
Research in computational group theory, an active subfield of computational alge-
bra, has emphasized four areas: finite permutation groups, finite solvable groups,
matrix representations of finite groups, and finitely presented groups. This book
deals with the last of these areas. It is the first text to present the fundamental algo-
rithmic ideas which have been developed to compute with finitely presented groups
that are infinite, or at least not obviously finite. The book describes methods for
working with elements, subgroups, and quotient groups of a finitely presented group.
The author emphasizes the connection with fundamental algorithms from theoret-
ical computer science, particularly the theory of automata and formal languages,
from computational number theory, and from computational commutative algebra.
The LLL lattice reduction algorithm and various algorithms for Hermite and Smith
normal forms are used to study the abelian quotients of a finitely presented group.
The work of Baumslag, Cannonito, and Miller on computing nonabelian polycyclic
quotients is described as a generalization of Buchberger's Grobner basis methods to
right ideals in the integral group ring of a polycyclic group. Researchers in compu-
tational group theory, mathematicians interested in finitely presented groups, and
theoretical computer scientists will find this book useful.
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Preface

In 1970, John Cannon, Joachim Neubiiser, and I considered the possibility
of jointly producing a single book which would cover all of computational
group theory. A draft table of contents was even produced, but the project
was not completed. It is a measure of how far the subject has progressed in
the past 20 years that it would now take at least four substantial books to
cover the field, not including the necessary background material on group
theory and the design and analysis of algorithms. In addition to a book like
this one on computing with finitely presented groups, there would be books
on computing with permutation groups, on computing with finite solvable
groups, and on computing characters and modular representations of finite
groups.

Computational group theory was originated by individuals trained as
group theorists. However, there has been a steadily increasing participa-
tion in the subject by computer scientists. There are two reasons for this
phenomenon. First, group-theoretic algorithms, particularly ones related
to permutation groups, were found to be useful in attacking the graph
isomorphism problem, a central problem in theoretical computer science.
Once computer scientists began looking at group-theoretic algorithms, it
was natural for them to attempt to determine the complexity of these al-
gorithms. Second, the techniques and data structures of computer science
have proved valuable in improving existing group-theoretic algorithms and
in developing new ones.

This book is intended to be a graduate-level text. I have made a delib-
erate attempt to make the material accessible to students of both mathe-
matics and computer science. The first chapter contains a quick review of
elementary group theory, which would not be necessary if the target audi-
ence consisted only of graduate students in mathematics. It also contains
a discussion of backtrack searches, which should be familiar to any under-
graduate computer science major but which are probably not frequently
encountered by mathematics majors. I suspect that initially the computer
scientists may have an easier time than the mathematicians, since the first
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half of the book includes a substantial discussion of the theory of automata
and rational languages, topics more familiar to computer scientists than to
mathematicians. Moreover, the first half requires only relatively elemen-
tary results about groups. However, in the second half, deeper results from
group theory are required, and here the computer scientists may find the
going somewhat more difficult.

Ideally this book should be accompanied by computer software that
would permit the reader to experiment with implementations of the proce-
dure discussed. Unfortunately, an appropriate package does not currently
exist, although several of the available systems would be useful in connec-
tion with certain topics. Writing my own software would have delayed the
publication of the book by several years, at least. The lack of computer sup-
port has meant that substantial examples and exercises have been largely
omitted, since it is only with the help of the proper software that the reader
would be able to explore such material successfully.

I have tried to include as many exercises as I could, but some of the later
sections are not as well covered as I would have preferred. The exercises
are of two types. Some require only a routine application of a technique
discussed in that section. Others are intended to provide new insight. It is
not always immediately obvious into which category a particular exercise
falls, so the reader is encouraged to look carefully at all of the exercises.
The more challenging ones are marked with an asterisk. In a few cases, I
don't know the answer to the problems.

A substantial effort was made to include as complete a set of references as
possible. To assist instructors in providing reading lists, the Bibliography
has been divided into two sections, the first containing books on topics
related to the material discussed here, and the second listing articles in
journals and conference proceedings. References to books are enclosed in
brackets, whereas references to articles are enclosed in parentheses. Michael
Vaughan-Lee has written a book on the restricted Burnside problem and
an article on the efficient computation of products in large p-groups. Both
works appeared in 1990. Information about the book [Vaughan-Lee 1990]
is in the book section of the Bibliography, but to find publication data for
(Vaughan-Lee 1990) one must look in the articles section.

It is not usual for an author of a mathematics text to make evaluative
judgments concerning the works in the Bibliography, and I have agonized
over my decision to break with this practice. However, I feel an obligation
to the reader to state my opinion that the quality of the papers dealing
with the computation of Hermite and Smith normal forms is on average
noticeably below the level in the other works cited. In a significant num-
ber of these papers there are deficiencies in the exposition and even in the
validity of the arguments. I shall mention only one example of the prob-
lems I found. Given a set of homogeneous linear equations with integer
coefficients, there are efforts to describe a basis of integer solutions. The
authors frequently fail to make clear whether they are referring to a vector
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space basis for the set of all rational solutions of the system such that each
basis vector has integer components, or to a Z-basis for the subgroup of
all integer vectors which are solutions of the system. Having reached my
conclusion, I was faced with several options. I could remain silent, I could
provide critiques of individual papers, or I could omit the papers I found
questionable from the Bibliography. None of these possibilities seemed ap-
propriate. The problems are significant enough that I could not remain
silent. There are simply too many papers to permit me to make detailed
comments concerning each one. I do not have the time, and the book is
already long. I have read through, at least quickly, all of these papers, so I
feel obligated to include them in the Bibliography. Moreover, each of them
has some merit. I realize that by making these comments and not identify-
ing the papers I find deficient, I am raising doubts about the quality of all
of them, including papers with substantial contributions. To the authors
of these papers I apologize.

It is traditional for the preface to explain the numbering system used for
sections, propositions, examples, exercises, figures, and tables. Section 3.4
is the fourth section of Chapter 3. Sections and chapters carrying an aster-
isk may be skipped without affecting the continuity of the material. The
second proposition in Section 3.4 is referred to as Proposition 4.2 or as
Proposition 4.2 of Chapter 3. The end of a proof is signaled by the sym-
bol Within a given section, the propositions, theorems, lemmas, and
corollaries are numbers in a single series. Examples and exercises are num-
bered separately. The numbering for figures and tables always includes the
number of the chapter. Thus, Table 1.8.1 is the first table in Section 8 of
Chapter 1.

A great many people have assisted in the preparation of this book. John
Cannon, George Havas, Joachim Neubiiser, and Michael Newman all made
suggestions which improved the exposition. Special thanks go to Steve Schi-
bell, who read the entire manuscript and provided detailed comments which
were extremely useful. Gretchen Ostheimer and Eddie Lo helped with the
proofreading. The staff of Cambridge University Press have been very sup-
portive. David Tranah has quietly but persistently been after me to write
a book for Cambridge for roughly a decade. Lauren Cowles has greatly
facilitated my dealings with the New York office. Finally, Edith Fein-
stein and Jim Mobley have shown remarkable tolerance for my somewhat
idiosyncratic style.

Considerable effort has been expended in trying to get the algorithm
descriptions in this book right. However, errors almost certainly remain,
and I would welcome information about any problems which are discovered.
Other comments are also encouraged. My current address for electronic
mail is sims@math.rutgers.edu.

Charles Sims





Introduction

This book describes computational methods for studying subgroups and
quotient groups of finitely presented groups. The procedures discussed be-
long to one of the oldest and most highly developed areas of computational
group theory. In order to better understand the context for this material,
it is useful to know something about computational group theory in general
and its place within the area of symbolic computation.

The mathematical uses of computers can be divided roughly into numeric
and nonnumeric applications. Numeric computation involves primarily cal-
culations in which real numbers are approximated by elements from a
fixed set of rational numbers, called floating-point numbers. Such com-
putation is usually associated with the mathematical discipline numerical
analysis. Examples of numerical techniques are Simpson's rule for approx-
imating definite integrals and Newton's method for approximating zeros of
functions.

One nonnumeric application of computers to mathematics is symbolic
computation. Although it is impossible to give a precise definition, symbolic
computation normally involves representing mathematical objects exactly
and performing exact calculations with these representations. It includes ef-
forts to automate many of the techniques taught to high school students and
college undergraduates, such as the manipulation of polynomials and ratio-
nal functions, differentiation and integration in closed form, and expansion
in Taylor series.

The term "computer algebra" is frequently used as a synonym for "sym-
bolic computation". The books [Akritas 1989], [Buchberger, Collins, &
Loos 1983], [Davenport, Siret, & Tournier 1988], [Della Dora & Fitch 1989],
and [Geddes, Czapor, & Labahn 1992] all have this phrase in their titles.
Although the term "computer algebra" is well established, it conflicts some-
what with current usage within mathematics, where "algebra" usually is
used in the narrower sense of "abstract algebra", the study of algebraic
structures such as groups, rings, fields, and modules. The word "com-
puter" in the phrase "computer algebra" is also not quite accurate. It is
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true that much of what is done is motivated by the existence of computers.
Nevertheless, the algebraic algorithms which have been developed represent
substantial mathematical achievements, whose importance is not dependent
entirely on their being incorporated into computer programs. Many of the
algorithms, including a number presented in this book, can be useful in
calculations carried out by hand.

Within symbolic computation there is a rapidly expanding area of compu-
tational (abstract) algebra, which is the study of procedures for manipulat-
ing objects from abstract algebra with particular concern for practicality.
Computational group theory is the part of computational algebra which
considers problems related to groups. Other flourishing subfields of com-
putational algebra are computational number theory, which is described in
such books as [Pohst & Zassenhaus 1989] and [Bressoud 1989], and compu-
tational algebraic geometry, where the software package Macaulay of David
Bayer and Michael Stillman has had a major impact.

Symbolic computation is at the border between mathematics and com-
puter science. The objects being manipulated are mathematical. However,
the algorithmic ideas often have come from computer science, and individ-
uals who identify themselves as computer scientists have made important
contributions to the subject. This book emphasizes the close connec-
tion between techniques for investigating finitely presented groups and
such topics as formal language theory and critical-pair/completion pro-
cedures, which are now considered to be important parts of computer
science.

A point of continuing debate is the role of complexity theory in symbolic
computation. The traditional complexity measure in theoretical computer
science is asymptotic worst-case complexity. For users of symbolic software,
worst-case analyses are often too pessimistic. Of much more relevance is
average-case complexity. However, average-case analyses are lacking for
many of the most important algebraic algorithms. Moreover, there are
cases in which no agreement has been reached on what the average case
is. Symbolic computations often require a great deal of computer memory.
Frequently one has to tailor a program to fit a specific problem in order to
get a solution on a particular computer. In this situation, it does not make
sense to talk about asymptotic behavior.

In computation with finitely presented groups there is an even more fun-
damental difficulty with complexity. Many problems connected with such
groups have been shown not to have general algorithmic solutions. There
are procedures for trying to solve some of these problems, but the proce-
dures terminate only if the solution has a particular form. In the remaining
cases, the procedures continue indefinitely. There is no version of complex-
ity analysis which adequately handles this situation. Ideally, one would
want a program to give up quickly if it is not going to get an answer and to
work hard when a solution can be found. However, because usually there
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is no quick way to determine from the input data which outcome is likely,
deciding when to throw in the towel is difficult.

Although we do not have an adequate theoretical framework on which
to base comparisons of group-theoretic procedures and their computer im-
plementations, we still need to make decisions about which techniques to
use on a particular problem. Frequently, all that we can do is apply com-
peting methods to a selection of test problems and compare the results.
Experimental evidence is better than nothing, but one must be very careful
about drawing conclusions from such evidence. It is hard to be sure that
the sample problems are truly representative of the class of problems under
consideration.

A computational problem in group theory typically begins "Given a
group G, determine ...". Our ability to solve the problem depends heavily
on the way G is given. There are three methods commonly used to specify
a group G:

(a) One may describe G as the subgroup generated by an explicit finite
list of elements in some other group H which is considered to be
well-known.

(b) One may define G to be the group of automorphisms or symmetries
of some combinatorial or algebraic object.

(c) One may give a finite presentation for G by generators and relations.

In (a), the group H could be the symmetric group on a finite set, the
group of invertible n-by-n matrices over a commutative ring, or a free group
of finite rank. Examples of the types of objects which might arise in (b) are
graphs, block designs, and, in the case of Galois groups, finite extensions of
one field by another. Problems related to groups given as in (c) are the main
subject of this book, although finitely generated subgroups of free groups
are also discussed at some length. The greatest successes in computational
group theory so far have come in connection with permutation groups on
finite sets, finite solvable groups, and finitely presented groups.

The study of groups given by presentations is called combinatorial group
theory. The primary references on the subject are the books [Magnus,
Karrass, & Solitar 1976] and [Lyndon & Schupp 1977]. The history of the
subject given in [Chandler & Magnus 1982] also provides useful insights.
Many examples of finite presentations of groups can be found in [Coxeter
& Moser 19801.

As noted earlier, the computer science literature is also relevant. The
three volumes by Donald Knuth contain a great deal of material related to
our topic. Volume 2 is a particularly valuable reference. Other books de-
scribing the fundamental algorithms of computer science with applications
to computational group theory are [Aho, Hopcroft, & Ullman 1974] and
[Sedgewick 1990].
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Because this is one of the first texts to cover a major area within com-
putational group theory, some remarks on the history of the field have
been included. Most chapters conclude with a brief section of historical
notes. More information, particularly about the history of general group
theory, combinatorial group theory, and abstract algebra, can be found in
[Dieudonne 1978], [Chandler & Magnus 1982], [Waerden 1985], and [Wuss-
ing 1984]. Computational problems related to groups have been studied for
at least 150 years. Algorithmic questions have been a part of combinato-
rial group theory from its beginning. In fact, the algorithms discussed in
Chapter 8 are based directly on techniques developed in the middle of the
nineteenth century, before presentations of groups were defined and before
the concept of an abstract group was clarified.

Perhaps the first references to the potential of computers for group-
theoretic calculations came from Alan Turing and Maxwell Newman. At
the end of World War II, Turing began work on the design of an "auto-
matic computing engine". As quoted in [Hodges 1983], Turing suggested in
a document circulated at the end of 1945 that one of the tasks which might
be assigned to this engine was the enumeration of the groups of order 720.
In connection with the inauguration in 1951 of a computer at Manchester
University, Newman described a probabilistic method by which computers
might be able to obtain a crude estimate of the number of groups of order
28 (M. H. A. Newman 1951).

During the 1950s, group-theoretic calculations using machines were car-
ried out by several researchers. However, it is reasonable to say that the
field of computational group theory came into existence with the work of
Joachim Neubuser, who was the first individual to make the application of
computers to group theory his primary professional activity. Neubiiser's
first paper appeared in 1960.

By the late 1960s, the use of computers in abstract algebra was suffi-
ciently common for a conference on the subject to be organized in Oxford,
August 29 to September 2, 1967. The proceedings [Leech 1970] of that
conference contained 35 papers, at least 20 of which dealt with groups. In
his survey (Neubuser 1970) in those proceedings, Neubuser listed roughly
130 publications related to the use of computers in group theory. Not all
the contributions to computational group theory which grew out of the Ox-
ford conference were reflected in the proceedings; see the notes at the end
of Chapters 5 and 11.

During the 1970s, computational group theorists participated frequently
in conferences devoted primarily to traditional computer algebra. Thus
the proceedings of the Second Symposium on Symbolic and Algebraic Ma-
nipulation sponsored by the Association for Computing Machinery (ACM)
in 1971, the 1976 ACM Symposium on Symbolic and Algebraic Computa-
tion, and EUROSAM '79, an international symposium held in Rance, all
contain important papers on computational group theory. More recently,
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computational group theory has been treated for the purpose of organiz-
ing conferences as a field of its own or as a subfield within group theory.
The first conference devoted exclusively to computational group theory was
organized in Durham in 1982 by the London Mathematical Society. The
proceedings [Atkinson 1984] of the Durham meeting give a good indication
of the breadth of the field.

Let us conclude this introduction with a brief survey of the software
currently available for symbolic computation. This is an area of rapid
change, so the information given here can be expected to become outdated
fairly quickly. The classical symbolic systems provide facilities for work-
ing with individual polynomials, rational functions, matrices, Taylor series,
and similar objects, primarily with coefficients taken from the real num-
bers. Among the classical systems currently available are REDUCE and
MACSYMA, which have been around for some time, and Maple and Math-
ematica, which are considerably newer. Axiom (formerly SCRATCHPAD),
developed at IBM's Yorktown Heights laboratory, is a system which allows
the user some flexibility to work with elements of more general algebraic
systems. A new version, written in C, of George Collins's system SAC2
has recently been introduced. Henri Cohen and collaborators have cre-
ated a package called Pari, which is aimed primarily at number theory but
contains an implementation of the LLL algorithm discussed in Chapter 8.
The system Macaulay referred to earlier supports computation in algebraic
geometry and commutative algebra.

Although quite a bit of group-theoretic software is available, no single
package contains implementations of all the procedures discussed in this
book. The most mature system for group-theoretic computation is Cayley,
developed at Sydney University by John Cannon. A recent addition is
the system GAP designed under the direction of Joachim Neubiiser at the
Technische Hochschule in Aachen. Various programs of a more specialized
nature have been written at the Australian National University in Canberra
under the leadership of Michael Newman. George Havas of the University
of Queensland in Brisbane has produced free-standing implementations of
several of the procedures presented here. David Epstein and Derek Holt at
the University of Warwick have produced implementations of the Knuth-
Bendix procedure for strings described in Chapter 2, as well as a number
of other programs for studying "automatic groups" and for exploring the
possibility that two given finitely presented groups are isomorphic.
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Basic concepts

It was not possible to make the exposition in this book self-contained and
keep the book to a reasonable length. In a number of places, results from
various parts of mathematics and theoretical computer science are stated
without proof. This chapter reviews several of the most fundamental con-
cepts with which the reader is assumed to be somewhat familiar. More
material on sets, monoids, and groups can be found in algebra texts like
[Sims 1984] and books on group theory such as [Hall 1959]. Two stan-
dard sources for topics in computer science are [Knuth 1973] and [Aho,
Hopcroft, & Ullman 1974]. After a brief discussion of some concepts in set
theory, we define monoids, summarize some important facts about groups,
consider presentations of monoids and groups by generators and relations,
contemplate some sobering facts about our ability to compute using pre-
sentations, agree upon a method for describing computational procedures,
look at some basic algorithms for computing with integers, and study an
important search technique. Readers to whom most of these topics are
familiar may wish to proceed directly to Chapter 2 and refer back to this
chapter as needed.

1.1 Set-theoretic preliminaries
The concept of a set is central to the formal exposition of mathematics.
Despite the importance of set theory, most mathematics texts do not make
explicit the axioms for set theory being used. Instead, they adopt a "naive"
set theory based largely on intuition.

This book will be no exception. We shall assume that the reader has a
basic understanding of sets and set membership, as well as the operations of
union, intersection, and difference of sets. The empty set will be denoted 0.
If A is a subset of B, then we shall write A C_ B or B D A. To indicate that
A is a proper subset of B, we shall write A C B or B D A. The cartesian
product of sets X and Y is the set X x Y of all ordered pairs (x, y) with
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x in X and yin Y. The diagonal of X x X is D = {(x, x) I x E X1. For a
finite set A, the cardinality of A will be denoted JAI.

A relation from X to Y is a subset R of X x Y. If X = Y, then we say
that R is a relation on X. If (x, y) is in R, then we sometimes write xRy.
Suppose A is a subset of X. Then AR is defined to be

{yEYI aRyforsome ainA}.

The inverse of R is the relation R-1 = {(y, x) I (x, y) E R}.
Let R be a relation from X to Y and let S be a relation from Y to Z.

The composition of R and S is the relation T from X to Z which consists
of the pairs (x, z) such that there is an element y in Y with the property
that xRy and ySz. We write T = R o S.

An equivalence relation on a set X is a relation E on X such that the
following conditions hold:

(i) xEx for all x in X.
(ii) If xEy, then yEx.
(iii) If xEy and yEz, then xEz.

These conditions are called reflexivity, symmetry, and transitivity, respec-
tively. Symmetry can be stated as E-1 = E, and transitivity means that
E o E is contained in E. Suppose E is an equivalence relation on X. Then
for x and y in X, the sets {x}E and {y}E are either equal or disjoint. Thus
II = {{x}E I x E X} is a partition of X. The elements of II are called the
equivalence classes of E.

A function from X to Y is a relation f from X to Y such that for all
x in X the set {x} f has exactly one element. We write f: X -p Y and
refer to X as the domain of f. If y is the unique element of {x} f , then we
write y = x f , y = f (x), y = xf, or x -- y, depending on the context. The
composition of two functions is a function. The term "map" is a synonym
for "function". Let E be an equivalence relation on X and let II be the set
of equivalence classes of E. The natural map from X to II is the function
7r such that ir(x) = {x}E for all x in X.

Let f be a function from X to Y. We say that f is surjective or that f
maps X onto Y if X f = Y. We say that f is injective if for all x1 and x2
in X the equality f (x1) = f (x2) implies that x1 = x2. A function which is
both injective and surjective is said to be bijective, or to be a one-to-one
correspondence. Functions which are surjective, injective, or bijective are
called surjections, injections, or bijections, respectively. A permutation of
a set X is a bijection from X to itself. The identity function on a set X is
the function e such that e(x) = x for all x in X. Clearly e is a permutation
of X.
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A convenient way to describe a function on a small set is by a matrix
with two rows. The first row lists the domain and the second row gives the
images. For example,

C0

1 2 3 4)
2 4 0 1 3

defines the permutation of {0, 1, 2, 3, 4} which takes 0 to 2, 1 to 4, and so on.

Exercises

1.1. Show that the intersection of any nonempty collection of equivalence relations on a set
is again an equivalence relation.

1.2. Suppose that El, E2, ... is an infinite sequence of equivalence relations on X and E2 is
contained in Ei+i for i > 1. Prove that the union of the Ez is an equivalence relation
on X.

1.3. Show that for any set X there is a bijection from the set of equivalence relations on X
to the set of partitions of X.

1.4. Suppose f : X - Y, g: Y - Z, and h: Y -* Z are functions. Assume that f is surjective
and fog = f oh. Show that g = h.

1.2 Monoids
A semigroup is a pair (S, ) consisting of a set S and an associative binary
operation on S. That is, is a function from S x S to S, and if we write
the image under of a pair (s, t) as s t, then

s (t u) = (s t) u

for all s, t, and u in S. If s t = t s for all s and tin S, then is said to be
commutative. In this book, multiplicative notation will normally be used
for binary operations. Thus s t will be written st and referred to as the
product of s and t. When the binary operation is clear from the context,
we refer to S as the semigroup. If S is finite, then the order of S is IS1.

An identity element in a semigroup S is an element e of S such that
es = se = s for all s in S. There is at most one identity element in S,
and if S has an identity element, then S is called a monoid. Note that
a semigroup may be empty, but a monoid always contains at least one
element, its identity element. When multiplicative notation is used, the
identity element is normally denoted by 1.

Let M be a monoid with identity element 1. An element u of M is called
a unit if there is an element v of M such that uv = vu = 1. The element v
is unique. We call v the inverse of u and write v = u-1. If u is a unit with
inverse v, then v is a unit with inverse u. The inverse of 1 is 1.
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Suppose that x and y are units in M. Then

(xy)(y-1x-1)

= x(yy
1)x-1 = x1x-1 = xx-1 = 1.

9

Similarly (y-1x-1)(xy) = 1, so xy is a unit with inverse y-1x-1. Therefore
the set of units is closed under multiplication.

If x is an element of a semigroup S and n is a positive integer, then xn
is defined to be xx ... x, where the product has n factors. If S is a monoid
with identity element 1, then we set x0 = 1. If x is a unit and n < 0, then
x" is defined to be (x-1)-n. The usual laws of exponents hold.

A group is a monoid in which every element is a unit. If M is a monoid,
then the set of units of M is a group. Commutative groups are said to be
abelian.

Here are some examples of monoids and groups.

Example 2.1. Let St be a set. The set Rel(1l) of all relations on S2 is a monoid
with composition as the binary operation. The identity element of Rel(c)
is the identity function on Q. The set Fun(s) of functions on SZ is also a
monoid. The group of units of Rel(i) is the set Sym(c) of permutations
of S2, which is called the symmetric group on Q. If i is finite and cI = n,
then

I Rel(S2)I = 2", I Fun(1)I = n", I SYm(ci)I = n!.

If S2 = {1, 2, ... , n}, then Sym(c) is also denoted Sym(n).

Example 2.2. Let R be a commutative ring with identity and let n be a
positive integer. The set M,M(R) of n-by-n matrices over R is a monoid
under matrix multiplication. The identity element of Mn(R) is the n-by-n
identity matrix. The group of units of Mn(R) is the general linear group
GL(n, R) of matrices whose determinants are units in R.

Example 2.3. Let M be a monoid. For subsets A and B of M let AB =
lab I a E A, b E B}. With this operation the set of all subsets of M becomes
a monoid.

Example 2.4. The set Z of integers with addition as the binary operation
is a group. The identity element is 0 and the inverse of n is -n. (Here we
use additive, not multiplicative, notation.)

Example 2.5. The set Z with multiplication as the binary operation is a
monoid with identity element 1. Only 1 and -1 are units.

Example 2.6. The set N of nonnegative integers with addition as the binary
operation is a monoid. Only 0 is a unit.
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Example 2.7. Let X be a set. A word over X is a finite sequence U =
u1, u2, .... un of elements of X. The empty sequence, with m = 0, will be
denoted E. The set of all words over X is denoted X*. If V = v1, ... , v,, is
also a word over X, then UV is defined to be the word u1, ... , u,n, vi, ... ,V0.
With this multiplication, X* is a monoid with identity element e, which is
the only unit. We identify an element x of X with the corresponding word
of length 1, and we write U as ul ... u,,n, without commas. The length m
of U is denoted JUI. Words over some finite set X will be the objects most
commonly manipulated by the algorithms discussed in this book.

If A, B, and C are in X* and U = ABC, then A is a prefix of U, C is
a suffix of U, and B is a subword of U. If U = ul ... um, then any of the
words uiui+i ... u,nui ... ui_1, 1 < i < m, is called a cyclic permutation of
U, and Ut = u,nu,n_i ... ul is called the reversal of U. The term "string"
is sometimes used as a synonym for "word". In particular, if X = 10, 1},
then elements of X* are frequently referred to as bit strings.

Let M be a monoid with identity element 1. A submonoid of M is a
subset N of M such that the following conditions hold:

(i) 1 is in N.
(ii) If x and y are in N, then xy is in N.

If in addition all elements of N are units and N contains the inverse of
each of its elements, then N is a subgroup of M. A submonoid N is a
monoid under the restriction to N of the binary operation on M. Similarly,
subgroups are groups in their own right.

Example 2.8. Let SZ be a set. The set Fun(1Z) is a submonoid of Rel(1l),
and Sym(Sl) is a subgroup of Rel(1). Let a be an element of Q. The set
of functions f on S2 such that f (a) = a is a submonoid of Fun(1l), and the
set of permutations of St which fix a is a subgroup of Sym(1l).

Example 2.9. The set N is a submonoid of the monoids (Z, +) and (Z, x).
For any integer n, the set n7G of multiples of n is a subgroup of (Z, +).

Proposition 2.1. Let M be a monoid. The intersection of any nonempty
collection of submonoids of M is a submonoid of M. The intersection of
any nonempty collection of subgroups is a subgroup.

Proof. Exercise.

Let Y be a subset of a monoid M. The set N of submonoids of M
which contain Y is nonempty, since M is in N. By Proposition 2.1, the
intersection K of the elements of N is a submonoid. Clearly K contains Y
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and is the smallest submonoid containing Y. We write K = Mon(Y) and
call K the submonoid generated by Y. It is easy to see that K consists of
all elements of M which can be expressed as a product y1... yt with each
y2 in Y. By convention, such a product with t = 0 is defined to be 1.

Some authors write Y* for the submonoid generated by Y. Strictly speak-
ing, Y* is the set of sequences yl,... , yt of elements of Y, and Mon(Y) is
the set of products of these sequences. We shall normally distinguish be-
tween Y* and Mon(Y). However, in Chapter 3 we shall bow to tradition
and write Y* for Mon(Y).

Example 2.10. Let Il = {0, 1,2,3, 4} and let f be the function on Il defined by

0 1 2 3 4

1 2 3 4 1
To determine the submonoid Mon(f) of Fun(Sl), we must compute the
powers of f. Now f0=1 and f 1 =f. Also

0 1 2 3 4

f2=f of 2 3 4 1 2

=-
0 1 2 3 4 0 1 2 3 4

(3 4 1 2 3) f4- (4 1 2 3 4)

f5 = (0 1 2 3 4)
1 2 3 4 1

= f.

Thus f6 = f2, f7 = f3, and so on. Therefore Mon(f) = { f °, f 1, f2, f3, f4}
and Mon(f) has order 5.

Now suppose that Y is a subset of the group of units of a monoid M. The
set of subgroups of M which contain Y is nonempty, so the intersection H
of these subgroups is the smallest subgroup of M containing Y. It is not
hard to see that H is the submonoid of M generated by Y U Y-1, where

Y-1 = {y-1 y E Y}. We shall denote H by Grp(Y).
A group or a monoid is finitely generated if there is a finite set which

generates it. If G is a group, then G is finitely generated as a group if
and only if G is finitely generated as a monoid. For if G = Mon(X), then
G = Grp(X), and if G = Grp(Y), then G = Mon(Y U Y-') and Y U Y-1
is finite if Y is finite. Actually, when Y is finite, we need to add only one
element to Y to be sure of getting a monoid generating set for Grp(Y).

Proposition 2.2. If a group G is generated as a group by n elements, then
G is generated as a monoid by n + 1 elements.
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Proo.f.. Suppose x x generate G as a group. Then x x x-11,..., n n+ 1

xn1 generate G as a monoid. Let y = xl 1 ... xn 1. Then

x21 = xi_lxi_2 ... xlyxnxn_1 ... xi+1I

1 < i < n. Therefore G is generated as a monoid by x1, ... , xn and y.

Proposition 2.2 was first proved in (Dyck 1882), so the result dates from
the very beginning of combinatorial group theory.

A monoid is cyclic if it is generated as a monoid by a single element. A
group is cyclic if it is generated as a group by a single element. If x is an
element of a group, then the order of x is the order of Grp(x), provided
that group is finite. If Grp(x) is infinite, then x is said to have infinite
order.

Proposition 2.3. Let M be a finitely generated monoid. Every generating
set for M contains a finite generating set.

Proof. Let X be a finite generating set for M and let Y be any generating
set. Each element of X can be expressed as a product of elements of Y. For
each x in X choose one such product and let Z be the set of elements of Y
which occur in at least one of the chosen products. Then Z is a finite set,
and the submonoid generated by Z contains X. Therefore Z generates M.

Proposition 2.3 remains true if M is a group and the generating sets are
group generating sets.

Let M and N be monoids with identity elements 1M and 1N, respectively.
A homomorphism from M to N is a function h: M -> N such that

(i) h(1M) = 1N.
(ii) h(xy) = h(x)h(y) for all x and y in M.

If N is a group, then condition (i) follows from condition (ii). If x is a unit
in M, then xx-1 = 1m = x-lx. Therefore

h(x)h(x-1) = h(1M) = 'N = h(x-1)h(x)

Thus h(x) is a unit and h(x)-1 = h(x-1). In particular, if M is a group,
then the image of M under h is a subgroup of N. A homomorphism from M
to M is said to be an endomorphism of M. If a homomorphism h: M -* N
is a bijection, then h is called an isomorphism. In this case, the inverse
map h-1 is also an isomorphism, and M and N are said to be isomor-
phic. A semigroup homomorphism is a map between semigroups satisfying
condition (ii).
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For any set X, the monoid X* is called the free monoid generated by X.
The set S of nonempty words in X * is a subsemigroup of X*, the free
semigroup generated by X. The following proposition justifies the use of
the adjective "free".

Proposition 2.4. Let X be a set and let M be a monoid. For each function
f : X -> M there is a unique extension of f to a homomorphism of X*
into M.

Proof. Let U = u1... u,,n be in X* with each ui in X. The only way to
define f (U) so that f becomes a homomorphism from X* to M is to set
f (U) equal to f (ul) ... f (uIt is easy to check that the map so defined
is a homomorphism.

Here are some basic facts relating submonoids and homomorphisms:

Proposition 2.5. Let f : M -> N be a homomorphism of monoids. If H is
a submonoid of M and K is a submonoid of N, then f (H) is a submonoid
of N and f-1(K) is a submonoid of M. If M and K are groups, then
f-1(K) is a subgroup of M.

Proof. Exercise.

The notion of an ideal is usually encountered first in the study of rings.
However, the concept is also useful in the theory of monoids. Let M be a
monoid. A subset I of M is an ideal if for all x in I and all y in M the
products xy and yx are in I.

Example 2.11. Let 12 be a set. For any integer k > 1, the set Jk of functions
f : St -> Q such that If (St) I < k is an ideal of Fun(I ).

Example 2.12. Let X be a set. For any integer k > 0 the set Ik of words U
in X* such that IUI > k is an ideal of X*. More generally, if U is any subset
of X*, then the set of words having some element of U as a subword is an
ideal of X*.

If we modify the definition of an ideal to require only that xy be in I
when x is in I and y is in M, then the resulting object is called a right
ideal. Similarly, a left ideal is a subset closed under multiplication on the
left by elements of M.

Example 2.13. Let r be a subset of a set Q. The set of functions which map
1 into r is a left ideal of Fun(Q). The set of functions on 12 which are not
injective is a right ideal of Fun(11).
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Example 2.14. Let U be a subset of X*. The set of words having some
element of U as a prefix is a right ideal of X*.

Let I be an ideal of a monoid M. A generating set for I is a subset Y of
M such that

I=MYM={xyz I x,z eM,yeY}.

Since we may take x = z = 1, it follows that Y is a subset of I. A generating
set for a right ideal J of M is a subset T of J such that J = TM. Generating
sets for left ideals are defined in an analogous manner.

A minimal generating set for an ideal I is a generating set Y which
does not properly contain any other generating set. An ideal may have no
minimal generating sets, and it may have many. However, in X* minimal
generating sets exist and are unique.

Proposition 2.6. Let I be an ideal of X* and let U be the set of all ele-
ments of I which do not contain elements of I as proper subwords. Then U
generates I, and U is a subset of every generating set for I. In particular,
U is the unique minimal generating set for I.

Proof. Let U be an element of I. Choose a subword V of U of minimal
length such that V is in I. Then V is in U, and U is in the ideal generated
by U. Therefore U is a generating set for I. Now let V be any generating
set for I and let U be in U. There exist words A and B in X* and V in
V such that U = AVB. By the definition of U we must have A = B = i .

Therefore U is in V.

Proposition 2.7. Let Il C 12 C . . . be an infinite sequence of ideals in X*.
Assume that there is an integer m such that the minimal generating set of
each of the Ij has at most m elements. Then there is an integer n such that
1.7 =I,, Ion >n.

Proof. Let

I=UI;.

It is easy to see that I is an ideal. Let U be the minimal generating set for
I, and suppose that it is possible to find distinct elements U1,... , U,,,+i in
U. There is an index j such that Ii contains all of the U. Let V be the
minimal generating set for Ij. By assumption, not all of the Uz are in V,
and so some Ui contains an element V of V as a proper subword. But V is
in I, so Ui cannot be in U. Therefore U is finite and JUI < m. Thus there is
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an index n such that In contains U. But then In = I and Ij = I,, for j > n.

Proposition 2.6 has analogues for right and left ideals of X*. The minimal
generating set for a right ideal J is the set of elements of J which do not
contain other elements of J as prefixes. For left ideals, substitute "suffixes"
for "prefixes".

Exercises

2.1. Suppose an element u of a monoid has a right inverse v and a left inverse w. Thus
uv = 1 = wu. Show that u is a unit.

2.2. Suppose G is a group. Prove that the only element u of G with u2 = u is the identity
element.

2.3. Let F be a finite field with q elements. Show that I GL(n, F) I is

(qn - 1) (q" - q)...(q" - q"i-1).

2.4. Let M and N be monoids. Define a binary operation on M x N by (a, x) (b, y) = (ab, xy).
Show that M x N is a monoid and the functions a ti (a, 1), x H (1, x), (a, x) F--1 a, and
(a, x) ' x are all homomorphisms. Prove that M x N is a group if both M and N are
groups. The monoid M x N is the direct product of M and N.

2.5. Prove that up to isomorphism there is one infinite cyclic monoid and one infinite cyclic
group.

2.6. Show that any finite cyclic group is a cyclic monoid.
2.7. Let n be a positive integer. Prove that up to isomorphism there are n cyclic monoids

of order n, exactly one of which is a group.
2.8. Show that a submonoid of a finite group is a subgroup.
2.9. Suppose that X is a set with at least two elements. Prove that X* has an infinite,

strictly increasing sequence of ideals.
2.10. Explain why the term "generating set" is preferable to "set of generators".

1.3 Groups
In this section we summarize some basic facts about groups. Because this is
intended to be a review of familiar material, most proofs are omitted. They
can be found in introductory algebra texts and books on group theory.

Suppose that x is an element of a group G and x has finite order n. Then
xn = 1 and xm = 1 if and only if n divides m. If all elements of G have finite
order and these orders are bounded above, then the least common multiple
e of these orders is called the exponent of G. An alternative definition of
the exponent is the smallest positive integer e such that ge = 1 for all g
in G.

Let G be a group and let H be a subgroup of G. The set R = {Hx I x c G}
is a partition of G. The elements of R are the right cosets of H. When
R is finite, its cardinality is denoted IG : HI and is called the index of H
in G. If G is finite, then JGI = IG : HIIH1. The set G = {xH I x E G} is
also a partition of G. Its elements are the left cosets of H in G. There is a
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one-to-one correspondence between R and L. If R = G, then H is said to
be a normal subgroup of G and we write H a G. If H is normal, then R
can be made into a group by defining (Hx)(Hy) to be Hxy. This group is
denoted G/H and is called the quotient group of G by H.

Proposition 3.1. Let H be a subgroup of a group G. The following are
equivalent:

(1) H a G.
(2) Hx = xH for all x in G.
(3) x-1Hx C H for all x in G.

Let f : G -p H be a homomorphism of groups. The kernel off is f -1(1) =
{x E G I f (x) = 1}, which is a normal subgroup of G. Suppose that N is a
normal subgroup of G which is generated by a subset X and Y is a subset of
G whose image under the natural homomorphism from G to GIN generates
GIN. Then G = Grp(X U Y).

Two elements x and y of a group G are conjugate if there is an element
z such that y = z-lxz. Conjugacy is an equivalence relation on G. Its
equivalence classes are called conjugacy classes. Let X be a subset of G.
The subgroup N generated by all of the conjugates of the elements of X is
normal in G. It is the smallest normal subgroup of G containing X. We
call N the normal closure of X in G and denote it Grp(XG).

The notion of conjugacy is extended to subgroups. Two subgroups H and
K of G are conjugate if there is an element z of G such that K = z-'Hz.
A subgroup is normal if and only if it is conjugate only to itself. Conjugate
subgroups are isomorphic.

An isomorphism of a group G with itself is called an automorphism of G.
The set Aut(G) of all automorphisms of G is a subgroup of Sym(G) and
is called the automorphism group of G. Given an element g of G, the map
cp9: G -p G taking u to g-lug is an automorphism, the inner automorphism
induced by g. The map cp: g --> cp9 is a homomorphism of G into Ant (G).
The image of cp is the group Inn(G) of inner automorphisms of G. The
kernel of cp is the center Z(G), the set of elements in G which commute
with every element of G.

Of particular importance are the three isomorphism theorems:

Proposition 3.2. Let f : G --- H be a surjective group homomorphism with
kernel N. Then H is isomorphic to G/N. There is a one-to-one correspon-
dence between subgroups of H and subgroups of G containing N.

Proposition 3.3. Let K be a subgroup of a group G and let Ni G. Then

(1) NK = KN is a subgroup of G.
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(2) KnNiK.
(3) (KN)/N is isomorphic to K/(K n N).

Proposition 3.4. Let H and K be normal subgroups of a group G and
assume that K C_ H. Then H/K is a normal subgroup of G/K, and
(G/K)/(H/K) is isomorphic to G/H.

Suppose that Il is a set. A subgroup G of Sym(1l) is called a permutation
group on Q. If g is in G and a is in S2, then the image of a under g will be
written a9. Since permutations act on the right, the product gh is defined
by a(9h) = (a9)h. The set aG = {a9 I g E G} is the orbit of a under G.
The orbits of G partition ft The stabilizer of a in G is the subgroup
Ca = {g E G I a9 = a}. If aG is finite, then IaGI = IG : GaI. Two elements
of G map a to the same point if and only if they lie in the same right coset
of Ga. If a1,.. . , a,r are distinct elements of 12, then the cycle (a1,.. . , a,)
is the permutation of 12 which maps ai to ai+1, 1 < i < r, maps a, to a1,
and fixes all other points of Q. If 12 is finite, then an element g of Sym(1l)
can be written as a product of disjoint cycles, no two of which move the
same point. This product is essentially unique. If the number of cycles
of even length in the cycle decomposition of g is even, then g is called
an even permutation. The set Alt(Sl) of all even permutations of St is a
subgroup of index 2 in Sym(cl) and is called the alternating group on Q. If
St = {1, ... , n}, then A1t(1) is also denoted Alt(n).

Let G be a permutation group on 12 and let H be a permutation group on
A. We say G and H are isomorphic as permutation groups or permutation
isomorphic if there is an isomorphism or from G to H and a bijection T
from 12 to A such that T(ag) = T(a)O'(9) for all a in 12 and all g in G. The
subgroups Grp((1, 2, 3, 4, 5, 6)) and Grp((1, 2, 3)(4, 5)(6)) of Sym(6) are both
cyclic of order 6 and hence isomorphic. However, the first group has only
one orbit, whereas the second has three orbits. This implies that these
groups are not permutation isomorphic.

An important class of groups is the one consisting of the groups which
satisfy the ascending chain condition on subgroups. This means that there
is no strictly increasing sequence H1 C H2 C ... of subgroups.

Proposition 3.5. A group G satisfies the ascending chain condition on
subgroups if and only if all subgroups of G are finitely generated.

Proof. Suppose first that G has a subgroup H which is not finitely
generated. Choose x1 in H. Then H1 = Grp(xl) is not H, so we may
choose x2 in H - H1. Now H2 = Grp(xl, x2) properly contains H1 and is
not H. Therefore we may choose x3 in H - H2. Continuing in this way, we
construct an infinite sequence x1, x2, ... of elements such that the groups
Hi = Grp(x1,... , xi) form a strictly increasing sequence.



18 1 Basic concepts

Now suppose that all subgroups of G are finitely generated, and let H1 C
H2 C be an infinite, strictly increasing sequence of subgroups in G. The
union H of the Hi is a subgroup, and H is generated by a finite set X.
Each element of X is in some Hi. Thus we may find an index n such that
XCHn. But then H,, =H, so Hi =H,, for all i>n.

The final result of this section describes the subgroups of (Z, +).

Proposition 3.6. Every subgroup of (Z, +) is cyclic and consists of the
multiples of a unique nonnegative integer n.

The quotient of Z by nZ is denoted Zn.

Exercises

3.1. Let H be a subgroup of a group G. Show that a subset U of G is a right coset of H if
and only if {u-1 I u E U) is a left coset of H.

3.2. What is the subgroup of (Z, +) generated by 4 and 6?
3.3. Let g = (1, 3, 5, 7) (2, 4, 6, 8) and h = (1, 4, 7) (2, 3, 6). Express the permutation gh as a

product of disjoint cycles.
3.4. Let G be a finite cyclic group of order n. Show that G has exactly one subgroup of each

order dividing n.
3.5. Suppose that G is an abelian group. Prove that the set of elements of G with finite order

is a subgroup of G.
3.6. Let p be an automorphism of a group G and let N be a subgroup of G. Show that cp(N)

is isomorphic to N and that, if N is normal in G, then cp(N) is normal in G and GIN is
isomorphic to G/cp(N).

3.7. Prove that Inn(G) is a normal subgroup of Aut(G) for any group G.
3.8. Suppose that G is a group generated as a monoid by a set X and H is a subgroup of G.

Show that H is normal in G if and only if x-'Hx C H for every x in X.
3.9. Suppose N is a normal subgroup of a group G. Prove that { (ug, g) I U E N, g E G} is a

subgroup of G x C and that this construction establishes a one-to-one correspondence
between the set of normal subgroups of G and the subgroups of G x G which contain the
diagonal subgroup.

1.4 Presentations
Let M be a monoid. A congruence on M is an equivalence relation - on M
which is compatible with the multiplication in M in the sense that whenever
x, y, and z are elements of M and x - y, then xz - yz and zx - zy.

Proposition 4.1. Let f : M -* N be a homomorphism of monoids. For x
and y in M define x - y to mean f (x) = f (y). Then - is a congruence
on M.

Proof. Exercise.

It turns out that every congruence - on a monoid M can be constructed
from a homomorphism as in Proposition 4.1. Let Q be the set of equivalence
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classes of "s, and for x in M let [x] be the element of Q containing x. The
rule [x] [y] _ [xy] defines an associative binary operation on Q with [1] as an
identity element. Thus Q is a monoid, the quotient monoid of M modulo
-. The natural map x --> [x] is a homomorphism of M onto Q.

Example .4.1. Let f be the function on 10, 1, 2, 3,4} given by

0 1 2 3 4).
1 2 3 4 1

In Example 2.10 we saw that M = Mon(f) has order 5 and f 5 = f . The
sets {1}, If, f3}, and { f2, f4} are the equivalence classes of a congruence -
on M. This can be seen by noting that for each of these sets C the product
C f = f C is contained in another one of these sets. The quotient monoid
Q of M modulo - has order 3 and is generated by u = [ f ], which satisfies
U3 = U.

In the case of a congruence on a group G, the class [1] is a normal
subgroup of G, and the equivalence classes of - are the cosets of [1]. The
quotient Q is a group. As Example 4.1 shows, congruences on monoids are
not necessarily determined by the equivalence class containing the identity
element.

Proposition 4.2. Let M be a monoid and let S be a subset of M x M.
The intersection - of all congruences on M containing S is a congruence.

Proof. There is at least one congruence on M containing S, namely M x
M, in which any two elements of M are congruent. By Exercise 1.1, - is an
equivalence relation on M. Clearly s " t for all (s, t) in S. Suppose x - y.
Then for each z in M and each congruence - containing S, we know that
x - y, so xz - yz and zx - zy. Thus xz - yz and zx - zy. Therefore - is
a congruence.

The congruence - of Proposition 4.2 is called the congruence generated
by S.

A right congruence on a monoid M is an equivalence relation - on M
such that x - y implies that xz - yz for all z in M. A left congruence is
defined analogously. Only minor modifications of the preceding discussion
are needed to define the concepts of the right congruence generated by a
subset S of M x M and the left congruence generated by S.

Proposition 4.3. Let M be a monoid and let Q be the quotient of M modulo
the congruence - generated by a subset S of M x M. Let f : M -> N be a
monoid homomorphism such that f (s) = f (t) for all (s, t) in S. Then there



20 1 Basic concepts

is a unique homomorphism g: Q -> N such that f = 7r o g, where 7r is the
natural map from M to Q.

Proof. For x and y in M, define x as y to mean that f (x) = f (y). By
Proposition 4.1, as is a congruence on M, and by assumption, as contains
S. Therefore as contains -. Thus if x - y, then f (x) = f (y). Therefore
there is a well-defined map g: Q -+ N taking ir(x) to f (x) for all x in M.
Clearly f = 7r o g. To show that g is a homomorphism, we note that g takes
7r(1), the identity of Q, to f (1), the identity of N. Moreover,

g(7r(x)ir(y)) = g(rr(xy)) = f(xy) = f(x)f(y) = g(ir(x))g(ir(y)).

Let X be a set and let R be a subset of X* x X*. The monoid Mon(X I
R) is defined to be the quotient monoid Q of X* modulo the congruence
generated by R. The pair (X, R) is said to be a monoid presentation
for Q and for any monoid isomorphic to Q. The presentation is finite if
both X and R are finite. A monoid M is finitely presented if M has a
finite presentation. If X = {x1, . . . , xs} and R consists of the pairs (Ui, V j),
1 < i < t, then Q is sometimes written as

Mon(x1,...,xs I U1 = V1, U2 =V2,...,Ut =V).

Here the equations Ui = V are called defining relations for Q. Under the
natural map from X * to Q, the words Ui and V map to the same element.
In general, if f : X* -> M is a monoid homomorphism and U and V are
words in X* such that f (U) = f (V), then we say that the relation U = V
holds in M (relative to f ). If f (U) is the identity element of M, then we
normally speak of the relation U = 1, rather than the more consistent U = E.
Elements of Mon(X I R) are equivalence classes of words. The equivalence
class containing U will usually be denoted [U]. There is a tendency to
blur the distinction between U and [U]. We shall normally be fairly careful
to distinguish between a word and the equivalence class containing that
word. However, sometimes the effort required actually gets in the way of a
clear exposition. In these cases we shall lapse into a controlled ambiguity
between words and equivalence classes.

Example 4.2. Let X = {x} and R = {(x6, x3)}, and let - be the congruence
on X* generated by R. Since x6 ti x3, we have x7 _ x4, x8 _ x5, and in
general xi - xi-3 for i > 6. Therefore each equivalence class of - contains
an element xi with 0 < i < 5. Thus the order of Q = Mon(X I R) is at
most 6. Let f be the function on {0, 1,2,3,4, 5} defined by

0 1 2 3 4 5).
1 2 3 4 5 3
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It is easy to check that M = Mon(f) has order 6 and f6 = f3. By Proposi-
tion 4.3, there is a homomorphism h from Q to M taking the equivalence
class [x] to f. Since f generates M, the map h is surjective and IQI ? IMI =
6. Therefore IQI = 6 and Q is isomorphic to M.

Example .4.3. Let X = {a, b} and R = {(ba, ab), (a4, a2), (b3, a3)}. Since
ba - ab, every equivalence class of - contains a word of the form aib'.
Since b3 - a3, we may assume that 0 < j < 2, and since a4 - a2, we may
assume that 0 < i < 3. Therefore Q = Mon(X I R) has order at most 12.
Let f and g be the following functions on {0, 1, 2,3,4,5,6,7,8,9, 10, 111:

(0 1 2 3 4 5 6 7 8 9 10 111'

1 3 4 6 7 8 3 9 10 7 11 10/I

C0

1 2 3 4 5 6 7 8 9 10 11

2 4 5 7 8 6 9 10 3 11 6 3

Then fog = g o f , f 4 = f2 , and f3 = g3. Therefore there is a homomorphism
ofQontoM=Mon(f,g). The 12 elements fiogi with 0 < i < 3 and 0 < j<2
map 0 to different points and so are distinct elements of M. Therefore Q
is isomorphic to M, and both have order 12.

Proposition 4.4. Suppose R and S are subsets of X* x X* with R C_ S.
There is a homomorphism of Mon(X I R) onto Mon(X I S).

Proof. Let - and - be the congruences on X* generated by R and S
respectively. Then R is contained in -, so - is contained in -. Therefore
each --class is contained in a unique --class. The corresponding map of
Mon(X I R) to Mon(X I S) is easily seen to be a homomorphism.

We shall occasionally use semigroup presentations. Recall that the free
semigroup S on X is X* - {e}. We defined congruences on monoids, but
the same definition works for semigroups as well. Let R be a subset of
S x S and let - be the congruence on S generated by R. The semigroup
defined by the pair (X, R) is the quotient S = Sem(X I R) of S by -. Let

be the congruence on X* generated by R. It is not hard to show that
is the union of - and {(e,e)}. Therefore M = Mon(X I R) is obtained

from S by adding an extra element 1 to S and defining lu = ul = u for all
u in M.

Semigroup presentations are convenient when the generating set contains
the identity element.

Example 4..4. The semigroup S = Sem(a, e I a3 = e, ae = ea = a) is a group
of order 3, while M = Mon(a, e I a3 = e, ae = ea = a) has order 4 and is not
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a group. To get a monoid presentation for S on the generators a and e we
must add a relation like e = 1.

We have defined monoid and semigroup presentations. It is now time to
define group presentations. Let X be a set and let X} = X x {1, -1}. We
shall denote (x, a) in X} by xa and identify x with x1. The monoid (X±)*
will be denoted X}*. Let R be the set of pairs of the form (x"x-°,e) with
x in X and a in {1, -1}, and set F = Mon(X} ( R). The element of F
containing a given word U will be denoted [U]. We call F the free group
generated by X. This term is justified by the following proposition.

Proposition 4.5. The monoid F is a group. If f : X -p G is any map of X
into a group G, then there is a unique homomorphism of F into G taking
[x] to f(x) for each x in X.

Proof. To show that F is a group, it suffices to show that all the elements
in some monoid generating set for F are units. Clearly F is generated as a
monoid by {[x«] I x E X, a E {1, -1}}. Since

[x0] [x-'] = [x°x-°] = [e] =1

and

[x-a] [x"] = [x-°x°] = [e] = 1,

the element [x-"] is an inverse for [x0]. Therefore F is a group. Now let
f : X -* G be a function. Extend f to a map of X' into G by defining
f (x-1) to be f (x)-1, the inverse in G of f (x). Then extend f further to a
homomorphism of X1* into G. Since

f(x)f(x)-1 = f(x)-1f(x) = 1

in G, the defining relations of F hold in G relative to f. Therefore there is
a unique homomorphism g: F -> G such that g takes [U] to f (U) for each
word U in X. It is not hard to see that g is the only homomorphism of
F into G mapping [x] to f (x) for each x in X.

We shall encounter free groups frequently, and it will be useful to have
a name for R. Since R is the set of monoid defining relations for the free
group F generated by X, we shall write R = FGRe1(X). The congruence
on X* generated by R is called free equivalence. A word U in X'* is freely
reduced if U contains no subword of the form x"x-a. If X is finite, then
JXJ is called the rank of F. It is conceivable that this definition of rank
is ambiguous in the sense that F might be isomorphic to the free group
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generated by a set Y with JYJ # IXI. However, this cannot happen. See
Exercise 4.3.

Let U be a word in X'*. Thus U = xi' ... xm , where the xi are in X and
the exponents ai are ±1. Define U-1 to be xM "m ..* xi °' . Then the inverse
of [U] in F is [U-1]. Of course, U-1 is not an inverse for U in X}* unless
m = 0. Clearly (U-1)-1 = U.

Suppose S is a subset of X}* x X±*. By Grp(X I S) we shall mean
G = Mon(X} I R US), where R = FGRe1(X). By Proposition 4.4, there is
a homomorphism of F onto G, and as remarked in Section 1.2, G is a group.
We call (X, S) a group presentation for G. The notation Grp(x1,... , x9 I
U, = V,,. .. , Ut = V) is often used for Grp(X I S) when X = {x1, ... , xs}
and S={(Ui,V)I1<i<t}.

Proposition 4.6. Let 7r: X}* -> F be the natural map. Then Grp(X I S)
is isomorphic to F/N, where N is the normal closure in F of the elements
7r(V)-17r(U) with (U, V) in S.

Proof. The proof consists of "diagram chasing" in commutative diagrams
based on Proposition 4.3. The details are left as an exercise.

We have identified X with the subset X x {1} of X. Thus X* is con-
sidered to be a subset of X. In this context, an element of X* - {e} is
called a positive word in X.

Let S be a subset of X* x X*. In general, Mon(X I S) and Grp(X I S)
are quite different objects. However, when Mon(X I S) is a group, they are
the same.

Proposition 4.7. Suppose S is a subset of X* x X*. If G = Mon(X I S)
is a group, then Grp(X I S) is isomorphic to G.

Proof. The proof consists of more diagram chasing.

Example 4.5. Let X = {x} and S = {(x6, x3)}. In Example 4.2 we saw that
M = Mon(X I S) has order 6. Let us determine the order of G = Grp(X I S).
Since M is not a group and G is a group, it is clear that M and G must
be nonisomorphic. By definition, G = Mon(X' I T), where Xt = {x, x-1}
and T = {(xx-1, e), (x-1x, e), (x6, x3)}. Let - be the congruence on X`
generated by T. Then x6 _ x3, so x6x-1 - x3x-1. But xx-1 - e, and hence
x6x-1 = x5xx-1 , x5. Similarly x3x-1 ^+ x2. Thus x5 ^+ x2. Applying the
same kind of arguments, we find that x4 N x, x3 N e, and x2 " x-1. Since
x-1 N x2, we can find in each --class an element xi with i > 0. Since
x3 N e, we may assume that 0 < i < 3. Therefore the order of Grp(X I S)
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is at most 3. If f is the map

C0 1 2)
1 2 0

on {0, 1, 2}, then f is a permutation and Mon(f) = Grp(f) is a group. Since
f 3 = 1 and so f 6 = f 3, we find that Grp(X I S) is isomorphic to Grp(f)
and hence has order 3.

Example 4.6. Let X = {a, b} and S = {(ba, ab), (a4, a2), (b3, a3)}. Then X} =
{a, a-1, b, b-1} and Grp(X I S) is Mon(X± I T), where T consists of the
following pairs:

(aa-1 , e) , (a-la, e), (bb-',E), (b-lb, E), (ba, ab), (a4, a2), (b3, a3).

Let - be the congruence on X±* generated by T. Then a4 - a2, so
a3 _ a4a-1 -a 2 a-1 - a. Similarly a2 ^+ e and a - a-1. Also a - a3 _ b3, so
every --class contains an element bi. Since b6 ". b3b3 ' a3a3 = a2a2a2 r., b and
b-1 - b6b-1 - b5, we may assume that 0 < i < 6. Therefore G = Grp(X I S)
has order at most 6. We leave it as an exercise to show that IGI = 6.

Example 4.7. Let G = Mon(x, y I x2 = 1, y3 = 1, (xy)4 = 1). In G, the
images of x and y have inverses, so G is a group. Under the homo-
morphism of {x, y}* into Sym(4) taking x to (1,2) and y to (2,3,4), the
defining relations of G are satisfied. Thus there is a corresponding ho-
momorphism f : G --+ Sym(4). Let H be the subgroup {h E G 11f(h) = 1}.
Since G acts transitively on {1, 2, 3, 4}, the orbit of 1 has four elements and
hence IG : HI = 4. Since the images under f of 1, x, xy, and xy2 map 1 to
1, 2, 3, and 4, respectively, these elements are right coset representatives
for H in G.

Let (X, R) be a monoid presentation for a monoid M. It is frequently
convenient to be able to find other presentations for M. We shall describe
four constructions of such presentations. Let - be the congruence on X*
generated by R. If U and V are elements of X* such that U - V, then we
say that (U, V) is a consequence of R.

Proposition 4.8. Suppose (U, V) is a consequence of R. Put S = R U
{ (U, V) }. Then (X, S) is a presentation for M.

Proof. Clearly R and S each generate -, so Mon(X I R) and Mon(X I S)
are identical.
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Proposition 4.9. Suppose (U, V) is an element of R. If (U, V) is a
consequence of S = R - {(U, V)}, then (X, S) is a presentation for M.

Proof. Again R and S generate the same congruence on X*.

Proposition 4.10. Suppose U is in X* and y is an object not in X. Set
Y = X U {y} and put S = RU {(y, U)}. Then (YS) is a presentation for M.

Proof. This proof again involves some diagram chasing, which is left as
an exercise.

Proposition 4.11. Suppose R contains an element (y, U), where y is in X
and y does not occur in U. Let Y be X - {y} and let f be the homomorphism
of X* into Y* which is the identity on Y and maps y to U. Let S be
the set of pairs (f (A), f (B)), where (A, B) ranges over of the elements of
R - { (y, U) }. Then (Y, S) is a presentation for M.

Proof. Exercise.

The constructions of new presentations described in Propositions 4.8
to 4.11 are called Tietze transformations. They have been defined for
monoid presentations. Similar constructions can be made for group pre-
sentations.

Example 4.8. Let us go back over Example 4.5 using the language of re-
lations and Tietze transformations. We start with generators x and x-1
and relations xx-1 = 1, x-1x = 1, and x6 = x3. We saw that x3 = 1 is a
consequence of these relations, so we can add x3 = 1 to the set of relations
by Proposition 4.9. Now the relation x6 = x3 is a consequence of the other
relations, so we may delete x6 = x3 by Proposition 4.10. Next x-1 = x2 is a
consequence of our relations, so by Proposition 4.11 we may use this rela-
tion to eliminate x-1 from the presentation. This leaves the single generator
x and the single defining relation x3 = 1.

Exercises

4.1. Let G be a group and let - be a right congruence on G. Show that H = {g E G I g - 1}

is a subgroup of G and that the congruence classes of - are the right cosets of H in G.
4.2. Suppose that - in Exercise 4.1 is generated by a subset S of G x G. Prove that H =

Grp(gh-' I (g, h) E S).
4.3. Let X be a finite set and let F be the free group generated by X. Show that the number

of homomorphisms of F into a given cyclic group of order 2 is 21X. Thus F determines
its rank IXI uniquely.

4.4. Prove that Grp(x I x" = 1) is isomorphic to Z,,.
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4.5. Show that Mon(x, y I xy = yx, x5 = x, y4 = y2, x2y2 = x3y) is finite and determine its
order.

4.6. Find a sequence of Tietze transformations which takes the monoid presentation a2 =
b2 = (ab)3 = 1 on generators a and b to the presentation a2 = c3 = (ac)2 = 1 on generators
a and c.

4.7. Let G be a group. Show that G is finitely presented as a group if and only if G is finitely
presented as a monoid.

4.8. Let M = Mon(a, b I ab = 1). Prove that every element of M can be expressed uniquely
as [bias]. Does M have any nontrivial units?

4.9. Show that Mon(a, b I abba = 1) is a group.
4.10. Suppose that A and B are in Xt*. Show that A is freely reduced if and only if A-1 is

freely reduced and that (AB)-1 = B-1A-1.
4.11. Let X be a set, let R be a subset of X* x X*, and let - be the congruence on X*

generated by R. Show that two words U and V are in the same --class if and only if
there is a sequence of words U = U0, Ul,... , Ur = V such that for 0 < i < r there are
words A, B, P, and Q such that Ui = APB, Ui+1 = AQB, and either (P, Q) or (Q, P)
is in R.

4.12. Suppose in Exercise 4.11 that I is an ideal of X* containing the left and right components
of all the elements of R. Show that I is a union of =-classes.

1.5 Computability
The main theme of this book is devising techniques for studying the struc-
ture of groups for which finite presentations are known. Unfortunately, we
must recognize at the outset that many questions we would like to ask about
finitely presented groups have been shown not to have general, algorithmic
solutions. This means more than the assertion that nobody has been able
to find an algorithm valid for all finitely presented groups. It means that
no such algorithms will ever be found.

One of the earliest and most basic of these unsolvability results concerns
the word problem. Let M = Mon(X I R) be a finitely presented monoid.
The word problem for M is to decide, given two words U and V in X*,
whether U and V define the same element of M. This is the same as
deciding whether U - V, where - is the congruence on X* generated by
R. It has been shown that there is no algorithm which takes as input X,
R, U, and V and returns "yes" or "no" according as U and V do or do not
define the same element of M.

It might appear plausible that we are asking too much to find one algo-
rithm which will solve the word problem for all finite presentations. It is
conceivable that no universal algorithm exists, but for any given presenta-
tion an algorithm can be devised. However, it has been shown that there
are specific finitely presented monoids with unsolvable word problems.

Faced with this news, we might conclude that monoids are very "wild"
objects, so the unsolvability of the word problem should have been guessed.
However, if we restrict ourselves to groups, then surely everything will be
nice. Again we are too optimistic. There are finitely presented groups with
unsolvable word problems.
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We cannot decide whether two words U and V define the same element
of M = Mon(X I R). However, if U and V do define the same element,
then we can verify this fact. The definition of the congruence - generated
by R is sufficiently concrete to allow us to list the words in the equivalence
class containing U.

Proposition 5.1. Let A and B be words in X*. Then A - B if and only
if there is a sequence of words

A=Aa,A1,...,At=B

such that for 0 < i < t the words Ai and A2+1 have the form CPD and
CQD, respectively, where (P, Q) or (Q, P) is in R.

Proof. Let us write A - B if there is a sequence of the specified type.
Then - is easily seen to be an equivalence relation. If (P, Q) is in R, then
P - Q, so CPD - CQD for all C and D in X*. Therefore, if A - B, then
A - B. It follows that - is contained in -. Suppose A = B, so there is
a sequence A0, ... , At as in the proposition. If U is any word, then the
sequence

AU=AOU, A1U,...,AtU=BU

shows that AU - BU. Similarly, UA - UB. Therefore - is a congruence.
If (P, Q) is in R, then the sequence P, Q has the required form, so P - Q.
Thus by the definition of -, we know that - contains ". Therefore - and
- are the same relation.

To list all words W such that U - W, we start with U, then list all words
which can be reached by a sequence of length 1, then those which can be
reached by a sequence of length 2, and so on. Eventually every word in [U]
will appear on the list. Thus if U - V, then V will be listed and we can
stop the procedure. If [V] 0 [U], then the procedure will never terminate.
The unsolvability of the word problem means that although we can list
the elements of [U], we cannot always list the elements of the complement
X* - [U], for if it were possible to list the complement, then we could start
both listing procedures, and eventually V would appear on one list or the
other. We would then know whether or not U - V.

A proof of the unsolvability of the word problem is beyond the scope
of this book. See Chapter 12 of [Rotman 1973] for an accessible proof.
However, assuming this result, we can easily deduce that a number of other
questions cannot be answered algorithmically. For example, suppose G =
Grp(X I R) is a finitely presented group. Given words U and V in X}*,
it is natural to ask whether the elements of G defined by U and V are
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conjugate. If we could solve this conjugacy problem, then taking V = e, we
could decide whether U defines the identity element of G. But if g and h
are elements of a group, then g = h if and only if gh-1 = 1. Thus if we can
decide equality with 1, then we can decide equality in general, and so solve
the word problem.

There is another problem which should be mentioned along with the
word and conjugacy problems. This is the generalized word problem or the
subgroup membership problem. Suppose we have a finite presentation of a
group G and U1,.. . , Um, V are words defining elements u1, ... , um, v of G.
Let H = Grp(u1, .... um). The subgroup membership problem is to decide
whether v is in H. An extension of the problem would be to express v
explicitly as a product of the elements u1, ui 1, ... , um, u;1, when v is in H.
This problem is also not solvable algorithmically for all finite presentations
of groups, for if it were, then we could take m = 0, or m = 1 and U1 = e.
Then H would be trivial, and we would be able to decide whether V defined
the identity element.

There are many other problems concerning finitely presented groups
which have been shown to be unsolvable. For example, it is not in general
possible to decide whether a finitely presented group is finite, or infinite, or
trivial.

One final remark needs to be made. Although we shall often be using
group presentations, we shall sometimes be using monoid presentations of
groups which are not group presentations. If (X, R) is a finite presentation
for a monoid M, then there is no algorithm for deciding whether M is a
group. This result was first proved in (Markov 1951). See also (Narendran,
O'Dt nlaing & Otto 1991). If M is a group, then there is an algorithm
for computing, given a word U, a word V such that [V] = [U]-1, but the
algorithm is very unsatisfactory. Let W1, W2, ... be the words in X* listed
in some order. As noted above, we can construct computers C1, C2, ... such
that Cz lists the elements of [UWZ]. If M is a group then some CZ will
eventually print out e and we can take V = W.

We do not actually need infinitely many computers to carry out this
computation of [U]-1. We assemble C1 and set it running on UW1. Then
we assemble C2, and when we are finished, we look to see if C1 has printed
out E. If not, we start C2 running with UW2 and assemble C3. Now
we look to see if either C1 or C2 has printed out E. If not, we start C3
running with UW3 and begin work on C4. If we continue in this man-
ner, then eventually we will see e printed out, and we can stop building
computers.

In order to avoid the problem just described, we shall always assume that
our groups are "obviously" groups, even when they are given by monoid
presentations. Usually the criterion in Exercise 5.2 will be adequate to
recognize a group.
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Example 5.1. Let X = {a, b} and R = {(abab, s), (baba, e)}. Then M =
Mon(X I R) is a group since it is clear that [a]-1 = [bab] and [b]-1 = [aba].

Exercises

5.1. Show that it is possible to verify that a finitely presented monoid is a group.
5.2. Let M = Mon(X I R), where X = {x,.. . , xr}, and assume that for 1 < i < r there are

words Pi and Qi in X* and words Ui and Vi in {x1,...,xi_1}* such that (xiPi,Ui) and
(Qixi, U) are in R. Prove that M is a group.

1.6 Procedure descriptions
In this book, procedures will be defined using an informal description lan-
guage which looks a lot like Pascal but contains some features borrowed
from C, as well as a few original constructs. The level of informality varies
with the need for precision. In some cases, procedure definitions are very
close to Pascal or C programs. In other cases, they are only outlines of
programs. It is not possible to give a formal description of an informal lan-
guage. However, the brief summary provided by this section should suffice
to allow the reader to understand the procedures presented.

Variables are of just two types. Traditional mathematical objects are
represented by single letters, perhaps with subscripts and other decorations.
Case and font are significant. Thus s, S, S, v, and E may be different
objects. Boolean variables, variables which take only the values "true" and
"false", are represented by English words, usually past participles, written
in lowercase italic characters. Thus done, found, and ok are typical boolean
variables. Case is not significant in the reserved words of Pascal, such as
"begin", "for", and "if". Reserved words coming at the beginning of a
statement will normally be capitalized.

The assignment operator is :=. Thus the statement x:= 3 means "assign
the value 3 to x". The ordinary equals sign is a relational operator. For
example, x = 3 is a boolean expression which is true if x happens to have
the value 3 already, but is false otherwise. The other relational operators
are <, <, >, >, and.

The operations normally part of the Pascal and C languages are extended
by other notations defined in the text. Because variables consist of a single
letter, the symbol * used for multiplication in both Pascal and C can be
omitted. Set union and intersection are denoted by U and fl, respectively.
Most statements are either assignment statements or control statements.
Occasionally statements indicate an action not easily described by an as-
signment statement. Such statements are usually introduced by "Let". If
a is an even integer, then "Let a = 2b" is a statement defining the inte-
ger b. The value of a is unchanged. Of course this statement is equivalent
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to b := a/2. Statements are separated by semicolons and grouped into
compound statements using "Begin" and "End".

The three primary control statements are If-then-else, the For-loop, and
the While-loop. The construction

If condition then statement,

Else statement2

indicates that the boolean condition is to be evaluated. If the condition is
true, then statement, is executed. If the condition is false, then statement2
is executed. The Else-clause may be omitted. The construction

For i := 1 to n do statement

executes statement with i = 1, then with i = 2, and so on through i = n.
The construction

While condition do statement

means that statement is to be repeated as long as the condition remains
true. A typical use of the While-loop has the form

done := false;

While not done do
Begin

End

The statements enclosed by "Begin" and "End" are repeated as a block
until done becomes true.

Sometimes a For-loop will indicate a loop over a finite set, as in

For x in X do statement

When the order in which the elements of X are taken is important, that
order will be described in the accompanying text, or in a comment in the
procedure. Comments have the form (* ... *).

The flow of computation defined by If-then-else-statements, For-loops,
and While-loops can be interrupted by using Goto-statements, Break-
statements, and Continue-statements. The statement

Goto 99
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means that the statement with label 99 is to be executed next. A label is
prefixed to the beginning of the statement and separated from it by a colon.
The use of Goto-statements is considered poor programming practice, but
now and then they provide the cleanest method of accomplishing a task
within the control structures available.

The statement

Break

indicates that processing of the innermost loop containing the statement is
to be terminated, and the statement immediately following the loop is to
be executed next. The statement

Continue

means that the remainder of the body of the innermost loop containing the
statement is to be skipped. If the loop is a While-loop, then the boolean
condition is tested to determine whether another iteration of the body
should be begun. In the case of a For-loop, the loop variable is incremented
and the test for termination is carried out.

Procedure definitions begin with a Procedure-statement, which gives the
name of the procedure and its arguments, if any. The treatment of argu-
ments here is different from the treatment in either Pascal or C. Arguments
are of one of two kinds. Input arguments are supplied by the calling pro-
cedure and are not changed by the called procedure. The results of the
computation are returned in output arguments. When both input and
output arguments are present, they are separated by a semicolon.

Pascal and C require that all variables be declared. That is, the type
of values which may be assigned to the variables must be stated. Except
for the description of arguments, declarations will be omitted. Global vari-
ables, variables shared by two or more procedures, are described in the
accompanying text. All other variables are local to the procedure in which
they are used.

The indexing of arrays, such as vectors and matrices, will be denoted
either as in Pascal, v[i] and A[i, j], or using subscripts, vi and Aid. Indices
are usually integers, but may occasionally be elements of other sets.

Here is an example of a procedure which multiplies two square matrices:

Procedure MPROD(n, A, B; C);
Input: n : a positive integer;

A, B : n-by-n matrices;
Output: C : an n-by-n matrix, the product of A and B;
Begin

For i:=1tondo
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For j := 1 to n do begin
s.=0;
Fork := ito ndos:=s+A[i,k]B[k,j];
C[i, j] := s

End
End.

Subprocedures in Pascal are normally defined within the main procedure
using them. To facilitate the exposition, subprocedures will be listed and
discussed individually. The Pascal rule that subprocedures must be defined
before they are used will be followed.

A procedure which computes a single output may be written as a func-
tion. The value returned is the last value assigned to the name of the func-
tion. The type of the result is indicated as part of the Function-statement.
Here is an example of a function which computes the nonnegative great-
est common divisor gcd(x, y) of two integers x and y using the Euclidean
algorithm.

Function GCD(x, y) : integer;
Input: x, y : integers;
(* The nonnegative gcd of x and y is returned. *)
Begin

a := I x I ; b := IyI;
While a :h 0 do begin c:= b mod a; b:= a; a:= c end;
GCD:=b

End.

Recall that in Pascal, b mod a is the remainder when b is divided by a. The
function GCD is invoked as follows:

d := GCD(18, 33)

We shall modify the official Pascal definitions of mod and div so that for
any integers a and b with b 0 the values of a mod b and a div b are integers
satisfying

(i) 0 < a mod b < IbI.
(ii) (a mod b) + b(a div b) = a.

In addition to arrays, some procedures use another kind of data structure
called a stack. A stack is a method of storing objects using the philosophy
"last in, first out". Only the most recently stored object is accessible for
retrieval. Once that object has been removed, the next most recently stored
object is available. An object is "pushed" onto the stack and "popped" off
of the stack. The details of implementing a stack will normally be ignored.
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Suppose that we are using a stack to store integers. The result of the
statements

Clear the stack;
Push 7 onto the stack;
Push -3 onto the stack;
Push 11 onto the stack;
Pop x off of the stack;
Push 0 onto the stack;
Push -6 onto the stack;
While the stack is not empty do begin

Pop y off of the stack; Print y
End

is to assign 11 to x and to print out the numbers -6, 0, -3, and 7, in that
order.

A queue is a storage method based on the philosophy "first in, first out".
It is analogous to the way customers wishing to purchase tickets at a box
office are served. Queues will be mentioned as alternatives to stacks in some
procedures.

1.7 The integers
In Chapters 2 through 7 we shall primarily be manipulating words. How-
ever, beginning with Chapter 8, computations with integers will play a very
important role, because almost every question about a finitely generated
abelian group can be reduced to the calculation of greatest common divisors
of integers.

The function GCD was introduced in the previous section. If d =
GCD(x, y), then d is the nonnegative generator for the additive subgroup
of 7G generated by x and y. Thus there exist integers r and s such that
d = rx + sy. The extended Euclidean algorithm computes one such pair of
integers.

Procedure GCDX(x, y; d, r, s);
Input: x, y : integers;
Output: d : the nonnegative gcd of x and y;

r, s : integers such that d = rx + sy;
Begin

ul signum(x); u2 := 0; a:= jxj;
v2 := signum(y); v1 0; b := IyI;

While b :h 0 do begin
q:=adivb;
a := a - qb; u1 := u1 - qv1; u2 := u2 - qv2;
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Interchange the pairs a and b, ul and v1, u2 and v2
End;

d:= a; r:= u1; 5:= u2
End.

The value of signum(x) is 1 if x > 0, 0 if x = 0, and -1 if x < 0. The call
GCDX(12, -34; d, r, s) sets d = 2, r = 3, and s = 1.

The least common multiple lcm(x, y) of x and y is the nonnegative gen-
erator of (xZ) fl (yZ). It is easy to show that

gcd(x, y) lcm(x, y) = Ixyl.

If xy 0, then lcm(x, y) = IxyI/ gcd(x, y). Clearly lcm(x, y) = 0 if xy = 0.
Two integers a and b are said to be congruent modulo a third integer m

if m divides a - b. In this case we write a - b (mod m). Congruence modulo
m is an equivalence relation. The set of congruence classes modulo m is
Zm, the set of cosets of mZ in Z. If m # 0, then IZmI = Iml. For a in Z
let [a] = [a],,,, denote the congruence class modulo m containing a. Defining
[a] + [b] to be [a + b] and [a] [b] to be [ab] makes Zm a ring. The group Um
of units in Zm considered as a monoid under multiplication consists of the
classes [a], with a relatively prime to m, that is, with gcd(a, m) = 1. If [a] is
in Um and we invoke GCDX(a, m; d, r, s), then [r] is the inverse of [a] in Um.

Suppose that m1,. .. , m,,. are pairwise relatively prime positive integers
and that a1,. .. , a,. are any integers. The Chinese remainder theorem states
that the system of simultaneous congruences

x-a1 (mod ml),...,x-ar (mod Mr)

has a solution which is unique modulo ml ... m,r. The case r = 2 is solved
as follows: Let 1 = gcd(ml, m2) = ulml +u2m2. Then x = a2ulml +a1u2m2
satisfies x - ai (mod mi), i = 1, 2. Of course, x should be reduced modulo
m1m2.

Proposition 7.1. Suppose that m and n are positive integers and that m
divides n. The map f taking [a]n to [a]m is a ring homomorphism of Zn
onto Zm, and f maps Un onto Um.

Proof. If a - b (mod n), then a - b (mod m), so f is well defined. It is easy
to see that f is a ring homomorphism. If gcd(a, n) = 1, then gcd(a, m) = 1
so f maps Un into Um. To show that f maps Un onto Um, we use induction
on n/m. If there is an integer k with m < k < n such that m divides k
and k divides n, then f is that composition of the homomorphisms from
Z, to Zk and from Zk to Zm. By induction, Un is mapped onto Uk and Uk
is mapped onto Um. Therefore f maps Un onto Um.
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We are left with the case in which p = n/m is a prime. Suppose that
gcd(b, m) = 1. If p divides m, then gcd(b, n) = 1 and [b]n is in Un. If p
does not divide m, then by the Chinese remainder theorem we can solve
the following pair of simultaneous congruences:

a = b (mod m),
a 1 (mod p).

Then [a]n is in Un and f maps [a]n to [a]m = [b],,,m. In either case [b],,,, is in
the image of Un under f.

The reduction of integer matrices discussed in Chapter 8 and the com-
putation of Grobner bases described in Chapter 10 can easily lead to very
large integers, with hundreds or even thousands of decimal digits. With in-
tegers of this size, the traditional algorithms for multiplication and division
are not the most efficient. There is no time to delve into this interest-
ing topic here, but (Collins, Mignotte, & Winkler 1983) provides a good
introduction.

Exercises

7.1. Show that at all times in GCDX the matrix

vl V2Lul u2

has determinant ±1.
7.2. Compute the multiplicative inverse of 5 modulo 13.
7.3. Solve the simultaneous congruences x =_ 2 (mod 5), x =_ 3 (mod 7).
7.4. Show that after the call GCDX(x,y;d,r,s) the inequalities Irl < max(1,iyj) and Isl <

max(1, lxi) hold.

1.8 Backtrack searches

One of the principal algorithms discussed in this book, the low-index sub-
group algorithm of Section 5.6, uses a technique called backtrack search.
Other backtrack searches are described in Sections 3.6 and 4.9. This section
provides a brief introduction to backtracking.

In its simplest form, backtrack searching is a method for listing all se-
quences a1,... , am of integers which satisfy some condition P(al, ... , am).
Here m may vary from sequence to sequence. The approach is to consider
the possibilities for a1, then for a given a1 to consider the possibilities for
a2, and so on. In order for backtracking to be effective, it must be possible
to formulate auxiliary conditions Pi (a1,. .. , aj) for j = 1, 2.... such that

(i) If P(a1,... , am) is true, then P, (al, . . . , aj) is true for 1 < j < m.
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(ii) Given a1,... , aj_1, there are at most a finite number of values for aj
such that Pi (a1, . . . , aj) is true and there are explicitly computable
upper and lower bounds for these values.

(iii) For sufficiently large j the condition P3 (al, ... , aj) is never satisfied.

By (ii), given a1, ... , aj_1, it is possible to compute the set S3 (a1, ... , aj_1)
of integers aj such that Pi (a1, . . . , aj) is true. For simplicity of exposition,
we shall assume that if a1, . . . , am satisfies P, then no proper initial segment
a1, ... , aj, 1 < j < m, satisfies P.

The following is a generic backtrack search procedure.

Procedure SEARCH;
Begin

m := 1; Sl := S1( );
While m > 0 do

If Sm # 0 then begin
Choose b in Sm; Sm := Sm - {b}; am := b;
If P(a1,... , am) then write out a1,. .. , am
Else begin m := m + 1; S. := Sm(al,... , am_1) end

End
Else m := m - 1 (* Backtrack! *)

End.

Example 8.1. Let us use backtrack search to find the partitions of a positive
integer n. A partition of n is a sequence a1, . . . , am of positive integers such
that al > a2 > . . . > am and al + a2 + + am = n. A natural choice for
Pi(a1,...,aj) is

(1) >aj >1,and
(2)

With this definition, S1( ) _ {1, 2, ... , n}. If j > 1 and Pj_1(a1,... , aj_1)
is true, then S j(a1, ... , aj_1) is the set of positive integers not exceeding
either aj_1 or n - (a1 + + aj_1).

The sequences a1,. .. , aj examined in SEARCH can be displayed conve-
niently as a tree. The root of the tree is the empty sequence ( ). The
nodes immediately below the root correspond to the elements of S1( ).
Figure 1.8.1 shows the search tree traversed in obtaining the partitions of 5.

In Example 8.1, every sequence a1,. .. , ai that satisfies P3 -(a1,.. . , aj) is
extendable to a sequence al, ... , am satisfying P(a1,... , am). This is not
always the case.

Example 8.2. Let us define a special decomposition of a positive integer n
to be a sequence a1,. .. , am of positive integers such that a1 + + am = n,
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Figure 1.8.1
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(3,1, 3) (3,5,3)*

Figure 1.8.2
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al is divisible by 3, and Iai - ai+i I = 2 for 1 < i < m. Thus 3,1,3,5 is a
special decomposition of 12. A plausible choice for Pi(al, ... , aj) is

(1) ai > 0, 1 < i < j, and
(2) a1 is divisible by 3, and
(3) Iai - ai+1l =2, 1 < i < j, and
(4)

Figure 1.8.2 shows the search tree examined in determining the special
decompositions of n = 11. The special decompositions are flagged with an
asterisk. With n = 14, the tree in Figure 1.8.3 is obtained. The tree has 17
nodes, but only one corresponds to a special decomposition, namely (6,8).

It is sometimes possible to "prune" the search tree by strengthening the
conditions Pj (al, . . . , aj). However, if the new conditions take a long time
to check, then the running time may actually increase, even though the
number of nodes has decreased.
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Figure 1.8.3

Example 8.3. Let us look again at the searches of Example 8.2. Suppose
that a1,.. . , am is a special decomposition of n. A simple analysis shows
that if al is even, then all the ai are even and hence n is even. Similarly, if
al is congruent to 1 modulo 4, then the sequence modulo 4 is 1, 3, 1, 3, .. .
and n is congruent to 1 or 0 modulo 4. If a1 is congruent to 3 modulo 4,
then n is congruent to 0 or 3 modulo 4. These results can be summarized
by saying that n is congruent modulo 4 to 0, a1, or 2a1 + 2. Thus condition
(2) in Example 8.2 can be replaced by

2'. a1 is divisible by 3 and n is congruent modulo 4 to 0, a1, or 2a1 + 2.

In addition, condition (4) may be replaced by

T. eitherp=0orp>aj-2. Ifp>0
and a, < 2, then p > a,+ 2.

With these changes, the size of the search tree is substantially reduced.
For n = 11, we have Figure 1.8.4. With n = 14, the tree is as shown in
Figure 1.8.5.

Frequently, the size of the search tree is difficult to determine in advance.
A technique for getting a quick estimate of the size of the tree is described in
(Knuth 1975). The estimate can occasionally be misleading, but in practice
it is quite useful.

To guess the size of the tree, we make a number of random "probes" into
the tree. A probe is carried out by executing the following procedure:

Procedure PROBE;
Begin

no := 1; m:= 1; S1 := S1( ); n1 := IS I;
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Figure 1.8.4

Figure 1.8.5

While Sm # 0 do begin
Choose b at random from Sm; am := b;

If P(al,... , am) then break
Else begin

m:=m+1; Sm:=Sm(a1,...,am 1)i nm
nm-IISmI

End
End;

Write out no, ... , nm
End.
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In (Knuth 1975) it is shown that the expected value of nz is the number of
nodes in the search tree which have distance i from the root. The observed
n2 may differ substantially from the expected values, but averaging over a
number of probes often gives a good picture of the size of the tree.

Example 8.4. Let us use the Knuth technique to explore two special decom-
position search trees using the revised auxiliary conditions of Example 8.3.
First, suppose that n = 35. Table 1.8.1 gives the average values of the nz
obtained on three different trials of 10 probes each. All results are rounded
to the nearest integer. The fifth column averages the three trials, and the
sixth column gives the actual number of nodes at each distance from the
root.
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Table 1.8.1

i Trial 1 Trial 2 Trial 3 Average Actual

0 1 1 1 1 1

1 2 2 2 2 2

2 2 3 2 2 2

3 4 4 3 4 3

4 7 7 6 7 6

5 14 10 7 10 9

6 26 14 14 18 14

7 42 16 18 25 19

8 51 10 29 30 25

9 51 13 32 32 30

10 19 19 32 23 30

11 19 19 32 23 34

12 26 26 17 22

13 38 26 21 23

14 26 9 8

15 26 9 8

16 1

17 1

Now let us look at n = 60. Table 1.8.2 gives the results of trials of 20,
50, and 200 probes. The true values are also given.

Exercises

8.1. Find all partitions of 7 using SEARCH, and construct the search tree examined.
8.2. Find the special decompositions of 15 using SEARCH. First use the auxiliary conditions

of Example 8.2. Then use the modified conditions of Example 8.3. In each case construct
the search tree.

8.3. Devise auxiliary conditions for conducting a backtrack search for all permutations of
S2 = {1, 2, ... , n} which do not fix any element of Q. A permutation f is identified with
the sequence al, ... , a,,, where ai is the image of i under f. Carry out the search for
n = 4 and describe the search tree.

1.9 Historical notes
The concept of a group developed slowly over a long period of time. The
work of Evariste Galois is often cited as the beginning of group theory as
a separate area of mathematics, but group-theoretic ideas and examples of
groups occurred well before Galois. A number of results in group theory
were obtained before the definition of an (abstract) group reached its final
form. Arthur Cayley came close to the definition in two attempts (Cayley
1854, 1878). Finitely generated groups were defined in (Dyck 1882), which
also contained the definition of a presentation by generators and relations.
Abstract finite groups were defined in (Weber 1882). The definition of
an arbitrary abstract group did not appear in essentially its modern form
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Table 1.8.2

i Trial 1 Trial2 Trial3 Actual

0 1 1 1 1

1 11 11 11 11

2 17 13 14 13

3 25 20 22 20

4 36 26 32 32

5 51 32 45 42

6 79 41 70 63

7 123 63 110 96

8 194 106 170 144

9 282 145 238 187

10 458 239 319 274

11 563 310 417 366

12 528 380 602 503

13 282 169 542 466

14 422 282 859 730

15 563 338 732 674

16 282 338 1014 994

17 451 591 707

18 901 957 1110

19 901 732 669

20 1802 1464 996

21 1802 1577 478

22 1802 664

23 451 243

24 901 310

25 79

26 92

27 14

28 15

29 1

30 1
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until (Weber 1893). Note that Sylow's theorems date from 1872 and were
originally results about finite permutations groups. The word problem,
the conjugacy problem, and the isomorphism problem were formulated in
(Dehn 1911), but the idea of trying to determine properties of a group given
by a finite presentation was already familiar by that time.

The existence of a finitely presented semigroup S with unsolvable word
problem was first proved by Emil Post in (Post 1947). The proof is based on
the fact that there is a Turing machine T with unsolvable halting problem.
That is, given a finite sequence I of input symbols, there is no algorithm for
deciding whether T will stop with input I. The presentation for S encodes
a description of T.

Credit for showing that the word problem for groups is unsolvable is usu-
ally shared between Petr Novikov and William Boone. The first published
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proof was (Novikov 1955). During the years 1954-57 Boone developed an al-
ternative proof in a sequence of papers which concluded with (Boone 1957).
Other algorithmic questions about groups were shown to be unsolvable in
(Adjan 1957) and (Rabin 1958).
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Rewriting systems

In this book we shall study a number of computational procedures. One of
the most basic of these is the Knuth-Bendix procedure for strings presented
in Sections 2.5 to 2.7. The Knuth-Bendix procedure manipulates rewriting
systems, which are sets of pairs of words. These systems are used to simplify
words systematically in an attempt to solve the word problem for particular
finitely presented monoids.

2.1 Orderings of free monoids
Let M = Mon (X I R) be a finitely presented monoid. Elements of M are
equivalence classes of words. As we study M, we shall frequently have
several words belonging to the same equivalence class and so defining the
same element of M. It will be useful to be able to select one of these words
as "simpler" or "better" in some sense than the others. The notion of
simplicity may depend on the presentation. If for any two distinct words
in X* we have a preference for one over the other, we have an ordering on
words.

Let S be a set. A linear ordering of S is a transitive relation -< on S
such that for any two elements s and t of S exactly one of the following
holds: s - t, s = t, t -< s. Let -< be a linear ordering of S and let s and
t be in S. Wewrites -< t ifs-<tors=t, and we write t >- sand t >- s
if s -< t and s -< t, respectively. The ordering - is a well-ordering if there
are no infinite sequences sl, s2, ... of elements of S such that si >- si+1 for
all i > 1. If we have a notion of one word being simpler than another and
"is simpler than" is a well-ordering of X*, then we cannot simplify a word,
that is, replace it by a simpler word, indefinitely.

Proposition 1.1. If -< is a well-ordering of S, then every nonempty subset
of S has a least element.

Proof. The proof is a routine application of the axiom of choice. Let
T be a nonempty subset of S and suppose T does not have a smallest
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element. Choose sl in T. Assume that s1, ... , si have been chosen in T
with s1 >- s2 >- Si' Then si is not the smallest element of T, so we
may choose si+1 in T with si >- si+i This process generates an infinite,
strictly decreasing sequence in S, which contradicts the assumption that -<
is a well-ordering of S.

It is easy to define a linear ordering of a finite set. We just list the
elements of the set from first to last. A set with n elements has n! linear
orderings, all of which are well-orderings. We shall need some techniques
for constructing orderings of infinite sets.

Suppose -< is a linear ordering of a set S and n is a positive integer. We
can define a linear ordering on the set Sn of n-tuples of elements of S by
saying that (sl, ... , sn) -< (t1, . . . , Q if and only if there is an integer i with
1 < i < n such that si = tj for 1 < j < i and si - ti. This ordering is called
the left-to-right lexicographic ordering of Sn. Note that the same symbol is
used for the ordering of S and the ordering of Sn. We shall have too many
orderings to have a separate symbol for each one. The symbols >-,

and >- will normally be used for any linear orderings which arise.
If we use the ordinary ordering of the set Z of integers to define the

left-to-right lexicographic ordering of Z3, then

(-1, 3,6) -< (1, -2, -1) -< (1, -2,5) -< (1, 2, -1).

There is also a right-to-left lexicographic ordering on Sn. For this ordering
we compare sn and tn, then 5n_1 and t9,_1, and so on. Thus in the right-to-
left lexicographic ordering of Z3,

(1,-2,-1) (1,2,-1) (1, -2,5) --< (-1,3,6).

Proposition 1.2. Suppose -< is a linear ordering of S. The corresponding
lexicographic orderings of Sn are linear orderings, which are well-orderings
if -< is a well-ordering on S.

Proof. Exercise.

Given a linear ordering -< of a set X, we can define a number of linear
orderings of X*. Let U = ul ... u,11z and V = v1... vn be in X*, with each ui
and vi in X. In the left-to-right lexicographic ordering of X*, we say that
U -< V provided one of the following holds:

(i) m<nandui=vi, 1<i<m.
(ii) There is an i with 1 < i < min(m, n) such that uj = vj for 1 < j < i

and ui - vi.
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This definition may be restated as follows: U V provided either that U
is a proper prefix of V or that some prefix of U is less than the prefix of V
of the same length i in the left-to-right lexicographic ordering of Xi.

Proposition 1.3. If -< is a linear ordering of X, then the left-to-right
lexicographic ordering is a linear ordering of X*.

Proof. Exercise.

If JXJ > 1, then the left-to-right lexicographic ordering of X* is not a
well-ordering, even if X is well-ordered. If a and b are elements of X and
a -< b, then ab >- alb >- a3b >- is a strictly decreasing sequence in X*.

There is also the right-to-left lexicographic ordering of X*. In this order-
ing, U -< V provided U is a proper suffix of V or some suffix of U is less
than the suffix of V of the same length i in the right-to-left lexicographic
ordering of X.

From now on, "lexicographic" without further qualification will mean
"left-to-right lexicographic". When right-to-left is meant, it will be explic-
itly stated.

Another ordering of X* is the length-plus-lexicographic ordering. In this
ordering, ul ... u,,n -< v1 ... v,,, provided either that m < n or that m = n and
ul ... u,n comes before v1... v,,n lexicographically.

Proposition 1.4. The length-plus-lexicographic ordering is a linear order-
ing of X*. If -< is a well-ordering of X, then X* is also well ordered.

Proof. We shall prove the statement about well-ordering, leaving the rest
as an exercise. Suppose -< is a well-ordering on X. Let U1 >- U2 >- U3 >-
be a strictly decreasing sequence of words in X*. Since i UZ I > J UZ+11 for all
i, from some point on all of the UZ have the same length m. By Proposi-
tion 1.2, the lexicographic ordering of Xm is a well-ordering. Therefore the
sequence must terminate.

There is also a right-to-left version of the length-plus-lexicographic or-
dering.

An ordering -< of X * is translation invariant if U -< V implies that
AUB AVB for all A and B in X*. Lexicographic orderings are not trans-
lation invariant. For example, if a and b are in X and a -< b, then a -< a2
lexicographically, but ab >- alb. We say that - is consistent with length if
U - V implies that JUI < JVJ. The length-plus-lexicographic orderings are
clearly consistent with length.

Proposition 1.5. The length-plus-lexicographic ordering of X* is transla-
tion invariant.
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Proof. Let U = ul ... u,,n and V = v1 ... v,,, and suppose that U - V. To
prove translation invariance, it suffices to prove that Ux -< Vx and xU -< xV
for all x in X. If m < n, then IUxJ = JxUl < IVxJ = JxVJ. Thus we may
assume that m = n. Let U and V differ first in the i-th term. Then Ux and
Vx also differ first in the i-th terms, which are the same as the i-th terms
of U and V. Therefore Ux - Vx. A similar argument shows that xU -< W.

0

Proposition 1.6. In a translation invariant well-ordering of X* the empty
word comes first.

Proof. Suppose e >- U for some word U. Then by translation invariance
U = eU >- U2. Similarly, U2 W. Thus

e>-U>-U2-U3>_ ...

is an infinite, strictly decreasing sequence of words, contradicting our as-
sumption that -< is a well-ordering.

The phrase "translation invariant well-ordering" is somewhat awkward.
The term "reduction ordering" will be used instead.

We shall now define a family of orderings which will play an important
role in Chapters 9 and 11. Let X and Y be disjoint sets and assume that
-X and - are reduction orderings on X* and Y*, respectively. Using
these orderings, we shall construct an ordering of (X U Y)*. Suppose U is
a word in (X U Y)*. Then U can be written uniquely as

Aob1Alb2 ... A,,-1b, A,.,

where the bi are in Y and the Ai are in X*. Let V be another word in
(X U Y)* and let

Cod1C1d2 ... Cs_1d8Cs

be the corresponding decomposition of V. Define U -< V if one of the
following holds:

(i) b1... b,. -<Y d1... ds.
(ii) b1... br = d1 ... ds and (Ao,... , A,.) comes before (C0,. .. , Cr) in the

lexicographic ordering of (X*)r+l defined by --<X.

The ordering -< on (X U Y)* will be called the wreath product of -<X and
-<Y and will be denoted -<X 2 Y.
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Example 1.1. Let X = {a} and Y = {b}, and let -<X and <y be the orderings
by length of X* and Y*, respectively. If -< is -X i Y, then

a100 - aba2 -< a2ba -< b2a - bab ab2.

Example 1.2. Let X = la, a-') and Y = {b,b-1}, and let -fix and -<Y be
the length-plus-lexicographic orderings with a -<X a-1 and b -< b-1. If -<
is -X 2 -<1,, then

aba-lb-la2 - a lba2b-la - a2b-laba 1 - a2b-la-lba.

Proposition 1.7. The wreath product X 1 -<Y is a reduction ordering
of (X UY)*.

Proof. Let - denote -<x 2 -<Y. Suppose U, V, and W are words in
(X U Y)*, and let

U = AOb1A1... bA,r,

V = COd1C1... d5C8,

W = EOf1E1... ftEt,

where the bi, di, and fi are in Y and the Ai, Di, and E2 are in X*. It is easy
to see that exactly one of U -< V, U = V, and V - U holds. Let us show that
- is transitive. Suppose U - V and V - W. Then b1... b,. -<Y d1... d9
fi ... ft. If b1... br - , f1 ... ft, then U - W. Suppose b1... b,. = d1... ds =
f, ft, so r = s = t. Then (AO,... , Ar) comes before (CO,... ,Cr), which
comes before (E0, ... , Er). Therefore U -< W in this case too, and -< is a
linear ordering.

Let h : (X U Y)* --> Y* be the homomorphism which is the identity on
Y and maps each element of X to E. Then b1... br can be written h(U).
Suppose U1 >- U2 >- is an infinite, strictly decreasing sequence of words
in (X U Y)*. Then h(U1) :Y h(U2) -y , and so, from some point on, all
the h(UU) are the same. Without loss of generality, we may assume that
h(UU) = b1... br for all i. Let

Ui = Ap2)b1A12) ... brA(i).

Then for i > 1 the (r + 1)-tuple (Aoi+1) A;.'+1)) comes before (A('),
Ar2)) in the lexicographic ordering of (X*)r+1 But this contradicts

Proposition 1.2. Therefore -< is a well-ordering.
Finally, we must prove translation invariance. Let U and V be as before,

and assume that U -< V. First suppose y is in Y. If h(U) = b1... br -<Y
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d1... dg = h(V), then

h(Uy) = b1... b,.y <y d1... dsy = h(Vy),

since -<y is translation invariant, so Uy -< Vy. Suppose h(U) = h(V). Then
h(Uy) = h(Vy), and (A0,... , A,) comes before (C0,... , C,.). By the defi-
nition of the (left-to-right) lexicographic ordering on (X*)"'+2, this means
that (A0,... , A,., e) comes before (Co,... , C,., e). Therefore Uy V y in all
cases. A similar argument shows that yU -< yV.

Now suppose x is in X. Then h(Ux) = h(U) and h(Vx) = h(V). If
h(U) -y h(V), then Ux - Vx. Suppose that h(U) = h(V). Then Ux -< Vx
if and only if (Ao,... , A,.x) comes before (C0,. .. , Cx). Let i be the first
index such that Ai _<x Ci. If i = r, then A,.x - C,.x, since -<x is translation
invariant. In any case (A0,. .. , A,.x) does come before (C0,... , C x), so
Ux -< Vx. Similarly, xU -< xV. Therefore -< is translation invariant.

Suppose X, Y, and Z are pairwise disjoint sets and mix, -<y, and -<z are
reduction orderings on X*, Y*, and Z*, respectively. Then (fix ? -<y) -<z
and 2(-y 2 -<z) are both orderings of (XUYUZ)*. It is a straightforward
exercise to show that these are the same ordering. Hence we can write
-<x 2 -<y 2 -<z without ambiguity. Note that -<x t -<y and -<y t -<x are both
orderings of (X U Y)*, but they are not the same. Thus 2 is associative but
not commutative.

Let X = {x1,.. . , xJ and assume that X is ordered by -< so that x1 -<
x2 _< x,,. On {xi}* there is a unique reduction ordering -<i, namely the
ordering by length. The ordering _<1 Z 2 t . . . 2 will be called the basic
wreath-product ordering of X * determined by -<. This ordering is closely
related to the recursive path ordering of Dershowitz. See (Dershowitz 1987).

Questions of decidability arise in connection with orderings of free
monoids. Suppose X is a finite set and R is a finite subset of X* x X*.
There is no algorithm which can decide if there is a reduction ordering of
X* such that P Q for all (P, Q) in R.

Let us turn now to the question of computing with wreath-product order-
ings. Let X be the disjoint union of nonempty subsets X1,. .. , Xr, and for
1 < i < r let - be a reduction ordering of Xi. Set -< equal to _<1 2 _<2 t 2 -<,..

Suppose we are given two words U and V in X*. What is an efficient way
to decide whether U -< V, U = V, or V -< U? If U and V have a common
nonempty prefix so that U = AB and V = AC for words A, B, and C, then
we may replace U and V by B and C without changing the answer to our
question. Thus we may assume that U and V do not start with the same
generator. If either U or V is empty, then the answer is obvious, so we may
also assume that both U and V are nonempty.
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Let m be the largest index such that U contains a generator in X,,,. Let

U = Aox1A1... At_1xtAt,

where each x3 - is in Xm and the Ai are in (X1 U ... U X7e_1)*. We shall call
m the degree of U, Y = xl ... xt the head of U, and AO the left end of U.
Let n be the degree of V, let Z be the head of V, and let Bo be the left
end of V. Since U and V do not start with the same generator, U -< V if
and only if

(a) m < n, or
(b) m = n and Y <m Z, or
(c) m=n, Y=Z, and Ao -<Bo.

Note that if m = n and Y = Z, then AO and Bo do not start with the same
generator.

Given U, let the integers d1, d2, ... and the words P1, P2.... and Q1,
Q2, ... be defined as follows: Set Q1 = U, and for i > 1 let Pi be the head of
Qi, let di be the degree of Qi, and let Qi+1 be the left end of Qi, provided
that left end is nonempty. Let d3, P3, and Q3 be the last terms in these
three sequences. We shall call d1, ... , d3 the sequence of degrees of U and
P1, . . . , P3 the sequence of heads of U.

Proposition 1.8. Let U and V be nonempty words in X * which do not start
with the same generator. Let d1, . . . , d3 and P1, . . . , P3 be the sequences of
degrees and heads of U and let e1,. .. , et and R1,. .. , Rt be the sequences of
degrees and heads of V. Then U - V if and only if one of the following
holds:

(a) s<t,andfor1<i<swehave di=eiandPi=Ri.
(b) There is an integer i < min(s, t) such that dj = ej and Pj = Rj for

1 < j < i and either di < ei or di = ei and Pi mod; Ri.

Proof. This is an easy induction on the maximum of d1 and el.

We can construct the sequences d1, ... , d3 and Pl,... , P3 for U in time
linear in JUI.

Procedure HEAD(U; s, d1, ... , d3, F1,..., P3);
Input: U : a nonempty word;
Output: s : a positive integer;

d1,. .. , d3 : the sequence of degrees of U;
P1, ... , P3 the sequence of heads of U;
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Begin
s:=0; m:=0; Let U=ul...uk;
For i := 1 to k do begin

Let j be the degree of ui;

If j > m then begins := s + 1; m := j; c9 := m; Ws := ui end
Else if j = m then Ws Wsui

End;

For i:= 1 to s do begin di := cs+i_i; Pi := W,,+,-i end
End.

Example 1.3. Let X1 = {u, v}, X2 = {w, x}, and X3 = {y, z}. Suppose

U = vuxuwvwuvxyuxvzwuwyuwxv.

Here we have underlined the terms in U whose degrees are at least as large
as the degree of any earlier term. The procedure HEAD simply groups
these by degree, giving

Wl = vu,

W2 = xwwx,

W3 = yzy

Thus the sequences of degrees and heads for U are 3, 2, and 1 and yzy,
xwwx, and vu, respectively.

There are many more ways to define linear orderings of free monoids.
One approach is to assign to each generator a nonnegative real number
called its weight. The weight of a word is then defined to be the sum of the
weights of its terms. Words are ordered first by weight, with some other
ordering used to break ties.

Exercises

1.1. Show that the operation i is associative.
1.2. Suppose that - is a reduction ordering on X*. For U and V in X*, define U.t V

to mean Ut -< Vt, where Ut denotes the reversal of U. Prove that <t is a reduction
ordering.

1.3. Let A = {a, b} and B = {c, d} and define -<A and -<B to be the length-plus-lexicographic
orderings of A* and B*, respectively, in which a -<A b and c -<B d. Arrange the following
words in increasing order using the ordering -<A i <B on (A U B)*: cadbc, abcbdabd,
acabdba, abcbadbd, acdcb, acbadab.

1.4. Arrange the words in Exercise 1.3 in increasing order using the basic wreath product
ordering - of {a, b, c, d} in which a -< b -< c - d.
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1.5. Let -.< be a reduction ordering on X*. Prove that U -< AUB for any words A, B, and
U in X* such that AB :h e.

* 1.6. Let X = {a, b} and let U be the set of all words in X * of length at most 3. How many
of the 15! linear orderings of U can be extended to reduction orderings of X*?

2.2 Canonical forms
Suppose that we are working with a finitely presented monoid M. Although
the word problem is in general unsolvable, it is natural to be optimistic and
look for a solution in M anyway. Assume that M is given as the quotient
monoid of the free monoid X* modulo the congruence -. One approach
to the word problem is to attempt to choose for each element u of M one
word U from among all the words in X* which define u. Such a choice is
called a canonical form for u.

Usually we would like the canonical form for u to be the "simplest"
word defining u. As we saw in the previous section, reduction orderings
provide convenient notions of simplicity. Let us fix a reduction ordering -
on X*. For each u in M the set of words defining u is nonempty, so this
set has a smallest element U. We define U to be the canonical form for u
relative to -<. For any word V, let V be the canonical form for the --class
containing V.

It must be emphasized that this definition of canonical form is noncon-
structive. Given X, a generating set 1Z for -, and the definition of -<, we
have at this point no way of computing canonical forms. That is, given a
word V, we have no algorithm for computing V. If we can compute canon-
ical forms, then we can solve the word problem, for U - V if and only
if U = V. The unsolvability of the word problem tells us that there are
presentations for which no algorithm for computing V exists.

Proposition 2.1. If U is the canonical form for an element of M, then
subwords of U are canonical forms for elements of M.

Proof. Let V be a subword of U, so U = AVB. If V is not a canonical
form, then there is a word W such that V >- W and V - W. But then
AVB - AWB and, since - is translation invariant, AVB >- AWB. Thus
U is not the first word in its --class, contradicting the assumption that U
is a canonical form.

Let (P, Q) be an element of a generating set R for -. Replacing (P, Q)
by (Q, P) does not change ", so we may assume that P >- Q. In this case,
(P, Q) is called a rewriting rule with respect to -<. If every element of R is
a rewriting rule, then R is called a rewriting system with respect to .

Suppose that R is a rewriting system. Let P be the set of left sides of
elements in R, let N be the ideal of X* generated by P, and let C be the
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complement X* - N. If U is in N, then there are words A, B, P, and
Q such that U = APB and (P, Q) is in R. Let V = AQB. Then P - Q,
so U - V. Also P >- Q, so U >- V. If V is in N, then we can repeat this
process and get another word W such that U - V - W and U >- V >- W.
Since -< is a well-ordering, this process cannot go on indefinitely, and we
eventually produce a word C in C such that U - C and U >- C. This
procedure of replacing subwords which are left sides of rewriting rules with
the corresponding right sides is called rewriting. Elements of C are said
to be irreducible or reduced with respect to R, since no rewriting can be
performed on them. The canonical form of every --class is in C, but a
,-class may contain other elements of C as well. Suppose (PQ) is in R.
To emphasize that rewriting replaces P by Q, we shall frequently write
P -* Q for (P, Q). More generally, we shall write U -> V or U R V if V
is derivable from U in one step using R in the sense that there are words
A, B, P, and Q such that P -* Q is in R, U = APB, and V = AQB.

Let us formalize the rewriting process.

Procedure REWRITE(X, R, U; V);
Input: X : a finite set;

R a finite rewriting system on X* with respect to a
reduction ordering;

U : a word in X*;
Output: V : a word in X* irreducible with respect to R and

defining the same element of Mon (X I R) as U;
Begin

Let P be the set of left sides in R; V := U;
While V contains a subword in P do begin

Let V = APB with P -> Q in R; V:= AQB
End

End.

The reduction ordering mentioned in REWRITE need not be explicitly
given. However, its existence is necessary to insure termination.

The description of REWRITE is really only an outline. In carrying out
the procedure, a number of choices must be made. First, there may be
many occurrences of words in P as subwords in V. Second, an element of
P may be the left side of more than one rule in R, so there may be many
choices for Q. The value of V returned by REWRITE may depend on these
choices.

Example 2.1. Let X = {x, y} and let R = FGRe1(X), so R consists of the
rules

xx_1 - E, x-1x --> E,
yy_1

-' E, y-1Y -4 E,
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and F = Mon (X} I R) is a free group of rank 2. Let

U = xyx-lxy lx-ly-1yxy.

We can rewrite U using 1Z in several ways. Here are two possibilities:

xyx-lxy-lx-1y-lyxy-->xyy-lx-ly-1yxy

-> xx-ly-lyxy - y-lyxy _, xy

and

xyx-1xy-1 x-1 y-1 yxy -+ xyx-1xy-1x-lxy

-> -l -'p - xyx-lxyx xy x -> xy.

53

The underscores highlight the subwords which are replaced (in this case
deleted) in passing to the next word. Both of these rewritings produced
the same result. Rewriting in X}* using the system FGRe1(X) is called free
reduction. We shall develop a simple test in Section 2.3 which will confirm
that free reduction always produces canonical forms.

Example 2.2. Let X = {a, b} and let R consist of the rules a2 -> e, b10 _, e,
and ba --> ab4. This is a rewriting system on X* with respect to the basic
wreath-product ordering with a b. Let us rewrite the word baa in two
ways. The first way is very easy:

baa -> b.

The second way takes a little longer:

baa - abbbba - abbbabbbb -> abbabbbbbbbb

--> ababbbbbbbbbbbb -> ababb -* aabbbbbb -+ bbbbbb.

The result is b in the first case and b6 in the second.

There is an extensive literature on rewriting systems. The books
[Le Chenadec 1986], [Benninghofen, Kemmerich, & Richter 1987], and
[Jantzen 1988] contain many references. We do not have time to go very
deeply into the subject. Our first goal will be to develop a condition
on a rewriting system R which guarantees that the result V returned by
REWRITE(X, R, U; V) depends only on the input word U, not on choices
made in the procedure. Then we shall present a procedure which attempts
to add rules to R, if necessary, so that the condition is satisfied.
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Let R be a rewriting system on X* with respect to a reduction ordering
and let - be the congruence generated by R. Suppose U and V are in

X*. We shall say that V is derivable from U using R if there is a sequence
of words

U = U01 U1,..., Ut = V

with t > 0 such that U2+1 is derivable from Uz in one step, 0 < i < t. In
this case we shall write U R V. Clearly R is a reflexive and transitive
relation on X*. Also, if U R V, then U - V and U r V.

Proposition 2.2. If U R V, then UW VW and WU WV for all
W in X*.

Proof. Exercise.

Proposition 2.3. If U and V are words in X*, then U - V if and only if
there is a sequence of words U = UO, U1, ... , Ut = V such that for 0 < i < t
either UZ R U2+1 or Uz+1 a UZ

Proof. Let us write U - V if such a sequence Uo,... , Ut exists. Since
Uz - Ui+1, we know that U - V implies that U V. It is easy to see that
is an equivalence relation. By Proposition 2.2, is a congruence. If (P, Q)
is in R, then P - Q. Therefore by the definition of -, it follows that - is
contained in m. Thus - and - are the same relation.

There are a number of useful properties which the relations R and R
may possess:

The Church-Rosser property: If U - V, then there is a word Q such that
U R Q and V Q.

Confluence: If W U and W R V, then there is a word Q such that
U R Qand V R Q.

Local confluence: If W R U and W R V, then there is a word Q such
that U R Q and V R Q.

Proposition 2.4. If the Church-Rosser property holds, then every --class
contains a unique element of C, the canonical form for that class.

Proof. We have already noted that the canonical form for each --class is
in C. Suppose U and V are elements of C in the same --class. Then by the
Church-Rosser property there is a word Q such that U R Q and V R Q.
But since U and V are in C, we must have U = Q = V.
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Proposition 2.5. For any rewriting system 1Z relative to a reduction or-
dering -, the Church-Rosser property, confluence, and local confluence are
equivalent.

Proof. (a) The Church-Rosser property implies confluence. Assume that
W R U and W R V. Then W- U and W - V. Therefore U- V,
and by the Church-Rosser property there is a word Q such that U R Q
and V R Q.

(b) Confluence implies local confluence. Since local confluence is a special
case of confluence, this is obvious.

(c) Local confluence implies confluence. Let us say that confluence fails
at a word W if there are words U and V such that W R U and W V
but no word Q such that U R Q and V R Q. Let W be the set of
words at which confluence fails, and assume W is nonempty. Since - is a
well-ordering, W has a smallest element W. Suppose that W R U and
W V. We want to show that there is a word Q such that U -j7+ Q and
V R Q. If U = W, then we may take Q = V. If V = W, then we may
take Q = U. Therefore we may assume that U 0 W and V # W. There
exist words A and B derivable from W in one step such that A R U and
B R V. By local confluence, there is a word C such that A R C and
B R C. Since A W, it cannot happen that A is in W. Thus there is a
word D such that U R D and C R D. Therefore B D. Since B -< W,
there is a word Q such that D j Q and V R Q. But then U Q and
confluence does not fail at W. Therefore W = 0 and confluence holds.

(d) Confluence implies the Church-Rosser property. Suppose U - V. We
want to show that there is a word Q such that U Q and V Q. By
Proposition 2.3, there is a sequence U = UO, U1,. .. , Ut = V such that for
0 < i < t either Ui Uz+1 or Ui+1 -z U. We proceed by induction on t.
If t = 0, then we may take Q = U = V. If t = 1, then we may take Q to
be the smaller of U and V. Suppose t > 2. Then U1 - V and by induction
there is a word A such that U1 j A and V A. If Uo R U1, then we
may take Q to be A. Suppose U1 u UO. By confluence, there is a word Q
such that Uo R Q and A Q. But then V R Q and we are done.

Note that our proof of Proposition 2.5 relied heavily on the fact that -< is
a well-ordering. In more general situations, local confluence need not imply
confluence.

Proposition 2.6. If R. is a confluent rewriting system on X*, then after
REWRITE(X, 7Z, U; V) the value of V depends only on 1Z and U, not on
the choices made during the rewriting.

Proof. By Propositions 2.5 and 2.4, the value of V is the canonical form
for the --class containing U.
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A rewriting system 7Z is reduced if each right side is irreducible with
respect to R, no word is the left side of two different rules, and no left
side contains another left side as a proper subword. Equivalently, R is
reduced if for each (P, Q) in R both P and Q are irreducible with respect
to R- {(P,Q)}.

Proposition 2.7. Let -< be a reduction ordering on X*. Every congruence
on X* is generated by a unique reduced, confluent rewriting system with
respect to -<.

Proof. Let - be a congruence on X* and let M be the quotient of X*
modulo -. Let C = {U I U E X*} be the set of canonical forms for the
elements of M with respect to -< and let N be the ideal X* - C. Let P be
the unique minimal generating set for Al and set S = {(P, P) I P E P}. We
shall show that S is a reduced, confluent rewriting system with respect to

and that S is unique with these properties.
For any word U, we have U U. If P is in Al, then P 54 P, so P >- P.

Thus S is a rewriting system with respect to . Let - be the congruence
generated by S. Since P - P for all P in P, the relation - is contained
in -. But any word which is irreducible with respect to S is in C. Thus
REWRITE(X, S, U; V) returns V as U. Therefore U - U for all words U,
and this implies that - and - are the same. By its definition, S is reduced.
If U - V, then U s U and V s V. But U = V, so the Church-Rosser
property holds and S is confluent.

Now suppose that T is any reduced, confluent rewriting system with
respect to -< which generates ". Let P be in P. Rewriting P using T must
give P. Therefore P contains a left side of T as a subword. But all proper
subwords of P are in C. Thus T contains a rule (P, Q). Since T is reduced,
Q is in C, so Q = P. Therefore S C_ T. If (U, V) is in T - S, then U is not
in C, and hence U contains a subword P in P. But P is a left side in S,
and this contradicts the assumption that T is reduced.

Suppose that - is a reduction ordering on X*, R is a subset of X* x X*,
and - is the congruence generated by 7Z. The reduced, confluent rewriting
system with respect to -< which generates - will be denoted RC(X, -<,R) or
RC(X, -<, -). If R is already confluent, it is easy to determine RC(X,

Proposition 2.8. Let R be a confluent rewriting system with respect to -
on X*. Let P be the set of left sides in R which do not contain any left
sides as proper subwords. For P in P let P be the result of rewriting P
using )Z. Then RC (X, -<,R) = {(P, P) I PEP}.

Proof. Let - be the congruence generated by R. Since R is confluent, any
word which is not first in its --class contains a subword which is a left side
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in R. Thus P is the minimal generating set for the ideal of "noncanonical
forms", and RC (X, -<,1L) is {(P, P) I P E P}.

Proposition 2.9. Let X be a finite set and let - be a congruence on X*
such that the set of --classes is finite. For every reduction ordering -< of
X* the system RC(X, -<, -) is finite.

P r o o f . Let (P, Q) be a rule in S = RC(X, -., -). For 0 < i < IPI let Pi be
the prefix of P of length i. Each Pi is a canonical form, so Pi and P, are
in different --classes if 0 < i < i < JP1. Therefore IPI cannot exceed the
number of --classes. Since no two distinct rules in S have the same left
side, this means that S is finite.

If 1Z is a confluent rewriting system on X*, then we shall say that (X, R) is
a confluent presentation for Mon (X I R). In Section 1.5 we remarked that
it is in general impossible to decide whether a finitely presented monoid is a
group. However, if we have a finite, confluent presentation for the monoid,
the situation is different.

Proposition 2.10. Let (X, R) be a finite, confluent presentation for a
monoid M. It is possible to decide whether M is a group.

Proof. See Exercises 2.2 to 2.4.

Exercises

2.1. Suppose that R is a confluent rewriting system with respect to the reduction ordering -<.
Show that {(Pt,Qt) I (P, Q) E R} is confluent with respect to the ordering <t defined in
Exercise 1.2.

2.2. Let (X, R) be a finite monoid presentation for a group G. For U in X* let [U] denote
the element of G defined by U. Suppose that (AxB, Q) is in R, where A and B are in
X* and x is in X. Show that [x]-1 = [B][Q]-1[A].

2.3. Let X, R, and G be as in Exercise 2.2 and assume that R is confluent with respect to
some reduction ordering on X*. Set Xp = 0, and for i > 0 define Xi}1 to be the union of
Xi and the set of x in X for which there is an element (P, Q) of R such that x occurs in
P and Q is in (Xi)*. Prove that X. = X for some m.

2.4. Use the ideas of Exercises 2.2 and 2.3 to construct a proof of Proposition 2.10.
2.5. Let X be a finite set, let - be a length-plus-lexicographic ordering on X}*, and let - be

a congruence on Xf* such that x"x-° - e for x in X and a in {1, -1}. Suppose that
(P, Q) is in RC(X', -<, -). Show that IP < JQJ + 2.

2.3 A test for confluence
Let -< be a reduction ordering on X* and let R be a finite rewriting system
on X* with respect to -<. If R is confluent, we can solve the word problem in
M = Mon (X I R) by using REWRITE to compute canonical forms. In this
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section we shall develop a test for confluence. This test is valid even when
R is infinite, but in that case there is no guarantee that we can actually
carry out the test.

Suppose R is not confluent and hence not locally confluent. We shall
say that local confluence fails at a word W if there are words U and V in
X* such that W V U and W V, but there is no word Q for which
U R Q and V R Q.

Proposition 3.1. Suppose local confluence fails at a word W but does not
fail at any proper subword of W. Then one of the following conditions
holds:

(1) W is the left side of two different rules in R.
(2) W is the left side of a rule in R, and W contains another left side

as a proper subword.
(3) W can be written ABC, where A, B, and C are nonempty words

and AB and BC are left sides in R.

Proof. By assumption, there are words A1, B17 P17 Q1, A2, B21 P2, and
Q2 such that the following hold:

(i) W = A1P1B1 = A2P2B2.
(ii) (Pl, Q1) and (P21 Q2) are in R.
(iii) There is no word derivable from both U1 = A1Q1B1 and U2 =

A2Q2B2

Suppose first that the occurrences of P1 and P2 in W do not overlap. Then
we may assume that W = A1P1CP2B2, where B1= CP2B2 and A2 = A1P1C.
But then U1 = A1Q1CP2B2 and U2 = A1P1CQ2B2. Therefore A1Q1CQ2B2
is derivable from both U1 and U2, which contradicts our assumption.

Assume now that the occurrences of P1 and P2 do overlap. We may
assume that W = AIABCB2, where B # e and one of the following holds:

(a) P1 = ABC and P2 = B.
(b) P1 = AB, P2 = BC, and both A and C are nonempty.

Suppose A1B2 54 e. Then ABC is a proper subword of W and by as-
sumption local confluence does not fail at ABC. Assume (a) holds. There
is a word Q derivable from both Q1 and AQ2C. But then A1QB2 is deriv-
able from both U1 = A1Q1B2 and U2 = A1AQ2CB2. Similarly, we get a
contradiction if (b) holds.

Thus we have Al = B2 = e. Suppose (a) holds. If AC e, then condition
(2) of the proposition holds. If AC = e, then P1 = P2 and we must have
Q1 Q2, since otherwise U1 = U2. Therefore condition (1) holds if AC = E.
Finally, (b) is precisely condition (3).
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If W satisfies the conclusion of Proposition 3.1, then we shall say that
W is an overlap of left sides in R. If condition (3) holds, then W is a
proper overlap. With a reduced rewriting system, only proper overlaps are
possible. Note that conditions (1) and (2) can be combined into a single
condition which states that W is a left side of a rule in R and W contains
the left side of some other rule as a subword.

If R is finite, then the set W of words which are overlaps of left sides in R
is finite. For each word W in W we can list the finite set U of words derivable
in one step from W. For each U in U we can invoke REWRITE(X, R, U; V).
If more than one value of V is obtained, then R is not confluent, for we
have found two words which are irreducible with respect to R and define
the same element of M. If for all U we obtain the same value of V, then
local confluence does not fail at W. By performing this test for all W in
W, we can decide whether R is confluent.

Example 3.1. Let X be any set. In Section 1.4 we defined X} = X x {1, -1}
and wrote x" for (x, a). The free group generated by X is defined to be
F = Mon (X} I R), where R = FGRe1(X) consists of the rules x"x-" -* e,
where x is in X and a is ±1. By Proposition 3.1, if local confluence fails,
then it fails at one of the words x"x-"x". But there are only two possible
ways to rewrite such a word:

x"x-"x" - x", x"x-"x"

and the results agree. Therefore R is confluent, and free reduction, the
process of rewriting with respect to R, always produces canonical forms.
A word in X}* is freely reduced, or irreducible with respect to R, if it
contains no subwords of the form x"x-". The freely reduced words are
the canonical forms for the elements of F with respect to every reduction
ordering of X.

Example 3.2. Let Y = {x, y, z} and let T consist of the rules

xyz ->e, yzx->6, zxy ->e.

To check that T is confluent, we need only test local confluence at the words
xyzx, yzxy, zxyz, xyzxy, yzxyz, and zxyzx. At xyzx we have

xyzx -> x, xyz --+ X.

Local confluence holds at the other five words as well, so T is confluent.
It turns out that G = Mon (Y I T) is a free group of rank 2. Let X = {a, b}

and define homomorphisms f : X'* Y* and g : Y* - X* by setting

f(a) = x, f(b) = y, f(a 1) = yz,
f(b-1) = zx
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g(x) = a, g(y) = b, g(z) = b`1a-1.

Let - be free equivalence on X}* and let be the congruence on Y*
generated by T. If (U, E) is in FGRe1(X), then f (U) : e. Therefore f
defines a homomorphism f from the free group F generated by X to G.
Also, if (V, e) is in T, then g(V) - E. Thus g defines a homomorphism
g : G -* F. Now f maps [a], [b], [a-1], and [b-1] to [x], [y], [yz], and [zx],
respectively, and maps these elements to [a], [b], [bb-1a-1] = [a-1], and
[b-1a 1a] = [b-1]. Therefore Toy is the identity on F. A similar argument
shows that go f is the identity on G, and so f and g are isomorphisms.

Example 3.3. Let X = {x, y, z} and let S consist of the rules

x2 E, yz - E, zy -4 E.

Local confluence has to be checked at x3, yzy, and zyz. This is easily done,
so S is confluent.

Example 3.4. Let Y = {a, b} and let T consist of the rules

abab - e, baba -> e.

To show that T is confluent, we must check local confluence at the following
six words:

ababa, babab,

ababab, bababa,

abababa, bababab.

For example, we have

ababa ->a, ababa -f a,

and

bababa -* ba, bababa ->ba.

Local confluence holds at the other four words as well, and thus T is
confluent.

Now H = Mon (Y I T) is isomorphic to K = Mon (X I S) of Example 3.3.
Define f : X* --> Y* and g : Y* -> X* by

f(x) = ab, f(y) = a, f(z) = bab,

g(a) = y, g(b) = zx.
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Let - be the congruence on X* generated by S and let zt; be the congruence
on Y* generated by T. For (U, E) in S and (V, E) in T we have f (U) e
and g(V) - e. Moreover, f o g maps x, y, and z to elements of [x], [y], and
[z], respectively. For example,

(f o g)(z) = g(bab) = zxyzx N z.

Similarly, g o f maps a and b to elements of [a] and [b], respectively.
Therefore f and g induce isomorphisms between H and K.

Example 3.5. Let X = {a, b} and let S consist of the following rules:

a2 -* e, ab2a - bab,

b3 baba - ab2,

abab --4b 2 a, b2ab2 - aba.

Since the length of each left side is greater than the length of the corre-
sponding right side, this is a rewriting system with respect to any of the
length-plus-lexicographic orderings of X*. To show that S is confluent, we
must test local confluence at 30 words. For example,

ababba abbab - babb,

ababba -> bbaba -> babb.

Local confluence holds at these words, so S is confluent. The monoid
G = Mon (X I S) is a group since [a]-1 = [a] and [b]-1 = [b2]. In fact G
is a finite group. See Exercise 3.3.

Example 3.6. Let X = {a, b, c} and let S consist of FGRe1(X) together with
the following rules:

ca -> ac, ca-1 - a-lc c1a - act cla-1 a-1c1

cb -* bc, cb-1 - b-1c, c 1b -> be 1, c 1b-1 - b-1c 1,

ba - abc, ba-1 - a-1bc 1 b-1a -+ ab-1c 1 b-1a-1 -+ a-1b-1c.

Then S is a rewriting system with respect to the basic wreath-product
ordering of X}* with c --< c-1 -< b -< b-1 -< a -< a-1. To verify the confluence
of S, we must test local confluence at 37 words. For example,

cba -* cabc -* acbc - abcc,

cba -* bca -# bac - abcc.
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The set of canonical forms is the set of words a'b8c^l, where a, 0, and ry
are arbitrary integers.

Example 3.7. Let X = {a, b} and let S consist of FGRe1(X) along with the
following rules:

ba - ab, ba-1 - a-'b, b-1a -* ab-1, b-la 1 -> a lb-1.

It is easy to check that S is a confluent, reduced rewriting system with
respect to the length-plus-lexicographic ordering of X1* with a -< a-1 -< b -<
b-1. Now let T consist of FGRe1(X) plus the following set of rules:

ba -* ab, b-la ab-1, a-lb ->ba-1, alb-1 - b-la-1,

ab'a-1 b2, i = ±1,±2 .... .

It is not hard to see that T is an infinite, confluent, reduced rewriting
system with respect to the length-plus-lexicographic ordering of X* with
a -< b -< b-1 - a-'. The systems S and T generate the same congruence -
on X*. Therefore whether or not the reduced, confluent rewriting system
RC(X, -<, -) is finite depends on the ordering -<.

Let us formalize the confluence test based on Proposition 3.1. The
function CONFLUENT described next implements one version of the test.

Function CONFLUENT(X, R): boolean;
Input: X : a finite set;

1Z : a finite rewriting system on X* with respect to some
reduction ordering;

(* True is returned if R is confluent. *)
Begin

For all (P, Q) in R do
For all (R, S) in 1Z do

For all nonempty suffixes B of P do begin
Let U be the longest common prefix of B and R;
Let B=UD and R=UE;
If D or E is empty then begin

Let P = AB;
REWRITE(X, R, ASD; V); REWRITE(X, R, QE; W);
If V 54 W then begin CONFLUENT := false; Goto 99 end

End
End;

CONFLUENT := true;
99:End.
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In CONFLUENT, the conditions of Proposition 3.1 have been revised
slightly. See Exercise 3.5. If an appropriate index structure is available,
then the operation of CONFLUENT can be speeded up substantially. See
Exercise 3.6.

The following example describes some confluent rewriting systems of
theoretical interest. These systems may be infinite.

Example 3.8. Let S be a semigroup. In the following discussion it will be
necessary to distinguish carefully between elements of S and elements of
S*. If x and y are in S, then "xy" could mean either the sequence x, y,
which is a word of length 2 in S*, or the single element of S which is the
product of x and y. To resolve this ambiguity, we shall introduce an explicit
symbol for multiplication in S. Thus x y is the product of x and y, and
xy is the word of length 2.

Let S consist of the rules xy -* x y for all x and yin S. The set S is
a rewriting system with respect to any length-plus-lexicographic ordering
of S*. To prove the confluence of S, we must test local confluence at the
words xyz. We have the following reductions:

xyz -> (x y)z -> (x y) Z.

Thus local confluence is just the associative law in S. The pair (S, S) is
a semigroup presentation for S. If S is a monoid with identity e, then
(S, S) is not a monoid presentation for S. To get a monoid presentation,
we must add the rule e -* E. Let T = S U {(e, 6)}. The rewriting system
T is confluent, and the set of canonical forms is (S - {e}) U {e}. We call
(S,S) and (S, T) the multiplication-table presentations of S as a semigroup
and as a monoid, respectively.

If S is a monoid, then the presentation (S, T) is confluent but not reduced.
For example, if x y = e in S, then the right side of the rule xy -+ e is not
irreducible. Also, the left side e is a proper subword of other left sides. Let
- be the congruence generated by T. For any length-plus-lexicographic
ordering -< of S*, the system RC(S, -<, -) consists of the following rules:

e - e,
x#e, y#e,

xy-*e, xe, y#e,
In Exercise 2.4 of Chapter 1 we constructed the direct product of two

monoids. We shall now describe another type of product called the free
product. We begin with a proposition about combining two rewriting
systems with disjoint sets of generators.
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Proposition 3.2. Suppose X and Y are disjoint sets and R and S are,
respectively, confluent rewriting systems on X* and Y* with respect to re-
duction orderings on those sets. Then RUS is a confluent rewriting system
with respect to any reduction ordering of (X U Y)* which extends the given
orderings.

Proof. The words described in Proposition 3.1 at which the local conflu-
ence of R US must be checked are either in X* or in Y*.

Let M and N be monoids. By taking an isomorphic copy if necessary, we
may assume that M n N = 0. Let TM and TN be the monoid multiplication-
table rewriting systems for M and N, respectively. By Proposition 3.2, TMU
TN is a confluent rewriting system. The monoid Mon (M U N I TM U TN) is
called the free product of M and N and is denoted M * N. Canonical forms
for M * N are e and u1u2 ... ur, where each ui is a nonidentity element of
M or of N, and for 1 < i < m either ui is in M and ui+1 is in N or ui is in
N and ui+1 is in M. It is clear from the definition that M * N = N * M.

Proposition 3.3. Suppose (X, R) and (Y, S) are monoid presentations for
M and N, respectively. If X n Y = 0, then (X U Y, R U S) is a presentation
of M * N.

Proof. The proof is primarily diagram chasing and is omitted.

The operation of forming free products is associative.

Proposition 3.4. If L, M, and N are monoids, then (L * M) * N and
L * (M * N) are naturally isomorphic.

Proof. Exercise.

Proposition 3.5. If M and N are groups, then M * N is a group.

Proof. Let f : M -* M * N be the obvious homomorphism. The image
of M under f is a group. Similarly, the image of N in M * N is a group.
Since these images generate M * N as a monoid, it follows that M * N is a
group.

Example 3.9. The free group F generated by a finite set X is defined by
monoid relations x"x-a = 1 on generators x' with x in X and a = ±1. For
x in X, let Fx be the free group generated by {x}. Then Fx is isomorphic
to Z, and F is (isomorphic to) the free product of the groups F.
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Example 3.10. The group of Example 3.3 is the free product of Mon (x),
which is isomorphic to Z2, and Mon (y, z), which is isomorphic to Z.

Proposition 3.6. Let X = {x1, ... , xs}, let m be a positive integer, and
let R be the set of all pairs (P, e), where P is a cyclic permutation of the
word (x1x2 ... x3)m. Then (X, R) is a reduced, confluent presentation, and
Mon (X I R) is the free product of 7L,m and s - 1 copies of Z.

Proof. Examples 3.3 and 3.4 do the case s = m = 2. The general case is
left as an exercise.

Sometimes the most convenient description of a group G by a confluent
rewriting system involves restricting the words used to describe elements
of G. Suppose R is a confluent rewriting system on X*. It may happen that
M = Mon (X I R) is not isomorphic to G but there is a subsemigroup S of
X* whose image in M is isomorphic to G. If S is closed under rewriting
with respect to R, then we can compute in G by restricting the words used
to elements of S. In this situation we shall say that the triple (X, )Z, S) is a
restricted presentation for G. Perhaps the simplest restricted presentation
for G is (G, S, S), where S = {(xy, x y) I x, y E G} is the set of semigroup
relations obtained from the multiplication table of G, and S is the set of
nonempty words in G*.

Exercises

3.1. Show that the following rewriting system is confluent:

a5 , e, b5 -> e, b4a4 -+ (ab)4, (ba)4 -* a4b4.

3.2. Prove confluence in Example 3.7.
3.3. Find the order of G in Example 3.5.
3.4. Let X be a subset of Y and let G be the free group generated by Y. Show that the

subgroup of G generated by the image of X is isomorphic to the free group generated
by X.

3.5. Let R be a rewriting system on X* and let W be a word in X* which is an overlap of
left sides in R. Show that there are words A, D, E, and U such that AUD and UE are
left sides in R, W = AUDE, U: e, and either D or E is empty.

3.6. Suppose that R is a finite rewriting system on X* and for any word B in X* there is an
efficient mechanism for finding all rules (R, S) in R such that either R is a prefix of B
or B is a prefix of R. Modify CONFLUENT so that its main loop has the form

For all(P,Q)in1 do
For all nonempty suffixes B of P do begin

End
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3.7. Show that free groups have no nonidentity elements of finite order. (Hint: Show that
every nonidentity element is conjugate to an element [A], where A2 is a freely reduced
word.)

2.4 Rewriting strategies
Let X = {a, b, c}. In Example 3.6 we established the confluence of the
rewriting system S on X}* consisting of FGRe1(X) and the following rules:

ca - ac, ca-1 - a-1c, c la -* ac 1, c la-1 a-lc 1,

cb ->bc, cb-1 -* b-lc, c lb - be 1, c lb-1 b-1c 1

ba -+ abc, ba 1 - a-lbc 1, b-la - ab-1c1, b-la1 -* a-lb-1c.

Rewriting using S and generalizations of S described in Section 9.10 was
first discussed by P. Hall, who called the process collection. Given a word
U in X}*, there usually are many ways of collecting or rewriting U to
obtain an irreducible word V. Which choices are made can greatly affect
the number of steps and the length of the intermediate words.

One strategy for rewriting with S which has useful theoretical applica-
tions is called collection to the left. Chapters 11 and 12 of [Hall 1959] make
extensive use of this strategy. In the first step of collection to the left, all
occurrences of a and a-1 are moved to the left and then canceled to the
extent possible. Then occurrences of b and b-1 are moved left past all oc-
currences of c and c-1. Applying this strategy to U = baba-ib-la, we get
the following reduction:

baba-lb-la -> abcba-lb-la -* abca-lbc lb-la

aba-lcbc lb-la ->aa-lbclcbc lb-la - be lcbc lb-la

be lcbc lab-1c 1 ->bc1cbac lb-lc 1 ->bc 1cabcc 1b-1c 1

be lacbcc lb-lc l ->bac1cbcc 1b-1c 1 -> abcc lcbcc lb-lc 1

abcc lbccc lb-lc 1 -> abcbc 1cc lb-lc 1 -- abbcc 1cc lb lc 1

abbcc lccb-lc lc 1 -> abbcc lcb-lcc lc 1 -* abbcc lb-lccc lc l

-> abbcb-lc lccc 1c 1 -- abbb-lcc 1ccc 1c 1 abcc lccc lc 1

-> abccc lc 1 - abcc 1 -+ ab.

However, if we choose a different strategy, we can carry out the reduction
with only five applications of the rewriting rules:

baba-lb-la ->baba-lab-lc1 -+ babb-1c 1 ->bac1 -> abcc 1 -+ ab.

With this small rewriting system, it is relatively easy in hand computation
to avoid long, unnecessary sequences of rewriting steps. However, with
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large systems having perhaps millions of rules, it is very difficult to decide
on a good, let alone an optimum, strategy.

Complicating the situation is the fact that our primary goal is to optimize
the running time of the rewriting process, and this is not necessarily the
same as minimizing the number of applications of the rules. It might be
that we could always find a short reduction, but doing so would take a long
time. It is possible that a strategy which employs more steps but is able to
make the choice of those steps very rapidly will yield a faster algorithm.

Suppose we are rewriting a word U. Thus we want to write U as APB,
where (P, Q) is a rule, and to replace U by AQB. How should we choose
the occurrence of the left side P in U? We could select it so that I P I - I Q I
is maximal, which would minimize the length of the word AQB. We could
also select the occurrence so that AQB is as early as possible in the ordering
- we are using. Collection to the left makes sense only for rewriting systems
with respect to wreath product orderings in which there are left sides yQx"
for all generators x and y with x >- y and all a, 3 in {1, -1}. However, a
general strategy which is in the spirit of collection to the left chooses the
left side P in U which is as large as possible with respect to -< and, subject
to this, as close to the beginning of U as possible. Unfortunately, each
of these strategies requires finding all occurrences of left sides in U, and
frequently this is not practical.

Usually the first occurrence of a left side found is the one that is used.
In this case, the way one searches for left sides becomes important. One
can take each left side in turn and look for occurrences of it anywhere in U.
Or one can take a fixed term in U and look for left sides beginning at that
term. The terms can be considered from left to right or from right to left.
Here is an implementation of a strategy which will be called rewriting from
the left. The set X of generators and the rules (Pi, Q2), 1 < i < n, are
assumed to be available as global variables.

Procedure REWRITE_FROM_LEFT(U; V);
Input: U : a word;
Output: V : a word, the rewritten form of U;
Begin

V:= E; W:= U;
While W# e do begin

Let W = xW1 with x in X; W:= W1; V:= Vx;
For i:=1tondo

If Pi is a suffix of V then begin
Let V = RP,; W:= QiW; V:= R;
Break

End
End

End.
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At all times in REWRITE_FROM_LEFT, the word VW is derivable
from U. Moreover, V is the longest prefix of VW known to be irre-
ducible with respect to the set of rules. In Section 3.5 we shall examine
more efficient ways to test whether a word V has some Pi as a suffix. In
REWRITE_FROM_LEFT, we simply test each Pi in turn.

Suppose we take the rewriting system of Example 3.6:

a2 - e, ab2a -> bab,

b3 e, baba -> ab2,

abab -> b2a, b2ab2 -* aba.

Here is a sample of the way REWRITE_FROM_LEFT rewrites a word:

abaababbaaabbabbbaba -> abbabbaaabbabbbaba -+ babbbaaabbabbbaba

baaaabbabbbaba ->baabbabbbaba - bbbabbbaba

abbbaba -+ aaba -* ba.

There is an analogous procedure for rewriting from the right. The second
rewriting of baba-1b-la given above illustrates the strategy of rewriting
from the right.

Exercises

4.1. Describe a procedure REWRITE_FROM_RIGHT which keeps track of the longest suffix
of the word which is known to be irreducible.

4.2. Show that rewriting a word U from the right using the rules (Pi, Qi), 1 < i < n, can be
accomplished by rewriting Ut from the left using the rules (Pit, Qi) and then reversing
the result.

4.3. Let R be the rewriting system of Example 3.6. Using R, rewrite each of the following
words with collection to the left, rewriting from the left, and rewriting from the right:
eba,(abc)3,ca-lb-'abc la.

4.4. Let S be the rewriting system of Example 3.5. Using S, rewrite each of the following
words with rewriting from the left and rewriting from the right: (abab2 )3, bbababaabbababb.

