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Preface

It would be difficult to overestimate the importance of stochastic
independence in both the theoretical development and the practical appli-
cations of mathematical probability. The concept is grounded in the idea
that one event does not "condition" another, in the sense that occurrence
of one does not affect the likelihood of the occurrence of the other. This
leads to a formulation of the independence condition in terms of a simple

Yproduct rule,”

which is amazingly successful in capturing the essential
ideas of independence.

However, there are many patterns of 'conditioning' encountered in
practice which give rise to quasi independence conditions. Explicit and
precise incorporation of these into the theory is needed in order to make
the most effective use of probability as a model for behavioral and
physical systems. We examine two concepts of conditional independence.

The first concept is quite simple, utilizing very elementary aspects
of probability theory. Only algebraic operations are required to obtain
quite important and useful new results, and to clear up many ambiguities
and obscurities in the literature.

The second concept of conditional independence has been employed for
some time in advanced treatments of Markov processes. Couched in terms
of the abstract notion of conditional expectation, given a sigma field
of events, this concept has been available only to those with the requisite
measure-theoretic preparation. Since the use of this concept in the
theory of Markov processes not only yields important mathematical results,

but also provides conceptual advantages for the modeler, it should be

made available to a wider class of users. The case is made more compelling



by the fact that the concept, once available, has served to provide new
precision and insight into the handling of a number of topics in probable
inference and decision, not related directly to Markov processes.

The reader is assumed to have the background provided by a good under-
graduate course in applied probability (see Secs Al, A2). Introductory
courses in calculus, linear algebra, and perhaps some differential equations
should provide the requisite experience and proficiency with mathematical
concepts, notation, and argument. In general, the mathematical maturity
of a junior or senior student in mathematical sciences, engineering, or
one of the physical sciences should be adequate, although the reader need
not be a major in any of these fields.

Considerable attention is given to careful mathematical development.
This serves two types of interests, which may enhance and complement one
another. The serious practitioner of the art of utilizing mathematics
needs insight into the system he is studying. He also needs insight into
the model he is using. He needs to distinguish between properties of the
model which are definitive or axiomatic (and hence appear as basic assump-
tions) and those which are logical consequences (i.e., theorems) deduced
from the axiomatic properties. For example, if his experience makes it
reasonable to assume that a dynamic system is characterized by lack of
"memory', so that the future is conditioned only by the present state and
not past history, then it is appropriate to consider representing the
system as a Markov process. Should the system fail to exhibit certain
consequences of the Markov assumption, then that fundamental assumption
must be reexamined. The distinction between fundamental properties and
derived properties is an aid to efficient and intelligent use of mathematics

(as well as insurance against contradictory assumptions).
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The serious mathematician who wishes to enlarge his knowledge and
appreciation of the applications of mathematics (and perhaps discover new,
significant problems) may be deterred by the inadequate articulation of
mathematics in much of the applied literature. This may be a serious
barrier to what should be a cooperative endeavor. Hopefully, the
present treatment will help remove any such barrier to consideration
of the interesting and important topic of conditional independence.

In order to recast the theory of conditional independence of random
vectors in more elementary terms, it has been necessary to extend the
usual introductory treatment of conditional expectation, given a random
vector. The treatment intends to bridge the gap between the usual intuitive
introductory treatment, based on a concept of conditional distribution, and
a more general approach found in advanced, measure-theoretic treatments.
Because of the importance of conditional expectation as a tool in the study
of random processes and of decision theory, the results should be useful
beyond the scope of the present investigation.

Acknowledgements

It is apparent that a work of this sort draws on a variety of sources,
many of which are no longer identifiable. Much of the impetus for writing
came from teaching courses in probability, random processes, and operations
research. The response of students and colleagues to various presentations
has been helpful in many ways. The development of the concept of conditional
independence of events has been stimulated and shaped in large part by
my collaboration with David A. Schum, Professor of Psychology, in some
aspects of his work on human inference. He has read critically several
versions of the manuscript. Charles M.Harvey of Dickinson College, while

on visiting appointment in Mathematical Sciences at Rice University, read



vii

critically a preliminary manuscript presented for review. His comments

were helpful in planning the final, extensively revised manuscript.

Dr. David W. Scott of Baylor College of Medicine and Rice University used

some of the results in recent work. His comments were helpful in improving
exposition at several points, and his work provided an interesting applications

problem.

Paul E. Pfeiffer



A. Preliminaries



A. PRELIMINARIES
1. Probability Spaces and Random Vectors A11
2. Mathematical Expectation A2-1

3. Problems A3-1



CONDITIONAL INDEPENDENCE IN APPLIED PROBABILITY

A. Preliminaries

In this monograph, we assume the reader has reasonable facility with
elementary probability at the level of such texts as Pfeiffer and Schum
[1973], ash [1970], or Chung [1974]. 1In particular, we suppose the reader
is familiar with the concept of a random variable  or a random vector, as a
mapping from the basic space to the real line R, or to Euclidean space
Rﬁ and with the notion of mathematical expectation and its basic proper-
ties (cf Pfeiffer and Schum [1973], Chaps 8, 10, 13). In the following
sections, we summarize various fundamental concepts and results in a form,
terminology, and notation to be utilized in subsequent developments. In
some cases, we simply express familiar material in a form useful for our
purposes; 1in others, we supplement the usual introductory treatment,
especially with an informal presentation of certain ideas and results from
measure theory. The reader may wish to scan this material rapidly, re-
turning as needed for later reference.

1. Probability spaces and random vectors

A probability space, or probability system, consists of a triple (Q,&,P).

1) Q 1is the basic space, or sample space, each element of which repre-
sents one of the conceptually possible outcomes of a specified trial,
or experiment. Each elementary outcome ® 1is an element of the basic
space Q.

2) & 1is a class of subsets of (. Each of the subsets in this class is
an event. The event A occurs iff the ® resulting from the trial
is an element of A. Since it is desirable that the sets formed by
complements, countable unions, or countable intersections of events

also be events, the class J§ must have the properties of a sigma
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field (also called a Borel field or a sigma algebra) of sets.

3) The probability measure P assigns to each event A a number P(A)

in such a manner that three basic axioms (and logical consequences)

hold: i) P(A) >0, ii) P(Q) =1, and iii) P is countably additive.

We utilize standard notation for the empty set (impossible event),
complements, unions, and intersections. Thus, for example,
9 is the empty set (the impossible event),

©
v A, is the union of the infinite class {Ai: 1<i<=)
- b

n
N Bi is the intersection of the finite class {Bi: 1<i< n},

AS is the complement of the set A.

n

In addition, we employ the notation Y Bi to indicate not only that we
i=1

have taken the union of the class {Bi: 1 <i<nj, but also that the

class is disjoint (the events are mutually exclusive). Thus, the expression

oo
A=Y Ai means the same as the pair of statements
i=1

i) A=

A, and ii) A A, =P for i # j.
jop T 17

]

1

A random vector is viewed as a mapping from the basic space Q to
n-dimensional Euclidean space Rn. For n =1, we have a real-valued
random variable. A random vector X: {2 - R may be considered to be the
joint mapping (Xl’ XZ’ eey Xh): Q->RXRX ... XR produced by the
coordinate random variables Xl’ XZ’ ey Xn'

Since we want to be able to make probability statements about possible
sets of values to be taken on by random vectors, we must introduce
measurability considerations. In the real-valued case (n = 1), we should

like to speak of the probability that X takes on a value no greater

than some real number t. Since probability is assigned to events, the
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set {w: X(v) <t} should be an event for any real number t. This may
be viewed schematically with the aid of a mapping diagram, as in Figure
Al-1. We are interested in the set A of those elementary outcomes w
which are mapped into the interval It = (-2, t]. Since we also want to
consider complements, countable unions, and countable intersections of
such events, we must consider complements, countable unions, and countable
intersections of such intervals on the real line. We are thus led to
consider the minimal sigma field # of subsets of the real line which
includes all the semi-infinite intervals of the form It = (- @, t]. This
is the class B of Borel sets on the real line. A similar consideration
leads to defining the class B of Borel sets on Rn as the minimal
sigma field which includes all semi-infinite intervals of the form

I(t s £) = (=, t

TLTRE n 1] X (-, tz} X oo X (-, tn}. We say that

X: Q= R is a random vector iff X-l(M) = {w: X(w) € M} 1is an event

for each Borel set M in R'. A standard result of measure theory,

which we assume without proof, is that X-l(M) is an event for each Borel

set M iff X_l[I(tl, t veus tn)] is an event for each n-tuple

2?
(tl’tz’ cees tn) of real numbers (i.e., for each element of Rn). Real -
valued random variables are included as the special case n = 1.

It is an easy consequence of elementary mapping theorems that the

class F(X) of all inverse images X_l(M) of Borel sets is a sigma field.

We refer to this class as the sigma field determined by X. It must be a

subclass of the class & of events in order for X to be a random vector.

: . n
We often need to consider functions of random vectors. If X: Q - R

and g: Rn - ﬁn, then Z = goX = g(X) 1is a function ( =~ R'. 1f g has
the property that N = g-l(M) is a Borel set in R' for each Borel set

m . , -1
M in its codomain R, then Z 1is a random vector, since Z "(M) =
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B
]

{w: X(w) <t}

x'l(It) — A

n

u = X(w)

—hnd & P’ DIV SIS RPN S e |
et t—p—tt 7t v v et +
Vel u ¢
I, = (- =, t]
Figure Al-1, Mapping diagram with inverse image of semi-infinite

interval It.
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X_lg-l(M) = X-I(N) is an event. Thus, each event determined by Z is

an event determined by X. This may be expressed by the relation &(Z)

is contained in JF(X). This condition is oftened indicated by saying that
Z 1is measurable with respect to X (or Z is measurable-X). A function
g with the mapping property described above is known as a Borel function.
From somewhat advanced arguments, it is known that if Z is measurable-X,
then there is a Borel function g such that Z = goX = g(X). We assume
this important result without proof.

We have introduced the class of Borel functions in a somewhat abstract
manner to solve the problem of when a function of a random vector is itself
a random vector. But how do we know whether or not a function encountered
in practice is Borel? It turns out that almost any function g: R - #n
which we may want to consider is Borel. For this reason, in many introduct-
ory treatment little or nothing is said about Borel functions.

Borel functions constitute a generalization of the class of continuous
functions. Continuous functions have the property that the inverse image
of any open set is open. It is known that the class of Borel sets on R
is the minimal sigma field which includes all open sets in Rn. From this
fact it may be shown that any continuous function from R to F@ is
Borel. Any piecewise continuous real function g: R—-> R is Borel. Linear
combinations, products, and compositions (functions of functions) of Borel
functions are Borel. If (gn: 1< n} is a sequence of Borel functions from
R to Rm which converge for each t in Rn, the limit function g is a

Borel function.

The indicator function IA for set A in 0, defined by IA(w) =1

for w in A and zero otherwise, is particularly useful. If A 1is an

event, IA is a random variable. Indicator functions may be defined, as
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well, on R®. If M is a Borel set in Rn, then IM is a Borel function
from Rn to R. If ¢ is an element of Rm, then cIM is a Borel
function from R* to R'. If X is a random vector and M is a Borel

set on the codomain of X, then IM(X) is a real-valued random variable,
measurable-X. If M 1is a subset of R" and N is a subset of Rn, then
the cartesian product M X N ={(t,u): t € M, u € N} is a subset of R x R
The indicator function I : B" X F" > R satisfies the equation

MX N’
Ly y(6w) = (O ) Ve ,ucr
since (t,u) €E MX N iff both t €M and u € N,
The following result is basic in the development of the concept of
conditional expectation.
Theorem Al-1
a) If Y is a random vector with codomain Rm, M is any Borel set in

R, and C = (0: Y(w) €M} = Y '(M), then I, = 1,(9).

C

b) If g is a Borel function SR FP and Z = g(Y), then for any
Borel set N in R°, there is a Borel set M = g_l(N) in F* such
that IN(Z) = IM(Y).

PROOF

a) I[v()] =1 iff Y() €M iff w€C iff I () =1

b) The relation C = Y_l(M) = Z_l(N) is an elemental property of
composite mappings. By a), IN(Z) =1

¢ =™

The indicator function is useful in representing discrete random
variables, which take on a finite or countably infinite set of values. In
the finite case, the term simple random variable is commonly used. Suppose
the range (set of possible values) of X is S = {tl, t2’ ooy tN] c /.

Let Ai = {w: X(w) = ti}' Then the class {Ai: 1<i <N} is a partition,
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N

and X = .Z tiIA.'
i=1 i

We refer to this representation as camonical form

(if one of the values is zero, we include a term with zero coefficient).

It is easy to show that any real random variable is the limit of a

sequence of such simple random variables (the sequence is not unique).

If X is nonnegative, it is the limit of an increasing sequence of
nonnegative, simple random variables (cf Pfeiffer and Schum [1973], Sec 8.8).
Similar statements may be made about Borel functions. A simple Borel

n

N
function g: ' > R has canonical form g= X tiIM , where ti €R

i=1 i

and each Mi = {u € Rm: g(u) = ti} is a Borel set in Rm.

A random vector induces a probability distribution on the Borel sets
of its codomain. To each Borel set M 1is assigned the probability mass
on the event X_I(M). A probability measure PX is defined on the Borel
sets by the assignment PX(M) = P[X_I(M)] =PX €M). This is a true
probability measure, with the Borel sets serving as events. This mass
distribution may also be described by a probability distribution function
FX or, in suitable cases, by a probability density function fX. These
matters are assumed to be familiar.

For many purposes, if a random vector is modified on a set of
having zero probability, no significant difference is realized in probability
calculations. For example, if X and Y are two real random variables
with the property that the set of w for which X(w) # Y(w) has probability
zero, these random variables have the same mathematical expectation.

DEFINITION. Random vectors X, Y are almost surely equal, denoted

X =Y a.s., iff they have the same codomain and the set {w: X(w) # Y(w)}
has probability zero.
More generally, a relation between random vectors is said to hold almost

surely (a.s.), or to hold for almost every (a.e.) w, iff the set of
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w for which the relation fails to hold has probability zero.

We are frequently concerned with functions of random vectors.
Suppose we have random vector X: Q - Rn and have two Borel functions
g, h: R® > F". If these functions have the property that g(t) = h(t)
for all t on the range of X, then we must have g[X(w)] = h[X(w)]
for all w. Again, we may not need this equality for all w. It may
be sufficient to have equality for almost every w (i.e., for all w
except possibly an exceptional set of probability zero). Suppose
My = [t € R': g(t) # h(t)}. Then glx()] # h[X(@w)] iff X(w) is
one of the values in MO' Hence, g(X) = h(X) a.s. iff the set of w
for which X(w) € My has probability zero. But this is just the condition
that the induced probability PX(MO) = P(X € MO) =0,

The notion of almost-sure equality for random vectors can be extended
to Borel functions when the probability measure is defined on the class
of Borel sets on the domain of the functions. We are particularly
interested in the case that such measures are probability measures
induced by random vectors.

DEFINITION. If g, h are Borel functions from Rn to FF and PX

is a probability measure on the Borel sets on Rn, then g and h

are said to be almost surely equal [PX] iff the set MO =

(t € R*: g(t) # h(t)) satisfies the condition P, (4y) = 0.
The discussion above provides the justification for the following
Theorem Al-2
g(X) = h(X) a.s. iff g=h a.s. [PX], where PX is the
probability measure induced by the random vector X. i

Independence of random vectors is expressed in terms of the events

they determine.
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DEFINITION. An arbitrary class (Xi: i € J)} of random vectors is
independent iff for each class {Mi: i € J} of Borel sets on the respective
codomains of the Xi the class [X-l(Mi): i € J} of events is independent.
This means that the product rule holds for each finite subclass of the
class of events. The following is known to be consistent with the above.
DEFINITION. Two classes (X : t € T} and (Y,:u € U} form an independent
family of classes iff for each finite Tn C T and Um C U the random

£ Xt s eees Xt ) and (Yu , Yu s sees Yu ) form an

1 2 n 1 2 m

vectors (X

independent pair.
The latter definition extends readily to arbitrary families of classes.
In the next section, we state the condition for independence of a class of
random vectors in terms of mathematical expectation.

If ({X,Y) is an independent pair of random vectors (any finite dimen-
sions) and g, h are Borel functions on the codomains of X, Y, respectively,
then {g(X),h(Y))} 1is an independent pair. This follows from the fact
that (g(X) € M) = (X € g7 ()] and (h(Y) € N} = (¥ € h" 1)}, so that
P({g(X) € M} N {(h(Y) € N} =P({X € g'l(M)} ni{ye h"l(N)J) =
plx € g7 tanlely € hta)] = plg®) € MIP[h(Y) € N]. It should be apparent

how this result extends to arbitrary classes.
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2. Mathematical expectation

The concept of mathematical expectation incorporates the notion of a

probability weighted average. Suppose X 1is a simple, real-valued random
variable with range {tl, tZ’ ey tn}. The mathematical expectation of X
is E[x] = .gltiP(X = ti). Each possible value t; is weighted by the
probabilityl;hat value will be realized; these weighted values are summed
to give a probability weighted sum; since the total weight is one, the
sum is the same as the average.
To extend the notion, we consider next a nonnegative random variable
X. In this case, there is a nondecreasing sequence of simple random var-
iables which converge to X. We define
Elx] =[x dp = Lim E[x I,
A study of the technical details shows that the limit does not depend upon
the particular approximating sequence selected. To complete the extension
to the general case, we represent X as the difference X+ - X_ of the
two nonnegative random variables defined as follows:
X(w) for X(w) >0 0 for X(w) >0
X+(w) = X (W)=
0 for X(w) <0 - X(w) for X(w) < 0.
Then E[X] = E[Xx] - E[Xx]. Thus E[X] is the limit of the probability
weighted averages of the values of the approximating simple functions. As
such, mathematical expectation should have properties of sums or averages
which "survive passage to a limit." This is, in fact, the case. The
defining procedure defines a very general type of integration (Lebesgue
integration).
For convenience, we list and assign numbers to those properties of
mathematical expectation which are most useful in investigations such as

those in subsequent sections. Since an indicator function for an event
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is a simple random variable whose range is [0, 1}, we have

El) E[IA] = P(A).

Use of Theorem Al-1 and the fact that IMXN(X’Y) = IM(X)IN(Y) gives the
following important special cases.

Ela) E[IM(X)] =P(X €M and E[IM(X)IN(Y)] =P(X €M, Y€N) (with exten-

sion by mathematical induction to any finite number of random vectors),



Elementary arguments show that the following properties of sums hold also

for mathematical expectation in general.

E2) Linearity. E[aX + b¥] = aE[X] + bE[Y] (with extension by mathe-
matical induction to any finite linear combination),

E3) Positivity; monotonicity.

a) X>0 a.s. implies E[X] >0, with equality iff X =0 a.s.

b) X>Y a.s. implies E[X] >E[Y], with equality iff X =Y a.s.
It should be noted that monotonicity follows from linearity and positivity.

The next property is not ordinarily discussed in elementary treatments,
However, it is essential to much of the theory of mathematical expectation.

Suppose Xn < Xn a,s. for all n>1 and Xn(w) -»> X(w) for a.e. w.

+1
By property E3), we must have E[Xn] S.E[Xn+1] S_E[X]. Since a bounded
monotone sequence of real numbers always converges, we must have

lim E[Xn] =L< E[xX]. Sophisticated use of elementary ideas establishes
—>C0

Ehe fact that the limit L = E[X]. A similar argument holds for monotone

decreasing sequences. Thus, we have

E4) Monotone convergence. If Xn - X monotonically a.s., then

E[Xn] - E[X] monotonically.
In many ways, these four propertiescharacterize mathematical expectation as
an integral. A surprising number of other properties stem from these. In
the development of the idea of conditional expectation, we establish its
integral-like character by establishing analogs of EL) through E4).

By virtue of the definition and property Ela) we can characterize

independence of random vectors as follows.
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E5) 1Independence. The pair {X,Y} of random vectors is independent
iff E[IM(X)IN(Y)] = E[IM(X)]E[IN(Y)] for all Borel sets M, N
on the codomains of X, Y, respectively,
iff Elg)n(¥)] = Elg)]IE[h(Y)] for all real-valued Borel
functions g, h such that the expectations exist.
For an arbitrary family of random vectors, we have independence iff such a
product rule holds for every finite subclass of two or more members.
The next property plays an essential role in the development of the
concept of conditional expectation. We prove the basic result, which
suffices for developing the properties of conditional expectation; the
extension, whose proof requires some advanced ideas from measure theory,
is used in developing certain equivalent conditions for conditional
independence, given a random vector (Sec D5).
E6) Uniqueness.
a) Suppose Y is a random vector with codomain K" and g, h are
real-valued Borel functions on the range of Y. If E[IM(Y)g(Y)]
= E[IM(Y)h(Y)] for all Borel sets M in the codomain of Y,
then g(Y) = h(Y) a.s.
b) More gemerally, if E[L (VI (2)g(¥,2)] = E[L, (DI (2)h(¥,2)]  for
all Borel sets M, N in the codomains of Y, Z, respectively,
then g(Y,Z) = h(Y,Z) a.s.
PROOF OF a).
Suppose g(u) > h(u) for u in the set N. Then IN(Y)g(Y) > IN(Y)h(Y),
with equality iff Y(w) does not belong to N. By E3), E[IN(Y)g(Y)]
= E[Ly(Wh®] iff I (Mg(¥) = Iy(Nh(Y) a.s. iff P(Y € N) = 0.
A similar argument holds for the opposite inequality. Thus, the total

probability of the event {g(Y) # h(Y)} is zero.
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DISCUSSION OF b)

The second part is more general, since the sets Q = M X N, with

IQ = IMIN’ form only a subclass of the Borel sets on the codomain of

the combined vector (X,Y). However, a standard type of argument in
measure theory shows that if equality holds for sets of this subclass,

it must hold for all Borel sets. Application of part a) gives the desired

result. ]

Several useful properties are based on El through E4), with monotone
convergence playing a key role. The following are among the most important.

E7) Fatou's lemma. If X >0 a.s., E[lim inf xn] < lim inf E[Xn].

E8) Dominated convergence. If Xn -~ X a.s. and \an <Y a.s., for each

n, with E[Y] finite, then E[Xn] - E[X].

@

E9) Countable additivity. Suppose E[X] exists and A = Ai' Then

) i=1
E[IAX] =z E[IA'X].
i=1 i

The following property is used as the basis for a general definition
of conditional expectation, given a random vector. It is based on the
celebrated Radon-Nikodym theorem and the fact, noted in the previous
section, that if Z 1is measurable-Y, then there is a Borel function e
such that Z = e(Y). We accept this result without proof. It is made
plausible in certain special cases in the developments in Sec C2.

E10) Existence. If E[g(X)] is finite, then there is a real-valued
Borel function e, unique a.s. [PYJ, such that
E[IM(Y)g(X)] = E[IM(Y)e(Y)] for all Borel sets M in the codomain
of Y.
Recall, by Theorem Al-2, e is unique a.s. [PY] iff e(Y) is unique a.s.

A number of standard inequalities are employed repeatedly in probability

theory. Establishment of these depends upon setting up the appropriate
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inequalities on random variables, then utilizing monotonicity E3). The
appropriate inequalities on the random variables are often expressions
of classical inequalities in ordinary analysis. Some of the more important

inequalities are listed for convenient reference in Appendix I.
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3.

A-1.

A-2.

A-3.

A-5.

A-6.

Problems
For each of the following random variables, describe the sigma field
F(X) determined by X.

i) X = IA

ii) X

aIA + bIB + cIC (canonical form)

If X=-2I, +0I,+1I,+4I  (canonical form), describe x'l(M) for

c
i) M= (=, 0], ii) M= (-2, 1] (2,4]. iii) M= (=, 3]

Suppose X has distribution function FX with
0 for t<O0
F(t) = | L+ 3t)/4  for 0<t<1
1 for 1<t
For which of the following functions, if any, is 8, = B a.s. [PX]7

gl(t) =t+1 for all t

0 for £t <0
gz(t) =4t+1 for 0<t<1
2 for 1<t
g3(t) =t+k+1 for k<t<k+1, all integers k, all t

If X and Y are real random variables, let
X() for X(w) >0 -X(w) for X(w) <0

X+(w) = X_(w) =

0 for Xw) <0 0 for X(w) >0

Show that

a) X+ and X  are Borel functions of X, hence are random variables.
b) XY is a random variable
c) aX +bY 1is a random variable (a,b are constants).

m n n q .
Suppose g: R - R and f: R - R' are Borel functions. Show
that the composition fog: R" > R is Borel.

