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In the beginning God created the heaven and the earth.
Genesis

Quapropter bono christiano, sive mathematici, sive quilibet impie divinatium, maxime
dicentes vera, cavendi sunt.
St Augustine, De genesis ad literam

The most effective way for solving polynomial equation systems is just to interpret
such a system as a tool for solving itself, by building programs which use this tool to
manipulate its own roots.

Therefore, the best way for solving is to return the equations (well, perhaps after
some massaging) shouting sufficiently loudly that that is the solution.

This really means that instead of working hard to build programs which compute the
solutions, one should work hard to build programs which use the given equations in
order to manipulate the solutions, without even computing them.

That is the Kronecker–Duval Philosophy.
R.F. Ree, The foundational crisis, a crisis of computability?

Since the desperate cry of Galois, ‘I have no time’, but even since the scribbled note of
Fermat, ‘I have no space’, Mathematics has been forced to investigate Complexity.
E.B. Gebstadter, Copper, Silver, Gold: an Indestructible Metallic Alloy
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Preface

If you HOPE too much from this SPES book, you will probably be disap-
pointed: in fact not only is it nothing more than an extension of some notes of
my undergraduate course, but also my horror vacui compelled me to fill it with
irrelevant information.

If, notwithstanding this incipit, you are not yet disinterested by SPES,
I will now provide a quick résumé of this volume.

In the first part, The Kronecker–Duval Philosophy, my aim is to discuss
recent approaches to Solving Polynomial Equation Systems endorsed by the
Project PoSSo1 through the most elementary case: the solution of a single
univariate polynomial f (X) ∈ Q[X ].

It requires an introduction to Kronecker’s theory (finitely generated field
extensions, algebraic extensions, splitting fields) and allows us to stress the im-
portance of the revolutionary approach introduced by Kronecker: before him,
the notion of ‘solving’ meant producing techniques for computing the roots of
the equation f (X) = 0; Kronecker interpreted ‘solving’ as producing tech-
niques for computing with the roots: this in a nutshell is the rôle of algebraic
extensions.

This change of perspective about ‘solving’, stressing more the manipulation
than the computations of roots, is now central to the approaches for solving
polynomial equation systems: in this volume I will sketch the significantly of
the Duval model and of the Thom codification of real algebraic numbers.

Such an introduction of Kronecker’s theory forced me to orient the volume
toward a presentation of the theory of algebraic field extensions: in this task
my livre de chevet was naturally van der Waerden’s Algebra2.

1 Polynomial System Solving, ESPRIT-BRA 6846.
2 B. L. van der Waerden, Algebra, vol. I, Ungar, New York.

I mainly used the 1950 translation more than the 1970 one; the choice is ‘political’.

xi



xii Preface

A discussion of Kronecker’s theory requires a discussion of polynomial
factorization which is the content of the second part, Factorization3, which
is devoted to a discussion of factorization over extension fields of prime fields,
in particular the Berlekamp–Hensel–Zassenhaus factorization algorithm – but
I have also included a sketch of the L3 one.

This volume should be seen as a part of a more general survey of solving
polynomial equation systems; while I already have a plan of the structure4

and of the content of that survey, I would prefer not to bind myself too much
discussing it here.

As any writer knows, the number of hidden mistakes in a draft is always larger
than the number of the found ones; this text is no different. I am very grate-
ful to Mariemi Alonso, Domenico Arezzo, Miguel Anger Borges Trenard and
Maria Grazia Marinari who saved me from making some mathematical mis-
takes and, at the same time, detected many misspellings. I want to apologize to
the reader for any errors (both misspellings and mathematical) which may still
lurk.

I am grateful to the ISSAC’96 Conference in Zurich, where I was an invited
tutorial speaker. This book grew out of the notes of my talks there. I am also
grateful to Mika Seppala and the Mathematics Department of Florida State
University in Tallahassee for inviting me to be a visiting professor in 1999.
That semester in Tallahassee gave me an opportunity to test these notes in the
course I offered there.

It is my firm belief that the best way of understanding a theory and an
algorithm is to verify it through computation; therefore the book contains
many examples which have been mainly developed via paper-and-pencil com-
putations5 – an approach which naturally is strongly prone to further mis-
takes; the readers are encouraged to follow them and, better, to test their own
examples.

In order to help the readers to plan their journey through this book, some sec-
tions, containing only some interesting digressions, are indicated by asterisks
in the table of contents.

3 In the preparation of this part, I was mainly dependent on E. Kaltofen, Factorization of poly-
nomials in B. Buchberger, G.E. Collins, R. Loos (Eds.) Computer Algebra, System and Alge-
braic Computation, Springer, 1982 and J.H. Davenport, Y. Siret, E. Tournier, Computer Algebra,
Academic Press, (1988) where the reader can also find a vast bibliography.

4 The reader can guess it from the quotations.
5 I used computer algebra systems only to perform the four operations with polynomials.



Preface xiii

A possible short cut which allows the readers to appreciate the discussion,
without being too bored by the details (and which I usually employ in my
lessons) is Chapters 1–5, 8, 11 to which I strongly suggest adding, according
to the reader’s interest, one of the two short tours devoted to real numbers
(Section 12.1 and Chapter 13) and to Galois theory (Section 12.2, Chapter 14).

Well, good reading!





Part one

The Kronecker – Duval Philosophy



And I saw when the Lamb opened one of the seals, and I heard, as it were the noise of
thunder, one of the four beasts saying, Come and see.

And I saw, and behold a white horse: and he that sat on him had a bow; and a crown
was given unto him: and he went forth conquering, and to conquer.
Revelations

The things depending from Saturn: bile, lead, onyx, asphodel, mole, hoopoe, eel.
E.C. Agrippa, De occulta phylosophia

Soon we will drink blood for wine.
Revolutionary of the Upper Rhine, Book of a hundred chapters
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Euclid

This preliminary chapter is just devoted to recalling the Euclidean Algorithms
over a univariate polynomial ring and its elementary applications: roughly
speaking they are essentially the obvious generalization of those over
integers.

The fundamental tool related to the Euclidean Algorithms and to solving
univariate polynomials is nothing more than the elementary Division Algo-
rithm (Section 1.1), whose iterative application produces the Euclidean Algo-
rithm (Section 1.2), which can be extended to prove and compute Bezout’s
Identity (Section 1.3).

The Division- and Euclidean Algorithms and theorems have many impor-
tant consequences for solving polynomial equations: they relate roots and lin-
ear factors of a polynomial (Section 1.4) allowing them, at least, to be counted,
and are the basis for the theory (not the practice) of polynomial factorization
(Section 1.5).

They also have another, more important, consequence which is a crucial tool
in solving: they allow a computational system to be developed within quotients
of polynomial rings; the discussion of this is postponed to Section 5.1.

A direct implementation of the Euclidean Algorithm provides an unexpected
phenomenon, the ‘coefficient explosion’: during the application of the Eu-
clidean Algorithm to two polynomials whose coefficients have small size, poly-
nomials are produced with huge coefficients, even if the final output is simply 1.
Finding efficient implementations of the Euclidean Algorithm was a crucial
subject of research in the early days of Computer Algebra; in Section 1.6
I will briefly discuss this phenomenon and present efficient solutions to this
problem.

3



4 Euclid

1.1 The Division Algorithm

Throughout this chapter k will be a field and P := k[X ] the univariate polyno-
mial ring over k.

If f = ∑n
i=0 ai Xi ∈ P with an �= 0, denote by lc( f ) := an the leading

coefficient of f .

Theorem 1.1.1 (Division Theorem). Given A(X), B(X) ∈ P , B �= 0, there
are unique Q(X), R(X) ∈ P such that

(1) A(X) = Q(X)B(X)+ R(X);
(2) R �= 0 �⇒ deg(R) < deg(B).

We call Q the quotient and R the remainder of A modulo B in P .

Proof Existence: The proof is by induction on deg(A).
If A = 0 or deg(A) < deg(B), then Q := 0 and R := A obviously satisfy the
thesis.
If deg(A) = n ≥ m = deg(B), we inductively assume that the theorem is true
for each polynomial A0 such that A0 = 0 or deg(A0) < n. We then have

A(X) = an Xn + A1(X), B(X) = bm Xm + B1(X),

with an �= 0, bm �= 0, A1 = 0 or deg(A1) < n, B1 = 0 or deg(B1) < m.
Let

A0(X) := A(X)− anb−1
m Xn−m B(X),

which, if non-zero, has degree less than n; by the inductive assumption there
are then Q0, R0 such that

(1) A0(X) = Q0(X)B(X)+ R0(X),
(2) R0 �= 0 �⇒ deg(R0) < deg(B),

so that

A(X) = (anb−1
m Xn−m + Q0(X))B(X)+ R0(X)

and therefore

Q(X) := anb−1
m Xn−m + Q0(X), R(X) := R0(X)

satisfy the requirement.

Uniqueness: Assume that

(1) A(X) = Q1(X)B(X)+ R1(X),
(2) A(X) = Q2(X)B(X)+ R2(X),
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(3) Ri �= 0 �⇒ deg(Ri ) < deg(B), 1 ≤ i ≤ 2,

so that

R1(X)− R2(X) = (Q2(X)− Q1(X)) B(X).

If R1 �= R2 then

deg(R1 − R2) < deg(B) ≤ deg(Q2 − Q1)+ deg(B) = deg(R1 − R2)

giving a contradiction.
Therefore R1 − R2 = 0 and (since B �= 0) also Q2 − Q1 = 0.

Corollary 1.1.2. The ring P is a euclidean domain.

In further applications, denote

Q := Quot(A, B), R := Rem(A, B).

Because of their uniqueness in P , if K is a field such that K ⊇ k, the quotient
and the remainder of A modulo B in K [X ] are still Q and R.

Algorithm 1.1.3. An inductive proof can be transformed into a recursive algo-
rithm: If we assume k to be effective1 then the iterative algorithm in Figure 1.1
performs polynomial division.

1 The concept of effectiveness was first introduced as the notion of endlichvielen Schritten (finite
number of steps) by Grete Hermann in 1926 for polynomial ideals in the fundamental paper

G. Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann.
95 (1926) 736–788,

where she wrote:

Die Behauptung, eine Berechnung kann mit endlich vielen Schritten durchgeführt werden, soll
dabei bedeuten, es kann eine obere Schranke für die Anzahl der zur Berechnung notwendigen
Operationen angegeben werden. Es genügt also z. B. nicht, ein Verfahren anzugeben, von dem
man theoretisch nachweisen kann, daß es mit endlich vielen Operationen zum Ziele führt, wenn
für die Anzahl dieser Operationen keine obere Schranke bekannt ist.
The assertion that a computation can be carried through in a finite number of steps shall mean
that an upper bound for the number of operations needed for the computation can be given. Thus
it is not sufficient, for example, to give a procedure for which one can theoretically verify that it
leads to the desired result in a finite number of operations, so long as no upper bound is known
for the number of operations,

To this, van der Waerden in

B.L. van der Waerden, Eine Bemerkung über die Unzelegbarkeit von Polynomen, Math. Ann. 102
(1930), 738–739,
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Fig. 1.1. Polynomial Division Algorithm
(Q,R) := PolynomialDivision(A,B)
where

A, B ∈ k[X ], B �= 0
Q, R ∈ k[X ] are such that

– A = Q B + R
– R �= 0 �⇒ deg(R) < deg(B)

b := lc(B),m := deg(B)
A0 := A, Q := 0
While A0 �= 0 and deg(A0) ≥ deg(B) do

a := lc(A0), n := deg(A0)

Q := Q + ab−1 Xn−m

A0 := A0 − ab−1 Xn−m B
R := A0

1.2 Euclidean Algorithm

Let P0, P1 ∈ P , with P1 �= 0 (and, to dispose of the trivial cases, assume also
that P0 �= 0). Let P2 := Rem(P0, P1) and inductively, define

Pi+1 := Rem(Pi−1, Pi )

while Pi �= 0. It is clear that the sequence P0, P1, . . . , Pi , . . . (which is called
the polynomial remainder sequence (PRS) of P0, P1) is finite since, otherwise,

added the note

Ein Körper K soll explizite-bekann heißen, wenn seine Elemente Symbole aus einem bekannten
abzählbaren Vorrat von unterscheidbaren Symbolen sind, deren Addition, Multiplikation, Subtrak-
tion und Division sich in endlichvielen Schritten ausführen lassen.
A field K is called explicitly given when its elements are symbols from a known numerable set
of distinguishable symbols, whose addition, multiplication, subtraction and division can be per-
formed in a finite number of steps.

In this book I will happily drop Hermann’s requirement that an algorithm must be provided with
its complexity evaluation, and will mainly follow Macaulay’s opinion in

F.S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge University Press (1916).

Macaulay considered the practical feasibility of an algorithm to be more crucial:

[The theory of polynomial ideals] might be regarded as in some measure complete if it were ad-
mitted that a problem is solved when its solution has been reduced to a finite number of feasible
operations. If, however, the operations are too numerous or too involved to be carried out in prac-
tice the solution is only a theoretical one.
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each Pi must be non-zero which would give an infinite decreasing sequence of
natural numbers:

deg(P1) > deg(P2) > · · · > deg(Pi ) > · · · .
Let D(X) denote the last non-zero element Pr of the sequence, and note that
r ≤ min(deg(P0), deg(P1)). Also denote Qi := Quot(Pi−1, Pi ).

Proposition 1.2.1. D(X) = gcd(P0, P1).

Proof Since Pr−1 = Qr Pr , then Pr divides Pr−1. So let us assume that Pr

divides Pi for i > k and prove that it divides Pk : this is obvious from the
identity

Pk = Qk+1 Pk+1 + Pk+2.

Therefore D = Pr is a common divisor of P0 and P1.
If S(X) divides both P0 and P1, then since

P2 = P0 − Q1 P1,

it divides P2. Assuming that S divides Pi , for i < k, then by the identity

Pk = Pk−2 − Qk−1 Pk−1,

it also divides Pk , therefore it divides Pr .

Greatest common divisors in P are obviously not unique, but they are asso-
ciate (cf. Definition 1.5.1).

Again if K is a field such that K ⊇ k, gcd(A, B) and the PRS of A and B
are the same in K [X ] as in P .

Algorithm 1.2.2. If k is effective, the algorithm in Figure 1.2 computes the gcd
of two polynomials; it actually computes the PRS of the two polynomials and
also computes all the intermediate quotients Q j .

Fig. 1.2. Euclidean Algorithm
D := GCD(A, B)
where

A, B ∈ P, A �= 0, B �= 0
D is a gcd(A, B)

D := A,U := B
While U �= 0 do

(Q, V ) := PolynomialDivision(D,U )
D := U,U := V
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1.3 Bezout’s Identity and Extended Euclidean Algorithm

Proposition 1.3.1 (Bezout’s Identity). Let P0, P1 ∈ P \ k, and let us denote
D := gcd(P0, P1). Then there are S, T ∈ P \ {0} such that

(i) P0S + P1T = D
(ii) deg(S) < deg(P1), deg(T ) < deg(P0)

Proof Let P0, P1, . . . , Pi , . . . , Pr = D be the PRS of P0 and P1. Also, for
i = 0, . . . , r − 1, let Qi := Quot(Pi−1, Pi ). Inductively define:

S0 := 1, T0 := 0;
S1 := 0, T1 := 1;
S′i := Si−2 − Qi−1Si−1, T ′

i := Ti−2 − Qi−1Ti−1, 2 ≤ i ≤ r;
Si := Rem(S′i , P1), Ti := T ′

i + Quot(S′i , P1)P0, 2 ≤ i ≤ r.

We claim that for i = 0, . . . , r :

(i) P0Si + P1Ti = Pi ;
(ii) deg(Si ) < deg(P1), deg(Ti ) < deg(P0).

In fact the claims are trivial for i = 0, 1, and so, inductively assuming them to
be true for i < k, and denoting Uk := Quot(S′k, P1), so that

S′k = Uk P1 + Sk, Tk = T ′
k + Uk P0,

we have

Pk = Pk−2 − Qk−1 Pk−1

= P0Sk−2 + P1Tk−2 − Qk−1 P0Sk−1 − Qk−1 P1Tk−1

= P0 (Sk−2 − Qk−1Sk−1)+ P1 (Tk−2 − Qk−1Tk−1)

= P0S′k + P1T ′
k

= P0Uk P1 + P0Sk + P1Tk − P1Uk P0

= P0Sk + P1Tk .

Clearly deg(Sk) < deg(P1) and therefore also deg(Tk) < deg(P0), otherwise

deg(P1Tk) ≥ deg(P1 P0) > deg(Sk P0)

and deg(P1Tk) > deg(P1) ≥ deg(Pk) would lead to an obvious contradiction.

Corollary 1.3.2. The ring P is a principal ideal domain.
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Fig. 1.3. Extended Euclidean Algorithm
(D, S, T ) := ExtGCD(A, B)
where

A, B ∈ P, A �= 0, B �= 0
D is a gcd(A, B)
S A + BT = D
deg(S) < deg(B), deg(T ) < deg(A)

D := A,U := B
S0 := 1, S1 := 0
→ T0 := 0, T1 := 1
While U �= 0 do
(Q, V ) := PolynomialDivision(D,U )
D := U,U := V
S := S0 − QS1,
→ T := T0 − QT1
(Q, S) := PolynomialDivision(S, B)
→ T := T + Q A
S0 := S1, S1 := S
→ T0 := T1, T1 := T

S := S0,
→ T := T0

Algorithm 1.3.3. Again, on an effective field, S and T can be computed by the
algorithm in Figure 1.3.

Algorithm 1.3.4. The so-called Half-extended Euclidean Algorithm allows us
to compute S, without having to compute T ; it simply involves removing the
lines marked by → in the algorithm in Figure 1.3. It is useful to compute
inverses of field elements (see Remark 5.1.4).

1.4 Roots of Polynomials

The Division Theorem also has an obvious but important consequence on the
solving of polynomial equations:

Corollary 1.4.1. For f (X) ∈ P , and α ∈ k we have:

f (α) = 0 ⇐⇒ (X − α) divides P(X).

Proof Let

Q(X) := Quot( f (X), X − α), R(X) := Rem( f (X), X − α);
since (X −α) is linear, either R(X) = 0 or deg(R) = 0, i.e. R(X) is a constant
r ∈ k.
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Therefore,

f (X) = Q(X)(X − α)+ r,

and evaluating in α obtains f (α) = r , from which the proof follows.

As a consequence a polynomial cannot have more roots than its degree.

1.5 Factorization of Polynomials

Definition 1.5.1. In a domain D:

(i) two elements a and b are called associate if there exists c ∈ D, with c
invertible, such that a = bc;

(ii) a non-zero and non-invertible element a is called irreducible if it is divisi-
ble only by invertible elements and by its associates, i.e.

a = bc, and b non-invertible �⇒ c is invertible and so b is associate to a.

Definition 1.5.2. A domain D is a unique factorization domain if for each
non-invertible a ∈ D \ {0}
(i) there is a factorization a = p1 . . . pr where each pi is irreducible;

(ii) the factorization is unique in the following sense:

if a = q1 . . . qs is another factorization with qi irreducible, then

• r = s,
• each pi is associate to some q j ,
• each q j is associate to some pi .

Lemma 1.5.3. If p(X) ∈ k[X ] is irreducible, p divides q1q2 and p does not
divide q2, then p divides q1.

Proof Since gcd(p, q2) divides p, it either is associate to p or is a unit; since
p does not divide q2, we can then conclude that gcd(p, q2) = 1.
By Bezout’s Identity, there are s, t ∈ k[X ], such that sp + tq2 = 1 and there-
fore spq1 + tq1q2 = q1, so that p divides q1.

Lemma 1.5.4. Let f ∈ k[X ]; Let f = p1 . . . pr , f = q1 . . . qs be two factor-
izations in irreducible factors. Then

(i) r = s,
(ii) each pi is associate to some q j ,

(iii) each q j is associate to some pi .
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Proof The proof is by induction on r . If r = 1, then p1 = f = q1 . . . qs , so
that s = 1 and p1 = q1 because p1 is irreducible.
Assume therefore that each polynomial that has a factorization with less than
r irreducible factors, has a unique factorization and let f = p1 . . . pr , f =
q1 . . . qs be two factorizations of f in irreducible factors. Then p1 divides
q1 . . . qs and therefore, by Lemma 1.5.3, it must divide one among the qi s,
say q j .
Since q j is irreducible, we have p1 = uq j for some u ∈ k \ {0}. We then have

f = uq j p2 . . . pr = q1 . . . qs,

and, dividing out q j ,

(up2)p3 . . . pr = q1 . . . q j−1q j+1 . . . qs .

The proof can then be completed using the inductive assumption.

Lemma 1.5.5. Each non-constant polynomial f ∈ k[X ] has a factorization
into irreducible factors.

Proof The proof is by induction on deg( f ).
Since linear polynomials are obviously irreducible, the result is true for poly-
nomials of degree 1.
Assume next that it is true for polynomials g ∈ k[X ], deg(g) < n, and let
f ∈ k[X ] be such that deg( f ) = n. Either f is irreducible, so that f satisfies
the lemma, or f is not irreducible, so that f = f1 f2 where neither f1 nor f2

is a constant and each has degree less than n; therefore there are factorizations
f1 = p1 . . . pr and f2 = q1 . . . qs in irreducible factors, and

f = p1 . . . pr q1 . . . qs

is then a factorization of f .

Theorem 1.5.6. k[X ] is a unique factorization domain.

Proof Existence of a factorization is guaranteed by Lemma 1.5.5, uniqueness
by Lemma 1.5.4.



12 Euclid

Remark 1.5.7. It is important to note that, unlike the other results of this
chapter, Theorem 1.5.6 does not give any way of computing a factorization.
In fact the argument of Lemma 1.5.5, that either f is irreducible or it has a
proper factorization, does not give any hint of how to decide which is the
case, nor how to find proper divisors. We will show in Part II that there
are factorization algorithms for polynomials over all fields which are
important for our theory (namely all finite fields and all finite extensions of the
rationals).

However, there exist effective fields k such that it is undecidable whether
the polynomial X2 + 1 ∈ k[X ] is irreducible or not, the reason being that it is
undecidable whether the imaginary number i is in k (see Section 19.2).

1.6 Computing a gcd

1.6.1 Coefficient explosion

Example 1.6.1. Let us assume that we need to compute the gcd of the two
polynomials

P0 := X8 + X6 − 3X4 − 3X3 + 8X2 + 2X − 5,

P1 := 3X6 + 5X4 − 4X2 − 9X + 21,

in Z[X ]; we need of course to apply the Euclidean Algorithm; let us even
assume that we have available nothing more than a pocket calculator, so that
we can compute only in Z but not in Q.

Well, that is not a serious problem: in fact, since the gcd is stable under
associate elements, it is clear that by substituting the line of the algorithm of
Figure 1.1

A0 := A0 − ab−1 Xn−m B

by

A0 := bA0 − aXn−m B,

the answer is correct.
In this way we obtain the following PRS:

P2 := −15X4 + 3X2 − 9,

P3 := −15795X2 − 30375X + 59535,

P4 := 1254542875143750X − 1654608338437500,

P5 := 12593338795500743100931141992187500,

from which, provided we are able to complete this computation, we deduce that

gcd(P0, P1) = 1.
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Clearly, we can perform rational arithmetic, even if it is not available on our
pocket calculator, using simply the Euclidean Algorithm for the integers; the
computation is of course more complex and the answer is

P2 := −5

9
X4 + 1

9
X2 − 1

3
,

P3 := −117

25
X2 − 9X + 441

25
,

P4 := 233150

6591
X − 102500

2197
,

P5 := 1288744821

543589225
.

Having already used stability under associate elements, we could, at each
step, force each Pi to become monic; this requires more integer Euclidean
Algorithms, but we could hope to do it with small size elements; in fact we get:

P2 := X4 − 1

5
X2 + 3

5
,

P3 := X2 + 25

13
X − 49

13
,

P4 := X − 6150

4663
,

P5 := 1.

Historical Remark 1.6.2. The amusing assumption of having just a pocket cal-
culator, while not realistic, has a meaning. In fact, the above example is taken
from the second volume of Knuth’s book The Art of Computer Programming.

That book was published in 1969, when programs were input via punched
cards . . . and computer algebra was being born. In fact, an analysis of the unex-
pected phenomenon of coefficient growth explosion, and the first tentative steps
taken for solving it, marked the beginning of the unexpected phenomenon of
computer algebra’s rapid growth.

Independently Collins and Brown2, applying subresultant theory, showed
that in computing the PRS over Z it was possible at each step, while produc-
ing an element Pi , to predict an integer ci dividing each coefficient of Pi , and
thereby, performing the substitution Pi ← Pi/ci , get smaller size coefficients;

2 See

G.E. Collins, Subresultants and Polynomial Remainder Sequence, J. ACM 14 (1967), 128–142;
W.S. Brown, On Euclid’s Algorithm and the Computation of Polynomial and Greatest Common
Divisors, J. ACM 18 (1971), 478–504.

The discussion (and the computations) of the example are taken from Brown’s paper.
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for instance, in the example above we get:

P2 := 15X4 − 3X2 + 9,

P3 := 65X2 + 125X − 245,

P4 := 9326X − 12300,

P5 := 260708.

Research on how to compute the polynomial gcd continues; on the basis of
general knowledge, there are three competing approaches3:

modular algorithm based on the Chinese Remainder Theorem (Brown, 1971);
the Hensel Lifting Algorithm (Moses–Yun, 1973; Wang, 1980) based on

Hensel’s Lemma (cf. Section 18.1);
the Heuristic GCD (Char–Geddes–Gonnet, 1984; Davenport–Padget, 1985).

In the following sections we will briefly discuss these three algorithms4,
using freely some facts that will be proved later:

Fact 1.6.3. Let f ∈ Z[X ] be a polynomial. Then:

(1) there is a computable integer B ∈ N such that for each factor
∑

ai Xi of
f , we have −B < ai ≤ B;

(2) there is a computable integer r ∈ N such that for each root ρ ∈ C of f , we
have |ρ| < r.

Proof cf. Section 18.4.

For each p ∈ N let us denote the canonical projection morphism as
−p : Z[X ] → Zp[X ]; conversely, we can consider the (implicit) immersion
Zp[X ] ⊂ Z[X ], where each polynomial f (X) ∈ Zp[X ] can be interpreted,

3 See

W.S. Brown, On Euclid’s Algorithm and the Computation of Polynomial and Greatest Common
Divisors, J. ACM 18 (1971), 478–504;
J. Moses, D.Y.Y. Yun, The EZ GCD Algorithm, in Proc. of the ACM Annual Conference (1973),
159–166;
P. Wang, The EZZ-GCD Algorithm, SIGSAM Bulletin 14 (1980), 50–60;
B.W. Char, K.O. Geddes, G. H. Gonnet, GCDHEU: Heuristic Polynomial GCD Algorithm
Based On Integral GCD Computation, L. N. Comp. Sci. 174 (1984), Springer, 285–296;
J. Davenport, J. Padget, HEUGCD: How Elementary Upperbounds Generate Cheaper Data, L.
N. Comp. Sci. 204 (1985), Springer, 18–28.

4 The presentation of modular algorithm depends freely on the results discussed in Section 2.1
and the presentation of the Hensel Lifting Algorithm in Section 18.1. It is suggested that the
interested reader go to those sections first.
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with a slight abuse of notation, as a polynomial f(X) := ∑n
i=0 ai Xi ∈ Z[X ]

such that

f (X) = fp(X),
−p/2 < ai ≤ p/2,

from which we can readily identify f and f .
Let f, g ∈ Z[X ], h := gcd( f, g) and let p ∈ N be a prime. Then:

Lemma 1.6.4. With the above notation:

(1) h p divides gcd( f p, gp);
(2) if lc( f ) �≡ 0 �≡ lc(g)(mod p), then

deg(gcd( f p, gp)) ≥ deg(h p) = deg(h).

Proof Part 1 is obvious and implies deg(h p) ≤ deg(gcd( f p, gp)). The as-
sumption of Part 2 implies that lc(h) �≡ 0 (mod p) so that

deg(h) = deg(h p) ≤ deg(gcd( f p, gp)).

Fact 1.6.5. If lc( f ) �≡ 0 �≡ lc(g)(mod p), then there exists R ∈ Z such that

p does not divide R �⇒ h p = gcd( f p, gp).

Proof (sketch) Corollary 6.6.6 will show that, given f ′, g′ ∈ Z[X ], there is
R ∈ Z such that the following are equivalent

R �≡ 0 (mod p);
gcd( f ′p, g′p) = 1.

Therefore we only have to apply this result to f ′ := f/h and g′ := g/h since

gcd( f p, gp) = h p gcd( f ′p, g′p).

Corollary 1.6.6. There are only finitely many primes p ∈ N for which

gcd( f p, gp) = h p

does not hold.

Proof We only need to discard those primes which divide either lc( f ),
lc(g) or R.
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1.6.2 Modular Algorithm

On the basis of the above result, denoting by P the set of integer primes, the
modular algorithm consists of computing

h(p) := gcd( f p, gp)

for several primes p ∈ P ⊂ N until we obtain a subset P ⊂ P such that

p does not divide lc( f ) lc(g), for all p ∈ P;
deg(h(p)) ≤ deg(h(q)), for all p ∈ P, for all q ∈ P;∏

P p ≥ B,

where B satisfies Fact 1.6.3.1, for both f and g.
Then,

either for all p ∈ P, deg(h(p)) = deg(h) and so h(p) = h p, in which case
we can apply the Chinese Remainder Theorem (Corollary 2.1.5) in order
to compute the single element h = ∑

ai Xi ∈ Z[X ] such that

−B < ai ≤ B, for all i;
hp = h(p) = h p,

from which

h = h = gcd( f, g);
or for all p ∈ P, we have deg(h(p)) > deg(h), which happens with low

probability; in this case the above computation gives a wrong answer, but
this can be detected by checking whether h divides f and g: in fact, if
the answer is positive then we can deduce that h divides h = gcd( f, g)
and since deg(h) ≥ deg(h) we can deduce that h = h = gcd( f, g).

Algorithm 1.6.7. This approach leads to the algorithm presented in
Figure 1.4.

1.6.3 Hensel Lifting Algorithm

The algorithm is based on the following

Fact 1.6.8. Let p ∈ N be a prime and let f (X) ∈ Z[X ] satisfy

lc( f ) �≡ 0(mod p).

Let f, h ∈ Z[X ] satisfy

(1) f ≡ fh(mod p),
(2) deg( f ) = deg(f)+ deg(h),
(3) gcd(fp, hp) = 1.
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Fig. 1.4. Modular GCD
h := GCD(f,g)
where

f, g ∈ Z[X ],
h := gcd( f, g)

Repeat
choose a prime p ∈ N such that p does not divide lc( f ) lc(g)
h(p) := gcd( f p, gp)

p := p, h := h(p), d := deg(h)
Repeat

If deg(h(p)) < d then
p := p, h := h(p), d := deg(h)

else
If d = 0 then

h := 1
else

choose a prime p ∈ N such that p does not divide p lc( f ) lc(g)
h(p) := gcd( f p, gp)

If deg(h(p)) = deg(h) then
Compute by the Chinese Remainder Theorem h′ such that

h′ ≡
{

h (mod p)
h(p) (mod p)

h := h′, p := pp
until p ≥ B

until h divides f and g

Then for each n ∈ N, denoting q := pn, it is possible to compute

f′, h′ ∈ Z[X ]

such that

(1) f ≡ f′h′ (mod q),
(2) f′ ≡ f(mod p), h′ ≡ h(mod p),
(3) deg(f′) = deg(f), deg(h′) = deg(h).

Moreover there is an algorithm (the Hensel Lifting Algorithm) for comput-
ing them.

Proof Compare with Theorem 18.1.2.

Let f, g ∈ Z[X ], and h := gcd( f, g). After computing gcd( f p, gp) for sev-
eral primes p ∈ N, we will probabilistically obtain an element h := gcd( f p, gp)
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for a suitable prime p ∈ N, such that deg(h) = deg(h), choosing only the one
for which deg(h) is minimal.

Denoting f := f/h, then f and h satisfy the assumptions of the above Fact.
Therefore choosing n ∈ N such that q := pn ≥ B, we can obtain the polyno-
mials f′, h′ = ∑

ai Xi satisfying the above condition.
Therefore

deg(h′) = deg(h) ≥ deg(h), and
−B < ai ≤ B, for all i , so that

if h′ divides f and g then h′ = gcd( f, g).

1.6.4 Heuristic gcd

As both the modular and the Hensel lifting gcds are based on restricting the
mapping

−p : Z[X ] → Zp[X ]

to the suitable subset

S :=
{

n∑
i=0

ai Xi : − p

2
< ai ≤ p

2
, for all i

}
⊂ Z[X ]

so that the restriction of −p to S is an isomorphism, the heuristic gcd is based
on the restriction of a different projection to a subset in order to make it
invertible.

Let us just consider, for each ξ ∈ Z, the evaluation map evξ : Z[X ] → Z

defined by evξ (h) := h(ξ), for all h(X) ∈ Z[X ].

Lemma 1.6.9. Let

S :=
{

h(X) =
n∑

i=0

ai Xi ∈ Z[X ] : −ξ

2
< ai ≤ ξ

2
, for all i

}
⊂ Z[X ].

Then the restriction of evξ to S is an isomorphism between it
and Z.

It is clear how to compute ev−1
ξ (γ ) for each integer γ (cf. Fig. 1.5).

Theorem 1.6.10. Let f, g ∈ Z[X ] and let r ∈ N be a bound for all the roots
of both f and g (cf. Fact 1.6.3).

Let ξ ∈ Z be such that |ξ | > 1 + r; let m := f (ξ), n := g(ξ), γ :=
gcd(m, n) and h(X) := ev−1

ξ (γ ).
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Fig. 1.5. Computation of ev−1
ξ

h := ev−1
ξ (γ )

where
ξ ∈ Z,
γ ∈ Z,
h(X) ∈ S ⊂ Z[X ],
h(ξ) = γ

h := γ, h := 0, i := 0,
While h �= 0 do

Let a ∈ Z be the unique element such that
a ≡ h (mod ξ),
−ξ/2 < a ≤ ξ/2

h := (h − a)/ξ, h := h + aXi , i := i + 1

Then the following conditions are equivalent:

h(X) divides both f (X) and g(X);
h(X) = gcd( f, g).

Proof If h divides both f (X) and g(X) and therefore gcd( f, g), then there
exists H ∈ Z[X ] such that gcd( f, g) = h H ; then we have

h(ξ) = γ = gcd(m, n) = gcd( f (ξ), g(ξ)) ≥ gcd( f, g)(ξ) = h(ξ)H(ξ),

so that H(ξ) = ±1.
Since, by the Fundamental Theorem of Algebra, H(X) = ∏

i (X − αi ) for
suitable αi ∈ C, we can deduce that

∏
i (ξ − αi ) = H(ξ) = ±1 and that there

is an α such that |ξ − α| ≤ 1, giving the contradiction

|ξ | > 1 + r ≥ 1 + |α| ≥ |ξ |.

This leads to the probabilistic algorithm presented in Figure 1.6.

Example 1.6.11. An example is

f (X) := X3 − 3X2 − X + 3 = (X − 1)(X + 1)(X − 3)
g(X) := X3 + X2 − 9X − 9 = (X + 1)(X − 3)(X + 3)
ξ := 10
m := 693 = 9 · 11 · 7
n := 1001 = 11 · 7 · 13
γ := 77 = 11 · 7
h(X) := X2 − 2X − 3 = (X + 1)(X − 3)
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Fig. 1.6. Heuristic GCD
h := HEUGCD( f, g)
where

f, g ∈ Z[X ],
h(X) = gcd( f, g).

Choose e ∈ R, e > 1
Choose ξ ∈ Z

Repeat
ξ := �ξe�
m := f (ξ), n := g(ξ),
γ := gcd(m, n)
h(X) := ev−1

ξ (γ )

� h(X) := Prim(h)
until h divides both f and g

Example 1.6.12. However, if you consider

f (X) := (X + 1)(X + 2)(X + 3) and g(X) := (X − 2)(X − 1)X

it is clear that gcd( f, g) = 1, and m ≡ 0 ≡ n (mod 6), for all ξ ∈ Z,
so that h(X) �= gcd( f, g), for all ξ ∈ Z,

and the algorithm cannot terminate.
However, when ξ > 12 and gcd(m, n) = 6, the algorithm returns h(X) = 6

which is associate to gcd( f, g).

This suggests that we remove the content of h5 by adding the line marked
by � in Figure 1.6.

The correctness of this amended algorithm is given by

Theorem 1.6.13. Let f, g ∈ Z[X ] and let r ∈ N be a bound for all the roots
of f and g.

Let ξ ∈ Z be such that

|ξ | ≥ 1 + 2r,

and let m := f (ξ), n := g(ξ), γ := gcd(m, n), h′(X) := ev−1
ξ (γ ), c :=

cont(h′), and h := Prim(h′) = c−1h′.

5 We recall that for a polynomial h(X) := ∑
ai Xi , the content of h is

cont(h) := c := gcd
i
(ai )

and we will denote Prim(h) := c−1h(X) (cf. Section 6.1).
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Then the following conditions are equivalent:

h(X) divides both f (X) and g(X);
h(X) = gcd( f, g).

Proof If h divides both f (X) and g(X) and therefore gcd( f, g), then there
exists H ∈ Z[X ] such that gcd( f, g) = h H ; thus we have

ch(ξ) = h′(ξ) = γ = gcd(m, n) = gcd( f (ξ), g(ξ))

≥ gcd( f, g)(ξ) = h(ξ)H(ξ)

so that H(ξ) ≤ ±c. Since each coefficient of h′ is bounded by ξ/2, we have
c < ξ/2.
therefore, by the same argument as in Theorem 1.6.10, there is an α such that

|ξ − α| ≤ c <
ξ

2
,

so that |α| ≥ ξ/2 > r, which is a contradiction.

Lemma 1.6.14. Let f, g ∈ Z[X ] be such that gcd( f, g) = 1. Then there is
M ∈ N such that

∀ξ ∈ Z, gcd( f (ξ), g(ξ)) ≤ M.

Proof By assumption there are a′(X), b′(X) ∈ Q[X ] such that a′ f + b′g = 1;
eliminating denominators, we obtain polynomials a(X), b(X) ∈ Z[X ] and an
integer M ∈ N such that

a(X) f (X)+ b(X)g(X) = M.

Therefore for all ξ ∈ Z, a(ξ) f (ξ) + b(ξ)g(ξ) = M, from which the proof
follows.

Corollary 1.6.15. Let f, g ∈ Z[X ], h(X) := gcd( f, g). Then there is M ∈ N

such that

∀ξ ∈ Z, gcd( f (ξ), g(ξ)) ≤ Mh(ξ).

Proof Apply the above lemma to the polynomials f/h and g/h.

Corollary 1.6.16. Let f, g ∈ Z[X ] and ξ > 2MB.
Let m := f (ξ), n := g(ξ), γ := gcd(m, n), h′(X) := ev−1

ξ (γ ), c :=
cont(h′), and h := Prim(h′) = c−1h′.
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Then h(X) = gcd( f, g).

Proof Denoting h(X) := ∑
i ai Xi , we have

2M |ai | ≤ 2MB < ξ, for all i,

so that ev−1
ξ (γ ) = Mh(X).

Corollary 1.6.17. The algorithm of Figure 1.6 terminates.
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Intermezzo: Chinese Remainder Theorems

The Chinese Remainder Theorem is the tool which allows us to compute the
integer satisfying some given congruences modulo primes (Section 2.1).

Since the techniques needed to develop it are those of a principal ideal
domain, namely Bezout’s Identity and factorization, the Chinese Remainder
Theorem and Algorithm can be generalized as a tool for studying congruences
modulo elements in that setting (Section 2.2).

More precisely (Section 2.3), given a principal ideal domain D, Chinese
Remaindering allows us to relate the factorization of elements m ∈ D and the
structure of the residue rings of D; in particular, given an element m ∈ D
we can consider its factorization into powers of irreducible elements m =∑n

i=1 mi and its residue ring R = D/(m): Chinese Remaindering lets us
study the structure of R as a direct sum decomposition of the residue rings
Ri = D/(mi ):

D/(m) = D/(m1)⊕ · · · ⊕ D/(mi )⊕ · · · ⊕ D/(mn).

In this analysis I must introduce and study useful notions and tools such
as nilpotent rings (Section 2.4) and primitive idempotents (Section 2.5), be-
fore I can describe the structure of residue rings of a principal ideal domain
(Section 2.6).

Chinese Remaindering can be computed using one of two methods:

by an iterative approach (due to Newton) which is the one discussed in
Section 2.1, or

by a global evaluation represented by a formula (due to Lagrange) from
which Chinese Remaindering can be interpreted as an interpolation
problem, and whose specialization returns the Lagrange Interpolation
formula.

The last section is devoted to Lagrangian results (Section 2.7).

23
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2.1 Chinese Remainder Theorems

Theorem 2.1.1 (Chinese Remainder Theorem for Integers).
Let m1, . . . ,mn ∈ N be such that gcd(mi ,m j ) = 1, for all i, j, and let

m = ∏
i mi . Let a1, . . . , an ∈ Z.

There is an a ∈ Z such that

(1) a ≡ ai (mod mi ), for all i ;
(2) if b ∈ Z is such that b ≡ ai (mod mi ), for all i , then b ≡

a (mod m).

Proof Let us first prove that if both a and b are such that

a ≡ ai , b ≡ ai (mod mi ), for all i,

then b ≡ a(mod m).
This follows immediately because then a ≡ b (mod mi ), for all i , and so

a ≡ b (mod m)

since m = lcm(m1, . . . ,mn).

Now let us prove that there exists an a satisfying (1). It is clearly sufficient to
prove this when n = 2, because then one can use induction.
Since gcd(m1,m2) = 1, by the Bezout Identity for the integers, there are
c1, c2 ∈ Z such that

c1m1 + c2m2 = 1.

Let

u := c1(a2 − a1)

and

a := a1 + um1.

Then a ≡ a1(mod m1); Let us now show that a ≡ a2 (mod m2) too.
Denoting

v := c2(a2 − a1)

we have

a2 − a1 = c1(a2 − a1)m1 + c2(a2 − a1)m2 = um1 + vm2,

and so

a2 = a1 + um1 + vm2 = a + vm2 ≡ a(mod m2).
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Corollary 2.1.2. Let m1, . . . ,mn ∈ N be such that

gcd(mi ,m j ) = 1, for all i, j,

and let m = ∏
i mi . Let a1, . . . , an ∈ Z.

Then there is a unique a ∈ Z such that

a ≡ ai (mod mi ), for all i; and − m/2 < a ≤ m/2.

Proof In each congruence class mod m, there is a unique element a such that
−m/2 < a ≤ m/2.

Historical Remark 2.1.3. Is the Chinese Remainder Theorem a Chinese
Theorem on remainders or a theorem on Chinese Remainders?

While the Chinese Remainder Theorem is usually and correctly related to
astronomy and calendars, there is a folklore story which relates it to military
technology.

According to this folklore story, by ordering an army to arrange itself in
rows of 3, 5, 7, . . . and counting the remainders, it was possible to compute
how many soldiers started the war and how many came back, and therefore the
number of losses.

In this sense, the theorem is really related to Chinese Remainders!

Corollary 2.1.4. Let m1, . . . ,mn ∈ N be such that gcd(mi ,m j ) = 1, for all
i, j, and let m = ∏

i mi . Let a1, . . . , an be such that ai ∈ Zmi .

Then there is a unique a ∈ Zm such that

a ≡ ai (mod mi ), for all i.

Corollary 2.1.5. Let m1, . . . ,mn ∈ N be such that gcd(mi ,m j ) = 1, for all
i, j, and let m = ∏

i mi . Let f1(X), . . . , fn(X) ∈ Z[X ].
Then there is a unique f (X) := ∑d

i=0 ci Xi ∈ Z[X ] such that

f (X) ≡ fi (X)(mod mi ), for all i ;
deg( f ) = d = max(deg( fi ));
−m/2 < ci ≤ m/2, for all i .

Proof We have only to apply the Chinese Remainder Theorem to each of the
coefficients of fi at each degree δ ≤ d , to obtain the coefficients of f at that
same degree.
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Theorem 2.1.6 (Chinese Remainder Theorem for Polynomials).
Let g1, . . . , gn ∈ k[X ] be such that gcd(gi , g j ) = 1, for all i, j, and let

g = ∏
i gi . Let f1, . . . , fn ∈ k[X ].

Then there is a unique f ∈ k[X ] such that

f ≡ fi (modgi ), for all i and deg( f ) < deg(g).

Proof Uniqueness is proved by noting that if f and h are such that

f ≡ fi , h ≡ fi (mod gi ), for all i,

then f ≡ h(mod g). Hence

deg( f ) < deg(g), deg(h) < deg(g) �⇒ f = h.

Existence is proved by rephrasing the proof of the Chinese Remainder Theo-
rem for Integers. Again it is sufficient to prove this when n = 2.
Since gcd(g1, g2) = 1, by the Bezout Identity, there are s, t ∈ k[X ] such that

sg1 + tg2 = 1.
Let

u := s( f2 − f1)

and

f := f1 + ug1,

so that f ≡ f1(mod g1). Then, denoting

v := t ( f2 − f1),

we have

f2 − f1 = s( f2 − f1)g1 + t ( f2 − f1)g2 = ug1 + vg2,

which implies that

f2 = f1 + ug1 + vg2 = f + vg2 ≡ f (mod g2).

2.2 Chinese Remainder Theorem for a Principal Ideal Domain

Recall that

Fact 2.2.1. In a principal ideal domain D we have:

(Bezout’s Identity) for all a, b ∈ D, ∃s, t ∈ D : as + bt = gcd(a, b);
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(Factorization) for each non-invertible a ∈ D there is a unique factorization
into irreducible factors pi :

m = pe1
1 · · · pen

n .

Since in the proof of the Chinese Remainder Theorem we only used Bezout’s
Identity, both for integers and for polynomials over a field, it is easy to modify
the statement and the proof of the Chinese Remainder Theorem for it to hold
in a principal ideal domain1:

Theorem 2.2.2 (Chinese Remainder Theorem for a PID).
Let D be a principal ideal domain (PID).
Let m1, . . . ,mn ∈ D be such that gcd(mi ,m j ) = 1, for all i, j, and let

m = ∏
i mi . Let a1, . . . , an ∈ D.

Then there is an a ∈ D such that

(1) a ≡ ai (mod mi ), for all i ,
(2) if b ∈ D is such that

b ≡ ai (mod mi ), for all i,

then a ≡ b(mod m).

Proof First let us prove that if both a and b are such that

a ≡ ai , b ≡ ai (mod mi ), ∀i,

then b ≡ a(mod m).
This follows immediately because then a ≡ b(mod mi ), for all i and so

a ≡ b mod lcm(m1, . . . ,mn) = m.

Now let us prove that there exists an a satisfying (1). It is clearly sufficient to
prove this when n = 2, because then one can use induction.
Since gcd(m1,m2) = 1, by the Bezout Identity, there are c1, c2 ∈ D such that

c1m1 + c2m2 = 1.

Let

u := c1(a2 − a1)

and

a := a1 + um1.

1 Note, however, that there is a still more general version of the Chinese Remainder Theorem,
which holds under more relaxed assumptions and is applicable to ideals in multivariate poly-
nomial rings.
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Then a ≡ a1(mod m1) and we can show that a ≡ a2(mod m2) too. Denoting

v := c2(a2 − a1)

we have

a2 − a1 = c1(a2 − a1)m1 + c2(a2 − a1)m2 = um1 + vm2,

and so

a2 = a1 + um1 + vm2 = a + vm2 ≡ a(mod m2).

Corollary 2.2.3. Let D be a principal ideal domain. Let m1, . . . ,mn ∈ D be
such that gcd(mi ,m j ) = 1, for all i, j, and let m = ∏

i mi .
Let a1, . . . , an be such that ai ∈ D/(mi ), for all i .
Then there is a unique a ∈ D/(m) such that a ≡ ai (mod mi ), for all i .

Proposition 2.2.4 (Newton–Garner). Let D be a principal ideal domain.
Let m1, . . . ,mn ∈ D be such that gcd(mi ,m j ) = 1, for all i, j, and let

q0 := 1, q j :=
j−1∏
i=1

mi , j = 1, . . . , n, m :=
∏

i

mi .

Let a1, . . . , an ∈ D.
Then there are bi , 0 ≤ i < n, such that

a :=
n−1∑
i=0

bi qi

satisfies

a ≡ ai (mod mi ), ∀i.

Proof By the Bezout Identities, for all i, j , there are elements si j , s ji such that

si j mi + s ji m j = 1.

Now define

t1 := 1, tk+1 := tksk j =
k∏

i=1

si j , 1 ≤ k < j, s j := t j−1

so that

s j q j ≡ 1(mod m j ).
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Then put b0 := a1 and assume inductively that we have already computed
elements bi : i = 0, . . . , j − 1 such that

j−1∑
i=0

bi qi ≡ ak(mod mk), for all k < j.

Let us then compute

v1 := b j−1(mod m j ), vi := vi−1m j−i + bi (mod m j ), i = 2, . . . , k − 1

so that

v j =
j−1∑
i=0

bi qi (mod m j );

therefore setting

b j := (a j − v j )s j

we have
j∑

i=0

bi qi ≡
{
v j + (a j − v j )s j q j ≡ a j (mod m j )∑ j−1

i=0 bi qi ≡ ak(mod mk), k < j.

Historical Remark 2.2.5. The corresponding algorithm, the Garner Algorithm,
is essentially the generalization from k[X ] to the PIDs of the Newton Interpo-
lation Formula which, given roots α1, . . . , αn ∈ k and values a1, . . . , an ∈ K ,
allow us to interpolate a polynomial f (X), deg( f ) < n, such that for all i :
f (αi ) = ai . In other words, it lets us apply the Chinese Remainder Theorem
to the case

mi := X − αi , m :=
∏

i

mi .

2.3 A Structure Theorem (1)

The Chinese Remainder Theorem for principal ideal domains can be inter-
preted as a structural result for residues of a PID. The rest of this chapter is
devoted to describing this.

Throughout, we will fix a principal ideal domain D, an element m ∈ D, and
the residue ring R := D/(m).

Let us factor m in D as

m = pe1
1 · · · pen

n
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so that, denoting mi := pei
i , we have

m =
∏

i

mi and gcd(mi ,m j ) = 1, for all i, j,

i.e. the exact assumptions of Corollary 2.2.3.
Moreover we will denote Ri := D/(mi ); also, for each g ∈ D, we will

denote by g the canonical projection g : D → D/(g).
Finally all rings considered in the rest of this chapter are implicitly com-

mutative.

First we recall the notion of direct sum decomposition: if R1, R2 are two
rings, we can consider the set

R1 ⊕ R2 := {(a1, a2) : a1 ∈ R1, a2 ∈ R2}.
It is easy to verify that R1 ⊕ R2 is a ring under the sum

(a1, a2)+ (b1, b2) := (a1 + b1, a2 + b2)

and the product

(a1, a2)(b1, b2) := (a1b1, a2b2),

the null element being (0, 0) and the identity being (1, 1).
Note that since

(1, 0)(0, 1) = (0, 0),

even if both R1 and R2 are domains, R1 ⊕ R2 has zero divisors.
We call R1 ⊕ R2 the direct sum of R1 and R2.
In the same way, given n rings R1, . . . , Rn we define the direct sum

R1 ⊕ · · · ⊕ Rn to be the set of n-tuples (r1, . . . , rn) with ri ∈ Ri , for all i ,
and the sum and product defined componentwise.

Definition 2.3.1. If R, R1, . . . , Rn are rings such that

R ∼= R1 ⊕ · · · ⊕ Rn,

then R1 ⊕ · · · ⊕ Rn is called a direct sum decomposition of R.

Note that if

φ : R → R1 ⊕ · · · ⊕ Rn

is an isomorphism, then there are canonical projections

πi : R → Ri

and canonical immersions

ηi : Ri → R
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defined by

for all a ∈ R, πi (a) := ai , for all i , where ai ∈ Ri are defined by the
relation φ(a) = (a1, . . . , an); and

ηi (ai ) is the unique a ∈ R such that π j (a) =
{

ai if j = i
0 otherwise;

note that they satisfy the properties

for all ai ∈ Ri , πiηi (ai ) = ai ; and for all a ∈ R, a = ∑
i ηiπi (a).

Let us extend our notation by defining the maps

πi : R → Ri to be the canonical projection such that

for all a ∈ D, πi m(a) = mi(a),

i.e. for all a ∈ R, πi (a) is the congruence class of a(mod mi );
φ : R → R1 ⊕ · · · ⊕ Rn to be the morphism such that

φ(a) = (π1(a), . . . , πn(a)), for all a ∈ R;
ψ : R1 ⊕ · · · ⊕ Rn → R to be the morphism such that ψ(a1, . . . , an) is the

only element a ∈ R satisfying a ≡ ai (mod mi ) for all i – its existence
and uniqueness being guaranteed by Corollary 2.2.3;

ηi : Ri → R to be the morphism such that ηi (ai ) = φ(0, . . . , 0, ai ,

0, . . . , 0), i.e. ηi (ai ) is the only element a ∈ R such that

a ≡
{

ai (mod mi )

0(mod m j ) j �= i.

Using the notion of direct sum decomposition and the notation we have
introduced, we can now interpret the Chinese Remainder Theorem as follows:

Theorem 2.3.2. With the notation above, we have that:

(1) φ and ψ are inverse isomorphisms;
(2) R is isomorphic to R1 ⊕ · · · ⊕ Rn;
(3) πi and ηi are respectively the canonical projections and the canonical

immersions.

Proof (2) and (3) are obvious consequences of (1).
To prove (1) we only have to prove that φ andψ are inverse applications, which
is just an obvious restatement of Corollary 2.2.3.
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Example 2.3.3. Let us consider a trivial example. We choose D := Q[X ],
m1 := X , m2 := X − 1, m3 := X + 1, so that m = X3 − X ,

R = D/(m) = {a + bX + cX2 : a, b, c ∈ Q}
and Ri = D/(mi ) = Q, for all i .

We then have:

π1(a + bX + cX2) = a;

π2(a + bX + cX2) = a + b + c;

π3(a + bX + cX2) = a − b + c;

φ(a + bX + cX2) = (a, a + b + c, a − b + c);

ψ(α, β, γ ) = α + ((β − γ )/2)X + ((β + γ )/2 − α)X2;

η1(α) = α − αX2 = α(1 − X2);

η2(β) = (β/2)X + (β/2)X2 = (β/2)(X + X2);

η3(γ ) = −(γ /2)X + (γ /2)X2 = (γ /2)(−X + X2).

2.4 Nilpotents

Definition 2.4.1. Let R be a ring. An element r ∈ R is called nilpotent if there
is n ∈ N such that rn = 0.

A ring R is called a nilpotent ring if each non-invertible element of R is
nilpotent.

Note that a field is an obvious case of a nilpotent ring, since the only non-
invertible element is zero, which is obviously nilpotent.

A more general case is that of any ring Ri := D/(mi ) = D/(pei
i ), where D

is a PID. In fact, the following results hold:

Proposition 2.4.2. Let D be a principal ideal domain, and m ∈ D be
a non-invertible element. Let R := D/(m), the ring of congruence classes
modulo m, and let m : D → R be the canonical projection.

Then:

(1) for all h ∈ D,m(h) is invertible ⇐⇒ gcd(m, h) = 1 ;
(2) m is irreducible if and only if R is a field;
(3) m is associate to the power of an irreducible element if and only if R is

nilpotent.
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Proof

(1) Let h ∈ D; then

m(h) is invertible in R
⇐⇒ there is s ∈ D such that m(h)m(s) = 1
⇐⇒ there are s, t ∈ D such that sh + tm = 1
⇐⇒ gcd(m, h) = 1.

The assumption that D is a principal ideal domain has been used in the
application of the Bezout Identity.

(2) We have:

m is irreducible
⇐⇒ ∀h ∈ D, gcd(m, h) is associate to either 1 or m
⇐⇒ ∀h ∈ D, either m(h) ∈ R is invertible or m(h) = 0
⇐⇒ each non-zero element of R is invertible
⇐⇒ R is a field.

(3) Let us assume R is nilpotent and let m := pe1
1 . . . pen

n be a factorization of
m. We want to prove that n = 1.
Note that, since R is nilpotent, for all h ∈ D, either m(h) is invertible in
R or there is a t such that m(h)t = 0. Therefore, for all i ≤ n, either:

m(pei
i ) is invertible in R, from which we deduce that

1 = gcd(m, pei
i ) = pei

i ;
or there is a t such that m(pei

i )
t = 0, i.e. pei t

i is a multiple of m.

In conclusion, there is a single value i such that

m = pei
i and 1 = gcd(m, p

e j
j ) = p

e j
j , for all j �= i.

Conversely let us assume that there is an irreducible p ∈ D and e ∈ N

such that m = pe and let us prove that R is nilpotent. Let h ∈ D;
then

(i) either gcd(h,m) = 1 and so m(h) is invertible in R,
(ii) or gcd(h,m) = pε for some ε ≤ e, in which case h = pεs for a

suitable s ∈ D. Then he = pεese = mεse so that m(h)e = 0.

Thus we conclude that for each h ∈ D, m(h) is either irreducible or
nilpotent.
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Definition 2.4.3. Let D be a unique factorization domain and let m ∈ D; m is
called squarefree if it has no multiple factors, or, equivalently, if it is a product
of irreducible factors.

Theorem 2.4.4. Let D be a principal ideal domain, m ∈ D be a non-invertible
element and R := D/(m). Then:

(1) R is a direct sum of nilpotent rings;
(2) R is a direct sum of fields iff m is squarefree.

Proof Because D is a principal ideal domain, it is factorial; let

m = pe1
1 . . . pen

n

be its factorization into powers of distinct non associate irreducible elements
pi ; denote mi := pei

i , Ri := R/(mi ).
By Theorem 2.3.2 we have that R is isomorphic to R1 ⊕ · · · ⊕ Rn . By
Proposition 2.4.2 each Ri is nilpotent; moreover each Ri is a field iff ei = 1, ∀i ,
i.e. iff m is a product of irreducible distinct factors.

Theorem 2.4.4 gives us another step towards the structure theorem for
residues of a PID. Before going on let us note

Lemma 2.4.5. Let R be a ring; then the set of nilpotent elements of R is an
ideal.

Proof Denote by N := {r ∈ R : r is nilpotent} the set which we need to prove
is an ideal.
Let r1, r2 ∈ N and let n,m ∈ N be such that rn

1 = rm
2 = 0. Setting N =

n + m − 1, we have

(r1 + r2)
N =

N∑
i=0

cir
i
1r N−i

2

for some ci ∈ R. In each term of this expansion either i ≥ n, so r i
1 = 0, or

N − i ≥ N − n + 1 = m, so r N−i
2 = 0. Therefore (r1 + r2)

N = 0 and
r1 + r2 ∈ N.
Let r ∈ R, r1 ∈ N, n ∈ N be such that rn

1 = 0. Then (rr1)
n = rnrn

1 = 0 so
that rr1 ∈ N.
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Remark 2.4.6. With the notation we are using throughout this chapter, let us
consider a nilpotent ring R = D/(m), so that m = m1 = pe1

1 for an irreducible
element p := p1 ∈ D.

Then for each h ∈ D either:

m(h) is invertible, in which case there is s ∈ D such that m(s)m(h) = 1,
and therefore p(s)p(h) = 1, and h �∈ (p);

or m(h) is nilpotent, in which case there is g ∈ D such that he = gm =
gpe1 , i.e., since p is irreducible, h ∈ (p).

In conclusion, the set of the nilpotent elements of R is the ideal generated
by m(p).

2.5 Idempotents

To complete our analysis of the structure of residue R of a PID D, we need to
consider the following definition

Definition 2.5.1. Let R be a ring. An element r ∈ R is called idempotent if
r = r2.

We then have

Lemma 2.5.2. Let R be a ring. Then:

(1) r ∈ R is idempotent ⇐⇒ 1 − r is idempotent.
(2) If r1, r2 are idempotent, then r1 + r2 − r1r2, r1r2, r1 − r1r2, r2 − r1r2 are

idempotent.

Proof

(1) Assume r is idempotent. Then

(1 − r)2 = 1 − 2r + r2 = 1 − 2r + r = 1 − r

so that 1 − r is idempotent.
Since r = 1 − (1 − r) the converse is obvious.

(2) We have

(r1 + r2 − r1r2)
2 = r2

1 + r2
2 + r2

1r2
2 + 2r1r2 − 2r2

1r2 − 2r1r2
2

= r1 + r2 + r1r2 + 2r1r2 − 2r1r2 − 2r1r2

= r1 + r2 − r1r2;

(r1r2)
2 = r2

1r2
2 = r1r2;
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(r1 − r1r2)
2 = r2

1 + r2
1r2

2 − 2r2
1r2 = r1 + r1r2 − 2r1r2

= r1 − r1r2.

Lemma 2.5.3. Let R be a nilpotent ring. Then its only idempotents are its
identity and its zero.

Proof Let c be an idempotent of a nilpotent ring R which is neither 1 nor 0.
Since c and 1−c are both non-zero, and since c = c2 and c(1−c) = 0, both are
zero-divisors and so they are not invertible in R. Therefore there is an n such
that cn = 0. However, c = c2 = c3 = . . . = cn = 0, which is absurd.

By Theorem 2.3.2 and Theorem 2.4.4 we know that R is the direct sum of
the nilpotent rings

R ∼= R1 ⊕ · · · ⊕ Rn;
therefore, in order to study the idempotents of R, on the basis of Lemma 2.5.3
let us denote, ∀i , ei := ηi (1Ri ) ∈ R so that

π j (ei ) =
{

1 if i = j
0 otherwise,

which, as we will soon see are the building blocks for all the idempotents of R.

Lemma 2.5.4. Under this notation:

(1) ei e j = 0 if i �= j ;
(2) e2

i = ei , ∀i ;
(3) 1R = e1 + · · · + en;
(4) ∀a ∈ R, let ai = aei ; then

a =
∑

k

aek =
∑

k

ak;

(5) ∀a ∈ R,

ai = πiηi (ai ) = ηiπi (ai ) = ηiπi (a);
(6) the ideal

(ei ) = {aei : a ∈ R} ⊂ R

is isomorphic to Ri , under the restriction of πi to it.
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Proof (1), (2), (3) are obvious.
For (4) we have

a = a1R =
∑

k

aek =
∑

k

ak .

Therefore

πi (ai )= πi (a)πi (ei ) =
∑

k πi (a)πi (ek) = πi (
∑

k aek) = πi (a);
π j (ai )= π j (aei ) = π j (a)π j (ei ) = 0, ∀ j �= i,

so that ai is the only element in R such that

π j (ai ) =
{
πi (a) if i = j
0 otherwise,

i.e. ai = ηiπi (ai ).
Moreover,

ηiπi (a) = ηiπi

(∑
k

ak

)
= ηi

(∑
k

πi (ak)

)
= ηiπi (ai ) = ai ;

proving (5).
Because of (5)

Im(ηi ) = {aei : a ∈ R}

and ηiπi (aei ) = aei , from which (6) follows immediately.

Definition 2.5.5. A set of idempotents {e1, . . . , en} satisfying conditions (1),
(2), (3) of Lemma 2.5.4 will be called a primitive set of idempotents for R and
each ei will be called a primitive idempotent for R.

Corollary 2.5.6. Let R1 ⊕ · · · ⊕ Rn be a direct sum decomposition of R into
nilpotent rings Ri .

For each J ⊆ {1, . . . , n} denote eJ := ∑
j∈J e j , so that

π j (eJ ) =
{

1 if j ∈ J
0 j �∈ J .

Then the set of idempotents of R is {eJ : J ⊆ {1, . . . , n}}.
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Proof Let J = {i1, . . . , ik}; then

e2
J = (ei1 + . . .+ eik )

2

=
∑

j

e2
i j
+
∑
j �=l

ei j eil

= ei1 + · · · + eik

= eJ .

Conversely if
∑

i ai ei is idempotent, then

∑
i

ai ei =
(∑

i

ai ei

)2

=
∑

i

a2
i ei

so that ai = a2
i , for all i , and ai is an idempotent of Ri , for all i .

Since Ri is nilpotent this means that ai is either 1 or 0.
Then, setting J := {i : ai = 1}, we have

∑
i ai ei = eJ .

Theorem 2.5.7. Let R1 ⊕ · · · ⊕ Rn be a direct sum decomposition of R into
nilpotent rings Ri .

Then this decomposition is unique in the following sense: if S1 ⊕ · · · ⊕ Sm

is another direct sum decomposition of R into nilpotent rings Si , then n = m
and there is a permutation ρ of {1, . . . , n} such that S j is isomorphic to Rρ( j).

Proof Denote by π j : R → R j , η j : R j → R, σ j : R → S j , ζ j : S j → R the
canonical projections and immersions.

Denote ei := ηi (1Ri ), εi := ζi (1Si ), eI := ∑
i∈I ei , εI := ∑

i∈I εi .
Because of Proposition 2.5.6 the set of idempotents of R is both

{eI : I ⊆ {1, . . . , n}}
and

{εI : I ⊆ {1, . . . ,m}}.
A cardinality count is then sufficient to prove that n = m.
Moreover, ∀ j there is I ⊆ {1, . . . , n} such that ε j = eI . Let i ∈ I ; there is
J ⊆ {1, . . . , n} such that ei = εJ . Therefore we have

ei = ei eI = εJ ε j = ε j .

In this way we prove the existence of a permutation ρ such that ∀ j, ε j = eρ( j).
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Let I ⊆ R be the ideal generated by eρ( j) = ε j ; by Lemma 2.5.4, both S j and
Rρ( j) are isomorphic to I, from which the proof follows.

In this context, it is worthwhile noting that the operations between idempo-
tents described in Lemma 2.5.2 have an easy set-theoretical interpretation:

Proposition 2.5.8. Let I, J ⊆ {1, . . . , n}. Then:

(1) 1 − eJ = eC(J ) where C(J ) = {i : 1 ≤ i ≤ n, i �∈ J };
(2) eI eJ = eI∩J ;

(3) eI + eJ − eI eJ = eI∪J ;

(4) eI − eI eJ = eI\J where I \ J = {i : i ∈ I, i �∈ J };
(5) 1R = e1 + · · · + en = 1R1 + · · · + 1Rn ;

(6) eI eJ = eJ ⇐⇒ J ⊆ I.

Example 2.5.9. With the same notation as Example 2.3.3 we can list the idem-
potents of R, which are

e1 = 1 − X2,

e2 = (X + X2)/2,

e3 = (−X + X2)/2,

e{1,2} = 1 + 1
2 X − 1

2 X2,

e{1,3} = 1 − 1
2 X − 1

2 X2,

e{2,3} = X2.

2.6 A Structure Theorem (2)

We are now able to summarize the results obtained in this analysis of the struc-
ture of the residue ring of the principal ideal domain in

Theorem 2.6.1. Let D be a principal ideal domain. Then:

(1) Let m ∈ D, R := D/(m), and let m = ∏n
i=1 pei

i be its factorization in D
so that, denoting mi := pei

i , we have

m =
∏

i

mi and gcd(mi ,m j ) = 1, ∀i, j.

Moreover we will set Ri := D/(mi ) and the maps

πi : R → Ri to be the canonical projection;
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φ : R → R1 ⊕ · · · ⊕ Rn to be the morphism such that

φ(a) = (π1(a), . . . , πn(a)), ∀a ∈ R;
ψ : R1 ⊕ · · · ⊕ Rn → R to be the morphism such that ψ(a1, . . . , an) is

the only element a ∈ R satisfying a ≡ ai (mod mi )∀i ;
ηi : Ri → R to be the morphism such that

ηi (ai ) = φ(0, . . . , 0, ai , 0, . . . , 0).

Then R is a direct sum of nilpotent rings

R ∼= R1 ⊕ · · · ⊕ Rn

via the inverse isomorphisms φ and ψ; moreover this decomposition is
unique.

(2) Conversely let R be a residue ring of D which is a direct sum of nilpotents

R ∼= R1 ⊕ · · · ⊕ Rn

so that for each i ,

Ri is a residue ring of D, Ri = D/(mi ), and
mi is a power of an irreducible element, mi := pei

i (cf. Proposition
2.4.2).

Then denoting m = ∏n
i=1 pei

i , we have that R = D/(m).

Proof The assertions follow from Theorem 2.3.2, Theorem 2.4.4 and The-
orem 2.5.7, except the last one, which follows easily by noting that, setting
m : D → R and mi : D → Ri to be the canonical projections, for each a ∈ D
we have

m(a) = 0 ⇐⇒ mi(a) = 0, for all i

⇐⇒ a ≡ 0(mod mi ) for all i

⇐⇒ a ≡ 0(mod m)

so that R = D/ker(m) = D/(m).

Corollary 2.6.2. With the notation above, R is also a direct sum of fields iff m
is squarefree.
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2.7 Lagrange Formula

In Theorem 2.2.2 we have presented the formula and algorithm for apply-
ing the Chinese Remainder Theorem proposed by Newton; we intend here to
present those proposed by Lagrange; we assume the circumstances discussed
in Theorem 2.6.1 still hold and we denote for each I ⊂ {1, . . . n} the elements

gI :=
∏
i∈I

mi , hI :=
∏
i �∈I

mi

so that

m = gI h I ;
∃sI , tI ∈ D such that 1 = sI gI + tI h I .

To simplify the notation, for each i , 1 ≤ i ≤ n, we write gi , hi , si , ti for
gI , hI , sI , tI where I = {i}.
Theorem 2.7.1 (Lagrange). There are γi , 1 ≤ i ≤ n, such that

1 =
n∑

i=1

γi hi .

Proof An elementary proof can easily be derived by iteration from the Bezout
Identity.
If n = 2, we have h2 = g1, and therefore the result holds setting

γ1 := t1, γ2 := s1.

Thus, let Hi := hi/gn for i < n; by induction there are χi , 1 ≤ i ≤ n − 1 such
that

1 =
n−1∑
i=1

χi Hi .

Therefore, setting

γi :=
{

snχi if i < n
tn otherwise

we have

1 = sngn + tnhn = sn

(
n−1∑
i=1

χi Hi

)
gn + tnhn

=
n−1∑
i=1

(snχi ) (Hi gn)+ tnhn =
n∑

i=1

γi hi .
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Let us denote

ci := γi hi (mod m), Ci :=
∑
j �=i

c j , ∀i,

and

cI :=
∑
i∈I

ci , CI :=
∑
i �∈I

ci , ∀I ⊂ {1, . . . , n},

so that

cI + CI = 1, ∀I.

Lemma 2.7.2. We have

c j ≡
{

1(mod mi ) if i = j
0(mod mi ) otherwise

Proof Since h j ≡ 0(mod mi ) if j �= i , we have c j ≡ 0(mod mi ) and

ci = 1 −
∑
j �=i

γ j h j ≡ 1(mod mi ).

This lemma gives a different formula for the Chinese Remainder Theorem

Corollary 2.7.3. Let ai ∈ D and let a = ∑n
i=1 ai ci .

Then a ≡ ai (mod mi ), ∀i .

Evidently the ci s are just a different way of computing the idempotents of
R; in fact:

Proposition 2.7.4.

(1) 1 = ∑n
j=1 c j ;

(2) ci c j = 0 if i �= j ;

(3) ci is an idempotent;

(4) ci and hi generate the same ideal Ii ;

(5) { f ∈ R : f = f ci } = Ii ;

(6) Ri and Ii are isomorphic;

(7) under this isomorphism ei and ci are identified.

Proof (1) is obvious and (2) follows immediately from the fact that hi h j = 0
if i �= j .
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As a consequence we have

ci = ci

n∑
j=1

c j =
n∑

j=1

ci c j = c2
i

and (3) follows.
For (4), ci ∈ (hi ) since ci = γi hi ; conversely hi ∈ (ci ) because

hi =
n∑

j=1

hi c j = hi ci .

Obviously { f ∈ R : f = f ci } ⊂ Ii , therefore (5) follows if we prove that for
each f ∈ Ii , we have f = f ci : in fact, for each f ∈ Ii , there is an F ∈ R
such that f = Fci and (5) follows as

f = Fci = Fc2
i = f ci .

Since 1 = si gi + ti hi , we have f = f si gi + f ti hi for each f ∈ R. The
mapping � : R → Ii defined by �( f ) = f ti hi is surjective and its kernel is
(gi ), which proves (6).
Since �(ei ) and ci are idempotents of the field Ii , (7) follows from
Lemma 2.5.3.

Remark 2.7.5. It is worthwhile and interesting to apply the Lagrange formula
to the case of a squarefree polynomial which splits into linear factors

m(X) =
n∏

i=1

(X − αi )

in K [X ], where K is a field containing all the roots αi of m.

For each j the polynomial c j (X) is a polynomial of degree < n; moreover
c j (αi ) = 0, for all i �= j , so that

c j (X) = a j

∏
i �= j

(X − αi ),

for a suitable a j ∈ K ; furthermore

1 = c j (α j ) = a j

∏
i �= j

(α j − αi )

so that

c j (X) =
∏
i �= j

(X − αi )

(α j − αi )
;
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in other words the Lagrange version of the Chinese Remainder Theorem gives
the Lagrange Interpolation formula.

Example 2.7.6. Completing the computations of Example 2.3.3 and Example
2.5.9, we have

g1 = X = h{2,3},
h1 = −1 + X2 = g{2,3},
g2 = X − 1 = h{1,3},
h2 = X + X2 = g{1,3},
g3 = X + 1 = h{1,2},
h3 = −X + X2 = g{1,2}.

Moreover

1g1 − 1g2 = 1,
1

2
h3 +

(
1 − 1

2
X

)
g3 = 1

so that we obtain

1 = −
(

1 − 1

2
X

)
h1 +

(
1 − 1

2
X

)
h2 + 1

2
h3

which gives

γ1 = −1 + 1

2
X,

γ2 = 1 − 1

2
X,

γ3 = 1

2
,

c1 = 1 − X2,

c2 = 1

2
X + 1

2
X2,

c3 = −1

2
X + 1

2
X2,

c{1,2} = 1 + 1

2
X − 1

2
X2,

c{1,3} = 1 − 1

2
X − 1

2
X2,

c{2,3} = X2.

Furthermore

a := αc1 + βc2 + γ c3 = α +
(
β − γ

2

)
X +

(
β + γ

2
− α

)
X2

thus confirming Corollary 2.7.3.
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Also the Lagrange Interpolation Formula can immediately be verified.

As a consequence of Theorem 2.6.1 and Proposition 2.7.4, we have:

Theorem 2.7.7. With the above notation, there are obvious bijections between

subsets I ⊂ {1, . . . , n};
factors g of m;
cofactors h of m;
subrings R of R;
idempotents c of R;
ideals I of R,

which are given by associating with each other:

the subset I ⊂ {1, . . . , n},
the factor gI =

∏
j∈I m j ,

the cofactor hI =
∏

j �∈I m j ,
the subring RI = ⊕ j∈I R j ,
the idempotent cI ,

the ideal JI := (hI ) = (cI ) ∼= RI = D/(gI ).

Proof The correspondence between factors, cofactors and subsets is obvious,
as is the existence of that between cofactors and ideals, and this associates to
any ideal its generator of minimal degree; also, we obtain from Theorem 2.6.1
the relation between the ring RI = D/(gI ) and the factor gI .
For I = {i} we have from Proposition 2.7.4 the relation

JI = (hI ) = (cI ) ∼= RI = D/(gI ). (2.1)

To extend it let us consider J ⊂ {1, . . . , n}, i �∈ J , I := J ∪ {i}; we need to
prove that, if Equation 2.1 holds for J , then it also holds for I . In fact we have

cI = cJ + ci ∈ (h J , hi ) = (gcd(h J , hi )) = (hI )

hI =
∑

i∈I h I ci +
∑

j �∈I h I c j =
∑

i∈I h I ci = hI cI , so that
JI := (hI ) = (cI ); also
RI = ⊕ j∈I R j = D/(gI ), and
RI = ⊕ j∈I R j = ⊕ j∈J R j

⊕
Ri ∼= (h J ) + (hi ) = (gcd(h J , hi )) =

(hI ) = JI .

Remark 2.7.8. It is obvious that, with the notation of this section, the single
primitive set of idempotents for R is {e1, . . . , en}, and by Theorem 2.7.7 we
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get bijections between

(i) the element i ∈ {1, . . . , n};
(ii) the factor mi ;

(iii) the cofactor hi =
∏

j �=i m j ;
(iv) the subring Ri = D/(mi );
(v) the idempotent ei ;

(vi) the ideal Ji := (hi ) = (ei ) ∼= Ri = D/(mi ).

Remark 2.7.9. Let us now consider the case D = K [X ]. Given a rational func-
tion n(X)

m(X) , deg(n) < deg(m), let us assume – with the notation used throughout
this chapter – that

m(X) =
∏
i∈I

mi (X), mi (X) := pi (X)
ei ,

with pi (X) irreducible.
We then define ∀i, ri (X) := Rem(nci ,m) so that

ri (X) ≡ n(X)γi (X)hi (X)(mod m),

and deg(ri ) < deg(m), so that n(X) = �i ri (X).
Since

ri (X) ≡ n(X)γi (X)hi (X) ≡ 0(mod m j ), for all j �= i,

we know that ∀i, ri (X) = si0(X)hi (X) and

n(X) =
∑

i

si0(X)hi (X)

for suitable si0(X) ∈ K [X ] : deg(si0) < deg(mi ).
For each i let us now compute iteratively, for j = 0, . . . , ei − 1,

ti j := Rem(si j , pi ), si j+1 := Quot(si j , pi )

so that

si0(X) =
ei−1∑
j=0

ti j pi (X)
j , deg(ti j ) < deg(pi ).

Therefore we obtain

n(X)

m(X)
= �i si0(X)hi (X)∏

i∈I mi (X)
=
∑

i

si0(X)

pi (X)ei
=
∑

i

ei−1∑
j=0

ti j

pi (X)ei− j
,

i.e. the classic decomposition of rational functions in the case K = R, where
the pi s are linear or quadratic factors.
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Cardano

Among those who attacked me, there was none

whose knowledge went further than a school-

master and I do not know how they dared to in-

sert themselves among the erudites; in any case

here are their names: . . . Tartaglia . . .

G. Cardano, De propria vita liber

3.1 A Tautology?

Before discussing Solving Polynomial Equation Systems, it seems natural
to ask:

‘What does it mean to solve a polynomial equation system?’
For a univariate polynomial f (X) ∈ P apparently the answer is obvious:

e.g. it is clear that the solutions of f (X) := X2 − X are 0 and 1. Analo-
gously, we could then say that ‘the solutions of f (X) := X2 − 2 are

√
2

and −√2’.
Yes, yes, . . . unless somebody asks you for a definition of

√
2. . . .Well, what-

ever approach you use, your only possible answer is: ‘
√

2 and −√2 are the
solutions of X2 − 2’. Apparently, we have a strange tautology: the solutions of
X2 − 2 are the solutions of X2 − 2!

If you are not really convinced by this, let me try a stronger example:
you will agree that the solutions of the polynomial X2 + 1 are ±i and that
the imaginary number i can be defined only as that number whose square
is −1, i.e. to be a solution of the polynomial X2 + 1. So we truly have a
tautology:

The solutions of the polynomial equation X2 + 1 = 0 are the two solutions of the
polynomial equation X2 + 1 = 0.

47



48 Cardano

To base a Solving Polynomial Equation Systems theory on a tautology is not
a clever idea. So it is probably a good idea to understand better the rôle of the
imaginary number.

3.2 The Imaginary Number

My story goes back to the first half of the sixteenth century. At that time it was
known that a quadratic equation

X2 + bX + c = 0

has solutions only when b2 − 4c is not negative, in which case the solutions
are

−b

2
±
√

b2

4
− c.

They also knew that up to a linear transformation1, cubic equations could be
easily reduced to the form

X3 + pX + q = 0.

The formula giving the solutions of this equations was discovered by Tartaglia
and later divulged by Cardano. The formula is:

3

√
−q

2
+
√(q

2

)2 +
( p

3

)3 + 3

√
−q

2
−
√(q

2

)2 +
( p

3

)3
. (3.1)

Example 3.2.1. Let us consider the equation X3 + 3X − 14 = 0. It is easy
to verify that it has a single (real2) root – the function is increasing, since

1 In general, if f (X) ∈ k[X ] is a polynomial, solving the equation f (x) = 0 and solving the
equation lc( f )−1 f (X) = 0 are the same, so we can assume that we have been given a monic
polynomial to solve, let us say:

f (X) =
n∑

i=0

an−i Xi = Xn + a1 Xn−1 + · · · + an−1 X + an .

Let c ∈ K \ {0} and let us consider the polynomial

n∑
i=0

bn−i Xi = g(X) = f (X − c) = Xn + (a1 − nc)Xn−1 + · · ·

It is then obvious that

α is a root of g ⇐⇒ α − c is a root of f ;
if we choose c := a1/n then b1 = 0.

2 Before the imaginary number was invented, all the numbers were, of course, real!
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its derivative is positive for each real number – and that such root is 2. Let us
apply Equation 3.1 with p = 3, q = −14, obtaining

3
√

7 +√
49 + 1 + 3

√
7 −√

49 + 1 = 3
√

7 + 5
√

2 + 3
√

7 − 5
√

2

which requires us to find numbers α such that

α3 = 7 ± 5
√

2.

Although they couldn’t prove so, it was obvious to Tartaglia and Cardano
that such numbers should be of the same kind, i.e. α = a + b

√
2 for integer

numbers a, b. We thus obtain

7 ± 5
√

2 = α3

= a3 + 3a2b
√

2 + 3ab2(
√

2)2 + b3(
√

2)3

= (a3 + 6ab2)+ (3a2b + 2b3)
√

2

and to compute a and b, we need to solve the system{
a3 + 6ab2 = 7

3a2b + 2b3 = ±5

which gives the solution

{
a = 1
b = ±1

so that

3
√

7 + 5
√

2 + 3
√

7 − 5
√

2 = (1 +
√

2)+ (1 −
√

2) = 2.

Where is the rôle of the imaginary number? It appears in the following

Example 3.2.2. where we consider the equation

(X − 1)(X − 4)(X + 5) = X3 − 21X + 20 = 0

for which we would expect that (3.1) will give us the three solutions. Let us
then apply Equation (3.1) with p = −21, q = 20, obtaining

3
√
−10 +√

100 − 343 + 3
√
−10 −√

100 − 343

= 3
√
−10 + 9

√−3 + 3
√
−10 − 9

√−3.

Unlike in the above example where we had to compute with the well-known
number

√
2, we have to deal with the number

√−3 which is well known to
be non-existent. However, let us try to compute with this non-existent number
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as we did with the well-known number
√

2, looking for integer numbers a, b
such that

−10 ± 9
√−3 = (a + b

√−3)3

= a3 + 3a2b
√−3 + 3ab2(

√−3)2 + b3(
√−3)3

= (a3 − 9ab2)+ (3a2b − 3b3)
√−3

where we reasonably assume that the non-existent number
√−3 behaves like√

2, i.e. we assume that (
√−3)2 = −3 and (

√−3)3 = −3
√−3.

As before, to compute a and b, we solve the system{
a3 − 9ab2 = −10

3a2b − 3b3 = ±9

which gives us three solutions{
a = 2
b = ±1

{
a = −5/2
b = ±1/2

{
a = 1/2
b = ∓3/2

from which we obtain

3
√
−10 + 9

√−3 + 3
√
−10 − 9

√−3

=




(2 +√−3)+ (2 −√−3) = 4

(− 5
2 + 1

2

√−3)+ (− 5
2 − 1

2

√−3) = −5

( 1
2 − 3

2

√−3)+ ( 1
2 + 3

2

√−3) = 1

which, mirabile dictu, gives exactly the three roots we were expecting.

So what? The first comment to make is that we were able to find the three
expected roots of our equation just by manipulating the non-existent3 number√−3 as we did for a ‘reasonable’ square such as

√
2; as Cardano put it

Putting aside the mental tortures involved, multiply 5 +√−15 by 5 −√−15, making
25 − (−15), which is +15. Hence the product is 40. . . .This is truly sophisticated4.

But the moral of this computation is more significant: the computation we
did with

√−3 – as that with
√

2, – just used the same four operations and the

3 Remember, we are still pretending to live in Tartaglia’s time, when how to deal with integers
was known – even better than we know: are you able to solve the equations relating a and b? I
can not! – and when it was well known that negative numbers have no square root!

4 Ars Magna, Chap. 37 (Translated by T.R. Wither): The Great Art or The Rule of Algebra by
Girolamo Cardano, M.I.T. Press, Cambridge, Mass. 1986.
I took this quotation from B.L. van der Waerden, A History of Algebra, Springer, 1985.
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‘obvious’ fact that (
√−3)2 = −3, i.e. the simple fact that the root which satis-

fies the relation X2 = −3 satisfies the relation X2 = −3; another formulation
of our tautology . . . .

3.3 An Impasse

Cardano’s student Ferrari solved biquadratic equations with a similar, while
more complicated, approach, and research to solve the quintic equation started.

Note that a polynomial has at most as many roots as its degree, as a conse-
quence of the Division Algorithm (cf. Corollary 1.4.1). Girard was the first to
conjecture that

toutes les équations d’algèbre reçoivent autant de solutions, que la dénomination de la
plus haute quantité le démonstre . . . [not only real roots but also] autres enveloppées,
comme celles qui ont des

√−, comme
√−3, ou autres nombres semblables5

i.e. a polynomial has exactly as many roots as its degree, provided we invent
other non-existent numbers. It was Euler who stated a stronger conjecture than
Girard’s; namely that

Theorem 3.3.1 (Euler’s Conjecture). A polynomial with real coefficients has
exactly as many roots (real or complex) as its degree,

which was later (1799) proved by Gauss for even complex polynomials (Fun-
damental Theorem of Algebra), a Gaussian proof of which will be discussed
in Section 12.1.

Comparing Euler’s Conjecture with Girard’s, it is important to stress that
it assumed that the invention of a single non-existing root – the imaginary
number i solving X2 + 1 = 0 – is all one needs to give any real polynomial the
proper number of roots.

The problem of solving quintic (or higher degree) equations was still baffling
the mathematicians. At that time, ‘solving’ polynomial equations was intended
to allow computation of roots by applying five operations to the coefficients of
equations; the fifth operation to which we refer is, of course, root extraction.

It is even a temptation to translate their notion of ‘solving’ in to a more mod-
ern language, by saying that solving an equation is writing a program (even
a straight-line-program) whose input is the coefficients of the equation and
whose output is the roots, the operations allowed being the five operations,
testing equalities and branching.

5 I took this quotation from R. Remmert, The Fundamental Theorem of Algebra, in H.D. Ebbing-
haus et al., Numbers, Springer (1991).
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The problem of solving a quintic polynomial equation was thoroughly in-
vestigated by Lagrange (1772) in Sur la forme des racines imaginaires des
équations, where he gave a wonderful, in-depth survey on the state of the art,
stressing the importance of root permutations. A careful analysis of the sub-
groups of the group of the permutations over a set of five elements, following
his suggestions and ideas, allowed it to be proven that

Theorem 3.3.2 (Abel–Ruffini). The generic equation of degree ≥ 5 cannot
be ‘solved’, i.e. its roots cannot be expressed in terms of the five operations on
its coefficients.

3.4 A Tautology!

What was, therefore, the then (i.e. nineteenth century) state of the art on
Solving Polynomial Equation Systems?

On one side, we have, through Gauss’ proof, the information that the – now
familiar – field of the complex numbers contains all the solutions of each poly-
nomial equation. On the other side, Abel–Ruffini informed us that our century-
long dream and hope of solving such equations had definitely been lost.

To move out of this impasse, Kronecker proposed modifying the meaning
of ‘solving’ and to do that by reinterpreting the tautology we have discussed in
this chapter.
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Intermezzo: Multiplicity of Roots

Before discussing Kronecker’s approach to ‘solving’ a polynomial equation
f (X) = 0 and how to find all its roots α such that f (α) = 0, it is useful to
discuss some properties of the roots, which will allow us to have both a feel
for how they behave and some algorithmic tools.

Let us assume we are given a polynomial f (X) ∈ k[X ] and a field K ⊇ k
which contains all the roots of f (X) – the Fundamental Theorem of Algebra
guarantees us that if k ⊂ C, K := C is such a field; in the general case the
existence of such a field will be proved in Theorem 5.5.6.

Then, as a consequence of Corollary 1.4.1, we can conclude that, in K [X ],
f (X) has a factorization into linear factors

f (X) =
s∏

i=1

(X − αi )
ei

where α1, . . . , αs ∈ K are the roots of f , and ei is the ‘multiplicity’ of αi and,
of course, the relation

∑s
i=1 ei = deg( f ) holds.

In other words we can conclude that a polynomial has as many roots as its
degree, provided they are counted with their multiplicity, and this leads us to
reflect on the notion of multiplicity and to look for a technique for computing
it, at least one that is more efficient than repeatedly dividing f by its linear
factors (Section 4.4).

It is well known that in the case of polynomials over the reals, the notion
of multiplicity is given in terms of the number of consecutive derivatives of
the polynomial which vanish at the root; in order to show that the same result
holds in a more general situation – but not in all possible fields K – I introduce
a formal notion of a derivative, which does not require analytical notions as the
limit (Section 4.3).

53
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To do so, I first need to introduce the notion of ‘characteristic’ (Section 4.1)
and to analyse the basic properties of finite fields (Section 4.2).

However, once the notion of ‘multiplicity’ is introduced, we will find out
that, unlike the case of polynomials over the algebraic, real and complex num-
bers, where the only polynomials which have null derivatives are the con-
stants, in the general case there are fields k such that there are polynomials
f (X) ∈ k[X ] which are non-constant and irreducible, but with null derivatives
(Section 4.5).

Such ‘monster’ polynomials will be labelled as ‘inseparable’ and I need to
analyse their existence and their behaviour. By doing that I show that such
polynomials cannot exist over perfect fields, i.e. those which are either finite
or containing Q (Section 4.6).

After this investigation the purpose of studying the multiplicity of the irre-
ducible factors of a polynomial f becomes clear. With this in mind, I discuss
the notions of squarefree associates, distinct power factorization and the algo-
rithms used to compute them (Section 4.7).

4.1 Characteristic of a Field

Let k be a field. There is a ring morphism χ : Z → k, the characteristic
morphism, which is defined by:

χ(0) = 0,

χ(1) = 1,

χ(n) = χ(n − 1)+ 1, n ≥ 2,

χ(−m) = −χ(m), m < 0.

Two cases can occur:

the above morphism is injective, i.e. χ(n) �= 0 if n �= 0. Then χ can be
extended to a field morphism χ : Q → k by

χ
(m

n

)
:= χ(m)

χ(n)
,

which satisfies the relations ker(χ) = 0, Im(χ) ∼= Q. So identifying Q

with its isomorphic image we can assume k contains Q. In this case we
say that k is of characteristic 0, that is char(k) = 0.

There is p �= 0 such that χ(p) = 0. Therefore we can conclude that

there is a minimal such p ∈ N \ {0},
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which is prime, since, otherwise, from a factorization p = ab we obtain
χ(a)χ(b) = χ(p) = 0, and, k being a field, for one of the factors, say
a, we conclude that χ(a) = 0, contradicting the minimality of p.

For g ∈ N

χ(g) = 0 ⇐⇒ g is a multiple of p;
by division we obtain g = qp + r and because

χ(r) = χ(g)− χ(q)χ(p) = 0,

so that by the minimality of p we have r = 0.
As a consequence we deduce that ker(χ) = (p) ⊂ Z

and Im(χ) ∼= Zp.

So again, after identification, we can assume k contains Zp. In this case
we say k is of characteristic p 1 – char(k) = p – or, if p is not specified,
of prime characteristic.

And Q (respectively Zp) is called the prime field of k.

4.2 Finite Fields

Further developments require a short discussion of the main properties of finite
fields2. We will therefore assume that F is a finite field such that card(F) = q
and k is its prime field.

Proposition 4.2.1. Let F be a finite field, card(F) = q, p := char(F).
Then p �= 0 and q = pn for some n.

Proof Since F is finite, Q �⊆ F , so char(F) =: p �= 0, and then F ⊇ k ∼= Zp.
Therefore F is a Zp-vector space, by necessity of finite dimension n (because
it is finite). Then F ∼= (

Zp
)n and so card(F) = pn .

Lemma 4.2.2. Let F be a finite field such that card(F) = q and char(F) = p.
Let a, b ∈ F, f, g ∈ F[X ].
Then:

(1) (a + b)p = a p + bp.
(2) (a + b)q = aq + bq .

1 Apparently the notation is inconsistent; it becomes consistent if we read it in the ideal-theoretical
language: the kernel of χ is then respectively generated by 0 or p.

2 The argument will be discussed in more depth in Chapter 7.



56 Intermezzo: Multiplicity of Roots

(3) ( f + g)p = f p + g p.
(4) ( f + g)q = f q + gq .

