posets are finite. For
the sake of brevity we will not distinguish between the poset and the underlying
set. For two comparable (i.e., related) elements p, g of a poset P, we write in
the usual way p < g or, equivalently, g > p. Two posets P and Q are called
isomorphic (denoted by P = Q) if there is a bijective mapping ¢ from P onto Q
(called isomorphism) such that p < g iff (i.e., if and only if) ¢( P) < ¢(g). An
automorphism of P is an isomorphism from P onto P.

Sometimes we study more general objects, namely graphs. An (undirected,
simple) graph G = (V, E) is a set V, called the vertex set or point set, together
with a set E of two-element subsets of V, called the edge set. The degree d(v)
of a vertex v € V is defined as the number of edges containing v. The graph
is called regular of degree d if d(v) = d for all v € V. We speak of directed
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graphs (digraphs) G = (V, E) if E consists of (ordered) pairs (p, q) of different
elements p, g of ¥ and we call the elements of E arcs. For e = {p, q} (p, q are
the endpoints of e) (resp. e = (p, q), p is the starting point, q is the endpoint), we
write briefly pq, and in the directed case we use the notation e~ := p,e* :=gq.
Moreover in the directed case we allow more than one arc between points p and
q; thus E is a multiset of arcs.

The element g of a poset P is said to cover the element p (denoted by p < ¢
andg > p)ifq > pandif g > q' > p implies g = g’. Obviously, the order
relation is the reflexive and transitive closure of the cover relation. A poset P can
be illustrated by its Hasse diagram, which is a digraph H(P) = (P, E(P)) whose
vertex set is P and whose arc set E(P) consists of all pairs (p, ), where p < gq.
In figures we always have ¢ > p if p and g are joined by a straight line and ¢ lies
higher than p. The Hasse graph is the underlying undirected graph of the Hasse
diagram. An element p of P is called minimal (maximal) if ¢ < p(q > p)implies
q = p. For two elements p, g of P, we define the interval [p, q] to be the set of
all elements of P lying between p and g; thatis, [p,g] ={ve P: p <v <gq}.

A subset of pairwise comparable elements of a poset P is said to be a chain. We
denote chains by C = (¢p < - -+ < ¢p), which gives us not only the elements but
also the relation between them. The number 4 is called the length of C. The height
function assigns with each element of P the length of a longest chain with p at the
top. A chain is called saturated if it has the form C = (co < --- < ¢p), and it is
called maximal if, in addition, ¢y and ¢, are minimal and maximal elements of P,
respectively.

An antichain is a subset of pairwise incomparable elements of P. Subsets of a
poset will often be called families too (motivated by families of subsets of a set).
Antichains are also called Sperner families. A k-family is a family in P containing
no chain of k£ + 1 elements in P, thus a 1-family is an antichain. Usually we denote
families by roman letters F, G, and so on. If P is the Boolean lattice (to be defined
in the next section) or if P is very similar to the Boolean lattice we also use script
letters F, G, and so forth.

We speak of maximal families and maximum families satisfying various condi-
tions. “Maximal” means not contained in any other; “maximum” means maximum-
sized.

For graphs G = (V, E), we define a subset C of V' to be a clique if any two
elements of C are joined by an edge (i.e., are adjacent), and a subset [ of V' is
called independent if no two elements of / are adjacent. A matching in a graph
G = (V,E) is a subset M of E of pairwise nonadjacent edges; that is, no two
edges of M have a common endpoint.

We often consider extremal problems not in a poset but in a weighted poset
(P, w), which is a poset P together with a function (called a weight function) w
from P into the set R, of nonnegative real numbers. If w(p) > O for all p € P,
then (P, w) is called a positively weighted poset. The weight w(F) of a family F of
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(P, w) is defined by w(F) := Y peF w(p). Every poset P can be considered as a
weighted poset (P, w) where w = 1; thatis, w(p) = 1 forall p € P. We identify
P and (P, 1). The maximum weights of an antichain and a k-family in (P, w) are
denoted by d(P, w) and di (P, w), respectively. The parameter d(P, w) is called
the width of (P, w).

Given a weighted poset (P, w) and a subset F of P, the poset whose underlying
set is F and whose elements are ordered and weighted as in (P, w) is called the
poset induced by F. The dual (P*, w) of (P, w) has the same underlying set and
the same weight function as (P, w), but it is ordered by p <px q iff p >p g.

The (direct) product P x Q of the posets P and Q is defined to be the set of
all pairs (p, q), p € P,q € Q, with the order given by (p, g) <pxg (P, q’) iff
p <p p  and g <g q’. Moreover, the product (P, v) x (Q, w) of the weighted
posets (P, v) and (Q, w) is the product of P and Q together with the weight
function v x w defined by (v x w)(p, q) := v(p)w(g), p € P,q € Q. We denote
a product of n copies of (P, w) by (P, w)”, and for (P, wy) X -+ - X (P, wy) We
write briefly [T7_, (P;, w;).

Given a group G of automorphisms of a poset P, a nonempty subset 4 of P is
called an orbit if for all p, g € A there is some ¢ € G such that ¢(p) = g and
if A is maximal with respect to this property. It is easy to see that the union of all
orbits is a partition of P. Now the quotient of P under G (denoted by P/G) is
the poset of all orbits ordered in the following way: 4 <p,c B iff there are some
a € A, b € Bsuchthata <p b (it is easy to see that P/G is really a poset). The
weighted quotient is the quotient together with the weight function w/G defined
by w/G(A4) :=|A4|, 4 € P/G.

Given two posets P and Q, a mapping ¢ : P — Q is called order preserving
if p < q implies p(p) < @(q). If Q is the set R with the natural ordering, we
speak of increasing functions. Decreasing functions are defined in an analogous
way. The characteristic function of a subset S of P is defined and denoted by

if pes,

otherwise.

1
ps(p) ==
0

The support of a function f : P — R is the set supp(f) :={p € P: f(p) # 0}.

A subset F of a poset P is called a filter (ideal) if p € Fandg > p (g < p)
imply g € F. Sometimes filters (ideals) are also called upper ideals (lower ideals).
A filter (ideal) F is said to be generated by a subset Sof Pif F={pe P:p>
g (p < q) for some g € S}. If S contains only one element we speak of principal
filters and ideals.

Given two elements p, g of P, the element v is called supremum (infimum) of p
and g —denotedbyv = pvg (v= pAg)-ifv> p,v>gandifw > p,w >gq
imply w > v(ifv < pv <gandifw < p,w < g imply w < v). In an
analogous way we define the supremum (infimum) of any subset 4 of P, which
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we denote by sup A (inf 4). Most of the examples considered in this book are
lattices, that is, posets P in which p vV ¢ and p A g exist forall p,q € P.

Further, almost all posets that we will study are ranked posets, that is, posets
together with a rank function. Here a rank function of a poset P is a function
r from P into the set N of all natural numbers such that »(p) = 0 for some
minimal element p of P and p < g implies r(q) = r(p) + 1. Note that we do
not suppose — as traditionally — that » (p) = O for all minimal elements p of P. If
in a ranked poset every minimal element has rank 0 and every maximal element
has the same rank, we speak of a graded poset (note that in any poset there is at
most one rank function with this property). Given a ranked poset P, rp denotes
throughout its rank function, but generally we omit the index P and merely write
r. The number r(P) := max{r(p) : p € P} is called the rank of P (note the
difference from the weight w(P) of a weighted poset (P, w), which we defined
by w(P) := Zpep w(p)). Very often we set for the sake of brevity n := r(P).

A subset F of a graded lattice is called t-intersecting (t-cointersecting) if r (p A
q) >t (r(pvq) <r(P)—t)forall p,q € F. Intersecting (cointersecting) is an
abbreviation for 1-intersecting (1-cointersecting).

The dual of a ranked poset P is the dual P* of P together with the rank function
rpx :=rp(P)—rp(p) forall p € P. Moreover, the product of two ranked posets
P, Q is defined to be the poset P x Q together with the rank function rpy g
given by rpx g(p, q) := rp(p) + ro(q). For a ranked poset P, we define the ith
level by N;(P) := {p € P : r(p) = i}; its size W;(P) := |N;(P)| is called
the ith Whitney number, i = 0, ..., r(P) (when there is no danger of ambiguity,
we write briefly N; and W;). It is useful to define N; := @ and W; := 0 if
i ¢ {0,...,r(P)}. Obviously, each level of a ranked poset is an antichain, and the
union of k levels is a k-family. The rank-generating function F(P; x) of a ranked
poset is defined by F(P; x) := Y, p x" (P (= Y B wixi). Itis easy to see that
F(Px Q;x)=F(P;x)F(Q; x)if P and Q are ranked. For S C {0, ..., r(P)},
we define the S-rank-selected subposet (Ps, ws) as the subposet induced by Pg :=
{p € P:r(p) € S} together with the induced weights wyg.

Forranked posets P, Q of the same rank, we define the rankwise (direct) product
P x, Q tobe the set U)o N; (P) x N; (Q) together with the relation (p, g) <px,.0
(p'.q") if p <p p'and g <g q'. If we have, in addition, weights v and w on P
and Q, resp., then, as for usual products, (v x, w)(p, q) := v(p)w(q).

Given a family F in a ranked poset P, the set of rank i elements of F is denoted
by F;, and the numbers f; := |F;| are called parameters of F,i =0, ..., r(P).
The vector f = (fo, ..., fr(p))" is called the profile of F. If F = F; for some i
then we call F i-uniform.

For an element p of P, we define and denote the upper (resp. lower) shadow
of pby V(p) :={q € P : q> p} (resp. A(p) := {g € P : g < p}). More
generally, if P is ranked, let the upper (resp. lower) k-shadow of p be defined and
denoted by V_,x(p) :={g € Nr: g > p} (resp. ALk(p) :=1{q € Ny : ¢ < p}).
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The (k—) shadows of a subset of P are the unions of the (k—) shadows of its
elements.

More generally, given a weighted and ranked poset (P, w), the weight w(N;) of
the ith level N; of P is called the weighted ith Whitney number. We mostly use the
following definitions in the w = 1 case (where W; = w(¥;)). The weighted and
ranked poset (P, w) is said to have the k-Sperner property if the maximum weight
of a k-family in (P, w) equals the largest sum of k weighted Whitney numbers in
(P, w), that is, if

di(P, w) = max{w(N;) + -+ w¥;):0<i; <--- <iyp <r(P)}.

In the £ = 1 case we also say briefly that (P, w) has the Sperner property or
(P, w) is Sperner. Further, (P, w) has the strong Sperner property ((P, w) is
strongly Sperner) if (P, w) has the k-Sperner property forallk = 1,2, ....

A sequence of nonnegative real numbers {a,} is called unimodal if there is a
number A such that @; < aj4; fori < h and @; > a;4+1 if i > h. It is called
logarithmically concave (or log concave) if a,.2 > aj_1a;4+ for all i. For a fi-
nite sequence (ao, ..., a,), we say that it is symmetric if a; = a,—; for all i.
If the (weighted) Whitney numbers of (P, w) are unimodal (resp. symmetric),
then (P, w) is said to be rank unimodal (resp. rank symmetric). If {a,} and {b,}
are two infinite sequences of real numbers, the following notations for n — oo
are well known: a, ~ b, if lim,,a,/b, = 1; a, = O(b,) if there exists
some ¢ € R such that |a,| < c|by]| for all n; a, = o(by,) if lim, o ay/b, =0
and a, < by if a, < by(1 + 0(1)). All logarithms in this book are to the basis
e=2718....

As usual, we denote the largest integer that is not greater than a given real
number x by |x]. For the smallest integer that is not smaller than x, we write [x].
The set {1, ..., n} we abbreviate by [n]. For the family of k-element subsets and
for the power set of [n], we use the notation ([2]) (resp. 211y which is motivated
by the corresponding sizes. 4 C B means that A is a subset of B, whereas strict
inclusion is denoted by 4 C B. For the set difference of sets 4 and B, we write
A— B.Moreover, we denote the complement of 4 in [n] by 4; thatis, 4 := [n]— 4.
For F C 21" let F := {4 : A € F) be the complementary family.

Before considering some concrete examples of posets and lattices in the next
section, let us look at some larger classes of ranked posets. For a general study of
these lattices, see, for example, Aigner [21] and Stanley [441]. In a lattice P, the
elements covering the minimal element are called atoms. The rank function of P
is called modular (resp. semimodular) if

r(pAngqg)+r(pvgq)= (resp. <)r(p)+r(g)forall p,q € P.

A (finite) lattice is called modular if it has a modular rank function. Moreover,
a lattice is said to be geometric if it has a semimodular rank function and every
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element is a supremum of atoms. Finally a lattice is called distributive if the
following identities hold for all p, g, v € P:

pA(@VY) =(pAg)V(pAv),
pvV@Av)=(pVvg)A(pVv).

We note that each of these identities implies the other. All (finite) distributive lat-
tices are ranked, for the proof see, for example, [21, p. 38]. Obviously, distributivity
implies modularity.

1.3. The main examples

The following are several examples of posets we will consider in this book. Most
of these posets can easily be shown to be lattices. Hence in all traditional examples
the word lattice will be used instead of poset. Further, it is mentioned without
proof that all following posets are ranked. The reader will learn in the book that
all posets up to the last one have the Sperner property.

Example 1.3.1. The Boolean lattice By,.

The poset of all subsets of an n-element set, ordered by inclusion, is the Boolean
lattice. Obviously, B, is isomorphic to (0 < 1)” as well as to the poset of all faces
of an (n — 1)-dimensional simplex (including the empty set as a face), ordered
by inclusion. It is easy to see that Nx(B,) consists of all k-element subsets; thus
Wi (By) = (Z) The Hasse diagrams of B3 and Bj are illustrated in Figure 1.1.

¢ &

Figure 1.1

Example 1.3.2. Chain products S(ki, ..., k).

The poset S(ky, ..., k,) consists of all n-tuples of integers a = (ay,...,a,)
suchthat 0 < a; < k;, i = 1,...,n, and we have a < b iff a; < b; for all
i. We will adopt the convention ky > -.- > k,. Obviously, S(ky, ..., k,) =

?=I(O <1< -+ < k), and therefore S(ky, ..., k) is called a chain product.
Given n distinct primes py, ..., p,, S(ki, ..., k,) is isomorphic to the lattice



10 Introduction

of all divisors of pf' p,’f”, ordered by divisibility. The Boolean lattice B, is
isomorphic to S(1,...,1). From the product representation we obtain that the
rank of an element a of S(ky, ..., k,) is given by r(@) = a; + - - - + a,, and the
rank-generating function is [T7_; (1 4+ x + - - - + x¥).

Example 1.3.3. The cubical poset Q.

Oy, is the poset of all faces of an n-dimensional cube (not including the empty set
as a face), ordered by inclusion. Here we consider only the discrete cube {a =
(ai,-..,ay) : a; € {0, 1}}. Its faces are all subsets of the form {a : a; € {0, 1} if
i¢la =a;ifi e I(i=1,...,n)}, where I is asubset of [n] and o; (i € I) are
fixed elements of {0, 1}. Clearly the faces are exactly the intervals in the Boolean
lattice B,. If one notes that a face corresponds to an n-tuple b = (by, ..., by)
where b; = 2ifi ¢ I and b; = «; if i € I, then it is not difficult to see that O,
is isomorphic to a product of n factors given in Figure 1.2. Thus we consider O,

2

N

0 1
Figure 1.2

mostly as the set of all n-tuples b = (by, ..., b,) with b; € {0, 1, 2} for all i and
ordered by b < ¢ iff ¢; = 2 or b; = ¢; for all i. Obviously, the rank of b equals
the number of “twos” in b and Wi (Q,) = (})2"*.

We get the cubical lattice Q,, if we add to 0, a minimal element (which is
smaller than all elements of Q).

Example 1.3.4. The function poset F.

F{ consists of all partially defined functions of an n-element set into a k-element
set. For a function f of F{, let D(f) be its domain. Two elements of F' are
ordered in the following way: f < g iff D(f) € D(g) and f(x) = g(x) for
all x € D(f). A partially defined function of {xi, ..., x,} into {y|, ..., y} can
be represented as an n-tuple @ = (ay, ..., a,), where ¢; = 0 if x; ¢ D(f) and
a; = jifx; € D(f) and f(x;) = y;. Thus F} is isomorphic to a product of n
factors given in Figure 1.3. It follows that F3 is isomorphic to the dual of Q. The
rank of an element a of the poset F}’ is given by the number of nonzero elements
in @, and we have Wi(Fy) = (7)k'. If we add a maximal element to Fy', we get
the function lattice F.

Example 1.3.5. Star products T (ky, . . ., kn).
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1 2 k
0
Figure 1.3
This poset consists of all n-tuples of integers @ = (ay, ..., a,) suchthatk, —k; <
a; <k,, i=1,...,n,and we have a < b iff, forall i, a; = b; or b; = k,. We

suppose throughout that k; < --- < k,. Obviously, T (k, ..., k,) is isomorphic
to a product of stars presented in Figure 1.4. Thus it is a natural generalization
of the cubical poset and the dual of the function poset. The rank of an element
a of T(ky,...,ky) is given by the number of components equal to k,, and the
rank-generating function is [T/_,; (ki + x).

kn
kn—kikn—k;+1 kn—1
Figure 1.4

Example 1.3.6. The poset Int(S(ky, ..., kp)).

This is the poset of all nonempty intervals in S(k, ..., k), ordered by inclusion;
that is, its elements are sets of n-tuples of the form {a@ : ¢; < a; < B (I =
1,...,n)}, where ; and B; are fixed integers,0 < a; < B, < ki (i =1,...,n).
It is easy to see that Int(S(k;)) is isomorphic to the “upper half” of S(k;, ki)
(see Figure 1.5). The corresponding isomorphism is the mapping that assigns
the interval {¢, ¢ + 1,...,8}, 0 < @ < B < ki, to the pair (8, ki — «). If
we interpret the elements of S(kp, ..., k,) as points of a discrete (rectangular)
parallelepipedon, then Int (S(ky, ..., k,)) consists of all subparallelepipedons of
a parallelepipedon, ordered by inclusion. Note that /n¢(S(1, ..., 1)) isisomorphic

to Q,.
Example 1.3.7. The poset M(ky, ..., k).

The elements of this poset are subsets of S(ky, ..., k,) of the form {a € S(ky, ...,
kn) :a; € 4;, i =1,...,n} where the 4; are nonempty subsets of {0, ..., k;},
i =1,...,n,andthe ordering is again by inclusion. Itis easy to see that M (ky, . . .,
kn) is isomorphic to By | x --- x By . where B, denotes the Boolean lattice
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Int(S(4))
Figure 1.5

B, without the minimal element. In the case n = 2, this poset can be interpreted
as the poset of submatrices of a matrix with (k; + 1) rows and (k3 + 1) columns,
ordered by containment. We speak also for n > 2 of the poset of submatrices of a
matrix.

Example 1.3.8. The posets SQk,n and SMg p.

The elements are subsets of S(k, ..., k) of the form {a € S(k,...,k) : a; €
A;, i = 1,...,n} where the 4; are for SQk , intervals in [0, k] of same sizes
and for SMy , subsets of [0, k] of same sizes, and the ordering is by inclusion.
If we consider S(k, ..., k) as a discrete cube, then SQk, , can be interpreted as
the poset of subcubes of a cube. In the case n = 2, SMy , can be interpreted
as the poset of square submatrices of a square matrix (with k + 1 rows (resp.
columns)), but we use this notation also for n > 2. It is easy to see that SQx , =
Int(S(k)) x, --- %, Int(S(k)) and SMy n = Bi41 X -+ X, Bgy1 (rankwise
product).

Example 1.3.9. The linear lattice L, (q).

This is the poset of all subspaces of an n-dimensional vector space over a field
of g elements (the Galois field G F(q)), ordered by inclusion. The rank of an
element V of L,(q) equals its dimension dim ¥ (as a subspace). In Figure 1.6
we illustrate L3(2) (the triples indicate the coordinates of vectors that generate
the corresponding one-dimensional subspace). It is not difficult to see that each
nonempty interval [V, W] in L,(g) is isomorphic to Lgim @ —dim v () (consider
the mapping that assigns to each U € [V, W] the factor space U/ V). It is well
known (cf. [21, p. 78]) that the ith Whitney number of L, (g) equals the Gaussian
coefficient (';)q, which is defined by

(n) _@-D@"' - @ -
i/g" @ -D@T-D-@-D

The linear lattice L,(q) (as also By, and S(ky, ..., k,)) is isomorphic to its dual:
If the vector space is realized as the set of all n-tuples with components from

0<i<n.
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Ls(2)

Figure 1.6

G F(g), then an isomorphic image of some subspace V is the subspace {x =
&1y x)T v+ -+ vpxy =0forally = (vy, ..., v,)T € V).

Example 1.3.10. Projective space lattices.

A projective space lattice is the poset of all subspaces of a projective geometry,
ordered by inclusion. For a definition of a projective geometry and its subspaces,
see references [21, pp. 55ff] and [450, pp. 105ff]. Note here that if such a poset has
rank > 4, then it is isomorphic to some linear lattice L, (q) (see [450, p. 203] and
note that we have the general supposition that all posets are finite). In the rank =
3 case, the projective geometry is a projective plane [450, Theorem 13.7]. Finally,
in the rank = 2 case, projective space lattices have the form given in Figure 1.7.

<

Figure 1.7

Example 1.3.11. Modular geometric lattices.

These are lattices that are both modular and geometric. We only need the fact that
the modular geometric lattices are exactly the products of a Boolean lattice and
projective space lattices, which was proved by Birkhoff (cf. [21, p. 64], where
two-element chains are also considered as projective space lattices).

Example 1.3.12. The affine poset A,(q).

The poset of cosets of subspaces (affine subspaces) of an n-dimensional vector
space over G F(q), ordered by inclusion, is the affine poset 4,(g). The rank of an
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element a + V equals the dimension of V, and the ith Whitney number is given by
Wi(An(q)) =q"* (:?)q. Every nonempty interval [a + V, b + W] (i.e., we may
suppose a = b) is obviously isomorphic to Lgimw —dimy (q). If we add a unique
minimal element, we obtain the affine lattice A n(q).

Example 1.3.13. The poset L(m, n).

The elements of the poset L (m, n) are the n-tuplesa = (ay, ..., a,) withO < a; <

. < a, < m. They are ordered componentwise; that is, @ < b iff a; < b; for
all i. L(m, n) is isomorphic to the poset of all ideals in S(m — 1, n — 1), ordered
by inclusion (note that the mapping which assigns @ € L(m, n) to the ideal in
S(m—1,n—1) generated by the set{(a; —1,n—1), (a2—1,n-2), ..., (an—1, 0)}
— an element (—1, i) is considered nonexistent — is an isomorphism). The rank
function is given by r(a) = a; + - -- + a.

Example 1.3.14. The poset M(n).

This is the poset of all n-tuples a = (aj,...,a,) WithO =a; = --- = a; <
apy1 < - < ap <n,h €{0,...,n} (h = 0 means a; > 0), with the order
given by a < b iff a; < b; for all i. For the rank of an element a, we have
r(a) =ay +---+ay; thusr(M(n)) = ﬁ";—l)

Example 1.3.15. The graph poset G .

The elements of the graph poset G, are the simple graphs on » unlabeled vertices
(i.e., the isomorphie classes of the graphs on the vertex set [n] without loops and
multiple edges). These graphs are ordered by containment (embedding). The rank
of such a graph (as an element of the poset G,) equals the number of edges in it.

Example 1.3.16. The partition lattice T1,,.

The elements of this lattice are the partitions of [n], and they are ordered by
refinement. We denote, for example, the partition {4} U {2, 5, 6} U {1, 3} of [6]
briefly by 4|256|13 (or 526|13|4,...), and this partition covers 4|2|56|13,
4)2516|13, 4|5|26|13, 4|256|1|3. Let b(r) stand for the number of blocks in 7.
Then the rank function is given by r (;r) = n — b(rr). Figure 1.8 illustrates I14 (the
two-element blocks of the atoms are depicted). For the Whitney numbers, we have
W;i(I1,) = Sy,n—i, where S, ¢ is the corresponding Stirling number of the second
kind, which is defined by the number of partitions of [n] into exactly k blocks. If
7 < o and 0 = Bj|...|Bg, where B; contains n; blocks of &, then obviously
[r,0] = I, x - -+ x I,,. The following basic recurrence holds for the Stirling
numbers:

Sk =kSn—1.k + Sn—1.1-1, nk=>1, (1.6)
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Figure 1.8

and the Bell numbers B, := |I1,| (do not confuse them with the Boolean lattices
B,) can be determined by the formula of Dobinski (cf. [354, pp. 14f]):

1 & in
B,=-S"L. (1.7)
€ i=0 l!

It is well known [44]1, p. 127f] and can be easily proved directly that I1, is a
geometric lattice.



2

Extremal problems for finite sets

Many results in Sperner theory have their origin in theorems on families of subsets
of a finite set, that is, in the special case of the Boolean lattice. So we start our
investigations with the Boolean lattice. Because of the richness of the literature,
we must be selective. In particular, this chapter presents several important methods
(together with related results). The linear programming approach is discussed in
a separate chapter.

2.1. Counting in two different ways

We have already seen this method in the proof of Claim 2 of Sperner’s theorem.
It can be illustrated with a bipartite graph, which is a graph G = (V, E) whose
vertex set V' can be partitioned into two sets 4 and B suchthat [eNA4| = |eNB| =1
for all e € E. The method of counting in two different ways is then given by the

trivial equality
|E|=) dw) =) d).
vEA veB

But the problem is the construction of the “right” vertex set ¥ = 4 U B and of
the “right” edge set E. Edges in a bipartite graph can be written also as pairs of
vertices. If we say in the following proofs that we count the number of pairs with
“...” in two different ways, then the set A (domain of the first coordinate), the
set B (domain of the second coordinate), and the edge set E (all pairs with the
corresponding property) are implicitly given. For the sake of brevity the graph will
not be presented (and drawn) explicitly.

2nd Proof of Theorem 1.1.1(a). Let S, be, as usual, the set of all permutations
of [n]. We count the number N of pairs (X, ) where X € F,mr € S,, X =
{m(1), ..., w(|X])}, in two different ways. For fixed X € F, a corresponding

16
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permutation must map {1, . .., | X|} bijectively onto X and {| X|+1, ..., n} bijec-
tively onto [n] — X. Thus we find | X|!(n — | X])! such permutations (this is also
true for X = @), and it follows that

N = Z | XN (n — | X)) (2.1
XeF

However, for fixed m we find at most one corresponding X € F because of the
inclusion condition. Thus

N< Y 1=n 2
TES,
From (2.1) and (2.2) we obtain (after division by n!)
1
XeF (le)

It is trivial to verify that the binomial coefficients are rank unimodal and rank
symmetric; that is,

(g)5(';)5"'5<L:;J)=(rg1)2"'2( i1)3(:)'

Thus (2.3) implies

1 n
— <1, ie, |FI=< ( n )
);r () L7

This proof is due to Lubell [357]. The inequality (2.3) was also found (in a
different way) by Yamamoto [471], and Meshalkin [364], and therefore inequality
(2.3) is known as the LYM-inequality. Generalizations to other posets are discussed
in Section 4.5.

Note that each permutation 7 € S, corresponds in a bijective way to a maximal
chainC = @< (D)} < {7w(1), 7))} < -+ < {x(1),7(Q),...,nw(n)}) in the
Boolean lattice (realized on 2["]). Thus, in another interpretation, we counted the
number of pairs (X, C) with X € F, C a maximal chain, X € C, in two different
ways. In (2.2) we had only an inequality because there might exist maximal chains
C that do not contain any member of F. Now we change the situation in order
to meet every chain exactly once. Let D be an ideal in 2["], and U/ := 2["] — D,
Clearly, U is a filter. Moreover, let

ED,U)={Y,X):YeD, Xel,Y < X}.

In the Hasse diagram of the Boolean lattice, this set is the set of arcs that leave D
and enter I{.
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Lemma 2.1.1. If @ € D and [n] € U, then

1Y\ — | X])! = n!. 2.4)
(Y, X)eE(D,U)

Proof. We count the number of pairs ((Y, X), C) with (Y, X) € E(D,U),C a
maximal chain, Y, X € C, in two different ways. As before, we obtain that for
fixed (Y, X) € E(D, U) there exist exactly |Y|!(n — | X|)! such chains. But since
each maximal chain C starts in D and ends in I/ and since D is an ideal, C must
leave D in a unique element Y and enter I/ in the next element X. Thus, for fixed
C, there exists exactly one corresponding (Y, X) € E(D, U). ]

The following identity was found by Ahlswede and Zhang [18], and can be
considered a sharpening of the LYM-inequality.

Theorem 2.1.1 (AZ-identity). Let F be a family of nonempty subsets of [n]. Let
w : 2" — N be the weight function defined by

w(X) = | ﬂ A|, where X C [n]
AeF:ACX

(here the intersection is defined to be empty if there is no A € F with A C X).
Then
w(X)

XC[n] le(l:\l’l)

=1.

Proof. Let U be the filter generated by F, and let D := 2["] — /. Then we may
apply Lemma 2.1.1 to obtain (2.4). For fixed X, let N(X') be the number of pairs
(Y, X) € E(D,U). It is easy to see that

if XeD,
fxe X: X—{x}eD}] ifXel.

Clearly, X € D iff there isno 4 € F with 4 C X.
For X € Y and x € X, we have X — {x} € Diff x € 4 for all 4 € F with
A C X, thatis, iff x € N4ex.4c xA. Consequently,

NX) =

w(X) = N(X) forall X C [n]. @.5)
From (2.4) and (2.5) we obtain
> NXOUXI = D — |X]) = nl,

XC[n]
w(X)

= 1. m
XC[n] |X|(|:IY|)
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Note that the LYM-inequality follows indeed from Theorem 2.1.1 since for a
Sperner family F and a member X of F clearly w(X) = | X].

In the preceding investigations we worked with a set of arcs in the Hasse diagram
that intersect (the arcs of) each maximal chain. Deletion of the set E (D, /) means
that we “cut” every maximal chain. Instead of arcs we may consider also vertices.
We say that a family C of subsets of [n] is a cutset if each maximal chain meets C.
For instance, {#} and {[n]} are cutsets that are, in addition, minimum and, of course,
minimal. Since we will study cutsets in more detail in Section 4.2, we consider
here also one result for cutsets, though in the proof the method of counting in two
different ways is not really used. Answering a question of Lih (see also [342]),
Fiiredi, Griggs, and Kleitman [210] discovered that there exist “large” minimal
cutsets. Let c(n) be the maximum size of a minimal cutset in 2["].

Theorem 2.1.2. We have

c(n)~2"asn — o0.

Proof. First we will show that we may restrict ourselves to “special” values of n.

. c(n) _cn+1)
Claim 1. We have ETH = ot

Proof of Claim 1. Let C be a minimal cutset in 2[") of size ¢(n). Then clearly
@, [n] ¢ C. It is easy to verify that C U {C U {n + 1} : C € C} is a minimal cutset
in 27+11 Thus c(n + 1) > 2¢(n), which yields the assertion. ]

for all n.

By Claim 1, it is sufficient to find a sequence ny with ny — 0o as k — 0o such
that
c(ng)
27k
Let us fix some & € N and let » := ak where a is some natural number that we

will specify later. Let U7_, S; be a partition of [1] into classes of size k and let

>1—-o0(l)ask — oo. 2.6)

C:={CC[n]:0<|SNC| < kfor all i}
U{C C[n]:IS5NC|=0,|S;NC| =k for some i and j}.
Claim 2. The family C is a cutset.
Proof of Claim 2. Let (3 = Xp < X| < --- < X, = [n]) be any maximal
chain and define ¢ as the largest integer such that X; is still disjoint from some ;.

Then X, intersects all S;. If X;; does not contain any S;, then it belongs to the
first part of C; otherwise X; belongs to the second part of C. o

Let
Co:={Ccn]:0<]|SNC| < kforall i}
N{Cc[n]:1SNC|=1,|5NC|=k— 1 forsomei and j}.
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Claim 3. For any C € Cp, the family C — {C} is not a cutset.

Proof of Claim 3. Let C € Cp where |5 NC| = 1,|S» NC| = k — 1.
Consider any chain of the form (--+ < C — §;x < C < CU §jx < ---). Assume
that this chain contains a member X with X € C — {C}. For brevity we assume that
X < C (the case X > C can be treated analogously). Obviously, | X N S;x| = 0;
thus X could only belong to the second part of C. But [S; N X| = k would imply
|S; N C| = k, a contradiction to C € Co. O

By deleting certain members of C step by step, we obtain finally a minimal
cutset C;. By Claim 3, C; 2 Cp; that is (using inclusion-exclusion),

cn) > |Col = @K —2)3 —2(2% —k —2)* + 2% — 2k — 2)°

a a n 2 ‘4 k ‘4
> 2k —2)2 — 20k -k =2 ((1-57) —2<1—2—k) )

k
With a := [2—'7"ng we obtain for the second factor

) %/5210
(-%)

Thus, for ny := [ﬂgﬂj k, the inequality (2.6) holds. n

=1-o0(1)ask — oo.

ko) i\ & logk+0(D)
()
2k

In fact, Fiiredi, Griggs, and Kleitman [210] strengthened the lower bound (using
some random construction, for a similar result see Theorem 2.6.2) to

(logn)3/?
Y m

Let us return to the LYM-inequality and generalize it in another direction.

c(n) > 2" (1 -

), where y is some constant.

Theorem 2.1.3 (Bollobds [71]). Let {(X1, Y1), ..., (Xm, Ym)} be a family of
pairs of subsets of [n] such thatforall1 <i, j <m, X;NY; =@ iff i = j. Then

>
e =1
— (|X'|I,\i:-l|y'l)

Proof. We count in two different ways the number N of pairs (i, 7r), where
i € [m], m € S, with the following property:

Forallk,l € [n], w(k) e X;,w(l) € Y; imply k <. 2.7

Let i be fixed. We may classify corresponding permutations by those sets Z; that
are mapped onto X; U Y;. Clearly, we have (| XiI:—IYi I) possibilities to choose Z;. If
Z; is fixed, then (because of property (2.7)) the first | X;| elements of Z; must be
mapped onto X; (i.e., | X;|! possibilities), the rest of Z; must be mapped onto Y;
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(i.e., |Y;|! possibilities), and [r] — Z; must be mapped onto [n] — (X; U Y;) (i.e.,
(n — (| Xi| + 1Y:1))! possibilities). Thus,

= n!

N = Z (lX,I + 17 )|X,~|!|Y,~|!(n — Xl = 1Y)t = ; Ty 2.8)
Now let 77 be fixed. Assume that there are two different numbers i, j corresponding
to 7. Since, by supposition, X;NY; # @, we find some 4 € [n]such thatn (k) € X;
and 7t (h) € Y;. But then in view of property (2.7), w (k) € X; implies k < h, and
nm(l) € Y; implies h < I. Consequently, X; N Y; = @, a contradiction. Thus

N < Z 1 =n (2.9)
nEeS,
The assertion follows from (2.8) and (2.9). [ ]

Let us emphasize that the LYM-inequality is a special case of Theorem 2.1.3.
Indeed, let F = {X}, ..., X},} be a Spemer family of subsets of [n]. Then it is
easy to verify that {(X], X)), ..., (X, Xn)} satisfies the conditions of Theorem
2.1.3. Consequently,

XeF (|X| i

m
~ |X.|+|X.
Bollobds’s theorem was published (as a lemma in a slightly modified version)
one year before Lubell’s proof of Sperner’s theorem. As for the LYM-inequality,
Ahlswede and Zhang [18] lifted the inequality in Theorem 2.1.3 to an identity, and
Ahlswede and Cai [4] gave a further generalization. We omit the details. Instead, we
consider another generalization. Earlier we worked with ordered partitions (X, X)
of [n] into two classes. Now we look at ordered partitions (X, ..., Xj) of [#] into
k classes where empty classes are allowed. We speak of ordered k-partitions of
[n]. Two such partitions (X1, ..., Xk), (Y1, ..., Yi) are called inclusion-unrelated
(resp. cross-unrelated) if there is no i € [k] such that X; C Y; or ¥; C X; (resp.
if there are i, j, h,lsuchthati < j, h > 1, XiNY; #0, Xy N Y, # 0).

Theorem 2.1.4. Let ((X},...,X}),...,(X",..., X{")} be a family of ordered
k-partitions of [n] that are pairwise inclusion-unrelated or cross-unrelated. Then

Z <1

i=1 |X’ |x' )~
Proof. The proof is analogous to the proof of Theorem 2.1.3. We only replace
condition (2.7) by the following condition:

= {w(), ..., 7(UX{D}, X] = (w1 X[ |+ 1)y, w (X[ + XD, .
X=X+ +1X_ 4+ D, rm).
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Then it is easy to see that for fixed i there are exactly | X, l’ (1. ¢ ,; |! corresponding
permutations, and for fixed 7 there is at most one i. This yields

m . .
31X X<
i=1

and finally the assertion. [ |

It is an easy exercise to verify that ( a " ak) with a; + --- 4+ ax = n attains
its maximum if all numbers a; are “almost” equal. Since the ordered k-partitions
(X1, ..., Xg) of [n] with | X;| = [%J, j =1,...,k, are pairwise inclusion-
unrelated as well as pairwise cross-unrelated, there follows a corollary.

Corollary 2.1.1. The maximum size of a family of pairwise inclusion- or cross-

.....

L...,k

In the case of pairwise inclusion-unrelated ordered k-partitions Corollary 2.1.1
(resp. Theorem 2.1.4) is due to Meshalkin [364] (resp. Bollobds [74]). For cross-
unrelated ordered k-partitions, the results were obtained (in a slightly different
notation) by Bandt, Burosch, and Drews [37].

Of course, one may assume also other conditions on the ordered (resp. un-
ordered) k-partitions of [n]. For example, motivated by the study of independent
random variables, Rényi [397, p. 16] called two unordered k-partitions { X1, ...,
X}, Y1, ..., Y} of [n] qualitatively independent if X; NY; # @ forall 1 < i,
Jj < k (more generally, also k£ must not be constant). The determination of the max-
imum size of a family of k-partitions which are pairwise qualitatively independent
is very difficult. Only for £ = 2 is an exact answer known (see the Profile-Polytope
Theorem 3.3.1 and the third remark after it). For £ > 3, only asymptotic bounds
and estimates are known (see Poljak and Tuza [383], and Gargano, K&rner, and
Vaccaro [216, 217]). As an example we study the following condition: Two or-
dered 3-partitions (X, X2, X3), (Y1, Y2, ¥3) of [n] are called KS-independent if
XiNYs, XoNY3, YN Xz YoN Xy # @. Let KS(n) be the maximum size of
a family of pairwise KS-independent ordered 3-partitions of [#]. The following
result is due to K&rner and Simonyi [314]:

S

Theorem 2.1.5. We have lim,_, o 2/KS(n) = 1

NI

Proof. First we show the inequality “<.” Let F be a family of size KS(n).
We classify the members (X, X2, X3) of F with respect to the cardinalities of
|X1| and |X2|. Since these cardinalities belong to {0, ..., n} (more exactly to
{1,...,n —1}), (| X1l, | X2|) can take on only (n + 1)2 different pairs of values.
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Thus there are numbers a, b, and a subfamily ) of F such that | X|| = a and
| X2| = b for all (X, X», X3) € F; and

KS(n)
iz e

The families of pairs (X}, X3) and (X3, X3), where (X1, X2, X3) € Fj, satisfy
the conditions of Theorem 2.1.3; thus

Al < (a+(n—(a+b)))=<n—b)’ @.11)

(2.10)

a a

b+(n—(a+b)\ (n—a
|~7:l|5( b )_( b ) (2.12)

Let H(A) := —AlogA — (1 —A)log(1 — 1), 0 < A < 1. In Section 2.6 (Corollary

2.6.2) we will prove that
(;) < eMH kI, 2.13)

From (2.11)—(2.13) we obtain (with ¢ := % B = 'Q’)

%logl]ﬁl < min{(l —a)H (I—f—a>,(l—ﬂ)H (If’_—ﬂ>]
l -« B 1-8 o
2 H(l—a)+ 2 H(l—ﬂ)'

Since H (1) is concave (see, e.g., the proof of Claim 1 in Theorem 2.6.6), we derive
from Jensen’s inequality (with y := E_-Zté)

(2.14)

IA

1
= log | Fil s(l—y)H(—” )
n 11—y

Straightforward computations show that the RHS attains in (0, 1) its maximum at
y = % — ‘—l/_g, and for this value we obtain (noting (2.10))

1+4/5
2 :)

1
;1‘10g|]:l| < log

I < 1+2‘/§.

VES) < YV +1)21+f

Now we prove the inequality “>."" We construct a family whose size is large
enough. Let F(n) be the family of all ordered 3-partitions (X1, X2, X3) of [n]
(empty classes are allowed) with the property

1¢ Xo,n¢ X1andi € Xy iffi +1 € Xy, i=1,...,n—1.
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It is easy to verify that
IFD| = LIF@)=2,[F(n+ D] =I|F@n - DI+ [F®)I.

Consequently |F(n)| equals the (n + 1)th Fibonacci number, implying

i, Y =

As before, we may argue that there are numbers a, b and a subfamily F)(n) of
F(n) suchthat | X|| = a and | X3| = bforall (X}, X2, X3) € Fi(n) and |F|(n)| >
%, which implies lim, oo %/F1(n) = 1"'2—‘/5 Finally we classify the members
(X1, X2, X3) € Fi(n) with respect to the sum of the elements of X;. Clearly, the
sum can take on at most "—(";J different values. Thus there exist a number ¢ and
a subfamily J(n) of Fi(n) such that 3, y, i = c for all members (X1, X2, X3)

of Fa(n) and | Fa(m)| = 2@ which implies limy o0 ¥/75(n) = 575 Now
it is sufficient to show that the members of F,(n) are pairwise KS-independent.
Let (X1, X3, X3), (Y1, Y2, Y3) be different members of F,(n). We have to show
that X) N Y3 # @ and X, N Y3 # @. To show the first relation, let j be the
smallest integer from [n] such that j ¢ (X1 N Y;) U (X2 N Y) U (X3 N Y3).
Then j ¢ X> U Y3, since otherwise j could be replaced by j — 1. If j € X,
then j € Y3, and X| N Y3 # O follows. Thus let j € X3 and j € Y. Let

X1 = {uy,...,ug}, where u; < --- < ug,and ¥y = {vy, ..., vy}, where v; <
- < Ug—] < Vg = j < --- < v, for some k. By the choice of j, we have u; =
Ul, ..., Uk—] = Vk—1, j = Ux < uj, and by construction of F;(n), ZLI up =

37 vi. Thus there must exist a smallest integer / such that v; > u,. Then it is
easy to verify that u; € Y3, hence also in this case X| N Y3 # @. The relation
X2 NY3 # O can be proved in the same way by looking at the correspond-
ing largest integers from [n] (note that also the sum of all elements in X3 is
constant for all (X, X2, X3) € F»(n) because of the construction of F(n)). ®

Gargano, Kérer, and Vaccaro [216]-[218] studied more general problems of
the following kind: Let G = (¥, E) be a directed graph. What is the maximum size
of a family of n-tuples of vertices of G such that for all (vy, ..., vy), (wi,...,
wy) € F there are i, j € [n] such that v;w; € E and wjv; € E (resp. for all
(1, ..., V), (Wi, ..., wp) € F, and for all e € E there are i, j € [n] such that
e =Vjw; = wjvj).

Now we study a class of families that is as important as the Sperner families. In
the Boolean lattice the family F of subsets of [n] is intersecting if forall X, Y € F
itholds XNY # @. In the case of cutsets we have seen that minimal families may
have very different sizes. For maximal intersecting families, Erdss, Ko, and Rado
[170] observed that we have a completely different situation:

Theorem 2.1.6. Each maximal intersecting family in 21" has size 2"~ 1.
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Proof. Let F be a maximal intersecting family in 2["). We count in two different
ways the number N of pairs (X, (4, 4)) with X € F, 4 C [n], X € {4, A}. On
the one hand, for fixed X, there exist exactly two “second components,” namely
(X, X) and (X, X). Thus

N =2|F]. (2.15)

On the other hand, for fixed (4, A4) there exists at mostone X € F with X € {4, Z}
(note that 4, A cannot both belong to F because of A N A = @). Since we have
2" pairs (A4, A) it follows that

N <2". (2.16)

From (2.15) and (2.16) we derived |F| < 2"~!. Assume that we have strict in-
equality. Then there must exist some A such that 4, 4 ¢ F. Since F is maximal,
we cannot add 4 and 4 to F. Thus there must exist some X, Y € F such that
XNA=0,YNA =0 Butthen X C 4,Y C A4;thatis, XNY = @, a
contradiction. [ |

Now we restrict ourselves to one level. The following result is a classical one.
Erdés, Ko, and Rado [170] discovered it as early as in the thirties (see Erdds [169]).
More than twenty years later it was published.

Theorem 2.1.7 (Erdés—Ko—-Rado Theorem). Let F be a k-uniform intersecting
family in 21"). Then

(o) k<3,

®) otherwise,

|Fl <
and the bound is the best possible.

Proof. In order to see that the bound cannot be improved take

xe®):1exy ifk<i,

([Z]) otherwise.
Now we prove that the bound is true. The case k > 7 is trivial. Thus let k < 3.
In contrast to the second proof of Sperner’s theorem, we are working this time not
with the set S, of all permutations of [n], but only with the set C, of all cyclic
permutations of [n]. Recall that a permutation ¢ of [n] is cyclic if n is the smallest
integer with £” (1) = 1. We count the number N of pairs (X, {),where X € F, ¢ €
Cy, and there is some i € [n] with X = {¢/(1), ¢/*1(1), ..., "tF=1(1)} in two
different ways. For fixed X, we must determine the number of cyclic permutations
in which the elements of X (i.e., also the elements of [n] — X) appear consecutively.
We obtain k!(n — k)! such permutations since we may permute the elements of X
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and of [n] — X independently, and each such ordering on X and [n] — X yields a
unique cyclic permutation. Consequently,

N = |Flk!(n - k). 2.17)

Next we have to estimate the number d(¢) of members X of F for which there is
some i € [n] such that X = {¢'(1), ..., i TF= 1))

Claim. If k < 5 thend({) < k.

Proof of Claim. Supposing that d(£) > 0, we may — after a suitable renumber-
ing — assume that ¢ is the cycle (12...n), that is, (i) = i + 1(modn) and,
moreover, that X* :={1,...,k} € F.Thend@) ={ie[n]: {i,i+1,...,i+
k — 1} € F} (the addition is always modulo n). Let

E={jelkl:{j,j—-1,....j—k+1} e F.

IfX={i,i+1,...,i+k—1} e F,then wemusthavei € Sori +k—1€ F
since X mustintersect X *. Note that for X* wehave 1 € Saswellas1+k—1 € E.
Thus

di) <|SI+|El-1. (2.18)

Further, because of the intersection property of F and k < 7, j € E implies
j+1¢S.Thus

IS <k—(E|I-1) (2.19)
(we cannot exclude k + 1). Together with (2.18) we obtain the assertion d(¢) < k.
m}
Since there are exactly (n — 1)! cyclic permutations, it follows from the claim
that
N <k@ -1 (2.20)
Finally, from (2.17) and (2.20) we derive

|Flkt(n — k)! < k(n —1)!,
n—1
17l < (k_ 1).

The method of proof is due to Katona [295] and known as Katona’s circle
method. It is fundamental for a whole theory that is presented in Chapter 3. The
situation is more difficult if one replaces the condition XNY # @by [ XNY| > 1,
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where ¢ is some natural number. This case of z-intersecting families is treated in
Sections 2.4, 2.5, 6.4, and 6.5.

Let F be a family in 2["). We say that a subfamily F| of F is a star if there is
some i € [n] such thati € X forall X € Fy. Let Ty := () u--- U (%)). From
Theorems 2.1.6 and 2.1.7, it easily follows that the maximum size of an intersecting
family in Z; equals Y% _| (',’:11) ifk < % ork = n (by the way, this result is also true
for the remaining values of k, which follows from the Profile-Polytope Theorem
3.3.1). Obviously, the size of each maximal star in Z also equals 3"F_, (*~/).

Thus we have seen that a special case of the following conjecture of Chvital
[101] is true: Let Z be any ideal in 21”1, Then the maximum size of an intersecting
family in Z equals the maximum size of a star in Z. For more information on this
conjecture, we refer to Anderson [32], Berge [50], and Snevily [432]. Frankl [192]
also mentions this and many other interesting problems.

Let u be a positive integer. We say that a family F of subsets of [n] is u-wise
intersecting (tresp. j-wise cointersecting ) if, for all X1, ..., X, € F, there holds
Xin---NX, # @ (resp. X1U---U X, # [n]).Itis easy to see that the maximum
size of a u-wise intersecting (u-wise cointersecting) family is 2"~! if u > 2. The
restriction to one level gives the following generalization of the Erd6s—Ko—Rado
Theorem, our 2.1.7, which was proved by Frankl [187] and in a different way by
Gronau [247].

Theorem 2.1.8. Let F be a k-uniform family in 21"} and let u > 2.
(a) If F is u-wise intersecting, then

n—1 . p—1

o) fk<Ern,

|F| < 8

® otherwise.

(b) If F is u-wise cointersecting, then
("7 k=,

)] otherwise.

|Fl <
Both bounds are the best possible.

Proof. First observe that (a) and (b) are equivalent since F is u-wise intersecting
iff F (the complementary family) is p-wise cointersecting. Thus it remains to
prove (b). The bound cannot be improved since

Xe®):1¢x) ifk>

() ifk <2
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is u-wise cointersecting. Further we follow the proof of Theorem 2.1.7. We have to
replace 5 by £ and (with the same notations) we then have to prove the following
new claim:

Claim. If k£ > ﬁ thend(¢) <n —k.

Proof of Claim. Suppose again that { = (12...n) and X* = {1, ..., k}. Let
this time

S:={ien]:{i,i+1,...,i+k—-1} e F},

that is,
) =Sl (2.21)
Note that 1 € S. We partition [n] into & sets S, . . ., Sk, namely, the residue classes
modulo k. We show that
IS; N S| <|Sj| — 1forall j € [k]. (2.22)

Assume the contrary, that is, S; = S N S; for some j € [k]. Then (with addition
modulo n) the sets X} := {j,j+1,...,.j+k—-1}, Xo :={(j+k, ....J +
2k —1},..., X, :={j+ (@— Dk, ..., j+ ak — 1} would belong to F, where
Jj+(@—1k <n, j+ak—1 > n.From the first inequality we derivea — 1 < %,
thatis,a < u.If ak > n, then Uj_, X; = [n] in contradiction to the fact that F is
u-wise cointersecting. But if ak < n thena < u, hence a + 1 < u and we have
Uj_,; X1 U X* = [n], which is again a contradiction. From (2.21) and (2.22) we
obtain

k k
d@) =) 1SN <) (Sl-D=n—k

J=1 J=1
0

The rest of the proof is analogous to the proof of Theorem 2.1.7. n

If both conditions are combined we have the following result [162], which is a
refined version of a result of Gronau [248] (based on a method of Frankl [188]).

Theorem 2.1.9. Let F be a k-uniform u-wise intersecting and v-wise cointer-
secting family in 2"}, and let 1, v > 4. Then
() gr<rten
Fl<i @D st +1<k<&l@m-,

%) k> &l -
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The proof is omitted, but note that the first and third case follows from The-
orem 2.1.8 and that in the second case an exchange operation is applied that is
discussed in Section 2.3. For example, for 4 = v = 3 a complete solution is not
known.