Use Theorem Al-1 and property El) for expectation to establish

property Ela).



A-7.

A-8.

A-10.

Use linearity E2) and positivity for expectation to establish

monotonicity.

a) Suppose X >0 and E[X] is finite. Use the monotone convergence
theorem E4) to establish countable additivity E9) for expectation.

b) Extend the result of part a) to the general case.

If X 1is real, use the fact that X < |X| and - X< [X]| to

establish the triangle inequality E11) for expectation.

Establish the mean-value theorem E12) for expectation.



B. Conditional Independence
of Events



B. CONDITIONAL INDEPENDENCE OF EVENTS
1. The Concept
2. Some Patterns of Probable inference
3. A Classification Problem

4. Problems

B1-1
B2-1
B3-1

B4-1



B. Conditional independence of events

1. The concept

In setting up a probability model for a system under study, the modeler
utilizes all available prior knowledge about the system to determine prob-
ability assignments to appropriate events. This knowledge may be obtained
from systematic statistical study, or from mathematical deductions based
on assumptions supported by experience or experiment, or, less formally,
from the judgment of a decision maker. These probability assignments serve
to determine a prior probability measure. The probability P(A) of an
event A provides a measure of the likelihood of the occurrence of this
event.

Further experience or experiment may produce information which makes
it appropriate to revise the probability assignments to reflect new like-
lihoods of various events. Such revisions amount to the introduction of
a new probability measure. Typically, the information received yields
partial knowledge of the character of the outcome. When properly expressed,
this new information serves to identify an event C which has occurred.
There may be subtleties and difficulties in determining exactly what this

conditioning event C is (cf. Pfeiffer and Schum [1973], Sec 5-1). The

difficulties center about the question: What information is obtained by
whom? But, in principle at least, such an event is determined.

There is nothing in the probability medel to require a specific manner
of reassigning probabilities. However, considerable experience has shown
that a fruitful way to make the new assignment of probability to event A,
given the occurrence of conditioning event C, is to utilize the rule

P(A|C) = P(AC)/P(C), provided, of course, P(C) > 0.

We call P(Alc) the conditional probability of A, given C. For fixed

C, P(‘iC) is a new probability measure, with all the formal properties



of the original, or prior, probability measure P(-).

It sometimes happens that occurrence of the event C does not affect
the likelihood that A will (or will not) occur. Thus, we may be able to
assert that P(A|C) = P(A) or P(AjC) = P(A|Cc). As a matter of fact,
straightforward use of the defining relation for conditional probability
shows that if 0 < P(A) <1 and 0 < P(C) <1, then the following sixteen

relations are equivalent-- that is, if one holds, so do the others.

P(AlC) =P(4) P(C]a) =P() P(AC) = P(A)P(C)

P(Alc®) = P(a) p(cla)y =P P(AC®) = P(A)P(C)
pa%jc) =p() P(C|AS) =P(C) P(A°C) = P(a%)P(C)
p(a%[c%) = p(a%) p(c®|a%) = p(c%) P’ = pa%)p(c%)

C

p(alc) = palc®)  p@a%[c) = p@%[c®)  p(c[A) = P(c]A) p(c®|A) = p(c®|A).

If any of these holds, we suppose the events A, C form an independent
pair, in a probabilistic sense. It is easy to check that the equivalence
of the four product rules in the right-hand column holds for the cases

in which either P(A) or P(C) takes one of the extreme values 0 or 1.
Also, the first product rule is symmetric with respect to the events A, C.
Thus, it is convenient to make the definition of independence in terms of
this product rule, as follows:

DEFINITION. The pair ({A,B} of events is (stochastically) independent

iff the product rule P(AB) = P(A)P(B) holds.
An arbitrary class of events is independent iff a corresponding product
rule holds for every finite subclass of two or more events from the class.
The list of equivalent relations above (with C replaced by B) shows that
. c c c _c. .
If any one of the pairs {A,B}, {A,B"}, (A",B}, or (A",B} is
independent, so are the others.
Although the product rule is the basis of the formal definition, the essential

idea of independence is the lack of conditioning as exhibited in the fact



that independence holds iff P(A|B) = P(A|B®) = P(A) iff P(B|A) =
P(BIAC) = P(B). The occurrence or nonoccurrence of B does not affect the
likelihood of the occurrence of A, and the occurrence or nonoccurrence of
A does not affect the likelihood of the occurrence of B.

Example Bl-a

Consider two contractors working on two entirely different jobs. Let

A = event contractor 'a'" completes his job on schedule,

B

event contractor 'b" completes his job on schedule.

It may well be that these two contractors work in a way that the performance
of either has no affect on or relation to the performance of the other.
Thus, it may be that P(AIB) = P(A’Bc), in which case the common value

is P(A). We should thus assume, in modeling the situation, that {A,B} is

an independent pair of events. 1

Suppose {A,B} form an independent pair under the original probability
measure. This independence is not an inherent property of the events (unless
at least one is either the impossible event or the sure event). Stochastic
independence is a property of the probability assignment, hence is determined
by the probability measure P(-). Change to a new probability measure Pl(')
may destroy the stochastic independence. The following extension of the
contractor example shows how stochastic independence may fail to hold, even
though the contractors work "independently" in an operational sense. It
also leads to the concept of conditional independence.

Example Bl-b
Consider again the case of the two contractors. There may be some factor

in the work situation which affects the performance of both. Suppose the

jobs are outside, where performance can be affected by the weather. Let

C = event the weather is '"good". It may be reasonable to suppose that
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P(A‘BC) = P(AIBCC). That is, given good weather (i.e., the occurrence

of C), the performance of contractor 'b" has no effect on the perform-

n,n
.

ance of contractor 'a A similar situation may hold in the case of
bad weather. Since P(A[C) = P(AB|C) + P(AB®|C) = P(B|C)P(A|BC) +
P(BCIC)P(A}BCC), the equality P(AIBC) = P(AiBCC) implies that the common
value is P(A|C). Under these conditions, the pair {A,B} will usually not
be independent. There is a 'probabilistic tie'" between these two events
by virtue of their relationships to the common event C. Let us examine
the contractor example further by assigning some reasonable numerical
values. Suppose

P(A|C) = 0.95 P(B|C) = 0.9 P(C) = 0.7

p(a/c) = 0.45  P(B|c®) = 0.50 P(c®) = 0.3,

Under the conditions P(AIBC) = P(A|BCC) and P(A|BCC) = P(A]BCCC), we have

P(4B) = P(C)P(B|C)P(A|BC) + P(c®)P(B|C®)P(A|BC)
=0,7%X 0.9 x 0.95 + 0.3 X 0.5 X 0,45 = 0.7059
P(A)P(B) = [P(alc)p(c) + palc®)p )] [p(BlC)P(C) + P(B|C®)P(C)]

[0.95 x 0.7 + 0.45 X 0.3][0.96 x 0.7 + 0.5 x 0.3] = 0.6576.

Thus, P(AB) # P(A)P(B), so {A,B} is not independent. If the contractors
work '"independently', what is the tie between their performances? If A
occurs, the likelihood of good weather is high, so that the likelihood of
the occurrence of B is high. The numbers turn out to be P(C[A) =
P(A|C)P(C)/P(A) = 0.83 > 0.7 = P(C) and P(B|A) = P(AB)/P(A) = 0.882 >
0.822 = P(B). 1If this is the only effective tie between events A and

B, then once the weather is determined, there is no further influence

of the performance of one contractor on that of the other. 0

Let us examine further the assumption that P(A]BC) = P(A!BCC). Straight-
forward use of the defining relation for conditional probability and some

elementary properties show that the following conditions are equivalent:



n
L}

P (4] BC) P(AlC)  P(BlAC) P{R{C)  P(4B|C) P(4|C)P(B|C)

i
]

palB’c) =paje) P lac) =ptle)  pas®ic) = palc)p(%|c)

1

P(B/C)  P(a"BlC)

[l
i
i

P(A°|BC) =pP(a°jc)  pBlASC) P(A°|C)P(B|C)

p3le)  paslc) = pa"|o)p(BS|C)

il
]

PA%|B0) = p(a%ic)  p8%A%0)

p(alBC) = PalB%c)  P(a°|BC) = P(a%!8%C)

P(B|AC) = P(B]A°C)  P(BY|AC) = P(B°|A%C).
In view of our discussion above, it seems reasonable to call the common

situation conditional independence, given C. Once C occurs, the occurrence

or nonoccurrence of B does not further affect the likelihood of A, etc.
As in the case of ordinary or total independence, we utilize the product
rule as the basis of the mathematical definition, although some of the other
equivalent relationships may be more useful in modeling.

DEFINITION. The pair {A,B} of events is conditionally independent,

given C, iff the product rule P(AB|C) = P(A/C)P(B/C) holds.
An arbitrary class of events is conditionally independent, given €, iff
a corresponding product rule holds for every finite subclass of two or more
events from the class.

The product rule shows that conditional independence, giver C, is
just ordinary independence for the probability measure PC(-> = P(-SC).
Conditioning by C leads to a new probability measure. In terms of this
new probability measure, the pair {A,B}] 1is stochastically independent.
As for the prior probability measure, we can assert that

If any of the pairs (A,B}, (4,8}, {A%,B}, or (a°,B%) is
conditionally independent, given C, then so are the others.

In Example Bl-b, the conditioning event ¢ 1is such that we have

‘o . . ~ - . c .
conditional independence, given C, and also, given C . If the weather
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is good, the contractors work independently; they also work independently
if the weather is bad. Such is not the case for all conditioning events.
Example Bl-c

Suppose the two contractors of the previous example use some common item.
Let D = event this item is in good supply and D° = event this item is in
short supply. If the supply is good, it is reasonable to suppose that the
performance of one contractor has no e ffect on that of the other. Hence,
it is reasonable to assume that P(AIBD) = P(A!BCD), which is equivalent

to assuming {A,B} is conditionally independent, given D. However, if
the supply is short (i.e., if p° occurs), the contractors may be in compe-
tition for the scarce item. Thus it may be reasonable to suppose P(AlBDc)

< P(A BD°). If contractor '"b" completes his job on time he has probabl
y

"ot
.

obtained the scarce item to the detriment of contractor "a This condi-
tion violates one of the equivalent conditions for conditional independence
of (A,B}, given Dc, so that we must assert conditional nonindependence.
It is not difficult to show that in this case the pair {A,B} is not

totally independent. W]

The following development shows that conditional independence, given

one or both C and CS is unlikely to yield total independence.
In the case of conditional independence, given C, and given Cc, we have

P(4B) = P(A|C)P(B|C)P(C) + P(A|C®)P(B|C®)R(C),
In the case of conditional independence, given C, but conditional non-
independence, given Cc, we have

P(AB) = P(A|C)P(B|C)P(C) + P(AB|C®)P(CC).
In either case, we have

P(A)P(B) = P(AIC)P(B[C)PZ(C) + p(a]c®pB|c)P? (%)

+ [p(alc)p8|c®) + p(a|c®)p|Cc)]R(C)R(CC).



Only in unusual cases would we have P(AB) = P(A)P(B).

provided in Problem B-5.

An example is



2, Some patterns of probable inference

We now consider a commonly encountered pattern of probable inference.
We begin by giving two examples, then lifting out the essential pattern.
When the appropriate conditional independence is identified, we show how

it may help in determining the desired posterior odds.

Example B2-a

Associated with a certain disease are several symptoms. The presence
of the symptoms does not guarantee the presence of the disease, but with
high probability they occur when the disease is experienced and do not oc-
cur when the disease is absent. The symptoms are observed by chemical tests
of blood samples, The tests themselves are not conclusive, but have high
probability of detecting the presence or absence of the symptoms correctly.
Now the chemical tests respond only to appropriate conditions in the blood
and are not influenced by how the patient feels or otherwise responds to
his condition. Let H = event the patient has the disease, D = event the
symptoms occur (in the blood condition), and R = event the tests indicate
the presence of the symptoms. Since the tests respond to the symptoms and
not directly to the disease, it seems reasonable to suppose P(R]DH) =
P(R|DH®) and P(R|D°H)= P(R|D°H®), so that (R,H} is conditionally inde-
pendent, given D, and given °. 11
Example B2-b

A firm plans to market a new product nationally. Suppose the market
may be characterized reasonably unambiguously as ''favorable'" or 'unfavor-
able", The company executives decide to check market conditions in a test

area, Let H = event the national market is favorable, D = event the test
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market is favorable. Past experience allows reasonable estimates of

P(D]H) and P(D]HC). However, direct, completely reliable determination of
the condition of the test-area market would be time consuming, expensive,
and would entail the risk of a competitor capturing the market. A market
survey of the test area is made. The results of such a survey are not con-
clusive; but under the assumed conditions, they are affected only by the
conditions in the test area and not by existing conditions in the national

market, except as the latter conditions are reflected in the test area. If

R = event the survey shows the test market is favorable, we suppose that
P(R|DH) = P(R|DH®) and P(R|D°H) = P(R|D°H"). This means that (R,H} 1is

conditionally independent, given D, and given o°. [

These two examples exhibit features which are typical of a variety
of inference problems.

1) There is an objective system about which some inference is to be made.
In the first example, the objective system is the patient; in the
second, it is the national market. The objective system is presumed
to be in one of two objective states (the patient has the disease or
does not; the market is favorable or is not). If H = event the
objective system is in one of these states, then prior odds
P(H)/P(HC) = a > 0 are supposed known (or are estimated).

2) The objective system is not directly observable-- at least at the time
of making the inference. But there is a data system which may be in
one of several states (in each of the examples above, the data system
is in one of two states). Each data state is "inconclusive' as to
the objective state, but there is a "probabilistic linkage' between
the data states and the objective states, expressed in terms of

appropriate conditional probabilities, as follows. Let Dj = event the



3)

4)

5)

data system is in state j (in the two-state system, we use D
and Dc). We suppose the conditional probabilities P(Dj‘H) = bj >0
and P(DjIHC) = cj > 0 are known or may be estimated. Use of the

ratio form of Bayes' rule shows the posterier odds to be

P@|D,)/PH |D,) = P)P(D, |H)/PE)P(D, |H®) = ab,/c..
3 3 J J 3 1]
In a typical situation, we do not have perfect information about the

d-ta state; rather, we have the report of an observer, or sensor.

For simplicity, we discuss a two-state data system and let R = event
the observer reports that D has occurred. If such a report is

received, the effective posterior odds are P(HIR)/P(HC|R) =

aP(RIH)/P(R\Hc). Since the objective system is not observable,

P(RIH) and P(Rch) are usually not known. We suppose information

is available about the reliability of the observer. That is, we
suppose information is available to estimate P(R]D) =d and P(Rch)
=e, with 0<d<1 and 0<e<1l, Note that "perfect information"
about the data system requires e = 0 (for any positive value of d).
If the objective system is not observable, only the condition of the
data system should affect the report. Thus, we should have P(R|DH)

= P(R|pH®) and P(R|D°H) = P(R|D°H®). This is precisely the condition

that (R,H} 1is conditionally independent, given D, and given .

This does not imply that ({R,H} 1is independent.
Let us see how the assumption of conditional independence may help in
determining the posterior odds, given the report.

P@ |R) _P() P(RD|H) + P(RD"|H)
PH |R) PES) P(RD|ES) + P(RDS|H®)

P(p|E )P(R|DE ) + P(D°|B )P (R|D°H )
p(0|%)P R| DH®) + P(0°|u)P R|DES)
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Under the assumed conditional independence, this becomes
PG R _, . P(d/H )PR|D) + P(D°|H )P(R|D")
P(E°|R) p(0|u®)P(R|D) + (0 [H)P(R|D)

which may be determined from the data available.
For a more general formulation of this problem,with more than two objective
states and more than two data states, see Schum and Pfeiffer [1973]. To
illustrate the analysis, we return to the previous examples.
Example B2-a (Continued)
The objective system is the patient, selected at random from among those
who present themselves at the clinic, and H = event the patient has the
disease in question. Suppose 10 percent of the patients examined at the
clinic have the disease. Then prior odds a = P(H)/P(HC) = 1/9. The data
system is the blood condition. Let D = event the patient has the symptoms
associated with the disease. Previous clinical experience shows P(D]H) = 0.96
and P(DCIHC) = 0.95. Let R = event the symptoms are indicated. The reliability
of the testing procedure is such that P(R]D) = 0.97 and P(RIDC) = 0.01. The
patient is examined, a blood test made, and the report is found to be posi-
tive (i.e., event R occurs). According to the pattern above

P(H|R)
P(HS|R)

1 _ 9316
1 ~ 5220

~ 1.78.

The positive result of the test changes the prior odds by a factor of

about 16. The conditional probability that the patient has the disease,

9316/5220

given the test result is P(HIR) = T 931675220

~ 0,64, 1

We extend the second example to & slightly more general situation.
Example B2-b (Continued)
Consider the test-market problem described above. Initially, company

executives think the odds for a favorable market are P(H)/P(HC) = 3,
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Past studies indicate P(DIH) = 0.8 and P(D,Hc) = 0.2, If the test market
if found to be favorable (event D occurs), then

P@H |D) _ P(D!HC>P<H2 =28 312
p@S|p)  pES)PE")

.2
However, direct, completely reliable checking of even the test market condi-

tions would be time consuming, expensive, and would entail the risk of a
competitor capturing the market. Two market-survey firms are employed to
survey the test market. Each makes a survey and reports its conclusion
about the condition of the market. Let

1n_ 1

A = event firm "a" reports the test market is favorable

B

event firm 'b" reports the test market is favorable

The companies work "independently" in such a way that the investigation
carried out by one does not affect that carried out by the other, regardless
of the state of the test market. Because of the nature of the surveys,

the results cannot be completely reliable. Suppose
P(A|D) = 0.9, P(a|D%) = 0.3, P(B|D) = 0.8, and P(B|D") = 0.2.

Find the posterior odds P(H|AB)/P(HclAB) for a favorable market if both
reports are favorable,

SOLUTION.

Again, we are faced with the problem of "independent tests." Complete
independence of {A,B} 1is not expected, for the outcomes of both tests

are related to the condition of the test market. However, since the

survey teams work in an operationally independent manner and neither team

is affected by the national market except as it influences the test market,
it seems reasonable to assume that P(AIBD) = P(AIBCD), P(A\HD) = P(A|HCD),

P(B|HD) = P(B|HD), and P(AB|HD) = P(AB|H®D). These conditions imply
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that {A,B,H} is conditionally independent, given D. A parallel argument

yields conditional independence, given D°. We note that

P(AB|H) = P(ABD|H) + P(ABD®|H) = P(D|H)P(AB|DH) + P(D°|H)P(AB|DH)

n

P(D|H)P(A|D)P(B|D) + P(D°|H)P(a|D%)P(B|D)

and similarly for conditioning event Hc, We may, therefore, write

P(H|AB) _ P(H)P(AB|H)
p(a°[AB)  P(a%)P(AB|E)

_P@) PO[H)PQ|D)P(B|D) + P |H)P@A|D)P(B[D%)
p@®) p(d|E)P(A|D)P(B|D) + P(0°|5%)P(a[D%)P(B[D")

3 0.8X0.90.8 + 0.20.30.2 _ 47 _ o,
0.2x0.9%0.8 + 0.80.3x0.2 16  '°°

The value 9.2 is somewhat less than the odds of 12 obtained if perfect

information were available about the test market, as might be expected. [

If we do not have conditional independence, the problems are still
meaningfull, but more detailed information is required for solution. Thus,
we need P(R|DH), P(R|D°H), P(R|DH®), and P(R|DH®). However, in this
case it would be simpler to operate with P(R]H) and P(R]HC), since R
must be treated as a datum directly related to H. The reason for not
doing this is that the objective system is not available for observation.
But it is precisely in this situation that we should assume that P(R]D)

= P(R]DH), etc., since if the objective system is not available to the

observer, only the condition of the data system can affect the report.
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3. A classification problem

Suppose subjects are drawn from two groups. Each subject answers a
battery of questions, or is otherwise tested with regard to a set of
characteristics. The result is a profile of data for each subject tested.
Each individual is to be classified in one of two groups, on the basis of
the test results. The problem may be formulated in probabilistic terms
as follows (see Schum and Pfeiffer [1977]).

There are n data classes si, i=1, 2, ..., n, one corresponding
to each question or test. Let

D., = event the answer to question i falls into category (i,j)

ij

Then 8, = {Dil, D, D

190t imi]' 1f the list of possible answers or

results is exhaustive and mutually exclusive, then Si is a partition of
the basic space on which probability is defined.

We suppose the subjects are drawn from two mutually exclusive groups.
We let Gk = event the individual interviewed belongs to the kth group.
In order to make probable inferences, we must suppose that the probabili-
ties P(Gk) and P(Dijlck) are positive and known. If we assume that
no datum is conclusive, we must also have 0 < P(Gk[Dij) <1l for all
permissible i, j, k. Since each ﬁi is a partition, we have
z P(D,.iG ) =1 for each permissible i, k.
j ij' 'k

When an individual is interviewed, a profile is determined. A given
profile corresponds to an event Ep = Dllezj2 ces Dnjn. The various
possible profiles are mutually exclusive, so that events of the type EP
constitute a partition. We ask, "What is the inferential value of the
compound event corresponding to a profile?'" The usual answer is formulated
in terms of the likelihood ratio Lp = P(EplGl)/P(EP‘GZ) or, equivalently,

the log-likelihood ratio Ap = log Lp' We may take logarithms to any base,




so long as we are comnsistent.

The problem, as it stands, would seem to require that we have condi-
tional probabilities for each profile, for each of the two groups. This
much data is rarely available, nor is it needed in a well-designed experi-
ment. In the usual experimental design, an attempt is made to formulate
the questions or tests in such a manner that responses or results are
"independent." Once more, we have the issue of conditional independence.
The probabilities of various answers to a given question should depend
upon the basic characteristics of the subject (hence on his or her group
membership), but should not depend upon his or her responses to the other
questions . That is, a given subject's response to a particular question
should be the same whether or not the other questions are asked, or regard-
less of the order in which they are asked. This does not mean that the
responses to the questions are totally independent; the answers are
conditioned by the group to which the subject belong (i.e., by the char-
acteristics common to that group), else the questions have no diagnostic
value. The desired independence holds within a given group, but the

probability distributions are different in the two groups. Hence we make

the assumption that the family (81, sz, ooy @n} is conditionally inde-
pendent, given Gl’ and also given G2° In this case

P(D, ; fGl
i
—r and A =ZA,
i (D5 1) Poi

)
= log L., .
i 8 131

We may carry the formalism further in a useful way by introducing the

random variables
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Ti = ; AijID.. (has value Aij whenever Dij occurs) .
] 1]
If E =D,,D,, ...D , occurs, then T =3y T, has the value
P 1J1 2J2 My it
. +tA,, + ...+ A, = A . Hence we utilize
h1j 2] nj P
1 2 n
T = ; Ti =3 ApIE (has value Ap whenever Ep occurs).
1 P P
Use of Bayes' theorem gives
P(GI}EP) P(EplGl)P(Gl) P(G,)

log -t where t

PG, E) " log BE_[6,)B(C,) - T A IChE

Standard practice is to classify the subject in group 1 iff T > t.s

(G, [E )
P(G2 Ep)
This formulation allows us to deal with the problem of misclassification

which corresponds to > 1.

probabilities. Consider the conditional distribution functions FT(-lGl)

and FT(-|G2), defined by FT(t{ck) =P(T < t]G k =1, 2, 1In the con-

k)!

ditionally independent case, (Ti: 1 <i<n} is an independent class with

respect to each of the probability measures P(-‘Gl) and P(-'GZ). The

central limit theorem ensures that for sufficiently large n both FT(-|G1)
and FT(-|G2) are approximately normal. Examples show that the normal ap-
proximation may be quite useful for n as small as 4 or 5.

With the conditional distributions for T, standard statistical tech-
niques may be utilized to determine the probabilities of misclassification
errors. Under some conditions, better choices of the decision level t.
may be made. For a discussion of these issues, see Schum and Pfeiffer [1977].