Proof (1) and (3) follow from the binomial theorem

(α + β)p =
p∑

i=0

(
p

i

)
a p−i bi

since p divides
(p

i

)
for 0 < i < p.

(2) and (4) follow from induction:

(a + b)pn =
(
(a + b)pn−1

)p =
(

a pn−1 + bpn−1
)p = a pn + bpn

.

Lemma 4.2.3 (Little Fermat Theorem).
Let F be a finite field such that card(F) = q. Then

aq = a, ∀a ∈ F.

Proof The statement is equivalent to

aq−1 = 1, ∀a ∈ F \ {0}
for which an elementary proof is as follows: since F is a field, the mapping

φa : F \ {0} → F \ {0}
φa(x) = ax, ∀x

is injective and, being F finite, also a bijection; therefore∏
x∈F\{0}

x =
∏

x∈F\{0}
ax = aq−1

∏
x∈F\{0}

x,

whence the thesis after dividing out
∏

x∈F\{0} x .

Corollary 4.2.4. Let F be a finite field, char(F) = p, card(F) = q = pn .

Let a ∈ F, b := a pn−1
.

Then bp = a.
Therefore, for each a ∈ F, there is a unique b ∈ F such that bp = a. As a

consequence, each element of F is a pth power.

Proof The only statement which needs a proof is the uniqueness of the pth root
of a: assume bp = a = cp; then 0 = bp − cp = (b − c)p and so b = c.
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Remark 4.2.5. For each m ∈ N consider the map �m : F → F defined by
�m(a) = a pm

and let � denote �1.
Here� is an automorphism – which is called the Frobenius automorphism –,

since

it is bijective by the result above,
(ab)p = a pbp, ∀a, b,
(a + b)p = a p + bp, ∀a, b by Lemma 4.2.2.

Since ∀m, �m = � ·�m−1, it follows that

∀m,�m is an automorphism;
�n is the identity, by the Little Fermat Theorem;
∀m1,m2 ∈ N,�m1 = �m2 ⇐⇒ m1 ≡ m2 (mod n).

4.3 Derivatives

If k is, say, R, then the multiplicity of a root α of f (X) ∈ k[X ] can be charac-
terized in terms of the derivatives of f at α becoming zero.

Looking at the proof of this characterization, we sees that the ‘analytical’
properties of the derivative are not involved, only its ‘algebraic’ properties. So
we are going to define a formal derivative of a polynomial in k[X ].

Definition 4.3.1. Let

f (X) :=
n∑

i=0

ai Xi ∈ k[X ];

the derivative of f , denoted f ′ or D( f ), is the polynomial

n∑
i=1

iai Xi−1

where i represents the image of the exponent i ∈ N in the prime field of k via
the characteristic morphism χ .

We will also define the i th derivative of f by the recursive definition

f (i) := D( f (i−1))

where f (0) := f .

The next lemma shows that the formal properties of derivatives are satisfied
by this notion; the subsequent lemma shows that something unexpected occurs
in fields of prime characteristic: there are non-constant polynomials with null
derivative.
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Lemma 4.3.2.
D(f + g) = D(f) + D(g);
D(f g) = D(f) g + f D(g).

Proof A straightforward verification.

Lemma 4.3.3. (1) If char(k) = 0 then

D( f ) = 0 ⇐⇒ f ∈ k.

(2) If char(k) = p > 0, then

D( f ) = 0 ⇐⇒ ∃g ∈ k[X ] : f (X) = g(X p).

Proof

(1) Requires a straightforward verification.
(2) Assume f (X) = g(X p); since

D(Xip) = i pXip−1 = 0, ∀i,

the thesis follows from Lemma 4.3.2.
Conversely let f (X) = ∑n

i=0 ai Xi be such that

D( f ) =
n∑

i=1

iai Xi−1 = 0;

then iai = 0, 1 ≤ i ≤ n, and ai = 0 whenever i is not a multiple of p.
Therefore setting m := �n/p� and g(X) = ∑m

k=0 akp Xk ,

f (X) =
n∑

i=0

ai Xi =
m∑

k=0

akp Xkp = g(X p).

4.4 Multiplicity

My introduction of this general notion of derivatives was aimed at generalizing,
from R to k, its application to computing the multiplicity of roots; so let us
postpone our consideration of this unexpected behaviour of derivatives in the
case of prime characteristic fields, until we can see how it affects our approach
to multiplicity.
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Therefore let us consider a field k, a polynomial f (X) ∈ k[X ], a field K ⊇ k
which contains all the roots of f including a root α ∈ K ⊇ k; this setting and
notation will be used throughout this chapter.

Definition 4.4.1. Let r ∈ N \ {0} be such that in K [X ],

f (X) = (X − α)r f1(X), f1(α) �= 0. (4.1)

Then r is called the multiplicity of the root α of f .
A root is simple if its multiplicity is 1, multiple otherwise.

Lemma 4.4.2. The definition of multiplicity, while obviously depending on α

and k does not depend at all on the field K such that α ∈ K ⊇ k.

Proof Let L be any other field such that α ∈ L ⊇ k and let us assume that in
L[X ]

f (X) = (X − α)s g1(X), g1(α) �= 0. (4.2)

Now let F be any field such that3

F ⊆ K , F ⊆ L , F ⊇ k, α ∈ F.

Clearly, being the result of successive divisions of f (X) ∈ k[X ] ⊆ F[X ] by
(X−α) ∈ F[X ], the polynomials f1(X) and g1(X) belong to F[X ]. Moreover
f1(α) = 0 in F would contradict f1(α) �= 0 in K . Therefore in F , f1(α) �= 0
and g1(α) �= 0.
From Equations 4.1 and 4.2 we obtain in F[X ]

(X − α)r f1(X) = (X − α)s g1(X);
since f1(α) �= 0 and g1(α) �= 0, it follows immediately that s = r and f1 = g1.

When K = R, we know how to use the derivatives to compute the multi-
plicity: the multiplicity of α is r iff the r th derivative is the first one which does
not vanish at α.

In order to show that this holds over any field k such that char(k) = 0 and
to show what happens in the general case char(k) �= 0, let us consider a root α
of f with multiplicity r , so that there is h(X) ∈ K [X ] such that

f (X) = (X − α)r h(X), h(α) �= 0, (4.3)

3 For the sake of our argument, for such F it is sufficient to take F := K ∩ L . In the context of
the discussions of Chapter 5 the natural choice is k(α).
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and let us derive f obtaining

f ′(X) = r(X − α)r−1h(X)+ (X − α)r h′(X), (4.4)

from which we can obviously deduce the following

Lemma 4.4.3. With the notation above,

α is a root of f ′ of at least multiplicity r − 1;
if char(k) = 0, α is a root of f ′ of multiplicity r − 1;
α is a simple root of f iff f ′(α) �= 0;
if char(k) = p �= 0 and r ≡ 0 mod (p), then α is a root of f ′ of at least

multiplicity r .

Corollary 4.4.4. Moreover if char(k) = 0 then

α is a root of f with multiplicity r iff

f (i)(α) = 0, ∀i, 0 ≤ i < r, and f (r)(α) �= 0;
α is a root of f with multiplicity r > 1 iff α is a root of gcd( f, f ′) of
multiplicity r − 1.

As we have just seen, the prime characteristic case complicates the study
of multiplicity both because the derivative of a non-constant polynomial can
vanish and because the usual count of multiplicity cannot be generalized in this
setting.

For the present to avoid these problems and better understand the behaviour
of derivatives, we can try an alternative approach reducing the study to irre-
ducible factors since

Lemma 4.4.5. Let f (X) ∈ k[X ] and let α ∈ K ⊇ k be a root of f . Then there
is a unique irreducible factor g(X) of f (X) such that g(α) = 0.

Proof Let f = ∏
i f ei

i be a factorization in k[X ]. Since

0 = f (α) =
∏

i

f ei
i (α)

in K we conclude that there exists an irreducible factor g of f such that
g(α) = 0.
If there were two of them, say g, h, then (X − α) would divide gcd(g, h) in
K [X ], contradicting the fact that gcd(g, h) = 1,
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and, introducing the obvious generalization of the notion of multiplicity of a
factor as

Definition 4.4.6. Let g(X) ∈ k[X ] be an irreducible factor of f (X) in k[X ];
let r ∈ N be such that gr divides f and gr+1 does not divide f .

Then we say r is the multiplicity of g as a factor of f .

Lemma 4.4.7. Let g(X) ∈ k[X ] be an irreducible factor of f (X) in k[X ] and
let α ∈ K ⊇ k be a root of g. Denote by m the multiplicity of α as a root of g,
by M its multiplicity as a root of f , and by r the multiplicity of g as a factor of
f ; then M = mr.

Proof The result follows easily since we have

g(X) = (X − α)m g1(X), g1(α) �= 0,

f (X) = g(X)r h(X), h(α) �= 0,

and so

f (X) = (X − α)mr g1(X)
r h(X), g1(α)

r h(α) �= 0,

so that M = mr .

Therefore we need to discuss the multiplicity of the roots of an irreducible
polynomial, proving

Lemma 4.4.8. Let f ∈ k[X ]. Then

(1) If gcd( f, f ′) = 1, f is squarefree.
(2) If gcd( f, f ′) = 1, all roots of f are simple.
(3) If f is irreducible and f ′(X) �= 0, gcd( f, f ′) = 1.

Proof

(1) Let g ∈ k[X ] be an irreducible factor of f of multiplicity r in k[X ] and let
h(X) ∈ k[X ] be such that f (X) = g(X)r h(X). Then

f ′(X) = rg(X)r−1h(X)g′(X)+ g(X)r h′(X).

Therefore, if r > 1, g(X)r−1 is a common factor of f and f ′, and so
gcd( f, f ′) �= 1.

(2) Since gcd( f, f ′) is independent of the field, we only have to apply (1)
over K .
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(3) Since f is irreducible and f ′ �= 0, then gcd( f, f ′) is either 1 or f ; the
latter is impossible, because it implies that f ′ is a multiple of f while
deg( f ′) < deg( f ).

Theorem 4.4.9. Let f be irreducible. Then

if char(k) = 0, f has only simple roots;
if char(k) = p �= 0, either

f ′(X) �= 0 and f has only simple roots, or
f ′(X) = 0 and there exists g ∈ k[X ] such that f (X) = g(X p).

Proof Either f ′ �= 0 and all the roots are simple by the above lemma, or
f ′ = 0 – in which case char(k) = p �= 0 – and the results follow from
Lemma 4.3.3.

4.5 Separability

It is clear from these results that the behaviour of the multiplicity of the roots
of a non-constant irreducible polynomial f (X) depends upon whether f ′(X)
is zero or not; therefore let us introduce

Definition 4.5.1. Let f (X) ∈ k[X ] be a non-constant irreducible polynomial.
We say that f is separable if f ′(X) �= 0, inseparable otherwise,

and let us prove

Proposition 4.5.2. Assume char(k) = p �= 0 and f (X) ∈ k[X ] is a non-
constant irreducible polynomial. Then there is e ∈ N and a separable polyno-
mial g(X) �= 0 such that

(1) f (X) = g(X pe
);

(2) all the roots of f have the same multiplicity m = pe.

Proof

(1) If f ′ �= 0, we can take e = 0 and g = f .
If f ′ = 0, as a consequence of Lemma 4.3.3, ∃ f1(X) ∈ k[X ] such that
f (X) = f1(X p). If f ′1 = 0, then ∃ f2(X) ∈ k[X ] such that f1(X) =
f2(X p) so that

f (X) = f1(X
p) = f2(X

p2
),

whence the claim follows by iteration.
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(2) Since g′(X) �= 0, all its roots are simple; therefore, within a field K con-
taining all the roots of g and f – whose existence is a consequence of
Theorem 5.5.6, – we have a factorization

g(X) =
n0∏

i=1

(X − βi )

from which we deduce

f (X) =
n0∏

i=1

(X pe − βi ).

For each i , let αi ∈ K be a root of f which annihilates the polynomial
(X pe − βi ); we then conclude that α pe

i = βi and

(X pe − βi ) = (X pe − α
pe

i ) = (X − αi )
pe

yielding the factorization

f (X) =
n0∏

i=1

(X − αi )
pe

and the result.

Remark 4.5.3. Given a field k, an irreducible polynomial f (X) ∈ k[X ] of
degree n and a field K ⊃ k which contains all the roots α := α1, . . . , αn0 of
f , we have two situations:

f is separable, in which case n = n0, all the roots of f are simple, and

f =
n∏

i=1

(X − αi );

f is inseparable, in which case, setting p := char(k), there is e > 0 and
a separable polynomial g(X) ∈ k[X ] so that f (X) = g(X pe

); therefore
n = n0 pe, all the roots of f have multiplicity pe, and

f =
n0∏

i=1

(X − αi )
pe
.

With a slight misuse of notation we will identify these two cases by stating
that

Proposition 4.5.4. Let k be a field, p := char(k), f (X) ∈ k[X ] a polyno-
mial, K ⊇ k a field which contains all the roots α := α1, . . . , αn0 of f .
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Then:

if f is irreducible, denoting n := deg( f ), there is e ≥ 0 such that all the n0

roots of f have multiplicity pe, n = n0 pe, and

f =
n0∏

i=1

(X − αi )
pe ;

otherwise, for each root α of f , let g(X) ∈ k[X ] be the unique irreducible
factor of f such that g(α) = 0; then there is e ≥ 0 such that the multiplicity
of α as a root of f is r pe where r is the multiplicity of g as a factor of f .

That is, if f is separable, the statement holds for e = 0.

Definition 4.5.5. With the notation of the above proposition and with the as-
sumption that f is irreducible, α ∈ K \k is called separable (resp. inseparable)
over K iff f is separable (resp. inseparable)4.

The value n0 is called the reduced degree of α and f , e their exponent of
inseparability, pe their degree of inseparability.

4.6 Perfect Fields

It is quite natural to ask which are the fields k for which a non-constant, irre-
ducible, inseparable polynomial f (X) ∈ k[X ] exists.

The above discussion tells us that this cannot happen if char(k) = 0 and
suggests that, when char(k) = p �= 0, the property is related to the irreducibil-
ity of the polynomials X pe − α, α ∈ k, i.e. to the impossibility of extracting
pth roots in k.

In fact:

Lemma 4.6.1. Let k be a field such that char(k) = p > 0 and

∀α ∈ k, ∃β ∈ k : β p = α (4.5)

and let f ∈ k[X ].
Then the following are equivalent:

(1) there exists g ∈ k[X ] such that f (X) = g(X p).

(2) there exists h ∈ k[X ] such that f = h p.

(3) f ′(X) = 0.

4 Using the language of Section 5.3, if α is an algebraic number and f is its minimal polynomial,
α and f share the same property of being separable or not.
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Proof

(1) �⇒ (2) Let g(X) := ∑m
k=0 αk Xk ; let ∀k, βk be such that β p

k = αk , and
denote h(X) := ∑m

k=0 βk Xk ; then

f (X) = g(X p) =
m∑

k=0

αk(X
p)k =

m∑
k=0

β
p
k (X

k)p

=
(

m∑
k=0

βk Xk

)p

= h(X)p.

(2) �⇒ (1) Let h(X) := ∑m
k=0 βk Xk and denote g(X) = ∑m

k=0 β
p
k Xk ; then

f (X) = h(X)p =
m∑

k=0

β
p
k Xkp = g(X p).

(1) ⇐⇒ (3) This holds by Lemma 4.3.3.

Corollary 4.6.2. Let k be a field, such that either

char(k) = 0 or
char(k) = p > 0 and Equation (4.5) holds.

Then every non-constant irreducible polynomial f (X) ∈ k[X ] is separable.

Proof Clearly if char(k) = 0 and f ′ = 0, then f is constant.
If char(k) = p > 0 and f ′ = 0, then f is a pth power by Lemma 4.6.1 and so
it is not irreducible.

To prove the converse of this result, we have just to consider a field k
such that char(k) = p which contains an element α ∈ k which is not a pth

power, i.e.

∀β ∈ k : α �= β p,

and analyse the polynomial X p − α ∈ k[X ]:

Proposition 4.6.3. Under the above assumption, f (X) := X p − α is irre-
ducible.

Proof Let us assume f is not irreducible and let g(X) ∈ k[X ] be a monic
irreducible factor of f with multiplicity r so that

f (X) = gr (X)h(X)
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for some h(X) ∈ k[X ] such that gcd(g, h) = 1; by derivation we obtain

0 = f ′ = gr h′ + rgr−1g′h

and, after dividing out gr−1,

gh′ = −rg′h.

Hence h must divide gh′; since h cannot divide g – because gcd(g, h) = 1 –,
it divides h′. This is possible only if h′ = 0 and so rg′ = 0.
Since h′ = 0, we can conclude by Lemma 4.6.1 that

∃H(X) ∈ k(X) : h(X) = H(X p);
similarly, since D(gr ) = rgr−1g′ = 0, we have that

∃G(X) ∈ k(X) : gr (X) = G(X p).

We can then conclude that

X p − α = f (X) = gr (X)h(X) = H(X p)G(X p),

i.e. Y − α = H(Y )G(Y ) in k[Y ].
Since Y − α is linear and G is not constant, and g is not the same, then we
conclude that H = 1 – both Y − α and G are monic – and so Y − α =
G(Y ), i.e.

f (X) = gr (X).

We now have two cases:

if r is a multiple of p, then f is a power of g p, whose coefficients are pth
powers; in particular, α would be the same, contradicting the assumption;
therefore r is not a multiple of p and so, from rg′ = 0, we conclude that
g′ = 0 and

∃G(X) ∈ k(X) : g(X) = G(X p),

giving

X p − α = f (X) = gr (X) = Gr (X p)

and

Y − α = Gr (Y ),

so that r = 1.

As a conclusion we have established that f (X) = gr (X)h(X) = g(X) is
irreducible.
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This proposition can be generalized as follows:

Theorem 4.6.4. Under the assumption above, let e ∈ N \ {0} and let

f (X) := X pe − α ∈ k[X ].

Then f (X) is irreducible.

Proof (sketch) The argument is given by iteration on e.
On the one side Proposition 4.6.3 proves the result in the case e = 1; on
the other side the same result allows us to iterate on e: in fact, assuming that
X pe−1 −α is irreducible, the same argument of Proposition 4.6.3 is applicable,
just changing Y pe−1 − α everywhere Y − α.

After this tour de force, we can now easily prove the converse of
Corollary 4.6.2:

Theorem 4.6.5. Let k be a field; the following conditions are equivalent:

(1) Either

char(k) = 0 or
char(k) = p > 0 and Equation (4.5) holds;

(2) every non-constant irreducible polynomial f (X) ∈ k[X ] is separable.

Proof We only have to prove (2) �⇒ (1) since (1) �⇒ (2) is Corollary
4.6.2: let us consider any field k such that char(k) = p and Equation (4.5) does
not hold.
Then there is α ∈ k such that it is not a pth power and f (X) := X p−α ∈ k[X ]
is irreducible, non-constant and inseparable.

On the basis of that, we introduce

Definition 4.6.6. A field k is called perfect if it satisfies the conditions of
Theorem 4.6.5.

We note

Corollary 4.6.7. A finite field is perfect.

Proof The proof follows from Corollary 4.2.4.

Note also there are infinite fields which are not perfect, such as Zp(Y ).
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Corollary 4.6.8. If k is perfect, then:

(1) If g(X) ∈ k[X ] is irreducible, each root of g is simple.
(2) Let f (X) ∈ k[X ], α ∈ K ⊇ k be a root of f and g(X) ∈ k[X ] be the

unique irreducible factor of f such that g(α) = 0. The multiplicity of α as
a root of f is the multiplicity of g as a factor of f .

(3) Let f (X) ∈ k[X ]; f is squarefree iff gcd( f, f ′) = 1.

Proof

(1) The proof follows from Lemma 4.4.8.
(2) The proof follows from Lemma 4.4.7.
(3) Because one implication is Lemma 4.4.8, let us assume gcd( f, f ′) �= 1

and let h be an irreducible common factor of f and f ′. Then f = hg
and f ′ = hg′ + h′g. Since h divides f ′, it divides h′g and, since it is
irreducible, it divides either h′ or g.
However, h′ �= 0 and deg(h′) < deg(h) implies that h does not divide h′,
so it divides g: g = hg1 for a suitable g1 ∈ k[X ].
Therefore f = hg = h2g1, so that h is a multiple factor of f .

Note that if k is an effective perfect field, then Corollary 4.6.8 gives an al-
gorithm to test whether f is squarefree.

4.7 Squarefree Decomposition

It is quite clear, on the basis of the above discussion, that counting the
multiplicity of roots is related to counting the multiplicity of factor poly-
nomials.

Since factorization is far from being an easy task, the notion of squarefree
decomposition is a very useful tool:

Proposition 4.7.1. Let k be a perfect field.
Let f (X) ∈ k[X ]. Then there are unique (up to associates) polynomials

f1, . . . , fi , . . . ∈ k[X ] such that

(1) either fi = 1 or fi is squarefree;
(2) f = ∏

i f i
i = f1 f 2

2 . . . f s−1
s−1 f s

s ;
(3) gcd( fi , f j ) = 1 if i �= j;
(4) α is a root of f with multiplicity r iff α is a (simple) root of fr .
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Proof We only have to define fi to be the product of all the irreducible factors
of f which has multiplicity i .
All the properties are then obvious, except (4) which is a consequence of
Corollary 4.6.8.

Definition 4.7.2. We will call the polynomial SQFR( f ) := ∏
i fi the square-

free associate of f , and f = ∏
i f i

i the distinct power factorization or square-
free decomposition of f .

Note that SQFR( f ) is the product of all the irreducible factors of f , each
taken with multiplicity 1, and that both SQFR( f ) and the distinct power fac-
torization of f are independent of the field5.

Let us again restrict ourselves to the case of a field of characteristic 0, in
order to take advantage of Corollary 4.4.4.

Proposition 4.7.3. Let f ∈ k[X ], p := gcd( f, f ′), q := f/p, s := gcd(p, q),
t := q/s. Then:

q = SQFR( f );
s = SQFR(p) = p/ gcd(p, p′);
t is the product of the simple irreducible factors of f .

Proof Let f = ∏
i f i

i be the distinct power factorization of f ; then, for a
suitable g ∈ k[X ] such that gcd(g, f ) = 1, we have

f = f1 f 2
2 f 3

3 . . . f i
i . . . ,

f ′ = g f2 f 2
3 . . . f i−1

i . . . ,

p = f2 f 2
3 . . . f i−1

i . . . ,

q = f1 f2 f3 . . . fi . . . ,

5 Note that we introduce these concepts only for polynomials over a perfect field. For an infinite
field k of finite characteristic, if we introduce these concepts, we should take care that there will
be two versions, a weak one in which the result will hold in k[X ] and a strong one in which
the result will hold in K [X ]: if we consider the situation discussed in Proposition 4.5.2 and
Remark 4.5.3, the polynomial

f (X) =
n0∏

i=1

(X pe − βi ) =
n0∏

i=1

(X − αi )
pe

has the strong squarefree
∏n0

i=1(X − αi ) in K (X), while it is the weak squarefree of itself in
k(X).



70 Intermezzo: Multiplicity of Roots

Fig. 4.1. Distinct Power Factorization Algorithm

[ f1, . . . , fs ] := DistinctPowerFactorization( f )
where

f ∈ k[X ]
f = f1 f 2

2 . . . f s−1
s−1 f s

s is the distinct power factorization of f
L := []
p := gcd( f, f ′)
q := f/p
Repeat

s := gcd(p, q)
t := q/s
L := [L , t]
q := s, p := p/s

until deg(s) = 0

s = f2 f3 . . . fi . . . ,

p/s = f3 . . . f i−2
i . . . ,

whence the claims.

Algorithm 4.7.4. In an effective field of characteristic 0, the existence of an
algorithm to compute SQFR( f ) is then obvious; also, by an iterative applica-
tion of Proposition 4.7.3, we obtain the algorithm in Figure 4.1 computing the
distinct power factorization of f .

The generalization of this algorithm for the case of a finite field F ,
char(F) = p, is more complex6.

In fact, by Lemma 4.4.3, we know that if r , the multiplicity of α, is a multiple
of p, either f ′ = 0 or α is a root of f ′ with multiplicity at least r , so that α is
a root of gcd( f, f ′) with multiplicity exactly r . In fact, we have

f (X) = (X − α)kph(X), h(α) �= 0,

and

f ′(X) = kp(X − α)kp−1h(X)+ (X − a)kph′(X) = (X − a)kph′(X).

6 This generalization is due to Davenport in

J.H. Davenport, On the Integration of Algebraic Functions, L.N.C.S. 102, Springer (1981)

which we have followed.
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Therefore the roots of multiplicity kp of gcd( f, f ′) are both the roots of f
of multiplicity kp+1 and those of multiplicity kp. Therefore in this setting the
results of Props. 4.7.3 become as follows:

Lemma 4.7.5. Let F be a field such that char(F) = p �= 0. Let f ∈ F[X ] and
f = ∏

i f i
i be its distinct power factorization. Then:

(1) If f ′ = 0 let h ∈ F[X ] be such that f = hp and h = ∏
j h j

j be its distinct

power factorization; then fi :=
{

0 if i �≡ 0 mod p
h j if i = jp.

(2) If f ′ �= 0, let p := gcd( f, f ′), q := f/p, s := gcd(p, q), t := q/s. Then

(a) for a suitable g ∈ k[X ] such that gcd(g, f ) = 1 we have

f = f1 f 2
2 . . . f kp−1

kp−1 f kp
kp f kp+1

kp+1 f kp+2
kp+2 . . . ,

f ′ = g f2 . . . f kp−2
kp−1 f kp

kp f kp
kp+1 f kp+1

kp+2 . . . ,

p = f2 . . . f kp−2
kp−1 f kp

kp f kp
kp+1 f kp+1

kp+2 . . . ,

q = f1 f2 . . . fkp−1 fkp+1 fkp+2 . . . ,

s = f2 . . . fkp−1 fkp+1 fkp+2 . . . ;

(b) t = f1;

(c) if p = ∏
j p j

j is its distinct power factorization, we have

p j :=



0 if j ≡ −1 mod p
f j f j+1 if j ≡ 0 mod p
f j+1 otherwise;

(d) denoting ε : N → {0, 1} the function such that

ε(n) = 0 ⇐⇒ n �≡ 1 mod p,

and setting P := ∏
j p j+ε( j)

j , we have

f/P = ∏
k fkp+1, and

gcd( f/P, pkp) = fkp+1.

Algorithm 4.7.6. On the basis of the above remarks, the squarefree decompo-
sition algorithm can be generalized to the prime characteristic field case as in
Figure 4.1.

Algorithm 4.7.7. To complete this survey, we should discuss an algorithm
which, for a given polynomial f (X) ∈ k[X ] in an infinite field k with finite
characteristic p, computes the polynomial’s splitting field K and its squarefree
associate and decomposition within K [X ].
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Fig. 4.2. Distinct Power Factorization Algorithm, characteristic p(
f (1), . . . , f (s)

)
:= DistinctPowerFactorization( f )

where
k is a finite field
p = char(k) �= 0
f ∈ k[X ]
f = f (1) f (2)2 . . . f (s − 1)s−1 f (s)s is the distinct power factorization of f

If deg( f ) = 1 then

f (1) := f, V :=
(

f (1)
)

→ K := k
else

If f ′ = 0 then
→let ai such that

∑d
i=0 ai Xip = f (X)

→ K := K ( p
√

a0, . . . ,
p
√

ad )
let h be such that h p = f(

h(1), . . . , h(r)
)

:= DistinctPowerFactorization(h)

For i = 1, . . . , r do
f (ip) := h(i)

For i = 1, . . . , rp, i �≡ 0 mod p do
f (i) := 0

V :=
(

f (1), . . . , f (sp)
)

else
p := gcd( f, f ′)
If p ∈ k then

f (1) := f, V :=
(

f (1)
)

else
q := f/p, s := gcd(p, q)
f (1) := q/s
f := f/ f (1)(
p(1), . . . , p(r)

)
:= DistinctPowerFactorization(p)

For i = 2, . . . , r + 1 do
If p divides i then

f (i) := p(i)
f := f/ f (i)i

else
f (i + 1) := p(i)
f := f/ f (i + 1)i+1

For i = 2, . . . , r + 1 such that p divides i do
f (i + 1) := gcd( f, f (i))
f (i) := f (i)/ f (i + 1),
f := f/ f (i + 1)

V :=
(

f (1), . . . , f (r + 1)
)

V
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To obtain this, as has been noted by G. Kemper, whenever f ′ = 0 occurs in
the algorithm in Figure 4.2, we have only to compute the polynomial h#(X) =∑d

i=0 ai Xi such that h#(X p) = f , and to extend K with the pth roots of the
ai s, so that h(X) := ∑d

i=0
p
√

ai Xi satisfies f (X) = h#(X p) = h p(X).
The lines which have to be added in Figure 4.2 to cover the general case are

marked by →.
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Kronecker I: Kronecker’s Philosophy

Die ganzen Zahlen hat der liebe Gott gemacht,

alles andere ist Menschenwerk

L. Kronecker

In this chapter, I now discuss Kronecker’s proposal for interpreting the con-
cept of ‘solving’ and how to deal with algebraic numbers1.

This proposal, applying only the ability to compute within the residues of a
polynomial ring k[X ] by an element g – which is guaranteed by the Euclidean
Algorithm (Section 5.1) – , introduced both a technique (Section 5.2) which,
given a polynomial f (X) ∈ k[X ], allows us to build a field K ⊇ k that contains
all the roots of f , i.e. – according to Corollary 1.4.1 – in which f (X) factorizes
in linear factors

f (X) =
n∏

i=1

(X − αi ), (5.1)

and the notions of finitely generated field extensions (Section 5.3, Section 5.4) –
with their classification as algebraic and transcendental extensions – and of a
splitting field (Section 5.5) of f (X) ∈ k[X ], which is any minimal field K ⊇ k
that contains all the roots of f (X), so that Equation 5.1 holds.

Since the Fundamental Theorem of Algebra had already guaranteed that the
roots of f (X) ∈ Q[X ] – and even of those in C[X ] – exist in C, Kronecker’s
proposal raised the essential question of what is the relation of the roots of
f (X) constructed by Kronecker with the ‘true’ roots in C. Kronecker proved
that all splitting fields of f are isomorphic, so that the answer is that the ‘true’
roots and those ‘constructed’ by Kronecker – and even those obtained by any
other construction – are essentially the same (Section 5.5).

1 L. Kronecker, Grundzüge einer Arithmetischen Theorie der Algebraischen Grössen, Crelle’s
Journal, 92 (1882).

74
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5.1 Quotients of Polynomial Rings

The only tool which is needed by Kronecker’s construction is nothing more
than another free consequence of the Euclidean algorithms: the ability to com-
pute within the rings and fields R which are residues of a polynomial ring
P = k[X ] by a non-constant polynomial g(X) ∈ P:

R = k[X ]/g(X).

We will fix n := deg(g) > 0 and we will denote π : P → R to be the
canonical projection.

Proposition 5.1.1. There is a k-vector space isomorphism � between R and
the subvector space

Spank

(
{1, . . . , Xn−1}

)
⊂ P

with basis {1, . . . , Xn−1}, which is defined by

�(π(h)) = Rem(h, g).

If we define a product in the latter vector space by

a ∗ b := Rem(ab, g)

then it inherits a ring structure, isomorphic under � to that of R.

Proof We only have to show that

π(h1) = π(h2) �⇒ Rem(h1, g) = Rem(h2, g),

which holds since from h1 = q1g + Rem(h1, g) and h2 − h1 = sg, we get
h2 = (s + q1)g+Rem(h1, g) and conclude by the uniqueness of Rem(h2, g).

Proposition 5.1.2. For h ∈ P:
π(h) is invertible in R ⇐⇒ gcd(g, h) = 1.

Proof Assume gcd(g, h) = 1; then by the Bezout Identity there are S, T ∈ P
such that

hS + gT = gcd(g, h) = 1;
therefore

π(h)π(S) = π(h)π(S)+ π(g)π(T ) = π(1) = 1,

i.e. π(S) is the inverse of π(h).
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Conversely, if π(h) is invertible, there is S ∈ P such that π(h)π(S) = 1 and
so for some T ∈ P , hS+T g = 1. A common divisor of h and g must therefore
divide 1.

Proposition 5.1.3. R is a field if and only if g is irreducible.

Proof If g is irreducible and h ∈ P , either h is a multiple of g (and π(h) = 0)
or gcd(g, h) = 1 (and so π(h) is invertible in R).
Conversely, if g(X) = q1(X)q2(X) is a non-trivial factorization, then π(qi ) �=
0, ∀i, and π(q1)π(q2) = 0, so R is not a field.

Remark 5.1.4. Assume k is effective and let us compute

(D, S, T ) = ExtGCD(h, g).

Then π(h) is invertible iff D is constant in which case the inverse of π(h) is
π(D−1S). As we remarked in Algorithm 1.3.4, we can use the Half-extended
Euclidean Algorithm, which avoids the computation of T. This does not change
the asymptotical complexity but roughly halves the number of field computa-
tions needed.

As a conclusion, if k is effective, the residue rings R are effective too, via
the isomorphism �.

Lemma 5.1.5. R contains an isomorphic copy of k.

Proof If g is not linear, while R does not contain k, its isomorphic copy

Spank

(
{1, . . . , Xn−1}

)
does, containing the subvector space generated by {1}; therefore R contains
as an isomorphic copy of k the subset �−1(Spank ({1}), i.e. the set of all the
classes mod g containing a constant polynomial.
If g, instead, is linear, say g(X) = X − a, then R is isomorphic to k, since
(X−a) is the kernel of the morphism � : k[X ] → k defined by �( f ) = f (a).

5.2 The Invention of the Roots

Because of Corollary 1.4.1, we have an equivalence between the roots of a
polynomial in a field k and its linear factors in k[X ], so that the problems of
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finding the roots of a polynomial and of computing its linear factors are the
same. While the Fundamental Theorem of Algebra informed us that there is
a field (C) which contains all the roots of each polynomial f (X) ∈ Q[X ],
this result is at the same time useless and tantalizing. We will show here that
for each field k and each polynomial f (X) ∈ k[X ], there exists a field K ⊇
k such that K contains all roots of f , i.e. such that f factorizes into linear
factors in K [X ]. Moreover the proof will be constructive – provided we have
a factorization algorithm in k[X ] – and, if k is effective, K is also effective.

Let, again, k be an effective field, P := k[X ] and f (X) ∈ P be a polyno-
mial. Let g(X) ∈ P be an irreducible factor of f , R := k[X ]/g(X) which is,
therefore, an effective field, π : k[X ] → R be the canonical projection and
α := π(X) ∈ R.

Proposition 5.2.1. With the notation above, g(α) = 0.

Proof In fact g(α) = g(π(X)) = π(g(X)) = 0.

Corollary 5.2.2. With the notation above, α is a root of f .

Clearly, Proposition 5.2.1 is nothing more than a reinterpretation of the tau-
tology that the roots of g are the roots of g; but this interpretation gives us
something more: Proposition 5.2.1 tells us that

the roots α of the irreducible polynomial g(X) satisfy the relation g(α) = 0 in R,

giving us a tool to compute in R. On the basis of that, we can see that
Kronecker’s proposal of reinterpreting the tautology we are discussing, con-
sists of applying the Euclidean Algorithm to construct a field k1 := R such
that

k1 is effective,
k1 ⊇ k,
k1 contains a root α1 of g.

This allows us to compute a root α1 of any polynomial f (X) ∈ k[X ]: all
we have to do is to factorize f , choose a factor g(X) of f , construct k1 :=
k[X ]/g(X) and take α1 to be the class of X mod g.

Since Corollary 1.4.1 guarantees for us that

f (X) = (X − α1) f1(X), f1(X) ∈ k1[X ],

if we assume we are able to factorize f1(X) over k1(X), the same idea can be
repeated, allowing us to ‘solve’ f by finding a field K and elements α1, . . . ,
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αn ∈ K – where n = deg( f ) – such that

K is effective,
K ⊇ k,
α1, . . . , αn ∈ K are all the roots of f , so that

f (X) =
n∏

i=1

(X − αi ). (5.2)

Theorem 5.2.3. Let f (X) ∈ P . Then there is a field K , K ⊇ k, such that
f (X) splits, i.e. it factorizes into linear factors in K [X ].

Proof We are going to define a tower of fields

k = k0 ⊆ k1 ⊆ . . . ⊆ kn−1 =: K ,

where n = deg( f ), such that f factorizes into linear factors over K .
Let g0 be an irreducible factor of f and denote

k1 := k[X ]/g0,
π : k[X ] → k[X ]/g(X) the canonical projection,
α1 := π(X).

Then, by Corollary 5.2.2, f (α1) = 0, so that, by Corollary 1.4.1,

f (X) = (X − α1) f1(X) for some f1(X) ∈ k1[X ].

So let us inductively assume we have obtained

a tower of fields k = k0 ⊆ k1 ⊆ . . . ⊆ kr ,

elements α1, . . . , αr ,
polynomials fi (X) ∈ ki [X ],

so that for all i

αi ∈ ki ,
f (X) = (X − α1) . . . (X − αi ) fi (X) in ki [X ],
ki = ki−1[X ]/gi−1 where gi−1 is an irreducible factor of fi−1 in ki−1[X ]2,

and we will show that we are able to build kr+1, αr+1, fr+1 satisfying the same
properties.
If r = n − 1, then, since deg( fr ) = n − r , fr is linear and f factorizes into
linear factors over kn−1.
If r < n − 1, let gr be an irreducible factor of fr . If gr is linear, gr = (X − a),
let kr+1 := kr , αr+1 := a, fr+1 such that fr (X) = (X − a) fr+1.

2 Note that here we do not claim that αi �∈ ki−1; if αi ∈ ki−1, then ki ∼= ki−1.
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Otherwise let kr+1 := kr [X ]/gr , π : kr [X ] → kr [X ]/gr the canonical pro-
jection, αr+1 := π(X), so that (again by Corollary 5.2.2 and Corollary 1.4.1)
fr (X) = (X − αr+1) fr+1(X) for some fr+1(X) ∈ kr+1[X ].

Remark 5.2.4. If k is effective, since K is obtained from it by at most n − 1
constructions of residue rings ki [X ]/gi (X), then K is effective too.

Moreover the above construction could be translated into an algorithm pro-
vided we know how to factorize polynomials in each of the fields ki .

Example 5.2.5. We apply the Kronecker technique to compute the roots of the
polynomial

f (X) := X3 − 2 ∈ Q[X ],

i.e. to build a field K ⊇ Q and to find three elements

α1, α2, α3 ∈ K : f (αi ) = 0, ∀i.

Preliminarily let us remark that f is not factorizable in Q[X ], otherwise it
would contain a linear factor, i.e. a rational root, which of course it cannot
have.

We can then consider the field

k1 := Q[X ]/ f (X)

and the element

β := π1(X) ∈ k1,

where π1 : Q[X ] → k1 is the canonical projection.
An elementary division gives us

X3 − 2 = (X − β)(X2 + βX + β2)+ β3 − 2

and, since

β3 − 2 = f (β) = 0

in k1, we have found

k1 := Q[X ]/ f (X),
α1 := β,
f1(X) := X2 + βX + β2 ∈ k1[X ].

Since f1 is quadratic it is easy to check that it is not factorizable since its dis-
criminant −3β2 �= 0. We could in fact even compute its roots by the quadratic
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formula, but I would prefer not to do that, in order to apply Kronecker’s pro-
posal up to the end.

We then build the field

k2 := k1[X ]/ f1(X)

and we consider the element

γ := π2(X) ∈ k2,

where π2 : k1[X ] → k2 is the canonical projection. By division we obtain

X2 + βX + β2 = (X − γ )(X + β + γ )+ γ 2 + βγ + β2

and, since

γ 2 + βγ + β2 = f1(γ ) = 0,

we have found the linear factorization

f (X) = (X − β)(X − γ )(X + β + γ )

in k2[X ], and so the three roots β, γ,−β − γ .

Example 5.2.6. It is, however, worthwhile seeing what happens if, after having
built k1 and β and obtained the factorization

X3 − 2 = (X − β)(X2 + βX + β2),

we apply the quadratic formula to

f1(X) := X2 + βX + β2.

First of all, we compute the root of the discriminant, getting√
−3β2 = β

√−3.

By the above computation we know that
√−3 �∈ k1 – since γ �∈ k1 – so we

need to extend k1 to a field in which we have the roots of −3, which we know
how to do: we consider the polynomial

h(X) := X2 − 3,

we build the field

k′2 := k1[X ]/h(X)

and we consider the element

δ := π ′
2(X) ∈ k′2,
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where π ′
2 : k1[X ] → k′2 is the projection. Then, by the quadratic formula we

have that the other two roots of f are

β

2
(−1 ± δ)

so that we obtain the field k′2, the linear factorization in k′2[X ]

f (X) = (X − β)

(
X + β

2
− βδ

2

)(
X + β

2
+ βδ

2

)
,

and so the three roots

β,
−β + βδ

2
,

−β − βδ

2
.

5.3 Transcendental and Algebraic Field Extensions

The field K obtained in the above section is obtained by adjoining to k the ele-
ments α1, . . . , αn−1. Let us therefore study in detail the effect of this operation.

Let k ⊂ K be two fields, and x1, . . . , xn ∈ K \ k. It follows then that we
consider the subfield of K which consists of all the numbers obtainable starting
from those in k and the xi s and repeatedly performing the four operations. It is
quite clear that this subfield of K can be interpreted as the set of the numbers
which are obtained evaluating all the rational functions in k(X1, . . . , Xn) at
x1, . . . , xn .

This leads us to consider the ring morphism

� : k[X1, . . . , Xn] → K
�( f ) = f (x1, . . . , xn)

whose image can alternatively be described as

the smallest subring of K containing k and x1, . . . , xn ,
the ring containing all the numbers of K which are obtained by recursively

applying the three operations starting with x1, . . . , xn and the ele-
ments of k.

This ring is an integral domain, being contained in the field K , and we will
denote it by k[x1, . . . , xn].

Further we consider the following subset of K :

k(x1, . . . , xn) := {αβ−1
∣∣ α, β ∈ k[x1, . . . , xn], β �= 0}

which is

the field of fractions of k[x1, . . . , xn],
the smallest subfield of K containing k and x1, . . . , xn ,
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the field containing all the elements of K that are obtained by recursively ap-
plying the four operations starting with x1, . . . , xn and the elements of k.

Definition 5.3.1. A field K ⊃ k such that

∃x1, . . . , xn ∈ K \ k : K = k(x1, . . . , xn)

is called a finitely generated extension of k by x1, . . . , xn.
It is called simple if it is generated by a single element x, i.e. K = k(x).
Two field extensions of k, K and K ′, are called k-isomorphic if there is an

isomorphism � : K → K ′ such that �(a) = a, ∀a ∈ k.

Remark 5.3.2. More generally, we could consider two fields k ⊂ K and a set
S ⊂ K , not necessarily a finite one, and denote the smallest subring of K
containing k and S by k[S], and the smallest subfield of K containing k and S
by k(S).

In this setting, we say that k(S) is obtained from k by the adjunction of S.
Note that each field K ⊃ k can be obtained from k by the adjunction of itself:

K = k(K ). As a consequence, each field K ⊃ k is called a field extension of k.

In order to consider the effect of generating extensions of a field by adjoining
elements onto it, it is reasonable to start by considering the simple extensions.
In Proposition 5.2.1, we extended k by adding an indeterminate X and requir-
ing that it satisfy an irreducible polynomial relation g(X) ∈ k[X ], obtaining
the field k[X ]/g(X); another way to obtain a simple extension field is to add
an indeterminate X and require that it does not satisfy any polynomial relation;
we then obtain the rational function field k(X). As we should expect, these are
the only ways of getting a simple extension field:

Definition 5.3.3. Let k, K be two fields, k ⊂ K , and let α ∈ K \ k. We say
that α is transcendental over k if

∀ f ∈ k[X ] \ {0}, f (α) �= 0;
algebraic over k if

∃ f ∈ k[X ] \ {0} : f (α) = 0.

Remark 5.3.4. The definition above depends on α (obviously) but not on K . It
depends, however, on k. In fact π is transcendental over Q (not an elementary
result) but is algebraic over Q(π2) since it is a root of X2 − π2.
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Proposition 5.3.5. Let α ∈ K \ k be transcendental over k.
Let � : k(X) → K be the map defined by

�( f/g) = f (α)

g(α)
.

Then Im(�) = k(α) is a subfield of K isomorphic to k(X).

Proof � is well defined since g(α) �= 0, ∀g ∈ k[X ]\{0}; it is then easy to
verify that � is a field morphism. The rest of the statement is obvious.

Proposition 5.3.6. Let α ∈ K \ k be algebraic over k.
Let � : k[X ] → K be the morphism defined by �(g) = g(α). Then:

(1) there is a unique monic polynomial f (X) ∈ k[X ] of least degree, such that
f (α) = 0, which is called the minimal polynomial of α over k.

(2) f is irreducible.
(3) g(α) = 0 ⇐⇒ g is a multiple of f .
(4) Im(�) is isomorphic to k[X ]/ f (X).
(5) Im(�) = k[α] is the smallest subfield of K containing both k and α.

Proof

(1) If f1 and f2 are both monic polynomials such that fi (α) = 0 and of least
degree, let g := f1 − f2. If g �= 0, then deg(g) < deg( fi ) and

g(α) = f1(α)− f2(α) = 0,

contradicting the fact that fi is of least degree. Therefore f1 = f2.
(2) If f were not irreducible, then one irreducible factor of f would vanish in

α, again contradicting the fact that f is of least degree.
(3) Let r(X) := Rem(g, f ), q(X) := Quot(g, f ).

Then r(α) = g(α)− q(α) f (α) = 0.
We cannot have deg(r) < deg( f ) and so r(X) = 0.

(4) This is equivalent to saying that ker(�) is the ideal generated by f , which
was proved for (3).

(5) This is obvious.

Definition 5.3.7. If α is algebraic over k, the degree of α is the degree of its
minimal polynomial over k.

Corollary 5.3.8. If α ∈ K is algebraic over k of degree n, then k[α] is a
k-vector space of dimension n, a basis being {1, α, α2, . . . , αn−1}.
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5.4 Finite Algebraic Extensions

Definition 5.4.1. Let k, K be two fields, k ⊂ K . We call K an algebraic exten-
sion of k if each element in K is algebraic over k. It is called a transcendental
extension of k, if there is an element in K which is transcendental over k.

Lemma 5.4.2. Let k ⊂ K ⊂ L be fields. Assume that L is a K -vector space
of dimension m, and that K is a k-vector space of dimension n.

Then L is a k-vector space of dimension mn.
Moreover if {α1, . . . , αn} is a k-basis of K , and {β1, . . . , βm} a K -basis of

L, then

{αiβ j
∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a k-basis of L.

Proof It is sufficient to prove the second statement.
If γ ∈ L , then γ = ∑m

j=1 ζ jβ j for some ζ j ∈ K . In turn ∀ j, ζ j =
∑n

i=1 ai jαi

for some ai j ∈ k, so that γ = ∑
i, j ai jαiβ j . Therefore

{αiβ j
∣∣ 1 ≤ i ≤ n, 1 ≤ j ≤ m}

generates L over k.
If 0 = ∑

i, j ai jαiβ j , let ζ j := ∑n
i=1 ai jαi , then 0 = ∑m

j=1 ζ jβ j and so
ζ j = 0, ∀ j , which in turn implies ai j = 0, ∀i, j .

Proposition 5.4.3. A finitely generated extension K of k is an algebraic exten-
sion if and only if it is a finite-dimensional k-vector space.

Proof In fact if K is a k-vector space of dimension n, then for each α ∈ K ,
{1, α, α2, . . . , αn} are linearly dependent over k, so that α is algebraic over k.
Conversely assume that K = k(α1, . . . , αn) is an algebraic extension of k and
let k0 := k, ki := ki−1[αi ], 1 ≤ i ≤ n, so that K = kn . Since K is algebraic,
each αi is algebraic over k and a fortiori over ki−1.
Since ki is a simple algebraic extension of ki−1, and so a finite-dimensional
ki−1-vector space, by Lemma 5.4.2 we can then conclude that K is a finite-
dimensional k-vector space.

Definition 5.4.4. A finitely generated algebraic extension K of k is usually
called a finite extension and its k-dimension is called the degree of K over k
and denoted [K : k].

Remark 5.4.5. If α is algebraic over k, the degree of α, the degree of its min-
imial polynomial and [k[α] : k] are the same.
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Lemma 5.4.6. If L is a finite extension of k and α ∈ L, then the degree of α
divides [L : k].

Proof Let K := k[α]. Since L ⊇ K , L is a K -vector space and therefore it has
to be a finite-dimensional vector space. By Lemma 5.4.2,

[L : K ][K : k] = [L : k],

so [K : k] divides [L : k].

Algebraic number and extensions can be further classified:

Definition 5.4.7. If K ⊃ k is an algebraic extension, K is called a separable
extension of k if each element α ∈ K is separable over k; it is called insepara-
ble otherwise.

If α ∈ K ⊃ k is an inseparable element, f (X) ∈ k(X) its minimal polyno-
mial, and α = α1, . . . , αn0 ∈ K are all its roots, recall that (Proposition 4.5.4
and Definition 4.5.5)

f =
n0∏

i=1

(X − αi )
pe
,

where p = char(k), n0 is the reduced degree and e the exponent of insepara-
bility of f and α.

Remark 5.4.8. If k is perfect, K ⊃ k is an algebraic extension and α ∈ K , then
K and α are separable. In fact, if α were inseparable, its minimal polynomial
would be a non-constant, irreducible inseparable polynomial, contradicting the
hypothesis that k is perfect.

Definition 5.4.9. With the present notation, when char(k) = p �= 0, α ∈ K ⊃
k is called purely inseparable over k if n0 = 1, i.e. α is the single root of its
minimal polynomial f .

A field K ⊃ k is called a purely inseparable extension of k if every α ∈ K is
purely inseparable over k.

Remark 5.4.10. It is obvious that α ∈ K ⊃ k is purely inseparable iff its
minimal polynomial over k is

(X − α)pe = X pe − α pe ∈ k[X ],

iff there is e ≥ 0 such that α pe ∈ k.
Therefore [k(α) : k] = pe is a power of p.
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Lemma 5.4.11. If α ∈ K ⊃ k is both separable and purely inseparable over
k, then α ∈ k.

Proof Since α is purely inseparable its minimal polynomial over k is X pe−
α pe

. Since α is separable over k, then e = 0 and so α ∈ k.

5.5 Splitting Fields

Apparently Theorem 5.2.3 gives us a solution to our problem of finding an
algorithm to solve a polynomial equation and to compute the roots of a poly-
nomial f ∈ k[X ].

However, it raises a new problem: what if somebody gives a different con-
struction leading to a different field K ′ ⊃ k in which f has linear factors?
What relation, if any at all, is there among the roots of f in K and those in K ′?
Example 5.2.5 and Example 5.2.6 illustrate this problem: we obtained, with
two different approaches, two fields k2, and k′2 which contain the roots of f .

Moreover, the Fundamental Theorem of Algebra asserts that a polynomial
in Q[X ] has all its roots in C so that we can theoretically consider the ring
K := Q(α1, α2, α3) ⊂ C, where α1, α2, α3 ∈ C are the three roots of f (X).

The question, of course, is what is the relation among the quite abstract roots
we obtained in k2, those we obtained in k′2 and the somehow more concrete
ones existing in K ⊂ C.

This section is devoted to giving an answer to this new question; the final
result will be that any two fields, where f factorizes into linear factors that are
minimal for this property, are k-isomorphic (so to all practical purposes they
can be considered to be the same).

Example 5.5.1. To illustrate and introduce this result, let us go back to
Example 5.2.5 and Example 5.2.6.

There we introduced

the polynomial f (X) := X3 − 2 ∈ Q[X ],

the field k1 := Q[X ]/ f (X),

the canonical projection π1 : Q[X ] → k1,

the root β := π1(X) ∈ k1;

the polynomial f1(X) := X2 + βX + β2 ∈ k1[X ],

the field k2 := k1[X ]/ f1(X),

the canonical projection π2 : k1[X ] → k2,

the root γ := π2(X) ∈ k2;
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the polynomial h(X) := X2 − 3 ∈ k1[X ],

the field k′2 := k1[X ]/h(X),

the canonical projection π ′
2 : k1[X ] → k′2,

the root δ := π ′
2(X) ∈ k′2,

so that

k2 = Q[β, γ ],

the minimal polynomial of β over Q is f (X),

the minimal polynomial of γ over k1 is f1(X),

the roots of f in k2 are β, γ,−β − γ ;

k′2 = Q[β, δ],

the minimal polynomial of δ over k1 is h(X),

the roots of f in k′2 are β, −β−βδ2 ,
−β+βδ

2 .

On the other hand we know how to ‘solve’ the equation X3 − 2 (where we
use ‘solve’ in the pre-Abel–Ruffini meaning). The three roots are

αi := 3
√

2εi , i = 1, 2, 3

where εi are the three third roots of unity, i.e.

ε1 = 1, ε2 = −1 +√−3

2
, ε3 = −1 −√−3

2
,

so that the three roots are

α1 := 3
√

2, α2 := 3
√

2
−1 +√−3

2
, α3 := 3

√
2
−1 −√−3

2
.

As a consequence

K = Q[α1, α2, α3] = Q[
3
√

2,
√−3]

and it is clear that an isomorphism between k′2 and K is the obvious one:

� : k′2 → K

defined by

�(β) = 3
√

2, �(δ) = √−3;
k′2 in fact represents K in Kronecker’s model.

It is not difficult to verify that there is an isomorphism between k2 and k′2; it
is � : k2 → k′2 defined by

�(γ ) = −β − βδ

2
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and it is not difficult to verify that � maps the third root of f in k2 to the third
root of f in k′2:

�(−β − γ ) = −�(β)−�(γ ) = −β + β

2
+ βδ

2
= −β + βδ

2
.

Definition 5.5.2. We say that K ⊇ k is a splitting field of f (X) ∈ k[X ] over
k, if f factors into linear polynomials in K [X ], while f has no linear factor-
ization in each subfield K ′, k ⊂ K ′ ⊂ K .

Lemma 5.5.3. Let f be an irreducible polynomial in k[X ]. Let � : k → k′

be a field isomorphism and let us denote by � : k[X ] → k′[X ] its polynomial
extension.

Let K and K ′ be two fields, k ⊂ K , k′ ⊂ K ′.
Let α be a root of f in K , α′ a root of f ′ := �( f ) in K ′.
Then there is a unique field isomorphism � : k[α] → k′[α′] such that

�(α) = α′, �(a) = �(a), ∀a ∈ k.

Proof Since � : k[X ] → k′[X ] is an isomorphism, the irreducibility of f is
equivalent to the irreducibility of f ′.
Moreover it is clear that the two fields k[X ]/ f (X) and k′[X ]/ f ′(X) are iso-
morphic.
The thesis follows since k[α] is isomorphic to k[X ]/ f (X) and k′[α′] is isomor-
phic to k′[X ]/ f ′(X).
Uniqueness is obvious.

Proposition 5.5.4. Let f (X) ∈ k[X ]. Let � : k → k ′ be a field isomorphism,
let us denote by � : k[X ] → k′[X ] its polynomial extension and let f ′ :=
�( f ). Let K (respectively K ′) be a splitting field of f (respectively f ′) over
k (respectively k′). Then there is a field isomorphism � : K → K ′ such that
�(a) = �(a), ∀a ∈ k.

If

f (X) = c(X − α1) . . . (X − αn)

is the factorization of f in K [X ], then the factorization of f ′ in K ′[X ] is

f ′(X) = �(c)(X −�(α1)) . . . (X −�(αn)).

Proof The argument is by induction on the degree of f .
If f is linear, then the splitting fields are respectively the isomorphic fields k
and k′ and there is nothing to prove.
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Assume deg( f ) = n > 1 and let g ∈ k[X ] be an irreducible factor of f ;
then g′ := �(g) ∈ k′[X ] is an irreducible factor of f ′. Let α1 be a root of g
in K and α′1 be a root of g′ in K ′. Because of Lemma 5.5.3, there is a field
isomorphism � : k[α1] → k′[α′1] which extends � and such that �(α1) = α′1.
We also denote by � : k[α1][X ] → k′[α′1][X ] its polynomial extension.
In k[α1][X ] we have the factorization f (X) = (X − α1)h(X); by means of �
we then have f ′ = (X − α′1)�(h). Also, K is a splitting field of h over k[α1]
and K ′ is a splitting field of �(h) over k′[α′1].
Since deg(h) = n−1, by inductive application of the proposition, we conclude
that there is a field isomorphism � : K → K ′ such that

�(a) = �(a) = �(a), ∀a ∈ k,

�(α1) = �(α1) = α′1.

Moreover if

h(X) = c(X − α2) . . . (X − αn)

is the factorization of h in K [X ], then the factorization of h′ in K ′[X ] is

h′(X) = �(c)(X −�(α2)) . . . (X −�(αn));
as a consequence

f (X) = c(X − α1)(X − α2) . . . (X − αn)

is the factorization of f in K [X ], and

f ′(X) = �(c)(X −�(α1))(X −�(α2)) . . . (X −�(αn))

is the factorization of f ′ in K ′[X ].

Corollary 5.5.5. Let f (X) ∈ k[X ]. Let K and K ′ be splitting fields of f . Then
there is a k-isomorphism � : K → K ′.

If

f (X) = c(X − α1) . . . (X − αn)

is the factorization of f in K [X ], then the factorization of f in K ′[X ] is

f (X) = c(X −�(α2)) . . . (X −�(αn)).
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Theorem 5.5.6. Let f (X) ∈ k[X ]. Then there is a unique (up to k-isomor-
phisms) splitting field K of f .

Moreover [K : k] ≤ n!.

Proof Existence is the content of Theorem 5.2.3; uniqueness is the content of
Corollary 5.5.5; so we are left to prove [K : k] ≤ n!.
However, with the notations of the proof of Theorem 5.2.3, we have that

[ki : ki−1] = deg(gi−1) ≤ deg( fi−1) = n − i + 1,

whence the thesis.
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Intermezzo: Sylvester

The classical setting for solving univariate polynomial equations is a domain
D, in whose polynomial ring D[X ] we consider a ‘generic’ polynomial f (X) ∈
D[X ] of degree n:

f (X) = a0 Xn + a1 Xn−1 + · · · + ai Xn−i + · · · + an−1 X + an . (6.1)

If Q denotes the quotient field Q of D, Theorem 5.5.6 allows us to consider
the splitting field K ⊃ Q, of f , in which f contains n – not necessarily
different – roots α1, . . . , αn ∈ K such that

f (X) = a0

n∏
j=1

(X − α j ). (6.2)

The setting, in which most of the classical (pre-Abel–Ruffini) research on
‘solving’ was developed, is

Z = D ⊂ Q = Q ⊂ K = C,

based on the Euler Conjecture. It was in this setting that deep work on ‘solving’
was performed which reached a peak with Lagrange’s results from which
blossomed Galois Theory and the Abel–Ruffini Theorem. In the same setting
I have to quote at least two analyses which are useful today:

– Gauss related the factorization of f (X) ∈ D[X ] over D with that over Q
(Section 6.1);

– Newton, starting from the obvious remark that the coefficients ai of f –
assuming wlog a0 = 1 – are symmetric on the roots α j , introduced the
notion of symmetric functions on the roots α j , proving that they can be ex-
pressed as polynomials on the coefficients ai (Section 6.2, Section 6.3).

91
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The nineteenth century English algebra school continued and extended the
approach started by Newton: their approach posed and solved questions
such as

given a ‘generic’ polynomial Equation 6.1 is it possible to find a ‘universal’
formula in terms of the coefficients ai which allows us to decide whether
their roots are simple?

given the ‘generic’ polynomial Equation 6.1 and a further ‘generic’ polyno-
mial

g(X) = b0 Xm + b1 Xm−1 + · · · + bi Xm−i + · · · + bm−1 X + bm

is it possible to find a ‘universal’ formula in terms of the coefficients ai , b j

which allows us to decide whether f and g have a common root?

In both cases the answer is positive and leads to the notions of the dis-
criminant of a polynomial (Section 6.5) and the resultant of two polynomials
(Section 6.6). It is important to understand here the approach and the tech-
nique introduced by the English school in their aim to find ‘universal’ solu-
tions, which will therefore first be discussed in Section 6.4.

Finally, a deeper study (Section 6.7) of the properties of the resultant
will introduce essential tools which we will use to deal with real solutions of
equations.

6.1 Gauss Lemma

Let D be a unique factorization domain and let Q be its fraction field; so Q is
effective if D is an effective domain.

Definition 6.1.1. Let f (X) = ∑n
i=0 ai Xn−i ∈ D[X ].

The content of f , Cont( f ), is

Cont( f ) := gcd(a0, . . . , ad);
f is called primitive if Cont( f ) = 1.

Lemma 6.1.2.

(1) If f (X) ∈ Q[X ] there is a primitive polynomial

g(X) := Prim( f ) ∈ D[X ]

which is associate to f .
(2) Let f and g be primitive polynomials in D[X ], then f and g are asso-

ciate if and only if there is a unit u ∈ D such that f = ug.
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Proof

(1) Let f = ∑n
i=0 b−1

i ai Xn−i , with bi , ai ∈ D, bi �= 0, gcd(ai , bi ) = 1.
Let b := lcmi (bi ), a := gcdi (ai ). Then g := a−1b f is in D[X ] and is
associate to f .
Moreover let ci , di ∈ D be such that adi = ai , and b = bi ci , so that
g = ∑n

i=0 ci di Xn−i .

Assume Cont(g) = gcdi (ci di ) �= 1 and let e be an irreducible factor of
gcdi (ci di ).
Since gcdi (di ) = 1, there is j such that e divides c j , and therefore e
divides b; since gcdi (ci ) = 1, there is k such that e does not divide ck .
Therefore e divides bk (since it divides b) and ak (since it divides ckdk

and so dk).
Since gcd(ak, bk) = 1, we conclude e = 1 and so

Cont(g) = gcd
i
(ci di ) = 1,

proving g is primitive.
(2) If f and g are associate, there are a, b ∈ D, gcd(a, b) = 1, such that

a f = bg. Then a divides Cont(g) = 1 and b divides Cont( f ) = 1;
therefore both are units in D and so is u := a−1b.

Lemma 6.1.3 (Gauss Lemma). If f, g ∈ D[X ] are primitive, then f g is
primitive.

Proof By contradiction: let

f (X) :=
n∑

i=0

ai Xn−i , g(X) :=
m∑

i=0

bi Xm−i , f g :=
n+m∑
i=0

ci Xn+m−i .

Let e ∈ D be an irreducible factor of Cont( f g); since

Cont( f ) = Cont(g) = 1,

e does not divide all coefficients of f , nor of g. So let s be the least index
such that as is not a multiple of e, and t the least index such that bt is not a
multiple of e.

Then all the summands of cs+t =
∑s+t

i=0 ai bs+t−i , except asbt , are divisible
by e, so cs+t is not divisible by e, giving the desired contradiction.
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Corollary 6.1.4. If f, g ∈ D[X ], then Cont( f g) = Cont( f )Cont(g).

Proof Let c := Cont( f ), d := Cont(g), so that

f g = cd Prim( f ) Prim(g).

Since Prim( f ) Prim(g) is primitive, then cd = Cont( f g).

Corollary 6.1.5. Let f ∈ D[X ] be a primitive polynomial.
Let g, h ∈ Q[X ] be such that f = gh. Then

f = u Prim(g) Prim(h)

for a unit u ∈ D.

Proof There are a, b ∈ Q such that g = a Prim(g), h = b Prim(h). Then

f = (ab) Prim(g) Prim(h).

Since f is primitive and f0 := Prim(g) Prim(h) is also by the Gauss Lemma,
then ab is a unit in D.

Corollary 6.1.6. Let g ∈ D[X ] be a primitive polynomial and let f ∈ D[X ], h
∈ Q[X ] be such that f = gh in Q[X ]. Then h ∈ D[X ].

Proof In D[X ] we have f = Cont(h) Prim(h)g; since Prim(h)g is primitive,
we deduce Prim( f ) = Prim(h)g and Cont(h) = Cont( f ); since f ∈ D[X ],
then Cont(h) ∈ D and h = Cont(h)Prim(h) ∈ D[X ].

Corollary 6.1.7. Let f be a primitive polynomial in D[X ]. Then f is irredu-
cible in D[X ] iff it is such in Q[X ].

Proof Assume f is reducible in Q[X ], and let g, h ∈ Q[X ] be such that
f = gh. By Corollary 6.1.5, then Prim(g) and Prim(h) are proper factors of f
in D[X ].

Conversely, assume f is reducible in D[X ] and let g, h ∈ D[X ] be such that
f = gh. Then deg(g) > 0, since otherwise g would be an irreducible factor
of Cont( f ) = 1. By the same argument, deg(h) > 0 and f = gh is a proper
factorization in Q[X ].



6.1 Gauss Lemma 95

Remark 6.1.8. The Gauss Lemma allows us to establish that the polynomial
factorizations in Q[X ] and D[X ] are essentially ‘the same’, as will be shown
in the next theorem.

In particular, this result applies to the cases

D := Z, Q := Q,

D := K [X1, . . . , Xn], Q := K (X1, . . . , Xn)

and allows us to reduce

factorizations of rational polynomials to those of integer polynomials;
factorizations of univariate polynomials over transcendental extensions, to

multivariate polynomial factorizations.

Theorem 6.1.9.

(1) Let f ∈ D[X ] and let

f = ∏r
i=1 pei

i be a factorization in Q[X ] into irreducible factors,

Cont( f ) := ∏s
i=1 cdi

i be a factorization in D into irreducible fac-
tors.

Then, denoting qi := Prim(pi ), for all i ,

f =
s∏

i=1

cdi
i

r∏
i=1

qei
i

is a factorization into irreducible factors in D[X ].
(2) Conversely let f ∈ Q[X ] and let

Prim( f ) =
r∏

i=1

pei
i

be a factorization in D[X ] into irreducible factors.
Then, there is u ∈ Q such that

u f =
r∏

i=1

pei
i

is a factorization in Q[X ] into irreducible factors.

Proof

(1) By Corollary 6.1.5 we have

Prim( f ) =
r∏

i=1

qei
i
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and so

f =
s∏

i=1

cdi
i

r∏
i=1

qei
i .

Since the ci are irreducible in D, they are irreducible in D[X ]; since
the qi are irreducible in Q[X ], they are so in D[X ] too.

(2) Since Prim( f ) is primitive, then deg(pi ) > 0, ∀i ; moreover pi , being
irreducible in D[X ], is so in Q[X ] too; the thesis then holds where u is
the element such that u f = Prim( f ).

Corollary 6.1.10. D[X ] is a unique factorization domain.

Proof By Theorem 6.1.9 each element of D[X ] has a factorization into irre-
ducible factors. So we have to prove uniqueness (up to order and to associates).

Let f ∈ D[X ]; up to a unit in D, there is a unique factorization f = cg,
with c ∈ D, g ∈ D[X ] a primitive polynomial; c has a unique factorization
since D is a unique factorization domain; g has a unique factorization in D[X ],
since any such factorization is a factorization in Q[X ].

6.2 Symmetric Functions

Let

f (X) = a0 Xn + a1 Xn−1 + · · · + ai Xn−i + · · · + an−1 X + an

and let α1, . . . , αn be its roots so that
n∑

i=0

ai Xn−i = a0

n∏
j=1

(X − α j ) (6.3)

from which we obtain – when a0 = 1:

−a1 := α1 + α2 + · · · + αn,

+a2 := α1α2 + α1α3 + · · · + α1αn + α2α3 + · · · + αn−1αn,

−a3 := α1α2α3 + · · · + αn−2αn−1αn,

. . .

(−1)n−1an−1 := α1α2α3 . . . αn−2αn−1 + α1α2α3 . . . αn−2αn

+ · · · + α1α3 . . . αn−2αn−1αn

+α2α3 . . . αn−2αn−1αn,

(−1)nan := α1α2α3 . . . αn−2αn−1αn .

This remark and the obvious fact that the ai s are stable under any permuta-
tion of the roots α j leads us to introduce
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Definition 6.2.1. A polynomial f ∈ D[X1, . . . , Xn], D a domain, is called a
symmetric function iff, for each permutation π of {1, . . . , n},

f (X1, . . . , Xi , . . . , Xn) = f (Xπ(1), . . . , Xπ(i), . . . , Xπ(n)).

The elementary symmetric functions of X1, . . . , Xn are the symmetric
functions

σ1 := X1 + X2 + · · · + Xn,

σ2 := X1 X2 + X1 X3 + · · · + X1 Xn + X2 X3 + · · · + Xn−1 Xn,

. . .

σn−1 := X1 X2 X3 . . . Xn−2 Xn−1 + · · · + X2 X3 . . . Xn−2 Xn−1 Xn,

σn := X1 X2 X3 . . . Xn−2 Xn−1 Xn .

Remark 6.2.2. In order to prove the Fundamental Theorem on Symmetric
Functions, which claims that any symmetric function in D[X1, . . . , Xn] can
be expressed as a polynomial in1 D[σ1, . . . , σn], we need to introduce some
notation and remarks.

Each polynomial φ ∈ D[σ1, . . . , σn] ⊂ D[X1, . . . , Xn] is a symmetric
function. In particular a term σ

a1
1 · · · σ an

n is a homogeneous polynomial in
D[X1, . . . , Xn] of degree a1 + 2a2 + · · · + nan .

We will call a1 + 2a2 + · · · + nan the weight of the term σ
a1
1 · · · σ an

n .
The notion of weight is generalized to a polynomial φ ∈ D[σ1, . . . , σn] to

be, as usual, the maximal weight of the terms occurring in φ and it is clearly
an upper bound of the degree of φ as a polynomial in D[X1, . . . , Xn].

We denote T the semigroup of terms of D[X1, . . . , Xn] and we order
T by the lexicographical ordering >, such that X1 > X2 > · · · > Xn ,
given by:

Xa1
1 · · · Xar

r < Xb1
1 · · · Xbr

r ⇐⇒ there exists j : a j < b j

and ai = bi , for all i < j.

1 With the notation D[σ1, . . . , σn ] where σi ∈ D[X1, . . . , Xn ] we denote the subring
D[σ1, . . . , σn ] ⊂ D[X1, . . . , Xn ] obtained by the ‘adjunction’ to D of the elements σ1, . . . , σn ,
generalizing the operation discussed in Section 5.3. That is, D[σ1, . . . , σn ] denotes the subring
which is the image of the morphism

� : D[Y1, . . . ,Yn ] → D[X1, . . . , Xn ]
�( f ) = f (σ1, . . . , σn);

cf. also the discussion in Section 6.4
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For a non-zero polynomial f = ∑
t∈T ct t we denote

T ( f ) := max<{t : ct �= 0}, lc<( f ) := cT ( f ).

We need now to generalize this definition on D[σ1, . . . , σn] with a twist.
Therefore, with S denoting the semigroup of terms of D[σ1, . . . , σn], the twist
consists in remarking that any term t ∈ S can be expressed as

t = σ
a1−a2
1 σ

a2−a3
2 · · · σ an−2−an−1

n−2 σ
an−1−an
n−1 σ an

n

for suitable elements ai and defining an ordering ≺ on S by

σ
a1−a2
1 · · · σ an−1−an

n−1 σ an
n ≺ σ

b1−b2
1 · · · σ bn−1−bn

n−1 σ bn
n

⇐⇒ Xa1
1 · · · Xan

n < Xb1
1 · · · Xbn

n

so that for a non-zero polynomial

φ =
∑
t∈S

ctt,

we denote

S(φ) := max≺{t : ct �= 0}, lc≺(φ) := cS(φ).

With this notation, if we are given a symmetric function

φ ∈ D[σ1, . . . , σn] ⊂ D[X1, . . . , Xn],

we can interpret it as an element in D[σ1, . . . , σn], where we consider the term
S(φ), or as an element in D[X1, . . . , Xn], where we consider the term T (φ).
In this setting we have:

Lemma 6.2.3. Let

φ ∈ D[σ1, . . . , σn] ⊂ D[X1, . . . , Xn];
then

T (φ) = Xa1
1 Xa2

2 · · · Xan
n ⇐⇒ S(φ) = σ

a1−a2
1 · · · σ an−1−an

n−1 σ an
n .

Theorem 6.2.4. (Fundamental Theorem on Symmetric Functions).
A symmetric function f ∈ D[X1, . . . , Xn] can be expressed in a unique way

as a polynomial in σ1, . . . , σn.



6.2 Symmetric Functions 99

Proof
Existence: Let f ∈ D[X1, . . . , Xn] be a symmetric function and let

T ( f ) = Xa1
1 Xa2

2 · · · Xan−1
n−1 Xan

n .

Among the terms X
aπ(1)
1 X

aπ(2)
2 · · · X

aπ(n−1)
n−1 X

aπ(n)
n where π runs among the

permutations of {1, . . . , n}, Xa1
1 Xa2

2 · · · Xan−1
n−1 Xan

n is the maximal term with
respect to < iff

a1 ≥ a2 ≥ · · · ≥ an−1 ≥ an;
therefore,

ψ := lc<( f )σ a1−a2
1 σ

a2−a3
2 · · · σ an−2−an−1

n−2 σ
an−1−an
n−1 σ an

n

satisfies T (ψ) = T ( f ). As a consequence,

g := f − ψ ∈ D[X1, . . . , Xn]

is such that T (g) < T ( f ).
We can therefore conclude that a finite number of rewritings allow us to

compute a function φ ∈ D[σ1, . . . , σn] such that

φ(σ1, . . . , σn) = f (X1, . . . , Xn) in D[X1, . . . , Xn].

Uniqueness: Let us assume that there are two polynomials

φ1, φ2 ∈ D[σ1, . . . , σn]

such that

φ1(σ1, . . . , σn) = f (X1, . . . , Xn) = φ2(σ1, . . . , σn) in D[X1, . . . , Xn].

We need to show that

φ1(σ1, . . . , σn) = φ2(σ1, . . . , σn) in D[σ1, . . . , σn].

It is, of course, sufficient to show, for each polynomial

φ(σ1, . . . , σn) ∈ D[σ1, . . . , σn],

that

φ(σ1, . . . , σn) �= 0 in D[σ1, . . . , σn] �⇒ φ(σ1, . . . , σn) �= 0

in D[X1, . . . , Xn].

Let then S(φ) := σ
a1−a2
1 σ

a2−a3
2 · · · σ an−2−an−1

n−2 σ
an−1−an
n−1 σ

an
n ; as a conse-

quence T (φ) = Xa1
1 Xa2

2 · · · Xan−1
n−1 Xan

n which proves the claim.
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Example 6.2.5. As an example we will verify Newton’s formula

s3 = σ 3
1 − 3σ1σ2 + 3σ3,

where s3 := X3
1 + X3

2 + X3
3.

Since T (s3) = X3
1, we choose ψ = σ 3

1 , getting

g := s3 − σ 3
1 =−3(X2

1 X2 + X1 X2
2 + X2

1 X3 + X2
2 X3 + X1 X2

3 + X2 X2
3)

− 6X1 X2 X3.

Therefore T (g) = X2
1 X2 and ψ = −3σ1σ2, yielding

g := s3 − σ 3
1 + 3σ1σ2 = −3X1 X2 X3

so that

s3 = σ 3
1 − 3σ1σ2 + 3σ3

Corollary 6.2.6. A symmetric function h ∈ D(X1, . . . , Xn) can be expressed
in a unique way as a rational function in σ1, . . . , σn.

Proof Let ( f (X1, . . . , Xn))/(g(X1, . . . , Xn)), g �= 0, be a symmetric func-
tion, and let G(X1, . . . , Xn) be the product of all the polynomials g(Xπ(1), . . . ,

Xπ(n)), where π runs over all the permutations except the identity one.
Therefore gG is a symmetric polynomial and, since f/g = f G/gG

is a symmetric function, so is f G; therefore there are polynomials φ, γ ∈
D(σ1, . . . , σn), γ �= 0 such that

φ(σ1, . . . , σn) = f (X1, . . . , Xn)G(X1, . . . , Xn),

γ (σ1, . . . , σn) = g(X1, . . . , Xn)G(X1, . . . , Xn),

f (X1, . . . , Xn)

g(X1, . . . , Xn)
= φ(σ1, . . . , σn)

γ (σ1, . . . , σn)
.

6.3 Newton’s Theorem

Example 6.2.5 is just the most elementary instance of Newton’s Theorem,
which relates different important symmetric functions.

Before discussing that, let us introduce some notation which will be used
throughout this section. If hd(X1, . . . , Xn) ∈ D[X1, . . . , Xn] is a symmetric
function of degree d in X1, . . . , Xn , we will denote either h(d, ν) or hd(Xν)

to be the symmetric function

h(d, ν) = hd(Xν) := hd(X1, . . . , Xν, 0, . . . , 0) ∈ D[X1, . . . , Xν]
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of degree d in X1, . . . , Xν , extending the notation to include also h(0, ν) =
h0(Xν) = 1.

In particular σ(d, ν) = σd(Xν) are the dth elementary symmetric functions
of the ν variables X1, . . . , Xν , so that σ(d, n) = σd – which we will extend to
σ(d, n) = 0 for d > n – and

Corollary 6.3.1. We have:

(1) for all d, 1 ≤ d ≤ ν, σd(Xν) = σd(Xν−1)+ σd−1(Xν−1)Xν;
(2) σd(Xν−1) = σd(Xν)+

∑d−1
j=1(−1) j X j

νσd− j (Xν)+(−1)d Xd
ν , 1 ≤ d <

ν;
(3) σν(Xν)+

∑ν−1
j=1(−1) j X j

νσν− j (Xν)+ (−1)ν Xν
ν = 0;

(4) D[σ1(Xν−1), . . . , σν−1(Xν−1)] ⊂ D[σ1(Xν), . . . , σν−1(Xν), Xν];

(5) D[σ1(Xν), . . . , σν(Xν)] ⊂ D[σ1(Xν−1), . . . , σν−1(Xν−1), Xν].

Definition 6.3.2.

The Waring functions are

sd(Xν) :=
ν∑

i=1

Xd
i ;

when n is fixed we will freely write sd := sd(Xn).
The locator polynomial2 L(Xν, Z) ∈ D[X1, . . . , Xν][Z ] is

L(Xν, Z) =
ν∏

i=1

(1 − Xi Z) = 1 +
ν∑

j=1

(−1) jσ j (Xν)Z
j .

The complete sums in D[X1, . . . , Xν], hd(Xν) are the polynomials consist-
ing of the sum of all terms of degree d in D[X1, . . . , Xν].

The Gröbnerian symmetric functions are the polynomials

gd(Xν−d+1) := hd(Xν−d+1) ∈ D[X1, . . . , Xν−d+1] ⊂ D[X1, . . . , Xν].

Example 6.3.3. For ν = 3 we have

sd(X3) = X3
1 + X3

2 + X3
3,

h2(X3) = X2
1 + X1 X2 + X1 X3 + X2

2 + X2 X3 + X2
3,

g1(X3) = X1 + X2 + X3,

g2(X2) = X2
1 + X1 X2 + X2

2,

g3(X1) = X3
1.

2 I borrow the terminology from Coding Theory.
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Lemma 6.3.4 (Newton). We have

−L(Xν, Z)
∞∑

d=1

sd(Xν)Z
d = −Z

ν∑
i=1

Xi

ν∏
j=1
j �=i

(
1 − X j Z

) = Z L ′(Xν, Z).

Proof Note that
∞∑

d=1

sd(Xν)Z
d =

∞∑
d=1

ν∑
i=1

Xd
i Zd =

ν∑
i=1

∞∑
d=1

(Xi Z)d =
ν∑

i=1

Xi Z

1 − Xi Z

so that

−L(Xν, Z)
∞∑

d=1

sd(Xν)Z
d = −

ν∏
j=1

(1 − X j Z)
ν∑

i=1

Xi Z

1 − Xi Z

= −Z
ν∑

i=1

Xi

ν∏
j=1
j �=i

(
1 − X j Z

)

= Z L ′(Xν, Z).

Corollary 6.3.5. We have

Z L ′(Xν, Z)+ L(Xν, Z)
∞∑

d=1

sd(Xν)Z
d = 0. (6.4)

Corollary 6.3.6 (Newton’s formula). We have:

(1) s j (Xν)+
∑ j−1

λ=1(−1)λs j−λ(Xν)σλ(Xν)+ (−1) j jσ j (Xν) = 0, j ≤ ν;
(2) s j (Xν)+

∑ j−1
λ=1(−1)λs j−λ(Xν)σλ(Xν) = 0, j > ν.

Proof We only have to equate to 0 the coefficients of each power of Z in
Equation 6.4.

Remark 6.3.7. In particular

s1(Xν) = σ1(Xν),

s2(Xν) = σ 2
1 (Xν)− 2σ2(Xν),

s3(Xν) = σ 3
1 (Xν)− 3σ1(Xν)σ2(Xν)+ 3σ3(Xν).
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Corollary 6.3.8. If char(Q) = 0 or char(Q) > ν, then D[σ1(Xν), . . . ,

σν(Xν)] = D[s1(Xν), . . . , sν(Xν)].

Lemma 6.3.9. Let fd(Xν) ∈ D[X1, . . . , Xν] be symmetric functions satisfy-
ing, for all j ≤ ν, the relations

Fj := a jσ j (Xν)+
j−1∑
λ=1

f j−λ(Xν)h jλ(Xν)+ f j (Xν) = 0,

for suitable h jλ(Xν) ∈ D[X1, . . . , Xν], a j ∈ D \ {0}.
Then

( f1(Xν), . . . , fν(Xν)) = (σ1(Xν), . . . , σν(Xν)) .

Proof The equation Fj = 0 allows us to deduce that

σ j (Xν) ∈ ( f1(Xν), . . . , fν(Xν))

so that

( f1(Xν), . . . , fν(Xν)) ⊃ (σ1(Xν), . . . , σν(Xν)) .

Since Fj = 0 also proves

f j (Xν) ∈
(

f1(Xν), . . . , f j−1(Xν), σ j (Xν)
)
,

we can deduce inductively, for all j ≤ ν, that

f j (Xν) ∈
(
σ1(Xν), . . . , σ j (Xν)

)
and the converse inclusion

( f1(Xν), . . . , fν(Xν)) ⊂ (σ1(Xν), . . . , σν(Xν)) .

Corollary 6.3.10. If char(Q) = 0 or char(Q) > ν, then (σ1(Xν), . . . ,

σν(Xν)) = (s1(Xν), . . . , sν(Xν)) .

Proposition 6.3.11. We have

(1)
∑∞

d=0(−1)dhd(Xν)Zd = ∏ν
j=1(1 − X j Z)−1;

(2) (−1) jσ j (Xν)+
∑ j−1

λ=1(−1)λh j−λ(Xν)σλ(Xν)+ h j (Xν) = 0,
for all j ;

(3) D[σ1(Xν), . . . , σν(Xν)] = D[h1(Xν), . . . ,hν(Xν)];
(4) (σ1(Xν), . . . , σν(Xν)) = (h1(Xν), . . . ,hν(Xν)) .
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Proof

(1) Obvious.
(2) Since

∑∞
d=0(−1)dhd(Xν) = L(Xν, Z)−1.

(3) Obvious.
(4) As a corollary of Lemma 6.3.9.

Lemma 6.3.12. We have

(1) hd+1(Xµ) = hd+1(Xµ−1)+ Xµhd(Xµ), for all d, µ;
(2) (h1(Xν), . . . ,hν(Xν)) = (g1(Xν), . . . ,gd+1(Xν−d), . . . ,gν(X1)).

Proof

(1) Obvious.
(2) As a consequence we have

(hd(Xν−d+1), hd+1(Xν−d+1), . . . ,hν(Xν−d+1))

= (hd(Xν−d+1), hd+1(Xν−d), . . . ,hν(Xν−d))

= (gd(Xν−d+1), hd+1(Xν−d), . . . ,hν(Xν−d)) .

So that we can deduce

(h1(Xν), h2(Xν), . . . ,hν(Xν))

= (g1(Xν), h2(Xν−1), . . . ,hν(Xν−1))

= · · ·
= (g1(Xν), . . . ,gd(Xν−d+1), hd+1(Xν−d), . . . ,hν(Xν−d))

= (g1(Xν), . . . ,gd+1(Xν−d), hd+2(Xν−d−1), . . . ,hν(Xν−d−1))

= · · ·
= (g1(Xν), . . . ,gd+1(Xν−d), . . . ,gν(X1)) .

This allows us to deduce the following result

Corollary 6.3.13. Under the same notation,

(σ1(Xν), . . . , σν(Xν)) = (g1(Xν), . . . ,gd+1(Xν−d), . . . ,gν(X1)) ;
T (gd+1(Xν−d)) = Xd

ν−d , for all d, under lexicographical ordering such
that

X1 < X2 < · · · < Xν .
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from this, those familiar with the Gröbner bases will easily deduce – when D
is a field – that 3

Fact 6.3.14. The set of the Gröbnerian symmetric functions

G := {g1(Xν), . . . ,gd+1(Xν−d), . . . ,gν(X1)}
is the Gröbner basis of (σ1, . . . , σν) under lexicographical ordering such that
X1 < X2 < · · · < Xν .

This of course poses the question, how are the symmetric functions σd

Gröbner-reduced by G? The solution is given by the formula

Proposition 6.3.15.

for all d, ν, d ≤ ν, σd(Xν)+
d−1∑
i=1

(−1)i gi (Xν−i+1)σd−i (Xν−i )

+ (−1)dgd(Xν−d+1). (6.5)

Proof Let us note the obvious relations

σd(Xν) = σd(Xν−1)+ Xνσd−1(Xν−1)

gd(Xν−d+1) = gd(Xν−d)+ Xν−d+1gd−1(Xν−d+1),

which allow the following inductive reduction

σd(Xν)+
d−1∑
i=1

(−1)i gi (Xν−i+1)σd−i (Xν−i )+ (−1)dgd(Xν−d+1)

= σd(Xν−1)+ Xνσd−1(Xν−1)

+
d−1∑
i=1

(−1)i gi (Xν−i )σd−i (Xν−i )

+
d−1∑
i=1

(−1)i gi−1(Xν−i+1)Xν−i+1σd−i (Xν−i )

+ (−1)dgd(Xν−d)+ (−1)dgd−1(Xν−d+1)Xν−d+1

3 In fact, these polynomials were frequently found by M. Sala in the Gröbner basis of
0-dimensional ideals (related to a coding theory problem) whose set of roots was symmetric; he
therefore proposed adding these polynomials to the basis in order to obtain a faster ‘heuristic’
result. Due to Fact 6.3.14, this approach is definitely not heuristic and should be recommended.

When I saw his polynomials, I immediately got the impression that they were somehow
related to the Gröbner basis of symmetric functions and it required just a few hand computations
to deduce (6.5) from which Fact 6.3.14 comes immediately.

Proving them was a more difficult problem and I am indebted to M. Sala, E. Briand and
L. Gonzalez-Vega for their help.
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= σd(Xν−1)+ Xν (σd−1(Xν−1)− g0(Xν)σd−1(Xν−1))

+
d−1∑
i=1

gi (Xν−i )(−1)i (σd−i (Xν−i )− Xν−iσd−i−1(Xν−i−1))

+ (−1)dgd(Xν−d)

= σd(Xν−1)+
d−1∑
i=1

(−1)i gi (Xν−i )σd−i (Xν−i−1)+ (−1)dgd(Xν−d).

We are therefore reduced to the cases d = ν − 1 and to the formulas

σd(Xd)+
d−1∑
i=1

(−1)i gi (Xd−i+1)σd−i (Xd−i )+ (−1)dgd(X1),

which we derive in the same way using

σd(Xd) = Xdσd−1(Xd−1),

gi (Xd−i+1) = gi (Xd−i )+ Xd−i+1gi−1(Xd−i+1),

gd(X1) = X1gd−1(X1),

and which allow the following inductive reduction

σd(Xd)+
d−1∑
i=1

(−1)i gi (Xd−i+1)σd−i (Xd−i )+ (−1)dgd(X1)

= Xdσd−1(Xd−1)+
d−1∑
i=1

(−1)i gi (Xd−i )σd−i (Xd−i )

+
d−1∑
i=1

(−1)i gi−1(Xd−i+1)Xd−i+1σd−i (Xd−i )

+ (−1)dgd−1(X1)X1

= Xd (σd−1(Xd−1)− g0(Xd)σd−1(Xd−1))

+
d−2∑
i=1

(−1)i gi (Xd−i ) (σd−i (Xd−i )− Xd−iσd−i−1(Xd−i−1))

+ (−1)dgd−1(X1) (X1 − σ1(X1))

= 0

6.4 The Method of Indeterminate Coefficients

The technique applied by the English algebra school, in order to have a means
of discussing ‘generic’ polynomials and roots, which extended Newton’s idea
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of interpreting the coefficients of the polynomial as a symmetric function of
its roots, consisted of introducing indeterminate coefficients ai (respectively
a0, α j ), considering the domain D := Z[a0, a1, . . . an] (respectively D :=
Z[a0, α1, . . . αn]) and the polynomial f (X) ∈ D[X ] defined by Equation 6.1
(respectivly Equation 6.2) and analysing it in order to obtain a ‘universal’ solu-
tion � ∈ D.

Then, when we have a given, specific domain D and a polynomial f (X) ∈
D[X ], we just make an ansatz, substituting within the obtained expression
� ∈ D the corresponding given elements ai (respectively α j ) and interpreting
the coefficients in Z by their image in the prime field of Q.

In other words we choose f by fixing a domain morphism � : D[X ] →
K [X ].

Example 6.4.1. To explain this, we only have to recall what is usual for quad-
ratic polynomials. If we are given a quadratic polynomial

f (X) = a X2 + bX + c ∈ D[X ]

we know that it has distinct roots when the discriminant

� := b2 − 4ac

is non-zero in which case the roots – if char(Q) �= 2 – are

−b ±√
�

2a
.

Therefore if we are given

the polynomial f (X) := X2+6X+9 ∈ Q[X ], substituting in the expression
� the ansatz a = 1, b = 6, c = 9, we get, in Q, � = 62 − 4 · 1 · 9 = 0 so
that the roots are not distinct;

the polynomial f (X) := X2−3X+2 ∈ Q[X ], substituting in the expression
� the ansatz a = 1, b = −3, c = 2, we get, in Q, � = 32 − 4 · 1 · 2 = 1
so that the roots are distinct and are given by

−b ±√
�

2
= −−3 ±√

1

2
=
{

1
2

;

the polynomial f (X) := X2+X−1 ∈ Z5[X ], substituting in the expression
� = b2 + ac the ansatz a = 1, b = 1, c = −1, we get, in Z5, � = 0 so
that the roots are not distinct; in fact f (X) = (X + 3)2;

the polynomial f (X) := X2 − 2X + 2 ∈ Z5[X ], substituting in the expres-
sion � = b2 + ac the ansatz a = 1, b = −2, c = 2, we get, in Z5, � = 1
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so that the roots are distinct and are given by

−b ±√
�

2
= −3(−2 ±

√
1) =

{ −1
3

;

in fact (X − 3)(X + 1) = f (X).

Remark 6.4.2. To show another example of the method of indeterminate coef-
ficients, let us verify that the fact that f has distinct roots when the discrim-
inant � := b2 − 4ac is non-zero, also holds (as we will prove in Proposi-
tion 6.5.4) in the case char(k) = 2 where4 � = b2 in Z2[a, b, c]. In fact
f = aX2 + bX + c ∈ Z2[a, b, c][X ] has roots α, β if and only if

f = a(X − α)(X − β) ∈ Z2[α, β, a, b, c][X ]

i.e.

b = a(α − β), c = aαβ

in Z2[α, β, a, b, c]; it is then clear that

α = β ⇐⇒ b = a(α − β) = 0 ⇐⇒ b2 = � = 0.

Note that we have derived in this case the formula of Definition 6.5.3:

� = b2 = a2(α − β)2.

Remark 6.4.3. In this setting we can (and will) consider also polynomials
f (X) ∈ D[X ] defined by Equation 6.1 of degree m < n just by making the
ansatz ai = 0, for all i,m < i ≤ n.

6.5 Discriminant

Let

f (X) = a0 Xn + a1 Xn−1 + · · · + ai Xn−i + · · · + an−1 X + an

and α1, . . . , αn be its roots so that Equation 6.3 holds.
There is an obvious function which vanishes iff the generic polynomial f

has a multiple root, i.e. ∏
i> j

(αi − α j ).

To transform it as a symmetric function we consider∏
i> j

(Xi − X j )
2

4 But where the formula which gives the roots as −(b ±√
�)/2a cannot, of course, be applied.
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which is therefore an element in Z[σ1, . . . , σn] = Z[s1, . . . , sn]. Its expression
can be obtained thanks to

Proposition 6.5.1.