2.2. Partitions into symmetric chains

The following fact can be considered as a special case of the method of counting
in two different ways. Suppose we are given a set .S and look for the maximum
size of a subset F of S satisfying a certain condition. To obtain an upper bound
we partition S in an appropriate way into subsets Sy, ..., S such that a “good”
upper bound for | F N S;|, j € [k], can be proved. If, for example, | F N §j| < a;
for all j, then |F| < }::f:, a; follows. Actually, we applied this method already
in the proof of Theorem 2.1.8. Here we show that Sperner’s theorem can also be
proved in this way.

3rd Proof of Theorem 1.1.1(a). Take the set S to be 2], and the classes S; will
be chains of the form C = (Xp < --- < Xj) such that | Xp| + | Xp| = n. These
chains are called symmetric.

Claim. There exists a partition of 2"} into symmetric chains.

Proof of Claim. We proceed by induction on n and look only at the step n —
n + 1. So let €(n) be a symmetric chain partition of 21, For each chain C =
(Xo < --- < Xj) € €(n), we construct new chains

C=WXy< - <Xp<XUln+1)), (2.23)
C"=XUn+1l}< - < Xp_1Un+1)), (2.24)

but C” must be omitted (it does not exist) if # = 0. Now it is easy to verify that
all these new chains form a partition €(n + 1) of 2["*!) into symmetric chains
(distinguish the cases where members X of 2{"+!] contain (resp. do not contain)
n+1). O

Since each symmetric chain in 2"} contains exactly one member X e 2[!
with | X| = |5], each symmetric chain partition €(n) of 20" contains exactly
(Lg J) chains. If F is a Sperner family in 2/, then |F N C| < 1 for each chain.

Accordingly,
Fl<s ¥ 1FnC= ( " )
Cee&(n) 171

This proof is due to de Bruijn, Tengbergen, and Kruyswijk [87] (who considered,
more generally, chain products) and, independently, to Hansel [252]. Since there
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are many generalizations and related results, a separate chapter (Chapter 5) is
devoted to this topic. Griggs [241] collected many interesting problems. Here only
two applications will be presented. Let ¢(n) be the number of order-preserving
maps from B, into By, that is, the number of functions f : 2("] — {0, 1} such that
X C Yimplies f(X) < f(Y)forall X, Y e 2["). If we interpret f : 2" — {0, 1}
as the characteristic function of a family F, then obviously f is order preserving iff
F is a filter. Since there is a bijection between filters and antichains (associate with
a filter the set of its minimal elements), our number ¢ (n) also equals the number
of filters and the number of Sperner families in 2("]. The problem of determining
@(n) goes back to Dedekind [127] and is very difficult. The following bounds are
due to Hansel [252].

an (L%J)'

Theorem 2.2.1. Foralln > 1,2 <pn)<3

Proof. The lower bound is trivial since every subset of (nglj) is a Sperner family.

To prove the upper bound, let €(n) be the symmetric chain partition of 2["] which
was constructed inductively in the third proof of Theorem 1.1.1(a).

Claim. For each chain C of €(n) and three consecutive members X, < X, <
Xa+1 of C, there is some f(a such that X,_| < 5(0 < X,41 and X’a is contained
in a chain D of €(n) with |D| = |C| — 2.

Proof of Claim. We proceed by induction on » and study the stepn — n + 1.

Case 1. The three members X,_1, X;, X;+1 belong to the chain C’ of type
(2.23). If n + 1 ¢ X,41, then the three members belong to the chain C of €(n),
and we can find by the induction hypothesis a corresponding chain D € €(n) with
the corresponding member i’a which also belongs to the chain D' € €(n + 1).
Since |D| = |C| — 2,also |D'| = |C'| —2.Ifn + 1 € X441, then X; = X}, and
we can take X, 1= Xj_; U {n + 1}. The corresponding chain is C".

Case 2. The three members X,_1, X,, X,41 belong to a chain C” of type
(2.24). Then Y; :== X; —{n+ 1}, j=a—1,a,a + 1, belong to C € &€(n), and
we find, by induction, a corresponding chain D € €(n) with the corresponding
member ?a. Because Y, cannot be the maximal element of C, the member ?a
is not the maximal element of D (otherwise we would have |D| < |C| — 2).
Thus /AYa = ?a U {n + 1} belongs to D", and 5(0 is the desired element since
|ID"|=|D|-1=|C|-3=|C"|—2. O

We order the members of €(n) by increasing size; thatis, €(n) = {C;: 1 < j <
d}and |Cy| < --- < |Cy|, where d := (ng). We construct (in a nondeterministic
way) step by step all filters 7 in 21! by deciding whether the members of C;, j =
1,...,d, should belong to F or not. For the chains of size at most two, we have
at most three choices, namely, taking no, the maximal, or both members into F.
Suppose that we are done with all chains before C = (Xp < -+ < Xj) and
we have fixed some part of a filter F. Let Xi,..., Xy_1 be the corresponding
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members described in the claim. Of them we know already whether they belong to
F ornot. Let/ (resp. u) be the largest (resp. smallest) index such that X 1 & F (resp.
X’,, € F) (if there is no such index put / := O (resp. u := h)). Clearly, u — [ < 1.
In order to obtain a filter, we need that Xy, ..., X;—1 ¢ F and X,+1,..., Xp €
Fsince X< - < Xj_1 < X’;andﬁ’,, < Xy+1 < -+ < Xp. Thus we have at
most three choices to extend the fixed part of 7. Thisis clearif/ > u. If [+ 1 = u
at most X; and X, are free, but if X; € F, then certainly X,, € F. Thus, all in all,

we have at most 3(L%J) possibilities for constructing all filters. [

From this theorem it follows that

(L:.;J)log2 <logep(n) < (L',;)log&

Kleitman [301] found the asymptotic formula

logp(n) ~ ( )10g2 asn — 00,

n
15]
considering not only one fixed symmetric chain partition but all such partitions
that arise by permuting the elements of [n], and using complicated averaging argu-
ments. An improvement of the remainder was given by Kleitman and Markowsky
[308], and an asymptotic formula for ¢(n) itself was finally found by Korshunov
[317] in a very complicated way. A simplification (in a more general form) was
given by Sapozhenko [413]. More details on the history of this and related problems
are contained in the survey of Korshunov [319].

Theorem 2.2.2 (Korshunov Theorem). We have for n — oo in the case of even
resp. odd n
n n n2 n
2@ G0 (G ),
pn) ~

n n 1 2 n 1 2
(nz1)+1 (ﬂ)(—2<n+3)/2—_6’2:+ _-———gn’-’l—3)+(ﬂ"—l)( (n+n/2+2:_+4)
272 e 2 72

Let us conclude this section by a game. Suppose there is given a filter  in 2["]
(resp. an order-preserving map from B, into Bj), but only a stage manager (our
oracle), say Heidrun, knows it. Someone, say Sebastian, wants to get to know JF.
He may pick, step by step, members of 2["], and Heidrun will tell him whether they
belong to F or not. The clever Sebastian will certainly not test all elements of 21,
For example, if @ € F, then automatically F = 2l et ¥ (F) be the smallest
number of Heidrun answers that enable (using the right sequence of Sebastian
questions) the determination of F. Finally let

V¥ (n) := max{y (F) : Fis a filter in 2("1}.
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The number v (n) is sometimes called the Shannon complexity of the problem of
the recognition of monotone Boolean functions. It was studied the first time by
Korobkov and Reznik [316]. The following result is again due to Hansel [252],
who improved an earlier estimation of Korobkov [315].

Theorem 2.2.3. We have ¥ (n) = (ln_'E'_.J) + (Ln_iz_.J).

Proof. “>" Let F* := {X C [n] : |X]| = [”—“Z,L—'J}. Obviously, for all X C
[n] with | X| = L%J, also F* — {X} is a filter, and, for all X C [n] with
| X| = L% |, F*U {X} is a filter. Thus, knowing the Heidrun answers for all
Y € 21"l — {X}, where X € (L,E'll. J) U ( [ ) Sebastian cannot determine the
filter uniquely. Consequently, he _r?l-ust ask l?—ldrun about all these X.

“<.” Sebastian asks Heidrun, step by step, about the members of the chains
C; of the symmetric chain partition considered in the proof of Theorem 2.2.1.
From this proof it follows that at most two elements of C are “suspicious” if he
already inspected all chains ahead of C. Thus, for chains of more than one element,
two answers suffice. For one-element chains, Sebastian needs of course only one
%J‘esuon It is easy to see that there are (L % J) - (L,,_'z_'_l J) one-element chains.

us

n n n n
v(n) < (L%_IJ) - (L%D +2((L%J) - (L—;—J) (l” 'J))
= (1) * (1)
RN Lzt

Sokolov [434] found another algorithm that achieves this bound. Alekseev [25]
provided estimations for the recognition of order-preserving maps from S(ki, .. .,
k,) into {0, 1} (in special cases, such as k| = --- = k, = 2, he has exact val-
ues) and Gronau [244] slightly generalized the above proof to the recognition of
order-preserving maps from B, into {0, . . ., k}. Moreover, independently, Serzhan-
tov [424] and I [151] each found exact values for the case of order-preserving
maps from S(ky, ..., k) into SKk) if ky = ko, k3 = k4, ..., kzj_1 = ko for

some j < 5 and k; < 2 forall 2j < i < n, where still some further gen-

eralization, for example, with results of Mahnke [359] can be formulated. Fi-
nally, Serzhantov [425] solved completely the case of order-preserving maps
from S(k, ..., k) into {0, 1}. Applications and similar problems appear in the
maximization of submodular functions on discrete structures; see, for example,
Kovalév and Moshchenski [323]; and in many other areas, see the survey of
Sapir [411].



2.3 Exchange operations and compression 33

2.3. Exchange operations and compression

In the first proof of the Sperner Theorem 1.1.1 we selected a subfamily G of
a Sperner family F and constructed a new family H (namely H := V(G) or,
though not explicitly mentioned, H := A(G)) such that 7' := (F — G) U H is
still a Sperner family. Moreover, we had H N F = @, so that |F| and |F’| are
related in the same way as |G| and |H|. In other words, we exchanged the Sperner
family by a new Sperner family, or we pushed (shifted) the old family upward (resp.
downward). The general idea of exchanging something works in many cases. Here,
we study that operation which was introduced by Erdés, Ko, and Rado [170]. Let
for i, j € [n] the mapping <;; : 2" — 2["] be defined by

(X)) = (X = {jh Ui},
and, as usual, for a family F C 207 1t
<Gj(F) :=={<;(X): X e F}.
We will apply this operator only to a part of F, namely to
Fij={XeF:i¢X, je Xand «;;(X) ¢ F}.

Finally, the i j-shifting of the family F is defined by

$ij(F) == (F = Fij) U <ij(Fij).
Hence F;; and <;j(F;;) play the role of G and H from above. Note that by definition
| Fijl = 1< (Fij)| and <;;(Fi;) N F = @ implying

Isij (F)I = |F|.

Lemma 2.3.1. Leti, j € [n],i # j, and let F be intersecting (resp. cointersect-
ing). Then s;;(F) is intersecting (resp. cointersecting), too.

Proof. We prove the assertion only for intersecting families. Thus let X, Y €
sijf(F). If X,Y € F — F;j, then XNY # @ by supposition, and if X,Y €
<ij(Fij), theni € X NY. Thus it remains to study the case X € F — F;;,Y =
<ij(Z) for some Z € Fij.
Casel.i € X. Theni e XNY.
Case2.i ¢ X.
Case 2.1. j ¢ X. Then XNY = X N Z # @ by supposition.
Case 2.2. j € X. Then <;;(X) € F because otherwise X € F;;. Since F is
intersecting, there is some / € <;;(X') N Z where obviously ! ¢ {i, j}. But then
alsole XNY. |
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Lemma 2.3.2. Leti, j € [n],i # j, and let F be k-uniform. Then

Alsij(F)) S s5ij(AF)).

Proof. Let X € 5;;(F) and Y € A(X). We must show that Y € s;;(A(F)). Let
X=YU{},Y=X-{}.
Case 1. X € F — F;;. Then clearly Y € A(F). We will show that

Y ¢ (A(F))ij. (2.25)

which implies that ¥ € s;;(A(F)).

Case 1.1./ = j. Then j ¢ Y, which shows (2.25).

Case 1.2./ =i.

Case 1.2.1. j € Y. Then «;;(Y) = X — {j} € A(X) S A(F). Thus
(2.25) holds.
Case 1.2.2. j ¢ Y. Then (2.25) is trivial.

Case 1.3./ ¢ {i, j}. We may suppose that i ¢ Y, j € Y because otherwise
(2.25) is clear. But then also i ¢ X, j € X. Since X ¢ F;;, we have <;;(X) € F.
But then also <;;(Y) € A(F), which shows (2.25).

Case 2. X = <;j(Z) forsome Z € F;;. Then j ¢ X; thatis, ] # j.

Case 2.1./ = i. Then Y = Z — {j}; thatis, Y € A(Z) € A(F). Since
Jj ¢ Y,itfollows that Y ¢ (A(F));; and consequently ¥ € s;;(A(F)).

Case2.2./ #i.ThenY = <;;(Z — {I}) and Z — {I} € A(F).

Case2.2.1.Y € A(F).ThenY € s5;;(A(F)) since clearly <;;(Z —{I}) ¢
(A(F))ij.

Case 2.2.2. Y ¢ A(F). Then (Z — {I}) € (A(F))ij, which shows that
Y = <;(Z —{1}) € si(A(F)). ]

Now several results can be proved by applying induction and considering fam-
ilies that are invariant with respect to certain i j-shiftings. For F C 2["], let

DF) =) Y i

XeFieX

2nd proof of Theorem 2.1.7. The only difficult part is the upper bound in the case
k< % For n = 2k, the proof is trivial since from each pair (X, X) with | X| = k
at most one component may belong to a k-uniform intersecting family F; that is,
|Fl < %(Zkk) = (zkk__’]'). Now we proceed by induction on 7 and consider the step
n — n+ 1 > 2k. Of all maximum k-uniform intersecting families, we choose
such a family F for which ¥ (F') is minimum. Then

Sine1(F)=Fforalli <n+1 (2.26)
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since otherwise, in view of Lemma 2.3.1, F could be replaced by s; +1(F ) for
some i. Let

Fr={XeF:n+1¢ X},
Fr={XeF:n+1leX} Fy={X—{n+1}: X € F)}.

By the induction hypothesis (note that 7| < 2"1),

n—1
Fil < . 2.27
|F1l < (k _ 1) (2.27)
Claim. F, is intersecting.

Proof of Claim. Assume that there are X, X, € F; such that X| N X, = @.
Since | X |+|X2| = 2(k—1) < n—2, there are different numbers i, i, € [n] such
thati; ¢ Xy,ip ¢ Xo.LetY .= X1 U{n+ 1}, Y2 =X U{n+1},Z; := X1 U
{i1}, Z2 := XoU{i2}. Then Y, Y2 € Fand Z| = <j; n+1(Y1), Z2 = <y n+1(Y2).
Wehave Z|, Z, € F inview of (2.26). Butobviously Z;NZ, = @, acontradiction.

O
The induction hypothesis applied to F, yields
n—1
Pl = | < . 2.28
|72l |f2|_<k_2) (2.28)
By (2.27) and (2.28),
n—1 n—1 n
F=mms (i) +(000)= (")
||

From (1.3) in the proof of Theorem 1.1.1 it follows that

n—1
v©)| > IG]—,
V(@) = IGII+1
if G is an /-uniform family. Analogously,
A(F)| > _
[AF)] = l'rln—k+1

if F is a k-uniform family. Now we ask for a better lower bound for the size of the
shadow if the size of F is fixed. First we prove a result of Lovdasz [354] which is a
weaker version of the Kruskal-Katona Theorem, 2.3.6, but often easier to handle.
Denote for real x and natural £,

1 if k=0,
(x) — i(x—hkgﬂ ifk >0,

0 ifk <0.
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Theorem 2.3.1. Let F be a k-uniform family in 21"} and let | F| = (i), k<x<n.

Then
x
IAF)| = (k_ 1).

Proof. We proceed by induction on the parameter ¢t := k + |F|. Note that we
suppose |F| = 1. If t = 1 we have k = 0, |[F| = 1, and all is trivial. Consider
hence at the step t — ¢t + 1 = k + |F|. Obviously, we may suppose k > O.
Under all k-uniform | F|-element families with minimum shadow we choose such
a family for which Z(F) is minimum. It is enough to prove the assertion for this
family. We have

s1,i(F)=Fforalli € {2,...,n} (2.29)

since otherwise, in view of Lemma 2.3.2, F could be replaced by s, ; (F ) for some
i. Let, similar to the previous proof,

Fir={XeF:1¢ X},
Fr={XeF:1le X}, Fp:={X—{l}: X e R}

Claim. We have A(F)) C F;.
Proof of Claim. Let Y € A(F)); thatis, X := Y U {l/} € F| for some ] €
{2,...,n}. Since, by (2.29), <1,;(X) = Y U {1} € F, it follows that Y € F.
]

Since F # @ we have, in view of the claim, F; # @.
Case 1. || < (;7}). Then || < (}) = |F]; thatis, Fi # 0.

Case 1.1. k < x < k + 1. Then |F}| < k. But |A(F1)| > k, since one
member of F already produces a k-element shadow. Thus the claim yields the
contradiction | 75| > k.

Casel.2.k+1 < x.Wehave | F|| = |F|—|F2| = (})—(Z}) = (*; ). Since
1 < |Fi| < || we may apply the induction hypothesis to obtain | A (F})| > (521,
and again the claim yields the contradiction | 5| > (;_}).

Case 2. |F}| > (;_|). By the induction hypothesis, |A(F})| > (;;). Hence

, , x —1 x =1\ x
IA(-7:)|=|A(~7“-2)|+|-7:2|2(k_2)+(k_l)—(k_l)‘
| |

The preceding proof is due to Frankl [191]. Let us look at some consequences.
Repeated application of Theorem 2.3.1 gives the following estimation:
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Corollary 2.3.1. Let F be a k-uniform family in 2"V with |F| = (}), where
k<x<n LetO<i<k Then

1ALi(F)| = (’f)

Daykin [121] observed that the Erd6s—Ko-Rado Theorem 2.1.7 can be easily
derived from this corollary. Indeed, if & < 7 and F is a k-uniform intersecting
family, then obviously F N A_x(F) = @. The assumption |F| > (Z:ll) (e,
|F| > (2;)) would yield in view of Corollary 2.3.1 (withx > n — 1,k := n —k,

i:=k)
n - | F A (_,7-'—) n—1 n—1 _(n
(3) =171+ 18 |>(k—l)+( =0

But in our approach this is only an apparent simplification of the (original) second
proof of Theorem 2.1.7, since we needed the exchange operation also to prove
Theorem 2.3.1.

Corollary 2.3.2. Let F be a nonempty k-uniform family in 21"), n > 3.

(@) Ifk > 5 + 1then |A(F)| - |F| =
(®) Ifk <5 —1then |V(F)| - |F| =

LS E N ST

Proof. (a)Letk > 4 + 1 and | F| = (), where k < x < n. By Theorem 2.3.1

1
|AGF)] - |F| = (ki 1) - (7‘) = z(/{f_ 1)(2/:- 1—x) =t f(x).

The polynomial f(x) of degree k has the k simple roots 0, 1, ...,k — 2,2k — 1.
Then f(x) obviously has in each interval between these roots a simple root. This
shows that f(x) is in [k — 2, 2k — 1] increasing up to some value § and then
decreasing. Consequently, for £ < x < n (note thatn < 2k — 2),

Sx) =z min{f(k), fQk-2)} =k—-12>

NS

(b) Letk < 5 — 1. Then by (a)

V) = |1F = |AF)| - |F| =

S

Corollary 2.3.3. Let F be a Sperner family in 2"}, | := min{i : there is some
X € F with | X| =i}, u := max{i : there is some X € F with | X| = i}).
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(@) If1 <5 < uthen
(LZJ) - (—“_—21—)—'1 ifn is even,
2
|F| <
(L%'J)—(”_IT_])" ifn is odd.
(b)
(L31=D .
(LEJ) = ifu<3,
|F| <
(=" n .
(3)——F— =%

Proof. The cases n = 1, 2 are trivial, hence let n > 3. The proof is analogous to
the proof of Theorem 1.1.1. If we replace F by F’ := (F — G) U V(G), where
G:=Fn ([';]) (resp. F' := (F — G) U A(G) where G := F N ([::])), then we
obtain a Sperner family for which by Corollary 2.3.2

n
> "
|.7-'|__|.7-'|+2.

An induction argument concludes the proof. |

Let us again play a game. This time suppose that there is given an ideal Z in
2["]_ Only our amiable stage manager Heidrun knows it. Jana is more modest than
Sebastian. She does not want to get to know Z completely; she is only interested
in an element of Z of maximum rank. The rules are the same as in Section 2.2. Let
X (Z) be the smallest number of Heidrun answers which enable the determination
of an element of Z of maximum rank. Then

X (n) := max{x(Z) : Z is a nonempty ideal in 2[”]}

is the Shannon complexity of our problem. The following result is due to Ka-
terinochkina [287]:

Theorem 2.3.2. We have x(n) = (Lg J) + 1.

Proof. Letm := |5 ].

“>”LetI*:={X C [n]:|X| < m}. Obviously, for all X € ([”]) I*U Xis
an ideal; moreover, Z * ("E"] ) is an ideal. Thus Jana must ask Heidrun about all
elements of ([,'r',]) and about at least one element of ( m[_l) in order to be sure.

“<. Jana proceeds as follows. She chooses an arbitrary member X,, of ([,',',]). If
Heidrun says that X;,, ¢ Z, she takes an element X,,_| of A(X,); if the answer for
Xn—11is Xm—1 ¢ I, she takes an element X,,_» of A(X,,_1), and so on. Since we
suppose that Z # @ (which is not really essential), Jana eventually chooses some
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Xi—1 € A(X)) for which Heidrun says: X;—y € Z (I > 1). Put ¥, := X|_;.
Now Jana inspects step by step the members of ([',']) different from X;. Say, for
the members of the family ¥;, Heidrun’s answers were X ¢ Z, but ¥; is the first
element of (['1']) for which Jana hears ¥; € 7. Then Jana inspects the members of
(l[—:]l) that are not in the upper shadow of F; U { X;} (they cannot be in Z — here the
ideal property is used). Let ;1 be the family of those X for which the answer is
X ¢ T and let Y;4 be the first member with the answer Y;4; € Z. Further Jana
inspects members of (,[J'r']z) that are not in the upper shadow of F; U {X;} U F14
(they cannot be in 7)) and so on. This procedure leads to families 77, Fj41, ..., and
sets Y;_1, Y7, Y141, . ... Let us say that the procedure stops in the level ([Z]), that
is, either Jana found some Y,, € 7 but the (4 + 1)-shadow of F; U {X;}U---UF,
is the complete level (u[j'r]l) or, though Jana inspected some family F;,, she could
not find an element Y,, € Z. Obviously, Y, (resp. Y,—) is the desired element of

7 of maximum rank. It is easy to see that
Fi=FU{X}UFU---UF,U{Y,}

is a Sperner family (X; and Y,, may not exist). The number of Heidrun answers is
equal to | F| 4+ (m —I) + (u — I) + 1, and this number is not greater than (,':l) +1
by Corollary 2.3.3 if n > 4 (in the case that already X,, € Z, thatis,/ — 1 = m,
one may delete the summand m — I, and in the case n odd,/ = m,u = m + 1 one
may apply Theorem 1.1.1(b)). The cases n < 3 can be easily settled separately.

| ]

Note that the problem of finding an element of an ideal with maximum rank
occurs, for example, if one looks for solutions of the integer programming problem

Ax < b,
X € B,,

1"x —> max

where 4 and b contain nonnegative numbers only, B, is realized as the set of n-
dimensional 0,1-vectors, and 17 = (1, ..., 1). Katerinochkina [288] generalized
her result to chain products S(%, .. ., k), and Kuzyurin [330] found an asymptotic
formula for powers P” of a finite poset P.

Now we look for the “best” lower bound for the shadow size. Instead of solving
this problem directly, we study a more general problem. Let G = (V, E) be an
undirected graph and 4 € V. The boundary B(A) of A is defined to be the set of
vertices not in A that are adjacent to vertices in 4; that is,

B(A) :={veV — A: thereis some w € 4 with vw € E}.

Moreover, let E;,(A) and E,,; (A4) be the set of inner edges (resp. of outer edges);
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that is,
Ein(4) :={e€ E:e C A},
Eyui(A) :={ec E:len Al =1}.
Note that
Zd(v) = 2|Ein(A)| + | Eout (4)]. (2.30)
ved

Now the following problems are of interest (applications will be discussed later):
Given G = (V, E) and a natural number m, find
min {|Eyy:(A)|: A CV,|A| =m} edge-isoperimetric problem (EIP),
min {| B(4)| : A CV,|A| =m} vertex-isoperimetric problem (VIP),
max{|Ein(4)|: ACV,|4A| =m} maximum-edge problem (MEP).

If the graph G is regular, then in view of (2.30) the EIP and the MEP are
equivalent. In general, these problems are difficult from an algorithmic point of
view (NP-complete [215]). However, there is a whole theory for the solution of
these problems for several classes of graphs and we recommend the surveys (resp.
papers) of Aslanyan [34], Bezrukov [57, 58], and Ahlswede and Cai [5] as well
as the forthcoming book of Harper and Chavez [261]. We will restrict ourselves
to one special case, namely to the Hasse graph of the Boolean lattice B, (which
is regular of degree n). Let N be a finite set of natural numbers. On 2V we define
two new linear orders: For X, Y C N, X # 7, let

X=<nY iff max(X-Y) <max(Y — X),

X <pipY iff |X| <|Y|or(X|=|Y|andY <,; X)
(here we define max(Z) := max{i : i € Z} and set max (@) := 0). The (reflexive)
order <, is called the reverse lexicographic order (if we write the sets as 0,1-words,
the most important letter is the last one). The two orders are illustrated in Figure
2.1 for By. LetCyi(m, 2V) (resp. Cyip(m, 27V)) be the families of the first m subsets
of N with respect to <,/ (resp. <y;p) (we omit in the following the indices 7/ (resp.

1234 1234

1234—13 234
12<=T3+23< 14+ 2434
1<=2+ 34

0

order =<,; order =yip

Figure 2.1
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vip) if we mean both cases or if the case is clear from the context). The family
C(m,2V) is called compressed and the operation of exchanging an m-element
family F by C(m, 2V) is called compression. Similarly, we define C(m, (’,g )) and
L(m, (’,Y )) . where 1 <m < (”,Y l), to be the set of the first (resp. last) m elements
of (’,g ), here only with respect to <,;. Families of the form L(m, (’,Y ) are called
L-compressed. If Y%} () <m < ¥ (), and ! :==m — f.:é (7). then
obviously,

Coip(m,2Vy = £, (}) UIX S N : |X| <k}, 2.31)

B(Cuipm,2V)) = ((}) — ca, ) uvcd, (). (2.32)

Lemma 2.3.3. Foranym, 1 <m <2V, there exists some m' such that

Coip(m, 2V) U B(Cyip(m, 2V)) = Cyip(m’, 2V).

Proof. In view of (2.31) and (2.32) it is enough to show that (with the notations
from above) V(L(, (’,Y ))) is L-compressed. We suppose N = [n] and proceed by
induction on n. Look at the stepn — 1 — n. Let F := L(l, (I,f )) and let

Fir={XeF:n¢ X}
F={XeF:neX} Fy={X—{n}: X € R}

Case 1. 7| = §. Then V(F) = (Y U {n} : Y € V'(F})}, where V' means
that we consider the upper shadow in 2["~11 Since F is £-compressed, F, is also
L-compressed in ([Z:]”). By the induction hypothesis, V'(F}) is L-compressed in
(t" ), and consequently also V(F) is £-compressed in (k[ill)

Case 2. F| # (. Then F contains all members of ([Z]) that contain n. It follows
that V(F) = VI(FPD U {X € (k[fr]l) : n € X). Since F is L-compressed, F)
is also E-compress[ed l1]n ([";”). The induction hypothesis implies that V'(F}) is

e

L-compressed in ( (o ) and consequently V(F) is £-compressed in (,‘[_"F]l) n

The solutions of the MEP (i.e., also of the EIP) and of the VIP are given by
the following theorem, which is mainly due to Harper [254, 255] (the optimality
of the ordering for the MEP was conjectured by Hales [254], and the MEP was
also solved by Bernstein [51] and Hart [263]; the VIP was independently settled
by Ahlswede, Gics, and K6mer [11], Wang and Wang [459], and Gavrilov and
Sapozhenko [220, Ch. I]).
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Theorem 2.3.3. Let N be a finite set of natural numbers, V := 2N and E :=
(XY : X,Y CN,|X—Y|+|Y — X| = 1}. Further let 1 < m < 2N\, Then, for
any m-element family F in 2V,

@ |Ein(F)| < |Ein(Cri(m,2V))],

(b) |B(F)| = |B(Coip(m,2V))].

Geometrically, part (b) can be interpreted as follows: For given “discrete volume”
(i.e., size), the minimum boundary is attained at an incomplete sphere.

Proof. We prove (a) and (b) simultaneously and proceed by inductiononn := |N|.
The cases n = 1, 2 are trivial, so we consider the stepn — 1 — n > 3. Obviously,
we may suppose that N = [n]. For X C [n], let o(X) be the position of X in the
linear order <; that is, X is the o(X)th element in <. Further let, for F C 2["],

o(F) := Z o(X).

XeF

Of all m-element families that have the maximum number of inner edges (resp.
minimum) boundary, we choose a family F for which o(F) is minimum. It is
enough to show that F = C(m, 21y Fori € [n], let

FiG) = {XeF:i¢X)
Fali) ={XeF:ieX), Fi)={(X-{i): XeFl))

Moreover, let m (i) := |F1()|, m2@) = |F20)|(= |]-'£(i)|). Note that F =
Fi1@)UFr@), m =m (i) + my(i) for each i.
Claim. We have, for every i,

Fi() = Clmy (i), 211
and
Fyi) = Clma(i), 21,
Proof of Claim. For brevity, we set
Gi(@i) = C(m, (i), 2"=11),
Gy(i) = Clma(), 2"y, Gy(i) == {XU{i}: X € G5(D)}.

Finally let G := G (i) U G2 (i). We will show that the objective functions for G are
at least as good as for F. Since obviously 0(G) < o(F), the choice of F leads to
the result 7 = G, which is our assertion. Here we study both parts of the theorem
separately. The notations E/, and B’ mean that they are considered in 2711/},
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(a) We have
|Ein(F)| = |E},(F1G)| + | Ej, (FR()| + |F1 () N F ()]
< |E,(Gi))| + |E[, (G ()| +1G1() N G,())| = |Ein(G)]
(for the first two summands apply the induction hypothesis, and for the third
summand note that | F; (i) n]-'é(t)l < min{m (i), m2@()} = |G, () N Qé(i)l since
both parts of the last intersection are related by inclusion).

(b) Let, without loss of generality (w.l.o.g.), m;(i) < m(i); thatis, G|(i) C
G, (i). Because of Lemma 2.3.3, G (i) U B'(G1(1)) and G (i) are related by inclu-
sion.

Case 1. G, (i) U B'(G1(i)) € G,(i). Then

|BG)| = 1G5()] — 161 ()] + |B'(G3())]

(the elements of G} (i) that are not in G (i) are in the boundary of G, | B/ (G5 ()]
counts the members of the boundary of G that arise from G> (i) and contain i).
However,

|B(F)| = |F,0)] = 1F1()] + |B'(FR0)],

and the induction hypothesis gives | B(F )| > |B(G)|.
Case 2. G| (i) U B'(G1(i)) 2 G,(i). Then

|BG)| = |B'(Gi1()| + | B (G, ().
Clearly, however,
|B(F)| = |B' (F1()| + | B (FR()l,

and again the induction hypothesis yields | B(F )| = |B(G)|. a

From this claim we derive that
XeF,Y<X,Y#XimplyY ¢ F (2.33)

since, if ¥ # X, there is an i ¢ XUYoraje XNY (Fi1(@i) (resp. fé(j))
are compressed). Now we assume that F # C(m, 2N). Then there must be a set
A C [n] with 4 ¢ F for which the next set E (with respect to <) belongs to F.
In view of (2.33), E = 4, and no further set X with 4 < X can belong to F.
Moreover, every set X except A with X < E belongs to F. It is easy to see that a
set 4 for which the next set is its complement is uniquely determined, namely

{1,...,n—1} for <,,

A {1,...,54 if n is odd,

for =<uip .
{1,....,5—=1,n} ifniseven
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Without difficulties we may verify that for the family G := (F — {E}) U {4} we
have, respectively,

|Ein(©)| = |Eim(F)| — 141 —1> |En(F)l,
-1
|BG)| = |B(F)| - ["TJ < |B(F)I.

This is a contradiction to the choice of F. n

As we have seen, the sets
S 1= C(m, 2Ny
are solutions of the EIP and MEP (resp. VIP). Obviously (we used this fact already),
SHo S8 S C S

We say that there is a nested structure of solutions (NSS) (which need not exist for
other graphs). The existence of an NSS of the EIP for a graph G = (¥, E) enables
the solution of an optimal numbering problem: Let |V | = n. We wish to minimize

ag():= ) ll(w) —1(v)|
vweE

over all bijective mappings / : V' — [n].

Theorem 2.3.4. Let Sy C --- C S, be an NSS for the EIP of G = (V, E), and let
v; be the (unique) element of S; — S;_1,i = 1, ..., n. Define the bijective mapping
*:V > [nlbyl*(v;) :=i,i=1,...,n. Then

ag(I*) < ag () for all bijective mappings ! : V — [n].

Proof. Let!/ : ¥ — [n] be bijective. We orient the edges of G such that /(et) >
l(e™). This leads to a directed graph G = (V, E).Let T; ;== {v e V : I(v) < i}.
We have

ag) =Y 1) —1(e)

ecE
n—1
=2, 2 1= 3 1
ecE i:l(em)<i<l(et) i=1 ecE:l(e~)<i<l(e*)

n—1 —1

= |Eout (T3)| = ZlEOllt(Sl)l =ag(*).

1 i=1
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Theorems 2.3.3 and 2.3.4 have the following application in coding theory: We
want to encode the integers O, ..., 2" — 1 by binary 0-1-vectors; that is, we look
for a bijective mapping 2! «— {0, ...,2" —1}.

We suppose that during the transmission at most one digit may be received
falsely, with the result that after the decoding a false integer is obtained. Our goal is
that the difference to the right integer be small. More exactly, we want to minimize
the expected value of the difference under an equidistribution assumption. It is
easy to see that this expected value is ag(/) times a constant (we have here / :
271 5 {0, ..., 2" — 1} instead of / : 2[") — [2"], but this does not influence the
solution). Theorems 2.3.3 and 2.3.4 show that, interestingly, the binary expansion
of an integer is an optimal encoding (more exactly, Theorem 2.3.3 leads to the
binary expansion, which must be read from the right to the left, but it does not
matter to reverse all vectors). In [52] Bernstein, Hopcroft, and Steiglitz also admit
other sets of integers to be encoded.

In addition to the NSS we have in the case of the VIP for the Hasse graph of
the Boolean lattice in view of Lemma 2.3.3 an additional property:

for all i there is some j such that S; U B(S;) = ;.

We speak of the strong nested structure of solutions (SNSS). Now we wish to
minimize
bg(l) := max [l(w) —I(v)|
vweE

over all bijective mappings/ : V' — [n].

Theorem 2.3.5. Let Sy C --- C S, be an SNSS for the VIP of G = (V, E) and
let I* be defined as in Theorem 2.3.4. Then

b (I*) < bg () for all bijective mappings 1 : V — [n].

Proof. Let!/: V — [n] bebijectiveand T; :={v eV :I(v) <i},i=1,...,n.
Let B(T;) # @. Since for all w € B(T}), clearly /(w) > i, there must exist some
w € B(T;) withl(w) > i +|B(T;)|. By definition of the boundary, w is adjacent to
some v € T;. We have l(w) —I(v) > i +|B(T;)| —i = | B(T;)| and thus (including
also the cases B(T;) = 0)

b () = max{|B(T})|,i =1,...,n} >max{|B(S})|,i =1,...,n}). (2.34)

Furthermore, let vw be an edge with |I*(w) — I*(v)| = bg(I*), where w.l.o.g.,
I*(v) < I*(w). Leti := [*(v). Then v € S;, w € B(S;). By the SNSS there is
some j such that S; U B(S;) = S;. Consequently, /*(w) < j =i +|B(S;)|, which
implies (noting (2.34))

b (I*) = I*(w) —I*(v) < |B(S)| < max{|B(S)|,i =1,...,n} < bg().
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With a graph and a numbering / of its vertices we may associate its adjacency
matrix 4, which is defined by

1 ifvw € E, where I(v) =i, l(w) = J,
“ 0 otherwise.

Now the (horizontal and vertical) distance of the entry a;; to the main diagonal is
li — j|. The bandwidth problem, which is related to the efficiency of numerical
algorithms, consists of finding such a numbering for which the maximum distance
of a nonzero entry to the main diagonal is minimal. Thus Theorems 2.3.3 and 2.3.5
yield a solution of the bandwidth problem in the case of the Hasse graph of the
Boolean lattice.

Theorems 2.3.4 and 2.3.5 are also due to Harper [254, 255], whose main goal
was the solution of the optimal numbering problems that led to Theorem 2.3.3.
As noticed by Bjorner [64] (see also [253, 336]), the following classical result
was formulated (also in its numerical version, see Corollary 2.3.4) the first time
by Schiitzenberger [422] (he used (i, i + 1)-shiftings, but this need not result in
a compressed family). Independently Kruskal [325], Harper (though not explic-
itly mentioned in [255]), Katona [292], and Clements and Lindstrém [117] (see
Theorem 8.1.1) found the following theorem.

Theorem 2.3.6 (Kruskal-Katona Theorem). Let F C (1)), | F| = m. Then
@ V) = VL, ()1,

®) 1AEF)| = |ACm, (F))1.
Proof. (a) Let

Fi1 = FU{X:|X| <k},

Fr = Lm, () U(X:|X] <k).
Then, by (2.32) and Theorem 2.3.3(b),

wmn=wmm+m—c

»2W@M+m—c

»=wwmﬂwm
(b) Note that X <,; Y iff Y <,; X. Thus, by (a),

IAF)| = V)| = VL, (")) = 1aCm, ().
n

Other proofs of this theorem were given by Hansel [253], Daykin [121], Eckhoff
and Wegner [141], Hilton [267], and Frankl [191]. Moérs [374] and Fiiredi and
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Griggs [209] determined the values of m = |F| such that C(m, ([Z])) is up to
permutations of the elements the only family with minimum lower shadow.

We may calculate also the minimum size of the lower shadow of an m-element
k-uniform family numerically. If m = (7), then F = ([Z]) and |A(F)| = ("))
Soletl <m < (}). Let X* = {i1, ..., ix}, where 1 <ij <--- < it <n,be the
(m + 1)th element in ([Z]) with respect to <,;. Further, let ¢ be the smallest integer
for which i; — 1 > ¢. Obviously,

C(m, <[Z]>) = [Xg ([Z]) :max(X) < ik}
U {XU {ix}: X C (k[i]l)’ max(X) < ik_ll
U-~-U[XU{i,+1,...,ik}:X§ (['t']),
max(X) < i,], (2.35)

e () - e () o=

U [XU {ix} : X C (k[i]z), max(X) < ik_ll

U ...U{XU{it+1,~--’ik}:Xg (t[f]l)’

max(X) < i,}. (2.36)
Since on the RHS there are disjoint unions, we have
()] () (57 ()
(e D= (o) = (52 e ()
Thus, we found a representation of m, called k-representation of m, in the form

Ak k-1 a;
m=<k)+<k_l)+...+(t) wheren >ay > - >a, >t >1 (2.37)

(in fact we have for m < (Z) the relation n — 1 > a;, but we may include also
m = (})). The minimum size of the shadow of an m-element family in (%) is then

. ak Af—1 . az
() () e (%) am
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Lemma 2.3.4. The k-representation (2.37) of an integer m with 1 <m < (}) is
unique.

Proof. We use the following identity, which can be easily proved by induction:
For natural numbers u, v,

u u+1 u+v u+v+1
+ 44 = ) (2.39)
0 1 v v
Assume that there exists a second representation

m=(1;:)+'~+<bs) wheren > by > --- > by > s > 1.
s

It is easy to see that we may suppose, w.l.0.g., that there exists an integer / such
that ay = by, ..., ai+1 = bi+1,a; > b;. Then

men= ()4 (0)-(() ()
=(1)-() ()
()T -() ()=

a contradiction. [ ]

By the interpretation from which we derived the k-representation of m, it is
obvious that a; is the largest number for which (%) < m, a;_ is the largest
number for which () < m — (%), and so forth.

If t > 1, then (2.38) is the (k — 1)-representation of the minimum size of
the shadow, and we may compute the minimum-size m” of the shadow of the
minimum-sized shadow:

"._ Qay a;
m '_<k—-2)+ +(t—2)'

However, if t = 1, we first must find the (k — 1)-representation of m’. Let ! be the
smallest integer for which a;4| > a; + 1 (with ag4| := 00). Then, in view of the
identity (2.39),

r_f a +1
w= () (7))

which implies (again using (2.39))
n | Gk ar+1
'"‘Q—J* +@—J
— ak LR al ... a’
‘Q—J* +C—J+ +C—Q
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(with (%) := 0 if v < 0). Iterated application of the preceding arguments leads to
the following numerical version of the Kruskal-Katona Theorem:

Corollary 2.3.4. Let F be a k-uniform family in21"), and let | F| = (H+-+(
withn > ax > --+ > a; >t > 1 be the k-representation of the size of F. Then,

for0 <i <k,
ak a;
R >
IA.»,(f)I_<i)+ +(I+i_k),

and the bound is the best possible.

Looking back at (2.35) we see that we may stop the classification of C(m, ([Z]))
already at that stage where the containment of i;11, ..., ii is fixed (! > t). This
leads to

i — 1 ip1 — 1
m=<lkk )+...+<”;:—1 )+(7> where i — 1 <x < ij.

Now the same arguments as above combined with Theorem 2.3.1 (resp. Corollary
2.3.1) yield:

Corollary 2.3.5. Let F be a k-uniform family in 21", and let | F| = H+-+
(7)) + (]) wheren > ay > --- > ajy > x > L. Then, for 0 < i <k,

I+1
Qaj aj+1 X
A__). > .
| '(]:)I_(i)+ +(l+1+i—k>+<l+i—k)

We encourage the reader to prove this corollary (for i = k — 1) directly by the
proof method for Theorem 2.3.1. Katona [292] found the Kruskal-Katona Theorem
when solving a problem of Erdds:

Theorem 2.3.7. LetF = {X}, ..., Xy} be a k-uniform family in 210 <i <k,
and let

. k+i N k+i—2 N k+i—4 et k—i
TN\ k k-1 k-2 k—i)

If 0 < m < m* then there exist distinct sets Yy, ..., Yp in ([2]) suchthat Y; C X;
Jor all j. The bound is the best possible.

Proof. Because of Hall’s theorem (Theorem 5.1.2) we only must show that
|A i (F))| = |F'| for each subfamily F’ of F.

Since |F'| < |F| < m*, there exist an integer ! € {k — i, ..., k} and a real x with
| < x <2l + i — ksuch that

k+i k+i—-2 2042+i—k x
I—_ ..
=)+ () T+ 0)
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By Corollary 2.3.5,

k+i k+i—2 2A42+i—k x
. ! CREEY
IA_>.(f)|2< ; >+< i1 )+ +(l+1+i—k>+(1+i—k)‘

Note that (£) > () for 0 < u < v < x < u + v, which can be checked in a
straightforward manner. Hence

N / x - *
A (F) |f|2(1+i—k> <1)20‘

The bound is the best possible since the i-shadow of C(m* + 1, (1)) is obviously
smaller than m* + 1. |

Leck [333] studied the problem of minimizing the size of the i-shadow of
F=1{X1,...,Xn} C ([Z]) for m > m* under the supposition that there are sets
Yi,....Ym € ([';]) such that ¥; € X; for all ;.

2.4. Generating families

In the last decades several methods for proving theorems on families satisfying a
certain intersection condition have been worked out. We have seen some of them in
the previous sections. We will not discuss those methods that yield the maximum
size of the families under consideration if » is sufficiently large. We refer here only
to Frankl [189] and Schmerl [416] who built up a theory that is based on a theorem
of Erd6s—Rado [171]. The powerful method that is described in this section is very
new. It was developed by Ahlswede and Khachatrian [15]. Though it is much more
far-reaching, we will restrict ourselves to the highlight in extremal set theory: the
complete determination of the maximum size of k-uniform z-intersecting families
by Ahlswede and Khachatrian [15].

Let F C ([Z]). A family G € 20" is called a generating family for F if
Voik(G) = F. Let &(F) be the class of all generating families for F. Note
that F € &(F ). We will study generating families for special families. A family
F is called left (resp. right) shifted if

sij(F)=Fforalll <i < j<n(esp.foralll < j<i<n).

We may also define these families in an equivalent way as follows: On 2] we
consider the relation < which is the reflexive and transitive closure of the relation
Ul<icjenl(X,Y) 1 X = < (Y),i ¢ Y, j € Y}. Clearly, (2], <) is a poset, and
the following proposition is immediate:

Proposition 2.4.1. A family F is left (resp. right) shifted iff F is an ideal (resp.
filter) in 2", <).
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In Section 2.3 we defined for F C 2") the number £(F) := Y ycr 3 jexi-In
addition, we introduce for X € 2", F  2[7] the number

max(F ) := max max(X) = max max i.
XeF XeF ieX

Moreover, for F C ([Z]), let

ak(F) := min max(G).
GeB(F)

Thus, ak(F) denotes the smallest number i such that there is a family G < 20
which is generating for F.

Proposition 2.4.2. Let F C ([Z]) be left shifted. Then there is a left-shifted family
G that is generating for F such that max(G) = ak(F).

Proof. Under all families G € &(F ) with max(G) = ak(F ), take one of max-
imum size. This family G is left shifted. Assume the contrary. Then there are
X ¢G,Y € Gsuchthatforsomel <i < j <n, X =<;j(Y)wherei ¢ Y, je Y.
If we can show that V_,;(X) C F, we obtain the desired contradiction, since
then G U { X} is also generating for F (recall that G is of maximum size). So let
XcZe(").Ifj e ZthenY C Z, which implies Z € F since ¥ € G; that
is, Vy (Y) C F. If j ¢ Z,1et W := j;(Z). Itiseasy tosee thatY C W € F.
Because F is left shifted, it follows that Z = <;;(W) € F. [ ]

Since with each family G, also the (Sperner) family G* of minimal elements of
G is generating for F, we derive from Proposition 2.4.2:

Proposition 2.4.3. Let F C (%) be left shifted. Then there exists a Sperner family
G* that has the following properties:

(a) G* is generating for F,

(b) max(G*) = ak(F),

(¢) ifY =5 X and X € G* then there exists some Z € G* suchthat Z C Y.

We call a family G* that has the properties described in Proposition 2.4.3 an
Ahlswede—Khachatrian family (briefly AK-family) for F. For X € G*, let

[n]
k

V’_,k(X):z{Ye( ):XQY and Y — X C{max(X)+1,...,n}},

and, as usual, we define V/,;(G) := U yeg V., 1 (X).

Proposition 2.4.4. Let F < (%) be left shifted and G* an AK-family for F. Then
the sets V', (X ), where X € G*, partition the family F.
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Proof. Since G* is generating, V', , (X) C F for all X € G*. First we show
that all members of F are covered. Let Z € F. Since G* is generating, there
is some X € G* with Z € V_;(X). Under all such sets X we take one for
which | X| is minimal and, in second instance, {(Z — X) N {1,..., max(X)}|
is minimal. It is enough to show that this intersection is empty. Assume there
issomei € (Z— X)N{l,...,max(X)}. Note that i < max(X). LetY :=
<j,max(x)(X). Obviously, Z € V_,(¥Y) and |(Z — Y) N {1, ..., max(Y)}| is
smaller than the previous value for X. Moreover, Y € G* by Proposition 2.4.3(c)
and the minimality of | X|. Thus we obtain a contradiction to the choice of X. Now
we show that we have indeed a partition. Assume that there are different X, ¥ € G*
and some Z € ([Z]) such that Z € V’_)k(X) n V;k(Y). If max(X) = max(Y),
then clearly Z — X = Z — Y, which implies X = Y, a contradiction. If, for
example, max(X) < max(Y), then it is easy to see that X C Y, which is again a
contradiction since G* is a Sperner family. [ ]

Proposition 2.4.5. Let F < (U)) be left shifted and G* an AK-family for F.
Moreover, let H; := {X € G* : | X| = i and max(X) = ak(F )(= max(G*))}.
Let Oyy; be the family of those members from F that are generated only by H;;
that is,

Oy, = Vo (Hi) — Vi (G* — Hy).

Then
, — ak(F
on,.=vﬁk<H,~)and|0H,.|=|H,‘|(” oK )).

k—i

Proof. The second equality is an immediate consequence of the first one, which
we will prove now. Let Z € V', (H;), thatis, Z € V', ,(X) for some X € H;.
Assume that Z € V_,;(Y) forsome Y € G* —'H;. Then Z — Y D Z — X since
max(Y) < max(X) = max(G*). Consequently, ¥ C X, and since G* is a Sperner
family, Y = X, acontradiction. Thus Z € Oy;. Let, conversely, Z € Oy;,. Assume
that Z ¢ V', (H;). Then by Proposition 2.4.4, there is some Y € G* — 'H; such
that Z € V!, (), a contradiction. |

Now we specialize the investigations to maximum k-uniform ¢-intersecting
families. We may suppose throughout that n > 2k — ¢ since for n < 2k — ¢ every
k-uniform family is automatically z-intersecting. As a candidate for a maximum
family we have

n
So:={Xe€ ([ k]

Erdss, Ko, and Rado [170] have already shown that Sy is indeed a solution if » is

):[t]gX}.
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sufficiently large. But there are other candidates, namely the families

(n]
k
which are easily seen to be z-intersecting. Frankl [188] conjectured that for any

n the “best” of these families S, is the solution. So let us first determine the best
family S,.

S,:={X€( ):IXﬂ[t+2r]|zt+r}, r=0,...,k—t

Lemma 2.4.1. We have
- t+2r n—t—2r
Sr = 9
@ =2 ()55
t—1
b) |Sy| < (resp. =) |Sr+1] iffn < (resp. =) (k —t + 1) (2 + m)

Proof. (a) S, is the disjoint union of the sets (X € (¥)) : (X N[t +2r] =
t+r+i}l,i=0,...,r.
(b) It is easy to see that

S+1—-8 ={Xe <[Z]) XN +2r] =t +r—1,
{ft+2r+1,t+2r+2}C X},

[n]
k

{ft+2r+ 1Lt +2r+2}NnX =0}

S =S4 = {XG( ):IXﬂ[t+2r]|=t+r,

Thus |S,| < (resp. =) |Sy+1] is equivalent to the following relations:

ISr - Sr+l|
——— < (resp.=) 1,
|Sr+l - Srl P
(t+2r) (n—r—2r-—2)
t+r k—t—r _
(r+2r )(n—t—2r—2) < (resp.=) 1,
t+r—1)\ k—t—r—1
t—1
=) k—t+ D2+ —).
n < (resp.=) ( +)( +r+l>

In particular it follows forn > (k—¢+1)(¢ + 1) that |Sp| > |S1| > |S2] > . ...
Frankl [188] (for ¢+ > 15) and Wilson [470] (for any ¢) proved that Sp is indeed
a maximum k-uniform ¢-intersecting family if n > (k — ¢t + 1)(¢ + 1). We will
present Wilson’s algebraic approach in Section 6.4. Some further special cases of
Frankl’s conjecture were settled by Frankl [188] and Frankl and Fiiredi [196]. But
the complete solution is due to Ahlswede and Khachatrian [15]:
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Theorem 2.4.1 (Complete Intersection Theorem). Let1 <t <k <n, n >
2k —t. Letr € {0, ..., k — t} be that number for which

(k—t+l)<2+t———l)5n<(k—t+l)(2+t;1) (2.40)
r+1 r

(with the definition oo := 6 for all i € N). Then S, is a maximum k-uniform
t-intersecting family.