Example B3-a

Subjects are to be classified in one of two groups. They are asked to
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respond to a battery of six questions, each of which is to be answered in
one of three ways: yes, no, uncertain. To calibrate the test, a sample
of 100 subjects is interviewed intensively to determine the proper group
classification for each. It is found that 55 belong in group 1 and
45 belong in group 2. If Gl = event a subject belongs to group 1

and G2 = event a subject belongs to group 2, these data are taken to
mean that P(Gl) = 0,55 and P(GZ) = 0.45. The response of this control

or calibration group to the questions is tabulated as follows:

Group 1 (55 members) Group 2 (45 members)
Yes No Uncertain Yes No Uncertain
j= 0 1 2 i= 0 1 2
i=1 17 26 12 i=1 30 10 5
2 7 30 18 2 27 16 2
3 8 40 7 n. . 3 29 12 4 m,
4| 1 31 10 M 4| 25 18 2 M
5 15 25 15 5 14 18 13
6 9 33 13 6 31 7 7

We have assigned, arbitrarily, numbers O, 1, 2 to the answers yes, no,
uncertain, respectively. Thus, D10 is the event the answer to question 1
is 'yes", D42 is the event the answer to question 4 is "uncertain,"” etc.
We interpret the data in the tables to mean that P(DlolGl) = nlO/SS = 17/55
and P(D42|G2) = m42/45 = 2/45, etc.

A subject is selected at random from the population from which the
sample was taken. The subject's answers to the six questions, in order,
are: yes, yes, no, uncertain, no, yes. How should this subject be
classified?

SOLUTION.

The event Ep = D10D20D31D42D51D60 has occurred. We calculate the value
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T = Ap as follows:

Ay = o8 (0, 6))/2(@, ]6,) = log %%/LZ% = -0.769
Ay = log #% = -1.551 Ay, = log %ﬁ% = 1.003
Ny = Lo 12/22 = 1.409 As; = log ?3/23 = 0.128
A60 = log 5%%%% = -1.437 Summing gives Ap = -1,217.

We also find tc = log P(GZ)/P(GI) = log 0.45/0.55 = -0.201. We thus have

T = Ap = -1.217 < -0.201 = tc; hence we classify the subject in group 2.

To consider classification error probabilities, we could assume the con-
ditional distributions for T, given G1 and given G2, to be approxi-
mately normal. By obtaining conditional means and variances for the various
Ti’ we could obtain the conditional means and variances for T, given G1
and given G2. Standard statistical methods could then be utilized. We do
not pursue these matters, since our primary concern is the role of condition-

al independence in formulating the problem. 0

It is not necessary that all the questions be conditionally independent.
There could be some intentional redundancies, leading to conditional
dependencies within each group. Suppose in the numerical example above
that questions 1 and 2 were made to interlock. Then it would be
necessary to consider this pair of questions as a single composite question
with nine possible answers. Frequency data would be required on each
pair of answers (no,no), (no, yes), (no, uncertain), (yes, no), (yes, yes),
(yes, uncertain), (uncertain, no), (uncertain, yes), (uncertain, uncertain).

One would still suppose conditional independence for the set of questions,
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provided this composite question is dealt with as ome question. More
complex groupings could be made, increasing the amount of data needed to

utilize the classification procedure, but there would be no difference in

principle.
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4.

B-1

B-2

B-3

B-5

B-7

Problems

Prove the equivalence of at least four of the sixteen conditions for
independence of {A,B}.

Complete the argument in Example Bl-b to show that the equality
P(A|BC) = P(AIBCC) implies that the common value is P(AIC).
Establish the equivalence of at least four of the sixteen conditions
for conditional independence of ({A,B}, given C.

Show that the condition P(A,BDC) < P(AIBCDC) in Example Bl-c implies
p(a|BD%) < P(4|D%).

A group of sixteen students has an equal number of males and females.
One fourth of the females and three fourths of the males like to play
basketball. One half of each likes to play volleyball. A student is

selected from the group at random, on an equally likely basis. Let

A = event the student likes basketball,
B = event the student likes volleyball,
C = event the student is male.

Suppose {A,B} is conditionally independent, given C, and conditionally
independent, given ¢®. Sshow that {A,B} 1is independent and ({B,C}
is independent, but {A,B,C} is not independent.
In Example B2-b, show that the conditions i) P(A|BD) = P(AIBCD),
ii) P(alHD) = P(A|u°D), iii) P(B|HD) = P(B|H®D), and iv) P(AB|HD)
= P(AB|HCD) together imply that {A,B,H} is conditionally independent,
given D.
In Example B2-b, determine P(HIABC)/P(HCIABC), the conditional
nan

odds, given conflicting reports of "favorable" by "a" and "unfavorable"

by "b".
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B-9

Consider the following problem, stated in a manner common in the
literature. A patient is given a test for a type of cancer. The
probability of a false positive is 0.10. The probability of a false
negative is 0.20. One percent of the tested population is known to
have the disease. If a patient receives two independent tests, and
both are positive, find the probability the patient has cancer.
a) Let C = event the person selected has the given type of cancer
T

1

T

event the first test indicates cancer (is positive),

event the second test indicates cancer,
Discuss the reasonableness of the assumptions that {Tl,Tz} is
conditionally independent, given C, and is conditionally
independent, given ct.
b) Under these assumptions, determine P(C]TITZ).
c¢) Under these assumptions, determine P(C]TIT;).
A student decides to determine the odds on the forthcoming football
game with State University. The odds depend heavily on whether State's
star quarterback, recently injured, will play. A couple of phone calls
yield two opinions whether the quarterback will play. Each report
depends only on facts related to the condition of the quarterback and
not on the outcome of the game (which is not known, of course). The
two advisers have operated quite independently in arriving at their

estimates. The student proceeds as follows. He lets

W = event the home team wins the game,

Q = event the star quarterback plays for State,

A = event the first informant is of the opinion he will play,
B = event the second informant is of the opinion he will play.

The student (having studied Example B2-b) decides to assume {W,A,B}

is conditionally independent, given Q, and conditionally independent,
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given Qc. On the basis of past experience he assesses the reliability
of his advisers and assumes the following probabilities: P(A‘Q) =

cy.C cl.C ‘s
P(A°[Q°) = 0.8, P(B|Q) = 0.6, and P(8°[Q°) = 0.7. Initially, he
could only assume P(Q) = P(Qc) = 1/2. Expert opinion assigns the
odds P(W|Q)/P(H[Q) =1/3 and PW|QC)/P(W[Q%) = 3/2. oOn the basis
of these assumptions, determine the odds P(WIABC)/P(WC|ABC) and the
probability P(w|ABS).

B-10 A student is picked at random from a large freshman class in calculus.

Let

T = event the student had a previous trigonometry course,

A = event the student made grade "A" on the first examination,
B = event the student made grade '"B" or better in the course.

Data on the class indicate that

P(T) = 0.60  P(A|T) = 0.90 P(A[T) = 0.30

P(BAT) = P(B|A) = 0.60  P(B|AST®) = P(B|A®) = 0.30.

a) The student selected made "B'" or better. What is the probability
P(TIB) that the student had a previous course in-trigonometry?

b) Show that (T,B} is not an independent pair.

B-11 Experience shows that 20 percent of the items produced on a production
line are defective with respect to surface hardness. An inspection
procedure has probability 0.1 of giving a false positive and probability
0.2 of giving a false negative. Units which fail to pass inspection
are given a corrective treatment which has probability 0.95 of
correcting any defective units and zero probability of producing any
adverse effects on the essential properties of the units treated.
However, with probability 0.3, the retreated units take on a character-

istic color, regardless of whether or not they are defective (initially



B-12

or

a)

b)

finally). Let

= event the unit selected is defective initially

= event the unit failed inspection = event unit is retreated

= event the unit is defective after retreatment

= event the unit is discolored after retreatment
Show that it is reasonable to suppose that {C,Dl} is conditionally
independent, given Ic, and that [C,DZ} is conditionally inde-

pendent, given ‘p [Note that IC =P and P(D§D7) =0.]

1
Determine P(Dﬁic), the probability that a unit is defective,

given that it is discolored.

In the classification problem, Example B3-a, determine the appropriate

classification if the answers to the six questions are: yes, no, no,

uncertain, yes, no, respectively.
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C. Conditional expectation

In order to introduce and develop the second concept of conditional
independence, we need to examine the concept of conditional expectation.
The usual introductory treatment of conditional expectation is intuitive,
straightforward, but severely limited in scope. More general treatments
tend to assume familiarity with advanced notions of measurability and
abstract integration theory. We seek to bridge the gap and make the appro-
priate aspects of a general treatment more readily accessible.

1. Conditioning by an event.

If a conditioning event C occurs, we modify our probabilities by
introducing the conditional probability measure P(-JC). Thus, P(4) 1is
replaced by P(AIC) = P(AC)/P(C). In making this change, we do two things:

i) We limit the possible outcomes to those in event C

ii) We "normalize’’ the probability mass in C to make it the new unit

of mass

It seems reasonable to make a corresponding modification of mathematical

expectation, which we view as a probability weighted average of the

values taken on by a random variable. Two possibilities are apparent.

a) We could modify the prior probability measure P(:) to the conditional
probability measure P(-lC), then take expectation (i.e., weighted
average) with respect to this new probability mass assignment.

b) We could continue to use the original probability measure P(-) and
modify our averaging process as follows:

i) TFor a real random variable X, we consider the value X(w) for
only those w in the event C. We do this by utilizing the
random variable ICX’ which has the value X(w) for w in C,

and has the value zero for any ®w outside C. Then E[ICX] is



the probability weighted sum of the values taken on by X in
the event C,.
ii) We divide the weighted sum by P(C) to obtain the weighted
average.
As shown by Theorem Cl-1, below, these two approaches are equivalent.
For reasons which will become more apparent in subsequent developments,
we take the second approach as the basis for definition. For one thing,
we can do the "summing” in each case with the prior probability measure,
then obtain the average by dividing by P(C) for the particular condition-
ing event. This approach facilitates relating the present concept to the
more general concept of conditional expectation, given a random vector,
which is developed in the next two sections.
DEFINITION. If the event C has positive probability and indicator

function IC’ the conditional expectation of X, given C, is the

quantity E[X|c] = E[1.X]/P(0).
Several properties may be established easily.

Theorem Cl-1

a) E[XIC] is expectation with respect to the conditional probability

measure P(-lC)

b) E[1,ic] = pcalo)

c) If ¢ =l? C, (disjoint union), then Elx|clr(Cc) = f E[XlCi]P(Ci).
PROOF OF a)

If X 1is a simple random variable E tkI , then

1

E(x|c] E[ICX]/P(C) = E[z t 1.1 ]/p(c) = z t, ElT, JJ/p(0)

k™C A Ak
£, P(Akic) = Ec[x]

where the symbol Ec['] indicates expectation with respect to the condi-

tional probability measure P(-lc).



If X >0, then there is a sequence [Xn: 1 <n} of simple random

variables increasing to X. This ensures that the sequence {chn: 1 <n}

is a sequence of simple random variables increasing to ICX. By definition,

E[ICX]/P(C) = lrilm E[chn] /P(C) and EC[X] = 1Iilm EC[Xn].

Since E[ICXn]P(C) = EC[Xn] for each n, the limits must be the same.

In the general case, we consider X = X+ - X_, with both X+ >0 and

X_ >0. By linearity,

E[1 x]/p(c) = E[1 X 1/p(C) - E[L X 1/P(C) = E [x] - E [X]

)

E.[x].
Propositions b) and <) are established easily from properties of

mathematical expectation. 8]

The following theorem provides a link between the present concept and
the more general concept developed in the next two sections.
Theorem Cl-2
If event C = Y-l(M) = {Y € M}, for any Borel set M, has positive

probability, then E[IM(Y)g(X)] = E[gX)|Y € MP(Y € M).

PROOF
By Theorem Al-1, I, (Y) =1I,. By definition E[Ig(X)] =E[g(x)|c]P(C).
Hence, E[IM(Y)g(X)] = ElgX)|Y € MlP(Y € M. 0

It should be noted that both X and Y can be vector-valued. The function

g must be real-valued, and M is any Borel set on the codomain of Y.
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2. Conditioning by a random vector-- special cases

In this section, we consider two simple, but important, cases of
conditional expectation, given a random vector. We make an intuitive
approach, based on the idea of a conditional distribution. 1In each case,
the conditional expectation is found to be of the form E[g(X)fY =uy] =
e(u), where e(+) is a Borel function defined on the range of Y. This
function satisfies, in each case, a fundamental equation which provides
a tie with the concept of conditional expectation, given an event, and
which serves as the basis for a number of important properties. This
fundamental equation also provides the basis for extending the concept of
conditional expectation, given a random vector, to the general case.

n m

Case i) X, Y discrete. X = .Z tiIA. and Y = 'Z ujIB.’
i=1 i j=1 j

{w: Y(w) = uj]. We suppose P(Ai) >0

where

Ai = {(w: X(w) = ti} and Bj

and P(Bj) > 0 for each permissible 1i,j. Now

Elg®)]Y = wJR(Y = u ) E[g(X)IBj]P(Bj)

= E[g(X)IB'] by def.

= E[g(X)I{ij](Y)] by Thm Al-1

= i?kg(ti)l{uj}(uk)PXY(ti,uk)

= % g(ti)pXY(ti,uj) since I{uj}(uk) =1
iff j =k,

If we consider the conditional probability mass function

pXY(ti’uj) ~ PX=¢t,, Y= uj)

L T T X

Px|y

we may write

E[gx)|Y uj]P(Y =uy) = ( ¥ g(ti)ple(tiluj)]pY(uj)
from which we get

E[g(X)lY = uj] = % g(ti)leY(tiluj) = e(uj) for each uj in the range of Y,
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We may let e(*) be any continuous function which takes on the prescribed
values e(uj) for each uj in the range of Y. Then e(:) is a Borel

function. Suppose M 1is any Borel set on the codomain of Y. Then

n

ElL,(Mg®)] = £ g(t)I

i,k

k)pr(t su )

]

Z gt )Ty ( )py (¢ [ py ()
i,k

=z Il z g(ti)leY(tiluk)]pY(uk)
= IIe)pyly) = El1,(Wem].
Hence, e(*) must satisfx
E[IM(Y)g(x)] = E[IM(Y)e(Y)] Y Borel set M in the codomain of Y
The uniqueness property E7) for expectations ensures e(-) is unique
a.s. [PY], which in this case means e(+) is uniquely determined on the

range of Y. 1

Example C2-a
Suppose X, Y produce the joint distribution shown in Fig, C2-1, De-
termine the function e(:) = E[XIY = -]

SOLUTION.

From the joint distribution, we obtain the quantities

Y(1) = pY(Z) = 3/10 pY(3) = 4/10

L}

Prle D =pyp@[D)

VA L
pepeln - M2 - s

Py @I =pyyGID = 0.

Hence e(l) =1/3(1+ 2+ 3) =

Similarly e(2) =1/3(2+ 3 +4) =3 and e(3) =1/4(2+3+4+5) =7/2

Graphical interpretation. The conditional probabilities pX,Y(k'u), for

fixed u, are proportional to the probability masses on the horizontal line
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u
1/10 1/10 1/10 1/10
34 . . \ )
1/10 1/10 1l/10 Py (E50)
2 4 . . .
1/10 1/10 1/10
14 . . .
—t ¢
1 2 3 4 5

Figure C2-1, Joint distribution for Example C2-a,

\ fXY(t,u) = 2 over triangular region

- u

\
©,0) %mt‘ (1,0)
t=1

Figure C2-2, Joint distribution for Example C2-b,
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corresponding to Y = u. Thus, E[X‘Y = u] is the center of mass for

that part of the joint distribution which corresponds to Y = u. [

Case ii) X, Y are absolutely continuous, with joint density function fXY'

Since the event (Y = u} has zero probability, we cannot begin with
conditional expectation, given the event (Y = u}. We may utilize the
intuitive notion of a conditional distribution, given Y = u, by employing
the following device. Let
fXY(t,u)/fY(u) for fY(u) >0
fle(tlu) =
0 otherwise.
For fixed u such that fY(u) >0 (i.e., in the range of Y), the function

(-lu) has the properties of a density function: (t‘u) >0 and

fely fly

I fx(Y(t|u) dt = 1. It is natural to call this the conditional density
function for X, given Y =u. In part, the terminology is justified by
the following development. Let M be any Borel set on the codomain of Y.

Then

Elg01,(N] = [[ g®)1, (), (c,u) dtau

[ IM(u)[j g(t)fXIY(t]u) dt] £,(u) du

=] I, wewif @) du = E[T,(Ve®]

where e(u) = I g(t)fX{Y(tJu) dt.
Now e(-) must satisfy

E[1,(Ng(] = E[1,(V)e(¥)] V Borel sets M in the codomain of Y.
It seems natural to call e(u) the conditional expectation of g(X), given
Y = u. In the case P(Y € M) > 0, we have by Theorem C1-2

ElT,(De®] = [ T (e @) du = E[g®)[Y € Mp(Y € 1).
If e(-) 1is Borel, as it will be in any practical case, property E7) for

])

expectation ensures that e(Y) 1is a.s. unique, or e(*) 1is unique a.s. [PY

which means that it is determined essentially on the range of Y. )
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Example C2-b

Suppose X, Y produce a joint distribution which is uniform over
the triangular region with vertices (0,0), (1,0), (0,1), as shown in

Fig. C2-2. Now

l-u
fY(u)=ijY(t,u)dt=z dt = 2(1 - u) 0<u<l1
and
fX|Y(t,u) *1-% for 0<t<1-u, 0<u<1 (and zero elsewhere),
Hence
p L 1-u
e(u)=E[X|Y=u]='rth|Y(t|u) dt=1—_—u£ tde = 0<u<l,

Graphical interpretation. The dashed line in Fig. C2-2 1is the graph of

e(u) vs. u, This could have been anticipated by the following graphical

interpretation. If £ is continuous, we may visualize (t[u) as

XY

proportional to the mass per unit length in a very narrow strip on the plane

Iy

about the line corresponding to Y = u. E[XlY =u] is the center of mass

of the portion of the joint distribution lying in that narrow strip. [
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3. Conditioning by a random vector-- general case

The treatment of the special cases in the previous section begins
with the notion of a conditional distribution. While this approach is
intuitively appealing, and quite adequate for the simplest cases, it
quickly becomes unmanageable in more general cases which involve random
vectors of higher dimensions with mixed distributions. We seek a more
satisfactory approach.

We base our development on a simple property derived in each of the
two special cases considered in the previous section. In each case, the
quantity called the conditional expectation of g(X), given Y =u, is
the value e(u) of a Borel function e(-) which is defined on the range
of Y. The random variable e(Y) satisfies
A) E[IM(Y)g(X)] = E[IM(Y)e(Y)] Y Borel sets M in the codomain of Y.
By the uniqueness property E6) for mathematical expectation, e(Y) must
be a.s. unique, which is equivalent to the condition e(-) 1is unique
a.s. [PY]. By Theorem Cl-2 on conditional expectation, given an event,
we have
B) 1f P(Y €M) >0, then E[I,(Me(] = E[eX)|Y ¢ MP(Y € m).
Motivated by these developments, we make the

DEFINITION. Let e(:) be a real-valued, Borel function defined on a
set which includes the range of random vector Y. Then the quantity

e(u) 1is the conditional expectation of g(X), given Y =u, denoted

ElgX)|Y = u] iff
A) E[IM(Y)g(X)] = E[IM(Y)e(Y)] VY Borel sets M in the codomain of Y.
Associated with the Borel function e(+) 1is the random variable e(Y).

Now e(:) is unique a.s. [PY] and e(Y) is unique a.s.
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DEFINITION. The random variable e(Y) is called the conditional
expectation of g(X), given Y, denoted E[g(X)\Y].

Note that we must distinguish between the two symbols:

a) ElgX)|Y="'] = e(-), a Borel function on the range of Y

b) E[g(X)‘Y] = e(Y) a random variable-- for a given w we write

Elgx)]Y] (),

Example C3-a
If the conditioning random vector Y 1is simple, an explicit representation
of e(Y) = E[g(X)IY] is obtained easily. Suppose Y = ; u,I (in
=1 3%
canonical form-- see Sec Al), so that Bj = (Y = uj] and IBj = I{uj}(Y)'

If e(u) = E[g(X)]Y =u], then e(-) is defined for uj in the range
of Y by e(uj) = E[g(X){Y = uj] = E[I{u')(Y)g(X)]/P(Y = uj) (conditional
expectation, given the event (Y = ui]). JHence,
m m .

e(Y) = j§1e<uj)13j = J-ElE[g(X)]Y = uj]I(uj](Y)‘
Thus, when the conditioning random vector is simple, so that P(Y = uj) >0,
the concepts of conditional expectation, given the event (Y = uj}, and
of conditional expectation, given Y = uj, coincide for uj in the range

of Y, and the same symbol is used for both. Use of formula B), above,

gives

Elg()|Y € MY € M) = E[1 (De(¥)]

m
j§1E[g(X) ly = uj]E[IM(Y)I[u

The quantity E[IM(Y)I{uj}(Y)] = P(Y = uj) iff uj €M, and is zero

],
jJ

otherwise. (]



Example C3-b
Consider the random variables X, Y in Example C2-b. Let M be the

semi-infinite interval (-», 0.5], so that (Y € M} = {Y < 0.5}. Then

0.5
P(YEM) = f fY(u) du = 3/4 [May be obtained geometrically.]
[ Y]-m—Oas £ du= [0 (1 -w?au=7/2
E IM(Y)e( ) o= JL e(u) Y(u) u = [ (1 -u)" du=7/24.
Hence
E[X]|Y < 0.5] = (7/24)/(3/4) = 7/18. i

In each of the two special cases considered in Sec C2, we have been
able to produce a Borel function e(:) which satisfies the defining relation
A) for conditional expectation. The uniqueness property E6) shows
e(+) to be unique a.s. [PY]. In Sec C4, we state a number of properties
of conditional expectation which provide the basis for much of its usefulness.
In Sec C7, we provide proofs of these properties based on proposition A)
and properties El) through E6) for expectation. These properties hold
whenever the appropriate Borel function e(-) exists. Thus, they hold
for the two special cases examined in Sec C2 and for others which can be
derived similarly. It would be convenient if we knew the conditions under
which suitable e(+) exists. As a matter of fact, if we utilize the
powerful existence theorem E10) for mathematical expectation, stated without
proof in Sec A2, we may assert the existence of e(:) for any random

vectors X, Y and any real-valued Borel function g(-) such that E[g(X)]

is finite. The properties obtained in Sec C7 then hold in any such case.
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4, Properties of conditional expectation

In this section, we list the principal properties of conditional
expectation, given a random vector, which are utilized in subsequent
developments. Proofs are given in Sec C7. These are based on the defining

relation A) and properties El) through E6) for mathematical expectation.

In the following, we suppose, without repeated assertion, that the
random vectors and Borel functions are such that the existence of
ordinary expectations is assured.

We begin our list of properties with the defining conditionm.

CEl) e(Y) = E[g(X)|Y] a.s. iff E[IM(Y)e(Y)] = E[IM(Y)g(X)] for all

Borel sets M 1in the codomain of Y.
As noted in relation B), in Sec C3,
CEla) If P(Y € M) > 0, then E[IM(Y)e(Y)] = E[gX)|Y € MIP(Y € M),
If, in CEl), we let M be the entire codomain of Y, so that IM(Y) has
the constant value one for all w, we obtain the important special case
CElb) E[g)] = E(E[g®)[¥]).
The device of first conditioning by a random vector Y and then taking
expectations is often useful, both in applications and in theoretical
developments. As a simple illustration of the process, we continue an
earlier example.
Example C4-a (Continuation of Example C2-b)
Consider, again, the random variables X,Y which produce a joint distri-
bution which is uniform over the triangular region with vertices (0,0),

(1,0), (0,1). It is shown in Example C2-b that

]

fY(u) 2(1 - u) for 0<u<1 (and zero elsewhere)
1 -u
2

e(u) = E[X|]Y = u] =

for 0<u<1.



C4-2

By CEIb)
- -t 2 .
E[X] =Ele®)] = [ e@i (@) du= [ (1 -0 du=1/3.
The result could, of course, have been obtained by finding fX(t) =

2(1 - t) for 0<t<1 and calculating

= F 1 2 =
E[X] = [ tf (t) dt =2 Jo (€ - t%) de = 1/3,
The choice of approach depends upond the objectives and the information

at hand. []

The next three properties emphasize the integral character of conditional

expectation, since they are in direct parallel with basic properties of

expectations or integrals. One must be aware, of course, that for condi-

tional expectation the properties may fail to hold on an exceptional set

of outcomes whose probability is zero. The proofs given in Sec C7 show

how these properties are, in fact, based on corresponding properties of

mathematical expectation.

CE2) Linearity. E[ag(X) + bh(¥)|z] = aE[g®)|z] + bE[h(V)|2Z] a.s. (with
extension by mathematical induction to any finite linear combination.)