∏
i> j

(Xi − X j )
2 =

∣∣∣∣∣∣∣∣∣

n s1 · · · sn−1

s1 s2 · · · sn
...

...
. . .

...

sn−1 sn · · · s2n−2

∣∣∣∣∣∣∣∣∣
.

Proof It is known that
∏

i> j (Xi − X j ) is the Vandermonde determinant5:

∏
i> j

(Xi − X j ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xn−1
1 Xn−1

2 · · · Xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣
,

5 I record here a proof of the formula, which is obtained by induction, transforming the matrix by
subtracting from each row the preceding row multiplied by X1:∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
X1 X2 · · · Xn
X2

1 X2
2 · · · X2

n
.
.
.

.

.

.
. . .

.

.

.

Xn−1
1 Xn−1

2 · · · Xn−1
n

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
0 (X2 − X1) · · · (Xn − X1)
0 X2(X2 − X1) · · · Xn(Xn − X1)

.

.

.
.
.
.

. . .
.
.
.

0 Xn−2
2 (X2 − X1) · · · Xn−2

n (Xn − X1)

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

(X2 − X1) (X3 − X1) · · · (Xn − X1)
X2(X2 − X1) X3(X3 − X1) · · · Xn(Xn − X1)

.

.

.
.
.
.

. . .
.
.
.

Xn−2
2 (X2 − X1) Xn−2

3 (X3 − X1) · · · Xn−2
n (Xn − X1)

∣∣∣∣∣∣∣∣∣

=
∏
i>1

(Xi − X1)

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
X2 X3 · · · Xn
.
.
.

.

.

.
. . .

.

.

.

Xn−2
2 Xn−2

3 · · · Xn−2
n

∣∣∣∣∣∣∣∣∣
.
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so that we have

∏
i> j

(Xi − X j )
2 =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
X1 X2 · · · Xn

X2
1 X2

2 · · · X2
n

...
...

. . .
...

Xn−1
1 Xn−1

2 · · · Xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
X1 · · · Xn

X2
1 · · · X2

n
...

. . .
...

Xn−1
1 · · · Xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣∣

1 X1 · · · Xn−1
1

1 X2 · · · Xn−1
2

1 X3 · · · Xn−1
3

...
...

. . .
...

1 Xn · · · Xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

n s1 · · · sn−1

s1 s2 · · · sn
...

...
. . .

...

sn−1 sn · · · s2n−2

∣∣∣∣∣∣∣∣∣
.

Remark 6.5.2. As a consequence we can represent
∏

i> j (Xi − X j )
2 as a poly-

nomial in Z[σ1, . . . , σn]. Since the leading term of
∏

i> j (Xi − X j )
2 is

X2
2 X4

3 · · · X2n−2
n , the leading term of its representation in D[σ1, . . . , σn] is

σ 2
2 · · · σ 2

n−1σ
2
n .

Therefore, if we substitute each occurrence of σi by (−1)i ai
a0

, in the rep-

resentation of
∏

i> j (Xi − X j )
2 in Z[σ1, . . . , σn], the denominator is a2n−2

0 .

Multiplying by it, we therefore obtain a representation of
∏

i> j (αi − α j )
2 as a

polynomial in Z[a0, a1, . . . , an].
This justifies the introduction of

Definition 6.5.3. Let

f (X) = a0 Xn + a1 Xn−1 + · · · + ai Xn−i + · · · + an−1 X + an

and α1, . . . , αn be its roots.
The discriminant of f is the polynomial Disc( f ) ∈ Z[a0, . . . , an] which

represents the symmetric function

a2n−2
0

∏
i> j

(αi − α j )
2 ∈ Z[a0, α1, . . . , αn].

Proposition 6.5.4. Let f ∈ D[X ]. Then f is squarefree iff Disc( f ) �= 0.
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Example 6.5.5. When n = 2 we have

Disc( f ) = a2
0(α1 − α2)

2

= a2
0(α

2
1 − 2α1α2 + α2

2)

= a2
0(s2 − 2σ2)

= a2
0(σ

2
1 − 4σ2)

= a2
1 − 4a0a2.

A similar computation when n = 3 yields

Disc( f ) = a2
1a2

2 − 4a0a3
2 − 4a3

1a3 − 27a2
0a2

3 + 18a0a1a2a3.

In the same context as the previous sections, let us now consider the sym-
metric polynomial∏

i> j

(X − αi − α j − tαiα j ) ∈ Z[a0, α1, . . . , αn][X, t]

so that it is an element in Z[a0, a1, . . . , an][t, X ].

Definition 6.5.6. We will call the Laplace–Gauss Resolvent of the polynomial
f (X) ∈ k[X ] that polynomial6

LG( f ) :=
∏
i> j

(X − αi − α j − tαiα j ) ∈ Z[a0, α1, . . . , αn][X, t] ⊂ K [X, t];

for any λ ∈ K , we will also use the notation: LGλ( f )(X) := LG( f )(λ, X)
and we will omit the dependence on f if there is no ambiguity.

Proposition 6.5.7. With the notation above, when k is infinite and 0 �= Disc( f )
∈ D we have:

0 �= Disc(LG) ∈ D[t];
there are infinitely many λ ∈ K such that 0 �= Disc(LGλ) ∈ K .

Proof We only have to note that there are infinitely many λ ∈ K such that

αi + α j + λαiα j �= αk + αl + λαkαl , for all i, j, k, l : i �= l or j �= k,

since we only have to remove for each i, j, k, l : i �= l or j �= k the solution of
the linear equation

αi + α j + tαiα j = αk + αl + tαkαl .

6 Recall that K ⊃ D is a field which contains all the roots of f .
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6.6 Resultants

Let us consider the domain

D := Z[a0, . . . , an, b0, . . . , bm]

and the ‘generic’ polynomials

f (X) = a0 Xn + a1 Xn−1 + · · · + ai Xn−i + · · · + an−1 X + an,

g(X) = b0 Xm + a1 Xmn−1 + · · · + bi Xm−i + · · · + bm−1 X + bm,

in D[X ].

Definition 6.6.1. The Sylvester matrix of f and g is the n + m square matrix




a0 a1 a2 · · · an 0 0 0 · · · 0 0 0
0 a0 a1 · · · an−1 an 0 0 · · · 0 0 0
0 0 a0 · · · an−2 an−1 an 0 · · · 0 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
0 0 0 · · · a0 a1 a2 a3 · · · an−1 an 0
0 0 0 · · · 0 a0 a1 a2 · · · an−2 an−1 an
b0 b1 b2 · · · bm−2 bm−1 bm 0 · · · 0 0 0
0 b0 b1 · · · bm−3 bm−2 bm−1 bm · · · 0 0 0
...

...
...

. . .
...

...
...

...
. . .

...
...

...
0 0 0 · · · b3 b4 b5 b6 · · · bm 0 0
0 0 0 · · · b2 b3 b4 b5 · · · bm−1 bm 0
0 0 0 · · · b1 b2 b3 b4 · · · bm−2 bm−1 bm




.

Definition 6.6.2. The (Sylvester) resultant of f and g, Res( f, g), is the deter-
minant of the Sylvester matrix of f and g.

Let us make an ansatz by specifying a morphism � : D[X ] → D[X ]. By a
standard abuse of notation, we identify the elements in D[X ] with their images
by � in D[X ]; when there is ambiguity we just specify the domain in which
we are considering them.

Theorem 6.6.3. Let f, g ∈ D[X ] and let us assume that at least one among
a0 and b0 does not vanish in D, i.e. either �(a0) �= 0 or �(b0) �= 0.

Then the following conditions are equivalent:

(1) gcd( f, g) := h(X) ∈ D[X ] \ D;
(2) there are p, q ∈ D[X ] (not both being zero) such that

deg(p) < m, deg(q) < n,
p f = qg;

(3) Res( f, g) vanishes in D.
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Proof

(1) �⇒ (2) We only have to take p = g/h and q = f/h.
(2) �⇒ (1) By our assumption we can assume that deg( f ) = n since a0 �=

0 – otherwise we interchange f and g.
Each irreducible factor of f must divide qg; it is impossible, how-
ever, that all of them divide q since this implies that f divides q,
contradicting the relation deg(q) < n = deg( f ).
Therefore, at least one irreducible factor of f divides g.

(2) ⇐⇒ (3) The existence of polynomials p, q (not both being null) satis-
fying the conditions required in (2) is equivalent to the existence of
elements (not all zero)

c0, . . . , cm−1, d0, . . . dn−1 ∈ D :

m−1∑
i=0

cm−i−1 Xi ·
n∑

i=0

an−i X i =
n−1∑
i=0

−dn−i−1 Xi ·
m∑

i=0

bm−i X i , (6.6)

i.e. a non-null solution of the n + m homogeneous linear equations
which can be obtained by equating the coefficients of the powers
Xi , 0 ≤ i ≤ m+n−1 in the left and right sides of Equation 6.6. Such
linear equations yield the transpose of the Sylvester matrix.

Proposition 6.6.4. Let f, g ∈ D[X ]. The following conditions are equivalent:

(1) Either gcd( f, g) = h(X) ∈ D[X ] \ D or a0 and b0 vanish in D;
(2) Res( f, g) vanishes in D.

Proof If at least one of the leading coefficients does not vanish in D, the equiv-
alence follows by the preceding theorem. If a0 = b0 = 0, then the resultant
obviously vanishes: the first column is null.

Corollary 6.6.5. Let f, g ∈ D[X ]. The following conditions are equivalent:

(1) gcd( f, g) = 1, a0 �= 0, and b0 �= 0;
(2) Res( f, g) �= 0 in D.

Corollary 6.6.6. Let p ∈ D be a prime and let π : D[X ] → D/(p)[X ]
denote the canonical projection.

Let f, g ∈ D[X ] be such that

Res( f, g) �= 0, a0 �= 0, b0 �= 0
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and

lc( f ) = a0 �≡ 0 �≡ b0 = lc(g)(mod p);
then the following conditions are equivalent:

(1) Res( f, g) �≡ 0(mod p);
(2) gcd(π( f ), π(g)) = 1.

Proof In fact, denoting r := Res( f, g) we have Res(π( f ), π(g)) = π(r).

The argument of the proof of Theorem 6.6.1(2) ⇐⇒ (3) can be adapted to
prove

Proposition 6.6.7. There are p, q ∈ D[X ] such that

deg(p) < m, deg(q) < n,
pf + qg = Res(f, g).

Proof The existence of polynomials p, q satisfying the required conditions is
equivalent to the existence of elements

c0, · · · , cm−1, d0, · · · dn−1 ∈ D :

m−1∑
i=0

cm−i−1 Xi .

n∑
i=0

an−i X i +
n−1∑
i=0

dn−i−1 Xi .

m∑
i=0

bm−i X i = Res( f, g)

(6.7)

i.e. a non-null solution of the n + m homogeneous linear equations which can
be obtined by equating the coefficients of the powers Xi , 0 ≤ i ≤ m + n − 1
in the left and right sides of Equation 6.6. Since such linear equations yield
the transpose of the Sylvester matrix, the solutions ci and di can therefore
be obtained by Cramer’s formula as a proper subdeterminant of the Sylvester
matrix.

Due to its interest, let us specify some of the main properties of the resultant
of the two polynomials f, g ∈ D[X ].

Proposition 6.6.8. Let f, g ∈ D[X ]. Then Res( f, g) is homogeneous of degree
m in the variables ai and homogeneous of degree n in the variables bi .

It contains am
0 bn

m among the terms.
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Proof The statements follow easily from the expansion of the determinant
of the Sylvester matrix; for the last statement note that am

0 bn
m is the principal

diagonal.

6.7 Resultants and Roots

In this section let us assume we are given two ‘generic’ polynomials

f (X) = a0

n∏
i=1

(X − αi ) = a0 Xn + a1 Xn−1 + · · · + an,

g(X) = b0

m∏
j=1

(X − β j ) = b0 Xn + b1 Xn−1 + · · · + bm,

in Z[a0, α1, . . . , αn, b0, β1, . . . , βm].

Proposition 6.7.1. With the notation above,

Res( f, g) = am
0 bn

0

n∏
i=1

m∏
j=1

(αi − β j ) = am
0

n∏
i=1

g(αi ) = (−1)mnbn
0

m∏
j=1

f (β j ).

Proof Since ai (respectively bi ) is the product of a0 (respectively b0) and
a symmetric function of the α j s (respectively β j s) and Res( f, g) is homo-
geneous of degree n in the a j s and of degree m in the b j s, we have that
Res( f, g) is the product of am

0 bn
0 and a function in D[α1, . . . , αn,

β1, . . . , βm] which is a symmetric function both in the αi s and in
the β j s.

Moreover Res( f, g) vanishes if the two polynomials have a common root,
i.e. if there exists i, j : αi = β j . As a consequence Res( f, g) is divisible by
αi − β j , for all i, j, and so by

R := am
0 bn

0

n∏
i=1

m∏
j=1

(αi − β j ).

Therefore

am
0

n∏
i=1

g(αi ) = am
0

n∏
i=1

b0

m∏
j=1

(αi −β j ) = am
0 bn

0

n∏
i=1

m∏
j=1

(αi −β j ) = R. (6.8)

In the same way we conclude that

R := (−1)mnbn
0

m∏
j=1

f (β j ). (6.9)
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The two results allow us to conclude that

R ∈ D[a0, a1, . . . , an, b0, b1, . . . , bm]

and that it is homogeneous of degree n in the bi s, homogeneous of degree m
in the ai s and contains am

0 bn
0 among its terms.

Since Res( f, g) has the same properties, by Corollary 6.6.4, and since R
divides it, the result follows.

Corollary 6.7.2. Res( f, g) is irreducible in D[a0, a1, . . . , an, b0, b1, . . . , bm].

Proof Assume

Res( f, g) = φψ

is a non-trivial factorization in D[a0, a1, . . . , an, b0, b1, . . . , bm]. Therefore φ
and ψ can be expressed as symmetric functions in the αi s and in the β j s.

Since in

D[a0, α1, . . . , αn, b0, β1, . . . , βm] ⊃ D[a0, a1, . . . , an, b0, b1, . . . , bm]

we have the factorization

Res( f, g) = am
0 bn

0

n∏
i=1

m∏
j=1

(αi − β j ),

one of the two factors, say φ, is divisible by (α1 − β1) and, by symmetry, by
each factor (αi − β j ). Therefore ψ can be divided only by a0 or b0.

However, as an element in D[a0, a1, . . . , an, b0, b1, . . . , bm], Res( f, g) is
divisible by neither a0 – in its expansion there are terms that do not depend on
a0 – nor b0. So we get the required contradiction.

Corollary 6.7.3. Let

f (X) = a0

n∏
i=1

(X − αi ) = a0 Xn + a1 Xn−1 + · · · + an .

Then Res( f, f ′) = a0Disc( f ).

Proof In fact we have

f ′(X) =
n∑

i=1

a0(X − α1) · · · (X − αi−1)(X − αi+1) · · · (X − αn),

and

f ′(αi ) = a0(αi − α1) · · · (αi − αi−1)(αi − αi+1) · · · (αi − αn),
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from which

a0Disc( f ) = a2n−1
0

∏
i> j

(αi − α j )
2 = a2n−1

0

∏
i �= j

(αi − α j )

= an−1
0

∏
i

a0

∏
j �=i

(αi − α j ) = an−1
0

∏
i

f ′(αi )

= Res( f, f ′).

Another corollary of Proposition 6.7.1 allows us to solve the following:

Problem 6.7.4. Given two polynomials whose roots are respectively α and
β �= 0, can we compute a polynomial whose root is α + β (respectively
α − β, αβ, α/β)?

Corollary 6.7.5 (Loos). Let D be a domain, let f (X), g(X) ∈ D[X ] be such
that g(0) �= 0, let Q the fraction field of D, let K ⊃ Q the splitting field of f g,
and let α1, . . . , αn ∈ K (respectively β1, . . . , βm ∈ K ) be such that

f (X) = a0

n∏
i=1

(X − αi ) = a0 Xn + a1 Xn−1 + · · · + an,

g(X) = b0

m∏
j=1

(X − β j ) = b0 Xn + b1 Xn−1 + · · · + bm .

Then

(1) Res( f (Y − X), g(X)) = (−1)mnam
0 bn

0

∏n
i=1

∏m
j=1(Y − (αi + β j )),

(2) Res( f (Y + X), g(X)) = (−1)mnam
0 bn

0

∏n
i=1

∏m
j=1(Y − (αi − β j )),

(3) Res(Xn f (Y/X), g(X)) = (−1)mnam
0 bn

0

∏n
i=1

∏m
j=1(Y − (αiβ j )),

(4) Res( f (Y X), g(X)) = am
0 bn

m
∏n

i=1
∏m

j=1(Y − (αi/β j )),

where the resultants are computed in the domain D[Y ].

Proof By Equation 6.9 we have

(1)

Res( f (Y − X), g(X)) = (−1)mnbn
0

m∏
j=1

f (Y − β j )

= (−1)mnam
0 bn

0

n∏
i=1

m∏
j=1

(Y − αi − β j ).
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(2)

Res( f (Y + X), g(X)) = (−1)mnbn
0

m∏
j=1

f (Y + β j )

= (−1)mnam
0 bn

0

n∏
i=1

m∏
j=1

(Y − αi + β j ).

(3)

Res(Xn f (Y/X), g(X)) = (−1)mnbn
0

m∏
j=1

βn
j f (Y/β j )

= (−1)mnam
0 bn

0

n∏
i=1

m∏
j=1

(Y − αiβ j ).

(4)

Res( f (Y X), g(X)) = (−1)mnbn
0

m∏
j=1

f (Yβ j )

= (−1)mnam
0 bn

0

n∏
i=1

m∏
j=1

(Yβ j − αi )

= am
0

n∏
i=1

(
(−1)mb0

m∏
j=1

β j

)
m∏

j=1

(Y − αi/β j )

= am
0

n∏
i=1

bm

m∏
j=1

(Y − αi/β j ).
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Je vais répondre à quelques erreurs de l’accusa-

teur public. Il m’a d’abord objecté mes réponses

dans l’instruction et l’omission du correctif ‘s’il

trahit’. Je dois dire que j’ai mieux aimé céder au

voeu du juge d’instruction, que de m’exposer à

rester trois au quatre mois en prison. J’avoue

d’ailleurs qu’il y a eu peut-étre un peu de mal-

ice dans mon fait; vous ne vous figurez pas la

joie du commissaire de police, quand’il a cru

avoir découvert en moi un conspirateur. Peu

s’en est fallu qu’il n’ait cru sa fortune faite; il

doit être un peu détrompé.

E. Galois 1

In this chapter I would like to discuss the consequences on finite fields of
Kronecker’s theory.

The most important result is the possibility of reaching a complete taxonomy
of finite fields: for each power of a prime q = pn there is a unique field G F(q),
called the Galois field, with cardinality q , and there are no other finite fields
except these (Section 7.1).

This characterization of the Galois fields allows us to easily describe all their
splitting fields; it becomes elementary to prove that G F(qe) is the splitting
field of each irreducible polynomial f (X) ∈ G F(q)[X ] such that deg( f ) = e
(Section 7.2).

1 This declaration was made by Galois during the trial in which he was charged for having toasted
Louis Philippe showing a dagger.
It is published in the Gazette des Tribunaux, 1822, 16 June 1831 and I took it from L. Toti
Rigatelli, Evariste Galois, Birkhäuser.
This biography advances the theory that Galois himself set up his duel and his death in the hope
that this apparent political killing of an outstanding republican could start a revolution.
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From this we can deduce the factorization of Xqµ−X in G F(q)[X ]: it is the
product of all the irreducible monic polynomials in G F(q)[X ] whose degree
dividesµ. This remark allows us to deduce a partial factorization for squarefree
polynomials over a finite field, the distinct degree factorization (Section 7.3);
distinct degree factorization together with distinct power decomposition per-
mits us to deduce easily a partial factorization of a polynomial in G F(q)[X ],
which is used as preprocessing in the factorization algorithm in G F(q)[X ].

In the eighteenth century, there was strong interest and research in the roots
of unity, i.e. the solutions of the equations gn(X) = Xn−1, since they were not
just an instance of but also a crucial step in root extraction. The existence of
primitive nth roots of unity, i.e. a root of gn(X) which generates all the others,
was proved by Gauss; this result leads to an alternative representation of the
finite fields G F(q), which we introduced as the splitting field of Xq − X : it is
also the set of all the powers of a primitive nth root (Section 7.4).

There are therefore two possible representations in order to compute with
finite fields: Kronecker’s model and Gauss’ suggestion of using the primi-
tive roots as a basis for a logarithmic system; I will briefly discuss them in
Section 7.5.

In the next section (Section 7.6) I will discuss the factorization of gn(X) =
Xn − 1 in each field, introducing the nth cyclotomic polynomial, which is the
polynomial whose roots are the primitive nth roots of unity: clearly gn is the
product of all the dth cyclotomic polynomials, where d runs through the fac-
tors of n. Since each cyclotomic polynomial is a polynomial over a prime field,
to complete the analysis of the factorization of gn(X) = Xn − 1, we should
restrict ourself to that case: we will prove that the cyclotomic polynomials are
irreducible over Q[X ] and we will limit ourselves to giving some structural re-
sults for prime finite fields. However, due to its important applications in com-
puter science (mainly in error correcting codes) I will briefly discuss, through
an example, how to factorize gn(X) = Xn − 1 in Z2[X ] using idempotents
(Section 7.7).

7.1 Galois Fields

First we will recall the properties we have already proved in Section 4.2.

Proposition 7.1.1. Let F be a finite field, card(F) = q, p := char(F).
Then:

p �= 0 and q = pn for some n.
For all a, b ∈ F, (a + b)p = a p + bp and (a + b)q = aq + bq .
For all f, g ∈ F[X ], ( f + g)p = f p + g p and ( f + g)q = f q + gq .



7.1 Galois Fields 121

aq = a, for all a ∈ F.
Each element a of F has a pth root, namely b := a pn−1

.
F = {bp : b ∈ F} – i.e. F is perfect.
Denoting, for each m ∈ N, �m : F → F the map defined by �m(a) = a pm

,
then

each �m is an automorphism;
�n is the identity;
for all m1,m2 ∈ N, �m1 = �m2 ⇐⇒ m1 ≡ m2 (mod n).

We already know that a finite field has cardinality q = pn for a prime p;
Kronecker’s theory allows us to prove more: it guarantees that, for each prime
p and each integer n, there exists a unique finite field of such cardinality q.

To obtain this result, let us first discuss the splitting field F of the polynomial
Xq − X ∈ Zp[X ], where p is a prime and q = pn .

Proposition 7.1.2. Let p be a prime and let q = pn.
Let F be the splitting field of Xq − X ∈ Zp[X ] and let

R := {α ∈ F : αq − α = 0}.
Then R is a field of q elements and coincides with F.

Proof 0, 1 ∈ R.
If a, b ∈ R, then

(a − b)q = aq − bq = a − b,

(ab)q = aqbq = ab,

so that both a − b and ab are in R.
If a ∈ R \ {0} then (

a−1
)q = (

aq)−1 = a−1,

so that a−1 ∈ R.
Therefore R is a field; since R contains, by its definition, all roots of Xq − X ,
it must coincide with F .
Since D (Xq − X) = −1, then all the roots of Xq − X are simple and so there
are q of them.

Theorem 7.1.3. For each prime number p, and for each n ∈ N, there is a
unique (up to isomorphism) finite field G F(q) of cardinality q = pn, which is
called the Galois field with q elements.
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Such a field is the splitting field of Xq − X ∈ Zp[X ] and is the set of its
roots.

Proof In Proposition 7.1.2 we have proved that F , the splitting field of

Xq − X ∈ Zp[X ],

has q elements.
We now have to show that any field K with q elements is isomorphic with F .
If K is a field of cardinality q , then, by the Little Fermat Theorem, for all
α ∈ K , αq = α, so the q elements of K are all roots (and so all the roots)
of Xq − X , and therefore K is a splitting field of Xq − X , whence the result
by Theorem 5.5.6.

Remark 7.1.4. This result gives a complete characterization of all finite fields:
for each integer q which is a power of a prime integer there is a unique field,
G F(q), whose cardinality is q; for any other integer n, there is no field with
such cardinality.

Before discussing the relation between the Galois fields and the splitting
fields of the polynomials f (X) ∈ Zp[X ], we need first to answer a natural
question: what is the relation between all the fields G F(pn)?

The answer can easily be deduced by either of the following elementary
results:

Lemma 7.1.5. Let s = pd , r = se. Then

(1) Xs − X divides Xr − X;
(2) let K be a field and let α ∈ K be such that αs = α; then αr = α.

Proof

(1) Since

r − 1 = se − 1 = (s − 1)
e−1∑
i=0

si ,

setting m := ∑e−1
i=0 si we have

Xr−1 − 1 =
(

Xs−1
)m − 1 = (Xs−1 − 1)

m−1∑
i=0

X (s−1)i .
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(2) From αs = α in K , we deduce

αs2 = (
αs)s = αs = α.

So we can easily derive inductively that αse = α, for all e ≥ 1:

αse =
(
αse−1

)s = αs = α;

therefore αr = αse = α.

Corollary 7.1.6. Let r = pm, s = pd . Then

G F(s) ⊂ G F(r) ⇐⇒ d divides m.

Proof If d divides m, then m = de and r = pde = se. By the above Lemma,
we deduce that each element of G F(s), being a root of Xs − X , is a root of
Xr − X and so an element in G F(r); therefore G F(s) ⊂ G F(r).
Conversely, if G F(s) ⊂ G F(r), then G F(r) is a G F(s)-vector space so r is a
power of s, pm = r = se = pde, m = de.

7.2 Roots of Polynomials over Finite Fields

As a consequence of Theorem 7.1.3, denoting

s := pd , m = ed, r = pm = se,

we have

Corollary 7.2.1. If f (X) ∈ G F(s)[X ] is irreducible, deg( f ) = e, then the
field G F(s)[X ]/ f (X) is isomorphic to G F(r), which, therefore, contains one
root of f .

But we will soon even show that G F(r) contains all the roots of all irre-
ducible polynomials in G F(s)[X ] of degree e, and in particular (s = p, r =
q = pn) G F(q) contains all the roots of all polynomials in Zp[X ] of
degree n.

Theorem 7.2.2. Let q := pn.
Then Xqµ − X ∈ G F(q)[X ] is the product of all monic irreducible polyno-

mials in G F(q)[X ] whose degree divides µ; each such polynomial is a simple
factor of Xqµ − X in G F(q)[X ].
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Proof Let f (X) ∈ G F(q)[X ] be a monic irreducible polynomial, such that
δ := deg( f ) divides µ. Let K := G F(q)[X ]/ f (X), π : G F(q)[X ] → K be
the canonical projection, and let α = π(X), so that f is the minimal polyno-
mial of α.
Let e be such that µ = δe, and let m := nµ, d := nδ,

s := qδ = pd , r := qµ = pm

so that
r = pm = pde = se.

Since K has cardinality s, we have αs = α and therefore, by Lemma 7.1.5.(2),
αr = α. So α is a root of Xqµ − X , which therefore is a multiple of f .
Conversely let f be a monic irreducible factor of Xqµ − X in G F(q)[X ] and
let δ := deg( f ). Let K := G F(q)[X ]/ f (X) which has qδ elements, π :
G F(q)[X ] → K be the canonical projection, and let α = π(X). Then α is a
root of Xqµ − X . So K = G F(q)[α] ⊂ G F(qµ). Then

µ = [G F(qµ) : G F(q)] = [G F(qµ) : K ][K : G F(q)] = [G F(qµ) : K ]δ,

i.e. δ divides µ.

Corollary 7.2.3. Let f (X) ∈ G F(q)[X ] be a monic irreducible polynomial
in G F(q)[X ], deg( f ) = µ.

Then G F(q)[X ]/ f (X) is the splitting field of f and is isomorphic to
G F(qµ).

Proof K := G F(q)[X ]/ f (X) is a G F(q)-vector space of dimension µ, so it
has qµ elements. It contains a root of f , so is contained in its splitting field,
which in turn is contained in the splitting field of Xqµ − X , i.e. G F(qµ). Since
both have qµ elements they coincide.

Corollary 7.2.4. G F(qµ) contains all the roots of all the polynomials of
G F(q)[X ] whose degree divides µ.

Finally we can describe the structure of an irreducible polynomial over
a finite field: let f (X) ∈ G F(q)[X ] be a monic irreducible polynomial in
G F(q)[X ], deg( f ) = µ, so that all its roots live in G F(qµ). In this setting we
have

Lemma 7.2.5. With the notation above, let α ∈ G F(qµ) be a root of f . Then
αq is a root of f .
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Proof
Let f (X) := ∑µ

i=0 ai Xi ; then

f (αq) =
µ∑

i=0

ai (α
q)i =

µ∑
i=0

(ai )
q(αi )q =

(
µ∑

i=0

aiα
i

)q

= f (α)q = 0.

Corollary 7.2.6. Let f (X) ∈ G F(q)[X ] be a monic irreducible polynomial
in G F(q)[X ], deg( f ) = µ, and let α ∈ G F(qµ) be a root of f .

Then the set of the roots of f is exactly

{α, αq , αq2
, . . . , αqi

, . . . , αqµ−1}
and all of them are simple.

Proof We only have to prove that for i, j ∈ {1, . . . , µ}
αqi = αq j �⇒ i = j.

In fact if αqi = αq j
we have

αqµ+i− j =
(
αqi

)qµ− j

=
(
αq j

)qµ− j

= αqµ = α;

therefore f divides Xqµ+i− j − X in G F(q)[X ], and µ divides µ + i − j
by Theorem 7.2.2, hence i = j .

7.3 Distinct Degree Factorization

Theorem 7.2.2 suggests the introduction of a partial polynomial factorization
over finite fields, which is a tool in the polynomial factorization algorithm:

Proposition 7.3.1. Let k be a finite field and let f (X) ∈ k[X ] be a squarefree
polynomial. Then there are unique (up to associates) polynomials g1, . . . , gs ∈
k[X ] such that

(1) f = g1g2 . . . gs;
(2) gi is the product of irreducible polynomials of degree i .

Definition 7.3.2. We will call the factorization

f = g1g2 . . . gs
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Fig. 7.1. Distinct Degree Factorization Algorithm

[g1, . . . , gs ] := DistinctDegreeFactorization( f )
where

k is a finite field of characteristic p
f ∈ k[X ] is squarefree
f = g1 . . . gs is the distinct degree factorization of f

d := 1
Repeat

q := pd

gd := gcd( f, Xq − X)
f := Quot( f, gd )
d := d + 1

until f = 1

of a squarefree polynomial f (X) ∈ k[X ], where k is a finite field, the distinct
degree factorization of f.

Algorithm 7.3.3. Because of Theorem 7.2.2, the algorithm in Figure 7.1 will
clearly compute the distinct degree factorization of a squarefree polynomial
f (X) ∈ k[X ], where k is a finite field.

The requirement that f is squarefree is not an essential restriction: given a
polynomial f , it is sufficient to apply first a distinct power factorization and
then we can apply a distinct degree factorization to each factor.

Correctness of the algorithm is based on the fact that at the beginning of
each Repeat loop iteration, all factors h of f such that deg(h) < d have been
removed by division with gi , i < d; so the factors of f have degree at least d,
while the ones of Xq −X have degree at most d; the common factors, collected
in gd , are therefore the factors of f with degree exactly d.

Algorithm 7.3.4. The algorithm can be improved as follows: computing either
gcd( f, Xq − X) or gcd( f,Rem(Xq − X, f )) is obviously the same. The latter
computation requires one polynomial division less, provided we have a faster
way of computing Rem(Xq − X, f ) than actually performing the division.

Such an algorithm can be obtained, since, denoting

Rd(X) := Rem(X pd
, f ), r j (X) := Rem(X pj , f ),

the following holds:

Rd(X) := Rem(Rd−1(X p), f ),
R(X) = ∑

j a j X j �⇒ Rem(R(X p), f ) = ∑
j a j r j (X),

Rem(X pd − X, f ) = Rem( f, Rd − X),
r j+1 = Rem(r j r1, f ).
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Fig. 7.2. Distinct Degree Factorization Algorithm

[g1, . . . , gs ] := DistinctDegreeFactorization( f )
where

k is a finite field of characteristic p
f ∈ k[X ] is squarefree
f = g1 . . . gs is the distinct degree factorization of f

r1 := Rem(X p, f )
r := r1
d := 1
While d < deg( f ) do

r := rdr1
d := d + 1
rd := Rem(r, f )

R := r1
d := 1
Repeat

gd := gcd( f, R − X)
f := Quot( f, gd )
d := d + 1
R(X) := Rem(R(X p), f )

until f = 1

Therefore, it is sufficient to precompute r j , for all i < deg( f ), and then,

for each d, substitute the computation of gcd( f, X pd − X) with the ones of
Rd(X) := Rem(Rd−1(X p), f ), and Rem( f, Rd − X).

The difference is that computing directly Rem(X pd − X, f ) can cost
up to O

(
pd deg( f )

)
arithmetical operations, while computing both Rd and

Rem( f, Rd − X) costs O
(
deg( f )2

)
arithmetical operations, with a definite

computational advantage.
The improved version is presented in Figure 7.2.

7.4 Roots of Unity and Primitive Roots

Let K be a field.

Definition 7.4.1. For each n ∈ N, the splitting field K (n) over K of the poly-
nomial gn(X) := Xn − 1 ∈ K [X ] is called the nth cyclotomic field over K .
Each root of Xn − 1 in K (n) is called an nth root of unity.

Let R(n) ⊂ K (n) be the set of all the nth roots of unity.

Remark 7.4.2. Let p := char(K ) �= 0 be a factor of n and let r, e be such that

n = r pe, gcd(r, p) = 1.
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Then

Xn − 1 = (Xr − 1)pe
.

As a consequence, throughout this section we will implicitly restrict our-
selves to the case in which char(K ) does not divide n.

Definition 7.4.3. Let α ∈ R(n). The order of α is

ord(α) := min{ν ∈ N : αν = 1}.
Lemma 7.4.4. We have

(1) R(n) is a multiplicative group;
(2) card(R(n)) = n;
(3) for all α ∈ R(n), αa = 1 ⇐⇒ ord(α) divides a;
(4) for all α ∈ R(n), ord(α) divides n;
(5) for all α ∈ R(n), αa = αb = 1, c = gcd(a, b) �⇒ αc = 1;
(6) for all α, β ∈ R(n), ord(αβ) = lcm(ord(α), ord(β));
(7) for all α ∈ R(n), ord(αk) = ord(α)

gcd(k,ord(α)) .

Proof

(1) It is sufficient to show that αβ−1 ∈ R(n), for each α, β ∈ R(n) :(
αβ−1

)n = αn(βn)−1 = 1.

(2) D(Xn − 1) = nXn−1 �= 0 since char(K ) does not divide n. Therefore
Xn − 1 has only simple roots and card(R(n)) = n.

(3) Let q, r be such that a = ord(α)q + r, r < ord(α). Then

1 = αa =
(
αord(α)

)q
αr = αr ,

contradicting the minimality of a := ord(α).
(4) This follows from the above result since αn = 1.
(5) There are d, e ∈ N such that c = ad + be. Therefore

αc = (
αa)d

(
αb
)e = 1.

(6) Let c, d, e ∈ N be such that

c = lcm(ord(α), ord(β)) = d ord(α) = e ord(β).

Then

(αβ)c =
(
αord(α)

)d (
βord(β)

)e = 1.
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Conversely, if

c := ord(αβ) �= lcm(ord(α), ord(β)),

there is d such that C = dc is a multiple of ord(α) and not of ord(β) (or
conversely); then

1 = (αβ)C = (α)C (β)C = (β)C

giving a contradiction.
(7) Let a = ord(α) and c = gcd(k, a). Then

(αk)a/c = (αa)k/c = 1.

On the other hand, if m is such that (αk)m = 1, then km is a multiple of
a = c a

c and, since gcd( a
c , k) = 1, a

c divides m.
So a/c = ord(αk).

Theorem 7.4.5 (Primitive Root Theorem).
There is α ∈ R(n), such that

ord(α) = n,
for all β ∈ R(n), β is a power of α.

Such an α is called a primitive nth root of unity.

Proof If we show the existence2 of an element α ∈ R(n) such that ord(α) = n,
the general result then follows easily, since the powers αi , 0 ≤ i ≤ n − 1, are
distinct and so coincide with the n elements of R(n).
To prove the existence of such α, let

n = pe1
1 · · · peh

h

be a factorization in prime factors and let

qi := n

pi
, ri := n

pei
i

.

Then, for all i, there exists βi ∈ R(n) such that βqi
i �= 1, since the qi th roots

of unity are at most qi < n.
Let γi := β

ri
i ; then ord(γi ) = pei

i ; in fact

γ
p

ei
i

i = β
p

ei
i ri

i = βn
i = 1,

2 As an example of the construction implied by this result, the reader is directed to Exam-
ple 7.4.10.
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while

1 = γ
p

ei−1
i

i = β
n/pi
i = β

qi
i

would contradict the assumption βqi
i �= 1.

Then α := ∏
i γi is such that ord(α) = ∏

i pei
i .

Corollary 7.4.6. m divides n ⇐⇒ R(m) ⊂ R(n);

Proof If n = dm and γ ∈ R(m), then γ n = (γm)d = 1.
Conversely, let α ∈ R(m) ⊂ R(n) be a primitive mth root of unity; then m =
ord(α) divides n.

Corollary 7.4.7. For each prime p there is a primitive root or generator3 g ∈
Zp \ {0} such that

for all h ∈ Zp \ {0}, there exists a ∈ Zp−1 : h = ga in Zp.

Proof If K = Zp we have K \ {0} = K (p−1) \ {0} = R(p−1).

Historical Remark 7.4.8. While this result was probably well known in the
eighteenth century, Gauss – who claimed to have given the first rigorous proof,
the same proof we used in Theorem 7.4.5 – surely has the merit of having
pointed out the main significance of this result: it allows us to compute with
logarithms in Zp: multiplication in Zp \ {0} = R(p−1) is transformed to addi-
tion in Zp−1. As Gauss put it in Disquisitiones Arithmeticae, Section 57:

Insignis haec proprietas permagnae est utilitatis, operationesque arithmeticas, ad con-
gruentias pertinentes, haud parum sublevare potest, simili fere modo, ut logarithmorum
introductio operationes arithemeticae vulgaris.

The interpretation of Theorem 7.4.5 in terms of prime fields given by Corol-
lary 7.4.7 applies, of course, to any finite field, giving a different characteriza-
tion of them than the one implied by Theorem 7.1.3:

Corollary 7.4.9. Let G F(q) be a finite field. Then there is α ∈ G F(q) such
that, for all β ∈ G F(q) \ {0}, β is a power of α.

Such an α is called a primitive element.

3 The term originally introduced by Euler is ‘primitive root’; to avoid confusion with other
notions which stem from Gauss and have the term ‘primitive elements’, it is usual to use
‘generator’ for Euler’s concept.
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Proof In fact G F(q) \ {0} = R(q−1) over its prime field.

Example 7.4.10. To give an example of the construction contained in the proof
of Theorem 7.4.5, let us consider a representation of G F(64)whose prime field
is k0 := Z2. To build it, let us note that

f (X) = X3 + X + 1 ∈ k0[X ]

is irreducible – since f (x) �= 0, for all x ∈ Z2 – so we obtain the field

G F(8) = k1 = k0[X ]/ f (X) = k0[δ] where δ3 + δ + 1 = 0.

Let us now consider

g(X) = X2 + X + 1 ∈ k1[X ]

which is irreducible, since g(x) �= 0, for all x ∈ k1, so that we obtain

G F(64) = k1[X ]/g(X) = k1[ε] = k0[δ, ε] where ε2 + ε + 1 = 0.

We have q − 1 = 63 = 327 and our task is to find β1 and β2 such that
β21

1 �= 1 and β9
2 �= 1.

Note that, since δ7 = 1, we have δ9 = δ2 �= 1; also, setting γ := δ + ε we
have

γ 2 = δ2 + ε2 = δ2 + ε + 1,
γ 4 = (γ 2)2 = δ4 + ε2 + 1 = δ2 + δ + ε,

γ 8 = (γ 4)2 = δ4 + δ2 + ε2 = δ + ε + 1,
γ 16 = (γ 8)2 = δ2 + ε2 + 1 = δ2 + ε,

γ 20 = γ 16γ 4 = δ4 + δ3 + δε + ε2 = δ2 + δε + ε,

γ 21 = γ 20γ = δ3 + δε2 + δε + ε2 = ε,

we can take β1 := ε + δ, β2 := δ and so

α = β7
1β

9
2 = δ2ε + δ2 + δε + 1.

Corollary 7.4.11. Let r = pm, d be a factor of m, thus m = de, and s := pd .

Then G F(r) is a simple algebraic extension of G F(s).
In particular (r := q, s := p) G F(q) is a simple algebraic extension of Zp.

Proof Let α be a primitive element of G F(r) and let

K := G F(s)[α] ⊆ G F(r).

Since for all β ∈ G F(r), there exists a : β = αa , then G F(r) = G F(s)[α].
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Theorem 7.4.5 also has an important consequence, which is related to many
applications of finite fields:

Corollary 7.4.12. For each s := pd and e ∈ N there is an irreducible polyno-
mial in G F(s)[X ] of degree e.

In particular (d := 1, e := m) there is an irreducible polynomial in Zp[X ]
of degree m, for all m ∈ N.

Proof Let m := de and r = pm . Let α be a primitive element of G F(r).
Since G F(r) = G F(s)[α], let f be the minimal polynomial of α over G F(s);
then G F(r) = G F(s)[α] = G F(s)[X ]/ f (X).
Since [G F(r) : G F(s)] = e, then deg( f ) = e.

Example 7.4.13. In order to compute the minimal polynomial of α over G F(s),
we only have to find the linear dependence between 1, α, α2, . . . ,

αe (cf. Section 8.3.8).
Let us apply this technique to Example 7.4.10 in order to find the minimal

polynomial of α ∈ G F(64) and therefore an irreducible polynomial of degree
6 in Z2. Here is the computation:

α0 = +1
α1 = +1 +εδ +δ2 +εδ2

α2 = +1 +εδ +δ2

α3 = +ε +εδ2

α4 = +1 +δ +εδ2

α5 = +1 +εδ +εδ2

α6 = +1 +ε +δ +εδ +δ2 +εδ2

from which we deduce that the polynomial

h(X) := X6 + X4 + X3 + X + 1 ∈ Z2[X ]

is irreducible and is the minimal polynomial of α so that G F(64) has the
representation

G F(64) = Z2[X ]/h(X) = Z2[α] where α6 + α4 + α3 + α + 1 = 0.

Note also that

δ = α4 + α2 + α + 1, ε = α3 + α2 + α.

It is then easy to verify that f and g are the minimal polynomials of δ and
ε respectively, by computing in Z2[α]: for instance, while of course {1, ε} are
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linearly independent, since ε2 = α6 + α4 + α2 = α3 + α2 + α + 1, {1, ε, ε2}
are linearly dependent satisfying 1 + ε + ε2.

7.5 Representation and Arithmetics of Finite Fields

By the results given above, we have at least two ways of representing a finite
field G F(q), q = pn :

� The first way is via Kronecker’s model, producing an irreducible polyno-
mial f (X) ∈ Zp[X ] of degree n, whose existence is guaranteed by Corol-
lary 7.4.12, and using the representation

G F(q) ∼= Zp[X ]/ f (X) = Zp[α].

� By the Primitive Root Theorem we know that there exists a primitive ele-
ment ξ of G F(q), so that

G F(q) =
{
ξ i : i ∈ {1, . . . , pn − 1}

}
∪ {0}.

Since the Theorem does not give any hint of how to ‘find’ such a ξ , we
should discuss how to ‘find’ it, but, of course, we should first understand what
‘finding’ means in this context.

Remark 7.5.1. As we pointed out in 7.4.8, the main advantage of this theorem
is that it allows us to compute with logarithms in G F(q).

In fact let us assume we are given two elements β, γ ∈ G F(q) \ {0}
� in Kronecker’s model, where they are represented by two polynomials

gβ(X), gγ (X) ∈ Zp[X ] such that

gβ(α) = β, gγ (α) = γ ;
� via a primitive root, through two indices ind(β), ind(γ ) such that

β = ξ ind(β), γ = ξ ind(γ ),

and that we want to compute their product δ := βγ :

� in Kronecker’s model, we have to compute, by the Division Algorithm, the
polynomial

gδ := Rem(gβgγ , f ),

knowing that it satisfies the relation gδ(α) = δ.
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� via a primitive root, we only have to compute

ind(δ) = ind(β)+ ind(γ ),

since

ξ ind(δ) = ξ ind(β)ξ ind(γ ) = βγ = δ.

It is clear that the computation is much easier via a primitive root representa-
tion. However, if we need to compute ε := β + γ ,

� in Kronecker’s model, we only have to compute the polynomial

gε := gβ + gγ

which obviously satisfies the relation gε(α) = ε.
� via a primitive root, we have essentially no other way than computing ξ ind(β)+
ξ ind(γ ) and apparently this is possible only if we know the minimal polyno-
mial of ξ .

The discussion above clarifies what we meant by ‘finding’ a primitive root
ξ : to represent it via its minimal polynomial4 f (X) ∈ Zp.

What is more relevant is that, according to Theorem 7.6.14,

G F(q) ∼= Zp[X ]/ f (X) = Zp[ξ ],

so that the two representations discussed here coincide.
Therefore, what we need to do is just (according to Gauss’ suggestion) build

a logarithmic table, which returns the representation r(i) := ri (ξ) of ξ i , for all
i ∈ Zq−1, where

ri (X) = Rem(Xi , f ) ∈ Zp[X ]/ f (X).

This is obtained by a computation similar to the one discussed in
Algorithm 7.3.4, i.e. via the formula

ri (X) = Rem(Xri−1(X), f );
in this way we obtain a biunivocal correspondence

r : Zq−1 → G F(q) \ {0}.
With a classical abuse of notation, which we will need in Remark 7.5.3, let us
associate a ‘logarithmic value’ to 0 ∈ G F(q) by introducing a symbol � and
generalizing the additive operation of Zq−1 to Zq−1 ∪ {�} by the rules

� = �+ � = a + � = �+ a, for all a ∈ Zq−1;

4 We will show in Section 7.6 that f can be obtained by factorizing the cyclotomic polynomial
�n(X) ∈ Zp . Any such factor is a minimal polynomial of a primitive root.
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Table 7.1. Logarithmic table for G F(16)
i r(i) i r(i)
1 ξ � 0
2 ξ2 0 1
3 ξ3 14 ξ3 + 1
4 ξ + 1 13 ξ3 + ξ2 + 1
5 ξ2 + ξ 12 ξ3 + ξ2 + ξ + 1
6 ξ3 + ξ2 11 ξ3 + ξ2 + ξ

7 ξ3 + ξ + 1 10 ξ2 + ξ + 1
8 ξ2 + 1 9 ξ3 + ξ

then we can generalize r(·) to a biunivocal correspondence

r : Zq−1 ∪ {�} → G F(q)

by putting r(�) = 0 and, continuing the abuse of notation, ξ� = 0, ξ0 :=
ξq−1 = 1.

Example 7.5.2. Let us build a logarithmic table for G F(16): choosing as ir-
reducible polynomial f (X) := X4 + X + 1 we get the logarithmic table of
Table. 7.1.

Remark 7.5.3. This logarithmic table allows us to perform direct sums via
Kronecker’s model and indirect products via the table.

By symmetry we expect that we could perform direct products via primitive
root representation and indirect sums by a suitable table.

In fact the Zech logarithm function Z : Zq−1 ∪ {�} → Zq−1 ∪ {�} satisfies
the relation

ξZ(i) = ξ i + 1

and therefore reduces sum computation to table consultation via

ξ i + ξ j = ξ i (ξ j−i + 1) = ξ iξZ( j−i) = ξ i+Z( j−i).

The Zech table (7.2) is simply built by consulting the logarithmic table 7.1.

7.6 Cyclotomic Polynomials

In this section we will use the same setting and notation of Section 7.4; there-
fore K is a field; for each n ∈ N we denote gn(X) := Xn − 1 ∈ K [X ];
K (n) is the nth cyclotomic field, i.e. the splitting field over K of gn(X); and
R(n) ⊂ K (n) is the set of all the nth roots of unity. Moreover S(n) ⊂ R(n)
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Table 7.2. Zech table for G F(16)
i Z(i) i Z(i)
1 4 � 0
2 8 0 �
3 14 14 3
4 1 13 6
5 10 12 11
6 13 11 12
7 9 10 5
8 2 9 7

will denote the set of the primitive nth roots of unity and we introduce the
following

Definition 7.6.1. The polynomial

�n :=
∏

α∈S(n)

X − α ∈ K (n)[X ]

is called the nth cyclotomic polynomial over K .

Let us first note the following

Definition 7.6.2. For each n ∈ N the Euler totient function φ(n) is the cardi-
nality of the set

{ j ∈ N : 1 ≤ j ≤ n, gcd(n, j) = 1},
which allows us to compute the cardinality of S(n) and a partial factorization
of gn(X) over K , via

Lemma 7.6.3. Let α be a primitive nth root of unity.
Let i ∈ {1, . . . , n} and n = ed be a factorization. Then

ord(αi ) = d ⇐⇒ gcd(i, n) = e.

Proof We have

ord(αi ) = d ⇐⇒ αid = 1, αiδ �= 1, for all δ, ε > 1 : d = εδ

⇐⇒ n | id, n � iδ, for all δ, ε > 1 : d = εδ

⇐⇒ ed | id, ed � iδ, for all δ, ε > 1 : d = εδ

⇐⇒ e | i, eε � i, for all δ, ε > 1 : d = εδ

⇐⇒ gcd(i, n) = e.
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Corollary 7.6.4. We have

(1) R(n) = ⋃
d|n S(d).

(2) for all α ∈ R(n) : α ∈ S(n) ⇐⇒ ord(α) = n.

(3) for all α ∈ S(n) : α j ∈ S(n) ⇐⇒ gcd(n, j) = 1.

(4) card(S(n)) = φ(n).

Corollary 7.6.5. For each n we have:

Xn − 1 =
∏
d|n

�d(X).

Corollary 7.6.5 allows us to obtain a partial factorization of gn in terms of
the cyclotomic polynomials. Therefore, in order to factorize gn we need to
compute the cyclotomic polynomials and their factorization.

The computation of them is obtained by

Lemma 7.6.6. If p is prime and gcd(p,m) = 1

(1) �mp(X) = �m(X p)/�m(X);
(2) �mpe (X) = �mpe−1(X p) if e > 1;

(3) �mpe (X) = �mp(X pe−1
).

Proof

(1) The proof being by induction, we can assume

�d(X)�pd(X) = �d(X
p), for all d < m, gcd(d, p) = 1,

from which, and from the obvious relation gmp(X) = gm(X p), we deduce:

�mp(X) = gmp(X)

�m(X)
∏
d|m
d �=m

�d(X)�pd(X)

=

∏
d|m

�d(X p)

�m(X)
∏
d|m
d �=m

�d(X p)

= �m(X p)

�m(X)
.



138 Galois I: Finite Fields

(2) The proof being by induction on m, we can assume

�dpe (X) = �dpe−1(X p), for all d < m, gcd(d, p) = 1,

from which we deduce:∏
d|mpe

�d(X) = gmpe (X) = gmpe−1(X p) =
∏

d|mpe−1

�d(X
p)

= �mpe−1(X p)
∏

d|mpe−2

�d(X
p)

∏
d|mpe−2

d �=mpe−2

�dp(X
p)

= �mpe−1(X p)gmpe−2(X p)
∏

d|mpe−2

d �=mpe−2

�dp2(X)

= �mpe−1(X p)gmpe−1(X)
∏

d|mpe−2

d �=mpe−2

�dp2(X)

= �mpe−1(X p)
∏

d|mpe

d �=mpe

�d(X)

from which we deduce

�mpe (X) = �mpe−1(X p).

(3) By iterative application of (2).

Remark 7.6.7. From Corollary 7.6.5 and Lemma 7.6.6, we can deduce an ob-
vious procedure for computing �n , for each n.

We illustrate it, computing �36 over Z:

�36(X) = �12(X3);
�12(X) = �4(X3)/(�4(X));
�4(X) = �2(X2);
�2(X) = g2(X)/(X − 1);

so that
�2(X) = X + 1;
�4(X) = X2 + 1;

�4(X3)/(�4(X)) = X4 − X2 + 1;
�12(X) = X4 − X2 + 1;
�36(X) = X12 − X6 + 1.
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An elementary consequence of this procedure is that:

Corollary 7.6.8. The cyclotomic polynomials over K are elements of

Zp if char(K ) = p �= 0;
Z if char(K ) = 0.

Having a procedure for computing the cyclotomic polynomials, we now
need to study their factorization. An important result is given by

Lemma 7.6.9. Let ξ ∈ Q(n) be a primitive nth root of unity and let f (X) ∈
Z[X ] be the primitive polynomial associated to the minimal polynomial of ξ .

Let p be a prime such that gcd(p, n) = 1, then ξ p is a root of f .

Proof Let g(X) ∈ Z[X ] be the primitive polynomial associated to the minimal
polynomial of ξ p; our aim is to show that g(X) and f (X) are associate, so that
ξ p is a root of f .
Otherwise, since Xn − 1 is divisible by the irreducible and distinct factors f
and g there is a polynomial h(X) such that

Xn − 1 = f (X)g(X)h(X);
also the polynomial G(X) := g(X p) has ξ as a root so that there is k(X) such
that G(X) = f (X)k(X).
Since f and g are primitive, we know that both are in Z[X ]; since both Xn − 1
and G are in Z[X ], by the Gauss Lemma (Corollary 6.1.6) we can conclude
that both h and k are in Z[X ].
Therefore we can interpret all equalities in Zp[X ]; to do so let −p : Z[X ] →
Zp[X ] be the projection. We have

f p(X)kp(X) = G p(X) = gp(X
p) = g p

p (X)

so that each irreducible factor φ(X) ∈ Zp[X ] of f p is also a factor of gp and,
since Xn−1 = f p(X)gp(X)h p(X), we know φ2 is a factor of Xn−1 in Zp[X ]
and φ(X) is a factor of nXn−1 in Zp[X ].
Since n �≡ 0(modp) we have reached an absurd result: in fact, on the one hand
φ = X and on the other hand it divides Xn − 1. The contradiction is due to the
assumption that g(X) and f (X) are not associate.

Proposition 7.6.10. �n ∈ Z[X ] is irreducible over Q, so that [Q(n) : Q] =
φ(n).
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Proof Let ξ ∈ Q(n) be a primitive nth root of unity and let f (X) be the
primitive polynomial associated to the minimal polynomial of ξ ; since f is
irreducible, we only need to prove that each primitive root ξν is a root of f , so
that �n(X) = f (X) is irreducible.
Each such ν is a product of (not necessarily distinct) primes, ν = ∏m

i=1 pi ;
since ξν is primitive, gcd(n, ν) = 1 so that gcd(n, pi ) = 1.
Setting ν j := ∏ j

i=1 pi , the lemma above allows us to prove that ξν is a root of
f by induction, since

ξ is a root of f , and
if ξν j−1 is a root of f so also is ξν j = (ξν j−1)p j .

Remark 7.6.11. The structure of the factorization of the cyclotomic polyno-
mial gn(X) in the finite field G F(q) is a consequence of the following dis-
cussion, where the restriction to the case gcd(n, q) = 1 is justified, since,
Remark 7.4.2 allows a reduction to that case.

Definition 7.6.12. Let n, q be such that gcd(q, n) = 1. The multiplicative or-
der of q mod n, is

d := min{k ∈ N : qk ≡ 1(mod n)}.
Proposition 7.6.13. Let α ∈ G F(q) and n := ord(α) so that gcd(q, n) = 1;
let d be the multiplicative order of q mod n.

Then αqd = α and the d elements

α, αq , . . . , αqi
, . . . , αqd−1

are distinct.

Proof In fact

αqi = αq j ⇐⇒ αqi−q j = 1

⇐⇒ (qi − q j ) | n

⇐⇒ qi ≡ q j (mod n)

⇐⇒ qi− j ≡ 1(mod n)

⇐⇒ d | i − j.

Theorem 7.6.14. If K = G F(q), with gcd(q, n) = 1, let d be the multiplica-
tive order of q mod n.
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If ξ ∈ K (n) is any primitive nth root of unity and f (X) is its minimal poly-
nomial, then

K (n) = G F(qd) ∼= G F(q)[X ]/ f (X) = G F(q)[ξ ].

Proof Let ξ be any primitive nth root of unity and f its minimal polynomial;
by Proposition 7.6.13, the smallest field extension of G F(q) containing ξ is

G F(qd) ∼= G F(q)[X ]/ f (X) = G F(q)[ξ ];
thus deg( f ) = d.
Since this holds for each primitive root we deduce that K (n) = G F(qd) and
the result follows.

Corollary 7.6.15. If K = G F(q) with gcd(q, n) = 1, and d is the multiplica-
tive order of q mod n, then �n factors into φ(n)

d distinct monic irreducible
polynomials in K [X ] of the same degree d, K (n) is the splitting field of each
such factor and [K (n) : K ] = d.

Proposition 7.6.16. The (q − 1)th cyclotomic field over any of its subfields is
G F(q).

Proof The set of all roots of Xq−1 − 1 is G F(q); therefore Xq−1 − 1 splits in
G F(q) but not in any of its subfields.

7.7 Cycles, Roots and Idempotents

Remark 7.7.1. Theorem 7.6.14 informs us that each factor of the νth cyclo-
tomic polynomial over G F(q) – gcd(ν, q) = 1 – has d roots, where d is the
multiplicative order of q mod ν.

Moreover Corollary 7.2.6 (cf. also Proposition 7.6.13) informs us that the
roots are exactly

α, αq , αq2
, . . . , αqi

, . . . , αqd−1
.

This leads us to consider, for each ν ∈ N, the permutation

πq : Zν → Zν

defined by

πq(i) := qi(mod ν)

and the cycles C1, . . . ,Cs of this permutation.
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In fact each of these cycles corresponds to the set of the roots of each factor
of Xν − 1.

Example 7.7.2. Let us consider the case ν = 15, q = 2; we know that

G F(16) is the splitting field of X15 − 1 ∈ Z2[X ];
and is generated over Z2[X ] by a primitive 15th root of unity, which we will

denote α;
moreover X15 − 1 ∈ Z2[X ] is the product of the irreducible polynomials in

Z2[X ] of degrees 1, 2 and 4; and
it factorizes in terms of cyclotomic polynomials as:

X15 − 1 = �1(X)�3(X)�5(X)�15(X);
since the multiplicative order of 2 mod 15 is 4 we also know that �15(X)

factorizes in two factors of degree 4.

We have:

�1(X) = X + 1,

�3(X) = X2 + X + 1,

�5(X) = X4 + X3 + X2 + X + 1,

�15(X) = X8 + X7 + X5 + X4 + X3 + X + 1.

Before factorizing �15(X), let us consider the cycles of π2 in Z15 which are:

C1 = {1, 2, 4, 8},
C2 = {3, 6, 9, 12},
C3 = {5, 10},
C4 = {7, 11, 13, 14},
C5 = {0}.

Clearly

C2 corresponds to the 5th root of unity – for each i ∈ C2, (αi )5 =
1 – and so corresponds to �5(X),

C3 corresponds to the 3rd root of unity and to �3(X),
while C5 corresponds to �1(X),
and C1 and C4 correspond to the two factors of �15;
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but we can also note that

i ∈ C1 ⇐⇒ −i ∈ C4.

This means that in the factorization �15(X) = g(X)h(X) we have

β is a root of g ⇐⇒ β−1 is a root of h,

i.e.

h(X) = X4g

(
1

X

)
.

This remark allows us to factorize �15(X) by setting

g(X) = X4 + aX3 + bX2 + cX + 1, h(X) = X4 + cX3 + bX2 + aX + 1

from which we get

�15(X) = X8 + (a + c)X7 + acX6 + (ab + bc + a + c)X5

+ (a + b + c)X4 + (ab + bc + a + c)X3 + acX2 + (a + c)X + 1

which requires us to solve in Z2 the system


a + c = 1
ac = 0

ab + bc + a + c = 1
a + b + c = 1.

Noting that by ac = 0 we can wlog deduce, by symmetry, a = 0, we get


a = 0
b = 0
c = 1

and

g(X) = X4 + X + 1,

h(X) = X4 + X3 + 1.

By symmetry we can freely associate either of the two factors to the cycle C1;
let us choose g.
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So we have the following correspondence between the cycles Ci and factors
mi of m := X15 − 1:

i Ci mi

1 {1, 2, 4, 8} X4 + X + 1
2 {3, 6, 9, 12} X4 + X3 + X2 + X + 1
3 {5, 10} X2 + X + 1
4 {7, 11, 13, 14} X4 + X3 + 1
5 {0} X + 1

Remark 7.7.3. Let D := Z2[X ],

m(X) := Xν − 1 =
n∏

i=1

mi (X)

be a factorization in D into irreducible factors, and R := D/m.
In this context, Remark 2.7.8 gives us bijections between

the element i ∈ {1, . . . , n},
the factor mi ,

the cofactor hi =
∏

j �=i m j ,

the subring Ri = D/(mi ),

the idempotent ei ,

the ideal Ji := (hi ) = (ei ) ∼= Ri = D/(mi ),

where {e1, . . . , en} is the primitive set of idempotents of R.
In the setting of finite fields we can add to these bijections another item:

the cycle Ci

which is highly useful in the setting we are studying, i.e. D := Z2[X ]. In fact,
while in the general case of a finite prime field, we cannot easily factorize the
cyclotomic polynomials, the cycles Ci allow us to factorize them in Z2[X ] by
means of the following result:

Proposition 7.7.4. Using the notation of Rem. 7.7.3, let

{c1, . . . , cr } ⊂ {0, 1, . . . , ν − 1}
and c(X) := ∑r

i=0 Xci ∈ R. Then the following are equivalent

(1) c(X) is an idempotent;
(2) (c1, . . . , cr ) is invariant under the permutation π2.
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Proof It is sufficient to remark that in Z2[X ]/(Xν − 1) we have

c(X)2 =
r∑

i=0

X2ci =
r∑

i=0

Xπ2(ci ).

For each set C, invariant under the permutation π2, P(C) denotes the idem-
potent polynomial P(C)(X) := ∑r

i=0 Xci ∈ R.

Algorithm 7.7.5. Since the set of all the idempotents of R is a Z2-vector space
and {P(C1), . . . ,P(Cn)} is a linear basis of it, the above result allows us to
compute a factorization of the cyclotomic polynomial m(X) = Xν − 1 ∈
Z2[X ] as follows:

by the algorithm discussed below (cf. Algorithm 7.7.6), it is possible to com-
pute the primitive set of idempotents {c1, . . . , cn} of R from the set

{P(C1), . . . ,P(Cn)};
since, for each i , (ci ) = (hi ) in R, hi = gcd(ci ,m), the factorization of
m(X) is obtained by the gcd computation mi := m

gcd(ci ,m)
.

Algorithm 7.7.6. To complete the algorithm outlined above, we need an al-
gorithm which produces the primitive set of idempotents for R, from a given
linear basis

{ηi , 1 ≤ i ≤ n}
of the set of all the idempotents of R.

Such an algorithm works iteratively as follows: let us assume we have ob-
tained a set {ε1, . . . , εm} of m idempotents, such that

1 =
m∑

j=1
ε j ,

εiε j = 0, if i �= j ,
εi is an idempotent;

then, for some i, k, let us compute

ε′ := εiηk, ε′′ := εi (ηk + 1),
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which satisfy:

ε′ + ε′′ +
m∑

j=1
j �=i

ε j = εi (ηk + ηk + 1)+
m∑

j=1
j �=i

ε j =
m∑

j=1
ε j = 1;

for all j �= i, ε jε
′ = ε jεiηk = 0;

for all j �= i, ε jε
′′ = ε jεi (ηk + 1) = 0;

ε′ε′′ = ε2
i ηk(ηk + 1) = εi (η

2
k + ηk) = 0,

so that the set

{ε1, . . . , εi−1, ε
′, ε′′, εi+1, . . . , εm}

consists of m + 1 idempotents satisfying the conditions above, provided that
neither ε′ = 0 nor ε′′ = 0 holds.

But, if this happens for all choices i, k, this would imply that m = n and
{ε1, . . . , εm} is a primitive set of idempotents5, so that the algorithm has suc-
cessfully terminated.

Example 7.7.7. Continuing Example 7.7.2, let us compute the primitive set of
idempotents for R, starting with ηi := P(Ci ).

We will freely denote C′C′′ to identify the single set6 C such that

P(C) = P(C′)P(C′′).

Initially we can use the set {P(C11),P(C12)} where

C11 := {1, 2, 4, 8} = η1

C12 := {1, 2, 4, 8, 0} = η1 + 1.

While

C11η2 = {1, 2, 4, 8}{3, 6, 9, 12} = {1, 2, 4, 8}
and so C11(η2 − 1) = 0, we find

C12η2 = {1, 2, 4, 8, 0}{3, 6, 9, 12} = {1, 2, 3, 4, 6, 8, 9, 12},

5 In fact, because
∑m

j=1 ε j = 1, if this happens for all choices i, k we will deduce that all the n
elements ηk are linear combinations in Z2 of the m elements ε j .
Since the n elements ηk are a linear basis of the set of all the idempotents of R, this implies the
claim.

6 To compute such C we only have to compute the set

{i + j(mod ν − 1) : i ∈ C′, j ∈ C′′}
and eliminate any pairs of identical elements, e.g.

{1, 2, 4, 8}{3, 6, 9, 12} = {4, 5, 7, 11, 7, 8, 10, 14, 10, 11, 13, 2, 13, 14, 1, 5}
= {1, 2, 4, 8}.
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obtaining the set {P(C21),P(C22),P(C23)}, where

C21 := {1, 2, 4, 8} = η1

C22 := {1, 2, 3, 4, 6, 8, 9, 12} = η1 + η2

C23 := {3, 6, 9, 12, 0} = η2 + 1.

The computation

C21η3 = {1, 2, 4, 8}{5, 10} = {3, 6, 7, 9, 11, 12, 13, 14}

yields {P(C31),P(C32),P(C33),P(C34)}, where

C31 := {3, 6, 7, 9, 11, 12, 13, 14} = η2 + η4

C32 := {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14} = η1 + η2 + η4

C33 := {1, 2, 3, 4, 6, 8, 9, 12} = η1 + η2

C34 := {3, 6, 9, 12, 0} = η2 + 1.

The computation

C34η3 = {3, 6, 9, 12, 0}{5, 10} = {1, 2, 4, 5, 7, 8, 10, 11, 13, 14}
yields {P(C41),P(C42),P(C43),P(C44),P(C45)}, where

C41 := {3, 6, 7, 9, 11, 12, 13, 14} = η2 + η4

C42 := {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14} = η1 + η2 + η4

C43 := {1, 2, 3, 4, 6, 8, 9, 12} = η1 + η2

C44 := {1, 2, 4, 5, 7, 8, 10, 11, 13, 14} = η1 + η3 + η4

C45 := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0} = ∑
j η j .

Thus having the primitive set of idempotents, greatest common divisor com-
putation allows us to deduce the factorization of X15 − 1. In fact we have:

(X15 − 1)/ gcd(X15 − 1,P(C41)) := X4 + X3 + 1

(X15 − 1)/ gcd(X15 − 1,P(C42)) := X4 + X3 + X2 + X + 1

(X15 − 1)/ gcd(X15 − 1,P(C43)) := X4 + X + 1

(X15 − 1)/ gcd(X15 − 1,P(C44)) := X2 + X + 1

(X15 − 1)/ gcd(X15 − 1,P(C45)) := X + 1.

The bijections given us by Remark 2.7.8 can therefore be extended and com-
puted to those between

the element i ∈ {1, . . . , n},
the factor mi ,
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the cofactor hi =
∏

j �=i m j ,
the subring Ri = D/(mi ),
the idempotent ei ,

the ideal Ji := (hi ) = (ei ) ∼= Ri = D/(mi ),
the cycle Ci

the permutation invariant set Si such that P(Si ) = ei .

In this setting we have

i Ci mi Si

1 {1, 2, 4, 8} X4 + X + 1 C43

2 {3, 6, 9, 12} X4 + X3 + X2 + X + 1 C42

3 {5, 10} X2 + X + 1 C44

4 {7, 11, 13, 14} X4 + X3 + 1 C41

5 {0} X + 1 C45

7.8 Deterministic Polynomial-time Primality Test

On August 6, 2002, while I was checking the proofs of this book, Agrawal,
Kayal and Saxena announced their discovery of a deterministic polynomial-
time algorithm which determines whether an input number n ∈ N is prime or
composite and whose complexity is7

O(log12(n)(log log(n))d) for some d ∈ N;
moreover, if a classical conjecture on the density of Sophie Germain primes
holds, the complexity reduces to

O(log6(n)(log log(n))d) for some d ∈ N;
finally the authors conjecture an algorithm having the complexity

O(log3(n)(log log(n))d) for some d ∈ N.

Before their result the state of the art consisted of

a deterministic polynomial-time algorithm whose correctness was depend-
ing on the one of the Extended Riemann Hypothesis,
several probabilistic polynomial-time algorithms, and
a deterministic algorithm which runs in log(n)O(log log log(n)).

7 Logarithms are taken to base 2.
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Apart from a lemma from Number Theory and the complexity analysis, this
algorithm just applies the tools presented in this chapter. Therefore I give here
a sketch of this result refering the reader to the original paper8.

The primality test is based on the following identity

(X − a)p ≡ X p − a (mod p). (7.1)

Proposition 7.8.1. Let a be such that gcd(a, p) = 1.
Then p is prime iff Equation 7.1 holds.

Proof In fact

(X − a)p − X p + a =
p−1∑
i=1

(−1)i
(

p

i

)
a p−i X i

and the formula is trivial if p is prime. If, on the other side, p is composite,
p = ∏

j p
e j
j , with p j primes, then each p

e j
j does not divide

( p
p j

)
nor p j divides

a; therefore

(−1)p j

(
p

p j

)
a p−p j �≡ 0 (mod p).

Equation 7.1 does not give the required polynomial-time algorithm since
the evaluation of (X − a)n requires us to compute n coefficients and is there-
fore exponential in log(n). The idea of the algorithm consists in choosing a
‘suitable’ prime r and to test in the ring Zn[X ]/(Xr − 1) the equalities

(X − a)n ≡ Xn − a (mod n, Xr − 1), for each a ∈ N, a ≤ 2
√

r log(n),

which are true if n is prime and which can be performed in polynomial time in
log(n) and r .

For r, n ∈ N such that gcd(r, n) = 1, I will denote by or (n) the multi-
plicative order of n mod r (cf. Definition 7.6.12) and I recall that
(cf. Corollary 7.6.16) if r and n are prime then Xr−1

X−1 factorizes in Zn[X ] into
irreducible factors of degree or (n). Also

Lemma 7.8.2. Let r, n ∈ N, m1,m2 ∈ N. Then in Zn[X ]

(1) m1 ≡ m2 (mod r) �⇒ Xm1 ≡ Xm2 (mod Xr − 1).

8 M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P.



150 Galois I: Finite Fields

(2) each g(X) ∈ Zn[X ] such that

gm1(X) ≡ g(Xm1), gm2(X) ≡ g(Xm2) (mod Xr − 1)

also satisfies

gm1m2(X) ≡ g(Xm1m2) (mod Xr − 1).

Proof

(1) By assumption there is k such that m1 = kr + m2; therefore, since

Xkr = (Xr )k ≡ 1k = 1 (mod Xr − 1)

we have

Xm1 = Xkr+m2 = Xkr Xm2 ≡ Xm2 (mod Xr − 1)

whence the claim.
(2) The substitution of Y m1 into X in

gm2(X) ≡ g(Xm2) (mod Xr − 1)

yields

gm2(Y m1) ≡ g(Y m1m2) (mod Y m1r − 1)

whence

gm2(Xm1) ≡ g(Xm1m2) (mod Xr − 1)

and

gm1m2(X) ≡ gm2(Xm1) ≡ g(Xm1m2) (mod Xr − 1).

I now specify the meaning of ‘suitable’ prime:

Fact 7.8.3. Given n ∈ N, there are a constant c > 0 and primes r and q which
satisfy:

r ≤ c log6(n);
q ≥ 4

√
r log(n);

q is the greatest prime divisor of r − 1;
q divides or (n).

Note that, since q is the greatest prime divisor of r − 1, q divides or (n) iff
n

r−1
q �≡ 1 (mod r).
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Fig. 7.3. Primality test
bool := Prime(n)
where

n ∈ N

bool :=

{
true if n is prime
false if n is composite

If n = ab, b > 1 or n is even then
bool := false

else
s := 2
Repeat

Let r be the minimal prime r > s
Let q be the largest prime factor of r − 1,
s := r

until gcd(n, r) �= 1 or
(

q ≥ 4
√

r log(n) and n
r−1

q �≡ 1 (mod r)

)
.

If gcd(n, r) �= 1 then
bool := false

else

%% q ≥ 4
√

r log(n) and n
r−1

q �≡ 1 (mod r)
bool := true
� := �2√r log(n)�
For a = 1, . . . , � do

If (X − a)n �≡ Xn − a (mod n, Xr − 1) then bool := false

Algorithm 7.8.4. It is now possible to present in Figure 7.3 the primality test
algorithm.

Clearly if n is prime the algorithm returns true. Moreover

each for computation is polynomial in r and log(n),
each while-loop performs computations which are polynomials in r and in
log log(n),
and the while-loop performs log6(n) iterations,

so that the algorithm has complexity

O(loge(n)(log log(n))d) for some d, e ∈ N.

We have therefore to deduce a contradiction from the assumption that the
algorithm returns true for a composite n.

Let us therefore assume that n is composite, n = ∏
j p

e j
j , with p j primes,

and let r and q be primes as in Fact 7.8.3.
Since (cf. Lemma 7.4.1) or (n) divides lcmi or (pi ) there is necessarily a

factor p of n for which q divides or (p).
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If h(X) denotes any of the irreducible factors of Xr−1
X−1 in Zp[X ], α any root

of h and d := or (p) = deg(h), then in the Galois field

G F(pd) ∼= Zp[X ]/h(X) = Zp[α]

we have

(α − a)n = αn − a, ∀a, 1 ≤ a ≤ � = �2√r log(n)�.
Lemma 7.8.5. With the notations and the assumptions above:

(1) 2� ≤ q ≤ d, � < r;
(2) For each a, b, 1 ≤ a, b ≤ �, we have a ≡ b (mod p) �⇒ a = b;
(3) For any two elements in the set

S :=
{

�∏
a=1

(X − a)δa : δa ≥ 0, ∀a,
∑

a

δa < d

}
⊂ Zp[X ]

we have

�∏
a=1

(X − a)δa =
�∏

a=1

(X − a)γa �⇒ δa = γa, for all a;

(4) #S >
( d
�

)�
> n2

√
r .

Proof

(1) We have 2� ≤ 4
√

r log(n) ≤ q and q is a factor of both d and r .
(2) If a �= b and a ≡ b (mod p) then p < � < r . The algorithm there-

fore would have performed the computation gcd(n, p) �= 1 returning true
contradicting the assumption.

(3) The result above implies that S consists of distinct elements modulo p
each having degree less than h, whence the claim.

(4) As a consequence S consists of(
�+ d − 1

�

)
= (�+ d − 1)(�+ d − 2) · · · (d)

�!
>

(
d

�

)�

elements. Moreover d
�
≥ 2 implies(

d

�

)�

≥ 2� = 22
√

r log(n) = n2
√

r .
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Corollary 7.8.6. With the notations and the assumptions above, we have:

(1) In Zp[α] the group G := {∏�
a=1(α − a)δa : δa ≥ 0, ∀a} is cyclic;

(2) #G ≥ #S > n2
√

r .

Proof

(1) Clearly G is a group and a subgroup of the group G F(pd)/{0} which
(Corollary 7.4.9) is cyclic.

(2) Clearly G ⊃ { f (α) : f (X) ∈ S}; the claim then follows by noting that for
each f (X) ∈ S, deg( f ) < deg(h), so that, for each f1, f2 ∈ S f1(α) =
f2(α) �⇒ f1(X) = f2(X).

Since G ⊂ G F(pd) is cyclic, it has a generator ζ , not necessarily a primitive
element of G F(pd). Let o := ord(ζ ) denote its order in G F(pd).

Let

g(X) :=
�∏

a=1

(X − a)δa ∈ Zp[X ],

be the unique element for which deg(g) < d and ζ = g(α) and let

I := {m ∈ N : gm(X) ≡ g(Xm) (mod Xr − 1)}.
Lemma 7.8.7. With the notations and the assumptions above:

(1) p ∈ I and 1 ∈ I;
(2) n ∈ I;
(3) I is multiplicative.

Proof

(1) Trivial since g p(X) = g(X p) in Zp[X ].
(2) Because

(X − a)n ≡ Xn − a (mod n, Xr − 1), for all a, 1 ≤ a ≤ �

and g is a product of powers of such elements.
(3) It is a direct consequence of Lemma 7.8.2(2).

Proposition 7.8.8. For m1,m2 ∈ I,

m1 ≡ m2 (mod r) �⇒ m1 ≡ m2 (mod ord(ζ )).
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Proof Since m1 ≡ m2 (mod r) there is k such that m1 = kr + m2 and
(Lemma 7.8.1(1)) g(αm1) = g(αm2).

Therefore in G F(pd) we have

ζm2 = gm2(α) = g(αm2) = g(αm1) = gm1(α) = ζm1 = ζm2+kr ,

whence ζ kr = 1, kr ≡ 0 (mod ord(ζ )) and m1 ≡ m2 (mod ord(ζ )).

This proposition is the core of the argument, proving, as the authors put it,
that there are ‘very few’ (≤ r) numbers in I that are less than ord(ζ ).

Theorem 7.8.9. For a composite n ∈ N the algorithm returns false.

Proof Let

E := {ni p j : 0 ≤ i, j ≤ �√r�}.
By Lemma 7.8.3 we know E ⊆ I. Since #E = (1 + �√r�)2 > r , there are
two different pairs (i1, j1) and (i2, j2) such that ni1 p j1 ≡ ni2 p j2 (mod r) so
that, by Proposition 7.8.8 one has ni1 p j1 ≡ ni2 p j2 (mod ord(ζ )) and

ni1−i2 ≡ p j2− j1 (mod ord(ζ )).

Since n|i1−i2| < n
√

r and p| j2− j1| < p
√

r < n
√

r and since Corollary 7.8.1(2)
implies that ord(ζ ) > n2

√
r , then

ni1−i2 = p j2− j1 .

Since p is prime this means that n = pb for some b > 1. As a consequence
the first instruction of the algorithm returns false.

Fig. 7.4. (Conjectured) Primality test
bool := Prime(n)
where

n ∈ N

bool :=
{

true if n is prime
false if n is composite

s := 2
Repeat

Let r be the minimal prime r > s
s := r

until n2 �≡ 1 (mod r).
bool := false
If (X − 1)n ≡ Xn − 1 (mod n, Xr − 1) then bool := true
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The authors also suggest the following

Conjecture 7.8.10. If r does not divide n and

(X − 1)n ≡ Xn − 1 (mod n, Xr − 1)

then either n is prime or n2 ≡ 1 (mod r).

whose corresponding primality test algorithm (Figure 7.4) has complexity

O(log3(n)(log log(n))d) for some d ∈ N.
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Kronecker II: Kronecker’s Model

. . . said the Duchess, digging her sharp little

chin into Alice’s shoulder as she added ‘and the

moral of that is — “Take care of the sense, and

the sounds will take care of themselves.”

C.L. Dodgson, Alice’s Adventures in

Wonderland

This chapter is, in one sense, the direct continuation of Chapter 5:
Kronecker’s constructions and theory, presented there, aimed to give a model
for computing the roots of polynomial equations over a field K and, mainly,
for the case Q ⊂ K ⊂ C.

In this chapter I analyse this model, which allows us to ‘solve’ polynomial
equations by representing any finite extension K over its prime field k: First
(Section 8.1) I discuss the ‘philosophy’ behind it, and point to its weaknesses,
mainly its inability to deal with real problems.

Then I introduce Kronecker’s model (Section 8.2) of such fields, and the
techniques used to represent their elements and operations (Section 8.3): we
will see that, by iteration of the construction discussed in Section 5.1, each
finite algebraic extension K ⊃ K0 can be represented as a quotient of a
multivariate polynomial ring K0[Z1, . . . , Zr ] by an ideal generated by a ba-
sis ( f1, . . . , fr ) satisfying specific properties.

I will then show that any such finite algebraic extension, provided it involves
at most a single inseparable element, is in fact a simple extension, and so can be
represented as a univariate polynomial ring modulo an irreducible polynomial
(Section 8.4).

8.1 Kronecker’s Philosophy

As we said, Kronecker’s solution, in order to get out of the impasse consequent
on the Abel–Ruffini Theorem, was to change the sense of ‘solving’: before

156
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Kronecker ‘solving’ meant producing programs whose input was a polyno-
mial equation and the output its roots, i.e. producing programs which compute
the roots of a polynomial equation; Kronecker proposed to interpret ‘solv-
ing’ as producing programs which compute with the roots of a polynomial
equation.

In fact, Kronecker’s theory discussed in Chapter 5 supplies a computational
model for dealing with any finite extension field K over its prime field k, by
giving a representation of such field K that allows us to explicitly:

(1) perform arithmetical operations in K ;
(2) ‘solve’ polynomial equations over K , by which I mean

(a) to give a representation of a finite algebraic extension K1 ⊇ K which
contains either a root or all the roots of f (X) ∈ K [X ], and on which
(1), (2) and (3) can again be effectively performed;

(b) to explicitly give a root (all roots) of f in K1;

(3) factorize polynomials in K [X ] (which is technically needed for (2) and
interesting in itself).

Note that this enunciation implicitly contains the possibility of iteratively
expressing a new polynomial f1(X) ∈ K1[X ] whose coefficients are functions
of a root (all the roots) of f (X) ∈ K [X ] and thereby ‘solve’ it.

In some sense, therefore, Kronecker’s model allows us to ‘solve’ polynomial
equations, by allowing us to perform arithmetical operations over arithmetical
expressions of their roots.

Informally speaking, an elementary ‘arithmetical expression’ over a set of
roots α1, . . . , αn is one of:

the assignment of αi for some i – which consists of giving an irreducible
polynomial fi (X) ∈ k(α1, . . . , αi−1)[X ] such that fi (αi ) = 0,

the sum, difference or the product of two arithmetical expressions,
the inverse of a non-zero arithmetical expression,

and an ‘arithmetical operation’ is any one of the four elementary operations,
extractions of pth roots over fields of finite characteristic p, testing whether an
arithmetical expression is 0.

Note that, as a consequence of the assumption that any αi is assigned by giv-
ing it an irreducible polynomial fi (X), an ‘arithmetical expression’ is nothing
more than an algebraic number in k[α1, . . . , αn].
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The Splitting Field Theorem (Theorem 5.5.6) guarantees that Kronecker’s
model gives a faithful representation of any subfield of C which is a finite
extension field of Q by roots of iteratively expressed polynomials.

However, it points to a negative aspect of Kronecker’s model: any finite
extension field of Q by a root of an irreducible polynomial f (X) ∈ Q[X ] is
faithfully represented by the field Q[X ]/ f (X) := Q[α]. While we restrict the
notion of arithmetical operations as we did before, there is no problem, but if
we are willing, or need, to work with real numbers, then problems arise.

Example 8.1.1. Consider f := X2 − 2; then the field Q[X ]/ f (X) := Q[α]
has two roots of f (X), which are α and −α. Which of them is

√
2?

By the Splitting Field Theorem, Q[X ]/ f (X) := Q[α] represents both
Q[
√

2] and Q[−√2] = Q[
√

2]; in the first representation
√

2 is represented
by α, while in the second one it is represented by −α!

This is not at all strange, no more than the fact that there is no way that the
two imaginary numbers can be distinguished from each other: in fact
Lemma 5.5.3 informs us that there is an automorphism � : Q[

√
2] → Q[

√
2]

which is defined by �(a + b
√

2) = a − b
√

2, for all a, b ∈ Q, exactly as the
conjugation z → z exits in C.

However, the existence of these two automorphic models of Q[
√

2], and
therefore of these two ways of interpreting Kronecker’s representation Q[α]
of it, has the following consequence: how can we produce a program which
allows us to decide whether a given arithmetical expression is positive? If such
an algorithm exists and is applied to α ∈ Q[α] = Q[X ]/ f (X), what will be the
solution? Of course α is positive if it represents

√
2 and negative if it represents

−√2, but, as we said before, it represents both!

Example 8.1.2. Let us briefly point to similar weaknesses in Kronecker’s
model.

Consider f := X3 − 2; then the field Q[X ]/ f (X) := Q[α] has three roots
of f (X), one of which is real while the other two are complex and conju-
gate. Of course, no algorithm exists which can be applied to Q[α] and answer
the question of whether α is real or complex. Even moreso: in the field k2 of
Example 5.2.5, there is no way of distinguishing the real root among β, γ and
−β − γ .

Again, in the same setting as before where f = X2 − 2, the number α + 1
is such that |α + 1| > 1 if α represents

√
2, while |α + 1| < 1 if α represents

−√2.

In conclusion, before discussing in detail the computational model proposed
by Kronecker for dealing effectively with finite extension fields K over its
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prime field, we have to point out that Kronecker’s proposal has at least three
problems which, for a while, we need to brush under the carpet:

• We need to be able to factorize any polynomial in K [X ]: its crucial im-
portance is obvious since all the theory is based on representing algebraic
numbers α ∈ K2 \ K1 by assigning a polynomial f (X) ∈ K1[X ] and build-
ing K1[α] as K1[X ]/ f (X), but the latter is a field only if f is irreducible. In
fact Kronecker himself proposed a factorization algorithm in Q[X ], which,
however, was unsatisfactory because of its complexity. For now, we just say
that there exist factorization algorithms for each finite extension field K over
its prime field and point the reader to Part II.

• The effectiveness of the computational model proposed by Kronecker is
somehow limited by its inability to handle algorithms for solving real prob-
lems, such as deciding whether a root is real or complex, whether it is posi-
tive or negative, etc. Tools to do that were soon built (Sturm sequences) and
new strong models have recently been built around Sturm sequences and
Thom’s Lemma. (see Chapter 13).

• Given a finite extension field K over its prime field, and a number α ∈ L \K
where L is any field extension L ⊇ K , we need to know whether α is
algebraic over K (in which case, we need to have its monic polynomial), or
transcendental. For the sake of the discussion, we will assume that we have
an Oracle giving us this information; but honesty requires us to admit that
the problem is still open, up to the point that there is not yet a proof of the
conjecture that there is no algebraic relation between e and π .

8.2 Explicitly Given Fields

In order to discuss the Kronecker model, let us consider the class K of fields
K to which it applies, i.e. finite extension fields over their prime field. To build
any such field, we start with a prime field and repeatedly extend it either al-
gebraically or transcendentally. The class K can then be defined recursively
by:

Q ∈ K, Zp ∈ K;
if K ∈ K and f (X) ∈ K [X ] is an irreducible polynomial then

K [X ]/ f (X) ∈ K;
if K ∈ K and L ⊇ K , α ∈ L \ K are such that α is transcendental over K

and L = K (α), then L ∈ K.
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In order to understand better how Kronecker’s model represents the fields in
K, let us first of all note that

Lemma 8.2.1. Let K1 ⊆ K2 ⊆ K3 be three fields; α1, . . . , αk, β ∈ K3 \ K1

and let us assume that K2 := K1(α1, . . . , αk) is an algebraic extension.
Then:

(1) β is algebraic over K1 ⇐⇒ it is algebraic over K2.
(2) If β is transcendental over K2, then K2(β) ∼= K1(β)[α1, . . . , αk].

Proof Clearly it is sufficient to show that, if β is algebraic over K2, then it
is the same over K1, but this is obvious, since K2[β] is an algebraic extension
of K1.

As a consequence, if K is a finite extension over its prime field k, i.e.

there exists β1, . . . , βd+r ∈ K \ k : K = k(β1, . . . , βd+r ),

then, up to reordering the βs we can assume that

for all i ≤ d, βi is transcendental over k(β1, . . . , βi−1);
for all i > d, βi is algebraic over k(β1, . . . , βi−1);

so that

k(β1, . . . , βd) ∼= k(Y1, . . . ,Yd) =: K0;
for all i > d, βi is algebraic over K0(βd+1, . . . , βi−1).

We can then reinterpret K to be the class of all the finite algebraic extensions
over any rational function field over a prime field, i.e. K is defined recursively
by:

Q(Y1, . . . ,Yd) ∈ K,Zp(Y1, . . . ,Yd) ∈ K;
if K ∈ K and f (X) ∈ K [X ] is an irreducible polynomial then

K [X ]/ f (X) ∈ K.

On that basis, a field K , whose prime field is k, belongs to K if there is

a tower of fields

k(Y1, . . . ,Yd) = K0 ⊆ K1 ⊆ · · · ⊆ Kr = K ;
for all i > 1, a monic irreducible polynomial gi (Zi ) ∈ Ki−1[Zi ];
for all i > 1, αi ∈ Ki \ Ki−1 such that gi (αi ) = 0,
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so that

for all i > 1, Ki = Ki−1[Zi ]/gi (Zi ) ∼= Ki−1[αi ];
and it is quite clear that this representation allows us to perform the arithmetical
operations on K = Kr discussed in Section 5.1: while sums and subtractions
only require us to do Kr−1-vector space algebra, products and divisions re-
quire the Euclidean algorithms in Kr−1[Z ] and therefore require us to perform
operations in the field Kr−1, which, therefore, require Euclidean algorithms in
Kr−2[Z ]. . . and so on, recursively.

This iterative definition of K by quotient fields of univariate polynomials
over a field can be collapsed to represent K as the quotient of a multivariate
polynomial ring over K0 by a suitable ideal:

K ∼= k(Y1, . . . ,Yd)[Z1, . . . , Zr ]/ ( f1, . . . , fr ) .

To prove this, let us put ourselves in a more general situation: let k be any
field – not necessarily a prime one – and let k be the class of all its finite
extension fields.

Let us also consider a sequence

f := { f1, . . . , fr }
of polynomials

fi ∈ k(Y1, . . . ,Yd)[Z1, . . . , Zi ];
let us denote iteratively

L j := k(Y1, . . . ,Yd)[Z1, . . . , Z j ]/( f1, . . . , f j ) ∼= L j−1[Z j ]/π j−1( f j ),
by π j both the canonical projection

π j : k(Y1, . . . ,Yd)[Z1, . . . , Z j ] → L j

and its polynomial extensions

π j : k(Y1, . . . ,Yd)[Z1, . . . , Zr ] → L j [Z j+1, . . . , Zr ];
d j := deg j ( f j ), where, for a polynomial

f ∈ k(Y1, . . . ,Yd)[Z1, . . . , Zr ],

deg j ( f ) denotes its degree in the variable Z j ;
and let us introduce the following

Definition 8.2.2. We say f is an admissible sequence in

k(Y1, . . . ,Yd)[Z1, . . . , Zr ]
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if:

f1 ∈ k(Y1, . . . ,Yd)[Z1] is monic irreducible, so that L1 is a field;
for all i, 2 ≤ i ≤ r , πi−1( fi ) ∈ Li−1[Zi ] is monic irreducible, so that Li is

a field;
for all i, 2 ≤ i ≤ r , for all j < i , deg j ( fi ) < d j .

which allows us to prove that

Proposition 8.2.3. If f := { f1, . . . , fr } is an admissible sequence in

k(Y1, . . . ,Yd)[Z1, . . . , Zr ],

then Lr ∈ k.
Conversely if K ∈ k, then there are d ≥ 0, r ≥ 0, and an admissible

sequence

f := { f1, . . . , fr } ⊂ k(Y1, . . . ,Yd)[Z1, . . . , Zr ],

such that

K ∼= k(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( f1, . . . , fr ).

Proof In fact, inductively, L0 := k(Y1, . . . ,Yd) ∈ k, and if Li ∈ k, then
Li+1 = Li [Zi+1]/πi ( fi+1) ∈ k.

Then we conclude that

L0 ⊆ L1 ⊆ · · · ⊆ Lr

is a tower of fields and, for all i , denoting gi := πi−1( fi ), αi := πi (Zi ) we
have

Li = Li−1[Zi ]/gi (Zi ) ∼= Li−1[αi ].

