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Preface 

It would be difficult to overestimate the importance of stochastic 

independence in both the theoretical development and the practical appli

cations of mathematical probability. The concept is grounded in the idea 

that one event does not "condition" another, in the sense that occurrence 

of one does not affect the likelihood of the occurrence of the other. This 

leads to a formulation of the independence condition in terms of a simple 

"product rule," which is amazingly successful in capturing the essential 

ideas of independence. 

However, there are many patterns of "conditioning" encountered in 

practice which give rise to quasi independence conditions. Explicit and 

precise incorporation of these into the theory is needed in order to make 

the most effective use of probability as a model for behavioral and 

physical systems. We examine two concepts of conditional independence. 

The first concept is quite simple, utilizing very elementary aspects 

of probability theory. Only algebraic operations are required to obtain 

quite important and useful new results, and to clear up many ambiguities 

and obscurities in the literature. 

The second concept of conditional independence has been employed for 

some time in advanced treatments of Markov processes. Couched in terms 

of the abstract notion of conditional expectation, given a sigma field 

of events, this concept has been available only to those with the requisite 

measure-theoretic preparation. Since the use of this concept in the 

theory of Markov processes not only yields important mathematical results, 

but also provides conceptual advantages for the modeler, it should be 

made available to a wider class of users. The case is made more compelling 
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by the fact that the concept, once available, has served to provide new 

precision and insight into the handling of a number of topics in probable 

inference and decision, not related directly to Markov processes. 

The reader is assumed to have the background provided by a good under

graduate course in applied probability (see Secs AI, A2). Introductory 

courses in calculus, linear algebra, and perhaps some differential equations 

should provide the requisite experience and proficiency with mathematical 

concepts, notation, and argument. In general, the mathematical maturity 

of a junior or senior student in mathematical sciences, engineering, or 

one of the physical sciences should be adequate, although the reader need 

not be a major in any of these fields. 

Considerable attention is given to careful mathematical development. 

This serves two types of interests, which may enhance and complement one 

another. The serious practitioner of the art of utilizing mathematics 

needs insight into the system he is studying. He also needs insight into 

the model he is using. He needs to distinguish between properties of the 

model which are definitive or axiomatic (and hence appear as basic assump

tions) and those which are logical consequences (i.e., theorems) deduced 

from the axiomatic properties. For example, if his experience makes it 

reasonable to assume that a dynamic system is characterized by lack of 

"memory", so that the future is conditioned only by the present state and 

not past history, then it is appropriate to consider representing the 

system as a Markov process. Should the system fail to exhibit certain 

consequences of the Markov assumption, then that fundamental assumption 

must be reexamined. The distinction between fundamental properties and 

derived properties is an aid to efficient and intelligent use of mathematics 

(as well as insurance against contradictory assumptions). 
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The serious mathematician who wishes to enlarge his knowledge and 

appreciation of the applications of mathematics (and perhaps discover new, 

significant problems) may be deterred by the inadequate articulation of 

mathematics in much of the applied literature. This may be a serious 

barrier to what should be a cooperative endeavor. Hopefully, the 

present treatment will help remove any such barrier to consideration 

of the interesting and important topic of conditional independence. 

In order to recast the theory of conditional independence of random 

vectors in more elementary terms, it has been necessary to extend the 

usual introductory treatment of conditional expectation, given a random 

vector. The treatment intends to bridge the gap between the usual intuitive 

introductory treatment, based on a concept of conditional distribution, and 

a more general approach found in advanced, measure-theoretic treatments. 

Because of the importance of conditional expectation as a tool in the study 

of random processes and of decision theory, the results should be useful 

beyond the scope of the present investigation. 
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CONDITIONAL INDEPENDENCE IN APPLIED PROBABILITY 

A. Preliminaries 

In this monograph, we assume the reader has reasonable facility with 

elementary probability at the level of such texts as Pfeiffer and Schum 

[1973J, Ash [1970J, or Chung [1974]. In particular, we suppose the reader 

is familiar with the concept of a random variabl~or a random vectos as a 

mapping from the basic space to the real line RJ or to Euclidean space 

R~ and with the notion of mathematical expectation and its basic proper

ties (cf Pfeiffer and Schum [1973], Chaps 8, 10, 13). In the following 

sections, we summarize various fundamental concepts and results in a form, 

terminology, and notation to be utilized in subsequent developments. In 

some cases, we simply express familiar material in a form useful for our 

purposes; in others, we supplement the usual introductory treatment, 

especially with an informal presentation of certain ideas and results from 

measure theory. The reader may wish to scan this material rapidly, re

turning as needed for later reference. 

1. Probability spaces and random vectors 

A probability space, or probability system, consists of a triple (O,J,P). 

1) ° is the basic space, or sample space, each element of which repre

sents one of the conceptually possible outcomes of a specified trial, 

or experiment. Each elementary outcome W is an element of the basic 

space O. 

2) J is a class of subsets of O. Each of the subsets in this class is 

an event. The event A occurs iff the w resulting from the trial 

is an element of A. Since it is desirable that the sets formed by 

complements, countable unions, or countable intersections of events 

also be events, the class J must have the properties of a sigma 
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field (also called a Borel field or a sigma algebra) of sets. 

3) The probability measure P assigns to each event A a number P(A) 

in such a manner that three basic axioms (and logical consequences) 

hold: i) P(A) ~ 0, ii) P(O) = 1, and iii) P is countably additive. 

We utilize standard notation for the empty set (impossible event), 

complements, unions, and intersections. Thus, for example, 

0 is the empty set (the impossible event), 

'" U A. is the union of the infinite class (Ai: I ::. i < "'l, 
i=l 1. 

n 
n B. is the intersection of the finite class (B. : I ::. i ::. nl, 

i=l 1. 1. 

AC is the complement of the set A. 
n 

In addition, we employ the notation ~ B. to indicate not only that we 
i=l 1. 

have taken the union of the class (Bi: 1::' i::' nl, but also that the 

class is disjoint (the events are mutually exclusive). Thus, the expression 

"" A ~ A. means the same as the pair of statements 
i=l 1. 

i) A U A. 
i=l 1. 

and ii) A.A. 
1. J 

A random vector is viewed as a mapping from the basic space (") to 

n-dimensional Euclidean space Rn. For n = 1, we have a real-valued 

random variable. A random vector X: 0 ~ Rn may be considered to be the 

joint mapping (Xl' X2, ••• , Xn): 0 ~ R X R X X R produced by the 

coordinate random variables Xl' X2, ••. , Xn • 

Since we want to be able to make probability statements about possible 

sets of values to be taken on by random vectors, we must introduce 

measurability considerations. In the real-valued case (n = 1), we should 

like to speak of the probability that X takes on a value no greater 

than some real number t. Since probability is assigned to events, the 
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set (w: X(w) 5 t} should be an event for any real number t. This may 

be viewed schematically with the aid of a mapping diagram, as in Figure 

AI-I. We are interested in the set A of those elementary outcomes w 

which are mapped into the interval It ~ (-~, tl. Since we also want to 

consider complements, countable unions, and countable intersections of 

such events, we must consider complements, countable unions, and countable 

intersections of such intervals on the real line. We are thus led to 

consider the minimal sigma field a of subsets of the real line which 

includes all the semi-infinite intervals of the form It = (- ~, tJ. This 

is the class a of Borel sets on the real line. A similar consideration 

leads to defining the class a of Borel sets on pn as the minimal 

sigma field which includes all semi-infinite intervals of the form 

I(t l ,t2, ... , t n ) = (-~, tIl X (_CD, t2l x ... X (-~, tnl. We say that 

n -1 
X: 0 ~ P is a random vector iff X (M) ~ (w: X(w) E M} is an event 

for each Borel set M in pn. A standard result of measure theory, 

which we assume without proof, is that X-l(M) is an event for each Borel 

set Miff X-l[I(t l , t 2, ... , t n )] is an event for each n-tuple 

(t l ,t2, .•. , t n ) of real numbers (i.e., for each element of pn). Real

valued random variables are included as the special case n ~ 1. 

It is an easy consequence of elementary mapping theorems that the 

class J(X) of all inverse images X-l(M) of Borel sets is a sigma field. 

We refer to this class as the ~ field determined E.Y X. It must be a 

subclass of the class J of events in order for X to be a random vector. 

We 0 ften need to consider functions of random vectors. If X: 0 ~ pn 

and g: pn ~ pm, then Z ~ goX = g(X) is a function o ~ If. If g has 

the property that N ~ g -1 (M) is a Borel set in pn for each Borel set 

M in its codomain pm, then Z is a random vector, since Z -1 (M) ~ 
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A : (w: X(w) ~ t} 

X-\I t ) 

(- "'. t1 / 

U : X(w) 

u t 

Figure Al-l. Mapping diagram with inverse image of semi-infinite 

interval It' 

R 
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x-lg-l(M) = X-l(N) is an event. Thus, each event determined by Z is 

an event determined by X. This may be expressed by the relation J(Z) 

is contained in J(X). This condition is oftened indicated by saying that 

Z is measurable with respect to X (or Z is measurable-X). A function 

g with the mapping property described above is known as a Borel function. 

From somewhat advanced arguments, it is known that if Z is measurable-X, 

then there is a Borel function g such that Z = goX = g(X). We assume 

this important result without proof. 

We have introduced the class of Borel functions in a somewhat abstract 

manner to solve the problem of when a function of a random vector is itself 

a random vector. But how do we know whether or not a function encountered 

in practice is Borel? It turns out that almost any function g: Rn ~ Rm 

which we may want to consider is Borel. For this reason, in many introduct-

ory treatment little or nothing is said about Borel functions. 

Borel functions constitute a generalization of the class of continuous 

functions. Continuous functions have the property that the inverse image 

of any open set is open. It is known that the class of Borel sets on Rn 

is the minimal sigma field which includes all open sets in Bn. From this 

fact it may be shown that any continuous function from Rn to Rm is 

Borel. Any piecewise continuous real function g: R ~ R is Borel. Linear 

combinations, products, and compositions (functions of functions) of Borel 

functions are Borel. If fgn : 1 ~ n} is a sequence of Borel functions from 

Rn to Rm which converge for each t in Rn , the limit function g is a 

Borel function. 

The indicator function IA for set --- --- A in 0, defined by 

for w in A and zero otherwise, is particularly useful. If A is an 

event, IA is a random variable. Indicator functions may be defined, as 
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well, on ~. If M is a Borel set in ~, then 1M is a Borel function 

from ~ to R. If c is an element of Rm, then CIM is a Borel 

function from ~ to Rm. If X is a random vector and M is a Borel 

set on the codomain of X, then IM(X) is a real-valued random variable, 

measurable-X. If M is a subset of Rm and N is a subset of Rn, then 

the cartesian product M X N ={(t,u): t EM, u E N} is a subset of Rm X Rn. 

The indicator function 1M X N: Rm X pn ~ R satisfies the equation 

1M X N(t,u) = IM(t)IN(u) V t E FF , u E Rn 

since (t,u) E M X N iff both t E M and u E N. 

The following result is basic in the development of the concept of 

conditional expectation. 

Theorem Al-l 

a) If Y is a random vector with codomain ~, M is any Borel set in 

Rm, and e = (w: Y(w) EM} = y-l(M), then Ie = IM(Y). 

b) If g is a Borel function Rm ~ FF and Z = g(Y), then for any 

Borel set N in Rn, there is a Borel set M = g-l(N) in Rm such 

that IN(Z) = IM(Y). 

PROOF 

a) IM[Y(w)] = 1 iff Y(w) E Miff wEe iff Ie(W) = 1 

b) The relation e = y-l(M) = Z-l(N) is an elemental property of 

composite mappings. By a), IN(Z) = Ie = IM(Y) [] 

The indicator function is useful in representing discrete random 

variables, which take on a finite or countably infinite set of values. In 

the finite case, the term simple random variable is commonly used. Suppose 

the range (set of possible values) of X is 

(w: X(w) = til. Then the class {Ai: 1 < i ~ N} is a partition, 
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N 
and X ~ t.IA • We refer to this representation as canonical form 

i=l 1 i 

(if one of the values is zero, we include a term with zero coefficient). 

It is easy to show that any real random variable is the limit of a 

sequence of such simple random variables (the sequence is not unique). 

If X is nonnegative, it is the limit of an increasing sequence of 

nonnegative, simple random variables (cf Pfeiffer and Schum [1973], Sec 8.8). 

Similar statements may be made about Borel functions. A simple Borel 

function g: Rm -~ Rn has canonical form 
N 

g = ~ t.IM ' 
i=l 1 i 

where 

and each M. = (u E pm: g(u) = t.} is a Borel set in Fm. 
1 1 

t r::. D n 
i ~ [\ 

A random vector induces a probability distribution on the Borel sets 

of its codomain. To each Borel set M is assigned the probability mass 

on the event X-l(M). A probability measure Px is defined on the Borel 

sets by the assignment PX(M) = P[X-l(M)] = P(X EM). This is a true 

probability measure, with the Borel sets serving as events. This mass 

distribution may also be described by a probability distribution function 

FX or, in suitable cases, by a probability density function f X' These 

matters are assumed to be familiar. 

For many purposes, if a random vector is modified on a set of w 

having zero probability, no significant difference is realized in probability 

calculations. For example, if X and Yare two real random variables 

with the property that the set of w for which X(w) # Yew) has probability 

zero, these random variables have the same mathematical expectation. 

DEFINITION. Random vectors X, Yare almost surely equal, denoted 

X = Y a.s., iff they have the same codomain and the set (w: X(w) # Yew)} 

has probability zero. 

More generally, a relation between random vectors is said to hold almost 

surely (a.s.), or to hold for almost every (a.e.) w, iff the set of 
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w for which the relation fails to hold has probability zero. 

We are frequently concerned with functions of random vectors. 

Suppose we have random vector X: 0 ~ Rn and have two Borel functions 

g, h: Rn ~ Rm. If these functions have the property that g(t) = h(t) 

for all t on the range of X, then we must have g[x(w)l = h[X(w)l 

for all w. Again, we may not need this equality for all w. It may 

be sufficient to have equality for alnust every w (i.e., for all w 

except possibly an exceptional set of probability zero). Suppose 

MO = (t E pn: g(t) # h(t)). Then g[X(w)l # h[X(w)l iff X(w) is 

one of the values in ~. Hence, g(X) = h(X) a.s. iff the set of w 

for which X(w) E MO has probability zero. But this is just the condition 

that the induced probability PX(MO) = P(X E MO) = O. 

The notion of alnust-sure equality for random vectors can be extended 

to Borel functions when the probability measure is defined on the class 

of Borel sets on the domain of the functions. We are particularly 

interested in the case that such measures are probability measures 

induced by random vectors. 

DEFINITION. If g, h are Borel functions from pn to Rm and Px 

is a probability measure on the Borel sets on Rn , then g and h 

are said to be alnust surely equal [pxl iff the set MO 

(t ERn: g(t) # h(t)) satisfies the condition PX(MO) = o. 

The discussion above provides the justification for the following 

Theorem AI-2 

g(X) = h(X) a.s. iff g = h a.s. [pxl, where Px is the 

probability measure induced by the random vector X. [1 

Independence of random vectors is expressed in terms of the events 

they determine. 
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independent iff for each class 

codomains of the X. the class 
~ 

(Mi : i E J) of Borel sets on the respective 

-1 
(X (Mi ): i E J) of events is independent. 

This means that the product rule holds for each finite subclass of the 

class of events. The following is known to be consistent with the above. 

DEFINITION. Two classes (Xt : t E T) and (Yu: u E U) form an independent 

family of classes iff for each finite 

vectors 

independent pair. 

••• , Xt ) 
n 

and 

T C T 
n 

and U C U 
m 

... , Y 
u 

m 

the random 

form an 

The latter definition extends readily to arbitrary families of classes. 

In the next section, we state the condition for independence of a class of 

random vectors in terms of mathematical expectation. 

If (X,Y) is an independent pair of random vectors (any finite dimen-

sions) and g, h are Borel functions on the codomains of X, Y, respectively, 

then (g eX) ,h (Y)} is an independent pair. This fo llows from the fact 

that (g(X) E M} = (X E g-1(M)} and (h(Y) EN} = (Y E h-1(N)}, so that 

-1 -1 
P«(g(X) EM} n [heY) EN} = P«(X E g (M)} n (Y E h (N))) = 

p[x E g-l(M)Jp[y E h-1(N)J = p[g(X) E MJp[h(Y) E NJ. It should be apparent 

how this result extends to arbitrary classes. 



A2-l 

2. Mathematical expectation 

The concept of mathematical expectation incorporates the notion of a 

probability weighted average. Suppose X is a simple. real-valued random 

variable with range (t l • t 2 ••••• t n ). The mathematical expectation of X 
n 

is E[X] = ~ t.P(X = t.). 
i=l 1. 1. 

Each possible value t. 
1. 

is weighted by the 

probability that value will be realized; these weighted values are summed 

to give a probability weighted sum; since the total weight is one. the 

sum is the same as the average. 

To extend the notion. we consider next a nonnegative random variable 

X. In this case. there is a nondecreasing sequence of simple random var-

iables which converge to X. We define 

E[X] = J X dP = lim E[XnJ. 
n 

A study of the technical details shows that the limit does not depend upon 

the particular approximating sequence selected. To complete the extension 

to the general case. we represent X as the difference X - X 
+ -

of the 

two nonnegative random variables defined as follows: 

r(W) for X(w) ~ 0 
XJw) = { 0 

for X(w) ~ 0 
X+(w) = 0 

for X(w) < 0 - X(w) for X(w) < O. 

Then E[x] = E[X) - E[X ]. Thus E[X] is the limit of the probability 

weighted averages of the values of the approximating simple functions. As 

such. mathematical expectation should have properties of sums or averages 

which "survive passage to a limit." This is. in fact, the case. The 

defining procedure defines a very general type of integration (Lebesgue 

integration) • 

For convenience. we list and assign numbers to those properties of 

mathematical expectation which are most useful in investigations such as 

those in subsequent sections. Since an indicator function for an event 



is a simple random variable whose range is (0, I}, we have 

El) E[IA] = P(A). 

A2-la 

Use of Theorem Al-l and the fact that IMXN(X,Y) = IM(X)IN(Y) gives the 

following important special cases. 

Ela) E[IM(X)] = P(X E M) and E[IM(X)IN(Y)] = P(X E M, YEN) (with exten

sion by mathematical induction to any finite number of random vectors). 
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Elementary arguments show that the following properties of sums hold also 

for mathematical expectation in general. 

E2) Linearity. E[ax + bY] = aE[X] + bEryl (with extension by mathe-

matical induction to any finite linear combination). 

E3) Positivity; monotonicity. 

a) X> ° a.s. implies E[X] ~ 0, with equality iff X = ° a.s. 

b) X> Y a.s. implies E[X] ~ E[Y] , with equality iff X Y a.s. 

It should be noted that monotonicity follows from linearity and positivity. 

The next property is not ordinarily discussed in elementary treatments. 

However, it is essential to much of the theory of mathematical expectation. 

Suppose Xn:5. Xn+l a.s. for all n> 1 and Xn(W) -7 X(w) for a.e. w. 

By property E3) , we nrus t have E [X) :5. E [Xn+l] :5. E [X]. Since a bounded 

monotone sequence of real numbers always converges, we nrust have 

lim E[X] = L < E[X]. Sophisticated use of elementary ideas establishes 
n->oo n -

the fact that the limit L = E[X]. A similar argument holds for monotone 

decreasing sequences. Thus, we have 

E4) Monotone convergence. If Xn -7 X monotonically a.s., then 

E[X ] -7 E[X] monotonically. 
n 

In many ways, these four properties characterize mathematical expectation as 

an integral. A surprising number of other properties stem from these. In 

the development of the idea of conditional expectation, we establish its 

integral-like character by establishing analogs of El) through E4). 

By virtue of the definition and property Ela) we can characterize 

independence of random vectors as follows. 
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ES) Independence. The pair {X,Y} of random vectors is independent 

on the codomains of X, Y, respectively, 

iff E[g(X)h(Y)] = E[g(X)]E[h(Y)] for all real-valued Borel 

functions g, h such that the expectations exist. 

For an arbitrary family of random vectors, we have independence iff such a 

product rule holds for every finite subclass of two or more members. 

The next property plays an essential role in the development of the 

concept of conditional expectation. We prove the basic result, which 

suffices for developing the properties of conditional expectation; the 

extension, whose proof requires some advanced ideas from measure theory, 

is used in developing certain equivalent conditions for conditional 

independence, given a random vector (Sec DS). 

E6) Uniqueness. 

a) Suppose Y is a random vector with codomain Rm and g, hare 

real-valued Borel functions on the range of Y. If E[IMCY)g(Y)] 

= E[IM(Y)h(Y)] for all Borel sets M in the codomain of Y, 

then g(Y) = hey) a.s. 

b) More generally, if E[IM(Y)IN(Z)g(y,Z)] = E[IM(Y)IN(Z)h(Y,Z)] for 

all Borel sets M, N in the codomains of Y, Z, respectively, 

then g(Y,Z) = h(Y,Z) a.s. 

PROOF OF a). 

Suppose g(u) > h(u) for u in the set N. Then IN(y)g(y) ~ IN(Y)h(Y), 

with equality iff Yew) does not belong to N. By E3), E[IN(y)g(y)] 

= E[IN(Y)h(Y)] iff INCy)g(y) = IN(Y)h(Y) a.s. iff P(Y E N) = O. 

A similar argument holds for the opposite inequality. Thus, the total 

probability of the event (g(Y) F hCY)} is zero. 
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DISCUSSION OF b) 

The second part is more general, since the sets Q = M X N, with 

IQ = I~N' form only a subclass of the Borel sets on the codomain of 

the combined vector (X,Y). However, a standard type of argument in 

measure theory shows that if equality holds for sets of this subclass, 

it must hold for all Borel sets. Application of part a) gives the desired 

result. [] 

Several useful properties are based on El through E4), with monotone 

convergence playing a key role. The following are among the most important. 

E7) Fatou's lemma. If Xn ~ 0 a.s., E[lim inf X ] < lim inf E[X 1. 
n - n 

E8) 

E9) 

Dominated convergence. If X ~ X a.s. 
n 

and 

n, with E[Y] finite, then E[X ] ~ E[X) . 
11 

Ix 1< Y a.s., for each 
n -

Countable additivity. Suppose E[X) exists and A = 8 A .• Then 
<Xl 

E[IAxJ = ~ E[IA XJ. 
i=l i 

i=l 1. 

The following property is used as the basis for a general definition 

of conditional expectation, given a random vector. It is based on the 

celebrated Radon-Nikodym theorem and the fact, noted in the previous 

section, that if Z is measurable-Y, then there is a Borel function e 

such that Z = e(Y). We accept this result without proof. It is made 

plausible in certain special cases in the developments in Sec C2. 

ElO) Existence. If E[g(X») is finite, then there is a real-valued 

Borel function e, unique a.s. [pyl, such that 

E[IM(Y)e(Y») for all Borel sets M in the codomain 

of Y. 

Recall, by Theorem Al-2, e is unique a.s. [Pyl iff e(Y) is unique a.s. 

A number of standard inequalities are employed repeatedly in probability 

theory. Establishment of these depends upon setting up the appropriate 
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inequalities on random variables, then utilizing monotonicity E3). The 

appropriate inequalities on the random variables are often expressions 

of classical inequalities in ordinary analysis. Some of the more important 

inequalities are listed for convenient reference in Appendix I. 
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3. Problems 

A-I. For each of the following random variables, describe the sigma field 

J(X) determined by X. 

i) X IA 

ii) X aIA + bIB + cIe (canonical form) 

A-2. If X = -2IA + OI B + Ie + 4ID (canonical form), describe x-1 (M) for 

i) M = (-"',0], ii) M = (-2, 1] l:1 (2,4] . iii) M = ( -"', 3] 

A-3. Suppose X has distribution function FX with 

{:1 + ,,)/4 for t < 0 

FX(t) = for o < t < 1 

for 1 < t 

For which of the following functions, if any, is gi gk a.s. [Px]? 

gl (t) = t + 1 for all t 

for t < 0 

for 0 < t < 1 

for 1 < t 

g3(t) = t + k + 1 for k ~ t < k + 1, all integers k, all t 

A-4. If X and Yare real random variables, let 

Show that 

for X(UJ) ~ 0 

for X(w) < 0 
X (UJ) 

for X(UJ) ~ 0 

for X(w) > 0 

a) X+ and X are Borel functions of X, hence are random variables. 

b) XY is a random variable 

c) ax + bY .is a random variable (a,b are constants). 

A-S. Suppose g: ~ ~ pn and f: pn ~ pq are Borel functions. Show 

that the composition fog: pm ~ ~q is Borel. 

A-6. Use Theorem A1-1 and property E1) for expectation to establish 

property E1a) . 



A-7. Use linearity E2) and positivity for expectation to establish 

monotonicity. 

A3-2 

A-S. a) Suppose X > 0 and E[X] is finite. Use the monotone convergence 

theorem E4) to establish countable additivity E9) for expectation. 

b) Extend the result of part a) to the general case. 

A-9. If X is real, use the fact that X ~ Ixi and - X < Ixl to 

establish the triangle inequality Ell) for expectation. 