CE3) Positivity; monotonicity.

g(X) >0 a.s. implies E[g(X)!Y] >0 a.s.
g(X) > h(Y) a.s. implies E[g(X)|z] > E[h(¥)|z] a.s.

CE4) Monotone convergence. Xn - X a.s. monotonically implies

E[anY] - E[x|Y] a.s. monotonically
Independence of random vectors is associated with a lack of '"conditioning"
in the following sense.
CE5) Independence. The pair ({X,Y} is independent iffi
E[g(X)JY] = E[g(X)] a.s. for all Borel functions g such that
Elg(X)] is finite, iffi

E[IN(X)IY] = E[IN(X)] a.,s. for all Borel sets N on the codomain of
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Note that it is not sufficient that E[g(X)|Y] = E[g(X)] a.s. for one
specific Borel function g. It is relatively easy to establish counter-
examples (see Problem C-5).

Use of linearity, monotone convergence, and approximation of Borel
functions by step functions (simple functions) yields an extension of CEl).
CE6) e(Y) = Elg(X)|Y] a.s. iff E[h(¥g®)] = E[h(Y)e(¥)] for all Borel
functions h such that the expectations exist.

The next three properties exhibit distinctive features of conditional
expectation which are the basis of much of their utility. Proofs rest on
previously established properties of mathematical expectation, especially
part a) of E6). We employ these properties repeatedly in subsequent
developments.

CE7) 1If ;(= h(Y), then E[g®X)|Y] = gX) a.s.
cE8) EMg® Y] = hME[®[Y] a.s.
CE9) If Y =h(W), then E{E[gX)|Y]|w} = E{E[g)|w]|Y} = E[g®)|Y] a.s.
It occurs frequently that Y is a random vector whose coordinates form a
subset of the coordinates of W. Thus, we may consider W = (Y,Z), which
implies Y is a Borel function of W, so that
CE9a) E{E[g(X)|¥]|Y,z}) = E(E[gX)|Y,2] Y} = Elg®)|¥] a.s.
If the function h in CE9) has a Borel inverse, then W = h-l(Y), so
that the roles of Y and W are interchangeable. Thus, we may assert
CE%b) If Y = h(W), where h 1is Borel with a Borel inverse,

then E[g(X)]Y] = E[g(X)IW] a.s.
We note two special cases of CE9). If the coordinates of Y are obtained
as a permutation of the coordinates of W, then Y = h(W), where h is
one-one, onto, and continuous, hence Borel with Borel inverse. Thus,
conditioning by a random vector does not depend upon the particular ordering

of the coordinates. If we have a pair of random vectors (X,Y} which do
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not share any coordinates, then conditioning by the pair is understood as

conditioning by the random vector (X,Y) whose coordinates consist of

the combined set of coordinates of the two random vectors (in any order).

In a similar manner, we can consider two random vectors which may have

some coordinates in common. Conditioning by such a pair is understood as

conditioning by a random vector whose coordinates consist of the combined
set of distinct coordinates. For example, suppose X = (XX’XZ’X3) and

Y = (XI,X3,X4). Then conditioning by X,Y is conditioning by W =

(Xl,Xz,X3,X4). It is apparent how these ideas extend to larger combinations

of vectors.

The next result is so plausible that it is frequently taken to be self
evident. Although it is easily established in certain simple cases, it is
somewhat difficult to establish in the general case, as noted in Sec C7.
It is extremely useful in the Borel function form, as follows.

CEL0) Suppose g is a Borel function such that E[g(X,v)] is finite for
all v in the range of Y and E[g(X,Y)] is finite. Then
ElgX,Y) ¥ = u] = E[gX,u)|¥ = u] a.s. [PY]-

In the independent case, CE10) takes a useful form.

CE1l) If the pair ({X,Y} in CE10) 1is independent, then
Elg(X,v)|Y = u] = E[gX,u)] a.s.

Among the inequalities for expectations which can be extended to

conditional expectations, the following are useful in many applications.

CE12) Triangle inequality. [E[g()[Y]] <E[|s@)||¥] a.s.

CE13) Jensen's inequality. If g 1is a convex function on an interval I

which contains the range of real random variable X, the
gE[x]|]) <Elg® Y] a.s.

Establishment of inequalities for conditional expectation (as for expectation)
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depends upon setting up the appropriate inequalities for random variables,
then utilizing monotonicity CE3). The inequalities on the random variables
are often expressions of classical inequalities in ordinary analysis. As

in the case of expectations, monotone convergence plays a key role in
establishing analogs of Fatou's lemma, dominated convergence, and countable

additivity.
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%5, Conditional distributions

The introductory treatment of the special cases of conditional expecta-
tion in Sec C2 utilizes the notion of conditional distribution. In Sec C3,
however, we disregard this notion in developing the general concept of condi-
tional expectation, given a random vector. In the present section, we show
that conditional probability and conditional distributions can be treated
as special cases of conditional expectation.

By properties CElb) and Ela),

E{IM(Y)E[IN(X) 1))

LELG®OY = u] dF @)

n

E[IN(X)IY EMP(Y €M) =P(X € N|Y € M)P(Y € M),
This leads naturally to the

DEFINITION. P(X € N|Y = u)

n

E[IN(X)IY = u] a.s.
If X 1is real-valued and Nt = (-, t], then we set
Fx]Y(tlu) =PE<t|Y=u) = E[INt(X)IY =u] a.s.

For each fixed t, this defines a Borel function of u with properties

which suggest that for each fixed u in the range of Y the function

FXIY(- u) should be a distribution function. One property of interest

is the following.

PX<tYEM E[INt(X)IM(Y)] = E(IM(Y)E[INt(x)zy]}
= J‘M FXIY(t\u) dFy(u)
from which it follows as a special case that

Fo(t) = E{E[INt @Iy =] FX‘IY(t|u) dF (u) .

This last equality is often known as the law of total probability, since

it appears as a generalization of a rule known by that name,

P(A) = S P(A|B,)P(B,), where AC W B, .
i i i i i

* The material in this section is not needed in the subsequent sections

and may be omitted without loss of continuity.
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There are some technical difficulties in dealing with F (-|u) as

X|Y

a distribution function. These arise because for each real ¢t there

(tlw)

is an exceptional set of u of PY measure zero. That is FX]Y

=P(X S't!Y = u) a.s. [PY]. Since there is an uncountable infinity of °
real numbers t, certain problems can arise with which we are not equipped
to deal. 1In the case of joint density functions or of jointly discrete
random variables, the motivating treatmentof Sec C2 indicates the problem
may be solved. For a real random variable X, a distribution function

is determined by its values on the rationals, which involves only a

countable infinity of values. Thus, it is known that for real random

variable X and any random vector Y there is a regular conditional

distribution function, given Y, with the properties

1) ]u) is a distribution function for a.e. u [P,)

Y’ ®

(tlu) =PE < t|]¥ =u) for a.e. u (e ],

Fx]Y('

2) For each real t, FX|Y

3) Elg®|Y =u] = [ g(t) dF | (tlu) for ace. u [p].

x|y ¥

In some cases, for a.e. fixed u, u) is differentiable and

Fx|Y('

the function (-]u) defined by

fxly
£ ot = S ctlu)
x|y it x|y

is a conditional density function for X, given Y = u. This agrees

with the conditional density function introduced in Sec C2.

As an important example of the use of these ideas, consider the
problem of determining the distribution for the sum Z =X+ Y of two
random variables X,Y. If we let Q = {(t,u): t +u<v)} (see Fig. C5-1),

then

F,) =P +¥Y<v) = play) € ql = Elr,&,n)] = E(E[IQ(X,Y)IY]}

I E[IQ(x,u)lY = u] dF () by CEL0).
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[=

0,v)

Figure C5-1. The region Q for Z=X+Y,
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For each fixed v, (t,u) €Q iff t+u<v iff t<v -u iff
t € Nv-u' Hence, IQ(X’U) = INV_U(X)’ so that

E[IQ(X,u)IY =u] = inY(v-ulu).

If F

XlY is a regular conditional distribution, then

F, () =[ Fely® - ulu) dF, (u).

]’

If {X,Y} is an independent pair, then F v - ulu) = Fx(v -u) a.s. [P

x|Y( Y

so that
F,(v) = [ F (v - u) dF,(u).

This last combination is known as the convolution of FX with Fy.
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6. Conditional distributions and Bayes' theorem

We suppose a regular conditional distribution has been determined.
It frequently is necessary to reverse the conditioning, as in Bayes theorem
for events. In the following we treat X, Y as real-valued. Extensions
to the vector-valued cases are immediate.
a) If both X,Y are discrete, there is no problem. If we let

PX]Y(ti‘uj) =P = tilY = uj), and similarly for the other cases, then
Py |yt ;) Py(@y)
b
py (L))

leX(ujlti) =
b) 1If there is a joint density function, then by definition
£y Y(c]u)fY(u)

fYIX(u]t) = fx(t) for fx(t) >0,

c) Suppose X is discrete and Y is absolutely continuous.

FY‘X(ulti) =P¥<ulx=rt)
= E[INu(Y)I{ti}(X)]/E[I{ti](X)]

E(Ty (Y)E[I{t'}<X)IYl}
u 1

= by CEl)
E{E[I[ti}(X)IY]}

Iim PX = tilY = v)fY(v) dv

[Px = cilY = V), (v) dv
Differentiation by u gives
P = t,]Y = w)f ()
P(X = ti)

lex(“lti) =

Simple algebraic manipulation gives

(ulti)P(X =t,)
fY(u)

- fylx

PX = tiIY =u) for f,(u) > 0.
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7. Proofs of the properties of conditional expectation

In this section, we show that if e(-) is a Borel function which
satisfies the defining relation A) E[IM(Y)e(Y)] = E[IM(Y)g(X)] for
any Borel set M on the codomain of Y, then properties CE2) through
CE13) hold for e(Y) = E[g(X)|Y]. Note that when we write e(Y) = E[g(X)W],
we are asserting that e(-) satisfies the defining relation (A) and must
therefore be unique a.s. [PY].

In the proofs, we employ the properties EL) through E6) of

mathematical expectation. Actually, we need only the simpler part a)
of property E6). Note that the proofs do not involve the complexities
of conditional distributions. The reader who wishes to go through the
proofs carefully may wish to use the summary of properties of mathematical

expectation in Appendix I. A tally of the use of these properties might

be instructive. To simplify writing, we drop the "a.s.' in many places.
At several places, the arguments require an acquaintance with

measure-theoretic ideas beyond that assumed of most readers. In these

instances, we sketch the ideas of the proofs, in order to indicate to

the interested reader what to look for in seeking a more complete treat-

ment. The goal is insight into the mathematical structure as an aid to

interpretation and application.

CE2) Linearity.

Let e, (2) = E[g®)|z], e,(2) =ElM™|z], e(2) = ElagX) + bh(D)[2].

For any Borel set M in the codomain of Z, we have

E{I,(2)[ag(X) + bh(V)]} = E[1,(2)e(2)] by CEl).
Also
E{IM(Z)[ag(X) + bh(M] ) = aE[IM(Z)g(X)] + bE[IM(Z)h(Y)] by E2)

n

aE[IM(Z)el(Z)] + bE[IM(Z)eZ(Z)] by CEl)

E[IM(Z)[ael(Z) + beZ(Z)]} by E2).
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By E6), we have e(Z) = ael(Z) + bez(Z) a.s. ]

CE3) Positivity; monotonicity.

g(X) >0 a.s. implies E[IM(Y)g(X)] >0 by E3)
implies E[IM(Y)e(Y)] >0 by CEl),
Suppose e(Y) < 0 for w € A. Then there is a Borel set MO with
A=yt (My). Thus, I, (Ye(Y) =TI,e(¥) <0. By E3), we have
0

E[IMO(Y)e(Y)] <0, with equality iff IAe(Y) =0 a.s.. But this requires

P(A) = 0, which is equivalent to the condition e(Y) >0 a.s.

Monotonicity follows from positivity and linearity. [l

CE4) Monotone convergence.

Consider the nondecreasing case Xn t X a.s. Put en(Y) = E[anY] and

e(Y) = E[X}Y]. Then by CE3), en(Y) < en+1(Y) <e(Y) a.s., all n>1.

The almost-sure restriction means that we can neglect an event (set of w)

of zero probability and have the indicated relationship for all other w.

By ordinary rules of limits, for any w other than the exceptional set, we

we have e*(Y) = lém en(Y) < e(Y), which means the inequalities hold a.s.

For any Borel set M, IM(Y)Xn t IM(Y)X a.s., and IM(Y)en(Y) 1 IM(Y)e*(Y) a.s.
so that by monotone convergence for expectation,

E[1, (e ()]

n

E[IM(Y)Xn] t E[IM(Y)X] = E[I,(¥)e (V)] and

E[IM(Y)en(Y)] TE[IM(Y)e*(Y)]. Hence,

n

E[IM(Y)e*(Y)] E[IM(Y)e(Y)] for all Borel sets M on the codomain of

Y. This ensures e*(Y) = e(Y) a.s., by E6). [

CE5) Independence. a) (X,Y] 1is independent iff b) E[IN(X){Y] =
E[IN(X)] a.s. for all Borel N iff «¢) E[g(X)'Y] = E[g(x)] a.s.

for all Borel functions g.
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a) = c) {gX), IM(Y)} is independent; hence

E[r, (Mg ] = E[1,(D]IE[gx)] by E5)
= E(E[g®)] 1 (D) (E[g(X)] a constant) by E2)
E[1,(Deg®)] = E[1,(Me(¥)] by CE1).

Since the constant E[g(X)] is a Borel function of Y, we conclude by E6)
that e(Y) = E[g(X)] a.s.
c) ®b), since b) 1is a special case of «c)

b) = a) For any Borel sets M, N on the codomains of X, Y, respectively,

n

E[IM(X)IN(Y)] E{IN(Y)E[IM(X)]] by hyp. and CEl)

E[IM(X)]E[IN(Y)] by E2)

which ensures independence of ({X,Y} by ES5). [

CE6) Extension of CEl) to general Borel functions.

First we suppose g > 0. By positivity CE3), we have e(Y) >0 a.s.
1) By CEl), the proposition is true for h = IM'

2) By linearity CE2), the proposition is true for any simple function

m

h = Zt,IM.
i=1 * %4

3) For h >0, there is a sequence of simple functions hn t h. This
implies hn(Y)g(X) t h(Y)g(X) and hn(Y)e(Y) t h(Y)e(Y) a.s. Hence,
by monotone convergence E4), for expectations,

Elh, Ng®)] t El(g)] and E[h (De®)] 1 E[h(De™)].
Since for each n, E[hn(Y)g(X)] = E[hn(Y)e(Y)], the limits must be
the same.

4) TFor general Borel h, we have h = h+ - h_, where both h+ and h_
are nonnegative Borel functions. By linearity and 3), we have

E[h(V)g(X)]

n

Elh, (Mg®)] - Elh_(Dg®X)]

Elh, We®] - Elh_(Mem] = E[h(v)e®].
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5) For general Borel g, we have g = 8, " 8. where both 8, and g_

are nonnegative Borel functions. By linearity and 4), we have

[}

Elh(Mg®@] = Elh(Mg, ] - Elh(Dg_(0)]

n

Elh(Me, (0] - El(ve_ ] = Elb(Me®],
where e (¥) = Elg (0[], e_(¥) = E[g_(X)[¥], and

e(Y) = e+(Y) -e (Y) a.s., by CE2). i

CE7) If X =h(Y), then E[g(X)|Y] = gX) a.s.

gX) = g[h(¥)] = h*(Y), with h* Borel. For any Borel set N,

E[L, (Ng®)] = E[1,(Mh*W] = E[1, (Ve (¥)] by CE1).
But this ensures

h*(Y) = e(Y) a.s. by E6), 0

cr8) E[h(Me®) Y] = h(MElg®)|Y] a.s.
For any Borel set M, IM(Y)h(Y) is a Borel function of Y. Set

e(Y) = Elg®)|Y] and e*(Y¥) = E[h(V)sX)|Y].

Now E[I,(Dh(Meg®)] = E[I, (Dh(V)e(V)] by CE6)
and  E[1, (Dh(Deg®)] = E[1,(Ne*(V)] by CE1).
Hence, h(Y)e(Y) = e*(Y) by E6). [

CE9) If Y =h(W), then E(E[g)|¥]|Ww} = E(E[g)|W]|Y} = E[gx)|¥] a.s.
set e(Y) = E[gX)|v] = e[h(W)] = h*(W) and ex(w) = Elg(x)|w].

Then, E{E[g(X)|¥]|w) = E[h*(w)|W] = h*x(W) = e(Y) by CE7).

l
i

For any Borel set M on the codomain of Y, let N =h "(M). By Theorem

Al-1, IM(Y) = IN(W). Repeated use of CEl) gives

L}

E[1, (Mg @] = E[1, (Ve )]

n

E[IN(w)g(X)] = E[I (We*w)] = E[1, (Vex(W)]

(L, (DE[exw)[1]},

Hence e(Y) = Ele*(w)|Y] a.s. by E6), 0
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Proof of CE10) requires some results of measure theory beyond the
scope of the present work. We establish the proposition first for the
special case that X, Y are real-valued, with joint density function fXY;
then we sketch the ideas of a general proof.

CE10) E[g(X,¥)|Y = u] = E[gX,u)|Y =u] a.s. [PY]_
PROOF FOR SPECIAL CASE. X,Y have joint density fXY'
Let leY be defined as in Sec C2. Put e(u,v) = E[g(X,v)|¥Y = u] and
e*(u) = E[g(X,Y)|Y = u]. Then E[1,(Meg®, 1] = E[1,(Ve*(V)] V¥ Borel
set M. This is equivalent to
If IM(u)g(t,u)fXY(t,u) dtdu = I IM(u)e*(u) du,
The left-hand integral may be written
Jwlf g(e,u)Ey o (elu) del £y (w) du = [ Iy le(u,u)fy(u) du,
Thus,
I IM(u)e(u,u)fY(u) du = f IM(u)e*(u)fY(u) du or, equivalently,
E[IM(Y)e(Y,Y)] = E[IM(Y)e*(Y)] Y Borel set M,
We conclude e(Y,Y) = e*(Y) a.s. by E6),
IDEA OF A GENERAL PROOF
If the theorem can be established for g(t,u) = IQ(t,u), where Q 1is
any Borel set on the codomain of (X,Y), then a '"standard argument"
such as used in the proof of CE6) extends the theorem to any Borel
function g such that E[g(X,Y)] is finite.
We first consider Borel sets of the form Q =M X N, where M, N are

Borel sets in the codomains of X, Y, respectively. Then I_(t,u) =

Q
L, ()T (w).
Let e(u,v) = E[g®,v)[Y = u] = E[I, I (M]Y = d] = IN(v)E[IM(x)[Y = u]
and e*(u) =E[g®, DY =u] = E[1,(O1(D)]Y = o].
Now e(Y,Y) = IN(Y)E[IM(X)IY] and e*(Y) = IN(Y)E[IM(X)IY] a.s. by CE8).

Hence, e(Y,Y) = e*(Y) a.s. or e(u,u) = e*(u) a.s. [PY].



n
By linearity, the equality holds for any Borel set Q :‘HiMi X Ni’ since
n 1=

in this case I_= X I,6 I, . Hence, equality holds for the class ﬁo
i=1 "i i
consisting of all finite, disjoint unions of sets of the form M X N. A

number of arguments may be used to show that equality holds for all Borel

sets Q. We sketch one proof. It is known that the class ﬁo is a field

and that the minimal sigma field which contains it is the class $8 of
Borel sets. Let @B* be the class of sets for which equality holds. If

0 1< i is a monotone class of sets in @#%*, the sequence (I : 1< i
5 S q { Q >

i
is a monotone sequence of Borel functions. Use of monotone convergence

E4) for expectations shows that equality holds for I_ where Q is

Q

the limit of the sequence Qi' Thus, @®B* is a monotone class. By a
well known theorem, B* must include @. This means that equality holds

for every Borel set Q. 0

CE1l) If ({X,Y) is independent, E[gX,¥)|Y = ul = Elg(x,u)] a.s. [PY]

By CE5), independence of ({X,Y} ensures e(u,v) = E[g(X,v)%Y =u] =
E[g(X,v)] a.s. [PY], so e¥*{(u) = e(u,u) = E[g(X,u)] a.s. [PY]. 1

CE12) Triangle inequality.

Since g(X) < fg(X)], we have E[g(X)|Y] < E[Ig(X)!}Y] a.s. by CE3),
Since -g(X) < \g(X)f, we have -E[g(X)]Y] S_E[Ig(X)J!Y] a.s. by CE3), CE2),

Hence, |E[g(X)[Y]| < E[lg®)|[Y] a.s. 0

CE13) Jensen's inequality.

Convex function g satisfies g(t) > g(y) +A(y)(t - y), where A is
a nondecreasing function. Set e(Y) = E[XEY]. Then
g(X) > gle] + 1 leI[X - e(¥)]. If we take conditional expectation,

Elg)|Y] > E{gle] + A le]X - e(®)]]¥] a.s. by CE3)

Egle(]]y) + EQle®]x]Y} - EAle(®)]e(¥)|¥} by CE2)

L}

gle] +alele) - rlem]e(¥) by CE7), CE8)

g(E[X]Y]} a.s. ]
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8. Problems
C-1 Prove parts b) and c) of Theorem Cl-1.
C-2 Suppose X, Y have joint density function fXY' Use Theorem Cl-2
and property Ela) for expectation to show that
a) If P(Y €M) >0, then
Elg0]y € M = [ [[ g(®)fp (t,0) at] du / [LI[ £,(t,u) dt] du.
b) If P(X € N) >0, then
Elg(O|x €N = [ g(®)E (k) at / [ £ (x) dt
c-3 show E[g()[A]l = E[gC0|aB]P(B[4) + E[g(0)]aB°IR(B%[4).
C-4 If X 1is discrete and Y is absolutely continuous, then the joint
distribution can be described by a hybrid mass-density function fXY’

such that P(X = ti’ Y €M) = IM fXY(ti’u) du. Develop an expression

for e(u) = E[g(X)IY u] in this case.

C-5 Let X = OIAl + ZIAZ + 3IA3 and Y = IBl + BIBZ (canonical form),
with joint probability distribution such that P(AlBl) =1/6,
P(4)B,) = 1/2, and P(A;B)) = 1/3. Show that E[x]Y = 1] = E[X|Y = 3]
= E[X], but that {X,Y)} is not independent.

C-6 Show that for X real, the triangle inequality is a special case
of Jensen's inequality.

C-7 Suppose {X,Y} is independent, and each random variable is uniform
on [-1, 1]. Let 2z = g(X,Y) be given by

X for X*+v' <1

¢ for X2 + Y2 > 1.
. 2 2 2 2
Determine E[ZIX +Y S 1] and E[ZIX +Y > 1]. Use these results
to determine E[Z].
C-8 X,Y have joint density function fXY(t,u) = %—tu for 1<t<u<?2
(and zero elsewhere). Determine

a) ElX2+v¥x=t] b) Elxy]x=t] o) E[X]x< %(Y + D).
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C-9 The pair {X,Y)} is independent, with fx(t) = fY(t) =1/2 for

-1<t<0, = % e for 0< t (and zero elsewhere). Determine

2

a) E[x*+vYx=1t] b) E[XY|X=t]

C-10 Use the fact that g(X,Y) = g*(X,Y,Z), with g* Borel if g is,
to establish the following extension of CE10).

E[g(X,Y)IY =u, Z=v] = E[g(X,u)fY =u, Z=v] a.s. [PYZ]~

C-11 Use CE9a) and the result of problem C-10 to show that if FY’Z is

a regular conditional distribution function, then

L.

E[g(X,Y)IZ =v] = j E[g(X,u)lY =u, Z = v] dFYfZ(u‘V) a.s. [PZ

C-12 Suppose X 1is a real random variable with E[Xz] finite. Let
e(¥) = E[X|Y] and v(¥) = var[x|¥] = E{[X - e(¥)]?]¥). Show that

a) vy = E[x2]Y] - E2[x]Y] = E[X2]Y] - e2(v)

b) Varle(y)] = E[ez(Y)] - E%[x] = (&% (x - E[x]]Y}

c) Var(x] Elv(¥)] + varle(¥)] = E{var[x]|Y]} + var{E[X]Y]

C-13 The following is a model for the demand of a random number of
"customers', who buy independently but with the same individual
demand probabilities. Suppose

i) {Xk: 1 <k} 1is iid (independent, identically distributed),
with E[Xi] finite (individual demands).
ii) N 1is a nonnegative, integer-valued random variable with
g

E[N finite (number of customers).

iii) (N, X 1 <k} is an independent class.