To prove the converse, let us remark that, if K is a finite extension of k, there
are

a tower of fields

k(Y1, . . . ,Yd) = K0 ⊆ K1 ⊆ · · · ⊆ Kr = K ,

for all i > 1, a monic irreducible polynomial gi (Zi ) ∈ Ki−1[Zi ],
for all i > 1, αi ∈ Ki \ Ki−1 such that gi (αi ) = 0,

so that

for all i > 1, Ki = Ki−1[Zi ]/gi (Zi ) ∼= Ki−1[αi ].
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Let us begin by defining f1 := g1 ∈ K0[Z1], so that ( f1) is admis-
sible and

K1 = K0[Z1]/ f1 =: L1,

and assume inductively that we have defined

f j ∈ K0[Z1, . . . , Z j ], for all j, 1 ≤ j ≤ i − 1,

such that { f1, . . . , fi−1} is admissible and

Li−1 := K0[Z1, . . . , Zi−1]/( f1, . . . , fi−1) ∼= Ki−1 = K0[α1, . . . , αi−1].

Then gi (Zi ) ∈ Ki−1[Xi ] = K0[α1, . . . , αi−1][Zi ] can be interpreted as a
polynomial over K0 whose variables are the α j s and Zi . It is then sufficient
to substitute Z j to α j in order to obtain a polynomial fi ∈ K0[Z1, . . . , Zi ]
such that πi−1( fi ) = gi . Moreover, any coefficient of gi is an element in Ki−1

and so is represented by a polynomial in K0[α1, . . . , αi−1] whose degree in
the variable α j is less than d j ; so we can conclude that deg j ( fi ) < d j , for all
j < i . Finally, since gi is irreducible, then so is fi .

In conclusion, { f1, . . . , fi } is admissible and

Ki = Li−1[Zi ]/gi ∼= Li−1[Zi ]/πi−1( fi ) ∼= K0[Z1, . . . , Zi ]/( f1, . . . , fi ).

Corollary 8.2.4. If K ∈ K, then there are d ≥ 0, r ≥ 0, and an admissible
sequence

f := { f1, . . . , fr } ⊂ k(Y1, . . . ,Yd)[Z1, . . . , Zr ],

where k is the prime field of K , such that

K ∼= k(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( f1, . . . , fr ).

Definition 8.2.5. We then say that a finite extension field K ⊃ k is explicitly
given if d ≥ 0, r ≥ 0 are specified together with an admissible sequence

{ f1, . . . , fr } ⊂ k(Y1, . . . ,Yd)[Z1, . . . , Zr ],

so that

K ∼= k(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( f1, . . . , fr ).
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8.3 Representation and Arithmetics

8.3.1 Representation

Let k be a given effective field and let K ⊃ k be a finite extension which is
explicitly given by specifying an admissible sequence

( f1, . . . , fr ) ∈ k(Y1, . . . ,Yd)[Z1, . . . , Zr ]

so that

K ∼= k(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( f1, . . . , fr ).

Let us denote

K0 := k(Y1, . . . ,Yd),
K j := K0[Z1, . . . , Z j ]/( f1, . . . , f j ) ∼= K j−1[Z j ]/π j−1( f j ),
π j both the canonical projection

π j : K0[Z1, . . ., Z j ] → K j

and its polynomial extensions

π j : K0[Z1, . . ., Zr ] → K j [Z j+1, . . . , Zr ],

α j := π j (Z j ),

d j := deg j ( f j ).

Up to the end of this section we will keep the notation related to K fixed,
and in the algorithms we will assume that K0, and ( f1, . . . , fr ) are explicitly
given.

Then K is a K0-vector space of dimension D := ∏
i di generated by the

K0-basis πr (B) where

B := {Za1
1 · · · Zar

r : ai < di , for all i}.
Let K0[B] be the K0-subvector space of K0[Z1, . . . , Zr ] generated by

B; then the restriction of πr to K0[B] is a K0-vector isomorphism from
K0[B] to K .

So, analogously to the simple extension case(Section 5.1), we have two rep-
resentations of K as a K0-vector space:

as K D
0 , so that each element is (identified with) a D-dimensional vector;

as a subset of the polynomial ring K0[Z1, . . . , Zr ], so each element is (iden-
tified with) a polynomial g ∈ K0[Z1, . . . , Zr ] such that deg j (g) < d j ,

for all j .
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Let us order the semigroup T of terms of K0[Z1, . . . , Zr ] by1 the lexico-
graphical total semigroup ordering <, such that Z1 < Z2 < · · · < Zn , given
by:

Za1
1 · · · Zar

r < Zb1
1 · · · Zbr

r ⇐⇒ there exists j : a j < b j and ai = bi ,

for all i > j.

Let us index the D terms in B by increasing order so that

1 = b1 < b2 < · · · < bD = Zd1−1
1 · · · Zdr−1

r .

Switching from one representation to another is then very easy: if g is a
polynomial such that deg j (g) < d j , for all j , then g = ∑D

i=1 ci bi , ci ∈ K0,

and is isomorphic to the vector (c1, . . . , cD) ∈ K D
0 ; conversely the polynomial∑D

i=1 ci bi corresponds to each vector (c1, . . . , cD) ∈ K D
0 .

Moreover, in the second representation, elements of K j are identified with
polynomials in K0[B] ∩ K0[Z1, . . . , Z j ].

8.3.2 Vector space arithmetics

Since K is explicitly represented as a K0-vector space, the K0-linear opera-
tions on K are immediately available; so it is possible to test for equality, add,
subtract elements of K and test if an element of K is 0.

8.3.3 Canonical representation

Multiplication requires some more work; if we are given two polynomials
g1, g2 ∈ K0[B] ∼= K , their product will in general no longer be in K0[B].

So we need to think about how to compute, given

g ∈ K0[Z1, . . . , Zr ],

the unique h ∈ K0[B] such that πr (h) = πr (g), which will be called the
canonical representative of g.

Since the algorithm is recursive denoting

Bi := B ∩ K0[Z1, . . . , Zi ],

we will assume the availability2 of an algorithm which, given

g ∈ K0[Z1, . . . , Zi ],

1 Compare this with the identical definition and approach used in Remark 6.2.2.
2 Such an algorithm is obviously available if i = 0, since then we simply to take h := g ∈ K0.
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computes h ∈ K0[Bi ] such that πi (h) = πi (g) and we will show how this
algorithm is used to solve the same problem at the (i + 1)th level.

First of all we note that, while we defined polynomial division only for poly-
nomials with coefficients in a field, the algorithm obviously also applies when
the coefficients are in a domain, provided that the divisor is monic, since then
no inverse computation is needed.

So we are given g ∈ K0[Z1, . . . , Zi+1]; we perform polynomial division in
K0[Z1, . . . , Zi ][Zi+1] of g by the monic polynomial fi+1 to obtain

Rem(g, fi+1) =
di+1−1∑

j=0

q j (Z1, . . . , Zi )Z
j
i+1;

then, by recursive application, for each j we compute

p j (Z1, . . . , Zi ) ∈ K0[Bi ]

such that πi (p j ) = πi (q j ). We obtain

πi+1(g) = πi+1 (Rem(g, fi+1))

= πi+1

(∑
j

q j Z j
i+1

)

=
∑

j

πi (q j )πi+1(Z
j
i+1)

=
∑

j

πi (p j )πi+1(Z
j
i+1)

= πi+1

(∑
j

p j Z j
i+1

)

and
∑

j p j Z j
i+1 ∈ k[Bi+1].

Algorithm 8.3.1. While this proposal is nothing more than a recursive applica-
tion of the same algorithm in the univariate case, there is actually no need for
recursion, since the same result, with essentially the same computations, can
be obtained by the algorithm of Figure 8.1, where for g ∈ K0[Z1, . . . , Zr ],
g = ∑

t∈T ct t , with ct ∈ K0, we denote

T (g) := max
<

{t : ct �= 0}, lc(g) := cT (g) ∈ K0.

Termination of this algorithm is guaranteed since at each step T ( f ) is de-
creasing in the well-ordered semigroup T.

Correctness is guaranteed since at each step h ∈ K0[B] and

πr (g) = πr ( f + h)

and, at termination, f = 0 and πr (g) = πr (h).
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Fig. 8.1. Canonical representations

h := Reduction(g; { f1, . . . , fr })
where
{ f1, . . . , fr } is an admissible sequence
g ∈ K0[Z1, . . . , Zr ]
h ∈ K0[B] is such that πr (g) = πr (h)

f := g, h := 0
While f �= 0 do

If T ( f ) ∈ B then
h := h + lc( f )T ( f ), f := f − lc( f )T ( f )

else – T ( f ) �∈ B
let fi be such that T ( fi ) divides T ( f )
let t ∈ T be such that T ( f ) = tT ( fi )
f := f − lc( f ) lc( fi )

−1t fi

8.3.4 Multiplication

With an algorithm to compute canonical representatives, multiplication of
g1, g2 ∈ K0[B] can then be performed by computing g1 · g2 in K [Z1, . . . , Zr ],
followed by the canonical representative h of g1 · g2, because then

πr (g1)πr (g2) = πr (g1 · g2) = πr (h).

8.3.5 Inverse and division

We have now turned K into an effective ring, and, as a consequence, the
polynomial ring K [Z ] is an effective ring too. We have yet to produce an
algorithm for computing inverses in K , that will turn K into an effective field,
and so to have polynomial division in K [Z ] and, as a consequence, gcd
computation, the Euclidean and the Extended Euclidean Algorithms, the
squarefree test, the squarefree-associate and the distinct power factorization
algorithms.

Unlike multiplication, where we could also use canonical representatives,
we can only recursively use Kronecker’s ideas, since we have to use the full
power of polynomial algorithms in Ki [Zi+1] to get inverses in Ki+1.

So assuming recursively that Ki is an effective field (K0 is such), let us show
how to compute inverses in Ki+1. Let g ∈ K [Bi+1] ∼= Ki+1, g �= 0,

g =
di+1−1∑

j=0

q j (Z1, . . . , Zi )Z
j
i+1.

Since q j ∈ K0[Bi ] ∼= Ki we can interpret them as field elements; the same
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argument applies to

fi+1 := Xdi+1
i+1 +

di+1−1∑
j=0

p j (Z1, . . . , Zi )Z
j
i+1,

with p j ∈ K0[Bi ] ∼= Ki .

So both g and fi+1 can be interpreted as univariate polynomials in Ki [Zi+1].
By the Extended Euclidean Algorithm we obtain s ∈ Ki [Zi+1] such that

sg + t fi+1 = 1, degi+1(s) < di+1,

for a suitable t ∈ Ki [Zi+1], which we do not need to compute. By interpreting
the coefficients of s in Ki as elements of K0[Bi ], we can interpret s as an
element of K [Bi+1] and then πi+1(s)πi+1(g) = 1; so

s ∈ K [Bi+1] ∼= Ki+1

is the inverse of g ∈ K [Bi+1] ∼= Ki+1.

8.3.6 Polynomial factorization

As we remarked before, ‘solving’ requires a factorization algorithm.
Such an algorithm will be discussed in detail in the second Part. We simply

give here a resumé of that part:

Gauss studied the relation between the factorization algorithm over a domain
and the one over its quotient field (Section. 6.1);

an algorithm by Berlekamp allows us to factorize polynomials over any finite
field and, in particular, over prime fields Zp;

an algorithm by Hensel allows us, given a domain D and a principal ideal
(p) ⊂ D, to use the existence of a polynomial factorization algorithm for
D/(p) in order to obtain one for D/(pn) for each n;

Zassenhaus proposed how to apply Hensel algorithms to obtain, under some
assumptions, a polynomial factorization algorithm for a domain D from
that for their quotients by principal ideals; by Gauss such an algorithm
gives a polynomial factorization algorithm for the quotient field of D;

if L ⊇ K is a single algebraic field extension, how to obtain a factorization
algorithm for L from that of K is a ‘classical’ result.

On the basis of these results we obtain the following:

we know how to factorize over the finite prime fields Zp, via Berlekamp;
Zassenhaus, via Berlekamp and Hensel, gives a factorization algorithm

over Z;
and, via Gauss, over Q;
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as a consequence, Zassenhaus allows us to use Hensel and Gauss for obtain-
ing a factorization algorithm over a single transcendental extension K (X)
of a field K which possesses a factorization algorithm;

and, by iteration, over K (X1, . . . , Xr );
finally a factorization algorithm exists for any single algebraic field exten-

sion of a field K which possesses a factorization algorithm,

so that any field in K possesses a polynomial factorization algorithm.

8.3.7 Solving polynomial equations

Let g(Z) ∈ K [Z ] be a polynomial; it is now easy to find a larger field L ∈ K
which contains a root α of g and to explicitly produce such a root.

We ‘only’ have to factorize g(Z) in K [Z ] and choose a monic irreducible
factor h(Z) ∈ K [Z ] (of least degree for gaining efficiency in subsequent arith-
metical computations!). We then interpret the coefficients of h to be polyno-
mials in K0[B] and we obtain a monic polynomial in K0[Z1, . . . , Zr ][Z ]. We
then consider the admissible sequence

( f1, . . . , fr , h(Z1, . . . , Zr , Zr+1))

in K0[Z1, . . . , Zr+1] defining a field Kr+1 ∈ K, which is a simple extension
of Kr by the root πr+1(Zr+1) of h(Z) ∈ K [Z ].

Algorithm 8.3.2. Repeating this procedure, we obtain an algorithm which,
given g(Z) ∈ K [Z ], computes a larger field L ∈ K which is the splitting field
of g over K and explicitly produces all the roots of g in L . In presenting it, we
will restrict ourselves to the case of a squarefree polynomial g, since reduction
to this case and multiplicity count can be obtained in any effective field.

This algorithm is described in Figure 8.2 and it is just a formalization of the
computations shown in Example 5.2.5.

8.3.8 Monic polynomials

Given α ∈ K there are algorithms for computing the minimal polynomial of α
over K0.

One approach3 uses linear algebra; it iteratively checks whether (the vector
representations of) 1, α, . . . , αr are linearly dependent over K0. When a linear
relation

αr −
r−1∑
i=0

aiα
i

3 An alternative one is based on the concept of norm (cf. Section 10.5 and Section 16.3): since
Z − α divides NK/k (Z − α) =: h(X) ∈ k[Z ], then h(α) = 0; moreover Z − α is linear and so
irreducible; therefore (by Proposition 16.3.1) h is a power of an irreducible polynomial, so that
the minimal polynomial of α is SQF R(h).
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Fig. 8.2. Solving polynomial equations

(L , α1, . . . , αs) := Solve(g(Z))
where

K is the explicitly given field K0[Z1, . . . , Zr ]/( f1, . . . , fr )
g(Z) ∈ K [Z ] is a squarefree polynomial
L is an explicitly given splitting field of g over K
αi ∈ L
{α1, . . . , αs} is the set of the roots of g

t := r, L := K ,Roots := ∅, h := g
While deg(h) > 0 do

Factor h(Z) ∈ L[Z ]
For each linear factor (Z − α) do

Roots := Roots ∪ {α}, h := h/(Z − α)
If deg(h) > 0 then

choose a monic irreducible factor p(Z) ∈ L[Z ] of h
ft+1 := p(Zt+1)
L := K0[Z1, . . . , Zt+1]/( f1, . . . , ft+1)
α := πt+1(Zt+1)
Roots := Roots ∪ {α}
h := h/(Z − α)
t := t + 1

has been found, then

g(Z) := Zr −
r−1∑
i=0

ai Zi

is the minimal polynomial of α.

8.4 Primitive Element Theorems

It is possible to interpret Corollary 7.4.9 as a result proving that each finite
algebraic extension of a finite field is simple.

In this section we intend to generalize this result to each finite algebraic
extension of a perfect field, provided the extension involves at most a single
inseparable element. We begin by noting:

Lemma 8.4.1. Let K ⊃ k be a finite algebraic extension of a perfect field k;
then K is also perfect.

Proof Either:

char(k) = 0 and so char(K ) = 0, or
char(k) �= 0 , k is finite, and so, setting q := card(k), [K : k] := n, we have

card(K ) = qn ,

and then we introduce the following crucial



8.4 Primitive Element Theorems 171

Lemma 8.4.2. Let k be an infinite field and let K := k[β, α] be a finite al-
gebraic extension of k, where α is separable. Then there is ξ ∈ K such that
K = k[ξ ].

Proof Let f,m ∈ k[X ] be the minimal polynomials over k of β and α respec-
tively, and let L be a field where both polynomials split into linear polynomi-
als; let β = β1, . . . , βr ∈ L be the roots of f and α = α1, . . . , αs ∈ L the
roots of m.

Since α j �= α1, for j �= 1, then for all i, 1 ≤ i , and all j �= 1, there is at
most one4 ci j ∈ k such that

β1 + ci jα1 = βi + ci jα j . (8.1)

Since k is infinite, there is c ∈ k such that (cf. Proposition 6.5.7)

β1 + cα1 �= βi + cα j , for all i, for all j �= 1.

Let ξ := β + cα; α is a root both of m(X) ∈ k[X ] and of

h(X) := f (ξ − cX) ∈ k[ξ ][X ],

because

h(α) = f (ξ − cα) = f (β) = 0;
therefore α is a root in L of gcd(m, h) ∈ k[ξ ][X ].

Any other root in L of gcd(m, h) is among α2, . . . , αs (since it must be a
root of m). However, if h(α j ) = 0 for some j �= 1, then

f (ξ − cα j ) = h(α j ) = 0

and therefore there would be i such that ξ − cα j = βi , i.e.

β1 + cα1 = βi + cα j ,

giving a contradiction. Since gcd(m, h) is squarefree, then

gcd(m, h) = (X − α)

and so α ∈ k[ξ ] and β = ξ − cα ∈ k[ξ ] too.
Therefore k[β, α] = k[ξ ].

Example 8.4.3. Consider k := Q and K = k[β, α] where β is a root of
f (X) := X2 − 2 and α is a root of m(X) := X2 − 3. The computations
below will prove that K = k[ξ ] where ξ = β + α, i.e. c = 1.

4 Here we assume that α is separable.
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In order to represent K as k[ξ ] we need of course to compute the minimal
polynomial of ξ . Based on that, an algorithm to compute ξ could consist of:

choose c;
compute the minimal polynomial of ξ = β + cα;
check whether K and k[ξ ] have the same dimension: if so the solution is

found; otherwise the procedure has to be repeated for a different choice
of c.

Finding the minimal polynomial of ξ is just linear algebra; in this example
we have:

ξ0 = +1
ξ1 = +β +α
ξ2 = +5 +2βα
ξ3 = +11β +9α
ξ4 = +49 +20βα

from which we obtain ξ4 − 10ξ2 + 1 and so

K = k[ξ ] = k[X ]/p(X) where p(X) = X4 − 10X2 + 1.

The computation of the gcd of

h(X) = (ξ − X)2 − 2 = X2 − 2ξ X + ξ2 − 2

and m(X) = X2 − 3 gives X − 11
2 ξ + 1

2ξ
3, so that we get

α = 11

2
ξ − 1

2
ξ3, β = −9

2
ξ + 1

2
ξ3.

Remark 8.4.4. For those who are expert in Gröbner basis technology, I note
that the linear algebra computation can be applied via Gröbner bases. In fact

k[X, Y ]/ (M(X), F(X, Y )) ∼= k[X, Y, T ]/ (M(X), F(X, Y ), T − Y − cX) ,

where M(X) ∈ k[X ] is the minimal polynomial of α over k and F(X, Y ) ∈
k[X, Y ] is such that F(α, Y ) ∈ k(α)[Y ] is the minimal polynomial of β

over k(α).
A computation of the Gröbner basis of the ideal

(M(X), F(X, Y ), T − Y − cX)

with respect to a lexicographical term-ordering such that T < X < Y will
give a basis (p(T ), X − qX (T ), Y − qY (T )) where p(T ) is the minimal poly-
nomial of ξ , α = qX (ξ) and β = qY (ξ).
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Theorem 8.4.5 (Primitive Element Theorem). Let K ⊃ k be a finite alge-
braic extension of k, K = k[β, γ1, . . . , γn] where each γi is separable over k.
Then there is ξ ∈ K such that K = k[ξ ].

Proof The result follows by Corollary 7.4.9 if k is finite, and by iterative ap-
plication of Lemma 8.4.2 if k is infinite.

Corollary 8.4.6. Let k, K be as above. Then K is a simple algebraic extension
of k.

Corollary 8.4.7. Let K ⊃ k be a finite algebraic extension of a perfect field k.
Then K is a simple algebraic extension of k.

Historical Remark 8.4.8. In Gauss’ language a primitive element of a finite
field (more exactly a primitive root of Xq−1−1) meant an element such that any
other element was a power of it; Gauss introduced this notion mainly because
it provided a computational tool in G F(q) which behaves as do logarithms for
the reals (c.f. 7.4.8).

So we should be aware that strictu sense it is not entirely appropriate to
describe as primitive the element ξ such that K = k[ξ ]; the definition arises
from a misunderstanding of the original meaning of the concept and from an
obvious confusion arising from Corollary 7.4.11. In particular such a primitive
element does not allow us to define a logarithmic function!

However, in one sense it does: it allows us to compute with an algebraic
extension as if it were a single one and to represent elements by univariate
polynomials.

To conclude this analysis we should show that the same result cannot be fur-
ther generalized, by illustrating what happens when k, char(k) �= 0, is infinite
and K = k[β, γ ] is an extension by two inseparable elements. In order to do
so we need to state the following

Lemma 8.4.9. Let k be a field and let K = k[ξ ] be a simple algebraic exten-
sion. Then there are only finitely many fields L such that

k ⊆ L ⊆ K .

Proof Let f (X) ∈ k[X ] be the minimal polynomial of ξ over k and, for a
field L such that k ⊆ L ⊆ K , let g(X) = ∑n

i=1 αi X i ∈ L[X ] be the minimal
polynomial of ξ over L and L ′ := k[α1, . . . , αn] ⊂ L .
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Then ξ has the same degree over L and L ′. Therefore [L ′ : k] = [L : k],
[L : L ′] = 1 so that L = k[α1, . . . , αn].

On the other hand, f is a multiple of g.
As a consequence the fields L , such that k ⊆ L ⊆ K , are in biunivocal

relation with the factors of f in K [X ].

Example 8.4.10. We are now able to show that Corollary 8.4.7 cannot hold for
an infinite field k of finite characteristic.

Let k be an infinite field, char(k) = p �= 0, let a, b ∈ k \ k p and let K =
k[α, β] where α and β satisfy the relations β p = b and α p = a.

We need to prove that K is not a simple algebraic extension of k.
Assuming the contrary, then there are at most finitely many fields L such

that k ⊆ L ⊆ K ; therefore there are finitely many elements among the fields
k[β + cα] with c ∈ k.

In other words, there is a field L , k ⊆ L ⊆ K , and two different elements
c1, c2 ∈ k such that

L = k[β + c1α] = k[β + c2α].

Since both β + c1α and β + c2α are in L , their difference (c1 − c2)α is also
in L; since c1 − c2 �= 0 we conclude that both α and β are in L .

Therefore the assumption that K is a simple algebraic extension of k allows
us to conclude that

L = k[α, β]

but this is impossible since we get the absurd result that

[k[α, β] : k] = p2 and
[L : k] = p.

The last statement follows by the simple verification that, for each c ∈ k

(β + cα)p = β p + cpα p = b + cpa,

so that β + cα satisfies the polynomial X p − b − cpa ∈ k[X ].
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Steinitz

This chapter is mainly devoted to dealing with the deeper aspects of field
extensions.

In Section 9.1 I prove the existence of a ‘universal extension field’ k̄ of a
field k, in which the polynomials in k[X ] and even those in k̄[X ] split into
linear factors: this notion of algebraic closure generalizes the property of C

with respect to R.
In Section 9.2, I discuss the argument which was only hinted at in

Lemma 8.2.1, namely, the fact that a set of (not necessarily finite) generators
of a field extension K ⊃ k can be reordered and separated so that there is an
intermediate field Ktrasc such that K is an algebraic extension of Ktrasc, which
is a purely transcendental extension of k. In so doing I introduce the notions
of algebraic dependence and transcendental bases and show that it is possible
to introduce the concept of degree for transcendental extensions, as we did for
algebraic ones.

In Section 9.3 I describe the structure of finite extensions based on the above
analysis and on the result that algebraic extensions of a field k are a purely
inseparable extension of a separable extension1 of k.

In Section 9.4 I introduce another crucial concept, that of the universal field
of a prime field k: this is a field which contains an isomorphic copy of any finite
extension field K over k, i.e. a field in which all fields satisfying Kronecker’s
Model have a representation.

In Section 9.5 I discuss further the structure of simple transcendental exten-
sions, proving the Lüroth Theorem, which states that every field K, such that
k ⊂ K ⊆ k(X), is a simple transcendental extension by a non-constant rational
function η(X) ∈ k(X).

1 This result is significant if k is not perfect, i.e. it is an infinite field of finite characteristic. If k is
perfect all algebraic extensions are separable.
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9.1 Algebraic Closure

Lemma 9.1.1. Let k be a field. The following conditions are equivalent:

(1) each non-constant polynomial f (X) ∈ k[X ] has a root in k;
(2) for each polynomial f (X) ∈ k[X ], k is a splitting field of f ;
(3) each polynomial f (X) ∈ k[X ] factorizes into linear factors in k[X ];
(4) each non-constant irreducible polynomial f (X) ∈ k[X ] \ k is linear;
(5) for each algebraic extension K ⊃ k, K = k.

Proof Clearly conditions (1), (2), (3), (4) are equivalent.
(5) �⇒ (1) follows from the fact that K := k[X ]/g(X), where g(X) is a factor
of f (X) in k[X ], is an algebraic extension of k and contains a root of f .
Conversely, (4) �⇒ (5) holds since, if K ⊃ k is an algebraic extension of
k and α ∈ K , the minimal polynomial of α over k is linear, and so α ∈ k.
Therefore, K = k holds for each algebraic extension K ⊃ k.

Definition 9.1.2. A field k is called algebraically closed if it satisfies the con-
ditions of Lemma 9.1.1.

Definition 9.1.3. If k is a subfield of a field K , K is called an algebraic closure
of k if it is algebraically closed and an algebraic extension of k.

Lemma 9.1.4. Let K be an algebraic extension of k. K is an algebraic closure
of k iff each polynomial f (X) ∈ k[X ] splits in K [X ].

Proof We have to prove that, if each polynomial f (X) ∈ k[X ] splits in K [X ],
then each polynomial g(X) ∈ K [X ] has a root in K . Assuming this is false,
let g(X) ∈ K [X ] be an irreducible polynomial which has no root in K and let
us consider the algebraic extension

K [α] := K [X ]/g(X) ⊃ K ⊃ k;
since α is algebraic over K which is algebraic over k, there exists a polynomial
f (X) ∈ k[X ] such that f (α) = 0. As a consequence, f splits in K , X − α ∈
K [X ], α is a root of g in K .

Proposition 9.1.5. Let k be a field. Then there is an algebraic closure of k.
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Proof We can suppose that k is well-ordered. As a consequence, the polyno-
mial ring k[X ] is also well-ordered by ≺ and in such a way that k ⊂ k[X ] is a
section2 of k[X ]3.
For each polynomial f (X) ∈ k[X ] we will build two well-ordered fields F f ,
G f which will satisfy the following properties

(1 f ) k is a section of F f ;
(2 f ) for all g ≺ f , Gg is a section of F f ;
(3 f ) f (X) splits in G f ;
(4 f ) F f is a section of G f .

The construction of these fields will be done by transfinite induction: we will
assume that we are given fields Fg , Gg satisfying conditions (1g), (2g), (3g),

(4g) for each g ∈ k[X ], g ≺ f , and we will construct the required fields
F f , G f .
Let us define

F f := k
⋃(⋃

g≺ f

Gg

)

and impose on it the unique well-ordering < f such that both k and each
Gg, g ≺ f , are sections of it. It is then clear that F f satisfies conditions
(1 f ), (2 f ).
To construct G f , we will build a splitting field of F f as described in
Theorem 5.2.3 – of which we will use the same notation – with a twist: in
building the tower

F f = k0 ⊆ k1 ⊆ · · · ⊆ kn−1 = G f ,

we will

impose an ordering on each kr extending the one on kr−1 in such a way that
kr−1 is a section4 of kr ;

extend it on kr [X ] and
in each step, choose as gi the minimal irreducible factor of fi with respect

to ≺.

2 If the set B is well-ordered by ≺, A ⊂ B is called a section if

a ∈ A, b ∈ B \ A �⇒ a ≺ b.
3 If we are given a well-ordering ≺ on k, we generalize it to k[X ] as follows: given f (X) =∑n

i=0 ai Xi , g = ∑m
i=0 bi Xi in k[X ], then f ≺ g will hold iff either

n < m, or
n = m and there is j such that a j ≺ b j and ai = bi , for all i > j.

4 To establish this, given a well-ordering ≺ on kr−1, we deduce a well-ordering on kr−1[X ] such
that kr−1 is a section of kr , and we restrict it to the set of all the polynomials in kr−1[X ] of
degree lower than gr−1, which is the classical representation of kr .
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It is then clear that G f satisfies the conditions (3 f ), (4 f ).
Having in this way obtained the set

S := {k} ∪ {Gg : g ∈ k[X ]},
we impose on it an ordering induced by ≺ – and denoted as such – by

G f ≺ Gg ⇐⇒ f ≺ g, and
k ≺ Gg, for all g ∈ k[X ].

Since, for each f ∈ k[X ],

k is a section of F f which is a section of G f , and
Gg is a section of F f which is a section of G f , for each g ≺ f ,

we conclude that

K :=
⋃

F∈S

F

is a field5.
Moreover, since K is

algebraic over k by its construction, and
algebraically closed by Lemma 9.1.4, since each polynomial g(X) ∈ k[X ]

splits in Gg ,

it is an algebraic closure of k.

Proposition 9.1.6. Let k be a field and let K be the algebraic closure defined
in the proof of Proposition 9.1.5. Let K ′ be an algebraic closure of k; then
there is a k-isomorphism � : K → K ′.

5 We use the fact that:

if, in an ordered set of fields, every preceding field is a subfield of its successor, then the union of
this set of fields is a field too.

The proof is quite elementary: let S be this set of fields ordered by ≺ and let K := ∪F∈SF .
For any two elements α1, α2 ∈ K , let Fi ∈ S be such that αi ∈ Fi for i = 1, 2. One among
these two fields, let us call it F, contains the other and so contains α1 and α2. Therefore α1 +α2
and α1α2 are defined in F and this definition coincides with that in each field F ∈ S such that
F ! F and can so be used as the definition in K .
To prove the laws of field operations, e.g. the distributivity law, for any three elements
α1, α2, α3 ∈ K we consider Fi ∈ S such that αi ∈ Fi for i = 1, 2, 3. Then, in each field
F ∈ S such that F ! Fi , for all i , the distributivity law holds, and so it holds in K .
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Proof The proof will again be obtained by transfinite induction: for each
section K ⊂ K we will construct a section K′ ⊂ K ′ and a k-isomorphism
�K : K → K′ such that

(1K) For each section H ⊂ K we have �K(a) = �H(a), for all a ∈ H.
(2K) If K has a last element l, let us define H ⊂ K to be the section such that

K = H ∪ {l}, and f (X) ∈ H[X ] to be the irreducible polynomial
whose root is l; then �K(l) is the first root – with respect to the well-
ordering of K ′ – of �H( f (X)) ∈ H′[X ];

assuming that we already have, for each section H ⊂ K, the section H′ and the
k-isomorphism �H.
We have to consider two cases:

K has a last element l: in this case, with the notation of (2K), let l ′ ∈ K ′ be
the first root of �H( f (X)). Then defining

K′ := H′ ∪ {l ′}, and

�K(a) :=
{

l ′ iff a = l
�H(a) iff a ∈ H,

(1K) and (2K) hold.
K has no last element: in this case K = ⋃

H∈S(K) H, where S(K) is the set of
all the sections of K; then we define K′ = ⋃

H∈S H′. For each a ∈ K, (1K)

implies that there is a unique a′ ∈ K′ such that�H(a) = a′, for all H ∈ S;
then setting

�K(a) = a′, for all a ∈ K,

(1K) and (2K) hold.

Therefore, for each section K ⊂ K , we have constructed a section K′ ⊂ K ′

and a k-isomorphism �K : K → K′ satisfying conditions (1K) and (2K).
Let K ′′ := ⋃

H∈S(K ) H, where S(K ) is the set of all the sections of K , and let
� : K → K ′′ be such that it satisfies

�(a) = �H(a), for all a ∈ K , ∀H : a ∈ H.

Therefore � is a k-isomorphism and, since K is algebraically closed, so also
is K ′′; since K ′ is an algebraic extension of K ′′ and K ′′ is algebraically closed,
then K ′ = K ′′ and both K and K ′ are k-isomorphic.

Theorem 9.1.7 (Steinitz). Let k be a field. Then there is an algebraic closure
K of k. Any two algebraic closures of k are k-isomorphic.
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Proof This follows from Propositions 9.1.5 and 9.1.66.

As we know and will prove in Section 12.1, C is algebraic closed and is the
algebraic closure of any field K : R ⊆ K ⊆ C.

Proposition 9.1.8. Let K ⊂ C and let

Kalg := {α ∈ C : α is algebraic over K };
then Kalg is the algebraic closure of K .

Proof The fact that Kalg is a field is a consequence of Corollary 6.7.5; it is then
sufficient to show that it is algebraically closed: if

f (X) =
n∑

i=0

ai Xi ∈ Kalg[X ],

then it has a root α ∈ C; therefore α is algebraic over K [a0, a1, . . . , an] which
is algebraic over K , since each ai is algebraic over K ; as a consequence α ∈
Kalg, i.e. f has a root in Kalg.

Remark 9.1.9. I intend now to describe the algebraic closure of Zp, for prime p.
Let us denote, for all i ∈ N \ {0}, ei := i!, qi := pei , Fi := G F(qi ). Since,

by Corollary 7.1.6, Fi ⊂ Fi+1 for each i , we can define the field

F :=
⋃

i

Fi .

Since for all i,G F(pi ) ⊂ Fi ⊂ F , and is the splitting field of each irre-
ducible polynomial of degree i , then F is the algebraic closure of Zp.

9.2 Algebraic Dependence and Transcendency Degree

In this section, we will discuss the argument which was only hinted at in
Lemma 8.2.1, by introducing the notions of algebraic dependence, transcen-
dental extension and transcendental degree. In the context which we are con-
templating, we are given a field k (e.g. Q or a finite field) and a field exten-
sion K ⊃ k (e.g. a field in Kronecker’s Model) and a finite set of elements
α1, . . . , αn ∈ K (e.g. the generators of the finite extension K = k(α1, . . . , αn)

of k). In introducing the notion and in our first rudimentary results we will drop

6 The more recent presentations substitute ‘transfinite induction’ by Zorn’s Lemma, but, as
Gordan said, ‘das ist Theologie und keine Mathematik’.
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the restriction of finiteness; however, we will reintroduce it in the proof – not
the statement – of the main result.

Definition 9.2.1. Let k ⊂ K be two fields and let A,B ⊂ K \ k be sets.

An element v ∈ K is called

algebraically dependent on A over k, if there is a polynomial

f (X1, . . . , Xn, Y ) ∈ k[X1, . . . , Xn, Y ] \ k[X1, . . . , Xn]

and elements α1, . . . , αn ∈ A such that f (α1, . . . , αn, v) = 0.
algebraically independent on A over k, if for each polynomial

f (X1, . . . , Xn, Y ) ∈ k[X1, . . . , Xn, Y ] \ k[X1, . . . , Xn]

and for each element α1, . . . , αn ∈ A, f (α1, . . . , αn, v) �= 0.

The set B is said to be algebraically dependent on A over k if all elements of
B are algebraically dependent on A over k.

The sets A and B are said to be equivalent over k if they are mutually
dependent.

The set A is called

algebraically dependent over k, if there is a polynomial

f (X1, . . . , Xn) ∈ k[X1, . . . , Xn] \ {0}
and elements α1, . . . , αn ∈ A such that

f (α1, . . . , αn) = 0;
algebraically independent over k, or a transcendental set of K over k, if

for each polynomial f (X1, . . . , Xn) ∈ k[X1, . . . , Xn] \ {0} and for
each element α1, . . . , αn ∈ A, f (α1, . . . , αn) �= 0.

If A is a transcendental set of K over k, and K = k(A) then K is called a
pure transcendental extension of k.

A transcendental set A over k is called a transcendental basis of K over k if
it is not a proper subset of another transcendental set of K over k.

Remark 9.2.2. Clearly

if B is algebraically dependent on A and C is algebraically dependent on B,
then C is algebraically dependent on A;

‘equivalence’ is an equivalence relation;
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if A is algebraically independent over k and I is any set with the same cardi-
nality as A then k(A) is k-isomorphic with the field of the rational func-
tions k(Xi : i ∈ I).

Lemma 9.2.3. Let A ⊂ K \ k be a transcendental set of K over k; z ∈ K \ k
be such that z �∈ A, and let B = A ∪ {z}. Then the following are equivalent:

(1) B is a transcendental set of K over k;
(2) z is transcendental over k(A).

Proof

(2) �⇒ (1) Assume there is a polynomial

f (X1, . . . , Xn, Z) ∈ k[X1, . . . , Xn, Z ] \ {0}
and elements α1, . . . , αn, β ∈ B such that f (α1, . . . , αn, β) = 0.
There are suitable polynomials ai ∈ k[X1, . . . , Xn] such that

f =
∑

i

ai (X1, . . . , Xn)Z
i

and at least one of them, say aI , is not null.
Since A is a transcendental set, we can deduce that aI (α1, . . . ,

αn) �= 0 and we can assume wlog that β = z.
Then z is a root of the polynomial g(Z) := f (α1, . . . , αn, Z) ∈
k(A)[Z ]; since z is transcendental, g(Z) = 0 in k(A)[Z ].
From g(Z) = 0 and aI (α1, . . . , αn) �= 0 we obtain a contradiction.

(1) �⇒ (2) Conversely, let g(Z) = ∑
βi Z i ∈ k(A)[Z ]. There are finitely

many elements α1, . . . , αn ∈ A and polynomials ai ∈ k[X1, . . . ,

Xn] such that ai (α1, . . . , αn) = βi , ∀i .
Let f := ∑

ai (X1, . . . , Xn)Zi ∈ k[X1, . . . , Xn, Z ] \ {0}; since B is
a transcendental set of K over k we have

g(z) =
∑

βi z
i =

∑
ai (α1, . . . , αn)z

i = f (α1, . . . , αn, z) �= 0.

Corollary 9.2.4. A transcendental set A of K over k is a transcendental basis
of K over k iff K is an algebraic extension of k(A).

Proposition 9.2.5. Let K ⊃ k be an extension field generated by a set A. Then
there is a subset B ⊆ A such that

A and B are equivalent;
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B is algebraically independent;
A depends algebraically over B;
B is a transcendental basis of K over k;
and

k ⊆ k(B) ⊆ k(A) = K ,

where k(B) is a pure transcendental extension of k and K is an algebraic
extension of k(B).

Proof Let A be well-ordered by ≺ and let B consists of all elements α ∈ A
such that α is algebraically independent on {β ∈ A : β ≺ α}.
With this construction, the required properties obviously hold.

Lemma 9.2.6 (Steinitz). Let Bn := {β1, . . . , βn} be a finite subset of K \ k
which is algebraically independent and let A be a subset of K \ k such that
for all i , βi is algebraically dependent on A over k.

Then, there are α1, . . . , αn ∈ A such that

Cn := {α ∈ A : α �= αi , 1 ≤ i ≤ n} ∪ Bn (9.1)

and A are equivalent over k.

Proof The proof is by induction since it obviously holds for n = 0.
Assume it holds for n := ν − 1 and let us prove it for n := ν.
We know that βν is algebraically dependent on A over k, and so is algebraically
dependent on Cν−1.
Therefore there is a smallest subset in Cν−1 such that βν is algebraically de-
pendent on it.
This subset cannot be contained in Bν−1 = {β1, . . . , βν−1}, since Bn is alge-
braically independent; so it contains at least an element

αν ∈ Cν−1 \ Bν−1.

Therefore there is a polynomial

f ∈ k[Y1, . . . ,Yν−1, Z1, . . . , Zr ][T, X ] \ k[Y1, . . . ,Yν−1, Z1, . . . , Zr ][X ]

such that

f (β1, . . . , βν−1, γ1, . . . , γr , αν, βν) = 0

where, for each i , γi ∈ Cν−1 \ Bν−1 and γi �= αν .
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Clearly, f gives a dependence relation of αν over Cν . The equivalence between
Cn and A then follows.

Corollary 9.2.7. Let A and B be two transcendental bases of K over k.
If A is finite, then A and B have the same cardinality.

Proof Let m := card A. By Lemma 9.2.6, card B ≤ card A and B is finite.
Since B is finite, Lemma 9.2.6 proves that card A ≤ card B and the
claim.

As a consequence, we can conclude that any transcendental bases of K over
k have the same cardinality, if at least one of them is finite. The results hold
without this restriction which we claim, without proof, in

Fact 9.2.8. Any transcendental bases of K over k have the same cardinality.

Definition 9.2.9. The common cardinality of any transcendental basis of K
over k is called the transcendency degree of K over k.

9.3 The Structure of Field Extensions

In order to analyse in more depth the structure of field extensions by consider-
ing the structure of algebraic extensions let us introduce

Definition 9.3.1. Let K ⊃ k be an algebraic extension of k. Then the set

Ksep := {β ∈ K : β is separable over k}
will be called the greatest separable extension of k in K ,

and we claim

Fact 9.3.2. Let K ⊃ k be an algebraic extension of k. Then Ksep is a field,

which will be proved in Corollary 10.3.15.

Remark 9.3.3. If k is perfect, for each algebraic extension K ⊃ k we know
K = Ksep. Therefore what follows is significant when k is an infinite field of
finite characteristic.
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Lemma 9.3.4. Let K ⊃ k be an algebraic extension, char(k) = p. Then each
α ∈ K is purely inseparable over Ksep.

Proof Let f (X) ∈ k[X ] be the minimal polynomial of α and e be their expo-
nent of inseparability.
Then f (X) = g(X pe

) = g(X)pe
for a suitable separable polynomial g(X) ∈

k[X ] and β := α pe
is a root of g.

As a consequence, α pe
is separable, and so α pe ∈ Ksep, i.e. α is purely insep-

arable over Ksep (cf. Remark 5.4.10).

Corollary 9.3.5. For any algebraic extension K ⊃ k, there is a field Ksep such
that

K ⊃ Ksep ⊃ k;
Ksep is a separable extension of k;
K is a purely inseparable extension of Ksep.

Let K ⊃ k be a finite algebraic extension of k, char(k) = p. Let n0 :=
[Ksep : k] and let e be such that [K : Ksep] = pe (cf. Remark 5.4.10) so that

[K : k] = [K : Ksep][Ksep : k] = n0 pe =: n.

It is evident that in the case of a simple algebraic extension K := k(α), this
result can be read as follows:

Corollary 9.3.6. Let K ⊃ k be a simple algebraic extension K := k(α).
Let f (X) ∈ k[X ] be the minimal polynomial of α, let e be its exponent of

inseparability, n its degree and n0 its reduced degree. Then

f (X) = g(X pe
) = g(X)pe

for a suitable separable polynomial g(X) ∈ k[X ] and β := α pe
is a root of g;

moreover

k(β) is the greatest separable extension of k in k(α) and k(α) is a purely
inseparable extension of k(β);

[k(α) : k] = n is the degree of α and f ;
[k(β) : k] = n0 is the reduced degree of α and f and it is the degree of β

and g;
[k(α) : k(β)] = pe is the degree of inseparability of α and f .
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Proof We only have to prove that k(β) is the greatest separable extension of k
in k(α) and k(α) is a purely inseparable extension of k(β).
Let γ ∈ k(α) and let h(X) ∈ k[X ] be such that γ = h(α); then

γ pe = h(α)pe = h(α pe
) = h(β) ∈ k(β).

So, all elements in k(α) are purely inseparable over k(β).
Moreover k(β) is separable over k, since β is such.
Each γ ∈ k(α) which is separable, being purely inseparable over k(β), is an
element of k(β) (Lemma 5.4.11).

The results of Proposition. 9.2.5 and Corollary 9.3.5 allow us to describe the
structure of field extensions by

Theorem 9.3.7. Let K ⊃ k be a field extension; then there is a tower

K ⊃ Ksep ⊃ Ktrasc ⊃ k

where

Ktrasc is a purely transcendental extension of k;
Ksep is a separable algebraic extension of Ktrasc;
K is a purely inseparable algebraic extension of Ksep.

9.4 Universal Field

Let k be a field and let us consider the polynomial ring over k with infinitely
many variables k[Y1, Y2, . . . ,Yn, . . .], its quotient field k(Y1, Y2, . . . ,Yn, . . .)

and its algebraic closure �(k).

Definition 9.4.1. �(k) is the universal field over k.

If k is a prime field and K(k) denotes the class of all the fields K ⊃ k to
which Kronecker’s Model is applicable – i.e. all the finite extension fields K
over their prime field k –, �(k) is the field which contains a representation of
each field K ∈ K(k), in the sense that:

Proposition 9.4.2. Any field K ∈ K(k) can be isomorphically embedded in
�(k).
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Proof We know that K is explicitly given by specifying integers d ≥ 0, r ≥ 0
and an admissible sequence f1, . . . , fr with fi ∈ k(Y1, . . . ,Yd)[Z1, . . . , Zi ]
so that

K ∼= k(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( f1, . . . , fn).

Therefore, using freely the notation of Definition 8.2.2 and Proposition 8.2.3,
we define isomorphic embeddings �i : Li → �, for all i .
We begin by noting that L0 = k(Y1, . . . ,Yd) ⊂ � so that �0 is the immersion.
Assuming we have already defined �i−1, we extend it to

�i : Li = Li−1[Zi ]/gi−1(Zi ) ∼= Li−1[αi ] → �

by sending αi to any root of �i−1 (gi−1(Z)) ∈ �[Z ].

9.5 Lüroth’s Theorem

Let k be a field and K := k(ξ) a simple transcendental field; its elements are
rational functions η := f (ξ)/g(ξ) where f, g ∈ k[X ], g �= 0, and, wlog we
assume gcd( f, g) = 1.

Definition 9.5.1. The degree of η is deg(η) := max(deg( f ), deg(g)).

Lemma 9.5.2. With this notation:

(1) The polynomial P(X, Y ) := g(X)Y − f (X) ∈k[X, Y ] is irreducible.
(2) The polynomial Q(X, Y ) := g(X) f (Y ) − f (X)g(Y ) ∈ k[X, Y ] has no

factor in k[X ] nor in k[Y ].

Proof

(1) Assume P were reducible; since it is linear in Y , one of its factors must
be independent of Y and so a polynomial in k[X ]. The existence of such a
factor is denied by the assumption that gcd( f, g) = 1.

(2) The irreducibility of P implies that it has no factor in k[X ] and this holds
if we substitute Y with f (Y )/g(Y ) and multiply by g(Y ).
Therefore Q has no factor in k[X ].
By symmetry we also deduce that Q has no factor in k[Y ].

Proposition 9.5.3. Let η ∈ k(ξ) \ k. Then:

(1) k(ξ) is algebraic over k(η);
(2) η is transcendental over k;
(3) [k(ξ) : k(η)] = deg(η).
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Proof Let f := ∑
ai Xi , g := ∑

bi Xi and let

ϒ(X) := g(X)η − f (X) ∈ k(η)[X ].

Then ξ satisfies the equation 0 = ϒ(ξ).

Also ϒ(X) �= 0 in k(η)[X ]: in fact, since g �= 0, there is j such that b j �= 0;
then, if ϒ = 0, we would have that b jη − a j = 0, η = a j/b j ∈ k, giving a
contradiction with the assumption that η is non-constant.
Therefore

(1) ξ is algebraic over k(η);
(2) if η were algebraic over k, then k(ξ) would be an algebraic extension of k,

contrary to the assumption that ξ is transcendental;
(3) by Lemma 9.5.2 we know that ϒ is irreducible over k(η); therefore it is

the minimal polynomial of ξ over k(η).

The main significance of Proposition 9.5.3 is the case in which K is the
rational function field k(X) and η is a non-constant rational function η(X) :=
f (X)/g(X); in this context we can interpret Proposition 9.5.3 as:

Corollary 9.5.4. Let K := k(X) and let ρ(X) ∈ K \ k be any non-constant
rational function. Then:

k(X) is an algebraic extension over k(ρ), which is a transcendental exten-
sion over k;

[k(X) : k(ρ)] = deg(ρ);
deg(ρ) depends only on the two fields k(ρ) and k(X), since it is independent

from our choice of the generator of k(X) over k;
k(X) = k(ρ) ⇐⇒ deg(ρ) = 1;
the simple generators of the field k(X) over k are all and only the linear

rational functions;
the k-automorphisms of k(X) are all and only the transformations

X → a X + b

cX + d
, ad − bc �= 0

Theorem 9.5.5 (Lüroth’s Theorem). Every field K such that k ⊂ K ⊆ k(X)
is a simple transcendental extension, so that K = k(η) for some non-constant
rational function η(X).
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Proof Let ρ ∈ K \ k. By Corollary 9.5.4, X is algebraic over k(ρ) and so, over
K. Then let

h1(Y ) :=
n∑

i=0

ai Y
i ∈ K[Y ] ⊂ k(X)[Y ]

be the minimal polynomial of X over K; in particular an = 1. Multiplying h1

by bn(X), the least common multiple of the denominators of the ai s, we get
the polynomial H1(X, Y ) := ∑n

i=0 bi (X)Y i ∈ k[X, Y ], where the coefficients
satisfy gcdi (bi ) = 1.
If all the coefficients ai = bi/bn were independent from X , then X would be
algebraic over k. Therefore one of them, say ai , is in k(X) \ k and we can
represent it as

η(X) := ai = bi

bn
= f (X)

g(X)
,

where f, g ∈ k[X ], g �= 0, and gcd( f, g) = 1.
The polynomial

ϒ(Y ) := g(Y )η − f (Y ) = g(Y )
f (X)

g(X)
− f (Y ) ∈ k(η)[Y ] ⊂ k(X)[Y ]

is such that ϒ �= 0 and X is a root of it; therefore it is a multiple of h1(Y ) over
k(X); i.e. there is h2(Y ) ∈ k(X)[Y ] such that

g(Y )
f (X)

g(X)
− f (Y ) = h1(Y )h2(Y )

in k(X)[Y ].
As a consequence, by the Gauss Lemma (Corollary 6.1.6), there is H2(X, Y )
∈ k[X, Y ] such that

Q(X, Y ) := g(X) f (Y )− f (X)g(Y ) = H1(X, Y )H2(X, Y ).

Obviously, degX (H1), the degree of H1 in X , can be bounded by

degX (H1) = max
i
(deg(bi )) ≥ max(deg( f ), deg(g)) = degX (Q);

this implies that H2(X, Y ) ∈ k[Y ], which contradicts Lemma 9.5.2.
Therefore, up to a constant, we have

g(X) f (Y )− f (X)g(Y ) = Q(X, Y ) = H1(X, Y ) =
n∑

i=0

bi (X)Y
i ∈ k[X, Y ].
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Then, by symmetry

deg(η) = degX (Q) = degY (Q) = degY (H1) = n,

and

[k(X) : k(η)][k(η) : K] = [k(X) : K] = n = deg(η) = [k(X) : k(η)],

from which we obtain [k(η) : K] = 1, i.e. K = k(η).
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Lagrange

In this chapter, I introduce some other concepts related to the solution of poly-
nomial equations, and Lagrange’s intuition of their rôle in solving root permu-
tations and the analysis of expressions which are invariant under them, which
led to Galois Theory.

Conjugate (Section 10.1) algebraic numbers over a field k are those which
share the same minimal polynomial f (X) ∈ k[X ]; this elementary definition
could be formulated within Kronecker’s Philosophy by saying that all arith-
metical operations over algebraic expressions of a generic root behave in the
same way when they are performed on conjugate algebraic numbers.

The reason for this behaviour is simply that, given two conjugate roots
α1, α2 ∈ K ⊃ k whose minimal polynomial is f (X) ∈ k[X ], there is the
obvious isomorphism

L1 := k[α1] ∼= k[X ]/ f (X) ∼= k[α2] =: L2,

so that both the algebraic expressions and the algebraic operations in
k[X ]/ f (X) represent the corresponding ones in each Li .

It is then natural to consider all the subfield structures1 Li ⊆ K which
represent k[α1]. This leads me to introduce the notion of k-isomorphisms of L
into K (Section 10.3).

In many applications (mainly the ones related to Galois Theory) we need to
consider all possible k-isomorphisms of L = k[α]; since, in order to do so, it
would be sufficient to consider all the conjugates of α, we must require that K –
the setting in which we are considering the subfield structures k-isomorphic

1 Be aware that this expression has been chosen in order to clarify that I am not only simply
considering the subfields Li ⊆ K which are isomorphic to k[α1]: there is a single subfield
L ⊂ R which is isomorphic to Q[

√
2], namely Q[

√
2] itself, but it has two different field

structures, the one in which
√

2 is positive and the one in which it is negative. This crucial
distinction is strictly related to the discussion of Examples 8.1.1 and 8.1.2.
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to L – contains the splitting field of f . Kronecker’s Philosophy gives us a
tool for repeatedly solving polynomial equations by repeatedly adjoint roots;
therefore the consideration of k-isomorphisms into K will be a success if K is
such that it contains, together with a number, all its conjugates: such fields are
called normal and their basic properties are discussed in Section 10.2.

In Section 10.4, using the notions of this chapter and the Primitive Element
Theorem (8.4.5) I discuss the properties of the splitting field of an irreducible
polynomial, both in the separable and inseparable cases.

If we consider a finite algebraic extension K ⊃ k and an element τ ∈ K \ k
then multiplication by τ is a k-linear function �τ : K → K ; the notions of
the trace and norm of �τ , which can be associated to τ itself, are discussed in
Section 10.5, where I present their essential properties and their basic relation
to the notions discussed before; in particular, I show that, if K = k(τ ), the trace
(respectively norm) of τ is the sum (respectively product) of all the conjugates
of τ and that in the general case it is the sum (respectively product) of the
images of τ under all the k-isomorphisms of K into a normal extension.

Given a finite basis � of a finite algebraic extension K ⊃ k, via the trace
we can associate a discriminant2 to � which has different applications, from
testing whether� is a k-basis when k is finite, to testing whether K is separable
(Section 10.6).

I also show (Section 10.7) that if K is a finite separable normal extension
then there is an element ξ ∈ K such that the set of the conjugates of ξ is a
k-basis of K (normal basis).

10.1 Conjugates

Definition 10.1.1. Let K ⊃ k be a field extension and let α, β ∈ K be alge-
braic over k. They are called conjugate over k if they have the same minimal
polynomial over k.

The conjugacy property does not depend on the larger field K , but certainly
depends on k: for instance, the polynomial X4 − 2 is irreducible over Q (so its
four roots are conjugate over Q) but factors as

X4 − 2 = (X2 −
√

2)(X2 +
√

2)

over Q(
√

2), so that the two real roots are conjugate over Q(
√

2) and so are
the two complex roots, but a real and a complex root are not conjugate over
Q(

√
2).

2 The concept coincides with the discriminant of the polynomial f (X) if K is separable and
K = k[X ]/ f (X).
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Proposition 10.1.2. Let K ⊃ k be a field extension and let α, β ∈ K be
algebraic over k. Then the following conditions are equivalent:

α and β are conjugate over k;
there is a k-isomorphism � : k[α] → k[β] such that �(α) = β.

Proof If α and β are conjugate, the existence of � is a consequence of
Lemma 5.5.3.

Conversely, if there is a k-isomorphism � : k[α] → k[β] such that �(α) = β,

let f (X) ∈ k[X ] be the minimal polynomial of α over k; then

f (β) = f (�(α)) = �( f (α)) = �(0) = 0,

so that f is the minimal polynomial of β over k.

Let K ⊃ k be a field extension and α ∈ K be an algebraic element over
k of reduced degree n0; let f (X) ∈ k[X ] be the minimal polynomial of
α over k and let α =: α1, . . . , αν be all the elements in K which are con-
jugate to α.

Then:

for each i ≤ ν there is a k-isomorphism

k(α) ∼= k[X ]/ f (X) ∼= k(αi )

under which α is carried into αi ;
ν ≤ n0, i.e. there are at most n0 elements in K which are conjugates to α

over k,
and ν = n0 iff K contains the splitting field of f (X),
in which case f (X) splits over K as

f (X) =
n0∏

i=1

(X − αi )
pe
,

where p = char(k) and e is the exponent of inseparability of α.

10.2 Normal Extension Fields

The above remark leads us to consider the question of whether a field K
contains all the conjugates of its elements over k, and to characterize such
fields:
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Definition 10.2.1. A field algebraic extension K ⊃ k is called a normal ex-
tension field of k, if

for all α ∈ K , K contains all the d conjugates of α over k, where d denotes the reduced
degree of α,

or, equivalently,

each irreducible polynomial g(X) ∈ k[X ] which has a root in K , factors into linear
factors over K .

Proposition 10.2.2. Let K ⊇ k be a finite field extension.
Then K is normal iff it is the splitting field of a (not necessarily irreducible)

polynomial f (X) ∈ k[X ].

Proof

⇒ Assume K is normal. Since K is a finite field extension of k, let α1, . . . ,

αn ∈ K \ k be such that K = k[α1, . . . , αn].
For each i , let fi (X) ∈ k[X ] be the minimal polynomial of αi over
k; since K is normal, it contains the splitting field of each fi (X) and,
therefore, also the splitting field K of the product f (X) := ∏

i fi (X),
i.e. K ⊂ K .

Conversely, since K contains all the roots of f (X), including the αi s,
K = k[α1, . . . , αn] ⊂ K.
Therefore K = K is the splitting field of f .

⇐ Let g(X) ∈ k[X ] be an irreducible polynomial, α ∈ K be such that g(α) =
0 in K and β a conjugate of α in the splitting field of g over K ; we
intend to prove that β ∈ K .
Note that the splitting field of f over k[α] is K , and that over k[β] is
K [β]; therefore by Proposition 5.5.4 the k-isomorphism � : k[α] →
k[β] such that �(α) = β extends to a k-isomorphism � : K → K [β]
such that �(α) = β.
Let R := {γ1, . . . , γr } ⊂ K be the set of the roots of f .
Since f (X) ∈ k[X ] is preserved by � and splits linearly into K , we
can deduce that � produces a permutation on the set of the roots of
f , i.e.

there exists π : {1, . . . , r} → {1, . . . , r} : �(γi ) = γπ(i).

But K = k(R), so that � is an automorphism of K .
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Since, there is a rational function ρ ∈ k(X1, . . . , Xr ) such that α =
ρ(γ1, . . . , γr ), we have

β = �(α) = ρ(�(γ1), . . . , �(γr ) = ρ(γπ(1), . . . , γπ(r)) ∈ K .

Theorem 10.2.3. If K ⊃ k is a finite algebraic extension of k, then there is a
finite normal extension L of k containing K .

If L and L ′ are two such normal extensions, and they are minimal, then they
are K -isomorphic.

Proof Since K = k[α1, . . . , αn] and is algebraic over k, for each i let fi (X) ∈
k[X ] be the minimal polynomial of αi over k; let f (X) := ∏n

i=1 fi (X) and L
be the splitting field of f (X) over K .
Since L is generated over K by all the roots of f , and K is generated over
k by some roots of f , it follows that L is generated over k by the roots of
f , i.e. it is the splitting field of f (X) over k and, therefore, a normal ex-
tension of k.
Moreover it is minimal over this property, because if L0 is a normal extension
of k such that k ⊆ K ⊆ L0 ⊆ L , then, for all i , fi , being irreducible in k[X ],
splits linearly in L0, so that the same is true for f ; being L generated over K
by all the roots of f , we conclude that L = L0 is minimal.
To conclude the argument, we need to prove that any other minimal normal
extension L1 of k containing K is K -isomorphic to L . In fact, L1 contains the
root αi (and so all the roots) of fi , for all i; therefore it contains a splitting
field of f (X) over k, which is necessarily a normal extension of k containing
K ; we can conclude that if L1 is minimal, it coincides with this splitting field.
Being a splitting field of f over k, L1 is also a splitting field of f over K , and
so is K -isomorphic with L .

The argument of Proposition 10.2.2 can be extended to infinite field exten-
sions via

Proposition 10.2.4. Let K ⊇ k be a field extension.
Then K is normal iff it is obtained from k by the adjunction of all the roots

of a set of polynomials in k[X ].
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Proof

⇐ Each element γ ∈ K depends only on the roots of finitely many polyno-
mials { f1, . . . , fm}.
So, in order to prove that γ is algebraic over k and that its minimal
polynomial splits, we can just consider the field K1, γ ∈ K1 ⊆ K ,
which is obtained by the adjunction of all the roots of the single poly-
nomial f (X) := ∏m

j=1 f j (X) ∈ k[X ].
That the minimal polynomial of γ splits in K1 – and so also in K – is
then a corollary of Proposition 10.2.2.

⇒ Let K ⊃ k be normal and let S ⊂ K be such that K is obtained from k by
the adjunction of S, K = k(S).
Every element α ∈ S has a minimal polynomial f (X) ∈ k[X ] over
k, which therefore splits in K . Then, setting R to be the set of all the
conjugates of the elements α ∈ S, clearly K = k(R).

Remark 10.2.5. In the following sections we will often consider a field k and
a normal extension field K of k and we will study algebraic field extensions
L such that k ⊂ L ⊂ K . The results will become more understandable if the
readers remember that there exists a ‘universal normal extension field’ k̄ of k,
such that k ⊂ L ⊂ k̄ for each algebraic field extension L ⊃ k: the algebraic
closure of k (Section 9.1).

10.3 Isomorphisms

Definition 10.3.1. Let k ⊆ L ⊆ K be three fields. A k-isomorphism of L into
K is any assignment of a subfield L ′ ⊂ K – not necessarily different from
L – and a k-isomorphism ψ : L → L ′.

Let K ⊃ k be a normal extension field of k, α ∈ K \ k, f (X) ∈ k[X ] be its
minimal polynomial over k, L := k[α].

Then we know that f has n0 roots α =: α1, . . . , αn0 in K , all of them
having (by Proposition 4.5.2) the same multiplicity pe where p = char(k) and
deg( f ) = n = n0 pe.

For each i , let Li := k[αi ] and ψi : L → Li be the unique k-isomorphism
such that ψi (α) = αi ; then

Lemma 10.3.2. With the setting above, let M ⊂ K be a subfield which is
k-isomorphic to L under the isomorphism φ : L → M ⊂ K .

Then there exists i ≤ n0 : M = Li , φ = φi .
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Proof In fact, let γ := φ(α) ∈ M ⊂ K . Then, since φ is a k-isomorphism, we
have φ( f ) = f , f (γ ) = 0, there exists i : γ = αi , and Li = k[αi ] ⊆ M .
Since

[Li : k] = n = [L : k] = [M : k]

then M = Li ; since ψi is the unique k-isomorphism such that

ψi (α) = αi = γ,

then φ = ψi ,

from which we deduce

Corollary 10.3.3. With the setting above, there are exactly n0 k-isomorphisms
of L into K .

Proof They are the n0 k-isomorphisms ψi : L → Li .

Remark 10.3.4. In the notation above, we have α = α1 and so ψ1 is the iden-
tity of L = L1.

Also, note that, while the αi s are all different, this does not imply that the
Li s are different too; it means only that there could be k-automorphisms of Li .

This result can be generalized to

Proposition 10.3.5. With the above setting, let K be any field extension of L;
then there are at most n0 k-isomorphisms of L into K.

There are exactly n0 of them if K contains a splitting field of L.

Proof If ψ : L → M ⊆ K is a k-isomorphism of L into K, the same argument
as in Lemma 10.3.2 allows us to deduce that ψ(α) is a root of f (X) in K. The
claim is then obvious.

Lemma 10.3.6. Let K ⊃ k be a finite normal extension field and let α, β ∈
K be conjugate over k. Then there is a k-isomorphism � of K such that
�(α) = β.

Proof By definition there is a k-isomorphism � : k[α] → k[β]. Since, by
definition, K is the splitting field of a polynomial f (X) ∈ k[X ], it is also the
splitting field of f over both k[α] and k[β]; then the existence of � follows
from Proposition 5.5.4.
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Corollary 10.3.7. Let L ⊃ k be a finite extension. Then the following condi-
tions are equivalent:

L is normal.
If K ⊃ L is any field extension, then each k-isomorphism

φ : L → M ⊂ K

is an automorphism.

Under this assumption, L is the splitting field of a polynomial f (X) ∈ k[X ],
and:

L has n0 k-automorphisms, where n0 is the reduced degree of f ;
if α, β ∈ L are conjugate over k, then there is a k-automorphism � of L

such that �(α) = β.

Proof If L is normal, from Proposition 10.3.5, setting L = K we deduce that
the n0 k-isomorphisms of L are automorphisms.
Conversely, let us fix a normal extension K ⊃ L . We consider any element
α ∈ L; then K contains all its conjugates over L and we need to show that
each of them lies in L .
Let β ∈ K be any such conjugate. Then there is a k-automorphism � : K →
K such that �(α) = β; then � induces a k-isomorphism of L into K and, by
assumption, a k-automorphism of L; therefore β = �(α) ∈ L .

Example 10.3.8. Let us consider the following cases:

k := R, K := C, α := i, f (X) := X2 + 1.
Then we have L1 = L2 = C, and ψi : L1 → Li are respectively the
identity ψ1(a+ib) = a+ib and the conjugation map ψ2(a+ib) = a−ib.

k := Q, K := R, α := √
2, f (X) := X2 − 2.

Thus L1 = L2 = Q(
√

2), and ψi : L1 → Li are respectively the identity
ψ1(a + √

2b) = a + √
2b and the ‘conjugation’ map ψ2(a + √

2b) =
a −√

2b.

With the notations of Examples 5.2.5, 5.2.6 and 5.5.1 we can consider

k := Q, K := Q(
3
√

2,
√−3), α := β = 3

√
2, f (X) := X3 − 2.
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Then we have L1 = Q[β], L2 = Q[γ ], L3 = Q[−β − γ ];

k := k1 = Q[β], K := C, α := γ , f (X) := X2 + βX + β2.
Thus

L1 = L2 = k2 = k1[γ ] = Q[β, γ ],

where, denoting by φi : k2 → k2 the two k1-automorphisms, we have
φ1 is the identity and φ2 is defined by φ2(γ ) = −β − γ so that

φ2
(
a00 + a10β + a20β

2 + a01γ + a11βγ + a21β
2γ
)

= (a00 − 2a21)+ (a10 − a01)β + (a20 − a11)β
2

−a01γ − a11βγ − a21β
2γ ;

k := k1 = Q[β], K := Q(
3
√

2,
√−3), α := δ = √−3, f (X) := X2 − 3.

Then we have L1 = L2 = k′2 = k1[β, δ], where, denoting φ′i : k′2 → k′2
the two k1-automorphisms, we have φ′1 is the identity and φ′2 is defined
by3

φ′2
(
a00 + a10β + a20β

2 + a01δ + a11βδ + a21β
2δ
)

= a00 + a10β + a20β
2 − a01δ − a11βδ − a21β

2δ.

Example 10.3.9. If k = Zp, p prime, and L = K = G F(pn), we know
(Corollary 7.2.6) that, for each irreducible polynomial f (X) ∈ k[X ], deg( f ) =
n, K is the splitting field of f and, for each root α ∈ K \ k of f ,

G F(pn) = K = L = k[α] = k[X ]/ f (X), and
the conjugates of α are αi := α pi

, 0 ≤ i < n,

so that the n k-automorphisms of K are the Frobenius automorphisms �i

definied by �i (β) = β pi
.

3 It is easy and illuminating to check that under the isomorphism � : k2 → k′2 we have �φ2 =
φ′2�:

�φ2

(
a00 + a10β + a20β

2 + a01γ + a11βγ + a21β
2γ

)
= �

(
(a00 − 2a21)+ (a10 − a01)β + (a20 − a11)β

2

− a01γ − a11βγ − a21β
2γ

)
= (a00 − a21)+ (a10 − 1

2 a01)β + (a20 − 1
2 a11)β

2

+ a21δ + 1
2 a01βδ + 1

2 a11β
2δ

= φ′2
(
(a00 − a21)+ (a10 − 1

2 a01)β + (a20 − 1
2 a11)β

2

− a21δ − 1
2 a01βδ − 1

2 a11β
2δ
)

= φ′2�
(

a00 + a10β + a20β
2 + a01γ + a11βγ + a21β

2γ
)
.
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Lemma 10.3.10. Let k ⊂ L ⊂ M ⊂ K be field extensions such that

K is a normal extension of k,
L is a finite algebraic extension of k,
[L : k] = m,

M is a finite algebraic extension of L,
[M : L] = g.

Then we know that L has m k-isomorphisms, which we will denote

ψi : L → Li , 1 ≤ i ≤ m,

in K .
Then the gm k-isomorphisms of M into K can be partitioned into m subsets

Gi , 1 ≤ i ≤ m, each consisting of those g k-isomorphisms φ which extend ψi ,
in the sense that they satisfy

φ(γ ) = ψi (γ ), for all γ ∈ L .

Proof For each k-isomorphism φ of M into K , its restriction to L is a
k-isomorphism ψi of L into K .
Then, the set G of the gm k-isomorphisms of M into K can be partitioned as
G = ∪iGi where, for each i , Gi contains those k-isomorphisms φ such that
their restriction to L is ψi :

φ(γ ) = ψi (γ ), for all γ ∈ L .

We can wlog assume that M is a simple extension of L by α ∈ M whose
minimal polynomial f (X) ∈ L[X ] has reduced degree g:

M = L[X ]/ f (X) = L[α].

For each i , fi := ψi ( f ) is an irreducible polynomial in Li [X ] of reduced
degree g whose roots in K will be denoted βi1, . . . , βig . Therefore for each
k-isomorphism φ ∈ Gi we have

fi (φ(α)) = ψi ( f )(φ(α)) = φ( f )(φ(α)) = φ( f (α)) = φ(0) = 0

so that φ(α) = βi j for some j .
Also, for all i, j , ψi can be extended to a k-isomorphism

φi j : M = L[α] → Li [βi j ] ⊂ K
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such that φi j (γ ) = ψi (γ ), for all γ ∈ L , and φi j (α) = βi j , in a single way
by defining

for all
∑

h

bhα
h ∈ L[α] : φi j

(∑
h

bhα
h

)
:=

∑
h

ψi (bh)β
h
i j .

In conclusion, we have Gi = {φi j : 1 ≤ j ≤ g}.

Example 10.3.11. As an example let us continue the computation developed
in Examples 5.2.5, 5.2.6, 5.5.1 and 10.3.8 where

k = Q, M = K = Q(β, γ ), L = Q[β].

Let us first note that, with the notation of those examples, in K := Q(β, γ ):

for ψ2, for which ψ2(β) = γ , we have:

ψ2( f1(X)) = X2 + γ X + γ 2 ∈ L2[X ] = Q[γ ][X ]

one of whose roots is obviously4 β and the other is therefore −β − γ ;
and, for ψ3, for which ψ3(β) = β + γ , we have

ψ3( f1(X)) = X2 + (−β − γ )X + (−β − γ )2

= X2 − (β + γ )X + βγ

= (X − β)(X − γ ) ∈ L3[X ] = Q[β + γ ][X ]

whose roots are obviously β and γ .

This lets us describe all the k-isomorphisms of K := Q(β, γ ). To set a
notation which allows us to further discuss this example, let us freely set the
identification (as Theorem 5.5.6 permits)

α1 := β, α2 := γ, α3 := −β − γ.

Lemma 10.3.10 gives us the following 6 k-automorphisms of K :

�123 : �123(α1) = α1 �123(α2) = α2 �123(α3) = α3

�132 : �132(α1) = α1 �132(α2) = α3 �132(α3) = α2

�213 : �213(α1) = α2 �213(α2) = α1 �213(α3) = α3

�231 : �231(α1) = α2 �231(α2) = α3 �231(α3) = α1

�312 : �312(α1) = α3 �312(α2) = α1 �312(α3) = α2

�321 : �321(α1) = α3 �321(α2) = α2 �321(α3) = α1

Lemma 10.3.10 can be expanded, by iteration, to yield

4 Remember that γ 2 + γβ + β2 = 0 in K .
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Theorem 10.3.12. Let K ⊃ L ⊃ k be such that K is a normal extension of k
and L is a finite algebraic extension of k, L = k[α1, . . . , αs], so that each αi

is algebraic over Li−1 := k[α1, . . . , αi−1] of reduced degree ni .
Then L has

∏s
i=1 ni k-isomorphisms into K .

Proof By induction. If s = 1 the claim follows from Proposition 10.3.5.
For s > 1, then M := Ls−1 has, by induction, m := ∏s−1

i=1 ni k-isomorphisms
into K . Then the result follows from Lemma 10.3.10.

Corollary 10.3.13. With the same notation L has [L : k] k-isomorphisms into
K iff each αi is separable over Li−1.

Proof In fact αi is separable over Li−1 iff ni = [Li : Li−1].

As a consequence of Corollary10.3.13 we obtain

Corollary 10.3.14. Let L = k[α1, . . . , αs] ⊃ k be a finite algebraic extension
of k, such that each αi is separable over Li−1 := k[α1, . . . , αi−1].

Then each β ∈ L is separable over k.

Proof We can in fact obtain that L has an algebraic extension of k(β): since,
denoting by K ⊃ L any normal extension of k, L has [L : k] = [L :
k(β)][k(β) : k] k-isomorphisms and [L : k(β)] k(β)-isomorphisms into K , we
conclude that k(β) has [k(β) : k] k-isomorphisms into K , i.e. β is separable.

From which we can conclude immediately Fact 9.3.2:

Corollary 10.3.15. Let K ⊃ k be an algebraic extension of k. Then Ksep is a
field.

Proof For any α1, α2 ∈ Ksep, α2 �= 0, α1 ± α2, α1α2, α1α
−1
2 are elements of

k(α1, α2) and so are separable.

Finally we recall the Dedekind Theorem:

Theorem 10.3.16 (Dedekind). Let k ⊂ K ⊂ M be field extensions and let
σ1, . . . , σn be a finite family of distinct k-isomorphisms of K into M.
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Then they are linearly independent over M, i.e. if

n∑
i=1

ciσi (x) = 0, for all x ∈ K ,with ci ∈ M, �⇒ ci = 0, for all i.

Proof The result being obvious if n = 1, we will prove it by induction on n.
For each α ∈ K

0 =
n∑

i=1

ciσi (αx) =
n∑

i=1

ciσi (α)σi (x)

so that

0 =
n∑

i=1

ciσi (α)σi (x)− σn(α)

n∑
i=1

ciσi (x)

=
n∑

i=1

ci (σi (α)− σn(α)) σi (x)

=
n−1∑
i=1

ci (σi (α)− σn(α)) σi (x).

By induction we conclude that, for all i < n, we have ci (σi (α)− σn(α)) = 0,
and ci = 0, since the σ j s are distinct. From ci = 0, for all i < n, we also
deduce cn = 0.

10.4 Splitting Fields

Let us now consider a finite normal extension K ⊃ k; by the results above we
know that K is the splitting field of a polynomial F(X) ∈ k[X ]. We intend to
study its structure, by means of Theorem 8.4.5, both when F is separable and
is not.

Corollary 10.4.1. Let G(X) ∈ k[X ] be a separable irreducible polynomial
and let K ⊃ k be its splitting field. Then:

there is a separable primitive element ξ ∈ K , and a separable polynomial
g(X) ∈ k[X ] such that

K = k[X ]/g[X ] = k[ξ ];
denoting by n := [K : k], the degree of g and ξ , K contains n simple roots
ξ := ξ1, . . . , ξn of g;

g = ∏n
i=1(X − ξi );
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there are n polynomials pi (X) ∈ k[X ], deg(pi )< deg(g), such that pi (ξ) =
ξi ;

K has the n k-automorphisms φi : K → K such that φi (ξ) = ξi ;
there are d := deg(G) polynomials qi (X) ∈ k[X ], deg(qi ) < deg(g), such

that the roots of G are qi (ξ).

Proof The existence of ξ and of the qi s is a consequence of Theorem 8.4.5 and
of the fact that the finite extension K is separable, since G is.
Since K is normal and contains a root of g, we have g splits in it.

Example 10.4.2. Let us continue the computations developed in
Examples 5.2.5, 5.2.6, 5.5.1, 10.3.8 and 10.3.11 where k = Q, G(X) :=
X3 − 2, K = Q(β, γ ).

Setting ξ := β + 2γ , by linear algebra we obtain that

ξ0 = +1
ξ1 = β +2γ
ξ2 = −3β2

ξ3 = −6 −6β2γ

ξ4 = 18β
ξ5 = 18β2 −36βγ
ξ6 = −108

and the minimal polynomial of ξ is g(X) := X6 + 108, whose roots are

�123(ξ) = β + 2γ = ξ

�132(ξ) = −β − 2γ = −ξ
�213(ξ) = 2β + γ = 1

12ξ
4 + 1

2ξ

�231(ξ) = −2β − γ = − 1
12ξ

4 − 1
2ξ

�312(ξ) = β − γ = 1
12ξ

4 − 1
2ξ

�321(ξ) = −β + γ = − 1
12ξ

4 + 1
2ξ.

Also, setting

q1(X) = 1

18
X4,

q2(X) = − 1

36
X4 + 1

2
X,

q3(X) = − 1

36
X4 − 1

2
X,



10.4 Splitting Fields 205

then

qi (ξ) = αi , for all i.

Corollary 10.4.3. Let k be a field such that char(k) = p �= 0 and let F(X) ∈
k[X ] be an inseparable irreducible polynomial. Let K ⊃ k be the splitting field
of F.

Then:

there is an e > 0 and a separable irreducible polynomial G(X) ∈ k[X ] such
that F(X) = G(X pe

);
if K , k ⊂ K , is the splitting field of G, there is a separable primitive element
ξ ∈ K , and a separable polynomial g(X) ∈ k[X ] such that

K = k[X ]/g[X ] = k[ξ ];
K contains n0 = [K : k] = deg(g) simple roots ξ := ξ1, . . . , ξn0 of g;
which are represented by n0 polynomials pi (X) ∈ k[X ], deg(pi ) < deg(g),

such that pi (ξ) = ξi ;
there are d := deg(G) polynomials qi (X) ∈ k[X ], deg(qi ) < deg(g), such

that the roots of G are qi (ξ).

Consider the polynomial f (X) = g(X pe
) and let ζ be, in a suitable exten-

sion of k[ξ ], the element such that ζ pe = ξ . Then:

f splits in K [ζ ] as

f (X) =
n0∏

i=1

(X − pi (ζ ))
pe ;

[k[ζ ] : k[ξ ]] = pe;
k[ξ ] = k[ζ ]sep.

Moreover

k[ζ ] = K, the splitting field of F;
the roots of F are qi (ζ ) ∈ k[ζ ];
k[ζ ] has the n0 k-automorphisms φi : k[ζ ] → k[ζ ] such that φi (ζ ) = pi (ζ );
f is irreducible in k[X ].

Proof The existence of e and G is a consequence of the inseparability of F ;
the existence of ξ , g, ξi , pi , qi follows from the above corollary.
By the definition of ζ , for each i

pi (ζ )
pe = pi (ζ

pe
) = pi (ξ),

f (pi (ζ )) = g(pi (ζ )
pe
) = g(pi (ξ)) = 0,
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from which follows the splitting of f in K [ζ ].
From it we deduce

[k[ζ ] : k[ξ ]][k[ξ ] : k] = [k[ζ ] : k] = deg( f ) = pe deg(g) = pe[k[ξ ] : k]

and we conclude that [k[ζ ] : k[ξ ]] = pe.
Since ζ is purely inseparable over k[ξ ], the same is true for any element
of k[ζ ]:

h(ζ )pe = h(ζ pe
) = h(ξ) ∈ k[ξ ].

The other statements are obvious.

10.5 Trace and Norm

Let K be a finite algebraic extension of k of degree n. Therefore K has a finite
k-vector space basis � := {ω1, . . . , ωn}.

For any element τ ∈ K the function �τ : K → K defined by

�τ (υ) := τυ, for all υ ∈ K

is a k-linear function, therefore it can be represented by an n×n matrix Mτ :=(
ti j
)

i j where ti j ∈ k and

τω j =
∑

i

ti jωi , for all j.

We recall that if �′ := {ω′
1, . . . , ω

′
n} is a different basis, and M ′

τ :=
(

t ′i j

)
i j

is the matrix representing �τ in terms of �′, then the matrix E := (
ei j

)
i j

defined by

ω′
j =

∑
i

ei jωi , for all j

is invertible and

M ′
τ = E Mτ E−1.

We recall that for an n × n matrix M := (
ti j
)

i j , its norm is its determinant

and its trace is Tr(M) := ∑n
i=1 tii and that

Lemma 10.5.1. Let M, E be two n×n matrices, E being invertible, and define
M ′ := E M E−1. Then det(M) = det(M ′), Tr(M) = Tr(M ′).
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Proof We only need to note that for two n × n matrices A, B we have,
Tr(AB) = Tr(B A), from which we can deduce that Tr(M) = Tr(E M E−1) =
Tr(M ′).

On the basis of this, we can introduce the following

Definition 10.5.2. For an element τ ∈ K ,

the norm of τ in K over k is the norm of the matrix Mτ :

NK/k(τ ) = det(Mτ );
the trace of τ in K over k is the trace of the matrix Mτ :

TrK/k(τ ) = Tr(Mτ ).

Since K is an algebraic extension, τ satisfies a minimal polynomial

f (X) := Xm +
m∑

i=1

ai Xm−i ∈ k[X ].

We intend to express the norm and trace of τ in K over k in terms of the
coefficients of f (X), and therefore, by Section 6.2, in terms of the conjugates
τ =: τ1, . . . , τm of τ.

Proposition 10.5.3. We have

Nk[τ ]/k(τ ) = (−1)mam = ∏
i τi ;

Trk[τ ]/k(τ ) = −a1 =
∑

i τi .

Proof As a basis of k[τ ] we choose � := {1, τ, τ 2, . . . , τm−1} obtaining the
matrix Mτ := (

ti j
)

i j defined by

ti j =



1 if 1 ≤ i = j − 1 ≤ m − 1
−am− j+1 if i = m, 1 ≤ j ≤ m
0 otherwise,

(10.1)

from which we easily get the expression of the trace, while that of the norm
just requires us to expand the determinant along the last row.

Remarking that

n = [K : k] = [K : k[τ ]][k[τ ] : k] = [K : k[τ ]]m

we denote g := [K : k[τ ]] and deduce
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Corollary 10.5.4.

NK/k(τ ) = (
Nk[τ ]/k(τ )

)g = (−1)nag
m =

∏
i

τ
g
i ;

TrK/k(τ ) = g Trk[τ ]/k(τ ) = −ga1 = g
∑

i

τi .

Proof Let us choose a basis {ω1, . . . , ωg} of K over k[τ ]; then the basis of K
over k is

�′ := {ω1, ω1τ, ω1τ
2, . . . , ω1τm−1, ω2, . . . , ωg−1τm−1, ωg, . . . , ωgτm−1}

in terms of which we express the multiplication by τ via the gm × gm matrix


Mτ 0 0 . . . 0
0 Mτ 0 . . . 0
...

...
...

. . . 0
0 0 0 . . . Mτ




where Mτ is the matrix defined by Equation 10.1.
The result then follows obviously.

As a consequence of the above results, it follows easily that:

Lemma 10.5.5. For τ, υ ∈ K , c ∈ k,

NK/k(τ ) = 0 ⇐⇒ τ = 0;

NK/k(τυ) = NK/k(τ )NK/k(υ);
TrK/k(τ + υ) = TrK/k(τ )+ TrK/k(υ);
TrK/k(cτ) = c TrK/k(τ );
NK/k : K \ {0} → k \ {0} is a group homomorphism between these multi-

plicative groups;

TrK/k : K → k is a k-linear function;

NK/k(c) = cn;

TrK/k(c) = nc;

if τ and υ are conjugate, then TrK/k(τ ) = TrK/k(υ);

if τ and υ are conjugate, then NK/k(τ ) = NK/k(υ).
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Lemma 10.5.6. Let k ⊂ K ⊂ L be finite algebraic extensions and let τ ∈ K .
Denoting g := [L : K ] we have

NL/k(τ ) =
(
NK/k(τ )

)g = (−1)nag
m = ∏

i τ
g
i ;

TrL/k(τ ) = g TrK/k(τ ) = −ga1 = g
∑

i τi .

Proof An argument similar to the proof of Corollary 10.5.4 is sufficient.

We intend now to interpret the norm and the trace in terms of the k-
isomorphisms of K .

Therefore let us fix a normal extension field

K ⊃ K ⊃ k[τ ] ⊃ k

and begin by considering the m k-isomorphisms of k[τ ] in K: denoting them
as ψi : k[τ ] → k[τi ], we remark that

Nk[τ ]/k(τ ) =
∏

i

τi =
n∏

i=1

ψi (τ ); Trk[τ ]/k(τ ) =
∑

i

τi =
n∑

i=1

ψi (τ ).

Now let us consider the [K : k] = n = gm k-isomorphisms of K in K:
according to Lemma 10.3.10 we know that they can be partitioned into m
subsets Gi each consisting of g isomorphisms, in such a way that for each
k-isomorphism φ

φ ∈ Gi ⇐⇒ φ(τ) = ψi (τ ) = τi ;
from this we deduce

Proposition 10.5.7. Let G := {ψi : 1 ≤ i ≤ n} be the set of all the
k-isomorphisms of K in a suitable normal extension; then

NK/k(τ ) =
n∏

i=1

ψi (τ ); TrK/k(τ ) =
n∑

i=1

ψi (τ ).

On the basis of this definition of norm, we can generalize it to polynomials
in K [X ] as follows: let, as above, G := {ψi : 1 ≤ i ≤ n} be the set of all
the k-isomorphisms ψi : K → Ki of K in a suitable normal extension and
let ψi : K → Ki denote also the polynomial extension ψi : K [X ] → Ki [X ].
Then the norm of a polynomial f (X) in K [X ] over k is

NK/k( f (X)) =
n∏

i=1

ψi ( f (X)).
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Under this definition we have:

Lemma 10.5.8. The following three polynomials:

the minimal polynomial f (X) of τ ;
the norm of (X − τ) in k[τ ][X ] over k;
the characteristic polynomial of the k-linear form �τ : k[τ ] → k[τ ];

coincide.

Proof The three polynomials have the same degree n, are monic and have τ as
a root. Since one of them is the minimal polynomial of τ , they must coincide.

Corollary 10.5.9. The following three polynomials:

f (X)g;
the norm of (X − τ) in K [X ] over k;
the characteristic polynomial of the k-linear form �τ : K → K ;

coincide.

Proof The result follows from the proof of Corollary 10.5.4 and from
10.5.8.

In the case of finite fields, the trace and norm have further relevant properties

Proposition 10.5.10. Let F := G F(q), E := G F(qn) and α ∈ E. Then:

(1) TrE/F (α) =
∑n−1

i=0 α
qi
.

(2) The F-linear function TrE/F : E → F is surjective.

(3) TrE/F (α) = 0 ⇐⇒ there exists β ∈ E : α = βq − β.

(4) NE/F (α) = αqn−1/q−1.

(5) The multiplicative function NE/F : E → F is surjective.

(6) NE/F (α) = 1 ⇐⇒ there exists β ∈ E : α = βq−1.

Proof

(1) The n F-automorphisms of E are the morphisms �i , i = 0, . . . , n − 1,
defined by �i (α) = αqi

.
(2) Setting, for all c ∈ F , fc(X) := X + Xq + Xq2 +· · ·+ Xqn−1 −c ∈ F[X ],

for each α ∈ E we have:

TrE/F (α) = c ⇐⇒ fc(α) = 0;
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since fc has degree qn−1, for each of the q polynomials fc, there are at
most qn−1 elements α ∈ E such that TrE/F (α) = c. As a consequence the
qn elements of E are partitioned into q sets Ec, c ∈ F, of qn−1 elements
whose trace is c.

(3) Obviously TrE/F (β) = TrE/F (β
q), for all β ∈ E .

Conversely, let α ∈ E be an element such that TrE/F (α) = 0; in a suitable
finite extension of E let β be a root of Xq − X −α: if we are able to prove
that β ∈ E we are through; to do that we only have to show that β = βqn

:

0 = TrE/F (α) =
n−1∑
i=0

αqi =
n−1∑
i=0

(βq − β)q
n−1−i

= (βqn − βqn−1
)+ (βqn−1 − βqn−2

)

+ · · · + (βq − β).

(4) It follows from NE/F (α) =
∏n−1

i=0 α
qi = α

∑n−1
i=0 qi = α

qn−1
q−1 .

(5) Setting, for all c ∈ F , gc(X) := X
qn−1
q−1 − c ∈ F[X ], for each α ∈ E \ {0}

we have:

NE/F (α) = c ⇐⇒ gc(α) = 0;
for each of the q − 1 polynomials fc, there are at most qn−1

q−1 elements
α ∈ E such that TrE/F (α) = c.
As a consequence the qn − 1 elements of E \ {0} are partitioned into q − 1
sets Ec, c ∈ F \ {0}, of qn−1

q−1 elements whose norm is c.
(6) If β is a primitive (qn − 1)th root of unity, we have

NE/F (α) = α
qn−1
q−1 = 1 ⇐⇒ there exists r : α = βr(q−1)

= (βr )(q−1).

This allows us to characterize the duality5 of the G F(q)-vector space G F(qn):

Proposition 10.5.11. Let F := G F(q) and E := G F(qn). For each β ∈ E
let Lβ : E → F be the linear functional defined by

Lβ(α) := TrE/F (αβ).

5 If F is a field and E is an F-vector space, we can consider the linear functionals of E , i.e. the
F-morphisms L := E → F ; their set, called the dual space, denoted by E∗ := HomF (E, F),
is an F-vector space.
When E is a finite vector space, the same holds for E∗ and we have dimF (E) = dimF (E

∗) =:
n, so that they are isomorphic.
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The mapping

! : E → HomF (E, F)

defined by !(β) = Lβ, for all β, is an isomorphism.

Proof Obviously, each Lβ is F-linear, so that Lβ ∈ HomF (E, F); moreover
! is F-linear. To prove that it is an isomorphism, since E and HomF (E, F)
have the same dimension over F , it is sufficient to show that it is injective:
since TrE/F is surjective and

β �= 0 �⇒ E = {αβ : α ∈ E},
we conclude that

Lβ(α) := TrE/F (αβ) = 0, for all α ∈ E �⇒ {αβ : α ∈ E} �⊆ E

�⇒ β = 0,

i.e. that ! is injective.

10.6 Discriminant

Let K ⊃ k be a finite algebraic extension of degree n.
If � := {ω1, . . . , ωn} ⊂ K is any set of n elements of k, we can consider

the matrix


TrK/k(ω1ω1) TrK/k(ω1ω2) · · · TrK/k(ω1ωn)

TrK/k(ω2ω1) TrK/k(ω2ω2) · · · TrK/k(ω2ωn)
...

...
. . .

...

TrK/k(ωnω1) TrK/k(ωnω2) · · · TrK/k(ωnωn)




and its determinant �K/k(�).

Definition 10.6.1. With the notation above, �K/k(�) is called the discrimi-
nant of �.

Lemma 10.6.2. Let � := {ω1, . . . , ωn} be a k-basis of K . If �K/k(�) = 0
then there is β ∈ K \ {0} such that TrK/k(αβ) = 0, for all α ∈ K .

Proof Since �K/k(�) = 0, there are c j ∈ k, not all zero, such that∑
j

c j TrK/k(ωiω j ) = 0, ∀i.
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Therefore, defining β := ∑
j c jω j , we have TrK/k(ωiβ) = 0, for all i , from

which it follows that TrK/k(αβ) = 0, for all α ∈ K .

Based on the lemma above, the discriminant allows us, when k is a finite
field, to decide whether a set � is a k-basis of K :

Proposition 10.6.3. Let F := G F(q) and E := G F(qn) and let

� := {ω1, . . . , ωn} ⊂ E;
then the following are equivalent

(1) � is an F-basis of E;
(2) �E/F (�) �= 0.

Proof

(1) �⇒ (2) From Lemma 10.6.2, we know that �E/F (�) = 0 implies the
existence of β ∈ K \ {0} such that TrE/F (αβ) = 0, for all α ∈ K .
Using the notation and results of Proposition 10.5.11 we deduce that

Lβ(α) = 0, for all α ∈ K

and therefore that β = 0, giving the required contradiction.
(2) �⇒ (1) Let c j ∈ k be such that

∑
j c jω j = 0; then, for each i

0 = TrK/k(ωi

∑
j

c jω j ) =
∑

j

c j TrK/k(ωiω j ).

Since �E/F (�) �= 0, this implies c j = 0, for all j .

Let us now give an interpretation of the discriminant when K is a separable
extension of k. In this case there are n k-isomorphisms of K into a normal ex-
tension N ⊃ K , which we will denote as φ1, . . . , φn , where φ1 is the identity.