2.5 The Knuth-Bendix procedure
In this section we shall encounter the first of the fundamental procedures
which are the subject of this book. The procedure is called the Knuth-
Bendix procedure for strings. It is based on a much more general procedure
described in (Knuth & Bendix 1970).

Let (X, R) be a finite monoid presentation, let -< be a reduction or-
dering on X*, and let T denote the reduced, confluent rewriting system
RC(X, -<, R). The main result of this section states that if T is finite, then
T can be computed from X, R, and an effective definition of -<. By an
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effective definition of is meant a definition which provides an algorithm
for deciding which of two given words comes first. It must be emphasized
that there is no procedure for deciding whether T is finite.

We shall first describe a basic version of the Knuth-Bendix procedure
for strings called KBS_1. It has input arguments X, R, and -<, and it
returns T, provided T is finite. Because KBS_1 is not practical for serious
computation, a second, more efficient version of the Knuth-Bendix proce-
dure will be given in Section 2.6. Additional improvements will be sketched
in Section 2.7. Within KBS_1, a sequence of rules (Pi, Qi), 1 < i < n, is
generated. The procedure REWRITE_FROM_LEFT is used to rewrite a
word with respect to S = {(Pi, Qi) I 1 < i < n}.

The idea behind KBS_1 is quite simple. Suppose we apply CONFLU-
ENT to the current set of rules. If the rules are confluent, we stop.
Otherwise we find two irreducible words A and B which are equivalent
under the congruence - generated by R. Assuming the A >- B, we add
(A, B) to the set of rules. The only point which needs some care is making
certain that for every pair of indices i and j eventually all overlaps of the
left sides Pi and Pj are considered.

Two subroutines are used in KBS_1. The subroutine TEST-1 adds a
new rule, if necessary, in order to insure that there is a word derivable from
two given words using the rules in S.

Procedure TEST- 1 (U, V);
Input: U, V : words;
Begin

REWRITE_FROM_LEFT(U; A); REWRITE_FROM_LEFT(V; B);
If A 0 B then begin

If A B then interchange A and B;
n:=n+1; P,,,:=A; Q,,,:=B

End
End.

The second subroutine, OVERLAP-1, is based on the inner loop of CON-
FLUENT in Section 2.3. It checks the overlaps of Pi and Pj in which Pi
occurs at the beginning of the word. When failures of local confluence are
found, new rules are added. Note the way OVERLAP-1 combines the case
in which P, is a subword of Pi with the case in which Pi has a nonempty
suffix B which is also a prefix of Pi.

Procedure OVERLAP_1(i, j);
Input: i, j : positive integers not exceeding n;
Begin

For k := 1 to JPPj do begin
Let Pi = AB with JBI = k;
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Let U be the longest common prefix of B and Pj;
Let B = UD and Pj = UE;
If D or E is empty then TEST_1(AQjD,QiE)

End
End.

Here then is the definition of KBS_1.

Procedure KBS_1(X, -<,R; T);
Input: X : a finite set;

- : a reduction ordering on X*;
R : a finite subset of X* x X*;

Output: T : RC(X, ,R.), if it is finite;
(* WARNING - TERMINATION MAY NOT OCCUR. *)
Begin

n:=0; i:=1;
For (U, V) in 1Z do TEST- 1 (U, V);

While i < n do begin
For j := 1 to i do begin

OVERLAP_1(i, j);
If j < i then OVERLAP_1(j, i)

End;

is=i+1
End;

Let P be the set of Pi such that every proper subword of Pi is
irreducible with respect to S;

T:= 0;
For P in P do begin

REWRITE_FROM_LEFT(P; Q); Add (P, Q) to T
End

End.

Proposition 5.1. If RC(X, -<,R.) is finite, then KBS_1(X, -,R; T) termi-
nates with T = RC(X, -<,R.).

Proof. Suppose a call TEST-1(UV) is made and the two calls to
REWRITE_FROM_LEFT have been completed. Then S U {(U, V)} and
S U { (A, B) } generate the same congruence on X*. Therefore, after the first
For-loop in KBS_1, the sets R and S generate the same congruence - on
X*. With any later calls TEST_1(U, V), we have U V, so at any time
during the While-loop in KBS_1 the set S generates ". Note also that Pi
is irreducible with respect to {(P,,Q2) 11 < j < i}.
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Suppose that KBS_1 does not terminate. Then the While-loop does
not terminate and produces an infinite sequence (Pi, Qi ), i = 1, 2, ..., of
rewriting rules. Let U be the set of these rules.

Lemma 5.2. U is confluent and generates -.

Proof. From the preceding remarks, it is clear that U generates -. Sup-
pose U is not confluent, and let W be the first word (with respect to -<) at
which local confluence fails. By Proposition 3.1, W = ABC, where B e
and one of the following holds:

(i) W = Pj and B = P, with j < i, and there is no word derivable using
U from both AQiC and Qj.

(ii) AB = Pi, BC = Pj, and there is no word derivable from both AQj
and QZC.

Suppose (i) holds. At some point in the running of KBS_1 the call
OVERLAP_l(j,i) is made. After this call is completed, there is a word
R derivable from both AQiC and Qj using the current set S. Since S is
a subset of U, the word R is derivable from both AQZC and Qj using U.
Therefore (i) cannot hold.

Similarly (ii) does not hold, for the call OVERLAP_1(i, j) would force the
existence of a word derivable from both AQj and QiC using U. Therefore
U is confluent.

We now resume the proof of Proposition 5.1. Let C be the set of canonical
forms for - and let P be the set of words P in X* - C such that every
proper subword of P is in C. Since rewriting an element P of P using U
must produce the element P of C such that P - P, there is a rule in U with
left side P, and this rule is unique. Let V be the set of rules (P, Q) in U
such that P is in P. By assumption, RC(X, -<,R) is finite. Therefore P and
V are finite. Let n be the largest integer such that (Pn, Qn) is in V. If i > n,
then Pi is not in C and is irreducible with respect to {(P,,Q3) I 1 < j < i}.
But this is impossible. Therefore U is finite and the While-loop in KBS_1
terminates.

By Proposition 2.8, the last For-loop defines T to be RC(X,

Let us illustrate the use of KBS_1 with some examples. To assist the
reader in following the examples, a description of the source of each rule
will be given. New rules are added to S only in TEST-1, which is called
in two places: in the first For-loop of KBS_1 and in OVERLAP-1. To
indicate the source of a rule, we shall write one of the following:

Relation i,

Overlap i, j, k.
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Table 2.5.1

i Pi Qi Source

1 as-1 a Relation 1
2 a-la a Relation 2
3 bb-1 e Relation 3
4 b-1b e Relation 4
5 ba ab Relation 5
6 aba-1 b Overlap 5 1 1
7 b-lab a Overlap 4 5 1
8 ba-1 a-lb Overlap 2 6 1
9 b-la ab-1 Overlap 7 3 1

10 b-1a lb a-1 Overlap 4 8 1
11 ab-la-1 b-1 Overlap 9 1 1
12 b-1a 1 alb-1 Overlap 10 3 1

The first says that the call to TEST-1 which added the rule occurred on
the i-th iteration of the first For-loop in KBS_1. The second indicates that
the call to TEST-1 came from OVERLAP-1 when its arguments were i
and j, and the variable k within OVERLAP-1 had the specified value.

Example 5.1. Let X = {a, b}, let - be the length-plus-lexicographic ordering
of X±* with a -< a-1 -< b -< b-1, and let R consist of the following rules:

as-1 --> E, a-1a --+ e, bb-1 --> E, b-1b -+ E, ba -* ab.

If we process the elements of R in the order listed, then the sequence of
rules generated by KBS_1 is as given in Table 2.5.1.

The final reduced, confluent rewriting system consists of rules 1 to 5, 8,
9, and 12.

Example 5.2. Let X and R be the same as in Example 5.1 and let - be the
length-plus-lexicographic ordering of X'* with a -< b -< b-1 -< a-1. The first
20 rules produced by KBS_1 are listed in Table 2.5.2.

It is relatively easy to show that P2i = ab6-'a-1, Q2i = b6-i, P2i+1 =
abi-3a-1, and Q2i+1= bi-3 for i > 8. The procedure KBS_1 never terminates
because RC(X, -<,R) is infinite, as shown in Example 3.7.

Example 5.3. Let X = {a, b}, let -< be the length-plus-lexicographic ordering
of X * with a - b, and let R consist of the following pairs:

a2 - * E, b3 -+ E, (ab)3 -- E.

The sequence of rules produced by KBS_1 is given in Table 2.5.3. The final
reduced, confluent system consists of rules 1, 2, and 6 to 9. This is the
presentation of Example 3.5.
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Table 2.5.2

i Pi Qi Source

1 as-1 e Relation 1
2 a-la a Relation 2
3 bb-1 a Relation 3
4 b-lb e Relation 4

5 ba ab Relation 5

6 aba 1 b Overlap 5 1 1
7 b-lab a Overlap 4 5 1
8 a-lb ba-1 Overlap 2 6 1
9 abba-1 bb Overlap 5 6 1

10 b-1a ab-1 Overlap 7 3 1
11 ba-lb-1 a-1 Overlap 8 3 1
12 abbba-1 bbb Overlap 5 9 1
13 ab-la 1 b-1 Overlap 10 1 1
14 alb-1 b-1a 1 Overlap 4 11 1
15 ab4a-1 b4 Overlap 5 12 1
16 ab-2a 1 b-2 Overlap 10 13 1
17 ab5a-1 b5 Overlap 5 15 1
18 ab-3a-1 b-3 Overlap 10 16 1
19 ab6a 1 bs Overlap 5 17 1
20 ab-4a-1 b-4 Overlap 10 18 1

Table 2.5.3

Pi Qi Source

1 a2 e Relation 1
2 b3 Relation 2
3 (ab)3 Relation 3
4 babab a Overlap 13 1
5 ababa b2 Overlap 3 2 1

6 (ba)2
ab2 Overlap 4 2 1

7 (ab)2 b2a Overlap 2 4 1

8 ab2a bab Overlap 4 3 2

9 b2ab2 aba Overlap 5 5 1

73

Example 5.4. Let X = {a, b, b-1 }, let -< be the length-plus-lexicographic
ordering of X* with a -< b - b-1, and let 7Z consist of the following rules:

a2 - e, bb-1 -+ e, b3 -* e, (ab)3 -> e.

This is the same group as in Example 5.3. Note that the monoid relation
b-1b --> e is not needed since the relation b3 -* e implies that b has an
inverse. The relation bb-1 -> e simply names that inverse. Table 2.5.4 lists
the sequence of rules produced by KBS_1. The final system consists of
rules 1, 2, 5, 8, 9, 12, and 14 to 18.
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Table 2.5.4

i Pi Qi Source

1 a2 a Relation 1
2 bb-1 a Relation 2
3 b3 a Relation 3
4 (ab)3 E Relation 4
5 b2 b-1 Overlap 3 2 1
6 babab a Overlap 14 1

7 ababa b-1 Overlap 4 2 1
8 b-2 b Overlap 5 2 1
9 b-lb E Overlap 5 3 2

10 baba ab-1 Overlap 6 2 1

11 abab b-1a Overlap 3 6 1
12 bab ab-1a Overlap 6 4 2
13 blab-la ab Overlap 7 4 3
14 b-1ab-1 aba Overlap 7 7 1
15 b-1aba bab-1 Overlap 5 10 1
16 abab-1 b-lab Overlap 11 5 1
17 ab-lab bab-1 Overlap 12 5 1
18 bab-1a b-lab Overlap 5 12 1

Example 5.5. This example is somewhat longer than the first four. Let
X = {a, b, c}, let - be the basic wreath-product ordering of X}* with c -<
C-1 -< b -< b-1 -< a -< a-l, and let 1Z consist of the following rules:

as-1 -i E, a-1a -> e, bb-1 - e, b-1b - e, cc-' c lc -> 6,

ca -f ac, cb -* bc, ba - abc.

The sequence produced by KBS_1 is given in Table 2.5.5. The final set
consists of rules 1 to 9, 16, 18 to 20, 27, 36, and 39 to 41, a total of 18 rules.
These are the rules of Example 3.6.

Suppose that X is a finite set and 1Z is a finite, confluent rewriting system
on X* with respect to a reduction ordering . Let - be the congruence
generated by R. There is a straightforward but time-consuming way to
verify that - has only finitely many classes. Choose a large integer n and
show that each of the IXI' words in X* of length n contains a left side in
R as a subword. Thus if U in X * is irreducible with respect to R, then
UI < n, and hence - has only finitely many canonical forms.

This approach cannot verify that - has infinitely many classes. However,
using the theory of automata, it is possible to decide whether - has in-
finitely many classes. Automata are the subject of Chapter 3. Section 3.10
describes the use of automata to determine whether a monoid defined by a
finite, confluent presentation is finite or infinite.
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Table 2.5.5

i Pt Qz Source

1 as-1 a Relation 1
2 a1a a Relation 2
3 bb-1 e Relation 3
4 b-1b Relation 4

5 cc-1 Relation 5
6 c 1c a Relation 6
7 ca ac Relation 7
8 cb be Relation 8
9 ba abc Relation 9

10 aca-1 c Overlap 7 1 1
11 c 1ac a Overlap 6 7 1
12 bcb-1 c Overlap 8 3 1
13 c 1 be b Overlap 6 8 1
14 abca 1 b Overlap 9 1 1
15 b-1abc a Overlap 4 9 1

16 ca-1 a 1c Overlap 2 10 1
17 aba 1cc be Overlap 9 10 1
18 c 1 a ac -I Overlap 11 5 1
19 cb-1 b-1c Overlap 4 12 1
20 c 1b be 1 Overlap 13 5 1

21 ba-1c alb-1 Overlap 2 14 1
22 aba 1bc b2 Overlap 9 14 1
23 b-lab ac -1 Overlap 15 5 1
24 b-1a2bc2 a2 Overlap 15 7 1

25 b-1ac ab-1 Overlap 15 12 2
26 c 1a 1c a-1 Overlap 6 16 1
27 bat c 1a-1b Overlap 13 16 1
28 ac la-1b2c2 b2c Overlap 17 8 1
29 ac 1a-2bc a 1b Overlap 17 16 1
30 ac 1 a 1 C-1 Overlap 18 1 1
31 c 1b-1c b-1 Overlap 6 19 1
32 be 1b-1 C-1 Overlap 20 3 1

33 b-a 1b a 1c Overlap 4 21 1
34 c 1a-1b a 1bc 1 Overlap 21 5 1
35 c 1a2b a 2bc 1 Overlap 21 16 1
36 b-1a ac lb-1 Overlap 23 3 1
37 ac 1b-1 ab-1c 1 Overlap 25 5 1
38 ab-1a 1 b-1c Overlap 25 10 2
39 c 1a1 a-1c 1 Overlap 26 5 1
40 c 1b-1 b-1c 1 Overlap 31 5 1
41 b-1a-1 a-1b-1c Overlap 33 3 1

Exercises

5.1. Let X = {a, b} and let R consist of the rules a2 , e, b2 - e, (ab)2 -> e. Apply KBS_1
using the length-plus-lexicographic ordering -< with a -< b. Repeat the computation using
the length-plus-lexicographic ordering with b -< a.



76 2 Rewriting systems

5.2. Suppose that X = {x} and R consists of the rules x' - e and x" - e, where m and n are
positive integers. Show that KBS_1 returns the single rule xd , e, where d = gcd(m, n).
Compare the operation of KBS_1 on this input with the operation of the Euclidean
algorithm.

5.3. Let R be a finite, confluent rewriting system on X* and assume that Mon (X I R) is
finite. Design a backtrack search for the words in X* which are irreducible with respect
to R. Given a positive integer n, apply the technique of Knuth described in Section 1.8
to devise a method for estimating the number of irreducible words of length at most n.

2.6 A second version
The procedure KBS_1 of Section 2.5 retains all rules that are constructed
and uses them in the processes of rewriting and forcing local confluence. It
is usually better to delete rules which become redundant and maintain a
reduced set of rules at all times. In the procedure KBS_2, described below,
boolean flags active[i] are used to indicate which rules are still active. If
active[i] is true, then (Pi,Qi) is active and is used in rewriting and forming
overlaps. If active [i] is false, then (Pi, Q2) will play no more part in the op-
eration of the procedure. The procedure REWRITE_FROM_LEFT must
be modified to look only for the left sides of active rules. In KBS_2 we
retain inactive rules to provide a complete history of the computation. In
practice, rules are deleted as soon as they become inactive, and the space
freed up is made available for new rules.

Assume that the current set of active rules is reduced. When a new rule
(A, B) is added, the set of active rules may no longer be reduced. Suppose
that (Pi, Qi) is one of the active rules different from (A, B). If Qi contains
A as a subword, then we must rewrite Qi to obtain an irreducible word. If
Pi contains A as a subword, then we must remove (Pi, Qi) from the set of
active rules. However, we must make sure that even with (Pi, Qi) no longer
active there is still a word derivable from both Pi and Qi. To manage all
of these revisions to the set of rules, a stack of pairs of words is used. If
(U, V) is on the stack, then U - V, so there must be a word derivable from
both U and V. The purpose of the subroutine TEST_2 is to clear this
stack.

Procedure TEST_2;
Begin

While the stack is not empty do begin
Pop (U, V) from the stack;
REWRITE_FROM_LEFT(U; A);
REWRITE_FROM_LEFT(V; B);
If A # B then begin

If A -< B then interchange A and B;
n:= n + 1; Pn := A; Qn := B; active[n] := true;
For i:=1ton-1do
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If active [i] then
If Pi contains A as a subword then

Begin active [i] := false; Push (Pt, Qi) onto the stack end
Else if Qi contains A as a subword then

Begin REWRITE_FROM_LEFT(Qi; C); Qi := C end
End

End
End.

The procedure OVERLAP-1 requires only minimal changes, which re-
flect the fact that because the set of active rules is reduced, only proper
overlaps, that is, overlaps of type (3) in Proposition 3.1, can occur.

Procedure OVERLAP_2(i, j);
Input: i, j : indices of active rules;

Begin
m:=min(lPil,IPjj)-1; k:=1;
While (k < m) and active[i] and active[j] do begin

Let B be the suffix of Pi of length k;
If B is a prefix of Pj then begin

Let Pi = AB and Pj = BC; Push (AQj, QiC) onto the stack;
TEST_2

End;

k:=k+1
End

End.

Here is the second version of the Knuth-Bendix procedure for strings:

Procedure KBS_2(X, -<,I Z; T);
Input: X : a finite set;

-< : a reduction ordering of X*;
R a finite subset of X* x X*;

Output: T : RC(X, -<,R.), if it is finite;
(* WARNING - TERMINATION MAY NOT OCCUR. *)
Begin

n:=0; i:=1;
For (U, V) in R do begin push (U, V) on the stack; TEST_2 end;
While i < n do begin

j:=1;
While j < i and active [i] do begin

If active[j] then begin
OVERLAP_2(i, j);
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If j < i and active[i] and active[j] then OVERLAP_2(j,i)
End;

j:=j+1
End;

i:=i+l
End;
Let T be the set of currently active rules

End.

Proposition 6.1. If RC(X, -<,R) is finite, then KBS_2(X, -<,1Z; T) termi-
nates with T = RC(X, -,R).

Proof. This proposition is more difficult to prove than Proposition 5.1,
since rules may be modified or deleted. The proof given here is based
heavily on [Le Chenadec 1986].

All changes to the set of active rules take place in TEST_2. A rule
(Pi, Qi) is made inactive only when a new rule (Pn, Q,) is found such that
Pi contains Pn as a proper subword. Thus the ideal of X* generated by the
left sides of the active rules increases each time a new rule is added and is
not affected by deletions or modifications of existing rules.

Lemma 6.2. Calls to TEST_2 terminate.

Proof. Suppose at the beginning of a call to TEST_2 there are r active
rules and s pairs on the stack. Since pairs are added to the stack only
after the deletion of an active rule, the number of active rules at any time
during this execution of TEST_2 cannot exceed r+s. By Proposition 2.7 of
Chapter 1, the ideal generated by the left sides of the active rules stabilizes
at some point in this execution of TEST_2. But then no new rules are
created, so the stack must eventually become empty.

Let - be the congruence generated by R. The operation of TEST_2
does not change the congruence generated by the active rules and the pairs
on the stack. Thus after the completion of the For-loop in KBS_2, at any
point in the execution of KBS_2 outside TEST_2 the set of active rules
generates -.

Let S be the set of all pairs which occur as active rules at some point
during the operation of KBS_2 and let T be the subset of those elements
of S which are never deleted or modified. If KBS_2 terminates, then T is
the rewriting system returned by KBS_2. Let (R, S) and (T, U) be distinct
elements of T. From some point on, both of these rules are active. Since
the set of active rules is reduced, neither R nor S contains T as a subword.
Therefore T is reduced.
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U1

Figure 2.6.1

Lemma 6.3. Suppose M, N1, and N2 are words in X* such that M T Ni,
i = 1, 2. Then there are words U1, U2, and V such that for i = 1, 2 we have
M S Ui S Ni and Ui S V.

Proof. The statement of the lemma corresponds to Figure 2.6.1. For i = 1,
2 there are words Ai, Bi, Li, and Ri such that M = AiLiBi, (Li, Ri) is in T,
and Ni = AiRiBi. If the occurrences of L1 and L2 in M do not overlap, then
we may assume that A1L1 is a prefix of A2. In this case M = A1L1CL2B2
for some word C, and we may take Ui = Ni and V = A,R1CR2B2.

Suppose that the occurrences of L1 and L2 do overlap. We may assume
that M = A1ABCB2, where L1 = AB, L2 = BC, and B # e. At some point
in the operation of KBS_2 the overlap ABC was considered. Suppose at
that time (L1, S1) and (L2, S2) were active rules. Because of the call to
OVERLAP_2, there is a word T such that S1C s T and AS2 --k+ T. Let
U1 = A,S1CB2, U2 = A,AS2B2, and V = A1TB2. Then for i = 1, 2 we have
M s Ui s V. Since Si s Ri, we also have Ui s Ni.

Lemma 6.4. For all words M, N, N1, and N2 in X*, the following hold:

(a) If M S N, then there is a word V such that M T V and N T V.
(b) If M T N1 and M T N2, then there is a word V such that N1 z

V and N2 T V.
(c) If M s N1 and M s N2, then there is a word V such that N1 7

V and N2 7 V.

Proof. We shall prove (a), (b), and (c) simultaneously by induction. Let
M be the first word with respect to -< at which one of these statements
fails.

Suppose (a) fails for M and some word N. Then N 54 M, since otherwise
we could take V = M. Let M s M1 s N be the derivation of N from M.
Then there are words A, B, L, and R such that M = ALB, M1 = ARB,
and (L, R) is in S. Among the counterexamples to (a), choose one where
L is minimal. The sequence of words S such that (L, S) is an active rule is
a nondecreasing sequence. Let S be the last such word. Then either (L, S)
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Figure 2.6.2

Figure 2.6.3

is in T or at some point (L, S) is made inactive and placed on the stack.
Let M2 = ASB.

Suppose first that (L, S) is in T. Then M 7 M2. Since R s S, we
have M1 s M2. By the minimality of M, (c) holds for the triple M1, N,
M2. Thus there is a word V such that N T V and M2 T V. Since
M T M2, statement (a) holds.

Suppose that (L, S) is not in T. Then at some point (L, S) was placed
on the stack. Sometime later, (L, S) was removed from the stack and a rule
was added, if necessary, so that there is a word W derivable from both L
and S using rules in S whose left sides are strictly less than L. Let (P, Q)
be the first rule used in one derivation of W from L. Then L = CPD,
where CD 0 e. Set M3 = ACQDB and T = AWB. Then M2 -- T and
M3 S T. At this point, the picture is as in Figure 2.6.2. By (c5 applied
to M1, N, T, there is a word E such that N T E and T T E. By our
assumption on L, statement (a) holds for M and E, since we can derive E
from M by the route M s M3 s T T E. The first step uses the rule
(P, Q) and P - L. Therefore there is a word V such that M T V and
E 7 V. But then N T V, and (a) holds.

Now suppose that (b) fails for M, N1, and N2. Clearly we may assume
that M, N1, and N2 are distinct. For i = 1, 2 let M 7 Mi be the first
step in deriving Ni from M using T. By Lemma 6.3, there are words U1,
U2, and Q such that the derivations in Figure 2.6.3 hold.
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By (c) applied to U1, M1, and Q, there is a word R such that M1 7 R
and Q T R. By (c) applied to U2, R, and M2, there is a word S such
that R T S and M2 T S. Thus M1 7 S. By (b) applied to M1, N1,
and S, there is a word T such that N1 T T and S 7 T. Therefore
M2 T T. Finally by (b) applied to M2, N2, and T, there is a word V such
that N2 T V and T 7 V. Since N1 7 V, we see that (b) holds for M,
N1, and N2.

Now suppose that (c) fails for M, N1, and N2. Clearly N1 # N2. If
M = N1 or M = N2, then we can apply (a). Thus we may assume that
M, N1, and N2 are distinct. By (a), there are words V1 and V2 such that
M T V and Ni T Vi, i = 1, 2. By (b) applied to M, V1, and V2, there is
a word V such that V T V, i = 1, 2. Then Ni T V, so (c) holds.

By part (b) of Lemma 6.4, the system T is confluent. Since T C_ S, by
part (c) of the lemma S is confluent. A word is irreducible with respect
to S if and only if it is irreducible with respect to T. Therefore the con-
gruences generated by S and T have the same canonical forms. Hence S
and T generate the same congruence, namely -. Since T is reduced, T is
RC(X, Therefore T is finite. Once all the rules in T become active,
no new rules are added, and the While-loop eventually terminates. Thus
KBS_2 terminates and returns RC(X, -<,R).

The difference between the operation of KBS_1 and the operation of
KBS_2 is not large for the small examples discussed in Section 2.5.

Example 6.1. With the data of Example 5.1, the procedure KBS_2 con-
structs a total of 12 rules, all with different left sides. The maximum
number active at any one time is 10, and the stack never has more than
two pairs on it.

Example 6.2. Using the data of Example 5.4, KBS_2 constructs a total
of 17 rules, all with different left sides. This is one less than the number
produced by KBS_1. With KBS_2, no more than 11 rules are active at
any one time, and the stack never has more than two pairs on it. Thus the
storage requirements for a version of KBS_2 which does not retain inactive
rules would be less on this example than the storage needs of KBS_1.

Example 6.3. On the data in Example 5.5, KBS_2 generates 34 rules, two
of which have the same left side. The maximum number active is 20, and
stack never has more than two pairs on it.

Example 6.4. Let X = {a, b, b-1}, let -< be the length-plus-lexicographic
ordering of X* with a -< b -< b-1, and let R consist of the following pairs:

a2 -+ e, bb-1 --+ e, b3 -> e, (ab)7 - e, (abab_1)4 -> E.



82 2 Rewriting systems

The system RC(X, -<,R) has 40 rules. The procedure KBS_1 constructs a
total of 81 rules in computing RC(X, -<,R). With KBS_2 there are 89 rules
generated involving 85 different left sides. However, there are never more
than 40 rules active at one time, and the stack never has more than three
entries.

Example 6.5. If -< is a length-plus-lexicographic ordering and Mon (X I R)
is a group, then the left and right sides of the rules in RC(X, -<,R) will
have roughly equal lengths. The initial presentation in Example 6.4 does
not satisfy this condition. The following presentation is equivalent and
more balanced:

a2 -, E,
bb-1

-, e, b2
-,b-1 (b-la)3b-' -,(ab)3a,

(bab-la)2
(abab-1)2

With this presentation, KBS_1 constructs a total of 56 rules. Using KBS_2,
59 rules with 57 different left sides are constructed, but no more than 40
are active at one time.

Example 6.6. The presentation R consisting of the pairs

a2 - s, bb-1 -* e, b3 _* e, (ab)7 -, s, (abab-1)8 , s

is frequently used to test programs for studying finitely presented groups.
Let X = {a, b, b-'} and let -< be the length-plus-lexicographic ordering of
X* with a -< b -< b-1. The system T = RC(X, -<,R) has 1026 rules with
the longest left side having length 37. The procedure KBS_2 is not really
adequate to compute T. To see the problem, consider the following facts:
In T there are 143 left sides which start with a, 457 which start with b, and
426 which start with b-1. There are 444 left sides which end with a, 296
which end with b, and 286 which end with b-1. To prove that T is confluent,
the number of overlaps ABC with IBS = 1 which must be considered is

444 x 143 + 296 x 457 + 286 x 426 = 320600.

The number of overlaps with JBI = 2 is 235979. Processing all of these
overlaps will take a long time. It turns out that KBS_2 generates many
rules which later become redundant, so the running time to determine T is
longer than the time needed to show that T is confluent. See Section 3.5.

Although KBS_2 is a substantial improvement over KBS_1 and can be
practical for small problems, KBS_2 still has weaknesses. One of the biggest
weaknesses is the crude manner in which REWRITE-FROM-LEFT
searches for a left side which is a suffix of V. This can be improved with



2.7 Some useful heuristics 83

an indexing structure for the left sides, such as described in Section 3.5.
However, there are other problems as well. One is illustrated in Exam-
ple 6.6. Another is that KBS_2 does not work hard enough to derive short
rules quickly. Suppose that a rule of the form (xP, xQ) has been found
and generator x is a unit in Mon (X I R). Then P - Q and the rule (P, Q)
should be immediately deduced. However, it may be a long time before
KBS_2 finds this rule. The next section discusses a number of possibilities
for further improvements in the Knuth-Bendix procedure.

Exercise

6.1. Apply KBS_2 to the presentations a2 , e, b3 -* e, (ab)z - s, 2 < i < 5, and compare the
rules produced during the computation with those produced by KBS_l.

2.7 Some useful heuristics
It is impossible to pursue deeply questions about the efficiency of programs
implementing the Knuth-Bendix procedure for strings without a discussion
of the data structure to be used to store rules. Most of the time used
by a computer program executing the Knuth-Bendix procedure is spent in
rewriting. The manner in which the active rules are stored and the nature
of any other information about the rules which is kept can greatly affect
the time needed to rewrite words. It can also affect the time needed to
locate overlaps. Because the set of rules is continually changing, it must
be possible to update the stored data concerning the rules with as little
overhead as possible. Many interesting problems strain both the available
cpu and memory resources. A careful analysis is required in order to get a
good balance between speed and memory usage.

One way to gain some speed in the rewriting process while not sacrific-
ing very much memory is to sort the rules according to the right-to-left
lexicographic order of their left sides. The lexicographic ordering is used
here no matter what reduction ordering is being used to order the left and
right sides of rules. To see whether a particular word V has a left side as
a suffix, one looks V up in this dictionary of left sides using the technique
known as binary search. The main drawback of this approach is that when
a new rule is found, the entire set of rules must be resorted. Automata,
the subject of Chapter 3, provide index structures for the set of rules which
permit even faster rewriting and much easier updating. The problem with
automata is that they take a substantial amount of space, so their use re-
duces the size of the rewriting systems which can be stored. Computer
scientists have developed a number of other techniques which can be used
to design indexes. See, for example, the chapters on searching and string
matching in [Sedgewick 1990]. All of these methods have both strengths
and weaknesses. Deciding which one is best for a particular problem is
often difficult.
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No matter what data structure is used for rules, a considerable amount
of work is needed to keep the set of active rules reduced when a new rule
is found. It is often useful to delay removing redundant rules until several
new rules have been found.

In addition to deciding on the data structure to be used to store rules,
someone designing a program to carry out the Knuth-Bendix procedure
should consider using several heuristics which have been found helpful by
others. A word of caution is in order, however. There probably is no such
thing as the best Knuth-Bendix program. Given two different programs
A and B, it is likely that one can find two sets of input data such that
program A does better with the first set and program B does better with
the second.

The first two heuristics concern the formation of overlaps. In KBS_1
and KBS_2, the order in which the rules are found completely determines
the order in which overlaps are formed. Frequently it is useful to give
preference to forming short overlaps. This can be done in several ways.
If one is looking for overlaps of left sides AB and BC, one can use such
measures as JABCJ, IABI + IBCI, and max(JABI, IBCI) to define shortness
and select short overlaps before long ones. For example, if KBS_2 is run
on the data of Example 6.6 and is told to ignore all overlaps ABC with
ABC! > 44, it will still construct RC(X, -<,R), although it will not have

produced a proof of confluence.
One can also use knowledge about the existence of inverses to guide the

formation of overlaps, as suggested in [Le Chenadec 1986]. Suppose that a
new rule P - Q is found, and P = Ax, where x is in X, and in the monoid
being investigated [x] has a right inverse. Thus there is a rule xU e,
which either is part of the original presentation or has been discovered by
the Knuth-Bendix procedure. It seems to be a good idea to give a very
high priority to processing the overlap AxU:

AxU-A, AxU-QU.

Let S be the result of rewriting QU. If S -< A, then the rule A -* S can
be substituted for P - Q. If S >- A, then we have a new rule S -' A. A
special case of this heuristic occurs when Q also ends in x. If Q = Bx, then
P -* Q can be replaced immediately by A --4B.

There is a similar heuristic in case a new left side starts with a generator
whose image in the monoid has a left inverse. Also, if P -> Q is a new rule
and all the generators in P and Q define units, then the words P-1 and
Q-1 represent the same element of the monoid. Rewriting them can give a

useful new rule. (Here P-1 is formed by reversing the terms of P and then
replacing each term x by a word representing the inverse of [x].)

The procedure BALANCE listed below describes one way to implement
heuristics based on the ideas of Le Chenadec. BALANCE is designed to



2.7 Some useful heuristics 85

be part of a modified version of KBS_2. The following additional data are
assumed available: a subset Y of X of generators known to define units in
Mon (X I R), for each element y of Y a word U, defining the inverse of [y],
and an integer m which is used to limit the application of the heuristics.
Without some type of limit, the use of BALANCE may lead to a failure of
termination, even when RC(X, <,R) is finite.

The input to BALANCE consists of the left and right sides of a rule which
has just been discovered, probably by processing an overlap. The purpose
of BALANCE is to try to find a rule which is shorter or more balanced
in the sense that its left and right sides have more nearly equal lengths.
One rule is returned explicitly. Any other rules produced are pushed onto
the stack to be processed later. Although the procedure is valid with any
ordering, its use is most natural when the ordering involved is consistent
with length.

Procedure BALANCE(A, B; C, D);
Input: A, B : words, the left and right sides of a new rule;
Output: C, D : words, the left and right sides of a possibly more

balanced rule;
(* As a side effect, additional pairs of words may be pushed onto the

stack. *)
Begin

C:=A; D:=B;
(* Execution of the following "infinite loop" is controlled by the

Continue-statement and Break-statement. *)

While true do begin
Let C = Lx with x in X;
If x is in Y then

If D ends in x then
Begin Let D = Mx; C := L; D := M; Continue end

Else if IC! + JUJ < m then begin
REWRITE_FROM_LEFT(DUU; P);

If P - L then
Begin C := L; D := P; Continue end

Else if P >- L then push (P, L) onto the stack
End;

Let C = xL with x in X;
If x is in Y then

If D starts with x then
Begin Let D = xM; C := L; D := M; Continue end

Else if J CJ + J UJ < m then begin
REWRITE_FROM_LEFT(UUD; P);
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If P -< L then
Begin C := L; D := P; Continue end

Else if P >- L then push (P, L) onto the stack
End;

Break

End
End.

Example 7.1. To illustrate the use of BALANCE, let us find the reduced,
confluent rewriting system for the presentation in Example 5.3 using KBS_2
with one small change to TEST_2. In TEST_2 replace the lines

If A - B then interchange A and B;

n:=n+1; Pn:=A; Q,,:= B;

with the following statements:

If A - B then interchange A and B;

BALANCE(A, B; C, D);
n := n + 1; Pn := C; Qn := D;

In this example, X = {a, b}, and R consists of the rules

a2 -j e, b3 -* E, (ab)3 -> e.

We set Y = X and define Ua = a and Ub = V. The integer m is taken to be
large, say m = 100. The first step in KBS_2 is to apply TEST_2 to each of
the rules in R. With the first two rules, nothing is changed by the call to
BALANCE. For example, the call BALANCE(a2, e; C, D) simply looks at
the equality a = a twice and returns C as a2 and D as s. However, with the
third input rule there is a change. When the call BALANCE((ab)3, E; C, D)
is made, C is initially set to (ab)3, and D to e. Then the rightmost b of C
is moved to the right end of D as b2. Since b2 is irreducible and ababa b2,

we set C equal to ababa and D equal to b2. Now the rightmost a is moved
to the right end of D. Again no rewriting is possible, and the order has
not been reversed. Thus C is set equal to abab, and D to b2a. Next the
rightmost b of C is moved to the right end of D as b2. This gives us the
pair of words aba and b2ab2. These are irreducible, but the second is larger
than the first. This time we do not change C and D. Instead we push
(b2ab2, aba) onto the stack. Now the a at the left end of C is moved to the
left end of D. This leads to (ab2a, bab) being pushed onto the stack. No
further changes are made on this call to BALANCE. The values C = (ab)2
and D = b2a are returned to TEST_2, and P3 and Q3 are set equal to these
words, respectively.
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Now TEST_2 pops (ab2a, bab) off the stack, and the call BALANCE
(ab2a, bab; C, D) is made. Initially C = ab2a and D = bab. When the right
a of C is moved to the right end of D, the pair (baba, ab2) is pushed onto
the stack. When the left a of C is moved to the left end of D, the word
abab is reduced to b2a, so we have P = L, and nothing happens. The rule
(ab2a, bab) is returned to TEST_2, and this becomes the fourth rule. Now
(baba, ab2) is popped off the stack. On the call to BALANCE with this
rule, (b2ab2, aba) is again pushed onto the stack. (It would be possible to
do some extra bookkeeping and prevent duplicate pairs from being placed
on the stack.) The rule (baba,, W) is returned unchanged and it becomes
the fifth rule. Now (b2ab2, aba) is popped off the stack. No changes are
made to this rule and no more pairs are added to the stack. The sixth
rule becomes (b2ab2, aba). Now the last pair (b2ab2, aba) is popped off the
stack. It is immediately reduced to the equality aba = aba, and the call to
TEST_2 terminates. Thus at this point we have found all the rules in the
final set without storing any redundant ones. The overlaps must still be
processed, but no more rules are found.

The next observation is more than a heuristic. It is an improved version
of Proposition 3.1, which tells us that certain overlaps can be skipped.

Proposition 7.1. Let 1Z be a rewriting system on X* relative to a reduction
ordering -<. Suppose that for all (P, Q) in 7Z the word P is irreducible with
respect to 7Z - {(P,Q)}. Assume that 7Z is not confluent and let W be
the first word, with respect to -<, at which confluence fails. Then local
confluence fails at W, and W = ABC, where B 0 e, AB and BC are left
sides in 7Z, and there are no other occurrences of left sides in W.

Proof. It is easy to see that local confluence must fail at W. By Proposi-
tion 3.1 and our assumption on 7Z, the word W has the form ABC, where
B # e, there exist rules AB -> U and BC --+ V in 7Z, and there is no word
derivable from both AV and UC. Suppose that W contains another oc-
currence of a left side P. Then P cannot be a subword of AB or BC, nor
can these words be subwords of P. Thus W = DEBFG, where A = DE,
C = FG, P = EBF, and D, E, F, and G are all nonempty.

Let P - Q be in 7Z. We have the following reductions:

DEBF -> UF, DEBF -* DQ,
EBFG -* QG, EBFG - EV.

By the minimality of W, there are words S and T such that UF S,
DQ S, QG R T, and EV R T. Thus DQG u SG and
DQG DT. Again by the minimality of W, there is a word L such
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that SG R L and DT L. But then

UC = UFG R SG L,

AV = DEV DT L,

contradicting the assumption that no word is derivable from both UC and
AV.

A good way to use Proposition 7.1 is to find overlaps by a backtrack
search. For example, one could start with a left side P and then undertake
a backtrack search for words C such that C is irreducible and PC contains
exactly two left sides in R as subwords, one of which is P and the other is
a suffix of PC. See Section 3.5. Proposition 7.1 makes it practical to prove
the confluence of the rewriting system T of Example 6.6.

Exercises

7.1. Work through Example 5.1 using the modification to KBS_2 described in Example 7.1.
Take Y X,Ua=a 1,Ua 1= a,Ub=b-',Ub-i= b, and m = 100.

7.2. Let X, -<, and R be as in Proposition 7.1 and let W be a nonempty subset of X* which
is closed under taking subwords and closed under rewriting with respect to R. Suppose
confluence fails at some word in W. Let W be the first word in W with respect to -< at
which confluence fails. Show that the conclusion of Proposition 7.1 holds for W.

2.8 Right congruences
So far in this chapter we have been studying two-sided congruences. The
rewriting-system approach can also be useful with right or left congruences.
We shall concentrate on right congruences here, leaving it to the reader to
make the obvious modifications for left congruences.

Let - be a right congruence on X* and let -< be a reduction order-
ing. Every --class has a first element, which we call its canonical form.
Corresponding to Proposition 2.1, we have:

Proposition 8.1. If U is a canonical form, then every prefix of U is a
canonical form.

Proof. Exercise.

If P - Q and P >- Q, then we may replace P by Q in a word U and still
have an equivalent word only when P occurs as a prefix of U. Thus we
have the notion of rewriting in the context of right congruences, but the
rewriting takes place only at the left ends of words.

The following proposition allows us to transfer most of our work on two-
sided congruences to right congruences.
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Proposition 8.2. Let X be a set and let # be an object not in X. Set
Y = X U {#}. Suppose S is a subset of X* x X* and let " be the right
congruence on X* generated by S. Let T = {(#U, #V) I (U, V) E S} and let

be the two-sided congruence on Y* generated by T. Then the --classes
are in one-to-one correspondence with the --classes in #X*.

Proof. The set #X* is the set of all words in Y* which begin with # and
have no other occurrences of #.

Lemma 8.3. The set #X* is a union of --classes.

Proof. Let U be in X* and let V be in Y* with #U - V. Then there is
a sequence

#U= U0,U1,...,Urn=V

of words in Y* such that for 0 < i < m the word Ui+1 is obtained from Ui
by replacing a subword P with another word Q, where (P, Q) or (Q, P) is
in T. Now any such P starts with # and has no other occurrences of #.
Since Uo has the same form, U1 must be in #X*. By induction on in, it
follows that V is in #X*.

With a slight extension of the argument used in the proof of Lemma 8.3,
it can be shown that for all words A and B of X* we have A - B if and
only if #A - #B.

Let us continue the notation of Proposition 8.2.

Proposition 8.4. Let -< be a reduction ordering on Y. If S is finite, then
KBS_2(Y, -<,T;U) terminates.

Proof. Let V be a rewriting system with respect to -< contained in
(#X*) x (#X*). Suppose A and B are left sides in V. Since A and B
start with # and have no other occurrences of #, the only way to have
an overlap of these words is for one to be a prefix of the other. Thus
by Proposition 3.1, if V is reduced, then V is confluent. As noted in the
proof of Proposition 6.1, the first For-loop of KBS_2 always terminates
with a reduced rewriting system. In the case of the call KBS_2(Y, -<,T;U),
that system will be confluent, so the While-loop will add no new rules and
KBS_2 will terminate.

Let us say that a rewriting system S on X* is prefix confluent if the cor-
responding system T on Y* is confluent, and prefix reduced if T is reduced.
As noted in the proof of Proposition 8.4, if S is prefix reduced, then S is
prefix confluent.
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Corollary 8.5. Let -< be a reduction ordering on X* and let - be a finitely
generated right congruence on X*. There is a unique prefix reduced rewrit-
ing system U with respect to -< such that U generates i. Moreover, U is
finite.

Proof. Let S be a finite generating set for ". Form the set T as in
Proposition 8.4 and call KBS_2(Y, -<,T; V). Here -< is any extension to Y*
of the given ordering on X*. Let U = {(P,Q) I (#P,#Q) E V}. Then U
is finite and prefix reduced, and U generates -. The uniqueness of U is
established as in the proof of Proposition 2.7.

The preceding results show that we can handle finitely generated right
congruences quite well. However, the right congruences which occur in prac-
tice often are not finitely generated, although they are finitely generated
modulo some two-sided congruence.

Let = be a two-sided congruence on X* and let M be the quotient monoid
of X* modulo If we have a right congruence on M, then we can pull it
back to a right congruence - on X* by defining U - V to mean [U] [V],
where [U] denotes the =-class containing U. The right congruence on M
is finitely generated if and only if there is a finite subset S of X* x X* such
that - is generated by S and If such a set S exists and = is generated as
a two-sided congruence by a finite subset R of X * x X *, then the pair (R, S)
is a finite description of -, even though - may not be finitely generated as
a right congruence.

Proposition 8.6. Let R and S be subsets of X* x X*, let = be the con-
gruence generated by R, and let be the right congruence generated by
and S. Set Y = X U {#} and T = {(#P, #Q) I (P, Q) E S}. The --classes
are in one-to-one correspondence with the classes in #X* of the two-sided
congruence - on Y* generated by R U T.

Proof. If U is in X*, then replacing a subword P in #U with Q, where
(P, Q) or (Q, P) is in RUT, yields a word in #X*. Thus #X* is a union
of --classes. Similarly, if V is in X*, then U - V if and only if #U - #V.

Suppose in the notation of Proposition 8.6 that -< is a reduction ordering
on Y* such that U = RC(Y, -<,R. U T) is finite. Then we may use the
Knuth-Bendix procedure to compute U and compute canonical forms for
by rewriting with respect to U.

Example 8.1. Let X = {a, b}, R= {(ba, ab)}, and S= {(ab4, a3b2), (a7, ab3)}.
Set Y = {a, b, #} and let -< be the length-plus-lexicographic ordering of Y*
with # -< a -< b. Then KBS_2(Y, -<,R U T; U) terminates with U as the
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following rewriting system:

ba -* ab, #a3b4 -' #a5b2,
#ab4 - #a3b2, #a4b4 -4 #a6b2,

#a2b4 - #a4b2, #a5b4 -* #a3b3,
#a7

#ab3, #a6b4 - #a 4b3.

To compute the canonical form for U = ba2b3a2b2a3b, we rewrite #U with
respect to U. Using just the rule ba - ab, we have #U R #a7b7. Then
we have

#a7b7 = #aaaaaaabbbbbbb - #abbbbbbbbbb -> #aaabbbbbbbb

#aaaaabbbbbb - #aaabbbbb -* #aaaaabbb.

Thus the canonical form for U is a5b3. Note that - has infinitely many
classes. The words #bi are all irreducible with respect to U, so e, b, b2, .. .
are all canonical forms for -.

Example 8.2. Let X, -<, and R be as in Example 8.1, and let S =
{(ab4,a3b2)}. Since ab4 -a 3 b 2, for i > 1 we have

aib4 ,., ab4az-1 r., asb2ai-1 - ai+2b2

It is not hard to show that the set of rules consisting of ba ---+ ab and
#aib4 #a2+2b2, i = 1, 2, ..., is reduced and confluent. Thus the canonical
forms for - with respect to -< are the words a'bi with j < 4 or i = 0.

We shall now investigate an important special case of the situation de-
scribed in Proposition 8.6. To do so, we must fix a fair amount of notation:

X, a finite set,
F, the free group generated by X,
R = FGRe1(X), the standard set of monoid defining relations for F,

free equivalence, the congruence on X}* generated by R,
[U], the =-class containing the word U,
Y=X}U{#},
, a reduction ordering of Y*,
S, a finite subset of X}* X X.
-, the right congruence on X}* generated by S and
H, the subgroup of F generated by the elements [PQ-1] _ [P][Q]-1 with

(P, Q) in S,
T = {(#P, #Q) I (P, Q) E S}.
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The congruence classes of - correspond to the right cosets of H in F.

Proposition 8.7. If U and V are in X*, then U - V if and only if H[U] _
H[V].

Proof. As noted above, - is the pullback to X±* of the right congruence
on F generated by the image of S in F x F. The proposition now follows
from Exercise 4.1 in Chapter 1.

Let C be the set of canonical forms for - with respect to -<. For U in
X}* let U be the element of C with U - U. Finally, let P be the set of
freely reduced words P such that P is not in C but every proper prefix of
P is in C, and let Sl be the set of pairs (P, P) with P in P.

Proposition 8.8. The sets P and Sl are finite, and - is generated by Sl
and =.

Proof. The right congruence generated by Sl and = is contained in -.
However, we can compute canonical forms for - using Sl and R. Given a
word U in X}*, we can freely reduce U using R. If at this point U is not in
C, then there is a prefix P of U which is in P, and (P, P) is in S1. We can
replace P by P and continue rewriting until an element of C is obtained.
Thus Sl and = generate -. Moreover, if T = {(#P, #Q) I (P, Q) E Sl},
then T U R is a confluent rewriting system on Y*.

It remains to show that P and Sl are finite. If (P, Q) is in S1, then P
and Q are freely reduced and P and Q do not end in the same element of
X', for if P = Au and Q = Bu with u in X, then

A - Auu 1 = Pu-1 - Qu-1 = Buu-1 - B.

Since both A and B are in C, this means A = B. Thus P = Q, which is
not true. Since P and Q are freely reduced and do not end in the same
generator, PQ-1 is freely reduced.

Lemma 8.9. Suppose that (P, Q) and (R, S) are in Sl and PQ-1 = RS-1.
Then P=R and Q = S.

Proof. Either P is a prefix of R or R is a prefix of P. Since proper prefixes
of P and R are in C, we must have P = R. Then Q-1 = S-1, so Q = S.

Lemma 8.10. If u is in X} and (Au, Q) is in S1, then (Qu-1, A) is in S1.

Proof. As noted above, Qu 1 is freely reduced. Moreover, Qu-1 -
Auu-1 - A and Qu-1 # A. Since A is in C, it follows that Qu-1 >- A.
Also, since Q is in C, Qu-1 is in P. Thus (Qu-1, A) is in S1.
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In Lemma 8.10, (Qu-1)A-1 = (AuQ-1)-1. Therefore the set l of words
PQ-1 with (P, Q) in S1 is closed under the map -1. The image of f in F
generates H. Since H is finitely generated, there is a finite subset S2 of S1
such that the set f2 of words PQ-1 with (P, Q) in S2 is closed under -1
and the image of f2 in F generates H as a monoid. Thus - is generated by
S2 and ='. If u is in X} and (Au, Q) is in S2, then (AuQ-1)-1 = Qu-1A-1

is in 9-12. By Lemmas 8.9 and 8.10, the pair (Qu-1, A) is in S2. Let T =
{(#P, #Q) I (P, Q) E S2}.

Lemma 8.11. The rewriting system 7 U R is reduced and confluent.

Proof. Since T U R is a subset of the reduced system T U R, it follows
that T U R is reduced. Since R is confluent and T is reduced, we need to
consider only overlaps of an element (#Au, #Q) in T2 and an element uu-1
in R. Processing this overlap leads to the following reductions:

#Auu-1 - #A, #Auu-1 - #Qu-1 - #A.

Thus we have confluence.

Let - be the congruence on Y* generated by T U R. Since both T, U R
and T U R are reduced, confluent rewriting systems on Y* which generate
=, it follows that 7 U R = T2 U R = RC(Y, -<,T U R) is finite, as is P.
Therefore the call KBS_2(Y, -<,T U R; U) terminates with U = 7 U R. This
completes the proof of Proposition 8.8.

Proposition 8.12. Suppose that -< is consistent with length. Then IPI
IQI+2 for all (PQ) inSj.

Proof. Let P = Tu with u in X}. Then Qu-1 - T. Since T is in C
and T 0 Qu-1, we have Qu-1 >- T. Since - is consistent with length,
IQu-1I > ITI. Thus IQI + 1 > IPI -1 or IPI < IQI + 2.

The computation of T, is essentially the process usually referred to as
Nielsen reduction, at least in the case in which -< is a length-plus-
lexicographic ordering. For any word U in X}*, let L(U) denote the
length of the freely reduced word freely equivalent to U. Let A be a
set of nonempty words in X±* which are freely reduced, and set A-1 =
{A-1 I A E A}. The set A is said to be Nielsen reduced if the following
additional conditions hold:

(1) An A-'= 0.
(2) If A and B are in A U A-1 and L(AB) < Al,Ithen B = A-'.
(3) If A, B, and C are in A U A-1 and L(ABC) < IAI - IBI + ICI, then

B = A-1 or B = C-1.
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For each pair {A, A-' I in 7-t = 7-12 above, pick one representative, and let
A denote the set of words thus selected.

Proposition 8.13. If is consistent with length, then A is Nielsen reduced.

Proof. By construction, elements of A are nonempty and freely reduced.
Moreover, A n A-1 = 0, since A 0 A-' for all nonempty, freely reduced
words A. Suppose that A and B are in A U A-1 and L(AB) < IAI. Let
A = PQ-1 and B = RS-' with (P, Q) and (R, S) in S1. Since A and B are
freely reduced, a prefix of B of length greater than B I/2 cancels a suffix
of A. If R cancels a suffix of Q-1, then R is a prefix of Q, which is not
possible since Q is in C. Thus Q-1 is canceled, so Q is a proper prefix of R.
Let R = QD. Then D # e and D-1 is a suffix of P. Suppose P = ED-1.
Then ED-1- Q and QD - S. But this means that E - ED-1D - QD - S.
Since both E and S are in C, it follows that E = S. Therefore A = SD-'Q-1
and B = QDS-1 = A-1.

Now suppose that A, B, and C are in AUA-1 and L(ABC) A - IBI+
ICI. By the previous argument, at most half of B cancels a suffix of A,
and at most half of B cancels a prefix of C. Thus we can write B = UV-1,
with IUD _ IVY, and U cancels a suffix of A and V-1 cancels a prefix of C.
Now U - V. Suppose U >- V. Then (U, V) is in S1, and we conclude that
B = A-1 as above. If V >- U, then (V, U) is in Sl, and a similar argument
shows that B = C-1.

The following example shows that the assumption on -< in Proposi-
tion 8.13 is necessary.

Example 8.3. Let X = {a, b, c}, let -< be the basic wreath product ordering
of Y* in which # -< a -< a-1 -< b --< b-1 -< c -< c 1, and let S consist of the
following pairs:

b--+ a2, alb-1 - e, c -> a2, a2c 1 -* e.

Then TU7Z is reduced and confluent. The set 7-l consists of the words ba-2,
alb-1, ca-2, and a2c 1. If A= ba-2 and B = a2c 1, then the free reduction
of AB is be 1, which has length less than A.

Our interest in Nielsen reduced sets is justified by the following proposi-
tion.

Proposition 8.14. If A is a subset of X}* which is Nielsen reduced, then
the image of A in F is a set of free generators for the subgroup it generates.

Proof. See Theorem 7.3.1 of [Hall 1959] or the discussion in Section 3.2
of [Magnus et al. 1976].
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Corollary 8.15. Every finitely generated subgroup of F is free.

Proof. Let B be a finite set of reduced words. Take the preceding S to be
the set of pairs (B, s), with B in 8. Then H is the subgroup of F generated
by the image of B. Let -< be a length-plus-lexicographic ordering on Y*.
By Proposition 8.13, there is a Nielsen reduced set A whose image in F
generates H. By Proposition 8.14, H is free.

More information about the uses of Nielsen reduction can be found in
[Hall 1959], [Magnus et al. 1976], and [Lyndon & Schupp 1977].

We close this section with a final comment about Proposition 8.6. It may
happen that - has only finitely many classes but RC(X, -<, is infinite.
In this situation, the Knuth-Bendix procedure will churn along indefinitely,
producing longer and longer rules for rules which are unnecessary in
computing canonical forms for N. It is still possible to obtain enough
information to compute canonical forms for - using the rewriting-system
approach. How this is done is described in Section 3.10.

Exercise

8.1. Let X = {a, b}, let F be the free group generated by X, and let H be the subgroup of F
generated by the images of aba3b2a, ab2a2b-1, and a-2b-la-1. Find a Nielsen reduced
set of words whose image in F generates H.
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Automata and rational languages

The theory of formal languages is an important part of theoretical computer
science. The theory classifies subsets of free monoids according to the
difficulty of deciding whether a given word belongs to the subsets. From
this point of view, the simplest subsets are the finite ones. The next simplest
are called rational languages. If G is a rational language, then L may be
infinite, but there is a finite combinatorial object called an automaton with
which one can decide whether a word U belongs to G in time proportional
tolUl.

One of the first papers to suggest a connection between combinatorial
group theory and formal language theory was (Anisimov 1971). Other au-
thors have pursued this topic. See for example (Muller & Schupp 1983,
1985) and (Gilman 1984b, 1987). However, the work which has stirred
up the greatest interest in formal language theory among group theorists is
[Epstein et al. 1992]. This book has no less than six authors and the intrigu-
ing title Word Processing and Group Theory. One of its most important
contributions is the definition of a class of groups in which the multiplica-
tion and comparison of elements can be described using automata. Such
groups are said to have an automatic structure.

We shall not attempt here an exposition of the theory of groups with
an automatic structure. However, the present chapter provides an intro-
duction to a number of applications of automata in combinatorial group
theory. Automata can be used as index structures to rewriting systems.
Automata also appear in one approach to studying right congruences on
finitely presented monoids using the Knuth-Bendix procedure for strings.
Automata have been used for over 50 years, usually without the term be-
ing explicitly mentioned, in the procedure coset enumeration discussed in
Chapters 4 and 5.

To streamline the exposition in this chapter, an unorthodox approach
to the subject of rational languages has been adopted. A result usually
referred to as the Myhill-Nerode theorem is taken as the definition of a
rational language. Traditional expositions of this material may be found
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in [Aho et al. 1974], [Eilenberg 1974], and [Revesz 19831. The presentation
given here was strongly influenced by [Epstein et al. 1992] and by [Eilenberg
1974].

3.1 Languages
Let X be a set. A language over X is simply a subset of X*, that is, a set
of words. In this context, X is called the alphabet of the language. Let G
and M be languages over X. The union G U M, the intersection G f1 M,
and the complement X * -,C are also languages. The product language 'CM
was defined in Section 1.2 to be {UV I U e G,V E M}. We define CO to be
{e}, and for a positive integer k we put Gk = GG ... G, where the product
has k factors.

It is conventional to denote

IC =UGk
k>O

by C. As remarked in Section 1.2, G* has already been defined as the set
of all finite sequences of elements of G, and K is the set of products of these
sequences. That is, K is the submonoid generated by G. Nevertheless, in
this chapter we shall follow tradition and write G* for K.

Let G be a language over X. It is possible to classify elements of X*
according to the ways in which they can be extended to yield elements of
G. For W in X*, set

C(G,W)={UEX* I WUEG}.

We call C(G, W) the G-cone of W, or simply the cone of W when C is clear
from the context.

Example 1.1. If G = X*, then C(G,W) = X* for every W in X*.

Example 1.2. If G = 0, then C(G,W) = 0 for all W.

Example 1.3. If G = {e}, then C(G, e) = {e} and C(G, W) = 0 for every
nonempty word W.

Example 1.4. Suppose X = {a} and G = {a2' I i > 0}, the set of words in
X* of even length. Then C(G, W) is G or {a22+1 I i > 0} according as I W I
is even or odd.

For any language G over X, the cone C(G,e) is G. If W is in X*, then
W is in G if and only if C(G,W) contains E. Also, W is a prefix of one or
more elements of G if and only if C(G, W) is nonempty.
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If L is a language over X, then C(L) is defined to be {C(L,W) I W E X*},
the set of cones of L. We say that L is rational if X and C(L) are both
finite.

Proposition 1.1. Suppose L is a finite language over a finite alphabet X.
Then L is rational.

Proof. Let m be the maximum length of JUI for U in L. If W is in X*
and JW > in, then C(L, W) = 0. Since X is finite, there are only finitely
many words W with (W < m, and hence C(L) is finite.

The empty set may or may not be a cone of a language L. The empty
set is in C(C) if and only if there is a word W which is not a prefix of any
element of L. Let Ct(C) = C(L) - {O}. Elements of Ct(L) will be called
trim cones. It is easy to see that Ct(L) = 0 if and only if L = 0.

Example 1.4 describes an infinite rational language. As we shall see, all
rational languages have nice finite descriptions which make computing with
rational languages much simpler than working with arbitrary languages.

Proposition 1.2. Let L and M be rational languages over X. The follow-
ing languages are rational: L U M, c n m, X* - L, cm, L*.

Proof. Let W be in X*. Then

C(L U M, W) = C(L, W) U C(M, W),

C(L n m, w) = C(L, w) n C(M, w),
C(X* -,C, W) = X* - C(L,W).

Therefore

C(LU.M)c{UUVIU EC(L),VEC(M)},
C(LnM)c{UnVI UEC(L),VEC(M)},
C(X* - L) = {X* - U I U E C(L)} .

In each case the set on the right is finite, so L U .M, L n M, and X* - L
are rational.

Computing C(LM,W) is a little more complicated. Suppose WU = PQ,
where P is in L and Q is in M. We have two cases, depending on whether
W is a prefix of P or P is prefix of W. Suppose P = W R. Then R is
in C(L,W), and Q can be any element of M. If W = PR, then U is in
C(M, R). From this it follows that

C(LM,W) = C(L,W)M U UC(M,R),
R
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where the union is over those words R with the property that there is a
word P in G such that W = PR. Thus the cones of GM are among the
sets which can be constructed as follows: Choose a cone of L and take the
product with M, then form the union of this with the union of a subset of
C(M). Only finitely many sets can be constructed this way, so C(GM) is
finite.

Finally, suppose U is in C(L*, W). Then WU = P1 ... P,,,, where the Pi
are in L. We can write W = P1... PmQ, where Q=s if m = n, and Q is
a prefix of Pm+l if m < n. Then U = RPm+2 ... Pn, where R = s if m = n,
and Pm+l = QR if m < n. In either case, U is in C(G, Q)L*. Therefore

C(G*,W) = [UcrQ)] G*,

Q

where the union is over those words Q for which there is a V in L* such
that W = VQ. Since C(L) is finite, there are only finitely many possibilities
for C(L*,W).

Propositions 1.1 and 1.2 allow us to construct a great many rational
languages. In fact, it can be shown that every rational language can be
built up from finite sets by repeated use of Proposition 1.2. We shall not
need this fact here. A proof may be found in [Aho et al. 1974].

It will be useful to have an example of a language which is not rational.

Example 1.5. Let X = {a, b} and let L = {aibi I i > 0}. Then for k > 1 we
have C(G, ak) = {aibi+k I i > 0} and C(G, akb) = {b k-1 }. Thus clearly C(L)
is infinite and L is not rational.

Proposition 1.3. Let U be a finite subset of X*. The two-sided ideal I
and the right ideal J generated by U are rational languages, as are their
complements.

Proof. By Proposition 1.1, U is rational. Now I = X *UX * and J = UX *,
so both are rational by Proposition 1.2. Also, the complements of I and J
are rational by Proposition 1.2.

Corollary 1.4. If (X, R) is a finite monoid presentation and R is a con-
fluent rewriting system with respect to a reduction ordering -<, then the
set of canonical forms for Mon (X I R) relative to -< is a rational language
over X.

Proof. The set of canonical forms is the complement of the ideal generated
by the left sides in R.
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In addition to the closure properties of Proposition 1.2, the set of rational
languages over X is closed under taking prefixes.

Proposition 1.5. Let C be a rational language over X. The set P of words
which are prefixes of at least one element of L is a rational language.

Proof. Let W be in X *. A word U is in C(P, W) if and only if WU is in
P, which is true if and only if there is a word V such that WUV is in L.
But this says that C(P, W) is the set of prefixes of the elements of C(L, W).
Since C(G) is finite, there are only finitely many possibilities for C(P,W).

Exercises

1.1. Which of the following languages are rational over {a, b}?

(a) {a3i+1 I i > 0}
(b) {b=2 I i > 1}
(c) {(ab)i i > 0}
(d) {a2ib3j I i, j > 0}

1.2. Suppose k is a nonnegative integer and C is the set of words of length k over a finite
alphabet X. For W in X* describe C(,C,W).

1.3. Let C be a rational language over X. Show that C(,C,W) is a rational language for each
W in X*.

1.4. Let G be a language over X. For W in X* let B(G,W) = {U E X* I UW EC}, the
backward,C-cone of W, and let B(,C) = {B(G,W) I W E X*}. For or in C(G), let D(a) _
{W E X* I C(G,W) = a}. Show that

B(L,W) = U D(a).
WEa

Conclude that if C is rational, then B(,C) is finite and

IB(C)I < 21C(C)I

1.5. For a language G over X, put Lt = {Ut I U E G}. (Recall that Ut is the reversal of U.)
Prove that C(Gt,W) = B(f,Wt)t. Deduce from this that G is rational if and only if Gt
is rational.

1.6. Suppose that G is a rational language over X. Show that the set of suffixes of elements
of C and the set of subwords of elements of G are rational.

3.2 Automata
In this section we shall define combinatorial objects called automata and
associate to each automaton a language. In Section 3.3 we shall show that
the rational languages are precisely the languages associated with finite
automata.
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0 U 0
Figure 3.2.1

Figure 3.2.2

An automaton is a quintuple (E, X, E, A, S2), where E and X are sets, A
and S2 are subsets of E, and E is a set of triples of the form (a, U, T), where
a and T are in E and U is a word in X* of length at most 1. Thus U is
either the empty word or an element of X. Elements of E are called states,
A is the set of initial states, and S2 is the set of terminal states. We may
consider (E, E) to be a directed graph. If e = (v, U, r) is in E, then we think
of e as a directed edge going from a to r and having label U (Figure 3.2.1). In
Chapter 7 we shall consider generalized automata, in which edge labels can
be arbitrary words in X*.

Example .2.1. Let E _ {1, 2, 3}, X = {a, b}, A = {1}, and Sl = {1, 3}. Let E
consist of the following edges:

(1, a, 3), (1, b, 2), (2, b,1), (2, b, 3), (3, e, 2), (3, a,1).

We can picture the automaton (E, X, E, A, S2) as shown in Figure 3.2.2. In
this diagram, and other diagrams representing finite automata, the fol-
lowing conventions are used: Initial states are represented by squares,
and noninitial states by circles. Terminal states have a double boundary;
nonterminal states have a single boundary.
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Figure 3.2.3

Example 2.2. Let f : X -* G, where X is a set and G is a group. Let H
be a subgroup of G, let ES be the set of right cosets of H in G, and let
ES be the set of triples (v, x, T), where a and T are in ES, x is in X, and
o f (x) = T. The graph (ES, ES) is called the Schreier diagram for G relative
to H, X, and f . (Traditionally, this term has been used only when f (X)
is a monoid generating set for G.) We shall call (ES, X, ES, {H} , {H}) the
Schreier automaton for G relative to H, X, and f. When H is the trivial
subgroup, so that ES can be identified with G, the terms Cayley diagram
and Cayley automaton are sometimes used.

Example 2.3. We can generalize Example 2.2 to right congruences on
monoids. Let f : X -4 M, where X is a set and M is a monoid. Let -
be a right congruence on M and let E be the set of --classes. If a is in
E and x is in X, then of (x) is contained in a unique element T of E. Let
E be the set of triples (v, x, T), where o, and r are in E, x is in X, and
v f (x) C T. For any subsets A and S2 of E, the quintuple (E, X, E, A, Sl) is
an automaton. A natural choice is to take A = St = {a}, where a is the
--class containing 1. However, other choices might be useful.

Example 2.4. Let E = {1, 2, 3, 4, 5} and let X = {a, b}. Figure 3.2.3 defines
an automaton with eight edges, a single initial state, 1, and a single terminal
state, 5.

Our definition of automaton allows E and X to be infinite. Computations
can normally be performed only with finite automata, automata for which
E and X are finite.
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0 1 O
Figure 3.2.4

1

Figure 3.2.5

Let A = (E, X, E, A, 52) be an automaton. A path in A is a sequence P
of edges in E of the form

(cr0, U1, Q1), (0`1, U21 62), ... , (fit-1, Ut, O't),

where each edge after the first begins at the state at which the previous
edge ends. The path P is said to go from uo to at and to have length t.
The state ao is the starting point, ut is the endpoint, and ow,. .. , o-t-1 are
the intermediate states of P. The signature of P is the product Sg(P) =
U1U2 ... Ut of the labels on the edges of P. For any state v, we allow the
empty path from o to o and define its signature to be E. In Example 2.1,
let P be the following sequence of edges:

(1, a, 3), (3,e,2), (2,b,3), (3,e,2), (2,b,1).

Then P is a path of length 5 from 1 to 1 having signature ab2.
Let A and 4D be subsets of E. If P is a path in A such that the starting

point of P is in A and the endpoint of P is in 4 , then we shall say that P
goes from A to D. If Q is a path in A such that the starting point of Q is
the endpoint of P, then we can concatenate P and Q to obtain a path R
such that Sg(R) = Sg(P) Sg(Q).

The language recognized by an automaton A = (E, X, E, A, Sl) is the set
G of signatures of paths in A from A to Q. We shall denote G by L(A).
In Example 2.1, the state 1 is both initial and terminal. Thus the path P
above shows that ab2 is in the language L recognized by the automaton of
Example 2.1. It is easy to see that ba is not in L.

Example 2.5. It is not difficult to construct automata which recognize
0, {e}, and X*. Thus (0, X, 0, 0, 0) recognizes 0, as do ({1} , X, 0, 0, 0),
({1},X,0,{1},0), and ({1} , X, 0, 0, {1}). The last three automata may
be pictured as in Figure 3.2.4. The automaton (0, X, 0, 0, 0) is the empty
automaton with alphabet X. The automata in Figure 3.2.5 recognize {e}.
Let X be a set and let E = {(1,x,1) I x E X}. Then ({1},X,E,{1},{1})
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Figure 3.2.6

Figure 3.2.7
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Figure 3.2.8

recognizes X*. Figure 3.2.6 describes this automaton for the case X =
{a, b}.

Example 2.6. Let U = x1 ...xm be any nonempty word in X*. Then the
automaton in Figure 3.2.7 recognizes {U}, and the automaton in Fig-
ure 3.2.8 recognizes {Ui I i > 0}.

Example 2.7. Let A be the Schreier automaton for a group G relative to a
subgroup H and a function f : X -> G. We can extend f to be a homomor-
phism from X* to G. The language L(A) is the set of words in X* whose
images in G are elements of H.

Two automata Al = (El, X, El, A1, 1l) and A2 = (E2, X, E2, A2,122) with
the same alphabet X are isomorphic if there is a bijection f : E1 -* E2 such
that f (A1) = A2, f (121) = 122, and the map (v, U, rr) --> (f (o), U, f (-r)) of
E1xX*xEltoE2xX*xE2maps E1onto E2.

Proposition 2.1. Isomorphic automata recognize the same language.

Proof. Exercise.

The use of the words "automaton" and "recognize" is intended to convey
the idea that automata simulate in some way the operation of certain
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kinds of computers. It must be emphasized, however, that automata are
mathematical, not physical, objects.

We say that an automaton A = (E, X, E, A, Il) is deterministic if the
following conditions hold:

(i) JAI < 1.
(ii) The label on each edge in E is nonempty.

(iii) For each a in E and each x in X there is at most one edge (a, x, T)
in E.

We can rephrase condition (iii) as follows: If (a, x, T) and (a, x, p) are in
E, then T = p. The automaton of Example 2.1 is not deterministic, since
it contains the edges (2, b, 1) and (2, b, 3) and has an edge with an empty
label. The automata of Examples 2.2, 2.4, and 2.5 are deterministic. If A is
deterministic and A 0, then A contains a single state. We shall normally
denote this unique initial state by a.

A complete automaton is one which is deterministic, has exactly one
initial state, and satisfies the condition that for each state a and each x
in X there is exactly one edge (a, x, T) in E. The Schreier automata of
Example 2.2 are complete, but the automaton of Example 2.4 is not, since
there are no edges (2, b, T) or (5, a, T).

Proposition 2.2. In a deterministic automaton, a path is determined by
its starting point and its signature.

Proof. Let A = (E, X, E, A, Sl) be a deterministic automaton and suppose
that P is a path in A which starts at a and has signature V. If V = e, then
P must have length 0, since all edge labels have length 1. Now suppose
that V # e and let x be the first term of V. Let (a, x, T) be the first edge
of P. Then by the definition of deterministic automaton, T is uniquely
determined. Let V = xW. The remaining edges of P define a path starting
at r and having signature W. By induction on the length of P, this path
is unique. Therefore P is determined by a and V.

Suppose that A = (E, X, E, A, 1) is a deterministic automaton and as-
sume that a and r are states in E. If U is a word in X* and U is the
signature of a path in A from a to T, then we shall write T = aU. The
notation does not identify A, which must be clear from the context.

The following procedure can be used to determine whether there is a
path which starts at a and has signature U.

Procedure TRACE(A, a, U; T, B, C);
Input: A : a finite deterministic automaton (E, X, E, A, Il);

a : a state in E;
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Figure 3.2.9

U : a word in X*;
Output: T : a state in E;

B, C : words in X * such that U = BC, r = oB, and JBI is
as large as possible;

Begin
T:=o; B:=E; C:=U;
While C # E do begin

Let x be the first term of C;
If TX is not defined then break;
Let (T, x, p) be in E; Let C = xD;
B:=Bx; C:= D; T:=p

End
End.

There is a path P in A starting at o such that Sg(P) = U if and only if
TRACE(A, o, U; T, B, C) returns B = U, and hence C = E.

Example 2.8. Suppose that X = {a, b} and A is given by Figure 3.2.9. The
result of TRACE(A, 1, aba2b2ab; r, B, C) is to set r = 3, B = aba2b, and
C = bab. After TRACE(A, 3, a3ba2; p, R, S), we have p = 1, R = a3b2a,
and S=E.

In view of Proposition 2.2, there is a straightforward way of decid-
ing membership in L(A) for any finite, deterministic automaton A =
(E, X, E, A, S2). Suppose W is in X *. If A = 0, then L(A) is empty and
W is not in L(A). If A = {a}, then W is in L(A) if and only if the call
TRACE(A, a, W; T, B, C) returns with r in Q and B = W. We shall show
later that membership in L(A) can be decided for any finite automaton A.

The set of edges in a complete, finite automaton is conveniently described
by its transition table. The rows of the table are indexed by states, and
the columns by elements of X. The entry in the o-th row and x-th column
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Figure 3.2.10

is the state T = QX, that is, the state T such that (v, x, T) is an edge. For
example, the transition table

a

1

2

3

b

2

2

1

3

3

3

describes the edges in the complete automaton shown in Figure 3.2.10.
Suppose that A is a finite, deterministic automaton which is not com-

plete. We can still use a transition table to describe A, but certain entries
will not be defined. On the printed page, undefined entries can be left
blank. In a computer, every memory location always has a value, so we
must use some value which cannot be interpreted as a state to signal the
missing entries in the transition table. Typically, positive integers are used
to represent states, and 0 is used to flag undefined entries.

Exercises

2.1. Construct deterministic automata with X = {a} which recognize the languages
{a2,a4,a6} and {a2i I i > 0}. In each case, what is the minimum number of states
required?

2.2. Construct the Cayley automaton for the symmetric group Sym(3) where X is
{(1,2),(2,3)} and f is the identity map.

2.3. Let A be the automaton of Example 2.4. What is the result of the call TRACE(A, 1,
a2ba2b; v, A, B)?

2.4. Let A be a deterministic automaton and let P and Q be paths in A with the same
starting point. Let R be the longest common initial segment of P and Q. Show that
Sg(R) is the longest common prefix of Sg(P) and Sg(Q).

2.5. Suppose A = (E, X, E, A, S2) is an automaton and A = S2 # 0. Show that L(A) is a
submonoid of X*.
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2.6. Suppose that k is a nonnegative integer. Let E = {1,2..... k + 1 } and E =
{(i,x,i+l)jl<i<k,xEX}. Show that A=(E,X,E,{1},{k+l}) recognizes the
set of words in X* of length k. Draw a diagram for A.

2.7. If IXJ = 1, then we can identify X* with the set of nonnegative integers under addition.
Show that rational sets correspond to sets L obtained as follows: Choose a positive
number n and a subset A of {0, 1, ... , n -1}. Choose finite sets B and C of nonnegative
integers. Set L equal to the union of C with the set of nonnegative integers i such that
i isnot inB and imodn isinA.

2.8. Let A = (E, X, E, A,12) be an automaton. Define At to be (E, X, Et, Q, A), where Et =
{(T, U, a) I (a, U,T) E E}. Show that At is an automaton and that L(At) = L(A)t, the
set of reversals of the elements of L(A).

3.3 Automata, continued
We shall now begin to relate finite automata and rational languages.

Proposition 3.1. Every language L over an alphabet X is recognized by a
complete automaton whose states are the cones of L.

Proof. Let E be the set C(L) of cones of L. Set a = C(L, E) = L and put
A = {a}. Let Sl be the set of cones in C(L) which contain E.

Lemma 3.2. Let W be a word in X* and set or = C(L,W). If x is in X,
then C(L,Wx) = {U E X* I xU E a}.

Proof. Let U be in X*. Then U is in C(1,Wx) if and only if WxU is in
L, which is true if and only if xU is in or.

Let E be the set of triples (a, x, T), where a is in E, x is in X, and r =
{U E X * I xU E a}. By Lemma 3.2, A = (E, X, E, A, f) is an automaton,
which is clearly complete. To finish the proof of the proposition, we shall
show that A recognizes L.

Lemma 3.3. Let (ao, xl, al), ... , (at-1, xt, at) be a path in A starting at a.
Then at = C(L, xl ... xt).

Proof. If t = 0, then at = a = C(L, E). Assume t > 0. By induction
on t, we know that C(L, xl ... xt_1) = ort-1 By the definition of E and
Lemma 3.2, it follows that at = C(L, xl ... xt).

A word U is in L if and only if QL, U) contains e. Since A is complete,
there is a unique path P in A such that P starts at a and Sg(P) = U. Let
P end at or. By Lemma 3.3, or = QL, U), and or is in S2 if and only if U is
in L. Thus A recognizes L.

We shall write A(L) for the automaton A constructed in the proof of
Proposition 3.1.
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Corollary 3.4. Let L be a rational language over a finite alphabet X. Then
L is recognized by a finite, complete automaton.

Proof. By Proposition 3.1, L is recognized by the complete automaton
A(G). Since G is rational, C(L) is finite, and therefore A(G) is finite.

Proposition 3.5. If A is a finite automaton, then L(A) is a rational
language.

Proof. Let A = (E, X, E, A, St) and let G = L(A). Suppose W is in X*
and U is in C(G,W). There are paths P and Q in A such that P goes
from A to a state o-, Q goes from a to S2, W = Sg(P), and U = Sg(Q).
Conversely, given such paths P and Q, then U is in C(L,W). Let A(W)
be the set of endpoints of paths in A which start in A and have W as their
signature. Then C(G,W) is the set of signatures of paths from A(W) to
Q. Thus C(L,W) depends only on A(W). Since E is finite, there are only
finitely many possibilities for A(W). Thus C(G) is finite. In fact,

IC(G)I < 21EI.

Corollary 3.6. A language L over a finite alphabet X is rational if and
only if it is recognized by a finite automaton.

Corollary 3.7. If A is a finite automaton, then there is a complete, finite
automaton Al such that L(A1) = L(A).

Proof. By Proposition 3.6, L(A) is a rational language. By Proposi-
tion 3.1, Al = A(L(A)) is a complete, finite automaton recognizing L(A).

Suppose A = (E, X, E, A, Il) is a deterministic automaton which is not
complete. It is possible to construct a complete automaton Al such that
L(A1) = L(A). Let oo be an object not in E. Set El = E U {oo} and let S
be the set of pairs (a, x) with a in E and x in X such that there is no edge
(Q, x, ,r) in E. Put

E1= E U { (v, x, oo) ( (v, x) E S} U { (oo, x, oo) 1 x E X }

If A = 0, then let Al = {oo}; otherwise, let Al = A. Finally, set Al =
(E1, X, El, A1, S2).

Proposition 3.8. L(A1) = L(A).

Proof. Exercise.
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Figure 3.3.1

Figure 3.3.2

We call Al the completion (more correctly a completion) of A. If A is
already complete, then A is said to be its own completion.

Let A = (E, X, E, A, Il) be any automaton and let El be a subset of E.
Set Al = A fl El and S21 =1 fl El. Define El to be the set of edges (Q, UT)
in E such that o, and -r are in El. The automaton Al = (El, X, El, A1, Sl1)
is called the restriction of A to El. Every path in Al is a path in A,
so L(A1) C L(A).

Example 3.1. Suppose X = {a, b} and A is the automaton in Fig-
ure 3.3.1. The restriction of A to {1, 2, 3} is shown in Figure 3.3.2.
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Exercises

3.1. Construct a completion of the automaton in Example 2.4.
3.2. Describe the restriction of the automaton in Example 2.4 to {1, 3, 4, 5}.
3.3. Let X and Y be finite sets and let f:X* -,' Y* be a homomorphism of monoids. Prove

that if G is a rational language over X, then f(L) is a rational language over Y. (Hint:
Let A be a finite automaton recognizing G. Construct a finite automaton recognizing

3.4 The subset construction
Suppose A is a finite automaton. In Corollary 3.7 we proved the existence
of a finite, complete automaton Al such that L(A1) = L(A). In this section
we shall give a construction of one such A1.

Let A = (E, X, E, A,1). For any subset A of E, let A be the set of all
states p such that there is a path P from A to p with Sg(P) = e. Let us
call A the closure of A and define A to be closed if A = A. It is clear that
A is closed.

The automaton Al = (El, X, El, Al, Q1) is constructed as follows: E1 is
the set of closed subsets of E, Al = {A}, and S21 is the set of those elements
of E1 which contain a state in Q. For A in E1 and x in X, let Ax be the
set of states p such that there is an edge (A, x, p) in E with A in A. Put E1
equal to the set of triples (A, x, A) with A in E1 and x in X. We shall say
that Al is obtained from A by the subset construction.

Example 4.1. Before proving that L(A1) = L(A), let us apply the subset
construction to the automaton in Example 3.1. A set of states is closed
provided 3 is in the set whenever 1 is. Thus there are 12 closed sets:

A1= 0, A7={2,4},
A2 = 121, A8={3,4},
A3 = {3}, A9 = {1,2,3},
A4 = 141, A10={1,3,4},
A5 = {1,3}, All = {2,3,4},
A6 = {2,3}, A12 = {1,2,3,4}.

In A1, we have Al = {A5} and SZ1 = {A2, A6, A7, A9, A11, A12}.
To illustrate how the edges of Al are determined, let us find the value

of i such that (A8, b, Ai) is in E1. The edges of A starting at states in A8
and having the label b are (3, b, 4) and (4, b, 1). Thus (A8)b = {1, 4}. The
closure of {1, 4} is {1, 3,4} = A10, so (A8, b, A10) is in E1. The full set E1 is
given in Table 3.4.1, where i is written for Ai.

Proposition 4.1. If Al is obtained from a finite automaton A by the subset
construction, then L(A1) = L(A).
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Table 3.4.1

a b a b

1 1 1 7 3 5

2 3 1 8 1 10

3 1 4 9 6 7

4 1 5 10 2 12

5 2 7 11 3 10

6 3 4 12 6 12

Proof. Suppose first that W is in L(A). There is a path P in A from A
to S2 such that W = Sg(P). Let the edges of P be (ai-1, Ui, ai), 1 < i < t,
and let it < i2 < .. < ig be the values of i for which Ui 54 E. Then Uj is an
element xj of X, 1 < j < s, and W = xl ...xs. Since ao is in A, the states
ao, al, ... , ail-1 are all in AO = A, the unique element of A1. Let (Ao, x1, A1)
be in El. Then ail is in A1, and so aj is in Al for it < j < i2. Let (A1, x2, A2)
be in El. Then aj is in A2 for i2 < j < i3. Continuing in this manner, we
construct a path Q in Al consisting of edges (Aj_1, xj, Aj), 1 < j < s, such
that at is in As. Now at is in 1l, so As is in 521. Since Sg(Q) = W, it follows
that W is in L(Al).

The proof that L(Al) C L(A) is left as an exercise.

When E has no edges with empty labels, then 1E11 = 21E1. To decide
membership in L(A) for a single word, it is not necessary to construct all
of A1. See Exercise 4.3.

Exercises

4.1. Apply the subset construction to the automaton of Example 2.1.
4.2. Let A = (E, X, E, A, 52) be a finite automaton and let A be a subset of E. Show how to

compute A in time at worst linear in Al I+ IE1.
4.3. Suppose A is as in Exercise 4.2 and U = ul ... ug is a word in X*. Show that it is possible

to decide whether U is in L(A) in time polynomial in s + El + El. (Hint: Set Ao = A
and for 1 < i < s define Ai to be A, 1. How hard is it to compute As?)

3.5 Index automata
We come now to our first important application of automata. Let 1Z be
a finite rewriting system on X* with respect to a reduction ordering -<.
An index automaton for R is a complete automaton A = (E, X, E, A, 52)
recognizing the set of words which are reducible with respect to R. Not all
index automata for R are isomorphic. We shall usually impose additional
conditions on A and assume that various supplemental data about A are
available. For example, we want information which will tell us that a specific
left side in R is a subword of a given word W, not just that W is reducible
with respect to R.
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Let A be an index automaton for R and let P be a path in A from A to
some state w in Q. Then Sg(P) is reducible with respect to R and hence
Sg(P) contains as a subword the left side of some rule in R. It is possible
that Sg(P) contains many left sides. However, for some A it is possible to
identify a rule (L, R) in R depending only on w such that Sg(P) always
contains L as a subword. A rule identifier for A is a function f : S2 -p R
such that for any w in 1 and any path P from A to w the left side of f (w) is
a subword of Sg(P). As we shall see, it is always possible to find an index
automaton for R which has a rule identifier.

Given an index automaton for R with a rule identifier, rewriting with
respect to R can be speeded up significantly.

Procedure INDEX_REWRITE(R, A, U; V);
Input: 1 : a finite, nonempty rewriting system on X*;

A : an index automaton (E, X, E, A, 52) for R with rule
identifier f ;

U : a word in X*;
Output: V : a word irreducible with respect to R and derivable

from U using R;
Begin

Let ao be the unique state in A; V := e; W := U;

While W 0 s do begin
Let W = xS with x in X; W:=S; k:=IVI; a:=(ak)x;
If v is not in SZ then begin ak+1 := v; V := Vx end
Else begin

Let f (v) = (L, R); (* Lisa suffix of Vx. *)
Delete the suffix of V of length ILI - 1; W := RW

End
End

End.

In order to prove that INDEX_REWRITE works correctly, we must first
verify several assertions.

Proposition 5.1. At all times in INDEX_REWRITE, if B is a prefix of
V and i = IBI, then ai is the endpoint of the path P in A which starts in
A and has B as its signature.

Proof. Since A is complete, P exists and is unique. Initially V is e and
ao is the element of A. Thus the conclusion of the proposition holds when
V is initialized. If the conclusion holds and a suffix is deleted from V, then
the conclusion still holds. The only other place that V or one of the ai
changes is when ak+l is set equal to o and V is replaced by Vx. Since by
induction ak is the endpoint of the path starting at ao and having V as
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its signature, it follows that the path starting at ao and having Vx as its
signature ends at or.

Proposition 5.2. At all times V is irreducible with respect to R. If v is
in SZ, then Vx ends with the left side of f (a).

Proof. Initially V is empty and hence irreducible. If V is irreducible and
a suffix of V is deleted, then V is still irreducible. When a generator x is
appended to V, the state ak+1 is not in SI, and therefore by Proposition 5.1
Vx is not in the language recognized by A. Thus Vx is irreducible.

Suppose that o is in Q. Then by the definition of an index automaton,
Vx contains the left side L of f (v) as a subword. Since V is irreducible, L
must be a suffix of Vx.

Proposition 5.3. INDEX_REWRITE performs as claimed.

Proof. The sequence of words VW occurring at the beginning of the body
of the While-loop is nonincreasing with respect to -<, and each is derivable
from the previous one using R. In the body of the While-loop, either VW
is replaced by a strictly earlier word or I W I is reduced. Thus the While-loop
must terminate. When this occurs, W is empty and V is derivable from U
using R. By Proposition 5.1, V is irreducible with respect to R.

If R is reduced, then the word V returned by INDEX-REWRITE is
the same as that returned by the procedure REWRITE-FROM-LEFT of
Section 2.4. Since the inner loop on i in REWRITE_FROM_LEFT has
been eliminated, the running time of INDEX_REWRITE is substantially
less than the running time of REWRITE_FROM_LEFT.

Now that the usefulness of index automata has been demonstrated,
we shall give a construction of an index automaton A for a given finite,
nonempty rewriting system R. The construction of A is somewhat simpler
if R is reduced, and we assume this to be the case.

Let L be the set of left sides in 1Z and let E be the set of prefixes of
elements of L. The edges of A are of two kinds. Let El be the set of
triples (L, x, L) with L in L and x in X, and let E2 be the set of triples
(U, x, V), where U is in E - L, x is in X, and V is the longest suffix of Ux
which belongs to E. It will be convenient to let E3 denote the set of edges
(U, x, V) in E2 for which V = Ux. Each L in L is the left side of a unique
rule (L, R) in R, and we define f (L) to be that rule. Set

I(R) = (E, X, El U E2, IF I ,C).

Proposition 5.4. If R is a nonempty, finite, reduced rewriting system
on X*, then I(R) is an index automaton for R and f is a rule identifier
for I(R).
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Proof. Suppose that P is a path in I(R) starting at s and ending at the
state V in E.

Lemma 5.5. If V is not in L, then V is the longest suffix of Sg(P) belonging
to E.

Proof. Assume that V is not in L. Because of the edges in El, once a
path reaches an element of C, the path stays at that element. Thus no
state involved in P belongs to L. If P is empty, then the conclusion clearly
holds. Suppose that P is nonempty, let (U, x, V) be the last edge of P, and
let Q be the initial segment of P consisting of all but the last edge. By
induction on the length of P, the longest suffix of W = Sg(Q) belonging to
E is U. Since (U, x, V) is in E2, it follows that V is a suffix of Ux and hence
V is a suffix of Sg(P) = Wx. Now let T be any suffix of Wx belonging to
E. Then T has the form Sx, where S is in E and S is a suffix of Sg(Q).
Therefore S is a suffix of U and T is a suffix of Ux. Thus T is a suffix of V
and V is the longest suffix of Sg(P) belonging to E.

Now suppose that V is in L and let Q be the longest initial segment of P
which does not involve the state V. The edge of P immediately following Q
has the form (U, x, V), where U is not in L. By Lemma 5.5, U is the longest
suffix of Sg(Q) belonging to E. Thus V is a suffix of Ux and therefore V
is a subword of Sg(P). From this it follows that every word recognized by
I (R) is reducible with respect to R.

Finally, suppose that W is reducible with respect to R. Since I (R) is
complete, there is a unique path P in I (R) starting at - such that W =
Sg(P). It may happen that W contains many elements of L as subwords.
We need to pick out the "first" such subword. Let W = SUxT, where S,
U, and T are in X*, x is in X, Ux is in L, and SU has no subwords in L.
Define Q to be the initial segment of P with Sg(Q) = SU, and let Q end at
the state B. By Lemma 5.5, U is a suffix of B. Let the edge of P following
Q be (B, x, V). Since Ux is a suffix of Bx, it follows that Ux is a suffix
of V. But Ux is in L and Ux is not a subword of any other element of L.
Therefore V = Ux and SUx = SV is in L(I(R)). Since all further edges of
P end at V, we see that W is in L(I(R)).

Example 5.1. In Example 2.3.5 the rewriting system S on {a, b}* consisting
of the rules

a2 -+ e, ab2a ->bab,

b3 -* e, baba -> ab2,

abab -> b2 a, b2ab2 - aba,

was shown to be confluent. Let us construct I(S). The elements of E are
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Table 3.5.1

a b a b

1 2 3 10 15 9

2 4 5 11 4 16

3 6 7 12 12 12

4 4 4 13 13 13

5 8 9 14 14 14

6 4 10 15 15 15

7 11 12 16 15 17

8 4 13 17 17 17

9 14 12

S1 = s, S10 = bab,
2

S2 = a, Su = b a,

s3=b, s12=b3,
2S4 =a , S13 = abab,

S5 = ab, S14 = ab2a,

S6 = ba, S15 = baba,

S7 = b2, S16 = b2ab,

Sg = aba, S17 = b2ab2,
2

S9 = ab

Since IGI = 6 and IXI = 2, there are 12 edges in El. Each element of
E - {e} yields an edge in E3. For example, S. = S5a, so (S5, a, S8) is in E3.
The edges in E2 - E3 require a little more work to determine. For example,
the longest suffix of S11a = b2a2 belonging to E is S4 = a2. Thus (S11, a, S4)
is in E2. The full set of edges in I(S) is described by Table 3.5.1. Here i
has been written for Si. Under this identification of E with {1, ... ,17}, the
terminal states of I(S) are 4, 12, 13, 14, 15, and 17. The rule identifier f
maps 4 to (a',,-), 12 to (b3, s), and so on.

For our next application of index automata we shall assume that R is
reduced and that A = (E, X, E, A, Q) is isomorphic to I (R). Let A = {a}.
For each state v in E there is a unique word U of minimal length such that
a = au. Under the isomorphism of A with I(R) the state a corresponds
to a prefix of some left side in R, and U is that prefix. Set P(Q) = JU1. We
shall call 2 the length function for A. Given A, f, and the rule identifier
f of A, we can implement an improved version of CONFLUENT using a
backtrack search for overlaps satisfying the condition of Proposition 7.1 in
Chapter 2.
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Function INDEX_CONFLUENT(R, A): boolean;
Input: R : a reduced rewriting system;

A : an index automaton (E, X, E, A, 12) isomorphic to
I (R) with length function f and rule identifier f ;

(* True is returned if R is confluent and false is returned otherwise. *)
Begin

Let A = {a};
For each rule (U, V) in R do begin

Let U = xS with x in X; /30 := as; r := 0; backtrack := false;
While r > 0 and not backtrack do begin

backtrack :_ £(/3r) < r;

If Or E S2 and not backtrack then begin
Let f (/3r) = (L, R);
(* The suffix of U of length £(/3r) - r is a prefix of L. *)
Process the overlap of U and L;
If failure of confluence is detected then begin

INDEX-CONFLUENT:= false; Goto 99
End;

backtrack := true

End;

If not backtrack then begin

Choose x in X; /3r+1 :_ (f3r)x; Yr+1 := X - {x}; r:= r + 1
End
Else
While backtrack and r > 0 do

If Yr 7' 0 then begin
Choose x in Yr; Yr := Yr - {x}; /3r :_ (/3r_1)x;
backtrack := false

End

Else r:=r-1
End

End;

INDEX-CONFLUENT:= true
99: End.

Given a left side U = xS in R, we perform a backtrack search for
nonempty words V such that UV has exactly two subwords which are
left sides in R, namely U and L, where L is a suffix of UV and I L I > I V
Our test condition for a word W to be a proper prefix of such a V is that
SW be irreducible with respect to R and that SW have a suffix T with
ITI > IWI such that T is a prefix of some rule in R. At any given moment
W is the word xt ... x,., where xi is the element of X chosen to construct /32
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as (Qi_1)Xi. The state /3r is asw and hence t(o,.) is the length of the longest
suffix T of SW which is a prefix of some left side in R.

Figure 3.5.1 shows the search tree examined by INDEX-CONFLUENT
in checking the confluence of the rewriting system S in Example 5.1 when
U = V. Each node of the tree is labeled by the pair (W, /3T), where r = IWI.
The nodes (b, 12), (aba, 15), and (ab2,17) correspond to the overlaps b4,
b3aba, and b3ab2. The node (a2, 4) does not correspond to an overlap since
£(/3r.) < r in that case.

Using INDEX_CONFLUENT, it is practical to verify the confluence of
the rewriting system T of Example 6.6 in Chapter 2. Only 6129 overlaps
need to be processed.

Let us return to the problem of constructing an automaton A =
(E, X, E, {al, S2) isomorphic to I (R). In order to be able to construct
the edges in E2 - E3, it is useful to be able to obtain for any or in E the
word U = UQ of length £(a) such that a = au. There are several ways
to facilitate this. One could explicitly store U, with or. One could store
with a a pointer to a rule of whose left side UU is a prefix. Also, assuming
U, E, one could write UQ as Sx with x in X and store the pair (T, x),
where T = as. One could then reconstruct Uo recursively as UTx.

The following procedure constructs an automaton isomorphic to I (R) for
a reduced rewriting system R. The method of determining the words U, is
left unspecified.

Procedure INDEX(R; A);
Input: R : a nonempty, finite, reduced rewriting system on X*;
Output: A : an automaton isomorphic to I (R) together with its

length function t and its rule identifier f ;
Begin

n:=1; £(1):=0; E:={1}; A:={1};Il:= 0; E:=0;
(* At all times A will denote (E, X, E, A, S2). The sets El, E2, ... are

all assumed to be empty initially. We first determine the edges
in El and E3. *)

For (L, R) in R do begin
Let L = xl ... xs with each xi in X; a := 1;
For i:=1tosdo
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If as" is defined then o:= vxs
Else begin

n := n + 1; t(n) := i; Add n to E and Ei;
Add (a, xi, n) to E; a:= n;
Record information on how to reconstruct UQ = xl ... xi

End;

Q:= Sl U {a}; f (a) :_ (L, R);
For x in X do add (Q, x, a) to E

End;

(* Determine the edges in E2 - E3. *)
For x in X do if lx is not defined then add (1, x, 1) to E;
i := 1;
While Ei 0 do begin

For or in Ei do begin

Let UU = x1 ...;; T := lx2...xti;

For x in X do if ax is not defined then add (Q, x, Tx) to E
End;
i:=i+l

End
End.

There are difficulties connected with the use of index automata in the
Knuth-Bendix procedure for strings. The problem is that the rewriting
system is continually changing as new rules are found and redundant rules
are deleted. Updating the index automaton after each change is time-
consuming. There are several alternatives which can be used. One can
partition R into a number of smaller sets and construct an index automaton
for each set. A change in R may require that only one or two of the indexes
be modified. Another option is to use an index structure containing less
information and hence more easily updated. A good choice is an automaton
recognizing the set of left sides in R. One can get such an automaton by
removing all edges from I(R) except those in E3. With either of these
approaches there is a penalty to be paid in the form of slower rewriting and
formation of overlaps. The right balance remains to be determined.

The Rabin-Karp string matching algorithm as described, for example, in
[Sedgewick 1990] can be modified to produce an index structure which uses
much less space than an index automaton. This Rabin-Karp index cannot
be used to locate overlaps, but it permits rewriting to be carried out on
average almost as quickly as can be done with an index automaton.

Exercises

5.1. Use the procedure INDEX_REWRITE with the rewriting system S and the index
automaton I(S) constructed in Example 5.1 to rewrite the word bab2abab2ab.



120 3 Automata and rational languages

Figure 3.6.1

5.2. Using INDEX_CONFLUENT, find all overlaps of left sides in S satisfying the conclusion
of Proposition 7.1 of Chapter 2.

5.3. Construct I(R), where R is the rewriting system on {a, b}* consisting of the rules a5 -* e,
b5 -* e, b4a4 -* (ab)4, and (ba)4 , a4b4.

5.4. Suppose SRI =1. Show that an automaton isomorphic to I(R) may be constructed much
more simply than is done in INDEX.

5.5. Let R be a reduced rewriting system and let Io(R) be the automaton obtained from I(R)
by deleting all edges except those in E3. Devise efficient methods of updating Io(R) when
a rule is added to or deleted from R.

3.6 Trim automata
In Section 2.8 we discussed the use of the Knuth-Bendix procedure for
strings to investigate right congruences which are finitely generated modulo
a finitely generated two-sided congruence. To illustrate the use of automata
in such computations, it is necessary to develop a little more theory.

It may happen that some states of an automaton A are superfluous and
may be deleted without affecting the language recognized by A. To see how
this can happen, let us consider the automaton A shown in Figure 3.6.1. The
single initial state is 1 and the single terminal state is 3. No path in A from
1 to 3 passes through either state 4 or state 5. There are paths from 1 to
5, but there is no way to complete any of them to a path to 3. There is no
path at all from 1 to 4.

The observations of the previous paragraph suggest the following defini-
tions: Let A be an automaton and let v be a state of A. We say that v is
accessible if there is a path in A from some initial state to v. We say that
cr is coaccessible if there is a path from v to some terminal state. Finally,
o- is trim if it is both accessible and coaccessible. Clearly o' is trim if and
only if it occurs on a path from an initial state to a terminal state. In the
preceding example, states 1, 2, 3, and 5 are accessible, and states 1, 2, 3,
and 4 are coaccessible. The trim states are 1, 2, and 3.

Given a finite automaton A, we can find the set of trim states of A with
the following procedure:
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Procedure TRIM(A; A);
Input: A : a finite automaton (E, X, E, A, S2);
Output: A : the set of trim states of A;
Begin

(* Find the set A. of accessible states. *)

A.:= A; 4):=Aa;
While 4 54 0 do begin

Choose cp in 4); 4) := 4) - {gyp};

For each edge (cp, U, A) in E do
If A is not in A. then begin

Aa:=AaU{A}; 4):=4) U{A}
End

End;

(* Now find the set A, of coaccessible states. *)

4):=A,;
While 4 0 do begin

Choose cp in 4); 4) := 4) - {cp};

For each edge (A, U, cp) in E do
If A is not in A, then begin

A,:=A,UJAI; 4):=4) U{A}
End

End;

A:=AanA,
End.

Example 6.1. Let us apply TRIM to the automaton constructed in Exam-
ple 4.1. The accessible states are found to be 1, 3, 4, 5, and 7. All states
except 1 are coaccessible. Thus the set of trim states is {3, 4, 5, 7}. The
restriction to the set of trim states is described by Figure 3.6.2.

Although the instructions for the two While-loops in TRIM are very sim-
ilar, there is an important point to be noticed concerning data structures.
In the first loop, we need to know, for a state cp, which edges start at W.
However, in the second loop, we need to know which edges end at W. The
data structure used to represent the edges in the automaton may favor one
or the other type of access.

We shall call the restriction of an automaton A to its set of trim states
the trim part of A and denote it A. The automaton is trim if all states
are trim.

Proposition 6.1. For any automaton A the languages L(A) and L(A) are
the same.
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Figure 3.6.2

Proof. Since any path in A from an initial state to a terminal state passes
through only trim states, the result is immediate.

Occasionally we shall need to consider the accessible part Aa of an au-
tomaton, the restriction of A to its accessible states. If Aa = A, then A is
accessible.

Let G be a language over X. The states of A(L) are the cones of G. If 0
is the cone C(G,W), then there is a path P in A(G) from the initial state
to a such that Sg(P) = W. Therefore every state of A(G) is accessible.
The cone a is coaccessible if and only if it is nonempty. Thus the set Ct(G)
defined in Section 3.1 is the set of trim states of A(L). The trim part of
A(G) will be denoted At(L).

Proposition 6.2. Let A be a trim automaton. Then L(A) = 0 if and only
if the set of states of A is empty. Also, L(A) contains a nonempty word if
and only if some edge of A has a nonempty label.

Proof. Let A = (E, X, E, A, St). We have already remarked that the trim
states are precisely the states occurring in paths from A to Q. Thus if there
are trim states, then L(A) 54 0. Clearly, if E = 0, then L(A) = 0. If (a, U,'r)
is an edge with U e, then U is a subword of some word in L(A), and
therefore L(A) contains a nonempty word.

Corollary 6.3. Given a finite automaton A, it is possible to decide whether
L(A) = 0 and whether L(A) contains a nonempty word.

Proof. Using TRIM, we can compute At and apply Proposition 6.2.
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A circuit in an automaton is a path which starts and ends at the same
point.

Proposition 6.4. Suppose A is a finite, trim automaton. Then L(A) is
infinite if and only if A has a circuit with nonempty signature.

Proof. Let A = (E, X, E, A, S2). Suppose first that A has a circuit P which
starts and ends at a and the signature W of P is not E. Since A is trim,
there is a path Q from A to o and a path R from or to Q. By concatenating
Q, any number nonnegative i copies of P, and R, we obtain a path from
A to S2 with signature Sg(Q)Wi Sg(R). All of these words are distinct and
are in L(A), so L(A) is infinite.

Now suppose that L(A) is infinite. Let n be the number of edges in A.
Since L(A) is infinite, L(A) contains a word W of length greater than n.
Let P be a path from A to S2 with W = Sg(P). Some edge (a,U,T) with
U 0 e must appear more than once in P. Let Q be the subpath of P which
starts with the first occurrence of (o-, U, T) and continues until a is reached
again. Then Q is a circuit, and the signature of Q contains U as a prefix.

Corollary 6.5. Given a finite automaton A, it is possible to decide whether
L(A) is infinite.

Proof. Replace A by A, if necessary, so that A is trim. Let A =
(E, X, E, A,1). If o, is in E, then the set of signatures of circuits in A
starting at a is L(AQ), where AQ = (E, X, E, {a} , Jul). By Corollary 6.3,
we can decide whether L(Aa) contains a nonempty word. Applying this
test for each v in E, we can decide whether A has a circuit with nonempty
signature.

When the subset construction of Section 3.4 is applied to an automaton
A, it frequently happens that only a few states of the resulting automaton
Al are accessible, and even fewer states are trim. It is possible to construct
directly the accessible part of A1. The following example illustrates this
construction.

Example 6.2. Let X = {a, b} and let U = {a3, b3, (ab)2}. We shall construct
a complete automaton recognizing the ideal T= X*UX*. Figure 3.6.3 gives
a nondeterministic automaton A recognizing Z. If we apply the subset
construction directly to A, we shall get an automaton Al with 29 = 512
states, since all subsets of {1,2,3,4,5,6,7,8,9} are closed. However, by
imitating the first While-loop in TRIM, we can avoid considering most of
these states. The initial state is Al = {1}. The set (A1)a is A2 = {1,3,7},
and (Al)b is A3 = {1, 5}. Now we compute (A2)a and (A2)b, which turn out
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Figure 3.6.3

Table 3.6.1

a b a b

1 2 3 7 7 10

2 4 5 8 4 10

3 2 6 9 11 9

4 7 5 10 12 9

5 8 6 11 7 10

6 2 9 12 7 10

to be A4 = {1, 3, 4, 7} and A5 = {1, 5, 8}, respectively. Continuing in this
manner, we find that

(A3)° = A2, (A3)" = A6 = {1, 5, 6} ,

(A4)° = A7 = 11,{1,2,3,4,7}, (A4)" = A5,

(A5)° = A8 = {1,3,7,9}, (A5)" = A6,

(A6)° = A2, (A6)" = A9 = {1,2,5,6},

(A7)" = A7, (A7)" = A10 = {1,2,5,8},

(A8)" = A4, (A8)" = A10,

(A9)° = All = {1,2,3,7}, (A9)" = A9,

(A10)" =A12 = {1,2,3,7,9}, (A10)" = A9,

(All)" = A7, (All)" = A10,

(A12)a A7, (A12)" = A10.
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Figure 3.6.4

Figure 3.6.5

Thus the edges of the accessible part A2 of Al are given by Table 3.6.1,
where i has been written for Ai. The set of terminal states of A2 is
{7, 9,10,11,12}, and it is easily checked that A2 is trim.

The variation of the subset construction outlined in Example 6.2 will be
referred to as the accessible subset construction.

Exercises

6.1. Compute the trim part of the automaton in Figure 3.6.4.
6.2. Apply the accessible subset construction to the automaton in Figure 3.6.5.
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6.3. Let A = (E, X, E, A, Sl) be a finite, trim automaton. Set Bi = A, and for i > 1 define
8i+1 to be the restriction of !i to the set of states in Si which have incoming edges in
!32. Show that there is an integer k < JET + 1 such that '3k = Bk+1. Show that L(A) is
infinite if and only if 8k has an edge with a nonempty label.

6.4. Let A be a trim, deterministic automaton such that L(A) is an ideal. Prove that A is
either empty or complete.

3.7 Minimal automata
A given rational language L may be recognized by many different finite
automata. In this section we shall show that A(L) and its trim part At(L)
are the smallest complete automaton and the smallest trim, determinis-
tic automaton, respectively, recognizing L. We shall also describe how to
construct an automaton isomorphic to At(G).

To establish the main results of this section, we must consider certain
kinds of maps from the set of states of one deterministic automaton to the
set of states of another deterministic automaton with the same alphabet.
These maps or "morphisms" make various collections of automata into cat-
egories. Category theory will not play a major role in our discussions, and
no prior knowledge of categories is assumed. A more complete treatment
of categories of automata can be found in [Eilenberg 1974].

For i = 1, 2, let A2 = (Ei, X, Ei, Ai, 522) be a deterministic automaton with
alphabet X. An expanding morphism from Al to A2 is a map f : El -' E2
such that

(i) f (A1) C A2.
(ii) f(c1) C 522.
(iii) If P is a path in Al from a to T, then there is a path Q in A2 from

f (a) to f (T) such that Sg(Q) = Sg(P).

Proposition 7.1. If there is an expanding morphism f from Al to A2,
then L(A1) C L(A2).

Proof. Suppose that W is in L(A1). There is a path P in Al from a in
Al to w in 521 such that W = Sg(P). By the definition of an expanding
morphism, there is a path Q in A2 from f (a) to f (w) such that W = Sg(Q).
Since f (a) is in A2 and f (w) is in 5221 this means that W is in L(A2).

Condition (iii) in the definition of expanding morphism refers to all paths.
However, it suffices to consider only paths of length 1. (See Exercise 7.2.)
Thus if Al and A2 are finite, it is possible to decide whether a given map
from E1 to E2 is an expanding morphism.

Proposition 7.2. If Al is accessible, then there is at most one expanding
morphism from Al to A2.
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Figure 3.7.1
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a b
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Figure 3.7.2

Proof. If Al = 0, then E1 = 0 and the empty map is the unique expanding
morphism from Al to A2. Thus we may assume that Al = {a}. Suppose
there is an expanding morphism f from Al to A2. Then f (a) is the unique
element of A2. For any or in El there is a path P in Al from a to a.
Therefore f (Q) = f (a)', where W = Sg(P). Thus f is unique.

Example 7.1. Let X = {a, b} and let Al and A2 be as shown in Figures 3.7.1
and 3.7.2. If there is an expanding morphism f from Al to A2, then con-
dition (i) forces f to map 1 to 1. Since 2 = la in Al, we must have
f (2) = f (1)a = la = 2 in A2. Similarly f (3) = f (1)n = lb = 1 and f(4) =
f (2)b = 2b = 3. It is not hard to check that the map f so defined is an
expanding morphism.

The following are the most important results about the existence of
expanding morphisms.



128 3 Automata and rational languages

Proposition 7.3. Let A = (E, X, E, A, Il) be a complete, accessible au-
tomaton. There is a unique expanding morphism f from A to A(L), where
G = L(A). Moreover, f is surjective as a map on states. If f is injective,
then f is an isomorphism from A to A(L).

Proof. The uniqueness of f follows from Proposition 7.2. Let A = {a}
and let v be any element of E. Since A is accessible, there is a path P in
A from a to a.

Lemma 7.4. C(L, Sg(P)) depends only on o,, not on the choice of P.

Proof. A word W is in C(L, Sg(P)) if and only if Sg(P)W is in L. Since
A recognizes L, this is the case if and only if there is a path Q in A from
a to Il such that Sg(Q) = Sg(P)W. If such a Q exists, then P is an initial
segment of Q. Thus W is in C(L, Sg(P)) if and only if there is a path from
o, to Il having W as its signature. Therefore C(L, Sg(P)) depends only
on a.

By Lemma 7.4, we can define a map f : E - C(L) by f (a) = C(L, Sg(P)).
Given U in X *, there is a v in E such that a = aU, since A is complete. The
image f (o) is C(L, U), and hence f is surjective. Now f (a) = C(L, E) = L,
the initial state of A(L). Also, au is in Il if and only if U is in L, which
holds if and only if C(L, U) is a terminal state of A(L). Thus f maps Il
onto the set of terminal states in A(L). If Q is a path in A from ci to
T, then concatenating P and Q yields a path from a to T. Thus f (T) =
C(L, Sg(P) Sg(Q)). By the definition of A(L), there is a path in A(L)
from f (Q) to f (T) having signature Sg(Q). Therefore f is an expanding
morphism.

Suppose that e = (o-, x, T) is in E. The preceding argument shows that
(f (a), x, f (T)) is an edge of A(L). Since A is complete, f maps E onto the
set of edges of A(L). Thus if f is injective, then f is an isomorphism.

Corollary 7.5. If A is a finite, complete automaton recognizing L, then
A has at least IC(L)I states. If A has exactly IC(L)I states, then A is
isomorphic to A(L).

Proof. Replacing A by its accessible part can only decrease the number of
states. Thus we may assume that A is accessible and apply Proposition 7.3.

In view of Corollary 7.5, it is reasonable to consider IC(C) I to be a mea-
sure of the complexity of L. Relatively minor changes in the proofs of
Proposition 7.3 and Corollary 7.5 yield the following results.
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Proposition 7.6. Let A = (E, X, E, A, Il) be a trim, deterministic automa-
ton recognizing a language L. There is a unique expanding morphism f from
A to At(L). Moreover, f is surjective as a map of states. If f is injective,
then f is an isomorphism of A with At(L).

Corollary 7.7. If A is a finite, trim, deterministic automaton recognizing
L, then A has at least jCt (G) I states. If A has exactly I Ct (L) I states, then
A is isomorphic to At(L)-

Corollary 7.7 makes it natural to consider the problem of determining an
automaton isomorphic to At(L), where L is given as L(A) for some finite
automaton A. By applying the accessible subset construction and taking
the trim part if necessary, we may assume that A is deterministic and trim.
Our algorithm for computing At (L) involves the possibly nondeterministic
automaton At = (E, X, Et, S2, A) defined in Exercise 2.8.

Proposition 7.8. Let A = (E, X, E, A, Il) be a finite, trim, deterministic
automaton, let f : E -+ Ct(L(A)) be the map of Proposition 7.6, and let B
be the result of applying the accessible subset construction to At. If a and
T are in E, then f (a) = f (r) if and only if, for each state IF of B, either
both v and T are in r or neither is in F.

Proof. For any word U in X*, let A(U) be the set of states v in E such
that there is a path in At from Il to o having signature U, or, equivalently,
there is a path in A from v to SZ having signature Ut. Then the states in
B are the possible sets O(U) as U ranges over X*, and Ut is in f (a) if and
only if o is in O(U). Thus f (v) is the set of words Ut such that r is in
A(U). Therefore f (o) = f (T) if and only if a and T belong to exactly the
same states of B.

Since the edges in At (L) are images of the edges in A, we can now
construct an automaton isomorphic to At(L).

Example 7.2. Let X = {a, b}, E _ {1, 2, 3, 4, 5, 6, 7}, A = {1}, and Il = {3, 6},
and let E be given by Table 3.7.1. Then A = (E, X, E, A, St) is trim. The
edges of At are given by Table 3.7.2. Here, for each state v and each gener-
ator x the possible endpoints T in edges (o, x, T) of At are listed. Applying
the accessible subset construction to At, we find that the accessible states
in the resulting automaton correspond to the following subsets of E.

{3,6}, {1,4,7}, {2,3,5,6}, 0, {1,2,3,4,5,6,7}.

By Proposition 7.8, f (v) = f (T) if and only if or and T are in the same
block of the partition {{1, 4, 7} , {2, 5} , {3, 6}} of E. Thus we may identify
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Table 3.7.1

3

1

1

a b State Label Endpoints

1 3 2 1 a 3,6

2 4 6 2 b 1,7

3 1 6 3 a 1,4

4 3 5 b 5,6

5 7 3 4 a 2

6 1 3 5 b 4

7 6 2 6 a 7

b 2,3
7 a 5

Ct(L(A)) with 11, 2,31 in such a way that f maps 1, 4, and 7 to 1, f maps
2 and 5 to 2, and f maps 3 and 6 to 3. The edges of At(L(A)) are the
triples (f (a), x, f (T)), where (a, x, T) ranges over the edges of A. Therefore
At(L(A)) is isomorphic to ({1, 2, 3} , X, El, {1} , {3}), where El corresponds
to the following transition table:

a

1

2

3

Table 3.7.2

b

2

3

3

Exercises

7.1. Suppose that f is an expanding morphism from Al to A2 and g is an expanding morphism
from A2 to A3. Show that fog is an expanding morphism from Al to A3.

7.2. Show that it is sufficient to assume condition (iii) in the definition of an expanding
morphism for paths of length 1.

7.3. Let A be a trim, deterministic automaton, and assume that there is an expanding
morphism from At(L(A)) to A. Prove that A and At(L(A)) are isomorphic.

7.4. Construct an automaton isomorphic to At(L(A)), where A is the automaton in Fig-
ure 3.7.3.

3.8 Standard automata
Given two finite automata, it is clearly a finite problem to decide whether
the automata are isomorphic. In the case of accessible, deterministic au-
tomata it is possible to select representatives from the isomorphism classes
in a natural way. This facilitates the determination of isomorphism. To
define isomorphism class representatives of finite, accessible, deterministic
automata with alphabet X, we fix a reduction ordering -< on X*.

Let A = (E, X, E, A, 1) be a finite, accessible, deterministic automaton.
If A = 0, then A is the unique automaton over X with no states or edges.
If A 0, then A contains a single state a, and for each a in E there is at
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Figure 3.7.3

least one path in A from a to a. Let Go be the language recognized by
(E, X, E, A, {a}). Thus Ga is the set of signatures of paths in A from a to
a. Since L, # 0, there is a smallest element Wa in La with respect to <.
If a T, then WW # W. Since e is in L«, it follows that W« = s.

We shall say that A is standard with respect to -< if the following
conditions hold:

(i) E = {1,...,n}, where n = JEJ.
(ii) A c {1}.
(iii) If aand Tare in Eand a<T,then W,-< WT.

Under this definition, (0, X, 0, 0, 0) is standard. Condition (iii) can be
replaced by

(iii') Suppose U is in X*, U Wa, and 1° is defined. Then lu < a.
Note that whether or not A is standard does not depend on Q. In the
discussion that follows, we shall tend to ignore the sets of terminal states
in our automata.

Proposition 8.1. Every finite, accessible, deterministic automaton with
alphabet X is isomorphic to a unique automaton which is standard with
respect to -<.

Proof. Let A = (E, X, E, A, S2) be a finite, accessible, deterministic
automaton. There is a unique way to number the elements of E as

such that Wa. -< Wa, if i < j. If A = {a}, then Wa = e,
so a = al. Let El = {1,...,nJ, Al = {1} n E1, 1l = {i I ai E Sl}, and
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El = { (i, x, j) I (Qi, x, ci) E E}. We leave it as an exercise to show that
Al = (E1, X, El, A1, S21) is standard and Al is the only standard automa-
ton isomorphic to A.

Although we know that the words W0. in the proof of Proposition 8.1
must exist, we have as yet no algorithm for computing them. Thus the
proof of Proposition 8.1 does not lead immediately to an algorithm for
standardization, that is, for finding A1. See Exercise 8.5.

It is possible to place the notion of a standard automaton into a broader
context. Let A = (E, X, E, A, S2) be a nonempty, finite, accessible, determin-
istic automaton and let a be the unique initial state of A. Set W = W (A)
equal to the set of words W in X* such that aw is defined, and let f = fA
be the function from W to E given by f (W) = aw. The pair (W, f) de-
termines E, E, and A, but not Q. Since A is accessible, f maps W onto E
and a = f (e). If v and r are in E and x is in X, then (v, x, r) is in E if
and only if there is a word W in W such that Wx is also in W, f (W) = v
and f (Wx) = r.

Let us say that A is numeric if E is a set of positive integers. Our choice
of a reduction ordering -< on X* defines an ordering of finite, accessible,
deterministic, numeric automata with alphabet X. (Strictly speaking, the
ordering is on the triples (E, E, A) which arise in such automata, but as
noted above we are ignoring the sets of terminal states.) The empty au-
tomaton (0, X, 0, 0, 0) comes first. Let A, = (Ei, X, Ei, Ai, SZi), i = 1, 2, be
nonempty, finite, accessible, deterministic, numeric automata. Set fi = ff .
If (El, El, Al) # (E2, E2, A2), then there is some word W such that (W)
and f2(W) differ in the sense that one is defined and the other is not, or both
are defined but they have different values. Let W be the first word at which
fl and f2 differ. Then we shall say that Al precedes A2 and write Al -< A2
if either f, (W) is not defined and f2 (W) is defined or both are defined and
f1(W) < f2 (W). If neither automaton precedes the other, then they differ
only in their sets of terminal states. If in addition the automata are isomor-
phic, then they must have the same terminal states as well, so Al = A2. The
precedence relation on finite, accessible, deterministic, numeric automata
with alphabet X is transitive.

Proposition 8.2. Let A be a finite, accessible, deterministic, numeric au-
tomaton with alphabet X. Then A is standard if and only if A precedes
every other numeric automaton which is isomorphic to A.

Proof. Clearly we may assume that A is nonempty. Let A = (E, X,
E, A, SZ) and suppose first that A is standard. Let A' = (E', X, E', A', St')
be a numeric automaton which is isomorphic to A and different from A.
Then, as noted above, one of A and A' precedes the other. Suppose that
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A' precedes A. Since A and A' are isomorphic, W(A) = W(A'). Thus if
W is the first word for which fA and fA, differ, both fA(W) and fA,(W)
are defined, and fA,(W) < fA(W). Now fA(E) = 1 and fA,(e) is positive.
Therefore W e and A = A' = III-

Let o = fA, (W) and r = fA(W ). Then 1 < a < r. Because A is standard,
a is a state of A. Let V be the first word such that 1V = a in A. Again
because A is standard, V - W. By the definition of W, a = fA(V) = fA,(V).
But this says that 1V = 1W in A' but 1V 54 1W in A. Since A and A' are
isomorphic, this is impossible. Hence A precedes M.

Now suppose that A precedes all other numeric automata isomorphic to
it. Then A is isomorphic to a standard automaton A', and by the previous
argument A' precedes all numeric automata isomorphic to it. Thus if A
and A' are different, then each precedes the other, which is impossible.

The orderings which will be used most frequently to define standard au-
tomata are length-plus-lexicographic orderings and basic wreath product
orderings. It is important to develop efficient techniques for standard-
ization and for deciding precedence of numeric automata with respect to
these two classes of orderings. We shall begin with length-plus-lexicographic
orderings.

Let A = (E, X, E, A, fl) be a finite, accessible, deterministic, numeric
automaton. We can define an ordering on E, which we denote by <<,
as follows: (a, x, T) << (gyp, y,') if a < cp or a = cp and x -< y. Since A
is deterministic, the equalities a = cp and x = y imply that T = 0. If
A = {a}, then there may not be any edges going into a. However, since A
is accessible, for every T in E - A there is an edge going into T. Let eT be
the first such edge with respect to <<.

The automaton A is said to be edge standard relative to -< if the following
conditions hold:

(i) E = { 1, ... , n}, where n = I E .

(ii) A C {1}.
(iii) e2 << e3 << « e,,.

Assuming that conditions (i) and (ii) hold, condition (iii) is quite simple
to check. We arrange the edges in order and look to see whether for 2 <
T < n the first occurrence of r as a third component comes before the first
occurrence of r + 1.

Example 8.1. Let X = {a, b} and let -< be the length-plus-lexicographic or-
dering on X* with a -< b. Suppose that A = (E, X, E, A, S2) is the automaton
in which E = 11, 2,3, 4}, A = { 1}, and E is given by the following transition
table:
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a b

To examine the edges in order, we have only to go through entries in the
table row by row. In doing so, we first encounter 2 as a third component
in e2 = (1, b, 2). We first encounter 3 in e3 = (2, a, 3) and 4 in e4 = (3, b, 4).
Since e2 << e3 << e4, A is edge standard. In our previous notation, Wl = e,
W2 = b, W3 = ba, and W4 = bab. Thus Wl -< W2 -< W3 -< W4. Hence A is
also standard with respect to -<. This is no accident.

Proposition 8.3. Let A be a finite, accessible, deterministic, numeric au-
tomaton with alphabet X. If -< is a length-plus-lexicographic ordering of
X*, then A is edge standard with respect to -< if and only if A is standard
with respect to -<.

Proof. We may clearly assume that A is not empty. Let A =
(E, X, E, A, Q), where E = {1, ... , n} and A = {1}. For v in E let We
be the first word with respect to -< such that

Lemma 8.4. Suppose WQ ends in an element x of X. Then WQ = (WT)x,
where TX = a.

Proof. Let WQ = Ux and let T = 1U. Thus TX = a and

1(W )X = a.

Therefore (WT)x r Wa = Ux, so W. U. But by the minimality of Wr it
follows that U = W.

Suppose first that A is standard with respect to -<.

Lemma 8.5. Suppose that 2 <,r < n and eT = (v, x, T) . Then WT = (We)x.

Proof. By Lemma 8.4, W. has the form (WP)y, where (p, y, T) is an edge.
By the definition of eT, a < p or a = p and x y. Since A is standard,
WQ WP, so (We)x (WP)y. Since

1(W')x = T,
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we have WT=(Wa)x.

Now suppose that 2 < or < r < n. Let ea = (cp x, v) and eT = y, T).
Then

(WW)x = Wa - WT = (W1,)y.

Therefore either W,, W,/, or W,P = W. and x -< y. But this means that
either cp < 0 or cp = zLi and x -< y. In either case, ea << er. Therefore A is
edge standard with respect to -<.

Now suppose that A is edge standard. We must prove that A is standard.
Suppose A is not standard. Then there exist v and r in E such that
Wa -< WT and r < a. Among such pairs (v, r) choose one in which Wa is
as small as possible. Now W1 = e, so 1 < r < o,. Thus we can write Wa as
(WP)x. Then W. -< Wa, so by the choice of o we have p < a. The triple
(p, x, a) is in E. Since A is edge standard, there is an edge (cp, y, r) in E
such that either cp < p or cp = p and y -< x. But

(WP)x = Wa -< WT (W,)Y.

If cp = p, then (WP)x >- (W,P)y, which is not the case. Therefore WP WV

and cp < p. This contradicts the choice of a.

Here is a standardization procedure for the length-plus-lexicographic or-
dering of X * determined by a given linear ordering of X. It is based on the
definition of an edge standard automaton.

Procedure LENLEX_STND(A, -<; A1);
Input: A : a nonempty, finite, accessible, deterministic

automaton (E, X, E, A, SZ);
a linear ordering on X;

Output: Al : the automaton which is isomorphic to A and is
standard with respect to the length-plus-lexicographic
ordering of X* determined by -<;

Begin
Let A = {a}; n := IEI; m := 1; a1 := a; A := Jul};
For i:=1tondo

For each edge (a , x, T) in E do
(* The edges are considered in the-order of their labels. *)
If r OA then begin m := m + 1; am=r; A := A U {r} end;

E1 :_ {1,...,n}; Al:=11}; S21 := {i I Ui E SZ};
E1 {(i, x, j) I (a , x, a5) E E}; Al (E1, X, E1, A1, cZ1)

End.
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Table 3.8.1 Table 3.8.2

x y x y

1 6 1 2 3
2 6 2 1 4
3 5 1 3 5

4 3 4 5

5 3 2 5 6

6 4 6 1

Proposition 8.6. If A is a nonempty, finite, accessible, deterministic
automaton with alphabet X and -< is a linear ordering of X, then
LENLEX_STND(A, -<; A1) returns Al as the unique automaton which is
isomorphic to A and standard with respect to the length-plus-lexicographic
ordering of X* determined by -<.

Proof. Exercise.

Example 8.2. Suppose A = (E, X, E, A, S2), where E = {1, 2, 3, 4, 5, 6}, X =
{x, y}, A = {3}, and E is given by Table 3.8.1. If x -< y, then in the
call LENLEX_STND(A, -<; A1) we obtain 3, 5, 1, 2, 6, 4 as the sequence
o , ... , vs. In Al we have Al = {1} and El is given by Table 3.8.2. Note
that the set of terminal states does not play a significant role in the stan-
dardization process.

It turns out in practice that we only need to decide the precedence of two
automata when both are standard. Let A = (E, X, E, A, 1) be a nonempty
automaton which is standard with respect to . Suppose JEJ = n and
x1,. .. , xT are the elements of X in increasing -<-order. The transition ma-
trix of A is the n-by-r matrix T = T (A) such that T [o,, j] = r if (a, xj, r)
is in E and T [Q, j] = 0 if asi is undefined in A. Thus T is essentially the
transition table with blanks filled in with zeros. We can put an ordering
on the set of integer matrices by comparing two matrices lexicographically
according to the sequences of their entries in row-major order.

Proposition 8.7. Suppose that -< is a length-plus-lexicographic ordering
of X* and that Al and A2 are finite, nonempty, accessible, deterministic
automata which are standard with respect to -<. Then Al precedes A2 if
and only if the transition matrix for Al comes lexicographically before the
transition matrix for A2.

Proof. Set fi = f and let Ti be the transition matrix for Ai. Suppose
that Al precedes A2. Let W be the first word at which f1 and f2 differ.
Then W # e, since 1 is the initial state in both Al and A2. Let W = Uxj.
Since 1W is defined in A2, it follows that a = lu is defined in A2. Since
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Table 3.8.3

x

1

y

4

6

3

U -< W, we know that f1 and f2 agree at U. Thus a = lu in A1. Let
-r = f2(W) = ax, in A2. Then either fl(W) is not defined or fl(W) is
defined and f1(W) < T. In the first case T1 [v, j] = 0, and in the second case
0 < Ti [o, j] < T. In either case, T1 [v, j] < T2 [Q, j ] .

It remains to show that if the entries of T1 and T2 are compared in
row-major order, then the first difference occurs at the (Q, j)-entries. If
1 < k < j, then Uxk -< W, so fl(Uxk) and f2(Uxk) agree. This means that
the entries T1 [v, k] and T2 [v, k] are equal. Now suppose that 1 < p < a.
Let V be the first word such that 1V = p in A1. Then V -< U, so f1 and
f2 agree at V. Therefore 1V = p in A2. Let 1 < k < r. Because -< is a
length-plus-lexicographic ordering, Vxk -< Ux3 - = W. Hence f1 and f2 agree
at Vxk. This means that the entries T1 [p, k] and T2 [p, k] are equal. Thus
Ti comes lexicographically before T2.

Now suppose that T1 is lexicographically earlier than T2 and let the Ti
differ first in their (Q, j)-entries. Let U be the first word such that lu = a
in A1. It is not hard to show that in computing lu we need only look
at entries in T1 which come before the (Q, j)-th entry in row-major order.
This means that lu = a in A2 as well. Since T1 [a, j] T2 [a, j], it follows
that fl and f2 do not agree at Uxj. Let W be any word with W - Uxj.
Then to decide whether fl(W) is defined, we need only look at entries of
T1 which come before the (v, j)-th. Thus fl and f2 agree at W. Therefore
Al precedes A2.

In Section 5.6 we shall find it useful to consider automata which are
standard with respect to a basic wreath product ordering -<. Using wreath
product orderings makes it more difficult to recognize standard automata.

Example 8.3. Let X = {x, y} and let -< be the basic wreath product ordering
of X* in which x -< y. Suppose A = (E, X, E, {1} , {1}), where E = {1, ... , 6}
and E is given by Table 3.8.3. The earliest words with respect to -< are the
powers of x. The only states of the form 1W with W a power of x are 1,
2, and 3. It is easy to see that W1 = e, W2 = x, and W3 = x2. Now we
have to consider words which contain at least one y. The first such word
is y, and y gets us to a new state, since ly = 4. This means that W4 = y.
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Next we look at words which consist of y followed by a power of x. We see
that W5 = yx. We cannot reach 6 using a word yxi, but we can reach 6
with x2y. It is easy to see that W6 = x2y. Since W1 - W2 -< W6, the
automaton is standard with respect to -<.

Here is a procedure which standardizes an automaton A with respect to
a basic wreath product ordering:

Procedure WREATH_STND(A, -<; At);
Input: A : a nonempty, finite, accessible, deterministic

automaton (E, X, E, A, S2);
a linear ordering on X;

Output: Al : the automaton which is isomorphic to A and is
standard with respect to the basic wreath product
ordering of X* determined by -<;

Begin
Let A = {a}; n:= IEI, m := 1; Ut := a; A := {al};
For x in X do jx:= 1;

99: For x in X do (* Elements of X are taken in -<-order. *)
While jx < m do

If (viy)x is not defined then ix := ix + 1

Else begin
,r:= (aix)x; ix ix + 1;
If T is not in A then begin

m := m + 1; o,,n := T; A := A U {T}; goto 99
End

End;

E1 := {1, ... , n}; Al := {1}; S21 := {i I v2 E Sl};
E1 := {(i, x,j) I (Q2, x, o ) E E}; At := (E1, X, E1, A1, Q1)

End.

It is left as an exercise to verify the correctness of WREATH_STND.
In Sections 4.9 and 5.6 we shall devise backtrack searches for various

special classes of standard, accessible, deterministic automata. Although
there is unlikely to be a strong need to produce all accessible, deterministic
automata with a given alphabet X which are standard with respect to a
fixed ordering -< of X* and have a certain number n of states, the following
discussion illustrates the ideas behind these searches. It turns out to be
most natural to list all standard, accessible, deterministic automata having
at most n states, where n is some specified positive integer.

Let X be a finite set and let -< be a reduction ordering on X*. Define
S(X, -<, n) to be the set of nonempty, accessible, deterministic automata A
with alphabet X and at most n states such that A is standard with respect
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to -<. An element A = (E, X, E, 111, 52) of S(X, -<, n) is determined by E
and S2, since E consists of 1 and the set of endpoints of all edges in E. Given
E, the set SZ can be any subset of E. We shall concentrate on describing a
backtrack search for the edge sets E which can occur, or, equivalently, for
the transition matrices corresponding to these edge sets.

Let x1,... , x,r be the elements of X in -order. The nodes of the search
tree consist of "incomplete transition matrices", m-by-r matrices with m <
n whose entries either are in {0, 1, ... , m} or are `?', indicating that the
entry is not yet determined. Suppose that X = {x, y} and that -< is the
length-plus-lexicographic ordering with x -< y. The matrix

describes those automata with three states which are standard with respect
to -< and in which 1x is definitely not defined, ly = 2, 2x = 3, 3X = 1, and
2y and 3Y are unspecified. For any word W in X * we can ask whether
1W is defined, undefined, or unspecified. In this example, 1'2 and 1y" are
undefined, lyX2y = 2, and lye is unspecified.

The root of the search tree is the 1-by-r matrix all of whose entries are 'T.
Let T be an m-by-r incomplete transition matrix which corresponds to a
node in the search tree. If there are no words W such that 1W is unspecified,
then T is the transition matrix for an element in S(X, -<, n). Otherwise, let
W be the first word with respect to -< such that 1W is unspecified. Then
W 0 e and W has the form Ux,, where v = lu is defined. Let s be the
minimum of n and m + 1. For k = 0, ... , s we get a descendant of T in the
search tree as follows: Set T [v, j] = k. If k = m + 1, then also add a k-th
row to T consisting of all question marks.

Let us continue the example above and take n > 3. The root is [? ?]. The
descendants of the root are

[0 ?], [1 ?],
2

?
f]

With each of these matrices, W = y. The descendants of [0 ?] are

[0 0], [0 1],

The descendants of [1 ?] are

[1 0], [1 1],
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Table 3.8.4

X

4

5

3

Y

3

2

5

1

The descendants of [ 2 ? ] are

2 0J, [2 1], L2 2J

Let us now change the reduction ordering on X and take -< to be the basic
wreath product ordering with x -< y. The root and its descendants are the
same as before. For the first two of these descendants, W = y, and the
nodes at depth 2 are the same. However, with [ 2 ?1 we have W = x2, and

the descendants are

2 2

10 ?

? 1

1 1
? J

'
[2

?]
P?

If the tree is traversed in what is known as a depth-first search, then
the transition matrices are produced in order of precedence. In the current
context, to traverse the tree in a depth-first search means to consider all de-
scendants of a given node before considering another node at the same level
and to consider the immediate descendants of a given node in increasing
order of the number k described earlier. The number of transition matri-
ces corresponding to elements of S(X, -<, n) does not depend on -<. For
example, if IXI = 2, then there are 49 transition matrices corresponding
to elements of S(X, -<, 2). If one simply wants to count these transition
matrices, one does not have to list them. See Exercises 8.6 and 8.7.

Exercises

8.1. Let X = {x, y} and assume a -< y. Standardize the automaton A= ({1, 2, 3, 4, 5} , {x, y},
E, 121,141) with respect to the length-plus-lexicographic ordering and the basic wreath
product ordering determined by -<. Here E is given by Table 3.8.4.

8.2. Prove that precedence of automata is a transitive relation.
8.3. Using backtrack, devise a depth-first search for standard, accessible, deterministic au-

tomata along the lines suggested in the text.
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8.4. Modify the backtrack search in Exercise 8.3 so that only complete automata are produced.
8.5. Devise an algorithm for standardization with respect to an arbitrary reduction ordering

-<. (Hint: Assume in the notation of the proof of Proposition 8.1 that ol, ... , of have
been found for some i with 1 < i < n. Show that Wi+1 is the first word with respect to
-< of the form (Woj )x, where 1 < j < i, and (oj )x is defined and is not in {ol, ... , Ord.)

8.6. Let X = {1,...,r} and E _ {1,...,n}. Fix a reduction ordering on X*. Suppose S is
an n-by-r matrix with entries in E U {0}. Set B = (E, X, E, {1} , 0), where E is the set
of triples (i, x, j) in E x X x E such that j = S[i, x]. Let A be the standard automaton
isomorphic to the accessible part of B. Prove that if A has m states, then the number of
choices for S which yield A is

(n - 1)(n - 2)...(n - m + 1)(n + 1)r(n-m)

8.7. In the notation of Exercise 8.6, let g(m, r) be the number of m-by-r matrices occurring
as transition matrices for elements of S(X, , m). Show that

n

(n+1)*n=Fg(m,r)(n-1)...(n-m+1)(n+1)r(n-m).
M=1

Use this formula to compute g(m, 2) for m = 1, 2, 3.
8.8. Suppose we wish to count transition matrices for complete automata in S(X, -<, m).

Derive results analogous to Exercises 8.6 and 8.7.

3.9 Additional constructions
We have already seen a number of constructions related to automata. Sec-
tion 3.3 discussed the completion. In Section 3.4 we learned about the
subset construction. In Section 3.6 we saw the construction of the trim
part and the accessible subset construction. Section 3.8 added a standard-
ization procedure. In this section we shall discuss several more automaton
constructions.

Let X be a finite set. By Proposition 1.2, the set of rational languages
over X is closed under the operations of union, intersection, complement,
product, and submonoid generation. Suppose Al = (El, X, El, A1,121) and
A2 = (E21 X, E2, A2, 122) are finite automata over X recognizing languages
G1 and G2, respectively. We shall give constructions for finite automata rec-
ognizing each of the languages 'Cl U G2, L, n C21 X* - G1, £1G2, and (G1)*.
Some of the constructions require the Ai to be deterministic or even com-
plete, and some require E1 and E2 to be disjoint. By applying the accessible
subset construction and forming the completion and perhaps taking an iso-
morphic copy, these conditions can always be satisfied. In the examples
of the constructions given later in this section, we shall frequently use the
automata Al of Figure 3.9.1 and A2 of Figure 3.9.2.

If E1 n E2 = 0, then the automaton

A3 = (El UE2,X,E1 UE2,Al UA2,I1 0112)
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Figure 3.9.1

Figure 3.9.2

recognizes 'Cl U L2. Of course A3 will in general not be deterministic, even
if both Al and A2 are deterministic. A diagram for A3 is obtained simply
by placing diagrams for Al and A2 next to each other and considering the
result as a single diagram. If we form A3 using our two examples, apply
the accessible subset construction, and then take the trim part, we get a
deterministic automaton with 11 states recognizing Ll U L2.

To get an automaton recognizing Ll n L2, we form E4 = E1 X E2, A4 =
Al x A2, and S24 = Q1 X 522. Let E4 be the set of triples ((o1,o2),x, (T1, T2)),
where (Ui, x, Ti) is in Ei, i = 1, 2. Put A4 = (E4, X, E4, A4, 524). If P is a
path in A4, then looking only at the first components of the states involved,
we get a path P1 in A1. Similarly, looking at the second components of the
states, we get a path P2 in A2. The signatures of P, P1, and P2 are the
same word U. The path P goes from A4 to 524 if and only if Pi goes from Ai
to 5li, i = 1, 2. Thus A4 recognizes L(A1) nL(A2). In practice, we construct
only the accessible part of A4 in a manner similar to the accessible subset
construction. If Al and A2 are deterministic, then so is A4.
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Table 3.9.1 Table 3.9.2

a b a b a b

1 2 3 7 7 10 1 2 3

2 4 5 8 4 10 2 4 5

3 2 6 9 11 9 3 2 6

4 7 5 10 12 9 4 5

5 8 6 11 7 10 5 8 6

6 2 9 12 7 10 6 2

8 4

Let us find an automaton recognizing Gl fl G2 in the case of our two
examples Al and A2. The single initial state of A4 is X31 = (1,6). Now
1' = 2 in Al and 6' = 7 in A2. Therefore A4 has an edge (/31, a, /32), where
,Q2 = (2, 7). In A2 the value of 6b is undefined, so (131)b is undefined in A4.
Continuing in this manner, we find that the accessible part of A4 has four
states: 131, ,(32, 33 = (3, 8), and ,34 = (4, 6). Of these, Q1 is initial and /33
is terminal. The edges are given by the following table, where i has been
written for ,132:

a b

2

3

4

Only states 1, 2, and 3 are trim. It is not hard to see that L(A4) consists
of the single word a2.