0 for N=20
D= n (composite demand).
z Xk = Yn for N=n>0
© «©
If A = {o: N(w) =n}, then D= EZ1I Y, = { ](N)Y
n=0 “n n—O

a) Show E[D‘N =n] = nE[X] and Var[DIN = n] = nVar[X]

Note. E[D|N =n] = E[1, ,@)D]/P(N = n), etc.

{n}
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b) sShow E[D] = E[NJE[X],
c) Use the result of problem C-12 to show
var[p] = E[Nvar(x] + var[NJE®[X],
d) Suppose N is Poisson (A\) and X 1is uniform on [O,a].

Calculate E[D] and Var[D].

The characteristic function o for a real random variable X is
wx(u) = E[elux], defined for all real u (i 1is the complex imaginary
unit, i2 = -1). The generating function gN for a nonnegative,

N 2k
] = s PN =k),

k=0
defined at least for ‘sl <1, although possibly for a much larger

integer-valued random variable N 1is gN(s)~= Els

domain. It is readily shown that addition of a finite number of

members of an independent class of random variables corresponds to

multiplying their characteristic functions (or their generating
functions, if they exist). Consider the composite random variable

D in problem C-13.

a) Show that mD(u) = gN[wX(u)], where gy is the generating
function for N and oy is the common characteristic function
for the Xk [Suggestion. Condition by N, then take expec-
tation. E[eiUD'N =qn] = E[eiuYn] 1.

b) Show that if the Xk are nonnegative, integer-valued with common
generating function 8x> then gD(s) = gN[gX(s)].

¢) Suppose N is Poisson (\). Show that gN(s) =explA(s - D],
so that mD(u) = exp{k[mx(u) - 11}.

-\ A ]

[P(N=k) =e g

P

.
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C-15 The correlation ratio of X with respect to Y (see Rgnyi [1970],

p 275 ££) is K[X|Y] =ole(¥)]/c[X] (see Problem C-12). Show

that the following properties hold:

a) 0<k[x]y] <1

b) If ({X,Y} is independent, then K[X!Y] = 0.

c) K[X]Y] =1 iff there is a Borel function g with X = g(Y).

d) KZ[X,Y] = sup pZ[X, g(Y)], where g ranges over the set of Borel
functions sich that E[gZ(Y)] is finite and p is the correlation
coefficient for X and g(Y).

e) KZ[XIY] = pZ[X, g(¥)] iff there exist a, b (a # 0) such
that g(Y) = ae(Y) + b a.s.

Suggestion. For d), e), use CElb) and Schwarz' inequality. Work

with standardized random variables obtained by subtracting the mean

and dividing by the standard deviation.

C-16 Suppose f and g are Borel functions such that E[f(X)] = E[g(Y)] =0,

var[£(X)] = var[g(¥)] = 1, and E[fX)g(¥)] = sup EleX)¥ (V)] = A.

o,V

Show that

a) E[f®)]Y] =rg(¥) a.s. and Elg(V)[x] =1 fX) a.s.

b) E(E[£X)]¥]|X} = 226X) a.s. and E(E[g0)|X]]Y) = 1% (D) a.s.

c) E[f(X)Ig(Y)] = Ag(¥) a.s. and E[g(Y)ff(X)] =r2fX) a.s.

Suggestion. Use CElb) and Schwarz' inequality.
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D. Conditional independence, given a random vector

The concept of conditional independence of random vectors which we
consider in the following sections has been utilized widely in advanced
treatments of Markov processes. In such treatments, the concept is usually
expressed in terms of conditional expectation, given a sigma field of events.
Our immediate goal is to reformulate the essential features of such treat-
ments in terms of the more readily accessible conditional expectation, given
a random vector, developed in the preceding sections. We then illustrate
the usefulness of the conditional independence concept by showing how it
appears naturally in certain problems in decision theory. In Sec El and
following, we apply the concept to Markov processes.

1. The concept and some basic propositions

Although historically there seems to be no connection, it may be instruc-
tive to consider how the concept of conditional independence, given a random
vector, may be seen as an extension of the simpler concept of conditional
independence, given an event. Suppose {A,B} is conditionally independent,
given C, with A = X-l(M) and B = Y-l(N). Then the product rule
P(AB|C) = P(A|C)R(B]C) may be expressed E[I, ()1 (¥)|c] = E[1 (X)|c]E[T (¥)]c]
If this rule holds for all Borel sets M, N on the codomains of X, Y,
respectively, we should be inclined to say {X,Y} is conditionally independent,
given C. Suppose Z 1is a simple random variable, with C = {Z = zk].

Then, in these terms, we would say {X,Y} is conditionally independent,

given Z = z If the product rule holds for all Borel sets M, N in

K
the codomains of X, Y, respectively, and for all Zy in the range of 2Z,
we should then be inclined to say the pair (X,Y} is conditionally indepen-

dent, given Z. With the aid of the result of example C3-a, we may give

this set of conditions a simple formulation which points to a general
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definition. We have
E[IM(X)IN(Y)IZ] = E E[IM(x)IN(Y)Iz = 2],

with similar expressions for E[IM(X)lZ] and E[IN(Y)IZ]. Using the facts

that I, I, =0 for j #k and I2 =1, , we obtain
c.”C C C
i %k K %k

1

Elr, 0 |z]Elr 2] = E E[1,®) |z = z JE[1 (D)2 = zk]ICk

We thus have
i) E[IM(X)IN(Y)IZ] =E[IM(X)|Z]E[IN(Y)|Z] 1£f

11) E[L, K1 M|z = 2] = E[1,®)|2z = 2 JE[L, V)[z = 2] for all k.

We have seen above that the set of conditions ii) is a reasonable basis

for the notion that ({X,Y} is conditionally independent, given simple
random vector Z. This development suggests the simpler equivalent expres-
sion i) may be the more useful way to characterize the condition. Further
evidence is provided by the following set of equivalent conditions (see

Sec D5 for proofs).

For any random vector Z, the following conditions are equivalent:

cIl) E[IM(X)IN(Y)|Z] = E[IM(X)lz]E[IN(Y)[z] a.s. V Borel sets M, N
CI2) E[IM(x)lz,Y] = E[IM(X)IZ] a.s. V Borel sets M
C13) E[IM(X)IQ(Z){Z,Y] = E[IM(X)IQ(z)lz] a.s. V Borel sets M, Q

CI4) E[IM(X)IQ(Z)IY] = E[E[IM(X)IQ(z)fz] |Y} a.s. V Borel sets M, Q

c15) Elg)h(v)|z] = E[gX)|2z]E[n(¥)|z] a.s. ¥ Borel functions g, h
ci6) Elg®)|z,Y] = E[g(X)|z] a.s. VY Borel functions g
c17) Elgx,2)]z,¥] = Elg(X,2)|z] a.s. V Borel functions g

c18) Elg(x,z)|v] = E{E[g(x,2)|2]|Y} a.s. V Borel functions g



Several facts should be noted. For one thing, properties CI5) through
CI8) are generalizations of CIl) through CI4), respectively, in that the
indicator functions are replaced by real-valued Borel functions, subject
only to the restriction that the resultant random variables g(X), h(Y),
and g(X,Y) should have finite expectations. It is desirable to have
the properties CIL1) through CI4) included in the list of equivalences to
show that it is sufficient to establish one of these simpler conditions
in order to be able to assert the apparently more general counterparts
CI5) through CI8), respectively.

Expressions CI2) and CI6) show that if X is conditioned by Z,
further conditioning by Y has no appreciable effect. We thus have an
analogy to the idea that the event pair (A,B} is conditionally independent,
given event C, if once A 1is conditioned by C, then further condition-
ing by B has no effect on the likelihood of the occurrence of A. Express-
ions CI3) and CI7) generalize this to say that if (X,Z) is conditioned
by Z, further conditioning by Y has no appreciable effect. It is clear
that the role of X and Y could be interchanged in these statements.
Conditions CI4) and CI8) have no counterpart in the theory of conditional
independence of events. They do, however, play an important role in the
theory of the new concept; and they include as a special case the
Chapman-Kolmogorov equation which plays a prominent role in the theory
of Markov processes (cf Sec E4).

These considerations indicate that we have identified a potentially
useful concept which is properly named conditional independence. We can
use any of the eight equivalent propositions as the basis for definition.
As in the case of independence of events and of random variables, we use

the product rule CI1).
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DEFINITION. The pair of random vectors (X,Y} 1is conditionally

independent, given Z, iff the product rule CIl1) holds.

An arbitrary class of random vectors is conditionally independent, given
Z, 1iff an analogous product rule holds for each finite subclass of two
or more members of the class.

If the pair ({X,Y} 1is conditionally independent, given Z, we should
expect that any Borel functions of these two variables should be conditionally
independent. This is the case.

CI9) If (X,Y} 1is conditionally independent, given Z, U = h(X), and
V = k(Y), with h, k Borel, then {U,V} is conditionally inde-
pendent, given Z.
For convenience of reference, we list several additional properties of
conditional independence utilized in various subsequent developments.
CI10) If the pair ({X,Y} is conditionally independent, given Z, then
a) Elg@hm] = EE[g)|zIEMm(D)[2]} = Ele (2)e, ()], and
b) Elg)|y € NB(¥ € ) = E(E[1 (D[ z]Elg(x)]2] )

CIll) If (Y, (X,Z)} 1is independent, then ({X,Y} 1is conditionally
independent, given Z.

CI12) If (X,Y)} 1is conditionally independent, given Z, then

]

ElgX, V|t =u, 2 = vl = ElgX,u)|z = v] a.s. [PYZ

Proofs of these propositions are provided in Sec D5.



2. Some elements of Bayesian analysis

Classical statistics postulates a population distribution to be deter-

mined by sampling)or some other appropriate form of experimentation. Typ-
ically, the distribution is supposed to belong to a specified class (e.g.,
normal, exponential, binomial, Poisson, etc.) which is characterized by
certain parameters. A finite set of parameters can be viewed as a set of
coordinates for a single vector-valued parameter. The value 8 of the
parameter is assumed fixed, but is unknown. Hence, there is uncertainty
about its value.

An alternative formulation results from modeling the uncertainty in
a probabilistic manner. The uncertain value of the parameter is viewed as

the value of a random vector; i.e., 6 = H(w). The value H(w) of the

parameter random vector H reflects the state of nature. If X is a
random variable representing the population, then the distribution for X
is determined by the value 6 = H(w) of the parameter random vector. To
carry out statistical analysis, we must characterize appropriately the

joint distribution for the pair (X,H}. This is usually done by assuming

a conditional distribution for X, given H, represented by conditional

distribution function FX[H (or an appropriate alternative); and by
utilizing any information about the probable values of the parameter to

determine a prior distribution for H, represented by a distribution

function FH (or some appropriate alternative).

A central notion of classical statistics is a random sample of size n.
Some sampling act, or survey, or experiment is done repeatedly, in
such a way that the outcome of one sampling act does not affect operation-

ally the outcome of any other. This is modeled as a class {XI,XZ, ceny Xn}

of independent random variables, each having the population distribution.
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Each sampling act corresponds to the observation of one of the random
variables in the sample. A random sample is a finite case of an arbitrary
iid (independent, identically distributed) class [Xi: i €J}.

Under the new point of view, the appropriate assumption seems to be
that the class {Xi: i € J} 1is conditionally independent, given H, with
all random variables Xi having the same conditional distribution, given
H. Under a given state of nature, the result of taking an observation of
Xi does not affect and is not affected by the results of observing any
combination of .the other random variables. We find it convenient to adopt
the following terminology:

DEFINITION. A class (Xi: i € J} is ciid, given H, iff the class is
conditionally independent, and each random variable Xi has the same
conditional distribution, given H. A random sample (of size n), given H,
is a finite class [Xi: 1 <i<n} which is ciid, given H.

Let us see what this means for the conditional distribution functions.

To simplify writing, put W = (XI’XZ’ . Xn) and let It,= INt, where
Nt = (- o, t]. Then
Falu(Erotyr oo tn[u) =P St Xy Sty e, XS tan =u)
= E[It'(Xl)It ®,) ... I, (xn)lH = u]
i 2 n
n
= I E[It (Xi)[H = u] by conditional independence
i=1 i
=1 FX]H(ti|u)'
i=1

Thus, the conditional distribution function obeys the product rule. Partial
differentiation by the ti shows that the conditional density, when it exists,
also satisfies the product rule

n
Ealu(t1otss ceest fu) = nf lu).

A
1=1
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Bernoulli trials, given H. We illustrate these ideas by considering the

important special case of Bermoulli trials. A sequence of "identical" trials
is performed in an operationally independent manner. Let Ei = event of a
"success' on the ith trial in the sequence, and set Xi = IEi, so that

Xi has the property that it takes on the value 1 if Ei occurs and

takes on the value 0 if Ei fails to occur (E; occurs). On a given
sequence of trials, the probability p of success on a trial does not

vary with i. Now p 1is a parameter, representing a state of nature. We
model it as the value of a parameter random variable H with the interval
[0,1] as its range. For a given value of H, the results of the various
trials are conditionally independent. Thus, we assume {Xi: 1<i}) is

ciid, given H. Let I{O] be the indicator function for the set (0}

and similarly for I{l}' We suppose

u)
u)

]

u)

"
n
]

1
£,
"
[t
1)
A
e
A
—

P(EiiH P(X, = 1 E[I{l}(xi)!H =

L}

u] =1 -u,

n
n
n

c - -
P(EiJH PX, = 0|H = u) = E[I{O (Xi),H

}

These assumptions ensure
E[Xi‘H =u] =e() =u a.s. [P]
It is convenient in this case to say the sequence is Bernoulli, given
H = u. To see how analysis of such sequences relates to analysis of ordinary

Bernoulli sequences, suppose, for example, we observe the sequence ElE;Eg.

Then

c.C
P(ElEZEBIH =u) = E[I{l}(X1)1£0](X2)I[0](X3)IH = u]

= E[I Y = u]E[I[o (XZ)IH = u]E[I(O (XB)IH = u]

!
u(l - u)(l - u),

} )

L}

The product after the second equality sign is a result of conditional inde-
pendence. The pattern here is obviously the same as in the analysis of
ordinary Bernoulli trials, except that we write u for p. To obtain the

conditional probability of amy such sequence, given H = u, include a



factor u for each uncomplemented Ei and a factor 1 - u for each
complemented Ei'

The random variable Sn = X1 + X2 + o0+ Xn counts the number of
"successes' in the first n trials of a sequence. In the ordinary case,
Sn has the binomial distribution with parameters (p, n). As the discussion
above indicates, if the sequence is Bernoulli, given H = u, we simply
replace p by u in the analysis of the ordinary case to obtain

PGS = k[E =u) = Cm,lu" - W™ o<u<1.

We still have the problem of determining the distribution of H (i.e.,
the prior distribution with which to begin analysis). Partly because of
a well-known integral formula

r) s.

1 r s _
IO u (L -u)” du= (r +s 4TTST

=1/(r + s + 1)C(r+s,r).

A commonly employed class of distributions is the class of

Beta distributions

Real random variable H has the Beta distribution with parameters
(atl, b+l) (a, b nonmnegative integers) iff it has the density function
(a+b+1)!

al b

0 otherwise.

21 -0 o<t<t

£ () =
Note that if a =b = 0, the distribution is uniform on [o,1].
Straightforward calculations show that fH has a maximum at t = a/(a + b), an

a+1 (a+ 1) +1)

E(H] = ————— Var [H] =
arbr2 (a+b+2)2(a+b+3)
2y 2 (a +1)(a + 2)
B[] T@+b+2)(a+tb +3)
E[HY] = (a+D@+2) ... (a+k)

Grb T 2)(a+b+3) ... (at+b+k+1)
1f prior knowledge indicates that the value of H lies in a certain part

of the unit interval, with a degree of certainty reflected in the size of
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the variance, the parameters a, b may be adjusted to reflect these condi-
tions. If there is no prior knowledge favoring any set of probable values,
the complete ignorance may be expressed by taking the uniform case (a =b = 0)
Example D2-a
A quantity of n items from one run of a production line is selected
at random for testing. There is probability p that any device in the
lot will meet specifications. The quantity p 1is constant over any one run;
its value depends on how well the manufacturing process, including selection
or preparation of raw materials is controlled. We wish to estimate the
parameter p from tests and prior knowledge.
SOLUTION.
We adopt the point of view that p is the value of a parameter random
variable H. Past experience indicates a reasonable prior distribution
is Beta, with parameters (3,2) --i.e., a =2, b =1. Thus fH(t)
=12t%1 -t), 0<€t<1 (maximum at t = 2/3). Then
P(E) = E[x] = B(Elx, [H]) = E[le)] = E[H] =

Suppose X, = 1. Then

P(Ezix D) = B(EE,)/B(E)) = E[xllelE[xll = Eleme]/E[x)] by c19)

. p ) (a+ 1)(a+2) (a+b+2)
= E[u°]/E[H] = (a+b+2)(a+b +3) (a+1)

1

~____._a+2 = =
el 4/6 = 2/3.

Note that {El,Ez} is not an independent pair, since P(EZIEI) # P(EZ). il

Suppose a prior distribution for H is assumed. A sequence of n
trials is performed. It is desired to update the distribution for H on
the basis of the results of this experiment. Suppose k successes occur
(i.e., Sn = k); we want to determine the conditional distribution for

H, given Sn = k. Now



@lk) =p@E<uls =k = Elr, @1

u

Fals_ () SEL 4 (8))

E{Iy (H)E[I (8 )IH]]/E(E[I 68, Y|H] ), where

E[I{k](sn)lH =u] =P(s_ = k[H=u) = C,kud - 0<u<l,

Suppose H has the Beta distribution with parameters (at+l, b+l). Then

u a+tk b+n-k
AI £ 1) de _ (a+b+1)!
, where A = C(n,k) BT

Fﬁlsn(“'k) bk

Afl TSR dt

_(a+ k)t(n +b - k)! ju ta+-k(1 } t)b+n-k
0

(n+a+b+1)! de 0<ucl.

Thus, the conditional distribution is Beta, with parameters (a + k + 1,

b+mn -k +1). From the formula for expectation, we have

a+k+1

E[Hlsn = k] = a+b+n+2"°

It should be noted that since the common factor C(n,k) in the numerator

and denominator of the expression for cancel out, the distribution,

Fy| S,
given Sn = k, is the same as that given any specific sequence having
k successes and n - k failures. (]

The previous development illustrates how conditional independence in
a random sample, rather than total independence, may be utilized to modify
estimates of probabilities or other parameters which control population
probabilities. But decisions are based both on estimates of probabilities
and on costs or rewards associated with actions and outcomes. One is apt
to proceed much more cautiously (i.e., to require higher probabilities for
favorable outcomes) if costs of failure are high, or to be much more venture-
some if rewards for success are great. To provide an analytical basis for
decision, one must include some measure or criterion of gain or loss, in
order that a '"best" course of action may be determined. To illustrate,

we consider one of the most commonly used criteria: the mean-squared-error

criterion.
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Suppose {X,H} has joint distribution and it is desired to obtain a
"best" estimate of the value of H from an experimentally determined
value of X. That is, we wish to determine a function or decision rule d
such that d[X(w)] is the best estimate of H(w). According to the mean-
1%)

is a minimum. The following argument shows that the best decision function

squared-error criterion, we seek a function d for which E{[H - d(X)

d 1is given by

d(u) = E[H[X =u)] =e(), VY u in the range of X.
We note that X may be vector valued, in which case u 1is a vector.
Consider

OSEMH-de2]=EHH-em)+em)-dmﬂ%

n

E([H - e]?) + Efle® - a@]?} + 25([1 - e][e®)- d)] ).
Suppose we put h(X) = e(X) - d(X). By CE6), E[Hh(X)] = E[eX)h(X)],
so that the last term above is zero. The first term is fixed. The
second term is positive, unless d(X) = e(X) a.s., which is equivalent
(by Theorem Al-2) to d(u) = e(u) a.s. [PX]. Hence, this choice of d

minimizes the mean-squared error.

The argument above solves the regression problem, in which it is

desired to determine the random variable d(X) which is''nearest'to H

in the mean-squared sense. The central role of conditional expectation is
well known. In fact, some authors begin the study of conditional expecta-
tion by designating the conditional expectation of X, given Y, as the
random variable e(Y) for which the mean-squared error E{[X - e(Y)]z}
is a minimum., Starting from this point, it is possible to show that e(Y)
has all the properties of the concept as we have introduced it.

Example D2-b

Returning to the situation presented in Example D2-a, we suppose n items

are selected at random from the production lot and tested. Of these, k
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meet specifications. What is the best estimate, in the mean-squared sense,
of the probability that any item selected will meet specifications?
SOLUTION AND DISCUSSION.

By the development above, if the prior distribution for H 1is Beta

(at+l, b+l), the best estimator for H, given Sn’ is

a + Sn +1 a+1
slals ] = cppamyy o comaredwith ElH = g

The rule is: count the number of successes in the n wunits tested, add
a+ 1, and divide by a+ b +n + 2.

Suppose no prior information about fH is available; we should use a =b = 0.

Suppose, further, that in a test of 10 items, 8 meet specifications. Then

. 8+1
10 + 2

E[His10 = 8] = 9/12 = 3/4 as compared with E[H] = 1/2.

If the prior distribution were Beta with a = 2, b = 1, then

8 +3 .
E[Hlsw = 8] = 0+ - 11/15~0.7333 as compared with E[H] = 3/5.

The conditional distribution for H, given Sn =k, 1is Beta (a+k+l,b+n-k+l1).
The conditional variance is

(a+k+1)(b+n-k+1)
(a+b+n+ 2)2(a +b+n+3)
For a=b=0, n=10, k =8,

Var[HISn =k] =

var [H]s, ) = 8] = (9 x 3)/ (12> x 13) = 3/208 ~ 0.0144.

For a=2, b=1, n=10, k =38,

var [1]s , = 8] = (11 x 4)/(15% x 16) = 11/900 ~ 0.0122.
The prior information, with its approximate location and indication of
variance, gives rise to a somewhat smaller variance on the conditional

distribution. (]

For a more general discussion of the problem of Bayesian estimation,
as this procedure is called, see Mood, Graybill, and Boes [1974], Chap VII,
Sec 7. Although they do not employ the term conditional independence,

they assume it by virtue of assuming the product rule for conditional
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densities. They consider other measures of distance or "loss', and
relate the results to the results of other estimation procedures commonly

employed in modern statistics.
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3. A one-stage Bayesian decision model

The transition from inference (i.e., determining the most likely
alternative) to decision (determining the course of action to be selected)
leads to the notion of gain or loss. In order to move beyond a purely
mathematical criterion such as mean-squared error, we introduce the
notion of a loss function. The loss function is usually expressed in terms
of some symbol of value, such as monetary units. But its specification
may require quite subtle and subjective judgments of "utility" or worth.

In order to be objective, the decision analyst must obtain from the decision
maker enough information to determine a loss function whose value depends
upon the course of action chosen and the resultant outcome of this action.
To set up a model of a typical decision process, we suppose:
i) There is a set of possible actions available to the decision maker.
Action a is a member of the set A of possible actions.

There is a set of possible outcomes which may result from the

[N
[ S
~

action. Because there is uncertainty about which consequence will
materialize, we represent the outcome as the value of an outcome random
variable (oY random vector): y = Y(w).

iii) The distribution of the outcome random variable Y is determined
by a state of nature. This is often expressed as a parameter
(possibly vector-valued). Since there is uncertainty about the state
of nature, the parameter itself is modeled as the value of a

parameter random variable: u = H(w).

iv) It may be possible to experiment in order to obtain some information
about the state of nature. The result of the experiment is the
value of a test random variable: x = X(w). Both Y and X are

jointly distributed with the parameter random variable H.



v) A loss function L is determined. L(a,y) is the loss when action
a is taken and outcome y 1is experienced (a gain is a negative

loss). The usual objective is to minimize the expected loss.

vi) If experimentation is utilized, a decision rule (or strategy) is
determined, to indicate the action to be taken for each possible
observed value of the test random variable. In practice, the
value of the decision rule may be determined for only the specific
experimental result observed.

We consider two cases.

a) Without experimentation.