Lemma 10.6.4. Under the above notation, let � := {ω1, . . . , ωn} ⊂ K be a
k-basis of the separable field K and let

ω
( j)
i := φ j (ωi ).
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Then

�K/k(�) =

∣∣∣∣∣∣∣∣∣∣

ω
(1)
1 ω

(2)
1 · · · ω

(n)
1

ω
(1)
2 ω

(2)
2 · · · ω

(n)
2

...
...

. . .
...

ω
(1)
n ω

(2)
n · · · ω

(n)
n

∣∣∣∣∣∣∣∣∣∣

2

.

Proof Note that, by definition,

TrK/k(ωiωh) =
∑

j

φ j (ωiωh) =
∑

j

ω
( j)
i ω

( j)
h

from which the result is obvious.

With the same notation, if K is separable, by the Primitive Element Theorem
we know that there is χ such that K = k[χ ], so that � := {1, χ, . . . , χn−1} is
a k-basis of K .

If χ j := φ j (χ), for all j , denotes the conjugate of χ , in the above formula
we have

ω
( j)
i = φ j (χ

i−1) = φ j (χ)
i−1 = χ i−1

j ,

from which we obtain:

Theorem 10.6.5. Let K ⊃ k be a separable algebraic extension, [K : k] = n.
Let χ be a primitive element, χ =: χ1, . . . , χn be its conjugates and f (X) its
minimal polynomial.

Then:

�K/k(�) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
χ1 χ2 · · · χn

χ2
1 χ2

2 · · · χ2
n

...
... · · · ...

χn−1
1 χn−1

2 · · · χn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∏
i> j

(χi − χ j )
2

= Disc( f )

= Res( f, f ′)
= NK/k( f ′(X)) �= 0.

Proof The first equality follows from Lemma 10.6.4, the second one by the
Vandermonde determinant, the third by Definition 6.5.3 and the fourth by
Corollary 6.7.3.
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The fifth equation follows from the fact that f (X) = ∏
j (X − χ j ), so that

f ′(X) =
∑

i

∏
j �=i

(X − χ j ),

f ′(χi ) =
∏
j �=i

(χi − χ j ),

NK/k( f ′(X)) =
∏

i

∏
j �=i

(χi − χ j ).

The inequality is due to the fact that χi − χ j �= 0 if i �= j .

On the basis of the above result, the notion of discriminant also allows us to
test the separability of finite extension; to prove this result we need, however,
to introduce a further lemma:

Lemma 10.6.6. Let K ⊃ k be a finite algebraic extension of degree n. Let
�1 := {ω1

1, . . . , ω
1
n} and �2 := {ω2

1, . . . , ω
2
n} be two k-bases of K . Then

�K/k(�
1) = 0 ⇐⇒ �K/k(�

2) = 0.

Proof Let A := (
ai j

)
i j be the invertible matrix such that

ω2
i =

∑
j

ai jω
1
i ;

so that

TrK/k(ω
2
Iω

2
J ) =

∑
i j

aI i a j J TrK/k(ω
1
i ω

1
j )

and

�K/k(�
2) = det(A)2�K/k(�

1).

Theorem 10.6.7. Let K ⊃ k be a finite algebraic extension of degree n. The
following conditions are equivalent:

(1) for each k-basis � of K , �K/k(�) = 0;
(2) for each α ∈ K ,TrK/k(α) = 0;
(3) K is an inseparable extension of k.

Proof

(1) �⇒ (2) By Lemma 10.6.2 we conclude that there is β ∈ K \ {0} such
that TrK/k(αβ) = 0, for all α ∈ K . Therefore for each α ∈ K ,
setting γ := αβ−1 we have TrK/k(α) = TrK/k(γβ) = 0.
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(2) �⇒ (1) Trivial.
(1) �⇒ (3) If K were separable, by Theorem 10.6.5, would we conclude

that �K/k(�) �= 0.
(3) �⇒ (2) Let Ksep be the greatest separable extension of k in K . Using

freely the notation of Corollary 9.3.6, we note that
if α ∈ Ksep then TrK/k(α) = pe TrKsep/k(α) = 0.
if α ∈ K \Ksep, then α is inseparable and so its minimal polyno-

mial g(X) is such that g(X) = ∏n0
i=1 X−α pe

i so that TrK/k(α) =
pe ∑

i αi = 0.

Corollary 10.6.8. Let K ⊃ k be a finite algebraic extension. K is a separable
extension of k iff there is α ∈ K such that TrK/k(α) �= 0.

10.7 Normal Bases

Let K ⊃ k be a finite separable normal extension and let n := [K : k]; by
Corollary 10.4.1 we know the existence of n k-automorphisms φi : K → K .

If ξ ∈ K is a primitive element, so that K = k[ξ ], we will denote its
conjugates as ξi := ψi (ξ), for all i , and we will consider the set

�(ξ) := {ξ1, . . . , ξn};
as in Lemma 10.6.4 we will use the notation

ξ
( j)
i := φ j (ξi ) = φ j (ψi (ξ)).

Definition 10.7.1. With the above notation, a basis � := {ω1, . . . , ωn} of K
as a k-vector space is called a normal basis of K over k if each two elements
of � are conjugate, or, equivalently, if there is an element ξ ∈ K such that
� = �(ξ).

Lemma 10.7.2. With the above notation, if ξ ∈ K is a primitive element,�(ξ)

is a basis – and so a normal one – iff det(ξ ( j)
i ) �= 0.

Proof Let us assume that there are ci ∈ k such that
∑n

i=1 ciξi = 0; then

n∑
i=1

ciξ
( j)
i = φ j

(
n∑

i=1

ciξi

)
= 0, for all j,

since φ j (ci ) = ci , for all i . As a consequence, if det(ξ ( j)
i ) �= 0, we deduce

ci = 0, for all i , and �(ξ) is a basis.
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Conversely, let us assume that det(ξ ( j)
i ) = 0, so that there are elements γi ∈ K ,

not all of them null, such that
n∑

i=1

γiξ
( j)
i = 0, for all j; (10.2)

let us assume wlog γ1 �= 0.
Since K is separable, by Theorem 10.6.7, we know the existence of α ∈ K
such that TrK/k(α) �= 0; therefore, multiplying Equation 10.2 by αγ−1

1 , we
can assume that TrK/k(γ1) �= 0. From Equation 10.2 we obtain

n∑
i=1

φ−1
j (γi )ξi = 0, for all j,

and
n∑

i=1

TrK/k(γi )ξi =
n∑

j=1

n∑
i=1

φ−1
j (γi )ξi = 0;

since TrK/k(γi ) ∈ k and TrK/k(γ1) �= 0, we conclude that � = {ξ1, . . . , ξn} is
not a linear basis.

Lemma 10.7.3. Let k be an infinite field and K ⊃ k be a finite separable
normal extension; let d(X1, . . . , Xn) ∈ K [X1, . . . , Xn] be a polynomial such
that

d(φ1(ξ), . . . , φn(ξ)) = 0, for all ξ ∈ K ;
then d = 0.

Proof Let {ω1, . . . , ωn} be a k-basis of K so that each element ξ ∈ K can be
represented as ξ = ∑n

i=1 ciωi ; therefore, we have

ψ j (ξ) =
n∑

i=1

ciψ j (ωi ) =
n∑

i=1

ciω
( j)
i , for all j.

Consider the polynomial

D(Y1, . . . ,Yn) := d

(
n∑

i=1

Yiω
(1)
i , . . . ,

n∑
i=1

Yiω
(n)
i

)
∈ K [Y1, . . . ,Yn],

which, by assumption satisfies

D(c1, . . . , cn) = 0, for all (c1, . . . , cn) ∈ kn;
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therefore the infiniteness of k allows us to conclude6 that D = 0. By
Theorem 10.6.7, the separability of K implies that the matrix

(
ω
( j)
i

)
is in-

vertible; therefore denoting
(
γi j

)
to be its inverse we have

d(X1, . . . , Xn) := D

(
n∑

j=1

γ1 j X j , . . . ,

n∑
j=1

γnj X j

)
= 0.

Proposition 10.7.4. Let k be an infinite field and K ⊃ k be a finite separable
normal extension; then there exists a normal basis of K over k.

Proof For each i, j , 1 ≤ i, j ≤ n, let us denote i � j , 1 ≤ i � j ≤ n, the element
such that φi� j = φiφ j .

Let us consider the matrix in the variables X1, . . . , Xn whose (i, j) entry is
Xi� j , and the polynomial

d(X1, . . . , Xn) := det(Xi� j ).

Since we have

i � j = i � h �⇒ j = h,
i � j = h � j �⇒ j = h,

we deduce that each row and column contains exactly one entry X1; there-
fore d(1, 0, . . . , 0) = ±1 and d(X1, . . . , Xn) �= 0. Therefore, Lemma 10.7.3
allows us to deduce the existence of ξ ∈ K such that

det(ξ ( j)
i ) = d(φ1(ξ), . . . , φn(ξ)) �= 0

and so that of a normal basis �(ξ) of K over k.

6 In fact, if g(Y1, . . . , Yn) ∈ K [X1, . . . , Xn ] is such that g �= 0, and k ⊂ K is an infinite set,
we can prove the existence of ci ∈ k, for all i , such that g(c1, . . . , cn) �= 0. The proof is by
induction on n.
If n = 1 it is clear that g(Y1) has at most deg(g) roots in k, so we can choose c1 ∈ k such that
g(c1) �= 0.

Iteratively, we can write g(Y1, . . . ,Yn) as g = ∑
j f j (Y1, . . . ,Yn−1)Y

j
n ; since g �= 0, there

is at least an index J such that f J ∈ K [Y1, . . . ,Yn−1] is not zero, and, inductively, there are
ci ∈ k, 1 ≤ i < n, such that f J (c1, . . . , cn−1) �= 0 and G(Yn) = g(c1, . . . , cn−1, Yn) ∈
K [Yn ] is not zero and has at most deg(G) roots in k, so we can choose cn ∈ k such that
g(c1, . . . , cn−1, cn) = G(cn) �= 0.
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Let k be finite, card(k) = q and K be an algebraic extension such that
[K : k] = n.

Then, denoting i , by �i : K → K for each i , the morphism defined by
�i (χ) = χqi

, the k-isomorphisms of K are {�i : 1 ≤ i ≤ n} and we have

�i = � j ⇐⇒ i ∼= j (mod n).

Proposition 10.7.5. With the above assumptions, K has a normal basis
over k.

Proof We need to prove that there is ξ ∈ K such that

{ξ, ξq , ξq2
, . . . , ξqn−1}

is a basis of K as a k-vector space.
To each polynomial g(X) := ∑

k ck Xk ∈ K (X) and to each element χ ∈ K
let us denote

g " χ :=
∑

k

ck�k(χ) =
∑

k

ckχ
qk ∈ K .

To each χ ∈ K let us associate the unique polynomial gχ ∈ K (X) of minimal
degree such that

gχ " χ = 0.

Obviously, for each χ , gχ divides Xn − 1 since �n is the identity.
Let

Xn − 1 = p1(X)
e1 · · · peh

h (X)

be the factorization in k[X ] and let

qi (X) := Xn − 1

pi (X)
, ri (X) := Xn − 1

pei
i (X)

, for all i.

For each i , there is βi such that qi "βi �= 0: in fact deg(qi ) ≤ n − 1 and the set
{�i : 1 ≤ i ≤ n} is linearly independent, so that there is βi such that

qi " βi :=
∑

k

ck�k(βi ) �= 0.

Let γi := ri " βi ; then

pei
i " γi = pei

i " (ri " βi ) =
(
ri pei

i

) " βi = (Xn − 1) " βi = 0,

while

pei−1
i " γi = pei−1

i " (ri " βi ) = qi " βi �= 0,

so that pei
i = gγi .
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Denoting ξ := ∑
i γi it is clear that gξ = Xn − 1.

As a consequence

n−1∑
k=0

ck�k(ξ) =
n−1∑
k=0

ckξ
qk �= 0, for all ck ∈ K ,

so that

{ξ, ξq , ξq2
, . . . , ξqn−1}

is a basis of K as a k-vector space.

From the two previous propositions we deduce

Theorem 10.7.6. Let K ⊂ k be a finite separable normal extension; then there
is a normal basis of K over k.
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Duval

Clever triviality is the essence of geniality.

E.B. Gebstadter, Copper, Silver, Gold: an

Indestructible Metallic Alloy

Kronecker’s Model gives a powerful tool for computing, at least within the
field of the algebraic complex numbers, and for solving polynomial equations
there, provided we have an algorithm for factorizing polynomials over a given
algebraic extension of the rationals. Such an algorithm exists, but its practical
complexity is so unsatisfactory, that the solution of polynomial equations pro-
vided by Kronecker’s ideas has no practical impact and the state of the art on
Solving Polynomial Equation Systems was again in an impasse: as Macaulay
put it1. ‘the solution is only a theoretical one’. . .

. . . until in 1987, more than one hundred years after Kronecker’s
Grundzüge, Duval2 added an unexpected twist to Kronecker’s proposal, show-
ing how factorization can be easily avoided. Her proposal threw light on
Kronecker’s ideas, clarifying the philosophy behind them.

I will introduce Duval’s idea by discussing how to represent rings explicitly.

11.1 Explicit Representation of Rings

In all the cases we have seen up to now, a ring A is effectively given by taking
a set R, whose elements are in biunivocal correspondence with the elements of
A, and defining in R those operations which turn R into a ring isomorphic to A.

For instance, for A = Zn , we can put R := {z ∈ Z : − n
2 < z ≤ n

2 }, whose
operations are those in Z, followed by computation of the least absolute value
remainder of their division by n.

1 F. S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge University Press (1916).
2 D. Duval, Diverses questions relatives au calcul formel avec les nombres algébriques, Thèse

d’Etat, Grenoble (1987).
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In the same manner, for A = k[Z1, . . . , Zr ]/( f1, . . . , fr ), we can use

R = {g ∈ k[Z1, . . . , Zr ] : degi (g) < di },
whose operations are those in k[Z1, . . . , Zr ], followed (in the case of multipli-
cation) by a reduction procedure.

The advantages of such a representation are that:

• each element of A has a unique representative in R, so, in particular, testing
the equality of two elements (and so deciding if an element is zero) is easy:
the two representations must be equal!

• arithmetical operations have bounded complexity; so every arithmetical
operation in the given representation of Zn has polynomial complexity
in log(n), and every arithmetical operation in the given representation
of k[Z1, . . . , Zr ]/( f1, . . . , fr ) has polynomial complexity3 in D = ∏

i di .

However, biunivocal correspondence between R and A is not at all neces-
sary: we could choose, for instance, to represent an element a ∈ Zn by any
element of Z whose residue class is a; arithmetical operations are then just
performed in Z, so that they are conceptually simpler, albeit with worse the-
oretical complexity. In the same way, elements of k[Z1, . . . , Zr ]/( f1, . . . , fr )

can be represented just by polynomials in k[Z1, . . . , Zr ].
Clearly, in such a representation, elements of A have in general more than

one representative in R. As a consequence, 0-testing and equality testing, which
are trivial in the case of unique representation, become more involved. In our
example, if a, b ∈ Zn are represented respectively by α, β ∈ Z, then

a = b ⇐⇒ α − β is a multiple of n;
a = 0 ⇐⇒ α is a multiple of n.

If we give up uniqueness of representation, we can then effectively obtain a
ring A, by way of

an effective ring B, such that there exists a projection π : B → A;
a subset R ⊆ B such that π(R) = A;
an algorithm which, given b ∈ B, computes r ∈ R such that π(b) = π(r);
an algorithm which, given r1, r2 ∈ R, decide whether π(r1) = π(r2),

so that

addition, subtraction, multiplication in R are simply done in B, obtaining
some b, and then computing r ∈ R such that π(b) = π(r);

3 In a model, of course, in which we assume that each operation in k is constant.
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equality testing and zero-testing are performed by means of the specific
algorithms which, given r1, r2 ∈ R, decide whether π(r1) = π(r2);

uniqueness of representation is achieved when the restriction of π to R is
one-to-one.

Note that we have not discussed invertibility tests or algorithms for com-
puting inverses, through this representation of the ring A. In fact, in all the
examples of algorithms in a ring that we have discussed, these operations are
not needed.

11.2 Ring Operations in a Non-unique Representation

In Chapter 8 I discussed the problem of how to explicitly obtain a field con-
taining either one or all of the roots of a polynomial, in order to be able to
explicitly perform arithmetical operations over arithmetical expressions in it
and in its polynomial extensions, and showed how Kronecker’s Model solved
that problem. Let us now turn to the following variation of that problem:

let us be given a monic squarefree polynomial f (X) ∈ k[X ], and let α1, . . . , αn be all
the roots of f ; we want to perform one and the same specific arithmetical computation
in each k[αi ][Z ], whose result is some polynomial gi (αi , Z).

In other words we want to perform the same computation but separately for
each root of f .

If f is irreducible, then the fields k[αi ] are all isomorphic to

k[X ]/ f (X) =: k[x],

so it is sufficent to perform the computation once in k[X, Z ]/ f (X) and then
interpret the solution g(x, Z) in each k[αi ][Z ], by substituting x with αi , or
(if you like) by interpreting x as αi . In fact all the roots of f are conjugates,
and we know that all arithmetical operations over algebraic expressions of a
generic root x behave in the same way when performed on conjugate algebraic
numbers; in particular, 0-testing and equality testing give the same solution
whenever αi is substituted for x .

If f is reducible, in Kronecker’s Model we should first factorize f (X) into
irreducible factors in k[X ],

f (X) = f1(X) . . . fr (X),

and then perform the same computation in each ring K [X, Z ]/ fi (X).
Let us assume that the arithmetical computation we are performing requires

only the ring arithmetics of k[αi ]; in particular this means that we do not need



224 Duval

to test whether some polynomial expression in αi is zero (which obviously
depends on αi ) nor to compute inverses in k[αi ].

In this case, we do not need to perform 0-testing, equality testing and inverse
computation, so that all computations in each k[αi ] are, in some sense, ‘con-
jugate’: the computations are exactly the same in each ring K [X, Z ]/ fi (X),
except for the need to compute remainders mod fi , which again gives differ-
ent results for the different fi s.

We could, however, give up the unique representation implied by
Kronecker’s Model and, following the ideas sketched in the previous section,
perform our computation only once in k[X, Z ]/ f (X), getting a polynomial
g(X, Z) ∈ k[X, Z ]; in other words we can explicitly get all rings k[αi ][Z ] by
assigning the same effective ring k[X, Z ]/ f (X) and just specifying the proper
projection

πi : k[X, Z ]/ f (X) → k[αi ][Z ] = k[X, Z ]/ fi (X),

which is nothing more than

πi

(∑
j

g j (X)Z
j

)
=
∑

j

Rem (gi (X), fi (X)) Z j .

Clearly, for each i , πi
(
g(X, Z

)
is the canonical representative of the solu-

tion gi (αi , Z) ∈ k[αi ][Z ]. Moreover the last step, the valuation of πi , is simply
required for converting from the common non-unique representation of each
k[αi ][Z ] by k[X, Z ]/ f (X) to the Kronecker representation k[X, Z ]/ fi (X),
and if we choose to represent each k[αi ][Z ] by k[X, Z ]/ f (X) we can dispose
of it.

If we know the factorization of f (X), the computational amount is essen-
tially the same in both ways, as a consequence of the Chinese Remainder
Theorem. More precisely, the k-vector space operations have exactly the same
cost when performed in k[X ]/ f or in parallel in each k[X ]/ fi , while there is
some advantage for multiplication in the ‘parallel’ computation since the total
cost is

∑
i O(deg( fi )

2) ≤ O(deg( f )2).
If, instead, we do not know the factorization of f , we have a large advantage

if we compute in k[X ]/ f : there is absolutely no need to factorize f !

11.3 Duval Representation

While representing each k[αi ] by the same k[X ]/ f (X), instead of by each
k[X ]/ fi (X), allows us to avoid factorization when we only have to perform
the ring arithmetics of each k[αi ], in most computations we will need to test
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if an element is 0 or to compute the inverse of a non-zero element – this will
obviously occur, for instance, if we are going to perform gcd computations in
each k[αi ][Z ].

Clearly then the different roots are no longer ‘conjugate’ for such computa-
tions, since the answer to a 0-test will obviously be different for the different
roots: for instance, if α1 and α2 are roots of f (X), and fi is the minimal poly-
nomial of αi , for all i , then f1(α1) = 0, while f1(α2) �= 0. Let us see in a
concrete example what happens with polynomial algorithms.

Example 11.3.1. So let us choose

f (X) = X4 − 13X2 + 36 ∈ Q[X ],

and let us denote its four roots by α1, . . . , α4 and assume that the computation
we need to perform is to decide whether

gi (Z) := Z3 + 3αi Z2 + 12Z + 4αi ∈ Q[αi ][Z ]

is squarefree. So we should compute in each Q[αi ][Z ], gcd(gi (Z), hi (Z))
where

hi := 1

3
g′i = Z2 + 2αi Z + 4.

By representing each Q[αi ] by Q[X ]/ f (X), each gi is represented by

g(X, Z) := Z3 + 3X Z2 + 12Z + 4X,

and each hi by

h(X, Z) := Z2 + 2X Z + 4.

Since h is monic in Z , polynomial division by h is also possible in the ring
Q[X, Z ] without the need to compute inverses. By standard arithmetic we
obtain:

g(X, Z) = (Z + X)h(X, Z)+ 2(4 − X2)Z ,

which can be interpreted as

gi (αi , Z) = (Z + αi )hi (αi , Z)+ 2(4 − α2
i )Z .

Can we reach some conclusion? Well:

if α2
i = 4, then hi divides gi , hi = gcd(gi , hi ), SQF R(gi ) = (Z + αi ),

gi = (Z + αi )
3;

if, instead, α2
i �= 4, then we must go on and divide hi by Z (since in this

case, we are lucky and we do not need to compute the inverse of 4 − α2
i ).
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The result is then:

h(X, Z) = (Z + 2X)Z + 4, hi (αi , Z) = (Z + 2αi )Z + 4,

and so, since 4 �= 0 (we are very lucky this time!) we can conclude that
gi is squarefree.

Which one is the correct answer? The bad news is that both are correct! In
fact the example is so trivial that we can perform factorization:

f (X) = (X − 2)(X + 2)(X − 3)(X + 3),

so the four roots are α1 = 2, α2 = −2, α3 = 3, α4 = −3. Then, clearly if

i = 1, 2, then α2
i = 4, and gi = (Z + αi )

3,

i = 3, 4, then α2
i = 9 �= 4, and gi is squarefree.

Therefore, apparently, we should factorize any time we need to perform a
non-trivial task. However, the good news is that factorization is not needed
at all.

In fact, even if we are unable to factorize the polynomial f , we can easily
obtain the partial factorization

f (X) = (X2 − 4)(X2 − 9),

by the following argument: the roots αi satisfy the polynomial f (X) and
therefore

satisfying the polynomial p(X) := X2 − 4 ⇐⇒ satisfying the two poly-
nomials f and p ⇐⇒ satisfying f1(X) := gcd( f, p) = X2 − 4;

not satisfying p ⇐⇒ not satisfying f1; satisfying f ⇐⇒ satisfying
f2(X) := f (X)

f1(X)
= X2 − 9.

In conclusion, we see that we can answer whether or not a root of f satisfies
a polynomial p and get a partial factorization of f as a consequence of the
following (trivial):

Theorem 11.3.2 (Lazard). Let f (X) ∈ k[X ] be a squarefree polynomial. Let
p(X) ∈ k[X ] and let

f1(X) := gcd( f, p), f2 := f

f1
, p1 := p

f1
.

Also let s(X), t (X) satisfy

sp + t f = f1,
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and u(X), v(X) satisfy

u f1 + v f2 = 1.

Therefore:

if f1 = 1, then for each α such that f (α) = 0, we have p(α) �= 0, p(α)−1 =
s(α);

if f1 = f , then for each α such that f (α) = 0, we have p(α) = 0;
otherwise, if α is such that f (α) = 0, then:

p(α) = 0 ⇐⇒ f1(α) = 0,
p(α) �= 0 ⇐⇒ f2(α) = 0, in which case p(α)−1 = u(α)s(α).

Proof If f (α) = 0, either f1(α) = 0 or f2(α) = 0, but not both since f is
squarefree.
If f1(α) = 0, then p(α) = f1(α)p1(α) = 0.
If f2(α) = 0, then

u(α)s(α)p(α) = u(α)s(α)p(α)+ u(α)t (α) f (α)

= u(α) f1(α)

= u(α) f1(α)+ v(α) f2(α) = 1.

In conclusion, any time we need to perform a zero-test on each k[αi ] or to
compute inverses there, we have no need to factorize. In Duval’s computational
model, each k[αi ] is represented by k[X ]/ f (X) and each element βi ∈ k[αi ]
is represented by a polynomial p(X), deg(p) < deg( f ). So let

β j := p(α j ) ∈ k[α j ], for all j,

and assume we need to test, for all j , whether β j �= 0, in which case we need
to compute β−1

j ∈ k[α j ]. We compute f1(X) := gcd( f (X), p(X)) and s(X)
such that

sp ≡ f1 (mod f ), deg(s) < deg( f ).

If f1 = 1, then β j is invertible for all j , and s(α j ) is its inverse whose
representation is s(X).

If f1 �= 1, then we compute f2 := f
f1

– and f2 is not constant since
deg(p) < deg( f ) –, obtaining a partial factorization of f ; we split our com-
putation, representing those k[α j ] such that β j = 0 by k[X ]/ f1(X) and those
k[α j ] such that β j �= 0 by k[X ]/ f2(X).
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We then compute u(X) such that

u f1 ≡ 1(mod f2)

and then w(X) such that

w ≡ us (mod f2), deg(w) < deg( f2).

Then in those k[α j ] such that β j �= 0, we find β−1
j = w(α j ) and their common

representation is w(X).

Remark 11.3.3. It is quite clear that we can interpret the Duval’s result in terms
of Theorem 2.3.2.

In fact, if f is squarefree and f = g1 . . . gn is its factorization, let us denote
R = k[X ]/ f (X), Ri = k[X ]/gi (X), for all i . Up to a reordering of the gi s, we
can assume that gi is the minimal polynomial of a root α of f such that

p(α) = 0 ⇐⇒ i ≤ s,
p(α) �= 0 ⇐⇒ i > s,

so that f1 = ∏s
i=1 gi and f2 = ∏n

i=s+1 gi . If we set S1 := k[X ]/ f1(X) and
S2 := k[X ]/ f2(X), it obviously holds that

S1 ∼= R1 ⊕ · · · ⊕ Rs, S2 ∼= Rs+1 ⊕ · · · ⊕ Rn,

and R = S1 ⊕ S2.

11.4 Duval’s Model

In Section 8.2 we showed that Kronecker’s Model allowed us to perform arith-
metical operations and solve polynomial equations in each finite extension
field over its prime field. We denoted by K the class to which Kronecker’s
Model applied, we described its recursive definition and we showed that the
fields in K were representable as a quotient by an admissible sequence of poly-
nomial rings over a rational function field over a prime field.

In what follows we will restrict ourselves to fields of characteristic 0 and K0

will denote the class of the fields K ∈ K such that char(K ) = 0.
From our discussion above, it is clear that Duval’s Model applies to a larger

class of rings D ⊃ K0, which is a subset of the class of all the rings that are
direct sums of fields in K0.

Definition 11.4.1. We say that

f = { f1, . . . , fr }
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is an admissible Duval sequence in

Q(Y1, . . . ,Yd)[Z1, . . . , Zr ]

if, denoting

L j := Q(Y1, . . . ,Yd)[Z1, . . . , Z j ]/( f1, . . . , f j ),
π j the canonical projections

π j : Q(Y1, . . . ,Yd)[Z1, . . . , Zr ] → L j [Z j+1, . . . , Zr ],

d j := deg j ( f j ),

then

f1 ∈ Q(Y1, . . . ,Yd)[Z1] is squarefree, so that L1 is a direct sum of fields

L1 := L11 ⊕ · · · ⊕ L1r1

and there exist ring projections

π1 j : Q(Y1, . . . ,Yd)[Z1, . . . , Zr ] → L1 j [Z2, . . . , Zr ];
for all i, 2 ≤ i ≤ r , for all j, 1 ≤ j ≤ ri−1, πi−1 j ( fi ) ∈ Li−1 j [Zi ] is

squarefree, so that Li is a direct sum of fields

Li := Li1 ⊕ · · · ⊕ Liri

and there exist ring projections

πi j : Q(Y1, . . . ,Yd)[Z1, . . . , Zr ] → Li j [Zi+1, . . . , Zr ];
for all i, 2 ≤ i ≤ r , for all j < i , deg j ( fi ) < d j .

Definition 11.4.2. A Duval field is a ring D such that there exist d ≥ 0, r ≥ 0
and an admissible Duval sequence

f = { f1, . . . , fr } ⊂ Q(Y1, . . . ,Yd)[Z1, . . . , Zr ]

so that

D = Q(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( f1, . . . , fr ).

Obviously, D is exactly the class of all Duval fields4.
In Kronecker’s Model, the basic tool used to recursively build fields in K

consists of constructing the field K [Z ]/ f (Z), where K ∈ K and f (Z) ∈

4 Yes, from the algebraist’s point of view, they are rings and not fields! . . . but they behave com-
putationally more like a field than a ring. Since in this context the computation is much more
important than the algebra, I prefer the name Duval field rather than Duval ring.
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K [Z ] is irreducible; analogously, in Duval’s Model, the basic tool used to re-
cursively build rings in D consists of constructing the ring D[Z ]/ f (Z), where
D ∈ D and f (Z) ∈ D[Z ] is squarefree.

In Kronecker’s Model, when we were given a field K ∈ K and a polyno-
mial g(Z) ∈ K [Z ], we needed to factorize g in order to construct the fields
K [Z ]/ f (Z) where f runs over the irreducible factors of g; analogously, in
Duval’s Model, when we are given a ring D ∈ D and a polynomial g(Z) ∈
D[Z ], we need to compute its squarefree associate in each Ri [Z ] where the
Ri s are fields such that D ∼= R1 ⊕ · · · ⊕ Rr .

To discuss this algorithm let us assume that

D = Q(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( f1, . . . , fr )

and use the same notation as in the previous definitions.
The algorithm is the one we discussed in Example 11.3.1: we have to com-

pute g/ gcd(g, g′) in D[Z ]; to do that, we need to perform invertibility tests
and algorithms in D = Lr which require us to compute gcds in Lr−1[Zr ] and
so invertibility algorithms in Lr−1 and so gcds in Lr−2[Zr−1] and so . . . und
so weiter.

The result will be

a splitting of D, i.e. admissible Duval sequences

fλ = { fλ1, . . . , fλr } ⊂ Q(Y1, . . . ,Yd)[Z1, . . . , Zr ], 1 ≤ λ ≤ m

so that denoting

Dλ = Q(Y1, . . . ,Yd)[Z1, . . . , Zr ]/( fλ1, . . . , fλr )

we have

D ∼= D1 ⊕ · · · ⊕ Dm;
polynomials gλ(Z) ∈ Dλ[Z ] such that denoting
Dλ

∼= Dλ1 ⊕ · · · ⊕ Dλrλ to be the direct sum decompositions, and
�λ j : D[Z ] → Dλ j [Z ], πλ j : Dλ[Z ] → Dλ j [Z ] to be the canonical projec-

tions,
we have for each λ πλ j (gλ) is the squarefree associate of �λ j (g) in Dλ j [Z ],

so that the ‘extension’ of D by g is a set of λ Duval fields Dλ defined as

Dλ = Q(Y1, . . . ,Yd)[Z1, . . . , Zr , Z ]/( fλ1, . . . , fλr , gλ).
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Example 11.4.3. Completing Example 11.3.1, we only have to note that the
extension of

D := Q[X ]/(X4 − 13X2 + 36)

by the polynomial

g := Z3 + 3X Z2 + 12Z + 4X ∈ D[Z ]

is the assignment of

D1 = Q[X, Z ]/(X2 − 4, Z + X),
D2 = Q[X, Z ]/(X2 − 9, Z3 + 3X Z2 + 12Z).
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Gauss

Aequationes [. . . ] solvere oportebit

C.F. Gauss, Disquisitiones arithmeticae

This chapter is devoted to two of Gauss’ important contributions to solving:

• Section 12.1 is devoted to a proof of the Fundamental Theorem of Algebra:
I use the second proof by Gauss, which is the most algebraic of his four
proofs;

• Section 12.2 presents a résumé of the Disquisitiones Arithmeticae’s section
devoted to the solution of the cyclotomic equation: I consider these results
to be the best pages of Computational Algebra, and I hope to be able to
transmit my feeling to the reader.

These two sections also play the rôle of introducing the arguments discussed
in the last two chapters: the generalization of Kronecker’s Method to real alge-
braic numbers and Galois Theory.

12.1 The Fundamental Theorem of Algebra

In order to present a proof of the Fundamental Theorem of Algebra, and,
mainly, to give a statement and a proof which can be easily generalized to
an interesting setting (real closed fields), I must start by discussing the ele-
mentary and well-known difference between R and C, i.e. that one is ‘ordered’
and the other not:

Definition 12.1.1. A field K is said to be ordered if there is a subset P ⊂ K ,
the positive cone, which satisfies the following conditions:

for all a, b ∈ P, a + b ∈ P, ab ∈ P,
for all a ∈ P, just one of the following three cases holds:

a ∈ P,
a = 0,

232
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−a ∈ P.

Obviously the definition generalizes the trivial property of the ‘positiveness’
relation over R where P is the set of the positive numbers,

P := {a ∈ R : a > 0}.
In this generalization, it is clearer if we work in the other way: a positive cone
P ⊂ K induces on K the total ordering <P defined by:

for all a, b ∈ K : a >P b ⇐⇒ a − b ∈ P.

From now on I will write < omitting the dependence on P .

Lemma 12.1.2. If K is ordered then

(1) for all a ∈ K : a2 = (−a)2 ≥ 0;
(2) char(K ) = 0.

Proof

(1) In fact we have a = 0 and a2 = 0; or a > 0 and a2 > 0; or a < 0 and
(−a)2 > 0.

(2) Since 1 = 12 > 0 and, for each n ∈ N, n > 1, we have by induction
χ(n) = χ(n − 1)+ 1 > 0.

Corollary 12.1.3. If K has a root of X2 + 1 ∈ K [X ] – e.g. K := C – then K
is not ordered.

Proof In fact, assume K is ordered and denote by i ∈ K the root of X2+1; we
have −1 = i2 > 0, while 1 = 12 > 0 giving an obvious contradiction.

Therefore, we deduce that, if K is an ordered field, then it is not algebraically
closed, therefore we can construct the algebraic extension

K ⊂ K [X ]/(X2 − 1) = K [i].

Let us consider the complex conjugation φ which is the K -isomorphism of
K [i] defined by φ(i) = −i and its extension to K [i][X ]; as usual we will
denote φ( f ) by f̄ for each f ∈ K [i][X ].
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Lemma 12.1.4. Let K be an ordered field such that, for each positive a ∈ K
there is b ∈ K : b2 = a. Then

for all α ∈ K [i], there exists β ∈ K [i] : β2 = α.

Proof Let α = a1 + ia2 �= 0 with ai ∈ K . By the assumption there is c ∈ K
such that c2 = a2

1 + a2
2, c > 0.

Moreover, since a2
1 ≤ c2, we deduce that |a1| ≤ c so that ±a1 + c ≥ 0 and

there are b1, b2 ∈ K such that

b2
1 =

a1 + c

2
, b2

2 =
−a1 + c

2
,

which satisfy

b2
1 − b2

2 = a1,

4b2
1b2

2 = −a2
1 + a2

1 + a2
2 = a2

2;
therefore, choosing properly the signs, they satisfy

2b1b2 = a2.

Then we have

(b1 + ib2)
2 = b2

1 − b2
2 + i2b1b2 = a1 + ia2,

so that β := b1 + ib2 satisfies β2 = α.

Corollary 12.1.5. Let K be an ordered field such that, for each positive a ∈
K , there is b ∈ K : b2 = a. Then each quadratic equation

a X2 + bX + c ∈ K [i][X ]

has the solutions

−b ±√
b2 − 4c

2a

where, with an obvious abuse of notation, ±√b2 − 4c denotes the two ele-
ments β ∈ K [i] such that β2 = b2 − 4c.

Theorem 12.1.6. Let K be an ordered field. Then the following conditions are
equivalent:

(1) K is such that

for each positive a ∈ K , there is b ∈ K : b2 = a;
each odd polynomial f (X) ∈ K [X ] has a root in K ;



12.1 The Fundamental Theorem of Algebra 235

(2) each irreducible polynomial f (X) ∈ K [X ] has a root in K [i];
(3) K [i] is algebraically closed.

Proof

(3) �⇒ (1) If a ∈ K is positive and b = c+ id ∈ K [i] is the root of X2 −a,
then b2 = (c2−d2)+2cdi = a and 2cd = 0; if c = 0 then we would
get the contradiction 0 < a = b2 = −d2 < 0; therefore d = 0 and
b ∈ K .
If α ∈ K [i] \ K is a root of f ∈ K [X ], then ᾱ is a root of f̄ = f and
X2 − α2 ∈ K [X ] divides f in K [X ]. Therefore, if f is odd, it has a
root in K .

(2) �⇒ (3) We need to prove that each h ∈ K [i][X ] has a root in K [i].
So let then g(X) := NK [i]/K (h) = hh̄ ∈ K [X ] and let f (X) be an
irreducible factor of g; by the assumption, g has a root α ∈ K [i];
either α is a root of h or it is a root of h̄ and so ᾱ is a root of h.

(1) �⇒ (2) Let f (X) ∈ K [X ] be irreducible and let us represent its degree
as n := deg( f ) = 2mk where k is odd; we will do our induction in
terms of m.
If m = 0, i.e. f is odd, the existence of a root follows from (1)
If m > 0, let α1, . . . , αn ∈ F be the roots of f in its splitting field
F ⊃ K , and let LG(t, X) ∈ K [t][X ] be the Laplace–Gauss resolvent
of f (cf. Definition 6.5.6) for which we know:

degX (LG) = (2m k
2

) = 2m−1k′ with k′ = k(2mk − 1) odd;
for infinitely many λ ∈ K the discriminant of LG(λ, X) ∈ K [X ]

is not zero.

By this and the induction assumption, we deduce that, for infinitely
many λ ∈ K ,

its roots αi + α j + λαiα j , for all i, j , are all simple, by
Proposition 6.5.7,
and one of them is in K [i], by assumption.

Since K is infinite and LG(t, X) has at most
(2m k

2

)
solutions, we can

produce pairs λ1, λ2 ∈ K \ {0}, λ1 �= λ2, and µ1, µ2 ∈ K [i] such that
there exist i, j, 1 ≤ i < j ≤ 2mk:

µ1 := αi + α j + λ1αiα j , µ2 := αi + α j + λ2αiα j ;
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then computing

ν1 := µ1 − µ2

λ1 − λ2
= αiα j ∈ K [i],

ν2 := µ2 − ν1λ2 = αi + α j ∈ K [i],

the equation

X2 − ν2 X + ν1 = (X − αi )(X − α2) ∈ K [i]

is solvable in K [i] by Corollary 12.1.5, so that αi , α j ∈ K [i], proving
the inductive assumption1.

Historical Remark 12.1.7. As remarked by van der Waerden, in A History of
Algebra, Springer (1985) 97–99:

the proof works if it is known that2 the equation [ f = 0] has [n] roots [. . . ] in some
extension of the field of real numbers. The existence of such an extension can be proved
by Kronecker’s method of ‘symbolic adjunction’ [. . . ]. However, Gauss does not follow
this road. He constructs his auxiliary equations without assuming the existence of the
roots.[...]
The proof of this theorem [Proposition 6.5.7] covers four pages in Netto’s translation.
Right at the beginning of the proof Gauss says: ‘The proof of this theorem would be
extremely simple if we could presuppose that [ f ] is a product of linear factors.’

Corollary 12.1.8. Let K be an ordered field satisfying the conditions of
Theorem 12.1.1, then

each polynomial f ∈ K [i][X ] splits over K [i];
each polynomial f ∈ K [X ] factorizes over K in linear and quadratic

factors.

1 Note that this proof is essentially a procedure for ‘solving’ any irreducible polynomial f (X) ∈
K [X ], if we can assume the knowledge of procedures for computing a root in K of an odd
polynomial, and for extracting roots of any positive element in K .
In fact, under this assumption, in order to obtain a root of an equation f of degree 2mk, with k
odd, what we have to do is

choose elements λ1, λ2 ∈ K \ {0}, λ1 �= λ2 such that the discriminant of LG(λi , X), i = 1, 2,
is not zero,

find a root µi of LG(λi , X), i = 1, 2,
compute ν1 and ν2 as defined above,
solve the equation X2 − ν2 X + ν1 = 0,
check whether its solutions satisfy the polynomial f , until we have found a root of f .

The two assumptions were elementary at Gauss’ time in the case K := R, since there were
numerical procedures.

2 And in the presentation above I of course assumed that we knew that!
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Lemma 12.1.9. Each odd polynomial f (X) ∈ R[X ] has a root in R[X ].

Proof Let

f (X) = Xn + a1 Xn−1 + · · · + ai Xn−i + · · · + an−1 X + an

and let

M := max{1,
n∑

i=1

|ai |}.

Then

f (s) > 0, f (−s) < 0, for all s ∈ R, M < s.

Therefore by the Weierstrass Theorem of continous functions, we can de-
duce there is c ∈ R, −s < c < s, such that f (c) = 0.

Corollary 12.1.10 (Fundamental Theorem of Algebra).

Each polynomial f (X) ∈ C[X ] splits into linear factors in C.

12.2 Cyclotomic Equations

In this section, I present Gauss’ Algorithm for ‘solving’ the cyclotomic
equation

Xn − 1 = 0

where n ∈ N is an odd prime3, following verbatim Gauss’ presentation in
Disquisitiones Arithmeticae Artt. 342–354.

The aim of Gauss’ Algorithm is presented by him in his introduction
(Art. 342):

Propositum disquisitionum sequentium, quod pauci declaravisse haud inutile erit, eo
tendit, ut X4 in factores continuo plures GRADATIM resolvatur, et quidem ita, ut ho-
rum coëfficientes per aequationes ordinis quam infimi determinentur, usque dum hoc

3 The solution of the cyclotomic equation is interesting due to the fact that if γ is an nth root of
α, γ = αn , all the nth roots of α are βγ where β runs among the nth roots of unity.
The restriction on solving the cyclotomic equations when n is prime, is justified by the fact that

if n = jk, gcd( j, k) = 1, α is a primitive j th root of unity, β is a primitive kth root of unity,
then γ := αβ is a primitive nth root of unity;
if p is prime, α is a primitive (pe)th root of unity, and γ is a (p)th root of α, γ p = α, then γ is
a primitive (pe+1)th root of unity,

so that knowledge of a primitive pth root of unity, for each prime p, and the ability to extract
an nth root of any number, is sufficient to compute all the roots of any number.

4 = ∑n−1
i=0 Xi .
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modo ad factores simplices sive ad radices �5 ipsas perveniatur. Scilicet ostendemus,
si numero n−1 quomodocunque in factores integros α, β, γ etc. resolvatur (pro quibus
singulis numeros primos accipere licet), X in α factores n − 1/α dimensionum resolvi
posse, quorum coëfficientes per aequationem αti gradus determinentur; singulos hoc
factores iterum in β alios n − 1/αβ dimensionum adiumento aequationis βti gradus
etc., ita ut designante ν multitudinem factorum α, β, γ etc. inventio radicum � ad res-
olutionum ν aequationum αti , βti , γ ti etc. gradus reducatur. E.g. pro n = 17, ubi
n − 1 = 2 · 2 · 2 · 2, quatuor aequationes quadraticas solvere oportebit; pro n = 73 tres
quadraticas duasque cubicas.
The aim of the following results, which it is not useless to declare here in a few words,
is in GRADUALLY decomposing X into more and more factors, in such a way that their
coefficients can be determined by equations of minimal degree, until in this way one
achieves simple factors or the roots �. We will show that if a number n − 1 can be fac-
torized into integer factors α, β, γ etc. (for which one can take the prime factors), X can
be factorized in α factors of degree (n−1)

α , whose coefficients will be determined by an
equation of degree α; each of these factors can be factorized into β factors of degree
(n−1)
αβ with the help of an equation of degree β, etc; therefore, denoting by ν the number

of the factors α, β, γ etc., finding the roots � is reduced to the solution of ν equations
of degree α, β, γ etc. For example for n = 17, where n− 1 = 2 · 2 · 2 · 2, four quadratic
equations must be solved; for n = 73 three quadratics and two cubics.

In Kronecker’s language, if n − 1 = p1 p2 · · · pν , with pi prime, Gauss’
Algorithm produces a set of ν polynomials f1, . . . , fν ∈ C[X ] so that, denoting

X(X) =
n−1∑
i=0

Xi = Xn − 1

X − 1

and, for each i ≤ ν,

ri ∈ C a root of fi ,
Ki := Ki−1(ri ) where K0 := Q,

we have

deg(fi ) = pi , for all i ,

Q ⊂ K1 ⊂ · · · ⊂ Kν ⊂ C,

fi (X) ∈ Ki−1[X ], for all i , so that6 Ki = Ki−1[X ]/fi (X),

Kν is the splitting field of X(X),

rν is a root of X(X),

5 � denotes the set of all the roots of X.
6 Since fi is irreducible because pi is prime.
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so that rν can be computed by iteratively ‘solving’7 the equation

fi (X) = 0, for all i,

and all the roots of X can be obtained by squaring.
Moreover Gauss’ Algorithm provides – via Q-automorphisms of Ki in C –

the factorization of X(X) in each Ki . But Gauss’ theory gives much much
more.

Gauss began by introducing his notation: having fixed a generic root of X =
Xn−1
X−1

r ∈ C, rn = 1, r �= 1,

and remarking that all the roots of X are then

{r, r2, . . . , rn−1},
he denoted the roots rλ with the notation [λ], thus indexing the roots by their
logarithms in Zn−1 modulo a generic root r = [1]; he also used the notation
[0] := 1.

Then he remarks that, according to Corollary 7.4.7, there is a generator

g ∈ Zn \ {0}
such that

� := {r, r2, . . . , rn−1} = {[λ] : λ ∈ Zn \ {0}} = {[gµ] : µ ∈ Zn−1}
and, moreover, for all λ ∈ Zn \ {0}, we have8

{[gµ] : µ ∈ Zn−1} = {[λgµ] : µ ∈ Zn−1}.
In conclusion Corollary 7.4.7 allows us to introduce logarithms to transform

multiplication in the set of all the roots of X to addition in Zn−1 (cf. Historical
Remark 7.4.8).

Lemma 12.2.1 (Art. 343). Let g and G be two generators; let e be a
divisor of n − 1, e f = n − 1, and let h := ge, H := Ge.

Then

{[hµ] : 0 ≤ µ ≤ f − 1} = {[Hµ] : 0 ≤ µ ≤ f − 1}.

7 Obviously Gauss’ notion of ‘solving’ is that of the eighteenth century: producing the roots by a
straight line program which applies the five operations having as inputs the coefficients of the
polynomial.

8 Note that, with the present notation, [g0] = [gn−1] = [1] = r . In this representation 1 is still
represented by [0].



240 Gauss

Table 12.1. Logarithm table for Z19

i 2i i 2i

1 2 10 17
2 4 11 15
3 8 12 11
4 16 13 3
5 13 14 6
6 7 15 12
7 14 16 5
8 9 17 10
9 18 18 1

Proof There is an ω such that G = gω; let m : Z f → Z f be the isomorphism
defined by m(µ) := µω. Then m(µ)e ≡ µωe(mod n − 1) so that, for each
µ ∈ Z f , we have

Hµ = geωµ = gem(µ) = hm(µ)

whence the conclusion.

This lemma guarantees that the set {[λgej ] : 0 ≤ j < f } and the sum

f −1∑
j=0

[λgej ]

do not depend on the choice of generator g; both the set and the sum are de-
noted by ( f, λ) and labelled a period.

Example 12.2.2. If we take n = 19, then g = 2 is a generator, as is easy to
check by constructing the Table 12.1.

Then the period (6, 1) is

(6, 1) = [1] + [8] + [82] + [83] + [84] + [85]

= [1] + [23] + [26] + [29] + [212] + [215]

= [1] + [8] + [7] + [18] + [11] + [12];
and (6, 2) is

(6, 2) = [2] + [2 · 8] + [2 · 82] + [2 · 83] + [2 · 84] + [2 · 85]

= [2] + [24] + [27] + [210] + [213] + [216]

= [2] + [16] + [14] + [17] + [3] + [5];
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for (6, 3) we have (6, 2) = (6, 3); and for (6, 4),

(6, 4) = [4] + [4 · 8] + [4 · 82] + [4 · 83] + [4 · 84] + [4 · 85]

= [22] + [25] + [28] + [211] + [214] + [217]

= [4] + [13] + [9] + [15] + [6] + [10].

Obviously

(6, 1) = (6, 7) = (6, 8) = (6, 11) = (6, 12) = (6, 18);

(6, 2) = (6, 3) = (6, 5) = (6, 14) = (6, 16) = (6, 17);

(6, 4) = (6, 6) = (6, 9) = (6, 10) = (6, 13) = (6, 15).

From now on we will fix a factorization f e = n − 1 and a generator g and
we will denote h := ge.

Remark 12.2.3 (Art. 344). It is clear that

two periods ( f, λ), ( f, µ), having a root in common are identical;
if e = 1, f = n − 1, then (n − 1, 1) coincides with �, while, when e �= 1,

then � is the union of the e disjoint periods ( f, 1), ( f, g), ( f, g2), . . . ,

( f, ge−1);
for all λ �= 0, � is the union of the e disjoint periods9

( f, λ), ( f, λg), ( f, λg2), . . . , ( f, λge−1)

while
( f, 0) = f .
More generally, if n − 1 = αβγ , then the period (βγ, λ) is the union of the
β disjoint periods (γ, λ), (γ, λgα), (γ, λg2α), . . . , (γ, λgα(β−1)).

Example 12.2.4. For instance

(6, 1) = (2, 1)+ (2, 23)+ (2, 26)

= (2, 1)+ (2, 8)+ (2, 7)

= ([1] + [18])+ ([8] + [11])+ ([7] + [12]) .

Theorem 12.2.5 (Art. 345). Let ( f, λ) and ( f, µ) be two periods.
Then

( f, λ)( f, µ) =
f −1∑
j=0

( f, λ+ µh j );

9 In most of the statements, we will implicitly assume that λ �≡ 0(mod n).
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and, more generally,

( f, kλ)( f, kµ) =
f −1∑
j=0

( f, k(λ+ µh j )).

Proof With ( f, λ) = ∑ f −1
j=0 [λh j ] and ( f, µ) = ∑ f −1

j=0 [µh j ], we obtain

( f, λ)( f, µ) =
f −1∑
j=0

f −1∑
i=0

[λh j ][µhi ]

=
f −1∑
j=0

f −1∑
i=0

[λh j + µhi ]

=
f −1∑
j=0

f −1∑
i=0

[(λ+ µh j )hi− j ]

=
f −1∑
j=0

f −1∑
k=0

[(λ+ µh j )hk]

=
f −1∑
j=0

( f, λ+ µh j ).

Example 12.2.6. For instance we have

(6, 1)(6, 2) =
5∑

j=0

(6, 1 + 2 × 23 j )

= (6, 3)+ (6, 17)+ (6, 15)+ (6, 18)+ (6, 4)+ (6, 6)

= (6, 2)+ (6, 2)+ (6, 4)+ (6, 1)+ (6, 4)+ (6, 4)

= (6, 1)+ 2(6, 2)+ 3(6, 4);
and

(6, 1)(6, 1) =
5∑

j=0

(6, 1 + 1 × 23 j )

= (6, 2)+ (6, 9)+ (6, 8)+ (6, 0)+ (6, 12)+ (6, 13)

= (6, 2)+ (6, 4)+ (6, 1)+ (6, 0)+ (6, 1)+ (6, 4)

= 6 + 2(6, 1)+ (6, 2)+ 2(6, 4).
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Remark 12.2.7. It is then clear that, given any polynomial

F(Y1, . . . ,Ys) ∈ Z[Y1, . . . ,Ys],

if we substitute a period ( f, λi ) for each indeterminate Yi then there exists
a, b0, b1, . . . , be−1 ∈ Z :

F
(
( f, λ1), . . . , ( f, λs)

) = a +
e−1∑
i=0

bi ( f, gi ).

Moreover, we also have, for all k �= 0,

F
(
( f, kλ1), . . . , ( f, kλs)

) = a +
e−1∑
i=0

bi ( f, kgi ).

As a consequence we can deduce:

Corollary 12.2.8. Let F(Y ) ∈ Z[Y ]. Then there exists λ :

F
(
( f, λ)

) = 0 �⇒ F
(
( f, gi )

) = 0, for all i, 0 ≤ i < e.

Proof {( f, kλ), 1 ≤ k < n} = {(( f, gi ), 0 ≤ i < e}.

Theorem 12.2.9 (Art. 346). Let us fix a period p := ( f, λ). Then for any
other period ( f, µ) there is a polynomial

Fµ(X) := a +
e−1∑
i=1

bi Xi ∈ Q(X)

such that ( f, µ) = Fµ(p).

Proof Since the trace of any root of Xn − 1 is zero, we know that

0 = 1 +
∑
ρ∈�

ρ = 1 +
e−1∑
i=0

( f, gi ).

By the previous results we know that there are ai , bi j ∈ Z such that

p j = a j +
e−1∑
i=0

bi j ( f, gi ), 2 ≤ j ≤ e − 1;

these equations, together with the relation

0 = 1 +
e−1∑
i=0

( f, gi )
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give e − 1 linear equations relating the e − 1 elements ( f, gi ) �= p and whose
known term is in Z[p].

Therefore by Gaussian elimination for each ( f, g j ) �= p we can obtain an
equation

a +
e−1∑
i=1

bi pi + β( f, g j ) = 0.

To complete the proof we only have to show that β �= 0 : otherwise, the
polynomial

F(X) := a +
e−1∑
i=1

bi Xi

would have p as a root and, therefore, by the Corollary above, would have the
e roots ( f, gi ), which contradicts the fact that deg(F) < e.

Example 12.2.10. The proof of the Theorem above also gives an algorithm for
producing the polynomials Fµ(X). Let us consider as before the case n =
19, f = 6. Then, setting p = (6, 1) we have from Example 12.2.6

p2 = 6 + 2(6, 1)+ (6, 2)+ 2(6, 4).

The two equations

−p − 1 = (6, 2)+ (6, 4)

p2 − 2p − 6 = (6, 2)+ 2(6, 4)

allow us to deduce

(6, 2) = −p2 + 4,

(6, 4) = p2 − p − 5.

It is also easy to check that, as claimed by the Corollary above,

(6, 4) = −(6, 2)2 + 4,

(6, 1) = (6, 8) = (6, 2)2 − (6, 2)− 5,

(6, 1) = (6, 8) = −(6, 4)2 + 4,

(6, 2) = (6, 16) = (6, 4)2 − (6, 4)− 5.

Theorem 12.2.11 (Art. 347). Let

F(Y0, Y1, . . . ,Y j , . . . ,Y f −1) ∈ Z[Y0, . . . ,Y f −1]
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be a symmetric function. Then

F
(
[µ], [µge], . . . , [µgej ], . . . , [µge( f −1)]

) = a +
e−1∑
i=0

bi ( f, gi ).

Proof Clearly, we have

F
(
[µ], [µge], . . . , [µgej ], . . . , [µge( f −1)]

) = a +
n−1∑
i=1

bi [i].

Since the function is symmetric it is clear that

a +
n−1∑
i=1

bi [i] = a +
n−1∑
i=1

bi [ig
e],

so that bi = b j iff [i] and [ j] belong to the same period.

Remark 12.2.12. It is worthwhile interpreting the results obtained so far with
Kronecker’s language: Corollary 12.2.8 states that the periods

( f, gi ), 0 ≤ i < e,

are conjugate and Theorem 12.2.9 states that each conjugate is in the field
extension K := Q(p) ⊂ C, where we recall that p = ( f, λ) for a fixed root
[λ] ∈ C of X.

In this setting, of course, we know that the splitting field F of X, satisfies

Q ⊂ K ⊂ F ⊂ C

and is endowed with the Q-isomorphisms �k defined by �k([λ]) = [kλ], for
each root [λ] ∈ �.

The effect of these isomorphisms is discussed in Remark 12.2.7 and they
are directly applied in Theorem 12.2.11, in order to prove that any symmetric
function of the roots contained in a period q = ( f, µ) can be expressed in
terms of all the periods ( f, gi ) and therefore as elements in K.

In particular, the symmetric functions of the roots contained in

q = ( f, µ)

can be expressed in K.
Therefore setting, for each root [µ], q := ( f, µ) and denoting Pµ(X) ∈

C[X ] the polynomial whose roots are the elements of q, we can deduce that:

Corollary 12.2.13 (Art. 348). With the notation above

Pµ(X) ∈ Q(p)[X ];
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Pλ(X) can be ‘computed’ in the sense that we can compute a polynomial
Q(Y, X) ∈ Q[Y, X ] such that

Pλ(X) = Q(p, X);
Pkλ = �k(Pλ).

Example 12.2.14. Consider

(6, 1) = {[1], [7], [8], [11], [12], [18]};
the coefficients of the corresponding polynomial

P1(X) =
5∑

i=0

(−1)i a6−i X i + X6

are

ai = σi ([1], [7], [8], [11], [12], [18]),

which Gauss computed as

a1 = (6, 1),

a2 = 3 + (6, 1)+ (6, 4),

a3 = 2 + 2(6, 1)+ (6, 2),

a4 = 3 + (6, 1)+ (6, 4),

a5 = (6, 1),

a6 = 1,

which give us

P1(x) = (1 + 3x2 + 2x3 + 3x4 + x6)

+ (x + x2 + 2x3 + x4 + x5)(6, 1)

+ x3(6, 2)

+ (x2 + x4)(6, 4),

from which we deduce that the period (6, 2) corresponds to the polynomial

P2(x) = (1 + 3x2 + 2x3 + 3x4 + x6)

+ (x + x2 + 2x3 + x4 + x5)(6, 2)

+ x3(6, 4)

+ (x2 + x4)(6, 1),
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and in the same way we get the polynomial P4 corresponding to the period
(6, 4).

Remark 12.2.15 (Art. 349). Gauss discusses algorithms for computing the co-
efficients above and remarks that direct computations like

a2 = [1 + 1] + [7 + 1] + [8 + 1] + [11 + 1] + [12 + 1] + [18 + 1]

+ [1 + 7] + [7 + 7] + [8 + 7] + [11 + 7] + [12 + 7] + [18 + 7]

+ [1 + 8] + [7 + 8] + [8 + 8] + [11 + 8] + [12 + 8] + [18 + 8]

+ [1 + 11] + [7 + 11] + [8 + 11] + [11 + 11] + [12 + 11]

+ [18 + 11] + [1 + 12] + [7 + 12] + [8 + 12] + [11 + 12]

+ [12 + 12] + [18 + 12] + [1 + 18] + [7 + 18] + [8 + 18]

+ [11 + 18] + [12 + 18] + [18 + 18]

= · · ·
can be avoided since σi can be expressed via the Waring functions si , which
can be easily computed, since we obviously have∑

r∈( f,λ)

r i = ( f, iλ).

Using the Newton formula, and denoting

si := si ([1], [7], [8], [11], [12], [18])

we get

a1 = s1 = (6, 1),
a2 = 1

2 (a1s1 − s2) = 3 + (6, 1)+ (6, 4),
. . .

using the already proven formula

(6, 1)2 = 6 + 2(6, 1)+ (6, 2)+ 2(6, 4).

Let me just add that such computations become elementary if we
pre-compute all products

(6, a)(6, b), a, b ∈ {1, 2, 4},
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and, moreover, such products are obtained immediately by applying
Remark 12.2.7 to the already computed formulas:

(6, 1)2 = 6 + 2(6, 1)+ (6, 2)+ 2(6, 4),

(6, 1)(6, 2) = (6, 1)+ 2(6, 2)+ 3(6, 4).

Remark 12.2.16 (Art. 350). The results summarized in Corollary 12.2.13
allowed us to express the polynomial Pµ(X) whose roots are the elements
of a period ( f, µ) in terms of a specific period p := ( f, λ) ∈ C and therefore
to compute these roots by ‘solving’ the equations Pµ(X) = 0, provided that
we already have computed the value of p.

The crucial remark is to consider the case n− 1 = αβγ and the period P :=
(βγ, λ) which ‘consists’ of the β disjoint periods pi := (γ, λgαi ), 0 ≤ i < β,
in the same sense that a period ‘consists’ of its roots; i.e. P is both the union
and the sum of the pi s.

Therefore, the required computation of p can be undertaken if we generalize
Corollary 12.2.13 to this setting, substituting roots with periods pi and the
period p with P. This is possible and is the aim of the following discussion.

If we consider a symmetric function

F(Y0, . . . ,Yβ−1) ∈ Z[Y0, . . . ,Yβ−1]

we know that

F(p0, . . . ,pβ−1) = a +
αβ−1∑
i=0

bi (γ, gi ) = a +
α−1∑
j=0

β−1∑
i=0

bi j (γ, gαi+ j ).

Since the periods (βγ, λ) and (βγ, λgα) coincide and consist of the union
of the periods pi s, the argument of the proof of Theorem 12.2.11 allows us
to prove that for all i, k, j, bi j = bkj , from which we deduce that there exists
a, b1, . . . , bα−1 ∈ Z :

F(p0, . . . ,pβ−1) = a +
α−1∑
j=0

b j (βγ, g j ) (12.1)

and that

�k

(
F(p0, . . . ,pβ−1)

)
= a +

α−1∑
j=0

b j (βγ, kg j ).

Therefore denoting Pi := (βγ, i) and by Gi (X) ∈ K[X ] the polynomial
whose roots are the β periods (γ, λ) contained in Pi , we can resume this



12.2 Cyclotomic Equations 249

discussion as:

Corollary 12.2.17 (Art. 351). With the above notation:

G1(X) ∈ Q(P1)[X ];
we can compute a polynomial Q(Y, X) ∈ Q[Y, X ] such that

G1(X) = Q(P1, X);
Gk = �k(F1).

Example 12.2.18. Continuing the computation when n = 19 we can produce
the polynomial F1(X) = X3 + ∑3

i=1(−1)i ci X3−i ∈ Q[X ] whose roots are
(6, 1), (6, 2), (6, 4).

We know that its coefficients are

c1 = (6, 1)+ (6, 2)+ (6, 4) = (18, 1)

= −1;
c2 = (6, 1)(6, 2)+ (6, 2)(6, 4)+ (6, 1)(6, 4)

=
(
(6, 1)+ 2(6, 2)+ 3(6, 4)

)
+
(
(6, 2)+ 2(6, 4)+ 3(6, 1)

)
+
(
(6, 4)+ 2(6, 1)+ 3(6, 2)

)
= 6

(
(6, 1)+ (6, 2)+ (6, 4)

)
= −6;

c3 = (6, 1)(6, 2)(6, 4)

= (6, 1)(6, 4)+ 2(6, 2)(6, 4)+ 3(6, 4)(6, 4)

=
(
(6, 4)+ 2(6, 1)+ 3(6, 2)

)
+2

(
(6, 2)+ 2(6, 4)+ 3(6, 1)

)
+3

(
6 + 2(6, 4)+ (6, 1)+ 2(6, 2)

)
= 18 + 11

(
(6, 1)+ (6, 2)+ (6, 4)

)
= 7;

therefore

F1(X) = X3 + X2 − 6X − 7.
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Example 12.2.19. With the same technique, denoting P1 := (6, 1), we will
now compute the polynomial G1(X) = X3 +∑3

i=1(−1)i ci X3−i ∈ Q(P1)[X ]
whose roots are (2, 1), (2, 7), (2, 8).

First let us remark that

(2, 1) = (2, 18) (2, 2) = (2, 17) (2, 4) = (2, 15)
(2, 7) = (2, 12) (2, 5) = (2, 14) (2, 10) = (2, 9)
(2, 8) = (2, 11) (2, 16) = (2, 3) (2, 13) = (2, 6)

and

(2, 1)(2, 7) = (2, 8)+ (2, 6),

(2, 1)2 = (2, 2)+ (2, 19)

= (2, 2)+ 2,

(2, 6)(2, 8) = (2, 2)+ (2, 5),

so that

(2, k1)(2, k7) = (2, k8)+ (2, k6),

(2, k)2 = (2, k2)+ 2,

(2, k6)(2, k8) = (2, k2)+ (2, k5),

and let us recall that

(6, 2) = −(6, 1)2 + 4,

(6, 4) = (6, 1)2 − (6, 1)− 5.

Therefore we obtain:

c1 = (2, 1)+ (2, 7)+ (2, 8) = (6, 1)

= P1;
c2 = (2, 1)(2, 7)+ (2, 7)(2, 8)+ (2, 8)(2, 1)

=
(
(2, 8)+ (2, 6)

)
+
(
(2, 1)+ (2, 4)

)
+
(
(2, 7)+ (2, 9)

)
= (6, 1)+ (6, 4)

= (6, 1)+ (6, 1)2 − (6, 1)− 5

= P2
1 − 5;

c3 = (2, 1)(2, 7)(2, 8)

= (2, 8)2 + (2, 6)(2, 8)

=
(
(2, 3)+ 2

)
+
(
(2, 2)+ (2, 5)

)
= 2 + (6, 2)

= −P2
1 + 6,
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i.e.
G1(X) = X3 − P1 X2 + (P2

1 − 5)X + P2
1 − 6.

Therefore the polynomial whose roots are (2, 2), (2, 3), (2, 5) is10

G2(X) = X3 − (6, 2)X2 + ((6, 2)2 − 5)X + (6, 2)2 − 6

= X3 + P2
1 X2 − 4X2 − P2

1 X + P1 X + 4X − P2
1 + P1 + 3,

and the one whose roots are (2, 4), (2, 6), (2, 9) is

G4(X) = X3 − (6, 4)X2 + ((6, 4)2 − 5)X + (6, 4)2 − 6,

= X3 − P2
1 X2 + P1 X2 + 5X2 − 8P1 X + 6X − 8P1 + 5.

Remark 12.2.20. The computations above allow us to ‘solve’ the equation

X(X) := X19 − 1

X − 1
:

what we have to do is

• ‘solve’ the equation

0 = F1(X) = X3 + X2 − 6X − 7 ∈ Q[X ];
• for each solution ξi , i = 1, . . . , ‘solve’ the three equations11

0 = G1(X, ξ)
0 = G2(X, ξ)
0 = G4(X, ξ)

10 Note that we use the fact that

(6, 2)2 = (−(6, 1)2 + 4)2

= (6, 1)4 − 8(6, 1)2 + 16

= −(6, 1)2 + (6, 1)+ 9

where the last equation is obtained by division since

F1((6, 1)) = (6, 1)3 + (6, 1)2 − 6(6, 1)− 7 = 0.

11 This approach poses a minor problem: if we solve the three equations

G(X, ξ1) = G(X, ξ2) = G(X, ξ4) = 0,

among the nine roots which one is which? That is, once we have fixed – and we know that we
can do it freely – one among the roots in � and labelled it as [1], we can freely decide which
among the roots of F1(X) is the one corresponding to the period (6, 1) and, among the roots
of G(X, ξ1), which represents (2,1); but then we must correctly associate the eight other roots
with the symbols (2, i).
Gauss discusses this question and solves it with a numerical analysis approach: not only does
he present roughly varia alia artificia but he proposes a general solution: since the tables allow
us to approximate the roots via the de Moivre formula, all the periods can be approximated; it
then becomes easy to decide which one is which.
I would also like to point to another trick proposed by Gauss: when the roots of F1 are approx-
imated and they are used to find the three solutions of the equation G(X, ξi ) = 0, by checking
that their sum gives approximately ξi we calculi confirmationem obtain.
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where

G1(X, Y ) = X3 − Y X2 + Y 2 X − 5X + Y 2 − 6,

G2(X, Y ) = X3 + Y 2 X2 − 4X2 − Y 2 X + Y X + 4X − Y 2 + Y + 3,

G4(X, Y ) = X3 − Y 2 X2 + Y X2 + 5X2 − 8Y X + 6X − 8Y + 5;
• since for each (2,i) = {[i],[n-i]}

[i][n − i] = 1, [i] + [n − i] = (2, i),

all the roots can then be derived by ‘solving’ the quadratic equations

Hi (X) := H(X, θi ) = 0, i = 1, . . . , 9,

where θi , i = 1, . . . , 9, are the solutions obtained in the previous step, and

H(X, Y ) := X2 − Y X + 1.

Alternatively, we can

• ‘solve’ the equation 0 = F1(X) computing a single root r1;
• ‘solve’ the equation 0 = G1(X, r1) computing a single root r2;
• ‘solve’ the equation 0 = H(X, r2) computing a single root r3;
• setting [1] := r3, compute all the other roots [λ] = rλ3 by repeated squaring.

‘Solving’ should be understood here in the sense of Gauss and his era: pro-
ducing the roots by performing the five operations over the coefficients – note
that we are required to ‘solve’ cubic and quadratic equations, for which Gauss’
era had sufficient tools.

It is, however, significant to understand what we would get by ‘solving’ the
equations above in the sense of Kronecker.

Let us note that we have a tower

Q ⊂ K1 ⊂ K2 ⊂ F ⊂ C

where F is the splitting field of X(X) so that F = Q([1]), and K1 := Q(P1),
K2 := Q(p1)

We therefore have

[F : K2] = 2, [K2 : K1] = [K1 : Q] = 3,
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and

K1 = Q(P1) = Q[X ]/F1(X),

K2 = K1(p1) = K1[X ]/G1(X,P1),

F = K2([1]) = K2[X ]/H(X, p1),

so that, ‘solving’ here means to build the above tower and then

• split F1(X) in K1;
• for each solution ξ , split in K1 the three polynomials G1(X, ξ), G2(X, ξ),

G4(X, ξ);
• for each solution θ , split in K1 the nine polynomials H1(X, θ).

Again, the better approach is to build the above tower and repeatedly
square [1].

Algorithm 12.2.21. On the bases of the results discussed upto here, Gauss pre-
sented his algorithm for ‘solving’ X(X) := Xn−1

X−1 as follows (Art. 352):

Theoremata praecedentia cum consectariis annexis praecipua totius theoriae momenta
continent, modusque valores radicum � inveniendi paucis iam tradi poterit.
Ante omnia accipiendus est numerus g, qui por modulo n sit radix primitiva, residu-
aque minima potestatum ipsius g usque ad gn−2 secundum modulum n eruenda. Re-
solvatur n − 1 in factores, et quidem, si problema ad aequationes gradus quam infima
reducere lubet, in factores primos; sint hi (ordine prorsus arbitrario) α, β, γ, . . . , ζ ,
ponaturque

n − 1

α
= βγ . . . ζ = a,

n − 1

αβ
= γ . . . ζ = b, etc.

Distribuantur omnes radices � in α periodos a terminorum; hae singulae rursus in β

periodos b terminorum; hae singulae denuo in γ periodos etc. Quaeratur per art praec.
[Remank 12.2.16] aequatio αti gradus (A), cuius radices sint illa α aggregata a termi-
norum, quorum itaque valores per resolutionem huius aequationis innotescent.
At hic difficultas oritur, quum incertum videatur, cuinam radici aequationis (A) quod-
vis aggregatum aequale statuendum sit, puta quaenam radix per (a, 1), quaenam per
(a, g) etc. denotari debeat: huic rei sequenti modo remedium afferri poterit. Per (a, 1)
designari potest radix quaecunque aequationis (A); quum enim quaevis radix huius
aequ. sit aggregatum a radicum ex � omninoque arbitrarium sit, quaenam radix ex
� per [1] denotetur, manifesto supponere licebit, aliquam ex iis radicibus, e quibus
radix quaecunque data aequ. (A) constat, per [1] exprimi, unde illa radix aequ. (A) fiet
(a, 1); radix [1] vero hinc nondum penitus determinatur, sed etiamnum prorsus arbitrar-
ium seu indefinitum manet, quamnam radicem ex iis, quae (a, 1) constituunt, pro [1]
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adoptare velimus. Simulac vero (a, 1) determinatum est, etiam omnia reliqua aggregata
a terminorum rationaliter inde deduci poterunt (art. 346) [Theorem 12.2.9]. Hinc simul
patet, unicam tantummodo radicem per huius resolutionem eruere oportere. – Potest
etiam methodus sequens, minus directa, ad hunc finem adhiberi. Accipiatur pro [1]
radix determinata, i.e. ponatur

[1] = cos
k P

n
+ i sin

k P

n
,

integro k ad lubitum electo, ita tamen ut per n non sit divisibilis; quo facto etiam
[2], [3], etc. radices determinatas indicabunt, unde etiam aggreata (a, 1), (a, g) etc.
quantitates determinatas designabunt. Quibus e tabulis sinuum levi tantum calamo
computatis, puta ea precisione, ut quae maiora quaeve minora sint decidi possit,
nullum dubium superesse poterit, quibusnam signis singulae radices aequ. (A) sint
distinguendae.
Quando hoc modo omnia α aggregata a terminorum inventa sunt, investigetur per art.
praec. [Remark 12.2.16] aequatio (B) βti gradus, cuius radices sint β aggregata b ter-
minorum sub (a, 1) contenta; coëfficientes huius aequationis omnes erunt quantitates
cognitae. Quum adhuc arbitrarium sit, quaenam ex a = βb radicibus sub (a, 1) con-
tentis per [1] denotetur, quaelibet radix data aequ. (B) per (b, 1) exprimi poterit, quia
manifesto supponere licet, aliquam b radicum, e quibus composita est, per [1] denotari.
Investigetur itaque una radix quaecunque aequationis (B) per eius resolutionem, statu-
atur = (b, 1), deriventurque inde per art. 346 [Theorem 12.2.9] omnia reliqua aggregata
b terminorum. Hoc modo simul calculi confirmationem nanciscimur, quum semper ea
aggregata b terminorum, quae ad easdem periodos a terminorum pertinent, summas
notas conficere debeant. – In quibusdam casibus aeque expeditum esse potest, α − 1
alias aequationes βti gradus eruere, quarum radices sint resp. singula β aggregata b
terminorum in reliquis periodis a terminorum, (a, g), (a, gg) etc. contenta, atque omnes
radices tum harum aequationum tum aequationis B per resolutionem investigare: tunc
vero simili modo ut supra adiumento tabulae sinuum decidere oportebit, quibusnam
periodis b terminorum singulae radices hoc modo prodeuntes aequales statui debeant.
Ceterum ad hocce iudicium varia alia artificia adhiberi possunt, quae hoc loco com-
plete explicare non licet; unum tamen, pro eo casu ubi β = 2, quod imprimis utile est,
ac per exempla brevius quam per praecepta declarari poterit, in exemplis sequentibus
cognoscere licebit.
Postquam hoc modo valores omnium αβ aggregatorum b terminorum inventi sunt, pror-
sus simili modo hinc per aequationes γ ti gradus omnia αβγ aggregata c terminorum
determinari poterunt. Scilicet vel unam aequationem γ ti gradus, cuius radices sint γ
aggregata c terminorum sub (b, 1) contenta, per art. 350 [Remark 12.2.16] eruere; per
eius resolutionem unam radicem quamcunque elicere et = (c, 1) statuere, tandemque
hinc per art. 346 [Theorem 12.2.9] omnia reliqua similia agregata deducere oportebit;
vel simili modo omnino αβ aequationes γ ti gradus evolvere, quarum radices sint resp.
γ aggregata c terminorum in singulis periodis b terminorum contenta, valores omnium
radicum omnium harum aequationum per resolutionem extrahere, tandemque ordinem
harum radicum perinde ut supra adiumento tabulae sinuum, vel, pro γ = 2, per artifi-
cium infra in exemplis ostendendum determinare.
Hoc modo pergendo, manifesto tandem omnia n−1

ζ aggregata ζ terminorum habebun-
tur; evolvendo itaque per art. 348 [Corollary 12.2.13] aequationem ζ ti gradus, cuius
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radices sint ζ radices ex � in (ζ, 1) contentae, huius coëfficientes omnes erunt
quantitates cognitae; quodsi per resolutionem una eius radix quaecunque elicitur,
hanc = [1] statuere licebit, omnesque reliquae radices � per huius potestates habebun-
tur. Si magis placet, etiam omnes radices illius aequationis per resolutionem erui,
praetereaque per solutionem n−1

ζ − 1 aliarum aequationum ζ ti gradus, quae resp.
omnes ζ radices in singulis reliquis periodis ζ terminorum contentas exhibent, omnes
reliquae radices � inveniri poterunt.
Ceterum patet, simulac prima aequatio (A) soluta sit, sive simulac valores ominum
α aggregatorum a terminorum habeantur, etiam resolutionem functionis X in α fac-
tores a dimensionum per art. 348 [Corollary 12.2.13] sponte haberi; porroque post so-
lutionem aequ. (B), sive postquam valores omnium αβ aggregatorum b terminorum
inventi sint, singulos illo factores iterum in β, sive X in αβ factores b dimensionum
resolvi etc.
The previous theorems with their corollaries, contain the main basis of the whole the-
ory and the way of finding the values of the roots � can now be presented in few
words.
First, one needs to take a number g which is a primitive root [a generator] for the
module n and to compute the minimal residue of the powers of g up to gn−2 modulo n.
Decompose n − 1 into factors and, if one wants to reduce the problem to equations of
minimal degree, into prime factors; let them be (with an arbitrary order) α, β, γ, . . . , ζ ,
and let us denote

n − 1

α
= βγ . . . ζ = a,

n − 1

αβ
= γ . . . ζ = b, etc.

Distribute all the roots � in α periods of a terms; each of them again in β periods
of b terms; each of them again in γ periods etc. Find by the previous article [Re-
mark 12.2.16] the equation (A) of degree α, whose roots are the α sums of a terms, of
which the values will be obtained by solving this equation.
But it there is a difficulty in that it is uncertain which root of equation (A) should be
equated to which sum, that is, which root should be denoted by (a, 1), which by (a, g)
etc.: we can remedy this problem in the following way. We can denote by (a, 1) any root
of equation (A); in fact since any generic root of this equation is a sum of a roots in
� and since it is completely arbitrary which root in � is denoted by [1], obviously we
can assume that [1] denotes any of the roots contained in any given root of equation
(A), so that this root of equation (A) becomes (a, 1); but the root [1] has not yet been
determined, and which root among those contained in (a, 1) is chosen to represent [1]
is arbitrary and indeterminate. On the other hand, once (a, 1) is determined all the
other periods of a terms can be rationally determined (article 346) [Theorem 12.2.9].
From this it follows that it is sufficient to find a unique root of this equation. One can
also with this in mind apply the following less direct method. Take for [1] a determined
root, i.e. put

[1] = cos
kπ

n
+ sin

kπ

n
,

choosing an arbitrary integer k, provided that it is not divided by n. Then [2], [3], etc.
denote determined roots, so that the sums (a, 1)(a, g) etc. denote determined quantities.



256 Gauss

If from sine tables these quantities are sufficiently computed, that is with the precision
to make it possible to decide which is the greater and which is the lesser, there can be
no doubt in distinguishing the single roots of equation (A).
When in this way all α sums of a terms are found, compute by the previous article
[Remark 12.2.16] the equation (B) of degree β, whose roots are the β sums of b terms,
contained in (a, 1); all the coefficients of this equation will be known quantities. Since
we have not yet determined which of the a = βb roots contained in (a, 1) denotes [1],
we can represent any root of equation (B) by (b, 1), since obviously we can assume that
some of the b roots of which it is composed are denoted by [1]. Find a root of equation
(B) by solving it, denote it (b, 1) and deduce, by article 346 [Theorem 12.2.9], all the
other sums of b terms. In this way, we have a method for verifying the computation,
since the sums of b terms which belong to the same period of a terms must give the
known sum. In some cases the other α− 1 equations of degree β, whose roots are resp.
the different β sums of b terms contained in the other periods of a terms, (a, g), (a, g2)

etc., can be quickly constructed and all the roots of these equations and of equation B
found by resolution: But then, in the same way as above, with the aid of the sine table
one needs to decide which periods of b terms are equal to which roots so obtained.
Other different tools, which are impossible to explain here, can also be applied; in
the following examples it will be possible to discuss only one, for the case in which
β = 2, which is the most important and which is better presented by example than by
rules.
When in this way all αβ sums of b terms are found, in the same way, using equations
of degree γ , all of the αβγ sums of c terms can be determined. Either by finding one
equation of degree γ whose roots are the γ sums of c terms contained in (b, 1) via
article 350 [Remark 12.2.16]; by resolving this and computing a single root denoting
it (c, 1) and deducing, by article 346 [Theorem 12.2.9], all the other similar sums;
or by developing all the αβ equations of degree γ , whose roots are respectively the γ
sums of c terms contained in a single period of b terms, obtaining the values of all
the roots of all these equations by resolution, and determining the order of these roots
with the help of sine tables, or, for γ = 2, by the methods presented in the examples
below.
Continuing in this way, we will obviously have n−1

ζ sums of ζ terms; finding by article
348 [Corollary 12.2.13] the equation of degree ζ , whose roots are the ζ roots from
� contained in (ζ, 1), its coefficients are all known quantities; if by its resolution we
compute one of its roots, we can denote it by [1] and its powers give all the other roots
�. If one likes, all the other roots in � can be obtained by the above resolution all the
roots of this equation and of the n−1

ζ −1 other equations of degree ζ , which respectively
give all ζ roots contained in the other periods of ζ terms.
Moreover, it is clear that when equation (A) is solved and one has all the values of
the α sums of a terms, one has also factorized the function X in α factors of degree
a by article 348 [Corollary 12.2.13]; and from the solution of equation (B) one gets
the values of all αβ sums of b terms, and the factorization of each such factor into β

factors; the factorization of X into αβ factors of degree b etc.

Example 12.2.22 (Art. 353). Gauss then illustrates his algorithm using the ex-
ample which has already been discussed, n = 19. Since 18 = 3 · 3 · 2,
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computing � requires the resolution of two cubic and one quadratic
equations.

Using 2 as the generator, we get Table 12.1 from which we produce

� = (18, 1) =




(6, 1)



(2, 1) [1], [18]
(2, 8) [8], [11]
(2, 7) [7], [12]

(6, 2)



(2, 2) [2], [17]
(2, 16) [3], [16]
(2, 14) [5], [14]

(6, 4)



(2, 4) [4], [15]
(2, 13) [6], [13]
(2, 9) [9], [10].

The equation (A) whose roots are (6, 1), (6, 2), (6, 4) is (cf. Example 12.2.18)

F1(X) = X3 + X2 − 6X − 7

‘solving’ which, Gauss obtains

p6 = (6, 1) = −1.2218761623 . . .

which allows us to compute (cf. Example 12.2.10)

(6, 2) = −(6, 1)2 + 4,

(6, 4) = (6, 1)2 − (6, 1)− 5,

substituting which in the polynomials P1(X), P2(X), P4(X) (cf. Example
12.2.14) we get a partial factorization of X in C[X ]12.

The equation (B) whose roots are (2, 1), (2, 7), (2, 8) is (cf. Example 12.2.19)

G1(X) = X3 − p6 X2 + (p6
2 − 5)X + p6

2 − 6,

solving which we get

p2 = q := (2, 1) = −1.3545631433 . . .

12 And from the modern point of view, the computations of Example 12.2.14 give us the factoriza-
tion

X = P1(X)P2(X)P4(X) in K[X ] = Q(p)[X ].
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With the algorithm presented in Theorem 12.2.9, using Gauss we obtain:

(2, 2) = q2 − 2,
(2, 3) = q3 − 3q,
(2, 4) = q4 − 4q2 + 2,
(2, 5) = q5 − 5q3 + 5q,
(2, 6) = q6 − 6q4 + 9q2 − 2,
(2, 7) = q7 − 7q5 + 14q3 − 7q,
(2, 8) = q8 − 8q6 + 20q4 − 16q2 + 2,
(2, 9) = q9 − 9q7 + 27q5 − 30q3 + 9q.

(12.2)

Finally the roots [1] and [18] are obtained by solving

X2 − (2, 1)+ 1 = 0

and all the other roots are obtained by

• either repeatedly squaring [1]
• or solving all equations

X2 − (2, i)+ 1 = 0

and associating correctly the values to the roots [i] by comparing them with
the rough evaluations given by the sine table13.

Historical Remark 12.2.23. In his introduction Gauss quoted explicitly the
value n = 17 for which, as he remarked, one has n − 1 = 24; computing
roots with Gauss’ Algorithm requires us to solve quadratic equations itera-
tively. Therefore the 17th root of unity can be computed by solving quadratic
equations, which, in Gauss’ time, meant that the polygon with 17 sides can be
constructed by ruler and compass, an important result, to which Gauss proudly
devoted the next example.

13 In one sense the choice of these two approaches depends upon their complexity: in order to get
a good approximation of all the roots is it better to repeatedly square [1] of which we need a
better approximation, or to repeatedly extract roots of equations whose coefficients depend on
values of which we again need a better approximation?
Correctly, Gauss did not want to limit his algorithm by an a priori choice.
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Table 12.2. Logarithm table for Z17

i 3i i 3i

1 3 9 14
2 9 10 8
3 10 11 7
4 13 12 4
5 5 13 12
6 15 14 2
7 11 15 6
8 16 16 1

Example 12.2.24 (Art. 354). Setting n = 17 and taking 3 as the generator we
obtain Table 12.2, from which we produce

� = (16, 1) =




(8, 1)



(4, 1)

{
(2, 1) [1], [16]
(2, 13) [4], [13]

(4, 9)

{
(2, 9) [8], [9]
(2, 15) [2], [15]

(8, 3)



(4, 3)

{
(2, 3) [3], [14]
(2, 5) [5], [12]

(4, 10)

{
(2, 10) [7], [10]
(2, 11) [6], [11].

Since (8, 1)(8, 3) = −4, the equation whose roots are (8, 1) and (8, 3) is

X2 + X − 4,

whose roots are − 1
2 ± 1

2

√
17 which can then be approximated and one of them

chosen to denote p8 := (8, 1).
Since (4, 1)(4, 9) = −1, the equation whose roots are (4, 1) and (4, 9) is

X2 − p8 X − 1.

With the algorithm presented in Theorem 12.2.9, Gauss expressed all the
periods (4, λ) in terms of p4 := (4, 1) as:

(4, 3) = − 3
2 + 3p4 − 1

2 p4
3,

(4, 10) = 3
2 + 2p4 − p4

2 − 1
2 p4

3,

(4, 9) = −1 − 6p4 + p4
2 + p4

3,

so p4 is approximately computed by root extraction and substituted into the
above equations giving all the periods (4, i).
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Since (2, 1)(2, 13) = (4, 3), the equation whose roots are (2, 1) and
(2, 13) is

X2 − p4 X + (4, 3).

Denoting (2, 1) =: p2 the formulas of Equation 12.2 represent (2, i), 2 ≤
i ≤ 8, in terms of p2, so that all these values can be approximated by root(s)
extraction.

Finally, solving the equation

X2 − p2 X + 1

we obtain [1] from which all the roots can be obtained by squaring; or, alter-
natively, all the roots can be obtained by computing14

1

2
(2, i)± 1

2

√
(2, i)2 − 4 = 1

2
(2, i)± 1

2

√
(2, 2i)− 2, for all i,

and the values are correctly associated to the roots [i] per artificium, whose
discussion I omit here.

I want to summarize here, in Kronecker’s language, the Gauss results pre-
sented in this section as:

Theorem 12.2.25. If n ∈ N is an odd prime,

n − 1 = p1 p2 · · · pν

is a factorization into prime factors, and

X(X) :=
n−1∑
i=0

Xi = Xn − 1

X − 1
,

the Gauss Algorithm produces a set of ν polynomials f1, . . . , fν ∈ C[X ] so
that, denoting for each i ≤ ν

ri ∈ C a root of fi ,
Ki := Ki−1(ri ) where K0 := Q,

it follows that

(1) deg(fi ) = pi , for all i ;

(2) Q ⊂ K1 ⊂ · · · ⊂ Kν ⊂ C;

(3) fi (X) ∈ Ki−1[X ] is irreducible, for all i ;

14 Where we use

(2, i)2 = (2, 2i)+ (2, 0) = (2, 2i)+ 2.
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(4) Ki = Ki−1[X ]/fi (X);

(5) Ki is the splitting field of fi (X);

(6) Kν is the splitting field of X(X);

(7) rν is a root of X(X).

Example 12.2.26. It is natural here, to apply Gauss’ Algorithm to ‘solve’ the
equation X(X) when n = 17 within Kronecker’s Model.

The Gauss computations presented in Example 12.2.24, using only the for-
mula of Theorem 12.2.9 and the linear algebra implied by Theorem 12.2.5,
allow us to produce the equations

f8 := X2 + X − 4,

f4 := X2 − p8 X − 1,

f2 := X2 − p4 X − 1

2
p4

3 + 3p4 − 3

2
,

f1 := X2 − p2 X + 1,

where pi denotes the periods (i, 1). Then we can build the tower

Q ⊂ K8 ⊂ K4 ⊂ K2 ⊂ K1 ⊂ C

where
K8 := Q/f8 = Q(p8),

K4 := K8/f4 = Q(p8, p4),

K2 := K4/f2 = Q(p8, p4, p2),

K1 := K2/f1 = Q(p8, p4, p2, r),

and we know that Q(p8, p4, p2, r) is the splitting field of X(X) whose roots
are

[i] := ri , 1 ≤ i ≤ 16,

and which we can easily compute by just using the relations

p8
2 = −p8 + 4,

p4
2 = p8p4 + 1,

p2
2 = p4p2 + 1

2
p4

3 − 3p4 + 3

2
,

r2 = p2r − 1.
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An elementary tour de force then gives

[1] = r,

[2] = r2

= p2r − 1,

[3] = p2r2 − r

= rp2p4 − 1
2 rp4p8 − 1

2 rp4 + 1
2 rp8 + 1

2 r − p2,

[4] = 1
2 rp2p4p8 − 1

2 rp2p4 + 1
2 rp2p8 + 1

2 rp2 + 1
2 rp4p8 − 1

2 rp4 − 1
2 rp8

− 1
2 r − p2p4 + 1

2 p4p8 + 1
2 p4 − 1

2 p8 − 1
2 ,

[5] = rp2p4 − rp2 − 1
2 rp4p8 + 1

2 rp4 + 1
2 rp8 + 1

2 r − 1
2 p2p4p8

+ 1
2 p2p4 − 1

2 p2p8 − 1
2 p2 − 1

2 p4p8 + 1
2 p4 + 1

2 p8 + 1
2 ,

[6] = rp2 + 1
2 rp4p8 + 1

2 rp4 − 1
2 rp8 − 3

2 r−
−p2p4 + p2 + 1

2 p4p8 − 1
2 p4 − 1

2 p8 − 1
2 ,

[7] = 1
2 rp2p4p8 + 1

2 rp2p4 − 1
2 rp2p8 − 1

2 rp2 − rp4 + r

−p2 − 1
2 p4p8 − 1

2 p4 + 1
2 p8 + 3

2 ,

[8] = − 1
2 rp2p4p8 + 1

2 rp2p4 + 1
2 rp2p8 + 1

2 rp2 − 1
2 rp4p8 + 3

2 rp4

− 1
2 rp8 − 3

2 r − 1
2 p2p4p8 − 1

2 p2p4 + 1
2 p2p8 + 1

2 p2 + p4 − 1,

[9] = 1
2 rp2p4p8 − 1

2 rp2p4 − 1
2 rp2p8 − 1

2 rp2 + 1
2 rp4p8 − 3

2 rp4 + 1
2 rp8

+ 3
2 r + 1

2 p2p4p8 − 1
2 p2p4 − 1

2 p2p8 − 1
2 p2 + 1

2 p4p8 − 3
2 p4

+ 1
2 p8 + 3

2 ,

[10] = − 1
2 rp2p4p8 − 1

2 rp2p4 + 1
2 rp2p8 + 1

2 rp2 + rp4 − r − 1
2 p2p4p8

+ 1
2 p2p4 + 1

2 p2p8 + 1
2 p2 − 1

2 p4p8 + 3
2 p4 − 1

2 p8 − 3
2 ,

[11] = −rp2 − 1
2 rp4p8 − 1

2 rp4 + 1
2 rp8 + 3

2 r

+ 1
2 p2p4p8 + 1

2 p2p4 − 1
2 p2p8 − 1

2 p2 − p4 + 1,

[12] = −rp2p4 + rp2 + 1
2 rp4p8 − 1

2 rp4 − 1
2 rp8 − 1

2 r

+p2 + 1
2 p4p8 + 1

2 p4 − 1
2 p8 − 3

2 ,

[13] = − 1
2 rp2p4p8 + 1

2 rp2p4 − 1
2 rp2p8 − 1

2 rp2 − 1
2 rp4p8 + 1

2 rp4

+ 1
2 rp8 + 1

2 r + p2p4 − p2 − 1
2 p4p8 + 1

2 p4 + 1
2 p8 + 1

2 ,

[14] = −rp2p4 + 1
2 rp4p8 + 1

2 rp4 − 1
2 rp8 − 1

2 r + 1
2 p2p4p8

− 1
2 p2p4 + 1

2 p2p8 + 1
2 p2 + 1

2 p4p8 − 1
2 p4 − 1

2 p8 − 1
2 ,

[15] = −rp2 + p2p4 − 1
2 p4p8 − 1

2 p4 + 1
2 p8 + 1

2 ,

[16] = −r + p2,

[17] = 1.
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Sturm

Consider f (X) := X2 − 2 ∈ Q[X ] and the field

Q[X ]/ f (X) = Q[α] # Q(
√

2) ⊂ R.

