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On the surface, matrix theory and graph theory seem like very different branches 
of mathematics. However, adjacency, Laplacian, and incidence matrices are 
commonly used to represent graphs, and many properties of matrices can give 
us useful information about the structure of graphs.

Applications of Combinatorial Matrix Theory to Laplacian Matrices of 
Graphs is a compilation of many of the exciting results concerning Laplacian 
matrices developed since the mid 1970s by well-known mathematicians such 
as Fallat, Fiedler, Grone, Kirkland, Merris, Mohar, Neumann, Shader, Sunder, and 
more. The text is complemented by many examples and detailed calculations, 
and sections followed by exercises to aid the reader in gaining a deeper 
understanding of the material. Although some exercises are routine, others 
require a more in-depth analysis of the theorems and ask the reader to prove 
those that go beyond what was presented in the section. 

Matrix-graph theory is a fascinating subject that ties together two seemingly 
unrelated branches of mathematics. Because it makes use of both the 
combinatorial properties and the numerical properties of a matrix, this area 
of mathematics is fertile ground for research at the undergraduate, graduate, 
and professional levels. This book can serve as exploratory literature for the 
undergraduate student who is just learning how to do mathematical research, 
a useful “start-up” book for the graduate student beginning research in matrix-
graph theory, and a convenient reference for the more experienced researcher.
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Preface

On the surface, matrix theory and graph theory are seemingly very different
branches of mathematics. However, these two branches of mathematics interact
since it is often convenient to represent a graph as a matrix. Adjacency, Laplacian,
and incidence matrices are commonly used to represent graphs. In 1973, Fiedler
[28] published his first paper on Laplacian matrices of graphs and showed how
many properties of the Laplacian matrix, especially the eigenvalues, can give us
useful information about the structure of the graph. Since then, many papers have
been published on Laplacian matrices. This book is a compilation of many of the
exciting results concerning Laplacian matrices that have been developed since the
mid 1970s. Papers written by well-known mathematicians such as (alphabetically)
Fallat, Fiedler, Grone, Kirkland, Merris, Mohar, Neumann, Shader, Sunder, and
several others are consolidated here. Each theorem is referenced to its appropri-
ate paper so that the reader can easily do more in-depth research on any topic of
interest. However, the style of presentation in this book is not meant to be that
of a journal but rather a reference textbook. Therefore, more examples and more
detailed calculations are presented in this book than would be in a journal article.
Additionally, most sections are followed by exercises to aid the reader in gaining a
deeper understanding of the material. Some exercises are routine calculations that
involve applying the theorems presented in the section. Other exercises require a
more in-depth analysis of the theorems and require the reader to prove theorems
that go beyond what was presented in the section. Many of these exercises are taken
from relevant papers and they are referenced accordingly.

Only an undergraduate course in linear algebra and experience in proof writing
are prerequisites for reading this book. To this end, Chapter 1 gives the necessities
of matrix theory beyond that found in an undergraduate linear algebra course that
are needed throughout this book. Topics such as matrix norms, mini-max princi-
ples, nonnegative matrices, M-matrices, doubly stochastic matrices, and generalized
inverses are covered. While no prior knowledge of graph theory is required, it is help-
ful. Chapter 2 provides a basic overview of the necessary topics in graph theory that
will be needed. Topics such as trees, special classes of graphs, connectivity, degree
sequences, and the genus of graphs are covered in this chapter.

Once these basics are covered, we begin with a gentle approach to Laplacian
matrices in which we motivate their study. This is done in Chapter 3. We begin
with a brief study of other types of matrix representations of graphs, namely the
adjacency and incidence matrices, and use these matrices to define the Laplacian
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matrix of a graph. Once the Laplacian matrix is defined, we present one of the most
famous theorems in matrix-graph theory, the Matrix-Tree Theorem, which tells us
the number of spanning trees in a given graph. Its proof is combinatoric in nature
and the concepts in linear algebra that are employed are well within the grasp of
a student who has a solid background in linear algebra. Chapter 3 continues to
motivate the study of Laplacian matrices by deriving their construction from the
continuous version of the Laplacian matrix which is used often in differential equa-
tions to study heat and energy flow through a region. We adopt these concepts to
the study of energy flow on a graph. We further investigate these concepts at the
end of Chapter 3 when we discuss networks which, historically, is the reason math-
ematicians began studying Laplacian matrices.

Once the motivation of studying Laplacian matrices is completed, we begin with
a more rigorous study of their spectrum in Chapter 4. Since Laplacian matrices are
symmetric, all eigenvalues are real numbers. Moreover, by the Gersgorin Disc Theo-
rem, all of the eigenvalues are nonnegative. Since the row sums of a Laplacian matrix
are all zero, it follows that zero is an eigenvalue since e, the vector of all ones, is
an eigenvector corresponding to zero. We then explore the effects of the spectrum
of the Laplacian matrix when taking the unions, joins, products, and complements
of graphs. Once these results are established, we can then find upper bounds on
the largest eigenvalue, and hence the entire spectrum, of the Laplacian matrix in
terms of the structure of the graph. For example, an unweighted graph on n vertices
cannot have an eigenvalue greater than n, and will have an eigenvalue of n if and
only if the graph is the join of two graphs. Sharper upper bounds in terms of the
number and the location of edges are also derived. Once we have upper bounds for
the spectrum of the Laplacian matrix, we continue our study of its spectrum by
illustrating the distribution of the eigenvalues less than, equal to, and greater than
one. Additionally, the multiplicity of the eigenvalue λ = 1 gives us much insight
into the number of pendant vertices of a graph. We then further our study of the
spectrum by proving the recently proved Grone-Merris Conjecture which gives an
upper bound on each eigenvalue of the Laplacian matrix of a graph. This is sup-
plemented by the study of maximal or threshold graphs in which the Grone-Merris
Conjecture is sharp for each eigenvalue. Such graphs have an interesting structure
in that they are created by taking the successive joins and complements of com-
plete graphs, empty graphs, and other maximal graphs. Moreover, since the upper
bounds provided by the Grone-Merris Conjecture are integers, it becomes natural
to study other graphs in which all eigenvalues of the Laplacian matrix are integers.
In such graphs, the number of cycles comes into play.

In Chapter 5 we focus our study on the most important and most studied eigen-
value of the Laplacian matrix - the second smallest eigenvalue. This eigenvalue is
known as the algebraic connectivity of a graph as it is used extensively to measure
how connected a graph is. For example, the algebraic connectivity of a disconnected
graph is always zero while the algebraic connectivity of a connected graph is always
strictly positive. For a fixed n, the connected graph on n vertices with the largest
algebraic connectivity is the complete graph as it is clearly the “most connected”
graph. The path on n vertices is the connected graph on n vertices with the small-
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est algebraic connectivity since it is seen as the “least connected” graph. Also, the
algebraic connectivity is bounded above by the vertex connectivity. Hence graphs
with cut vertices such as trees will never have an algebraic connectivity greater than
one. Overall, graphs containing more edges are likely to be “more connected” and
hence will usually have larger algebraic connectivities. Adding an edge to a graph
or increasing the weight of an existing edge will cause the algebraic connectivity
to monotonically increase. Additionally, graphs with larger diameters tend to have
fewer edges and thus usually have lower algebraic connectivities. The same holds
true for planar graphs and graphs with low genus. In Chapter 5, we prove many
theorems regarding the algebraic connectivity of a graph and how it relates to the
structure of a graph.

Once we have studied the interesting ideas surrounding the algebraic connec-
tivity of a graph, it is natural to want to study the eigenvector(s) corresponding
to this eigenvalue. Such an eigenvector is known as the Fiedler vector. We dedicate
Chapters 6 and 7 to the study of Fiedler vectors. Since the entries in a Fiedler vector
correspond to the vertices of the graph, we begin our study of Fiedler vectors by
illustrating how the entries of the Fiedler vector change as we travel along various
paths in a graph. This leads us to classifying graphs into one of two types depending
if there is a zero entry in the Fiedler vector corresponding to a cut vertex of the
graph. We spend Chapter 6 focusing on trees since there is much literature con-
cerning the Fiedler vectors of trees. Moreover, it is helpful to understand the ideas
behind Fiedler vectors of trees before generalizing these results to graphs which
is done in Chapter 7. When studying trees, we take the inverse of the submatrix
of Laplacian matrix created by eliminating a row and column corresponding to a
given vertex k of the tree. This matrix is known as the bottleneck matrix at ver-
tex k. Bottleneck matrices give us much useful information about the tree. In an
unweighted tree, the (i, j) entry of the bottleneck matrix is the number of edges
that lie simultaneously on the path from i to k and on the path from j to k. An
analogous result holds for weighted trees. Bottleneck matrices are also helpful in
determining the algebraic connectivity of a tree as the spectral radius of bottleneck
matrices and the algebraic connectivity are closely related. When generalizing these
results to graphs, we gain much insight into the structure of a graph. We learn a
great deal about its cut vertices, girth, and cycle structure.

Chapter 8 deals with the more modern aspects of Laplacian matrices. Since zero
is an eigenvalue of the Laplacian matrix, it is singular, and hence we cannot take
the inverse of such matrices. However, we can take the group generalized inverse
of the Laplacian matrix and we discuss this in this chapter. Since the formula for
the group inverse of the Laplacian matrix relies heavily on bottleneck matrices, we
use many of the results of the previous two chapters to prove theorems concerning
group inverses. We then apply these results to sharpen earlier results in this book.
For example, we use the group inverse to create the Zenger function which is an-
other upper bound on the algebraic connectivity. We also use the group inverse to
investigate the rate of change of increase (the second derivative) in the algebraic
connectivity when we increase the weight of an edge of a graph. The group inverse
of the Laplacian matrix is interesting in its own right as its combinatorial proper-
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ties give us much information about the stucture of a graph, especially trees. The
distances between each pair of vertices in a tree is closely reflected in the entries of
the group inverse. Moreover, within each row k of the group inverse, the entries in
that row decrease as you travel along any path in the tree beginning at vertex k.

Matrix-graph theory is a fascinating subject that ties togtether two seemingly
unrealted branches of mathematics. Because it makes use of both the combinatorial
properties and the numerical properties of a matrix, this area of mathematics is
fertile ground for research at the undergraduate, graduate, and experienced levels.
I hope this book can serve as exploratory literature for the undergraduate student
who is just learning how to do mathematical reasearch, a useful “start-up” book for
the graduate student begining research in matrix-graph theory, and a convenient
reference for the more experienced researcher.
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Notation

< - the set of real numbers

<n - the space of n-dimensional real-valued vectors

A[X,Y ] - the submatrix of A corresponding to the rows indexed by X and the
columns indexed by Y

A[X] = A[X,X]

[X] = {1, . . . , n} \X

‖x‖ - the Euclidean norm of the vector x

e - the column vector of all ones (the dimension is understood by the context)

e(n) - the n-dimensional column vector of all ones

ei - the column vector with 1 in the ith component and zeros elsewhere

yi - the ith component of the vector y

I - the identity matrix

J - the matrix of all ones

Ei,j - the matrix with 1 in the (i, j) entry and zeros elsewhere

Mn - the set of all n× n matrices

Mm,n - the set of all m× n matrices

A ≤ B - entries aij ≤ bij for all ordered pairs (i, j)

A < B - entries aij ≤ bij for all ordered pairs (i, j) with strict inequality for at
least one (i, j)
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A << B - entries aij < bij for all ordered pairs (i, j).

AT - the transpose of the matrix A

A−1 - the inverse of the matrix A

A# - the group inverse of the matrix A

A+ - the Moore-Penrose inverse of the matrix A

diag(A) - the diagonal matrix consisting of the diagonal entries of A

det(A) - the determinant of the matrix A

Tr(A) - the trace of the matrix A

mA(λ) - the multiplicity of the eigenvalue λ of the matrix A

L(G) - the Laplacian matrix of the graph G

mG(λ) - the multiplicity of the eigenvalue λ of L(G)

ρ(A) - the spectral radius of the matrix A

λk(A) - the kth smallest eigenvalue of the matrix A. (Note that we will always
use λn to denote the largest eigenvalue of the matrix A.)

σ(A) - the spectrum of A, i.e., the set of eigenvalues of the matrix A counting
multiplicity

σ(G) - the set of eigenvalues, counting multiplicity, of L(G)

Z(A) - the Zenger of the matrix A

|X| - the cardinality of a set X

w(e) - the weight of the edge e

|G| - the number of vertices in the graph G

dv or deg(v) - the degree of vertex v

mv - the average of the degrees of the vertices adjacent to v
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v ∼ w - vertices v and w are adjacent

N(v) - the set of vertices in G adjacent to the vertex v

d(u, v) - the distance between vertices u and v

d̃(u, v) - the inverse weighted distance between vertices u and v

d̃v - the inverse status of the vertex v

diam(G) - the diameter of the graph G

ρ(G) - the mean distance of the graph G

V (G) - the vertex set of the graph G

E(G) - the edge set of the graph G

v(G) - the vertex connectivity of the graph G

e(G) - the edge connectivity of the graph G

a(G) - the algebraic connectivity of the graph G

δ(G) - the minimum vertex degree of the graph G

∆(G) - the maximum vertex degree of the graph G

γ(G) - the genus of the graph G

p(G) - the number of pendant vertices of the graph G

q(G) - the number of quasipendant vertices of the graph G

Kn - the complete graph on n vertices

Km,m - the complete bipartite graph whose partite sets contain m and n vertices,
respectively

Pn - the path on n vertices

Cn - the cycle on n vertices

Wn - the wheel on n+ 1 vertices
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Gc - the complement of the graph G

G1 + G2 - the sum (union) of the graphs G1 and G2

G1 ∨ G2 - the join of the graphs G1 and G2

G1 × G2 - the product of the graphs G1 and G2

L(G) - the line graph of the graph G
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Chapter 1

Matrix Theory Preliminaries

As stated in the Preface, this book assumes an undergraduate knowledge of linear
algebra. In this chapter, we study topics that are typically beyond that of an under-
graduate linear algebra course, but are useful in later chapters of this book. Much
of the material is taken from [6] and [41] which are two standard resources in linear
algebra. We begin with a study of vector and matrix norms. Vector and matrix
norms are useful in finding bounds on the spectral radius of a square matrix. We
study the spectral radius of matrices more extensively in the next section which cov-
ers Perron-Frobenius theory. Perron-Frobenius theory is the study of nonnegative
matrices. We will study nonnegative matrices in general, but also study interesting
subsets of this class of matrices, namely positive matrices and irreducible matri-
ces. We will see that positive matrices and irreducible matrices have many of the
same properties. Nonnegative matrices will play an important role throughout this
book and will be useful in understanding the theory behind M-matrices which also
play an important role in later chapters. Hence we dedicate a section to M-matrices
and apply the theory of nonnegative matrices to proofs of theorems involving M-
matrices. Nonnegative matrices are also useful in the study of doubly stochastic
matrices. Doubly stochastic matrices, which we study in the section following the
section on M-matrices, are nonnegative matrices whose row sums and column sums
are each one. Doubly stochastic matrices will play an important role in the study
of the algebraic connectivity of graphs. Finally, we close this chapter with a section
on generalized inverses of matrices. Since many of the matrices we will utilize in
this book are singular, we need to familiarize ourselves with more general inverses,
namely the group inverse of matrices.

