Research in computational group theory, an active subfield of computational alge-
bra, has emphasized four areas: finite permutation groups, finite solvable groups,
matrix representations of finite groups, and finitely presented groups. This book
deals with the last of these areas. It is the first text to present the fundamental algo-
rithmic ideas which have been developed to compute with finitely presented groups
that are infinite, or at least not obviously finite. The book describes methods for
working with elements, subgroups, and quotient groups of a finitely presented group.
The author emphasizes the connection with fundamental algorithms from theoret-
ical computer science, particularly the theory of automata and formal languages,
from computational number theory, and from computational commutative algebra.
The LLL lattice reduction algorithm and various algorithms for Hermite and Smith
normal forms are used to study the abelian quotients of a finitely presented group.
The work of Baumslag, Cannonito, and Miller on computing nonabelian polycyclic
quotients is described as a generalization of Buchberger’s Grébner basis methods to
right ideals in the integral group ring of a polycyclic group. Researchers in compu-
tational group theory, mathematicians interested in finitely presented groups, and
theoretical computer scientists will find this book useful.
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Preface

In 1970, John Cannon, Joachim Neubiiser, and I considered the possibility
of jointly producing a single book which would cover all of computational
group theory. A draft table of contents was even produced, but the project
was not completed. It is a measure of how far the subject has progressed in
the past 20 years that it would now take at least four substantial books to
cover the field, not including the necessary background material on group
theory and the design and analysis of algorithms. In addition to a book like
this one on computing with finitely presented groups, there would be books
on computing with permutation groups, on computing with finite solvable
groups, and on computing characters and modular representations of finite
groups.

Computational group theory was originated by individuals trained as
group theorists. However, there has been a steadily increasing participa-
tion in the subject by computer scientists. There are two reasons for this
phenomenon. First, group-theoretic algorithms, particularly ones related
to permutation groups, were found to be useful in attacking the graph
isomorphism problem, a central problem in theoretical computer science.
Once computer scientists began looking at group-theoretic algorithms, it
was natural for them to attempt to determine the complexity of these al-
gorithms. Second, the techniques and data structures of computer science
have proved valuable in improving existing group-theoretic algorithms and
in developing new ones.

This book is intended to be a graduate-level text. I have made a delib-
erate attempt to make the material accessible to students of both mathe-
matics and computer science. The first chapter contains a quick review of
elementary group theory, which would not be necessary if the target audi-
ence consisted only of graduate students in mathematics. It also contains
a discussion of backtrack searches, which should be familiar to any under-
graduate computer science major but which are probably not frequently
encountered by mathematics majors. I suspect that initially the computer
scientists may have an easier time than the mathematicians, since the first
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half of the book includes a substantial discussion of the theory of automata
and rational languages, topics more familiar to computer scientists than to
mathematicians. Moreover, the first half requires only relatively elemen-
tary results about groups. However, in the second half, deeper results from
group theory are required, and here the computer scientists may find the
going somewhat more difficult.

Ideally this book should be accompanied by computer software that
would permit the reader to experiment with implementations of the proce-
dure discussed. Unfortunately, an appropriate package does not currently
exist, although several of the available systems would be useful in connec-
tion with certain topics. Writing my own software would have delayed the
publication of the book by several years, at least. The lack of computer sup-
port has meant that substantial examples and exercises have been largely
omitted, since it is only with the help of the proper software that the reader
would be able to explore such material successfully.

I have tried to include as many exercises as I could, but some of the later
sections are not as well covered as I would have preferred. The exercises
are of two types. Some require only a routine application of a technique
discussed in that section. Others are intended to provide new insight. It is
not always immediately obvious into which category a particular exercise
falls, so the reader is encouraged to look carefully at all of the exercises.
The more challenging ones are marked with an asterisk. In a few cases, 1
don’t know the answer to the problems.

A substantial effort was made to include as complete a set of references as
possible. To assist instructors in providing reading lists, the Bibliography
has been divided into two sections, the first containing books on topics
related to the material discussed here, and the second listing articles in
journals and conference proceedings. References to books are enclosed in
brackets, whereas references to articles are enclosed in parentheses. Michael
Vaughan-Lee has written a book on the restricted Burnside problem and
an article on the efficient computation of products in large p-groups. Both
works appeared in 1990. Information about the book [Vaughan-Lee 1990]
is in the book section of the Bibliography, but to find publication data for
(Vaughan-Lee 1990) one must look in the articles section.

It is not usual for an author of a mathematics text to make evaluative
judgments concerning the works in the Bibliography, and I have agonized
over my decision to break with this practice. However, I feel an obligation
to the reader to state my opinion that the quality of the papers dealing
with the computation of Hermite and Smith normal forms is on average
noticeably below the level in the other works cited. In a significant num-
ber of these papers there are deficiencies in the exposition and even in the
validity of the arguments. I shall mention only one example of the prob-
lems I found. Given a set of homogeneous linear equations with integer
coeflicients, there are efforts to describe a basis of integer solutions. The
authors frequently fail to make clear whether they are referring to a vector
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space basis for the set of all rational solutions of the system such that each
basis vector has integer components, or to a Z-basis for the subgroup of
all integer vectors which are solutions of the system. Having reached my
conclusion, I was faced with several options. I could remain silent, I could
provide critiques of individual papers, or I could omit the papers I found
questionable from the Bibliography. None of these possibilities seemed ap-
propriate. The problems are significant enough that I could not remain
silent. There are simply too many papers to permit me to make detailed
comments concerning each one. I do not have the time, and the book is
already long. I have read through, at least quickly, all of these papers, so 1
feel obligated to include them in the Bibliography. Moreover, each of them
has some merit. I realize that by making these comments and not identify-
ing the papers I find deficient, I am raising doubts about the quality of all
of them, including papers with substantial contributions. To the authors
of these papers I apologize.

It is traditional for the preface to explain the numbering system used for
sections, propositions, examples, exercises, figures, and tables. Section 3.4
is the fourth section of Chapter 3. Sections and chapters carrying an aster-
isk may be skipped without affecting the continuity of the material. The
second proposition in Section 3.4 is referred to as Proposition 4.2 or as
Proposition 4.2 of Chapter 3. The end of a proof is signaled by the sym-
bol ‘00". Within a given section, the propositions, theorems, lemmas, and
corollaries are numbers in a single series. Examples and exercises are num-
bered separately. The numbering for figures and tables always includes the
number of the chapter. Thus, Table 1.8.1 is the first table in Section 8 of
Chapter 1.

A great many people have assisted in the preparation of this book. John
Cannon, George Havas, Joachim Neubiiser, and Michael Newman all made
suggestions which improved the exposition. Special thanks go to Steve Schi-
bell, who read the entire manuscript and provided detailed comments which
were extremely useful. Gretchen Ostheimer and Eddie Lo helped with the
proofreading. The staff of Cambridge University Press have been very sup-
portive. David Tranah has quietly but persistently been after me to write
a book for Cambridge for roughly a decade. Lauren Cowles has greatly
facilitated my dealings with the New York office. Finally, Edith Fein-
stein and Jim Mobley have shown remarkable tolerance for my somewhat
idiosyncratic style.

Considerable effort has been expended in trying to get the algorithm
descriptions in this book right. However, errors almost certainly remain,
and I would welcome information about any problems which are discovered.
Other comments are also encouraged. My current address for electronic
mail is sims@math.rutgers.edu.

Charles Sims






Introduction

This book describes computational methods for studying subgroups and
quotient groups of finitely presented groups. The procedures discussed be-
long to one of the oldest and most highly developed areas of computational
group theory. In order to better understand the context for this material,
it is useful to know something about computational group theory in general
and its place within the area of symbolic computation.

The mathematical uses of computers can be divided roughly into numeric
and nonnumeric applications. Numeric computation involves primarily cal-
culations in which real numbers are approximated by elements from a
fixed set of rational numbers, called floating-point numbers. Such com-
putation is usually associated with the mathematical discipline numerical
analysis. Examples of numerical techniques are Simpson’s rule for approx-
imating definite integrals and Newton’s method for approximating zeros of
functions.

One nonnumeric application of computers to mathematics is symbolic
computation. Although it is impossible to give a precise definition, symbolic
computation normally involves representing mathematical objects exactly
and performing exact calculations with these representations. It includes ef-
forts to automate many of the techniques taught to high school students and
college undergraduates, such as the manipulation of polynomials and ratio-
nal functions, differentiation and integration in closed form, and expansion
in Taylor series.

The term “computer algebra” is frequently used as a synonym for “sym-
bolic computation”. The books [Akritas 1989], [Buchberger, Collins, &
Loos 1983], [Davenport, Siret, & Tournier 1988], [Della Dora & Fitch 1989],
and [Geddes, Czapor, & Labahn 1992] all have this phrase in their titles.
Although the term “computer algebra” is well established, it conflicts some-
what with current usage within mathematics, where “algebra” usually is
used in the narrower sense of “abstract algebra”, the study of algebraic
structures such as groups, rings, fields, and modules. The word “com-
puter” in the phrase “computer algebra” is also not quite accurate. It is
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true that much of what is done is motivated by the existence of computers.
Nevertheless, the algebraic algorithms which have been developed represent
substantial mathematical achievements, whose importance is not dependent
entirely on their being incorporated into computer programs. Many of the
algorithms, including a number presented in this book, can be useful in
calculations carried out by hand.

Within symbolic computation there is a rapidly expanding area of compu-
tational (abstract) algebra, which is the study of procedures for manipulat-
ing objects from abstract algebra with particular concern for practicality.
Computational group theory is the part of computational algebra which
considers problems related to groups. Other flourishing subfields of com-
putational algebra are computational number theory, which is described in
such books as [Pohst & Zassenhaus 1989] and [Bressoud 1989], and compu-
tational algebraic geometry, where the software package Macaulay of David
Bayer and Michael Stillman has had a major impact.

Symbolic computation is at the border between mathematics and com-
puter science. The objects being manipulated are mathematical. However,
the algorithmic ideas often have come from computer science, and individ-
uals who identify themselves as computer scientists have made important
contributions to the subject. This book emphasizes the close connec-
tion between techniques for investigating finitely presented groups and
such topics as formal language theory and critical-pair/completion pro-
cedures, which are now considered to be important parts of computer
science.

A point of continuing debate is the role of complexity theory in symbolic
computation. The traditional complexity measure in theoretical computer
science is asymptotic worst-case complexity. For users of symbolic software,
worst-case analyses are often too pessimistic. Of much more relevance is
average-case complexity. However, average-case analyses are lacking for
many of the most important algebraic algorithms. Moreover, there are
cases in which no agreement has been reached on what the average case
is. Symbolic computations often require a great deal of computer memory.
Frequently one has to tailor a program to fit a specific problem in order to
get a solution on a particular computer. In this situation, it does not make
sense to talk about asymptotic behavior.

In computation with finitely presented groups there is an even more fun-
damental difficulty with complexity. Many problems connected with such
groups have been shown not to have general algorithmic solutions. There
are procedures for trying to solve some of these problems, but the proce-
dures terminate only if the solution has a particular form. In the remaining
cases, the procedures continue indefinitely. There is no version of complex-
ity analysis which adequately handles this situation. Ideally, one would
want a program to give up quickly if it is not going to get an answer and to
work hard when a solution can be found. However, because usually there
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is no quick way to determine from the input data which outcome is likely,
deciding when to throw in the towel is difficult.

Although we do not have an adequate theoretical framework on which
to base comparisons of group-theoretic procedures and their computer im-
plementations, we still need to make decisions about which techniques to
use on a particular problem. Frequently, all that we can do is apply com-
peting methods to a selection of test problems and compare the results.
Experimental evidence is better than nothing, but one must be very careful
about drawing conclusions from such evidence. It is hard to be sure that
the sample problems are truly representative of the class of problems under
consideration.

A computational problem in group theory typically begins “Given a
group G, determine ...”. Our ability to solve the problem depends heavily
on the way G is given. There are three methods commonly used to specify
a group G:

(a) One may describe G as the subgroup generated by an explicit finite
list of elements in some other group H which is considered to be
well-known.

(b) One may define G to be the group of automorphisms or symmetries
of some combinatorial or algebraic object.

(c) One may give a finite presentation for G by generators and relations.

In (a), the group H could be the symmetric group on a finite set, the
group of invertible n-by-n matrices over a commutative ring, or a free group
of finite rank. Examples of the types of objects which might arise in (b) are
graphs, block designs, and, in the case of Galois groups, finite extensions of
one field by another. Problems related to groups given as in (c) are the main
subject of this book, although finitely generated subgroups of free groups
are also discussed at some length. The greatest successes in computational
group theory so far have come in connection with permutation groups on
finite sets, finite solvable groups, and finitely presented groups.

The study of groups given by presentations is called combinatorial group
theory. The primary references on the subject are the books [Magnus,
Karrass, & Solitar 1976] and [Lyndon & Schupp 1977]. The history of the
subject given in [Chandler & Magnus 1982] also provides useful insights.
Many examples of finite presentations of groups can be found in [Coxeter
& Moser 1980].

As noted earlier, the computer science literature is also relevant. The
three volumes by Donald Knuth contain a great deal of material related to
our topic. Volume 2 is a particularly valuable reference. Other books de-
scribing the fundamental algorithms of computer science with applications
to computational group theory are [Aho, Hopcroft, & Ullman 1974] and
[Sedgewick 1990].
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Because this is one of the first texts to cover a major area within com-
putational group theory, some remarks on the history of the field have
been included. Most chapters conclude with a brief section of historical
notes. More information, particularly about the history of general group
theory, combinatorial group theory, and abstract algebra, can be found in
[Dieudonné 1978], [Chandler & Magnus 1982], [Waerden 1985], and [Wuss-
ing 1984]. Computational problems related to groups have been studied for
at least 150 years. Algorithmic questions have been a part of combinato-
rial group theory from its beginning. In fact, the algorithms discussed in
Chapter 8 are based directly on techniques developed in the middle of the
nineteenth century, before presentations of groups were defined and before
the concept of an abstract group was clarified.

Perhaps the first references to the potential of computers for group-
theoretic calculations came from Alan Turing and Maxwell Newman. At
the end of World War II, Turing began work on the design of an “auto-
matic computing engine”. As quoted in [Hodges 1983], Turing suggested in
a document circulated at the end of 1945 that one of the tasks which might
be assigned to this engine was the enumeration of the groups of order 720.
In connection with the inauguration in 1951 of a computer at Manchester
University, Newman described a probabilistic method by which computers
might be able to obtain a crude estimate of the number of groups of order
28 (M. H. A. Newman 1951).

During the 1950s, group-theoretic calculations using machines were car-
ried out by several researchers. However, it is reasonable to say that the
field of computational group theory came into existence with the work of
Joachim Neubiiser, who was the first individual to make the application of
computers to group theory his primary professional activity. Neubiiser’s
first paper appeared in 1960.

By the late 1960s, the use of computers in abstract algebra was suffi-
ciently common for a conference on the subject to be organized in Oxford,
August 29 to September 2, 1967. The proceedings [Leech 1970] of that
conference contained 35 papers, at least 20 of which dealt with groups. In
his survey (Neubiiser 1970) in those proceedings, Neubiiser listed roughly
130 publications related to the use of computers in group theory. Not all
the contributions to computational group theory which grew out of the Ox-
ford conference were reflected in the proceedings; see the notes at the end
of Chapters 5 and 11.

During the 1970s, computational group theorists participated frequently
in conferences devoted primarily to traditional computer algebra. Thus
the proceedings of the Second Symposium on Symbolic and Algebraic Ma-
nipulation sponsored by the Association for Computing Machinery (ACM)
in 1971, the 1976 ACM Symposium on Symbolic and Algebraic Computa-
tion, and EUROSAM ’79, an international symposium held in France, all
contain important papers on computational group theory. More recently,
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computational group theory has been treated for the purpose of organiz-
ing conferences as a field of its own or as a subfield within group theory.
The first conference devoted exclusively to computational group theory was
organized in Durham in 1982 by the London Mathematical Society. The
proceedings [Atkinson 1984] of the Durham meeting give a good indication
of the breadth of the field.

Let us conclude this introduction with a brief survey of the software
currently available for symbolic computation. This is an area of rapid
change, so the information given here can be expected to become outdated
fairly quickly. The classical symbolic systems provide facilities for work-
ing with individual polynomials, rational functions, matrices, Taylor series,
and similar objects, primarily with coefficients taken from the real num-
bers. Among the classical systems currently available are REDUCE and
MACSYMA, which have been around for some time, and Maple and Math-
ematica, which are considerably newer. Axiom (formerly SCRATCHPAD),
developed at IBM’s Yorktown Heights laboratory, is a system which allows
the user some flexibility to work with elements of more general algebraic
systems. A new version, written in C, of George Collins’s system SAC2
has recently been introduced. Henri Cohen and collaborators have cre-
ated a package called Pari, which is aimed primarily at number theory but
contains an implementation of the LLL algorithm discussed in Chapter 8.
The system Macaulay referred to earlier supports computation in algebraic
geometry and commutative algebra.

Although quite a bit of group-theoretic software is available, no single
package contains implementations of all the procedures discussed in this
book. The most mature system for group-theoretic computation is Cayley,
developed at Sydney University by John Cannon. A recent addition is
the system GAP designed under the direction of Joachim Neubiiser at the
Technische Hochschule in Aachen. Various programs of a more specialized
nature have been written at the Australian National University in Canberra
under the leadership of Michael Newman. George Havas of the University
of Queensland in Brisbane has produced free-standing implementations of
several of the procedures presented here. David Epstein and Derek Holt at
the University of Warwick have produced implementations of the Knuth-
Bendix procedure for strings described in Chapter 2, as well as a number
of other programs for studying “automatic groups” and for exploring the
possibility that two given finitely presented groups are isomorphic.
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Basic concepts

It was not possible to make the exposition in this book self-contained and
keep the book to a reasonable length. In a number of places, results from
various parts of mathematics and theoretical computer science are stated
without proof. This chapter reviews several of the most fundamental con-
cepts with which the reader is assumed to be somewhat familiar. More
material on sets, monoids, and groups can be found in algebra texts like
[Sims 1984] and books on group theory such as [Hall 1959]. Two stan-
dard sources for topics in computer science are [Knuth 1973] and [Aho,
Hopcroft, & Ullman 1974]. After a brief discussion of some concepts in set
theory, we define monoids, summarize some important facts about groups,
consider presentations of monoids and groups by generators and relations,
contemplate some sobering facts about our ability to compute using pre-
sentations, agree upon a method for describing computational procedures,
look at some basic algorithms for computing with integers, and study an
important search technique. Readers to whom most of these topics are
familiar may wish to proceed directly to Chapter 2 and refer back to this
chapter as needed.

1.1 Set-theoretic preliminaries

The concept of a set is central to the formal exposition of mathematics.
Despite the importance of set theory, most mathematics texts do not make
explicit the axioms for set theory being used. Instead, they adopt a “naive”
set theory based largely on intuition.

This book will be no exception. We shall assume that the reader has a
basic understanding of sets and set membership, as well as the operations of
union, intersection, and difference of sets. The empty set will be denoted .
If A is a subset of B, then we shall write A C B or B 2 A. To indicate that
A is a proper subset of B, we shall write A C B or B D A. The cartesian
product of sets X and Y is the set X x Y of all ordered pairs (z,y) with
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z in X and y in Y. The diagonal of X x X is D = {(z,z) |z € X}. For a
finite set A, the cardinality of A will be denoted |A|.

A relation from X to Y is a subset R of X xY. If X =Y, then we say
that R is a relation on X. If (x,y) is in R, then we sometimes write zRy.
Suppose A is a subset of X. Then AR is defined to be

{y €Y | aRy for some a in A}.

The inverse of R is the relation R~ = {(y,z) | (z,y) € R}.

Let R be a relation from X to Y and let S be a relation from Y to Z.
The composition of R and S is the relation T from X to Z which consists
of the pairs (x, z) such that there is an element y in Y with the property
that xRy and ySz. We write T = Ro S.

An equivalence relation on a set X is a relation F on X such that the
following conditions hold:

(i) zEzx for all z in X.
(ii) If zFy, then yEx.
(iii) If zFy and yEz, then zEz.

These conditions are called reflexivity, symmetry, and transitivity, respec-
tively. Symmetry can be stated as E~! = E, and transitivity means that
EoE is contained in E. Suppose FE is an equivalence relation on X. Then
for r and y in X, the sets {z}E and {y}E are either equal or disjoint. Thus
II={{z}E |z € X} is a partition of X. The elements of II are called the
equivalence classes of E.

A function from X to Y is a relation f from X to Y such that for all
z in X the set {z}f has exactly one element. We write f: X — Y and
refer to X as the domain of f. If y is the unique element of {z}f, then we
write y =z f, y = f(z), y = «/, or z L y, depending on the context. The
composition of two functions is a function. The term “map” is a synonym
for “function”. Let E be an equivalence relation on X and let II be the set
of equivalence classes of E. The natural map from X to II is the function
7 such that 7(z) = {«}E for all z in X.

Let f be a function from X to Y. We say that f is surjective or that f
maps X onto Y if Xf =Y. We say that f is injective if for all z; and z,
in X the equality f(z,) = f(z,) implies that z; = z,. A function which is
both injective and surjective is said to be bijective, or to be a one-to-one
correspondence. Functions which are surjective, injective, or bijective are
called surjections, injections, or bijections, respectively. A permutation of
a set X is a bijection from X to itself. The identity function on a set X is
the function e such that e(z) = z for all z in X. Clearly e is a permutation
of X.
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A convenient way to describe a function on a small set is by a matrix
with two rows. The first row lists the domain and the second row gives the

images. For example,
01 2 3 4
2 401 3

defines the permutation of {0,1,2, 3,4} which takes 0 to 2, 1 to 4, and so on.

Exercises

1.1. Show that the intersection of any nonempty collection of equivalence relations on a set
is again an equivalence relation.

1.2. Suppose that E;, E»,... is an infinite sequence of equivalence relations on X and E; is
contained in Ej;1 for ¢ > 1. Prove that the union of the E; is an equivalence relation
on X.

1.3. Show that for any set X there is a bijection from the set of equivalence relations on X
to the set of partitions of X.

1.4. Suppose f: X =Y, ¢:Y — Z, and h:Y — Z are functions. Assume that f is surjective
and fog= foh. Show that g = h.

1.2 Monoids

A semigroup is a pair (S, e) consisting of a set S and an associative binary
operation ¢ on S. That is, e is a function from S x S to S, and if we write
the image under e of a pair (s,t) as set, then

se(teu)=(set)eu

foralls,t,and uin S. If set =tes for all s and t in S, then e is said to be
commutative. In this book, multiplicative notation will normally be used
for binary operations. Thus s e ¢ will be written st and referred to as the
product of s and t. When the binary operation is clear from the context,
we refer to S as the semigroup. If S is finite, then the order of S is |5].

An identity element in a semigroup S is an element e of S such that
es = se = s for all s in S. There is at most one identity element in S,
and if S has an identity element, then S is called a monoid. Note that
a semigroup may be empty, but a monoid always contains at least one
element, its identity element. When multiplicative notation is used, the
identity element is normally denoted by 1.

Let M be a monoid with identity element 1. An element u of M is called
a unit if there is an element v of M such that uv = vu = 1. The element v
is unique. We call v the inverse of u and write v = u™!. If v is a unit with
inverse v, then v is a unit with inverse u. The inverse of 1 is 1.
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Suppose that = and y are units in M. Then

ozl =gz ' =1.

(@y)(y'z7!) =a(yy )z
Similarly (y~'z7!)(zy) = 1, so zy is a unit with inverse y~'z~!. Therefore
the set of units is closed under multiplication.

If z is an element of a semigroup S and n is a positive integer, then z”
is defined to be zz ...z, where the product has n factors. If S is a monoid
with identity element 1, then we set z° = 1. If z is a unit and n < 0, then
z" is defined to be (z7!)™". The usual laws of exponents hold.

A group is a monoid in which every element is a unit. If M is a monoid,
then the set of units of M is a group. Commutative groups are said to be
abelian.

Here are some examples of monoids and groups.

Ezample 2.1. Let Q2 be a set. The set Rel(€2) of all relations on §? is a monoid
with composition as the binary operation. The identity element of Rel(£2)
is the identity function on . The set Fun(f?) of functions on {2 is also a
monoid. The group of units of Rel(f2) is the set Sym(£2) of permutations
of Q, which is called the symmetric group on Q. If Q is finite and || = n,
then .

|Rel(2)| = 2, | Fun(9)] = n”, | Sym(®)| = n.
If @ ={1,2,...,n}, then Sym(Q) is also denoted Sym(n).

Ezample 2.2. Let R be a commutative ring with identity and let n be a
positive integer. The set M, (R) of n-by-n matrices over R is a monoid
under matrix multiplication. The identity element of M, (R) is the n-by-n
identity matrix. The group of units of M, (R) is the general linear group
GL(n, R) of matrices whose determinants are units in R.

Example 2.3. Let M be a monoid. For subsets A and B of M let AB =
{ab] a € A,b € B}. With this operation the set of all subsets of M becomes
a monoid.

Ezxample 2.4. The set Z of integers with addition as the binary operation
is a group. The identity element is 0 and the inverse of n is —n. (Here we
use additive, not multiplicative, notation.)

Example 2.5. The set Z with multiplication as the binary operation is a
monoid with identity element 1. Only 1 and —1 are units.

Example 2.6. The set N of nonnegative integers with addition as the binary
operation is a monoid. Only 0 is a unit.
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Ezample 2.7. Let X be a set. A word over X is a finite sequence U =

Uy, Uy, ..., Uy, Of elements of X. The empty sequence, with m = 0, will be
denoted €. The set of all words over X is denoted X*. If V =1v,,...,v, is
also a word over X, then UV is defined to be the word u,,...,u.,,v;,...,9,.

With this multiplication, X* is a monoid with identity element &, which is
the only unit. We identify an element z of X with the corresponding word
of length 1, and we write U as u,...u,,, without commas. The length m
of U is denoted |U|. Words over some finite set X will be the objects most
commonly manipulated by the algorithms discussed in this book.

If A, B, and C are in X* and U = ABC, then A is a prefiz of U, C is
a suffizr of U, and B is a subword of U. If U = u,...u,,, then any of the
words w;u, ;... Uy ... Uy, 1 <2 < m, is called a cyclic permutation of
U, and U' = u_u,,_;...u, is called the reversal of U. The term “string”
is sometimes used as a synonym for “word”. In particular, if X = {0,1},
then elements of X* are frequently referred to as bit strings.

Let M be a monoid with identity element 1. A submonoid of M is a
subset N of M such that the following conditions hold:

(i) 1isin N.
(ii) If z and y are in N, then zy is in N.

If in addition all elements of N are units and N contains the inverse of
each of its elements, then N is a subgroup of M. A submonoid N is a
monoid under the restriction to NV of the binary operation on M. Similarly,
subgroups are groups in their own right.

Ezample 2.8. Let 2 be a set. The set Fun(f2) is a submonoid of Rel(2),
and Sym(Q2) is a subgroup of Rel(€2). Let a be an element of 2. The set
of functions f on € such that f(a) = a is a submonoid of Fun(2), and the
set of permutations of {2 which fix o is a subgroup of Sym(2).

Ezample 2.9. The set N is a submonoid of the monoids (Z,+) and (Z, x).
For any integer n, the set nZ of multiples of n is a subgroup of (Z, +).

Proposition 2.1. Let M be a monoid. The intersection of any nonempty
collection of submonoids of M is a submonoid of M. The intersection of
any nonempty collection of subgroups is a subgroup.

Proof. Exercise. O
Let Y be a subset of a monoid M. The set N of submonoids of M

which contain Y is nonempty, since M is in A/. By Proposition 2.1, the
intersection K of the elements of A is a submonoid. Clearly K contains Y’



1.2 Monoids 11

and is the smallest submonoid containing Y. We write K = Mon(Y') and
call K the submonoid generated by Y. It is easy to see that K consists of
all elements of M which can be expressed as a product y; ...y, with each
y; in Y. By convention, such a product with ¢ = 0 is defined to be 1.

Some authors write Y* for the submonoid generated by Y. Strictly speak-
ing, Y* is the set of sequences y,,...,y, of elements of ¥, and Mon(Y') is
the set of products of these sequences. We shall normally distinguish be-
tween Y* and Mon(Y). However, in Chapter 3 we shall bow to tradition
and write Y* for Mon(Y).