A-IO. Establish the mean-value theorem E12) for expectation. 
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B. Conditional independence of events 

1. The concept 

In setting up a probability model for a system under study, the modeler 

utilizes all available prior knowledge about the system to determine prob

ability assignments to appropriate events. This knowledge may be obtained 

from systematic statistical study, or from mathematical deductions based 

on assumptions supported by experience or experiment, or, less formally, 

from the judgment of a decision maker. These probability assignments serve 

to determine a prior probability measure. The probability peA) of an 

event A provides a measure of the likelihood of the occurrence of this 

event. 

Further experience or experiment may produce information which makes 

it appropriate to revise the probability assignments to reflect new like

lihoods of various events. Such revisions amount to the introduction of 

a new pro babi li ty measure. Typically, the information received yields 

partial knowledge of the character of the outcome. When properly expressed, 

this new information serves to identify an event e which has occurred. 

There may be subtleties and difficulties in determining exactly what this 

conditioning event e is (cf. Pfeiffer and Schum [1973], Sec 5-1). The 

difficulties center about the question: What information is obtained by 

whom? But, in principle at least, such an event is determined. 

There is nothing in the probability model to require a specific manner 

of reassigning probabilities. However, considerable experience has shown 

that a fruitful way to make the new assignment of probability to event A, 

given the occurrence of conditioning event e, is to utilize the rule 

p(Ale) = p(Ae)/p(e), provided, of course, pee) > o. 

We call p(Ale) the conditional probability £! A, ~~ c. For fixed 

e, p(·le) is a new probability measure, .,ith all the formal properties 
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of the original, or prior, probability measure P(·). 

It sometimes happens that occurrence of the event C does not affect 

the likelihood that A will (or will not) occur. Thus, we may be able to 

assert that p(AIC) = peA) or p(AIC) = p(AICc ). As a matter of fact, 

straightforward use of the defining relation for conditional probability 

shows that if 0 < P (A) < land 0 < P (C) < l, then the fo !lowing sixteen 

relations are equivalent-- that is, i.f one holds, so do the others. 

p(AIC) = peA) P (C \ A) = P (C) P (AC) = P(A)P(C) 

P(A\Cc ) = peA) P(CC\A) = P(Cc ) P(ACc) = P(A)P(Cc ) 

p(Aclc) = P (Ac ) P(C\Ac ) = P(C) peAce) = P(Ac)P(C) 

P(AC\Cc ) = P (Ac ) P(CcIAc ) = P(Cc ) P(AcCc ) P(Ac)P(Cc ) 

p(Alc) = p(Alcc ) p(Aclc) = p(Aclcc ) P(CIA) = P(CIAc ) P(Cc\A) = P(CcIAc ). 

If any of these holds, we suppose the events A, C form an independent 

pair, in a probabilistic sense. It is easy to check that the equivalence 

of the four product rules in the right-hand column holds for the cases 

in which either peA) or pee) takes one of the extreme values 0 or 1. 

Also, the first product rule is symmetric with respect to the events A, C. 

Thus, it is convenient to make the definition of independence in terms of 

this product rule, as follows: 

DEFINITION. The pair (A,B} of events is (stochastically) independent 

iff the product rule P(AB) = P(A)P(B) holds. 

An arbitrary class of events is independent iff a corresponding product 

rule holds for every finite subclass of two or more events from the class. 

The list of equivalent relations above (with C replaced by B) shows that 

If anyone of the pairs (A,B), (A,Bc ), (Ac,B), or (Ac ,Bc ) is 

independent, so are the others. 

Although the product rule is the basis of the formal definition, the essential 

idea of independence is the lack of conditioning as exhibited in the fact 
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that independence holds iff p(AiB) = p(AiBc ) = peA) iff p(BIA) = 

p(BiAc ) = PCB). The occurrence or nonoccurrence of B does not affect the 

likelihood of the occurrence of A, and the occurrence or nonoccurrence of 

A does not affect the likelihood of the occurrence of B. 

Example Bl-a 

Consider two contractors working on two entirely different jobs. Let 

A event contractor "a" completes his job on schedule, 

B event contractor "b" completes his job on schedule. 

It may well be that these two contractors work in a way that the performance 

of either has no affect on or relation to the performance of the other. 

Thus, it may be that p(AiB) = p(AiBc), in which case the common value 

is peA). We should thus assume, in modeling the situation, that (A,B) is 

an independent pair of events. [) 

Suppose (A,B} form an independent pair under the original probability 

measure. This independence is not an inherent property of the events (unless 

at least one is either the impossible event or the sure event). Stochastic 

independence is a property of the probability assignment, hence is determined 

by the probability measure P(·). Change to a new probability measure PI (.) 

may destroy the stochastic independence. The following extension of the 

contractor example shows how stochastic independence may fail to hold, even 

though the contractors work "independently" in an operational sense. It 

also leads to the concept of conditional independence. 

Example Bl-b 

Consider again the case of the two contractors. There ~ be some factor 

in the work situation which affects the performance of both. Suppose the 

jobs are outside, where performance can be affected by the weather. Let 

C = event the weather is "good". It may be reasonable to suppose that 
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P(A\BC) = P(A\BcC). That is, given good weather (i.e., the occurrence 

of C), the performance of contractor "b" has no effect on the perform-

ance of contractor "a". A similar situation may hold in the case of 

bad weather. Since p(AIC) = p(ABIC) + p(ABclc) = p(BIC)P(AIBC) + 

c/ I c /' c P(B C)P(AIB C), the equality P(A BC) = P(AIB C) implies that the common 

value is P(A/C). Under these conditions, the pair {A,B} will usually not 

be independent. There is a "probabilistic tie" between these two events 

by virtue of their relationships to the common event C. Let us examine 

the contractor example further by assigning some reasonable numerical 

values. Suppose 

P(A\C) = 0.95 

p(Alcc ) = 0.45 

p(Blc) = 0.96 

P(B\Cc ) = 0.50 

P(C) = 0.7 

P(Cc ) = 0.3. 

Under the conditions p(AiBC) = p(AiBcC) and p(AiBCc ) = P(A\BCCc ), 

P(AB) = P(c)p(BIC)P(AIBC) + P(Cc)P(B\Cc)P(AIBCc ) 

= 0.7 X 0.96 X 0.95 + 0.3 X 0.5 X 0.45 = 0.7059 

P(A)P(B) [P(A\C)P(C) + p(Alcc)p(cc )] [p(Bic)p(c) + p(Blcc)p(Cc )] 

we have 

[0.95 X 0.7 + 0.45 X 0.3] [0.96 X 0.7 +- 0.5 X 0.3] = 0.6576. 

Thus, P(AB) # P(A)P(B), so (A,B) is not independent. If the contractors 

work "independently", what is the tie between their performances? If A 

occurs, the likelihood of good weather is high, so that the likelihood of 

the occurrence of B is high. The numbers turn out to be P(CIA) = 

p(Aic)p(C)/P(A) = 0.83 > 0.7 = P(C) and p(BiA) = P(AB)/P(A) = 0.882 > 

0.822 = P(B). If this is the only effective tie between events A and 

B, then once the weather is determined, there is no further influence 

of the performance of one contractor on that of the other. [] 

Let us examine further the assumption that p(AIBC) = P(A!BcC). Straight-

forward use of the defining relation for conditional probability and some 

elementary properties show that the following conditions are equivalent: 
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p(AIBC) p(Alc) PCB! AC) p(lllc) p(ABlc) P(A/C)P(B/C) 

p(AIBcC) p(Aic) P(Bc lAc) p(Bcic) P(ABc!C) p(Alc)p(Bclc) 

p(AcIBC) P (Ac i C) P(S/AcC) p(Ble) p(AcBie) P(AC\C)P(Blc) 

p(AcIBcC) p(Ac!e) P(Bc/Ace) p(BcIc) P(AcllC!C) P(AC!C)P(Bclc) 

P(A/BC) peAl BCe) p(AcIBC) P(Ac:{C) 

p(BiAC) PCB/AcC) P(Bc lAC) P(Bc iAcC ). 

In view of our discussion above, it seems reasonable to call the COffim)n 

situation conditional independence, given C. Q~ e o~, the occurrence 

or nonoccurrence Qj 13 does not further <!ife<:J= the likelihood QJ A, etc. 

As in the case of ordinary or total independence, we utilLze the product 

rule as the basis of the mathematical definition, although some of the other 

equivalent relationships may be more useful in modeling. 

DEFINITION. The pair (A,B] of events is conditionally independent, 

given C, iff the product rule P(ABiC) = p(AiC)P(B!C) holds. 

An arbitrary class of events is conditionally independent, given C, iff 

a corresponding product rule holds for every fini.te subclass of tHO or more 

events from the class. 

The product rule shm"s that conditional independence, give!, C, is 

just ordinary independence for the probability measure PC(·) = p(·ie). 

Conditioning by C leads to a new probability measure. In terms of this 

new probability measure, the pair (A,B) is stochastically independent. 

As for the prior probability measure, we can assert Lhat 

If any of the pairs (A,B), (A,Be ), (Ac,B), or (Ac,ne ) is 

conditionally independent, given C, tben so are the others. 

In Example Bl-b, the conditioning event C is sLlch that we have 

conditional independence, given c , and also, given If the weather 
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is good, the contractors work independently; they also work independently 

if the weather is bad. Such is not the case for all conditioning events. 

Example Bl-c 

Suppose the two contractors of the previous example use some common item. 

Let D = event this item is in good supply and DC = event this item is in 

short supply. If the supply is good, it is reasonable to suppose that the 

performance of one contractor has no effect on that of the other. Hence, 

it is reasonable to assume that P(AjBD) = P(A/BcD), which is equivalent 

to assuming (A,B) is conditionally independent, given D. However, if 

the supply is short (i.e., if DC occurs), the contractors may be in compe

tition for the scarce item. Thus it may be reasonable to suppose P(A/BDc ) 

/ c c < P(A B D ). If contractor "b" completes his job on time he has probably 

obtained the scarce item to the detriment of contractor "a". This condi-

tion vio lates one 0 f the equivalent conditions for condi tional independence 

of (A,B), given DC, so that we must assert conditional nonindependence. 

It is not difficult to show that in this case the pair (A,B) is not 

totally independent. [] 

The following development shows that conditional independence, given 

one or both C and is unlikely to yield total independence. 

In the case of conditional independence, given C, and given CC, we have 

In the case of conditional independence, given C, but conditional non-

independence, given we have 

In either case, we have 

P(A)P(B) = P(A/C)P(B/C)P2(C) + P(A/Cc)P(B/Cc )P2(Cc) 

+ [P(A/C)P(B\Cc ) + P(A\Cc)P(B\C)]P(C)P(Cc ). 



Only in unusual cases would we have P(AB) = P(A)P(B). An example is 

provided in Problem B-S. 

Bl-7 
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2. Some patterns of probable inference 

We now consider a commonly encountered pattern of probable inference. 

We begin by giving two examples, then lifting out the essential pattern. 

When the appropriate conditional independence is identified, we show how 

it may help in determining the desired posterior odds. 

Example B2-a 

Associated with a certain disease are several symptoms. The presence 

of the symptoms does not guarantee the presence of the disease, but with 

high probability they occur when the disease is experienced and do not oc

cur when the disease is absent. The symptoms are observed by chemical tests 

of blood samples. The tests themselves are not conclusive, but have high 

probability of detecting the presence or absence of the symptoms correctly. 

Now the chemical tests respond only to appropriate conditions in the blood 

and are not influenced by how the patient feels or otherwise responds to 

his condition. Let H = event the patient has the disease, D = event the 

symptoms occur (in the blood condition), and R = event the tests indicate 

the presence of the symptoms. Since the tests respond to the symptoms and 

not directly to the disease, it seems reasonable to suppose p(RIDH) = 

p(RIDHc ) and p(RIDcH)= p(RiDcHc ), so that (R,H) is conditionally inde-

pendent, given D, and given DC. 

Example B2-b 

[] 

A firm plans to market a new product nationally. Suppose the market 

may be characterized reasonably unambiguously as "favorable" or "unfavor

able". The company executives decide to check market conditions in a test 

area. Let H = event the national market is favorable, D = event the test 
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market is favorable. Past experience allows reasonable estimates of 

p(DIH) and p(DiHc ). However, direct, completely reliable determination of 

the condition of the test-area market would be time consuming, expensive, 

and would entail the risk of a competitor capturing the market. A market 

survey of the test area is made. The results of such a survey are not con-

clusive; but under the assumed conditions, they are affected only by the 

conditions in the test area and not by existing conditions in the national 

market, except as the latter conditions ~ reflected in the test ~. If 

R = event the survey shows the test market is favorable, we suppose that 

p(RIDcHC). This means that (R,H) is 

conditionally independent, given D, and given DC. [] 

These two examples exhibit features which are typical of a variety 

of inference problems. 

1) There is an objective system about which some inference is to be made. 

In the first example, the objective system is the patient; in the 

second, it is the national market. The objective system is presumed 

to be in one of two objective states (the patient has the disease or 

does not; the market is favorable or is not). If H = event the 

objective system is in one of these states, then prior odds 

P(H)/P(Hc ) = a > 0 are supposed known (or are estimated). 

2) The objective system is not directly observable-- at least at the time 

of making the inference. But there is a data system which may be in 

one of several states (in each of the examples above, the data system 

is in one of two states). Each data state is "inconclusive" as to 

the objective state, but there is a "probabilistic linkage" between 

the data states and the objective states, expressed in terms of 

appropriate conditional probabilities, as follows. Let D. = event the 
J 
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data system is in state (in the two-state system, we use D 

We suppose the conditional probabilities P (D. I H) = b > 0 
J j 

and p(D.IHc ) = c. > 0 are known or may be estimated. Use of the 
J J 

ratio form of Bayes' rule shows the posterier odds to be 

p(HID.)/P(HcID.) = P(H)P(D. IH)/P(Hc)P(D. IHc) = abJ./c J .• 
J J J J 

3) In a typical situation, we do not have perfect information about the 

d'ta state; rather, we have the report of an observer, or sensor. 

For simplicity, we discuss a two-state data system and let R = event 

the observer reports that D has occurred. If such a report is 

received, the effective posterior odds are P(H/R)/P(HcIR) = 

aP(RIH)/P(RIHc ). Since the objective system is not observable, 

p(RIH) and p(RIHc ) are usually not known. We suppose information 

is available about the reliability of the observer. That is, we 

suppose information is available t.o estimate P (RI D) = d and P (R/ DC) 

= e, with 0 < d < I and 0 < e < 1. Note that "perfect information" 

about the data system requires e = 0 (for any positive value of d). 

4) If the objective system is not observable, only the condition of the 

data system should affect the report. Thus, we should have P(R/DH) 

= p(RIDHc ) and P(R/DcH) = P(R/DcHc ). This is precisely the condition 

that (R,H) is conditionally independent, given D, and given DC. 

This does not imply that (R,H) is independent. 

5) Let us see how the assumption of conditional independence may help in 

determining the posterior odds, given the report. 

P(H /R) _ P(H) .P(RDiH) + P(RDciH) 

p(HcIR) - P(Hc) P(RDIHc ) + P(RDcIHc ) 

= a . p(DiH )P(R/DH ) + p(DcIH )P(RjDCH ) 

p(DIHc)P(R/DHc ) + p(DcIHc)P(RIDCHC)' 
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Under the 

P(R \R) 

P (Rc i R) 

assumed conditional independence, this becomes 

p(DiR )p(RiD) + p(DciH )p(Ri Dc ) a • 
p(DiRc)P(RiD) + p(DciHc)P(RiDc) 

which may be determined from the data available. 

For a more general formulation of this problem,with more than two objective 

states and more than two data states, see Schum and Pfeiffer [1973]. To 

illustrate the analysis, we return to the previous examples. 

Example B2-a (Continued) 

The objective system is the patient, selected at random from among those 

who present themselves at the clinic, and H = event the patient has the 

disease in question. Suppose 10 percent of the patients examined at the 

clinic have the disease. Then prior odds a = P(H)/P(Hc) = 1/9. The data 

system is the blood condition. Let D = event the patient has the symptoms 

associated with the disease. Previous clinical experience shows P(D\H) = 0.96 

and P(Dc\Hc) = 0.95. Let R event the symptoms are indicated. The reliability 

of the testing procedure is such that P(R\D) = 0.97 and P(R\Dc) = 0.01. The 

patient is examined, a blood test made, and the report is found to be posi-

tive (Le. , event R occurs) • According to the pattern above 

P(H\R) (1/9) 0.96 X 0.97 + 0.04 X 0.01 9316 
1. 78. --R; 

P(Rc \ R) 0.05 X 0.97 + 0.95 X 0.01 5220 

The positive result of the test changes the prior odds by a factor of 

about 16. The conditional probability that the patient has the disease, 

given the test result is P(H/R) = 9316/5220 R1 0 64 
1 + 9316/5220 '. 

We extend the second example to a slightly more general situation. 

EXample B2-b (Continued) 

Consider the test-market problem described above. Initially, company 

executives think the odds for a favorable market are P(H)/P(Hc ) = 3. 

[] 



B2-5 

Past studies indicate p(DIH) = 0.8 and p(DIHc ) 0.2. If the test market 

if found to be favorable (event D occurs) , then 

P(H ID) _ p(DIH )P(H) = ~x 3 = 12 
p(HcID) P(D\Hc)P(Hc ) 0.2 

However, direct, completely reliable checking of even the test market condi-

tions would be time consuming, expensive, and would entail the risk of a 

competitor capturing the market. Two market-survey firms are employed to 

survey the test market. Each makes a survey and reports its conclusion 

about the condition of the market. Let 

A = event firm "a" reports the test market is favorable 

B = event firm lib" reports the test market is favorable 

The companies work "independent ly" in such a way that the investigation 

carried out by one does not affect that carried out by the other, regardless 

of the state of the test market. Because of the nature of the surveys, 

the results cannot be completely reliable. Suppose 

P(A\D) 0.9, P(A\Dc) = 0.3, P(B\D) = 0.8, and p(BIDc ) 0.2. 

Find the posterior odds P(H\AB)/P(HC\AB) for a favorable market if both 

reports are favorable. 

SOLUTION. 

Again, we are faced with the problem of "independent tests." Complete 

independence of (A,B) is not expected, for the outcomes of both tests 

are related to the condition of the test market. However, since the 

survey teams work in an operationally independent manner and neither team 

is affected by the national market except as it influences the test market, 

it seems reasonable to assume that P(A\BD) = P(A\BcD), P(A\HD) 

P(B\HD) = P(B\HcD), and P(ABIHD) = P(ABIHcD). These conditions imply 
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that (A,B,H) is conditionally independent, given D. A parallel argument 

yields conditional independence, given DC. We note that 

and similarly for conditioning event HC• We may, therefore, write 

p(HIAB) 

p(HcIAB) 

= P(H)P(ABIH) 

P(Hc)P(ABIHc) 

= ~ P(D\H)P(A\D)P(B\D) + p(DcIH)P(AIDc)P(BIDc) 

P(Hc) P(D\Hc)P(A\D)P(BID) + p(DcIHc)P(AIDc)P(BIDc) 

= 3 0.8><0.9><0.8 + 0.2x0.~0.2 = 11467 "" 9.2. 
0.2x0.9><0.8 + 0.8><0.3x0.2 

The value 9.2 is somewhat less than the odds of 12 obtained if perfect 

information were available about the test market, as might be expected. [J 

If we do not have conditional independence, the problems are still 

meaningfull, but more detailed information is required for solution. Thus, 

case it would be simpler to operate with peRtH) and p(RIHc ), since R 

must be treated as a datum directly related to H. The reason for not 

doing this is that the objective system is not available for observation. 

But it is precisely in this situation that we should assume that p(RID) 

= P(R[DH), etc., since if the objective system is not available to the 

observer, only the condition of the data system can affect the report. 
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3. A classification problem 

Suppose subjects are drawn from two groups. Each subject answers a 

battery of questions, or is otherwise tested with regard to a set of 

characteristics. The result is a profile of data for each subject tested. 

Each individual is to be classified in one of two groups, on the basis of 

the test results. The problem may be formulated in probabilistic terms 

as follows (see Schum and Pfeiffer [1977]). 

There are n data classes ~i' i = 1, 2, ... , n, one corresponding 

to each question or test. Let 

0ij event the answer to question i falls into category (i,j) 

Then 111 = (01.'1' D1.' 2' ••• , D. ). If the list of possible answers or 
i 1.mi 

results is exhaustive and mutually exclusive, then ~i is a partition of 

the basic space on which probability is defined. 

We suppose the subjects are drawn from two mutually exclusive groups. 

We let Gk = event the individual interviewed belongs to the kth group. 

In order to make probable inferences, we must suppose that the probabili-

ties P(Gk) and P(DijIGk) are positive and known. If we assume that 

no datum is conclusive, we must also have 0< p(GkID .. ) < 1 
1.J 

permissible i, j, k. Since each ~i is a partition, we have 

r P(DijIGk) = 1 for each permissible i, k. 

for all 

When an individual is interviewed, a profile is determined. A given 

profile corresponds to an event Ep = D1jl °2j 2 ... Dnjn' The various 

possible profiles are mutually exclusive, so that events of the type 

constitute a partition. We ask, "What is the inferential value of the 

E 
P 

compound event corresponding to a profile?" The usual answer is formulated 

in terms of the likelihood ratio L 
P 

the log-likelihood ratio A = log L 
P P 

or, equivalently, 

We may take logarithms to any base, 
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so long as we are consistent. 

The problem, as it stands, would seem to require that we have condi-

tional probabilities for each profile, for each of the two groups. This 

much data is rarely available, nor is it needed in a well-designed experi-

ment. In the usual experimental design, an attempt is made to formulate 

the questions or tests in such a manner that responses or results are 

"independent." Once more, we have the issue of conditional independence. 

The probabilities of various answers to a given question should depend 

upon the basic characteristics of the subject (hence on his or her group 

membership), but should not depend upon his or her responses to the other 

questions That is, a given subject's response to a particular question 

should be the same whether or not the other questions are asked, or regard-

less of the order in which they are asked. This does not mean that the 

responses to the questions are totally independent; the answers are 

conditioned by the group to which the subject belong (i.e., by the char-

acteristics common to that group), else the questions have no diagnostic 

value. The desired independence holds within a given group, but the 

probability distributions are different in the two groups. Hence we make 

the assumption that the family [~l' ~2' .•. , ~n} is conditionally inde

pendent, given Gl , and also given G2. In this case 

P(D .. I Gl ) 
1.J. 

L IT L .. IT 1. and II l: II .. l: log L ..• 
P i 1.J i i P (D.. I G ) P i 1.J i i 1.J i 1.J i 2 

We may carry the formalism further in a useful way by introducing the 

random variables 
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T. = z: A .. I D 
1 j 1J ij 

T=z:T.=Z:AI 
i 1 P P Ep 

Use of Bayes' theorem gives 

(has value Aij whenever D .. 
1J 

occurs) • 

occurs, then T=z:T. 
i 1 

has the value 

Hence we utilize 

(has value A whenever E occurs). 
p p 

where t 
c 

Standard practice is 

which corresponds to 

to classify the subject in group 1 iff T > tc' 
p(GlIEp) 

P(G2 IEp) > 1. 

This formulation allows us to deal with the problem of misclassification 

,probabilities. Consider the conditional distribution functions FT(· IGl ) 

and FT(· IG2), defined by FT(tlGk) = P(T ~ tlGk), k = 1, 2. In the con-

ditionally independent case, (T.: 1 < i < n} is an independent class with 
1 - -

respect to each of the probability measures p(·IGl ) and p(·IG2). The 

central limit theorem ensures that for sufficiently large n both FT(·IGl ) 

and FT(· IG2) are approximately normal. Examples show that the normal ap

proximation may be quite useful for n as small as 4 or 5. 

With the conditional distributions for T, standard statistical tech-

niques may be utilized to determine the probabilities of misclassification 

errors. Under some conditions, better choices of the decision level t 
c 

may be made. For a discussion of these issues, see Schum and Pfeiffer [1977]. 

Example B3-a 

Subjects are to be classified in one of two groups. They are asked to 
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respond to a battery of six questions, each of which is to be answered in 

one of three ways: yes, no, uncertain. To calibrate the test, a sample 

of 100 subjects is interviewed intensively to determine the proper group 

classification for each. It is found that 55 belong in group 1 and 

45 belong in group 2. If Gl event a subject belongs to group 

and G2 = event a subject belongs to group 2, these data are taken to 

mean that P(G1) = 0.55 and P(G2) = 0.45. The response of this control 

or calibration group to the questions is tabulated as follows: 

G:t:QUIl 1 (55 members) GrouE 2 (45 members) 

Yes No Uncertain Yes No Uncertain 

0 1 2 0 1 2 

i 1 17 26 12 i 1 30 10 5 

2 7 30 18 2 27 16 2 

3 8 40 7 3 29 12 4 n .. m .. 
4 14 31 10 ~J 4 25 18 2 ~J 

5 15 25 15 5 14 18 13 

6 9 33 13 6 31 7 7 

We have assigned, arbitrarily, numbers 0, 1, 2 to the answers yes, no, 

uncertain, respectively. Thus, DIO is the event the answer to question I 

is "yes", D42 is the event the answer to question 4 is "uncertain," etc. 

We interpret the data in the tables to mean that P(DlOiGl) = nlO/55 = 17/55 

and P(D42iG2) = m42/45 = 2/45, etc. 