Before we prove this theorem we need some further preparations.

Lemma 2.4.2.
(@) Leti, j € [nl, i # j, and let F be k-uniform t-intersecting. Then s;;j(F) is
k-uniform t-intersecting, too.

(b) There exists a maximum k-uniform t-intersecting family that is left shifted.

Proof. (a) Generalize in an obvious way the proof of Lemma 2.3.1.
(b) Look at maximum families for which X (F ) is minimum. [ ]

Lemma 2.4.3. Let F be a left-shifted k-uniform t-intersecting family and let G*
be an AK-family for F. Let n > 2k — t. Then for all X\, X» € G*,

(@ [ XiNnXa| =1,

b) | XiNXz| = t+1iftherearei, j € [n]withi < j, i ¢ X1UX2, j € XiNX,.

Proof. (a) Assume that there are X, X; € G* with |X]; N X3| < ¢t — 1. For the
set A := [n] — (X U X3), we have

[l =n—[X1UXp| 22k— (-1 —|Xi1U Xz
=k—|Xi|+k—- X+ X1NX2| = (@ —1).

Thus we find in 4 two subsets Yy, Y, with |Y;| = k—|X;|,] = 1,2,and |1 NY;| <
(t — 1) — | X; N X3|. Since G* is generating for F, for/ = 1,2, Z; := X; U Y]
belongs to F. Obviously, |Z; N Z;| < t — 1, a contradiction.

(b) Assume that there are Xj, X3 € G*,i,j € [n] with [ Xi N Xz2| =1t, i <
LiegXiuX,je XijNnXp LetY; = <;j(X1). Then |Y; N X3| =t — 1, and by
property (c) of Proposition 2.4.3, there is some Z; € G* with Z; C Y, implying
|Z1 N X3| <t — 1. This contradicts (a). n

Now we formulate the main lemma:
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Lemma 2.4.4. Let F be a left-shifted maximum k-uniform t-intersecting family
andletn > 2k —t, t > 1. If for somer € {0, ...,k — ¢t}

L Gt D2t (=(k_t+1)(2+’—_1)), (2.41)
r+1

r+1
then

ak(F) < t+2r (2.42)

Proof. If n = 2k —t + 1, then by (2.41), r > k — ¢ + 1, and hence (2.42) trivially
holds. Thus let n > 2k — t + 2. Let G (we omit the asterisk) be an AK-family for
F (see Proposition 2.4.3). Assume that

max(G) =t + 2r + 8 for some § > 0. (2.43)
Let
G ={XeG:t+2r+é¢ X},
G ={XeG:t+2r+6€ X}, G i={X—{t+2r+68}: XeG).

Since G is a Sperner family, G| and G are disjoint.
Claim1.If X1, X, € glUgé and | X1NX2| < t,then X, X7 € gé, | X1NX2| =
t—1,|X|+ X2 =2t+2r+8—2and | Xj| > k—(n—t —2r —§),l=1,2.
Proof of Claim 1. By Lemma 2.4.3(a), | X; N X2| < ¢t canhold only if X7, X, €
Gy and (X1 U{t +2r +8) N (X2 U {t 4 2r 4 68)) =1¢, thatis, [X1 N Xp| =¢ — 1.
But Lemma 2.4.3(b) implies that there isnoi < ¢t +2r + § withi ¢ X1 U X,.
Thus

| X1 + | X2] = | X1 N Xo| + | X1 U Xy
=t—14+t4+2r4+8—-1=2t+4+2r+6—2.

If, for example, | X|| <k—(n—t —2r —8) — L, then | X2| =n—k+t—-1>k
(recall n > 2k — t). This is a contradiction since obviously | X2| < k — 1. O

Now we classify G, and g; with respect to the size of the elements (and use a
new letter):

Hi={XeG:|X|=i), H :={XeG):|X|=i—1)

(thus we make an exception from our general rules: The members of H; have size
i — 1, but note that they can be obtained from the members of H; by deleting the
element ¢ + 2r 4 §). Clearly we may restricti tot <i <t + 2r + 6.

If H, # @, then |G| = 1 since G is a Sperner family that is by Lemma 2.4.3(a)
t-intersecting. From Proposition 2.4.3(c) it follows that G = {[¢]}, in contradiction
to (2.43).
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If Hyporvs # 0, then Gy = {[t + 2r + 8]} = G because G is a Sperner family
and max(G) = t + 2r + 8. Since F has maximum size, necessarily § = 0, in
contradiction to (2.43).

Thus we may suppose that
G= U ® ad g= |J M.
t<i<t+2r+8 t<i<t+2r+8

If H; = @foralli > k—(n—t—2r—3§),thenby Claim 1, G| UG} is t-intersecting,
and thus also F' := V_,;(Gy U G)) is t-intersecting. Obviously, F C F’. By the
maximality of F we have 7 = F'. But G| U G is generating for ¥ = F’, and
max(G; UG)) < max(G) = ak(F), a contradiction to the definition of ak(F). If
‘H; = @ for all i, then G, = @; that is, max(G) < t + 2r + 68, a contradiction to
(2.43). Thus we may suppose that there is some i, such that

k—(n—t—-2r—68)<i<t+2r+8 and H; #0. (2.44)
Casel.i # %’” Let
G = GiU (G — (Hi UHar2r45-i)) UH],
G" == G1U (G2 — (Hi UHa42r4+6-i)) UHy 55
In view of Claim 1, G’ and G” are both ¢-intersecting. Thus also
F :=V,i(G) and F':=V_x(G")

are ¢-intersecting. The next claim yields the desired contradiction to the maximality
of | F|.

Claim 2. We have max{|F’|, |F"|} > |FI.

Proof of Claim 2. The family F — F’ contains exactly those sets that are
extensions only of the members of Hy;42,45—;. By Proposition 2.4.5,

n—t—2r—-94
k—2t—2r—6+i)
Next we estimate |F' — F|. Let X € H;. We have X U {r + 2r + 8} € G, hence
X ¢ G. Consequently, forall Y C {t+2r+8+1,...,n}with|Y| =k—i+1we
have XUY € F' — F (if wehad XUY € F, thenin view of max(G) = t +2r +8,

it could be generated only by aset Z € G with Z C X, but this is impossible since
G is a Sperner family). Moreover, we have obviously

F—F| = |Hz,+2,+s_,~|( (2.45)

XUY# X' UY' foral X, X' e H.,Y,Y e{t+2r+8+1,...,n}
with (X, Y) # (X', Y)).
Therefore

n—t—2r— 8) (2.46)

!
F' ~Fl 2 IH,I( i1
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In the same way we may derive

—t—2r -8
F-m =", @4

(2.48)

n—t—2r—24
|F" = F| = 'H2t+2r+8—i|( )

k—2t—-2r—8+i+1)

Now assume that our claim is false; that is, | ' — F| < |F —F’|and |F" - F| <
|F — F”|. In view of (2.45)—(2.48) it follows that

n—t—2r—-4 n—t—2r—2§
i —i , 2.4
|H1|< k—i+1 )5 |H2t+2r+8 ll(k—Zt—Zr—8+l') ( 9)

n—t—2r—2§ n—t—2r—4§
—i < |H; . 2.5
|H2t+2r+8 "(k—Zt—Zr—-8+i+1) = |H1'< k—i ) ( O)

Because of (2.44) we have Hy;y2,4+5-i # 0. Thus (2.49) and (2.50) imply
m+t—k—in—t—-2r—-8—-k+1i)
< Gk—i+D)k—=2t-2r-5+i+1).
But this is a contradiction since n > 2k — ¢t +2 implyingn+¢t —k—i > k—i+1
aswellasn —t —2r -8 —k+i>k—-2t -2r-6+i+1. a

Case2.i = 2+Z+8 Recallthatforall X e H'  ,,|X|=t+r+2—1and
2 t+r+4 2
XC[t+2r+8—1]. Let

Kj=(XeH, :j¢X) jel+2r+s—11

Counting the number of pairs (X, j) with X € 'H;+r+§, jelt+2r+6—-1], j¢ X
in two different ways we obtain ’

t4+2r+5—1 s
!
> K= |H+r+a|( 5)-
J=1

Consequently, there is some j such that

r+s
— I ¥ 2.51
rr ot o1 eyl @31

By Lemma 2.4.3(b), K is ¢-intersecting. In view of Claim 1

G = G~ Hpyep) UK

1Kl =

is z-intersecting; thus also

F

I

Vi (gl)
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is ¢-intersecting. The next claim also yields in this case the desired contradiction
to the maximality of |F|.

Claim 3. We have |F'| > |F|.

Proof of Claim 3. We partition F into the sets

Ly := V(G - Ht+r+%)’

Ly = Vok (M 8) = Vok(G =R,y 0),
and F' into the sets £ and

L3 = VoK) = Vs (G = H,ypy )
Our claim is equivalent to

[L3] > |L2]. (2.52)
By Proposition 2.4.5,

n—-t—2r—8)~ (2.53)

|£2| = |H;+r+%|(k_t_r_%

Similarly to the estimation of |F' — F| in Case 1 we lower estimate £3: For any
XeK;, X ¢G.Consequently, forallY C {t42r+436,...,n}with|Y|=k—i+1
we have XU Y € L3, and different pairs (X, Y) yield different sets X U Y. Thus
n—t—2r—456+ 1)

s (2.54)
k—t—r—§+1

[L3] = |’Cj|<

According to (2.51), (2.53), and (2.54) the following (equivalent) inequalities are
sufficient for (2.52):

r+3 n—t—-2r—68+1 n—t—2r—3§
—_— > ’
t+2r+6—-1 k—t—r—%+1 k—t—r—%
8 8
r+§ m—t—=-2r—-56+1) > k—t—r—§+1 C+2r+6-1),

Gk—-t+D@+2r+86-1)
n > 3 .
r+s

(2.55)

Since § is even (i is an integer) it follows that § > 2. Consequently (noting ¢ > 1)

t+2r+1>t+2r+3—1
r+1 - r+% '

(2.56)

From (2.41) and (2.56) we derive that (2.55) is true; hence also (2.52) and the
claim are proved. O
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Thus in both cases we obtained a contradiction. Hence our assumption § > 0
was false, and we have § < 0. [ ]

Lemma 2.4.5. Let F be any k-uniform t-intersecting family and F the comple-
mentary family. Let G and 'H be generating for F and F, respectively. Then, for
al X e G,Y € H,wehave | XUY|>n—k+1t.

Proof. Assume the contrary, that is,
| XUY|<n—k+t—1 forsomeXeG,YeH.

Chooseany Z D XUY with |Z| = n—k+t—1. Theinequalitiesn > 2k—t,¢ > 1
imply that n — k + ¢t — 1 > max{k, n — k}. Thus we find some X* € V_;(X)
and some Y* € V_,,_¢(Y) such that X* C Z and Y* C Z. Since G and H are
generating, we have X* € F and Y* € F, thatis, Y* € F. Now the inequality

IX*NY* = | X*UY* —|Y*<n—k+t—1l—-n—k=t—-1

contradicts the fact that F is ¢-intersecting. [ ]

After all we are able to prove the Complete Intersection Theorem:

Proof of Theorem 2.4.1. By Lemma 2.4.2(b) and Lemma 2.4.4 we find a maximum
k-uniform ¢-intersecting family F that is left shifted and a generating family G for
F such that

t+2r ifn>(k—t+l)(2+£_|—__i),
max(G) <
t+2r+2 if"=(k_t+1)(2+§_|__—i).

It is easy to see that the complementary family F is a right-shifted maximum
(n — k)-uniform (n — 2k + t)-intersecting family. If we replace in the members
of F every element i by n + 1 — i, then we obtain a maximum (n — k)-uniform
(n — 2k + t)-intersecting family F* that is left shifted. It is easy to verify that
under our suppositions the inequality (2.40) is equivalent to

n—2k+t—-1
k—t+1) (242270
( +)(+k—t—r+l)
_ _1
<n5(k—t+1)<2+f—2ﬁ’—) (2.57)
k—t—r

(also the case r = k — t is covered by our definition 0o := 6 fori € N). If we set
K:=n—kt :=n-2k+t,r :=k—t—r, then (2.57) reads:

t/

r/

t—1
(kl_t/+l)(2+r—’_ﬁ)<ns(k,—t,+l)<2+

1) . (2.58)
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By Lemma 2.4.4 we find a generating family G* for 7* such that
max(G*) <t +2r'.

Making again a replacement i — n + 1 — i, we obtain a generating family H for
Fsuchthatnoten +1 —t' —2r =t +2r + 1)

HC 2{1+2r+l ..... n).

Case 1. Both inequalities in (2.40) are strict. If | X| > ¢ + r for all X € G, then
clearly F = S,. Analogously, if |Y| > ¢ +r' =n—k —rforall Y € G* then
F* = Sp; thatis, | F| = |F*| = |Sy| = |S;| = |Sy|. Thus we may assume that
thereissome X € G with | X| <t+r—1landsomeY € Hwith|Y| <n—k—r—1.
But then | XU Y| <n — k + ¢t — 2, which is a contradiction to Lemma 2.4.5.

Case 2. The first inequality in (2.40) is an equality. If | X| > ¢ + r + 1 for all
X € G, then F = S,4|, which by Lemma 2.4.1 has the same size as S,. The
arguments of Case 1 explain here as well that we may assume that there is some
XeGwith X <t+randsome?Y € H with |Y| <n—k —r — 1. But then
|XUY| <n—k+1t—1,and we obtain again a contradiction to Lemma 2.4.5.

n

‘We mention that Ahlswede and Khachatrian [15] proved with some additional
effort that the sets S, (and in case of equal size also the sets S,41) are — up
to permutations of the elements — the only maximum k-uniform z-intersecting
familiesifn > 2k —t+2orn=2k—t+1landt > 2.

For the special case t = 2, n = 4m, k = 2m, we have obviously r = m — 1.
Thus [X - ([;:]) Sl XN2m] > m+ 1} is a maximum 2m-uniform 4m-
intersecting family. This was a famous conjecture of ErdSs, Ko, and Rado [170].
Some previous results concerning this conjecture were obtained by Calderblank
and Frankl [89].

A t-intersecting family F is called nontrivial if |Nxcx X| < t. By Theorem
24.1, in the case n < (k — ¢t + 1)(z + 1), there exist maximum k-uniform ¢-
intersecting families that are nontrivial. For the remaining cases, the following
family is also a candidate of a maximum nontrivial family:

={Xe ([Z]):[t]gX,Xﬂ t+1,..k+1) #0)
U {k+ 11— i} : i € [1]).

With the method of generating families Ahlswede and Khachatrian [16] found the
following result, mentioned here without proof:

Theorem 2.4.2. Letn > (k—t + 1)(t + 1). Then in the case k < 2t + 1 the
family Sy, and in the case k > 2t + 1 one of the families Sy, S| is a maximum
nontrivial k-uniform t-intersecting family.
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This generalizes earlier results of Hilton and Milner [268] (t = 1) and Frankl [189]
(n sufficiently large).

2.5. Linear independence

An important method for finding an upper bound for a family F of combinatorial
objects can be described as follows: Try to find a vector space V' of a certain
dimension d and to associate with the elements of F injectively certain vectors
of V. If the associated vectors are linearly independent, then clearly |F| < d.
In this section we will present some examples where this method can be applied
successfully. Further algebraic methods, in particular the use of eigenvalues, are
studied in Chapter 6. A systematic treatment of algebraic methods, including, for
example, exterior algebra methods, can be found in the forthcoming book of Babai
and Frankl [35].

The following result has its origin in the design of experiments. Fisher [181]
found an inequality that was later reproved by Bose [80] in a very short way using
the algebraic approach (in terms of matrices) sketched previously. First uniform
families were considered, only. Nonuniform families were investigated starting
with the paper of de Bruijn and Erdds [86]. Majumdar [360] and, independently,
Isbell [276] adapted Bose’s method to prove the succeeding theorem.

Theorem 2.5.1 (Nonuniform Fisher Inequality). Let F be a family in 21"! with
the property that | XN Y| =t forall X,Y € F, X # Y. Ift > O then |F| < n.

Proof. The “easiest” vector space is the vector space ¥ = R” of all column vectors
with n real entries over the field K = R, and the “easiest” way to associate a vector
with a set X C [n] is to take the characteristic vector. Let F = {X}, ..., X;»} and
X1, ..., Xp be the associated characteristic vectors. It is enough to show that these
vectors are linearly independent for ¢+ > 0. Assume the contrary, that is (with
0:=(,...,00D,

O=a1x1+---+amxm (2.59)

where not all coefficients are zero. Obviously,

|X;l  ifi =,
=] (2.60)
t otherwise.
Consequently,
m m
0=070 = (Z ) (Za,x,) = Zaileil + Z oot
i=1 = i=1 1<i,j<m,izj

m

m 2
=Y Xl -+t (Za,) : 2.61)

i=1 1
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Clearly, | X;| > ¢ for all i and |X;| = ¢ for at most one i, since otherwise the
intersection condition would not be satisfied. But then the RHS is greater than 0,
a contradiction. ]

It is interesting that we may generalize this theorem significantly if we restrict
ourselves to uniform families. Let L = {l1,..., [} be a set of integers, 0 <
I} <--- <l < n. A family F in 2] is called L-intersecting if | XN Y| € L
forall X,Y € F, X # Y. In the previous theorem we found a bound for {¢}-
intersecting families. Note that intersecting families are exactly the {1,2,...,
n — 1}-intersecting families. For L C [n], let gcd(L) denote the greatest common
divisor of the elements of L. The next result was found by Babai and Frankl [36]
(for further information, refer also to Deza and Frankl [135]).

Theorem 2.5.2. Let F be a k-uniform L-intersecting family in 21" and let k #
0 (mod gcd(L)). Then |F| < n.

Proof. We start as in the previous proof, but we work with V' = Q*, K = Q,
that is, over the field of rational numbers. Then in (2.59) we may suppose that
all coefficients ¢; are integers (otherwise multiply by the least common multiple),
and, in addition, we may suppose that

ged({ag, ..., am}) =1 (2.62)

(otherwise divide by the LHS). Instead of (2.61) we discuss the equalities (i =
1,...,m)

m m
0=x]0=x] ( E a;x;) = ka; + E ojxjx;. (2.63)
= JETT#

With / := ged(L) we may write (2.63) also in the form
kaj+a;l=0,i=1,...,m, (2.64)

where g; is some integer. Since k£ # 0 (mod /), there is some prime power pb such
that/ = 0 (mod p?), but k s 0 (mod p?). Now (2.64) implies that ; = 0 (mod p)
for all i, a contradiction to (2.62). n

Up to now we worked with infinite fields. We want to emphasize that in particular
in the case of finite fields linear independence is not the only way to obtain bounds.
The following observation can be considered also as a “method”: If the elements
of a family F can be injectively associated with the elements of a d-dimensional
vector space over the Galois field G F(g), then |F| < g“. As an example we
consider a variant of a theorem of Ahlswede, El Gamal and Pang [12] on pairs
of binary codes (for generalizations and related problems, see Ahlswede [2] and
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Ahlswede, Cai, and Zhang [7]). In the succeeding proof we follow the paper of
Delsarte and Piret [129].

Theorem 2.5.3. Let F and G be families in 21" with the property that | X N Y|
has the same parity forall X € F,Y € G. Then

2" for even parity,

Fligl <]
2"~ for odd parity.

Proof. Let V' be the n-dimensional vector space over G F(2) whose elements
are the n-dimensional 0,1-column vectors. With each X C [n] we associate its
characteristic vector x as an element of V. Let F and G be the sets of characteristic
vectors of F and G, respectively. Clearly, we may suppose that F, G # @.Lety,
be a fixed element of G and Go := {y +yo : y € G}. Moreover, let F and Go be
the subspaces generated by F and Gy, respectively. Then

IFIIGI = |FIIG| = | FIGol < |FIIGol = 29mF28mGo (2.65)
The key point is that (in G F(2))
x"z=0forallx € F, z € Gy (2.66)
since (withz = y + y, ¥ € G) in view of the supposition
xTz=x"y +xTy,=|XNY|+|XNYy| =0 (mod?2).
Consequently,
dimGo <n —dim F (2.67)

(the vectors xT, x € F, form a coefficient matrix of rank dim ﬁ, and all z € Gy
are solutions of the system (2.66) of linear equations). The inequalities (2.65) and
(2.67) already yield | F||G| < 2". Thus let | XN Y| be odd forall X € F,Y € G.
Let xq be a fixed element of F and Fy := {x +x¢ : x € F}. Wehave FN Fy = 0,
since otherwise x + xo = x’ for some x, x’ € F, which implies forally € G

=|XNY|+|XoNnY|=@x+x0)"y =x"y=|X'NY| =1 (mod2),

a contradiction. Let F' := F U Fy and let F’ be the subspace generated by F.
Then in (2.66) and (2.67) obviously F can be replaced by F’. As before, we obtain
|F'||G| < 2". Now |F| = %|F’|, and the assertion follows. n

Let us come back to linear independence. In the next examples the basic vector
space is more difficult, so we need some preparation. We will work with subspaces
of the vector space R[xi, ..., x,] of all polynomials in the independent variables
X1, ..., X, over some field R (usually the real or rational numbers).
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Lemma 2.5.1. Let p;(x),...,x,), i = 1,...,m, be polynomials. Suppose that
there exist m n-tuples a; = (a;1, . . ., ain) sSuch that

=0 ifl<i<j<m,
i(aj)
“1£0 if1<i=j<m.
Then the polynomials p;, i = 1, ..., m, are linearly independent.

Proof. Assume the contrary. Then we find coefficients a1, . . ., oy, not all equal
to zero, such that ) ., &; p; is the zero polynomial. Let i* be the largest index
with ¢; # 0. Then

m

Y aipi(ai) = i pi(aiv) #0,

i=1

a contradiction. n

Lemma 2.5.2. Let pi(xy,...,xp),i =1,...,myandgy(xy,...,xp),h=1,...,
t, be polynomials. Suppose that there exist m n-tuples a; and t n-tuples by such
that for all possible i, j, h

=0 ifi#}J, =0 ifh<}
pi(a;) o qn(a;) =0, qn(bj)
#£0  ifi=j, #£0  ifh=].
Then the polynomials p;,i = 1,...,m, and gy, h = 1,...,1t, are linearly inde-
pendent.
Proof. Assume the contrary. Then we find coefficients «y, ..., an, Bi, ..., Bt

not all equal to zero, such that Y"1, &; p; + Y_4_; Brqn is the zero polynomial.
In particular, for j = 1,...,m,
/

m t
0= aipi(a))+ ) Pugna)) = a;pj(a;)
i=1 h=1

implying o; = O for all j. Thus ZZ:[ Brqn is a nontrivial linear combination of
the zero polynomial, a contradiction to Lemma 2.5.1. [

A polynomial p(xy, ..., xp) is called homogenous of degree k if
pxy, ..., Axp) = Akp(xl, cey Xp).

The homogenous polynomials of degree k form a subspace Ri[xi,...,xn] of
R[xy, ..., xp). All monomials of the form x,' - - - x," with iy + - + i, = k ob-
viously yield a basis of this vector space. Consequently, for the dimension we have

n+k—1)

dim Ri[xy, ..., x] = ( k (2.68)

(k-combinations with repetitions; cf. [441, p. 15]).
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The following theorem was stated by Frankl [190] and Kalai [283], but it was
essentially prepared by a result of Lovasz [353] who introduced exterior algebra
methods. Fortunately the proof can be formulated in a more elementary way (we
follow Babai and Frankl [35]).

Theorem 2.5.4. Let {(A1, By), ..., (Am, Bm)} be a family of pairs of subsets of
[n] such that |A;| = a, |Bi| = b for all i, and
#0 ifl<i<j<m,

A; N B
' II:@ fl<i=j<m.

<a+b)
m < .
a

Ifn > a + b, the bound is the best possible.

Then

Proof. We associate with each member (A4;, B;) of the given family the homoge-
nous polynomial in the variables xo, . . ., xp of degree a (over R = R)

pi(xo, ..., Xp) == ]_[(loxo + 1%+ +15xp).
IEA,‘

In view of (2.68) it is sufficient to prove that these polynomials are linearly inde-
pendent. With every i we associate a nontrivial solution y; = (30, - . ., yis) of the
system of b equations

Pyo+1'yi1+---+1°y5=0, I¢€B,. (2.69)
Then
pi(y))=0forl <i<j<n 2.70)

since we find by supposition some ! € 4; N B;, and onjo + -+ Ibyjb = 0 by
construction. However,

pi(y;))#0 forl<i<n, 2.71)

because otherwise there is some /51 € A; such that y; is a solution of (2.69) and,
in addition, of

B0+ i+ + 18, i =0. (2.72)

But the determinant of the coefficient matrix of the system (2.69), (2.72) is Vander-
monde’s determinant, that is, nonzero; hence y; = 0, a contradiction. Now (2.70),
(2.71), and Lemma 2.5.1 imply that py, ..., p are linearly independent.

In order to see that the bound is best possible for n > a + b, take the family
{Ata+01—a):ac (). -
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Note that the result follows for the stronger condition 4; N B; = @ iff i = j
from Theorem 2.1.3. Blokhuis [70] and in a similar way Yu [472] used resultants of
polynomials (resp. Bezoutians) to prove these results and further a generalization
of Alon [26]. For related questions, see Tuza [453].

We call a polynomial in the variables x1, ..., x, multilinear if it has the form
P(xl, e wxn) = Z aaX‘lzl . -x,‘f"
aeB,
where B, is realized as the set of all n-tuples @ = (ay,...,a,) with entries

0,1, and the coefficients ¢, belong to the given field R. In other words, in a
multilinear polynomial no variable appears in a power greater than 1. The degree
of p is the largest value of r(a) = a; + - - - + a,, extended over all @ € B, with
a, # 0. Again, the set of all multilinear polynomials of degree at most k forms a
subspace Rg 1[x1, ..., xp] of R[xy, ..., x,]. Since the monomials x‘lJl e X2 with
ay+---+a, <k,a € By, form a basis, we have

k
dim Rei[x1, .. Xl = Y (”) 2.73)
i=0 \!
We will reprove the following result of Frankl and Wilson [202] and its predecessor,
the theorem of Ray-Chaudhuri and Wilson [394], in a more general setting in
Section 6.5.

Theorem 2.5.5. Let F be an L-intersecting family in 2. Then

Ay (’l‘)

i=0

Proof. Let F = {A4y,..., An}andletay, ..., a, be the associated characteristic
vectors. We may assume, w.l.o.g., that 4| > --- > |A4p]|. With each 4; we
associate first the polynomial

DG, ..ox) =[] @x-D (2.74)
leL:1<|A4;|

where, as usual, x = (xj, ..., x,)T. Then we expand p; (theoretically) and re-

place every power xf’ with b > 1 by x;. This leads to a multilinear polynomial
pi(xy, ..., x,) of degree not greater than |L|. Note that fora € By, i € [m],

7i(a) = pi(a) 2.75)

since x2 = x forx € {0, 1}. In view of (2.60), (2.75), and the ordering of the A4;,
we have
=0 ifl<i<j<m,

\(a;) = T (a; 2.76
pi(a;) p(aj)[#o fl<izj<m. (2.76)
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According to Lemma 2.5.1 these polynomials are linearly independent. Now the
asserted inequality follows from (2.73). |

The proofs of this and the next theorem are due to Alon, Babai, and Suzuki [28].
Snevily [433] conjectures that the upper bound can be improved to Z!.L:IO "7 ') if L
contains only positive integers. This conjecture is a generalization of a conjecture
of Frankl and Fiiredi [193], who considered the special case L = {1, ..., k}. Up
to now Snevily has proved his conjecture only for sufficiently large n as well as
the Frankl-Fiiredi Conjecture for £ = 2 (see [433]), and, after a result of Pyber
[393], together with Lichtblau [340] for n < 2k + 3.

Theorem 2.5.6 (Ray-Chaudhuri and Wilson [394]). Let F be a k-uniform L-in-
tersecting family in 2" where k > |L|. Then

1= <|z|)'

Proof. Clearly we may suppose that/ < k forall/ € L. We start as in the previous
proof and obtain polynomials py, ..., p, and n-tuples ay, ..., a,,. Note that, in
view of the uniformity, (2.74) can be rewritten as

Pixis .. xa) = [ J@afx = D).
leL

Following an idea of Blokhuis [69], we introduce more polynomials. Let
{Bi1, ..., B} be the family of all subsets of [n] of size less than |L| (do not con-

found these sets with the Boolean lattices), and let b1, ..., b, be the associated
characteristic vectors. Thus we have ¢t = Z}ﬂ& ! (Z) Here we suppose that the
members are numerated in such a way that |B;| > --. > |B,|. We define the

polynomials g;,, h =1,...,¢, by

qh(xlv"-,xn) = (ij —k) l_[ Xi,
Jj=1

i€eBy
and reduce them, as before, using xf = Xxj, to the multilinear polynomials
qn(x1, ..., x,). It is easy to verify that the conditions of Lemma 2.5.2 are sat-

isfied. This lemma together with (2.73) implies

|L)
m+t < Z(n)
—o \J
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Note that for “bad” sets L the bound may be far from being best possible. If
L =1{0,2,4,...,2t}(t > 1) and if k is odd, k > 2, then according to Theorem
2.5.2 we get |F| < n whereas Theorem 2.5.6 gives |F| < (,},) only. As for
Theorem 2.5.1, there exist several modular variants of the preceding theorems,
which are sometimes not as ‘“easy” to prove as Theorem 2.5.2. We mention here

only one “easy” variant:

Theorem 2.5.7. Let p be a prime and L be a set of integers from {0, ..., p—1}.
Let F be a family in 2! with the property that for all different members X, Y of
F there is some l € L with |XNY| = 1 (mod p) and for all members X of F
there isno |l € L with | X| =1 (mod p). Then

Iﬂs%(';).

i=0

Proof. We modify slightly the proof of Theorem 2.5.5. First of all we are working
this time over the Galois field G F(p). We need not order the members of F by
decreasing size. We may (again) define (instead of (2.74))

Dilx1, ..., xy) = n(a,?x -D,
leL

and obtain as before the polynomials p;. Then we have a still stronger relation
than (2.76):

=0 ifi#j
£0 ifi=j

(note that aa; = |4;| # I (mod p) for all | € L by supposition). Lemma 2.5.1
and (2.73) yield the assertion. \ n

Dpilay) l

Theorem 2.5.7 and related results have interesting geometric applications. Es-
sential contributions in that direction were given by Frankl and Wilson [202]. The
constructions may be often restricted to the case of primes because of the Prime
Number Theorem (see, e.g., Kritzel [324, p. 116]):

Theorem 2.5.8 (Prime Number Theorem). Let (x) be the number of primes
less or equal to x. Then

m(x) ~ x as x — oo.
log x

Corollary 2.5.1. Let p, be the largest prime less or equal to n. Then

Pn~nasn—> oo.
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Proof. Choose any € > 0. We have to show that there exists some ng such that
Pn = (1 —€)n forall n > ng. By Theorem 2.5.8,
7 (n) N n logn + log(1 — €) -

(1 —e€n) (1—é)n logn !

if n is sufficiently large. Thus there exists a prime in the interval ((1 — €)n, n].
]

The diameter of a finite set of points in the n-dimensional Euclidean space R”
is the maximum distance between any two points of the given set. Let b;(n) be the
smallest number such that every finite set in R” of diameter d can be partitioned
into b4 (n) sets of diameter smaller than d. Using contractions one can easily see
that bg(n) does not depend on d, so we write briefly b(n). Moreover, it is left
to the reader to show that b(n) is finite. Taking the vertices of a regular simplex
in R” one immediately obtains b(n) > n + 1. In 1933 Borsuk [79] conjectured
that equality holds (also for infinite, closed sets). Not until sixty years later did
Kahn and Kalai [281] kill this conjecture and show that the lower bound can be
significantly improved:

Theorem 2.5.9. We have b(n) = (1.2)V" asn — oo.

Proof. First we prove the relation for a subsequence of the natural numbers.
Note that b(n) is clearly increasing. Let p be a prime (tending to infinity) and let
m := 4p. We will construct a set T of points in the m2-dimensional Euclidean
space of diameter d := v2m. Let S be the set of points X = (x1,...,Xn,)" for
which x; € {—1, 1} for all i, x; = 1, and the number of negative components
equals %. Obviously, |§| = %('% ). With each x € S we associate the set X :=
{ieml:xi=1}e (['%"]). For any x, we put
X KX 1= (X1X[, X1X2, o vy X1Xms X2X 15 vy X2 Xy o vy XmXm) .

NowletT :={x*x:x € S}.Sincex xx #yxyifx #y,

1/m
IT| = 5<%) 2.77)

In order to compute distances, we must be able to calculate the standard scalar
product (, ). In a straightforward way one may verify the identity

(x*xx,yxy)= (x,y)z. (2.78)

It is easy _to see that for x,y € S and the associated sets X, Y (with X :=
[ml—X,Y :=[m]-7)
(,y) = IXOY|+]XNY| - (X~ Y| +]Y - X))
=m-2|X|-2|Y|+4|XNY]|;
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that is,
(x,y)=4XNY|—m. (2.79)

Thus we have for the distance p between two points x * x and y *y of T

P x*xx,y*y) = (x,0)% + (v, ) = 2(x, y)?
=m?+m?—204|XNY|—m)? <2m?,

and equality; that is, the diameter d = 2m is attained iff | XN Y| = i=0
Let U be a subset of T of diameter smaller than d and let F be the family of
those sets X that are associated with the vectors x for which x * x € U. From
the preceding discussion we know that F is a 2 p-uniform family in 20" with the
property given in Theorem 2.5.7, where L := {1, ..., p — 1}. Consequently,

p—1

> " " p p p—1
Fl = = + 4.
| |_,'=0(i)—(P)(m—p+l m—p+lm—p+2 )

(™ (L (! 2 Lo Ly
“\p/\3 \3 “2\p/)’
Thus, in order to partition T into sets of smaller diameter, we need at least |T'|/ % ('Z)
sets. Accordingly (noting 2.77))
(z) 3 m
n 3( 3 V3
2
b(m*) > @ ~ (2_‘_‘—\/5) = —2—(1.140)”’ (as p — 00)
3
(here we make an anticipation — the asymptotics follow from (7.7) or by Stirling’s
formula (Theorem 7.1.7)). Though we constructed 7 in the m2-dimensional space,
it is in fact contained in an affine subspace of dimension (’;) since we have for

the components the equalities x;x; = 1 for all i and x;x; = x;x; for all £, j. This
gives, with n’ := (%),

N
m V2
b(n') 2 i; (23/5> > ‘/75 [(213—5) ] > 1203V as p - oo

Finally, if 7 is arbitrary, let p be the largest prime such that n’ := (%) < n. From
Corollary 2.5.1 one obtains easily that n’ = n — o(n). Consequently,

b(n) > b(n') = (1.203)Y" = 1.2)V" asn — oo.

The construction is a reformulation of that given by Kahn and Kalai [281]. For
the computations, we used ideas of Nilli and his best friend Alon [378], who also
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noticed that one can enlarge the set S by taking those x for which the number of
negative components is even (instead of 7).

Let c4(n) be the smallest number of colors with which the points in R” can be
colored such that no two points of the same color have distance d. Again, cz(n)
does not depend on d, so we write c(n). It is an easy exercise to show that c(n) is
finite.

Corollary 2.5.2. We have c(n) 2 (1.2)Y" asn — oo.

Proof. Take a set of points of diameter d that cannot be partitioned into less than
b(n) sets of diameter smaller than d. Every “good” coloring (with respect to the
distance d) of this set needs at least b(n) colors since the color classes are sets of
diameter smaller than d. Thus (by Theorem 2.5.9)

c(n) > bm) = (1.2)V" asn — 0.

This result is due to Frankl and Wilson [202], who proved a conjecture of
Larman and Rogers [332] more than ten years before Kahn and Kalai [281] found
Theorem 2.5.9. The original proof of Frankl and Wilson is similar to the proof of
Theorem 2.5.9, only the construction is easier.

2.6. Probabilistic methods

Our general aim is the maximization of the size of families satisfying certain
conditions. For example, for Sperner families and k-uniform intersecting families
we could first “guess” a maximum family of the kind in question, and then prove
that these families are optimal. But sometimes we do not have an idea how to
produce such a large family. Here it is useful to apply the probabilistic method,
sometimes also called the Erdds method in honor of P. Erdds, who not only is the
founder of this area but also developed it with numerous deep results and still more
intriguing problems. This method can be described as follows: In order to prove
the existence of a family of “large” size satisfying the given condition, one has
to construct an appropriate probability space and to show that a randomly chosen
element (corresponding to a family) in this space has the desired properties with
positive probability. Only a few instructive examples are presented here together
with modifications of the method. The interested reader may learn much more in
the monographs of Erd6s and Spencer [172] and Alon and Spencer [29]. Certainly,
also other facts from probability theory are useful in combinatorics. One example
is the entropy inequality (Theorem 2.6.5). The application of limit theorems is
studied in Chapter 7, where some standard definitions and results can also be
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found. Working in this area, one must be clever in calculus; in particular, it is
useful to have many inequalities at hand. Here is an important one:

Proposition 2.6.1.

(a) Forallx € R, 1 + x < €%, and equality holds only for x = 0.
(b) Forall y > 0,logy < y — 1, and equality holds only for y = 1.

Proof. (a) The function f(x) := e* — x — 1 has a unique minimum at x = 0.
(b) By (a), y < ¥~ thatis, for y > 0,logy < y — 1. -

Our first example is due to Kleitman and Spencer [311] and also presented in
the survey of Alon [27]. A family F in 2] is called k-independent if, for every k
distinct members X1, ..., X; of F, all the 2 intersections n{.‘=l Y; are nonempty
where each Y; is either X; or X;.

Theorem 2.6.1. The maximum size of a k-independent family in 21" is at least
|1kt Vker/ 62| for all k > 2.

Proof. Let, for X C [n], X! := Xand X° := X. Consider the random family F =
{X1,..., Xm}, where (Xi, ..., Xn) is a sequence of m randomly, independently
chosen subsets of [n] and equidistribution is assumed (i.e., the probability of the
choice of any particular subset equals 27"). More precisely, the elements of our
probability space are the n x m-arrays whose entries take on only the values 0,1,
and the (classic) probability of such an array equals 27"™. The columns of the
array are the characteristic vectors of the members of F. Note that up to now the
members are not necessarily different. We have

P(F is not k-independent)
< Z P({X;,..., X} is not k-independenQ

I<ij<--<ix<m

> Y PXIN-nXF=0).

I<ip<-<ig<m e=(ey,...,e;)€{0, 1}*

IA

It is easy to see that Xfl‘ n---N X,i" = @ iff the corresponding subarray does not
contain € as a row. Hence the probability of this event equals (1 — 27%)", and we
conclude

P(F is k-independent) = 1 — P(F is not k-independent)

™ok _ A—kyn
1 (k)Z(l 27k,

v
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Ifm = L%k!'/"e"/("zk)J then, in view of Proposition 2.6.1,

k
Mok A—kyn _ ™M Sk —nj2k
(k)z 1-2 )<_k!2e <1,

and finally,
P(F is k-independent) > 0.

The members of a k-independent family are automatically pairwise different; thus
we find indeed a k-independent family of the size given in the assertion. [ ]

We already mentioned in Section 2 that for £ = 2 (qualitative independence of
unordered 2-partitions) the exact maximum size (L':,_'_;_zl J) can be extracted from the
Profile-Polytope Theorem 3.3.1.

Before the next example we will consider the probabilistic method in a more
general form. Let S be an at most countable subsetof Rand let§ = (£1, ..., &,) bea
discrete random vector which takes on only values from $”. Furtherlet g : R* — R
be given. Then g(§, ..., &,) is a discrete random variable whose expected value
equals

E@E)= Y. g1....s)PE =s1,....6 =)

(S15---,5n)ES"

if the sum on the RHS is absolutely convergent. The “generalized” probabilistic
method is the application of the trivial fact that there exist sy, . .., s, € S such that

g(s1, ..., 8n) = (resp. <) E(g(&)).

In Theorem 2.3.3(b) there is given an exact solution of the vertex-isoperimetric
problem for the Hasse graph of the Boolean lattice: Find

min{[(A(F)UV(F)) — F|: F € 2" and |F| = m).
A related problem of Zuev [474] is the following: Find
max{|A(F)| : F € 2" and F is a Sperner family}.

If we take F to be a complete level in the middle of the Boolean lattice, then A (F)
is again a complete level and using

n 2
~ [ Z0n
(L%J) n

(which follows from (7.6)) we obtain

2"
[A(F)| = c—= for some constant c.

Jn
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It was shown by Kospanov [320] and Fiiredi, Kahn, and Kleitman [211] that this
bound can be improved significantly. The strongest lower bound is due to Chukhrov
[100] (factor 0.2), but we follow the simpler proof of Fiiredi, Kahn, and Kleitman:

Theorem 2.6.2. For sufficiently large n, there exists a Sperner family F C 2]
such that |A(F)| = 0.059 % 2".

Proof. Letk := L\/gJ = I_% — \/g-l and u = I-% + \/g-l We will restrict

the shadow to the [/, u]-rank-selected subposet of B, which we denote by Q. For
its size, we have by (7.1)

0=3 (”)
X0
~ (CI>< %) - <—\/§)> 2" = 0.5204 % 2", (2.80)

We will see that for sufficiently large 7 there exists a Sperner family F in 2"l such
that

[A(F)| = 0.1146 % | Q|. (2.81)
Together with (2.80), this yields for sufficiently large n,

[A(F)| = 0.059 x2".

Lett :=u+1—1,c:=e(logle+1)—1) =0.8515..., and p be the solution of

o(2) =

Clearly, lim,_, « (}) = oo; thus,

lim tp = 0. (2.82)
nh—00
Let £ be a random variable taking on values from S := {1, ..., ¢, t + 1} such that
p ifi=1,...,1,
PE=i)= .
1—tp ifi=r+1.

Let {(x : K € ([Z])} be a set of (completely) independent copies of £ (in the
following K always belongs to ())). For j = I+ 1,...,u + 1, we define the
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random families

Fi={Xe (D;]) :min{égx : K C X} =j—1},
u+1

F = U .7:1
j=I+1

Note that then the random family A(F) is contained in Q and that |A(F)| is a
random variable which is a function of the £x, K € ([Z]).

Claim. F is a Sperner family in 2],

Proof of Claim. The existence of some j, j' with/ +1 < j < j' <u+1and
of some X € F;, X' € Fj such that X € X’ could be the only obstacle. Since
X € Fj, there is some K C X such that £¢ = j — /. But then also K C X’ and
min{ég : K € X'} < j—1 < j/ — [l in contradiction to X’ € Fjr. m|

For each 4 € Q, we define the random variable 7 4 by
1 ifdeAF),
N4 =
0 ifdé¢AF).
Then
E(A(F))) =E (Z nA) =) E(a) =Y P(4de AF)).
AeQ AeQ AeQ

If we can show that P(4 € A(F)) > 0.1146 for all 4 € Q, then there must be
a realization of the £, K € ([Z]), that is, also a realization of F, such that (2.81)
holds.

Claim. P(4 € A(F)) > 0.1146if 4 € Q.

Proof of Claim. For sake of abbreviation, always let i := j + 1 — I. Let
AC|[n], |A|=j, | < j <u. Then

P(4 e A(F))

P@Ebe[n]— A :min{ég : K C AU {B}} = i)
P(min{ég : K C A} > i and

3b € [n]— 4 : min{éx : K € AU {b}} = i)

= P(min{ég : K C A} > i and

3b € [n] — A :min{égup) : K' S 4, K € (1)) =i).

v

In the following, K’ always denotes an element of (,/"1). The events in the last
conjunction are independent since the index sets of the corresponding random
variables, namely {K : K C 4} and {K'U{b} : K' C 4, b € [n]— A} are disjoint
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and the £, K € ([2]) are (completely) independent. Thus we may continue:
P(A e A(F)) = P(min{ég : K C A} > i)P(3be[n]—A4:
min{&xu ) : K/ C 4) = ). (2.83)
Now we compute and estimate both factors. We have (note (2.82))

P(min{ex : K € 4) > 1) = [| Pk > =01 —-ip® = 1 —1p)®
KcA

(A —tp)® = (1 —1tp)*/"? = e™°(1 + 0(1)).

v

For the second factor, we need a little bit more effort:
P@Eb € [n]— A4 :min{fgypy : K' c4)y=i)
=1—P(Vbe[n]—A:min{égup : K' S A} #1i)

=1- [] Pmin{tkup : K S 4)#i)
be[n]—A

=1- ]'[ (1 — P(min{égup) - K' € 4) =i). (2.84)
be[n]—A4

Next we estimate for all b € [n] — A the probability in the RHS of formula (2.84).
We have min{éx'yp) : K' € A} =i iff forall K’ C 4, Exrypy > i and not for
all K’ C A4, Ex'up) > i. Thus

P(min{éxup : K' C A)=1) = (1 — (i — D& = (1 —ip&l)
> e i@ 7
z (1—ip) (k_ 1)?
(for the last estimation we used the Binomial Theorem and the relation0 < 1—ip <

1 for sufficiently large n in view of (2.82)). For the first factor of the RHS, we have
by Bernoulli’s formula,

1 —ip&d 1 (ki l)ip >1- (kﬁ 1)‘tp

= (Vr—E 1 40q)
)Py —ky1 - T

To estimate the second factor, we first observe

(j)_(u J j—k+l>(u)<j—-k+1 Fo(#) (1= k+1)
k) \kJu  u—k+1"\k)\u—k+1) ~\k)\u—-k+1

u u—1 okl Sk " 1
N (k) (1 T u—k+ 1) = (k)e‘ (14 o(1)).

1

v
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Thus

J (7 k
(k—l)p = (k)j—k+lp
u kl 1 _ c
_ =—( 1)),
> tp(k)t(j—k—i—l) 7€ (I+o(1)) el( +o(1))
and we derive
c
P(min{égrypy : K' C A} =10) > 1 +o(D).
Insertion into (2.84) yields

P@Eb € [n] — 4 :min{&gryp) - K cA)=10)

2 1= (1= S +o)" 2 1= @M=D
e

=(1—e &)1 +o0(1)

(here we used Proposition 2.6.1(a)). Thus the estimation of both factors in (2.83)
yields

P(A e AF)) > 1 +o()eC( —e¢).

For ¢ = e(log(e+1)— 1), the function on the RHS attains its maximum0.1147 . ...
Thus, for sufficiently large n,

P(4 € A(F)) = 0.1146.

Without proof we mention the following upper bounds of Kostochka [322]:

Theorem 2.6.3. If n is sufficiently large then for any Sperner family F in 21"}
(@) |A(F)| <0.725 %27,
(®) [AF)UV(F)| <0.9994 2",

A related result for the boundary of a filter was previously obtained by Kostochka
[321]. The next modification of the probabilistic method for the construction of
large families without forbidden configurations has the following basic idea (see,
e.g., Kleitman [305]): Construct a collection (i.e., repetitions are allowed) of m
members entirely at random. Then compute the expected number of forbidden
configurations in it (e.g., comparable elements, nonintersecting members, etc.). If
this number is at most Am, then there must be some collection having no more
than Am forbidden configurations, so that, by omitting at most Am members, we
can obtain a collection (often automatically without repetitions, i.e., a family) of
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the desired form of size (1 — A)m. Now let us illustrate this idea (with a slight
modification). We are looking for large (p, q)-Sperner families in B, (see [157]).
Here a family F of subsets of [n] is called a (p, q)-Sperner family if the intersection
of any p members of F is not contained in the union of any other ¢ members of
F. Note that a (1, 1)-Sperner family is a usual Sperner family. Let dy;  ; be the
maximum size of a (p, q)-Sperner family in B,.

Theorem 2.6.4. We have
2P+ N\ T
hipa 2 (2—+—_—1> :

1
wherec:=(p+q — 1) (G%) pra=t
Proof. Let (X1,..., Xp, Xps1,..., Xpyq) be a sequence of p + g randomly,
independently chosen subsets of [n], where equidistribution is assumed (analogous
to the proof of Theorem 2.6.1). Leta := 2—35—11.
Claim. The probability of the event X1 N---N X, C Xpy1U---UXpy, equals
"

‘ Proof of Claim. As in the proof of Theorem 2.6.1, we consider the random
sequence as a random 0, 1-array with n rows and p + g columns where the jth
column is the characteristic vector of X;. Wehave X;N---N X, C Xpy U---U
Xpq iff in the corresponding array there is no row of the form (1, ..., 1,0, ...,0)
(p ones and g zeros). This gives the probability (%)" . m]

Now we construct at random a sequence (X1, ..., X;;) of m subsets of [n] and
after that we pick, step by step, p + ¢ of them in all possible ways, which gives
m(@m —1)---(m — p— q + 1) sequences of the form (Xiysooos Xipy Xippys o
Xi,,,)- By Claim 1 we obtain for the expected number x of events X; N---NX;, ©

Xipy U---U X, the value

1 n
p=mm-—1)---(m—p—q+1) <;) .
For A > 0, we choose the largest m such that 4 < Am. We then have
m > (Aa”)P+‘ll-1
1
since form < [(Aa")P+4-1]
\" \"
w<m(im— 1Pra-] (a_) <m(Aa") (—) = Am.
a

Clearly there must be a fixed sequence (X1, ..., X;,) with at most Am “bad” events
described above. We may destroy such an event by taking away, for example, X;, .
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Then simultaneously p!q! events are destroyed, namely those that are obtained
by permuting iy, ...,ip and ipy1, ..., ip+q, respectively. After all these events
are destroyed, we retain a sequence whose members form a (p, g)-Sperner fam-
ily of size at least m — F)‘% (note that repetitions always yield a “bad” event).
Consequently,

dn;p,q > f(A-)a p+2—l

1
where f(A) = (1 — -p!)‘—q!))\ p+¢=T The function f(A) attains its maximum in R at

A= %-qﬁ!' The corresponding value of f equals the constant ¢ from the assertion.
]

The concluding example of this section shows that other parts of probability
theory also can be applied successfully. First we need some preparations. Let S

again be an at most countable subset of R. Let £ = (&1, ..., &) be a discrete

random vector that takes on only values from S”. Further let (7, ..., n,) be that

random vector which takes on values from S” with probabilities
Pn=si...om=s)= ) PE =s1....56 = s

(Sr1seeerSp)EST

Here we call this vector marginal random vector. Clearly, it can be considered as
the restriction of the old vector to the first » components, so we denote also the new
vector by (1, ..., &) instead of (1, ...,n,).Forl <i; <--- < i, < n,wemay
define in the same way the marginal random vector (§;,, . . ., &;,.). The components
&; can also be considered as one-dimensional marginal random vectors. It is easy
to see that “being marginal” is transitive, in particular we have:

Proposition 2.6.2. If (&1, ...,&,—1) ismarginalto (&, ..., &) and &) is marginal
to (€1, ...,En—1), then & is marginal to (&, ..., &).

The entropy of any n-dimensional discrete random vector £ taking on values from
S" is defined and denoted by

HE:=-) PE=s)logPE=s).

ses”

Here 0log 0 is defined to be 0.