Ezrample 2.10. Let 2={0,1,2,3,4} and let f be the function on (2 defined by
01 2 3 4
1 2 3 4 1/

To determine the submonoid Mon(f) of Fun(2), we must compute the
powers of f. Now f®=1and f! = f. Also

, (0123 4
f_fof_23412’

012 3 4 012 3 4
= , ft= ,
341 2 3 412 3 4
f501234f
“\1 23 4 1)

Thus f% = f2, f7 = f3, and so on. Therefore Mon(f) = {f°, f1, f2, f3, f*}
and Mon(f) has order 5.

Now suppose that Y is a subset of the group of units of a monoid M. The
set of subgroups of M which contain Y is nonempty, so the intersection H
of these subgroups is the smallest subgroup of M containing Y. It is not
hard to see that H is the submonoid of M generated by Y UY ™!, where
Y !={y™! |y €Y}. We shall denote H by Grp(Y).

A group or a monoid is finitely generated if there is a finite set which
generates it. If G is a group, then G is finitely generated as a group if
and only if G is finitely generated as a monoid. For if G = Mon(X), then
G = Grp(X), and if G = Grp(Y’), then G = Mon(Y UY!) and Y UY !
is finite if YV is finite. Actually, when Y is finite, we need to add only one
element to Y to be sure of getting a monoid generating set for Grp(Y’).

Proposition 2.2. If a group G is generated as a group by n elements, then
G is generated as a monoid by n+ 1 elements.
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Proof. Suppose z;,...,z, generate G as a group. Then ml,...,mn,ml_l,
..,x;! generate G as a monoid. Let y = z;'...z,;}. Then

-1 _
T, =T, 1 Tiq---5YYT, Ty y...L51,

1 < i < n. Therefore G is generated as a monoid by z;,...,z, andy. O

Proposition 2.2 was first proved in (Dyck 1882), so the result dates from
the very beginning of combinatorial group theory.

A monoid is cyclic if it is generated as a monoid by a single element. A
group is cyclic if it is generated as a group by a single element. If z is an
element of a group, then the order of z is the order of Grp(z), provided
that group is finite. If Grp(z) is infinite, then z is said to have infinite
order.

Proposition 2.3. Let M be a finitely generated monoid. Every generating
set for M contains a finite generating set.

Proof. Let X be a finite generating set for M and let Y be any generating
set. Each element of X can be expressed as a product of elements of Y. For
each z in X choose one such product and let Z be the set of elements of Y
which occur in at least one of the chosen products. Then Z is a finite set,
and the submonoid generated by Z contains X. Therefore Z generates M.

O

"Proposition 2.3 remains true if M is a group and the generating sets are
group generating sets.
Let M and N be monoids with identity elements 1,, and 1,, respectively.
A homomorphism from M to N is a function h: M — N such that

(i) A(ly) =1y.
(ii) h(xy) = h{z)h(y) for all z and y in M.

If N is a group, then condition (i) follows from condition (ii). If z is a unit
in M, then zz7! = 1, = z™'x. Therefore

h(z)h(z™) = h(1,,) = 1y = h(z"H)h(z).

Thus h(z) is a unit and h(x)~! = h(z™!). In particular, if M is a group,
then the image of M under A is a subgroup of N. A homomorphism from M
to M is said to be an endomorphism of M. If a homomorphism A: M — N
is a bijection, then A is called an isomorphism. In this case, the inverse
map h~! is also an isomorphism, and M and N are said to be isomor-
phic. A semigroup homomorphism is a map between semigroups satisfying
condition (ii).
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For any set X, the monoid X* is called the free monoid generated by X.
The set S of nonempty words in X* is a subsemigroup of X*, the free
semigroup generated by X. The following proposition justifies the use of
the adjective “free”.

Proposition 2.4. Let X be a set and let M be a monoid. For each function
f: X — M there is a unique extension of f to a homomorphism of X*
into M.

Proof. Let U = u;...u,, be in X* with each u; in X. The only way to
define f(U) so that f becomes a homomorphism from X* to M is to set
F(U) equal to f(u;)...f(u,,). It is easy to check that the map so defined
is a homomorphism. O

Here are some basic facts relating submonoids and homomorphisms:

Proposition 2.5. Let f: M — N be a homomorphism of monoids. If H is
a submonoid of M and K is a submonoid of N, then f(H) is a submonoid
of N and f~Y(K) is a submonoid of M. If M and K are groups, then
FUK) is a subgroup of M.

Proof. Exercise.

The notion of an ideal is usually encountered first in the study of rings.
However, the concept is also useful in the theory of monoids. Let M be a
monoid. A subset I of M is an ideal if for all z in I and all y in M the
products zy and yz are in [.

Ezample 2.11. Let 2 be a set. For any integer k > 1, the set J;, of functions
f:Q — Q such that |f(Q)] <k is an ideal of Fun(f2).

Ezample 2.12. Let X be a set. For any integer k > 0 the set I}, of words U
in X* such that |U| > k is an ideal of X*. More generally, if ¢/ is any subset
of X*, then the set of words having some element of U/ as a subword is an
ideal of X*.

If we modify the definition of an ideal to require only that zy be in I
when z is in I and y is in M, then the resulting object is called a right
ideal. Similarly, a left ideal is a subset closed under multiplication on the
left by elements of M.

Ezample 2.13. Let I be a subset of a set 2. The set of functions which map
Q into T is a left ideal of Fun(€2). The set of functions on  which are not
injective is a right ideal of Fun(<Q).
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Example 2.14. Let U be a subset of X*. The set of words having some
element of U as a prefix is a right ideal of X™.

Let I be an ideal of a monoid M. A generating set for I is a subset Y of
M such that

I=MYM={zyz|z,ze M,ycY}.

Since we may take £ = z = 1, it follows that Y is a subset of 1. A generating
set for a right ideal J of M is a subset T of J such that J =TM. Generating
sets for left ideals are defined in an analogous manner.

A minimal generating set for an ideal I is a generating set Y which
does not properly contain any other generating set. An ideal may have no
minimal generating sets, and it may have many. However, in X* minimal
generating sets exist and are unique.

Proposition 2.6. Let I be an ideal of X* and let U be the set of all ele-
ments of I which do not contain elements of I as proper subwords. Then U
generates I, and U is a subset of every generating set for I. In particular,
U is the unique minimal generating set for I.

Proof. Let U be an element of I. Choose a subword V' of U of minimal
length such that V is in I. Then V is in U, and U is in the ideal generated
by U. Therefore U is a generating set for I. Now let V be any generating
set for I and let U be in U. There exist words A and B in X* and V in
V such that U = AV B. By the definition of &/ we must have A = B =¢.
Therefore U isin V. O

Proposition 2.7. Let I, € I, C - -- be an infinite sequence of ideals in X*.
Assume that there is an integer m such that the minimal generating set of
each of the I ; has at most m elements. Then there is an integer n such that
I;=1, forj > n.

Proof. Let

1=U1j.

J

It is easy to see that I is an ideal. Let U/ be the minimal generating set for
I, and suppose that it is possible to find distinct elements U, ...,U,, ., in
U. There is an index j such that I; contains all of the U;. Let V be the
minimal generating set for I ;- By assumption, not all of the U; are in V,
and so some U, contains an element V' of V as a proper subword. But V is
in I, so U; cannot be in U. Therefore U is finite and [U/| < m. Thus there is
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an index n such that I, contains Y. But then I, =1 and I, = I, for j > n.
a

Proposition 2.6 has analogues for right and left ideals of X*. The minimal
generating set for a right ideal J is the set of elements of J which do not
contain other elements of J as prefixes. For left ideals, substitute “suffixes”
for “prefixes”.

Exercises

2.1. Suppose an element u of a monoid has a right inverse v and a left inverse w. Thus
uv =1 = wu. Show that u is a unit.

2.2. Suppose G is a group. Prove that the only element u of G with u2 = u is the identity
element.

2.3. Let F be a finite field with ¢ elements. Show that | GL(n, F')| is

(@"-1)(¢"—q)...(¢" — ")

2.4. Let M and N be monoids. Define a binary operation on M x N by (a,z)(b,y) = (ab, zy).
Show that M x N is a monoid and the functions a — (a,1), z — (1,%), (a,z) — a, and
{(a,z) — z are all homomorphisms. Prove that M x N is a group if both M and N are
groups. The monoid M X N is the direct product of M and N.

2.5. Prove that up to isomorphism there is one infinite cyclic monoid and one infinite cyclic
group.

2.6. Show that any finite cyclic group is a cyclic monoid.

2.7. Let n be a positive integer. Prove that up to isomorphism there are n cyclic monoids
of order n, exactly one of which is a group.

2.8. Show that a submonoid of a finite group is a subgroup.

2.9. Suppose that X is a set with at least two elements. Prove that X* has an infinite,
strictly increasing sequence of ideals.

2.10. Explain why the term “generating set” is preferable to “set of generators”.

1.3 Groups

In this section we summarize some basic facts about groups. Because this is
intended to be a review of familiar material, most proofs are omitted. They
can be found in introductory algebra texts and books on group theory.

Suppose that z is an element of a group G and z has finite order n. Then
2" =1 and z™ =1 if and only if n divides m. If all elements of G have finite
order and these orders are bounded above, then the least common multiple
e of these arders is called the exponent of G. An alternative definition of
the exponent is the smallest positive integer e such that ¢g° =1 for all g
in G.

Let G be a group and let H be a subgroup of G. Theset R={Hz | z € G}
is a partition of G. The elements of R are the right cosets of H. When
R is finite, its cardinality is denoted |G : H| and is called the index of H
in G. If G is finite, then |G| = |G : H||H|. Theset L= {zH |z € G} is
also a partition of G. Its elements are the left cosets of H in G. There is a
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one-to-one correspondence between R and £. If R = £, then H is said to
be a normal subgroup of G and we write H «G. If H is normal, then R
can be made into a group by defining (Hz)(Hy) to be Hzy. This group is
denoted G/H and is called the quotient group of G by H.

Proposition 3.1. Let H be a subgroup of a group G. The following are
equivalent:

(1) H«G.
(2) Hx=zH forallz inG.
(3) x 'Hx C H for all z in G.

Let f:G — H be a homomorphism of groups. The kernel of fis f~!(1) =
{z € G| f(z) =1}, which is a normal subgroup of G. Suppose that N is a
normal subgroup of G which is generated by a subset X and Y is a subset of
G whose image under the natural homomorphism from G to G/N generates
G/N. Then G = Grp(X UY).

Two elements z and y of a group G are conjugate if there is an element
z such that y = z7'zz. Conjugacy is an equivalence relation on G. Its
equivalence classes are called conjugacy classes. Let X be a subset of G.
The subgroup N generated by all of the conjugates of the elements of X is
normal in G. It is the smallest normal subgroup of G containing X. We
call N the normal closure of X in G and denote it Grp(X®).

The notion of conjugacy is extended to subgroups. Two subgroups H and
K of G are conjugate if there is an element z of G such that K = 27 'Hz.
A subgroup is normal if and only if it is conjugate only to itself. Conjugate
subgroups are isomorphic.

An isomorphism of a group G with itself is called an automorphism of G.
The set Aut(G) of all automorphisms of G is a subgroup of Sym(G) and
is called the automorphism group of G. Given an element g of G, the map
¢4 G — G taking u to g lug is an automorphism, the inner automorphism
induced by g. The map ¢:g — ¢, is a homomorphism of G into Aut(G).
The image of ¢ is the group Inn(G) of inner automorphisms of G. The
kernel of ¢ is the center Z(G), the set of elements in G which commute
with every element of G.

Of particular importance are the three isomorphism theorems:

Proposition 3.2. Let f: G — H be a surjective group homomorphism with
kernel N. Then H is isomorphic to G/N. There is a one-to-one correspon-
dence between subgroups of H and subgroups of G containing N.

Proposition 3.3. Let K be a subgroup of a group G and let N «G. Then

(1) NK = KN 1is a subgroup of G.
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(2) KNN<K.
(3) (KN)/N is isomorphic to K/(KNN).

Proposition 3.4. Let H and K be normal subgroups of a group G and
assume that K C H. Then H/K is a normal subgroup of G/K, and
(G/K)/(H/K) is isomorphic to G/H.

Suppose that Q is a set. A subgroup G of Sym(2) is called a permutation
group on Q. If g is in G and « is in §2, then the image of o under g will be
written af. Since permutations act on the right, the product gh is defined
by a#) = (a9)h. The set of = {9 | g € G} is the orbit of o under G.
The orbits of G partition 2. The stabilizer of a in G is the subgroup
G,=1{9€G|a?=a}. If o is finite, then |a®| = |G : G,|. Two elements
of G map « to the same point if and only if they lie in the same right coset
of G,. If yy,...,0, are distinct elements of €2, then the cycle (a;,...,,)
is the permutation of @ which maps a; to ¢;,;, 1 < i < r, maps a, to o,
and fixes all other points of . If Q is finite, then an element g of Sym(£2)
can be written as a product of disjoint cycles, no two of which move the
same point. This product is essentially unique. If the number of cycles
of even length in the cycle decomposition of g is even, then g is called
an even permutation. The set Alt(€2) of all even permutations of 2 is a
subgroup of index 2 in Sym(€2?) and is called the alternating group on Q. If
Q={1,...,n}, then Alt(Q) is also denoted Alt(n).

Let G be a permutation group on 2 and let H be a permutation group on
A. We say G and H are isomorphic as permutation groups or permutation
isomorphic if there is an isomorphism ¢ from G to H and a bijection 7
from Q to A such that 7(af) = 7(a)°® for all o in Q and all g in G. The
subgroups Grp{(1, 2,3, 4, 5,6)) and Grp{(1, 2, 3)(4, 5)(6)) of Sym(6) are both
cyclic of order 6 and hence isomorphic. However, the first group has only
one orbit, whereas the second has three orbits. This implies that these
groups are not permutation isomorphic.

An important class of groups is the one consisting of the groups which
satisfy the ascending chain condition on subgroups. This means that there
is no strictly increasing sequence H; C H, C - -- of subgroups.

Proposition 3.5. A group G satisfies the ascending chain condition on
subgroups if and only if all subgroups of G are finitely generated.

Proof. Suppose first that G has a subgroup H which is not finitely
generated. Choose z; in H. Then H, = Grp(z,) is not H, so we may
choose z, in H — H;. Now H, = Grp{(z,,z,) properly contains H, and is
not H. Therefore we may choose z; in H — H,. Continuing in this way, we
construct an infinite sequence z,,z,,... of elements such that the groups
H, = Grp{z,,...,z;) form a strictly increasing sequence.
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Now suppose that all subgroups of G are finitely generated, and let H, C
H, C --- be an infinite, strictly increasing sequence of subgroups in G. The
union H of the H, is a subgroup, and H is generated by a finite set X.
Each element of X is in some H;. Thus we may find an index n such that
XCH, Butthen H =H,so H;=H foralli>n. O

The final result of this section describes the subgroups of (Z,+).

Proposition 3.6. Every subgroup of (Z,+) is cyclic and consists of the
multiples of a unique nonnegative integer n.

The quotient of Z by nZ is denoted Z,,.

Exercises

3.1. Let H be a subgroup of a group G. Show that a subset U of G is a right coset of H if
and only if {u™! |u € U} is a left coset of H.

3.2. What is the subgroup of (Z,+) generated by 4 and 6?

3.3. Let g = (1,3,5,7)(2,4,6,8) and h = (1,4,7)(2,3,6). Express the permutation gh as a
product of disjoint cycles.

3.4. Let G be a finite cyclic group of order n. Show that G has exactly one subgroup of each
order dividing n.

3.5. Suppose that G is an abelian group. Prove that the set of elements of G with finite order
is a subgroup of G.

3.6. Let ¢ be an automorphism of a group G and let N be a subgroup of G. Show that o(N)
is isomorphic to N and that, if N is normal in G, then @(N) is normal in G and G/N is
isomorphic to G/p(N).

3.7. Prove that Inn(G) is a normal subgroup of Aut(G) for any group G.

3.8. Suppose that G is a group generated as a monoid by a set X and H is a subgroup of G.
Show that H is normal in @ if and only if x~1Hz C H for every z in X.

3.9. Suppose N is a normal subgroup of a group G. Prove that {(ug,g9) |u€ N,ge G} isa
subgroup of G x G and that this construction establishes a one-to-one correspondence
between the set of normal subgroups of G and the subgroups of G x G which contain the
diagonal subgroup.

1.4 Presentations

Let M be a monoid. A congruence on M is an equivalence relation ~ on M
which is compatible with the multiplication in M in the sense that whenever
z, y, and z are elements of M and z ~ y, then 2z ~ yz and 2z ~ zy.

Proposition 4.1. Let f: M — N be a homomorphism of monoids. For x
and y in M define z ~y to mean f(z) = f(y). Then ~ is a congruence
on M.

Proof. Exercise. 0O

It turns out that every congruence ~ on a monoid M can be constructed
from a homomorphism as in Proposition 4.1. Let @ be the set of equivalence
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classes of ~, and for z in M let [z] be the element of @ containing z. The
rule [z][y] = [zy] defines an associative binary operation on @ with [1] as an
identity element. Thus @ is a monoid, the quotient monoid of M modulo
~. The natural map z — [z] is a homomorphism of M onto Q.

Example 4.1. Let f be the function on {0,1,2,3,4} given by

01 2 3 4

1 2 3 4 1)
In Example 2.10 we saw that M = Mon(f) has order 5 and f5 = f. The
sets {1}, {£, °}, and {2, f*} are the equivalence classes of a congruence ~
on M. This can be seen by noting that for each of these sets C the product
Cf = fC is contained in another one of these sets. The quotient monoid

Q of M modulo ~ has order 3 and is generated by u = [f], which satisfies
ud = u.

In the case of a congruence on a group G, the class [1] is a normal
subgroup of G, and the equivalence classes of ~ are the cosets of [1]. The
quotient @ is a group. As Example 4.1 shows, congruences on monoids are
not necessarily determined by the equivalence class containing the identity
element.

Proposition 4.2. Let M be a monoid and let S be a subset of M x M.
The intersection ~ of all congruences on M containing S is a congruence.

Proof. There is at least one congruence on M containing S, namely M X
M, in which any two elements of M are congruent. By Exercise 1.1, ~ is an
equivalence relation on M. Clearly s ~ t for all (s,t) in S. Suppose z ~ y.
Then for each z in M and each congruence = containing S, we know that
T =1y, s0 xz=yz and zx = zy. Thus x2 ~ yz and zx ~ 2y. Therefore ~ is
a congruence. [

The congruence ~ of Proposition 4.2 is called the congruence generated
by S.

A right congruence on a monoid M is an equivalence relation ~ on M
such that x ~ y implies that xz ~ yz for all z in M. A left congruence is
defined analogously. Only minor modifications of the preceding discussion
are needed to define the concepts of the right congruence generated by a
subset S of M x M and the left congruence generated by S.

Proposition 4.3. Let M be a monoid and let Q be the quotient of M modulo
the congruence ~ generated by a subset S of M x M. Let f:M — N be a
monoid homomorphism such that f(s) = f(t) for all (s,t) in S. Then there
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is a unique homomorphism g: Q) — N such that f = 7o g, where 7 is the
natural map from M to Q.

Proof. For  and y in M, define z = y to mean that f(z) = f(y). By
Proposition 4.1, = is a congruence on M, and by assumption, = contains
8. Therefore = contains ~. Thus if z ~ y, then f(z) = f(y). Therefore
there is a well-defined map g: Q — N taking 7(z) to f(z) for all z in M.
Clearly f =mog. To show that g is a homomorphism, we note that g takes
(1), the identity of @, to f(1), the identity of N. Moreover,

g(n(z)w(y)) = g(n(zy)) = f(zy) = f(z)f(y) = g(n(z))g(n(y)). O

Let X be a set and let R be a subset of X* X X*. The monoid Mon(X |
R) is defined to be the quotient monoid @ of X* modulo the congruence
generated by R. The pair (X,R) is said to be a monoid presentation
for ) and for any monoid isomorphic to ). The presentation is finite if
both X and R are finite. A monoid M is finitely presented if M has a
finite presentation. If X = {z,,...,z,} and R consists of the pairs (U, V,),
1<i<t, then Q is sometimes written as

Mon(z,,...,z, | U, =V, U, =V,,...,U, =V,).

Here the equations U, =V, are called defining relations for ). Under the
natural map from X* to @, the words U; and V, map to the same element.
In general, if f: X* — M is a monoid homomorphism and U and V are
words in X* such that f(U) = f(V), then we say that the relation U =V
holds in M (relative to f). If f(U) is the identity element of M, then we
normally speak of the relation U = 1, rather than the more consistent U =«¢.
Elements of Mon{X | R) are equivalence classes of words. The equivalence
class containing U will usually be denoted [U]. There is a tendency to
blur the distinction between U and [U]. We shall normally be fairly careful
to distinguish between a word and the equivalence class containing that
word. However, sometimes the effort required actually gets in the way of a
clear exposition. In these cases we shall lapse into a controlled ambiguity
between words and equivalence classes.

Ezxample 4.2. Let X = {z} and R = {(z%,23)}, and let ~ be the congruence
on X* generated by R. Since z% ~ z3, we have z7 ~ z*, 2% ~ 2%, and in
general z° ~ z*3 for 4 > 6. Therefore each equivalence class of ~ contains
an element z* with 0 <4 < 5. Thus the order of @ = Mon(X | R) is at

most 6. Let f be the function on {0,1,2,3,4,5} defined by

012 3 435
1 2345 3)°
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It is easy to check that M = Mon(f) has order 6 and f® = f3. By Proposi-
tion 4.3, there is a homomorphism h from @ to M taking the equivalence
class [z] to f. Since f generates M, the map h is surjective and |Q| > [ M| =
6. Therefore |@| = 6 and Q is isomorphic to M.

Ezample 4.5. Let X = {a,b} and R = {(ba,abd),(a*,a?),(b%,a®)}. Since
ba ~ ab, every equivalence class of ~ contains a word of the form a'¥’.
Since b® ~ a3, we may assume that 0 < j < 2, and since a* ~ a?, we may
assume that 0 < i < 3. Therefore @ = Mon(X | R) has order at most 12.
Let f and g be the following functions on {0,1,2,3,4,5,6,7,8,9,10,11}:

1 346 7 839 107 11 10
(01234567891011)
g= )

(01234567891011)

2 45 78 6 9 10 3 11 6 3

Then fog=gof, f*=f2, and f° = ¢g3. Therefore there is a homomorphism
of @ onto M =Mon(f, g). The 12 elements fiog’ with0<i<3and0< ;<2
map 0 to different points and so are distinct elements of M. Therefore @
is isomorphic to M, and both have order 12.

Proposition 4.4. Suppose R and S are subsets of X* X X* with R C S.
There is a homomorphism of Mon(X | R} onto Mon(X | S).

Proof. Let ~ and = be the congruences on X* generated by R and &
respectively. Then R is contained in =, so ~ is contained in =. Therefore
each ~-class is contained in a unique =-class. The corresponding map of
Mon(X | R) to Mon(X | S) is easily seen to be a homomorphism. 1

We shall occasionally use semigroup presentations. Recall that the free
semigroup S on X is X* — {e}. We defined congruences on monoids, but
the same definition works for semigroups as well. Let R be a subset of
8 x & and let ~ be the congruence on S generated by R. The semigroup
defined by the pair (X, R) is the quotient S = Sem(X | R) of S by ~. Let
= be the congruence on X* generated by R. It is not hard to show that
= is the union of ~ and {(¢,€)}. Therefore M = Mon(X | R) is obtained
from S by adding an extra element 1 to S and defining 1u = 11 = u for all
uin M.

Semigroup presentations are convenient when the generating set contains
the identity element.

Ezample 4.4. The semigroup S = Sem(a, e | a® = e, ae = ea = a) is a group
of order 3, while M = Mon(a, e | a® = ¢, ae = ea = a) has order 4 and is not
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a group. To get a monoid presentation for S on the generators a and e we
must add a relation like e = 1.

We have defined monoid and semigroup presentations. It is now time to
define group presentations. Let X be a set and let X* = X x {1,—1}. We
shall denote (z, ) in X* by z* and identify x with z!. The monoid (X*)*
will be denoted X**. Let R be the set of pairs of the form (z*z~%,¢) with
zin X and « in {1,—1}, and set F = Mon{X?* | R). The element of F
containing a given word U will be denoted [U]. We call F the free group
generated by X. This term is justified by the following proposition.

Proposition 4.5. The monoid F is a group. If f: X — G is any map of X
into a group G, then there is o unique homomorphism of F into G taking
[z] to f(x) for each x in X.

Proof. To show that F' is a group, it suffices to show that all the elements
in some monoid generating set for F' are units. Clearly F' is generated as a
monoid by {[z*] ]|z € X,a € {1,—1}}. Since

@]e™] = [e%e~] = [e] = 1
and
[z7[z%] = [z™*2%| = [e] = 1,

the element [27%] is an inverse for [x®]. Therefore F is a group. Now let
f:X — G be a function. Extend f to a map of X* into G by defining
f(z™1) to be f(x)™!, the inverse in G of f(x). Then extend f further to a
homomorphism of X** into G. Since

f@f@)™ = fl@) flz) =1

in G, the defining relations of F' hold in G relative to f. Therefore there is
a unique homomorphism g¢: F — G such that ¢ takes [U] to f(U) for each
word U in X**. It is not hard to see that g is the only homomorphism of
F into G mapping [z] to f(z) for each z in X. O

We shall encounter free groups frequently, and it will be useful to have
a name for R. Since R is the set of monoid defining relations for the free
group F generated by X, we shall write R = FGRel(X). The congruence
on X** generated by R is called free equivalence. A word U in X** is freely
reduced if U contains no subword of the form z®*z™“. If X is finite, then
| X| is called the rank of F. It is conceivable that this definition of rank
is ambiguous in the sense that F' might be isomorphic to the free group



1.4 Presentations 23

generated by a set Y with |Y| # |X|. However, this cannot happen. See
Exercise 4.3.

Let U be a word in X**. Thus U =z{" ...z%", where the z; are in X and
the exponents o, are +1. Define U~! to be %" ...z;*. Then the inverse
of [U] in F is [U1]. Of course, U~! is not an inverse for U in X** unless
m = 0. Clearly (U =U.

Suppose S is a subset of X** x X**. By Grp(X | S) we shall mean
G =Mon(X* | RUS), where R = FGRel(X). By Proposition 4.4, there is
a homomorphism of F onto G, and as remarked in Section 1.2, G is a group.
We call (X,8) a group presentation for G. The notation Grp(z,,...,z, |
U =W,...,U,=V,) is often used for Grp(X | S) when X = {z,,...,z,}
and § = (U, V;) | 1< i <t}.

Proposition 4.6. Let m: X** — F be the natural map. Then Grp(X | S)

18 isomorphic to F/N, where N is the normal closure in F of the elements
(V) 'n(U) with (U,V) in S.

Proof. The proof consists of “diagram chasing” in commutative diagrams
based on Proposition 4.3. The details are left as an exercise. O

We have identified X with the subset X x {1} of X*. Thus X* is con-
sidered to be a subset of X**. In this context, an element of X* — {} is
called a positive word in X**.

Let S be a subset of X* x X*. In general, Mon(X | §) and Grp(X | S)
are quite different objects. However, when Mon(X | S) is a group, they are
the same.

Proposition 4.7. Suppose S is a subset of X* x X*. If G = Mon{X | §)
is a group, then Grp{X | 8) is isomorphic to G.

Proof. The proof consists of more diagram chasing. O

Ezample 4.5. Let X = {z} and S = {(2%,2°)}. In Example 4.2 we saw that
M =Mon(X | S) has order 6. Let us determine the order of G = Grp(X | §).
Since M is not a group and G is a group, it is clear that M and G must
be nonisomorphic. By definition, G = Mon(X* | T), where X* = {2,271}
and 7 = {(zz7',¢), (v 'z,¢), (2% 23)}. Let ~ be the congruence on X**
generated by 7. Then 28 ~ 13, s0 13613 !~ 23271, But 227! ~ ¢, and hence
2827 = g¥zx~! ~ 2. Similarly z3z~! ~ 22. Thus z® ~ z2. Applying the
same kind of arguments, we find that z* ~ z, 2% ~ ¢, and 2% ~ z~!. Since
z7! ~ 2%, we can find in each ~-class an element z* with ¢ > 0. Since
z3 ~ ¢, we may assume that 0 < i < 3. Therefore the order of Grp(X | S)
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is at most 3. If f is the map

01 2
1 2 0
on {0,1, 2}, then f is a permutation and Mon(f) = Grp{f) is a group. Since

f3=1and so f = f3, we find that Grp{(X | S) is isomorphic to Grp{f)
and hence has order 3.