A subject is selected at random from the population from which the 

sample was taken. The subject's answers to the six questions, in order, 

are: yes, yes, no, uncertain, no, yes. How should this subject be 

classified? 

SOLUTION. 

The event E 
p 
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T as follows: 

AlO = log P(DlO\Gl)/P(DlO\G2) 
17/55 _ 

log 30/45 - -0.769 

Azo 
.:!..ill.. __ 

log 27/45 - 1.551 A3l 
40/55 _ 

log 12/45 - 1.003 

A42 
10/55 _ 

log 2/45- 1.409 A5l = 
25/55 _ 

log 18/45 - 0.128 

1\60 
~- -1.437 Sunnning gives 1\ -1.217. log 31/45 - p 

We also find tc = log P(G2)/P(Gl ) = log 0.45/0.55 = -0.201. We thus have 

T = 1\p = -1.217 < -0.201 = tc; hence we classify the subject in group 2. 

To consider classification error probabilities, we could assume the con-

ditional distributions for T, given Gl and given G2 , to be approxi-

mately normal. By obtaining conditional means and variances for the various 

Ti , we could obtain the conditional means and variances for T, given Gl 

and given G2 . Standard statistical methods could then be utilized. We do 

not pursue these matters, since our primary concern is the role of condition-

al independence in formulating the problem. [ 1 

It is not necessary that all the questions be conditionally independent. 

There could be some intentional redundancies, leading to conditional 

dependencies within each group. Suppose in the numerical example above 

that questions land 2 were made to interlock. Then it would be 

necessary to consider this pair of questions as a single composite question 

with nine possible answers. Frequency data would be required on each 

pair of answers (no,nd), (no, yes), (no, uncertain), (yes, no), (yes, yes), 

(yes, uncertain), (uncertain, no), (uncertain, yes), (uncertain, uncertain). 

One would still suppose conditional independence for the set of questions, 



provided this composite question is dealt with as one question. More 

complex groupings could be made, increasing the amount of data needed to 

utilize the classification procedure, but there would be no difference in 

principle. 



B4-1 

4. Problems 

B-1 Prove the equivalence of at least four of the sixteen conditions for 

independence of (A,B). 

B-2 Complete the argument in Example Bl-b to show that the equality 

p(AIBC) = p(AIBcC) implies that the common value is p(Alc). 

B-3 Establish the equivalence of at least four of the sixteen conditions 

for conditional independence of (A,B), given C. 

B-4 Show that the condition p(AIBDc ) < p(AIBcDc ) in Example Bl-c implies 

p(AIBDc ) < p(AIDc ). 

B-5 A group of sixteen students has an equal number of males and females. 

One fourth of the females and three fourths of the males like to play 

basketball. One half of each likes to play volleyball. A student is 

selected from the group at random, on an equally likely basis. Let 

A = event the student likes basketball, 

B event the student likes volleyball, 

C event the student is male. 

Suppose (A,B) is conditionally independent, given C, and conditionally 

independent, given CC • Show that (A,B) is independent and (B,C) 

is independent, but (A,B,C) is not independent. 

B-6 In Example B2-b, show that the conditions i) p(AIBD) = p(AIBcD), 

ii) p(AIHD) = p(AIHcD), iii) p(BIHD) = p(BIHcD), and iv) P(ABIHD) 

= P(ABIHCD) together imply that (A,B,H) is conditionally independent, 

given D. 

B-7 In Example B2-b, determine p(HI ABc)/P(HCI ABc), the conditional 

odds, given conflicting reports of "favorable" by "a" and "unfavorable" 

by ''b''. 
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B-8 Consider the following problem, stated in a manner common in the 

literature. A patient is given a test for a type of cancer. The 

probability of a false positive is 0.10. The probability of a false 

negative is 0.20. One percent of the tested population is known to 

have the disease. If a patient receives two independent tests, and 

both are positive, find the probability the patient has cancer. 

a) Let C = event the person selected has the given type of cancer 

Tl event ilie first test indicates cancer «s positive), 

T2 event the second test indicates cancer, 

Discuss the reasonableness of the assumptions ilin (T l ,T2) 

conditionally independent, given C, and is conditionally 

independent, given CC , 

b) Under these assumptions, determine P(C/Tl T2). 

c) Under these assumptions, determine P(C/TIT~). 

is 

B-9 A student decides to determine the odds on the forthcoming football 

game with State University, The odds depend heavily on whether State's 

star quarterback, recently injured, will play. A couple of phone calls 

yield two opinions whether the quarterback will play. Each report 

depends only on facts related to the condition of the quarterback and 

not on the outcome of the game (which is not known, of course). The 

two advisers have operated quite independently in arriving at their 

estimates. The student proceeds as follows. He lets 

W = event the home team wins the game, 

Q event the star quarterback plays for State, 

A event the first informant is of the opinion he will play, 

B event the second informant is of the opinion he will play. 

The student (having studied Example B2-b) decides to assume (W,A,B) 

is conditionally independent, given Q, and conditionally independent, 
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given QC. On the basis of past experience he assesses the reliability 

of his advisers and assumes the following probabilities: p(AiQ) 

p(AciQc) = 0.8, p(BIQ) = 0.6, and p(BcIQc) = 0.7. Initially, he 

could only assume P(Q) = P(Qc) = 1/2. Expert opinion assigns the 

odds p(WIQ)/p(WcIQ) = 1/3 and p(WIQc)/p(wcIQc) = 3/2. On the basis 

of these assumptions, determine the odds p(wl ABc)/p(wcl ABc) and the 

probability p(WIABc ). 

B-lO A student is picked at random from a large freshman class in calculus. 

Let 

T = event the student had a p.revious trigonometry course, 

A = event the student made grade "A" on the first examination, 

B = event the student made grade "B" or better in the course. 

Data on the class indicate that 

peT) = 0.60 P(A/T) = 0.90 P(A/Tc ) = 0.30 

p(BIAT) = P(B/A) = 0.60 p(BIAcTc ) = P(B/Ac ) = 0.30. 

a) The student selected made "B" or better. What is the probability 

p(TiB) that the student had a previous course in'trigonometry? 

b) Show that (T,B} is not an independent pair. 

B-ll Experience shows that 20 percent of the items produced on a production 

line are defective with respect to surface hardness. An inspection 

procedure has probability 0.1 of giving a false positive and probability 

0.2 of giving a false negative. Units which fail to pass inspection 

are given a corrective treatment which has probability 0.95 of 

correcting any defective units and zero probability of producing any 

adverse effects on the essential properties of the units treated. 

However, with probability 0.3, the retreated units take on a character

istic color, regardless of whether or not they are defective (initially 
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or finally) • Let 

Dl event the unit selected is defective initially 

I C event the unit failed inspection ~ event unit is retreated 

D2 event the unit is defective after retreatment 

C event the unit is discolored after retreatment 

a) Show that it is reasonable to suppose that (C,DlJ is conditionally 

independent, given I C and that (C,DZ) is conditionally inde-

pendent, given (Note that IC = 0 

b) Determine PCD2iC), the probability that a unit. is defective, 

given that it is discolored. 

B-l2 In the classification problem, Example B3-a, determine the appropriate 

classification if the answers to the six questions are: yes, no, no, 

uncertain, yes, no, respectively. 
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C. Conditional expectation 

In order to introduce and develop the second concept of conditional 

independence, we need to examine the concept of conditionill,expectation. 

The usual introductory treatment of conditional expectation is intuitive, 

straightforward, but severely limited in scope. More general treatments 

tend to assume familiarity with advanced notions of measurability and 

abstract integration theory. We seek to bridge the gap and make the appro

priate aspects of a general treatment more readily accessible. 

1. Conditioning by an event. 

If a conditioning event C occurs, we modify our probabil Hies by 

introducing the conditional probability measure P(·IC). Thus, peA) is 

replaced by p(Alc) ~ P(AC)/P(C). In making this change, we do two things: 

i) We limit the possible outcomes to those in event C 

ii) We' "normalize" the probability mass in C to make it the new unit 

of mass 

It seems reasonable to make a corresponding modification of mathematical 

expectation, which we view as a probability weighted average of the 

values taken on by a random variable. Two possibilities are apparent. 

a) We could modi fy the prior probabili ty measure P (. ) to the conditional 

probability measure P(·! C), then take expectation (i.e., weighted 

average) with respect to this new probability mass assignment. 

b) We could continue to use the original probability measure P (. ) and 

modify our averaging process as follows: 

i) For a real random variab Ie X, we consider the val.ue X(w) for 

only those w in the event C. We do this by utilizing the 

random variable leX, which has the value X(w) for w in C, 

and has the value zero for any !J.I outside C. Then E[IcX] is 
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the probability weighted sum of the values taken on by X in 

the event C. 

ii) We divide the weighted sum by P(C) to obtain the weighted 

average. 

As shown by Theorem Cl-l, below, these two approaches are equivalent. 

For reasons which will become more apparent in subsequent developments, 

we take the second approach as the basis for definition. For one thing, 

we can do the "surrnning" in each case with the prior probability measure, 

then obtain the average by dividing by P(C) for the particular condition-

ing event. This approach facilitates relating the present concept to the 

more general concept of conditional expectation, given a random vector, 

which is developed in the next two sections. 

DEFINITION. If the event C has positive probability and indicator 

function I c ' the conditional expectation of X, given C, is the 

quantity E[xlc] = E[ICX]/P(C). 

Several properties may be established easily. 

Theorem Cl-l 

a) E[xlc] is expectation with respect to the conditional probability 

measure p(·IC) 

b) E[IAlc] = p(Alc) 

c) If C = l:t C. (disjoint union), then E[xl C] P (C) 
i 1. 

PROOF OF a) 

If X is a simple random variable ~ tkI~, then 

L: E[xl c.lp(c.). 
i 1. 1. 

E[xi cl E[Icxl/p(c) = E[~ tklcI~l /P(C) ~ tk E[I~cl /P(C) 

t tk p(~lc) = EC[X] 

where the symbol EC['] indicates expectation with respect to the condi

tional probability measure p(·lc). 
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If X::: 0, then there is a sequence [Xn : 1 ~ nl of simple random 

variables increasing to X. This ensures that the sequence [ICXn: 1 ~ nl 

is a sequence of simple random variables increasing to leX. By definition, 

E[I xl/p(c) = lim E[I X l/p(C) and EcJxl = lim Ec[X J. c n C n 'n n 

Since E[IcXnlp(c) = Ec[Xn] for each n, the limits must be the same. 

In the general case, we consider X = X+ - X_' with both X+::: 0 and 

x > O. By linearity, 

Propositions b) and c) are established easily from properties of 

mathematical expectation. (J 

The following theorem provides a link between the present concept and 

the more general concept developed in the next two sections. 

Theorem CI-2 

If event e = y-l(M) = [Y EM}, for any Borel set M, has positive 

probability, then E(IM(Y)g(X)] = E[g(X)ly E M]P(Y EM). 

PROOF 

By Theorem AI-I, IH(Y) = IC' By definition E[Icg(X)] E(g(X) I C]P(C). 

Hence, E[IH(y)g(X)] = E[g(X)ly E M]P(Y EM). [] 

It should be noted that both X and Y can be vector-valued. The function 

g must be real-valued, and M is any Borel set on the codomain of Y. 
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2. Conditioning by a random vector-- special cases 

In this section, we consider two simple, but important, cases of 

conditional expectation, given a random vector. We make an intuitive 

approach, based on the idea of a conditional distribution. In each case, 

the conditional expectation is found to be of the form E[g(X)jy = ul = 

e (u), where e (.) is a Borel function defined on the range of y. This 

function satisfies, in each case, a fundamental equation which provides 

a tie with the concept 0 f condi tional expec tation, given an event, and 

which serves as the basis for a number of important properties. This 

fundamental equation also provides the basis for extending the concept of 

conditional expectation, given a random vector, to the general case. 
n m 

Case i) X, Y discrete. X= l:t.IA 
i=l 1. i 

and Y = l: u.I B ' 
j=l J j 

= u j ). We suppose B. = (w: Y(w) 
J 

and P(B.) > 0 for each permissible i,j. Now 
J 

E[g(X)jy = u.lp(y = u.) E[g(X)jB.lp(B.) 
J J J J 

where 

P (A.) > 0 
1. 

E[g(X)IB.l by def. 
J 

= E[g(X)I(u.)(Y)l by Thm AI-I 
J 

·l:kg(ti)I(u.)(uk)PXy(ti,uk) 
1., J 

= l: g(t.)PXy(t.,u.) 
iLL J since I(u.)(Uk) 

J 
iff j = k. 

If we consider the conditional probability mass function 

we may write 

E[g(X)jy = u.jP(Y = u.) 
J J 

from which we get 

P(X = t., Y = u.) 
1. J 

P(Y = u.) 
J 

1 

e(u j ) for each u j in the range of y. 
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We may let e(') be any continuous function which takes on the prescribed 

for each u. in the range of Y. Then e(') is a Borel 
J 

function. Suppose M is any Borel set on the codomain of Y. Then 

.Lkg(ti)IM(Uk)Pxly(tiluk)Py(Uk) 
~, 

~ IM(Uk)( f g(ti)pxly(tiluk)]PY(Uk) 

~ IM(uk)e(uk)py(uk) : E[IM(y)e(y)] . 

Hence, e(') must satisfy 

E[IM(y)g(X)] : E(IM(Y)e(Y)] V Borel set M in the codomain of Y 

The uniqueness property E7) for expectations ensures e(') is unique 

a.s. (py] , which in this case means e(') is uniquely determined on the 

range of Y. [] 

Example C2-a 

Suppose X, Y produce the joint distribution shown in Fig. C2-l. De-

termine the function e(·) : E[XIY : .J. 

SOLUTION. 

From the joint distribution, we obtain the quantities 

py(3) : 4/10 

PXly(lll) :PXly (2I l ) :PX\y(3l l ) : ~7i~: 1/3 

px\y(411) = PXly(5Il) = O. 

Hence eel) = 1/3(1 + 2 + 3) = 2. 

Similarly e(2) = 1/3(2 + 3 + 4) = 3 and e(3) = 1/4(2 + 3 + 4 + 5) = 7/2 

Graphical interpretation. The conditional probabilities PXly(klu), for 

fixed u, are proportional to the probability masses on the horizontal line 
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u 

1/10 1/10 1/10 1/10 
3 

1/10 1/10 1/10 PXy(t,u) 

2 

1/10 1/10 1/10 
1 

t 
1 2 3 4 5 

Figure C2-1. Joint distribution for Example C2-a. 

u 

(0,1) 

\ 

\ 

, 
\ 

fXy(t,u) = 2 over triangular region 

, 

(0,0) (1,0) 

= 1 - u 

Figure C2-2. Joint distribution for Example C2-b. 
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corresponding to Y = u. Thus, E[xly = ul is the center of mass for 

that part of the joint distribution which corresponds to y = u. [J 

~ ii) X, Yare absolutely continuous, with joint density function f xy ' 

Since the event (Y = u) has zero probability, we cannot begin with 

conditional expectation, given the event (Y = u). We may utilize the 

intuitive notion of a conditional distribution, given Y = u, by employing 

the following device. Let 

otherwise. 

For fixed u such that fy(u) > ° (i.e., in the range of Y), the function 

fxly(·lu) has the properties of a density function: fxly(tlu) > ° and 

f fx1y(t1u) dt 1. It is natural to call this the conditional density 

function for X, given Y = u. In part, the terminology is justified by 

the following development. Let M be any Borel set on the codomain of Y. 

Then 

E[g(X)IM(Y)] = JS g(t)IM(u)fXy(t,u) dtdu 

= S IM(U)[S g(t)fx1y(t1u) dtl fy(u) du 

= S IM(u)e(u)fy(u) du 

where e(u) = f g(t)fxly(t/u) dt. 

Now e(·) must satisfy 

E[IM(Y)g(x)l = E[IM(Y)e(Y)l V Borel sets M in the codomain of Y. 

It seems natural to call e(u) the conditional expectation of g(X), given 

Y = u. In the case P(Y E M) > 0, we have by Theorem CI-2 

If e (.) is Borel, as it will be in any practical case, property En for 

expectation ensures that e(Y) is a.s. unique, or e (. ) is unique a.s. [pyJ, 

which means that it is determined essentially on the range of Y. [J 
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Example C2-b 

Suppose X, Y produce a joint distribution which is uniform over 

the triangular region with vertices (0,0), (1,0), (0,1), as shown in 

Fig. C2-2. Now 
l-u 

= J 2 ~ dt 2(1 - u) o < u < 1 

and 

1 - u 
for 0 < t < 1 - u, 0 < u < 1 (and zero elsewhere). 

Hence 
l-u 

e(u) = E[X\Y = u] = J t fX\y(t\u) dt = 1 ~ u t t dt 
1 - u 

2 
o < u < 1. 

Graphical interpretation. The dashe.d line in Fig. C2-2 is the graph 0 f 

e (u) vs. u. This could have been anticipated by the fo llowing graphical 

interpretation. If fXy is continuous, we may visualize fx\y(t1u) as 

proportional to the mass per unit length in a very narrow strip on the plane 

about the line corresponding to Y = u. E[xly = u] is the center of mass 

of the portion of the joint distribution lying in that narrow strip. [] 
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3. Conditioning by a random vector-- general case 

The treatment of the special cases in the previous section begins 

with the notion of a conditional distribution. While this approach is 

intuitively appealing, and quite adequate for the simplest cases, it 

quickly becomes unmanageable in more general cases which involve random 

vectors of higher dimensions with mixed distributions. We seek a n~re 

satisfactory approach. 

We base our development on a simple property derived in each of the 

two special cases considered in the previous section. In each case, the 

quantity called the conditional expectation of g(X), given Y ~ u, is 

the value e(u) of a Borel function e(·) which is defined on the range 

of Y. The random variable e(Y) satisfies 

A) E[IM(y)g(X)] ~ E[IM(Y)e(Y)] V Borel sets M in the codomain of Y. 

By the uniqueness property E6) for mathematical expectation, e(Y) must 

be a.s. unique, which is equivalent to the condition e(.) is unique 

a.s. [pyl. By Theorem Cl-2 on conditional expectation, given an event, 

we have 

B) If P(Y E M) > 0, then E[IM(Y)e(Y)] ~ E[g(X)ly E M]P(Y EM). 

Motivated by these developments, we make the 

DEFINITION. Let e(·) be a real-valued, Borel function defined on a 

set which includes the range of random vector Y. Then the quantity 

e(u) is the conditional expectation of g(X), given Y ~ u, denoted 

E[g(X)!Y ~ u] iff 

A) E[IM(Y)g(X)] ~ E[IM(Y)e(Y)] V Borel sets M in the codomain of Y. 

Associated with the Borel function e(·) is the random variable e(Y). 

Now e(') is unique a.s. [py] and e(Y) is unique a.s. 
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DEFINITION. The random variable e(Y) is called the conditional 

expectation £i g(X), given Y, denoted E[g(X)\Y]. 

Note that we must distinguish between the two symbols: 

a) E[g(X)\Y = .] = e(·), a Borel function on the range of Y 

b) E[g(X)\Y] = e(Y) a random variable-- for a given w we write 

Example C3-a 

If the conditioning random vector Y is simple, an explicit representation 
m 

of e(Y) = E[g(X)\Y] is obtained easily. Suppose Y = ~ u.I B (in 
j=l J j 

canonical form-- see Sec AI), so that Bj = (Y = uj ) and lB. = I(u.)(Y)' 
J J 

If e(u) = E[g(X)\Y = u], then e(·) is defined for u. in the range 
J 

of Y by e(u.) = E[g(X)\Y = u.] = E[I( )(Y)g(X)]/P(Y = u.) (conditional 
J J u j J 

expectation, given the event (Y = u.}). Hence, 
J m m 

e(Y) = ~ e(u.)IB = ~ E[g(X) \Y = u.JI( }(Y). 
j=l J j j=l J uj 

Thus, when the conditioning random vector is simple, so that P(Y = u.) > 0, 
J 

the concepts of conditional expectation, given the event (Y = u. ), and 
J 

of conditional expectation, given Y = u., coincide for u. in the range 
J J 

of Y, and the same symbol is used for both. Use of formula B), above, 

gives 

E[g(X)\Y E M]P(Y E M) = E[IM(Y)e(Y)] 
m 

= ~ E[g(X) \Y = u.JE[IM(Y)I( }(Y)l. 
j=l J uj 

The quantity E[IM(Y)I(uj}(Y)] = P(Y = uj ) iff uj EM, and is zero 

otherwise. [] 



Example C3-b 

Consider the random variables X, Y in Example C2-b. Let M be the 

semi-infinite interval (~, 0.5], so that (Y E M) = (Y ~ 0.5). Then 
0.5 

P(Y E M) = J fy(u) du = 3/4 [May be obtained geometrically.] 
-~ 

E[IM(Y)e(Y)] 0j5e (U)fy (U) du = S~·5 (1 - u)2 du = 7/24. 
-co 

Hence 

E[xly ~ 0.5J (7/24)/(3/4) 7/18. [] 
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In each of the two special cases considered in Sec C2, we have been 

able to produce a Borel function e(·) which satisfies the defining relation 

A) for conditional expectation. The uniqueness property E6) shows 

e(·) to be unique a.s. (py]. In Sec C4, we state a number of properties 

of conditional expectation which provide the basis for much of its usefulness. 

In Sec C7, we provide proofs of these properties based on proposition A) 

and properties El) through E6) for expectation. These properties hold 

whenever the appropriate Borel function e(·) exists. Thus, they hold 

for the two special cases examined in Sec C2 and for others which can be 

derived similarly. It would be convenient if we knew the conditions under 

which suitable e(·) exists. As a matter of fact, if we utilize the 

powerful existence theorem E10) for mathematical expectation, stated without 

proof in Sec A2, we may assert the existence of e(.) for any random 

vectors X, Y and any real-valued Borel function g(.) such that E[g(X)] 

is finite. The properties obtained in Sec C7 then hold in any such case. 
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4. Properties of conditional expectation 

In this section, we list the principal properties of conditional 

expectation, given a random vector, which are utilized in subsequent 

developments. Proofs are given in Sec C7. These are based on the defining 

relation A) and properties El) through E6) for mathematical expectation. 

In the following, we suppose, without repeated assertion, that the 

random vectors and Borel functions are such that the existence of 

ordinary expectations is assured. 

We begin our list of properties with the defining condition. 

CEl) e(Y) = E[g(X) \y] a.s. iff E[IM(Y)e(Y)] = E[IM(Y)g(X)] for all 

Borel sets M in the codomain of Y. 

As noted in relation B), in Sec C3, 

CEla) If P(Y EM) > 0, then E[IM(Y)e(Y)] = E[g(X)\Y E M]P(Y EM). 

If, in CE1), we let M be the entire codomain of Y, so that IM(Y) has 

the constant value one for all w, we obtain the important special case 

CElb) E[g(X)] = E(E[g(X) \Y] }. 

The device of first conditioning by a random vector Y and then taking 

expectations is often useful, both in applications and in theoretical 

developments. As a simple illustration of the process, we continue an 

earlier example. 

Example C4-a (Continuation of Example C2-b) 

Consider, again, the random variables X,Y which produce a joint distri-

bution which is uniform over the triangular region with vertices (0,0), 

(1,0), (0,1). It is shown in Example CZ-b that 

Z (1 - u) 

E[X\Y = u] 

for ° < u < 1 (and zero elsewhere) 

1 - u 
-Z- for ° < u < 1. 
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By CE1b) 

EfxJ = E[e(y)J = f e(u)fy(u) du = f~ (1 - u)2 du = 1/3. 

The result could, of course, have been obtained by finding fx(t) 

2(1 - t) for 0 < t < 1 and calculating 

E[X] = S tfx(t) dt = 2 f~ (t - t 2) dt = 1/3. 

The choice of approach depends upond the objectives and the information 

at hand. [] 

The next three properties emphasize the integral character of conditional 

expectation, since they are in direct parallel with basic properties of 

expectations or integrals. One must be aware, of course, that for condi-

tional expectation the properties may fail to hold on an exceptional set 

of outcomes whose probability is zero. The proofs given in Sec C7 show 

how these properties are, in fact, based on corresponding properties of 

mathematical expectation. 

CE2) Linearity. E[ag(X) + bh(y)iz] = aE[g(X)iz] + bE[h(y)lz] a.s. (with 

extension by mathematical induction to any finite linear combination.) 

CE3) Positivity; monotonicity. 

g(X) > 0 a.s. implies E[g(X)ly] > 0 a.s. 

g(X) ~ h(Y) a.s. implies E[g(X)lz] ~ E[h(y)lz] a.s. 

CE4) Monotone convergence. Xn ~ X a.s. monotonically implies 

E[X Iy] ~ E[xly] a.s. monotonically 
n 

Independence of random vectors is associated with a lack of "conditioning" 

in the following sense. 

CE5) Independence. The pair (X,Y} is independent iffi 

E[g(x)ly] = E[g(X)] a.s. for all Borel functions g such that 

E[g(X)] is finite, iffi 

E[IN(X)ly] = E[IN(X)] a.s. for all Borel sets N on the codomain of X. 
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Note that it is not sufficient that E[g(X)\Y] = E[g(X)] a.s. for one 

specific Borel function g. It is relatively easy to establish counter-

examples (see Problem C-S). 