1.1 Vector Norms, Matrix Norms, and the Spectral Ra-
dius of a Matrix

Vector and matrix norms have many uses in mathematics. In this section, we inves-
tigate vector and matrix norms and show how they give us insight into the spectral
radius of a square matrix. To do this, we begin by understanding vector norms. In
<n, vectors are used to quantify length and distance. The length of a vector, or

1
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2 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

equivalently, the distance between two points in <n, can be defined in many ways.
However, for the sake of convenience, there are conditions that are often placed on
the way such distances can be defined. This leads us to the formal definition of a
vector norm:

DEFINITION 1.1.1 In <n, the function ‖ • ‖ : <n → < is a vector norm if for
all vectors x, y ∈ <n, it satisfies the following properties:

i) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0
ii) ‖cx‖ = |c|‖x‖ for all scalars c
iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖

EXAMPLE 1.1.2 The most commonly used norm is the Euclidean norm:

‖x‖2 =

(
n∑
i=1

|xi|2
)1/2

Given two vectors x and y whose initial point is at the origin, we often use the
Euclidean norm to find the distance between the end points of these vectors. We
do this by finding ‖x − y‖2. In other words, the Euclidean norm is often used to
find the distance between two points in <n. For example, the set of all points in <2

whose Euclidean distance from the origin is at most 1 is the following:

EXAMPLE 1.1.3 We can generalize the Euclidean norm to the `p norm for p ≥ 1:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

OBSERVATION 1.1.4 The `1 norm is often referred to as the sum norm since:

‖x‖1 = |x|1 + |x|2 + . . .+ |x|n.

Since norms are often used to measure distance, we can compare the manners
in which distance is defined between the norms `1 and `2. We saw above that the
set of all points whose distance from the origin in <2 is at most 1 with respect to
`2 is the unit disc. However, the set of all points whose distance from the origin in
<2 is at most 1 with respect to `1 is the following:
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Matrix Theory Preliminaries 3

OBSERVATION 1.1.5 The `∞ norm is often referred to as the max norm since:

‖x‖∞ = max{|x|1, |x|2, . . . , |x|n}.

Keeping with the concept of distance, the set of all points whose distance from the
origin in <2 is at most 1 with respect to `∞ is the following

Since norms are used to quantify distance in <n, this leads us to the concept of
a sequence of vectors converging. To this end, we have the following definition:

DEFINITION 1.1.6 Let {x(k)} be a sequence of vectors in <n. We say that {x(k)}
converges to the vector x with respect to the norm ‖•‖ if ‖x(k)−x‖ → 0 as k →∞.

With the idea of convergence, we are now able to compare various vector norms
in <n. We do this in the following theorem from [41]:

THEOREM 1.1.7 Let ‖ • ‖α and ‖ • ‖β be any two vector norms in <n. Then
there exist finite positive constants cm and cM such that cm‖x‖α ≤ ‖x‖β ≤ cM‖x‖α
for all x ∈ <n.

Proof: Define the function h(x) = ‖x‖β/‖x‖α on the Euclidean unit ball
S = {x ∈ <n | ‖x‖2 = 1} which is a compact set in <n. Observe that the de-
nominator of h(x) is never zero on S by (i) of Definition 1.1.1. Since vector norms
are continuous functions and since the denominaror of h(x) is never zero on S, it
follows that h(x) is continuous on the compact set S. Hence by the Weierstrass
theorem, h achieves a finite positive maximum cM and a positive minimum cm on
S. Hence cm‖x‖α ≤ ‖x‖β ≤ cM‖x‖α for all x ∈ S. Because x/‖x‖2 ∈ S for every
nonzero vector x ∈ <n, it follows that these inequalities hold for all nonzero x ∈ <n.
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4 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

These inequalities trivially hold for x = 0. This completes the proof. 2

Theorem 1.1.7 suggests that given a vector x ∈ <n, the values of x with respect
to various norms will not vary too much. This leads to the idea of equivalent norms.

DEFINITION 1.1.8 Two norms are equivalent if whenever a sequence of vectors
{x(k)} converges to a vector x with respect to the first norm, then it converges to
the same vector with respect to the second norm.

With this definition, we can now prove a corollary for Theorem 1.1.7 which is
also from [41].

COROLLARY 1.1.9 All vector norms in <n are equivalent.

Proof: Let ‖ • ‖α and ‖ • ‖β be vector norms in <n. Let {x(k)} be a sequence of
vectors that converges to a vector x with respect to ‖ • ‖α. By Theorem 1.1.7, there
exist constants cM ≥ cm > 0 such that

cm‖x(k) − x‖α ≤ ‖x(k) − x‖β ≤ cM‖x(k) − x‖α

for all k. Therefore, it follows that ‖x(k) − x‖α → 0 if and only if ‖x(k) − x‖β → 0
as k →∞. 2

The idea of equivalent norms will be useful as we turn our attention to matrix
norms. We begin with a definition of a matrix norm. Observe that this definition is
of similar flavor to that of a vector norm.

DEFINITION 1.1.10 Let Mn denote the set of all n× n matrices. The function
‖ • ‖ : Mn → < is a matrix norm if for all A,B ∈ Mn, it satisfies the following
properties:

i) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0
ii) ‖cA‖ = |c|‖A‖ for all complex scalars c
iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖
iv) ‖AB‖ ≤ ‖A‖‖B‖

Matrix norms are often defined in terms of vector norms. For example, a commonly
used matrix norm is ‖A‖p which is defined as

‖A‖p = max
‖x‖p 6=0

‖Ax‖p
‖x‖p

= max
‖x‖p=1

‖Ax‖p.

As with vector norms, letting p = 1 and letting p → ∞ are of interest. We now
present the following observations from [41] concerning p-norms for matrices for
important values of p:

OBSERVATION 1.1.11 For any n× n matrix A,
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Matrix Theory Preliminaries 5

‖A‖1 = max
1≤j≤n

n∑
i=1

|ai,j |.

In other words, the 1-norm of a matrix is the maximum of the 1-norm of the column
vectors of the matrix.

OBSERVATION 1.1.12 For any n× n matrix A,

‖A‖∞ = max
1≤i≤n

n∑
j=1

|ai,j |.

In other words, the ∞-norm of a matrix is the maximum of the 1-norm of the row
vectors of the matrix.

Matrix norms are very useful in finding bounds on the eigenvalues of a square
matrix. The following theorem from [41] shows that the spectral radius of a matrix
is always bounded above by any norm of a matrix:

THEOREM 1.1.13 If ‖•‖ is any matrix norm and if A ∈Mn, then ρ(A) ≤ ‖A‖.

Proof: Let λ be an eigenvalue of A such that |λ| = ρ(A). Let x be a correspond-
ing eigenvector. Using the properties of matrix norms, we have

|λ|‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖.

Since ‖x‖ > 0, dividing through by ‖x‖ gives us ρ(A) = |λ| ≤ ‖A‖. 2

We can use Observations 1.1.11 and 1.1.12 to obtain the following corollary from
[41] which gives conditions as to when ρ(A) and ‖A‖ can be equal.

COROLLARY 1.1.14 Let A ∈Mn and suppose that A is nonnegative. If the row
sums of A are constant, then ρ(A) = ‖A‖∞. If the column sums are constant, then
ρ(A) = ‖A‖1.

Proof: We know from Theorem 1.1.13 that ρ(A) ≤ ‖A‖ for any matrix norm
‖ • ‖. However, if the row sums are constant, then e is an eigenvector of A with
eigenvalue ‖A‖∞, and so ρ(A) = ‖A‖∞. The statement for column sums follows
from applying the same argument to AT . 2

The goal for the remainder of this section is to prove a theorem which gives us
a formula for the spectral radius in terms of matrix norms. To this end, we begin
with an important lemma from [41].

LEMMA 1.1.15 Let A ∈ Mn and ε > 0 be given. Then there is a matrix norm
‖ • ‖ such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.
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Proof: By the Schur triangularization theorem (see [41]), there is a unitary
matrix U and an upper triangular matrix V such that A = UTV U . Let Dt =
diag(t, t2, . . . , tn) and observe

DtV D
−1
t =



λ1 t−1d12 t−2d13 . . . t−n+1d1n

0 λ2 t−1d23 . . . t−n+2d2n

0 0 λ3 . . . t−n+3d3n

. . . . . . . . . . . . . . .
0 0 0 . . . t−1dn−1,n

0 0 0 0 λn


,

where λ1, . . . , λn are the eigenvalues of A. For t > 0 large enough, the sum of the
off-diagonal entries of DtV D

−1
t are less that ε. In particular, by Observation 1.1.11

we have ‖DtV D
−1
t ‖1 ≤ ρ(A) + ε for large enough t. Hence if we define the matrix

norm ‖ • ‖ by

‖B‖ = ‖DtUTBUD
−1
t ‖1 = ‖(UD−1

t )−1B(UD−1
t )‖1

for any B ∈Mn, and if we choose t large enough, we will have constructed a matrix
norm such that ‖A‖ ≤ ρ(A) + ε. Since by Theorem 1.1.13, we have ρ(A) ≤ ‖A‖,
this lemma is proven. 2

We now consider matrices whose norm is less than one for some norm. We do
this with a lemma from [41].

LEMMA 1.1.16 Let A ∈ Mn be a given matrix. If there is a matrix norm ‖ • ‖
such that ‖A‖ < 1, then limk→∞A

k = 0; that is, all the entries of Ak tend to zero
as k →∞.

Proof: If ‖A‖ < 1, then ‖Ak‖ ≤ ‖A‖k → 0 as k → ∞. Thus ‖Ak‖ → 0 as
k →∞. But since all vector norms on the n2-dimensional space Mn are equivalent
by Corollary 1.1.9, it must also be the case that ‖Ak‖∞ → 0. The result follows. 2

Intuitively, if limk→∞A
k = 0, then the entries of A must be relatively small.

Hence the spectral radius should be small. In the following lemma from [41], we
make this idea more precise.

LEMMA 1.1.17 Let A ∈Mn. Then limk→∞A
k = 0 if and only if ρ(A) < 1.

Proof: If Ak → 0 and if x 6= 0 is an eigenvector corresponding to the eigenvalue
λ, then Akx = λkx → 0 if and only if |λ| < 1. Since this inequality must hold for
every eigenvalue of A, we conclude that ρ(A) < 1. Conversely, if ρ(A) < 1, then by
Lemma 1.1.15, there is some matrix norm ‖ • ‖ such that ‖A‖ < 1. Thus by Lemma
1.1.16, it follows that Ak → 0 as k →∞. 2

We now prove the main result of this section which gives us a formula for the
spectral radius of a matrix. This result is from [41].
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THEOREM 1.1.18 Let A ∈Mn. For any matrix norm ‖ • ‖

ρ(A) = lim
k→∞

‖Ak‖1/k

Proof: Observe ρ(A)k = ρ(Ak) ≤ ‖Ak‖, the last inequality follows from Theo-
rem 1.1.13. Hence ρ(A) ≤ ‖Ak‖1/k for all natural numbers k. Given ε > 0, the matrix
Â := [1/(ρ(A)+ ε)]A has a spectral radius strictly less than one and hence it follows
from Lemma 1.1.17 that ‖Âk‖ → 0 as k →∞. Thus for a fixed A and ε, there exists
N (depending on A and ε) such that ‖Âk‖ < 1 for all k ≥ N . But this is equivalent
to saying ‖Ak‖ ≤ (ρ(A) + ε)k for all k ≥ N , or that ‖Ak‖1/k ≤ ρ(A) + ε for all
k ≥ N . Since ε was arbitrary, it follows that ‖Ak‖1/k ≤ ρ(A) for k ≥ N . But we saw
earlier in the proof that ρ(A) ≤ ‖Ak‖1/k for all k. Hence ρ(A) = limk→∞ ‖Ak‖1/k. 2

Theorem 1.1.18 will be useful to us in later sections and chapters when we need
to compare the spectral radii of matrices, especially nonnegative matrices. To this
end, we close this section with three corollaries from [41] which allow us to compare
the spectral radii of matrices. We prove the first corollary and leave the proofs of
the remaining corollaries as exercies.

COROLLARY 1.1.19 Let A and B be n × n matrices. If |A| ≤ B, then ρ(A) ≤
ρ(|A|) ≤ ρ(B).

Proof: First note that for every natural number m we have |Am| ≤ |A|m ≤ Bm.
Hence

‖Am‖2 ≤ ‖|A|m‖2 ≤ ‖Bm‖2
and

‖Am‖1/m2 ≤ ‖|A|m‖1/m2 ≤ ‖Bm‖1/m2

for all natural numbers m. Letting m tend to infinity and applying Theorem 1.1.18
results in ρ(A) ≤ ρ(|A|) ≤ ρ(B). 2

COROLLARY 1.1.20 Let A and B be n × n matrices. If 0 ≤ A ≤ B, then
ρ(A) ≤ ρ(B).

COROLLARY 1.1.21 Let A be an n×n matrix where A ≥ 0. If Ã is any principle
submatrix of A, then ρ(Ã) ≤ ρ(A). In particular, max1≤i≤nai,i ≤ ρ(A).

Exercises:

1. (See [41]) Prove that for each p ≥ 1 that `p is a vector norm by verifying the
properties in Definition 1.1.1.

2. (See [41]) Prove that `∞ is a vector norm by verifying the properties in Defi-
nition 1.1.1, and show that

‖x‖∞ = lim
p→∞

‖x‖p.
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8 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

3. Define the Frobenius norm for a matrix A as

‖A‖F =

 n∑
i,j=1

|aij |2
1/2

Use Definition 1.1.10 to verify that this is a matrix norm.

4. Prove Corollary 1.1.20.

5. Prove Corollary 1.1.21.

1.2 Location of Eigenvalues

In this section, we develop theory that shows where the eigenvalues of a matrix lie
and how the eigenvalues of a matrix change when the matrix is perturbed. Most of
this section will focus on symmetric matrices since mainly symmetric matrices will
be used throughout this book. We begin with a well-known theorem known as the
Gersgorin Disc Theorem which states that all of the eigenvalues of a square matrix
lie in certain discs on the complex plane.

THEOREM 1.2.1 The Gersgorin Disc Theorem. Let A be an n × n matrix and
let σ be the set of all eigenvalues of A. Then

σ ⊂
n⋃
i=1

r ∈ C : |ai.i − r| ≤
n∑
k=1

k 6=i

|ai,k|

 (1.2.1)

Proof: Suppose λ is an eigenvalue of A with x as a corresponding eigenvector,
i.e., Ax = λx. Let xi be the entry of x such that xi = max1≤k≤n |xk|. Observe

n∑
k=1

ai,kxk = λxi

and therefore

(λ− ai,i)xi =
n∑
k=1

k 6=i

ai,kxk.

By the triangle inequality we have

|λ− ai,i| |xi| ≤
n∑
k=1

k 6=i

|ai,k| |xk| .

Dividing through by |xi| and recalling that xi = max1≤k≤n |xk|, we obtain

|λ− ai,i| ≤
n∑
k=1

k 6=i

|ai,k|
|xk|
|xi|

≤
n∑
k=1

k 6=i

|ai,k| .
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Therefore, the distance from ai,i to λ is at most
∑n

k=1

k 6=i
|ai,k| on the complex plane,

i.e.,

λ ∈ {r ∈ C : |ai,i − r| ≤
n∑
k=1

k 6=i

|ai,k|}.