As was discussed in Examples 8.1.1 and 8.1.2, the crucial point for the appli-
cation of Kronecker’s model to real numbers is, to crudely put, the ability to
distingush whether α represents the positive root

√
2 or the negative root −√2.

In fact, there are two immersions Q[α] → R characterized by the image of
α; these two immersions impose an ordering on Q[α]: in the one in which α

represents
√

2 we have α > 0; in the other, α represents −√2 and we have
α < 0.

Somehow, the difference between R and C is whether−1 is a sum of squares
or not: in fact there is a strict relation among the possibility of imposing
orderings on a field K and the possibility of representing −1 as a sum of
squares in K ; this relation will be discussed in Section 13.1 where I introduce
the notion of real closed fields and of real closure of ordered fields.

Then, after introducing a set of notations (Section 13.2), I discuss the tech-
nique introduced by Sturm and generalized by Sylvester which allows us to
count the real roots of a polynomial f ∈ Q[X ] (Section 13.3) – and by gener-
alization, the number of the roots α ∈ R of a polynomial f ∈ K [X ], where K
is an ordered field and R its real closure.

The Sturm technique allows us to ‘solve’ a polynomial equation f ∈ Q[X ]
over R by producing, for each α ∈ R, f (α) = 0, and each ε ∈ Q, ε > 0,
a rational number c ∈ Q such that |α − c| < ε. This suggests extending
Kronecker’s model to the reals by representing each algebraic real number α ∈
R by introducing a squarefree polynomial f (X) ∈ Q[X ] such that f (α) = 0
and an interval (a, b) ∈ Q which contains only α among the roots of f . This
Sturm representation allows us to perform arithmetical operations (including
ordering ones) over algebraic real numbers à la Kronecker (Section 13.4).

263
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An alternative technique for counting real roots of polynomial equations
f ∈ Q[X ] was proposed by Hermite using quadratic forms and has recently
been proposed again1 so as to solve the same problem but for a multivariate
polynomial equation system which has finitely many roots (Section 13.5).

A different approach for representing algebraic real numbers is based on the
remark that, denoting, for a polynomial f (X) ∈ K [X ] and an algebraic real
number α ∈ R – where K is an ordered field and R its real closure – , the
sequence

s( f, α) := (sgn( f (α)), sgn( f ′(α)), . . . , sgn( f (i)(α)), . . .)

of the values of the signs of the derivatives of f evaluated at α, each real root
α ∈ R of f is identified uniquely by s( f, α). This suggests introducing the
Thom codification in which an algebraic real number α ∈ R is represented by
introducing a squarefree polynomial f (X) ∈ K [X ], such that f (α) = 0, and
the sequence s( f, α) (Section 13.6).

The Ben-Or, Kozen and Reif (BKR) Algorithm allows us, given g1, . . . , gq ∈
K [X1, . . . , Xn] and a multivariate polynomial equation system which has
finitely many roots x1, . . . , xm ∈ Rn , to compute for all j the sequences

(sgn(g1(x j )), . . . , sgn(gi (x j )), . . . , sgn(gq(x j )))

and, in particular, to compute the Thom codification of each root of a polyno-
mial f (X) ∈ K [X ] (Section 13.7).

Finally I show how, using the Thom codification and the BKR Algorithm,
to ‘solve’ polynomial equations f ∈ K [X ] and how to perform arithmetical
operations with algebraic elements in a real closed field (Section 13.8).

13.1 Real Closed Fields

Definition 13.1.1. By a sum of squares in a field K , we mean any expression
n∑

i=1

a2
i , ai ∈ K .

For this concept we have:

Lemma 13.1.2. Let K be a field. Then:

(1) If K is ordered, then −1 is not a sum of squares in K .
(2) The following conditions are equivalent:

(a) −1 is not a sum of squares in K ;
(b) a sum of squares

∑n
i=1 a2

i in K is 0 ⇐⇒ ai = 0, for all i .

1 P. Pederson, M.-F. Roy, A. Szpirglas Complexity of computation with real algebraic numbers,
J. Symb. Comp. 10 (1990) 1273–1278.
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(3) If −1 is a sum of squares in K and char(K ) �= 2, then each a ∈ K is a
sum of squares.

(4) If −1 is a sum of squares in K , the set {a ∈ K : a is a sum of squares in
K } is a field.

Proof

(1) In fact if
∑n

i=1 a2
i is a sum of squares, since a2

i > 0, then
∑n

i=1 a2
i > 0 >

−1.
(2) (a) �⇒ (b) Assume

∑n
i=1 a2

i = 0 for some ai ∈ K and an �= 0. Then,

setting bi := ai a−1
n we have

∑n−1
i=1 b2

i = −1 contradicting the
assumption.

(b) �⇒ (a) Assume −1 = ∑n
i=1 a2

i ; then 12 +∑n
i=1 a2

i = 0; therefore
0 is a sum of squares of non-vanishing elements.

(3) Follows from 22a = (1 + a)2 + (−1)(1 − a)2.
(4) Let a and b be sums of squares; it is then obvious that a + b and ab are

also such sums. And so also is −a = (−1)a. To show that a
b is one also,

we have just to remark that

a

b
= ab

b2
= ab(b−1)2.

In order to discuss the relationship between the possibility of imposing or-
derings on a field K and the possibility of representing −1 as a sum of squares
in K , thus proving the converse result of Lemma 13.1.2(1), that is

if −1 is not a sum of squares in K then K is ordered,

let us introduce

Definition 13.1.3. A field K is called

• formally real if −1 is not a sum of squares in it;
• real closed if it is formally real but no proper algebraic extension of K is

formally real.

To prove our claimed result, let us first prove the following

Lemma 13.1.4. Let K be a formally real field.
Let γ ∈ K \ {0} be such that it is not the square of an element in K , so that

f (X) = X2 − γ is irreducible over K and we can consider the field extension

K [
√
γ ] := K [X ]/ f (X).
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With the notation above:

(1) If K [
√
γ ] is not formally real, then

there exists ai , bi ∈ K : −1 = γ

n∑
i=1

a2
i +

n∑
i=1

b2
i . (13.1)

(2) If γ is a sum of squares in K , then K [
√
γ ] is formally real.

(3) Either K [
√
γ ] or K [

√−γ ] is formally real.

Proof

(1) Since K [
√
γ ] is not formally real, there is a representation

−1 =
n∑

i=1

(ai
√
γ + bi )

2 = γ

n∑
i=1

a2
i + 2

√
γ

n∑
i=1

ai bi +
n∑

i=1

b2
i , ai , bi ∈ K .

We have 2
∑n

i=1 ai bi = 0 since, otherwise,

√
γ = −1 − γ

∑n
i=1 a2

i −
∑n

i=1 b2
i

2
∑n

i=1(ai bi )
∈ K

contradicting the assumption that f is irreducible over K ; therefore
Equation 13.1 holds.

(2) Assume K [
√
γ ] is not formally real, so that Equation 13.1 holds. If γ is a

sum of squares in K , then −1 could be represented as a sum of squares in
K , contradicting the fact that K is a formally real field.

(3) Assuming K [
√
γ ] is not formally real, so that Equation 13.1 holds, we

deduce

−γ = 12 +∑n
i=1 b2

i∑n
i=1 a2

i

(13.2)

and so, by Lemma 13.1.2, −γ is a sum of squares, so that K [
√−γ ] is

formally real.

Lemma 13.1.5. Let K be a real closed field and let γ ∈ K , γ �= 0. If γ is not
the square of an element in K , then K [

√
γ ]) is not formally real.

Proof In fact, K [
√
γ ] is a proper algebraic extension of K ; since K is real

closed, K [
√
γ ] is not formally real.
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Theorem 13.1.6. Let K be a real closed field. Then:

(1) If γ ∈ K , γ �= 0, is a sum of squares in K , then there is β ∈ K : β2 = γ .

(2) If γ ∈ K , either γ is a square in K or −γ is a square in K , but the cases
are mutually exclusive.

(3) K can be ordered in one and only one way.

Proof

(1) Assume γ is not the square of an element in K ; then K [
√
γ ] is not formally

real and so Equation 13.1 holds. Substituting for γ in Equation 13.1 its
representation as a sum of squares in K , we obtain a representation of −1
as a sum of squares in K , and so a contradiction.

(2) If γ is not a square, K [
√
γ ] is not formally real and Equations 13.1 and

13.2 hold, from which we deduce that −γ is a square.
On the other hand, if both γ and −γ are squares, i.e. there exists b, c ∈ K
such that γ = b2, −γ = c2, we deduce −1 = ( c

b )
2, contradicting the

assumption that K is real closed.
(3) To order K it is sufficient to decide for each a ∈ K \ {0} which of a or −a

is in the positive cone; the choice is completely determined since only one
of them is a square and so is in the positive cone.

Example 13.1.7. It is worthwhile discussing further the case considered in
Examples 8.1.1 and 8.1.2 of the field

K1 := Q[X ]/ f1(X) = Q[α] # Q(
√

2) ⊂ R

where f1(X) := X2 − 2 ∈ Q[X ], which has two orderings according to
whether α > 0 or α < 0.

Let us now extend K1 to the field

K2 := K1[X ]/ f2(X) = K1[β] = Q[α, β] = Q[β] = Q[X ]/(X4 − 2),

where

f2(X) := X2 − α ∈ K1[X ].

The polynomial X4 − 2 has four roots in C, the positive real root 4
√

2,
the negative real root − 4

√
2, and the two conjugate complex roots ±i 4

√
2, so
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that there are two copies of K2 embedded in C, both having, of course, two
Q-automorphisms:

Q[ 4
√

2] # Q[− 4
√

2] ⊂ R,
Q[i 4

√
2] # Q[−i 4

√
2] �⊂ R.

In both, of course, −1 is not a sum of squares: in fact, −1 is obviously not
this in the real copy; therefore if it were such in the other copy

−1 =
∑

i

(ai + biβ + ciα + diαβ)
2

we only have to substitute α with −α to find a representation

−1 =
∑

i

(ai + biβ − ciα − diαβ)
2

in the real copy and a contradiction.
Apparently, up to now we have not been able to distinguish whether, in the

representation K1 = Q[α], α represents the positive real number
√

2 or the
negative one −√2.

However, paradoxically, our choice of extending K1 by a square root of α
has fixed α to represent

√
2, the single positive root of f , since the negative

root cannot be a square!
In fact, if we now try to extend K2 by adding a root of f3(X) := X2 + α ∈

K2[X ] giving

K3 = K2[γ ] = Q[β, γ ]

we deduce (
β

γ

)2

= −1

so that K3 is neither formally real nor ordered, since, with this extension, we
pretend that both α and −α are squares; obviously we have β

γ
= i.

In a real closed field the following holds, as a consequence of
Theorem 13.1.6,

Corollary 13.1.8. Let K be a real closed field; then for each positive a ∈ K ,
there is b ∈ K : b2 = a.

and also

Lemma 13.1.9. Let K be a real closed field; then each polynomial f (X) ∈
K [X ] of odd degree has a root in K .
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Proof The proof will be by induction on deg( f ) = n, the case deg( f ) = 1
being trivial.
Let then f (X) ∈ K [X ] be an irreducible polynomial of odd degree deg( f ) =
n > 1.

Let us consider the field extension K [α] := K [X ]/ f (X); then K [α] is not
formally real so that we have

−1 =
ν∑

i=1

gi (α)
2, gi (X) ∈ K [X ], deg(gi ) < n;

therefore there is g(X) ∈ K [X ] such that

−1 = g(X) f (X)+
ν∑

i=1

gi (X)
2; (13.3)

now
∑ν

i=1 gi (X)2 is of even degree, since the leading coefficients of each
gi (X)2 are squares and therefore cannot cancel in the addition; the degree is
also positive, otherwise the representation

−1 =
ν∑

i=1

gi (α)
2 =

ν∑
i=1

gi (0)

of −1 is a sum of squares in the real closed field K , giving a contradiction.
Therefore deg(g) ≤ n−2 is odd, and by the assumptions it has a root β ∈ K ;

evaluating Equation 13.3 in β we get

−1 =
ν∑

i=1

gi (β)
2

which again gives a contradiction.
From Corollary 13.1.8, Lemma. 13.1.9, Theorem 12.1.6 we deduce

Theorem 13.1.10. Let K be a real closed field and let K [i] := K [X ]/(X2 +
1). Then:

K [i] is algebraically closed;
each polynomial f ∈ K [X ] factorizes over K in linear and quadratic

factors,

of which we have a sort of converse:

Theorem 13.1.11. Let K be a formal real field. If K [i] is algebraically closed,
then K is a real closed field.



270 Sturm

Proof There exists no field K ′ such that K ⊂ K ′ ⊂ K [i], therefore the only
algebraic extensions of K are K itself and K [i]. Since K [i] cannot be formally
real, K is real closed.

In a real closed field, we can generalize the Weierstrass Theorem of conti-
nous functions as:

Lemma 13.1.12. Let K be a real closed field and let f (X) ∈ K [X ]. Let a, b ∈
K be such that

f (a) < 0 < f (b).

Then there is c ∈ K between a and b such that f (c) = 0.

Proof An irreducible factor

g(X) = X2 + pX + q =
(

X + p

2

)2 + (q − p2/4) ∈ K (X)

is everywhere positive in K since the first term is a square and the second is
positive because g(X) is irreducible in K and so its determinant p2 − 4q < 0.
Since f factors into linear and quadratics factors and the quadratic factors are
everywhere positive, a change of sign of f between a and b depends on a
change of sign of a linear factor (X − c), and so implies the existence of a root
of f between a and b.

We note here, omitting the proof, the following fact:

Fact 13.1.13. Let K be an ordered field; then there is a unique algebraic ex-
tension field K ⊃ K which is really closed and whose ordering extends that of
K . Such a field is called the real closure of K .

If K is the algebraic closure of K then K = K[i].

Note that the algebraic closure of Q is

A := {α ∈ C : ∃g(X) ∈ Q[X ], g(α) = 0}
and its real closure is A ∩ R.

I want to introduce here some ordered and real closed fields which have
great applications in real algebraic geometry.

Let K be an ordered field and let us consider the simple transcendental ex-
tension K (ε).
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First let us remark that in order to decide whether a rational function

a(ε)

b(ε)
∈ K (ε), a(ε), b(ε) ∈ K [ε] \ {0}

is positive or negative we can solve the same problem for the polynomial func-
tion a(ε)b(ε) ∈ K [ε] since

a(ε)

b(ε)
= a(ε)b(ε)

b2(ε)
> 0 ⇐⇒ a(ε)b(ε) > 0;

therefore, in order to impose an ordering over K (ε) it is sufficient to impose
one on the polynomial ring K [ε].

On K [ε] we can impose different orderings by saying that the polynomial
f (ε) := ∑n

i=0 aiε
i is positive iff

an > 0; in this case we have

a < ε < ε2 < · · · < εn < · · ·
for all a ∈ K ;
an < 0; in this case we have

a > ε > ε2 > · · · > εn > · · ·
for all a ∈ K ; in both cases ε is said to be an infinity over K ;
a0 > 0; in this case we have

a > ε > ε2 > · · · > εn > · · · > 0

for all a > 0 in K ;
a0 < 0; in this case we have

a < ε < ε2 < · · · < εn < · · · < 0

for all a < 0 in K ; in both cases ε is said to be an infinitesimal over K .

A Pouiseux series in X with coefficients in K is a series with rational expo-
nents

P(X) :=
∑
i≥i0
i∈Z

ai X
i
q , i0 ∈ Z, ai ∈ K , q ∈ N.

Denote by K 〈ε〉 the ring of all the Pouiseux series in ε with coefficients in
K and impose an ordering on it by P(ε) > 0 ⇐⇒ ai0 > 0; let K 〈ε〉alg be
the set of all Pouiseux series P(ε) for which there is f (X, Y ) ∈ K [X, Y ] such
that f (ε, P(ε)) = 0.
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With this notation we have:

Fact 13.1.14. The ring K 〈ε〉 is real closed, and K 〈ε〉alg is the real closure
of K (ε) endowed with the ordering such that ε is a positive infinitesimal, i.e.
0 < ε < a, for all a > 0 in K .

13.2 Definitions

In order to introduce Sturm theory, we need to introduce a series of definitions
and notations, where D is a domain, its fraction field K is an ordered field, R
is the real closure and C = R[i] the algebraic closure of K .

Definition 13.2.1.

• The sign of the elements of R can be interpreted as a function sgn : R → Z3

defined by

sgn(x) :=
{−1 if x < 0

0 if x = 0
1 if x > 0.

• A sign-vector is an element of Zn
3 .

• If S := {S1, . . . , Sn} ⊂ D[X1, . . . , Xk] is a sequence of polynomials, the
sign pattern of S at x := (x1, . . . , xk) ∈ Rk is the vector

sgn(x,S) := (sgn(S1(x)), . . . , sgn(Sn(x))).

• For a sign-vector s := {s1, . . . , sn} �= {0, 0, . . . , 0} the number of sign
changes of s, V (s), is defined as follows

if si �= 0 for all i , the definition is by induction on n via

• if n = 1, then V (s) := 0;
• otherwise, let s′ := {s1, . . . , sn−1}; then

V (s) :=
{

V (s′)+ 1 if sn−1sn = −1
V (s′) otherwise.

Otherwise let s′ be the sequence which is obtained by s dropping all the
occurrences of 0; then V (s) := V (s′).

• For a sequence of polynomials S ⊂ D[X1, . . . , Xk], for each x ∈ Rk, we
will put

WS(x) := V (sgn(x,S)).
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Remark 13.2.2. Let S := {S1(X), . . . , Sn(X)} ∈ D[X ] be a sequence of poly-
nomials. Let M ∈ R be a positive element such that for each root α of each
polynomial Si we have −M < α < M . Let us denote for all i , ai to be the
leading coefficient and di the degree of Si .

Then it is obvious that for all i , for all α > M we have

sgn(Si (α)) = sgn(ai ), sgn(Si (−α)) = sgn((−1)di ai );
therefore with an abuse of notation, we will denote

sgn(∞,S) := (sgn(a1), . . . , sgn(an)),

sgn(−∞,S) := (sgn((−1)d1a1), . . . , sgn((−1)dn an)),

WS(∞) := V (sgn(∞,S)),
WS(−∞) := V (sgn(−∞,S)).

Example 13.2.3. To present the above notation let us consider the polynomials

P(X) := X4 − 17

4
X2 + 1,

S1(X) := X4 − 17

4
X2 + 1,

S2(X) := 4X3 − 17

2
X,

S3(X) := 17

8
X2 − 1,

S4(X) := 225

34
X,

S5(X) := 1

in R[X ] and the sequence S := {S1, S2, S3, S4, S5}.
Then the sign patterns of S at x = ±∞,± 1

2 ,±2 are

sgn(−∞,S) = (1,−1, 1,−1, 1),

sgn(−2,S) = (0,−1, 1,−1, 1),

sgn

(
−1

2
,S

)
= (0, 1,−1,−1, 1),

sgn

(
1

2
,S

)
= (0,−1,−1, 1, 1),

sgn(2,S) = (0, 1, 1, 1, 1),

sgn(∞,S) = (1, 1, 1, 1, 1),
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and the number of sign changes of sgn(x,S) for x = ±∞,± 1
2 ,±2 are

WS(−∞) = 4,

WS(−2) = 3,

WS
(
−1

2

)
= 2,

WS
(

1

2

)
= 1,

WS(2) = 0,

WS(∞) = 0.

Definition 13.2.4. Let

F := {F1, . . . , Fm} ⊂ D[X1, . . . , Xm] be a system of monic polynomials

Fi (Xi ) ∈ D[Xi ], for all i,

so that there also are finitely many solutions

x := (x1, . . . , xm) ∈ Cm : F1(x1) = · · · = Fm(xm) = 0;
Z(F) := {x ∈ Cm : F(x) = 0, for all F ∈ F},
Z(F) := Z(F) ∩ Rm;
Q := {Q1, . . . , Qn} ⊂ D[X1, . . . , Xm] be a sequence of polynomials;

s ∈ Zn
3 be a sign-vector;

A ⊂ Rm,

C := {x ∈ Z(F) ∩ A : sgn(x,Q) = s};
with this notation, let us denote

c(F,Q, s,A) := card (C) ,

which counts the number of the roots x of the system F in the region A which
satisfy the sign conditions sgn(x,Q) = s.

Example 13.2.5. With the notation of Example 13.2.3, setting

Q(X) := X2 − 3X,
F := {Q},
Z(F) = {0, 3},
Q := {S1, S2, S3, S4, S5},
s := (1, 0,−1, 0, 1),
A := R,
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we have

sgn(0,Q) = (1, 0,−1, 0, 1),

sgn(3,Q) = (1, 1, 1, 1, 1),

so that

C = {0}, c(F,Q, s,A) = 1.

13.3 Sturm

Let K be an ordered field and R its real closure. Let P(X), Q(X) ∈ K [X ] and
let us define the sequence

S0 := P, S1 := P ′Q, S2 := −Rem(S0, S1),

and, inductively,

Si+1 := −Rem(Si−1, Si )

while Si �= 0; let r be the last index such that Sr �= 0 and also denote Qi :=
Quot(Si−1, Si ). Finally let us denote

Ui := Si/Sr , for all i.

Definition 13.3.1. The sequence

S(P, Q) := {S0, . . . , Sr }
is called the Sylvester sequence of P and Q.

When Q = 1, i.e. P1 := P ′ the sequence is known as the Sturm sequence
of P.

Remark 13.3.2. The definition of the Sylvester sequence S(P, Q) of P and
Q is similar to that of the polynomial remainder sequences of S0 = P and
S1 = P ′Q.

The only difference is that, at each step, the remainder of a division has its
sign changed.

As a consequence we deduce that:

Sr = gcd(P, P ′Q),

Sk−2 = Sk−1 Qk−1−Sk,

Sr−1 = Sr Qr ,

Uk−2 = Uk−1 Qk−1−Uk,

Ur−1 = Qr ,

Ur = 1.
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It is also easy to verify that the relations between the Sylvester sequence
S(P, Q) and the polynomial remainder sequence P0 := S0, P1 := S1,

P2, . . . , Pr are given by the formula Si =
{

Pi i ≡ 0, 1
−Pi i ≡ 2, 3

(mod 4).

Finally let us denote S := S(P, Q) and

U := {U0, . . . ,Ur }
and, for any interval I := (a, b) ⊂ R, let us use the following shorthand for the
notion introduced in Definition 13.2.4

c+(P, Q, I) := c({P}, {Q}, {1}, I)

= card({x : P(x) = 0, Q(x) > 0, a < x < b}),
c0(P, Q, I) := c({P}, {Q}, {0}, I)

= card({x : P(x) = 0, Q(x) = 0, a < x < b}),
c−(P, Q, I) := c({P}, {Q}, {−1}, I)

= card({x : P(x) = 0, Q(x) < 0, a < x < b}),
c(P, I) := card({x : P(x) = 0, a < x < b}),

c(P) := card({x : P(x) = 0, x ∈ R}).
Lemma 13.3.3. With the above notation, we have

(1) If x ∈ R ∪ {∞,−∞} is such that either P(x) �= 0 or P ′(X)Q(X) �= 0,
then WS(x) = WU (x);

(2) No two successive elements Ui ,Ui+1, for all a ∈ R, are such that
Ui (a) = Ui+1(a) = 0;

(3) Let a1, a2 ∈ R and denote U ′ := {U0,U1}, U (X) := U0(X)
U1(X)

; then

WU ′(a1)− WU ′(a2) = 1

2
(sgn(U (a2))− sgn(U (a1))).

Proof

(1) The assumption implces Sr (x) �= 0, so the result is obvious.
(2) Otherwise we deduce Ui+2(a) = 0 and, by induction, 1 = Ur (a) = 0.
(3) It is sufficient to check the case

sgn(a1,U ′) = {1, 1}, sgn(a2,U ′) = {1,−1},U (a1) = 1,U (a2) = −1.
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Lemma 13.3.4 (Sturm). With the above notation:

(1) if U j (r) = 0, j > 0, then there exists δ ∈ R, δ > 0, such that

U j−1(x)U j+1(x) < 0 , for all x ∈ (r − δ, r + δ);
(2) if U j (r) = 0, j > 0, then there exists δ ∈ R, δ > 0, such that

WU ′(x) = 1, for all x ∈ (r − δ, r + δ),

where U ′ := {U j−1,U j ,U j+1};
(3) if P(r) = Q(r) = 0, then U0(r) �= 0;
(4) if P(r) = 0, Q(r) �= 0, then, denoting U ′ := {U0,U1}, there exists

δ ∈ R, δ > 0, such that

WU ′(r − δ)− WU ′(r + δ) = sgn(Q(r)).

Proof

(1) Since U j (x) = 0 we deduce that U j−1(x) �= 0 and U j+1 �= 0 by
Lemma 13.3.3.2. Therefore

there exists δ ∈ R, δ > 0 : U j−1(x) �= 0,U j+1(x) �= 0,

for all x ∈ (r − δ, r + δ).

Since

U j−1(r) = U j (r)Q j (r)− U j+1(r) = −U j+1(r)

and the signs of U j−1 and U j+1 are constant in (r − δ, r + δ), the claim
follows obviously.

(2) To fix the argument, let us say that sgn(U j−1(r)) = 1 so that

for all x ∈ (r − δ, r + δ) : sgn(U j−1(x)) = 1, sgn(U j+1(x)) = −1;
clearly for all x ∈ (r − δ, r + δ) sgn(x,U ′) will be one of (1, 1,−1),
(1, 0,−1) and (1,−1,−1).

(3) Let l ∈ N, l > 0 be the multiplicity of r in P , and let F(X) ∈ R[X ] such
that

P(X) = (X − r)l F(X), F(r) �= 0.

If Q(r) = 0, there are G(X), H(X) ∈ R[X ] so that

Q(X) = (X − r)G(X), H(r) �= 0

and

S0 = (X − r)l F(X),

S1 = (X − r)l(F ′(X)Q(X)+ l F(X)G(X)),

Sr (X) = (X − r)l H(X);
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therefore

U0(r) = F(r)

H(r)
�= 0.

(4) As above, let l ∈ N, l > 0 and F(X) ∈ R[X ] be such that

P(X) = (X − r)l F(X), F(r) �= 0.

Since Q(r) �= 0, then there is H(X) ∈ R[X ], H(r) �= 0, so that

S0 = (X − r)l F(X),

S1 = (X − r)l−1((X − r)F ′(X)+ l F(X)
)
Q(X),

Sr (X) = (X − r)l−1 H(X);

therefore, denoting G(X) := F(X)
H(X) , we have

U0(X) = (X − r)G(X),

U1(X) = (X − r)F ′(X)+ l F(X)

H(X)
Q(X)

= (X − r)
F ′(X)
H(X)

Q(X)+ lG(X)Q(X),

so that U1(r) = lG(r)Q(r) �= 0.
Let δ ∈ R, δ > 0 be such that sgn(U1(x)) and sgn(Q(x)), and so also
sgn(G(x)), are constant in [r − δ, r + δ].
Let us consider

U (X) := U0(X)

U1(X)
;

then for x ∈ [r − δ, r + δ] we have

sgn(U (x)) = sgn(U0(x))

sgn(U1(x))
= sgn

(
(x − r)

l Q(r)

)
.

Therefore we have

sgn(U (r − δ)) = − sgn(Q(r)), sgn(U (r + δ)) = + sgn(Q(r))

so that, by Lemma 13.3.3.3 we have

sgn(Q(r) = 1

2

(
sgn(U (r + δ))− sgn(U (r − δ))

)
= WU ′(r − δ)− WU ′(r + δ).
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Theorem 13.3.5 (Sylvester’s Theorem). Let K be an ordered field, R its real
closure; let P(X), Q(X) ∈ K [X ], and S be the Sylvester sequence of P
and Q.

Then, for each interval I := (a, b) ⊂ R ∪ {∞,−∞}, P(a) �= 0, P(b) �= 0,

WS(a)− WS(b) = c+(P, Q, I)− c−(P, Q, I).

Proof The roots of all the polynomials in S divide the interval (a, b) into
subintervals. If r1, . . . , rs−1 denote these roots and we set r0 := a, rs := b we
have s intervals (ri−1, ri ), 1 ≤ i ≤ s in each of which the sign of each Si is
constant.

Clearly the roots x ∈ R such that S0(x) = S1(x) = · · · = Si (x) = · · · Sr (x) =
0 cannot influence our analysis; except for them, the roots of all the polyno-
mials in S coincide with the roots of all the polynomials in U and WS(x) =
WU (x), for all x ∈ R. Therefore it is sufficient to discuss the variations of the
function WU (x) at each point ri :

if U j (ri ) = 0, j > 0, we know that the number of sign changes of the
sign-vector

(
sgn(U j−1(x)), sgn(U j (x)), sgn(U j+1(x))

)
is constant in the

interval (ri−1, ri+1);
if U0(ri ) = 0 then P(ri ) = 0, Q(ri ) �= 0, and, denoting U ′ := {U0,U1},
for any elements r ′i ∈ (ri−1, ri ) and r ′′i ∈ (ri , ri+1)

WU ′(r ′i )− WU ′(r ′′i ) = sgn(Q(r)).

From these results, the claim follows.

Corollary 13.3.6 (Sturm’s Theorem). Let K be an ordered field and R its
real closure and let P(X) ∈ K [X ], and let S be the Sturm sequence of P.

Then, for each interval I := (a, b) ⊂ R ∪ {∞,−∞}, P(a) �= 0, P(b) �= 0,

WS(a)− WS(b) = c(P, I)

Proof When Q = 1, we have c(P, I) = c+(P, Q, I) and c−(P, Q, I) = 0.

Historical Remark 13.3.7. The results of this chapter were developed by Sturm
in 1835 for the case Q = 1, i.e. for the case for which the Sturm sequence
was computed by adapting the polynomial remainder sequence of P and P ′;
Sylvester showed in 1853 how to generalize it by substituting P ′Q for P ′.
Obviously, today it is easier to present the result in the reverse order.
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Example 13.3.8. Using the notation and the results of Example 13.2.3, it is
sufficient to check that the roots of

P(X) = X4 − 17

4
X2 + 1

are ± 1
2 ,±2 and to glance at the sequence

WS(−∞) = 4

WS(−2) = 3

WS
(
−1

2

)
= 2

WS
(

1

2

)
= 1

WS(2) = 0

WS(∞) = 0,

in order to obtain a confirmation of Sturm’s results.

13.4 Sturm Representation of Algebraic Reals

Sturm’s Theorem is the central tool for solving numerically real polynomial
equations; to discuss its application let us consider a squarefree polynomial
P(X) ∈ R[X ], d := deg(P), and let

Z := {α1, . . . , αd} = {α ∈ R : P(α) = 0},
M,m ∈ Q be such that2 M ≥ |α|, for all α ∈ Z,

m ≤ min{|α − β| : α, β ∈ Z, α �= β},
S be the Sturm sequence of P; finally let I := (a, b) ⊆ (−M, M), c := b+a

2 ,
Il := (a, c), Ir := (c, b).

Algorithm 13.4.1. With the above notation, let us assume that

WS(a)− WS(b) = c(P, I) > 1

and let us compute WS(c); then one of the following holds

sgn(P(c) = 0 and c ∈ Z;
0 < c(P, Il) < c(P, I), so that 0 < c(P, Ir ) < c(P, I) and the roots of P in

I are partitioned into the two non-empty subsets Il ∩ Z, Ir ∩ Z;

2 M can be estimated via the results of Section 18.4; similar estimations are also available for m;
they are not reported here because the algorithms we are discussing do not need m’s evaluation.
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Fig. 13.1. Solving real polynomial equations I[
I1, . . . , Id

]
:= Sturm1 (P)

where
P ∈ R[X ], is a squarefree polynomial,
d := deg(P),
Z := {α1, . . . , αd } = {α ∈ R : P(α) = 0},
for all i, 1 ≤ i ≤ d either

Ii = [c, c] and P(c) = 0, or
Ii = (ai , bi ) and ∃!α ∈ Ii ∩ Z.

L := ∅
Let S be the Sturm sequence of P
Let M : M ≥ |α|, for all α ∈ Z
Compute WS (M), WS (−M)
If WS (−M)− WS (M) = 1 then L := L ∪ [(−M, M)]
If WS (−M)− WS (M) > 1 then L0 := [(−M, M)]
While L0 �= ∅ do

(a, b) := First(L0), L0 := Right(L0)

c := b+a
2

Compute WS (c)
If P(c) = 0 then L := L ∪ [[c, c]]
If WS (c)− WS (b) = 1 then L := L ∪ [(c, b)]
If WS (c)− WS (b) > 1 then L0 := L0 ∪ [(c, b)]
If WS (a)− WS (c) = 1 then L := L ∪ [(a, c)]
If WS (a)− WS (c) > 1 then L0 := L0 ∪ [(a, c)]

L

0 = c(P, Ir ) (respectively c(P, Il)) and c(P, Il) (respectively c(P, Ir )) =
c(P, I); in this case we have Il ∩ Z = I ∩ Z but the length of the interval
containing this set is halved, since c − a = b−a

2 .

Since, for each interval I := (a, b), by definition

b − a < m �⇒ c(P, I) ≤ 1,

then, by repeated bisection, we will obtain d intervals Ii = (ai , bi ) such
that c(P, Ii ) = 1, for all i , in a finite number of steps, so that, up to a
renumeration,

ai < αi < bi , for all i.

This algorithm, which allows us to approximate all the roots of P , is de-
scribed in Figure 13.1.

Algorithm 13.4.2. If we are given an interval I = (a, b) such that c(P, I) = 1
and a value ε ∈ R, ε > 0, let us denote by α the single root of P in the
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Fig. 13.2. Solving real polynomial equations II[
c1, . . . , cd

]
:= Sturm2(P, ε)

where
P ∈ R[X ], is a squarefree polynomial,
ε ∈ R, ε > 0,
d := deg(P),
Z := {α1, . . . , αd } = {α ∈ R : P(α) = 0},
for all i, ci ∈ Q is such that |ci − αi | < ε

L0 := Sturm1(P)
L := ∅
While L0 �= ∅ do

I := First(L0), L0 := Right(L0)
If I = [c, c] then L := L ∪ [c]
If I = [a, b] then

While b − a > 2ε do
c := b+a

2
Compute WS (c)
If P(c) = 0 then L := L ∪ [c]
If WS (c)− WS (b) = 1 then

a := c
else

b := c
c := b+a

2 , L := L ∪ [c]
L

interval I. It is clear that a further dichotomy, by repeatedly computing c :=
b+a

2 and WS(c), allows us to produce an interval I′ = (a′, b′) ⊆ I such that

|b′ − a′| < 2ε
c(P, I′) = 1

and so an approximation c := b+a
2 of α such that |c − α| < ε.

This algorithm, which allows us to approximate each root of P , is described
in Figure 13.2.

Example 13.4.3. With the notation of Example 13.3.8, let us see how we can
compute the real roots of

P(X) := X4 − 17

4
X2 + 1;

we get

– M := 5,WS(5) = 0,WS(−5) = 4,

– L0 := [(−5, 5)], L := ∅,
– I := (−5, 5), c := 0,WS(0) = 2,
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– L0 := [(−5, 0), (0, 5)], L := ∅,
– I := (−5, 0), c := −5

2 ,WS(−5
2 ) = 4,

– L0 := [(0, 5), (−5
2 , 0)], L := ∅,

– I := (0, 5), c := 5
2 ,WS( 5

2 ) = 0,

– L0 := [(−5
2 , 0), (0, 5

2 ], L := ∅,

– I := (−5
2 , 0), c := −5

4 ,WS(−5
4 ) = 3,

– L0 := [(0, 5
2 )], L := [(−5

2 , −5
4 ), (−5

4 , 0)],

– I := (0, 5
2 ), c := 5

4 ,WS( 5
4 ) = 1,

– L0 := ∅, L := [(−5
2 , −5

4 ), (−5
4 , 0), (0, 5

4 ), (
5
4 ,

5
2 )],

and, in fact, the four roots of P are

−2 ∈
(−5

2
,
−5

4

)
, −1

2
∈
(−5

4
, 0

)
,

1

2
∈
(

0,
5

4

)
, 2 ∈

(
5

4
,

5

2

)
.

Sturm’s algorithm directly suggests a possible representation of real alge-
braic numbers:

Definition 13.4.4. A Sturm representation (P, a, b) of a real algebraic num-
ber α ∈ A ∩ R is the assignment of

a squarefree polynomial P(X) ∈ Q[X ],
two numbers a, b ∈ Q

such that

P(α) = 0,
a < α < b,
c(P, [a, b]) = 1.

We now need to show that this definition allows us to effectively perform
the real operations; so let us assume we are given two real algebraic numbers
α1, α2 by means of the Sturm representations (P1, a1, b1) and (P2, a2, b2).

• In order to get the Sturm representation (P3, a3, b3) of α3 := α1 ± α2 we
compute (cf. Corollary 6.7.5)

P3(Y ) := Res(P1(Y ∓ X), P2(X)), a3 := a1 ± a2, b3 := b1 ± b2,

and we verify whether c(P3, [a3, b3]) = 1; If this is not the case, by repeated
dichotomy, we compute better approximations [ai , bi ],= 1, 2 of αi until
c(P3, [a3, b3]) = 1.

• The Sturm representation of α1α2 and α1
α2

can be similarly computed using
the opportune resultants presented in Corollary 6.7.5.
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• If α1 �= 0, then α3 := 1
α1

has the Sturm representation(
Xdeg(P1)P1(1/X),

1

b1
,

1

a1

)

• The equality α1 = α2 holds iff P1 = P2 and [a1, b1] ∩ [a2, b2] �= ∅.
• To decide sgn(α1)we need only to compute, by repeated dichotomy, a Sturm

representation (P1, a1, b1), such that 0 �= [a1, b1]; then sgn(α1) = sgn(a1).

Following Kronecker’s Philosophy, we must be able to solve (i.e. apply
Sturm’s algorithm to) a polynomial P(X) = ∑

i αi X i ∈ R[X ] where each
αi is given via a Sturm representation (Pi , ai , bi ). In order to do so, we need
at least to compute the Sturm sequence of P – which can be done by the arith-
metical tools discussed above – and to evaluate in a rational number q ∈ Q a
polynomial Q(X) = ∑

j β j X j ∈ R[X ] where each β j is given via a Sturm
representation. This problem can be avoided in two ways:

by refining the Sturm representations of the βi s so that it is possible to decide
the sign of Q(q);

by substituting P(X) ∈ R[X ] with an opportune multiple P∗(X) ∈ Q(X);
this can be done by considering the splitting field F ⊃ Q of the poly-
nomial

∏
i Pi and the Galois group G(F/Q) (cf. the next chapter), and

computing

P∗(X) :=
∏
φ∈G

φ(P)(X).

13.5 Hermite’s Method

Let D be a domain whose fraction field K is an ordered field, R be the real
closure and C = R[i] the algebraic closure of K .

Given two polynomials P(X), Q(X) ∈ K [X ] Sylvester’s Theorem allows
us to compute

c+(P, Q, R)− c−(P, Q, R) :=
# ({x ∈ R : P(x) = 0, Q(x) > 0})− # ({x ∈ R : P(x) = 0, Q(x) < 0})

by computing c+(P, Q, R)− c−(P, Q, R) = WS(−∞)−WS(+∞) where S
is the Sylvester sequence of P and Q.

We now need to solve the generalization of this problem for multivariate
polynomials. Therefore let us use the notation introduced in Definition 13.2.4,
where we will assume that

Q = {Q}, with Q(X1, . . . , Xm) ∈ D[X1, . . . , Xm],
A = Rm
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and we will use the shorthand notation:

c+(F, Q) := c(F, {Q}, {1}, Rm)

= card({x ∈ Z : Q(x) > 0})
c0(F, Q) := c(F, {Q}, {0}, Rm)

= card({x ∈ Z : Q(x) = 0})
c−(F, Q) := c(F, {Q}, {−1}, Rm)

= card({x ∈ Z : Q(x) < 0}).

Our aim is to compute

c+(F, Q)− c−(F, Q);
in order to do that, It has been proposed that one of Hermite’s univariate
solutions is generalized based on quadratic forms.

Fact 13.5.1. Let M be a symmetric n × n matrix with entries in R. Then

(1) There is an invertible square matrix � with entries in R such that

�M�t =

 Ip 0 0

0 −Im 0
0 0 0


 .

(2) The value p − m is called the signature of M.
(3) The eigenvalues of M are real.

Let d := ∏
i deg(Fi ),

B := {Xa1
1 · · · Xan

n : ai < deg(Fi )} ⊂ R[X1, . . . , Xn] = {b1, b2, . . . bd}
and let us consider the quadratic form

B(F, Q) :=
∑

x∈Z(F)

Q(x)

(
d∑

i=1

bi (x)Yi

)2

=
d∑

i, j=1

ai j Yi Y j ,

for which:

Theorem 13.5.2 (Petersen, Roy, Szpirglas). With the above notation:

(1) The matrix M := (ai j ) is symmetric with entries in D.
(2) The rank of B(F, Q) is the number of the roots of F which are not roots

of Q.
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(3) The signature v(F, Q) of B(F, Q) satisfies

v(F, Q) := c+(F, Q)− c−(F, Q).

Proof

(1) We have

B(F, Q) =
d∑

i, j=1

∑
x∈Z(F)

Q(x)bi (x)b j (x)Yi Y j

so that

ai j =
∑

x∈Z(F)

Q(x)bi (x)b j (x), ∀i, j.

Since each ai j is symmetric in each root of each monic polynomial Fk(Xk),
it can be expressed in terms of the coefficients of the Fks.

(2) Let us enumerate the elements of Z(F) as

y1, . . . , yr , z1, z̄1, . . . , zs, z̄s,

where each yk ∈ Rm with multiplicity mk , while the conjugate roots
zl , z̄l ∈ Cm \ Rm have multiplicity nl .
For each x ∈ Cm let �(x) be the linear form

�(x) :=
d∑

i=1

bi (x)Yi ;

then

�(y1), . . . , �(yr ), �(z1), �(z̄1), . . . , �(zs), �(z̄s)

are linearly independent3.
Now let us express the quadratic form B(F, Q) in terms of them obtaining

B(F, Q) =
r∑

k=1

mk Q(yk)�(yk)
2 +

s∑
l=1

nl

(
Q(z̄l)�(z̄l)

2 + Q(zl)�(zl)
2
)
,

from which the thesis follows.

3 Let � = �(F) be the matrix whose rows are indexed by the elements bi ∈ B and whose
columns are indexed by the roots x j ∈ Z(F) and whose (i, j)th entry is bi (x j ); we must prove
that det(�) �= 0. The argument is a repeated application of the Vandermonde determinant via
induction on the number m of variables.
If m = 1 we have b j = X j

1 and the result follows from the Vandermonde determinant.
If m > 1, let us consider the system of equations

F∗ := {F1(X1), . . . , Fm−1(Xm−1)},
whose corresponding matrix �∗ := �(F∗) is such that det(�∗) �= 0, and the equation
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(3) Let γl ∈ C be such that γ 2
l = Q(z̄l) and let �′l , �

′′
l ∈ R[Y1, . . . ,Yd ] be the

linear forms such that

γl�(z̄l) = �′l + i�′′l ;
then we have

Q(z̄l)�(z̄l)
2 + Q(zl)�(zl)

2 = (�′l + i�′′l )
2 + (�′l − i�′′l )

2

= 2�′2l − 2�′′2l ,

so that

B(F, Q) =
r∑

k=1

mk Q(yk)�(yk)
2 +

s∑
l=1

2nl�
′2
l +

s∑
l=1

−2nl�
′′2

l .

Therefore we have p = s + c+(F, Q), m = s + c−(F, Q).

To complete this approach we need to discuss

how to compute the entries ai j of B(F, Q) and
how to compute the signature of B(F, Q).

To solve the problem of computing

ai j =
∑

x∈Z(F)

Q(x)bi (x)b j (x) ∈ D

we consider the polynomial

Ai j (X1, . . . , Xn) := Qbi b j ∈ D[X1, . . . , Xn]

Fm (Xm ). If α j ∈ C, 1 ≤ j ≤ δ := deg(Fm ) are the roots of Fm (Xm ) = 0 then we have

� :=




α1�∗ · · · α j�∗ · · · αδ�∗
.
.
.

. . .
.
.
.

. . .
.
.
.

αi
1�∗ · · · αi

j�∗ · · · αi
δ�∗

.

.

.
. . .

.

.

.
. . .

.

.

.

αδ1�∗ · · · αδj�∗ · · · αδδ�∗




so that

det(�) = det(�∗)δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α1 · · · α j · · · αδ
.
.
.

. . .
.
.
.

. . .
.
.
.

αi
1 · · · αi

j · · · αi
δ

.

.

.
. . .

.

.

.
. . .

.

.

.

αδ1 · · · αδj · · · αδδ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0.
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and we compute A′
i j := Reduction(Ai j ; {F1, . . . , Fm}) (cf. Figure 8.1) ob-

taining a polynomial A′
i j := ∑d

k=1 ckbk ∈ D[X1, . . . , Xn] so that

ai j =
d∑

k=1

∑
x∈Z(F)

ckbk(x);

our task is now reduced to expressing the generic symmetric products

∑
(x1,...,xn)∈Z(F)

xa1
1 · · · xan

n =
n∏

i=1

∑
(x1,...,xn)∈Z(F)

xai
i ,

in terms of the coefficients of the Fi s, which can be done using the Waring
functions.

To solve the second problem, we just need to compute the characteristic
polynomials of B(F, Q), which only have real roots, and apply Descartes’s
rule of signs4 in order to compute the number of the positive and negative real
roots with their multiplicity.

13.6 Thom Codification of Algebraic Reals (1)

Let D be a domain whose fraction field K is an ordered field, R be the real
closure and C = R[i] the algebraic closure of K .

An alternative proposal to the Sturm representation for algebraic real num-
bers α ∈ R was suggested by M. Coste and M.-F. Roy in 19885 based on

Lemma 13.6.1 (Thom’s Lemma). Let P(X) ∈ R[X ], n = deg(P).
Let P := {P, P ′, P ′′, . . . , P(i), . . . , P(n−1) and let

s := (s0, s1, . . . , sn−1) ∈ Zn
3

be a sign-vector.
Then

Z(s) := {x ∈ R : sgn(x,P) = s}
is void, or a point or an interval.

4 Which states that
Let P(X) := ∑n

i=0 ai Xi ∈ R[X ] be a polynomial whose roots are all in R and consider the
sign-vector s := {sgn(a0), . . . , sgn(ai ), . . . , sgn(an)}. Then V (s) is the number of positive roots
of P , counted with their multiplicity.

5 M. Coste, M.-F. Roy Thom’s Lemma, the coding of real algebraic numbers and the topology of
semi-algebraic sets J. Synb. Comp. 5 (1988) 121–129.
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Proof Is by induction on n, the case n = 1 being trivial.
If n > 1 let

Z := {x ∈ R : sgn(P(i)(x)) = si , for all i, 1 ≤ i ≤ n − 1}.
If Z is void, then so is Z(s); if Z is a point, then Z(s) is either void or a point.
We are therefore left to consider the case in which Z is an interval; in this
case, since P ′ has a fixed constant sign in Z , P is monotonic in Z , whence the
claim.

Corollary 13.6.2 (Coste, Roy).
With the same notation as above, let α, α′ ∈ R and let for all i, 0 ≤ i ≤

n − 1, si := sgn(P(i)(α)), s′i := sgn(P(i)(α′)). Then:

1. if P(α) = P(α′) = 0, then α = α′ ⇐⇒ si = s′i , for all i.
2. if there exists i : si �= s′i , let k be such that

sk �= s′k, si = s′i , for all i > k;
then

(a) sk+1 = s′k+1 �= 0;
(b) if sk+1 = s′k+1 = 1 then

α > α′ ⇐⇒ P(k)(α) > P(k)(α′);
(c) if sk+1 = s′k+1 = −1 then

α > α′ ⇐⇒ P(k)(α) < P(k)(α′).

Proof Let

s := (s0, . . . , sn−1), s′ := (s′0, . . . , s′n−1).

If s = s′ and s0 = s′0 = 0, then Z(s) = Z(s′) is a finite set, i.e. a point, and
(1) holds.
Assume

sk+1 = P(k+1)(α) = P(k+1)(α′) = s′k+1 = 0;
then, applying (1) to P(k+1), we have α = α′, and the contradiction implies
(2a).
Let

Z = {x ∈ R : sgn(P(i)(x)) = si , k + 1 ≤ i ≤ n − 1};
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then Z is an interval containing both α and α′ and in which P(k+1) is posi-
tive (respectively negative), and so P(k) is increasing (respectively decreasing),
which proves (2b) (respectively (2c)).

Definition 13.6.3 (Coste, Roy). A Thom codification (P, s) of a real alge-
braic number α ∈ R is the assignment of

a squarefree polynomial P(X) ∈ D[X ],
the sign-vector s := (s1, . . . , sn−1)

such that

(1) P(α) = 0,
(2) n = deg(P),
(3) sgn(P(i)(α) = si , for all i, 1 ≤ i ≤ n − 1.

13.7 Ben-Or, Kozen and Reif Algorithm

Let D be a domain whose fraction field K is an ordered field, R be the real
closure and C = R[i] the algebraic closure of K .

On the basis of the above definition it is clear that the polynomial P(X) ∈
D[X ] is ‘solved’ if it is possible to compute the Thom codification of each real
root α ∈ R of P .

The Ben-Or, Kozen and Reif (BKR) Algorithm solves a more general prob-
lem: given two sets F and Q := {Q1, . . . , Qm} satisfying the conditions of
Definition 13.2.4 – and using the notation of that definition – it allows us to
compute

S := {sgn(x,Q) : x ∈ Z(F)},
and

cs := c(F,Q, s, Rm) = card{x ∈ Z(F) : sgn(x,Q) = s}, for all s ∈ S.

Let us begin by discussing, using the same shorthand of the previous chapter,
the easiest case, in which m = 1 and we need to count the number of real roots
in Z(F), at which the single polynomial Q := Q1 is (respectively) positive,
zero or negative.

Lemma 13.7.1. With the notation above, and of Theorem 13.5.2(3)

v(F, 1) = +c+ + c0 + c−,
v(F, Q) = +c+ − c−,
v(F, Q2) = +c+ + c−,
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and, therefore, by solving the above system we obtain

c0 = v(F, 1)− v(F, Q2),

c+ = 1
2v(F, Q2)+ 1

2v(F, Q),

c− = 1
2v(F, Q2)− 1

2v(F, Q).

Proof The formula for v(F, Q2) follows from the fact that v(F, Q2) is the
difference between the number of the real roots of F at which Q2 is positive
(i.e. Q is non-zero) and the number of the real roots of F at which Q2 is
negative (which is obviously zero).

In principle we can approach the general problem in the same way, deriving
a linear system

Akc̄t = b̄

where

the unknowns are the css where s runs in Zk
3, i.e. the number of real roots x

of F satisfying the sign condition sgn(x,Q) = s;
b̄ is a vector of suitable v(F, Q)s, where Q runs over suitable products of

the Qi s and/or their squares; and
the matrix Ak is inductively defined by means of easy theoretical considera-

tions.

For instance for k = 2, denoting

c++ = #{x ∈ Z(F) : Q1(x) > 0, Q2(x) > 0}
and, analogously, c+0, c+−, c0+, c00, c0−, c−+, c−0, c−−, and

vi j := v(F, Qi
1 Q j

2), 0 ≤ i, j ≤ 2,

so that

v00 = v(F, 1), v10 = v(F P, Q1), v20 = v(F, Q2
1), . . .

we have the linear system

+c++ +c0+ +c−+ +c+0 +c00 +c−0 +c+− +c0− +c−− = v00
+c++ −c−+ +c+0 −c−0 +c+− −c−− = v10
+c++ +c−+ +c+0 +c−0 +c+− +c−− = v20
+c++ +c0+ +c−+ −c+− −c0− −c−− = v01
+c++ −c−+ −c+− +c−− = v11
+c++ +c−+ −c+− −c−− = v21
+c++ +c0+ +c−+ +c+− −c0− +c−− = v02
+c++ −c−+ +c+− −c−− = v12
+c++ +c−+ +c+− +c−− = v22.
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The problem with this approach is that in order to decide the signs of k
polynomials at the roots of P , we have to solve a linear system of dimension 3k ,
so that the resulting algorithm is of exponential complexity in k. On the other
hand, at most d := ∏n

i=1 deg(Fi ) different sign conditions can be actually
satisfied.

It is clear that if (s1, . . . , sk−1) ∈ Zk−1
3 is not satisfied by {Q1, . . . , Qk−1}

for any real root of F , and sk ∈ Z3, then (s1, . . . , sk−1, sk) ∈ Zk
3 is not satisfied

by {Q1, . . . , Qk} for any real root of F .
The BKR Algorithm is an iterative version of the above algorithm, which

makes full use of these remarks and so has complexity polynomial in
min(d, 3k) = d(k).

Algorithm 13.7.2 (Ben-Or, Kozen, Reif). The algorithm is by induction on k.
So, setting

Qk := {Q1, . . . , Qk}
and assuming we explicitly know

S(F,Qk−1) := {s1, . . . , ss}, where s := ≤ d(k − 1),

for all i, 1 ≤ i ≤ s, ck−1,i := csi > 0,

an invertible s × s matrix Ak−1,

polynomials Rk−1,1, . . . , Rk−1,s ,

vk−1,i := v(F, Rk−1,i ), for all i, 1 ≤ i ≤ s,

so that, denoting

vk−1 the vector (vk−1,1, . . . , vk−1,s) and
ck−1 the vector (ck−1,1, . . . , ck−1,s),

we have

Ak−1ct
k−1 = vt

k−1.

we can therefore describe how to compute

S(F,Qk) := {s1, . . . , sσ }, where σ ≤ d(k),

for all i, 1 ≤ i ≤ σ , ck,i := csi > 0,

an invertible σ × σ matrix Ak ,

polynomials Rk,1, . . . , Rk,σ ,

vk,i := v(F, Rk−,i ), for all i, 1 ≤ i ≤ σ ,

so that denoting

vk the vector (vk,1, . . . , vk,σ ) and
ck the vector (ck,1, . . . , ck,σ ),
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we have

Akct
k = vt

k .

For k = 1, according to Lemma 13.7.1 we compute

c0 = v(F, 1)− v(F, Q2
1)

c+ = 1
2v(F, Q2

1)+ 1
2v(F, Q1)

c− = 1
2v(F, Q2

1)− 1
2v(F, Q1)

If some among c0, c+, c− are zero, we choose from the matrix
 1 1 1

1 0 −1
1 0 1




the columns corresponding to the non-zero values of c+, c0, c− and rows in
order to obtain a non-zero minor A1.

Inductively, in the case k, let us define

B to be the matrix

B :=

 Ak−1 Ak−1 Ak−1

Ak−1 0 −Ak−1

Ak−1 0 Ak−1


 ,

for each si ∈ S(F,Qk−1)

si+ := #{x ∈ Z(F) : sgn(x,Qk−1) = si , Qk(x) > 0},
si0 := #{x ∈ Z(F) : sgn(x,Qk−1) = si , Qk(x) = 0},
si− := #{x ∈ Z(F) : sgn(x,Qk−1) = si , Qk(x) < 0},

c+ := (c1+, . . . , cs+),
c0 := (c10, . . . , cs0),

c− := (c1−, . . . , cs−),
c := (c1+, . . . , cs+, c10, . . . , cs0, c1−, . . . , cs−),
Ti0 := Ri , Ti1 := Ri Qk , Ti2 := Ri Q2

k , for all i, 1 ≤ i ≤ s,

vi j := v(F, Ti j ) for 0 ≤ j ≤ 2 and for all i,

v0 := (v10, . . . , vs0),

v1 := (v11, . . . , vs1),

v2 := (v12, . . . , vs2),

v := (v10, . . . , vs0, v11, . . . , vs1, v12, . . . , vs2).
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Proposition 13.7.3. Under this notation

Bct = vt .

Moreover B is invertible.

Proof The matrix B is invertible since it can be transformed by row operations
into 

 Ak−1 Ak−1 Ak−1

0 Ak−1 0
0 0 2Ak−1




whose determinant is 2 det(Ak−1)
3.

Denote Ak−1 = (ai j )i j , B = (bi j )i j and let bi be the i th row of B.
We have for all i, j, 1 ≤ i ≤ s, 1 ≤ i ≤ s

bi ct =
s∑

j=1

ai j (c j0 + c j1 + c j2) = v(F, Ri ) = v(F, Ti0) = vi0,

bs+i ct =
s∑

j=1

ai j (c j+ − c j−) = v(F, Ri Q) = v(F, Ti1) = vi1

b2s+i ct =
s∑

j=1

ai j (c j+ + c j−) = v(F, Ri Q2) = v(F, Ti2) = vi2,

so that Bct = vt .

Since each vi j := v(F, Ti j ) can be computed via Hermite’s method and B
is available and invertible, it is therefore possible to compute c.

Removing the zero entries we obtain S(F,Qk); the matrix A is obtained
from B by choosing the columns corresponding to the non-zero entries in c
and rows in order to obtain a non-zero minor A1; again, the elements Rk,i are
those corresponding to the non-zero entries in c and their corresponding values
vk,i are available.

13.8 Thom Codification of Algebraic Reals (2)

As in Section 13.4 where we have shown that the Sturm representation allows
us to solve polynomial equations and to effectively perform the real operations,
we now show the same for the Thom codification.

Let us use the same notation and setting as in the previous section and let us
denote the BKR Algorithm by S := BKR(F,Q).



13.8 Thom Codification of Algebraic Reals (2) 295

Definition 13.8.1. The Thom sequence T (P(X)) of a polynomial P(X) ∈
K [X ], deg(P) = n, is the sequence

T (P(X)) := {P(X), P ′(X), . . . , P(i)(X), . . . , P(n−1)(X)} ∈ K [X ].

Algorithm 13.8.2. With this definition it is clear that in order to ‘solve’ in
R a squarefree polynomial P(X) ∈ D[X ], it is sufficient to compute S :=
BKR({P}, T (P(X))), whose solution satisfies

S = {sgn(x, T (P)) : x ∈ R, P(x) = 0},
cs := card{x ∈ R : P(x) = 0, sgn(x, T (P)) = s} = 1, for all s ∈ S,

so that the set of the real solutions of P(X) in their Thom codification is
{(P, s) : s ∈ S}.

Now let us briefly discuss how to effectively perform the real operations
over real algebraic numbers represented by Thom codification. So let us as-
sume that the real algebraic numbers α1, α2 ∈ R are represented by the Thom
codifications (P1(X1), s1) and (P2(X2), s2).

• In order to obtain the Thom codification (P3(X3), s3) of α3 := α1 ± α2 we
compute (cf. Corollary 6.7.5) P3(X1) := Res(P1(X1 ∓ X2), P2(X2)) and

S := BKR ({P1, P2}, [T (P1(X1)), T (P2(X2)), T (P3(X1 ± X2))]) .

Denoting, for all (x1, x2) ∈ R2,

s(x1, x2) :=
(

sgn (x1, T (P1)) , sgn (x2, T (P2)) , sgn (x1 ± x2, T (P3))
)

the result will be

S = {s(β1, β2) : (β1, β2) ∈ Z({P1, P2})} .
Therefore there is a single sign-vector s(β1, β2) ∈ S such that

sgn (β1, T (P1)) = s1 and sgn (β2, T (P2)) = s2;
the Thom codification of α3 is then

(P3, sgn (β1 ± β2, T (P3))) .

• The Thom codification of α1α2 and α1
α2

can be computed similarly using the
opportune resultants presented in Corollary 6.7.5.

• To decide the ordering relation between α1 and α2, we compute

S := BKR ({P1, P2}, [T (P1(X1)), T (P2(X2)), X1 − X2]) ;
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there is a single s ∈ S such that

s = (s1, s2, s), s ∈ Z3;
then sgn(α1 − α2) = s.

• If α1 �= 0 and T (P1) = {Q1(X1), . . . Qd(X1)}, the Thom codification of
α3 := 1

α1
is obtained by computing

P3(X1) := Xdeg(P1)

1 P1(1/X1);

for each i ≤ d, Q∗
i (X1) := Qi ((1/X1)X

δi
1 where δi ≥ deg(Qi ) is even

so that

• Q∗
i (X1) ∈ K [X1] and

• sgn(Q∗
i (x)) = sgn(Qi (x)), ∀x ∈ R, x �= 0;

T ∗ := {Q∗
1(X1), . . . , Q∗

d(X1)};
S := BKR

({P3},
[
T ∗, T (P3)

]) ;
s3 ∈ Zd

3 to be the unique element such that (s1, s3) ∈ S.

Then the Thom codification of α3 is (P3, s3).
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Galois II

Je me suit souvent hasardé dans ma vie à avan-

cer des propositions dont je n’était pas sûr; mais

tous ce que j’ai écrit là est depuis bientôt un an

dans ma tête, et il est trop de mon intérêt de

ne pas me tromper pour qu’on me soupçonne

d’énouncer des théorèmes dont je n’aurais pas

la démonstration complète.

Tu prieras publiquement Jacobi et Gauss de

donner leur avis, non sur la vérité, mais sur

l’importance des théorèmes.

Après cela, il y aura, j’espère, des gens qui

trouveront leur profit à déchiffrer tout ce gâchis.

E. Galois

This chapter is devoted to the Galois approach to solving polynomial
equations.

After introducing the settings of this research, i.e. normal separable
extensions K ⊃ k and the group G(K/k) of the k-automorphisms of K
(Section 14.1), I discuss the correspondence between the intermediate fields
F , K ⊇ F ⊇ k, and the subgroups of G(K/k); in this biunivocal correspon-
dence, a field F corresponds to the subgroup of the k-automorphisms which
leave F invariant and a group G corresponds to the subfield of the elements
which are kept invariant by all the elements of G (Section 14.2), and we char-
acterize the subgroups which are equivalent to the normal extensions F ⊃ k.

This Galois correspondence allows us to characterize the polynomial equa-
tions f (X) ∈ k[X ] which are ‘solvable’ (in the pre-Abel–Ruffini meaning) in
terms of the structure of the Galois group G(K/k) where K ⊃ k is the splitting
field of f ; moreover it provides an algorithm which allows us to ‘solve’ any
solvable polynomial equation f provided its Galois group G(K/k) is available

297
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(Section 14.3). In particular, this theory permits a proof of the Abel–Ruffini
Theorem (Section 14.4) and gives a characterization of those geometric objects
which are constructable by ruler and compass (Section 14.5).

14.1 Galois Extension

Let K ⊃ k be a field extension. Then the set of all the k-automorphisms of K
is clearly a group.

Theorem 14.1.1. Let K ⊃ k be a finite field extension and let G(K/k) be
the group of the k-automorphisms of K . Then the following conditions are
equivalent:

(1) k = {α ∈ K : α = σ(α), for all σ ∈ G(K/k)};
(2) K is a normal separable extension;
(3) for each ξ ∈ K , its minimal polynomial f (X) ∈ k[X ] over k has simple

roots, all contained in K ;
(4) #G(K/k) = [K : k].

Proof

(2) ⇐⇒ (3) This follows obviously from the definitions.
(2) �⇒ (4) This follows from Corollary 10.3.3.
(4) �⇒ (2) By assumption, K possesses [K : k] k-automorphisms. There-

fore, for any extension field K ⊃ K , every k-isomorphism of K into
K is an automorphism, so that K is normal by Corollary 10.3.7. Then
K is the splitting field of a polynomial f (X) ∈ k[X ] and, if we ex-
press deg( f ) = n0 pe, where p = char(k), gcd(p, n0) = 1, we know
by Corollary 10.3.7 that [K : k] = #G(K/k) = n0, i.e. that K is
separable.

(1) �⇒ (3) Let G(K/k) := {σi : 1 ≤ i ≤ n0}. Let

C := {σi (ξ) : 1 ≤ i ≤ r ≤ n0}
be the set of all the r ≤ n0 distinct conjugates1 of ξ in K , and let
g(X) := ∏

ζ∈C (X − ζ ).
Since, for all σ ∈ G(K/k), σ( f ) = f, and f (σ (ξ)) = σ( f (ξ)) = 0,
then ζ is a root of f for each ζ ∈ C . Therefore g(X) divides f .
Moreover, since

for all σ ∈ G(K/k), for all ζ1, ζ2 ∈ C, σ (ζ1) = σ(ζ2) �⇒ ζ1 = ζ2,

1 Note that in this setting it is possible that r < n0: just consider k := Q, K = Q[i,
√

2] where
#G(K/k) = 4 and

√
2 has just 2 conjugates.
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i.e. each σ ∈ G(K/k) is a permutation of C , then σ(g) = g, for all
σ ∈ G(K/k) and g ∈ k[X ]. Since f is irreducible in k[X ], we con-
clude that g = f .
Therefore f has simple roots, all contained in K .

(3) �⇒ (1) Let ξ ∈ K \ k and let f be its minimal polynomial; since ξ �∈ k,
then deg( f ) ≥ 2, and, since all its roots are simple and contained in
K , there is ζ ∈ K , ζ �= ξ , which is conjugate to ξ . Therefore, by
Corollary 10.3.6, there is � ∈ G(K/k) such that �(ξ) = ζ �= ξ.

Remark 14.1.2. In view of the above result we consider a finite normal sepa-
rable extension K ⊃ k and recall that there is a separable element ξ ∈ K and
a separable polynomial f (X) ∈ k[X ] such that

K = k[ξ ] = k[X ]/ f (X);
then there are n = n0 = [K : k] = deg( f ) conjugate elements ξ =: ξ1, . . . , ξn

of ξ over k in K ; the n0 = G(K/k) k-automorphisms of K are those defined
by

φi

(
n−1∑
j=0

a jξ
j

)
:=

n−1∑
j=0

a jξ
j

i

for each element
∑n−1

j=0 a jξ
j ∈ k[ξ ] = K .

The above result leads us to introduce the following

Definition 14.1.3. Let K ⊃ k be a finite field extension; the group G(K/k) of
the k-automorphisms of K is called the Galois group of K over k.

If K ⊃ k satisfies the condition of Theorem 14.1.1 it is called a Galois
extension.

If f (X) ∈ k[X ] is squarefree and K ⊃ k is the splitting field of f , the Galois
group of f over k is G(K/k).

We explicitly remark that the proof of the (1) �⇒ (3) in Theorem 14.1.1
implies

Corollary 14.1.4. Let K ⊃ k be a Galois extension and let f (X) be a sepa-
rable polynomial of which K is the splitting field.

Then each element of G(K/k) is a permutation over the set of all the n :=
deg( f ) roots of f , i.e. G(K/k) ⊂ Sn, where Sn denotes the symmetric group
of all the permutations over a set of n elements.
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Proof Let ξ in K be a separable root of f and let ξ =: ξ1, . . . , ξn be all the n
distinct conjugates of ξ in K .
Since for all σ ∈ G(K/k) and for each pair of conjugates ξi , ξ j we have

σ(ξi ) = σ(ξ j ) �⇒ ξi = ξ j ,

then each σ ∈ G(K/k) is a permutation of C .
Since K = k[ξ1, . . . , ξn], if σ ∈ G(K/k) is such that σ(ξi ) = ξi , for all i ,
then

σ(α) = α, for all α ∈ K ,

i.e. σ is the identity and G(K/k) is a subgroup of Sn .

Moreover Corollary 10.3.7 implies

Corollary 14.1.5. Let f (X) ∈ k[X ] be squarefree and let G be its Galois
group over k.

Then f is irreducible iff G is transitive2.

Proof If f is irreducible, using the notation above, for each ξi conjugate with
ξ we know by Corollary 10.3.7 that there is � ∈ G such that �(ξ) = ξi .
Conversely, let α be the root of f such that for each other root β of f there is
φ ∈ G : β = φ(α).

Let h be the minimal polynomial of α over k, which is irreducible; then for
each root β of f

f (β) = f (φ(α)) = φ( f (α)) = 0;

as a consequence f and h are associate and f is irreducible.

14.2 Galois Correspondence

Let K ⊃ k be a Galois extension and let G be its Galois group. Let G be the
set of all the subgroups H ⊆ G and let F be the set of all the fields F such that
K ⊇ F ⊇ k.

For each H ∈ G let

I(H) := {α ∈ K : σ(α) = α, for all σ ∈ H}
which is an element of F.

2 A group G of permutations over a set C is called transitive iff there is an element α ∈ C such
that

for all β ∈ C, there exists φ ∈ G : β = φ(α).
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For each F ∈ F let

A(F) := {σ ∈ G : σ(α) = α, for all α ∈ F}
which is an element of G.

Lemma 14.2.1. Under the above notation

(1) for all H1, H2 ∈ G, H1 ⊂ H2 �⇒ I(H1) ⊃ I(H2);
(2) for all F1, F2 ∈ F, F1 ⊂ F2 �⇒ A(F1) ⊃ A(F2);
(3) for all H ∈ G, A(I(H)) ⊃ H;
(4) for all F ∈ F, I(A(F)) ⊃ F.

Corollary 14.2.2. Under the above notation

(1) for all H ∈ G, I(A(I(H))) = I(H);
(2) for all F ∈ F, A(I(A(F))) = A(F).

Proof

(1) If H ∈ G, by Lemma 14.2.1.(4) applied to I(H) we deduce

I(A(I(H))) ⊃ I(H).

By Lemma 14.2.1.(3), we deduce A(I(H)) ⊃ H and, via Lemma 14.2.1.(1),

I(A(I(H))) ⊂ I(H).

(2) By the dual proof of (1).

Lemma 14.2.3. Under the above notation, I(A(F)) = F, for each F ∈ F.

Proof In fact, since K ⊃ k is a separable normal extension, then K ⊃ F is a
separable normal extension too. As a consequence by Theorem 14.1.1

F = {α ∈ K : α = σ(α), for all σ ∈ A(F)} = I(A(F)).

Remark 14.2.4. In the proof we use the obvious fact that if K ⊃ k is a Galois
extension and F is such that K ⊃ F ⊃ k, then K ⊃ F is also a Galois
extension.
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The dual result of Lemma 14.2.3 for subgroups H ∈ G requires a more
difficult argument:

Lemma 14.2.5. Under the above notation, let H ∈ G and let F := I(H).
Then [K : F] ≤ #H =: n.

Proof Let H = {σ1, . . . , σn} and let α1, . . . , αn+1 ∈ K . We need to show
that they are linearly dependent over F ; we can, of course, assume that none
of them is zero.
Let us consider the system of linear equations

n+1∑
i=1

σ j (αi )xi = 0, j = 1, . . . , n, (14.1)

which has non-null solutions (x1, . . . , xn+1) in K ; among them let us choose
one which has a minimal number r of non-zero elements; since we can re-order
the elements of H , the equations are homogeneous and the identity is one of
the elements of H , we can assume wlog that:

xi �= 0, i ≤ r;
xi = 0, r < i ≤ n + 1;
x1 = 1;∑n+1

i=1 αi xi =
∑r

i=1 αi xi = 0;
r > 1 – since otherwise α1 = 0, contrary to our assumption.

Moreover, for each σ ∈ H , (σ (x1), . . . , σ (xn+1)) is another solution of Equa-
tion 14.1, since

n+1∑
i=1

σσ j (αi )σ (xi ) = σ

(
n+1∑
i=1

σ j (αi )xi

)
= 0, j = 1, . . . , n,

and H = {σσ1, . . . , σσn}.
Then we have

0 =
n+1∑
i=1

σ j (αi)xi −
n+1∑
i=1

σ j (αi)σ (xi) =
n+1∑
i=1

σ j (αi)(xi − σ(xi)), j = 1, . . . , n;

therefore, since x1 = 1 = σ(1), we have that

x1 − σ(x1) = 0,
(x1 − σ(x1), . . . , xn+1 − σ(xn+1)) is a solution of Equation 14.1,
which has less than r non-zero elements since xi − σ(xi ) = 0 if i > r and

i = 1.
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As a consequence we can deduce

xi − σ(xi ) = 0, for all i, for all σ ∈ H,

i.e. xi ∈ F, for all i , and the relation
∑n+1

i=1 αi xi = 0, is a linear dependence

of α1, . . . , αn+1 over F .

Corollary 14.2.6. Under the notation above, for all H ∈ G,

A(I(H)) = H ;
[K : I(H)] = #H.

Proof Let us denote F := I(H). Since K ⊃ F is a Galois extension, we have

#A(I(H)) = #A(F) = [K : F] ≤ #H,

the last inequality following from Lemma 14.2.5.
Since, by Lemma 14.2.1.3, A(I(H)) ⊃ H , the claim follows.

Theorem 14.2.7 (Fundamental Theorem of Galois Theory).
Let K ⊃ k be a Galois extension and let G be its Galois group. Let G be the

set of all the subgroups H ⊆ G and let F be the set of all the fields F such that
K ⊇ F ⊇ k.

For each H ∈ G let

I(H) := {α ∈ K : σ(α) = α, for all σ ∈ H}.
For each F ∈ F let

A(F) := {σ ∈ G : σ(α) = α, for all α ∈ F}.
Then:

(1) the maps I : G → F,A : F → G are inverses and are bijections between
G and F;

(2) and they are order inverting with respect to inclusion.
(3) Let F ∈ F, H ∈ G be such that A(F) = H, I(H) = F. Then [K : F] =

#H and [F : k] is the index of H in G, i.e. the number of its cosets in G.

Proof

(1) Follows from Lemma 14.2.3 and Corollary 14.2.6.
(2) Follows from Lemma 14.2.1.1 and 2.
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(3) [K : F] = #H follows from Corollary 14.2.6, and the second statement
follows from the facts that the index of H in G is #G

#H and that

[K : k] = [K : F][F : k].

We recall

Definition 14.2.8. Let G be a group and H ⊂ G be a subgroup. Then H is
called normal or invariant iff

for all g ∈ G : gH := {gh : h ∈ H} = {hg : h ∈ H} =: Hg

or, equivalently,

for all g ∈ G, for all h ∈ H : ghg−1 ∈ H,

in which case

G/H = {gH : g ∈ G}
is a group, the factor group of G with respect to H.

Lemma 14.2.9. Let K ⊃ k be a Galois extension and let G be its Galois
group. Let F ∈ F and let H := A(F) ∈ G. Let σ ∈ G. Then

A(σ (F)) = σ Hσ−1 = {στσ−1 : τ ∈ H}.

Proof Let F ′ := σ(F), H ′ := A(F ′), and let τ ∈ H ; then στσ−1 ∈ H ′, since,
for all α′ ∈ F ′, denoting α := σ−1(α′) ∈ F , we have

στσ−1(α′) = στ(α) = σ(α) = α′;
therefore σ Hσ−1 ⊂ H ′ and, by symmetry, σ Hσ−1 = H ′.

Theorem 14.2.10. Let K ⊃ k be a Galois extension and let G be its Galois
group. Let F ∈ F and let H := A(F) ∈ G.

Then F is a Galois extension of k iff H is a normal subgroup of G. In such
a case G(F/k) = G/H.

Proof Assume H is normal; to prove that F is normal, we need to prove, for
each x ∈ F and for each y ∈ K which is conjugate of x over k, that y ∈ F :
let σ ∈ G be such that y = σ(x); since H = σ−1 Hσ , for each τ ∈ H we
have x = σ−1τσ (x) = σ−1τ(y), y = σ(x) = σσ−1τ(y) = τ(y); therefore
y ∈ F.
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Moreover each k-automorphism of K induces, by restriction, a k-automor-
phism of F . Such a restriction is then a map π : G → G(F/k) whose kernel
is the set of the elements σ ∈ G whose restriction to F is the identity, i.e. H ;
moreover, since K is Galois over F , each k-isomorphism of F extends to a
k-isomorphism3 of K , so that π is surjective; therefore G/H = G(F/k).
Conversely, if F is Galois, then, for all σ ∈ G, σ(F) = F by Corollary 10.3.7,
so that

H = A(F) = A(σ (F)) = σ Hσ−1.

Example 14.2.11. As an example let us continue the computation developed
in Examples 5.2.5, 5.2.6, 5.5.1, 10.3.8, 10.3.11 and 10.4.2, using the same
notation as Example 10.4.2.

We see that G(K/k) = S3 which has 4 non-trivial subgroups:

H1 := {�123,�132} = A(Q(α1));
H2 := {�123,�321} = A(Q(α2));
H3 := {�123,�213} = A(Q(α3));
A3 := {�123,�231,�312} = A(Q(δ)).

It is easy to verify that Hi are non-normal, that Hi = A(Q(αi )) and the validity
of Lemma 14.2.9; in order to exhibit the field corresponding to the subgroup
A3, the alternating group over 3 elements, thereby proving that A3 = A(Q(δ)),

let us note that [I(A3) : Q] = 2 and that

� = 6δ = (α2 − α1)(α3 − α1)(α3 − α2)

is such that σ(�) =
{
� if σ ∈ A3

−� if σ �∈ A3
while

�2 = 36δ2 = −108 = Disc( f ) ∈ Q,

whence the claim.

14.3 Solvability by Radicals

Throughout this section, I will restrict myself to fields of characteristic 0 to
avoid the complications of inseparability and some difficulties with roots of
unity.

3 In fact K is a splitting field over F of a polynomial f (X) ∈ k[X ]; therefore for any k-
isomorphism � of F , K is a splitting field of �( f ) over F and, by Proposition 5.5.4, � extends
to a k-isomorphism of K .



306 Galois II

Definition 14.3.1. A field extension K ⊃ k is called a radical extension or
root tower if there is a tower

k = K0 ⊆ K1 ⊆ · · · ⊆ Kr−1 ⊆ Kr = K

such that

for all i, there exists xi ∈ Ki , ni ∈ N, ni �= 0, : Ki = Ki−1[xi ],

xni
i := yi ∈ Ki−1.

An algebraic number α over k is solvable by radicals iff there is a root tower
K ⊃ k such that α ∈ K .

A polynomial f (X) ∈ k[X ] is solvable by radicals iff its splitting field can
be embedded into a radical extension.

Remark 14.3.2.

(1) The notion of solvability by radicals is nothing more than a formulation
in Kronecker’s language of the concept of ‘solvability’ of the pre-Abel–
Ruffini culture, when solving meant computing the roots by applying the
five operations to the coefficients of the equations.

(2) In the notion of root tower we can (and we need to!) assume wlog that k
contains all the ni th primitive roots of unity for all i : we can in fact perform
a preliminary extension of k adding an nth primitive root of unity, where
n = lcmi (ni ).

(3) In the notion of root towers we can wlog assume that each ni is prime,
since an ni th root of yi can be obtained by a sequence of extractions of
prime roots.

(4) On the basis of the definition of root tower, it is natural to ask how to solve
à la Kronecker the polynomial Xni

i − yi ∈ Ki−1[Xi ]; the answer is in
Lemma 14.3.5.

(5) The notions of solvability by radicals for an algebraic number α and for its
minimal polynomial f (X) coincide as we will show via the next lemma.

Lemma 14.3.3. Any radical extension K ⊃ k is contained in a finite normal
radical extension L ⊃ k.

Proof The proof is by induction on the length r of the root tower. If r = 1 and
ξ ∈ k denotes an n1th primitive root of unity, the conjugate roots of Xn1 − y1

are x1ξ
j , 1 ≤ j ≤ n1, all of them being in k[x1, ξ ] = K1[ξ ] which is therefore

a radical extension.
Then let us assume, by induction, that, given a root tower

k = K0 ⊆ K1 ⊆ · · · ⊆ Kr−1 ⊆ Kr = K ,
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we have a finite normal extension L(r−1) such that

Kr−1 ⊆ L(r−1),

L(r−1) has a root tower

k = L0 ⊆ L1 ⊆ · · · ⊆ Ls−1 ⊆ Ls = L(r−1),

and let us show that we can produce a finite normal extension L(r) which sat-
isfies Kr ⊆ L(r), and is a rational extension L(r) ⊇ L(r−1), so that there is a
root tower

L(r−1) = M0 ⊆ M1 ⊆ · · · ⊆ Mt−1 ⊆ Mt = L(r);
as a consequence we would then obtain a root tower

k = L0 ⊆ L1 ⊆ · · · ⊆ Ls−1 ⊆ L(r−1) ⊆ M1 ⊆ · · · ⊆ Mt−1 ⊆ Mt = L(r).

Since L(r−1) is normal, we can consider all the conjugates of z := yr ∈ Kr−1

over k, which we will denote by z =: z1, . . . zm and which are in L(r−1); for
each of them let us consider the polynomial g j (X) := Xnr − z j . Let

G(X) :=
m∏

j=1

g j (X) ∈ L(r−1)[X ]

and let L(r) be the splitting field of G(X) over L(r−1). Let us denote the roots
of G j by wi ∈ L(r), 1 ≤ i ≤ mnr := t , so that

for all i, there exists j : wnr
i = z j .

Let us note that:

there exists j : w j = xr , so that Kr ⊆ L(r);
by definition, G is invariant under each k-automorphism of L(r−1) so that

G(X) ∈ k[X ];
since L(r−1) ⊃ k is a normal extension, there is f (X) ∈ k[X ] of which

L(r−1) is the splitting fields; therefore L(r) is the splitting field of f G ∈
k[X ] so that L(r) ⊃ k is a normal extension;

if we recursively define Mi := Mi−1[wi ] since, there exists j such that

w
nr
i = z j ∈ L(r−1) ⊆ Mi−1,

then

L(r−1) = M0 ⊆ M1 ⊆ · · · ⊆ Mt−1 ⊆ Mt = L(r)

is a root tower.

This proves our claim.
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Corollary 14.3.4. Let α be an algebraic number over k and let f (X) ∈ k[X ]
be its minimal polynomial over k; then f is solvable by radicals iff α is also.

Proof The root tower K ⊃ k such that α ∈ K is embedded into a finite normal
radical extension L ⊃ k; therefore all the conjugates of α ∈ K are in L , so that
the splitting field of f is contained in it.

Lemma 14.3.5. Let n be a prime, K be a field which contains an nth primitive
root of unity ξ , and let f (X) := Xn − y ∈ K [X ]; then either

f is irreducible over K , or
there is x ∈ K : f (x) = 0.

Proof In its splitting field L ⊃ K , f has a factorization f = ∏n−1
i=0 (X − zξ i )

for a suitable z ∈ L such that zn = y.
Therefore if f is reducible as f = gh over K , then g must be a product of
certain factors X − zξ i and the constant term c ∈ K of it must have the form
c = (−1)dξδzd , where d = deg(g) < n and δ is a suitable integer; therefore,
we have (−1)dncn = zdn = yd .
Since n is prime and d < n, we have gcd(d, n) = 1 and there are s, t such that
ds + tn = 1 so that

y = yds ytn = (−1)dnscns ytn =
(
(−1)dscs yt

)n
,

i.e. y is a power of an element x = (−1)dscs yt ∈ K and f has the factorization
f (X) = (X − x)

∑n
i=1 Xn−i x i in k[X ].

In our analysis of root towers, for any field extensions Ki = Ki−1[xi ] –
where xni

i := yi ∈ Ki−1 and ni is prime –, we need to evaluate the Galois
group G(Ki/Ki−1) via the following

Lemma 14.3.6. Let K ⊃ k be a field extension K = k[α] = k[X ]/ f (X)
where f (X) = Xn − y ∈ k[X ] and n is prime. If k contains an nth root ξ of
unity, then

K is the splitting field of f ,
K ⊃ k is a Galois extension,
G(K/k) is the cyclic group of order n, i.e. the additivity group (Zn,+).



14.3 Solvability by Radicals 309

Proof In fact, the roots of f are α, ξα, . . . , ξ jα, . . . , ξn−1α so that K is the
splitting field of f .
Denoting φ j : K → K , 0 ≤ j ≤ n − 1, to be the k-automorphisms defined by
φ j (α) = ξ jα, the Galois group G(K/k) is the set {φ j : 0 ≤ j ≤ n−1}, which

is isomorphic to the group (Zn,+) via the correspondence j ↔ φ j .

The inverse also holds:

Lemma 14.3.7. Let K ⊃ k be a Galois field extension such that G(K/k) =
(Zn,+), where n is prime. If k contains an nth primitive root ξ of unity, then
there is x ∈ K such that y := xn ∈ k and K = k[x] = k[X ]/ f (X) where
f (X) = Xn − y ∈ k[X ].

Proof Let σ be the generator of G(K/k) and, for each α ∈ K , let us consider
the Lagrange resolvent

x := (ξ, α) := α + ξσ (α)+ ξ2σ 2(α)+ · · · + ξn−1σ n−1(α).

By Theorem 10.3.16, we know that the elements of G(K/k) are linearly inde-
pendent, so that there is α such that (ξ, α) �= 0. For such α

σ(x) = σ(α)+ ξσ 2(α)+ ξ2σ 3(α)+ · · · + ξn−1σ n(α)

= ξ−1
(
ξσ (α)+ ξ2σ 2(α)+ ξ3σ 3(α)+ · · · + α)

)
= ξ−1x,

from which we deduce σ j (x) = ξ− j x, for all j , so that x is invariant only
under the identity.
Setting y := xn we have

σ j (y) =
(
σ j (x)

)n = (ξ− j x)n = xn = y, for all j

so that y ∈ k.

An extension K ⊃ k satisfying the condition above is called a Kummer
extension

Remark 14.3.8. If K ⊂ k is a Kummer extension, we can prove the existence
of α ∈ K : (ξ, α) �= 0, using the discriminant: we know that there is a primitive
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element χ ∈ K such that K = k[χ ], whose minimal polynomial is f (X) ∈
k[X ] and whose conjugates are χ j := σ j (χ), 1 ≤ i ≤ n, where σ is the
generator of G(K/k). If we consider the Lagrange resolvants

(ξ, χ i ) =
n∑

j=1

ξ jχ i
j , 0 ≤ i ≤ n − 1,

by Theorem 10.6.5 we deduce that not all the resolvants (ξ, χ i ) are zero since
the discriminant Disc( f ) �= 0. Therefore (ξ, χ i ) = 0, for all i , would imply
the contradiction ξ j = 0, for all j .

Remark 14.3.9. Let us also note that, with the above assumptions and nota-
tions , if α ∈ K is such that (ξ, α) �= 0, then the following formula holds:

n−1∑
i=0

(ξ i , α) = nα;

in fact, since each ξ j , 1 ≤ j ≤ n − 1, is a root of
∑n−1

i=0 Xi ,

n−1∑
i=0

(ξ i , α) =
n−1∑
i=0

n∑
j=1

ξ i jσ j (α)

= nα +
n−1∑
j=1

σ j (α)

n−1∑
i=0

(ξ j )i

= nα.

Since our result requires that k contains roots of unity, and in our root towers
we have field extensions Ki = Ki−1[xi ], where xi is a primitive root of unity,
let us evaluate the Galois group G(Ki−1/Ki ) for this case.

Let us fix a prime n �= 2 and let us recall that

the nth primitive root ξ of unity is a root of the nth cyclotomic polynomial
�n , which satisfies

�n =
∑n−1

i=0 Xi , since n is prime,
and is irreducible if K = Q (Proposition 7.6.10).

On the basis of this, let K be a field such that char(K ) = 0, and which
does not contain an nth primitive root ξ of unity. Let �n(X) ∈ K [X ] be the
nth cyclotomic polynomial, F be the splitting field of �n(X), ξ ∈ F any nth
primitive root ξ of unity, K (n) := K [ξ ].

Note that, when K = Q, we have Q(n) := Q[ξ ] = Q[X ]/�n(X).
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Lemma 14.3.10. With the above notation:

(1) K (n) is a Galois extension.
(2) G(K (n)/K ) is a cyclic group.
(3) If K = Q, then G(Q(n)/Q) is the cyclic group of order n − 1, i.e. the

multiplicative group (Zn \ {0}, ·).

Proof The roots of �n(X) are a subset R of {ξ j , 1 ≤ j < n} ⊂ K (n) which is
therefore a Galois extension. Moreover, when K = Q, that set consists of all
the roots of �n(X).
For each element ξ j ∈ R, let ψ j : K (n) → K (n) be the K -automorphism
defined by ψ j (ξ) = ξ j .
Then the Galois group G(K (n)/K ) is the set {ψ j : ξ j ∈ R}, which is iso-
morphic to a subgroup of the group (Zn \ {0}, ·) via the immersion ψ j → j,
since

ψ j (ψk(ξ)) = ψ j (ξ
k) = ξ k j = ψk j (ξ),

ψ1 is the identity.

Since (Zn \ {0}, ·) is cyclic, so is any subgroup of it and in particular
G(K (n)/K ).
When K = Q, we have #G(Q(n)/Q) = [Q(n) : Q] = n − 1 so that
G(Q(n)/Q) ∼= (Zn \ {0}, ·).

Remark 14.3.11. If K � Q, we have K (n) = Q(n) and g := G(Q(n)/K ) is a
cyclic subgroup of G := G(Q(n)/Q); we have

#G = [Q(n) : Q] = n − 1, #g = [Q(n) : K ] := f,

so that setting e := n−1
f and h := G(K/Q), we have

#h = [K : Q] = e;
g = {ψ je : 1 ≤ j ≤ f };
if g is a generator of Zn \ {0}, ψg is a generator of G and ψge generates g;
the periods

ηi := ( f, gi ) := ξ gi + ξ gi+e + · · · + ξ gi+ je + · · · + ξ gi+( f −1)e
, 0 ≤ i < e,

are elements in I(g) = K so that K = Q[η1].

Proposition 14.3.12. Let K ⊃ k be a radical extension and let

k = K0 ⊆ K1 ⊆ · · · ⊆ Kr−1 ⊆ Kr = K

be its root tower, where
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for all i, there exists xi ∈ Ki , ni ∈ N, ni �= 0 :

Ki = Ki−1[xi ], xni
i := yi ∈ Ki−1,

for all i , ni is prime and either

yi �= 1 and Ki−1 contains an ni th primitive root of unity, or
yi = 1.

Let Gi := G(Kr/Ki ), for all i , and Hi = Gi/Gi+1, 0 ≤ i < r .
Then there is a chain of subgroups

G(K/k) = G0 ⊇ G1 ⊇ · · · ⊇ Gr−1 ⊇ Gr = {1}, (14.2)

which satisfies the following conditions:

(1) each Gi+1 is invariant in Gi ;
(2) Hi is cyclic of prime order.

Proof Equation 14.2 holds from Theorem 14.2.7(2). For each i , Ki+1 is a
Galois extension of Ki and G(Ki+1/Ki ) is cyclic of order prime, either

by Lemma 14.3.6, if yi+1 �= 1 and Ki contains an nthi+1 primitive root of
unity, or

by Lemma 14.3.10 if yi+1 = 1.

This implies that, for each i , Gi+1 is invariant in Gi and Hi = G(Ki+1/Ki )

(Theorem 14.2.10), being cyclic.

On the basis of the above result, let us introduce

Definition 14.3.13. A group G0 which has a chain (Equation 14.2) of sub-
groups satisfying conditions (1) and (2) of the above proposition is called
solvable,

which satisfies

Fact 14.3.14. Let G be solvable and g be a subgroup of G. Then g is solvable
and, if g is invariant, G/g is also solvable.

Lemma 14.3.15. Let K ⊃ k be the splitting field of f (X) ∈ k[X ] over k and
let K [ξ ] ⊃ K be an algebraic extension; then K [ξ ] ⊃ k[ξ ] is the splitting field
of f over k[ξ ] and G(K [ξ ]/k[ξ ]) is isomorphic to a subgroup of G(K/k).

Proof To each σ ∈ G(K [ξ ]/k[ξ ]) its restriction σ ′ to K is an element of
G(K/k); therefore there is a homomorphism φ : G(K [ξ ]/k[ξ ]) → G(K/k),
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φ(σ) = σ ′, which is isomorphic since, if φ(σ) = σ ′ is the identity, then
σ(β) = σ ′(β) = β for each root β of f , i.e. σ is the identity.

Theorem 14.3.16 (Galois). A squarefree polynomial f (X) ∈ k[X ] is solvable
by radicals over a field k of characteristic 0 iff its Galois group is solvable.