Use of linearity, monotone convergence, and approximation of Borel 

functions by step functions (simple functions) yields an extension of CE1). 

CE6) e(Y) = E[g(X) \yJ a.s. iff E[h(Y)g(X)J = E[h(Y)e(y)J for all Borel 

functions h such that the expectations exist. 

The next three properties exhibit distinctive features of conditional 

expectation which are the basis of much of their utility. Proofs rest on 

previously established properties of mathematical expectation, especially 

part a) of E6). We employ these properties repeatedly in subsequent 

developments. 

CE7) If X = heY), then E[g(X)\yJ = g(X) a.s. 

CEB) E[h(Y)g(x)iy] = h(Y)E[g(x)iy] a.s. 

CE9) If Y = heW), then E(E[g(x)iyl\w) = E(E[g(X) iwl\y) = E[g(X) \Y] a.s. 

It occurs frequently that Y is a random vector whose coordinates form a 

subset of the coordinates of W. Thus, we may consider W = (Y,Z), which 

implies Y is a Borel function of W, so that 

CE9a) E(E[g(X)\yJ \Y,Z) = E(E[g(X)\Y,zJ \Y) = E[g(X)\yl a.s. 

If the function h in CE9) -1 has a Borel inverse, then W = h (Y), so 

that the roles of Y and Ware interchangeable. Thus, we may assert 

CE9b) If Y = heW), where h is Borel with a Borel inverse, 

then E[g(X)\yJ = E[g(X)\wJ a.s. 

We note two special cases of CE9b). If the coordinates of Yare obtained 

as a permutation of the coordinates of W, then Y = heW), where h is 

one-one, onto, and continuous, hence Borel with Borel inverse. Thus, 

conditioning by a random vector does not depend upon the particular ordering 

of the coordinates. If we have a pair of random vectors (X,Y) which do 
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not share any coordinates, then conditioning by the pair is understood as 

conditioning by the random vector (X,Y) whose coordinates consist of 

the combined set of coordinates of the two random vectors (in any order). 

In a similar manner, we can consider two random vectors which may have 

some coordinates in common. Conditioning by such a pair is understood as 

conditioning by a random vector whose coordinates consist of the combined 

set of distinct coordinates. For example, suppose X = (X l ,X2,X3) and 

Y = (Xl 'X3 'X4). Then conditioning by X,Y is conditioning by W = 

(Xl 'X2'X3 'X4). It is apparent how these ideas extend to larger combinations 

of vectors. 

The next result is so plausible that it is frequently taken to be self 

evident. Although it is easily established in certain simple cases, it is 

somewhat difficult to establish in the general case, as noted in Sec C7. 

It is extremely useful in the Borel function form, as follows. 

CElO) Suppose g is a Borel function such that E[g(X,v)] is finite for 

all v in the range of Y and E[g(x,Y)l is finite. Then 

E[g(X,Y)'y=u] =E[g(X,u)ly=u] a.s. [pyl. 

In the independent case, CEID) takes a useful form. 

CEll) If the pair (X,Y) in CEID) is independent, then 

E[g(X,Y)!Y = u] = E[g(X,u») a.s. 

~ng the inequalities for expectations which can be extended to 

conditional expectations, the following are useful in many applications. 

CE12) Triangle ineguality. /E[g(x)ly]/:::: E[lg(X)[ iY] a.s. 

CE13) Jensen's ineguality. If g is a convex function on an interval I 

which contains the range of real random variable X, the 

g(E[xly]) :::: E[g(X) Iy] a.s. 

Establishment of inequalities for conditional expectation (as for expectation) 
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depends upon setting up the appropriate inequalities for random variables, 

then utilizing monotonicity CE3). The inequalities on the random variables 

are often expressions of classical inequalities in ordinary analysis. As 

in the case of expectations, monotone convergence plays a key role in 

establishing analogs of Fatou's lemma, dominated convergence, and countable 

additivity. 
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*5. Conditional distributions 

The introductory treatment of the special cases of conditional expecta-

tion in Sec C2 utilizes the notion of conditional distribution. In Sec C3, 

however, we disregard this notion in developing the general concept of condi-

tional expectation, given a random vector. In the present section, we show 

that conditional probability and conditional distI"ibutions can be treated 

as special cases of conditional expectation. 

By properties CElb) and Ela), 

E{IM(Y)E[IN(X)!Y]} ; fME[IN(X)\Y ; ul dFy(u) 

; E[IN(X)ly E M]P(Y E M) P(X E NIY E M)P(Y EM). 

This leads naturally to the 

DEFINITION. P(X E NIY = u) 

If X is real-valued and Nt (_co, tJ, then we set 

Fxly(tlu) ; P(X ~ tlY; u) ; E[I N (X)\Y; u] a.s. 
t 

For each fixed t, this defines a Borel function of u with properties 

which suggest that for each fixed u in the range of Y the function 

Fxly('lu) should be a distribution function. One property of interest 

is the following. 

P(X ~ t,Y E M) E[IN (X)IM(Y)] ; E(IM(Y)E[I N (X) Iy] ) 
t 't 

from which it fa llows as a special case that 

FX(t) ; E(E[~ (X)lyl}; J Fxly(tlu) dFy(u). 
t 

This last equality is often known as the law of total probability, since 

it appears as a generalization of a rule known by that name, 

peA) ; I p(AIB.)P(B.), 
i 1. 1. 

where 

* The material in this section is not needed in the subsequent sections 

and may be omitted without loss of continuity. 
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There are some technical difficulties in dealing with FX\Y(' \u) as 

a distribution function. These arise because for each real t there 

is an exceptional set of u of Py measure zero. That is FX[y(t[u) 

= P(X ~ t!y = u) a.s. [pyl. Since there is an uncountable infinity of 

real numbers t, certain problems can arise with which we are not equipped 

to deal. In the case of joint density functions or of jointly discrete 

random variables, the motivating treatmentof Sec C2 indicates the problem 

may be solved. For a real random variable X, a distribution function 

is determined by its values on the rationals, which involves only a 

countable infinity of values. Thus, it is known that for real random 

variable X and any random vector Y there is a regular conditional 

distribution function, given y, with the properties 

1) FX[Y('[u) is a distribution function for a.e. u [Pyl 

2) For each real t, F I (tlu) = P(X < tly = u) Xy - for a.e. u 

3) E[g(X) I y = ul = f get) dFX[y(t[u) for a.e. u [pyl. 

In some cases, for a.e. fixed u, FX[Y('[u) is differentiable 

the function fxly('lu) defined by 

fX[y(t[u) = ~t FX[y(t[u) 

[pyl , 

and 

is a conditional density function for X, given Y = u. This agrees 

with the conditional density function introduced in Sec C2. 

As an important example of the use of these ideas, consider the 

problem of determining the distribution for the sum Z = X + Y of two 

random variables X,Y. If we let Q = (t,u): t + u ~ v} (see Fig. C5-1), 

then 

P(X + y ~ v) = p[CX,y) E Ql = E[IQcx,y)l 

S E[IQ(X,U)[y = ul dFyCu) 

E(E[IQCX,y) [yl } 

by CElO) • 
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u 

Q = ((t,u): t + u ~ v) 

t 

Figure CS-l. The region Q for Z = X + y. 
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For each fixed v, (t,u) E Q iff t + u < v iff t < v - u iff 

tEN Hence, v-u IQ(X,u) = IN (X), 
v-u 

so that 

= FxlY(v-u/u). 

If FX/y is a regular conditional distribution, then 

FZ(v) = J FX/Y(V - u/u) dFy(u). 

If (X,Y} is an independent pair, then FX/y(V - ulu) 

so that 

This last combination is known as the convolution of Fx with Fy ' 
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6. Conditional distributions and Bayes' theorem 

We suppose a regular conditional distribution has been determined. 

It frequently is necessary to reverse the conditioning, as in Bayes theorem 

for events. In the following we treat X, Y as real-valued. Extensions 

to the vector-valued cases are immediate. 

a) If both X,Y are discrete, there is no problem. If we let 

b) If there is a joint density function, then by definition 

fxly(t lu)fy(u) 

fx(t) 

c) Suppose X is discrete and Y is absolutely continuous. 

Fylx(u[ti ) = P(Y ~ ulx = t i ) 

= E[IN (Y)1 (t. ) (X)] JE[I (t. ) (X)] 
u l l 

E[I N (Y)E[I(t. }(x)ly]) 
u l 

E(E(I(t. )(x)i Y)} 
l 

J~ P(X = tilY = v)fy(v) dv 

Jp(X = tilY = v)fy(v) dv 

Differentiation by u gives 

P (X = til y = u)fy (u) 
fyjx(ulti) P(X = t i ) 

Simple algebraic manipulation gives 

P(X=t.jy=u) 
l 

fylx(ujti)P(X = t i ) 

fy(u) 

by CE1) 
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7. Proofs of the properties of conditional expectation 

In this section, we show that if e(.) is a Borel function which 

satisfies the defining relation A) E[IM(Y)e(Y)] = E[IM(Y)g(X)] for 

any Borel set M on the codomain of Y, then properties CE2) through 

CE13) hold for e(Y) = E[g(X)iy]. Note that when we write e(Y) = E[g(x)!YL 

we are asserting that e(·) satisfies the defining relation (A) and must 

therefore be unique a.s. lPyl. 

In the proofs, we employ the properties EI) through E6) of 

mathematical expectation. Actually, we need only the simpler part a) 

of property E6). Note that the proofs do not involve the complexities 

of conditional distributions. The reader who wishes to go through the 

proofs carefully may wish to use the summary of properties of mathematical 

expectation in Appendix I. A tally of the use of these properties might 

be instructive. To simplify writing, we drop the "a.s." in many places. 

At several places, the arguments require an acquaintance with 

measure-theoretic ideas beyond that assumed of most readers. In these 

instances, we sketch the ideas of the proofs, in order to indicate to 

the interested reader what to look for in seeking a more complete treat-

ment. The goal is insight into the mathematical structure as an aid to 

interpretation and application. 

CE2) Linearity. 

Let e l (Z) = E[g(X)iz], e 2(Z) = E[h(Y) Iz], e(Z) = E[ag(X) + bh(y)iz]. 

For any Borel set M in the codomain of Z, we have 

E(IM(Z) [ag(X) + bh(Y)] ) = E[IM(Z)e(z)] by CEl). 

Also 

E(IM(Z)[ag(X) + bh(Y)]) aE[IM(Z)g(X)] + bE[IM(Z)h(Y)] 

aE[IM(Z)e 1 (Z)] + bE[IM(Z)e 2 (z)] 

E(IM(Z) [ae l (Z) + be2 (Z)] ) 

by E2) 

by CEl) 

by E2). 



By E6), we have e(Z) = ae l (Z) + beZ(Z) a. s. [] 

CE3) Positivitr; monotonici tr. 

g(X) ::: 0 a.s. implies E[IM(y)g(X)] > 0 by 

implies E [IM(Y)e (y)J > 0 by 

Suppose e(Y) < 0 for Ul E A. Then there is a Borel set Ma with 

A=y-I(Ma)' Thus, 1M (Y)e(Y) = IAe(Y) S. O. By E3), we have 
0 

E [IMa (Y)e (Y)] S. 0, with equality iff I Ae (Y) 0 a.s .. But this 

peA) = 0, which is equivalent to the condition e(Y) >0 a.s. 

M:lllotonicity follows from positivity and linearity. [J 

CE4) Monotone convergence. 

Consider the nondecreasing case X t X a.s. 
n 

Put e (Y) = E[X Iy] 
n n 
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E3) 

CEI) . 

requires 

and 

e(Y) = E[XiY]. Then by CE3), en(Y) S. en+l (Y) S. e(Y) a.s., all n::: 1. 

The almost-sure restriction means that we can neglect an event (set of Ul) 

of zero probability and have the indicated relationship for all other Ul. 

By ordinary rules of limits, for any Ul other than the exceptional set, we 

we have e*(Y) = lim e (Y) < e(Y), which means the inequalities hold a.s. 
n n -

For any Borel set M, IM(Y)Xn t IM(Y)X a. s., and IM(Y)en (Y) t IM(Y)e*(Y) a. s. 

so that by monotone convergence for expectation, 

E[IM(Y)en(Y)] = E[IM(Y)Xn] t E[IM(y)xJ = E[IM(Y)e(Y)] and 

E[IM(Y)en(Y)] t E[IM(Y)e*(Y)]. Hence, 

E[IM(Y)e*(Y)] = E[IM(Y)e(Y)J for all Borel sets M on the codomain of 

Y. This ensures e*(Y) = e(Y) a.s., by E6). [] 

CE5) Independence. a) (X,Y) is independent iff b) E[IN(X)ly] = 

E[IN(X)] a.s. for all Borel N iff c) E[g(X)iy] = E[g(X)J a.s. 

for all Borel functions g. 
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a) = c) (g(X), 1M(Y)} is independent; hence 

E[1M(Y)g(X)] = E[1M(Y)]E[g(X)] 

= E(E[g(X)]1M(Y)} 

E[1M(y)g(X)] = E[1M(Y)e(Y)] 

(E[g(X)] a constant) 

by ES) 

by E2) 

by CE1). 

Since the constant E[g(X)] is a Borel function of Y, we conclude by E6) 

that e(Y) = E[g(X)] a.s. 

c) = b), since b) is a special case of c) 

b) = a) For any Borel sets M, N on the codomains of X, Y, respectively, 

E[1M(X)1N(Y)] = E(1N(Y)E[1M(X)] } 

= E[1M(X)] Ef1N(Y)] 

which ensures independence 0 f (X, Y} by ES) . [] 

CE6) Extension of CE1) to general Borel functions. 

by hypo and CE1) 

by E2) 

First we suppose g ~ O. By positivity CE3), we have e(Y) > 0 a.s. 

1) By CE1), the proposition is true for h = 1M, 

2) By linearity CE2), the propositi.on i.s true for any simple function 
m 

h = L: t.1M 
i=l 1. i 

3) For h ~ 0, there is a sequence of simple functions hn t h. This 

implies hn(Y)g(X) t h(Y)g(X) and hn(Y)e(Y) t h(Y)e(Y) a.s. Hence, 

by monotone convergence E4), for expectations, 

E[h (Y)g(X)] t E[h(Y)g(X)] and E[h (Y)e(Y)] E[h(Y)e(Y)] . n n 

Since for each n, E[h (Y)g(X)] = E[h (Y)e(Y)], the limits must be n n 

the same. 

4) For general Borel h, we have h ,= h+ • h., where both h+ and h 

are nonnegative Borel functions. By linearity and 3), we have 

E[h(Y)g(X)] = E[h+(y)g(X)] . E[h JY)g(X)] 

= E[h+(Y)e(Y)] . E[hJY)e(Y)] = E[h(Y)e(Y)]. 
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5) For general Borel g, we have g = g+ - g_, where both g+ and g 

are nonnegative Borel functions. By linearity and 4), we have 

E[h(Y)g(X)] = E[h(Y)g+(X)] - E[h(Y)gJX)] 

= E[h(Y)e+(Y)] - E[h(Y)e_(Y)] = E[h(Y)e(Y)] , 

where e+(Y) = E[g+(X)!y], e_(Y) = E[g_(X)!Y], and 

e(Y) = e+(Y) - e_(Y) a.s., by CE2). [] 

CE7) If X = heY), then E[g(X)!Y] = g(X) a.s. 

g(X) = g[h(Y)] = h*(Y), with h* Borel. For any Borel set M, 

by CEI). 

But this ensures 

h*(Y) = e(Y) a.S. by E6). [] 

CR8) E[h(Y)g(X) iy] = h(Y)E[g(X)!Y] a.s. 

For any Borel set M, IM(Y)h(Y) is a Borel function of Y. Set 

e(Y) = E[g(X)!Y] and e*(Y) = E[h(Y)g(X)!Y). 

Now E(IM(Y)h(Y)g(X)] = E(IM(Y)h(Y)e(Y)] by CE6) 

and E(IM(Y)h(Y)g(X)] = E [IM(Y)e*(Y)] by CEl). 

lIenee, h(Y)e(Y) = e*(Y) by E6). [) 

CE9) If Y = heW), then E(E[g(X)ly) IW) = E(E[g(X)lw) IY) = E[g(X)!Y) a.s. 

Set e(Y) = E[g(X) Iy) = e[h(W)] = h*(W) and e*(W) = E[g(X) Iw). 

Then, E[E[g(X)IY) !W) = E[h*(W)lw) = h*(W) = e(Y) byeE7). 

For any Borel set M on the codomain of Y, let N = h-1(M). By Theorem 

AI-I, IM(Y) = IN(W). Repeated use of CEI) gives 

E[IM(Y)g(X») = E[IM(Y)e(Y») 

= E(IN(W)g(X») = E[IN(W)e*(w)] = E[IM(Y)e*(w») 

= E(IM(Y)E [e*(W) I Y] ). 

Hence e(Y) = E[e*(W)ly] a.s. by E6). [) 
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Proof of CElO) requires some results of measure theory beyond the 

scope of the present work. We establish the proposition first for the 

special case that X, Yare real-valued, with joint density function fXY; 

then we sketch the ideas of a general proof. 

CElO) E[g(X,Y)\Y = u] = E[g(X,u)ly = u] a.s. [Pyl. 

PROOF FOR SPECIAL CASE. X,Y have joint density fXY . 

Let fx\y be defined as in Sec C2. Put e(u,v) = E[g(X,v)ly = u] and 

e*(u) = E[g(X,y)ly = u]. Then E[IM(y)g(X,Y)] = E[IM(Y)e*(Y)] V Borel 

set M. This is equivalent to 

The left-hand integral may be written 

Thus, 

S IM(u)e(u,u)fy(u) du = S IM(u)e*(u)fy(u) du or, equivalently, 

E[IM(Y)e(Y,Y)] = E[IM(Y)e*(Y)] V Borel set M. 

We conclude e(Y,Y) = e*(Y) a.s. by E6). 

IDEA OF A GENERAL PROOF 

If the theorem can be established for g(t,u) = IQ(t,u), where Q is 

any Borel set on the codomain of (X, Y), then a "standard argument" 

such as used in the proof of CE6) extends the theorem to any Borel 

function g such that E[g(X,Y)] is finite. 

We first consider Borel sets of the form Q = M X N, where M, N are 

Borel sets in the codomains of X, Y, respectively. Then IQ(t,u) = 

IM(t)IN(u) . 

Let e(u,v) = E[g(X,v)\Y = u] = E[IM(X)IN(V)\Y = u] = IN(V)E[IM(X)IY = u] 

and e*(u) = E[g(X,Y)\Y = u] = E[IM(X)IN(Y)\Y = u]. 

Now e(Y,Y) = IN(Y)E[IM(X)ly] and e*(Y) = IN(Y)E[IM(X)\Y] a.s. by CE8). 

Hence, e(Y,Y) = e*(Y) a.s. or e(u,u) = e*(u) a.s. [py]. 
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n 
By linearity, the equality holds for any Borel set Q = ~ M. X N;, since 

n i=l 1 L 

in this case I = l.: I I . Hence, equality holds for the class ~O 
Q i=l Mi Ni 

consisting of all finite, disjoint unions of sets of the form M X N. A 

number of arguments may be used to show that equality holds for all Borel 

sets Q. We sketch one proof. It is known that the class aO is a field 

and that the minimal sigma field which contains it is the class a of 

Borel sets. Let a* be the class of sets for which equality holds. If 

(Qi: 1 ~ i) is a monotone class of sets in a*, the sequence (I : 1 ~ i) 
Qi 

is a monotone sequence of Borel functions. Use of monotone convergence 

E4) for expectations shows that equality holds for 1Q where Q is 

the limit of the sequence Qi' Thus, a'I< is a mono tone class. By a 

well known theorem, a* must include a. This means that equality holds 

for every Borel set Q. [J 

CEll) If {X,Y} is independent, E[g(X,Y) Iy '" ul '" E[g(X,u)] A.S. [p) 

By CES), independence of (X,Y) ensures e(u,v) = E[g(X,v)iy = ul 

E[g(X,v)] a.s. [pyl, so e'''(u) = e(u,u) = E[g(X,u)] a.S. [py)' [] 

CEl2) Triangle inequality. 

Since g(X)~jg(x)l, we have E [g (X) 1 y] ~ E [ 1 g (X)! I y] a.s. by CE3). 

Since -g (X) ~ I g (X) 1 , we have -E[g(X)ly] ~ E[lg(X)lly] a.s. by CE3), 

Hence, jE[g(x)iy]1 S:E[lg(x)lly] a.s. [] 

CEl3) Jensen's inequality. 

Convex function g satisfies g(t)~g(Y)+I,(y)(t-y), where 7c is 

a nondecreasing function. Set e(Y) = E[xiy]. Then 

CE2). 

g(X) ~ g[e(Y») +\fe(Y») [X - e(Y)]. If we take conditional expectation, 

E[g(X) Iy] ~ E(g[e(Y») + 7c [e(Y») [X - e(y)]ly) a.s. by CE3) 

= E(g[e(Y)] IY) + E(7c[e(y)]xly) - E(7c[e(Y)]e(Y)ly) by CE2) 

g[e(Y)] + 7c[eCY»)e(Y) - 7c[e(Y)]e(Y) by CE7), CE8) 

g(E[Xjy]) a.s. [] 
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8. Problems 

C-l Prove parts b) and c) of The~orem Cl-l. 

C-2 Suppose X, Y have joint density function fXY ' Use Theorem Cl-2 

and property Ela) for expectation to show that 

a) If P(Y E M) > 0, then 

E[g(x)ly E M] = IM[I g(t)fXy(t,u) dt] du / IM[I fXy(t,u) dt] duo 

b) If P(X E N) > 0, then 

E[g(x)lx EN] = IN g(t)fx(t) dt / IN fx(t) dt 

C-3 Show E[g(X)IA] = E[g(X)IAB]P(BIA) + E[g(X)IABC]P(BcIA). 

C-4 If X is discrete and Y is absolutely continuous, then the joint 

C-5 

distribution can be described by a hybrid mass-density function fXY ' 

such that P(X = t i , Y EM) = 1M fXy(ti,u) duo Develop an expression 

for e(u) = E[g(X)ly = u] in this case. 

Let (canonical form), X = 01 A + 21 A + 31 A_ and Y = IB + 3I B 
1 2 --:3 1 2 

with joint probability distribution such that P(~Bl) = 1/6, 

P(A2B2) = 1/2, and P(A3Bl ) = 1/3. Show that E[xly = 1] = E[xly = 3] 

= E[X] , but that (X,Y} is not independent. 

C-6 Show that for X real, the triangle inequality is a special case 

of Jensen's inequality. 

C-7 Suppose (X,Y} is independent, and each random variable is uniform 

on [-1, 1]. Let Z = g(X,Y) be given by 

Z f X for x2 + y2 < 1 

c for X2 + y2 > 1. 

Determine E[zlx2 + y2 ~ 1] and E[zlx2 + y2 > 1]. Use these results 

to determine E[Z]. 

C-8 X,y have joint density function for 1 < t < u < 2 - - -
(and zero elsewhere). Determine 

c) E[xlx:::. }(y + 0] . 



C-9 The pair (X,Y) is independent, with fX(t) = fy(t) = 1/2 for 

1 -t 
-1 ~ t ~ 0, = 2 e for 0 < t (and zero elsewhere). Determine 

a) E[X2 + y21x = d b) E[XyIX = d. 

C-10 Use the fact that g(X,Y) = g*(X,Y,Z), with g* Borel if gis, 

to establish the following extension of CE10). 

E[g(x,y)ly = u, Z = vl = E[g(X,u)ly = u, Z = vl a.s. [pYZl. 
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C-ll Use CE9a) and the result of problem C-10 to show that if FYIZ is 

a regular conditional distribution function, then 

E[g(x,y)lz = vl = S E[g(X,u)ly = u, Z = vl dFYlz(ulv) a.S. [pzl. 

C-12 Suppose X is a real random variable with E[x2l finite. Let 

e(Y) = E[xlyl and v(Y) = var[xlYl = E([X - e(Y)l2Iy}. Show that 

a) v(Y) = E[x21Yl _ E2[xlyl = E[x2 lyl _ e2(y) 

b) Var[e(y)l = E[e 2(Y)l - E2[xl = E(E 2(X - E[xlly}) 

c) Var[Xl = E[v(y)l + Var[e(y)l = E(Var[xjyl} + Var(E[Xlyl}. 

C-13 The following is a model for the demand of a random number of 

"customers", who buy independently but with the same individual 

demand probabilities. Suppose 

i) (lIk: 1 ~ k) is iid (independent, identically distributed), 

with E[~l finite (individual demands). 

ii) N is a nonnegative, integer-valued random variable with 

E[N2l finite (number of customers). 

iii) (N, lIk: 1 ~ k) is an independent class. 

D = {~ ~ 
k=l 

= y 
n 

If An = (00: N(w) = n}, 

for N = 0 
(composi te demand). 

for N = n > 0 

then D = L: I Y = L: I ( ) (N)Y . 
n=O An n n=O n n 

a) Show E[DIN = nl = nE[Xl and Var[DIN = nl = nVar[Xl 

Note. E[DIN = nl = E[I(n}(N)~/P(N = n), etc. 
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b) Show E[n] = E[N]E[X]. 

c) Use the result of problem C-12 to show 

d) Suppose N is Poisson (A) and X is uniform on [O,a]. 