Assume {Y,H} have joint distribution. Let 4(a,u) = E[L(a,Y)IH = u],
This is sometimes known as the risk function. The objective is to
select action a to minimize R(a) = E[L(a,Y)] = E{E[L(a,Y)lH]]
= E{4(a,H)]. 1In some problems, Y = H, so that 4(a,u) = L(a,u). In
the case of no experimentation, no conditional independence assumptions
are needed.
Example D3-a
A merchant plans to stock an item. The demand over a six-week period
is assumed to be a random quantity having the Poisson distribution, with
parameter )\. The parameter value is not known, but on the basis of past
experience the merchant assumes A to be the value of a random variable
H with possible values {15, 20, 25} taken on with probabilities
{1/4, 1/2, 1/4}, respectively. The merchandise may be ordered in lots of
10. The merchant contemplates ordering either 10, 20, or 30 units. He
can buy at a cost of ¢ = $7 per unit; he can sell at a price u = $10

per unit. At the end of six weeks, he can return the unsold items for a
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net recovery of r = $3 per unit, so that he loses c -1 = $4 per

unsold unit. He considers that he has lost (u - ¢)/2 = $1.50 per

missed sale. From a Bayesian point of view, how many units should he order?
SOLUTION

The set of possible actions is A = {10, 20, 30}, Let Y be the random
variable whose value is the demand in the six-week period (the outcome
random variable). The conditional distribution of Y, given H =), is

assumed to be Poisson (A). The loss function L is given by

- (u-c)y+ (c -1r)(a-y) ba - 7y for y<a

- (u-cla+? ; (@ -a)

]

L(a,y) =
~4.5a + 1.5y for y > a,

If we set B = {Y < a}, we may then write

L(a,Y) = IB(4a -7Y) + (1 - IB)(I.SY - 4.,5a) = 1,5Y - 4.5a - 8.SIB(Y - a).

Now 4(a,\) = E[L(a,Y)[H = ]

[

LSE[Y[H = A] - 4.5a + 8.5aP(Y < a|H =) - 8.5E[1,¥[H =],

We may express

a hk 2 a-1 kk A
E[13Y|H=x] = fkire =) I k—Te‘ = AP(Y < a-1|H =),
k=0 °° k=0 °°
Hence

2(a,\) = A[1.5 - 8.5P(Y < a-1|H = A)] - a[4.5 - 8.5P(Y < a[H = 1)].
Using a table of cumulative or summed Poisson distribution for appropriate

values of )\, we may establish the following table of values for 4(a,\).

a= 10 20 30
A =15 - 21.3 - 23.2 +15.0
20 - 14.9 - 44.9 - 19.7 L(a,\)
25 - 7.4 - 49.5 - 51.3
Now R(a) = E[L(a,Y)] = E[2(a,H)] has values:
R(10) = % [ -21.3 - 14.9 X 2 - 7.4] = - 14.6; R(20) = - 40.6; and
R(30) = - 18.9.

The optimum action, corresponding to the minimum expected loss, is a = 20.

(1
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b) With experimentation

Assume {X,Y,H} has a joint distribution. A decision is made on the
basis of the experimental data (i.e., on the basis of the observed value
of X). The problem is to determine the optimum decision function d* which
designates the optimum action d*(x) when the test random variable X has
value x. Thus, d* is the decision function which minimizes the Bayesian
risk B(d) = E[L(d(X),D)].

The problem may be formulated in a useful way as follows. By CElb),
B(d) = E{E[L(d(X),V)|x]). If we set R(a,x) = E[L(a,Y)|X = x], then by CE10),
R(d(x),x) = E[L(dx),V[X = x] = E[LE®),V)|Xx = x]. Thus, R(dEX),X) =
E[L(d(X),Y)|x], so that B(d) = E[R(d(X),X)]. For each x in the range of
X, let d*(x) be the action for which R(d*(x),x) is a minimum. Then
B(d*) = E[R(a*(X),X)] < E[R(d(X),X)] = B(d), for all possible decision
functions d.

In the usual situation, the result of experimentation does not affect
operationally the outcome following the action. The experimental evidence
may be in the form of previously available data. The result of a given
action is not influenced by whether or not the decision maker obtains the
experimental data. What does affect the outcome following an action is
the value of the''state of nature' parameter. Thus, it is appropriate to
assume the pair ({X,Y} is conditionally independent, given H. We utilize
this as follows.

1) If X 1is discrete, we may use CIl0Ob) to assert

R(a,x) = E[L(a,V)|X = x] = E{E[x{x}oo|H]E[L(a,y)lu] }/E{E[I[X}(X) 1] ),

1]

where E[I(X}(X)|H ul =P = XIH =u) = pX‘H(x]u) and

E[L(a,Y)[H] = 4(a,H).

Hence,

R(a,x) = [ 4(a,u) pXIH(Xlu) dF, () /(X = x).
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2) If X 1is absolutely continuous,

x] = E(E[L(a,V) |H] |X = x) by CI8)

x]

We may use Bayes' theorem for the conditional distribution (see Sec. C6)

R(a,x) E[L(a,Y)]X

Elt(a,0) X [ t(a,u) ) (ulx),

H|X
to determine FH X"
Example D3-b

Suppose in Example D3-a the merchant recalls that he made a similar
order for a corresponding period the previous year. If X 1is the random
variable whose value represents the demand for that period, an observation
of the value for that period should provide some indication of the state
of the market for the period. If there is reason to believe that the state
of the market has not changed appreciably, this information should be use-
ful for the present decision. Enough time has elapsed that sales in the
previous period should not influence directly sales in the current period.
Therefore, it seems reasonable to assume that {X,Y} is conditionally
independent, given H (the value of which indicates the general state of
the market). A check of the previous sales records shows that demand was
for 24 units. Under these assumptions and with these data, the task is
to select a = d*(24) to minimize R(a,24) = % L(a,k)pX|H(24tk)pH(K)/P(X = 24).
Values of 4(a,\) are tabulated in the solution of Example D3-a. Under

the assumed conditions, we may reasonably suppose From

Px|u = Py|w
tables of the Poisson distribution, we obtain values of pX|H(24[X), from
which we determine

py (24) = leH(24’l5)pH(l5) + pXIH(24|20)pH(20) + Py (2412509 (25)
% [0.0083 + 0.0557 x 2 + 0.0795] = 0.050
and

- 21,3 X 0.0083 - 14.9 X 2 X 0.0557 - 7.4 x 0.0795

R(10,24) = %4 % 0.050

= -12.13 .
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The values R(20,24) = - 45.8 and R(30,24) = - 30.9 may be calculated

in similar fashion. Once more, the indicated optimum action is to order

20 units. In spite of the fact that the previous demand went beyond 20

units, the best bet is to order 20 units and risk the loss of some sales.

[l



4. A dynamic programming example

The following example of a multistage decision process is presented in
Gaver and Thompson [1973], p. 392 ff. Our discussion displays the role of a
conditional independence assumption, which seems to be both appropriate and
necessary.

Example D4-a
A company is offered two investment opportunities, which we designate
"risk" and '"safe'.

1) Risk. Either make gain g in a given period or earn nothing.
Probability of success is unknown, but constant, over the total
time considered.

2) Safe. Certain to make gain s in the given period.

Gains in successive periods are independent, given a fixed probability of
success, A choice is made at the beginning of each time period, with neg-
ligible cost for switching from opne investment to the other. The objective
is to maximize expected gain over N time periods.

SOLUTION,

The probability of success is unknown; we suppose that it is the value of a
state-of -nature random variable H. A prior density fH (or distribution
function FH) is assumed. To obtain further information, the company must
experiment by making the risky investment., Suppose Ik is the indicator
function for success in the kth risk period (i.e., Ik(w) =1 iff the risk
pays off on the kth trial), The gain during that period is gIk. We assume
the class {Ik: 1 <k <N} is identically distributed, conditionally inde-
pendent, given H, with E[Ik’H =t] = P[Ik = 1|H = t) = t. Suppose n

risks have been taken; let Sn be the random variable which counts the



number of successes-- 1i.e., Sn = I1 + I2 + ...+ In. The succession

of choices to take the risky alternative constitutes a Bernoulli sequence,
with conditional independence, given the parameter random variable H.
In Sec D-2, we establish an expression for

p(n,k) = E[In+1|sn = k] = E[H|Sn = k], when H has the Beta distribution
If there is no basis for assigning a given prior distribution for H,
we assign the uniform distribution. According to the results in Example

D2-b, we have

k +1

pk) = o=

To develop a strategy based on optimum expected gain, we utilize the
backward induction procedure of dynamic programming. Consider the beginning
of the jth period. If n risks have been taken before stage j, then

: T - T . -
there is an '"optimum-path’ gain random variable Gn,j fn,j(sn’ In+1’ ceey

IN). At most N risks will be taken, but not necessarily this many. It

is convenient to use a decision tree to keep account of the alternatives
(see Fig. D4-1).

Suppose Sn = k. The decision rule is risk iff

Efgr ., + =kl >s +Elc

Gn+1,j+1lsn n,j+1|sn = kl.
We wish to obtain an expression for Gn .. Consider the set
b
M= (k: E[gl_ + GnJrl,jH[sn =k] >s +'E[Gn,j+llsn =« }.
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+ Gn+1,j+1

fiji/,/” gl

s+ Gn,j+1

Figure D4-1. Alternatives at decision nodes,



Then

Gn’j = IM(Sn)(:,z,IrrH + Gml,jﬂ) + [1 - IM(Sn)](s + Gn’j_ﬂ) and

B(G, IS, =kl = max (BlaI ) + Gpyy 1[5, = kI, s+ EIG, 1115, = k1),
Since E[X[A] = E[X[ABIR(B|A) + E[X|ABIR(5S[), Elsl_,,[s_ =k, I, =1l = g,

and P(I_,, = llSn = k) = p(n,k), we obtain

E[gl k]

w1t Gn+1,j+1‘sn -

(8 + B0 1 141lSpy = WP +E[G ;) 8, = KIIL - p(2, )]
= (84 oy (LD 1p(0,k) + sy (LWL - p(, 0],

where @j(n,k) = E[Gn j‘sn= k]. We may formulate the decision rule as fol-

lows:

0y (n,K) = max {[g + gy, (LR Ip(0,K) + gy (L) (L = p(a, k)], 8 + 9y (0,)

with mN+1(n,k) = 0.
To see how the procedure goes, let g =5/2, s =1, N =2, fH(t) =1 on
[0,1], so that p(n,k) = EE%. Refer to Figure D4-2 for situations at de-

cision nodes,

At the final decision node, j =N =2, and (n,k) = (0,0), (1,0), or (1,1)

Determine ¢2(0,0), ¢2(1,0), ¢2(1,1) and the optimum action in each case.

p(0,0) = 1/2, p(1,0) = 1/3, p(1,1) =2/3

©,(0,0) = max (-Zl-g + 0, s} = max {%, 1} =5/4 (risk)
1 5
9y (1,0) = max {3g + 0,8} = max {3, 1} =1 (safe)
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Tt =L g0

Rjy
_ 0
T = 0
Safe s

a) At the final decision node

g + mz(lyl)
Risk
sz(lyo)
Safe

s + (DZ(O:O)

b) At the initial decision node

Figure D4-2. Decision nodes for Example D4-a.



oL, =max Gg+ 0, 8) =max B, 1) =53 (risk)
At the initial decision node, j =1 and (n,k) = (0,0)

91(0,0) = max {[g + 9,(1,1)17 + 9, (1,0)E, s +4,(0,0))

L}

]

max {[5/2 + 5/3]% +1/2, 1+ 5/4)

max {31/12, 27/12} = 31/12 (risk),

The indicated strategy is:

First decision: Risk ~ q;l(0,0) = 31/12

Second decision: If first risk is successful ~ cp2(1,1) = Risk.
If first risk unsuccessful ~ @2(1,0) = Safe.

The expected gain from this strategy is (0,0) = 31/12 =~ 2,58.
P ©1
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5. Proofs of the basic properties

To establish the equivalence of Properties CIl) through CI4), we

show CIl) @ CI2) = CI3) = CI4) = CI2). To simplify writing, we drop

the "a.s." in the step-by-step arguments.
CIl) = CI2)

E{IN(Y)E[IM(X)IZJIZ} = E[IM(X)|Z]E[1N(Y)JZ] by CE8)
= E[IM(X)IN(Y)lz] by CI1)
= E(E[IM(X)IN(Y)lz,Y]1z} by CE9)
= E{IN(Y)E[IM(X)IZ,Y]]Z} by CE8).

Now

E(Ly@E(Ty(DE[1,00]2] 2]

= E(IQ(Z)IN(Y)E[IM(X)|Z]) ¥ Borel Q by CEL).
A similar expression holds for all Borel Q with E[IM(X)IZ] replaced
by E[IM(X)‘Z,Y]. We thus have

E{IQ(Z)IN(Y)E[IM(X)]Z]} = E[IQ(Z)IN(Y)E[IM(X)1Z,YJ} for all Borel sets

N, Q on the codomains of Y, Z, respectively. By E6b), we may assert

E[IM(x)lz] = e (2,Y) = e,(Z,V) = E[IM(X)|Z,Y] a.s.

CI2) = CI1)
E[IM(X)IN(Y)[z] = E(E[IM(X)IN(Y)‘Z,Y]IZ} by CE9)
= E(1,(ME[1,(0[z,1][2) by CE8)
= E{IN(Y)E[IM(X)lzliz} by CI2)

E[1, ) |z]E[1,(V) 2] by CE8).
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CI2) = CI3)

E[IM(X)IQ(Z)!Z,Y] = IQ(z)E[IM(x)iz,Y] by CE8)
= IQ(Z)E[IM(X)]Z] by CI2)
= E[IM(X)IQ(Z)!z] by CE8).

CI3) = CI4)

E[IM(X)IQ(Z)IYJ = E[E[IM(X)IQ(Z)[Z,Y] l1) by CE9)

= E[E[IM(X)IQ(z)lz] N'g] by CI3).
CI4) = CI2)

E{E[IM(X)IQ(Z)lz] Y} = E[IM(X)IQ(Z)IY] by CI4)

= E{E[IM(X)IQ(Z)IZ,YHY} by CE9).

This ensures that for all Borel N on the codomain of Y

E{IN(Y)E[IM(X)IQ(Z)’Z]] = E(IN(Y)E[IM(X)IQ(z)fz,Y]) by CEL).
But this, in turn, ensures that
E{IN(Y)IQ(Z)E[IM(x)lz] } = E[IN(Y)IQ(Z)E[IM(X)IZ,Y] } by CE8).

By E6b), we must have

E[IM(X)IZ] = E[IM(X)]Z,Y] a.s., which is CI2),

[l

We wish to establish next the equivalence of CI5) through CI7) to

the propositions above. It is apparent by the special-case relationship
that CI5) = CIl), CI7) = CI6) = CI2), and CI8) = CI4). Extension of
CIl) to CI5) may be done by a "standard argument’ based on linearity,
monotonicity, monotone convergence, and approximation by step functionms.
Extension of CI3) to CI7) may be achieved by an argument similar to

that sketched in the discussion of the proof of CE10), plus a "standard

argument.'" A similar approach serves to extend CI4) to CI8).
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Before proving CI9), we obtain a lemma useful here and elsewhere.
Lemma D5-1
1f E[g(w)|v,u] = E[gW)|v] a.s. and Z = h(U), with h Borel,
then E[g(W)|v,z] = Elgw)|v] a.s.
PROOF

The random vector (V,Z) = (V,h(U)) is a Borel function of (V,U). Hence,

Elgw)|v,z] = EE[gw)|v,u]|V,2} a.s. by CE9)
= E{E[gw)|V]|v,z} a.s. by hypothesis
= E[g(w)[V] a.s. by CE9a). i

PROOF OF CI9)

For any Borel function g,

Elgx)|z] = Elgx)|z,Y] a.s. by CI6)
= E[gx)|z,v] a.s. by Lemma D5-1.
Hence, ({X,V} is conditionally independent, given 2Z by CI6).

For any Borel function r,

E[r(v)|z] = E[r(v)|z2,X] a.s. by CI6)

E[r(V)lZ,U] a.s. by Lemma D5-1.

Hence, {U,V} 1is conditionally independent, given Z by CI6). (]
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PROOF OF CI10)

a) E[gOn(m] = E{E[g@nw)]z]) by CElb)
= E(E[gX) |z]E[n (D) |2]} by CI5)
= E[el(Z)ez(Z)] (notational change),

b) Elg®)|Y € Np(¥ € N) = E[I (Mg X)] by CEla)
= E(E[r () |z]Elgx) 2]} by part a).

PROOF OF CIll)

Given that {Y, (X,Z)} is independent.

P(XEM, YEN, Z€Q = E[IM(X)IN(Y)IQ(Z)] by Ela)
= E[E[IM(X)IN(Y)IQ(Z)IZ]} by CELb)
= E{IQ(Z)E[IM(X)IN(Y)]Z]] by CE8).

Also,

PXEM, YEN, Z€Q =P(YENPXEMNM, Z€Q by independence
= E[IN(Y)]E[IM(X)IQ(Z)] by Ela)
= E[IN(Y)]E{IQ(Z)E[IM(X)[Z]} by CEl)
= E{IQ(Z)E[IN(Y)]E[IM(X)]Z]} by E2)
= E[IQ(Z)E[xN(Y)\z]E[IM(x)lz]} by CES).

Equating the last expressions in each series of inequalities, by E6)

we conclude that E[1, )T (D]z] = E[, &) |z]E[1 (M)]z] a.s. o
PROOF OF CI12)

As in the proof of CE10), it is sufficient to show the proposition holds

for g=1 =11

MWN M N
E[, I (D] =y, 2 =] = I E[L, @Y =y, z = 4] by CE8)
= I, WE[T, )]z = V] by CI6)
= E[1M<X)IN(u)|z =v] a.s. [p,] by CED): [
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6. Problems

D-1 Show that if ({X,(Y,Z)} is independent, then

Elg@h()|z] = Elg@IElh(¥)|2Z] a.s.

D-2 Let {Xi: 1<i<n} be arandom sample, given H. Determine the

best mean-square estimate for H, given W = (XI’XZ’ cess Xn) for
each of the following cases:

: : : s - '(t'u)

i) X 1is delayed exponential: inH(t|u) =e for t >u, and

e™ for u >0

H is exponential (1): fH(u)

-u u

Px|u Y
H is gamma (m,\): fH(u) = kmum-l e_hu/(m-l)! u>0, m>0,x>0

ii) X 1is Poisson (u): (klu) =e k=0,1, 2, ..., and

1ii) X is geometric (u): &[u) =u@-0)* k=0,1,2, ..., and

Px|u
H is uniform [0,1]_

D-3 In Example D2-b, suppose a =7, b = 3., Compare the prior density
for H and the quantities E[Hls10 = 8] and Var[u|s10 = 8] with
those for the case a =2, b =1, as in the example.

D-4 Consider the demand random variable of problem C-13:

N @
D=LX, = T I{n
n=0

i=1
Suppose (N, (H,X

0=0 Y =X +X, +...+X, n>1

. Xn)} is independent for each n > 1, and

}(N)Yn, where Y

1!X2’

E[XifH =u] = e(u), invariant with i. Show that E[DIH] E[N]e(H).

D-5 It is desired to study the waiting time for the arrival of an ambu-
lance after reporting an accident (see Scott, et al, [1978]). Direct
statistical data are difficult to obtain. Suppose we consider the

random variables

N = number of ambulances in service (integer-valued)
D = distance traveled by dispatched ambulance
V = average velocity of the ambulance for the trip,

By considering the geometry of the deployment scheme, it is possible

to make reasonable assumptions about P(D < t{N = n). Also, it is
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possible to make reasonable assumptions, on the basis of statistical
data, for the distribution of V and the distribution of N. We
have W = D/V, where W 1is the random variable whose value is the
waiting time. Then P(W < t) = E[IQ(D,V)], where Q = {(u,v): u < vt}.
a) Show that if (V,(D,N)} 1is independent, then

PW< t|N=n) =] P(D<ve|N =n) dF, (v)

Suggestion. Use CElb), CI1l), CI12).
b) Under the conditions for part a) and the assumptions

i) P(D S_SIN =n) =as, 0<s<1/a, where az = nn/A

ii) V is uniform [15,25]

where A 1is the area served, in square miles, D 1is distance in

miles, and V 1is velocity, in miles per hour.
c) Repeat part b) with i) replaced by

i) P(D E_st =n) =1 - e—as’ s > 0, 32 = nn/A,
In Example D3-b, suppose the previous demand was 26 units. What is
the optimum action?
An electronic game is played as follows. A probability of success in
a sequence of Bernoulli trials is selected at random. A player is
allowed to observe the result of m trials. He is then to guess the
the number of successes in the next n trials. If he guesses within
one of the actual number of successes, he gains one dollar (loses -1);
if his guess misses by two or more, he loses one dollar. Suppose
m =3, n =10; on the trial run there are two out of three successes.
What number should he then guess to minimize his expected loss? Let

X

number of successes in m on the trial run

Y

number of successes in n on the pay run

H = parameter random variable.
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Then X is binomial (m,u), given H=u
Y is binomial (n,u), given H=u
H 1is uniform on [0,1]
-1 for |a-y| <1
and L(a,y) =
1 for ]a - yl >1
D-8 1In Example D4-a, determine the optimum strategy for g = 5/2, s =1,

N =3, H uniformon [0,1].
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E. Markov processes and conditional independence

1. Discrete-parameter Markov processes

The notion of conditional independence has been utilized extensively
in advanced treatments of Markov processes. Such processes appear as

models of processes without "memory."

The "future" is conditioned only

by the''present' and not by the manner in which the present state is reached.
The past thus affects the future only as it influences the present. We
wish to make the connection between the usual introductory treatment and
the more advanced point of view, which is not only mathematically powerful
but intuitively helpful in displaying the essential character of Markov
processes. For a recent introductory treatment utilizing conditional
independence, see ginlar [1975].

Many elementary textbooks include a treatment of Markov processes with
discrete parameter and finite, or at most countably infinite, state space.
Suppose we have a sequence [Xn: 0 < n} of random variables, each with
range {0, 1, 2, ..., N}. Thus, the parameter set is T = {0, 1, 2, ...}
and the state space isS = {0, 1, 2, ..., N}. The Markov property is
expressed by the condition

X, =1i

M) P(X.; = j[xt =i, X . = o

t-1 lt_l, ceey

()

0)

= PR = 3lx =1) =p

for all t>1, all (i,j) € §%, all (igs iy wees i, _p) €8

ij

The quantities pij(t) are called the transition probabilities. In the
important case of stationary (or homogeneous) transition probabilities,
we have pij(t) = pij’ invariant with t. In this case, analysis is
largely algebraic, with the transition matrix P = [pij] playing a
central role.

The fundamental notion of the Markov property M) is that the past

does not condition the future, except as it influences the present. We can



E1-2

give the Markov property M) an alternative formulation which emphasizes

the conditional independence of past and future, given the present, without
restriction to discrete state space or to stationary transition probabilities.
To aid in formulating this condition, we introduce the following notation.

If S 1is the state space, then

Sk = get of all k-tuples of elements of state space §
s+l
Us = (XO, Xl’ ceny XS) Us. Q-8
_ X t-s+l
Vs,t = (Xs, Xs+1, NN Xt) Vs’t. Q-8 s<t
u-t+l
Wt,u = (Xt’ Xt+1, ceey Xu) Wt’u. Q-8 t<u

We indicate by U: a random vector whose coordinates consist of a subset

(in natural order) of the coordinates of Us’ and similarly for V: and
b

t
Wt ., Then U%*, V¥ , and W¥ are continuous, hence Borel, functions
t,u s s,t t,u
of U,V _, and W , respectively. When we write a function g(U ),
s s,t t,u s

h(VS t), etc., we suppose g, h, etc, are real-valued Borel functions
?

such that E[g(US)], E[h(Vs )], etc. are all finite.

st

If t represents the 'present"”, then U represents the'past

t-1

behavior" of the process and Wt represents the behavior of the

+1,u

process for a "finite future." We sometimes consider an '"extended present”,

represented by VS s < t.

’t’

In this notation, the Markov property M) is equivalent to

P(X. €MX =u, U =V) =PX,, € Mlxt =u)

t+1 t+1
Y t>1, VBorel sets McS, Yu€s, Vvest

which is equivalent to

M) E[IM(xtH)lxt, v, 4] = E[IM(Xt+1)]Xt] a.s. Yt>1, YV Borel MCS.

Reference to CI2) shows property M) is equivalent to
M')

{Xt+1’ Ut-l} is conditionally independent, given X, Ve>l.