Taking all eigenvalues of A into account gives us (1.2.1). 2

In summary, the Gersgorin Disc Theorem states that all of the eigenvalues of
a square matrix lie in the union of discs whose centers are the diagonal entries of
the matrix and whose radii are the sum of the absolute values of the off-diagonal
entries in the corresponding row.

EXAMPLE 1.2.2 Consider the matrix

A =

 1 + 2i 0 1
−1 3 1
0 i −i


We create three discs in accordance with the Gersgorin Disc Theorem. The first disc
has center 1 + 2i and radius 1; the second disc has center 3 and radius 2; the third
disc has center −i and radius 1. All eigenvalues of A will lie in the union of these
discs.

Note that the eigenvalues of A are 3.1 + 0.2i, 1.1 + 2.1i, and −0.2− 1.3i.

Since we will primarily deal with symmetric matrices in this book, we present
a well-known theorem which shows that all eigenvalues of a symmetric matrix are
real numbers.

THEOREM 1.2.3 Let A be a real symmetric matrix. Then all eigenvalues of A
are real.

Proof: Let xH and AH denote the conjugate transpose of the vector x and
matrix A, respectively. If λ is a complex number such that λ = a + bi for real
numbers a and b, note that λH = a − bi. We will prove this statement for the set
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10 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

of complex matrices A such that A = AH noting that the set of real symmetric
matrices is a subset of this set. Let λ be an eigenvalue of A with corresponding
eigenvector x normalized so that xHx = 1. Then

λ = xHAx = xHAHx = (xHAx)H = λH .

Since λ = λH , it follows that λ is real. 2

Since all of eigenvalues of a symmetric matrix are real, we can order the eigen-
values as follows:

λmin = λ1 ≤ λ2 ≤ . . . ≤ λn−1 ≤ λn = λmax

Now that we know that all of the eigenvalues of a symmetric matrix are real and the
approximate location of such eigenvalues via the Gersgorin Disc Theorem, we now
proceed with the goal of this section which is to gain insight into the eigenvalues of
symmetric matrices with respect to unit vectors. We begin by investigating the well-
known Rayleigh-Ritz equations with a theorem found in [41] which give us useful
formulas for the largest and smallest eigenvalues of a symmetric matrix in terms of
unit vectors.

THEOREM 1.2.4 Let A ∈Mn be symmetric. Then

(i) λ1x
Tx ≤ xTAx ≤ λnx

Tx

for all x ∈ <n. In addition

(ii) λn = max
x6=0

xTAx

xTx
= max

xT x=1
xTAx

and

(iii) λ1 = min
x6=0

xTAx

xTx
= min

xT x=1
xTAx.

Proof: Since A is symmetric, there exists a unitary matrix U ∈ Mn such that
A = UDUT where D = diag(λ1, . . . , λn). For any vector x ∈ <n, we have

xTAx = xTUDUTx = (UTx)TD(UTx) =
n∑
i=1

λi|(UTx)i|2.

Since each term |(UTx)i|2 is nonnegative, it follows that

λ1

n∑
i=1

|(UTx)i|2 ≤ xTAx =
n∑
i=1

λi|(UTx)i|2 ≤ λn

n∑
i=1

|(UTx)i|2.

Since U is unitary, it follows that

n∑
i=1

|(UTx)i|2 =
n∑
i=1

|xTUUTx| =
n∑
i=1

|xi|2 = xTx.
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Therefore
λ1x

Tx ≤ xTAx ≤ λnx
Tx, (1.2.2)

which proves (i).
To prove (ii), we see that dividing (1.2.2) through by xTx we obtain

λ1 ≤
xTAx

xTx
≤ λn

However, if x is an eigenvector of A corresponding the eigenvalue λn, then

xTAx

xTx
=

λnx
Tx

xTx
= λn

which implies

max
x6=0

xTAx

xTx
= λn. (1.2.3)

Finally, if x 6= 0 then

xTAx

xTx
=

(
x√
xTx

)T
A

(
x√
xTx

)
and

(
x√
xTx

)T ( x√
xTx

)
= 1

which shows (1.2.3) is equivalent to

max
xT x=1

xTAx = λn

This finishes the proof of (ii). The proof of (iii) is similar. 2

Our goal will be to generalize the Rayleigh-Ritz equations to obtain formulas for
the other eigenvalues of a symmetric matrix. This is known as the Courant-Fischer
Minimax Principle. Before making such generalizations, we need a lemma from [41]:

LEMMA 1.2.5 Let A ∈ Mn and let U = [u1, . . . , un] be a unitary matrix such
that A = UTDU where D = diag(λ1, . . . , λn). Then

max
x6=0

x⊥un,un−1,...,un−k+1

xTAx

xTx
= max

xT x=1

x⊥un,un−1,...,un−k+1

xTAx = λn−k

where u1, . . . , un are the columns of U .

Proof: Suppose we consider only those vectors x ∈ <n that are orthogonal to
un, un−1, . . . , un−k+1. Then

xTAx =
n∑
i=1

λi|(UTx)i|2 =
n∑
i=1

λi|uTi x|2 =
n−k∑
i=1

λi|uTi x|2.

This is a nonnegative linear combination of λ1, . . . , λn−k. Therefore

xTAx =
n−k∑
i=1

λi|uTi x|2 ≤ λn−k
n−k∑
i=1

|uTi x|2 = λn−k

n∑
i=1

|(UTx)i|2 = λn−kx
Tx.

The inequality is sharp if x = un−k. The result now follows. 2
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12 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

REMARK 1.2.6 For each k = 1, . . . , n, the column vector uk of U is a unit
eigenvector corresponding to the eigenvalue λk of A.

We are now ready to prove the main theorem of this section which generalizes
the Rayleigh-Ritz equations. In this theorem from [41], we present the well-known
Courant-Fischer Minimax Theorem.

THEOREM 1.2.7 Let A ∈ Mn be symmetric and let k be an integer 1 ≤ k ≤ n.
Then

λk = min
w1,w2,...,wn−k∈<n

max
x6=0
x∈<n

x⊥w1,w2,...,wn−k

xTAx

xTx
(1.2.4)

and

λk = max
w1,w2,...,wk−1∈<n

min
x6=0
x∈<n

x⊥w1,w2,...,wk−1

xTAx

xTx
(1.2.5)

Proof: We will only prove (1.2.4) as the proof of (1.2.5) is similar. Writing
A = UDUT as in the proof of Lemma 1.2.5 and fixing k where 2 ≤ k ≤ n, then if
x 6= 0, we have

xTAx

xTx
=

(UTx)TD(UTx)

xTx
=

(UTx)TD(UTx)

(UTx)T (UTx).

Since U is unitary, we have

{UTx : x ∈ <n, x 6= 0} = {y ∈ <n : y 6= 0}.

Therefore, if w1, . . . , wn−k ∈ <n are given, we have

sup x6=0

x⊥w1,...,wn−k

xTAx
xT x

= sup y 6=0

y⊥UTw1,...,UTwn−k

yTDy
yT y

= sup
yT y=1

y⊥UTw1,...,UTwn−k

∑n
i=1 λi|yi|2

≥ sup
yT y=1

y⊥UTw1,...,U
T wn−k

y1=y2=...=yk−1=0

∑n
i=1 λi|yi|2

= sup|yk|2+|yk+1|2+...+|yn|2=1

y⊥UTw1,...,UTwn−k

∑n
i=k λi|yi|2

≥ λk.

Therefore

sup
x6=0

x⊥w1,...,wn−k

xTAx

xTx
≥ λk
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Matrix Theory Preliminaries 13

for any n− k vectors w1, . . . , wn−k. However, Lemma 1.2.5 and Remark 1.2.6 show
that equality holds for one choice of the vectors wi, namely wi = un−i+1. Therefore

inf
w1,...,wn−k

sup
x6=0

x⊥w1,...,wn−k

xTAx

xTx
= λk

Since the extrema is achieved in all of these cases, we replace “inf” and “sup” with
“min” and “max,” respectively. This completes the proof. 2

One of the most important consequences of the Courant-Fisher Minimax Theo-
rem are the interlacing theorems of eigenvalues. In the following theorem and corol-
laries from [41], we show that if we perturb a given symmetric matrix A to obtain a
symmetric matrx B, then the eigenvalues of A and B interlace in some fashion. In
the following theorem, we investigate the eigenvalues of the matrix A+ zzT where
A is symmetric and z is any real vector.

THEOREM 1.2.8 Let A ∈Mn be symmetric and let z ∈ <n be a given vector. If
the eigenvalues of A and A+ zzT are arranged in increasing order, then

(i)λk(A+ zzT ) ≤ λk+1(A) ≤ λk+2(A+ zzT ), for k = 1, 2, . . . , n− 2

(ii)λk(A) ≤ λk+1(A+ zzT ) ≤ λk+2(A), for k = 1, 2, . . . , n− 2.

Proof: Let 1 ≤ k ≤ n− 2. Then by Theorem 1.2.7 we have

λk+2(A± zzT ) = minw1,...,wn−k−2
max x6=0

x⊥w1,...,wn−k−2

xT (A+zzT )x
xT x

≥ minw1,...,wn−k−2
max x6=0, x⊥z

x⊥w1,...,wn−k−2

xT (A+zzT )x
xT x

= minw1,...,wn−k−2
wn−k−1=z

max x6=0

x⊥w1,...,wn−k−1

xT (A+zzT )x
xT x

≥ minw1,...,wn−k−1
max x6=0

x⊥w1,...,wn−k−1

xT (A+zzT )x
xT x

= λk+1(A).
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Similarly, for 2 ≤ k ≤ n− 1 we have

λk(A± zzT ) = maxw1,...,wk−1
min x6=0

x⊥w1,...,wk−1

xT (A+zzT )x
xT x

≤ maxw1,...,wk−1
min x6=0, x⊥z

x⊥w1,...,wk−1

xT (A+zzT )x
xT x

= maxw1,...,wk−1
wk=z

min x6=0

x⊥w1,...,wk

xT (A+zzT )x
xT x

≤ maxw1,...,wk min x6=0

x⊥w1,...,wk

xT (A+zzT )x
xT x

= λk+1(A).

Combining these inequalities proves the theorem. 2

We close this section with three useful corollaries (see [41]) of Theorem 1.2.8
whose proofs we leave as exercises.

COROLLARY 1.2.9 Let A,B ∈ Mn be symmetric and suppose that B has rank
at most r. Then

(i)λk(A+B) ≤ λk+r(A) ≤ λk+2r(A+B), for k = 1, 2, . . . , n− 2r

(ii)λk(A) ≤ λk+r(A+B) ≤ λk+2r(A), for k = 1, 2, . . . , n− 2r.

COROLLARY 1.2.10 Let A ∈Mn be symmetric, z ∈ <n be a vector, and c ∈ <.
Let Â ∈Mn+1 be the symmetric matrix obtained from A by bordering A with z and
c as follows

Â =

[
A z

zT c

]
.

Then

λ1(Â) ≤ λ1(A) ≤ λ2(Â) ≤ λ2(A) ≤ . . . ≤ λn−1(A) ≤ λn(Â) ≤ λn(A) ≤ λn+1(Â).

COROLLARY 1.2.11 Let A,B ∈Mn be symmetric where B is positive semidef-
inite. Then

λk(A) ≤ λk(A+B)

for all k = 1, . . . , n.

Exercises:

1. Prove Corollary 1.2.9.

2. Prove Corollary 1.2.10.

3. Prove Corollary 1.2.11.
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1.3 Perron-Frobenius Theory

Perron-Frobenius theory deals with the eigenvalues and eigenvectors corresponding
to the spectral radius of a nonnegative matrix. Nonnegative matrices are of great
importance in matrix theory and will be of special importance later in this book
as we apply them extensively in graph theory. Therefore, we dedicate a section to
these results. We begin with a definition:

DEFINITION 1.3.1 A matrix A is nonnegative if all entries of A are nonnegative.
In this case, we write A ≥ 0. If all entires of A are strictly positive, then we say A
is positive and write A >> 0.

Note that the set of positive matrices is a subset of the set of nonnegative matrices.
Further if we want to denote that a nonnegative matrix A has at least one positive
entry, we write A > 0.

In this section, we will first develop Perron-Frobenius theory for positive matri-
ces. We then relax the condition of the matrices being positive and investigate how
Perron-Frobenius theory changes when dealing with nonnnegative matrices. Finally,
we study a special class of nonnegative matrices known as irreducible matrices and
show that they behave similarly to positive matrices. We begin with the study of
positive matrices. Since the set of positive matrices is a subset of nonnegative ma-
trices, we begin with an important preliminary lemma and three useful corollaries
from [41] concerning the larger class of nonnegative matrices:

LEMMA 1.3.2 Let A ∈Mn be nonnegative. Then

min
1≤i≤n

n∑
j=1

ai,j ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

ai,j (1.3.1)

and

min
1≤j≤n

n∑
i=1

ai,j ≤ ρ(A) ≤ max
1≤j≤n

n∑
i=1

ai,j (1.3.2)

Proof: Let α = min1≤i≤n
∑n
j=1 ai,j and let B ∈ Mn be such that

bi,j = αai,j/
∑n
j=1 ai,j . Observe A ≥ B ≥ 0. By Corollary 1.1.14 we see that

ρ(B) = α; by Corollary 1.1.20 we have ρ(B) ≤ ρ(A). Hence α ≤ ρ(A) which estab-
lishes the first inequality in (1.3.1). The second inequality in (1.3.1) is established
in a similar fashion. Finally, (1.3.2) is established by applying the above argument
to AT . 2

Now that we have some preliminary bounds on the spectral radius of nonnegative
matrices, we can apply this lemma to get more precise results. In our first corollary,
we recall that if S is an invertible matrix, then ρ(S−1AS) = ρ(A).
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16 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

COROLLARY 1.3.3 Let A ∈ Mn be nonnegative. Then for any positive vector
x ∈ <n we have

min
1≤i≤n

1

xi

n∑
j=1

ai,jxj ≤ ρ(A) ≤ max
1≤i≤n

1

xi

n∑
j=1

ai,jxj

and

min
1≤j≤n

xj

n∑
i=1

ai,j
xi
≤ ρ(A) ≤ max

1≤j≤n
xj

n∑
i=1

ai,j
xi

Proof: Let S = diag(x1, . . . , xn). Since S is invertible, it follows that
ρ(S−1AS) = ρ(A). Moreover, S−1AS is nonnegative. Thus we can apply Lemma
1.3.2 to S−1AS = [ai,jxj/xi] to obtain the result. 2

We now continue to sharpen our bounds on the spectral radius of nonnegative
matrices found in Lemma 1.3.2 in the next corollary which helps us determine
bounds on the spectral radius in terms of vectors. Observe that this corollary is
somewhat reminiscent of Theorem 1.2.4(i).

COROLLARY 1.3.4 Let A ∈Mn be nonnegative and suppose x ∈ <n is a positive
vector. If α, β ≥ 0 are such that αx ≤ Ax ≤ βx, then α ≤ ρ(A) ≤ β. Moreover, if
αx < Ax then α < ρ(A); if Ax < βx, then ρ(A) < β.