Example 4.6. Let X = {a,b} and S = {(ba, ab), (a*,a?), (b%,a®)}. Then X* =
{a,a™1,b,b7'} and Grp(X | S) is Mon{(X®* | T'), where 7 consists of the
following pairs:

(aa')e), (a"'a,e), (bb71e), (b7'b,e), (ba,abd), (a4,a2), (b3,a3).

Let ~ be the congruence on X** generated by 7. Then a* ~ a2, so

a® ~ a*a™! ~ a?a7! ~ . Similarly a®> ~ € and a ~a™!. Also a ~ a3 ~ b3, so

every ~-class contains an element b‘. Since ¢ ~ b3b3 ~ a®a® = a2a%a® ~ € and
b~! ~ 155! ~ b5, we may assume that 0 < i < 6. Therefore G = Grp(X | S)

has order at most 6. We leave it as an exercise to show that |G| = 6.

Ezample 4.7. Let G = Mon{z,y |22 =1, y® =1, (zy)* = 1). In G, the
images of r and y have inverses, so G is a group. Under the homo-
morphism of {z,y}" into Sym(4) taking z to (1,2) and y to (2,3,4), the
defining relations of G are satisfied. Thus there is a corresponding ho-
momorphism f:G — Sym(4). Let H be the subgroup {h € G | 1/ =1}.
Since G acts transitively on {1,2,3,4}, the orbit of 1 has four elements and
hence |G : H| = 4. Since the images under f of 1, z, ry, and zy? map 1 to
1, 2, 3, and 4, respectively, these elements are right coset representatives
for H in G.

Let (X,R) be a monoid presentation for a monoid M. It is frequently
convenient to be able to find other presentations for M. We shall describe
four constructions of such presentations. Let ~ be the congruence on X*
generated by R. If U and V are elements of X* such that U ~ V, then we
say that (U, V) is a consequence of R.

Proposition 4.8. Suppose (U,V) is a consequence of R. Put S=RU
{(U,V)}. Then (X,S) is a presentation for M.

Proof. Clearly R and S each generate ~, so Mon{X | R) and Mon{X | S)
are identical. O
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Proposition 4.9. Suppose (U, V) is an element of R. If (U,V) is a
consequence of S =R — {(U,V)}, then (X,8) is a presentation for M.

Proof. Again R and S generate the same congruence on X*. O

Proposition 4.10. Suppose U is in X* and y is an object not in X. Set
Y = XU{y} and put S=RU{(y,U)}. Then (Y,S) is a presentation for M.

Proof. This proof again involves some diagram chasing, which is left as
an exercise. [

Proposition 4.11. Suppose R contains an element (y,U), wherey is in X
and y does not occur inU. LetY be X —{y} and let f be the homomorphism
of X* into Y* which is the identity on Y and maps y to U. Let S be
the set of pairs (f(A), f(B)), where (A, B) ranges over of the elements of
R —{(y,U)}. Then (Y,S) is a presentation for M.

Proof. Exercise. 0O

The constructions of new presentations described in Propositions 4.8
to 4.11 are called Tietze transformations. They have been defined for
monoid presentations. Similar constructions can be made for group pre-
sentations.

Ezample 4.8. Let us go back over Example 4.5 using the language of re-
lations and Tietze transformations. We start with generators z and z~!
and relations zz ! =1, 271z =1, and z® = 3. We saw that 2 =1 is a
consequence of these relations, so we can add z3 = 1 to the set of relations
by Proposition 4.9. Now the relation % = z3 is a consequence of the other
relations, so we may delete z® = z® by Proposition 4.10. Next z7! =z2is a
consequence of our relations, so by Proposition 4.11 we may use this rela-
tion to eliminate ! from the presentation. This leaves the single generator
z and the single defining relation z% = 1.

Exercises

4.1. Let G be a group and let ~ be a right congruence on G. Show that H ={g € G| g~ 1}
is a subgroup of G and that the congruence classes of ~ are the right cosets of H in G.

4.2. Suppose that ~ in Exercise 4.1 is generated by a subset S of G x G. Prove that H =
Grp{gh™ | (9,h) € 5).

4.3. Let X be a finite set and let F' be the free group generated by X. Show that the number
of homomorphisms of F into a given cyclic group of order 2 is 2X|. Thus F determines
its rank |X| uniquely.

4.4. Prove that Grp(z | 2" = 1) is isomorphic to Z,.
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4.5. Show that Mon(z,y | zy = yz, ° = z, y* = ¥°, 2%y? = 2%y) is finite and determine its
order.

4.6. Find a sequence of Tietze transformations which takes the monoid presentation a® =
b? = (ab)® =1 on generators a and b to the presentation a = ¢® = (ac)? = 1 on generators
a and c.

4.7. Let G be a group. Show that G is finitely presented as a group if and only if G is finitely
presented as a monoid.

4.8. Let M = Mon{a,b | ab=1). Prove that every element of M can be expressed uniquely
as [b‘a’]. Does M have any nontrivial units?

4.9. Show that Mon(a, b | abba = 1) is a group.

4.10. Suppose that 4 and B are in X**. Show that A is freely reduced if and only if A~} is
freely reduced and that (4B)~! = B~14-1.

4.11. Let X be a set, let R be a subset of X* x X*, and let ~ be the congruence on X*
generated by R. Show that two words U and V are in the same ~-class if and only if
there is a sequence of words U = Uy, U,...,U, =V such that for 0 < i < r there are
words A, B, P, and Q such that U; = APB, U = AQB, and either (P,Q) or (Q, P)
isin R.

4.12. Suppose in Exercise 4.11 that I is an ideal of X* containing the left and right components
of all the elements of R. Show that I is a union of ~-classes.

1.5 Computability

The main theme of this book is devising techniques for studying the struc-
ture of groups for which finite presentations are known. Unfortunately, we
must recognize at the outset that many questions we would like to ask about
finitely presented groups have been shown not to have general, algorithmic
solutions. This means more than the assertion that nobody has been able
to find an algorithm valid for all finitely presented groups. It means that
no such algorithms will ever be found.

One of the earliest and most basic of these unsolvability results concerns
the word problem. Let M = Mon{X | R) be a finitely presented monoid.
The word problem for M is to decide, given two words U and V in X*,
whether U and V define the same element of M. This is the same as
deciding whether U ~ V', where ~ is the congruence on X* generated by
R. It has been shown that there is no algorithm which takes as input X,
R, U, and V and returns “yes” or “no” according as U and V do or do not
define the same element of M.

It might appear plausible that we are asking too much to find one algo-
rithm which will solve the word problem for all finite presentations. It is
conceivable that no universal algorithm exists, but for any given presenta-
tion an algorithm can be devised. However, it has been shown that there
are specific finitely presented monoids with unsolvable word problems.

Faced with this news, we might conclude that monoids are very “wild”
objects, so the unsolvability of the word problem should have been guessed.
However, if we restrict ourselves to groups, then surely everything will be
nice. Again we are too optimistic. There are finitely presented groups with
unsolvable word problems.
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We cannot decide whether two words U and V' define the same element
of M = Mon{X | R). However, if U and V do define the same element,
then we can verify this fact. The definition of the congruence ~ generated
by R is sufficiently concrete to allow us to list the words in the equivalence
class containing U.

Proposition 5.1. Let A and B be words in X*. Then A ~ B if and only
if there is a sequence of words

A=AyA,,.. ., A, =B

such that for 0 < i <t the words A; and A;,, have the form CPD and
CQD, respectively, where (P,Q) or (Q,P) isin R.

Proof. Let us write A = B if there is a sequence of the specified type.
Then = is easily seen to be an equivalence relation. If (P, Q) is in R, then
P~ Q,s0 CPD~ CQD for all C and D in X*. Therefore, if A = B, then
A ~ B. It follows that = is contained in ~. Suppose A = B, so there is
a sequence Ay,..., A, as in the proposition. If U is any word, then the
sequence

AU = AU, AU,..., AU = BU

shows that AU = BU. Similarly, UA = U B. Therefore = is a congruence.
If (P,Q) is in R, then the sequence P, Q has the required form, so P = Q.
Thus by the definition of ~, we know that = contains ~. Therefore = and
~ are the same relation. O

To list all words W such that U ~ W, we start with U, then list all words
which can be reached by a sequence of length 1, then those which can be
reached by a sequence of length 2, and so on. Eventually every word in [U]
will appear on the list. Thus if U ~ V|, then V will be listed and we can
stop the procedure. If [V] # [U], then the procedure will never terminate.
The unsolvability of the word problem means that although we can list
the elements of [U], we cannot always list the elements of the complement
X* — [U], for if it were possible to list the complement, then we could start
both listing procedures, and eventually V would appear on one list or the
other. We would then know whether or not U ~ V.

A proof of the unsolvability of the word problem is beyond the scope
of this book. See Chapter 12 of [Rotman 1973] for an accessible proof.
However, assuming this result, we can easily deduce that a number of other
questions cannot be answered algorithmically. For example, suppose G =
Grp{X | R) is a finitely presented group. Given words U and V in X**,
it is natural to ask whether the elements of G defined by U and V are
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conjugate. If we could solve this conjugacy problem, then taking V = ¢, we
could decide whether U defines the identity element of G. But if g and h
are elements of a group, then g = h if and only if gh~! = 1. Thus if we can
decide equality with 1, then we can decide equality in general, and so solve
the word problem.

There is another problem which should be mentioned along with the
word and conjugacy problems. This is the generalized word problem or the
subgroup membership problem. Suppose we have a finite presentation of a
group G and U,,...,U,,, V are words defining elements u,,...,u,,, v of G.
Let H = Grp{u,,...,u,,). The subgroup membership problem is to decide
whether v is in H. An extension of the problem would be to express v
explicitly as a product of the elements ul,ul_l, ey Uy, u,‘nl, when v is in H.
This problem is also not solvable algorithmically for all finite presentations
of groups, for if it were, then we could take m =0, or m =1 and U, =¢.
Then H would be trivial, and we would be able to decide whether V defined
the identity element.

There are many other problems concerning finitely presented groups
which have been shown to be unsolvable. For example, it is not in general
possible to decide whether a finitely presented group is finite, or infinite, or
trivial.

One final remark needs to be made. Although we shall often be using
group presentations, we shall sometimes be using monoid presentations of
groups which are not group presentations. If (X, R) is a finite presentation
for a monoid M, then there is no algorithm for deciding whether M is a
group. This result was first proved in (Markov 1951). See also (Narendran,
O’Dﬁnlaing & Otto 1991). If M is a group, then there is an algorithm
for computing, given a word U, a word V such that [V] = [U]~}, but the
algorithm is very unsatisfactory. Let W, W,,... be the words in X* listed
in some order. As noted above, we can construct computers Cy, C,, . .. such
that C; lists the elements of [UW,]. If M is a group then some C; will
eventually print out £ and we can take V =W,.

We do not actually need infinitely many computers to carry out this
computation of [U]~!. We assemble C, and set it running on UW,. Then
we assemble C,,, and when we are finished, we look to see if C; has printed
out €. If not, we start C, running with UW, and assemble C;. Now
we look to see if either C| or C, has printed out ¢. If not, we start Cj
running with UW; and begin work on C,. If we continue in this man-
ner, then eventually we will see ¢ printed out, and we can stop building
computers.

In order to avoid the problem just described, we shall always assume that
our groups are “obviously” groups, even when they are given by monoid
presentations. Usually the criterion in Exercise 5.2 will be adequate to
recognize a group.
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Ezample 5.1. Let X = {a,b} and R = {(abab,¢), (baba,e)}. Then M =
Mon(X | R) is a group since it is clear that [a]~! = [bab] and [b]~! = [aba].

Exercises

5.1. Show that it is possible to verify that a finitely presented monoid is a group.

5.2. Let M = Mon(X | R), where X = {z1,...,2,}, and assume that for 1 < i < r there are
words P; and @Q; in X* and words U; and V; in {zi,...,7;-1}" such that (z;P;,U;) and
(Qiz;, Vi) are in R. Prove that M is a group.

1.6 Procedure descriptions

In this book, procedures will be defined using an informal description lan-
guage which looks a lot like Pascal but contains some features borrowed
from C, as well as a few original constructs. The level of informality varies
with the need for precision. In some cases, procedure definitions are very
close to Pascal or C programs. In other cases, they are only outlines of
programs. It is not possible to give a formal description of an informal lan-
guage. However, the brief summary provided by this section should suffice
to allow the reader to understand the procedures presented.

Variables are of just two types. Traditional mathematical objects are
represented by single letters, perhaps with subscripts and other decorations.
Case and font are significant. Thus s, S, S, g, and ¥ may be different
objects. Boolean variables, variables which take only the values “true” and
“false”, are represented by English words, usually past participles, written
in lowercase italic characters. Thus done, found, and ok are typical boolean
variables. Case is not significant in the reserved words of Pascal, such as
“begin”, “for”, and “if”. Reserved words coming at the beginning of a
statement will normally be capitalized.

The assignment operator is :=. Thus the statement x := 3 means “assign
the value 3 to ”. The ordinary equals sign is a relational operator. For
example, x = 3 is a boolean expression which is true if £ happens to have
the value 3 already, but is false otherwise. The other relational operators
are <, <, >, >, and #.

The operations normally part of the Pascal and C languages are extended
by other notations defined in the text. Because variables consist of a single
letter, the symbol * used for multiplication in both Pascal and C can be
omitted. Set union and intersection are denoted by U and N, respectively.
Most statements are either assignment statements or control statements.
Occasionally statements indicate an action not easily described by an as-
sighment statement. Such statements are usually introduced by “Let”. If
a is an even integer, then “Let a = 2b” is a statement defining the inte-
ger b. The value of a is unchanged. Of course this statement is equivalent
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to b := a/2. Statements are separated by semicolons and grouped into
compound statements using “Begin” and “End”.

The three primary control statements are If-then-else, the For-loop, and
the While-loop. The construction

If condition then statement,

Else statement,

indicates that the boolean condition is to be evaluated. If the condition is
true, then statement, is executed. If the condition is false, then statement,
is executed. The Else-clause may be omitted. The construction

For i := 1 to n do statement

executes statement with ¢ = 1, then with ¢ = 2, and so on through 7 = n.
The construction

While condition do statement

means that statement is to be repeated as long as the condition remains
true. A typical use of the While-loop has the form

done := false;

While not done do
Begin

End

The statements enclosed by “Begin” and “End” are repeated as a block
until done becomes true.
Sometimes a For-loop will indicate a loop over a finite set, as in

For z in X do statement

When the order in which the elements of X are taken is important, that
order will be described in the accompanying text, or in a comment in the
procedure. Comments have the form (x ... *).

The flow of computation defined by If-then-else-statements, For-loops,
and While-loops can be interrupted by using Goto-statements, Break-
statements, and Continue-statements. The statement

Goto 99
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means that the statement with label 99 is to be executed next. A label is
prefixed to the beginning of the statement and separated from it by a colon.
The use of Goto-statements is considered poor programming practice, but
now and then they provide the cleanest method of accomplishing a task
within the control structures available.

The statement

Break

indicates that processing of the innermost loop containing the statement is
to be terminated, and the statement immediately following the loop is to
be executed next. The statement

Continue

means that the remainder of the body of the innermost loop containing the
statement is to be skipped. If the loop is a While-loop, then the boolean
condition is tested to determine whether another iteration of the body
should be begun. In the case of a For-loop, the loop variable is incremented
and the test for termination is carried out.

Procedure definitions begin with a Procedure-statement, which gives the
name of the procedure and its arguments, if any. The treatment of argu-
ments here is different from the treatment in either Pascal or C. Arguments
are of one of two kinds. Input arguments are supplied by the calling pro-
cedure and are not changed by the called procedure. The results of the
computation are returned in output arguments. When both input and
output arguments are present, they are separated by a semicolon.

Pascal and C require that all variables be declared. That is, the type
of values which may be assigned to the variables must be stated. Except
for the description of arguments, declarations will be omitted. Global vari-
ables, variables shared by two or more procedures, are described in the
accompanying text. All other variables are local to the procedure in which
they are used.

The indexing of arrays, such as vectors and matrices, will be denoted
either as in Pascal, v[i] and A[i, j], or using subscripts, v; and A;;. Indices
are usually integers, but may occasionally be elements of other sets.

Here is an example of a procedure which multiplies two square matrices:

Procedure MPROD(n, A, B; C);

Input: n : a positive integer;

A B : n-by-n matrices;
Output: C : an n-by-n matrix, the product of A and B;
Begin

For i:=1ton do
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For j:=1 to n do begin

§:=0;
For k:=1to n do s := s + A[i, k| B[k, j];
Cli,jl==s

End

End.

Subprocedures in Pascal are normally defined within the main procedure
using them. To facilitate the exposition, subprocedures will be listed and
discussed individually. The Pascal rule that subprocedures must be defined
before they are used will be followed.

A procedure which computes a single output may be written as a func-
tion. The value returned is the last value assigned to the name of the func-
tion. The type of the result is indicated as part of the Function-statement.
Here is an example of a function which computes the nonnegative great-
est common divisor ged(z,y) of two integers  and y using the Euclidean
algorithm.

Function GCD(z,y) : integer;

Input: z,y : integers;
(* The nonnegative ged of  and y is returned. *)
Begin

a:=|z[; b:= |yl;

While a # 0 do begin ¢:=bmoda; b:=a; a:=c end;
GCD:=b
End.

Recall that in Pascal, bmod a is the remainder when b is divided by a. The
function GCD is invoked as follows:

d := GCD(18,33)

We shall modify the official Pascal definitions of mod and div so that for
any integers a and b with b # 0 the values of amodb and adivb are integers
satisfying

(i) 0<amodb < |b|.
(if) (amod b) + b(adivd) = a.

In addition to arrays, some procedures use another kind of data structure
called a stack. A stack is a method of storing objects using the philosophy
“last in, first out”. Only the most recently stored object is accessible for
retrieval. Once that object has been removed, the next most recently stored
object is available. An object is “pushed” onto the stack and “popped” off
of the stack. The details of implementing a stack will normally be ignored.
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Suppose that we are using a stack to store integers. The result of the
statements

Clear the stack;

Push 7 onto the stack;
Push —3 onto the stack;
Push 11 onto the stack;
Pop z off of the stack;
Push 0 onto the stack;
Push —6 onto the stack;

While the stack is not empty do begin
Pop y off of the stack; Print y
End

is to assign 11 to = and to print out the numbers —6, 0, —3, and 7, in that
order.

A queue is a storage method based on the philosophy “first in, first out”.
It is analogous to the way customers wishing to purchase tickets at a box
office are served. Queues will be mentioned as alternatives to stacks in some
procedures.

1.7 The integers

In Chapters 2 through 7 we shall primarily be manipulating words. How-
ever, beginning with Chapter 8, computations with integers will play a very
important role, because almost every question about a finitely generated
abelian group can be reduced to the calculation of greatest common divisors
of integers.

The function GCD was introduced in the previous section. If d =
GCD(z,y), then d is the nonnegative generator for the additive subgroup
of Z generated by = and y. Thus there exist integers r and s such that
d = rz + sy. The extended Euclidean algorithm computes one such pair of
integers.

Procedure GCDX(z, y; d, 7, s);

Input: z,y : integers;
Output: d : the nonnegative ged of = and y;
T, 8 : integers such that d = rz + sy;

Begin

u, = signum(z); uy :=0; a:= |z|;

vy 1= signum(y); v, :=0; b:=|y|;

While b # 0 do begin

q :=adiv;

a:=a—gb;, u; 1= U — qU; Uy i= Uy — qUy;
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Interchange the pairs a and b, u; and v, u, and v,
End;
d:=a; r:=up; s:=1uy
End.

The value of signum(z) is 1 if 2 >0, 0 if x =0, and —1 if # < 0. The call
GCDX(12,—-34;d,r,s) sets d=2,r =3, and s = 1.

The least common multiple lem(z,y) of z and y is the nonnegative gen-
erator of (2Z) N (yZ). It is easy to show that

ged(z, y) lem(z, y) = |xyl.

If zy # 0, then lem(z,y) = |zy|/ ged(z,y). Clearly lem(z,y) =0 if 2y = 0.

Two integers a and b are said to be congruent modulo a third integer m
if m divides a—b. In this case we write a = b (mod m). Congruence modulo
m is an equivalence relation. The set of congruence classes modulo m is
Z,,, the set of cosets of mZ in Z. If m # 0, then |Z,| = |m|. For a in Z
let [a] = [a],, denote the congruence class modulo m containing a. Defining
[a] + [b] to be [a + b] and [a][b] to be [ab] makes Z,, a ring. The group U,,
of units in Z,, considered as a monoid under multiplication consists of the
classes [a], with a relatively prime to m, that is, with gcd(a,m) =1. If [a] is
in U,,, and we invoke GCDX(a,m;d,r,s), then [r] is the inverse of [a] in U,,,.

Suppose that m,,...,m, are pairwise relatively prime positive integers
and that a,,...,a, are any integers. The Chinese remainder theorem states
that the system of simultaneous congruences

z =40, (modm,),...,z =a, (modm,)

has a solution which is unique modulo m,...m,. The case r =2 is solved
as follows: Let 1 = gcd(my, my) = u;m; +usm,. Then x = ayu;m, +a,usm,
satisfies ¢ = a; (modm;,), i = 1,2. Of course,  should be reduced modulo
mymy.

Proposition 7.1. Suppose that m and n are positive integers and that m
divides n. The map f taking [a], to [al,, is @ ring homomorphism of Z,
onto Z,,, and f maps U, onto U,,.

m

Proof. If a = b (mod n), then a = b (mod m), so f is well defined. It is easy
to see that f is a ring homomorphism. If ged(a,n) = 1, then ged(a,m) =1
so f maps U, into U,,. To show that f maps U, onto U,,, we use induction
on n/m. If there is an integer k£ with m < k < n such that m divides k
and k divides n, then f is that composition of the homomorphisms from
Z, to Z; and from Z, to Z,,. By induction, U,, is mapped onto U, and U,
is mapped onto U,,,. Therefore f maps U,, onto U,,.
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We are left with the case in which p = n/m is a prime. Suppose that
ged(b,m) = 1. If p divides m, then ged(b,n) =1 and [b], is in U,. If p
does not divide m, then by the Chinese remainder theorem we can solve
the following pair of simultaneous congruences:

a=b (modm),

a=1 (modp).

Then [a], is in U, and f maps [a], to [a],, = [b],,- In either case [b],, is in
the image of U, under f. O

The reduction of integer matrices discussed in Chapter 8 and the com-
putation of Grobner bases described in Chapter 10 can easily lead to very
large integers, with hundreds or even thousands of decimal digits. With in-
tegers of this size, the traditional algorithms for multiplication and division
are not the most efficient. There is no time to delve into this interest-
ing topic here, but (Collins, Mignotte, & Winkler 1983) provides a good
introduction.

Exercises

7.1. Show that at all times in GCDX the matrix

uy u2
o ]
has determinant +1.
7.2. Compute the multiplicative inverse of 5 modulo 13.
7.3. Solve the simultaneous congruences z =2 (mod5), £ =3 (mod?7).
7.4. Show that after the call GCDX(z,y;d,r,s) the inequalities |r| < max(1,|y|) and [s] <
max(1, |z|) hold.

1.8 Backtrack searches

One of the principal algorithms discussed in this book, the low-index sub-
group algorithm of Section 5.6, uses a technique called backtrack search.
Other backtrack searches are described in Sections 3.6 and 4.9. This section
provides a brief introduction to backtracking.

In its simplest form, backtrack searching is a method for listing all se-
quences a,,...,a,, of integers which satisfy some condition P(a,,...,a,,).
Here m may vary from sequence to sequence. The approach is to consider
the possibilities for a;, then for a given a, to consider the possibilities for
a,, and so on. In order for backtracking to be effective, it must be possible
to formulate auxiliary conditions P;(ay,... ,aj) for j =1,2,... such that

(i) If P(ay,...,a,,) is true, then P;(ay,...,q;) is true for 1 < j < m.
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j
such that Pj(a,,...,a;) is true and there are explicitly computable

upper and lower bounds for these values.
(iii) For sufficiently large j the condition P;(a,,...,a;) is never satisfied.

(i) Givenay,... ;a;_1, there are at most a finite number of values for a;

By (ii), given a,,...,a;_, it is possible to compute the set S;(a;,...,a;_)
of integers a; such that Pj(al, ... ,aj) is true. For simplicity of exposition,
we shall assume that if a;, ..., a,, satisfies P, then no proper initial segment
ay,--.,a4, 1 < j <m, satisfies P.

The following is a generic backtrack search procedure.

Procedure SEARCH;
Begin
m:=1; & = 85();
While m > 0 do
If S,, # 0 then begin
Choose bin S,,; S, :=S,, — {b}; a,, :=b;

If P(a,,...,a,,) then write out a,,...,a,

Else begin m:=m+1; S, := S, (a,,...,a,_,) end
End
Else m:=m—1 (* Backtrack! *)

End.

Ezample 8.1. Let us use backtrack search to find the partitions of a positive
integer n. A partition of n is a sequence qa,, . ..,a,, of positive integers such
that a; > ay > --- > a,, and a; + ay + --- + a,, = n. A natural choice for

P(ay,...,a;) is

(1) ay>ay2>--->a;21,and
(2) ay+ay+---+a;<n.

With this definition, $;( ) = {1,2,...,n}. If j > 1 and P;_(ay,...,a;_;)

is true, then S;(a;,...,a; ;) is the set of positive integers not exceeding
either a;_, or n—(a; +---+a;_;).
The sequences a,...,a; examined in SEARCH can be displayed conve-

niently as a tree. The root of the tree is the empty sequence ( ). The
nodes immediately below the root correspond to the elements of S;( ).
Figure 1.8.1 shows the search tree traversed in obtaining the partitions of 5.

In Example 8.1, every sequence a,...,a; that satisfies P]-(al, ceeya4) is
extendable to a sequence a,,...,a,, satisfying P(a,,...,a,,). This is not
always the case.

Ezample 8.2. Let us define a special decomposition of a positive integer n
to be a sequence a,,...,a,, of positive integers such that @, +---+a,, = n,
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a, is divisible by 3, and |a; —a,,,| =2 for 1 <4 <m. Thus 3,1,3,5is a
special decomposition of 12. A plausible choice for P;(a,,...,a;) is

(1) ¢;>0,1<i<j, and

(2) @, is divisible by 3, and

(3) la; —a; ;| =2,1<i<j,and
(4) ay+---+a; <n.

Figure 1.8.2 shows the search tree examined in determining the special
decompositions of n = 11. The special decompositions are flagged with an
asterisk. With n = 14, the tree in Figure 1.8.3 is obtained. The tree has 17
nodes, but only one corresponds to a special decomposition, namely (6,8).

It is sometimes possible to “prune” the search tree by strengthening the
conditions Pj(al, ...,a.). However, if the new conditions take a long time
to check, then the running time may actually increase, even though the
number of nodes has decreased.
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Figure 1.8.3

Example 8.3. Let us look again at the searches of Example 8.2. Suppose
that a,,...,a,, is a special decomposition of n. A simple analysis shows
that if @, is even, then all the a,; are even and hence n is even. Similarly, if
a, is congruent to 1 modulo 4, then the sequence modulo 4 is 1,3,1,3,...
and n is congruent to 1 or 0 modulo 4. If @, is congruent to 3 modulo 4,
then n is congruent to 0 or 3 modulo 4. These results can be summarized
by saying that n is congruent modulo 4 to 0, a,, or 2a, +2. Thus condition
(2) in Example 8.2 can be replaced by

2'. @, is divisible by 3 and n is congruent modulo 4 to 0, a,, or 2a, + 2.
In addition, condition (4) may be replaced by

4. p=n—(a,+a,+---+a;), then eitherp=0orp>a;-2. Ifp>0
and a; < 2, then p > a; + 2.

With these changes, the size of the search tree is substantially reduced.
For n = 11, we have Figure 1.8.4. With n = 14, the tree is as shown in
Figure 1.8.5.

Frequently, the size of the search tree is difficult to determine in advance.
A technique for getting a quick estimate of the size of the tree is described in
(Knuth 1975). The estimate can occasionally be misleading, but in practice
it is quite useful.