DEFINITION. The process {X.: t €T} is Markov iff M') holds.
Use of CIl) through CI8) provides a number of alternative formulations
of the basic condition M). It is sometimes desirable to remove the
restriction to the immediate future. This can be done (and more),as the
following theorem shows.
Theorem El1-1

A process {Xt: teT), T={0,1, 2, ...} is Markov iff

M") {w§+1,t+n’U*-1] is conditionally independent, given any finite

S

extended present V 1<s<t, any n>1, any w:

*
s,t’ +1,t4n° Us-1°

A proof is given in Sec E5. (0

To see how the idea of conditional independence is an aid to modeling,
we consider several examples.
Example El-a One-dimensional random walk

A number of physical and behavioral situations can be represented schemati-

cally as "random walks.” A particle is positioned on a line. At discrete
instants of time tl’ tz, ..., the particle moves an amount represented
by the values of the random variables Yl’ Y2, ... , respectively.

Positive values indicate movements in one direction and negative values
indicate movements in the opposite direction. The position after the nth
mve is X =Y, +Y¥. .+ ... +Y (we take X, = 0). If we can assume

n 1 2 n 0
the class (Yi: 1 < i} 1is independent, then X = Xn + Yn+1’ with
{Yn+1’ (Un_l,Xn)} independent for all n > 0. Since the position at time
tn+1 is affected by the past behavior only as that behavior affects the

present position Xn (at time tn), it seems reasonable to suppose that

the Markov condition holds. 0
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Example E1-b A class of branching processes

Consider a population consisting of "individuals" able to produce new
pop P

individuals of the same kind. We suppose the production of new individ-

uals occurs at specific instants for a whole ''generation." To avoid
P

the complication of a possibly infinite population in some generatiom,
we suppose a mechanism operates to limit the total population to M

individuals at any time. Let Xo be the original population and suppose

the number of individuals produced by each individual in a given generation
is a random variable. Let Zin be the random variable whose value is
the number of individuals produced by the ith member of the nth genera-

tion. If zin = 0, that individual does not survive; if Zin =1, either

that individual survives and produces no offspring or does not survive and
producesone offspring. If Xn is the number of individuals in the nth

generation, then X
n
Xn+1 =min { M, iElzin} = g(Xn, Yn+l 1= (Zln’ ZZn’ ceey ZMn)'

If {Zin: 1<i<M, 0<{n<wo} is an independent class, then

), where Yn+

{Yn+1,(Un_1,Xn)] is an independent pair for any n > 0. Again we have a
situation in which past behavior affects the future only as it affects the
present. It seems reasonable to suppose the process {Xn: 0<n} is

Markov. 11

Example El-c An inventory problem

A store uses an (m,M) inventory policy for a certain item. This means:
If the stock at the end of a period is less than m, '"order up" to M
If the stock at the end of the period is as much as m, do not order.

Suppose the merchant begins the first period with a stock of M wunits.

Let Xn be the stock at the end of the nth period (X, =M). If the

0

demand during the nth period is Dn’ then



max {(M - D), 0} if 0<X <m

Xa= = g(X , ).

n’ n+l
max {(Xn - Dn+1),0] if m<X <M
If we suppose (Dn: 1 < n} is an independent class, then we have
(Dn+1’(Un-l’ Xn)] is an independent pair for each n > 0. Once more

it seems the past and future should be conditionally independent, given

the present. (]

Each of these examples provides a special case of the following

Theorem E1-2
Suppose (Yn: 1 < n} is an independent class of random vectors. Set

X, =c (a constant) and for n >0 let X = Then

Entl (Xn’Yn+1) :
the process (Xn: 0 < n} is Markov and

P € len =u) = YEQ Vn

v

P[gn+1(u’Yn+1 0, Yu€s, V Borel set Q

PROOF
U = Koy Xpy eees %)
{Yn+1,(Un_1,Xn)} is independent. By property CI1l1) Y1 Un-l}

conditionally independent, given Xn' Hence, we have for any n, any Borel

hk(Yl’ YZ’ veey Yk), 1 <k<n. Thus,

is

set Q,
E[IQ(XnH)‘Xn’ Un-l] b EU:Q[gn+1(xn’YnH)] lXn’ Up-1)
= ETyle,y &Yl X]) by CI7)

= E[IQ(X )Ixn]

n+l
which establishes the Markov property. Now

P € Q[xn =u) = E[IQ(Xn+1)an = u)

= E[IQ[gnﬂ(xn’YnH)] lxn =uj

= E(Tylen,q ws¥p)]) by CE11)

n+1

=Plg u, ¥ ;) €ql by Ela). |
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If Bl = 8 invariant with n, and if {Yn: 1 < n} is independent,

identically distributed, then P(Xn+1 € Qan =u) = Plg(u, Y ,,) €ql

n+l

is invariant with n. To illustrate, we consider the inventory problem
above (c.f., Hillier and Lieberman [1974], Secs 8.17, 8.18).

Example El-c (continhed)

Suppose m=1, M =3, and Dn has the Poisson distribution with A = 1.
Then the state space S = {0, 1, 2, 3} and P(Xn+1 = len =1i) =

Plg(, D

) = 3l g(0,D ) = max ((3 - D

w1)s 03,

Since g(O,Dn+1) =0 iff Dn+1 >3,

P(X

ntl len =0 = P(Dn+1 23

0.0803 (from table),
Since g(0, Dn+1) =1 iff Dn+1 =2,

P(X

- 0.1839 (from table),

1 =% =0 = RO, =2
Continuing in this way, we determine each transition probability and hence
the transition probability matrix

0.0803 0.1839 0.3679 0.3679

P 0.6321 0.3679 O 0
0.2642 0.3679 0.3679 O
0.0803 0.1839 0.3679 0.3679]. [

The calculation procedure based on the equation P(Xn+1= j'Xn =1) =

= P[gn+1(i, Yn+1) = j] can be justified in elementary terms for many special
cases. The general result in Theorem E1-2 shows how the desired conditional
independence of the past and future, given the present, arises out of the
independence of the sequence {Yn: 1 < n} and establishes the validity of
the calculation procedure in any situation (including continuous state

space).
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2, Markov chains with costs and rewards

In a variety of sequential decision making situations, the progression
of states of the system in successive time periods can be represented in a
useful way by a Markov process. The Markov character arises from the '"mem-
oryless" nature of the process. Often such sequential systems have a reward
structure, Associated with each possible transition from one state to another
is a "reward" (which may be negative). Consider the following classical ex-
ample,utilized by Howard [1960] in his pioneering work in the area.
Example E2-a

The manufacturer of a certain item finds the market either '"favorable" or
"unfavorable" to his product in a given sales period. These conditions may be
represented as state 0 or state 1, respectively. If the market is favorable
in one period and is again favorable in the next period (transition from state
0 to state 0), the manufacturer's earnings are rOO' If the market is favorable
in one period and unfavorable in the next (transition from state 0 to state 1),
the earnings for the period are a smaller amount LI Similarly, the other
possibilities have associated rewards. If the succession of states can be
modeled by a Markov chain with stationary transition probabilities, then the

system is characterized by two entities: the transition probability matrix P

and the reward matrix R, given by

Poo Po1

P10 P11 10 11, 0

We may express a general model for such a system as follows:

Let {Xn: 0 < n} by a discrete-parameter Markov process with finite state
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space S. The reward structure is expressed by the sequence [Rn: 1< n)
of random variables

A) Rn+1 = r(Xn, Xn+1)' where r(i,j) = T,

j°
We are assuming that neither the reward structure nor the transition
probabilities change with time. While more general situations could be

modeled, we use the time-invariant case in subsequent developments.

= i] = expected reward in the next period, given the
present state is 1.

)x = 1]

)Ixn = 1] by CE10)

Let q; = E[Rn+1|Xn

Then q, E[r(X ,X

n+l

Elr(, X4

Lr(i,ip, ..
] 3

Put R(m) =R + R + ...+ Rn+m = total reward in the next m periods

n n+1 n+2

Now

Al) E[ n+klx = 1] = E(E[R Ixn+1 l =i} by CI8)

z E[R L, [X . = j]pij.

From this it follows that

E[R(m)lx =1] =E[R ,[x =il + ? E[rR (m- 1)Ix = j]pij.
If we put

vim) = E[Rém)|xn = i] (invariant with n in the stationary case)
we have

A2) vim) = + Z 1] §m-1)’ with vil) =q,.

A second type of reward structure is exhibited in the following
class of processes, which include inventory models of the type illustrated
in Example El-c.
Let [Xn: 0 < n} be a constant Markov chain with finite state space, and
let {D_ ,,: 1<n} be an independent, identically distributed class such

n+l’

that for each n >0, {D

at1°Vn) = gy Ego Xy wees X))} is an
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independent pair. The associated reward structure is expressed by the
process (Rn: 1 < nj}, with

B) R =T, Doy

Property CEll) shows that

q = E[R , /X =il =E[r@, ;)] (invariant with n).

+1
The hypothesis [Dn+k’Un+k—1} is independent and property CIll) ensure

that [Dn+k’ Xi]

0 < i,j<ntk-1, i #j. PFor fixed n, k, let

is conditionally independent, given Xj, for

e(¥,) = E[Rn+k|xi] = E[r (X )[x] for any i <n+k - 1.

n+k-1’ n+k
Then by CI8)

o

e®) =Ele®)|x] as. n<i<n+k- L

Hence,

Bl) E[R (X =]

n E{E[Rn+k|xn+1]!xn =1}

1

= Z BIR [ Xy = 3lpy 5.
Applying this formula for k = 2,3, ..., m, we obtain
B2) V.(m) =q, + Z p, .nghl) with V.(l) = q,.
i i T3] i i

The identity of form of Al), Bl) and A2), B2) shows that the following
analysis holds for either type of reward structure.

Consider the average expected reward per period for m periods.

(m) _1 3
E[ ] == ZE[Rn+i]

i=1
1
== ElE(E{E[R | n+i_1] lxn_l}) by CElb) and CI8),
Now E[Rh+1‘xn+i-1 = 3] = 4> so that
- 1) = 1)
E(E lx+l ]_]Ixn_]_ = k} _é:pkj Qj’
where p(J) is the i-step transition probability from k to j. Hence,

m); _ 1 (1) i, RN BRI (Y
E[.R ] = a, >: E[P(X 4 k)Z Py 4yl = z [px ;=K 55 4G iilpkj )]
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If the Markov chain is constant, irreducible, aperiodic, as is usually

the case, it is known that
1

m .
- p(%) -» T, as m > (invariant in k),
m ey K J

Here nj is the long-run probability that the process is in state j.

Since the limit is invariant with k, we may sum out the P(Xn_1 = k)
to obtain
1
3) lim E[> Rim)] =% qm =g.
m=> 7

A similar argument shows that for each state i

(m)

4) lim E[i-Rém)IXn =1i] = lim é-vi

=Tqn =g
mn—=x° m—xe ]

1]

Here g 1is the average gain or reward per period, in the long run. We

illustrate by considering numerical values in the introductory examples.

Example E2-a (continued)

/2 1/2 1"5 5 9 3
2/5  3/5 095 5 3 -7,

Suppose P.

To find the long-run distribution, we solve the set of equations

S5, + 4 m o= 10 m

0 0
5 Ty + 6 m o= 10 ™ to obtain the values My = 4/9 and mo= 5/9
WO + nl = 1.
Then
Q. =T poro. =9 +L13=6 G =Tpo.r. =23+2(7) = -3
0~ 7 Posfoj T2 17 5Py 75 5
- 1 (m) _ - 4 2
g =lim— v, = ? q4my = 6 g-3g5=1
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Example El-c (continued)
Suppose m =1 and M =3, as before.
If k units are ordered, the cost is 10 + 25k, 0 <k <M,
If k =0, the cost of ordering is zero.
For each unit of unsatisfied demand, a penalty of $50 is assessed
We suppose the demand Dn in period n has Poisson distribution, with

A = 1. We may then calculate the cost function (negative of reward)

{10 +25(M - X ) + 50 max ((D, - M), 0) for 0<X <m
C(X_,D ) =
n’ n+l
50 max {(D_,., -Xn), 0} for m<X <M.
Thus,

c(o, Dn+1) = 85 + 50 max{(Dn+1 -3), 0}

c@, Dn+1) = 50 max {(Dn+1 -1i), 0} for i =1, 2, 3.
Now

q, = Elc(o, D )] = 85 +50 E[I{D > 3)@ - »]

-]
=85+ 50Z (k - 3)pk (term for k = 3 is zero).
k=4
© ]
For the Poisson distribution z kpk =) Z Px - Hence,
k=n k=n-1
@ «©
9 = 85 + 50[ ¢ Py - 3z pk] = 86.2 (Using table for Poisson distribution).
k=3 k=4
@© (-~} «x
q, =E[lcQ, D, )] =50 Z (k-1)p, =50[Zp - Zp] =50p =18.4.
1 * “ntl k=2 k L 1

Similarly, we obtain
]

50 £ (k - 2)pk
k=3

n

5.2

a, = E[C(2, D )]

and
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®

q, = E[c(3,0 ;)] =50 T (k -3)p, =1.2.
3 n+l kel k

To obtain the long-run probabilities, we utilize the fact that the
convergence is rapid and consider P2, P4, ... until results stabilize.

Direct calculations of matrix products shows that
0.286 0.285 0.264 0.166

0.286 0.285 0.264 0.166
0.286 0.285 0.264 0.166

0.286 0.285 0.264 0.166

from which we conclude My = 0.286, mo= 0.285, n2 = 0,264, and
My = 0.166. These add to 1.001, indicating a small roundoff error.
Utilizing these values, we obtain
g = lim % vém) =z anj = 31.5 . (]
o 3

The treatment, once equations Al), A2) or Bl), B2) and 3), 4) are
obtained,is standard. As a matter of fact, we have used examples taken
from published texts. In most standard works,the derivations are
intuitive and incomplete. We have provided a development based on
fundamental assumptions of independence and conditional independence

(or Markov conditions). Such a development should both sharpen intuition

and provide a sound mathematical basis for utilizing the models.
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3. Continuous-parameter Markov processes

There are certain technical difficulties in the theory of continuous-
parameter processes. However, advanced methods show that a process can be
determined essentially for applications if all finite-dimensional distri-
butions are determined (i.e., if the joint distribution for any finite
subclass of the random variables is determined).

Consider a real process (Xt: t>0} ({.e., T= [0, ®)). Let U, v,
W be finite subsets of T: U = {ul, Ugs eoes um], V= [vl, Vor tees vn},

and W = {wl, Was eees wq}. We suppose u, < Ui vj <v and

1
Wy < L) for all indicated i, j, k. We say U precedes V, denoted
U<V, 1iff every element of U is less than every element of V. We

put XU = (Xul, Xuz, ey XUm), XV = (le, sz, ey XVn), and

DEFINITION. The process [Xt: t >0} is a Markov process iff for
any U < {v} < {w} we have
M) E[IM(XW)va, XU] = E[IM(XW)’XVJ a.s. for all Borel Sets M on
the codomain of Xw (i.e., in the state space 8S).
It is clear that condition M) 1is equivalent to
M') For any finite U < {v} < {w)}, {Xw, XU} is conditionally independent,
given Xv'
As in the discrete-parameter case, we have the equivalent condition (see
Theorem E1-1)
M") For any finite U<V <W in T, [Xw, XU} is conditionally
independent, given XV.
These and other equivalent expressions for the conditional independence

condition provide major tools for the study of Markov processes.
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Many of the Markov processes encountered in practice may be recognized

by virtue of the following property.

DEFINITION. A random process {Xt: t € T} has independent increments

iff for each finite subset Tn = {tO’ tl’ ceey tn] of the parameter
set T, with t0 < tl < .00 < tn’ the class
{Xt s Xt - Xt , Xt - Xt s eees Xt - Xt } of random variables is
1 0 2 1 n n-1
independent.

Two of the most widely studied and utilized random processes have this
property.

Poisson process.

The parameter set is T = [0, ®). The process counts the number of
occurrences of some phenomenon in given time intervals. The random
variable Xt counts the number of occurrences in time interval (0,t].

We set X. = 0. Then Xt -X

0 , for s < t, 1is the number of occurrences

s
in the time interval (s,t]. The property of independent increments
models the fact that the numbers of occurrences in nonoverlapping time

intervals are independent. What happens in one interval is not affected

by and has no effect on what happens in other intervals.

Wiener process (Brownian motion).

The parameter set is T = [0, ®), XO = 0, The process is a model of

the movement along a line of a 'particle' under "random disturbances."

Xt is the net movement along a coordinate axis in the time interval

(0, t]. In many situations, the disturbances are of such a character that

the distances moved in disjoint time intervals may be assumed independent.

Hence, the independent-increment assumption is appropriate.
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In the discrete-parameter case, the class of random walks (see
Example El-a) possess the independent-increment property. We have

+ ... +Y .. The

Xn =Y, +Y + ...+ Yn and Xm+k - Xm = Ym+1 + Ym+2 ik

1 2
assumed independence of the class {Yi: 1 <i} ensures independence of

the increments.

We wish to show that a process with independent increments is a
Markov process. To facilitate exposition, we adopt the following termi -
nology and notation.

1) We say I, = {to, Eps ees tn} C T is a strictly ordered, finite

subset of T iff t <t <...<¢t .
0 1 n

2) For any strictly ordered, finite subset of T, we define the random

variables Y =X and Y =X -X for 1<k <,
0 ty k t te1

and the random vectors Uk = (X

Zk = (YO, Yl’ vy Yk) for each k, 1<k<n.
We note that if we have the values of the coordinates of any one of the
vectors Un’ Zn’ (Zn-l’ th), or (Un-l’ Yn) the values of the
coordinates of the others are obtained by linear transformations, which

are continuous, hence Borel. Thus, we may assert

A) Any one of the random vectors Un’ Zn’ (Zn-l’ th), or (U

n-1° Yn)
is a Borel function of any one of the others.

By virtue of property CE9b), we have

B) E[w\zn] = E[wlun] = E[W\Un_l,xtn] = E[wlzn_l,xtn] = E[wlun_l,Yn] a.s.

Also, by virtue of independence of Borel functions of independent random

vectors,

C) 1If any of the pairs (Yn+1’ Un], (Yn+1’ Zn}, [Yn+1’ (Zn-l’ th)],

is independent, so are the others.
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With these facts, we can now establish the fundamental result
Theorem E3-1
If the process {Xt: t € T} has independent increments, then it is
a Markov process.
PROOF
We show that for any strictly ordered, finite Tn C T, the condition M')

U

holds for XU , X =X , and Xw = Xt .

n-1 v t n+l

= h(Xt , Y with h Borel and
n

Now g(X ) = g(th+ Y 1)

)
atl n+l

Elg(x, )lun_l, x. 1 = Elh@, ,Yn+1)|Zn_1, X, ] a.s. by proposition B)
n+l n n n

By proposition C) and CIll), {Yn+1’ Zn_l] is conditionally independent,

given Xt . Hence,
n

E[h(x )z

ap X 1 = E[h(th, Yn+1)lxtn] a.s. by CI7)

t’ Yn+1
n n

We may therefore assert

E[g(X, )lun_l,xtn] = E[g(x,

)IXt ] a.s.
n+l +1 n

n
which is the desired property. [

The following alternate criterion for independent increments is frequently
useful as an assumption in modeling.

Theorem E3-2

A process {Xt:

t € T} has independent increments iff for every strictly
ordered, finite Tn c T, the pair [Yn, Un_l] is independent.

PROOF

a) If the process has independent increments, the pair {Yn, zn-l} is

independent. By proposition C), above, so is {Yn, Un 1} an independent

pair.



b)

Suppose {Yn, U is independent for all I . Let T, be arbi-

n-1}
trarily selected, but fixed. For each k, 0<k<n, set

= {to, iy eney tk}. By hypothesis, {Yk, Uk—l} is independent,

k < n. By proposition C), the pair {Y

Tk
1

1’

IN

© Zk-l} is independent,

1 £k <n. In particular, {Y

z,} = {Y

v 2 0 YO} is independent.

Suppose for some k > 2, {YO, Y15 eees Yk-l} is independent. Then

by the independence of [Yk, ke 1} {Y , (Y 1, cees 1)], we
k k-1

have P( 0N Y € M ) = P(Y € Mk)P( N Y € M ) = P(Y € Mk) n P(Y € M ).
i=0 * =0 * =1

Thus, {YO, Yl’ ceey Yk} is independent. By mathematical induction,

the class {YO, Yl’ cees Yn} is independent. Since ’1‘n is arbitrary,

the desired proposition follows. 1l
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4, The Chapman-Kolmogorov equation

For a Markov process {Xt: 0<t), let 0<s<t<uy. Then the
pair {Xs, Xu} is conditionally independent, given Xt' As a special
case of CI8), we have

CK) E[g(xu)lxs] = E(E[g(xu)lxt]|xs} a.s.

This is the Chapman-Kolmogorov equation, which plays a. significant role

in the study of Markov processes.

For a chain with finite state space S, the equation takes a simple
form which is usually determined from the first form of the Markov property
in Sec El and elementary probability patterns. If pjk(s’t) =
P(XP = k|XS = j), the Chapman-Kolmogorov equation is usually written

] -

CK") pik(s,u) = ? pij(s,t)pjk(t,u) 0<s<t<u,
To see that this is a special form of CK), note that
P(X, = k|x = 1) = E[I[k)(Xu)fXS = i]
= E{E[1

[k}<xu)lxt]|xs =1i)

-t BIT @)X = 3lpax, = 5lx, = )

L}

? Pij<s>t)ij(t’“)°

In the case of stationary transition probabilities, let piz) be the
m-step transition probability from state i to state k. CK') becomes
" (min) _ (m)_(n)
CR™) Py ? Pij Pik

which is the form commonly encountered in elementary treatments. In such

treatments, the transition probability matrix P plays a central role. If

p (™

is the matrix of m-step transition probabilities, then P(m) =p"

=PPP...P (m factors). The Chapman-Kolmogorov equation CK") may be
expressed compactly as

cxry  pR) | p(m) ().
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If the random variables are absolutely continuous, the Chapman-Kolmogorov
equation is often expressed in terms of conditional demsity functioms.
" = !
cK"') £y Ix (z|x) f £y Ix (zly)fx Ix (yix) dy.
u''s u't t''s
In this case CK) may be written
[ 8(2)f (z{x) dz = [[[g(2)f (z|y) dz] £ (ylx) dy
x |x ‘2l X |x x |x VI
u' s u t t''s
= r
fg(Z)[J £ |x (Z|Y)fx Ix (vlx) dy] dz.
u' t t's

In order for this equation to hold for all Borel functioms g, by an
analog to property E7) for integrals on the real line, we must have
CK'"') for each x.

In spite of the importance of the Chapman-Kolmogorov equation in many
aspects of Markov process theory, it is not true that the validity of this
equation implies the process is Markov. Stated another way, it is not
true that the condition CI7) may be replaced by the condition
E[g(X)lZ,Y] = E[g(X)lZ] a.s. for any Borel functicn g. The latter
condition is not sufficient for the conditional independence of ({X,Y},
given Z. W. Feller has given counterexamples. The following is taken
from Parzen [1962], p 203, but it is due essentially to Feller.

Example E4-a
Consider a sequence of containers, each with four balls, numbered one
through four. Select a ball independently, on an equally likely basis,
from each container. Let

Am(l) = event ball 1 or 4 1is drawn from the mth container

Am(z) = event ball 2 or 4 1is drawn from the mth container

Am(3) = event ball 3 or 4 is drawn from the mth container.
Under the usual assumptions, P[Am(j)] =1/2 for any m >1, any

j=1, 2, or 3, For any m (i.e., any container), we have a classical
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example of a class {Am(j): j =1, 2, 3} of events which is pairwise
independent, but not independent. Since selections from variows containers
are independent, we assume [Am(jm): 1 <m} is an independent class for
any sequence {jm: 1 <m} of elements of the set (1, 2, 3}. Thus we

may assert that (Am(j): 1<m, j=1, 2, 3} is a pairwise independent
class, with P[Am(j)] = 1/2 for any permissible m, j. We now form

the process {Xn: 1 < n} by setting

@1+ T @) T 2

This process has state space S = {0, 1}, and the members are pairwise

]

independent, with P(Xn = 0) P(Xn =1) = 1/2. We also have

P(x = 3lx =1) =P

br j) =1/2 for any j, k € {0, 1}, any

n>1, any r >1.
Thus, the m-step transition probability matrix is

1 1
P(m) -1 for any m

N
v
—

1 1
Easy matrix calculations show
1 1 1 1 1 1

1
1 1 %1 1

pmp@) _ 1 - p(mn)

[N
]
N

1 1
so the Chapman-Kolmogorov equation holds. However, the process is not
Markov, as the following argument shows. Since Am+1(1)Am+1(2) is a
subset of Am+1(3), we have

P( 1

=1|x Xy = 1) =P DA (@4 D) =1

# P(X

X33 32

=1lX =].) = 1/2- []

3mt+3 3mt+2
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5. Proof of a basic theorem on Markov processes

We utilize the notational scheme introduced in Sec El. To prove
Theorem El1-1, we first obtain an intermediate result.
Theorem E5-1

For a Markov process {Xt: t €T}, with T = (0, 1, 2, ... }, the pair

(Xt+l’ Us_l] is conditionally independent, given any Vs,t’ 1<s<t.
PROOF
We note that Ut-l = (Us-l’ Vs,t-l) and Vs,t = (Vs,t-l’ Xt)' For any

Borel function g, any s, t, 1 <s<ct,

Elgx_)Ix] = E[g(Xt+1)JUt_1,th a.s. by M') and CI6)

= Elsx v, s Vel

By Lemma D5-1, with V = Xt:’ U= Ut-l’ Z= Vs,t-l = h(Ut-l)’
Elgx )% ] = Blg, IV, (0 X ] aus.
= Elex DIV, .
The theorem follows by CI6). W

Theorem E1-1
A process [Xt: te€T), T={0,1, 2, ... ), is Markov iff
n % . ‘rs . . -
M) {w§+1,t+n’ Us-l} is conditionally independent, given any finite

*
extended present Vs,t’ 1<s<t, any n>1, any w§+1,t-m’ Us-l'

PROOF
M') implies M') as a special case.