Proof: If αx ≤ Ax, then α ≤ min1≤i≤n(1/xi)
∑n
j=1 ai,jxj . Thus by Corollary

1.3.3, it follows that α ≤ ρ(A). If αx < Ax, then there exists some α′ > α such that
α′ ≤ Ax. In this case, ρ(A) ≥ α′ > α, thus ρ(A) > α. The upper bounds are verified
in a similar fashion. 2

The previous two corollaries have led up to the next corollary which will be
useful when proving the first main result of this section.

COROLLARY 1.3.5 Let A ∈Mn be nonnegative. If A has a positive eigenvector,
then the corresponding eigenvalue is ρ(A).

Proof: Suppose Ax = λx where x >> 0. Then λx ≤ Ax ≤ λx by Corollary
1.3.4. Applying Corollary 1.3.4 again, we obtain λ ≤ ρ(A) ≤ λ. 2

Now that we have some preliminary results concerning nonnegative matrices,
we return our focus to positive matrices. The first goal of this section is to prove
Perron’s theorem which is a well-known theorem concerning the eigenvalues and
eigenvectors of positive matrices. First we need a lemma from [41].

LEMMA 1.3.6 Let A ∈ Mn. Suppose that λ is an eigenvalue of A such that
|λ| = ρ(A) and that λ is the only eigenvalue of A with modulus ρ(A). Suppose x
and y are vectors such that Ax = λx and AT y = λy where x and y are normalized
so that xT y = 1. Let L = xyT . Then limm→∞[(1/λ(A))A]m = L.
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Proof: First, observe that (a) Lm = L and (b) AmL = LAm = λmL for all
integers m. Then (a) and (b) imply (A − λL)m = Am − λmL for all integers m.
Hence (

1

λ
A− L

)m
=

[
1

λ
(A− λL)

]m
=

1

λm
Am − L.

Therefore (
1

λ
A

)m
= L+

(
1

λ
A− L

)m
. (1.3.3)

Since

ρ

(
1

λ
A− L

)
=

ρ(A− λL)

ρ(A)
≤ |λn−1(A)|

ρ(A)
< 1,

the result follows from (1.3.3). 2

OBSERVATION 1.3.7 Since L is the product of two vectors, it follows that the
rank of L is 1.

We are now ready to prove Perron’s Theorem for positive matrices which is the
first main result of this section. The proof is adapted from [41].

THEOREM 1.3.8 Let A ∈Mn be positive. Then
(i) ρ(A) is an eigenvalue of A,
(ii) There is a positive eigenvector corresponding to ρ(A),
(iii) |λ| < ρ(A) for every eigenvalue such that λ 6= ρ(A),
(iv) ρ(A) is a simple eigenvalue of A.

Proof: Let x 6= 0 be such that Ax = λx where |λ| = ρ(A). Then

ρ(A)|x| = |λ||x| = |λx| = |Ax| ≤ |A||x| = A|x|.

Thus y := A|x| − ρ(A)|x| ≥ 0. Since |x| > 0 and A >> 0, it follows that z :=
A|x| >> 0. If y 6= 0 then

0 < Ay = Az − ρ(A)z

which simplifies to Az > ρ(A)z. This implies that ρ(A) > ρ(A) which is clearly
false. Thus y = 0, and therefore A|x| = ρ(A)|x|. Hence ρ(A) is a positive eigenvalue
of A corresponding to the positive eigenvector |x|, thus (i) and (ii) are proved.

To prove (iii), we will show that if λ is an eigenvalue of A where |λ| = ρ(A),
then λ = ρ(A). Let x be an eigenvector corresponding to λ. We first show that there
exits an argument 0 ≤ θ < 2π such that e−iθx = |x| >> 0. To see this, observe from
(i) and (ii) that

ρ(A)|xk| = |λ||xk| = |λxk| =

∣∣∣∣∣∣
n∑
p=1

akpxp

∣∣∣∣∣∣ ≤
n∑
p=1

|akp||xp| =
n∑
p=1

akp|xp| = ρ(A)|xk|.

Thus equality must hold in the triangle inequality and hence the nonzero complex
numbers akpxp, p = 1, . . . , n must all have the same argument, say θ. Since akp > 0
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18 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

for all p, it follows that e−iθx >> 0. Letting w = e−iθx >> 0, we have Aw = λw.
But by Corollary 1.3.5 it follows that λ = ρ(A).

To prove (iv), write A = U∆UT where U is unitary and ∆ is an upper trian-
gular matrix with main diagonal entries ρ, . . . , ρ, λk+1, . . . , λn, where ρ = ρ(A) is
an eigenvalue of A with algebraic multiplicity k ≥ 1; the eigenvalues λi are all such
that |λi| < ρ(A) for all k + 1 ≤ i ≤ n (by part (iii)). Using Lemma 1.3.6 we have

L = lim
m→∞

(
1

ρ(A)
A

)m
= U lim

m→∞



1
. . . ∗

1
λk+1

ρ

0 . . .
λn
ρ



m

UT

= U



1
. . . ∗

1
0

0 . . .
0


UT

where the diagonal entry 1 is repeated k times in the last two expressions, and the
diagonal entry 0 is repeated n − k times. Since the upper triangular matrix in the
last expression has rank at least k, and since L has rank 1 (Observation 1.3.7), we
conclude that k > 1 is impossible, thus proving (iv). 2

EXAMPLE 1.3.9 Consider the positive matrix

A =

 8 8 8
4 2 1
4 12 4


The eigenvalues of A are 16, −1 + 3.32i, and −1 − 3.32i. Note that the eigenvalue
of largest modulus is 16 and that ρ(A) = 16. Moreover, the eigenvector correspond-
ing to 16 is positive, namely [3, 1, 2]T . Finally, 16 is the only eigenvalue with a
positive eigenvector as the eigenvectors corresponding to −1 + 3.32i and −1− 3.32i
are [−0.52+1.23i, 1,−0.93−1.6i]T and [−0.52−1.23i, 1,−0.93+1.6i]T , respectively.

Since the eigenvector corresponding to the spectral radius of a positive matrix
is of special importance, we have the following definition. Note in this definition,
we relax the conditions of the matrix and eigenvector corresponding to the spectral
radius to be nonnnegative rather than positive. We will see in the theorem that
follows that relaxing such conditions is desirable.

DEFINITION 1.3.10 A nonnegative eigenvector of A ≥ 0 corresponding to ρ(A)
is called a Perron vector of A.
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We now turn our attention to nonnegative matrices. Since we are relaxing the
conditions of Theorem 1.3.8 by allowing our matrices to have entries of zero, we
expect the conclusions of the theorem to be more relaxed in that the eigenvector
corresponding to the spectral radius be allowed entries of zero. This is indeed the
case as we see in the following theorem from [41].

THEOREM 1.3.11 Let A be a nonnegative n× n matrix. Then
(i) ρ(A) is an eigenvalue of A, and
(ii) A has a nonnegative eigenvector corresponding to ρ(A).

Proof: For any ε > 0, define the matrix A(ε) := [ai,j + ε] >> 0. Let x(ε) be
the positive eigenvector of A(ε) corresponding to ρ(A(ε)) as per Theorem 1.3.8(i).
Normalize each vector x(ε) so that

∑n
i=1 x(ε)i = 1. Since the set of vectors {x(ε) :

ε > 0} is contained in the compact set {x : x ∈ Cn, ‖x‖1 ≤ 1}, there is a monotone
decreasing sequence ε1, ε2, . . ., with limk→∞ εk = 0 such that x := limk→∞ x(εk)
exists. Since x(εk) >> 0 for all k, it follows that x ≥ 0. However, since

n∑
i=1

xi = lim
k→∞

n∑
i=1

x(εk)i = 1

it follows that x 6= 0, hence x > 0. By Corollary 1.1.20 it follows that
ρ(A(εk)) ≥ ρ(A(εk+1)) ≥ . . . ≥ ρ(A), for any k. Thus the sequence of real
numbers {ρ(A(εk))}k=1,2,... is a bounded monotone decreasing sequence and hence
ρ := limk→∞ ρ(A(εk)) exists and ρ ≥ ρ(A). However,

Ax = limk→∞A(εk)x(εk)

= limk→∞ ρ(A(εk))x(εk)

= limk→∞ ρ(A(εk)) limk→∞ x(εk) = ρx.

Since x 6= 0, it follows that ρ is an eigenvalue of A with x as the corresponding
eigenvector. Therefore ρ = ρ(A) and x > 0 is a corresponding eigenvector. 2

In Theorem 1.3.8 which concerns positive matrices, i.e., nonnegative matrices
which do not contain a zero entry, we see that the eigenvector corresponding to the
largest eigenvalue in modulus is also positive, hence it does not contain a zero entry.
Moreover, the spectral radius of such a matrix is a simple eigenvalue. However, when
we relax the conditions of allowing zero entries in a nonnegative matrix as we do
in Theorem 1.3.11, we see that while the spectral radius is still an eigenvalue, it
need not be a simple eigenvalue. Moreover, the eigenvector corresponding to such
an eigenvalue is nonnegative, hence it may have a zero entry. We now turn our
attention to a specific class of nonnegative matrices known as irreducible matrices.
We will see that while these matrices may have a zero entry, they will behave like
positive matrices. To this end, we have a definition:

DEFINITION 1.3.12 A matrix A ∈Mn is reducible if A is permutationally sim-
ilar to a matrix of the form
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20 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

[
B C
0 D

]

where B and D are both square matrices. If A is not permutationally similar to a
matrix of this form, we say that A is irreducible.

In order to be able to determine if a nonnegative matrix is irreducible, it is helpful
for us to have a pictorial representation of the matrix:

DEFINITION 1.3.13 The associated directed graph, G(A), of a matrix A ∈ Mn

is a graph on n vertices v1, . . . , vn where there is a directed edge from vi to vj if and
only if ai,j 6= 0.

EXAMPLE 1.3.14 Consider the following matrices:

A =

 0 5 3
0 0 1
4 0 0

 B =


2 0 4 1
0 0 0 3
6 5 0 0
0 7 0 2


Their associated directed graphs are

DEFINITION 1.3.15 A directed graph is strongly connected if for any pair of
vertices vi and vj , it is possible to travel from vi to vj along a sequence of directed
edges. We refer to such a sequence of directed edges as a directed path.

Observe that G(A) is strongly connected. However, G(B) is not strongly connected
as there does not exist a directed path from v4 to v1 (or v4 to v3). The existence of
directed paths between any pairs of vertices leads us to the following theorem from
[6] concerning irreducible matrices:
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THEOREM 1.3.16 A matrix A is irreducible if and only if G(A) is strongly con-
nected.

Proof: Suppose A is reducible, then there exists a permutation matrix P such
that

A = P

[
B C
0 D

]
P T : = PÂP T

where B ∈ Mr, D ∈ Mn−r, C ∈ Mr,n−r, and 0 ∈ Mn−r,r for some 1 ≤ r ≤ n. Let
v1, . . . , vn ∈ V (G(A)) and v̂1, . . . , v̂n ∈ V (G(Â)). In G(Â), observe that there does
not exist a directed path from v̂i to v̂j if r+1 ≤ i ≤ n and 1 ≤ j ≤ r. Hence G(Â) is
not strongly connected. Since G(A) and G(Â) are isomorphic, it follows that G(A)
is not strongly connected.

Now suppose G(A) is not strongly connected. Then there exists nonempty sets
of vertices S1 and S2 of G(A) such that no directed path from vi to vj exists if
vi ∈ S2 and vj ∈ S1. Let |S1| = r and |S2| = n− r. Relabel the vertices of G(A) as
v̂1, . . . , v̂n where v̂1, . . . , v̂r ∈ S1 and v̂r+1, . . . , v̂n ∈ S2; permute the matrix A in the
same fashion to create Â. Thus graph created from relabeling the vertices of G(A)
is precisely G(Â). Since there are no directed paths in G(Â) from the vertices in S2

to the vertices in S1, it follows that Â must have an (n− r)× r block of zeros in the
lower left corner. Thus Â is reducible. Since A and Â are permutationally similar,
it follows that A is reducible. 2

EXAMPLE 1.3.17 Revisiting the nonnegative matrices in Example 1.3.14, we
see that A is irreducible since the associated directed graph is strongly connected.
However B is reducible since its associated directed graph is not strongly connected.
Partioning the matrix below to highlight reducibility, observe that B is permuta-
tionally similar to


2 4 0 1
6 0 5 0

0 0 0 3
0 0 7 2

 .
Our goal will be to show that nonnegative irreducible matrices behave in a

similar way to positive matrices. To this end, we present two lemmas from [41] and
[6] which shed light on the relationship between nonnegative and positive matrices.

LEMMA 1.3.18 Let A ∈Mn and suppose A is nonnegative. Then A is irreducible
if and only if (I +A)n−1 is positive.

Proof: Suppose first that A is reducible. Then for some permutation matrix P
we have A = PÂP T where Â is as in Theorem 1.3.16. Observe

(I +A)n−1 = (I + PÂP T )n−1 = (P [I + Â]P T )n−1
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= P

[
I + (n− 1)Â+

(
n− 1

2

)
Â2 + . . .+

(
n− 1

n− 1

)
Ân−1

]
P T .

By matrix multiplication, note that Â2, Â3, . . . , Ân−1 all have the same (n− r)× r
block of 0’s in the lower left corner as Â. Therefore, all of the terms in the square
brackets have an (n−r)×r block of 0’s in the lower left corner, and hence (I+A)n−1

does also. Therefore (I +A)n−1 is not positive.
Suppose now that A is irreducible, then so is I+A. Let Y be the set of all nonneg-

ative nonzero vectors in <n with at least one entry of zero. Since I+A is irreducible,
it follows by matrix-vector multiplication that (I +A)y will have fewer zero entries
than y for each vector y ∈ Y . Hence (I+A)n−1y is positive for all vectors y ∈ Y . The
only way that this can hold for every vector y ∈ Y is for (I+A)n−1 to be positive. 2

LEMMA 1.3.19 If A ∈Mn, A is nonnegative, and Ak is positive for some k ≥ 1,
then ρ(A) is a simple eigenvalue of A.

Proof: If λ1, . . . , λn are the eigenvalues of A, then λk1, . . . , λ
k
n are the eigenvalues

of Ak. By Theorem 1.3.11, ρ(A) is an eigenvalue of A. Hence if ρ(A) were a multiple
eigenvalue of A, then ρ(A)k = ρ(Ak) would be a multiple eigenvalue of Ak. But this
is impossible since ρ(Ak) is a simple eigenvalue of Ak by Theorem 1.3.8. 2

We are now able to present the culminating theorem (from [41]) of this section
which illustrates that the majority of Theorem 1.3.8 still holds for nonnegative
matrices so long as the matrix is irreducible.

THEOREM 1.3.20 Let A ∈Mn be an irreducible nonnegative matrix. Then
(i) ρ(A) > 0
(ii) ρ(A) is an eigenvalue of A
(iii) There is a positive eigenvector x corresponding to ρ(A)
(iv) ρ(A) is a simple eigenvalue.