To obtain an automaton recognizing X* - L1, we first replace A1, if
necessary, by a complete automaton recognizing the same language. Then
A5 = (E1, X, E1, A1, E1 - l1) recognizes X* - L1. For given a word U in
X*, there is a unique path P in Al such that P starts in Al and U = Sg(P).
Let o, be the endpoint of P. Then U is in L1 if and only if o, is in 521, and
Uis in X*-L1 if and only if a is in E1-Q1

Example 9.1. In Example 6.2 we found that the ideal I in {a, b}* gen-
erated by a3, b3, and (ab)2 is recognized by the complete automaton A =
(E,X,E,A,52),where E={1,2,...,12},A={1},52={7,9,10,11,12},and
E is given by Table 3.9.1. If we replace 52 by E - 52, we get an automaton
B recognizing X* - Z. Applying TRIM to B, we find that the trim part
of B has 11, 2, 3, 4, 5, 6, 8} as the set of states and { 1} as the set of initial
states. All states are terminal, and the edges are given by Table 3.9.2. This
automaton has a circuit starting at 2 with signature b2a. By Proposi-
tion 6.4, X* - Z is infinite.
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Because the set of canonical forms for a congruence is the complement
of an ideal, the construction of an automaton for such a language is of
considerable importance. If we have a finite, minimal generating set U for
an ideal I of X *, then we can construct an automaton recognizing X * - I
directly. Since U is minimal, no element of U contains another element of
U as a subword. Let E be the set of words which are proper prefixes of
elements of U. If U = 0, then Z = 0 and X* - T = X *. If if = {e}, then
I = X * and X* - I = 0. Let us assume that we are not in one of these
cases, so E # 0, and in particular e is in E. Put A = {e} and S2 = E. The
set E of edges consists of the triples (U, x, V), where U is in E, x is in X,
Ux does not have an element of U as a suffix, and V is the longest suffix of
Ux which is in E.

Proposition 9.1. The automaton A = (E, X, E, A, 1) recognizes X * - Z.

Proof. The proof is similar to that of Proposition 5.4 and is omitted.

Example 9.2. Let us apply Proposition 9.1 to the case X = {a, b} and U =
{a3, b3, (ab)2}. The elements of E are e, a, b, a2, ab, b2, and aba. The longest
suffix of alb which is in E is ab. Thus (a2, b, ab) is an edge of A. Since a3 is
in U, there is no edge (a2, a, U). If we number the elements of E as 1, 2, 3,
4, 5, 6, and 8, then A is exactly the automaton at the end of Example 9.1.

Now let us return to our discussion of operations on automata corre-
sponding to the operations on rational languages of union, intersection,
complement, product, and submonoid generation. Given finite automata
Al and A2, our next task is to construct an automaton recognizing
L(A1)L(A2). For this construction we need to assume that Al and A2
have no states in common. Let

E6=E1UE2U{(w,e,a) IwES21,aEA2}

and set A6 = (E1 U E2, X, E6, A1, 12).

Proposition 9.2. A6 recognizes L(A1)L(A2).

Proof. Suppose that U2 is in Ai, i = 1, 2. For i = 1, 2, there is a path Pi
in Ai from ai in Ai to wi in R such that Ui = Sg(Pi). All of the edges of
P1 and P2 are in E6, as is (w1, e, a2). Let P be the path in A6 consisting
of the edges of P1, the edge (w1, e, a2), and the edges of P2. The signature
of P is U1U2, so U1U2 is in L(A6). Therefore L(A1)L(A2) C L(A6). The
proof of the reverse inclusion is left as an exercise.
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Figure 3.9.3

145

If we take Al and A2 to be our standard examples, then A6 is given by
Figure 3.9.3. This automaton is clearly not deterministic.

Finally, let us construct an automaton recognizing (G1)*. Let oo be an
object not in El. Set E7 = El U {oo},

E7=E1U{(oo,E,a) IaEAI}U{(w,6,oo) I wE521},

and A7 = (E7, X, E7, fool , fool).

Proposition 9.3. The automaton A7 recognizes (G1)*.

Proof. Let U1,... , U,,,, be in G1 = L(A1). For 1 < i < m there are states
ai in Al and wi in S21 and a path Pi in Al from ai to wi such that Ui =
Sg(Pi). Let Qi consist of (oo, E, ai), Pi, and (wi, E, oo), and let P be the
concatenation of Q1,... , Q,,,. Then P is a path in A7, and Sg(p) = U1 ... U,,,.
Thus (r1)* C L(A7).

Conversely, let U be a word in L(A7) and let P be a path in A7 from 00
to oo such that U = Sg(P). We proceed by induction on the length of P to
show that U is in (G1)*. If P is empty, then U = E is in (G1)*. Thus we may
assume that P is not empty. The first edge el of P has the form (oo, E, a),
where a is in Al. The next edge e2 in P which involves oo must be of the
form (w, E, oo), where w is in 521. Let Q be the sequence of edges between
e1 and e2. Then Q is a path in Al from a to w, and the signature V of Q
is in L. Let R consist of the edges of P after e2. Then R goes from 00 to
00. By induction, the signature W of R is in (G1)*. Therefore U = VW is
in (G1)*.
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Figure 3.9.4

Figure 3.9.5

Example 9.3. Let X = {a, b} and let Al be the automaton in Fig-
ure 3.9.4. Then A7 is given by Figure 3.9.5.

Proposition 9.4. Let Al and A2 be finite automata with the same alphabet
X. It is possible to decide whether L(A1) C L(A2) and whether L(A1) _
L(A2).

Proof. Let Cj = L(Ai), i =1, 2. Now Cj 9'C2 if and only if Gl fl(X*-G2) =
0. We can construct a finite automaton 13 recognizing L, fl (X* - G2), and
by Proposition 6.2 we can decide whether L(8) = 0. Since 'Cl = C2 if and
only if L, C -'C2 and G2 C Li, we can decide whether L, and ,C2 are equal.

Exercises

9.1. Find a trim automaton recognizing L(A1) fl L(A2), where Al and A2 are the automata
defined at the beginning of this section.

9.2. Construct automata recognizing the set of canonical forms for the confluent rewriting
systems in Examples 5.1, 5.3, and 5.5 in Chapter 2.

9.3. Let A be a finite automaton and let C = L(A). Give constructions for finite automata
which recognize the following languages:

(a) The set of prefixes of elements of G.
(b) The set Lt.
(c) The set of suffixes of elements of L.
(d) The set of subwords of elements of L.
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9.4. Let A be a finite automaton with alphabet X and let W be a word in X*. Show how to
compute the longest prefix of W, if any, which is in L(A).

9.5. Let U be a finite set of words in X * such that no element of U is a prefix of another element
of U. Modify the construction of Proposition 9.1 to obtain an automaton recognizing the
complement of the right ideal generated by U.

3.10 More rewriting applications
In Section 3.5 we saw how to use automata as indexes to rewriting systems.
These indexes speed up the processes of rewriting and of locating overlaps
in the Knuth-Bendix procedure. This section describes some additional
applications of automata to problems related to rewriting systems.

First we complete a discussion begun at the end of Section 2.5. Let
(X, R) be a finite presentation for a monoid M. If 1Z is a confluent rewrit-
ing system with respect to some reduction ordering -< on X*, then it is
possible to decide whether M is finite. Let U be the complement of the
ideal of X * generated by the left sides of the rules in R. The elements
of U are canonical forms for the elements of M, so there is a one-to-one
correspondence between U and M. Using the methods of Section 3.9, we
can construct a finite automaton recognizing U. Then by Corollary 6.5 we
can decide whether U is finite or infinite.

Example 10.1. Let X = {a, b}. With respect to the length-plus-lexicographic
ordering on X* in which a -< b, the set R of rules

a3 -* e, b3 -* e, baba - a2b2, b2a2 -+ abab

is a rewriting system. This system is reduced and confluent. The proper
prefixes of the left sides are

e, a, b, a2, ba, b2, bab, b2a.

Numbering these from 1 to 8 in the order given and applying the con-
struction of Proposition 9.1, we obtain an automaton A = (E, X, E, {1} , E)
recognizing U, where E = {1, ... , 8} and E is given Table 3.10.1. To decide
whether U = L(A) is infinite, we use the approach of Exercise 6.3. Set
151 = A. The set of states in 131 which have edges coming into them is
E2 = {2,.. . , 8}. Let 132 be the restriction of 131 to E2. In 132, the set of
states with incoming edges is E3 = {3,. .. , 8}. Let 133 be the restriction
of 82 to E3. In 133 every state has an incoming edge. Since the labels on
the edges of 133 are nonempty, L(A) is infinite. The presentation (X, R) is
easily seen to define M = Mon (a, b I a3 = b3 = (ab)3 = 1), which is a group.

In Section 2.8 we considered a right congruence - on a free monoid X*
such that - is finitely generated modulo a (two-sided) congruence =', where
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Table 3.10.1

a b

2

4

5

4

8

6

7

is finitely generated as a congruence. Let R and S be finite subsets ofX.

x X* such that R generates = and - is generated by = and S. To
apply Knuth-Bendix techniques in this situation, we form Y = X U {#}
and T = {(#P, #Q) I (P, Q) E S} and define - to be the congruence on Y*
generated by R U T. Here # denotes some object not in X. We then apply
the Knuth-Bendix procedure to the presentation (Y, R U T).

It may happen that the Knuth-Bendix procedure does not terminate even
when - has only finitely many congruence classes. However, if the number
of classes is finite, it is possible to determine the number of classes and to
decide for any two words U and V whether U - V. To do so, we choose a
reduction ordering -< which is consistent with length. Then we periodically
interrupt the Knuth-Bendix procedure to apply an additional test.

At any point in the computation let V be the set of words in Y* irreducible
with respect to the current rewriting system and let W = V n (#X*). By a
simple extension of Proposition 8.6 in Chapter 2, if - has only finitely many
classes, then eventually W will be finite. When W is observed to be finite,
we can use an automaton recognizing W to compute an upper bound n for
the lengths of the words in W. Let r be the maximum length of a left side
in R and let t be the maximum length of a left side in T. Set m equal to the
larger of n + r and t. We now throw away all rules with left sides of length
greater than m. We continue the Knuth-Bendix procedure, forming only
overlaps of length at most in. Since -< is consistent with length, no rules
with left sides of length greater than m will result. Thus the process will
terminate. When it does, the rules obtained are sufficient to rewrite any
word #U in #X* into the canonical form with respect to -< of its --class.
Hence we may determine the canonical form of the --class containing U.

The following is a sketch of a proof of the assertion just made. Let V and
W be defined with respect to the final rewriting system. Since all elements
of W have length at most n, the rules of length at most n+1 are enough to
rewrite any word in #X* into an element of W. Let U be a word in Y* of
length at most in. Then U can be rewritten into a unique element U of V.
For each x in X, we can define a map fx from W into itself by Wfx = Wx,
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which is defined since m > n + 1. Let cp be the homomorphism of X * onto
the monoid generated by the maps ff under composition. For each W in
W and each V in X*, the image of W under V(V) is obtained by rewriting
WV from the left. Let (L, R) be one of the original generators of Then
during the execution of the Knuth-Bendix procedure there is always a word
S derivable from both L and R. Thus this condition is satisfied by the final
rewriting system. Let W be in W. One way to rewrite WL is to rewrite
WL into WS and then continue reducing. But WL has length at most m,
so Wcp(L) = WL = WS. By the same argument, WV(R) = WS. Therefore
V(L) = cp(R). That is, the maps ff satisfy the defining relations for M.

Now define a relation on X* by P Q if and only if #cp(P) = #c'(Q).
Clearly : is a right congruence. We have already seen that = is contained in

Suppose (P, Q) is in the original set S. There is a word T derivable from
both #P and #Q using the final rewriting system. Since m > I#PI ? I#QI,
we have #V(P) = #P = T = #Q = #cp(Q). Therefore P Q, so - is
contained in .:. For any words U and V in X*, if #V is derivable from #U
using the final rewriting system, then V - U. This means that - and Pz
are the same and that the set of words U in X* such that #U is in W is
the set of canonical forms for - with respect to -<.

Example 10.2. Let X= {x, y, y 1 } and let -< be the length-plus-lexicograph-
ic ordering with x -< y - y-1. Set Y = X U {#} and extend -< to Y* by
making it the length-plus-lexicographic ordering with # -< x. Let 1Z consist
of the following rules:

x2 -* e, yy-1 -' e, y-ly - e, y3 -' e, yxyxyxy -* xy-1xy-1xy-1x.

In the presence of the first three rules, the last rule is equivalent to (xy)7 -,F
but is more balanced in the sense of Section 2.7. The value of r is 7. The
monoid G presented by (X, R) is infinite, as is RC(X, -<, R). Let °_-' be
the congruence on X* generated by R and let - be the right congruence
generated by = and the set S made up of the following rules:

y - x, (yxy-1x)2 _ (xyxy-1)2

Given the second rule is equivalent to (xyxy-1)4
The set T contains the rules

#y _ #X, #(yxy-1x)2 -. #(xyxy-1)2,

so t = 9. The set W is infinite at this point. For example, all words
consisting of # followed by a power of y-1 are irreducible. The first step
in applying KBS_2 to (Y, R U T) is to make the set of rules reduced. The
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only change occurs in the second rule in T. We can rewrite the left side of
this rule as follows:

#yxy-lxyxy-lx -->
#XXY-1xyxy1x

-4 #y-1xyxy-1x.

Since the result is less than the original right side, we replace the rule by

#XYXY-1xyxy-1 -->
#y-lxyxy-1x.

If we now continue KBS_2, restricting overlaps to have length at most 9,
we obtain the following rewriting system:

x2 _* e,
y2 - y-1, yy-1 -* e, y-1y -' e, y-2 -* y,

yxyxyxy -4 xy-1xy-1xy 1x, y-1xy-1xy-1xy-1-4 xyxyxyx

xyxyxyxy-1-4 y-lxy-lxy-lxy, xy-lxy-lxy-lxy

-* yxyxyxy
1,

yxy-1Xy-1Xy-lx -4 y-lxyxyxy, ylxyxyxyx -4 yxy 1xy lxy 1,

#Y - #X, #XY - #y-1, #xy-1 - #,
#y lxyxyxy -'

#y-1XY-lxy1x,
#y lxyxy-lxy -

#y-1xy-lxyx,

#y-1xy 1xyxy #Y1XYXY-1xy1, #y-1xylxyxyl _' #y1xyxy-1x,
#y-1XY-1XY-1xy - #y-lxyxyxy-'.

The set W is still infinite.
Increasing the length of the overlaps allowed to 13 leads to a rewriting

system with 26 rules for which W is finite and contains words of length at
most 10. In this rewriting system, the rules with left sides of length at most
11 are the preceding 19 and the following three:

#y-lxyxyxylxyx - #y-1xyxyxy-1xy-1,
#y-lxyxyxy-1xy-1

- #y-lxyxyxy-lxy,
#y-1xyxy-1xy 1xyx _'

#Y 1 XYXY
1xy-1xy-1

Continuing the Knuth-Bendix procedure until all overlaps of length 17 have
been processed does not produce any rules with left sides of length less than
12 and hence does not change W. At this point we are able to compute
canonical forms for -. Further calculation shows that JW I = 24.

For simple problems such as the one discussed in Example 10.2 it is easier
to determine - using a version of the procedure coset enumeration, which
is presented in Chapters 4 and 5. However, Section 5.8 provides evidence
that in situations where space is limited the Knuth-Bendix approach may
sometimes be superior to coset enumeration.
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Subgroups of free products of
cyclic groups

In this chapter we shall discuss techniques for describing and manipulating
finitely generated subgroups of a group F which is the free product of a
finite numbei of cyclic groups. An important special case occurs when F
is a free group, that is, when all of the cyclic free factors of F are infinite.
Many questions about finitely generated subgroups of F can be answered
with standard methods of automata theory. However, there is another ap-
proach called coset enumeration, which is normally more efficient. Coset
enumeration is the next in our collection of major group-theoretic pro-
cedures. Only an introduction to coset enumeration is presented in this
chapter. It is considered in more detail in Chapter 5.

One of the reasons that we can give a nice treatment of finitely generated
subgroups of a free product of cyclic groups is that free products of cyclic
groups make up a class of groups which have confluent rewriting systems
of a particularly simple form. These rewriting systems are discussed in the
first section.

4.1 Niladic rewriting systems
Let (X, R) be a monoid presentation. We shall say that R is niladic if every
element of R has the form (L, e), where I L I > 2. The condition on the length
of L is purely technical. If (x, E) is in R for some x in X, then using a Tietze
transformation we can delete x from X and from each element of R and
obtain another presentation for the same monoid. If R is niladic, then R
is a rewriting system with respect to every reduction ordering of X*.

Example 1.1. Let X = {x, y, y-1} and let R consist of the rules

x2 -* E, yy-1 -4 E, y-1y -4 E.

Then R is a confluent, reduced, niladic rewriting system on X* and
Mon (X I R) is isomorphic to the free product of Z2 and Z.
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Example 1.2. Let X = {x1,. .. , xs}, let n be a positive integer, and let R
consist of the pairs (L, e), where L is a cyclic permutation of the word
(x1 ... xs)n. In Proposition 3.6 of Chapter 2 we saw that M = Mon (X I R)
is a group which is the free product of 7Gn and s - 1 copies of Z. Again R
is a confluent, reduced, niladic rewriting system. It turns out that every
confluent, reduced, niladic rewriting system which defines a group is built
up from systems of this type.

The class of groups described by confluent, niladic rewriting systems is
very restricted. These groups are determined in Proposition 1.2. Rewrit-
ing with respect to a confluent, niladic rewriting system has some special
properties. The following proposition describes one such property.

Proposition 1.1. Let R be a confluent, niladic rewriting system on X*
and let - be the congruence generated by R. Suppose that U, V, and W
are words such that W - UV and UV is irreducible with respect to R. Then
there are words A and B such that W = AB, A - U, and B - V.

Proof. Since R is confluent, there is a sequence of words W = WO, W1,
, Wr = UV such that W2+1 is derivable in one step from Wi using R. Set

A,. = U and Br = V. Next assume that for 0 < i < r we have Wi written
as AiBi, where Ai - U and Bi " V. Now Wi_1 has the form PLQ, where
L is a left side in R and PQ = Wi = AiBi.

Suppose that P is a prefix of Ai. Then A = PS for some word S and
Q = SBi. Let Ai_1 = PLS and Bi_1 = Bi. Then A2_1 - PS = Ai - U and
B2_1 - V. Similarly, if P = AiS and Bi = SQ, then we may take Ai_1 = Ai
and Bi_1 = SLQ. Continuing in this manner, we have W = WO = AOB0,
where AO - U and Bo - V.

Example 1.3. Suppose that X and R are as in Example 1.1. Let W =
x3y-1yx2y-1yy-lxy, U = xy-1, and V = xy. Then W - UV and UV
is irreducible with respect to R. There are two pairs (A, B) such that
W = AB, A - U, and B - V. These pairs are (x3y-1 yx2y-1yy-lxy) and
(x3y-lyx2y-lyy_1 xy).

Example 1.4. Some condition on R is necessary in Proposition 1.1. Let
X = {a, b} and R = {(ba, ab)}. Then R is confluent. Let W = ba, U = a,
and V = b. Then W - UV and UV is irreducible, but we cannot write W
as AB, where A - U and B - V.

The following result was first proved in (Cochet 1976).

Proposition 1.2. Let X be a finite set and suppose that R is a confluent,
reduced, niladic rewriting system on X* such that F = Mon (X I R) is a
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group. Then there are nonempty words W1, ..., Wr and positive integers
nl, ... , nr such that the following conditions hold:

(a) Each element x of X occurs in one of the W.
(b) IWil + IW2I + ... + IWrl = IXI.
(c) R consists of all pairs (L, e), where L is a cyclic permutation of one

of the words W.

The group F is a free product of cyclic groups.

Proof. Let - be the congruence generated by R, and for U in X* let [U]
be the --class containing U. By assumption, the quotient F of X * modulo
- is a group. If X = 0, then R = 0 and we may take r = 0. Thus we may
assume that X # 0. For each x in X let UU be the word in [x]-1 which
is irreducible with respect to R. Now e is derivable from xUT using R, so
some left side in R must start with x. Suppose that (xV, e) is in R. Since
R is reduced, V is irreducible with respect to R and [x] [V] = [xV] = [e] = 1.
Therefore V = UJ. Thus R = {(xUU, e) I x E X j, so R is finite and J R1 = IXI
By essentially the same argument, R = {(UUx,e) I x E X}. Hence the set
of left sides in R is closed under cyclic permutation.

Let (W, e) be in R and assume that some generator occurs more than
once in W. Among the generators in W, let x occur the maximum number
of times. By taking a cyclic permutation of W if necessary, we may assume
that W starts with x. Let W = xA1xA2x ... xA,,, where x does not occur
in any of the A2. The cyclic permutation V = xA2xA3x ... xArnxA1 is also
a left side in R. Since a left side is determined by its first term, we must
have V = W. This means that Al = A2 = . . . = A,,, = A, say, and that
W = (xA)n. By the choice of x, no generator occurs more than once in A.
If (U, e) is in R and U = Vrn, where no generator occurs more than once in
V, then either V and xA have no generator in common or they are cyclic
permutations of each other and m = n. Let W1, ..., W. be representatives
of the classes under cyclic permutation of words U such that no generator
occurs more than once in U and (Un, e) is in R for some positive integer
m. Then 1W11 + + I Wr I =IXI and Wim is a left side in R for a unique
integer m = n2. Thus R is the set of pairs (L, e) such that L is a cyclic
permutation of one of the words W.

By Propositions 3.6 and 3.3 in Chapter 2, a presentation of this form is
confluent and defines a free product of cyclic groups.

In most cases, the niladic rewriting systems to which coset enumeration
has been applied satisfy the condition that all left sides have length ex-
actly 2. Let us define a classical niladic rewriting system to be one which
satisfies the conditions of Proposition 1.2 and in which all left sides have
length 2. Thus ni I W I = 2 for 1 < i < r. For most of this chapter we shall
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consider only classical niladic rewriting systems. Many of the results carry
over to the general case, which is discussed in Section 4.11.

Let X be a finite set and let R be a classical niladic rewriting system
on X*. If x is in X, then there is a unique left side xy in R which starts
with x. If y = x, then the image of x in F = Mon (X I R) generates a cyclic
group of order 2. If y # x, then the images of x and y in F generate an
infinite cyclic group. Thus F is the free product of infinite cyclic groups
and cyclic groups of order 2. We shall denote y by x-1, since y represents
the inverse of x in F.

Let - be the congruence on X* generated by R. The set C of words
which are irreducible with respect to R is the set of canonical forms for -
with respect to any reduction ordering of X*. Since C is the complement of
the ideal generated by the left sides in R, the set C is a rational language.

Example 1.5. Let X and R be as in Example 1.1. The construction which
is the subject of Proposition 9.1 in Chapter 2 produces an automaton
(E, X, E, A, 1) recognizing C, where E = S2 = {1, 2,3, 4}, A = {1}, and E is
given by the following transition table:

x

2

Y

4

4

2

Y-1

3

3

3

2 4

For any word U, let [U] denote the --class containing U and let U be the
unique element of [U] fl C. If U = x1 ... xs, then U-1 will denote xs 1... xs 1,
which is in [U]-1. It is easy to see that U is in C if and only if U-1 is in C.
Let g : X * --* X * be the homomorphism which maps x in X to x-1. Then
U-1 can be described as g(Ut).

Proposition 1.3. If W is a rational language over X, then W-1 = {W-1 I
W E W} is rational.

Proof. This follows immediately from Exercise 3.3 and Exercise 1.5 or 2.8
in Chapter 3.

Corollary 1.4. If W is a rational language over X and H = Grp([W] I W E
W), then there is a rational language V such that H = Mon ([V] I V E V).

Proof. We may take V = W U W-1.

Proposition 1.5. Suppose that U and V are words and U is in C. Let
W = UV. Then U and W have a common prefix of length at least IUI - IVI.
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Proof. Since U is irreducible, when a left side L in R is deleted in the
rewriting of UV to obtain W, at least one generator from V must occur in
L. Thus removing L deletes at least one generator from V and at most one
generator from U. Therefore at most IVI deletions are made and at least
I UI - I V ( generators in U remain.

Proposition 1.6. Suppose that JXJ > 2 and U is in C. There exists x in
X such that Ux is in C.

Proof. If U = s, then x may be any element of X. If U ends in y, then x
may be any element of X - {y-1}.

Corollary 1.7. If JX > 2 and U is in C, then there exist arbitrarily long
words V such that UV is in C.

Corollary 1.8. The group F is infinite if and only if JXJ > 2.

Proof. If l X i > 2, then F is infinite by Corollary 1.7. If JX l = 1 and
X = {x}, then R = {(x2,e)}. Thus F is cyclic of order 2. If IXl = 0, then
JFJ = 1.

Later in this chapter we shall need some fairly detailed information about
the multiplication in F. The following propositions are quite easy and are
left as exercises.

Proposition 1.9. Suppose that A and B are elements of C. If A and B do
not end in the same generator, then AB-1 is in C. If A and B do not start
with the same generator, then B-1A is in C.

Proposition 1.10. Let A, B, and C be elements of C such that B # s and
both AB and BC are in C. Then ABC is in C.

Proposition 1.11. Suppose that B, C, and W are words in C such that
W# E, B and W do not start with the same generator, and W and C do
not end with the same generator. Then B-1WC-1 is in C.

We turn now to a study of the effect on rational languages over X of
rewriting with respect to R. Suppose that L is a rational language over X.
Is it necessarily true that ,C = {U I U E G} is a rational language? We shall
show that the answer is yes. However, if we drop the assumption that R is
niladic, the answer may be no.

Example 1.6. Let X = {a, b} and let R = { (ba, ab) }, as in Example 1.4. The
set L = {(ab)i I i > 0} is rational. It is recognized by the automaton in
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Figure 4.1.1

Figure 4.1.1. However, if - denotes rewriting with respect to R, then G =
{aibi I i > 0}, and we saw in Example 1.5 of Chapter 3 that this set is not
rational.

For any language L over X, let G' be the set of all words derivable from
words in L using R.

Proposition 1.12. If L is a rational language over X, then L' is rational.

Proof. Let A = (E, X, E, A, Il) be a finite automaton recognizing L. Let
us say that A is compatible with R if whenever there is a path P from a
to T in A such that Sg(P) is a left side in R, then either a = T or (a, e, T)
is in E. Let us define a sequence of automata A = A0, Al, ..., Am, where
Ai = (E, X, Ei, A, St). If A, is compatible with R, then stop with m = i.
Otherwise, there is a path P in A from or to T such that Sg(P) is a left
side in R, but a T and (a, e, r) is not in Ei. Set Ei+i = Ei U {(a, e,T)}.
Since E is finite, there is only a finite number of edges of the form (a, e, T),
so this process must terminate with an automaton Am which is compatible
with R. Let Ci = L(Ai), 0 < i < m. Clearly Li C Ci+i

Lemma 1.13. Suppose that 0 < i < m. If W is in Li+l, then W is derivable
from a word in Li using R.

Proof. Let Ei+i = Ei U { (a, e, T) } and let P be a path in Ai from a to T
such that L = Sg(P) is a left side in R. Let Q be a path in Ai+i from A
to Sl such that W = Sg(Q). If Q is a path in Ai, then W is in Li. Suppose
that Q is not a path in Ai. Then Q involves the edge (a, e, T) at least once.
Let R be the path obtained from Q by replacing each occurrence of (a, e, T)
with P. Then R is a path in Ai from A to S2, and W is derivable from
Sg(R) using the rule (L, E).

Lemma 1.14. L' = Lm.

Proof. By Lemma 1.13, we have L C_ Lm C L'. Therefore it suffices to
show that (Lm)' = Cm. Suppose that ULV is in Lm and (L, e) is in R. We
want to show that UV is in Lm. Let P be a path in Am from A to ci such
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Figure 4.1.2
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Figure 4.1.3
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that ULV = Sg(P). Then P has a subpath Q with signature L. Let Q go
from o, to T. Since Am is compatible with R, either a = T or (a, e, T) is in
Em. If a = T, let R be the path obtained from P by deleting Q. If a Or,
then let R be the result of replacing Q by (a, e, T) in P. In either case, R
is a path in Am from A to S2 such that Sg(R) = UV. Therefore UV is in
Lm.

By Lemma 1.14, G' = Gm = L(Am) is rational.

Corollary 1.15. If G is a rational language over X, then L is rational.

Proof. By definition, G = V fl C. Since both G' and C are rational, so is
G.

We shall refer to the construction of Am from A in Proposition 1.12 as
the derivation construction. This construction can be modified to handle
the case in which right sides in R have length 0 or 1. See Exercise 1.4.

Example 1.7. Let X and R be as in Examples 1.1, 1.3, and 1.5, and let A
be the automaton in Figure 4.1.2. We shall construct automata recognizing
L' and G, where L = L(A). Let us initialize a new automaton A' to A.
In A' we have the paths shown in Figure 4.1.3. Thus we add (1, e, 4) and
(4,,-,3) to the edges of M. Now we have the paths shown in Figure 4.1.4.
Therefore we add the edges (2, e, 4) and (4, e, 5). This creates the paths
shown in Figure 4.1.5, so (2,e,3) and (2,e,5) are added to A'. At this
point A' is compatible with R and C = L(A').
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To compute an automaton recognizing c = .C' f1C, we need a deterministic
automaton Al recognizing C. Applying the accessible subset construction
to A' and taking the trim part of the result gives us such an Al with 6 states
and 13 edges. An automaton recognizing C is given in Example 1.5. The
accessible intersection procedure produces A2 = (E2, X, E2, A2,122) recog-
nizing G, where E2 = {1,2,3,4,5,6,7}, A2 = M, }, 122 = {1,2,3,4,6,7}, and
E2 is given by Table 4.1.1.
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Exercises

1.1. Let R be a classical niladic rewriting system on X*. A word U in X* is cyclically reduced
if every cyclic permutation of U is in C. Show that the set of all cyclically reduced words
is a rational language over X.

1.2. Let X and R be as in Example 1.2. Show that conjugacy in F = Mon (X I R) can be
decided.

1.3. In Proposition 1.2, suppose X = {a, b, c}, r = 1. Wi = abc, and nl = 2. Compute an
automaton isomorphic to At (C).

1.4. Show that the derivation construction can be extended to work with confluent rewriting
systems in which right sides have length 0 or 1.

1.5. Let X = {x, y} and let R consist of the rules x2 -> e, y2 -* e. The group G = Mon (X R)
is called the infinite dihedral group. Show that the image of xy in G generates a normal
infinite cyclic subgroup of G of index 2. Prove also that any subgroup of G of order
larger than 2 has finite index in G.

4.2 Subgroups and their languages
In this section we continue the notation established in Section 4.1. We
are studying a group F = Mon (X I R), where X is a finite set and R is a
classical niladic rewriting system on X*. The congruence generated by R
is -, and the set of canonical forms for - is C. If U is a word in X*, then
[U] is the-class containing U and U is the element of C in [U]. We can
compute U using R.

Let us fix a subgroup H of F. We shall be studying the elements of H and
the right cosets of H in F. In doing so, we shall associate various languages
and automata with H. It is important to remember that multiplying a
right coset of H on the right by an element of F yields a right coset. Thus
if o is a right coset of H and U is in X*, then v[U] is a right coset of H.

Perhaps the most obvious language to associate with H is Gs = G3(H) _
{U E X* I [U] E H}. Unfortunately, GS need not be rational, even when H
is finitely generated.

Example 2.1. Let X = {a, a-1 } and let R consist of the rules

as 1->e, a-1a-e.

Set H equal to the trivial subgroup of F. Then GS = {U E X*IU = e}. More
generally, for any integer k, let Dk = { U E X * U = ak }. Thus Gs = Do. Then
the cone C(L 3, ak) is D_k, so C(G3) is infinite.

Of course L. can be rational. If H = F, then Gs = X*.
Let As = .43(H) = (E3, X, E3, {H}, {H}) be the Schreier automaton of

F relative to H and the map x H [x]. Thus E3 = E3(H) is the set of right
cosets of H in F, and E3 is the set of triples (v, x, r), where o and r are
in E, x is in X, and v[x] =,r. If cp and V) are in E3 and U is in X*, then
cpU = V) if and only if cp[U] = 0.
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Proposition 2.1. The automaton As is complete and trim. In addition,
Gs = L(A3) and AS is a minimal complete automaton recognizing L,

Proof. It is clear that AS is complete. If o, is in E, then o, has the
form H[U] for some word U and a = HU. Therefore o is accessible. Also
QU-' = H[U] [U-1] = H, so or is coaccessible. Hence As is trim. A word W
is in Gs if and only if H[W] = H. Therefore L, = L(A3). Also, the cone
C(C8, W) is the set of words V such that

H = H[WV] = H[W][V],

so C(G5,W) = {V E X* I [V]-1 E H[W]}. Thus C(r3,WI) = C(Gs,W2)
if and only if H[W1] = H[W2]. It is easy to check that the map taking
C(G5,W) to H[W] is an isomorphism from A(13) to A3.

Corollary 2.2. The language G3 is rational if and only if the index of H
in F is finite.

For o, in E, let C,(o) be {U E X* I [U] E v}, the set of words defining
elements of o,.

Corollary 2.3. If H has finite index in F, then Gs (o) is rational for all
right cosets o,.

Proof. The language G5(a) is recognized by (Es, X, Es, {H}, {Q}).

Proposition 2.4. If A = (E, X, E, A, S2) is a trim, deterministic automaton
such that L(A) C Gs, then there is an expanding morphism f from A to As.

Proof Let a be in E. Since A is trim, there is a path P in A from A to
a. Let U = Sg(P). We would like to map o, to H[U], but we need to know
that this is well defined. Suppose that Q is another path from A to v and
V = Sg(Q). Since o, is coaccessible, there is a path R from o, to Q. Let
W = Sg(R). Then UW and VW are both in L(A). Therefore,

H[U] = H[U][W][W]-1 = H[UW][W]-1 = H[W]-1.

Similarly, H[V] = H[W]-1, so H[U] = H[V]. Thus we may define f : E -*
E5(H) by f (a) = H[U]-

If o, is in A, then we may take U = e, and f (a) = H[s] = H. If o, is
in SI, then U is in L(A). Hence f (Q) = H[U] = H. Suppose that (Q, X, T)
is in E. Then Ux is the signature of a path in A from A to T. Thus
f (T) = H[Ux] = H[U] [x] = f (Q) [x] = &)x. Therefore f is an expanding
morphism.
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Corollary 2.5. Let K be a subgroup of H. There is an expanding morphism
from AS(K) to A,, (H).

Proof. Clearly GS (K) C_ GS(H). Since A.,(K) is trim and deterministic
and AS(K) recognizes GS(K), Proposition 2.4 applies. The morphism is the
obvious map from ES(K) to ES(H) which takes K[U] to H[U] for any U in
X*.

Another language associated with our subgroup H is L, = L ,(H) =
GS(H) fl C, the set of canonical forms for elements in H. If GS is rational,
then so is G, However, L, may be rational even when GS is not.

Proposition 2.6. If H is finitely generated, then £, is a rational language.

Proof. Since H is finitely generated as a group, by Corollary 1.4 H is
finitely generated as a monoid. Let U be a finite set of words such that
{ [U] I U E U } is a monoid generating set for H. Every element of H contains
an element of U*, so £. = U*. Since U is finite, U is rational. Therefore
U* is rational by Proposition 1.2 in Chapter 3. By Corollary 1.15, L, is
rational.

For a right coset v of H, put £.(o) = L,(o) nC, the set of canonical forms
for elements of v.

Corollary 2.7. If H is finitely generated, then GH(Q) is rational for all a
in ES.

Proof. Let U be a word such that [U] is in v. Then GH(Q) = L,(H)U,
which is rational by Proposition 1.2 in Chapter 3 and Corollary 1.15.

When H is given by a finite generating set, the proof of Proposition 2.6
provides us with a procedure for constructing an automaton recognizing
L,(H). To get started, we need an automaton recognizing U*. We can
use the construction in Section 3.9. However, sometimes there is an easier
way. See Exercises 2.1 and 2.2. Once we have our automaton, we apply the
derivation construction, the accessible subset construction, and the acces-
sible intersection construction. Finally we take the trim part. Details are
left as an exercise. This procedure will be referred to as CANON.

Example 2.2. Let X = {x, y}}, let R consist of the standard defining re-
lations for the free group generated by {x, y}, and let H be the subgroup
of F generated by [xyx] and [x-2 y]. To get a monoid generating set for
H, we add the inverses of the generators and take U = {xyx, x-1 Y- ix-1,
x-2y, y-1x2}. Applying CANON and standardizing the result with respect
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Table 4.2.1

x x-1
y

y-1

1 2 3 4

2 5

3 6 7

4 8

5 9 6

6 10

7 11

8 9

9 2 4

10 2 3

11 4

to the length-plus-lexicographic ordering with x x-1 -< y -< y-1, we get
A= (E,X,E,A,1t), where E _ {1,2,...,11}, A= {1}, St = {1,9,10,11},
and E is given by Table 4.2.1.

Proposition 2.8. Suppose that .C,(H) is rational. Given R and a finite
automaton A recognizing G,(H), we can decide membership in H and decide
equality of right cosets of H.

Proof. To see if [U] is in H, we compute U using R and check whether
U is in L(A). The right cosets H[U] and H[V] are equal if and only if

[U][V]-1 = [UV-1] is in H.

Exercises

2.1. Let U be a finite set of words which is a monoid generating set for a subgroup H of F.
Show that we may assume that the elements of U are nonempty and reduced and no
element of U is a proper prefix of another element of U.

2.2. Assume that U satisfies the conditions of Exercise 2.1. Let E be the set of proper prefixes
of the elements of U and let E be the set of triples (U, x, V), where U and V are in E
and either V = Ux or Ux is in U and V = e. Show that (E, X, E, {e}, {e}) recognizes U*.

2.3. Describe the procedure CANON in detail.
2.4. Let L be a language over the finite alphabet X and let A be an automaton with alphabet

X such that L(A) C L. Show that there need not be an expanding morphism from A to
A(L). Thus the morphism in Proposition 2.4 is an exception.

4.3 Important cosets
We continue the notation of the previous sections in this chapter. We are
investigating the elements and right cosets of a subgroup H of F. It turns
out that when H is finitely generated, there is a finite subset EI of Es such
that in most interesting computations involving right cosets of H, only
elements of EI occur.
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A right coset v of H will be called important if v = H[U], where U is
a prefix of an element of 4(H), the set of canonical forms for elements of
H. If UV is in 4(H) and v = H[U], then (U, V) will be called a defining
pair for or. The set of all important right cosets of H will be denoted
EI = EI(H). Since e is in 4(H), the pair (e, E) is a defining pair for H.
Thus H is in EI.

Proposition 3.1. Suppose that A = (E, X, E, A, Il) is a trim, determinis-
tic automaton such that 4(H) C_ L(A) C C4(H). Let f be the expanding
morphism from A to A,, (H). The image of E under f contains EI.

Proof. Suppose that v is in EI and (U, V) is a defining pair for v. Then
UV is in 4(H), so there is a path P in A from A to S2 such that UV =
Sg(P). There is an initial segment Q of P such that U = Sg(Q). Let Q end
at cp. Then f (cp) = or.

The important-coset automaton of H is the restriction AI = AI(H) of
A3(H) to EI. Thus AI = (EI, X, EI, {H}, {H}), where EI is the set of
triples (a, x, -T) such that a and r are in EI, x is in X, and or [x] = T. We
shall denote L(AI) by GI = GI(H).

Example 3.1. Suppose that H is the trivial subgroup of F. Then
4(H) = {E} and EI = {H}. For no x in X is H[x] = H, so AI =
({H}, X, 0, {H}, {H}).

Example 3.2. If H = F, then EI = Es = {H} and AI = A3.

Proposition 3.2. The automaton AI(H) is trim and 4(H) C GI(H) C
G4(H)

Proof. Since AI is the restriction of As to EI, it follows that GI = L(AI) C
L(A3) = Gs. Let U = x1... xs be in 4(H). By the definition of EI, the
cosets ai = H[xl ... xi], 0 < i < s, are in EI and the edges (vi_1, xi, vi) are
in EI. Therefore U is in L(AI). Hence 4(H) C_ GI(H). Each of the cosets
Qi is trim as a state in AI(H). Since every coset in EI arises as a vi for an
appropriate choice of U, it follows that AI(H) is trim.

Proposition 3.3. Suppose that u and T are important right cosets of H
and W is a word in C such that or[W] = T. For all prefixes U of W the
coset a[U] is important.

Proof. The proposition states that if P is a path in A3 from EI to EI and
Sg(P) is in C, then P is a path in AI. If W = e, then there is nothing to
prove. We proceed by induction on JWJ. Let W = UV. We wish to show
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that v[U] is important. We may assume that both U and V are nonempty.
Let U = xUl, where x is in X, and let (S,T) be a defining pair for v.
Suppose for the moment that T starts with x, so T has the form xTl. Then
(Sx,TI) is a defining pair for cp = o [x], and r = cp[U1V]. By induction on
JW I, the coset a[U] = cp[Ul] is important. Thus we may assume that T and
W do not start with the same element of X.

Let (C, D) be a defining pair for T. By an argument similar to the one
in the previous paragraph, we may assume that W and C do not end with
the same element of X. By Proposition 1.11, T-1WC-1 is in C. Now

H[T-'WC-1] = H[ST][T-1WC-1] = H[S] [WC-1] = o,[W] [C-1]

= T[C-1] = H[C] [C-1] = H.

Therefore T-1WC-1 = T-1UVC-1 is in L ,(H) and v[U] = H[T-1U] is
important.

Corollary 3.4. If a, T, and W are as in Proposition 3.3, then there is a
defining pair for v of the form (M, WN).

Proof. Let S, T, C, and D be as in the proof of Proposition 3.3. Then at
least one of the words SWD, SWC-1, T-1WD, or T-1WC-1 is in C. The
details are left as an exercise.

We turn now to a fundamental result due to Schreier.

Proposition 3.5. A subgroup of finite index in a finitely generated group
is finitely generated.

Proof. Let G be a group and let G be generated as a monoid by a subset
Z. Let H be a subgroup of G and let E denote the set of right cosets of
H in G. For or in E let uo be a representative for v. We shall assume that
uH = 1. If o is in E and z is in Z, set y(v, z) = uazu,! 1, where r = oz. Since
uoz is in r, the element y(o, z) is in H.

Lemma 3.6. The elements y(v, z) generate H as a monoid.

Proof. Let h be an element of H. Since Z generates G, we can write
h = zl ... zr, where the zi are in Z. Let vi = Hzl ... zi, 0 < i < r, and set
ui = u0. and yi = y(oi_l, zi) = ui_lziui 1. Then

h=lh=uozt...zr
_1

= uozlul ulz2...zr

= ylulz2...zr = Ylulz2u2

Y1Y2u2z3 ... Zr = ... = y1y2 ... yrur.
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But ar = Hh = H and hence u,,. = 1. Therefore h = y1 ... yr.

Set Y = {y(a, z) I a E E, z E Z}. If H has finite index in G and Z is
finite, then Y is finite and IYI IG : HIIZI.

The same inequality holds if we consider group generators. If Z generates
G as a group, then Z U Z-1 generates Gas a monoid. If z is in Z and or is in
E, then y(a, z-1) = u,z-luT 1 = (n zt 1)-1, where T = az-1. Since or = Tz,
it follows that y(a, z-1) = y(r, z)-1. Therefore Y = {y(a, z) I a E E, z E Z}
generates H as a group.

The elements of Y in the proof of Proposition 3.5 are called the Schreier
generators of H relative to Z and the choice of the elements uo. If H = G,
then the Schreier generators are just the elements of Z. We can reduce
slightly the bound on the number of elements needed to generate H.

Proposition 3.7. If H is a subgroup of finite index n in a group G which
is generated as a group by r elements, then H is generated as a group by
1 + n(r - 1) elements.

Proof. Let Z be a set of r elements which generate G as a group and
let X = Z U Z-1. Fix a reduction ordering on X*, and for each right
coset a of H in G let UU be the first word with respect to --< in X* which
defines an element of or. Set uo equal to the element of G defined by U.
Then H is generated as a group by the Schreier generators y(a, z). Suppose
a 0 H and UQ = x1... xs, where the xi are in X. Assume first that xs is
z-1 for some z in Z. If T = az, then UT must be x1... x._1 and so u, = u,z.
Therefore y(a, z) = 1. Now assume that xs = z is in Z. If T = oz-1, then
UT = x1 ... xs_1 and y(r, z) is trivial. Thus n - 1 of the elements y(a, z) are
trivial and hence H can be generated as a group by nr-(n-1) =1+n(r-1)
elements.

In the case of subgroups of our group F, we can improve on Proposi-
tion 3.5 somewhat.

Proposition 3.8. A subgroup H of F is finitely generated if and only if
EI(H) is finite.

Proof. Assume first that H is finitely generated. By Proposition 2.6,
G,(H) is rational. By Proposition 3.1, there is an expanding morphism f
from A = A(G,(H)) to A5(H) and the image of f contains EI(H). Since
A is finite, EI(H) is finite.

Now suppose that EI(H) is finite. For each a in EI(H), let (S(a),T(a))
be a defining pair for a. For each x in X such that ax is defined in AI(H),
let Y(a, x) be the word S(a)xS(a")-1. Since a = H[S(a)], it follows that
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vx = H[S(v)x] = H[S(ox)]. Therefore [Y(v, x)] is in H. It is convenient
to denote H by a when we are considering H to be an element of EI. We
may choose S(a) = T(a) = e.

Let U be an element of G,(H) and let U = x1... xt, where each xi is in
X. For 0 < i < t let vi = a[xl ... xz]. Then ao = a and at = a[U] = a.
Each ai is in EI and vi = (oi-1)n', 0 < i < t. By arguments very sim-
ilar to those in the proof of Lemma 3.6, we can prove that x1 ... xi -
Y(QO, x1)Y(o 1,x2) .. Y(Ui_11xi)S(Qi), 0 < i < t. Taking i = t, we find that
U ^' Y(QO, x1) . Y(Qt-1, xt), since S(vt) = e. Every element of H is rep-
resented by an element of C ,(H). Therefore H is generated as a monoid
by

{[Y(a,x)] I or and a' in EI}.

Since EI and X are finite, H is finitely generated.

Corollary 3.9. The language L ,(H) is rational if and only if H is finitely
generated.

Proof. In the proof of Proposition 3.8 we saw that £ (H) rational implies
that EI is finite and hence that H is finitely generated. In Proposition 2.6
we showed that C ,(H) is rational when H is finitely generated.

Corollary 3.10. If U is a rational language over X, then H = Grp([U]
U E U) is finitely generated.

Proof. Let V = U U U-1. Then V is rational and H = Mon ([V] I V E V).
Therefore C ,(H) = V* is rational, and so H is finitely generated.

Example 3.3. Suppose that F is the free group on {x, y}, so X = {x, y}}.
Let A = (E, X, E, {1}, {1}), where E = {1,2,3,4} and E is given by the
following table:

X

2

3

4

1

2

4

Y-
1

y

43

4

1

21

In Section 4.4 a procedure is presented for verifying that A is isomorphic
to AI(H) for some subgroup H of F. Assuming this, let us use the method
given in the proof of Proposition 3.8 to get generators for H. The words
S(a) and T(a) can be chosen as follows:

S(1) = T(1) = e, S(2) = x, T(2) = xy-1,
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S(3) = y, T(3) = x-2, S(4) = y-1, T(4) = xy.

167

In each case the word S(a)T(a) is reduced and belongs to L(A). Moreover,
Is(') = or. There are 12 edges in E and hence 12 words Y(a, u) with u in X.

Y(1, x) = xx-1, Y(3,x-1) = yx 2

Y(1, y) = yy-1, Y(3, y-1) = yy-1,

Y(1, y-1) = y-1y, Y(4, x) = y-lxy,
Y(2 x) = x2y-1 Y(4, x-1) = y-1x-1y,

Y(2, x-1) = xx-1 Y(4, y) = y-1y,

Y(2, y) = xy2,
Y(4, y-1) = y-2x.

Half of these words are freely equivalent to the empty word. The remaining
six words consist of three pairs, with the words in each pair representing
inverse elements of F. Thus H is generated as a group by [x2y 1], [xy2],
and [y-1xy].

For a subgroup H of F, the language 4(H) is less easy to visualize than
4(H) and 4(H).

Proposition 3.11. The language 4(H) is the set of words W in 4(H)
such that for all prefixes U of W the coset H[U] is important.

Proof. Exercise.

Proposition 3.12. The index of H in F is finite if and only if F is finite
or AI (H) is finite and complete.

Proof. If F is finite, then JXI = 1 and F has order 2. If H is the trivial
subgroup of F, then AI(H) is finite but not complete.

Suppose that A1(H) is finite and complete. Then for every important
right coset a and every x in X, the coset a[x] is important. Therefore
E8(H) = EI(H) and E3(H) is finite.

Now assume that F is infinite and IF : HI is finite. Then E3(H) is finite,
so EI(H) is finite. We must prove that EI = E. Suppose U is a word in
C. We shall show that H[U] is important.

For each a in Es choose a word W, such that a = H[WW]. Let m be the
maximum length of the words W,-'. By Corollary 1.7, we can find a word
V of arbitrary length such that UV is in C. Choose V so that IV I > m. Let
a = H[UV]. Then [UVWo 1] is in H. Let S = UVWo 1. By Proposition 1.5,
U is a prefix of S. Let S = UT. Then (U, T) is a defining pair for H[U], so
H[U] is important. Thus every right coset of H is important and AI(H) is
complete.
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Proposition 3.13. Suppose that A = (E, X, E, A, S2) is a trim, determinis-
tic automaton such that L(A) C_ GI(H). Let f be the expanding morphism
from A to A3(H). Then f is an expanding morphism from A to AI(H).

Proof. Let f : E -s E8(H) be the morphism of Proposition 2.4. Let Q
be in E. There is a path P from A to a and a path Q from a to Q. Let
U = Sg(P) and V = Sg(Q). The word UV is in L(A) and hence in GI(H).
By Proposition 3.11, the coset H[U] = f (a) is in EI(H). Since AI(H) is
the restriction of A,(H) to EI(H) and f is an expanding morphism from
A to AS which maps E into EI, it follows that f is an expanding morphism
from A to AI(H).

Corollary 3.14. Suppose that K is a subgroup of H. There is an expanding
morphism from AI(K) to AI(H).

Proof. Suppose that o, is in EI(K) and let (S, T) be a defining pair for a.
Then or = K[S] and ST is in 4(K) C_ 4(H). Therefore (S,T) is a defining
pair for H[S]. Let V be in GI(K) and let U be a prefix of V. Then K[U]
is in EI(K) and so H[U] is in EI(H). By Proposition 3.11, V is in GI(H).
Therefore Proposition 3.13 applies.

Corollary 3.15. The automaton AI(H) is isomorphic to At(GI(H)).

Proof. By Proposition 3.2, AI(H) is trim. By Proposition 3.13 there is an
expanding morphism from At(GI(H)) to AI(H). By Exercise 3.7.3, AI(H)
and At(LI(H)) are isomorphic.

If we have R and an automaton isomorphic to A1(H), we can decide
equality of cosets of H more easily than with the method described in
Proposition 2.8. Suppose that U and V are words in X* and we want to
decide whether H[U] and H[V] are equal. Given R, we can easily compute
U and V, so we may assume that U and V are in C.

Proposition 3.16. Suppose that U and V are elements of C. Let U =
BR and V = CS, where B and C are the longest prefixes of U and V,
respectively, such that H[B] and H[C] are in EI(H). Then H[U] = H[V]
if and only if H[B] = H[C] and R = S.

Proof. If H[B] = H[C] and R = S, then clearly H[U] = H[V]. Assume
that H[U] = H[V], so [UV-1] and [VU-1] are in H. Suppose first that U
and V do not end with the same element of X. By Proposition 1.9, the
words UV-1 and VU-1 are in C and hence in G,(H). Therefore H[U] and
H[V] are in EI(H), so B = U, C = V, and R = S = e.
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Now suppose that U and V end in the same element x of X. Say U = U1x
and V = V1x. Then

H[U1] = H[U][x]-1 = H[V][x]-1 = H[V1].

Let B1 and C1 be the longest prefixes of U1 and V1, respectively, such that
H[B1] and H[C1] are in EI(H), and let U1 = B1R1 and V1 = C1S1. By
induction on IUL, we have H[B1] = H[C1] and R1 = S1.

Lemma 3.17. Either B = B1, or B1 = U1 and B = U.

Proof. Clearly B1 is a prefix of B. Let B = B1B2. By Proposition 3.3, for
every prefix D of B, the coset H[D] is in EI(H). But this means that B1
is the longest common prefix of B and U1. Thus either B2 = e, or B1 = U1
and B2 = x.

Suppose that B = U. Then C = V and R = S = E. Thus we may assume
that B # U and C # V. By Lemma 3.17, B = Bt and C = C1. Therefore
R=R1x=S1x=S.

Given a word U in C and an automaton A = (E, X, E, {a}, {a}) iso-
morphic to AI(H), we can easily compute the decomposition U = BR of
Proposition 3.16 using the procedure TRACE defined in Section 3.2. The
word B is the longest prefix of U which is the signature of a path in A
starting at a. Thus we perform the call TRACE(A, a, U; v, B, R). The
state a corresponds to H[B].

Example 3.4. There are several ways to construct an automaton isomorphic
to AI (H) when H is given by a finite generating set. The preferred method
is normally coset enumeration. In Example 5.5, coset enumeration will
be applied to the subgroup H of Example 2.2. Here F is the free group
on {x, y} and H is generated by [xyx] and [x-2y]. In this case, AI(H) is
isomorphic to (E, X, E, A, S2), where E = {1, 2,3, 4}, A = S2 = {1}, and E is
given by the following table:

x

2

3

4

1

3

y

3

1

4

1

2

Here is an example of the use of Proposition 3.16. Let

U = xyx-1yx-1y-2xy,

V = y-1xy-1x-3yx2y
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Both U and V are in C. The call TRACE(A, 1, U; a, B, R) returns a =
2, B = xyx-l yx-l y-1, and R = y-lxy. The call TRACE(A,1, V; T, C, S)
returns r = 2, C = y-1xy lx-3yx, and S = xy. Since a = T, we have
H[B] = H[C], but R # S, so H[U] 0 H[V].

We close this section with a theoretical result concerning the structure
of F.

Proposition 3.18. Suppose that H is finitely generated and has infinite
index in F. Then H contains no nontrivial normal subgroup of F.

Proof. We may assume that JXI > 2. The intersection N of the conjugates
of H is the largest normal subgroup of F contained in H. An element u of
F is contained in N if and only if au = a for every right coset a of H in F.
Suppose that U is a nonempty word in C such that [U] is in N. Since H is
finitely generated, EI(H) is finite. Let or be a coset in E3(H) - EI(H) and
let W be a word in C such that or = H[W].

Lemma 3.19. It is possible to choose a and W so that WU is in C.

Proof. Choose or "far away" from EI(H) in the sense that a[V] is not in
EI(H) for any short words V. Let W end in x, let U start with y, and
suppose that WU is not in C. Then y = x-1. If Y = X - {x, y} is not empty,
then we can choose z in Y and replace a by a[z] and W by Wz. Now WU
is in C.

Suppose that Y is empty. Since F is infinite, the following conditions
must hold:

(i) x # y.
(ii) X = {x, y}.

Thus F is isomorphic to 7G, which has no nontrivial subgroups of infinite
index.

By Lemma 3.19, we may assume that WU is in C. Let B be the longest
prefix of W such that H[B] is in EI(H) and let W = BR. Then R # E.
Therefore B is the longest prefix of WU defining an element of EI(H). Since
R :A RU, the cosets a and a[U] = H[WU] are distinct by Proposition 3.16.

Exercises

3.1. Let A be a finite automaton with alphabet X. Prove that it is possible to decide whether
{[U] I U E L(A)} is a subgroup of F.
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x

1

4

Table 4.4.1

2

5

4

3

Y

3

4
2

3

1

2

3.2. Let -< be a reduction ordering on X* and let H be a finitely generated subgroup of F.
For each right coset or of H in F let U, be the first word with respect to -< defining an
element of or. Define GR(H) to be {Ua I a E E5(H)} and let M = {U, I a E EI(H)}.
Let P be the set of words Ux such that U is in M, x is in X, H[Ux] is in Ej(H), but
Ux is not in M. Finally, let 9 be the right ideal of X* generated by P. Show that
,CR(H) =C n (X* - J). Conclude that ,CR(H) is a rational language.

3.3. Suppose in Exercise 3.2 that - is a length-plus-lexicographic ordering. Let A be an
automaton isomorphic to A1(H). Show how to construct an automaton recognizing
GR(H). (Hint: Start by standardizing A with respect to -<.)

4.4 Coset automata
In Sections 4.2 and 4.3, various languages and automata were associated
with a subgroup of F. In this section, an axiomatic characterization is
given of the automata which can occur. In particular, we characterize
those automata which are isomorphic to AI(H) for some finitely generated
subgroup H of F.

Let A = (E, X, E, A, 12) be an automaton with alphabet X. We shall say
that A is a coset automaton relative to R if the following conditions are
satisfied:

(i) A is accessible and deterministic.
(ii) A = cl h O.

(iii) If (a, x, T) is in E, then (T, x-1, a) is in E.

In the literature on coset enumeration, the term "coset table" occurs fre-
quently. A coset table is the transition table for a coset automaton. In (iii),
if e = (a, x, T), then (T, x-1, a) will be denoted e' and called the edge paired
with e. Clearly e" = e.

Example 4.1. Suppose that X = {x, y}} and R consists of the rules

xx-1 -> E, x-1x -> E, yy-1 - y-1y-4e.

Let A = (E, X, E, {1}, {1}), where E = {1,2,3,4,5} and E is given by
Table 4.4.1. Then A is a coset automaton relative to R.
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Proposition 4.1. For every subgroup H of F the automata AS(H) and
AI(H) are coset automata.

Proof. Both AS(H) and AI(H) satisfy conditions (i) and (ii). Suppose
that (a, x,T) is an edge of AS(H). Then o[x] = T, so U = T[X]-1 = T[x-1].
Thus (T,x-1,o,) is an edge of AS(H). If or and r are in EI(H), then
(T, x-1, a) is an edge of AI(H).

Proposition 4.2. Let A be a coset automaton and suppose that (p, x, T)
and (o-, x, T) are edges of A. Then p = a.

Proof. By condition (iii), both (T, x-1, p) and (r, x-1, a) are edges of A.
Since A is deterministic, p = a.

Corollary 4.3. Let A be a coset automaton and suppose that P and Q are
paths in A with the same endpoint and the same signatures. Then P and
Q are the same path.

Proof. We use Proposition 4.2 and induction on the length of P and Q.

Proposition 4.4. Suppose that A is a coset automaton. If there is a path
P in A from a to T, then there is a path Q in A from r to a such that
Sg(Q) = Sg(P)-1

Proof. Let P consist of the edges (Qi_1, xi, a2), 1 < i < s. By condition
(iii), the sequence Q of edges (QS, xs 1, vs_1), ... , (a1, xi 1, ao) is a path in
A, and Sg(Q) = Sg(P)-1.

Corollary 4.5. Coset automata are trim.

Proof. Let A = (E, X, E, A, Q) be a coset automaton and let a be in E.
Since A is accessible, there is a path in A from A to v. By Proposition 4.4,
there is a path from a to A = Q. Thus A is trim.

Proposition 4.6. Let A be a cosec automaton. If au =T in A, then au =T.

Proof. Let P be the path in A from a to T such that Sg(P) = U. If U is
not in C, then U = SxyT, where xy is a left side in R. Let the subpath of P
having signature xy consist of the edges (v, x, T) and (T, y, p). Then y = x-1,
and, by condition (iii) and the fact that A is deterministic, it follows that
v = p. Thus we may delete these two edges and have a path from a to 7
with signature ST. Continuing in this way, we construct a path from v to
T with signature U.
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Corollary 4.7. Let A be a coset automaton and set C = L(A). Then C' =,C.

Proof. The proof of Proposition 4.6 actually shows that aV = r for every
word V derivable from U using R. Taking both a and r to be the element
of A, we see that G' = L.

For any automaton A with alphabet X, let K(A) be {[U] I U E L(A)},
the image of L(A) under the natural map from X* to F.

Proposition 4.8. Suppose that A is a coset automaton relative to R. Then
K(A) is a subgroup of F. If A is finite, then K(A) is finitely generated.

Proof. Let A = (E, X, E, A, SZ) and set L = L(A). Since A = Il 0, the
empty word s is in r- and CC CC. Therefore K(A) is a submonoid of F.
By Proposition 4.4, K(A) is a subgroup. If A is finite, then L is rational.
Therefore L,(K(A)) = G' n C = L n C is rational. Thus K(A) is finitely
generated by Corollary 3.9.

If A is a coset automaton, then A is trim and L(A) is contained in
L(A8(K(A))). By Proposition 2.4, there is an expanding morphism from
A to As(K(A)).

Proposition 4.9. Suppose that A is a coset automaton and f is the ex-
panding morphism from A to As(K(A)). Then f is one-to-one as a map
on states, and the image off contains EI(K(A)). Every edge of AI(K(A))
has the form (f (a), x, f (T)) for some edge (Q, x, T) of A.

Proof. Let A = (E, X, E, {a}, {a}) and set K = K(A). The image of f
contains EI(K) by Proposition 3.1. Suppose that v and r are in E and
f(01) = f (T). Let a = au and let r = aV. By Proposition 4.6, we may
assume that U and V are in C. Since K[U] = f (a) = f (r) = K[V], it
follows that [UV-1] is in K.

Suppose first that UV-1 is in C. Then UV-1 is in ,Cc(K) C L(A). There-
fore there is a path P in A from a to a such that Sg(P) = UV-1. Thus
there is a path Q in A from a to a such that Sg(Q) = V-1. But then, by
Propositions 4.4 and 4.6, there is a path R from a to a such that Sg(R) = V.
Therefore a = r.

Now suppose that UV-1 is not in C. Then U and V end with the same
element of X. Let U = Cx and V = Dx and set a = ac and v = aD. Then
f(p) = K[C] = K[U][x]-1 = K[V][x]-1 = K(D] = f(v). By induction on
U 1, it = v. Therefore or = µx = vX = T.

Finally, let (cp,x,V)) be an edge of A,(K(A)). By Corollary 3.4, there is
a defining pair (U, V) of cp such that V starts with x. Then aUV = a in
A, so v = au and r = ax are defined. Thus (a, x, r) is an edge of A, and
f (a) = cp and f (r) = i/,.
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Now we are in a position to characterize the automata AI(H), where H
is a finitely generated subgroup of F. Let A = (E, X, E, A, St) be a finite
coset automaton. We shall say that A is reduced if for all states a in E - A
there are at least two edges in E leaving a.

Proposition 4.10. Let A be a finite coset automaton. Then A is isomor-
phic to AI(K(A)) if and only if A is reduced.

Proof. Set K = K(A). We shall first show that AI(K) is reduced. Let
or be an important coset of K different from a = K and let (S, T) be a
defining pair for a. Since a a, the words S and T are not empty. Let
S = Ux and T = yV, with x and y in X, and set p = au and T = ay. Then
(p, x, a) and (a, y, T) are edges in AI (K). But (a, x-1, p) is also an edge and
y 34 x-1, since ST = UxyV is in C ,(K). Therefore there are at least two
edges leaving a.

Now assume that A = (E, X, E, {/3}, {/3}) is reduced and let f be the
expanding morphism from A to AS(K). Suppose that or is in E and a = /3U.
If or = ,Q, then f (a) = K is important. Suppose a 34/3. By Proposition 4.6,
we may assume that U is in C. Since there are at least two edges in E
leaving or, there is an element x of X such that Ux is reduced and T = ax
is defined. If T = /3, then (U, x) is a defining pair for f (a) = K[U] and f (a)
is important. If T # /3, then we can repeat this process and find a y in X
such that Uxy is reduced and TY is defined. Continuing in this manner,
either we find a word V such that UV is reduced and aV = /3 or we produce
arbitrarily long words V such that UV is reduced and aV is defined in A.
In the first case, (U, V) is a defining pair for f (a), so f (a) is important.
In the second case, we use the trick in the proof of Proposition 3.12. We
choose V long enough so that for every p in E there is a word W of length
less than IV so that pW = /3. Taking p to be aV, we see that U is a prefix
of C = UVW. If C = UD, then (U, D) is a defining pair for f (a). Thus in
all cases f (a) is important, so f maps E into EI(K). By Proposition 4.9,
f is an isomorphism of A onto AI(K).

The automaton A of Example 4.1 is not reduced since there is only
one edge leaving 5. If we remove the edges (3, x-1, 5) and (5, x, 3), the
result 13 is again a coset automaton. Since no path in A having a re-
duced signature involves either of the deleted edges, C,(K(A)) = G,(K(13)).
Therefore K(B) = K(A). The automaton 13 is reduced. Hence AI(K(A))
is isomorphic to B. This reduction process can be applied to any finite
coset automaton to produce a reduced coset automaton defining the same
subgroup of F.

Procedure REDUCE(A;13);
Input: A : a finite coset automaton;
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Table 4.4.2

x x-1 y

1 2 3 4

2 1 5 6

3 4 7 8 1

4 3 1

5 2

6 2

7 3 8 7 7

8 7 3

Output: 13 : a finite, reduced coset automaton with K(13) = K(A);
Begin

13:=A;
While there is a noninitial state a in 13 such that there is only one

edge (U, X, T) in 13 do begin
Delete the edges (a, x, T) and (T, x-1, a) from 13;
Delete the state a from 13

End
End.

For any given iteration of the While-loop in REDUCE there may be
several choices for a. However, the final automaton 13 consists of those
states and edges of A which are involved in paths P from the initial state
to itself such that Sg(P) is in C.

Exercise

4.1. Assume that X and R are as in Example 4.1. Let A = (E, X, E, {1}, {1}), where E =
{ 1, ... , 8} and E is given by Table 4.4.2. Show that A is a coset automaton. Apply the
procedure REDUCE to A to produce an automaton isomorphic to AI(K(A)). Use this
automaton to construct generators for K(A).

4.5 Basic coset enumeration
In its most general meaning, the term "coset enumeration" refers to the
computation of AI(H) for some subgroup H of our free product F =
Mon (X I 1Z) of cyclic groups. If F is a free group and H has finite in-
dex in F, then every right coset of H is important, so finding AI(H) really
does involve enumerating, or counting, the right cosets of H.

The first coset enumeration procedure was described in (Todd & Coxeter
1936). This section is concerned only with a special case of the Todd-
Coxeter procedure. Various versions of the full procedure are discussed in
Chapter 5. Alternatives to the Todd-Coxeter approach are considered in
Section 4.10.
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Suppose that U = {U1,. .. , Um} is a finite subset of X* and H =
Grp([U] I UEU). ForO<i<m,letHi=Grp([Uj] 1<j<i). Thus Ho is
trivial and Hm = H. To construct an automaton isomorphic to AI (H) using
the Todd-Coxeter method, we construct coset automata Ao, ... , Am such
that Hi = K(A2) and then apply the procedure REDUCE, defined at the
end of the previous section, to Am. We start with AO = ({1}, X, 0, {1}, {1}).

This approach requires us to solve the following problem: Given a finite
coset automaton A with respect to R and a word U in X*, construct a coset
automaton B such that K(B) = Grp (K(A), [U]). For reasons of efficiency, it
is desirable that A be modified "in place" to obtain B, so that the overhead
of making a copy of A is avoided. We shall solve our problem with the aid of
several auxiliary procedures. In all of them, R and A = (E, X, E, 111, 111)
will be available as global variables. States will be positive integers, and n
will be a global variable giving the largest integer used so far for a state. In
order not to have to write out revised versions of these procedures later, a
few statements have been included in some of the procedures which should
be ignored for the time being. Most of the statements in question have the
form

If save then push (o, x) onto the deduction stack;

The variable save is a global boolean variable, which should be assumed
to be false for now. In the context of coset enumeration, a deduction is
a pair (v, x) of a state and a generator such that ox has recently been
defined or changed. The use of save and the deduction stack is explained
in Section 5.3. In the procedure DEFINE below, there is a reference to a
global variable p, a vector indexed by positive integers. The significance of
p is described in the next section.

The procedure DEFINE adds new edges to A without changing the
subgroup K(A).

Procedure DEFINE(Q, x);
Input: Q : a state in E;

x : an element of X such that ax is not defined in A;
(* Adds two edges to A so that oX is defined. *)
Begin

n:= n + 1; p[n] := n; Add n to E;
Add (Q, x, n) and (n, x-1, v) to E;
If save then push (a, x) and (n, x-1) onto the deduction stack

End.

The procedure DEFINE acts somewhat like an inverse to REDUCE.
After DEFINE is executed, any path P in A from 1 to 1 involving n
has (Q, x, n) and (n, x-1, v) as consecutive edges. Thus Sg(P) is not in
C. Therefore L(A) n C is unchanged, and hence K(A) remains the same.
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The next procedure does change K(A).

Procedure JOIN(a, x, T);
Input: or, T : states in E;

x : an element of X such that v' and TX are not
defined;

(* Defines a5 to be T.
Begin

Add (Q, x, T) to E;
If save then push (a, x) onto the deduction stack;

If (v, x) (T, x-1) then begin
Add (T, x-1, v) to E;
If save then push (-r, x-') onto the deduction stack

End
End.

Before the execution of JOIN, let H = K(A) and let U and V be words
in X* such that lU = a and TV = 1.

Proposition 5.1. After the execution of JOIN(v, x, T), K(A) _
Grp (H, [UxV]).

Proof. After execution of JOIN, 1UxV = axv = Tv = 1. Thus UxV is in
L(A), and K(A) contains Grp (H, [UxV]). Now suppose that 1W = 1 and
let P be the corresponding path. If none of the edges in P is an edge added
by JOIN, then [W] is in H. We proceed by induction on the number of
new edges contained in P. Suppose P is the concatenation of P1, (a, x, T),
and P2, where P1 is a path from 1 to or and P2 is a path from T to 1. Let
Wj = Sg(P.), j = 1, 2. Then 1W1U-' = vu-' = 1 and

1v_1W2

= TW2 = 1. By
induction, [W1U-1] and [V-1W2] are in Grp (H, [UxV]). But then

[W] = [W1xW2] _
[W1U-1][UxV][V-1W2]

is in Grp (H, [UxV]). A similar argument handles the case in which P
contains the edge (T, x-1, o').

Example 5.1. Let X = {x, y, y-1 }, let R consist of the rules

x2 -* e, yy-1 -' b, y-ly -' e,

and let A = (E, X, E, {1}, {1}), where E = {1, 2,31 and E is given by the
following coset table:
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1

2

3

X

2

1

y-1
Y

1

3

If n = 3, then the call DEFINE(3, y-1) adds 4 to E and changes the
table to

x

2

1

Y Y-1

1

3

4

3

Note that 1x = 2 and 4y2 = 1. If at this point JOIN(2, y, 4) is executed,
then the table becomes

x

2

1

Y Y-1

4

1

3

3

4

2

and [xy3] is added to K(A). The call JOIN(4, x, 4) yields the table

x

2

1

and adds [xyxy-lx] to K(A).

4

Y Y-1

4

1

3

3

4

2

The third procedure for modifying a coset table is more complicated
than the first two. Before describing it, we must introduce the notion of a
congruence on a coset automaton. Let A = (E, X, E, {a}, {a}) be a coset
automaton. A congruence on A is an equivalence relation .: on E such
that whenever (v, x, cp) and (T, x, 0) are in E and v r, then cp ;:t: 0. The
intersection of congruences is again a congruence. Thus given a subset S
of E x E, we can speak of the congruence generated by S, the smallest
congruence zz for which or T for all (v, T) in S.

Suppose that zt; is a congruence on A. Let A be the set of For a
in E let [v] be the -class containing or. Put D = {([v], x, [T]) I (U, x, -r) E E},
B = {[a]}, and 1= (A,X,D,B,B).
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Table 4.5.1

x X-1 y Y-1

1 2 3 4 4

2 1 5 5

3 1 6

4 5 1 1

5 4 2 2

6 3 6 6

Proposition 5.2. Under the preceding hypothesis, B is a coset automaton
and the map a H [Q] is an expanding morphism from A to B.

Proof. If (v, x, cp) and (r, x,') are in E and [v] = [T], then [cp] = [0].
Therefore there is at most one edge with a given label leaving [v]. The
remaining parts of the definition of a deterministic automaton are easily
checked. If (Q, x, cp) is in E, then so is (cp, x-1, o). Thus ([gyp], x-1, [Q]) is
in D. If there is a path P in A from v to r, then there is a path Q in 13
from [Q] to [T] such that Sg(Q) = Sg(P). Thus B is a coset automaton and
or H [v] is an expanding morphism.

We shall call B the quotient of A modulo .

Example 5.2. Let X = {x, y}} and let R be the set of rules defining the
free group on {x, y}. Suppose that A = (E, X, E, {1}, {1}), where E =
{1,2,3,4,5,6} and E is given by Table 4.5.1. The sets Al = {1,4,6} and
A2 = {2, 3, 5} are the equivalence classes of a congruence Zt on A. The edges
of the quotient of A modulo are described by the table

x

1

2

where we have written i for A.

2 2

1

y 1
y

1

21

1

2

The third procedure of this section replaces A by an automaton isomor-
phic to the quotient of A by the congruence generated by a single pair (Q, r)
of states.

Procedure COINCIDENCE(v, r);
Input: o,, T : states in E;
(* This is a preliminary version. See Section 4.6. *)
Begin

Let be the congruence on A generated by (Q, r);
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(* For cp in E let [cp] denote the -class containing V. *)
Let B be the quotient of A modulo
Let II be the set of states in E which are the smallest elements of

their ;zt;-class;
Replace E by the set of triples (gyp, x, 0), where cp and 0 are in II

and ([p], x, [']) is an edge of B;
Replace E by II

End.

The preceding listing is only an outline. The implementation of the
coincidence procedure is the most challenging part of writing a coset enu-
meration program. The details depend heavily on the data structure used
to store the edges in E and to describe partitions of E. To avoid getting
bogged down in these implementation details now, we defer to Section 4.6
a more complete discussion of the coincidence procedure. It is important to
note here that the speed of the Todd-Coxeter approach to coset enumera-
tion comes largely from the fact that COINCIDENCE can be implemented
quite efficiently.

Example 5.3. Let X, 7Z, and A be as in Example 5.2 and let o, = 4 and
r = 6. Here is one way to determine the set A of equivalence classes of
during the execution of COINCIDENCE(4,6). Initially, let A consist of the
following sets:

{1}, {2}, {3}, {4,6}, {5}.

Comparing the edges in A leaving 4 and 6, we find (4, y, 1) and (6, y, 6).
Therefore we merge the first and fourth sets together to get:

{1,4,6}, {2}, {3}, {5}.

Looking at the edges leaving 1 and 4, we find (1, x-1, 3) and (4, x-1, 5). This
causes us to merge the last two sets, forming

{1,4,6}, {2}, {3, 5}.

Finally, because of the edges (1, x, 2) and (6, x, 3), the blocks containing 2
and 3 are merged. At this point A consists of

{1,4,6}, {2,3,5}.

As we saw in Example 5.2, these are the blocks of a congruence on A.

Before the call COINCIDENCE(o-, T), let H = K(A) and let S and T be
words such that is = o, and TT = 1.
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Proposition 5.3. After the call COINCIDENCE(a, T) we have K(A) _
Grp (H, [ST]).

Proof. Let M = Grp (H, [ST]) and let A0 denote the automaton A before
the call to COINCIDENCE. After the call, A is isomorphic to the quotient
B of A0 modulo By Proposition 5.2, the map taking each state of A0
to [cp] is an expanding morphism from A0 to B. Thus K(B) contains H. In
Ao, 1S = a and TT = 1. Then in 13 we have [1]S = [a] and [T]T = [1]. Since
[a] = [T], it follows that [1]ST = [1] and [ST] is contained in K(B). Thus
K(S) D M.

By Proposition 2.4, there is an expanding morphism g from A0 to A,, (M).
For states cp and 0 of A0, let cp - if g(V) = g(O). The relation - is a
congruence on A0. Moreover, g(a) = M[S] = M[ST]-'[S] = M[T-1S-1S] =
M[T-1] = g(T), so a - T. By definition, is the intersection of all congru-
ence] on A0 in which a and T are in the same equivalence class. Therefore,
if cp 0, then cp - V). Thus there is a map h from the set of states of B to
the set of right cosets of M such that h([co]) = g(V) for all states cp of A0.
It is not hard to check that h is an expanding morphism from B to A.(M).
Thus K(B) C M. Hence K(B) = M, and, since A is isomorphic to B, the
proposition follows.

The procedure TRACE of Section 3.2 relies on the fact that in a de-
terministic automaton a path is determined by its starting point and its
signature. Because of Corollary 4.3, in a coset automaton we can trace
backward, starting at the endpoint of the path.

Procedure BACK_TRACE(A, a, U; T, B, D);
Input: A : a coset automaton (E, X, E, A, A);

or : a state in E;
U : a word in X*;

Output: T : a state in E;
B, D : words in X* such that U = BD, TD = a, and IDI is

as large as possible;
Begin

,r:= a; B:= U; D:= e; done := false;
While B e and not done do begin

Let B = Sx, where x is in X ;

If there is no edge with label x coming into r then done := true
Else begin

Let (p,x,T) be in E; r := p; B := S; D := xD
End

End
End.
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At the heart of the Todd-Coxeter approach to coset enumeration is the
concept of a two-sided trace. There are two types of two-sided traces,
partial and full. Given a state a in A and a word W in C, the object of a
two-sided trace is to modify A, if necessary, so that crw = Q. More precisely,
we want to modify A in such a way that there is an expanding morphism
f from the old A to the new A such that f (Q)' = f (v). If the trace is
partial, then f must be surjective as a map on states.

Both types of two-sided traces start out the same way. We find words S,
T, and U and states p and v such that W = STU, QS = p, vU = a, ISI is as
large as possible, and, subject to this, JUI is as large as possible. If T = e
and p = v, then S = W and uW = a already. If T = e and p # v, then we
identify p and v using COINCIDENCE. Suppose ITI = 1, so T = x is an
element of X. Then we use JOIN to make pX = v. If ITS > 1, then a partial
trace terminates unsuccessfully, without modifying A. If ITI > 1 and the
trace is full, then DEFINE is used to add a new edge so the trace can be
carried further.

Here is the complete description of a two-sided trace. All of the global
variables defined earlier continue to be available.

Procedure TWO_SIDED_TRACE(o,, W, full);
Input: a : a state in E;

W : a word in C;
full : a boolean variable, with true indicating a full trace

and false indicating a partial trace;
Begin

TRACE(A, v, W; u, S, C); BACK_TRACE(A, Q, C; v, T, U);

If full then
While ITS > 1 do begin

Let T start with x; DEFINE(p, x);
TRACE(A, or, W; p, S, C); BACK_TRACE(A, or, C; v, T, U)

End;

If T = E and p # v then COINCIDENCE(p, v)
Else if ITS = 1 then begin

Let T be the element x of X; JOIN(p, x, v)
End

End.

In a careful implementation of TWO_SIDED_TRACE, the forward and
backward traces in the While-loop would not be repeated from the begin-
ning but continued from the point at which they last stopped.

Before the call TWO_SIDED_TRACE(u, W, full), let H = K(A) and let
L and M be words such that 1L = a and QM = 1.
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Table 4.5.2

x y

1 2 3 3 4

2 4 1 2 2

3 1 5 1

4 6 2 1 6

5 6 3

6 5 4 4

Proposition 5.4. After the call TWO_SIDED_TRACE(v,W, full), either
K(A) = Grp (H, [LWM]) or the trace was partial and terminated unsuc-
cessfully.

Proof. Calls to DEFINE do not change K(A) and are made only in full
traces. If the call to COINCIDENCE is made, then just before the call we
have 1LS = p and vUM = 1. By Proposition 5.3, K(A) = Grp (H, [LWM])
immediately after the call to COINCIDENCE, since LSUM = LWM as
T = e. If the call to JOIN is made, then just after the call K(A) _
Grp (H, [LWMI) by Proposition 5.1.

Proposition 5.5. If A is isomorphic to AI(K(A)) before a call to
TWO_SIDED_TRACE, then A is isomorphic to AI(K(A)) after the call.

Proof. Exercise. (Show that the statement is false if W is not required
to be in C.)

Example 5.4. Let us perform a few two-sided traces with X and R as in
Example 5.2 and A given by Table 4.5.2. First let us carry out a partial
trace of x-1yxyxy3 at 1. When tracing by hand, it is convenient to write
the word without the use of exponents and place the starting state at the
beginning and the end. In this case, we have

x-1 yxyxyyy
1.

Now we work from left to right as far as we can and then work from right to
left. Since 1`1 = 3, 3Y = 5, and Y is not defined, the results of the forward
trace can be summarized as follows:

X-1 yxyxyyy
1 3 5 1.

To work from the right, we must find the state o such that c' = 1. We could
look down the column headed by y until we found 1, but there is an easier
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way. Since A is a coset automaton, ay = 1 if and only if ly ' = o,. Thus o,
must be ly ' = 4. Similarly, P-1 = 6, and 6Y-1 is not defined. Thus, after the
forward and backward traces, we have reached the following configuration.

X-1 yxyxyyy
1 35 641.

At this point we are "stuck". Since the trace is partial, we give up.
Now let us trace xy-2x-1y at 2. We start with

x y-1 y-1 x-1 y
2 2.

The result of the forward trace is

x y-1 y-1 x-1 y

2 4 6 2,

so we must trace y-lx-1y backward from 2. Since 2Y-1 = 2, 2x = 4, and
4y = 1, we reach the state 1, which "clashes" with the 6. This situation is
pictured as follows:

xy-1 y1x-1y
2 4 6 4 2 2.

1

This is an example of the case in which T = e and p # v. The next step
would be to call COINCIDENCE(6,1), but we shall not go any further with
this trace.

The third trace will be a full trace of y2xy2x-2y2 at 1. The first forward
and backward traces leave a "gap" with ITI of length 4.

yyxyyx-1 x-1 yy
135 5 641.

Since µ = 5 and T starts with x, we make the call DEFINE(5, x). This
changes the coset table as shown in Table 4.5.3. Both the forward and
backward traces can now go further. We have

yyxyyx-1 x-1 yy
1 3 5 7 7 5 6 4 1.

Here T = y2, so we execute DEFINE(7, y), changing the table as shown in
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Table 4.5.3 Table 4.5.4 Table 4.5.5
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x y
y-1 x X-1 y

y-1 x Y
y-1

1 2 3 3 4 1 2 3 3 4 1 2 3 3 4

2 4 1 2 2 2 4 1 2 2 2 4 1 2 2

3 1 5 1 3 1 5 1 3 1 5 1

4 6 2 1 6 4 6 2 1 6 4 6 2 1 6

5 7 6 3 5 7 6 3 5 7 6 3

6 5 4 4 6 5 4 4 6 5 4 4

7 5 7 5 8 7 5 8 8

8 7 8 7 7

Table 4.5.4. At this point, the traces stop with T = y, which we signal with
an underscore:

yyxyyx-lx-1yy

1 3 5 7 8 7 5 6 4 1.

We call JOIN(8, y, 7), which changes the table as shown in Table 4.5.5. The
two edges (8, y, 7) and (7, y-1, 8) added by JOIN are said to be deduced
from the trace. This is the origin of the use of the term "deduction" for a
position in the table whose entry has recently been filled in.

Here is the basic coset enumeration procedure. As before, the reference
to the vector p should be ignored for now.

Procedure BASIC_CE(X, 7Z, U; A)
Input: X : a finite set;

7Z : a classical niladic rewriting system on X*;
U : a finite subset of X*;

Output: A : a coset automaton isomorphic to AI(H), where H is
the subgroup of F = Mon (X I 7Z) generated by
{[U]IUEU};

Begin
n := 1; p[l] := 1; A:= ({1}, X, 0, {1}, {1});
For U in U do begin

REWRITE(7Z, U; V);
TWO_SIDED_TRACE(1, V, true) (* A full trace *)

End
End.

The second argument of TWO_SIDED_TRACE is supposed to be an
irreducible word. To be sure, we rewrite the elements of U. The correctness
of BASIC_CE is a direct consequence of Propositions 5.4 and 5.5. Each call
to TWO_SIDED_TRACE adds one of the generators [U] of H to K(A).
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Example 5.5. Let us apply BASIC_CE to the group of Example 2.2, which
was also discussed in Example 3.4. Here X = {x, y}}, R defines the free
group on {x, y}, and U = {xyx, x-2y}. Initially, the coset table for A is

x y

1

After the first trace, the states are 1, 2, and 3, and the edges are given by

x

1

2

3

y

3

2 3

1

1 2

After the second trace, we have the table

x

2

3

4

1

3

Y

3

1

4

1

2

This is the table quoted in Example 3.4. Suppose we add xy2x_1y as a
third element of U. Performing the two-sided trace of xy2x_1y at 1 results
in the call COINCIDENCE(2,3). The resulting automaton has states 1 and
2 and the following coset table:

x

1

2

1

2

1

2

YX-1

2

1

2

1

The corresponding subgroup has index 2 in F.

The output of BASIC_CE is determined only up to isomorphism since
the order in which the elements of U are processed is not specified. In
general, it is a good idea to standardize the output of BASIC_CE to re-
move the ambiguity. Section 4.7 describes how to standardize a finite coset
automaton in place.

Exercises

5.1. Let X and 7Z be as in Example 5.1 and let A be the automaton (E, X, E, {1}, {1}), where
E = {1, ... , 8} and E is given by Table 4.5.6. Determine the congruence classes of the
congruence on A generated by (8,6). How would A be changed by the call COINCI-
DENCE(8,6)?
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Table 4.5.6

x y
y-1

1 2 3 4

2 1 5 6

3 7 1

4 1 8

5 7 2

6 8 2

7 5 3

8 6 4

5.2. Let X and R be as in Example 5.5. Starting with A= ({1},X,O,{1},{1}) and n= 1,
carry out the following sequence of operations:

DEFINE(1,x), DEFINE(1,y-1), JOIN(2,x,3).

Now let U = x-lyxy and V = x 1y 1x-1yx and continue with the traces

TWO_SIDED_TRACE(1, U, true), TWO_SIDED_TRACE(3, V, true).

5.3. Apply BASIC_CE to the following input data:

(a) X and R as in Example 5.1 and U = {yxy-2x, yxy-1, y2xy2}.
(b) X and R as in Example 5.5 and U = {(x-1yxy 1)2 (y2x)2 x-1yxy3x}.

4.6 The coincidence procedure
The version of the coincidence procedure given in the previous section was
very sketchy. The procedure can make substantial changes in a coset au-
tomaton, and it is not clear from the outline presented how time-consuming
calls to COINCIDENCE can be. As the first step in studying these issues,
we shall consider some data structures and procedures designed to facilitate
the manipulation of partitions. These data structures and procedures are
referred to collectively as the union-find procedure. Proofs will be omitted.
They can be found in [Aho et al. 1974].

Let n be a positive integer and let E = {1,. .. , n}. A partition H of E
is defined conveniently by a vector p, indexed by the elements of E. The
value of p[o ] is set equal to the smallest element of the block of H which
contains o,. Thus if n = 6 and II consists of the blocks

{1,3,4}, f2,61, {5},

then p is the vector (1, 2,1,1, 5, 2). Partitions of E are in one-to-one corre-
spondence with integer vectors p indexed by E such that 1 < p[Q] < a and
p[p[v]] = p[a] for all v in E.
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It is useful to weaken the conditions on the vector p, although doing so
destroys the one-to-one correspondence. The following conditions allow for
a computationally effective description of a partition II:

(i) p[a] is some element of the block of II containing a.
(ii) p[a] = a for exactly one element a of each block.

(iii) For any a in E, the sequence a, p[a], p[p[a]], ... eventually becomes
constant.

When (iii) holds, we shall denote by p°° [a] the value at which the sequence
a, p[a], p[p[a]], ... stabilizes. If all three conditions hold, then two elements
or and T of E are in the same block of II if and only if p°° [a] = p°° [-r]. The
preceding partition II is described by the vector p = (3, 6, 3, 1, 5, 6).

To compute p°° [a], we compute the sequence al, ... , as, where al = a,
ai+1 = p[az], and s is the first index such that p[as] = as. If s > 3, then
we may save time later if we modify p by redefining p[ai] to be as for
1 < i < s - 2. This does not change the partition described by p. For
example, with p = (3,6,3,1,5,6) and a = 4, we have al = 4, a2 = 1, and
a3 = 3. Thus we change p[4] to 3. This process is called path compression.

Suppose that we have to compute p°O [a] for n not necessarily distinct
elements a of E. Without path compression, the time required can be
quadratic in n. For example, suppose that p[l] = 1 and p[a] = or - 1 for
2 < or < n. Then computing p°° [a] takes time proportional to a. With path
compression, the time to perform n computations p°O [a] is linear in n.

Now suppose that we start with the trivial partition H whose blocks are
the sets {a} with a in E. Next we are given pairs (a, T) of elements of E
and asked to do the following: If or and T are in different blocks of II, then
combine those blocks into a single block. This is precisely what was done
in Example 5.3 as we worked through the operation of COINCIDENCE.

Assume that there are going to be roughly n of the pairs (a, T) and that
one pair must be processed before the next pair is received. The best-
known procedure for carrying out this process maintains two vectors p and
m. The vector p describes the current partition II. For each a in E such
that p[a] = or, the value of m[a] is the size of the block containing a. We
initialize p[a] to or and m[a] to 1 for each a in E. Then for each pair (a, T)
the following procedure is executed:

Procedure UNION(a, T);
Begin

,u p°O[a]; Perform path compression at a;
v := P, [T]; Perform path compression at T;
If t v then

If m[v] < m[µ] then
Begin p[v] := p; m[p] := m[µ] + m[v] end
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Else
Begin p[p] := v; m[v] := m[p] + m[v] end

End.

If IF and A are the blocks of II containing v and r, respectively, and r #
A, then we choose the representative for the new block r U A to be the
representative for the larger of r and A. In this way the computation of
p°° [p] remains unchanged for p in the larger of r and A.

The total time needed to perform n calls to UNION is known not to be
linear in n in the worst case. However, the time is very nearly linear. Let
F be the function defined for nonnegative integers such that F(O) = 1 and

F(n) = 2F(n-1) n > 1.

Thus F(1) = 2, F(2) = 4, F(3) = 16, F(4) = 216 = 65536, and F(5) = 265536
Let G be the inverse function to F, so that G(n) is the smallest integer k
such that F(k) > n. Although G goes to infinity as n goes to infinity, it
does so very slowly, for G(n) < 5 if n < 265536. The total time required for
n calls to UNION is at most a constant times nG(n), which is linear in n
for all practical purposes.

It is possible to dispense with the vector m, although there is a modest
penalty in reduced execution speed. The test

If m[v] < m[p] then

in UNION is replaced by

If p < v then

In this way we choose the smaller of p and v to be the representative for
the merged block. Now the total execution time for n calls to UNION is at
worst a constant times nlog(n).

Traditionally the vector m has not been used in coset enumeration coin-
cidence procedures. There are several reasons for this:

Space is usually at a premium in coset enumerations.
The worst-case performance of n log(n) is rarely encountered in practice.
It is more difficult to ensure termination of the coset enumeration proce-

dures discussed in Chapter 5 if p[Q] may be larger than o,.

To be consistent with current practice, the vector m will not be used here.
The version of COINCIDENCE presented in this section uses two sub-

routines. The function ACTIVE computes p°O [v] and performs path com-
pression.
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Function ACTIVE(a): integer;
Input: Q : a positive integer not exceeding n;
(* Returns the representative for the equivalence class containing v.
Begin

(* Find p°O[a]. *)
,r:= v; p := p[T];

While p T do begin r:= p; p := p[T] end;
ACTIVE:=T; 1L:= o,; p:=p[p];
(* Perform path compression. *)
While p Or do begin p[p] := T; p := p; p := p[p] end

End.

Within COINCIDENCE, we maintain a list 771, ... ,'qk of integers which
have been deleted from E. This list is accessible to MERGE, which is a
modified version of UNION.

Procedure MERGE(v, T);
Input: v, T : positive integers not exceeding n;
Begin

V:= ACTIVE(o ); V):= ACTIVE(r);

If cp 0 V then begin
,u:= min(cp, 0); v:= max(cp, 0); p[v] :=,u;
k:=k+l; ?k:=v

End
End.

Here is the complete description of COINCIDENCE:

Procedure COINCIDENCE(a, T);
Input: a, ,r : elements of E;
Begin

k:=0; MERGE(u, T); i:=1;
While i < k do begin

v:=q; El:=O; i s= i + 1;
(* Remove all edges involving v.

For x in X do
If there is an edge (v, x, cp) in E then begin

Delete (v, x, cp) from E and add it to E1;
If (cp, x-1) # (v, x) then delete (gyp, x-1, v) from E

End;

(* Make sure that for each edge e in El there is an edge in E
equivalent to e. *)
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For (v, x, cp) in El do begin
p := ACTIVE(v); V) := ACTIVE(p);
If px is defined then MERGE(V), px)
Else if x ' is defined then MERGE(p,'")
Else begin

Add (p, x, /i) to E;
If save then push (p, x) onto the deduction stack;
If (0, x-1) # (µ, x) then begin

Add (?P, x-1, p) to E;
If save then push (v', x-1) onto the deduction stack

End
End

End
End

End.

As discussed in the previous section, references to the boolean variable
save and to the deduction stack should be ignored for the time being.

In one of the comments in COINCIDENCE there is a reference to equiv-
alent edges. If - is an equivalence relation on A, we shall say that edges
e = (v, x, (p) and f = (µ, y, 0) are equivalent if x = y, v - p, and W - V).
When this is the case, then the paired edges e' and f are also equivalent.

We must show that COINCIDENCE does what it is supposed to do. Let
A0 denote the current automaton just before a call to COINCIDENCE and
let A denote the current automaton at the termination of the call. When
an edge e = (v, x, cp) is deleted from E, the edge e' is also deleted. When
an edge f = (p, x, b) is added to E, then f is added also. Moreover, f is
not added unless both px and' ' are not defined. Thus A is deterministic
and its edge set is closed under the pairing operation.

For states /3 and -y of Ao, write /3 - ry if ACTIVE(3) = ACTIVE(-Y), where
ACTIVE uses the vector p as it is at the termination of COINCIDENCE.
Clearly - is an equivalence relation on the states of A0. Let zt; be the
congruence on A0 generated by (o-, T). Whenever MERGE is called, its
arguments are congruent with respect to Therefore /3 - y implies /3 y.

If e = (v, x, cp) is deleted, then the second For-loop makes sure that there
is an edge e1 such that e is equivalent to e1 with respect to -. If e1 is later
deleted, then there will be an edge e2 such that e1 is equivalent to e2 with
respect to -. But then e is equivalent to e2. Continuing in this way, we
see that there is an edge f in A such that e is equivalent to f. Since no
distinct states of A are equivalent with respect to -, the edge f must be
(ACTIVE(v), x, ACTIVE(cp)). Let us denote f bye. Every edge of A is e
for some edge e of A0.

Suppose now that /3 and 'y are states of A0 such that /3 - ry, and
()3, x, cp) and (y, x, V') are edges of A0. Then (ACTIVE(3), x, ACTIVE(cp))
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and (ACTIVE(y), x, ACTIVE(0)) are edges of A. Since ACTIVE(,3) =
ACTIVE(y) and A is deterministic, we have ACTIVE(cp) = ACTIVE(i J)
and hence cp 0. Therefore =_ is a congruence on A0. Since v - T, it follows
that = and are the same. Therefore A is isomorphic to the quotient of
Ao by P--.

As has been mentioned several times already, space is often a problem
in coset enumeration. The vector p used by COINCIDENCE takes a sub-
stantial amount of space. In (Beetham 1984) it was observed that with
some data structures for the edge set E no extra space is needed for p
or the sequence of q j. If I X I = 2, then during the execution of COINCI-
DENCE the quantity k - i is bounded. (See Exercise 6.2.) Thus only a
fixed amount of space is needed to store the sequence 71i, ... , 7k and the
entries in p for these states. Once any edges involving r7i have been re-
moved and processed, there is room to store p[rii] and to link rii to 77i+1
in the space formerly used to store edges leaving qi. In the general case,
we choose a subset Y of X such that JY) = 2 and Y is closed under the
map x H x-1. Whenever MERGE finds two states which are equivalent,
those two states are processed first by a special coincidence routine which
looks only at edges with labels in Y. In the space released there is room
to store both the values of p and a linked list of the qj. Then the pro-
cedure returns to processing the edges which involve the current ii and
have labels in X - Y, as in COINCIDENCE. See the Appendix for more
details.

Exercises

6.1. Work through the coincidence of Exercise 5.1 by hand using the procedure COINCI-
DENCE of this section.

6.2. Suppose that JXJ = 2. Show that k - i < 1 at all times during the While-loop in
COINCIDENCE.

6.3. Let the vector p describe the partition of {1, ... ,10} into 10 one-point blocks. Suppose
UNION is called with the arguments (10, i), with i = 9, 8, ..., 1, in that order. How
many references to p are made? What is the answer if no path compression is used?

4.7 Standardization in place
The output of BASIC_CE is determined only up to isomorphism. To re-
move this ambiguity, it is useful to standardize the output. This section
describes how to standardize the coset automaton of BASIC_CE in place.
The techniques involved will be used again in Section 5.4. The global
variables n, p, and A = (E, X, E, {1}, {1}) are assumed to be available.

Standardization is accomplished through a sequence of transformations
called switches. Fix two distinct integers or and T greater than 1 and let f
be the permutation of the set Z+ of positive integers which interchanges a
and T and leaves every other element of Z+ fixed. To switch a and T in A
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means to replace A by f (A) = (f (E), X, f (E), {1}, {1}), where

f(E) = {(f(w),x,f(b)) I (w,x,') E E}.
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Clearly the restriction of f to E is an isomorphism from A to f (A). If
{Q,T}f1E=0, then f(A) = A.

Switches will be performed by the procedure SWITCH described next.
The function FF defined within SWITCH implements the function f.

Procedure SWITCH(v, T);
Input: Q, T : distinct integers between 2 and n;

Function FF(p): positive integer;
Input: p: a positive integer;
Begin

If p = Q then FF := T
Else if p =,r then FF := o
Else FF := p

End;

Begin
Let El be the set of edges ((p,x,V) in E such that {p,b} fl {U, T} 54 0;
E:=E-E1;
For (cp, x, 0) in E1 do begin

A:= FF(cp); v := FF(0); Add (p, x, v) to E
End;

(* Make sure p[p] = p if and only if p is in E. *)

V:= P[0,1; W := p[T];
Ifcp=o, then p[T] T

Else p[T] := 0;

If 0 = T then p[Q] Q

Else p[u] := 0
End.

We continue to leave open the manner in which E is represented. The
set E1 has at most 41XI elements. Normally this is quite small compared to
AEI. In the following discussion we shall use the length-plus-lexicographic
ordering of X* based on the given order of the generators. Other orderings
could be used. The reader is encouraged to consider what changes would
be necessary if a basic wreath-product ordering were used.

Example 7.1. Suppose that X = {x, y, y-1 } and R consists of the rules

x2 E, - - + y-1y -*E.



194 4 Subgroups of free products of cyclic groups

Let A = (E, X, E, {1}, {1}), where E = {1,2,3,5,7} and E is given by

x Y-1y

2

1

3

5

3

7

If we switch 2 and 3 in A, then E is unchanged and E is now given by

x y-1
y

3

5

7
2

1

2

After switching 3 and 5, the table is

x Y-1p

1 2 3

2 1 5 7

3 5 1

5 3 2

7 7 2

Switching 4 and 5 changes E to 11, 2,3,4, 7} and produces the table

x Y-1p

4

1

3

7

2

2

After the switch of 7 and 5 we have E = {1, 2,3,4, 5} and the table

x Y-1p

4

3

5

1

2

2

At this point A is standard.
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Table 4.7.1

x y Y-1

1 4 3 5

2 5 4

3 1 7

4 1 2

5 7 2 1

7 5 3

Here is a formal description of the in-place standardization procedure
illustrated in Example 7.1. The procedure is based on LENLEX_STND of
Section 3.8 and is designed to be used as part of BASIC_CE as given in
Section 4.5.

Procedure STANDARDIZE;
(* Standardize the current automaton with respect to a

length-plus-lexicographic ordering. *)
Begin

T:=1; a:=1;
While a < T do begin

For x in X do (* Elements of X are taken in -<-order. *)
If ax is defined then begin

P := Orx;

If p > T then begin
T:=T+1;
If p > T then SWITCH(T, p)

End
End;

a:=Q+1
End

End.

At the termination of STANDARDIZE, the automaton A is standard
with respect to the length-plus-lexicographic ordering of X* determined by
the given ordering of X. The switches in Example 7.1 are the ones that
STANDARDIZE performs as it standardizes the original automaton in that
example, assuming that x - y -< y-1.

Example 7.2. Let X = {x, y}}, let R define the free group on {x, y}, and
let A = (E, X, E, {1}, {1}), where E = {1,2,3,4,5,7} and E corresponds to
Table 4.7.1. If we assume that x -< x-1 -< y - y-1, then STANDARDIZE
performs the following switches in standardizing A. With or = 1, there is
a switch of 2 and 4 followed by a switch of 4 and 5. When v is 2, there
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Table 4.7.2 Table 4.7.3

x x-1
y Y-1 x x-1

Y Y_
1

1 2 3 4 1 9 6

2 1 5 2 7 4

3 1 6 4 7 6 2

4 6 5 1 6 9 1 4

5 4 2 7 2 4

6 4 3 9 6 1 9 9

are no switches. With a = 3, a switch of 6 and 7 occurs. At this point
the automaton is standard. No further switches are carried out. The final
coset table is Table 4.7.2.

The number of calls to SWITCH in STANDARDIZE is at most I E - 1,
and, with any reasonable representation for E, the execution time for a
single call to SWITCH should be at worst proportional to IXJ. Thus the
time to standardize should be at most a constant times IXJJEJ.

Exercises

7.1. Show that or = p[v] each time the For-loop in STANDARDIZE is executed. Thus a is
always in E until or > T.

7.2. Assume that X and R are as in Example 7.2. Standardize the coset automaton
(E, X, E, {1}, {1}), where E is given by Table 4.7.3.

7.3. Devise an in-place standardization procedure which uses the basic wreath-product order-
ing determined by a given ordering of the generators.

4.8 Computation with subgroups
Let H be a finitely generated subgroup of our free product F = Mon (X I R).
We have associated with H three automata, As(H), Ac(H), and A,(H), and
the languages they recognize, Ls (H), G, (H), and 4(H). Each automaton
is a minimal trim, deterministic automaton recognizing its language. The
automaton As (H) is finite if and only if H has finite index in F. The other
automata are always finite (when H is finitely generated).

An automaton isomorphic to AI(H) is the preferred description of H.
However, any finite coset automaton A such that H = K(A) is almost as
good. Given A and R, we can decide membership in H, decide equality
of cosets in H, and obtain a finite set U of words such that { [U] I U E U1
is a generating set for H. Conversely, given a finite generating set, we can
construct an automaton isomorphic to AI(H) using BASIC_CE.

We shall now look at some additional computations with subgroups of
F. Suppose that we are given finite coset automata Al and A2. Let Hi =
K(A2), i = 1, 2. We shall first construct finite coset automata defining
Grp (H1, H2) and H1 fl H2.
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One way to construct a coset automaton defining M = Grp (H1, H2) is
to use Al and A2 to obtain finite sets U1 and U2 of words describing gener-
ators for H1 and H2, respectively, and then to use BASIC_CE with the set
U1 U U2, which describes a set of generators for M. However, it suffices to
construct just U1 and then to perform two-sided traces of the elements of
U1 at the initial state of A2. See Exercise 8.5 for an alternative approach.

The procedure for finding a coset automaton corresponding to H1 n H2
is based on the following proposition.

Proposition 8.1. Let H1 and H2 be subgroups of F and set L = H1 n H2.
Then

(a) C,, (L) = C,,(Hl) n Gs(H2)
(b) C ,,(L) = Gc.(H1) n C,,(H2)

Proof. The first equality says that [U] is in L if and only if [U] is in H1 and
in H2. The second equality says the same thing for freely reduced words.

As a corollary, we get a result first proved in (Howson 1954).

Corollary 8.2 (Howson's theorem). If H1 and H2 are finitely generated
subgroups of F, then H1 n H2 is finitely generated.

Proof. This follows from Proposition 8.1 and Corollary 3.9.

Proposition 8.3. Let Al and A2 be finite coset automata and let A be the
result of applying the accessible intersection procedure to Al and A2. Then
A is a coset automaton and K(A) = K(A1) n K(A2).

Proof. Let Ai = (Ei, X, Ei, Ai, Ai), i = 1, 2. The full intersection procedure
forms A3 = (E3, X, E3, A3, A3), where E3 = El X E2, A3 = Al x A2, and there
is an edge in E3 from (a1, a2) to (T1, r2) with label x if and only if (ai, x, Ti) is
in Ei for i = 1, 2. If this is the case, then for i = 1, 2 the triple (7i, x-1, ai)
is in Ei, and hence there is an edge labeled x-1 from ('r117-2) to (0'110'2)'
Therefore A3 satisfies conditions (ii) and (iii) of the definition of a coset
automaton. The automaton A is the accessible part of A3, so A satisfies
condition (i) as well.

Now L(A) = L(A1) n L(A2). Thus

L,(K(A)) = L(A) n C
= (L(A1) nC) n (L(A2) nC)

= G,(K(A1)) n G,,(K(A2))

= G,(K(A1) n K(A2)).
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Table 4.8.1

x x-1
Y Y-1

(1,1) H 1 2 3 4

(3,2)+-+ 2 1 3

(2,3) - 3 5 2 1

(4,2) H 4 6 1

(1,3) - 5 3 7 8 6

(4,1) H 6 4 5

(3,3) r--, 7 5 9

(2,2) H 8 10 5

(2,1) F-* 9 11 7 11

(3,1)-10 8

(1,2) H 11 9 9 12

(4,3) H 12 12 12 11

Therefore K(A) = K(A1) fl K(A2).

Example 8.1. Let X = {x, y}} and let TZ be the set of defining rules for
the free group on {x, y}. For i = 1, 2 let A, = (Ei, X, Ei, {1}, {1}), where
E1 = {1, 2, 3, 4}, E2 = {1, 2, 3}, and El and E2 are given, respectively, by
the following coset tables:

x x-1
y Y-

1 x X-1 y
y-1

1 2 3 2 4 1 2 3 2

2 1 3 1 2 1 1 3

3 1 2 3 3 3 2 1

4 4 4 1

Applying the accessible intersection construction to these automata, we
get A = (E, X, E, {1}, {1}), where E = {1, 2, ... ,12} and E is given by
Table 4.8.1, which indicates the correspondence between E and El X E2.
Applying the procedure REDUCE described at the end of Section 4.4, we
remove states 8 and 10 from A and find that AI(K(A)) is isomorphic to
the restriction of A to E - {8,10}.

Now let A = (E, X, E, {a}, {a}) be any finite coset automaton and let
H = K(A). Suppose U is a word in X*. The conjugate M = [U]-1H[U]
is finitely generated and so can be described by a finite coset automaton.
To find such an automaton, one could determine a generating set of H,
conjugate that generating set by [U], and then construct AI(M) using BA-
SIC-CE. However, there is an easier way, particularly if au is defined in
A.
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Proposition 8.4. Let A = (E, X, E, {a}, {a}) be a coset automaton,
let U be a word in X*, and suppose that au = a in A. Then B =
(E, X, E, {a}, {o }) is a coset automaton and K(13) = [U]-1K(A)[U].

Proof. Clearly B is deterministic and satisfies conditions (ii) and (iii) of
the definition of a coset automaton. We must prove that B is accessible.
By Proposition 4.4, there is a word V such that vv = a and [U]-1 = [V].
Since A is accessible, we can get from a to any state by a path. Therefore
we can get from a to any state and B is accessible.

Now suppose that aw = a. Then avwv = a, so [UWV] = [U][W][U]-1

is in K(A), or [W] is in [U]-1K(A)[U]. Therefore K(B) C [U]-1K(A)[U].
Conversely, if aw = a, then avW U = a, from which it follows that K(B)

[U]-1K(A)[U].

Example 8.2. Suppose that X = {x, y, y-1} and R consists of the rules

x2 -+ E, yy-1 -4 E, y-1y -4 E.

Let A = (E, X, E, {1}, {1}), where E = {1, 2,31 and E is given by the
following coset table:

x

1

2

3

y

1

3

2

2

1

3

y-1

2

1

3

Then A is a complete coset automaton, which is standard with respect
to the length-plus-lexicographic ordering with x -< y -< y-1. The subgroup
H = K(A) has index 3 in F. The conjugates of H are H and the groups
K(AQ), or = 2, 3, where AQ = (E, X, E, {a}, {v}). The coset tables for the
standard automata isomorphic to A2 and A3 are, respectively,

x

1

2

3

y

2

1

3

3

2

1

y-1

3

2

1

and x

1

2

3

2

1

3

y
y-1

1

3

2

1

3

2

In general, new states and edges must be added as in DEFINE before
Proposition 8.4 can be applied. Here is the general procedure for computing
conjugates of finitely generated subgroups of F.

Procedure CONJUGATE(A, U; D);
Input: A : a coset automaton (E, X, E, {a}, {a});

U : a word in X*;
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Output: D : a coset automaton such that K(D) = [U]-1K(A)[U];
Begin

8:= A; REWRITE(X,)Z, U; V); TRACE(B, a, V; or, B, D);
Let D = x1 ... xs;

For i := 1 to s do begin
Let T be an object which is not a state of B;
Add T to the set of states of B and add (a, xi, T) and

(T, xi 1, a) to the set of edges of B;
o:= T

End;

Change the initial and terminal state of B to a;
REDUCE(B; D)

End.

Now let us turn to the problem of computing normalizers. The normalizer
in F of a subgroup H of F is the subgroup NF(H) of elements u in F such
that u-1Hu = H. Since H = u-1Hu if and only if AI(H) is isomorphic to
AI(u-'Hu), we can decide membership in NF(H). But we can do more.
If H = 1, then NF(H) = F. This special case can be handled trivially.
Therefore let us assume that H# 1. Since NF(u-1Hu) = u-1NF(H)u, we
may replace H temporarily by a conjugate if we wish.

Suppose that A = (E, X, E, {a}, {a}) is isomorphic to AI(H). For a in E,
let Aa = (E, X, E, {a}, {a}) and Ha = K(A0). By Proposition 8.4, HQ is a
conjugate of H. Also, I EI(HH)I < IEI If I EI(Ha)I < IEI, then let us replace
H by Ha. Continuing in this way, we may assume that IEI(Ha)I = IEI for
all or in E. When this condition holds, we shall say that A is cyclically
reduced.

Proposition 8.5. Suppose that A= (E, X, E, {a}, {a}) is a finite, cyclically
reduced coset automaton such that H = K(A) is nontrivial. If U is an
element of C such that [U] is in NF(H), then au is defined in A.

Proof. Suppose that au is not defined. Perform the operation CON-
JUGATE(A, U; B). Let B = (A, X, Q, Jul, {a}). The state a was added in
the last iteration of the For-loop of CONJUGATE. At the termination of
CONJUGATE, there was only one edge leaving or. The procedure REDUCE
only removes edges, so there is at most one edge leaving a in B. However,
K(B) = K(A) is nontrivial, so there is exactly one edge (a, x, T) in B.
Moreover, T # a and (T, x-1, a) is the only edge coming into a. Now B
must be isomorphic to A, so there are edges (a, x,,3) and (j3, x-1, a) in A,
where /3 a, and these are the only two edges in A involving a. But in
AQ = (E, X, E, {/3}, {/3}) the state a is nonterminal and has only one edge
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Table 4.8.2

x X-1 y
1

1 2 3 4 5

2 1 6

3 1 7

4 7 1

5 6 1

6 5 8 9 2

7 10 4 3 11

8 6 12

9 12 6

10 7 12

11 12 7

12 11 9 8 10

leaving it. Therefore Aa is not reduced, contradicting the assumption that
A is cyclically reduced. Hence au is defined in A.

Corollary 8.6. If H is a nontrivial, finitely generated subgroup of F, then
H has finite index in NF(H).

Proof. We may assume that H = K(A), where A is a finite, cyclically
reduced coset automaton. By Proposition 8.5, every right coset of H in
NF(H) is important, and H has only finitely many important cosets.

Example 8.3. Let X and R be as in Example 8.1, and let A =
(E, X, E, {1}, {1}), where E _ {1, 2, ... ,12} and E is given by Table 4.8.2.
Since two edges leave every state, it follows that AI(HH) is isomorphic to
Ao for every a in E. Thus if H = K(A), then I NF(H) : HI is the number of
states a in E such that Aa is isomorphic to A. Now four edges leave 1, so
if A and AQ are isomorphic, then four edges must leave a. Thus a must be
one of 1, 6, 7, and 12. Standardizing A6, A7, and A12 with respect to the
order x -< x-1 -< y -< y-1 gives A in each case. Therefore INF(H) : HI = 4.
Since lxy = 6, 1x

'y-1 = 7, and l'1' = 12, the elements 1 = [s], [x y],
[x-ly-1], and [xyx-ly-1] are coset representatives for H in NF(H). In fact
NF(H) = Grp (H, [xy], [x-ly-']).

Exercises

8.1. Explain why it is useful in CONJUGATE to rewrite U before executing TRACE.
8.2. Suppose that A = (E, X, E, {a}, {a}) is a cyclically reduced coset automaton with at

least one edge. Show that there is a nonempty, cyclically reduced word U such that
au = a.

8.3. Let X and 1 be as in Example 8.1. Suppose Al and A2 are the standard coset automata
defined by the following tables:
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Table 4.8.3

X
x-1

Y

1 2

2 3 1 4

3 2 3 3
4 5 5 2

5 4 4 6
6 7 5

7 6 7 7

x
x-1

y Y-
1 X Y Y-

1

1 2 3 4 1 2 3 4 2

2 3 1 4 2 1 1 4

3 1 2 3 1 4

4 2 1 4 3 2 1

Determine the important-coset automaton for K(A1) fl K(A2).
8.4. Continuing with X and R as in Example 8.1, let A = (E, X, E, {1}, {1}), where E _

{1, ... , 7} and E is given by Table 4.8.3. Set H = K(A). Determine INF(H) : HI and
find a word U such that NF(H) = Grp (H, [U]).

8.5. Let X be a finite set and let R be a classical niladic rewriting system on X. For i = 1, 2
let Ai be a finite coset automaton with respect to R. Show that the procedure CA-JOIN
described below returns a coset automaton A such that K(A) = Grp (K(Al ), K(A2)). A
function f from states of Al to states of A is built up. The subroutine FORCE, which
is a version of the coincidence procedure, assumes that A and f are global variable and
takes two states from A as arguments.

Procedure FORCE(p, v);
Begin

Let A' be the quotient of A modulo the congruence generated
by (µ, v) and let g be the expanding morphism from A to A';

Replace A by A' and f by f o g
End.

Procedure CA_JOIN(A1, A2; A);
Begin

A:= A2;
Let yl be the initial state of Al;
Define f (yl) to be the initial state of A;
s:=1; r:= 00; i:= 1;
While i<sdo

For x in X do
If yi is defined in Al then begin

W:=y%; u:_.f(-Yi);

If V E r then begin
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If f is defined in Al then
FORCEco', 7/i)

Else if 0' is defined in A then
FORCE(,i-_', o)

Else add the edges (o, x, El)) and (', x-1, o)
to A

End

Else begin

s:=s+1; -y,:=W; Add w to r;
If ax is defined in A then

T:=Qx
Else add to A a new state T and edges (o, x, T)

and (T,x 1, a);

f(o) =T
End

End
End.

4.9 Standard coset tables
Section 3.8 sketched a procedure which can be used to list representatives
for the isomorphism classes of accessible, deterministic automata with al-
phabet X and at most a given number n of states. The process involves
choosing a reduction ordering -< on X* and constructing transition matrices
T(A) corresponding to the accessible, deterministic automata A which are
standard with respect to -<. The matrices are produced in the precedence
order defined by -<.

Among the finite, accessible, deterministic automata with alphabet X are
the finite coset automata with respect to R. A standard coset automaton
A is determined by T(A). We can use the precedence ordering of these
matrices to define an ordering of finitely generated subgroups of F. Given a
finitely generated subgroup H, we associate with H the standard automaton
B(H) isomorphic to A, (H). If K is another finitely generated subgroup of
F, then H comes before K if T(B(H)) comes before T(B(K)).

In this section we shall consider the following problems:

(1) List all standard coset tables with at most n rows.
(2) List all standard, reduced coset tables with at most n rows.
(3) List all complete, standard coset tables with at most n rows.
(4) List the complete, standard coset tables which correspond to sub-

groups H of F such that IF : HI < n and H is first in its conjugacy
class.

Problem (2) is equivalent to finding all subgroups of F with at most n im-
portant cosets, problem (3) is equivalent to finding all subgroups of F with
index at most n, and problem (4) is equivalent to finding representatives
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for the conjugacy classes of such subgroups. The techniques developed here
will be incorporated into the low-index subgroup algorithm of Section 5.6.

Perhaps the most obvious way to solve problem (1) is to use the procedure
of Section 3.8 to list all transition matrices with at most n rows and delete
those matrices which do not correspond to coset automata with respect to
R. However, only a very small fraction of transition matrices define coset
automata with respect to R, so it is more efficient to build the definition
of a coset automaton into the backtrack search.

Let x1, ... , x, be the elements of X in -<-order. In the search procedure of
Section 3.8, nodes of the search tree correspond to certain incomplete tran-
sition matrices. In our search for standard coset automata, the nodes will
correspond to incomplete transition matrices T which satisfy the following
condition: If T [Q, i] is a positive integer T and xi 1 = xj, then T [T, j] = v.

The root of the tree is again the 1-by-r matrix all of whose entries are
`?'. Suppose that T is an m-by-r transition matrix which is a node in the
tree. If there is no word W such that lu' is unspecified, then T is one of
the desired transition matrices. Otherwise, let W be the first word with
respect to --< such that 1W is unspecified. Then W has the form Uxi, where
v = lU is defined. Let xi 1 = xi and let C be the set of indices r such that
T[T, j] is unspecified. Let D consist of 0, the elements in C, and, if m < n,
also m + 1. For each k in D we get a descendant of T by the following steps:

T [u, i] := k;
If k = m + 1 then add a k-th row of question marks;
if k # 0 then T [k, j] := Q;

As in Section 3.8, if the tree is examined in a depth-first search, then the
transition matrices are produced in order of precedence.

Example 9.1. Let X = {x, y}}, let R define the free group on {x, y}, and let
- be the length-plus-lexicographic ordering of X* with x x-1 -< y -< y-1
Assume that n > 3. The root of the search tree is [? ? ? ?] and the
descendants of the root are

[0???], [11??]'
12?

1??]

With the first and third of these matrices, W = x-1, while with the second,
W = y. The descendants of [ 0 ? ? ? ] are

[0 0 ?
02??

?], 1???
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The descendants of [ 1 1 ? ? ] are

[1 1 0 ?], [1 1 1 1]

The descendants of [ 2 ?

?
? ] are

20?? 22??
?1??' 11??

If we take -< to be the basic wreath-product ordering with x -< x-1 -< y y-1,

then the root and its descendants are the same. However, with 2
2

? ? ?,

now W = x2, and the descendants are

12??? 22??
0 1 ? ? ' 1 1 ? ? '

2???
31??
?2??

Example 9.2. Let X = {x, y, y-1 }, let -< be the length-plus-lexicographic
ordering of X* with x -< y -< y-1, and let R consist of

x2-*E, yy
1__. E Y-1 y->E.

The root of the search tree is [? ? ?] and its descendants are

?] f2??[0??], [1?
2 ? ?

If n = 2, then a total of 23 coset automata are produced.

The 23 automata of Example 9.2 are not all reduced and so do not cor-
respond to 23 different subgroups of F. For example, four of the automata
correspond to the trivial subgroup. To produce only reduced automata,
we must modify our search criteria slightly. If o > 1, T [or, i] is the only `?'
in the o-th row, and this row contains only one positive entry, then 0 is
not allowed to be in D. If in Example 9.2 we make this change, then 17
standard, reduced automata are produced.

In a search for standard, complete coset automata, 0 is never allowed
to be in D. Let X and R be as in Example 9.2, let -< be the length-plus-
lexicographic ordering with x - y -< y-1, and take n = 3. Then 11 complete,
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standard automata are produced. The transition matrices are

122 123
122

[1 1 1],
2 1 1 ,

3 1 1 , 2 3 1

233 312

123

3 3 1

2122-
122

223 232 233

1 3 1 , 1 1 3 , 1 2 2

312 321 311

From this list of matrices we see that the free product F of Z2 and Z has
one subgroup of index 1, three subgroups of index 2, and seven subgroups
of index 3.

If we only want to know the number of subgroups of F of index at most
n, then we can proceed in a manner analogous to Exercises 8.6 to 8.8 in
Chapter 3. The columns of a complete standard cosec table with m rows
are permutations of {1, ... , m}, and the columns headed x and x-1 are
inverses of each other. Thus these columns define a homomorphism f of F
into the symmetric group Sym(m). The first thing to do is to count these
homomorphisms. If x x 1, then we may choose the image f (x) arbitrarily
and map x-1 to f(x)1. If x2 is a left side in R, then we must map x to an
element of order 1 or 2 in Sym(m).

Proposition 9.1. Given positive integers e and n, let g(e, n) be the number
of elements u in Sym(n) such that ue = 1. Then

g(e,n) _ g(e,n - d)(n - d + 1).

die

Proof. Exercise.

Using Proposition 9.1, we can compute as many values of g(2, n) as we
need. For example, the values for n = 1, 2, ..., 5 are 1, 2, 4, 10, and 26,
respectively. Let X have s elements x such that x-1 = x, and write lxi as
s + 2t. Then the number of homomorphisms f of F into Sym(n) is

(n!)tg(2, n)s.
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Given f, we can form the automaton 13 = (E, X, E, {1}, {1}), where E =
11, 2, ... , n} and E consists of the triples (v, x, of W). We can then define
A to be the standard automaton isomorphic to the accessible part of 13. It
is easy to check that A is a complete coset automaton.

Proposition 9.2. If A has m states, then the number of homomorphisms
f which produce A is

(n - 1) ... (n - m + 1) [(n - m)!]tg(2, n - m)9.

Proof. Exercise.

Let h(n) denote the number of complete, standard coset tables with n
rows relative to R.

Proposition 9.3. The values of h are given by the following recursive
formula:

h(n) =
(n

1 1)i I (n!)tg(2,n)s

n-1

- E h(m) (n - 1) ... (n - m + 1) [(n - m)!]tg(2, n - m)3 .

m=1

Proof. As in Exercise 8.7 of Chapter 3, the equality

n

(n!)tg(2, n)s = E h(m)(n - 1) ... (n - m + 1) [(n - m)!]tg(2, n - m)s
m=1

counts the homomorphisms of F into Sym(n) in two ways. We have only
to solve for h(n).

In Example 9.2 we have s = t = 1. In this case, the formula of Proposi-
tion 9.3 gives the following values: h(1) = 1, h(2) = 3, h(3) = 7, h(4) = 23,
h(5) = 71.

Solving the fourth problem stated at the beginning of this section involves
a more complicated use of backtracking. The following example shows the
reason.

Example 9.3. Assume that X, -<, and R are as in Example 9.2. Suppose
that n > 4 and that the first two rows of T (A) are

[2341
122
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No standard coset automaton with T(A) of this form corresponds to a
subgroup of finite index in F which is first in its conjugacy class, for if we
change the initial and terminal state to 2 and standardize, then the resulting
automaton B corresponds to a conjugate of K(A), and the first row of T(B)
will be [ 2 1 1 ]. Any such matrix comes lexicographically before one whose
first row is [ 2 3 4 ].

Suppose in our search for standard, complete automata we are consider-
ing a transition matrix T in the tree and its possible extensions. We may
be able to use the ideas of Example 9.3 to show that no standard, complete
coset automaton associated with a descendant of T can correspond to a
subgroup of finite index in F which is first in its conjugacy class. Let A
be the coset automaton with initial state 1 obtained by taking as edges the
triples (v, xi, T) with T [o,, i] = T `?' and let m be the number of rows of
T. For 2 < i < m, let Ai be the result of changing the initial and terminal
state in A to i and standardizing the result. The matrices T and T(A2)
will in general have some entries which are `?'. Let W be the first word at
which fA and fA, differ. Suppose that fA, (W) and fA(W) are both defined,
that fA.(W) < fA(W), and that 1V is determined in both A and Ai for all
words V -< W. Then no descendant of T can correspond to a subgroup of
finite index in F which is first in its conjugacy class.

Implementing the test just described is somewhat involved. However,
the test plays an important part in the low-index subgroup algorithm of
Section 5.6, so we give a detailed version of it for the case of a length-plus-
lexicographic ordering. In computing A, we change the initial and terminal
state to i and then arrange the states 1, ..., m as i = a , Q2, .... ordered
according to the first word which is the signature of a path in A from i to o j.
In FIRST_CONJ, listed below, o is stored as new[j], and old[new[j]] is set
equal to j. The arrays new and old allow us to go back and forth between
A and A. There is an edge (Q, x, T) in Ai if and only if (new[a], x, new[T])
is an edge of A. The value returned by FIRST_CONJ is false if the test
shows that A cannot be extended to a complete automaton describing a
subgroup first in its conjugacy. Otherwise, FIRST_CONJ returns true.

Function FIRST_CONJ(T): boolean;
(* This procedure assumes that - is a length-plus-lexicographic

ordering. *)
Begin

For i:= 1 to m do new[i] := 0;
For i:= 2 to m do begin

s := 1; old[1] := i; new[i] := 1;
For u:=1tomdo

For y:= 1 to r do begin
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a :=T[u,y]; b:=T[old[u],y];
If a = `?' orb = `?' then goto 98; (* Test at i is

inconclusive. *)
If new[b] = 0 then begin

s := s + 1; old[s] := b; new[b] := s
End;

c := new[b];

If c < a then
Begin FIRST_CONJ := false; goto 99 end

Else if c > a then goto 98
End;

(* Reset new for the next iteration of the loop on i. *)
98: For t := 1 to s do new[old[t]] := 0

End;

FIRST_CONJ := true;
99:End.

One way to solve problem (4) stated at the beginning of this section
is to incorporate FIRST_CONJ into our search criteria. That is, in the
new search tree, only transition matrices on which FIRST_CONJ returns
true are permitted as nodes. If this is done, then with X and R as in
Example 9.2 and n = 3 the following transition matrices are produced:

122 123

3 1 1 , 2 3 1 ,

233 312

211 222
1 2 2 ' 1 1 1

Thus F has one conjugacy class of subgroups of index 1, three classes of
subgroups of index 2, and three classes of subgroups of index 3.

Exercises

9.1. Determine the answers to problems (1) to (4) stated at the beginning of this section in
the following cases:

(a) X = {x, y}, R = {x2 _ e, y2 , e}, n = 5.
(b) X = {x, y}', R = FGRel({x, y}), n = 3.
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9.2. Determine the number of subgroups of index n, 1 < n < 5, in a free group of rank 2.
9.3. Devise a version of FIRST_CONJ which uses a basic wreath-product ordering. Use the

procedure WREATH_STND of Section 3.8 as a guide.
9.4. Using the techniques of Section 1.8, construct a procedure for estimating the size of the

search tree associated with the solution to problem (4) stated at the beginning of the

section.

*4.10 Other methods
Let H be a subgroup of F given by a finite generating set. Using
BASIC_CE, we can construct a coset automaton isomorphic to AI(H).
However, there are at least two other methods for constructing such an
automaton. One method is based on more or less standard techniques
in automata theory, and the other is based on Nielsen reduction, an ap-
plication of the Knuth-Bendix procedure discussed in Section 2.8. The
purpose of this section is to sketch these other approaches to determin-
ing AI(H). By comparing these three methods, one can gain insight
into the relationships among coset enumeration, the Knuth-Bendix pro-
cedure for strings, and constructions of automata theory. Proofs will be
omitted.

Let U be a finite set of words defining generators for H. The procedure
CANON outlined at the end of Section 4.2 produces a trim, determinis-
tic automaton Al = (El, X, El, A1, fl) recognizing L ,(H). The expanding
morphism f from Al to AI(H) of Proposition 3.13 actually maps El onto
EI(H) and El onto EZ(H). Thus all we need to do is decide when f(a) =
f (T) for a and r in El. Let au = a and av = T, where Al = {a}. Then
f (a) = f (T) if and only if H[U] = H[V]. By Proposition 2.8, this can
be decided. Let us write a T if f(01) = f (T) and denote the equiva-
lence classes of ti by Al, ... , As, where a is in Al. Let E2 = {1, ... , s}
and define g : El -+ E2 so that a is in Ag(e). Set E2 equal to the set of
triples (g(a), x, g(T)) such that (a, x, T) is in El. Then (E2, X, E2, {1}, {1})
is isomorphic to AI(H).

Example 10.1. Let us apply the preceding construction to the group H
of Example 2.2. Here F is the free group on {x, y} and Al has El =
{1,2,...,11}, Al = {1}, S21 = {1,9,10,11}, and El given by Table 4.10.1.
Since states 1, 9, 10, and 11 are terminal states, they must all map to H
under f. Now 2 = F, 7 = Fly -% and 1x-'y 'x-' = 71 = 11 is terminal.
Thus [x-ly-lx-1] is in H, so H[x] = H[x-ly-1]. Therefore f (2) = f (7). In
this way we find that the -classes are

A1={1,9,10,11}, A2=12,71, A3=13,5,81, A4=f4,61.

Therefore A,(H) is isomorphic to ({1, 2,3, 4}, X, E2, {1}, {1}), where E2 is
given by
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x

2

1

3

3

1

4

y

3

1

Y_
1

4

2

This agrees with the result of Example 5.2.

The problem with this approach to constructing AI(H) is that we might
have to look at all possible pairs (o, T) in order to determine There
are ways to speed up the computation of the sets Ai, but these techniques
tend to make the method look like coset enumeration. The best way to
handle partitions is with the union-find procedure, which is central to the
coincidence procedure.

Now let us turn to the Knuth-Bendix procedure as a means of construct-
ing AI(H). As described in Section 2.8, we choose an object # not in X,
set Y = X U {#}, and select a reduction ordering -< on Y*. We also set
T = {(#U, #) I U E U}. Given the input Y, -<, and T U R, the Knuth-
Bendix procedure for strings terminates. Let V be the reduced, confluent
rewriting system thus obtained. The canonical forms for elements in #X*
correspond to the right cosets of H in F. Given words V and W in X*,
the words #V and #W can be reduced to the same canonical form using
V if and only if H[V] = H[W]. Let W be the set of pairs (B, C) such
that (#B, #C) is in V and let P be the set of proper prefixes of the left
sides in W. Then P gives a set of representatives for the important right
cosets of H. To get the edges of AI(H), we take each P in P and each
x in X and rewrite #Px using V. Let #Q be the result. If Q is in P,
then form the edge (P, x, Q). If E is the set of edges thus constructed, then
(P, X, E, {e}, {e}) is isomorphic to AI(H).

Example 10.2. We shall apply the Knuth-Bendix approach to the group
of Example 10.1. The set U is {xyx, x-2y}. Let us use the length-plus-
lexicographic ordering of Y* in which # -< x -< x-1 -< y -< y-1. The input
set of rules for the Knuth-Bendix procedure is

xx-1 x-lx -4 E,
yy-1

-4 E, y-1y -4 E,

#xyx -' #, #x-2y - #.

The reduced, confluent rewriting system V returned consists of the rules in
R together with

#xy - #x-1, #x-2 - #y-1 #x-ly-1 - #x, #y-1x - #x-1.
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Table 4.10.1

x x-1
y Y-1

1 2 3 4

2 5

3 6 7

4 8

5 9 6

6 10

7 11

8 9

9 2 4

10 2 3

11 4

Thus P consists of S1 = e, S2 = x, S3 = x-1, and S4 = y-1. Rewriting #S2y
gives #S3, so we form the edge (S2, y, S3). Writing i for Si, the edges turn
out to be exactly the same as those obtained in Example 10.1.

*4.11 General niladic systems
In Proposition 1.2 we classified all confluent, reduced, niladic rewriting
systems which define groups. However, since that time we have considered
only classical niladic rewriting systems. Most of the main results about
subgroups of groups defined by classical niladic rewriting systems carry
over to subgroups of groups defined by general confluent, niladic rewriting
systems, although the details are somewhat more complicated. There is not
sufficient space here to give the proper generalizations of all the results in
Sections 4.1 to 4.10 for groups defined by general confluent, niladic rewriting
systems. This section presents some of the main ideas. With a little effort,
interested readers can work out the rest for themselves.

Let us fix a confluent, reduced, niladic rewriting system R on X* defining
a group F. Then F is a free product of cyclic groups. By changing the
generating set, we could assume that all left sides in R were of the form x'
or xy with x y. However, we shall not make this assumption. As before,
- will denote the congruence on X* generated by R, [U] will be the --class
containing U, U will denote the irreducible word in [U], and C will be the
set of all irreducible words.

We begin by reviewing the main results of Section 4.1. For each x in X,
there are unique elements y and z of X such that xy and zx are subwords
of a left side in R. Let us denote y by x and z by x. Note that x = y = z.
If UU is the irreducible word in [x]-1, then UU starts with x and ends with
x. For any word W = xl ... xs in X*, define W-1 to be Ux.... U.., and WO
to be W-1. Normally we shall only consider W'' when W is in C. If R is
classical and W is in C, then W' = W-1. Let A and B be in C. We shall
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say that (A, B) is susceptible to cancellation if both A and B are nonempty
and, for some x in X, the word A ends with x and B starts with x. If
(A, B) is not susceptible to cancellation, then AB is in C.

Every word U in X* can be written as Ul ... Us, where each U2 is a
nonempty subword of a left side in R. If s is as small as possible, then U1,
... , Us is a minimal decomposition of U. An important result is that an
element U of C has a unique minimal decomposition U1, ..., U3 and U0,
... , UO is the minimal decomposition of UO. The number s will be denoted
I I U I I Thus I I U I I= 1 if and only if U is a proper, nonempty subword of a
left side.

Proposition 1.3 and Corollary 1.4 remain true, but Proposition 1.5 must
be modified to say that U and W have a common prefix of length at least
I U I - (k -1) I V I, where k is the maximum length of a left side in R. Propo-
sition 1.6 and its corollaries continue to hold. Proposition 1.9 must be
changed slightly. The words AB-1 and B-1A must be replaced by AB'
and BOA. Proposition 1.10 requires that both (A, B) and (B, C) not be
susceptible to cancellation. The derivation construction is still valid. In
proving results about coset automata in the general case, we need a fairly
technical lemma describing the circumstances under which one can have
words U and V in C such that U is a prefix of V<> and V is a suffix of UO.
This lemma is stated as Exercise 11.1.

The definitions of GS(H), ,AS(H), and L ,(H) are unchanged, and the
main results of Section 4.2 carry over essentially without modification. The
definitions of important coset, Lj(H), and .AI(H) remain the same. The
results of Section 4.3 are still correct, but the proofs of some, such as
Proposition 3.3, are more complicated.

When we come to Section 4.4, some definitions must be changed. Con-
dition (iii) of the definition of a coset automaton relative to R should now
read as follows:

(iii) If (a, x, T) is in E, then there is a path P in A from T to a such that
Sg(P) = U,

The definition of a reduced coset automaton must also be modified if Propo-
sition 4.10 is to continue to be true. Let A be a coset automaton and let
P be a path in A such that Sg(P) is a left side in R. Then P begins and
ends at the same state and so has the form

(o-0, x1, ow ), (a1, x2) a2 ), ... , (as-11 Xs 7 0,0).

The automaton A is reduced if for every such path P one of the following
holds:

(1) I{6-0,...,as 1}I <s.
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(2) At least two distinct Oi have two edges leaving them.
(3) Some Ui is the initial state of A and some other a has at least two

edges leaving it.

In the revised version of REDUCE, whenever a path P is found in A such
that Sg(P) is a left side in R and none of these three conditions is satisfied,
then all the edges of P are deleted along with any states that are no longer
accessible.

Basic coset enumeration is a little more involved. Let x1... xs be a left
side in R with x1 = x. The call DEFINE(v, x) must add s - 1 states
Tl, ... , rs_1 and edges (7-j- 1, xi, Ti), 1 < i < s, where T° = Ty = o,. The
procedure JOIN becomes much more complicated. First of all, the second
argument can be any nonempty, proper subword of a left side in R. The
call JOIN(v, U,T) still modifies the current automaton so that oU =,r, but
some interesting things can happen. Suppose that (ab)10 is a left side in
R, U = (ab)4, and a = T. Then a(ab) ' and a(ab)10 must both equal or. This
implies that a(ab)' = o,. Here is the new definition of JOIN:

Procedure JOIN(a, U, T);
Input: a, T : states in E;

U : a nonempty, proper subword of a left side in R such
that there is no edge leaving a with label x and no
edge coming into T with label y, where U starts with
x and ends with y;

Begin
Let UV be a left side in R;
Let U = xl ... xs and V = yl ... yt;
If v ='r and x1 = Yi then begin

s := gcd(s, t); t := 0
End;

P:=a;
For i := 1 to s - 1 do begin

n:= n + 1; p[n] := n; Add (p, xi, n) to E; p:= n
End;

Add (p, xs, T) to E;
If t > 0 then begin

p := T;
For i := 1 to t - 1 do begin

n:= n + 1; p[n] := n; Add (p, yi, n) to E; p:= n
End;

Add (p, yt, a) to E
End

End.
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The sketch of the coincidence procedure given in Section 4.5 is still valid.
However, the implementation details change significantly.

Procedure COINCIDENCE(o, T);
Input: o, T : elements of E;
Begin

k:= 0; MERGE(o, T); i := 1;
While i < k do begin

V:= 77i;

For x in X do
If vx is defined then begin

Let L = x1 ... x9 be the left side in R with xt = x;
Let L = Wr where W is not a proper power;
vo := v; po := ACTIVE(vo);
For j := 1 to s do begin

Iii := 1; ,a := ACTIVE(vj)
End;

Delete all edges (vj_1, xj, vj), 1 < j < s, from E;
If µx', is defined for some j then begin

Choose one such j;
Let WO, ..., cps be states such that cpj_1 = µi_1 and

(Pm-1 =(pm,1<m<s;
For m := 1 to s do MERGE(µm, cpm)

End
Else begin

Let = be the smallest equivalence relation on {(PO, ...
1P.-if such that whenever 'Pa-1 = 'Pb_1 and xa = Xb then
'Pa (Pb;=Let

t be the smallest multiple of I W I such that cpo = Vt,
For m := t to s do cpm);

Form := 0 to t do Wm := ACTIVE(cpm);
Form := 1 to t do add (4'm-1, xm, `gy'm) to E

End
End

End
End.

It is assumed that the left sides in R are not long, so the variable s will
have a small value. Thus the equivalence relation = will not be difficult to
determine.

The procedure BACK_TRACE remains the same. It is more difficult to
decide whether a two-sided trace can be done without defining new states.
The "clause" in TWO_SIDED_TRACE beginning
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Else if ITI = 1 then

is changed to the following:

Else if T is a subword of a left side in 7Z then begin
Let TV be a left side in 7Z;
(* Since W is in C, the word V is nonempty. *)
If full or

(ITI = IVI =1) or
((µ = v) and (TV has the form xm) and

(gcd(ITI, IVI) = 1))
then JOIN(µ, T, v)

End

The condition

(ITI = IVI = 1) or
((µ = v) and (TV has the form xm) and

(gcd(ITI, IVI) = 1))

describe the situation in which JOIN does not add any new states.
It is still possible to do all the computations with subgroups of F de-

scribed in Section 4.8.

Exercise

11.1. Suppose that U and V are words in C such that U is a prefix of V0 and V is a suffix of UO.
Show that IIUII = II V II. Let U1, ..., U. and Vl, .... Vs be the minimal decompositions
of U and V, respectively. Prove that Vi = U3, where 2 < i < s and j = s + 1- i, and
that V1 Us is a subword of a left side.
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Coset enumeration

Chapter 4 dealt with finitely generated subgroups of a free product F of
cyclic groups. The basic coset enumeration procedure presented in Sec-
tions 4.5 and 4.6 allows us to compute the important-coset automaton
AI(H) for such a subgroup H described by a finite generating set. In
general, coset enumeration is a procedure for trying to find AI(H), where
H is a subgroup of F which is finitely generated modulo a normal subgroup
N of F. When N is the normal closure of a finite set and H has finite index
in F, we can compute A,(H), and as we shall see in Chapter 6, we can find
a finite presentation for H/N.

The notation established in Sections 4.1 to 4.10 remains in effect. Thus
X is a finite set and R is a classical niladic rewriting system on X*. The
congruence on X* generated by R is -, and C is the set of canonical forms
for -. If U is in X*, then [U] is the --class containing U and U is the
unique element of [U] fl C. If x is in X, then x-1 is the element of X
representing the inverse of [x]. If U = xl ... x, then U-1 = xs 1... xi 1. If
JXJ = 1, then F is cyclic of order 2 and we have no trouble studying its
subgroups. Therefore we shall assume that JXJ > 2.

5.1 The general case
Let N be a normal subgroup of F and let K be a subgroup of F/N. The
inverse image H of K under the natural homomorphism from F to FIN is
a subgroup of F. The map K H H is a one-to-one correspondence between
the subgroups of F/N and the subgroups of F which contain N. The index
of H in F is the same as the index of K in F/N. If K is finitely generated,
then H may not be finitely generated, but there is a finite subset Y of F
such that H = Grp (Y, N). If in addition N is the normal closure of a finite
subset Z of F, then the pair (Y, Z) provides a finite description of H. If
H has finite index in F, then H is finitely generated by Proposition 3.5 in
Chapter 4. If N 1 and H has infinite index in F, then H is not finitely
generated by Proposition 3.18 in Chapter 4.
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In the general case of coset enumeration, we are given two finite subsets
U and V of X*. Let H be the subgroup of F generated by { [U] I U E U}
and the normal closure N of {[V] I V E V}. Thus H is generated by
{[W] I W E W}, where

W=UU{SVS-1ISEX*,VEV}.