Theorem 2.6.5 (Entropy Inequality). Let £ be an n-dimensional discrete random
vector and let &1, . .., &, be its components, that is, the one-dimensional marginal
vectors. Then

HE) <Y HE).
i=1
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Proof. We proceed by induction on n. The case n = 1 is clear. For the step

n—1— n,letn := (&,...,&—1) be the corresponding (n — 1)-dimensional
marginal random vector. We write briefly ¢ := (s1,..., Sa—1), P15, := P(n =
t,& = sn), pr:= P(m=1), ps, == P(&, = sn). Then we have
H® =— Y prslogps,
(t,5n)eS"
Hm)+ H@E) =— Y pilogpi— Y ps, log ps,
tesn—! sn€S
== Y pslogpi— Y Ppislogps,.
(t,s,)€S" (t,sp)esS™

We restrict the summation to those elements (¢, s,) for which p,, > 0. Then
(noting Proposition 2.6.1(b))

'—'EPtPs,,—EPt,s":l—l:O-

From the induction hypothesis and Proposition 2.6.2 we infer finally

HE < Ho) + HE) < (HE) + -+ + HEn—1)) + H(En).

The notion of entropy stems from physics and is also used in information theory.
The entropy inequality has many applications, for example, in search theory, cf.
Aigner [22]. Here we will reflect briefly the set theoretic point of view. We use
again the letter H for the definition of the function H(A) := —AlogA — (1 —
Alog(l—21), 0<A < 1.

Corollary 2.6.1. Let F be a family of subsets of [n], F(i) :={X e F:i € X},

and o = L‘E__’—Il Then

log|F| < ) H(a).

i=1

Proof. Let m := |F|. We identify F with the set Cx of its characteristic vectors,
thatis, Cr C {0, 1}* and m = |C#|. Let € = (£1, ..., &,) be the discrete random
vector that takes on values from {0, 1}" with probabilities

1 .
w ifseCr,

PE=s)=

0 otherwise.
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Then obviously P(§; = 1) =«;, P(§, =0) =1 —a;,i =1,...,n. We have

1 1
H¢) = — —log — =logm
H(§) = —ajloga; — (1 — a;) log(l — a;) = H(a;).
Now the asserted inequality is a direct consequence of Theorem 2.6.5. |

Frankl (see [27]) observed that the following frequently used inequality can be
easily derived:

Corollary 2.6.2. For every 0 < p < 1 and for every natural number n,
ry 2

> (n) <MD,
e

i<np

Proof. We use the notations from Corollary 2.6.1. Let F := { X C [n] : | X| < np}.
Counting the number of pairs (i, X) with i € [n], X € F,i € X in two different
ways, we get

DIFDI= Y IXI. (2.85)
i=1

XeF
According to |[F(1)| = --- = |F(n)| and | X| < pn, we obtain for all i

A

n|F@)| < pn|F|,

o < p.

Since H () is increasing in [0, %], it follows by Corollary 2.6.1 that

log|F| <) H(e) <nH(p),

i=1

which is equivalent to the assertion. |

As a “real” combinatorial application of Corollary 2.6.1, we present a result of
Kleitman, Shearer, and Sturtevant [310] answering a question of Erdfs.

Theorem 2.6.6. Let k > 1 and let F be a k-uniform family in 21" such that all
intersections of two different members of F are pairwise different. Then there is
some € > 0 such that

IFl < 2 — ek

Before we look at the proof of this theorem, note that the bound 2* is trivial since
for some fixed X* € F the sets XN X*, X € F, are pairwise different subsets of
X* and | X*| = k.
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Proof. Let us define (i) and «;,i = 1,...,n, as in Corollary 2.6.1, and let
= |F|. Observe that we may suppose

1
m> 5k2, (2.86)

since otherwise the proof is trivial. Moreover, we can suppose that 0 < o; < 1 for
all i; otherwise delete the corresponding element in the basic set [n]. Let G be the
family of intersections of two different members of F,

GG)={Yeg:ieVt} Bi = Igllgl)l i=1,...,n.

It is easy to see that
G| = ( ) b= (lf(t)l) _ (Olizm) =a2 B oi(1 —a;)
(2) ('Z) ! m—1

We apply Corollary 2.6.1 to the family G with the corresponding numbers §; and
obtain

i=1,...,n.

log( ) ZH(,B, (2.87)

In order to estimate the RHS we need some preparations: The equality (2.85) reads
in the present case

n n
Y IFOI=kIFl, e, Y ai=k (2.88)
i=1 i=1

Claim 1. We have for all i, H(8;) < H(e?) + L%,

Proof of Claim 1. We have for 0 < A < 1, H'(A) = —logA + log(l —
A, H'(A) = —(% + ﬁ) < 0; thus H’()) is decreasing, and by the mean-value
theorem,

H(@?) — H(B:)
W > H'(a}) > log(l — o).
m—1
Hence
ot o 1
H@}) - HB) > ——(1 —a;)log(l — ;) > ————~
m—1 m—1le
O
Claim 2. We have Y 7_ H(az) < k”(" )’ where A* := S (%)a;.

ProofofClalmZ Let f(x) = H(“ ,0 < A < 1. We have for0 < A <
L f") = mz— 22+ - ?»2) log(1 — A2)) < 0 since for the function
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g) :=21+ (1 —1Dlog(l —1) there holds g(0) = 0and g'(/) = 1 —log(l1 — /) >
0,0 </ < 1. Thus f is concave and by Jensen’s inequality and (2.88) we have

n n ; H )\*2
> H@} =k(Z “;f(an) <kf (Z —a,) =kf(*) =k (A ),
i=1 i=1

From (2.87), (2.88), Claim 1, and Claim 2, we infer

n *2
log( ) ZH(a2)+Z l/e i H(;* ) kfe .

m—l

The function f()) attains its maximum at A = 0.4914 ..., and its value is there
1.1249. ... With (2.86) we obtain for k — oo

(';’) < el 125k+ob) 3 ogk+olk)

Thus

1
m < 3 +‘/Z + 2 % 3.08k+0(®) < (2 — €) for some € > 0.
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Profile-polytopes for set families

In this chapter we will discuss from a linear programming point of view profiles of
families of subsets of [n] belonging to certain classes. Concerning the terminology
we refer to Schrijver [421] and Nemhauser and Wolsey [377]. The investigations
were initiated by Erd0s, Frankl, and Katona [175].

With each family F we associate its (reduced) profile f = p(F), where f =
(fis--.s fu—1)T and, as always, f; := |{X € F:|X|=i}|, i =0,...,n. Since
in some cases the empty set @ and the whole set [n] play a special role, we will
restrict ourselves to the reduced profiles — without fp and f;, — although for the
sake of brevity we omit the word “reduced.” In applications, one should not forget
to add these special sets if possible and necessary. Given a class 2 of families,

w@) = {p(F): F e}

is a finite set of points in R”~!. The convex hull of a set & € R"~! is denoted as
conv(u). (The convex hull of a set u of points is the set of all convex combinations
of finite subsets of w, that is, the set {A1 f; +--- + A, f, where {f,..., f,} S u
and 0 < A; for all i and z;=1 A; = 1}.) The set conv(u(2)) is called the profile-
polytope of . (A polytope is the convex hull of a finite set of points. The dimension
of a polytope is the smallest dimension of an affine subspace of the Euclidean space
containing the given polytope.) Let € (1) be the set of extreme points of conv(u).
(A point of a convex set is an extreme point if it cannot be written as a convex
combination of two other points from the given set.) Clearly e (u) C u. It is easy
to see that

conv(u) = conv(e(u)).

The profile-polytopes conv(u (2)) for the class of Sperner families and the class
of intersecting families, respectively, are illustrated for n = 3 in Figure 3.1 (the
encircled points are the essential extreme points, which will be introduced later).
Often there arise optimization problems of the following kind:

84
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fa f2
®
h fi
Sperner intersecting
Figure 3.1
Letw = (wy, ..., w,—1)" be a given vector. Determine for a class 2 of families

M@, w) := max { Z wy : Fe Ql] = max{w"f: f e u@)}. 3.1
XeF

Obviously,
M@, w) < max{w'f: f € conv(u(2))}
= max{w'f : f € conv(e(n(A)))}.
Let f* € e((2A)) be chosen such that
wif* > wif’ forall f' € e(u(@)).

For f = Y ccquay S € conv(e(u(A))) (where 0 < Ay for all f’ and
3 Ag = 1), we then have

wa= Z A'f’wa, < Z A‘f’ wa* = wa*’
f'ee(u() S/ee(u()

hence
M@, w) = max{w'f: f € e(u®))}. 3.2)

In general we have far fewer extreme points than profiles and the maximization on
the extreme points is only a numerical problem. So it is of great interest to have
an overview of the extreme points for several classes. This is the main aim of this
chapter.

Note that a polytope may be also defined as a bounded polyhedron where
a polyhedron is the set of solutions of a system 4x < b; cf. [421, p. 89]. As
before, any linear objective function attains its maximum at some extreme point.
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A point x € R” is an extreme point iff it satisfies all constraints and n independent
constraints (i.e., the corresponding rows of 4 are linearly independent) are satisfied
as equalities, cf. [421, p. 104].

Moreover, we would like to know “all” inequalities that are satisfied by all
profiles of families belonging to some class. For instance, if 2 is the class of
Sperner families in 2") we have derived the LYM-inequality 7=/ /() < 1.
The strongest inequalities are those which represent facets of conv(u(2)). An
inequality ¢x < b defines a facet F of a polytope P if this inequality is satisfied
byallx € Pandif F := {x € P: ¢"x = b} is one dimension lower than P. All
other valid inequalities (i.e., those that are satisfied by all elements of the polytope)
can be obtained by taking a nonnegative linear combination of these facet-defining
inequalities and by increasing the RHS; cf. [377, p. 88 ff] and [421, p. 93]. Note
that, if the polytope P is given by a system P := {x : Ax < b}, then all facets
can be defined in the form a,.T x = b; for some i where a,.T (resp. b;) is the ith row
of A (resp. the ith coordinate of b); cf. [377, p. 89]. The second objective of this
chapter is to derive the facet-defining inequalities.

3.1. Full hereditary families and the antiblocking type

Let u be a finite set of points in N”. This set w is called full if all unit vectors e;
(with 1 at coordinate i) belong to i, and it is called hereditary if x € u,x’ <
x, x’ ¢ N" imply x’ € u (i.e., if it is an ideal in the direct product N*, where N
is, as usual, linearly ordered). We will study full hereditary sets of points since we
will investigate later on only full hereditary classes of families of subsets of [n].
Here a class 2 is called full if for all X C [n] the one-element family { X'} belongs
to 2, and it is called hereditary if G C F € 2 implies G € . It is obvious that
the set () of points from N"~! is full hereditary if 2 is full hereditary (in our
general investigations we work with N” instead of N*~1). In fact, we may also
replace everywhere N by R, then in the definition of fullness we only need that
ae; € pforsomea >0 =1,...,n).

Lemma 3.1.1. Let pu be full and hereditary.

(@) Foralli, x; > 0 is a facet-defining inequality for conv(u).

(b) All other facet-defining inequalities for conv(u) have the form ajx; + - - - +
apxy, < bwitha; > 0 foralliandb > 0.

Proof. (a) Let us consider the inequality x; > 0, which is true for all x € conv(u).
Let F := {x € conv(u) : x; = 0}. The points 0, e;,i = 2, ..., n, are affine
independent (i.e., e, ..., e, are linearly independent) and belong to F. Hence
dim F =n — 1 and F is a facet.
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facet-defining inequalities for conv(x) must have the formajx)+- - - +apx, < b,
where at least two coefficients, say a; and a, are nonzero. Assume, for example,
thata; < 0. Let F := {x € conv(u) : ajxy + - -- + apx, = b} be a facet. There
exists some extreme point x of F' (which is also an extreme point of conv(u),
i.e., belongs to 1) with x; > O since otherwise F' would satisfy two independent
equalities ) ;_, a;x; = b, x; = 0 and thus have dimension less than n — 1. Now
let x’ be the vector that can be obtained from x by changing the first coordinate
into zero. Then x’ € p, butayx| + - - + anx, = b —ayx; > b, a contradiction.
From a; > 0 we may derive b > 0 since e| € . [ ]

(b) Since u is full, for all i, x; < O cannot be a valid inequality, so all other

Of course, we can divide the facet-defining inequalities of the form (b) in
Lemma 3.1.1 by b, and the RHS becomes 1. Furthermore, for each i there must
be some facet-defining inequality with a; > 0, since otherwise there would be no
restriction from above for x; and conv(u) would be unbounded. Thus we obtain:

Theorem 3.1.1. Let p be a full hereditary set of points in N*. Then there exists a
nonnegative matrix A with no zero column such that

conv(u) = {x e R : 4x < 1}.

A full-dimensional polytope (i.e., a polytope of dimension n) in R” of the form
given in Theorem 3.1.1 is said to be of antiblocking type. The theory of blocking
and antiblocking polyhedra was developed by Fulkerson in [206, 207, 208].

If, in general, P is any polytope of antiblocking type, P = {x € R, : Ax <1},
where A is a nonnegative matrix with no zero columns, then the antiblocker P¢
of P is the polytope

PC:={yeR}:y'x <lforalxe P}

Letcy, ..., ¢, be the extreme points of P and let C be the (r x n)-matrix whose

rows are ¢}, ..., cr.

Theorem 3.1.2. We have

(@ P'={yeR}:Cy=<1}
(b) (P°)° = P.

Proof. (a) Let y € P°. Then c,T y = yTe; < 1 for all i since the ¢; are
special elements of P. Hence Cy < 1. Conversely, lety € R%:,Cy < 1.
Every point x of P can be written as a convex combination of the extreme
points: x = Y [, a;¢;,0 > O foralli,} | o = 1. Consequently, yTx =

Yioia@i(yTe)) <Y i_j@ =1.Hence y € P°.
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(b)Letx € P. Then xTy = y™x < 1forall y € P°. Thus x € (P°)°.
The rows a] of 4 belong obviously to P°. Thus, if, conversely, x € (P€), then
x"a; = alx < 1forall i; hence Ax < 1, thatis, x € P. [ ]

In Figure 3.2, we illustrate the antiblockers (conv(u()))¢ where 2 is — as for
Figure 3.1 — the class of Sperner (resp. intersecting) families and n = 3.

Y2 Y2
1 1
3 3
Y Y
1 1
3 3 1
Sperner intersecting
Figure 3.2

We call an extreme point ¢ of a polytope P essential if there is no other point
dof Pwithe <d.

Theorem 3.1.3. Let A be a nonnegative matrix with no zero column and define
P:={xeR]:4x <1}

(a) Ifc is an extreme point of ‘P, then there exists some essential extreme point d
of P such that, for all j, c; > 0 implies c; = d; .

(b) Besides y > 0 the facet-defining inequalities for P° are given by
d,-Ty <1, i=1,...,s,
where dy, . .., ds are the essential extreme points of P (these are called the

essential facet-defining inequalities for P°€).

Proof. (a) Let ¢ be an extreme point of P. Without loss of generality, we assume

that ¢,y = -+ = ¢, = O, butecq,...,c, > 0. Let ¢’ := (cy,...,c)T and
¢” := (¢t41,-..,¢n)T. In Ax < 1 there must be ¢ inequalities that are satisfied
by ¢ as equalities, and these equalities together with x,4; = --- = x, = 0 must

be independent. Consequently we can divide A4 into the form 4 = (4’|4”) and,

more precisely,
A/ AII
(% %)
4, A,
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where Aj¢’ = 1,rank 4] = ¢, 45¢’ < 1. Since 4 does not contain a zero
column (otherwise we would have rank A’1 < t), we cannot increase in ¢ one
of the coordinates j = 1, ..., ¢ without changing the others. Now consider the
coordinates j =t +1,...,n.

Case 1. The jth column of 47 is not a zero column. Then we cannot increase
coordinate j without changing the others.

Case 2. The jth column of 4{ is the zero column, for example, for j = ¢ + 1.
Then we can increase the (¢ 4 1)th coordinate until a strict inequality becomes a
new equality (note that the (¢ + 1)th column of 45 cannot be the zero column).
The resulting point 4 is an extreme point since

A} 0
rank =t+1,
*...x F0

and we have, together with x; 43 = - - - = x, = 0, n linear independent equalities.
So we have seen: Either there isnod € P withd > ¢, d # ¢ (and thus ¢ is an
essential extreme point) or there is some extreme point d with the property that
for all j, ¢; > 0 implies ¢; = d; and d has one more nonzero coordinate than c.
Now we can argue for d in the same way and since there are at most n nonzero
coordinates we find after a finite number of steps the desired essential extreme
point.

(b) The inequalities y > 0 are facet defining by a similar reason as in Lemma
3.1.1(a). Let ¢ be an extreme point of P that is not essential and let d be an
essential extreme point with the properties of (a). Suppose, w.l.o.g., that ¢; = 0
butd) > 0and assume that F := {y € P : ¢Ty = 1} is a facet. Then there must
be some y* € F with y} > 0, since otherwise we would have two independent
equalities ¢Ty = 1, y; = 0 for F, and thus F would be at most n — 2 dimensional.
But obviously y*'d = d"y* > ¢"y* = 1, a contradiction to y* € P°. Now
let ¢ be an essential extreme point and assume that F := {y € P°: cTy = 1}
is not a facet. We shall use the notations before Theorem 3.1.2 and suppose that
¢ = c¢,. Let P’ be the convex hull of ¢y, ..., ¢,—1 and let C’ be obtained from
C by deleting the last row. Of course, P’ & P. But if F is not a facet, then
P ={y € R% : C'y < 1} and by Theorem 3.1.2(a), P’ = P°. In view of
Theorem 3.1.2(b), P = (P°)° = (P'°)¢ = P’, a contradiction. [ ]

In form of Theorems 3.1.2 and 3.1.3 the facet-defining inequalities for P are
given by the essential extreme points of P¢. So our goal in this section is the
following: Given a full hereditary set o of points in N, find the essential ex-
treme points of conv(i) and (conv(u))¢. Suppose we are given candidate lists

{c1,...,¢5}and {1, ..., 7o) for these extreme points. How can we prove that
these lists are correct and complete? Let u’ be the hereditary set in N* (resp. R%)
determined by ¢y, ..., ¢y; that is, let 4’ be the ideal generated by cy, ..., c;,

and let P := conv(u'). All our lists will have the property that ' is full; thus
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by Theorem 3.1.1, P is of antiblocking type. Note that, by the definition of P,
its essential extreme points belong to {c, ..., ¢s}. Moreover, we define O analo-
gously, using 7y, . .., ¥s. Our method of proof is as follows:

Step 1. Verify that ¢; € p for all i. This yields P € conv(u).

Step 2. Verify that 'ij.x < 1forall j and for all x € pu. This yields u© € QF;
that is, conv(u) C QF.

Step 3. Show that Q° € P or Q 2 P¢. This yields (using Theorem 3.1.2(b))
that P C conv(u) € Q° C P;thatis, P = conv(u) and Q@ = (conv(u)). Either
we can show that for every element x of Q° there exists a convex combination of
ci, ..., cs which majorizes x (it suffices, of course, to test the maximal elements
x of Q°) or we can determine algebraically the essential extreme points of P°
by considering the corresponding system of inequalities. We are done if these
essential extreme points are contained in {7y, ..., ¥s}.

Step 4. Show that the candidate points are in fact essential extreme points. The
test of being essential will be in our cases trivial. To see that the points from the
list are extreme points we need only verify that they cannot be majorized by a
nontrivial convex combination of other points from the same list, and this will
also be easy. Of course, we could also verify that the points satisfy n (resp. for
the reduced profiles of set families n — 1) independent equalities in the system of
linear inequalities defining Q° (resp. P°).

Now let us come back to our set families. We denote the set of essential extreme
points of conv(u (A)) (resp. of conv(u (2A))€) by €* (i (A)) (resp. ¢* (1 (2A))). Note
that our objective function (3.1) satisfies by (3.2) and Theorem 3.1.3(a),

n—1
M@, ¢) = max { Y "max{c;, 0} f; : fe€ e*(u(Ql))}.

i=1

The determination of €* and ¢* is still too difficult. But we can reduce the problem.

3.2. Reduction to the circle

We start with a general fact for polytopes of antiblocking type. For a matrix D and
apolytope P,let DP := {Dx : x € P).

Theorem3.2.1. Let P:={x eR} :Ax <1}and P':={x e R, : 4'x <1},
where A and A' are nonnegative matrices with no zero columns. Further let
D := diag(d,, ..., d,) be a diagonal matrix with positive diagonal elements.
Letcy, ..., cs be the essential extreme points of P'. If P € DP’ and Dc; € P
forall i then

(@ P =DP and D¢y, ..., Dcs are the essential extreme points of P.
(b) P°=D'P".
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Proof. (a) Let x = Dx’ with x’ € P’. We have to show that x € P. Since
x’ can be written as a convex combination of extreme points of P’ we have by
Theorem 3.1.3(a):
s M
x < Zaici with @; > 0 for all i and o = 1.
i=1 i=1
Thenx = Dx’ < }_j_, @ Dc;. Since P is convex and in view of the supposition,
the sum on the RHS belongs to P, but then obviously x belongs to P. The point
Dc is an extreme point of P since otherwise it could be written as a nontrivial
convex combination Dcy = Ax) + (1 — A)x2 with x1, x2 € P. With x; = Dx},
x; € P',i =1,2, weobtain ¢; = Ax| + (I — 1)x), a contradiction. Moreover,
Dc is essential by an analogous argument.
(b) We have

P ={yeR}:yx<lforallx € P}
={yeR}:y'Dx' <lforallx' € P’}
= (D7'zeR% : "y < 1forallx’ e P’} = D' P*.

We use Katona’s circle method [295] together with this theorem to solve a much
easier problem for set families. Let ¢ be a cyclic permutation of [n]. A subset X
of [n] is called consecutive in ¢ if its elements are consecutive on the circle; see
Figure 3.3. If 2 is a class of families of subsets of [n], let 2(¢) be the class of

11y e ¢(D)
<M 2(1)

Figure 3.3

those families from 2 whose elements are consecutive in ¢ and let w(2A(¢)) :=
{p(F) : F € 2A(¢)}. For a permutation 7 of [n], a subset X of [n], a family F
of subsets of [n] and a class A of such families we put 7 (X) := {w (i) : i € X},
a(F):={n(X): Xe Fl,and 7 () := {7 (F) : F € A}. The class Y is said to
be permutation invariant if w () = 2 for every permutation 7 of [n].
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Lemma 3.2.1. Let A be permutation invariant and let {1, {2 be two cyclic per-
mutations. Then u(A(L1)) = n(A(%2)).

Proof. Let 7 be the permutation that sends ¢{ (1) onto 3 (1),i = 1,...,n. Then
F e ALy iff 1(F) € A). [}

In the following we consider only permutation-invariant classes, so we restrict
ourselves to the permutation

1 2 ... n—-1 n
C:= .
(2 3 ... n 1)

As for 2, we can introduce the sets conv(u (A(C))), e (L (RA(C))), €*(u(AC))). If
2 is hereditary then also 2(C) is hereditary. If 2 is full, then for every X C [n] that
is consecutive in C, the family { X } belongs to 2(C). Thus under these two suppo-
sitions, conv(u (A(C))) also has the form of Theorem 3.1.1, and moreover there
exists the antiblocker (conv(u(2(C))))¢ and the set ¢* (1 (A(C))) of its essential
extreme points.

Theorem 3.2.2. Let U be a full hereditary permutation-invariant class and let
D= ,-‘ldiag(('l'), ever (7 1))- Then conv(u(2)) S D conv(u(A(C))).

Proof. Letcy, ..., c, be the extreme points of conv(u(A(C))). Let F € 2 and
let f be its profile. We have to show that f can be written as a convex combi-
nation of Dcy, ..., Dc,. For any cyclic permutation ¢, let 7(¢) := {X € F :
X is consecutive in ¢} and let f(¢) be its profile. Since f (¢) belongs to 1 (2A(C)),
we can write f (¢) in the form

F@) =) ai@e; witha;(¢) = 0foralli, ) o) =1.

r
i=1 i=1

With each X € F we associate the profile fy of the family { X'}, which is a unit
vector with 1 at coordinate | X|. Finally, let

E:={(X,¢): X e F, ¢isacyclic permutation, X is consecutive in ¢}.

Obviously,
f=>rx
XeF
For fixed ¢,
f@) = Z fx-
X:(X,0)eE

For fixed X, X # 0, X # [n], there exist [X|!(n — | X|)! = (n - 1)!_-,,.5 cyclic

0
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permutations ¢ with the property that X is consecutive in ¢. Hence

: > fx=fx

—_ 1)
(n —1)! X L)EE

Summarizing we obtain

1 1
(n_l)!;Df(;)=(n_l)!Z > Dfy

{ X(X.p)eE
1
=2 T 2 Dfx=2 fx=f
XeF " LuXp)eE XeF

So we have

r

1 r
————(n_l)!;ZaiG)Dci:;(( 1)‘201,(;)) Dc;,

i=1

which is obviously a convex combination of the vectors Dc; since there are in
total (n — 1)! cyclic permutations. |

3.3. Classes of families arising from Boolean expressions

We say that a two-element family { X, Y} of subsets of [n] has the property
S iff X¢YandY ¢ X (Sperner),
I iff XNY#@ (Intersecting),
C iff XUY #[n] (Cointersecting).

We speak of property S, I, C if {X, Y} does not have property S, I, C, re-
spectively. Let B = B(S, I, C) be a Boolean expression of S, I, C; for example,

= (SAI)VC (we write briefly B = SIv C). A family F of subsets of [»] is said
to be a B-family if each two-element subfamily of F satisfies the Boolean expres-
sion B. For instance, F is an (SI v C)-family if for all different X, Y of F, X, Y are
not comparable with respect to inclusion and have a nonempty intersection or their
union is the whole set. Note that the class 2 g of B-families is full, hereditary, and
permutation invariant for every Boolean expression B. Determining the maximum
size of B-families, Gronau [246] developed a reduction technique that allows us
to consider only a small number of Boolean expressions instead of all 2% Boolean
expressions. This reduction method was generalized by Derbala and me [134] in
connection with the study of profile-polytopes. I will not address these technical
questions here. Instead we will study only those Boolean expressions that are most
interesting from the point of view of profile-polytopes. Interesting, but unsolved,
are the questions for B = IC (cf. [199]) and B = IC v T C (cf. [246]), so we will
not discuss these expressions. The following theorem consists of a list containing
the sets €* (1 (A)) and ¢* (1 (2Ap)) and the maximum size of B-families for eight
Boolean expressions B. From the preceding section we know that this list gives
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deep informations for B-families. Certainly the complete proof will be tiring for
the reader. Skipping the “long” cases at first reading is recommended. Later one
can look, if necessary, at the other cases. We use the following notations for vectors
and families of i-element subsets of [n]:

e;:=1(0,...,0,1,0,...,07, where 1 is at coordinate i, i = 1,...,n — 1,
. -1 . -1
wi=C)er vii= (e wii= (el
Hi = ave; V= lre; wi = —..érei,
(i) i—1 ( i )

U= 7v=xe@:1ex) wi={xe®@):1¢x)

Clearly, u;, v;, w; are the profiles of U;, V;, W;. Note that v; + w; = u;,i =
1,...,n—1.

Theorem 3.3.1 (Profile-Polytope Theorem). Let Up be the class of B-families.
Then we have the following essential extreme points and essential facet-defining
inequalities (given by the vector of coefficients) of the convex hull of the profiles
of families from AUp; see Table 3.1.

Here (and in the following proof) all vectors with index 5 (resp. 1’*2'—1) must be
deleted if n is odd (resp. even). Sums in which the lower bound is greater than the
upper bound are defined to be zero.

Before we start with the proof let us make several remarks.

(1) Throughout we may suppose that the B-families do not contain @ and [n] as
members since we are only considering reduced profiles (without fy and f;,).

(2) The difference between an I- and an 7 v C-family is that pairs of comple-
mentary sets are allowed in the second one. The same is true for S/ and
ST v C-families, which are both Sperner families.

(3) SIC-families are also called families of qualitatively independent sets. Here,
two subsets X and Y of [n] are said to be qualitatively independent if they
divide [n] into four nonempty parts (X —Y, Y — X, XNY, [n] — (XUY)).
(It is easy to see that a family with the property that any two members are
qualitatively independent is an S7C-family and vice versa.)

(4) Itiseasy to see that one can add to each member X of an S/C v T C-family its
complement X := [n]— X such that the new family is still an SICV T C-family.
A self-complementary Sperner family is a Sperner family F with the property
that X € F implies X € F. Obviously, F is a maximal self-complementary
Sperner family iff it is a maximal S/C v T C-family.

(5) A complement-free Sperner family is a Sperner family F with the property that
X € Fimplies X ¢ F.The S(IvC)-families are exactly the complement-free
Sperner families.



3.3 Boolean expressions

Table 3.1

95

Essential extreme
points €* (1 (Ap))

Essential facets

e*(u(Ap))

{fu;:1<i<n-1}

n—1
[Z Nil
i=1

Zv,+ EHuj:ls {Bpi:1<i<ji}u
=n-—1i N
on-1 J {”—;‘L(V,‘ +wj) j>
'5%] 5.i+j<n}
— n—i—1 n—1
IvC {Zvj+.z uj:l< {3pi:1<i<3}u
=l =n-—1 .
2”n‘_11+ ! ’ (HLwi+wj):j=>
(LnT—zj) zs%} 2ii+j<nfu{lw,_}
151
SIC {vi:1<i<j}u v+ Z wj]
. i=1
() |wig<izn-y) B
vit+wn_iz1<i<j}u i+
2(n_21) {u } ieT
132 > wj+ps

S<jsn—lin—j¢T

TS{I,...,L”z;'J}]
n—1
S(IvC) {fu;:1<i<n-—1} {Zui}
. e i=1
(ng) if  is odd, if n is odd,
{wi:1<i<n-1, i
. + _ +
l#—'%}U {j;(“j Hn j)

vitwii1<i<%,j=1%

=N i
ori=5%5%<j<n-1}

if n is even

(=vs +

3l

z (Vj + w,,_j) :

j=itl

l<i<?i

]U{Un}

if n is even
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Table 3.1 (cont.)

i1—1 r X
{ui: 5 <i<n-1}u i+ Y-kl
n . . n i=1 k=1
(1%1) {vi+wj:1<i<}, - .
i+j>nju{n} Yo+l
i=ig
n—ip+1
wj+
J=n—igy1+2
H#31<i1<'-~<
i1 = rl-g—l]}
— i—1 r .
SIvce {ui:3<i<n-1}u IZV;+2(1—';’€)*
n . . i=] k=1
), {ritwj:1< 11 .
i<Z,i+j=n E‘;k vi+ %«
n—ix
Y witmps:
J=n—=ikp1+1
1<i <-~-<ir+1=r§1}

(6) For B = 1Iand B = I v C, we could have written in the third column v;
instead of % p;. However, we prefer our notation because of the nice analogy
with €* (1 (A, ) (resp. ™ (u(@As1))).

(7) If B is the Boolean expression that can be obtained from B by interchanging
the letters C and I, then obviously F is a B-family iff F := {X : X € F}is
a B-family since XNY # @ iff XUY # [n]. Thus the extreme points for B-
families can be obtained by reversing the extreme points for B-families; that
is, (x1,x2, ..., Xa—)" = (p—1,...,x2, x1)T (note that u; — up_;, v; >
Wnei, Wi => Vi, i => My_j, Vi = Wy—j, Wi —> Vp_j).

(8) Since many mathematicians contributed to this theorem, it cannot be attributed
to any author in particular. Some historical remarks follow the proof.

Proof. The maximum sizes in the left column of the table follow from a calcula-
tion of max{1%¢ : ¢ € €*(u(Ap))}, using the symmetry and unimodality of the
binomial coefficients (by this maximization we find only maximum B-families
that do not contain @ and [r] since we consider only reduced profiles; only in
the cases I and I v C we have to add [n] to the families in order to obtain the
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real maximum). As an example we show this for B = I v C. Let ¢; be the ith
vector in the set €*(u(2)). Then we have ¢;+) — ¢; = —v; + w,_;_1; that is,
17(ciy1 —ei) = (7)) + (*7") 2 0iff 1 <i < %.Hence

-1
max{1Tc : ¢ € e* ()} = ITCL%J =21y (n ) ) -1
2

| 252

and the addition of 1 (corresponding to [n]) gives the maximum.
Let us note here, that the vectors given in the second column of the list are
profiles of B-families. Indeed, all these vectors have the form

- Tut Tt T
ie) ieh ieh

and it is easy to see that, in each case, ¢ is the profile of the B-family

(Yee(y)e(yr)

To proceed with the proof, we introduce new vectors

u;:=ne; v;:=ie; w;:=(n-—ie;

——
>
€
I
2

r.__ 1, !
ui.—;e, l/i.—.

Obviously, u; = Du},v; = Dv|,w; = Dw,,p; = D~'pl,v; = D™/,
wi = D7l\wi,i =1,...,n—1, where D := % diag((7) ..., (,",))- Let us
replace in the list of the theorem every vector by its “dashed” vector, for example,
u; — u§. If we can show that the “dashed” list is the list for the classes A (C),
then we are done by Theorem 3.2.2, Theorem 3.2.1, and the fact that the undashed
vectors belong to 1 (2 g), that is, also to conv(u (2 g)) — see the remarks earlier. So
let us restrict ourselves to the classes A g(C) and read the list always as a dashed
list. For k, I € [n], let

e k+1,...,1) ifk <1,

[k,l]modn = .
{k,k+1,...,n,1,...,1} ifk>1l.

Thus [k, Ilmod » is consecutive in C. For the sake of brevity, we will omit below
the index mod »n since this will be clear from the context. We say that k is the
starting point and [ is the endpoint of [k, I1mod n. Conversely, every consecutive
set different from [n] has a unique representation [k, /Imod »-

For the proof, we have to verify that the dashed list is correct and complete.
We are doing this by the method described after Theorem 3.1.3. We use also the
notations P and Q. Step 1 is easy to verify since we can argue as before for the
undashed vectors. We have only to use the sets U}, ¥/, W/, which are defined
the same as Uj;, V;, W; but with the additional condition that the elements are
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consecutive in C. Step 4 is easy, too, and therefore omitted here. We still have to
verify Steps 2 and 3. As a warm-up, we start with the easiest case.

Case B = S.

Step 2. We have to show that Z,':l' fi/n < 1forevery F € As(C), that is, for
every Sperner family of being subsets of [n] consecutive in C. This inequality is
true since no point can be a starting point more than once.

Step 3. We have f € Q°iff f > 0 and Z;’;l] fi/n < 1. The convex com-
bination Z;’__flz(ﬁ/n)uf + (1 - Z:’;? f,~/n) u;,_, majorizes f. This proves the
case.

Before we consider the other cases, we will prove two lemmas. Let N;(C) be
the family of all i-element subsets of [n] that are in C consecutive. For F C N;(C),
let

Ve(F):={Y € Ni+1(C) : Y 2 X for some X € F},

and let A¢ be defined analogously. We say that a set B of starting points of members
of F forms a block if B = [k, I] for some k and / but k — 1 (mod ») and [ + 1 (mod n)
are not starting points of any member of F.

Lemma 3.3.1. Let F € N;(C),i = 1,...,n — 1, and suppose that the set of
starting points of members of F consists of m blocks. Then

IVe(F) = |Fl+mifi<n-2,

|Ac(F)| = |Fl+mifi > 2.

Proof. Under the conditions on i, a block [k, /] of starting points for F yields the
block [k —1(mod n), /] of starting points for V¢ (F ) and the block [k, /4 1(mod n)]
of starting points for A¢(F ), and these new blocks are disjoint for different old
blocks. [ |

Lemma 3.3.2. Let F C Ni(C),1 <i < 3, and let F be intersecting. Then

(@) |FI<i,
(b) Ve (F)| > 17l

i+1 i
Proof. (a) Suppose, w.l.o.g., that [1, i] € F. By the suppositions of the lemma
every member of F must have a starting point or an endpoint in [1, i]. Let S (resp.
E) be the set of starting points (resp. endpoints) of elements of F lying in [1, i].
In particular, 1 € S,i € E. Clearly, [1, i] is the only element of F having both
a starting point and an endpoint in [1, i/]. Consequently, |F| = |S| + |E| — 1.
The elements of £ + 1 := {k + 1(modn) : k € E} cannot be starting points
by the suppositions. Thus |S| < i — (|E| — 1) (we cannot exclude i + 1) and
|FI<i—|E|+1+|E|-1=1i.
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(b) Since |F| < i and, by Lemma 3.3.1, |V¢(F)| = |F| + 1, there holds
Ve (F)| -1 1 i+1

e

o

Cases B=/and B=1VC.

We treat these cases together. The proof is outlined for B = I; the particularities
for B = I v C are attached in boxes.

Step 2. The inequalities 4 L <laretrueforalli <3 |i <

,F € Ap(C) by

(S

Lemma 3.3.2(a) | note that F; is intersecting for i < 7; Ja—1 < nis clear |. More-

over, we have to verify the inequalities

n
—fi<1lforj> -,
= lforj> >

i+j<n |j=25,i+j<n

and, equivalently,
M—Dé+ﬁsm
Using Lemma 3.3.2(b) we obtain for our i and j
fi _EL_ Ve
I i n—j
No element of Vg_j i (F;) can be a complement of an element from F; by our

suppositions. Accordingly,

IVaT TN F) < - f,

and we conclude

" i
i Jf<n—y.
Step 3. Let f be a maximal vector satisfying the inequalities

ﬁfl, l<i=<
i

NS
I

”‘J

fi+ —ﬁsl, j>Si+jsn

> I

Jz35,i+j<n,and fu_y1 <n|.

Since f is maximal we have

St S acic
i—1 i - -

. n

(otherwise we could increase f; up to ﬁ fi—1 without disturbing the inequalities).

NS
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We denote the points from the list by

n—i 1
c,-;:Zv Z u lfiSn;
J=i Jj=n—i+1
¢ii=Y o i+, U1 <i<y
With
o = 2L
1 T
fi fi—1 n+1 -
et 2<i< > 251<|_%J,
fl_'%"]“ Ng1-1

Appp1| =1 = ———
l_':f‘.l I_%J_l

we obtain the desired convex combination, satisfying

L5

L3
f= }:,31 aic |.

f= Z o;Cj
i=1

To see this, consider the kth coordinate of the RHS. We have in the kth coordinate

forl<k<|2-1 [1<k<|Z]-1
k(al+-'-+ak)=k%=ﬁh
andfor%ifksn—l S<k<n-1
k(ay + -+ ap_g) + n(otn—g+1 +"‘+(¥L%1J)
ke + -+ ank-1) +nlen—rt +--+ajz) |,
which equals
k—f"“" +n(l1- It kL'"“ +n(1—L—-* ') ,
n—k n—k !

and these terms are not smaller than f} since f satisfies, in particular, the inequality

n—k

1
m.fn—k‘F;ﬁc <1

—k—1
Ry Skt F i fe S 1.

llf k = n — 1, we arrive at the inequality f,—1 < n, which is evident. I If n is

even there remains the value k = § |k = 251

coordinate k, which is not smaller than f; by 4"- <1

. Here we obtain for the kth
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Case B = SIC.
Step 2. We have to show that

3§

1 j= l1J+ln—]

M:

< 1forall F € u(AC)).

i

Let r := min{|X| : X € F} and s := max{|X| : X € F}. We may suppose
that » + s < n, because otherwise we could consider the complementary family
F which is an S7C-family, too. Suppose further that [1, ] € F. By the Sperner
property, every i € [n] can be at most once a starting point (resp. an endpoint) of a
member of F. Since F is an S7C-family, every member of F different from [1, »]
must have either the starting point or the endpoint in [1, 7]. Let S (resp. E) be these
sets of starting points (resp. endpoints) in [1, ]. The elements of E + 1 cannot be
starting points since JF is intersecting and cointersecting. By the arguments used
in Lemma 3.3.2, | F| < r. Consequently, using » + s < n,

i Z _Ji Z 3
i=1 j=151+1" i=

Step 3. Since we have, besides f > 0, only one facet-defining inequality for
Q°, the essential extreme points of Q° must have exactly one nonzero coordinate
and they must satisfy the essential facet-defining inequality. This gives the points
from the list.

Case B=SICVIC.

Step 2. As mentioned in the fourth remark after Theorem 3.3.1, we can add the
complements of members of F to F, and the resulting family is still a B-family.
So we may suppose that f; = f,—;, 1 < i < 5. Consequently we only need to
prove that

> Jf+f’:‘ <L (33)
1<z<7
n
= [Xef:|X|< 5]

u[Xef:|X|=g, 1eX], F=F—F.

Then F; and F;, are SIC-families. From Step 2 of the preceding case we obtain

"+ E n—l_

15i<7 2 1<z<n 1

This verifies (3.3) because f; = f,—;, 1<i<3.
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Step 3. We have f € Q°if f > 0 and

Zf+ 3 £+%51forauTgIl,...,vgl“.

ieT S<i<n—1
n—i¢T
Let
1 . n Sfr
Q; = Tmax{fi,fn—i}, 1<i< 7 ap = —nz
Then f is majorized by zl<,<n ai(vi + wy_) + anun and we have

Yicispoi < 1 (aketheset T := {i € {1,..., %5 =11y . fi > fusi)). Now
we can 1ncrease one of the &’s such that the sum becomes 1 and we get the desired
convex combination majorizing f.

Case B = S(/ v O).

Let n be odd. Since the points u#;, 1 < i < n—1,belongto u(™Assvc)) we have
conv(u (™Asrvey)) 2 conv(i(As)). Every S(I v C)-family is an S-family; hence
conv(pu (™Asrve))) S conv(i(As)). Thus we can apply the results for B = S.

In the following let n be even, n = 2m.

Step 2. We have to verify that f,, < m (this follows directly from Lemma 3.3.2)
and that

Z(ﬁ_i'f" DR Z(ﬁ f'")+(n i)l'ifnforall]:teB(C),
Jj=i+1 J J "
1<i<m. 3.4

Take a family F for which the LHS is maximum. If f,, = O then the LHS is not
greater than n, since we already derived for S-families the relation ;';,' fi<n
So assume that f,, > 0.

Claim 1. If [1, m] € F, then either [2, m + 1] or [m + 2, 1] is in F.

Proof of Claim 1. Suppose that [m +2, 1] ¢ F. Wetrytoadd [2, m +1]to F (if
it is not already there). The only obstacle could be a member X of F that is either
contained in [2, m + 1] or contains [2, m + 1]. In the first case, X has to contain
m + 1, because otherwise it would be a subset of [1, m]. Thus X = [j, m + 1] for
some 2 < j < m+ 1. Similarly, if X contains [2, m + 1] then X = [2, /] holds for
some m + 1 < I < n. Since F is an S-family, at most one of these possible sets
X can be in F. Delete this X and add [2, m + 1] to F. This change increases the
LHS of (3.4), which is a contradiction to our choice of F, and the claim is proved.

O

A pair of complementing, in C consecutive, m-element subsets is called an
equipartition. We say that an equipartition is represented in F iff one of the parts
is a member of F. Claim 1 states that if an equipartition is represented in F then
the neighboring equipartition is also represented. By induction, this results in
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Claim 2. All equipartitions are represented in F; that is, f,, = m. ]

Claim 3. Let X and Y be members of F with sizes different from m. Then
XNY #0.

Proof of Claim 3. Let | X| < |Y|and, w.l.o.g., Y = [1, j]. First suppose j < m.
By Claim 2 and since F is an S-family we have [j + 1, j +m],[m + 1,n] € F.
If X is disjoint to Y, then X must be contained in the union of [j + 1, j + m] and
[m + 1, n], but neither of these sets can contain it alone. Hence [m, j+m+1] C X
follows. But then | X| > j, a contradiction. The case j > m is easier. The set
[m + 1, n] (belonging to F, as above) covers the complement of Y; therefore X
cannot be a subset of Y since F is an S-family. |

Claim 4. Let X and Y be members of F with sizes different from m. Then

XUY # [n).
Proof of Claim 4. In Claims 1-3 we may replace everywhere the family F by
the family F. However, Claim 3 with F is equivalent to Claim 4 with F. m]

The last two claims result in:
Claim 5. F — F,, is an SIC-family. (]

Now we are in position to prove inequality (3.4). We use the corresponding
inequality in Step 2 for B = SIC. We have

i m—1
j=1 #Hlj m
5’2(13 f" )+(n t)i"l<z+(n—z)—fﬁ=

Step 3. We use the algebraic method to determine the essential extreme points
of P€. The polytope is characterized by the system

n
ny, <1,1<i<n-1, i?éE’

. n

iyi+mym <1, 15i<§,

. h .
mym+ @ —jy <1, 5<15n—1,
yi =0, l<i<n-1.
Suppose that y is an essential extreme point. We have

[min{%» Y —mym)),  ifl<k<1,
Yk =

min{{, ﬁ(l—m}’m)}’ if <k<n-1,
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because otherwise we could increase yx. If y, = Othen y is obviously not essential.
If ym = %thenyj =0,1<j<n-1,j#5;thatis, y = vy.Solet0 < y, < %
Then there must exist some i with 1 <i < 7 orsome j with 5 < j < n —1such

that
ny; =landiy; + myyn = 1(resp.ny; = land my, + (n — j)y; = 1),

since otherwise we had at most n — 2 linearly independent equalities for y. For the
case 1 <i < 5 (the case 5 < j < n — I can be treated analogously), we derive

A-5HLl if j=m,

m

,17 fl<j<iorn—i<j<n-1,

Y ,
i ifi <j<m,
ﬁ; ifm<j<n—i,

that is, y has the form given in the table.

Cases B = SIand B =S/ Vv C.

We treat these cases again together, the particularities for B = SI v C are
attached in boxes. This time we change slightly our method of proof. In Step 2
we show that f € (P°)¢ for all F € Ap(C). This yields the desired inclusion
conv(u(™p(C))) € P.In Step 3 we determine the extreme points of P¢, which
will be exactly the points from the table. For both steps, the following lemma is
useful.

Lemma 3.3.3. Let y be an essential extreme point of P€. Then

— 1 1
(a) yl_landy%d—,—, yr=xy
®) (G —Dyi—1 =iy, 2<i<3 |2=2i<3%|,
© (n— )y =@m—j— Dy, 5<js<n-=2,
@ iyi+ G —Dyn—iy1 =1, 2<i<3 |iyi+ipi=1, 1§i<§—l.

Proof. P° is characterized by the following system:

»n <1, (3.5)
ny <1, g—<j5n—1 toj<n—1|, (36)
iyi+ (- py < 1, 151‘5;, itj>n
[1=<i<3 i+j=n], 3.7
%20, l<is<n-L (3.8)
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Let y be an essential extreme point of P°.

(a) These equalities are satisfied, because we could otherwise increase the com-
ponent up to 1 (resp. %) and no other inequality would be violated.

(b) Ifwehad (i —1)y;_ < iy;, then we could increase y;_| until we get equality
in the last inequality without violating any other inequality, so y could not be
essential.

(c) f wehad (n — j)y; < (n — j — 1)yj41, then we could increase y; and use
analogous arguments.

(d) Suppose thatiy; + (@ — Dyn—it+1 < 1 ' iyi +iyn—i < q for some i. Then
we have by (c),

In-1 S22 < - =@ = Dyp—iv1 <1—iy

(yn—lf"'fi)’n—i<1_iyi|

so that we can increase y; such that the supposed inequality becomes an
equality without violating any other inequality of our system. |

Step 2. In order to prove f € (P€)€ it is sufficient to show that

Y <1, e, Y yx=1 (3.9)
XeF
for all y satisfying the inequalities in Lemma 3.3.3 and the inequalities (3.5)—
(3.8). Let r := min{|X| : X € F} and s := max{|X| : X € F}. Recall that we
may exclude the whole set [1] to be a member of F. Thus an SI v C-family is
always an S-family.
Ifr > % r> '2—’ ’ then, by our conditions on y, we have Y y.r yjx| <

Y xer ,—l, and the last sum is not greater than 1 since F is a Sperner family (look
at the case B = §). The case r = 1 is trivial. So we can suppose that

n

2<r<=- |2<r<?Z%|
2

[ ]

Let, w.lo.g., [1,r] € F.

Casel.r +s<n+1 . (For B = SI v C, we can suppose that
[r 4+ 1, n] € F, since we could otherwise add this member to F.) By the Sperner
property no i € [n] can be more than once a starting point (resp. an endpoint) of
a member of F. By the intersecting property of F every member (up to [r + 1, n]
in the case B = SI Vv C) must have either a starting point or an endpoint in [1, ].
Let S (resp. E) be these sets of starting points (resp. endpoints) in [1, r]. Let

Yix| ifi € E,
e =
0 ifi ¢ E,
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where in the first case X is the unique member of F having endpoint 7,
Yix) ifi €8,
Si =
0 ifi ¢S,

where in the first case X is the unique member of F with starting point i.
Claim 1. We have

1 Yn—r+1 .
e +siq1 < ~ =0 eit+sipi<il<i<r—L

Proof of Claim 1. The case ¢; = 5,11 = Oisclear. Ife; > 0, 5,4 = 0, we have

e; = y|x) for some X € F and consequently e; < % < 1 for% <|X|<n-1

r
1 1
3<IX|<n—1llande < gy < tforl < |X| <} [1<|X|<}|If
e; = 0 and s;4| > 0 we can use the same arguments.
So let e, = y|x| and s;41 = y|z| for some X,Z € F. We must have

| X|+1Z] >n | X| 4+ ]Z] > n |in order to ensure the condition X N Z # 0

|orXUZ=[n] I If X and Z have both cardinalities > 75 | >3

2 _ 1
thene; + ;41 < 5 < 5.

So let us, w.l.o.g., assume that r < |X| < 3 r<|Xl<3 |and|Z| > 3

|Z| = 5 | Since we are in Case 1 we have

1Z|<s<n+l-r [|Z]<s<n—r|.

If |Z| < n — r then by (3.7)
r(yix+yiz) 2 | Xlyx + (= 1ZDyjz) < 1,
thatis, e; +s;41 < } If |Z]| = n+ 1 —r, then by the inequalities in Lemma 3.3.3,

r(yix)+y1z) < |1 X1yix)+ryn—rs1
<ry+ (r— 1)}’n—r+1 + Yn—r41 = 14 Yn—r+1,

that is, e +58it1 < %(1 + yn—r+l)~ O

Now we can use this claim to derive for B = SI (note Lemma 3.3.3(d))

r—1
Z Yix) =yt Z(ei + sit1)
i=1

XeF

IA

1
;("J’r + = DA+ yp_rs1))

1
__(r_1+1)__.1
r
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andforB=SIVvC

r—1
1 1
E YIXI| =Yr + Yn—r + E e+si+D)<-+@r-D-=1
XeF i=1 r r

This shows (3.9).

Case2.r+s>n+1 . We proceed by induction on » + 5. We
canstartatr +s =n + 1 , which we settled already in Case 1.

Soletr +s >n+2 . Consider the subfamily F; := {X €

F : |X| = s} of F. We can divide the set of starting points of members of F; into
blocks as before Lemma 3.3.1. Suppose we have m such blocks.

Case 2.1. Every block contains at most n —s elements. It is easy to see that 7/ :=
F — Fs U Ac(Fy) is a B-family, too (the Sperner property is clear and property

1 resp. C |follows by the inequality » + s > n + 2 ).

Claim 2. We have

|-7:s| < AC(]'-S)
n—s n—s+1

Proof of Claim 2. By Lemma 3.3.1, |A¢(Fs)| = |Fs| + m. In view of the
supposition of Case 2.1, |Fs| < m(n — s); hence

].'
sl = el - 17,
n—s
(n—s+ D|Fs| < (n—s)|Ac(F)l.
O
Now we have
Y yixi =Y i+ 1 Fslys — 1B (F)lys-1
XeF XeF'
F, Ac(Fs)
XeF! n—s n—s-+ 1

by the induction hypothesis, Claim 2 and Lemma 3.3.3(c).