Calculate E [n] and Var[n] . 

C-14 The characteristic function ~ for a real random variable X is 

~(u) = E[eiuX], defined for all real u (i is the complex imaginary 

unit, i 2 = -1). The generating function gN for a no~egative, 

integer-valued random variable N is N] k gN(s} = E[s = E s P(N = k), 
k=O 

defined at least for lsi < 1, although possibly for a much larger 

domain. It is readily shown that addition of a finite number of 

members of an independent class of random variables corresponds to 

multiplying their characteristic functions (or their generating 

functions, if they exist). Consider the composite random variable 

n in problem C-13. 

a) Show that wn(u) = gN[~(u)], where gN is the generating 

function for N and ~ is the common characteristic function 

for the ~. [Suggestion. Condition by N, then take expec

tation. E[eiUniN = n] = E[eiuYn] ]. 

b) Show that if the ~ are nonnegative, integer-valued with common 

generating function gx' then gn(s) = gN[gX(s)] . 

c) Suppose N is Poisson (A). Show that gN(s) = exp[A(s - 1)], 

so that (On(u) = exp(d~(u) - 1]). 
A A k 

[p (N = k) = e - kT ]. 
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C-15 The correlation ratio of X with respect to Y (see Renyi [1970J, 

p 275 ff) is K[XlyJ = a[e(Y)]/cr[x] (see Problem C-12). Show 

that the following properties hold: 

a) 0 S K[xly] < 1 

b) If (X,Y) is independent, then K[xly] = o. 

c) K[Xly] = 1 iff there is a Borel function g with X = g(Y). 

d) K2[xly] = sup p2[x, g(Y)], where g ranges over the set of Borel 
g 

functions such that E[g2(y)] is finite and p is the correlation 

coefficient for X and g(Y). 

e) K2[xly] = p2[x, g(Y)] iff there exist a, b (a F 0) such 

that g(Y) = ae(Y) + b a.s. 

Suggestion. For d), e), use CElb) and Schwarz' inequality. Work 

with standardized random variables obtained by subtracting the mean 

and dividing by the standard deviation. 

C-16 Suppose f and g are Borel functions such that E[f(X)] = E[g(Y)] = 0, 

Var[f(X)] = Var[g(Y)] 1, and E[f(X)g(Y)] = sup E[~(X)*(Y)] = A. 
co, 11' 

Show that 

a) E[f(X) Iy] = Ag (Y) a.s. and E[g(Y)lx] = H(X) a.s. 

b) E(E[f(X)ly] Ix} = r. 2f(X) a.s. and E (E [g (Y) I X] i Y) = A 2g (Y) a.s. 

c) E [f (X) I g (Y)] = Ag(Y) a.s. and E[g(y)lf(X)] = H(X) a.s. 

Suggestion. Use CElb) and Schwarz' inequali ty. 
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D. Conditional independence, given a random vector 

The concept of conditional independence of random vectors which we 

consider in the following sections has been utilized widely in advanced 

treatments of Markov processes. In such treatments, the concept is usually 

expressed in terms of conditional expectation, given a sigma field of events. 

Our immediate goal is to reformulate the essential features of such treat

ments in terms of the more readily accessible conditional expectation, given 

a random vector, developed in the preceding sections. We then illustrate 

the usefulness of the conditional independence concept by showing how it 

appears naturally in certain problems in decision theory. In Sec El and 

following, we apply the concept to Markov processes. 

1. The concept and some basic propositions 

Although historically there seems to be no connection, it may be instruc-

tive to consider how the concept of conditional independence, given a random 

vector, may be seen as an extension of the simpler concept of conditional 

independence, given an event. Suppose (A,B) is conditionally independent, 

given C, with A = X-I(M) and B = y-I(N). Then the product rule 

P(AB\C) P(A\C)P(B\C) may be expressed E[IM(X)IN(Y)/C) = E[IN(X)\C)E[IN(Y)\C) 

If this rule holds for all Borel sets M, N on the codomains of X, Y, 

respectively, we should be inclined to say (X,Y) is conditionally independent, 

given C. Suppose Z is a simple random variable, with C = (Z = zk)' 

Then, in these terms, we would say (X,Y) is conditionally independent, 

given Z = zk' If the product rule holds for all Borel sets M, N in 

the codomains of X, Y, respectively, and for all zk in the range of Z, 

we should then be inclined to say the pair (X,Y) is conditionally indepen

dent, given Z. With the aid of the result of example C3-a, we may give 

this set of conditions a simple formulation which points to a general 
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definition. We have 

E[IM(X)IN(Y)lz] = ~ E[IM(X)IN(Y)IZ = zk]IC 
k k 

with similar expressions for E[IM(X)\Z] and E[IN(Y)lz]. Using the facts 

for j ~ k and I~ = I c , we obtain 
k k 

We thus have 

i) E[IM(X)IN(Y)lz] = E[IM(X)lz]E[IN(Y)lz] iff 

ii) E[IM(X)IN(y)lz = zkl = E[IM(X)lz = ZklE[IN(y)lz = zkl for al1 k. 

We have seen above that the set of conditions ii) is a reasonable basis 

for the notion that (X,Y) is conditionally independent, given simple 

random vector Z. This development suggests the simpler equivalent expres-

sion i) may be the more useful way to characterize the condition. Further 

evidence is provided by the following set of equivalent conditions (see 

Sec DS for proofs). 

For any random vector Z, the following conditions are equivalent: 

CII) E[IM(X)IN(Y)!Z] = E[IM(X)!Z]E[IN(Y)!Z] a.s. V Borel sets M, N 

CI2) E[IM(X)\Z,y] = E[IM(X)lz] a.s. V Borel sets M 

CI3) E[IM(X)IQ(Z)!Z,y] = E[IM(X)IQ(z)lz] a.s. V Borel sets M, Q 

CI4) E[IM(X)IQ(Z) \y] = E(E[IM(X)IQ(z)lz] Iy} a.s. V Borel sets M, Q 

CIS) E[g(X)h(y)lz] = E[g(x)lz]E[h(y)lz] a.s. V Borel functions g, h 

CI6) E[g(X)IZ,Y] = E[g(X)lz] a.s. V Borel functions g 

CI7) E[g(X,Z)!Z,Y] = E[g(X,Z)\Z] a.s. V Borel functions g 

CIS) E[g(X,Z)!Y] = E(E[g(X,Z)!Z] !Y} a.S. V Borel functions g 



DI-3 

Several facts should be noted. For one thing, properties CIS) through 

CI8) are generalizations of CII) through CI4), respectively, in that the 

indicator functions are replaced by real-valued Borel functions, subject 

only to the restriction that the resultant random variables g(X), hey), 

and g(X,Y) should have finite expectations. It is desirable to have 

the properties CII) through CI4) included in the list of equivalences to 

show that it is sufficient to establish one of these simpler conditions 

in order to be able to assert the apparently more general counterparts 

CIS) through CI8), respectively. 

Expressions CI2) and CI6) show that if X is conditioned by Z, 

further conditioning by Y has no appreciable effect. We thus have an 

analogy to the idea that the event pair (A,B) is conditionally independent, 

given event C, if once A is conditioned by C, then further condition

ing by B has no effect on the likelihood of the occurrence of A. Express

ions CI3) and CI7) generalize this to say that if (X,Z) is conditioned 

by Z, further conditioning by Y has no appreciable effect. It is clear 

that the role of X and Y could be interchanged in these statements. 

Conditions CI4) and CIS) have no counterpart in the theory of conditional 

independence of events. They do, however, play an important role in the 

theory of the new concept; and they include as a special case the 

Chapman-Kolmogorov equation which plays a prominent role in the theory 

of Markov processes (cf Sec E4). 

These considerations indicate that we have identified a potentially 

useful concept which is properly named conditional independence. We can 

use any of the eight equivalent propositions as the basis for definition. 

As in the case of independence of events and of random variables, we use 

the product rule CIl). 
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DEFINITION. The pair of random vectors (X,Y} is conditionally 

independent, given Z, iff the product rule CII) holds. 

An arbitrary class of random vectors is conditionally independent, given 

Z, iff an analogous product rule holds for each finite subclass of two 

or more members of the class. 

If the pair (X,Y) is conditionally independent, given Z, we should 

expect that any Borel functions of these two variables should be conditionally 

independent. This is the case. 

CI9) If (X,Y) is conditionally independent, given Z, U = h(X), and 

v = key), with h, k Borel, then (U,V) is conditionally inde-

pendent, given Z. 

For convenience of reference, we list several additional properties of 

conditional independence utilized in various subsequent developments. 

ClIO) If the pair (X,Y) is conditionally independent, given Z, then 

a) E[g(X)h(y)l = E(E[g(X) I zl E[h(Y) I zl } = E[e l (z)e2(z)1, and 

b) E[g(X) lYE Nl P(Y E N) = E(E[IN(Y) I z]E[g(X) I zl } 

CIll) If (Y, (X,Z)) is independent, then (X,Y) is conditionally 

independent, given Z. 

Cll2) If (X,Y) is conditionally independent, given Z, then 

E[g(X,Y)\Y =: u, Z = vl = E[g(X,U)IZ =: vl a.s. [pYZl 

Proofs of these propositions are provided in Sec DS. 
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2. Some elements of Bayesian analysis 

Classical statistics postulates a population distribution to be deter-

mined by samplingJor some other appropriate form of experimentation. Typ-

ically, the distribution is supposed to belong to a specified class (e.g., 

normal, exponential, binomial, Poisson, etc.) which is characterized by 

certain parameters. A finite set of parameters can be viewed as a set of 

coordinates for a single vector-valued parameter. The value e of the 

parameter is assumed fixed, but is unknown. Hence, there is uncertainty 

abou t its value. 

An alternative formulation results from modeling the uncertainty in 

a probabilistic manner. The uncertain value of the parameter is viewed as 

the value.£!. ~ random vector; Le., e = H(w). The value H(w) of the 

parameter random vector H reflects the state of nature. ------- If X is a 

random variable representing the population, then the distribution for X 

is determined by the value 8 = H(w) of the parameter random vector. To 

carry out statistical analysis, we must characterize appropriately the 

joint distribution for the pair (X,H). This is usually done by assuming 

a conditional distribution for X, given H, represented by conditional 

distribution function FxlH (or an appropriate alternative); and by 

utilizing any information about the probable values of the parameter to 

determine a prior distribution for H, represented by a distribution 

function FH (or some appropriate alternative). 

A central notion of classical statistics is a random ~ of size n. 

Some sampling act, or survey, or experiment is done repeatedly, in 

such a way that the outcome of one sampling act does not affect operation-

ally the outcome of any other. This is modeled as a class (Xl 'X2 ' .•• , Xn) 

of independent random variables, each having the population distribution. 
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Each sampling act corresponds to the observation of one of the random 

variables in the sample. A random sample is a finite case of an arbitrary 

iid (independent, identically distributed) class (Xi: i EJ). 

Under the new point of view, the appropriate assumption seems to be 

that the class (Xi: i E J) is conditionally independent, given H, with 

all random variables Xi having the same conditional distribution, given 

H. Under a given state of nature, the result of taking an observation of 

Xi does not affect and is not affected by the results of observing any 

combination of the other random variables. We find it convenient to adopt 

the following terminology: 

DEFINITION. A class (Xi: i E J) is did, given H, iff the class is 

conditionally independent, and each random variable Xi has the same 

conditional distribution, given H. A random ~ (of size n), given H, 

is a finite class (Xi: 1 ~ i ~ n) which is ciid, given H. 

Let us see what this means for the conditional distribution functions. 

To simplify writing, put W = (XI 'X2' ... , Xn) 

Nt = (- 00, tl. Then 

and let 

P(XI < t l , X2 < t 2 , ••• , X < t IH = u) 
- - n - n 

E [I (Xl) It (X2) ••• I (X) I H = ul 
ti 2 tn n 

n 

where 

n E[I t (X.)IH = ul by conditional independence 
i=l i ~ 

n 

i~/xIH(ti lu). 

Thus, the conditional distribution function obeys the product rule. Partial 

differentiation by the t. 
~ 

shows that the conditional density, when it exists, 

also satisfies the product rule 
n 

fwIH(t l ,t 2, ••• ,tnlu) = i~ifXIH(tilu). 
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Bernoulli trials, given H. We illustrate these ideas by considering the 

important special case of Bernoulli trials. A sequence of "identical" trials 

is performed in an operationally independent manner. Let E. = event of a 
~ 

"success" on the ith trial in the sequence, and set Xi IE.' so that 
~ 

Xi has the property that it takes on the value 1 if E. occurs and 
~ 

takes on the value 0 if E. fails to occur (E: occurs). On a given 
~ ~ 

sequence of trials, the probability p of success on a trial does not 

vary with i. Now p is a parameter, representing a state of nature. We 

model it as the value of a parameter random variable H with the interval 

[0,11 as its range. For a given value of H, the results of the various 

trials are conditionally independent. Thus, we assume (Xi: I ~ i) is 

cUd, given H. Let be the indicator function for the set (0 ) 

and similarly for I(l}' We suppose 

P(EiIH = u) P(Xi IIH = u) E[I(I}(Xi)/H ul = u 0 < u < I 

p(E~IH = u) P(Xi OIH = u) E[I(O}(xi)IH ul = 1 - u. 

These assumptions ensure 

E[x.IH = ul = e(u) 
~ 

= u 

It is convenient in this case to say the sequence is Bernoulli, given 

H = u. To see how analysis of such sequences relates to analysis of ordinary 

Bernoulli sequences, suppose, for example, we observe the sequence 

Then 

u) = E[I(I}(XI )I{O}(X2)I{O)(x3)IH = ul 

= E[I(l)(xl)IH = ulE[I{o)(x2)IH = ulE[I{O)(X3)/H = ul 

= u(l - u)(l - u). 

The product after the second equality sign is a result of conditional inde-

pendence. The pattern here is obviously the same as in the analysis of 

ordinary Bernoulli trials, except that we write u for p. To obtain the 

conditional probability of any such sequence, given H = u, include a 
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factor u for each uncomplemented Ei and a factor 1 - u for each 

complemented Ei . 

The random variable Sn = Xl + X2 + ••. + Xn counts the number of 

"successes" in the first n trials of a sequence. In the ordinary case, 

Sn has the binomial distribution with parameters (p, n). As the discussion 

above indicates, if the sequence is Bernoulli, given H = u, we simply 

replace p by u in the analysis of the ordinary case to obtain 

I k n-k 
P(Sn k H = u) = C(n,k)u (1 - u) o<u<1. 

We still have the problem of determining the distribution of H (i.e., 

the prior distribution with which to begin analysis). Partly because of 

a well-known integral formula 

SOl r s r! s! 
u (1 - u) du = (r + s + I)! 1/ (r + s + l)C(r+s,r). 

A commonly employed class of distributions is the class of 

Beta distributions 

Real random variable H has the Beta distribution wi th parameters 

(a+l, b+l) (a, b nonnegative integers) iff it has the density function 

{
(a+b+l)! 

a! b! 

° 
0< t < 1 

otherwise. 

Note that if a = b = 0, the distribution is uniform on [0,1]. 

Straightforward calculations show that fH has a maximum at t 

a + 1 Var [H] 
(a + b + 2)2(a + b + 3) 

(a+l)(b+l) 
a + b + 2 

(a + l)(a + 2) 
(a + b + 2)(a + b + 3) 

E[Hkj = (a + l)(a + 2) ... (a + k) 
(a + b + 2)(a + b + 3) •.• (a + b + k + 1) 

a/ (a + b), an 

If prior knowledge indicates that the value of H lies in a certain part 

of the unit interval, with a degree of certainty reflected in the size of 
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the variance, the parameters a, b may be adjusted to reflect these condi-

tions. If there is no prior knowledge favoring any set of probable values, 

the complete ignorance may be expressed by taking the uniform case (a = b = 0) 

Examp Ie DZ-a 

A quantity of n items from one run of a production line is selected 

at random for testing. There is probability p that any device in the 

lot will meet specifications. The quantity p is constant over anyone run; 

its value depends on how well the manufacturing process, including selection 

or preparation of raw materials is controlled. We wish to estimate the 

parameter p from tests and prior knowledge. 

SOLUTION. 

We adopt the point of view that p is the value of a parameter random 

variable H. Past experience indicates a reasonable prior distribution 

is Beta, with parameters (3,Z) -- i.e., a = 2, b = 1. Thus 

Suppose Xl 

p(Ezi Xl 

t), 0 < t < 1 (maximum at t = 2/3). Then 

E[Xi ] = E(E[Xi!H]} = E[e(H») = E[H] = a +ab++1 2 

1. Then 

3/5 

1) = P(ElEZ)/P(EI ) = E[XlXZ]/E[Xl ] = E[e(H)e(H)]/E[Xl ] by CI9) 

= E[HZ]/E[H] (a + l)(a + Z) (a + b + Z) 
(a + b + Z) (a + b + 3) (a + 1) 

a + b + 3 
a + 2 

= 4/6 = 2/3. 

Suppose a prior distribution for H is assumed. A sequence of n 

trials is performed. It is desired to update the distribution for H on 

the basis of the results of this experiment. Suppose k successes occur 

(Le. , S 
n 

k); we want to determine the conditional distribution for 

H, given Sn = k. Now 
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FHls (ulk) = P(H ~ ulsn = k) = E[I N (H)I(k}(Sn)]/E[I(k)(Sn)] 
n u 

E(IN (H)E[I(k)(Sn)IH] )/E(E[I(k)(Sn)IH]) , where 
u 

Suppose H has the Beta distribution with parameters (a+l, b+l). Then 

A J~ ta+k(l _ t)b+n-k dt 
(a + b 1) ! 

FHls (u I k) = , where A = C(n,k) + 

A J~ ta+k(l b+n-k a! b! n - t) dt 

(a + k)! (n + b - k)! 
(n + a + b + 1)! O<u<l. 

Thus, the conditional distribution is Beta, with parameters (a + k + 1, 

b + n - k + 1). From the formula for expectation, we have 

a + k + 1 
a+b+n+Z' 

It should be noted that since the common factor C(n,k) in the numerator 

and denominator of the expression for F I cancel out, the distribution, 
H Sn 

given S 
n 

k, is the same as that given any specific sequence having 

k successes and n - k failures. [] 

The previous development illustrates how conditional independence in 

a random sample, rather than total independence, may be utilized to modify 

estimates of probabilities or other parameters which control population 

probabilities. But decisions are based both on estimates of probabilities 

and on costs or rewards associated with actions and outcomes. One is apt 

to proceed much more cautiously (i.e., to require higher probabilities for 

favorable outcomes) if costs of failure are high, or to be much more venture-

some if rewards for success are great. To provide an analytical basis for 

decision, one must include some measure or criterion of gain or loss, in 

order that a "best" course of action may be determined. To illustrate, 

we consider one of the most commonly used criteria: the ~-sguared-~ 

criterion. 
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Suppose (X,H) has joint distribution and it is desired to obtain a 

"best" estimate of the value of H from an experimentally determined 

value of X. That is, we wish to determine a function or decision rule d 

such that d[X(w)] is the best estimate of H(w). According to the mean

squared-error criterion, we seek a function d for which E([H - d(X)]2) 

is a minimum. The following argument shows that the best decision function 

d is given by 

d(u) = E[Hlx = u] e (u), v u in the range of X. 

We note that X may be vector valued, in which case u is a vector. 

Consider 

0< E[[H - d(X)]2) = E[[H - e(X) + e(X) - d(X)]2) 

E([H e(x)]2) + E([e(X) - d(X)]2) + 2E([H - e(X)][e(X)- d(X)]). 

Suppose we put heX) = e(X) - d(X). By CE6), E[Hh(X)] = E[e(X)h(X)], 

so that the last term above is zero. The first term is fixed. The 

second term is positive, unless d(X) = e(X) a.s., which is equivalent 

(by Theorem Al-2) to d(u) = e(u) a.s. [Px]. Hence, this choice of d 

minimizes the mean-squared error. 

The argument above solves the regression problem, in which it is 

desired to determine the random variable d(X) which is"nearest"to H 

in the mean-squared sense. The central role of conditional expectation is 

well known. In fact, some authors begin the study of conditional expecta

tion by designating the conditional expectation of X, given Y, as the 

random variable e(Y) for which the mean-squared error E[[X - e(y)]2) 

is a minimum. Starting from this point, it is possible to show that e(Y) 

has all the properties of the concept as we have introduced it. 

Example D2-b 

Returning to the situation presented in Example D2-a, we suppose n items 

are selected at random from the production lot and tested. Of these, k 
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meet specifications. What is the best estimate, in the mean-squared sense, 

of the probability that any item selected will meet specifications? 

SOLUTION AND DISCUSSION. 

By the development above, if the prior distribution for H is Beta 

(a+l, b+l), the best estimator for H, given Sn' is 
a + S + 1 a + 1 

E[Hls ] 
n as compared wi th E[H] 

n a+b+n + 2 a + b + 2 

The rule is: count the number of successes in the n units tested, add 

a + 1, and divide by a + b + n + 2. 

Suppose no prior information about fH is available; we should use a = b = O. 

Suppose, further, that in a test of 10 items, 8 meet specifications. Then 

I ] 8 + 1 
E[H SlO = 8 = 10 + 2 = 9/12 = 3/4 as compared with E[H] = 1/2. 

If the prior distribution were Beta with a = 2, b = 1, then 

I ] 8 + 3 
E[H SlO = 8 = 10 + 2 = 11/15 ~ 0.7333 as compared with E[H] = 3/5. 

The conditional distribution for H, given s = k n ' 

The conditional variance is 

Var[HI S = k] 
n (a + b + n + 2)2(a + b + n + 3) 

0, n = 10, k = 8, 

(a + k + l)(b + n - k + 1) 

For a = b 

is Beta (a+k+l,b+n-k+l). 

8] = (9 X 3)/(122 X 13) 3/208 R> 0.0144. 

For a = 2, b = 1, n = 10, k = 8, 

Var [Hls lO = 8] = (11 X 4)/(15 2 X 16) = 11/900 ~ 0.0122. 

The prior information, with its approximate location and indication of 

variance, gives rise to a somewhat smaller variance on the conditional 

distribution. [] 

For a more general discussion of the problem of Bayesian estimation, 

as this procedure is called, see Mood, Graybill, and Bees [1974], Chap VII, 

Sec 7. Although they do not employ the term conditional independence, 

they assume it by virtue of assuming the product rule for conditional 
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densities. They consider other measures of distance or "loss", and 

relate the results to the results of other estimation procedures commonly 

employed in modern statistics. 
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3. A one-stage Bayesian decision model 

The transition from inference (i.e., determining the most likely 

alternative) to decision (determining the course of action to be selected) 

leads to the notion of gain or loss. In order to move beyond a purely 

mathematical criterion such as mean-squared error, we introduce the 

notion of a loss function. The loss function is usually expressed in terms 

of some symbol of value, such as monetary units. But its specification 

may require quite subtle and subjective judgments of "utility" or worth. 

In order to be objective, the decision analyst must obtain from the decision 

maker enough information to determine a loss function whose value depends 

upon the course of action chosen and the resultant outcome of this action. 

To set up a model of a typical decision process, we suppose: 

i) There is a set of possible actions available to the decision maker. 

Action a is a member of the set A of possible actions. 

ii) There is a set of possible outcomes which may result from the 

action. Because there is uncertainty about which consequence will 

materialize, we represent the outcome as the value of an outcome random 

variable (o~ random vector): y = Y(w). 

iii) The distribution of the outcome random variable Y is determined 

by a state of~. This is often expressed as a parameter 

(possibly vector-valued). Since there is uncertainty about the state 

of nature, the parameter itself is modeled as the value of a 

parameter random variable: u = H(w). 

iv) It may be possible to experiment in order to obtain some information 

about the state of nature. The result of the experiment is the 

value of a test random variable: x = X(w). Both Y and X are 

jointly distributed with the parameter random variable H. 
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v) A loss function L is determined. L(a,y) is the loss when action 

a is taken and outcome y is experienced (a gain is a negative 

loss). The usual objective is to minimize the expected loss. 

vi) If experimentation is utilized, a decision rule (or strategy) is 

determined, to indicate the action to be taken for each possible 

observed value of the test random variable. In practice, the 

value of the decision rule may be determined for only the specific 

experimental result observed. 

We consider two cases. 

a) Without experimentation. 

Assume (Y,H) have joint distribution. Let t(a,u) = E[L(a,y)IH = u]. 

This is sometimes known as the risk function. The objective is to 

select action a to minimize R(a) = E[L(a,Y)] = E(E[L(a,y)IH)) 

= E[t(a,H)]. In some problems, Y = H, so that t(a,u) = L(a,u). In 

the case of no experimentation, no conditional independence assumptions 

are needed. 

Example D3-a 

A merchant plans to stock an item. The demand over a six-week period 

is assumed to be a random quantity having the Poisson distribution, with 

parameter A. The parameter value is not known, but on the basis of past 

experience the merchant assumes A to be the value of a random variable 

H with possible values (15, 20, 25) taken on with probabilities 

(1/4, 1/2, 1/4), respectively. The merchandise may be ordered in lots of 

10. The merchant contemplates ordering either 10, 20, or 30 units. He 

can buy at a cost of c = $7 per unit; he can sell at a price u = $10 

per unit. At the end of six weeks, he can return the unsold items for a 
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net recovery of r = $3 per unit, so that he loses c - r = $4 per 

unsold unit. He considers that he has lost (u - c)/2 = $1.50 per 

missed sale. From a Bayesian point of view, how many units should he order? 