To guess the size of the tree, we make a number of random “probes” into
the tree. A probe is carried out by executing the following procedure:

Procedure PROBE;
Begin
nyi=1, m:=1; § = Sy ( ); ny = |8 |;
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While S, # @ do begin
Choose b at random from S,,; a,, 1= b;
If P(a,,...,a,,) then break
Else begin
m:=m+1; S, :=85,(a,...,0,_1); Wy =N, 1|5,
End
End;
Write out ny,...,n,,
End.

In (Knuth 1975) it is shown that the expected value of n, is the number of
nodes in the search tree which have distance ¢ from the root. The observed
n,; may differ substantially from the expected values, but averaging over a
number of probes often gives a good picture of the size of the tree.

Example 8./4. Let us use the Knuth technique to explore two special decom-
position search trees using the revised auxiliary conditions of Example 8.3.
First, suppose that n = 35. Table 1.8.1 gives the average values of the n,
obtained on three different trials of 10 probes each. All results are rounded
to the nearest integer. The fifth column averages the three trials, and the
sixth column gives the actual number of nodes at each distance from the
root.
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Table 1.8.1
i | Trial 1 | Trial 2 | Trial 3 | Average | Actual
0 1 1 1 1 1
1 2 2 2 2 2
2 2 3 2 2 2
3 4 4 3 4 3
4 7 7 6 7 6
5 14 10 7 10 9
6 26 14 14 18 14
7 42 16 18 25 19
8 51 10 29 30 25
9 51 13 32 32 30
10 19 19 32 23 30
11 19 19 32 23 34
12 26 26 17 22
13 38 26 21 23
14 26 9 8
15 26 9 8
16 1
17 1

Now let us look at n = 60. Table 1.8.2 gives the results of trials of 20,
50, and 200 probes. The true values are also given.

Exercises

8.1. Find all partitions of 7 using SEARCH, and construct the search tree examined.

8.2. Find the special decompositions of 15 using SEARCH. First use the auxiliary conditions
of Example 8.2. Then use the modified conditions of Example 8.3. In each case construct
the search tree.

8.3. Devise auxiliary conditions for conducting a backtrack search for all permutations of
@ =1{1,2,...,n} which do not fix any element of 2. A permutation f is identified with
the sequence ay,...,an, where a; is the image of ¢ under f. Carry out the search for
n = 4 and describe the search tree.

1.9 Historical notes

The concept of a group developed slowly over a long period of time. The
work of Evariste Galois is often cited as the beginning of group theory as
a separate area of mathematics, but group-theoretic ideas and examples of
groups occurred well before Galois. A number of results in group theory
were obtained before the definition of an (abstract) group reached its final
form. Arthur Cayley came close to the definition in two attempts (Cayley
1854, 1878). Finitely generated groups were defined in (Dyck 1882), which
also contained the definition of a presentation by generators and relations.
Abstract finite groups were defined in (Weber 1882). The definition of
an arbitrary abstract group did not appear in essentially its modern form
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Table 1.8.2
i | Trial 1 | Trial 2 | Trial 3 | Actual
0 1 1 1 1
1 11 11 11 11
2 17 13 14 13
3 25 20 22 20
4 36 26 32 32
5 51 32 45 42
6 79 41 70 63
7 123 63 110 96
8 194 106 170 144
9 282 145 238 187
10 458 239 319 274
11 563 310 417 366
12 528 380 602 503
13 282 169 542 466
14 422 282 859 730
15 563 338 732 674
16 282 338 1014 994
17 451 591 707
18 901 957 1110
19 901 732 669
20 1802 1464 996
21 1802 1577 478
22 1802 664
23 451 243
24 901 310
25 79
26 92
27 14
28 15
29 1
30 1

until (Weber 1893). Note that Sylow’s theorems date from 1872 and were
originally results about finite permutations groups. The word problem,
the conjugacy problem, and the isomorphism problem were formulated in
(Dehn 1911), but the idea of trying to determine properties of a group given
by a finite presentation was already familiar by that time.

The existence of a finitely presented semigroup S with unsolvable word
problem was first proved by Emil Post in (Post 1947). The proof is based on
the fact that there is a Turing machine 7" with unsolvable halting problem.
That is, given a finite sequence I of input symbols, there is no algorithm for
deciding whether T' will stop with input I. The presentation for S encodes
a description of T'.

Credit for showing that the word problem for groups is unsolvable is usu-
ally shared between Petr Novikov and William Boone. The first published
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proof was (Novikov 1955). During the years 1954-57 Boone developed an al-
ternative proof in a sequence of papers which concluded with (Boone 1957).

Other algorithmic questions about groups were shown to be unsolvable in
(Adjan 1957) and (Rabin 1958).
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Rewriting systems

In this book we shall study a number of computational procedures. One of
the most basic of these is the Knuth-Bendix procedure for strings presented
in Sections 2.5 to 2.7. The Knuth-Bendix procedure manipulates rewriting
systems, which are sets of pairs of words. These systems are used to simplify
words systematically in an attempt to solve the word problem for particular
finitely presented monoids.

2.1 Orderings of free monoids

Let M = Mon (X | R) be a finitely presented monoid. Elements of M are
equivalence classes of words. As we study M, we shall frequently have
several words belonging to the same equivalence class and so defining the
same element of M. It will be useful to be able to select one of these words
as “simpler” or “better” in some sense than the others. The notion of
simplicity may depend on the presentation. If for any two distinct words
in X* we have a preference for one over the other, we have an ordering on
words.

Let S be a set. A linear ordering of S is a transitive relation < on S
such that for any two elements s and ¢ of S exactly one of the following
holds: s <t, s =1%,t <s. Let < be a linear ordering of § and let s and
tbein §. We write s <tifs<tors=t and we writet > sandt > s
if s <t and s < t, respectively. The ordering < is a well-ordering if there
are no infinite sequences s;,s,,... of elements of S such that s; >~ s, for
all 1 > 1. If we have a notion of one word being simpler than another and
“is simpler than” is a well-ordering of X*, then we cannot simplify a word,
that is, replace it by a simpler word, indefinitely.

Proposition 1.1. If < is a well-ordering of S, then every nonempty subset
of S has a least element.

Proof. The proof is a routine application of the axiom of choice. Let
T be a nonempty subset of S and suppose T' does not have a smallest
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element. Choose s; in T. Assume that s,,...,s; have been chosen in T
with s, > 85 > -+ > 5;. Then s; is not the smallest element of T, so we
may choose s;,, in T with s; > s;,,. This process generates an infinite,
strictly decreasing sequence in S, which contradicts the assumption that <
is a well-ordering of §. O

It is easy to define a linear ordering of a finite set. We just list the
elements of the set from first to last. A set with n elements has n! linear
orderings, all of which are well-orderings. We shall need some techniques
for constructing orderings of infinite sets.

Suppose < is a linear ordering of a set S and = is a positive integer. We
can define a linear ordering on the set S™ of n-tuples of elements of S by
saying that (s;,...,s,) < (t;,...,t,) if and only if there is an integer ¢ with
1 <i<mnsuchthat s, = tj for 1 <j <1 and s; <t,. This ordering is called
the left-to-right lexicographic ordering of S™. Note that the same symbol is
used for the ordering of S and the ordering of S™. We shall have too many
orderings to have a separate symbol for each one. The symbols <, <, =,
and > will normally be used for any linear orderings which arise.

If we use the ordinary ordering of the set Z of integers to define the
left-to-right lexicographic ordering of Z3, then

(-1,3,6) < (1,-2,-1) < (1,-2,5) < (1,2,-1).

There is also a right-to-left lexicographic ordering on S™. For this ordering
we compare s, and ¢, then s,_, and {,_,, and so on. Thus in the right-to-
left lexicographic ordering of Z3,

(1,-2,—1) < (1,2,-1) < (1, -2,5) < (~1,3,6).

Proposition 1.2. Suppose < is a linear ordering of S. The corresponding
lexicographic orderings of S™ are linear orderings, which are well-orderings
if < is a well-ordering on S.

Proof. Exercise. O

Given a linear ordering < of a set X, we can define a number of linear
orderings of X*. Let U =, ...u,, and V =v,...v, be in X*, with each u,
and v; in X. In the left-to-right lexicographic ordering of X*, we say that
U <V provided one of the following holds:

(i) m<nandy;=v,1<i<m.
(ii) There is an ¢ with 1 <4 < min(m,n) such that u; =v; for 1 <j <
and u; < v;.
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This definition may be restated as follows: U < V provided either that U
is a proper prefix of V or that some prefix of U is less than the prefix of V'
of the same length i in the left-to-right lexicographic ordering of X*.

Proposition 1.3. If < is a linear ordering of X, then the left-to-right
lexicographic ordering is a linear ordering of X*.

Proof. Exercise. O

If | X] > 1, then the left-to-right lexicographic ordering of X* is not a
well-ordering, even if X is well-ordered. If a and b are elements of X and
a < b, then ab > a%b > a3b >~ - . is a strictly decreasing sequence in X*.

There is also the right-to-left lexicographic ordering of X*. In this order-
ing, U < V provided U is a proper suffix of V' or some suffix of U is less
than the suffix of V' of the same length i in the right-to-left lexicographic
ordering of X°.

From now on, “lexicographic” without further qualification will mean
“left-to-right lexicographic”. When right-to-left is meant, it will be explic-
itly stated.

Another ordering of X* is the length-plus-lexicographic ordering. In this
ordering, u, ...u,, <v;...v, provided either that m <n or that m =n and
Uy ... U, comes before v, ...v,, lexicographically.

Proposition 1.4. The length-plus-lexicographic ordering is a linear order-
ing of X*. If < is a well-ordering of X, then X* is also well ordered.

Proof. We shall prove the statement about well-ordering, leaving the rest
as an exercise. Suppose < is a well-ordering on X. Let U; > U, > Us > ---
be a strictly decreasing sequence of words in X*. Since |U;| > |U,,,] for all
i, from some point on all of the U, have the same length m. By Proposi-
tion 1.2, the lexicographic ordering of X™ is a well-ordering. Therefore the
sequence must terminate. O

There is also a right-to-left version of the length-plus-lexicographic or-
dering.

An ordering < of X* is translation wnvariant if U < V implies that
AUB < AV B for all A and B in X*. Lexicographic orderings are not trans-
lation invariant. For example, if a and b are in X and a < b, then a < a®
lexicographically, but ab = a®b. We say that < is consistent with length if
U <V implies that |U| < |V|. The length-plus-lexicographic orderings are
clearly consistent with length.

Proposition 1.5. The length-plus-lexicographic ordering of X* is transla-
tion invariant.
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Proof. Let U = u,...u,, and V =9, ...v,, and suppose that U < V. To
prove translation invariance, it suffices to prove that Ux < Vz and 2U <2V
for all z in X. If m < n, then |Uz| = |2U| < |Vz| = |zV|. Thus we may
assume that m =n. Let U and V differ first in the i-th term. Then Ux and
Vz also differ first in the i-th terms, which are the same as the i-th terms
of U and V. Therefore Uz < Vz. A similar argument shows that xU < zV.

O

Proposition 1.6. In a translation invariant well-ordering of X* the empty
word comes first.

Proof. Suppose ¢ = U for some word U. Then by translation invariance
U = eU > U2 Similarly, U? = U®. Thus

e-UxU-U%>...

is an infinite, strictly decreasing sequence of words, contradicting our as-
sumption that < is a well-ordering.
O

The phrase “translation invariant well-ordering” is somewhat awkward.
The term “reduction ordering” will be used instead.

We shall now define a family of orderings which will play an important
role in Chapters 9 and 11. Let X and Y be disjoint sets and assume that
<y and <y are reduction orderings on X* and Y*, respectively. Using
these orderings, we shall construct an ordering of (X UY)*. Suppose U is
a word in (XUY)*. Then U can be written uniquely as

Agb Ayby ... A,_b A,

where the b; are in Y and the A; are in X*. Let V' be another word in
(XUY)* and let

Cyd,Cydy ...C,_,d,C,

be the corresponding decomposition of V. Define U < V if one of the
following holds:

(i) b;...b, <y d;...d,.
(ii) b,...b,=d,...d, and (A,,...,A,) comes before (Cy,...,C,) in the
lexicographic ordering of (X*)"*! defined by <y.

The ordering < on (X UY)* will be called the wreath product of <x and
~y and will be denoted <y 1 <y.
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Ezample 1.1. Let X = {a} and Y = {b}, and let <4 and <y be the orderings
by length of X* and Y*, respectively. If < is <x 1 <y, then

a'® < aba? < a®ba < b%a < bab < ab?.

Ezample 1.2. Let X = {a,a™'} and Y = {b,b7!}, and let <5 and <, be
the length-plus-lexicographic orderings with a <y a~! and b <y b7, If <
is <x 1 <y, then

aba~ b7 'a? < a 'ba’bla < a’b'aba"! < a?b"'a lba.

Proposition 1.7. The wreath product <y ! <y is a reduction ordering
of (XUY)*.

Proof. Let < denote <x ! <y. Suppose U, V, and W are words in
(XUY)* and let

U= AgbA,...bA

V =Cyd,C,...d,C,,
W = Eof,E, ... f,E,,

where the b, d;, and f; are in Y and the A;, D,, and E; are in X*. It is easy
to see that exactly oneof U <V, U =V, and V < U holds. Let us show that
< is transitive. Suppose U <V and V <W. Then b,...b. %y d,...d, =y
fio Sy by b <y fr... f;, then U < W. Suppose b, ...b. =d,...d, =
fi...fiysor=s=t Then (A,...,A,) comes before (Cy,...,C,), which
comes before (Ey,...,E. ). Therefore U < W in this case too, and < is a
linear ordering.

Let h: (X UY)* — Y* be the homomorphism which is the identity on
Y and maps each element of X to €. Then b,...b, can be written h(U).
Suppose U, > U, > - -- is an infinite, strictly decreasing sequence of words
in (X UY)*. Then h(U,) =y h(U,) =y - --, and so, from some point on, all
the h(U,) are the same. Without loss of generality, we may assume that

h(U;)=b,...b, for all 5. Let

U, = A6, AY .. .5, AD.
Then for i > 1 the (r + 1)-tuple (A",  A¥™) comes before (AP,
..., A¥) in the lexicographic ordering of (X*)™*!. But this contradicts
Proposition 1.2. Therefore < is a well-ordering.
Finally, we must prove translation invariance. Let U and V be as before,
and assume that U < V. First suppose y isin Y. If A(U) =b,...b, <y
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d,...d;,=h(V), then

h(Uy) =b,...by <y d;...dy = h(Vy),

since <y is translation invariant, so Uy < Vy. Suppose h(U) = h(V). Then
h(Uy) = h(Vy), and (A,,...,A,) comes before (Cy,...,C,). By the defi-
nition of the (left-to-right) lexicographic ordering on (X*)™+2, this means
that (A,,...,4,,¢) comes before (Cy,...,C,,e). Therefore Uy < Vy in all
cases. A similar argument shows that yU < yV.

Now suppose z is in X. Then h(Uz) = h(U) and h{(Vz) = h(V). If
h(U) <y h(V'), then Uz < Vz. Suppose that h(U) = h(V). Then Uz < Vzx
if and only if (Ay,...,A,z) comes before (C,,...,C,z). Let i be the first
index such that A; <y C;. If i =, then A x < C, .z, since <y is translation
invariant. In any case (4,,...,A,x) does come before (Cy,...,C,z), so
Uz < Vz. Similarly, U < V. Therefore < is translation invariant. O

Suppose X, Y, and Z are pairwise disjoint sets and <y, <y, and <, are
reduction orderings on X*, Y*, and Z*, respectively. Then (<x ! <y 1 <,
and <y <y 1<) are both orderings of (XUYUZ)*. It is a straightforward
exercise to show that these are the same ordering. Hence we can write
< x 1 <y 1 <5 without ambiguity. Note that <, ! < and <y 1 <y are both
orderings of (X UY')*, but they are not the same. Thus ! is associative but
not commutative.

Let X = {z,,...,z,} and assume that X is ordered by < so that z; <
Ty =< --- <z, On {z;}" there is a unique reduction ordering <;, namely the
ordering by length. The ordering <; 1 <, 1---1 <, will be called the basic
wreath-product ordering of X* determined by <. This ordering is closely
related to the recursive path ordering of Dershowitz. See (Dershowitz 1987).

Questions of decidability arise in connection with orderings of free
monoids. Suppose X is a finite set and R is a finite subset of X* x X*.
There is no algorithm which can decide if there is a reduction ordering of
X* such that P > Q for all (P,Q) in R.

Let us turn now to the question of computing with wreath-product order-
ings. Let X be the disjoint union of nonempty subsets Xj,..., X, and for
1<i<rlet <, be areduction ordering of X;. Set < equalto <;21<52---1<,.
Suppose we are given two words U and V' in X*. What is an efficient way
to decide whether U <V, U=V, or V <U? If U and V have a common
nonempty prefix so that U = AB and V = AC for words A, B, and C, then
we may replace U and V by B and C without changing the answer to our
question. Thus we may assume that U and V do not start with the same
generator. If either U or V is empty, then the answer is obvious, so we may
also assume that both U and V are nonempty.
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Let m be the largest index such that U contains a generator in X,,. Let
U=Ay,4,.. . A,_z,A,

where each z; is in X, and the A; are in (X; U---UX,,_;)*. We shall call
m the degree of U, Y =z, ...z, the head of U, and A, the left end of U.
Let n be the degree of V, let Z be the head of V, and let B, be the left
end of V. Since U and V do not start with the same generator, U < V if
and only if

(a) m<m,or
(b)) m=nandY <,, Z, or
() m=n,Y =2, and A; < B,.

Note that if m =n and Y = Z, then A; and B do not start with the same
generator.

Given U, let the integers d;, d,,... and the words P}, P,,... and @,
Q... be defined as follows: Set @, = U, and for ¢ > 1 let P, be the head of
Q;, let d; be the degree of Q;, and let @, be the left end of Q;, provided
that left end is nonempty. Let d,, P,, and @, be the last terms in these
three sequences. We shall call dl,. d the sequence of degrees of U and
P,,..., P, the sequence of heads of U.

Proposition 1.8. Let U and V be nonempty words in X* which do not start
with the same generator. Let d,,...,d, and P,,..., P, be the sequences of
degrees and heads of U and let eq,...,e, and Ry, ..., R, be the sequences of
degrees and heads of V. Then U <V if and only if one of the following
holds:

(a) s<t,and for 1 <i< s wehaved;=¢;, and P,=R,.
(b) There is an integer i < min(s,?) such that d; = e; and P; = R; for
1<j<iand either d; <e; or d;=e; and P, <, R;.

Proof. This is an easy induction on the maximum of d;, and e;. O

We can construct the sequences d,,...,d, and P,...,P, for U in time
linear in |U|.

Procedure HEAD(U; s, dp d,Py,...,P,);

MR a3

Input: U a nonempty Word
Output: s : a positive integer;
dy,...,d, : the sequence of degrees of U;

P,...,P, : the sequence of heads of U,
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Begin
§:=0; m:=0; Let U=y ...u
For i := 1 to k do begin
Let j be the degree of u,;
If j > m then begin s :=s+1; m:=j; ¢,:=m; W,:=u, end
Else if j = m then W, := Wy,
End;
For i:=1+to s do begin d; :=c,y_;; P;:=W,,,_; end
End.

Ezample 1.3. Let X; = {u,v}, X, = {w,z}, and X5 = {y,2}. Suppose
U = YuzuwvwuvTyusozwiwyuwsy.

Here we have underlined the terms in U whose degrees are at least as large
as the degree of any earlier term. The procedure HEAD simply groups
these by degree, giving

W, =vu,
W, = zwwz,

W, = yzy.

Thus the sequences of degrees and heads for U are 3, 2, and 1 and yzy,
rwwz, and vu, respectively.

There are many more ways to define linear orderings of free monoids.
One approach is to assign to each generator a nonnegative real number
called its weight. The weight of a word is then defined to be the sum of the
weights of its terms. Words are ordered first by weight, with some other
ordering used to break ties.

Exercises

1.1. Show that the operation ! is associative.

1.2. Suppose that < is a reduction ordering on X*. For U and V in X*, define U <! V
to mean Ut < V1, where U' denotes the reversal of U. Prove that <! is a reduction
ordering.

1.3. Let A= {a,b} and B = {c,d} and define <4 and <p to be the length-plus-lexicographic
orderings of A* and B*, respectively, in which a <4 b and ¢ <p d. Arrange the following
words in increasing order using the ordering <4 ! <p on (AU B)*: cadbe, abcbdabd,
acabdba, abcbadbd, acdch, acbadab.

1.4. Arrange the words in Exercise 1.3 in increasing order using the basic wreath product
ordering < of {a,b,c,d} in whicha <b<c<d.
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1.5. Let < be a reduction ordering on X*. Prove that U < AUB for any words A, B, and
U in X* such that AB #e¢.
*1.6. Let X = {a,b} and let U be the set of all words in X* of length at most 3. How many
of the 15! linear orderings of U can be extended to reduction orderings of X*?

2.2 Canonical forms

Suppose that we are working with a finitely presented monoid M. Although
the word problem is in general unsolvable, it is natural to be optimistic and
look for a solution in M anyway. Assume that M is given as the quotient
monoid of the free monoid X* modulo the congruence ~. One approach
to the word problem is to attempt to choose for each element u of M one
word U from among all the words in X* which define u. Such a choice is
called a canonical form for u.

Usually we would like the canonical form for u to be the “simplest”
word defining u. As we saw in the previous section, reduction orderings
provide convenient notions of simplicity. Let us fix a reduction ordering <
on X*. For each u in M the set of words defining u is nonempty, so this
set has a smallest element U. We define U to be the canonical form for u
relative to <. For any word V, let V be the canonical form for the ~-class
containing V.

It must be emphasized that this definition of canonical form is noncon-
structive. Given X, a generating set R for ~, and the definition of <, we
have at this point no way of computing canonical forms. That is, given a
word V, we have no algorithm for computing V. If we can compute canon-
ical forms, then we can solve the word problem, for U ~ V if and only
if U = V. The unsolvability of the word problem tells us that there are
presentations for which no algorithm for computing V exists.

Proposition 2.1. If U is the canonical form for an element of M, then
subwords of U are canonical forms for elements of M.

Proof. Let V be a subword of U, so U = AVB. If V is not a canonical
form, then there is a word W such that V > W and V ~ W. But then
AV B ~ AW B and, since < is translation invariant, AV B =~ AW B. Thus
U is not the first word in its ~-class, contradicting the assumption that U
is a canonical form. O

Let (P,Q) be an element of a generating set R for ~. Replacing (P, Q)
by (Q, P) does not change ~, so we may assume that P > Q. In this case,
(P, Q) is called a rewriting rule with respect to <. If every element of R is
a rewriting rule, then R is called a rewriting system with respect to <.

Suppose that R is a rewriting system. Let P be the set of left sides of
elements in R, let A be the ideal of X* generated by P, and let C be the
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complement X* — N. If U is in N, then there are words A, B, P, and
Q such that U = APB and (P,Q) isin R. Let V = AQB. Then P ~ Q,
soU~V. Also P>~Q,soU = V. If Visin N, then we can repeat this
process and get another word W such that U~V ~ W and U >V > W.
Since < is a well-ordering, this process cannot go on indefinitely, and we
eventually produce a word C in C such that U ~ C and U = C. This
procedure of replacing subwords which are left sides of rewriting rules with
the corresponding right sides is called rewriting. Elements of C are said
to be irreducible or reduced with respect to R, since no rewriting can be
performed on them. The canonical form of every ~-class is in C, but a
~-class may contain other elements of C as well. Suppose (P,Q) is in R.
To emphasize that rewriting replaces P by @, we shall frequently write
P — Q for (P,Q). More generally, we shall write U =V or U > V if V
is derivable from U in one step using R in the sense that there are words
A, B, P, and @ such that P - Q isin R, U = APB, and V = AQB.
Let us formalize the rewriting process.

Procedure REWRITE(X,R,U; V');

Input: X : a finite set;
R : a finite rewriting system on X* with respect to a
reduction ordering;
U : a word in X*;
Output: V : a word in X* irreducible with respect to R and

defining the same element of Mon (X | R) as U;
Begin
Let P be the set of left sides in R; V :=U;
While V contains a subword in P do begin
Let V=APB with P> Q in R; V := AQB
End
End.

The reduction ordering mentioned in REWRITE need not be explicitly
given. However, its existence is necessary to insure termination.

The description of REWRITE is really only an outline. In carrying out
the procedure, a number of choices must be made. First, there may be
many occurrences of words in P as subwords in V. Second, an element of
P may be the left side of more than one rule in R, so there may be many
choices for Q. The value of V returned by REWRITE may depend on these
choices.

Ezample 2.1. Let X = {z,y} and let R = FGRel(X), so R consists of the
rules

gzl e, zlzoe yyloe yly—e,
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and F = Mon (X | R) is a free group of rank 2. Let
U =zyz oy oy tyzy.
We can rewrite U using R in several ways. Here are two possibilities:

zyz ey ey lyzy — yy ey tyay

- zz 'y lyzy >y lyzy — 2y
and

a:ya:_la:y_la:_ly_lya:y — a:ya:"la:y'la:'la:y

— a:ya:'la:y'ly — a:ya:‘la: — Y.

The underscores highlight the subwords which are replaced (in this case
deleted) in passing to the next word. Both of these rewritings produced
the same result. Rewriting in X** using the system FGRel(X) is called free
reduction. We shall develop a simple test in Section 2.3 which will confirm
that free reduction always produces canonical forms.

Ezample 2.2. Let X = {a,b} and let R consist of the rules a*> — ¢, b1 — ¢,
and ba — ab®. This is a rewriting system on X* with respect to the basic
wreath-product ordering with a > b. Let us rewrite the word baa in two
ways. The first way is very easy:

baa — b.
The second way takes a little longer:

baa — abbbba — abbbabbbb — abbabbbbbbbb
— ababbbbbbbbbbbb — ababb — aabbbbbb — bbbbbb.

The result is b in the first case and b® in the second.

There is an extensive literature on rewriting systems. The books
[Le Chenadec 1986], [Benninghofen, Kemmerich, & Richter 1987], and
[Jantzen 1988| contain many references. We do not have time to go very
deeply into the subject. Our first goal will be to develop a condition
on a rewriting system R which guarantees that the result V returned by
REWRITE(X,R,U;V) depends only on the input word U, not on choices
made in the procedure. Then we shall present a procedure which attempts
to add rules to R, if necessary, so that the condition is satisfied.
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Let R be a rewriting system on X* with respect to a reduction ordering
< and let ~ be the congruence generated by R. Suppose U and V are in
X*. We shall say that V is derivable from U using R if there is a sequence
of words

U=U,U,...,U,=V

with ¢ > 0 such that U;,, is derivable from U; in one step, 0 <i <t. In
this case we shall write U -~ V. Clearly —> is a reflexive and transitive
relation on X*. Also, if U %>V, then U~V and U = V.

Proposition 2.2. IfU 2>V, then UW = VW and WU > WV for all
W in X*.

Proof. Exercise. O

Proposition 2.3. If U and V are words in X*, then U ~ V if and only if
there is a sequence of words U =U,, U,,..., U, =V such that for 0 <i <t
either U; 5> Uy, or Uy 5 U

Proof. Let us write U = V if such a sequence U, ...,U, exists. Since
U; ~U,,,, we know that U =V implies that U ~ V. It is easy to see that =
is an equivalence relation. By Proposition 2.2, = is a congruence. If (P, Q)
is in R, then P = @. Therefore by the definition of ~, it follows that ~ is
contained in =. Thus ~ and = are the same relation. 0O

There are a number of useful properties which the relations —~ and %>
may possess:

*The Church-Rosser property: If U ~ V, then there is a word @ such that
U+ QandV 2% Q.

*Confluence: If W —~ U and W —%~ V, then there is a word @ such that
U-2%Qand V2 Q.

*Local confluence: If W —» U and W —> V, then there is a word @ such
that U %> Q and V %> Q.

Proposition 2.4. If the Church-Rosser property holds, then every ~-class
contains a unique element of C, the canonical form for that class.

Proof. We have already noted that the canonical form for each ~-class is
in C. Suppose U and V are elements of C in the same ~-class. Then by the
Church-Rosser property there is a word @ such that U -~ Q and V =~ Q.
But since U and V are in C, we must have U=Q=V. O
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Proposition 2.5. For any rewriting system R relative to a reduction or-
dering <, the Church-Rosser property, confluence, and local confluence are
equivalent.