Proof

⇒ Let f (X) ∈ k[X ] be solvable by radicals and let N be its splitting field
which can be embedded into a radical extension L ⊃ k which,
by Lemma 14.3.3, we can assume to be normal. Then L has a root
tower

k = L0 ⊆ L1 ⊆ · · · ⊆ Lr−1 ⊆ Lr = L

where for all i , there exists xi ∈ Li , ni a prime: such that

Li = Li−1[xi ], xni
i := yi ∈ Li−1.

Let n := lcm ni and let ξ ∈ k(n) be an nth primitive root of unity; we
can obtain a root tower

k = K0 ⊆ K1 ⊆ · · · ⊆ Ks−1 ⊆ Ks = k[ξ ].

This root tower can be extended as

k = K0 ⊆ K1 ⊆ · · · ⊆ Ks−1 ⊆ Ks = k[ξ ] = L0[ξ ]

⊆ Ks+1 = Ks[x1] = L1[ξ ] ⊆ Ks+2 = Ks+1[x2] = L2[ξ ]

⊆ · · · ⊆ Ks+r−1 = Ks+r−2[xr−1] = Lr−1[ξ ]

⊆ Ks+r = Ks+r−1[xr ] = Lr [ξ ] = L[ξ ].

By Proposition 14.3.12 we can deduce that G(L[ξ ]/k) is solvable.
Let us now remark that, by Theorem 14.2.10, g = (L[ξ ]/N ) is a
normal subgroup of G = (L[ξ ]/k) and that G(N/k) = G/g, so that
the claim follows from Fact 14.3.14.

⇐ Conversely, let us assume that the Galois group G := G(K/k) of f (X) ∈
k[X ] is solvable, where K is the splitting field of f . Let n = #G and
ξ be a primitive nth root of unity. Then (Lemma 14.3.15) K [ξ ] is the
splitting field of f over k[ξ ] and G(K [ξ ]/k[ξ ]) is isomorphic to a
subgroup of G and is solvable by Fact 14.3.14.
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Therefore there is a chain of subgroups

G(K [ξ ]/k[ξ ]) = G0 ⊇ G1 ⊇ · · · ⊇ Gr−1 ⊇ Gr = {1},
where each Gi+1 is invariant in Gi and Gi/Gi+1 is cyclic of prime
order ni .
Setting Ki := I(Gi ) we obtain the chain

k[ξ ] = K0 ⊆ K1 ⊆ · · · ⊆ Kr−1 ⊆ Kr = K [ξ ]; (14.3)

since each Ki contains the primitive nth root ξ of unity, it contains
also the primitive ni th root ξn/ni of unity; since each Gi+1 is normal,
Ki+1 is normal over Ki and G(Ki+1/Ki ) = Gi/Gi+1 which is cyclic
of prime order ni , i.e. Ki+1 is a Kummer extension and Equation 14.3
is a root tower.

Remark 14.3.17. When char(k) = p �= 0 and f is separable, the Galois The-
orem holds, provided the characteristic does not appear among

the values ni := [Ki : Ki−1] in the root tower of radical extension L ⊃ k in
which the splitting field of f is embedded,
the indexes of Gi+1 in Gi .

14.4 Abel–Ruffini Theorem

Let us fix a field k of characteristic 0 and let us consider the generic equation
of degree n

f (X) = Xn +
n∑

i=1

(−1)i ai Xn−i =
n∏

i=1

(X − αi )

in the field

k := k(a1, . . . , an) ⊂ k(α1, . . . , αn) =: K

of which K is the splitting field.
Clearly the Galois group G(K/k) is the symmetric group Sn by Corol-

lary 6.2.6.
Let us recall the notion of the alternating group An ⊂ Sn , which can be

given in terms of the discriminant:

Definition 14.4.1. Let

� :=
∏
i> j

(αi − α j )
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so that �2 = Disc( f ). Then

An := {σ ∈ Sn : σ(�) = �},
from which follow

for all σ ∈ Sn : σ(�) =
{
� if σ ∈ An

−� if σ �∈ An
,

and its principal property:

Fact 14.4.2. An is a normal subgroup of Sn, whose index is 2 and which
contains, if n > 4, no normal subgroup except the identity and itself.

As a consequence of this we directly obtain

Corollary 14.4.3 (Abel–Ruffini). The generic equation of degree n ≥ 5 is not
solvable by radicals.

Proof If n ≥ 5, An is not solvable and so, by Fact 14.3.14, neither is Sn .

The generic equation of degree n ≤ 4 is indeed solvable by radicals, since
we have the chains

S3 ⊃ A3 ⊃ {1},
S4 ⊃ A4 ⊃ V4 ⊃ V2 ⊃ {1},

where V4 is the Viergruppe,

V4 = {(1), (12)(34), (13)(24), (14)(23)},
and V2 is any one of its subgroups of order 2.

Now let us discuss the solution of the generic equation of degree n = 3,

f (X) = X3 − a1 X2 + a2 X − a3 =
3∏

i=1

(X − αi );

via the linear change of coordinates X → X + a1
3 , we can reduce it to the form

f (X) = X3 + pX + q =
3∏

i=1

(X − βi ),

where p = a2 − 1
3 a2

1 , q = a3 − 1
3 a1a2 + 2

27 a3
1 and βi = αi − a1

3 .

The polynomial f is solvable since S3 is, having the chain

S3 ⊃ A3 ⊃ {1}
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from which we obtain the root tower

k ⊂ k[�] ⊂ K

and we can use the Galois Theorem and its proof to ‘solve’ it.

Denoting ξ := −1+√−3
2 the 3rd primitive root of unity, so that ξ2 :=

−1−√−3
2 , let us recall that A3 is generated by the permutation (123); therefore

the Lagrange resultants are

(ξ, β1) = β1 + ξβ2 + ξ2β3,

(ξ2, β1) = β1 + ξ2β2 + ξβ3,

(1, β1) = β1 + β2 + β3 = 0;
adding them together given

3β1 = (ξ, β1)+ (ξ2, β1).

First, using Newton’s results, we can compute4

�2 = −4p3 − 27q2,∑
i

β3
i = −3q,

∑
i j

β2
i β j = 3q,

(ξ, β1)
3 =

∑
i

β3
i −

3

2

∑
i j

β2
i β j + 6β1β2β3 + 3

√−3

2
�

= −27

2
q + 3

√−3

2
�,

(ξ2, β1)
3 = −27

2
q − 3

√−3

2
�,

obtaining

K = k[�, y] = k[�][X ]/(X3 − x),

where y := (ξ, β1) and x := − 27
2 q + 3

√−3
2 �; therefore

(ξ, β1) = 3

√
−27

2
q + 3

√−3

2
�

4 Using standard shorthand notation
∑

i1i2...ir
t
d1
i1

· · · tdr
ir

denotes the expression

n∑
i1=1

n∑
i2=1

. . .

n∑
ir=1

t
d1
i1

· · · tdr
ir
.
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(ξ2, β1) = 3

√
−27

2
q − 3

√−3

2
�

β1 = 3

√
−q

2
+
√(q

2

)2 +
( p

3

)3 + 3

√
−q

2
−
√(q

2

)2 +
( p

3

)3
,

i.e. Tartaglia’s formula.
Note that the other two roots can be similarly obtained using the equalities:

3β2 = ξ2(ξ, β1)+ ξ(ξ2, β1),

3β3 = ξ(ξ, β1)+ ξ2(ξ2, β1).

Ferrari’s formula for the biquadratic generic equation could be described
with a similar approach.

On the basis of the Abel–Ruffini Theorem, it is natural to ask if there is a
polynomial f (X) ∈ Z[X ] of degree 5 whose Galois group is S5 and so is not
‘solvable’. To present such a polynomial we need to recall

Fact 14.4.4. If H ⊆ Sn is a transitive group which contains a transposition,
then H = Sn .

and to prove that

Corollary 14.4.5. Let k ⊂ R be a field and let f (X) ∈ k[X ] be a polynomial
such that

f is irrreducible,
deg( f ) := n is prime,
f has exactly two roots in C \ R;

then the Galois group of f is Sn so that f is not solvable by radicals.

Proof Let H ⊂ Sn be the Galois group of f and let K be its splitting field.
Since f is irreducible, H is transitive.
Let α1, . . . , αn ∈ C be the roots of f and let us assume that wlog α1, α2 �∈ R;
these two roots are conjugate so that α1 = α2 while αi = αi , for all i ≥ 3;
therefore the restriction of the complex conjugation to K is a k-automorphism
of it which corresponds to the transposition (12). The claim follows from the
above fact.

Remark 14.4.6. On the basis of the above result, we can explicitly present a
series of polynomials f (X) ∈ Z[X ] which are not ‘solvable’; for any prime p
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let us consider the polynomial f p(X) := X5+ pX + p, which is not ‘solvable’
since it satisfies the above condition, because

it is irreducible via the Eisenstein criterion5,
it has three real roots, since the Sturm sequence (cf. Section 13) is X5 +

pX + p, 5X4 + p, 4pX + 5p, 1.

14.5 Constructions with Ruler and Compass

Throughout this section, by ‘geometric object’ we mean any point, line and
circle in the plane.

Given a set of geometric objects let us consider the following operations:

(1) construct the line passing through two given points,
(2) construct the circle whose centre is a given point and which passes through

another given point,
(3) determine the intersection of two given lines,
(4) determine the intersections of a given line with a given circle,
(5) determine the intersections of two given circles.

Definition 14.5.1. Given a set O of geometric objects, a geometric object O is
said to be constructable by ruler and compass in terms of O, if there is a finite
sequence O1,O2, . . . ,On = O such that for all i either

Oi ∈ O, or
there are i1, i2 < i such that Oi is obtained from Oi1 and Oi2 by the five
constructions listed above.

5 Which asserts that a polynomial f (X) := ∑n
i=0 ai Xi ∈ D[X ], D a domain, is irreducible in

D[X ], if there is a prime p ∈ D such that

an �≡ 0 (mod p),
ai ≡ 0 (mod p), for all i < n,
a0 �≡ 0 (mod p2).

In fact, assuming f has the non-trivial factorization f = gh where g(X) =:
∑r

i=0 bi Xi ,

h(X) =:
∑s

i=0 ci Xi , from b0c0 = a0 ≡ 0(mod p), and b0c0 = a0 �≡ 0(mod p2) we deduce
that wlog b0 ≡ 0(mod p) and c0 �≡ 0(mod p); since not all the coefficients of g are multiples
of p, since an �≡ 0(mod p), let i be the least integer such that bi �≡ 0(mod p), so that

0 ≡ ai =
i∑

j=0

b j c j−i ≡ bi c0 �≡ 0(mod p),

giving a contradiction.
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Example 14.5.2. Given two points O1 and O2, the middle point O of the seg-
ment joining O1 and O2 is constructable by ruler and compass, as follows: let

O3 be the line passing through O1 and O2,
O4 be the circle whose centre is O1 and which passes through O2,
O5 be the circle whose centre is O2 and which passes through O1,
O6 and O7 the intersections of O4 and O5,
O8 be the line passing through O6 and O7,
O be the intersection of O3 and O8.

Remark 14.5.3. Among the constructions by ruler and compass, we can list
the following:

(1) given a line O1 and a point O2, construct the line O which is perpendicular
to O1 and passing through O2;

(2) given a line O1 and a point O2, construct the line O which is parallel to
O1 and passing through O2;

(3) given two points O1 and O2, construct the points which divide into n parts
the segment joining O1 and O2;

(4) given two points O1 and O2, construct the circle O whose diameter is the
segment based on O1 and O2;

(5) given three points O1, O2 and O3, construct the circle O which passes
through them;

(6) given two points O1 and O2, a line O3 and a point O4 contained in it,
construct a point O over O3 such that the two segments joining O1 and O2

(respectively O4 and O) have the same length;
(7) given an angle6 O1, construct an angle O which is half of it;
(8) given two angles O1 and O2, construct an angle O which is the sum of

them;
(9) given two lines O1 and O2 intersecting in O3, construct the line O passing

through O3 which is symmetric to O2 with respect to O1.

Remark 14.5.4. Given four points O1, O2, O3 and O4, it is evident that it is
possible to construct by ruler and compass

(1) two points O5, O6 such that

L1 denotes the line through O1 and O2;
O5 is in L1 and the two segments joining O5 and O2 (respectively O3

and O4) have the same length;

6 We consider an angle O to be given (respectively constructed) if two lines O1 and O2 are given
(respectively constructed) which intersect at a point O3.
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L2 denotes the line passing through O2 which is perpendicular to L1;
C is the circle whose diameter is the segment based on O1 and O5;
O6 is an intersection between L2 and C;

(2) two points O5, O6 such that

L1 denotes the line through O1 and O2;
L2 denotes the line passing through O2 which is perpendicular to L1;
O6 is in L2 and the two segments joining O6 and O2 (respectively O3

and O4) have the same length;
L3 is the line perpendicular to L2 and passing through O6;
O5 is the intersection of L1 and L3.

Denoting

a the length of the segment joining O1 and O2,
b the length of the segment joining O2 and O5,
c the length of the segment joining O2 and O6,

in both cases we have the relation a : c = c : b, so that when

(1) we are given a and b, we obtain c = √
ab;

(2) we are given a and c, we obtain b = c2

a .

Remark 14.5.5. It is sufficient to choose two points O1 and O2 in order to
impose a cartesian coordinate system: in fact we only have to construct

the line O3 through O1 and O2,
the line O4 perpendicular to O3 and passing through O1,

and choose the length of the segment joining O1 and O2 as unity.
From now on, we will assume that a cartesian coordinate system is fixed in

the plain and we say that

Definition 14.5.6. A complex number x + iy ∈ C is called constructable if the
point O = (x, y) is constructable by ruler and compass starting from O1 and
O2.

Proposition 14.5.7. Let

C := {c ∈ C : c is constructable } ⊂ C.

Then

(1) Z ⊂ C;
(2) Q ⊂ C;
(3) for all x, y ∈ R, x + iy ∈ C is constructable iff both x and y are such;
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(4) C is an additive group;
(5) C ∩ R is a field;
(6) if α is a positive real constructable number, then

√
α ∈ C;

(7) C is a field;
(8) if α ∈ C, then

√
α ∈ C.

Proof

(1) The integer number 2 is obtained by constructing, via construction (4) of
Remark 14.5.3, the circle whose centre is O2 and which passes through
O1 determining the other intersection. All the integers are obtained by
iterating this construction.

(2) In order to represent the rational n
m we only have to construct the point

O which divides into n parts the segment joining O1 and (m, 0), via con-
struction (3) of Remark 14.5.3.

(3) The intersection of the lines parallel to O3 (respectively O4) and passing
through (0, y) (respectively (x, 0)) is (x, y). Conversely (x, 0) (respectively
(0, y)) is the intersection between O3 (respectively O4) and a line perpen-
dicular to it and passing through (x, y).

(4) If Pi = (xi , yi ), i = 1, 2, are constructable, to obtain the point

O := (x1 + x2, y1 + y2)

we only have to perform vector addition using construction (6) of
Remark 14.5.3.

(5) Given the constructed real positive numbers α, β, via the construction of
Remark 14.5.4 we obtain:

b := α2 setting a := 1, c := α;
b := β2 setting a := 1, c := β;
c := αβ setting a := α2, b := β2;
b := α−1 setting a := α, c := 1.

(6) Via the construction of Remark 14.5.4 we obtain

c := √
α setting a := α, b := 1.

(7) Let ci := ri

(
cos(φi )+i sin(φi )

)
, i = 1, 2, be two constructable numbers,

so that

c1c2 = r1r2

(
cos(φ1 + φ2)+ i sin(φ1 + φ2)

)
,

c−1
1 = r−1

1

(
cos(−φ1)+ i sin(−φ1)

)
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are constructable since

r−1
1 and r1r2 are and

the angles φ1 + φ2 and −φ1 can be constructed via constructions (8)
and (9) of Remark 14.5.3.

(8) If α = r
(

cos(φ)+i sin(φ)
)

then
√
α = √

r
(

cos(φ2 )+i sin(φ2 )
)

, where
√

r

is constructable and φ
2 can be constructed via construction (7) of

Remark 14.5.3.

Remark 14.5.8. If we are given a set of points Pi := (xi , yi ), 1 ≤ i ≤ n,
clearly the lines and circles which can be constructed using the basic construc-
tions by ruler and compass are defined by polynomials in

Q(x1, y1, . . . , xn, yn)[X, Y ].

In fact

the line passing through (xi , yi ) and (x j , y j ) has equation

(xi − x j )(Y − y j )− (yi − y j )(X − x j );
the circle whose centre is (xi , yi ) and passing through (x j , y j ) has equation

(X − x j )
2 + (Y − y j )

2 − (xi − x j )
2 − (yi − y j )

2.

As a consequence we have:

Theorem 14.5.9. Given a set O of points Pi := (xi , yi ), 1 ≤ i ≤ n, and a
point P := (x, y), then the following conditions are equivalent:

(1) P is constructable by ruler and compass in terms of O,

(2) there is a root tower

Q(x1, y1, . . . , xn, yn) =: K0 ⊂ K1 ⊂ · · · ⊂ Kr−1 ⊂ Kr

satisfying

x + iy ∈ Kr ,
[Ki : Ki−1] = 2, for all i.
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Proof

(1) �⇒ (2) By definition there is a finite sequence O1,O2, . . . ,Os = P
satisfying the conditions of Definition 14.5.1; we show that we are
able to build a root tower

Q[x1, y1, . . . , xn, yn] =: K0 ⊆ K1 ⊆ · · · ⊆ Ks ⊆ Ks+1 ' x + iy,

such that for each i either Ki = Ki−1 or [Ki : Ki−1] = 2. Inductively,
let us assume that we have already built Ki−1 and for each j < i

if O j is a line or a circle its equation is a polynomial over
Ki−1[X, Y ],

if O j = (α j , β j ) is a point, then α j , β j ∈ Ki−1

and let us build Ki : if Oi is

(1) the line passing through two given points, then we set Ki := Ki−1

and the equation of Oi is a polynomial over Ki−1[X, Y ];
(2) the circle whose centre is a given point and which passes through

another given point, then we set Ki := Ki−1 and the equation of
Oi is a polynomial over Ki−1[X, Y ];

(3) the intersection Oi = (αi , βi ) of two given lines,

a X + bY − c = d X + eY − f = 0,

a, b, c, d, e, f ∈ Ki−1, then we set Ki := Ki−1 since αi , βi ∈
Ki−1;

(4) an intersection Oi = (αi , βi ) of a given line with a given circle,
i.e. a solution of

aX + bY − c = X2 + Y 2 + d X + eY − f = 0,

a, b, c, d, e, f ∈ Ki−1; then, by expressing one variable in terms
of the other via the linear equation and substituting it in the
quadratic one, we obtain a quadratic equation in one variable,
whose discriminant we will denote by D ∈ Ki−1. Then we set
Ki := Ki−1[

√
D] and αi , βi ∈ Ki ;

(5) an intersection Oi = (αi , βi ) of two given circles, i.e. a solution
of

X2 + Y 2 + a X + bY − c = X2 + Y 2 + d X + eY − f = 0,

a, b, c, d, e, f ∈ Ki−1; it is then sufficient to subtract the two
equations to obtain a linear equation and reduce this to the previ-
ous case.
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With this construction we finally obtain a field Ks such that x, y ∈
Ks ; then we define Ks+1 := Ks[i] so that x + iy ∈ Ks+1.

(2) �⇒ (1) Conversely, assuming we are given a root tower

Q(x1, y1, . . . , xn, yn) =: K0 ⊂ K1 ⊂ · · · ⊂ Kr−1 ⊂ Kr ' x + iy

such that for all i, [Ki : Ki−1] = 2, i.e.

for all i, there exists xi ∈ Ki \ Ki−1, yi ∈ Ki−1, : x2
i = yi , Ki :

Ki−1[xi ];
then, denoting Oi := (xi , 0) by Proposition 14.5.7, for all i , Oi is
constructable in terms of O ∪ {O j : j < i}; as a consequence P is

constructable in terms of O.

Corollary 14.5.10. If F is a field, Q ⊆ F ⊆ C and P = (x, y) is constructable
by ruler and compass in terms of O = {(xi , yi ), 1 ≤ i ≤ n}, with xi , yi ∈ F,
then x + iy is algebraic over F with degree a power of 2.

To prove the converse of this corollary we need to recall another group the-
ory fact:

Fact 14.5.11. Let G be a group such that #G = 2s ; then there is a a chain of
subgroups

G = G0 ⊇ G1 ⊇ · · · ⊇ Gs−1 ⊇ Gs = {1},
where for each i , Gi/Gi+1 has order 2.

Corollary 14.5.12. Given a set O of points Pi := (xi , yi ), 1 ≤ i ≤ n, and
a point P := (x, y), let F := Q(x1, y1, . . . , xn, yn) and let K ⊃ F be an
algebraic extension such that [K : F] = 2s and x + iy ∈ K. Then P is
constructable by ruler and compass in terms of O.

Proof The claim follows from Fact 14.5.1, Theorem 14.3.16 and Propo-
sition 14.3.12

Remark 14.5.13. The condition that x + iy has degree 2s over

F := Q(x1, y1, . . . , xn, yn)

is necessary for x + iy to be constructable by ruler and compass, but not suf-
ficient: the polynomial f (X) := X4 + pX + p, p a prime, is irreducible and
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has two real roots (cf. Remark 14.4.6), so that if F := Q, α denotes a root of f
and K = F[α] we have that

α has degree 4 = 22 over F, but
G(K/F) = S4,
# (G(K/F)) = 24, so that
α is not constructable by ruler and compass.

Remark 14.5.14. The theory developed in this section allows us to prove the
insolvability of classical geometric constructions by ruler and compass:

Trisection of an angle: given a ‘generic’ angle ψ is it possible to construct
by ruler and compass an angle φ such that ψ = 3φ?
The answer is negative: in fact the ability to construct ψ is equivalent to
the ability to construct cos(ψ) and the relation

cos(3φ) = 4 cos3(φ)− 3 cos(φ),

holds so that, setting F := Q[cos(ψ)], with α a root of the irreducible
polynomial f (X) = 4X3 − 3X − cos(ψ) and K := F[α] = F[X ]/ f (X),
we deduce that α has degree 3 over F and so is not constructable7.

Duplication of a cube: given a generic cube is it possible to construct by ruler
and compass a cube whose volume is double that of the original one, i.e.
given c ∈ Q, c > 0, is it possible to construct by ruler and compass
d ∈ Q, d > 0, such that d3 = 2c3, i.e. d = 3

√
2c? The answer is again

negative since 3
√

2 is a solution of the irreducible polynomial X3 − 2 and
so has degree 3.

The rectification of a circumference, i.e. the construction of π , and the squar-
ing of a circle, i.e. the construction of

√
π , are not solvable for a more

cogent reason: π is transcendental!
The construction of regular polygons, i.e. the construction of the primitive

nth root of unity (n prime), which satisfies the polynomial
∑n−1

i=0 Xi is
solvable iff n − 1 is a power of 2, i.e. for the prime numbers 2s + 1; the
solution was found by Gauss (Section 12.2).

7 Note the important requirement that ψ is generic: in fact for specific values such as ψ := π
2

constructing φ := π
6 is obvious. What is required is a construction (an algorithm) which yields

a solution (an output) for each given angle (input).
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And when he had opened the second seal, I heard the second beast say, Come and see.
And there went out another horse that was red; and power was given to him that sat

thereon to take peace from the earth, and that they should kill one another: and there
was given unto him a great sword.
Revelations

The things depending from Jove: blood, tin, sapphire, mint, deer, eagle, dolphin.
E.C. Agrippa, De occulta philosophia

And the heart of Allah bleeds for the wound of Mostar’s bridge. And his rage is upon
the offenders. The names of Mark Mammon and Rambo Satan are engraved upon his
heart.
Hasan as-Sabah II, The Hashishiyun Manifesto
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Prelude

15.1 A Computation

As an introduction to this part of the book, and as a conclusion to the previous
one, I want to discuss the factorization of the polynomial

f (X) = X24 − 1 ∈ K [X ],

where K is any field such that char(K ) = 0.
Let F ⊇ K be a splitting field of f , θ ∈ F denoting any primitive 24th root

of unity, θi := θ i , i = 1, . . . , 24, and φi : F → F be the K -isomorphism
defined by φi (θ) = θ i .

Since f ′ = 24X23 and so gcd( f, f ′) = 1, f is squarefree and

θi �= θ j ⇐⇒ i �= j.

We know that F = K [θ ] and that

X24 − 1 =
24∏
j=1

(X − θi ) (15.1)

is a factorization in F[X ].
First let us study the factorization of f over Q: denoting S := Z24, we know

that S can be partitioned into disjoint subsets as

S = S1 ∪ S2 ∪ S3 ∪ S4 ∪ S6 ∪ S8 ∪ S12 ∪ S24,

where Ri := {θ j , j ∈ Si } is the set of the primitive i th roots of unity, so that:

S1 = {0}, and so R1 = {1},
S2 = {12}, and so R1 = {−1},
S3 = {8, 16},
S4 = {6, 18},

329
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S6 = {4, 20},
S8 = {3, 9, 15, 21},

S12 = {2, 10, 14, 22},
S24 = {1, 5, 7, 11, 13, 17, 19, 23},

and that f has the factorization

f (X) = �1(X)�2(X)�3(X)�4(X)�6(X)�8(X)�12(X)�24(X)

where

�i (X) :=
∏
j∈Si

(X − θi )

represents the irreducible i th cyclotomic polynomials fi , which we can com-
pute using the results of Section 7.6; denoting gi (X) := Xi − 1, we have:

�1(X) := g1(X) = X − 1,

�2(X) := g2(X)
�1(X)

= X + 1,

�3(X) := g3(X)
�1(X)

= X2 + X + 1,

�4(X) := �2(X2) = X2 + 1,

�6(X) := �2(X3)
�2(X)

= X2 − X + 1,

�8(X) := �2(X4) = X4 + 1,

�12(X) := �6(X2) = X4 − X2 + 1,

�24(X) := �6(X4) = X8 − X4 + 1.

In order to factorize f over any field K , char(K ) = 0, we need to go back to
Equation 15.1 and analyse it in C[X ], where we know the value of a primitive
root of unity

θ := cos
π

12
+ i sin

π

12
=

√
6 +√

2

4
+ i

√
6 −√

2

4
,

and so we can easily obtain all the 24th roots of unity:

θ1 =
√

6+√2
4 + i

√
6−√2

4 , θ13 = −√6−√2
4 + i−

√
6+√2
4 ,

θ2 =
√

3
2 + i 1

2 , θ14 = −√3
2 + i−1

2 ,

θ3 = 1√
2
+ i 1√

2
, θ15 = −1√

2
+ i−1√

2
,

θ4 = 1
2 + i

√
3

2 , θ16 = −1
2 + i−

√
3

2 ,

θ5 =
√

6−√2
4 + i

√
6+√2

4 , θ17 = −√6+√2
4 + i−

√
6−√2
4 ,
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θ6 = i, θ18 = −i,

θ7 = −√6+√2
4 + i

√
6+√2

4 , θ19 =
√

6−√2
4 + i−

√
6−√2
4 ,

θ8 = −1
2 + i

√
3

2 , θ20 = 1
2 + i−

√
3

2 ,

θ9 = −1√
2
+ i 1√

2
, θ21 = 1√

2
+ i−1√

2
,

θ10 = −√3
2 + i 1

2 , θ22 =
√

3
2 + i−1

2 ,

θ11 = −√6−√2
4 + i

√
6−√2

4 , θ23 =
√

6+√2
4 + i−

√
6+√2
4 ,

θ12 = −1, θ0 = 1.

The above computations allow us to easily deduce

Lemma 15.1.1. Let

θ :=
√

6 +√
2

4
+ i

√
6 −√

2

4
∈ C,

and F = Q(θ). Then:

(1) i = θ6,
√

2 = θ21 + θ3,
√

3 = 2θ2 − θ6;
(2) F = Q(i,

√
2,
√

3);
(3) [F : Q] = 8;
(4) �24 is the minimal polynomial of θ .

Proof

(1) The results follow from the above values of θi . In fact:

the value of θ6 implies i = θ6;
from the value of θ3 we deduce

√
2θ3 = 1 + i �⇒

√
2 = θ21 + θ3;

from the value of θ2 we deduce
√

3 = 2θ2 − i = 2θ2 − θ6.

(2) Obviously θ ∈ Q(i,
√

2,
√

3) and the previous result implies

Q(i,
√

2,
√

3) ⊆ F.

(3) Is then an obvious consequence.
(4) Although we know that �24 is irreducible by Proposition 7.6.10, we can

simply deduce it from the facts that �24(θ) = 0 and deg(�24) = 8 =
[F : Q].
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Since X8−X4+1 is the minimal polynomial of θ , we can therefore represent
each θi as an element in

F = Q[θ ] = SpanQ({1, θ, θ2, θ3, θ4, θ5, θ6, θ7})
as

θ1 = θ, θ2 = θ2, θ3 = θ3,

θ4 = θ4, θ5 = θ5, θ6 = θ6,

θ7 = θ7, θ8 = θ4 − 1, θ9 = θ5 − θ,

θ10 = θ6 − θ2, θ11 = θ7 − θ3, θ12 = −1,

θ13 = −θ, θ14 = −θ2, θ15 = −θ3,

θ16 = −θ4, θ17 = −θ5, θ18 = −θ6,

θ19 = −θ7, θ20 = −θ4 + 1, θ21 = −θ5 + θ,

θ22 = −θ6 + θ2, θ23 = −θ7 + θ3, θ0 = 1;
from which we also get

√
2 = −θ5 + θ3 + θ,

√−2 = θ5 + θ3 − θ,√
3 = −θ6 + 2θ2,

√−3 = 2θ4 − 1,√
6 = −2θ7 + θ5 + θ3 + θ,

√−6 = 2θ7 + θ5 − θ3 + θ,

i = θ6.

Corollary 15.1.2.
The Galois group G of [F : Q] is

G = {φ1, φ5, φ7, φ11, φ13, φ17, φ19, φ23} ∼= Z2 × Z2 × Z2.

The intermediate fields � such that Q ⊆ � ⊆ F and their associated sub-
groups g ⊆ G are

�1 = Q, g1 = G,

�2 = Q(i), g2 = {φ1, φ5, φ13, φ17},
�3 = Q(

√
2), g3 = {φ1, φ7, φ17, φ23},

�4 = Q(
√

3), g4 = {φ1, φ11, φ13, φ23},
�5 = Q(

√−2), g5 = {φ1, φ11, φ17, φ19},
�6 = Q(

√−3), g6 = {φ1, φ7, φ13, φ19},
�7 = Q(

√
6), g7 = {φ1, φ5, φ19, φ23},

�8 = Q(
√−6), g8 = {φ1, φ5, φ7, φ11},

�9 = Q(i,
√

6), g9 = {φ1, φ5},
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�10 = Q(
√

2,
√−3), g10 = {φ1, φ7},

�11 = Q(
√−2,

√
3), g11 = {φ1, φ11},

�12 = Q(i,
√

3), g12 = {φ1, φ13},
�13 = Q(i,

√
2), g13 = {φ1, φ17},

�14 = Q(
√−2,

√−3), g14 = {φ1, φ19},
�15 = Q(

√
2,
√

3), g15 = {φ1, φ23},
�16 = F, g16 = {φ1}.

Proof Since F = Q(i,
√

2,
√

3), it is clear that G consists of the 8 Q-
isomorphisms ψ which satisfy

ψ(i) = ±i, ψ(
√

2) = ±
√

2, ψ(
√

3) = ±
√

3.

On the other hand, the conjugate roots of θ are θi : i ∈ S24, so that G =
{φi , i ∈ S24}.
To associate these two representations with each other, we only have to com-
pute ψ(θ) and apply the fact that

ψ(θ) = θi �⇒ ψ = φi ;
for instance for the Q-isomorphism ψ such that

ψ(i) = −i, ψ(
√

2) = +
√

2, ψ(
√

3) = +
√

3,

we have ψ(θ) = θ23 and ψ = φ23.

Then, listing all intermediate fields and their associated subgroups is just book-
keeping.

It is then easy to compute the orbits of each S j with respect to gi :

Lemma 15.1.3.

S1, S2 are stable under gi , for all i;
The orbits of S3 are

{ {8}, {16} if i = 6, 10, 12, 14;
S3 otherwise.

The orbits of S4 are

{ {6}, {18} if i = 2, 9, 12, 13;
S4 otherwise.

The orbits of S6 are

{ {4}, {20} if i = 6, 10, 12, 14;
S6 otherwise.
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The orbits of S8 are




{3}, {9}, {15}, {21} if i = 13;
{3, 9}, {15, 21} if i = 5, 11, 14;
{3, 15}, {9, 21} if i = 2, 9, 12;
{3, 21}, {9, 15} if i = 3, 10, 15;
S8 otherwise.

The orbits of S12 are




{2}, {10}, {14}, {22} if i = 12;
{2, 10}, {14, 22} if i = 2, 9, 13;
{2, 14}, {10, 22} if i = 6, 10, 14;
{2, 22}, {10, 14} if i = 4, 11, 15;
S12 otherwise.

Since G = {φi : i ∈ S24}, the orbits of S24 with respect to gi are the cosets
of G with respect to gi .

Proof We only have to compute φ(θk), for all φ ∈ G, k ∈ S. The following
computations

φ5 φ7 φ11 φ13 φ17 φ19 φ23

k = 2 10 14 22 2 10 14 22
k = 3 15 21 9 15 3 9 21
k = 4 20 4 20 4 20 4 20
k = 6 6 18 18 6 6 18 18
k = 8 16 8 16 8 16 8 16

are the relevant ones.

It is then obvious how to compute the factorization of f in �i [X ], for all i.
For instance the factorization of f over �10 = Q(

√
2,
√

3) is

f (X) = �1(X)�2(X)(X − θ8)(X − θ16)�4(X)(X − θ4)(X − θ20)

· h(a)8 (X)h(b)8 (X)h(a)12 (X)h
(b)
12 (X)

· h(a)24 (X)h
(b)
24 (X)h

(c)
24 (X)h

(d)
24 (X),

where

h(a)8 = (X − θ3)(X − θ21) = X2 −
√

2X + 1,

h(b)8 = (X − θ9)(X − θ15) = X2 +
√

2X + 1,

h(a)12 = (X − θ2)(X − θ14) = X2 − 1

2
−

√−3

2
,

h(b)12 = (X − θ10)(X − θ22) = X2 − 1

2
+

√−3

2
,
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h(a)24 = (X − θ)(X − θ7) = X2 −
√

2 +√−6

2
X + −1 +√−3

2
,

h(b)24 = (X − θ5)(X − θ11) = X2 − −√2 +√−6

2
X + −1 −√−3

2
,

h(c)24 = (X − θ13)(X − θ19) = X2 − −√2 −√−6

2
X + −1 +√−3

2
,

h(d)24 = (X − θ17)(X − θ23) = X2 − +√2 −√−6

2
X + −1 −√−3

2
.

In fact, the following factorizations can be easily computed1 and allow us to
verify the validity of Galois Theory:

Corollary 15.1.4. In �i the factorization of � j is:

�3 =
{(

X − −1+√−3
2

) (
X − −1−√−3

2

)
if i = 6, 10, 12, 14;

X2 + X + 1 otherwise.

�4 =
{
(X − i)(X + i) if i = 2, 9, 12, 13;
X2 + 1 otherwise.

�6 =
{(

X − 1+√−3
2

) (
X − 1−√−3

2

)
if i = 6, 10, 12, 14;

X2 − X + 1 otherwise.

�8 =




(X − θ3)(X − θ9)(X − θ15)(X − θ21) if i = 13;
(X2 −√−2X − 1)(X2 +√−2X − 1) if i = 5, 11, 14;
(X2 − i)((X2 + i) if i = 2, 9, 12;
(X2 −√

2X + 1)(X2 +√
2X + 1) if i = 3, 10, 15;

X4 + 1 otherwise.

1 The computations are obvious. For instance to factorize f24 in �14, we have to note that the
orbit of 1 in S24 = G with respect to g14 is {1, 19}. Therefore we have to compute

h(X) := (X − θ1)(X − θ19 = X2 − (θ1 + θ19)X + θ20

which is

h(X) = X2 + −√6 +√−2

2
X + 1 −√−3

2
.

Since �14 = Q(
√−2,

√−3) and, therefore, the four Q-automorphisms ψ of �14 are those
such that

ψ(
√−2) = ±√−2, ψ(

√−3) = ±√−3,

what we have to do is simply to express h(X) in terms of
√−2 and

√−3 and apply the auto-
morphisms ψ in order to get the four factors of f24 which are

X2 + −(±√−2)(±√−3)+ (±√−2)

2
X + 1 − (±√−3)

2
.

In this way, it was easy for me to compute all the listed factorizations by hand.



336 Prelude

�12 =




(X − θ2)(X − θ10)(X − θ14)(X − θ22) if i = 12;
(X2 − iX − 1)(X2 + iX − 1) if i = 2, 9, 13;(

X2 + −1−√−3
2

) (
X2 + −1+√−3

2

)
if i = 6, 10, 14;(

X2 −√
3X + 1

) (
X2 −√

3X + 1
)

if i = 4, 11, 15;
X4 − X2 + 1 otherwise.

Corollary 15.1.5. In �i the factorization of �24 is the one reported in
Table 15.1.

Remark 15.1.6. It is clear that the above results allow us to solve the prob-
lem of factorizing f (X) over K [X ], where char(K ) = 0: it is sufficient to
compute the maximal value i such that �i ⊆ K and read the corresponding
factorization.

To solve the same problem when char(K ) �= 0 we can use Proposition 7.6.13.
We limit ourselves to discussing an example. Beforehand we have, of course,

to separate the cases in which f is not squarefree, by computing f ′ = 24X23

from which we conclude that

f is squarefree ⇐⇒ gcd( f, f ′) = 1
⇐⇒ f ′ �= 0
⇐⇒ char(K ) �= 2, 3.

Of course, when

char(K ) = 2, we have f = (X3 − 1)8 = (X − 1)8(X2 + X + 1)8.
Clearly g(X) = X2 + X + 1, which while being irreducible in Z2, splits
in G F(4).
Using the representation G F(4) = Z2[α] = Z2[X ]/g(X) we obtain
g(X) = (X + α)(X + α + 1).
Therefore in K [X ], f (X) factorizes as

f (X) =
{
(X − 1)8(X2 + X + 1)8 if G F(4) �⊂ K ,

(X − 1)8(X + α)8(X + α + 1)8 if G F(4) ⊂ K ,

char(K ) = 3, we have f = (X8 − 1)3. Since G F(9) is the splitting field of
X9 − X , we can conclude that, representing G F(9) as

G F(9) = Z3[α] := Z3[X ]/g(X)

where g(X) = X2 + X − 1, in K [X ], f (X) factorizes as

f (X) =


(X − 1)3(X + 1)3(X2 + 1)3

· (X2 − X − 1)3(X2 + X − 1)3 if G F(9) �⊂ K ,∏8
j=1(X − α j )3 if G F(9) ⊂ K ,
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Table 15.1. Factorization of �24 in �i [X ].

i = 1 X8 − X4 + 1

2 (X4 − iX2 − 1)(X4 + iX2 − 1)

3 (X4 −√
2X3 + X2 −√

2X + 1)

· (X4 +√
2X3 + X2 +√

2X + 1)

4 (X4 −√
3X2 + 1)((X4 +√

3X2 + 1)

5 (X4 +√−2X3 − X2 −√−2X + 1)

· (X4 −√−2X3 − X2 +√−2X + 1)

6 (X4 −
√−3+1

2 )(X4 − −√−3+1
2 )

7 (X4 −√
6X3 + 3X2 −√

6X + 1)

· (X4 +√
6X3 + 3X2 +√

6X + 1)

8 (X4 −√−6X3 − 3X2 +√−6X + 1)

· (X4 −√−6X3 − 3X2 +√−6X + 1)

9 (X2 + −√6−√−6
2 X + i)(X2 + −√6+√−6

2 X − i)

· (X2 + +√6+√−6
2 X + i)(X2 + +√6−√−6

2 X − i)

10 (X2 + −√2−√−6
2 X + −1+√−3

2 )(X2 + +√2+√−6
2 X + −1+√−3

2 )

· (X2 + −√2+√−6
2 X + −1−√−3

2 )(X2 + +√2−√−6
2 X + −1−√−3

2 )

11 (X2 + −√−6+√−2
2 X − 1)(X2 + +√−6−√−2

2 X − 1)

· (X2 + +√−6+√−2
2 X − 1)(X2 + −√−6−√−2

2 X − 1)

12 (X2 + −√3−i
2 )(X2 + −√3+i

2 )

· (X2 + +√3−i
2 )(X2 + +√3+i

2 )

13 (X2 + −√2+√−2
2 X − i)(X2 + −√2−√−2

2 X + i)

· (X2 + +√2−√−2
2 X − i)(X2 + +√2+√−2

2 X + i)

14 (X2 + −√6+√−2
2 X + 1−√−3

2 )(X2 + +√6−√−2
2 X + 1−√−3

2 )

· (X2 + +√6+√−2
2 X + 1+√−3

2 )(X2 + −√6−√−2
2 X + 1+√−3

2 )

15 (X2 + −√6−√2
2 X + 1)(X2 + +√6+√2

2 X + 1)

· (X2 + +√6−√2
2 X + 1)(X2 + −√6+√2

2 X + 1)

16 (X − θ1)(X − θ5)(X − θ7)(X − θ11)

· (X − θ13)(X − θ17)(X − θ19)(X − θ23)
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Having eliminated the exceptional cases char(K ) = 2, 3, here is the pro-
mised example:

Example 15.1.7. In the case char(K ) = 5, since 24 = 52 − 1,

G F(25) is the splitting field of f (X);
the multiplicative order of 5 mod24 is 2, so that, representing G F(25) as

G F(25) = Z5[α] = Z5[X ]/g(X), g(X) := X2 + 2X − 2,

the orbits of conjugate roots and the corresponding factors in G F(5) are:

{α, α5} : (X − α)(X + α + 2) = X2 + 2X − 2,

{α2, α10} : (X + 2α − 2)(X − 2α − 1) = X2 + 2X − 1,

{α3, α15} : (X − α − 1)(X + α + 1) = X2 + 2,

{α4, α20} : (X + α − 2)(X − α + 1) = X2 − X + 1,

{α6} : X + 2,

{α7, α11} : (X + 2α)(X − 2α + 1) = X2 + X + 2,

{α8, α16} : (X + α − 1)(X − α + 2) = X2 + X + 1,

{α9, α21} : (X + 2α + 2)(X − 2α − 2) = X2 − 2,

{α12} : X + 1,

{α13, α17} : (X + α)(X − α − 2) = X2 − 2X − 2,

{α14, α22} : (X − 2α + 2)(X + 2α + 1) = X2 − 2X − 1,

{α18} : = X − 2,

{α19, α23} : (X − 2α)(X + 2α − 1) = X2 − X + 2.

Remark 15.1.8. It is worthwhile noting that when K = G F(5),

the orbits coincide with those of �9 = Q(i,
√

6);
G F(5) contains the roots of −1 and 6 since 6 = (±1)2 and −1 = −6 =
(±2)2, so in Z5[X ]:

the factorizations on G F(5) and on �9 coincide if we substitute
√

6 with
±1 and i with ±2;

the G F(5)-automorphisms of G F(25) which leaves G F(5) invariant are the
identity and the morphism ψ(α) = α5.

15.2 An Exercise

Problem 15.2.1. Compute the factorization of the polynomial

f (X) = X8 − 1 ∈ K [X ],
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where K is any field such that char(K ) = 0, using the information that

α =
√

2 +√−2

2
is a primitive 8th root of unity, and proving that the following hold:

The fields � such that Q ⊆ � ⊆ F := Q(α) are

�1 := Q,

�2 := Q(i),
�3 := Q(

√
2),

�4 := Q(
√−2),

�5 := F.

Let i be the maximal value i such that �i ⊆ K . The factorization of f (X)
in K [X ] is then:

i = 1 (X − 1)(X + 1)(X2 + 1)(X4 + 1),
2 (X − 1)(X + 1)(X − i)(X + i)(X2 − i)(X2 + i),
3 (X − 1)(X + 1)(X2 + 1)(X2 −√

2X + 1)
· (X2 +√

2X + 1),
4 (X − 1)(X + 1)(X2 + 1)(X2 −√−2X − 1)

· (X2 +√−2X − 1),

5 (X − 1)(X + 1)(X − i)(X + i)(X − +√2+√−2
2 )

· (X − −√2+√−2
2 )(X − +√2−√−2

2 )(X − −√2−√−2
2 ).

Finally compute the Galois group G of [F : Q] and, for each i , the subgroup
gi associated to �i .

Solution: The first thing we have to do is to verify whether f is squarefree:
since f ′(X) = 8X7 we can conclude that:

If char(K ) = 2, then f ′ = 0; therefore by Proposition 4.6.1, we conclude
that

f (X) = (X − 1)8 ∈ Z2[X ] ⊆ K [X ].

Otherwise f ′ �= 0, gcd( f, f ′) = 1 and f is squarefree in K [X ].

The information that

α =
√

2 +√−2

2
= θ3

is a primitive2 8th root of unity allows us to list the four roots of f which are

αi = αi = θ3i , i ∈ {1, 3, 5, 7};
2 Where θ is the primitive 24th root of unity introduced in the previous section.



340 Prelude

and to partition S := Z8 into the disjoint subsets

S = S1 ∪ S2 ∪ S4 ∪ S8

so that Ri := {α j , j ∈ Si } consists of the primitive i th roots of unity:

S1 = {0},
S2 = {4},
S4 = {2, 6},
S8 = {1, 3, 5, 7},

and to obtain a partial factorization of X8 − 1 in Q[X ] as

X8 − 1 = �1(X)�2(X)�4(X)�8(X),

where �i (X) =
∏

j∈Si
X − α j , i.e.

�1(X) = X − 1,

�2(X) = X + 1,

�4(X) = X2 + 1,

�8(X) = X4 + 1.

Since α =
√

2+√−2
2 = 1+i√

2
, then F ⊂ Q(i,

√
2). The relations

i = α2,
√

2 = α−1(1 + i) = α7 + α,

allow us to conclude that

F = Q(i,
√

2);
[F : Q] = 4;
f8(X) = X4 + 1 is the minimal polynomial of α;

F = SpanQ({1, α, α2, α3});
G := G(F/Q) ∼= Z2 × Z2 and consists of the four Q-isomorphisms ψ

defined by

ψ(i) = ±i, ψ(
√

2) = ±
√

2;
to represent each αi in SpanQ({1, α, α2, α3}) as

α1 = α = −α5,

α2 = α2 = −α6,

α3 = α3 = −α7,

α4 = −1 = −α8,
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from which we deduce that

i = α2,√
2 = α − α3,√−2 = α + α3.

Denoting φi : F → F the Q-isomorphism such that φi (α) = αi we can then
easily obtain G by computation:

ψ(i) = +i, ψ(
√

2) = +√2, �⇒ ψ(α) = α, ψ = φ1

ψ(i) = +i, ψ(
√

2) = −√2, �⇒ ψ(α) = α5, ψ = φ5

ψ(i) = −i, ψ(
√

2) = +√2, �⇒ ψ(α) = α7, ψ = φ7

ψ(i) = −i, ψ(
√

2) = −√2, �⇒ ψ(α) = α3, ψ = φ3

This allows us to list all the intermediate fields �i such that Q ⊆ F and the
associated subgroups gi ⊆ G, which are:

�1 := Q, g1 = G,

�2 := Q(i), g2 = {φ1, φ5},
�3 := Q(

√
2), g3 = {φ1, φ7},

�4 := Q(
√−2), g4 = {φ1, φ3},

�5 := F, g5 = {φ1};
so as to compute the orbits of each S j with respect to gi :

S1, S2 are stable under gi ;

the orbits of S4 are

{ {2}, {6} if i = 2, 5,
{2, 6} otherwise;

the orbits of S6 are




{1, 3, 5, 7} if i = 1,
{1, 5}, {3, 7} if i = 2,
{1, 7}, {3, 5} if i = 3,
{1, 3}, {5, 7} if i = 4,
{1}, {3}, {5}, {7} if i = 5;

and to derive the claimed factorization.
With this result, it is now easy to factorize f (X) = X8 − 1 in K [X ] for

any field K , without any restriction over its characteristic; we just need the
following considerations:

Lemma 15.2.2. Let K be a field, char(K ) �= 2 and

� := {−1, 2,−2} ⊂ K ;
then:

(1) If char(K ) �= 0, at least one element in � has a root in K .
(2) If two elements in � have a root in K , the same holds for the third.
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Proof

(1) Consider the multiplicative group K ∗ := K \ {0} and consider the group
morphism σ : K ∗ → K ∗ defined by σ(a) := a2; since ker(σ ) = {1,−1}
we can deduce that

Im(σ ) = {a2 : a ∈ K ∗}
is a subgroup of index 2. Therefore the map χ : K ∗ → {1,−1} defined by

χ(a) =
{

1 iff a ∈ Im(σ );
−1 iff a �∈ Im(σ );

is a group morphism.
Therefore

χ(−1) = χ(2) = −1 �⇒ χ(−2) = 1;

χ(−1) = χ(−2) = −1 �⇒ χ(2) = 1;

χ(2) = χ(−2) = −1 �⇒ χ(−1) = 1.

(2) If a, b ∈ K are such that

a2 = −1, b2 = 2 then c = ab is such that c2 = −2;

a2 = −1, b2 = −2 then c = ab is such that c2 = 2;

a2 = 2, b2 = −2 then c = ab
2 is such that c2 = −1.

Now we can describe the factorization of f (X) = X8 + 1 in K [X ] in terms
of K :

Proposition 15.2.3. Let K be a field, S := {−1, 2,−2} ⊂ K and f (X) =
X8 + 1 ∈ K [X ]. Then in K [X ] we have:

if char(K ) = 2, then

f (X) = (X + 1)8;
if char(K ) �= 2 and no one element in � is a square in K (e.g. K = Q) then

f (X) = (X − 1)(X + 1)(X2 + 1)(X4 + 1);
if char(K ) �= 2 and −1 is the only element in � which has a square in K

(e.g. K = Q(i),Z5) then, denoting β ∈ K such that β2 = −1,

f (X) = (X − 1)(X + 1)(X − β)(X + β)(X2 − β)(X2 + β);
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if char(K ) �= 2 and 2 is the only element in � which has a square in K (e.g.
K = Q(

√
2),R,Z7) then, denoting β ∈ K such that β2 = 2, in K [X ]

f (X) = (X − 1)(X + 1)(X2 + 1)(X2 − βX + 1)(X2 + βX + 1);
if char(K ) �= 2 and −2 is the only element in � which has a square in K

(e.g. K = Q(
√−2),Z11) then, denoting β ∈ K such that β2 = −2,

f (X) = (X − 1)(X + 1)(X2 + 1)(X2 − βX − 1)(X2 + βX − 1);
if char(K ) �= 2 and all elements in � have a square in K (e.g. K = C,Z17)

then, denoting β, γ, δ ∈ K such that β2 = 2, γ 2 = −2, δ2 = −1,

f (X) = (X − 1)(X + 1)(X − δ)(X + δ)

(
X − β + γ

2

)

·
(

X − −β + γ

2

)(
X − β − γ

2

)(
X − −β − γ

2

)
.

Example 15.2.4. It is worthwhile checking the factorization in some instances:

K = Z5: then β := 2 satisfies β2 = −1 and we have

f (X) = (X − 1)(X + 1)(X − 2)(X + 2)(X2 − 2)(X2 + 2);
K = Z7: then β := 3 satisfies β2 = 2 and we have

f (X) = (X − 1)(X + 1)(X2 + 1)(X2 − 3X + 1)(X2 + 3X + 1);
K = Z11: then β := 3 satisfies β2 = −2 and we have

f (X) = (X − 1)(X + 1)(X2 + 1)(X2 − 3X − 1)(X2 + 3X − 1);
K = Z17: then β := 6 and γ = 7 satisfy β2 = 2, γ 2 = −2, so that
δ = βγ

2 = 4 satisfies δ2 = −1 and we have

f (X) = (X − 1)(X + 1)(X − 4)(X + 4)(X + 2)(X + 8)(X − 2)(X − 8).

Example 15.2.5. It is also worthwhile verifying what happens when K =
G F(9), which is the splitting field of X9 − X and so contains all the roots
of X8 − 1 and all the square roots of �. Let us choose, as a representation of
G F(9), K = Z3[ε] where ε2 + ε − 1 = 0. It is easy to verify that3

γ := 1 satisfies γ 2 = 1 = −2,

β := ε − 1 satisfies β2 = ε2 + ε + 1 = 2,

δ := βγ
2 = −β = −ε + 1 satisfies δ2 = −1.

3 Of course we will in fact verify that δ = −β and δ2 = β2 = 2 = −1. But we are choosing the
notation according to Proposition 15.2.3.
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Therefore the roots are

α = α1 = β
2 + γ

2 = ε,

α2 = δ = −ε + 1,

α3 = −β
2 + γ

2 = −ε − 1,

α4 = −1,

α5 = −β
2 − γ

2 = −ε,
α6 = −δ = ε − 1,

α7 = β
2 − γ

2 = +ε + 1,

α8 = 1,

which in fact satisfy

α2 = ε2 = −ε + 1 = α2,

α3 = −ε2 + ε = −ε − 1 = α3,

α4 = −ε2 − ε = −1 = α4,

α5 = −ε = α5,

α6 = −ε2 = +ε − 1 = α6,

α7 = ε2 − ε = ε + 1 = α7,

α8 = ε2 + ε = 1 = α8,

as expected.
The example allows some more analysis: in fact, there is a single subfield of

G F(9), i.e. Z3. Among the elements of �, the only one which has a root in Z3

is −2 whose roots are ±1. We therefore have in Z3 the factorization

f (X) = (X − 1)(X + 1)(X2 + 1)(X2 − X − 1)(X2 + X − 1).

Note that ε = α has X2 + X − 1 as its minimal polynomial. Therefore
G F(9) = Z3(ε) = Z3(α). Of course, the Galois group g := G(G F(9)/
G F(3)) consists of two G F(3)-isomorphisms, the identity and the ‘conjuga-
tion’ ψ which satisfy ψ(ε) = −ε. The eight roots of the identity are then
partitioned in the orbits with respect to g as

{α8} ∪ {α4} ∪ {α2, α6} ∪ {α3, α5} ∪ {α1, α7}.
Remark 15.2.6. In fact the analysis contained in Proposition 15.2.3 can be con-
cluded by noting that for each prime field Zp, p �= 2, all square roots exist in
G F(p2).
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Therefore, if char(K ) = p �= 0, 2 either

K ⊇ G F(p2), in which case f splits in linear factors according to
Proposition 15.2.3;

K �⊃ G F(p2), in which case the factorization of f depends on which ele-
ments in � have a square in Zp in accordance with Proposition 15.2.3.



16

Kronecker III: factorization

The essence of a factorization tool for his model was completely clear to
Kronecker, who wrote1

Die im Article 1 aufgestellte Definition der Irreductibilität entbehrt so lange einer
sicheren Grundlage, als nicht eine Methode angegeben ist, mittels deren bei einer bes-
timmten, vorgelegten Function entschieden werden kann, ob dieselbe der aufgestell-
ten Definition gemäss irreductibel ist oder nicht. [. . . ] Desshalb soll hier eine neue
Methode dargelegt werden, welche nur einfache, hier bereits verwendbare Hülfsmittel
in Auspruch nimmt.
The definition of irreducibility enunciated in Article 1 lacks a firm foundation, the more
so since no method is indicated by which, given a function, it can be decided whether
or not its definition is irreducible. [. . . ] A new method is presented, which will simply
be applied here as a tool if needed.

and presented in the following pages tools which allowed him to factorize a
polynomial

in Z[X ];
in k[X1, . . . , Xn][X ] where k is a field for which there exists an algorithm

for factorizing polynomials in k[X ];
in k(α)[X ] where α is an algebraic extension of k, a field for which there

exists an algorithm for factorizing polynomials in k[X ].

Using the Gauss Lemma (Section 6.1), which strictly relates polynomial
factorization over a unique factorization domain to that over its fraction field,
his tools allowed him to factorize polynomial

in Q[X ], using the factorization algorithm in Z[X ];

1 L. Kronecker, Grundzüge einer Arithmetischen Theorie der Algebraischen Grössen, Crelle’s
Journal, 92 (1882), p. 11.
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in k(X1, . . . , Xn)[X ] – where k(X1, . . . , Xn) is a finite transcendental ex-
tension over a field k for which there exists a factorization algorithm –,
using the factorization algorithm in k[X1, . . . , Xn][X ]

and, therefore, a factorization algorithm for each finite extension field k ⊃ Q,
i.e. for any 0 characteristic field explicitly given in Kronecker’s Model.

In the next three sections I will discuss Kronecker’s proposals.

16.1 Von Schubert Factorization Algorithm over the Integers

The algorithm which we present here was proposed by von Schubert (1793)
and rediscovered by Kronecker. It allows us to factorize polynomials f (X) in
Z[X ] and, therefore, in Q[X ] via the Gauss Lemma.

Algorithm 16.1.1 (von Schubert). Let us assume we are given a polynomial
f (X) ∈ Z[X ]; through squarefree decomposition, we can moreover assume
that it is squarefree.

Denoting d := deg( f ), it is obvious that, if it is reducible, it must have a
factor g such that deg(g) ≤ d

2 .
We can therefore restrict our aim to finding a possible irreducible factor g of

degree δ, 1 ≤ δ := deg(g) ≤ d
2 ; if no such factor exists then we can conclude

that f is irreducible; otherwise, we have just to reapply the algorithm to f/g;
obviously, it is better to find g for increasing values of δ.

The tool we will use to find this g is nothing more than the obvious remark
that, if g is a factor of f , then, for each a ∈ Z, g(a) divides f (a).

Following the suggestion of this remark, in order to find a factor g of f with
degree δ, let us

pick up δ + 1 integers a0, a1, . . . , aδ ∈ Z;
for each i , evaluate bi := f (ai ) and factorize it;
pick up in all possible ways a sequence c1, . . . , cδ such that for all i , ci is a

factor of bi ;
by the Lagrange Interpolation Formula, compute the single polynomial g

satisfying

deg(g) = δ,

g(ai ) = ci , for all i ;

verify whether g divides f .

The von Schubert Factorization Algorithm is drafted in Figure 16.1; the
example in Example 16.1.2 should be sufficient to convince the reader of the
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Fig. 16.1. Von Schubert Factorization Algorithm

[g1, . . . , gk ] := Factorization( f )
where

f ∈ Z[X ] is a squarefree polynomial
g1, . . . , gk ∈ Z[X ] are the irreducible factors of f in Z[X ]

d := deg( f ), L :=[], δ := 1
While δ ≤ d

2 do
Choose a0, a1, . . . aδ ∈ Z

For i = 0, . . . , δ do
Factorize bi := f (ai )

S := {(c0, . . . , cδ) : ci | bi , ∀i},
While S �= ∅ and δ ≤ d

2 do
Choose (c0, . . . , cδ) ∈ S
S := S \ {(c0, . . . , cδ)}
Compute g(X) ∈ Z[X ] such that

deg(g) = δ
g(ai ) = ci , ∀i

If g(X) divides f (X) then
f := f

g
d := deg( f ),
L := [L , g]

δ := δ + 1
[L,f]

horrible complexity of the algorithm and the need of a better one even if expe-
dients are applied such as:

first factorize f modulo some small primes, in order to avoid computations
for impossible degrees δ of factors;

use small values for the as . . .

Example 16.1.2. As an example let us try to factorize

f (X) = (X − 2)(X + 2)(X2 + 4)(X4 + 16) = (X8 − 256).

For this example, factorization is, of course, a trivial task, but I chose it to allow
easier verification: the reader is required to imagine that we are computing on
a ‘generic’ polynomial of degree 8.

To find all factors of degree δ = 1, we choose a0 := 1, a1 := −1, so that
b0 = b1 = −255. The set of the factors of −255 is

F1 := {±1,±3,±5,±15,±17,±51,±85,±255}
and therefore2 card(S) ≤ 128.

2 In fact if g(ai ) = ci , for all i , then −g(ai ) = −ci , for all i ; it is therefore useless to verify all
tuples whose first element is negative.
For the same reason, it is also useless to verify the tuples such that gcdi (ci ) �= 1, those such that
ci has more factors than bi

ci
, for all i , und so weiter.
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We need to interpolate a linear polynomial g for each of the 128 tuples
(c0, c1) ∈ S as follows:

(1) (1, 1); then g(X) = 1;
(2) (1,−1); then g(X) = X which does not divide f ;
(3) (1, 3); then g(X) = 2 − X which divides f ; so we get the factorization

f = (X − 2) f1(X)

where

f1(X) = X7+2X6+4X5+8X4+16X3+32X2+64X+128; (16.1)

(4) (1,−3); then g(X) = −1 + 2X which does not divide f1;
. . .

(16) (1,−255); then g(X) = −126 + 127X which does not divide f1;
(17) (3, 1); then g(X) = 2 + X which divides f1; so we get the factorization

f = (X − 2)(X + 2) f2(X)

where

f2(X) = X6 + 4X4 + 16X2 + 64.

While we have found the two linear factors of f , we still do not know
that and therefore we have to go on, computing:

(18) (3, 3); interpolation is useless;
(19) (3,−3); interpolation is useless;
(20) (3, 5); then g(X) = 4 − X which does not divide f2;
. . .

(113) (255,−1); then g(X) = 43 − 42X which does not divide f2.

Since gcd(255, c2) �= 1 for any c2 ∈ F \ {±1}, we have tested all the useful
elements of S and we can therefore conclude that we have found all the linear
factors of f .

So we move to finding all the factors of f2 with degree δ = 2: we choose
a0 := 1, a1 := −1, a2 := 2, so that b0 = b1 = 85, b2 = 256. The set of the
factors of 85 is

F1 := {±1,±5,±17,±85}
and the set of those of 256 is

F2 := {±1,±2,±4,±8,±16,±32,±64,±128,±256}
and therefore card(S) ≤ 216 = 65536.
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We interpolate a quadratic polynomial g for each of the 65536 tuples
(c0, c1, c2) ∈ S as follows:

(1) (1, 1, 1); then g(X) = 1;
(2) (1, 1,−1); then g(X) = − 2

3 X2 + 5
3 which does not divide f2;

(3) (1, 1, 2); then g(X) = 1
3 X2 + 2

3 which does not divide f2;
. . .

(180) (5,−1, 256); then g(X) = 247
3 X2+4X − 244

3 which does not divide f2;
(181) (5, 5, 1); then g(X) = − 4

3 X2 + 19
3 which does not divide f2;

. . .
(187) (5, 5, 8); then g(X) = X2 + 4 which divides f2; so we get the factor-

ization

f = (X − 2)(X + 2)(X2 + 4) f3(X)

where

f3(X) = X4 + 16;
(188) (5, 5,−8); then g(X) = − 13

3 X2 + 28
3 which does not divide f3;

. . .
(65536) (85,−85,−256); then g(X) = −87X2 + 92 which does not divide

f3.

Terminating this tour de force, we can conclude that there is no other quadratic
factor and therefore that f4 is irreducible and the factorization of f is

f = (X − 2)(X + 2)(X2 + 4)(X4 + 16).

16.2 Factorization of Multivariate Polynomials

Let k be a field on which we have a factorization algorithm for univariate poly-
nomials and let us discuss Kronecker’s technique for generalizing it to a fac-
torization algorithm for multivariate polynomials.

Let us denote

P := k[X1, . . . , Xn];
degi ( f ) to be the degree of f ∈ P in the variable Xi ;
Pd := { f ∈ k[X1, . . . , Xn] : degi ( f ) < d, for all i}, for all d ∈ N;
δ(d) := ∑n

i=1 di = d + d2 + · · · + dn = d dn−1
d−1 , for all d ≥ 2;

χd : P → k[X ] to be the map defined by χd(Xi ) = Xdi−1
, for all i.

Lemma 16.2.1. With the notation above:

(1) The restriction χd of the map χd to Pd is a k-vector space isomorphism
between Pd and its image in k[X ] which is

Im(χd) := { f ∈ k[X ] : deg( f ) ≤ δ(d)}.
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(2) Let f ∈ Pd , g1, g2 ∈ k[X ] be such that g1g2 = χd( f ); then deg(gi ) <

δ(d), for all i , and

χ−1
d (g1)χ

−1
d (g2) = f.

(3) Let f ∈ Pd ; f is irreducible iff χd( f ) is.

Proof

(1) For each term t := Xa1
1 · · · Xan

n ∈ Pd , we have ai < d, for all i , and
χd(t) = Xα where

α =
n∑

i=1

ai d
i−1 <

n∑
i=1

di = δ(d).

Conversely for each integer 0 ≤ α < δ there is a unique term t :=
Xa1

1 · · · Xan
n ∈ Pd such that χd(t) = Xα and it can be computed by

expressing α in its d-ary representation

α =
n∑

i=1

ai d
i−1, ai < d for all i.

(2) Since deg(χd( f )) < δ(d), the claim is obvious.
(3) It is an obvious consequence of the previous result.

Algorithm 16.2.2. On the basis of the above lemma, Kronecker’s proposal to
factorize a polynomial F ∈ P , such that degi (F) < d, for all i, consists of
factorizing f (X) := χd(F) ∈ k[X ] thus getting a factorization

f (X) =
∏

j

g j (X)

where deg(g j ) ≤ deg( f ) < δ(d), so that

F =
∏

j

χd(g j )

is the required factorization.

Example 16.2.3. Let us consider the polynomial

F(X1, X2, X3)] ∈ Q[X1, X2, X3]

defined by

F := X1 X2 X3 + 16X1 X2 + 4X1 X3 + 2X2 X3 + 64X1 + 32X2 + 8X3 + 128.
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Since degi (F) = 1, for all i , we can fix d := 2, so that δ(d) = 1+ 2+ 4 = 7,
and consider χ2 : P2 → { f ∈ k[X ] : deg( f ) ≤ 7}.

Note that we have

χ2(1) = 1, χ2(X1) = X,
χ2(X2) = X2, χ2(X1 X2) = X3,

χ2(X3) = X4, χ2(X1 X3) = X5,

χ2(X2 X3) = X6, χ2(X1 X2 X3) = X7.

so that

χ2(F) = X7 + 2X6 + 4X5 + 8X4 + 16X3 + 32X2 + 64X + 128 = f1(X)

where f1(X) is the polynomial introduced in Equation 16.1, of which we know
the factorization in Q[X ] which is

f1 = (X + 2)(X2 + 4)(X4 + 16)

so that, by applying χ2, we deduce

F(X1, X2, X3) = (X1 + 2)(X2 + 4)(X3 + 16).

16.3 Factorization over a Simple Algebraic Extension

The last task for completing Kronecker’s factorization approach is to describe
an algorithm which allows us to factorize univariate polynomials over a field
k[α] where k is a field such that char(k) = 0 and we have a factorization
algorithm over it.

Assuming we are given such a field in Kronecker’s Model, we know there-
fore the minimal polynomial m(X) ∈ k[X ] of α. Putting n := deg(α), we
know that α has n conjugates which we will denote, if needed, as α = α1, . . . ,

αn ; we will also denote the n k-isomorphisms from k[α] into k[αi ] by ψi .
With this notation, I will describe Kronecker’s algorithm for factorization

over k[α]; but first I need some results.

Proposition 16.3.1. If f (X) ∈ k[α][X ] is irreducible, then Nk[α]/k( f ) is the
power of an irreducible polynomial in k[X ].

Proof We know that Nk[α]/k( f ) ∈ k[X ].
Assume there are g, h ∈ k[X ] such that Nk[α]/k( f ) = gh, and gcd(g, h) = 1.
Since f divides Nk[α]/k( f ), it divides either g or h but not both; let us say it di-
vides g. Then fi := ψi ( f ) dividesψi (g) = g, for all i , and, since gcd(g, h) =
1, then gcd( fi , h) = 1, for all i , so gcd(Nk[α]/k( f ), h) = 1 and h is a constant.
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Proposition 16.3.2. Let f (X) ∈ k[α][X ] be such that Nk[α]/k( f ) is square-
free.

Let Nk[α]/k( f ) = ∏r
i=1 gi be a factorization of Nk[α]/k( f ) into irreducible

factors in k[X ] and let hi := gcdk[α]( f, gi ). Then f = ∏r
i=1 hi is a factoriza-

tion of f into irreducible factors in k[α][X ].

Proof Let f = ∏s
i=1 pei

i be a factorization of f into irreducible factors in
k[α][X ].
Then Nk[α]/k( f ) = ∏s

i=1 Nk[α]/k(pi )
ei .

Since Nk[α]/k( f ) is squarefree, then ei = 1 for all i and so f is squarefree.
Moreover since, by the above proposition, Nk[α]/k(pi ) is a power of an irre-
ducible polynomial in k[X ], then it must be an irreducible polynomial and co-
incide with one of the g j s. Therefore s = r and, after reindexing, Nk[α]/k(pi ) =
gi ; so, for all i , pi divides gi and divides also hi = gcd( f, gi ).

Assuming pi divides g j for some j �= i , we deduce the contradiction that
gi = Nk[α]/k(pi ) divides Nk[α]/k(g j ) = gn

j . This establishes the conclusion
that

pi = gcd( f, gi ) = hi , for all i.

Lemma 16.3.3. Let f (X) ∈ k[X ] be a squarefree polynomial and let

fc(X) := f (X − cα) ∈ k[α][X ], for all c ∈ k.

There are only finitely many c ∈ k such that Nk[α]/k( fc) is not squarefree.

Proof Let β1, . . . , βm be the roots of f (in the splitting field of f over k). Then
the roots of ψi ( fc) are β j − cαi , 1 ≤ j ≤ m, so that the roots of Nk[α]/k( fc)

are

β j − cαi , 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Then Nk[α]/k( fc) is not squarefree if and only if

there exists i, j, k, l : β j − cαi = βl − cαk, k �= i or l �= j,

whence the claim.

Lemma 16.3.4. Let f (X) ∈ k[α][X ] be a squarefree polynomial. Then there
is a squarefree polynomial g(X) ∈ k[X ] such that f divides g.
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Fig. 16.2. Factorization over algebraic extensions

[ f1, . . . , fs ] := AlgExtFactorization( f )
where

f (X) ∈ k[α][X ] is squarefree
fi (X) ∈ k[α][X ] is irreducible
f = f1 . . . fr is a factorization of f

g := Prim( f )
Repeat

chooserandom c ∈ k
g := f (X − cα)
h := Nk[α]/k(g)

until h is squarefree
[g1, . . . , gr ] := Factorization(h)
For i = 1, . . . , r do

hi := gcd(g, gi )
g := g

hi
fi := hi (X + cα)

[ f1, . . . , fr ]

Proof Let G := Nk[α]/k( f ) ∈ k[X ] and let g ∈ k[X ] be the squarefree
associate of G. Since f is squarefree and divides G, then it divides g too.

Proposition 16.3.5. Let f (X) ∈ k[α][X ] be a squarefree polynomial and, for
c ∈ k, let

fc(X) := f (X − cα) ∈ k[α][X ].

There are only finitely many c ∈ k such that Nk[α]/k( fc) is not squarefree.

Proof Let g ∈ k[X ] be as in Lemma 16.3.4. By Lemma 16.3.3 there are only
finitely many c ∈ k such that Nk[α]/k(gc) is not squarefree, where

gc(X) = g(X − cα).

Since f divides g then Nk[α]/k( fc) divides Nk[α]/k(gc) and so it is squarefree,

except for finitely many c ∈ k.

Algorithm 16.3.6. We are now ready to describe (Figure 16.2) an algorithm
for factorizing a polynomial f (X) ∈ k[α][X ]. Via computing squarefree asso-
ciates or a distinct power factorization, we can assume f is squarefree.
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Example 16.3.7. As an example let us consider the ring Q(α) where α is a
primitive 12th root of unity and the polynomial

f (X) = X4 + (−3α − 1)X3 + (−α2 + 3α)X2

+ (3α3 + α2)X − 3α3

= (X − α)(X + α)(X − 3α)(X − 1) ∈ Q(α)[X ]

and let us try3 to factorize f .
The computations we performed in Remark 7.6.7 inform us that the minimal

polynomial of α is

m(X) = X4 − X2 + 1

and its conjugates are

α1 = α,

α2 = α5 = α3 − α,

α3 = α7 = −α,
α4 = α11 = −α3 + α.

By conjugation we get the four polynomials

f (X) = X4 + (−3α − 1)X3 + (−α2 + 3α)X2

+ (3α3 + α2)X − 3α3,

f (X, α2) = X4 + (−3α3 + 3α − 1)X3 + (3α3 + α2 − 3α − 1)X2

+ (3α3 − α2 + 1)X − 3α3,

f (X, α3) = X4 + (3α − 1)X3 + (−α2 − 3α)X2

+ (−3α3 + α2)X + 3α3,

f (X, α4) = X4 + (3α3 − 3α − 1)X3 + (−3α3 + α2 + 3α − 1)X2

+ (−3α3 − α2 + 1)X + 3α3,

and we have

Nk[α]/k( f ) = ∏4
i=1 f (X, α1)

= X16 − 4X15 − 5X14 + 40X13 + 37X12 − 364X11

+ 410X10 + 356X9 − 782X8 − 284X7 + 1210X6

− 364X5 − 683X4 + 360X3 + 315X2 − 324X + 81.

Note that, by conjugation again, there are the factorizations

f (X, α1) = (X − α)(X + α)(X − 3α)(X − 1),
f (X, α2) = (X − α2)(X + α2)(X − 3α2)(X − 1),

3 Of course, as usual, we assume that we do not know the factorization written above, but we use
it to better understand the crucial point of Kronecker’ proposal.
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f (X, α3) = (X + α)(X − α)(X + 3α)(X − 1),
f (X, α4) = (X + α2)(X − α2)(X + 3α2)(X − 1),

Nk[α]/k( f )(X) = (X − 1)4(X − α)2(X − α2)
2(X + α)2(X + α2)

2

· (X − 3α)(X − 3α2)(X + 3α)(X + 3α2)

= (X − 1)4(X4 − X2 + 1)2(X4 − 9X2 + 81),

since, in fact,

X4 − X2 + 1 = m(X) = ∏
i (X − αi ),

X4 − 9X2 + 81 = 81m
( X

3

) = ∏
i (X − 3αi ),

therefore Nk[α]/k( f ) is not squarefree.

Let us now see what happens if we compute the norm of

g(X, α) = f (X + 2α);
we get

g(X) = X4 + (5α − 1)X3 + (5α2 − 3α)X2

+ (−5α3 + α2)X + 3α3 − 6α2 + 6,
g(X, α2) = X4 + (5α3 − 5α − 1)X3 + (−3α3 − 5α2 + 3α + 5)X2

+ (−5α3 − α2 + 1)X + 3α3 + 6α2,

g(X, α3) = X4 + (−5α − 1)X3 + (5α2 + 3α)X2

+ (5α3 + α2)X − 3α3 − 6α2 + 6,
g(X, α4) = X4 + (−5α3 + 5α − 1)X3 + (3α3 − 5α2 − 3α + 5)X2

+ (5α3 − α2 + 1)X − 3α3 + 6α2,

Nk[α]/k(g) = ∏4
i=1 g(X, αi )

= X16 − 4X15 − 9X14 + 48X13 + 93X12 − 452X11

− 130X10 + 1172X9 + 1206X8 − 1812X7 − 2130X6

+ 1732X5 + 3145X4 − 1008X3 − 2061X2 + 324X
+ 1053,

and the factorizations

g(X, α1) = (X + α)(X + 3α)(X − α)(X − 1 + 2α),
g(X, α2) = (X + α2)(X + 3α2)(X − α2)(X − 1 + 2α2),

g(X, α3) = (X − α)(X − 3α)(X + α)(X − 1 − 2α),
g(X, α4) = (X − α2)(X − 3α2)(X + α2)(X − 1 − 2α2),
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Nk[α]/k(g)(X) = (X + α)2(X + α2)
2(X − α)2(X − α2)

2

· (X − 3α)(X − 3α2)(X + 3α)(X + 3α2)

· (X − 1 + 2α)(X − 1 + 2α2)(X − 1 − 2α)
· (X − 1 − 2α2)

= (X4 − X2 + 1)2(X4 − 9X2 + 81)
· (X4 − 4X3 + 2X2 + 4X + 13),

where

X4 − X2 + 1 = m(X) = ∏
i (X − αi ),

X4 − 9X2 + 81 = 81m
( X

3

) = ∏
i (X − 3αi ),

X4 − 4X3 + 2X2 + 4X + 13 = 16m
(
−X+1

2

)
= ∏

i (X − 1 + 2αi ),

therefore Nk[α]/k(g) is not squarefree.

Let us now see what happens if we compute the norm of

g(X, α) = f (X − 2α);
we get

g(X) = X4 + (−11α − 1)X3 + (41α2 + 9α)X2

+ (−61α3 − 23α2)X + 15α3 + 30α2 − 30,
g(X, α2) = X4 + (−11α3 + 11α − 1)X3

+ (9α3 − 41α2 − 9α + 41)X2

+ (−61α3 + 23α2 − 23)X + 15α3 − 30α2,

g(X, α3) = X4 + (11α − 1)X3 + (41α2 − 9α)X2

+ (61α3 − 23α2)X − 15α3 + 30α2 − 30,
g(X, α4) = X4 + (11α3 − 11α − 1)X3

+ (−9α3 − 41α2 + 9α + 41)X2

+ (61α3 + 23α2 − 23)X − 15α3 − 30α2,

Nk[α]/k(g) = ∏4
i=1 g(X, αi )

= X16 − 4X15 − 33X14 + 144X13 + 909X12

− 4004X11 − 7138X10 + 38324X9

+ 54534X8 − 271284X7 − 51858X6

+ 469924X5 + 703753X4 − 435600X3

− 656325X2 + 202500X + 658125,

and the factorizations

g(X, α1) = (X − 3α)(X − α)(X − 5α)(X − 1 − 2α),
g(X, α2) = (X − 3α2)(X − α2)(X − 5α2)(X − 1 − 2α2),

g(X, α3) = (X + 3α)(X + α)(X + 5α)(X − 1 + 2α),
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g(X, α4) = (X + 3α2)(X + α2)(X + 5α2)(X − 1 + 2α2),

Nk[α]/k(g)(X) = (X − 3α)(X − 3α2)(X + 3α)(X + 3α2)

· (X − α)(X − α2)(X + α)(X + α2)

· (X − 5α)(X − 5α2)(X + 5α)(X + 5α2)

· (X − 1 − 2α)(X − 1 − 2α2)(X − 1 + 2α)
· (X − 1 + 2α2)

= (X4 − 9X2 + 81)(X4 − X2 + 1)
· (X4 + 4X3 + 2X2 − 4X + 13)(X4 − 25X2 + 625),

where

X4 − 9X2 + 81 = 81m
(−X

3

) = ∏
i (X − 3αi ),

X4 − X2 + 1 = m(X) = ∏
i (X − αi ),

X4 + 4X3 + 2X2 − 4X + 13 = 16m
(

X+1
2

)
= ∏

i (X − 1 − 2αi ),

X4 − 25X2 + 625 = 625m
(−X

5

) = ∏
i (X + 5αi ).

Therefore Nk[α]/k(g) is squarefree and we have to compute

gcd(g, X4 − 9X2 + 81) = X + 3α,
gcd(g, X4 − X2 + 1) = X − α,

gcd(g, X4 − 4X3 + 2X2 + 4X + 13) = X − 1 − 2α,
gcd(g, X4 − 25X2 + 625) = X + 5α,

to deduce the factorizations

f (X − 2α) = (X − 3α)(X − α)(X − 1 − 2α)(X − 5α),

f (X) = (X − α)(X + α)(X − 1)(X − 3α).

Remark 16.3.8. The reader will have noted the strict connection between this
factorization algorithm and the computation of primitive elements (Lemma
8.4.2). In fact, Nk[α]/k( fc) is a squarefree polynomial whose roots are ξi j =
βi + cα j , for all i, j, so that

fc(X) = f (X − cα) =
∏

i

(X − cα − βi ) =
∏

i

(X − ξi1);

also, denoting mi (X) := cnm
(

X−βi
c

)
, for all i, we have

mi (X) = cn
∏

j

(
(X − βi )

c
− α j

)
=
∏

j

(X − βi − cα j ) =
∏

j

(X − ξi j ).

In conclusion we get

Nk[α]/k( fc)(X) =
∏

i

∏
j

(X − ξi j )
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=
∏

j

φ j ( fc)

=
∏

i

mi (X).

This formula is of course related to the ones discussed in Proposition 6.7.1
which, for polynomials

F(Y ) :=
n∏

j=1

(Y − a j ), G(Y ) :=
n∏

i=1

(Y − bi ),

give ∏
j

G(a j ) =
∏

i

∏
j

(a j − bi ) = (−1)nm
∏

i

F(bi );

in fact, setting G = fc, bi = βi , a j = X − cα j , we get∏
i

∏
j

(X − βi − cα j ) =
∏

j

φ j ( fc),

while, setting F = m1, bi = X−βi
c , a j = α j , we get∏

i

∏
j

(X − βi − cα j ) =
∏

i

mi (X).

Example 16.3.9. Let us consider the example k := Q, α := √
3 so that

m(X) = X2 − 3, β := √
2 so that f (X) = X2 − 2 and c := 1 (cf.

Example 8.4.3).
Then, denoting φ : Q[

√
3] → Q[

√
3] to be the conjugate Q-isomorphism

such that φ(
√

3) = −√3 and setting ξ := √
2 +√

3 we have the four conju-
gates

ξ++ := +√2 +√
3, ξ+− := +√2 −√

3,
ξ−+ := −√2 +√

3, ξ−− := −√2 −√
3,

whose minimal polynomial

h(X) := X4 − 10X2 + 1

over Q[X ] can be factorized as

h(X) = fcφ( fc) = m(X −
√

2)m(X +
√

2)

where

fc = X2 + 2
√

3X + 1 = (X − ξ++)(X − ξ−+),
fc = X2 − 2

√
3X + 1 = (X − ξ+−)(X − ξ−−),
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m(X +√
2) = X2 + 2

√
2X − 1 = (X − ξ++)(X − ξ+−),

m(X −√
2) = X2 − 2

√
2X − 1 = (X − ξ−+)(X − ξ−−).

Remark 16.3.10. The algorithm implicitly required that k be an infinite field,
in order to guarantee that there is an element c ∈ k such that Nk[α]/k( fc)

is squarefree. This requirement is satisfied if char(k) = 0 – the case which
interested Kronecker – or k contains a transcendental element if char(k) �= 0.

This algorithm, therefore, fails if k is an algebraic extension of a prime field
Zp, which is, then, a finite field. On the other hand, Kronecker’s proposal does
not give any hint of how to factorize over a finite field, and even factorization
over a field k, char(k) = p �= 0, which contains a transcendental element,
requires a factorization algorithm over the finite field Zp.

A factorization algorithm over a finite field is the subject of the next chapter.



17

Berlekamp

As we remarked in the previous chapter, Kronecker’s factorization proposal
did not solve the problem of factorization over a finite field.

This problem became interesting in the 1960s due to applications of polyno-
mials over finite fields in computer science (feedback shift register sequences
and error correcting codes) and was solved by Berlekamp in 1967 (eighty-five
years after Kronecker’s Algorithm!). A different, probabilistic, algorithm was
then proposed by Cantor and Zassenhaus.

Both algorithms are presented in this chapter.

17.1 Berlekamp’s Algorithm

Let F be a finite field of characteristic p and cardinality q = pn .

Lemma 17.1.1. Let g(X) ∈ F[X ]. Then

gq − g =
∏
α∈F

(g − α).

Proof This follows from the obvious factorization Y q − Y = ∏
α∈F (Y − α).

Lemma 17.1.2. Let t (X) ∈ F[X ] be a power of an irreducible polynomial,

t (X) = s(X)e,

and let g(X) ∈ F[X ].
Then gq − g is a multiple of t ⇐⇒ there exists α ∈ F such that g ≡

α(mod t).

361
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Proof If gq −g is a multiple of t , then it is a multiple of s; since s is irreducible
and gq − g = ∏

α∈F (g − α), this implies that there is α ∈ F such that g − α

is a multiple of s.
Since for β �= α, g − β and g − α are relatively prime, then s does not divide
g − β, for all β �= α, and therefore g − α is a multiple of t .
Conversely if g ≡ α(mod t) then g−α is a multiple of t and so is gq−g.

Let us now fix a polynomial f (X) ∈ F[X ] and let d := deg( f ).

Proposition 17.1.3. Let g(X) ∈ F[X ] be such that

0 < deg(g) < d,
f divides gq − g.

Then

f =
∏
α∈F

gcd( f, g − α)

is a non-trivial factorization of f.

Proof In fact

f = gcd( f, gq − g) = gcd

(
f,
∏
α∈F

g − α

)
=

∏
α∈F

gcd( f, g − α),

the last equality following from the fact that g − α and g − β are relatively
prime if β �= α.
Since

deg(gcd( f, g − α)) ≤ deg(g − α) < d = deg( f )

the factorization is non-trivial.

Let us denote by Fd [X ] the F-vector subspace of F[X ] consisting of the
polynomials in F[X ] of degree less than d:

Fd [X ] := {g ∈ F[X ] : deg(g) < d};
recall that Fd [X ] is endowed with a ring structure whose product is given by

g1 × g2 = Rem(g1g2, f )

and that there is a ring isomorphism σ : Fd [X ] → F[X ]/ f (X) which asso-
ciates to g ∈ Fd [X ] its residue class mod f .
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Let f = ∏k
i=1 sei

i be a factorization of f into irreducible factors and let
ti = sei

i .
We recall that, by the Chinese Remainder Theorem, there is a ring isomor-

phism

τ : F[X ]/ f (X) → F[X ]/t1(X)⊕ · · · ⊕ F[X ]/tk(X).

Under these isomorphisms if g ∈ Fd [X ], τσ (g) = (g1, . . . , gk) where gi is
the residue class of g mod ti .

Note that the ring F[X ]/t1(X)⊕ · · · ⊕ F[X ]/tk(X) contains

τσ (F) = {(α, . . . , α) : α ∈ F}
as an isomorphic copy of F , so that the restriction of its product turns it into
an F-vector space and both σ and τ are F-vector space isomorphisms.

Lemma 17.1.4. The morphism

ε : Fd [X ] → Fd [X ]

defined by

ε(g) = gq

is a ring morphism, so that in particular it is linear.

Proof Since q = card(F), we have

gq + hq = (g + h)q , for all g, h ∈ Fd [X ]

and

αq = α, for all α ∈ F,

showing the linearity of ε. It is moreover compatible with multiplication and
ε(1) = 1, completing the proof.

Corollary 17.1.5. The subset

V ( f ) := {g ∈ Fd [X ] : gq ≡ g mod f } ⊆ Fd [X ]

is a subring and an F-vector space.

Lemma 17.1.6. τσ (V ( f )) = {(α1, . . . , αk) : αi ∈ F, for all i}.
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Proof

g ∈ V ( f ) ⇐⇒ gq − g is a multiple of f

⇐⇒ gq − g is a multiple of ti , ∀i

⇐⇒ for all i, there exists αi ∈ F : g − αi is a multiple of ti

⇐⇒ for all i, there exists αi ∈ F : τσ (g) = (α1, . . . , αn).

Corollary 17.1.7. dimF (V ( f )) is the number of irreducible factors in the fac-
torization of f .

Proof The above lemma informs us that V ( f ) is isomorphic under τσ to the
subvector space

{(α1, . . . , αk) : αi ∈ F, for all i}
of F[X ]/t1(X)⊕ · · · ⊕ F[X ]/tk(X) whose dimension is k.

Proposition 17.1.8. Let {g1, . . . , gk} be a basis of V ( f ).
According to Lemma 17.1.2,

for all i, 1 ≤ i ≤ k, for all j, 1 ≤ j ≤ k, ∃ αi j ∈ F :

t j divides gi − αi j .

Then:

(1) for all i, τσ (gi ) = (αi1, . . . , αik);
(2) for all j, l, there is i such that αi j �= αil .

Proof

(1) It follows immediately from the description of τσ implied by the proof of
Lemma 17.1.6.

(2) Since, for g = ∑
i ci gi we have

τσ (g) =
(∑

i

ciαi1, . . . ,
∑

i

ciαik

)
,

the assumption that there are j, l such that for all i, αi j = αil , implies the
contradiction that

τσ (V ( f )) ⊆ {(α1, . . . , αk) : αi ∈ F : α j = αl}.
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Example 17.1.9. To illustrate this result let us consider F := Z3 and f :=
(X9−X)/(X3−X), which (by Theorem 7.2.2) is the product of all irreducible
quadratic polynomials in F[X ], so that

f = X6 + X4 + X2 + 1 = (X2 + 1)(X2 + X − 1)(X2 − X − 1).

Denoting

t1 := X2 + 1, t2 := X2 + X − 1, t3 := X2 − X − 1,

the morphism τ is defined by

τ(a0 + a1 X + a2 X2 + a3 X3 + a4 X4 + a5 X5) = (τ1, τ2, τ3)

where

τ1 := (a0 − a2 + a4)+ (a1 − a3 + a5)X,

τ2 := (a0 + a2 − a3 − a4)+ (a1 − a2 − a3 − a5)X,

τ3 := (a0 + a2 + a3 − a4)+ (a1 + a2 − a3 − a5)X.

As we will see in Example 17.1.12, a basis of

V ( f ) := {g ∈ F9[X ] : g9 ≡ g mod f }
is {1, X3 + X, X4} and so we have

τσ (1) = (1, 1, 1), τσ (X3 + X) = (0,−1, 1), τσ (X4) = (1,−1,−1).

We are now in a position to devise an algorithm for computing a complete
factorization of f into powers of irreducible polynomials.

What we have to do is:

compute a basis {g1, . . . , gk} of V ( f );
pick up a polynomial g in this basis; and
compute gcd( f, g − α), for all α ∈ F , obtaining a non-trivial factorization

of f , because of Proposition 17.1.3.
Repeatedly we can pick up in turn further polynomials g′ in the basis and

compute gcd(h, g′ − α), for each α ∈ F and for each h in the current
non-trivial factorization of f .

We are guaranteed in this way to obtain a complete factorization because
of Proposition 17.1.8: in fact, if two factors are not separated in this way, then
for all i, there exists αi such that both of them divide gi−αi , which is contrary
to Proposition 17.1.8.
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Example 17.1.10. Continuing the computation of Example 17.1.12, let us choose
g := X4 and compute

gcd(X4, X6 + X4 + X2 + 1) := 1

gcd(X4 − 1, X6 + X4 + X2 + 1) := X2 + 1

gcd(X4 + 1, X6 + X4 + X2 + 1) := X4 + 1.

Note that, since X4 +1 = t2t3 and τσ (X4) = (1,−1,−1), the computation
confirms Proposition 17.1.8.

To complete the factorization we take

g := X3 + X, h := X4 + 1

and compute

gcd(X3 + X, X4 + 1) := 1

gcd(X3 + X − 1, X4 + 1) := X2 − X − 1

gcd(X3 + X + 1, X4 + 1) := X2 + X − 1

as we expected from τσ (X3 + X) = (0,−1, 1).
In this way we get the factorization of f .

The only thing we have left to do is to discuss how to compute a basis
of V ( f ). This can be easily performed by linear algebra, if we represent the
elements of Fd [X ] by d-tuples of elements of F and we are able to express ε
in matrix form.

How to represent the elements of Fd [X ] by d-tuples is obvious: we use the
isomorphism ρ : Fd [X ] → Fd defined by

ρ

(
d−1∑
i=0

ai Xi

)
= (a0, . . . , ad−1).

For the second problem, it is again obvious that ε is given by the matrix Q
whose j th column is ρε(X j−1) = ρ(Xq( j−1)), so that:

Proposition 17.1.11. Let g(X) ∈ F[X ] be such that 0 < deg(g) < d. Then

g ∈ V ( f ) ⇐⇒ ρ(g) ∈ ker(Q − I ).

Proof gq − g is a multiple of f iff

0 = ρ(gq − g) = ρ(gq)− ρ(g) = (Q − I )ρ(g).
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Denoting r j := Rem(Xq j , f ), to compute Q we can use the following in-
ductive approach:

r j = Rem(r j−1r1, f ).

Example 17.1.12. To complete the computation of Example 17.1.9 we have to
compute Rem(Xq j , f ), for all j < 6, and we do this as follows:

r0 := 1,
r1 := X3,

r2 := Rem(X6, f (X)) = −X4 − X2 − 1,
r3 := Rem(−X7 − X5 − X3, f (X)) = X,
r4 := Rem(X4, f (X)) = X4,

r5 := Rem(X7, f (X)) = −X5 − X3 − X,

which gives us the matrices

Q =




1 0 −1 0 0 0
0 0 0 1 0 −1
0 0 −1 0 0 0
0 1 0 0 0 −1
0 0 −1 0 1 0
0 0 0 0 0 −1




and

Q − I =




0 0 −1 0 0 0
0 −1 0 1 0 −1
0 0 1 0 0 0
0 1 0 −1 0 −1
0 0 −1 0 0 0
0 0 0 0 0 1




from which we obtain the solution {1, X3 + X, X4}.
Corollary 17.1.13. The following conditions are equivalent:

(1) f is a power of an irreducible polynomial;
(2) dimF (ker(Q − I )) = 1;
(3) ker(Q − I ) is generated by σ(1).