To simplify the exposition, we shall sometimes assume that U is a subset
of C and that the elements of V are cyclically reduced. That is, all cyclic
permutations of the elements of V are in C. Given any finite subsets U and
V, reducing the elements of U and cyclically reducing the elements of V
does not change H.

We would like to be able to decide whether H has finite index in F, and if
so, to determine that index. Unfortunately, there is no algorithmic solution
to this problem. If there were an algorithm which could decide whether H
has finite index in F, then we could apply that algorithm to the case in
which U = 0. Then H = N would be normal in F, and we would be able to
decide whether the finitely presented group F/N was finite. As discussed
in Section 1.5, this is one of the questions known not to be answerable
algorithmically.

Although we cannot decide whether H has finite index in F, if the index
is finite, then we can verify that fact and determine the index. The first
observation in this regard is that we can decide whether a subgroup of finite
index in F contains N. Let us say that a complete coset automaton A is
compatible with V if vv = Q in A for all states o, and all V in V.

Proposition 1.1. Let L be a subgroup of F. Then N C_ L if and only if
o,[V] = v for each right coset v of L and each word V in V.

Proof. We shall have N C L if and only if L contains all conjugates
of the elements [V] with V in V. Let V be in V and let W be in X*.
Then [W][V][W]-1 is in L if and only if L[W][V][W]-1 = L or, equiva-
lently, L[W][V] = L[W].

Proposition 1.1 can be restated as follows: N C L if and only if A, (L) is
compatible with V.

Example 1.1. Let X = {a, b}', let R define the free group F on {a, b}, and
let V = {(ab)2}. Suppose A= (E, X, E, 111, {1}), where E={1,2,3,4,5,6}
and E is given by Table 5.1.1. Then A is a coset automaton, L = K(A)
has index 6 in F, and A is isomorphic to A8(L) = AI(L). Let V = (ab)2.
Then 1V = 1 and 2V = 2 in A, but 3v = 6. Therefore L does not contain
the normal closure of [V] in F.



5.1 The general case 219

Table 5.1.1

a a-1
b

b-1

1 1 1 2 3

2 3 4 3 1

3 4 2 1 2

4 2 3 5 6

5 5 5 6 4

6 6 6 4 5

Let us return to our subgroup H generated by {[W] I W E W}. Assume
that H has finite index in F. The automata AI(H) and A8(H) are the
same. Since H is finitely generated, by Proposition 3.2 in Chapter 1 there
is a finite subset W' of W such that H = Grp ([W] I W E W'). Suppose
that we have chosen a sequence Wo, W1, ... of finite subsets of W such that

(1)
UCWWCWW+1,i>0.

(ii) Ui=0 Wi = W.

Let Li = Grp ([W] I W E )lVi). Then W' C_ Wi for some i and H = Li.
Suppose that we begin computing AI(L1),AI(L2),... using BASIC_CE.
At some point AI(Li) will be complete and compatible with V. When this
happens, we shall know that H = L. Of course, if H does not have finite
index, then we shall go on computing coset automata forever.

There are many ways to choose a sequence of subsets Wi. We could take,
for example,

UU{SVS-1 SEX*,VEV,ISI <i},
Uu{SVS-1ISEX*,VEV,ISVI<i},

or

Uu{SVS-1 I SEX*,V E V,ISVS-1I <i}.

The following procedure uses the first of these choices.

Procedure GENERAL_CE(X, R, U, V; A);
Input: X : a finite set with at least two elements;

R : a classical niladic rewriting system on X*;
U, V : finite subsets of X*;

Output: A : a coset automaton isomorphic to AI(H), where H is
the subgroup of Mon (X I R) generated by
{ [U] I U E U1 and the normal closure of
{[V] I V E V};
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(* WARNING - TERMINATION DOES NOT OCCUR IF H DOES
NOT HAVE FINITE INDEX. *)

Begin
i := 0; done := false;
While not done do begin

T=UU{SVS-1I SEX*,VEV,ISI <i};
BASIC_CE(X, R, T; A)
If A is complete and A is compatible with V then done := true;
is=i+1

End.
End.

The output of GENERAL_CE is determined only up to isomorphism,
since we do not specify the order in which the words in T are to be processed
by BASIC_CE. In the following examples, we shall assume that BASIC-CE
standardizes its output automaton using STANDARDIZE, with the ele-
ments of X taken in the order they are listed. The value of the automaton
A at the end of the While-loop for a particular value of i will be denoted A.

Example 1.2. Let X = {x, y, y-1 }, let R consist of the rules

x2 E, yy-1 -4 E, y-1y E,

and let U = {x} and V = {y3, (xy)3}. The coset table for A0 is

x y
y-1

3

1

2

4

The coset table of Al is

x y

1 1 2 3

2 4 3 1

3 5 1 2

4 2 5 6

5 3 7 4

6 7 4

7 6 5

For A2 we get
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Table 5.1.2 Table 5.1.3 Table 5.1.4
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x x-1
U Y-1 x x -1

U Y-1 x x-1
U

U-1

1 2 3 4 2 1 2 3 4 2 1 2 3 4 2

2 3 1 1 4 2 3 1 1 4 2 3 1 1 4

3 1 2 3 1 2 5 6 3 1 2 5 6

4 5 6 2 1 4 7 8 2 1 4 7 8 2 1

5 4 6 5 9 6 6 3 5 9 6 6 3

6 4 5 6 5 1 0 3 5 6 5 9 3 5

7 8 4 10 8 7 8 4 9 8

8 4 7 7 9 8 4 7 7 9

9 5 8 9 6 5 8 7

10 6 7

x U
Y-1

The procedure terminates with A = A2.

Let us interpret what we have done as a result about the group G =
Grp (x, y I x2 = y3 = (xy)3 = 1). If F is the free product defined by R and N
is the normal closure of (the image of) V in F, then G is isomorphic to F/N.
Let K be the subgroup of G generated by x. Then IG : KI _ IF: HI = 6.
Because of the relation x2 = 1, the order of K is at most 2. The columns of
the final coset table satisfy the defining relations of G. Therefore there is a
homomorphism of G onto the group M generated by these columns. The
column headed x is the permutation (1)(2,4)(3,5)(6), which has order 2.
Thus the order of K must be 2. Hence the order of G is 6.2 = 12.

Example 1.3. Let X = {x, y}}, let R define the free group on {x, y}, let
U = {xy}, and let V = {x3, y3, (xy)3, (xy-1)3}. Tables 5.1.2 to 5.1.4 are
the coset tables for A0, A1, and A2, respectively. The automaton A2 is
compatible with V, so termination occurs with A = A2.

Let G = Grp (x, y I x3 = y3 = (xy)3 = (xy-1)3 = 1) and let K be the sub-
group of G generated by xy. Our enumeration shows that IG : KI = 9,
and the relation (xy)3 = 1 says that K has order at most 3. The prod-
uct of the permutations given by the columns headed x and y in the final
coset table is (1)(2, 5, 8)(3,4, 9)(6)(7), which has order 3. Therefore IKI = 3
and IGI =9.3=27.



222 5 Coset enumeration

Table 5.1.5

x x-1 y y-1

1 1 1 2 3

2 2 2 4 1

3 3 3 1 5

4 4 4 6 2

5 5 5 2 7

2i-2 2i-2 2i-2 2i 2i-3
2i-1 2i-1 2i-1 2i-3 2i+1

2i 2i 2i 2i - 2

2i+1 2i+1 2i+1 2i-2

Example 1.4. Let X and 7Z be as in Example 1.3, and let U = 0 and V =
{x}. Then in GENERAL_CE the coset tables for A0, A1, and A2 are,
respectively,

x x-1 y y 1 x x-1
y

y-1 x x-1 y y 1

1 1 1 1 1 1 2 3 1 1 1 2 3

2 2 2 1 2 2 2 4 1

3 3 3 1 3 3 3 1 5

4 4 4 2

5 5 5 3

In general, the coset table for Ai, i > 1, looks like Table 5.1.5. Thus
GENERAL_CE loops forever.

The procedure GENERAL_CE has a number of weaknesses. Two of the
main ones are the following:

The size of the set T grows exponentially with i.
During a given iteration of the Repeat-loop, all work done on previous

iterations is ignored.

Let us see how we can address these problems.
Suppose that A = (E, X, E, {a} , {a}) is a coset automaton. A sufficient

condition for K(A) to contain [SVS-1] is that as = or for some state or
and that vv = v. (This condition is not necessary since SVS-1 may not
be in C.) Thus for K(A) to contain all elements [SVS-1] with V in V and
ISO < i, the following conditions are sufficient:

(i) as is defined in A for all S in X* such that ISI < i.
(ii) aV = a for every state a which can be reached from a by a path of

length at most i.
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Let us define a class of procedures which we shall call coset enumeration
procedures. The arguments are to be the same as in GENERAL_CE, ex-
cept that we shall assume that the words in U are reduced and the words
in V are cyclically reduced. The same global variables as in BASIC-CE are
maintained and the procedures DEFINE, JOIN, COINCIDENCE, TRACE,
BACK_TRACE, and TWO_SIDED_TRACE are used. The first four
statements of any coset enumeration procedure are essentially the same
as those of BASIC_CE:

n:= 1; p[l] := 1; E := 0;
For U in U do TWO_SIDED_TRACE(1, U, true)

At this point, the procedure carries out a sequence of operations of the
following types:

(1) Choose o, in E and x in X such that ax is not defined, and exe-
cute DEFINE(v, x).

(2) Choose or in E and V in V and call TWO_SIDED_TRACE(v, V,
full), where full is true or false. Thus either full or partial traces
can be performed.

(3) If A is complete and compatible with V, then stop.

The sequence of operations is subject to two conditions: First, if termi-
nation is possible, then it must occur. Second, for every integer o- which is
ever in E, one of the following holds:

(a) At some time p[v] becomes less than a, so or is deleted from E.
(b) Eventually as is defined for all x in X, and vv = a for all V in V.

Let X, R, U, and V be as in GENERAL_CE, let H be the subgroup of
F generated by the image of U and the normal closure N of the image of
V, and let CE be a coset enumeration procedure.

Proposition 1.2. If the call CE(X, R, U, V; A) terminates, then H = K(A).

Proof. After the first four statements, K(A) = Grp ([U] I U E U). Calls
to DEFINE do not change K(A) and by Proposition 4.5.4, calls of the
form TWO_SIDED_TRACE(o,, V, full) either leave A unchanged or add
[SVS-1] to K(A), where 1S = o,. Thus at all times K(A) C H. If CE
terminates, then A is compatible with V, so K(A) D N by Proposition 1.
Hence K(A) = H.

Proposition 1.3. If H has finite index in F, then CE(X, R, U, V; A) ter-
minates.
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Proof. Suppose that the procedure does not terminate.

Lemma 1.4. For every word S in X*, eventually is is defined in A.

Proof. We proceed by induction on (SI. Note that 1 is always in E. Thus
lE is always defined and is equal to 1. Suppose that S = Tx with x in X. By
induction, IT is eventually defined. Once it is defined, it remains defined,
but the value may change due to the action of COINCIDENCE. However,
if IT changes, then the new value is positive and less than the old value.
Therefore eventually or =1T remains constant. Therefore p[o ] remains equal
to v, so by (b) above, aX _ (1T )x = is eventually is defined.

Lemma 1.5. For every S in X* and every V in V, eventually K(A)
contains [SVS-1].

Proof. By Lemma 1.4 and its proof, is = a eventually is defined and
remains constant. By (b), eventually aV = v, so K(A) contains [SVS-1].

Since the index of H in F is finite, H is generated by the image of the
elements of U and a finite number of conjugates of the images of elements
of V. Thus eventually K(A) = H. But then A is complete and compatible
with V, so termination is forced.

There is a great deal of freedom in designing a coset enumeration pro-
cedure. In the next few sections we shall discuss several strategies which
have been proposed. However, we shall not have much to say about doing
coset enumeration by hand, although for nearly 20 years, before the first
computer implementation, long enumerations were carried out by hand,
sometimes with subgroups of index several hundred. The reader can find
extensive discussions of coset enumeration by hand in [Coxeter & Moser
1980], (Leech 1984), and (Neubiiser 1982). No computer implementation
of coset enumeration quite captures these methods.

We close this section with a slight digression. In most of our discussions,
we have not considered the possibility that memory may be limited. In the
real world this is very often the case. When a coset enumeration program
is run, there is a fixed amount of memory available. When that memory
is filled, the program must stop without producing a result. This raises
the question of how long a coset enumeration can run as a function of the
memory available to it. We do not have a good answer to this question.
However, there is some evidence that the worst-case running time may not
be bounded by a polynomial function of memory size.

The evidence referred to comes from looking at a rather artificial version
of the problem. We consider sequences of coset automata AO, A1,. .. , As
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such that AO = ({ 1 } , X, 0, { 1 } , { 1 }) and for 1 <i < s the automaton Ai+1
is obtained from Ai by an operation of one of the following two types:

(i) Execution of DEFINE(o, x), where o is a state in Ai, x is in X, and
v' is not defined in A.

(ii) Execution of COINCIDENCE(v, T), where o and r are distinct states
of A.

Assume that X and R are fixed. Given a positive integer M, what is
the longest such sequence in which each Ai has at most M states? We
shall sketch a proof that the answer is not bounded above by a polynomial
function of M as long as F is not abelian.

Let X = {x, y}} and let R define the free group on {x, y}. For r > 1, let
1 3r be the coset automaton (E,., X, Er, {1} , {1}), where Er = {1, 2, . , 2r}
and EE consists of the edges (2i - 1, y, 2i), (2i - 1, y-1, 2i), (2i, y, 2i - 1), and
(2i, y-1, 2i - 1), 1 < i < r, and the edges (2i, x, 2i + 1), and (2i + 1, x-1, 2i),
1 < i < r. The coset tables for 131,82, and 133 are, respectively,

x X-1 Y Y-1 x x-1
Y

y-1 x x-1
y

y-1

1 2 2 1 2 2 1 2 2

2 1 1 2 3 1 1 2 3 1 1

3 2 4 4 3 2 4 4

4 3 3 4 5 3 3

5 4 6 6

6 5 5

Suppose that r and M are positive integers. Let h(r, M) = s, where
Ao, A,, ... , As is a sequence of coset automata of maximal length such that
AO is trivial, A3 is isomorphic to 13r, and Ai+1 is obtained from Ai by an
operation of type (i) or (ii), 1 < i < s, and none of the automata has more
than M states. If no such sequence exists, set h(r, M) = 0. If M > 3, then
the following statements construct 131 using only operations of types (i) and
(ii) in such a manner that no more than M states are ever active at one
time.

n:= 1; p[l] := 1; E:= 0;
For i := 1 to M -1 do DEFINE(i, y);
COINCIDENCE(1, 3)

This construction uses M-1 operations of type (i) and one operation of type
(ii). Thus h(1, M) > M if M > 3. It is easy to show that h(1, 1) = h(1, 2) = 0
and h(1, 3) = 3.

We shall now present a procedure BUILD which constructs 13r using a
long sequence of operations of types (i) and (ii) such that there are never
more than M active states. The basic idea of this construction arose out
of conversations between the author and C. M. Hoffmann. The bulk of the
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work is done by the subroutine ATTACH, which "attaches" a copy of B,r
to the current automaton. The standard global variables n and p are used.

Procedure ATTACH(r, M, p);
Input: r, M : positive integers;

p : an active state such that py and py ' are not defined;
(* A copy of B,r is attached to the current automaton at p. No existing

state is removed and no more than M - 1 new states are ever
active at one time. *)

Begin
m:=1; p;
Ifr=1 then k:=1
Else k := 2r;
While M - m > k do begin

DEFINE(Q, y);

If r > 1 then begin
,r:=n; DEFINE(T, x); V:=n; ATTACH(r -1, M - m - 1, cp);
DEFINE(T, y); m := m + 2r

End
Else m:=m+1;
v:=n

End;

o- := py2; COINCIDENCE(p, a)
End.

The procedure BUILD simply initializes the automaton and calls AT-
TACH.

Procedure BUILD(r, M);
Input: r, M : positive integers;
(* Builds a copy of Br in such a way that no more than M states are

active at one time. *)
Begin

n := 1; p[1] := 1; E := 0;
ATTACH(r, M, 1)

End.

Let Nd and NN denote the number of calls to DEFINE and COINCI-
DENCE, respectively, during one execution of BUILD. Table 5.1.6 shows
some sample results. It is left to the reader to experiment further with
BUILD, to analyze its performance, and to prove the following proposition.

Proposition 1.6. For each positive integer r there is a positive constant Cr
such that h(r, M) > crMr if M > 2r + 1.
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r Nd NN

Table 5.1.6

M

16

56

216

1028

7576

3

5

10

57

217

10

20

40

50

100

Exercises

1.1. Let R be a classical niladic rewriting system on X* and suppose that t is an object not
in X. Set Y = X U {t} and S = R U {t2 -* s} and let T be the set of words of the form
txtytx-1ty-1 with x and y in X. Suppose CE is a coset enumeration procedure and V is
a finite subset of X*. Let W consist of the elements of V together with t and all words
of the form xtx with x in X. Prove that the call CE(X, R, 0, V; A) terminates if and
only if the call CE(Y,S,)IV,T;13) terminates. Given 13, show how to get A. Conclude
that for a specific pair (X, R) we may build a machine for enumerating cosets of the
trivial subgroup in which the relations are "hardwired". (Hint: The group Mon (Y I S)
acts faithfully as a group of permutations of the elements of F = Mon (X I R), where an
element x of X acts as right multiplication by [x] and t acts as the inverse map. See also
Exercise 3.9 in Chapter 1.)

1.2. Suppose that an enumeration of the right cosets of a subgroup H in a finitely presented
group G produces a coset automaton (E, X, E, {a}, {a}). Let a be a state in E and
assume that au = a for all words U defining generators of H. Suppose that W is a word
such that aY1' = a. Show that W defines an element g of G such that g -'Hg = H.

1.3. Coset enumeration may sometimes be effective in studying groups which are not finitely
presented. The most common examples are groups satisfying a finite exponent condition.
These are groups in which the n-th power of every element is known to be trivial for
some positive integer n. Let G be a group defined by a finite number of relators and
the condition that G has exponent dividing n. Let H be a subgroup of G generated by
the images of a finite set U of words. Our desire is to prove that IG : HI is finite. We
take a finite set of words containing the ordinary relators of G and some number of n-th
powers. We then invoke CE(X, R, U, V; A) for some coset enumeration procedure CE.
Suppose during the enumeration we find a state a # 1 such that aU = a for all U in U.
Prove that we may force a = 1 by a call to the coincidence procedure without affecting
the eventual termination of the enumeration.

5.2 The HLT strategy
The HLT strategy for coset enumeration described in this section grew out
of work by Haselgrove, Leech, and Trotter. It is discussed at length in
(Cannon et al. 1973). The idea of the HLT strategy is easy to state. It
consists of executing the following statements:

a:=1;
While or < n do begin

For each V in V perform a full two-sided trace of V at a;
For each x in X do if ax is not defined then DEFINE(a, x);
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a:=a+1
End;

Recall that n is the largest integer used so far as a state. This simple
description does not allow for the possibility that states may be removed
by COINCIDENCE. The full procedure must consider this eventuality. A
positive integer or not exceeding n is currently a state if and only if p[a] = a.

Procedure HLT(X, R, U, V; A);
(* A coset enumeration procedure. *)
Begin

n := 1; p[1] := 1; E := 0;
For U in U do TWO_SIDED_TRACE(1, U, true);
a:= 1;
While a < n do begin

If p[a] = a then begin
For V in V do begin

TWO_SIDED_TRACE(a, V, true);
If p[a] a then break

End;

If p[a] = a then for x in X do if ax is not defined then
DEFINE(a, x)

End;

a:=a+1
End;

STANDARDIZE
End.

The standardization step is not logically necessary, but it facilitates the
comparison of the output from different coset enumeration procedures with
the same input data.

The procedure HLT clearly satisfies the definition of a coset enumeration
procedure. Thus Propositions 1.3 and 1.4 apply to HLT. The operation of
HLT is dependent on the order in which U, V, and x are taken in the three
For-loops. In the following examples, the order given in the descriptions of
U, V, and X will be used.

Example 2.1. Let X = {a, b}} and let R define the free group F on {a, b}.
Suppose that U = {U} and V = {V1, V2, V3}, where U = b, V1 = a3, V2 = b4,
and V3 = (ab)2. After the trace of U at 1, we have the following coset table:

a a-1 b-1b

1
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Next we trace V1 at 1, which yields

a

1

2

3

2

3

1

a-1

3

1

2

b b-1

1 1

Tracing V2 at 1 produces no changes. After V3 is traced at 1, we have

a

1

2

3

2

3

1

a-1

3

1

2

b
b-1

1

3

1

2

Since 1' is defined for all x in X, we begin tracing the elements of V at 2.
Tracing V1 does not give anything new, but the trace of V2 produces

a

After V3 is traced, we have

1 2 3 1 1

2 3 1 3 5

3 1 2 4 2

4 5 5 3

5 4 2 4

2

3

1

a

b

3

1

2

b

b-1

b-1

No more changes occur until we begin to trace the elements of V at 4. When
Vl is traced at 4, the table becomes

a a-1
b

b-1

The next change occurs when V3 is traced at 5. This gives
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a a-1 b-1
b

The table is now complete and compatible with V, so no more changes are
made and IF: HI is 6. The final standardization produces the following
table:

a a-1 b-1
b

If G = Grp (a, b I a3 = b4 = (ab)2 = 1), then the subgroup K of G gener-
ated by b has index 6 in G. Clearly IKI is at most 4. Since the column
headed b in the final coset table defines the permutation (1)(2,3,5,4)(6),
which has order 4, the order of G is 24.

Example 2.2. Let X = {x, y, y-1 } and let R consist of the rules

x2 -4 6> yy-1 -46, y-1y-4s.

Suppose that U = 0 and V = {V1, V2, V3}, where V1 = y3, V2 = xyxy-1,
and U3 = (xy)7. Tracing V1 at 1, we have

x

1

2

3

y
y-1

2

3

1

3

1

2

After the trace of V2 at 1, the table is

x

4

5

Y Y-1

3

1

2

1

2 4
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Now tracing V3 at 1 gives

x y Y-1 x Y Y-
1

1 4 2 3 7 8 6

2 5 3 1 8 7 9

3 6 1 2 9 10 8

4 1 5 10 9 11

5 2 4 11 12 10

6 3 7 12 12 11 6

Tracing V1 at 2 produces no change. Tracing V2 at 2 causes states 5 and 12
to be identified. After the call to COINCIDENCE, states 9, 10, 11, and 12
are no longer in E and the coset table is

x 11

y-1 x y Y-
1

1 4 2 3 5 2 6 4

2 5 3 1 6 3 7 5

3 6 1 2 7 8 6

4 1 5 8 8 7 4

Tracing V3 at 2 and V1 at 3 produces no change. Tracing V2 at 3 causes
states 8 and 1 to be identified. At this point the table collapses to

x

1

y-1

1

y

1 1

Therefore the group Grp (x, y I x2 = y3 = xyxy-1 = (xy)7 = 1) is trivial.

It has been found that the HLT strategy as described does not perform
as well as one would like when memory is restricted. We shall now consider
an extension to the HLT strategy which makes it work significantly better
with limited memory.

One memory issue which arises in connection with all coset enumeration
procedures is the possibility of reusing integers for labeling elements of E.
In the procedure DEFINE of Section 4.5, whenever a new state is needed,
the variable n is incremented and the new value of n is used as the new
state. This is done even when there are positive integers less than n which
have been deleted from E and could be used. With some data structures for
storing E, there is considerable space savings to be realized if these inactive
state labels are reused.

Even when this is done, there can still be problems with the HLT ap-
proach. To address these problems, a "lookahead phase" may be added
to the HLT strategy. Suppose at some point during the execution of the
While-loop in HLT there is no more space available to process a full trace at
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v or to execute a call DEFINE(o, x). In its simplest version, the lookahead
phase consists of carrying out the following loop:

T:=o;
While r < n do begin

If p[r] = T then
For V in V do begin

TWO_SIDED_TRACE(T, V, false); (* A partial trace. *)
If p[r] j4 T then break

End

T:=T+1
End;

Here partial two-sided traces are performed in the hope that COINCI-
DENCE will be called and will free up space for new states. A number
of variations of lookahead have been suggested. Several may be found in
(Cannon et al. 1973) and (Leon 1980b).

Even though enough space is released by a lookahead pass to resume the
primary or "defining" phase of the HLT strategy, it may be necessary to
invoke lookahead again if memory runs low. Repeated lookahead passes can
become time-consuming and result in only small amounts of space being
made available. Typically, the enumeration is abandoned when the space
released falls below some preset threshold.

Exercises

2.1. Let X, 7Z, and V be as in Example 2.1 and set U = {a}. Execute HLT(X, 7Z, U, V; A).
2.2. Redo the enumeration in Example 2.2 with V2 = (xyxy 1)2.
2.3. Find the index of Grp (ab) in Grp (a, b I a2 = b3 = (ab)5 = 1).

5.3 The Felsch strategy
This section describes a strategy for coset enumeration first suggested in
(Felsch 1961). It differs substantially from the HLT strategy. In outline,
the Felsch strategy is as follows:

(1) Use only partial traces with elements of V.
(2) Do not invoke DEFINE while it is possible to make a change in the

current automaton by a partial two-sided trace of an element of V.
(3) When a call DEFINE(v, x) is made, choose v as small as possible,

and for that a choose x as early as possible in some fixed ordering
of X.

The goal of the Felsch strategy is to limit the size of E by obtaining
as much information as possible before defining new states. Although the
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strategy is often successful, there are cases where other coset enumeration
procedures perform better.

The main difficulty in implementing the Felsch strategy is finding an
efficient way to fulfill the second statement in the outline. The obvious
approach would be to run the following loop repeatedly until no change in
the automaton occurs:

a:=1;
While a < n do begin

If p[a] = a then
For V in V do begin

TWO_SIDED_TRACE(a, V, false);
If p[a] 0 a then break

End;
a:=a+1

End;

However, this would be very time-consuming.
Suppose that we have reached a point where the preceding loop pro-

duces no changes in the current automaton A. If we now make a call
DEFINE(a, x), then which calls TWO_SIDED_TRACE(p, V, false) could
cause a change in A? Clearly the trace must involve one or both of the
new edges (a, x, T) and (T, x-1, a) created by DEFINE. Thus either V has
the form AxB, where pA = a, or V has the form Cx-1D, where aD = p.
If V has the first form, then the call TWO_SIDED_TRACE(a, xBA, false)
will produce the same result as the call TWO_SIDED_TRACE(p, V, false).
If V has the second form, then calling TWO_SIDED_TRACE(T,x-'DC,
false) accomplishes the same thing as calling TWO_SIDED_TRACE(p, V,
false).

Let W denote the set of cyclic permutations of the elements of V. The pre-
vious discussion can be summarized as follows: After a call DEFINE(a, x)
we only need to carry out traces of the form TWO_SIDED_TRACE(a, W,
false) or TWO_SIDED_TRACE(T, W, false), where W is in W and in the
first case W starts with x and in the second case W starts with x-1
and r = ax.

It is quite possible that one of these calls to TWO_SIDED_TRACE will
cause a change in A, which will make it necessary to perform other traces.
Changes in A resulting from a call to TWO_SIDED_TRACE occur either
in JOIN or COINCIDENCE. Suppose the call JOIN(a,x,T) now makes
it possible for TWO_SIDED_TRACE(p, V, false) to change A. Then the
trace of V at p must involve an edge introduced by JOIN. If COINCI-
DENCE deletes states and edges from A, then we shall need to try all
traces TWO_SIDED_TRACE(cp, W, false), where W is in W, W starts
with y, and cpY was defined or changed by COINCIDENCE. Recall that a
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deduction is a pair (p, x) for which pX has recently been defined. When
COINCIDENCE changes the value of pX, the original edge (p, x, cp) is re-
moved, so pX is temporarily undefined. Then a new edge (p, x, 0) is added
and so (p, x) becomes a deduction. To satisfy the second point in the out-
line of the Felsch strategy it suffices to save deductions and to trace cyclic
permutations of the elements of V whenever the first edge of the forward
trace corresponds to a deduction.

Most implementations of the Felsch strategy maintain a list of deductions.
When a pair (a, x) is placed on the list, then the program performs all calls
TWO_SIDED_TRACE(Q, W, false), where W is in W and W starts with
x, unless at some point before or during the processing of this deduction v
is removed from E. Pairs get put on the list in DEFINE, JOIN, and COIN-
CIDENCE. Instructions to accomplish this have already been included in
the listings of these procedures presented in Sections 4.5 and 4.6. In these
procedures, the list is maintained as a stack, referred to as the deduction
stack. (A queue or other structure would also work.) When the global vari-
able save is set to true, the necessary pairs are pushed onto the deduction
stack.

The following procedure removes pairs from the deduction stack and
performs the appropriate traces. For each x in X the set W, is the set of
words in W which start with x.

Procedure PROCESS_DEDUCTIONS;
Begin

While the deduction stack is not empty do begin
Pop (v, x) off the deduction stack;

If p[o ] = a then
For W in WW do begin

TWO_SIDED_TRACE(a, W, false);
If p[u] o, then break

End
End

End.

It is possible for one pair (v, x) to be on the deduction stack more than
once. When (a, x) is popped off the stack, it would be valid to delete
immediately all other occurrences of (a, x) on the stack. However, the stack
data structure does not make such an operation easy. In practice, processing
redundant deductions does not seem to cause significant problems. To save
space, whenever (v, x) is pushed on the stack, the pair (ax, x-1) is usually
assumed to be pushed as well, but not actually stored. The procedure
PROCESS_DEDUCTIONS must be changed accordingly.

The complete Felsch strategy is described by the following procedure:
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Procedure FELSCH(X,1,U, V; A);
(* A coset enumeration procedure. *)
Begin

Let W be the set of cyclic permutations of the elements of V;
For x in X do let WW be the set of elements of W which start with x;
n := 1; p[l] := 1; E := 0; save := true; Clear the deduction stack;

For U in U do begin
TWO_SIDED_TRACE(1, U, true); PROCESS-DEDUCTIONS

End;

Q:=1;
While o, < n do begin

If p[a] = a then
For x in X do

If ax is not defined then begin
DEFINE(a, x); PROCESS_DEDUCTIONS;
If p[v] # a then break

End;

o:=Q+1
End;

STANDARDIZE
End.

To completely specify the operation of FELSCH, the order of the elements
in each of the sets W., must be given. Unless there is a statement to
the contrary, the order used in the examples is obtained as follows: The
elements of V are taken in the order given. For each V in V the cyclic
permutations of V are formed by cyclicly permuting V to the left one step
at a time. This gives an order for W, and the order for WW is the one
inherited from W.

Let us follow FELSCH through the enumerations of Examples 2.1 and 2.2.

Example 3.1. Let X = {a, b}} and let 1 define the free group on {a, b}.
Set U = {U} and V = {V1, V2, V3}, where U = b, Vl = a3, V2 = b4, and V3 =
(ab)2. Then W = {W1, W2, W3, W4}, where W1 = V1, W2 = V2, W3 = V3,
and W4 = (ba)2. The first step in the enumeration is to make a full trace
of U at 1. This gives

a a-1 b-1

1

b

1 1

Now we call DEFINE(1, a), which produces
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a a-1 b-1

1

2

2

1

b

1

The deductions (1, a) and (2, a-1) are pushed onto the stack but no changes
are made as the stack is cleared.

Next comes the call DEFINE(1,a-1). This makes the table

a a-1 b-1

1

2

3

2 3

1

1

b

11

The deductions (1,a-) and (3, a) are pushed onto the stack, and then
(3, a) is popped off. The call TWO_SIDED_TRACE(3, W1) results in
JOIN(2, a, 3). Tracing W3 at 3 leads to JOIN(2, b, 3). No further changes
occur as the stack is cleared. The table is now

a a-1
b-1

1

2

3

2

3

1

3

1

2

b

11

3

2

Now DEFINE(2,b-1) extends the table to

a a1 b-1

2

3

1

3

1

2

b

1

4

2

1

3

2

This time PROCESS_DEDUCTIONS does not add any more edges, so
DEFINE(3, b) is called. This gives

a a-1
b-1

2

3

1

3

1

2

b

1

4

2

3

Tracing W2 at 3 leads to JOIN(5, b, 4) and tracing W4 at 3 results in
JOIN(5, a, 4). Clearing the stack does not produce any more changes. At
this point the table is
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a a-1
b-1

2

3

1

4

b

The next definition is DEFINE(4, a), which gives us

a a-1 b-1

4

b

Tracing W1 at 4 causes JOIN(6, a, 5). Then tracing W3 at 4 results in
JOIN(6, b, 6). The table is now complete, and no coincidences are produced
as the remaining deductions on the stack are processed. The current table is

a a-1
b-1

b

This table is standard, so the final standardization step does not modify
the table. This table is the same one obtained in Example 2.1 using HLT.

Example 3.2. Let X = {x, y, y-1 } and let R consist of the rules

x2 E, yy-1 -4 E, Y-
ly ---+ -.

Suppose that U = 0 and V = {V1, V2, V3}, where V1 = y3, V2 = xyxy-1,
and U3 = (xy)7. Then W = {W1, ... , W7}, where W1 = V1, W2 = V2, W3 =
yxy 1x, W4 = xy-lxy, W5 = y lxyx, W6 = U3, and W7 = (yx)7. After the
first two calls to DEFINE, no modifications to the table result from the
calls to PROCESS_DEDUCTIONS. At this point the table is

x

1

2

3

2

1

y
y-1

3

1
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The next definition is made by DEFINE(1, y-1), which sets ly-' = 4
and 4y = 1 and pushes (1,y-1) and (4, y) onto the stack. Then (4, y) is
popped off the stack. The call TWO_SIDED_TRACE(4, W1, false) leads
to JOIN(3, y, 4), which sets 3y = 4 and 4y' = 3. No further changes occur
as the stack is cleared. The table is now

x

2

y

3

1

4

1

4

1

3

Next DEFINE(2, y) makes 2y = 5 and 5y' = 2. Then TWO_SIDED_
TRACE(5, W5, false) results in JOIN(3, x, 5), which sets 3' = 5 and 5X = 3.
These actions produce the following table:

x y
y-1

2

1

5

3

4

1

3

2

At this point DEFINE(2, y-1) defines 2y-' = 6 and 6y = 2. Then
TWO_SIDED_TRACE(6, W1, false) results in JOIN(5, y, 6), which makes
5y = 6 and 6y ' = 5. After this, TWO_SIDED_TRACE(6, W3, false) leads
to JOIN(4, x, 6), which sets 4X = 6 and 6T = 4. The table is now complete.

x y
y-1

The stack is not yet clear. The elements of W are still being traced
at 6. The call TWO_SIDED_TRACE(6, W7, false causes 1 and 6 to be
identified. The result is

x

1

y

1 1 1

which is consistent with Example 2.2.
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In designing an implementation of the Felsch strategy, one should care-
fully consider the amount of memory to be reserved for the deduction stack.
Experimental evidence suggests that the average size of the stack is quite
small, although it can be large, especially after a massive collapse produced
by COINCIDENCE. The idea of having the stack is that at any given mo-
ment there are usually only a few places where two-sided traces could lead
to change, and these places should be recorded to save looking for them.
However, if the stack has become very large, then there is really no need
for the stack, and it may be more efficient to trace each element of V at
each element of E rather than invoke PROCESS_DEDUCTIONS to clear
the stack.

The HLT strategy has its lookahead variation, and it should come as
no surprise that the Felsch strategy has variations too. One proposed
by G. Havas is called the small-gap strategy. Suppose we are executing
the procedure FELSCH and TWO_SIDED_TRACE(a, W, false) has been
called by PROCESS_DEDUCTIONS. After the call to BACK_TRACE,
the word T measures the "gap" in the tracing of W at a. If T is
short in some sense, then it is reasonable to ask that the arguments
in the next call to DEFINE be chosen so that this gap is shortened.
Thus, as the stack is being cleared, we keep track of short gaps which
are encountered. When the stack is empty and it is time to call DE-
FINE, then this is done in a way that shortens one or more of the listed
gaps. Care should be exercised in implementing this approach. Followed
strictly, it does not define a coset enumeration procedure in the sense of
Section 5.1.

Exercises

3.1. Does the procedure FELSCH work correctly if V contains elements of X?
3.2. Carry out the enumerations in Exercises 2.1 to 2.3 using FELSCH instead of HLT.
3.3. Suppose that memory for the coset table is limited. Prove that adding extra or redundant

relations in a Felsch enumeration cannot hurt, in the sense that if the enumeration
completed before the addition, it will complete after the addition. Show by example that
adding extra relators can hurt in an HLT enumeration.

5.4 Standardizing strategies
In both HLT and FELSCH, the last step in the enumeration is standard-
ization, the primary purpose of which is to make the output independent
of the order chosen for the subgroup generators in U and the relators in V.
However, there are coset enumeration strategies in which partial standard-
ization plays a central role and is performed throughout the procedure.
This has the effect of making the operation of the procedure as a whole,
not just the final output, less dependent on the order used for U and V. It
also sometimes results in better performance.
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Standardization with respect to a length-plus-lexicographic ordering can
be incorporated easily into HLT and FELSCH. Both procedures involve a
loop of the following form:

a:=1;
While or < n do begin

If p[a] = a then begin

End;

a:=a+1
End;

Suppose that during some iteration of this loop p[a] = a, so a is in E.
Let P be a word of minimal length such that 1P = a, and suppose that
Q is a word such that IQI < IPI. It may happen that 1Q is not defined or
that 1Q > 1P. In tracing an element V of V at a, we are trying to make
sure that [PVP-1] is in the subgroup H defined by the current automaton.
It is plausible that it would be a good idea to add such elements with IPI
small before adding those with IPI large. This can be arranged very easily
by performing a partial standardization of the coset automaton within the
basic loop. The corresponding strategies will be called the standardizing
HLT and Felsch strategies, respectively.

The main loop of STANDARDIZE is also a loop over the states. To
implement the standardizing strategies, we combine the main loop of STAN-
DARDIZE with the main loop in HLT or FELSCH. The result has the
following form:

a := 1; T := 1;
While a < n do Begin

If p[a] = a then begin

If p[a] = a then
For x in X do begin

;P:=ax,
If p > r then begin

T:=T+1;
If p > T then SWITCH(p, r)

End
End

End;

a:=a+1
End;
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Table 5.4.1 Table 5.4.2
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Table 5.4.3

a b b-1 a a-1 b b-1 a a-1 b b-1

1 5 4 2 7 1 2 4 5 7 1 2 3 4 5

2 3 6 1 2 4 1 8 2 3 1 8

3 2 4 3 5 4 3 1 2 7

4 1 5 3 4 1 2 3 4 7 6 1

5 4 1 8 5 3 6 1 5 8 1 6

6 7 2 6 7 5 6 5 4

7 8 1 6 7 8 1 6 7 4 3

8 7 5 8 7 2 8 5 2

The statements indicated by dots are the same as the statements in the
body of the main loop of HLT or FELSCH.

Let us apply the standardizing HLT and Felsch strategies to a sample
problem. Suppose that X = {a, b}:L, 7Z defines the free group on {a, b},
U={U},andV={V1,V2,V3},where U=bab-la,V1=a3,V2=b4,andV3=
(ab)2. The tracing of the elements of U is the same for all coset enumeration
procedures. After the full trace of U at 1, the coset table is

a

3

1

a-1

4

2

b
b-1

2

1

3

4

At this point, the HLT and Felsch strategies diverge. Let us follow the
standardizing HLT strategy first. After full traces of V1, V2, and V3 at 1,
we have Table 5.4.1. Now we standardize the first row. First 2 and 5 are
switched, giving Table 5.4.2. Then, in turn, the pairs 3 and 4, 4 and 5, and
5 and 7 are switched. We now have Table 5.4.3.

Two-sided traces of the elements of V at 2 produce Table 5.4.4. To
standardize the second row, we first switch 6 and 8, and then 7 and 10.
The result is Table 5.4.5.

Tracing the elements of V at 3 introduces two new states, 11 and 12, but
they are found to be coincident with previous states by the trace of V3. To
standardize row 3 we switch 8 and 10. We now have Table 5.4.6.

Tracing the elements of V at 4 and standardizing the fourth row gives
Table 5.4.7.

The traces at 5 introduce two new states. In many implementations, the
state labels 11 and 12 would be reused. However, the version of DEFINE
in Section 4.5 gives them new numbers, 13 and 14. The switch of 10 and 13
is needed to standardize the fifth row. The coset table is now Table 5.4.8.
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Table 5.4.4 Table 5.4.5

a b
b-1 a al b

b-1

1 2 3 4 5 1 2 3 4 5

2 3 1 8 10 2 3 1 6 7

3 1 2 7 3 1 2 10

4 7 6 1 4 10 8 1

5 8 1 6 5 6 1 8

6 5 4 6 5 9 2

7 10 4 3 7 10 2 9

8 5 9 2 8 5 4

9 10 8 9 7 6

10 7 2 9 10 7 4 3

Table 5.4.6 Table 5.4.7

a a-1 b b-1 a a-1
b

b-1

1 2 3 4 5 1 2 3 4 5

2 3 1 6 7 2 3 1 6 7

3 1 2 8 8 3 1 2 8 8

4 8 10 1 4 8 7 9 1

5 6 1 10 5 6 1 9

6 5 9 2 6 5 10 2

7 8 2 9 7 4 8 2 10

8 7 4 3 3 8 7 4 3 3

9 7 6 9 5 4

10 5 4 10 7 6

Table 5.4.8 Table 5.4.9

-I
-1

-I
-1a a b

b a a b
b

1 2 3 4 5 1 2 3 4 5

2 3 1 6 7 2 3 1 6 7

3 1 2 8 8 3 1 2 8 8

4 8 7 9 1 4 8 7 9 1

5 10 6 1 9 5 10 6 1 9

6 5 10 13 2 6 5 10 11 2

7 4 8 2 13 7 4 8 2 11

8 7 4 3 3 8 7 4 3 3

9 14 5 4 9 14 5 4

10 6 5 14 10 6 5 14

13 7 6 11 7 6

14 9 10 14 9 10
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Table 5.4.10 Table 5.4.11

a a-1
b

b-1 a a -I b
b-1

1 2 3 4 5 1 2 3 4 5

2 3 1 6 7 2 3 1 6 7

3 1 2 8 8 3 1 2 8 8

4 8 7 9 1 4 8 7 9 1

5 10 6 1 9 5 10 6 1 9

6 5 10 11 2 6 5 10 11 2

7 4 8 2 11 7 4 8 2 11

8 7 4 3 3 8 7 4 3 3

9 11 12 5 4 9 11 12 5 4

10 6 5 12 10 6 5 12 12

11 12 9 7 6 11 12 9 7 6

12 9 11 10 12 9 11 10 10

Traces at 6 produce no changes. To standardize the sixth row, we switch
11 and 13. This is done even though prior to the switch 11 is not in E. At
this point we have Table 5.4.9.

Traces at 7 add two more edges. No further changes occur until the traces
at 9, which add two edges. Standardization of row 9 requires that 12 and
14 be switched. This produces Table 5.4.10.

Traces at 10 introduce two new states labeled 15 and 16, but they are
immediately found to be coincident with 10 and 12, respectively. The table
is now Table 5.4.11. No further changes occur.

Let us return to the point immediately after the trace of U at 1 and follow
the standardizing Felsch strategy through this enumeration. The trace of
U placed eight deductions on the stack. As these deductions are processed,
two more edges are added. The table is now

a

4

b

1

4

3

a-1 b-1

3

1

2

2

4

3

After the definition of 5 as la, we find that 5a = 4. Defining 16-' = 6 does
not lead to any new edges. Currently, we have Table 5.4.12. Standardizing
the first row produces Table 5.4.13.

Defining 26 to be 7 leads to two more edges as the stack is cleared. The
definition of 8 as 26-' yields four more edges. After the second row is
standardized, we have Table 5.4.14.

The next definition is 46 = 9 and this yields another pair of edges. The
definition 10 = 5' leads to 10' = 6. No switches are needed to standardize
either row 4 or row 5. At this point we have Table 5.4.15.
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Table 5.4.13 Table 5.4.14

a a-1 b b-1 a a1 b
b-1 a a-1

b
b-1

1 5 4 2 6 1 2 3 4 5 1 2 3 4 5

2 3 1 2 3 1 2 3 1 6 7

3 2 4 4 3 1 2 6 6 3 1 2 8 8

4 1 5 3 3 4 6 1 4 8 7 1

5 4 1 5 1 5 6 1

6 1 6 4 3 3 6 5 2

7 4 8 2

8 7 4 3 3

Table 5.4.15 Table 5.4.16

a a-1
b

b-1 a a1 b
b -1

1 2 3 4 5 1 2 3 4 5

2 3 1 6 7 2 3 1 6 7

3 1 2 8 8 3 1 2 8 8

4 8 7 9 1 4 8 7 9 1

5 10 6 1 9 5 10 6 1 9

6 5 10 2 6 5 10 11 2

7 4 8 2 7 4 8 2 11

8 7 4 3 3 8 7 4 3 3

9 5 4 9 11 12 5 4

10 6 5 10 6 5 12 12

11 12 9 7 6

12 9 11 10 10

The definitions 11 = 6b and 12 = 9a-1 produce enough additional edges
to complete the table. No coincidences are found and the enumeration
is finished. The final automaton is the same as the one obtained earlier,
namely, Table 5.4.16.

In general, the table produced by one of the standardizing strategies is
not completely standard. The states cr are in order according to the first
word W such that 1W = or, but E may not consist of the integers from
1 to E . Thus a final standardizing pass may still be necessary. More
examples using standardizing strategies are discussed in the next section.

Exercises

4.1. Carry out the enumerations in Exercises 2.1 to 2.3 using the standardizing HLT and
Felsch strategies.

4.2. Under what circumstances might it be useful to use a standardizing strategy based on
a basic wreath-product ordering? Develop such strategies for both the HLT and Felsch
approaches.
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Table 5.5.1

Number Type save Standardize

1 HLT false No
2 HLT false Yes
3 HLT true No
4 HLT true Yes
5 CHLT false No
6 CHLT false Yes
7 CHLT true No
8 CHLT true Yes
9 Felsch true No

10 Felsch true Yes

5.5 Ten versions

245

This section describes a procedure TEN_CE which implements ten different
coset enumeration strategies. These ten have been chosen because they fit
together nicely in a single procedure. There are many other strategies
which have been investigated and found useful. However, space does not
permit giving an exhaustive catalog. Comparing the ten versions of this
section will provide a good introduction to the issues involved in choosing
an enumeration procedure for a particular application.

A strategy is selected within TEN_CE by specifying three things: its
type, the value of the boolean variable save, and whether or not stan-
dardization is to be used. The type can be Felsch, HLT, or CHLT. The
acronym CHLT stands for "cyclic HIT". In strategies of this type, full two-
sided traces of all cyclic permutations of the elements of V are performed at
the states in E. The set W of these cyclic permutations must be available
for the Felsch strategies, so there is very little extra work needed to include
the strategies of type CHLT.

The use of the deduction stack was introduced as part of the Felsch
strategy. However, it can be used with HLT and CHLT strategies as well.
Such combinations may be considered as alternatives to lookahead vari-
ations of the HLT strategy. The use of lookahead is controlled by the
amount of memory available. An HLT strategy using the deduction stack
will perform the same way with any amount of memory above the minimum
needed for the enumeration to complete. This has considerable theoretical
advantages as we attempt to analyze running times. Also, there can be prac-
tical advantages in enumerations which would require repeated lookahead
phases.

There are three possible types and two possible values for save. However,
with enumeration of the Felsch type, save must be true, so there are only
five valid combinations. With each of these five, standardization may or
may not be used. The ten strategies available in TEN_CE will be numbered
from 1 to 10 as in Table 5.5.1.
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In addition to the normal arguments of a coset enumeration procedure,
TEN_CE has an input argument m which specifies the strategy number.

Procedure TEN_CE(X, 7Z, U, V, m; A);
(* Ten coset enumeration procedures. The strategy used is determined

by the value of m.
Begin

Let hit be true if and only if m is in 11, 2,3,41;
Let chit be true if and only if m is in 15,6,7,8};
Let save be true if and only if m is in {3,4,7,8,9, 101;
Let stud be true if and only if m is in 12,4,6,8, 101;
Let W be the set of cyclic permutations of the elements of V;
For x in X do let WW be the set of elements of W which start with x;
n:= 1; p[1] := 1; E:= 0;
If save then clear the deduction stack;
For U in U do begin

TWO_SIDED_TRACE(1, U, true);
If save then PROCESS-DEDUCTIONS

End;
If hit then D V
Else if chit then D := W;
Q.=1;
If stud then 7-:= 1;
While o, < n do begin

If p[a] = or then begin
If hit or chit then

For D in D do begin
TWO_SIDED_TRACE(v, D, true);
If save then PROCESS_DEDUCTIONS;
If p[o] o, then goto 99

End;

For x in X do
If ax is not defined then begin

DEFINE(a, x);
If save then PROCESS_DEDUCTIONS;
If p[v] # v then goto 99

End;

If stnd then
For x in X do begin

';P:=v
If p > T then begin

T:=T+1;
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If p > T then SWITCH(p, rr)
End

End
End; (*Ifp[o]=o *)

99: v:=Q+1
End; (* While or < n*)

STANDARDIZE
End.
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To completely determine the operation of TEN_CE, one must specify the
order of the elements in X, U, V, and W.

It is not a simple matter to decide how the ten strategies in TEN_CE
should be compared and evaluated. Since we have not specified how the
edge set E is to be stored, we cannot talk in detail about running times.
Moreover, giving a worst-case or average run-time analysis is currently be-
yond our ability. In fact, there is no common agreement on what a "random
presentation" is, so we cannot even define the average running time.

About all we can do is to look at specific examples. But how should these
examples be chosen? They could be generated randomly using some scheme
for choosing sets of words. However, such presentations tend not to look like
the ones that arise "naturally" in mathematics. In group presentations that
arise in the course of research in group theory, topology, and other fields of
mathematics, powers and commutators occur much more frequently than
they do in randomly generated presentations. (See Section 9.1 for the
definition of commutators.)

If we choose as our test problems various presentations which have ap-
peared in the literature, then what will our comparisons mean? Do we
have any confidence that observations made about these problems will be
applicable to problems researchers may encounter in the future?

If an enumeration terminates, then we can record the total number of
states used, which is the value of n at the end, and the maximum number
of states active at any one time. If these numbers are small, this is a
favorable outcome. But suppose an enumeration does not terminate, either
because the subgroup has infinite index or memory is exhausted before the
index can be determined. Does it make any sense to say one strategy is
better than another in such cases? Comparisons with strategies involving
lookahead are even more difficult, since performance depends on the amount
of memory available.

The preceding comments should make it clear that we shall not be able
to study enough examples here to come to any firm conclusions about the
relative performance of the ten strategies in TEN_CE. Nevertheless, a few
examples will provide some useful insight. The performance quoted is for
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Table 5.5.2 Table 5.5.3

Strategy Total Max. Active Strategy Total Max. Active

1 66 64 1 1550 1502

2 66 62 2 1548 1458

3 60 60 3 673 673

4 60 60 4 393 393

5 78 66 5 1864 1808

6 66 62 6 1473 1413

7 60 60 7 620 620

8 60 60 8 592 590

9 60 60 9 588 588

10 60 60 10 588 588

one particular implementation of TEN_CE. Some variation is possible, de-
pending on the order used for X, U, V, and W. Most of the sample problems
are taken from (Cannon et al. 1973). The first few have U = 0.

Example 5.1. Let us start with a simple enumeration. Suppose that X =
{x, y, y-l} and R consists of the rules

x2 - 6, yy-1 - 6, y-ly _ 6.

Let U = 0 and let V = {y3, (xy)5}. If N is the normal closure of the im-
age of V in F, then G = F/N has order 60, and the map x H (1,2)(3,4)
and y H (1)(2,3,5)(4) defines an isomorphism of G with the alternating
group Alt(5). Table 5.5.2 summarizes the results of determining the order
of G using each of the ten strategies in TEN_CE. For each strategy the
total number of states used and the maximum active at any one time are
tabulated.

Example 5.2. Suppose that X = jr, s, t}} and R defines the free group
on {r,s,t}. Let U = 0 and let V = {t-lrtr-2,r-1srs-2,s-ltst-2}. In this
case, G = F/N is trivial. Table 5.5.3 shows the results of verifying this
using TEN_CE.

Example 5.3. The group Gk = Grp (x, y I x2 = y3 = (xy)7 = (xyxy-l)k = 1)
is finite for k < 8. The orders of G1, ... , G. are 1, 1, 1, 168, 1, 1092, 1092,
and 10752, respectively. Table 5.5.4 summarizes the performance of
TEN_CE in determining the orders of Gk, 4 < k < 8. Here X and R
are as in Example 5.1, if = 0, and V = {y3, (xy)7, (xyxy-l)k}. The two en-
tries in the table for each strategy and each value of k are the total number
of states and the maximum number of active states.

Now let us look at some enumerations with U # 0.
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Table 5.5.4

k

Strategy 4 5 6 7 8

1 292/208 698/490 2650/15 14 8746/62 58 128562/87254

2 274/230 730/562 2234/14 74 4418/36 74 110902/80744

3 168/168 266/266 1122/10 92 1960/19 34 32320/31678

4 168/168 310/310 1120/10 92 2170/21 50 39528/38942

5 324/228 874/558 3334/1 808 15326/77 92 178620/99632

6 274/230 730/562 2234/14 74 4418/36 75 110902/80744

7 168/168 296/296 1172/10 92 2748/26 84 31365/30108

8 168/168 316/316 1120/10 92 2170/21 50 39534/38948

9 168/168 336/336 1092/10 92 1644/14 90 39745/39745

10 168/168 336/336 1092/10 92 1644/14 90 39745/39745

Table 5.5.5

Strategy Total Max. Active

1 2635 2174

2 2662 2136

3 1212 1199

4 1492 1454

5 2619 2213

6 2027 1773

7 1284 1258

8 1518 1488

9 1306 1302

10 1306 1302

Example 5.4. The group G = Grp (a, b I a8 = b7 = (ab)2 = (a-lb)3 = 1) has
order 10752 and the subgroup K generated by the images of a2 and a-lb
has index 448 in G. Table 5.5.5 shows the results of computing IG : K1. Here
X = {a, b}±, R defines the free group on {a, b}, U = {a2, a-lb}, and V =
{a8, b7, (ab)2, (a-lb)3}.

Example 5.5. Let n be an integer greater than 1 and let Bn = Grp(x, y
xn = y,yn = x). In Bn,

x
n 2

= (xn)n = yn = X.

Clearly Bn is generated by x, and therefore Bn is cyclic of order dividing n2-
1. For u in Z, let [u] denote the congruence class of u modulo n2 - 1. The
map x --> [1] and y - f [n] defines a homomorphism of Bn onto the additive
group of integers modulo n2 - 1. Therefore I Bn I = n2 - 1.
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Table 5.5.6

n

Strategy 10 12 14 15 16

1 170/163 252/243 350/339 405/393 464/451

2 166/135 247/198 344/273 401/316 457/360

3 99/99 143/143 195/195 224/224 255/255

4 99/99 143/143 195/195 224/224 255/255

5 99/99 143/143 195/195 224/224 255/255

6 99/99 143/143 195/195 224/224 255/255

7 99/99 143/143 195/195 224/224 255/255

8 99/99 143/143 195/159 224/224 255/255

9 406/243 1205/729 3597/2187 6393/4374 10768/6561

10 406/243 1205/729 3597/2187 6393/4374 10768/6561

Table 5.5.7 Table 5.5.8

Strategy Total Max. Active x x-i y y-i

1 1204 575 1 10 6 7 2

2 72742 43242 2 3 1

3 272 257 3 4 2

4 288 255 4 5 3

5 255 255 5 6 4

6 255 255 6 1 5

7 255 255 7 8 1

8 255 255 8 9 7

9 10768 6561 9 10 8

10 10768 6561 10 1 9

Using the strategies in TEN_CE to confirm the order for particular values
of n provides some interesting results. Let X = {x, y}}, let R define the
free group on {x, y}, let U = 0, and let V = {x°y 1, yx-1}. Table 5.5.6
shows the statistics on total states used and maximum number of active
states for selected values of n.

The statistics depend on the choice of the words in V. If we replace
the words by cyclic permutations, we get different results. For example,
suppose that n = 16 and V = {x8y1x8, y8x-1y8}, then the statistics are as
shown in Table 5.5.7.

All of the results tabulated here were obtained using the ordering on W
described in Section 5.3. With different orderings of W, some of the CHLT
strategies can define redundant states. For example, suppose that n = 4
and we are following strategy 5. If we first trace y1x4 at 1 and then trace
y4x-1, the coset table is as shown in Table 5.5.8. If we now trace xy-1x3 at
1, then states 4 and 9 are identified.
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It is not hard to show that the number of states used by strategies 9 and
10 to find the order of B,, is exponential in n. The number of states used by
strategies 6 and 8 is bounded above by a cubic polynomial in n, no matter
what ordering W is chosen. The proofs of these statements and further
investigation of the asymptotic behavior of strategies 1 to 10 on this family
of examples are left as exercises.

Exercises

5.1. Suppose that TEN_CE is run with U = 0. Show that strategies 9 and 10 are identical.
5.2. Suppose that IXI > 3, U = 0, and every element of V has length at least r. Prove that

the execution time for TEN_CE using either strategy 9 or 10 is bounded below by an
exponential function of r. (If termination does not occur, then the execution time is
considered to be infinite.) Conclude that Felsch strategies are not a good choice for
presentations like &.

*5.3. Let A be a complete coset automaton with respect to R such that K(A) is normal
in F = Mon (X R). Given two states a and r of A and a word W, the state aW is equal
to a if and only if rW is equal to r. Suppose memory is limited and a coset enumeration
with U = 0 terminates unsuccessfully, returning an incomplete coset automaton 8. Is it
possible that there are states a and r of B and a word W such that aw = a but that a
two-sided trace of W at r would lead to a coincidence? How hard would it be to test for
the existence of such a triple (a, r, W)?

5.6 Low-index subgroups
Let G be a group given by a finite presentation. One of the first things we
would like to know about G is whether or not G is trivial. If G is trivial, then
it is possible to verify this using coset enumeration or the Knuth-Bendix
procedure. However, there is no algorithmic way to verify nontriviality. In
particular cases, one can show that G is nontrivial by exhibiting a nontrivial
homomorphic image of G. This is normally done by producing elements in
some well understood group which satisfy the defining relations of G and are
not all trivial. Chapter 11 discusses methods for finding nontrivial solvable
quotients of G. (See Section 9.2 for the definition of a solvable group.) This
section may be viewed as describing methods for finding nontrivial finite
permutation groups which are homomorphic images of G.

If there is a nontrivial permutation group M on a finite set S2 such that M
is a homomorphic image of G, then M has an orbit IF of size greater than 1
and the permutation group induced on P by M is a nontrivial homomorphic
image of M and hence also a nontrivial homomorphic image of G. Thus, if
our goal is to show that G is nontrivial, we may assume that M is transitive
on Q. In this case, M is determined up to permutation isomorphism by
the conjugacy class of the subgroups Ga, where a is in I and Ga is the
set of elements in G whose images in M fix a. The index of G,,, in G
is JIl . Thus the problem of deciding whether such an M exists with ISZ
not exceeding some bound n is equivalent to deciding whether G has any
proper subgroups of index not exceeding n.
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Let us assume that G is given as F/N, where F is the free product of
cyclic groups defined by a classical niladic rewriting system R and N is the
normal closure of the image in F of a finite set V of cyclically reduced words
in X*. Given a reduction ordering < on X*, subgroups of finite index in G
are in one-to-one correspondence with the finite, standard, complete coset
automata with respect to R which are compatible with V. In Section 4.9 we
learned how to generate the standard, complete coset automata which have
at most a given number n of states. If we test each of these automata for
compatibility with V, then the automata which pass describe the subgroups
K of G with IG : KI < n. It is likely that very few of the tests will be
successful. Therefore it is reasonable to try to incorporate compatibility
with V some way into the backtrack criteria. The set of subgroups of G
with index at most n is closed under conjugation. Thus it suffices to find one
representative from each conjugacy class of subgroups. In some applications
we may not be interested in all subgroups of G with small index, but only
those which contain a given finitely generated subgroup.

In this section we shall consider the following problem: Let U and V be
finite subsets of X* and let G be the group FIN, where N is the normal
closure of the image of V in F. We shall assume that the elements of U
are reduced and the elements of V are cyclically reduced. Given a positive
integer n, find subgroups Hl,..., HS of G such that each Hi contains the
image of U in G, I G: Hit < n, and if H is any subgroup of G containing
the image of U and having index at most n, then H is conjugate to exactly
one of the Hi.

The techniques currently available to solve this problem are limited. The
best we can hope for in general is to produce a solution when n and IXI
are fairly small. For this reason, the methods of this section are usually re-
ferred to as the low-index subgroup algorithm. Continued research is needed
and the procedures described here should be viewed as models for further
investigation.

Fix a reduction ordering -< on X*. We shall have a solution to
our problem if we can list the standard, complete coset automata A =
(E, X, E, {1} , {1}) with respect to R satisfying the following conditions:

(i) A has at most n states.
(ii) A is compatible with V.

(iii) 1° = 1 in A for all U in U.
(iv) Let o be a state in A such that vU = v for all U in U and let Ao =

(E, X, E, {v}, {v}). Then the A is the same as or precedes the
standard coset automaton isomorphic to Ao.

The subgroups of G corresponding to the subgroups K(A) of F defined by
the automata A satisfying conditions (i) to (iv) give us our solution. The
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low-index subgroup procedure lists the transition matrices for the coset
automata satisfying these conditions.

The simplest low-index procedure is obtained by adding conditions (ii)
to (iv) above to the backtrack criteria in the search described in Section 4.9
for representatives of the conjugacy classes in F of subgroups of index at
most n. Whenever a pair of edges is added to the current automaton, a
check is made to see whether there is a state a and an element V of V
such that av is defined and unequal to o,, or whether there is a word U in
U such that lu is defined and unequal to 1. Condition (iv) is tested by a
modification of the technique described in Section 4.9. For example, if -<
is a length-plus-lexicographic ordering, then the loop

For i:= 2 to m do begin

End;

in FIRST_CONJ is changed to

For i:=2tomdo
If iu = i for all U in U then begin

End;

Unfortunately, this straightforward approach is not efficient enough to
be of much use. To get a practical procedure, we need to incorporate ideas
from coset enumeration, such as the deduction stack and two-sided traces.
Also, if V contains a very long word V, then av may almost never be defined
except when the automaton is complete. To avoid wasting time in fruitless
traces, it is probably a good idea to divide V into two sets, V1 and V2. The
set V1 contains the shorter words, and compatibility with Vl is made part
of the backtrack criteria. Compatibility with V2 is checked only when the
table is complete as a filter on the output.

Suppose that W is a cyclic permutation of an element of V1 and a is a
state in the current automaton. It might happen that a partial two-sided
trace of W at a would lead to JOIN being called to add a new edge. If
the current set of edges is part of a solution to our problem, then the new
edge must be part of that same solution. Thus we should add the edge
immediately. Adding this edge may make it possible to deduce further
edges with other partial two-sided traces. If a two-sided trace would lead
to a call to COINCIDENCE, then no way of extending the current edge
set could produce an automaton which is compatible with V1. We can also
perform partial two-sided traces of the elements of U at 1 to see if any
further edges are forced or incompatibilities are found.
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As in Section 4.9, let x1,. .. , x,r be the elements of X in -order, let V1,
V2, and U be given, and let n be an upper bound for the index of subgroups
being sought. The root of our search tree is the 1-by-r incomplete transition
matrix all of whose entries are'T. Suppose T is an m-by-r transition matrix
which is a node in the tree. If all entries of T are positive integers, then
we check whether the corresponding automaton A is compatible with V2.
If A is compatible with V2, then T is one of the transition matrices we are
looking for. If A is not compatible with V2, then T is not one of the desired
matrices and T has no descendants in the search tree. Now suppose that
T has at least one entry which is `?'. There is a word W such that 1W is
unspecified. Let W be the first such word. Then W = Uxi where a = lu is
defined. Let xi 1 be xi and let D be the set of indices T such that T[T, j] is
equal to `?'. If m < n, then add m + 1 to D. For each k in D we carry out
the following steps:

S:= T;
S[a, i] := k; Push (a, xi) onto the deduction stack;
If k = m + 1 then add a k-th row to S consisting of all question marks;

If (k, j) # (a, i) then begin
S[k, j] := a; Push (k,xj) onto the deduction stack

End;

While the deduction stack is not empty do begin
Process deductions as in the Felsch strategy of coset enumeration by

performing partial two-sided traces of elements of V1;
If further deductions are found then make the corresponding entries

in S;
If at any time a coincidence is discovered then abandon processing of

this value of k;
Perform partial two-sided traces of the elements of U at 1 abandoning

this value of k if a coincidence is found and adding any
deductions discovered to the deduction stack

End;

Perform the first in conjugacy class check as discussed above;
If S passes the check then S is a descendant of T in the search tree;

The search procedure just outlined will be referred to as LOW_INDEX.
The output from LOW_INDEX depends only on V1 U V2. However, the
running time will depend on the division of the words between the two sets
Vl and V2. In a given case, it is difficult to predict which division of the
relators will yield the fastest execution time.

Example 6.1. Suppose we have the following data: X = {x, y} , -< is the
length-plus-lexicographic ordering with x -< x-1 -< y -< y 1, R defines the free
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1 1'2 ?

[? ?.? 11

1123 2311
3?31 313?
?212 12?2
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3431
4212
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2332
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Figure 5.6.1

2???
?1??

23'??
31??
12??

233? 234?
31?? 31??
12?1 ???1

2334
31??
1241
??13

group on {x, Y), V = V1 = {x3, y3, (xy)2}, V2 = U = 0, and n = 4. Fig-
ure 5.6.1 shows the entire search tree.

Let us verify the determination of descendants at some of the nodes of
this tree. If T is [ 1 1 2 then W = y-1 and D = f2,31. If k = 2, then

setting S[1, 4] equal to 2 leads to an incompatibility with the relator y3.
If k = 3, then a two-sided trace of y3 at 1 leads to the deductions 2y = 3
and Y' = 2. Then tracing (xy)2 at 1 produces the deductions 2' = 3
and Y' = 2. Thus T has exactly one descendant, as shown.

Now suppose that T is

23??
31??
12??

In this case, W = y and D = {1,2,3,4}. With k = 1, a two-sided trace
of (xy)2 yields the deductions 2y = 3 and 3Y_' = 2. Taking k = 2 results
in the deduction 3Y = 3. But now the first in conjugacy class test fails,
since changing the initial state to 3 and standardizing produces a transition
matrix whose first row is [2 3 1 1], and any such matrix precedes S. No
further deductions are made when k = 3 or k = 4.
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Finally, suppose that T is

2311
313?
1 2 ? 2

Here W = xy-1 and D = {3, 4}. If k = 3, then an incompatibility with y3
is found. When we take k = 4, we get the deductions 3Y = 4 and 4Y-1 = 3
from y3 and then 4x = 4 from (xy)2. But now the first in conjugacy-class
test fails, since changing the initial state to 4 and standardizing leads to a
matrix whose first row is [1 1 2 3].

Example 6.2. Let X = {a, b, b-1 }, let R consist of the rules

a2 - e, bb-1 --> s, b-lb --> s,

and let -< be the length-plus-lexicographic ordering with a -< b -< b-1. Set
U = {abab-1 }, V = {b3, (ab)7}, and n = 10. The following transition matrices
are produced by LOW_INDEX.

1 2 37
231
412
356
564
745

-6 7 7,

123
231
412
356
764
645
577

Therefore Grp (a, b I a2 = b3 = (ab)7 = 1) has only two conjugacy classes of
proper subgroups of index at most 10 which contain a conjugate of the
element abab-1. With V1 = V, the search tree has 24 nodes.

There are several ideas used in LOW_INDEX which come from coset
enumeration. It is possible to use coset enumeration even more in an effort
to prune the search tree further. Sometimes this is effective, but it may
happen that the extra time required per node of the search tree is not offset
by the fact that fewer nodes are examined.

Example 6.3. Suppose that we are asked to study the group G =
Grp (r, s, t I t-1rt = r2, r-1sr = s2, s-1ts = t2) of Example 5.2, but we are
not told that the group is trivial. A reasonable first step would be to look
for subgroups of small index in G. Let X = {r, s, t}}, let R define the
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free group on {r, s, t}, let - be the length-plus-lexicographic ordering with
r r-1 -< s 8-1 -< t-< t-1, let V1 = {t-1rtr-2, r-1srs-2, s-ltst-2}, and
let V2 = U = 0. With n = 8, LOW_INDEX examines a search tree with
548 nodes and reports finding only G. With n = 12, the tree has 8179
nodes. At this point the running times are beginning to be noticeable. A
coset enumeration of the trivial subgroup in G shows that IGI = 1, so trying
larger values of n is clearly a waste of time.

Coset enumeration can be used at any node of the search tree being
examined by LOW_INDEX. One takes the current automaton to be the
result of tracing the subgroup generators and proceeds with any enumera-
tion strategy using V as the set of relators. Let E denote the set of states
at the start of the enumeration. If the enumeration produces a coincidence
among states in E, then the current node can be abandoned. If no coin-
cidence is encountered, then the enumeration is interrupted at some point
and the search resumed with the restriction to E of the coset automa-
ton produced by the enumeration. Unfortunately, we do not have good
heuristics on how long to let the enumeration run as we look for a coin-
cidence among the states in E or for more edges connecting two of these
states.

As implemented in LOW_INDEX, the conjugacy testing is not as efficient
as it could be. Let A be an automaton representing a node in the search
tree and let B be an immediate descendant of A. Every state of A is a state
of B. Suppose that a is a state in A such that au = o for all U in U. If the
conjugacy testing in A showed that the standard coset table corresponding
to A(v) comes after A, then the standard coset table corresponding to B(o )
comes after B, so no conjugacy testing at o is necessary in B.

Even with all the extensions discussed so far, the low-index subgroup
algorithm can be defeated fairly easily. In (Havas & Kovacs 1984), some
computations are described in which it was necessary to locate subgroups
of index 13 in two groups, each of which was defined by a presentation
on three generators with two relators of length roughly 50. Only by using
detailed information about the groups available from other considerations
was it possible to find the desired subgroups.

Up to now we have used length-plus-lexicographic orderings with
LOW_INDEX. However, sometimes other orderings produce more efficient
searches.

Example 6.4. Let H = Grp (a, b I all = b5 = bab-la-3 = 1). It is easy to see
that H is finite and has order 55. By Sylow's theorem there are only two
conjugacy classes of proper, nontrivial subgroups in H. Thus there are four
classes altogether, consisting of subgroups of index 1, 5, 11, and 55. Let X =
{a, b}}, let R define the free group on {a, b}, let V1 = {a11, b5, bab-1a 3}, let
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[1 1 ? ?]

[112?1
2 2 ? 1

1

112?
2231
33?2

112?
2231
3342
44?3

I

1 1 2 5

2231
3342
4453
5514

V2 = U = 0, and let n = 11. If we take -< to be the length-plus-lexicographic
ordering with a -< a-1 -< b -< b-1, then the LOW_INDEX search tree has
244 nodes. However, if -< is the basic wreath product ordering with the
same restriction to X, then the tree has only 18 nodes. Let us look at this
tree. There are only two descendants of the root. They are

[1 1 ? ?]' [2 1 ? ?,

The subtree rooted at [1 1 ? ?] is shown in Figure 5.6.2.

The only descendant of [ 2 ?
? ? ] is

2???
31??
?2??
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The only descendant of this is

We continue in this way with each node having only one descendant until
we reach

2 11 1 1

3 1 5 4

4 2 9 7

5 3 2 10
6 4 6 2

7 5 10 5
8 6 3 8

9 7 7 11
10 8 11 3
11 9 4 6

1 10 8 9

The reason that the wreath-product ordering produces a much smaller
search tree is that with this ordering an orbit of Grp (a) is completed before
the next image under b is considered. Since a has order 11, orbits of Grp (a)
have length 1 or 11. Thus there are very few possibilities for the action
of a. Given a on a union of orbits of Grp (a), the possibilities for b are very
restricted.

The phenomenon observed in Example 6.4 is even more apparent in the
following example.

Example 6.5. The group Grp(a, b, c I all = b5 = c4 = (ac)3 = c lbcb-2 =
bab-la-3 = 1) is the first Mathieu simple group M11 of order 7920, which
contains the group H of Example 6.4. In M11 there are three conjugacy
classes of subgroups of index at most 12. These subgroups have index 1, 11,
and 12. Let X = {a, b, c}}, let 7Z define the free group on {a, b, c}, let V = V1
consist of the six relators for M11, let U = 0, and let n = 12. If we take -< to
be the basic wreath product ordering with a -< a-1 - b b-1 -< c -< c 1, then
the search tree has 54 nodes. However, if -< is the length-plus-lexicographic
ordering with the same restriction to X, then the tree has 82928 nodes.
(This number can be reduced using coset enumeration, as discussed earlier.)
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The reason for the superiority of the wreath-product ordering is that it
allows orbits of H to be built up completely before images under c are
considered. Since H has very few permutation representations and when
the procedure is working on an orbit of H it uses the efficient search of
Example 6.4, the entire search tree is quite small.

Sometimes, when a systematic search for subgroups of small index in a
finitely presented group fails to turn up any proper subgroups, the follow-
ing probabilistic procedure is able to find such a subgroup. We start by
enumerating as many cosets of the trivial subgroup as we can conveniently
manage. Then two states are chosen at random, and the coincidence rou-
tine is called to force them to represent the same coset. This has the effect
of adding a random element to the subgroup whose cosets are being enu-
merated. The enumeration is then resumed until either termination occurs
or space is again used up. In the latter case, another random coincidence
is made and the process repeated. It is likely that, when a subgroup of
finite index is found, the subgroup is the whole group. To find proper sub-
groups of finite index, it may be necessary to repeat the entire procedure
a number of times, making different choices for the coincidences in each
run.

Exercises

6.1. Use LOW_INDEX to find the conjugacy classes of subgroups of index at most 4 in
(x,y x3 = y3 = (xy)3 = 1) -

6.2. Find representatives for the conjugacy classes of subgroups H of index at most 4 in
(a, b a4 = 0 = (ab)3 = 1) such that H contains a conjugate of ab.

6.3. Let X, R, U, V, and G be as defined at the beginning of this section, and let H be the
subgroup of G generated by the image of U. How should LOW_INDEX be modified
to construct representatives for the conjugacy classes under the action of NC(H) of the
subgroups of G which contain H and have index at most n?

6.4. Devise a way of using the technique of Knuth described in Section 1.8 to estimate the
size of the search tree to be examined by LOW_INDEX.

5.7 Other applications
Coset enumeration and ideas related to it have a number of applications.
The low-index subgroup procedure of Section 5.6 is one important applica-
tion. This section sketches three more. In the first, we are given a finitely
presented group G and a finite, complete coset automaton A which is com-
patible with the defining relations of G, so that K(A) describes a subgroup
H of G with finite index. We are asked to find a "small" generating set
for H.

Example 7.1. Let X = {x, y}}, let R be the classical niladic rewriting system
defining the free group on {x, y}, and let G = F/N, where N is the normal
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Table 5.7.1

x Y Y-1

1 2 3 3 4

2 3 1 5 6

3 1 2 4 1

4 7 8 1 3

5 9 6 6 2

6 5 9 2 5

7 8 4 9 8

8 4 7 7 9

9 6 5 8 7

closure in F of the image of V = {x3, y3, (xy)3}. The coset automaton
A = (E, X, E, {1} , {1}) defined by Table 5.7.1 is compatible with V. Thus
K(A) contains N and K(A)/N is a subgroup H of G of index 9. By
Proposition 3.7 in Chapter 4, K(A) is generated as a group by 1+9(2-1) =
10 Schreier generators, and the images of these generators in G generate H.
However, it is plausible that H can be generated by considerably fewer than
10 elements.

In general, we are given X, a classical niladic rewriting system R on
X*, a finite set V of cyclically reduced words, and a finite, complete coset
automaton A which is compatible with V. It is useful to assume that A is
standard. Let F be the free product of cyclic groups defined by X and R
and let G = F/N, where N is the normal closure of the image of V in F.
Our goal is to find as small a generating set as we can for H = K(A)/N.

There is no algorithm which can be guaranteed to find a generating set for
H of minimal cardinality. We can always take the set of Schreier generators,
but that set is usually too large to work with conveniently. If we work a
little harder, often we can find smaller generating sets, but we must always
consider the possibility that with just a little more effort we could reduce the
number of generators even further. The procedure to be described returns
a subset of the Schreier generators. It is quite possible that by considering
more general elements one could find a smaller generating set.

Let CE be a standardizing Felsch coset enumeration procedure which has
been modified to allow the user to specify a fifth input argument M, the
maximum number of active states to be allowed. If more than M states
are needed at some point to continue the enumeration, then the procedure
halts, reports its failure, and returns the current coset table, which we shall
assume is standard. Let n be the number of states in A and let M be any
integer not less than n. Fix an ordering of X. Let U be the set of words
found so fax which define elements of H. Initially, U is the empty set. We
call CE(X, R, U, V, M; 8). Since K(S) is a subgroup of K(A), the number
of states of B is at least n. If 13 is complete and has exactly n states, then
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Table 5.7.2 Table 5.7.3

x x-1
y Y-1 x x-1

y Y-
1

1 2 3 4 5 1 2 3 3 4

2 3 1 6 7 2 3 1 5 6

3 1 2 8 9 3 1 2 4 1

4 10 5 1 4 7 8 1 3

5 1 4 5 9 10 6 2

6 7 2 6 2 5

7 2 6 7 8 4

8 9 3 8 4 7

9 3 8 9 10 5 8

10 4 10 5 9

13 is A and U defines a set of generators for H. Otherwise, let (v, x) be the
lexicographically first pair such that either ax is not defined in 13 or Qf is
defined in B but has a different value from its value in A. Let U be the
first word in the length-plus-lexicographic ordering of X* such that lU = a
in A. Then lU = Q in B. (Why?) Let V be the first word such that 1v = Ux
in A and set W = UxV-1. Add W to U and redo the enumeration.

We shall refer to the procedure just defined as GENERATORS. There
are many questions which remain to be considered. Does GENERATORS
always terminate? Do we have to use a Felsch coset enumeration procedure?
Does it have to be a standardizing procedure? The elements of U are traced
in CE in a particular order. Does it make any difference when the new
element W is traced on the next iteration? Finding the answers to these
questions will be left as an exercise. To make the task a little easier, we shall
describe the operation of GENERATORS with the data of Example 7.1.

Let us take M = 10. Normally one would take M somewhat larger in
comparison to n, but the coset tables would take too much space if we did
that here. Initially U is empty. The enumeration produces an automaton
B with the coset table as in Table 5.7.2. The first place that A and B differ
is in the value of ly, which is 3 in A and 4 in B. Since 3 = 1'-' in A, the
new generator W is y(x-1)-1 = yx.

The preceding description says to redo the enumeration with U = {yx}.
A careful implementation would simply force the coincidence of 4 and 3
in B and resume the enumeration. In either case, the new table for B is
Table 5.7.3. Now the first place at which A and B differ is in the value of V-'.
Since in A we have 5`1 = 6, lxy = 5, and lxy ' = 6, our next generator is
W = xyx-1yx-1, and we add W to U. After the next enumeration, B
agrees with A. Thus H is generated by two elements, the images of yx
and xyx-1yx-1.

The idea behind GENERATORS can be used to look for a small set of
words whose normal closure is a given normal subgroup N of finite index
in F. This time we assume that A is a finite, standard, complete coset au-
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tomaton such that N = K(A) is normal in F. To find a set V of words such
that N is the normal closure of the image of V, we initialize V to the empty
set and choose an integer M greater than or equal to the index of N in F.
We then iterate the following steps. First we call CE(X, 7Z, 0, V, M; B). If B
agrees with A, then we are done. If B is not the same as A, then we find the
first place where they differ and construct a word W as in GENERATORS.
However, now before we add W to V and loop, we cyclically reduce W. Let
us call this procedure NORMAL_GENS.

In Section 6.4, various techniques for simplifying presentations are dis-
cussed. One of these techniques is based on NORMAL_GENS. Other
approaches use Tietze transformations or the Knuth-Bendix procedure.

The last application of coset enumeration will be to the problem of
determining the order of a finite permutation group defined by a set of
generators. The approach to be described here is called the Schreier-Todd-
Coxeter method, and was first described in (Leon 1980b). Suppose that
X is a set of permutations on S2 = {1, ... , n} and X is closed under taking
inverses. Let G be the group generated by X. We shall also think of X as
a set of "abstract generators" and consider the classical niladic rewriting
system 7Z consisting of all rules of the form xx 1 - e with x in X. Let Y be
the subset of X consisting of those permutations which fix 1 and let H be
the subgroup of G generated by Y. We assume by induction on the degree
that we know the order of H and a presentation (YS) for H in terms of
the generators in Y. Moreover, we assume that, given a permutation f of
S2 which fixes 1, we can decide whether f is in H and, if it is, express f as
a word in Y*.

Now let I be the orbit of G containing 1. The order of G is II'IIG1I
and H is contained in G1. Thus if we could show that IG : HI = Ir!,
we would know that H = G1 and IGI = IFIIHI. Let A0 be the coset au-
tomaton (I', X, E, {1} , {1}), where E is the set of triples (y, x, yr) with
y in IF and x in X, and let A be the standard automaton isomorphic
to A.. Let T be the set of relators currently known to be satisfied by
the permutations in X. Initially T is S. Choose an integer M > Ill and ex-
ecute CE(X, 7Z, Y, T, M; 8). The number of states of B will be at least IFI.
If A and B agree, then we know the order of G. If A and B do not agree,
then we can find a word W as before which describes a Schreier gener-
ator of K(A) which is not in K(B). If we consider the terms of W to
be permutations on SZ, then we can multiply these permutations together
to get a permutation f which fixes 1. If f is in H, then we can express
f as a word U in Y*. In this case, we add WU-1 to T and repeat the
enumeration. If f is not in H, then we must add f and f -1 to X and Y
and then redetermine H. When we come back to the problem of deciding
whether or not I G : HI is IFI, we can retain the relations in T. Eventually
we shall have added enough Schreier generators to Y so that H is G1, and
we shall have found enough relators satisfied by the elements of X to prove
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by coset enumeration that H = G1. At that point we shall know the order
of G.

All of the applications discussed in this section involve performing a coset
enumeration, which may be unsuccessful, examining the output of the enu-
meration, and then performing a closely related enumeration. To obtain
efficiency, it is useful to have implementations of coset enumeration which
can be stopped and then resumed with slightly modified data, such as an
additional subgroup generator, an additional relator, or more memory for
the coset automaton. The design of such a "restartable" coset enumera-
tion procedure depends greatly on the strategy adopted and on the data
structure used to represent edges.

Exercises

7.1. Let G= (x, y I x3 = y3 = (xy)3 = 1). The permutations x = (1,2,3)(4,7,8)(5,6,9) and
y = (1)(2, 4, 5)(3, 6, 7)(8)(9) satisfy the defining relations for G. Thus there is a homomor-
phism from G onto the group generated by these permutations. Let H be the subgroup of
G consisting of those elements whose images fix 1. Find a small set of words in {x, y}±
which defines a generating set for H.

7.2. The permutations a = (1,2,6,3)(4,9,5,10)(7,11,8,12)(13,16,14,15) and b = (1,4,6,5)
(2,7,3,8)(9,13,10,14)(11, 15,12,16) generate a group P of order 16. Find a presentation
for P in terms of a and b.

5.8 A comparison with the Knuth-Bendix procedure
So far in this chapter we have considered only the Todd-Coxeter approach to
coset enumeration. However, in Section 4.10 it was pointed out that Knuth-
Bendix techniques can also be used to compute important-coset automata.
It is time to take a look at the possibility of using the Knuth-Bendix proce-
dure to do coset enumeration. This section discusses a nontrivial example
in which the Knuth-Bendix approach is superior to the other available coset
enumeration methods.

In Examples 5.2 and 6.3 we studied the group G = Grp(r, s, t I t-lrtr-2 =
r-1srs-2 = s-1tst-2 = 1) and showed that G is trivial. This presentation
was first studied in (Higman 1951). B. H. Neumann used this presentation
to construct an infinite set of presentations for the trivial group. Let

R1 = t-lrtr-2, S1 = r-1srs-2, Tl = s-ltst-2.

The second presentation in the set is obtained by substituting R1, S1, and
T1 for r, s, and tin R1, S1, and T1. This gives

R2 = Ti 1R1T1R1 2 = t2s-lt-1st-lrtr-2s-1tst-2r2t-1r-1tr2t-try.-lt,

S2 = R11S1R1S1 2 = r2t-1r-1tr-1Sr8-2t-lrtr-2s2r-1S_lrs2r-'s-lr,

T2 = S11T1S1T1 2 = s2r-'s-lrs-ltst-2r-1srs-2t2s-1t-1st2s-1t-1s.
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In G2 = Grp (r, s, t ( R2 = S2 = T2 = 1), the elements defined by R1, Sl, and
T1 are trivial by the computations in Example 5.2. But then by the same
computations, G2 is trivial. More complicated presentations of the trivial
subgroup can be generated by repeating this construction.

In attempting to enumerate the cosets of the trivial subgroup in G2,
each of the coset enumeration procedures available in TEN_CE defines
more than 100,000 states without finding a single coincidence. It is not
known how much memory is necessary to allow one of these procedures to
show that G2 is trivial. However, a slightly modified version of KBS_2 is
able to prove this result fairly easily. The modification referred to is the
addition of a fourth input argument m, which is a positive integer, and the
replacement of the statement

Push (AQj, QiC) onto the stack

in OVERLAP_2 by the statement

If JAI + IBI + ICI < m then push (AQj, QiC) onto the stack

Thus m sets a bound on the length of the overlaps ABC which are to be
processed.

Let X = jr, s, t}} and let R define the free group on jr, x, t}. Let -< be
the length-plus-lexicographic ordering of X* with r -< r-1 -< s s-1 -< t -< t-1
and let S consist of the rules in R together with the rules

R2-*e, S2->e, T2-e.

After KBS_2(X, -<, S, 26; T), the rewriting system T consists of the six
rules

r ->e, r-1-.E, s->e, 8-1--.e, t-,' e, t-1-->E.

Because overlaps are not processed if they have length greater than 26, a
great deal of information is thrown away. Despite this, the procedure is
able to conclude that G2 is trivial. During the computation, 8388 rules are
generated, with a maximum of 2522 active at one time. Since the left and
right sides of these rules have lengths at most 26, the total length of the
active rules never exceeds 2522.52 = 131144. Thus 150,000 bytes is enough
to store the active rules. In order to get a good execution time, additional
memory must be used for an index structure. Even with an index, the total
amount of memory used is well under a megabyte. This is much better than
any known traditional coset enumeration procedure.

In examples like this one, where the final answer is small but long words
are involved at intermediate stages of the verification, the use of the Knuth-
Bendix procedure should be considered seriously.
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Exercises

8.1. As described in this chapter, the Todd-Coxeter approach to coset enumeration appears
to be associated with length-plus-lexicographic orderings on free monoids. Are there
useful Todd-Coxeter coset enumeration procedures which make use of other reduction
orderings, such as wreath product orderings?

8.2. We have seen that the Knuth-Bendix procedure can be used to perform coset enumera-
tion. It is also possible to use coset enumeration to construct confluent rewriting systems.
Suppose that A is a finite, standard, complete coset automaton with respect to R such
that K(A) is normal in F = Mon (X I R). Show how to construct a reduced, confluent
rewriting system which defines F/K(A).

5.9 Historical notes
Coset enumeration as a formal procedure originated with (Todd & Coxeter
1936). However, there are arguments in Chapter XIII of [Dickson 1958],
originally published in 1901, which have the feel of coset enumerations. The
first efforts to produce a computer implementation of coset enumeration
were by Haselgrove in 1953, but computer memories were too small at
that time for useful results to be obtained. More information about early
implementations can be found in (Leech 1963). Important papers in the
development of the HLT strategy are (Trotter 1964), (Cannon et al. 1973),
and (Leon 1980b). The Felsch strategy was proposed in (H. Felsch 1961).
The paper (Atkinson 1981) was the first to suggest special treatment for
generators of finite order greater than 2.

In connection with the study of finite simple groups one sometimes en-
counters a coset enumeration of a very special type. The group is G =
Grp (X I R) and the subgroup whose cosets are to be enumerated is gen-
erated by X - {z} for some element z of X. Moreover, the relations in R
which do not involve z define a finite group H and we know how to com-
pute efficiently in H with elements and subgroups, for example, because we
know a faithful permutation representation of H of small degree. Finally,
among the relations involving z are some which show that z normalizes a
large subgroup of (the image of) H. Given all this information, it is possible
to define a specialized coset enumeration procedure called enumeration of
double cosets. One version of this procedure is described in (Linton 1991a).

An implementation of the low-index subgroup procedure was developed
by the author during the period 1964-5. This program emphasized the use
of coset enumeration in a manner similar to the procedure GENERATORS
of Section 5.7. Independently, students of Joachim Neubiiser developed a
somewhat different approach. Conversations on this topic took place at the
Oxford conference of 1967. The work of Neubiiser's students reported in
(Dietze & Schaps 1974) placed emphasis on the backtrack search approach.

Procedures analogous to coset enumeration can be defined whenever one
has a class of algebraic structures for which there are free objects. If G is a
group and K is a field, then the class of G-modules defined over K has free
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objects. An analogue of the low-index subgroup procedure can be used to
determine, for a finitely presented group G, all G-modules of dimension not
exceeding a prescribed bound over a given finite field. An implementation
of this technique is discussed in (Linton 1991b).
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The Reidemeister-Schreier procedure

In Proposition 3.5 of Chapter 4, we proved that subgroups of finite index
in finitely generated groups are finitely generated. In this chapter we shall
give a constructive proof that subgroups of finite index in finitely presented
groups are finitely presented. The algorithm developed as part of the proof
is the last of the major tools available for studying subgroups of finitely
presented groups. This algorithm is usually referred to as the Reidemeister-
Schreier procedure.

Let G be a group given by a presentation and let H be a subgroup of G.
In order to obtain a presentation for H, we need to determine some addi-
tional information about H and the way H is embedded in G. Section 6.1
describes the data needed, demonstrates how to get the presentation from
that data, and shows how to derive the data in a special case. Section 6.2
gives some examples showing how to derive the data in the general case
using coset enumeration. Section 6.3 formalizes the procedure. The initial
presentations of subgroups are often unpleasant. Section 6.4 discusses ways
of simplifying these presentations.

6.1 Presentations of subgroups
For the time being we shall work with monoid presentations. Let G =
Mon (X I S) and assume that G is a group. The image in G of a word U
in X* will be denoted [U], and - will be the congruence on X* generated
by S. Let H be a subgroup of G. Our goal is to find a set Y and a subset
T of Y* x Y* such that H is isomorphic to Mon (Y I T). Eventually we
shall assume that X and S are finite and that H has finite index in G. In
this case we shall want Y and T to be finite.

Suppose that Y is a set and g: Y* -* X * is a monoid homomorphism. We
can define a monoid homomorphism h:Y* G by h(A) = [g(A)]. Let us
assume that h maps Y* onto H. To save a little space as we construct a
presentation for H relative to h we shall write (A) for g(A) if A is in Y*.
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The cosets of H in G are described by the Schreier automaton A3 for G
relative to H. However, we shall need more information than is contained
in As. Let A = (E, X, E, {al, {a}) be any automaton isomorphic to As.
Then H = {[U] I U E X*, au = a}. For each o- in E let Wa be a word in X*
such that a1'1'° = v. The elements [Wa] with o, in E form a set of right coset
representatives for H in G. We shall always assume that W,, = s. If (Q, x, T)
is in E, then H[Wx] = H[WT], so [Wx] [WT]-1 is in H. By our assumption
concerning g, there is a word P in Y* such that [(P)] = [Wax]1W1]-1, or,
equivalently, Wax - (P) Wr. The word P is not unique. For each edge
(Q, x, T) in E choose one such P and let D be the set of quadruples (v, x, P, T)
so obtained. The quintuple E = (E, X, Y, D, {a}) will be called an extended
Schreier automaton for G relative to g and the choice of the words W. An
element e = (a, x, P, T) in D will still be called an edge. The generator x is
the primary label of e, and P is the secondary label. A path in £ now has
two signatures: the primary signature, which is the product of the primary
labels on the edges of the path, and the secondary signature, which is the
product of the secondary labels. For any word U in X * and any a in E,
there is a unique path Q in £ which starts at a and has U as its primary
signature. The secondary signature of Q will be denoted P(Q, U). The
endpoint of Q will continue to be written cU. If (v, x, P, T) is in D, then
P = P(v, X).

Proposition 1.1. Suppose that or is in E and U and V are in X*. Let
T = cU. Then P(o,, UV) = P(Q, U)P(T, V) and WaU - (P(v, U)) W.

Proof. The first equation simply says that the secondary signature of the
concatenation of two paths is the product of the signatures. Suppose that
U = x1... xs with each xi in X. Let the path from o, to r with primary
signature U consist of the edges (o i_1, xi, Pi, ai), 1 < i < s. Thus oO = o,,
o's = r, and P(v, U) = P1 ... Ps. Then

WaU =Waax1...Xs = (Pl)Wa1x2...xs = (PO (P2)Wagx3...xy
(Pi) ... (Ps) Was = (P1... P3) WT = (P(ci, U)) WT.

An extended Schreier automaton £ = (E, X, Y, D, {a}) has an extended
transition table. As with ordinary transition tables, the rows are indexed
by E and the columns by X. The entry in row or and column x contains
P(o,, x) followed by ax, normally written without separators or delimiters.
If P(a, x) = e, then the entry consists of ax alone. (The term "extended
transition table" is used rather than "extended coset table" because at
this point we are not assuming that S contains a classical niladic rewriting
system.)
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Example 1.1. Probably the simplest possible extended tables occur when
H = G, Y = X, and g is the identity map. If E = {1}, then for each x
in X we can take P(1, x) to be x. For example, if X = {x, y, z}, then the
following is an extended transition table:

x

1 X1

Y

Y1

z

z1

Example 1.2. Suppose that G is a finite cyclic group generated by an element
x of order divisible by 3 and H is the unique subgroup of G of index 3. Let
X = {x,x-1}, Y = {y,y1}, g(y) = x3, and g(y1) = x-3. If E = {1,2,3}
and a = 1, then an extended table for G relative to g and the choice W1 = e,
W2 =X1 W3=x2 is

x

1

2

3

2

3

Y1

y13
1

2

To check the (3, x)-entry, we note that [W3x] = [x2x] = [x3] = [(y) W1]. If
W3 is changed to x-1, then one possible extended transition table is

x

1

2

3

2

y3

1

3

1

Y-12

Let E = (E, X, Y, D, {a}) be an extended Schreier automaton for G rela-
tive to g and a choice of coset representatives. Suppose that U and V are
words in X* such that U - V and suppose that o, is in E. Then [U] = [V],
so QU = UV =,r, say. Then

(P(Q, U)) W7 WoU WWV (P(v, V)) W, .

Since G is a group, this implies that (P(o,,U)) - (P(a,V)). Thus the
relation P(v, U) = P(a, V) holds in H with respect to the homomorphism h.

Now suppose that y is in Y. Then (y) defines an element of H, so a(y) = a.
Therefore

(y) = Wa (y) °- (P(a, (y))) WO, = (P(a, (y)))

Hence the relation y = P(a, (y)) also holds in H with respect to h.
Let T be the subset of Y* x Y* consisting of the pairs (P(a, S), P(v,T)),

where a ranges over E and (S, T) ranges over S. Let 2 be the set of pairs
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(y, P(a, (y))) with y in Y. Set T = T1 U T2 and let .: be the congruence on
Y* generated by T.

Proposition 1.2. The pair (Y, T) is a monoid presentation for H relative
to h.

Proof. Let Q and R be words in Y*. We want to show that [(Q)] = [(R)] if
and only if Q R. But [(Q)] = [(R)] if and only if (Q) = (R). Thus we need
to prove that (Q) - (R) if and only if Q R. The preceding arguments
show that (B) - (C) for all (B, C) in T. The condition (Q) - (R) defines a
congruence on Y* which contains Therefore, if Q R, then (Q) - (R).
It remains to prove the reverse implication.

Lemma 1.3. If U and V are words in X * such that U - V, then P(a, U) ,:
P(a,V) for all a in E.

Proof. Suppose that U - V. There exists a sequence of words U = UO,
U1,. .. , U3 = V such that Ui+1 is obtained from UZ by replacing a subword
S by a word T, where either (S, T) or (T, S) is in S. A simple induction
argument shows that we need only consider the case s = 1. Thus we may
assume that U = ASB, V = ATB, and (S,T) is in S. By Proposition 1.1,

P(a, U) = P(a, A)P(p, S)P(T, B),

where p = aA and T = ps. But S - T, so r = PT as well. Therefore

P(a,V) = P(a, A)P(p,T)P(r, B).

Now P(p, S) P(p, T) by the definition of Since is a congruence,
P(a, U) P(a, V).

Lemma 1.4. If Q is in Y*, then Q P(a, (Q)).

Proof. Let Q = yl ... ys with each y2 in Y. Then (Q) = (y1) ... (ys) and

P(a, (Q)) = P(a1, (y1))P(a2, (Y2)) ... P(asI (ys)),

where a1 = a and az+1 = ajy`), 1 < i < s. But (yi) defines an element of H,
so a1 = a2 = ... = as = a. Since yz P(a, (yi)) for each i, it follows that
Q - P(a, (Q)).

Now suppose that (Q) - (R) for two elements Q and R of Y*. Then by
Lemmas 1.3 and 1.4,

Q P(a, (Q)) P(a, (R)) = R.
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To apply Proposition 1.2, we need the presentation (X, S), the homo-
morphism g, and an extended Schreier automaton £ = (E, X, Y, D, {a}).
The words WW do not play a role in the construction of T, but their ex-
istence is part of the definition of an extended Schreier automaton. It is
tempting to try to give an axiomatic treatment for objects one might call
complete extended coset automata similar to the axiomatic treatment of
coset automata given in Section 4.4. However, there are serious difficulties
connected with such an attempt. Given X, S, and £, it is not obvious
how to decide whether £ really is an extended Schreier automaton for the
subgroup of all elements [U] of G such that au = a. In order to know that
£ is an extended Schreier automaton, it appears that we have to know how
£ was constructed.

It is useful to give a name to the procedure for constructing the set T
of Proposition 1.2. Let us call the procedure RS_BASIC. It is invoked as
follows: RS_BASIC(X, S, Y, g, £; T). The input arguments are the presen-
tation for G, the set Y, the homomorphism g, and the extended Schreier
automaton. The output is the set of defining relations for H.

The easiest way to get data which can correctly be fed into RS-BASIC
is to start with a monoid presentation (X, S) which is known to define
a group G and a homomorphism f of G into the symmetric group on a
finite set E such that the image of G is transitive. If a is in E and H is
the stabilizer of a in G, then we can get a presentation for H in terms of
Schreier generators.

Procedure RS_SGEN(X, S, E, f, a; Y, g, T);
Input: X : a finite set;

S : a finite subset of X* x X* such that G = Mon (X I S)
is a group;

E a finite set;
f : a map from X to Sym(E) such that the permutations

f (x) with x in X satisfy the relations in S and
generate a transitive group;

a : an element of E;
Output: Y : a finite set;

g : a homomorphism from Y* to X*;
T : a finite subset of Y* x Y* such that (Y, T) is a monoid

presentation for the stabilizer H of a in G relative to
the composition h of g and the map U r [U];

Begin
Let E be the set of triples (a, x, T) with a and r in E and x in

X such that T is the image of a under f (x);
A := (E, X, E, {al, {a}); (* A is a trim automaton. *)
For a in E do let WW be a word in X* such that aw, = a and let VQ

be a word in X * representing the inverse of [WQ] in G;
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(* The words W0 and V,, are taken to be E. *)
Let Y be a set in one-to-one correspondence with E;
D:=0;
For o in E do

For x in X do begin

Let y in Y correspond to (Q, X, T) in E;
g(y) := WQxVT;
Add (v, x, y, T) to D

End;

£ := (E, X, Y, D, {a}); RS_BASIC(X, S, Y, g, £; T)
End.

Our requirement that G in RS_SGEN be a group includes the assumption
that we can compute inverses. That is, given a word W in X*, we can find
a word V representing the inverse of [W]. Since G acts transitively on E,
the right cosets of H in G correspond to the elements of E. Therefore A is
isomorphic to the Schreier automaton of G relative to H. In Lemma 3.6 of
Chapter 4 we proved that the Schreier generators [WxVT] with (Q, x, r) in
E do in fact generate H. Thus g maps Y onto a set of words whose image
in G generates H. Moreover, if (Q, x, y, ,r) is in D, then

WWx = WWxVTWT = (y) WT,

since VTWT - E. Therefore £ is an extended Schreier automaton for G
relative to g and the choice of the W. Hence RS_BASIC returns a set of
defining relations for H.

Example 1.3. The monoid G = Mon (u, v I u4 = v4 = (uv)4 = 1) is obviously
a group, since [u]-1 and [v]-1 can be taken to be [u3] and [v3], respectively.
Let E = {1, 2} and a = 1. Suppose that f takes u to (1, 2) and v to the
identity (1)(2). The input assumptions of RS_SGEN are satisfied. The set
E is defined by the following table:

U

1

2

2

1

V

1

2

A set of coset representatives is given by W1 = 6 and W2 = u, and we can
take Vl and V2 to be e and u3, respectively. Let Y = {a, b, c, d}, where the
extended edges are given by

u

1

2

a2

C1

V

bl

d2
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Now (a) = g(a) = W1uV2 = ruu3 = u4. Similarly, g(b) = v, g(c) = u2, and
g(d) = uvu3. There are three relations in S, so RS_BASIC produces six
relations for H of the type P(a,S) = P(a, T) with (S, T) in S. These
relations are

P(1, u4) = (ac)2 = 1,

P(2,u4) = (ca)2 = 1,

P(1, v4) = b4 = 1,

P(2, v4) = d4 = 1,
P(1,(uv)4) = (adcb)2 = 1,

P(2, (uv)4) = (cbad)2 = 1.

There are four elements of Y and hence there are four relations y = P(1, (y)).
They are

a = P(1, u4) = (ac)2,

b = P(1, v) = b,

c = P(1, u2) = ac,

d = P(1, uvu3) = adcac.

Since a = (ac)2 = 1, we can eliminate a from the presentation using a Tietze
transformation. A few more simple transformations lead to the presentation
H=Mon(b,c,dIb4=c2=d4=(dcb)2=1).

The presentations obtained using RS_SGEN will usually be simpler if we
make the following assumptions:

(i) S contains a classical niladic rewriting system R on X*.
(ii) The word Wa is the first word with respect to some fixed reduction

ordering of X* such that aT' ° = a.
(iii) The word Va is W,-', which is defined using R.

Let us assume that these conditions are satisfied. Suppose that (a, x, a, T)
and (r, x-1, b, a) are in D. Then the relations P(a, xx-1) = 1 and
P(r, x-lx) = 1 yield ab = ba = 1, so a and b define inverse elements of H. It is
possible that g(a) = WaxWr 1 can be rewritten toe using R. Since Wa and
W. are irreducible with respect to R, this can happen only when W. = Wax
or Wa = Wx-1. In this case, both a and b define the identity of H and can
be removed from the presentation by a Tietze transformation. Thus we can
take Y to be a set in one-to-one correspondence with the subset El of E
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consisting of those edges (a, x, T) such that WoxWT 1 cannot be rewritten to
e using R, and we define D to consist of the quadruples (v, x, a, T), where a
in Y corresponds to (a, x, T) in El, together with the quadruples (v, x, e, T)
with (Q, X, T) in E - El. Let Q be the set of pairs (ab, e), where a in Y
corresponds to (a, x, T) in El and b corresponds to (T, x-1, v). Then Q is a
classical niladic rewriting system on Y*, the relations in Q are satisfied in
H, and all relations P(a, xx-1) = 1 are consequences of Q.

Suppose that a is in E. By induction on the length of WW it is easy to
show that P(a, Wo) = e = P(a, W,-'). If a in Y corresponds to (v, x, T) in
El, then

P(a, (a)) = P(a,WxWT 1) = P(a,WW)P(a,x)P(T,WT 1) = eae = a.

Therefore the relation a = P(a, (a)) reduces to the identity a = a and can
be ignored. Thus H is defined by the relations in Q together with the
relations P(a, S) = P(v,T), where (S, T) ranges over S - R. This version
of RS_SGEN will be called RS_SGEN2.

The preceding discussion provides the proof of the following result.

Proposition 1.5. Let H be a subgroup of index n in a group G defined
by a group presentation with r generators and s relations. Then H has a
group presentation with 1 + n(r - 1) generators and ns relations.

Example 1.4. Let M = Grp (x, y I (xyx-1y1)2 = 1). The map x ra (1, 2,3)
and y - (2,3,4) defines a homomorphism from M to Sym(4), whose image
is transitive. We shall find a presentation for the stabilizer H in M of
a = 1. To get a monoid presentation, we add generators x-1 and y-1 and
the relations xx-1 = x-1x = yy-1 = y-ly = 1. The set E of edges in the
automaton A of RS_SGEN is given by the following table.

x p

Using the length-plus-lexicographic ordering with x -< x-1 -< y -< y-1, we get
the coset representatives W1 = e, W2 = x, W3 = x-1, and W4 = xy1. The
set E1 has cardinality 10. There are no pairs of the form (a2, e) in Q. Thus
it is reasonable to take Y = {a, b, c, d, e}± and to associate the elements of
Y with Schreier generators so that the edges of E are given by the following
extended table:



276 6 The Reidemeister-Schreier procedure

x X-1 y
y-1

1 2 3 al a 11
2 b3 1 c3 4

3 1 b-12 d4 c-12

4 e4 e-14 2 d-13

The map g is defined by

g(a) = y, g(b) = x3, g(c) = xyx, g(d) = x 1y2x-1, g(e) =
xy-lxyx-1

and g(a-1) = g(a)-1,...,g(e-1) = g(e)-1. The relations in Q define the
free group on {a, b, c, d, e}. The subgroup H is defined by Q and the four
relations P(o, (xyx-1y-1)2) = 1. These relations are

cb-lea-1 = ea lcb-1 = bde-ld-lac 1 = d-'aclbde-1 = 1.

The first two relators and the last two relators are cyclic permutations of
each other. We may use the first relator to find that e = be 1a and then
apply a Tietze transformation to get H = Grp(a, b, c, d I bda-lcb-ld-lac 1=
1).

Exercises

1.1. Suppose that R is a classical niladic rewriting system on X* and H is a subgroup of
F = Mon (X I R). Let E be the set of right cosets of H in F and for x in X let f (x) be
the permutation of E induced by right multiplication by [x]. Show that it makes sense
to invoke RS_SGEN2 even if E is infinite and that the set T of relations produced is
a classical niladic rewriting system on Y*. What does this say about the structure of
subgroups of F? In particular, what does it say about subgroups of free groups?

1.2. Suppose in RS_SGEN2 that S = R U V, where R is a classical niladic rewriting system
on X* and R fl v = 0. Let Q be the niladic rewriting system on Y* consisting of the
relations P(a, L) = 1, where L is a left side in R. Let or be in E and let (V', e) be
in V. Show that the words P(o,V18) and P(orv,V') are cyclic permutations of each
other. Thus, in the presence of the relations in Q, each of these two relators implies the
other. Conclude that we only need to form the relators P(o,V") as or ranges over a set
of representatives for the cycles of V acting on E.

1.3. There is a homomorphism of G = Grp (x, y I x3 = y3 = (xy)3 = 1) into Sym(7) in which
x maps to (1)(2, 4, 5) (3, 6, 7) and y maps to (1,2,3)(4,7,6)(5). Find a presentation for
the stabilizer H of 1 in G in terms of Schreier generators.

6.2 Examples of extended coset enumeration
In Section 6.1 we learned how to find a finite presentation for a subgroup
H of finite index in a finitely presented group G when the generators for
H are taken to be Schreier generators. However, we may need to have a
presentation for H in terms of other generators. As an important special
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case, we may have a second generating set for G, and we would like to have
a presentation for G in terms of these generators.

In this section we shall look at some examples of a procedure called ex-
tended coset enumeration, which produces the extended Schreier automata
needed to get presentations of subgroups of finite index in terms of specific
sets of generators. (Other authors have referred to this procedure as modi-
fied or generalized coset enumeration.) In Section 6.3, a formal description
will be given of an extended coset enumeration procedure based on the
HLT strategy of coset enumeration. Any coset enumeration procedure can
be modified to obtain an extended procedure. The HLT procedure will be
used because it is the simplest to describe.

The input arguments X, 7Z, and V of a coset enumeration procedure
are retained in the extended procedure. Thus X is a finite set, R is a
classical niladic rewriting system on X*, and V is a finite subset of X*
giving defining relators for G as a quotient of the group F = Mon (X I R).
The set U of words defining group generators for H is replaced by three new
input arguments: a finite set Y, a classical rewriting system Q on Y*, and a
homomorphism g: Y* --+ X* which defines a homomorphism of Mon (Y Q)
onto H. As before, we shall usually write (Q) for g(Q).

Given the set U, we can construct one triple Y, Q, g as follows: Replace
U by U U U-1, if necessary, so that U = U-1. Take Y to be a set with JU I
elements, choose a bijection g: Y -p U, and extend g to a homomorphism
from Y* to X*. Let Q consist of the pairs (ab, e) with a and b in Y and
g(b) = g(a)-1

Example 2.1. Let G = Grp (x, y I x2 = y3 = (xy)4 = 1) and let H be the
subgroup of G generated by the images of xyx and yxy-1. The obvious
choice is to take X = {x, y, y-1 } and let R consist of the rules x2 e,
yy-1 - e y1y , e. A simple coset enumeration shows that I G : HI = 4
and produces the following coset table:

x y

To do the corresponding extended enumeration, we must first choose Y,
g, and Q. Since (yxy 1)-1 = yxy-1, we can take Y = {u, u 1, v}, define
g(u) = xyx, g(u-1) = xy1x, and g(v) = yxy-1, and let Q consist of the
rules uu-1 - e, u-lu -> e, v2 -s F.

As we build the extended coset automaton E = (E, X, Y, D, {1}), we must
construct words WQ which give coset representatives. Initially, E = {1} and
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W1 = e. When a new state T is defined as vz for some z in X, then W. is
defined to be Wz. Edges (v, z, e, T) and (T, z-1, e, o) are added to D.

The first step in the enumeration is to perform full two-sided traces of
the subgroup generators at 1. The first generator is g(u) = xyx. In the
trace, we define 2 to be 1x and W2 to be x. This adds the edges (1, x, e, 2)
and (2, x, e, 1) to D. Now we conclude that 2y = 2, so there is an edge
(2, y, Q, 2) in D for some word Q in Y*. Among the defining relations to be
constructed for H is the relation u = P(1, (u)) = P(1, xyx). Let us diagram
the trace of xyx at 1, including the secondary labels on the edges:

X y x
1 2 2 1.
E Q E

The primary labels are written above and between the states encountered,
and the secondary labels are written below the corresponding primary la-
bels. Thus P(1, xyx) = eQe = Q. The relation u = P(1, (u)) means that the
elements of H represented by u and Q are the same. Thus we should take
Q to be u and add (2, y, u, 2) to D. We must also add an edge (2, y-1, Q1, 2)
to D. Another relation for H is P(1, yy-1) = P(1, e). The trace of yy-1 at
2 is

y y-1
2 2 2.

u Q1

Hence uQ1 must represent the trivial element of H, so we take Q1 to be
u-1. At this point .D has four edges as described by the following extended
table:

x

1

2

2

1

y

u2

y-i

U-12

Now we trace yxy-1 at 1. After defining ly to be 3 and W3 to be y, we
conclude that 3X is 3. To determine the secondary label Q on the (3, x)-
entry in the table, we look again at the trace of yxy-1 at 1, this time
including the secondary labels.

yxy-1
1 3 3 1.

e Q E

Since the relation v = P(1, yxy-1) = eQe must hold in H, we take Q = v.
The extended table is now
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1

2

3

x

2

1

v3

y

3

u2

y-1

u-12

2

At this point we start tracing the relators at the states in E, starting with
y3 at 1. The definition 4 = 3Y is made and then 4y = 1 is deduced. Therefore
there is an edge (4, y, Q, 1) in D. The trace of y3 with both primary and
secondary labels is

y y y
1 3 4 1.
E Q e

Since y3 is trivial in G, it follows that P(v, y3) = Q represents the identity
element of H. Hence we take Q = E. This gives the following table:

X

2

1

v3

y

3

u2

4

1

y1

4

U-12
1

3

The trace of (xy)4 at 1 leads to the deduction 4' = 4, but again we must
determine the secondary label Q on the edge (4, x, Q, 4). The trace is

x y x y x y x y
1 2 2 1 3 3 4 4 1.

U v Q

This time empty secondary labels have been omitted. Since P(1, (xy)4)
must represent the identity element of H, we take Q = vu-'. Our extended
table is now complete:

x Y Y-1

1 2 3 4

2 1 u2 U-12
3 v3 4 1

4 VU-14 1 3

The defining relations for H can be read off using the table. We know
that H is a quotient group of L = Mon (Y Q), so we start with the relations
in Q. The relations u = P(1, (u)) and v = P(1, (v)) were used in the con-
struction of the table. They give the identities u = u and v = v. The only
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relation of the form P(a, x2) = 1 to yield anything new is obtained by taking
a = 4. This gives (vu-1)2 = 1, which with the relation v2 =1 is equivalent to
(uv)2 = 1. The relations P(o,, yy 1) = 1 and P(Q, y-l y) = 1 provide no new
information. The only nontrivial relation P(o,, y3) = 1 is P(2, y3) = u3 = 1.
The words P(Q, (xy)4) are all cyclic permutations of uvvu-1, which are all
trivial in L. Thus H is Grp (u, v I u3 = v2 = (uv)2 = 1).

The extended enumeration of Example 2.1 is relatively easy since no
coincidences were encountered. As should be expected, the handling of
coincidences in an extended enumeration is fairly complicated.

Example 2.2. Let G = Grp (a, b I a4 = b4 = (a2b)2 = (ab)4 = 1) and let H be
the subgroup of G generated by the images of a and b2. Here we take
X = {a, b}} and let 1 define the free group on {a, b}. An ordinary coset
enumeration shows that IG : HI = 4 and gives the following coset table:

a a-1
b

b-1

We can choose Y and Q to be the same as in Example 2.1, since (b2)2 is
trivial in H. The homomorphism g maps u, u-1, and v to a, a-1, and b2,
respectively. As before, we start the extended enumeration with E = {1}
and W1 = e. The two-sided trace of the first subgroup generator g(u) = a
at 1 yields la = 1. Since u = P(1, (u)) in H, the secondary label for the
(1, a)-entry in the extended table is taken to be u. The secondary label on
the paired entry is u-1. Thus at the end of the trace the extended table is

a

1 U1

a-1

u-11

b

The trace of b2 at 1 first defines 2 as lb and sets W2 = b. Next the
deduction 2b = 1 is made. Since P(1, b2) and v must represent the same
element in H, the secondary label on the (2, b)-entry should be v, and the
secondary label on the (1, b-1) entry should also be v. This gives

a

1

2

U1

a-1

U-11

b
b-1

2

V1

v2

1

Now we start the traces of the relators of G. We already have la4 =1b' =
1.

We could get some relations for H by looking at the secondary signatures
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Table 6.2.1

a a-1
b

b-1

1 ul u-11 2 v2

2 3 VU-23 V1 1

3 u-2v2 2 4 u-15

4 5 3

5 4 u3

of the corresponding paths, but this will be done later. To complete the
trace of (a2b)2 at 1, we must define 2e to be 3 and set W3 = ba. Next the
deduction 3° = 2 is made, so there is an edge of the form (3, a, Q, 2) in D.
The trace of (a2b)2 at 1 with secondary labels is

a a b a a b
1 1 1 2 3 2 1.
U u Q V

Again empty labels have been omitted. Since P(1, (a2b)2) must represent
the identity element of H, we take Q = u-2v to make u2Qv the identity in
L = Mon (Y Q). The label on the paired edge is vu2. At this point the
table is

a a-1
b

b-1

1 ul U_ 11 2 v2

2 3 vu23 V1 1

3 u2v2 2

The trace of (ab)4 at 1 causes 3b to be defined to be 4 and 4' to be
defined to be 5. The coset representatives W4 and W5 are bab and baba,
respectively. The deduction 5b = 3 is then made. If Q is the secondary label
on the (5, b)-entry in the table, then the trace of (ab)4 at 1 is

a b a b a b a b

1 1 2 3 4 5 3 2 1.
u Q u-2v v

Now P(1, (ab)4) = uQu-2vv must be the identity element in H. If we take
Q to be u, then P(1, (ab)4) is the identity element in L. The secondary
label on the (3, a-1)-entry should be u-1. When the new edges are entered,
we have Table 6.2.1.

None of the traces at 2 produces any change in the table. Neither does
the trace of a4 at 3. However, the trace of b4 at 3 results in the definitions
6 = 4b and W6 = babe, and the deduction 6b = 5. If Q is the secondary label
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Table 6.2.2

a a-1 b
b-1

1 u1 u-11 2 v2

2 3 vu23 V1 1

3 u-2v2 2 4 U-15

4 5 6 3

5 4 u3 u6

6 U-15 4

on the (6, b)-entry, then the trace of b4 at 3 is

b b b b

3 4 6 5 3.
Q U

Since the product of the secondary labels must represent the identity in
H, we take Q to be u-1. The label on the paired entry is u. This gives
Table 6.2.2.

Looking only at the primary labels, the result of tracing (a2b)2 at 3 is
the following:

a a b a a b
3 2 3 4 5 5 3.

4

Thus we have found a coincidence. States 4 and 5 correspond to the same
right coset of H. However, we must interpret the coincidence not merely
as an equality of cosets but as an equality of elements. Our representative
W5 = baba defines an element in the coset represented by W4 = bab. Thus
there must be a word Q in Y* such that W5 and (Q) W4 define the same
element of H. It is necessary to find one such word Q. To do so, we look
at the forward trace at 4 of the word (aba)2, which is a cyclic permutation
of (a2b)2 and so is the identity in G. This trace, including the secondary
edges, is

a b a a b a
453 2345.

U U-2 V

This means that

W4 = W4(aba)2
(uu-2v) W5 = (u-1v)

W5,
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or

W 5 = (u
lv)-1 W4

= (vu) W4.

Now that we have interpreted the coincidence of 4 and 5 as an equality
of elements, we must see if any further coincidences follow, and interpret
them as equalities of elements. Looking at the entries in column b, we see
that the coincidence of 4 and 5 implies the coincidence of 6 and 3. At the
level of words, the (4, b)-entry says that W4b - W6. The (5, b)-entry says
that W5b - (u) W3. Using the preceding result about W5, we have

W6 = W4b = (u-lv) W5b as (u-lv) (u) W3 = (u-1vu) W3.

No further coincidences are found. The (4, a 1)-entry can now be deduced.
Since W5a-1 as W4, we have (vu) W4a-1 as W4, or W4a-1 as (u lv) W4. After
we insert this entry, replace all 5's in the table by vu4 and all 6's by u-1vu3,
and delete 5 and 6 as states, we have the following extended table:

a a-1 b b-1

1 ul u11 2 v2
2 3 vu23 v1 1

3 u -2v2 2 4 u-1vu44

4 vu4 u -1v4 u-1vu3 3

The final step of applying RS_BASIC and obtaining the presentation for
H is left as an exercise.

Exercises

2.1. Finish Example 2.2 by deriving the presentation for H.
2.2. Let X and R be given and let Y, Q, and g be constructed as described in the text. Show

that (Q)-1 =_ (Q-1) for every word Q in Y*, where the first inverse is with respect to 7Z
and the second is with respect to Q.

2.3. Carry out an extended coset enumeration with the following input data: X = {x, y}}, R =
FGRe1({x, y}), V = {x3 y3 (xy)3}, Y = {u,v}t, Q = FGRe1({u,v}), g(u) = x, g(u-1) =
X-1, g(v) = yxy 1, g(v-1) = yx-1y 1.

6.3 An extended HLT enumeration procedure
In the previous section we worked through two examples of extended coset
enumeration based on the HLT strategy. In this section, we shall give a
formal description of an extended HLT coset enumeration procedure. The
procedure has the following input arguments:

X : a finite set.
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R a classical niladic rewriting system on X*.
V : a finite set of words in X* defining relators for a group G as a

quotient of F = Mon (X I R).
Y : a finite set.
Q : a classical niladic rewriting system on Y*.
g : a homomorphism from Y* to X* which defines a

homomorphism from L = Mon (Y I Q) onto a subgroup H of
finite index in G.

The output argument is an extended Schreier automaton E = (E, X, Y,
D, {1}) for G relative to g and a particular choice of coset representatives.
The coset representatives WQ are not explicitly constructed, although they
are frequently referred to in the discussion which follows. They are defined
implicitly as new states are defined.

For words in X*, inversion and reduction are with respect to R. For
words in Y*, these operations are with respect to Q. If S and T are in X*,
then S - T means that S and T represent the same element of G. Thus
is the congruence generated by R and the pairs (V, e) with V in V. If Q is
in Y*, then g(Q) is written (Q).

The global variable n will again denote the largest integer used so far
to label a state in £, and the vector p will be used to record the fact that
a state has become coincident with an earlier state. However, since now
coincidences must be described by equalities of elements of G, we shall need
to store some additional information about coincidences. If a > p[a] =
rr, then So will be a word in Y* such that Wo - (SQ) W. To keep the
description as simple as possible, we shall not use path compression when
computing p°° [a]. Because an HLT strategy is being used, there will be no
references to the boolean variable save or to the deduction stack.

The procedure HLT of Section 5.2 calls directly or indirectly eight subpro-
cedures: DEFINE, JOIN, ACTIVE, MERGE, COINCIDENCE, TRACE,
BACK_TRACE, and TWO_SIDED_TRACE. The extended procedure,
which will be called HLT_X, will need versions of all eight of the sub-
procedures. They will be discussed in the order given, and the names of
the new procedures will be formed by adding _X to the original names.

The procedure DEFINE_X is very similar to DEFINE, which is discussed
in Section 4.5.

Procedure DEFINE_X(v, x);
Input: a : a state;

x : an element of X such that as is not defined;
(* A new state is defined as ax. *)
Begin

n := n + 1; p[n] := n; Add (a, x, e, n) and (n, x-1, e, a) to D
End.
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However, JOIN_X is more complicated than JOIN, since JOIN_X must
handle elements of G, not just cosets.

Procedure JOIN_X(A, v, x, B, T);
Input: A, B : words in Y*;

or, T states;
x : an element of X such that neither ax nor Ty 1 is

defined;
(* Adds edges to D which imply that (A) Wx - (B) Wr. *)
Begin

REWRITE(Y, Q, A-1B; Q); Add (v, x, Q, T) to D;
If (o,, x) (T, x-1) then add (T, x-1, Q-1, v) to D

End.

The procedure ACTIVE_X not only computes r = p°° [a] but also finds
a word A in Y* such that Wa - (A) W. Because two objects are returned,
ACTIVE_X is not written as a function.

Procedure ACTIVE_X(v; A, T);
Input: o : an integer between 1 and n representing a possibly

inactive state;
Output: A : a word in Y*;

T an active state such that W, - (A) WT;
Begin

T:=Q; B:=e; p:=p[T];
If p $ r then begin

B:=BSr; T:=p; p:=p[r]
End;

REWRITE(Y, Q, B; A)
End.

There is no logical necessity in JOIN_X and ACTIVE_X to rewrite words
using Q. However, without any rewriting, the secondary labels on edges in
D could get very long. The approach adopted here is to rewrite frequently.

The procedure MERGE_X must "merge" two elements of G, not just two
cosets of H. Recall that 771, ... 177k are the states found to be coincident with
earlier states so far during the current call to the coincidence procedure.

Procedure MERGE_X(A, a, B, T);
Input: A, B : words in Y*;

a, T : integers between 1 and n;
(* Note the coincidence (A) Wa - (B) W,.. *)
Begin
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ACTIVE_X(o,; P, cp); ACTIVE_X(T; Q, 0);

If cp ,- ?p then begin
k:=k+1;
If cp < 0 then begin

p[O] := cp; 77k 0; REWRITE(Y, Q, Q-1B-IAP; SO end
Else begin

p[w] := 0; rylk := cp; REWRITE(Y, Q, P-'A-1BQ; S.)

End
End

End.

The coincidence procedure also processes coincidences of elements of G.

Procedure COINCIDENCE_X(A, a, B, T);
Input: A, B : words in Y*;

a,r : integers between 1 and n;

(* Process the coincidence (A) Wo = (B) Wr and any consequences of
it. *)

Begin
k:=O; MERGE_X(A, u, B, T); i:=1;
While i < k do begin

v:= 77j; D1:=0;
For x in X do

If there is an edge (v, x, Q, cp) in D then begin
Delete (v, x, Q, cp) from D and add it to D1;
If (cp, x-1) (v, x) then delete (cp, x-1, Q-1, v) from D

End;

For (v, x, Q, cp) in D1 do begin
ACTIVE_X(v; T, p); ACTIVE_X(cp; U, b);

If there is an edge (µ, x, P,,3) in D then
MERGE_X(QU,

Else if there is an edge (V), x-1, R, y) in D then
MERGE_X(Q-1T, t, UR, y)

Else begin

REWRITE(Y, Q, T-1QU; P); Add (µ, x, P, V)) to D;

If (µ, x) (0, x-1) then add x-1, P-1, p) to D
End

End;

is=i+1
End

End.
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The procedures TRACE of Section 3.2 and BACK_TRACE of Section 4.5
must be modified to compute secondary signatures. In both, the extended
automaton £ will be a global variable.

Procedure TRACE_X(o,, U; T, B, C, P);
Input: Q : a state;

U : a word in X*;
Output: 7- : a state;

B, C : words in X* such that U = BC, aB = T, and CBI is
as big as possible;

P : a word in Y*, the secondary signature P(o,, B);
Begin

,r:= o,; B:= e; C:= U; Q:= 6; done:=false;
While C # e and not done do begin

Let C = xT with x in X;

If Tx is not defined then done := true
Else begin

Let (T, x, K, p) be in D; B := Bx; C := T; Q := QK; r := p
End

End;

REWRITE(Y, Q, Q; P)
End.

Procedure BACK_TRACE_X(v, U; T, B, C, P);
Input: or : a state;

U : a word in X*;
Output: r : a state;

B, C : words in X* such that U = BC, TC = Q, and JCJ is
as big as possible;

P : a word in Y*, the secondary signature P(r, C);
Begin

7-:= or; B:= U; C:= e; Q:= E; done:=false;

While B 54 e and not done do begin
Let B = Tx with x in X;

If rx ' is not defined then done := true
Else begin

Let (p, x, K, T) be in D; B:= T; C:= xC; Q:= KQ; r:= p
End

End;

REWRITE(Y, Q, Q; P)
End.
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Since we are using the HLT strategy, all two-sided traces are full traces.
Thus we do not need the argument full of TWO-SIDED-TRACE. In its
place, we put a word P in Y*. The object of the trace now is to make sure
that WV - (P) W. When V is a relator, P will be empty. If or = 1 and
V is the subgroup generator g(y), then P will be y.

Procedure TWO_SIDED_TRACE_X(o,, V, P);
Input: a : a state;

V : a word in X*;
P : a word in Y*;

Begin
TRACE_X(o,, V; p, S, C, Q); BACK_TRACE_X(o,, C; v, T, U, R);
While ITI > 1 do begin

Let T start with x; DEFINE_X(1t, x);
TRACE_X(a, V; p, S, C, Q); BACK_TRACE_X(o,, C; v, T, U, R)

End;
If T = e and p v then COINCIDENCE_X(P-1Q, p, R-1, v)
Else begin

Let T be the element x of X; JOIN_X(P-1Q, p, x, R-1, v)
End

End.

Now we can define HLT_X.

Procedure HLT_X(X, R, V, Y, Q, g; £);
(* An extended HLT coset enumeration procedure. The arguments are

explained at the beginning of this section. *)
Begin

n := 1; p[1] := 1; D := 0;
For y in Y do TWO-SIDED-TRACE-X(1, g(y), y);
Q:=1;
While a < n do begin

If p[a] = o, then begin
For V in V do begin

TWO_SIDED_TRACE_X(o,, V, E);
If p[o ] o, then goto 99

End;
For x in X do if ux is not defined then DEFINE_X(o,, x)

End;
99: Q:=a+1

End;
Let E be the set of integers a with 1 < a < n and p[o ] = a;
£ :_ (E, X, Y, D, {1}); Standardize £

End.
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An extended Schreier automaton is standard if the corresponding ordi-
nary Schreier automaton is standard. To standardize e in HLT_X, only
trivial modifications of the procedure STANDARDIZE of Section 4.7 are
required.

Example 3.1. Let G = Grp (x, y I x2 = y3 = (xy)7 = 1). The words xy and
yx define generators of G. Let us find a presentation for G in terms of
these generators. The first step is to call HLT_X with the following input
arguments:

X : {x, y, y-1 },
R : I x
V : {y3, (xy)7},
Y : {u, v}},
Q : FGRe1({u, v}),
g : the homomorphism defined by g(u) = xy, g(u-1) = y-1x,

g(v) = yx, g(v-1) = xy-1

Let us follow the operation of HLT_X. First the subgroup generators are
traced at 1. The trace of g(u) produces the following table:

x Y Y-1

1 2 U-12

2 1 U1

After g(v) is traced, we have

X Y Y-1

1 2 v2 U-12
2 1 U1 V-11

Now let us observe what happens in the call TWO-
SIDED-TRACE-X(1, y3, e). After TRACE_X(1, y3; p, S, C, Q) we have

µ=2, S=y3, C=e, Q=vuv.

The call BACK_TRACE_X(1, s; v, T, U, R) produces

v=1, T=U=R=e.

Thus we invoke COINCIDENCE_X(vuv, 2, e,1). The call to MERGE_X
makes p[2] = 1, S2 = v-1u-1v-1, and 771 = 2. When % is processed, all edges
are removed from D and the three edges leaving 2 are put in D1. When
(2, x, e,1) is processed, the edge (1, x, vuv, 1) is put into D. When (2, y, u, 1)
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is processed, the edges (1, y, (vu)2,1) and (1, y-1, (u-lv-1)2,1) are put in D.
Thus the final extended coset table is

x

1 vuvl

y

(vu)21

y-1

(u 1v-1)21

The relation u = P(1, (u)) is u = vuvvuvu, which is equivalent to (uv2)2 =
1. The relation v = P(1, (v)) is v = vuvuvuv, which is equivalent to (uv)3 =
1. The relation P(1, x2) = 1 is (vuv)2 = 1, which is equivalent to (uv2)2 = 1
and can be dropped. The relations P(l,yy-1) = 1 and P(1,y-1y) = 1
are trivial. From P(1, y3) = 1 we get (vu)6 = 1, which is a consequence
of (uv)3 = 1 and can be omitted. Finally, from P(1, (xy)7) = 1 we have
(vuvvuvu)7 = 1. Given (uv)3 = 1, this is equivalent to (vuvu lv-1)7 = 1,
which in turn is equivalent to v7 = 1. Thus a presentation of G on u and v
is (uv2)2 = (uv)3 = v7 = 1.

Exercise

3.1. Let P = Grp (a, b I a5 = bs = (ab)5 = 1). Show that the normal closure N in P of the
image of a has index 5 in P and is generated by b'ab-i, 0 < i < 3. Find a presentation
for N in terms of these generators.

6.4 Simplifying presentations
Presentations obtained using the Reidemeister-Schreier procedure fre-
quently are difficult to work with. The presentations in terms of Schreier
generators, described in Section 6.1, have a great many generators and re-
lations. For example, if H is a subgroup of index 100 in a group defined by
five relations on two generators, then the presentation for H will have 101
generators and 500 relations. If we know a small set U of generators for our
subgroup H, then extended coset enumeration can be used to produce an
extended Schreier automaton from which we can read off a set of defining
relations for H in terms of the elements of U. This can get the number of
generators down to a reasonable level, but the number of relations is still
large. Moreover, the secondary labels on the edges of the extended automa-
ton can be quite long. If this is the case, then the relators obtained may be
extremely long. In order to be useful, presentations constructed with the
Reidemeister-Schreier procedure must be cleaned up or simplified in some
manner. It may be enough just to remove relators which are cyclic permu-
tations of other relators. However, usually more drastic methods must be
employed.

There is no universal agreement as to when one presentation is simpler
than another. Usually it is considered good if the number of generators
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can be reduced or the total length of the relators can be made smaller.
If relators must be long, then high powers of short words are preferable.
Eliminating a generator normally causes the total length of the relators to
increase. A decrease in the total length often can be achieved by adding a
generator to stand for a word which occurs frequently as a subword of the
relators. The real challenge is to reduce both the number of generators and
the total length of the presentation.

This section describes techniques which can be used to try to simplify
any finite monoid presentation (X, S) which obviously defines a group. To
simplify the exposition, we shall assume that for each x in X either there is
a relation of the form xm = 1, m > 0, or there are relations xx-1 = x-lx =
1, where x x-1. The techniques used for simplification involve Tietze
transformations from Section 1.4, the Knuth-Bendix procedure for strings,
and coset enumeration methods similar to those discussed in Section 5.7.
We start with Tietze transformations.

Suppose first that S contains a relation S = 1, where some generator x
occurs exactly once in S, and x-1, if it exists, does not occur at all in S. By
taking a cyclic permutation of the relator S, if necessary, we may assume
that S = xA. Using Tietze transformations, we can eliminate the generator
x (and x-1 if it is present) by replacing x by A-1 and x-1 by A in all
relations. Now suppose that S contains distinct relations S = 1 and T = 1,
where some cyclic permutation of S has the form UV-1, where (UI > (VI,
and some cyclic permutation of T has the form AUB. Then T = 1 may
be replaced by AVB = 1, thus decreasing the total length of the relations.
These two steps can be iterated to achieve further simplifications.

It is possible to automate the use of Tietze transformations, but the best
results frequently are obtained when the user controls the process interac-
tively. This is particularly important if Tietze transformations are used to
add generators. Such a step may temporarily make the presentation worse,
but it can lead eventually to a much nicer presentation. An implementation
of this approach is described in (Havas et al. 1984).

There is an approach to simplification based on the Knuth-Bendix pro-
cedure which may be viewed as a generalization of the technique just
described. Now we think of our set S as a rewriting system and run the
Knuth-Bendix procedure for a while. It is probably not realistic to hope
that a finite, confluent rewriting system will be found. Our goal is to try to
discover simple rules which are implied by our given ones. Our presentation
will grow in size as the Knuth-Bendix procedure runs. At some point we run
out of space or decide that we have tried long enough to find simple conse-
quences of our original relations. Let T be the rewriting system produced
by the Knuth-Bendix procedure. We now start the second phase of our
process. We pick the simplest rule (S, T) in T, using whatever criterion of
simplicity is appropriate for our group. Let U = V = { (S, T) }. We apply the
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Knuth-Bendix procedure to the system U for a while to determine as many
consequences of it as convenient. Let the rewriting system produced again
be called U. We now go back to T. If all rules in T are consequences of U,
then we stop with V as our simplified presentation. Otherwise, we look for
the simplest rule in T which is not implied by U. This rule is added both
to U and to V, and then the Knuth-Bendix procedure is restarted on U.
The process continues until V consists of those rules (S, T) in T which are
not obvious consequences of the rules in T which are simpler than (S, T).

If the goal of the simplification is to reduce the total length of the rules,
then a length-plus-lexicographic ordering should be used. However, if the
goal is to eliminate a particular generator x along with x-1, if it is present,
then one should use an ordering which gives preference to words with few
occurrences of x and x-1. One could order words first by the number of
occurrences of x and x-1, and then use some other ordering to break ties.
An alternative would be to use a basic wreath-product ordering in which
x and x-1 come last, or the wreath product of some reduction ordering on
(X - {x, x-1})* with the length-plus-lexicographic ordering of {x, x-1}*.

The third approach to simplification is a variation of the second, with
coset enumeration substituted for the Knuth-Bendix procedure. It is very
close to the procedure NORMAL_GENS of Section 5.7. We enumerate
the cosets of the trivial subgroup in the group Mon (X I S) until we run
out of space. It is probably best to use the Felsch strategy. Let the coset
automaton produced be A. Now we let V consist of just those relations
in S which make the presentation obviously define a group. We start a
second enumeration of the cosets of the trivial subgroup in Mon (X I V).
After the enumeration has run for a while, we stop it. Let 13 be the coset
automaton which results. We now find the first place in which A and 13
differ. This process is discussed in Section 5.7. It amounts to finding the
lexicographically first pair (U, V) of reduced words such that U occurs later
in the length-plus-lexicographic ordering of X*, lu = 1V in A but lu # 1V
in B. Here, "reduced" means not containing any relators as subwords. The
word UV-1 is cyclically reduced to give a word S, and the relation S = 1 is
added to V. The enumeration using 13 is restarted with this new relation,
and the process is repeated until no more pairs (U, V) are found. The
output presentation is V, which consists of those relations apparent in A
which are not implied by simpler relations holding in A.

Given a subgroup H of finite index in a finitely presented group G, we
have at least two ways to go about obtaining a nice presentation for H. We
could construct a presentation in terms of Schreier generators and then sim-
plify that presentation using the techniques of this section. We could also
use the methods of Section 5.7 to find a small generating set for H, then
apply extended coset enumeration followed by the Reidemeister-Schreier
procedure to get a presentation in terms of those generators. This presen-
tation would then be simplified. In the latter case the simplification would
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not have to involve removing redundant generators. At this point, we do
not have enough experience to be able to tell which if either approach is
more likely to prove successful.

Example .4.1. This example is based on one in (Havas et al. 1984). The
Mathieu group M11 of order 7920 is defined by the presentation

Grp (a, b, c I au = b5 = c4 = (ac)3 = b2c 1b-lc = a3ba-lb-1 = 1).

The subgroup H of M11 generated by a, b, and c2 is isomorphic to the
simple group PSL(2, 11) and has order 660. Thus IMlt : HI = 12. Using
an extended coset enumeration procedure based on the Felsch strategy and
the Reidemeister-Schreier procedure, we obtain a presentation for H on
generators u = a, v = b, and w = c2 with the following relations:

U11=1 v5=1 v10=1, w2=1, (uwv2)3=1,

u3vu-1v-1 = 1, vow-lv-lw = 1, (uwv2w-lu-lv6uwv-2)2 = 1,
(2lwv2w-1u-1,U4w-lu-lV-4 UWV-2)3 = 1,

(uwuwv-2w-1 u-1 v2w-1 u1 v4)3 = 1, (uwv2w-lu 1v-4uwv-2)2 = 1,

uwv4w-1u-1v-4uwv-2uwv2w-1u-1v4w-1u-1v2w-1u1v2 = 1,
uwv2w-lu-lv6uwv-2uwv2w-lu-lv-4uwv-2 = 1.

Actually, this presentation has already been cleaned up somewhat since
relators which are cyclic permutations of other relators or their inverses
have been deleted. Because of the relation w2 = 1, it seems reasonable to
remove w-1 as a monoid generator. Thus we take as our starting point the
monoid presentation on generators u, u-1, v, v-1, and w consisting of the
relations

uu-1 = 1, u-lu = 1, vv-1 = 1, v-lv = 1, w2 = 1,

together with the relations obtained by replacing w-1 by w in the preceding
relations.

Let us apply the Knuth-Bendix approach to presentation simplification
with two choices of orderings on words. In each case a rule (S, T) will be
considered simpler than another rule (U, V) if ST-1 comes before UV-1 in
the chosen ordering. First we take the length-plus-lexicographic ordering
with u -< u-1 -< v -< v-1 -< w. Using a Knuth-Bendix implementation which
keeps the set of rules reduced and balanced, employs the heuristics described
in Section 2.7, and processes all overlaps of length at most 5, we obtain a
rewriting system T with 353 rules, all of whose left sides have lengths at
most 7. In trying to determine the rules which are not consequences of
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earlier rules, it is probably a good idea to push the Knuth-Bendix process
a little harder than we did initially. Thus we form overlaps of length up to
7 in processing the set U. In this case, the final set V consists of the five
rules giving the inverses of the generators plus the following rules:

WV -> v-1w, v3 -* v-2, u3v -> vu, u4 -* v-1uv, u2wu 1v-1 -* wuwv.

This gives us the description of H as

Grp(u, v, w I w2 = (wv)2 = v5 = u3vu-1v-1 = u4v-1u-1v

= u2wu-1v_2wu-1w
= 1).

When we use the ordering which has the generators in the same order as
before but which is the wreath product of length-plus-lexicographic order-
ings on {u, u-11% {v, v-1}*, and {w}*, we get a quite different presentation.
Excluding the rules giving the inverses of the generators, the set V consists
of the following rules:

u6 -> u5, uv --+ vu4, v3 -> v-2, vw -f WV-1, wuw -+ u2v2wu2.

The corresponding group presentation of H can be written

Grp (u, v, w I u11 = uvu-4v-1 = v5 = (vw)2 = wuwu-2wv-2u-2 = 1) .

With this ordering, the entire confluent rewriting system for H consists of
only 45 rules.

If a relator is considered simple if it is a power of a short word, then we
can experiment with sets of relators drawn from our various presentations
for H to obtain the following nice presentation:

H = Grp (u, v, w I u11 = v5 = w2 = (vw)2 = (uwv2)3 = u3vu-1v-1 = 1).