Proof. (a) The Church-Rosser property implies confluence. Assume that
W = U and W 5> V. Then W ~ U and W ~ V. Therefore U ~ V,
and by the Church-Rosser property there is a word Q such that U %> @
and V 2 Q.

(b) Confluence implies local confluence. Since local confluence is a special
case of confluence, this is obvious.

(c) Local confluence implies confluence. Let us say that confluence fails
at a word W if there are words U and V such that W %> U and W %>V
but no word @ such that U - Q and V %> Q. Let W be the set of
words at which confluence fails, and assume W is nonempty. Since < is a
well-ordering, W has a smallest element W. Suppose that W —%» U and
W - V. We want to show that there is a word @ such that U -~ Q and
V % Q. If U=W, then we may take @ =V. If V=W, then we may
take Q = U. Therefore we may assume that U # W and V # W. There
exist words A and B derivable from W in one step such that A =~ U and
B %> V. By local confluence, there is a word C such that A 2% C and
B 2~ C. Since A < W, it cannot happen that A is in W. Thus there is a
word D such that U %~ D and C —%» D. Therefore B —%» D. Since B<W,
there is a word @ such that D -~ Q and V %> Q. But then U > @ and
confluence does not fail at W. Therefore W = ) and confluence holds.

(d) Confluence implies the Church-Rosser property. Suppose U ~ V. We
want to show that there is a word @ such that U = Q and V %> Q. By
Proposition 2.3, there is a sequence U = U, U, ..., U, = V such that for
0 <i <t either U; %> Uy, or U;,, > U;. We proceed by induction on ¢.
If t =0, then we may take Q =U = V. If t = 1, then we may take Q to
be the smaller of U and V. Suppose t > 2. Then U; ~V and by induction
there is a word A such that U; %> A and V 5> A. If Uy %> U}, then we
may take Q to be A. Suppose U; -5~ U;. By confluence, there is a word Q
such that Uy %> Q and A %> Q. But then V' —%> @ and we are done. O

Note that our proof of Proposition 2.5 relied heavily on the fact that < is
a well-ordering. In more general situations, local confluence need not imply
confluence.

Proposition 2.6. If R is a confluent rewriting system on X*, then after
REWRITE(X,R,U;V) the value of V depends only on R and U, not on
the choices made during the rewriting.

Proof. By Propositions 2.5 and 2.4, the value of V is the canonical form
for the ~-class containing U. O
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A rewriting system R is reduced if each right side is irreducible with
respect to R, no word is the left side of two different rules, and no left
side contains another left side as a proper subword. Equivalently, R is
reduced if for each (P,Q) in R both P and Q are irreducible with respect

to R—{(P,Q)}.

Proposition 2.7. Let < be a reduction ordering on X*. Every congruence
on X* is generated by a unique reduced, confluent rewriting system with
respect to <.

Proof. Let ~ be a congruence on X* and let M be the quotient of X*
modulo ~. Let C = {U|U € X*} be the set of canonical forms for the
elements of M with respect to < and let A be the ideal X* —C. Let P be
the unique minimal generating set for A" and set S = {(P,P) | P € P}. We
shall show that S is a reduced, confluent rewriting system with respect to
<, and that & is unique with these properties.

For any word U, we have U = U. If P is in NV, then P # P, so P >~ P.
Thus &S is a rewriting system with respect to <. Let = be the congruence
generated by S. Since P ~ P for all P in P, the relation = is contained
in ~. But any word which is irreducible with respect to S is in C. Thus
REWRITE(X,S,U;V) returns V as U. Therefore U = U for all words U,
and this implies that = and ~ are the same. By its definition, S is reduced.
fUA~V,then U % U and V o V. But U =V, so the Church-Rosser
property holds and S is confluent.

Now suppose that 7 is any reduced, confluent rewriting system with
respect to < which generates ~. Let P be in P. Rewriting P using 7 must
give P. Therefore P contains a left side of 7 as a subword. But all proper
subwords of P are in C. Thus 7T contains a rule (P, Q). Since 7T is reduced,
Q isin C, so @ = P. Therefore SCT. If (U,V) is in T — &, then U is not
in C, and hence U contains a subword P in P. But P is a left side in S,
and this contradicts the assumption that 7 is reduced. O

Suppose that < is a reduction ordering on X*, R is a subset of X* x X*,
and ~ is the congruence generated by R. The reduced, confluent rewriting
system with respect to < which generates ~ will be denoted RC(X, <,R) or
RC(X, <, ~). If R is already confluent, it is easy to determine RC(X, <,R).

Proposition 2.8. Let R be a confluent rewriting system with respect to <
on X*. Let P be the set of left sides in R which do not contain any left
sides as proper subwords. For P in P let P be the result of rewriting P
using R. Then RC(X,<,R) = {(P,P)| P € P}.

Proof. Let ~ be the congruence generated by R. Since R is confluent, any
word which is not first in its ~-class contains a subword which is a left side
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in R. Thus P is the minimal generating set for the ideal of “noncanonical

forms”, and RC(X,<,R) is {(P,P)|PeP}. O

Proposition 2.9. Let X be a finite set and let ~ be a congruence on X*
such that the set of ~-classes is finite. For every reduction ordering < of
X* the system RC(X, <, ~) is finite.

Proof. Let (P,Q) be a rule in S = RC(X, <, ~). For 0 <4 < |P|let P, be
the prefix of P of length i. Each P, is a canonical form, so P, and P; are
in different ~-classes if 0 < i < j < |P|. Therefore |P| cannot exceed the
number of ~-classes. Since no two distinct rules in S have the same left
side, this means that S is finite. O

If R is a confluent rewriting system on X*, then we shall say that (X, R) is
a confluent presentation for Mon (X | R). In Section 1.5 we remarked that
it is in general impossible to decide whether a finitely presented monoid is a
group. However, if we have a finite, confluent presentation for the monoid,
the situation is different.

Proposition 2.10. Let (X,R) be a finite, confluent presentation for a
monoid M. It is possible to decide whether M is a group.

Proof. See Exercises 2.2 to 2.4. O

Exercises

2.1. Suppose that R is a confluent rewriting system with respect to the reduction ordering <.
Show that {(P!, Q") | (P,Q) € R} is confluent with respect to the ordering <! defined in
Exercise 1.2.

2.2. Let (X,R) be a finite monoid presentation for a group G. For U in X* let {U] denote
the element of G defined by U. Suppose that (AzB,Q) is in R, where A and B are in
X* and z is in X. Show that [z]~! = [B][Q]!{A].

2.3. Let X, R, and G be as in Exercise 2.2 and assume that R is confluent with respect to
some reduction ordering on X*. Set X¢ =9, and for ¢ > 0 define X, to be the union of
X; and the set of x in X for which there is an element (P, Q) of R such that  occurs in
P and Q is in (X;)*. Prove that X, = X for some m.

2.4. Use the ideas of Exercises 2.2 and 2.3 to construct a proof of Proposition 2.10.

2.5. Let X be a finite set, let < be a length-plus-lexicographic ordering on X**, and let ~ be
a congruence on X** such that z*2~® ~¢ for z in X and a in {1,—1}. Suppose that
(P,Q) is in RC(X*, <, ~). Show that |P| < |Q| +2.

2.3 A test for confluence

Let < be a reduction ordering on X* and let R be a finite rewriting system
on X* with respect to <. If R is confluent,, we can solve the word problem in
M =Mon (X | R} by using REWRITE to compute canonical forms. In this
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section we shall develop a test for confluence. This test is valid even when
R is infinite, but in that case there is no guarantee that we can actually
carry out the test.

Suppose R is not confluent and hence not locally confluent. We shall
say that local confluence fails at a word W if there are words U and V in
X" such that W —» U and W — V, but there is no word @ for which
U4 QandV - Q.

Proposition 3.1. Suppose local confluence fails at a word W but does not
fail at any proper subword of W. Then one of the following conditions
holds:

(1) W is the left side of two different rules in R.
(2) W is the left side of a rule in R, and W contains another left side
as a proper subword.

(3) W can be written ABC, where A, B, and C are nonempty words
and AB and BC are left sides in R.

Proof. By assumption, there are words A,, B,, P, @, Ay, By, P,, and
Q, such that the following hold:

(i) W = A,P,B, = A,P,B,.
(i) (P,@,) and (P,,Q,) are in R.
(iii) There is no word derivable from both U, = A;Q,B, and U, =
Ay,Q,B,.

Suppose first that the occurrences of P, and P, in W do not overlap. Then
we may assume that W = A, P,CP,B,, where B, = CP,B, and A, = A, P,C.
But then U, = A,Q,CP,B, and U, = A, P,CQ,B,. Therefore A,Q,CQ,B,
is derivable from both U; and U,, which contradicts our assumption.

Assume now that the occurrences of P, and P, do overlap. We may
assume that W = A, ABCB,, where B # ¢ and one of the following holds:

(a) P,=ABC and P, = B.
(b) P, = AB, P, = BC, and both A and C are nonempty.

Suppose A,;B, # . Then ABC is a proper subword of W and by as-
sumption local confluence does not fail at ABC. Assume (a) holds. There
is a word @ derivable from both @, and AQ,C. But then A,QB, is deriv-
able from both U; = A;Q,B, and U, = A, AQ,CB,. Similarly, we get a
contradiction if (b) holds.

Thus we have A; = B, = ¢. Suppose (a) holds. If AC # ¢, then condition
(2) of the proposition holds. If AC = ¢, then P, = P, and we must have
Q, # Q,, since otherwise U; = U,. Therefore condition (1) holds if AC =¢.
Finally, (b) is precisely condition (3). O
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If W satisfies the conclusion of Proposition 3.1, then we shall say that
W is an overlap of left sides in R. If condition (3) holds, then W is a
proper overlap. With a reduced rewriting system, only proper overlaps are
possible. Note that conditions (1) and (2) can be combined into a single
condition which states that W is a left side of a rule in R and W contains
the left side of some other rule as a subword.

If R is finite, then the set W of words which are overlaps of left sides in R
is finite. For each word W in W we can list the finite set I/ of words derivable
in one step from W. For each U in U we can invoke REWRITE(X,R,U; V).
If more than one value of V is obtained, then R is not confluent, for we
have found two words which are irreducible with respect to R and define
the same element of M. If for all U we obtain the same value of V', then
local confluence does not fail at W. By performing this test for all W in
W, we can decide whether R is confluent.

Ezample 8.1. Let X be any set. In Section 1.4 we defined X* = X x {1,-1}
and wrote z¢ for (z,a). The free group generated by X is defined to be
F = Mon (X?* | R), where R = FGRel(X) consists of the rules z%z~* — ¢,
where z is in X and « is +1. By Proposition 3.1, if local confluence fails,
then it fails at one of the words z®z~%z®. But there are only two possible
ways to rewrite such a word:

%z %% — 2%, 2%z %x°% — %,

and the results agree. Therefore R is confluent, and free reduction, the
process of rewriting with respect to R, always produces canonical forms.
A word in X** is freely reduced, or irreducible with respect to R, if it
contains no subwords of the form z®z™®. The freely reduced words are
the canonical forms for the elements of F' with respect to every reduction
ordering of X**.

Erample 3.2. Let Y = {z,y,2} and let 7 consist of the rules
TYz — €, YT —E, 2TY —E.

To check that 7 is confluent, we need only test local confluence at the words
TYZIT, YZTY, 2LYZ, TYZTY, yzryz, and zxyzz. At zyzxr we have

Tyzr — T, ITYz — T
Local confluence holds at the other five words as well, so 7 is confluent.
It turns out that G =Mon (Y | 7) is a free group of rank 2. Let X = {a,b}
and define homomorphisms f: X** — Y* and g: Y* — X** by setting

fle)=2, f)=y, fla)=yz, [fO)=2zz,
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g(x)=a, gy)=b, gz)=bltal.

Let ~ be free equivalence on X** and let ~ be the congruence on Y*
generated by 7. If (Ue) is in FGRel(X), then f(U) =~ ¢. Therefore f
defines a homomorphism f from the free group F generated by X to G.
Also, if (V,e) is in 7T, then g(V) ~ e. Thus g defines a homomorphism
7:G — F. Now f maps [a], [], [a”!], and [b7"] to [z], [y], [vz], and [22],
respectively, and g maps these elements to [a], [b], [bb~'a"!] = [a7!], and
[b"a"la] = [b7}]. Therefore f o is the identity on F. A similar argument
shows that go f is the identity on G, and so f and 7 are isomorphisms.

Example 3.3. Let X = {z,y,z} and let S consist of the rules

2 se, yz—e, zy—oe.

Local confluence has to be checked at x®, y2y, and zyz. This is easily done,
so S is confluent.

Example 3.4. Let Y = {a,b} and let T consist of the rules
abab — ¢, baba — e.

To show that 7T is confluent, we must check local confluence at the following
six words:

ababa, babab,
ababab, bababa,
abababa, bababab.

For example, we have
ababa — a, ababa — a,
and
bababa — ba, bababa — ba.

Local confluence holds at the other four words as well, and thus 7 is
confluent.

Now H =Mon (Y | T} is isomorphic to K = Mon (X | 8) of Example 3.3.
Define f: X* > Y*and g:Y* - X* by

f(x) = ab, f(y) =a, f(Z) = bab,
g(a)=y, g(b)=zz.
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Let ~ be the congruence on X* generated by S and let &~ be the congruence
on Y* generated by 7. For (U,¢) in § and (V,¢) in T we have f(U) =~ ¢
and g(V') ~ . Moreover, fog maps z, y, and 2 to elements of [z], [y], and
[2], respectively. For example,

(f 0 9)(2) = g(bab) = zzyzz ~ 2.

Similarly, g o f maps a and b to elements of [a] and [b], respectively.
Therefore f and g induce isomorphisms between H and K.

Ezxample 3.5. Let X = {a,b} and let S consist of the following rules:

at e, ab’a — bab,
b e, baba — ab?,
abab — b%a,  b*ab® — aba.

Since the length of each left side is greater than the length of the corre-
sponding right side, this is a rewriting system with respect to any of the
length-plus-lexicographic orderings of X*. To show that S is confluent, we
must test local confluence at 30 words. For example,

ababba — abbab — babb,
ababba — bbaba — babb.

Local confluence holds at these words, so S is confluent. The monoid
G = Mon (X | S) is a group since [a]™! = [a] and [b]~! = [b?]. In fact G
is a finite group. See Exercise 3.3.

Ezxample 3.6. Let X = {a,b,c} and let S consist of FGRel( X) together with
the following rules:

1 1

ca—ac, ca  —a ¢ c!

1 1.-1

a—ac , € a 1et

c_ b
cb—be, cbl—ble, ch—-bct, Wl oblc]

ba —abe, bal—alecl, bla—ablcl, blal—=a b le

—a

Then S is a rewriting system with respect to the basic wreath-product
ordering of X** with ¢ < ¢ <b<b"! <a <a~!. To verify the confluence
of 8, we must test local confluence at 37 words. For example,

cba — cabc — achc — abce,

cba — bea — bac — abee.
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The set of canonical forms is the set of words a®b®c?, where a, 8, and
are arbitrary integers.

Ezample 3.7. Let X = {a,b} and let S consist of FGRel(X) along with the
following rules:

ba —ab, ba'—a7lh, bla—abl, bla' a7l

It is easy to check that S is a confluent, reduced rewriting system with
respect to the length-plus-lexicographic ordering of X** witha <a™1 <b <
b~!. Now let T consist of FGRel(X) plus the following set of rules:

ba —ab, bla—ab, alb—bal, a7 6! —bla,

abla™! - b, i=41,42,....

It is not hard to see that 7 is an infinite, confluent, reduced rewriting
system with respect to the length-plus-lexicographic ordering of X* with
a<b=<b"!<a!. The systems S and 7 generate the same congruence ~
on X*. Therefore whether or not the reduced, confluent rewriting system
RC(X, <, ~) is finite depends on the ordering <.

Let us formalize the confluence test based on Proposition 3.1. The
function CONFLUENT described next implements one version of the test.

Function CONFLUENT(X, R): boolean;
Input: X : a finite set;
R : a finite rewriting system on X* with respect to some
reduction ordering;
(* True is returned if R is confluent. *)
Begin
For all (P,Q) in R do
For all (R,S)in R do
For all nonempty suffixes B of P do begin
Let U be the longest common prefix of B and R;
Let B=UD and R=UE;

If D or F is empty then begin
Let P = AB;
REWRITE(X,R,ASD;V); REWRITE(X,R,QFE; W);
If V # W then begin CONFLUENT := false; Goto 99 end
End
End;

CONFLUENT := true;
99:End.
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In CONFLUENT, the conditions of Proposition 3.1 have been revised
slightly. See Exercise 3.5. If an appropriate index structure is available,
then the operation of CONFLUENT can be speeded up substantially. See
Exercise 3.6.

The following example describes some confluent rewriting systems of
theoretical interest. These systems may be infinite.

Example 3.8. Let S be a semigroup. In the following discussion it will be
necessary to distinguish carefully between elements of S and elements of
S*. If x and y are in S, then “zy” could mean either the sequence z,y,
which is a word of length 2 in S*, or the single element of S which is the
product of z and y. To resolve this ambiguity, we shall introduce an explicit
symbol e for multiplication in S. Thus z e ¥ is the product of z and y, and
zy is the word of length 2.

Let S consist of the rules xy — z oy for all  and y in S. The set S is
a rewriting system with respect to any length-plus-lexicographic ordering
of S*. To prove the confluence of S, we must test local confluence at the
words zyz. We have the following reductions:

Tyz > Tyez — e (yez),

zyz — (Tey)z — (zey) ez

Thus local confluence is just the associative law in S. The pair (S,8) is
a semigroup presentation for S. If S is a monoid with identity e, then
(S,8) is not a monoid presentation for S. To get a monoid presentation,
we must add the rule e — ¢. Let T = SU {(e,e)}. The rewriting system
T is confluent, and the set of canonical forms is (S — {e}) U {e}. We call
(S,8) and (S, T) the multiplication-table presentations of S as a semigroup
and as a monoid, respectively.

If S is a monoid, then the presentation (S, T) is confluent but not reduced.
For example, if z @y = ¢ in S, then the right side of the rule zy — e is not
irreducible. Also, the left side e is a proper subword of other left sides. Let
~ be the congruence generated by 7. For any length-plus-lexicographic
ordering < of S*, the system RC(S, <, ~) consists of the following rules:

e — &,
Ty — Ty, r#e, YFe zTeyFe,
Ty —e, TFe, yFe zey=e
In Exercise 2.4 of Chapter 1 we constructed the direct product of two
monoids. We shall now describe another type of product called the free

product. We begin with a proposition about combining two rewriting
systems with disjoint sets of generators.
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Proposition 3.2. Suppose X and Y are disjoint sets and R and S are,
respectively, confluent rewriting systems on X* and Y* with respect to re-
duction orderings on those sets. Then RUS is a confluent rewriting system
with respect to any reduction ordering of (X UY)* which extends the given
orderings.

Proof. The words described in Proposition 3.1 at which the local conflu-
ence of R US must be checked are either in X* or in Y™,
]

Let M and N be monoids. By taking an isomorphic copy if necessary, we
may assume that M NN =0. Let 7, and 7 be the monoid multiplication-
table rewriting systems for M and N, respectively. By Proposition 3.2, 7,,U
Ty is a confluent rewriting system. The monoid Mon (M UN | T, UT}) is
called the free product of M and N and is denoted M x N. Canonical forms
for M * N are € and u,u,...u,,, where each u, is a nonidentity element of
M or of N, and for 1 < ¢ < m either u; isin M and u,,, isin N or u; is in
N and u,, isin M. It is clear from the definition that M + N = N x M.

Proposition 3.3. Suppose (X,R) and (Y,S) are monoid presentations for
M and N, respectively. If XNY =@, then (X UY,RUS) is a presentation
of MxN.

Proof. The proof is primarily diagram chasing and is omitted. O
The operation of forming free products is associative.

Proposition 3.4. If L, M, and N are monoids, then (L x M) * N and
L x (M % N) are naturally isomorphic.

Proof. Exercise. O
Proposition 3.5. If M and N are groups, then M x N is a group.

Proof. Let f: M — M % N be the obvious homomorphism. The image
of M under f is a group. Similarly, the image of N in M % N is a group.
Since these images generate M x N as a monoid, it follows that M * N is a
group. O

Ezample 3.9. The free group F generated by a finite set X is defined by
monoid relations 2z~ =1 on generators z* with £ in X and o = +1. For
z in X, let F, be the free group generated by {x}. Then F, is isomorphic
to Z, and F is (isomorphic to) the free product of the groups F,.
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Example 3.10. The group of Example 3.3 is the free product of Mon {z}),
which is isomorphic to Z,, and Mon (y, 2}, which is isomorphic to Z.

Proposition 3.6. Let X = {z,,...,x,}, let m be a positive integer, and
let R be the set of all pairs (P,¢), where P is a cyclic permutation of the
word (z,x4...2,)™. Then (X,R) is a reduced, confluent presentation, and
Mon (X | R) is the free product of Z,, and s — 1 copies of Z.

Proof. Examples 3.3 and 3.4 do the case s =m = 2. The general case is
left as an exercise. O

Sometimes the most convenient description of a group G by a confluent
rewriting system involves restricting the words used to describe elements
of G. Suppose R is a confluent rewriting system on X*. It may happen that
M =Mon {X | R) is not isomorphic to G but there is a subsemigroup S of
X* whose image in M is isomorphic to G. If S is closed under rewriting
with respect to R, then we can compute in G by restricting the words used
to elements of S. In this situation we shall say that the triple (X, R, S) is a
restricted presentation for G. Perhaps the simplest restricted presentation
for G is (G, S, S), where S = {(zy,z e y) | z,y € G} is the set of semigroup
relations obtained from the multiplication table of G, and S is the set of
nonempty words in G*.

Exercises

3.1. Show that the following rewriting system is confluent:

A —e B og blat - (ab)t, (ba)t - atht

3.2. Prove confluence in Example 3.7.

3.3. Find the order of G in Example 3.5.

3.4. Let X be a subset of Y and let G be the free group generated by Y. Show that the
subgroup of G generated by the image of X is isomorphic to the free group generated
by X.

3.5. Let R be a rewriting system on X™* and let W be a word in X* which is an overlap of
left sides in R. Show that there are words A, D, E, and U such that AUD and UE are
left sides in R, W = AUDE, U # ¢, and either D or E is empty.

3.6. Suppose that R is a finite rewriting system on X™* and for any word B in X* there is an
efficient mechanism for finding all rules (R,S) in R such that either R is a prefix of B
or B is a prefix of R. Modify CONFLUENT so that its main loop has the form

For all (P,Q) in R do
For all nonempty suffixes B of P do begin

End
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3.7. Show that free groups have no nonidentity elements of finite order. (Hint: Show that
every nonidentity element is conjugate to an element [A], where A? is a freely reduced
word.)

2.4 Rewriting strategies

Let X = {a,b,c}. In Example 3.6 we established the confluence of the
rewriting system S on X** consisting of FGRel(X) and the following rules:

1 1 1 1

ca—ac, ca —a ¢ ¢ a—ac , ¢ la? 1ot

—a ¢,
cb—be, el —ble, c—obet, ¢t obicd,

ba —abe, ba!—albe, bla—ablcl, blal—alble

Rewriting using S and generalizations of S described in Section 9.10 was
first discussed by P. Hall, who called the process collection. Given a word
U in X**, there usually are many ways of collecting or rewriting U to
obtain an irreducible word V. Which choices are made can greatly affect
the number of steps and the length of the intermediate words.

One strategy for rewriting with S which has useful theoretical applica-
tions is called collection to the left. Chapters 11 and 12 of [Hall 1959] make
extensive use of this strategy. In the first step of collection to the left, all
occurrences of a and a~! are moved to the left and then canceled to the
extent possible. Then occurrences of b and b~! are moved left past all oc-
currences of ¢ and ¢~!. Applying this strategy to U = baba~'b"1a, we get
the following reduction:

baba~'b"la — abcba~ b la — abca lbc b ta

— aba"tebe 07 a — aalbe tebe b e — betebe b La

— betebelab et — betebac b et — beteabee b et

— bctachee™ b7 et — baclebee b et — abecebee bl
_ Cli-1 — 1 11 - 1. 1,1

— abec tbeee™ 07! — abebeleee e — abbecteecTh T c

1 1 1

1

¢t — abbec” o teec e
— abbcb ¢ teec et — abbblectece e ! 11

— abbec leeh~e et — abbectebtee™

— abectece™ e

— abeec et — abeeT! — ab.

However, if we choose a different strategy, we can carry out the reduction
with only five applications of the rewriting rules:

baba~'b"la — baba~lab~'c™! — babblc! — bac™! — abec”! — ab.

With this small rewriting system, it is relatively easy in hand computation
to avoid long, unnecessary sequences of rewriting steps. However, with
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large systems having perhaps millions of rules, it is very difficult to decide
on a good, let alone an optimum, strategy.

Complicating the situation is the fact that our primary goal is to optimize
the running time of the rewriting process, and this is not necessarily the
same as minimizing the number of applications of the rules. It might be
that we could always find a short reduction, but doing so would take a long
time. It is possible that a strategy which employs more steps but is able to
make the choice of those steps very rapidly will yield a faster algorithm.

Suppose we are rewriting a word U. Thus we want to write U as APB,
where (P,Q) is a rule, and to replace U by AQB. How should we choose
the occurrence of the left side P in U? We could select it so that |P| — |Q)|
is maximal, which would minimize the length of the word AQB. We could
also select the occurrence so that AQB is as early as possible in the ordering
~< we are using. Collection to the left makes sense only for rewriting systems
with respect to wreath product orderings in which there are left sides y°z®
for all generators ¢ and y with z > y and all &, 8 in {1,—1}. However, a
general strategy which is in the spirit of collection to the left chooses the
left side P in U which is as large as possible with respect to < and, subject
to this, as close to the beginning of U as possible. Unfortunately, each
of these strategies requires finding all occurrences of left sides in U, and
frequently this is not practical.

Usually the first occurrence of a left side found is the one that is used.
In this case, the way one searches for left sides becomes important. One
can take each left side in turn and look for occurrences of it anywhere in U.
Or one can take a fixed term in U and look for left sides beginning at that
term. The terms can be considered from left to right or from right to left.
Here is an implementation of a strategy which will be called rewriting from
the left. The set X of generators and the rules (P;,Q;), 1 < i < n, are
assumed to be available as global variables.

Procedure REWRITE_FROM_LEFT(U;V);

Input: U : a word;
Output: V : a word, the rewritten form of U;
Begin

Vi=¢g W:=U;

While W # ¢ do begin
Let W =2W, with z in X; W:=W,; V=V,
For i:=1ton do
If P, is a suffix of V' then begin
Let V=RP; W:=Q,W; V:=R;
Break
End
End
End.
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At all times in REWRITE_FROM_LEFT, the word VW is derivable
from U. Moreover, V is the longest prefix of VW known to be irre-
ducible with respect to the set of rules. In Section 3.5 we shall examine
more efficient ways to test whether a word V' has some P, as a suffix. In
REWRITE_FROM_LEFT, we simply test each P, in turn.

Suppose we take the rewriting system of Example 3.6:

a?—eg, ab*a — bab,
b —e, baba — ab?,
abab — bZa, b%ab?® — aba.

Here is a sample of the way REWRITE_FROM_LEFT rewrites a word:

abaababbaaabbabbbaba — abbabbaaabbabbbaba — babbbaaabbabbbaba
— baaaabbabbbaba — baabbabbbaba — bbbabbbaba

— abbbaba — aaba — ba.

There is an analogous procedure for rewriting from the right. The second
rewriting of baba~'bla given above illustrates the strategy of rewriting
from the right.

Exercises

4.1. Describe a procedure REWRITE_FROM_RIGHT which keeps track of the longest suffix
of the word which is known to be irreducible.

4.2. Show that rewriting a word U from the right using the rules (P;,Q;), 1 <i < n, can be
accomplished by rewriting U' from the left using the rules (PJ,Q;‘) and then reversing
the result.

4.3. Let R be the rewriting system of Example 3.6. Using R, rewrite each of the following
words with collection to the left, rewriting from the left, and rewriting from the right:
cba, (abc)?, ca'b~labc 1a.

4.4. Let S be the rewriting system of Example 3.5. Using S, rewrite each of the following
words with rewriting from the left and rewriting from the right: (abab?)?, bbababaabbababb.

2.5 The Knuth-Bendix procedure

In this section we shall encounter the first of the fundamental procedures
which are the subject of this book. The procedure is called the Knuth-
Bendiz procedure for strings. It is based on a much more general procedure
described in (Knuth & Bendix 1970).