SOLUTION 

The set of possible actions is A = (10, 20, 30). Let Y be the random 

variable whose value is the demand in the six-week period (the outcome 

random variable). The conditional distribution of Y, given H = A, is 

assumed to be Poisson (A). The loss function L is given by 

{ 
- (u -c)y + (c - r)(a - y) 

u - c 

= 4a - 7y for y ~ a 
L(a,y) 

- (u - c)a + ---2--- (y - a) -4.5a + 1.5y for y > a. 

If we set B = (Y ~ a), we may then write 

L(a,Y) = I B(4a - 7Y) + (1 - I B)(1.5Y - 4.5a) 1.5Y - 4.5a - 8.5IB(Y - a). 

Now t(a,A) = E[L(a,y)IH = Al 

= 1.5E[yIH = AJ - 4.Sa + 8.5aP(Y ~ alH = A) - 8.5E[IBYIH = AJ. 

We may express 

a A k -A a-I A k -A I 
E k kLT e = A E k-' e = AP(Y ~ a-I H = A). 

k=O' k=O . 

Hence 

t(a,A) = A[1.5 - 8.5P(Y ~ a-llH = A)J - a[4.5 - 8.5P(Y ~ alH = A)J. 

Using a table of cumulative or summed Poisson distribution for appropriate 

values of A, we may establish the following table of values for t(a,A). 

a = 10 20 30 

A = 15 - 21. 3 - 23.2 + 15.0 

20 - 14.9 - 44.9 - 19.7 t(a,A) 
25 - 7.4 - 49.5 - 51.3 

Now R(a) = E[L(a,y)J = E[t(a,H)J has values: 

1 R(10) = 4 [ -21.3 - 14.9 X 2 - 7.4J = - 14.6; R(20) 

R(30) = - 18.9. 

- 40.6; and 

The optimum action, corresponding to the minimum expected loss, is a = 20. 
[] 
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b) With experimentation 

Assume (X,Y,H) has a joint distribution. A decision is made on the 

basis of the experimental data (i.e., on the basis of the observed value 

of X). The problem is to determine the optimum decision function d* which 

designates the optimum action d*(x) when the test random variable X has 

value x. Thus, d* is the decision function which minimizes the Bayesian 

risk B(d) = E[L(d(X),y)l. 

The problem may be formulated in a useful way as follows. By CElb), 

B(d) = E(E[L(d(X),y)IXl). If we set R(a,x) = E[L(a,y)IX = xl, then by CElD), 

R(d(x),x) = E[L(d(x),y)iX = xl = E[L(d(X),y)iX = xl. Thus, R(d(X),X) = 

E[L(d(X),y)lxl, so that B(d) = E[R(d(X),X)]. For each x in the range of 

X, let d*(x) be the action for which R(d*(x),x) is a minimum. Then 

B(d*) = E[R(d*(X),X)] ~ E[R(d(X),X)l = B(d), for all possible decision 

func tions d. 

In the usual situation, the result of experimentation does not affect 

operationally the outcome following the action. The experimental evidence 

may be in the form of previously available data. The result of a given 

action is not influenced by whether or not the decision maker obtains the 

experimental data. What does affect the outcome following an action is 

the value of the"state of nature" parameter. Thus, it is appropriate to 

assume the pair (X,Y) is conditionally independent, given H. We utilize 

thi s as fo llows . 

1) If X is discrete, we may use CIlDb) to assert 

R(a,x) E[L(a,y)IX = xl = E(E[I(X)(X) IH)E[L(a,Y) IHl )/E(E[I(x)(X) IHl), 

where E[I(x)(X)iH = ul = P(X = xlH = u) = PXIH(x1u) and 

E[L(a, Y) IHJ = t(a,H). 

Hence, 

R(a,x) = f t(a,u) PXIH(x1u) dFH(u) /P(X = x). 
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2) If X is absolutely continuous, 

R(a,x) E[L(a,y)IX xl = E(E[L(a,y)IHl Ix = x} 

E[t(a,H)IX xl = f t(a,u) dFHlx(u1x). 

by CI8) 

We may use Bayes' theorem for the conditional distribution (see Sec. C6) 

to determine 

Example D3-b 

Suppose in Example D3-a the merchant recalls that he made a similar 

order for a corresponding period the previous year. If X is the random 

variable whose value represents the demand for that period, an observation 

of the value for that period should provide some indication of the state 

of the market for the period. If there is reason to believe that the state 

of the market has not changed appreciably, this information should be use-

ful for the present decision. Enough time has elapsed that sales in the 

previous period should not influence directly sales in the current period. 

Therefore, it seems reasonable to assume that (X,Y) is conditionally 

independent, given H (the value of which indicates the general state of 

the market). A check of the previous sales records shows that demand was 

for 24 units. Under these assumptions and with these data, the task is 

to select a = d*(24) to minimize R(a,24) = f t(a,A)pxIH(24IA)PH(A)/P(X 24). 

Values of t(a,A) are tabulated in the solution of Example D3-a. Under 

the assumed conditions, we may reasonably suppose PXIH = PyIH. From 

tables of the Poisson distribution, we obtain values of pxIH(241A), from 

which we determine 

and 

R(10,24) 

PXIH( 24 115 )PH(15) + PX\H( 24 120 )PH(20) + PxIH( 24 125)PH(25) 

t [0.0083 + 0.0557 X 2 + 0.0795l = 0.050 

- 21.3 X 0.0083 - 14.9 X 2 X 0.0557 - 7.4 X 0.0795 
4 X 0.050 -12.13 • 
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'ilie values R(20, 24) = - 45.8 and R(30,24) = - 30.9 may be calculated 

in similar fashion. Once more, the indicated optimum action is to order 

20 units. In spite of the fact that the previous demand went beyond 20 

units, the best bet is to order 20 units and risk the loss of some sales. [] 
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4. A dynamic programming example 

The following example of a multistage decision process is presented in 

Gaver and Thompson [1973), p. 392 ff. Our discussion displays the role of a 

conditional independence assumption, ,/hich seems to be both appropriate and 

necessary. 

Example D4-a 

A company is offered two investment opportunities, which we designate 

"risk" and "safe". 

1) Risk. Either make gain g in a given period or earn nothing. 

Probability of success is unknown, but constant, over the total 

time considered. 

2) Safe. Certain to make gain s in the given period. 

Gains in successive periods are independent, given a fixed probability of 

success. A choice is made at the begi.nning of each time period, with neg-

ligible cost for switching from one investment to the other. The objective 

is to maximize expected gain over N time periods. 

SOLUTION. 

The probability of success is unknown; we suppose that it is the value of a 

state-of-nature random variable H. A prior density fH (or distribution 

function FH) is assumed. To obtain further information, the company must 

experiment by making the risky investment. Suppose Ik is the indicator 

function for success in the kth risk period (i.e., Ik(w) = 1 iff the risk 

pays off on the kth trial). The gain during that period is gIk . We assume 

the class [Ik: 1::; k ::; N} is identically distributed, conditionally inde

pendent, given H, with E[IkIH = t) ,= P[Ik = llH = t) = t. Suppose n 

risks have been taken; let S be the random variable which counts the 
n 



D4-2 

number of successes-- i.e., Sn = II + I2 + ••. + In' The succession 

of choices to take the risky alternative constitutes a Bernoulli sequence, 

with conditional independence, given the parameter random variable H. 

In Sec D-2, we establish an expression for 

p(n,k) = ErI +lls = kJ = ErHls = kJ, when H has the Beta distribution n n n 

If there is no basis for assigning a given prior distribution for H, 

we assign the uniform distribution. According to the results in Example 

D2-b, we have 

p(n,k) 
k + 1 
n + 2 • 

To develop a strategy based on optimum expected gain, we utilize the 

backward induction procedure of dynamic programming. Consider the beginning 

of the jth period. If n risks have been taken before stage j, then 

there is an "optimum-path" gain random variable G 0 = f 0 (S , I n+l , 0", 
n,] n,] n 

IN)' At most N risks will be taken, but not necessarily this many. It 

is convenient to use a decision tree to keep account of the alternatives 

(see Fig. D4-1). 

Suppose S 
n 

k. The decision rule is risk iff 

We wish to obtain an expression for G o' n,] Consider the set 
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s + Gn,j+l 

Figure D4-l, Alternatives at decision nodes, 
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Then 

and P(In+l = 1lSn = k) = p(n,k), we obtain 

(g + E[Gn+l,j+l!Sn+l = k+l]}p(n,k) + E[Gn+l,j+lISn = k][l - p(n,k)] 

= [g + ~j+l(n+l,k+l)]p(n,k) + ~j+l(n+l,k)[l - p(n,k»), 

where ~.(n,k) = E[G . IS = k). We may formulate the decision rule as fo1-
J n,J n 

lows: 

~j(n,k) = max ([g + ~j+l(n+l,k+1)]p(n,k) + ~j+l(n+l,k)[l - p(n,k»), s + ~j+l(n,k) 

with ~+l(n,k) = O. 

To see how the procedure goes, let g = 5/2, s = 1, N = 2, fR(t) = 1 on 

k+l [0, 1), so that p(n,k) = n+2. Refer to Figure 04-2 for situations at de-

cision nodes. 

At the final decision node, j = N = 2, and (n,k) = (0,0), (1,0), or (1,1) 

Determine ~2(0,0), ~2(1,0), ~2(1,1) and the optimum action in each case. 

p(O,O) = 1/2, p(l,O) = 1/3, p(l,l) = 2/3 

1 5 = 5/4 ~2 (0,0) = max {zg + 0, s} = max {lj> I} (risk) 

1 5 
~2 (1,0) = max {~ + D,s} = max (6' I) = 1 (safe) 
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1 
gp(n,k) 

a) At the final decision node 

Safe 

b) At the initial decision node 

Figure D4~2. Decision nodes for Example D4-a. 
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~2(1,1) = max (~ + 0, s} = max ft, I} = 5/3 (risk) . 

At the initial decision node, j = 1 and (n,k) = (0,0) 
1 1 

~1(0,0) = max f[g + ~2(1,1»)2 + ~2(1,0)2' s + ~2(0,0)} 

= max ([5/2 + 5/31t+ 1/2, 1 + 5/4} 

= max (31/12, 27/12} = 31/12 (risk). 

The indicated strategy is: 

First decision: Risk~ ~1(0,0) = 31/12 

Second decision: If first risk is successful ~ ~2(1.1) ~ Risk. 

If first risk unsuccessful ~ ~2(1,0) ~ Safe. 

The expected gain from this strategy is ~1(0.0) = 31/12 ~ 2.58. [] 
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5. Proofs of the basic properties 

To establish the equivalence of Properties Cll) through CI4), we 

show Cll) ~ C12) ~ C13) ~ C14) ~ CI2). To simplify writing, we drop 

the "a.s." in the step-by-step arguments. 

Cll) ~ C12) 

E(IN(Y)E[IM(X)lzllz} = E[IM(X)lz]E[IN(Y)lzl 

= E[IM(X)IN(y)lzl 

Now 

= E{E[IM(X)IN(Y) IZ,ylIZ} 

= E{IN(Y)E[IM(X)lz,Yllz} 

E (1Q (Z)E (1N(Y)E [1M(X) I zll Z}) 

by CE8) 

by Cll) 

by CE9) 

by CE8). 

= E(1Q(Z)IN(Y)E[IM(X)1 Zl) V Borel Q by CEI). 

A similar expression ho Ids for all Borel Q with E [1 M (X) I zl replaced 

by E[1M(X)!Z,Y]. We thus have 

E(IQ (Z)1N(Y)E [IM(X)! zl } = E{IQ (Z)IN(Y)E [IM(X) I z, yl} for all Borel sets 

N, Q on the codomains of Y, Z, respectively. By E6b), we may assert 

E[IM(X)lz] = e1(z,Y) = eZ(Z,Y) = E[IM(X)lz,Y] a.s. 

ClZ) ~ Cll) 

E[IM(X)1N(Y)lzl = E(E[1M(X)1N(Y)lz,Y] IZ} 

= E(IN(Y)E[1M(X)lz,Yllz} 

= E(IN(Y)E[IM(X)lzllz} 

= E[IM(X)lzlE[1N(Y)lzl 

by CE9) 

by CE8) 

by CI2) 

by CE8). 



CI2) => CI3) 

E[IMeX)IQez)lz,y] ~ IQeZ)E[IMeX)lz,y] 

~ IQeZ)E[IMeX)lz] 

~ E[IMeX)IQ(z)lz] 

CI3) => CI4) 

E[IM(X)IQ(Z) [y] ~ E(E[IM(X)IQ(Z) IZ,Y] Iy} 

~ E(E[IM(X)IQ(Z)lz] Iy} 

CI4) => CI2) 

E(E[IM(X)IQ(z)lz] Iy} = E[IMeX)IQ(z)IY] 

= E(E[IM(X)IQ(Z)IZ,y] Iy} 

This ensures that for all Borel N on the codomain of Y 

But this, in turn, ensures that 

E(IN(Y)IQ(Z)E[IM(X)lz]} ~ E(IN(Y)IQ(Z)E[IM(X)lz,y]} 

By E6b), we must have 

E[IM(X) I Z] = E[IM(X) IZ,Y] a.s., which is CIl). 
[] 
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by CE8) 

by CI2) 

by CE8). 

by CE9) 

by CI3). 

by CI4) 

by CE9). 

by CEl). 

by CE8). 

We wish to establish next the equivalence of CIS) through CI7) to 

the propositions above. It is apparent by the special-case relationship 

that CIS) => CII), CI7) => CI6) => CI2), and CI8) => CI4). Extension of 

CII) to CIS) may be done by a "standard argument" based on linearity, 

monotonicity, monotone convergence, and approximation by step functions. 

Extension of CI3) to CI7) may be achieved by an argument similar to 

that sketched in the discussion of the proof of CEIO), plus a "standard 

argument." A simi lar approach serves to extend C14) to CI8). 
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Before proving CI9), we obtain a lerrana useful here and elsewhere. 

Lerrana DS-l 

If E[g(W)iV,u] = E[g(W)iv] a.s. and Z = h(U), with h Borel, 

then E[g(W) iv,z] = E[g(W)iv] a.s. 

PROOF 

The random vector (V,Z) = (V,h(U» is a Borel function of (V,U). Hence, 

E[g(W) iv,z] = E(E[g(W)iV,u] iV,Z} a.s. by CE9) 

= E(E[g(w)iv] \V,Z} a.s. by hypothesis 

= E[g(W)\V] a.s. 

PROOF OF CI9) 

For any Borel function g, 

E[g(x)iz] = E[g(X)iZ,Y] a.s. 

= E[g(X) Iz,v] a.s. 

Hence, (X,V) is conditionally independent, given Z 

For any Borel function r, 

E[r(v)iz] = E[r(V)iZ,x] a.s. 

= E[r(V)iZ,u] a.s. 

Hence, (U,V} is conditionally independent, given Z 

by CE9a). [] 

by CI6) 

by Lerrana D5-1. 

by CI6). 

by CI6) 

by Lerrana DS-l. 

by CI6). [] 
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PROOF OF CIlO) 

a) E[g(X)h(y)l = E(E[g(X)h(y)lzl) by CElb) 

by CIS) = E(E[g(X) iz]E[h(y)lzl) 

= E[e l (z)e2(z)l (notational change). 

b) E[g(X)ly E NJp(y E N) = E[IN(Y)g(x)l 

= E (E [IN(Y) I z]E [g (X) I zl ) 

PROOF OF Clll) 

Gi'len that (Y, (X,Z») is independent. 

P(X E M, YEN, Z E Q) = E[IM(X)IN(Y)IQ(z)l 

Also, 

= E(E[IM(X)IN(Y)IQ(Z) Izl ) 

= E (IQ (Z)E [IM(X)IN(Y) I zl ) 

P(X E M, YEN, Z E Q) = P(Y E N)P(X E M, z E Q) 

= E[IN(Y)lE[IM(X)IQ(z)l 

= E[IN(Y)]E(IQ(Z)E[IM(X) !zl) 

= E(IQ(Z)E[INm]E[IM(X) Izl } 

= E(IQ(Z)E[IN(Y)lzlE[IM(X)lzl} 

by CEla) 

by part a). 

by Ela) 

by CElb) 

by CE8) . 

by independence 

by Ela) 

by CEl) 

by E2) 

by CES) . 

Equating the last expressions in each series of inequalities, by E6) 

PROOF OF CIl2) 

As in the proof of GElD), it is sufficient to show the proposition holds 

for g = IMXN = IMI N· 

E[IM(X)IN(Y)IY = u, Z = vl = IN(U)E[IM(X)ly = u, z = vl by GE8) 

= IN(u)E [1M (X) I z = vl by GI6 ) 

= E[IM(X)IN(u)lz = vl a.s. [pYZl by GE2). [] 

[J 



06-1 

6. Problems 

0-1 Show that if (X,(Y,Z)} is independent, then 

E[g(X)h(y)lz] = E[g(X)]E[h(y)lz] a.S. 

D-2 Let (Xi: 1 :5. i :5. n) be a random sample, given H. 

best mean-square estimate for H, given W = (Xl ,X2' 

each of the following cases: 

i) X is delayed exponential: I -(t-u) 
f'XIH(t u) = e 

H is exponential (1) : fH(u) 
-u for u > 0 e 

k 

Determine the 

.•• , Xn) for 

for t ~ u, and 

ii) X is Poisson (u) : PXIH(k1u) 
-u u 

k = 0 1, 2, and e k! ... , 

H is gamma (m,A) : 
m m-l -AU 

~ 0, m> 0, A fH(u) = A u e f(m-l)! u 

iii) (u) : PXIH(klu) 
k k = 0, 1, X is geometric = u(l-u) 2, ... , and 

H is uniform [0,1]. 

D-3 In Example D2-b, suppose a = 7, b = 3. Compare the prior density 

for H and the quantities E[Hls lO = 8] and var[Hls lo 8J with 

those for the case a = 2, b = 1, as in the example. 

D-4 Consider the demand random variable of problem C-13: 
N 

>0 

D = Z X. = Z I( }(N)Y, where YO = 0, Yn = Xl + X2 + ... + Xn ' n> 1 
i=l ~ n=O n n 

Suppose (N,(H,Xl ,X2, ... , Xn)} is independent for each n ~ 1, and 

E[X. IH = u] = e(u), invariant with i. Show that E[DIH] E[N]e(H). 
~ 

0-5 It is desired to study the waiting time for the arrival of an ambu-

lance after reporting an accident (see Scott, et aI, [1978]). Direct 

statistical data are difficult to obtain. Suppose we consider the 

random variables 

N = number of ambulances in service (integer-valued) 

D distance traveled by dispatched ambulance 

V average velocity of the ambulance for the trip. 

By considering the geometry of the deployment scheme, it is possible 

to make reasonable assumptions about P(D:5. tiN = n). Also, it is 
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possible to make reasonable assumptions, on the basis 0 f statistical 

data, for the distribution of V and the distribution of N. We 

have W D/V, where W is the random variable whose value is the 

waiting time. Then P(W:: t) = E[IQ(D,V)J, where Q = (u,v): u:: vt). 

a) Show that if (V, (D, N) ) is independent, then 

P (W :: tiN n) = S P(D:: vt\N = nl dFV(v) 

Suggestion. Use CElb), CII1), CI12). 

b) Under the conditions for part a) and the assumptions 

i) P(D:: siN = nl = as, ° < s'S.l/a, where a 2 = nrr/A 

ii) V is uniform [15, 25J 

where A is the area served, in square miles, D is distance in 

miles, and V is velocity, in miles per hour. 

c) Repeat part b) with i) replaced by 

i'l 
, -as 

P(D:: siN = 0) = 1 - e s :::: 0, 
2 

a orr/ A. 

D-6 In Example D3-b, suppose the previous demand was 26 units. What is 

the optimum action? 

D-7 An electronic game is played as follows. A probability of success in 

a sequence of Bernoulli trials is selected at random. A player is 

allowed to observe the result of m trials. He is then to guess the 

the number of successes in the next n trials. If he guesses within 

one of the actual number of successes, he gains one dollar (loses -1); 

if his guess misses by t,vo or more, he loses one dollar. Suppose 

m = 3, n = 10; on the trial run there are two out of three successes. 

What number should he then guess to minimize his expected loss? Let 

X number of successes in m on the trial run 

Y number of successes in n on the pay run 

H parameter random variab Ie. 
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Then X is binomial (m,u), given H = u 

y is binomial (n,u) , given H=u 

H is uniform on [0,1] 

{ -: for la - yl < 1 
and L(a,y) 

for la - YI > 1 

D-8 In Example O4-a, determine the optimum strategy for g = 5/2, s = I, 

N = 3, H uniform on [0,1]. 
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E. Markov processes and conditional independence 

1. Discrete-parameter Markov processes 

The notion of conditional independence has been utilized extensively 

in advanced treatments of Markov processes. Such processes appear as 

m:Jdels of processes without "mem:Jry." The "future" is conditioned only 

by the "present" and not by the manner in which the present state is reached. 

The past thus affects the future only as it influences the present. We 

wish to make the connection between the usual introductory treatment and 

the m:Jre advanced point of view, which is not only mathematically powerful 

but intuitively helpful in displaying the essential character of Markov 

processes. For a recent introductory treatment utilizing conditional 

independence, see 9inlar [1975]. 

Many elementary textbooks include a treatment of Markov processes with 

discrete parameter and finite, or at m:Jst countably infinite, state space. 

Suppose we have a sequence (Xn : 0 S n) of random variables, each with 

range (0, 1, 2, ... , N}. Thus, the parameter set is T = (0, 1, 2, .•. } 

and the state space is S = (0, 1, 2, .•. , N}. The Markov property is 

expressed by the condition 

M) P(Xt+l jlXt = i, Xt _1 it_I' ... , Xo iO) 

P (Xt+l = j I Xt i) = Pij (t) 

for all t ::: 1, all (i, j ) E S2, all (iO' iI' 0- ., it_I) E st. 

The quantities Pij(t) are called the transition probabilities. In the 

important case of stationary (or hOm:Jgeneous) transition probabilities, 

invariant with t. In this case, analysis is 

largely algebraic, with the transition ~ P = [Pij] playing a 

central role. 

The fundamental notion of the Markov property M) is that the past 

does not condition the future, except as it influences the present. We can 
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give the Markov property M) an alternative formulation which emphasizes 

the conditional independence of past and future, given the present, without 

restriction to discrete state space or to stationary transition probabilities. 

To aid in formulating this condition, we introduce the following notation. 

If S is the state space, then 

Sk set of all k-tuples of elements of state space S 

u (XO' Xl' ... , X ) U : o .... Ss+1 
s s s 

V s,t (Xs ' Xs+l ' ... , Xt ) V s,t' 0 .... st-s+1 s < t 

W (Xt , Xt +1' ... , X ) W : 0 .... su-t+1 t < u. t,u u t,u 

We indicate by u~ a random vector whose coordinates consist of a subset 

(in natural order) 0 f the coordinates 0 f Us' and similarly for V* s,t 
and 

W*. t,u Then U~, V* s,t' 
and W* t,u 

are continuous, hence Borel, functions 

of U , V ,and Wt ' respectively. When we write a function g(Us )' 
s s,t ,u 

heV t)' etc., we suppose g, h, etc. are real-valued Borel functions s, 

such that E[g(U)], E[h(V t)]' etc. are all finite. s s, 

If t represents the "present", then Ut _l represents the"past 

behavior" of the process and Wt+l,u represents the behavior of the 

process for a "finite future." We sometimes consider an "extended present", 

represented by Vs,t' s < t. 

In this notation, the Markov property M) is equivalent to 

P(Xt +l E M\Xt = u, Ut _l = v) = P(Xt +l E Mlxt = u) 

V t :::: 1, VBorel sets M C S, VuE S, V v Est 

which is equivalent to 

Reference to GI2) shows property M) is equivalent to 

M') (Xt +l ' Ut_l) is conditionally independent, given Xt ' V t > 1. 



El-3 

DEFINITION. The process (Xt : t E T) is Markov iff M') holds. 

Use of CIl) through CI8) provides a number of alternative formulations 

of the basic condition M). It is sometimes desirable to remove the 

restriction to the immediate future. This can be done (and more),as the 

following theorem shows. 

Theorem El-l 

A process (Xt : t E T), T = {O, 1, 2, .,. } is Markov iff 

M") (wt+l, t+n ,U: -I) is conditionally independent, given any finite 

extended present v ,1 < s < t, s,t - - any n ~ 1, any wt+l,t+n' U:_l • 

A proof is given in Sec ES. [] 

To see how the idea of conditional independence is an aid to modeling, 

we consider several examples. 

Example El-a One-dimensional random walk 

A number of physical and behavioral situations can be represented schemati-

cally as "random walks." A particle is positioned on a line. At discrete 

instants of time t l , t 2, ..• , the particle moves an amount represented 

by the values of the random variables Y1, Y2, ..• , respectively. 