Exercise

4.1. Find simple presentations for the following subgroups H:

(a) H = (aba, bab-1) in Grp (a, b I a2 = b3 = (ab)7 = (abab-1)4 = 1).
(b) H = (a, blab-1) in Grp (a, b I a5 = b5 = (ab)2 = (a-1b)4 = 1).

6.5 Historical notes
The original versions of the Reidemeister-Schreier procedure are described
in (Reidemeister 1926) and (Schreier 1927). The presentations obtained
are in terms of Schreier generators. Procedures for giving presentations of
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subgroups of finite index in terms of arbitrary generators were developed
in (Mendelsohn 1970) and (McLain 1977). The first computer implementa-
tion of the Reidemeister-Schreier procedure is described in (Havas 1974a),
which contains a discussion of presentation simplification. An alternative
approach to managing the data in an extended coset enumeration is given
in (Arrell & Robertson 1984).



*7

Generalized automata

The discussion in this chapter is motivated by an observation concerning
the nature of coset tables in the early stages of HLT enumeration. Suppose
we are performing an HLT coset enumeration and Table 7.0.1 describes our
current automaton. Assume that our next step is to perform a full two-
sided trace of (xy)7 at 1. After the initial forward and backward traces, we
have the following situation:

X y x y x y x y x y x y x y

1224 531.

To complete the trace, we shall define eight more states and enter 18 edges
into the automaton. With most data structures for edges, we shall need to
reserve space for 32 new edges, since eventually 4 edges will leave each of the
newly created states. However, at the completion of the trace, only half of
these edges are defined. If there were more generators, a much larger frac-
tion of the reserved space would be unused. This approach seems wasteful.
It is quite common for an HLT enumeration involving a substantial num-
ber of generators to terminate unsuccessfully with only 10% of the memory
available to store the coset table or equivalent data structure actually used.
In our example, we are simply trying to record the facts that 4T = 5 and
5T-' = 4, where T = yxyxyxyxy. This information could be stored with no
new states and only two new edges if the labels on edges could be words of
arbitrary length. In this case we would like to add "edges"

(4, yxyxyxyxy, 5) and (5,y-1x-1y-1x-1y-1x-1y-1x-1y-1 4)

Clearly more space will be needed to store two edges like this than two
ordinary edges, but it seems likely that these two edges can be stored in
much less space than must be reserved for 32 ordinary edges.
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x

2

4

5

2 2

Table 7.0.1

y

1

1

3

2

3 4

5

This chapter pursues the idea of using generalized automata, automata
whose edges are labeled by words of any length, to do coset enumeration,
primarily using the HLT strategy. The techniques presented have not been
subjected to extensive experimentation. They are presented as objects for
further study in the hope of encouraging other suggestions for saving space
in coset enumerations.

*7.1 Definitions
This section provides the appropriate generalizations of the definitions and
results about automata from Chapter 3. A generalized automaton is a
quintuple A = (E, X, E, A, 1), where E and X are sets, A and S2 are subsets
of E, and E is a subset of E x X * x E. An element e = (o-, U, -r) in E is called
an edge, and U is the label of e. In this context, if all labels have length at
most 1, so that A is an automaton according to the definition in Section 3.2,
we shall say that A is an ordinary automaton. The generalized automaton
A is finite if E, X, and E are all finite. A path in A is a sequence of edges
in which the endpoint of one edge is the starting point of the next. The
signature of a path is the product of the labels on its edges. The language
accepted by A is the set L(A) of signatures of paths from A to Q. We shall
say that A is deterministic if JAI < 1, all edge labels have length at least
1, and for each state or in E and each x in X there is at most one edge
(a, U, T) in E such that U starts with x. In a deterministic automaton A,
a path P is determined by its starting point o, and its signature W. The
endpoint of P will again be denoted 0 W. The term "complete" will be used
only for ordinary automata. The statement of Exercise 2.4 of Chapter 3 is
still correct, although its proof is not quite a triviality.

Transition tables are not adequate to represent the set of edges in a finite,
generalized automaton, even a deterministic one. One way to describe the
edges is to list the states and for each state or to list the labels and endpoints
of the edges leaving o,. For example, Table 7.1.1 describes a set of 10 edges,
among which are (1, yxy, 1) and (3, y2, 4). This representation makes it
relatively easy to locate edges leaving a particular state, but it does not
facilitate finding the edges coming into a given state. If this is important,
then other schemes must be used.



298 7 Generalized automata

Table 7.1.1

State Label Endpoint State Label Endpoint

1 x2y 2 3 x 1

yxy 1 y2 4

y2x2 3 4 x5 2

2 xy 4 x3y 1

yx 3 y3 2

Figure 7.1.1

Using finite, generalized automata does not allow us to recognize a wider
class of languages than using ordinary automata. If A = (E, X, E, A, St) is a
finite, generalized automaton, then we can construct an ordinary automaton
recognizing the same language. Edges with labels of length at most 1 are
retained. If e = (v, U, T) is an edge in E such that U = x1... xs with
s > 1, then we choose new states a1,...,vs_1 and replace e by the edges
(o,i_1, xi, o), 1 < i < s, where Qo = o, and o,., = r. If A is the enlarged set of
states and D is the enlarged set of edges, then 13 = (A, X, D, A, 1) is a finite,
ordinary automaton recognizing the same language as A. The automaton
13 is determined up to isomorphism and will be called an expansion of A.

Example 1.1. If A is given by Figure 7.1.1, then an expansion of A is
described by Figure 7.1.2.

Constructing an expansion reduces the length of edge labels at the ex-
pense of creating more states. We can sometimes go the other way, re-
ducing the number of states and making labels longer. Suppose that
A = (E, X, E, A, SZ) is a finite, generalized automaton and assume that
e = (p, U, a) and f = (o,, V, T) are in E. If a is not in I and f is the
only edge leaving o-, then we may replace e by (p, UV, T) without changing
the language recognized. If at this point v is not in A and there is no edge
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Figure 7.1.2

Figure 7.1.3

299

coming into or, then we may also remove f from E and delete v from E.
If we iterate this process until no further changes are possible, then the
resulting generalized automaton B is unique and is called the contraction
of A. If A is deterministic, then so is B.

Example 1.2. Suppose A is given by Figure 7.1.3. Here is one way to
construct the contraction of A. First the edge (1, b, 2) is replaced by
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1

Figure 7.1.4

Figure 7.1.5

a

Figure 7.1.6

(1, ba, 3). Then (4, b, 2) is replaced by (4, ba, 3). Next (2, a, 3) is deleted
and 2 is removed as a state. Now (3, b, 5) is replaced by (3, ba,1), and
both the edge (5, a, 1) and the state 5 are deleted. Finally, (3, ba, 1) is re-
placed by (3, baba, 3). No further changes are possible and we are left with
Figure 7.1.4.

The definitions of accessible, coaccessible, and trim states carry over
without change. Thus we can refer to a trim generalized automaton, and if
A is not trim, then we can take its trim part without changing the language
recognized. It is not true that a deterministic generalized automaton which
has the minimum number of states among all deterministic generalized au-
tomata recognizing a particular rational language G is uniquely determined
by G up to isomorphism. For example, the automata Al in Figure 7.1.5
and A2 in Figure 7.1.6 both recognize G = {a2i+1 I i > 0}. It is easy to
check that there is no generalized automaton, deterministic or not, which
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Figure 7.1.7

recognizes G and has fewer than two states. The automaton A2 has an
additional minimality property. Suppose U is in L. Then there is a path
P in Al and a path Q in A2 such that both paths go from 1 to 2 and
Sg(P) = U = Sg(Q). The length of Q is always less than or equal to the
length of P. For example, if U = a3, then P has length 3 and Q has length 2.
If we add this extra minimality condition, then, for any rational language
G, a minimal generalized automaton recognizing G is isomorphic to the
contraction of A, (C).

Exercise

1.1. Let A be the generalized automaton described by Figure 7.1.7. Determine an expansion
and the contraction of A.

*7.2 Generalized coset automata
The previous section discussed analogues of results in Chapter 3 for gener-
alized automata. This section does the same for the results in Sections 4.4
and 4.11. Let R be a reduced, confluent, niladic rewriting system on X*
which defines a group. We shall not assume that R is classical, and thus
we shall draw heavily on Section 4.11. The congruence generated by R is
denoted by -, the --class containing a word U is [U], and C denotes the
set of words which are irreducible with respect to R. The unique word in
[U] f1 C is U, and UO is the word in C such that UUO - e.

A generalized automaton A = (E, X, E, A, S2) will be called a generalized
coset automaton relative to R if the following conditions hold:
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State

1

2

Table 7.2.1

Label

x2

3

Endpoint

(i) A is accessible and deterministic.
(ii) A=S2#0.
(iii) If (a, U, 'r) is in E, then U is in C and there is a path P in A from

T to a such that Sg(P) = 0.

Conditions (i) and (ii) are the same as in the definition of an ordinary coset
automaton.

Example 2.1. Let X = {x, y, y-1 }, let R consist of the rules

x5 E, yy-1 -* E, y-1y E,

and let E be given by Table 7.2.1. The path P in condition (iii) for the first
edge consists of the two edges (2, x, 3) and (3, x2,1). For (1, yxy, 3), P is
the single edge (3, y-1x4y-1, 1). The generalized automaton defined by this
table satisfies conditions (i) to (iii).

Proposition 2.1. Suppose that A is a generalized coset automaton. If there
is a path P in A from or to r, then there is a path Q from r to a such that
[Sg(Q)] = [Sg(P)]-1

Proof. Let P consist of the edges Ui, ai), 1 < i < s. By condition
(iii), there are paths Qi from ai to ai_1 such that Sg(Qi) = Let Q be
the concatenation of Q3, ... , Q1. Then Q is a path from as = r to ao = a,
and [Sg(Q)] = [Sg(P)]-1.

Corollary 2.2. Generalized coset automata are trim.

Recall the fact from Section 4.11 that a word U in C has a unique minimal
decomposition as a product of nonempty subwords of left sides in R. The
number of terms in the product is denoted IJUII.

Proposition 2.3. Let A be a generalized coset automata and let (a, U, r)
be an edge of A. Either 11 Ull = 1 or (7-, UO, a) is an edge.
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Proof. There is a path P in A from r to a such that Sg(P) = U. Let
(p, V, a) be the last edge of P and let V end in x. Then U and VO each
start with x. There is a path Q from a to p such that Sg(Q) = V. Since
A is deterministic, (a, U, r) is the first edge of Q. Therefore V is a suffix
of UO and U is a prefix of V. By a remark in Section 4.11, this means
that IIUII = II V II and V0 = UW, where 11W11:5 1. If II W II = 0, then W = e
and V = U. In this case, p = T and (r, U0, a) is an edge. Suppose that
II W II = 1. Let (cp, T, p) be the last edge in Q. Then T is a suffix of W, so
IITII = 1. By the preceding argument, with U replaced by V and V by T,
we have II V II = IITII. Therefore IIUII = II V II = 1.

Corollary 4.3 in Chapter 4 holds for generalized coset automata as well
as for ordinary ones.

Proposition 2.4. Let A = (E, X, E, A, A) be a generalized coset automaton.
Suppose that e = (p, U, T) and that f = (a, V, T) are in E and that U and V
end in the same element x of X. Then e = f.

Proof. There is a path P in A from r to p such that Sg(P) = U0. Let
g = (r, W, cc) be the first edge of P. Thus g is the unique edge leaving r
whose label starts with x. Therefore g is also the first edge in the path Q
from r to a such that Sg(Q) = V. If IIUII > 1, then (r, U0, p) is an edge,
so W = UD and c p = p. Since II V I I = I I VD I I >- 11W11 = IIUII, it follows that
II V II > 1. Hence W = V O and cp = or, and therefore e = f.

Thus we may assume that IIUII = II T I I= 1. Therefore 11W11 = 1 and
there are words S and T such that L = WSU = WTV is a left side in R,
Sg(P) = WS, and Sg(Q) = WT. Thus the concatenation of P and e and
the concatenation of Q and f are both paths from r to T and both have
signature L. Therefore they are the same path and e = f.

Corollary 2.5. In a generalized coset automaton, a path is determined by
its endpoint and its signature.

The main ideas behind the proofs of Propositions 2.3 and 2.4 are due to
M. F. Newman.

Proposition 2.6. Let A be a generalized coset automaton. If au' = T in
A, then aW = T.

Proof. Let A = (E, X, E, A, A) and let P be a path in A from a to 7
such that W = Sg(P) = SLT, where L is a left side in R. It is not clear
that there is a subpath of P whose signature is L. However, there is a
minimal subpath Q such that L is a subword of Sg(Q). Let Q consist of
the edges (ai_l, Ui, ai), 1 < i < s. Since edge labels are in C, we haves > 1
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and L = CU2 ... Us_1D, where C is a nonempty suffix of U1 and D is a
nonempty prefix of U3. Therefore, by Proposition 2.3, for 2 <_ i < s the
pair (Ui_1, Ui) is susceptible to cancellation. Thus either Ui_1 = U7 and
Qi-2 = Qi or Ui_1Ui is a subword of a left side. In the first case, we can
delete the edges (ai-2, Ui_1, of-1) and (ai-1, Ui, ai), and the result will still
be _a path R from a to r and W= Sg(R). By induction on the length of P,
aW = T.

We are left with the case in which, for 2 < i < s, the word Ui_1Ui is a
subword of a left side in R. In this situation, V = U1... Us is a subword
of a power of a left side and V contains a left side. This means that V
has a prefix M which is a left side and U1 is a proper prefix of M. Let
M = U1V1. Then V1 = and there is a path R from al to ao such
that Sg(R) = V1. Since A is deterministic, R is a subpath of Q. The
concatenation of (ao, U1, al) and R is a path from ao to ao with signature M.
As before, this subpath may be deleted from P without changing [Sg(P)].
Again we are done by induction on the length of P.

Corollary 2.7. Let A be a generalized coset automaton and set L = L(A).
Then ,C CC.

Proof. Take a and T in Proposition 2.6 to be the initial state of A.

As before, if A is a generalized coset automaton, then we set K(A) _
{[U] I U E G(A)}.

Proposition 2.8. Let A be a generalized coset automaton. Then H = K(A)
is a subgroup of F = Mon (X I R).

Proof. It is clear that s is in L(A) and that L(A) is a submonoid of X*.
Therefore H is a submonoid of F. By Proposition 2.1, H is a subgroup
of F.

Let A be a finite generalized coset automaton. It is useful to have
a procedure for constructing an ordinary coset automaton B such that
K(B) = K(A). The procedure may be thought of as roughly analogous to
the expansion construction, although, in general, the expansion of a coset
automaton is not a coset automaton. Let A = (E, X, E, A, A) and sup-
pose that (a, U, T) is an edge in E such that II U I I > 1. By Proposition 2.1,
(T, UO, a) is also an edge. Let U1 ... U3 be the minimal decomposition of
U as product of subwords of left sides in R. Then U ... UO is the mini-
mal decomposition of UO. Let Al be the automaton obtained from A by
replacing the edges (a, U, T) and (T, UO, a) with the edges (ai_1, Ui, ai) and
(ai, U7, ai-1), 1 < i < s, where ao = a, as =,T, and a1, ... , as-1 are distinct
objects not in E.
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Table 7.2.2

State Label Endpoint

1 a2ba3 2

boa 3

2 a2b4a3 1

b2 3

3 a4b 1

b2 4

4 a 4

b 2

Proposition 2.9. Under these hypotheses, Al is a generalized coset au-
tomaton and K(A1) = K(A).

Proof. Exercise.

By repeated application of Proposition 2.9, we may assume that IIUII = 1
for every edge (o-, U; T) in E. Now we can take the expansion.

Proposition 2.10. Let A be a generalized coset automaton such that the
labels on edges are subwords of left sides of R. The expansion B of A is a
coset automaton and K(B) = K(A).

Proof. Exercise.

Example 2.2. Let us illustrate the constructions of Propositions 2.9 and
2.10. Suppose that X = {a, b} and 1Z consists of the rules a5 - e and
b5 - E. Let Al be (E, X, E, 111, {1}), where E = {1,2,3,4} and E is given
by Table 7.2.2. In the first phase of the procedure, we split up those edges
whose labels are not subwords of left sides. This involves adding three new
states. To split the edge (1, a2ba3, 2), let us add states 5 and 6 such that
1a2

= 5 and 5b = 6. To split (1, boa, 3), we add a state 7 such that 164 = 7.
The edges of the resulting automaton A2 are described by Table 7.2.3. One
expansion A3 of this automaton has state set { 1, ... , 24} and edges given
by Table 7.2.4. Although one must be careful about drawing conclusions
about the size of computer data structures from the manner in which their
information is displayed on the printed page, it would seem that Al is a
more concise description of K(A1) = K(A3) than A3 is.

Just as we can form expansions of generalized coset automata, we can
form contractions and find minimal coset automata defining a given finitely
generated subgroup of F.

Let A = (E, X, E, {a} , {a}) be a generalized coset automaton relative to
R, let e = (p, U, v) be in E, and suppose that a 0 a. There is at least one
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Table 7.2.3

State Label Endpoint State Label Endpoint

1 a2 5 5 a3 1

b4 7 b 6

2 a2 6 6 a3 2

b2 3 b4 5

3 a4 7 7 a 3
b2 4 b 1

4 a 4
b 2

Table 7.2.4

a b a b a b

1 8 9 9 10 17 4

2 12 13 10 11 18 19

3 14 17 11 7 19 1

4 4 2 12 6 20 21

5 18 6 13 3 21 2

6 20 22 14 15 22 23

7 3 1 15 16 23 24

8 5 16 7 24 5

edge leaving o,, the first edge f = (v, V, T) of the path which goes from v to
p and has signature UO. Let us consider several cases.

Case 1. There is no edge g = (a, W, cp) leaving v such that UW is in C.
This means that UV is not in C, so by Proposition 2.3, V = UO, T = p,
and f is the only edge leaving a. Any path P which goes from a to a and
involves either e or f must have e and f as consecutive edges. Thus Sg(P)
is not in C. If we remove e and f from E and delete o from E, then the
result is still a generalized coset automaton describing K(A).

Case 2. There is exactly one edge g = (Q, W, cp) leaving a such that UW
is in C.

Case 2.1. f = g. By Proposition 2.3, UV is a proper prefix of a left side
in R. The edges e and f may be replaced by the single edge (p, UV, T).

Case 2.2. f # g and there is an edge h = (cp, WO, o,). Now V = 0 and
T = p. The pair (U, W) is not susceptible to cancellation, so (UW) 0 =
WO U* = WO V. The edges e, f, g, and h may be replaced by (p, UW, cp)
and (cp,WOV, p).

If we modify A as described until no more changes are possible, then the
resulting automaton B is unique. We shall call B the contraction of A as a
coset automaton.
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Figure 7.2.1

a2b2a2b3ab2

Figure 7.2.2

Example 2.3. Let X and TL be as in Example 2.2 and let A be given by
Figure 7.2.1. We may replace the edges (2, a, 4) and (4, a2,1) by the sin-
gle edge (2, a3,1) and delete 4 as a state. We may also replace the four
edges coming into or going out of 3 by the pair of edges (1, b3a4b2a3b3, 2)
and (2, b2a2b3ab2,1) and then delete state 3. Finally, the four current edges
may be replaced by (1, b3a4b2a3b3a3,1) and (1, a 2b2a2b3ab2,1). Thus we
obtain the automaton in Figure 7.2.2, as the contraction of A as a coset
automaton.
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Table 7.2.5

State Label Endpoint

1 ab2 2

ba3b3 3

2 a 4

b3a4 1

3 a2 2

b2a2b4 1

4 a2 3

b2a 5

5 a4b3 4

Exercise

2.1. Let X and R be as in Examples 2.2 and 2.3. Suppose A = (E, X, E, A, A) is the
generalized coset automaton with respect to R in which A = {1} and E is given by
Table 7.2.5. Determine an expansion and the contraction of A as a coset automaton.

*7.3 Basic operations
This section describes the basic operations on finite generalized coset au-
tomata needed to carry out coset enumeration using the HLT strategy.
These operations include tracing, handling coincidences, and several new
operations. In our examples, we shall assume that X = {x, y, z}, that R
consists of the rules

(xy)3 -' E, (yx)3 - E, z5 - E,

and that A is a generalized coset automaton with respect to R which
initially has the edges shown in Table 7.3.1.

In Section 4.11 we discussed the minimal decomposition of a word U in
C as a product of subwords of left sides in R. We shall now introduce
another decomposition. There are words P and V such that U = PVPO
and UO = PVOPO. For example, we may take P = s and V = U. The
pair (P, V) with IPI maximal will be called the cyclic decomposition of U.
Let U = U1 ... Us be the minimal decomposition of U. If U UO, then
P = U1 ... Uz, where i is the largest index such that U = U1_3 for l < j < i.
If U = UO, then s = 2i+1 is odd and (Ui+1)2 is a left side. Here P = U1 ... Uz
and V = Ui+1. In our example, if U = yxyz2xyzxyz3xyx, then the cyclic
decomposition of U is (yxyz2, xyzxy).

When we perform a forward trace of a word W in A starting at a state or,
we may not end at a state. That is, we may reach the following situation.
We have W = BC, where T = QB is defined and there is an edge (T, U, cp)
such that U and C have a nonempty common prefix. However, U is not a
prefix of C. For example, in A let or = 1 and W = xyxyzyx. The trace starts
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Table 7.3.1

State Label Endpoint

1 xyxz2yx 2

z2xyz 3

2 yxyxz3yxy 1

zyxyxz3x 3

3 yxyxyz2yxz4 2

z4xyxyz3 1

along the edge (1, xyxz2yx, 2), but leaves the edge in the middle. Suppose
that we have a situation of this type. Let S be the longest common prefix
of U and C, and let U = ST. In our example, S = xyx and T = z2yx. It
will sometimes be necessary to split the edge (r, U, cp) at S and introduce a
new state 0 such that 0 = TS. However, this splitting may actually require
adding two or three new states, not just one. Let U = U1... Ut be the
minimal decomposition of U as a product of nonempty subwords of left
sides. The easiest case to handle is the one in which t = 1, for we simply
add a new state 0 and replace (T, U, cp) by (T, S, 0) and (0, T, cp).

Next let us consider the case in which S = U1... Ui, where 1 < i < t. Here
UO = TO SO. Usually we can replace (r, U, cp) and (y, UO, T) by the four
edges

(T, S,'0), (' , SO, T), (0, T, co), (co, TO, ),

where 0 is a new state. The one exception occurs when T = cp and the first
terms of S and TO are the same. In this situation, we may have two edges
leaving r both of whose labels start with the same generator. Assume that
we are in this exceptional situation. Since (r, U, T) and (T, UO, T) are both
edges, they must be the same edge. That is, U = UO. By replacing U by
UO and S by TO if necessary, we may assume that II S I I C IITII . Let (P, V)
be the cyclic decomposition of U. Then S is a prefix of P. Let P = SQ,
let 0 be a new state, and replace the edge (T, U, T) by the three edges

(T,S, b), (b,SO,T), (,QVQO, )

Finally, suppose that S = Ul ... Ui_1R, where R is a proper, nonempty
prefix of Ui. Using methods already described, we may split one or more
edges so that p = TU1...U;-1 and pui are both defined. Now to insure that pR
is defined we are back to the case in which t = 1.

In our earlier example, to split e = (1, xyxz2yx, 2) at xyx, we delete
e and (2, yxyxz3yxy,1) and add (1, xyx, 4), (4, yxy,1), (4, z2yx, 2), and
(2, yxyxz3, 4). To split f = (2, zyxyxz3x, 3) at zy, we delete f and
(3, yxyxyz2yxz4, 2) and replace them by (2,z,5), (5,z4,2), (6, z3x, 3),
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Table 7.3.2

State Label Endpoint State Label Endpoint

1 xyx 4 5 y 7

z2xyz 3 z4 2

2 yxyxz3 4 6 yx 5

z 5 z3x 3

3 yxyxyz2 6 7 xyx 6

z4xyxyz3 1

4 yxy 1

z2yx 2

(3, yxyxyz2, 6), (6, yx, 5), (5, y, 7), and (7, xyx, 6). At this point we have
the edges shown in Table 7.3.2.

Now suppose that we have states or and T and a nonempty word U in C.
Let U start with x and end with y and assume that there is no edge leaving
v whose label starts with x and there is no edge coming into T whose label
ends with y. To join v to T by U means to add one or more edges so that
au = T. The obvious thing to try is to add edges (v, U, T) and (r, U', a).
This works fine unless v = T, x = y, and U # UO, for then there will be
two edges leaving a both of whose labels start with x. Suppose we have
this special case and let (P, V) be the cyclic decomposition of U. If P # e,
then we introduce a new state p and join a to p by P and p to p by V.
This reduces us to the case in which P = e. Now let U = U1 ... Us be the
minimal decomposition of U. Since x = y, P = e, and U UG, either U1
is a proper prefix of UO or UO is a proper prefix of U1. By replacing U
by U* if necessary, we may assume that U1 is a proper prefix of Let
W = U2 ... Us-1 and choose Q so that U1QU3 is a left side in R. We choose
two new states cp and 0, add edges (a, U1, cp), (cp, Q, V)), and (0, U, v), and
then join cp to 0 by W. For example, to join 7 to 7 by yxyz2xyzxyz3xyx,
we must add three new states. One way to do this is to let the new states
be 8, 9, and 10, and the new edges be (7, yxyz2, 8), (8, z3xyx, 7), (8, xy, 9),
(9, xy,10), (10, xy, 8), (9, z,10), and (10, z4, 9). With these additions, our
automaton A has the edges shown in Table 7.3.3.

The next operation is somewhat specialized. Suppose that e = (v, U, T)
is an edge and U is a subword of a left side. Let U = ST, where both S
and T are nonempty and T starts with x. Finally, let 'y be a state such
that there is no edge leaving y whose label starts with x. To insert ry into
e at S means to replace e by the pair of edges (v, S, -y) and ('y, T, T). For
example, to insert 7 into (5, z4, 2) at z2 in A changes the edge set as shown
in Table 7.3.4.

The operations of two-sided tracing and processing coincidences become
much more closely linked when generalized coset automata are used. We are
familiar with the way two-sided traces can lead to coincidences. However,
now a natural approach to coincidence processing leads to two-sided traces.
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Table 7.3.3

State Label Endpoint State Label Endpoint

1 xyx 4 6 yx 5

z2xyz 3 z3x 3
2 yxyxz3 4 7 xyx 6

z 5 yxyz2 8

3 yxyxyz2 6 8 xy 9

z4xyxyz3 1 9 xy 10

4 yxy 1 z 10

z2yx 2 10 xy 8

5 y 7 z4 9

z4 2

Table 7.3.4

State Label Endpoint State Label Endpoint

1 xyx 4 6 yx 5

z2xyz 3 z3x 3

2 yxyxz3 4 7 xyx 6

z 5 yxyz2 8

3 yxyxyz2 6 z2 2

z4xyxyz3 1 8 xy 9

4 yxy 1 9 xy 10

z2yx 2 z 10

5 y 7 10 xy 8

z2 7 z4 9

311

Suppose that a state or has been found to be coincident with an earlier state
T and e = (a, U, p) is an edge. Then we must remove e and make sure that
TU = p if p # v, or TU =,r if p = v. Doing this can be just as complicated as
performing two-sided traces of subgroup generators or relators. Of course,
when e is removed, we shall usually have to remove other edges so that the
axioms for a generalized coset automaton continue to be satisfied. We no
longer have only two-sided traces which start and end at the same state.
We must allow for two-sided traces of a word in C from one state to some
other state.

To facilitate both tracing and coincidence processing, we maintain a stack
of trace records, which are triples (3, W, -y), where 3 and -y are possibly
inactive states and W is a word. To process the trace record (3, W, ry), we
first compute the active states 6 and e equivalent to a and ry, respectively,
and then perform a two-sided trace of W from 6 to E. This trace may result
in other trace records being pushed onto the stack. When an active state
a is found to be coincident with an earlier active state r, we examine each
edge e = (a, U, p) leaving o,. If U is not a subword of a left side, then e
and (p, UG, a) are removed and e is pushed onto the trace-record stack.
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However, if U is a subword of a left side, then let W' be the left side of
which U is a prefix, where W is not a proper power. Let Wt be the smallest
power of W such that o, W` = a. We remove all edges in the path from a to
a having signature Wt and push these edges onto the trace record stack.
Once all edges leaving a have been removed, we record the fact that a is
equivalent to r and go back to processing trace records.

Since we have moved most of the coincidence procedure into the pro-
cedure for performing two-sided traces, the latter procedure is now fairly
complicated. Suppose that we wish to perform a full two-sided trace of a
word U in C from /3 to -y. By performing forward and backward traces, we
may assume that there is no edge leaving /3 whose label is a prefix of U and
there is no edge coming into -y whose label is a suffix of U. If U = E and
/3 -y, then we have a coincidence. Assume U # E. Let B be the longest
prefix of U which is also a prefix of the label of an edge leaving /3 and let
E be the longest suffix of U which is also a suffix of an edge coming into y.
Let U = BC = DE. Suppose B and C are both nonempty and let e be the
edge leaving /3 whose label has B as a prefix. We split e at B and repeat
the trace. In this way we may assume that B = s or C = e. Similarly, by
splitting an edge coming into y, if necessary, we may assume that D = s or
E=e.

Suppose that C = e, so B = U. Thus there is an edge (/3, V, 6), where V
has the form UP. If V is not a subword of a left side, then remove (/3, V, 6)
and (6, V', /3) and push (y, P, 6) onto the trace-record stack. In this way
we arrange things so that either B = e or V is a subword of a left side.
Similarly, we may assume that E = s or there is an edge (e, QU, y) such
that QU is a power of a left side. If B = E = e, then we can connect /3
to y by U as described earlier. If B = e and E = U, then we insert /3 into
(c, QU, y) at Q. If B = U and E = e, then we insert y into (/3, UP, 6) at U.

We are left with the case B = E = U, in which there are edges e =
(3, UP, 6) and f = (e, QU, y) such that both UP and QU are subwords of
left sides. At this point we must examine the triples e, f , and (/3, U, -Y), all
the edges in the path from 6 to /3 with signature (UP)O, and all the edges
in the path from -y to c with signature (QU)O. Let D be the set of these
triples, let A be the set of states involved, let L be the left side in 1Z which
has U as a prefix, let Y be the set of generators occurring in L, and let S be
the set of cyclic permutations of L. Then S is a confluent, niladic rewriting
system on Y* which defines a group. Our job is to find a generalized coset
automaton 13 = (E0, Y, E0, {a}) with respect to S satisfying the following
conditions:

(i) There is a path in 13 from a to a with signature L, and every edge
in E0 occurs at least once in this path.

(ii) There is a map g of A onto E0 such that whenever (cp, R, 0) is in D
then g(cp)' = g(O) in 13.
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(iii) 8 is as general as possible in the sense that it has the minimum
possible number of states and the sum of the lengths of the edges is
as large as possible.

Conditions (i) to (iii) determine B up to isomorphism. If ILI is large, then
constructing one such B involves a fair amount of work. However, assuming
that ILI is small, finding such a B is not hard. One approach involves using
an ordinary coset automaton B'. Let L = yl ... yt. Initially let the state set
of B' be {1, ... , t} and let the edges of B' consist of the triples (i, yz, i + 1),
1 < i < t, and (t, yt,1). For each cp in A there is a word W. which is a prefix
of a power of L such that there is a path in the graph (A, D) from 13 to cp
having signature W.. For each (cp, R, /') in D, perform a two-sided trace of
WWR(W,1,)-1 in 6. After this has been done, define the function g from A
to the states of B' such that 1W`W = g(V) in t3'. Take Eo to be the image of
g and take E0 to be the set of triples (µ, S, v), where p and v are in Eo, S
is nonempty, ps = v in B', and for no proper, nonempty prefix T of S is uT
defined.

Once 8 has been constructed, we make cp and 0 in A coincident if g(V) _
g(o). Let r be the set of elements in A which are still active. Then g maps
F bijectively onto E0. Delete those edges in the original generalized coset
automaton which are in D. Add the edges (cp, R, 0) with cp and 0 in r and
(g((p), R, g(0)) in E0. This completes the two-sided trace of U from /3 to ry.

One two-sided trace can result in many trace records being pushed onto
the stack. Also states are created and removed during the execution of
the procedure. Thus the issue of the termination of the two-sided trace
procedure must be carefully examined. Termination does occur, but the
proof will be omitted.

The construction of the auxiliary automaton B is somewhat involved.
Two examples will be given to illustrate this part of the two-sided trace
procedure. For the purpose of these examples, assume that X = {a, b, c}
and that R consists of the rules L -> e, where L is a cyclic permutation of
the word (abc)6. In the first example, we shall assume that the following
triples are edges of the current generalized coset automaton:

(4, abcab, 7), (7, cabca, 10), (10, bcab, 8), (8, cabc, 4).

Now suppose that we must make a two-sided trace of U = abca from 4 to 10.
If 4U = 10, then 4Ubcabcabc = 4. That is,

4(abe)4 = 4. Since 4(abc)s is also 4, we
must have 4(abc)2 = 4. It turns out that one possible choice for 8 has states
4, 7, 8, and 10, and the following edges:

(4, ab, 8), (8, ca, 10), (10, b, 7), (7, c, 4).
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No coincidences are involved here, and the four original edges are replaced
by the four new edges.

In the second example, assume that the following edges are currently in
the automaton:

(5, abca, 9), (9, bc, 5), (6, ab, 10), (10, cab, 7), (7, cabc, 6).

Now let us perform a two-sided trace of U = ca from 10 to 9. Before the
trace, 9(b,,)2 = 9 and 10(cab)3 = 10. After the trace, if 0 denotes the active
state equivalent to 10, we must have 136c =,3, since gcd(2, 3) = 1. It follows
easily that the automaton B may be taken to have states 5, 7, and 9 and
edges

(5, a, 9), (9, b, 7), (7, c, 5).

State 10 is coincident with state 7, and state 6 is coincident with state 5.
The original five edges are removed, as are all edges involving 6 or 10. The
three edges of 13 are added.

*7.4 Some examples
The previous section discussed the individual operations on generalized
coset automata involved in doing coset enumeration. We shall not attempt
to formalize an HLT enumeration procedure using generalized coset au-
tomata. However, we shall present some examples which illustrate how the
techniques of Section 7.3 are used. As we work through the examples, many
of the edges in the generalized coset automata will have labels of length 1,
while some will have longer labels. To save space, the edges will be repre-
sented by hybrid tables. An ordinary coset table will be used to describe
the edges with labels of length 1. The edges with labels of length greater
than 1 are identified by pointers enclosed in brackets which refer to entries
in an auxiliary table.

The first example is the enumeration of the cosets of the subgroup H
generated by x and yxy2 in the group G = Mon(x, y I x2 = y3 = (xy)7 =
(xyxy2)4 = 1). We shall take X = {x, y} and let R consist of the rules
x2 -* e and y3 - e. Thus there are two subgroup generators and two
relators for G as a quotient group of F = Mon (X I R). We initialize A to
be the automaton with 1 as its only state and no edges. The traces of the
subgroup generators are very easy. They result in the two edges (1, x, 1)
and (1, yxy2, 1). Note that (yxy2)0 = yxy2. Our hybrid tables take the
following form:

x y Label Endpoint

[1] 1yxy2
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Table 7.4.1a Table 7.4.1b

x y Label Endpoint

1 1 2 Ill xyxyx 6

2 2 3 [2] xy2xy2x 5

3 4 1

4 3 5

5 [1] 6

6 [21 4

Table 7.4.2a Table 7.4.2b

x y Label Endpoint

1 1 2 Ill xyx 9

2 2 3 [2] xy2xyx 8

3 4 1 [3] xy2x 5

4 3 5

5 [1] 6

6 7 4

7 6 8

8 [2] 9

9 [3] 7

The trace of (xy)7 from 1 to 1 requires the edge (1, yxy2,1) to be split at
yxy. This splitting introduces two new states and produces the following
edges, all of whose labels have length 1:

X

1

2

3

y

1 2

3

1

2

Now the trace of (xy)7 from 1 to 1 leads to 3 being joined to 3 by (xy)4x.
This adds three new states and gives us the edges shown in Tables 7.4.1a
and 7.4.1b.

At this point,
1(XyXy2)4

= 1 and 2(xy)' = 2. As we trace (xyxy2)4 from 2 to
2, we must split (6, xy2xy2x, 5) at xy. Assuming that among the new edges
introduced by the splitting are (6, x, 7), (7, y, 8), and (8, y, 9), the trace adds
the edge (8, xy2xyx, 8). Now we have Tables 7.4.2a and 7.4.2b.

The trace of (xy)7 at 3 produces nothing new. When we trace (xyxy2)4
at 3, the edge (5, xyx, 9) gets split into edges with labels of length 1. If
we assume that among these edges are (5, x,11), (11, y,10), and (10, y,12),
the trace adds the edge (12, xyxy2x, 12). The edge set now is shown in
Tables 7.4.3a and 7.4.3b.
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x

1

2

4

3

11

7

x

Table 7.4.3a

y

7

8

9

10

11

12

x

6

[1]

10

9

5

[2]

Table 7.4.4a

Y x

9

5

16

8

14

[1]

12

17

[2]

Y

8

9

7

12

10

11

Y

Table 7.4.3b

Label

xy2xyx

xyxy2x

Endpoint

8

12

Table 7.4.4b

Label

xy2x
xyx

Endpoint

8

12

At this point 4(Xy)7 = 4, 4(xyxyz)4 = 4, and 5(xY)7 = 5. As we trace (xyxy2)4
at 5, both of the edges in the auxiliary table are split. Assuming that the
edges created by the splitting include

(8, x, 13), (13, y, 15), (15, y, 14), (12, x, 16), (16, y, 17), (17, y, 18),

the trace adds (15, xy2x, 18) and (18,x y x,15). Now we have Tables 7.4.4a
and 7.4.4b.

The trace of (xy)7 at 6 causes the two edges with labels of length greater
than 1 to be split. Assuming that the edges added by the splitting include

(15,x,19), (19, y, 21), (21, y, 20),

the trace adds (21, x, 21). The automaton is now complete and compatible
with the relators. The final coset table is Table 7.4.5.

In the first example, the use of generalized coset automata is hardly nec-
essary. The second example provides somewhat better justification for their
introduction. Suppose G = Grp (a, b I a2 = b3 = (ab)7 = (abab-1)8 = 1). We
noted in Section 5.5 that the order of G is 10752. Let us compare what
happens as we begin to enumerate the cosets of the trivial subgroup in G
using both an ordinary coset automaton and a generalized coset automaton.
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Table 7.4.5

x y x y x y

1 1 2 8 13 9 15 19 14

2 2 3 9 10 7 16 12 17

3 4 1 10 9 12 17 17 18

4 3 5 11 5 10 18 20 16

5 11 6 12 16 11 19 15 21

6 7 4 13 8 15 20 18 19

7 6 8 14 14 13 21 21 20

Table 7.4.6a Table 7.4.6b

a b
b-1 Label Endpoint

1 [1] 3 4 [1] aba 2

2 [2] [3] [4] [2] ab-1a 1

3 [5] 4 1 [3] (ba)5 4

4 [6] 1 3 [4] (b-laba)7 3

b-1 b 7[5] (a a ) 2

[6]
(ab-1)5 2

We shall take X = {a, b, b-1} and let R consist of the rules

a2 - e, bb-1 -> e, b-1b - E.
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If we trace the three relators b3, (ab)7, and (abab-1)8 at the first coset
in an ordinary coset automaton, the result has 42 states. If we use a
generalized coset automaton, then we need only 4 states. The edges are
given by Tables 7.4.6a and 7.4.6b.

The next step in the enumeration is to perform two-sided traces of the
relators at the state la. In the case of the generalized automaton, edge [1]
must be split in order for la to be defined. After these traces are performed
in the ordinary automaton, the total number of states defined is 52. In
the generalized automaton, there are only 8. The generalized automaton
is isomorphic to the automaton in Tables 7.4.7a and 7.4.7b. Note that the
states other than 1 have been renumbered, so they may not correspond to
the states with the same number used earlier.

If we now trace the relators at lb, then the ordinary automaton has
76 states. However, the generalized automaton has only 10 states and is
described by Tables 7.4.8a and 7.4.8b..

In this example, the long relators are powers, and the edge labels could
be written concisely. Thus we wrote (b-laba)6b-lab instead of

b-labab-labab-labab-labab-labab-labab-lab.
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Table 7.4.7a Table 7.4.7b

a b b-1 Label Endpoint

1 2 3 4 [1] (ab-1)5 8

2 1 5 6 [2] (ab-1)5 7

3 7 4 1 [31
(ba)5 6

4 Ill 1 3 [4] (b-1aba)6b-1ab 8

5 8 6 2 [51
(ba)5 4

6 [21 2 5 [61 (b-lbab)6b-lab 7

7 3 [3] [4]

8 5 [5] [6]

Table 7.4.8a Table 7.4.8b

a b
b-1 Label Endpoint

1 2 3 4 Il l ab-la 10

2 1 5 6 [21
(ab-1 )4 9

3 7 4 1 [3 ] ba 9

4 [1] 1 3 [4 ] (b-laba)6b-la b 8

5 8 6 2 [5 ] (ba)3b 10

6 [2] 2 5 [6 ] (b-'aba)6b-la b 7

7 3 [3] [4] [7 ] ab-1 7
8 5 [5] [6] [8 ]

(ba)4 6

9 [7] [8] [91 [9 ] (b-'aba)6b-la b 10

10 [10] [11] [12] [10 ] aba 4

-l 6[11 ] (bab a) b 17

[12 ] (b-1a) 3b-1 9

However, it can be shown that if R is classical, as it is in this example,
then at any time during an HLT enumeration the labels on the edges of
the generalized automaton are subwords of words in U U U-1 U V U V-1,
where U is the set of subgroup generators and V is the set of relators. Once
R, U, and V have been stored, it takes only a constant amount of space
to describe the edge labels, no matter how long the elements of U and V
may be.
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Abelian groups

With this chapter we begin a new topic in our study of finitely presented
groups. Chapters 4 to 7 were primarily concerned with subgroups of finitely
presented groups. We studied methods for trying to decide whether sub-
groups have finite index and for obtaining presentations for subgroups. In
the special case of finitely generated subgroups of a free product of cyclic
groups, we also considered the computation of intersections and normalizers
and the determination of conjugacy. Now we begin the study of quotient
groups of finitely presented groups. We shall try to answer questions like
the following: Let G be a class of groups and let G be a group given by a
finite presentation. Among the quotient groups of G which belong to the
class G, is there a largest one? If so, can we determine it?

The class G is usually chosen to contain groups in which we have a real
chance of doing explicit computation. The hope is that we can identify
large quotient groups of our finitely presented group G in which we can
solve the word problem and compute with elements and subgroups. By
studying these quotient groups, we may be able to determine properties of
G. Although most questions about subgroups of finitely presented groups
are in general undecidable, there are algorithms for determining the largest
quotient group of G belonging to several important classes of groups.

Since our goal is to produce quotients in which we can compute, our first
task is to look at some classes of groups and see what kinds of calculations
can be carried out. We must examine carefully which computations are
merely possible in principle, and which are actually practical for interesting
groups. This chapter will be concerned with finitely generated abelian
groups. Chapter 9 considers polycyclic groups, a class of groups in which
a wide range of computations is possible. Additive notation will normally
be used for abelian groups.

Up to now, using only elementary group theory, we have been able to
develop quite powerful procedures. However, in this and later chapters,
deeper results about groups and other algebraic objects, such as commuta-
tive rings and modules over them, will be needed. Limitations of space will
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force us to draw more heavily on other sources for important facts about
these algebraic objects.

8.1 Free abelian groups
Free abelian groups play roughly the same role in the theory of abelian
groups that free groups play in the general theory of groups. This section
and the next two summarize the basic facts about finitely generated free
abelian groups, their subgroups, and their quotient groups.

Let x1,.. . , x,, be elements of an abelian group G. An integral linear
combination of x1, ... , x,, is an element of G of the form mlx1 + + m,.x,.,
where the m2 are integers. A basis for G is a generating set X of G such
that f o r any finite sequence x1, ... , x, of distinct elements of X the only
way to express 0 as an integral linear combination of the xi is the obvious
way, Ox1 + Ox2 + + Ox,.. Not all abelian groups have bases. Those that
do are called free abelian groups.

The direct sum Z E) . . . ®Z of n copies of the additive group of the integers
is denoted Zn. Elements of Zn are n-tuples or vectors (al, ... , an) of integers
with addition and negation performed componentwise. For 1 < i < n let
xi be the vector in 7Gn with zeros in all positions except for the i-th, which
contains 1. Thus xi is the i-th row of the n-by-n identity matrix. The linear
combination mix, + + mnxn is (m1, ... , mn), which is the zero element
of Z if and only if m1 = = Mn = 0. Therefore {xi, ... , xn} is a basis
for Zn and Zn is free abelian. As just defined, bases are sets. However, we
shall usually assume that bases come with a linear ordering. The ordered
basis x1, ... , xn is called the standard basis of Zn.

For any set X, the free abelian group on X is the set of all functions
f : X --> Z such that f maps all but a finite number of elements of X to 0.
The sum of two functions f and g is defined by (f + g) (x) = f (x) + g(x)
for all x in X. (See Exercise 1.1.) Since n-tuples of integers are functions
from {1, ... , n} to Z, the group 7Ln is the free abelian group on {1, ... , n}.

Let G be a free abelian group with basis X and let K be any abelian
group. Every map from X to K has a unique extension to a homomorphism
of G into K. If the image of X generates K, then the homomorphism is
surjective and K is isomorphic to a quotient group of G. It follows that
any abelian group is isomorphic to a quotient group of a free abelian group.
The number of homomorphisms of G into the group Z2 of order 2 is 21XI.
Hence if Y is any other basis, then 21'I = 2IXI, so IYI = IXI. Therefore any
two bases of G have the same cardinality, which is called the rank of G.
The rank of Z' is n.

Any subgroup of Zn can be generated by n or fewer elements. We shall not
prove this statement here, but a more general result is proved as Proposi-
tion 3.5 of Chapter 9. Since subgroups are finitely generated, the ascending
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chain condition holds for subgroups of Z1. A subgroup H of Z° can be
specified by giving an m-by-n matrix A whose rows generate H. If this is
the case, we shall write H = S(A). The set S(A) is the set of all integral
linear combinations of the rows of A. These linear combinations are the
vectors uA, where u ranges over Zm.

Our first important task is to develop algorithms for deciding membership
in S(A) for a given m-by-n integer matrix A. The first algorithm will be
based on the concept of row equivalence of matrices. Two m-by-n integer
matrices are said to be row equivalent over Z if one can be transformed into
the other by a sequence of integer row operations. There are three types of
integer row operations:

(1) Interchange two rows.
(2) Multiply a row by -1.
(3) Add an integral multiple of one row to another row.

Example 1.1. Let A be the following matrix:

3 -1 24
1 5-30

-4 6 1 2

Interchanging rows 1 and 2 of A gives

1 5-30
3-1 24

-4 6 1 2

Now multiplying row 2 by -1 produces

1 5 -3 0

-3 1 -2 -4
-4 6 1 2

Adding twice row 3 to row 1 yields

-7 17 -1 4

-3 1 -2 -4
-4 6 1 2

All four of these matrices are row equivalent.
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The effect of one row operation can be undone by another row operation.
In the case of row operations of types (1) and (2), applying the operation
twice leaves the matrix unchanged. If q times the i-th row is added to
the j-th row, then adding -q times the i-th row to the j-th row returns
the matrix to its original form. Thus if B can be derived from A by a
sequence of integer row operations, then A can be derived from B. It
follows easily that row equivalence over 7G is an equivalence relation on
integer matrices.

If B is obtained from A by an integer row operation, then the rows of B
are in S(A). Therefore S(B) C_ S(A). Since A can be obtained from B by
a row operation, we have S(A) C_ S(B), and therefore S(A) = S(B). Hence
if A and B are row equivalent over Z, then S(A) = S(B).

It is possible to specify representatives for the row equivalence classes of
integer matrices. Let A be an m-by-n matrix over Z and suppose that A
has r nonzero rows. We say that A is in row Hermite normal form if the
following conditions are satisfied:

(1) The first r rows of A are nonzero.
(2) For 1 < i < r let Ai

i
be the first nonzero entry in the i-th row of A.

Then
(3) A2ii>0,1<i<r.
(4) If1<k<i<r,then 0<Ak.,i<At...

The entries Aiii will be called the corner entries of A. Condition (2)
states that successive corner entries occur in later columns, condition (3)
says that corner entries are positive, and condition (4) asserts that an entry
above a corner entry c is its own least nonnegative remainder under division
by c. A matrix satisfying conditions (1) and (2) will be said to be in row
echelon form. The reader is warned that there is not general agreement on
the definition of the term "Hermite normal form". Also, Hermite's contri-
butions to this subject are often described inaccurately. See the historical
note at the end of this chapter.

Example 1.2. The matrix

21 50-21 -1
0 3 -1 2 4 0 2

0 0 0 4 7 1 8

0 0 0 0 0 2 5

0 0 0 0 0 0 0

is in row Hermite normal form.
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Every integer matrix B is row equivalent to a matrix A which is in row
Hermite normal form. The procedure for determining A is called integer
row reduction. Here is a generic row reduction procedure.

Procedure ROW_REDUCE(B; A);
Input: B : an m-by-n integer matrix;
Output: A : the matrix in row Hermite normal form row

equivalent to B;
Begin

A:= B; i:= 1; j:=1;
While i < m and j < n do

IfAki =O fori<k<mthen j:=j+1
Else begin

While there exist distinct indices k and $ between i and m with
0< IAkjj < IAejI do begin

q:=AtidivAki;
Subtract q times row k of A from row f

End;

Let Akj 54 0with i<k<m; (* k is unique.
If k # i then interchange rows i and k of A;
If Aii < 0 then multiply row i of A by -1;

For $ := 1 to i - 1 do begin
q := Aei div Aid;
Subtract q times row i of A from row £

End;

is=i+1; j:=j+1
End

End.

In ROW_REDUCE we have a great deal of freedom in choosing k and
2 with 0 < IAkjj < IAe,,I. In the examples, we shall take IAkjj as small as
possible and IAe;I as large as possible. Other strategies will be discussed
later. The output matrix is described as the matrix in row Hermite normal
form row equivalent to B. Uniqueness will be proved later in Corollary 1.2.

Example 1.3. Let us row reduce the following matrix:

4 -1 2 -5

-3 0 1 -3
2 4 -3 2

5 -3 4 4
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Initially i = j = 1. On the first iteration of the inner While-loop, k = 3,
2 = 4, and q = 5 div 2 = 2. Subtracting twice row 3 from row 4 gives

4 -1 2 -5
-3 0 1 -3

2 4 -3 2

1 -11 10 0

With k=4, f = 1, andq=4weget

0 43 -38 -5
-3 0 1 -3
2 4 -3 2

1 -11 10 0

Two more iterations with k = 4 give

0 43 -38 -5
0 -33 31 -3
0 26 -23 2

1 -11 10 0

Interchanging the first and fourth rows, we have

1 -11 10 0

0 -33 31 -3
0 26 -23 2

0 43 -38 -5-

and we are finished with the first column.
Now i = j = 2 and we work on the entries in rows 2 to 4 of the second

column. Taking k = 3, f = 4, and q = 1 gives

1 -11 10 0

0 -33 31 -3
0 26 -23 2

0 17 -15 -7
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Next k = 4, £ = 2, and q = -2 produces

1 -11 10 0

0 1 1 -17
0 26 -23 2

0 17 -15 -7

Two more row operations result in

1 -11 10 0

0 1 1 -17
0 0 -49 444
0 0 -32 284

Now we must adjust the (1,2)-entry so that condition (4) of the definition
of row Hermite normal form is satisfied. Adding 11 times row 2 to row 1
yields

1 0 21 -187
0 1 1 -17
0 0 -49 444

0 0 -32 284

At this point i = j = 3. Five row operations of type (3) involving only
the last two rows produce

1 0 21 -187
0 1 1 -17
0 0 0 -390
0 0 1 174

We now interchange rows 3 and 4 and then adjust the (1,3)- and (2,3)-
entries. This gives

1 0 0 -3841
0 1 0 -191
0 0 1 174

0 0 0 -390
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With i = j = 4, all we have to do is multiply the fourth row by -1 and
adjust the entries above the fourth corner entry. Our final result is

1 0 0 59

010199
001174
000390

Note that the largest absolute value, 3841, of an entry occurring in the row
reduction is nearly 10 times the largest entry in the final matrix. This is
typical. Entries in the intermediate matrices may be very large, even when
the initial matrix and the final result have only small entries.

Several authors suggest that using a strategy proposed in (Rosser 1952)
may help to minimize the size of the entries in the intermediate matrices.
In the Rosser strategy, we choose JAejJ in ROW_REDUCE to be as large
as possible and JAkjJ to be as large as possible with k# P. Delaying the
enforcement of condition (4) of the definition of row Hermite normal form
until A is in row echelon form may also be a good idea. If these strategies
are used on the matrix of Example 1.3, then the largest absolute value of
an entry in any intermediate matrix is 407.

If A is an integer matrix in row echelon form, then it is easy to decide
membership in S(A). The following example illustrates the method.

Example 1.4. Let us determine whether u = (6,0, 16, 6, 4,13, 31) is in S(A),
where A is the matrix of Example 1.2. The last row of A is zero, so S(A) _
S(B), where

B=

21 50-21 -1
03-12 40 2

0 0 0 4 7 1 8

0 0 0 0 0 2 5

We want to know whether there exist integers a, b, c, and d such that
xB = u, where x = (a, b, c, d). If we compute the entries of xB corresponding
to the columns of B with corner entries, we see that a, b, c, and d must
satisfy

2a = 6,
a+ 3b = 0,

2b + 4c = 6,
a+ c+2d=13.

(*)
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This system of equations can easily be solved. The first equation gives
a = 3. Substituting this value into the second equation yields b = -1. From
the third equation we get c = 2, and from the fourth equation d = 4.

Having solved the system (*), we know that if u is in S(B), then

u = (3,-1,2,4)B.

However, we must compare the third, fifth, and seventh components in
these two 7-tuples, since those components were not computed in forming
(*). It is in fact true that (3,-1,2,4)B = u, so u is in S(B).

Suppose that A is an m-by-n integer matrix which is in row echelon form
and all rows of A are nonzero. Let u be an element of Z. To decide whether
u is in S(A), we attempt to solve for a vector x = (a1,. .. , am) such that
xA = u. Looking only at the columns containing corner entries of A, we
get m equations analogous to the system (*) of Example 1.4. That is, the
i-th equation involves only a1,... , ai, and the coefficient of ai is not zero.
This system has a unique solution x with rational components. If x does
not have integer components, then u is not in S(A). If all components of x
are integers, then we compute xA and compare it with u.

Taking u = (0, . . . , 0), we see that the only way to express u as an integral
linear combination of the rows of A is as (0, ... , 0)A. Thus the rows of A
form a basis for S(A), and S(A) is a free abelian group of rank at most n.
For an integer matrix B, the rank of B is the rank of S(B).

If A is in row echelon form, then we can rephrase our membership test
for S(A) as follows:

Procedure MEMBER(A, u; flag, x);
Input: A : an m-by-n integer matrix in row echelon form;

U an element of 7.n;
Output: flag : a boolean variable which is true if u is in S(A) and

false otherwise;
x : if flag is true, an element of zm such that u = xA;

Begin
v := u; Let r be the number of nonzero rows in A;
For i := 1 to r do begin

Let Aid be the first nonzero entry in the i-th row of A;
If Ai.7 does not divide vj then begin

flag := false; Goto 99
End;

xi := vj/Aid; Subtract xi times the i-th row of A from v
End;

If v is not the zero vector then begin
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flag := false; Goto 99
End;

For i :=r+1 tom doxi:=0;
x := (x1,. .. , xm);

99: End.

Proposition 1.1. Let H be a subgroup of Z'. There is a unique matrix A
in row Hermite normal form such that H = S(A) and A has no zero rows.

Proof. Let A and B be matrices which are in row Hermite normal form
such that S(A) = H = S(B) and neither A nor B has any zero rows. Since
the rows of A and of B are bases for H, the number m of rows is the same.

Suppose that m = 1. Since the single row of A is in S(B), there is an
integer a such that A = aB. Similarly there is an integer b such that B = M.
Thus A = abA. Since A has a nonzero entry, ab = 1. Since the first nonzero
entries of A and B are both positive, this implies that a = b = 1. That is,
A = B.

Now assume that m > 1. Let the corner entry a in row 1 of A occur
in column j. Then all elements of H = S(A) have zeros in components 1
to j - 1. Therefore the corner entry b in the first row of B must occur
in column j or later. By symmetry, b occurs in column j. Let Al be the
matrix obtained by deleting the first row of A, and let Bl be similarly
defined. Then S(A1) is the subgroup Hl of H consisting of all elements
with 0 as the j-th component. Again by symmetry, S(B1) is also Hl. Since
Al and Bl are in row Hermite normal form and have no zero rows, Al = Bl
by induction on m.

Let u be the first row of A and let v be the first row of B. The set D of
j-th components of the elements of H is a subgroup of Z which is generated
by a and also by b. Therefore a = ±b. Since a and b are both positive, a = b.
Thus u - v is in Hl. Suppose that u 74 v. Let the first nonzero component
of u - v be c and let c be the k-th component of u - v. Then column k of
Al contains a corner entry d and d divides c. But by condition (4) of the
definition of row Hermite normal form, the k-th components of u and v are
both between 0 and d - 1. Therefore their difference c has absolute value
at most d - 1. This is a contradiction, so u = v. Hence A = B.

Corollary 1.2. Each integer matrix B is row equivalent over Z to a unique
matrix A which is in row Hermite normal form.

Proof. We know that B is row equivalent to a matrix A which is in row
Hermite normal form. The nonzero rows of A constitute the unique matrix
C such that C is in row Hermite normal form, C has no nonzero rows, and
S(C) = S(A) = S(B).
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The matrix A of Corollary 1.2 will be called the row Hermite normal
form of B.

Exercises

1.1. Let X be a set and let F be the free abelian group on X. For x in X, define fx in F by

f x=
MY) =

1, y,
1

0, x=y.

Show that { fx I x E X} is a basis of F.
1.2. Find the row Hermite normal form for each of the following matrices:

(a)
[6
4

7] '

r3 -1 2l

(b) 14 0 -3J , (c)

5 1 4

4 -2 53 4

2 -1 7 4 3

0 0 -6 0 -3
-6 -3 0 3 -7

1.3. Suppose that we define a fourth integer row operation, add or delete a row of zeros. Show
now that two integer matrices A and B with n columns are row equivalent if and only if
S(A) = S(B).

1.4. Suppose that B is an r.-by-n integer matrix. Let X be a set with n elements x1..... xn
and let R be the rewriting system on X* containing the following rules:

xixi 1 -4 e, 1 < i < n,

xg1xi->e, 1<i<n,
xjxi -> xixj, 1 < i < j < n,

xB%1 ... xB% E, 1 < 2 < m.

Let -< be the basic wreath product ordering of Xt* with xn < xn 1 < < xi -< xi 1. Prove
that the Knuth-Bendix procedure for strings terminates with this input. Describe the
confluent rewriting system constructed. Show how to read off the row Hermite normal
form of B.

1.5. Show that any two free abelian groups of the same rank are isomorphic.
1.6. Let A be an rn-by-n integer matrix in row echelon form and let the corner entries of A

occur in columns ji < < jr. Define a function c from Zn to itself as follows: Given x
in Z', execute the statements

y:= X;
For i := 1 to r do begin

q := yji div Aiji ;
Subtract q times the i-th row of A from y

End;

and define c(x) to be y. Show that x and x' are in the same coset of S(A) in Z1 if and
only if c(x) = c(x').

1.7. Suppose that Z is ordered as follows: 0 -< 1 -< 2 < < -1 < -2 < . Extend the
ordering to V1 lexicographically. If x is in V1, prove that c(x) in Exercise 1.6 is the first
element of the coset x + S(A).
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1.8. Give appropriate definitions for integer column operations, column echelon form, and
column Hermite normal form. Show that the column Hermite normal form of an integer
matrix B is the transpose of the row Hermite normal form of the transpose of B.

1.9. Let A be an m-by-n integer matrix of rank r. Show that the set of x in Zn such that
Ax = 0 is a subgroup of rank n - r. (Hint: Prove that A may be assumed to be in row
Hermite normal form.)

1.10. Let A and B be m-by-n integer matrices in row echelon form. Suppose that S(B) c S(A)
and that A and B have the same corner entries. Show that S(B) = S(A).

1.11. Extend the notion of row equivalence to matrices with entries in a commutative ring R.
In case R = F[X], where F is a field, define row Hermite normal form and show that
any matrix is row equivalent to a unique matrix in row Hermite normal form.

8.2 Elementary matrices
Let A be an m-by-n integer matrix and let I be the m-by-m identity matrix.
Suppose that P is obtained by applying a row operation to I. Then PA is
the result of applying the same row operation to A. For example, if

_ 461
A

1-3 5

we can add twice the first row of A to the second row by multiplying A on
the left by

P=

The proof of this result in general is easy and is left as an exercise.
An elementary integer matrix is a matrix obtained by applying one in-

teger row operation to an identity matrix. Suppose that A and B are
m-by-n integer matrices and A is obtained by applying a sequence of s row
operations to B. If P1,... , P3 is the corresponding sequence of m-by-m
elementary matrices, then A = P3 ... P1B.

The group of units in the ring of m-by-m integer matrices is denoted
GL(m, Z). The reader is assumed to be familiar with determinants and
the fact that an m-by-m integer matrix Q is in GL(m, Z) if and only if
det Q = ± 1. Such a matrix is said to be unimodular. If P is an m-by-m
elementary matrix, then det P = -1 if the corresponding row operation
is of type (1) or (2), and detP = 1 if the row operation is of type (3).
Thus P is in GL(m, Z). Since every integer row operation has an inverse
row operation, the inverses of elementary matrices are elementary. If P
is the product P3 . . . P1 of the preceding elementary matrices, then P is in
GL(m, Z) and A = PB. Thus we have the following result.

Proposition 2.1. If A and B are row equivalent integer matrices with m
rows, then there is an element P of GL(m, Z) such that A = PB.
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It is possible to modify the procedure ROW_REDUCE of Section 8.1 so
that it returns an element P of GL(m, Z) with A = PB. The matrix P
is initialized to be the m-by-m identity. Then whenever a row operation
is applied to A, that same operation is applied to P. In this way the
equality A = PB is maintained at all times. If we follow the computation
of Example 1.3, then P turns out to be

-7 0 2 5

-24 1 7 17
-21 1 6 15
-47 1 13 33

Suppose that B is an m-by-m integer matrix, A is the row Hermite
normal form of B, and P is an element of GL(m,Z) such that A = PB.
Then

det A = (det P) (det B),

so I det Al _ I det B I. Thus B is in GL(m, 7G) if and only if A is in GL(m, 7L).
If det A = f 1, then A cannot have a row of zeros. Thus A has m corner
entries and det A is their product. Hence all corner entries in A are 1,
A is the identity matrix, and P = B-1. The procedure ROW-REDUCE
modified as described here can be used to compute inverses for elements of
GL(m, Z).

The following proposition summarizes the preceding discussion.

Proposition 2.2. Let B be an m-by-m integer matrix. The following are
equivalent:

(a) detB = f1.
(b) B is in GL(m, Z).
(c) B is row equivalent to the m-by-m identity matrix.
(d) S(B) = Zm.
(e) B is a product of elementary matrices.

Corollary 2.3. Two m-by-n integer matrices A and B are row equivalent
if and only if there is an element P of GL(m, Z) such that A = PB.

In Section 8.1, we learned how to decide whether a vector u in Zn is in
S(B), where B is a given m-by-n integer matrix. We row reduce B to get
the row Hermite normal form A of B. We can then determine a vector x
in zm such that u = xA or show that no such x exists. Suppose that u is
in S(B) and we would like to express u as yB for some y in Zm. If we have
A = PB with P in GL(m, 7L), then u = xA = xPB, so we may take y to be
xP.
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Exercises

2.1. For each of the matrices B in Exercise 1.2 find a unimodular matrix P such that PB is
in row Hermite normal form.

2.2. Let a and 1b be integers and set d = gcd(a, b). Prove that the row Hermite normal form

of B = [ b ] is A = Show that with just a minor change the procedure GCDX of

Section 1.7 can be made to return a unimodular matrix P such that A = PB.
2.3. Find the inverses of the following matrices:

(a) [9
5

7] , (b)
r 1 1 -1l
-11 0J.

L-2 1 1

2.4. Suppose that we modify the inner While-loop of ROW_REDUCE as follows:

While there exist distinct indices k < t between i and m such that both a = Akj and
b = Atj are nonzero do begin

d := gcd(a, b);

Let P be an element of GL(2,Z) such that P
[a] = [d];

b 0(*

See Exercise 2.2. *)

Multiply the submatrix of A consisting of rows k and 2 by P
End;

Is this likely to speed up the computation?

8.3 Finitely generated abelian groups
Let G be an abelian group written additively and suppose that G is gen-
erated by g1,.. . , g,,,. The map f of V1 onto G taking (a1, ... , a,,,) to a1g1 +

+ angn is a homomorphism and G is isomorphic to Zn/H, where H is
the kernel of f. As remarked in Section 8.1, H is finitely generated, so
there is a matrix B such that H = S(B). In this section we shall learn how
to determine the isomorphism type of Zn/S(B) for a given m-by-n integer
matrix B.

Example 3.1. Let A be the following matrix:

2 0 0 0 0
0 4 0 0 0
0 0 12 0 0

There is a homomorphism f of Z5 onto Z2 ®7L4 ®7612 ®7L2 taking (a, b, c, d, e)
to

([a] 2, [b]4, [c]12, d, e),
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where [u]s denotes the congruence class modulo s containing u. The kernel
H of f consists of all vectors (a, b, c, d, e) such that 2 divides a, 4 divides b,
12 divides c, and d = e = 0. Thus H = S(A) and Z5/S(A) is isomorphic to
Z26Z4®Z12®Z2.

In general, it is difficult to see the structure of Zn/S(B). However, it is
possible to determine an m-by-n matrix A such that Zn/S(B) and Z'/S(A)
are isomorphic and the structure of Z'/S(A) can be read off easily as in
Example 3.1. Constructing A involves the use of integer row and column
operations.

The integer column operations are the obvious analogues of the integer
row operations: interchange two columns, multiply a column by -1, and
add an integral multiple of one column to another column. A column
operation may be applied to a matrix B by applying the operation to the
appropriate identity matrix and multiplying B on the right by the result.
If P is obtained by applying an integer column operation to an identity
matrix I, then P can also be obtained by applying an integer row operation
to I. Thus P is elementary. (We do not have to distinguish between row
elementary and column elementary.)

Two m-by-n integer matrices A and B are equivalent over Z if one can be
obtained from the other by a sequence of integer row and column operations.
This is the same as saying that there are matrices P and Q in GL(m,Z)
and GL(n, Z), respectively, such that A = PBQ. Equivalence of matrices
over Z is an equivalence relation.

Proposition 3.1. Let A and B be m-by-n integer matrices which are
equivalent over Z. Then Zn/S(A) and Z'/S(B) are isomorphic.

Proof. Let A = PBQ, where P is in GL(m,Z) and Q is in GL(n,Z).
The map g taking x in Zn to xQ is a homomorphism of Z into itself.
Since g(xQ-1) = xQ-1Q = x, it follows that g is surjective. If xQ = 0,
then x = xQQ-1 = OQ-1 = 0. Thus the kernel of g is trivial and g is an
automorphism of Z'. Now S(BQ) is g(S(B)), for S(B) is the set of yB with
y in Zm and (yB)Q = y(BQ). By Exercise 3.6 in Chapter 1, Z' /S(BQ)
and Z'/S(B) are isomorphic. Since S(PBQ) = S(BQ), the result follows.

Just as the matrices in row Hermite normal form are representatives for
the equivalence classes of integer matrices under integer row equivalence,
there is an easily identified set of representatives under equivalence. An
integer matrix A is in Smith normal form if for some r > 0 the entries
di = Anti, 1 < i < r, are positive, A has no other nonzero entries, and di
divides di+1, 1 < i < r. The matrix A of Example 3.1 is in Smith normal
form.
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Every integer matrix B is equivalent to a matrix A in Smith normal form.
Given B, the process of computing such an A is called reduction. If B is a
zero matrix, then B is in Smith normal form already. Thus we may assume
that B is not zero. Several reduction algorithms which use row and column
operations try to reduce B first to the form

rd 0 ... 0
0

C
0

(*)

where d is positive. Some algorithms arrange things so that d divides every
entry of C at this point. Other algorithms attack C immediately and come
back to the divisibility condition only at the end.

We look for a nonzero entry Biz in B. It is usually convenient to choose
Bii small, but this is not necessary. If Bid divides all entries in row i

and column j, then we interchange rows 1 and i and columns 1 and j, if
necessary, to make i = j = 1. Then row operations of type (3) can be used
to make Bkl = 0 for k > 1, and column operations of type (3) can be used
to make Blk = 0 for k > 1. Multiplying row 1 by -1, if necessary, insures
that B11 > 0. Thus we have obtained the form (*).

If Biz does not divide Br7 for some r, then let q = B,r div Bid, subtract q
times row i from row r, and set (i, j) equal to (r, j). Similarly, if Bi3 does
not divide Bie for some s, then let q = Bie div Bid, subtract q times column
j from column s, and set (i, j) equal to (i, s). In either case, the value of
IBijI is reduced, so eventually Bid will divide each entry in row i and row j.

If, when we reach the form (*), the entry d = B11 does not divide some
entry Brs with r > 2 and s > 2, then we may proceed as follows: Let
q = Brs div d. Add column s to column 1 and subtract q times row 1 from
row r. The (r, 1)-entry is now positive and less than d. Set (i, j) = (r, 1)
and repeat the procedure of the previous two paragraphs.

Having obtained a matrix of the form (*), if C is not zero, we iterate the
procedure with C. In this way we produce a matrix

d2
I dl 0

0 dr

01

where the di are positive. If we always choose d in (*) to divide the entries
in C, then di divides di+1, 1 < i < r. If this divisibility condition does not
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hold, then we use the following observation: Let a and b be positive integers
and let d = gcd(a, b) = ua + vb and $ = lcm(a, b) = ab/d. Set

u v 1

R = -b a and S =
d 1d

Then

R 10 b] S - I
0

d

eJ

-vb
d
ua

d

As long as there are indices i and j with 1 < i < j < r such that di does
not divide dj, we use this device to replace di and dj by gcd(di, dj) and
lcm(di,dj), respectively. Eventually we reach the state in which di divides
di+i, 1 < i < r.

Suppose that matrices P and Q are initialized at the beginning of the
computation to the m-by-m and n-by-n identity matrices, respectively. If
any row operations applied to B are also applied to P and any column
operations applied to B are also applied to Q, then the final matrix A
in Smith normal form is equal to PBQ, P is in GL(m, Z), and Q is in
GL(n, 7G).

Example 3.2. Let us compute a matrix in Smith normal form equivalent to
the matrix

B=

2 2 6 4 0

6 4 16 10 -14
4311 7 0

8 5 21 13 -4

The entry in the (1,1) position divides all of the entries in the first row and
the first column. However, if we subtract the first row from the third row,
we can get an entry of 1 in the (3,2) position, and this is preferable. After
the subtraction we have

2 2 6 4 0

6 4 16 10 -14
2 1 5 3 0

8 5 21 13 -4
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Now we interchange rows 1 and 3 and columns 1 and 2. The result is

1 2 5 3 0

4 6 16 10 -4
2 2 6 4 0

582113-4

Three row operations of type (3) yield

1 2 5 3 0

0 -2 -4 -2 -4
0 -2 -4 -2 -0
0 -2 -4 -2 -4

Three column operations of type (3) give us

1 0 0 0 0

0 -2 -4 -2 -4
0 -2 -4 -2 -0
0-2-4-2-4

Now we can turn our attention to the 3-by-4 submatrix in the lower right
corner. Multiplying row 2 by -1, we get

1 0 0 0 0

0 2 4 2 4

0-2-4-2 0

0 -2 -4 -2 -4

Two row operations of type (3) produce

10000
02424
00004
00000

and three column operations of type (3) yield

10000
02000
00004
00000
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All we have to do now is interchange columns 3 and 5, and we obtain a
matrix in Smith normal form:

10000
02000
00400
00000

Thus G = 7L5/S(B) is isomorphic to Z1®7L2 ® Z4 ® Z2. Since 7L1 is a group
of order 1, G is isomorphic to Z2 ®7L4 ® Z2.

Suppose that A is the matrix

d1 0

d2

0 dr

01

where the di are positive integers, and n is the number of columns of A.
Then

7L"`/S(A) = 7Ld1 ®... Zdr ®7Ls,

where s = n - r. It follows from this and the remarks at the beginning of
the section that any finitely generated abelian group G is isomorphic to a
direct sum

7Ld1 ®... ED Zdr ®7L3.

If we assume that each di > 1 and di divides di+1 for 1 < i < r, then the
integers r, s, and d1,... , dr are uniquely determined by G. This result is
known as the fundamental theorem of finitely generated abelian groups. A
proof of this theorem may be found in [Sims 1984] and in other books on
algebra or group theory.

Proposition 3.2. Every integer matrix B is equivalent over Z to a unique
matrix A in Smith normal form.

Proof. Let B have n columns. We know that B is equivalent to some
matrix A in Smith normal form. Let d1, ... , dr be the nonzero entries of A
and assume that d1 = ... = dt = 1 and di > 1 for i > t. By the fundamental
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theorem, the numbers r - t, n - r, and d+1,. .. , dr are uniquely determined
by Z' /S(B). Thus t = n - (n - r) - (r - t) is determined.

The nonzero entries of the matrix in Smith normal form equivalent to a
given integer matrix B are called the invariant factors of B.

In Section 8.1 we referred to the fact that during row reduction the
entries of the matrix can get very large. This phenomenon is even more
pronounced in the case of the reduction algorithm sketched earlier. Even
starting with a 10-by-10 matrix whose entries are 0 or ±1, one can overflow
32-bit integers during reduction. In later sections we shall discuss better
methods for computing the Smith normal form A of an integer matrix B
and for finding unimodular matrices P and Q such that A = PBQ.

If B has n columns, then the invariant factors dl, ... , dr of B determine
the isomorphism type of G = Zn/S(B). However, to determine an explicit
isomorphism of G onto Zd1 ® ... ® Z (D Zn-r we need more information,
such as the matrix Q.

Proposition 3.3. Let B be an m-by-n integer matrix with invariant factors
dl, ... , d,, and let P and Q be unimodular matrices such that A = PBQ is
in Smith normal form. Given x in Z', let xQ = y = (y1,. .. , yn). The map
f taking x to

([Y1Id1,..., [yr1d,,yr+1 ,...,yn)

is a homomorphism of Zn onto K = Zd1® ... ®7Gdr ®7Ln-r with kernel S(B).

Proof. The map 7r taking (y1, ... , y,,) to ([Y1I d1, I [yrLd,.,Yr+i, , yn) is a
homomorphism of Zn onto K with kernel S(A). The map a taking x to xQ
is an automorphism of Zn taking S(B) to S(A). Since f is the composition
a o 7r, the result follows.

Corollary 3.4. Let B be as in Proposition 3.3. If ui is the i-th row of
Q-1, then the image ui of ui in G = 7Zn/S(B) has order di if 1 < i < r
and infinite order if i > r. Moreover, G is the internal direct sum of the
subgroups Grp (ui), 1 < i < n.

Proof. Under the map f of Proposition 3.3, ui goes to the generator of
the i-th summand of K.

Since Q is the more important of P and Q, it seems reasonable to try
to keep the entries in Q as small as possible. Giving preference to row
operations may be a way to accomplish this.
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Exercises

3.1. Computing unimodular matrices P and Q such that PBQ is in Smith normal form is
not trivial even when B is already a diagonal matrix. Let B. be the matrix

1

2 0

3

0

Describe the invariant factors of B,a. How many are greater than 1?
3.2. The text sketched several reduction procedures. Write out a formal description of one of

them.
3.3. Suppose that A and Q are integer matrices such that AQ is defined and Q is unimodular.

Show that A and AQ have the same rank. Conclude that equivalent matrices have the
same rank.

3.4. Suppose that HNF is a function which returns the row Hermite normal form of an integer
matrix. Define a new function F by

F(B) = HNF(HNF(B)t)t

where At denotes the transpose of the matrix A. Show that F(B) is equivalent to B.
Let Bl = B and for i > 1 define Bi+i to be F(Bi). Show that there is an index s such
that B. = B,g+l and that B, has the form

dl 0

d2

0

dr

0

where the di are positive integers but di may not be divisible by dj when j < i.
3.5. Let dl, . . . , dr be a sequence of positive integers. Show that no more than r(r -1)/2 steps

replacing di and dj by gcd(di,dj) and lcm(di,dj), respectively, are needed to modify the
sequence so that di divides di+i for 1 < i < r.

8.4 Modular techniques
Using the procedures of Section 8.3 to compute the invariant factors of
an integer matrix having moderately large numbers of rows and columns
requires arbitrary precision arithmetic. When the matrix has hundreds of
rows and columns, these methods are not practical even with arbitrary
precision. This section describes an alternative approach which has been
useful with matrices having a thousand or more rows and columns. It draws
heavily on (Havas & Sterling 1979). Similar results are also presented in
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(Domich, Kannan, & Trotter 1987) and (Domich 1989). See also (Ger-
stein 1977). The new approach is based on a different characterization of
invariant factors.

Given an m-by-n integer matrix B and an integer k with 0 < k <
min(m, n), let Dk(B) be the gcd of the determinants of all k-by-k sub-
matrices of B. (Here D0(B) is defined to be 1.) If S is a k-element subset
of {1, ... , m} and T is a k-element subset of {1, ... , n}, then B(S, T) will de-
note the determinant of the k-by-k submatrix of B consisting of the entries
in the rows indexed by S and the columns indexed by T.

Proposition 4.1. Suppose that A and B are equivalent m-by-n integer
matrices. Then Dk(A) = Dk(B) for 0 < k < min(m, n).

Proof. We must show that integer row and column operations applied to
A do not change Dk(A). It clearly suffices to consider only row operations
and to assume that k > 1. Let S and T be k-element subsets of row and
column indices, respectively. Suppose that B is obtained from A by a single
integer row operation. We need to see how B(S, T) and A(S, T) are related.

If row i of A is multiplied by -1, then B(S,T) = -A(S,T) if i is in S
and B(S,T) = A(S,T) otherwise. Thus Dk(B) = Dk(A) in this case. If
rows i and j are interchanged, then B(S,T) = ±A(f(S),T), where f is
the permutation of { 1, ... , m} which interchanges i and j and leaves all
other points fixed. Again, up to signs, the sets of determinants of k-by-k
submatrices of A and of B are the same and Dk(A) = Dk(B).

Now suppose that q times row i is added to row j. If j is not in S, then
B(S, T) = A(S, T). Suppose that j is in S. Without loss of generality, we
may assume that j is the first element of S. Thus

all + qcl ... alk + qck

B(S,T) =
a21 ... a2k

akl

where

all ... qlk

qkk

A(S,T) =

akl ... akk

and c1,. .. , ck are the entries of A in row i of the columns indexed by T.
Expanding B(S, T) by minors of the first row, we find that B(S, T) =
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A(S,T) + q(det C), where

cl ... Ck

121 ... a2k

C=

. akk

If i is in S, then C has two equal rows, so det C = 0. If i is not in S, then up
to sign det C = A(S',T), where S' is obtained from S by replacing j with
i. In either case B(S,T) is divisible by Dk(A). Therefore Dk(A) divides
Dk(B). But A can be obtained from B by adding -q times row i to row
j. Thus the same argument shows that Dk(B) divides Dk(A). Therefore
Dk(A) = Dk(B).

Proposition 4.2. If A is an rn-by-n integer matrix and 0 < k < min(m, n),
then Dk(A) divides Dk+l(A).

Proof. Since DO(A) = 1, we may assume that k > 1. Let S and T be (k+1)-
element subsets of row and column indices, respectively. Expanding A(S, T)
by minors of one row, we see that A(S, T) is an integral linear combination
of determinants of k-by-k submatrices of A. Thus Dk(A) divides A(S, T),
so Dk(A) divides Dk+l(A).

Proposition 4.3. I f dl, ... , d,. are the nonzero diagonal entries of a matrix
A in Smith normal form, then Dk(A) = 0 if k > r and Dk(A) = dl ... dk if
k<r.

Proof. Let S and T be k-element sets of row and column indices, respec-
tively. Unless k < r and S = T, the submatrix indexed by S and T has a row
of zeros and A(S, T) = 0. If S = {il, ... , ik}, where l < it < i2 < ... < ik < r,
then A(S, S) = di1 ... dik. But dl divides dil, d2 divides die, and so on. Thus
dl ... dk divides A(S, S). Since dl ... dk = A(T,T), where T = {1, 2, ... , k},
it follows that Dk(A) = dl ... dk.

Corollary 4.4. Let dl, ...,dr be the invariant factors of an integer ma-
trix B. Then r is the largest index such that Dr(B) # 0 and dk =
Dk(B)/Dk-l(B), 1 < k < r.

By itself, Corollary 4.4 is not adequate to determine the invariant factors
of B. The number of k-by-k submatrices is very large, so Dk(B) cannot
be computed from its definition. However, if we can find several k-by-k
submatrices with nonzero determinants, then experience suggests that the
gcdd of these determinants is likely to be a good approximation to Dk(B)
in the sense that d/Dk(B) is "small".
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The following steps outline the way we shall use these ideas to compute
the invariant factors of an integer matrix B:

(1) Find the rank r of B.
(2) Find a small number of r-by-r submatrices of B which have nonzero

determinants.
(3) Compute the gcd d of the determinants in (2).
(4) Determine the invariant factors of B modulo d.
(5) Recover the invariant factors of B from the invariant factors modulo

d.

Step (4) explicitly mentions modular arithmetic. In fact, steps (1), (2),
and (4) all use modular arithmetic. Let d be an integer greater than 1.
In discussing the manipulation of matrices modulo d, we have two possible
points of view. We can consider that we are working with matrices over
the ring Zd of integers modulo d or that our matrices have integer entries
which are always reduced to their smallest nonnegative remainders modulo
d. The points of view are equivalent, and we shall adopt the second. For
an integer matrix A, let A be the result of reducing all entries of A modulo
d.

The row operations modulo d on integer matrices are the following:

(1) Interchange two rows.
(2) Multiply a row by any integer relatively prime to d.
(3) Add an integral multiple of one row to another row.

In both (2) and (3), the modified entries are reduced modulo d.
Two integer matrices A and B are row equivalent modulo d if A can be

transformed into B by a sequence of row operations modulo d. The matrix
A is in row Hermite normal form modulo d if the following conditions are
satisfied:

(i) A = A.
(ii) A is in row Hermite normal form over Z.

(iii) The corner entries of A divide d.

Proposition 4.5. Every integer matrix B is row equivalent modulo d to a
unique matrix A which is in row Hermite normal form modulo d.

Proof. The proof is essentially the same as the proof of the corresponding
result for row equivalence over Z. The one extra point is the way operations
of type (2) are used to insure that corner entries divide d. Suppose that a
is the first nonzero entry in the i-th row. Then 0 < a < d and a = uv, where
u = gcd(a, d) and gcd(v, d/u) = 1. There is an integer w such that wv - 1
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(mod d/u). It follows that aw = uvw - u (mod d). By Proposition 7.1 of
Chapter 1 we may choose w so that gcd(w, d) = 1. If we multiply row i by
w and reduce modulo d, then the first nonzero entry of the i-th row is now
u, which divides d.

The number of nonzero rows of A in Proposition 4.5 will be called the
rank of B modulo d or the d-rank of B.

Example 4.1. Let us row reduce the matrix

101139
8 7 7 5
6 0 4 2

modulo 12. The entries are already reduced modulo 12. Since 10 = 2 .5
and 5 is its own multiplicative inverse modulo 6, we multiply row 1 by 5
modulo 12 to get

2739
8775
6042

Now subtracting 4 times row 1 from row 2 and 3 times row 1 from row 3
and reducing modulo 12 gives

2 7 3 9

0 3 7 5

0 3 7 11

Subtracting twice row 2 from row 1 and row 2 from row 3 results in

21111
0 3 7 5

0 0 0 6

Finally, subtracting row 3 from row 1 gives

2115
0375
0006

Row reduction modulo d can be used to compute determinants modulo
d. Let B be a square integer matrix. At the beginning of the row reduction,
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set c = 1. If two rows are interchanged, then replace c by -c modulo d. If
a row is multiplied by w and wv - 1 (mod d), then replace c by vc modulo
d. If A is the final matrix which is in row Hermite normal form modulo
d, then det B = c(det A) (mod d), and det A is the product of the diagonal
entries of A.

Now let B be an m-by-n integer matrix. The d-rank of B is a lower
bound for the rank of B. If d is chosen to be a random, moderately large
prime, then the rank of B and the d-rank of B will almost certainly be the
same. If we get the same rank r modulo several primes, then our confidence
that r is the rank of B should be very high. However, to be absolutely sure,
we must work a little harder.

The rank of B is the largest integer r such that B contains an r-by-r
submatrix with nonzero determinant. We need an easily computable upper
bound on the size of the determinant of any square submatrix of B. One
such bound is the Hadamard bound given by the following proposition and
its corollary.

Proposition 4.6. Let A be an n-by-n real matrix. Then

n n \1/2

.1
f/

Proof. See Exercise 15 of Section 4.6.1 of [Knuth 1973] and its solution.

Corollary 4.7. Let B be an m-by-n integer matrix, where m < n. The
determinant of any square submatrix of B has absolute value at most the
smaller of

1/2

and Bmax
(i j=1

m

7

1/2 m

where the product is over the nonzero rows.

If B has more rows than columns, then we apply Corollary 4.7 to the
transpose of B. If m = n = 100 and all entries in B have absolute value
at most 1, then Corollary 4.7 says that the determinant of any square
submatrix of B has absolute value at most 10100.

Proposition 4.8. Let B be an integer matrix and let p1, ... ,p5 be a sequence
of distinct primes such that p1... ps exceeds the Hadamard bound for B.
Then the rank of B is the maximum r of the pi-rank of B, 1 < i < s.
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Proof. Let b be the Hadamard bound for B. If C is a square submatrix
of B with more than r rows, then det C =_ 0 (modpi), 1 < i < s. Therefore
det C m 0 (modpl ... ps). Since I det CI < b < pl ... ps, this means det C = 0.
Since for some i there is an r-by-r submatrix C of B such that det C is not
divisible by pi, the rank of B is r.

When Proposition 4.8 is applied, the primes pi are usually chosen to be
as large as possible subject to pi2 being representable as a single precision
integer.

Now that we can compute the rank r of a large integer matrix B, we need
a way to find r-by-r submatrices of B with nonzero determinants and to
compute those determinants. Assuming that Proposition 4.8 was used to
find r, we know some prime p such that the p-rank of B is r. For 1 < i < m
let Bi be the submatrix of B consisting of the first i rows. By a slight
extension of the process of row reduction modulo p, we can determine the
set S of row indices i such that the p-rank of Bi is greater than the p-rank
of Bi_1. Let C be the submatrix of B consisting of the rows indexed by S
and let T be the set of column indices corresponding to the corner entries
in the row Hermite form modulo p of C. Then B(S,T) is not congruent to
0 modulo p and hence is not 0.

Having found an r-by-r submatrix with nonzero determinant, we must
compute that determinant. This again can be done with modular arith-
metic.

Proposition 4.9. Let E be a square matrix and let pl,... , ps be a sequence
of distinct primes such that pl ... ps exceeds twice the Hadamard bound for
E. Suppose that det E - ei (mod pi), 1 < i < s. Then det E is the integer
e with smallest absolute value satisfying e = ei (modpi), 1 < i < s.

Proof. Let b be the Hadamard bound for E. The numbers ei, 1 < i <
s, determine det E modulo pl ... ps. Since 2b < pl ... ps, no two integers
between -b and b are congruent modulo pl... ps.

We can use row reduction modulo p to compute det E modulo p for
sufficiently many primes p and use Proposition 4.9 to determine det E. An
efficient way of doing this is discussed in Exercise 4.1.

It may happen that B has only one r-by-r submatrix with nonzero deter-
minant. However, it is probably worth spending a little more time looking
for others. One way to do this is to apply the procedure used to find
the first submatrix to the matrix obtained from B by randomly permuting
the rows and the columns of B. If other r-by-r submatrices with nonzero
determinants are found, then we compute the gcd of their determinants.

At this point we know the rank r of B and a multiple d of Dr(B). The
next step is to compute the elementary divisors of B modulo d. To define
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these, we need to introduce column operations modulo d, which are the
obvious analogues of the row operations modulo d. Two integer matrices A
and B are equivalent modulo d if A can be transformed into B by a sequence
of row and column operations modulo d. The matrix A is in Smith normal
form modulo d if the following conditions hold:

(i) A = A.
(ii) A is in Smith normal form over Z.
(iii) The nonzero entries of A divide d.

Proposition 4.10. An integer matrix B is equivalent modulo d to a unique
matrix A which is in Smith normal form modulo d.

Proof. Exercise.

If B and A are as in Proposition 4.10, then the nonzero entries of A
will be called the invariant factors of B modulo d. The following result
allows us to complete the final step in our modular approach to computing
invariant factors.

Proposition 4.11. Let B be an integer matrix with invariant factors
d1,... , dr and let d be a positive multiple of dr. Suppose the invariant
factors of B modulo d are cl, ... , cs. Then di = ci, 1 < i < s, and di = d,
s<i<r.

Proof. One way to compute the Smith normal form of B modulo d is to
compute the Smith normal form over Z and reduce the entries modulo d.
Since all the d2 divide d, the only effect of the reduction modulo d is to
replace any di which is equal to d by 0.

Example 4.2. Let us use the modular techniques we have developed to
compute the invariant factors of the matrix

3 0 7 -1 6 -1 -1 0 -4 -4
14 14 8 3 4 -4 4 -6 -6 -4
17 30 14 -1 4 -10 5 -15 -5 -3

4 2 -4 1 -4 -3 -1 -3 0 4B=
4 6 -5 2 -7 1 3 0 1 3

10 16 11 1 7 -7 2 -9 -1 -3
11 2 -9 6 3 0 5 -6 0 4

-7 0 13 1 20 -3 0 -3 3 -10

The 2-rank of B is 7, the 3-rank is 6, the 5-rank is 7, and the 7-rank is 8.
Since the rank of B cannot exceed 8, the rank is 8. There are 45 8-by-8
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submatrices of B. Let us consider first the submatrix C consisting of the
first eight columns of B. The Hadamard bound for C is about 1.1 x 1011
Assuming our computer can store eight-digit decimal integers in one word,
we can compute the determinant of C modulo a prime near 1000 using
single-precision calculations. The first four primes greater than 1000 are
1009, 1013, 1019, and 1021. It turns out that

det C 14 (mod 1009),

944 (mod 1013),

331 (mod 1019),

810 (mod 1021).

Using Exercise 4.1 and Proposition 4.9, we find that det C = 276480. Sim-
ilar computations show that the determinants of the submatrices obtained
by omitting the first two columns and by omitting columns 3 and 8 are
-207360 and -172800, respectively. The gcd of 276480, 207360, and 172800
is 34560. The invariant factors of B modulo 34560 consist of six 1's, 3, and
11520. By Proposition 4.11, these are the invariant factors of B. Re-
duction of B modulo 34560 involves integers with more than eight digits.
We may work modulo the prime power factors of 34560 if we choose. See
Exercise 4.2.

Let B be an m-by-n integer matrix of rank r and let d be a multiple of
the largest invariant factor dr of B. The algorithm for reduction modulo
d can be extended to produce square integer matrices P and Q such that
PBQ is congruent modulo d to the Smith normal form of B, and P and Q
are invertible modulo d, that is, their determinants are relatively prime to
d. If r = n, then G = Zn/S(B) is finite and is isomorphic to a quotient of
(7Gd)n. Knowing the matrix Q, we can construct an explicit isomorphism
of G with a direct sum of cyclic groups. However, if G is infinite, then
modular techniques can tell us the isomorphism type of G, but they do not
appear powerful enough to determine an explicit isomorphism of G with a
direct sum of cyclic groups.

We close this section with some applications of the results obtained to row
equivalence and row Hermite normal forms. Let B be an m-by-n integer
matrix. For any subset T of {1,.. . , n} set k = ITI and define DT(B) to be
the gcd of the determinants of the k-by-k submatrices of B whose columns
are indexed by T.

Proposition 4.12. If A is row equivalent to B, then DT(A) = DT(B) for
all subsets T of column indices.

Proof. See the proof of Proposition 4.1.
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Let us order the set of nonempty subsets of 11, ... , n} as follows: Given
two nonempty subsets S and T, we compare the first element of S with the
first element of T. If the first elements are equal, we compare the second
elements, and so on. Suppose A is the row Hermite normal form of B and
jl < j2 < < jr are the indices of the columns of A containing the corner
entries c1, ... , cr. Then for 1 < i < r the set Ti = {j1, ... , ji} is characterized
by the property that it is the first i-element subset T of 11, ... , n} such that
DT(B) 0. Moreover, DT. (B) = cl ... ci. Thus each ci is less than or equal
to the Hadamard bound for B. Since all entries in the ji-th column of A
are between 0 and ci, we have the following result:

Proposition 4.13. Let B be an integer matrix, let b be the Hadamard bound
for B, and let A be the row Hermite normal form of B. Then all entries
of A in columns containing corner entries lie between 0 and b.

Corollary 4.14. Let B, b, and A be as in Proposition 4.13 and let B have
m rows and n columns. Then no entry of A exceeds min(m, n)b2 in absolute
value.

Proof. For 1 < k < n, let Ak and Bk be the k-th columns of A and B,
respectively, and let the corner entries of A occur in columns j1 < < jr. If
k = ji for some i, then no entry in Ak exceeds b in absolute value. Suppose
that Ak does not contain a corner entry. Applying Exercise 4.5 to the
submatrix of B consisting of columns k and j1,. .. , j,., we obtain integers u
and v1, ... , yr such that

uBk = viBj.,
4=1

u 0, and none of u, v1,...,yr exceeds b in absolute value. The same

relation holds on the columns of A. That is

uAk = viAj..
i=1

Thus for 1 < p:5 m the entry Apk has absolute value at most

r

E I vi I l App, I < rb2 < min(m, n)b2.
i=1

Exercises

4.1. Suppose that Pi, . , p3 are distinct odd primes and al, ... , a3 are integers with jai < pi /2.
For 2 < i < s let qi be the positive integer less than pi such that pi . . . pi-iqi =1 (modpi).
Show that after executing the statements
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x = al;
For i := 2 to s do begin

Choose y such that y = qi(x - ai) (mod pi) and Iyj < pi/2;
X:= x - yP1...Pi-1

End;

the value of x is the integer of smallest absolute value such that x - ai (modpi), 1 < i < s.
4.2. Assume that B is an integer matrix of rank r, p is a prime, and pa is the highest power

of p dividing the last invariant factor d, of B. Suppose that b > a and let the invariant
factors of B modulo pb be c 1 , . . . , cs. Show that the highest power of p dividing the i-th
invariant factor di of B is ci if 1 < i < s and is pb if s < i < r.

4.3. Is the converse of Proposition 4.12 true? That is, if A and B are integer matrices with
the same numbers of rows and columns such that DT(A) = DT(B) for all subsets T of
column indices, is it necessarily true that A and B are row equivalent? (Hint: Consider
2-by-2 matrices which are in row Hermite normal form.)

4.4. Suppose that A is an (n -1)-by-n integer matrix of rank n - 1. For 1 < i < n let Ai be
the submatrix of A obtained by deleting the i-th column, and set xi = (-1)i+1 det(Ai).
Let x = (x1 i ... , xn). Show that x # O and Ax = 0.

4.5. Let A be an m-by-n integer matrix of rank less than n. Show that there is an x 54 0 in Zn
such that Ax = 0 and no component of x exceeds the Hadamard bound for A in absolute
value.

4.6. Let B be an m-by-n integer matrix and let P1, ... , P. be a sequence of distinct primes
whose product exceeds the Hadamard bound for B. Let A be the row Hermite normal
form of B and for 1 < i < s let Ai be the row Hermite normal form modulo pi of B.
Suppose that the corner entries of A occur in columns ji <. . .<j , and the corner entries
of Ai occur in columns ji (i) < < jr, (i). Show that for 1 < k < r we have

jk = min jk(i),
z

where the minimum is taken over those values of i for which ri > k.
4.7. Let B be an m-by-n integer matrix of rank n and let d be a positive multiple of Dn(B).

Show how to recover the row Hermite normal form of B from the row Hermite normal
form modulo d of B.

8.5 The Kannan-Bachem algorithm
In computer science, the traditional definition of tractability of an infinite
class of computations is that the computations can be carried out in times
which are a polynomial function of the sizes of the inputs. The size of an
input to a computation is, roughly speaking, the number of bits in a binary
encoding of that input. To make a careful statement about tractability, one
must specify the model of computation being used. For the calculation of
Hermite and Smith normal forms of integer matrices, a reasonable model
is sequential computation in which arithmetic operations on integers of a
fixed precision take unit time.

It is widely believed that the algorithms for row Hermite normal form in
Section 8.1 and for Smith normal form in Section 8.3 are not polynomial-
time algorithms. However, as this is written, no examples of nonpolynomial
running times are known. The number of bits in the Hadamard bound for
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an integer matrix B is polynomial in the size of B. Corollaries 4.4 and
4.14 show that the sizes of the Smith normal form and the row Hermite
normal form of B are polynomial in the size of B. The modular tech-
niques of Section 8.4 provide a polynomial-time algorithm for computing
invariant factors and hence for finding Smith normal forms. These modular
techniques can be extended in a fairly straightforward way to provide an
algorithm for computing the row Hermite normal form of an integer ma-
trix whose rank is equal to the number of columns. Unfortunately, when
applied to an integer matrix B, the methods of Section 8.4 do not produce
unimodular matrices P and Q such that PBQ is in Smith normal form.

The first polynomial-time algorithm for finding Smith normal forms and
associated unimodular matrices was given in (Kannan & Bachem 1979).
This algorithm is based on an algorithm for Hermite normal forms. This
section presents the main ideas of the Kannan-Bachem algorithm for Smith
normal forms. The full Hermite normal form algorithm will not be given.
(See Exercise 5.1.) To compute Smith normal forms, a slightly weaker
procedure, called here KB_ROW, suffices.

The procedure KB_ROW takes as input an m-by-n integer matrix B
and returns a matrix A and a permutation a of {1,. .. , n} such that A
is row equivalent to B and if C is defined by Cij = Aio., then C is in
row Hermite normal form. Here cr denotes the image of j under a. It
follows immediately that the nonzero rows of A form a basis for S(B)
and that membership in S(B) can be decided easily using A and o,. Let
x = (x1,.. . , x,,) be in Z' and define y = (yl, ... , y,) by yj = xa.. Then x
is in S(B) if and only if y is in S(C) and the latter can be decided using
MEMBER from Section 8.1.

In KB_ROW there are calls to a subroutine ROD. The name is an abbre-
viation for the name of the corresponding subroutine in (Kannan & Bachem
1979), which is REDUCE OFF DIAGONAL. The purpose of ROD is to en-
force conditions analogous to conditions (3) and (4) of the definition of row
Hermite normal form. In ROD, the current matrix A and permutation a
are global variables.

Procedure ROD(j);
Input: j : an integer between 1 and m such that Ado:0 and

Aiak=0 fort<k<j;
(* The entries Ai., 1 < i < j, are reduced modulo Aio,. *)
Begin

If Ajoj < 0 then multiply row j of A by -1;
For i := 1 to j - 1 do begin

q := Ail, div Ajar;
Subtract q times row j of A from row i

End
End.
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Here is the weak version of the Kannan-Bachem row reduction algorithm:

Procedure KB_ROW (B; A, o,);
Input: B : an m-by-n integer matrix;
Output: A : an integer matrix row equivalent to B;

Q a permutation of {1, ... , n} such that the matrix C
defined by Ci.7 = Aiaj is in row Hermite normal form;

Begin
For j:=1to ndo vj:=j;
A:= B; s:= m; i := 1;
(* s will denote the index of the last row of A not known to be 0. *)

While i < s do begin
Fork =1toi-l do begin

GCDX (Akak, Aiak; d, p, q);

U:= p q

-Aiak/d Akak/d
Multiply the submatrix of A consisting of rows k and i on the

left by U;
ROD(k)

End;

If the i-th row of A is now zero then begin
If i < s then interchange rows i and s of A;
s:=s-1

End

Else begin

Let j be the first index such that Aiai 0;
If j i then interchange vi and Qj;
ROD(i); i:= i + 1

End
End

End.

At first glance, the operation of KB_ROW may be a little confusing.
However, some examples should help to clarify matters.

Example 5.1. Let B be the matrix of Example 1.3, namely

4-1 2-5
-3 0 1 -3

2 4 -3 2

5 -3 4 4
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Initially or = (1,2,3,4), the identity permutation. Note that we shall not
use cycle notation for v, but rather vector notation, in which o' is identified
with the vector (a1, v2, ... , v,). On the first pass through the While-loop
no changes to A or or are made. On the second pass, we have i = 2. In
the For-loop with k = 1 we find gcd(4, -3) = 1 = 1 - 4 + 1. (-3). Thus we

multiply rows 1 and 2 of A by [
3

11 to get

1 -1 3 -8
0 -3 10 -27
2 4 -3 2

5 -3 4 4

The call ROD(1) does nothing. The second row of A is nonzero and j = 2,
so there is no change in a. The call ROD(2) produces

1 2 -719
0 3 -10 27
2 4 -3 2

5 -3 4 4

On the third pass through the While-loop the value of i is 3. In the
For-loop with k = 1 we multiply rows 1 and 3 by [ _2 1 ] to get

1 2 -7 19

0 3 -10 27

0 0 11 -36
5 -3 4 4

and then call ROD(1), which does nothing. When k = 2, there is no change
to A. Now j = 3 and the call ROD(3) results in

1 2 4 -17
0 3 1 -9
0 0 11 -36
5 -3 4 4
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On the last pass through the While-loop i = 4. In the For-loop with
k = 1, the matrix A is changed to

1 2 4 -17
0 3 1 -9
0 0 11 -36
0 -13 -16 89

When k = 2, we get 1 = gcd(3, -13) = -4.(3) -1 (-13). Multiplying rows

2and4ofAby [134 -1
3] gives

12 4-17
0 1 12 -53
00 11 -36
0 0 -35 150

and the call ROD(2) changes row 1 to produce

1 0 -20 89

0 1 12 -53
00 11 -36
0 0 -35 150

With k = 3, we multiply rows 3 and 4 by
[3165

1 0 -20 89

0 1 12 -53
0 0 1 174

0 0 0 390

and then call ROD(3), which gives

to get

1 0 0 3569

0 1 0 -2141
001 174

0 0 0 390
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The final call ROD(4) produces

1 0 0 59

010199
001174
000390

The permutation a is still (1,2,3,4), the identity, and the matrix returned
is in row Hermite normal form.

Example 5.2. Now let us apply KB_ROW to the following matrix:

3 1 -3 -3 -5
-1 5 5 -1 -3
2-2 3 3-1

-2 -3 -5 -3 5

-3 4 -4 -4 1

The first pass through the While-loop does not change A. Here are the
values of A after each of the remaining iterations of the While-loop.

1 11 7 -5 -11 1 3 8 2 -4
0 16 12 -6 -14 0 8 13 1-7
2 -2 3 3 -1 0 0 14 8 0

-2 -3 -5 -3 5 - 2 -3 -5 -3 5

-3 4 -4 -4 1] - 3 4 -4 -4 1

1 10 4 2821 f l 0 0 0 111

0 1 6 40 4 0 1 0 0 22

0 0 7 27 3 0 0 1 1 33

00 0 466 0 0 0 2 24

-- 3 4 -4 -4 1 000 039

Again a is the identity, and the final matrix is in row Hermite normal form.

As long as or does not change and no zero rows are encountered, after
the i-th iteration of the While-loop the submatrix consisting of the first
i rows of A is in row Hermite normal form. With any of the versions of
ROW_REDUCE in Section 8.1, the submatrices consisting of the first i
columns are put into row Hermite normal form for i = 1, 2, .... Here is an
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example in which KB_ROW returns or as a nonidentity permutation and
encounters zero rows.

Example 5.3. Let B be the following matrix:

0 -11 0 -10 5-

-6 -8 -6 -5 0

-4 4 -4 6 -4
2 6 2 3 -2
8 2 8 -8 2

The values of the matrix A at the end of each iteration of the While-loop
in KB_ROW are

0 11 0 10 -5 42 1 42 -15 25

-6 -8 -6 -5 0 66 0 66 -25 40

-4 4 -4 6 -4 -4 4 -4 6 -4
2 6 2 3 -2
8 2 8 -8 2]

2 6 2 3

L 8 2 8 -8 2J

0 1 0 6 1 0 1 0 6 1 0 1 0 6 1

202 23 8 202 238 202238
000 28 8 , 0 0 0 288 , 000288
262 3-2 828-82 000 00
828 -8 2 000 00 000 00

The value of v returned is (2,1,4,3,5).

Just as we did with the algorithms of Section 8.1, if we initialize P to
be the appropriate identity matrix and apply all row operations used in
KB_ROW to P as well, then after the call KB_ROW (B; A, v) we have
A = PB.

Proposition 5.1. The procedure KB_ROW, modified to produce a unimod-
ular matrix P such that A = PB, runs in polynomial time.

Proof. In this proof, no effort will be made to obtain the best possible
upper bound for the running time of KB_ROW. Also, some of the steps
will only be sketched. The details are left to the reader as exercises. Clearly
we may assume that B is not a matrix of zeros. Throughout this proof,
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"polynomial" as an adjective will mean "bounded by a polynomial in the
size of B".

Lemma 5.2. We may assume that the permutation a returned by
KB_ROW is the identity.

Proof. Suppose the call KB_ROW(B; A, a) returns with a not the iden-
tity. Define C and D by Ci3. = AiQj and Did = Biaj. Then the call
KB_ROW (D; E, T) returns with r equal to the identity and E = C. More-
over, exactly the same row operations are used in the two calls to KB_ROW.

The unimodular matrix P returned by KB_ROW is the product of the
following matrices: the matrices U in the For-loop on k (expanded to m-
by-m matrices), the elementary matrices corresponding to row operations
performed in ROD, and the elementary matrices corresponding to certain
interchanges of rows. It is easy to check that the total number of these
factors is bounded by a cubic polynomial in m, and hence is certainly
polynomial. It is not hard to show that the product of a polynomial number
of matrices all of the same polynomial size is again of polynomial size.
Thus, it suffices to show that each factor of P has polynomial size, for
then, since A = PB at all times during the computation, A has polynomial
size throughout.

We are left with showing that the entries in the matrix U and the values
of q in ROD have at all times sizes bounded by a fixed polynomial in the
size of B. Let b be the Hadamard bound for B and define

b1 = mb2, b2 = (nb2)m/2, b3 = 2b1b2, b4 = b3(1 + b3)

Then b < b1 < b2 < b3 < b4. Even for matrices B of moderate size, the
number b4 is very large, but it is always of polynomial size.

Let E denote the upper left i-by-i submatrix of A at the start of some
iteration of the loop "While i < s...". Set E(°) = E and for 1 < k < i let
E(") be the upper left i-by-i submatrix of A after the completion of the k-th
iteration of the For-loop during the current iteration of the While-loop.

Lemma 5.3. The following inequalities hold for 1 < k < is

(a) I Ezt ) I <_ b2, 1 < t < i.
(b) IETt < b1, k < r < i, 1 < t < i.
(c) IE(ti I < b3, 1 < t < i.
(d)

IErt)I<b3(1+b3)k-1,
1<r<k, 1<t<i.

Proof. The first i - 1 rows of E are the nonzero rows in the row Hermite
normal form of a submatrix of B, and entries in the i-th row of E are entries
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of B. By Corollary 4.14, all entries of E are bounded by b1. Thus the
Hadamard bound for E does not exceed b2. The row operations performed
during the first k iterations of the For-loop affect only the rows of E indexed
by S = {1, 2, ... , k, i}. Therefore inequality (b) holds.

Let us prove (a). If t < k, then Eik ) = 0. Thus we may assume that
k < t < i. Let T= {1, 2, . , k, t}. Then, in the notation introduced at the
beginning of Section 8.4,

IE(k) (S, T) I = I E(S, T) I < b2

and

E(k)(S,T) = Eik) ... Ekk)E2t).

Since IEii) ... E(k) > 1, it follows that I E2t I < b2.
In the call to GCDX during the k-th iteration of the For loop, we have

Akk = Ekk-1 and Aik =Eik-1) By (a), (b), and Exercise 7.4 in Chapter 1,
IpI < b2 and Iqi < b1. Let 1 < t < i. After the multiplication by U,

IAkti = IEkt)I < Iplbl + IgIb2 <- 2b1b2 = b3.

Thus (c) holds. Now suppose that 1 < r < k. In the call ROD(k), we
subtract q = Ark div Akk times row k of A from row r. By induction,
IqI < b3(1 + b3)k-2 < b4. Hence

I=IE 1)-gEkt'I<b3(1+b3)k-2+b3(1+b3)k 2b3=b3(1+b3)k 1IErt)rt
This proves (d).

The last iteration of the For-loop occurs with k = i - 1. If the value of
.E('- 1) is 0, then the i-th row of A is 0, since we are assuming that a is
returned as the identity. If EZi-1) is not 0, then proof of Lemma 5.3(d)
shows that the values of q in the call ROD(i) have absolute value at most
b4. Thus all entries in the matrix U have absolute value at most b2 and all
values of q in ROD have absolute values at most b4. This completes the
proof of Proposition 5.1.

Using KB_ROW and the idea of Exercise 3.4, we can construct a
polynomial-time algorithm for finding a diagonal matrix equivalent to a
given integer matrix. To simplify the description, let us define a procedure
KB_COL as follows:

Procedure KB_COL(B; A, a);
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Input: B : an m-by-n integer matrix;
Output: A : an integer matrix column equivalent to B;

v : a permutation of {1, ... , m} such that the matrix C
defined by Ci.7 = Aoaj is in column Hermite normal
form;

Begin
KB_ROW(Bt; A, v); A := At (* At denotes the transpose of A. *)

End.

Here is the Kannan-Bachem diagonalization procedure:

Procedure KB_DIAG(B; A);
Input: B : an integer matrix;
Output: A : a diagonal integer matrix equivalent to B;
Begin

KB_ROW(B; A, v); Define C by Cij = Aij;
KB_COL(C; A, a);

While A is not diagonal do begin
KB_ROW(A; C, v); KB_COL(C; A, o,)

End
End.

Let r be the rank of B in KB_DIAG. After the first line of KB_DIAG
has been executed, the matrix C is in row Hermite normal form and the i-th
corner entry of C is in column i. After all succeeding calls to KB_ROW and
KB_COL, the permutation v returned is the identity and can be ignored.
After the second line of KB_DIAG has been executed, A has the form

rE O1
0 0J '

where E is an r-by-r matrix in column Hermite normal form and I det EI
is DT(B). All entries in E are bounded by the Hadamard bound for B. At
the start of some iteration of the While-loop, let i be minimal such that the
i-th column of E contains at least two nonzero entries. At the end of the
iteration of the While-loop, the entries Ej with j < i are unchanged and
Eii has been reduced by a factor of at least 2. It follows that the number
of iterations of the While-loop is polynomial in the size of B. Since the
entries in A remain bounded and KB_ROW runs in polynomial time, it
follows that KB_DIAG runs in polynomial time. To go from a diagonal
matrix to a matrix in Smith normal form, one can use the method dis-
cussed in Exercise 3.5. Since this computation is also polynomial, we have
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a polynomial-time algorithm for finding Smith normal forms and associated
unimodular matrices.

Example 5.4. Suppose B is the following matrix:

1 -1 1 -1 1 -1 1 1

0 1 1 -1 0 1 -1 -1
0 00 0 1 0-1 -1
0 -1 0 0 0 0 1 1

1 0 0 0 -1 1 1 0

0 1 0 -1 0 0 -1 -1
1 -1 0 0 1 1 0 1

1 -1 1 1 0 -1 1 -1 J

Let us follow the computation during the execution of KB_DIAG(B; A).
After the first line has been executed, C has the following value:

10000200
01000000
00100000
00010000
00001100
00000301
00000011
00000002

After the second line has been executed, A equals

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000206
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Since A is not diagonal, the body of the While-loop is executed. After the
call to KB_ROW, the value of C is

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000006

The call to KB_COL just sets A equal to C. At this point the computation
is complete.

Exercises

5.1. Let B be an m-by-n integer matrix of rank r. Suppose the call KB_ROW (B; A, a)
returns with al < a2 < < a,.. Show that A is the row Hermite normal form of B.

5.2. Let B be an m-by-n integer matrix of rank r. Show that there is a permutation r of
{1, ... , m} such that, if C is defined by C2j = BT;j, then the call KB_ROW(C; A, a)
returns with al < a2 < . . < a,. Prove that r can be found in polynomial time.

8.6 Lattice reduction
Up to now, our methods for recognizing that elements of Z' are linearly
independent over Z have been based ultimately on the observation that
the nonzero rows of a matrix in row Hermite normal form are linearly
independent. There is another way to recognize linear independence in Z'.
It involves viewing Z° as a subset of R° and using geometric techniques in
this Euclidean space.

Before exploring the new approach, let us review the basic facts about
geometry in R'. Notions of length and angle are defined using an inner
product. For u = (ul,... , u,,) and v = (v1,.. . , in R, the inner product
(u, v) of u and v is ulvl + + uav,,. This inner product is bilinear, sym-
metric, and positive definite. That is, for all u, v, and w in R' and all r in

(u + v, w) _ (u, w) + (v, w),

(u, v + w) _ (u, v) + (u, w),

(ru,v) = r(u,v) = (u,rv),

(u,v) _ (v,u),

(u, u) > 0,
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and (u, u) = 0 if and only if u = 0. The length of u is lull = (u u). If u
and v are nonzero, then the angle a between u and v is defined by

cos a = (u'v)
, 0 < a < 7r.

IIullllvII

In particular, u and v are perpendicular or orthogonal if (u, v) = 0.

Proposition 6.1. Let B be a k-by-n matrix with real entries, and set C =
BBt. Then the rows of B are linearly independent over R if and only if C
is nonsingular.

Proof. Note that Ci.7 is the inner product of the i-th row and the j-th row
of B. We shall actually prove that the rows of B are linearly dependent
if and only if C is singular. Suppose first that the rows of B are linearly
dependent. Then the rank of B is less than k. The rank of C = BBt is at
most the rank of B, so C has rank less than k. Therefore C is singular.

Now suppose that C is singular. Then there is a nonzero element u of Rk
such that uC = 0. But then 0 = (uC, u) = (uB, uB). Since (,) is positive
definite, this means that uB = 0. Therefore the rows of B are linearly
dependent.

Corollary 6.2. If bl,... , bk are nonzero elements of Rn which are pairwise
orthogonal, then bl, . . . , bk are linearly independent over

Proof. Let B be the k-by-n matrix whose i-th row is bi. Since (bi,bj) = 0
if i # j, the matrix C = BBt is diagonal and

k

det C = fl(bi, bi) # 0.
i=i

Therefore C is nonsingular.

we have the Gram-Schmidt orthogonalization procedure:

Procedure G_S(b1,...,bk;flag,bi,...,b*;

Input: b1,.. . , bk : elements of Rn;
Output: flag : a boolean variable which is true if the bi are

linearly independent and false otherwise;
bi, ... , bk : if flag is true, elements of Rn which form an

orthogonal basis for the subspace of Rn
spanned by the bi;

Begin
bi := bl; flag := (bi 0 0); i := 2;
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While i < k and flag do begin
bi := bi;
Forj:=1toi-1 do begin

/tij (bi, bj*) / (bj*, bj*);

bi bi - µijbj*
End;

fag := (b2 0 0)
End

End.

If in G_S the vectors b1,.. . , bk are linearly independent, then at the
conclusion of the procedure

i-1

b2=bi-1: µijb?, 1<i<k.
j=1

Thus b1,.. . , bi and bi, ... , b2 span the same subspace V, and bi is the com-
ponent of bi orthogonal to V_1. If the bi have rational components, then
the lµij are rational, as are the components of the bi .

Example 6.1. Let n = 3 and

bl = (1,1, -1), b2=(2,0,1), b3=("-"-')'
Then

b*=b =1 b*=b _1b* s -!A
1 1' 3, 2 2 3 1 - (3'-3' 3)

* _ 1b* _ 3 9 61 1 b*=bl32-7, 33 31 72 (77 7)

Continuing the notation used in G_S, let B and B* be the matrices whose
i-th rows are bi and bi , respectively.

Proposition 6.3. If b1, ... , bk are linearly independent in Rn, then

k

det BB' = jl(b2 , b2 ).
i=1

Proof. The matrix B* is obtained from B by real row operations of type
(3). Therefore B* = PB, where P is a k-by-k real matrix and det P = 1.
Thus

k

lj(bi , bz) = det B*(B*)t = det PBBtPt = det BBt.
i=1
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Suppose that the bi are as in Proposition 6.3. For 1 < i < k define Ci to
be the i-by-i submatrix of BBt in the upper left corner and set di = det Ci.
By Proposition 6.3,

di = det Bi Bi = H
11 b;112,

j=1

where Bi is the matrix consisting of the first i rows of B. Now assume
that the bi are in Z' . Then each di is a positive integer. Since b* - bi
is in the IR-subspace spanned by b1, ... , bi_1, there exist real numbers Aij
1 < j < i < k, such that

i-1

bi =bi - EAijbj.

j=1

Since (b2 , bm) = 0 for 1 < m < i - 1, we have

i-1

(bi, bm) = E.ij(bj, bm), 1 < m < i.
j=1

For a fixed value of i, the determinant of this system of equations for the
Aij is det Ci_1 = di_1. By Cramer's rule, di-1Aij is an integer, 1 < j < i.
Now

i-1

di-1bi = di-1bi - E di-,Aijbj
j=1

is in Z'. Finally, since (b,*,bj*) = djldj_1,

7 (b* b*
(b b*)

) -1d7.µi7 = d 2' = d7 1 (bib7*) _ (bi' d7bj*)j' j
is in Z. Thus, if the bi are in Z', then the sizes of the denominators of
all fractions occurring in the orthogonalization procedure are polynomial
in the size of the bi. It can be shown that the orthogonalization procedure
runs in polynomial time.

A lattice in RT is an additive subgroup generated by a set of elements
which are linearly independent over R. Thus Z" is a lattice in R. Every
lattice is a free abelian group of rank at most n. Subgroups of lattices are
lattices. However, not every free abelian subgroup of III' is a lattice. For
example, in R the numbers 1 and \ additively generate a free abelian
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group H of rank 2, but H is not a lattice in R. Basic facts about lattices
can be found in [Cassels 1971], [Lovasz 1986], and [Pohst & Zassenhaus
1989].

Let B be a k-by-n real matrix whose rows are linearly independent over
R, and let L be the lattice in Rn generated by rows of B. Any other basis
of L as a free abelian group arises as the set of rows of a matrix B' = PB,
where P is in GL(k,Z). Since

det B(B)t = det PBBtPt = det BBt,

it follows that det(BBt) depends only on L. By Proposition 6.3, det BBt
is positive. The positive square root of det BBt is called the discriminant
of L and is written d(L). By Proposition 6.3,

k

where bi, . . . , bk* is the orthogonalization of the rows of B. If k = n, then
d(L) = I det BI.

The proof of the following result can be found in the references cited
earlier.

Proposition 6.4. Let L be a lattice in R'". Any bounded region of Rn
contains at most a finite number of elements of L. In particular, L contains
shortest nonzero elements and the number of such elements is finite.

If a lattice L is generated by a sequence b1, ... , bk of nonzero, pairwise
orthogonal vectors in ]I8, then it is easy to see that the shortest length of
a nonzero vector in L is

min IIb2II.
"

However, in general L may have nonzero elements which are much shorter
than any of the vectors in a particular basis of L.

Proposition 6.4 is a special case of the following result.

Proposition 6.5. If L is a lattice of rank k, then for 1 < i < k there is a
positive lower bound on the discriminants of sublattices of L of rank i.

It is possible, in principle, to find a shortest nonzero vector in a lattice
L. However, no polynomial-time algorithm is known. In (Lensstra, Lenstra,
& Lovasz 1982) a polynomial-time algorithm was presented which takes a
basis b1, ... , bk of L as input and produces another basis of L containing a
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vector which is almost shortest in the sense that its length is at most 2(k-1)/2

times the length of a shortest nonzero vector. The first application of this
algorithm, which is now called the LLL lattice reduction algorithm, was to
prove that polynomials in Q[X] can be factored into irreducible factors in
polynomial time. However, the LLL algorithm has many other important
applications, including applications to finding Hermite and Smith normal
forms. We shall be primarily interested in a modified version of the algo-
rithm due to Pohst, but it will be useful to see the original algorithm as
well.

Let b1,.. . , bk be a linearly independent sequence of vectors in R°, let
bl, ... , bk be its orthogonalization, and for 1 < i < k let

i-1 i

bz = bi - 1: µijbj* and di = fl II b II2.
j=1 j=1

Then b1, ... , bk is LLL-reduced if the following conditions hold:

(1) Iµiii < 11 1 < j < i < k

(2) Ilbz +µii-lbi-1112 4IIbi-I II21 1 < i < k.

Let V be the R-subspace spanned by b1,.. . , bi (and also by bi, ... , b, ).
Then bi +µii_1bi_1 is the component of bi orthogonal to V_2, and condition
(2) says that this component is not much shorter than the component of
bi_1 orthogonal to V-2. The fraction

4
is usually used in the definition,

but any fixed number in the open interval (1, 1) may be substituted. By
Proposition 6.5 there is a positive lower bound for di which depends only
on L. Thus D = d1... dk_1 is bounded away from 0. Of course, if L is
contained in Z', then each di is a positive integer, so clearly D > 1.

If k = 2, we can illustrate the definition of an LLL-reduced basis with
a picture drawn in the plane determined by b1 and b2. Let b1 and b2 be
drawn as directed line segments leaving the origin. For condition (1) to
hold, b2 must end in the strip of width IIb1II which runs perpendicular to b1
and has the origin on its central line. The vector b2 + µ21 bi is just b2. Thus
condition (2) says that b2 does not end inside the circle of radius

2 IIb1II

with center at the origin. Hence, if both conditions hold, then b2 ends in
the shaded region in Figure 8.6.1. If condition (1) fails, we can add an
integral multiple of b1 to b2 to make b2 end in the perpendicular strip.
This leaves bi and b2 unchanged. If condition (2) fails, then interchanging
b1 and b2 multiplies D = d1 = 11b* I I2 by a factor less than 4 . Since D is
bounded away from zero, such changes cannot be continued indefinitely.
Thus eventually an LLL-reduced basis is reached.

Now suppose that k = 3 and that the sequence b1, b2 is already LLL-
reduced. The condition that I µ3j I not exceed 1 for j = 1, 2 says that the
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Figure 8.6.1

= bi

Figure 8.6.2

orthogonal projection u of b3 into the plane determined by bl and b2 lies in
the IIbiIl-by-IIb2II rectangle which is centered at the origin and has its sides
parallel to bi = b1 and b2, as shown in Figure 8.6.2. If u does not lie in this
rectangle, then we can add an integral multiple of b2 to b3 so that u lies in
the correct strip parallel to bl and then add an integral multiple of bl to b3
to get u into the desired rectangle.
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The condition IIb3+µ32b2* II2 > 411b2* 112 says that the length of the projection

v of b3 into the plane determined by b2 and b3 has length at least 4 II b2II
If this condition fails, we interchange b2 and b3. It can be shown that this
leaves bi unchanged, replaces b2 by v, and replaces b3 by a vector of length
I I b3 I I I I b2 I I/ I I v I I It follows that D= dl d2 = I I bi I I4 I I b2 112 is multiplied by a factor
less than 4.

These low-dimensional examples give a fairly good insight into the oper-
ation of the LLL lattice reduction algorithm. The algorithm proceeds by
making changes to the current basis, either by replacing bm by bm - rbp,
where r is an integer and 1 < p < m, or by interchanging two consecutive
basis elements. The algorithm keeps track of the following data: the cur-
rent basis b1, . . . , bk, the numbers p'ij with 1 < j < i < k, and the numbers
Bi = (b*, b!), 1 < i < k. Condition (2) in the definition of LLL-reduced can
be written

Bi +A
2
ii-1Bi-1

34Bi-1'

The effect of replacing b,,,,, by b,,,m - rbp is to replace Imp by p,,,mp - r and to
replace µmj by N'mj - r/2 for 1 < j < p. No other µiJ is affected. Since no bz
is changed, the Bi and the di remain the same. The effect of interchanging
bm_1 and bm is more complicated. The values of B,,x_1 and Bm change, but
their product remains the same. The pig with {i, j} n {m - 1,m} 54 0 are
also modified. The value of d,,,-1 changes, while the di with i # m - 1 are
unaffected. The most important fact is that b1,_1 and bm are interchanged in
the LLL algorithm only when the result of that action is to multiply d,,,-, by
a positive factor less than 4. The value of D = d1 ... dk_1 is multiplied by the
same factor. Since D is bounded away from 0, the number of times two basis
vectors are interchanged is bounded. The details are given in the description
of the procedure LLL, which follows. This description is based on the
one in [Pohst & Zassenhaus 1989] and on the implementation distributed
with Maple V. The subroutine ADJUST_MU enforces the condition that
IµmpI<2

Procedure ADJUST_MU(m, p);
Input: m, p : integers with n > m > p > 1;
Begin

If I ampI > 2 then begin
Let r be the nearest integer to µmp;
bm := bm - rbp; l tmp := Pmp - r;
For j := 1 to p - 1 do µmj := µm.7 - rµpj

End
End.

Procedure LLL(cl,... , Ck; b1, ... , bk);
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Input: c1, ... , ck : linearly independent elements of Rn;
Output: b1, ... , bk : an LLL-reduced basis for the lattice generated

by the ci;
Begin

For i := 1 to k do begin
bi := ci; bi := bi;

Forj:=1toi-1 do begin
P'ij = (bi,bj*)/Bj;
bi := bi - p.Gi.1bi

End;

Bi (bi,bi)
End; (* The vectors bi may now be discarded. *)

m.=2;
While m < k do begin

ADJUST_MU(m, m - 1);
v:_l2mm-1; C:=B,,,+v2B,m_i;

If C > !B,,,-, then begin
For p := m - 2 downto 1 do ADJUST_MU(m, p);
m:=m+1

End

Else begin
/ mm-1 := vBm-1/C; Bm := B.-1Bm/C; Bm-1 := C;
Interchange b,,,-, and bn;
For j := 1 to m - 2 do interchange P.-1, and p nj;
Forj:=m+1 to k do

LµµimlI Lo µm1-1] [1 1'J [µµi+nl]'
If m > 2 then m:= m - 1

End
End

End.

We shall be interested in using LLL only when the input vectors are in
Z'. The numbers pig and Bi used in the procedure will be rational, but
in general not integers. Earlier we showed how to bound the size of the
denominators needed by polynomials in the size of the bi. In (Lenstra et al.
1982) it is shown that LLL runs in polynomial time. More precisely, the
following result is proved.

Proposition 6.6. Let c1, ... , Ck be linearly independent vectors in Z and
let M be a real number such that M > 2 and (IciII2 < M, 1 < i < k. Then
the number of arithmetic operations on integers carried out by LLL with
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input c1, ... , ck is O(n4log M) and the number of digits in the integers used
is O(nlogM).

If in LLL we think of b1, ... , bk as the rows of a matrix, then the trans-
formations to that matrix correspond to row operations of types (1) and
(3). If at the beginning of LLL we initialize P to be the k-by-k identity
matrix and apply all row operations used to P, then the final value of P is
unimodular and satisfies

k

EPi,cj, 1<i<k.
j=1

It is difficult to carry out LLL by hand, even on small matrices. Here are
summaries of two computations with LLL.

Example 6.2. Let W be the following matrix:

-1 -1 3 -4
0 2-2 4

4 4 2 -1

Here are the changes made to W when LLL is applied to its rows. First
row 1 is added to row 2 to give

-1 -1 3 -4
-1 11 0

4 42 -1

Then rows 1 and 2 are interchanged:

-1 1 1 0

-1 -1 3 -4
4 42 -1

Now row 1 is subtracted from row 2:

-1 1 1 0

0 -2 2 -4
4 42 -1
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Finally, row 1 is subtracted from row 3. The final matrix is

-1 1 1 0

0 -2 2 -4
5 3 1 -1

Example 6.3. When LLL is applied to the rows of

1 19 -18 -1 -16
20 2 8 -15 -1

-18 -2 17 -2 15

20 2 -15 14 -13

ten row operations are used to produce the following matrix:

2 0 2 12 2

22 2 10 -3 1

519 9-6 0

18 2 -17 2 -15-

The matrix has not been changed dramatically, but the product of the
lengths of the rows has been reduced from 741846.33... to 199242.53....

The procedure LLL uses exact computation with real numbers. If the
input vectors are in 7L', then only rational arithmetic is needed. In this
case, experimental evidence described in (Lagarias & Odlyzko 1985) sug-
gests that results can sometimes be obtained more quickly if floating-point
computations are used to calculate the bi, Bi, and j . A number of indi-
viduals have suggested variants of LLL in an effort to make the algorithm
use only integer arithmetic or to reduce the precision needed for floating-
point approximations. See (Schonhage 1984), (Schnorr 1988), (Schnorr &
Euchner 1991), and Section 3.5 of [Weger 1989].

Let L be a subgroup of Z. If we are given a basis b1, . . . , bk for L and the
orthogonalization bi, ... , bk of that basis, then we can decide membership
in L. Let x1, ... , xk be integers and set u = x1b1 + + xkbk. We can write
u = 'ibl + + ykbk. In general the yi are rational numbers, but Yk = Xk is
an integer since bk - bk is in the JR-subspace spanned by b1, . . . , bk_1. Thus
Xk is equal to

(u, bk)

(bk' bk)

This leads to the following test for deciding whether an element v of 7L° is
in L:
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w:=v;
For j := k downto 1 do begin

x := (w,
If x is not an integer then v is not in L
Else w:=w - xbj

End;

v is in L if and only if w is 0;

371

This membership test can be modified to produce almost-shortest ele-
ments in cosets of L in Z'. Suppose b1, . . . , bk is LLL-reduced and let v be
in Z'. If we execute the following statements,

W:= V;

For j := k downto 1 do begin
Let r be the nearest integer to (w, bj*)/(bj*, bj*);
w:=w - rbj

End;

then L + w = L + v and the length of the projection of w onto the subspace
spanned by L is within a factor of 2k/2 of being as small as possible. See
(Babai 1986).

Another variation of this same technique can be used to find integral
dependencies among elements of Z. Suppose that b1, ... , bk are as before
and that v in zn is a rational linear combination of bl, . . . , bk. We can find
integers y and x1, ... , xk such that yv = xlb1 + + xkbk as follows:

W:= v; y:=1;
For j := k downto 1 do begin

Let (w,bj*)/(b,,bj*) = p/q, where p and q are relatively prime integers;
Multiply w, y, and xj+1, ... , xk by q;

xj:=p; w:=w-pbj
End;

Exercises

6.1. Derive the formulas for the changes to the Bi and the pig in LLL.
6.2. Let L be a lattice. Show that a nonzero vector in L of minimal length is part of a Z-basis

of L.
6.3. Find LLL-reduced bases for the subgroups generated by the rows of the following matri-

ces:

6 5 4 1

(a) 15 7, '
(b)

[53-2]'
(c) 5 2 -1 3 .

4-1 32
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8.7 The modified LLL algorithm
A major drawback of the LLL algorithm described in Section 8.6 is the fact
the input vectors must be known in advance to be linearly independent. In
(Pohst 1987) a modified version of the algorithm was presented which takes
as input any generating set for a lattice L in R' and returns an LLL-reduced
basis for L. A similar algorithm was sketched in (Hastad et al. 1986). The
discussion here follows (Pohst 1987) and [Pohst & Zassenhaus 1987]. In
general, it is difficult to determine whether a given sequence of real vectors
generates a lattice. However, if all the vectors have integer components,
then the additive subgroup generated is contained in Zn and so is a lattice.

Suppose that b1 and b2 are linearly dependent vectors in Rn which gen-
erate a nonzero lattice L. Since the rank of L is the same as the dimension
of the R-subspace which it spans, the rank of L must be 1. Thus L is
generated by a single element c and there are integers x1 and x2 such that
b1 = x1c and b2 = x2c. Since L is generated by b1 and b2, the gcd of x1 and
x2 is 1. Now x2b1 = x1x2c = x1b2, so x2b1 - x1b2 = 0.

More generally, suppose that b1, ... , bk are linearly dependent vectors
which generate a lattice L. Then there are integers x1, ... , xk not all 0 such
that x1b1 + + xkbk = 0. Such an equation will be called a Z-relation on
the bi. We may assume that gcd(xl, ... , xk) = 1. If some xi is ±1, then
bi is an integral linear combination of the other b's and bi may be deleted
from the generating set. If (xi' # 1 for all i, then it may happen that no
proper subset of {b1, ... , bk} generates L. However, it is possible to find
k - 1 vectors which generate L.

Let x = (x1, ... , xk) and let B be the k-by-n matrix whose i-th row is bi.
Then xB = 0. By thinking of x as a 1-by-k matrix, we can find an element
P of GL(k, Z) such that xP = (1, 0, ... , 0). Let C = P-1 B. Then the rows
of C generate L. But

(1, 0, ... , 0)C = xPP-1B = xB = 0.

Therefore the first row of C is 0 and L is generated by rows 2 through k
of C. In practice, we need only find P in GL(k, Z) such that xP has a
component equal to 1.

Example 7.1. Suppose that b1, b2, and b3 are vectors and we know that
6b1 + 10b2 + 15b3 = 0. Let x = (6,10,15) and write

b1

B = b2

b3
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so xB = 0. If we subtract twice the first "column" of x from the third
"column", then x is changed to (6,10,3). The corresponding elementary
matrix is

1 0 -2
P= 0 1 0

0 0 1

and P-1 is

Let us replace B by

b1 + 2b3

P-1B = b2

b3

Then it is still true that xB = 0. Now subtracting three times the third
"column" of x from the second "column" gives x = (6,1, 3). In this case

1 0 0 1 0 0
P= 0 1 0 and P- 1 = 0 1 0

0 -31 031

Multiplying B on the left by P-1 gives

bl + 2b3

B = b2

3b2 + b3

The rows of B generate the same abelian group A as b1, b2, and b3. How-
ever, since now (6,1,3)B = 0, the second row of B is an integral linear
combination of the first and third rows. Thus A is generated by b1 + 2b3
and 3b2 + b3.

Suppose that B is a k-by-n integer matrix of rank less than k. One way
to find a nontrivial Z-relation xB = 0 satisfied by the rows of B is with
modular techniques. Another method makes use of the observation in the
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last paragraph of the previous section. Once x is known, the method of
Example 7.1 can be applied to reduce the number of generators.

The modified LLL algorithm accepts input vectors which need not have
integral components. Thus modular techniques are not appropriate. A
different method is used to find implicitly a relation xB = 0 and to produce
a smaller generating set. To get an idea of how this algorithm works, let
us examine what happens when the original LLL algorithm is applied to
a sequence b1, . . . , bk of linearly dependent vectors. Let t be minimal such
that b1, ... , bt are linearly dependent. Then bt = 0 and, if t < k, the attempt
to compute pit with i > t will lead to division by 0. However, b1, . . . , bt form
a redundant generating set for the lattice N they generate. Thus we may
temporarily ignore bt+1, ... , bk and assume that t = k. If t = 1, then b1 = 0
and we may drop b1 from the generating set. Suppose that t > 1. By
Proposition 6.5, the numbers di = B1... Bi, 1 < i < t, are bounded below
by a positive number depending only on N. Thus D = d1... dt_1 is bounded
away from 0. Each time bm and b,,,_1 are interchanged during the execution
of LLL, the value of D is multiplied by a factor less than 4.

Suppose that b1,.. . , bt_1 never become linearly dependent. Each time
the body of the While-loop is executed with m = t, we shall always have
B,,,m = 0 and v2 < 4. Thus C will be less than 3B,,,,_i/4 and b,,,, and bm_1 will
be interchanged. Thus the procedure never terminates and D approaches 0
as a limit. As remarked earlier, this cannot happen. Therefore b1,. .. , bt_1
become linearly dependent at some point. That is, t decreases. Eventually
some bi becomes 0. Since it is not possible to compute all the b, initially
and it is not possible to keep track of the changes in the numbers aid, we
must retain the bi during the computation.

The following version of the modified LLL algorithm is based on [Pohst
& Zassenhaus 1989]. The integer s is such that b, + , ,.. . , bk are known to
be 0. At the start of an iteration of the loop "While i < s do", b1, ... , b2_,
are known to be linearly independent and LLL-reduced. Throughout this
iteration, either t = i or t < i and bt = 0, which means that b1, . . . , bt are
linearly dependent. After the initialization, there are five places in MLLL
at which one or more of the bi are changed. These places are marked with
comments, such as "(* P1 *)", to facilitate the discussion of examples.

Procedure MLLL(c1,... )ck; b1, ... , bk);
Input: c1, ... , Ck : vectors in R' which generate a lattice L;
Output: b1,. .. , bk : a sequence of vectors whose nonzero terms form

an LLL-reduced basis for L;
Begin

For i:= 1 to k do bi := ci; s:= k; i:= 1;
99: While i < s do

If bi = 0 then begin
If i < s then interchange bi and bs; (* P1 *)
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s:=s-1
End
Else begin (* bi 0 *)

bi := bi;
For j 1 to i - 1 do begin

ftaj (bi, bj*)/Bj; bz := bi - µijb7
End;
Bi (bz ,

bz
);

Ifi=1 then i:=2
Else begin (* i > 1 *)

t:=i; m:=i;
While m < t do begin

ADJUST_MU(m, m - 1); (* P2 *)
v:= /dmm_1; C := B,m, + v2Bm_l;

If C > then begin
For p := m - 2 downto 1 do ADJUST_MU(m, p); (* P3 *)
m:=m+1

End

Else begin

If bm = 0 then begin
If m < s then interchange bm and b3; (* P4 *)
s:=s-1; i:= M;
Goto 99

End;

If C # 0 then begin
/mm-1 := vBm-1/C; Bm := B.-iBm/C;
Forj:=m+l tot do

1llLµjl I Lo
µm1

1J [O 1v 11 Lµµj
1J

µ
End
Bm_1 := C;
Interchange b,n_1 and bm; (* P5
If Bm_1 = O then t := m - 1 (* bl, ... , bm_l are

dependent. *);
For j := 1 to m - 2 do interchange pm_lj and umj;
m-1 bm-1;

For j 1 to m - 2 do b;,t_1 b,-1 - µm-ljbj
If m < t then begin

bm := bm;
For j := 1 to m-1 do bm:=b -pmjb!

End;

Ifm>2then m:=m-1
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Table 8.7.1

bi b2 b3 Place

36 84 100

36 12 100 2

12 36 100 5

12 0 100 2

12 100 0 4

12 4 0 2

4 12 0 5

4 0 0 4

End (* C < 4B,,,-1 *)
End; (* While m < t *)

is=i+1
End(*i>1*)

End(*bi00*)
End.

As with the procedure LLL of Section 8.6, we can modify MLLL to
produce a k-by-k unimodular matrix P such that

bi=EP2c3.

Example 7.2. If n = 1 in MLLL, then MLLL performs the version of the
Euclidean algorithm in which remainders under division are chosen to have
minimum absolute value. For example, suppose that cl = 36, c2 = 84, and
c3 = 100. Table 8.7.1 summarizes the changes in the values of b1, b2, and
b3 during the execution of MLLL(cl, c2, c3; b1, b2, b3). The fourth column
indicates the "places" in the procedure at which the changes occur.

Example 7.3. Now let us consider an example in Z2. Let cl = (4, -1),
c2 = (5, 4), and c3 = (-2,-4). Table 8.7.2 shows the changes in the values
of b1, b2, and b3 in the execution of MLLL.

Example 7.4. Our last example is in Z3. Suppose the input to MLLL consists
of the rows of the matrix

48 -124 292

171 -142 141

-291 254 -277

Then the computation proceeds as shown in Table 8.7.3.
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bl

Table 8.7.2

b2 b3 Place

Table 8.7.3

bl b2 b3 Place

(48,-124,292) (171, -142,141) (-291,254, -277)
(48,-124,292) (123, -18, -151) (-291,254, -277) 2

(123, -18, -151) (48,-124,292) (-291,254,-277) 5

(123, -18, -151) (171, -142,141) (-291,254,-277) 2

(123, -18, -151) (171, -142,141) (51,-30,5) 2

(123, -18, -151) (51,-30,5) (171,-142,141) 5

(51,-30,5) (123,-18,-151) (171, -142,141) 5

(51,-30,5) (21,42,-161) (171,-142,141) 2

(51,-30,5) (21,42,-161) (192,-100,-20) 2

(51,-30,5) (192,-100,-20) (21,42,-161) 5

(51,-30,5) (-12,20,-40) (21,42,-161) 2

(-12,20,-40) (51,-30,5) (21,42,-161) 5

(-12,20,-40) (39,-10,-35) (21,42,-161) 2

(-12,20,-40) (39,-10,-35) (-18,52,-126) 2

(-12,20, -40) (-18,52,-126) (39, -10, -35) 5

(-12,20,-40) (18,-8,-6) (39, -10, -35) 2

(18,-8,-6) (-12,20,-40) (39,-10,-35) 5

(18,-8,-6) (39,-10,-35) (-12,20,-40) 5

(18,-8,-6) (3,6,-23) (-12,20,-40) 2

(18,-8,-6) (3,6,-23) (-18,8,6) 2

(18,-8,-6) (-18,8,6) (3,6,-23) 5

(18,-8,-6) (0,0,0) (3,6,-23) 2

(18,-8,-6) (3,6,-23) (0,0,0) 4
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Exercises

7.1. Suppose that B is an integer matrix with four rows such that (105, -140,126,150)B = 0.
Find a 3-by-4 integer matrix Q such that S(QB) = S(B).