Case 2.2. There exists some block B of starting points of members of F; with
|B| > n—s. In this case we do not need the induction hypothesis. Let us remember
that [1, »] € F. The following starting points are possible for s-element members
of F in order to ensure that the corresponding sets do not contain [1, 7]:

2,3,...,n—s+landn—s+2,n—s+3,...,r
andr+1,r+2,...,r +n —s.

Since B contains more than n — s elements, there must be some member of F
with starting point # € B satisfyingn —s+2 <u < r.Denote R :=[1, 7], Z :=
[u,u +5 — 1 — nlmodn- Let us use the notion boundary point for either starting
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point or endpoint. Note that we have

RUZ =[n], (3.10)

any element of [n] — Z is a boundary point of a member from F;
(consider the members having starting points in B), 3.11)

R N Z is the union of two nonempty intervals
I:=[l,u+s—1-—n]land J :=[u, r]. 3.12)

Claim 3. There are at most 7 + s + 1 — n members of F containing [n] — Z.

Proof of Claim 3. Let W # R be a member of F satisfying W O [n] — Z. One
boundary point of W mustbe in /U JU {u — 1, u + s — n} because otherwise one
of the conditions W D [n]— Z, W ¢ Z, W 2 R would be violated. Moreover, if
both boundary points of W belong to / U J U {u — 1, u + s — n}, then they are
both eitherin 7 U {u + s — n} orin J U {u — 1}. Let (W) denote the boundary
point of W beingin /U JU {u — 1, u + s — n} if there is only one. If there are two
such boundary points, let ¢ (#) denote the one that is closer to [n] — Z; in other
words, the boundary point that is larger in / U {# + s — n} and that is smaller in
JU{u —1}. Itis easy to check that y (W) is an injection and that ¥ (W) cannot be 1
orr. Therefore (W) canhaveatmost |[/UJ| = u+s—1—n+r—u+1 =r+s—n
different values. Consequently, the numberof sets W % R, W D [n]—Z, W € F
is at most  + s — n. Including R, we obtain the claim. a

Claim 4. For all X € F, there holds

1
yixi S (== Dynr)) | Yix| < Ta—ryp)

Proof of Claim 4. If | X| < |X| < 5 |then the inequality follows from

GND.I X > 5 | [XI>F | thenyx) < ;and yoorit < 5 | Juor <5

yield the desired inequality since - < }(1 - ’;—l) % < %(1 -2 o

1
n

Claim 5. There are at most 2(n — s — 1) sets X € F satisfying X U Z # [n]
and X # Z, and at least n — s — 1 of them are of size s.

Proof of Claim 5. Such a set X must have one of its boundary points in [n] — Z
(otherwise either X U Z = [n] or X C Z). As always, by the Sperner property,
every point of [n] — Z is a starting point (resp. an endpoint) of at most one member
of F. The point u + s —n cannot be a starting point and # — 1 cannot be an endpoint.
Hence we have at most 2(n — s) — 2 such sets. By (3.11) atleastn —s > n—s—1
of them are of size s. m}
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Now we have finally by Claims 3-5 and Lemma 3.3.3(c) (note s > n —r + 1

[s=n=r]fors=5I
Z Yix| = Yiz1 + Z x|+ Z YiXx|

XeF XeF:XUZ=[n] XeF:XUZ#[n), X+£Z
r+s+1—n
< Yot ————— (= = Dyars) + (1 =5 = Dy

n—s—1
+——-r——(1 = (= DYn—r+1)

=m—=8)ys+ 1= —Dyp—rt1 =1

andfor B=SIvC

r+s+1—n
Y vim < et ————A—ryuy)
XeF r
n—s—1
+(—s—1Dys + —r—(l =T Yn—r)
=m—-8)ys+1—ry— <1

Step 3. We know already that every essential extreme point of P° must sat-
isfy the inequalities in Lemma 3.3.3 and (3.5)—(3.8). So there must exist integers

l <ip <. <i 2(35] 15i1<~--<i,5[%J such that with the

definition iyt := [ | dpgr := [3]

l=y1=2y=--=>G—Dy-1 >0y, =

= (2= Dyip—1 > > gy =+

= (k+1 = DYigyy—1 > oo > bpYi, = -+

= (r+1 = DYy -1 (3.13)
and, for B = S1,

w1 =+ =1 = Dpn—iy+2 < (1 = Dyn—iy41 =

=2 = DYn—ipt2 < <k = DYn—ips1="-+-

= (lk+1 = D Yn—igp42 <+ < (G = Dyn_jp41 ="+~

= (ir+1 = 2)Yn—ipp +2 (3.14)
and, for B= SIv C,

Lyn1 = =01 = DYnoiy41 <i1Yn—iy =-+-

(i2 — l)yn,'2+l << ikyn—ik =
= (k1 = Doy 41 < - <ldpyneip = -+

= (ir41 — Dyn—ipyy+1- (3.19)
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We must find n — 1 linearly independent equalities satisfied by y in (3.5)—(3.8).
We already have by Lemma 3.3.3(a) and (3.14)

1

v == | yg=; |, (3.15)

and for the variables yi, ..., ¥i,—1, Yn—i,+2 , ..., Yn—1 the indepen-
dent equalities (with the definition y, := 0) for B = SI

iyi+ (= Dyn-it1 =1, Im-iy1 =0 (1 <i<ip) (3.16)
and, for B = SI v C,
iy tiym—i =1, Yn-i=0 (1 =i<ip. (3.16)

Let us consider the 2(ix4+1 — ix) variables yi,, ..., Y =1, Yn—iz+1 ,

ey Yn—igg 142 , k =1,...,r. We have by Lemma 3.3.3(d) and

(3.13),

iyi+(— )y = 1forip <i <ipy1—1

andn—i<j<n—ir+1

ln—i<j<n—i| (3.17)

and these are the only equalities in the inequalities (3.7) for the variables consid-
ered. If, conversely, (3.17) is satisfied then, for B = S1,

ikYig =+ = Uk+1 — DYy -1,
Gk — Dyn—ig+1 =+ = (ig41 — 2)yn—ik+1+2, ity + (ke = Dyn—ip+1 =1,

and, for B= SI v C,

igyip =+ = (k1 — DYig -1,
ikyn—ik == (ik+l - l)yn—ik+|+l’
ik Vi + ikyYn—ip = 1.

Accordingly, in the system (3.17) we can choose arbitrarily y,—,,+1
and then the other variables are uniquely determined. Thus the rank of the system
(3.17) is exactly 2(ix4+1 — ix) — 1 and we need one more equality in (3.5)—(3.8)
(independent from the others) for one of the considered variables. By (3.13) this
can only be the equality

S |-

= _1
Yn—ig+1 = In—iy, = 5 |»

which implies

1 i—1 .
i, = __(1— k ) Vi = -%) . (3.18)
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We have seen: If y is an essential extreme point with associated indices iy, . . ., ir,
then it must satisfy (3.15)—(3.18). Conversely, (3.15)-(3.18) yield a unique y,
which satisfies (3.5)—(3.8), so it is an extreme point, which is easily seen to be
essential. In detail, (3.15)—(3.18) yield

1
Yi = 7, 151511_19
1

=0, n—-l1zj>n—ii+2 |[n—12j>n—i1+1|

andfork=1,...,r,

] n

1 i —1 - L
ﬁ=70— ) y=11-%) ik <0 < ipe1— 1,
and in the case B = S/,

1 i —1
y=——2 T n—i+12j>n—igg 42
n—j n

whereas in the case B = S/ Vv C,

1 4 . . .
-—, n—iy>j>n—iy +1.
n—jn

Y =

Consequently, we obtain the extreme points given in the “dashed” list. Thereby
the Profile-Polytope Theorem is proved. ' [ |

Before examining some applications, let us consider the origins of this theorem.
First the maximum size (together with some inequalities) of families satisfying
certain condition was determined. The starting point was Sperner’s theorem (B =
S, easily this gives also the solution for B = SI v C), and the trivial case B = |
was mentioned in [170]. The case B = SI was settled by Milner [370] and the
case B = I v C follows from a result of Erdds [167]. The problems for B = SIC
and B = SIC v TC were solved by Brace and Daykin [83], Bollobds [72],
Katona [297], Kleitman and Spencer [311], and Schonheim [418]. The solution
for B = S(I v C) was given by Purdy [392] (see also Greene and Hilton [231]).
Concerning polytopes the case B = S is trivial. As already mentioned, extreme
points have been determined for the first time by Erds, Frankl, and Katona [175]
(B = S1),[176] (B = I). This was continued by Erdés and me [158] (B = SIC,
B = SICVIC, B = S(IVvC),byDerbalaand me [133] (B = SIv C), and by me
[153] (B = I v C). The first nontrivial complete description of essential facets was
obtained by Katona and Schild [298] (B = SI). The rest was completed by me. We
considered here only some conditions, though there exist several other interesting
results. Concerning the maximum size of families satisfying various conditions we
refer to West [464] and the references therein. Sometimes the polytopes may be
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studied also without Katona’s circle method; see the papers of Frankl and Katona
[199] and of Erdds and me [159].

Now let us come to some applications. As in the proof of the theorem we can find
the maximum size of B-families F with the additional property thata < | X| < b
for all X € F where a and b are some fixed numbers. To do so, one has to use in
(3.2) the objective function given by the vector w with

1 ifa<i<hb,
w; =
0 otherwise.

I will not list all the formulas here (for reference cf. [249]). Moreover, we can
derive several LYM-type inequalities (originally not proved in this context) by
specializing some facets, but this is not my aim. I provide instead four examples
with a more interesting objective function w.

Leté&, ..., & be independent random variables, each taking value 1 with prob-
ability p and value 0 with probability 1 — p. Liggett [341] proved the following
lower bound for a convex combination of the /s, I [153] added the upper bound.

Theorem 3.3.2. Letay,...,ay, be positive real numbers with ZLI a; =1, and
let p > % Let

if n is even,
R:= n—1 n—1 n+1 . .
(%_I)PT(I —p 2  ifnisodd.

Then
“ n\ . )
pP= P(Ol1§1 + -t an, > %) < Z (i)pl(l — )" +R,
i=|"4)

and the bounds are the best possible.

Proof. Let Fi := (X C [n]: Xy < 3}and Fp = (X S [n]: Y xai =
%}. Obviously, F) is a C-family (containing @) and > is an I Vv C-family (con-
taining [n]). We have

P(algl + tee +an§n < %) = Z pIXl(l —_ p)n—|X|’
XeF,

P(“lEl 4o gk, > %) - Z ple(l _ p)n—IXl.
XeF
Let f; be the full profile of F; (i.e., with coordinates fp and f,), and let w =
(wo, . .., w,)T be given by w; := p'(1 — p)"~,i = 0,...,n. In order to ob-
tain the lower bound (resp. the upper bound) we have to maximize w™f for
f € u®@c) (resp. for f € u(A 1ve))- For the lower bound, we take the “re-
versed” vectors from the table (extreme points) for B = I, add a 1 at a new
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0-coordinate, a 0 at a new n-coordinate, yielding the vector

O B N NGRS )

I < 1 <
1 .
— — 2

< easy to calculate

It is
-1\ . .
wh(cir1 =€) = (';_l)p’(l—p)" : ( ) - py
1 . —2i
=(?4)Gm mﬂ( ))fa
i=1,...,|-n—2|—1J

Hence the maximum is attained at the vector ¢, and we have

n—1
-1\ . .
wiep =) (n ; )P’(l -p)"'=1-p.

i=0

We then have to maximize w'¢;, 1 <i < —42'—

Consequently,
Plargi+ - +angn 2 3) = 1 = P(ardi + -+ + ankn < 3)
1-(1-p) =

For the upper bound, we take the vectors from the table (extreme points) for
B = Iv C,add a0 at anew O-coordinate, a 1 at a new n-coordinate. By the same
method we find that the maximum is attained at the last vector of the list (i = 5 ]).
This gives the value mentioned in the assertion. To see that the bounds are the best

v

possible, take for the lowerbound ar:=1,a2: = o := 0 and for the upper
bounde) = =@y =5 Lifn 1sevenanda1 = n_2H,a2 = =, = n+l
if n is odd. |

Let P = {p1, ..., pn} be a set of pairwise different primes. Let k be a positive
integerand m = p’l‘ S p,’f . We say that two divisors z and 2z’ of m are qualitatively
independent if there exist p, ¢ € P with p|z, p|Z’, q t z, q t 2’ and if the existence
of some r € P with |z, r { 2/ implies the existence of some s € P with s { z, s|2’.

Theorem 3.3.3. Let Q be a set of pairwise qualitatively independent divisors of
m =p{‘~-pﬁ. Then

n—1 % k
J ; S L
19l = ( It )k where j* : [(n 1)k+ 1"

and the bound is the best possible.
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Proof. Forz € Q,let D(z) := {i € [n] : pi|z}. Obviously, Fp := {D(z) : z € Q}
is an SIC-family. For X C [n], there are exactly kX! divisors z of m with X =
D(z). Thus |Q| < ZXE]—'Q kX1, We take w = (wy, ..., wy—1)T with w; := k.
To obtain an upper bound for |Q| we have to maximize w™f for f € u(s/c).
Consider the extreme points of the list for B = SIC. It is not difficult to show that
the upper bound is attained at wjx with j* = [(n — 1) ki_l]' To see that the upper
bound is the best possible, take Q := {z|m : | D(z)| = j* and p; 1 z}. ]

A family F in S = S(ky, ..., k) is called statically t-intersecting if for all
x, y € Fthereexist? coordinates iy, ..., iy suchthatx;;, y;;, > 1forj=1,...,¢.
For x € S, we define the support of x by supp(x) := {i € [n] : x; > 1} and the
support of F by supp(F) := {supp(x) : x € F}. The following fact is immediately

clear:
Proposition 3.3.1. F C Sis statically t-intersecting iff supp(F') is t-intersecting.

For an application of the polytope method, we consider the special case t = 1 and
k = ki = --- = ky, and look for maximum statically 1-intersecting families in
N;i(S), 1 < i < kn. Examples of such statically 1-intersecting families are the
families F; := {x € N;(S) : j < |supp(x)| <n— jandx; > 1} U {x € N;(S) :
| supp(x)| > n — j}.

Theorem 3.3.4. One of the families F; is a maximum statically I-intersecting
Sfamily in N;(S).

Proof. Let W;(k,n) := |N;(S(k, ..., k))|. For any statically 1-intersecting family
in N;(S) and for any 4 € supp(F), we can add to F all x € N;(S) satisfying
supp(x) = A. This gives W;_|4)(k — 1, | 4]) possibilities. Thus the maximum size
of a statically 1-intersecting family is given by

max Z Wisjqtk—1,14)): G S 201 ig intersecting} .
Aeg

Theorem 3.3.1, case /, shows that the maximum is attained at one of the families F}.

n

It appears to be difficult to determine the right value of j exactly. In Section 7.3
we treat the problem (also for # > 1) from an asymptotic point of view. We will see
that for i = [An] in almost all cases the desired maximum is either asymptotically
equal to F} or to W;(k, n).

The following fourth application was given by Erdés, Frankl, and Katona [175].
Consider injective words with letters from the alphabet 1, . . ., n, that is, sequences
X = x| ...x; with x; € [n] forall i and x; # x; whenever i # j. A subword of x
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is a sequence of the form x;, ...x;, 1 <ij <--- < i < k. Let W, be the poset
of injective words over [n] ordered by “being subwords.”

Lemma 3.3.4. The width of Wy, is given by di(W,) = nl.

Proof. Writing the n! permutations of [#] as injective words gives an antichain of

size n!; hence dy(W,) > n!. The n! chains x| < xjx2 < --- < x1...Xxn, Where

X1 ...Xpn is a permutation of [r], cover the whole poset Wp,; hence d) (W,) < n!.
]

Theorem 3.3.5. Let A be an antichain in W, with the property that for any
X, y € Athereis some letter i being neitherinx norin y. Then |A| < (n—1)!+1,
and the bound is the best possible.

Proof. With each word x = x;...x; we associate the set of its letters L(x) =
{x1,...,xx}. Let 4 be an antichain with the aforementioned properties, let G :=
{L(x) : x € A}, and let F be the family of maximal elements in G. If X € F,
then by Lemma 3.3.4, 4 can contain at most | X|! members x with L(x) C X.

Consequently,
1< Y 1XIL

XeF
Obviously, F is an SC-family, and we can suppose @, [n] ¢ F. This time we take
the weight-vector w = (wy, ..., w,—1)T with w; := i!, and we have to maximize

wIf for f € u(R™sc). We take the reversed vectors from the list (extreme points)
for B = SI.For the vectors u;,1 <i < ’—5, we have

zv(:') <(—-DI+1,

and for the vectors v; + wj,i 4+ j <n,5 < j <n —1 we have

. (n—1 =1\ _i(n—1)! (n—1)!
"(,-_1)”!( J )_ ! Ta—1=

< n—j—Dmn-1) (n-=1)!
G+ D! (n—-1- )
<@mn-D'+1

(forj=n —land j = n —2 this can be calculated directly and for 5 < j < n—2
one uses 'ET—-I%)'I < % and (n—_,l—_—ﬁ < %). Also the vector w,_| gives only the value
(n — 1)!(::}) < (n — 1)! + 1. Consequently we derived the upper bound. To see
that it is the best possible, take all words with n — 2 letters from [n — 1] and the

one-letter word n. [ ]
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The flow-theoretic approach in
Sperner theory

The general Sperner problem consists in determining the maximum weight of an
antichain or a k-family in a weighted poset and in describing all or at least some
optimal families (in the k-family case it is sometimes called the Sperner-Erdds
problem — as early as in 1945 Erd6s [165] proved that the Boolean lattices have
the k-Sperner property). There are several other min (resp. max) problems related
to the Sperner problem, and we will discuss them in this chapter, too.

If the poset is not specialized in any way, we can, of course, only derive some
general formulas for the maximum weight. Min—-max theorems are very impor-
tant. In order to give the reader an impression of such theorems we discuss Dil-
worth’s theorem, which is as fundamental as Sperner’s theorem. It relates an-
tichains of a poset to partitions of P into chains — that is, to sets D of pairwise
disjoint chains in P such that each element of P is contained in exactly one such
chain.

Theorem 4.0.1 (Dilworth’s theorem [136]). The maximum size of an antichain
in a finite poset P equals the minimum number of chains in a chain partition.

Proof (Perles [381]). The inequality “<” follows from the fact that each chain can
contain at most one element from some fixed antichain. Thus it is sufficient to find
for each P an antichain A and a chain partition © with | 4| chains. We prove this
existence by induction on |P|. The case | P| = 1 is trivial. So consider the step
< |P| - |P|.

Case 1. There is a maximum antichain A that is different from the set of minimal
elements and from the set of maximal elements of P. Let F (resp. I) be the
filter (resp. ideal) generated by 4. Clearly, F C P and I C P (strict inclusion).
Moreover, FNI = A (p € F N I implies the existence of aj,a; € A with
ay < p<a,ie,ag=p=ax € A;AC FNlisclearand FUIl = P

116
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(if there was some p € P — (F U I) then A U {p} would be a larger antichain).
Since A4 is also a maximum antichain in the posets induced by F and [ there are
chain partitions ® r and D, of F and [ into | 4| chains. Obviously, each chain of
D (resp. D) must start (resp. end) in 4. Thus we may glue them together in the
elements of 4, which gives a chain partition of P into | 4| chains.

Case 2. If 4 is a maximum antichain, then A4 consists of all minimal or of all
maximal elements of P. We choose a minimal element p and a maximal element
q with p < gq. Obviously, the maximum size of an antichain decreases from P to
P —{p, q} by 1. The induction hypothesis gives us a chain partition of P —{p, q},
which together with the chain p < g is a desired chain partition of P. [ ]

Generally, min—max theorems can be derived from the Duality Theorem in lin-
ear programming together with often nontrivial considerations on integer optimal
solutions. Instead of this Duality Theorem our starting point will be the Max-Flow
Min-Cut Theorem of Ford and Fulkerson [183] and Elias, Feinstein, and Shannon
[145] and its generalization to min—cost flow problems.

Pioneering work in this direction was undertaken by Ford and Fulkerson [184]
deriving Dilworth’s theorem from the Max-Flow Min-Cut Theorem, and by Gra-
ham and Harper [228] relating the shifting technique to flow problems. Another
pioneer, Frank [186], proved with the min-cost flow approach simultaneously
deep min-max results for k-families (i.e., unions of k antichains) by Greene and
Kleitman [233] and for unions of k chains by Greene [229]. The advantage of
this method is that it not only gives the min—max results in question, but it also
provides algorithms that efficiently determine the optima. Though this method
was used mainly in the nonweighted case, I present it here for the weighted case
because in several circumstances large posets can be reduced to small posets by
flow morphisms, a notion that was introduced and first investigated by Harper
[258]. The algorithms then run much more quickly if they are applied to the
small weighted posets. For instance, if the small weighted posets are chains, the
problems become more or less trivial and structural results can be derived for
the original poset. Because of the importance of these flow techniques, we will
not refer to other books but present main results in a separate section.

4.1. The Max-Flow Min-Cut Theorem and the
Min-Cost Flow Algorithm

Let G = (V, E) be a directed graph. Let s and ¢ be two distinguished points of
V', the source (resp. the sink), and let ¢ : E — R be a given nonnegative valued
function, the capacity. Then the S5-tuple N = (V, E, s, ¢, ¢) is called a network;
in the following we are dealing with such networks. A flow on N is a function
f : E — R satisfying the following conditions:
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> fley=Y_ fleyforallpeV—{s,t}  (conservation of flow) (4.1)
e =p et=p
and,

0< f(e) <c(e)foralle e E (capacity constraints). 4.2

For any 4, B C V, put
fA4.B):= Y fle),
e~ €Ad,eteB
and let us define c(4, B) analogously. An ordered partition (S, T') of V (i.e.,
SNT =@, SUT =V,and S,T # P)iscalledacutif s € Sandt € T. For
example, ({s}, V — {s}) and (V' — {t}, {t}) are cuts. The value v(f) of the flow f
is defined by
v(f) = fUs}, V —{sh) — f(V — (s}, {sD).

Moreover, ¢(S, T) is called the capacity of the cut (S, T). Not surprisingly, the
flow f is called maximal and the cut (S, T) is called minimal if v(f) > v(f")
for all flows f” and c(S, T) < c(S’, T') for all cuts (S’, T'). We speak of integral
flows f (resp. integral capacities ¢) if f,c: E —> N.

Lemma 4.1.1.

(a) For any cut (S, T) and any flow f in N, we have f(S,T) — f(T,S) =
v(f) <e(S, 7).

(b) Iffor the flow f and the cut (S, T) the equalities
cle) ife- €S, etel, i.e., if e is saturated ,
0 ifet€S,e” €T, |ie,ifeisvoid

f(e)=[

are satisfied then f is maximal and (S, T) is minimal. Furthermore, v(f) =
c(S, T).

Proof. (a) In view of (4.1), (4.2), and ¢ ¢ S we have
v(f) = fsh,V = {sh — f(V — (s}, {sh +0

SDIVICEDY f(e)+( > S@- ) f(e))

e~ =s et=s —eS—{s} eteS—{s}
=) fleo-Y f
e~ €S eteS

= f(S,8)+ f(S,T)— (f(S,S) + f(T,S))
= f(S,T)— f(T,S) <c(S,T)—0.
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(b) From the proof of (a) we observe that v(f) = ¢(S, T)if (S, T) = c(S, T)
and f(T, S) = 0 - that is, if the conditions of the lemma are satisfied. But then
for any other flow f’ and cut (S’, T’) because of (a)

v(f) e, T)=v(f) <8, T).
]

Remark 4.1.1. Note that we do not need the capacity constraints (4.2) to define
v(f). Also without these constraints we have f(S,T) — f(T,S) = v(f), since
in the proof of (a) we needed for this equality only the conservation of flow (4.1).

Now we are able to prove the central result of Ford and Fulkerson [183] and Elias,
Feinstein, and Shannon [145], which we formulate first only for integral capacities
since this case is interesting for combinatorial applications.

Theorem 4.1.1 (Max-Flow Min-Cut Theorem). Let N = (V,E,s, t,c) be a
network with integral capacity. The maximum value of an integral flow in N equals
the minimum capacity of a cut in N.

Proof. By Lemma 4.1.1 we only have to show that there is an integral flow f and
a cut (S, T') such that the condition of Lemma 4.1.1(b) is satisfied. We determine
f recursively. We start with fo = 0 and assume that we have already constructed
integral flows fp, ..., fi. Then we build recursivcly a vertex set S; which we
consider later as a set of labeled vertices. We start with S;o := {s} and assume that
Sio, - .., Sj; are given. Let

Fij:={q €V —§;;: thereissome p € S;; such that pg € E and
fi(pg) < c(pg) orgp € E and fi(gp) > O}.

Case 1. F;; # (. Then we take some g € F;; and set S;, ;41 := §;; U {q}; that
is, we label vertex g.
Case 2. F;; = @; thatis, forall p € S;5,g € V — S

lc(pq) if pg € E,
filpg) = '
0 ifgpe E.
Since V is finite, Case 2 must hold for some j. At that moment or if earlier ¢ € S;;
we put §; := S;;.
Now again two cases are possible:

Case 2.1. ¢t € S;. Then there must be a sequence of pairwise distinct points
(po, p1, ..., pr) (called the flow-augmenting path) with an associated sequence
(e1, ..., ex) of arcs such that pg = s, py = ¢ and

either e =p—1p and fi(e)) <cle)) (e is aforward arc)

or ee=ppi-1 and fi(e) >0 (e is a backward arc).
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Let

€t := min{c(e;) — fi(er) :e/isaforwardarc, I=1,...,k},
€~ := min{ f;(er) :e/isabackwardarc, I =1,...,k},
€ := min{et,e7}.

Then we obtain the new flow f; by
fi(e) + € if eisaforward arc,
fi+1(e) = { fi(e) —e if eisabackward arc,
fi(e) if e is not an arc in the flow-augmenting path.

As illustrated in Figure 4.1, the flow conservation condition (4.1) is satisfied by
fi+1. The capacity constraints (4.2) are satisfied by definition of €. Obviously,
fi+1 is an integral flow since € is an integer, and v(fi+1) = v(f;) + €. Note that
€ is positive, hence € > 1.

t t t t

S S S

777

S S S S

Figure 4.1

Case2.2.t ¢ S;. Then f = fiand (S, T) = (S;, V — ;) are a flow and a

cut satisfying the conditions of Lemma 4.1.1(b).
Since the value of any flow is bounded, for example, by the finite capacity of
the cut c({s}, ¥V — {s}) and since the flow value increases in each step by at least
1, after a finite number of steps Case 2.2 must appear. |

Remark 4.1.2. (a) The Max-Flow Min-Cut Theorem remains true if there is not
given for any arc e a capacity constraint f(e) < c(e). For such arcs, we write
c(e) := 0o. But we must suppose that there is at least one cut of finite capacity
(this was the only condition we needed at the end of the proof).

(b) Instead of integral flows and capacities we can work with rational flows
and capacities. The result remains true since we can multiply by the common
denominator of the capacities.

From the practical point of view it is enough to consider rational capacities. If
we have real capacities we do not have a better lower bound for € than 0. So
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we cannot show that the preceding procedure terminates. Moreover, there exist
examples (cf. Lovasz and Plummer [356, p. 47]) where the flow values v(f;)
do not converge to the maximum flow value. But we still have some indeter-
minacy in our procedure. We have not specified which point ¢ we label, that
is, include into §; j4+1 in Case 1 of our procedure. The possible points, the el-
ements of Fj;, are called fringe vertices. We collect iteratively the fringe ver-
tices in a queue and take them by the principle “first in, first out” (FIFO). Tak-
ing the point ¢ from the queue and putting it into the set S; j;1, we obtain
the following new fringe vertices, which we append at the end of the queue:
{reV —Si+1:qr € Eand fi(gr) < c(qr), orrqg € E and fi(rq) > 0}.In
order to find the flow-augmenting path in Case 2.1, we store in the queue together
with the fringe vertices r the point g (with + or —) which led to r (by a forward,
resp. backward, arc). Then the path can be determined recursively beginning from
t. Moreover, we store together with » the largest possible € = €(r) with which
the flow change works. Obviously we have €(r) := min{e(q), c(qr) — fi(gr)},
for a forward arc (resp. €(r) := min{e(q), f;(rq)}, for a backward arc). In Case
2.1 we have then € := €(¢). This is the so-called labeling algorithm using breadth
first search (BFS).
Without proof we mention the result of Edmonds and Karp [144]:

Theorem 4.1.2. The labeling algorithm using BFS determines after O(|V || E|?)
steps the maximum flow and minimum cut in the network N = (V, E, q, s, ¢) with
c: E— R,

Since by this theorem the algorithm terminates (or because of a continuity argu-
ment) we have in particular:

Corollary 4.1.1. Let N = (V, E,s,t,c) be a network withc : E — Ry. Then
max{v(f): fisaflowin N} = min{c(S, T) : (S, T) isa cut in N}.

The presented algorithm is easy to understand and to implement; see also Sedge-
wick [423] and Systo, Deo, and Kowalik [449]. For more refined versions of flow
algorithms, we refer to Tarjan [451], Jungnickel [279], and Mehlhorn [363].

Now let us assume that we have for N a further integral functiona : E — N,
the cost function. The cost a(f) of the flow f is defined by

a(f) =Y fle)ale),
ecE
and we are interested in a flow having minimal cost and some value vy given
in advance. The idea of Ford and Fulkerson [184] is to use a further function

7 : V — N, the so-called potential function, for a primal-dual approach. Let us
first prove an important lemma.
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Lemma 4.1.2. Let f be a flow of value vy in the network N with integral cost a.
Then f has minimum cost with respect to all other flows of value vy if there is a
function mt : V. — N with the following property:

0 if m(g)—n(p) <a(pg),
flpg) = ) forallpg € E, (43)
c(pg) if m(g)—n(p)>a(pq)
and

7(s) = 0. @.4)

Proof. For all pq € E, define a(pq) := a(pq) + 7 (p) — n(g). Further let g be
any flow of value vp. Then (using Lemma 4.1.1(a) and the conservation of flow)

a(g) =Y gleale)— Y n(p) Y g+ w(g) ) gle)

ecE pevV e~ =p qevV et=q

=Y gle)ale) + Y m(p)eW —{p). {p) — gip}, V — (p))
ecE pev

=Y gle)ale) + m(t)vo — 7 (s)vo
ecE

= Z g(e)a(e) + vom (t).
ecE

Consequently,

a(g) —a(f) =) _(gle) — fle)a(e) = 0
ecE
since every item of the last sum is nonnegative:
Ifa(pq) <0, ie.,n(g)—n(p)>a(pq) then f(pq) = c(pq) = g(pq).

Ifa(pq) >0, ie,n(q) —n(p) <a(pq) then f(pg) =0 < g(pq).
[ ]

Remark 4.1.3. If f and rt satisfy the conditions of Lemma 4.1.2, then we derive
JSfrom the proof
a(f)= Y. cle)ale) +vor ().

ecE:a(e)<0

The following theorem shows that the converse of Lemma 4.1.2 is also true. Its
algorithmic proof is of practical (and for us also of theoretical) interest.

Theorem 4.1.3. Let N be a network with integral cost a. Let v* be the maximum
value of a flow in N and let 0 < vy < v*. Then there are a flow f in N of value
vo and a function & . V — N such that (4.3) and (4.4) hold.
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Proof. We will construct f and 7 iteratively, starting with fop = 0 and 7y = 0.
For fixed m, consider the network N, = (V, En, s, t,c), where E; :={e € E :
m(et)—m(e”) = a(e)}. Observe that changing a flow satisfying (4.3) and (4.4) on
N, does not violate these two conditions. Assume that we are given some flow fi
and some potential function 7rx. Now we apply the preceding labeling algorithm to
Ny, , but starting with f;. More exactly, in looking for a flow-augmenting path we
admit only arcs from Ey, ; thatis, a point g is a fringe vertex if there is some labeled
point psuchthat pg € Ey, and fy(pg) < c(pg)orqp € En, and fy(gp) > 0. As
before, we come after finitely many steps (repeatedly augmenting the flow along
paths) to a flow fi41, a set g4+ of labeled vertices and a set T4 of unlabeled
vertices with ¢ € Ty such that

cle) ifm(et) —mi(e™) =a(e)ande™ € Syy1, et € Tpyy,

Jiv1(e) = I

0 if mp(e?) —mr(e™) =a(e)ande™ € Tyyy, et € Spy
4.5)

(the finiteness is clear if we have rational capacities, and for real capacities we can
use the arguments of Edmonds and Karp in Theorem 4.1.2).

We change in this phase the flow value from v( f;) to v(fx+1). Note that we
can also obtain every value between these two values since in Case 2.1 we need
not change the flow by the maximum possible value € (we can take every €’ with
0 < € < €). Given fy+1, Sk+1, and Ti41, we change the potential function
defining

T 1(p) = 7k(P) P S,

m(p)+1  if pe Tiyy.
It is important to note that (4.3) and (4.4) remain valid in this case: (4.3) could be
violated (using the integrality of a and ) only if 7 (q) — mx(p) = a(pq) and
P € Sk+1,9 € Ty (butthen (4.5) gives fry1(e) = c(pq))orif mi(q) — 7 (p) =
a(pq) and p € Tiy1,9 € Sk+1 (but then by (4.5), fr+1(e) = 0). Now we
may continue with the labeling algorithm on the new network Ny, ,,. We show
that if f;1; is not maximal in N, then we change the potential function only
a finite number of times. Assume the contrary. Then we obviously have Sx4+; €
Sk+2 € ....Sothere mustbe an index / such that Sy = S;41 = ....But f;4 is not
maximal; hence by Lemma 4.1.1 there exists an edge e € E such that f(e) < c(e)
ande” € §;,et € Tyor f(e) > 0and et € S, e~ € T;. In view of (4.3), (4.4),
and (4.5) (with / instead of k£ + 1), we must have m;(e™) — m;(e™) < a(e) (resp.
n(eT)—m(e”) > a(e)). Soafter afinite number of changes of the potential, the arc
eisincluded into the network Ny, forsomem > /,butthen S, 2 SU{e*T} D &

(resp. Sm+1 2 S U {e”} D §)), a contradiction.

Summarizing, the algorithm works as follows: We change the flow a finite
number of times, then the potential a finite number of times, then the flow a finite
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number of times, and so on such that (4.3) and (4.4) are satisfied. It is easy to see
that there cannot be a flow-augmenting path in N, froms tozif w(z) > )", g a(e).
By the preceding remarks we come to the maximal flow after at most ), . a(e)
changes of the potential function and then the algorithm terminates. [ |

Remark 4.1.4. If for fixed potential w the flow value in the network Ny is in-
creased by €, then the cost increases by m(t)e€ since the first sum in Remark 4.1.3
remains constant.

Let us prove finally a technical lemma concerning flows in networks on directed
acyclic graphs (dags). Here a dag is a digraph G = (V, E) in which there are no
points pg, ..., pr such that p;piy; € E,i =0,...,k—1,and pypo € E. For
example, the Hasse diagram of a poset is a dag. A directed elementary flow (def)
in a network N is a flow f for which there exist points s = pg, p1,..., p =t
(forming a directed chain) such that p; p;+1 € E,i =0,...,] — 1, and

1 ife=pipiy1,i =0,...,1—1,
0 otherwise.

f(e)=[

We define and denote the support of a flow in N by supp(f):={e € E :
f(e) > 0}.

Lemma 4.1.3. Let N be a network on a dag with a directed chain from the source
to the sink, and let f be a flow in N. Then f is a nonnegative combination of
directed elementary flows; that is, there are defs fi, ..., fi and nonnegative real
numbers My, ..., A suchthat f = A1 fi + -+ A fi. If f is integral, the \’s can
be taken to be integral, too.

Proof. We construct this combination by decreasing recursively | supp(f)|. We
may assume that |supp(f)| > 0. Then there is some arc p; p;+; such that
S(pipi+1) > 0. Suppose first that p; # s and p;+; # t. By the conservation
of flow, (4.1), there must be arcs p;—) p; and p;+1 pi+2 with positive flow. In the
same manner we find arcs p; 2 p;_1 and p;42 p;+3 and so on. No point can appear
twice, because we have a network on a dag. Thus the procedure must end after
finitely many steps, say at pop; and p—; px. Stop is possible only if pg = s and
Pr = t. Now define A := min{ f(p; pi+1),i =0, ..., k— 1}. Obviously, | > 0.
Further set

1 ife=pipiy1,i=0,...,k—1,
P

0 otherwise.

Evidently f’ := f — A fi(e) is a flow on N with smaller support. Now we do the
same for f”, finding A, and f; and so on. We are done if supp(f) = @. The claim
concerning integrality is clear by construction. [ |
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4.2. The k-cutset problem

Although we are more interested in k-families, we start with k-cutsets (defined in
this section) since the application of the flow method is a little bit easier for them,
and of course we also need them later. For the poset P, let €(P) be the set of all
maximal chains in P. A subset F of P is called a k-cutset if |F N C| > k for
all C € €(P). Let ko be the smallest number of elements in a maximal chain of
P. Obviously, k-cutsets exist only for 0 < k < k. The k-cutset problem is the
following: Given a weighted poset (P, w), determine

ck (P, w) := min{w(F) : F is a k-cutset}.

Here we set cx (P, w) := oo if k > ko. The k-cutset problem can be considered as
an integer linear programming problem. If we relax it we arrive at the definition
of a fractional k-cutset. This is a function x : P — R such that

> " x(p) = kforall C € €(P),
peC

0<x(p) < lforall pe P.

In the fractional k-cutset problem we have to determine

c;(P, w) := min lz w(p)x(p) : x is afractional k-cutset ¢ .
peP

Note that the fractional k-cutset problem reduces to the k-cutset problem if we
require, in addition, that the solutions are integral.

Here and in the following we deal simultaneously with the given problem and
its dual. Given a general primal linear programming problem of the form

Ax+By+Cz < a
Dx+Ey+Fz =b
Gx+Hy+ Kz > ¢
x>0
2 <0
d"x + €'y + Tz — max
where 4, ..., K are matrices and a, . .., f are vectors of suitable dimension, its
dual is defined to be the problem
A"u+ D +G"™w > d

BTu+ E"w+ H™w = e
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C'u+Fv+K'w < f

u>0

w <20
a"u+b"v+c¢"™w — min.

It is easy to verify that the objective function at an admissible solution of the primal
problem cannot be greater than the objective function at an admissible solution
of the dual problem. The Duality Theorem in linear programming (cf. Schrijver
[421]) states that both optima are equal to each other provided that both problems
have admissible solutions or that one problem has an optimal solution.

The dual problem to the fractional k-cutset problem is the following: Find
y:€(P) > Ryand z: P — Ry such that

Y. YO —z(p) s w(p)forall pe P, (4.6)
Ce€(P):peC

and the function
vy, 2) =k Y »C)-Y zp)
Ce€(P) PpEP

is maximized.
By duality we have for any fractional k-cutset x (resp., in particular, for any
k-cutset F) and any functions y, z satisfying (4.6)

Y w(px(p) = n(,2) (esp. w(F) > yi(y, 2)). 4.7
PEP

We can see this inequality also directly: We have

w2 =k Y. yO) - zp)

CeC€(P) peP
< Y (Zx(p)y(a) - z(p)
Cee(P) \peC pepP
= ( > x(py(©) —Z(p)) <Y x(pw(p).
peP \Ce€(P):peC peP

Theorem 4.2.1. Let ko be the smallest number of elements in a maximal chain of
the weighted poset (P, w). Then for each 0 < k < ko — 1 there exist a k-cutset
Fy, a (k + 1)-cutset Fy4 and functions y : €(P) —» Ry, z: P — R, satisfying
(4.6) such that

w(Fr) =y, 2) and w(Fip1) = ey (3, 2).
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Fy and Fy4 are optimal k- (resp. (k + 1)-) cutsets and y, z are optimal solutions
of the dual to the fractional k- and (k + 1)-cutset problem. In the case k = 0, we
can choose z = 0.

If w is integral then y and z can be chosen integral, too.

Proof. We will apply the algorithm of the proof of Theorem 4.1.3 in order to
find Fg, Fx+1, y, and z. With our poset (P, w) we associate the network N =
(V, E, s, t, c) with cost function a as follows: V :={s,t}U{p: pe P}U{p’:
p € P} (where s and ¢ are new vertices), E := {sp : p is minimal in P} U {p’r :
p is maximal in P} U {ef,,l) =pp': pe P}U {ef,z) =pp i pe PYU{p|p2:
p1 < pa}.

Here the union is understood in the multiset sense; we have two arcs from p to
p’, one denoted by e, the other by ef,z). The capacity and cost are defined by

w(p) ife= e},l) for some p € P,
cle) =

00 otherwise ,

1 ife= eﬁ,z) for some p € P,
a(e) .=
0 otherwise .

The construction of the graph is presented in Figure 4.2 (the arcs are directed
upward). Obviously, G = (V, E) is a dag. Moreover, with a directed elementary

t
5’
5
5
3’ 4,
4
3 3 4
1 2’
1 2
1 2
P
s
G=(V,E)
Figure 4.2
flow falongs, p1, p}, P2, P) ..., pi, pj. t of value 1 we can associate the (max-

imal) chain C = (pp < p1 < --- < p;) € €(P). If f is any flow in N then, by
Lemma 4.1.3, f can be written in the form

f=MmA++Xufm, Ai=0, fiisadefforalli.
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Thus we may associate with f the function y : €(P) — R, defined by

A;  if C corresponds to f; as above,
¥ = )
0  otherwise.
Note that in this correspondence
fEM+1EP)y = > wo0), (4.8)
Ce€(P):peC
a(f) = Y f(e?), 4.9)
PEP
v(f) = Y ¥O. (4.10)
Cec(P)

Moreover, if 7 is a fixed potential functionand 7 (t) < ko, then N has a cut of finite
capacity, because otherwise there would have to be a flow with arbitrary large value.
That is, there must be a def s, p1, p}, ..., pi, p;, t going through ef,zl), ceey eg)
and this is by the construction of N, only possible if w(p1) — 7 (s) =0, 7 ( p’l) -
n(p1) =1, 7(p2) —n(P) =0,..., e(p) —n(p) =1, 7(t) —w(p)) =0
which implies 7 (¢#) — m(s) = 7w (¢) = > ko = minimal number of elements in a
maximal chain, a contradiction to 7 (¢) < kgp.

Accordingly, the finiteness of our algorithm is ensured until 7 (¢) is changed
from ko — 1 to kp. Now consider a situation where 7 is some actual potential with
() = k,0 <k < ko, and f is a corresponding actual flow. Define F := {p €
P:n(p)—mn(p)=1).

Claim 1. F is a k-cutset.

Proof of Claim 1. During the algorithm, condition (4.3) is always satisfied;
hence (since c(e},2)) = o0) n(p) —n(p) < 1forall p € Pand n(et) —
m(e”) < 0 for all arcs in E which are not of the form pp’. Consequently, if
C = (p1 < p < --- < py) is a maximal chain in P then 7 (s) = 0, 7w (p1) —
n(s) <0, m(p) —w(p) < 1, m(p2) —w(p}) <0,..., w(p) —7w(p) <
1, m@) — J'[(p;) < 0. Because the sum of the values on the LHS is 7 () = k, we
must have at least k-times on the RHS a one; that is, we find at least k points p in
{p1,..., oy} with m(p’) — w(p) = 1. Therefore |FNC| > k. m]

Claim 2. w(F) = kv(f) — a(f).

Proof of Claim 2. Let F; :== {pe F : a(p) =i (e, n(p) =i+ 1)}, i =
0,...,k—1.Of course,

k—1
w(F) =Y w(F). @.11)
i=0

The set S; of all points of ¥ having potential value < i and the complement
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T; := V — S; define a cut (S;, T;) in the network N. By Lemma 4.1.1(a) we have
v(f)=f(S, ) — f(T;, 8), i=0,....k—1 (4.12)

Moreover, we have
[T, 8)=0 (4.13)

since for every arc e € E withe™ € T;, et € S; there holds m(et) — w(e™) <
i — (i + 1) < 0, which implies by (4.3) that f(e) = 0. We have f(S;, T;) =
3 peF; f (eﬁ,l)) + f (ef,z)) since (see the proof of Claim 1) the potential difference
of the arcs can be at most 1, and it is equal to 1 only for arcs of the form pp’.
Moreover, we know by (4.3) that the arcs ef,l) with p € F; must be saturated;
consequently f (ef,l)) = w(p) forall p € F; and

[T =wE) + ) f(e?). (4.14)

PEF;
From (4.11)—-(4.14) we derive that

kv(f) =w(F)+ ) feP).

peF

Because of (4.3) we have

a(f)=)_ fe@) =Y fe?),

peP peF

which yields the assertion. m|

The actual flow f corresponds to a function y : €(P) — R, as presented
earlier. Define z : P — R by z(p) = f (e},z))‘ Then, in view of (4.8) and
f (ef,l)) < c(ef,l)) = w(p), y and z satisfy condition (4.6). Because of (4.9) and
(4.10),

v(y, 2) = kv(f) —a(f).

Claim 2 then yields w(F) = y(y, 2).

In the situation where the potential of  changes fromktok+1, 0 < k < kp—1,
the actual flow f;4 defines the functions y and z, and the two potentials ¢
(before the change) and i+ (after the change) define as previously a k-cutset
F, and a (k 4 1)-cutset Fi4, with the desired properties. Since by (4.7), for
any other k-cutset F, and for any other functions y’, z’ satisfying (4.6) it holds
w(F}) > w(y, 2) = w(F) = (), z’), Fy and y, z are optimal, and the same
is true for Fyy . Until 7 (¢) changes from O to 1, the arcs eﬁ,z), p € P, are still void
since they are not included in the graph G . Thus for k¥ = 0 the defined function
z satisfies z(p) = O forail p € P.

If w is integral, then the flow algorithm and the algorithm of Lemma 4.1.3 work
only with integer values; thus also y and z are integral. n
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Many min—-max theorems of this nature can be found in the survey of Schrijver
[420]. The fact that there are y and z corresponding to a k-cutset as well to a
(k + 1)-cutset is called ¢-phenomenon by Hoffman and Schwartz [270]. The flow-
theoretical approach gives a natural insight into this #-phenomenon.

Corollary 4.2.1.

(a) We have ci (P, w) = cj(P, w) for 0 < k < ko.
(b) There is a function y : €(P) — Ry such that c| (P, w) = y1(y, 0).

Proof. (a) Obviously, cx (P, w) > c;(P, w). Take from Theorem 4.2.1 some
k-cutset Fj and functions y, z. This gives, in view of (4.7),

ck(P,w) < w(Fy) = yi(y, 2) < ¢ (P, w).

(b) We have in our construction co(P, w) = yo(y, z) and c| (P, w) = y1(y, 2)
with z = 0. n

Let us finally look at the important case when w = 1 — that is, at unweighted
posets P.

Corollary 4.2.2. We have

(@) min{|F| : Fisak-cutsetin P} = max{kt + |CyU---UC,| — Z,'-=1 |C;l}
where the maximum ranges over all t > 0 and collections of maximal chains
Ci,...,Cs in P. Moreover, the chains Cy, ..., C; can be chosen in such a
way that for them the maximum in the above equation is attained not only for
the parameter k but also for the parameter k + 1.

(b) The minimum size of a 1-cutset equals the maximum number of pairwise
disjoint maximal chains.

Proof. (a) The LHS equals w(Fy) (resp. w(Fi+1)) in Theorem 4.2.1. So we
have to show that the RHS equals yx(y, z) (resp. ¥k+1(y, z)) in Theorem 4.2.1.
Given our optimal integral y and z satisfying (4.6) we find a collectien Cy, ... ., C;
of maximal chains by taking each chain C € €(P) exactly y(C) times; that is,
t = ZCE(EUD) y(C). Letus put £(p) := |{i : p € C;}|. Then because of (4.6),
0 < ¢(p) < 1 + z(p). Moreover,

|Ui_; Cil = l{pe P:¢(p) =1}

and

t
Yo oww=Y =Y Icl
i=1

PEP(p)=1] PEP
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Thus
) =k— Y zp— Y. zppsk— Y @@ -1
PEP:L(p)=0 pEP(p)=1 PEPL(P)=1
t
=kt — ) _ICil+1Uj_, Cil.

i=1

This means that the optimum yk(y, z) is not greater than our RHS.

Conversely, if Cy, ..., C; is such an optimal collection of maximal chains,
we define y’(C) to be the number of times that C occurs in that collection and
Z'(p) := max{0, ¢ (p) — 1}, where ¢ (p) is defined as above. Then y’ and z’ satisfy
(4.6) and

t
w(/,Z)=kt— Y @p-D=k-)Y |Cl+|U_, Cl
peP(p)=1 i=1

This means that our RHS is not greater than yx (), z’) < yx(y, z) where y and z
are the optimal functions.

(b) Clearly, the maximum number of pairwise disjoint maximal chains is a lower
bound for the minimum size of a 1-cutset. To prove that it is an upper bound we
use (a). Consider an optimal collection Cy, ..., C; for the RHS in (a) with k = 1
where ¢ is minimal. Then these chains are pairwise disjoint. Assume the contrary,
for example, C;—1 NCy # @. Then |CyU---UC;| —|C1U---UC—1| < |Cs| —1;
hence, (1 = 1) +|C1U---UCi_i| = T2  ICil Z 14]C1U--- UG = Ti, ICil,
contradicting the optimality of C, ..., C; and the minimality of ¢. |

By the way, it is not true that the minimum size of a family F in P meeting
every maximal antichain at least once (called fibre) equals the maximum number
of pairwise disjoint maximal antichains. This is shown by the following example
of Lonc and Rival [351]; see Figure 4.3.

a4l

Figure 4.3

4.3. The k-family problem and related problems

In contrast to a k-cutset, a k-family is a subset F of P satisfying |FNC| < k forall
C € €*(P), where C*(P) is the set of all chains in P. This definition is obviously
equivalent to the one in Section 1.2. It is also easy to see that we could restrict
ourselves to the set €( P) of all maximal chains, but in the succeeding construction
we find also some nonmaximal chains. Recall that the k-family problem is the
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following: Given a weighted poset (P, w) determine
di(P, w) := max{w(F) : F is a k-family}.

Before we proceed further with k-families, note that in a certain sense the k-family
problem is nothing more than the 1-family problem — that is, the Sperner problem.
Let 2((P) be the class of all antichains in P. It is easy to verify that 2(P) becomes
a poset if we define for 4, 4’ € A(P) that 4 < A’ if for all p € 4 there is some
p € A withp < p'.

Lemma 4.3.1. If F is a k-family in P, then there exist k pairwise disjoint an-
tichains Ay, ..., Ay suchthat Ay < --- < Ay and F = Uf.‘=lA,~. Conversely, the
union of k pairwise disjoint antichains is a k-family.

Proof. The second claim is trivial and the first one follows by induction on &: Let
A1 be the set of all maximal elements of F' (which is an antichain). Then F — A4,
is a (k — 1)-family and by the induction hypothesis we find the corresponding
antichains A4,, ..., Ag. [ |

Let Cy be the chain (0 < 1 < --- < k — 1). Given the poset (P, w) we define
the poset (Px, wg) by P, := P x Cy, wg(p,i) := w(p) forall p € P,i € Cy.
The following theorem goes back to an idea of Saks [405].

Theorem 4.3.1. We have dy(P, w) = d1(Py, wg) fork=1,2,....