Let (X,R) be a finite monoid presentation, let < be a reduction or-
dering on X*, and let 7 denote the reduced, confluent rewriting system
RC(X, <,R). The main result of this section states that if 7 is finite, then
T can be computed from X, R, and an effective definition of <. By an
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effective definition of < is meant a definition which provides an algorithm
for deciding which of two given words comes first. It must be emphasized
that there is no procedure for deciding whether 7 is finite.

We shall first describe a basic version of the Knuth-Bendix procedure
for strings called KBS_1. It has input arguments X, R, and <, and it
returns 7, provided 7 is finite. Because KBS_1 is not practical for serious
computation, a second, more efficient version of the Knuth-Bendix proce-
dure will be given in Section 2.6. Additional improvements will be sketched
in Section 2.7. Within KBS_1, a sequence of rules (P,,Q,;), 1 <¢ < n, is
generated. The procedure REWRITE_FROM_LEFT is used to rewrite a
word with respect to S = {(P,,Q,) | 1 < ¢ <n}.

The idea behind KBS_1 is quite simple. Suppose we apply CONFLU-
ENT to the current set of rules. If the rules are confluent, we stop.
Otherwise we find two irreducible words A and B which are equivalent
under the congruence ~ generated by R. Assuming the A > B, we add
(A, B) to the set of rules. The only point which needs some care is making
certain that for every pair of indices i and j eventually all overlaps of the
left sides P; and P; are considered.

Two subroutines are used in KBS_1. The subroutine TEST_1 adds a
new rule, if necessary, in order to insure that there is a word derivable from
two given words using the rules in S.

Procedure TEST_1(U,V);
Input: U,V : words;
Begin
REWRITE_FROM_LEFT(U; A); REWRITE_FROM_LEFT(V; B);
If A # B then begin
If A < B then interchange A and B;
n:=n+1; P,:=4; Q,:=B
End
End.

The second subroutine, OVERLAP_1, is based on the inner loop of CON-
FLUENT in Section 2.3. It checks the overlaps of P, and P; in which P,
occurs at the beginning of the word. When failures of local confluence are
found, new rules are added. Note the way OVERLAP_1 combines the case
in which P; is a subword of P; with the case in which P, has a nonempty
suffix B which is also a prefix of P;.

Procedure OVERLAP_1(4, j);
Input: 4,5 : positive integers not exceeding n;
Begin
For k :=1 to |P,| do begin
Let P, = AB with |B| =k;
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Let U be the longest common prefix of B and P;;
Let B=UD and P; =UE;
If D or E is empty then TEST_1(AQ,D, Q,E)
End
End.

Here then is the definition of KBS_1.

Procedure KBS_1(X, <,R; T);

Input: X : a finite set;
= : a reduction ordering on X*;
R : a finite subset of X* x X*;
Output: 7 : RC(X, <,R), if it is finite;

(* WARNING — TERMINATION MAY NOT OCCUR. %)
Begin
n:=0; ¢ :=1;
For (U,V) in R do TEST_1(U,V);
While ¢ < n do begin
For j :=1 to i do begin
OVERLAP_1(i,7);
If § < ¢ then OVERLAP_1(j,%)
End;
t:=14+1
End;

Let P be the set of P, such that every proper subword of P, is
irreducible with respect to S;
T .=
For P in P do begin
REWRITE_FROM_LEFT(P;Q); Add (P,Q)to T
End
End.

Proposition 5.1. If RC(X, <,R) is finite, then KBS_1(X,<,R;7T) termi-
nates with T = RC(X, <,R).

Proof. Suppose a call TEST_1(U,V) is made and the two calls to
REWRITE_FROM_LEFT have been completed. Then SU {(U,V)} and
SU{(A, B)} generate the same congruence on X*. Therefore, after the first
For-loop in KBS_1, the sets R and S generate the same congruence ~ on
X*. With any later calls TEST_1(U,V), we have U ~ V, so at any time
during the While-loop in KBS_1 the set S generates ~. Note also that P,
is irreducible with respect to {(P;,Q;) | 1< j <i}.
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Suppose that KBS_1 does not terminate. Then the While-loop does
not terminate and produces an infinite sequence (P;,Q;),i = 1,2,..., of
rewriting rules. Let U be the set of these rules.

Lemma 5.2. U is confluent and generates ~.

Proof. From the preceding remarks, it is clear that I/ generates ~. Sup-
pose U is not confluent, and let W be the first word (with respect to <) at
which local confluence fails. By Proposition 3.1, W = ABC, where B # ¢
and one of the following holds:

(i) W =P, and B = P, with j <1, and there is no word derivable using
U from both AQ;C and Q;.

(ii) AB = P,, BC = P;, and there is no word derivable from both AQ;
and Q,;C.

Suppose (i) holds. At some point in the running of KBS_1 the call
OVERLAP_1(j4,7) is made. After this call is completed, there is a word
R derivable from both AQ,C' and Q; using the current set S. Since S is
a subset of U, the word R is derivable from both AQ,C and @, using U.
Therefore (i) cannot hold.

Similarly (ii) does not hold, for the call OVERLAP_1(%, j) would force the
existence of a word derivable from both AQ]- and Q,C using Y. Therefore
U is confluent. O

We now resume the proof of Proposition 5.1. Let C be the set of canonical
forms for ~ and let P be the set of words P in X* — C such that every
proper subword of P is in C. Since rewriting an element P of P using U
must produce the element P of C such that P ~ P, there is a rule in I with
left side P, and this rule is unique. Let V be the set of rules (P,Q) in U
such that P is in P. By assumption, RC(X, <,R) is finite. Therefore P and
V are finite. Let n be the largest integer such that (P,,Q,) isin V. If i > n,
then P, is not in C and is irreducible with respect to {(P;,@;) |1 < j < i}.
But this is impossible. Therefore U is finite and the While-loop in KBS_1
terminates.

By Proposition 2.8, the last For-loop defines 7 to be RC(X,<,R). O

Let us illustrate the use of KBS_1 with some examples. To assist the
reader in following the examples, a description of the source of each rule
will be given. New rules are added to S only in TEST_1, which is called
in two places: in the first For-loop of KBS_1 and in OVERLAP_1. To
indicate the source of a rule, we shall write one of the following:

Relation ¢,

Overlap 1, 7, k.
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Table 2.5.1

i P; Qi Source

1| aa! 5 Relation 1
2ala € Relation 2

3| bb1 & Relation 3

4| b1 € Relation 4

5| ba ab Relation 5

6 | aba~l b Overlap 51 1
7| b7 lab a Overlap 451
8 | ba! alb Overlap 2 6 1
9| b la ab™! Overlap 73 1
10 | b7 la~1b | a7! Overlap 4 8 1
11 | abla ! | b71 Overlap911
12 | b-lag! a~ 1671 | Overlap 1031

The first says that the call to TEST_1 which added the rule occurred on
the i-th iteration of the first For-loop in KBS_1. The second indicates that
the call to TEST_1 came from OVERLAP_1 when its arguments were ¢
and j, and the variable k within OVERLAP_1 had the specified value.

Ezxample 5.1. Let X = {a, b}, let < be the length-plus-lexicographic ordering
of X** with a <a™' <b <b"!, and let R consist of the following rules:

aat—e, ala—e, bW'oe b lb—oe, ba—ab.
If we process the elements of R in the order listed, then the sequence of
rules generated by KBS_1 is as given in Table 2.5.1.
The final reduced, confluent rewriting system consists of rules 1 to 5, 8,
9, and 12.

Ezxample 5.2. Let X and R be the same as in Example 5.1 and let < be the
length-plus-lexicographic ordering of X** with a <b < b~! < a~!. The first
20 rules produced by KBS_1 are listed in Table 2.5.2.

It is relatively easy to show that P,, = ab%‘a”!, Q, = b5, Py, =
ab=3a™!, and Q,;,, =b"3 for i > 8. The procedure KBS_1 never terminates
because RC(X, <,R) is infinite, as shown in Example 3.7.

Ezxample 5.3. Let X = {a, b}, let < be the length-plus-lexicographic ordering
of X* with a < b, and let R consist of the following pairs:

a?—e, b e (ab)—e.
The sequence of rules produced by KBS_1 is given in Table 2.5.3. The final

reduced, confluent system consists of rules 1, 2, and 6 to 9. This is the
presentation of Example 3.5.
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Table 2.5.2
i P, Qs Source
1| aa! € Relation 1
2| ala 5 Relation 2
3| op! € Relation 3
4 b € Relation 4
51| ba ab Relation 5
6 | aba™! b Overlap 511
7| v lab a Overlap 4 5 1
8| atp ba~1 Overlap 26 1
9 | abba™l | bb Overlap 5 6 1
10 | b7 la ab™? Overlap 7 3 1
11 | ba o7 | 07! Overlap 8 31
12 | abbba~! | bbb Overlap 59 1
13 | abla! | b7! Overlap 101 1
14 |a ! | bla! | Overlap4 111
15 | ab*a! | b* Overlap 5 121
16 | ab2a! | b2 Overlap 10 13 1
17 | abPa? v Overlap 5 15 1
18 | ab3a7! | b3 Overlap 1016 1
19 | abba? 8 Overlap 5 17 1
20 | ab %! | 7% Overlap 1018 1
Table 2.5.3
[ P; Qi Source
1] a? € Relation 1
2| € Relation 2
3| (ab)® | ¢ Relation 3
4 | babadb | a Overlap 131
5 | ababa | Overlap 321
6 | (ba)®> | ab® | Overlap 421
7| (ab)? | t?a | Overlap 241
8 | ab’a | bab | Overlap 4 3 2
9 | b%ab® | aba | Overlap 551

Ezample 5.4. Let X = {a,b,b7'}, let < be the length-plus-lexicographic
ordering of X* with @ < b < b7!, and let R consist of the following rules:

a®> e, bbloe B oe (ab)d—e.

This is the same group as in Example 5.3. Note that the monoid relation
b-1b — ¢ is not needed since the relation > — ¢ implies that b has an
inverse. The relation bb~! — ¢ simply names that inverse. Table 2.5.4 lists
the sequence of rules produced by KBS_1. The final system consists of
rules 1, 2, 5, 8,9, 12, and 14 to 18.
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Table 2.5.4

i P, Qi Source

1| a? € Relation 1

2 | bb! € Relation 2
3|0 € Relation 3

4 | (ab)® € Relation 4

5| o2 b1 Overlap 321
6 | babab a Overlap 141
7 | ababa b1 Overlap 42 1
8| b2 b Overlap 52 1
9| b1 € Overlap 5 3 2
10 | baba ab’! Overlap 6 2 1
11 | abab b~la | Overlap 361
12 | bab ab~la | Overlap 6 4 2
13 | b~lab~1la | ab Overlap 74 3
14 | b lab 1 aba Overlap 77 1
15 | b~laba bab~! | Overlap 5101
16 | abab~1 b~lab | Overlap 1151
17 | ab~lab bab~! | Overlap 1251
18 | bab~la b~ lab | Overlap 5121

Ezample 5.5. This example is somewhat longer than the first four. Let
X ={a,b,c}, let < be the basic wreath-product ordering of X** with ¢ <
¢! <b=<b"1=<a=<a!, and let R consist of the following rules:

aa' >, ala—e, bbloe blboe ccloe cleoe,

ca — ac, cb—be, ba— abc.

The sequence produced by KBS_1 is given in Table 2.5.5. The final set
consists of rules 1 to 9, 16, 18 to 20, 27, 36, and 39 to 41, a total of 18 rules.
These are the rules of Example 3.6.

Suppose that X is a finite set and R is a finite, confluent rewriting system
on X* with respect to a reduction ordering <. Let ~ be the congruence
generated by R. There is a straightforward but time-consuming way to
verify that ~ has only finitely many classes. Choose a large integer n and
show that each of the |X|* words in X* of length n contains a left side in
R as a subword. Thus if U in X* is irreducible with respect to R, then
|U| < n, and hence ~ has only finitely many canonical forms.

This approach cannot verify that ~ has infinitely many classes. However,
using the theory of automata, it is possible to decide whether ~ has in-
finitely many classes. Automata are the subject of Chapter 3. Section 3.10
describes the use of automata to determine whether a monoid defined by a
finite, confluent presentation is finite or infinite.
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Table 2.5.5

{ P, Qi Source

1] aa! € Relation 1

2| ala € Relation 2

3| ob1 € Relation 3

4| b1 € Relation 4

5| cc7! € Relation 5

6| cle € Relation 6

71 ca ac Relation 7

81 ch be Relation 8

9| ba abc Relation 9
10 | aca™! c Overlap 711
11 | clac a Overlap 6 7 1
12 | beb! c Overlap 8 3 1
13 | ¢ lbe b Overlap 6 8 1
14 | abca™! b Overlap911
15 | b labe a Overlap4 91
16 | ca™ a’le Overlap 210 1
17 | aba~lcc be Overlap 910 1
18 | cla ac™! Overlap 11 51
19 | cb! b le Overlap 4 121
20 { ¢ b b1 Overlap 1351
21 | balc a”lp71 Overlap 2 14 1
22 | aba~tbe b2 Overlap 914 1
23 | b~lab ac™! Overlap 155 1
24 | b laZbc? a? Overlap 156 7 1
25 | b~lac ab! Overlap 15 12 2
26 | cla"lc a~l Overlap 6 16 1
27 | ba™! ¢ la b | Overlap 1316 1
28 | acla~'2c? | bPc Overlap 178 1
29 | acla"%be a’lb Overlap 17 16 1
30 | ac”la! c! Overlap 1811
31| chle b1 Overlap 6 19 1
32 | be1p! ¢! Overlap 20 3 1
33 (b la b a’le Overlap 4 21 1
34 | cla~tb a~lbc™! | Overlap 21 51
35 | cla~2b a~2bc™! | Overlap 21 16 1
36 | b la ac 167! | Overlap 2331
37 | ac™1p! ab~'c™! | Overlap 2551
38 | ab~la7! ble Overlap 25 10 2
39 | cla?t a~lc! | Overlap 26 5 1
40 | ¢! b1lc1 Overlap 3151
41 | b lg™? a~1b~1¢ | Overlap 3331

Exercises

5.1. Let X = {a,b} and let R consist of the rules a? >e b —e, (ab)2 —&. Apply KBS_1
using the length-plus-lexicographic ordering < with a < b. Repeat the computation using
the length-plus-lexicographic ordering with b < a.
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5.2. Suppose that X = {z} and R consists of the rules ™ — ¢ and z" — ¢, where m and n are
positive integers. Show that KBS_1 returns the single rule % — ¢, where d = ged(m,n).
Compare the operation of KBS_1 on this input with the operation of the Euclidean
algorithm.

5.3. Let R be a finite, confluent rewriting system on X* and assume that Mon (X | R) is
finite. Design a backtrack search for the words in X* which are irreducible with respect
to R. Given a positive integer n, apply the technique of Knuth described in Section 1.8
to devise a method for estimating the number of irreducible words of length at most n.

2.6 A second version

The procedure KBS_1 of Section 2.5 retains all rules that are constructed
and uses them in the processes of rewriting and forcing local confluence. It
is usually better to delete rules which become redundant and maintain a
reduced set of rules at all times. In the procedure KBS_2, described below,
boolean flags active[i] are used to indicate which rules are still active. If
active[i] is true, then (P;, Q,) is active and is used in rewriting and forming
overlaps. If active[i] is false, then (P, Q,) will play no more part in the op-
eration of the procedure. The procedure REWRITE_FROM_LEFT must
be modified to look only for the left sides of active rules. In KBS_2 we
retain inactive rules to provide a complete history of the computation. In
practice, rules are deleted as soon as they become inactive, and the space
freed up is made available for new rules.

Assume that the current set of active rules is reduced. When a new rule
(A, B) is added, the set of active rules may no longer be reduced. Suppose
that (P;,Q;) is one of the active rules different from (4, B). If Q, contains
A as a subword, then we must rewrite @, to obtain an irreducible word. If
P, contains A as a subword, then we must remove (P, Q,) from the set of
active rules. However, we must make sure that even with (P;, Q;) no longer
active there is still a word derivable from both P, and Q,. To manage all
of these revisions to the set of rules, a stack of pairs of words is used. If
(U,V) is on the stack, then U ~ V, so there must be a word derivable from
both U and V. The purpose of the subroutine TEST_2 is to clear this
stack.

Procedure TEST_2;
Begin
While the stack is not empty do begin
Pop (U, V) from the stack;
REWRITE_FROM_LEFT(U; A);
REWRITE_FROM_LEFT(V; B);

If A # B then begin
If A < B then interchange A and B;
n:=n+1;, P, :=A; Q,:= B; active[n] := true;
Fori:=1ton—1do
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If active[i] then

If P, contains A as a subword then
Begin active[i] := false; Push (P;,Q,) onto the stack end

Else if @, contains A as a subword then
Begin REWRITE_FROM_LEFT(Q,; C); @, :=C end

End
End
End.

The procedure OVERLAP_1 requires only minimal changes, which re-
flect the fact that because the set of active rules is reduced, only proper
overlaps, that is, overlaps of type (3) in Proposition 3.1, can occur.

Procedure OVERLAP_2(i, j);
Input: 7,j : indices of active rules;
Begin
m:=min(|F[,|P]) - 1; k:=1;
While (k < m) and active[i] and active[j] do begin
Let B be the suffix of P, of length k;
If B is a prefix of P; then begin
Let P, = AB and P; = BC; Push (AQJ-,Q,-C) onto the stack;
TEST_2
End;
k=k+1
End
End.

Here is the second version of the Knuth-Bendix procedure for strings:

Procedure KBS_2(X,<,R;T);
Input: X : a finite set;
< : a reduction ordering of X*;
R : a finite subset of X* x X*;
Output: 7 : RC(X,<,R), if it is finite;
(* WARNING — TERMINATION MAY NOT OCCUR. *)
Begin
n:=0; ¢:=1;
For (U,V) in R do begin push (U, V) on the stack; TEST_2 end;
While ¢ < n do begin
j=1
While j <4 and active[:] do begin
If active[j] then begin
OVERLAP_2(i, j);
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If j < ¢ and active[i] and active[j] then OVERLAP_2(j, )
End;
ji=j+1
End;
1 =141
End;
Let 7 be the set of currently active rules
End.

Proposition 6.1. If RC(X, <,R) is finite, then KBS_2(X,<,R;T) termi-
nates with T = RC(X,<,R).

Proof. This proposition is more difficult to prove than Proposition 5.1,
since rules may be modified or deleted. The proof given here is based
heavily on [Le Chenadec 1986].

All changes to the set of active rules take place in TEST_2. A rule
(P, Q,) is made inactive only when a new rule (P,,Q,) is found such that
P, contains P, as a proper subword. Thus the ideal of X* generated by the
left sides of the active rules increases each time a new rule is added and is
not affected by deletions or modifications of existing rules.

Lemma 6.2. Calls to TEST_2 terminate.

Proof. Suppose at the beginning of a call to TEST_2 there are r active
rules and s pairs on the stack. Since pairs are added to the stack only
after the deletion of an active rule, the number of active rules at any time
during this execution of TEST _2 cannot exceed r+s. By Proposition 2.7 of
Chapter 1, the ideal generated by the left sides of the active rules stabilizes
at some point in this execution of TEST_2. But then no new rules are
created, so the stack must eventually become empty. O

Let ~ be the congruence generated by R. The operation of TEST_2
does not change the congruence generated by the active rules and the pairs
on the stack. Thus after the completion of the For-loop in KBS_2, at any
point in the execution of KBS_2 outside TEST_2 the set of active rules
generates ~.

Let S be the set of all pairs which occur as active rules at some point
during the operation of KBS_2 and let 7 be the subset of those elements
of & which are never deleted or modified. If KBS_2 terminates, then 7 is
the rewriting system returned by KBS_2. Let (R, S) and (T, U) be distinct
elements of 7. From some point on, both of these rules are active. Since
the set of active rules is reduced, neither R nor S contains T as a subword.
Therefore 7 is reduced.
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Lemma 6.3. Suppose M, N,, and N, are words in X* such that M — N,,
i =1,2. Then there are words U,, U,, and V such that for i =1, 2 we have
MU - N andU, 5 V.

Proof. The statement of the lemma corresponds to Figure 2.6.1. For i =1,
2 there are words A;, B;, L;, and R, such that M = A,L;B;, (L,,R,) isin T,
and N, = A,R,B,. If the occurrences of L; and L, in M do not overlap, then
we may assume that A, L, is a prefix of A,. In this case M = A,L,CL,B,
for some word C, and we may take U; = N; and V = AR, CR,B,.

Suppose that the occurrences of L, and L, do overlap. We may assume
that M = A;ABCB,, where L, = AB, L, = BC, and B # ¢. At some point
in the operation of KBS_2 the overlap ABC was considered. Suppose at
that time (L, S;) and (L,,S,) were active rules. Because of the call to
OVERLAP_2, there is a word T such that $,C = T and AS, - T'. Let
U, =48 CBZ, U,=A,AS,B,,and V = A\TB,. Then fori=1, 2 we have
M—»U < V. SlnceS —+ R, WealsohaveU <N, O

Lemma 6.4. For oll words M, N, N;, and N, in X", the following hold:

(a) If M %~ N, then there is a word V such that M -V and N V.

(b) If M %> N, and M > N,, then there is a word V such that N; =~
V and Ny, 5= V.

(¢c) If M %> N, and M %> N,, then there is a word V such that N) -
Vand N, 3 V.

Proof. We shall prove (a), (b), and (c) simultaneously by induction. Let
M be the first word with respect to < at which one of these statements
fails.

Suppose (a) fails for M and some word N. Then N # M, since otherwise
we could take V =M. Let M — M, 5 N be the derivation of N from M.
Then there are words A, B, L, and R such that M = ALB, M, = ARB,
and (L, R) is in §. Among the counterexamples to (a), choose one where
L is minimal. The sequence of words S such that (L, S) is an active rule is
a nondecreasing sequence. Let S be the last such word. Then either (L, S)
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is in 7T or at some point (L,S) is made inactive and placed on the stack.
Let M, = ASB.

Suppose first that (L,S) is in 7. Then M = M,. Since R -~ S, we
have M, — M,. By the minimality of M, (c) holds for the triple M,, N,
M,. Thus there is a word V such that N -~ V and M, - V. Since
M =% M,, statement (a) holds.

Suppose that (L,S) is not in 7. Then at some point (L, S) was placed
on the stack. Sometime later, (L, S) was removed from the stack and a rule
was added, if necessary, so that there is a word W derivable from both L
and S using rules in & whose left sides are strictly less than L. Let (P, Q)
be the first rule used in one derivation of W from L. Then L = CPD,
where CD #¢e. Set My = ACQDB and T = AWB. Then M, & T and
M; — T. At this point, the picture is as in Figure 2.6.2. By (cﬁ applied
to M;, N, T, there is a word E such that N - E and T - E. By our
assumption on L, statement (a) holds for M and E, since we can derive Ef
from M by the route M — M; —&» T — E. The first step uses the rule
(P,Q) and P < L. Therefore there is a word V' such that M == V and
E - V. But then N -V, and (a) holds.

Now suppose that (b) fails for M, N;, and N,. Clearly we may assume
that M, N, and N, are distinct. For ¢ =1, 2 let M —= M; be the first
step in deriving N; from M using 7. By Lemma 6.3, there are words U,
U,, and @ such that the derivations in Figure 2.6.3 hold.
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By (c) applied to U, M,, and @, there is a word R such that M; - R
and Q - R. By (c) applied to U,, R, and M,, there is a word S such
that R - S and M, - S. Thus M, = S. By (b) applied to M,, N,,
and S, there is a word T such that N; %> T and S -5 T. Therefore
M, 2= T. Finally by (b) applied to M,, N,, and T, there is a word V' such
that N, 2>V and T - V. Since N) = V, we see that (b) holds for M,
N,, and N,.

Now suppose that (c) fails for M, N;, and N,. Clearly N, # N,. If
M = N, or M = N,, then we can apply (a). Thus we may assume that
M, N,, and N, are distinct. By (a), there are words V] and V, such that
M =~ V,and N; = V,, i = 1,2. By (b) applied to M, V], and V,, there is
a word V such that V; 2%V, i=1,2. Then N; 5>V, so (c) holds. O

By part (b) of Lemma 6.4, the system 7T is confluent. Since 7 C S, by
part (c) of the lemma & is confluent. A word is irreducible with respect
to & if and only if it is irreducible with respect to 7. Therefore the con-
gruences generated by & and 7 have the same canonical forms. Hence S
and T generate the same congruence, namely ~. Since 7 is reduced, 7 is
RC(X,<,R). Therefore 7T is finite. Once all the rules in 7 become active,
no new rules are added, and the While-loop eventually terminates. Thus
KBS_2 terminates and returns RC(X,<,R). O

The difference between the operation of KBS_1 and the operation of
KBS_2 is not large for the small examples discussed in Section 2.5.

Ezxample 6.1. With the data of Example 5.1, the procedure KBS_2 con-
structs a total of 12 rules, all with different left sides. The maximum
number active at any one time is 10, and the stack never has more than
two pairs on it.

Ezample 6.2. Using the data of Example 5.4, KBS_2 constructs a total
of 17 rules, all with different left sides. This is one less than the number
produced by KBS_1. With KBS_2, no more than 11 rules are active at
any one time, and the stack never has more than two pairs on it. Thus the
storage requirements for a version of KBS_2 which does not retain inactive
rules would be less on this example than the storage needs of KBS_1.

Ezample 6.53. On the data in Example 5.5, KBS_2 generates 34 rules, two
of which have the same left side. The maximum number active is 20, and
stack never has more than two pairs on it.

Ezample 6.4. Let X = {a,b,b7'}, let < be the length-plus-lexicographic
ordering of X* with @ < b < b~!, and let R consist of the following pairs:

a®?—e, bbloe Boe (ab) —e (abab™') —e.
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The system RC(X, <,R) has 40 rules. The procedure KBS_1 constructs a
total of 81 rules in computing RC(X, <,R). With KBS_2 there are 89 rules
generated involving 85 different left sides. However, there are never more
than 40 rules active at one time, and the stack never has more than three
entries.

Ezample 6.5. If < is a length-plus-lexicographic ordering and Mon (X | R)
is a group, then the left and right sides of the rules in RC(X,<,R) will
have roughly equal lengths. The initial presentation in Example 6.4 does
not satisfy this condition. The following presentation is equivalent and
more balanced:

a2 —e b loe B—b' (b7la)3b7t — (ab)la,

(bab~'a)? — (abab™')2.

With this presentation, KBS_1 constructs a total of 56 rules. Using KBS_2,
59 rules with 57 different left sides are constructed, but no more than 40
are active at one time.

Ezample 6.6. The presentation R consisting of the pairs
a?—e, bbloe b —oe (ab)’ —e, (abab ™) — ¢

is frequently used to test programs for studying finitely presented groups.
Let X = {a,b,b"'} and let < be the length-plus-lexicographic ordering of
X* with a < b < b~!. The system 7 = RC(X,~<,R) has 1026 rules with
the longest left side having length 37. The procedure KBS_2 is not really
adequate to compute 7. To see the problem, consider the following facts:
In 7 there are 143 left sides which start with a, 457 which start with b, and
426 which start with b~!. There are 444 left sides which end with a, 296
which end with b, and 286 which end with b~!. To prove that 7 is confluent,
the number of overlaps ABC with |B| = 1 which must be considered is

444 x 143 + 296 x 457 + 286 x 426 = 320600.

The number of overlaps with |B} = 2 is 235979. Processing all of these
overlaps will take a long time. It turns out that KBS_2 generates many
rules which later become redundant, so the running time to determine 7 is
longer than the time needed to show that 7 is confluent. See Section 3.5.

Although KBS_2 is a substantial improvement over KBS_1 and can be
practical for small problems, KBS_2 still has weaknesses. One of the biggest
weaknesses is the crude manner in which REWRITE_FROM_LEFT
searches for a left side which is a suffix of V. This can be improved with
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an indexing structure for the left sides, such as described in Section 3.5.
However, there are other problems as well. One is illustrated in Exam-
ple 6.6. Another is that KBS_2 does not work hard enough to derive short
rules quickly. Suppose that a rule of the form (zP,z@) has been found
and generator z is a unit in Mon (X | R). Then P ~ Q and the rule (P, Q)
should be immediately deduced. However, it may be a long time before
KBS_2 finds this rule. The next section discusses a number of possibilities
for further improvements in the Knuth-Bendix procedure.