7.2. Apply MLLL to the rows of the following matrices:

18 4 r 286 -111 -127
(a) -1 -331 , (b) L-70 213 -185

9072 234 -169 -13

8.8 A comparison
Given a description of an abelian group G as Z'/S(B), where B is an
m-by-n integer matrix, frequently we would like to obtain an explicit iso-
morphism of G with a direct sum of cyclic groups. If B has rank n, then
modular techniques suffice. However, if the rank r of B is less than n,
then modular methods do not appear adequate. Suppose we can find a
unimodular matrix Q such that BQ has the form [C 0], where C is an
m-by-r matrix and 0 denotes an m-by-(n - r) matrix of zeros. Then G is
isomorphic to H = (ZIIS(C)) X Zn-r, and, using Q, we can construct an
explicit isomorphism of G with H. Since C has rank equal to the number
of its columns, modular techniques can be applied to find an isomorphism
of Z'IS(C) with a direct sum of cyclic groups. Putting these isomorphisms
together gives an isomorphism of G with a direct sum of cyclic groups.

In this chapter we have emphasized row operations. Multiplying on the
right by a unimodular matrix corresponds to applying column operations.
By taking transposes, we see that we can produce an isomorphism of our
group G with a direct sum of cyclic groups provided we can solve the
following problem: Given an integer matrix B of rank r, find a unimodular
matrix P such that A = PB has exactly r nonzero rows or, equivalently,
such that the nonzero rows of A form a basis for S(B). Ideally the entries
in both P and A should be small.

We have studied three rather different algorithms for solving this prob-
lem. The first was the procedure ROW_REDUCE of Section 8.1, using, for
example, the Rosser strategy. The second was the Kannan-Bachem algo-
rithm embodied in KB_ROW of Section 8.5. Finally, we saw the modified
LLL algorithm in Section 8.7. We know that KB-ROW and MLLL are
polynomial-time algorithms and we suspect that the Rosser strategy is not
polynomial. It would be useful to have some information about the aver-
age running times of these procedures. A rigorous analysis is currently not
possible, and extensive computer experiments have yet to be carried out.
However, looking at one moderately large example may give some insight.
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Matrix 8.8.1

13 -1 14 -6 -10 -11 -1 2 -1 -4 -9 -1 2 8 4 3 -6 -8-
5 12 15 2 -6 -6 5 -4 -10 -10 -3 7 1 -7 9 4 5 -3

-10 -3 5 -2 -5 15 1 -11 -8 -2 -13 -9 9 1 5 5 -4 -16
-4 3 1 6 -11 11 3 -8 -8 6 -5 6 15 -2 -1 -1 -6 6

-2 -3 13 -3 2 -9 -2 -4 -11 -9 2 -4 -2 1 -7 -12 2 8

-4 -3 -10 9 10 5 -6 -2 4 -1 0 -5 -10 -2 3 -1 9 8

0 1 7 12 -9 -3 7 5 -4 -15 1 2 -2 -10 -5 2 2 3

8 -4 -18 -7 7 -1 -4 -2 21 6 10 3 -7 -3 6 13 8 -19
7 -3 3 -6 -2 -8 -6 -1 9 -4 0 -5 -12 7 11 -4 8 -10

12 10 -5 -4 21 -18 1 3 9 10 5 -9 -21 2 17 2 11 11

6 -12 -2 -5 11 1 -4 -11 -1 6 8 -1 -7 -9 7 -14 8 -4
5 9 3 -2 16 -13 7 5 0 1 11 -5 -16 -7 10 -4 9 6

2 2 -2 -3 6 0 8 -1 3 3 -5 -9 -7 -7 10 9 6 -12
0 2 -5 5 0 3 -7 -5 3 -8 4 17 1 -13 4 7 6 -13

14 -1 -5 2 2 0 -1 -1 7 1 2 1 -2 3 8 14 -1 -1
-6 -3 7 0 -19 4 -4 -3 -6 1 -13 3 13 9 -9 -10 -6 4

5 -10 1 1 7 4 -6 -1 -5 -6 12 4 2 3 -3 -2 -10 6

-2 9 -3 -18 -3 -12 6 -5 8 11 -3 -4 -4 5 4 0 10 -6

Example 8.1. Let B be Matrix 8.8.1. This matrix was obtained by form-
ing a product UV, where U was an 18-by-14 matrix, V was a 14-by-18
matrix, and the entries of U and V were chosen randomly from the set
1-2,-1,0,1,21. The rank of B is 14.

Two popular computer algebra systems are Maple and Mathematica. At
the time this was written, Version V of Maple and Version 1.2 of Math-
ematica were available. Both systems included implementations of LLL,
although neither provided the option of obtaining the unimodular ma-
trix describing the new basis in terms of the old. Neither system had
an implementation of MLLL.

Implementations of the Rosser strategy, KB_ROW, and MLLL were writ-
ten in the Maple and Mathematica languages and applied to B using a Sun
3/60 workstation. Two variants of MLLL were tried. One used exact ratio-
nal arithmetic throughout, and the other used floating-point computations
for the b?, B2, and µ2j. The precision of the floating-point numbers could
be specified by the user.

The Rosser strategy produced the row Hermite normal form A of B given
in Matrix 8.8.2 in about 90 seconds on each system. The entries in the
unimodular matrix P returned were very large, the largest having absolute
value of roughly 1050. The procedure KB_ROW obtained the same row
Hermite normal form in about 110 seconds on each system. In this case the
entries in P were smaller. The largest absolute value was about 1016.

The rational-arithmetic implementations of MLLL produced a basis of
short vectors and a much better unimodular matrix at the expense of
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Matrix 8.8.2

1 0 0 0 0 0 1 0 0 0 0 2 0 378896 1610460 518760 -1994370 -409551

0 1 0 0 0 0 1 0 0 0 0 2 0 296918 1262024 406522 -1562871 -320942

0 0 1 0 0 0 0 0 0 0 0 0 0 332069 1411420 454644 -1747882 -358934

0 0 0 1 0 0 0 0 0 0 0 1 0 95135 404368 130254 -500763 -102834

0 0 0 0 1 0 1 0 0 0 0 1 0 370118 1573153 506743 -1948170 -400065

0 0 0 0 0 1 1 0 0 0 0 0 0 69826 296793 95603 -367543 -75478

0 0 0 0 0 0 2 0 0 0 0 2 0 41797 177679 57234 -220033 -45190

0 0 0 0 0 0 0 1 0 0 0 0 0 409937 1742375 561252 -2157735 -443094

0 0 0 0 0 0 0 0 1 0 0 0 0 313155 1331029 428750 -1648327 -338491

0 0 0 0 0 0 0 0 0 1 0 2 0 445463 1893391 609895 -2344748 -481501

0 0 0 0 0 0 0 0 0 0 1 0 0 159065 676081 217778 -837250 -171930

0 0 0 0 0 0 0 0 0 0 0 3 0 227370 966423 311302 -1196803 -245770

0 0 0 0 0 0 0 0 0 0 0 0 1 471748 2005097 645881 -2483087 -509907

0 0 0 0 0 0 0 0 0 0 0 0 0 489867 2082110 670687 - 2578457 -529491

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

1

0 0J

Matrix 8.8.3

0-1 0 0-1-2 0 1 1 0 0 1 0-2-1-1-1 -2
0 1 1 0 -3 -2 0 -1 1 1 -2 -1 1 1 1 0 -1 -1

-2 1 0 0 2 1 2 0 -2 2 -1 -2 0 -1 0 -1 0 2

-2 2 -1 1 -2 1 -1 0 1 1 -1 1 1 1 -1 -1 2 1

-1 -2 -3 2 0 0 -1 0 2 -1 -1 -1 -1 0 -1 2 -1 1

0 -2 -1 0 0 2 0 1 0 -1 -1 0 -2 1 3 0 -2 0

-1 -2 0 2 -1 2 0 1 -1 -2 -1 -1 0 1 -1 0 -2 2

-1 3 0 0 -1 0 1 2 0 0 0 3 -1 -1 2 -1 1 0

-2 1 1 0 0 1 0 -2 -2 -2 0 0 1 0 0 1 0 0

1 -2 -3 2 0 0 -1 -1 2 2 1 1 1 -2 -2 0 0 1

0 1 0 2 1 -2 -2 0 1 1 0 -1 0 1 2 0 -3 1

1 -1 -2 1 2 2 -2 0 1 0 -2 0 0 0 -1 3 2 -1
-1 1 0 1 0 -1 -1 -1 -1 -1 0 2 -1 -1 0 -2 2 3

0 0 0 -2 -2 -1 1 0 -1 1 -1 2 2 1 -2 0 -2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

considerably longer execution times, about 23 minutes for Maple and 74
minutes for Mathematica. The matrix Al returned is given by Matrix 8.8.3.
The largest absolute value of an entry in P was slightly more than 108.

The main problem in devising a floating-point implementation of MLLL
is deciding when the number C = Bm + I mm_1Bm_1 is 0. As noted in
Section 8.6, dm_1Bm_1 and dm_iµmm-i are integers. The number dm_, was
computed as the nearest integer to B1... Bm_1 and C was considered to
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be 0 if the floating-point approximations to BTZ and µmm_1 had absolute
values less than 1/(2d,,n_i).

Using 15 or more decimal digits, the floating-point versions of MLLL
produced bases for the lattice S(B) generated by the rows of B. The bases
depended on the precision chosen, but they were all very similar to the basis
in Al. In all cases, the largest entries in P had absolute values roughly 108.
Since Maple and Mathematica have different ways of handling floating-
point numbers, the Maple and Mathematica implementations sometimes
produced different bases using the same precision. With 100 digits, Maple
returned the matrix Al and Mathematica returned the matrix obtained
by negating the 14th row of Al. In these computations Mathematica was
faster, with times ranging from 6 to 10 minutes, depending on the precision.
The corresponding Maple times were 16 to 29 minutes.

The rational-arithmetic version of MLLL for Maple took about 6 minutes
to produce an LLL-reduced basis for S(B) starting from the row Hermite
normal form given earlier. Even including the time used by the Rosser
strategy or KB_ROW, this way of obtaining an LLL-reduced basis was
about three times as fast as letting the rational-arithmetic version of MLLL
act directly on B. Of course the unimodular matrix produced had entries
of absolute value much larger than 108.

The reader should not draw firm conclusions from this single example.
A great deal of work remains to be done. For example, the number 1 used
in MLLL can be varied between 1 and 1. If this value is changed, what are
the effects on execution speed, the lengths of the basis vectors produced,
and the size of the entries in the unimodular matrix? There are other ways
of using the LLL algorithm. For example, suppose B is an m-by-n integer
matrix and we have found by some method a unimodular matrix P such
that PB has the form [ 0 ] ,where the rows of C form a basis for S(B). Let

r be the rank of B and write P as [ R ] , where Q and R have r and n - r
rows, respectively. Thus QB = C and RB = 0. In fact, S(R) is the set of
all elements v in zm such that vB = 0. We can apply any row operations
to R and we can add multiples of rows of R to rows of Q without affecting
the product PB. Thus we can apply LLL to the rows of R and then replace
each row u of Q by an almost-shortest element of the coset S(R) + u, as
described at the end of Section 8.6. In this way we can hope to reduce the
entries in P to manageable size.

8.9 Historical notes
Excluding the Euclidean algorithm, the oldest of the computational pro-
cedures described in this book are the techniques for manipulating integer
matrices discussed in Sections 8.1 to 8.3. The papers (Hermite 1851) and
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(Smith 1861) are usually cited as establishing the existence of normal forms
for integer matrices under row equivalence and equivalence, respectively.
However, both Hermite and Smith considered only square matrices with
nonzero determinant. The extensions to arbitrary integer matrices came
later. Moreover, Hermite includes no proof and gives the impression he
is stating a result which is common knowledge to his contemporaries. In
(Kronecker 1870), finite abelian groups were shown to be direct sums of
cyclic groups. The uniqueness of the orders of these cyclic groups under
the assumptions that they are greater than 1 and that each order divides
all larger ones was proved in (Frobenius & Stickelberger 1879). This pa-
per established the connection between finite abelian groups and the work
of Smith. Results close to the modern statement of the fundamental the-
orem of finitely generated abelian groups are in (Tietze 1908). The first
polynomial-time algorithm for computing column Hermite normal form was
given in (FYumkin 1977), which considered only matrices whose rank is
equal to the number of columns. This is also the case which was consid-
ered in (Kannan & Bachem 1979), where it was shown that the entries in
the associated unimodular matrices have polynomial size. These results,
together with the modular techniques in (Havas & Sterling 1979), the LLL
lattice reduction algorithm in (Lenstra et al. 1982), and the modification
of the LLL algorithm in (Pohst 1987) were all important advances in our
efforts to study finitely presented abelian groups computationally.
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Polycyclic groups

Polycyclic groups form a broad class of finitely presented groups in which
extensive computation is possible. This chapter discusses the basic struc-
ture and properties of polycyclic groups and presents algorithms for com-
puting with elements and subgroups of polycyclic groups. All finite solvable
groups are polycyclic. The literature on algorithms for computing with fi-
nite solvable groups is too extensive to cover in detail here. See (Laue,
Neubiiser, & Shoenwaelder 1984), (Mecky & Neubuser 1989), and (Glasby
& Slattery 1990). Emphasis will be placed on those algorithms which apply
to infinite as well as finite polycyclic groups. Various computations with
polycyclic groups have been shown to be possible in principle but have not
yet been shown to be practical for interesting groups. Some of these al-
gorithms will be mentioned, but details will not be given. By combining
the rewriting techniques of Chapter 2 with the methods developed in this
chapter, one obtains algorithms for solving a wide range of problems in
polycyclic-by-finite groups. These are groups which have a polycyclic sub-
group of finite index. The polycyclic-by-finite groups make up the largest
class of finitely presented groups in which most computational problems
concerning elements and subgroups have algorithmic solutions.

A word of caution is in order. In coset enumeration, right cosets of
subgroups are used almost exclusively. However, in studying polycyclic
groups it is traditional to use left cosets. It would be possible to present
both subjects using the same type of cosets, but it seems best to remain
consistent with other authors.

This chapter assumes that the reader has had a good introduction to
the theory of groups. The material required is summarized, but for the
most part proofs are omitted. This is particularly true for Sections 9.1
and 9.2, which review results about commutator subgroups and elementary
properties of solvable and nilpotent groups. Details can be found in most
standard texts on group theory.
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9.1 Commutator subgroups
Let h and k be elements of a group G. The commutator of h and k is the
element [h, k] = h-1k-1 hk. The conjugate hk = k-1hk of h by k is h[h, k],
and hk = kh[h, k]. Thus h and k commute if and only if their commutator
is trivial. Suppose H and K are subgroups of G. The commutator subgroup
of H and K is the group

[H, K] = Grp ([h, k] I h E H, k E K).

Since [k, h] = [h, k] -1, it follows that [K, H] = [H, K]. The commutator
subgroup of G is [G, G], which is also called the derived subgroup of G and
denoted G'. The derived subgroup of G is trivial if and only if G is abelian.

Proposition 1.1. The derived subgroup G' is normal in G and the quotient
GIG' is abelian. If N is any normal subgroup of G such that GIN is abelian,
then NDC'.

Thus GIG' is the largest abelian quotient group of G. The following
propositions present some more basic facts about commutator subgroups.

Proposition 1.2. Suppose that H1, K1, H2, and K2 are subgroups of G
such that H1 C H2 and K1 C K2. Then [H1, K1] C [H2, K2].

Proposition 1.3. If f : G -f Q is a homomorphism of groups, then
[f (H), f (K)] = f ([H, K]) for all subgroups H and K of G.

Corollary 1.4. Suppose that N is a normal subgroup of G and - is the
natural homomorphism from G to G/N. Then [H, K] = [H, K].

Proposition 1.5. If H and K are normal subgroups of G, then [H, K] is
normal in G and [H, K] c H n K.

If x, y, and z are elements of G, then [x, y, z] is defined to be [[x, y], z].
In general, [x1, x2, ... , xn] is defined recursively to be [[x1, x2, ... , xn_1], xn].
Such commutators are said to be left-normed. If H1, ... , Hn are subgroups
of G, then [H1,...,Hn] _ [[H1,...,Hn-1],Hn]

Proposition 1.6. For any elements x, y, and z of G, the following hold:

(a) [xy, z] = [x, z] [x, z, y] [y, z].
(b) [x, yz] = [x, z] [x, y] [x, y, z].
(c) [x, y-1, z]y[y, z-1, x]z[z,

x-1,
y]x = 1.
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Proposition 1.7. If H, K, and L are subgroups of G and N is a nor-
mal subgroup of G containing [K, L, H] and [L, H, K], then N contains
[H, K, L1.

Proof. In view of Corollary 1.4, we may pass to the quotient G/N and as-
sume that N is trivial. Thus it suffices to prove that [H, K, L] =1 whenever
[K, L, H] _ [L, H, K] = 1.

To show that [H, K, L] = 1, we must prove that each element of [H, K]
commutes with each element of L. For this it suffices to prove that each
element in a generating set for [H, K] commutes with each element of L.
Thus it is enough to show that [x, y, z] = 1 for all x in H, y in K, and z in
L. By Proposition 1.6(c),

[x, y, z]y ' [y-1, z-1, x]z [z, x-1, y-1]x = 1.

But [y-1, z-1, x] is in [K, L, H] and [z, x-1, y-1] is in [L, H, K]. Therefore

[y-1,z-1,x]z[z,x-1,y-1]x = 1,

and hence [x, y, z]Y-' = 1. Conjugating by y, we obtain [x, y, z] = 1.

Proposition 1.7 is sometimes called the three subgroups lemma.
There are many ways in which one could form "higher commutator

subgroups" in G. Examples of such subgroups are (G')' = [G', G'] =
[[G, G], [G, G]] and [G', G] = [G, G, G]. Two sequences of these higher com-
mutator subgroups have been found to be particularly useful. The derived
series of G is obtained by taking successive derived subgroups. Thus we
have G(°) = G, GM = G', G(2) _ (G')', and, in general,

G(i+l) = (G('))' _ [G('), G(')].

The lower central series of G is defined by taking successive commutator
subgroups with G. Here yl(G) = G, y2(G) = G'= GM, and, in general,

yi+l(G) = [yi(G),G].

By Proposition 1.5, all of the terms in the derived series and the lower
central series are normal in G. In addition, G(°) > GM > G(2) > ... and

?
- -

71(G) 2 y2(G) ? -y3 (G)

Proposition 1.8. Suppose that f : G --+ Q is a homomorphism of groups.
Then f (G) () = f (G()) and yi(f (G)) = f (yi(G)).

Proof. Induction and Proposition 1.3.
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Proposition 1.9. If H is a subgroup of G, then H(i) C G(i) and yi(H) C-yz (G)

Proof. Induction and Proposition 1.2.

Proposition 1.10. For all i > 1 and j > 1, [yi(G),yj(G)] C yi+j (G).

Proof. For j = 1 we have the definition of yi+l (G). We proceed by
induction on j. Since

[yi(G), yj (G)] = ['Yi(G), ['Yj-1(G), G]] = [Yj-1(G), G, yi(G)],

by Proposition 1.7 it suffices to prove that [G,yi(G),yj_1(G)] and [yi(G),
yj_1(G),G] are contained in yi+j(G). But [G,yi(G), yj_1(G)] = [yi+1(G),
yj_1(G)] is contained in yi+.j(G) by induction. Also by induction,
[yi (G), yj_1(G)] C yi+j_1(G). Therefore

['Yi (G),'yj-1(G), G] C [Yi+a-1(G), G] = -li+j (G).

Corollary 1.11. G() C y2i (G) for i > 0.

Proof. For i = 0 we have G(°) = G = y1 (G). If i > 1, then

G(i) _ [G(2-1) G('-1)] C [yet-' (G),'Y2i-1(G)] C 'Y2{-1+2a-1(G) = y2i (G).

Exercises

1.1. Suppose that G is a group generated by a set X. Show that G' = y2(G) is the normal
closure in G of the set { [x, y] I x, y E X} -

1.2. Generalize Exercise 1.1 by showing that ys(G) is the normal closure in G of the set
{[xl,...,x,,]IxiEX,l<i<s}fors>2.

1.3. Let F be the free group on X = {a, b}, a 54 b. Show that every commutator
[[xl, x2], [x3i x4]] with each xi in X is trivial but that F(2) is not trivial.

9.2 Solvable and nilpotent groups
Let G be a group. We say that G is solvable if G(i) is trivial for some i > 0.
If G is solvable, then the smallest value of i for which G(i) = 1 is called the
derived length of G. Groups of order 1 have derived length 0. Nontrivial
abelian groups have derived length 1. The derived length of G is 2 if and
only if G' is nontrivial and abelian. A group with derived length at most 2
is called metabelian.

Our group G is nilpotent if some term in the lower central series is trivial.
In this case, the smallest integer c such that -y,+1(G) = 1 is called the
nilpotency class, or simply the class, of G. Trivial groups have class 0 and
nontrivial abelian groups have class 1.
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Proposition 2.1. Subgroups and quotient groups of solvable groups are
solvable. Subgroups and quotient groups of nilpotent groups are nilpotent.

Proof. Let H and N be subgroups of G with N normal. Suppose G(i> = 1.
Then H(i) = 1 by Proposition 1.9 and (GIN)(j) = 1 by Proposition 1.8.
Similarly, if 7j(G) = 1, then 7j(H) = 1 and 7j (G/N) = 1.

Proposition 2.2. The group G/G(i> is solvable with derived length at most
i. The group G/7j(G) is nilpotent of class at most j - 1.

Proof. By Proposition 1.9, (G/G())() = G()/G() = 1. Similarly
7j(Gl'Yj(G)) = 7j(G)l7; (G) = 1.

Proposition 2.3. If N is a normal subgroup of G and both N and GIN
are solvable, then G is solvable.

Proof. Since GIN is solvable, there is an integer i such that (G/N)(i) =
(G()N)/N = 1. This means that GW C_ N. There is an integer j such that

1. Hence G('+j) = C Nw = 1.

At this point nilpotent groups differ from solvable groups. Proposition 2.3
is false if "nilpotent" is substituted for "solvable". Let G be the symmetric
group Sym(3), which has order 6, and let N be the alternating subgroup
of G. Then N is generated by the 3-cycle (1,2,3). Both N and GIN are
abelian and hence nilpotent. Now [(1,2,3), (1, 2)] = (1,2,3). Therefore
N = G' = [N, G]. It follows easily that N = 7z (G) for all i > 2. Hence G is
not nilpotent.

Proposition 2.4. Nilpotent groups are solvable.

Proof. Suppose 7j(G) = 1. By Corollary 1.11, G(i> = 1 provided 2' > j.

The symmetric group of degree 3 is an example of a solvable group which
is not nilpotent.

Example 2.1. Let R be a commutative ring with 10 0 and let n be a positive
integer. For r > 1 let Unr) (R) consist of those n-by-n matrices A over R
such that Ai, = 0 if j < i+r. Thus A is in U( T) (R) if and only if all entries on
or below the main diagonal are 0 and all entries on the first r - 1 diagonals
above the main diagonal are also 0. Thus an element of U42 (R) has the
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form

00**
000*
0000
0000

7

where * denotes any element of R. If r > n, then Un(") (R) contains only
the 0 matrix. Suppose that A is in Unr) (R) and B is in Ups) (R). A simple
argument shows that AB is in U,r+s) (R). In particular, An = 0. Let Dnr) (R)
consist of all matrices I + A, where I is the n-by-n identity matrix and A
is in Unr)(R). Since

(I+A)(I+B)=I+A+B+AB

and

(I + A)-1 = I - A + A2 - ... + (_A)n-1,

the sets Dnr) (R) are subgroups of GL(n, R). If A is in U(r) (R) and B is in
(R), then the commutator [I + A, I + B] is

(I - A + + (-A)n-1)(I - B + + (-B)n-1)(I + A)(I + B).

Direct computation shows that this matrix has the form I + C, where C is
in U.(r+s), Thus [Dnr)(R),Dns)(R)] is contained in Dnr+s)(R). Therefore, if
D = Dnl)(R), then -y, (D) C_ Dnr)(R). In particular, ryn(D) is trivial, so D is
nilpotent of class at most n - 1.

The quotients of the derived series of a group G are the groups GW/G(i+1)
i = 0, 1, .... They are all abelian groups. The quotients of the lower central
series of G are the groups 'yi (G) /rye+1(G), i =1, 2, .... These groups are also
abelian. In fact 'yi(G)/yi+1(G) is in the center of G/'yi+1(G)

If G is finitely generated, then GIG' = GI-y2(G) is finitely generated.
However, the remaining quotients in the derived series may not be finitely
generated, as the following example illustrates.

Example 2.2. Let x be the permutation of the integers which maps i to i + 2
for all i. Thus x has "cycles" (..., -3,-1,1,3,5 ....)(... , -4,-2,0,2,4,...).
Let y = (0,1) and let G be the group of permutations of the integers gen-
erated by x and y. The conjugates of y by powers of x are the 2-cycles
yi = (2i, 2i+ 1), i = 0, fl, .... The subgroup N generated by the yi is abelian
and normal in G. The commutator [y, x] is z = (0,1)(2, 3). The conjugates
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of z by powers of x are the elements zi = (2i, 2i + 1) (2i + 2,2i + 3) = yi yi+1
The subgroup M generated by the zi is normal. By Exercise 1.1, M = G'.
Each element of M moves at most a finite number of integers. Therefore
any finitely generated subgroup of M moves only finitely many integers.
However, M moves all the integers, so M is not finitely generated. Since N
is abelian, so is M. Therefore G" = 1 and G'/G" is not finitely generated.

Again we have a difference between solvable and nilpotent groups.

Proposition 2.5. If G is generated modulo G' by x1, ... , xn, then
y2(G)/y3(G) is generated by the images of [xj, xi] with 1 < i < j < n.

Proof. We may work in G/y3(G) and so we may assume y3(G) = 1. Thus
elements of G' are in the center of G. By Proposition 1.6, [xy, z] = [x, z] [y, z]
and [x, yz] = [x, y] [x, z]. By induction one concludes that

[y1 ... ys, z1... zt] = jj[yi, zj].
z,3

Now 1 = [xx-1, y] = [x, y] [x-1, y], so [x-1, y] = [x, y] -1. Similarly, [x, y-1] =
[x, y]-1 and [x-1, y-1] = [x, y]. It follows that the commutator of any two
elements of H = Grp (x1,. .. , xn) is in the subgroup generated by the com-
mutators [xj, xi]. Since [xi, xi] = 1 and [xi, xj] = [xj, xi]-1, we may assume
that i < j. By assumption, any element of G can be written as uz, where u
is in H and z is in C. If v is also in H and w is in G', then [uz, vw] = [u, v].
Therefore G' = H'.

Proposition 2.6. Suppose G is a group generated modulo G' by a set X
and Y is a subset of yi(G), i > 2, whose image in yi(G)/'Yy+1(G) gen-
erates that group. Then yi+1(G)/ y'i+2 (G) is generated by the image of
Z={[y,x] I yEY,xEX}.

Proof. We may assume that yi+2(G) = 1. All of the elements of Z are in
yi+1(G). If u is in yi (G) and v and w are in G, then by Proposition 1.6,

[u, vw] = [u, w] [u, v] [u, v, w]. But [u, v, w] is in yi+2 (G) and hence [u, v, w] is
trivial. Also [[u, w], [u, v]] is in y2i+2 (G) and so is trivial. Therefore [u, vw] =
[u, v] [u, w]. If w is in G', then [u, w] is in 14+2 (G) and so [u, vw] = [u, v]. By a
similar argument one shows that [uv, w] = [u, w] [v, w] whenever u and v are
in yi (G) and w is in G. If v is in yi+l (G), then [uv, w] = [u, w]. In addition
[u-1, v] = [u, v]-1 = [u, v-1] if u is in yi (G) and v is in G. By an argument
similar to the one in the proof of Proposition 2.5, yi+1(G) is generated by
the commutators [u, v], where u ranges over a set of generators of yi (G)
modulo yi+l (G) and v ranges over a set of generators of G modulo G.



390 9 Polycyclic groups

Corollary 2.7. If a group G is generated by n elements and i > 2, then
yi(G)/yi+l(G) is generated by (n - 1)nx-1/2 elements.

Proof. The case i = 2 follows from Proposition 2.5. Now induction on i
and Proposition 2.6 complete the proof.

The bound in Corollary 2.7 can be improved somewhat. See Section 9.9.

Proposition 2.8. If N is a subgroup of the center of G and GIN is
nilpotent, then G is nilpotent.

Proof. By assumption, -yi(G) is contained in N for some i. Since N is
central, [N, G] = 1. But yi+1(G) = [yi (G), G] is contained in [N, G] = 1, so
yi+1(G)=1.

Exercises

2.1. Suppose that G is a finitely generated nilpotent group. Prove that all of the terms in the
lower central series of G are finitely generated.

2.2. Let G be a nilpotent group and let X be a subset of G whose image in GIG' generates
GIG'. Show that X generates G.

2.3. Let Dnrl (R) be as in Example 2.1. Show that [Dnrl (R), Dns' (R)] = Dnr+s) (R)

9.3 Polycyclic groups
The class of polycyclic groups contains the class of finitely generated nilpo-
tent groups and is contained in the class of finitely generated solvable
groups. Polycyclic groups have finite presentations of a form which makes
many types of computations practical.

Let G be a group. A polycyclic series of length n for G is a sequence of
subgroups

G=G1 ;? G2 2 ... 2 Gn D Gn+1 = 1

such that for 1 < i < n the subgroup Gi+1 is normal in Gi and Gi/Gi+1 is
cyclic. Note that we do not require that each Gi be normal in G. A group
is polycyclic if it has a polycyclic series.

Proposition 3.1. Polycyclic groups are solvable.

Proof. Let G = G1 D G2 2 . . . D Gn D G,,,+1 = 1 be a polycyclic series for
a group G. We proceed by induction on n. If n = 0, then G is trivial and
hence solvable. Assume that n > 0. Then G2 is normal in G and G/G2 is
cyclic and therefore solvable. The sequence G2 D Gn Gn+1 = 1 is a
polycyclic series for G2 of length n - 1. By induction, G2 is solvable. Thus
G is solvable by Proposition 2.3.
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Proposition 3.2. Finitely generated abelian groups are polycyclic.

Proof. Let G be an abelian group generated by a1, ... , an. Set Gi =
Grp (a1,.. . , an), 1 < i < n + 1. Then Gi+1 is contained in Gi and Gi+1 is
normal in G, so Gi+1 is certainly normal in Gi. The quotient Gi/Gi+1 is
generated by the coset aiGi+l. Therefore Gi/Gi+1 is cyclic and the Gi form
a polycyclic series for G.

Proposition 3.3. If N is a normal subgroup of a group G and both N and
GIN are polycyclic, then G is polycyclic.

Proof. A subgroup of GIN has the form H/N, where H is a subgroup
of G containing N. If K is another subgroup of G containing N, then
K/N C H/N if and only if K C H, and K/N is normal in H/N if and only
if K is normal in H. In this case, (H/N)/(K/N) is isomorphic to H/K.
Thus we can pull back a polycyclic series of GIN to a sequence of subgroups
of G from G to N such that each subgroup is normal in the preceding one
and the quotients are cyclic. Following this by a polycyclic series for N, we
get a polycyclic series for G.

Proposition 3.4. Finitely generated nilpotent groups are polycyclic.

Proof. Let G be a finitely generated nilpotent group of class c. If c < 1,
then G is abelian, and hence G is polycyclic by Proposition 3.2. Assume
that c > 1. The last nontrivial term in the lower central series of G is
7(G). By Proposition 1.10 and Corollary 2.7, yy(G) is abelian and finitely
generated. Therefore -y, (G) is polycyclic. The quotient G/-y, (G) is nilpotent
of class c-1. By induction on c, Glyy(G) is polycyclic. Thus G is polycyclic
by Proposition 3.3.

Proposition 3.5. If G is a group with a polycyclic series of length n, then
G can be generated by n elements.

Proof. Let G = G1 = ... D Gn+1 = 1 be a polycyclic series. For 1 < i < n,
let ai be an element of Gi such that aiGi+1 generates GI/Gi+1. Then every
coset of Gi+1 in Gi contains a power of ai. Thus if g is in G, then g = a" g2,
where g2 is in G2. But g2 = a2 2 g3, where g3 is in G3. Therefore g = ai' az 2 g3
Continuing in this manner, we find that g = ai' ... al"gn+1, where gn+l is in
Gn+1. But Gn+1 = 1, so g = ai' ... a".. Hence G is generated by a1,... , an.

Proposition 3.6. Quotient groups of polycyclic groups are polycyclic.

Proof. Let G = Gl D . . . 2 Gn+1 = 1 be a polycyclic series for a group G
and let N be a normal subgroup of G. For 1 < i < n + 1, the product GZN
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is a subgroup of G and Gi+1N is normal in GiN if i < n. Also

GiN/Gi+1N - Gi/Gi+1(Gi n N) - (C-'i/G'i+1)/(Gi+1(Gi n N)/Gi+1)

is a quotient of the cyclic group Gi/Gi+1. Thus GiN/Gi+1N is cyclic.
Define Hi to be GiN/N. Then GIN = H1 D ... D Hn+1= N/N =1. More-

over, Hi+1 is normal in Hi and Hi/Hi+1 - GiN/Gi+1N is cyclic. Therefore
GIN is polycyclic.

Proposition 3.7. Subgroups of polycyclic groups are polycyclic.

Proof. Let G = C1 ... Gn+1 = 1 be a polycyclic series for G and let
H be a subgroup of G. Set Hi = Gi n H. It is easy to check that Hi+1 is a
normal subgroup of Hi. By the second isomorphism theorem,

Hi/Hi+1 - Hil (Hi n Gi+1) - (HiGi+1)I Gi+1,

which is a subgroup of the cyclic group Gi/Gi+1. Therefore H1 D ... D
Hn+1 = 1 is a polycyclic series for H.

Corollary 3.8. If G has a polycyclic series of length n, then every subgroup
of G can be generated by n or fewer elements.

Proof. The proof of Proposition 3.7 showed that every subgroup of G has
a polycyclic series of length n. Thus Proposition 3.5 applies.

The following characterization of polycyclic groups is one of the main
reasons that extensive computation in polycyclic groups is possible.

Proposition 3.9. A group is polycyclic if and only if it is solvable and all
subgroups are finitely generated.

Proof. Let G be a group. We have already shown that G polycyclic
implies that G is solvable and that subgroups are finitely generated. Now
suppose that G is solvable and all subgroups of G are finitely generated. Let
G have derived length k. If k < 1, then G is abelian and finitely generated.
Therefore G is polycyclic by Proposition 3.2. Suppose k > 1. Then G(k-1)
is a finitely generated abelian normal subgroup of G and GIG (k-1) has
derived length k - 1. Subgroups of GIG (k-1) are images of subgroups of G
and hence are finitely generated. By induction on k, G/G(k-1) is polycyclic.

Therefore G is polycyclic by Proposition 3.3.
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Example 3.1. Let D be the group D41) (Z) defined in Example 2.1. Thus D
is the subgroup of GL(4, Z) consisting of all matrices

1 x1 x4 x6
0 1 X2 X5A= 0 0 1 x3

0 0 0 1

where the xi are integers. If

1y1y4y6

B=
0 0 1 y3

0 0 0 1

is another element of D, then AB has the form

1 x1+y1
0 1 x2+y2 *

0 0 1 x3+y3
0 0 0 1

Thus the map from D to Z3 taking A to (x1, x2, x3) is a surjective homomor-
phism with kernel D42) (Z). Similarly, if A is in D42) (Z), then mapping A
to (x4, x5) defines a homomorphism of D42) (Z) onto Z2 with kernel D43) (Z).

Finally, D43) (Z) is generated by

1001
0100
0010
0001

and hence is cyclic. By Proposition 3.3, D42) (Z) is polycyclic. Using the
same proposition again, we see that D is polycyclic. If Ei consists of the
matrices A given earlier with xl = = xi_1 = 0, then D = El D E2 D ... D
E7 = 1 is a polycyclic series for D.

0 1 Y2 Y5

A group G is hopfian if whenever f : G -> G is a surjective homomorphism,
then f is an isomorphism. This is equivalent to saying that if N is a normal
subgroup of G such that GIN is isomorphic to G, then N = 1.
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Proposition 3.10. If G is a group which satisfies the ascending chain
condition on subgroups, then G is hopfian.

Proof. Let f : G - G be a surjective homomorphism such that the kernel
N of f is nontrivial. For i > 1, the i-fold composition f i of f with itself is
a homomorphism of G onto itself. Set Ni equal to the kernel of f i. Then
Ni is the inverse image of 1 under f i and N2+1 is the inverse image of N
under fi. Since N is nontrivial and fi is surjective, Ni+1 properly con-
tains Ni. Therefore N1 C N2 C ... is a strictly increasing, infinite sequence
of subgroups of G. This is impossible by the ascending chain condition.
Therefore G is hopfian.

Corollary 3.11. Polycyclic groups are hopfian.

Proof. By Corollary 3.8, subgroups of polycyclic groups are finitely gen-
erated, so the ascending chain condition holds.

Proposition 3.12. Suppose that H and K are subgroups of a polycyclic
group G. If H C K and H is conjugate to K in G, then H = K.

Proof. Suppose that H C K = H9, where g is in G. Conjugating re-
peatedly by g, we see that the sequence H C H9 C H92 C . . . is strictly
increasing. This cannot happen in a polycyclic group. Thus H = K.

Let G be a polycyclic group. Not all polycyclic series for G have the same
length. However, the number of infinite quotients in a polycyclic series is
the same for all series. This number is called the Hirsch number of G. It is
possible to choose the polycyclic series so that all the infinite factors come
after the finite factors. See Proposition 2 in Chapter 1 of [Segal 1983].

Exercises

3.1. Show that the order of a finite subgroup of a polycyclic group G divides the product of
the orders of the finite quotients in any polycyclic series for G.

3.2. Generalize the discussion in Example 3.1 to D;,,1) (Z) for any n > 1.

9.4 Polycyclic presentations
Let G = G1 D D G,,+1 = 1 be a polycyclic series for a group G. For
1 < i < n, let ai be an element of Gi whose image in Gi/Gi+l generates
that group. The sequence a1,. .. , as will be called a polycyclic generating
sequence for G. Note that the order is important. (For finite solvable
groups, the term AG-system was introduced in (Jurgensen 1970).) By the
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proof of Proposition 3.5, Gi = Grp (a2,.. . , an) and every element g of Gi can
be expressed in the form aI'i ... a" where the exponents aj are integers. Let
I = I (al, ... , an) denote the set of subscripts i such that Gi/Gi+l is finite,
and let mi = JGi : Gi+1I, the order of ai relative to Gi+1, if i is in I. We shall
normally assume that the generating sequence is not redundant in the sense
that no ai is in Gi+1. Thus mi > 1 for each i in I. We shall say that the
expression for g is a collected word if 0 < ca, < mj for j in I. Each element of
G can be described by a unique collected word in the generators al, ... , an.
If ai' ... a'n is the collected word representing a nontrivial element g of G
and ai is the first nonzero exponent, then ac'' and ai will be called the
leading term and the leading exponent of g, respectively.

Suppose i is in I. Then a'is in Gi+1 and can be expressed as a collected
word in the generators ai+1, ... , an. The collected word representing a-.1

has the form am'-1u, where u is in Gi+1. Thus ai 1 can be eliminated from
any word representing an element of G. Now suppose that 1 < i < j < n.
Then aj is in Gi+1, which is normal in Gi. Thus the conjugate ai lajai is
in Gi+1, so ajai can be expressed as the product of ai and a collected word
involving ai+l, ... , an. Similarly, a,-.lai can be expressed in this form as
well, although this is necessary only if j is not in I. Thus there are unique
relations

aiji+1 aijn
ajai = aiai+1 ... an ,

aj lai = aiai+l 1

ajai 1 = ai laa+i 1 ... a7ij"

a. 1a. 1 = ai la +i1 ... an'jn

a74 = alki+1 a/tin i E I
Z i+1 . n ,

a-1 = ali-lavii+1
aVin i E I

z % i+1 n ,

(*)

where the right sides are collected words. The relations (*) constitute a
group presentation for G, the standard polycyclic presentation relative to
al, . . . , an. If i is in I, then ail occurs only in one relation, the one giving the
collected form of a,-.'. We can get a monoid presentation for G in terms of
the ai and the ai 1 with i not in I by adding the relations aiai 1 = a71 ai = 1
for i not in I and deleting the relation with left side ai 1 if i is in I. The
result will be called the standard monoid polycyclic presentation. However,
keeping all of the a2 1 is often useful since it facilitates the computation of
inverses of elements in G.

Let X = {a1,. .. , an}. Interpreted as pairs of words in X}*, the relations
(*) are rewriting rules with respect to the basic wreath-product ordering
with an a1 1 -< a1 -< ai 1. Let R be the set of these rules, together
with the monoid rules aiai 1 -> e and ai 1ai --> a with i not in I. Using
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R, we can rewrite any word in X}* into collected form. Since collected
forms are unique, the rewriting system is confluent. Since a finite, con-
fluent rewriting system exists, if we start with any monoid presentation
for G on the monoid generators in X}, then, using the ordering -<, the
Knuth-Bendix procedure for strings will construct R, which will be called
the standard polycyclic rewriting system for G relative to the polycyclic
generating sequence a1,...,an.

Any group presentation of the form (*) defines a polycyclic group G.
However, the order of Gi/Gi+l may be finite even if i is not in I, and the
order of Gi/Gi+l may be less than mi when i is in I. If a presentation
(*) is the standard polycyclic presentation for the group it defines, then
the presentation is said to be consistent. In this context, "consistent" and
"confluent" are essentially synonyms.

Example 4.1. Let D be the group D4O(Z) studied in Example 3.1. Define
al, ... , a6 as follows:

11001 1000,1

0 1 1 0
0 0 1 0 ''.

a3 =

10001
0100

a1
0 0 1 0 a2

0001
1010
0100

a4
0010.7

a5

100011

L0001J

(10001
0101
0010
0001

0100
0011
0001

1001
0 1 0 0

a6
0010

L0001

It is easy to check that a1, ... , a6 is a polycyclic generating sequence for D.
The set I is empty.

Given an element of D, it is not difficult to determine the collected word
a" ... ass which represents the element. For example, let

11 2 0 -2

u=
0 1 -1 3

0 0 1 1

0 0 0 1

Then al, a2, and a3 are the entries of u just above the main diagonal. That
is, a1 = 2, a2 = -1, and a3 = 1. Multiplying u on the left by (aia21a3)-1
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gives

1 0 2 -8
0 1 0 4

0 0 1 0

0 0 0 1

The entries on the second diagonal above the main diagonal give a4 = 2
and a5 = 4. Multiplying on the left by (a2a5)-1 yields

1 0 0 -8
0 1 0 0

0 0 1 0

0 0 0 1

from which we see that a6 = -8. Thus u = a1a21a3a4a5a6 s.
Using this technique, we can determine the standard polycyclic presen-

tation for D with respect to al, ...,a6. It consists of 60 relations. In the
following description, a and ,3 range independently over {1, -1}.

asaa = aQas, 1 < i < 5,

/j )3 a -a)3a5 a1 = a1 a5 a6

a5aa = aQaS, 2 < i < 4,

aaa/3 = aQaaaaQ

4 3 3 4 6

a4a° = a°a4, 1 < i < 2,

aaaQ - a)3aaa-a/
3 2 2 3 5

a /j )3 aa3 a1 = alai,

aaaQ - aQaaa-aj
2 1 1 2 4

In order to recognize that a1,... , an is a polycyclic generating sequence
for a group G, we do not have to be given the entire standard polycyclic
presentation for G. It would be nice to be able to define a general polycyclic
presentation on generators al, ...,ate to be any presentation which makes
it obvious that the group G defined is polycyclic and that al, ... , an is
a polycyclic generating sequence for G. Unfortunately, "obvious" cannot
be defined precisely, so we must resort to a somewhat more cumbersome
definition, one which describes several cases where the group is obviously
polycyclic. The reader should be aware that the terminology related to
these presentations is not standard.
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Let a1,...,a, be a sequence of generators and set Xi = {ai,...,a,}}.
A polycyclic presentation on a1,... , an is a group presentation on these
generators such that the following conditions hold:

(i) For 1 < i < j < n there is a relation alai = aiSij, where Sid is in
X +1

(ii) One of the following holds:
(a) All of the words Sid in (i) have the form ajAij, where Aid is in

Xi*+1
(b) For 1 < i < n, either there is a relation a2' = Wi, where mi > 0

and W. is in X +1, or for each j with i < j < n there is a relation
aja 1 = a 1 Uij, where Ui.7 is in Xi+1.

A relation alai = aiSij, i # j, will be called a commutation relation. It is
trivial if Sid = ai. A relation a` = Wi will be called a power relation.

Condition (i) in the definition of a polycyclic presentation does not, by
itself, imply that the group is polycyclic, as the following example shows.

Example 4.2. Let G be the group generated by a and b subject to the
single defining relation ba = W. With respect to the basic wreath-product
ordering of {a, b}} in which b -< b-1 - a -< a-1 the group G has the following
confluent rewriting system:

as-1 -- e, a-la -> e, bb-1 -* e, b-lb -> e,

b2a-1 -* a-lb, ba -+ ab2, b-la --> ab-2, b-la-1 -j ba lb-1.

The words bi and aba-1 are all irreducible with respect to this system. Thus
aba-1 is not equal to a power of b, so H = Grp (b) is not equal to aHa-1.
Since (aba-1)2 = ab2 a-1 = b, we have H C aHa-1. By Proposition 3.12, G
is not polycyclic.

Proposition 4.1. Suppose that G is a group defined by a polycyclic pre-
sentation on generators a1,... , an. Then G is polycyclic and a1,... , an is a
polycyclic generating sequence for G.

Proof. If condition (iia) holds, then we can prove that G is nilpotent.
Clearly this is always the case if n = 1. In general, taking j = n in (iia), we
see that anal = aian for all i. Thus N = Grp (an) is in the center of G and
hence N is normal in G. A presentation for GIN is obtained by setting an
equal to 1 in the relations for G. This presentation also satisfies conditions
(i) and (iia). Therefore, by induction on n, GIN is nilpotent, and G is
nilpotent by Proposition 2.8. By Proposition 3.4, G is polycyclic.

Now suppose that condition (iib) holds. For 1 < i < n, let Gi be the
subgroup of G generated by as,. .. , an. We must show that Gi+1 is normal
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in Gi, 1 < i < n. It suffices to prove that ati 1Gi+lai = Gi+1 By condition
(i), a 1Gi+lai C Gi+1. If is in Gi+1 for some positive integer mi, then

Gi+1 2 ai 1 Gi+l ai j ai 2Gi+l as D ... D ai ' Gi+1 = Gi+1
m

Thus Gi+1 = ai1C'i+1 ai
If there is no relation am' = W. with Wi in X +1, then condition (iib) says

that aiGi+la 1 CGi+11 or Gi+1 C ati 1Gi+lai Thus Gi+1 = ai 1Gi+lai in this
case too.

By pushing the analysis in the proof of Proposition 4.1 a little further,
one can show that the exponents /3ijk, bilk, and Ujik in (*) are determined
by the aiik, 'Yijk, and µik. See Exercise 4.2. If (*) is consistent, then
the "Yijk are actually determined by the aiik and /1ik See Proposition 8.2.
Given a polycyclic presentation for a group, the corresponding standard
polycyclic presentation can be obtained using the Knuth-Bendix procedure
for strings. It can also be constructed using more specialized techniques.
(See Section 9.8.)

Example 4.3. The presentation

a2a1 = a1a2
a2-
21a1 = a1a23 a2ai1 = al-1a2

a21ai1 = aila24

has the form (*) with I = 0. As in the Knuth-Bendix procedure, we can
rewrite the overlap a2alai 1 in two ways:

_1
a2alal = a2

and

aaa-1 = a aaa-1 = a a2a la4 aaa-1a$ =
a a-1a12 =

a12.
2 1 1 1 2 1 1 2 1 2= 1 2 1 2 1 1 2- 2

Thus a2 = a22. Since we are in a group, this implies that a21 = 1. If this
relation and a21 = a2 are added, the resulting presentation is consistent.

A polycyclic presentation for which condition (iia) holds will be called a
nilpotent presentation. A presentation

a'i =Wi, 1<i<n,
(**)alai=aiS2, 1<i<j<n

where the words Wi and Sid are in {a+1,. .. , an}*, is called a power-
conjugate presentation and defines a finite solvable group G with order di-
viding m1... m,,n. The presentation (**) is actually a monoid presentation
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for G. It is also a rewriting system with respect to the basic wreath-product
ordering with an -< -< al. Nilpotent power-conjugate presentations are
sometimes called power-commutator presentations, although this term is
often reserved for the prime-exponent case, in which all of the exponents
mi are equal to a fixed prime.

The abbreviation "pc-presentation" is frequently used. However, "pc"
could reasonably stand for "polycyclic", "power-conjugate", or "power-
commutator". To avoid confusion, the abbreviation "pc" will not be used
in this book.

Example 4.4. The following consistent power-conjugate presentation on
generators a, b, c, d, e, f, g is a modification of one in (Felsch 1976):

92=1,
f4=1, gf =fg,

e2 = 1, ge = ef2g, fe = ef3,
ds = f2, gd = def3, fd = def2g, ed = df2g,

C3 = 1, gc = cd3f2g, fc = cf, ec = ced3, do = cd4f3g

b2 = 1, gb = bg, fb = bf3, eb = bef3, db = bd5ef, cb = bc2,

a2 = 1, ga = ag, f a = a f g, ea = ad3 f, da = acd3e f 2,

ca = ad4ef2g, ba = ab.

The group defined has order 2.4.2.6.3.2.2 = 1152.

In Section 9.9 and in Chapter 11 we shall be working with a class of
nilpotent polycyclic presentations which have additional structure. A 'y-
weighted presentation for a group G is a nilpotent polycyclic presentation
R on generators al, ... , a,, such that the following hold:

(a) Each ai has associated with it a positive integer weight wi such that
wl =1 and wi < wi+l for 1 < i < n.

(b) If there is a power relation ar" = Wi, then the generators occurring
in Wi all have weight at least wi + 1.

(c) For each commutation relation alai = aiajAij, the generators occur-
ring in Aid all have weight at least wi + w,.

(d) If Wk = e > 1, then there are integers i and j with wi = 1 and wj _
e - 1 such that Aid = ak. One such pair is fixed, and the relation
alai = aiajak is called the definition of ak.

Suppose that R is a -y-weighted presentation for G on a1,... , an. For
e > 1, set G(e) equal to the subgroup of G generated by the ai with wi > e.
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By (c), G(e) is normal in G and G(e - 1)/G(e) is central in G/G(e). Thus
rye(G) C G(e). Let c = wn. Condition (d) implies that G(c) = [G(c - 1), G].
Now [G(c - 2), G] contains [G(c - 1), G] and by (d) G(c - 1) is generated by
[G(c - 2), G] modulo G(c). Therefore G(c - 1) = [G(c - 2), G]. Continuing
in this way, we find that G(e+1) = [G(e), G], 1 < e < c. Thus -y, (G) = G(e).
Consistency is more easily checked for -y-weighted presentations than it is
for general nilpotent presentations. (See Section 9.8.)

Example 4.5. Let us consider the nilpotent presentation on generators
al, ... , a7 with weights wl = w2 = w3 = 1, w4 = w5 = 2, and w6 = w7 = 3 in
which alai = aiaj when wi + wj > 3 and

a2a1 = a1a2a4a2 5a6, a3a1 = a1a3a5, a3a2 = a2a3a4, a4a1 = ala4a6,

a4a2 = a2a4a6a7, a4a3 = a3a4a6, a5a1 = ala5a7,

a5a2 = a2a5a7, a5a3 = a3a5a62a7.

This presentation is -y-weighted. The definitions of a4 to a7 are the relations

a3a2 = a2a3a4, anal = a1a3a5, a4a1 = ala4a6, a5a2 = a2a5a7,

respectively.

Rewriting with respect to a standard polycyclic rewriting system or a
power-conjugate system is now called collection. The term "collection" was
originally introduced in (P. Hall 1934) and referred there to computation in
free nilpotent groups as discussed in Section 9.10. A great deal of effort has
gone into devising efficient collection strategies. Suppose the generators are
a1,...,an. Hall used a strategy in which all occurrences of al are moved
left to the beginning of the word. Next, all occurrences of a2 are moved left
until they are adjacent to the al's. Then the a3's are moved left, and so
on. This collection strategy is called collection to the left. It has properties
which make it useful in the proofs of various formulas for the collected form
of special words, but it is usually not efficient for computation. For some
time, a consensus favored collection from the right, in which the left side
of a rule occurring nearest the end of the word is selected for replacement.
However, evidence in (Leedham-Green & Soicher 1990) and (Vaughan-Lee
1990) suggests that in a substantial number of cases collection from the left
is superior. In this strategy, the left side nearest the beginning of the word
is chosen.

Example 4.6. Let us compare these three strategies as applied to collect-
ing the word a1a2a3a4a1a2a3a4 using the rewriting system of Example 4.1.
Collection to the left uses 22 applications of the rules:
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ala2a3a4ala2a3a4 = ala2a3ala4a2a3a4

= ala2ala3a4a2a3a4

= alala2a41a3a4a2a3a4

= alala2a41a3a2a4a3a4

-1 -1
alai a2a4 a2a3a5 a4a3a4

-1 1

= alala2a2a4 a3a5 a4a3a4

= alala2a2a3a41a61a51a4a3a4

= alala2a2a3a41a61a. a3a4a6a4

= a1a1a2a2a3a41a61a3a51a4a6a4

= alala2a2a3a41a3a61a51a4a6a4

= alala2a2a3a3a41a61a61a51a4a6a4

= a1a1a2a2a3a3a41a61a61a4a51a6a4

= alala2a2a3a3a41a61a4a61a51a6a4

= a1a1a2a2a3a3a41a4a61a61a51a6a4

= alala2a2a3a3a61a61a51a6a4

= a1a1a2a2a3a3a61a61a51a4a6

= alala2a2a3a3a61a61a4a51a6

= alala2a2a3a3a61a4a61a51a6

= alai a2a2a3a3a4a61a61a51a6

= alala2a2a3a3a4a61a51a61a6

alala2a2a3a3a4a51a61a61a6

= alala2a2a3a3a4a51a61,

Collection from the right does not do any better:

ala2a3a4ala2a3a4 = ala2a3ala4a2a3a4

ala2a3ala2a4a3a4

ala2a3ala2a3a4a6a4

ala2a3ala2a3a4a4a6

= ala2ala3a2a3a4a4a6
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= ala2ala2a3a51a3a4a4a6

= ala2ala2a3a3a51a4a4a6

= a1a2ala2a3a3a4a51a4a6

= ala2ala2a3a3a4a4a51a6

= alala2a41a2a3a3a4a4asla6

= a1a1a2a2a41a3a3a4a4a51a6

= alala2a2a3a41asla3a4a4a51a6

= alala2a2a3a41a3asla4a4a51a6

= alala2a2a3a41a3a4asla4a51a6

= alala2a2a3a41a3a4a4asla51a6

= alala2a2a3a41a3a4a4a51a61a6

= alala2a2a3a41a3a4a4a51

= alala2a2a3a3a41asla4a4a51

= alala2a2a3a3a41a4asla4a51

= alala2a2a3a3a41a4a4as1a51

= alala2a2a3a3a41a4a4a51a61

= alala2a2a3a3a4a51a61,

403

However, collection from the left requires only 12 applications of the rules:

a1a2a3a4a1a2a3a4 = a1a2a3a1a4a2a3a4

= a1a2a1a3a4a2a3a4

= alala2a41a3a4a2a3a4

= a1a1a2a3a4
1
a6

1

a4a2a3a4

-1 -1
= a1a1a2a3a4 a4a6 a2a3a4

= alala2a3asla2a3a4

= alala2a3a2asla3a4

-1 -1
= a1a1a2a2a3a5 a6 a3a4

-1 -1
= a1a1a2a2a3a5 a3a6 a4

-1 -1
= alala2a2a3a3a5 a6 a4
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= a1ala2a2a3a3a51a4a61

= a1a1a2a2a3a3a4a51as1.

In its basic form, neither collection from the right nor collection from the
left is adequate. There are several ways of speeding up the process further.
With either strategy, there is a collected part and an uncollected part of
the current word. In collection from the right, the collected part is a suffix,
while in collection from the left it is a prefix. The collected part ai... a'
can be represented by its exponent vector (al, . . . , an). Let r be the smallest
index such that G,. = Grp (a...... an) is abelian. In Example 4.1, r = 4. If
i > r - 1, then in collection from the left we have

(a,,...,an)az = (a1,...,ai+01 ai+i) ...an).

Note that, if i is in I and ai +,3 > mi or ai +,3 < 0, then the vector on the
right does not represent a collected word. In collection from the right, one
has

aQ(0,...) O,ai,...,an) _ (0,...,0,ai+)3, ni+l...,an)

for any i, and

aQ(0,...,O,a,,...,an) = (0,...,O,a,,...,CLi-1,ai+/3,ai+l,...,an)

provided i > r. When collecting in nilpotent groups, it is important to be
able to develop formulas for the collected form of various families of words.
The simplest formula is ajlas = aQaq when i < j and ai and aj commute. If
Grp (ai, aj) is nilpotent of class 2, then aj"a3 = aQaj' [aj, ai]°O. The formulas
defining the rules in Example 4.1 are valid for all integers a and a, not
just in the case Jal = 1,31 = 1. The use of more complicated formulas in an
approach called combinatorial collection is described in (Havas & Nicholson
1976).

When formulas cannot easily be derived and memory is not a problem,
then one can store the collected form for additional products ajlaa. In a
power-conjugate system, this could mean storing up to

Y,(mj - 1)(mi - 1)
i<j

conjugation rules. With the presentation of Example 4.4, adding the 56
extra rules greatly reduces the time needed to collect words. In (Felsch
1976), a novel data structure is described which encodes a power-conjugate
presentation as a family of subroutines, which are executed to carry out
collection.
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Extensive research on collection is in progress as of this writing. Most
experimental evidence comes from collection within finite solvable groups.
Complicating the situation is the observation that the words which arise
in various important algorithms connected with polycyclic groups do not
appear to be random. To get the best performance on these algorithms,
the collection procedure must be tuned to the words which occur most
frequently. In view of the inconclusive results available at the present time,
no recommendation will be made here concerning the choice of collection
procedures.

Although we may not know the best collection strategy, we certainly
can solve the word problem in a group G given by polycyclic presentations.
Probably the next problem about elements of G to consider is the conjugacy
problem. Conjugacy of elements can be decided in principle, but practical
algorithms for infinite polycyclic groups have not yet been developed. If
two elements g and h of G are not conjugate, then there is a finite quotient
group of G in which the images of g and h are not conjugate. A proof of this
result may be found in [Segal 1983]. This leads to the following "algorithm"
for deciding whether two elements g and h are conjugate. We start two
computers running. The first computer systematically forms conjugates of
g in G. The second computer systematically examines the finite quotients of
G. The conjugacy problem in a finite group is clearly solvable in principle.
Thus either the first computer will find an element u of G such that u-lgu =
h or the second computer will find a finite quotient group of G in which the
images of g and h are not conjugate. We simply wait to see which computer
stops. Useful conjugacy algorithms for finite solvable groups have been
developed. See (Mecky & Neubiiser 1989). Conjugacy in nilpotent groups
is discussed in Section 9.7.

The next two sections discuss computation in subgroups and quotient
groups of polycyclic groups.

Exercises

4.1. Suppose that a1.... , an is a polycyclic generating sequence for a group G. Let aal as
be the collected word defining an element g of G, let ap' be the leading term of an element
h, and let a?' ... a7," be the collected word defining gh. Show that yj = aj, 1 < i < i,
and that yi = ai + f3 if i is not in I, while ryz = (ai + Qi) mod mi if i is in I. Here
I = I(al,... , an) and mi is the relative order of ai modulo Grp (ai+1, ... , an). Describe
the leading terms of gh and h-1.

4.2. Show that the exponents dijk, sijk, and vik in a standard polycyclic presentation (*) are
determined by the aijk, 'ijk, and Pik-

4.3. Let (X, R) be a nilpotent presentation satisfying conditions (a), (b), and (c) of the
definition of a y-weighted presentation. Fore > 1, let Q(e) be the abelian group generated
by the ai of weight e subject to the relations aim' = 1 for i in I and wi = e. Given U
in Xt*, let U denote the word obtained from U by deleting all generators of weight
different from e. We shall say that (X,R) is weakly y-weighted if for e > 2 the group
Q(e) is generated by the images of the words Aij, where wi = 1 and wj = e - 1. Show
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that a -y-weighted presentation is weakly y-weighted and that in a group G defined by a
weakly -y-weighted presentation the group -y, (G) is generated by the ai with w; > e.

9.5 Subgroups
In Section 8.1 we discussed how to compute with subgroups of Z'. Sub-
groups were represented by integer matrices with n columns, and integer
row operations were used to manipulate these matrices. This section uses
ideas of M. F. Newman described in (Laue et al. 1984) to generalize the
techniques of Section 8.1 to study the subgroups of a group G given by a
polycyclic presentation on generators al, ... , an. The group Grp (ai,... , an)
will be denoted Gi. We shall assume that the presentation is consistent and
that we know the set I of indices i such that Gi/Gi+1 is finite and the relative
order mi of ai modulo Gi+1 for i in I.

A subgroup H of G will be described by a sequence U = (gi, ... , g9)
of generating elements. Let the collected form of gi be al 'l ... an i^. The
s-by-n matrix A of integers aid will be used to represent U and will be
called the associated exponent matrix. Corresponding to the elementary
row operations of Section 8.1, we have the following elementary operations
on U:

(1) Interchange gi and gi if i # j.
(2) Replace gi by gi 1.
(3) Replace gi by gigQ, where 3 is an integer and i j.
(4) Add as a new component gs+1 any element of Grp (g1, ... , g3)
(5) Delete g9, if gs = 1.

Notice that the length of U may increase or decrease. This was not
necessary in Section 8.1, since any finite sequence of generators of an abelian
group is a polycyclic generating sequence. In general, a polycyclic group
generated by a small set may require long polycyclic generating sequences.

Two sequences U = (gl,... , gs) and V = (hl, ... , ht) are equivalent un-
der elementary operations if one can be transformed into the other by a
sequence of these operations. To see that this is an equivalence relation,
we must show that the effect of an elementary operation can be undone
by a sequence of one or more operations. Applying operations of types
(1) and (2) twice to U leaves U unchanged. If an operation of type (3) is
applied, then replacing gi by gig, -.'3 restores U to its original form. After an
operation of type (4), gs+1 is a product of powers of the gi with 1 < i < s.
A sequence of operations of type (3) can make gs+1 the identity element,
and then an operation of type (5) deletes gs+1. Finally, if an operation of
type (5) is performed, then undoing it is a special case of an operation of
type (4).

Let us say that a sequence U = (gl, . . . , gs) of elements of G is in standard
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form if the associated exponent matrix A satisfies the following conditions:

(i) All rows of A are nonzero (i.e., no gi is the identity).
(ii) A is row reduced over Z.
(iii) If Aij is a corner entry and j is in I, then Aij divides mi.

Suppose that U is in standard form. An admissible sequence of exponents
for U is a sequence (,31,. ..,(33) of integers such that, if Aij is a corner entry
and j is in I, then 0 < /3i < mj/Aij. Let E(U) be the set of admissible
sequences of exponents for U and let S(U) be the set of products gc' ... gab,
where (,31...... 33) ranges over E(U).

Example 5.1. Suppose G is Z'2 and a1,.. . , an is the standard basis. Then a
sequence U = (g1, ... , g3) of elements of G is in standard form if and only
if the associated matrix A is row reduced and has rank s. In this case,
all s-tuples of integers are admissible for U. The set S(U) is simply the
subgroup S(A) of Section 8.1. The components of U form a basis of S(U).

In general, S(U) is not a subgroup, but there is a one-to-one correspon-
dence between elements of S(U) and elements of E(U).

Proposition 5.1. Suppose that U = (g1, ... , gs) is a sequence of elements
o f G in standard f o r m and ( / 3 1 , ... , .33) and ('y1, ... , s) are in E(U). If

then ,3i=yi, 1<i<s.

Proof. Let A be the matrix of exponents associated with U, and let
g = ...90 = 971 ...g7-. Suppose A1j is the corner entry in the first row
of A. If ai' ... a6^ is the collected word defining g, then Sk = 0, 1 < k < j.
We have two cases depending on whether j is in I. Assume first that j is
not in I. Then Gj/Gj+l is isomorphic to Z and Sj = A1j/31 = A1jy1 Since
Al j 0, this means that X31= y1. Now assume that j is in I. Then G j /G j+1
is isomorphic to Zm. and A1j131 - bj =_ Aljy1 (modmj). But both Q1 and
y1 are nonnegative and less than mj/A1j. Therefore A1j,31 and A1jy1 are
nonnegative and less than mj. Thus A1j,31 = Aljyl. Hence ,61 = y1 in this
case too. Thus we may multiply g on the left by gi a' and conclude that
92 ... g0- = g22 . . . gs'. By induction applied to the (s - 1)-tuple (g2, ... , 93),
wehave /3i=y,, 2<i<s.

The proof of Proposition 5.1 gives us an algorithm for deciding member-
ship in S(U) for a sequence U of elements of G in standard form. It is a
straightforward generalization of the algorithm in Section 8.1 for deciding
membership in a subgroup of Z given as S(B), where B is a row reduced
integer matrix.
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Function POLY_MEMBER(U, g): boolean;
Input: U : a sequence (gl, ... , gs) of elements of G in standard

form;
g : an element of G;

(* The value true is returned if g is in S(U), and false is returned
otherwise. *)

Begin
Let A be the exponent matrix associated with U; h := g;

'y- will be the collected word representing h. *)(* At all times a"' . . . an
i:=1; done := false;

While i < s and not done do begin
Let Aii be the corner entry of A in the i-th row;

If some -yk # 0 for 1 < k < j then done := true
Else if Aid does not divide -yj then done := true
Else begin

q:='y/Ajj; h:=gZ4h;
End;

is=i+1
End;

POLY-MEMBER:= (h = 1)
End.

Example 5.2. Let D = D41) (7L) as given by the presentation on a1,..., a6
derived in Example 4.1. If

91 = a
2 1a-21a4,

92 = a
3

3a4a61

2

93 = - a4a5a61

then U = (g1, 92,93) is in standard form. The associated exponent matrix is

2-10100
0 0 3 1 0 1
0 0 0 2 1 1

Let us decide whether u = ai 6a3a6a221a5a64 is in S(U). Since I = 0, we2 3 4 5 6
simply want to know whether u can be expressed as go1 P'g g33. The leading

f, respectively. Thus if u is in S(U), thenterms of u and g1 are al 6 and a2
Q1 = (-6)/2 = -3. The product glu is v = aga12a5as°. Therefore 32 must4 5

be 6/3 = 2. Multiplying g2 2 and v yields w = a4 a55 a65* Now /33 = 10/2 = 5.
The product g3 5w is 1, so u = g1 3g2g3 is in S(U).
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Given a sequence U = (g1,. .. , gs) of elements of G in standard form, we
can decide whether S(U) is a subgroup of G. Let us say that U is full if
the following conditions hold:

(i) For 1 < i < j < s the set S(U) contains gi 1gjgi.
(ii) If Aid is a corner entry of the matrix A of exponents associated with

U and j is in I, then S(U) contains g9, where q = mj/Aid.

Example 5.3. The triple U = (g1, 92, 93) in Example 5.2 is not full. Let

u = 9i 19291 = a3a4a5as 2. If u is in S(U) and u = 92'922933, then a1 = 0
and 02 = 1. But g21u = a3 5a6 3. Since no gi has a power of a5 as its leading
term, u is not in S(U).

Proposition 5.2. If U = (g1, ... , gs) is a sequence of elements of G in
standard form, then S(U) is a subgroup of G if and only if U is full. If U
is full, then g1, . . . , gs is a polycyclic generating sequence for S(U).

Proof. The elements gi are in S(U). Thus, if S(U) is a subgroup of G, then
U is full. Assume now that U is full. If s = 0, then S(U) = {1} is a subgroup.
We proceed by induction on s and suppose that s > 0. Let Alk be the corner
entry in the first row of the matrix associated with U. Then g2, ... , gs are
contained in Gk+1 and S(U) n Gk+1 is S(V), where V = (92, ... , g3). If
2 < i < j < s, then 9i 1gjgi is in S(U) and is in Gk+l. Therefore g,-. 1gjgi is
in S(V). By a similar argument, V satisfies condition (ii) of the definition
of full. Therefore V is full and, by induction, H = S(V) is a subgroup of
G. If 2 < j < s, then g>_ 1gjg1 is in Gk+1 by Exercise 4.1. Since U is full,
gi 1gjg1 is also in S(U), and hence gi 1gjg1 is in H. Thus gi 1Hg1 C H. By
Proposition 3.12, gi 1Hg1 = H. This implies that g1Hgi 1 = H. Thus H is
normal in K = Grp (g1, . . . , g3) and every element of K can be written in
the form g' h, where h is in H. If k is not in I, then every element g' h is in
S(U), so K = S(U). Suppose that k is in I and q = mk/A1k. Then u = gi
is in H, so a can always be chosen so that 0 < a < q. Thus K = S(U) in
this case too.

The following result generalizes Proposition 1.1 in Chapter 8.

Proposition 5.3. Let H be a subgroup of G. There is a unique sequence
U = (g1, ... , gs) in standard form such that H = S(U).

Proof. Let k be the largest index such that H C_ Gk. If k = n+ 1, then H
is trivial and the empty sequence U = () is the only sequence in standard
form such that H = S(U). Suppose that k < n. Let -denote the canonical
homomorphism from Gk to GklGk+1. The image H is nontrivial. Let a
be the least positive integer such that (ak)" is in H. Then H is generated
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by (ak)a, and, if k is in I, then a divides mk. Let g1 be an element of
H such that gl = (ak)°. Then the leading term of 9i is a'. By induction
on n - k, there is a sequence W = (g2,. .., gs) in standard form such that
H n Gk+l = S(W). The sequence U = (gl, g2,. -., gs) satisfies conditions (i)
and (iii) of the definition of standard form, but it may not satisfy condition
(ii) because the entries in row 1 of the matrix A associated with U which lie
above corner entries of A may not be reduced modulo those corner entries.
Thus it may be necessary to modify gl. To do so, we execute the following
instructions. At all times, g1 = ai' ... an

For i := 2 to s do begin
Let as be the leading term of gi; q:= aj div,Q; gl := glgi e

End.

By Exercise 4.1, the entries in row 1 of A which lie above corner entries are
now reduced modulo those entries. Hence U is in standard form. Every
element of H has the form gl u, where u is in H n Gk+l and 0 < -y < mk/a
if k is in I. Since H n Gk+l = S(W), it follows that H = S(U). Thus we
have proved the existence part of the proposition.

To prove uniqueness, suppose that H = S(U) = S(V), where both U =
(g1, ... , gs) and V = (hl, . . . , ht) are in standard form. The leading term of
91 is ak, where k is as defined earlier and a > 0. If k is in I, then a divides
mk. The group H is generated by gl = (ak)a, and H has order mk/a if k is in
1. These conditions uniquely determine a. By symmetry, the leading term
of h1 is also a'. Now HnGk+1 = S(g2, ... , gs) = S(h2, ... ht). By induction
on n-k, we haves=tandgi=hi,2<i<s. Letu=gilh1. Thenuisin
H n Gk+1, so u = 922 ... gae, where (,02, ... , ,33) is in E(g2,... , gs) . If u = 1,
then g1 = h1 and we are done. Suppose that u # 1 and let i be minimal
such that /3i 34 0. Let a be the leading term of gi and let the collected
forms of g1 and h1 be a,' ... an^ and ai' ... ai', respectively. Assume that j
is not in I. Since h1 = g1 u, we have vj =,aj +,3i6. But this is not possible,
since both pj and vj are reduced modulo S. A similar argument takes care
of the case in which j is in I.

Suppose V = (h1,... , hT) is a sequence of elements of G and H is the
subgroup generated by the hi. If we knew the full sequence U in stan-
dard form such that H = S(U), then we could decide membership in H
using POLY_MEMBER. It is in fact possible to transform V into U us-
ing elementary operations. The procedure is a relatively straightforward
generalization of the row reduction procedure of Section 8.1.

Initially set U equal to V. The first observation is that we may apply
elementary operations in such a way that the matrix A associated with
U is in row echelon form. Suppose that gi and gj have leading terms ao
and ak with 1,31 > 1-yJ. Let q = ,0 div 'y. Replacing gi by gigs q sets the
exponent of ak in gi equal to /3 mod 'y. Repeating this step until it is no
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longer possible produces a sequence in which no two leading terms involve
the same generator. By permuting the elements in the sequence U and
deleting elements which are the identity, we can assume that A is in row
echelon form and has no zero rows. By replacing gi with g,-.1 if necessary,
we can make all corner entries positive.

Now suppose that there is a corner entry a = Aik such that k is in I and
Aik does not divide mk. Let 0 = gcd(a, Mk) = pa +qmk. The leading term
of giP is a3. Add gi' as a new member of the sequence U and repeat the
procedure in the previous paragraph to put A back into row echelon form.
Since this iteration either introduces a new column containing a corner
entry or replaces a corner entry with a proper divisor, the process stops
eventually with U = (g1, . . . , gs) such that the associated matrix A is in row
echelon form and all rows are nonzero, corner entries are positive, and any
corner entry Aik with k in I divides mk. To get U into standard form, we
have only to execute the following statements:

For i := 2 to s do begin
Let a' be the leading term of gi;

For j := 1 to i - 1 do begin
Let 3 be the exponent on ak in the collected word representing gj;

diva; °q :_ 9j := 9j9i-

End
End.

Now that U is standard, we begin checking whether U is full. The test for
fullness requires that various elements be in S(U). Suppose that u is one of
those elements and u is not in S(U). Thus POLY_MEMBER(U; u) returns
false. Let v be the last value assigned to h within POLY-MEMBER. Add
v as a new member of the sequence U and repeat the entire process. When
U has again been put into standard form, either there will be a new column
in A containing a corner entry or some corner entry will have been reduced.
Thus this iteration must also stop. When it does, U will be full and S(U)
will be H = Grp (h1, ... , hr).

Example 5.4. Let us continue Examples 5.2 and 5.3 and determine the
subgroup of D generated by g1, g2, and g3. The sequence U is already in
standard form. However, u = gi 1g2g1 is not in S(U). This becomes clear
when we compute v = g21u = a3a6 -3 . Thus we define g4 to be v. Now A is

2-1010 0

0 0 3 1 0 1

0 0 0 2 1 1

0 0003-3
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and U is still in standard form. Now let u = gi 19391 = a22a5as-1. To check
membership of u in S(U), we compute v = g31u = a6 2. Clearly v is not in
S(U). In order to have a positive corner entry, we define 95 to be v-1 = as.
To put U in standard form, we have only to replace g4 by g4g5 = a3a6. This
gives

2 -1 0 1 0 0
0 0 3 1 0 1

A= 0 00211
IO

0

00031
00002

At this point U = (91, 92, 93, 94, 95) is full.

Example 5.5. Let us now determine the subgroup generated by h1 = ad3eg
and h2 = bf in the group of order 1152 in Example 4.4. Initially set gl = hl,
92 = h2, and U = (gl, g2). The associated matrix A is

/10031011
0 1 0 0 0 1 0,

and U is in standard form. If u = gi 19291, then u = b f 3 and g21 u = f 2. We
define g3 to be f2 . Now A is

1003101
0100010
0000020

and U is still in standard form. The square of gl is g, and we define g4 to
be g. In order to get U into standard form, we replace gl by g1g41 = ad3e.
This gives

A=

1003100
0100010
0000020
X0000001

Now U is full. The order of H can now be seen to be 16.

Let us give the name POLY_SUBGROUP to the procedure for determin-
ing a full sequence U of generators for a subgroup of a polycyclic group de-
scribed by generating elements. In order to formalize POLY_SUBGROUP,
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we must choose an order in which to test the elements g,-lgjgi and g9 in
the definition of a full sequence. It is also useful to try to arrange the
computation so that, when a new generator is added to U, we can avoid
repeating all of the tests made previously. There is inadequate experience
at this point on which to base a firm recommendation. The reader is en-
couraged to experiment with various ways of spelling out the details of
POLY_SUBGROUP.

Given a finite subset Y of G, we can compute the normal closure N of Y
in G using POLY_SUBGROUP. There are at least two ways to organize
the computation. In the most straightforward approach, we first find the
full sequence U in standard form such that Grp (Y) = S(U). For each
element y of Y and each generator x of G we compute u = x1yx and
check whether u is in S(U). If u is not in S(U), then we add u to Y and
recompute U. Since the ascending chain condition holds for subgroups of
G, this process eventually stops.

The second method of computing normal closures works with the group
G x G. This group is polycyclic and we can easily get a polycyclic presenta-
tion for it. Let b1, . . . , bn be a sequence of generators distinct from a1, . . . , an.
For each relation in the standard polycyclic presentation for G on the ai's
add the corresponding relation on the bi's, so Grp (b1, . . . , bn) is isomorphic
to G. Now add relations a,qb,9' for all i and j and all a and '3 in
{1, -1}. The group M generated by al, ... , an, b1, ... , bn subject to these
relations is isomorphic to G x G. The subgroup D = Grp (albs,... , anbn)
corresponds to the diagonal subgroup of G x G. There are two obvious
polycyclic generating sequences for M. They are a,,. . * , an, b1,. .. , bn and
b1, . . . , bn, a1, ... , an. The only difference between the standard polycyclic
presentations for these two sequences is the ordering of the left and right
sides in the relations a,. b,q.

According to Exercise 3.9 in Chapter 1, there is a one-to-one correspon-
dence between the set of normal subgroups of G and the set of subgroups
of M containing D. In this correspondence, a normal subgroup N of G
corresponds to DN. Since N = (DN) fl G, the following result is easily
proved.

Proposition 5.4. Let Y be a subset of G and let H be the subgroup of M
generated by Y and albs, ... , anbn. Then the normal closure N of Y in G
is HfG.

Suppose that we compute in M using the polycyclic generating sequence
b1,. .. , bn, a1,.. . , an and determine the full sequence U = (hl, ... , hs) such
that H = S(U). Let hr be the first component of U which is in G, that
is, whose collected form involves only ai's. Then N = S(hr., .... hs). Con-
ceptually, this approach to normal closures is very appealing. We do not
have to write a new routine. However, the presentation for M is more than
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twice as large as the presentation for G and it is not clear that this method
is any faster than the first method.

Once normal closures can be computed, it is possible to compute com-
mutator subgroups. If X and Y are finite generating sets for subgroups
H and K of G, then [H, K] is the normal closure in Grp (X, Y) of the set
of commutators [x, y] with x in X and y in Y. With the ability to find
commutator subgroups, we can determine the derived series and the lower
central series of G.

Exercises

5.1. Show that POLY_MEMBER works correctly even if U does not satisfy condition (ii) of
the definition of standard form.

5.2. Determine the order of the subgroup of the group in Example 4.4 generated by abdf and
ceg.

5.3. Let D and 91, g2, and g3 be as in Examples 5.2 to 5.4 Determine the normal closure of
{gl,g2,g3} in D.

9.6 Homomorphisms
In this section, various techniques are discussed for working with a homo-
morphism f : G -- H from one polycyclic group to another. We shall assume
that we know the standard polycyclic presentation f o r G relative to a poly-
cyclic generating sequence al, ... , a,,. We shall want to do such things as
describe the image of f, determine the kernel of f, and compute inverse
images of elements and subgroups. As usual, Gi will be Grp (ai,... a,,,).

Let us start with the case in which H is a quotient GIN, where N is
a normal subgroup of G. Here f : G -* H is the natural homomorphism.
Suppose we have a full sequence U = (g1,... , g3) such that N = S(U). For
1 < i < n let bi = f (ai). Then b1, ... , b is a polycyclic generating sequence
for H. Set Hi = Grp (bi, ... , b,,,). An obvious problem is to find a polycyclic
presentation for H in terms of b1, ... , b, . The commutation relations present
no problems. We just replace each ai by bi in the commutation relations
defining G. The only question concerns the power relations for H.

Suppose that 1 < i < n. If no gj has a leading term which is a power of
ail then the order of bi modulo Hi+1 is the same as the order of ai modulo
Gi+1. If there is a power relation am` = W. for G, then the power relation
for bi is obtained by replacing a's by the corresponding b's in this relation.
If some g, = a'' ... an^ with ai > 0, then ai is the order of bi modulo Hi+1
and b"' = b;an ... bi+i+' holds in H.

Example 6.1. The presentation

caao = aaca, caba = baca, baa'3 = a13baca0,
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where a and,3 range over {1, -1}, is consistent. Let G be the group defined.
If gl =a 3b3, 92 = b6c, and g3 = c3, then U = (gl, g2, g3) is in standard form
and is full. Moreover, N = S(U) is normal in G. If u = aN, v = bN, and
w = cN, then in H = GIN we have

u3 = v-3, v6 = w-1, w3 = 1.

Reworking these relations slightly and transferring the commutation re-
lations from G to H yields the following consistent power-commutator
presentation for H:

wu = UW, WV = VW, vu = UVW,

w3 = 1, v6 = w2, u3 = v3W.

If our normal subgroup N is not given as S(U) but as the normal closure
of a finite subset T of G, then we have two possible courses of action. We
could obtain a description of N as S(U) using the techniques at the end
of the previous section. We could also add the relations t = 1 for t in T
as new defining relations. Here we are thinking of T as a set of collected
words. The Knuth-Bendix procedure for strings can now be used to get the
standard polycyclic presentation for H.

Now let us assume that H is a second polycyclic group described by a
consistent polycyclic presentation on generators b1,. .. , bm. A homomor-
phism f : G --+ H is determined by the images ui = f (ai), 1 < i < n. A map
ai --* ui of the generators of G into H defines a homomorphism if and only
if the ui satisfy the defining relations for G. This can be checked, since
we can compute collected words in H. The image K of f is generated by
the ui and thus can be determined. We also need to compute the kernel
of f, and, for an element k of K, we want to be able to find g in G such
that f(g) = k.

Essentially all the information we need to compute with f can be obtained
with one invocation of POLY_SUBGROUP in M = H x G. This approach
is similar to the second method for finding normal closures described at
the end of Section 9.5. Assuming the generating sets for G and H are
disjoint, we get a presentation for M on the ai's and the bb's by combining
the relations for G and H and adding relations which say that each ai
commutes with each bp All computation in M will be done using the
polycyclic generating sequence b1, ... , bm, a1, . . . , a,,. Let L be the subgroup
of M generated by the elements ula1,... , u,,,a,,, and let W = (wl, ... , ws) be
the full sequence such that L = S(W). Each wi can be written uniquely as
higi, where hi is in H and gi is in G. Let r be the largest index such that
hr is not trivial.
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Proposition 6.1. The group L consists of all elements of M of the form
f (g)g with g in G. The sequence U = (hl, ... , hr) is full and K = S(U).
The sequence V = (g1, . , gs) is full and S(V) is the kernel of f. If k is
in K and k = hQ' ... hOr, then f (g) = k, where g = g'13' ... g .

Proof. The set P of products f (g)g with g in G is easily checked to
be a subgroup of M and the elements uiai are all in P. Thus L is con-
tained in P. Given g = ai' ... ann in G, the element (u1a1)a' . . . (unan)"^ _
ul' ... ulna" ... an^ = f (g)g. Therefore L = P. If 1 < i < r, then the
leading term of higi is the leading term of hi. If r + 1 < i < s, then the
leading term of higi is the leading term of gi. Since W is in standard form,
it is easy to check that U and V are in standard form and E(W) is the
set of s-tuples (/31, ... ,,3r, ar+l, ..., as), where ((31, ... , /3,r) is in E(U) and
(a,+,,..., a9) is in E(V). Clearly S(U) C K. However, for any g in G
the element f (g)g is in S(W). Thus f (g)g = (h1g1)a' ... (hrgr)a'gr+i gss,
where (/31, ... Q,., ar+1, ... , as) is in E(W). Therefore f (g) = har and
f (g) is in S(U). Hence K = S(U). If f (g) = 1, then a1 0,. = 0.
Thus g is in S(V). Since each gi with i > r is in the kernel of f, the kernel
is equal to S(V). Finally, if k = ha' ... har, then (h1g1)a' (hrgr)13 = kg is
in L, where g = g3' ... gar. Therefore f (g) = k.

Example 6.2. Let G be the group defined by the following power-conjugate
presentation on the generators a, b, c:

c8=1,

0=1, cb = bc,

a2 =b 2C2 , ba = ac, ca = ac.

Let H be the group on generators u and v defined by the presentation

v8=1,
u4 = 1, vu = uv.

The map a F--4 u2v4, b H v2, c H v6 defines a homomorphism f of G
into H. To determine the kernel of f using Proposition 6.1, we apply
POLY_SUBGROUP to W = (u2v4 a, v2b, v6c) in M = H x G using the
polycyclic generating sequence u, v, a, b, c. The matrix associated with
W is

24100
02010
06001
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The resulting full sequence has the following associated matrix:

20102
02007
00011
00004

Thus the kernel of f is generated by be and c4.

Exercises

417

6.1. Use the ideas in the discussion following Example 6.1 to devise a third algorithm for
computing normal closures in polycyclic groups based on the Knuth-Bendix procedure.

6.2; Let G be the group generated by a, b, c, d subject to the relations

ba = ac, ca = ad, da = ab, cb = be, db = bd, dc = cd,

a3=b4=c4=d4=1,

and let H be a cyclic group of order 12 generated by an element a. The map

a-u4, b- u3, c'-u3, d-u3

extends to a homomorphism f of G onto H. Find the kernel of f.

9.7 Conjugacy in nilpotent groups
As noted at the end of Section 9.4, the conjugacy problem in polycyclic
groups is solvable in principle, but the available algorithms are not practical
for most infinite polycyclic groups. However, for finitely generated nilpotent
groups the situation is much better. This section describes the computation
of centralizers and the determination of conjugacy in nilpotent polycyclic
groups.

Let G be a finitely generated nilpotent group. We shall assume that G
is given by a standard polycyclic presentation on generators a1,. .. , a,n and
that this presentation is nilpotent as defined in Section 9.4. If the presen-
tation is not nilpotent, then we can compute the lower central series of G,
determine a polycyclic series which refines the lower central series, make a
corresponding choice of a polycyclic generating sequence, and determine the
standard polycyclic presentation of G with respect to the new generators.

The first problem to be considered is the computation of centralizers.
Let g be an element of G. The following recursive procedure may be used
to compute the centralizer CG(g) of g in G. The subgroup N = Grp (an) is
contained in the center of G and hence is normal. By induction on n, we
can compute the centralizer K of gN in GIN and find the inverse image L
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of K in G. The subgroup L is the set of all elements u of G such that u 1gu
is in gN, or, equivalently, f (u) = [g, u] = g-lu-lgu is in N. Restricted to
L, the function f is a homomorphism into N, for if ul and u2 are in L, then
f (ulu2) = [g, ulu2], which by Proposition 1.6(b) is [g, u2] [g, ul] [g, ul, u2].
But [g, ul] and [g, u2] are in N, so they commute. Also, [g, ul, u2] = 1. Thus
f (ulu2) = [g, u1] [9, u2]. The centralizer CG(g) is the kernel of f. Since N is
a cyclic group, the computation of the kernel of f is an easy application of
the methods of Section 9.6.

Example 7.1. Let us consider the group D = D41) (7L) of Examples 2.1, 3.1,
4.1, 4.5, 5.2, 5.3, and 5.4. We shall find the centralizer of g = alai in D.
For 1 < i < 7, let Ni = Grp (ai,... , a6). Our approach is to compute the
centralizer Ci of gNi in DINT, 1 _< i < 7. The group we really want is C7.
For 1 < i < 4, the group D/Ni is abelian, so Ci = D/Ni. The inverse image
L. in DINS of C4 is generated by the images of a1, a2, a3, and a4. Working
modulo N5, we have

9-1a19a1 = 1, 9-1a29a2 = a4, 9 1a31ga3 = 1, g 1a4ga4 = 1.

The kernel C. of the homomorphism from L. into N4/N5 is generated by the
images of al, a3, and a4. The inverse image L6 in DIN6 of C. is generated
by the images of al, a3, a4, and a5.

Modulo N6, we have

g-aigal = 1, g-a3ga3 = 1, g-a4ga4 = 1, g-a5ga5 = 1.

Thus C6 = L6 and its inverse image L7 in D = DIN7 is generated by a1, a3,
a4, a5, and a6. In D,

9 -1a1-1ga1 = 1, 9-1a319a3 = 1, 9-1a419a4 = a62,

9-1a519a5 = a6, 9-1a61ga6 = 1.

The kernel C7 of the homomorphism from L7 to N6 is Grp (a1, a3, a4a5, a6).

The determination of conjugacy involves only a slight extension of the
algorithm for computing centralizers. Now we have two elements g and h of
G and we want to decide whether g and h are conjugate. We consider gN
and hN in GIN, where N = Grp (an). If gN and hN are not conjugate, then
g and h are not conjugate in G. If gN and hN are conjugate, then we can
find an element u of G such that u 1(hN)u = u-1huN is gN. Replacing
h by u-1hu, we may assume that gN = hN. In this case, if g and h
are conjugate, the conjugating element lies in the inverse image L of the
centralizer in G/N of gN. We know how to compute L. Let f be the
homomorphism from L to N mapping v to [g, v]. The conjugates of g by
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elements of L are the elements of g f (L). Let w = g-1h. Then his conjugate
to g if and only if w is in f (L). We can decide this and, if w is in f (L), we
can find an element v of L such that f (v) = w. In this case h = v-1gv.

Exercise

7.1. In the group D of Example 7.1 determine the centralizers of the elements ala4a3 and
a2aga6.

9.8 Cyclic extensions
A group G is a cyclic extension of a group N if N is a normal subgroup
of G and GIN is cyclic. In this section we shall take the point of view
that N is given and we wish to construct cyclic extensions of N. A poly-
cyclic group is a group which can be built up by starting with the trivial
group, constructing a cyclic extension, then making a cyclic extension of
that group, and continuing a finite number of times. The theory of cyclic
extensions is well understood. The exposition here is based in large part
on Sections 111.7 and 111.8 of [Zassenhaus 1958].

We shall look first at the case in which GIN is infinite cyclic. Let x
be an element of G such that xN generates GIN. Since N is normal, the
map or taking an element v of N to x-lvx is an automorphism of N. The
image of v under a will be written v°. The group G is determined up to
isomorphism by N and or, since any g in G can be represented uniquely as
xiv with v in N and

(x2v)(xlw) = x2xIx-3vx3w = x2+i va w.

Moreover, any automorphism of N can occur this way, for if o, is an
automorphism of N, then the binary operation

(i,v)(j,w) = (i+j,v'3w)

defines a group structure on G = Z x N. The identity element of G is
(01 1N). The inverse of (i, v) is (-i, (v-1)°-'). The associative law is proved
as follows.

(i, a) [(j, b) (k, c)] = (i,a)(j+k,b°k c) = (i+j+k,a°'+kb"c),

[(i, a) (j, b)](k, c) = (i + j, aaJb)(k, c) = (i + j + k, (aa2b)ak c).

Since or is an automorphism,
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If a is the identity automorphism of N, then G is the ordinary direct
product of Z and N. For any or, if we identify {0} x N with N, then
N is a normal subgroup of G and GIN is isomorphic to Z.

There is an alternative way to see that any automorphism of N leads
to a cyclic extension G of N such that GIN is infinite. Let x and x-1 be
objects not in N and set Y = N U {x, x-'}. Let R be the rewriting system
on Y* consisting of the following rules: the semigroup relations from the
multiplication table of N as described in Section 2.3, the rules xx-1 -* e
and x-1x -> e, and the rules vx -f xva and vx-1 -* x-1v°' for v in N.
Without too much difficulty, it is possible to show that R is confluent. If S
is the ideal of Y* generated by N, then (Y, R, S) is a restricted presentation
for the group G.

Now let us turn to the case in which G is a cyclic extension of N and N
has finite index n in G. Again choose an element x such that xN generates
GIN and let v be the automorphism of N induced by x. Since the coset
xN has order n in GIN, it follows that (xN)n = xnN = N. Therefore
u = xn is an element of N. Knowing N, or, n, and u determines G up to
isomorphism. Every element of G can be expressed uniquely as xiv, where
v is in N and 0 < i < n. Also

xi+Jva'w, i+j <n,
(x v)(xw)

=

Xi+j-n UVa)W, i + j >n.

Not all pairs (Q, u) can occur. Since u = xn, it follows that ua = x-lxnx =
xn = u. Thus o, fixes u. Also, for any v in N we have

van
= x-nvxn = u-1vu.

Therefore vn is the inner automorphism of N induced by u. These two
conditions are sufficient for the pair (v, u) to arise in a cyclic extension G
of N with GIN of order n. Again there are two ways to see this. We can
define a binary operation on {0, 1, ... , n - 1} x N by the formula

(i, V) U, w) =
1 (i +j, v'w), i +j <n,
1(i +j - n, uv'w), i +j > n,

and prove the structure defined is a group. On the other hand, we can
choose an object x not in N, define Y = N U {x}, and form the rewriting
system R consisting of the multiplication-table rules for N, the rule xn u,
and the rules vx -+ xva for v in N. We then must prove that R is confluent
and that (Y, R, S) is a restricted presentation for a group, where S is the
ideal of Y* generated by N. The amounts of work involved in the two
approaches are roughly the same, and the choice reduces to a matter of
taste.

The point of view of cyclic extensions gives us a new perspective on the
test for consistency of a presentation with the form of a standard polycyclic
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presentation. In such a presentation we have generators a1,. .. , an, a subset
I of {1,... , n}, and for each i in I an integer mi greater than 1. In this
discussion we shall use the monoid version of the standard polycyclic pre-
sentation in which there is a generator aj-1 only when i is not in I. The set
R of monoid relations has the form

alai 1 = 1, al 1ai = 1, i I,
aiji+1 O

a ai =alai+l . . . an j > i

aj lai = aia +11 ... aniin, j > i, j V I,

alai l = ai la+1 ... an'j^, j > i, j V I,
la. 1 = at 1a6+`i1 ... an'i", j > i, i, j V I,
ON = aµ"+1 aµin i E I

a i+1 n 1

where the right sides are collected in the sense that the integers aijk, I3ijkl
'Yijk1 Silk, and µik are between 0 and Mk - 1 when k is in I. Let Y be
the set of generators occurring in R. The monoid G defined by (Y, 7Z)
is a group. If (Y, R) is consistent, then many of the relations in R are
redundant. To prove this, we shall use a criterion equivalent to consistency.
Let Y = Y f1 {ai, ... , an}}, let Ri consist of the relations in R which involve
only generators in Y, and let Gi be the subgroup of G generated by Y.

Proposition 8.1. The presentation (Y, R) is consistent if and only if for
1 < i < n any relation in G of the form U = V with U and V in Y* is a
consequence of the relations in Ri.

Proof. Suppose that (Y, R) is consistent. Then any word in Y* can be
rewritten into collected form using the relations in Ri, interpreted as rewrit-
ing rules. If the relation U = V holds in G and both U and V are in Y*,
then U and V have the same collected form W, and the relations U = W
and V = W are consequences of Ri. Thus U = V is a consequence of Ri.

Now suppose that any relation U = V in G with U and V in Y* is a
consequence of Ri. If (Y, R) is not consistent, then for some i, 1 < i < n,
there is an integer m > 0 such that a!' is in Gi+1 and either i is not in I or
i is in I and m < mi. The relations in Ri are satisfied if we set aj equal
to 1 for i < j < n. If this is done, then the group defined is infinite cyclic
if i is not in I or cyclic of order mi if i is in I. Therefore in the group
generated by Y and defined by Ri no relation am = W with W in Y+1 can
hold. Therefore (Y, R) is consistent.

Proposition 8.2. If (Y, R) is consistent, then the relations in R with
positive left sides define G as a group.
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Proof. Assume that (Y, R) is consistent and let Si denote the set of rela-
tions in R with left sides akaj or ajmj, where i < j. Thus Sn is empty if n is
not in I and Sn consists of the single relation a n = 1 if n is in I. In either
case, Sn defines Gn as a group. Now suppose that we know 5i+1 defines
Gi+1. To show that Si defines Gi, we must prove that all the relations in
Ri are consequences of Si. (Since we are considering Si to be a set of group
relations, the relations alai 1 = ai tai = 1 come for free.) By assumption,
the relations in Ri+1 are consequences of Si+1 and hence of Si. Suppose
that j > i and j is not in I. The relation

h3iji+1 nOijn

is equivalent to

ai = ajaiaQ+i' -a aijn,

which is equivalent modulo the relations in Si to

Rq

a. = aiaaiji+l .. aai;naOiji+1 .. aNijn
z- x x+1 z+1 n

which in turn is equivalent to

qqaiji+l a{jn Niji+1 Qijn
1 - ai+1 ... an ai+1 ... an

This is a relation in Gi+1 and hence is a consequence of Ri+1 and thus of Si.
Suppose that i is not in I and j > i. The relation

ajai ai a ... an1 = 1i+1 '

is equivalent to

aj = ai lax+i' ... anijnai.

Using only relations with left sides a77ai, i = ±1, and ai 1ai = 1, one can
rewrite the right side of this relation into a word W in Y+1. The relation
aj = W is a consequence of R2+1 and hence of Si. Therefore the relation

a ,a-1 = a-1a7iji+1 . a7ijn
x x x+1 ' n

is a consequence of Si. The relations with left sides a,-. 1ai 1 are handled like
those with left sides a,--1ai. By induction on n - i, the relations in Si define
G1 = G.
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Suppose now that we have a presentation of the form (Y, R) as before and
we want to decide whether it is consistent. If n = 1, then either there are
the two relations alai 1 = a, 1a1 = 1 or there is the single relation ai' = 1.
In either case the presentation is consistent. Let us assume that n > 1.
The group G defined by (Y, R) is a cyclic extension of the subgroup G2
generated by a2, .... an. By induction on n, we may assume that we have
already checked that the relations in (Y, R) which involve only a2, .... an
and their inverses form a consistent presentation of a group K. We can
compute products and test equality of elements in K. There is an obvious
homomorphism from K onto G2. By Proposition 8.1, (Y, R) is consistent
if and only if this homomorphism is an isomorphism. This can be decided
by checking that the conditions for a cyclic extension are satisfied.

We first test whether the map of generators

aj H a2'j2 . . . anj^, 2 < j < n,

extends to a homomorphism a of K into itself. This is done by checking
whether the images of a2, ... , an satisfy a set of defining relations for K.
Proposition 8.2 can be used to reduce the number of relations which must
be checked. Assuming that a is defined, we next need to decide whether
a is surjective. This could be done by showing that a2 , ... , a° generate K.
However, if 1 is not in I, then it is quicker to test whether

(a21j2 ... an'jn)° = a 2 < j < n.

If 1 is in I, then we shall have to test whether a" is the inner automorphism
of K induced by ail, and a positive result implies that or maps K onto itself.
If a is surjective, then a is an automorphism of K, since K is hopfian by
Corollary 3.11. To complete the first phase of our consistency check, we
test whether

a'j2 .. aa'in = (a21j2 ... aal;n)a
2 n

in K if j is not in I and whether

a2'j2 ... an 'in = (a2'j2 ... anl;n) 1

if 1 and j are not in I.
Suppose that all the tests so far have been successful. Then the conditions

for an infinite cyclic extension of K are satisfied. If 1 is not in I, then G2
is isomorphic to K and (Y, R) is consistent. However, if 1 is in I, then
there is more work to do. Let u be the element a212 ... an'n of K. We
must check whether u° = u and whether aqm' = u-1aiu, 2 < j < n. If these
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conditions are satisfied, then the pair (v, u) defines a cyclic extension of K
with quotient of order ml.

We can rephrase the previous discussion in terms of rewriting rules. The
following approach is inspired in part by (Vaughan-Lee 1984, 1985). Let us
interpret the relations in 1Z as rewriting rules. Among the overlaps of left
sides in R are the following:

akajai,
M.aj ai, j E I, j > i,

ajami, iEI, j>i,
ajai tai, i I, j > i,

ami+1
, i E I

2 ,

aj 1ajai, j I, j > i,
aj 1ajai 1, i,j 0 I, j > i.

(*)

Proposition 8.3. If local confluence holds at the overlaps (*), then R is
confluent.

Proof. Let -< be the basic wreath-product ordering of Y* with an
al, al -< ai1 if 1 is not in I, and ai -< ai 1 -< ai_1 if i > 1 and i is not in I.
To simplify the exposition, let us introduce the following notation:

Suppose that R is not consistent. By induction on n, we may assume that
the relations not involving al or al 1 form a consistent presentation for a
group K. This means that, if k > j > 1 and the indicated words are defined,
then Sik and Tik represent inverse elements in K, as do Uik and Vik. Also,
Ujkaj and ajak represent the same element of K. The notation Q --> R will
be used to indicate that R is obtained from Q by the application of one
rewriting rule in R, while Q * R will signal that zero or more rules have
been used.

Lemma 8.4. If j > 1 and j is not in I, then Slj and Tlj represent inverse
elements of K.
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Proof. By assumption, there is local confluence at the word a,-lajal. The
first few steps in processing this overlap are uniquely determined. They are

a1

and

a1S1j -> a1T1jS1j.

The word al is irreducible with respect to R. Since local confluence holds,
there is a reduction of T1j S1 to the empty word using R. This means that
Sly and T1 represent inverse elements of K.

Let P be the first word with respect to - at which confluence fails. By
Proposition 7.1 in Chapter 2, P is an overlap containing exactly two left
sides. Local confluence fails at P and P contains al or all. Since P is not
one of the overlaps (*), P must have one of the following forms:

(1) ak'ajal,

(2) aka, 'a1,

(9) akajal

(10) ak 'a,-. al

(3) ak'a.- lal, (11) d.-'al'a1,

(4) aa,--'a1, (12) a,a,-. lai1,

(5) al'ai', (13) aalall,

(6) akajal1, (14) ai 'alai

(7) ak'ajai1, (15) alai 'a,,

(8) am'ai 1, (16) ai'alai 1.

For each of these forms there are assumptions that one or more of the
indices involved does or does not belong to I. For example, in (5) j is not in
I and 1 is in I. Local confluence clearly holds in cases (15) and (16). There
are many similarities in the consideration of the other 14 cases. Only a few
cases will be discussed in detail. The remaining ones are left as exercises.

Case (1). Suppose that P has the form (1) for some indices j and k with
1 < j < k < n and k not in I. Let y and z be the elements of K defined
by S1 and Slk, respectively. Then Tlk defines z-1. The word Q = SjkTjk
is in Yi+1, so Qa1 precedes P with respect to -<. Therefore confluence
holds at Qai. Let M and N be any words such that Sika1 a1M and
Tikal a1N. Then we have the reductions

SjkTjka1 *-> Sjka1N * -> a1MN
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and

S3'kT3-kal a1,

since S,k and Tj-k represent inverse elements of K. Therefore MN must
reduce to the empty word. Hence, if M represents the element u of K,
then N represents u-1.

By assumption, local confluence holds at akajal. The initial reductions
here are

akajal -> akalSlj -4 a1S1kSlJ

and

akajal - ajSjkal --L-* aja1M - a1S1jM.

Hence S1kS1j and S1jM define the same element of K. Therefore zy = yu,
so yu 1 = z-1y.

The initial reductions in processing the overlap ak 1ajal are

ak 1ajal -> ak 1 a1S1j - a1T1kS1j

and

ak 1ajal -4 aiTika1 * ' aja1N --> a1S1jN.

Now T1kS1j defines z-1y and S1N defines yu-1. By the previous remark,
if R is the reduced word representing z-1y, then a1R is derivable from both
a1T1kS1j and a1S1,N. Thus local confluence holds at ak1aal after all.

Case (2). Suppose that P has the form (2) for some j and k with 1 < j <
k < n and j not in I. Let y and z be as in case (1). Then T1 represents
Y-1. Let L be any word such that Ujkal - a1L and let v be the element
of K represented by L. Since Ujkaj and ajak represent the same element of
K and ajak is reduced, we have Ujkaj --±-+ ajak. The word Ujkajal precedes
P with respect to -<, so confluence holds at Ujkajal. Now

Ujkajal -' Ujka1S1j a1LS1j

and

Ujkajal ajakal ' ajalSlk -' a1S1jSlk.

By confluence, vy = yz, so zy1 = y1v.
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Processing the overlap P, we have

aka, 'al -p akaiTij , a1S1kTlj

and

aka, lal , a. lUjkal - a. la1L - a1T1jL.

427

If R is the reduced word defining zy-1, then a1R is derivable from both
a1S1kT1j and a1T1jL. Therefore local confluence holds at P.

Case (5). Suppose that P has the form (5) with j not in I and 1 in I.
Let M and N be words such that S1jai'-1 * a"-'M and T1jai'-1

* >
am'-1N, and let u be the element of K represented by M. The word1

S1jT1jar'-1 precedes P with respect to -<. By essentially the same argument
as used in case (1), N represents u-1.

By assumption, local confluence holds at alai'-1. The initial reductions
at that word are

jai' - ajW1

and

alai' -4 a1Sija1'-1 --* ai'M -> W1M.

Therefore and W1M represent the same element of K. From this it
follows that a,-1W1 and WIN represent the same element.

The initial reductions at P are

alai' -4 aJ7 1W1

and

a. lam' -+ a1T1jai'-1 -14 ai'N - WIN.

By the remark above, local confluence holds.
If P is not of the first five forms, then confluence holds at all words not

involving al 1. Thus we may assume that 1 is not in I. We can define a
map from YZ to itself as follows: Given Q in Y2 , define Q by Qa1 * > a1Q
and a1Q is irreducible with respect to R. Confluence at Qa1 implies that
Q is well defined. If Q - R, then one of the ways to reduce Qal is

Qal _*__, Rat *-> a1R,
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so Q = R. This means that we can define a map o,: K -> K which takes the
element represented by Q to the element represented by Q.

It is easy to check that or is a homomorphism. If j > 1, then we have
local confluence at ajallal. The two reductions of this word are

ajalla, , aj

and

ajaial -> allUjkal alla1M -- M --L-+ Ujk,

where M is some word such that Ujkal - a1M. Thus Ujk = aj. Since
the image of a is a subgroup of K, that image is all of K. Therefore, by
Corollary 3.11, a is an automorphism of K. This mean that if Q and R are
in Y2* and Q = R, then Q and R represent the same element of K.

Case (6). Suppose that P has the form (6) for some j and k with 1 <
j < k < n. Let L be any word such that Sjkall -1-4 al1L. Consider the
reductions

Sjkallal -4 Sjk

and

Sjkallal -* * al1La1 al1a1L , L.

Since Sjkalla1 precedes P, confluence holds and L = Sjk.

Processing the overlap P leads to the following reductions:

akajal
1

-* akal lUlj -4 a, 1UlkUlj

and

akajal1 - ajSjkal aial1L -+ al 'U1jL.

Now

UlkUljal * -> Ulkalaj --±- alakaj -* alajS2k

and

U1jLa1 -2- UljalSjk ala3Sjk.

Hence

U1jL = ajSjk = UlkUlj,
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so U1jL and U1kU1j represent the same element of K. This means that local
confluence holds at P.

Corollary 8.5. If (Y, R) is not consistent, then the first word with respect
to at which confluence fails is one of the overlaps (*).

If I = {1,... , n}, Proposition 8.3 says nothing new. However, if I = 0,
then for large n Proposition 8.3 reduces the amount of work needed to check
consistency by a factor of 8. The number of overlaps between left sides of
commutation relations is cubic in n, while the number of all other overlaps
is quadratic in n. Without Proposition 8.3, we would have to check local
consistency at all overlaps aka a2 , where k > j > i and e, rl, and x range
independently over {1, -1}. With Proposition 8.3, we need only consider
the case e=y=x=1.

It is possible to convert the consistency test of Proposition 8.3 into a
procedure for producing a consistent presentation for the group given by
a presentation (Y, R) which is not consistent. The following examples
illustrate the ideas. The details are left as an exercise to the reader.

Example 8.1. Let G be the group defined by the following power-conjugate
presentation on generators x, y, z, in that order:

zy = yz, yx = xz, zx = xy, z15=1, Y9=1, X2=1.

The relations involving only y and z form a consistent presentation for
7L9 X Z15. Conjugation by x takes y to z and z to y. In order for this
map to define an automorphism of Grp (y, z), y15 and z9 must be trivial.
This implies the power relations y3 = 1 and z3 = 1. With these new power
relations the presentation is confluent.

Example 8.2. Let H be the group defined by the nilpotent presentation
on generators a, b, c, d, e, f, g, h, in that order, in which the nontrivial
commutation relations are

ba = abc, ca = acd, cb = bce,

and the power relations are

a2 = f h, b2 = gh, c2 = h2.

The relations on c, d, e, f, g, and h form a consistent presentation of an
abelian group. Conjugation by b maps c to ce and fixes d, e, f, g, and h.
In order for this map to extend to an automorphism a, the relation c2 = h
must be preserved. That is, (ce)2 must equal h, so e2 = 1. Let us add
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this relation to the presentation. Since b2 is in Grp (c, d, e, f, g, h), which is
abelian, a2 must be the identity. Now a-2(c) = a(ce) = ce2 = c, so a2 is 1.
The condition that a must preserve b2 = gh is also satisfied. Thus with the
addition of e2 = 1 we have a consistent presentation on b, c, d, e, f, g, and
h. Now let T be the automorphism induced on Grp (b, c, d, e, f, g, h) by a.
The condition that T preserves the relations c2 = h2 and b2 = gh leads to the
relations d2 = 1 and e = h2, respectively. The existing relation e2 = 1 now
implies that h4 = 1. The condition that r2 is the identity and hence fixes
a produces d = h2. The original presentation together with the relations of
d = h2, e = h2, and h4 = 1 is consistent.

Exercises

8.1. Use the ideas of this section to determine a consistent polycyclic presentation for the

group generated by a, b, c subject to the relations

ba = ab-1, ba 1 = a 1b-1 ca = abc, ca-1 = a-1c-1 cb = be1 c6-1 = 6-1c-1

8.2. Complete the case analysis in the proof of Proposition 8.3.

9.9 Consistency, the nilpotent case
This section continues the discussion of Section 9.8. The goal remains to
reduce as much as possible the amount of work needed to check the con-
sistency of a presentation (Y, R) which has the form of a standard monoid
polycyclic presentation. The notation established in the previous section is
still in effect.

The consistency criterion of Proposition 8.3 can be strengthened if R
is a -y-weighted presentation as defined in Section 9.4. In this case the
generators a1, ... , a,, have positive integer weights 1 = w1 < < wi,. (We
assign weight wi to al 1 if i is not in I.) All generators in the word Wi have
weight at least wi + 1 and Sid has the form ajAij, where every generator
in Aid has weight at least wi + w,. For each index k with Wk > 1 there are
indices i and j with i < j, wi = 1, wi = Wk -1, and Aid = ak. We choose one
such pair (i, j) and call the relation alai = aiajak the definition of ak. For
each e > 1, the subgroup G(e) generated by the ak with Wk > e is normal
in G. Thus ai and aj commute modulo G(wi + wj). Therefore, if (Y, R) is
consistent, then

Sid = ajAid ,

Tip = a.-,-1 Bid,

Uij = a, Cij,

Vj = a,-.1Did,

where generators occurring in Aid, Bid, Cij, or Did have weight at least
wi + wj. We shall make this additional assumption.
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Let c = w,, and consider the following set of overlaps:

akajai, k>j>i,wi+wj+wk<c,
mjaj ai, j E I, j > i, wi + wj< c,

aja' i , iEI, j>i, wi+wj<c,
am[+1 i E I, 2wi < C, (**)

aja-lai, i I, j > i, wi + wi. < c,

a. lanai, i I, j > i, wi + wj< c,

a. laj ai1, i,jV I, j>i, wi+wj<c.

Proposition 9.1. Suppose that (Y, R) is -y-weighted and satisfies the addi-
tional assumption. If (Y, R) is not confluent, then the first word P at which
confluence fails is one of the overlaps (**).

Proof. By Corollary 8.5, P is one of the overlaps (*). Suppose first that
P = akajai with k > j > i and wi + wi + Wk > c. The initial reductions at
P are

akajai -> akaiajAij , aiakAikajAij

and

akajai -> ajakAikai.

Now any a', a = ±1, occurring in Ask satisfies r > i and W,. > wj + Wk.
Therefore wi + w,. > c and aaai -* aia" is in R. Thus

ajakAikai ajakaiAik -.' ajaiakAikAik , aiajAijakAikAjk.

By the minimality of P, (Y+1, Ri+1) is consistent and defines a group K.
Any monoid generator as occurring in Aid has weight at least wi + wj.
Hence ak and Ai.7 define commuting elements of K. By the same argument,
aj and Aik define commuting elements, as do Aid, Aik, and Ask. Therefore,
if u is the element of K defined by akAikajAij, then u is also defined by the
following words:

akajAikAij, ajakAikAikAij, ajAijakAikAik.

Therefore, if R is the collected word in Y+1 defining u, then aiR is derivable
from both aiakAikajAij and aiajAijakAikAjk. Therefore local confluence
holds at P.
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Now suppose that P = a7''ai with j > i and wi + wj > c. Since Aij is
empty, the initial reductions at P are

M,aj ai Wjai

and

mi ri -1 rrai
aj ai aj aiaj -*, aiaj -4 aiWj.

Every generator in Wj has weight at least wj+1. Therefore Wjai * > aiWj,
so local confluence holds at P.

If P = aja°"i with j > i and wi + wj > c, then the initial reductions at P
are

a,a" - ajWi

and

ajaa; - aiajai' 1 + a°"'aj - Wiaj.

Each generator occurring in Wi commutes with aj, so ajWi and Wiaj define
the same element of the group K = Mon (Y+1 I Ri+1) Thus confluence
holds at P.

Suppose P = azr"+1 with 2wi > c. The reductions at P are

aai+1 ai1 2

and

a74+1 - WZa2 a2Wx

since each a', a = f 1, which occurs in Wi has weight w,r > wi + 1. Therefore
Wr + wi > c and a'ai - aiaa is in R.

Finally, if j > i and wi + w . > c, then it is easy to check that local
confluence holds at ajar tai, a ?ajai, and ai 1aja 1.

One can improve Proposition 9.1 using ideas from (Vaughan-Lee 1984).
For any i and j with 1 < i < j < n the set W = Y*aiYj* is closed under
rewriting. Suppose that confluence holds on W. If P is in Y*, then P *-+ Q
if and only if aiP -1-4 aiQ. Therefore confluence holds on Y* and (Y j, Rj)
is a consistent presentation for a group Kj. Let u be an element of Kj, let
P in Y* represent u, and let Pai --2L+ aiQ. (Such a Q always exists.) An
argument in the proof of Proposition 8.3 shows that the element v of Kj
defined by Q depends only on u and that the map u H v is a homomorphism
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vi of K3 into itself. Since akai - aiakAik for j< k < n, it is easy to see that
vi is surjective. Therefore Qi is an automorphism of Kj. (In the proof of
Proposition 8.3, we could be sure that W was closed under rewriting only
when j = i + 1 and we needed local confluence at the overlaps aka, lai or
akaz"` to know that ori was surjective.)

Now suppose that 1 < j < n and let L = bi ... br be a word in
{a1,. .. , aj_1 }* which is irreducible with respect to R. Set W (j, L) _
Yj*b1Y* ... Yj*brY*.

Proposition 9.2. Assume that j and L are as described and that confluence
holds on W(j, bi) =Y*biY*, 1 < i < r. Then confluence holds on W(j, L). If
P in Yj* represents an element u of Kj and PL * LQ, then Q represents
uT, where r = r1 T,, and ri is the automorphism of Kj induced by bi.

Proof. If r < 1, then there is nothing to prove, so we may assume that
r > 2 and that confluence does not hold on W(j, L). Let V be the union
over all subwords M of L of the sets W(j, M). The set V is closed under
rewriting and under taking subwords. Let R be the first word in V with
respect to -< at which confluence fails. By Exercise 7.2 in Chapter 2, R is
an overlap of precisely two left sides. By assumption, R must involve at
least two consecutive factors from L. Since L is irreducible, R must contain
elements of Yj as well. All elements of Y come before the factors of L in
the ordering -<. A simple case analysis shows that no such R can exist.

Now let P be any word in Yj* and let P represent u in Kj. We can rewrite
PL as follows:

PL=Pb1...b, b1P1b2...br -b1b2P2b3...b,. *->bl...brP,.

= LPr,

where each Pi is in K, and represents the image ui of u under r1 ri.
We may assume that LP, is irreducible. Now let Q be any word in Kj
such that PL - LQ. Since we have confluence on W(j, L), it follows that
LQ -L+ LP,r, which means that Q * -> P,.. Therefore Q represents u,r too.

Proposition 9.3. Assume that (Y, R) is as in Proposition 9.1. In testing
local confluence at the overlaps (**), we may assume that wi = 1 when
considering akajai with k > j > i and aT'ai with j > i.

Proof. Suppose that local confluence holds at all the overlaps (**), except
perhaps at some of the words akaj ai or ajn' ai with wi > 1. The presentation
(Yn, Rn) is consistent and confluence holds on W (n, ak) for all k < n. The
automorphisms of K,ti induced by a1,. .. , a,,,_1 are all trivial. Suppose r is
such that (Yr, R,,.) is consistent and confluence holds on W (r, ak) for all k
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with 1 < k < r. Each of the generators ak induces an automorphism ak on
Kr. Choose r minimal such that if k < r and Wk > 1, then ajai = aiajak,
where ajai = aiajak is the definition of ak. As noted, r < n.

If r = 1, then (Y, R) is consistent. Suppose r > 1.

Lemma 9.4. The presentation (Yr_1,Rr-1) is consistent.

Proof. By assumption, or_1 induces an automorphism ar-1 on Kr. If r-1
is not in I, then ar_1 defines a cyclic extension H of Kr with H/Kr infinite.
If r - 1 is in I, then local confluence at the words asaT`''j' with s > r - 1
shows that ar-1 and Wr_1 define a cyclic extension H of Kr with H/Kr
of order mr_1. In either case, local confluence at the last three types of
overlaps in (**) with i = r - 1 implies that H is a homomorphic image of
Mon (Yr-1, Rr_1) Therefore (Yr_1, Rr_1) is consistent.

Suppose that confluence holds on all W (r - 1, ak) with k < r - 1. Then
each ak defines an automorphism ok of Kr-j. Let ajai = aiajak be the
definition of some ak with k < r - 1 and wk > 1. The automorphisms ajai
and aiajak agree on Kr. To see if they agree on Kr-j, it suffices to check
whether they agree on the element u represented by ar_1. Since wi = 1, we
know that local confluence holds at ar_lajai. The reductions confirming
local confluence begin as follows:

ar-lajai -4ajar-lAjr-tai,

ar-lajai - ar-laiajak.

Any word derivable from both ajar_iAjr_lai and ar_laiajak must have ai
occurring earlier in the word than aj. Thus the first reduction must continue
with

ajar_lAjr_lai - ajaiM - aiajakM.

This means that the second reduction must involve

ar_laiajak aiajakN.

Local confluence means that M and N define the same element of Kr_l.
But M represents the image of u under ajai and, by Proposition 9.2, N
represents the image of u under aiajak. This means that ajai and aiajak
agree on u and therefore they agree on Kr_1.

By the choice of r, we conclude that confluence must fail on some
W(r - 1, ak) with k < r - 1. Choose k minimal. By Exercise 7.2 in
Chapter 2, the first word R in W (r - 1, ak) at which confluence fails is
the overlap of precisely two left sides, local confluence fails at R, and R
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involves ak. By arguments similar to those in Proposition 8.3, R has the
form atasak with t > s > k or as sak. Since confluence holds on W(r, ak), in
either case s = r -1. If wk = 1, then local confluence is known to hold at R.
Therefore wk > 1. Let aja2 = aiajak be the definition of ak. Then ai and
aj define automorphisms ai and a,, respectively, of K,._1 and ak defines an
automorphism Uk of Kr. On Kr, we have ajai = Qiajak

As before, local confluence holds at ar_laja2 and one of the reductions
confirming this starts out

ar_lajai , ajar_lAjr_1ai -1--* a.ja2M - aiajakM.

We must analyze the other reduction a little more closely. It begins

ar_1ajai -4 ar-lajajak -* ajar-1`42r-lajak -* > ajar_1ajPakQ,

where it is possible to write Air_1 as EF and Fajak - ajakQ and Eaj
ajP. The reduction continues

ajar_1ajPakQ -> aia,jar-iAjr-1PakQ -2L+ ajajar_1akL -4 aiajakar_1Akr_1L.

Let u and v be the elements of Kr_1 represented by ar_1 and ar_1Akr_11 re-
spectively. Then Air_1 and Ajr-1 represent u-lu°i and u-lu°j, respectively.
The word L represents

(u-lu°j)°,t(,a-luai)°jak = [u-1u°,(u-1u°i)°j]°k = [u-1u°i°']°k

The element u-1u°i°i is in Kr and on Kr we know that ak is the same asa la. to jui Therefore L represents

As before, M represents u°j°i. Local confluence at ar_1ajai implies that

V(u° 1"; 1°j°i)-lu°3°i =

or

This means that all relations in R which can be used to rewrite elements
of W(r - 1, ak) are satisfied in the cyclic extension of Kr_1 defined by
or, laj lajai. Therefore confluence must hold on W(r - 1, ak) after all. This
contradiction completes the proof of Proposition 9.3.
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9.10 Free nilpotent groups
Let F be the free group on a finite set X with JX I = r and let e be a
positive integer. Any group isomorphic to G = F/ye+i (F) is called a free
nilpotent group of rank r and class e. The term "collection" was first used
in (P. Hall 1934) in connection with computing in free nilpotent groups.
In this section we shall describe polycyclic generating sequences for G.
Consistent polycyclic presentations are given for G in terms of some of these
sequences, but the proof of consistency requires considerably more space
than is available here. Details can be found in [Hall 1959] and [Magnus
et al. 1976].

Since G is finitely generated and nilpotent, it is polycyclic by Proposi-
tion 3.4. Suppose X = {x1, ... , x,.}. By Propositions 2.5 and 2.6, for k > 2
the commutators [xi,, ... , xik] with it > i2 generate yk(F) modulo yk+l(F).
Thus the images in G of these elements with k < e form a polycyclic gener-
ating sequence for G when arranged in increasing order of k. A presentation
for G is obtained by setting all commutators [xi1, ... , xik+1 ] with it > i2 equal
to 1. The Knuth-Bendix procedure can be used to find the corresponding
standard polycyclic presentation.

Example 10.1. Let X = {x1,x2} and take e = 5. One polycyclic generating
sequence for G is x1, ... , x17, where x3, ... , x17 are defined as follows:

x3 = [x21x1]1

x4 = [x3, x1] - [x21 xlI x1] 1

x5 = [x3, x2] = [x21 X1I x2]1

x6 = [x4, x1] _ [x2, xi, xl+ x1] I

x7 = [x4, X2] = [x2, x1, x1, x2],

x8 = [x5, x1] = [x2, x1, x2, x1],

x9 = [x5, x2] = [x2> xl I x2+ x2] 1

x10 = [x6+x1] = [x2+x1 Ix1 Ix1 Ix1]I

X11 = [x6, x2] = [x2, xi, xi, xi, x2],

x12 = [x7, x1] = [x2, xi, xi, x2, x1] I

x13 = [x7+ x2] = [x2, x1, x1, x2, x2],

x14 = [x8, x1] = [x2, x1, x2, x1, xl] 1

x15 = [x8, x2] = [x2, x1, x2, x1, x2],

x16 = [x9, x1] = [x2, x1, x2, x2, x1],

x17 = [x9, x2] = [x2, x1, x2, x2, x2].



9.10 Free nilpotent groups 437

A presentation for G on these generators is [xj, xi] = 1, 10 < j < 17, 1 < i <
2. The Knuth-Bendix procedure using the basic wreath-product ordering
with x17 -< x17 - x16 -< ... -< xl -< xi-1 will produce the standard polycyclic
presentation for G on the xi. The Knuth-Bendix procedure can be helped
along by including some redundant relations [xj, xi] = 1, where [xj, xi] is
clearly in y6 (G) =1. Examples of such relations are [x6, x3] = 1 and [xj, xi] _
1for4<i<j<17.

The standard presentation obtained in this case is too large to list here,
but it is instructive to look at the power relations which occur. They are

-1 -1
x7 = x8x11x14 x15x16 ,

x12 = x14,

x13 = x15.

Thus 74(F)/y5(F) = y4(G)/y5(G) is the abelian group generated by x6, x7,
x8, and x9 subject to the single relation x7 = x8. Therefore y4(G)/y5(G)
is free abelian of rank 3. Similarly, y5(F)/y6(F) = y5(G) is free abelian of
rank 6.

Computations like those in Example 10.1 suggest that the quotients
yk(F)/'Yk+l(F) are always free abelian groups and that for large k the ranks
of these groups are substantially smaller than the upper bound of

rk - rk-1

2

given by Propositions 2.5 and 2.6. The rank of yk(F)/yk+1(F) is known
and bases for these groups have been determined. To describe these bases
we need to introduce the concept of a basic sequence of commutators.

A basic sequence of commutators in F is an infinite sequence cl, c2, ...
of elements of F, where each ci has associated with it a positive integer wi
called its weight. The ci must satisfy several conditions, which will now be
described. The ci are ordered by weight. That is, if j > i, then wj > wi.
The commutators of weight 1 are cl, ... , cT, which are the elements of X
arranged in some order. If wk > 1, then Ck is described explicitly as the
commutator [cj, ci], where j > i and wk = wi + wi . If wj > 1, so that cj is
described as [cq, cP] with q > p, then p:5 i. Finally, for each j > i such that
either w, = 1 or wi > 1 and cj is described as [cq, cp] with p < i, there is a
unique index k such that ck is described as [cj, ci]. The phrase "sequence of
basic commutators" is used by most authors, but being basic is a property
of the sequence, not of the individual terms in the sequence. We shall say
that a commutator u is basic only when a basic sequence of commutators
has previously been specified and u is a term in that sequence.
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Example 10. 2. Suppose that X = {a, b}. The terms of weight at most 6 in
one basic sequence are

Cl = a, C13 = [C71 C2]1

C2=b, C14 = [C8+C2]1

C3 = [C21 C1], C15 = [C51 C4]1

C4 = [C31 C1] I C16 = [C61 C3]>

C5 = [C31 C2]1 C17 = [C71 C3]1

C6 = [C41 C1I I C18 = [C81 C3]1

C7 = [C41 C2]1 C19 = [C11, C1],

C8 = [C51 C2]1 C20 = [C11, C2]1

C9 = [C41 C3] 1 C21 = [C12 1 C2] 1

C10 = [C51 C3]1 C22 = [C131 C2]1

Cll = [C61 C1], C23 = [C141 C2]

C12 = [C61 C2]1

Here cl and c2 have weight 1, c3 has weight 2, c4 and C5 have weight 3,
c6, c7, and c8 have weight 4, C91 ... , c14 have weight 5, and C151 ... , C23 have
weight 6.

As defined here, a basic sequence of commutators includes the description
of each term of weight greater than 1 as the commutator of earlier terms
in the sequence. The reason for this is at this stage it is conceivable that
[cj, c2] = [cq, ep] even though (j, i) # (q, p) and that some of the Ck could be
trivial. This cannot occur, but the proof is somewhat involved. From now
on we shall write Ck = [cj, c2] for the assertion that ck is described as [cj, ci].

Let us fix a basic sequence c1, C21 ... of commutators in F. The com-
mutators of weight 1 are in F = y1(F). By Proposition 1.10 and a simple
induction argument, it is easy to prove that c2 is in y,,,, (F) for all i. Suppose
that cl, . . . , ct are the commutators in the sequence with weight at most e,
and for 1 < i < t let a2 be the image of c2 in G = Fl-y,+,(F). We shall prove
that the a2 form a polycyclic generating sequence for G. In the proof, the
following proposition will be needed.

Proposition 10.1. Let u and v be elements of a group. Then

[v u-1] = [v u u-11-1 [v u]-1

and

[v-1 ul = [v a v-1]-1[v u] -1
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Set ul = vl = [v, u] and for i > 1 let ui+1 = [ui, u] and v2+1 = [vi, v]. Then,
for any odd positive integer s,

[v, u-11 = u2u4 ... us-1 [us, u-1]-1us -1 uS 12 ... u3 1u1 1,

[v-1 u] = v2v4 ... V,,-1 [vs, v-1]-1vy -1 1 Vs 12 ... V_ 1
v1_ 1.

Proof. The first two identities are proved by direct computation in the
free group generated by u and v. They correspond to the case s = 1 of
the second pair of identities. The second pair is proved by induction on s,
using the following applications of the first identity:

[us
u-1]-1 = ([u8, u, u 1]-1 [us, u]-1)-1

= us+1[us+l,u 1]

- us+1 [us+1 ' U, u
1] 1

[us+1 u]
1

11-1 -1
us+1[us+2,u us+2'

[vs
v-1]-1 = ([v9,v,v-1]-'[vs,v]-1/)-1

L

= vs+1[vs+l, v

11 1

]

- vs+1 [vs+1 , V, V-11-1 [vs+1 ' v] -1

-11-1 -1
vs+1[vs+2,v vs+2'

Now we are ready to prove that a basic sequence of commutators defines
a polycyclic generating sequence for G. For 1 < i < t + 1 define Gi =
Grp (ai, ... , at).

Proposition 10.2. The sequence a1,... , at is a polycyclic generating se-
quence for G.

Proof. We must show that for 1 < i < j < t and any a and ,Q in {1, -1}
there is an element z of Gi+1 such that a,"as = 4z. If wi + w, > e, then
[cj,ci] is in rye+1(F) and so ai and aj commute. Therefore we may take
z = aq in this case. Let us assume that wi + w, < e. Suppose first that
[ci, ci] = ck is basic. In Proposition 10.1, let u = ci and v = cj. Each of the
commutators um and vm is basic. If m is large, then both um and v,171 are
in rye+l (F) and can be ignored when we pass to the quotient group G. Let
xm and ym denote the images of um and vm, respectively, in G. Then xm
and ym lie in Gi+1 and

alai = aiajak,

aja 1 = ati laix2x4 ... x31x1 1

a, lai = aia, 1y2y4 ... y3 lyl
1.
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The products indicated with dots are finite products. Finally,

a lai 1 - ai 1(aiaiai 1)_1 - ai lxlx3...x41x21aJ 1.

Now suppose that [cj, ci] is not basic. Then c, = [cq, cp,] with j > q > p > i.
In particular, j > i+1, so we may proceed by induction on j. The conjugates
ai 1aga. and ai 1ap,a. have already been shown to be in Gi+l. Therefore
ai lanai = ai 1[ag, ap,]ai is also in Gi+1, or, equivalently, alai = aiz, where z
is in Gi+1. The other cases are handled in the same way.

The proof of Proposition 10.2 allows us to construct a polycyclic presen-
tation for a group H of which G is a homomorphic image. It is in fact
the case that the presentation obtained is consistent and H is isomorphic
to G, although we cannot give the proof here. It is also true that the se-
ries G = Gl D . . . D Gt+l refines the lower central series of G. Moreover,
if 1 < m < e, then the quotient Q = rym(G)/rym+1(G) = rym(F)/rym+1(F) is
a free abelian group. If cp, ... , cq are the basic commutators of weight m,
then the images of ap, ... , ag in Q form a basis of Q. The rank of Q is

1- E µ(d)rldm
dim

where p is the Mobius function, which is defined as follows: µ(n) = (-1)s
if n is the product of s distinct primes and p(n) = 0 if n is divisible by the
square of a prime. In particular, p(l) = 1.

Example 10.3. Let us again look at the case r = 2 and e = 5, using the
basic sequence of commutators in Example 10.2. The generators of G are
al, ... , a14, which are the images of c1, ... , c14. There are 91 commutators
[aj, ai] with i < j. For 76 of these, wi + wj > 6, and hence the commutator
is trivial. Of the 15 remaining commutators, 12 are basic. This leaves only
three to be determined. They are [a5, a1], [a7, a1], and [ag, a1].

aj 1a5a1 = al l[a3,a2]al = [al la3al,a,1a2a1] = [a3a4,a2as]

= a41a31a31a21a3a4a2a3 = a41a31a31a21a3a2a4a7a3

= a41a31a31a21a2a3a5a4a7a3 = a41 a31a5a4a7a3

= a4a31a5a4a3a7 = a41a31a5a3a4a9a7 = a41a31a3a5a10a4a9a7

= a4a5a10a4a9a7 = a41a4a5a10a9a7 = a5a7a9a10.

Therefore a5a1 = ala5a7a9a10. Now

al 1a7a1 = [a4a6, a2as] = a6 1a4 1a3 1 ag 1a4a6a2a3,
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which simplifies to a7a9a12. Finally,

-al 1anal = [a5a7a9a10, a2a3],

which turns out to be a8a10a13
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Once we have a consistent polycyclic presentation for our free nilpotent
group G, we can compute in G using the techniques developed in Sec-
tions 9.4 to 9.7. However, if many calculations with elements of G are to
be carried out, then collection is not the most efficient way to compute
products. The approach to be described applies not only to free nilpo-
tent groups but to any group defined by a consistent nilpotent presentation
without power relations.

Let a1,.. . , an be a polycyclic generating sequence for a group H such
that the corresponding standard polycyclic presentation for H is nilpotent
and contains no power relations. We can identify H and 7Ln as sets by
letting (al, ... , an) in 7Ln correspond to ai' ... a'n. Suppose that g and h are
elements of H and that g, h, and gh correspond to (al, ... , an),
and (vl, ... , Un), respectively. We may consider al, . . . , an to be functions
of a1, ... , an and In fact, vi = oZ (al, ... , ai, ,61, ... , Qi) depends
only on al, ... , ai and In (P. Hall 1957) it is shown that each
ai is a polynomial function of the a's and the /3's. If these polynomials
can be determined, they can be used to compute products much more
rapidly than can be accomplished with collection. The polynomials defining
multiplication in H take on integer values whenever the a's and ,3's are
integers. Any such polynomial is an integer linear combination of products
of binomial coefficients of the form

Cal/ ... (an/
(t1) ...

\tn/

Notice that these polynomials do not necessarily have integer coefficients
when expressed as linear combinations of ordinary monomials. Not only
is multiplication in H defined by polynomials, so is inversion. That is, if
ail ... an is the inverse of ai' ... ann, then the S's are polynomials in the a's.

Example 10.4. Suppose that H is D31) as defined in Example 2.1 and

100 110 101
a1= 0 1 1 , a2= 0 1 0 , a3= 0 1 0 .

001 001 001
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Then a"' a 112 a3"' is

1 a2 a3
0 1 al
0 0 1

Moreover,

1 a2 a3 1 112 /13 1 U2 U3

0 1 al 0 1 31 = 0 1 al
0 0 1 0 0 1 0 0 1

where al = al + all 0'2 = a2 + 02, and Q3 = a3 + ,a3 + a2)31

A crude upper bound for the total degree of o i is i. However, if H is
our free nilpotent group G of class e and al, ... , an are defined by a basic
sequence of commutators cl, c2, ... with associated weights wl, w2, ..., then
each of the products

Cal/ ... (az/ 3)

which occurs with nonzero coefficient in ci satisfies

Y,(sj + tj)wj < wi.
j=1

If the class e of G is not very large, then the polynomials Qi can be
computed fairly easily. For the moment, let us assume that we know the
bivariate polynomials 7]ijk, n > k > j > i, such that

aaaa = aaaaaj"`;;+'(a>Q) ..
a z+1 n

Notice that this formula remains valid even if the exponents a and a are
themselves polynomials in one or more indeterminates. Given the 'qijkl
we can use any of the classical computer algebra systems to construct a
"symbolic collector", which collects products of powers of the generators in
which the exponents are polynomials. To compute the ai, one has only to
collect the single "symbolic word" ai' ... a"°a#' ... aQn, where the a's and
the /3's are indeterminates.

Thus it suffices to determine the polynomials 1lijk. By the remark above,
if a''/33 occurs with nonzero coefficient in riijk, then rwj +swi < Wk < e. Thus
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we may compute aq2 for those nonnegative values of a and /3 for which
awl + ,3wi < e and then use interpolation to find the 1lijk. Exercise 10.4
describes one convenient way to carry out the interpolation. Although a
basic collection procedure would be adequate in principle to compute the
necessary values of ajl'ap, we can accomplish the task much more quickly
by using the symbolic collector whenever possible. The values of i are
considered in the order n - 1, n - 2,..., 1. For a given i, the values of j
are considered in the order n, n - 1, . . . , i + 1. For a given pair (j, i), we
take a = 0, 1,... and for a given a we let /3 = 0,1, .... The first collection
step is aaas = ai -laiaj [aj, ai]aa-1. After this, if we need to replace a9 ap by
aPaq [a9, az], then either we have already determined the polynomials rlpqk
or we have (q, p) = (j, i) and a a, has already been computed.

Example 10.5. Let us continue with the case r = 2 and e = 5 of Example 10.3.
Here are the polynomials o :

al = a, +)31,

a2 = a2 + /32,

U3 = a3 +03 + a2/31,

0'4 = a4 + 04 + 0'301 + a2
131

21,(
a5 =a5+/35+a3/32+ (2)/31+a2/31/32,

(/3i)
s = as + ,3s + a4Q1 - a3 + a2 (/3i)

a7 = a7 + /37 + a5/31 + a4,32 + a3/31,32 + (2 )1131 f + a2 ()/32 ,
2 2

0'8=a8+08+a5/32+a3 '2 +(2)/31+
(a2)/3/3

2+a2,31(32),

v9=a9+,39+a4,33+a5/31+a7/31+(2)/31+a5(01)+2(2)01)

+a2a3(01) +a2(131) +a2(131)/33+a3/31/33+3(2) (131),

a10 =a10+/310+a5/31+a5/33+a8/31+ (2),31+ (2 )/32+a3/32/33

)a3/31 +3 (2) (131) + (2)/31/33 +a2a3/31/32+2(3 )/3l + (22 2 2 2

)
+2(2) (131)02+a2(2)/32+a2/31/32/33+4(3)

(1312 2 2
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+ (2)fl1fl2,

0'11 =all+311+a6,31+a4( ) +a3(3) +a2I 41 1

0'12 = a12 + 012 + a6,32 + a701 + a40102 + a5
(,I,) + (a2) "1

2 2 3

+a2((31 2)/32,

0'13 = a13 + 013 + a7132 + a8131 + a4
(2) + a5,31,32 + (2) (01) +

2 2

+(a2)

2 2
(i)132+a2(3)(p2) +a3131(')

0'14 = a14 +0

,

2 + a(p2)
4 3

a8 2 + a5 + (2) + (2)l2

+(2)01( 2)+a2,31(32).
2 2 3

As e increases, the number of terms in the ai grows very rapidly and it
becomes difficult to store these polynomials. A compromise is to store only
the polynomials

o,27) = oi(a1,...,ai,0,...,0, 0j, 0'...' 0),

where 1 < j < i. The product

(a"' a°)(ai'...aa.)
1 n

is now evaluated as

(... ((a" ... an° )aQ') aO2 ...) adn

using the polynomials ai(j), a1, ... , an(j) in the computation of the j-th
product.

Exercises

10.1. Show that the polycyclic presentation

a2al = a1a21, al lal = ala2, a2a11 = al'a2', a2'al l = al lag

on generators al and a2 is consistent. Determine a formula for (ai'a22)(aQ1at).
Conclude that multiplication in this group is not defined by polynomials.
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10.2. Each polynomial f in Q[X1, ... , X,,,] defines a function 7 from Qm to Q. Show that
the map f --, f is an injective ring homomorphism from Q[Xi, ... , X ] to the ring of
functions from Qm to Q under pointwise addition and multiplication.

10.3. If sr,... , s,,, are nonnegative integers, define 91112 1. to be the product

of binomial coefficients. Prove that the polynomials are a vector space basis for
Q[X1, ... , X,,,] over Q. Suppose f is in Q[X1,... , Xm] and f (al, ... , a,,) is an integer
for all (a,_., a,,,) in 7Gm. Show that f is an integer linear combination of polynomials
93132...x,,,

10.4. Suppose that si, ... , sm and ti...., t, are sequences of nonnegative integers. Let us say
that gt1t2...tm precedes 93112_1mm if ti < si for all i and ti < si for some i. Let f be in
Q[Xl,... , and let h be the sum of the terms in f involving polynomials gt1t2...t,,,
which precede 91,12---l.- Prove that the coefficient of g3132...8,,, in f is f (si.... , s,,,) -
h(sl,... , sm). Assume that values off can be computed and that a bound on the degree
of f is known. Show how to express f as a linear combination of the gs1s2,..sm.

9.11 p-Groups
Let p be a prime. A p-group is a group in which every element has finite
order and these orders are powers of p. A finite p-group has order pT
for some nonnegative integer n. An elementary abelian p-group is a finite
abelian p-group in which the p-th power of every element is 1. Such a group
is a direct product of cyclic groups of order p and may be considered to be
a vector space over the field 7LP of integers modulo p. (Additive notation
should be used when this is done.) In Section 11.7 we shall describe an
algorithm for determining finite p-groups which are quotients of a given
finitely presented group. This section summarizes the facts about finite
p-groups which we shall need.