Proof. “>." Let A be an antichain in (P, wy) such that wi(4) = di (P, wg).
Define F := {p € P : (p,i) € Aforsome i}. Then F is a k-family in P with
w(F) = wi(A).

“<.’Let F beak-family in P with w(F') = di (P, w). We partition F according
to Lemma 4.3.1 into & (possibly empty) antichains, where 4y < --- < A;. Then
we define 4 = Uf.‘=1(A,~,i) where (4;,i) := {(p,i) : p € A;}. Then 4 is an
antichain in P, with wi(4) = w(F). |

In the preceding construction we have constructed a “larger” poset. Berenguer,
Diaz, and Harper [46] proposed a flow algorithm for the determination of di (P, w)
where the number of vertices is essentially (k + 1)| P|. We may avoid the factor
k + 1 in the size of the network if we use the method described below, which also
gives more theoretical insight into the optimization problems.

A fractional k-family is a function x : P — R such that

> x(p) < kforall C € €*(P),
peC

0<x(p) <lforal pe P,
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and the fractional k-family problem consists in the determination of
di (P, w) := max Z w(p)x(p) : x is a fractional k-family ; .

peP

Dual to this linear programming problem is the following: Find y : €*(P) - R4
and z : P — R such that

Z ¥(C) +z(p) > w(p) forall pe P 4.15)
CeC*(P):peC

and the function

Sy 2=k Y yC)+ ) z(p)

CeC*(P) peP

is minimized. It follows by duality (and can be seen, as for the k-cutsets, directly)
that for any fractional k-family x (resp. in particular for any k-family F)

Z w(p)x(p) < &(y,z) (resp. w(F) < &(y, 2)). (4.16)
peEP

Theorem 4.3.2. For each k = 0, 1, ..., there exists a k-family F, a (k + 1)-
family Fyi\ and functions y : €*(P) - R,z : P — Ry satisfying (4.15) such
that w(Fy) = 8;(y, z) and w(Fy+1) = Sg+1(¥; 2). The families Fy and Fy4 are
optimal k- (resp. (k + 1)-) families and y, z are optimal solutions of the dual to
the fractional k- and (k + 1)-family problem. If w is integral, then y and z can be
chosen integral, too.

Proof. Let us apply again the algorithm of the proof of Theorem 4.1.3. This time
we consider the following network N = (V, E, s, t, ¢) with cost function a:
V :i={s,t}U{p: pe P}U{p’: pe P}  (sandt are new vertices),
E:={sp:peP)U(pt:pePYU{pp’:pe PYU{gp": p<gq).
The capacity and cost are defined by
w(p) ife=spore= p'tforsome p € P,
cle) =

00 otherwise,

1 ife= pp’forsome p € P,
a(e) :=
0 otherwise.

For the construction of the network, see Figure 4.4. First of all we will discuss
a correspondence between flows f in N and functions y : €*(P) — R, and
z: P - Ry.
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t

5

3 4

1 2

P
s
G=(V,E)
Figure 4.4

Let f be given with value v( f) and costa( f). Let f, be the directed elementary
flow (def) through s, p, p’, t. Obviously,

fl=r=> s,
pEP
isaflowin N of value v(f’) = v(f) —a(f). Since f'(pp’) = Oforall p € P we
can consider f” also as a flow in the network N’ which arises from N by deleting
all arcs pp'.

Now consider a third network Np = (Vp, Ep, sp, tp) (without a capacity),
where Vp := P U {sp,tp}, Ep := {spp : p € PYU{ptp : p € P}U
{pg: p<gq})

For the construction of the new network, see Figure 4.5. For given f’ in N’

tp

5 5

3 4 3 4

1 2 1

P
sp
Np
Figure 4.5

(which was obtained from f in N), we define a flow fp € Np as follows: We set
f'@qp) ife=pq,
Jre):={ w(p)— f(pp’) — f'(sp) ife=spp,
w(p) — f(pp) — f'(P't) ife= ptp.
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Then the conservation of flow is satisfied for fp, since for all p € P

Y fele) = wp) - fpp) - f'P'D+ ) f'ap)

e~=p 9>p

= w(p) - f(pp), (4.17)
> frle) = w(p)— f(pp) — f'sp) + Y f'(pg)
et=p q<p

= w(p) — f(pp)), (4.18)

and the capacity constraints fp(p) > 0 are satisfied by the definition of the capacity
in N (resp. N'). We have

v(fp) = Z frispp) =w(P) —a(f) —v(f) =w(P) —v(f). (4.19)

peEP
(Vp, Ep) is a dag; hence we can write again fp as a nonnegative combination of
defs:
fP =A1fl +"'+A‘mfm,A-i > 0.
Each f; goes through certain vertices sp, pi, ..., p;,tp where C := (p; < -+ <

p) € T(P).
Thus we may define

A;  if C corresponds to f; as above,
¥(C) = )
0  otherwise.
Then
v(fp) =+ A= Y, O, (4.20)
Cee*(P)

and in view of (4.17) and (4.18)
wpp) - fp)= Y, yO). “4.21)

Cee*(P):peC
Finally, if we define z(p) := f(pp’) for all p € P, we have y : €*(P) —> R,
and z : P — Ry satisfying (4.15) with equality and
&y, 2) = kv(fp) +a(f) = kw(P) — v(f)) +a(f). (4.22)

Of course, we can also go this way backward; that is, having functions y and z we
can construct a flow f in our original network N such that (4.22) holds.

So our final task is the construction of a k-family Fg, a (k + 1)-family Fi; as
well as a flow f in N such that

w(F) = k(w(P) —v(f)) +a(f),
w(Fi+1) = (k+ Dw(P) —v(f)) +a(f).
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Now let us run the algorithm of the proof of Theorem 4.1.3. Consider some actual
potential w with w(t) = k and some actual flow f. Define F := {p € P :
n(p") —n(p) =1}.

Claim 1. F is a k-family.

Proof of Claim 1. Assume that there are py, ..., pr+1 € F such that p; <

- < pr41. Since the arcs pip;_,,i = k+1,...,2, have infinite capacity
and because of (4.3) we have 7 ( p,f_ ) — m(pi) < 0 for all i. Consequently,
O<a(p)=n(p)—-1<ap)-l=npy)—-2<- <a(p+1) k=
n(piy) — (k+1) < () — (k+ 1) < 0, a contradiction. O

Claim 2. w(F) = k(w(P) — v(f)) + a(f).

Proof of Claim 2. Let F; := {p € F : n(p) = i (il.e.n(p’) =i+ 1)},
i =0,...,k— 1. We repeat the beginning of the proof of Claim 2 for k-cutsets
(Theorem 4.2.1) and find that

v(f) = f(Si, T, (4.23)

where S; is the set of all points of ¥ having potential value < i, T; := V — §;,
i=0,...,k—1.
LetA; :={pe P:n(p) >i},B;:={pe€ P:a(p’) <i}. Then

[T =) fep+ Y flpD+ 3 f(pg"

PEAi PEB; peP—A;,qeP—B;,q<p

= w(d) +w(B)+ Y f(pp)) 4.24)
PEF;

since the arcs sp, p € A4;, and p't, p € B;, are saturated by (4.3) (note 7 (s) =
0, 7 (t) = k), and the only arcs pq’ with 7(p) < i, w(q’) > i are arcs pp’ with
n(p) =i, m(p’) =i+ 1, again by (4.3) (these arcs all have infinite capacity). We
have

Fi =P —(4:UBy), (4.25)

sincepe P—(4; UB)iff n(p) <i,n(p’) >i-thatis,iff 7 (p) =i,n(p’) =
i + 1. Moreover,

w(d4; N B;) =0. (4.26)

Assume the contrary. Then there is some p € A4; N B; with w(p) > 0 and
(p) > i,m(p’) < i.The arcs sp and p’t are saturated and the arc pp’ has zero
flow by (4.3). Thus there must be further points ¢, r € P such that f(pq’) > 0
and f(rp’) > 0 implying w(q’) = n(p) > i and n(r) = n(p’) < i. But by
the construction of the network, g < pand p < r; thatis,q < r andrq’ € E.
This is impossible since w(g’) — w(r) > 0 and rq’ has infinite capacity. From
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(4.23)—(4.26) we derive
v(f) = w(P) —w(F) + Y _ f(pp),
PEF;

and summing up these equalities fori =0, ...,k — 1 gives
kv(f) = kw(P) — w(F) +a(f),
w(F) = k(w(P) —v(f)) +a(f).

O

In the situation where the potential of ¢ changes from & to £ + 1 we get our
desired k-families F and Fr4). The additional assertions in the theorem follow
as for k-cutsets. |

Corollary 4.3.1. We have dy(P, w) = djf (P, w) forall k.

Let us look also at the case of unweighted posets — that is, w = 1. Here Dilworth’s
Theorem 4.0.1 comes out very easily.

Corollary 4.3.2. We have
(a) (Greene and Kleitman [233]).
max{|F| : F is a k-family in P}

= min I Z min{|C|, k} : ® is a chain partition ofP]
CeD )

Moreover, the chain partition ® can be chosen in such a way that the minimum
in the above equation is attained not only for the parameter k but also for the
parameter k + 1.

(b) (Dilworth [136]). The maximum size of an antichain equals the minimum
number of chains in a chain partition of P.

Proof. Of course, (b) follows from (a) with k = 1. So let us prove (a). If F is any
k-family and © is any chain partition, then

|Fl= ) IFNCl< ) min{|CI.k}.
Ced Ced
Furthermore, let y and z be our optimal functions from Theorem 4.3.2. In the proof
we noted that y and z satisfy (4.15) with equality. Sincew = 1, y : €*(P) — {0, 1}
andz: P — {0, 1}. If (C) = 1, then |C| = £, since otherwise we could change
y(C) to zero and z(p), p € C, to 1 obtaining a smaller value in the objective
function. The functions y, z provide the chain partition ® whose chains are all
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C € €*(P) with y(C) = 1 and the one-element chains { p} with z(p) = 1. Finally,
Z min{|C|, k} = 8¢ (y, z) = max{| F| : F is a k-family},
CedD
which proves the claim. [ |
A partition D is called k-saturated if the minimum on the RHS of Corollary
4.3.2is attained at . This corollary says that for each k there exist chain partitions
that are simultaneously k- and (k + 1)-saturated. There are posets for which chain

partitions being k-saturated for every k£ do not exist. An example was given by
Greene and Kleitman [233]; see Figure 4.6. Moreover West [466] constructed

Figure 4.6

posets having no chain partition that is k-saturated for any two nonconsecutive
values of k (not exceeding the largest number of elements in a chain).

Corollary 4.3.3. The difference diy1 (P, w) — di (P, w) is decreasing.

Proof. Again take the optimal families Fy, Fi+1 from Theorem 4.3.2 and consider
the flow f yielding these families. Then (note Claim 2 in the proof of Theorem
432)
di+1(P, w) — di (P, w) = w(Fi41) — w(Fi)
= (k+ Dw(P) —v() +a(f)
—(k(w(P) —v(f) +a(f)) = w(P) —v(f).

Since the flow value increases during the algorithm with increasing k, the difference
w(P) — v(f) decreases. [ ]

We still continue the discussion of the proof of Theorem 4.3.2. An antichain
partition 2 of P is defined similarly to a chain partition. Remember that every
k-family is a union of & antichains.

Corollary 4.3.4. We have
(@) (Greene [229)])
max{|F| : F is a union of k chains in P}

= min[ Z min{|A|, k} : 2 is an antichain partition of P]
Ae )
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Moreover, the antichain partition 2 can be chosen in such a way that for it
the minimum in the preceding equation is attained not only for the parameter
k but also for the parameter (k + 1).

(b) (Mirsky [371]) The maximum size of a chain equals the minimum number of
antichains in an antichain partition of P.

Proof. Again (b) can be derived from (a) with £ = 1, but I encourage the reader
to prove (b) directly.

For any union of & chains and any antichain partition A, we have |F| =
Yo seu |FNA| <Y 4co min{|A|, k} since each antichain 4 can contain at most
min{| 4|, k} elements of F. Consequently, max < min. Let us look at the proof of
Theorem 4.3.2 in order to prove max > min . Since w = 1, we are working with
integral flows and integral functions y, z. For fixed potential 7, let us increase the
flow value always only by 1 (one could possibly do more along flow-augmenting
paths, but in that case increase iteratively by 1). The maximum flow value in N is
w(P) = | P|. We achieve a situation where v(f) = | P| — k. Let 7 be the actual
potential. Then by (4.19)

v(fp)=IP|—(PI-k) =k

In view of (4.20) there are at most k chains C with y(C) > 0. Thus the union F of
these chains is a union of & (possibly empty) chains. Because of (4.15) F contains
at least all elements p with z(p) = 0, hence

|F| > |P| =" 2(p) = |P| —a(f)
peP
(remember that z(p) = f(pp")).

We find as follows the partition into antichains: Suppose that kp := 7 (¢). In
the proof of Claim 2 we worked with sets F;,i = 0,...,ky — 1. Each F; is an
antichain, since otherwise there would be p,q € F; with p < ¢ and n(p) =
n(g) = i,m(p’) = m(@’) = i + 1, which is impossible since gp’ is an arc of
infinite capacity but having potential difference greater than its cost. Look at the
antichain partition 21 whose antichains are Fp, ..., Fx,—1 and the one-element
classes {p} with p € P — F. Then, noting Claim 2,

Y min{|4],k} < kko+|P| - |F]|

Aed
= kko + |P| — ko(IP| — v(f)) —a(f)
= kko + |P| — kok — a(f) = |P| —a(f).
Thus we found F and 2 with
|F| = ) min{|A], k}
Aet

yielding the desired inequality max > min.
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The situation where for fixed potential 7 the flow value f changes from | P|
— (k + 1) to | P| — k yields the antichain partition 2, which is optimal for the
parameters k and k + 1. |

There exist several proofs of the results in Corollaries 4.3.2-4.3.4. Let us men-
tion here Fomin [182], Hoffman and Schwartz, [270], Saks [405], and in partic-
ular Frank [186], whose proof for the unweighted case is the basis of our proof
of the weighted case. Generalizations and related results are by Edmonds and
Giles [143], Linial [348], Berge [48], Hoffman [269], Saks [404], Gavril [219],
Cameron [91], Cameron and Edmonds [90], Felsner [180], and Sarrafzadeh and
Lou [414]. In particular for Dilworth’s theorem there are a lot of different proofs,
for example, by Dantzig and Hoffman [120], Fulkerson [205], Tverberg [454],
and Harzheim [264]. For more informations, we refer to the above paper of Saks
[404] and to the surveys of Hoffman [269], Schrijver [420], Berge [49], and
West [465].

4.4. The variance problem

Given a poset P, a function x : P — R is called a representation of P if
x(q) —x(p) > 1forallg > p.

This notion was introduced by Alekseev [23] in order to find an asymptotic formula
for the width of products of posets; see Section 7.2. An example of a representation
is the rank function r if P is ranked, and, in general, the height function 4. Note
that 4 can be calculated as a special case of the critical path method (cf. Sedgewick
[423]): Label the minimal elements p of P with h(p) := 0. Let, after some steps,
S be the set of labeled vertices. Then look in the next step for some minimal
unlabeled point g (i.e., there is no unlabeled point below g) covering a labeled
point p with largest label and put 4(g) := h(p) + 1. Continue until all points are
labeled. By induction it follows easily that the calculated value 4 (p) is really the
height of p.

The height function of a small poset is illustrated in Figure 4.7. Now consider
again positively weighted posets (P, w). For the representation x of ¢P, w) (i.e.,
x is a representation of P), we define the expected value (also called mean) py
and the variance 02 by

= w(P) > w(p)x(p)

peP

w(p)x?(p) — u2,
peP

2. 2 _
of i= ( By 2, WPE(P) — )’ =

1
w(P)
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S = N W I

Figure 4.7

respectively. Note that u, and 0’x2 can be defined for any function x : P —
R. The variance problem is the following: Given a weighted poset (P, w), find
a representation x such that axz is minimal with respect to all representations.
Such a representation is then called optimal. Though it follows easily from a
compactness argument that optimal representations really exist — in other words,
that the minimum is attained — we will derive this fact from the finiteness of the
algorithm below. The variance of an optimal representation is called the variance
of (P, w) and denoted by o2(P, w). First we need some technical details. The
following lemma is obvious.

Lemma 4.4.1. Let x be a representation of (P, w), and let y(p) = x(p) + ¢

for all p € P. Then also y is a representation of (P, w), and p, = jx + c,

2 _ 42
oy =o;.

For a nonempty subset F' of P, we define its expected value by

1
ua(F) 1= oo ;w(p)x(p),

and put puy (@) := oo. Note that p, = p,(P).
Lemma 4.4.2. Letx : P — R be any function and let F and I be disjoint subsets
of P with ux(F) < uy, and puy(I) > py. Define ye : P — R by
x(p) +ew(l) ifpeF,
Ye(p):= | x(p) —ew(F) ifpel,
x(p) otherwise.

Then w,, = ux and 036 is strongly decreasing for 0 < € <

1
w(F)+w(l) (/-Lx(l) -
ux(F)) =: €o.

1 — 1 3 Mx(D)=px(F)
Proof. The equality 1y, = puy is easy. Moreover, if 0 < € < T RETTOR



142 The flow-theoretic approach

i 2 _ i 2 ! 2.2
deo)’e - de (Ux + w(P) (;w(P)((x(P)+GW(I)) X (p))

+ ) w(p)((x(p) — ew(F))* - x%p))))
pel
_ 2w(Hw(F)

wx(I) — ux (F)
w(P) (w(F) + w)) (e — —————-—) < 0.

w(F)+w()
]

Lemma 4.4.3. If g is an increasing (resp. decreasing) function from P into R,
then g is the sum of a constant and a nonnegative combination of characteristic
Sunctions of filters (resp. ideals); that is, there are filters (resp. ideals) Fi, ..., F
and real numbers \g, A1, ..., Ap with Ay, ..., A\ > 0 such that
]
g=X+ ) AioF.

i=1

Proof. We consider only increasing functions, the other case is analogous. It is
enough to prove the statement for nonnegative functions g with A9 = 0 since
each function can be written as a nonnegative function plus a constant, say Ag.
Now we prove this special case by induction on the support | supp(g)|. The case
| supp(g)| = O is clear. If | supp(g)| > O, put F; := supp(g). Obviously, Fj is a
filter. Further put A, := min{g(p) : p € F;}. Then g’ = g—A1¢F, is nonnegative,
increasing, and has smaller support size. The induction hypothesis applied to g’
gives the result. [ |

Let E be the arc set of the Hasse diagram H(P) of P. For a given representation
x, define

Ey:={ec E:x(et)—x(e") =1)}.

The graph G, = (P, Ey) is said to be the active graph. The poset whose Hasse
diagram is G is called the active poset and denoted by P,. Finally, a function
[+ P — R, such that

Y S ) f©) = w(p)x(p) - py) forall pe P,

et=p e~=p
fe) =0 foralle € E — E,
is called a representation flow on (P, w) relative to x. For the sake of brevity, we
set
pf= Y fle.
et=p

The following theorem was proven for unweighted posets by Alekseev [23]. We
present our own proof of the weighted case.



4.4 The variance problem 143

Theorem 4.4.1. Let x be a representation of (P, w). Then the following conditions
are equivalent:

(i) x is an optimal representation.
@ X peP w(p)g(p)(x(p) — ux) = 0 for all increasing functions g : P, — R.
(i) ux(F) = py for all filters F in Py.
(v) wux(I) < uy forall ideals I in P;.
(v) There exists a representation flow on (P, w) relative to x.

Proof. In view of Lemma 4.4.1 we may restrict ourselves to representations x
with u, = 0.

(ii) = (i). Let y be another representation of P with 1, = 0. Then g = y —x is
an increasing function from P into R since fore € E, we have y(et) —y(e™) > 1
(y is a representation) but x(e*) — x(e~) = 1. We want to show that 03 > orxz;
that is,

> w@y () = Y w(px(p). 427

peP pEP

From (ii) with u, = 0 and g = y — x we obtain

2) wPy(px(p) = 2 w(p)x*(p). (4.28)
peEP pEP
Evidently,
Y w(@(p) —x(p)? = 0. 4.29)
peP

Addition of (4.28) and (4.29) gives the desired inequality (4.27).
(i) — (iii). Let x be optimal and assume that there is some F in P, with
wx(F) <0= py.Let I := P — F. Then obviously u,(I) > 0. Let
1

€] 1= DT o) min{x(et) —x(e”) —1: ee€ E — E,}.

By definition of Ey, €; > 0. Now consider the function y, from Lemma 4.4.2 for
0 < € < min{eo, €}. By the following reason, ye is a representation: Since x is a
representation we must consider only arcs pg with p € F, g € I. The set Fis a
filter in Py, thus pg € E — E,. Finally

Ye(q) — ye(p) = x(q) — x(p) — e(w(I) + w(F))
> x(g) — x(p) — min{x(e*) —x(e”)—1:e€ E — Ex} > 1.

From Lemma 4.4.2 we obtain o < o2, a contradiction.
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(iii) — (ii). Write g in the form of Lemma 4.4.3. Then

I
Z w(p)g(p)x(p) = Z w(p) (Ao + ZA,-«pp,) x(p)

peEP peP i=1

i (Z w(p)x(P)pF, (p))

pPEP

iw(F)px (F;) > 0.

1
doa
i=1

1
oA
i=1

(iii) < (iv). This assertion follows from the facts that F is a filter in P, iff
I =P — Fisanidealin P, and pu,(F) > py iff uy (P — F) < py.

(iii) © (v). For each representation x with x, = 0, let us define the network
N = (Vn, En, s,t,cx), where Viy .= P U {s, t}(s and ¢ are new vertices), Ey :=
EU{sp: pe P}U{pt: p € P} (rememberthat E = {pq : p < q}),

max{0, —w(p)x(p)} ife=sp,pe P,
max{0, w(p)x(p)} ife=pt,peP,
0 ife e E — Ey,

cx(e) =

00 ife € Ey.

An example of the new network is illustrated in Figure 4.8.

S

Gn = (Vn,EN)
Figure 4.8

Claim. Condition (iii) holds iff ({s}, ¥~ — {s}) and (¥x — {t}, {t}) are minimal
cutsin N.
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Proof of Claim. First note that

eV — (e}, {t) — c({s), V — {s)) = )_ max{0, w(p)x(p)}

PEP
— max{0, —w(p)x(p)}

=) w(px(p) =0;
peEP

that is, both these cuts have equal capacity. Let (S, T') be any cut of finite capacity
inNandlet F:=S—{s},I :=T—{t} (= P—F).Then F and I are a filter and
an ideal in Py, respectively, since otherwise there would be some p € F, g € |
with p < q and pq € E,, but then c(pq) = oo in contradiction to the finiteness
of the cut capacity. Conversely, if F is a filter in P, and / := P — F, then
S := FU{s}, T := I U {¢t} define a cut of finite capacity. For these cuts, we have
c({s}, V —{s}) < c(S, T) iff

Y exlsp) < Y exlsp)+ Y ex(pt),

peP pel peF
Y exlsp) < ) ex(p),
pEF pEF
0 < Y (max{0, w(p)x(p)} — max{0, —w(P)x(p)}),
peF
e =0 < w(F)u(F) =) w(p)x(p).
pEP

Thus ({s}, ¥ — {s}) has minimal capacity iff u,(F) > O for every filter F in P;.
m]

By the real version of the Max-Flow Min-Cut Theorem (Corollary 4.1.1) and
in view of Lemma 4.1.1, the cuts ({s}, Vx — {s}) and (Vy — {¢t}, {¢}) are minimal
iff there exists a flow fy in N (the maximal flow) such that the arcs sp and pt
(p € P) are saturated. Given such a flow fy, its restriction to E has the properties
of a representation flow since fore € E

cx(sp) + pf = Py +ex(pn),
pf — p; = max{0, w(p)x(p)} — max(0, —w(p)x(p)} = w(p)x(p)

and, of course, f(e) = 0 (since c(e) = 0) for alle € E — E,. Conversely, given a
function f satisfying the condition of a representation flow, we can extend f in a
natural way to a flow fy in N such that the arcs sp and pt (p € P) are saturated.

]

If we consider the variance problem as a quadratic optimization problem with
linear constraints and convex objective function then the equivalence (i) <> (v)
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follows from the theory of Kuhn and Tucker (cf. Martos [362, pp. 123 ff]): The
Lagrange functionis L(x, f) := 02+ Y ,cg f(e) (1 — x(e*) + x(e7)), and the
necessary and sufficient conditions for an optimal solution read:

x(eT) —x(e”) > lforallee E,

2
J(?)w(p)(x(p) — uy) forall p € P,

0

P} = Py

Y @) (1-xEh) +xD)

ecE

I

with f : E — R..Of course, we may omit the factor w_(zpj in the second condition,
so the arc-values of the representation flow can be interpreted as the Lagrange
multipliers.

We can use condition (iv) and the flow algorithm to construct an optimal rep-
resentation together with the function f yielding then also o 2(P, w). In order to
do this we need some further condition:

Let us say that (P, w) is in equilibrium with respect to the representation x if
for every connected component C of the active graph G, there holds u,(C) = 0.
Recall that a (connected) component in a directed graph is a maximal set C
of vertices such that for any two elements v, w in C there exists a sequence
(v = vo, vy,..., v, = w) of vertices with the property that v;v;4; is an edge
in the underlying undirected graph for all i € {0, ..., k — 1}. The graph is called
connected if it has only one connected component.

Lemma 4.4.4. Let (P, w) be in equilibrium with respect to x. Then the values
x(p), p € P, can be uniquely determined from the active graph.

Proof. The value of x on any point of any component C determines the values of
x on all other points of C. The value of the first point must be chosen in such a
way that the expected value of C becomes zero. |

Lemma 4.4.5. Given a representation x, we can construct in a finite number of
steps a representation y such that orf > 0'3 and (P, w) is in equilibrium with
respect to y.

Proof. Noting Lemma 4.4.1, we may assume that uy = 0.Let Cy, ..., Ci, be the
components of G,. Let

Joi={je{l,... k) ux(C)) <0} F:= Ujes=Cj,
Jo = el k) ux(C)) =0k R:=Ujey=Cj,

JZoi={jell, ... k)i ux(Cj) >0} 1 = Uje > Cj.
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We may assume that F # 0, that is, I # @ since otherwise (P, w) is already in
equilibrium with respect to x. We put

— 1 : Y (o= 1. ot -
€ = 2D+ w(F) min{x(e™) —x(e")—1: eT e€l,e” € F},
€ 1= —l—min{x(e+) —x(e7)—1: et eR,e €F)
w(l)
— _l_ : N (o= 1 - ot -
€ == w(F)mln{x(e) x(e7)—1: eT el e €R},
1 . . <
€4 = m‘fmn{—ﬂx(cj) o JeJTh
1 . . >
€5 = w(F) min{ux(C;j): je€ J},

and carry out the shifting y. defined in Lemma 4.4.2 with € := min{e, €2, €3, €4,
€s}, which is obviously greater than 0. By checking all types of arcs we see that
Ye is indeed a representation. Moreover,

1
€<é€ =< w(F)ﬂx(I) = m(ll«x(n — pux(F)).

Lemma 4.4.2 implies that orf‘ <ok

Consider the parameter & := 2k, — |J | (kx = number of components of G,
|/ | = number of components of G, in equilibrium). Of course, 1 < &, < 2|P|.

Claim. §,, < &,.

Proof of Claim. Consider the new (undirected) graph G, = (V¢, E.), where
Ve:={l,...,k;}and jj' € E.iffthereissomearce € E suchthate® € Cj,e” €
Cjrand ye(et) — ye(e7™) = 1 (ie., € = €1, €2 0r€3). If E. = @ then € = ¢4 or
€s, hence |Jy, | > |J| (the component for which the minimum is attained in the
calculation of €4 (resp. €5) has after the shifting y. the expected value zero), but
ky, = ky implying the statement in the claim.

If E; # @ let « be the number of elements of J- that are an endpoint of some
edgeof G..If¢ = 0, then | /5| = |J [butky, < kyandwearedone.Ifo > 0, then
IJ)',‘ZI > |JZ| — a (if a component in equilibrium is joined with a component that
is not in equilibrium, then the resulting set is not in equilibrium), but k,, < kx —«
(e components C; with j € J are joined with other components). Consequently,
Eye <2(kx —0) = (7| — o) =& —a. o

If we repeat this shifting several times, then, in view of the claim, after at most
2| P| steps we must arrive at a representation y such that (P, w) is in equilibrium
with respect to y. We observe that in each shifting step the variance decreases;

2 _ g2
hence o < 0. ]
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Theorem 4.4.2. For any poset (P, w) and any real number W, there is exactly
one optimal representation with expected value i, and this optimal representation
can be constructed in a finite number of steps.

Proof. We may suppose 1 = 0. Uniqueness: Assume that x and y are distinct op-
timal representations with expected value 0. Then z = x—}x is also a representation
with expected value 0. But

| 1 x(p) + y(p)\?
02 = P w(p)z(p) = —— Z w(p) (———)

peP w(P) pEP 2
1 2P +yp) _1( 2. o 2
<w(P)p€EP T =g () =ah

which contradicts the assumption that x is optimal.

Existence and algorithm: Construct the height function 4 as in the beginning
of this section and shift it down by the value uj to obtain a representation with
expected value 0. Moreover, apply the procedure discussed in Lemma 4.4.5 to
obtain a representation x such that (P, w) is in equilibrium with respect to x. Now
iterate as follows: Apply the labeling algorithm to obtain a maximal flow in the
network Ny defined in the proof of (iii) <> (iv) of Theorem 4.4.1. If every arc
sp, p € P, is saturated, then stop because by this proof the actual representation
is optimal. Otherwise we find in N, a cut (S, T) of smaller capacity than the
capacity of ({s}, V — {s}); that is, a filter F := S — {s} with u,(F) < 0. Carry
out a shifting as in the proof of (i) — (iii) of Theorem 4.4.5 and change the
resulting representation by the procedure from Lemma 4.4.5. This yields a new
representation x” with the property that (P, w) is in equilibrium with respect to
x’, but o*f, < o*xz. Since the variance strongly decreases, in view of Lemma 4.4.4
active graphs cannot appear twice in this iteration. There is only a finite number
of subgraphs of H(P) = (P, E) (which are candidates for active graphs); hence
this iteration ends after a finite number of steps. [ ]

In [156] we proved for the unweighted case that we have to call the max-flow
algorithm at most % | P|® times to obtain the optimal representation. Test examples
of Stendal [447] suggest that O(| P|) calls already suffice. We do not know whether
the algorithm of Theorem 4.4.2 is strongly polynomial, whether it has complexity
O(| P|*) for some k.

4.5. Normal posets and flow morphisms

The following definition of a class of posets has its origin in the proof of Sperner
[436] that the Boolean lattices possess the Sperner property (see the proof of
Theorem 1.1.1). It was introduced by Graham and Harper [228].
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Let (P, w) be a positively weighted poset with rank function r. For the sake
of brevity we put throughout n := r(P). We say that (P, w) has the normalized
matching property (NMP) if

wd) _wHA)

< foral ACN;, i=0,...,n—1. 4.30)
w(N;) ~ w(Nig1) '

Briefly a poset with the NMP is called a normal poset.

Proposition 4.5.1. Let (P, w) be a normal poset. Then all minimal and maximal
elements of P have rank 0 and n, respectively; that is, (P, w) is graded.

Proof. Assume p € P is minimal, r(p) =i > 0. Then

_wWi-) _ w(VNi-1)

= > , acontradiction.
w(N;-1) w(N;)

Assume g € P is maximal, r(g) = j < n. Then

w({g) _ wV(g)) _

> =0,
wN) W)

contradicting the NMP. [ ]

Proposition 4.5.2. A ranked and positively weighted poset (P, w) is normal iff it
has the dual normalized matching property, that is, iff
w(A4) < w(A(4))
w(Ni) — w(Ni-1)

forall ACN;, i=1,...,n. 4.31)

Proof. We only prove that (4.30) implies (4.31). Let A C N;, i =1,...,n,and
observe that V(N;_1 — A(A)) € N; — A. Thus by (4.30)

w(ad) _ wli-i — A4)) _ wVNi-1 — A(4)) _ wNi — 4)

wNi-)  w®Ni-o) T w(N;) T wN)
w(4)
T wV)
and (4.31) follows immediately. u

Proposition 4.5.3. Let (P, w) be normal. Then for any S C [0, n] the S-rank-
selected subposet is normal, too.

Proof. We get the upper shadow in the subposet by taking several times (as often
as necessary) the upper shadow in P. ]



150 The flow-theoretic approach

Now we will discuss two other criteria of the NMP. Let (P, w) be ranked. For
the sake of brevity let N7 := N,(,) (the level containing p). A regular covering
of (P, w) is a function f : €(P) — R, such that

> f© = wP) vl pe P,

Cee(P):peC w(NP)
Y fo =1
Cee(P)

Moreover, we say that (P, w) satisfies the k-LYM inequality or briefly (P, w) is
k-LYM if for all k-families F of P
)AL (4.32)

peF w(NP) ~

In the case £ = 1 we speak of LYM instead of 1-LYM. The following theorem
is in the unweighted case due to Kleitman [304]. For arbitrary weights see also
Harper [257] and [150].

Theorem 4.5.1. Let (P, w) be graded and positively weighted. The following
conditions are equivalent:

(i) (P, w) is a normal poset,

(i) (P, w) satisfies the LYM-inequality,
(iii) (P, w) satisfies the k-LYM inequality for everyk = 1,2, ...,
(iv) there exists a regular covering of (P, w).

Proof. (i) — (ii). Let F be an antichain (1-family). Let!/ := min{i : FNN; # @}.
We prove (4.32) (for k = 1) by inductionon!/ =n, n—1, .... Thecasel = n
is trivial. Thus consider the step/ + 1 — I < n. Let 4 := F N N;. We have
V(4) N F = @ because F is an antichain. Obviously, F* := (F — A) U V(4) is
an antichain, too. Using (4.30) and the induction hypothesis we obtain

3 L) wd w(p)
w(N?) — wN) G w(NP)

peF

w(V(4)) w(p) w(p)
ot T 2w = 2w S

=<

peF—-A peF*

(ii) — (iii). This implication is clear since every k-family is a union of k an-
tichains (see Lemma 4.3.1).

(iii) — (iv). We define the new weight v on P by v(p) := w—%v% forall p € P.

Claim. ¢ (P, v) = 1.

Proof of Claim. Obviously Nj is a 1-cutset of weight v(Ng) = 1. Let F be
any other 1-cutset of P. Then P — F is an n-family in P. By condition (iii) with
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k=nv(P-F)= Zpep_Fv(p) < n, hence, v(F) = v(P) —v(P — F) >
n+1)—n=1.

0O
In view of Corollary 4.2.1(b), there exists f : €(P) — R such that
> f(©) < u(p)forallpe P, (4.33)
Ce€(P):peC
> SO =1
CeC(P)

Assume that strict inequality holds for some p* € N; in (4.33). Since each maximal
chain has exactly one member in the ith level of P, we conclude

1= Y fo=Y ¥ f(c)<z”(")=>:wu$$)=l’

Ce€(P) PEN; Ce€(P):peC PEN; PEN;

a contradiction.
(iv) —> (i). Let 4 € N;, B := N;;| — V(4), and let y be a regular covering of
(P, w). Since each maximal chain in P contains at most one member of 4 U B,

B B w(p) w(p)
1= 2 SOz 3 3 fO=) 55+ i

Ce€(P) pEAUB Ce€(P):peC peA pEB
_ w4) _w(V(4)
w(N;) w(Nigy)'
and (4.30) is proved. |

Note that Wei [461] found a further equivalent condition in terms of solutions
of a certain convex programming problem and its dual.

Let G; = (P;, E;) be the Hasse diagram of the {i, i + 1}-rank-selected subposet
of the graded poset (P, w); thatis, P, = N;UN;4+1, Ei={pg: p€ Ni, p < q}.
Let w; be the induced weight.

Corollary 4.5.1. Let (P, w) be graded and positively weighted. Then (P, w) is

normal ifffori =0, ..., n — 1 there exist functions f; : E; — Ry such that
_ w
p; = Z fie) = (p) forall p € N;,
i — w(N;)
ecE;e~=p

+ w(p)
p; = file) = orall p € Niy,.
f ee£§=p i w(M+])f p l+1

Proof. (P, w) is normaliff (P;, w;) is normal for all i, by definition. The arcs of E;
are exactly the maximal chains in (P;, w;). The result follows from the equivalence
(i) © (iv) in Theorem 4.5.1. [ ]
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We encourage the reader to derive Corollary 4.5.1 directly from the real version
of the Max-Flow Min-Cut Theorem (Corollary 4.1.1).

An unweighted poset P is called regular if P is graded and both the number
of elements that cover any element p of P and the number of elements that are
covered by p depend on the rank of p, only.

Corollary 4.5.2. Let P be a regular poset. Then P is normal.

Proof. Define fore € E;,i =0,...,n—1,

1
i(e) i = —.
f |Eil
Then it is easy to see that the conditions of Corollary 4.5.1 are satisfied (with
w=1). ]

Example 4.5.1. The following posets are regular: The Boolean lattice By, the
linear lattice L,(q), the affine poset A,(q), projective space lattices, the cubical
poset Oy and the function poset F}.

Using the existence of regular coverings we can estimate the weight of subsets (with
certain properties) of normal posets by considering only the maximal chains.

Theorem 4.5.2 (Kleitman [304]). Let (P, w) be a normal poset and G C P.
Then
w(G) < max w(NP).
Cee(P) pe;m;

Proof. Let f be a regular covering of (P, w) that exists by Theorem 4.5.1. Then
wG) =Y wp)=Y. Y. wNPSfC)

peG PeG Ce€(P):peC
= Y SO Y wiNP)< max Y w(NP).
ceelp) PpeCNG Cee(P) Jecne

In analogy to the k-Sperner property, we say that (P, w) (with n = r(P)) has
the k-cutset property if
c(P,w)y=_ min_ (w®;)+--+w(Ny)).

0<ij<--<iy<n

It has the strong cutset property if it has the k-cutset property for every k =
,2,...,n+1.
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Lemma 4.5.1.

(a) (P, w) has the k-cutset property iff (P, w) has the (n+1—k)-Sperner property.
(b) (P, w) has the strong cutset property iff (P, w) has the strong Sperner prop-
erty.

Proof. Observe that F is an (optimal) k-cutset iff P — F is an (optimal) (n+ 1 —k)-
family. |

Corollary 4.5.3. Let (P, w) be normal. Then it has the strong Sperner and the
strong cutset property.

Proof. Let F be a k-family, 1 < k < n + 1. Then every C € €(P) contains at
most k elements. By Theorem 4.5.2
w(F)<  max  (w®;)+ -+ wlVy)).
0<iy<--<ix<n
The bound is attained by the union of the corresponding levels for which the
maximum is attained. The strong cutset property follows from Lemma 4.5.1.
]

A subset F of the graded poset P is called a mod-k-family if py, p2 € F, p; <
p2imply r(p2) —r(p1) = k.

Corollary 4.5.4 (Katona [293]). Let (P, w) be normal and rank unimodal. Then
the maximum weight of a mod-k-family equals the largest sum of the form
> W(Nptki).

Proof. Again by Theorem 4.5.2 the weight of any mod-k-family can be bounded
by max; Y jeJ w(Nj), where the maximum is extended over all J C [0, n] with
the property that ji, jo € J imply |ji — j2| = k. The unimodality permits the
restriction to subsets J of the form {h, h + k, h + 2k, ...}. The union of the
corresponding levels for which the maximum is attained gives the optimal mod-
k-family. |

Up to now we used normality for upper estimates of certain families. Let us
consider two results for lower estimates with the assumption of log concavity of
the Whitney numbers. Examples of such posets can be found in the next section.
First we need some preparations. Let I be an interval of integers.

Lemma 4.5.2. Let {a;},i € I, be a log concave sequence of positive numbers.
Then the sequence {;117} is convex.
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Proof. Wehavefori —1,i +1€ 7

aj—1 +aiy
ai—1ai+1 < aj/aj—1ai+1 < a; (———2-— )

1 1
1 _(aatag)
a; ~ 2 -

Lemma 4.5.3. Let {b;} be a convex sequence of positive numbers. Then for all
Jok,lelwithj<k<l

hence

(I =Bbj + (k= by = (I — j)bx.

Proof. Though this inequality follows from a discrete version of Jensen’s in-
equality, we give a direct proof. We may suppose j < k < /. We have by the
convexity

bjy1 —bj <bjys—bjy1 <+ < by — bi—1 < bry1 — br.
Summation of the £ — j terms on the left yields

(bk — b)) < (k— j)(bk+1 — br)

which is equivalent to
by — bj < biy1 — b;
k—j T k+1-j
This gives finally an inequality which is equivalent to the asserted one:
bk—bj < b] —bj.
k—j — I1—j

Lemma 4.54. Let {a;},i € I, be a log concave sequence of positive numbers.
Let the new sequence {b;}, i € I, be defined by

bi = Z a;.

jel:j<i
Then for j, k,1 € I with j <k <l

(a1 — ap)bj + (ax — ap)by > (a; — aj)by.

Proof. Let j < k < I. From the log concavity we derive easily

aj —aj aj —da;j Ak — Ak— a —a
j+1 J S j+2 j+1_>_.“2 k kl> k+1 k.

aj+1 ajia a T ar+
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Similarly to Lemma 4.5.3 we obtain
Ak —a;j _ Gk+l — Gk
by —b; = brtr — bk

hence
U= A1 =4
by —bj = bry1 —bj
This gives an inequality equivalent to the asserted one:

a—aj  a—4a
bk—bj—bl—bj' -

Theorem 4.5.3. Let (P, w) be normal with log concave weighted Whitney num-
bers. Let {w(N;)},i = 0, ..., h, be strictly increasing, let 0 < k < h, and let
A C P be an antichain such that w(A) > w(Ny). Finally let I be the ideal
generated by A. Then

(a) (Kleitman and Milner [309]) u,(A) > k.

(®) (Kleitman [302]) w(I) > Y"¥_; w(N)).

Proof. Leta; := w(N;) and x; := w(ANN;),i =0,...,n. Then

0<xi <a, (4.34)
in view of the supposition
n
> x> a, (4.35)
=

and by the LYM-inequality, see Theorem 4.5.1,

n

Mo (4.36)
i=0 ai
(a) We have to prove that
n n
Z ix; > ka,u 4.37)
i= i=0

Thus it is enough to show that the minimum of the objective function Y ;_, (i —k)x;
under the constraints (4.34), (4.35), and (4.36) is not less than zero. Because the
minimum is attained at an extreme point of the polytope defined by (4.34)—(4.36)
we have to prove (4.37) only for all these extreme points. Let x = (xp, ..., x,)
be such an extreme point. It satisfies n + 1 independent inequalities from (4.34)—
(4.36) as equalities, cf. p. 86.
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Case 1. (4.35) or (4.36) is a strict inequality. Then in view of (4.34) and (4.36)
at most one component of x, say x;, is nonzero. Moreover a; > x; > a; which
implies / > k. Consequently,

n
Y G —hxi = -ka 20.
i=0
Case 2. (4.35) and (4.36) are satisfied as equalities. Then it is easy to see that

at most two components of x are nonzero, say x; and x;. If j,/ > k then trivially
Yool —K)x; = 0.If j, I < k, then by the equations (4.35) and (4.36) and the
strict monotony
xj n Xl < X+ x;
aj (27} ak

1= =1,

a contradiction. Thus we may assume that j < k < /. Assertion (4.37) reduces to
G-—hxj+ld-kx =0

and we know that by (4.35) and (4.36)

Xj +x; = ag, A )
aj  aq

Solving this system of equations and inserting into the reduced assertion yields
(U —kajla —ar) + (I — kaj(ax — aj) > 0,

which is equivalent to
1 1 1
k-=N=—+l-BH—=01-)H—,
a a; ai

but this inequality is true because of Lemma 4.5.2 and Lemma 4.5.3.
(b) Let y; := w(I N N;),i =0,...,n. Obviously, 4; :=={p e 4 :r(p) >
MU peN;:p¢l}, j=0,...,n,isanantichain. Again by the LY M-inequality

n

X .
+l-& <L

a; aij

i=j 4 j

that is,
n

X .
n_ ¥
a; aj

i=j
We have, using b; := E}:o a;,

w(l) = zy, SIPIE E"'Zaf R

j=0 i=j i=0 %
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Consequently it is sufficient to prove that the minimum of the objective function
Yo ;—‘:}bi under the constraints (4.34)—(4.36) is not less than b. Let us look again
at an extreme point x of the polytope defined by (4.34)—(4.36). The Case 1 of (a)
can be treated easily, so assume that (4.35) and (4.36) are satisfied as equalities.

Moreover, as for (a), we may assume that

a —a ar — aj .
szaj ! k s X] =aj J s jSkSly
a —a; a—aj

and all other components of x are zero. Inserting these values into the objective
function yields the asserted inequality

(a1 — aK)bj + (ak — aj)b; > (a1 — a;j)by,

which is true by Lemma 4.5 4.

In the original proofs (in Greene and Kleitman [234] partially attributed to
Odlyzko), duality arguments were used; that is, by an inspired guess one finds
an admissible solution of the dual problem with a corresponding large value of
the (dual) objective function. We used the primal approach to be a little bit more
straightforward. In [174] ErdGs, Faigle, and Kern generalized part (a) of Theo-
rem 4.5.3 to the case of k-families.

In the proofs of Corollary 4.5.3 and 4.5.4, we considered instead of the poset P
only chains C. This idea of reduction to smaller posets was generalized by Harper
[258], who introduced the notion of flow morphisms: Let (P, v) and (Q, w) be
weighted posets. A flow morphism is a mapping ¢ : P — Q such that

(i) ¢ is surjective,

(i) p1 < pp2 implies p(p1) < g@(p2),

(iii) w(g) = v(p~'(g)) forall g € Q,

(iv) the poset induced by ¢~!(g1) U ¢~!(¢2) is a normal poset of rank 1 for all

q1,92 € Q with g1 < gq.

Here ¢~ !(g) is, as usual, the set of all p € P with ¢(p) = g. We note that
from condition (ii) it follows that the poset considered in (iv) cannot contain three
distinct elements lying on a chain in P, but without (iv) it could be an antichain.

Moreover, in view of Proposition 4.5.1, in that poset the elements of rank 0 and

1 are the elements of ¢~!(g1) and ¢~!(g2), respectively. Immediately from the
definition we obtain:

Proposition 4.5.4. The graded poset (P, v) is normal iff the rank function r is
a flow morphism from (P, v) onto (C, w), where C = 0 <1< --- < n) and
w(i) = v(N;(P)),i =0,...,n.

Part (a) of the next theorem is due to Harper [258]. In the proof we use the approach
of [150], [154].
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Theorem 4.5.4. If there is a flow morphism ¢ from (P, v) onto (Q, w), then for
allk

(@) di(P,v) =di(Q, w),
) cx(P,v) =ck(Q, w).

Proof. We prove only (a) since the proof for (b) is similar. We have
di (P, v) > di(Q, w)

since for any k-family F in Q, its preimage ¢~ !(F) is a k-family in P and
v((p"l (F)) = w(F). Thus we must show that

dr(P,v) < di(Q, w).

Claim. If D is any chain in Q then the poset induced by ¢~!(D) is normal.

Proof of Claim. Let D’ be any maximal chain in Q containing D. Then, by
our conditions, the poset induced by ¢~ 1(D’) is normal. Since (¢~ 1(D), v) is a
rank-selected subposet of ((p‘1 (D"), v) (v is restricted to the corresponding sets),
(¢~ (D), v) is normal, too (see Proposition 4.5.3). O

Let fp be a regular covering of (cp‘1 (D), v) which exists by Theorem 4.5.1.
This means that we have

v(p) -1
> fo) = for all p € ¢~ '(D),
Cec(p~1(D)):peC w(p(p))

Y fo=1

Cec(p=" (D))

Let further yg : €*(Q) - Ry and zg : @ — R, be functions such that

Y yo(D) +20(g) = wig)forallg € Q,
Dec*(Q):qeD

kY yoD)+ Y z0(q) = d(Q, w),

De€*(Q) q€Q
which exist by Theorem 4.3.2.
Define yp : €(P) > Ry andzp : P — R, by
yp(C) = foc)(C)yo(p(C)), C € C*(P),

v(p)
w(p(p)

zp(p) = zo(p(p), p € P.
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Then we have for all p € P (with the notation g := ¢(p))
Yo wpO©+ze = Y. yo® Y. fo(©)
Ce€*(P):peC Dec*(Q) Cec€(p~!(D)):peC
v(p)

+-T—) 0(q)

v(p) v(p)
= D)—— 4 —£~
DGC*(ZQ):quyQ( )w(q) w(g)” 0@

> ((”))w(q) = v(p);

that is, yp, zp satisfy the inequality (4.15).
Moreover,

S(yp.zp) =k Y yp(C)+ ) zp(p)

CeC*(P) peEP
=k ) Y (©yo(D)
Dec*(Q) Cec*(P):p(C)=D
DS (")) 20@)

q€Q pePip(p)=q w(g

=k Y yoD)+) z0(q) = du(Q,w).
Dee*(Q) q€Q

From Theorem 4.3.2 we finally derive

di(P,v) < 8k(yp, zp) = dr(Q, w).

The reader should observe that we also may obtain Corollary 4.5.3 from Propo-
sition 4.5.4 and Theorem 4.5.4 since the k-family problem on a chain is solved by
taking those k elements of the chain whose weight sum is maximal (analogously
for the k-cutset problem).

Let us weaken slightly condition (ii). We say that ¢ : P — Q is a weak flow
morphism if it satisfies (i), (iii), (iv), and

(") p1 <p p2implies (p1) <g ¢(p2).

An example of a weak flow morphism that is not a flow morphism is given in
Figure 4.9. Note that in this example ¢; (P, v) = 6 # ¢;(Q, w) = 3. But:

Corollary 4.5.5. If there is a weak flow morphism ¢ from (P, v) onto (Q, w),
then dy(P,v) = di(Q, w) forallk =1,2,....

Proof. Let (P*, v) be the poset that has the same elements and weight as (P, v),
but where p; < p«p2 iff p1 < pp2 and p(p1) < g@(p2) (We omit in the Hasse
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Figure 4.9

diagram of P those arcs that are not mapped onto an arc of the Hasse diagram of
Q). By construction, ¢ is a flow morphism from (P*, v) onto (Q, w). Accordingly,
by Theorem 4.5.4 and the fact that each k-family in P is a k-family in P*,

di (P, v) < di(P*,v) = di(Q, w).

However, as in the proof of Theorem 4.5.4, the preimage of a k-family in Q is a
k-family in P of the same weight; thus

dr(P,v) = di(Q, w).

Theorem 4.5.5 (Weighted Quotient Theorem). If G is a group of automorphisms
of P, then dy(P) = dy(P/G,w/G) fork=1,2,....

Proof. [150] The mapping ¢ that assigns to each p € P the orbit containing pis a
weak flow morphism from (P, 1) onto (P/G, w/G). Indeed, conditions (i)—(iii)
are satisfied evidently and condition (iv) is satisfied because the poset induced by
¢ 1 (4) U~ (B), 4, B € P/G, A < B, is aregular poset of rank 1 and hence
normal by Corollary 4.5.2. Theorem 4.5.4 yields the assertion. n

Corollary 4.5.6 (Kleitman, Edelberg, and Lubell [306]). For every poset P and
for every positive integer k there exists a maximum k-family that is invariant under
every automorphism of P.