Exercise

6.1. Apply KBS_2 to the presentations a®> — ¢, b°> — ¢, (ab)* — ¢, 2 < i < 5, and compare the
rules produced during the computation with those produced by KBS_1.

2.7 Some useful heuristics

It is impossible to pursue deeply questions about the efficiency of programs
implementing the Knuth-Bendix procedure for strings without a discussion
of the data structure to be used to store rules. Most of the time used
by a computer program executing the Knuth-Bendix procedure is spent in
rewriting. The manner in which the active rules are stored and the nature
of any other information about the rules which is kept can greatly affect
the time needed to rewrite words. It can also affect the time needed to
locate overlaps. Because the set of rules is continually changing, it must
be possible to update the stored data concerning the rules with as little
overhead as possible. Many interesting problems strain both the available
cpu and memory resources. A careful analysis is required in order to get a
good balance between speed and memory usage.

One way to gain some speed in the rewriting process while not sacrific-
ing very much memory is to sort the rules according to the right-to-left
lexicographic order of their left sides. The lexicographic ordering is used
here no matter what reduction ordering is being used to order the left and
right sides of rules. To see whether a particular word V has a left side as
a suffix, one looks V up in this dictionary of left sides using the technique
known as binary search. The main drawback of this approach is that when
a new rule is found, the entire set of rules must be resorted. Automata,
the subject of Chapter 3, provide index structures for the set of rules which
permit even faster rewriting and much easier updating. The problem with
automata is that they take a substantial amount of space, so their use re-
duces the size of the rewriting systems which can be stored. Computer
scientists have developed a number of other techniques which can be used
to design indexes. See, for example, the chapters on searching and string
matching in [Sedgewick 1990]. All of these methods have both strengths
and weaknesses. Deciding which one is best for a particular problem is
often difficult.
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No matter what data structure is used for rules, a considerable amount
of work is needed to keep the set of active rules reduced when a new rule
is found. It is often useful to delay removing redundant rules until several
new rules have been found.

In addition to deciding on the data structure to be used to store rules,
someone designing a program to carry out the Knuth-Bendix procedure
should consider using several heuristics which have been found helpful by
others. A word of caution is in order, however. There probably is no such
thing as the best Knuth-Bendix program. Given two different programs
A and B, it is likely that one can find two sets of input data such that
program A does better with the first set and program B does better with
the second.

The first two heuristics concern the formation of overlaps. In KBS_1
and KBS_2, the order in which the rules are found completely determines
the order in which overlaps are formed. Frequently it is useful to give
preference to forming short overlaps. This can be done in several ways.
If one is looking for overlaps of left sides AB and BC, one can use such
measures as |ABC|, |AB|+|BC|, and max(|AB|,|BC]|) to define shortness
and select short overlaps before long ones. For example, if KBS_2 is run
on the data of Example 6.6 and is told to ignore all overlaps ABC with
|ABC| > 44, it will still construct RC(X, <,R), although it will not have
produced a proof of confluence.

One can also use knowledge about the existence of inverses to guide the
formation of overlaps, as suggested in [Le Chenadec 1986]. Suppose that a
new rule P — @ is found, and P = Az, where z is in X, and in the monoid
being investigated [z] has a right inverse. Thus there is a rule zU — e,
which either is part of the original presentation or has been discovered by
the Knuth-Bendix procedure. It seems to be a good idea to give a very
high priority to processing the overlap AzU:

AzU — A, AzU — QU.

Let S be the result of rewriting QU. If S < A, then the rule A — S can
be substituted for P — Q. If S > A, then we have a new rule S — A. A
special case of this heuristic occurs when @ also ends in z. If ¢} = Bz, then
P — @ can be replaced immediately by A — B.

There is a similar heuristic in case a new left side starts with a generator
whose image in the monoid has a left inverse. Also, if P — Q) is a new rule
and all the generators in P and @ define units, then the words P~! and
Q! represent the same element of the monoid. Rewriting them can give a
useful new rule. (Here P! is formed by reversing the terms of P and then
replacing each term z by a word representing the inverse of [z].)

The procedure BALANCE listed below describes one way to implement
heuristics based on the ideas of Le Chenadec. BALANCE is designed to
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be part of a modified version of KBS_2. The following additional data are
assumed available: a subset Y of X of generators known to define units in
Mon (X | R), for each element y of Y a word U, defining the inverse of [y],
and an integer m which is used to limit the application of the heuristics.
Without some type of limit, the use of BALANCE may lead to a failure of
termination, even when RC(X, <,R) is finite.

The input to BALANCE consists of the left and right sides of a rule which
has just been discovered, probably by processing an overlap. The purpose
of BALANCE is to try to find a rule which is shorter or more balanced
in the sense that its left and right sides have more nearly equal lengths.
One rule is returned explicitly. Any other rules produced are pushed onto
the stack to be processed later. Although the procedure is valid with any
ordering, its use is most natural when the ordering involved is consistent
with length.

Procedure BALANCE(A, B; C, D);
Input: A,B : words, the left and right sides of a new rule;
Output: C,D : words, the left and right sides of a possibly more
balanced rule;
(* As a side effect, additional pairs of words may be pushed onto the
stack. x)
Begin
C:=A; D:=B;
(* Execution of the following “infinite loop” is controlled by the
Continue-statement and Break-statement. )

While true do begin
Let C = Lz with z in X

If z is in Y then
If D ends in x then
Begin Let D = Mz; C :=L; D := M; Continue end
Else if |C| + |U,| < m then begin
REWRITE_FROM_LEFT(DU,; P);

If P < L then
Begin C :=L; D := P; Continue end
Else if P > L then push (P, L) onto the stack
End;

Let C = «L with z in X;

If z is in Y then
If D starts with x then
Begin Let D=zM; C:=L; D:= M; Continue end
Else if |C| + |U,| < m then begin
REWRITE_FROM_LEFT(U,D; P);
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If P < L then
Begin C := L; D := P; Continue end
Else if P > L then push (P, L) onto the stack
End;
Break
End
End.

Example 7.1. To illustrate the use of BALANCE, let us find the reduced,
confluent rewriting system for the presentation in Example 5.3 using KBS_2
with one small change to TEST_2. In TEST_2 replace the lines

If A < B then interchange A and B;
n:=n+1; P, :=A; Q, := B;

with the following statements:

If A < B then interchange A and B;
BALANCE(A, B; C, D);
n:=n+1; P,:=C;Q,:=D;

In this example, X = {a,b}, and R consists of the rules

a?—e, B oe, (ab)3 — £

We set Y = X and define U, = @ and U, = b%. The integer m is taken to be
large, say m = 100. The first step in KBS_2 is to apply TEST_2 to each of
the rules in R. With the first two rules, nothing is changed by the call to
BALANCE. For example, the call BALANCE(a?, ¢; C, D) simply looks at
the equality a = a twice and returns C as a® and D as ¢. However, with the
third input rule there is a change. When the call BALANCE((ab)3,¢; C, D)
is made, C is initially set to (ab)?, and D to e. Then the rightmost b of C
is moved to the right end of D as b. Since b? is irreducible and ababa ~ b2,
we set C equal to ababa and D equal to b%. Now the rightmost a is moved
to the right end of D. Again no rewriting is possible, and the order has
not been reversed. Thus C is set equal to abab, and D to b%a. Next the
rightmost b of C is moved to the right end of D as b%. This gives us the
pair of words aba and b?ab®. These are irreducible, but the second is larger
than the first. This time we do not change C' and D. Instead we push
(b%ab?, aba) onto the stack. Now the a at the left end of C is moved to the
left end of D. This leads to (ab%a,bab) being pushed onto the stack. No
further changes are made on this call to BALANCE. The values C = (ab)?
and D = b%q are returned to TEST_2, and P, and Q; are set equal to these
words, respectively.
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Now TEST_2 pops (ab’a,bab) off the stack, and the call BALANCE
(aba, bab; C, D) is made. Initially C = ab?a and D = bab. When the right
a of C is moved to the right end of D, the pair (baba,ab?) is pushed onto
the stack. When the left a of C is moved to the left end of D, the word
abab is reduced to b?a, so we have P = L, and nothing happens. The rule
(ab?a,bab) is returned to TEST_2, and this becomes the fourth rule. Now
(baba,ab?) is popped off the stack. On the call to BALANCE with this
rule, (b%ab?,aba) is again pushed onto the stack. (It would be possible to
do some extra bookkeeping and prevent duplicate pairs from being placed
on the stack.) The rule (baba,ab?) is returned unchanged and it becomes
the fifth rule. Now (b?ab?, aba) is popped off the stack. No changes are
made to this rule and no more pairs are added to the stack. The sixth
rule becomes (b%ab?,aba). Now the last pair (b%ab?, aba) is popped off the
stack. It is immediately reduced to the equality aba = aba, and the call to
TEST_2 terminates. Thus at this point we have found all the rules in the
final set without storing any redundant ones. The overlaps must still be
processed, but no more rules are found.

The next observation is more than a heuristic. It is an improved version
of Proposition 3.1, which tells us that certain overlaps can be skipped.

Proposition 7.1. Let R be a rewriting system on X* relative to a reduction
ordering <. Suppose that for all (P,Q) in R the word P is irreducible with
respect to R — {(P,Q)}. Assume that R is not confluent and let W be
the first word, with respect to <, at which confluence fails. Then local
confluence fails at W, and W = ABC, where B # ¢, AB and BC are left
sides in R, and there are no other occurrences of left sides in W.

Proof. It is easy to see that local confluence must fail at W. By Proposi-
tion 3.1 and our assumption on R, the word W has the form ABC, where
B # ¢, there exist rules AB — U and BC — V in R, and there is no word
derivable from both AV and UC. Suppose that W contains another oc-
currence of a left side P. Then P cannot be a subword of AB or BC, nor
can these words be subwords of P. Thus W = DEBFG, where A = DE,
C=FG,P=EBF,and D, E, F, and G are all nonempty.

Let P — @ be in R. We have the following reductions:

DEBF —UF, DEBF — DQ,
EBFG — QG, EBFG — EV.

By the minimality of W, there are words S and T such that UF —> S,
DQ % S, QG 5 T, and EV % T. Thus DQG —%» SG and
DQG —» DT. Again by the minimality of W, there is a word L such
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that SG %> L and DT %~ L. But then

UC=UFG - 5G = L,
AV = DEV - DT = L,

contradicting the assumption that no word is derivable from both UC and
AV. O

A good way to use Proposition 7.1 is to find overlaps by a backtrack
search. For example, one could start with a left side P and then undertake
a backtrack search for words C such that C is irreducible and PC' contains
exactly two left sides in R as subwords, one of which is P and the other is
a suffix of PC. See Section 3.5. Proposition 7.1 makes it practical to prove
the confluence of the rewriting system 7" of Example 6.6.

Exercises

7.1. Work through Example 5.1 using the modification to KBS_2 described in Example 7.1.
Take Y =X, U, =07}, Up-1 = a, Uy = b7, Up-1 = b, and m = 100.

7.2. Let X, <, and R be as in Proposition 7.1 and let W be a nonempty subset of X* which
is closed under taking subwords and closed under rewriting with respect to R. Suppose
confluence fails at some word in W. Let W be the first word in W with respect to < at
which confluence fails. Show that the conclusion of Proposition 7.1 holds for W.

2.8 Right congruences

So far in this chapter we have been studying two-sided congruences. The
rewriting-system approach can also be useful with right or left congruences.
We shall concentrate on right congruences here, leaving it to the reader to
make the obvious modifications for left congruences.

Let ~ be a right congruence on X* and let < be a reduction order-
ing. Every ~-class has a first element, which we call its canonical form.
Corresponding to Proposition 2.1, we have:

Proposition 8.1. If U is a canonical form, then every prefix of U is a
canomnical form.

Proof. Exercise. O

If P~ @ and P > (), then we may replace P by @ in a word U and still
have an equivalent word only when P occurs as a prefix of U. Thus we
have the notion of rewriting in the context of right congruences, but the
rewriting takes place only at the left ends of words.

The following proposition allows us to transfer most of our work on two-
sided congruences to right congruences.
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Proposition 8.2. Let X be a set and let # be an object not in X. Set
Y = X U{#}. Suppose S is a subset of X* x X* and let ~ be the right
congruence on X* generated by S. Let T = {(#U,#V) | (U,V) € S} and let
= be the two-sided congruence on Y* generated by T. Then the ~-classes
are in one-to-one correspondence with the =-classes in #X*.

Proof. The set #X* is the set of all words in Y* which begin with # and
have no other occurrences of #.

Lemma 8.3. The set #X* is a union of =-classes.

Proof. Let U be in X* and let V be in Y* with #U = V. Then there is
a sequence

#U =U,,U,,...,U, =V

of words in Y* such that for 0 < i < m the word U,,, is obtained from Uj
by replacing a subword P with another word @, where (P, Q) or (Q, P) is
in 7. Now any such P starts with # and has no other occurrences of #.
Since U, has the same form, U, must be in #X*. By induction on m, it
follows that V is in #X*. O

With a slight extension of the argument used in the proof of Lemma 8.3,
it can be shown that for all words A and B of X* we have A ~ B if and
only if #A = #B.

Let us continue the notation of Proposition 8.2.

Proposition 8.4. Let < be a reduction ordering on Y*. If S is finite, then
KBS_2(Y,<,T;U) terminates.

Proof. Let V be a rewriting system with respect to < contained in
(#X*) x (#X*). Suppose A and B are left sides in V. Since A and B
start with # and have no other occurrences of #, the only way to have
an overlap of these words is for one to be a prefix of the other. Thus
by Proposition 3.1, if V is reduced, then V is confluent. As noted in the
proof of Proposition 6.1, the first For-loop of KBS_2 always terminates
with a reduced rewriting system. In the case of the call KBS_2(Y, <,T;U),
that system will be confluent, so the While-loop will add no new rules and
KBS_2 will terminate. O

Let us say that a rewriting system S on X* is prefiz confluent if the cor-
responding system 7 on Y* is confluent, and prefiz reduced if T is reduced.
As noted in the proof of Proposition 8.4, if S is prefix reduced, then S is
prefix confluent.
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Corollary 8.5. Let < be a reduction ordering on X* and let ~ be a finitely
generated right congruence on X*. There is a unique prefix reduced rewrit-
ing system U with respect to < such that U generates ~. Moreover, U is
finite.

Proof. Let S be a finite generating set for ~. Form the set 7 as in
Proposition 8.4 and call KBS_2(Y, <,T;V). Here < is any extension to Y*
of the given ordering on X*. Let U = {(P,Q) | (#P,#Q) € V}. Then U
is finite and prefix reduced, and U/ generates ~. The uniqueness of U is
established as in the proof of Proposition 2.7. O

The preceding results show that we can handle finitely generated right
congruences quite well. However, the right congruences which occur in prac-
tice often are not finitely generated, although they are finitely generated
modulo some two-sided congruence.

Let = be a two-sided congruence on X* and let M be the quotient monoid
of X* modulo 2. If we have a right congruence =~ on M, then we can pull it
back to a right congruence ~ on X* by defining U ~ V' to mean [U] = [V],
where [U] denotes the 2-class containing U. The right congruence = on M
is finitely generated if and only if there is a finite subset & of X™* x X* such
that ~ is generated by S and 2. If such a set S exists and £ is generated as
a two-sided congruence by a finite subset R of X* x X*, then the pair (R, S)
is a finite description of ~, even though ~ may not be finitely generated as
a right congruence.

Proposition 8.6. Let R and S be subsets of X* x X*, let = be the con-
gruence generated by R, and let ~ be the right congruence generated by =
and S. SetY = XU {#} and T = {(#P, #Q) | (P,Q) € 8}. The ~-classes
are in one-to-one correspondence with the classes in #X* of the two-sided
congruence = on Y* generated by RUT .

Proof. If U is in X*, then replacing a subword P in #U with Q, where
(P,Q) or (Q,P) is in RUT, yields a word in #X*. Thus #X* is a union
of =-classes. Similarly, if V' is in X*, then U ~ V if and only if #U = #V.

d

Suppose in the notation of Proposition 8.6 that < is a reduction ordering
on Y* such that 4 = RC(Y,<,RUT) is finite. Then we may use the
Knuth-Bendix procedure to compute U and compute canonical forms for ~
by rewriting with respect to U.

Ezample 8.1. Let X = {a,b}, R = {(ba,ab)}, and S = {(ab?, a3b?), (a”, ab?)}.
Set Y = {a,b,#} and let < be the length-plus-lexicographic ordering of Y*
with # < a < b. Then KBS_2(Y, <,R U T;U) terminates with & as the
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following rewriting system:

ba — ab, #a’b" — #a°b?,
#ab' — #a%,  #a'd' — #a%,
#a2b4 —>#a4b2, #a5b4 —>#a3b3,
#a” — #ab®, #a%b* — #a'b®.
To compute the canonical form for U = ba?b%a?b?a3b, we rewrite #U with

respect to . Using just the rule ba — ab, we have #U -~ #a’b". Then
we have

#a"b" = #aaaaaaabbbbbbb — #abbbbbbbbbb — #aaabbbbbbbb —
#aaaaabbbbbb — #Haaabbbbb — #aaaaabbb.

Thus the canonical form for U is a®®. Note that ~ has infinitely many
classes. The words #b' are all irreducible with respect to U, so €,b,b?,...

are all canonical forms for ~.

Example 8.2. Let X, <, and R be as in Example 8.1, and let § =
{(ab*,ab?)}. Since ab* ~ a3b?, for i > 1 we have

azb4 ~ ab4az-—1 ~ a3b2az-—1 ~ az+2b2‘

It is not hard to show that the set of rules consisting of ba — ab and
#a'b? — #a'2%,5=1,2,.. ., is reduced and confluent. Thus the canonical
forms for ~ with respect to < are the words a*¥’ with j <4 or i =0.

We shall now investigate an important special case of the situation de-
scribed in Proposition 8.6. To do so, we must fix a fair amount of notation:

X, a finite set,

F, the free group generated by X,

R = FGRel(X), the standard set of monoid defining relations for F,

= free equivalence, the congruence on X** generated by R,

[U], the =-class containing the word U,

Y = X*U{#},

=, a reduction ordering of Y*,

S, a finite subset of X** x X**,

~, the right congruence on X** generated by S and =,

H, the subgroup of F generated by the elements [PQ~!] = [P][Q]™! with
(P,Q) in 8,

T ={(#P,#Q) | (P,Q) € 5}.
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The congruence classes of ~ correspond to the right cosets of H in F.

Proposition 8.7. IfU and V are in X**, then U ~ V if and only if H[U] =
H[V].

Proof. As noted above, ~ is the pullback to X** of the right congruence
on F' generated by the image of § in F' x F'. The proposition now follows
from Exercise 4.1 in Chapter 1. O

Let C be the set of canonical forms for ~ with respect to <. For U in
X** let U be the element of C with U ~ U. Finally, let P be the set of
freely reduced words P such that P is not in C but every proper prefix of

P is in C, and let S; be the set of pairs (P, P) with P in P.

Proposition 8.8. The sets P and S, are finite, and ~ is generated by S,
and 2.

Proof. The right congruence generated by S, and 2 is contained in ~.
However, we can compute canonical forms for ~ using §; and R. Given a
word U in X**, we can freely reduce U using R. If at this point U is not in
C, then there is a prefix P of U which is in P, and (P, P) is in S;. We can
replace P by P and continue rewriting until an element of C is obtained.
Thus S, and = generate ~. Moreover, if 7, = {(#P,#Q) | (P,Q) € S,},
then 7, UR is a confluent rewriting system on Y*.

It remains to show that P and &, are finite. If (P,Q) is in &, then P
and @ are freely reduced and P and @ do not end in the same element of
X*, for if P = Au and Q = Bu with u in X, then

A~Auu'=Pu ' ~Qu' = Buu' ~B.

Since both A and B are in C, this means A = B. Thus P = @, which is
not true. Since P and @ are freely reduced and do not end in the same
generator, PQ™! is freely reduced.

Lemma 8.9. Suppose that (P,Q) and (R, S) are in S, and PQ™' = RS™!.
Then P=Rand Q@=3S.

Proof. Either P is a prefix of R or R is a prefix of P. Since proper prefixes
of P and R arein C, we must have P=R. Then Q' =5"1,50Q=S. O

Lemma 8.10. If u is in X* and (Au,Q) is in S, then (Qu™',A4) isin S,.
Proof. As noted above, Qu~! is freely reduced. Moreover, Qu~! ~

Auu™' ~ A and Qu! # A. Since A is in C, it follows that Qu~! > A.
Also, since Q is in C, Qu~! is in P. Thus (Qu~!,A)isin §;. O
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In Lemma 8.10, (Qu~!)A™! = (Au@Q™1)"l. Therefore the set H of words
PQ! with (P,Q) in 8] is closed under the map ~!. The image of H in F
generates H. Since H is finitely generated, there is a finite subset S, of S,
such that the set H, of words PQ~! with (P,Q) in S, is closed under ~!
and the image of H, in F generates H as a monoid. Thus ~ is generated by
S, and 2. If v is in X* and (Au,Q) is in S,, then (Au@Q™!)~! = Qu~tA™!
is in H,. By Lemmas 8.9 and 8.10, the pair (Qu~!,4) isin S,. Let 7, =

Lemma 8.11. The rewriting system T, UR is reduced and confluent.

Proof. Since T, UR is a subset of the reduced system 7; UR, it follows
that T, UR is reduced. Since R is confluent and 7, is reduced, we need to
consider only overlaps of an element (#Au, #Q) in 7, and an element uu~!
in R. Processing this overlap leads to the following reductions:

#Auu! - #A, #FAuuTl - #QuTl - #A.
Thus we have confluence. O

Let = be the congruence on Y* generated by 7 UR. Since both 7; UR
and 7, UR are reduced, confluent rewriting systems on Y* which generate
=, it follows that 7, UR = T, UR = RC(Y, <,7 UR) is finite, as is P.
Therefore the call KBS_2(Y, <,7 UR;U) terminates with & =7, UR. This
completes the proof of Proposition 8.8. O

Proposition 8.12. Suppose that < is consistent with length. Then |P| <
|Q| + 2 for all (P,Q) in S,.

Proof. Let P = Ty with 4 in X*. Then Qu~! ~ T. Since T is in C
and T # Qu~!, we have Qu~' >~ T. Since < is consistent with length,
|Qu~t| > |T|. Thus |Q|+1>|P|—1lor |P|<|Q|+2. O

The computation of 7; is essentially the process usually referred to as
Nielsen reduction, at least in the case in which < is a length-plus-
lexicographic ordering. For any word U in X**  let L(U) denote the
length of the freely reduced word freely equivalent to U. Let A be a
set of nonempty words in X** which are freely reduced, and set A~! =
{A7'| A€ A}. The set A is said to be Nielsen reduced if the following
additional conditions hold:

(1) ANA 1 =0.

(2) If A and B are in AU A and L(AB) < |A|, then B= A"L.

(3) If A, B, and C are in AUA™! and L(ABC) < |A| - |B| + |C|, then
B=A1lorB=C"'.
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For each pair {4, A !} in H = H, above, pick one representative, and let
A denote the set of words thus selected.

Proposition 8.13. If < is consistent with length, then A is Nielsen reduced.

Proof. By construction, elements of .A are nonempty and freely reduced.
Moreover, AN A7 = (), since A # A™! for all nonempty, freely reduced
words A. Suppose that A and B are in AU A™! and L(AB) < |A|. Let
A=PQ!and B=RS™! with (P,Q) and (R, S) in S,. Since A and B are
freely reduced, a prefix of B of length greater than |B|/2 cancels a suffix
of A. If R cancels a suffix of @7}, then R is a prefix of @, which is not
possible since @ is in C. Thus Q™! is canceled, so Q is a proper prefix of R.
Let R=QD. Then D # ¢ and D! is a suffix of P. Suppose P = ED.
Then ED™ ! ~Q and QD ~ S. But this means that E~ ED'D~ QD ~ S.
Since both E and S arein C, it follows that E = S. Therefore A= SD~!1Q!
and B=QDS'=A4"1

Now suppose that A, B, and C are in AUA™! and L(ABC) < |A|-|B|+
|C|. By the previous argument, at most half of B cancels a suffix of A,
and at most half of B cancels a prefix of C. Thus we can write B=UV"!,
with |U| = |V|, and U cancels a suffix of A and V! cancels a prefix of C.
Now U ~ V. Suppose U > V. Then (U,V) is in §;, and we conclude that
B = A"! as above. If V = U, then (V,U) is in §,, and a similar argument
shows that B=C"!. O

The following example shows that the assumption on < in Proposi-
tion 8.13 is necessary.

Ezample 8.3. Let X = {a,b,c}, let < be the basic wreath product ordering
of Y* in which # <a <a ! <b<b"! <c=<c!, and let S consist of the
following pairs:

boa?, aloe c—a? dlcloe
Then T UR is reduced and confluent. The set H consists of the words ba=2,
a®b7!, ca?, and a®c™!. If A =ba"? and B = a’c!, then the free reduction
of AB is bc™!, which has length less than A.

Our interest in Nielsen reduced sets is justified by the following proposi-
tion.

Proposition 8.14. If A is a subset of X** which is Nielsen reduced, then
the image of A in F is a set of free generators for the subgroup it generates.

Proof. See Theorem 7.3.1 of [Hall 1959] or the discussion in Section 3.2
of [Magnus et al. 1976]. O
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Corollary 8.15. Fvery finitely generated subgroup of F is free.

Proof. Let B be a finite set of reduced words. Take the preceding S to be
the set of pairs (B, €), with B in B. Then H is the subgroup of F' generated
by the image of B. Let < be a length-plus-lexicographic ordering on Y*.
By Proposition 8.13, there is a Nielsen reduced set A whose image in F'
generates H. By Proposition 8.14, H is free. O

More information about the uses of Nielsen reduction can be found in
[Hall 1959], [Magnus et al. 1976], and [Lyndon & Schupp 1977).

We close this section with a final comment about Proposition 8.6. It may
happen that ~ has only finitely many classes but RC(X, <, &) is infinite.
In this situation, the Knuth-Bendix procedure will churn along indefinitely,
producing longer and longer rules for 22, rules which are unnecessary in
computing canonical forms for ~. It is still possible to obtain enough
information to compute canonical forms for ~ using the rewriting-system

approach. How this is done is described in Section 3.10.

Exercise

8.1. Let X = {a,b}, let F be the free group generated by X, and let H be the subgroup of F
generated by the images of aba®h%a, ab®a®b~?, and a=?b~'a~}. Find a Nielsen reduced
set of words whose image in F generates H.
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Automata and rational languages

The theory of formal languages is an important part of theoretical computer
science. The theory classifies subsets of free monoids according to the
difficulty of deciding whether a given word belongs to the subsets. From
this point of view, the simplest subsets are the finite ones. The next simplest
are called rational languages. If £ is a rational language, then £ may be
infinite, but there is a finite combinatorial object called an automaton with
which one can decide whether a word U belongs to £ in time proportional
to |U].

One of the first papers to suggest a connection between combinatorial
group theory and formal language theory was (Anisimov 1971). Other au-
thors have pursued this topic. See for example (Muller & Schupp 1983,
1985) and (Gilman 1984b, 1987). However, the work which has stirred
up the greatest interest in formal language theory among group theorists is
[Epstein et al. 1992]. This book has no less than six authors and the intrigu-
ing title Word Processing and Group Theory. One of its most important
contributions is the definition of a class of groups in which the multiplica-
tion and comparison of elements can be described using automata. Such
groups are said to have an eutomatic structure.

We shall not attempt here an exposition of the theory of groups with
an automatic structure. However, the present chapter provides an intro-
duction to a number of applications of automata in combinatorial group
theory. Automata can be used as index structures to rewriting systems.
Automata also appear in one approach to studying right congruences on
finitely presented monoids using the Knuth-Bendix procedure for strings.
Automata have been used for over 50 years, usually without the term be-
ing explicitly mentioned, in the procedure coset enumeration discussed in
Chapters 4 and 5.

To streamline the exposition in this chapter, an unorthodox approach
to the subject of rational languages has been adopted. A result usually
referred to as the Myhill-Nerode theorem is taken as the definition of a
rational language. Traditional expositions of this material may be found
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in [Aho et al. 1974], [Eilenberg 1974], and [Revesz 1983]. The presentation
given here was strongly influenced by [Epstein et al. 1992] and by [Eilenberg
1974).