Positive values indicate movements in one direction and negative values 

indicate movements in the opposite direction. The pOSition after the nth 

move is Xn = Y1 + Y2 + .•• + Yn (we take Xo = 0). If we can assume 

the class (Yi : 1 ~ i) is independent, then Xn+1 = Xn + Yn+l , with 

(Yn+l , (Un_l,Xn)) independent for all n > O. Since the position at time 

t n+l is affected by the past behavior only as that behavior affects the 

present position Xn (at time t n), it seems reasonable to suppose that 

the Markov condition holds. [] 
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Example El-b A class of branching processes 

Consider a population consisting of "individuals" able to produce new 

individuals of the same kind. We suppose the production of new individ-

uals occurs at specific instants for a whole "generation." To avoid 

the complication of a possibly infinite population in some generation, 

we suppose a mechanism operates to limit the total population to M 

individuals at any time. Let Xo be the original population and suppose 

the number of individuals produced by each individual in a given generation 

is a random variable. Let Zin be the random variable whose value is 

the number of individuals produced by the ith member of the nth genera-

tion. If Z = 0 in ' that individual does not survive; if Zin = 1, either 

that individual survives and produces no offspring or does not survive and 

producesone offspring. 

generation, then X 
n 

If X is the number of individuals in the nth 
n 

Xn+l = min (M, L Z. ) = g(Xn , Yn+l ), where Yn+l = (Zln' Z2n' ... , ZMn)' 
i=l l.n 

If (Zin: 1 ~ i ~ M, 0 ~ n < =) is an independent class, then 

(Yn+l,(Un_l,Xn)} is an independent pair for any n > O. Again we have a 

situation in which past behavior affects the future only as it affects the 

present. It seems reasonable to suppose the process (Xn : 0 ~ n) is 

Markov. [] 

Example El-c An inventory problem 

A store uses an (m,M) inventory policy for a certain item. This means: 

If the stock at the end of a period is less than m, "order up" to M 

If the stock at the end of the period is as much as m, do not order. 

Suppose the merchant begins the first period with a stock of M units. 

Let Xn be the stock at the end of the nth period (XO = M). If the 

demand during the nth period is Dn' then 



{
max (M - Dn+l ), O} if ° ~ Xn < m 

max (X - D +1)'0} if m < X < M n n - n-

EI-5 

If we suppose (Dn: I ~ n} is an independent class, then we have 

(Dn+I,(Un _l , Xn)} is an independent pair for each n > 0. Once more 

it seems the past and future should be conditionally independent, given 

the present. [] 

Each of these examples provides a special case of the following 

Theorem EI-2 

Suppose (Yn : I ~ n} is an independent class of random vectors. Set 

Xo = c (a constant) and for n > ° let Xn+l = gn+l (Xn,Yn+I ). Then 

the process (Xn : ° ~ n} is Markov and 

P(Xn+1 E Qlxn = u) = P[gn+l(u,Yn+l ) E Q] V n ~ 0, VuE s, V Borel set Q 

PROOF 

(Yn+I,(Un_I,Xn») is independent. By property CII!) 

conditionally independent, given x . 
n 

Hence, we have for any 

set Q, 

E[IQ(Xn+I)lxn , Un_I] = E(IQ[gn+1 (Xn,Yn+I )] Ixn , Un_I) 

= E(IQ[gn+I(Xn,yn+I )] Ixn } 

= E[IQ(Xn+I)lxn] 

which establishes the Markov property. Now 

= E[l (X +1)IX = u] Q n n 

= E(IQ[gn+1 (Xn 'Yn+1)] IXn = u) 

= E(IQ[gn+1 (u'Yn+1)]} 

= P[gn+l(u, Yn+l ) E Q] 

n, any Borel 

by CI7) 

by CEll) 

by Ela). [] 
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If gn+l = g, invariant with n, and if {Yn : 1 ~ n} is independent, 

identically distributed, then P(Xn+l E Q/Xn = u) = p[g(u, Yn+l ) E Q] 

is invariant with n. To illustrate, we consider the inventory problem 

above ·(c.£. Hillier and Lieberman [1974], Secs 8.17, 8.18). 

EXample El-c (contin~ed) 

Suppose m = 1, M = 3, and D has the Poisson distribution with A 
n 

Then the state space S = {O, 1, 2, 3} and P(Xn+1 = j/Xn = i) = 

P[g(i, Dn+l) = j]. g(O,Dn+l) = max (3 - Dn+l)' O}. 

Since g(O,Dn+l ) = 0 iff Dn+l ~ 3, 

P(Xn+l = O/Xn = 0) = P(Dn+l ~ 3) 0.0803 (from table). 

Since g(O, Dn+l ) = 1 iff Dn+1 = 2. 

P(Xn+1 = l\Xn = 0) = P(Dn+1 = 2) 0.1839 (from table). 

1. 

Continuing in this way, we determine each transition probability and hence 

the transition probability matrix 

[00803 
0.1839 0.3679 00367] 

P 0.6321 0.3679 0 

:036 79 0 
0.2642 0.3679 0.3679 

0.0803 0.1839 0.3679 [] 

The calculation procedure based on the equation P(Xn+1= j/Xn = i) 

= P[gn+1(i, Yn+1) = j] can be justified in elementary terms for many special 

cases. The general result in Theorem El-2 shows how the desired conditional 

independence of the past and future, given the present, arises out of the 

independence of the sequence {Yn : 1 ~ n} and establishes the validity of 

the calculation procedure in any situation (including continuous state 

space) . 
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2. Markov chains with costs and. rewards 

In a variety of sequential decision making situations, the progression 

of states of the system in successive time periods can be represented in a 

useful way by a Markov process. The Markov character arises from the "mem-

oryless" nature of the process. Often such sequential systems have a reward 

structure. Associated with each possible transition from one state to another 

is a "reward" (which may be negative). Consider the following classical ex-

ample,uti1ized by Howard [1960] in his pioneering work in the area. 

Example E2-a 

The manufacturer of a certain item finds the market either "favorable" or 

"unfavorable" to his product in a given sales period. These conditions may be 

represented as state 0 or state 1, respectively. If the market is favorable 

in one period and is again favorable in the next period (transition from state 

o to state 0), the manufacturer's earnings are rOO' If the market is favorable 

in one period and unfavorable in the next (transition from state 0 to state 1), 

the earnings for the period are a smaller amount rOl' Similarly, the other 

possibilities have associated rewards, If the succession of states can be 

modeled by a Markov chain with stationary transition probabilities, then the 

system is characterized by two entities: the transition probability matrix P 

and the reward matrix R, given by 

P R 

[] 

We may express a general model for· such a system as follows: 

Let (X: 0 ~ n} by a discrete-parameter Markov process with finite state 
n 
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space S. The reward structure is expressed by the sequence (Rn: 1 ~ n) 

of random variables 

We are assuming that neither the reward structure nor the transition 

probabilities change with time. While more general situations could be 

modeled, we use the time-invariant case in subsequent developments. 

Let q. = E[Rn+llxn = iJ = expected reward in the next period, given the 
L present state is i. 

Then q. = E[r(X ,X +1)lx = iJ 
L n n n 

= E[r(i, xn+I)IXn = iJ by CEIO) 

L: r(i,j)p ... 
j LJ 

Put total reward in the next m periods 

Now 

E(E[Rn+klxn+lllxn = i} 

r E[Rn+klxn+1 = jJpij· 

From this it follows that 

If we put 

by CIS) 

v~m) = E[R(m)lx iJ (invariant with n in the stationary case) 
l. n n 

we have 

A2) 
(m) 

v. 
l. 

(m-l) 
q. + L: p .. Vj , 

l. j LJ 
with v~l) = q .. 

l. l. 

A second type of reward structure is exhibited in the following 

class of processes, which include inventory models of the typ~ illustrated 

in Example El-c. 

Let (Xn : 0 ~ n} be a constant Markov chain with finite state space, and 

let (Dn+l : I ~ n} be an independent, identically distributed class such 

that for each n ~ 0, (Dn+l'Un } = (Dn+l' (XO' Xl' ... , Xn)} is an 



independent pair. The associated reward structure is expressed by the 

process (Rn: 1 ::;. n), with 

B) Rn+l = r(Xn , Dn+l)' 

Property CEll) shows that 

qi = E[Rn+llxn = iJ = E[r(i, Dn+l)J (invariant with n). 

E2-3 

The hypothesis (Dn+k,Un+k_l) is independent and property CIll) ensure 

that (Dn+k , Xi) is conditionally independent, given Xj ' for 

0< i,j::;'n+k-l,ipj. For fixed n,k, let 

e(Xi ) = E[Rn+klxiJ = E[r(Xn+k _l , Dn+k)lxi ) for any i < n + k - 1. 

Then by CI8) 

e(X) = E[e(x.)IX J a.s. n < i < n + k - 1. 
n ~ n 

Hence, 

Bl) E[Rn+klxn = i) = E(E[Rn+klxn+1J IXn = i} 

= r E[Rn+klxn+l = j)Pij' 

Applying this formula for k = 2,3 , .•. , m, we obtain 

B2) 
(m) (m-l) 

v = q. + L p .. v. 
i ~ j ~J J 

The identity of form of Al), Bl) and A2), B2) shows that the following 

analysis holds for either type of reward structure. 

Consider the average expected reward per period for m periods. 

E[.!.tt(m») = 1:. ; E[R .J 
m n m i=l n+~ 

1 m 
= - L E(E(E[R +.Ix +. 1) IX l}) 

m i=l n ~ n ~- n-

Now E[R +.\x +. 1 = j) = q., so that 
n ~ n ~- J 

(i) 
E(E[R +. Ix +. 1) Ix 1 = k} = L Pk' q., 

by CElb) and CI8). 

n ~ n ~ - n- j J J 

where p~~) is the i-step transition probability 
J m 

from k to j. Hence, 

E[~(m)] = 1:. L ~ [P(X = k) L p(~) 
m n m i=l n-l j kJ 

L 1 m (0 
q.l = L [P(X 1 = k) qj(- L Pk' )]. 

J k n- j m i=l J 
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If the Markov chain is constant, irreducible, aperiodic, as is usually 

the case, it is known that 

1 m (i) 
~ Pk' ~ TI. as m ~ 00 (invariant in k). 

m i=l J J 

Here TI j is the long-run probability that the process is in state j. 

Since the limit is invariant with k, we may sum out the P(Xn _l = k) 

to obtain 

3) lim E[l R(m)] = ~ q.TI. = g. 
m4" mn J JJ 

A similar argument shows that for each state i 

4) ~ q.TI. 
j J J 

g. 

Here g is the average gain or reward per period, in the long run. We 

illustrate by considering numerical values in the introductory examples. 

Example E2-a (continued) 

Suppose p = [1/2 
2/5 

1/2] 
3/5 

55)1 
~ and 

To find the long-run distribution, we solve the set of equations 

5 TIO+4TIl 10 TIO 

5 TIO + 6 TIl 10 TIl to obtain the values TIO = 4/9 and TIl 5/9 

TIO + TIl 1. 

Then 

~ PO·rO· 19+ 1 3=6 ql = r Pl/lj 
2 3 -3 qo 5 3 +5(-7) 

j J J 2 2 

lim l v~m) I qjTI j 6 
4 3 ~ = 1. g 9 m ~ 9 [] 
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Example E1-c (continued) 

Suppose m = 1 and M = 3, as before. 

If k units are ordered, the cost is 10 + 25k, 0 < k 5 M. 

If k = 0, the cost of ordering is zero. 

For each unit of unsatisfied demand, a penalty of $50 is assessed 

We suppose the demand Dn in period n has Poisson distribution, with 

A = 1. We may then calculate the cost function (negative of reward) 

{ 
10 + 25 (M - Xn) + SO max 

SO max {(Dn+l - Xn), O} 

{(Dn+1 - M), 0) for OS Xn < m 

for m < X < M. 
- n-

Thus, 

C(O, Dn+l ) = 85 + SO max{(Dn+l - 3), O} 

C(i, Dn+l ) = SO max {(Dn+l - i), O} for i=1,2,3. 

Now 

85 + SO E[r{D ~ 3}(D - 3)] 
... 

85 + 50 ~ (k - 3)Pk 
k=4 ... ... 

For the Poisson distribution E kPk = A E Pk 
k=n k=n-1 

co co 

(term for k = 3 is zero). 

Hence, 

qo = 85 + 50[ ~ Pk - 3 ~ Pk] = 86.2 (Using table for Poisson distribution). 
k=3 k=4 

GO CD 

18.4. 

Similarly, we obtain 
GO 

and 
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co 

q3 = E[C(3,Dn+1)) = 50 k~ (k - 3)Pk = 1.2 . 

To obtain the long-run probabilities, we utilize the fact that the 

convergence is rapid and consider 2 4 P , P , ... until results stabilize. 

Direct calculations of matrix products shows that 

0.286 0.285 0.264 0.166 

0.286 0.285 0.264 0.166 

0.286 0.285 0.264 0.166 

0.286 0.285 0.264 0.166 

from which we conclude TIO = 0.286, TIl = 0.285, TI2 = 0.264, and 

TI3 = 0.166. These add to 1.001, indicating a small roundoff error. 

Utilizing these values, we obtain 

g = lim l v~m) = ~ q.TI. = 31.5 • 
l!l""lOO m l. j J J [) 

,The treatment, once equations AI), A2) or Bl), B2) and 3), 4) are 

obtainedJis standard. As a matter of fact, we have used examples taken 

from published texts. In most standard works,the derivations are 

intuitive and incomplete. We have provided a development based on 

fundamental assumptions of independence and conditional independence 

(or Markov conditions). Such a development should both sharpen intuition 

and provide a sound mathematical basis for utilizing the models. 
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3. Continuous-parameter Markov processes 

There are certain technical difficulties in the theory of continuous-

parameter processes. However, advanced methods show that a process can be 

determined essentially for applications if all finite-dimensional distri-

butions are determined (i.e., if the joint distribution for any finite 

subclass of the random variables is determined). 

Consider a real process eXt: t ~ 0) (i.e., T = [0, ~». Let U, V, 

W be finite subsets of T: u 

and W = (wI' w2' ... , w ). We 
q 

wk < wk+l for all indicated i, 

U -< V, iff every element of U 

put ... , Xu ), 
m 

X = (X X --W w ' , I w2 
.,. , X ). 

w 
q 

suppose 

j, k. 

is less 

ui < ui+l' vj<vj +l ' 

We say U Erecedes 

than every element 

.•. , Xv), 
n 

V, 

of 

and 

and 

denoted 

V. We 

DEFINITION. The process (Xt : t ~ 0) is a Markov Erocess iff for 

any U -< (v) -< (w) we have 

E[IM(X )/X] a.S. for all Borel Sets M on 
w v 

the codomain of Xw (i.e., in the state space S). 

It is clear that condition M) is equivalent to 

M') For any finite U -< [v) -< [w), [Xw' XU) is conditionally independent, 

given Xv' 

As in the discrete-parameter case, we have the equivalent condition (see 

Theorem EI-l) 

Mil) For any finite U -< V -< W in T, (~,~) is conditionally 

independent, given ~. 

These and other equivalent expressions for the conditional independence 

condition provide major tools for the study of Markov processes. 
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Many of the Markov processes encountered in practice may be recognized 

by virtue of the following property. 

DEFINITION. A random process (Xt : t E T} has independent increments 

iff for each finite subset Tn = (to' t l , ... , t n } of the parameter 

set T, with to < tl < ... < tn' the class 

••• , Xt of random variables is 
n 

independent. 

Two of the unst widely studied and uti.lized random processes have this 

property. 

Poisson process. 

The parameter set is T = [0, 00). The process counts the number of 

occurrences of some phenomenon in given time intervals. The random 

variable \ counts the number of occurrences in time interval (0, t] . 

We set Then for s < t, is the number of occurrences 

in the time interval (s,t]. The property of independent increments 

undels the fact that the numbers of occurrences in nonoverlapping time 

intervals are independent. What happens in one interval is not affected 

by and has no effect on what happens in other intervals. 

Wiener process (Brownian motion). 

The parameter set is T = [0, 00). Xo = 0. The process is a undel of 

the unvement along a line of a "particle" under "random disturbances." 

Xt is the net unvement along a coordinate axis in the time interval 

(0, t]. In many situations, the disturbances are of such a character that 

the distances unved in disjoint time intervals may be assumed independent. 

Hence, the independent-increment assu~)tion is appropriate. 
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In the discrete-parameter case. the class of random walks (see 

Example El-a) possess the independent-increment property. We have 

Xn = Yl + Y2 + ... + Yn and Xm+k - ~ = Ym+l + Ym+2 + ... + Ym+k. The 

assumed independence of the class (Yi : 1 ~ i} ensures independence of 

the increments. 

We wish to show that a process with independent increments is a 

Markov process. To facilitate exposition. we adopt the following termi-

no10gy and notation. 

1) We say T n (to' t 1 •...• t n } C T is a strictly ordered. finite 

subset of T iff to < t1 < ... < tn. 

2) For any strictly ordered. finite subset of T. we define the random 

variables 1 ~ k ~ n, 

and the random vectors and 

We note that if we have the values of the coordinates of anyone of the 

vectors Un' Zn' (Zn_l' Xt ), or (Un_I' Yn) the values of the 
n 

coordinates of the others are obtained by linear transformations. which 

are continuous, hence Borel. Thus. we may assert 

A) Anyone of the random vectors Un' Zn' or 

is a Borel function of anyone of the others. 

By virtue of property CE9b), we have 

B) E[W\Z 1 = E[W\U 1 = E[W\U l'X 1 = E[W\Z I,Xt 1 = E[W\U I'Y 1 a.s. n n n- tn n- n n- n 

Also. by virtue of independence of Borel functions of independent random 

vectors. 

is independent. so are the others. 
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With these facts, we can now establish the fundamental result 

Theorem E3-1 

If the process (Xt : t E T} has independent increments, then it is 

a Markov process. 

PROOF 

We show that for any strictly ordered, finite Tn C T, the condition M') 

holds for X_ = Un_I' X = X , -u v tn and X = X 
w tn+1 

Now g(Xt ) = g(Xt + Yn+l ) = h(Xt ' Yn+l ), with h Borel and 
n+1 n n 

E[g(Xt )Iun _l , Xt 1 = E[h(Xt ,yn+I)lzn _l , Xt 1 a.s. by proposition B) 
n+l n n n 

By proposition C) and CIII), (Yn+l ' Zn_l} is conditionally independent, 

given Xt ' Hence, 
n 

We may therefore assert 

E[g(Xt )\un_I,Xt ] = E[g(Xt )Ixt ] a.s. 
n+l n n+l n 

which is the desired property. [] 

by CIl) 

The following alternate criterion for independent increments is frequently 

useful as an assumption in modeling. 

Theorem E3-2 

A process (Xt : t E T} has independent increments iff for every strictly 

ordered, finite Tn C T, the pair (Yn ' Un_I} is independent. 

PROOF 

a) If the process has independent increments, the pair {Yn ' Zn_l} is 

independent. By proposition C). above, so is {Yn , Un_l} an independent 

pair. 



b) Suppose (Yn , Un_I} is independent for all T . 
n 

Let T be arbin 

trarily selected, but fixed. For each k, 0 ~ k ~ n, set 

Tk = (to' t l , ... , t k }· By hypothesis, (Yk , Uk_I} is independent, 

1 < k < n. By proposition C), the pair {Yk , Zk_l} is independent, 

I < k < n. In particular, {Y I , ZO} = {Y1, YO} is independent. 

Suppose for some k ~ 2, (YO' Yl , ... , Yk - l } is independent. Then 

by the independence of (Yk , Zk_l} = (Yk , (YO' Yl , ... , Yk - l )}, we 
k k-l k-l 

E3-S 

have P( n Y. EM.) = P(Yk E ~)P( n Y .. EM.) = P(Yk E~) n P(Y. EM.). 
i=O 1. 1. i=O 1. 1. i=l 1. 1. 

Thus, (YO' Yl , "', Yk } is independent. By mathematical induction, 

the class (Yo' YI , ... , Yn } is independent. Since Tn is arbitrary, 

the desired proposition follows. [] 
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4. The Chapman-Kolmogorov equation 

For a Markov process eXt: 0 ~ t), let 0 < s < t < u. Then the 

pair (Xs ' Xu) is conditionally independent, given Xt ' As a special 

case 0 f CI 8), we have 

CK) E [g (X ) I X ] = E {E [g (X ) I Xt ] I X ) u sus a.s. 

This is the Chapman-Kolmogorov equation, which plays a significant role 

in the study of Markov processes. 

For a chain with finite state space S, the equation takes a simple 

form which is usually determined from the first form of the Markov property 

in Sec El and elementary probability patterns. If Pjk(s,t) = 

P(X = klx = j), the Chapman-Kolmogorov equation is usually written 
t s 

CK' ) Pl'k(s,u) = L: p, ,(s,t)P'k(t,u) o < s < t < u. 
j lJ J 

To see that this is a special form of CK), note that 

P(Xu = klxs = i) = E[I{k}(Xu ) Ixs = iJ 

E{E[I{k)(x)lxt1Ixs = i) 

L: E[I{k}(X )IX = j]P(X 
jUt t 

= L: p, ,(s,t)p 'k(t,u). 
j lJ J 

'Ix J s i) 

In the case of stationary transition probabilities, let p~~) be the 

m-step transition probability from state i to state k. CK') becomes 

CK") (m+n) _ L: (m) (n) 
Pik - j Pij Pjk 

which is the form commonly encountered in elementary treatments. In such 

treatmentsl the transition probability matrix P plays a central role. If 

p(m) is the matrix of m-step transition probabilities, then p(m) = pm 

= PPP ... P (m factors). The Chapman-Kolmogorov equation CK") may be 

expressed compactly as 

CK") p (mffi.) = p(m)p(n). 
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If the random variables are absolutely continuous, the Chapman-Kolmogorov 

equation is often expressed in terms of conditional density functions. 

CK"') fx jx (zjx) = f fx jx (zjy)fx Ix (yix) dy. 
u s u t t s 

In this case CK) may be written 

S g(z)fx Ix (zix) dz = S[fg(z)fx Ix (zjy) dzJfx Ix (Ylx) dy 
u s u t t s 

= Sg(z) [Sfx jx (ziy)fx ix (yjx) dyJ dz. 
u t t s 

In order for this equation to hold for all Borel functions g, by an 

analog to property E7) for integrals on the real line, we must have 

CK''') for each x. 

In spite of the importance of the Chapman-Kolmogorov equation in many 

aspects of Markov process theory, it is not true that the validity of this 

equation impiies the process is Markov. Stated another way, it is not 

true that the condition eI7) may be replaced by the condition 

E[g(x)iz,Y) = E[g(x)lz) a.S. for any Borel function g. The latter 

condition is not sufficient for the conditional independence of (X,Y), 

given Z. W. Feller has given counterexamples. The followirig is taken 

from Parzen [196Z), p Z03, but it is due essentially to Feller. 

Example E4-a 

Consider a sequence of containers, each with four balls, numbered one 

through four. Select a ball independently, on an equally likely basis, 

from each container. Let 

Am(l) event ball 1 or 4 is drawn from the mth container 

Am(Z) event ball 2 or 4 is drawn from the mth container 

Am(3) event ball 3 or 4 is drawn from the mth container. 

Under the usual assumptions, P[A (j») = 1/2 for any m ~ 1, any 
m 

j ~ 1, 2, or 3. For any m (i.e. , any container), we have a classical 
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example of a class (Am(j): j = 1, 2, 3} of events which is pairwise 

independent, but not independent. Since selections from vario¥s containers 

are independent, we assume (Am(jm): 1 ~ m} is an independent class for 

any sequence (jm: 1 ~ m} of elements of the set (1, 2, 3}. Thus we 

may assert that (Am(j): 1 ~ m, j = 1, 2, 3} is a pairwise independent 

class, with P[A (j)] = 1/2 
m 

for any permissible m, j. 

the process (Xn : 1 ~ n} by setting 

X3(m_l)+j = IA (j)' j = 1, 2, 3, m> 1. 
m 

We now form 

This process has state space S = (0, I}, and the members are pairwise 

independent, with P(Xn = 0) = P(Xn 1) = 1/2. We also have 

P(Xn+r= jlXn = i) = P(Xn+r = j) = 1/2 for any j, k E (0, I}, any 

n2:I, any r>1. 

Thus, the m-step transition probability matrix is 

p(m) = l [1 
2 1 :] for any m 2: 1 . 

Easy matrix calculations show 

q l[l lJ = l[l ~ = p(m+n) 
~ 2 1 1 2 1 11 

so the Chapman-Kolmogorov equation holds. However, the process is not 

Markov, as the following argument shows. Since Am+I (I)Am+l(2) is a 

subset of Am+I (3), we have 

F P(X3m+3 = llx3m+2 = 1) 1/2. [] 
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5. Proof of a basic theorem on Markov processes 

We utilize the notational scheme introduced in Sec El. To prove 

Theorem El-l, we first obtain an intermediate result. 

Theorem E5-l 

For a Markov process (Xt : t E T}, with T = (0, 1, 2, ... }, the pair 

(Xt +l , Us_I} is conditionally independent, given any Vs,t' 1 < s < t. 

PROOF 

We note that U 1 = (U l' V 1) and V t- s- s,t- s,t 

Borel function g, any s, t, 1 < sSt, 

E[g(Xt+l)/Ut_l,X/ a.s. 