Proof. Let G be the group of all automorphisms of P and let F’ be a maximum
weighted k-family in (P/G, w/G). Here F’ is a set whose elements are orbits of P
under G. Let F be the union of these orbits. Then F is a k-family in P that is invari-
ant under every automorphism of P, and |F| = w/G(F') = dy(P/G, w/G) =
dr(P) by Theorem 4.5.5. Thus F is even a maximum k-family in P. [ ]

Freese [204] observed that this corollary can be derived in the £ = 1 case
from the result of Dilworth [137] that the maximum antichains of a poset form a
distributive lattice.
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In [152] we proved that not only the k-family problem but also the variance
problem is preserved by weak flow morphisms:

Theorem 4.5.6. Let x and y be optimal representations of (P, v) and (Q, w)
with jLx = Wy. If there is a weak flow morphism ¢ from (P, v) onto (Q, w), then
x(p) = y(p(p)) forall p € P. In particular, o?(P,v) = 0%(Q, w).

Proof. If we define the function z : P — R by z(p) := y(¢p(p)) forall p € P,
then we must prove z = x. Since ¢ is a flow morphism we have v(P) = w(Q),

—_ — 1 -1
ks = 505 2 v(p)z(p) = P qEQv(fp @) y(q)
1
= 'ITQ)qEQw(Q)}’(‘I) = My,
2 _ 4 200y — 12 — — 2 =02
%= pEPv(p)z ) qEQw(q)yZ(q) wy =0,

By Theorem 4.4.2 it remains to show that z is an optimal representation. Since ¢ is a
flow morphism, p’ > pimplies(p’) > ¢(p). Thusforall p’ > p, z(p")—z(p) =
y(@(p')) — y(p(p)) = 1; that is, z is a representation. In order to show that z is
optimal we use the equivalence (i) <> (v) of Theorem 4.4.1. It is easy to see that ¢
is a flow morphism from (P, v) onto (Qy, w). Forg,q’ € Q,q < q’ let hyy be
a regular covering of the poset induced by p! @u p! (¢’) (note Theorem 4.5.1
and the definition of a flow morphism). So we have

v( _
Z heq (pp’) = ﬁ forall p € ™' (q),
p'ip'>p.p(p)=q' eip

Z hqq’ (ppl) = v(P )

—~L - forall p’ € 97 1(q).
!’
pip<p o(p)=q w(p(pN)

Let g be a representation flow on (Q, w) relative to y. We define f : E(P) —» R
by
S(pP) := ho(pyppy (PP)8(0(P)p(P) for all pp’ € E(P).

Then z(p') — z(p) > 1 implies p(p’) — ¢(p) > 1; thatis, g(p(p)e(p’)) = 0 and
f(pp’) = 0. Moreover, by simple computation we obtain

+_ - __vp
Pr =P = Yoo

Consequently, f is a representation flow on (P, v) relative to z and hence by
Theorem 4.4.1, z is an optimal representation. [ ]

@(P)g —e(p)g) = v(P)((P) — p2).
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We define a graded poset (P, v) to be rank compressed if the rank function r is
an optimal representation of (P, v) (of course r is arepresentation). It is easy to see
that, for example, weighted chains are rank compressed. Note that the existence of
a flow morphism (not of a weak flow morphism) implies that (P, v) is graded iff
(Q, w) is graded. Directly from Theorem 4.5.6 and Proposition 4.5.4 we derive:

Corollary 4.5.7. If there exists a flow morphism from the graded poset (P, v)
onto the graded poset (Q, w), then (P, v) is rank compressed iff (Q, w) is rank
compressed. In particular, normal posets (P, v) are rank compressed.

In connection with Section 4.3, consider the following conjecture of Griggs [235]:
If P is a normal poset, then there is a partition into chains which is k-saturated for
allk=1,2,....

Automorphisms are not only useful in the study of k-families (see Corollary
4.5.6), but they can be applied also to other classes of families. Let P be a ranked
poset. We say that a group G of automorphisms of P is rank transitive if G acts
transitively on the levels of P, that is, if P/G is a chain. For p € P, let F}, be the
principal filter generated by p, thatis, F,, := {g € P : g > p}, and let G, be the
subgroup of G that fixes the element p; thatis, G, := {¢ € G : p(p) = p}. If
there exists a rank-transitive automorphism group G of P, then obviously F), = F,
if r(p) = r(q). In the following we use the notation Q := Fp, for some py € Nop
(up to isomorphism Q does not depend on the concrete element pg of Np).

Lemma 4.5.5. Let G be a rank-transitive automorphism group of P. We have
1G]

Wi(P) = G
p

forall pe N;(P),i =0,...,n.

Proof. We find a bijection between N;(P) and the left cosets of G relative to G,
by taking for g € N;(P) the coset {{ € G : ¥ (p) = q}. By Lagrange’s Theorem
the number of left cosets equals |%‘Gp_|’ which implies the equality. n

For a subset (family) F of P and an automorphism ¢, let o(F) := {¢(p) : p €
F}. Given an automorphism group G of P, we say that a class 2 of families in P
is G-invariant if p(F) € 2 forall F € 2. Let us recall that F; := F N N;(P) and
that the parameters of F are defined by f; := | F;|. The following theorem is (in a
different formulation) due to Erdds, Faigle, and Kern [173].

Theorem 4.5.7. Suppose that there exists a rank-transitive automorphism group
of P.LetC = (pp < p1 < --- < pp) be afixed maximal chain in P, let Q be the
filter generated by po, and let R be a system of representatives of the left cosets of
G relative to G p, (i.e., No(P) = {e(po) : @ € R}, 01(po) # @2(po) for o1 # @2).
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Let w : P — Ry be defined by
w(p) = TP
T Wo(P)Wi(Q)
and let A be a G-invariant class of families. If forall F € 2

Y w@C)nF) <1, (4.38)
0€R

if p € Ni(P),

thenforall F € A

"~
1. 4.39
ok *39

Proof. Since 2 is G-invariant we have, by the supposition, that for all ¢ € G

Y we@ne (F) <1

0€R
that is,
Y wge(©)NF) <1,
Q€R
Z E Ew(‘PQ(Pi) NnF) <G|,
¢€G Q€eR i=0
P 1
Wi(Q) )N F| <I|Gl.
;QZQ:QWO(P) Wi(Q)q;W’Q(p) | <|G]

For a fixed element g € F; there are |Gy (p;)| many elements ¢ of G that map o(p;)
onto g (they form aleft coset relative to Gp(p;)). By Lemma4.5.5, |Gy p) | = |G ;|
for every o € R. Consequently,

Y lea(pi) N Fi| = £iIGpl;
¢eCG
hence we may rewrite the last inequality (using Lemma 4.5.5 and |R| = Wy (P)):

wi(P) 1
G G
Z| WoiP Wiy 1 < 161,

"
2w <"

i=0
| |

This theorem is relatively abstract. In applications we have to choose the chain
C, the group G, and the system R of representatives in a convenient way.
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A family F in the affine poset 4,4 (n) is called intersecting ifforall X, Y € 44(n)
the infimum X A Y exists — that s, if in a realization of the poset as affine subspaces
of an n-dimensional vector space ¥, we have XNY # @.

Corollary 4.5.8 (Erdés, Faigle, and Kern [173)). Let F C A, (n) be an inter-
secting Sperner family. Then

n f; -
> 0, = 1.

i=0 \i

Proof. Each bijective affine transformation of the underlying space ¥, induces an
automorphism of P := A4,4(n), and all such automorphisms form a rank-transitive
automorphism group G. Note that the class of intersecting Sperner families is G-
invariant. Let C = ({0} = Xp < X < --- < X,, = V},) be a chain of linear (i.e.,
also affine) subspaces of V,. Finally let R be the set of automorphisms @ of 4,(n)
that are induced by translations t, : ¥V, — V,, where 17,(x) := x + a for all
xeV,(aeV).

The filter Fx, contains all affine subspaces with the zero vector; thus Q = Fx,
is isomorphic to the linear lattice L,(g). Accordingly, W;(Q) = (',.')q. Thus we
must verify condition (4.38) of Theorem 4.5.7. For an affine subspace X of rank i
we have

"

wp 1 70, 1 1

WP W@ " (), 4

i

w(X) =

The set (Uae RQ(C)) N F contains at most one element: Assume the contrary;
then there exist a, b, i, j such that different affine subspaces ¥ = a + X; and
Z = b + X; belong to F. Since F is intersecting, there is some ¢ such that
Y = ¢+ X;,Z = ¢ + Xj, and because F is a Sperner family we have i = j
and thus Y = Z, a contradiction. If the preceding set is empty, then (4.38) clearly
holds, so let

(Y} = (Ugere(©))NF, r(¥)=i.

We may obtain Y by a translation from Xj;; thatis, Y = a + X;, in exactly |Y|
ways (we need a@ € Y); hence in this case

1
— =1,

2w NF) =Yl =

Q€R
and (4.38) is verified. [ |

For a second example let us look at the function poset F'. A family F in F}’
is called intersecting if for all a,b € F,a A b # 0 holds (equivalently, if for
all a, b € F there is some index i € [n] such that q; = b; € {1,...,k}). The
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following corollary, which was proved by me in [147], was the predecessor of
Theorem 4.5.7.

Corollary 4.5.9. Let F C F; (k > 2) be an intersecting Sperner family. Then

- .___‘é___ <1
B e ®

i=1 ;-

Proof. We will apply Theorem 4.5.7 to the poset P which can be obtained from
F} by deleting the minimal element 0. In our usual terminology we then have
Wi(P) = Wit1(F}),i = 0,...,n — 1. But in order to avoid this shift of the
index we make the exception that the minimal elements of P have rank 1, and
in Theorem 4.5.7 we work with C = (p; < -+ < py), Gp, and so on. Then
wiP)=Wi(F)= (K, i=1...,n

Let S, be the symmetric group on [n] and Si o the set of permutations of
{0, 1,..., k} that leave O invariant. For * = (g, 71, ..., Tp) € Sy X Sg,0 X -+ - X
Sk,0 define ¢ : F! — F' by

‘pﬂ’(al’~*"an) = (b1$ -'-,bn) iffbﬂ'()(i) =”i(ai)’i = 1,...,”.

Thus ¢r(a) can be obtained by applying simultaneously 7; to the ith component
of a,i = 1,...,n, and then permuting the components according to mp. It is
easy to see that ¢, is an automorphism of F}’ and that the set G of all such auto-
morphisms is rank transitive. Again the class of all intersecting Sperner families
is G-invariant. Let C := (a; < --- < a,), where a; = (1,...,1,0,...,0) (i
ones),i =1,...,n.

The filter Q = F,, is obviously isomorphic to F,:'_l, thus W;(Q) = (',.':ll)ki -1
i =1,...,n (here again the minimal element is considered to have rank 1). Let ¢
be the identical permutation of {0, 1, ..., k} and define

( 12 ... n—=1 n )
fo = ,
2 3 .. n 1
( 0 1 2 ... k-1 & )
En = .
0o 2 3 ... k 1
Finally let ¢ := (%o,t,...,t, &n). The automorphism ¢ acts as follows on
the elements of P: It first increases (modulo k) the nth component if it is not
zero and it then shifts the components cyclically. We introduce for an element
©,...,0,10,...,0), where / is at the mth component, the short notation (/, m).
Soa; = (1, 1). If we iteratively apply ¢, to @; we obtain the “cycle” (1, 1, (1, 2),

L {Ln), (2,1, ..., (2,n), ..., (k—1,n), (k, 1),...,(k,n), (1,1). Thus R =
{(pé, (pg, A tpé‘"} is a system of representatives of the left cosets of G relative to



166 The flow-theoretic approach

G, . It remains to verify (4.38). For @ € N;(P) we have

L 1
1l

NG TI G P
Let a be such an element of J := (Uyere(C)) N F that has smallest rank, say
r(a) = j.
Claim. |J| < j.
Proof of Claim. Obviously a; =(1,1)v---v(l,i)and (p((a,) = (p(((l 1) v
-V (p(((l i)); that is, (pc(a ) corresponds to i consecutive elements from the
precedlng cycle,i = 1,...,n,l = 1,..., kn. Moreover, two such consecutive
sets that belong to two different elements of J cannot have the same starting point
or endpoint, because F (thus also J) is a Sperner family, and they must intersect
since F (thus also J) is intersecting. Now we may use the arguments from the first
proof of the Erds—Ko—Rado Theorem (Theorem 2.1.7) to convince ourselves that
|J| < j (take for X the consecutive set corresponding to a and note that in the
proof of the claim in the proof of Theorem 2.1.7 we needed only that the sets have
size not greater than %, which is in our case ’%). m]

i=1,...,n.

Now we quickly see that (4.38) is satisfied since

> weEC)NF) < —| Uger @(C)N F| <
0€R

\.l‘\.
—_

In the special case that F C N;(Fy) is intersecting, we clearly have |F| <
(” l)k’ 1. This result was independently obtained by Frankl [135] and up to some
details by Meyer [368].

4.6. Product theorems
Let us first study the direct product in connection with flow morphisms.

Theorem 4.6.1 (Harper [258)).

(a) If ¢i is a (weak) flow morphism from (P;, v;) onto (Q;, w;), i = 1,2, then the
mapping ¢ defined by ¢(p1, p2) := (¢1(p1), ¢(p2)), pi € B,i =1,2,isa
(weak) flow morphism from (Py, v1) x (P2, v2) onto (Q1, wy) X (Q2, wy).

(b) If ¢ and  are (weak) flow morphisms from (P, v) onto (Q, w) and from
(Q, w) onto (R, u), respectively, then the mapping x defined by x(p) =
v (p(p)), p € P, is a (weak) flow morphism from (P, v) onto (R, u).
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Proof. In both cases it is easy to check that the conditions (i), (ii) resp. (ii’), (iii)
of a (weak) flow morphism are satisfied. We prove (iv).
(@) Let (g1, 92) < 0,x0,(g1.g5), that is, without loss of generality

91 < 0,9 and g2 = g;. (4.40)

We have to show that
(v1 X v12)(4) < (ux 12)(V(4))

< forall 4 € ¢~ '(q1, q2)
(w1 x w2)(q1,92) ~ (w1 X w2)(g7,43) ¢ e

where the upper shadow V is taken in the poset induced by ¢~'(g1,g2) U
91}, q5). Let {pi, p%, ..., p3} be the list of second components appearing
in A. In particular, m(pg) =q2,j = 1,...,s. Our set 4 can then be written
as a di§joint union A = (A, pé) U--- U (45, py), where 4; C (p_l(ql) and
(4, p3) ={(p1,p3) L€ 4;}, j=1,...,s. We have

V(4) 2 (V(41), p) U---U (V(4y), p) (4.41)
where this time the shadows V(4;), j =1, ..., s, are taken in the poset induced
by ¢~ 1(g1) U (p'l(qi). Since ¢; is a (weak) flow morphism we have

vi(4p) _ vV
wi(q) ~  wilgy)

Eventually, from (4.40)—(4.42) we obtain

=1,...,s. (4.42)

v xv)) Z v1(4)v2(p)

(wi X w2)(q1,92) o wi@)wa(q2)

2 vl(V(Aj))vz(P{) < (v1 x 12)(V(4))
wi(g)wa(gy) ~ (wy x wa)(g;.q%)

Jj=1
(b) Let 71 < gprp. By Theorem 4.5.1 we only have to show that there exists a

regular covering of the poset induced by x ~! (1) U x ~! (r2) whose two levels are
obviously x ~'(r) and x ~!(ry). Let

E:={pip2:pr<pp2, x(p)=ri, i=1,2}

and

F:=1{q192:91 < 9q2,¥(gi) =ri, i=12}.
Finally, let

Egjg = {pip2€E:0(p)=qi, i=1,2}.

Then E = Ug,g,eF Eq 4, (disjoint union). Since v is a (weak) flow morphism,
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there exists a regular covering of the poset induced by Y1) Uy~ 1(r) - that
is, a function g : F — R, such that

w -
> gl = @0 gorall gy €y (),
92:q192€F u(ry)
w -
Y e@a = 22 forall g € v (),
q1:q1926F u(r2)
> glqig) = 1.
q1926F

Analogously, for all g1g2 € F there exists a regular covering f3,4, : Eqq, = Ry
of the poset induced by ¢ ~!(g1) U ¢~ '(¢2). We define f : E — R by

F(P1P2) = fopnye(p2) (P1P2)&(0(P1)@(P2)).

Then f is a regular covering of the poset induced by x ~!(r;) U x~!(r2) since
(with g1 := @(p1))
> ftppy = ) Y. faa(pp2)e@i92)

P2:p1p2€E 92:9192€F pr:p1p2€Eq g,

= ) gqg) vipy) _ wign) v(p) _ v(p1)
w(q1) u(r)) w(qp) u(r)

92:9192€F

for all p; € x~!(r), the corresponding inequality for all p, € x~1(r2) holds
analogously, and

Yo feipd= Y. Y faemipde@a) = Y. gqig) =1

pip2€E 9192€F p1p2€Eq g, q9192€F

Using these results for flow morphisms, we are able to prove in a relatively
short way the following result of Harper [257], which was re-proved in a different
way by Hsieh and Kleitman [273].

Theorem 4.6.2 (Product Theorem). If (P, v) and (Q, w) are normal posets with
log concave weighted Whitney numbers, then (P, v) x (Q, w) also is a normal
poset with log concave weighted Whitney numbers.

Proof. For the sake of brevity, we set a; := v(N;(P)), b; := w(N;(Q)), c¢; :=
(v x wY(N;(P x Q)), i € Z. At first we prove the statement (cf. Karlin [285,
p. 394]) about the log concavity of the sequence {c;} (more information on log
concavity (2-positivity) can be found, for instance, in the books of Karlin [285]
and Brenti [84] as well as in the papers of Chase [99] and Bender and Canfield
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[44]). Obviously, ¢; = Z,°n°=0 ambi_, (there is only a finite number of nonzero
items). We must prove that ci2 > ciri1ci—) forall i € Z; that is,

0o 00 0o 00
Z Zambi—manbi-—n = Z Zambi—m+lanbi—n—l- (4.43)

m=0 n=0 m=0 n=0

Since the sequences {a;} and {b;} are log concave and we admit only positive
weights,

a @ ar(p)

> > > , (4.44)
ap aj ar(P)-1
bo T b brg)-1
Consequently,
@man — am—18n4+1) Bi—mbi_p — bi—m+lbi—n—l) >0 (4.46)

for all integers m, n since the term in each parenthesis is nonnegative if m < n
and nonpositive, otherwise. The inequality (4.46) is equivalent to

ambi_manbi_n + am_1bi_mi1an4+1bi—n_1

> am-1bi—m@ns1bi—m + ambi_my1anbi_n_1.

Summing up the last inequality over all integers m, n and dividing the resulting
inequality by 2 we obtain (4.43).

Now we prove the statement about normality. By Proposition 4.5.4 there exist
flow morphisms ¢ and ¢, from (P, v) onto (C, v’) and from (Q, w) onto (D, w’)
where C = 0<l< ---<r(P)), D=0<1< --- <r(Q), Vi = a;,
w' (@) = b;, i = 0,1,..., and we have to show that there is a flow mor-
phism x from (P, v) x (Q, w) onto (E,u) where E=(0<1< --- < r(P) +
r(Q),u(i) =c¢;,i =0,1,.... By Theorem 4.6.1(a) there exists a flow morphism
¢ from (P, v) x (Q, w) onto (C, v’) x (D, w’), and by Theorem 4.6.1(b) we must
show only that there is a flow morphism ¥ from (C, v’) x (D, w’) onto (E, u); that
is, we must prove that (C, v') x (D, w’) has the normalized matching property.

Let 4 € N¢(C x D) = {(i, k — i) : max{0, k — r(Q)} < i < min{r(P), k}}.
Suppose at first that

A={mk—-—m),m+1,k—m-1),...,(n, k—n)},

m <n. “4.47)
Then

V) = {mk—m+1),m+1Lk=m),...,(n + 1, k—n)}, (4.48)
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and, if we set S (h, j) := Z{=h a;jb_;, we have to show the inequality in
(' x w)(4) _ Skm,n) _ Sgra(m,n+ 1)
(' x W)(Ne(C x D))~ 8k(0,00) = Sk41(0, 00)

_ (' x w)(V(4)
— (' x W)(Nis1(C x D))’

(4.49)

There holds

Sk(m,n) _ Si(m,n)  Sp(m,n+1)
Sp(m,00)  Sp(m,n+1) Sp(m,n+2) "

.y

Sk(m,n) — S(m,n)  Si(m,00) Si(m —1,00) S (1, 00)
85¢(0,00) — Sp(m, 00) Si(m —1,00) Sp(m —2,00) """ Sk (0, 00)

After writing % as a telescoping product, too, we see that it suffices to

prove that

- < - forall j >n (4.50)
S(m, j+1) = Sev1(m, j+2) /
(which implies g{"((m"'_’f'.g) < sgxf'("m";;)) and
Sk(,00)  _ _ Sk+1(J, 00) forall 1 < j < m. @51)

Sk(j—1,00) T Si41(j — 1, 00)
The inequality (4.50) is equivalent to

J
Z(ai+laj+l —a;aj42)bg—ibg—j—1 + amajr1bgr1-mbr—j—1 = 0,

I=m

and (4.51) is equivalent to

o0

Y Brcisibejyr — be_ibr—jy2)aiaj > 0.

i=j
These two inequalities are true because of (4.44)and j > i (i =m,m+1,..., j)
and because of (4.45)and j <i (i = j, j + 1,...), respectively. Hence (4.49) is
true and the theorem is proved for the special case that 4 has the form (4.47). If

A does not have that form we partition A4 into sets (blocks) 41, ..., 4; such that
each A; has the form

Aj = {(mj’k_m_])v (mj+ l,k—mj - 1)’-'-,(nj1k—nj)},

mp<np<my=<ny<---<m=<ny,
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and ¢ is minimal with respect to this property (i.e., mj+1 —n; > 2, j=1,...,
t —1). Then V(41) U --- U V(4,) is a partition of V(4), and we have

W x w)(A) _ L (v x w')(4))

Ck j=1 Ck
< Z’: ' x w)(V(4))) _ (v x w)(V(4))
= Ck+1 Ck+1

since each 4 has the form (4.47). Thus (C, v') x (D, w’) is normal, and the proof
is complete. [ |

Since the Product Theorem can be generalized by induction in a natural way to
a product of n normal posets with log-concave (weighted) Whitney numbers, we
can apply it to the following classes of (unweighted) posets:

Example 4.6.1. The following posets are normal (i.e., also strongly Sperner) and
have log-concave Whitney numbers: chain products S(ki, ..., ky), the function
poset F, star products T (ky, ..., kn), the poset Int(S(ky,...,k,)) (note that
Int(S(ky, ..., ky)) is a product of “halved” posets S(k;, k;)), modular geometric
lattices (see Examples 1.3.11 and 4.5.1; the log concavity can be easily verified).

The case of chain products was already settled by Anderson [30]. See Section 6.3
for examples of a modular and of a geometric lattice that are not Sperner, hence,
also not normal. In [259] Harper proved further that Int(L,(q)), the poset of all
nonempty intervals in the linear lattice L,(g) ordered by inclusion, is a normal
poset with log-concave Whitney numbers.

Let us discuss further the unweighted posets. A ranked poset P is said to have
the strict k-Sperner property if all maximum antichains are unions of complete
levels. In [146, 149] we sharpened the definition of normality and log concavity
to prove the strict k-Sperner property for several posets. In the following we de-
note the intervals {o, ¢ +1,...,8 — 1} and {&« + 1,...,8 — 1} by [e, B) and
(o, B), respectively, and consider them to be empty if @ > Bora > B — 1, re-
spectively. A graded poset P is said to be I-normal (I C [0, n)) if it is normal
and if

4] _ V)l

Wi Wit
A strictly normal poset is an @-normal poset. There is an easy criterion for /-
normality. Look at the Hasse diagram G; = (P;, E;) of the {i, i + 1}-rank-selected
subposet of P. We say that P is I-level connected if G; is connected for all
i € [0,n) — I.In the case I = @ we speak of strictly level connected posets.
Strengthening Corollary 4.5.1 we have:

foralld# ACN;, ie[0,n)—1
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Theorem 4.6.3. Let P be anormal poset. The following conditions are equivalent:
(i) P is I-normal,

(ii) P is I-level connected and for all i € [0,n) — I there exist functions f; :
E; - Ry — {0} such that

Z file) = WL forall p € N;,

eeE;:e~=p !

Y. fie)=— forallpe Ny

ecE;et=p

Proof. Throughout leti € [0, n) —

(i) — (ii). Assume that G; is not connected. Let F be a component of G;.
Then @ # A := F N N; # N;. Moreover, V(4) € F,but V(¥V; —A)N F = 0.
Consequently,
|[A] + |N; — 4] |V(A)|+ |V(N; — 4)|

< <1

1= ,
Wi Wis -

a contradiction.
Considerthe network N = (V, E, s, t,c),where V := N;UN; 4 1U{s, t}, E :=
EiU{sp: pe Ni}U {pt: p € Ni1},
‘nl/T if e = sp for some p € N,
c(e) = { o0 ifee E;,

1 e :
Wit ife = gt for some g € Nj4.

Let € > 0. Send, for every pq € Ej;, € units of flow through s, p, q, t. This gives
aflow fc with f;(¢) =€ > 0if e € E; and lime_¢ fc(e) = O forevery e € E.
Now change the capacity of N by defining the new capacity

ce(e) :=c(e) — fe(e) foralle e E.

Claim. If € is small enough, ({s}, V — {s}) (and (V — {¢}, {t})) is a minimal
cut.

Proof of Claim. We have c.({s},V — {s}) = 1 — ZpEN,' feGsp) < 1. In
looking for cuts of smaller capacity we must consider only those cuts (S, T) for
which@# 4:=8nN N,~ ;é N,- and V(A4) C S. But we have

ce(s, 1y > Al - 3 e p+ DS an

peN;— Wit (&0

_ o (IVr 4 _
‘1+(W.-+. W,) > fbp = Y feln)

PEN;—A qeV(A)
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tending to

V(DI _ 141

Wit Wi

if € — 0. Since there is only a finite number of subsets 4 of N; and for every

proper subset there holds J% - % > 0, we find some small € such that for
every cut in question ¢ (S, T') > 1 > cc({s}, V — {s}). O

1+

By the Max-Flow Min-Cut Theorem (Theorem 4.1.1 and Corollary 4.1.1) and
in view of Lemma 4.1.1(a), this claim implies that there is some flow g, in the
new network such that the arcs sp, p € N;, and qt, q € N;4, are saturated. The
restriction of f; + ge to the set E; gives the desired function f;.

(ii) — (i). Assume that there is some A C N; such that @ # 4 # N; and

i M Consider again the (first) network N. The cut (S, T') with § :

{s}UAUV(A) T := (Ni— A)U(Ni 41— V(4))U{t} has capacity i ”'+'Z,ffl)'

1. Extend in a natural way the function f; to a flow f in N which has value
v(f) = 1. By the suppositions there must be some arc from N; — 4 to V(4)
which is not void, that is, having positive flow. From Lemma 4.1.1(a) we obtain
1 = f(S, T)— f(T, S)with f(T, S) > 0.Consequently,c(S, T) > f(S,T) > 1,
a contradiction. [ |

From the proof of Corollary 4.5.2 we easily derive:

Corollary 4.6.1. A graded poset P is I-normal if it is regular and I-level con-
nected.

It is straightforward to verify that all posets given in Example 4.5.1 are strictly
level connected and consequently strictly normal.

The Whitney numbers of a ranked poset P are called /-log concave if they are
log concave and if Wl.2 > Wi_ Wiy foralli € (0,n) — I.If I = ( we also
say strictly log concave. In looking carefully for strict inequalities in the proof
of the Product Theorem, we found the following result whose proof (with several

technical details) is given in [149].

Theorem 4.6.4 (Strict Product Theorem). Let P be an [, B;)-normal poset
with (a2, B2)-log-concave Whitney numbers, where 0 < a; < r(P), 0 < B <
r(P), 0 < ay < r(P), 0 < By < r(P). Further, let Q be a strict normal poset
with log-concave Whitney numbers. Then P x Q is [0, T)-normal with (o, t)-log-
concave Whitney numbers, where

; [ r(P) { r(Q) ifr(P) <r(Q),
= , T .=
r(Q) + min{e), a2} max{Bi, B2} ifr(P) > r(Q).
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From this theorem one can derive by induction (see again [149]):

Corollary 4.6.2. Let Qy,..., Qn, n > 2, be strict normal posets and let P :=
[Tizi Qi r(Q1) <+ < r(Qn).

(a) If the Whitney numbers of the posets Q;, i = 1,...,n, are log concave,
then P is [a, B)-normal and has («, B)-log-concave Whitney numbers, where
o = Y02 r(Q). B := r(Qn).

(b) If the Whitney numbers of the posets Q;, i = 1, ..., n, are strictly log con-
cave, then P is strictly normal and has strictly log-concave Whitney numbers.

This corollary is helpful in proving the strict k-Sperner property:

Theorem 4.6.5. If P is an [a, B)-normal poset with (a, B)-log-concave Whitney
numbers, then P has the strict k-Sperner property for all k > max{1, 8 —a + 1}.
For these k, there are at most two maximum k-families.

Proof. Let us look first at the case k¥ = 1 and @« > B — that is, P is strictly
normal and has strictly log-concave Whitney numbers. It is easy to see that there
is some index h such that Wo < Wy < --- < Wy > Wpyy > -+ > W,. From the
LYM-inequality (see Theorem 4.5.1), we derive for every antichain F

<1

F 2 |FNN;
u<zl il , andhence, |F|< W,

Wh - i=0 Wi
where the first inequality is an equality iff F € N and W, > Wy or F C
NpUNpy1 and W) = Wiy . Inthe first case we have only one maximum antichain,
namely F = Nj. Assume that in the second case there is some maximum antichain
different from Ny and Np41. Then @ # F N N # N, consequently

|F 0 Nyl - [V(F N Np)|
Wi Whit

but V(F N Nj) and F N Npy are disjoint since F is an antichain. Thus |F| =
|[F O Nyl + |FNO Npyt] < |V(FO Np)| + |F O Npyi| < |Np+1l, a contradiction
to the maximality of F.

Nowlet1 < k < n and considerthechainCy = (0 <1 < --- < k—1). Then
Py := P x Cy is strictly normal and has strictly log-concave Whitney numbers
by Theorem 4.6.4. Let F be any maximum k-family in P. Then we construct the
antichain 4 as in the proof of Theorem 4.3.1, which is by that theorem a maximum
antichain in P. From the case k = 1 we know that we have at most two possibilities
for 4, and 4 must be a complete level in P;. Thus F is a union of £ complete
(neighboring) levels in P, and there are at most two possibilities for F. |
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Example 4.6.2. From Theorem4.6.5, Corollary4.6.2, and the remark after Corol-
lary 4.6.1, we obtain that the following posets have the strict k-Sperner prop-
erty and that there are at most two maximum k-families for all k = 1,2, ...:
By, Ln(q), An(q), projective space lattices, Qn, F{, Int(S(ky, ..., kn)), modu-
lar geometric lattices and S(ky, ..., ky) ifk1 = --- > kpand ks +--- + kn = ky
(the last result is due to Clements [110), other proofs can be found in Katerinoch-
kina [289] and Griggs [240]).

In [239] Griggs proved the Sperner property for the following poset Pg: Suppose
that [n] is partitioned into sets Ay, ..., Am,andlet ; :=[a;, b;], i =1,...,m,be
nonempty intervals of numbers (we could also consider arithmetic progressions).
Let Pg be the class of all subsets X of [n] with the property | X N 4;| € I,
i =1,...,m, and order these elements (i.e., subsets) by inclusion.

Corollary 4.6.3. The Griggs poset Pg is strictly normal and has strictly log-
concave Whitney numbers.

Proof. Let P; be the poset of all subsets X; of 4; with | X;| € I;, ordered by
inclusion. Obviously, P; is isomorphic to the /;-rank-selected subposet of the
Boolean lattice B|4;|, which by the preceding remarks is strictly normal and has
obviously strictly log-concave Whitney numbers. Moreover, Pg is isomorphic to
Py x ... x P, where the isomorphism is given by X C [n] & (X N 4y,...,
X N A,,). The statement follows from Corollary 4.6.2(b). [ |

Instead of partitions, West, Harper, and Daykin [467] took chains 41 C 42 C
-+« C Am C [n] and defined similarly to the above poset Py g p of all subsets X
of [n]with | XN 4;| € I;, i =1,...,m,ordered by inclusion.

Corollary 4.6.4. The West—Harper-Daykin poset Py yp is strictly normal and
has strictly log-concave Whitney numbers.

Proof. Observe at first that we can assume, w.l.o.g., that for our intervals I; =
[ai, b;] the inequalitiesa; < --- < a, and by < -- - < by, hold and that 4,, = [n]
(otherwise add [n] as a new element of the chain together with the last interval
I,). Let Py be the poset of all subsets X of Ay with |[ XN A;|e l;, i=1,...,k.

Obviously, Pw yp = P,. We prove by induction on k that P is strictly normal
and has strictly log-concave Whitney numbers. The case k = 1 is easy. Now
consider the step 1 < k — 1 — k < m. Let O be the poset of all subsets
of Ay — Ak-1, ordered by inclusion; that is, Q¢ = B, Axl—|4x—,|- By induction
and Corollary 4.6.2(b) P¢_; x Qy is strictly normal and has strictly log-concave
Whitney numbers. But P is that rank-selected subposet of P,_; x QO whose
members have cardinality in Ii; thus the result follows. [ ]
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The variance problem can be easier handled with respect to the direct product
[152].

Theorem 4.6.6. Let x and y be optimal representations of (P, v) and (Q, w),
respectively. Then the functionz : Px Q — Rdefinedbyz(p, q) := x(p)+y(q)is
an optimal representation of (P, v) x (Q, w). In particular, 0'2((P, v)x(Q,w)) =
02(P,v) +a%(Q, w).

Proof. Obviously, z is a representation of P x Q. Further it is easy to verify that
Mz = px + iy Let f and g be representation flows on (P, v) relative to x and on
(Q, w) relative to y, respectively, which exist by the supposition and by Theorem
4.4.1. Define the function h : E(P x Q) - R, by

w(q) f(pp') if pp’ € E(Py)andg = ¢’,
h((p.9)(P',q")) := { v(p)glgq’) ifqq’ € E(Qy)and p = p/,

0 otherwise.

Then ((p,q)(p’,q")) € E(P x Q) and z(p’, q') — z(p,q) > 1 imply x(p’) —
x(p) > landg = g’ or y(g") — y(g) > 1 and p = p/;thatis, h((p, q)(p’,q")) =
0. Moreover,

(2. Dy — (P @)y = w@pf +v(P)ag — W@)py +v(P)gy)

I

w(@)v(p)(x(p) — px) + v(PIw(g)(¥(g) — 1y)
= (vx w)(p,q)(z(p,q) — Kz);

thatis, A is a representation flow relative to z, and by Theorem 4.4.1 z is an optimal
representation. Finally,

a2((P, v) x (Q, w))
1

“wxw(Px0) Y. @xw(p@(pg) - ul

(p.9)ePxQ
1

=— V(P (@) (xX(P) + ¥(@)? — (ux + 1y)?
v(P)w(Q)

PEP,qeQ
=0%(P,v) + 0%(Q, w),

and the proof is complete. |
We have seen that the direct product of normal posets is normal under some

suppositions on the Whitney numbers. One cannot totally omit these suppositions.
The product of the two unweighted normal posets in Figure 4.10 does not have
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X I =
Figure 4.10

the Sperner property; that is, it is not normal. Because of Theorem 4.6.6 the direct
product of rank-compressed posets is rank compressed. The situation is different
if we consider rankwise direct products (this result is essentially due to Sali [409]).

Theorem 4.6.7. If (P,v) and (Q, w) are normal posets of same rank, then
(P, v) x, (Q, w) is normal, too.

Proof. Let f; : E;(P) - R, and g : Ei(Q) — R, be functions satisfy-
ing the conditions of Corollary 4.5.1, correspondingly. Define #; ((p, ¢)(p'q")) :
Ei(Px,Q)—>Ry,i=0,...,r(P)—1,by

hi((p,9)(p', q") := fi(pp')gi(qq’), pp’ € Ei(P), qq' € Ei(Q).

Then

- / , - v(p) w(g)
p”>p, i i
q9>q

_ v xr w)(p,q)
(v x, WY(Ni(P %, 0))°

and the corresponding equality for (p, q),’; holds, too. By Corollary 4.5.1,
(P, v) x, (Q, w) is normal. [ ]

More generally, using Theorem 4.6.3 and straightforward calculations, we ob-
tain that the rankwise direct product preserves I-normality and /-log concavity.

Example 4.6.3. The poset of subcubes of a cube S Q(k, n) and the poset of square
submatrices of a square matrix SM(k, n) are strictly normal with strictly log
concave Whitney numbers.

However, the rank-compression property is not preserved by rankwise direct prod-
uct that can be seen by the unweighted rank-compressed poset given in Figure 4.11
(see [59]): The indicated elements form a filter F. It is easy to see that F x, F in
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P x, P does not satisfy the inequality (iii) in Theorem 4.4.1; that is, P x, P is
not rank compressed.

Figure 4.11



5

Matchings, symmetric chain orders,
and the partition lattice

This chapter should be considered as a link between the preceding flow-theoretic
(resp. linear programming) approach and the succeeding algebraic approach to
Sperner-type problems. The main ideas are purely combinatorial. The powerful
method of decomposing a poset into symmetric chains not only provides solutions
of several problems, it is also very helpful for the insight into the algebraic machin-
ery in Chapter 6. In particular, certain strings of basis vectors of a corresponding
vector space will behave like (symmetric) chains.

5.1. Definitions, main properties, and examples

Throughout let P be a ranked poset of rank n := r(P). We say that the level N;
can be matched into the level N;| (resp. N;_)) if there is a matching of size W;
in the Hasse diagram G; = (B, E;) (resp. Gi—| = (P;—1, E;—1)) of the {i, i + 1}-
(resp. {i — 1, i}-) rank-selected subposet (recall that a matching is a set of pairwise
nonadjacent edges or arcs).

Theorem 5.1.1. If there is an index h such that N; can be matched into N4
for 0 <i < h and N; can be matched into N;_| forh < i < n, then P has the
Sperner property.

Proof. If we join the arcs of the corresponding matchings at all points that are both
starting point and endpoint, we obtain a partition of P into saturated chains (isolated
points are considered as 1-element chains). Each such chain has a common point
with Nj,. Consequently, we have W}, chains and Dilworth’s Theorem 4.0.1 implies
d(P) < W, thatis, d(P) = Wp. |

There exist several criteria for the existence of such matchings.

179
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Theorem 5.1.2 (Hall’s Theorem [251]). Let P be a poset of rank n = 1. Then
Ny can be matched into N\ iff for all A C Ny there holds |A| < |V(4)|.

Proof. The inequality |4| < |V(4)| for every A C Nj is clearly necessary, so let
us look at the sufficiency. Let S be a maximum antichainin P, 4 := NoN S, B :=
Ny N S. Then V(4) N B = @; that is, |S| = |4| + |B| < |V(4)| + |B| < W1.
Consequently, d(P) = W;. By Dilworth’s Theorem 4.0.1, P can be partitioned
into W) chains. Obviously, every chain must contain exactly one element of Nj.
The 2-element chains form the desired matching. n

Theorem 5.1.3 (R. Canfield [96]). Let P be a poset of rank n = 1 without iso-
lated minimal points. If for all p,q € P with p < q there holds |V (p)| = |A(g)/,
then Ny can be matched into N|.

Proof. We consider the network N = (V, E, s, t,c) where V := NoU N U
{s,t}, E:={sp: pe No}U{pg : p <q}U{qt:q € Ni}and c(sp) := 1 for
p € No, c(pq) := oo for p < q,c(qt) := 1forq € N;. We define f: E - R,
by f(sp) := 1 for p € No, f(pg) := [z for P < 4, a1 = ¥ peq iy
for g € Nj. Then it is easy to see that f is a flow (note that by supposition

f@n <y,

1
— = |A[@)|—— = 1).
Z 1A

NG

We have v(f) = Wy. Consequently, the minimum capacity of a cut in N equals
Wy, and by Theorem 4.1.1 there exists an integral, that is, 0,1-flow in N of value
Wo. The arcs between Ny and N of flow value 1 form the desired matching. ®

We will apply this condition only later. First we will study cases where the
construction of the matchings can be carried out in a certain global and symmetric
way.

A chain C of P is called symmetric if it has the form C = (pg < --- < pp)
with r(pp) + r(pr) = n. A set € of chains of P is called a symmetric chain
partition (or symmetric chain decomposition) if all chains C € € are symmetric
and each element of P is contained in exactly one chain of €. Finally, our ranked
poset P is said to be a symmetric chain order (briefly sc-order) if there exists a
symmetric chain partition € of P. We have already seen an example of an sc-order:
From the third proof of Theorem 1.1.1 in the beginning of Section 2.2 it follows
that the Boolean lattice is an sc-order. But we will find many more sc-orders. In
the following we use the notation

¢ ={CecC:|C|=i}, i=1,...,n+1.
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Lemma 5.1.1. If P is an sc-order then P is rank symmetric and rank unimodal.

Proof. W; equals the number of chains of a symmetric chain partition of P meeting
N;,i =0,...,n. Now the rank symmetry follows from the fact that a symmetric
chain meets N; iff it meets N, _;. The rank unimodality can be derived in the same
way: If a symmetric chain has a rank i member, i < 7, then it contains also a rank
i + 1 member. |

Lemma 5.1.2. Let € be a symmetric chain partition of P. Then, fori =1, ...,
n+1,

ifn —iiseven,

€| = [
Wn-ity2 —Wn-i—1)2  otherwise.

Proof. Let C = (pp < --- < p;—1) be any symmetric chain with |C| = i. Then
r(po) +r(pi—1) = 2r(co)+i—1 = n; thatis, n—i is odd. Consequently, €; = @ if
n —i is even. Moreover, C must startin N, _;11y/2 and end in N(,+;_1)/2. In order
to count the number of such chains, observe that this number equals the number
of chains meeting N;—;+1);2 (i.e., Wu—i+1)/2) reduced by the number of chains
meeting N(n—i—l)/2 (ie., W(n—i—l)/2)- |

Let us order the Whitney numbers such that they are decreasing. We can use
the permutation & of {0, ..., n + 1} defined by

(O 1 2 3 4 e« n—1 n n+l)
I I S S
if n is even,
T =
0 1 2 3 4 ... n—=1 n n+l1
if n is odd.

The formula in Lemma 5.1.2 reads:
ICi| = Wai—1y — Wr@,i=1,...,n+1

(recall that W, 1| = 0 and note Lemma 5.1.1).
Now we present the key theorem.

Theorem 5.1.4. If P is an sc-order, then P has the strong Sperner property.

Proof. We must prove that the size of any k-family F in P is not greater than
the largest sum of £ Whitney numbers of P. In view of Lemma 5.1.1 we have to
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show that | F| < Zf.‘;(; W (i) Let € be a symmetric chain partition of P. Clearly,
|C N F| < min{|C|, k} for all C € €. Accordingly,

k-1 n+l
|F| < ) min{|C|,k} = )_il€] +Zk|e:,
Cec i=l1
k-1 n+1
=Y iWni-t) — Wa@) +k Y_Wri—1) = Wai))
i=1 i=k
k-1

Remark 5.1.1. Note that we proved more: Every symmetric chain partition is
k-saturated for everyk = 1,2, . .. (see the remarks after Corollary 4.3.2 and note
that Uf.:(; Nr @y is a maximum k-family).

Now, of course, it is interesting to have examples of sc-orders. A large class can
be obtained in applying the following product theorem. The key idea goes back to
de Bruijn, Tengbergen, and Kruyswijk [87], who considered products of chains.
The product theorem was then proved (resp. re-proved) by Alekseev [24], Aigner
[20], Griggs [236], Koester [313], and others.

Theorem 5.1.5. If P and Q are sc-orders, then P x Q is an sc-order, too.

Proof. Let € and ® be symmetric chain partitions of P and Q, respectively. For
each pair (C, D),where C = (pp < --- < pp) €€Cand D= (qo < --- < q4) €
D, we form the following chains of P x Q (see Figure 5.1).

E;j(C,D):=((po.q;)) < -+ < (ph—j>qj) < (Ph—j, qj+1)
K e & (Ph—j’qk))‘ j=0,...,min{h,k}.

Then we have

r(po, q;) +r(pa—j, qx) = r(po) + (r(qo) + j) + (r(pn) — j) +r(qx)
=r(P)+r(Q) =r(P x Q);

that is, the chains E;(C x D) are symmetric. Moreover, € := U;E;(C, D) is a
partition of C x D; thatis, Ucee Upep U; E;(C, D) is a symmetric chain partition.
n

Example 5.1.1. Clearly, Theorem 5.1.5 can be extended to the case of a product
of n sc-orders. Hence the Boolean lattice B, and, more generally, chain products
S(ky, ..., ky) are sc-orders.
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(ph’ qk

ph—Ja qk
/ (pOa qk
(ph, QO)
pO,

pOa ‘10

Figure 5.1

Using Theorem 5.1.5 we obtain a recursive procedure to determine a symmetric
chain partition of S(kj, ..., k,). But there are also direct methods to do this.
We present here the parenthesization method of Leeb (unpublished), Greene and
Kleitman [232] and then calculate explicitly the upper and lower neighbors in such
symmetric chains. This is closely related to the so-called lexicographic method of
Aigner [19] (see also [21, pp. 432ff]).

With every a = (ay, ..., an) € S(ky, ..., k,) (here we do not need the general
supposition k; > --- > k), we associate a sequence of > ;_; k; left and right
parentheses as follows: first a; right parentheses, then k; — a; left, then a5 right,
ky — ay left, and so forth. For example, fora = (1,2,0,1,3) € S(2,3,1,2,5)
we obtain the following sequence:

> () ) ) €)Y ) €«

Note that the number of right parentheses equals the rank of a. Every sequence of
left and right parentheses has a unique parenthesization obtained in the following
way: Close all pairs of left and right parentheses that are either adjacent to or
separated by other such pairs, repeating the process until no further pairing is
possible (one may use stacks to produce this parenthesization algorithmically).
The remaining unpaired parentheses form a sequence of right followed by left
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parentheses; in our example we have

) ) )«

Now we define the partition of S(ki, ..., k,) by saying that two elements are in
the same block iff they have the same parenthesization. Considering the remaining
sequences of parentheses it is not difficult to see that each block is a symmetric
chain (if we have 2x paired and y unpaired parentheses, then the first element of
the chain has rank x, the lasthasrank x + y,andx +x + y =2x+ y = Y ;_, ki),
and thus we have obtained a partition into symmetric chains. In the following table
we see which elements lie in the same symmetric chain as a (in our example).

remaining sequence sequence element rank
(CC(( haammyccc ©,1,01,2) 4
) (C((C YhammH e (1,10,12) 5
))((( YA M« (@1,20,1,2) 6
) (( Ymaohm»n e @,20,1,3) 7
I)( YMAGMINC (1,2,0,1,4) 8
1)) amanmm))) @205 9

How do we find for an element a the element b (if it exists) that covers a and lies
in the same symmetric chain as a? We already mentioned that one can use stacks,
but it is also possible to calculate explicitly that component i for whicha; = b; — 1
(for the other components we must have equality because of @ < b). At least one of
the k; — a; left parentheses belonging to the ith component must remain unpaired
if we build the parenthesization sequence from the left to the right. So we must
have k; — a; > a;4. At the (i + 1)th component we close a; | right parentheses
with the preceding left parentheses and create k;41 — a;+1 new left parentheses.
If we recall that at least one left parenthesis from the ith component must remain
unpaired, we see that we must have k; — a; + ki+1 — aj+1 > ai+1 + aiy2. At the
(i + 2)th component we close a; 2 right parentheses and create k;.12 — @42 new
left parentheses. If we continue in the same way, we see that we must have

!

—1
Z(kj —aj) > Z a; foreveryi <t <n. 6.1)
j=i =i+l

Since we come from a to b by changing the leftmost unpaired left parenthesis into
aright parenthesis, the desired index i is the smallest integer in [n] satisfying (5.1)
(if there is not such an integer, we put i := n + 1). Let fora € S(ki, ..., kn),

i~ i
fi(a) 1=Z(kj—aj)—z:aj,i=1,...,n+1,
J=1 J=1
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where a,+1 := 0. It is easy to see that the searched after index i can be found by
determining the largest integer i for which f;(a) attains its minimum. In a similar
way we find for our element a the element ¢ (if it exists) that is covered by a and
lies in the same symmetric chain as @ (we have to look into the sequences from
the right to the left and must note that 3°7_, (k; —a;) — 3_7_ a; is constant). The
index i for which a; = ¢; + 1 is the smallest integer in [n] for which f;(a) attains
its minimum (here i = 0 means that there is no such c).

Note that the chains that are constructed by the parenthesization (resp. explicit)
method are the same as those chains that are obtained if one applies Theorem 5.1.5.
This follows easily by induction on n. From a more theoretical point of view,
Gansner [214] studied the parenthesization and explicit methods in distributive
lattices as well. Of course, we may specialize the preceding results to the Boolean
lattice. Let us represent it as subsets of [n] (@ € S(1, ..., 1) is the characteristic
vector of the corresponding subset). We call the symmetric chain partition from
above the parenthesization partition of B,. Moreover, if S and §' := S U {i}
belong to the same symmetric chain, we speak of a link S — §’ in a chain of the
parenthesization partition. Later we will need the following proposition.

Proposition 5.1.1. Let € be the parenthesization partition of B,.

(a) In each chain of €, elements are added in increasing order.
(b) n is an element of the last set in each chain.

(¢) If S > SU{i}is alink in achain of € theni + 1 ¢ S and eitheri =1 or
i—1les.

Proof. (a) We turn the unpaired parentheses from the left to the right.

(b) Either the last parenthesis is paired, and then it must be a right parenthesis,
and thus n belongs to every set of the chain, or the last parenthesis is unpaired,
and then we change it in the last step into a right parenthesis, and thus n belongs
to the last set of the chain.

(c) Since i ¢ S, the ith parenthesis is a left one. If we had i + 1 € S then
the (i 4+ 1)th parenthesis would be a right one; that is, the ith and the (i 4+ 1)th
parentheses were paired and thus the ith parenthesis could not be changed into a
right one. If we had i > 1 andi — 1 ¢ S, then the (i — 1)th parenthesis would be
a left one. It cannot be paired since otherwise the ith parenthesis had also to be
paired. Hence the next link would be S — SU {i — 1} instead of S — SU {i}.

u

Metropolis and Rota [365], [366], and Metropolis, Rota, Strehl, and White
[367] worked out an analogous parenthesization algorithm to partition Q, and F}
into chains. Vogt and Voigt [457] presented a similar explicit, but more difficult
partition of L, (q). Not only with the help of the product theorem may we construct
sc-orders. We also have a nice link to the normal posets.
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Theorem 5.1.6 (Griggs [235]). Every rank-symmetric and rank-unimodal nor-
mal poset P is an sc-order.

Proof. We proceed by induction on n := r(P). The case n = 0 is trivial. For
n=1orn =2,let®D be a 1- (resp. 2-) saturated partition of P into chains that
exists by Corollary 4.3.2. We will show that D is a symmetric chain partition. Let
D;:={De®D:|D|=i},i =1,2,.... Werecall that P has the strong Sperner
property by Corollary 4.5.3. In the case n = 1 we have

Wo=Wi=di(P)= ) min{|D],1} = D] + D,
De®

and since D is a partition of P, the following holds:
Wo+ Wi = D] +2|D2|,

from where we derive |9 | = 0; that is, all chains of ® are symmetric.
In the case n = 2 we have

Wo+Wi=Wi+W,=d(P)= Z min{|D|, 2} = [D1| + 2|D2| + 2|D3|
De®

and
Wo+ Wi+ Wy =|D1]+2|D2| + 3|D3].