3.1 Languages

Let X be a set. A language over X is simply a subset of X*, that is, a set
of words. In this context, X is called the alphabet of the language. Let £
and M be languages over X. The union £ U M, the intersection £LN M,
and the complement X* — £ are also languages. The product language LM
was defined in Section 1.2 to be {UV | U € L,V € M}. We define £° to be
{€}, and for a positive integer k we put £¥ = LL... L, where the product
has k factors.
It is conventional to denote

k=]

k>0

by £*. As remarked in Section 1.2, £* has already been defined as the set
of all finite sequences of elements of £, and K is the set of products of these
sequences. That is, K is the submonoid generated by £. Nevertheless, in
this chapter we shall follow tradition and write £* for K.

Let £ be a language over X. It is possible to classify elements of X*
according to the ways in which they can be extended to yield elements of
L. For W in X*, set

C(L,W)={Ue X" |WU € L}.

We call C(L, W) the L-cone of W, or simply the cone of W when £ is clear
from the context.

Ezxample 1.1. If £L = X*, then C(L,W) = X* for every W in X*.
Ezample 1.2. If L= 0, then C(L,W) =0 for all W.

Ezample 1.3. If £ = {¢}, then C(L,¢) = {¢} and C(L,W) = 0 for every
nonempty word W.

Ezample 1.4. Suppose X = {a} and £ = {a% | i > 0}, the set of words in
X* of even length. Then C(£,W) is £ or {a**! | i > 0} according as |W|
is even or odd.

For any language £ over X, the cone C(L,¢) is £. If W is in X*, then
W is in £ if and only if C(L£,W) contains . Also, W is a prefix of one or
more elements of £ if and only if C(£, W) is nonempty.
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If £ is a language over X, then C(L) is defined to be {C(L,W) |W € X*},
the set of cones of £. We say that £ is rational if X and C(L) are both
finite.

Proposition 1.1. Suppose L is a finite language over a finite alphabet X .
Then L is rational.

Proof. Let m be the maximum length of |U| for U in £. If W is in X*
and |W| > m, then C(L,W) = 0. Since X is finite, there are only finitely
many words W with [W| < m, and hence C(L) is finite. O

The empty set may or may not be a cone of a language £. The empty
set is in C(L) if and only if there is a word W which is not a prefix of any
element of L. Let C,(£) = C(L) — {0}. Elements of C,(L) will be called
trim cones. It is easy to see that C,(£) = 0 if and only if £ = 0.

Example 1.4 describes an infinite rational language. As we shall see, all
rational languages have nice finite descriptions which make computing with
rational languages much simpler than working with arbitrary languages.

Proposition 1.2. Let £ and M be rational languages over X. The follow-
ing languages are rational: LOM, LOM, X* — L, LM, L*.

Proof. Let W be in X*. Then

Therefore

C(LUM)C{UUY |UEC(L),V e
CLAM)C{UNY|UEC(L),VE
C(X*~L)={X"—U|UECL)}.

In each case the set on the right is finite, so LUM,LNM, and X* - L
are rational.

Computing C(LM,W) is a little more complicated. Suppose WU = PQ,
where P is in £ and @ is in M. We have two cases, depending on whether
W is a prefix of P or P is prefix of W. Suppose P = WR. Then R is
in C(L,W), and @ can be any element of M. If W = PR, then U is in
C(M, R). From this it follows that

C(LM,W) = C(L,W)MU| JCM, R),
R
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where the union is over those words R with the property that there is a
word P in £ such that W = PR. Thus the cones of LM are among the
sets which can be constructed as follows: Choose a cone of £ and take the
product with M, then form the union of this with the union of a subset of
C(M). Only finitely many sets can be constructed this way, so C(LM) is
finite.

Finally, suppose U is in C(L*,W). Then WU = P, ... P,, where the P,
are in £. We can write W = P,...P_Q, where Q =c if m =n, and Q is
aprefixof P, ifm<n. ThenU=RP, ,...P,, where R=¢if m=n,
and P, ., = QR if m < n. In either case, U is in C(L,Q)L*. Therefore

C(L, W) = [UC(L’,Q)] L,
Q

where the union is over those words @ for which there is a V in £* such
that W =V Q. Since C(£) is finite, there are only finitely many possibilities
for C(L*,W). O

Propositions 1.1 and 1.2 allow us to construct a great many rational
languages. In fact, it can be shown that every rational language can be
built up from finite sets by repeated use of Proposition 1.2. We shall not
need this fact here. A proof may be found in [Aho et al. 1974].

It will be useful to have an example of a language which is not rational.

Ezample 1.5. Let X = {a,b} and let £ = {a’b’ | i > 0}. Then for k > 1 we
have C(£,a*) = {a’bi** | i > 0} and C(L,a*b) = {b¥~'}. Thus clearly C(£)
is infinite and £ is not rational.

Proposition 1.3. Let U be a finite subset of X*. The two-sided ideal T
and the right ideal J generated by U are rational languages, as are their
complements.

Proof. By Proposition 1.1, U/ is rational. Now Z = X*UX* and J =UX",
so both are rational by Proposition 1.2. Also, the complements of 7 and J
are rational by Proposition 1.2. O

Corollary 1.4. If (X,R) is a finite monoid presentation and R is a con-
fluent rewriting system with respect to a reduction ordering <, then the
set of canonical forms for Mon (X | R) relative to < is a rational language
over X.

Proof. The set of canonical forms is the complement of the ideal generated
by the left sides in R. O
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In addition to the closure properties of Proposition 1.2, the set of rational
languages over X is closed under taking prefixes.

Proposition 1.5. Let £ be a rational language over X. The set P of words
which are prefizes of at least one element of L is a rational language.

Proof. Let W be in X*. A word U is in C(P,W) if and only if WU is in
P, which is true if and only if there is a word V such that WUV is in L.
But this says that C(P, W) is the set of prefixes of the elements of C(L£,W).
Since C(L) is finite, there are only finitely many possibilities for C(P,W).

O

Exercises

1.1. Which of the following languages are rational over {a,b}?

(a) {a*+]i> 0}
(b) {"|i>1}

() {(ab)’|i >0}
(d) {a®b% |4,5 >0}

1.2. Suppose k is a nonnegative integer and £ is the set of words of length k over a finite
alphabet X. For W in X* describe C(L,W).

1.3. Let £ be a rational language over X. Show that C(L£, W) is a rational language for each
W in X*.

14. Let £ be a language over X. For W in X* let B(L,W) = {U € X* |UW € L}, the
backward L-cone of W, and let B(L) = {B(L,W) | W € X*}. For ¢ in C(L), let D(c) =
{WeX*|C(L,W) =0} Show that

B(L, W)= | D(o).
Weo

Conclude that if £ is rational, then B(L) is finite and
|B(C)| < 2000,

1.5. For a language £ over X, put £ = {U' | U € £}. (Recall that Ut is the reversal of U.)
Prove that C(L', W) = B(£, W)!. Deduce from this that £ is rational if and only if £
is rational.

1.6. Suppose that £ is a rational language over X. Show that the set of suffixes of elements
of £ and the set of subwords of elements of £ are rational.

3.2 Automata

In this section we shall define combinatorial objects called automata and
associate to each automaton a language. In Section 3.3 we shall show that
the rational languages are precisely the languages associated with finite
automata.
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Figure 3.2.1
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Figure 3.2.2

An automaton is a quintuple (2, X, E, A, ), where ¥ and X are sets, A
and ) are subsets of ¥, and F is a set of triples of the form (o, U, 7), where
o and 7 are in ¥ and U is a word in X* of length at most 1. Thus U is
either the empty word or an element of X. Elements of ¥ are called states,
A is the set of initial states, and €2 is the set of terminal states. We may
consider (%, F) to be a directed graph. If e = (o, U, 7) is in E, then we think
of e as a directed edge going from o to 7 and having label U (Figure 3.2.1). In
Chapter 7 we shall consider generalized automata, in which edge labels can
be arbitrary words in X*.

Ezample 2.1. Let £ = {1,2,3}, X = {a,b}, A={1}, and @ ={1,3}. Let E
consist of the following edges:

(130')3)) (1ab,2)a (2ab)1)’ (2)ba3)a (3)8) 2)3 (3)0',1)'

We can picture the automaton (3, X, E, A, Q) as shown in Figure 3.2.2. In
this diagram, and other diagrams representing finite automata, the fol-
lowing conventions are used: Initial states are represented by squares,
and noninitial states by circles. Terminal states have a double boundary;
nonterminal states have a single boundary.
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Ezample 2.2. Let f: X — G, where X is a set and G is a group. Let H
be a subgroup of G, let 4 be the set of right cosets of H in G, and let
Eg be the set of triples (o,z,7), where o and 7 are in X, z is in X, and
of(x) =7. The graph (X, E) is called the Schreier diagram for G relative
to H, X, and f. (Traditionally, this term has been used only when f(X)
is a monoid generating set for G.) We shall call (4, X, Eq,{H},{H}) the
Schreier automaton for G relative to H, X, and f. When H is the trivial
subgroup, so that ¥y can be identified with G, the terms Cayley diagram
and Cayley automaton are sometimes used.

Ezample 2.3. We can generalize Example 2.2 to right congruences on
monoids. Let f: X — M, where X is a set and M is a monoid. Let ~
be a right congruence on M and let ¥ be the set of ~-classes. If ¢ is in
¥ and z is in X, then o f(z) is contained in a unique element 7 of X. Let
E be the set of triples (o,z,7), where ¢ and 7 are in X, z is in X, and
o f(z) C 7. For any subsets A and Q of X, the quintuple (T, X, F, 4,Q) is
an automaton. A natural choice is to take A = Q = {a}, where « is the
~-class containing 1. However, other choices might be useful.

Ezample 2.4. Let ¥ = {1,2,3,4,5} and let X = {a,b}. Figure 3.2.3 defines
an automaton with eight edges, a single initial state, 1, and a single terminal
state, 5.

Our definition of automaton allows ¥ and X to be infinite. Computations
can normally be performed only with finite automata, automata for which
3 and X are finite.
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Let A= (3, X, E, A, Q) be an automaton. A path in A is a sequence P
of edges in E of the form

(00, Uy, 01)5 (01,U3,03),- -5 (0424, Uy, 04),

where each edge after the first begins at the state at which the previous
edge ends. The path P is said to go from o, to o, and to have length t.
The state o, is the starting point, o, is the endpoint, and o,,...,0,_; are
the intermediate states of P. The signature of P is the product Sg(P) =
U,U,...U, of the labels on the edges of P. For any state o, we allow the
empty path from ¢ to o and define its signature to be . In Example 2.1,
let P be the following sequence of edges:

1,0,3), (3,52), (2,b,3), (3,52), (2,b1).

Then P is a path of length 5 from 1 to 1 having signature ab?.

Let A and ® be subsets of ¥. If P is a path in .4 such that the starting
point of P is in A and the endpoint of P is in ®, then we shall say that P
goes from A to ®. If Q is a path in A such that the starting point of Q is
the endpoint of P, then we can concatenate P and @) to obtain a path R
such that Sg(R) = Sg(P) Sg(Q).

The language recognized by an automaton A = (3, X, E, A, ) is the set
L of signatures of paths in A from A to Q. We shall denote £ by L(A).
In Example 2.1, the state 1 is both initial and terminal. Thus the path P
above shows that ab? is in the language £ recognized by the automaton of
Example 2.1. It is easy to see that ba is not in L.

Ezample 2.5. It is not difficult to construct automata which recognize
0, {e}, and X*. Thus (0, X,0,0,0) recognizes @, as do ({1}, X,0,0,0),
({1},X,0,{1},0), and ({1},X,0,0,{1}). The last three automata may
be pictured as in Figure 3.2.4. The automaton (0, X,0,0,0) is the empty
automaton with alphabet X. The automata in Figure 3.2.5 recognize {c}.
Let X be a set and let £ = {(1,2,1) | z € X}. Then ({1}, X, E,{1},{1})
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recognizes X*. Figure 3.2.6 describes this automaton for the case X =

{a,b}.

Example 2.6. Let U = z,...z,, be any nonempty word in X*. Then the
automaton in Figure 3.2.7 recognizes {U}, and the automaton in Fig-
ure 3.2.8 recognizes {U* | i > 0}.

Example 2.7. Let A be the Schreier automaton for a group G relative to a
subgroup H and a function f: X — G. We can extend f to be a homomor-
phism from X* to G. The language L(A) is the set of words in X* whose
images in G are elements of H.

Two automata A, = (X,, X, E}, 4,,Q,) and A, = (%,, X, E,, A,,Q,) with
the same alphabet X are isomorphic if there is a bijection f: X, — 3, such
that f(Al) = AZ’ f(Ql) = 92, and the map (U; U,T) = (f(O'),U,f(T)) of
Y X X*x X, to X, x X* XX, maps E| onto E,.

Proposition 2.1. Isomorphic automatae recognize the same language.
Proof. Exercise. O

The use of the words “automaton” and “recognize” is intended to convey
the idea that automata simulate in some way the operation of certain
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kinds of computers. It must be emphasized, however, that automata are
mathematical, not physical, objects.

We say that an automaton A = (X, X, E, A,Q) is deterministic if the
following conditions hold:

(i) 14 < 1.
(ii) The label on each edge in F is nonempty.

(iii) For each ¢ in ¥ and each z in X there is at most one edge (o, z,7)
in E.

We can rephrase condition (iii) as follows: If (g,z,7) and (o,z,p) are in
E, then 7 = p. The automaton of Example 2.1 is not deterministic, since
it contains the edges (2,b,1) and (2,b,3) and has an edge with an empty
label. The automata of Examples 2.2, 2.4, and 2.5 are deterministic. If A is
deterministic and A # @, then A contains a single state. We shall normally
denote this unique initial state by a.

A complete automaton is one which is deterministic, has exactly one
initial state, and satisfies the condition that for each state ¢ and each z
in X there is exactly one edge (0,2,7) in E. The Schreier automata of
Example 2.2 are complete, but the automaton of Example 2.4 is not, since
there are no edges (2,b,7) or (5,a,7).

Proposition 2.2. In a deterministic automaton, a path is determined by
its starting point and its signature.

Proof. Let A= (2, X, E, A,Q) be a deterministic automaton and suppose
that P is a path in .4 which starts at o and has signature V. If V = ¢, then
P must have length 0, since all edge labels have length 1. Now suppose
that V # € and let z be the first term of V. Let (0, z,7) be the first edge
of P. Then by the definition of deterministic automaton, 7 is uniquely
determined. Let V =zW. The remaining edges of P define a path starting
at 7 and having signature W. By induction on the length of P, this path
is unique. Therefore P is determined by ¢ and V. O

Suppose that A = (X, X, F, A, Q) is a deterministic automaton and as-
sume that o and 7 are states in X. If U is a word in X* and U is the
signature of a path in A from o to 7, then we shall write 7 = oV. The
notation does not identify .4, which must be clear from the context.

The following procedure can be used to determine whether there is a

path which starts at ¢ and has signature U.

Procedure TRACE(A,0,U;1,B,C);
Input: A : a finite deterministic automaton (X, X, E, A, Q);
c : a state in X;
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Figure 3.2.9
U : a word in X*;
Output: 7 : a state in X;
B,C : words in X* such that U = BC, 7 = ¢?, and |B| is

as large as possible;
Begin
T:=0; B:=¢, C:=U,;
While C # ¢ do begin
Let z be the first term of C;
If 7% is not defined then break;
Let (1,z,p) be in E; Let C = zD;
B:=Bz; C:=D; t:=p
End
End.

There is a path P in A starting at o such that Sg(P) = U if and only if
TRACE(A,0,U;1,B,C) returns B =U, and hence C =¢.

Ezample 2.8. Suppose that X = {a,b} and A is given by Figure 3.2.9. The
result of TRACE(A, 1,aba®b?ab; 1, B,C) is to set 7 = 3, B = aba®b, and
C = bab. After TRACE(A, 3,a%ba?;p, R, S), we have p = 1, R = a*ba,
and S=e¢.

In view of Proposition 2.2, there is a straightforward way of decid-
ing membership in L(A) for any finite, deterministic automaton A =
(3,X,E, A, Q). Suppose W is in X*. If A =0, then L(A) is empty and
W is not in L(A). If A = {a}, then W is in L(A) if and only if the call
TRACE(A,a,W;T, B,C) returns with 7 in Q and B = W. We shall show
later that membership in L{.A) can be decided for any finite automaton .A.

The set of edges in a complete, finite automaton is conveniently described
by its transition table. The rows of the table are indexed by states, and
the columns by elements of X. The entry in the o-th row and z-th column



3.2 Automata 107

. @)

Figure 3.2.10

is the state 7 = 0%, that is, the state 7 such that (o,z,7) is an edge. For
example, the transition table

al|b
11213
21213
31113

describes the edges in the complete automaton shown in Figure 3.2.10.

Suppose that A is a finite, deterministic automaton which is not com-
plete. We can still use a transition table to describe A, but certain entries
will not be defined. On the printed page, undefined entries can be left
blank. In a computer, every memory location always has a value, so we
must use some value which cannot be interpreted as a state to signal the
missing entries in the transition table. Typically, positive integers are used
to represent states, and 0 is used to flag undefined entries.

Exercises

2.1. Construct deterministic automata with X = {a} which recognize the languages
{a?,a%,a%} and {a® |i>0}. In each case, what is the minimum number of states
required?

2.2. Construct the Cayley automaton for the symmetric group Sym(3) where X is
{(1,2),(2,3)} and f is the identity map.

2.3. Let A be the automaton of Example 2.4. What is the result of the call TRACE(A, 1,
a?ba?b;0, A, B)?

2.4. Let A be a deterministic automaton and let P and Q be paths in A with the same
starting point. Let R be the longest common initial segment of P and Q. Show that
Sg(R) is the longest common prefix of Sg(P) and Sg(Q).

2.5. Suppose A = (X, X,E,A,Q) is an automaton and A = Q # 0. Show that L(A) is a
submonoid of X*.
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2.6. Suppose that k is a nonnegative integer. Let ¥ = {1,2,...,k+1} and E =
{(,2,i+1)|1<i<k,z€ X}. Show that A= (3,X,E, {1}, {k +1}) recognizes the
set of words in X* of length k. Draw a diagram for A.

2.7. If | X| = 1, then we can identify X* with the set of nonnegative integers under addition.
Show that rational sets correspond to sets L obtained as follows: Choose a positive
number n and a subset A4 of {0,1,...,n — 1}. Choose finite sets B and C of nonnegative
integers. Set L equal to the union of C with the set of nonnegative integers i such that
i is not in B and i mod n is in A.

2.8. Let A= (%, X, E, A,Q) be an automaton. Define A’ to be (%, X, Ef,Q, A), where Ef =
{(r,U,0) | (o,U,7) € E}. Show that A' is an automaton and that L(A") = L(A)!, the
set of reversals of the elements of L(A).

3.3 Automata, continued

We shall now begin to relate finite automata and rational languages.

Proposition 3.1. Every language L over an alphabet X is recognized by a
complete automaton whose states are the cones of L.

Proof. Let X be the set C(L) of cones of L. Set o = C(L,£) = £ and put
A= {a}. Let Q bé the set of cones in C(L) which contain ¢.

Lemma 3.2. Let W be a word in X* and set o = C(L,W). Ifzx isin X,
then C(L,Wz) ={U € X* | zU € o}.

Proof. Let U be in X*. Then U is in C(£,Wz) if and only if WzU is in
L, which is true if and only if zU isin 0. O

Let E be the set of triples (o,z,7), where ¢ isin X, z is in X, and 7 =
{U e X*|zU €c}. By Lemma 3.2, A= (%, X, E, A Q) is an automaton,
which is clearly complete. To finish the proof of the proposition, we shall
show that A recognizes L.

Lemma 3.3. Let (0y,%,,04),...,(0:_1, %, 0,) be a path in A starting ot «.
Then o, =C(L,x;...z,).

Proof. If t = 0, then 0, = a = C(L,£). Assume t > 0. By induction
on t, we know that C(L,z;...x, ;) = 0,_;. By the definition of E and
Lemma 3.2, it follows that 0, = C(L,z;...z,). O

A word U is in £ if and only if C(£,U) contains €. Since A is complete,
there is a unique path P in A such that P starts at o and Sg(P) =U. Let
P end at 0. By Lemma 3.3, 0 = C(L,U), and o is in  if and only if U is
in £. Thus A recognizes £. [

We shall write A(L) for the automaton A constructed in the proof of
Proposition 3.1.
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Corollary 3.4. Let £ be a rational language over a finite alphabet X. Then
L is recognized by a finite, complete automaton.

Proof. By Proposition 3.1, £ is recognized by the complete automaton
A(L). Since L is rational, C(L) is finite, and therefore A(L) is finite. O

Proposition 3.5. If A is a finite automaton, then L(A) is a rational
language.

Proof. Let A= (%,X,E,A,Q) and let £ = L(A). Suppose W is in X*
and U is in C(L,W). There are paths P and @ in A such that P goes
from A to a state o, @ goes from o to Q, W = Sg(P), and U = Sg(Q).
Conversely, given such paths P and @, then U is in C(L,W). Let A(W)
be the set of endpoints of paths in A which start in A and have W as their
signature. Then C(L,W) is the set of signatures of paths from A(W) to
Q. Thus C(£,W) depends only on A(W). Since X is finite, there are only
finitely many possibilities for A(W). Thus C(£) is finite. In fact,

o) <2™. o

Corollary 3.6. A language L over a finite alphabet X is rational if and
only if it is recognized by a finite automaton.

Corollary 3.7. If A is a finite automaton, then there is a complete, finite
automaton A, such that L(A,) = L(A).

Proof. By Proposition 3.6, L(.A) is a rational language. By Proposi-
tion 3.1, A; = A(L(A)) is a complete, finite automaton recognizing L(.A).
O

Suppose A = (E, X, E, A,Q) is a deterministic automaton which is not
complete. It is possible to construct a complete automaton .A; such that
L(A,) = L(A). Let oo be an object not in . Set £, = XU {oc} and let S
be the set of pairs (0,2) with ¢ in X and z in X such that there is no edge
(o,z,7)in E. Put

E, = EU{(0,3,%) | (0,2) € S} U{(00,3,00) |« € X}..

If A =0, then let A, = {oo}; otherwise, let A; = A. Finally, set A, =
(Z,X,E,A,Q).

Proposition 3.8. L(A,) = L(A).

Proof. Exercise. O
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Figure 3.3.2

We call A, the completion (more correctly a completion) of A. If A is
already complete, then A is said to be its own completion.

Let A= (%,X,E,A,Q) be any automaton and let ¥, be a subset of X.
Set A, = ANX, and @, = QNX,. Define E, to be the set of edges (o,U, 1)
in E such that o and 7 are in X,. The automaton 4, = (£, X, E|, A;,)
is called the restriction of A to X,. Every path in A, is a path in A,
so L(A,) C L(A).

Ezrample 3.1. Suppose X = {a,b} and A is the automaton in Fig-
ure 3.3.1. The restriction of A to {1,2,3} is shown in Figure 3.3.2.
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Exercises

3.1. Construct a completion of the automaton in Example 2.4.

3.2. Describe the restriction of the automaton in Example 2.4 to {1,3,4,5}.

3.3. Let X and Y be finite sets and let f: X* — Y™ be a homomorphism of monoids. Prove
that if £ is a rational language over X, then f(L) is a rational language over Y. (Hint:
Let A be a finite automaton recognizing £. Construct a finite automaton recognizing

f(£))

3.4 The subset construction

Suppose A is a finite automaton. In Corollary 3.7 we proved the existence
of a finite, complete automaton 4, such that L(A4,) = L(.A). In this section
we shall give a construction of one such A,.

Let A= (%,X,E,A,Q). For any subset A of X, let A be the set of all
states p such that there is a path P from A to p with Sg(P) = . Let us
call A the closure of A and define A to be closed if A = A. It is clear that
A is closed.

The automaton A, = (3,, X, E;, A;,Q,) is constructed as follows: X, is
the set of closed subsets of £, A; = {4}, and Q, is the set of those elements
of 3, which contain a state in 2. For A in ¥, and = in X, let A® be the
set of states p such that there is an edge (A, z,#) in E with A in A. Put E;
equal to the set of triples (A, xr, A®) with A in ¥, and z in X. We shall say
that A, is obtained from A by the subset construction.

Example 4.1. Before proving that L(A;) = L(A), let us apply the subset
construction to the automaton in Example 3.1. A set of states is closed
provided 3 is in the set whenever 1 is. Thus there are 12 closed sets:

A1 =0, A7={2»4},
A2={2}a A8={3a4}a
A3={3}7 A9={1’273}a
A4={4}» A10={1»3»4}»

A5={1’3}’ A11 ={2’3’4})
A =1{2,3}, A, =1{1,2,3,4}.

In A, we have A, = {A;} and Q, = {A,, Ag, A7, Ay, Ay, A )

To illustrate how the edges of A, are determined, let us find the value
of 7 such that (Ag,b,A;) is in E,. The edges of A starting at states in Aq
and having the label b are (3,b,4) and (4,b,1). Thus (Ag)® = {1,4}. The
closure of {1,4} is {1,3,4} = A}y, s0 (Ag,b,A,q) is in E,. The full set E, is
given in Table 3.4.1, where ¢ is written for A,.

Proposition 4.1. If A, is obtained from a finite automaton A by the subset
construction, then L(A;) = L(A).
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Table 3.4.1
alb alb
1|11(1 713 5
21311 811110
31114 916 7
41115 101212
5 (2|7 11]13]10
6341216112

Proof. Suppose first that W is in L(A). There is a path P in A from A
to Q such that W = Sg(P). Let the edges of P be (0,_,,U;,0,), 1 <i<t,
and let i) < i, <--- <1, be the values of i for which U; # . Then U; is an
element z; of X, 1 <j<s,and W =uz,...z,. Since g, is in A, the states
09, 0y;---,0; _y are all in Ay = A, the unique element of A,. Let (Aj, ), A,)
bein E,. Then g; isin A}, and so g; isin A, for 4, < j <i,. Let (A}, 7,,A,)
be in E,. Then o} is in A, for i, < j <7;. Continuing in this manner, we
construct a path Q in A, consisting of edges (A;_;,%;,A;), 1 < j < s, such
that o, is in A,. Now g, isin £2, so A, is in ©,. Since Sg(Q) = W, it follows
that W is in L(A,).

The proof that L(A,;) C L(A) is left as an exercise. O

When E has no edges with empty labels, then |Z,;| = 2. To decide
membership in L(A) for a single word, it is not necessary to construct all
of A,. See Exercise 4.3.

Exercises

4.1. Apply the subset construction to the automaton of Example 2.1.

4.2. Let A= (I, X,E, A,Q) be a finite automaton and let A be a subset of £. Show how to
compute A in time at worst linear in |A| + |E]|.

4.3. Suppose A is as in Exercise 4.2 and U = u; ...y, is a word in X*. Show that it is possible
to decide whether U is in L(.A) in time polynomial in s + || + |E|. (Hint: Set Ag =4
and for 1 <{ < s define A; to be A}* . How hard is it to compute A,?)

3.5 Index automata

We come now to our first important application of automata. Let R be
a finite rewriting system on X* with respect to a reduction ordering <.
An index automaton for R is a complete automaton A = (X, X, E, A,Q)
recognizing the set of words which are reducible with respect to R. Not all
index automata for R are isomorphic. We shall usually impose additional
conditions on A and assume that various supplemental data about A are
available. For example, we want information which will tell us that a specific
left side in R is a subword of a given word W, not just that W is reducible
with respect to R.
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Let A be an index automaton for R and let P be a path in A from A to
some state w in . Then Sg(P) is reducible with respect to R and hence
Sg(P) contains as a subword the left side of some rule in R. It is possible
that Sg(P) contains many left sides. However, for some A it is possible to
identify a rule (L, R) in R depending only on w such that Sg(P) always
contains L as a subword. A rule identifier for A is a function f: Q2 — R
such that for any w in © and any path P from A to w the left side of f(w) is
a subword of Sg(P). As we shall see, it is always possible to find an index
automaton for R which has a rule identifier.

Given an index automaton for R with a rule identifier, rewriting with
respect to R can be speeded up significantly.

Procedure INDEX REWRITE(R, A, U;V);

Input: R : a finite, nonempty rewriting system on X*;
A : an index automaton (X, X, FE,A,Q) for R w1th rule
identifier f;
U : a word in X*;
Output: V : a word irreducible with respect to R and derivable

from U using R;
Begin
Let o, be the unique state in 4; V :=¢; W :=