Let P be a nontrivial finite p-group. The following statements are proved
in most basic texts on finite groups:

(1) The center of P is nontrivial.
(2) Every proper subgroup of P is contained in a subgroup of index p

and all subgroups of index p are normal.
(3) P is nilpotent.

By (3), the lower central series of P eventually reaches the trivial sub-
group. However, there is another central series which is particularly useful
in studying P. For any group G, define GP to be the subgroup generated
by {gP I g E G}. The terms cpi(G) of the lower exponent-p central series
of G are defined as follows: W1(G) = G and Vi+1(G) = [cp2 (G), G]1pi (G)P.
By induction, ci (G) is normal in G and hence so are [cc (G), G] and GP.
Therefore the product [Vi (G), G]cpi(G)P is a subgroup. We could also define
Vi+1(G) as the smallest normal subgroup N of G contained in cpi(G) such
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that cpi(G)/N is in the center of GIN and is an elementary abelian p-group.
Thus the quotients cpi(G)/cpi+1(G) are vector spaces over ZP.

In the case of our finite p-group P, eventually go (P) is trivial. For if cpi(P)
is not trivial, then Q = [cpi(P),P] is a proper subgroup of Vi (P), since P is
nilpotent. The quotient R = cpi(P)/Q is a nontrivial finite abelian p-group
and hence is a direct sum of finite cyclic groups of orders which are powers
of p. It is easy to show that RP is a proper subgroup of R. Then cpi+1(P),
which is the inverse image of RP in cpi(P), is a proper subgroup of cpi(P).
The smallest nonnegative integer c such that cpc+1(P) is trivial is called the
exponent-p class of P.

The subgroup W2(P) is the intersection of the subgroups of index p in
P and is called the Frattini subgroup of P. The quotient P/co2(P) is the
largest elementary abelian quotient of P. In general, the Frattini subgroup
of a group G is the intersection of the maximal subgroups of G if G has
maximal subgroups. If there are no maximal subgroups, then the Frattini
subgroup is G. The Frattini subgroup is the set of "nongenerators", ele-
ments x in G with the property that, if a subset X of G generates G, then
X - {x} generates G. Thus a subset X of our finite p-group P generates P
if and only if the image of X in V = P/cp2(P) generates V. If V has order
pd, then V is a vector space of dimension d over 7GP and minimal generating
sets of V all have d elements. Thus minimal generating sets of P also have
d elements.

Let us fix a prime p. Results analogous to Propositions 1.10, 2.5, and 2.6
hold for the terms of the exponent-p central series.

Proposition 11.1. For any group G and for any positive integers i and j,
the subgroup [cpi(G),coj (G)] is contained in cpi+j (G).

Proposition 11.2. Suppose that G/cp2(G) is generated by the images of
xl, ... , xd. Then V2(G)/V3(G) is generated by the images of x!,1 < i < d,
and [xj, xi], 1 < i < j <d.

Proposition 11.3. Suppose that s > 1, that X is a subset of G which
generates G modulo cp2(G), and U is a subset of cps(G) which generates
cps(G) modulo cps+1(G). Then cps+1(G) is generated modulo cps+2(G) by the
elements uP with u in U and the elements [u, x] with u in U and x in X.

Let F be a free group of rank r. Propositions 11.2 and 11.3 give upper
bounds for the dimensions of the quotients cos(F)/cps+1(F). In fact, these
dimensions are known exactly. Let c1, c2, ... be a basic sequence of com-
mutators in F. Then a basis for cps(F)/cps+1(F) is given by the elements

s-wg
cp , 1 < i < t, where wi is the weight of ci and ct is the last commutator
of weight s. See [Huppert & Blackburn 1986].
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Let us return to our finite p-group P. It follows from Propositions 11.2
and 11.3 that P has a cp-weighted presentation relative to the prime p.
This is a power-commutator presentation on generators a1,. .. , as with the
following properties:

(a) Each ai has associated with it a positive integer weight wi such that
w1 = 1 and wi <wi+1, 1 <i <n.

(b) For 1 < i < n there is a power relation ap = Wi and the generators
which occur in Wi all have weight at least wi + 1.

(c) For each commutation relation alai = aiajAij, the generators which
occur in Ail all have weight at least wi + wj.

(d) If wk > 1, then one of the following holds:
(1) There are indices i and j with wi = 1 and wj = wk - 1 such that

Aid = ak.
(2) There is an index i with wi = wk - 1 such that Wi = ak.

We choose one relation alai = aiajak or of = ak as the definition of
ak.

The differences between a p-weighted presentation and a 'y-weighted pre-
sentation are the following: In a cp-weighted presentation there is a power
relation for each generator, so the group P defined by the presentation is
finite; the exponents in the power relations are all equal to a fixed prime p;
and generators of weight greater than 1 are defined either as commutators
or as p-th powers of earlier generators. Let d be the largest index for which
Wd = 1. Then P is generated by x1, ... , Xd and d is the minimum number of
generators in any generating set. The subgroup ccs(P) is generated modulo
Ps+i (P) by the generators of weight s.

A p-weighted presentation is a monoid presentation on generators
al, ... , an. The techniques of Sections 9.8 and 9.9 can be extended to obtain
results which reduce the amount of work needed to test the consistency of
a presentation which has the form of a p-weighted presentation. In fact,
(Vaughan-Lee 1984), which provided the ideas for the proof of Proposi-
tion 9.3, actually deals with p-weighted presentations. Let c = wn. If
wi + wj = c, then AP represents the identity in the group defined by the
presentation, since all generators of weight c commute and have order di-
viding p. This implies that a few of the overlaps in Proposition 9.3 do not
need to be considered here. To determine consistency we need only test for
local confluence at the following overlaps:

akajai, k > j > i, wk + w3+ wi < c, wi = 1,
and ajap, j > i, wj+ wi < c,

+1aP, 2wi < c.
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Module bases

In Chapter 11 we shall discuss algorithms for determining various solvable
quotient groups of a group given by a finite presentation. One of these al-
gorithms is the Baumslag-Cannonito-Miller polycyclic quotient algorithm.
This algorithm involves computation in finitely generated modules over
group rings of polycyclic groups. These rings are in general noncommu-
tative but they are similar in many ways to rings of polynomials. An
important special case is the group ring of a free abelian group, which is
more commonly referred to as a ring of Laurent polynomials.

The group Z' is a free Z-module of rank n. A subgroup, or Z-submodule,
H of Z can be described conveniently by a matrix in row Hermite nor-
mal form. This description makes it relatively easy to check membership
in H and hence to solve the word problem in Z'/H. Now let R be the
ring Z[X,,... , Xj of polynomials with integer coefficients in the indeter-
minates X1,. .. , X,,,,. Then Rn is a free R-module of rank n. Let M be the
R-submodule generated by a finite subset T of R. Given T, we shall need
to produce another module generating set for M which will allow us easily
to decide membership in M and so permit us to solve the word problem
in R"/M.

The algorithms for manipulating integer matrices developed in Chap-
ter 8 can be generalized. Unfortunately, when m becomes even moderately
large, the space requirements of this approach become very great. There is
an alternative. The technique of Grobner bases was originated by Bruno
Buchberger in the 1960s. It has become a very important tool in compu-
tational commutative algebra. This chapter first gives a solution to our
problem based on the methods of Chapter 8. Then the Grobner basis ap-
proach is outlined. The intent is to try to show the relationship between the
point of view of Baumslag, Cannonito, and Miller and that of Buchberger.
The chapter concludes with a sketch of the generalization of these methods
to finitely generated modules over rings of Laurent polynomials and over
group rings of arbitrary polycyclic groups.
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10.1 Ideals in Z[X]
Let I be an ideal of the ring Z[X] of polynomials in one variable with
integer coefficients. A special case of the Hilbert basis theorem says that
I is finitely generated as an ideal. It will be useful to sketch the proof of
this result. For each integer n > 0 let In be the set of elements of I having
degree at most n. For these purposes 0 is defined to have degree -oo, so
0 is in each In. The set of all polynomials of degree at most n is a free
abelian group with basis X n' ... , X, 1. Let Cn be the set of coefficients of
Xn in elements of In. Since In is an additive subgroup of Z[X], it follows
easily that Cn is a subgroup of Z. If f is in In, then X f is in In+1 and
the coefficient of Xn+1 in X f is the same as the coefficient of Xn in f.
Therefore Cn C Cn+1. The ascending chain condition holds for subgroups
of Z, so there is an integer m such that Cn = C,n for all n > m. The smallest
such m will be called the effective degree of I.

The group I,n generates I as an ideal. If not, we could choose an element
f of I with minimum degree such that f is not in the ideal J generated
by Im. If the degree n of f is at most m, then f is in I,,,, which is certainly
not the case. Thus n > m. Since Cn = Cm, there is an element g in I,,, such
that the leading coefficient of g is the same as the leading coefficient of f.
Therefore f - Xn-mg has degree less than n. Since f and g are in I, so
is f - Xn-mg. By the choice of f, it follows that f - Xn-mg is in J. But
Xn-mg is in J and therefore f = (f - Xn-mg) + Xn-mg is in J. This is a
contradiction, and hence generates I. Since I,n is finitely generated as
an abelian group, I is finitely generated as an ideal.

Suppose that I is defined as the ideal generated by some finite set T of
polynomials. The traditional proof of the Hilbert basis theorem does not
tell us how to determine the effective degree m of I from the generating
set T. In fact, it is relatively easy to compute m. Let d be the maximum
degree of the elements of T. The following proposition gives an upper bound
for m.

Proposition 1.1. If n > d, then Cn = Cd.

Proof. Since Id contains T, it follows that Id generates I as an ideal.
Therefore I is generated as an abelian group by the set of products Xkf,
where k > 0 and f is in Id.

Lemma 1.2. If n > d, then In is generated as an abelian group by the set
of products X k f , where 0 < k < n - d and f is in Id.

Proof. Let g be an element of degree n in I. Then

g=Xk'f1+...+Xk.fs,
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where the ki are nonnegative integers, and the fi are in Id. If ki > 0 and fi
has degree less than d, then we may replace fi by X fi and ki by ki -1. Thus
we may assume that either ki = 0 or deg(fi) = d. Also, if i # j and ki = kj,
then X k; fi + X ki f_ = Xk, (fi + f) and fi + fl is in Id. Therefore we may
replace the two terms Xki fi + X ki f3 by the single term Xk= (fi + fj). Hence
we may assume that k1 > k2 > ... > ks. Suppose that k1 > n-d. Then f1 has
degree d and Xk1 f1 has degree k1 + d. But all of the other terms Xk% fi have
degree less than k1 + d. Therefore the degree of g is k1 + d > n - d + d = n.
This is a contradiction, so k1 < n - d.

Now it is easy to finish the proof of the proposition. By Lemma 1.2, the
coefficient of Xn in an element of In is the coefficient of Xd in an element
of Id. Therefore Cn C Cd. Hence Cn = Cd.

In spite of Proposition 1.1, knowing T does not immediately allow us
to decide whether a given polynomial g is in I. Although knowing Id is
enough to decide membership in I, the problem is that Id is not necessarily
the additive subgroup A of Z[X] generated by T. Clearly A is contained
in Id, but in general the containment is proper. There is a way to decide
whether A = Id. Let B be the set of polynomials in A which have degree
less than d, and let X B denote the set of products X f with f in B.

Proposition 1.3. The subgroups A and Id are equal if and only if XB is
contained in A.

Proof. Clearly XB C_ Id. Thus if A = Id, then XB C_ A. Now suppose
that XB C_ A and let g be in Id. Then g = Xkl f1 +.. + Xks fs, where the
ki are nonnegative integers and the fi are in A. Just as in the proof of
Lemma 1.2, the fact that X B C A allows us to assume that k1 > ... > ks
and that fi has degree d if ki > 0. But now the assumption that k1 > 0
leads again to a contradiction. Therefore g is in A.

Proposition 1.3 actually gives us an algorithm for computing a Z-basis
for Id. If X B is contained in A, then we simply take a basis for A. If X B is
not contained in A, then we choose a basis for B, multiply those polynomials
by X, and add the results to our basis for A. Now we recompute A and B
and check whether XB is contained in A. Since all of this is taking place in
a free abelian group of rank d + 1, the ascending chain condition holds, so
A cannot continue to grow indefinitely. Eventually X B will be contained
in A, and at that point A will be Id.

Example 1.1. Let I be the ideal of 7G[X] generated by the following set T
of polynomials:

2X4+5X3-13X2- 4X+30,
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2X3+ X2- 7X- 6,
6X3 - X2 - 15X.

We may identify the set of integer polynomials of degree at most 4
with Z5 by mapping the polynomial a4 X4 + a3 X3 + a2 X2 + a1X + a0 to
(a4, a3, a2, a1, a0). Under this identification, T corresponds to the rows of
the matrix

2 5 -13 -4 30
M1= 02 1 -7-6

0 6 -1 -15 0

The subgroup A generated by T corresponds to S(M1). Row reducing M1
over Z, we get

211-14-30
M2= 0 2 1 -7 -6

0 0 4 -6 -18

The second and third rows of M2 correspond to the polynomials 2X3 +X 2 -
7X - 6 and 4X2 - 6X - 18, respectively. These two polynomials generate
the subgroup B of elements of A with degree less than 4. Multiplying these
polynomials by X and adding them to the set represented by M2 gives

2 1 1 -14 -30-
0 2 1 -7 -6

M3 = 0 0 4 -6 -18
2 1 -7 -6 0

04-6-18 0

If X B is contained in A, then the nonzero rows in the row Hermite normal
form of M3 will be the same as in M2. However, when we row reduce M3,
we get

2 1 1 2 -6
0 2 1 1 6

M4 = 0 0 4 2 -6
0 0 0 4 6

0 0 0 0 0

The group A has gotten larger, so we must repeat the process. The
second, third, and fourth rows of M4 give a basis for the new B. Multiplying
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these polynomials by X and adding them to the set of nonzero rows of M4
gives

211 2-6
0 2 1 1 6

004 2-6
M5= 000 4 6

2 1 1 6 0

042-6 0

0 0 4 6 0

When we row reduce M5, the nonzero rows in the result are the same as
in M4. This tells us that X B is now contained in A, so the rows of M4
describe a basis for 14. This basis contains bases for Il, 12, and 13 as well.
There are no nonzero constant polynomials in I. Therefore the subgroup
Co is {0}. The subgroups C1 and C2 are both 4Z, and C3 and C4 are 2Z.
Since C4 = C3 # C2, the effective degree of I is 3.

Let us now see whether f = 6X6 +X5+6X4 + 3X3 + 30X -36 is in I. Let
g be the polynomial represented by the second row of M4. If f is in I, then
f = gh+r, where h is in Z[X] and r is in I2. Thus we divide f by g in Q[X].
If the quotient h does not have integer coefficients, then f is not in I. If h
does have integer coefficients, then f is in I if and only if the remainder r is
in 12. The division gives h = 3X3 - X2 +2X-8 and r = 12X2 +26X+12.
The third and fourth rows of M4 describe a basis for 12. Using the methods
of Section 8.1, we find that r is in 12, and therefore f is in I.

Let us formalize the algorithm sketched in Example 1.1.

Procedure ZXIDEAL(fj,... , fs; g1, . , gt);
Input: fl, ... , f9 : Elements of Z[X];
Output: g1, ... , gt : Elements of Z[X] which generate the same

ideal I as the f2 and form a Z-basis for Ie,
where e = deg(gl) is the effective degree of I;

Begin
Let d be the maximum of the degrees of the f2;
If d= -oo thent:=0 (* I={0}. *)
Else begin

(* We shall identify adXd + + ao in Z[X] with (ad, .... ao)
in Zd+i *)

Let U be the s-by-(d + 1) integer matrix whose rows correspond to
the fz;

Let gl, .... gt correspond to the nonzero rows of the row Hermite
normal form of U;



10.1 Ideals in Z[X] 453

(* d = deg(91) > ... > deg(gt) *)

Repeat

Copy g1, ... , gt as h1, .... hr;
Let U be the (2t - 1)-by-(d+ 1) integer matrix whose rows

correspond to gl, ... , gt, X g2, ... , X 9t,
Let g1, . . . , gt correspond to the nonzero rows in the row Hermite

normal form of U
Until g1, . . . , gt are the same as hl, ... , hr;
While t > 1 and g1 and g2 have the same leading coefficient do

Delete g1 and renumber the remaining gi beginning at 1
End

End.

In ZXIDEAL, the statement

Copy 91, ..., gt as hl, ... , hr;

is an abbreviation for

r:=t;Fori:=1tor do hi:=gi;

In the line beginning "Until", the sequences are different unless t = r and
9i=hi, 1<i<t.

Example 1.2. Let f1=6X4+2X3-6X2+8X+7 and f2=2X2-9X-2.
Here are the sequences g1,. .. , gt at the beginning of each iteration of the
Repeat-loop when ZXIDEAL is called with input fl, f2:

g1 = 6X4 + 2X3 - 19X + 1,

g2= 2X2- 9X- 2.

91 = 6X4 + X2 + 19X + 9,

g2 = 2X3 + X2 - 47X - 10,

93 = 2X 2 - 9X - 2.

91 = 2X4 + 424X + 95,

92 = X3 + 603X + 133,

g3= X2+1244X+ 274,

g4 = 2497X + 550.
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91 = X4 + 3X+ 7016,

g2 = X 3 + 9X + 10462,

93 = X 2 + X + 2925,

94 = 11X + 5852,

g5 = 11253.

Since the first three polynomials in the last sequence have leading coefficient
1, the effective degree of I is 2. Thus, in the final output,

g1 = X 2 + X + 2925,

92 = 11X + 5852,

93 = 11253.

Let H be a subgroup of Z° generated by the rows of a matrix A in row
Hermite normal form. In Exercise 1.6 in Chapter 8 we defined for each
element u of Z' a canonical representative for the coset H + u. Now let I
be an ideal of 7G[X] and let f be an element of Z[X] of degree n. Then,
under the identification of polynomials of degree at most n with elements
of Z7e+1 used in ZXIDEAL, the canonical representative h of I,,+ f is in fact
a canonical representative for the coset I+ f in 7G [X]. Given the generating
set for I determined by ZXIDEAL, we can compute h easily using the
following procedure:

Procedure ZXIDEALREP(gl,... , gt, f ; h);
Input: 91.... , gt : Elements of Z[X] as in the output of

ZXIDEAL;
f : An element of Z[X];

Output: h : The canonical representative in I + f, where I
is the ideal generated by the gi;

Begin
d := deg(gl); h:=f; n := deg(h);
For i := n downto d + 1 - t do begin

Ifi>dthen k:=1
Else k:=d+1-i;
Let a be the coefficient of Xi in h;
Let b be the leading coefficient of gk;
Let a =qb+r with0<r<b;
Subtract qXi-d-l+kgk from h (* Now the coefficient of Xi in h

is r. *)
End

End.
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If gl,... , gt and f are as in ZXIDEALREP, then f is in the ideal generated
by the gi if and only if ZXIDEALREP(gl,... , gt, f ; h) returns with h = 0.

Example 1.3. Let gl, g2, and g3 be the final output of ZXIDEAL in Ex-
ample 1.2 and let f = 3X3 + 5X2 - 2X + 7. In ZXIDEALREP with input
arguments g1, g2, g3, f we initially set h equal to f. Then we subtract 3Xg1
from h to get

2X2 - 8777X + 7.

Next we subtract 2g1 and obtain

-8779X - 5843.

To this we add 799g2 to get

lOX + 4669905.

Finally we subtract 414g3. This gives

lOX + 11163.

Exercises

1.1. Determine the effective degree of the ideal of Z[X] generated by 6X4 - 13X3 + 8X2 +
5X - 12 and 4X4 - 16X3 + 25X2 - 25X + 15.

1.2. Suppose that fl,..., f3 are elements of Z[X]. Prove that after the execution of
ZXIDEAL(fl,... , f8; 9i, ... , gt) the polynomial gt is a (not necessarily monic) gcd of

in Q[X]. Let I be the ideal generated by fl,...,f8. Show that Z[X]/I is
finitely generated as an abelian group if and only if gi is monic.

1.3. Modify ZXIDEALREP to produce polynomials u1,. .. , ut such that h = f - ulgl - -
ut9t

10.2 Modules over Z[X]
An ideal of Z[X] is a submodule of Z[X] considered as a module over itself.
The techniques developed in Section 10.1 extend very naturally to Z[X]-
submodules of Z[X]'. If u = (fl, ... , f,,) is in Z[X]''1, then the degree of u is
defined to be the maximum d of the degrees of the fi. It will sometimes be
convenient to write u = adXd +ad_1Xd-1 + + ao, where each ai is in Z.
The vector ai is called the coefficient of XI in u. For example, in Z[X]2,

u = (2X2 -3X+ 1, 5X3 +4X - 2) = (0, 5)X3 +(2, 0)X2 + (-3,4)X + (1, -2)

has degree 3 and the coefficient of X in u is (-3,4).
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The set F of all elements of Z[X]n with degree at most d is a
free abelian group of rank k = n(d + 1). If b1, ... , bn is the stan-
dard basis of Zr', then the elements biXj, 1 < i < n and 0 < j < d,
form a basis of F. To construct an explicit isomorphism between F
and Zk we must choose an ordering of the basis. Two useful order-
ings are b1Xd, b2Xd, ... , bnXd, b1Xd-1, ... , bnXd-1, ... , bl, ... I b,, and b1Xd,
b1Xd-1, ... , b1, b2Xd, ... , b2, ... , bnXd, ... , bn. The first ordering will be
called the ordering by degree and the second the ordering by component.
If the ordering by degree is used, then an element u = adXd + + ao in
F is identified with the concatenation of its coefficients ad, ... , ao. How-
ever, if the ordering by component is used and u = (f1,. .. , f n), then
u is identified with the k-tuple obtained by taking the coefficients of
X',. .. ,1 in f1, following them by the coefficients of Xd,... ,1 in f2, and
so on.

Example 2.1. In Z[X]2, let

u1 = (12X2 + 5X - 3, -7X2 + X + 2), u2 = (4X2 + 1, 3X - 2),

u3 = (5X + 4, 3X2 + 2X - 1), u4 = (X - 3, 9).

The maximum of the degrees of the ui is 2. Let F be the group of all
elements of Z[X]2 of degree at most 2. If we use the ordering by degree to
identify F with 7L6, then the ui correspond to the rows of the matrix

12 -7 5 1 -3 2

4 003 1 -2
U =

0 352 4-1
0 010-3 9

Let H be the abelian group generated by the ui. By computing the row
Hermite normal form of U, which is

400 3 1 -2
0 1 0 4 -47 129
001 0 -3 9

0 0 0 10 -160 433

7

we can see that the subgroup of H consisting of those elements of degree
at most 1 has (X - 3, 9) and (-160,10X + 433) as a basis.
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If we use the ordering by component to identify F and Z6, then the ui
correspond to the rows of

12 5 -3 -7 1 2

40 1 03-2V= 05 4 32-1
0 1 -3 0 0 9

The row Hermite normal form of V is

4 0 0 143 155 259

0 1 0 51 54 93

0 0 1 17 18 28

0 0 0 160 170 289

From this we see that the subgroup of H consisting of those elements with
first component 0 is generated by (0, 160X2 + 170X + 289). Either ordering
could be used to decide membership in H.

The two orderings of the basis elements biX3 lead to two different algo-
rithms for producing nice generating sets for Z[X]-submodules of Z[X]I.
Let us first consider how the ordering by degree can be used. Suppose M is
the submodule of Z[X]'z generated by a finite set T. For each nonnegative
integer d, let Md be the set of elements in M with degree at most d and
let Cd be the set of coefficients of Xd in elements of Md. Then Cd is a
subgroup of Z' and Cd C Cd+l. Since the ascending chain condition holds
in Z', eventually Cd remains constant. The smallest integer e such that
Ck = Ce for k > e will be called the effective degree of M. Proposition 1.1
generalizes trivially. If d is the maximum of the degrees of the elements of
T, then e < d. Also, knowing Me is enough to allow us to decide member-
ship in M, for if f in M has degree k and k > e, then there is an element g
in Me with the same leading coefficient as f and f - X k-eg has degree less
than k.

Let A be the subgroup generated by T and let B be the subgroup of
elements in A of degree less than d. Proposition 1.3 also generalizes im-
mediately, so A = Md if and only if X B is contained in A. As shown in
Example 2.1, we can find a basis for B and hence a basis for X B. This
gives us an algorithm for determining a 7Z-basis for Md.

Example 2.2. Let M be the Z[X]-submodule of Z[X]2 generated by

(X2+3X-2,3X2+X-2), (3X2 + 3X, 2X2 + X -3),

(2X2 + 3X -3,3X2 -3X-3).
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Here d = 2. Using the ordering by degree, we find that our generating set
T corresponds to the rows of the matrix

133 1 -2-2
N1= 3 2 3 1 0 -3

2 3 3 -3 -3 -3

and the subgroup A generated by T corresponds to S(N1). The row Hermite
normal form of N1 is

1 0 0 -4 -1 -1
N2= 010-8-4-1

0 0 3 29 11 2

The subgroup B of those elements in A of degree less than 2 corresponds
to the subgroup of 7L6 generated by the last row of N2. The group XB
corresponds to the subgroup generated by the vector obtained by shifting
the last row of N2 two places to the left. Thus A + X B corresponds to the
subgroup generated by the rows of

1 0 0 -4 -1 -1
0 1 0 -8 -4 -1

N =3
0 0 3 29 11 2

3 29 11 2 0 0

The row Hermite normal form of N3 is

1 0 0 415 235 73

0 1 0 411 232 73
N4

0 0 1 289 161 50

0 0 0 419 236 74

Now B corresponds to the subgroup generated by the last two rows of N4.
If we shift the last two rows of N4 two places to the left, add them as new
rows to N4, compute the row Hermite normal form of the result, and delete
rows of zeros, we obtain the matrix

1 0 0 0 22071 7914

0 1 0 0 20964 7518

N5 = 0 0 1 0 10397 3728

0 0 0 1 22900 8212

0 0 0 0 23176 8311
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Repeating, this time shifting the last three rows, gives us

1 0 0 0 3 2667

0 1 0 0 0 14382

0 0 1 0 1 10735
N6

0 0 0 1 0 35943

0 0 0 0 4 123010

0 0 0 0 0 132057

459

One more iteration produces no change.
The group M2 is generated by the elements of 7Z[X]2 corresponding to

the rows of N6. The subgroup C2 is generated by the rows of the 2-by-2
matrix in the upper left corner of N6. Therefore C2 = Z2. The group M1
corresponds to the group generated by rows three through six of N6. Thus
C1 is generated by the rows of the 2-by-2 submatrix in the center of N6.
Hence C1 is also Z2. The group Co is generated by the rows of the 2-by-2
submatrix in the lower right corner of N6. Since C2 = C1 0 CO, the effective
degree of M is 1 and M is generated as a module by M1, which is described
most conveniently by the matrix

N7 =

1 0 1 10735

0 1 0 35943

0 0 4 123010

0 0 0 132057

That is, M1 is generated as an abelian group by

(X + 1,10735), (0, X + 35943), (4,123010), (0,132057).

Let us formalize the algorithm sketched in Example 2.2.

Procedure ZXMODULE(u1,... , us; v1, ... , vt);
Input: u1,. .. , us : Elements of 7L[X]°;
Output: v1, ... vt : Elements of 7L[X]° which generate the same

7L[X]-submodule M as the ui and form a
7L-basis for Me, where e = deg(v1) is the
effective degree of M;

Begin
Let d be the maximum of the degrees of the ui;
(* We shall use the ordering by degree to identify elements of 7L[X]I

and vectors of integers. *)
Let U be the s-by-n(d + 1) matrix whose rows correspond to

u1,.... us;
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Let A consist of the nonzero rows in the row Hermite normal form of
U;

Repeat
D:=A;
Let B be the matrix consisting of the rows of A with zeros in the

first n columns;
Let C be the matrix obtained by shifting the rows of B to the left

n places and appending them to the rows of A;
Let A consist of the nonzero rows in the row Hermite normal form

of C
Until A = D;

While A has at least 2n columns do begin
Let p be the largest integer such that the p-th row of A has a

nonzero entry in the first n columns;
Let q be the largest integer such that the q-th row of A has a

nonzero entry in the first 2n columns;
Let P be the p-by-n submatrix of A in the upper left corner;
Let Q be the (q - p)-by-n submatrix of A consisting of the entries

in rows p + 1, ... , q and columns n + 1, ... , 2n;
If P Q then break;

Drop the first p rows and the first n columns from A
End;

Let v1, ... , vt in Z[X]n correspond to the rows of A
End.

If P is a module over Z[X] and P is generated by n elements, then P
is isomorphic to a quotient module of 7L[X]n. A finite module presentation
for P is a finite generating set for a submodule M of Z[X]n such that P
is isomorphic to 7L[X]''7M. The procedure ZXMODULE makes it possible
to solve the word problem for P if we know a finite presentation. That is,
given u in Z[X]n, we can decide whether u is in M and hence determine
whether u defines the zero element of P.

Let M be a submodule of 7L[X]n. For 1 < i < n + 1 let M() be the set
of elements in M whose first i - 1 components are 0. Then M = M(1) >
M(2) D ... D M(n+1) = {0} and each M(i) is a submodule of M. Let S
be the generating set for M obtained using ZXMODULE. Then s fl m(i)
need not generate M(i). However, using the ordering by component, we
can produce a generating set for M which contains generating sets for all of
the M(i). The proof of correctness of this algorithm is based on the notion
of a syzygy.

Let (f1,. .. , fn) be an element of 7L[X]n. A syzygy of ft,... , fn is an
element (gl,... , gn) of Z[X]n such that gl fl+ +gnfn = 0. Thus a syzygy is
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a linear relation with polynomial coefficients satisfied by a given sequence of
polynomials. The set of syzygies of fl, ... , f,,, is a Z[X]-submodule of Z[X]n.

Proposition 2.1. Let M be the Z[X]-submodule of Z[X]n generated by
u1, ... , U. If S is a generating set for the syzygies of the first components
of u1, ... , uk, then M(2) is generated as a Z[X]-submodule by the set of
elements g1u1 + + gkuk, where g = (g1, ... , gk) ranges over S.

Proof. Let v be in M(2). Then v can be written as h1u1 + + hkuk,
where the hi are in Z[X]. Since the first component of v is 0, (hl, ... , hk)
is a syzygy of the first components of the ui. Thus h = (hl, . . . , hk) can be
written as a Z[X]-linear combination of the elements of S. If

h = pgg,

geS

then it is immediate that

v=Epg(g1u1+...+gkuk).

geS

Suppose that f1,.. . , fk is the generating set for an ideal I of Z[X] pro-
duced by ZXIDEAL. If d is the degree of fl, then the degree of fi is d-i+1
and fi,... , fk is an abelian group basis for Id-i+1 Thus for 1 < i < k there
are unique integers aii_1, aii>... , aik, such that

k

X fi = E aij fj
j=i-1

Therefore g(i) = (0, ... , 0, aii_11 aii -X) aii+1, ... , aik) is a syzygy of f1, ... , fk.

Proposition 2.2. Under the preceding assumptions, the syzygies of
fl, ... , fk are generated as a Z[X]-module by g(2), . . . , g(k).

P r o o f. Let h = (hl, ... , hk) be a syzygy of f1, ... , fk. Among h2, ... , hk,
let hi have maximum degree e and let b be the leading coefficient of hi. If
e > 0, then adding bXe-lg(i) to h reduces the degree of hi and does not raise
the degree of any other hj above e - 1. It follows that we may subtract
from h an element of the submodule generated by g(2), ... , g(k) and assume
that h2, ... , hk all have degree 0. Since h1f1 + + hkfk = 0 and the degree
of f1 is greater than the degrees of the other fi, we must have h1 = 0. The
fi are linearly independent over Z, so h2 = . . . = hk = 0. Thus the original
syzygy h is in the submodule generated by g(2), ... , 9 (k).
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Now, given a generating set T for a submodule M of Z[X]n, we can find
a generating set for M(2) by applying ZXIDEAL to the first components
of the elements of T while keeping track of what happens to the other
components and then applying Proposition 2.1. In fact, the two steps can
be combined.

Example 2.3. Let M be the submodule of Z[X]2 generated by

(X2 - 2X - 3, -3X2 - 2X + 2) and (3X2 + X, -2X2 - 2X + 1).

To find a generating set for M(2), we shall apply ZXIDEAL to the first
components of our generating set. The degree of the first components will
remain bounded by 2 throughout the computation. However, the degrees of
the second components will grow. The ordering by component will be used
to identify elements of Z[X]2 with integer vectors. Because the degrees
of the elements grow, the lengths of the vectors also grow. Our original
generators for M correspond to the rows of

1-2-3-3-22Pl _
3 1 0-2-21

The row Hermite normal form of Pl is

_ [15642-31
PZ 07974

In the subgroup generated by the first components of the corresponding el-
ements of Z[X]2, the subgroup of elements of degree less than 2 is generated
by 7X + 9. In ZXIDEAL we would multiply this element by X and add it
as a new generator. Now, however, the pair corresponding to the second
row of P2 must be multiplied by X and added as a new module generator.
The resulting generating set is represented by

015604 2 -3
P3= 007907 4-5

079074-5 0
The row Hermite normal form of P3 is

0 1 0 51 -42 -13 24 -14
P4 = 0 0 1 27 -21 -5 13 -8

0 0 0 60 -49 -14 29 -17
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Now we must multiply the pairs corresponding to the last two rows of P4
by X and add the pairs produced as new generators. This gives

001 051 0 -42 -13 24 -14
0 0 0 1 27 0 -21 -5 13 -8

P5= 000 060 0 -49 -14 29-17
0 0 1 27 0 -21 -5 13 -8 0

0 0 0 60 0 -49 -14 29 -17 0

The nonzero rows in the row Hermite normal form of P5 are given by

0 0 1 0 51 0 -42 -13 24 -14
0 0 0 1 27 0 -21 -5 13 -8_

P 6
0 0 0 0 60 0 - 49 -14 29 -17
0000 07 11 7 2 -3

Since the nonzero first components of our generating set have not changed,
we are done. The process of row reducing P5 has constructed the set
U of generators of M(2) given by Proposition 2.1 using the syzygies of
Proposition 2.2 and produced a 7L-basis for the abelian group generated
by U. In this example, the submodule M(2) is generated by the single pair
(0, 7X4 + 11X3 + 7X2 + 2X - 3).

By repeated application of the algorithm illustrated in Example 2.3, we
can find generators for each of the submodules M(). A formal description of
the algorithm follows. In the algorithm we shall need to compute Z-bases of
subgroups of Z[X]'. This will be done using the procedure ZBASIS, which
employs the ordering by component.

Procedure ZBASIS(ul,... , us; wl,... , wt)
Input: u1,... , us : Elements of Z[X]';
Output: w1, ... , wt : A Z-basis for the abelian group generated

by ul,...,us;
Begin

Let d be the maximum of the degrees of the ui;

(* Use the ordering by component to identify the ui with elements
of Zn(d+i) *)

Let U be the s-by-n(d + 1) integer matrix whose rows correspond to
the ui;

Let w1,.. . , wt in Z[X]" correspond to the nonzero rows in the row
Hermite normal form of U

End.
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Here is the algorithm for finding generators of the submodules M(i).

Procedure ZXSERIES(ul,... , us; v1, ... , vt);
Input: u1, ... , us : Elements of Z[X]';
Output: v1, ... , vt : Generators for the submodule M of Z[X]"

generated by the ui which include generators
for each of the submodules M(), 1 < i < n;

Begin
ZBASIS(ul,... , us; vl, ... , vt); k:= 1;
For i := 1 to n do begin

(* At this point vk, ... , vt generate
If t < k then break; (* M(i) = {0}. *)
done := false;

Repeat
If the i-th components of vk, .... vt are all 0 then begin

q := k - 1; done := true
End
Else begin

Let q be maximal such that the i-th component of vq is
nonzero;

ZBASIS(vk,...,vt,Xvk+l,...,Xvq;z1,.... zr);
If the set of nonzero i-th components of z1, ... , zP is the same

as the set of nonzero i-th components of Vk, ... , vt then
done := true;

Copy z1,...,zP as Vk,...,vt
End

Until done;
(* The following is not needed for correctness but it makes the

output depend only on M. *)
If q > k then begin

Let p be maximal such that the i-th components of Vk, ... , VP
have the same leading coefficient;

Delete Vk, .... vv-1 and renumber the v's;
Let q be maximal such that the i-th component of vq is not 0;
Let fl, ... , f,, be the i-th components of Vk, ... , vq;
(* fl, ... , fr are the standard generators, as produced by

ZXIDEAL, for the ideal I(i) of i-th components in elements
of M( ). *)

For j := 1 to k - 1 do begin
Let g be the i-th component of vj;
ZXIDEALREP(f1,... , fr, g; h);
(* The element g - h is in Iii). *)
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Writeg - h
Subtract elvk + + ervq from vi
(* The i-th component of vj is now h. *)

End
End;

k:=q+1
End

End.

Let v1, ... , vt be the output of ZXSERIES. Then the nonzero compo-
nents of those vi which lie in M() form the standard basis for I(i) and the
i-th components of earlier v's are their own canonical representatives mod-
ulo I(i). Using these facts, it is not hard to show that the v's depend only
on M. If we only need module generators for M(2), then we can stop the
main For-loop after the first iteration and take only those vi which belong
to M(2>.

Example 2.4. In Z[X ]3 let

U1=(-X-5,2X-5, X-4),
u2=(5X+3,5X ,3X-1),
u3 = ( -2, X - 4, 5X - 4),

U4=(-X-3,4X-3,3X+4).

Here are the triples v1, ... , vt at the end of each iteration of the outer
For-loop in the call to ZXSERIES with the ui as input:

V1 = (X + 1, 10, 118X2 - 48X + 89),

V2 = (

v3 = (

2, 12, 117X2 - 60X + 136),

0, X + 8, 117X2 - 55X + 132),

V4 = (

V5 = (

0,

0,

13, 118X2 - 57X + 93),

0, 295X2 - 58X + 206).

V1 = (X + 1, 10, 118X2 - 48X+ 89),
V2 = ( 2, 12, 117X2 - 60X+136),

v3 = ( 0, X+ 8, 117X2 - 55X+132),

V4 = ( 0, 13, 118X2 - 57X+ 93),
V5 = ( 0, 0, 118X3 + 61X2 + 62X+ 58),

V6 = ( 0, 0, 295X2 - 58X+206).
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v1 = (X + 1,

v2 = ( 2,

v3 = ( 0, X+

v4 = ( 0,

v5 = ( 0,

v6 = ( 0,

v7 = ( 0,
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10, 4X + 577557),

12, 2X + 21310),

8, 7X + 21306),

13, 3X + 213825),

0, X 2 + 2X + 262602),

0, 8X + 265264),

0, 629000).

There is a close analogy between the output of ZXSERIES and integer
matrices in row Hermite normal form. If we think of the final sequence
v1, ... , v7 as the rows of a 7-by-3 matrix with entries in 7L[X], then we can
define corner entries to be entries which are the first nonzero entry in their
row. A given column may have more than one corner entry, but the corner
entries in a given column are the generators produced by ZXIDEAL for an
ideal of Z[X] and the entries above those corner entries are standard repre-
sentatives for cosets of that ideal. This set of generators for the module M
generated by the ui looks quite different from the generating set produced
by ZXMODULE, which is

wl = (X + 1, 62, 273329),

w2 = ( 0, X+ 47, 132253),

w3 = ( 0, 39, X + 376211),

w4 = ( 2, 38, 183696),

w5 = ( 0, 104, 285808),

w6 = ( 0, 0, 629000).

The generators w4, w5, and w6 form a 7L-basis for M f1 Z3.

We have used row Hermite normal forms to decide equality of subgroups
of Z'. Since the associated unimodular matrices are not needed, there
are many possible ways to compute these normal forms. We could also use
lattice reduction, as described in Sections 8.6 and 8.7, to compare subgroups
of Z'.

Exercises

2.1. Show that the output of ZXMODULE depends only on the module M generated by
ul,... , u,g. Do the same for ZXSERIES.

2.2. Devise a procedure ZXMODULEREP analogous to ZXIDEALREP in Section 10.1.
2.3. Let M be a submodule of Z[X]n with effective degree e. Prove that Z[X]' /M is finitely

generated as an abelian group if and only if the group CQ is Z1.
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10.3 Modules over Z[X, Y]

In Section 10.2 we developed methods for working with submodules of
Z[X]n. In this section we shall look at submodules of L[X,Y]n. After the
two-variable case has been mastered, the generalization to m variables is
relatively straightforward. Throughout this section R will denote Z[X, Y].

The first approach we shall consider singles out one of the variables, say
Y, as the primary variable. An element u of Rn can be written in the form
adYd + ad_lYd-1 + , .. + a0, where each ai is in Z[X]n. If ad 0, then d will
be called the degree in Y of u. For example, in R2, the element

u= (3XY2-2Y2+X2Y+2Y-X+7, X3Y2+5XY2-XY+2Y+X2-3)

can be written

(3X - 2, X3 + 5X)Y2 + (X2 + 2, -X + 2)Y + (-X + 7, X2 -3).

The degree of u in Y is 2.

Let M be an R-submodule of R. For each nonnegative integer k, let
Mk be the set of elements in M whose degree in Y does not exceed k and
let Ck be the set of coefficients of Yk in elements of Mk. Then Ck is a
Z[X]-submodule of Z[X]n and Ck C Ck+i Let T be a finite generating set
for M and let d be the maximum of the degrees in Y of the elements in T.
The analogue of Proposition 1.1 holds, so Ck = Cd if k > d. The smallest
integer e such that Ck = Ce for k > e will be called the effective degree in Y
of M. Let A be the Z[X]-submodule generated by T and let B = An Md_1,
the submodule of A consisting of the elements whose degree in Y is less
than d. The analogue of Proposition 1.3 is valid and A = Md if and only
ifYBCA.

We can identify A with a 7G[X]-submodule of Z[X]n(d+1) in several ways.
The elements biYj with 1 < i < n and 0 < j < d form a Z[X]-basis for the
set of all elements in Rn whose degree in Y is at most d. Here b1, ... , bn is
the standard basis of Zn. If we order the biYj by degree, as in Section 10.2,
then adYd +. + a0 is identified with the concatenation of ad, .... ao. Thus
the element u is mapped to

(3X - 2, X3 + 5X, X2 + 2, -X+2, -X+7, X2 -3).

However, if we order the basis by component, then u corresponds to

(3X - 2, X2 + 2, -X+7, X3 + 5X, -X + 2, X2 - 3).

Suppose that under the ordering by degree the 7G[X]-submodule A gen-
erated by T corresponds to the submodule N of Z[X]n(d+1). Then B
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corresponds to N(n+1). Thus, using ZXSERIES, we can find a module
generating set for B. In fact, it suffices to terminate the main For-loop in
ZXSERIES after only n iterations. The following procedure ZXYMODULE
is obtained from ZXMODULE by replacing the determination of row Her-
mite normal forms with calls to ZXMODULE or ZXSERIES.

Procedure ZXYMODULE(ul,... , us; v1, ... , Vt);
Input: u1, ... , us : Elements of Rn;
Output: v1, ... , vt : Elements of Rn which generated the same

R-submodule M as the ui and form a
Z[X]-basis for Me, where e is the effective
degree in Y of M;

Begin
Let d be the maximum degree in Y of the ui;
(* We shall use the ordering by degree to identify the ui with

elements of Z[X]n(d+1) *)
Let w1,.. . , ws in Z[X]n(d+l) correspond to u1 u,..., s,

ZXMODULE(w1,... , ws, z1, ... , zt);

Repeat
Copy z1,...,zt as x1,...,xm;
Let N be the submodule of Z[X]n(d+l) generated by the zi;
Use ZXSERIES to find a generating set y1, ... , yq for N(n+l);
For i := 1 to q do let gi be obtained from yi by shifting its

components n places to the left;
ZXMODULE(x1,... , xm,, g,.... , gq; zl, ... , zt)

Until the sequences x1, ... ) xm and z1, . . . , zt are the same;

(* At this point z1,.. . , zt correspond to a Z[X]-basis for Md, but d
may not equal e.

While d > 1 do begin
Let fl, . . . , ft be the projections of z1, . . . , zt onto their first n

components;
Let g1, ... , gq be the projections of y1, ... , yq onto components

n+1,...,2n;
ZXMODULE(f1,... , ft; hl, ... , h,.);
ZXMODULE(g1,... , gq; ki, ... , km);
If h1, ... , hr and k1, ... , km are different then break;
(* Md-1 = Md *)
d:=d-1;
For i := 1 to q do let wi be obtained from yi by dropping the first n

components (* which are 0 *);
ZXMODULE(w1,... , wq; z1, ... , zt);
Let N be the Z[X]-submodule generated by the zi;
Use ZXSERIES to find a generating set y1, ... , yq for N(n+1)
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End

Let v1, ... , vt in R' correspond to z1, ... , zt
End.

Example 3.1. Let us follow the execution of ZXYMODULE with input

u1 = (Y + X + 1, Y+ 1),

u2=( X-1,Y-X ),

u3=(Y-X+1,Y+X-1).

Using the ordering by degree, the ui are identified with

w1=(1,1, X+1' 1),

W2=(0111 X - 1, -X ),

w3=(1,1,-X+1, X-')'

The output of ZXMODULE with the wi as input is

z1=(X , 2X-2, 2, 2),

Z2=( 0, -"X+" 2),

Z3=( 0, -2, 2, X + 2),

Z4=( 1, 2, 0, - 1).

On the first pass through the Repeat-loop, the following generators for N(3)
are found:

yl = (0, 0, 2X2 , -X2 + 2X ),

Y2 = (0, 0, 2X, - X + 2).

Note that since the main For-loop in ZXSERIES was terminated after the
second iteration, ZXSERIES did not detect that yl is in fact Xy2. Now
ZXMODULE is called, with input the zi above together with

g1 = (2X2 , -X2 +2,0,0),
g2 = ( 2X, -X + 2, 0, 0).

The output is

z1 = (X , 2X - 2, 2, 2),

z2=( 0,5X-6, 4, 4),
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z3 = ( 0, - 1, X + 1, 2),

z4 = ( 0, -2, 2, X + 2),

z5 = ( 1, 2, 0, -1).

On the second pass through the repeat loop, the generators for N(3) are
found to be

y1 = (0, 0, X2 + X + 2, -5X3 - 12X2 + 12X + 4),

y2 = (0, 0, 2X , - X + 2),
y3 = (0, 0, 4, -5X2 - 9X + 14).

This time the call to ZXMODULE returns exactly the same z2 as before,
so the Repeat-loop terminates. Entering the While-loop, we find that

fl = (X , 2X - 2),

f2=( 0,5X-6),
f3=( 0, -1),

f4=( 0, -2),

f5 = ( 1, 2),

and

g1 = (X2 + X + 2, -5X3 - 12X2 + 12X + 4),

92 = ( 2X , - X + 2),
93 = ( 4, - 5X2 - 9X + 14).

The two calls to ZXMODULE produce

h1 = (1,0),

h2 = (01 1),

and

k1 = (X2 + X - 2, 2X2 + 5X - 6),

k2 = - 4, 5X2 + 9X - 14),

k3=( 2X , - X+ 2).
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Since the h's and k's differ, no further changes are made to the z's. The
final output is

v1 = (XY+2, 2XY-2Y+2),
v2 = ( 4, 5XY - 6Y + 4),
v3=( X+1, -Y+2),
v4 = ( 2, -2Y + X + 2),
v5= Y, 2Y-1).

A number of variations on the procedure ZXYMODULE are possible. For
example, the calls to ZXMODULE could be replaced by calls to ZXSERIES.
If this is done, then with the data of Example 3.1 the following generating
set is obtained:

v1=(
v2=(

Y+2, X+1),
X+3, Y-5X2-1OX+14),

v3 = (X2 + X + 2, -3X2 - 4X + 8),
v4 = ( 2X, -X + 2),
v5 = ( 4, -5X2 - 9X + 14),

v6 = ( 0, 5X3 + 9X2 - 16X + 4).

Either this generating set or the one obtained in Example 3.1 can be used
to decide membership in the module.

Let M be a submodule of R. For 1 < i < n+1 let M(i> be the submodule
of M consisting of the elements whose first i -1 components are 0. In order
to be able to extend the approach of ZXMODULE and ZXYMODULE
to submodules of Z[X,Y,Z]n, we need an analogue of ZXSERIES to find
generators for the submodules M(i). This in turn requires generalizations of
ZBASIS and ZXIDEALREP. The description of a procedure ZXYSERIES
is left to the reader as an exercise.

Exercises

3.1. Find the effective degree in Y of the ideal I of Z[X,Y] generated by 2XY2 - 3Y + 7
and XY2 - 2Y + X + 1. Determine the effective degree in X of in Z[X].

3.2. Let M be a submodule of Z[X,Y]" with effective degree e in Y. Show that Z[X,Y]"/M
is finitely generated as a Z[X]-module if and only if the Z[X]-submodule CQ is Z[X]".
Under what conditions is Z[X,Y]"/M finitely generated as an abelian group?

10.4 The total degree ordering
The procedure ZXYMODULE of the previous section reduces questions
about a Z[X, Y]-module generated by a finite set T to questions about the
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Z[X]-module generated by T, and it calls ZXMODULE to answer those
questions. Within ZXMODULE, the questions are converted into questions
about the subgroup A generated by T, and these questions are answered by
computing the row Hermite normal form of an integer matrix. Let r and s
denote the maxima of the degrees in X and Y, respectively, of the elements
in T. Then A is a subgroup of the group P which has a basis consisting
of the elements biXjYk, 1 < i < n, 0 < j < r, and 0 < k < s. To associate
elements of P with integer vectors, we must order the basis. One possible
order is obtained by letting k run from s to 0, for a given k letting j run
from r to 0, and for given values of k and j letting i run from 1 to n. In
the case of an ideal of R = Z[X, Y], where we can identify bl with 1, we are
taking the monomials Xjyk in decreasing order according to the reverse
lexicographic ordering, in which we compare degrees in Y first and then, if
necessary, the degrees in X. In this ordering, the monomials of degree at
most 2 in X and in Y arranged in decreasing order are

X2Y2, XY2, Y2, X2Y, XY, X2, X, 1.

There is another ordering on monomials which is quite useful. The total
degree of XiYj is i + j. In the total-degree ordering of monomials, we
compare total degree first and then, if necessary, the degree in Y. The
monomials of total degree at most 3, in decreasing order, are

Y3, XY2, X2Y, X3, Y2, XY, X2, Y, X, 1.

The usual proof that ideals in 7L[X1, ... , X,11Z] are finitely generated pro-
ceeds by induction on m. The total-degree ordering on monomials can be
used to give a proof that ideals in R are finitely generated without invoking
the corresponding statement for ideals in 7L[X]. Let us write XiYj XrYs
if XiYj comes before X'Y' in the total degree ordering. Any nonzero ele-
ment f of R can be written uniquely as alul + ' ' ' + atut, where the ui are
monomials such that ul >- u2 >_ >- ut and the ai are nonzero integers.
We shall call alul, a1, and ul the leading term, the leading coefficient, and
the leading monomial of f, respectively. The total degree of f is defined
to be the total degree of ul. Note that the leading monomial of XiYj f
is X'Yjul.

Let I be an ideal of R and for each pair (i, j) of nonnegative integers
let Iij be the set of elements f in I such that either f = 0 or the leading
monomial u of f satisfies u -< XiYj. Let Cij be the set of coefficients of
XiYj in elements of Iij. Clearly Cij is a subgroup of Z. Let us say that
(i, j) < (r, s) if i < r and j < s, or equivalently, if XiYj divides X''Y8 in R.

Let cxi j denote theIf (i, -j) < (r, s), then Xr-iYs-iIij -C Irs+ xso Cj - C Crs'

nonnegative generator of Cij. Define U = U(I) to be the set of pairs (r, s)
such that crs # 0 and crs # cij for any pair (i, j) < (r, s).
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Proposition 4.1. For every ideal I of R the set U(I) is finite.

Proof. If I = {0}, then U = 0. Thus we may assume that I # {0}, so
some c,,s > 0. Choose (r, s) minimal with respect to < such that c,.9 is the
minimum among all nonzero cit. Then (r, s) is in U. If (i, j) is some other
element of U, then either i < r or j < s. But for a given i there can be
only finitely many values of j such that (i, j) is in U. Similarly, for a given
j there are only finitely many possibilities for i. Thus U is finite.

For each d > 0 let I(d) be the abelian group of elements in I with total
degree at most d. The maximum e of r + s as (r, s) ranges over U will
be called the effective total degree of I. If we know I(e), we can decide
membership in I.

Proposition 4.2. Suppose that I is an ideal of R with effective total de-
gree e. Then any element f of I can be expressed in the form ul fl + +
u,, fr, where the ui are monomials, the fi are nonzero elements of I(,), and
the leading monomials of the terms ui fi are strictly decreasing with respect
to -<.

Proof. If f = 0, then we may take r = 0. If f is in 1(e), then we may take
r = 1, ul = 1, and f l = f. Thus we may assume that the total degree of
f is greater than e. Let the leading term of f be bXTY8. The coefficient b
is divisible by crs. Since r + s > e, the pair (r, s) is not in U(I). Therefore
crs = ci7 for some pair (i, j) < (r, s). Choose (i, j) as small as possible with
respect to <. Then i + j < e. Let fl be an element of I(e) with leading
term bXiYj and set ul = Xr-iYs-j. Then g = f - ul fl is in I and the
leading monomial of g precedes XrYS with respect to -<. Continuing in
this manner, we obtain the desired decomposition.

It follows from Proposition 4.2 that I(e) generates I and that I is finitely
generated as an ideal.

Given group generators for I(e), to decide membership in I we take the
monomials of total degree at most e in decreasing total-degree order to
associate integer vectors with polynomials and we find the row Hermite
normal form of the matrix associated with our generators of I(e). A corner
entry corresponds to a pair (r, s) for which crs # 0 and the row containing
the corner entry gives an element frs of Irs with leading term crsXrYs
Now we can decide membership in I using the following procedure:

Function ZXYMEMBER(g): boolean;
(* The polynomials frs are available as global variables. True is

returned if and only if g is in I. *)
Begin
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Table 10.4.1

s

r 0 1 2 3 4 5

0 0 0 2 2 2 2

1 0 3 1 1 1

2 2 1 1

3 2 1 1

4 2 1

5 2

h := g; done := false;
While h # 0 and not done do begin

Let aXiYj be the leading term of h;
If there is an frs such that (r, s) < (i, j) and the leading coefficient

c of frs divides a then begin
q := a/c;; h := h - qXi-TYj-Sfrs

End
Else done := true

End
ZXYMEMBER := (h = 0)

End.

Let I be generated by a finite set T, let d be the maximum of the total
degrees of the elements in T, and let A be the abelian group generated
by T. Given our experience so far, it should be expected that A is usually
not I(d). Perhaps somewhat less expected is the fact that d may be less
than the effective total degree of I.

Example 4.1. Let I be the ideal of R generated by 2Y2, 3XY, and 2X2.
The polynomials X(3XY) -Y(2X2) = X2Y and Y(3XY) -X(2y2) = XY2
are in I. It is fairly easy to see that I consists of all polynomials satisfying
the following conditions:

(a) The coefficients of 1, X, and Y are 0.
(b) The coefficients of powers of X and powers of Y are even.
(c) The coefficient of XY is divisible by 3.

The values of cry for r + s < 5 are given in Table 10.4.1. The set U is
1(0,2),(l, 1),(1, 2), (2, 0), (2,1)} and the effective total degree of I is 3. The
total degree of the generators is 2 and in this case A is I(2).

Let T, d, and A be as before. We need a criterion which will tell us
whether A = I(d) and e < d. Let B = A fl I(d_1)1 the set of elements in A
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of total degree at most d - 1. Clearly a necessary condition for A to equal
I(d) is for both XB and YB to be contained in A. We can ensure that this
condition is satisfied without increasing the value of d.

Example 4.2. Let I be the ideal of R generated by

f1= Y2-3XY+ X2-2Y- X+6,
f2 =4Y2+6XY-6X2- Y+5X -5,
f3= Y2+5XY-4X2+5Y-6X+3,
f4=5Y2 + X2+5Y- X+1.

Each of these polynomials has total degree 2. The monomials of total degree
at most 2 are, in decreasing order, Y2, XY, X2, Y, X, 1. Using this basis
for the group P of polynomials of total degree at most 2, we can identify
P with 7L6. Under this identification, the fi correspond to the rows of the
matrix

1 -3 1 -2 -1 6

4 6-6-1 5-5_
D1

1 5 -4 5 -6 3

5 0 1 5 -1 1

and the subgroup A generated by the f2 corresponds to S(D1). The row
Hermite normal form of DI is

1 0 0 350 -652 640

0 1 0 194 -359 350
D =2 0 0 1 230 -426 416

0 0 0 395 -737 723

Therefore AnI(1) is generated by the single polynomial f5 = 395Y - 737X +
723. If we add Xf5 and Yf5 to the set of generators for A represented by
D2, the result corresponds to

f 1 0 0 350 -652 6401
0 1 0 194 -359 350
0 0 1 230 -426 416

D =3
0 0 0 395 -737 723
0 395 -737 0 723 0

395 -737 0 723 0 0
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The row Hermite normal form of D3 is

1 0 0 0 0 68418721-

0 1 0 0 1 400252057

0 0 1 0 0 499274494
D =4

0 0 0 1 1 428686078

0 0 0 0 2 745217559

0 0 0 0 0 749145811

Now A n I(1) has rank 3. If we take the polynomials corresponding to the
last three rows of D4, multiply them by both X and Y, add the results to
our generating set, and compute the row Hermite normal form again, then
the nonzero rows form the 6-by-6 identity matrix. This says that 1 is in I,
so I = R.

Example 4.3. Now let J be the ideal of R generated by fl, f2, and f3 of
Example 4.2. Our generators correspond to the rows of the matrix

1 -3 1 -2 -1 6

E1= 4 6-6-1 5-5
1 5 -4 5 -6 3

The row Hermite normal form of El is

1 1 1 -17 37 -40
E2= 020 -719-23

0 0 5 -35 81 -89

so B = A n J(1) = {0}. Thus trivially XB and YB are contained in A.
However, we are still a long way from having a good understanding of J.
If A = J(2), then C = (A + XA + YA) n J(2) must be A. Let us take the
polynomials g1, 92, g3 corresponding to the three rows of E2 and determine
the abelian group generated by the gi, their products with X, and their
products with Y. Since polynomials of total degree 3 are involved, we use
the basis Y3, XY2, X2Y, X3, Y2, XY, X2, Y, X, 1 to identify polynomials
with integer vectors. Our nine generators correspond to the rows of
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E3 =

0000 1 1 1 -16 37 -40
0000 0 2 0 -7 19-23
0 0 0 0 0 0 5 -35 81 -89
0 1 1 1 0 -16 37 0 -40 0

0020 0 -719 0-23 0

0005 0 -35 81 0-89 0

1 1 1 0 -16 37 0 -40 0 0

0200 -7 19 0-23 0 0

0050-35 81 0-89 0 0

The row Hermite normal form of E3 is

E4 =

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

326565 -521780

823394 -1315603

592792 -947155

698714 -1116398

974340 -1556775

416261 -665092

512300 -818541

118929 -190023

0 0 0 0 0 0 0 0 1601096 -2558189

The group C corresponds to the subgroup generated by the last five rows
of E4. Thus C is not A. Since C contains A, the ideal J is generated
by C. Let us replace A by C and take as generators for A the polynomials
corresponding to the last five rows of E4. If we now let B = A fl J(1) and
compute A + XB + YB, we find that this subgroup corresponds to S(E5),
where

1 0 0 0 0 52533167

0 1 0 0 0 7275654

0 0 1 0 0 388980876
E5

0 0 0 1 0 345736188

0 0 0 0 1 201309868

0 0 0 0 0 473095169

If we replace A by A + X B + YB and iterate again, this time we find that
X B and YB are contained in A. In this particular case it is now easy to
describe J. Let n = 473095169. There is a unique ring homomorphism cp
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of R onto Z in which X maps to [-201309868] and Y to [-345736188].
Here [a] denotes the congruence class of a modulo n. Under this ho-
momorphism, Y2, XY, and X2 map to [-52533167], [-7275654], and
[-388980876], respectively. This is all consistent with E5 and it is not
hard to show that J is the kernel of cp.

Examples 4.2 and 4.3 use somewhat ad hoc techniques to determine the
structure of certain ideals in R. It is time to give a general algorithm based
on the total-degree ordering of monomials. Let A be a finitely generated
subgroup of R and let I be the ideal of R generated by A. For each integer
e > 0 let A(e) = A n I(e), the set of polynomials in A with total degree at
most e. For each pair (r, s) of nonnegative integers set Ars = A n Irs and
let ars be the nonnegative generator for the set of coefficients of X''Y8 in
elements of Ars. Define U(A) to be the set of pairs (r, s) such that ars is
nonzero and not equal to any aiJ with (i, j) < (r, s). The effective total
degree of A is defined to be the maximum e of r + s with (r, s) in U(A).
In general, the sets U(A) and U(I) will be quite different. However, we
can state a necessary and sufficient condition for e to be the effective total
degree of I and for I(e) to be contained in A.

Proposition 4.3. Let A be a nontrivial, finitely generated subgroup of R,
let d be the maximum of the total degrees of the elements of A, and let I
be the ideal of R generated by A. Set D equal to the subgroup generated
by {XrYSA I r > 0, s > 0, r + s < d} and e equal to the effective total degree
of D. The following are equivalent:

(ii) e is the efective total degree of I and I(e) is contained in A.

Proof. By the definition of e, there is an element of total degree e in D e).
Thus (i) certainly implies that e < d. Also A(e) c D(e) C I(e). Therefore (ii)
trivially implies (i).

To prove (i) implies (ii), suppose that A(e) = D(e). If e = 0, then D(o) is
generated by some nonnegative integer a and all elements of D are divisible
by a. In this case I = Ra and condition (ii) clearly holds. Thus we may
assume that e > 0. Let B = A(e_l). Then XB and YB are contained in
D(e), so XB and YB are contained in A(e). For nonnegative integers r and
s let ars be the nonnegative generator of the set of coefficients of XrYs in
elements of Ars. Then ars divides

ai.7
whenever r + s < e and (i, j) < (r, s).

Lemma 4.4. If f is a nonzero element of D with total degree at most d+e,
then f can be written as ul f1 + + u,,,, f,,,,, where the ui are monomials,
the fi are nonzero elements of A(e), and the leading monomials of the terms
ui fi form a strictly decreasing sequence in the total degree ordering.
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Proof. Let XpYq be the leading monomial of f . If p + q <- e, then f is in
D(e) = A(e) and we can take m = 1, fl = f , and ul = 1. Thus we may assume
that p + q > e. By the definition of e, there exist a pair (r, s) < (p, q) with
r + s = e and an element fl of D with leading monomial X 'Y' such that fl
has the same leading coefficient as f. The polynomial fl is in D(e) = A(e).
Set r1 = p -r, s1 = q - s, and ul = Xr1Ys1. Since

r1+s1=pr+q-s=p+q-(r+s) <d+e-e=d,

the polynomial ulf1 is in D and therefore so is g = f - ul fl. If g is not 0,
then the leading monomial of g precedes XpYq. Continuing this process,
we obtain the desired description of f.

Lemma 4.4 applies to elements of A. It follows that I is generated as an
ideal by A(e).

Lemma 4.5. Any nonzero element f of I can be written as ul f1 + +
um fm, where the ui are monomials, the fi are nonzero elements of A(e), the
leading monomials of the terms ui fi form a strictly decreasing sequence in
the total-degree ordering, and the total degree of fi is e whenever ui 1.

Proof. Since A(e) generates I, we can write f = ulfl + + um fm, where
the ui are monomials and the fi are nonzero elements of A(e). Suppose that
the total degree of fi is less than e. Then X fi and Y fi are in D(e) = A(e).
Therefore, if ui 0 1, we can replace fi by Xfi or Yfi and decrease the total
degree of ui by 1. Thus we may assume that the total degree of fi is e
whenever ui 0 1.

Next suppose that ul f1 and u2 f2 have the same leading monomial XpYq.
If p + q < e, then u1 = u2 = 1. In this case we may replace f1 by f1 + f2
and delete f2. Therefore we may assume that p + q > e. For i = 1, 2,
let ui = X'riY'i. The leading monomial of fi is Xp-riYq-3q, which has total
degree e. Set a = max(p - rl, p - r2) and b = max(q - s1, q - s2). Since the
maximum of two nonnegative integers does not exceed their sum, we have

a+b < p-r1+p-r2+q-sl+q-s2 = (p-rl+q-s1)+(p-r2+q-s2) = 2e

and

ri si rz sz p-¢Yq-6ulfi + uzf2 = X Y fl + X Y f2 = X g,

where

g = Xrl+a-pysi+b-q A + Xr2+a-pY82+b-qf2
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Now

r1+a-p+s1+b-q=a+b-(p-r1+q-s1) <2e-e=e.

Similarly, r2+a-p+s2+b-q is at most e. Therefore g is in D and the total
degree of g does not exceed 2e < d + e. The leading monomial of g does not
exceed X'Yb in the total-degree ordering. By Lemma 4.4, g can be written
v1g1 + + vtgt, where the vj are monomials, the gj are in A(,), and the
leading monomials of the terms v,.g,. form a strictly decreasing sequence,
which starts at or below X aYb. Therefore, by replacing ul f1 + u2 f2 with

XP-aye-bv191 + ... + XP-aye-bvt9t,

we have reduced the number of terms in the expression for f which have
leading monomial XPYe and we have not introduced any leading mono-
mials greater than XPYq. Thus, by considering the leading monomials in
decreasing order, we can modify the sum so that the leading monomials
form a strictly decreasing sequence.

It follows from Lemma 4.5 that A(e) = I(e). Also, for every nonzero f in
I there is an element fl in A(e) such that f and fl have the same leading
coefficient. Therefore e is the effective total degree of I.

Let I be an ideal of R given by a finite generating set T. Proposition 4.3
gives us an algorithm for determining the effective total degree e of I and
finding a basis for I(e). The algorithm involves a variant of ZBASIS de-
scribed in Section 10.2. This variant uses the reverse of the total-degree
ordering on monomials to define a correspondence between polynomials and
integer vectors.

Procedure ZBASIS_TD(ul,... , us; v1, ... , vt)
Input: ul,... , us : elements of 7L [X, Y];
Output: v1, ... , vt : a 7L-basis for the subgroup generated by the ui;
Begin

Let d be the maximum of the total degrees of the ui;
Let w1 = yd'...' w,. = 1 be the monomials in X and Y with total

degree at most d listed in decreasing order;
(* The basis w1, . . . , w, will be used to identify polynomials of total

degree at most d with integer vectors. *)
Let P be the s-by-r integer matrix whose rows correspond to the u2;
Let vl, ... , vt in 7L [X, Y] correspond to the nonzero rows of the row

Hermite normal form of P
End.

Procedure ZXYIDEAL_TD(u1,... , us; vl, ... , Vt);
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Input: ul,... , us : Elements of Z[X, Y];
Output: v1,.. . , vt : a basis for I(e), where I is the ideal generated

by the ui and e is the effective total degree of I;
Begin

Let d be the maximum of the total degrees of the ui;
ZBASIS_TD(ul, ... , us; vl, ... , vt); done:=false;
While not done do begin

Let y1,.. . , yp denote the elements X'Ysvi with r + s < d and
1<i<t;

ZBASIS_TD(yl,... , yP; zl, ... , zm);
Let k be minimal such that Zk has total degree d;

If zk, .... zm and v1, ... , vt are not the same then
Copy zk,... , zm asvl,... , Vt (* D(d) # A. *)

Else begin
Forr>0, s>0, andr+s<2ddo

If there is some zi with leading monomial X'YS then
Set ars equal to the leading coefficient of zi

Else ars := 0;

Let e be the maximum of r + s for those pairs (r, s) for which
ars 0

and either r = 0 or ars # a,._ls
and either s = 0 or a,rs 54 ars_1;

If e < d then done := true (* D(e) = A(e). *)

Else begin
Let k be minimal such that the total degree of Zk is e;
Copy zk,...,zm as v1,...,vt;
d:=e

End
End

End;

Let k be minimal such that Vk has total degree e;
Copy vk,...,v, as v1,...,vt

End.

The reader is warned that ZXYIDEAL_TD is practical only if the value
of d remains small. For example, suppose that d is 6 in the first line of
the While-loop. The number of monomials of total degree at most 6 is 28.
Thus t could be as large as 28, and p, which is 28t, could be 282 = 784. The
largest total degree of the yi will be 12. There are 91 monomials of total
degree at most 12. Thus the matrix P in the call to ZBASIS_TD will have
91 columns and up to 784 rows. Computing the row Hermite normal form
of such a matrix will take a long time. The Grobner basis method described
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r 0

Table 10.4.2

1 4 5

0 7 0 2 3 2 2

1 0 3 0 1 1

2 2 4 2 1

3 1 5 1

4 2 1

5 2

S

2 3

in Section 10.6 uses special knowledge about the matrix P to speed up the
computation. As we saw in Example 4.3, one can get useful information
if the inequality r + s < d in the first line of the While-loop is replaced by
r + s < 1 or r + s < 2.

The main difficulty in proving the correctness of ZXYIDEAL_TD is
showing that the procedure terminates. If d remains bounded, then the
group A generated by the vi is contained in a fixed free abelian group of
finite rank. With each iteration of the While-loop A gets larger. Thus
eventually the While-loop must terminate. If d goes to infinity, then, from
some point on, A contains the products of the original generators ui by any
given monomial. The group I(e) is finitely generated. The generators of
I(e) can be expressed in the form plus + + plus, where the pi are in R.
Eventually the terms piui for the various generators of I(e) will be in A. At
this point I(e) will be contained in A and ZXYIDEAL_TD will terminate
by Proposition 4.3.

The total-degree ordering can be used to study submodules of Rn. The
ordering is extended to basis elements biXjYk by first using the total degree
ordering of XjYk and then taking the bi in increasing order of i. In this
case, the groups CTS are subgroups of 7Ln.

Exercises

4.1. Suppose that A is a subgroup of Z[X, Y] and the nonnegative generators ars of the

subgroups Ars are given by Table 10.4.2. What is U(A)?
4.2. Let A be the subgroup of Z[X,Y] generated by 2XY2 - 3Y + 7 and XY2 - 2Y + X + 1,

and let B be the subgroup of A consisting of the elements with total degree at most 2.
Find bases for A + X B + YB and for the subgroup of A + X A + YA consisting of the
elements with total degree at most 3.

4.3. Apply ZXIDEAL_TD to the generators of A in Exercise 4.2. Compare the results with
Exercise 3.1.

10.5 The Grobner basis approach
In Sections 10.1 to 10.4 we sketched methods for deciding membership
in submodules of 7L[X1,... , Xm]''2 given by finite generating sets. These
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methods are based ultimately on the computation of row Hermite normal
forms of integer matrices. Unfortunately, for most interesting problems
these matrices are very large. The Grobner basis approach solves the same
problem. However, by adopting a rewriting point of view and being very
careful about the choice of generators, the approach reduces the time and
space requirements. The worst-case complexity remains highly exponential,
but the range of practicality is extended substantially.

To begin to get an insight into the Grobner basis approach, let us look
at an example.

Example 5.1. Let I be the ideal of Z[X] generated by the following polyno-
mials:

f1 = X6+ X5+ X4 + 2X3 + 3X2 + 3X +5,

f2= 2X5 +2X3+2X2 +2,

f3=
f4 =

A =
f6

f7 =

2X4 + 2X3

4X3

The effective degree of I is 6 and the fi form the basis of 16 produced
by the procedure ZXIDEAL of Section 10.1. The product Xf6 is in I6
and has the same leading coefficient as f5. If we replace f5 by Xf6, then
the abelian group A generated by the polynomials is contained in 16. By
Exercise 1.10 in Chapter 8, A is actually equal to I6. The same argument
shows that the polynomials fl, Xf3, f3, X2f6, Xf6, f6, f7 form a basis for
16 which contains bases for Id, 0 < d < 5. Thus we only have to remember
four polynomials, fl, f3, f6, and f7, not seven. This is the way that the
Grobner basis approach saves space. When describing an abelian group of
polynomials, generators which are monomial multiples of other generators
are not explicitly written down.

Now let us see how time is saved. To prove that our new generating set is
a 7L-basis for 16, we must take each basis element g of degree less than 6 and
show that Xg is an integral linear combination of our basis polynomials.
For g = f6, Xf6, or f3, the polynomial Xg is actually part of the basis.
Therefore, the only nonobvious cases occur when g is f7, X2 f6, and Xf3.

As mentioned earlier, the Grobner basis approach adopts a rewriting
point of view. Because fl is in I, it follows that X6 is congruent modulo
I to -X5 - X4 - X3 - 2X3 - 3X2 - 3X - 5. Thus, if g is any element of
Z[X] which has a term aXr with r > 6, then we can replace that term by
aX''-6 (-X 5 - X 4 - X 3 - 2X3 - 3X2 - 3X - 5) and the resulting polynomial
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will be congruent to g modulo I. In this way, we can think of fl, f3, fs,
and f7 as defining the following "rewriting rules":

X6-+-X5-X4-X3-2X3-3X2-3X-5,
2X4-- -2X3-2X-6,
4X-->-4,

8--+0.

To show that these rules are confluent in the sense that any polynomial
can be reduced to a unique canonical form using them, we must look at
overlaps of left sides, terms aXr which are reducible by two rules. In fact,
we need consider only minimal overlaps, overlaps aX' with a positive such
that neither aXT-l nor (a -1)X" is reducible by two rules. In this example,
the minimal overlaps are 8X, 4X4, and 2X6. Proving confluence involves
essentially the same computations as showing that Xf7, X3f6, and X2f3
are in the abelian group generated by fl, Xf3, f3, X2 fs, Xf6, f6, and f7.

In order to be able to describe the Grobner basis approach in a manner
which can be generalized to modules over group rings of polycyclic groups,
we shall initially take a very general point of view and consider a free abelian
group F with a basis U which is well-ordered by a linear ordering -<. Later
we shall impose more structure on F, U, and . A nonzero element of F
can be written uniquely in the standard form

f = alul + a2u2 + ... + asy's,

where the ai are nonzero integers and the ui are elements of U with u1 >-
u2 >- >_ us. We shall refer to ul, al, and alu1 as the leading generator,
the leading coefficient, and the leading term of f, respectively. Also, ai
will be called the coefficient of ui in f. If u is an element of U which is
not equal to any ui, then the coefficient of u in f will be defined to be 0.
In our primary example, F will be Z[Xl,... , U will be the basis
consisting of all terms biX"1 ... Xm , where b1,. .. , bn is the standard basis
of V', and -< will be a linear ordering of U similar to the ones we have used
already. An important special case occurs when m = 0 and F = 7.n. If we
take b1 >- b2 >- . >- b,, then the leading coefficient of a nonzero element
f = (a1,. .. , an) of F is the first nonzero component of f.

It will be convenient to extend to be a well-ordering of F. To do this, we
first well-order Z. The order used here will be 0 -< 1 -< 2 -< -1 -< -2 ....
Other orderings are possible. See (Buchberger 1984). Terms an and by with
a and b in Z - {0} and u and v in U are ordered as follows: an -< by if and
only if u -< v or u = v and a - b. Finally we order F. The zero element of
F comes first. If f and g are nonzero elements of F, then f - g if and only



10.5 The Grobner basis approach 485

if either the leading term of f precedes the leading term of g or f and g
have the same leading term au and f - au -< g - au.

Proposition 5.1. The ordering -< on F is a well-ordering.

Proof. Exercise.

Suppose now that S is a possibly infinite set of nonzero elements of F.
To simplify the exposition, we shall assume that the leading coefficients of
the elements of S are positive. Thus f -< -f for all f in S. Our goal will
be to decide membership in the subgroup M of F generated by S. We shall
eventually have to put some additional conditions on S, but for now S is
arbitrary. In the case F = 7G[Xl, ... , Xj' we shall have a finite set T of
nonzero elements of F, and S will be the set of all products u f , where u
is a monomial and f is in T. Here M is the submodule of Z[X,, ... , X,.]n
generated by T.

Let f be a nonzero element of F with standard form alul + + anus.
Suppose for some i, 1 < i < s, there is an element h of S with leading term
bui and b -< ai. Thus either ai is negative or b < ai. Let ai = qb + r, where
q and r are integers and 0 < r < b. Then r ai. If g = f - qh, then the
cosets g + M and f + M are equal and

g=alul+...+ai_lui_1+rui+....

If r = 0, then this is not the standard form of g, but g -< f whether or
not r = 0. We could now check to see whether another such reduction
is possible with g. Since - is a well-ordering of F, eventually we reach
an element of f + M which cannot be reduced further. Such an element
will be called irreducible. The following function describes this reduction
procedure.

Function GRP_REDUCE(S, f );
Input: S : a set of nonzero elements of F with positive leading

coefficients;
f : an element of F;

(* The value returned is an irreducible element of f + M, where M is
the subgroup of F generated by S. *)

Begin
i:=1;9=f;
(* At all times the standard form of g will be alul + + anus. If

g=0, then s=O.
While i < s do

If there is no element in S with leading term bui such that b -< ai
then i := i + 1
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Else begin
Let h in S have leading term bui with b -< ai;
Let ai = qb + r, where q and r are integers and 0 < r < b;
g:=g-qh;
(* Recompute s and the terms ajuj with j > i. *)

End;

GRP_REDUCE := g
End.

It may be possible to execute GRP_REDUCE(S, f) even when S is in-
finite. For each u in U let Su be the set of elements in S with leading
generator u. If for each u the set Su is finite and we have an algorithm for
listing its elements, then we can carry out the steps in GRP_REDUCE.

There is a strong similarity between GRP_REDUCE and REWRITE of
Section 2.2. In particular, executing GRP_REDUCE may involve making
choices for the element h and the output may depend on those choices. We
need a condition analogous to confluence of rewriting systems which will
insure that the output of GRP_REDUCE is independent of the choices.
We would also like the result returned to be the first element with respect
to -< in f + M. In particular, 0 should be returned whenever f is in M.

There is one case in which everything works as we would like.

Proposition 5.2. Suppose that for each u in U there is at most one element
of S with leading generator u. Then S is a basis for M and the element g
of F returned by GRP_REDUCE(S, f) is the first element of f + M. In
particular, if f is in M, then g = 0.

Proof. The case in which U is finite has already been proved. Here F may
be identified with 7D2, where n = GUI, and the first part of the proposition is
just the statement that the nonzero rows of a matrix in row echelon form
are a basis for the subgroup they generate. The fact that g is first in M + f
follows from Exercises 1.6 and 1.7 in Chapter 8. The general case requires
only simple modifications of the proof when U is finite and is left as an
exercise.

In general, S may have many elements with the same leading genera-
tor. For each u such that Su is not empty, let hu be the first element in
Su with respect to -<, and let P be the set of element hu so defined. The
leading coefficient of hu is minimal among the leading coefficients of ele-
ments of Su. Hence, if we wanted to, we could always take the element h
in GRP_REDUCE to be hu,. Thus, if GRP_REDUCE(S, f) is always to
be 0 if f is in M, then it had better be true that M is generated by P.

Proposition 5.3. The following are equivalent:
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(a) P generates M.
(b) GRP_REDUCE(S, f) always returns the first element in f + M for

any element f of F.
(c) GRP_REDUCE(P, f) returns 0 for each f in S - P.

Proof. (a) implies (b). Assume (a). By Proposition 5.2, the first element
g of f + M is the only element of f + M which is irreducible with respect
to P. Therefore g is the only element in f + M which is irreducible with
respect to S. Hence g is returned by GRP_REDUCE(S, f ).

(b) implies (c). Assume (b) and suppose f is in M. As noted ear-
lier, any element returned by GRP_REDUCE(P, f) could be returned by
GRP_REDUCE(S, f ). Since GRP_REDUCE(S, f) always returns 0, the
same must hold for GRP_REDUCE(P, f ).

(c) implies (a). Assume (c). Then every element of S - P is in the
subgroup generated by P. Therefore P and S generate the same subgroup.

Let f and g be elements of S with the same leading generator such
that f g. We shall call (f, g) a semicritical pair. Note that whenever
hu is defined and g is in Su - {hu}, then (hu, g) is a semicritical pair. Let
b and c be the leading coefficients of f and g, respectively. Then b < c.
Let c = qb + r, where q and r are integers and 0 < r < b. The element
t(f, g) = g - q f will be called the test element corresponding to f and g.
(In the context of polynomial rings, t(f, g) is often referred to as the S-
polynomial of f and g.) We shall say that f is consonant with g or the
pair (f, g) is consonant if some invocation of GRP_REDUCE(S, t(f, g))
returns 0.

Proposition 5.4. Suppose that each hu in P is consonant with every
element in Su - {hu}. Then P generates M.

Proof. If P does not generate M, then there is an element g of S which
is not in the group N generated by P. Choose g minimal with respect to
- and let u be the leading generator of g. By assumption, hu is consonant
with g. Therefore some invocation of GRP_REDUCE(S, t(hu, g)) returns 0.
Either the leading generator v of t(hu, g) is less than u or v = u and the
leading coefficient of t(hu, g) is positive and smaller than the leading co-
efficient of hu. It follows that every element h used during the execution
of GRP_REDUCE(S, t(hu, g)) satisfies h -< g. All such elements h are in
N by the choice of g. Therefore t(hu, g) is in N. But hu is in N and
g = t(hu, g) + qhu for some integer q. Therefore g is in N. This contradicts
the choice of g, so P generates M.

Proposition 5.5. The following are equivalent:

(a) Every semicritical pair is consonant.
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(b) For each semicritical pair (f, g) the element t(f, g) is in the subgroup
generated by all h in S with h -< g.

Proof. (a) implies (b). Assume (a) and let (f, g) be a semicritical pair.
Some invocation of GRP_REDUCE(S, t(f, g)) returns 0. Every element
h used in GRP_REDUCE satisfies h -< g and t(f, g) is in the subgroup
generated by these elements.

(b) implies (a). Assume (b). We shall show that P generates M. If not,
let g be a minimal element of S which is not in the subgroup N generated by
P and let u be the leading generator of g. By assumption, t(hu, g) is in the
subgroup generated by the elements h of S with h -< g. All such elements
are in N, so t(hu, g) is in N. But hu is in N and g = t(hu, g) + qhu for some
integer q. Therefore g is in N. This is a contraction and P generates M.
In this case all semicritical pairs are consonant by Proposition 5.3.

Corollary 5.6. Condition (b) of Proposition 5.5 implies that GRP_
REDUCE(S, f) always returns the first element off + M.

Exercise

5.1. The most common use of Grobner basis methods is in the study of ideals in polynomial
rings where the coefficients come from a field K. Rework the exposition in this section
assuming that F is a vector space over K with basis U and we want to decide membership
in the subspace of F generated by a subset S.

10.6 Grobner bases
In this section we shall apply the ideas of Section 10.5 to the situation
in which F is 7L[X1, ... , X,,,]", U is the set of terms biXi' ... X""-, and
is a well-ordering of U satisfying certain conditions to be described later.
The ring Z[X1, ... , Xj will be denoted by R. Let X be the set of monomi-
als Xi' ... X X. Given a finite subset T of F, we want to decide membership
in the submodule M of F generated by T. It is easy to see that M is gen-
erated as an abelian group by the set S of products x f , where x is in X
and f is in T.

Our work will be made easier if we choose an ordering -< on U which
is in some way compatible with the multiplicative structure of F as an R-
module. Let us start with orderings of X. An ordering - of X is consistent
with multiplication if x -< y implies xz -< yz for all x, y, and z in X. As in
the case of the reduction orderings on words considered in Chapter 2, if -<
is a well-ordering which is consistent with multiplication, then 1 is the first
element of X. Both the reverse lexicographic ordering and the total-degree
ordering are well-orderings of X which are consistent with multiplication.
Let us fix one well-ordering -< of X which is consistent with multiplication.

We shall assume that we have a well-ordering, also denoted -<, of U
satisfying the following properties:
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(i) If u and v are in U and u -< v, then xu -< xv for all x in X.
(ii) If x and y are in X and x -< y, then xu yu for all u in U.

Such an ordering will again be said to be consistent with multiplication.
Given -< on X, we can construct orderings of U which are consistent with
multiplication. Elements of U have the form bix with x in X. If u = bix
andv=bayare inU,we can sayu-<vif x- yorx=yandi>j. (Itis
convenient to have b1 >- >- b,,,.) On the other hand, we can say u - v if
i > j or i = j and x -< y. Both of these orderings are well-orderings of U
which are consistent with multiplication.

As described in Section 10.5, we extend -< to a well ordering of F. Sup-
pose that f is a nonzero element of F and the standard form of f is
alul + + anus, where the ai are integers and the ui are in U. If x is
in X, then the standard form of x f is alxul + + asxus. Also, if g is in
F and f g, then x f -< xg.

Now let T be a finite subset of F. We shall assume that elements of T are
nonzero and have positive leading coefficients. The R-module M generated
by T is generated as an abelian group by S = {x f I x E X, f E T}. By the
remarks of the preceding paragraph, the leading coefficients of elements of
S are positive and there are only finitely many elements of S with a given
leading generator. Thus we can execute GRP_REDUCE(S, f) for any f
in F. Let us write REDUCE(T, f) for GRP_REDUCE(S, f ). This makes
sense since T determines S.

The value returned by REDUCE(T, f) will be the first element of M + f
provided the semicritical pairs from S are consonant. Unfortunately, there
are infinitely many semicritical pairs. However, because of our choice of
ordering, there is a finite set of semicritical pairs whose consonance suffices.
A critical pair is a semicritical pair (x f , yg), where f and g are in T, x and
y are in X, and gcd(x, y) = 1. Suppose that f and g are elements of T with
leading generators u and v, respectively. If u and v do not involve the same
standard basis vector bi, then for all x and y in X the elements x f and yg
have different leading generators. Thus (x f, yg) cannot be a semicritical
pair. Suppose that u = biz and v = biw, where z and w are in X. Then
there are unique elements x and y of X such that gcd(x, y) = 1 and xu = yv,
namely x = lcm(z, w)/z and y = lcm(z, w)/w. If x f # yg, then exactly one
of the pairs (x f, yg) and (yg, x f) is a critical pair. Hence the set of critical
pairs is finite.

Proposition 6.1. If all critical pairs are consonant, then all semicritical
pairs are consonant.

Proof. Let (x f, yg) be a semicritical pair. Set z = gcd(x, y), xl = x/z
and yl = y/z. Then gcd(xl, yl) = 1 and (xl f, ylg) is a critical pair. By
assumption, t(x1 f, ylg) can be written as a,hl + + ashy, where each ai
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is an integer and each hi is an element of S with hi -< y1g. It is easy to
see that Ox f, yg) = zt(x1 f, y1g) = a1zh1 + + aszhg and zhi - zylg = yg.
Therefore all semicritical pairs are consonant by Proposition 5.5.

If all critical pairs are consonant, then T is said to be a Grobner basis
for M with respect to -<. This terminology may be a little confusing. A
Grobner basis is not necessarily a basis, that is, a generating set whose
elements are linearly independent over R. In the ideal I of Example 5.1,
the polynomials fl, f3, f6, and f7 form a Grobner basis, but (X+1)f7 = 2f6,
so these polynomials are not linearly independent over 7L[X]. Submodules
of R' may not be free. Hence they may not have any bases. The word
"basis" in "Grobner basis" simply means finite generating set, which is the
same meaning it has in "Hilbert basis theorem".

The following result will be used several times in proving results about
Grobner bases.

Proposition 6.2. The ascending chain condition holds for subsets of U
which are closed under multiplication by elements of X.

Proof. Let V be a subset of U which is closed under multiplication by
elements of X and let M be the abelian group generated by V. Then V is
a basis for M and M is an R-submodule of F. Now let V1 C V2 C . . . be an
ascending chain of subsets of U which are each closed under multiplication
by elements of X. If Mk is the R-submodule generated by Vk, then M1 C
M2 C . Since the ascending chain condition holds for submodules of F,
there is an index j such that Mk = Mj for all k > j. Since Vk = Mk f1 U, it
follows that Vk = Vj for k > j.

The first application of Proposition 6.2 will be in the proof of the existence
of Grobner bases. Let us fix well-orderings of X and U, both denoted by
-<, which are consistent with multiplication.

Proposition 6.3. If M is any submodule of F, then M has a finite Grobner
basis with respect to -<.

Proof. For each u in U, let Mu be the abelian group consisting of 0 and
those nonzero elements of M whose leading generators do not exceed u. Let
Cu be the set of coefficients of u in elements of Mu. Then Cu is a subgroup
of Z. If x is in X, then xMu C Mxu, so Cu C Cxu. Let cu be the nonnegative
generator of Cu. If cu 0 0, let hu be an element of Mu such that the leading
term of hu is cuu. Let P be the set of hu so chosen and let L denote the
set of leading terms of elements of P. That is, L = {cuu I Cu 0 0}.
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Lemma 6.4. There is a finite subset K of L such that every element in L
has the form xk for some x in X and some k in K.

Proof. Suppose no such K exists. Choose cuu in L with c,,, as small as
possible. If x is in X, then c,,, is divisible by cxu. But by the choice of u we
must have cxu = cu, so cxuxu = x(cuu). Set k1 = cuu and V1 = {xu I x E X}.
Now suppose that k1, ... , k,. have been chosen in L and V, is the set of
multiples by elements of X of the leading generators of the ki. Assume
that for all v in V,. we have cvv = xki for some x in X and some i. By
assumption there exists c,,w in L such that w is not in Vr. Among all such
w, choose one such that c,,, is minimal. If x is in X, then cx,,, divides cu,. If
cx, = c,, then cx,,,xw = x(c,,,w). If cxw is a proper divisor of cu , then xw is
in Vr, so cx,,,xw = yki for some y in X and some i. Thus we may define kr+i
to be c,vw and the induction hypothesis remains true. But the sets Vr are
closed under multiplication by elements of X and are strictly increasing.
This contradicts Proposition 6.2.

Let K be as in Lemma 6.4, let T be {hu I cuu E K}, and let S =
{x f I x E X, f E T}. Suppose g is a nonzero element of M with leading
term av. By Lemma 6.4, cvv = xcuu for some cuu in K. Let q = a/cv.
Then xhu is in S and g - gxhu is zero or has leading generator less than v.
Hence g is reducible with respect to S. Therefore GRP_REDUCE(S, g)
must return 0. This means that all semicritical pairs from S are consonant,
so certainly all critical pairs are consonant. Therefore T is a Grobner basis
for M with respect to -<.

Suppose that T is a finite subset of F in which all elements are nonzero
and have positive leading coefficients. If T is not a Grobner basis for the
R-submodule M generated by T, then there is a critical pair (f, g) such
that REDUCE(T, t(f, g)) returns a nonzero element h. If we multiply h
by -1 if necessary to make its leading coefficient positive and add h to
T, then it is possible for REDUCE(T, t(f, g)) to return 0, so (f, g) is now
consonant. Unfortunately, by increasing the size of T we have increased
the number of critical pairs. However, it turns out that eventually we shall
reach a (finite) Grobner basis for M. This Grobner basis procedure is very
similar to the Knuth-Bendix procedure for strings, except that it always
terminates. Here is one version of the procedure:

Procedure GROBNER(T, -<; B);
Input: T : a finite subset of Z[X,, ... , Xm]u;

well-orderings of X and U which are consistent with
multiplication;

Output: B : a finite Grobner basis relative to -< for the submodule
M generated by T;
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Begin
B:= T - {0};
Multiply elements of B by -1, if necessary, so that all elements have

positive leading coefficient;
Let C be the set of critical pairs obtained from B;

While C is not empty do begin
Remove a critical pair (f, g) from C; h:= REDUCE(B, t(f, g));

If h# 0 then begin
If the leading coefficient of h is negative then h:= -h;
Form all critical pairs involving h and some element of B and

add these pairs to C;
Add h to B

End
End

End.

Proposition 6.5. The procedure GROBNER terminates and returns a
Grobner basis.

Proof. The proof makes repeated use of Proposition 6.2. During the
operation of GROBNER, let V denote the set of elements of U of the form
xu, where x is in X and u is the leading generator of some element of B. The
set V is closed under multiplication by elements of X, so by Proposition 6.2
V is eventually constant. From this point on, whenever h is added to B
there is an element e already in B such that the leading generator of h is xv,
where v is the leading generator of e and x is in X. Let a and b be the leading
coefficients of h and e, respectively. We must have a < b, since otherwise the
call REDUCE(B, t(f, g)) would have further reduced the coefficient of xv
in h. Therefore the leading coefficients of the elements of B are bounded.
For each integer b > 0, let Vb denote the set of elements of U of the form
xu, where some element of B has leading term cu and c < b. Again the set
Vb is closed under multiplication, so for any given b the set Vb is eventually
constant. But since the leading coefficients of elements of B are bounded,
this means that eventually no elements are added to B. Therefore the set C
of critical pairs is emptied and the procedure terminates. Since all critical
pairs of the final set B are consonant, B is a Grobner basis for M.

Example 6.1. Let us apply GROBNER to the input data of Example 3.1.
The set U consists of the terms biXjYIv. We shall order U by using the
reverse lexicographic ordering on the monomials XjYk and then, if nec-
essary to break a tie, looking at the value of i. As remarked earlier, we
assume b1 >- b2. In computing REDUCE(B, f) we shall always take the
earliest possible element of B which could be used to reduce a particular
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term in f. Elements of C will be processed as a queue, first in, first out.
The initial generators in their standard forms are

ul = b1Y + b2Y + b1X + bl + b2,

u2 = b2Y + b1X -b2X - b1,

U3 = b1Y + b2Y - b1X + b2X + b1 - b2.

The only critical pair which can be formed from these generators is (ul, u3),
and t(ul, u3) = u3u1= -2b1X +b2X -2b2. The call to REDUCE returns this
element unchanged. Since its leading coefficient is negative, we multiply it
by -1 and add it to our generating set as

u4 = 2b1X - b2X + 2b2.

The critical pairs involving u4 are (Xu1,Yu4) and (Xu3, Yu4). Process-
ing the first of these, we find that reducing t(Xu1,Yu4) leads to a new
generator,

U5 = b1X2 - 3b2X2 + b1X - 4b2X + 2b1 + 8b2.

The critical pairs from u5 are (X2u1,Yu5), (X2u3,Yu5), and (u5,Xu4).
The next pair to be processed is (Xu3, Yu4), which does not produce a new
generator. The pair (X2u1,Yu5) gives us the generator

u6 = 5b2X2 + 9b2X - 4b1 - 14b2.

The only critical pair coming from u6 is (X2u2,Yu6). The remaining critical
pairs do not yield new generators, so the final output of GROBNER is the
sequence ul, ... , us.

The basis produced by GROBNER depends not only on the module M
and on -< but also on the particular input generating set for M. We can
remove this dependence on the input generating set by requiring the output
be a reduced Grobner basis, a basis B such that for all f in B the result
of REDUCE(B - { f 1, f) is f . A reduced Grobner basis can be obtained
from an arbitrary Grobner basis B by taking the elements f of B in turn,
computing g = REDUCE(B - { f 1, f ), and then either deleting f from B
if g = 0 or replacing f by g if g is nonzero and different from f . This process
is continued until no further changes are possible. The reduced Grobner
basis for the module in Example 6.1 consists of u2, u4, and u6, together
with

u7 = b1Y + b2X + 2b1 + b2,

u$ = b1X2 + 2b2X2 + b1X + 5b2X - 2b1 - 6b2.
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Just as the original version of the Knuth-Bendix procedure for strings
needed a number of modifications to become really useful, improvements
must be made to GROBNER. Redundant generators must be removed
early rather than waiting for the final computation of a reduced basis. The
order in which the critical pairs are processed must be considered very
carefully. Data structures which permit fast execution of REDUCE must
be devised. Research on these points is continuing and we shall not attempt
to present recommendations here.

It will be important for us to be able to decide, for a given submodule
M of R, whether Rn/M is finitely generated as an abelian group. The
following result gives us a simple test.

Proposition 6.6. Suppose that B is a Grobner basis for a submodule M
of Rn with respect to an ordering -< of U which is consistent with multipli-
cation. The quotient Rn/M is finitely generated as an abelian group if and
only for if each i, 1 < i < n, and each j, 1 < j < m, there is a nonnegative
integer rid such that B has an element with leading term biXr".

Proof. Assume first that the nonnegative integers
ri.1

all exist. If f in Rn
is nonzero and irreducible with respect to B, then no term abiX1' ... XX
in f can have cad > rid. Therefore f is in the Z-module N generated by the
elements biX°' ... Xm with 0 < cad < ri3 for all i and j. The rank of N is

n m
E flrid .

j=1

Since N maps onto Q = Rn/M, this quotient is finitely generated as an
abelian group.

Now assume that Q is finitely generated as an abelian group. Fix i and
j with 1 < i < n and 1 < j < m. The subgroup of Q generated by the
images of the elements biXja, a = 0, 1, ..., is finitely generated. Therefore
there is a nonnegative integer s and integers a0,...,as_1 such that f =
biXjs - as_1biXj8-1 ... aobi is in M. Since 1 -< Xj in X, we must have bi -<
biXj - biXj. Therefore biXj' is the leading term of f. Reduction
using B eventually produces 0. But this can happen only if B contains an
element with leading term biXj' with r < s.

Exercises

6.1. Apply GROBNER to Examples 1.1, 1.2, 2.1, 2.2, 2.4, 4.2, and 4.3 and to Exercises 1.1
and 3.1. Use various well-orderings of X and U.

6.2. Show that each submodule of R' has a unique reduced Grobner basis with respect to a
particular choice of orderings on X and U.
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10.7 Rings of Laurent polynomials
The ring of Laurent polynomials with integer coefficients in variables
X1,. .. , X,,n is a free abelian group L with basis the set U of Laurent
monomials, monomials Xl' ... Xm, where the ai are arbitrary integers.
Monomials are multiplied in the obvious way and multiplication is extended
to all of L using the distributive law. The set U is a subgroup of the group
of units of L and U is free abelian of rank m. Sometimes L is denoted
7G[X1,1/X1, ... , Xm,1/Xm], but the notation 7G (X1,. .. , Xm) will be used
here.

Modules over rings of Laurent polynomials play an important role in the
determination of metabelian quotients of finitely presented groups. There is
more than one way to study such modules. Perhaps the simplest approach
is to describe L as a quotient ring of a polynomial ring in 2m variables.

Proposition 7.1. The ring L = 7G (X1,... , X,) is isomorphic to the quo-
tient of R = Z[Y1, Z1,. .. , Ym, Zm] modulo the ideal I generated by Y1Z1 -
1,...,YmZm-1.

Proof. The map taking Y to Xi and Zi to X,-1 defines a ring homomor-
phism f of R onto L. Since f (Y Z. -1) = XiX, 1-1=1-1= 0, the elements
Y Zi - 1 are in the kernel of f. Given an element u = Xi' ... Xm in U,
define g(u) to be Ul ... Um in R, where Ui = Ya' if ai > 0 and Ui = Z,`k'
if ai < 0. The map g extends to a homomorphism of abelian groups of L
into R. It is tedious but not difficult to show that g(uv) - g(u)g(v) (mod I)
for all u and v in U. Then it is straightforward to show that g defines a
ring homomorphism of L onto R/I. Since g o f is the identity and f o g is
the identity modulo I, it follows that L and R/I are isomorphic.

Corollary 7.2. There is a natural correspondence between L-modules and
R-modules on which the elements YZi - 1 act trivially.

Proof. Exercise.

Corollary 7.3. Submodules of finitely generated L-modules are finitely
generated.

Proof. Exercise.

Suppose that F is Ln and M is the L-submodule of F generated by a
finite set T. Let F1 be R' and let f and g be the maps defined in the
proof of Proposition 7.1. Then f can be extended to an R-homomorphism
of F1 onto F. The kernel N of f is generated by the elements bi (Y Zj - 1),
where b1,... , bn are the standard basis vectors. The map g extends to a
homomorphism of abelian groups from F to F1. The inverse image M1 of
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M under f is generated by N and g(T), and the quotients F/M and F1/M1
are isomorphic as R-modules. We can compute a Grobner basis for M1 and
therefore we can solve the word problem for F/M.

Although the approach to finitely presented L-modules just sketched is
conceptually straightforward, there are some problems. The complexity of
Grobner basis computations tends to increase as the number of variables
increases. In moving from L to R, we have doubled the number of variables.
This is likely to cause difficulties. It seems desirable to have techniques for
working directly with submodules of L. There are two possible approaches.
We can generalize the methods of Sections 10.1 to 10.4 or we can generalize
the Grobner basis method.

Let us begin by looking again at Section 10.1 and trying to generalize
ZXIDEAL to ideals of L = Z (X). Let T be a finite subset of L. Since X is
a unit in L, we can multiply elements of T by powers of X without changing
the ideal I of L generated by T. Thus we may assume that the elements
of T are ordinary polynomials in X with nonzero constant terms. The set
J = I nZ[X] of ordinary polynomials in I is an ideal of Z[X]. Given f in L,
we can multiply f by a power of X so that the result g is in Z[X]. Then f
is in I if and only if g is in J. Thus, if we can determine the effective degree
e of J and find a Z-basis for Je, we can decide membership in I. Let d be
the maximum of the degrees of the elements of T. It is not hard to modify
the proof of Proposition 1.1 to show that e < d. Let A be the abelian
group generated by T. The condition for A to equal Jd is slightly more
complicated than that given in Proposition 1.3. Let B be the subgroup
of A of elements of degree at most d - 1. Then we must have X B C A.
However, more is necessary. Let f be an element of A with zero constant
term. Then X -1 f is in J. Therefore, if C is the subgroup of A consisting
of those elements with zero constant term, then for A to equal Jd we must
have X-1C C A.

Proposition 7.4. A necessary and sufficient condition for A to equal Jd is
for both XB and X-1C to be contained in A.

Proof. Exercise.

Example 7.1. Let us determine the ideal I of L = Z (X) generated by the
polynomials

2X4 + 5X3 - 13X2 - 4X + 30,
2X3 + X2 - 7X - 6,
6X3 - X2 - 15X.

The ideal of Z[X] generated by these polynomials was determined in Ex-
ample 1.1. The subgroup A generated by these polynomials corresponds to
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S(M1), where

2 5 -13 -4 30
M1= 0 2 1 -7 -6

0 6 -1 -15 0

The row Hermite normal form of M1 is

2 1 1 -14 -30
M2- 0 2 1 -7 -6

004 -6 -18

and the subgroup B corresponds to the group generated by the last two
rows of M2. To find generators for C, we must row reduce M1, processing
the columns from right to left. One way to do this is to reverse the order
of the columns, compute the row Hermite normal form, and then reverse
the order of the columns again. The result is

-21 416
N2= -401130

-10 3 27 0 0

Therefore C corresponds to the group generated by the last two rows of N2.
The group A + XB + X-1C corresponds to the group generated by the
rows of

2 1 1 -14 -30
0 2 1 -7-76
0 0 4 -6 -18
2 1 -7 -6 0

0 4 -6 -18 0

0 -4 0 11 3

0 -10 3 27 0

The nonzero rows in the row Hermite normal form of M3 are given by

12112-61

_ 0 2 1 1 6
M4 0021 -3

0 0 0 4 6
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Row reducing M4 from right to left gives

23023
_ 2 3 2 3 0

N4 25300
46000

Now A + X B + X -1 C corresponds to the group generated by the rows of

211 2-6
0 2 1 1 6

002 1 -3
0 0 0 4 6

2 1 1 6 0

021 -3 0

0 0 4 6 0

0 2 3 2 3

0 2 5 3 0

046 0 0

The nonzero rows of the row Hermite normal form of M5 are given by M4.
Thus now XB and X-1C are contained in A. Therefore the effective degree
of J = I n z [X ] is 2 and J2 has a Z-basis 2X2 +X-3 and 4X+6.

Proposition 7.4 generalizes easily to handle submodules of Z (X)' in the
spirit of Section 10.2. Questions about submodules of Z (X, Y)n can be
reduced to questions about submodules of Z (X)Ic, where k is a multiple
of n. Suppose that M is the submodule of Z (X,Y)n generated by a finite
set T. We may assume that elements of T lie in Z[X,Y]n. Let d be the
maximum of the degrees in Y of the elements of T. If A is the Z (X)-module
generated by T, then we need to compute both the Z (X)-submodule B of
elements in A whose degree in Y is less than d and the 7G (X)-submodule
C = A n (YZ[X,Y]n) of elements in A whose constant terms with respect
to Y are 0. We then check whether YB + Y-1C is contained in A.

It is also possible to generalize the total-degree methods of Section 10.4.
Let us assume that our generating set T is contained in Z[X, Y]. Let d
be the maximum of the total degrees of the elements of T and let A be
the abelian group generated by T. We consider the subgroup D generated
by all sets of the form Xr'YSA, where Iri + Isl < d. We then determine
E = D n Z[X, Y] and check whether A is the set of elements in E with total
degree at most d and whether the effective total degrees of A and E are
the same.
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The Grobner basis methods of Section 10.6 also generalize, but the details
get slightly complicated. The problem is that there is no well-ordering of
the set U of Laurent monomials in X1, ... , which is consistent with
multiplication. Suppose that -< is such an ordering. If x is in U and
x >- 1, then multiplying by x-1 gives 1 >- x-1. Multiplying by x-1 again
gives x-1 x-2. Thus we have an infinite, strictly decreasing sequence
1 r x-1 >_ X-2...' contradicting the assumption that is a well-ordering.

It turns out that it is more important for the ordering to be a well-
ordering than it is for the ordering to be consistent with multiplication.
Rather than try to axiomatize the class of orderings which work, we shall
simply choose one ordering as an illustration. The reader is encouraged
to experiment with other possibilities. Let -< be the reverse lexicographic
ordering on the Laurent monomials X11 ... Xm in which the exponents are
compared not with the usual ordering of 7L but with the ordering << in
which 0 << 1 << -1 << 2 << -2 <.... In the ordering - on U we have

Xl x1 -1 XJ X2 _< X1X2 Xi 1X2 X1X2 2 - Xl 1XZX3 -< X1XZX3 2.

Note that when -< is extended to the ring L of Laurent polynomials, the
coefficients are still compared according to the ordering 0 -< 1 -< 2 _<
-1-<

Although this ordering on U is not consistent with multiplication, there is
still some regularity. Let u = X11 ... X,,,- and v = Xa' ... X,- be elements
of U. We shall say that u and v are aligned, or u is aligned with v, if
ai0i > 0, 1 < i < m. Thus u and v are aligned unless there is an index i such
that ai and 13i are nonzero and have opposite signs. In the ordering -< on U,
exponents are compared first by comparing absolute values. An equivalent
definition for u and v to be aligned is that l ai + /3i l = l ai I + 1)3i 1, 1 < i < m.

Proposition 7.5. Suppose u and v are in U and u >- v. If the expo-
nent ai on Xi in u is nonnegative, then Xiu >- Xiv. If ai is nonpositive,
then X, lu >- X,-lv.

Proof. Adding 1 to nonnegative integers makes them bigger in the or-
dering << and preserves their relative position, while adding 1 to negative
numbers makes them smaller with respect to <<. Thus i > 0 and i >> j im-
ply i + 1 >> j + 1. Similarly, if i < 0 and i >> j, then i - 1 >> j -1. Suppose
that u = X11 ... Xm and v = X31 ... Xm . Let k be the largest index such
that ak # /3k. If k # i, then Xiu >- X, v for any integer ry. Let us assume
that k = i. Then ai >> 3i and ai 0 0. If ai > 0, then ai + 1 >> ,Qi + 1,
so Xiu >- Xiv. Similarly, if ai < 0, then Xi-lu >- X,-lv.

Corollary 7.6. Suppose that u, v, and x are in U and that u v. If x and
u are aligned, then xu >- xv.
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Proof. The computation of xu and xv can be accomplished by a sequence
of steps which involve multiplication by Xi or X1 1 for some i. Proposi-
tion 7.5 applies to each of these steps.

Corollary 7.7. Suppose a1u1+ +asus is the standard form for a nonzero
element f of Z (X1,.. . , Xm). If x in U is aligned with u1, then a1xu1 is the
leading term of x f .

Proof. If 2 < i < s, then u1 ui. By Corollary 7.6, xu1 >- xui.

Let u = Xi' ... Xm and v = XQ' ... Xm be monomials in U and assume
that u and v are aligned. Define the gcd of u and v to be w = Xl' ... Xm ,
where yi is the element of {ai, /3i} of smallest absolute value. Then w is
aligned with both u and v. The monomials uw-1 and vw-1 are also aligned,
and their gcd is 1. The 1cm of u and v is defined to be Xl' ... X6-, where
6i is the element of {ai, j3i} of largest absolute value. For example, if u =
X-3Y4Z-2 and V = X-5Y3Z-1, then gcd(u, v) = X-3Y3Z-1 and lcm(u, v) =
X -5Y4Z-2.

Let E be the set of integer vectors e = (E1, ... , Em) with IEi =1, 1 < i < m.
For e in E, let Ue be the set of monomials aligned with ue = Xi' ... X,6.- .
Any two elements of ue are aligned and Ue is closed under gcd's. Every
monomial belongs to at least one lfe.

Proposition 7.8. Suppose that u, v, x, and y in U satisfy xu >- xv and yu >-
yv. If x and y are aligned and their gcd is 1, then u >- v.

Proof. Clearly u v. Let k be the largest index such that the exponents
on Xk in u and v differ. Then k is the largest index such that the expo-
nents on Xk in xu and xv differ and k is the largest index such that the
exponents on Xk in yu and yv differ. Because the gcd of x and y is 1,
the exponent on Xk is 0 in at least one of x and y. Let us assume that the
exponent on Xk in x is 0. Then the exponents on Xk in u and v are the
same as the exponents on Xk in xu and xv, respectively. Since xu >- xv,
the exponent on Xk in u is greater with respect to << than the exponent
on Xk in v. Therefore u >- v.

Suppose T is a finite subset of L = Z (X1, ... , Xm). The ideal of L gen-
erated by T is generated as an abelian group by the set of products x f ,
where x is in U and f is in T. We need to be able to describe the set of
leading terms in these products.

Example 7.2. Let m = 1 and let

f =5X-4-X3+3X2+2X-1.
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What is the leading term of Xaf? If a < 0, then the unique exponent in
Xaf with largest absolute value is a - 4. Therefore the leading term will
be 5Xa-4. However, if a > 1, then the exponent of largest absolute value
is a + 3 and the leading term is -Xa+3

Example 7.3. Now let m = 2 and let

g = 2X-2Y3 - 4X2Y3 - XY2 + XY.

The leading term t of X"Yag is determined as follows:

t = 2Xa-2Y0+3 if /3 > -1 and a < 0,

t = -4Xa+2Yp+3, if /3 > -1 and a > 1,
t= Xa+1Yp+1, if 0 < -2.

On the basis of these two examples, the following proposition should seem
plausible.

Proposition 7.9. Let f be a nonzero element of L. There is a unique
subset 1(f) of L such that the following hold:

(i) Each element of 1(f) has the form y f with y in U.
(ii) If x is in U, then x f = yg for a unique pair (y, g) such that g is in

1(f), y is in U, and y is aligned with the leading monomial of g.

The cardinality of 1(f) is at most 2m.

Proof. We begin with the following lemma.

Lemma 7.10. If x is in U and x f has the same leading monomial as f,
then x = 1.

Proof. Let u = Xi' ... X be the leading monomial of f and x f and
let u belong to Lfe, where e = (E1, ... , Em) is in E. Choose k greater than
the absolute values of all the exponents in all of the monomials involved in
f and ref. By Corollary 7.7, the leading monomial of (ue)k f and (ue)kx f
is (ue)"u. All monomials occurring in either (Ue )kf or (ue)''xf are aligned
with Ue and hence with each other. Thus, replacing f by (ue )" f , we may
assume that all the monomials in f and x f are aligned with each other.
Let x = X3' . . . Xm . If c,,, = 1, then an is the algebraically largest exponent
on Xm in any of the monomials of f. The algebraically largest exponent
on X,172 in the monomials of x f is a,,,, + On. But this number must be am,
so On = 0. If Em = -1, then the same argument applies with "largest"
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replaced by "smallest". If = 1, then ariz_1 is the largest exponent on
Xm_1 in any monomial of f involving X" . The largest exponent on X,,,,_1
in any monomial of x f involving Xm is a,,,_1 But this number
must be am_1, so ,Qm_1 must be 0. Again the case Em-1 = -1 is equally
easy. Continuing in this manner, we find that 131 = =,3.. = 0, so x = 1.

Now suppose that x and y are in U and that the leading monomials u
and v of x f and y f , respectively, are aligned. By Corollary 7.7, uv is the
leading monomial of both vxf and uy f . By Lemma 7.10, uyv-lx-1 = 1,
or yx-1 = vu-1. Let t be the gcd of u and v and let u = zt and v = wt.
Define g to be z-lx f . Then

g = z-1x-1z-lt-ltww-lx f= u-lvw-lx f= yx-lw-lxf = w-lyf.

The monomial t occurs in g. Suppose that s is some other monomial of g.
Then zs is a monomial of zg = x f and ws is a monomial of wg = y f .

Therefore u = zt >- zs and v = wt >- ws. By Proposition 7.8, t - s, so t is
the leading monomial of g. Thus x f = zg and y f = wg and z and w are
aligned with the leading monomial of g.

The remarks of the preceding paragraph show that for each e in E there
is a unique polynomial ge with the properties that the leading monomial u
of ge lies in Ue and any polynomial x f whose leading monomial lies in Ue
has the form yge, where y is aligned with u. If u lies in Ud for some d in
E- {e}, then ge = ygd, where y is aligned with the leading monomial v of gd.
This implies that v is in Ue. By symmetry, ge = gd. Let 1(f) = {ge I e E E}.
Then 11(f) < JEJ = 2''. The uniqueness of 1(f) is easy to show and is left
as an exercise.

Let T be a finite subset of L. As noted earlier, the ideal I generated by
T is generated as an abelian group by the set of products x f , where x is in
U and f is in T. In Section 10.5 we required that the leading coefficients of
our generators be positive. Thus let S be the set of elements ex f , where f
is in T, x is in U, and a is chosen in {1, -1} to make the leading coefficient
of Ex f positive. Let 1(T) be the union of the sets 1(f) with f in T and
let S(T) be the set obtained from 1(T) by multiplying those elements with
negative leading coefficients by -1. Then every element of S is uniquely
yg, where g is in S(T) and y is aligned with the leading monomial of g.
The set S(T) will be called the symmetrized set for T. It can be computed
using the following procedure:

Function SYMM(T);
Input: T : a finite subset of 7G (X1, ... , Xm);
(* The symmetrized set for T is returned. *)
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Begin
S:= T - {0};
For i := m down to 1 do begin

'T:= 0;
For f in S do begin

Let u be the leading monomial of f ;
Let a and,3 be the algebraically largest and smallest exponents,

respectively, on Xi occurring in any monomial v of f for
which the exponents on X1,. .. , Xm in v agree with the
corresponding exponents in u;

Ifa=,3 then T:=TU{Xti af}
Else begin

Let -y be the greatest integer in (a +,3 - 1)/2;
T:=TU{x f,Xzly-1f}

End
End;

S:=T
End;

For f in S do
If f has negative leading coefficient then replace f by -f in S;

SYMM := S
End

Example 7.4. Let us follow the execution of SYMM({g}), where g =
2X-2y3 - 4X 2Y3 - XY2 +X Y as in Example 7.3. On the first pass through

the For-loop on i we have S = {g} and X2 = Y. With f = g we get a = 3
and /3 = 1. Therefore, at the end of the pass, T contains

91 = Y-1g = 2X-2Y2 - 4X2Y2 - XY + X

and

g2 = Y-2g = XY-1 + 2X-2Y - 4X2Y - X.

On the second pass, S = {g1, g2} and Xi = X. With f = g1, we have a = 2
and /3 = -2, so

g3 = Xgl = -4X3Y2 + 2X -1Y2 - X2Y + X2

and

0
X gl = gl
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are added to T. With f = g2, we find that a = j3 = 1. Therefore we add

g4 =X-1g2 =Y-1+2X-3Y-4XY- 1

to T. Since g3 has a negative leading coefficient, the final set returned
is 1-931911941-

Suppose T is given and S is defined as before. For each u in U, the set S,,,
of elements in S which have u as their leading generator is finite and can be
determined. Therefore we can execute GRP_REDUCE(S, g) for any g in L.
Let us again denote the result by REDUCE(T, g). For REDUCE(T, g) to
be independent of the choices made in computing it, the semicritical pairs
must be consonant. There are infinitely many semicritical pairs, but it is
possible to find a finite set of semicritical pairs whose consonance will imply
the consonance of all other semicritical pairs.

Suppose that (f, g) is a semicritical pair of elements of S and u is the
leading generator off and g. Let x be an element of U - { 1} which is aligned
with u. Then xu is the leading generator of x f and xg, and both x f and xg
are in S. Assume that (f, g) is consonant. Then t(f, g) = a,h1 + + arhr,
where the ai are integers and the hi are elements of S which precede g
with respect to -<. Let vi be the leading generator of hi. Then either
u >- vi or u = vi and the leading coefficient of hi is less than the leading
coefficients of f and g. If u >- vi, then u is greater than any monomial
occurring in hi. Therefore xu is greater than any monomial occurring in
xhi, so x f and xg come after xhi with respect to -<. If u = vi, then xvi
is the leading generator of xhi and again x f and xg come after xhi. If
x f - xg, then t(xf, xg) = xt(f, g) = alxh1 + + a,xh, is in the group
generated by the elements of S preceding xg. If xg -< x f, then f and g
have the same leading coefficient and t(f, g) = g - f. Therefore t(xg, x f) =
xf - xg = -xt(f,g) = -alxh1 - - arxhr is in the subgroup generated
by the elements of S preceding x f . By Proposition 5.5, we do not need to
check consonance of semicritical pairs of the form (x f, xg) or (xg, x f ). This
observation implies that it is necessary to check only a finite set of critical
pairs defined as follows: Let f and g be elements of S(T) with leading
monomials u and v, respectively, and assume that u and v are aligned. Let
w = lcm(u, v), x = wu-1, and y = wv-1. The leading monomial of x f and
yg is w. Suppose x f -< yg. Then (x f , yg) is a critical pair.

Example 7.5. Suppose that m = 1 and that T consists of

f =3X3-X-2-4X+7 and g=X-2-2X2+1.
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Then S(T) = { f, -X-1f, g, -Xg} and the critical pairs are (-Xg, f) and
(X-1g, -X-1f)-

Example 7.6. Assume that m = 2 and that T consists of the polynomials

f = 2X2Y2 - 3XY2 +7 and g = 3XY3 + 2X - 4.

This time S(T) = IX-'f , -X-'f , Y-1 f, X-lY-1g, Y-2g, -X-1Y-2g} and
the critical pairs are (X-1f, Y-1g), (X-2Y-1g, -X-2f), (Y-2g, XY-2 f),
and (-X-ly-2g X-ly-2f)

Once the correct definition of critical pair has been worked out, it is
relatively easy to extend the Grobner basis algorithm to L. If I is an ideal
of L, then a Grobner basis for I is a finite generating set B for which all
critical pairs are consonant. If T is a finite subset of L which is its own
symmetrized set, then REDUCE(T, f) can be computed with the following
function:

Function REDUCE_L(T, f );
Input: T : a finite subset of L = Z (X1,... , Xj whose elements

have positive leading coefficients;
f : an element of L;

(* An element g of I + f is returned, where I is the ideal of L generated
by T. The element g is irreducible with respect to the set of
products yh, where h is in T, y is in U, and y is aligned with the
leading monomial of h. *)

Begin
i := 1; g:= f ;
(* At all times the standard form of g will be alul + + asus. If

g=0, then s=O.
While i < s do

If there is an element h in T such that the leading term by of h
satisfies b - ai and ui = yv, where y is in U and y and v are
aligned, then begin

Let ai = qb + r, where q and r are integers and 0 < r < b;
g := g - qyh (* Recompute sand the terms ajui with j > i. *)

End
Else i:= i + 1;

REDUCE-L:= g
End

Here is one version of a Laurent polynomial Grobner basis procedure:

Procedure GROBNER_L(T; B);
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Input: T : a finite subset of L = 7G (X1, ... , Xm);
Output: B : a Grobner basis for the ideal of L generated by T;
Begin

B := SYMM(T);
Let C be the set of critical pairs obtained from B;

While C is not empty do begin
Remove a critical pair (f, g) from C; h := REDUCE_L(B, t(f, g));

If h # 0 then begin
U:= SYMM({h});
Form all critical pairs obtainable from an element of U and an

element of B and add these pairs to C;
B:=BUU

End
End

End.

The set B returned by GROBNER_L will in general be larger than it
needs to be. There are several ways one could define a reduced Grobner
basis for an ideal I of L. Here is one possibility. A reduced Grobner basis
for I is a Grobner basis B such that

(a) REDUCE(B, f) and REDUCE_L(B, f) always return the same
value.

(b) The value of REDUCE_L(B - {h} , h) is h for all h in B.

Condition (a) implies that I is generated as an abelian group by the set
of products yh, where h is in B and y is an element of U which is aligned
with the leading monomial of h. Reduced Grobner bases in this sense are
unique, but they are not necessarily Grobner bases of minimal cardinality.

Example 7.7. Let us apply GROBNER_L to T = If, g}, where

f =3Y+2X and g=Y-4X-2.

The set B returned depends on the way the set C of critical pairs is managed
and on the choices made in REDUCE_L. One implementation returned the
following Grobner basis for the ideal I generated by T:

3Y + 2X, 2Y-1 + 3X-1, Y - 4X - 2, 4XY-1 + 2Y-1 - 1,

2X-1Y-1 + 4Y-1 - X-1, 4X + 6, 6X-1 + 4, 7X + 3, 3X-1 + 7,

2Y-X-1, XY-1 +Y-1 - 2, X-1Y-1 +Y-1 - 2X-1.
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The reduced Grobner basis for I consists of the following polynomials:

7X + 3, 3X-1 + 7, Y + 3X + 1, 2Y-1 - 7,
XY-1 +Y-1 - 2, X-1Y-1 +Y-1 +X-1 +7.
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The remarks made about the procedure GROBNER in Section 10.6 ap-
ply equally well to GROBNER_L. Significant modifications are needed to
make the procedure truly useful. The ideas used in GROBNER_L can be
extended to study submodules of Z (X1, ... , Xm)n

Exercises

7.1. Prove termination and correctness of GROBNER_L.
7.2. Extend the Grobner basis approach to submodules of Z (X,,. . . ,X")'.
7.3. Compute the symmetrized set in Z (X, Y) of the set consisting of

3X2Y-1 + 2X-1Y2 - XY-1 + 5X-3Y2

and

X4Y5 + X3Y3 + XY3.

10.8 Group rings
Let G be a group. The integral group ring of G is the set Z[G] of functions
f : G -> Z such that for all but a finite number of elements u of G the image
f (u) is 0. Sums in Z[G] are computed pointwise. That is, (f + g)(u) _
f (u) + g(u). However, products are defined by the formula

(fg)(w) = E f(u)g(v)
uv=w

With these operations, Z[G] is a ring, which is commutative if and only if
G is abelian. The group G is embedded in Z[G]. For u in G, define
to be 0 if v # u and 1 if v = u. If uv = w, then huhv = h,,,. Moreover, for
any f in Z[G],

f =1: f(u)h...
uEG

If 1 denotes the identity element of G, then h1 is the multiplicative identity
of Z[G]. If we identify u in G with h0, then elements of 7G[G] may be
considered to be formal integral linear combinations of elements of G. If
a and b are in Z and u and v are in G, then (au) (bv) is (ab)(uv) and
multiplication is extended to 7G[G] using the distributive law.
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Example 8.1. Let G be the cyclic group of order 3 generated by an element u.
The elements of G are 1, u, and u2. An element of Z[G] has the form
a + bu + cue, where a, b, and c are integers. In Z[G],

(3-2u+u2)+(4+u-2u2) =7-u-u2

and

(3-2u+u2)(4+u-2u2) = 17-7u-4u2.

Example 8.2. The ring Z (X) of integer Laurent polynomials in the variable
X is the set of formal sums of terms aXi, where a and i are integers. The
product (aX')(bXj) is defined to be abX'+j and multiplication is extended
to all of Z (X) by the distributive law. Under the identification of i with
Xi, Z (X) is the integral group ring of Z. More generally, Z (X1, ... ,
is the integral group ring of Zm.

The integral group ring of any finitely generated abelian group can be
described as a quotient of a polynomial ring. Let H be the abelian group
generated by a1,.. . , a,,, subject to the defining relations alai = aiaj, 1 <
i < j < n, and ai'' = 1 for i in I, where I is a subset of {1, ... , n}. For
1 < i < n let Xi be an indeterminate, and for i not in I let Y be an additional
indeterminate. Set R equal to the ring of integer polynomials in the inde-
terminates thus defined. Let J be the ideal of R generated by the elements
XiYi - 1 with i not in I and the elements X ' - 1 with i in I. Then Z[H]
is isomorphic to R/J and there is a one-to-one correspondence between
Z[H]-modules and R-modules annihilated by J. We can also describe Z[H]
as the quotient ring of Z (X1, . . . , X,,) modulo the ideal generated by the
elements X, - 1 with i in I.

Modules over group rings will play an important part in our computation
of quotients of finitely presented groups. If G is an abelian group, then 7G[G]
is commutative, so we do not have to distinguish between left and right
Z[G]-modules. However, if G may be nonabelian, then we shall use only
right Z[G]-modules. To construct a right module for Z[G], it suffices to have
an abelian group M and a homomorphism from G to the automorphism
group of M. In this construction, we assume that M is written additively
and that elements of Aut(M) act on the right. That is, if u is in M and a
is in Aut(M), then the image of u under a is u°.

Proposition 8.1. Suppose that M is an abelian group and W: G ---* Aut(M)
is a homomorphism of groups. If a1, ... , a3 are integers and gl' ... , gs are
distinct elements of G, then defining

u(a1g1 + ... + asgs) = aluv(91) + ... + asuW(ge)
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makes M into a right Z[G] -module.
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Proof. Suppose that u is in M and that P = a1g1 + + asgs and Q =
b1h1 + + btht are in Z[G]. We shall prove that (uP)Q = u(PQ), leaving
the remaining module axioms to be checked by the reader.

t

(nP)Q = aiuw(9i) Q = b j E
i=1 j=1 i=1

9i)v(hi)_ bj v(
t

(Eaiu
j=1 i=1

_ 1: aibjuv(9ihi)
i,j

= u (aibi9ihi) = u(PQ).

An abelian normal subgroup M of a group G is a right Z[G/M]-module.
To see this, suppose that g is in G and u is in M. Then u9 = g-lug depends
only on the coset Mg of M containing g, for if v is in M, then

(v9) 'u(v9) =
g-'v-1uvg = g-1u9,

since u and v commute. Thus we can define a map from G/M to Aut(M)
which sends Mg to the automorphism of M taking u to u9. This map is
easily seen to be a homomorphism. By Proposition 8.1, we may consider
M to be a right module over Z[G/M].

We shall be working primarily with modules over the group ring of a
polycyclic group. The following important result was first proved in (P. Hall
1954).

Proposition 8.2. Let M be a finitely generated right module over the group
ring of a polycyclic group. Then all submodules of M are finitely generated.
Equivalently, M satisfies the ascending chain condition for submodules.

In Section 10.7 we saw several ways of studying finitely generated modules
over rings of integer Laurent polynomials, which we now view as group rings
of finitely generated free abelian groups. The techniques of Section 10.7 can
be extended to handle finitely generated right modules over the integral
group ring of any polycyclic group G. The discussion which follows is
based on (Baumslag et al. 1981b).

We may assume that we know a polycyclic generating sequence al, ... , an
for G and a consistent polycyclic presentation for G in terms of these
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generators. If n = 1, then G is abelian and we have already seen how to
describe finitely generated modules over Z[G]. Let us assume that n > 1.
Let H = Grp (a2, .... a,). Then H is normal in G and G/H is a cyclic
group which is generated by the image of a1. From now on, we shall write
a for a1. By induction on n, we may assume that we know how to describe
submodules of 7L[H]3. Suppose first that G/H is finite and let m = IG/HI.
Then F = 7L[G]3 is isomorphic as a Z[H]-module to 7L[H]3m, for if b1,. .. , bs

is a 7L[G]-basis for F, then the products bias with 1 < i < s and 0 < j < m
form a Z[H]-basis for F. A Z[H]-submodule M of F is a 7L[G]-submodule
if and only if M is closed under multiplication by a. If T is a generating
set for M as a Z[H]-module, then M is closed under multiplication by a if
and only if f a is in M for all f in T. Suppose the products f a do belong
to M. A typical element g of M has the form f1h1 + + frhr, where the
fi are in T and the hi are in H. Then

ga = flhla + ... + frhra = flak, + ... + fakr,

where each ki = a-lhia is in H. Since each fia is in M, it follows that ga is
in M. If some fa is not in M, then we can add it to T and recompute the
Z[H]-submodule generated by T. Because the ascending chain condition
holds, this process will terminate. Since we can describe submodules of
7L[H]3m effectively, we can describe submodules of 7L[G]3.

The more challenging case is the one in which G/H is infinite. It is still
true that F = 7L[G]3 is a free Z[H]-module, but it is no longer a finitely
generated one. Let b1,.. . , bs be the standard 7L[G]-basis for F. The set
U of elements bias is a 7L[H]-basis for F. Any element g of G can be
written uniquely in the form ash, where h is in H. In this way, big can be
expressed as biajh. Thus elements of F can easily be described as 7L[H]-
linear combinations of elements of U. However, it is also useful to write g
in the form kaj, where k is in H. When this is done, every element z of F
can be described as

cPaP + c _1aP-1 + ... + cq+1aq+1 + cga9,

where p > q and the ci are uniquely determined elements in the free Z[H]-
module F. generated by b1,... , b3. If ci = 0 for i < 0, we shall refer to z
as a polynomial in a, although this is a slight abuse of terminology. If z is
a nonzero polynomial in a, then the degree of z is the largest index r such
that cr # 0, and the coefficient co will be called the constant term of z.

Let T be a finite subset of F and let M be the 7L[G]-submodule generated
by T. Since a is a unit in 7L[G], we may multiply elements of T on the right
by powers of a so that T consists of polynomials in a with nonzero constant
terms. Given a nonnegative integer d, let Md be the set of polynomials in
a which have degree at most d and belong to M and let Cd be the set of
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coefficients of ad in elements of Md. Let z = cdad + + co be in Md and
suppose h is in H. Then k = a-d had is also in H and

Therefore Cd is a Z[H]-submodule of FO. Since za = cdad+1 + + c0a, we
have Cd C Cd+1

Let d be the maximum of the degrees of the elements of T. Then the same
arguments we have used several times already show that Ck = Cd if k > d.
Knowing Md is enough to allow us to decide membership in M. Given g in
F, we multiply g on the right by a power of a so that g is a polynomial in a
of degree k. If k > d, then we check whether the coefficient Ck of ak in g is
in Cd. If not, g is not in M. If ck is in Cd, then we can produce an element
h in Md of degree d whose leading coefficient is Ck. Then subtracting hak-d

from g reduces the degree of g. Thus we may assume that k < d. In this
case we have only to check whether g is in Md.

The 7G[H]-submodule A generated by T is contained in Md, but in general
A is not equal to Md. Let B and C be the sets of elements in A with degree
at most d - 1 and with constant term 0, respectively. Then A = Md if and
only if Ba and Ca-1 are contained in A. Thus the basic algorithm we used
first in Z[X1, ... , Xm]s and later generalized to Z (X1,..., Xm)3 also works
in F.

Example 8.3. Let G be the free nilpotent group of class 2 on two generators,
which is defined by the nilpotent group presentation

ba = abc, ca = ac, cb = be

on generators a, b, c. Let us determine the right ideal M of Z[G] generated
by the set T consisting of

f =a+b and g=a+c.

The subgroup H = Grp (b, c) is free abelian of rank 2, so Z[H] is isomorphic
to Z (X, Y). Let us fix an isomorphism by associating b with X and c
with Y. The two generators of M are polynomials in a of degree 1. The
Z[H]-submodule A generated by T corresponds to the Z (X, Y)-submodule
U of 7G (X, y)2 generated by

(1,X) and (1,Y).

The set of coefficients of a in elements of A does not necessarily correspond
to the projection of U onto its first component. However, the submodule
B of A does correspond to the set U(2) of elements in U which have 0
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as their first component. To obtain generators for U(2), we can use the
Grobner basis method with the ordering on the abelian group generators
biXjYk in which we look first at bi and then at the monomial XjYk in the
reverse lexicographic ordering determined by the ordering << of Z defined
in Section 10.7. In comparing basis elements bi, we use the ordering b2 -< b1.

The reduced Grobner basis for U obtained in this way consists of the
following elements:

(1, X ), (0, Y - X), (0, Y-1 - X-1).

The last two elements generate U(2). However, the second of these is
-X-1Y-1 times the first, so B is generated as a 7L[H]-module by w = c - b.
To find generators for C, we perform another Grobner basis computa-
tion in U, this time assuming b1 -< b2. It turns out that C is generated
by aw. Therefore, to see whether A is M1 we must check whether the
Z[H]-submodule D generated by f, g, wa = ac - abc, and awa-1 = c - be 1
is A. The generators of D correspond to

(1, X), (1, Y), (Y - XY, 0), and (0, Y - XY-1)

in Z (X, Y)2. Using the ordering with b2 -< b1, we find that the reduced
Grobner basis for the Z (X, Y)-module generated by these pairs consists of

(1,1), (0,X - 1), (0,X1 - 1), (0,Y - 1), (0,Y1 - 1).

Since this is different from the first basis of U, earlier, we must iterate
again. Now we may take T to have the following elements:

a+1, b-1, b-1-1, c-1, c 1 - 1.

Computing bases for A, B, C, and D = A+Ba+Ca-1, we find that D = A,
so we have a Z[H]-basis for M1.

The Grobner basis approach can also be generalized to modules over
group rings of polycyclic groups. Research continues on the best way to
formulate this generalization.

Exercise

8.1. Let G be the group in Example 8.3. Determine the right ideal of 7G [G] generated by 2a+b
and a+ c.

10.9 Historical notes
During the 1960s, three closely related procedures were developed, the res-
olution procedure, the Grobner basis algorithm, and the Knuth-Bendix
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procedure. The relationships among these procedures are discussed in
(Buchberger 1987). The resolution procedure, which is related to auto-
matic theorem proving, was presented in (Robinson 1965). The general
Knuth-Bendix procedure was described in (Knuth & Bendix 1970). A brief
survey of the use of the special case discussed in Chapter 2 of this book
and of the rewriting approach to finitely presented monoids is given in the
introduction to [Le Chenadec 1986].

Perhaps the first paper to raise algorithmic questions about ideals in poly-
nomial rings was (Hermann 1926). In polynomial rings over a field, practical
algorithms for the ideal membership problem, using Grobner bases, were
given in (Buchberger 1965), which also described a computer implementa-
tion. Several researchers, working independently of Buchberger and each
other, considered the case in which the coefficients of the polynomials come
from Z or from various other rings. A number of references are given in
(Buchberger 1984). The work in (Baumslag et al. 1981b) was influenced by
(Richman 1974) and (Romanovskii 1974).
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Quotient groups

We come now to the last of the major tools for studying a given finitely pre-
sented group G, the nilpotent quotient algorithm, the p-quotient algorithm,
and the polycyclic quotient algorithm. Let e be a positive integer. Using
the nilpotent quotient algorithm, we can determine the quotient G/rye+l (G),
the largest nilpotent quotient of G having class at most e. For a given prime
p, the p-quotient algorithm constructs the quotient G/(Pe+1(G), the largest
quotient of G which is a p-group with exponent-p central class at most e.
The polycyclic quotient algorithm lets us determine G/G(e), the largest
solvable quotient of G having derived length at most e, provided GIG(e)
is polycyclic. The quotients G/-y,+1(G) and G/(pe+l (G) are always poly-
cyclic, but GIG(e) need not be. We can solve the word problem in GIG(e)
if G/G(e-1) is polycyclic, but we cannot in general work with subgroups of
GIG(e) unless that group is polycyclic.

The definition of the term "nilpotent quotient algorithm" given here dif-
fers from the one used by most previous authors. Until recently, the only
computer programs available for obtaining any nonabelian nilpotent quo-
tients of a finitely presented group were implementations of the p-quotient
algorithm, so this algorithm was frequently referred to as the nilpotent
quotient algorithm. While it is certainly true that the p-quotient algo-
rithm computes quotients which are nilpotent, it seems best to reserve the
name "nilpotent quotient algorithm" for a procedure which determines the
groups G/-y,+1(G)

11.1 Describing quotient groups
This section explains the general approach used in the quotient algorithms
discussed in this chapter. The first step is to define precisely what it
means to determine a quotient group of a finitely presented group. Let
(X, R) be a finite presentation for a group G and suppose that we wish
to find some polycyclic quotient of G, say G/ry5(G). Certainly we want
a consistent polycyclic presentation (YS) for G/ry5 (G). It is quite likely
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that the elements of X do not map to a polycyclic generating sequence
for G/ly5(G). Thus the set Y may not have any simple relation to X. For
this reason, it is also very useful to know an explicit isomorphism between
G/ry5(G) and K = Grp (Y I S). Such an isomorphism can be described
by a monoid homomorphism a from X}* to Y. We may assume that
0'(x-1) = a(x)-1 for all x in X, and hence that a(U-1) = a(U)-1 for all
U in X. Such a homomorphism will be called a regular homomorphism
from X}* to Y.

Given a regular homomorphism a from X}* to Y}*, it is easy to check
whether a defines a homomorphism v of G into K. We simply have to
check whether for each pair (R, S) in R the words a(R) and a(S) define
the same element of K. Since we have a consistent polycyclic presentation
for K, this can be done. Suppose a does determine a homomorphism Q
of G into K. One way to decide whether G is mapped onto K by i is
to test whether the elements of K defined by the words a(x) with x in X
generate K. The techniques of Chapter 9 make this possible. Assume that
Q is surjective. At this point we know that the kernel of i is -y5(G), for
K GI-y5(G) is nilpotent of class at most 4. Therefore the kernel of Q
contains -y5 (G). The group G/-t5(G) is hopfian and hence is not isomorphic
to a proper homomorphic image of itself. Therefore the kernel of Q is -Y5 (G)
and Q defines an isomorphism p of G/y5(G) onto K.

The procedure for determining the subgroup generated by a set of el-
ements in a polycyclic group can be quite time-consuming. It would be
much easier to prove that Q is surjective if we were given, for each y in
Y, a word T(y) in X}* such that a(T(y)) and y define the same element
of K. Such a map T can be extended uniquely to a regular homomorphism
from Y}* to X}* such that a(r(U)) and U define the same element of
K for all U in Y. It follows that T describes the isomorphism p-1 of
K onto G/y5(G). Therefore T(a(V)) and V define the same element of
G/75(G) for all V in X.

The nilpotent quotient algorithm and the polycyclic quotient algorithm
return a consistent polycyclic group presentation (Y, S) for a group K iso-
morphic to the desired quotient and regular homomorphisms a and T from
X"* to Y}* and Y}* to X'*, respectively, such that a defines a homomor-
phism of G onto K and a(-r(U)) and U define the same element of K for all
U in Y}*. When the procedure ADJUST of Section 11.5 is used, the nilpo-
tent quotient algorithm returns a presentation which is weakly -y-weighted
as defined in Exercise 4.3 in Chapter 9.

The p-quotient algorithm returns a cp-weighted power-commutator pre-
sentation (YS) for a group K isomorphic to G/cpe+i (G) and two homo-
morphisms a and T exhibiting the isomorphism. Since (Y, S) is a monoid
presentation, a goes from X+* to Y* and T goes from Y* back to X. The
homomorphism v from G to K is determined by the values of a(x) with
x in X. Given a(x), there is no really natural way to define a(x-1). One
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reasonable choice is the collected word in Y* describing the inverse in K
of o(x).

All three quotient algorithms are iterative procedures which build the
groups G/ ye+l(G), G/cpe+l(G), and G/G(e) first for e = 1, then for e = 2,
and so on. The following result is basic to the formulation of the iteration.

Proposition 1.1. Let G and H be groups given by presentations (X, R)
and (Z, T), respectively. Suppose that µ and v are regular homomorphisms
from X}* to Z}* and Z}* to Xf*, respectively, such that u defines a homo-
morphism Jr of G onto H and, for all U in Z}*, the words U and p(v(U))
define the same element of H. Then the kernel N of IT is generated as a
normal subgroup of G by the images of the words v(p(x))-1x with x in X
and the words v(S-1R) with (R, S) in T.

Proof. A word S-1R with (R, S) in T defines the identity in H. By
assumption, this means that a(v(S-1R)) defines the identity in H, so
v(S-1R) defines an element of N. If x is in X, then p(v(µ(x))-1x) =
p(v(µ(x)))-1µ(x) defines the same element of H as µ(x)-1µ(x), namely the
identity. Therefore v(p(x))-1x defines an element of N. Let M be the
normal closure in G of the elements defined by the words v(S-1R) and
v(p(x))-1x and suppose that W = x1... xr is a word in X+* which defines
an element of N. If x is in X, then x is congruent to v(p(x)) modulo M.
Therefore, modulo M, the word W defines the same element as v(µ(W)).
Now µ(W) defines the identity in H, so µ(W) is freely equivalent to a
product

U1 '(Si 1Rl)a'Ul ... Uk 1(Sk lRk)akUk,

where (R2, S2) is in T, 1 < i < k. Therefore v(p(W)) is freely equivalent to

v(Ui)-lv(Sj 1R1)alv(Ul) ... v(Uk)-lv(Sk 1Rk)akv(Uk),

which defines an element of M. Since W and v(p(W)) define congruent
elements modulo M, it follows that W defines an element of M. There-
fore N = M.