Proof: Since A is nonnegative and irreducible, all row sums are positive. Thus (i)
follows from Lemma 1.3.2. Statement (ii) follows from Theorem 1.3.11 and the fact
that A is nonnegative (irreducibility is not even required here). Theorem 1.3.11 also
guarantees that there exists a nonnegative eigenvector x corresponding to ρ(A).
To prove (iii), we need only show that x does not have a zero coordinate. Since
Ax = ρ(A)x, it follows that (I + A)n−1x = (1 + ρ(A))n−1x. By Lemma 1.3.18 the
matrix (I + A)n−1 is positive, so by Theorem 1.3.8, x is positive. To prove (iv),
suppose ρ(A) is a multiple eigenvalue of A. Then 1 + ρ(A) = ρ(I +A) is a multiple
eigenvalue of I + A. Hence (1 + ρ(A))n−1 = ρ((I + A)n−1) is a multiple eigenvalue
of (I + A)n−1. But I + A is nonnegative and (I + A)n−1 is positive by Lemma
1.3.18. Therefore by Lemma 1.3.19, ρ((I + A)n−1) cannot be a multiple eigenvalue
of (I +A)n−1, producing a contradiction. Thus ρ(A) is a simple eigenvalue of A. 2
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We see from Theorems 1.3.8 and 1.3.20 that the consequences of A being a
positive matrix or A being a nonnegative irreducible matrix are strikingly similar.
In both cases, ρ(A) is a simple eigenvalue and the corresponding eigenvector is
positive. However, if A is positive, the ρ(A) is the only eigenvalue whose modulus
is ρ(A). This need not be the case if A is nonnegative and irreducible. For example,
consider

A =

 0 1 0
0 0 1
1 0 0

 .
Observe that the eigenvalues of A are 1, −0.5+ i

√
3/2, and −0.5− i

√
3/2. Note that

ρ(A) = 1 and 1 is an eigenvalue of A. However, |−0.5+i
√

3/2| = |−0.5−i
√

3/2| = 1.
It should be noted that even though there may be more than one eigenvalue of a
nonnegative irreducible matrix A whose modulus is ρ(A), each such eigenvalue will
be simple. The proof of this idea is beyond the scope of this text but may be found
in [41].

Exercises:

1. (See [6]) Let A and B be nonnnegative matrices. Prove the following:
(i) If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B).
(ii) If 0 ≤ A ≤ B and A+B is irreducible, then ρ(A) < ρ(B).
(iii) ρ(A) is an eigenvalue of some proper principal submatrix of A if and only

if A is reducible.

2. (See [6]) Let A be nonnegative and irreducible. For every vector x > 0 define

rx = min
xi 6=0

(Ax)i
xi

.

Prove that rx is the largest real number ρ such that ρx ≤ Ax.

3. (See [6]) Let A be nonnegative and irreducible and let r = rz = maxx>0 rx
where rx is as in Exercise 2. Prove the following:

(i) r > 0
(ii) Az = rz
(iii) z >> 0.

4. (See [6]) Let A be nonnegative and irreducible. Prove the following minimax
characteristics:

(i)

ρ(A) = max
x>0

(
min
xi>0

(Ax)i
xi

)
.

(ii)

ρ(A) = min
x>0

(
max
xi>0

(Ax)i
xi

)
.
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5. (See [28]) Let A be an n × n nonnegative irreducible, symmetric matrix with
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. Let u = (ui) be an eigenvector corresponding to λn
and v = (vi) be an eigenvector corresponding to λn−1. Define

Mα := {i ∈ N |vi + αui ≥ 0}.

Prove that for any α ≥ 0, the submatrix A(Mα) is irreducible.

1.4 M-Matrices

In this section, we take the nonnegative matrices that we studied in the previous
section and subtract them from a large enough multiple of the identity matrix to en-
sure that only the diagonal entries are nonnegative in the resulting matrix. Naturally
there will be properties of nonnegative matrices that coincide with the properties
of these matrices. We study a useful subset of these matrices and investigate the
properties that arise from reducibility and invertibility. We begin with a definition.

DEFINITION 1.4.1 A Z-matrix is an n×n matrix A where ai,j ≥ 0 if i = j and
ai,j ≤ 0 if i 6= j.

Observe that a Z-matrix is of the following form:
b1,1 −b1,2 −b1,3 . . .
−b2,1 b2,2 −b2,3 . . .
−b3,1 −b3,2 b3,3 . . .
. . . . . . . . . . . .


where we take all bi,j to be nonnegative. Observe that a Z-matrix A can be written
as sI−B for some s > 0 and some B ≥ 0. Hence we can immediately see that there
will be a close relationship between Z-matrices and nonnegative matrices. In fact, if
a Z-matrix A is irreducible and symmetric (guaranteeing real eigenvalues), we have
the following two observations which are consequences of Theorem 1.3.20:

OBSERVATION 1.4.2 Let A be an irreducible symmetric Z-matrix. If x is a
positive eigenvector of A, the x corresponds to the smallest eigenvalue of A.

OBSERVATION 1.4.3 Let A be an irreducible symmetric Z-matrix. Then the
smallest eigenvalue of A has multiplicity 1 and the corresponding eigenvector is
positive, unique up to a scalar multiple.

We will restrict ourself to the subset of Z-matrices where s ≥ ρ(B). We will see in
this section that the resulting matrices will have a lot of interesting properties. The
properties of such matrices will have even stronger relations to those of nonnegative
matrices - properties that are not as intuitive as the observations above. Since this
subset of Z-matrices play an important role in graph theory, we dedicate this section
to studying such matrices. We now present a formal definition of this subset of Z-
matrices:
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DEFINITION 1.4.4 A Z-matrix of the form sI−B, where B ≥ 0, is an M-matrix
if s ≥ ρ(B).

If the inequality in the above definition is strict, then the M-matrix is nonsin-
gular. The first goal of this section is to investigate the properties of the inverse of
a nonsingular M-matrix. To this end, we begin with a lemma from [6] concerning
nonnegative matrices.

LEMMA 1.4.5 Let T be a nonnegative matrix such that ρ(T ) < 1. Then (I−T )−1

exists and

(I − T )−1 =
∞∑
k=0

T k ≥ 0 (1.4.1)

Proof: If ρ(T ) < 1 then the series in (1.4.1) converges. Moreover, since ρ(T ) < 1,
it follows that if λ is an eigenvalue of I −T , then 0 < |λ| < 2 by the Gersgorin Disc
Theorem (Theorem 1.2.1). Hence (I − T )−1 exists. Observe

(I − T )(I + T + T 2 + T 3 + . . .+ T k) = I − T k+1.

Since ρ(T ) < 1, it follows that limk→∞ T
k+1 = 0. Therefore, taking the limit of

both sides as k tends to infinity, we see that

(I − T )
∞∑
k=0

T k = I.

The result follows. 2

OBSERVATION 1.4.6 If T is nonnegative and ρ(T ) < 1, it follows that (I−T )−1

is nonnegative.

From this lemma and observation, we see that nonnegative matrices will play a
strong role in the inverses of nonsingular M-matrices. In the following theorem from
[6], we see that the inverse of an M-matrix is always nonnegative.

THEOREM 1.4.7 If A is a nonsingular M-matrix, then A−1 ≥ 0. Moreover, if A
is irreducible, then A−1 >> 0.

Proof: Since A is an M-matrix (possibly reducible), it follows that A = sI −B
for some nonnegative matrix B and some s > ρ(B). Let C = (1/s)A = I − B/s.
Letting T = B/s, we see that ρ(T ) < 1. Thus by Lemma 1.4.5 and Observation
1.4.6 we see that C−1 ≥ 0. But since A = sC where s > 0, it follows that A−1 ≥ 0.

Now suppose that A is irreducible. Then B ≥ 0 is also irreducible. Let x > 0.
Then y := A−1x > 0. Since (sI − B)y = Ay = x > 0, it follows that sy ≥ By. We
claim this implies that y >> 0. Suppose not. Then y has a zero coordinate. Since
sy ≥ By ≥ 0, it follows that By has a zero coordinate in the same position as y.
Hence B would be reducible, contradicting the irreducibility of A. Thus y >> 0.
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Since x > 0 implies y = A−1x >> 0, it follows by matrix-vector multiplication that
A−1 >> 0. 2

Since irreducibility plays an important role in the theory of nonnegative matri-
ces, it is not surprising that it plays an important role in the theory of M-matrices.
If A is a nonsingular M-matrix that is also irreducible, Theorem 1.4.7 shows that
not only will its inverse be nonnegative, it will be strictly positive.

The theory of nonsingular M-matrices will be important when we broaden our
study to singular M-matrices. To this end, we present two lemmas from [6] concern-
ing nonsingular M-matrices that will be useful to us.

LEMMA 1.4.8 Let A be a Z-matrix. Then A is an M-matrix if and only if A+ εI
is a nonsingular M-matrix for all scalars ε > 0.

Proof: Let A be an M-matrix of the form A = sI − B, where B ≥ 0 and
s ≥ ρ(B). Then for any ε > 0,

A+ εI = sI −B + εI = (s+ ε)I −B : = s′I −B. (1.4.2)

Since s′ > s ≥ ρ(B), it follows that A+ εI is nonsingular.
Conversely, if A+ εI is a nonsingular M-matrix for all ε > 0, then it follows by

letting ε approach zero in (1.4.2) that A is an M-matrix. 2

LEMMA 1.4.9 Let A be a nonsingular M-matrix. Then all principal minors of A
are positive.

Proof: We first show that there exists a diagonal matrix D such that G :=
D−1AD is strictly diagonally dominant, i.e., gii >

∑n
j=1, j 6=i |gij | for each i = 1, . . . n.

Let x = A−1e and observe x >> 0 since A−1 > 0 by Theorem 1.4.7. Let
D = diag(x1, . . . , xn). Observe ADe = Ax = e >> 0. Thus AD has positive row
sums. Since AD is a Z-matrix, it follows that AD is strictly diagonally dominant.
Since multiplying AD on the left by D−1 scales the entries in the ith row by a factor
of 1/xi > 0 for each i, it follows that G = D−1AD is strictly diagonally dominant.

Note that the diagonal entries of A are strictly positive. This is due to the fact
that (i) A−1 ≥ 0 by Theorem 1.4.7, (ii) the off-diagonal entries of A are nonposi-
tive, and (iii) the dot product of the ith row of A with the ith column of A−1 is one.
Since the diagonal entries of A are strictly positive, so are the diagonal entries of
G. By the fact that G is strictly diagonally dominant, we apply the Gersgorin Disc
Theorem (Theorem 1.2.1) to see that each eigenvalue λ of G is such that Reλ > 0.
Since all entries of G are real, the complex eigenvalues of G come in conjugate pairs,
hence the product of such pairs of eigenvalues is positive. Moreover, the real eigen-
values of G are all positive. Since the determinant of a matrix is the product of the
eigenvalues of the matrix, it follows that detG > 0. Since det(G) = det(A), we see
that det(A) > 0.
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Finally, let Â be a principal submatrix of A. Writing A as sI −B where B ≥ 0
and s > ρ(B), we see that Â = sI − B̂ where B̂ is the corresponding submatrix of
B. Since s > ρ(B) ≥ ρ(B̂), it follows that Â is also a nonsingular M-matrix. Hence
by the reasoning of the previous paragraph, det(Â) > 0. 2

With some important lemmas in hand, we can now extend our study of M-
matrices to singular M-matrices. We focus on such matrices that are irreducible and
observe that the theory of irreducible nonnegative matrices will play an important
role in the following theorem from [6].

THEOREM 1.4.10 Suppose A is a singular, irreducible n× n M-matrix. Then
(i) Zero is a simple eigenvalue of A.
(ii) There exists a vector x >> 0 such that Ax = 0.
(iii) Each principal submatrix of A other than A itself is a nonsingular M-matrix.

Proof: Since A is a singular M-matrix, A = sI−B for some nonnegative matrix
B and s = ρ(B). If A is irreducible, then so is B. By Theorem 1.3.20, ρ(B) is a sim-
ple eigenvalue of B. Hence zero is a simple eigenvalue of A, proving (i). Moreover,
by Theorem 1.3.20 there exists an eigenvector x >> 0 of B such that Bx = ρ(B)x.
Thus Ax = (sI −B)x = sx− ρ(B)x = 0 since s = ρ(B). This proves (ii).

To prove (iii), let Â be a principal submatrix of A where Â 6= A. We saw in the
proof of Lemma 1.4.9 that Â is also an M-matrix. To show Â to be nonsingular,
let B̂ ≥ 0 be the corresponding submatrix of B. Hence Â = sI − B̂. Since B is
irreducible, it follows from Exercise 1(iii) in Section 1.3 that s = ρ(B) > ρ(B̂).
Hence Â is nonsingular. 2

Singular irreducible M-matrices and nonnegative matrices will both play an im-
portant role in the chapters to come when we represent graphs with Laplacian
matrices. The fact that the principal submatrices of a singular irreducible M-matrix
are nonsingular and that their inverses are strictly positive will be vital to us when
we study the combinatorial properties of graphs.

Exercises:

1. (See [25]) Let A be a symmetric, irreducible M-matrix. Prove that if there exists
a positive vector x such that Ax ≤ αx, then λ1 ≤ α with equality if and only if x
is an eigenvector of A corresponding to the eigenvalue α.

2. (See [30]) Let A be a symmetric irreducible matrix A having all off-diagonal
entries nonpositive and Ax = 0 for a real vector x 6= 0 that is neither positive nor
negative. Prove that A is not positive semidefinite.

3. (See [6]) Let A be a symmetric Z-matrix. Prove that A is a nonsingular M-matrix
if and only if A is positive definite.
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1.5 Doubly Stochastic Matrices

In this section based largely on [27], we further our study of nonnegative matrices
and look at a specific type of nonnegative matrix known as a doubly stochastic
matrix. Such matrices are important in the study of Markov chains, probability,
and statistics, and will be useful to us when we represent graphs as Laplacian
matrices in subsequent chapters. When representing graphs as Laplacian matrices,
we will spend considerable time studying the second smallest eigenvalue. In turn, it
will be useful for us to have information on the second largest eigenvalue of doubly
stochastic matrices. As we saw in the previous section, if we subtract such a matrix
from a suitable multiple of the identity matrix, then any information we gather
about the second largest eigenvalue of the doubly stochastic matrix will be easily
transferred to the second smallest eigenvalue of the resulting matrix. We begin with
a definition of a doubly stochastic matrix.

DEFINITION 1.5.1 A doubly stochastic matrix is a nonnegative matrix whose
row sums and column sums all equal one.

Since the row sums are all one, it follows that e is an eigenvector corresponding to
the eigenvalue one. Since e is a nonnegative vector, it follows from Corollary 1.3.5
that one is the largest eigenvalue of any doubly stochastic matrix. The goal of this
section will be to find bounds for the second largest eigenvalue of doubly stochastic
matrices.

Recalling Definition 1.3.12, we can say that an n × n matrix A = [ai,j ] is re-
ducible if there exists a nonempty subset M ⊂ N := {1, . . . , n} such that ai,j = 0
for all i ∈M and j ∈ N \M . With this in mind, we have the following definition:

DEFINITION 1.5.2 For an n × n doubly stochastic matrix A, the measure of
irreducibility, µ(A) is

µ(A) = min
M⊂N
M 6=∅,N

∑
i∈M

j∈N\M

ai,j .

Definition 1.5.2 leads us to an observation from [27] which is easily verified.