E[g(xt+l)lus _l ' Vs,tJ · 

by M') and eI6) 

By Lemma D5-l, with V = Xt ' U = Ut _l ' 

E[g(xt+l)I:lCtJ E[g(xt+l)lvs t-l' xtJ 

Z = V 1 = h(U 1)' s,t- t-

a.s. , 

The theorem follows by eI6). (] 

Theorem El-l 

A process (Xt : t E T}, T = (0, 1, 2, .•. }, is Markov iff 

Mil) (wt+l, t+n' U~ -l} is conditionally independent, given any finite 

extended present Vs,t' 1 S sSt, any n ~ 1, any wt+l,t+n' U:_l • 

PROOF 

Mil) implies M') as a special case. 

Suppose M') holds. We need only establish M*) 

conditionally independent, given V ,IS sSt, any n ~ 1. The s,t 

is 

more general condition follows from eI9), with wt+l,t+n = h(Wt+l,t+n) 

and U~_l = k(Us_l)' We construct a proof by mathematical induction on 

n, utilizing Theorem E5-l. 
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i) Since Xt+1 = Wt +1,t+1' M*) holds for n = 1, by Theorem ES-1. 

ii) Suppose M*) holds for n = k. 

By Theorem ES-1, {Xt +k+l , Ut } is conditionally independent, given 

Wt +l t+k' Hence, for any Borel function g, , 
E[g(Wt+l,t+k+l)IUs_l,Vs,t] 

= E[g(Wt+l t+k' xt+k+l)lu t ] , 
= E{E[g(Wt+l,t+k' xt+k+l)lwt+l,t+k] IUt} by CI8) 

= E[e(Wt+l,t+k)IUs_l,Vs,tJ 

= E[e(Wt+l,t+k)IVs,t] by inductive hypothesis and CI6) 

= E{E[g(Wt+l,t+k' Xt+k+l)/Wt+l,t+kJ IVs,t} 

= E[g(Wt +l t+k+l)lvs t] a.s. by CI8) and eI9). , , 
By CI6), M*) holds for n = k + 1. 

iii) By mathematical induction, M*) holds for any n > 1. [] 



6. Problems 

E-I Stopping times. In dealing with a random process (Xn : 0 ~ n) it 

is sometimes desirable to consider a randomly selected member of 

the process. Suppose, for example, we wish to stop the process when 

a certain result (or pattern of results) is observed. This means 

we select Xn as the last variable iff the observed sequence 

of results exhibits a prescribed pattern, 

hence belongs to a certain subset We use this to 

formalize the notion as follows: 

DEFINITION. A nonnegative. integer-valued random variable T is 

called a stopping time for the process (Xn: 0 ~ n) iff the event 

~ = (w: T(w) = k) 

-1 
~ = Uk (~). with 

is determined by Uk = (XO,XI , .•.• ~). Thus. 

~Aj = 0 for k ~ j. 
~ 

We assume ~ P(A ) = 1, 
k=O -K 

which means that with probability one T is finite. 

It is apparent that T = ~ k I = ~ k I (U) a.s. 
k=O ~ k=O ~ k 

a) Suppose X 
n 

is the value of a critical dimension of the nth 

item from a production line. The desired value is a. The 

process is stopped for readjustment whenever Ix - al > b. Show 
n 

that if T is the random variable which designates the number of 

the item at which the line is stopped, then T is a stopping 

time for the process. 

Suggestion. Express ~ in terms of the coordinate sets M = 

[a-b, a+b]. 

b) Show that if the Xn are integer-valued. the random variable TI 

defined by Tl (w) = min(n > 0: Xn(w) = i) is a stopping time. 

c) Show that if Tl is a stopping time for an integer-valued process, 
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E-2 Suppose T is a stopping time for the process [Xn : 0 ~ nJ. Let 

'" co 

U = Z UkI~ = Z UkI~ (Uk)' The expressions g(UT) and IQ (UT) T k=O k=O 
must be interpreted, since the dimension of random vector UT changes 

co sk+l with T. If Q E S and Q(k) is the projection onto , then 

we set IQ(UT) = ~ IQ(k)(Uk)I~ (Uk)' Similarly g(UT) ~ gk(Uk)I~ (Uk)' 

Show that E[g(Y)luT] = ~ E[g(Y)luk]I~ (Uk) a.s. 

E-3 Strong Markov property. Suppose (Xn : 0 ~ nJ is a Markov process and 

T is a stopping time for the process. 

a) Show that E[g(WT,T+n)luT] = E[g(WT,T+n)I~] 

= Z E[g(Wk k+n)I~]I~ (Uk) 
k ' ~~k 

a.s. 

b) If the process is homogeneous, show that 

E-4 Martingales. The following class of random processes has many 

connections with the class of Markov processes (cf Karlin and Taylor 

[1975], Chap 6). 

DEFINITION. Let [Xn : 0 ~ n} be a sequence of real random variables 

and [Yn : 0 ~ n} be a sequence of random vectors. 

is a martingale with respect to (Yn : 0 ~ n) iff 

for each n > O. 

Then [Xn : 0 ~ n} 

i) E[lx I] is 
n 

Note that conditions i) and ii) imply iii) Xn = en(YO'YI ' ... , Yn ) 

a.s., with en a Borel function for any n > O. If Yk =~, all k, 

we say (Xn : 0 ~ n) is a martingale, without qualifying expression. 

a) Show that for a martingale E[Xn] = E[XO] for all n. 

b) Show that if (Xn : 0 ~ n) has independent increments (hence is 

Markov) and E[Xn] = E[XO] all n ~ 0, the process is a martingale. 
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APPENDIX I. Properties of Mathematical Expectation 

El) E[IA] = P(A) . 

Ela) E[IM(X)] = P(X EM); E[IM(X)IN(Y)] = P(X EM, YEN) (wi th extension 

by mathematical induction to any finite number pf factors). 

E2) Linearity. E[ax + bY] = aE[X] + bEryl (with extension by mathematical 

induction to any finite linear combination). 

E3) Positivity; monotonicity. 

a) X> 0 a.s. implies E[X] ~ 0, with equality iff X = 0 a.s. 

b) X> Y a.s. implies E[X] ~ E[Y] , with equality iff X = Y a.s. 

E4) Monotone convergence. If Xn ~ X monotonically a.s., then 

E[X ] ~ E[X] monotonically. 
n 

E5) Independence. The pair (X,Y} of random vectors is independent 

on the codomains of X, Y, respectively, 

iff E[g(X)h(Y)] = E[g(X)]E[h(Y)] for all real-valued Borel functions 

g, h such that the expectations exist. 

E6) Uniqueness. 

a) Suppose Y is a random vector with codomain Rm and g, hare 

real-valued Borel functions on the range of Y. If E[IM(y)g(y)] 

= E[IM(Y)h(Y)] for all Borel sets M on the codomain of Y, 

then g(Y) = h(Y) a.s. 

b) fure generally, if E [IM(Y)IN(Z)g(y ,Z)] = E[IM(Y)IN(Z)h (Y ,Z)] for 

all Borel sets M, N in the codomains of Y, Z, respectively, 

then g(Y,Z) = h(Y,Z) a.S. 

E7) Fatou's lemma. If Xn ~ 0 a.s., then E[lim inf X ] < lim inf E[X ]. 
n - n 

E8) Dominated convergence. If X ~ X a.s. 
n and Ix I < Y a.s., n 

each n, with E[Y] finite, then E[Xn] ~ E[X] . 

for 
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CD 

19) Countable additivity. Suppose E[X] exists and A ~ 8 A .. Then 
i~l ~ CD 

E[IAX] ~ .~ E[IA.X]. 
~~l ~ 

110) Existence. If E[g(X)] is finite, then there is a real-valued Borel 

function e, unique a.s. [Py] , such that E[IM(Y)g(X)] ~ E[IM(Y)e(Y)] 

for all Borel sets M in the codomain of Y. 

11) Triangle inequality. \E[g(X)] \ S. E[/g(X)/]. 

12) Mean-value theorem. If a S. X S. b a.s. on A, then aP(A) S. E[IAX] S. bP(A). 

13) Let g be a nonnegative Borel function. defined on the range of X. Let 

A ~ (w: g[X(w)] ~ a). Then E[g(X)] ~ aP(A). 

14) Markov's inequality. If g ~ 0 and nondecreasing for t > 0 and a ~ 0, 

then g(a)p(/xi ~ a) S. E[g(/xl)]. 

15) Jensen's inequality. If g is a convex function on an interval I which 

includes the range of real random variable X, then g(E[X]) S. E[g(X)]. 

16) Schwarz' inequality. If X, Yare real or complex random variables with 

E[lxI2] and E[lyI 2] finite, then lE[xy] 12 S. E[lxI 2]E[lyI 2], with 

equality iff there is a constant c such that X ~ cY a.s. 

17) HOlder's inequality. Let 1 S. p, q < CD with 1 +-1 ~ 1. If X, Yare 
p q 

real or complex random variables with E[lxI P] and E[lylq] finite, 

then E[IXYI] S. E[lxIP)l/PE[/ylq)l/q. 

18) Minkowski's inequality. Let 1 S. P < -. If X, Yare real or complex 

random variables with E[lxI P) and E[lyIP) finite, then 

E[lx + yIP]l/p S. E[lxIP)l/p + E[lyIP)l/p. 
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APPENDIX II. Properties of Conditional Expectation, given a Random Vector 

We suppose, without repeated assertion, that the random vectors and 

Borel functions in the expressions below are such that ordinary expectations 

exist. 

CEl) e(Y) = E[g(X)iy] a.s. iff E[IM(Y)g(X)] = E[IM(Y)e(Y)] for all 

Borel sets M on the codomain of Y. 

CEla) If P(Y E M) > 0, then E[IM(Y)e(Y)] = E[g(X) iy E M]P(Y EM). 

CElb) E[g(X)] = E{E[g(x)iy]). 

CE2) Linearity. E[ag(X) + bh(y)lz] = aE[g(X)iz] + bE[h(y)iz] a.s. (with 

extension by mathematical induction to any finite linear combination). 

CE3) Positivity; monotonicity. 

g(X) > 0 a.s. implies E[g(X)ly] > 0 a.s. 

g(X) ~ hey) a.s. implies E[g(X)iz] ~ E[h(y)iz] a.s. 

CE4) Monotone convergence. X ....X a.s. m:lnotonically implies n 

E(x i y] .... E[xi Y] a.s. monotonically. n 

CE5) IndeEendence. a) eX, Y} is an independent pair iff 

b) E[IN(X) i Y] = E [IN (X)] a.s. for all Borel sets N iff 

c) E[g(X) iy] = E[g(X)] a.s. for all Borel functions g. 

CE6) e(Y) = E[g(X)iy] a.s. iff E[h(Y)g(X)] = E[h(Y)e(Y)] for all Borel h. 

CE7) If X = hey), then E[g(X)ly] = g(X) a.s. for all Borel g. 

CE8) E[h(Y)g(X)iy] = h(Y)E[g(x)iy] a.S. 

CE9) If Y = heW), then E{E[g(X)iy] iW) = E{E[g(x)iw] iy} = E[g(X)iy] a.s. 

CE9a) E{E[g(x)iy] iy,z) = E(E[g(x)iy,z] iy} = E[g(X)iy] a.s. 

CE9b) If Y = heW), where h is Borel with a Borel inverse, then 

E[g(x)iy] = E[g(x)iw] a.s. 
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CEIO) If g is Borel such that E[g(X,v)] is finite for all v on the 

the range of Y and E[g(X,Y)] is finite, then 

E[g(x,y)ly = u] = E[g(X,u)ly = u] a.s. [pyl. 

CEll) In CEIO), if {X,Y} is an independent pair, then 

E[g(x,y)ly = u] = E[g(X,u)] a.s. [Pyl. 

CE12) .Triangle inequality. lE[g(x)ly] I 5. E[lg(x)lly] a.s. 

CE13) Jensen's inequality. If g is a convex function on an interval I 

which contains the range of real random variable X, then 
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APPENDIX III. Properties of Conditional Independence, given a Random Vector 

The following conditions are equivalent: 

CII) E[IM(X)IN(y)lz] = E[IM(X)lz]E[IN(Y)lz] a.s. V Borel sets M, N. 

CI2) E[IM(X)\Z,Y) = E[IM(X)\Z) a.s. V Borel sets M. 

CI3) E[IM(X)IQ(z)lz,y) = E[IM(X)IQ(z)lz) a.s. V Borel sets M, Q. 

CI4) E[IM(X)IQ(Z)\Y] = E(E[IM(X)IQ(z)lz)\y} a.s. V Borel sets M, Q. 

CIS) E[g(X)h(Y)\Z] = E[g(x)lz)E[h(Y)\Z] a.s. V Borel functions g, h. 

CI6) E[g(x)lz,y) = E[g(X)lz) a.s. V Borel functions g. 

CI7) E[g(x,z)lz,y) = E[g(X,Z)/Z) a.s. V Borel functions g. 

CI8) E[g(X,Z)ly) = E(E[g(X,z)lz)ly} a.s. V Borel functions g. 

DEFINITION. The pair of random vectors (X,Y) is conditionally independent, 

given Z, iff the product rule CII) holds. An arbitrary class of random 

vectors is conditionally independent, given Z, if an analogous product 

rule holds for each finite subclass of two or more members of the class. 

CI9) If (X,Y) is conditionally independent, given Z, U = heX), and 

v = key), with h, k Borel, then (U,V) is conditionally inde-

pendent, given Z. 

ClIO) If the pair (X,Y) is conditionally independent, given Z, then 

a) E[g(X)h(Y)] = E(E[g(x)lz)E[h(Y)\Z]} = E[e l (Z)e2(z)] 

b) E[g(x)ly E N)P(Y E N) = E(E[IN(y)lz)E[g(x)lz)). 

CIII) If (Y, (X,Z)) is independent, then (X,Y) is conditionally 

independent, given Z. 

CII2) If (X,Y) is conditionally independent, given Z, then 

E[g(X,Y)\Y = u, Z = v) = E[g(X,u)IZ = vl a.s. [pYZ1. 
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Selected Answers, Hints, and Key Steps 

A-I i) a(X) = (0,A,Ac ,O} ii) J(X) = (0,A,B,C,AUB,AUC,BUC,O} 

A-2 i) X-I«_CC,O])=AI::;IB Hi) X- I «-,3])=AtfBI::::iC=Dc 

A-3 gl = g3 a.s. [pxJ, but g3 F g2 a.s. [PXJ 

A-4 a) g is cont. (draw graph), hence Borel, all t 
cc n 

A-8 a) X> O. A = 1::;1 A. implies IA = lim ~ IA implies 
i=l ~ n i=l i 

n 
.~ IA.X increases to lAX. Use linearity, monotone convergence. 
~=l ~ 

B-6 i) implies P(ABID) = p(AID)P(BID) H) implies p(ARID) = p(Ai D)P(HI D) 

iii) implies P(BHID) = p(BID)P(HID) iv) implies p(ABHID) = P(AB\D)p(HID) 

B-7 576/228 

B-8 b) P(CITIT2)/P(ccIT1T2) = 64/99 c) P(CIT1T~)/p(ccIT1T~) = 16/891 

B-9 p(WIQ)/p(WcIQ) = 1/3 implies p(WIQ) = 1/4 P(Q) = 1/2 

p(WiQc)/p(WcIQc) = 3/2 implies P(W\Qc) = 3/5 

P(WIABc ) _ P(Q)P(W iQ)P(A[Q)P(BC[Q) + P(Qc)P(W [Qc)P(A[Qc)P(BC[Qc) 

p(wcIABc) P(Q)P(WciQ)P(AIQ)P(BcIQ) + P(Qc)P(WC\Qc)p(AiQc)P(BcIQc) 

B-10 (T,B) is conditionally independent, given A, and given AC 

41 
= 74 

P(AT) = 0.54 P(ATc) = 0.12 P(AcT) = P(T) - P(AT) = 0.06 P(AcTc ) = 0.28 

peT IB) _ P(AT) P(B[A) + P(AcT) p(BIAc) _ 342 

P(Tc/B) - P(ATc)P(BIA) + P(AcTc)P(BIAc) - 156 

B-l1 b) P(Dl ) = 0.2 p(IIDl ) = 0.1 p(IcID~) = 0.2 P(D~/IcDl) = 0.96 

P(D2IIcD~) = 0 implies P(D~ICD2) = 0 IC = ID2 = 0 

C C C C 
Hence, P(D1D2) = P(DI ID2) + P(DlI D2) = 0 

P (Dl)P (Ic I Dl)P (D2\ I CD1)P (C \ I CD1 D2) 9 
P(D IC) = = 340 

2 P(Dl)P(IciDl)P(cilc) + P(D~)P(IcID~)P(cllc) 

A = 3.290 > - 0.201 Classify in group 1 
p 
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C-3 E[IAg(X)] = E[IABg(X)] + E[IABcg(X)] = E[g(X)IAB]p(AB) + E[g(X) I ABc] P (ABc) 

C-7 A = (XZ + yZ ~ I) = (X,Y) E Q} Since Z = X on A, we have 

E[zIAlp(A) = E[IQ(X,y)x] = 0 (by evaluation of integral). Also 

E[zIAc]P(Ac) = E[IAcC] = cP(Ac). Hence E[Z] = 0 + cP(Ac) = c(l 

C-B a) E[XZ + yZ\x = t] = t Z + E[YZ\X = t] = (3t Z + 4)/Z 1 ~ t ~ Z 

b) E[XyIX = t] = ~ t(t Z + Zt + 4)/(t + Z) 1 < t < Z 

c) E[X\X ~ I (Y + 1)] = E[XIQ(X,Y)]/E[IQ(X,y)] = :io ~o: = ~~~ ~ 1.19 

C-9 a) E[XZ + yZ\x = tl = t Z + E[YZ] = t Z + 7/6 -1 < t < = 
b) E[XY\X = t] = tE[Y] = t/4 -1 < t < = 

ColO E[g(X,y)ly = u, z = Y] = E[g*(X,Y,z)ly = u, z = v] 

= E[g*(X,u,v)ly = u, z = v] 

= E[g(X,u)ly = u, z = v] 

C-ll E[g(X,Y)\Z = v] = E[e(Y,Z)IZ = v] = E[e(Y,v)IZ = v] 

by CElO) 

= S e(u,v) dFylz(u\v) = S E[g(X,y)ly = u, z = vJ dFylz(ulv) 

= S E[g(X,u)ly = u, z = vl dFYlz(ulv) by Prob ColO 

C-12 a) v(Y) = E[X2 - 2e(Y)X + e2(Y)IYJ = E[X2jY] - 2e(Y)E[X\Y] + e2(y) 

c) E[v(Y») + Var[e(Y») = E(E[X2jY)} - E[e2(y») + E[e2(y)] - E2[X] 

C-13 a) 

= E[x21 - E2[X) 

E[nIN = nlP(N = n) = E[I(n}(N)n) = E[I(n} (N)Yn] since 

N-l(n). This implies E[nIN = nl = E[Y ] = nE[X] 
n 

Var[njN = n] = E[n2IN = n] - e2(n) = E[y2] - E2[y 1 
n n 

c) Var[n] = E[v(N)] + Var[e(N)l = E(NVar[X] } + Var(NE[X] }. 

Var[X) and E[X) are constants. 

[ iunj ] C-14 a) ~n(u) = E(E eN}. 

[ iUDI 1 [iu!), iuY ] E e N = n P(N = n) = E l(n}(N)e J = E[I(n}(N)e n 
n = P(N = n)~y (u) = P(N = n)~(u) 

n 

Wn(U) = ~ P(N = n) ~(U) = gN[~(U)] 
n 

n = Y on 
n 
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C-15 a) 0 ~ vade (y)J!vadx] = vade (y)J! (Vade (Y)] + E[v (Y)] ) ~ 1 

since v(Y) ~ 0 a.s. 

d) Set X* = (X - E[X])/crx and y* = (g(Y) - E[g(Y») )/cr[g(Y») 

p2[x,g(y)] = E2[X*Y*] = E2(E[X*Y*IY] } = E2(Y*E[X*IY]} by CEB) 

~ E[(y*)2lE{E2[x*ly]) by E 16) 

= E(E2{X - E[x] I Y})/VadX] = Vade(y)J /VadxJ = K2 

D-l By CIll), (X,Y) is conditionally independent, given z. Renee 

E[g(X)h(y)lzJ = E[g(x)lzJE[h(y)lz] = E[g(X)JE[h(y)lzJ by CE5) 

D-2 1..) I - (n-l)u/ Ito (n-l)u d fRlw(u t l , ... ,tn) - e 0 e u, 

E[Rlw = tl, ... ,tnJ = toe(n-l)tO!fe(n-l)to - 1] - l/(n - 1) n> 2 

ii) E[R I w = kl , ... , knJ (m + k) / (A. + n) k = kl + k2 + .•. + kn 

iii) E[Rlw = kl , .•• , knJ (n + l)/(n + k + 2) 

D-3 E[R] = 2/3 E[Rls lO = BJ = B/ll Var[RJ = 2/117 var[Rls lO = BJ = 24/27B3 

D-4 E[IM(R)DJ = ~ E[I{n) (N)IM(R)Yn] = ~ peN = n)E{IM(H)E[ynIR]) 

D-5 a) By CIll), (V,D) is conditionally independent, given N. 

pew ~ t, N = n) = E[IQ(D,V)I{n)(N)J = E{I{n)(N)E[IQ(D,V)lv,N]) 

BY CI12) E[IQ(D,V)lv = v, N = n] = E[IQ(D,V)IN = nJ = P(D ~ vtlN = n) 

peW ~ t, N = n) = t I I{n)(k)P(D ~ vtlN = k) dFV(v)P(N = k) 

= peN = n) Ip(D ~ vtlN = n) dFV(v) 

b) peW < tiN = n) = 20 at, 0 ~ t ~ 1/20a a 2 = nrr/A 

c) peW ~ tiN = n) = 1 + lQ\t (e-15at - e-25at ) 0 ~ t, a2 = nrr/A 

D-6 Px(26) = 0.0370 R(10,26) = - 11.15 R(20,26) = - 46.40 

R(30,26) = - 35.35 Optimum a = 20. 

D-7 t(a,u) = 1 - 2p(a,u), where 

p(a,u) =P(Y = a-llR = u) + P(Y = aiR = u) + P(Y = a+llR = u) 

= C(n, a_l)ua-l(l _ u)n-a+l + C(n,a)ua(l _ u)n-a 

a+l )n-a-l + C(n,a+l)u (1 - u 
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R(a,x) = E[t(a,H)P(X = xiH»)/P(X = x) 

= 1 - 2(m+l)G(m,x) K(a x) 
n+m+l ' 

P(X = x) = l/(m+l) 

To minimize R(a,x), maximize with respect to a the function 

_ G(n,a-l) + G(n,a) + G(n,a+l) 
K(a,x) - G(n+m,a+x-l) G(n+m,a+x) C(n+m,a+x+l) 

For n = 10, m = 3, x = 2, K(5,2) = 0.4324 K(6,2) = 0.4779 

K(7,2) = 0.4883 K(8,2) = 0.4534 K(9,2) = 0.3625 

Optinrum R(7,2) = 1 - 1/ K(7,2) = 0.1628 

D-8 Strategy: 1st stage-- ris~ ~l(O,O) = 47/12 = expected gain for strategy 

2nd stage-- If successful ~ w2(1,1), then risk 

If unsuccessful'" (D2(l,O), then play safe 

3rd stage-- w3(2,2) indicates risk 

~3(2,1) indicates risk 

w3(1,0) indicates safe 

c c c k+l 
(Tl = k) = (Uk EM X M X ... X M X M = Mk C S ) =~, M = (i) 

k-l k-l 
E-l b) 

c) (T2 = k) =.C:7 (Tl = j)(W.+l k E Mk-·) = (Uk E .8 M. X Mk-· = Qk) 
J=O J, J J=O J J 

E-2 E[g(Y)IQ(UT») = E[g(Y) ~ IMk (Uk)IQ(k) (Uk») 

= ~ E(E[g(Y)!Uk)IMk (Uk)IQ(k)(Uk») 

= E(t Erg(Y)iuk)IMk(Uk)IQ(UT») 

E-3 a) From problem E-2 

E[g(WT,T+n)luT) = ~ E[g(Wk,k+n)iuk)I~ (Uk) 

= ~ E[g(Wk,k+n)i~)I~ (Uk) by Markov property 

E[g(WT,T+n)IM(XT)] = ~ E(E[g(Wk,k+n)IM(~)luk]IMk (Uk)} 

= ~ E(E[g(Wk,k+n)I~)IM(~)I~ (Uk») 

= E(~ E[g(Wk,k+n)I~JrMk (Uk)IM(XT)} 

Hence E[g(WT,T+n)i~) = ~ E[g(Wk,k+n)I~)IMk (Uk) a.s. 



E-4 a) E[Xn+1] = E(E[Xn+1lyO'Y1' ••• , Yn]) = E[Xn] 

b) E[Xn+1Iunl = E[Xn+1 - Xn1un] + E[xnlun] 

SA-5 

= E[Xn+1 - Xn1 + Xn a.s. by Thm E3-2, CE5), and CE7) 

o + X n 
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