Corollary 17.1.14. The following conditions are equivalent:

(1) f is irreducible;
(2) dimF (ker(Q − I )) = 1 and gcd( f, f ′) = 1.
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Fig. 17.1. Berlekamp’s Algorithm

[t1, . . . , tk ] := Factorization( f, F)
where

F = {α1, . . . , αq } is a finite field
q := card(F)
f (X) ∈ F[X ]
t1, . . . , tk ∈ F[X ] are powers of irreducible polynomials
f (X) = ∏k

i=1 ti (X)
d := deg( f ), r0 := 1, r1 := Rem(Xq , f )
For j = 2, . . . , d − 1 do

r j := Rem(r1r j−1, f )
Let Q be the matrix whose j th column is ρ(r j−1)
k := dimF (ker(Q − I ))
Let gi , 2 ≤ i ≤ k, be such that

{ρ(1), ρ(g2), . . . , ρ(gk)} is a basis of ker(Q − I ).
L0 := [], L := [ f ], i := 1
While card(L)+ card(L0) < k do

i := i + 1, j := 0
While j < q and card(L)+ card(L0) < k do

j := j + 1, L0 := L , L := []
While L0 �= ∅ and card(L)+ card(L0) < k do

h := First(L0), L0 := Rest(L0)
h0 := gcd(gi − α j , h)
If 0 < deg(h0) < deg(h) then

L := L ∪ [h0, h/h0]
else

L := L ∪ [h]
L ∪ L0

Algorithm 17.1.15 (Berlekamp’s Algorithm). We now have all the tools we need
to describe Berlekamp’s Algorithm for polynomial factorization over a finite
field F . It returns a factorization of a polynomial f into powers of irreducible
polynomials, so that, if f is squarefree, it returns a complete factorization of
f : cf. Figure 17.1.

To obtain a complete factorization, we would need an algorithm which given
t (X), a power of an irreducible polynomial in F[X ], t (X) = s(X)e, computes
its irreducible factor s(X) and its multiplicity e. For completeness, we next
describe (Figure 17.2) such an algorithm.

In practice, however, it is advisable to perform first a squarefree decompo-
sition of f , and apply Berlekamp’s Algorithm to each factor in the squarefree
decomposition.

If not only a squarefree decomposition of f , but, subsequently, also a dis-
tinct degree decomposition is performed on each squarefree factor (as has been
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Fig. 17.2. Irreducible Factor

(s, e) := Irr(t)
where

s(X) ∈ F[X ] is an irreducible polynomial
e ∈ N

t (X) ∈ F[X ] is the power of an irreducible polynomial
t = se

e := 1, s := t
Repeat

While s′ = 0 do
let s1 be s.t. s(X) = s1(X

p)
e := ep, s := s1

s1 := gcd(s, s′)
If s1 �= 1 then

s2 := s
s1

e1 := deg(s)
deg(s2)

e := ee1
s := s2

until gcd(s, s′) = 1
(s, e)

proposed, since this improves the performance of the algorithm), Berlekamp’s
Algorithm is simplified since the degree of its irreducible factors is known in
advance: cf. Figure 17.3.

17.2 The Cantor–Zassenhaus Algorithm

To present the alternative probabilistic algorithm proposed by Cantor and
Zassenhaus, I will use the same notation as in the previous section; so we have
a field F , char(F) = p, card(F) = q = pn , and a polynomial f (X) ∈ F[X ];
unlike in Berlekamp’s Algorithm, we will assume that f is squarefree and the
product of k irreducible factors ti which have the same degree δ:

f =
k∏

i=1

ti ;

therefore deg( f ) := d = δk.
The Cantor–Zassenhaus Algorithm is mainly based on the application of the

isomorphism

τ : F[X ]/ f (X) → F[X ]/t1(X)⊕ · · · ⊕ F[X ]/tk(X);
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Fig. 17.3. Advanced Berlekamp Algorithm

[t1, . . . , tk ] := Factorization( f, F)
where

F = {α1, . . . , αq } is a finite field
q := card(F)
f (X) ∈ F[X ] is a squarefree polynomial, all of which factors have degree n <
deg( f )
t1, . . . , tk ∈ F[X ] are the irreducible factors of f in F[X ]

d := deg( f ), r0 := 1, r1 := Rem(Xq , f )
For j = 2, . . . , d − 1 do

r j := Rem(r1r j−1, f )
Let Q be the matrix whose j th column is ρ(r j−1)
k := dimF (ker(Q − I ))
Let gi , 2 ≤ i ≤ k be s.t.

{ρ(1), ρ(g2), . . . , ρ(gk)} is a basis of ker(Q − I ).
L := [], L1 := [ f ], i := 1
While card(L) < k do

i := i + 1, j := 0
While j < q and card(L) < k do

j := j + 1, L0 := L1, L1 := []
While L0 �= ∅ and card(L) < k do

h := First(L0), L0 := Rest(L0)
h0 := gcd(gi − α j , h)
If deg(h0) = n then

L := L ∪ [h0]
else

L1 := L1 ∪ [h0]
If deg(h/h0) = n then

L := L ∪ [h/h0]
else

L1 := L1 ∪ [h/h0]
L

related with that, we will again use the ring

Fd [X ] := {g ∈ F[X ] : deg(g) < d},
whose product is given by g1×g2 = Rem(g1g2, f ), and the ring isomorphism

σ : Fd [X ] → F[X ]/ f (X)

which associates to g ∈ Fd [X ] its residue class mod f .
Since the analysis requires the use of the idempotents of F[X ]/ f (X), it

is better to introduce them more explicitly than in Berlekamp’s Algorithm
(where, of course, they play an implicit role): we denote c j to be the idem-
potent such that

ci ≡
{ 1 if i = j

0 otherwise
(mod t j ).
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Lemma 17.2.1. Let us assume g(X) ∈ Fd [X ] is a polynomial which, denoting
(α1, . . . , αk) := τσ (g), satisfies

g �≡ 0,±1(mod f );
αi ∈ {−1, 0, 1}, for all i.

Denoting S0 := {i : αi = 0}, S1 := {i : αi = 1}, at least one between

gcd( f, g) =
∏
i∈S0

ti

and

gcd( f, g − 1) =
∏
i∈S1

ti

is a proper factor of f .

Proof Denote, for j ∈ {−1, 0, 1}, S j := {i : αi = j} and

f j := gcd( f, g − j) =
∏
i∈S j

ti .

Remarking that, for any j ∈ {−1, 0, 1},
S j = {1, . . . , k} ⇐⇒ ti divides g − j, for all i

⇐⇒ f divides g − j

⇐⇒ gcd( f, g − j) = f

⇐⇒ g ≡ j (mod f ),

and

S j = ∅ ⇐⇒ ti does not divide g − j, for all i

⇐⇒ gcd( f, g − j) = 1,

we can conclude that, either:

S0 �= ∅, in which case S0 �= {1, . . . , k} – since g �≡ 0(mod f ) – and so f0 is
a proper factor;

S0 = ∅, in which case S j �= {1, . . . , k} for j = ±1 – since g �≡ ±1

(mod f ) – and so f1 and f−1 are proper factors.

On the basis of this lemma, the aim is to produce an element g(X) ∈ Fd [X ]
such that, denoting (α1, . . . , αk) := τσ (g), we have

g �= 0,±1;
αi ∈ {−1, 0, 1}, for all i.
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To obtain such a g, Cantor and Zassenhaus proposed to generate it by pro-
ducing a random non-constant polynomial h(X) ∈ Fd [X ] \ F .

Restricting ourselves to the case p �= 2 and setting

m := (qδ − 1)

2

in fact we find:

Proposition 17.2.2. Let h(X) ∈ Fd [X ] \ F and

g(X) := Rem(hm, f ).

Then, denoting (α1, . . . , αk) := τσ (g),

αi ∈ {−1, 0, 1}, for all i.

Proof Setting (β1, . . . , βk) := τ(h) we have

h ≡
∑

i

βi ci (mod f ),

from which we get

g ≡ hm ≡
∑

i

βm
i ci (mod f ),

and so αi = βm
i in F[X ]/ti (X), for all i.

Therefore we have

α2
i = β2m

i = β
qδ−1
i

in F[X ]/ti (X) = G F(qδ), so that either

βi = 0 and so αi = 0(mod ti ), or

βi �= 0 and so α2
i = β

qδ−1
i = 1 and α = ±1.

It is then sufficient to repeatedly write a random polynomial h(X) ∈ Fd [X ]\
F and compute g(X) := Rem(hm, f ) until g �= 0,±1.

Algorithm 17.2.3 (Cantor–Zassenhaus Algorithm).
How to devise a factorization algorithm is quite clear, on the basis of the

above results. It is presented in Figure 17.4.

The analysis of such an algorithm requires us, of course, to analyse the prob-
ability that a random polynomial h(X) ∈ Fd [X ]\F is such that Rem(hm, f ) �=
0,±1 :
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Fig. 17.4. Cantor–Zassenhaus Algorithm

[t1, . . . , tk ] := Factorization( f, F)
where

F is a finite field
q := card(F)
f (X) ∈ F[X ] is a squarefree polynomial whose factors have the same degree δ
t1, . . . , tk ∈ F[X ] are irreducible polynomials
f (X) = ∏k

i=1 ti (X)
L := ∅, L0 := [ f ]

d := deg( f ), m := m := (qδ−1)
2

While L0 �= ∅ do
Choose h ∈ F[X ] \ F such that deg(h) ≤ d
g := Rem(hm , f )
If g �= 0,±1 then

L1 := L0, L0 := []
Repeat

p := First(L1), L1 := Rest(L1)
p0 := gcd(p, g), p1 := gcd(p, g − 1), p−1 := p

p0 p1
For i ∈ {−1, 0, 1} do

If deg(pi ) = δ then L := L ∪ [pi ]
If deg(pi ) > δ then L0 := L0 ∪ [pi ]

until L1 �= ∅
L

Lemma 17.2.4. There are 2mk − q + 1 polynomials h in Fd [X ] \ F which
satisfy hm ≡ 0,±1(mod f ).

Proof Since h is chosen to be a non-constant in F , we have hm �≡ 0 (mod f )
because

h �≡ 0(mod f ) ⇒ there exists i : h �≡ 0(mod ti )

⇒ there exists i : hm �≡ 0(mod ti )

⇒ hm �≡ 0(mod f ).

Since for each of the qδ − 1 polynomials βi ∈ F[X ]/ti , βi �= 0, we have
(βm)2 = 1, then m elements satisfy βm = 1 while the other m elements satisfy
βm = −1.
Therefore among the elements h = ∑

i βi ci ∈ Fd [X ] there are

mk of them satisfying βm
i = 1, for all i, and so hm ≡ 1(mod ti ), for all i ,

hm ≡ 1(mod f ),
and mk satisfying βm

i = −1, for all i and so hm ≡ −1(mod f ),
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giving a total of 2mk elements h ∈ Fd [X ] satisfying hm ≡ ±1(mod f ),
among which the q − 1 non-zero constants are included.

Proposition 17.2.5. The probability of randomly choosing a polynomial h
among the qd − q ones in Fd [X ] \ F which satisfy hm ≡ 0,±1(mod f ) is

2mk − q + 1

qd − q
<

1

2
.

Proof The evaluation of the probability being obvious, we only have to remark
that

2mk − q + 1

qd − q
<

2mk

qd − q
= 2

( qδ−1
2

)k

qd − q
= 1

2k−1

(qδ − 1)k

qd − q
≤ 1

2k−1
≤ 1

2
.

Example 17.2.6. As an example to show the behaviour and the probabilistic
distribution aspects of the Cantor–Zassenhaus result, we fix F := Z3 and we
recall that the irreducible polynomials of degree 2 are

t1 := X2 + 1, t2 := X2 + X − 1, t3 := X2 − X − 1.

We want to show the behaviour of the generic polynomial h ∈ (Z3)4[X ]
with respect to the polynomials

τ1 := t2t3, τ2 := t1t3, τ3 := t1t2.

To do so we have to compute1 for all h ∈ (Z3)4[X ]

h j := h4(mod t j ), j = 1, 2, 3,
χ j := h4(mod τ j ), j = 1, 2, 3.

The result is contained in the tables in Figure 17.5, from which an easy
count allows us to verify that there are exactly m2 = 42 = 16 elements such
that χ j = 1 (and the same number such that χ j = −1).

Note that there are 8 non-zero elements h in Z3[X ]2 (which represent

1 Since, on the basis of Bezout, we have

1 = (−X + 1)t2 + (X + 1)t3,

1 = Xt1 − (X + 1)t3,

1 = (−X)t1 + (X − 1)t2;
to get χi we have to compute

χ1 := h3(−X + 1)t2 + h2(X + 1)t3,

χ2 := h3 Xt1 − h1(X + 1)t3,
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Fig. 17.5. Illustration of the structure of Example 17.2.1

h h1 h2 h3 χ1 χ2 χ3
−X3 − X2 − X − 1 0 1 −1 −X3 − X −X3 − X −X3 − X
−X3 − X2 − X 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
−X3 − X2 − X + 1 1 −1 1 X3 + X 1 −X3 − X + 1
−X3 − X2 − 1 1 −1 0 −X3 − X + 1 −X3 − X + 1 −X3 − X + 1
−X3 − X2 −1 −1 1 X3 + X −X3 − X − 1 −1
−X3 − X2 + 1 −1 1 1 1 −X3 − X − 1 X3 + X − 1
−X3 − X2 + X − 1 1 1 −1 −X3 − X X3 + X + 1 1
−X3 − X2 + X −1 0 1 −X3 − X − 1 −X3 − X − 1 −X3 − X − 1
−X3 − X2 + X + 1 −1 1 −1 −X3 − X −1 X3 + X − 1
−X3 − X − 1 1 0 1 −X3 − X − 1 1 X3 + X + 1
−X3 − X 0 1 1 1 X3 + X −X3 − X
−X3 − X + 1 1 1 0 X3 + X − 1 −X3 − X + 1 1
−X3 − 1 −1 −1 1 X3 + X −X3 − X − 1 −1
−X3 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
−X3 + 1 −1 1 −1 −X3 − X −1 X3 + X − 1
−X3 + X − 1 −1 −1 −1 −1 −1 −1
−X3 + X 1 1 1 1 1 1
−X3 + X + 1 −1 −1 −1 −1 −1 −1
−X3 + X2 − X − 1 1 1 −1 −X3 − X X3 + X + 1 1
−X3 + X2 − X 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
−X3 + X2 − X + 1 0 −1 1 X3 + X X3 + X X3 + X
−X3 + X2 − 1 −1 1 1 1 −X3 − X − 1 X3 + X − 1
−X3 + X2 −1 1 −1 −X3 − X −1 X3 + X − 1
−X3 + X2 + 1 1 0 −1 X3 + X + 1 X3 + X + 1 X3 + X + 1
−X3 + X2 + X − 1 −1 −1 1 X3 + X −X3 − X − 1 −1
−X3 + X2 + X −1 1 0 X3 + X − 1 X3 + X − 1 X3 + X − 1
−X3 + X2 + X + 1 1 −1 1 X3 + X 1 −X3 − X + 1
−X2 − X − 1 1 1 1 1 1 1
−X2 − X −1 1 −1 −X3 − X −1 X3 + X − 1
−X2 − X + 1 −1 0 −1 X3 + X + 1 −1 −X3 − X − 1
−X2 − 1 0 −1 −1 −1 −X3 − X X3 + X
−X2 1 1 1 1 1 1
−X2 + 1 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
−X2 + X − 1 1 1 1 1 1 1
−X2 + X −1 −1 1 X3 + X −X3 − X − 1 −1
−X2 + X + 1 −1 −1 0 −X3 − X + 1 X3 + X − 1 −1
−X − 1 −1 −1 1 X3 + X −X3 − X − 1 −1
−X 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
−X + 1 −1 1 −1 −X3 − X −1 X3 + X − 1
−1 1 1 1 1 1 1
0 0 0 0 0 0 0
1 1 1 1 1 1 1
X − 1 −1 1 −1 −X3 − X −1 X3 + X − 1
X 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
X + 1 −1 −1 1 X3 + X −X3 − X − 1 −1
X2 − X − 1 −1 −1 0 −X3 − X + 1 X3 + X − 1 −1
X2 − X −1 −1 1 X3 + X −X3 − X − 1 −1
X2 − X + 1 1 1 1 1 1 1
X2 − 1 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
X2 1 1 1 1 1 1
X2 + 1 0 −1 −1 −1 −X3 − X X3 + X
X2 + X − 1 −1 0 −1 X3 + X + 1 −1 −X3 − X − 1
X2 + X −1 1 −1 −X3 − X −1 X3 + X − 1
X2 + X + 1 1 1 1 1 1 1
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Fig. 17.5. (cont.)

h h1 h2 h3 χ1 χ2 χ3
X3 − X2 − X − 1 1 −1 1 X3 + X 1 −X3 − X + 1
X3 − X2 − X −1 1 0 X3 + X − 1 X3 + X − 1 X3 + X − 1
X3 − X2 − X + 1 −1 −1 1 X3 + X −X3 − X − 1 −1
X3 − X2 − 1 1 0 −1 X3 + X + 1 X3 + X + 1 X3 + X + 1
X3 − X2 −1 1 −1 −X3 − X −1 X3 + X − 1
X3 − X2 + 1 −1 1 1 1 −X3 − X − 1 X3 + X − 1
X3 − X2 + X − 1 0 −1 1 X3 + X X3 + X X3 + X
X3 − X2 + X 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
X3 − X2 + X + 1 1 1 −1 −X3 − X X3 + X + 1 1
X3 − X − 1 −1 −1 −1 −1 −1 −1
X3 − X 1 1 1 1 1 1
X3 − X + 1 −1 −1 −1 −1 −1 −1
X3 − 1 −1 1 −1 −X3 − X −1 X3 + X − 1
X3 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
X3 + 1 −1 −1 1 X3 + X −X3 − X − 1 −1
X3 + X − 1 1 1 0 X3 + X − 1 −X3 − X + 1 1
X3 + X 0 1 1 1 X3 + X −X3 − X
X3 + X + 1 1 0 1 −X3 − X − 1 1
X3 + X2 − X − 1 −1 1 −1 −X3 − X −1 X3 + X − 1
X3 + X2 − X −1 0 1 −X3 − X − 1 −X3 − X − 1 −X3 − X − 1
X3 + X2 − X + 1 1 1 −1 −X3 − X X3 + X + 1 1
X3 + X2 − 1 −1 1 1 1 −X3 − X − 1 X3 + X − 1
X3 + X2 −1 −1 1 X3 + X −X3 − X − 1 −1
X3 + X2 + 1 1 −1 0 −X3 − X + 1 −X3 − X + 1 −X3 − X + 1
X3 + X2 + X − 1 1 −1 1 X3 + X 1 −X3 − X + 1
X3 + X2 + X 1 −1 −1 −1 X3 + X + 1 −X3 − X + 1
X3 + X2 + X + 1 0 1 −1 −X3 − X −X3 − X −X3 − X

Z3[X ]/t j (X)), for all j , 4 of which satisfy h4 ≡ 1(mod t j ) while the others
satisfy h4 ≡ −1(mod t j ). The 16 elements such that χ1 = 1 are those which
are obtained by Chinese remaindering with respect to the decomposition

Z3[X ]/τ1(X) ∼= Z3[X ]/t2(X)⊕ Z3[X ]/t3(X)

as solutions of the system

h ≡
{

h2(mod t2)
h3(mod t3)

where each h j runs over the 4 elements satisfying h4
j ≡ 1(mod t j ).

Remark 17.2.7. Recall that in our analysis we restricted ourselves to the case
p �= 2. The case when q is even, is treated in a similar way yielding the results
below, for which we use the same notation as before.

χ3 := h2(−X)t1 + h1(X − 1)t2.
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Lemma 17.2.8. The polynomial M(X) := X2+ X +1 ∈ Z2[X ] is irreducible
over Z2 and therefore

G F(4) = Z2[X ]/M(X) = Z2[α] = {0, 1, α, α + 1}.
Lemma 17.2.9. Let K be a finite field such that p := char(K ) = 2, q :=
card(K ) and

K ⊇ G F(4) = Z2[α].

Let h(X) ∈ Kd [X ]/K , m := qδ−1
3 , and g(X) := Rem(hm, f ).

Then, if g �∈ G F(4), the factorization

f (X) = gcd( f, g) gcd( f, g − 1) gcd( f, g − α) gcd( f, g − α − 1)

is non-trivial over K .

Proof The argument is similar to that of Lemma 17.2.1 and is left to the reader.

Lemma 17.2.10. Let F be a field such that p := char(F) = 2 and q :=
card(F) = 2n.

If n is even and so q ≡ 1(mod 3) then F ⊇ G F(4).
If n is odd and so q ≡ −1(mod 3) then

K := F[X ]/M(X) = F[α] ⊇ G F(4).

Algorithm 17.2.11. According to the lemmas above, how to modify the algo-
rithm of Figure 17.4 then becomes clear:

If n is even, we compute a factorization over F and we only have to

modify the definition of m;
compute the factors pβ := gcd( f, g − β), for all β ∈ G F(4), and
distribute the non-constant ones between L and L0 according to their de-

gree, i.e. whether they are irreducible or not,

If n is odd, we compute a factorization over K := F[α] and then we combine
the factors which are conjugate over F .

Example 17.2.12. As an example let us try to compute all the monic irre-
ducible polynomials in Z2[X ] whose degree is 4.
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Since we know that X2d − X is the product of all the monic irreducible
polynomials in Z2[X ] whose degree divides d , it is clear that our task is to
factorize

f (X) = X16 − X

X4 − X
= X12 + X9 + X6 + X3 + 1

over G F(4), where we will find quadratic factors. We choose the random poly-
nomial

h(X) = X12+αX11+αX10+α2 X9+X8+αX7+X6+α2 X5+X4+αX3+αX2,

therefore, since m = 42−1
3 = 5, we compute

g(X) := h5(X) ≡ α2(X10 + X8 + X5 + X2 + 1)(mod f (X))

and we have

gcd( f, g) = 1,

gcd( f, g − 0) = 1,

pα := gcd( f, g − α) = X6 + X5 + αX4 + X3 + α2 X2 + α2,

pα2 := gcd( f, g − α2) = X6 + X5 + α2 X4 + X3 + αX2 + α.

Then we choose another random polynomial

h(X) = αX12 + αX11 + X7 + αX6 + αX5 + X4 + αX2 + X

and we obtain

g(X) := h5(X) ≡ X9+X8+X6+α2 X5+α2 X4+X2+α2 X+α (mod f (X)).

The non-trivial gcds that we obtain are:

gcd(g − 1, pα) = X2 + αX + 1,

gcd(g − α, pα2) = X4 + X + α + 1,

gcd(g − α2, pα = X2 + X + α,

gcd(g − 1, pα2) = X2 + X + α2,

gcd(g − α, pα = X2 + αX + α.

We do not need a third polynomial to complete the factorization, since, by
conjugation, we can deduce that the two missing factors are the conjugate ones
of X2 + αX + 1 and X2 + αX + α, so that

X4 + X + α + 1 = (X2 + α2 X + 1)(X2 + α2 X + α2).
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Therefore we obtain the factorization

f (X) = (X2 + αX + 1)(X2 + α2 X + 1)(X2 + α2 X + α2)(X2 + X + α)

× (X2 + X + α2)(X2 + αX + α)

in G F(4)[X ]; then conjugation gives us the factors in Z2[X ]:

(X2 + α2 X + 1)(X2 + αX + 1) = X4 + X3 + X2 + X + 1,

(X2 + X + α)(X2 + X + α2) = X4 + X + 1,

(X2 + αX + α)(X2 + α2 X + α2) = X4 + X3 + 1.

To conclude, we just need to evaluate the probability of picking up a poly-
nomial h(X) ∈ Kd [X ]/K such that g(X) := Rem(hm, f ) �∈ G F(4):

Proposition 17.2.13. Let K be a finite field such that p := char(K ) = 2, q :=
card(K ) and

K ⊇ G F(4) = Z2[α],

and let m = qδ−1
3 .

The probability of randomly choosing a polynomial h among the qd − q
ones in Kd [X ] \ K which satisfy Rem(hm, f ) �∈ G F(4) is

3mk − q + 1

qd − q
<

1

3
.

Proof We only need to adjust the argument of Lemma 17.2.4:
For each of the qδ − 1 polynomials βi ∈ K [X ]/ti , βi �= 0 we have (βm)3 = 1.
Then there are m elements satisfying βm = α j , for all j ∈ Z3.
Therefore, among the elements h = ∑

i βi ci ∈ Fd [X ], for each j ∈ {1, 2, 3},
there are mk of them satisfying βm

i = α j , for all i and so hm ≡ α j (mod f ).
This gives the probability

3mk − q + 1

qd − q
<

3mk

qd − q
= 3

( qδ−1
3

)k

qd − q
= 1

3k−1

(qδ − 1)k

qd − q
≤ 1

3k−1
≤ 1

3
.
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Zassenhaus

The impractical nature of von Schubert’s Algorithm for factorization over Z is
evident even from the example I have presented. The absence of a ‘reasonable’
factorization algorithm for polynomials over the integers was one of the major
weaknesses of Kronecker’s Model.

Berlekamp’s Algorithm mended this flaw: in fact in 1969 Zassenhaus
suggested substituting von Schubert’s Algorithm with an application of
Berlekamp’s Algorithm and a lemma by Hensel.

Hensel’s Lemma gives an algorithm which allows us to ‘lift’ a factorization
over D/p to one over D/pn where D is a principal ideal domain and p ∈ D
is irreducible.

Zassenhaus proposed computing a factorization of a polynomial f over D,
based on a factorization algorithm over D/p, by the following approach:

factorize the image of f over D/p;
lift, via Hensel, this factorization to one over D/pn for a ‘suitably’ large n –

the ‘suitability’ of n is based on the ability to recover all the coefficients
of the factors of f over D – and

obtain the factors over D, by combining the ones over Dpn and checking if
they divide f .

In this chapter I will first introduce Hensel’s Lemma (Section 18.1) and then
I will discuss Zassenhaus’ proposal (Section 18.2) through its application to
the cases in which the principal ideal domain is either

K [Y ] (Section 18.3), where we assume we have a factorization algorithm
over K and, by iteration, we obtain an algorithm for the multivariate fac-
torization of polynomials in K [X1, . . . , Xn];

380
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Z (Section 18.5), in which case the auxiliary algorithm is Berlekamp’s and
the ‘suitability’ of n is based on the classical analysis of the bounds relat-
ing coefficients and roots of a polynomial (Section 18.4).

Even if the Berlekamp–Hensel–Zassenhaus Algorithm for factorization over
Z gives an incredible advantage with respect to von Schubert, its complexity
is exponential in the degree of the polynomial to be factorized, as is proved by a
worst case class of polynomials introduced by Swinnerton-Dyer (Section 18.6).

A more recent algorithm, that of Lenstra–Lenstra–Lovász (L3), allows us
to factorize polynomials over Z with polynomial complexity; a sketch of this
result is the content of Section 18.7

18.1 Hensel’s Lemma

In this section D is a principal ideal domain (and so a unique factorization
domain), p ∈ D is an irreducible element. For n ∈ N we denote Dn := D/pn

(so that D1 = D/p is a field), πn : D[X ] → Dn[X ] the canonical projection
and π := π1.

Example 18.1.1. We suggest that the reader mainly consider the two following
examples:

D := Z, p a prime so that Dn = Zpn ,
D := Q[X ], p := X − α so that Dn = Q[X ]/(X − α)n .

Theorem 18.1.2 (Hensel’s Lemma). Let f (X) ∈ D[X ] be such that

deg( f ) = deg(π( f )).

Let g1, h1 ∈ D[X ] be such that

(1) f ≡ g1h1(mod p),
(2) deg( f ) = deg(g1)+ deg(h1),
(3) gcd(π(g1), π(h1)) = 1.

Then for each n ∈ N, there are gn, hn ∈ D[X ] such that

(1) f ≡ gnhn(mod pn),
(2) gn ≡ g1(mod p), hn ≡ g1(mod p),
(3) deg(gn) = deg(g1), deg(hn) = deg(h1).

Moreover if g1 is monic, then, for all n, gn is monic.
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Proof Since

deg( f ) = deg(g1)+ deg(h1)

≥ deg(π(g1))+ deg(π(h1))

= deg(π( f ))

= deg( f ),

then deg(g1) = deg(π(g1)) and deg(h1) = deg(π(h1)).

Since gcd(π(g1), π(h1)) = 1, by the Bezout Identity – note that D1 = D/p is
a field –, there are s, t ∈ D1[X ] such that

sπ(g1)+ tπ(h1) = 1, deg(s) < deg(h1), deg(t) < deg(g1).

Given these crucial preliminaries, we can attack the proof, which is by induc-
tion on n, the case n = 1 being true by hypothesis.
So we can assume the result true for n and we set q := pn .

Let U ∈ D[X ] be such that

f − gnhn = qU,

so that deg(U ) ≤ deg( f ) and let

u := π(U ).

Let

b := Rem(ut, π(g1)), c := Quot(ut, π(g1)),

and let

a := us + cπ(h1).

Then in D1[X ],

u = usπ(g1)+ utπ(h1)

= usπ(g1)+ cπ(g1)π(h1)+ bπ(h1)

= aπ(g1)+ bπ(h1)

and deg(b) < deg(g1).

As a consequence, since deg(u) ≤ deg( f ) and

deg(bπ(h1)) < deg(g1h1) = deg( f ),

we have deg(aπ(g1)) ≤ deg( f ), deg(a) ≤ deg(h1).

Let now A, B ∈ D[X ] be such that

π(A) = a, π(B) = b, deg(A) = deg(a), deg(B) = deg(b),
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so that

U = Agn + Bhn + pC

for some C ∈ D[X ].
Let

gn+1 := gn + q B, hn+1 := hn + q A.

We claim that gn+1, hn+1 satisfy the inductive assumptions.
In fact:

(1) Since

f − gn+1hn+1 = f − gnhn − q Agn − q Bhn − q2 AB

= f − gnhn − qU + pqC − q2 AB

= pqC − q2 AB

= pn+1(C − pn−1 AB),

we have f ≡ gn+1hn+1(mod pn+1).

(2) Is obviously true by construction.
(3) Since deg(B) < deg(g1), then deg(gn+1) = deg(g1).

Also deg(hn+1) = deg(h1) holds, since

deg(A) ≤ deg(h1) = deg(hn),

and lc(hn) ≡ lc(h1)(mod p) ensures that lc(hn) is not a multiple of q.

Algorithm 18.1.3. This proof is constructive and can be directly translated into
the algorithm, described in Figure 18.1, under suitable effective assumptions1

on D.

1 We must require that D is an effective principal ideal domain, i.e. that

D is an effective ring;
given a, b ∈ D, it is possible to check whether b divides a, and, in this case, to explicitly

compute c such that a = cb (this implies that it is possible, for each irreducible p ∈ D, to
decide whether a = 0 in the field D/p);

given a, b ∈ D, it is possible to compute d = gcd(a, b) and s, t ∈ D such that d = as + bt
(this allows us to compute inverses in the ring D/b).

Moreover, for each a ∈ Dn we must be able to compute b ∈ D such that πn(b) = a. All these
requirements are satisfied if D possesses an Euclidean Algorithm (e.g. if D is Z or k[X ]).



384 Zassenhaus

Fig. 18.1. Hensel Lifting

(gn, hn) := HenselLifting( f, g1, h1, p, n)
where

f, g1, h1 ∈ D[X ]
p ∈ D is irreducible
n ∈ N

f, g1, h1 satisfy the assumptions of Theorem 18.1.2
gn, hn satisfy the thesis of Theorem 18.1.2

(d, s, t) := ExtGCD(π(g1), π(h1))
q := 1
For i = 1..n − 1, do

q := qp(= pi )

U := f −gi hi
q

u := π(U )
(c, b) := PolynomialDivision(ut, π(g1))
a := us + cπ(h1)
Choose A, B ∈ D[X ] such that a = π(A), b = π(B)
gi+1 := gi + q B, hi+1 := hi + q A

Example 18.1.4. Let us choose D := Z, p = 3 and

f = 4X6 + 27X5 − 38X4 − 6X3 + 70X2 − 105X + 49

= (4X4 − X3 − 3X2 + 8X − 7)(X2 + 7X − 7).

The polynomials

g1 := X4 − X3 − X − 1, h1 := X2 + X − 1

satisfy the assumptions of Theorem 18.1.2 since

g1h1 = X6 − 2X4 − 2X2 + 1 ≡ f(mod 3),

and gcd(π(g1), π(h1)) = 1 – in fact π(g1) = (X2 + 1)(X2 − X − 1).
The Euclidean Algorithm in Z3[X ] allows us to compute

s(X) := −1, t (X) := X2 + X,

which satisfy 1 = sπ(g1)+ tπ(X).
Since

f − g1h1 = 3(X6 + 9X5 − 12X4 − 2X3 + 24X2 − 35X + 16),

we fix

U (X) := X6 + 9X5 − 12X4 − 2X3 + 24X2 − 35X + 16,

u := X6 + X3 + X + 1
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and, by the Division Algorithm of

ut := X8 + X7 + X5 + X4 + X3 − X2 + X

by g1, we get

b = X3 − X2 + X − 1, c = X4 − X3 − X2 + X − 1, a = X2

obtaining

g2 := X4 + 2X3 − 3X2 + 2X − 4, h2 := 4X2 + X − 1

which satisfy the assumptions of Theorem 18.1.2, since

g2h2 − f = 18X5 − 27X4 − 9X3 + 81X2 − 99X + 45 ≡ 0(mod 9).

Iteratively we fix

U (X) := 2X5 − 3X4 − X3 + 9X2 − 11X + 5,

u = −X5 − X3 + X − 1

and, by the Division Algorithm of

ut := −X7 − X6 − X5 − X4 + X3 − X

by g1, we get

b = −X3 + X2 + 1, c = −X3 + X2 + 1, a = 0

obtaining

g3 := X4 − 7X3 + 6X2 + 2X + 5, h3 := 4X2 + X − 1

which satisfy the assumptions of Theorem 18.1.2, since

g3h3 − f = 54X5 − 54X4 − 27X3 + 54X2 − 108X + 54 ≡ 0(mod 27).

Fixing

U := 2X5 − 2X4 − X3 + 2X2 − 4X + 2,

u := −X5 + X4 − X3 − X2 − X − 1

the Division Algorithm of

ut := −X7 + X4 + X3 + X2 − X

by g1 gives us

b = X3 − X2 − 1, c = −X3 − X2 − X − 1, a = X − 1
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from which we have

g4 := X4 + 20X3 − 21X2 + 2X − 22, h4 := 4X2 + 28X − 28

which satisfy

g4h4 − f = 81(−X5 − 6X4 + 14X3 − 6X2 + 7X − 7).

Remark 18.1.5. Let ψ : R → S be a surjective ring morphism and let us
denote by ψ its polynomial extension ψ : R[X ] → S[X ]. If f (X) ∈ R[X ]
is such that ψ( f ) is irreducible (respectively squarefree), then so is f . The
converse is not, in general, true. Consider e.g.,

R := Z, S := Z5, φ the canonical projection and f := X2 + 1 where
ψ( f ) = (X − 2)(X + 2);

R := Z, S := Z2, φ the canonical projection and f := X2 + 1 where
ψ( f ) = (X + 1)2.

Let ρn : Dn[X ] → D[X ] be a map such that

πnρn(a) = a, for all a ∈ Dn ,
ρn(0) = 0, ρn(1) = 1, ρn(X) = X ,

and denote ρ := ρ1.

Proposition 18.1.6. Let g(X) ∈ D[X ] be a primitive polynomial such that

lc(g) is not a multiple of p,
π(g) is a squarefree polynomial.

Let g1, . . . , gr be the monic irreducible factors of π(g), so that

π(g) = π(lc(g))
r∏

i=1

gi .

Then, for all n ∈ N, there are monic polynomials G1, . . . ,Gr ∈ D[X ] such
that

(1) for all i, π(Gi ) = gi ;
(2) πn(g) = πn(lc(g))

∏r
i=1 πn(Gi );

(3) for all i, πn(Gi ) is irreducible.

If D is an effective principal ideal domain, then, given g1, . . . , gr, it is possible
to compute such G1, . . . ,Gr .



18.1 Hensel’s Lemma 387

Proof There are several schemes for performing this; the easiest to describe
(not necessarily the most efficient) is as follows:
Let us apply the Hensel Lifting Algorithm, to compute

(G1, H1) := HenselLifting

(
g, ρ(g1), lc(g)ρ

(
r∏

i=2

gi

)
, p, n

)
,

so that

π(G1) = g1,

π(H1) = π(lc(g))
∏r

i=2 gi ,

πn(g) = πn(G1)πn(H1).

Iteratively assume we have computed G1, . . . ,Gk, Hk ∈ D[X ] such that

π(Gi ) = gi , for all i ≤ k,

π(Hk) = π(lc(g))
∏r

i=k+1 gi ,

πn(g) =
∏k

i=1 πn(Gi )πn(Hk),

we then apply the Hensel Lifting Algorithm, to compute

(Gk+1, Hk+1) := HenselLifting

(
Hk, ρ(gk+1), lc(g)ρ

(
r∏

i=k+2

gi

)
, p, n

)
,

so that

π(Gk+1) = gk+1,

π(Hk+1) = π(lc(g))
∏r

i=k+2 gi ,

πn(Hk) = πn(Gk+1)πn(Hk+1),

and therefore

πn(g) =
k+1∏
i=1

πn(Gi )πn(Hk+1).

After r − 1 iterations we have computed G1, . . . ,Gr−1, Hr−1 ∈ D[X ] such
that

π(Gi ) = gi , for all i < r,

π(Hr−1) = π(lc(g)) gr ,

πn(g) =
∏r−1

i=1 πn(Gi )πn(Hr−1).
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Let then h be the monic associate of πn(Hr−1) and let Gr := ρn(h), so that (1)
and (2) hold immediately and (3) holds because πn(Gi ) are then irreducible
since their homomorphic images in D1[X ], gi , are.

Example 18.1.7. Let us try to compute a factorization of

g = 4X6 + 27X5 − 38X4 − 6X3 + 70X2 − 105X + 49

over Z34 using the computations performed in Example 18.1.4.
We have over Z3 the factorization

f = (X2 + 1)(X2 − X − 1)(X2 + X − 1).

So, setting

g3 := X2 + 1, g2 := X2 − X − 1, g1 := X2 + X − 1,

we first apply the Hensel Lifting Algorithm, to compute

(G1, H1) := HenselLifting( f, ρ(g1), lc(g)ρ(g2g3), 3, 4);
the computation has already been done in Example 18.1.4 which returned

G1 := 4X2 + 28X − 28,

H1 := X4 + 20X3 − 21X2 + 2X − 22;

so we have to apply

(G2, H2) := HenselLifting(H1, ρ(g2), lc(g)ρ(g3), 3, 4):

after having computed s = −X − 1, t = X , which satisfy sg2 + tg3 = 1,
Hensel returns the factorizations:

H1 = (X2 − X − 1)(X2 + 1)(mod 3),
(X2 + 2X − 4)(X2 + 1)(mod 9),
(X2 + 2X − 13)(X2 − 9X + 10)(mod 27),
(X2 − 25X − 13)(X2 − 36X − 17)(mod 81),

so that we obtain the factorization

f = (X2 + 7X − 7)(X2 − 25X − 13)(X2 − 36X − 17).

Algorithm 18.1.8. We will refer by

(G1, . . . ,Gr ) := HenselLifting(g, g1, . . . , gr , p, n)
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an algorithm which, either by the scheme of the proof of Proposition 18.1.6
or by a similar one, allows us to compute such Gi s from our knowledge of
the gi s.

18.2 The Zassenhaus Algorithm

Let D be a principal ideal domain and Q its fraction field; we will assume that
D is an effective principal domain, so that Q is an effective field.

Let f (X) ∈ Q[X ]; by computing either the squarefree associate or the dis-
tinct power factorization of f , we will assume w.l.o.g. that f is squarefree.
Therefore g(X) := Prim( f ) ∈ D[X ] is squarefree too; by the Gauss Lemma
(Theorem 6.1.9) factorizing f in Q[X ] is equivalent to factorizing g in D[X ].

The Zassenhaus Algorithm reduces factorization in D[X ] to one in D/p[X ],
for a suitable irreducible p, which can be lifted, via Hensel’s Lemma
(Theorem 18.1), to the one in D/pn[X ] and then reinterpreted in D[X ].

The first thing we need to do is to understand what ‘suitability’ means for
irreducible p ∈ D: if, given a polynomial g ∈ D[X ], we want to lift a fac-
torization of g mod p to one mod pn by the Hensel Lemma, we need the hy-
potheses to be satisfied; we need in particular that

deg(g) = deg(π(g)), i.e. p does not divide lc(g), and
for any factorization π(g) = π(g1)π(h1) in D/p[X ], we have gcd(π(g1),

π(h1)) = 1, which holds iff π(g) is squarefree.

Lemma 18.2.1. Let D be an infinite domain and let g(X) ∈ D[X ] be square-
free. Then there are infinitely many irreducible elements p ∈ D such that

(1) p does not divide lc(g), and
(2) π(g) is squarefree, where π : D → D/p denotes the canonical projection.

Proof Recall (Proposition 6.5.4) that π(g) is not squarefree if and only if p di-
vides the discriminant of g. Therefore, there are only finitely many irreducible
elements in D which divide both lc(g) and the discriminant of g. Since D is
infinite the claim follows.

If D is infinite – which is the case with D = Z or D = K [X ], for any field
K –, if we successively try several random irreducible p ∈ D which do not
divide lc(g) and check by the squarefree test whether π(g) is squarefree, after
finitely many trials we find a ‘suitable’ irreducible p, i.e. one such that p does
not divide lc(g) and π(g) is squarefree.
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Let p be such an irreducible, and let us use the same notation as Section 18.1
so that for all n ∈ N,

Dn := D/pn ,
πn : D[X ] → Dn[X ] is the canonical projection,
ρn : Dn[X ] → D[X ] is a map such that

πnρn(a) = a, for all a ∈ Dn ,
ρn(0) = 0, ρn(1) = 1, ρn(X) = X ,

and ρ and π will denote respectively ρ1 and π1.
Assume we are able to obtain a factorization π(g) = lc(π(g))

∏r
j=1 g j into

monic irreducible factors g j ∈ D1[X ]; since π(g) is squarefree, we have

gcd(gi , g j ) = 1, i �= j.

Computing

(G1, . . . ,Gr ) := HenselLifting(g, g1, . . . , gr , p, n)

(cf. Algorithm 18.1.8), we obtain monic polynomials G1, . . . ,Gr ∈ D[X ]
such that

for all j, π(G j ) = g j ;
πn(g) = πn(lc(g))

∏r
j=1 πn(G j );

for all j, πn(G j ) is irreducible.

Let now g = ∏s
i=1 hi be a factorization into distinct irreducible primitive

polynomials in D[X ]; the relation between the G j s and the hi s is given by the
following:

Lemma 18.2.2. There is a partition into s disjoint subsets I1, . . . , Is of
{1, . . . , r} such that ∀i :

πn(hi ) = πn

(
lc(hi )

∏
j∈Ii

G j

)

Proof In fact

πn(lc(g))
r∏

j=1

πn(G j ) = πn(g) =
s∏

i=1

πn(hi );

therefore for all i, πn(hi ) is associate to the product of some of the G j s.
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While the content of this section gives some hints about how to factorize
polynomials in Q[X ] where Q is the fraction field of an effective principal
domain, it falls well short of its goal. In fact:

it requires a factorization algorithm for polynomials over fields D/p;
it does not give any hint of how to compute the partition {1, . . . , r} =⋃s

j=1 I j , nor of how to choose which among the polynomials hi is such
that

πn(hi ) = πn

(
(lc(hi )

∏
j∈Ii

G j

)

is a factor of g;
it does not give any hint of how to choose n, nor of how to determine the

leading coefficient lc(hi ) of a factor hi of g.

In the rest of this chapter, we will show how to solve the above problems if

D = K [X ], Q = K (X), assuming a factorization algorithm is given in
K [X ];

D = Z, Q = Q.

18.3 Factorization Over a Simple Transcendental Extension

The discussion of the problems posed by Zassenhaus’ proposal is much sim-
pler in the case D = K [X ] than in the setting of the original proposal by
Zassenhaus, D = Z.

Let us therefore assume that an effective field K , char(K ) = 0, is given
such that there is a factorization algorithm in K [X ] and we intend to give a
factorization algorithm in K (Y )[X ], where K (Y ) is a rational function field
or, equivalently, a transcendental extension.

Therefore, with specific notation for this chapter, we have D := K [Y ], Q :=
K (Y ), and the primitive elements of D are the linear factors (Y − α) where
α ∈ K .

For a fixed α ∈ K , we have

Dp = K [Y ]/(Y − α) ≡ K , Dpn = K [Y ]/(Y − α)n;

πn : K [Y ] → K [Y ]/(Y − α)n

is the canonical projection, and

ρn : K [Y ]/(Y − α)n → K [Y ]
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the map which sends f ∈ K [Y ]/(Y − α)n into the unique polynomial g ∈
K [Y ] such that deg(g) < n and πn(g) = f .

So let us be given a primitive squarefree polynomial

g(Y, X) ∈ K [Y, X ] = K [Y ][X ];
by random choices, we can obtain α ∈ K which is not a root of both lc(g) ∈
K [Y ] and the discriminant of g in K [Y ], so that lc(g)(α) �= 0 and π(g) is
squarefree. Then, by whatever factorization algorithm is available in K [X ],
we obtain a factorization π(g) = π(lc(g))

∏r
j=1 g j into irreducible monic

factors, and then, for each n, we can apply the Hensel Lifting Algorithm to
compute monic polynomials G j ∈ K [Y ]/(Y − α)n[X ] such that

for all j, πn(G j ) = g j ;

πn(g) = πn(lc(g))
∏r

j=1 πn(G j );

for all j, πn(G j ) is irreducible;
if g = ∏s

i=1 hi is a factorization into distinct irreducible primitive polyno-
mials in K [Y ][X ], then there is a partition of {1, . . . , r} into s disjoint
subsets I1, . . . , Is such that

πn(hi ) = πn

(
lc(hi )

∏
j∈Ii

G j

)
.

Remark 18.3.1. In this setting, most of the questions posed at the end of the
previous chapter are quite easy:

we can choose n = degY (g);
since lc(hi ) divides lc(g), it would be sufficient to compute lc(g)

lc(hi )
hi instead

of hi , the advantage being that we know the leading coefficient of lc(g)
lc(hi )

hi :
it is nothing more than lc(g)!

The only difficult problem is how to compute the partition∪s
i=1 Ii = {1, . . . , r}.

In order to solve this question, let us remark that:

Lemma 18.3.2. Let g, α, g j , n,G j , hi , Ii be as above and assume

n ≥ degY (g).

Then, for all i, 1 ≤ i ≤ s, we have

lc(g)
lc(hi )

hi = ρnπn

(
lc(g)

∏
j∈Ii

G j

)
divides lc(g)g.
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Proof Both are polynomials whose degree in Y is bound by n and their image
under πn is the same, so they are equal.
Moreover, let hi1 be such that g = hi hi1; then( lc(g)

lc(hi )
hi

)( lc(g)

lc(hi1)
hi1

)
= lc(g)g.

This lemma suggests the hypothesis that, in order to check whether I ⊆
{1, . . . , r} is one of the subsets Ii giving the factors hi , we could check whether

ρnπn

(
lc(g)

∏
j∈I

G j

)

divides lc(g)g. The hypothesis is correct as proved by the next

Proposition 18.3.3. Let g, α, g j , n,G j , hi , Ii be as above and assume

n ≥ degY (g).

Let I be a minimal subset of {1, . . . , r} such that

H := ρnπn

(
lc(g)

∏
j∈I

G j

)

divides lc(g)g; then Prim(H) is an irreducible factor of g.

Proof We have lc(g)g = H H1 for some H1 ∈ K [Y ][X ], and so

g = Prim(H)Prim(H1).

Assume Prim(H) is not irreducible, so that Prim(H) = H11 H12. Then

πn(H11)πn(H12) = πn(Prim(H))

is associated to
∏

j∈I G j . So there is J ⊂ I such that πn(H11) is associated to∏
j∈J G j and then

ρnπn

(
lc(g)

∏
j∈J

G j

)
= lc(g)

lc(H11)
H11

divides lc(g)g, in contradiction to the minimality of I .
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Fig. 18.2. Zassenhaus’ Algorithm

[ f1, . . . , fs ] := Zassenhaus − Factorization( f )
where

f (Y, X) ∈ K (Y )[X ] is a squarefree polynomial
fi (Y, X) ∈ K (Y )[X ] are monic irreducible polynomials
f = f1, . . . , fr

g := Prim( f )
Repeat

chooserandom α ∈ K
until lc(g)(α) �= 0 and π(g) is squarefree
[g1, . . . , gr ] := Factorization(g(α, X), K )
n := degY (g)
q := pn

(G1, . . . ,Gr ) := HenselLifting(g, g1, . . . , gr , (Y − α), n)
S := {I : I ⊆ {1, . . . , r}}, T := {1, . . . , r}, h := g,List := []
While #(min< S) ≤ #(T )

2 do
I := min< S
S := S \ {I }
H := ρnπn

(
lc(g)

∏
j∈I G j

)
If H divides lc(h)h then

T := T \ I
h := h/H
List := List ∪ [lc(H)−1 H ]

List ∪ [h]

Algorithm 18.3.4. The above proposition answers the question of how to find
the partition elements Ii : they are the minimal subsets satisfying the above
property.

Finding the factors hi of g by combining the G j s is then just book-keeping.
Zassenhaus’ Algorithm for factorization over K (Y ) can be now described in

Figure 18.2.
We will denote by < some total ordering on the subsets of {1, . . . , r}

such that

I ⊂ J �⇒ I < J ;
in the description below we order the subsets so that subsets of lesser cardinal-
ity are lesser; another choice is to order them so that the lesser subsets I are
those such that

∑
j∈I deg(G j ) is lesser.

Remark 18.3.5. Let us remark that:

by an iterative application of this algorithm, we obtain factorization in
K (Y1, . . . ,Yr )[X ] and an algorithm to factorize primitive polynomials
in K [Y1, . . . ,Yr ][X ];
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therefore, in order to factorize

f ∈ K [X1, . . . , Xn] = K [X1, . . . , Xn−1][Xn],

we compute, by gcd, Cont( f ) ∈ K [X1, . . . , Xn−1] and Prim( f ) ∈
K [X1, . . . , Xn−1][Xn]. Prim( f ) is then factorized by the algorithm
above, while the same algorithm is recursively applied to factorize
Cont( f ).

The scheme discussed above is a simplification of the original Zassenhaus
Algorithm for factorizing over Z. The original tool is essentially
Proposition 18.3.3. But when D := Z, the choice of n requires the ability
to bound the coefficients of the factors of a polynomial f in terms of its
own coefficients; this ability goes back to Cauchy whose results will be
discussed in the next section.

18.4 Cauchy Bounds

For f (X) := ∑d
i=0 ai Xi ∈ C[X ], we will denote

| f | := max{|ai | : 0 ≤ i ≤ d}.
In order to get a hint of how to choose n for a factorization algorithm in Q we

need to evaluate the absolute value of the roots of f in terms of its coefficients,
and more precisely in terms of | f |:
Proposition 18.4.1 (Cauchy). Let f (X) := ∑d

i=0 ai Xi ∈ C[X ] and let α ∈C

be a root of f . Then:

(1) |α| ≤ 1 + | f |
|ad | .

(2) Let Ri := i
√

d|ad−i |
|ad | , R := maxi {Ri }. Then |α| ≤ R.

(3) Let Si := i
√ |ad−i |

|ad | , S := maxi Si . Then |α| < 2S.

Proof

(1) If |α| ≤ 1, the claim is obviously true. So let us assume |α| > 1.
Then, since f (α) = 0,

adα
d = −

d−1∑
i=0

aiα
i ,

and therefore:

|ad ||α|d ≤
d−1∑
i=0

|ai ||α|i
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≤ | f |
d−1∑
i=0

|α|i

= | f |
(
|α|d − 1

)
(|α| − 1)−1

≤ | f ||α|d (|α| − 1)−1

so that

|ad | (|α| − 1) ≤ | f |,
whence the claim.

(2) Let j be such that

|a j ||α| j ≥ |ai ||α|i , for all i.

As above we have

|ad ||α|d ≤
d−1∑
i=0

|ai ||α|i ≤ d|a j ||α| j

so that

|α| ≤ d− j

√
d|a j |
|ad | .

(3) If |α| ≤ S, there is nothing to prove, so we can assume |α| > S. Then since

|ad−i |
|ad | ≤ Si ,

we have

|α|d ≤
d−1∑
i=0

|ai ||α|i
|ad | ≤

d−1∑
i=0

Sd−i |α|i ,

from which, setting

β := |α|
S
,

and dividing by Sd , we have

βd ≤
d−1∑
i=0

β i ;

since β > 1, then

(β − 1)βd ≤ βd − 1 < βd

and therefore β − 1 < 1, β < 2, |α| < 2S.
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The following result shows that (2) and (3) are nearly optimal:

Proposition 18.4.2. Let f (X) := ∑d
i=0 ai Xi ∈ C[X ] and let Si , S be as in

Proposition 18.4.1.
Then there is α ∈ C such that f (α) = 0 and |α| ≥ S

d .

Proof Let us denote by α1, . . . , αd the d roots of f and let us order them so
that

|α1| ≥ |α2| ≥ · · · ≥ |αd |.
Let j be such that S j = S. Since ad− j = (−1) j adσ j (α1, . . . , αd), then

|ad |
(

d

j

)
|α1 · · ·α j | ≥ |ad− j |.

Therefore

d j |α1| j ≥
(

d

j

)
|α1 · · ·α j | ≥ |ad− j |

|ad |

and so d|α1| ≥ j
√ |ad− j |

|ad | = S j = S, |α1| ≥ S
d .

A sort of vice-versa of the results of Proposition 18.4.1 is much easier to
obtain through Newton results (Section 6.2):

Proposition 18.4.3. Let f (X) ∈ C[X ] be a polynomial and let g(X) ∈ C[X ]
be a monic factor of f such that deg(g) = d.

Let R := max{|α| : α ∈ C, f (α) = 0}.
Then |g| ≤ max{(d

k

)
Rk : k ≤ d}.

Proof Let α1, . . . , αd be the roots of g(X) = Xd +∑d−1
i=0 ai Xi . Then, since

ak = (−1)kσk(α1, . . . , αd), we get |ak | ≤
(d

k

)
Rk .

Remark 18.4.4. It is clear that the results of Proposition 18.4.1 and 18.4.3
allow us, given a polynomial f (X) ∈ C[X ], to evaluate |g| in terms of | f | for
any factor g of f . A stronger result, but one not so easy to prove is Landau
Mignotte Inequality2:

2 M. Mignotte, Some useful bounds in B. Buchberger, G.E. Collins, R. Loos (eds.) Computer
Algebra, System and Algebraic Computation, Springer, 1982
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Proposition 18.4.5 (Landau–Mignotte Inequality). Let

Q :=
q∑

i=0

bi Xi , P :=
d∑

i=0

ai Xi ∈ Z[X ].

If Q divides P, then, denoting

‖P‖ :=
√√√√ d∑

i=0

|ai |2,

we have
q∑

i=0

bi ≤ 2q |bq

ad
| ‖P‖.

Later we will also need another result of Mignotte:

Proposition 18.4.6. Let Q, P ∈ Z[X ] be such that Q divides P. Then, setting
m := deg(Q)

‖Q‖ ≤
(

2m

m

) 1
2

‖P‖.

18.5 Factorization over the Rationals

We are now able to discuss the original Zassenhaus proposal for using
Berlekamp’s Algorithm and the Hensel Lemma to obtain factorization over
Q and, by the Gauss Lemma, over Z.

Therefore, specializing the notation of Section 18.1, we have D := Z, Q :=
Q and the primitive elements of D are the integer primes p.

For a fixed prime p ∈ Z, we have Dp = Zp, Dpn = Zpn ;

πn : Z → Zpn

is the canonical projection, and

ρn : Zpn → Z

the map which sends a ∈ Zpn into the unique integer ρn(a) such that

πn(ρn(a)) = a,
− pn

2 < a ≤ pn

2 .
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With an abuse of notation

πn : Z[X ] → Zpn [X ]

is the canonical projection, and

ρn : Zpn [X ] → Z[X ]

denotes the polynomial extension.
So let us be given a primitive squarefree polynomial g(X) ∈ Z[X ]; by ran-

dom choices, we can obtain a prime p ∈ Z which divides neither lc(g) nor the
discriminant of g, so that π(g) is squarefree.

Then, by Berlekamp and Hensel, we obtain, for a suitable n, monic
polynomials

G1, . . . ,Gr ∈ Zpn [X ]

such that

πn(g) = πn(lc(g))
∏r

j=1 πn(G j );

for all j, πn(G j ) is irreducible;

if g = ∏s
i=1 hi is a factorization into distinct irreducible primitive polyno-

mials in Z[X ], then there is a partition of {1, . . . , r} into s disjoint subsets
I1, . . . , Is such that

πn(hi ) = πn

(
lc(hi )

∏
j∈Ii

G j

)
.

Remark 18.5.1. The questions posed at the end of Section 18.1 can be now
solved easily:

choosing the ‘suitable’ n requires just an application of the results of the
previous section;

the leading coefficient of hi can be assumed to be lc(g), just by evalu-
ating, instead of hi , its associate h0 := lc(g)

lc(hi )
hi (to evaluate |h0| see

Lemma 18.5.2);
computing the partition of {1, . . . , r} could be obtained as in Section 18.3,

provided that Proposition 18.3.3 can be generalized to this setting.

Therefore, our task now is to prove Proposition 18.5.4 below.

Lemma 18.5.2. Let g(X) ∈ Z[X ] be a primitive polynomial and let R be such
that R ≥ |h1| for each monic irreducible factor h1 of g ∈ Q[X ].

For each primitive irreducible factor h of g, we have

lc(h) divides lc(g);

|h| ≤ ∣∣lc(h)∣∣R;
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let h0 := (lc(g)/ lc(h))h ∈ Z[X ]. Then

lc(h0) = lc(g) and

|h0| ≤ | lc(g)|R.

Lemma 18.5.3. Let g, p, g j , n,G j , hi , Ii be as above, q = pn and assume∣∣∣∣ lc(g)

lc(hi )

∣∣∣∣ |hi | < q

2
.

Then for all i , denoting

Hi := ρnπn

(
lc(g)

∏
j∈Ii

G j

)
,

we have lc(g)
lc(hi )

hi = Hi .

Proof In fact by Lemma 18.2.2, we know that

πn(hi ) = πn

(
lc(hi )

∏
j∈Ii

G j

)
.

Therefore

lc(g)

lc(hi )
hi ≡ ρnπn

(
lc(g)

∏
j∈Ii

G j

)
(mod q).

Since both |Hi | and
∣∣ lc(g)

lc(hi )

∣∣ |hi | are less than q
2 , then hi = Hi .

Proposition 18.5.4. Under the same notation:

(1) lc(g)
lc(hi )

hi = Hi divides lc(g)g.
(2) Let I be a minimal subset of {1, . . . , r} such that

H := ρnπn

(
lc(g)

∏
j∈I

G j

)

divides lc(g)g; then Prim(H) is an irreducible factor of g.

Proof

(1) Let hi1 be such that g = hi hi1; then( lc(g)

lc(hi )
hi

)( lc(g)

lc(hi1)
hi1

)
= lc(g)g.
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Fig. 18.3. Berlekamp–Hensel–Zassenhaus’s Algorithm

[ f1, . . . , fs ] := BHZ − Factorization( f )
where

f (X) ∈ Q[X ] is a squarefree polynomial
fi (X) ∈ Q[X ] are monic irreducible polynomials
f = f1, . . . , fr

g := Prim( f )
Compute R such that R ≥ |h1|, for all h1 monic irreducible factors of f in Q[X ].
Repeat

chooserandom p ∈ Z prime
until p does not divide lc(g) and (g mod p) is squarefree
[g1, . . . , gr ] := Factorization(g,Zp)

Compute n such that pn

2 ≥
∣∣∣lc(g)∣∣∣R

(G1, . . . ,Gr ) := HenselLifting(g, g1, . . . , gr , p, n)
S := {I : I ⊆ {1, . . . , r}}, T := {1, . . . , r}, h := g,List := []
While #(min< S) ≤ #(T )

2 do
I := min< S
S := S \ {I }
H := ρnπn

(
lc(g)

∏
j∈I G j

)
If H divides lc(h)h then

T := T \ I
h := h

H
List := List ∪ [lc(H)−1 H ]

List ∪ [h]

(2) We have lc(g)g = H H1 for some H1 ∈ Z[X ], and so

g = Prim(H)Prim(H1).

Assume Prim(H) is not irreducible, so Prim(H) = H11 H12. Then
πn(H11)πn(H12) = πn(Prim(H)) is associated to

∏
j∈I G j . So there is

J ⊂ I such that πn(H11) is associated to
∏

j∈J G j and then

H11 ≡ ρnπn

(
lc(g)

∏
j∈J

G j

)
= lc(g)

lc(H11)
H11(mod q)

divides lc(g)g, in contradiction to the minimality of I .

Algorithm 18.5.5 (Berlekamp–Hensel–Zassenhaus). On the basis of these re-
sults, we can now present the Berlekamp–Hensel–Zassenhaus Factorization
Algorithm for Q[X ] (Figure 18.3).
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Example 18.5.6. An elementary illustration of the algorithm is given by
Example 18.1.4 and Example 18.1.7, where we discussed the factorization of

f = 4X6 + 27X5 − 38X4 − 6X3 + 70X2 − 105X + 49

= (4X4 − X3 − 3X2 + 8X − 7)(X2 + 7X − 7)

and, through Hensel we obtained the factorization in Z81

f = (X2 + 7X − 7)(X2 − 25X − 13)(X2 − 36X − 17).

Since 4|h| ≤ 40 for the factors h of f , we could apply Zassenhaus’ proposal
and we just note that

ρ4
(
π4

(
4(X2 + 7X − 7)

))
and

ρ4
(
π4

(
4(X2 − 25X − 13)(X2 − 36X − 17)

)) = 4X4−X3−3X2+8X−7

divide, in fact, 4 f .

18.6 Swinnerton-Dyer Polynomials

Remark 18.6.1. From the computations of Chapter 15 we can deduce that, if
α ∈ C is an 8th root of unity,

Q(α) = Q(i,
√

2),
the cyclotomic polynomial f8 = X4 + 1 factorizes into quadratic or linear

factors in any finite field.

This curious behaviour is shared by a series of polynomials introduced by
Swinnerton-Dyer (1969).

Definition 18.6.2. Let

P := {p ∈ N : p is prime } ∪ {−1}
and for each finite subset P := {p1, . . . , pn} ⊂ P let

αP := √
p1 +√

p2 + · · · + √
pn .

The minimal polynomial sP of αP is the Swinnerton-Dyer polynomial pro-
duced by P.

Our aim is to prove that, for any prime q ∈ N, sP factorizes in Zq into linear
and quadratic factors.

Let us fix P := {p1, . . . , pn} ⊂ P; since our argument is by induction, we
will also denote for all i, 1 ≤ i ≤ n,

Pi := {p1, . . . , pi },
Ki := Q(

√
p1,

√
p2, . . . ,

√
pi ),
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αi := αPi =
√

p1 +√
p2 + · · · + √

pi ,

si := sPi , the minimal polynomial of αi .

Lemma 18.6.3. With the notation above, for all i :

(1) si ∈ Z[X ];
(2) A Q-vector basis of Ki is

Vi :=


√∏

j∈S

p j : S ⊆ {1, . . . , i}

;

(3) [Ki : Q] = 2i ;
(4) Ki = Q[αi ].

Proof Since the claim is trivial when i = 1, let us assume it is true for i = n−1
and let us prove it for i = n.

(1) By the definition we have

sn[X ] = sn−1(X +√
pn)sn−1(X −√

pn)

and so, by conjugation, sn−1 ∈ Z[X ] implies sn ∈ Z[X ].
(2) We have just to prove that

√
pn �∈ SpanQ(Vn−1) : otherwise we would

have a relation

√
pn =

∑
S⊆{1,...,n−1}

cS

√∏
j∈S

p j , cS ∈ Q, (18.1)

in which, since pn is a prime different from those in Pn−1,

at least two coefficients cS1 , cS0 are non-zero, and
there exists k, 1 ≤ k ≤ n − 1, which occurs in one of S0 and S1 but not

in the other.

To fix the notation let us say k = n − 1 ∈ S1, so that we can rewrite
Equation 18.1 as

√
pn = d0 + d1

√
pn−1, d0, d1 ∈ Kn−2, d0 �= 0, d1 �= 0

from which, by squaring, we deduce

√
pn−1 =

pn − d2
0 − d2

1 pn−1

2d0d1
∈ Kn−2

getting the hoped-for contradiction.
(3) Obvious.
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(4) To compute a primitive element of Kn = Q(αn−1,
√

pn) we only have to
apply the construction implicit in Theorem 8.4.5: we have to consider the
polynomials f := sn−1 and g := X2− pn . To prove that αn = αn−1+√pn

is a primitive element of Kn[X ] we have to prove that the only common
root of h(X) = f (αn−1+√pn−X) and g(X) is

√
pn , which is tantamount

to proving that −√pn is not a root of sn−1(αn−1 +√
pn − X): this is true,

since, otherwise, there would be a root β of sn−1 such that

β − αn−1 = 2
√

pn

while the left-hand side is in Kn−1 and the right-hand side is not.

Corollary 18.6.4. The irreducible polynomial sP is such that deg(sP ) = 2n

and its roots are

±√p1 ±√
p2 + · · · ± √

pn .

Theorem 18.6.5. For each P ⊂ P , and for each prime q ∈ N, the projection
of the irreducible polynomial sP ∈ Z[X ] in Zq [X ] factorizes there into linear
and quadratic factors.

Proof By the above results we know that sP is irreducible in Z[X ].
On the other hand, since G F(q2) contains the square roots of each integer
modulo q, the projection of sP splits into G F(q2), and therefore, by conjuga-
tion, its factors are either linear or quadratic in G F(q).

Remark 18.6.6. Kaltofen, Musser and Saunder3 generalized the Swinnerton-
Dyer polynomials, to the minimal polynomials whose root is

βr,P := r
√

p1 + r
√

p2 + · · · + r
√

pn

where r is a prime; such polynomials have a similar property to Swinnerton-
Dyer’s : for any prime q ∈ N, such polynomials factorize in Zq into factors of
degree at most r .

The proof presented here of the Swinnerton-Dyer property essentially
applies also to their more general situation.

3 In A generalized class of polynomials that are hard to factor, SIAM J. Comp. 12 (1983),
473–479.
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Remark 18.6.7. Assume we are applying the Berlekamp–Hensel–Zassenhaus
Algorithm to a Swinnerton-Dyer polynomial s whose degree is d := deg(s) =
2r . Whatever prime we choose, the algorithm gives us at least d

2 = 2r−1 lifted
polynomials to combine together to obtain a potential factor. Since the poly-

nomial is irreducible all the 2
d
2 combinations will fail, before we find out that

s is irreducible.
The complexity of the Berlekamp–Hensel–Zassenhaus Algorithm is there-

fore exponential in the degree! A factorization algorithm whose complexity is
polynomial was proposed in 1982 by Lenstra–Lenstra–Lovász.

18.7 L3 Algorithm

To describe the Lenstra–Lenstra–Lovász (L3) factorization algorithm4 for
polynomials in Z[X ] I will apply the notation of Section 18.2 to the case
D = Z.

Therefore let us assume we are given a primitive squarefree polynomial
g(X) ∈ Z[X ] whose factorization g = ∏s

i=1 fi into distinct irreducible prim-
itive polynomials in Z[X ] we aim to compute. Let us denote d := deg(g) and
fix a prime p such that p does not divide lc(g) and the discriminant of g.

Then for all n ∈ N,

πn : Z[X ] → Zpn [X ] is the canonical projection,
ρn : Zpn [X ] → Z[X ] is the map such that for each polynomial f (X) ∈

Zpn [X ], ρn( f ) := ∑m
i=0 ai Xi ∈ Z[X ] satisfies

πnρn( f ) = f ,
− pn

2 < ai ≤ pn

2 for all i ,

and ρ and π will denote respectively ρ1 and π1.
Let π(g) = lc(π(g))

∏r
j=1 g j be its factorization into monic irreducible

factors g j ∈ Zp[X ]; since π(g) is squarefree, we have

gcd(g j , gi ) = 1, i �= j.

For a suitable n ∈ N, let us set q := pn ; we recall that there are monic
polynomials G1, . . . ,Gr ∈ Z[X ] such that

for all j, π(G j ) = g j ;
πn(g) = πn(lc(g))

∏r
j=1 πn(G j );

4 In this presentation I limit myself to giving just a sketch of the L3 algorithm and I direct the
interested reader to the original paper.

A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring Polynomials with Rational Coefficients, Math.
Ann. 261 (1982) 515–534.
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for all j, πn(G j ) is irreducible;
gcd(Gi ,G j ) = 1, i �= j.

Moreover, for each polynomial h(X) := ∑δ
i=0 ai Xi ∈ Z[X ] we will denote

‖h‖ :=
√√√√ δ∑

i=0

|ai |2.

With this notation, it is clear that

for all J, 1 ≤ J ≤ r, there exists I, 1 ≤ I ≤ s : π(G J ) = gJ divides π( f I );
moreover

Proposition 18.7.1. Let h(X) ∈ Z[X ] be a factor of g. Then the following
conditions are equivalent:

(1) π(G J ) divides π(h) in Zp[X ],
(2) πn(G J ) divides πn(h) in Zq [X ],
(3) f I divides h in Z[X ].

In particular πn(G J ) divides πn( f I ) in Zq [X ].

Proof

(3) �⇒ (2) : obvious.
(2) �⇒ (1) : obvious.
(1) �⇒ (3) : since π(g) is squarefree, π(G J ) does not divide π( g

h ) in Zp[X ];
therefore f I does not divide g

h in Z[X ], so that it divides h.

The last statement follows taking h = f I .

The Lenstra–Lenstra–Lovász paper gives a proof of the following

Fact 18.7.2. With the notation above, let G J be a factor of πn(g) and let l :=
deg(G J ). For each integer m ≥ l satisfying the inequality

pnl > 2
dm
2

(
2m

m

) d
2

‖g‖m+d (18.2)

it is possible – with polynomial complexity in m, and log(p)n – to decide
whether deg( f I ) ≤ m, in which case it is also possible to determine fI .
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Fig. 18.4. Lenstra–Lenstra–Lovász Algorithm

[ f1, . . . , fs ] := L3 − Factorization( f )
where

f (X) ∈ Q[X ] is a squarefree polynomial
fi (X) ∈ Q[X ] are monic irreducible polynomials
f = f1, . . . , fr

List := []
g := Prim( f )
Repeat

chooserandom p ∈ Z prime
until p does not divide lc(g) and (g mod p) is squarefree
[g1, . . . , gr ] := Factorization(g,Zp)
I := {i : 1 ≤ i ≤ r}
While card(I) > 1 do

Choose J ∈ I
I := I \ {J }
l := deg(gJ ), d := deg(g),m := d
Compute n such that q := pn satisfies Equation 18.2
(G J , HJ ) := HenselLifting(g, ρ(gJ ),

∏
i∈I ρ(gi ), p, n)

m := deg(gJ )
Repeat

(bool, h) := Query(g,G J ,m)
m := m + 1

until bool = true
List := List ∪ [h], g := g

hI := {i ∈ I : gi does not divide (h mod p)}
List ∪ [g]

Algorithm 18.7.3 (Lenstra–Lenstra–Lovász). Thanks to Fact 18.7.2, the L3 al-
gorithm (Figure 18.4) allows us to factorize a polynomial f (X) ∈ Q[X ]; the
complexity of this algorithm can be proved to be

O
(

deg( f )12 + deg( f )9 log3(‖ f ‖)).
In my presentation I denote by (bool, h) := Query(g,G J ,m) the algorithm

whose existence is implied by Fact 18.7.2, and whose output is

(bool, h) :=
{
(true, f I ) if deg( f I ) ≤ m,

(false,G J ) otherwise.

The proof of Fact 18.7.2 is based on study of the lattice

L(m) := {h(X) ∈ Z[X ] : deg(h) ≤ m, πn(h) = πn(G J )}.
Definition 18.7.4. For two vectors v := (v1, . . . , vk), w := (w1, . . . , wk),

in Rk ,

(v,w) :=
k∑

i=1

viwi
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denotes the usual scalar product in Rk and

‖v‖ :=
√√√√ d∑

i=0

vi
2

the ordinary euclidean length, so that ‖v‖2 = (v, v).

A subset L ⊂ Rk is called a lattice if there is a basis B := {b1, . . . , bk} of
Rk such that

L =
{

k∑
i=1

ai bi : ai ∈ Z

}
.

If B := {b1, . . . , bk} is a basis of a lattice L ⊂ Rk with bi := (bi1, . . . , bik),
for all i , the discriminant of L is

d(L) := | det(bi j )|
which can be proved to be independent of the choice of the basis B and to be
the volume of the parallelepiped whose sides are the bi s.

Given a basis B := {b1, . . . , bk} of Rk , the Gram–Schmidt process allows us
to compute an orthogonal basis B∗ := {b∗1, . . . , b∗k } and real numbersµi j , 1 ≤
j < i ≤ k by the inductive formula

µi j :=
(bi , b∗j )
(b∗j , b∗j )

, b∗i := bi −
i−1∑
j=1

µi j b
∗
j .

A basis B := {b1, . . . , bk} of a lattice L ⊂ Rk is called reduced if

|µi j | ≤ 1
2 , for all i, j, 1 ≤ j < i ≤ k,

‖b∗i + µi i−1b∗i−1‖2 ≥ 3
4‖b∗i−1‖2, for all i, 1 < i ≤ k.

Lemma 18.7.5. Let B := {b1, . . . , bk} be a reduced basis of a lattice L ⊂ Rk ,
and let B∗ := {b∗1, . . . , b∗k } be the orthogonal basis produced by the Gram–
Schmidt process. Then:

(1) d(L) = ∏
i ‖b∗i ‖.

(2) ‖bi‖ ≥ ‖b∗i ‖, for all i.

(3) d(L) ≤ ∏
i ‖bi‖ (Hadamard’s inequality).

(4) ‖b j‖2 ≤ 2i−1‖b∗i ‖2, for all i, j, 1 ≤ j ≤ i ≤ k.

(5) ‖b1‖ ≤ 2
k−1

2 ‖β‖, for all β ∈ L , β �= 0.

(6) If {β1, . . . , βt } ⊂ L is a linearly independent set, then

‖b j‖2 ≤ 2k−1 max{‖βi‖2 : 1 ≤ i ≤ t}, for all j, 1 ≤ j ≤ t.
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Proof

(1) Since B∗ consists of an orthogonal basis.
(2) ‖bi‖2 = ‖b∗i +

∑i−1
j=1 µi j b∗j‖2 = ‖b∗i ‖2 +∑i−1

j=1 µ
2
i j‖b∗j‖2 ≥ ‖b∗i ‖2.

(3) The claim follows since for all i, ‖bi‖ ≥ ‖b∗i ‖.
(4) We have

‖b∗i ‖2 ≥
(

3

4
− µ2

i i−1

)
‖b∗i−1‖2 ≥ 1

2
‖b∗i−1‖2

, for all i,

so that

‖b∗j‖2 ≤ 2i− j‖b∗i ‖2
, for all i, j, j ≤ i.

Therefore

‖bi‖2 =
∥∥∥∥∥b∗i +

i−1∑
j=1

µi j b
∗
j

∥∥∥∥∥
2

= ‖b∗i ‖2 +
i−1∑
j=1

µ2
i j‖b∗j‖2

≤ ‖b∗i ‖2 +
i−1∑
j=1

1

4
2i− j‖b∗i ‖2

=
(

1 + 1

4
(2i − 2)

)
‖b∗i ‖2

≤ 2i−1‖b∗i ‖2
.

As a consequence

‖b j‖2 ≤ 2 j−1‖b∗j‖2 ≤ 2i−1‖b∗i ‖2 for all i, j, j ≤ i.

(5) Let ai ∈ Z and αi ∈ R be such that β = ∑
i ai bi =

∑
i αi b∗i .

Let I := max{i : ai �= 0}, so that 0 �= αI = aI . Therefore

‖β‖2 ≥ α2
I ‖b∗I ‖2 ≥ ‖b∗I ‖2

,

and

2k−1‖β‖2 ≥ 2k−1‖b∗I ‖2 ≥ 2I−1‖b∗I ‖2 ≥ ‖b1‖2.

(6) With an argument analogous to the above proof, we can deduce that for all
j, 1 ≤ j ≤ t, there is i( j), 1 ≤ i( j) ≤ k such that

‖β j‖2 ≥ ‖bi( j)‖2,

β j is contained in the R-vector space spanned by {b1, . . . , bi( j)}.
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Therefore, after renumbering the β j s so that i(1) ≤ i(2) ≤ · · · ≤ i(t), we
can deduce that j ≤ i( j): in fact, we would otherwise get the contradiction
that the linearly independent set {β1, . . . , β j } is contained in the R-vector
space spanned by {b1, . . . , b j−1}.
Therefore

‖b j‖2 ≤ 2i( j)−1‖b∗i( j)‖2 ≤ 2k−1 max{‖βi‖2}.

Fact 18.7.6. Let B := {b1, . . . , bk} be a basis of a lattice L ⊂ Rk . Then,
there is a basis B′ := {b′1, . . . , b′k} with b′i := (b′i1, . . . , b′ik), for all i such that

b′i j = 0, for all i, j, 1 ≤ i < j ≤ k.

Let us identify the set {h(X) ∈ R[X ] : deg(h) ≤ m} with the R-vector space
generated by {1, X, . . . , Xm} and each polynomial h(X) := ∑m

i=0 ai Xi with
the vector (a0, a1, . . . , am).

With this identification it is clear that the lattice

L(m) := {h(X) ∈ Z[X ] : deg(h) ≤ m, πn(h) = πn(G J )}
is generated by the basis

{q Xi : 0 ≤ i < l} ∪ {G J Xi : 0 ≤ i ≤ m − l}.
Proposition 18.7.7. Let b(X) ∈ L(m) satisfy

ql > ‖g‖m‖b‖d .

Then b is divisible by f I and, in particular, gcd(g, b) �= 1.

Proof We may assume b �= 0 and let us set h := gcd(g, b). By Proposi-
tion 18.7.1 it is sufficient to prove that π(G J ) divides π(h) in Zp[X ].
If this were not the case, then gcd(π(G J ), π(h)) = 1 and there would be
λ′, µ′, ν′ ∈ Z[X ] such that

λ′G J + µ′h = 1 − pν′. (18.3)

In order to derive a contradiction from Equation 18.3, let us set e := deg(h),
m′ := deg(b) so that 0 ≤ e ≤ m′ ≤ m. Then we consider the Z-vector space

{λg+µb−ν : λ,µ, ν ∈ Z[X ], deg(λ) < m′−e, deg(µ) < d−e, deg(ν) < e},
which is a subvector space M of the Z-vector space generated by

{Xi : 0 ≤ i ≤ d + m′ − e − 1},
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and we intend to show that M is a lattice whose basis is

{Xi : 0 ≤ i < e} ∪ {Xi g : 0 ≤ i < m′ − e} ∪ {Xi b : 0 ≤ i < d − e}.
In fact, let us assume that λg + µb − ν = 0: then h divides ν while

deg(ν) < e = deg(h),

so that

λg + µb = ν = 0;
therefore λ g

h = −µ b
h and g

h divides µ since gcd( g
h ,

b
h ) = 1; however,

deg(µ) < d − e = deg

(
g

h

)

so that λ = µ = ν = 0 and the assertion is proved.
From Hadamard’s inequality we deduce that

d(M) ≤ ‖g‖m′−e‖b‖d−e ≤ ‖g‖m‖b‖d < ql . (18.4)

Let ν ∈ M be such that deg(ν) < e + l and let Q, R ∈ Z[X ] be such that

ν = Qh + R,
deg(R) < e.

Multiplying Equation 18.3 by Q
∑n−1

l=0 piν′i we obtain λ′′, µ′′, ν′′ ∈ Z[X ]
such that

λ′′G J + µ′′Qh = Q + pnν′′. (18.5)

Now πn(G J ) divides both πn(b) – since, by assumption, b ∈ L(m) –, and
πn(g); therefore πn(G J ) divides πn(h) and, consequently, πn(Q); however,
since G J is monic,

deg(πn(G J )) = l > deg((πn(Q)),

so that πn(Q) = 0.
This implies that

for all ν ∈ M, deg(ν) < e + l �⇒ deg(πn(ν) < e.

Since we can choose a basis B := {bi : 0 ≤ i ≤ d + m′ − e − 1} of M such
that deg(bi ) = i, for all i and, by the result above,

lc(bi ) ≡ 0(mod q), for all i, e ≤ i < e + l,

we deduce that d(M) ≥ ql which gives the required contradiction with
Equation 18.4.
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Proposition 18.7.8. Suppose that B := {bi : 1 ≤ i ≤ m + 1} is a reduced
basis of L(m) and that Equation 18.2 holds. Then

deg( f I ) ≤ m ⇐⇒ ‖b1‖ < d
√

pnl/‖g‖m .

Proof One implication is a corollary of Propoistion 18.7.7 since

deg( f I ) ≤ deg(b1) ≤ m.

To prove the converse, let us assume deg( f I ) ≤ m so that f I ∈ L(m) by
Proposition 18.7.1; since (by Proposition 18.4.6)

‖ f I ‖ ≤
(

2m

m

)1/2

‖g‖,

applying Lemma 18.7.5(5) with β = f I we deduce

‖b1‖ ≤ 2m/2‖ f I ‖ ≤ 2m/2
(

2m

m

)1/2

‖g‖,

from which the claim follows, applying Equation 18.2.

Proposition 18.7.9. Suppose that B := {bi : 1 ≤ i ≤ m + 1} is a reduced
basis of L(m), that Equation 18.2 holds, and that there is a j, 1 ≤ j ≤ m + 1
such that

‖b j‖ < d
√

pnl/‖g‖m (18.6)

and let t be the largest such j . Then

deg( f I ) = m + 1 − t;
f I = gcd(b1, . . . , bt );
Equation 18.6 holds for each j ≤ t.

Proof Let

I := { j : 1 ≤ j ≤ m + 1, Equation 18.6 holds for j}
and f := gcd(b j : j ∈ I).
By Proposition 18.7.7 we know that f I divides b j , for all j ∈ I, and so f I

divides f.
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For each j ∈ I, deg(b j ) ≤ m and b j is in the Z-vector space spanned by

{fXi , 0 ≤ i ≤ m − deg(f)}.
Since the b j s are linearly independent, this implies

card(I) ≤ m + 1 − deg(f).

By Proposition 18.4.6

‖ f I Xi‖ = ‖ f I ‖ ≤
(

2m

m

)1/2

‖g‖, for all i, 0 ≤ i ≤ m − deg( f I );

therefore, applying Lemma 18.7.5(6) with βi = f I Xi , we deduce

‖b j‖ ≤ 2m/2‖ f I ‖ ≤ 2m/2
(

2m

m

)1/2

‖g‖, for all j, 1 ≤ j ≤ m + 1 − deg( f I ).

Therefore, by Equation 18.2, we can conclude that { j : 1 ≤ j ≤ m + 1 −
deg( f I )} ⊂ I.
Since f I divides f, we can conclude that

deg( f I ) = deg(f),

{ j : 1 ≤ j ≤ m + 1 − deg( f I )} = I;
t = m + 1 − deg( f I ).

In order to conclude the proof by showing that f I and f are associated, we
just need to show that f is primitive: since Prim(b1) is divisible by f I , it is an
element of L(m); since b1 ∈ B, then Cont(b1) = 1 and f is primitive, being a
factor of b1.

Theorem 18.7.10 (Lenstra–Lenstra–Lovász). Given a basis

B := {b1, . . . , bk}
of a lattice L ⊂ Rk there is an algorithm which computes a reduced basis of
L with complexity O(k4log(B)) where B ∈ R is such that

B ≥ max
(

2, ‖b1‖2, . . . , ‖bk‖
)
.

Algorithm 18.7.11. We can now prove Fact 18.7.2, except the complexity claim,
by describing the algorithm (bool, h) := Query(g,G J ,m).

Let us compute a reduced basis {b1, . . . , bm+1} of L(m) from the basis

B := {q Xi : 0 ≤ i < l} ∪ {G J Xi : 0 ≤ i < m − l}.
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Then, we check whether ‖b1‖ < d
√

pnl/‖g‖m .

If this is false, by Proposition 18.7.8 we can conclude that deg( f I ) > m and
we return (false,G J );
otherwise, by Proposition 18.7.9 we can conclude that f I = gcd(b1, . . . , bt )

and we return (true, gcd(b1, . . . , bt )).
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19.1 Kronecker’s Dream

In concluding this part I want to give a résumé of the state of the art of poly-
nomial factorization over K [X ], K a field:

The Berlekamp and Cantor–Zassenhaus Algorithms allow factorization if K
is a finite field;

The Berlekamp–Hensel–Zassenhaus and Lenstra–Lenstra–Lovász factoriza-
tion algorithms allows us to lift factorization over Zp to one over Z

and, by the Gauss Lemma, to one over Q, so that factorization is available
over the prime fields.

Algebraic extensions K = F(α) are dealt with by the Kronecker Algorithm
(Section 16.3) if F is infinite, and by Berlekamp otherwise,

while Hensel–Zassenhaus allows us to factorize multivariate polynomials in
F[X1, . . . , Xn] if factorization over F is available, so that

the Gauss Lemma allows us to deal with transcendental extensions K =
F(X)

so that factorization is available over every field explicitly given in Kronecker’s
Model.

19.2 Van der Waerden’s Example

Within the development of computational techniques for polynomial ideal the-
ory, started by the benchmark work by G. Herrmann1, van der Waerden pointed
to a fascinating limitation of the ability to build fields within Kronecker’s

1 Die Frage der endlichen viele Schritten in der Theorie der Polynomideal, Math. Ann. 95 (1926)
736–788.

415
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Model. He proved:

Proposition 19.2.1 (van der Waerden (1929)). The following are equivalent:

the existence of a general method for solving any problem of the kind
‘does an integer n exit satisfying the property E(n)?’,

where E is any property of the integers whose validity for any integer n is
solvable in endlichvielen Schritten;

the existence of a general method for factorizing any polynomial with coef-
ficients in any explicitly given field Q(α1, . . . , αn, . . .) which is obtained
from Q by the adjunction of a (countable) infinite set of elements.

Proof Assume there is a property E of the integers for which

for all n ∈ N, it is possible to decide whether n satisfies E(n);
it is impossible to decide whether there exists n ∈ N satisfying E(n).

Then for all n ∈ N, define

αn :=
{

i if n > 0 is the least integer which satisfies E√
pn otherwise,

where pn is the nth prime.
Setting K := Q(α1, . . . , αn, . . .) and f := X2 + 1, the ability to decide, in
K[X ], whether f is irreducible or factorizes as

f = (X − i)(X + i),

is equivalent to the ability to decide whether i ∈ K and so to decide whether
there exists n ∈ N satisfying E(n).
Conversely, assume that for any general property E of the integers whose va-
lidity is solvable in endlichvielen Schritten for any integer n, there is a method
for solving any problem of the kind ‘does an integer n exits satisfying the
property E(n)?’.
Let then K := Q(α1, . . . , αn, . . .) and f [X ] be any polynomial in K[X ]. Let
us just consider for the property E(n) that f is reducible in Q(α1, . . . , αn). It
is clear that f is reducible in K[X ], if there is an n such that f is reducible in

Q(α1, . . . , αn)[X ],

i.e. E(n) holds.
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Since for all n ∈ N it is possible to decide in endlichvielen Schritten whether f
is reducible in Q(α1, . . . , αn)[X ], i.e. whether E(n) holds, then the assumption
guarantees the ability to decide the reducibility of f in K[X ].

Corollary 19.2.2. Assume there is a property E of N for which

for all n ∈ N, it is possible to decide whether n satisfies E(n);
it is impossible to decide whether there exists n ∈ N satisfying E(n).

Then there is a field K, explicitly given in Kronecker’s Model and a polynomial
f (X) ∈ K[X ] for which factorization is not computable.

Historical Remark 19.2.3. About the existence of such a property E , van der
Waerden remarked:

Bei der Bildung des Beispiels, das den wesentlichen Inhart dieses Bewieses ausmacht,
hätte ich mich naturlich auch auf eine bestimmte Eigenschaft E(n), etwa ein bes-
timmtes bis jetzt noch nicht beobachtetes Vorkommnis in der Dezimalbruchentwick-
lung von π , stützen können. Ich habe das vermieden, weil die Voraussetzung der Un-
entscheidbarkeit eines solchen Existenzproblems nicht nur völlig unberechtigt, sondern
auch für den Beweis zu einem gewissen Grade unwesentlich ist. Wesentlich ist nur die
Voraussetzung einer Unentscheidbarkeit überhaupt, eines ‘Ignorabimus’ in bezug auf
Existenzprobleme der genannten Art.
In the construction of the example that establishes the essential content of this proof,
I could naturally also have supported my proof on a determined property, perhaps a
determined event not yet observed in the decimal expansion of π . I have avoided this,
since the assumption of the undecidability of such problems existence is not only com-
pletely unjustified, but also the proving of it is to a certain degree of minor importance.
It is especially essential only to the hypothesis of undecidability, an ‘Ignorabimus’ in
respect of existence problems of this kind.

To give a flavour of the kind of property which van der Waerden was think-
ing of, let me suggest the following:

E(n) is the property that
there are n 9s in the first 2n digits of the expansion of π :
for any n, it is possible to compute the first 2n digits of the expansion of
π and so decide whether E(n) holds. However, any finite expansion of π
allows us to get, say, 2m digits and so to decide on the validity of E(n)
for n ≤ m, but, when E(n) is false for all n ≤ m, we still do not know
whether there exists any n > m such that E(n) holds.

E(n) is the property that
2n cannot be represented as a sum of 2 prime numbers.
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Clearly it is possible to check in a finite number of computations whether
E(n) holds for any n. Deciding whether there is n ∈ N satisfying E(n) is
the same as disproving the Goldbach Conjecture.

A more deeply puzzling example, which I used in my lessons until 1994 is
the following: E(n) is the property that
there are non-trivial solutions of the diophantine equation xn + yn = zn .
In 1994 Fermat’s Theorem was proved, showing that there is no n ∈ N

satisfying E(n).

The kind of property E which van der Waerden was looking for could be
formalized as a function µ : N → N for which

it is possible to ‘compute’ µ(n) for all n ∈ N;
for any n ∈ N it is impossible to decide whether

there exists m ∈ N : µ(m) = n.

Functions of this kind are called semirecursive functions and their existence
was proved in 1936 by Kleene, Church and Turing.

Remark 19.2.4. In the same setting but in a more jocular mode, consider three
semirecursive functions µ, ν1, ν2 and define

λ(n) :=
{

0 if ν2(n) = 0 and there exists m ≤ n : µ(m) = 0
1 otherwise,

and αn, βn, for all n ∈ N \ {0}, as follows, where again pi denotes the i th
prime:

αn :=



i if n is the least integer such that
ν1(n) = 0 or µ(n) = 0√

pn otherwise,

βn :=



i if n is the least integer such that
ν2(n) = 0 and there exists m ≤ n : µ(m) = 0√

pn otherwise.

Setting

A := Q(α1, . . . , αn, . . .), B := Q(β1, . . . , βn, . . .),

we have




0 ∈ Imµ �⇒ i ∈ A

{
i �∈ B if 0 �∈ Im λ

i ∈ B if 0 ∈ Im λ

0 �∈ Imµ �⇒
{

i �∈ A if 0 �∈ Im ν1

i ∈ A if 0 ∈ Im ν1
i �∈ B.
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As a consequence:

if 0 ∈ Imµ, it is possible to factorize X2 + 1 in A but not in B,
if 0 �∈ Imµ, it is possible to factorize X2 + 1 in B but not in A,

and, since it is impossible to decide whether 0 ∈ Imµ:

there exist two fields A and B, in one of which X2 + 1 is factorizable while
in the other it is not, but it is impossible to decide which is which.

This gives a sort of Mathematical Heisenberg Principle of Indetermination.
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