OBSERVATION 1.5.3 Let A be a doubly stochastic matrix. Then 0 ≤ µ(A) ≤ 1.
Moreover A is reducible if and only if µ(A) = 0.

EXAMPLE 1.5.4 Consider the doubly stochastic matrix

A =

 1 0 0
0 3/4 1/4
0 1/4 3/4

 .
Observe that A is reducible. Moreover, µ(A) = 0 where this value is obtained by
letting M = {1} in the language of Definition 1.5.2.
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EXAMPLE 1.5.5 Consider the doubly stochastic matrix

B =

 1/2 1/4 1/4
1/4 5/8 1/8
1/4 1/8 5/8

 .
Clearly B is irreducible, hence µ(B) > 0. After an exhaustive search, letting
M = {1, 2} yields µ(B) = 3/8.

In the following lemma from [27], we see that if we take a convex linear combi-
nation of doubly stochastic matrices, the measure of irreducibility will be at least
the sum of the measures of irreducibility of the individual matrices.

LEMMA 1.5.6 Let A and B be doubly stochastic matrices and let α, β ≥ 0 where
α+β = 1. Then αA+βB is a doubly stochastic matrix and µ(αA+βB) ≥ αµ(A)+
βµ(B).

Proof: Clearly αA + βB is a doubly stochastic matrix. Hence there exists a
nonempty proper subset M ⊂ N such that

µ(αA+βB) =
∑

i∈M,k/∈M
(αaik+βbik) =

∑
i∈M,k/∈M

αaik+
∑

i∈M,k/∈M
βbik ≥ αµ(A)+βµ(B).

2

In the following lemma from [27], we study three important doubly stochastic
matrices that will be useful to us when proving the main theorem of this section
which concerns the second largest eigenvalue of doubly stochastic matrices.

LEMMA 1.5.7 Let C1, C2, and C3 be n× n matrices where

C1 =
1

2



1 1
1 0 1

1 0 1
... ... ... ... ... ... ... ...

1 0 1
1 1


,

C2 =
1

2



0 1 1
1 0 0 1
1 0 0 0 1

1 0 0 0 1
... ... ... ... ... ... ... ... ... ... ... ...

1 0 0 0 1
1 0 0 1

1 1 0


,
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and C3 = 1
n−1(J − I). Then

(a) C1, C2, and C3 are symmetric doubly stochastic matrices that commute with
each other.

(b) µ(C1) = 1
2 , µ(C2) = 1, and µ(C3) = 1.

(c) The eigenvalues 1 = γ1 ≥ γ2 ≥ . . . ≥ γn for Ci, i = 1, 2, 3 are γk(C1) =
cos((k − 1)π/n), γk(C2) = cos(2(k − 1)π/n), and γk(C3) = −1/(n − 1) for
k = 2, . . . , n. These eigenvalues correspond to the eigenvectors

z(k) : =

[
cos

(k − 1)π

2n
, cos

3(k − 1)π

2n
, cos

5(k − 1)π

2n
, . . . , cos

(2n− 1)(k − 1)π

2n

]T
Proof: Parts (a) and (c) are easily verified. We leave part (b) as an exericse. 2

We see that the cosine function will play an important role when considering
the eigenvalues of doubly stochastic matrices. We now define a function (from [27])
that will be of great use for us. Let n ≥ 2 be an integer. Define φn(z) for 0 ≤ x ≤ 1
by

φn(z) =


2
(
1− cos πn

)
z, if 0 ≤ z ≤ 1

2 ,

1− 2(1− z) cos πn − (2z − 1) cos 2π
n , if 1

2 ≤ z ≤ 1.

Observe that φn(z) is increasing, continuous, and convex.
In addition to introducing the function φ(z), we will introduce a matrix B(z) in

the following lemma from [27]. The matrix B(z) makes use of the matrices C1 and
C2 from Lemma 1.5.7.

LEMMA 1.5.8 Let 0 ≤ z ≤ 1. Let B(z) be an n× n matrix defined by

B(z) =


(1− 2z)I + 2zC1, if 0 ≤ z ≤ 1

2 ,

2(1− z)C1 + (2z − 1)C2, if 1
2 ≤ z ≤ 1.

Then:

(a) B(z) is symmetric and doubly stochastic.

(b) µ(B(z)) = z.

(c) λn−1(B(z)) = 1− φn(z).

Proof: Part (a) is clear. To prove (b), observe that if 0 ≤ z ≤ 1
2 , then µ(B(z)) =

2zµ(C1) since the diagonal entries of a doubly stochastic matrix have no effect on
the measure of irreducibility. By Lemma 1.5.7, 2zµ(C1) = z. If 1

2 ≤ z ≤ 1, it follows
from Lemma 1.5.6 that

µ(B(z)) ≥ 2(1− z)µ(C1) + (2z − 1)µ(C2) = z
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where the equality follows from Lemma 1.5.7. Letting M = {1} as in Definition
1.5.2, we have µ(B(z)) ≤

∑
i∈M,k/∈M bik = z. Thus µ(B(z)) = z which completes

(b).
Part (c) follows from Lemma 1.5.7 and the fact that φn(z) is increasing and

continuous. 2

Before proving the main theorem of this section, we need one additional lemma
from [27]. In this lemma, we define two additional matrices that will be useful to us.
From this point forward, let Dn(z) denote the set of symmetric doubly stochastic
n× n matrices A such that µ(A) ≥ z.

LEMMA 1.5.9 Let Z = (zi,j) be the n× n matrix

Z =


1, if i ≤ j,

0, if i > j.

Letting B(z) be as in Lemma 1.5.8, then for any A ∈ Dn(z), the matrix

U : = ZT (B(z)−A)Z

is nonnegative and all its entries in the last row and column equal zero.

Proof: Let vj = [ 1, . . . , 1, 0, . . . , 0 ]T be the vector with 1’s as the first j com-
ponents and zeros elsewhere. Then for j = 1, . . . , n, the j-th column of Z is vj .
Therefore

uij = vTi [B(z)−A]vj . (1.5.1)

Define wj = e− vj . Observe for any A ∈ Dn(z) we have

vTj Awj =
∑
i∈Mj
k/∈Mj

aik ≥ µ(A) ≥ z (1.5.2)

where Mj = {1, . . . , j}. Further, since for j = 1, . . . , n− 1 we have

aj+1,j+1 = (vTj+1 − vTj )A(wj − wj+1) ≥ 0,

it follows that

vTj+1Awj + vTj Awj+1 ≥ vTj Awj + vTj+1Awj+1 ≥ 2z (1.5.3)

by (1.5.2). However,

vTj+1Awj = (eT − wTj+1)A(e− vj)

= n− (n− j − 1)− j + wTj+1Avj

= 1 + vTj Awj+1,
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the last equality following from the fact that A is symmetric. Therefore,

vTj Awj+1 ≥ z − 1

2
. (1.5.4)

by (1.5.3). Moreover, since A is nonnegative, for any m > j we have

vTj Awm ≥ 0. (1.5.5)

Recalling that Awj = e−Avj , from (1.5.2), (1.5.4), and (1.5.5) we have

vTj Avj ≤ j − z

vTj Avj+1 ≤ j − z + 1
2

vTj Avm ≤ j, if m > j.

(1.5.6)

Since vTj C1vj = j− 1
2 and vTj C1vm = j for m > j, it follows for such 0 ≤ z ≤ 1

2 that

vTj B(z)vj = j − z

vTj B(z)vm = j if m > j.
(1.5.7)

Further, since vTj C2vj = j − 1, vTj C2vj+1 = j − 1
2 , and vTj C2vm = j for m > j + 1,

it follows that for 1
2 ≤ z ≤ 1

vTj B(z)vj = j − z

vTj B(z)vj+1 = j − z + 1
2

vTj B(z)vm = j if m > j + 1.

(1.5.8)

Since 0 ≤ z ≤ 1, j ≥ 1, and U is symmetric, it follows from (1.5.1), (1.5.6),
(1.5.7), and (1.5.8) that uij ≥ 0. Finally, since vn = e, it follows from (1.5.1) that
uin = uni = 0 for each i = 1, . . . , n. 2

We use these lemmas to prove the main theorem of this section (see [27]) which
gives us a bound on the second largest eigenvalue of a doubly stochastic matrix in
terms of its measure of irreducibility.

THEOREM 1.5.10 Let A be a symmetric doubly stochastic n × n matrix with
measure of irreducibility µ and second largest eigenvalue λn−1. Then

1− λn−1 ≥ φn(µ) ≥ 2

(
1− cos

π

n

)
µ (1.5.9)
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Proof: We begin with the first inequality. We will prove this by showing that
for every z where 0 ≤ z ≤ 1 that

min
A∈Dn(z)

[1− λn−1(A)] = φn(z). (1.5.10)

If z = 0 then (1.5.10) simplifies to 1 − γ2(A) ≥ 0 which is clearly true. Now let
z > 0. It follows from Lemma 1.5.6 that Dn(z) is nonempty, convex, closed, and
bounded. Hence the minimum in (1.5.10) exists. Letting Sn be the set of all unit
vectors orthogonal to e, it follows from Theorem 1.2.7 that

minA∈Dn(z)[1− γ2(A)] = 1−maxA∈Dn(z)[maxx∈Sn x
TAx]

= 1−maxx∈Sn [maxA∈Dn(z) x
TAx]

= 1−maxx∈S′n
[maxA∈Dn(z) x

TAx]

where S
′
n is the set of all vectors x = [x1, . . . , xn]T ∈ Sn such that x1 ≥ x2 ≥ . . . ≥

xn. Equality in the above equations follows from the fact that if A ∈ Dn(z) and P
is any permutation matrix then PAP T ∈ Dn(z).

We will show now that for a fixed x ∈ S′n that

max
A∈Dn(z)

xTAx = xTB(z)x. (1.5.11)

From (1.5.11) it will follow by Lemma 1.5.8 that

min
A∈Dn(z)

[1− γ2(A)] = 1− γ2[B(z)] = 1− [1− φn(z)] = φn(z).

If x ∈ S′n then the first n− 1 coordinates of

y := [x1 − x2, x2 − x3, . . . , xn−1 − xn, xn]T

are nonnegative. Letting U be as in Lemma 1.5.9, it follows from Lemma 1.5.9 that
since U is nonnegative and the last row and column of U are all zeros, we have

yTUy =
n−1∑
i,j=1

uijyiyj ≥ 0.

Observing that y = Z−1x, we obtain

0 ≤ yTUy = xT (Z−1)T [ZT (B(z)−A)Z]Z−1x

= xT [B(z)−A]x

= xTB(z)x− xTAx

This proves (1.5.11), and hence (1.5.10) since B(z) is the matrix that obtains the
minimum. Hence the first inequality in (1.5.9) is proven.

The second inequality in (1.5.9) follows directly from the fact that φn(z) is an
increasing function and 0 ≤ µ ≤ 1 by definition of µ. This completes the proof. 2
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REMARK 1.5.11 [31] From the proof of Theorem 1.5.10, we see that if µ 6=
0 then equality holds in (1.5.9) if and only if A is permutationally similar to a
tridiagonal matrix.

Remark 1.5.11 will be useful in our study of Laplacian marices as the Laplacian
matrix for a path is a tridiagonal matrix.

Exercises:

1. Prove part (b) of Lemma 1.5.7.

2. Prove Remark 1.5.11.

1.6 Generalized Inverses

Much of linear algebra was developed in order to find efficient ways of solving sys-
tems of equations and analyzing their solutions if any exist. The most fundamental
problem of this sort is if we have m equations involving n variables x1, . . . , xn and
we want to solve for each variable. In such a case we represent the coefficients of
the variables as the m × n matrix A, the right side of each equation as the vector
b, and the variables as entries in the vector x. This gives us the equation Ax = b. If
m = n and A is invertible, then we can solve for each variable xi since x = A−1b.
But what if A is not invertible? More generally, what if m 6= n? Then there will be
either no solution or more than one solution. Often it is desirable to get a solution
that best fits the equations, even if it is not an exact fit. This leads us to the concept
of generalized inverses. Generalized inverses have many of the same properties as
inverses, and hence can often be used in place of an inverse when an inverse does
not exist.

If A is an n× n nonsingular matrix, then there exists a unique matrix X satis-
fying all of the following properties:

(1) AXA = A

(2) XAX = X

(3) AX = (AX)T

(4) XA = (XA)T

(5) AX = XA

(6) Ak = XAk+1 for all nonnegative integers k .

(1.6.1)

We typically write A−1 for X in this case. However, if a matrix A is singular or
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rectangular, it is possible that there exists a unique matrix X that satisfies some of
the properties in (1.6.1). By requiring only a subset of these properties, we obtain
various generalized inverses, all of which equal the traditional inverse A−1 if it exists.
In this section, we will investigate two such generalized inverses: the Moore-Penrose
inverse and the group inverse.

We begin with the most common generalized inverse which is the Moore-Penrose
inverse defined here:

DEFINITION 1.6.1 Given a matrix A, the Moore-Penrose inverse, A+, for A is
the unique matrix satisfying properties (1) through (4) in (1.6.1).

The Moore-Penrose inverse exists for every matrix, including singular and rect-
angular matrices. It is also unique for each matrix. We should note that for every
matrix A, there exists a matrix X satisfying properties (1) and (2). However, such a
matrix is not always unique. Properties (3) and (4) guarantee the uniqueness of the
Moore-Penrose inverse. To compute the Moore-Penrose inverse of an m× n matrix
A of rank r, factor A into matrices B and C where B is m × r and C is r × n.
This can be done using the LU-factorization and letting B be the first r columns of
L and letting C be the first r rows of U . Then the formula for the Moore-Penrose
inverse is (see [5])

A+ = CT (CCT )−1(BTB)−1BT . (1.6.2)

EXAMPLE 1.6.2 Consider the matrix

A =

 1 3 4
2 −1 5
1 −4 1

 .
First observe that A is singular, hence the traditional inverse A−1 does not exist.
However, the Moore-Penrose inverse will exist. Factoring A into BC, we see that

B =

 1 0
2 1
1 11

 and C =

[
1 3 4
0 −7 −3

]
.

Applying (1.6.2) we obtain

A+ =
1

1257

 17 58 41
135 −57 −192
104 133 29

 .
EXAMPLE 1.6.3 Consider the matrix

A =

[
1 2 3
4 5 6

]
.
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Clearly A−1 does not exist since A is rectangular. However, we can still find the
Moore-Penrose inverse. Factoring A into BC, we obtain

B =

[
1 0
4 1

]
and C =

[
1 2 3
0 −3 −6

]
.

Applying (1.6.2) we obtain

A+ =
1

18

 −17 8
−2 2
13 −4

 .
We now turn our attention to another type of generalized inverse known as the

group inverse. The group inverse will be very useful in later chapters of this book,
hence we spend some time discussing it. We begin with a definition:

DEFINITION 1.6.4 Given a matrix A, the group inverse, A#, for A is the unique
matrix satisfying properties (1), (2), and (5) in (1.6.1).