We conclude that |D3]| = Wy = W>; that is, all elements of Ny U N, are covered
by 3-element chains. Consequently, there cannot be 2-element chains, and the 1-
element chains consist of elements of rank 1. Thus all chains of © are symmetric.

Now we consider the stepn —2 — n, where n > 3. By the induction hypothesis

forthe {1, ..., n — 1}-rank-selected subposet (which is of course rank symmetric,
rank unimodal, and normal) there exists a partition €* into symmetric chains.
Again put &_, := {C € € : |[C| = n — 1}. Let P’ be the poset of rank 2 for

which No(P’) := No(P), N1(P’) := & _,, Nao(P’) := N,(P) holds and which
is ordered in the following way: Let pp € No(P'),C = (p1 < -+ < pp—1) €
Ni(P"), pxn € N2(P'). Then

o< pCiff pp<pp, and C < ppyiff pp_1 < ppn.

It is easy to see that P’ is rank symmetric, rank unimodal, and normal. Conse-
quently, by the already proved case n = 2, there is a symmetric chain partition
D of P'. If we consider the 1- and 3-element chains of €* in the obvious way as
(n — 1)- (resp. (n + 1)-) element chains of P and add all chains of €* — &7 _, we
obtain the searched after symmetric chain partition of P. |

Example 5.1.2. The following posets are sc-orders: L,(q), projective space lat-
tices, and modular geometric lattices (use Theorem 5.1.5).
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Sc-orders also behave nicely with respect to the rankwise direct product:

Theorem 5.1.7 (Sali [409])). If P and Q are sc-orders (of the same rank) then
P x, Q is an sc-order, too.

Proof. Let n := r(P) = r(Q) and consider chains C = (p; < --- < pp—;),
r(pp))=i,and D= (gj < -+ < gn-j), r(p;) = j. We define C x, D to be the
chain ((pk, qx) < -+ < (Pn—k> gn—k)) Where k := max{i, j}. Note that C x, D is
really a symmetric chain in P x, Q. Now it is easy to see that for given symmetric
chain partitions € and D of P and Q, respectively, the set Ucee Upep C X, D is
a symmetric chain partition of P x, Q. n

It is still open whether the poset L(m, n) and related posets are sc-orders as
asked by Stanley [439]. Up to now the conjecture is confirmed for min{m, n} < 4
by Riess [399], Lindstrom [346], and West [463].

5.2. More part Sperner theorems and the
Littlewood—Offord problem

Symmetric chain partitions allow us to prove stronger forms of Sperner’s theorem.
These observations go back to Katona [291] and Kleitman [299]. We define a subset
F of aproduct P x Q of two posets P and Q to be a semiantichain if there are no
(p1,91), (P2, q2) € Fsuchthat py = prandq| < g20r p; < prandq; = g,. We
say that a product P x Q of two ranked posets has the two-part Sperner property
if the largest size of a semiantichain equals the largest Whitney number of P x Q.

Theorem 5.2.1 (Katona [294]). If P and Q are sc-orders, then P x Q has the
two-part Sperner property.

Proof. Let h = I_’(P)—;"(@J Clearly, Ny (P x Q) is a semiantichain since it is
an antichain. Moreover, W, (P x Q) is the largest Whitney number of P x Q
(by Lemma 5.1.1 and Theorem 5.1.5). Let F be a semiantichain in P x Q. We
must prove |F| < Wj(P x Q). Let € and © be symmetric chain partitions of
P and Q, respectively. In the proof of Theorem 5.1.5 we formed for every pair
(C, D) of chains of the corresponding partitions min{|C|, | D|} chains E;(C, D),
and taking these chains together we obtained a symmetric chain partition of P x Q
that consists of exactly W, (P x Q) chains since each chain meets Ny (P x Q).
Consequently,

Y~ Y min{|Cl|, DI} = Wi(P x Q).

CeC€ Ded
Since F is a semiantichain, we have forevery C € €, D € D

|F N (C x D)| < min{|C]|, | D[}
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(use Dirichlet’s principle). Accordingly,

IFI=Y Y IFN(Cx D)<Y Y min{[Cl,|D|}=Wi(P x Q).

CeC€ De®D CeC€ DeD
[ |

More generally, one may consider products P := Py x --- x Py of M ranked
posets Py, ..., Py. A subset F of P is called an M-part k-family if there are no
k + 1 elements of F lying on a chain in P that are identical in M — 1 components
(thus a semiantichain is a two-part 1-family). In contrast to the k-family problem,
Theorem 5.2.1 cannot be generalized to two-part k-families. All elements of a
product P of two 3-element chains form a two-part 3-family, but its size is larger
than the largest sum of three Whitney numbers of P (if one changes the definition
of an M-part k-family such situations can be avoided, see Katona [294]). Also
three-part 1-families do not behave as nicely. Look at a product P of three 2-
element chains (0 < 1). The elements (0, 1, 1), (1,0, 1), (1, 1, 0), (0, 0, 0) form
a three-part 1-family, but its size is greater than the largest Whitney number of
P. Katona [296] and Griggs and Kleitman [243] added further conditions on a
three-part 1-family in order to bound their size by the largest Whitney number
of P.

Theorem 5.2.2 (Sali [407]). Let Py, ..., Py be sc-orders and let F be an M-part
k-family in P :== Py x --- X Py Then

|F| < Mkd(P).

Proof. First we consider the special case that P; is a chain of length k;,i =
1,..., M; thatis, P = S(ky,..., ky). Take any chain of the symmetric chain
partition that is constructed by the parenthesization method. If we are going from
the bottom to the top we see (as in Proposition 5.1.1(a)) that the first component
is changed (or not changed at all), then the second component is changed (or
not changed at all), and so on. Hence the intersection of F' and this chain cannot
contain more than Mk elements. We have exactly d(P) chains in the symmetric
chain partition; hence,

|F| < Mkd(P) = MkW 3,

where as always n := r(P).
In the general case we work with symmetric chain partitions €; of P;,i =
L,....,.M.IfC; € €;,i =1,..., M, we have by the preceding special case

IFn(Clx---xCM)IsMk“peCl x«--xCM:r(p)=|_—;-_“|.
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Hence by the pairwise disjointness of the chain products

IFl= Y  IFN(Cix-xCyl
C e€y,...,.CyeCy

MkCIGQ.;MGQSM “p € G x G r(p) = [%J”
= MkWL%J = Mkd(P).

IA

In [408] Sali observed that one can replace the factor M by cv/'M, where the
constant ¢ is independent of P, M, and k. Moreover, infinitely many P’s show
that this result is best possible for every M and apart from the constant factor c.
We postpone an analogous asymptotic result to Section 7.2 where we consider
products of arbitrary posets of bounded size. PL. ErdGs, and Katona [177] and
Sali [410] studied convex hulls of M-part k-families.

There is another class of posets which allows the determination of the maximum
size of semiantichains. A ranked poset P is called a skew chain order if it can be
partitioned into W saturated chains (which then must contain an element of rank 0).

Theorem 5.2.3 (West and Kleitman [468]). Let P and Q be skew chain orders.
Then the (ground set of the) rankwise direct product P x, Q is a semiantichain
of maximum size.

Because the proof is analogous to the proof of Theorem 5.1.5, it is left to the reader
as an exercise. The result can be applied to /nt(S(k1, k2)). Thus, in the poset of
subrectangles of a rectangle (we speak of rectangles instead of parallelepipedons),
the squares form a maximum semiantichain. Again one cannot generalize the
result to higher dimensions, for example, to Int(S(k), k2, k3)). For example, in
03 (= Int(8(1, 1, 1))) Nj is an antichain — that is, a three-part 1-family of size
12 —but Q) x, Q1 X, Q) is of size 9. Peck [379] modified the conditions slightly
to obtain a bound of this kind.

If one considers semiantichains as optimal integral solutions of a corresponding
linear programming problem (packing problem) one has to ask also for the dual
(covering) problem. The dual objects here are chains in which one of the coordi-
nates remains fixed, called unichains. The following interesting problem of West
and Saks (see [465]) is still open: Is it true that the largest size of a semiantichain
in P x Q equals the minimum number of unichains needed to cover P x Q? For
several related results, we refer to West [465].

One of the earliest examples where Sperner-type theorems were applied is
the Littlewood—Offord problem from 1943: Given complex numbers zi, ..., z,
such that |z;| > 1 for each j, how many sums of the form }°7_, €;z;, where
€; € {—1, +1} for each j, can lie inside any circle of radius r?
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Littlewood and Offord [349] themselves found an upper bound of the form
Cr?" logn//n, and in 1945 Erdds [165] showed — using Sperner’s theorem — that
the log term can be omitted. After that many further results were obtained. In the fol-
lowing we present some of the nicest. Instead of complex numbers we consider vec-
tors z1, ..., Z, in the d-dimensional space RY; that is, 2 =(21,js-r2d,j)s ] =
1,...,n.Let LO(n,d, r) be the smallest natural number such that for any choice
of vectors zi,...,2, € R? with llz;ll > 1 for each j and any choice of an
open sphere of radius r there are no more than LO(n,d, r) sums of the form
27=1 €;z;, where €; € {—1, +1}, in that sphere. We realize the Boolean lattice
B, as the chain product (—1 < 1)" and for € = (¢, ..., €,) € B, we put briefly
s(e) := Z;zl €;zj, where it is assumed that zy, . . . , 2, are clear from the context.

First we study the case r = 1. Taking z; := (1, 0, ..., 0) for each j we see that

LO(M,d, 1) > (LZJ) (5.2)
2

(note that s(€) remains constant if € runs through a fixed level of B,).

If d = 1 the vectors z; are real numbers (we write z;), and we may assume that
z; > 1foreach j (if z; < —1 for some j one has to take in the sums —¢; instead of
€;). Fore < €', wehave s(€') —s(e) > 2 since s(€) —s(€) = 2z; for some j. Thus
for each open (or half closed) interval I of length 2, the set {€ € B, : s(e) € I}is
an antichain. Sperner’s theorem immediately yields (together with (5.2)):

Proposition 5.2.1. We have LO(n, 1, 1) = (ng).

Let us mention that our function s divided by 2 is a representation of the Boolean
lattice. In Section 7.2 we will define antichains in the same way using representa-
tions.

In the case d = 2 the two-part Sperner Theorem yields the same bound.

Theorem 5.2.4 (Katona [291), Kleitman [299]). LO(n,2,1) = (Lg J).

Proof. As before, we may assume that z; ; > 0 for each j. Moreover, we may
assume z21,...,22,p > 0and 23 p41,...,22,, < 0. We consider the n-tuples €
as elements of B, x B,_,. For different n-tuples €, € with €; < eJ’., jeJc
{pr+1,...,n}and ¢; = ej’. otherwise, we have

s(€) —s() =2 (z1,),22.)).

jeJ

Let j* € J.Clearly, 3¢y z1,j > 21,5+ 2 0and 3¢ ; 22, < z3,j» < 0. Conse-
quently,

Is(€) — s = 221(z1,j*, 22, 4)1I* > 4;
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that is, s(€) and s(€’) cannot both lie in an open sphere S of radius 1 (diameter 2).
The same holds if €; < ej’. forje JC{l,...,pland¢; = ej’. otherwise. Thus
the set {¢ € B, x B,—p : s(€) € S} is a semiantichain that has by Theorem
5.2.1 (recall that B, is an sc-order for any ») cardinality not larger than the largest
Whitney number of B, x By_p, that s, (ng). ]

In the general case (d > 1) we define for a fixed choice of z, . . ., z, the graph
G = (V, E), where
V = {e=(e,...,€) : € € {—1, 1} forall j},
E := {e€ : ||s(€) — s(e)||* > 4}.

Ford = 1 and d = 2, any independent set of G (which is an antichain (resp.
semiantichain) in B,) has cardinality not greater than (Lg J). This is also true for
d>2:

Theorem 5.2.5 (Kleitman [303])). We have LO(n,d, 1) = (Lg J).

Proof. By (5.2) all we have to do is to show that our graph G = G(n; 2y, ..., Zn)
can be covered by (Lg J) cliques. We construct our cliques in a similar way as the
chains in a symmetric chain partition of B, (see third proof of Theorem 1.1.1 in
Section 2.2 and Theorem 5.1.5). Let us only look at the step n — n + 1 and let
C = {eo, ..., €4} be a clique that was produced for the parameter n. We assume,
w.lo.g., that (s(€p), Zn+1) = (s(€;), Zn1), j =0, ..., h (here (-, -) denotes the
standard scalar product in R?). We define the new sets

C := {(e0, =), ..., (€n1, —1), (€, —1), (€r, +1)},
C' = {(eg, +1), ..., (€p—1, +1)}.

We claim that C and C’ are cliques in G:=Gm+1;z1,...,2n, Zns1). This is
clear for C’ because for0 < i < j < h — 1 there holds

Is(ej, +1) — s(ei, + DI = lIs(€j) + znt1 — (s(&) + Znt1) I
= |Is(e;) — s(e 1 = 22.

Up to the last element we can apply the same arguments to C. Finally, for 0 <
i < h, we have

ls(en, +1) — s(e, —=DII* = lIs(en) — s(€:) + 22n41 ]2
= [Is(en) — s(€)* + 4l zn1 112

+4(s(ep) — s(€),Zn41) >0+ 4+ 0=14.
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Thus, as in the Boolean case, we obtained for a clique (chain) of size & + 1 a new
clique (chain) of size 4 (if h > 1) and a new clique (chain) of size A + 2. It follows
that the total number of cliques equals the total number of chains in a symmetric
chain partition, and for B, this number is (Li.; J). ]

Now we study the case » > 1. As for » = 1 we obtain the lower bound
LO(n,d,r) > sum of the [r] middle binomial coefficients. 5.3)

If d = 1 this bound is best possible:
Proposition 5.2.2 (Erdés [165]). We have LO(n, 1,7r) = Y7 (2 40)

Proof. It is easy to see that for each open (or half closed) interval I of length
2r, the set {€ € B, : s(€) € I} is an [r]-family. Thus the result follows from the
k-family property of B, for every k (see Corollary 4.5.3 and Example 4.5.1). ®

For d > 1, we prove only an upper bound, which can be derived from the
M-part Sperner Theorem and ideas of Griggs [237].

Theorem 5.2.6 (Sali [407]). We have LO(n,d,r) <297 ![rv/d ] (12)

Proof. As in the proof of Theorem 5.2.4 we assume that z; ; > 0 for each i. We
can partition the index set [n] into M := 24-1 subsets (empty sets are allowed)
such that for each such subset J the components z; ;, j € J, all have the same
sign,. . ., the components zg, j» J € J, all have the same sign. Let S be any open
sphere of radius .

Claim. F := (e : s(¢) € S} is an M-part [r+/d ]-family.

Proof of Claim. Let us look at one of the M subsets J. We suppose, w.l.o.g.,
thatz; ; >0fori =1,...,d,je J. Letk := [¥+/d | and assume that there is a
chainegy < --- < € in F such that the components of the members are identical
outside J. Then

s(ex) — s(eo) =2 Y _ z; forsome J' C J, |J'| > k.
jeJ'

Geometrically we look at the projections onto the vector 1 = (1, ..., 1). We have
(zj, 1) Z j \/ +zdjzl jeJ.
It follows that

(s(ex) — s(eo), 1) =2 ) (z;,1) = 2],
jeJ'
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and finally by Cauchy’s inequality

1 4%  4r3d
Is(ea) sl > T (s(e) = sCe0). 17 = B,
that is,
Is(ex) — s(eo)ll = 2r,
a contradiction. O

The statement in the theorem now follows immediately from the claim and
Theorem 5.2.2. |

An almost final answer to the Littlewood—Offord problem was given by Frankl
and Fiiredi [195].

Theorem 5.2.7. Suppose that r is not an integer. Then
(@) LO(n,d,r) = ([r]1+0(1)) (ng) asn — 00.

(b) Ifthereisanintegers suchthats—1 <r <s—1+ ﬁf, then LO(n,d,r) =
LO(n, 1, r) if n is sufficiently large.

We omit the proof but mention that deeper geometrical insight is necessary to
establish this result. Frankl and Fiiredi [195] posed the problem to determine
lim, 00 LO(n, d, r)/( ) for integers r.

If one considers closec? spheres instead of open spheres one has the same formula

as in Theorem 5.2.7. One can use these formulas also for integers r if one replaces
[r1by Lr] + 1.

Note also a “dual” variant of the Littlewood-Offord problem which goes back
to Erd6s, Sdrkdzy, and Szemerédi [168]: Change the condition |zj]| > 1 into
lzjll < 1forall jand ask for the number of sums Z;f___l €;zj (wheree; € {—1, +1}
for all j) which lie in a sphere of radius r. The following result is presented without
proof:

Theorem 5.2.8 (Beck [41]). Letz, ..., 2, bevectorsinRY with ||z; ill < 1forall
Jj. Then at least c(d)2"n=%% sums oftheform Ej_l €z, where €j € {—1, +1},
lie in a closed sphere of radius /d around the origin. The constant c(d) depends
only on the dimension.

SarkSzy and Szemerédi (unpublished) showed that for d = 1 this bound can be
replaced by (Lg J) which has asymptotically the same order.
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5.3. Coverings by intervals and sc-orders

Let us recall that Dilworth’s Theorem 4.0.1 tells us how many chains we need to
cover a given poset P. What is the situation if we replace chains by intervals? In
[81] we showed together with Bouchemakh that the corresponding problems are in
general NP-complete (cf. [215]). But if we restrict ourselves to special symmetric
chain orders, we find some Sperner-type theorems.

Let P be a ranked poset and let 0 < ! < u < n := r(P). Consider the
[/, u]-rank-selected subposet Py,  of P (i.e. Py,u) = Ui_;N;). Let o(Py ) be the
minimum number of intervals of the form [p, q] :={v € P: p < v < g}, where
I < r(p) <r(q) < u, which cover Py . Since no two elements of N; (resp. N,)
can be covered by one such interval, we have clearly

Q(P[I,u]) > max{W;, W,}. 54

We say that the ranked poset P has the strong interval covering property (briefly
strong IC-property) if equality holds in (5.4) for all 0 </ < u < n. To find
examples, we introduce the following class: A ranked poset P is called a special
symmetric chain order (briefly ssc-order) if there exists asymmetric chain partition
€ of P with the additional property (*):

IfC = (p) < --- < pp)isachain of the partition that has less than maximum
length then there exists a chain D of the partitionsuchthat D = (go < -+ < gp41)
and g9 < p; as well as pp < gp41.

Theorem 5.3.1. If P is an ssc-order, then P has the strong IC-property.

Proof. First we consider the special case / + u = n (i.e., W; = max{W;, W,} =
W,). Let € be a symmetric chain partition of P satisfying property (*). With each
p € N; we associate the element f(p) of N,—; that lies on the same chain of
€,0 < i < 7. Then the W intervals [p, f(p)], p € Ny, cover Py,y). This can be
proved by induction on n —2!/: The cases n —2/ = 0O or 1 are easy. For the induction
step, consider any element v of Py ,—j1. If v € Nj or N,_; then v is clearly covered.
Thuslet p € Py+1,n—¢+1)]- By the induction hypothesis v is covered by an interval
g, f(q)], where ¢ € Nj4). Let C be the chain of € containing g and f(g). If
q has on C a predecessor p then v is covered by [p, f(p)]. If g is the starting
point — that is, f(q) is the endpoint of C — then there is, because of property
(*), some chain D of € of the form D = (p < --- < f(p)), where p € N; and
P <gq < f(@) < f(p). Hence v is covered by [p, f(p)].

For the general case, let us assume, w.l.o.g., / + u < n, that is, W, =
max{W;, W,}. Restricting the chains of € to Py ,—,) we find W, chains of the
form (g < - < p), where p € N,_,, which cover Py ,_,]. Now we join the
chains (g < --- < p)and (p < --- < f(p)) and replace the resulting chain by
the interval [g, f(p)]. By the first part of the proof these W, intervals cover Py ..

]
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Theorem 5.3.2. Let P and Q be ssc-orders.

(@) Then P x Q is an ssc-order, too.
(b) If, in addition, r(P) = r(Q), then P x, Q is an ssc-order, too.

Proof. (a) We take symmetric chain partitions € and © of P and Q, respec-
tively, which have property (*). Then we construct the symmetric chain partition
€ of P x Q as in the proof of Theorem 5.1.5. All we need is the verification
of (*) for €. Property (*) is evident for the nonmaximal chains in the partition
of each “rectangle” C x D. Let us consider the maximal chain Eo(C, D) =
((po,q0) < -+ < (pn, qr)) of such a rectangle. If it does not have maximum
length in &, then C or D does not have maximum length in € or D, respec-
tively. By symmetry, suppose this for C. Since € has property (*), there must be
achain C' = (py < --- < pj,,) in € such that pj < po and py < pj . But
Eo(C', D) = ((py» 90) < -+ < (P},41» 9k)) belongs to € and is thus the desired
chain for Eo(C, D).

(b) Here we use the construction in the proof of Theorem 5.1.7. The verification
of (*) is an easy exercise. [ |

Since single chains are clearly ssc-orders we derive immediately:

Example 5.3.1. The following posets are ssc-orders, and thus have the strong
IC-property:

(a) the Boolean lattice B, and chain products S(ky, ..., ky),

(b) the poset SMy, n of square submatrices of a square matrix.

We found the last two theorems together with Bouchemakh [81]. The IC-property
of B, was first proved by Voigt and Wegener [458] using the parenthesization
method. They used this result for the construction of minimal polynomials of
symmetric Boolean functions. Let us describe this application in more detail:
Every Boolean function f : {0, 1}” — {0, 1} can be represented as a family F ¢
in B, where B, is represented as {0, 1}"” and Fy := {x : f(x) = 1}. A monomial
is a conjunction of negated and nonnegated variables — for instance, x;X3x4%¢.
With each monomial we can associate in an obvious way a Boolean function f.
The corresponding family F is obviously an interval in B,. In Figure 5.2 we
illustrate F for our example in Bs. A polynomial or disjunctive normal form is a
disjunction of monomials. The corresponding family in B, is a union of intervals.
Itis well known (and in this interpretation obvious) that each Boolean function can
be represented as a polynomial. Let d( f') be the smallest number & such that f can
be represented by a polynomial with £ monomials. Thus F7 is a union of d( f) but
not fewer intervals. Any polynomial representing f with the least possible number
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of monomials is called a minimal polynomial. Without proof we mention that by
a result of Korshunov [318] there exist constants ¢, ¢3 such that

n n

a(f)

°l lognloglogn = = lognloglogn

holds for almost all Boolean functions f. Sapozhenko [412] gave a simple algo-
rithm that provides a polynomial with l—f)g—"n monomials for some constant ¢ and
almost all Boolean functions. An exact result can be obtained for the following
special case: A Boolean function f is called symmetric if the number of ones in the
input completely determines its value (the value f(xy, ..., x,) does not change if
we permute the input variables). In other words, f is symmetric iff 7 is a union
of complete levels of B,. If, more precisely, Fy = By, , U+ U By, ., Where
O0<li<u;<nmji=1,....k,anduy; <ljy;—2,i =1,...,k— 1, then by the
strong IC-property of B,

=) (0]

Let us mention in this context another result on Boolean functions. Suppose we are
given some logical expression representing the function f. We say that a monomial
is a prime implicant of this expression if trueness of the monomial implies trueness
of the expression but deletion of variables in the monomial destroys this property.
Obviously, a monomial is a prime implicant iff its corresponding interval belongs
to Fr and if no extended interval has this property. Let p(n) be the maximum
number of prime implicants of a Boolean function with n variables.

Theorem 5.3.3 (Vikulin [456]). For any € > 0, there is some ng such that for
n>ng

(c1 — 6)3;,—" < p(n) < (c2 +e)j—;.,
J3

where ¢ = 12; andcy := 2—3—;
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Proof. Let f be the symmetric Boolean function for which ¥y = By ,_, with
I := | 3] holds. Counting the maximal intervals in By, ,_, yields the lower bound
(*)("=,), which is by Stirling’s formula (Theorem 7.1.7) asymptotically equal to
the lower bound (one may derive this also from (7.7)).

For the upper bound, recall that the intervals in B, are exactly the elements of the
cubical poset Q,. From the definition of a prime implicant we derive immediately
that the corresponding elements in Q, form an antichain. Thus

p(n) <d(Qn).

It is easily seen that the maximum Whitney number in Q, equals (})2"~ with /
as in the beginning of the proof. From Example 4.5.1 and Stirling’s formula (resp.
(7.7)) we obtain d(Q,) ~ c2 —3/% (which follows also directly from Theorem 7.2.1).
This proves the assertion. ]

See the end of this section for two further examples of ssc-orders.
Example 5.3.2 (Greene [230]). The poset of shuffles Wyp.

It is defined as follows: Letx = xjx2...xym andy = y;y2 ... y» be words formed
from m + n distinct letters. Now W, is the set of all words w with letters from x
and y such that the restriction of w to the letters of x (resp. to y) is a subword of x
(resp. of y), and we have w < w’ iff w’ can be obtained from w by deleting letters
of x and adding letters of y. For example, if x = ABCDEFG and y = rstu then
BrDFuG < rDsuG in W7 4. Note that x is the minimal and y is the maximal
element in W,,, and that the structure of W,,, depends really only on m and n
and not on the words x and y. Given w € W,,, the interface of w, denoted
by I(w), is the set of all pairs of letters (y, x) where x € x and y € y, and x
immediately follows y in w. For any set / of pairs (y,x),x € x,y € y, we set
WunlI] := {w € Wy, : I(w) = I}.Inourexample we have I = {(r, D), (4, G)}.
The minimal element of W7 4[I]is ABCr DE FuG and the maximal element is
rDstuG. In general, the minimal element of a nonempty W,,,[I] has rank |/|
and the maximal element has rank m + n — |I|. Thus W,,,[I] lies for every I
in the “middle” of Wy,,. For any word w € Wpp, let Rx(w) and Ry (w) be the
set of letters of x (resp. of y) which do not appear as components in the pairs of
I(w). For fixed 1, we write also Ry (1) and Ry (/). It is not difficult to see that for
w,w € Wnn(I) we have w < w' iff Ry (w) 2 Rx(w’) and Ry(w) C Ry(w").
Thus Wp,,[1] is isomorphic to the product of the dual of the subset lattice of Ry (/)
with the subset lattice of Ry (I), that is, to By, 1n—2)1|. Since for different sets / and
I the sets Wy, [I] and W,,,[1'] are disjoint and since each W, [1] is an sc-order
(the corresponding symmetric chains in Wy, ,[] are also symmetric in W), Wmn
is also an sc-order. Moreover, W,,, is an ssc-order: Since each W,,,[I] is an ssc-
order, for the proof we need only to examine the maximal chains C in the Boolean
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sublattices Wy, [I], where I # @ (these chains are not maximal in #,,,). Delete in
I exactly one pair yielding /’. Then the maximal chain D in W,,,[I'] (belonging
to the symmetric chain partition) is a desired chain for property (*).

Note that Doran IV [139] introduced the “shuffling” of lattices. Here the poset
Wun is obtained by shuffling two Boolean lattices.

Example 5.3.3 (Simion and Ullmann [431]). The lattice of noncrossing parti-
tions NC(n).

The lattice NC (n) is an induced subposet (moreover, a sublattice) of the partition
lattice I1,,. Here a partition of [n] is called noncrossing if, whenever 1 < a <
b < ¢ < d < n with a, c in the same block and b, d in the same block, then in
fact all four elements are in the same block. Thus, for example, 1382(4|57|6 is a
noncrossing partition of [8] while 138|24|57|6 is crossing. We decompose NC (n)
as U!_, R;, where R; := {m € NC(n) : {1}isablockof rr}, and R; := {7 €
NC(n) : i = min{j : j # 1, jisin the same block of w as 1 }} for i > 2. It is
easy to see that R = Ry = NC(n — 1), and that Ry U R, = NC(n — 1) x
(0 < 1) since each partition R| is covered by only one partition of R,, namely the
partition obtained by merging the block {1} with the block containing the element
2.Moreover, fori > 3, R; = NC(i —2) x NC(n —i + 1) (realized as noncrossing
partitions of {2,3,...,i — 1} and {i,i + 1,...,n}). The posets R; U R, and
R;,i > 3, lie in the “middle” of NC(n) since in R; U R, the minimal (resp.
maximal) element 1|2|. .. |n (resp. 12...n) has rank O (resp. r(NC(n)) = n—1)
and in R; the minimal (resp. maximal) element 1{|2|...|i — 1|i + 1|...|n (resp.
1i(i +1)...n|23... (i — 1)) has rank 1 (resp. n — 2). In a straightforward way we
may apply induction and Theorem 5.3.2(a) to derive that NC(n) is an ssc-order
(note that in the symmetric chain partition the maximal chain in R} U R; is a
desired chain concerning property (*) for the maximal chain in R;, i > 3).

5.4. Semisymmetric chain orders and matchings

There exist some generalizations of sc-orders. For example, Griggs [238] intro-
duced the nested chain orders, which are posets that can be partitioned into sat-
urated chains such that for any two chains C = (pp< --- < pp) and D =
(g0 < -+ < gi), the inequality r(po) > r(qo) implies r(pn) < r(qy). It is left
to the reader to prove that nested chain orders have the Sperner property. See also
Griggs [242] who listed several properties of ranked posets together with their mu-
tual relations. We consider in more detail another generalization, which implies
the strong Sperner property at least in the lower half of the poset.

Let P be aranked poset of rank n := r(P). We call a chain C of P semisym-
metric if it has the form C = (pp < - -+ < pa) with r(pg) + r(pr) > n, and we
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call P a semisymmetric chain order (semi-sc-order) if P can be partitioned into
semisymmetric chains.

Theorem 5.4.1. If P is a semi-sc-order then Wy < W) < --- < Wm, and the

[0, |' 11-rank selected subposet Q (induced by UrﬂN,) has the strong Sperner
property.

us restrict the chains of the semi-sc-partition to Q. This yields a collection € of
chains. Obviously € has W; — W;_ chains of size [g] —i+1,i=0,..., [%].
Thus for any k-family F in Q,

Proof. The inequality W; < W;;1,0 <i < |' 1, follows as in Lemma 5.1.1. Let

==

-1

IF < > min{|Cl, &} = 3 i(Wig1-is1 = Wig1-i)

CeC i=

51+
+ Z’; k(Wrg1-iv1 = Wrgn-i)

M»

Wia—it1s

i=1

that is, Q has the strong Sperner property. [ |

Theorem 5.4.2. Let P and Q be semi-sc-orders.

(a) Then P x Q is a semi-sc-order, too.
(b) If, in addition, r(P) = r(Q) then P x, Q is a semi-sc-order, too.

Proof. The constructions in the proofs of Theorem 5.1.5 and Theorem 5.1.7 yield
the desired semi-sc-partitions. |

Proposition 5.4.1. Let P be a ranked poset of rank n. If, for0 < i < n, N; can
be matched into N;4| then P is a semi-sc-order.

Proof. If we join the matchings as in the proof of Theorem 5.1.1 we obtain a
partition of P into semisymmetric chains (each with top at level N,). |

It is not known whether each geometric lattice is a semi-sc-order, but an attrac-
tive special case is covered by the next theorem.

Theorem 5.4.3 (Loeb, Damiani, and D’Antona [350]). The partition lattice T1,,
is a semi-sc-order.
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Proof. We will first partition I, (or better I, ) into some smaller sets. In order
to explain this we need some further definitions. For each S C [n], we define
recursively

0 ifi € S,

i-YiZie(s) ifigs,
i=1,...,n4 1. The vector ¢(S) = (c1(S), ..., cn+1(S)) is called the code of
S. For example, the code of S = {1, 2,3,7,11,12,16, 18,19} C {1, ...,20} is

C,'(S) =

c(S) = (O’ 0’ O’ 4’ 1’ 1’ O, 2’ 1’ 1,0’ 0’ 3’ 1’ 1109 2’ 0, 0’ 3’ 1)'

We call a vector a = (ay,...,an41) € 2" a coding vector if apy) # 0
and for all i € {1,...,n + 1} either ¢; = O or }:‘;:1 a;j = i (in particular

7:11 aj = n + 1). Induction on i easily yields that each component of a coding
vector is nonnegative. Moreover, it is obvious from the definition that the code
of any set S is a coding vector and that ¢;(S) = 0 iff i € S. Conversely, for
each coding vector « there exists exactly one set S such that ¢(S) = o, namely
S := {i : a; = 0}. Not only the zero elements of a coding vector o determine
the corresponding set S. It is enough to know the nonzero elements of «, since
a nonzero element a must be preceded by exactly a — 1 zeros. Let ¢’(S) be the
vector that can be obtained from ¢(S) by deleting all zeros. In our example we
have

(S)=@4,1,1,2,1,1,3,1,1,2,3, 1).

For a block B in a partition =, let m(B) := min{i : i € B}. We will enumer-
ate the blocks By, ..., By of w always in such a way that m(B)) < m(B;) <
-+ - < m(By). Under this supposition we may uniquely define the antitype of & by
at(w) := (|Bkl, |Bk=1l, ..., |B1]). If, for example, = € Iy equals 1/2, 5, 7|3,
16]4|6|8, 10, 12|9]11|13, 20/14|15|17, 18, 19, 21, then at(x) = (4,1,1,2,1, 1,
3,1,1,2,3,1) = ¢/(S) from our preceding example. Now we put for S C [n]

Mg := {m € Myy : at(m) ='(S)).

By the preceding considerations, the sets I1g, S C {1, ..., n}, partition the lattice
I, 4. Each m € I1s has as many blocks as ¢’(S) has components; thatis, n+1—|S].
Consequently,

rmy=n+1-(n+1)—1|S)) =1S|.

Let € be a symmetric chain partition of 2["! obtained by the parenthesization
method. For C = (§g < --- < 8p), let

Mc = Ul Mg,

We will consider the subposets that are induced by I1¢, C € € (they partition
also Il,4). If w (resp. o) is a minimal (resp. maximal) element in I1¢ then
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r(m) + r(o) = n = r(Il,4) since C is symmetric. Thus it is sufficient to show
that each Il¢ is a semi-sc-order. For that, we may apply Proposition 5.4.1. We
have to find for each link § — §’ := S U {i} in a chain of € a matching from
s into Ig. Let k := ¢;(S). Note that k # 0. By Proposition 5.1.1(c) we have
i+1¢ S, thatis, ¢;+1(S) = 1. Now, it is easy to verify that

0 if j =1,
cj(S’)= k+1 ifj=i+1,
cj(S) otherwise.

Let w € I1s and let A4 (resp. B) be the block of 7 that corresponds to the & (resp.
the 1) in the substring (...%, 1...) which is being replaced by (...0, k+1...).
Let f(r) be the partition that can be obtained from 7 by replacing the blocks 4
and B with their union AU B. Itis easy to see that ¥ < f(;r) and that f(r) € Ig.
Moreover, we can recover A and B from AU B since B contains only one element,
say b, and b = min{j : j € AU B}. Thus we can also recover 7 from f(;r) and
consequently, {(7r, f(rr)) : m € I} is a desired matching from I1g into [Tgy. W

From the preceding theorem it follows in particular that in IT, the level N; can
be matched into N;y; fori < ”—;' This was first proved by Kung [329] using an
algebraic machinery. We even have the following stronger result:

Theorem 5.4.4 (Canfield [96])).

(a) For every 8 > O, there exists an no(8) such that, for all n > ny(8), the
Jollowing holds: In the partition lattice T1,, the level N; can be matched into
Nig1ifi <n— (14 8)nlosd,

logn
(b) In I, the level N; can be matched into N;_\ ifi > n — r_tkl)_:gn_Z andn > 5.

Proof. (a) Let e := (1 + 8){&x, b = (1 — $)125,i < n(1 — €). Without loss
of generality, we may assume § < % We consider the subposet Q; of rank 1
whose levels are N; and N;; |, and where 1 < o (7 € N;,0 € N;yp) if  can
be obtained from o by splitting a block B of size not larger than 2b into two
blocks B; and B; each of whose sizes is not larger than b. Obviously, 7 € N;
cannot contain more than 7 blocks whose size exceeds b. Thus 7 contains at least
n—i—4%>(n—i)(1- g&) blocks of size not larger than b. By choosing any
two of them we derive for Q; that

-1 ~- 41
NG

We have be = (1+6)(1-6/3) > r_fs—ﬂ;thatis, 1- 1}- > % Let n be sufficiently

€
large such thata := 8(n—i) > 30. An easy calculation shows that then (“43) > %—;.
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We conclude that
o2
v > —, 5.5
V()| > 0 (5.5)

Now consider any 0 € Njyj. Ithasn —i — 1 < n — i blocks. We find the
predecessors of o in Q; by splitting a block of size 2b or less under additional
conditions. Consequently,

[A(@)] < (n—0)2% = (n —i)n' /3, (5.6)

Let n be sufficiently large such that §2¢ > 20n~%/3. Then we obtain from (5.5)
and (5.6) by straightforward computation

V@) = |Ao)]

and by Theorem 5.1.3 the level N; can be matched into N;4 in our poset Q; —
that is, also in IT,,.

(b) Since there are 2!81-1 — | possibilities to partition a block B into two blocks,
we have, for 7 € N; and with k := n — i = number of blocks in 7,

[A@T)| = Z (2|B|_l -1 > k(2n/k—l -1

B block in &
where the last inequality follows by applying Jensen’s inequality to the convex
function f(x) = 2*~! — 1. We have } > }%g—'z', which implies 2"/*¥ > n and
further

INCEY (% - 1).

Moreover, for o € N;_; obviously,

k+1
V()| = ( ) )

We have (*1') < k(4 — 1) iff k < n — 3, and this is true for n > 6. Thus in this
case |A(r)| > |V(0)|, and Theorem 5.1.3 (in its dual form) gives the matchings.
For n = 5, the assertion of the theorem is easily checked by inspection. |

It is very interesting that the bounds in Theorem 5.4.4 are the best possible.

Theorem 5.4.5 (Canfield [96]). For every 8 > 0, there exists an ny(8) such that
Sor all n > ny(8) there holds in the partition lattice I1,:

(a) The level N; cannot be matched into Ny ifi > n — (1 —§) nkl’ogg:‘

(b) The level N; cannot be matched into N;_, ifi <n — (1 + 8)%.
We will prove only part (a) by a construction that is partly due to Shearer [428].
The proof of part (b) relies on the application of a local limit theorem (together
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with an estimation of the remainder). Since we will not use the result of part
(b) further in this book, the interested reader is referred to [96], but note that in
Chapter 7 we will discuss applications of local limit theorems.

Proof of (a). Let, w.l.o.g.,8 < landleti > n—(1 —8)"—“’-&‘. By Theorem 5.1.2

logn

it is enough to find some 4 C N; such that |[V(4)| < |A4]. Let

- logn
=08 logs |

Every elementof N; hasn—i <n %‘fﬁ < 2 blocks. Let 4 be the set of those
partitions from N; at least n!~%/2 of whose block sizes equal 2m, at least n' ~%/2 of
whose block sizes equal or exceed 3m, and all of whose block sizes belong to the
set M := {m,2m,3m,3m + 1,3m + 2, .. .}. Since we have for every fixed ¢ > 0

and sufficiently large n that

clo
nl=0/2 gn

<p—°
=1 6)logd ~

our set 4 is not empty if » is large enough. Let 7* € 4 and n* < 0. Since the
block in o that was created by joining two blocks of 7* and the blocks in o of
size 2m can be partitioned in at least (resp. exactly) %(2,;”) ways into two blocks
of sizes belonging to M, we have

1/2
red:n <o)l > 5( ”')n'-m forall o € V(A).
m

(This bound is also easily seen to be true if o was obtained from 7* by merging
two blocks of size 2m because we have then an item 1 (37).) Obviously,

n—i 1 /n\2
V(A4): D> = - — X
lfo € V(d) : 0 > 7} ( ) )SZ(m) forall 7 € A
Counting the pairs (7, o) with w € 4, < o in two different ways we obtain

1 2 1/2
415 (=) = |V(A)|5( ,;")n'—m. 5.7

Using the fact that (%) is the largest of 2m + 1 binomial coefficients whose sum
is 22", we obtain

<2m) T NP (1 - o) I V)
m 2m + 1 2m + 1 42m + 1)

Consequently, by straightforward computation,

1 2m\ |_s5,2 1 1-8/2+1/(1—8) _ 1 (n\2
Z(m )” Z3em+ )" ) (Z) 8)

if n is sufficiently large. Now from (5.7) and (5.8) we derive |4]| > |V(4)]. =
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In addition to this result, Canfield [96] proved, using some earlier results of
Mullin [376], that the transition from the existence to the nonexistence of matchings
between neighboring levels is not chaotic but abrupt — that is, there are sequences
L, and R, such that N; can be matched (resp. cannot be matched) into N;yp if
i < L, (resp.i > L), and analogously for R, and N; — N;_. Moreover, both
L, and R, grow by at most 1 when n is increased by 1.

We may use this result to show that the partition lattice IT, does not have the
Sperner property if n is large enough. Before doing so, we need a localization
of the largest Whitney number of I1,, or, equivalently, of the maximum Stirling
number of the second kind.

Lemma 5.4.1. The sequence of Stirling numbers {Spx : k = 1, ..., n} is strictly
log concave.

Proof. We proceed by induction on n and use the basic recurrence S, k = kS,—1.k+
Sn—1,k—1 (applied to Sy x, Spi—1, and S, k4+1). The cases n = 1,2 are trivial.
Concerning the induction step we have (for2 <k <n —1)

S2 & = Snk=1Snk+1 = (S2_y 4_1 — Sn—1k=2Sn—1.4)
+ (282 — (K — DSt k=1Sn—1.k+1)
+ (k + D (Sn—1,k—1Sn—1,k — Sn—1,k-25n—1,k+1)-
The first two summands are positive by induction. Moreover, by induction,
S 1 Se_ ik = (Sne1k=2Sn—1.6) (S 1 k+1Sn-1.4-1),

which implies that the third summand is also nonnegative. ]

Note that this result shows that IT, is rank unimodal. Let k, be that number
for which S, 1 < Sp2 < -+ < Suky = Sukatl > Snkp+2 > -0 > Sans
that is, W,_y, is the largest Whitney number of IT,. Canfield [94] determined
kyn precisely for sufficiently large n. Almost the same formula was obtained by
Jichang and Kleitman [277]: Let x be the root of (x + 3)logx = n — 2. Then
kn € {lx + %J, lx + %J + 1}. Moreover, k, = |x] + 1 in “almost all cases.”
The proof is very complicated. From a recent result of Benoumhani [45] on the
maximum coefficient of a polynomial whose roots are all negative real, it follows
that (for all n) |k, — (n — w,(I1,))| < 1 where u,(I1,) is the expected value of
the rank function of IT,. With (6.50) this implies |k, — Bg—;" + 1] < 1. Here we
need only a slightly weaker result:

Theorem 5.4.6 (Harper [256]). We have kn ~ 1o asn — oo.

og n
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Proof. We present a short proof that is essentially due to Rennie and Dobson
[395].
It is enough to show that for every € > 0 we have

(=€) —— +0(1) <ky < (1 +€)—— + O(1). 5.9
logn logn

Claim 1.If 1 <k <n,then k"% < 8, < (}2})k"*.

Proof of Claim 1. Let us construct partitions with & blocks by putting n balls
labeled with the numbers 1, ..., n into k£ indistinguishable boxes such that each
box obtains at least one ball. We put the balls with numbers 1, ...,k into the
boxes such that in each box there is exactly one ball. For the remaining (n — k)
balls, we have k" ¥ possibilities for the distribution. This yields k" ¥ pairwise
different partitions. Thus the first inequality is proved. However, every partition
can be constructed in the following way. Put ball number 1 into one box. Choose
k — 1 other balls (in (;_|) different ways) and put them into the remaining boxes
such that in each box there is exactly one ball. Distribute the remaining n — & balls
as before. This yields the upper bound ;": {)k""‘. O

Claim 2.1f 1 < k < n, then (}) < gz 5%

Proof of Claim 2. There are n” possibilities to put » balls labeled with 1, ..., n
into n boxes labeled with 1, ..., n. Some of them can be obtained as follows:
Choose £ balls ( (Z) possibilities). Put them into the boxes 1, ...,k (k* possibil-
ities). Put the remaining n — k balls into the boxes k + 1,...,n ((n — k)"*
possibilities). Clearly we obtain pairwise different distributions. Consequently,
(Z)k" (n — k)"* < n", and Claim 2 is proved. O

Let

n
c—— + O(1), (cis a positive constant),

ke :
logn

K= 10
logn
(we have the term O(1) to ensure that k and k* are integers).
Claim 3. We have S, x. < S, ¢+ if ¢ # 1 and n is sufficiently large.
Proof of Claim 3. We write briefly k := k.. In view of Claims 1 and 2 (together
with the trivial inequality (Z::) < (})). it is enough to show that

n"

—k —k*
e L

which is equivalent to

nlogn + (n — 2k)logk — (n — k)log(n — k) < (n — k*) log k*.
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If we subtract the LHS from the RHS and use log(1 + x) = x + o(x) we obtain
the term

n (1 - L) (logn — loglogn + o(1)) —nlogn
logn

2
—n (1 - —c-) (logc + logn — loglogn + o(1))
logn

+n (1 - L) (logn + o(1))

logn
=n(c—logec— 1+ o(1)).

From Proposition 2.6.1(b) it follows that for sufficiently large n the last term is
positive if ¢ # 1, and this proves the statement in the claim. a

From Claim 3 we derive for € > 0 that k1 < k* < k|4 which is our desired
inequality (5.9). |

As already mentioned we are now able to prove Canfield’s result, which was a
markstone in the development of the Sperner theory. It answers a question of Rota
[402] negatively. Simplifications of the first complicated proof have been given by
Shearer [428] and Jichang and Kleitman [277].

Theorem 5.4.7 (Canfield [93]). For sufficiently large n, the partition lattice I1,
does not have the Sperner property.

Proof. Take some small § > 0 and let n be large enough such that (1 — §) x
log4]0'é—n > k, + 1 (apply Theorem 5.4.6). Leti :=n — k, — 1 (i.e., Wiy is the
largest Whitney number of I1,,) and take the set 4 C N; from the proof of Theorem
5.4.5(a). We have seen that for sufficiently large n, | 4| > |V(A4)|. Obviously, the
set § := AU (N;41 — V(4)) is a Sperner family whose size is greater than W; .

]

Theorem 5.4.7 and Corollary 4.5.3 imply that I1, cannot be normal if n is
sufficiently large. There is a sharper result:

Theorem 5.4.8 (Spencer [435]). The partition lattice I1,, is not normal ifn > 20.

Proof. First let n be even. Let A be the set of those partitions from N,_, both of
whose block sizes equal % Then A (A) consists of those partitions from N,_3 that
have one block of size 5. We have

Wn—2 = Sn,2 = %(2” - 2)7

Wz = Sp3 = £(3"—3-2" +3),
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1/n
4] = 5(,,),
2
n
1AM = (E)Sg,z-
2

In a straightforward way one obtains
4l _ 1AM

< ﬂ.‘3n 1 <23n/2 2" __2n/2+1 +3,
Wn—2 n-3

which is false iff n > 20. For n odd, we may use the same arguments if we work
with the set A of partitions from N,_3 that have {n} as one block and whose other
block sizes both equal ”—5—' [ |

With the partition lattice one can also associate the poset Pi, of unordered
partitions of an integer, ordered by partitioning the items. More precisely, Pi, :=
{o = (01,...,00) € N" : Y7 io; = n}, and we have o < T iff there are
i,je[n]suchthato;y; =14~ lando; =1, + 1,07 = t; + 1 if i # j (resp.
o; = 1; +2ifi = j). The symmetric group S, on [r] induces in an obvious way a
group G of automorphisms of I1,. It is easy to see that the quotient I, /G equals
Pi,. Moreover, if we define w : Pi, - Ry by

n!
]-[" 10i |(1 ')al
then (Pi,, w) is the weighted quotient of (I, 1), and it does not have the Sperner
property for large enough n by Theorem 4.5.6 and Theorem 5.4.7. However, the

following problem is still open: Does the unweighted poset Pi, of unordered
partitions of an integer have the Sperner property?

w(o) =



6

Algebraic methods in
Sperner theory

In this chapter we are concerned with unweighted, ranked posets only. Algebraic
characterizations for the existence of certain matchings in graphs have been known
for many years (cf. Lovdsz and Plummer [356], and note in particular the results
of Kasteleyn [286], Perfect [380], and Edmonds [142]). We have seen that chains
in posets can be constructed by joining matchings between consecutive levels. By
Dilworth’s theorem, the size of chain partitions is related to the width of a poset.
For these (and other related) reasons, it is worthwhile to develop an algebraic
machinery that answers many questions in Sperner theory. An essential step in
this direction was undertaken by Stanley [439], who used deeper results from
algebraic geometry (the Hard Lefschetz Theorem) in order to prove the Sperner
property of several posets. Further work (in particular that of Proctor [388]) allows
us to stay on a more or less elementary linear algebraic level. It is interesting that
Erd6s—Ko-Rado type theorems can also be proved using this approach. Important
contributions were those of Lovasz [355] and Schrijver [419] and some culmination
was achieved by Wilson’s [470] exact bound for the Erd6s—Ko—-Rado Theorem in
the Boolean lattice. Besides this result, Wilson strongly influenced, in general, the
development of the algebraic extremal set theory and, together with Kung (e.g.,
[327, 328]), the theory of geometric (and related) lattices. Kung’s main tool is the
finite Radon transform discovered by E. Bolker (see [328]), but we will formulate
the results in the language of injective linear operators. Extremal set problems are
discussed in Section 2.5. In this chapter (Section 6.5) we apply the fundamental
observation that the image of a subspace of a vector space by a linear mapping has
dimension not greater than the dimension of the preimage. For further information,
the reader is referred to the book of Babai and Frankl [35].

Though the theory is easier to present under the supposition of rank symme-
try we will consider first the general case and later specify the results to rank-
symmetric posets. An important tool is the Jordan decomposition of nilpotent

208
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maps considered by Saks [406] and Gansner [213]. We introduce here the Jordan
function in order to derive many results by algebraic manipulations only. We pre-
fer to work throughout this chapter with linear operators instead of (incidence)
matrices.

6.1. The full rank property and Jordan functions

Throughout, let P be a ranked poset with rank function r of rank n := r(P).
With P we associate the poset space P, which is the vector space of all functions
¢ : P — R with the usual vector space operations. With the element p of P we
associate its characteristic function ¢, € P defined by

1 ifg=p,
vp(q) :=

0 otherwise.

For the sake of brevity, we write p 1nstead of ¢,, but 0 denotes the zero vector.
Obviously, {7 : p € P} is a basis of P. Thus every element ¢ of P has the form
@ =3 e p HpD, Where p,, is areal number, and P can be considered as the vector
space of all formal linear combinations of elements of P with real coefficients.
With the standard scalar product

<Z wpB Y "p§> =) wpvp

PEP peEP peP

the space P becomes a Euclidean space (here we are working only with the field
of real numbers). With a subset F of P we associate the subspace Fof P, which
is generated by {p : PEF } Obv1ously, the dimension of 7, denoted by dim F,
equals |F|. Note that P = No DD N,,, where @ denotes the direct sum. Any
basis B of P with the property B = U_ BN N,, that is, all basis elements belong
to some N,, is said to be a ranked baszs In particular, {p : p € P} is a ranked
basis.

In the following we consider linear operators P — P.We define ®W to be the
operator for which W (¢) = & (¥ (p)) forall ¢ € P