Suppose under the assumptions of Proposition 1.1 that N1 is a normal
subgroup of G contained in N and that N/N1 is abelian. Then N/N1 is
a right module for Z[G/N]. Using the isomorphisms between GIN and H
defined by p and v, we can consider N/N1 to be a right 7G[H]-module. The
following result follows immediately from Proposition 1.1.

Corollary 1.2. If, in Proposition 1.1, N1 is a normal subgroup of G con-
tained in N and N/N1 is abelian, then N/N1 is generated as a right Z[H]-
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module by the images of the words v(µ(x))-lx with x in X and v(S-1R)
with (R, S) in T. Thus if G is finitely generated and H is finitely presented,
then N/N1 is finitely generated as a right Z[H]-module.

In our applications, (X, R) and (Z, T) will be finite presentations and
H will be polycyclic. We shall use Corollary 1.2 with four choices for N1.
These are N1 = [N, G], N1 = [N, G] NP for some prime p, N1 = N', and N1 =
N'NP. The group GIN, will be polycyclic if and only if N/N1 is finitely
generated as an abelian group. In the first two cases, this will always be
true, but if N1= N' or N1 = N'NP, then N/N1 may not be finitely generated
as an abelian group, even though it is finitely generated as a Z[H]-module.

We shall approach GIN, in two steps. First we shall construct a solvable
group P and a homomorphism it of P onto GIN,. Following by the
homomorphism from GIN, to H, we obtain a homomorphism of P onto H.
The kernel Q of this composition will be abelian. The group P may not be
polycyclic, but we shall be able to solve the word problem in P. The second
step is to determine the kernel of it, which is a Z[H]-submodule of Q.

11.2 Abelian quotients
Let G be a finitely presented group, let p be a prime, and let e be a pos-
itive integer. The first step in using the p-quotient algorithm to compute
GI cce+i (G) is to determine G/cp2 (G), the largest elementary abelian p-group
which is a quotient of G. Similarly, the first step in using the nilpotent quo-
tient algorithm to compute G/ye+1 (G) or the polycyclic quotient algorithm
to compute GI G(e) is to determine GI-y2(G) = G/G', the largest abelian
quotient of G. This section describes how to find these abelian quotients.

Let X = {x1,. .. , xj be an finite set of cardinality n and let F = FX, the
free group on X. The map of X into Zn which takes xi to the i-th standard
basis element ei of Z' defines a homomorphism f from F to Zn. If U is
the word xj" , then the i-th component of f ([U]) is the i-th exponent
sum of U, the sum of those an such that in = i. Clearly f is surjective.

Proposition 2.1. The kernel off is F'.

Proof. Since Z' is abelian, the kernel of f contains Y. Therefore f
defines a homomorphism f of F/F' onto Zn. Since Zn is a free abelian
group with basis e1, ... , en, there is a homomorphism g from Zn to F/F'
such that g(ei) = F'[xi]. The compositions To g and g o f are both the
identity. Therefore f and g are isomorphisms. D

In a similar way we can define a homomorphism of F onto ZZ with
kernel cp2(F). We simply consider the exponent sums modulo p.
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Now let N be a normal subgroup of F and set G = F/N. Then G' =
F'N/N and GIG' = (F/N)/(F'N/N) is isomorphic to F/F'N, which is
isomorphic to (F/F')/(F'N/F'). By Proposition 2.1, G/G' is isomorphic
to Z'/ f (N). Suppose that G = Grp (X I R), so N is the normal closure
in F of the elements [S-1 R] with (R, S) in R. Since homomorphisms map
conjugates to conjugates, it follows that f (N) is the normal closure in 7LV of
the set of images f ([S-1R]). But Z' is abelian and all subgroups are normal.
Thus f (N) is simply the subgroup generated by the elements f ([S-1R]).
If R is finite and consists of the pairs (Ri, Si), 1 < i < m, then G/G' is
isomorphic to 7L'/M, where M is the subgroup of 7L' generated by the rows
of the m-by-n matrix A such that Ai.7 is the exponent sum of xj in S, 1Ri
The invariant factors of A determine the isomorphism type of GIG'. The
matrix A is called the matrix of abelianized relations.

By a similar argument, we can show that G/cp2(G) is isomorphic to
7Lp/M1, where M1 is the subspace of 7ZP generated by the rows of A taken
modulo p. To determine G&2 (G), one needs only row operations modulo p.
To get the best description of G/G', integer row and column operations are
needed. Here is the procedure for finding G/c'2(G).

Procedure ABEL_PQUOT(X, R, p; Y, S, o, r);
Input: X : a finite set {x1, ... , xJ;

R : a set of ordered pairs (Ri, Si), 1 < i < m, of elements
from X}*;

p : a prime;
Output: Y : a finite set;

S : a finite set of ordered pairs of elements from Y* such
that K = Mon (Y I S) is isomorphic to G/cp2(G),
where G = Grp (X I R), and (Y, S) is a consistent
exponent-p power-commutator presentation;

or a homomorphism from X` to Y* defining a
homomorphism of G onto K;

T a homomorphism from Y* to X}* such that U and
v(rr(U)) define the same element of K for all U in Y*;

Begin
Let B be the m-by-n matrix such that Biz is the exponent sum of xj

inS,-.1Ri;
Let A be the row Hermite normal form modulo p of B;
Let the corner entries of A occur in the columns with

indices c1 < .. < cs;
r:=n-s; Y:_{a1,...a,J;
Let d1 < . . . < dr be the indices of the columns in A which do not

contain corner entries;
Let S consist of the relations alai = aiaj, 1 < i < j < r, and

ap=1, 1 <i<r;
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For i:=1tondo
If i = di then a(xi) := aj

-A''dl -A 4Else if i = c, then a(xi) := a1 ... aT

(* Here the exponents are taken modulo p. *)

For i := 1 to r do r(ai) := xd,
End.

Example 2.1. Let G = Grp (x, y, z I xy2z2xyz2 = x2y3z5x2y4z5 = 1). The
matrix of abelianized relations is

B= 2 3 4

4 7 10

The row Hermite normal form modulo 3 of B is

A= 102
012

In the notation of ABEL_PQUOT, s = 2, r = 1, cl = 1, c2 = 2, and d1 = 3.
The largest elementary abelian 3-group which is a homomorphic image of
G is given by K = Mon (a1 I a3 = 1). The homomorphisms a and T satisfy

a(x) = a(y) = a(z) = a1, r(al) = z.

Modulo 2, the row Hermite normal form of B is

010
0 0 0 '

so the largest elementary abelian 2-group which is a quotient of G is K =
Mon(al, a2 I a2a1 = a1a2, a2 = a2 = 1). In this case, the homomorphisms a
and r are given by

a(x) = a1, a(y) = e, a(z) = a2, r(al) = x, r(a2) = z.

Example 2.2. Let G be the group generated by b, c, d, and e subject to the
relations

b3 = 1, d3 = 1, bcb-lc2 = 1, c ld-1cd = 1, bcde ldbdcbe-ld = 1.
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The abelianized relation matrix for G is

B=

3 0 0 0-

0 0 3 0

0 3 0 0

0 0 0 0

324-2
Let us take p = 3 and determine the largest elementary abelian 3-group
which is a quotient of G. The row Hermite normal form modulo 3 of B is

0122
0000

A= 0000
0 0 0 0
0 0 0 0

Therefore Y = {al, a2, a3} and S consists of the relations

alai = aiaj, 1 < i < j < 3,
a3=1, 1<i<3.

The homomorphisms r and r are given by

o,(b) = a1, a(c) = a2a3, o,(d) = a2, a(e) = a3,

,r(al)=b, 7-(a2)=d, -r(a3)=e.

The simplest procedure for computing G/G' is based on ABEL_PQUOT
and uses integer row operations to compute the row Hermite normal form
of the abelianized relation matrix. Unfortunately, this does not usually
describe G/G' as a direct product of cyclic groups. For example, the row
Hermite normal form of the abelianized relation matrix B in Example 2.1 is

20-2
0 1 2,

This means that G/G' is isomorphic to Grp(al, a2 I a2a1 = a1a2, a2 = a2).
This presentation is consistent, but does not immediately describe GIG' as
a direct product of cyclic groups. To obtain this decomposition we must
use both row and column operations. The Smith normal form of B is

11001
0 2 0
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so G/G' is isomorphic to Z2 X Z.
Here is a version of the abelian quotient procedure which gives the answer

as a direct product of cyclic groups.

Procedure ABEL_QUOT(X, R; Y, S, Q, T);
Input: X : a finite set {x1, ... , xn};

R a set of ordered pairs (Ri, Si), 1 < i < m, of elements
from X}*;

Output: Y : a finite set;
S : a finite set of ordered pairs of elements from Y}* such

that K = Grp (Y I S) is isomorphic to G/G', where
G = Grp (X I R), and (Y, S) is a consistent polycyclic
presentation;

or : a regular homomorphism from X :L* to Y}* defining a
homomorphism of G onto K;

T : a regular homomorphism from Y}* to X}* such that
U and Q(T(U)) define the same element of K for all
U in Yt*;

Begin
Let B be the m-by-n matrix such that Bid is the exponent sum of xj

in S,-'Ri;
Let A be the Smith normal form of B and let P and Q be

unimodular matrices such that A = PBQ;
Let dl, . . . , d, be the nonzero diagonal entries of A;
If dl > 1 then s := 0
Else let s be maximal such that ds = 1;
t:= n - s; Y:= {al,... , at};
Let S consist of the relations alai = afar, 1 < i < j < t, and

ads+' = 1, 1 < i < r - s;
For i := 1 to n do Q(xi) := aQ`s+' aQ`°;

T:=Q-1;

For i := 1 to t do T(ai) := xi +`' xTs+an

End.

Example 2.3. Let G = Grp (x, y I (x2y3)3 = (x3y)4 = 1). The abelianized
relation matrix is

69B=
12 4

The Smith normal form for B is

1 0
A

0 84 '
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so G/G' is cyclic of order 84. Thus Y = {al} and S consists of the single
relation a84 = 1. One choice for unimodular matrices P and Q such that
A = PBQ is

P =

1-4
1 -21

9J,

In this case,

1 - r-18 11
Q IL 101,

and the regular homomorphisms v and T are given by

o(x) = a1, o(y) = ai8, T(at) = x.

Example 2.4. The following presentation is taken from (Neubiiser & Sidki
1988). Let S be the group generated by t1, t2, t3, and t4 subject to the
relations

t1t2t11t21 - 1, t1 t22 - 1,

t2t t-2t1 3 1 4t3 It1t4 1= 1 t1t2t4t1 It3t4 1t2 1t1 1t3 1= 1

t1t2t4t13"21t41 - 1.

The matrix of abelianized relations is

0 0 0 0
5-200

B= 1 000
-1 000

0 0 0 0

The Smith normal form of B is

1000
0200
0 0 0 0

A 0000
0000
0000
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and A can be computed from B using row operations alone. Thus S/S' is
isomorphic to Z2 ® Z ® Z and the unimodular matrix Q can be chosen to
be the identity matrix. If this is done, then the presentation for K is

alai=aiaj, 1<i<j<3,
aZ = 1,

and the homomorphisms a and T are given by

a(t1) = 1, 0'(t2) = a1, a(t3) = a2, a(t4) = a3,

7-(a1) = t2, 7-(a2) = t3, 7-(a3) = t4-

A major source of presentations is the Reidemeister-Schreier algorithm.
Presentations obtained this way tend to have many generators and many
relations. Computing the Smith normal form of the abelianized relation
matrix and finding a unimodular matrix Q can be quite difficult, despite
the array of techniques discussed in Chapter 8.

If it is known that the output of the Reidemeister-Schreier algorithm is
going to be fed directly into ABEL_QUOT or ABEL_PQUOT, then it may
be possible to save a great deal of space in the Reidemeister-Schreier portion
of the computation. In the procedure HLT_X of Section 6.3, all words in
Y* can be abelianized immediately. Words in Y* occur as secondary labels
on the edges of the extended Schreier automaton and in the coincidence
procedure. Since the abelianization of a word W takes no more space, and
frequently much less space, than W, the potential for saving memory in
this abelianized Reidemeister-Schreier algorithm is substantial.

The techniques just described can in principle be generalized to provide
an algorithm for determining, for any positive integer e, a consistent poly-
cyclic presentation for G/rye+i (G), the largest quotient group of G which
is nilpotent of class not exceeding e. In Section 9.10 we described how
to get a consistent polycyclic presentation for the free nilpotent group
Q = Flrye+1(F) and how to construct the natural homomorphism f from
F to Q. The quotient G/-y,+1(G) is isomorphic to Q/N, where N is the
normal closure in Q of the set of elements f ([S-1R]) with (R, S) in R. The
algorithms of Sections 9.5 and 9.6 allow us to find a consistent polycyclic
presentation for Q/N.

Example 2.5. Let us describe G/y3(G), where G = Grp(x,y I (xy)4 =
(x2y2x-1y-1)4 = 1). Let F be the free group on x and y. Then F/'y3(F)
is isomorphic to Q = Grp(a, b, c I ca = ac, cb = bc, ba = abc), and x --> a and
y H b defines a homomorphism f of F onto Q. The image of (xy)4 under f
is (ab)4 = a4b4c6. The image of (x2y2x-1y-1)4 is (a2b2a-1b-1)4 = (abc 2)4 =

a4b4C-2
. The commutator [a4b4c6, a] is c4. It is easy to check that the
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normal closure in Q of a4b4cs and a4b4c-2 is generated as a subgroup by
a4b4c2 and c4. Thus G/-y3(G) is isomorphic to the group generated by a, b,
and c subject to the relations

ca = ac, cb = bc, ba = abc,

c4 = 1, a4 = b-4C2,

which form a consistent nilpotent presentation.

Although the procedure illustrated in Example 2.5, which one could call
the free nilpotent approach to nilpotent quotients, is valid for any e, it is
practical only for small e. The problem is that the number of generators
in the polycyclic presentation for Q grows very rapidly with e. It could
well happen that Gl-ye+i (G) has a polycyclic presentation on relatively
few generators, but the presentation for Q is too large to work with. An
alternative approach to computing nilpotent quotients will be described in
Sections 11.4 and 11.5. There is no analogue of the free nilpotent approach
for polycyclic quotients because there are no such things as free polycyclic
groups of a given derived length greater than 1. If e > 2, then F/F(s) is not
polycyclic and has no largest polycyclic quotient.

Exercises

2.1. Let G be the group generated by x, y, z and defined by the relations

(xy lz)4 = (x2y-1x2)6 = 1.

Find the structure of the largest elementary abelian p-quotient of G for p = 2, 3, and 5.
Describe GIG' as a direct sum of cyclic groups.

2.2. Using the method of Example 2.5, find the largest class-2 nilpotent quotient of the group
G in Exercise 2.1.

11.3 Extensions of modules
Let H be a group given by a finite presentation and let M be a right Z[H]-
module. In order to be able to determine polycyclic quotients, we shall
need to be able to decide whether it is possible to construct a group G with
the following properties:

(1) M, considered as an abelian group, is a normal subgroup of G and
G/M is isomorphic to H.

(2) The module structure on M induced from G is the same as the
original structure.

(3) Certain additional relations to be described are satisfied.
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If the answer is negative, then we shall want to find the largest quotient
module of M for which the construction is possible.

To be more precise, let H be given as Grp (X I R1 = S1, ... , R3 = Ss)
and let M contain elements u1,... , u3. In what follows, we shall give a
presentation for a group G with X U M as the set of generators. To reduce
the possibility of confusion between multiplication in G and the module
action of H on M, elements of M will be enclosed in brackets. Within these
brackets, multiplication denotes the module action. Outside the brackets,
multiplication is the group operation in G. Thus if v is in M and x is in X,
then the expression [vx] denotes the element of M which is the product of
v and the element of H represented by x, while [v]x is the product of two
generators of G.

The defining relations for G are as follows:

(i) [v] [w] = [v + w] for all v and win M.
(ii) [v]x = x[vx] for all v in M and all x in X.

(iii) Ri = Si[ui], 1 < i < s.

The group G will be called the formal extension of M by H relative to the
given presentation of H and the choice of u1, ... , us. Let cp be the map from
M to G taking v to the element of G represented by [v] and let N be the
image of M under W.

Proposition 3.1. The set N is a normal abelian subgroup of G and G/N
is isomorphic to H.

Proof. The relations (i) show that N is closed under products and inverses
and that any two elements of N commute. Therefore N is an abelian
subgroup of G and cp is a homomorphism of groups. Let x be in X and let
w be in M. By the relations (ii), the conjugate x-1[w]x is in N. To prove
that N is normal we must prove that the conjugate x[w]x-1 is also in N.
Applying (ii) with v = wx-1, we have

[wx-1]x = x[wx-lx] = x[w],

or x[w]x-1 = [wx-1]. Therefore N is normal in G. If we add the relations
[v] = 1 for all v in M, then, after Tietze transformations, we are left with
the presentation for H. Thus GIN is isomorphic to H.

There is one case in which it is easy to see that N is isomorphic to M.

Proposition 3.2. If ui = 0, 1 < i < s, then p is an isomorphism.

Proof. Let us define a binary operation on H x M by the formula

(hl,v1)(h2,v2) _ (h1h2,vlh2+v2).
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Here v1 h2 represents the module action of the element h2 on v1 and + is
the addition in M. It is not difficult to show that this binary operation
makes H x M into a group K called the split extension of M by H. The
identity of K is (1H, 0M) and the inverse of (h, v) is (h-1, -vh-1). If each
of the ui is 0, then there is a homomorphism of the formal extension G of
M by H onto K. We map v in M to (1, v) and x in X to (x, 0). In fact,
this homomorphism is an isomorphism. In particular, no element v of M
maps to the identity in G.

In general, N is not isomorphic to M. Using the isomorphism of GIN
and H, we can make N into a right 7L[H]-module. The relations (ii) say
that cp is a module homomorphism. Thus the kernel Mo of cp is a submodule
of M. Determining Mo can be difficult. However, when H is polycyclic and
the presentation for H is a consistent polycyclic one, then it is possible to
describe a finite module generating set for Mo. The simplest case occurs
when H is abelian.

Let us assume that H is generated by al, ... , a,, subject to the relations

alai = aiaj, 1 < i < j < n,

a''=1, iEI.

Here I is a subset of {1, ... , n} and for each i in I the integer mi is positive.
Let M be a right 7L[H]-module containing elements vii, 1 < i < j < n, and
ui with i in I. If i > j, set vii = -vii. Let G be the formal extension of M
by H in which

alai = aiaj[vii], 1 < i < j < n,

ar = [ui], i E I.

The following proposition is taken from Section 111.8 of [Zassenhaus 1958].

Proposition 3.3. The image in G of M is isomorphic to M/Mo, where
Mo is the Z[H]-submodule of M generated by the following elements:

(1) The elements ui(ai - 1), where i is in I.
(2) The elements

uj(ai - 1) - vij (1 + aj + + aj ),

where j is in I and i j.
(3) The elements

vij (ak - 1) + vik(ai - 1) + vki(aj - 1),
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where 1<i<j<k<n.

Proof. Let cp be the homomorphism from M into G. Suppose that i is
in I. In G, the element ai commutes with a''i = [ui], so

ai[ui] _ [ui]ai = ai[uiai]

Therefore [uiai] = [ui], so ui(ai - 1) is in the kernel Mo of W. The elements
of type (2) come from evaluating ajn'ai with i 54 j. First, note that since
ajai = aiaj[vij] when i < j, we have aiaj = ajai[-vij] = ajai[vji]. Therefore
ajai = aiaj [vij] whenever i # j. Now

mja' ai = [uj]ai = ai[ujai]

But we also have

ajmaj = amj-laiaj[vij] = a7j-2 aiaj
[vij]aj [vij]

m -2=
a3

aj)]
=a7'j-3

M-3=aj'
M m -1

=aiaj'[vij(l+aj+...+aj' )]

=ai[uj][vij(1+aj+...+ajj-')]

= ai[uj + vij(l + aj + ... + ajmj-1)].

Therefore

mj-i
[ajai] = [uj+vij(1+aj+.+aj )],

so

is in Mo.
The elements of type (3) come from evaluating akajai in two different

ways:

akajai = ajak[vjk]ai = ajakai[vjkai] = ajaiak[vik][vjkai]

= ajaiak[vik + vjkai] = aiaj [vij]ak[vik + vjkai]

= aiajak[vijak] [vik + vjkai] = aiajak [vijak + vik + vjkai]
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On the other hand,

akajai = akaiaj [vij] = aiak [vik]ai [vii] = aiakaj [vikai] [vij]

= aiakaj [vikaj + vij] = aiajak [vik] [vikaj + vii]

= aiajak[vjk + vikaj + vii].

Hence

[vijak + Vik + vjkai] = [vik + vikaj + vij],

so

vij(ak - 1) + vik(ai - 1) - vik(ai - 1)

is in the kernel of cp. Replacing Vik by -Vki gives the element in (3).
Now suppose that all of the elements (1), (2), and (3) are zero in M. We

shall prove that cp is an isomorphism. If n = 0, then G is clearly isomorphic
to M. Thus we may assume that n > 0. As should come as no surprise, we
have two ways of proceeding. We could show that the rules

[v] [w] - [v + w], v, w E M,
[v]-1 -+ [-v], v E M,

[v]x -s x[vx], v E M, x E {al,... , an}} ,

aia-1-*e, 1<i<n, i0I,
a-1ai-se, 1<i<n, ivI,

ain' -* [ui], i E I,

aZ 1 a7l' 1 [-ui], i E I,

ajar'aiaj[vij], 1<i<j<n,
alai -4 aia, 1[-vija,-l], 1 < z < j < n, j I,
aja-la-laj[-vija-l], 1<i<j<n, i I,

a. 1ai1-*ai1aa1[vijailajl], 1<i<j<n, ij I
form a confluent rewriting system S (What ordering is being used here?)
and that (X U M, S, I) is a restricted presentation for a group G, where I
is the ideal of (X U M)}* generated by M. It would be possible to avoid
the use of a restricted presentation by adding the rule [0] - E. However,
with S as given, it is possible to describe canonical forms for the elements
of G in a very natural way. Every element of I can be reduced using S to
a unique word of the form W[u], where u is in M and W is a word in X}*
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which is reduced with respect to the standard polycyclic rewriting system
for H relative to the polycyclic generating sequence al, . . . , an .

The alternative approach is to consider the subgroup K of H generated
by a2, .... an, assume by induction that M embeds isomorphically in the
formal extension F of M by K defined by the relations

ajai = aiaj [vij], 2 < i <j < n,
ai" =[ui], iE(I-{1}),

and then show that the relations involving al define a cyclic extension of F.
Let us sketch briefly the second approach.

Conjugation by al defines the following map o of the generators of F:

[v]° = [val], v E M,

a° = ai [vli], 2 < i < n.

We must show that these images satisfy the defining relations for F. For v
and w in M,

[v]° [w]° = [va1] [wal] = [val + wal] = [(v + w)a1] = [v + w]°,

since M is a Z[H]-module. For 2 < i < n and v in M,

[v]°a° = [va1]ai [v1i] = ai [valai + vli] = ai [v1i + vaial]

= ai[v1i][vaial] = a°[vai]°>

since H is commutative and [valai] = [vaial]. For i in I - {1},

(ai)m` = (az [vli])mb = am'[vli (1 +ax .+....+am=-1)]
z ¢ x

_ [ui][vli(l+ai+...+am`-1

_ [ui + v1i(l + ai + ... + ami'-1)] _ [uial] = [u'i]°,

since elements of type (2) are 0. For 2 < i < j < n,

i = aj [v1j]ai[vli] = ajai[vljai + v1ij = aiaj [vij] [v1jai + v1i]

= aiaj [vij + v1jai + vli] = aiaj [vliaj + v1j + vijal]

= ai[vli]aj[v1J[vijal] = aaaj
[vij]°

since elements of type (3) are 0.
Since the defining relations of F are satisfied by the images under o, of

the generators of F, we may extend a to be a homomorphism of F into
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itself. Perhaps the easiest way to show that a is an automorphism is to
show that a-1 is defined by the following map on the generators:

[v]° = [val 1], v E M,

ai[v1ial 1], 2 < i < n.

If 1 is not in I, then we are done once we know that a is an automor-
phism, for then G is a cyclic extension of F, and since M is embedded
isomorphically in F, it follows that M is embedded isomorphically in G.

Now suppose that 1 is in I. We must check that a fixes ai ' = [ul] and
that am' is the inner automorphism of F induced by [ul]. Now [ul]a =
[ulal] = [ul] since ul(al - 1) = 0. If 2 < i < n, then

+...+am'-1)]

i][vlia1] .. [vliami-l] =aaj[-vxl(1+a1
1

= ai[ul(1 - ai)] = [ul] lai[ul],

and, if v is in M, then

[v]a'm' = [val'] _ [v] = [-ul+v+ul] = [ul]-l[v][u1]

Thus we have a cyclic extension in this case too, so M is embedded isomor-
phically in G.

In general, let Ml be the submodule of M generated by the elements of
types (1), (2), and (3). Then Ml is contained in Mo. However, in the for-
mal extension of M/Ml by H, the quotient M/Ml embeds isomorphically.
Therefore M/Ml must be a quotient of M/Mo. It follows that Ml = Mo.

0

When we compute nilpotent quotients, we shall extend 7L[H]-modules M
on which H acts trivially, modules in which vh = v for all v in M and all
h in H. In this situation, Proposition 3.3 can be simplified considerably.

Proposition 3.4. Suppose that in Proposition 3.3 the group H acts trivially
on M. Then Mo is generated as an abelian group by the elements mivii and
mj vij, where 1 < i < j < n and i E I in the first case and j E I in the second.

Proof. The elements of types (1) and (3) in Proposition 3.3 are trivial and
the elements of type (2) become simply -mjvij, i # j. Since mivij _ -mivji,
the proposition follows.

Example 3.1. Suppose that G is a group such that GIG' is isomorphic
to H =7L4®7L6®7L. How big can G'/-y3(G) be? Let al, a2, and a3 be elements
of G which map, respectively, onto generators of the direct summands Z4,
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Z6, and Z of H. By Proposition 2.5 in Chapter 9, G'/-y3(G) is generated by
the images vii of [aj, a2], 1 < i < j < 3. By Proposition 3.4, the only condi-
tions which the vii must satisfy are 4v12 = 4v13 = 6v12 = 6v23 = 0. Therefore
2v12 = 4v13 = 6v23 = 0 and G'/y3(G) is a quotient group of Z2 ®7G4 ® Z6
The images of a1 4 6and a2 may be arbitrary elements of Grp (v12, v13, v23).
Therefore a presentation such as

4 6- 2 4 6a1 - a2 - v12 - v13 - v23 - 1,

a2a1 = a1a2v12, a3a1 = a1a3v13, a3a2 = a2a3v23,

v2jak = akvzj, 1 < i < j < 3, 1<k<3,
v13v12 = v12v13, v23v12 = v12v23, v23v13 = v13v23,

can immediately be recognized as consistent.

Suppose now that H is an arbitrary polycyclic group and that the pre-
sentation (X, R) for H satisfies the following conditions:

(i) X = {al, ... , aj, where a1,.. . , a,, is a polycyclic generating sequence
for H.

(ii) The relations in R are Vk = Wk, 1 < k < s, and these are the relations
in the standard polycyclic group presentation for H with respect
to a1,.. . , a,, which have positive left sides. (By Proposition 8.2 in
Chapter 9, these relations define H.)

We shall denote by I the set of indices i such that there is a relation with
left side a' in R. Let M be a right 7G[H]-module containing elements
u1, ... , us and let G be the formal extension of M by H in which Vk =
Wk [uk], 1 < k < s. Set Y = X U M and Y = {ai, ... , a,,} U M, 1 < i < n + 1,
and let I be the ideal of Y}* generated by M. Starting with the rules

[v] [w] -* [v + w], v, w E M,

[v]-1 -+ [-v], v E M,

xx-1e, XEX}
[v]x-px[vx],vEM, xEX},

Vk- Wk[uk], 1<k<s,

we can construct a (not necessarily confluent) rewriting system S for G
with the following property: Let W be in I. Then W can be rewritten
using S into the form U[u], where U is a word in X}* which is collected
with respect to R and u is in M.
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To produce the rest of the rewriting system S, we must find, for i < j,
rules with left sides

a. 1ai, j I,
alai 1, i I,

aj laz 1, i,3 I,

and the rules with left sides ai 1, where i is in I. The proof of Proposition 8.2
in Chapter 9 serves as a guide for the construction of these additional rules.

Procedure EXTEND_RULES(X, R, M, ul,... , us; S);
(* The input and output are as described earlier. The entire standard

polycyclic presentation for H with respect to al, ... , a,, is assumed
to be known. *)

Begin
Let S consist initially of the rules [v] [w] - [v + w], [v] -1 -+ [-v],

xx-1 ---s e, [v]x -p x[vx], where v and w are in M and x is in X',
together with the rules Vk -s Wk[uk], 1 < k < s;

For i := n downto 1 do begin
For j := n downto i + 1 do begin

If j is not in I then begin
Let alai -s aiV[v] be the unique rule in S with left side alai;
Rewrite [-v]V-1 with respect to S to get W[w];
Add the rule ai lai -4 aiW [w] to S

End;

If i is not in I then begin
Let alai 1 -> ai 1U be the rule in the standard polycyclic

presentation for H with left side alai 1

Rewrite Uai with respect to S to get aiU', where U' is in 1 ;

Rewrite a,-.1U'[0] with respect to S to get [u], where u is in M;
Add the rule alai 1 -s ai 1U[-uai 1] to S

End;

If neither i nor j is in I then begin
Rewrite [ua 1]U-1 with respect to S to get B[b];
Add the rule ajlai 1 -f ai 1B[b]

End
End;

If there is a rule am -> C[c] in S then begin
Rewrite [-c]C-1 with respect to S to get D[d];
Add the rule ai 1 - am-1 D [d]

End
End

End.



11.3 Extensions of modules 533

Once the rewriting system S has been constructed using EXTEND_
RULES, we can find module generators for Mo. The following result helps
to reduce somewhat the amount of work involved.

Proposition 3.5. Suppose the rewriting system S produced by EXTEND_
RULES has the property that there is local confluence at the overlaps of left
sides which are positive words in X}*, that is, at the overlaps

akajai, 1<i<j<k<n,
a"a., iEI, 1<j<i<n,

a+i i E I,

i iEI, 1<i< <n.

Then S is confluent.

Proof. The proof is similar to that of Proposition 8.3 in Chapter 9. Only
a sketch will be given. The details are left as an exercise. Because M is
a 7L[H]-module, it is easy to see that local confluence holds at any overlap
of left sides which involves one or more elements of M. Proposition 8.3
in Chapter 9 requires checking seven kinds of overlaps. However, because
EXTEND_RULES was used to construct many of the rules in S, it turns
out that one does not need to look at overlaps of the forms ajai-lai, a,-lanai,
and a,-. 1aia 1

In general, local confluence will fail for one or more of the overlaps
in Proposition 3.5. However, since the presentation for H is confluent,
rewriting the overlap in two ways will produce results of the form W[w1]
and W[W2]. Then Mo is the 7L[H]-submodule generated by the elements
wlw2 obtained by processing the overlaps in Proposition 3.5, for modulo
this submodule we have local confluence.

Example 3.2. The free nilpotent group H of rank 2 and class 2 has the
following presentation on generators a, b, and c:

ca = ac, cb = be, ba = abc.

Let M be a right 7L[H]-module containing elements u, v, and w and let G
be the formal extension of M by H in which

ca = ac[u], cb = bc[v], ba = abc[w].

The image of M in G is isomorphic to M/Mo, where Mo is the submodule
of M generated by u(1- be) + v(a - c) + w(c - 1), for by Proposition 3.5 we
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need only look at the single overlap cba. Processing this overlap, we find
that

cba = bc[v]a = bca[va] = bac[u] [va] = abc[w]c[u + va]

= abc2 [wc + u + va],

cba = cabc[w] = ac[u]bc[w] = acbc[ubc][w] = abc[v]c[ubc + w]

= abc2[vc+ubc+w].

Therefore [wc+u+va] = [vc+ubc+w] in G, and u(1-bc)+v(a-c)+w(c-1)
generates the kernel of the map from M to G.

The rewriting system S returned by EXTEND_RULES is infinite, since it
contains the rules [v][w] -+ [v+w], [v]-1 [-v], and [v]x --> x[vx]. Suppose
that M is a 7G[H]-module on which H acts trivially and which is freely
generated as an abelian group by a finite subset W = {w1, ... , wt}. Set Z =
X U W. We can produce a finite rewriting system U on Z±* which is
equivalent to S when [a1w1 + + atwt] is identified with wi ... wt That
is, every word in Z}* can be rewritten using U into the form UV, where U
is a collected word in X` and V is a collected word in W}*. Initially, the
following rules are placed in U :

WW --+ awj-, 1<i<j<t, a=f1, j3=f1,
wx -i xw, w E W±, x E X±,

Vk -WkUk, 1<k<s,

where Uk is the collected word in W}* which describes uk. Then the main
For-loop of EXTEND_RULES is executed with elements of the form [v]
replaced by the corresponding collected word in W. This procedure will
be referred to as the finitely generated version of EXTEND_RULES.

Exercises

3.1. Suppose that G is a group and GIG' is isomorphic to 7L4 X Z8 X Z24 X Z2. Show that
G'/-y3(G) is isomorphic to a quotient of 7L4 X 7L$ X 7L24 X Z.

3.2. Let H be a free abelian group with basis a, b, c. Let M be a right 7L[H]-module which
has a 7L-basis u, v, w and on which

ua=2u-v, va=u, wa=-u+v+w,
ub=-v-2w, vb=-u-2w, wb=u+v+3w,

uc=u-v-w, vc=-w, wc=v+2w.

Find the kernel MO of the homomorphism from M to the formal extension of M by H
in which ba = ab[u], ca = ac[v], and cb = bd[w].
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11.4 Class 2 quotients
Let G be a group given by a finite presentation (X, R). In this section
we shall describe the determination of G/cp3(G) and G/'y3(G). Nilpotent
quotients of higher class will be considered in Section 11.5.

Let us start with G/cp3(G). We may assume that we already have a
power-commutator presentation (Z, T) for a group H isomorphic to
G/c02(G) in the form returned by ABEL_PQUOT. Thus Z = {a1,. .. , a,r}
and T consists of the following relations:

alai = aiaj, 1 < i < j < r,
aP=1, 1<i<r.

We may also assume that we have homomorphisms u and v from X}* to
Z* and Z* to X}*, respectively, such that µ defines a homomorphism of
G onto H and for all U in Z* the words U and a(v(U)) define the same
element of H.

We want to construct a consistent exponent-p power-commutator pre-
sentation (YS) for G/c03 (G) and homomorphisms a and r from X'* to
Y* and Y* to X}*, respectively, such that a defines a homomorphism of G
onto K = Grp (Y I S) and for all U in Y* the words U and a(r(U)) define
the same element of K. Initially set Y = Z and r = v. By Proposition 11.2
in Chapter 9, r defines a homomorphism of Y* onto G/cp3(G). In order to
be sure that we have generators in Y which map onto a polycyclic gener-
ating sequence for G/cp3(G), we add generators vii, 1 < i < j < r, and ui,
1 < i < r, to Y. We extend T to the new generators by defining

T(vi,j)=r(aj) 1T(ai) 1T(aj)T(ai)=T(aiaj) 1T(ajai)

and

T(ui) = r(ai)P = r(ai).

Let WO denote the set of all the vii and ui. The image of WO* in G&3(G)
is V2(G)/ 3(G)

Let T be the homomorphism of Y* onto G/cp3(G) defined by r and let
be the congruence on Y* determined by T. Thus U - V if and only

if T(U) = T(V). Let K be the quotient of Y* by -, so K is isomorphic
to G/cp3(G). Note that this is not a constructive definition of K, since we
do not yet know -. Besides finding - explicitly, we must determine or.
These two objectives are accomplished simultaneously. To construct a, it
suffices to determine a(x) for x in X. Now x and v(p(x)) =T(p(x)) define
the same element of G/ 2(G). Therefore there is a word wx in WO* such
that x and T(µ(x)wx) define the same element of G/W3(G). However, we do
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not yet know any word w , with this property, so we add a new generator
w., to Y and define T(w..) to be r(p(x))-lx. We also set v(x) = µ(x)wx.
Since T(o1(x)) = T(p(x))T(µ(x))-1x is freely equivalent to x, it follows that
r and r define inverse isomorphisms between G&3 (G) and K.

Let W1 consist of the elements wx with x in X and let W =
The following relations hold in K:

WO U W1.

(1) a-ai=aiawij, 1<i<j<r.
(2) of = ui, 1 < i < r.
(3) wy = yw, w E W, Y E Y.
(4) wP=1, wEW.
(5) o, (R) = o, (S), (R, S) E R.
(6) ai = v(T(af)), 1 < i < r.

Proposition 4.1. The relations (1) to
for K.

(6) form a monoid presentation

Proof. All of these relations hold in G/ o3(G) with respect to r and hence
by the definition of K they hold in K. Let K1 be the monoid generated
by Y and defined by the relations (1) to (6). The relations (2) and (4)
show that the elements of Y define units in K1, so K1 is a group and K is
a quotient group of K1. By the relations (3) and (4), the image of W in
K1 generates an elementary abelian subgroup D of the center of K1. By
the relations (1) and (2), K1/D is elementary abelian. Therefore cp3(K1)
is trivial. The relations (5) say that o, defines a homomorphism Q of G
into K1. The kernel of v contains W3 (G).

In fact, v maps G onto K1. To see this, let E be the image of G under v.
By the relations (6), the ai are in E. By the relations (1) and (2), the vi7
and the ui are in E. Since D is central and K1 is generated by D and E,
it follows that E is normal in K1. The quotient L = K1/E is commutative
and is generated by the images of the elements w,,. If x is in X, then
modulo E, µ(x) is trivial, so u(x) = wx in L. Thus for any word U in
X}*, the image v(U) in L is just the word obtained by replacing each
x by wx. Relations (5) and the fact that L is commutative imply that
L is isomorphic to a quotient group of G/cp2(G). In L, the relations (6)
become o(T(ai)) = 1, 1 < i < r. But T(ai) = v(ai), and v(al),... , v(ar)
define generators for G/cp2(G). Hence the relations a(l(ai)) = 1 imply that
L is trivial, or, equivalently, that E = K1.

We have now shown that K1 and G/W3(G) are each homomorphic images
of each other. Since these groups are finite, they must be isomorphic to
each other and therefore K1 is K.

Let M be the vector space over 7Lr generated by W and let M be con-
sidered a 7L[H]-module on which H acts trivially. Relations (1) to (4) say
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that K is a quotient of a formal extension K2 of M by H. We can get a
rewriting system S for K2 as follows: We choose a linear ordering of Y in
which a...... al come last, preceded by the elements of W in some order.
The rules are then

alai aiawij, 1<i<j<r,
ap ui, 1 < i < r,

wy - yw, w E W, y E Y, y precedes w,

WP f, WEW.

Using Proposition 3.4, it is not hard to show that S is confluent. Rewrit-
ing both sides of the relations (5) and (6) produces the elements of M
needed to generate the kernel M1 of the map from M into K. If we add
to S the power relations for the presentation of M/M1 in terms of the
elements of W, we get a consistent exponent-p power-commutator presen-
tation for K. Since WO* maps onto cp2(G)/cp3(G), if we choose the order on
W so that the elements of W1 come first, then in the power relations for the
elements in W1 the left sides will all have exponent 1. Hence the elements
of W1 can be removed from the presentation by Tietze transformations.

Here is the procedure for determining G/cp3(G). The presentation re-
turned is p-weighted.

Procedure CLASS_2_PQUOT(X, R, p, Z, T, µ, v; Y, S, Q, T);
(* The arguments are described in the text. *)
Begin

If Z = 0 then begin
(* G has no nontrivial p-quotients. *)
Y:=Z; S:=T; U:=µ; T:=v

End

Else begin
Let the elements of Z be a1, ... , a,.;
Let W be a set of new generators of the following types: wx for x

inX,ui) 1<i<r,vij, 1<i<j<r;
Let Y = Z U W and arrange the elements of Y in a sequence with

the ui and the
vi.9

first, the wx next, and a...... al last;
Form the rewriting system S for the group K2 as described above;

(* The system S is confluent. *)
Let q be a homomorphism from X}* to Y* such that for x in X we

have 77(x) =,u(x)wx and t7(x)i7(x-1) can be reduced to
using S;

Let V consist of the pairs (r7(R), r7(S)) with (R, S) in R and the
pairs (i (v(ai)), ai), 1 < i < r;
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W:= 0;
For (A, B) in V do begin

Collect A and B with respect to S to obtain words CD and CE,
respectively, where C is a collected word in Z* and D and E
are collected words in W*;

If D E then collect DEP-1 and add the result to W
End;

Let f be the homomorphism from W* to M = (7GP)Iwl which maps
the i-th element of W to the (JWJ + 1 - i)-th standard basis
element;

Let M1 be the subspace of M spanned by the elements f (D) with
D in W;

Let P be the set of power relations in the standard polycyclic
presentation for MIM1 relative to the images of the standard
basis elements;

(* P may be found by row reducing modulo p the matrix whose
rows are the images f (D). The relations in P will have one of
the forms zP = 1 or z = P, where P is a word which involves
generators coming after z. *)

For each relation z = P in P use a Tietze transformation to
eliminate z from the presentation (Y, S);

(* All w., are removed by the previous statement. *)

For x in X} set o(x) equal to the word obtained from q(x) by
applying the Tietze transformations of the previous statement;

W:= Y - Z;
For ai in Z define T(ai) to be v(ai), for vii in W define T(vij) to be

T(aiaj)-1T(ajai), and for ui in W define r(ui) to be T(aa);
Assign weight 1 to the elements of Z and weight 2 to the elements

of W
End

End.

If in CLASS_2_PQUOT we have x = v(a(x)) for some x in X, then the
element wx will eventually be found to be trivial in K and can be omitted
at the beginning.

Example 4.1. Let us continue with the group G of Example 2.2 and p = 3.
By the remark just made, the generators wb, wd, and we will be trivial. By
looking at the simpler relations for G, we can see that some of the other
new generators will be trivial. Since al and a2 map to b and d, respectively,
which have order 3, it follows that ul and u2 will be the identity in G/c03(G).
Therefore, we may take W to consist of v23, v13, v12, u3, and w, , in that
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order. The resulting rewriting system S is

alai aiawij, 1 < i < j < 3,

ai - c, a32 3-* E, a3 -> u3,

wy - yw, w E W, y E Y, y precedes w in Y,

w3-E, wEW.

539

The homomorphism 77 maps b, c, d, and e to a1, a2a3we, a2, and a3, respec-
tively. The images under ri of x3 and z3 are trivial by our earlier remark.
The images of the three remaining relators for G collect to u3vi2viv23, v23,
and wcv12v13v23, respectively. The relations ai = y(v(ai)) have already been
used to conclude that wb, Wd, and we are trivial. Thus they produce nothing
new now. The elements of W map to the rows of the matrix

01220
0 0 0 0 2
20211

whose row Hermite normal form modulo 3 is

10120
01220
00001

This gives us the additional relations

2 = 1.WC = v12v13, U3 = v12v13, V23

The elements remaining in W are v12 and v13. If we rename these generators
a4 and a5, then the relations in the final presentation are

a2a1 = ala2a4, anal = ala3a5, a3a2 = a2a3,

alai=aiaj, 4<j<5, 1<i<j,
3 3 3

a1 = 1, a2 = 1, a3 = a4a5,

a3=1, 4<i<5.

The homomorphisms o, and r are defined by

o,(b) = al, a(c) = a2a3a4a5, o,(d) = a2, a(e) = a3,

,r(al)=b, 7-(a2)=d, -r(a3)=e,
T(a4) = d-lb-ldb, T(a5) = e-lb-leb.
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The procedure for going from G/G' to G/-y3(G) is similar to CLASS_2_
PQUOT. Let (Z, T) be a consistent polycyclic group presentation for a
group H isomorphic to G/G'. If (Z, T) is obtained using ABEL_QUOT,
then it describes G/G' as a direct product of cyclic groups. We shall assume
only that Z = {a1, . . . , a,,} and that T contains the following relations:

aiai=aiai, 1<i<j<r,
a2"' = Ui, i E I,

where Ui is in {ai+1,... , a,r}}*. We shall also assume that p and v are
regular homomorphisms from X}* to Z}* and Z}* to X}*, respectively,
such that t defines a homomorphism of G onto H and for all U in Z}* the
words U and p(v(U)) define the same element of H.

We want to construct the same sort of description of G/'y3(G). We start
by setting Y = Z and r = v. By Proposition 2.5 in Chapter 9, r defines
a homomorphism of Y}* onto G/-y3(G). We next add new generators vii,
1 < i < j:5 r to Y and definer(vii) to be T(a 1ai laiai). Let WO be the set
of vii. The image of WO'* in G/ry3(G) is G'/'y3(G). Suppose that i is in I.
Although the words and T(Ui) define the same element of G/G', they
may not define the same element of G/y3(G). There is a word ui in WO
such that r(aT) and r(Uiui) define the same element of G/y3(G). Since
we do not know such a word ui at this point, we add a new generator ui to
Y and set r(ui) = r(Uj-1a'"). As we did in constructing GA 03(G), we also
add a new generator wx for each x in X and set T(wx) = r(p(x))-lx.

The monoid homomorphism r defines a group homomorphism T from FY
onto G/y3(G). Let N be the kernel of T and set K = FY/N. Define a to
be the regular homomorphism from X+* to Y}* such that Q(x) = t1(x)wx
for all x in X. As in the earlier case, or and r define inverse isomorphisms
between GI-y3(G) and K.

Let W1 consist of the elements ui with i in I and wx with x in X, and
let W = WO U W1. The following relations hold in K:

(1) aiai = aiaivii, 1 < i < j < r.
(2) a"' = Uiui, i E I.
(3) wy=yw, wEW, yEY.
(4) o,(R) = v(S), (R, S) E R.
(5) ai = v(r(ai)), 1 < i < r.

By an argument very similar to the proof of Proposition 4.1, we can show
that these relations form a group presentation for K.

Let M be the free abelian group on W and let M be considered a Z[H]-
module on which H acts trivially. Relations (1) to (3) say that K is a
quotient of a formal extension K2 of M by H. Using the finitely generated
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version of EXTEND_RULES, we can get a rewriting system S for K2. This
time S is not automatically confluent. Processing the overlaps of the left
sides of the relations described in Proposition 3.5, we obtain generators
for the kernel MO of the map from M to K2. Rewriting both sides of
the relations (4) and (5) produces the additional elements of M needed
to generate the kernel Ml of the map from M to K. We add the power
relations for the presentation of M/Ml in terms of the elements of W and
remove redundant generators.

Here is the formal description of the algorithm for going from G/G'
to G/-y3(G):

Procedure CLASS_2_QUOT(X, 7Z, Z, T, p, v; Y, S, o, T);
(* The arguments are described in the text. *)
Begin

If Z = 0 then begin
(* G is perfect. *)
Y:=Z; S:=T;

End

Else begin
Let the elements of Z be a1,. .. , a,, and let T contain the relations

alai=azaj, 1<i<j<_r,and a7=Ui,iEI;
Let W be a set containing new generators of the following types:

wx for x in X, ui for i in I, and vii for i < i < j < r;
Let Y = Z U W and arrange the elements of Y in a sequence with

the vi) first, the wx next, and a...... al last;
Let M be the free abelian group on W considered as a

Z[H]-module on which H = Grp (Z I T) acts trivially;
Use the finitely generated version of EXTEND_RULES with input

Z, T, M, the vii, and the ui to obtain a rewriting system S on
Yt* for the formal extension K2 of M by H containing, among
others, rules alai -> aiajvij, 1 < i < j < r, and a2"' - Uiui with
i in I;

Let ri be the regular homomorphism from X'* to Y}* such that
ri(x) =,u(x)wx for all x in X;

Let V consist of the pairs (i1(R), ?I(S)) with (R, S) in 7Z, the pairs
(77(v(ai)), ai), and the pairs (DR, PE), where PQR is an
overlap between rules PQ - D and QR - E in S with
positive left sides;

(* If each Ui is empty, then Proposition 3.4 can be used as an
alternative to processing the overlaps PQR. *)

W:= 0;
For (A, B) in V do begin
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Collect A and B with respect to S to obtain CD and CE,
respectively, where C is a collected word in Z* and D and
E are collected words in W}*;

If D 0 E then add DE-1 to W
End;

Let M1 be the subgroup of M generated by the image of W;
Let P be the set of power relations in the standard polycyclic

presentation for M/M1 in terms of the elements of W in the
chosen order;

(* P may be found by establishing an isomorphism between M and
7/iWI using the chosen ordering of W and then row reducing
the matrix whose rows correspond to the elements of W. *)

For each relation zm = P in P add zm -> P and z-1 -* zm-1P-1
to S;

For each relation in P whose left side has the form zm with m = 1
use a Tietze transformation to eliminate z from the
presentation (Y, S);

(* All ui and w., are removed by the previous statement. *)

For x in X set o-(x) equal to It(x)wc, where w denotes the result
of applying the Tietze transformations of the previous
statement to wx;

W:= Y - Z;
For ai in Z define T(ai) to be v(ai) and for vii in W define T(vii ) to

be r(a,-. 1a,-.1iaj ai);
Assign weight 1 to elements of Z and weight 2 to elements of W

End
End.

Example 4.2. Let us continue with the group S of Example 2.4. Here
Z = {a1, a2, a3}, and T contains the following relations:

alai = aiaj, 1 < i < j < 3,
ai=1.

The homomorphisms p and v are given by

µ(t1) = 1, u(t2) = a1, µ(t3) = a2, µ(t4) = a3,

v(al) = t2, v(a2) = t3, v(a3) = t4.

According to CLASS_2_QUOT, we should allow for the following genera-
tors in W : w1, w2, w3, w4, u1, v12, v13, v23, where wi denotes wt.. However,
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since u(v(ai)) = ai, 1 < i < 3, we can see immediately that w2, w3, and w4
are trivial in K and can be omitted. Thus the elements of W will be taken
to be v23, v13, v12, ul, wl, in that order.

The result of applying EXTEND_RULES is a rewriting system S with
the following rules:

v°u'3 -* uavx, u, v E W, v precedes u,

una aqua, uEW, 1<i<3,
a.'aQ aaa v 0, 1 < i < j < 3,

a2 -* u1, ai 1 -* alui 1

Here a and ,Q range independently over {1, -1}. By Proposition 3.4, the
results of processing the overlaps among these relations are all consequences

= 1. Thus we put v12 and v13 into W.of the relations vie = via 2 2 2

The homomorphism ri is given by r7(tl) = wl, r7(ti) = ai_1, 2 < i < 4. The
image under 77 of tlt2t11t21 is

wlalwi lai 1 -4 w1alw1 lalui 1 -> aiul 1 --4 ulul 1 --> E.

Therefore no element needs to be added to W for this relator. The image
of ti t22 is

w5a-2 -> w5a u-la u-1 --4 a2wiu-2

---> u
w5u-2

---a
w5u-1

1 1 1 1 1 1 1 1 1 1 1 1
W1 U1

Hence wiui 1 is added to W. The images of the three remaining original
relators can be rewritten to w1v2s , wi 1v12v23, and v13, respectively, so these
elements are also added to W. The image of a;= lv(ai) can be rewritten to
e, 1 < i < 3, so no elements need to be added to W for these relators.

We identify M with Z5 so that

wl = (1, 0, 0, 0, 0),

ul = (0, 1, 0, 0, 0),

v12 = (0, 0, 1, 0, 0),

v13 = (0, 0, 0, 1, 0),

v23 = (0, 0, 0, 0, 1).
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The elements of W correspond to the rows of

A=

0 0 2 0 0

0 0 0 2 0

5 -1 0 0 0

1 000-1
-1 010 1

0 0 0 1 0

Row-reducing A over the integers, we get

1 0 0 0 -1
0 1 0 0 -5
0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

Thus in M/M1, the images of v12 and v13 are trivial, w1 = v23, and ul = v23.
If we rename v23 as a4, then S/-t3(S) is given by the following consistent
nilpotent presentation:

a2a1 = a1a2, anal = a1a3, a3a2 = a2a3a4,

a4ai = aia4, 1 < i < 3,

2 5
al = a4.

The homomorphisms o, and T are given by

u(tl) = a4, 0'(t2) = al, a(t3) = a2, a(t4) = a3,
T(a1) = t2, 7-(a2) = t3, r(a3) = t4,

T(a4) = t41t31t4t3.

The value of -r(a4) comes from the fact that a4 is v23 renamed and 7 maps
a3 and a2 to t4 and t3, respectively.

The presentation for G'/-y3(G) obtained directly from CLASS_2_QUOT
does not always give this group as a direct sum of cyclic groups. Such a
presentation can be obtained. See the procedure ADJUST in Section 11.5.

Exercise

4.1. Let G be the group defined in Exercise 2.1. Compute G/V3(G) for p = 2 and 3.
Determine G/ry3(G).
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11.5 Other nilpotent quotients
Let (X, R) be a finite presentation for a group G. The procedures
ABEL_PQUOT and ABEL_QUOT of Section 11.2 allow us to determine
G/cp2(G) and G/G'. Once these quotients are known, the procedures
CLASS_2_PQUOT and CLASS_2_QUOT from Section 11.4 can be used
to compute G/cp3(G) and G/ry3(G). In this section we shall describe algo-
rithms for determining G/cpe+1(G) and G/-ye+i (G), where e > 3.

Let us look at G/cpe+1(G) first. By induction on e, we may assume that we
know a consistent cp-weighted exponent-p power-commutator presentation
(Z, T) for a group H isomorphic to G/cpe(G). If cpe_1(H) = 1, then c'k(G) =
cpe_1(G) for all k > e - 1. In this case we may stop since G/cpe+1(G) is
isomorphic to H. Thus we may assume that cpe_1(H) is nontrivial.

Let Z = {a1, . . . , at}, let wi be the weight of ai, and let T contain the
relations

alai=aiajVj, 1<i<j<t,
a1'=Uj, 1<j<t,

where the generators occurring in Vj and U. have weights at least wi +w.
and wj + 1, respectively. We may assume that we have homomorphisms p
and v from X}* to Z* and Z* to X}*, respectively, such that U defines a
homomorphism of G onto H and for all U in Z* the words u(v(U)) and U
define the same element of H. The generators of a given weight m generate

modulo cpm+1(H). We shall denote by r the largest index such that
wr = 1 and by s the smallest index such that ws = e - 1.

We want a consistent p-weighted exponent-p power-commutator presen-
tation (Y, S) for G/coe+1 (G) and associated homomorphisms a and T. The
procedure for going from Z, T, U, v to Y, S, a, T is similar to CLASS_2_
PQUOT. The difference is analogous to the difference between Proposi-
tions 11.2 and 11.3 in Chapter 9. We start by taking Y = Z and r = v. The
image of Y* under T maps onto G/cp2(G) and hence onto G/cpe+1(G). To
be sure that we have generators in Y which map to a polycyclic generating
sequence for G/cpe+1(G), we add generators vii and uj to Y, where 1 < i < r
and s < j< t. We define T(vij) and T(ub) to be T(aiaj)-1T(ajai) and 7-(a'),
respectively. The set of these vii and uj will be denoted Wo. We must also
add certain temporary generators, generators which are guaranteed to be
removed from the presentation later in the computation. These temporary
generators are w with x in X, ui with 1 < i < s, and vii, where 1 < i <
j < t and either r < i or j < s. We set T(vij) = T(Vj)-1T(aiaj)-1T(ajai)
and T(ui) = T(UU)_1T(a1j). In addition, we define T(wx) = T(U(x))-1x. The
set of temporary generators will be denoted W1. The map a is defined
by v(x) = p(x)wx.
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Let W = WO U W1 and Y = Z U W. The following relations on the
generators in Y form a monoid presentation for G/cpe+i(G):

(1) a-ai = aiajVwij, 1 < i < j < t,
(2) ai =Uiui, lit,
(3) wy = yw, w E W, y E Y,
(4) wP=l, wEW,
(5) o, (R) = a(S), (R, S) E R,
(6) ai = o,(T(ai)), 1 < i < t.

The proof of this assertion is similar to the proof of Proposition 4.1.

Here is the procedure for going from G/cpe(G) to G/cpe+i(G) when e > 3:

Procedure NEXT_PQUOT(X, R, p, Z, T, p, v, e; Y, S, 0"'r);
(* The arguments are described in the text. *)
Begin

If there are no generators of weight e - 1 in Z then begin
Y:=Z; S:= T, v:=µ; r:=v

End
Else begin

Let Z consist of al, ... , at and let T contain the relations
alai=aiajVi,,1<i<j<t, andai'=Ui,1<i<t;

Let ar be the last generator of weight 1 and let as be the first
generator of weight e - 1;

Let WO be a set of new generators vii and uj, 1 < i < r, s < j < t;
Let W1 be a set of new generators w , with x in X, ui with

1i< s, and vii with l < i < j < t and either r < i or j < s;
W:=WOUW1; Y:=ZUW;
Arrange the elements of Y in a sequence with the elements of WO

first, the elements of W 1 next, and at, ... , al last;
Let S be the rewriting system on Y* containing the rules

alai aiaiVivii f o r 1 < i < j < t, aP Uiui for 1 < i < t,
wP --- E for w in W, and wy - yw for w in W, y in Y, and y
precedes w;

Let i be a homomorphism from X* to Y* such that for x in X we
have 77(x) = a(x)wx and r7(x)i7(x-1) can be reduced to E
using S;

Let V consist of the pairs (y(R), 77(S)) with (R, S) in R, the pairs
(r7(v(ai)), ai), 1 < i < t, and the pairs (DR, PE), where PQR
is an overlap between rules PQ -> D and QR -> E in S with
positive left sides;

W:=0;
For (A, B) in V do begin
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Collect A and B with respect to S to obtain CD and CE,
respectively, where C is a collected word in X'* and D and
E are collected words in W*;

If D E then collect DEp-1 and add the result to W
End;
Let f be the homomorphism from W* to M = (Zp)IwI which maps

the i-th element of W to the (IWI + 1 - i)-th standard basis
element;

Let M1 be the subspace of M spanned by the elements f (D) with
D in W;

Let P be the set of power relations in the standard polycyclic
presentation for MIM1 relative to the images of the standard
basis elements;

(* See comment in CLASS_2_PQUOT. *)
For each relation in P of the form z = P with z in W use a Tietze

transformation to eliminate z from the presentation (Y, S);
(* All elements of W1 are removed by the previous statement. *)
For x in X} set o(x) equal to the word obtained from 77(x) by

applying the Tietze transformations of the previous statement
and collecting;

W:= Y - Z;
For ai in Z define T(ai) to be v(ai), for

vi.7
in W define r(vij) to be

T(aiaj)-l-r(ajai), and for ui in W define r(ui) to be T(ap);
Assign weight e to the elements of W

End
End.

As noted in Section 11.4, frequently there are many elements of W in
NEXT_PQUOT which are obviously trivial and can be omitted entirely.
If v(,u(x)) is x for some x in X, then wx can be omitted. If 1 < i < j < t
and the sum of the weights of ai and aj exceeds e, then ai and aj will
commute in the final presentation and vi7 can be omitted. Also, suppose
that 1 < i < j < k < t and T contains the relation alai = aiajak. If v
preserves this relation, then vii will be found to be trivial. Similarly, if v
preserves a relation ail = aj, then ui can be omitted. In addition to omitting
elements of W, it is also possible to obtain early in the procedure formulas
describing certain elements of W in terms of later elements. We can use
the remarks at the end of Section 9.11 to reduce the number of overlaps
which need to be considered.

Example 5.1. Let us determine G/cp4(G), where G is the group of Exam-
ples 2.2 and 4.1 and p = 3. By Example 4.1, G/c03(G) is given by

a2a1 = a1a2a4, a3a1 = a1a3a5, a3a2 = a2a3,
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alai=ajar, 4<j<5, 1<i<j,
3 3a1=1, a2=1 3

a3 = a4a5,

a3=1, 4<i<5.

The homomorphisms ti and v are defined by

µ(b) = a1, p(c) = a2a3a4a5, µ(d) = a2, µ(e) = a3,

v(al)=b, v(a2)=d, v(a3)=e,

v(a4) = d-lb-ldb v(a5) = e-lb-leb.

Just as in Example 4.1, the new generators Wb, Wd, we, ul, and u2 will all
be trivial, and hence can be omitted. In addition, T preserves the relations
a2a1 = a1a2a4 and a3a1 = a1a3a5, which are the definitions of a4 and a5, so
v12 and v13 will be trivial too. Thus we may take W to consist of v35, v25,
v15, v34, v24, v14, u5, u4, v23, u3, w., where the last three generators make
up W1 and the remaining are in Wo. Processing the overlaps of left sides
in the initial presentation produces the following elements of W : v34v25,
u4, u5, u5v14v15, v24v25, and v24v35 Collecting the original relations adds
the following elements: 264u5v142

2 2 2 2 2
v24v25v35, v23v34v35, and wcv23u4u5v34v25.

2 2The relations ai = a(rr(ai)) yield u4 and u5v2

l4v34vi5v35. Row reducing the
matrix

00000001020
00020000000
00002000000
00002100100
00000010010
00000002002
01021210011
00200002002
20111002010
00010000000
00001202202

modulo 3, we get
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10000000000
01000000101
00100000000
00010000000
00001000000
00000100100
00000010002
00000001001
00000000011
00000000000
00000000000

This tells us that w, , v23, u4, and u5 are trivial and that
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2
v35,

V14=V2
V24=V35,

V2 2
U3=V15 V25=V35'

If we rename v15 and v35 as a6 and a7, we get the following presentation:

anal = ala2a4, a3a1 = ala3a5, a3a2 = a2a3,

a4a1 = ala4a6, a4a2 = a2a4a7, a4a3 = a3a4a7,

a5a1 = ala5a6, a5a2 = a2a5a7, a5a3 = a3a5a7,

alai = aiaj, 4 < i < j < 7,
3 3 3 2 2

a1 = 1 a2 = 1, a3 = a4a5a6a7,

a3=1, 4<i<7.

The homomorphisms v and T are given by

U(b) = a1, u(c) = a2a3a4a5, or(d) = a2, a (e) = a3,

T(al) = b, T(a2) = d, T(a3) = e, r(a4) = d-lb-ldb,
T(a5) = e-'b-leb T(a6) = b-le-lbeb-le-lb-leb2,

T(a7) = b-le-lbee-2b-lebe = b-le-lbe-lb-lebe.

Now let us consider the problem of constructing G/rye+1(G) from
G/'ye(G). We may suppose that we have a consistent nilpotent group pre-
sentation (Z, T) for a group H isomorphic to G/lye(G). Let Z = {a1,. .. , at}
and let T contain the relations

alai=aiajVj, 1<i<j<t,
ar' = Uj, j E I.
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We also assume that we have associated regular homomorphisms it and v
from X}* to Z}* and Z}* to X}*, respectively. We denote by r the largest
index such that a, has weight 1 and by s the smallest index such that as
has weight e - 1.

We want a consistent nilpotent presentation (Y, S) for Glye+1 (G) and
associated regular homomorphisms a and T. The procedure for going from
Z, T, µ, v to Y, S, a, r is very similar to NEXT_PQUOT. We start by
taking Y = Z and T = v. The image of Y}* under r maps onto GIG' and
hence onto Glye+i(G). To be sure that we have generators in Y which map
to a polycyclic generating sequence for G/ye+1(G), we add generators viJ to
Y, where 1 < i < r and s < j < t, and define T(vij) to be T(a,--1ai 1ajai). The
set of these vi7 will be denoted WO. We also add the following temporary
generators: w., with x in X, ui with i in I, and v2 where 1 < i < j < t
and either r < i or j < s. We set T(V 'a lai lanai), T(wx) _
T(µ(x))-1x, and r(ui) = T(Ui 1a''`). The set of temporary generators will
be denoted W1. The map a is defined by a(x) = p(x)wx.

Let W = W0 U W1. The following relations define GIye+1 (G) as a group:

(1) a.ai = 1 < i < j < t.
(2) ai = Uiui, i E I.
(3) wy = yw, w E W, y E Y.
(4) a(R) = a(S), (R, S) E 1Z.
(5) a i = v(T(ai)), 1 < i < t.

Here is the algorithm for going from G/ye(G) to G/ye+i(G) when e > 3:

Procedure NEXT_QUOT(X, R, Z, T, p, v, e; Y, S, a, T);
(* The arguments are described in the text. *)
Begin

If there are no generators of weight e - 1 in Z then begin
Y:=Z; S:=T; a:=µ; r:=v

End

Else begin
Let Z consist of the elements al, ... , at and let T contain the

relations alai = aiajVj, 1 < i < j:5 t, and a, = Ui, i E I;
Let a,, be the last generator of weight 1 and let as be the first

generator of weight e - 1;
Let W0 be a set of new generators vii, 1 < i < r, s < j < t;
Let W1 be a set of new generators of the following types: w, for x

in X, ui for i in I, and
vi.1

for those pairs (i, j) such that
1<i<j<tandeither r<ior j<s;

W:= WO U W1; Y:= Z U W;
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Arrange the elements of Y in a sequence with the elements of Wo
first, the elements of W 1 next, and at, ... , a1 last;

Let M be the free abelian group on W considered as a
Z[H]-module on which H = Grp (Z I T) acts trivially;

Use the finitely generated version of EXTEND_RULES with input
Z, T, M, and the elements of W to obtain a rewriting system
S on Yt* for the formal extension of M by H containing,
among others, rules alai aiajUwij, 1 < i < j < t, and
am`- Uiui,iEI;

Let 77 be the regular homomorphism from X}* to Y}* such that
,q(x) = p(x)wx for x E X;

Let V consist of the pairs (ri(R), ri(S)) with (R, S) in R., the pairs
ij(v(ai)), ai), 1 < i < t, and the pairs (DR, PE), where PQR is
an overlap between rules PQ -4 D and QR ----> E in S with
positive left sides;

W:=0;
For (A, B) in V do begin

Collect A and B with respect to S to obtain CD and CE,
respectively, where C is a collected word in Z}* and D and
E are collected words in W}*;

If D # E then add DE-1 to W
End;

Let M1 be the subgroup of M generated by the image of W;
Let P be the set of power relations in the standard polycyclic

presentation for MIMI in terms of the elements of W in the
chosen order;

(* See comment in CLASS_2_QUOT. *)
For each relation zm = P in P add zm -> P and z-1 -i zm-1P-1

to S;
For each relation in P whose left side has the form zm with m = 1

use a Tietze transformation to eliminate z from the
presentation (Y, S);

(* All elements of W1 are removed by the previous statement. *)
For x in X set o ,(x) = cp(x)wx, where 11 denotes the result of

applying the Tietze transformations of the previous statement
to wx;

W:=Z-Y;
For ai in Z do T(ai) v(ai);
(* If vi7 is left in W, then T ij is trivial. *)
For vii in W do T(vij) := T(a,--1a, 1ajai);
(* Elements of Z retain their weights. *)
Assign weight e to the elements of W
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End
End.

As with the previous nilpotent quotient procedures, it is possible to re-
duce the size of the set W of new generators considerably. Results from
Section 9.9 can be used to reduce the number of overlaps which must be
considered.

Example 5.2. Let us determine S/y4(S), where S is the group of Exam-
ples 2.4 and 4.2. By Example 4.2, H = Slry3(S) is given by the presentation

a2a1 = a1a2, a3a1 = a1a3, a3a2 = a2a3a4,

a4ai = aia4, 1 < i < 3,

a2 = a4.

Here a1, a2, and a3 have weight 1 and a4 has weight 2. The homomorphisms
µ and v are defined by

µ(t1) = a4, /p(t2) = a1,
/

a2, µ(t4) = a3,

v(a1) = t2, v(a2) = t3, v(a3) = t4, v(a4) = t4 1t3
1t4t3.

Let us follow what happens when we invoke NEXT_QUOT with these
input arguments. The set WO contains v34, v24, and v14. The set W1 should
contain v23, v13, v12, u1, w4, w3, w2, and w1.

However, w2, w3, and w4 will define the identity element in S/y4(S). The
element v23 will also define the identity, since the relation a3a2 = a2a3a4 of
H is preserved by v. Thus we can take W1 to consist of v34, v24, v14, v13,
v12, u1, w1, in that order.

The finitely generated version of EXTEND_RULES is used to fill out the
following presentation:

a2a1 = a1a2v12, a3a1 = a1a3v13,

a3a2 = a2a3a4, a4a1 = a1a4v14,

a4a2 = a2a4v24, a4a3 = a3a4v34,

wy = yw, w E W, y E Y, w precedes y,
2 5a1 = a4Yb1.

The result S consists of

yay-a_ E, yEY,
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a3a2 -+ a2a3a4,

1 1 1
a3 a2 -' a2a3 a4 v34,

alas-*

waY0 -) yawn,

ai - a5u1, ai- l -- a1a4 5ui1.

553

Here a and 13 are elements of {1, -1}. We shall have to rewrite a number of
words with respect to S. Since S is not confluent, it is necessary to specify
a rewriting strategy. In all cases, rewriting from the left will be used.

When we process the overlaps among the positive left sides in S, we
find that the only overlap akajai at which local confluence fails is a3a2a1.
Rewriting a2a3a4a1 gives ala2a3a4v12v13v14, while rewriting a3ala2v12 yields
ala2a3a4v12v13, so v14 goes into W. Processing the overlap a3, we find that
a1a54u1 is already reduced, while a4ulal can be rewritten to a1a4u1v14, so

gets put into W. Processing the overlaps alai for i = 2, 3, and 4 causesV 14
5 2

the elements vi2v24, vi3v2, and v14 to go into W.
We define the regular homomorphism y from {t1, t2, t3, t4}}* to Y+* by

i7(t1) = a4w1, i7(t2) = al, i7(t3) = a2, '04) = a3.

The first defining relation for S is tlt2ti 1t21 = 1. The image under y of
the left side of this relation is a4wlalwi 1a41ai which after rewriting with
respect to S gives v14, but v14 is already in W. Applying ri to the left
sides of the other defining relations for S and rewriting the results yields
the elements wiui 1vi4, wiv24, wi 1v12vi4v34, and v13vi4v34. The relations
ai = ri(v(al)) have already been used in our arguments that ur2, w3, w4, and
v23 are trivial, so these relations produce nothing new.

We identify the free abelian group M on W with Z7, so that

w1 = (1, 0, 0, 0, 0, 0, 0),

ul = (0, 1, 0, 0, 0, 0, 0),

v12 = (0, 0, 1, 0, 0, 0, 0),

v13 = (0, 0, 0, 1, 0, 0, 0),

v14 = ((0,0,0,0, 1,0,0),

v24 = X0,0,0,0,0, 1, 0),

v34 = (0,0,0,0,0,0, 1).

-1 - -a3a2 a2 1 a3a4 1v24,

1 -1 -1 -1 -1 -1a3 a2 - a2 a3 a4v24 v3 ,

1<i<j<4, (i,j)54 (2,3),

w E W, y E Y, y precedes w in Y,
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The elements of W map to the rows of the matrix

0 000100
0 000500
0 020050
0 002005
0 000200
5 -1 0 0 5 0 0
1 000030

-1 010250
0 001308

whose Hermite normal form is

10000 3 0-

0 1 0 0 0 4 0

0 0 1 0 0 8 0

0 0 0 1 0 0 8

0 0 0 0 1 0 0

0000011 0
0 0 0 0 0 0 11

0 0 0 0 0 0 0

LO 0 0 0 0 0 0

Thus v24 and v34 each have order 11 in M/Ml and modulo Ml we have

-3 8 _ 7 _ 3
wl

_
- v24 - v24 U1 - v24 v12 - v24,

3
V13=V34, V14=1.

If we rename v24 and v34 as a5 and a6, respectively, then the relations with
positive left sides in the final presentation for the group K isomorphic to
S/-y4(S) are

3 3
a2al = ala2a5, a3al = ala3a6,

a3a2 = a2a3a4, a4a1 = ala4,

a4a2 = a2a4a5, a4a3 = a3a4a6,

a5ai = aia5, 1 < i < 4,

a6ai = aia6, 1 < i < 5,

2 5 7
a1 - a4a5.
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The regular homomorphisms a and T are/ given by

a(t1) = a4a5, a(t2) = a1, a(t3) = a2, a(t4) = a3,

T(a1) = t2, T(a2) = t3, T(a3) = t4, T(a4) = t41t31t4t3,

7-(a5) = 7-(a41a21a4a2) = t3-1t41t3t4t31t41t31t4t231

T(a6) = 7-(a41a31a4a3) = t31t41t3t4t42t31t4t3t4.

The value of r(a6) may be replaced by the freely reduced word freely
equivalent to it.

Let (X, R) be a finite presentation for a group G and suppose that
Y, S, a, r are returned by one of the procedures CLASS_2_QUOT or
NEXT_QUOT as a description of a group K isomorphic to the class-e
quotient of G. It may happen that the presentation for -ye(K) on the gener-
ators of weight e in Y does not describe ye(K) as a direct product of cyclic
groups, or at least not as a direct product with the minimum number of
factors. The following procedure corrects this defect by returning a new
description Z, T, t, v for which rye(K) is presented as a direct product of
the minimum number of cyclic groups:

Procedure ADJUST(X, R, Y, S, a, T; Z, T, p, v);
(* The arguments are described in the text. *)
Begin

Let Y consist of a1, ... , at, let e be the weight of at, and let a9 be the
last element of Y with weight e - 1;

Let the relations in S be aaagV (i, j, a, 0), 1 < i < j < t, a, /3
in{1,-1}, andai"

For V (i, j, a,,3) to be defined, i must not be in I if a = -1 and j
must not be in I if /3 = -1. *)

n:=t-s;
Let B be the integer matrix with n columns whose rows give the

exponent sums with respect to as+1, ... , at of the words a2' Wi,
where s<i <t andiEI;

Let A be the Smith normal form of B and let P and Q be
unimodular matrices such that A = PBQ;

T:=Q-1;
,

Let d1, ... , dr be the nonzero diagonal entries of A;
If d1>0then p:=0
Else let p be maximal such that dp = 1;
m:=n-p; Z:={a1,...,as,bl,...,bj;
Let q and p be the regular homomorphisms from Y}* to Z}* and Z}*

to Y}*, respectively, such that 71(ai) = p(ai) = ai, 1 < i < s,
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bQ'11 ... Vin 1 < i < n,

p(bi) = as+i ... at"', 1 < i < m;
Let T consist of the following relations: a,aQ = aQaa77(V (i, j, a, 0)),

1<i<j<s,
1<i<p-r;

Rewrite the right sides of the relations in T with respect to T;
Let u be the composition of o and 77;
Let v be the composition of T and p

End.

It is not clear whether on average applying ADJUST will speed up or
slow down the computation of the class-(e + 1) quotient of G. The number
of generators in the presentation may decrease, but the homomorphisms
get more complicated and it may not be possible to spot easily elements of
W in NEXT_QUOT which are trivial. More experimentation is needed.

Exercises

5.1. Suppose in NEXT_PQUOT that the relation ak = aj is the definition of aj and wj =
wk + 1 = e - 1. Suppose also that wi = 1. Show that in G/We+i(G) we have [aj, ai] =
[ak, ai] _ [ak, ai]P. Use this fact to describe how to eliminate vij from Wo.

5.2. Let G be the group in Exercise 4.1. Compute G/V4(G) for p = 2 and G/ry4(G).
5.3. In NEXT_QUOT we assumed that H = Grp (Z I T) is isomorphic to G/rye(G). Suppose

that H is just some polycyclic group, not necessarily nilpotent, that (Z, T) is a consistent
polycyclic presentation for H, and that p and v define inverse isomorphisms between a
quotient GIN and H. Devise a procedure for finding a consistent polycyclic presentation
for G/[N,G].

11.6 Metabelian quotients
Let G be a group given by a finite presentation (X, 7Z) and let e be a positive
integer. The group G/G(e> is the largest quotient of G which is solvable
and has derived length at most e. In (Baumslag et al. 1981a,b), Baum-
slag, Cannonito, and Miller showed that it is possible to decide whether
GIG(e) is polycyclic and, if the answer is positive, to construct a consistent
polycyclic presentation for G/G(e). Baumslag, Cannonito, and Miller made
no attempt to describe their polycyclic quotient algorithm in a form suit-
able for machine computation. This section describes the ideas involved in
the algorithm and presents the metabelian case, the case in which e = 2,
in detail. In order to have a chance of handling solvable quotients with
larger derived lengths efficiently, we shall need generalizations of Grobner
basis methods for modules over group rings of nonabelian polycyclic groups,
perhaps along the lines sketched in Section 10.8.
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We can use ABEL_QUOT to obtain a group presentation (Z, T) for a
group H isomorphic to G/G' and to find associated regular homomorphisms
p and v. Let Z = {a1, . . . , ar} and let T contain the relations

alai=ajar, 1<i<j<r,
a"ni =1, iEI.

To obtain a description of G/G", we begin as in CLASS_2_QUOT. We
initially set Y = Z and r = v. We then add to Y new generators vii with
1 < i < j < t, ui with i in I, and w., with x in X and define r(vij) =
T(a,--1a2 1ajai), r(ui) = r(a"), and r(wx) = T(p(x))-1x. We also set v(x) =
µ(x)wx for x in X. Let W be the set of new generators. By Corollary 1.2,
G'/G" is generated as a Z[H]-module by the image of W. Let F = FY, let
N be the kernel of the homomorphism T of F onto G/G" defined by r, and
set K = F/N.

It is at this point that we diverge from CLASS_2_QUOT. Rather than
considering the free abelian group generated by W, we define M to be the
free Z[H]-module generated by W. The group K is a homomorphic image
of the formal extension KO of M by H in which

alai = aiaj[vii], 1 < i < j < r,

aZ"=[ui], iEI.

Proposition 3.2 tells us generators for the kernel MO of the map from M
to KO. We use the general version of EXTEND_RULES to form a (not
necessarily confluent) rewriting system S for KO. If U is a word in (Z U
M)}* which is contained in the ideal Z generated by M, then U can be
rewritten using S into the form V [u], where V is a collected word in Z`
defining an element of H and u is in M. Let V be the set of ordered pairs
(o(R)[0],u(S)[0]) with (R,S) in 7Z and (ai[0],o(r(ai))[0]), 1 <i <r. Note
that the factor [0] insures that the components of the pairs in V lie in T.
For each pair (A1, A2) in V, we rewrite Al and A2 with respect to S to
obtain words C[cl] and C[c2], where C is a collected word in Z}* and the
ci are in M. The elements cl - c2 so obtained, together with M0, generate
the kernel M1 of the map from M to K.

The group ring Z[H] can be described as a quotient of a ring R which
is either a polynomial ring or a ring of Laurent polynomials. See Sec-
tion 10.8. The free 7Z[H]-module M can be described as a quotient of Rk,
where k = 1W I. Using the Grobner basis techniques of Chapter 10, we can
find a Grobner basis for the submodule L of Rk corresponding to M1. By
Proposition 6.6 in Chapter 10, we can decide whether M/M1 = Rk/L is
finitely generated as an abelian group. If the answer is no, then G/G" is
not polycyclic. However, if M/M1 is a finitely generated abelian group,
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then we can obtain a finite group presentation for it and the corresponding
description of the module action of Z[H]. It is then a simple matter to
write down a consistent polycyclic presentation for K.

The procedure just outlined will be referred to as METABEL_QUOT.
In developing an implementation of METABEL_QUOT, one has to make
a choice between taking R to be a ring of ordinary or Laurent polynomials
and decide which ordering to use on the generators of Rk as a free abelian
group in the Grobner basis computation.

Example 6.1. Let us turn again to the group S of Examples 2.4, 4.2, and
5.2. By Example 2.4, S/S' is isomorphic to H = Grp (Z I T), where Z =
{al, a2, a3}, T contains the relations

alai=aiaj, 1<i<j<3,
2al = 1,

and the homomorphisms µ and v are given by

µ(t1) = 1, µ(t2) = al, µ(t3) = a2, µ(t4) = a3,

v(a1) = t2, v(a2) = t3, v(a3) = t4.

In METABEL_QUOT, the set W should contain w1, w2, w3, w4, ul, v12,
v13, v23, where wi denotes wt.. However, as in Example 4.2, the fact that
µ(v(ai)) = ai, 1 < i < 3, means that w2, w3, and w4 will be trivial in S/S",
so they can be omitted.

The procedure EXTEND_RULES produces the following rewriting sys-
tem for the formal extension KO of M by H:

[u][v] -* [u+v], u,v E M,

[u]-1-*[-u], uEM,
uEM, 1<i<3, a=f1,
2al ---> lull,

al
1 -- all-ul],

alai -> aiaj[vij],

a, lai -> aia, 1[-vi.9a7 1],

alai ai aj[-vijai 1],
-lag 1 -f ai

la., l[vijai la, 1],

1<i<j<3.
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Let Mo be the Z[H]-submodule of M generated by the following elements:

ul(al - 1), ul((12 - 1) + v12(1 + a1), ui(a3 - 1) + v13(1 + al),

v12(a3 - 1) + v23(al - 1) - v13(a2 - 1).

By Proposition 3.2, the preceding rewriting system is confluent modulo Mo.
The homomorphism o is given by

a(t1) = [wl], o (t2) = al, 0'(t3) = a2, a(t4) = a3.

The image in Ko of the first relator titan 1t21 for S is [wi]a1[wi]-lai 1. One
way to collect this element is

[wl]al[wl]
1a11 - [wl]al[-wl]al[-ul] - [wl]a2[-w1a1][-u1] -

[w1][u1][-wlal][-ul] -+ [wi -wial].

The images in Ko of the other four relators for S can be collected to the
following elements:

[5w1 - u1a1], [w1(2 - 2a21 + a3 1) - v23a21a3 11,

[w1(1 - a21 - aia31) + ul(1 - a21) + v12a21 + v23ala21a31],

[w1(3 - 3a1a31) + ul(1 - a31) + v13a31].

The relations ai = o (r(ai)) have already been used to conclude that w2, w3,
and w4 are trivial and produce nothing new. Thus S'/S" is isomorphic to
M/M1, where Ml is the 7L[H]-submodule generated by Mo and the elements

w1(1 - al), 5w1 - u1a1, w1(2 - 2a2'+a2 1) - v23a2a31,

w1(1 - a21 - a1a31) + ul (1 - a21) + v12a2 + v23a1a2 a3

w1(3 - 3a1a31) + u1(1 - a31) + v13a31.

In this example we shall compute in M using ordinary polynomials. Let
R = 7L[Yl, Y2, Z2, Y3, Z3] and let J be the ideal of R generated by the set M =
{Y2 - 1, Y2Z2 - 1, Y3Z3 - 1}. The group ring 7L[H] is isomorphic to R/J.
Let E be the free R-module generated by W. In Chapter 10 we used the
notation of left modules, but it is more convenient to continue to use right
modules here. We can identify the free 7L[H]-module M with E/D, where
D is the R-submodule generated by the 15 products of an element in W by
an element of M.
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The quotient M/M1 is isomorphic to E/El, where El is generated by D
and the elements

ul(Y1-1), u1(Y2-1)+v12(1+Y1), u1(Y3-1)+v13(1+Y1),
v12(Y3 - 1) + v23(Y1 - 1) - v13(Y2 - 1),

w1(1-Y1), 5w1 - u1Y1, w1(2 - 2Z2 + Z3) - v23Z2Z3,

w1(1 - Z2 -Y1Z3) +u1(1 - Z2) +v12Z2+v23Y1Z2Z3,

w1(3 - 3Y1Z3) + u1(1 - Z3) + v13Z3.

Thus El has a total of 24 generators.
To find a Grobner basis for El, we need to choose an ordering of the

Z-basis for E consisting of all products of elements of W by monomials.
Let us use the ordering in which elements of W are compared first using

w1 -< v12-< v13-v23-< u1

and then the monomials Yl ' Y2 2 Z2 2 Y3 3 Z3 3 are compared using the reverse
lexicographic ordering. The resulting Grobner basis has 15 elements. The
first four show that E/E1 is generated as an R-module by the image of wl:

U1-5w11 v23 + wl (8Y2 - 9), v13 + wl (8Y3 - 8), v12 + wl (8Y2 - 8).

The remaining 11 basis elements involve only w1.

w1(Y3Z3-1), w1(Z2Z3+1023+1022-21)
w1(Y2Z3 + 10Z3 + 10Y2 - 21), wl(11Z3 - 11),

wl(Z2Y3+10Y3+1022-21), w1(Y2Y3+10Y3+1OY2-21),

w1(11Y3 - 11), wl(Y2Z2 - 1), wl(11Z2 - 11),

w1(11Y2 - 11), w1(Y1 - 1).

Since there is no basis element with leading term of the form wlY2 , it
follows that S'/S" = E/E1 is not finitely generated as an abelian group
and hence S/S" is not polycyclic.

The limited experimentation with METABEL_QUOT which has been
done so far suggests that the procedure works fairly well when the torsion
subgroup of G/G' is small. When some of the mi are large, then the
elements of type (2) in Proposition 3.2 produce monomials of high degree
and this dramatically slows the Grobner basis computation.

If p is a prime, then we can investigate G/G"(G')P by computing the
Grobner basis using coefficients in ZP rather than Z. With the group S of
Example 6.1, it is relatively easy to see that S'/S"(S')P is cyclic if p # 11
and is infinite for p = 11.
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Exercises

6.1. Let G be the group of Exercises 2.1, 4.1, and 5.2. Is GIG" polycyclic?
6.2. Suppose in the input to METABEL_QUOT that H = Grp (Z I T) is not necessarily

isomorphic to GIG' but is just some abelian group which is a homomorphic image of G.
Interpret the output of METABEL_QUOT.

11.7 Enforcing exponent laws
One important application of the p-quotient algorithm has been in the
study of Burnside groups. Let d and q be positive integers. The Burnside
group B(d, q) is the largest group generated by d elements such that the
q-th power of every element in the group is 1. More precisely, let X be a set
with d elements and let B = {W9 I W E X'* 1. Then B(d, q) = Grp (X I B).
Thus B(d, q) is the largest d-generator group with exponent dividing q.

Information about Burnside groups can be found in [Kostrikin 1990] and
[Vaughan-Lee 1990]. The group B(d, q) is known to be finite if q:5 4 or q = 6.
It is known to be infinite if d > 2 and q is an odd integer greater than or
equal to 665. (Lysenok has announced the result that 665 may be replaced
by 115.) It is not known whether the groups B(2,5) and B(2,8) are finite.
These groups have been the subject of considerable study.

Recently a positive solution to the so-called restricted Burnside problem
was announced by E. I. Zel'manov. This result states that B(d, q) has a
largest finite quotient, which is denoted R(d, q). This means that B(d, q)
has a smallest normal subgroup N(d, q) of finite index. If q is a power
of a prime p, then R(d, q) is a p-group and hence is nilpotent. Therefore
N(d, q) is -yi (B(d, q)) and also cps (B(d, q)) for some integers i and j. Here
co (B(d,q)) is defined with respect to p. Thus it would be possible, at least
in principle, to determine a consistent polycyclic presentation for R(d, q)
using the algorithms of this chapter, if only B(d, q) were finitely presented.
Unfortunately, since the set 13 is infinite, this need not be the case.

Let q be a power of a prime p and set B = B(d, q). For a given integer
e, it is possible to determine B/cpe+i (B), even though B is not defined by
a finite presentation. The method is based on an efficient solution to the
following problem: Given a consistent polycyclic presentation for a finite
p-group G, determine whether g9 = 1 for every g in G. Since G is finite
and we can compute products and compare elements in G, we could try
to find the answer by actually computing the q-th power of each element
in G. However, the groups G with which we shall be dealing have very
large orders, so this brute force approach is hopelessly impractical.

If G happens to be abelian, then our problem is easy. We have only to
check whether the generators of G have orders dividing q. If G is non-
abelian, then this may not be adequate. For example, the permutations
x = (1, 2) (3, 4) and y = (1, 3) generate the dihedral group of order 8. Both
x and y have order 2, but xy = (1,2,3,4) has order 4. If p is large with
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respect to the class of G, then our problem is still easy. In Chapter 4 of
[Hall 1959], it is shown that if G has class less than p, then the exponent
of G is the maximum of the orders of a set of generators.

When the class of G is large compared with p, it is more difficult to
determine the exponent of G. Perhaps the most powerful approach is based
on a result of Graham Higman found in (Higman 1959). Let F be the free
group on a set X. For x in X, let 1rx be the endomorphism of F which
takes x to 1 and maps each y in X - {x} to itself. Define 1 - 7rx to be the
function from F to itself taking an element u to (7rxu)-lu.

Proposition 7.1. For any x and y in X, the maps 7rx, (1 - 7rx), Try, and
(1- Try) all commute. Also 7rx7rx = 7rx and 7rx (1- 7rx)u = 1 for every u in F.

Proof. The compositions 7rx1ry and 7ry1rx each map x and y to 1 and fix
every other element of X. Clearly 7rx7rx and 7rx agree. For any u in F we
have

(1 - 7ry)7rxu = (7ry7rxu)-17rxu = (7rx7ryu)-17rxu

and

7rx(1 - 7ry)u = 7rx(7ry(u)-1u) = (7rx7ru) 17rxu,

so (1 - Try) and 7rx//((commute. Finally,

7rx(1 - 7rx)u = ixllixu)-'u)
= (7rx7rxu)-1(7rxu) = (ixu)-1(7rxu)

= 1.

For any subset Y of X, define F(Y) to be the intersection of the kernels
of the endomorphisms Try with y in Y. In the following, the word "commu-
tator" will refer to any element of F obtained as an iterated commutator
starting with elements of X.

Proposition 7.2. Let Y be a finite subset of X. Then every element of
F(Y) can be written as a product of commutators each of which involves
every element of Y.

Proof. If Y = 0, then F(Y) = F. Any element of F can be written
as a product of elements of X} and these factors are commutators which
involve every element of Y. We proceed by induction on JYJ. Suppose Y
is nonempty, let y be an element of Y, and let w be in F(Y). Then w is
in F(Y - {y}), so w = ul ... u,r, where each ui is a commutator involving
every element of Y - {y}. Suppose some ui involves y as well but ui+1 does
not involve y. Then replacing the terms uiui+1 with ui+lui[ui,ui+1] does
not change the product. The commutator [ui, ui+1] introduced involves all
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the elements of Y. In this way we can move all commutators which do
not involve y to the beginning of the product. Thus we may assume that
u1,. .. , u3 do not involve y, while u,+,,..., u, do involve y. But Try maps any
commutator involving y to 1, and fixes any commutator not involving y.
Therefore 1 = 7rw = ul ... us and w = us+1... u, is the required product.

For any finite subset Y of X let 7r, be the product of the endomorphisms
Try with y in Y. By Proposition 7.1, Try is well defined.

Proposition 7.3. Let Y be a nonempty, finite subset of X. Any element
w of F can be expressed as a product ul ... u,.v, where v is a product of
commutators each involving every element of Y and the ui have the form
7rZwf1 for some nonempty subset Z of Y.

Proof. Let Y = {y1, ... , yn} and set v = (1 - 7ry1) ... (1 - 7ryn)w. Then

v = (1 - 7ry1) ... (1 - lw
(1 - 7ry1) ... (1 - 7ryn-1) (7rY

-1
OrY.W)-1w)(7rynw)-1w

7ry1) ... (1 - Tryn-2)(7rZw-1)(7rZ'Ul)(7rZw-1)w,

where Z1 = {y._1}, Z2 = and Z3 = {yn}. By induction, v =
uT 1... ui 1w, where each ui is 7rzw" for some nonempty subset Z of Y.
Then w = u1 ... u,.v and by Proposition 7.1, v is in F(Y), so by Proposi-
tion 7.2 v is a product of commutators involving all elements of Y.

Proposition 7.4. Let x1, ... , xs be distinct elements of X and let q be a
positive integer. Then (x1 ... x3)4 can be written as uv, where u is in the
subgroup of F generated by the products (xi1 ... xir)(1, where 1 < i1 < <
i,. < s and r < s, and v is a product of commutators each involving all of
the xi.

Proof. In Proposition 7.3, let Y = {x1,.. . , xs} and w = (x1... x3)4. If
1 < i1 < ... < i,. < s, then (xil ... xir)4 = 7rZw, where Z = Y - {21, ... , 2,,}.

Corollary 7.5. Let G be a group which is nilpotent of class at most c and
let A be a subset of G which generates G as a monoid. Suppose that for
every word W in A* with IW I < c we have W4 = 1 in G. Then the exponent
of G divides q.

Proof. We prove by induction on I W I that W4 = 1 in G for every word W
in A*. By hypothesis, we may assume that I W I > c. Let W = a1 ... a, where



564 11 Quotient groups

each ai is in A. Let X = {x1,. .. , xs} be a set of cardinality s. There is a
homomorphism f of the free group F on X into G under which xi goes to ai.
Under this homomorphism w = (x1 ... xy)q maps to Wq. By Proposition 7.4,
w = uv, where u is a product of q-th powers of words with lengths less than
s and v is a product of commutators involving each of x1, ... , xs. Under
f, the image of v is in -y., (G), and ys(G) = 1, since s > c + 1. The image
of u is a product of q-th powers of words in A* of length less than s. By
induction, these q-th powers are trivial. Therefore Wq = f (w) = 1.

We can extend this idea even further. Let G be a finite p-group given
by a consistent, cp-weighted presentation on generators a1, ... , a,,. Let wi
denote the weight of ai and set c = w,,,. An element g of G can be expressed
uniquely as a collected word ai' ... ann. Define the weight of g with respect
to the ai to be a1w1 + + anwn.

Corollary 7.6. Under these assumptions, the exponent of G is the maxi-
mum of the orders of the elements in G of weight at most c.

Proof. Let q be the maximum of the orders of the elements of weight
at most c. Since G is a p-group, gq = 1 for every element g of weight at
most c. Let W = ai' ... ann be a collected word defining an element g of
weight greater than c. In the proof of Corollary 7.5 the commutator factors
of v map to the identity in G and the q-th power factors of u map to q-
th powers of words defining elements of weight less than the weight of g.
Thus Wq = 1.

Example 7.1. In (Havas, Wall, & Wamsley 1974) the order of the group
R(2, 5) was shown to be 534. The following consistent, weighted presenta-
tion for R(2, 5) was obtained using Version 3.7 of the system Cayley. The
generators a1, ... , a34 satisfy the relations ai = 1, 1 < i < 34. Most of the
561 commutators (aj, ai) with i < j are trivial. Here are the nontrivial
commutators. To save space, i has been written for ai.

[2,1] = 3, [3,1] = 4, [3,2] = 5, [4,1] = 6, [4,2] = 7,

[4,3] = 9 1112 4 152 184 194 204 212 224 25 272 284 294 30 314 333 343,

[5,1] = 79 102 1112 2 133 144 153 163 203 21 243 25 263 272 282 292 303 313 323

334 342

[5,2] = 8,

[5,3] = 102 123 13 144 152 162 1718192 12 242 26 294 312 324 3334 2,

[5,4] = 122 13 154 163 173 184 203 213 224 24 254 262 272 283 303 312 332 34,

[6,1] = 11 15 162 192 204 212 23 24 252 263 27 294 303 314 323 334 343,
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[6,2] = 9, [6,3] = 1116 4 203 21 264 272 312 334 342,

[6, 41 = 19 23 242 252 294 304 322 332 34,

[6, 5] = 152 164 19 204 214 24 252 26 274 294 324 3334 2,

[7,1] = 92 112 122 131516 3 17202 13 22 23 244 254 262 27 284 292 31 323

332 342,

[7,2] = 10,

[7,3] = 123 13 163 17 18 203 213 222 242 25 26 27 293 304 313 324 333 343,

[7,41 = 154 163 193 203 213 244 25 272 303 314 334 342,

[7,5] = 17 183 202 212 22 244 253 272 282 292 322 344,

[7,61 = 192 243 25 29 30 324 332,

[8,1] = 103 122 132 143 152 16 173 19 244 272 283 293 302 323334 2,

[8,2] = 143 173 223 252 26 274 29 30 312 333 344,

[8,3] = 142 173 18 202 212 224 24 262 274 284 302 312 324,

[8,4] = 173 184 20 22 244 253 263 272 292 324 3334 3,

[8,5] = 223 26 27 28 303 314 333 344,

[8,6] = 203 214 244 252 263 273 294 313 322 333,

[8,7] = 224 273 28 303 31323334 4, [9,1] = 11, [9,2] = 12,

[9,3] = 154 16 194 20 212 242 252 262 27 293 303 312 3334 3,

[9,4] = 192 242 252 29 32 34, [9,51 = 213 252 27 294 303 3233 3,

[9,6] = 23 29 324 342,

[9,7] = 242 254 29 303 323334 2, [9,8] = 262 27 303 312 324 333 342,

[10, 1] = 13,

[10,21 = 14, [10, 3] = 172 183 203 21 223 24 252 263 274 284 293 304 313

323 343,

[10,4] = 204 213 243 26 274 32 333 344, [10, 5] = 222 262 28302 314 324

333 342,

110, 61 = 244 254 29 30 32 332 342, [10, 7] = 262 274 304 312 34,

[10, 81 = 28 314 333 34,

[10, 9] = 323 342, [11,1] = 19 242 253 29 30 323 333 342, [11, 21 = 15,

[11, 31 = 19 254 302 332 343, [11, 4] = 23 292 323 34,

[11,5] = 242 254 294 304 3234,

[11, 7] = 29 324 342, [11, 8] = 302 323 332 344, [11,10] = 323,

[12, 1] = 16,
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[12,21 = 17, [12,3] = 204 213 244 253 263 274 29 304 313 324,

[12,4] = 25 294 302 322 343,

[12,5] = 263 272 302 313 324 344, [12,6] = 2932 3,

[12,7] = 302 322 334 342,

[12,8] = 3134, [12,9] = 323 344, [12,10] = 334 343,

[13,1] = 152 162 202 212 23 263 292 314 32 334 344, [13,2] = 18,

[13,31 = 212 243 252 29 314 32, [13,4] = 253 29302 323 334 34,

[13,5] = 264 27303 14 322 344, [13,6] = 29 324 342, [13,7] = 304 33,

[13,8] = 314 3334 3, [13,9] = 323, [13,10] = 33 34,

[14,1] = 172 184 203 213 224 244 254 27 294 312 3334, [14,2] = 314 334,

[14,3] = 22 26 27 28 304 31 323 333 344, [14,4] = 262 274 304 313 33,

[14,5] = 28 31 334 343, [14,6] = 304 3233 2, [14,7] = 314 334,

[14,9] = 334 34,

[15,1] = 19, [15,2] = 20, [15,3] = 244 25 29 30 32 332 344,

[15,51 = 324 34,

[15,7] = 323 34, [15,81 = 332 343, [15, 10] = 343,

[16,1] = 194 232 24 253 29 303 322 333 342, [16,2] = 21,

[16,3] = 244 25 293 304 32 33 34,

[16,4] = 293 322 342, [16,5] = 303 324 344, [16,71 = 323 34,

[16,8] = 332 343

[16, 10] = 343, [17, 1] = 204 214 243 254 264 294 303 13 324 3334 4,

[17,2] = 343,

[17,3] = 26 27 302 323 332 343, [17,4] = 303 324 344, [17,51 = 31332 343,

[17,6] = 323 34, [17,7] = 333 344, [17,9] = 343,

[18,1] = 202 214 244 25 263 273 302 313 333 342, [18,21 = 22,

[18,31 = 26 27 302 314 323 333 344, [18,4] = 30 322 333 343,

[18,5] = 312 344,

[18,61 = 323 34, 118, 7] = 333 344, [18,9] = 343, [19, 1] = 23,

[19,2] = 24,

(19,3] = 294 323, [19,5] = 322 343, [20, 1] = 25, [20,2] = 26,

[20,3] = 304 324 333 343,

[20,4] = 322 344, [20, 5] = 333 34, [21, 1] = 243 25 2930 324 332 344,

(21,2] = 27, [21, 3] = 30 32 333, [21,41 = 34, [21, 51 = 33 34,
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Table 11.7.1

Weight Generators

al, a2
a3

a4, a5

a6, a7, a8

a9,alo

all,. a14

a15,...,a18

a59,. ..,a22

a23,...,a28

a29, a3o, a31

a32, a33

a34

[22,1] = 263 303 313234 3, [22,2] = 28, [22,3] = 314 332 344,

[22,4] = 333 343,

[23,2] = 29, [24, 1] = 343, [24, 2] = 30, [24,3] = 322 343

[24,5] = 342

[25,1] = 294 3234, [25,2] = 322 343, [25, 3] = 32 344, [25,5] = 34,

[26,1] = 304 322 334 343, [26, 31 = 33 343, [26,41 = 342,

[27,1] = 304 3233 4,

[27,2] = 31, [28, 1] = 314 333 344, [29,2] = 32, [30,1] = 322 343,

[30,2] = 33, [31,1] = 334 34, [32,21 = 34, [33,1] = 342.

Let R be the group defined by this presentation. The weights of the
generators of R are given in Table 11.7.1.

There are several approaches to verifying that R has exponent 5. The
simplest uses Corollary 7.5. Since R has class 12 and is generated as a
monoid by a1 and a2, it suffices to check that W5 = 1 for every nonempty
word W in {a1, a2}* with length at most 12. There are 2+4+-..+2 12 = 8190
such words. Another method is to check that every nonempty, collected
word a" ... a34 of weight at most 12 defines an element of order 5. There
are 2311 such words.

It is possible to reduce even further the number of fifth powers we need
to check in order to confirm that R has exponent 5. Every nonidentity
element of R generates the same cyclic subgroup as an element whose lead-
ing exponent is 1. If W is a collected word with leading exponent ai = 1,
then -it is not true that all images U = 7rz W have leading exponent 1.
However, if the leading exponent of U is not 1, then U defines an element
of Grp (ai+1,... , a34). By induction on 34 - i, U5 = 1 in R. Thus it suffices



568 11 Quotient groups

to show that all collected words with weight at most 12 and leading expo-
nent 1 define elements of order 5. This observation reduces the number of
words to be checked to 1131.

More detailed analysis can be used to reduce further the number of fifth
powers which must be computed to verify that R has exponent 5. The
implementation of the p-quotient algorithm developed at the Australian
National University makes use of several additional ideas. The version
available at the time of this writing is able to deduce that R has exponent
5 after verifying that fewer than 100 elements have order 5.

Let d be a positive integer, let X be a set of cardinality d, and let q be a
positive power of a prime p. Set B = B(d, q) = Grp(X I W4 = 1, W E X}*).
Corollaries 7.5 and 7.6 show that for every positive integer e there is a finite
subset C of X}* such that B/coe+i (B) is isomorphic to C/cpe+i (C), where
C = Grp(X I W9 = 1, W CC). Since C can be determined explicitly, we can
find a consistent polycyclic presentation for C/cpe+1(C). For further details,
see (Vaughan-Lee 1985) and [Vaughan-Lee 1990].

11.8 Verifying polycyclicity
Several times we have noted that a certain property of a finitely presented
group G may be verified but not decided. That is, if G has the property,
then it is possible to prove that G has the property, but if G does not have
the property then it is not possible in general to prove that the property
does not hold. In this section we shall demonstrate that polycyclicity, being
a polycyclic group, can be verified.

Suppose that G is polycyclic and has derived length k. Using the
full polycyclic quotient algorithm of Baumslag, Cannonito, and Miller,
we can determine consistent polycyclic presentations for the quotients
Qe = G/G(e), e = 1, 2,.... When e = k + 1, we will observe that (Qe)(e-1)

is trivial. Thus we can determine k. Let al, ... , a, be the original gen-
erators for G. Using the explicit homomorphism of G onto Qk, we can
introduce additional generators a,.+1, ... , at of G which map to a polycyclic
generating sequence of Qk, which is in fact isomorphic to G. Let 7Z be
the set of relations defining G in terms of al, . . . , a,, and let 7Z' consist of
the relations in 7Z together with relations which define a,+1, ... , at in terms
of al, ... , a,,. We now invoke the Knuth-Bendix procedure for strings with
the input presentation consisting of the generators al, . . . , at and the re-
lations R'. The ordering on words is the basic wreath-product ordering
with ai al >- a2 1 >- a2 >- ... >- at 1 >- at. Since al,... , at is a polycyclic
generating sequence for G, the Knuth-Bendix procedure will terminate and
the output will be a polycyclic presentation for G. This is the verification
that G is polycyclic.
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Finitely generated nilpotent groups are polycyclic. Since we can compute
the terms in the lower central series of a group P given by a consistent
polycyclic presentation, we can decide whether P is nilpotent. Thus it is
possible to verify that a finitely presented group is nilpotent. A trivial
group is polycyclic and it is possible to decide whether a polycyclic group
is trivial. Since it is not possible to decide whether an arbitrary finitely
presented group is trivial, it follows that it is not possible to decide whether
a finitely presented group is polycyclic or whether it is nilpotent.

11.9 Historical notes
The study of quotient groups of a given finitely presented group G has a
long history. Determining G/G' was discussed in (Tietze 1908). Knot the-
orists studied G/G", particularly in the case that G/G' is infinite cyclic.
In (Chen, Fox, & Lyndon 1958) it was shown that the isomorphism types
of the abelian groups 'yz(G)/ryz+l(G) can be determined. It was the work
of Macdonald which first resulted in effective algorithms for determin-
ing p-quotients of moderate size and class. These techniques, described
in (Macdonald 1973, 1974), were extended in (Sag & Wamsley 1973a,b),
(Wamsley 1974), (Bayes, Kautsky, & Wamsley 1974), (M. F. Newman
1976a,b), and (Havas & Newman 1980).

Techniques based on the p-quotient algorithm have been used to construct
the groups of a given prime power order. The first paper describing this
application was (M. F. Newman 1977). In (O'Brien 1990) the groups of
order 28 were determined. A crude program for constructing groups of
order 2' was written by the author at Harvard during the spring of 1963.
The program did not use p-quotient methods, but it did incorporate related
ideas. This work was described at the Oxford conference of 1967 but never
published.

In the area of nonnilpotent solvable quotients, we are still struggling to
provide an efficient implementation of the polycyclic quotient algorithm
developed in (Baumslag et al. 1981a,b). The fact that polycyclicity could
be verified, at least in principle, was noted in (Sims 1987). The connection
with Grobner bases was discussed in (Sims 1990). Methods for finding finite
solvable quotients were suggested in (Leedham-Green 1984) and (Plesken
1987).



Appendix

Implementation issues

Although the descriptions of algorithms in this book are, in most cases,
sufficiently detailed to define them mathematically, the algorithms cannot
be converted into well-designed computer programs without a great deal
of additional work. One must consider carefully the choice of language in
which to carry out the implementation. Equally important is the choice
of data structures. All objects manipulated by a digital computer must
ultimately be represented by patterns of binary digits or bits. A given
mathematical object may have many possible representations as a bit pat-
tern, and the representation selected can affect drastically the running time
or the memory usage of the program. In this section we shall look briefly
at the language issue and then turn to the question of data structures. To
focus the discussion, we shall consider the example of automata and con-
sider ways of representing various types of automata in a computer. In the
case of coset automata, we shall also investigate the consequences for the
coincidence procedure of the choice of data structure.

There are three broad categories of languages in which we might im-
plement algebraic algorithms. The first category consists of the languages
associated with the currently available computer algebra systems. The
general-purpose, high-level languages make up the second category. The
third category consists of the assembly languages for specific computers.
Let us look at the advantages and disadvantages of languages in these three
categories.

The popular computer algebra packages, such as Axiom, Cayley, GAP,
MACSYMA, Macaulay, Maple, Mathematica, Pari, REDUCE, and SAC2-
C, all have their own languages for specifying computations. It is possible
to write a program in one of these languages and have the program executed
by the corresponding system. The primary advantage of this approach is
speed of implementation. If the system has built into it representations of
some or all of the mathematical objects with which we wish to work and
provides implementations of the fundamental operations on these objects,
then writing the program will be much easier than it would be if we had to
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work out all data structures from scratch and write the low-level subrou-
tines needed to carry out basic operations. Of course, implementations of
many of the algorithms discussed in this book already exist in at least one
of the computer algebra systems. For example, Cayley and GAP contain
routines for doing coset enumeration, for carrying out the Reidemeister-
Schreier procedure, and for determining the structure of finitely generated
abelian groups. Maple, Mathematica, and Pari have basic implementations
of the LLL algorithm. Maple and Mathematica can compute Grobner bases
over rings of polynomials with rational coefficients, and Mathematics can
compute such bases over Z[X,, ... , XJ. To my knowledge, none of the sys-
tems listed earlier contains, at the time this is written, an implementation
of the Knuth-Bendix procedure for strings.

The use of computer algebra systems has some disadvantages too. As a
general rule, the more removed a language is from the hardware, the longer
computations described in that language take to run. The languages as-
sociated with computer algebra systems are quite far removed from the
hardware. Although the effect varies from system to system, and even
within a specific system, computations on a computer algebra system tend
to run slower than the same computations would run if coded directly in
a language like FORTRAN or C. For many problems, the difference in
execution speed is not of major significance. However, some problems, par-
ticularly those connected with research in algebra, challenge the available
memory and cpu resources. In this case, the overhead associated with a
computer algebra system may not be acceptable.

Other problems with computer algebra systems are cost, size, and lack
of access to source code. Some systems are distributed without charge, but
others impose a substantial license fee. Although the size of the "kernel",
the part of the system which must be present in memory, varies consider-
ably, the programs are large. If only one feature of a system is required for
a particular application, then having to load the entire system unnecessar-
ily reduces the amount of memory available for data. Many systems are
distributed only in executable form. Without access to the source code,
it is impossible to tailor the program to a specific problem by making
modifications which involve changes in low-level data structures.

Among the general-purpose, high-level languages which have been used
to implement algebraic algorithms are APL, BASIC, C, FORTRAN, LISP,
and Pascal. LISP was popular for many years among designers of tradi-
tional computer algebra systems and FORTRAN was used for roughly two
decades by computational group theorists. Recently there has been a gen-
eral movement toward C. The kernels of Cayley, GAP, Macaulay, Maple,
Mathematica, Pari, and SAC2-C are written in C. The appearance of a C
standard has contributed to the decision to use C.

The primary advantages of writing programs in standard C are execution
speed and portability. The C language has features which make it closer to
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the hardware than most other high-level languages. This allows C programs
to be compiled into very efficient code. Good compilers for C are widely
available, much more available than computer algebra systems. As compiler
designers move to conform to the C standard, it is reasonable to expect that
a given C program can be executed on a wide range of hardware.

The main disadvantage of programming in C or some similar language is
the length of time required to develop the software. The user cannot rely
on the sophisticated input/output facilities available in computer algebra
systems. Until recently there had been no publicly available library of C
functions for performing fundamental operations like memory management,
multiple precision arithmetic, and polynomial manipulations. However,
with the distribution of source code for such systems as GAP, Macaulay,
Pari, and SAC2-C, it is now easier to build on the work of others.

The greatest efficiency in speed and memory usage is obtained with as-
sembly language programming. Assembly language is only slightly removed
from the machine language of the hardware. This means that assembly lan-
guage programs are portable only to other computers of the same make and
the same or similar model. The development time for assembly language
programs is longer than the time needed to write C programs with similar
functionality. Of the systems mentioned earlier, only Pari provides assem-
bly language implementations of certain low-level operations for use with
specific hardware.

Let us turn now to the question of data structures. We shall assume that
the decision has been made to implement software in a language which, like
C and Pascal, allows the use of pointers. It will not be possible to consider
representations for all of the objects involved in the algorithms which we
have investigated. To illustrate the issues which can arise, let us look at
ordinary, possibly nondeterministic, automata.

The first thing to do is to decide on the operations we wish to perform
on the automata. Here is a reasonable list:

(a) Add a state.
(b) Delete a state and all edges involving that state.
(c) Add or delete an edge.
(d) Given a state v and a word U, find all states T such that there is a

path from or to r with signature U.
(e) Given a state v and a word U, find all states p such that there is a

path from p to a with signature U.
(f) Print out the automaton.

Let us assume that the number of states may be quite large, but that the
number of edges leaving or entering a given state will be reasonably small.
Let us also assume that the alphabet X is not too big and that we have
some method of designating the label on an edge as an element of X U {e}.
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One possible approach is to represent states and edges by contiguous
chunks of memory called records in Pascal and structures in C. The records
are made up of fields, which contain data or pointers to other records. If
u is a pointer to a record and a is the name of a field in that record, then
u.a will denote the value of the field. The pointer fields link the records
together into lists. Lists may be either singly linked or doubly linked. In a
singly linked list, a given record contains a pointer only to the next record
on the list. The end of the list is signaled by a "null pointer". The only
way to find the record preceding the given one is to go to the start of the
list and move from record to record through the list until the current one
is found. In a doubly linked list, each record contains a pointer to the
previous record as well as a pointer to the next record. It is much easier to
remove a record from the middle of a long list if the list is doubly linked.

The use of lists of relatively short records as data structures in symbolic
software has been popular for a long time. With this approach, complex
data structures can be created fairly easily, memory management strate-
gies are well understood, and programming low-level operations is relatively
straightforward. However, there are some problems. Examining the ele-
ments of a linked list takes significantly longer than looking at consecutive
entries of a vector stored in a single contiguous block of memory. The situ-
ation can get particularly bad when virtual memory is being used. Closely
related records may be widely separated in memory. It can happen that
each new access of a record causes a page fault. When this happens, the
program is brought to its knees. It is now becoming common to use con-
tiguous blocks of memory for large objects. Elements of free modules over
polynomial rings appearing in Grobner basis computations are examples of
objects which might be treated in this manner. Such objects vary widely
in size, and their use complicates memory management, but the improved
efficiency appears to justify the extra programming effort.

We shall use lists of records for general (ordinary) automata. However,
when we turn to coset automata, we shall use matrices and vectors which
are stored in contiguous memory locations. To carry out operation (f), we
shall consider each state in turn and print the edges leaving that state.
Thus we shall need a list of states. In view of operation (b) and the fact
that there may be many states, we shall make the list doubly linked. The
record representing an edge e = (a, U, ,r) will contain pointers to the records
representing or and r. Because of the need to carry out operations (b), (d),
and (e), we shall want to be able to find all edges leaving v and all edges
coming into -r. Thus e should be on two lists of edges, the edges leaving Q
and the edges coming into r. Since these lists are supposed to be short, we
shall make them singly linked lists. This saves space at the cost of increasing
the time needed to remove an edge. The record for e must contain a field
giving the label U. The record representing a state must contain boolean
fields indicating whether the state is initial and/or terminal, and there
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probably should also be a name field providing a convenient character string
by which to designate the state in the printed listing.

In our first representation of an automaton, a record representing a state
a will have the following fields:

name External name of o,
prey Pointer to the record representing the previous state on the

list of states
next Pointer to the record representing the next state on the list

of states

firstin Pointer to the record representing the first edge entering a
firstout Pointer to the record representing the first edge leaving a
init Boolean value which is true if a is an initial state
term Boolean value which is true if or is a terminal state

The record representing an edge e = (a, U, T) will contain the following
fields:

label U
tail Pointer to the record representing o,
head Pointer to the record representing r
nextin Pointer to the record representing the next edge entering T
nextout Pointer to the record representing the next edge leaving a

From now on, the distinction between records and the objects they represent
will be blurred.

The entire automaton can be accessed if the first state on the list of states
is given. Here is a procedure for printing out the edges of the automaton:

Procedure PRINT(u);
Input: a : a pointer to the first state of an automaton;
(* The edges of the automaton are printed. *)
Begin

T:=ar;
While T is not null do begin

Print the strings "Edges leaving state" and 7-.name on a new line;
e := T.firstout;

While e is not null do begin
Print " ", e.label, " ", and e.head.name on a new line;
e:= e.nextout

End;

T := T.next

End
End.
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Here is a sample of the output of PRINT for an automaton for which the
edge labels come from {x, y, z, e} and the external names of the states are
2, 3, 5, and 7.

Edges leaving state 2
x7
z3
e5

Edges leaving state 3
x3
y7

Edges leaving state 5
y2
z5
z7

Edges leaving state 7
x2
z2

The representation for automata just described could be used for all
ordinary automata, including coset automata. However, using this rep-
resentation to do coset enumeration would be a mistake since substantial
amounts of space would be wasted. Before looking at coset automata, let
us first make the assumption only that all our automata will be determin-
istic. If the initial state is the first state, then init fields in state records
can be omitted. If JXi is small, we can speed up access to edges leaving a
given state by replacing the firstout field in a state record with an array out
indexed by X. If a is a pointer to a state and x is in X, then u.out[x] will
be a pointer to the unique edge leaving or which has label x, or null if no
such edge exists. The nextout fields in edge records can also be eliminated.

If (X is large, then the use of the out field might be a problem when
the automaton is sparse in the sense that on average the number of edges
leaving a given state is small compared with IXJ. Every time a new state
is created, space will have to be allocated for the entire out array. If the
automaton is sparse, then the space used by the linked lists of out edges
could be substantially less that the space used by all the out arrays. One
place in which sparse automata are encountered is in the early stages of
coset enumerations.

Now let us consider coset automata with respect to classical monadic
rewriting systems. The term field in state records is no longer needed, and
the lists of edges entering each state are unnecessary. There is an edge
with label x entering a state v if and only if there is an edge with label
x-1 leaving v. There is in fact no need to have records for edges if the out
arrays are used. We simply make Q.out[x] point to the head of the edge
leaving or which has label x, rather than to the edge itself. In the case that
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I X I is large, it may be better to use lists of edges leaving the states, at least
in the beginning of a coset enumeration.

Although linked lists of records have been used to implement coset enu-
meration, the usual data structure for a coset automaton is a two-
dimensional array, say "table". States are represented by positive inte-
gers, with 1 denoting the initial state. If a is a state and x is in X, then
table [v, x] is the endpoint T of the unique edge (v, x, T), or 0 if no such edge
exists. Because of coincidences, it may happen that not all row indices of
table correspond to active states. The set of active states is specified by
first giving an integer n which is at least as big as the largest active state.
If or is an integer between 1 and n which does not represent a state, then
table[o,, zl] is set to some negative value. Here z1 is a fixed element of X,
which may need to be specially chosen to facilitate coincidence processing,
as described later. Thus the current set E of active states is the set of
positive integers a not exceeding n such that table[o,, z1] is nonnegative.

As new states are needed, old ones deleted by the coincidence procedure
are recycled. This can be done in several ways. For example, entries in
table can be used to create a linked list of available state numbers. On the
other hand, as long as n is less than the number of rows in table, a new
state can be defined by adding 1 to n and using the new value of n as the
new state. If no more rows of table are available this way and there are
inactive state values, then the entire table can be standardized using the
procedure of Section 4.7, or compressed as follows:

Procedure COMPRESS;
Begin

Q:=0;
For T:=1tondo

If table[T, z1] > 0 then begin
v:=Q+1;
If o, 54 r then

For x in X do begin
p := table IT, x]; If p = T then p := or; table [o,, x]
If p # a then table[p, x-11 := or

End
End;

n:=or
End.

P;

Example A.1. Suppose that X = {x, x-1, y, y-1 }, n = 12, and the first 12
rows of table are as shown in Table A.1. Then after COMPRESS has been
called, the value of n is 7 and the first 7 rows of table are as in Table A.2.
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Table A.1

x

Table A.2

y x y

1 4 0 3 10 1 3 0 2 6

2 -1 0 0 0 2 0 4 6 1

3 0 7 10 1 3 5 1 0 7

4 8 1 0 12 4 2 7 5 0

5 -4 0 0 0 5 7 3 0 4

6 -3 0 0 0 6 6 6 1 2

7 3 12 8 0 7 4 5 4 0

8 12 4 0 7

9 -7 0 0 0

10 10 10 1 3

11 -7 0 0 0

12 7 8 4 0

If there are many inactive states, then standardization takes less time
than compression, but standardization disturbs the linear order of the active
states, while compression does not.

The description of the coincidence procedure in Section 4.6 used a vector
p and a list rql, ... 177k of states which have become inactive. Using the array
table to represent the coset automaton, we can store the necessary entries
of p and the 772 in table, thereby saving a significant amount of space. The
method described here is based on the idea in (Beetham 1984).

Clearly we assume that JXI > 2, since otherwise the free product of cyclic
groups in which we are working would be trivial or a cyclic group of order 2.
There exist two distinct elements z1 and z2 of X such that either zi 1 = z2
or zi 1 = z1 and z2 1 = z2. The columns of table indexed by z1 and z2
will be referred to as the special columns. If a is an inactive state, then
-table[v, z1] will be an earlier state equivalent to v and table[v, z2] will be
the next inactive state in the sequence formerly denoted i1, ... 177k. This
sequence is now managed as a queue with head a and tail w. The procedure
ACTIVE is modified as follows:

Function ACTIVE(a): integer;
Input: or : a positive integer not exceeding n;
Begin

T:=a; p:=table[T,z1];
While p < 0 do begin T := -p; p := table[T, z1] end;
ACTIVE:=T; p:=o,; p := table[p, z1];
While p 0 -T do begin

table[p, z1] := -T; p := -p; p := table[p, z1] end
End.
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Because of the way the special columns are used, the consequences of
a given coincidence derived from entries in the special columns must be
processed before other consequences. This requires a separate procedure
COINCSP. The procedure MERGE must be modified. It is called only
from COINCSP. A set D of edges is maintained in COINCSP. The edges
in D correspond to entries in the special columns of table which have
been removed. Edges are added to D in MERGE and removed from D
in COINCSP. By Exercise 6.2 in Chapter 4, the cardinality of D never
exceeds 2.

Procedure MERGE(a, T);
Input: U, T : elements of E;
(* The equivalence classes containing v and r are merged and the queue

is adjusted. *)
Begin

If o # T then begin
v := max(o,T); u := min(v,T);

For x in {z1, z2} do begin
cp := table [v, x];
If cp 0 0 then begin

table[v, x] := 0; table[cp, x-1] := 0; Add (v, x, <p) to D
End

End;

table[v, z1] table [v, z2] 0;

If a = 0 then begin
a:= V; w:=v

End

Else begin
table[w, z2] := v; w := v

End;
End

End.

Procedure COINCSP(v, T);
Input: or, T : elements of E;
(* The coincidence of o and T is processed in the special columns. *)
Begin

D:=0; MERGE(a, T);
While D 0 do begin

Remove an edge (v, x, cp) from D;
p := ACTIVE(v); 0 := ACTIVE(cp); y := table[,u, x]; 6:=

table[o, x-1];

If -y # 0 then MERGE(y,')
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Else if 6 0 then MERGES, p)
Else begin

table[p, x] :='b;
If save then push (p, x) onto the deduction stack;
If (µ, x) 34 ((p, x-1) then begin

table[o, x-1] :=,u;
If save then push (V), x-1) onto the deduction stack

End
End

End
End.

Here is the revised coincidence procedure:

Procedure COINCIDENCE(o,, rr);
Input: v,'r : elements of E;
Begin

a:= 0; COINCSP(y, T);
While a 0 do begin

El := 0;
For x in X - {z1, z2} do begin

cp := table [a, x];
If cp # 0 then begin

table[a, x] := 0; table[cp, x-1] := 0; Add (a, x, cp) to E1
End

End;

For (a, x, cp) in E1 do begin
,u:= ACTIVE(a); 0:= ACTIVE((p); y := table[µ, x]; 6:=

table[b, x-1];

If y 0 then COINCSP(y, 0)
Else if 6 # 0 then COINCSP (6, p)
Else begin

table[p, x] := 0;
If save then push (µ, x) onto the deduction stack;
If (µ, x) # (V), x-1) then begin

table[ b, x-1] := µ;

If save then push onto the deduction stack
End

End
End;

a := table[a, z2]
End

End.
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With most computer languages, locating an entry in a matrix takes longer
than locating an entry in a vector since more arithmetic operations must
be performed to arrive at the address of table[i, x] than to determine the
address of v[j]. One of these operations is probably a multiplication of i
or i - 1 by the number of columns in table. Havas has recently proposed
a data structure which avoids this multiplication. The array table used to
represent a coset automaton is replaced by a vector v obtained as follows:
Let k = table[i,x]. Redefine table[i,x] to be I X I (k - 1) + 1 if k > 0, leave
table[i, x] unchanged if k = 0, and redefine table[i, x] to be IX I (k + 1) - 1
if k < 0. Now arrange the entries in table into a vector by taking them in
row-major order.

Example A.2. In the Havas scheme, the coset table with 12 rows in Exam-
ple A.1 corresponds to the vector

v = (13,0,9,37,-1,0,0,0,0,25,37,1,29,1,0,45,-13,0,0,0,-9,0,0,0,

9,45,29,0,45, 13, 0, 25, -25,0,0,0,37,37,1,9,-25,0,0,0,25,29,13,0).

If we associate the elements of X with the integers 0,1, ... , JXJ - 1, then
to trace a word W = wl ... w,r at an active coset k we proceed as follows:

j:=IXI(k-1)+1;
For i := 1 to r do begin

m := v[j + wi];
If m = 0 then break;
j := m

End;

In (Havas 1991) a speedup of 15-25% was observed when this approach was
used in a C implementation of coset enumeration which supported both the
Felsch and HLT strategies.

Exercises

A.1. Suppose that coset automata are represented by a doubly linked list of records repre-
senting the states and that the edges leaving a given state are represented by a singly
linked list of edge records. How should the coincidence procedure be implemented?

A.2. Devise a representation for the automata used as index structures for rewriting systems
as described in Section 3.5.
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trim, 98

confluence, 54-5, 57-65
local, 54-5, 424

CONFLUENT, 62-3, 65, 69, 116
confluent presentation, 57
congruence

class, 34

of integers, 34
on an automaton, 178
on a monoid, 18-19

right, 88-95
congruent integers, 34

conjugacy

algorithms, 405
classes, 16
problem, 28, 417-19

CONJUGATE, 199-201
conjugate elements, 16
consequence, 24
consistency, 420, 430-5
consistent

polycyclic presentation, 396

with length, 45
with multiplication, 488-9

consonant module elements, 487
constant term, 510
construction

derivation, 157, 213
subset, 111-12

accessible, 124

with automata, 141-7, 210
contraction, 299

as coset automaton, 306
corner entries, 322
coset, 15

automaton, 171-5, 573, 575
cyclically reduced, 200
reduced, 174, 213

enumeration, 96, 150, 175-92, 210, 214,
223, 266, 571

extended, 276-90, 295

generalized, 277
modified, 277
restartable, 264

important, 162-71
table, 171
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standard, 203-10
critical pair, 489, 504
cycle, 17
cyclic

decomposition, 308
extension, 419-30
group, 12
HLT strategy, 245
monoid, 12
permutation, 10

cyclically reduced coset automaton, 200

decision procedure, 218
decomposition, cyclic, 308
deduction, 176, 185

stack, 176, 234, 237, 245
DEFINE, 176, 178, 182-4, 187, 199, 214,

223, 225-8, 233-4, 236-9, 241, 246,
284

DEFINE_X, 284, 288
defining

pair, 163
relation, 20

definition, 400, 430
degree, 510

of a word, 49
derivable from, 54

in one step, 52
derivation construction, 157, 213

derived
length, 386
series, 385
subgroup, 384

deterministic automaton, 105, 297
discriminant, 364

edge, 101, 297
standard, 133-5

effective
degree, 449, 457, 467
total degree, 473, 478

elementary
abelian p-group, 445, 517
matrix, 330
operation, 406, 410

empty word, 10
endomorphism, 12
endpoint, 103
Epstein, David B. A., 5
equivalence, 406

modulo d, 346
relation, 7

equivalent

edges, 191
matrices, 333

Euclidean algorithm, 32
extended, 33

even permutation, 17
expanding morphism, 126, 168
expansion, 298, 304
exponent-p class, 446
exponent of a group, 15
EXTEND_RULES, 532-4, 541, 543, 551-2,

557-8
extended

coset enumeration, 276-90, 295
Euclidean algorithm, 33
Schreier automaton, 269
transition table, 269

extension
cyclic, 419-30
formal, 524-34
split, 526

FELSCH, 235, 239-41
Felsch strategy, 232-9, 245, 266, 580
finite automaton, 101-2, 108
finitely generated

group, 11
monoid, 11

finitely presented

group, 23
monoid, 20

FIRST_CONJ, 208-10, 253
FORCE, 202-3
formal extension, 524-34
FORTRAN language, 571
Frattini subgroup, 446
freely reduced word, 22
free

abelian group, 320
equivalence, 22
group, 22
monoid, 13
nilpotent group, 401, 436-45
product, 64
semigroup, 13

freely reduced word, 22
full sequence, 409
fundamental theorem of finitely generated

abelian groups, 337

G_S, 361-2
Galois, Evariste, 40
-y-weighted presentation, 400-1, 430-1, 447
GAP computer system, 5, 570-2
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GCD, 32-3
GCDX, 33-5, 350, 357
general linear group, 9
GENERAL_CE, 219-20, 222-3
generalized

automaton, 101, 297
coset automaton, 301
coset enumeration, 277
word problem, 28

generating set

for a group, 11

for a monoid, 11
for a monoid ideal, 14
minimal, 14-15

GENERATORS, 262-3, 266
Gram-Schmidt procedure, 361
greatest common divisor, 32
GROBNER, 491-4, 507
Grobner basis, 35, 448, 482-94, 556-7, 571,

573
algorithm, 512-13
reduced, 493

GROBNER_L, 505-7
group, 9, 15-18

abelian, 9, 517-24
alternating, 17
cyclic, 12
dihedral, 159
exponent of, 15
finitely generated, 11
finitely presented, 23
free, 22

abelian, 320
nilpotent, 401, 436-45

general linear, 9
hopfian, 393-4
metabelian, 386
nilpotent, 386-90, 417-19
of units, 11
permutation, 17
polycyclic, 319, 383, 390, 392
polycyclic-by-finite, 383
presentation, 23
quotient, 16
ring, 448, 507-12, 556
solvable, 386-90
symmetric, 9
with automatic structure, 96

GRP_REDUCE, 485-9, 491, 504

Hadamard bound, 344-5, 348-9, 356
Havas, George, 5, 239, 580
HEAD, 49-50

Index

head, 49
Hermite, Charles, 382
Hermite normal form, see row Hermite

normal form
Higman, Graham, 562
Hilbert basis theorem, 449, 490
Hirsch number, 394
HLT, 228, 231, 237, 239-41, 284
HLT strategy, 227-32, 245, 266, 277,

283-90, 296-7, 308, 318, 580
cyclic, 245

HLT_X, 284, 288-9, 523
Holt, Derek, 5
homomorphism, 12
hopfian group, 393
Howson's theorem, 197
hybrid tables, 314

ideal
in a monoid, 13-15, 99

right, 99
of polynomials, 449-55

identity element, 8
important cosets, 162-71
important-coset automaton, 163
INDEX, 118, 120
index, 15

automaton, 83, 112-20, 147
INDEX_CONFLUENT, 117-19
INDEX_REWRITE, 113-14, 119
initial state, 101
inner

automorphism, 16
product, 360

invariant factor, 338, 518
modulo d, 346

inverse

element, 8
relation, 7

irreducible
module element, 485
word, 52

isomorphism, 12
theorems, 16

JOIN, 177-8, 182, 185, 187, 214, 216, 223,
233-4,236-8,253,284

JOIN_X, 285, 288
joining, 310

Kannan-Bachem algorithm, 350, 358
KB_COL, 357-8, 360
KB_DIAG, 358-9
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KB_ROW, 350-1, 354-8, 360, 378-9, 381
KBS_1, 70-1, 75-6, 81-3
KBS_2, 76-9, 81-3, 85, 89-90, 93, 149-50,

265

kernel, 16
Knuth, Donald, 3, 39
Knuth-Bendix procedure, 5, 68-96, 119,

147-50, 210-11, 263-6, 251, 291-3,
329, 396, 399, 417, 436-7, 494,
512-13, 568, 571

label, 101, 297
primary, 269
secondary, 269

language, 96-100
rational, 96, 98-100, 108-9, 155-7
recognized by automaton, 103

lattice, 363-5
Laurent

monomial, 495
polynomial, 448, 495-507, 509

leading
coefficient, 472, 484, 502
exponent, 395
generator, 484
monomial, 472, 502
term, 395, 472, 484, 500-1

left end, 49
left-normed commutator, 384
length

function, 116-17
of a vector, 361

length-plus-lexicographic ordering, 45
LENLEX_STND, 135-6, 195
lexicographic ordering, 44-5
linear ordering, 43
LISP, 571
LLL, 367-71, 376
LLL-algorithm, 5, 365, 367, 571
LLL-reduced basis, 365, 381
local confluence, 54-5, 424
lookahead, 231-2
LOW_INDEX, 254, 256-8, 260
low-index subgroup algorithm, 252
lower

central series, 385, 417
exponent-p central series, 445

Lysenok, I. G., 561

Macaulay computer system, 2, 5, 570-2
MACSYMA computer system, 5, 570
Maple computer system, 367, 379-81, 570-1
Mathematica computer system, 379-81, 570-1

Mathieu group, 293
matrices, equivalent, 333
matrix

elementary, 330
transition, 136
unimodular, 330

MEMBER, 327, 350
MERGE, 190-2, 215, 284, 578-9
MERGE_X, 285-6, 289
METABEL_QUOT, 558, 560
metabelian group, 386, 495
Miller, Charles F., III, 448, 556
minimal decomposition, 213
MLLL, 374, 376, 379-81
Mobius function, 440
modified

coset enumeration, 277
LLL algorithm, 365, 372-8

module, 448
presentation, 460

monadic rewriting system, 575
monoid, 8-15, 18-22

congruence on, 18
cyclic, 12
finitely generated, 11

finitely presented, 20

free, 13
ideal of, 13-15
presentation, 20
quotient, 19

morphism, expanding, 126, 168
MPROD, 31
Myhill-Nerode theorem, 96

natural map, 7
Neubiiser, Joachim, 4-5, 266
Newman, Maxwell, 4
Newman, Michael F., 5, 303, 406
NEXT_PQUOT, 546-7, 550
NEXT_QUOT, 550, 552, 555-6
Nielsen reduced set, 93-5
Nielsen reduction, 93, 95, 210
niladic rewriting system, 151-9

classical, 153, 217
general, 212-16

nilpotency class, 386
nilpotent

group, 386-90, 417-19

presentation, 399, 401

quotient algorithm, 514-15, 517
normal

closure, 16

subgroup, 16
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NORMAL_GENS, 263, 292
normalizer, 200
Novikov, Petr, 41
numeric automaton, 132

order of an element, 12
ordering

by component, 456
by degree, 456
consistent with length, 94
length-plus-lexicographic, 45
lexicographic, 44-5
linear, 43
reduction, 46
well-, 43
wreath product, 46-50

basic, 48, 137-8, 193, 258-60, 398, 437
ordinary automaton, 297
orthogonal vectors, 361
overlap, 59

proper, 59
OVERLAP-1, 69-72, 77
OVERLAP_2, 77, 79, 265

p -group, 445-7, 564
elementary abelian, 445, 517

p -quotient algorithm, 514-15, 517, 567
Pari computer system, 5, 570-2
part

accessible, 122
trim, 121, 300

partition
of a set, 7
of an integer, 36

Pascal language, 29, 31, 32, 571, 573
path, 103, 297

compression, 188-9
permutation group, 17
perpendicular vectors, 361
cp-weighted presentation, 447, 564
Pohst, Michael, 365
POLY_MEMBER, 407, 411, 414
POLY_SUBGROUP, 412-13,415
polycyclic

generating sequence, 394, 397-8, 414, 509
group, 319, 383, 390, 392
presentation, 398

consistent, 396
standard, 395, 397, 399, 417, 436
standard monoid, 395, 421

quotient algorithm, 448, 514-15, 517
series, 390

polycyclic-by-finite group, 383

polynomial, 510
positive word, 23
Post, Emil, 41
power relation, 398
power-commutator presentation, 400
power-conjugate presentation, 399, 404
precedence, 132
prefix, 10

confluent, 89
reduced, 89-90

presentation

confluent, 57
-y-weighted, 400-1, 430-1, 447
group, 23
monoid, 20
multiplication table, 63
nilpotent, 399, 401
of a module, 460
cp-weighted, 447, 564
polycyclic, 398
power-commutator, 400
power-conjugate, 399, 404
restricted, 65, 528
semigroup, 21
simplification, 263, 290-4
weakly 7-weighted, 405

primary
label, 269
signature, 269

PRINT, 574-5
PROBE, 38
PROCESS_DEDUCTIONS, 234-7, 239, 246
product, free, 64
proper overlap, 59

queue, 33
quotient

coset automaton, 179
group, 16
monoid, 19

quotients of derived series, 388

rank
of a free abelian group, 320
of a free group, 22
of a matrix, 327
modulo d, 343

rational language, 96, 98-100, 108-9, 155-7
recognition of a language, 103
REDUCE computer system, 5
REDUCE (for coset automata), 174-6, 198,

200,214
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REDUCE (for module elements), 489, 491,
493-4, 504, 506, 570

REDUCE_L, 505-6
reduced

coset automaton, 174, 213
Grobner basis, 493
rewriting system, 56
word, 52

reduction
of integer matrices, 35
ordering, 46, 52

regular homomorphism, 515
Reidemeister-Schreier procedure, 268-95,

571
relation, 7

defining, 20
equivalence, 7
Z-, 372

relatively prime integers, 34
resolution procedure, 512-13

restricted

Burnside group, 561
presentation, 65, 528

restriction, 110
reversal, 10
reverse lexicographic ordering, 472, 492
REWRITE, 52-3, 55-7, 59, 62, 185, 200,

285-7, 486
REWRITE_FROM_LEFT, 67-70, 76-7,

82, 85, 114
rewriting, 52, 66-8, 83, 147

from the left, 67
rule, 51
system, 51, 53

monadic, 575
niladic, 151-9
see also collection

right
congruence,88-95
ideal in a monoid, 99

ROD, 350-3, 356-7
Rosser strategy, 326, 379
row

echelon form, 322
equivalence, 321, 330

modulo d, 342
Hermite normal form, 322-3, 328-9, 331,

347-50, 354, 356, 360, 365, 497
modulo d, 342

operation, 321
modulo d, 342

reduction, 323
ROW_REDUCE, 323, 326, 331-2, 354, 378

RS_BASIC, 272-4, 283
RS_SGEN, 272-5
RS_SGEN2, 275-6
rule

rewriting, 51
identifier, 113-14
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S-polynomial, 487
SAC2 computer system, 5, 570-2
Schreier

automaton, 102
extended, 269

diagram, 102
generator, 165, 263, 290, 292, 294

Schreier-Todd-Coxeter method, 263
SEARCH, 36, 40
search tree, 36-9
secondary

label, 269
signature, 269

semicritical pair, 487, 504
semigroup, 8

free, 13
presentation, 21

signature, 103, 297
primary, 269
secondary, 269

simplification of presentations, 263, 290-4
small-gap strategy, 239
Smith, Henry J. S., 382
Smith normal form, 333-7, 339, 346-7,

349-50,358-9,365,520
modulo d, 346

solvable group, 386-90
special

columns, 577-8
decomposition, 36-40

split extension, 526
splitting, 309
stack, 32

deduction, 176, 234, 237, 245
STANDARD, 195-6
standard

automaton, 130-41
coset tables, 203-10
form, 406, 411-12, 484
monoid polycyclic presentation, 395, 421
polycyclic presentation, 395, 397, 399,

417, 436
polycyclic rewriting system, 396

standardization, 132, 135, 138, 161, 186,
192-6, 245
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STANDARDIZE, 220, 228, 235, 240, 247,
289

standardizing strategies, 239-45
starting point, 103
state, 101

accessible, 120, 300
coaccessible, 120, 300
initial, 101
intermediate, 103
terminal, 101
trim, 120, 300

Stillman, Michael, 2
subgroup, 10

membership problem, 28
normal, 16

submonoid, 10
subset construction, 111-12

accessible, 124

subword, 10
suffix, 10
susceptable to cancellation, 213
SWITCH, 193, 195-6, 240, 247
switch, 192-6
Sylow's theorem, 41
symbolic computation, 1-2
SYMM, 502-3, 506
symmetric group, 9
symmetrized set, 502
system, rewriting, 51, 53
syzygy, 460-1

table(s)
coset, 171

extended transition, 269
hybrid, 314
transition, 106

TEN_CE, 245-8, 250-1, 265
terminal state, 101
test element, 487
TEST-1, 69-72
TEST_2, 76-8, 86-7
Tietze transformation, 25, 263, 291, 537-8,

542, 551
Todd-Coxeter procedure, 175, 182, 264,

266
total degree, 472

effective, 473, 478
ordering, 472

TRACE, 105-7, 169, 181-2, 200, 223, 284,
287

Index

trace record, 311
TRACE_X, 287-9
transition

matrix, 136
table, 106

extended, 269
translation invariance, 45-6
TRIM, 121-3, 143
trim

automaton, 120
cone, 98
part, 121, 300
state, 120, 300

Turing, Alan, 4
Turing machine, 41
TWO-SIDED-TRACE, 182-3,185,187,

215, 223, 228, 232-6, 238, 246, 284,
288

TWO_SIDED_TRACE_X, 288-9

unimodular matrix, 330
UNION, 188-90
union-find procedure, 187, 211
unit, 8-9

verification, 27, 218, 568

weakly y-weighted presentation, 405

weight, 50, 437, 564
well-ordering, 43
word, 10

collected, 395
positive, 23
problem, 26-8, 460

generalized, 28
wreath product ordering, 46-50, 258, 266
WREATH_STND, 138, 210

7G-relation, 372
ZBASIS, 463-4, 471
ZBASIS_TD, 480-1
Zel'manov, E. I., 561
ZXIDEAL, 452-5, 461-2, 464, 466, 483, 496
ZXIDEALREP, 454-5, 464, 466, 471
ZXMODULE, 459-60, 466, 468-71
ZXSERIES, 464-6, 468-9, 471
ZXYIDEAL_TD, 480-2
ZXYMEMBER, 473
ZXYMODULE, 468-9, 471
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