By property (5), since a matrix must commute with its group inverse, it follows
that the group inverse can only exist for square matrices. Moroever, if we factor A
into BC as before, then A# exists if and only if CB is nonsingular. In such a case
(see [6])

A# = B(CB)−2C. (1.6.3)

EXAMPLE 1.6.5 Consider the matrix A in Example 1.6.2. Factoring A into BC
as we did before and applying (1.6.3), we obtain

A# =
1

81

 −19 −8 −55
−21 21 −48
−2 29 7

 .
Observe that A# 6= A+. Therefore, the Moore-Penrose inverse and the group

inverse for a matrix A are not necessarily equal if A−1 does not exist. If A−1 does
exist, then all generalized inverses equal A−1.

Since the group inverse exists only for square matrices and since the group
inverse itself is a square matrix, it is natural to investigate the eigenvalues of the
group inverse A# and how they relate to the eigenvalues of the original matrix
A. Clearly if A is nonsingular then the eigenvalues of A# are the reciprocals of the
eigenvalues of A with the same corresponding eigenvectors. So let A be singular with
eigenvalues 0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn. Let x be an eigenvector corresponding to
the eigenvalue λ = 0. Then it follows from (1.6.1) that

A#x = A#AA#x = A#A#Ax = 0.
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Hence 0 is also an eigenvalue of A# also with corresponding eigenvector x. For an
eigenvalue λ 6= 0 with x a corresponding eigenvector, i.e., Ax = λx, it follows from
(1.6.1) that

λx = Ax = AA#Ax = AA#λx.

Dividing through by λ (since λ 6= 0) and applying (1.6.1) again, we obtain

x = AA#x = A#Ax = λA#x.

Thus A#x = 1
λx. Therefore the nonzero eigenvalues of A# are the reciprocals of the

nonzero eigenvalues of A. Moreover, if x is an eigenvector of A corresponding to λ,
then x is also an eigenvector of A# corresponding to 1/λ.

Exercises:

1. Find the Moore-Penrose inverse and group inverse of

A =

 2 1 1
4 0 3
8 2 5


2. Prove that for any matrix A, there exists a matrix X satisfying properties (1)
and (2) in (1.6.1). Give an example of a matrix A in which the resulting matrix X
is not unique.

3. Verify that the formula for A+ given in (1.6.2) satisfies properties (1) through
(4) of (1.6.1).

4. Prove that the Moore-Penrose inverse exists for any matrix and that it is unique.

5. Verify that the formula for A# given in (1.6.3) satisfies properties (1), (2), and
(5) of (1.6.1).

6. Prove that if the group inverse exists, then it is unique.
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Chapter 2

Graph Theory Preliminaries

We dedicate this chapter to introducing graph theory to the reader. This chapter as-
sumes no prior knowledge of graph theory, thus we will develop all of our ideas from
scratch. This chapter is not meant to cover what an entire graph theory textbook
would cover, but rather to give the reader the necessary tools that will enable him
or her to understand the concepts presented in the remaining chapters. In addition
to exposing the reader to the graph theory concepts that will be used throughout
the remainder of this book, this chapter will assist the reader in understanding how
these concepts fit into the larger area of graph theory.

2.1 Introduction to Graphs

In 1997, Major League Baseball began Interleague Play in which teams from differ-
ent leagues were scheduled to play each other. With this new initiative, the schedul-
ing format was that each team would play every other team within their league,
and every team outside their league that is in the same geographic region. Consider
the following six teams which are denoted in parentheses by their league (American
League or National League) and their geographic region (East, Central, or West):
Yankees (AL East), Twins (AL Central), Angels (AL West), Mets (NL East), As-
tros (NL Central), and Padres (NL West). We can draw a picture illustrating which
teams were scheduled to play each other by representing each team as a point, and
then drawing a line segment between those teams that we scheduled to play each
other:

39
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40 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

The illustration that we have just drawn is a graph. We now state a more formal
definition:

DEFINITION 2.1.1 A graph G is a set of points V (G) called vertices along with
a set of line segments E(G) called edges joining pairs of vertices. We say that two
vertices are adjacent if there is an edge joining them.

In the above example, we see that the vertices are adjacent if and only if the teams
represented by the vertices are in the same league or in the same geographic region.

We now present some additional useful terminology:

DEFINITION 2.1.2 The degree of a vertex v, denoted deg(v), is the number of
vertices adjacent to v. The set of vertices adjacent to v is the neighborhood of v
which we denote as N(v). If e is an edge joining v to one of its neighbors, we say e
is incident to v.

EXAMPLE 2.1.3 Consider the following graph G:

Observe that deg(a) = 2 and N(a) = {b, e}. Also observe that deg(c) = 3 and
N(c) = {b, d, g}.

In any graph, note that each edge is incident to exactly two vertices. Thus
if a graph G has m edges, then the sum of the degrees of the vertices is 2m. We
state this more precisely as a theorem:

THEOREM 2.1.4 Let v1, . . . , vn be the vertices of a graph G and suppose G has
m edges, then

n∑
i=1

deg(vi) = 2m.

Therefore, the sum of the degrees of the vertices of a graph must be even.

Since the sum of an even number of odd numbers is even, while the sum of an odd
number of odd numbers is odd, we have the following corollary:

COROLLARY 2.1.5 In any graph G there must be an even number of vertices of
odd degree.
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Before completing our discussion on the degrees of vertices, we have one addi-
tional definition:

DEFINITION 2.1.6 A graph is regular or r-regular if each vertex has degree r.

EXAMPLE 2.1.7 Below is a 3-regular graph:

We will discuss the degrees of vertices in more depth in Section 2.5. At this time,
we will focus on the neighborhood of each vertex. Naturally, neighborhoods and
adjacency are the key concepts in the structure of a graph. Consider the following
two graphs:

On the surface, these two graphs look rather different. However, upon further in-
spection we notice many similarities. For example, in each graph there are exactly
two vertices of degree three and they are adjacent to each other. There are also
three vertices of degree two in each graph. Moreover, in each graph, two of the
vertices of degree two are adjacent to each other but neither is adjacent to the third
vertex of degree two whose only neighbors are the vertices of degree three. Finally in
each graph, the vertices of degree three are adjacent to exactly one common vertex.
So while these graphs look different, we see that their overall structure is not so
different. This leads us to the concept of an isomorphism:

DEFINITION 2.1.8 Let G1 and G2 be two graphs with vertex sets V (G1) and
V (G2), respectively. Then G1 and G2 are isomorphic if there is a one-to-one corre-
spondence φ between V (G1) and V (G2) such that for any pair of vertices v, w ∈
V (G1), we have v and w adjacent in G1 if and only if φ(v) and φ(w) are adjacent in
G2. The function φ is an isomorphism from G1 to G2.

EXAMPLE 2.1.9 In the example above, G1 and G2 are isomorphic as there exists
and isomorphism φ between these two graphs, namely φ(a) = v, φ(b) = x, φ(c) = z,
φ(d) = w, and φ(e) = y.
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At this time, we turn our attention to the edges of a graph and discuss traversing
the edges in order to “travel” from one vertex to another. We begin our discussion
with some definitions:

DEFINITION 2.1.10 A v−w walk in a graph G is a sequence of vertices beginning
at v and ending at w so that consecutive vertices in the sequence are adjacent. The
number of edges encountered in a walk, including multiple appearances, is the length
of the walk.

EXAMPLE 2.1.11 Using the graph G in Example 2.1.3, the sequence
b, e, f, j, k, f, j is a b− j walk of length 6.

DEFINITION 2.1.12 A closed walk is a walk with the same starting and ending
vertex. An open walk is a walk in which the start and end vertices differ.

DEFINITION 2.1.13 A trail is a walk in which no edge is repeated.

EXAMPLE 2.1.14 The walk in Example 2.1.11 is not a trail since edge fj is
repeated. Using G from Example 2.1.3, an example of a trail would be d, g, h, l, k, g, f .
Observe we do not repeat an edge in this d− f trail and that this d− f trail is of
length 6.

DEFINITION 2.1.15 A path is a walk in which no vertex is repeated.

EXAMPLE 2.1.16 The walk and trail described in Examples 2.1.11 and 2.1.14,
respectively, are not paths because in each case, a vertex is repeated. Again, using
G from Example 2.1.3, an example of a path would be i, j, k, g, d. Since no vertex is
repeated, this is an i− d path and its length is 4.

We should note that if P is a path in a graph G, then P is also a trail since if no
vertex is repeated, then no edge can be repeated either.

Continuing with the notion of no vertex or edge being repeated, our next defi-
nition is similar to that of a path, only the walk will be closed:

DEFINITION 2.1.17 A cycle is a closed walk in which no vertex is repeated
(except that the starting and ending vertices are the same).

EXAMPLE 2.1.18 In the graph in Example 2.1.3, abfea is a cycle on four ver-
tices. The cycle bcgkfb is a cycle on five vertices.

We close this section with the notion of connectivity of graphs:

DEFINITION 2.1.19 A graph is connected if there exists a path between every
pair of distinct vertices. A graph that is not connected is said to be disconnected.
A connected subgraph of a disconnected graph G that is not a proper subgraph of
any connected subgraph of G is called a component of G.
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EXAMPLE 2.1.20 The following graph has three components. Note that there
do not exist paths between vertices a, b, and c.

If a graph is connected, we can, in effect, “travel” between any pair of vertices. The
next two definitions make the idea of travelling between vertices more precise:

DEFINITION 2.1.21 The distance between two vertices v and w is the length
of the shortest path between v and w.

DEFINITION 2.1.22 The diameter of a connected graph G, denoted diam(G) is
the greatest distance between any two vertices of G. In other words

diam(G) = max
u,v

d(u, v)

DEFINITION 2.1.23 The mean distance ρ(G) of a connected graph G is the
average of all distances between distinct vertices of G. Thus if G has n vertices, then

ρ(G) =
1

n(n− 1)

∑
u∈V (G)

∑
v∈V (G)

d(u, v)

EXAMPLE 2.1.24 Consider the graph G below:

Below is a chart which gives the distances between distinct pairs of vertices.

a b c d e f

a 0 1 1 2 2 3
b 1 0 1 1 2 2
c 1 1 0 2 1 3
d 2 1 2 0 1 1
e 2 2 1 1 0 2
f 3 2 3 1 2 0

From the chart we see that diam(G) = 3 and ρ(G) = 5/3.

OBSERVATION 2.1.25 Of all unweighted graphs on n vertices with n fixed,
the graph with the smallest diameter and mean distance is Kn, both quantities
equalling one. The graph with the largest diameter and mean distance is Pn where
diamPn = n− 1 and ρ(Pn) = (n+ 1)/3.
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Exercises:

1. Suppose there are ten students, numbered 1, . . . , 10, each of whom need to sign
up for classes next semester. The classes are Math, English, Science, History, and
French. The meeting times will be determined after the students sign up so that no
two classes having students in common are scheduled for the same time. Supppose
the class lists of students are as follows: Math: {1, 3, 4, 6, 7, 9}, English: {2, 3, 4, 5, 8},
Science: {1, 6, 7, 10}, History: {2, 8, 10}, French: {1, 4, 7}. Model this situation with
a graph letting the classes be vertices and drawing an edge between vertices that
share at least one common student.

2. Suppose that a graph G has one vertex of degree 6, six vertices of degree 3,
and two vertices of degree 2. How many edges must G have?

3. Prove that if a graph has n ≥ 2 vertices, then there must be at least two vertices
with the same degree.

4. Prove that being isomorphic is an equivalence relation. In other words, letting
G1, G2, and G3 be graphs, prove the following:

(a) If G1 is isomorphic to G2, then G2 isomorphic to G1.
(b) Any graph is isomorphic to itself.
(c) If G1 is isomorphic to G2, and G2 is isomorphic to G3, then G1 is isomorphic

to G3.

5. In Exercise 4, we saw that being isomorphic is an equivalence relation. Thus
we are able to partition sets of graphs into isomorphism classes in which all graphs
in each class are isomorphic, but graphs belonging to different classes are not isomor-
phic. Partition the following sets of graphs into isomorphism classes. If the graphs
are isomorphic, state the isomorphism.
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6. (See [12]) Let G be a graph on n ≥ 3 vertices. Prove that G is connected if and
only if G contains two distinct vertices u and v such that G − u and G − v are
connected.

7. Consider the following graph G:
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Find the following:

(a) A d− b walk of length 5.

(b) A closed walk of length 5 beginning and ending at g.

(c) An i− e trail of length 6.

(d) A b− c path of length 4.

(e) Find diam(G).

8. Prove Observation 2.1.25.

2.2 Operations of Graphs and Special Classes of Graphs

In this section, we discuss several useful operations of graphs. These operations will
aid us in describing special classes of graphs that occur often in graph theory. We
begin with the complement of a graph:

DEFINITION 2.2.1 Given a graph G, the complement Gc is formed from V (G)
by joining vertices i and j of V (G) if and only if i and j are not adjacent in G.

EXAMPLE 2.2.2 Consider the graph G:

We create the complement Gc by adding edges joining the nonadjacent vertices of
G and deleting the existing edges. Thus Gc is as follows:
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In addition to taking the complement of a graph, we can also take the line graph
of a graph:

DEFINITION 2.2.3 Given a graph G, the line graph of G, denoted L(G), is the
graph created from G by letting each edge of G be represented by a vertex, and
two vertices in L(G) are adjacent if and only if the corresponding edges in G are
incident.

EXAMPLE 2.2.4 For the graph G in Example 2.2.2, the line graph L(G) is given
below. The vertices are labeled in accordance with the edges of G.

Our next operation is finding an (vertex) induced subgraph of a given graph:

DEFINITION 2.2.5 Given a graph G, the subgraph induced by a subset U of the
vertices of G is the graph consisting of the vertices in U and all edges in G which
join vertices in U .

EXAMPLE 2.2.6 Consider the graph in Example 2.2.2. The subgraph induced
by vertices b, c, d, and e is the following:

The operations discussed thus far were operations involving only one graph. The
next operations are operations involving two graphs. We begin with the sum of two
graphs:

DEFINITION 2.2.7 The sum or union of two graphs G and H is the graph whose
vertex set is V (G)∪V (H) and whose edge set is E(G)∪E(H). We denote this graph
as G +H or G ∪ H.

EXAMPLE 2.2.8 Let G and H be the graphs illustrated below.
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Then G +H is

Next we consider the join of two graphs.

DEFINITION 2.2.9 The join of two graphs G and H, denoted G ∨H, is created
by adding edges between G and H so that every vertex in G is adjacent to every
vertex in H.

EXAMPLE 2.2.10 Let G and H be as in Example 2.2.7. Then G ∨ H is

Another useful operation between two graphs is the product:

DEFINITION 2.2.11 Suppose V (G) = {u1, . . . , un} and V (H) = {v1, . . . , vp},
then the product G ×H is created by taking p copies of G, calling them G1, . . . ,Gp,
placing them at the location of the vertices v1, . . . , vp in H, then joining the vertex
ui in Gj to the vertex ui in Gk if and only if vj and vk are adjacent in H.

EXAMPLE 2.2.12 Consider the graphs

Then G ×H is:
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With these operations, we can create several special classes of graphs that fre-
quently occur in graph theory. We begin with the complete graph:

DEFINITION 2.2.13 A complete graph on n vertices, denoted Kn, is the graph
on n vertices in which every pair of vertices is adjacent

Below we have examples of the complete graphs on n vertices for n = 1, 2, 3, 4, 5:

The concept of the complete graph leads us to the following definition:

DEFINITION 2.2.14 In a graph G, a clique is an induced subgraph of G that is
complete. The clique number, denoted ω(G), is the number of vertices in the largest
clique of G.