, ,
Suppose M') holds. We need only establish M#) {wt+1,t-+‘n’ Uo 41 1s

conditionally independent, given VS e 1<s<t,any n>1. The
2’

more general condition follows from CI9), with W*

t+1,e4n - BC

wt:+1 , t+n)

and U:—l = k(Us_l). We construct a proof by mathematical induction on

n, utilizing Theorem E5-1.
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i) Since Xt+ M*) holds for n = 1, by Theorem E5-1.

1~ Vedl, e
ii) Suppose M*) holds for n = k.

By Theorem E5-1, {xt+k+1’ Ut} is conditionally independent, given

W Hence, for any Borel function g,

t+l,t+k’

E[g(wt+1,t+k+1)IUs-l’Vs,t]

= E[g(W v

t+l,t+k’ xt:+k+1
)W

]

by CI8)

E(E[g(wt+l,t+k’ Xt t+1,t+k] IUt}

E[e(wt:'+1,t:+k)lUs-l’Vs ,t

1]

= E[e(wt+1,t+k)lvs,t] by inductive hypothesis and CI6)
= E(E [g(wt:+1,t+k’ Xt-i-k+1)‘wt+1,t+k] lVs,t:]
= E[g(Wt+l,t+k+1),VS’t] a.s. by CI8) and CI9).

By CI6), M*) holds for n =k + 1.

iii) By mathematical induction, M¥) holds for any n > 1. 1
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6. Problems
E-1 Stopping times. In dealing with a random process {Xn: 0<n} it
is sometimes desirable to consider a randomly selected member of
the process. Suppose, for example, we wish to stop the process when
a certain result (or pattern of results) is observed. This means
we select Xn as the last variable iff the observed sequence

(SO’SI’ cees sn) € Sn+l of results exhibits a prescribed pattern,

. n+l .
hence belongs to a certain subset Mn of S 7. We use this to
formalize the notion as follows:

DEFINITION. A nonnegative, integer-valued random variable T 1is

called a stopping time for the process {Xn: 0 <n} iff the event

A
A

which means that with probability one T is finite.
@«

]

{w: T(w) = k} is determined by Uk = (XO’Xl’ ey Xk). Thus,

I

]
Uil(Mk), with AkAj =@ for k # j. We assume kEOP(Ak) =1,

«
It is apparent that T= T kI, = Zk1I (Uk) a.s.

k=0 “x k=0 Mk

a) Suppose Xn is the value of a critical dimension of the nth
item from a production line. The desired value is a. The
process is stopped for readjustment whenever [Xn - al > b. Show
that if T is the random variable which designates the number of
the item at which the line is stopped, then T is a stopping
time for the process. |

Suggestion. Express Mk in terms of the coordinate sets M =
[a-b, a+b].
b) Show that if the Xn are integer-valued, the random variable T1
defined by Tl(w) = min{n > O: Xn(w) =1i} 1is a stopping time.

c) Show that if T1 is a stopping time for an integer-valued process,

so 1is T2 defined by Tz(w) = min{n > Tl(w): Xn(w) =1i}.
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E-2 Suppose T is a stopping time fcr the process [Xn: 0 <n). Let

©

U, = Z UI, = LUI The expressions g(U_) and I_(U.)
T k=0 k Ak k=0 k Mk k T QT
must be interpreted, since the dimension of random vector UT changes

with T. If Q € s and Q(k) 1is the projection onto Sk+1, then

we set I (U ) = Z I (k)(U )IMk(Uk). Similarly g(UT) = E gk(Uk)IMk(Uk).
Show that E[g(Y)!U ] = 2 E[g(Y)lU It a.s.

Mk k

E-3 Strong Markov property. Suppose {Xn: 0 <n} is a Markov process and

T 1is a stopping time for the process.

E[g(wT,T+n)|XT]
< Elg(w
k

) K Iy @0

a) Show that E[g(W

T,T+n) IUT:|

a.s.

b) If the process is homogeneous, show that
Elgiy g0 /%] = Eley DIX] aus.

E-4 Martingales. The following class of random processes has many
connections with the class of Markov processes (cf Karlin and Taylor
[1975], chap 6).

DEFINITION. Let [Xn: 0 < n} be a sequence of real random variables
and (Yn: 0 < n} be a sequence of random vectors. Then {Xn: 0<nj}
is a martingale with respect to {Yn: 0<n} iff i) E[Ixnl] is

finite for each n >0, and ii) E[X Yn] = Xn a.s.

l 0’ 17 erey
for each n > 0.

Note that conditions i) and ii) imply iii) X = en(YO’Y cey Yn)

17
a.s., with e, @ Borel function for amy n > 0. If Yk = Xk’ all k,
we say {Xn: 0 <n} is a martingale, without qualifying expression.
a) Show that for a martingale E[Xn] = E[XO] for all n.

b) Show that if [Xn: 0 < n} has independent increments (hence is

Markov) and E[Xn] = E[XO] all n > 0, the process is a martingale.
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APPENDIX I. Properties of Mathematical Expectation

A] = P(A).

Ela) E[IM(X)] = P(X € M); E[IM(X)IN(Y)] =P(X €M, YEN) (with extension

El) E[I

by mathematical induction to any finite number of factors).
E2) Linearity. E[aX + bY] = aE[x] + bE[Y] (with extension by mathematical
induction to any finite linear combination).

E3)  Positivity; monotonicity.

a) X>0 a.s. implies E[x] >0, with equality iff X = 0 a.s.
b) X>Y a.s. implies E[X] > E[Y], with equality iff X =Y a.s.

E4) Monotone convergence. If Xn - X monotonically a.s., then

E[Xn] - E[X] monotonically.
E5) Independence. The pair (X,Y} of random vectors is independent
iff E[IM(X)IN(Y)] = E[IM(X)]E[IN(Y)] for all Borel sets M, N
on the codomains of X, Y, respectively,
iff E[g)h(¥)] = E[gX)]E[h(Y)] for all real-valued Borel functions
g, h such that the expectations exist.
E6) Uniqueness.
a) Suppose Y is a random vector with codomain R and g, h are
real-valued Borel functions on the range of Y. If E[IM(Y)g(Y)]
= E[IM(Y)h(Y)] for all Borel sets M on the codomain of Y,
then g(Y) = h(Y) a.s.
b) More generally, if E[IM(Y)IN(Z)g(Y,Z)] = E[IM(Y)IN(Z)h(Y,Z)] for
all Borel sets M, N in the codomains of Y, Z, respectively,
then g(Y,Z) = h(Y,2) a.s.

E7) Fatou's lemma. I1f X >0 a.s., then E[liminf X ] < lim inf E[X].

E8) Dominated convergence. If Xn - X a.s. and |Xn] <Y a.s., for

each n, with E[Y] finite, then E[Xn] > E[x].
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-]
19) Countable additivity. Suppose E[X] exists and A = uAi. Then
= i=1

E[IAX] = .2 E[IA'X].
i=1 i

110) Existence. If E[g(X)] 4is finite, then there is a real-valued Borel

function e, unique a.s. [PY]’ such that E[IM(Y)g(X)] =E[IM(Y)e(Y)]

for all Borel sets M in the codomain of Y.

11) Triangle inequality. |E[g(X)]| < E[|g()|].

12) Mean-value theorem. If a<X<b a.s. on A, then aP(A) < E[IAX] < bP(A).

13) Let g be a nonnegative Borel function,defined on the range of X. Let
A= {w: g[X(@)] >a}. Then E[g(X)] > aP(a).

14) Markov's inequality. If g > 0 and nondecreasing for t >0 and a >0,

then g(a)P(le >a) < Elg(x])].

15) Jensen's inequality. If g 1is a convex function on an interval I which

includes the range of real random variable X, then g(E[X]) < Elg(x)].

16) Schwarz' inequality. If X, Y are real or complex random variables with

E[|x|4 and E[|Y|%] finite, then |E[xY]|? SE[|X|2]E[]Y|2], with
equality iff there is a constant c such that X =cY a.s.
+

17) Holder's inequality. Let 1 <p, q<® with =1, If X, Y are
> q

o
Q=

real or complex random variables with E[IXIP] and E[lqu] finite,
then E[|xt|] < &[|x|P1Pel]y|9Y/a.

18) Minkowski's inequality. Let 1 <p<w, If X, Y are real or complex

random variables with E[IXIP] and E[IYIP] finite, then

ellx + v[P1YP < &[|x[P1/P 4+ &[] |PI /P,
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APPENDIX II. Properties of Conditional Expectation, given a Random Vector

We suppose, without repeated assertion, that the random vectors and

Borel
exist.

CEl)

CEla)
CElb)

CE2)

CE3)

CE4)

CES5)

CE6)
CE7)
CE8)
CE9)
CE9a)

CE9)

functions in the expressions below are such that ordinary expectations

e(¥) = E[g(X)|Y] a.s. iff E[1,(Dg®)] = E[1,(Ve(V)] for all
Borel sets M on the codomain of Y.

If P(YEM) >0, then E[I (Ve(V)] = E[g(X)|Y € MP(Y € M).

Elg®)] = E{E[g0|¥] ).

Linearity. E[ag(X) + bh(Y)|z] = aE[g(X)|z] + bE[h(¥)|2z] a.s. (with
extension by mathematical induction to any finite linear combination).

Positivity; monotonicity.

g(X) >0 a.s. implies E[g(X)IY] >0 a.s.

g(X) > h(Y) a.s. implies E[g(X)]Z] > E[h(Y)IZ] a.s.

Monotone convergence. Xn > X a.s. monotonically implies
E[xnlY] - E[x]Y] a.s. monotonically.
Independence. a) (X,Y} is an independent pair iff

b) E[IN(X)JY]

E[IN(X)] a.s. for all Borel sets N iff

¢) Elgx)1Y] Elg(X)] a.s. for all Borel functions g.

e(Y) = E[gX)|Y] a.s. iff E[h(Y)g®)] = E[h(Y)e(Y)] for all Borel h.
If X = h(Y), then E[g(X)|Y] = g(X) a.s. for all Borel g.

Elh e |¥] = h(ME[®)[Y] a.s.

1f Y =h@W, then E(E[g(®|Y][W) = EE[e®)|W]|Y) = E[g®)|Y¥] a.s.
E(E[lg(X)|Y]]Y,2} = E(E[g®)|¥,2]|¥} = E[gX)|¥] a.s.

If Y =h(W), where h 1is Borel with a Borel inverse, then

Elg)|Y) = Elg®)|w] a.s.
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CE10) If g 1is Borel such that E[g(X,v)] is finite for all v on the
the range of Y and E[g(X,Y)] is finite, then
ElgX, V)Y = u] = Elg&,u)|Y = u] a.s. (.

CEll) In CE10), if ({X,Y} is an independent pair, then
E[g(X,Y)lY = u] = E[g(X,u)] a.s. [PYL

CE12) Triangle inequality. {E[S(X)IY]I < E[Ig(X)IlY] a.s.

CE13) Jensen's inequality. If g 1is a convex function on an interval I

which contains the range of real random variable X, then

gE&[x[Y]) < E[g®)]Y] a.s.
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APPENDIX III. Properties of Conditional Independence, given a Random Vector
The following conditions are equivalent:

CI1) E[IM(X)IN(Y)IZ] = E[IM(X)Iz]E[IN(Y)\z] a.s. Y Borel sets M, N,

c12) E[IM(x)\z,Y] = E[IM(x)lz] a.s. V Borel sets M.

C13) E[IM(X)IQ(z)lz,Y] = E[IM(X)IQ(z)lz] a.s. Y Borel sets M, Q.

CI4) E[IM(X)IQ(Z)IY] = E(E[IM(X)IQ(Z)!Z]|Y} a.s. Y Borel sets M, Q.

c15) Elg@Onh(v)|z] = Elg®)|z]E[h(Y)|z] a.s. V Borel functions g, h.
c16) E[gX)|z,Y] = E[g(X)|z] a.s. V Borel functions g.
c17) Elg,z)|z,v] = Elg(X,2)|z] a.s. V Borel functions g.

ci8) Elg(x,2)|v] = E(Elg(x,2)|2z]) |Y} a.s. V Borel functions g.

DEFINITION. The pair of random vectors {X,Y} 1is conditionally independent,

given Z, iff the product rule CI1) holds. An arbitrary class of random
vectors is conditionally independent, given Z, if an analogous product

rule holds for each finite subclass of two or more members of the class.

CI9) If ({X,Y} 1is conditionally independent, given Z, U = h(X), and
V = k(Y), with h, k Borel, then {U,V} 1is conditionally inde-
pendent, given Z.

CI10) If the pair ({X,Y} 1is conditionally independent, given Z, then
a) Elg®hm] = EElg@|zElh®|z]) = Ele, (2)e,@)]

p) Elg®|y e Np¥ € M) = EE[1 (W ZlE[gx)[2] ).

CIll) If (Y, (X,z)} 1is independent, then ({X,Y} is conditionally

independent, given Z.

CI12) If (X,Y} 1is conditionally independent, given Z, then

]

ElgX,0)|Y =u, 2 =v] =E[g&,u)|z =v] a.s. [py,].
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Selected Answers, Hints, and Key Steps

A-1 i) FQX) = {#,A,A°,0) ii) FEX) = (P,A,B,C,AUB,AUC,BUC,0)

A2 1) XL((=,0]) =AUB  iii) X T((-=,3]) = AL BHC=1D°

A-3 g =gy a.s. [PX], but g, # g, a.s. [Px]

A-4 a) g 1is cont. (draw graph), hence Borel, all t
® n
A-8 a) X>0. A= JA implies I, =1lim T1I
- A A ., A,
i=l n i=1 "i

implies

n

z IA X 1increases to IAX. Use linearity, monotone convergence.
i=1 i

B-6 i) implies P(AB|D) = P(A|D)P(B|D) ii) implies P (AH|D)

P (Al D)P (| D)

n

iii) implies P(BH|D) = P(B|D)P(H|D) iv) implies P (ABH|D)

n
]

P(AB|D)P (H|D)

B-7 576/228

¢ = c Sl o€
B-8 b) P(C[T,T))/P(CT|TT,) = 64/99 ) B(c|TyT,)/R(C%|T 1)) = 16/891
B-9 PW|Q)/P(W|Q) = 1/3 implies P(W|Q) = 1/4 PQ) = 1/2
P(W’Qc)/P(Wc‘QC) = 3/2 implies P(Wch) = 3/5

pula®) _ p@rm [Qr@lQrEtle) + @HPM 109)PA[Q%)p3%Q%) _ 41
pi|aB%) @R |QralQPE%Q) + P@%)P(|Q%)P(a]Q%)P (B%Q%)

B-10 {T,B} 1is conditionally independent, given A, and given I\
P(AT) = 0.54 P(AT") = 0.12 P(A°T) = P(T) - P(AT) = 0.06 P(A°T®) = 0.28

P(T |B) _ P(AT) P(B|A) + P(a°T) P(B|A®) _ 342
P(°|B)  PATS)P(B|A) + PSTO)R(B[AS) 176

B-11 b) P(D) = 0.2 P(I|D) = 0.1 P(°[p)) = 0.2 P(D,|1°D;) = 0.9
c.c. _ : . CrC = = =
P(DZII D)) =0 implies P(D,I D)) =0 IC-=1D, f
C C C_C
Hence, P(D;D,) = P(D;ID,) + P(D;I D,) =0

P(D,)2(°[D))2(,|1°D )P (c|1°D; D)) 9

P(D,|C) = = 340

2

P(Dl)P(Iclnl)P(CIIC) + P(Di)P(Iclni)P(cllc)

B-12 EP = D10D21D31D42D50D61 Ap = 3,290 > - 0,201 Classify in group 1
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c-3 El1,g®] = El1,5800] + El1,;0e(0] = E[g(0)|aB]P(aB) + E[g(X)|AB°]P (AB®)
c-7 A=(x?+¥?<1) = ((X,Y) €Q) Since Z =X on 4, we have
E[z|AlP(a) = E[IQ(X,Y)X] = 0 (by evaluation of integral). Also
E[z|a°1p(a%) = E[Tcc] = cP(A%). Hence E[z] =0 +cP(a") = c(l - D

c-8 a) E[x*+ YZ\X =t =2+ E[Y2|X =t] = @l va)/2 1 <t<2

b) Elxv|x =] =%e? +2e + )/ +2) 1<t<2
¢) E[x|x< %—(Y +1)] = E[XIQ(X,Y)]/E[IQ(X,Y)] = f%%-%g§-= §§§-~ 1.19
c-9 a) E[X*+ Y2|x = t] = e2+ElY] =2 476 l<t<e
b) E[xY|x = t] = tE[Y] = t/4 l<t<®
c-10 E[gX,Y)|Y =u, 2 = v] = E[g¢®X,Y,2)|Y = u, 2 = V]
= E[g*X,u,v)|Y = u, 2 = v] by CE10)

Elg®,u)|Y =y, z =]

c-11 E[gX,v)|z = v] = Ele(¥,2)|2 = v] = Ele(¥,v)]Z = v]

= I e(u,v) dFYIZ

= ElgX,u)|Y = u, z = v] dF

(u|v) =f E[g(X,Y)|Y =u, Z =v] dFYIZ(uIv)

le(ulv) by Prob C-10
c-12 a) v(¥) = E[X? - 22X + e2(|¥] = E[X*[¥] - 2¢MEX|Y] + 2(¥)
E(E[x?]1]} - E[e?()] + Ele?(®)] - E2[X]

Elx? - E%[x]

¢) E[v()] + varl[e(y)]

c-13 a) E[D|N =n]P(N =1n) = E[I{n](N)D] = Ef }(N)Yn] since D=Y on

I
{n
N'l(n). This implies E[D|N =n] = E[Yn] = nE[X]
Var[D|N = n] = E[D?|N = n] - e?(n) = E[Yﬁ] - EZ[Yn]
¢) var[p] = E[v(W)] + var[e®)] = E(NVar[X]} + Var{NE[X] }.

Var[x] and E[X] are constants.

C-14 ) @) = e(E[e D|N] ).

iuy

iuDl Me n]

Ele E[1

{n}
P(N = n)q,;(u)

N =n]P(N =n) = E[I(n}(N)e D)

=P(N = n)mYn(u)
op@) = TPO = 0) o) = gyloy W]
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C-15 a) 0 < Var[e(V)]/Var[X] = var[e(¥)]/{Var[e()] + E[v(1)]} <1

D-1

D-2

D-7

since v(Y) >0 a.s.
d) Set X+ = (X - E[X])/oy and ¥* = (g(¥) - E[g(D]}/clg(¥)]
pZ[X,g(Y)] = E2[x*y#] = EZ{E[X*Y*IY]} = EZ[Y*E[X*IY]] by CE8)

E[ (o0 2 E(E2[x#] Y] ) by E 16)

IN

EE%(x - E[X]|¥)/var[x] = var[e()] /Var[x] = K2
By CIll), ({X,Y} is conditionally independent, given Z. Hence

Elg@hm|z] = elgx)|z]Elh(V)|2] = E[g®)]E[h(Y)|z] by CES)

i) fH|w(u|t1, st ) = e(@-1u, j’;o (m-Du du, to=minft), ..., t )
BlHlW =t ,...,t ] = toe(n-l)to/[e(n-l)to -1 -1/ -1) n>2
i) E[W =%k, ..., k] = @+K/0 +n) k= kp +ky + otk

iii) E[glw =k, ..., kl=@+1)/@+k+2)

1,

E[d] = 2/3 E[H[s;;=8] =8/11 var[H] = 2/117 var[H|s,, = 8] = 24/2783

Eln, (0] = ZE[ ;1Y) = 2 PO = mE(L,GOEY, 1))
a) By CIll), (V,D} 1is conditionally independent, given N.

PW<t,N=n)-= E[IQ(D,V)I(n}(N)] = E[I{n}(N)E[IQ(D,V)IV,N]}

BY CI12) E[IQ(D,V)IV =v, N=n] = E[IQ(D,V)IN =n] = P(D < vt|N = n)

PW<t, N=n) = 155 J I{n}(k)P(D < vt|N = k) dF, (V)P(N = k)

= PO =n) [P(D< vt|N = n) dF (v)

b) P(W<t|N=n)=20at, 0<t<1/20a  a°=ann/a

c) PW< th =n) =1+ 101 (e-15at - e-25at) 0<t, a2 = nn/A
py(26) = 0.0370 R(10,26) = - 11.15 R(20,26) = - 46.40

R(30,26) = - 35.35 Optimum a = 20,

L(a,u) =1 - 2p(a,u), where

p(au) =P(Y = a-1/H=u) +P(Y = a|H = u) + P(Y = a+l|d = u)

n-at+l + C(n,a)ua(l _ u)n-a

+ C(n,at)u® (1 - g)Pa-l

= C(n, a-l)ua-l(l - u)
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E{4(a,1)P(X = x|H)]/P(X = x) P(X =x) = 1/ (mH)

R(a,x)

_ 2(m+1)C(m,x)
"l Tadme1 KX

To minimize R(a,x), maximize with respect to a the function

C(n,a-1) + C(n,a) C(n,a+l)
C(n+m,a+x-1) C(ntm,a+x) C(nim,a+x+1)

For n=10, m=3, x =2, K(,2) = 0.4324 K(6,2) = 0.4779

K(a,x) =

K(7,2) = 0.4883 K(8,2) = 0.4534 K(9,2) = 0.3625
optimm R(7,2) = 1 - 2 K(7,2) = 0.1628
D-8 Strategy: 1lst stage-- risk ¢1(0,0) = 47/12 = expected gain for strategy
2nd stage-- If successful ~ wz(l,l), then risk
If unsuccessful ~ mz(l,O), then play safe
3rd stage-- m3(2,2) indicates risk
@3(2,1) indicates risk

m3(1,0) indicates safe

E-1 b) (T, =k} = (U, €M xu°x ...XMCXM=MkCSk+1}=Ak, M= (i}
k-1 k-1
) (Ty =k =j§0(T1 = Wi S Mg = (U € Jﬁjo My X Moy = Q)

E-2 E[g(Y)IQ(UT)] = E[g(Y) EIMk(Uk)IQ(k)(Uk)]

n

i E(Ele (D) U]y Oy M)

E(E Elg(®)|u,] Ty, U TUp))

E-3 a) From problem E-2

Elg iy ) 0] = 2 Ele i |0 ]T, @)
= E E[g(wk,k+n)|xk]IMk(Uk) by Markov property
E[g(wT,Tm)IH(XT)] = E E{E[g(wk,k_m)IM(Xk)lUk]IMk(Uk)]

£ EER 0 40 1] Ty KOTy, ©)
B Bl ) 1K Ty ©OT, XD}

Hence E[g(wT’,Hn)le] = E E[g(wk,km)lxkhnk(uk) a.s.
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E-4 a) E[Xn+1] = E{E[Xn+1|Y0,Y1, vy Yn]] = E[Xn]

b) E[Xn+1|U

]

n

E[Xn+1 - xn] +X  a.s.

0

+ X
n

= Elx - xnlun] + E[xnlun]

by Thm E3-2, CES), and CE7)
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