EXAMPLE 2.2.15 Consider the following graph G:

Observe the subgraph induced by vertices a, f , g, and h is a clique because this
subgraph is K4. This is the largest induced complete subgraph of G, i.e., the largest
clique of G. Hence ω(G) = 4.

Complete graphs have every edge possible joining pairs of vertices. On the other
extreme, we have empty graphs:

DEFINITION 2.2.16 The empty graph, En, on n vertices is the complement of
Kn. Thus the empty graph on n vertices is the graph on n vertices containing no
edges.

The notions of complete graphs and empty graphs lead us to a class of graphs known
as split graphs.
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DEFINITION 2.2.17 A split graph is a graph whose vertices can be partitioned
into two sets where the induced subgraph of one set is a complete subgraph (a
clique), while the induced subgraph of the other set is an empty graph (the co-
clique).

EXAMPLE 2.2.18 Observe the graph G below is a split graph. We can partition
the vertices into sets V := {b, d, f, g} and W := {a, c, e} where the subgraph induced
by the vertices in V is the complete graph K4, while the subgraph induced by the
vertices in W is the empty graph E3.

We now present two classes of graphs that were alluded to in Definitions 2.2.19
and 2.1.17. These definitions concerned paths and cycles as subgraphs of a graph.
We now recast these definitions as graphs in their own right as opposed to being
subgraphs of an existing graph:

DEFINITION 2.2.19 A path on n vertices, denoted Pn, is a graph which itself is
a path. Likewise, a cycle, Cn, on n vertices is a graph which itself is a cycle. A path
or cycle is said to be odd (even) if n is odd (even).

The next two classes of graphs, the wheel and the cube, make use of the opera-
tions of joins and products.

DEFINITION 2.2.20 The wheel, denoted Wn is created by joining a single vertex
u to each vertex on the cycle Cn. In other words Wn = u ∨ Cn.

The cube is defined recursively and makes use of the product of graphs.

DEFINITION 2.2.21 Let Q1 = P2 and define the n-cube, Qn as Qn = Qn−1×K2.
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The vertices of the cube Qn are traditionally labeled as n-tuples of 0’s and 1’s where
two vertices are adjacent if and only if their n-tuples differ in exacly one position.
Below are examples of the cubes Q1, Q2, and Q3:

The final class of graphs we discuss are bipartite graphs. We present a formal
definition:

DEFINITION 2.2.22 A graph G is bipartite if V (G) can be partitioned into two
vertex sets V1 and V2 so that no vertices in Vi are adjacent for i = 1, 2.

Often, it is straightfoward to see that a graph is bipartite. Yet sometimes, it
takes more effort to determine if a graph is bipartite. Consider the following two
examples.

EXAMPLE 2.2.23 The graph below is clearly a bipartite graph:

EXAMPLE 2.2.24 The graph G1 below is bipartite; however, this is difficult to
see. However, we can redraw G1 as G2, with the vertices labeled accordingly, to see
more clearly that G1 is bipartite since G1 and G2 are isomorphic.

We see from the above example that it is often difficult to determine if a graph is
bipartite. The following theorem from [11] and [12] assists us in determining whether
graphs are bipartite by illustrating an interesting relationship between bipartite
graphs and cycles:
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THEOREM 2.2.25 A graph G on n ≥ 2 vertices is bipartite if and only if it
contains no odd cycles.

Proof: First assume G is bipartite. Then V (G) can be partitioned into two
nonempty subsets V1 and V2 so that each edge joins a vertex in V1 to a vertex in V2.
Let Cp = v1, v2, . . . , vp, v1 be a cycle in G. We must show that p is even. Suppose
v1 ∈ V1. Then since G is bipartite, it follows that v2 ∈ V2. By similar reasoning
v3 ∈ V1, v4 ∈ V2, and so on. Since vpv1 is an edge in G, and since v1 ∈ V1, it follows
that vp ∈ V2. Hence p is even.

For the converse, suppose that G has no odd cycles. We must show that G is
bipartite. First assume that G is connected and let u ∈ V (G). Then for each vertex
v ∈ V (G), there exists a u − v path. Since there may be more than one such path
for each v, select a shortest such path for each v. Let V1 be the subset of V (G)
consisting of u and every vertex v such that a shortest u− v path has even length.
Define V2 := V (G)− V1. Observe that every vertex adjacent to u belongs to V2.

We claim that every edge of G joins a vertex of V1 to a vertex of V2. Sup-
pose that this is not true. Then some edge e must join two vertices of V1 or two
vertices of V2. Without loss of generality, let e join y and z, both of V2. Since
y, z ∈ V2, it follows that each shortest u − y path and each shortest u − z path
have odd length. Let P = u, v1, v2, . . . , v2s+1 = y be a shortest u − y path and
let Q = u,w1, w2, . . . , w2t+1 = z be a shortest u − z path. Clearly P and Q have
vertex u in common. If P and Q have no other vertices in common, then P , Q,
and edge yz form an odd cycle which is a contradiction. Suppose P and Q have
vertices in common other than u. Let x be the last such vertex. Since x ∈ P ,
it follows x = vi for some i ≥ 1; hence d(u, x) = i. Since x ∈ Q and wi is
the only vertex in Q whose distance from u is i, it follows that x = wi. Thus
x = vi = wi. Then vi, vi+1, . . . , v2s+1, w2t+1, w2t, . . . , wi = vi is a cycle of length
[(2s+ 1)− i] + [(2t+ 1)− i] + 1 = 2(s+ t− i+ 1) + 1 is a cycle of odd length which
is a contradiction.

If G is disconnected, we apply the above argument to show that each component
of G is bipartite. Suppose the components of G are G1, . . . ,Gk. Then we can partition
the vertices of Gi into the vertex sets Ui and Wi for i = 1, . . . , k where for each i,
no vertices of Ui are adjacent and no vertices of Wi are adjacent. Hence ∪Ui and
∪Wi form the partite sets of V (G). 2

We can extend the notion of bipartite graphs to complete bipartite graphs which
make use of the operation of joining two empty graphs.

DEFINITION 2.2.26 A complete bipartite graph Km,n is the graph Em ∨ En.

EXAMPLE 2.2.27 Below is the graph K3,4. Observe that every vertex in E3 is
adjacent to every vertex in E4.
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We can also extend the definition of bipartite graphs to k-partite graphs where
the vertices of the graph are partitioned into k subsets, V1, V2, . . . , Vk such that no
two vertices within Vi are adjacent for each i = 1, . . . , k. Hence we can also define
complete k-partite graph in a similar fashion. Below is the complete 3-partite graph
K1,3,2.

Exercises:

1. Draw the following graphs:
(a) C4 ∨ C3

(b) P2 ×W3

(c) Q4

(d) Qc3
(e) (Cc4 ∨ P3)× E2

2. Let G and H be graphs. Prove that (G ∨ H)c = Gc +Hc.

3. Find a formula in terms of n for the number of edges of Kn.

4. Find formulas in terms of n for the number of vertices, edges, and degree of
each vertex of Qn.

5. Consider the following graph G:

Find the subgraphs induced by the following sets of vertices:

(a) {a, b, d, e}
(b) {c, f, g}
(c) {f, i, j, k}
(d) {a, b, c, d, e, f, g}
(e) {d, h, i}
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6. Draw the line graph for the graph in Exercise 5.

7. Determine if each of the following is a split graph. If it is, partition the ver-
tex set into the subsets which form the clique and the co-clique.

8. Use Theorem 2.2.25 to determine if each graph is bipartite. If the graph is bipar-
tite, draw it in such a way that the partite sets are clear.

9. Prove that if a graph G on n vertices is r-regular, then Gc is n− r − 1-regular.

10. (See [11]) Let G be a graph in which every edge joins an even vertex with
an odd vertex. Prove that G is bipartite.

11. Theorem 2.2.25 can be rephrased to say that a graph G is bipartite if and
only if all cycles are of even length. Can this theorem be generalized to say that
G is k-partite if and only if all cycles have length divisible by k? Prove or give a
counterexample.

12. Show that there cannot exist a disconnected graph that is isomorphic to its
complement.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Graph Theory Preliminaries 55

2.3 Trees

Often we wish to consider connected graphs where between any pair of vertices,
there is a unique path. Such graphs are considerably easier to deal with because
given two vertices, we can discuss the path between them rather than having to
consider all paths between them. For example, in the proof of Theorem 2.2.25 we
needed to consider a shortest path between two vertices. However, when there is
a unique path between every pair of vertices, this would not be an issue. Because
of the convenient nature of working with such graphs, there are many interesting
theorems and applications.

Observe that in order for there to be a unique path between every pair of vertices,
the graphs cannot contain any cycles. Hence we have a formal definition:

DEFINITION 2.3.1 A tree is a connected graph that contains no cycles.

EXAMPLE 2.3.2 Some examples of trees are as follows:

Note that the paths that we introduced in Definition 2.2.19 are trees. Another
common class of trees are stars:

DEFINITION 2.3.3 A star on n vertices is a tree consisting of one vertex that
is adjacent to the remaining n− 1 vertices.

EXAMPLE 2.3.4 Examples of stars:

The goal of this section is to understand the structure of trees. To this end, we
have the following definition:

DEFINITION 2.3.5 A pendant vertex is a vertex whose degree is one.

Visually speaking, pendant vertices are often referred to as end vertices. We now
prove our first lemma from [12] about trees which gives us information as to their
structure with regard to pendant vertices. This lemma will be used to prove the
subsequent theorem which concerns the number of edges in a tree.
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LEMMA 2.3.6 Every tree (other than K1) has at least two pendant vertices.

Proof: Let T be a tree (other than K1) and let P be a path in T of greatest
length. Let P be a u − v path u = v0, v1, . . . , vk = v. We will show that u and v
are pendant vertices of T . Observe that u and v are not adjacent to any vertex
not on P , because otherwise a path whose length is greater than the length of P
will be produced. Also note that u and v are adjacent to v1 and vk−1, respectively.
However, because T contains no cycles, u and v cannot be adjacent to any other
vertices on P . Thus deg u = deg v = 1. Hence u and v are pendant vertices of T . 2

We use Lemma 2.3.6 in the proof our next theorem from [12] which derives the
number of edges in a tree.

THEOREM 2.3.7 A tree on n vertices has n− 1 edges.

Proof: We will prove this by induction on n. The only tree on n = 1 vertex is
K1 which has no edges. Hence the result is true for n = 1. Assume now that for
a fixed positive integer k that all trees on k vertices have k − 1 edges. Let T be a
tree on n = k+ 1 vertices. The theorem is proven if we can show T has k edges. By
Lemma 2.3.6, T contains at least two pendant vertices. Let v be one of them. Then
T ′ = T − v is a tree on k vertices. Hence by the inductive hypotheses, T ′ has k− 1
edges. Since T has exactly one more edge than T ′, it follows that T has k edges. 2

Observe that the proof of Theorem 2.3.7 makes direct use of Lemma 2.3.6 whose
proof relies on the fact that trees have no cycles. In the beginning of this section,
we pointed out that by having no cycles between any two distinct vertices of a tree
there is a unique path. Hence we obtain the following theorem which summarizes
the important aspects of the structures of trees.

THEOREM 2.3.8 Let G be a connected graph on n vertices. The following are
equivalent:

(a) G is a tree.
(b) G has n− 1 edges.
(c) For every pair of distinct vertices u and v of G, there exists a unique u− v

path.

Given a connected graph G with cycles, observe that if we remove an edge e
from G, then the resulting graph is connected if and only if e belongs to some cycle
of G. Therefore given a graph, we can keep removing edges that belong to cycles
until we are left with a tree. So by Theorem 2.3.7, it follows that a connected graph
must have at least n− 1 edges. We state this more formally as a theorem from [12]
and provide a formal proof:

THEOREM 2.3.9 Let G be a connected graph on n vertices. Then G has at least
n− 1 edges.
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Proof: This theorem is clearly true for graphs on 1, 2, or 3 vertices. Assume
that this theorem is false. Then there exists a connected graph on n vertices with
at most n − 2 edges. Let G be the smallest such graph in terms of the number of
vertices n. We first claim that G has a pendant vertex. Assume not. Then the degree
of every vertex of G is at least 2. Hence

∑
v∈G deg v ≥ 2n. Since by Theorem 2.1.4

the sum of the degrees of the vertices is twice the number of edges of a graph, it
follows that G has at least n edges which contradicts our assumption that G has at
most n− 2 edges. Therefore, G contains a pendant vertex.

Let v be a pendant vertex of G. Since G is connected, has n vertices, and has at
most n− 2 edges, it follows that G − v is connected (since v is pendant), has n− 1
vertices, and at most n − 3 edges. But this contradicts the fact that G is a graph
on the smallest number of vertices such that the number of edges is at most the
number of vertices minus two. 2

Theorem 2.3.9 tells us that given any connected graph G on n vertices having
more than n− 1 edges, we can find a subgraph of G that is a tree that contains all
of the vertices of G. This gives rise to the concept of spanning trees:

DEFINITION 2.3.10 Given a graph G, a spanning tree of G is a tree that is a
subgraph of G containing all of the vertices of G.

EXAMPLE 2.3.11 Consider the following graph G:

Below are examples of spanning trees of G:

The number of spanning trees that a graph has is an interesting problem that makes
surprising use of linear algebra. We will discuss this problem in depth in Section
3.2. For now, we will turn our discussion to systematic ways of creating spanning
trees from a given graph. To this end, we need to discuss the concept of a rooted
tree:
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DEFINITION 2.3.12 A rooted tree is a tree in which a vertex is designated as
the root vertex.

Typically, when we draw rooted trees, we place the root vertex on top. The vertices
adjacent to the root vertex are usually all drawn one level below, the vertices adja-
cent to those vertices are drawn two levels below, and so on. We say that a vertex
is on level i if it is of distance i from the root vertex. The root vertex is said to be
on level 0. Rooted trees give rise to a relationship between vertices as we see in the
following definition.

DEFINITION 2.3.13 In a rooted tree, if a vertex v is adjacent to a vertex w and
v lies one level above w, then we say v is a parent of w and that w is a child of v.

We can generalize the above definition to vertices that are not adjacent:

DEFINITION 2.3.14 In a rooted tree, if w lies any number of levels below v and
the path from w to v contains only vertices on levels below v, then we say w is a
descendent of v and that v is an ancestor of w.

In general, the most common rooted trees are Bethe trees.

DEFINITION 2.3.15 A rooted m-ary Bethe tree on k levels is a rooted tree on
k levels where each vertex in levels 0, . . . , k − 1 has m children.

EXAMPLE 2.3.16 Below is a 2-ary Bethe tree on 3 levels. Note that each non-
pendant vertex has 2 children and that there are 3 levels.

Rooted trees play an important role in algorithms that create spanning trees
of graphs. There are two common algorithms that create spanning trees of graphs:
the depth-first search and the breadth-first search algorithms. With the depth-first
search, we first designate a vertex to be the root vertex. We then create a spanning
tree by travelling from the root vertex as far as we can go until we cannot travel
further without going to a vertex we already accounted for. We then backtrack
through the path we created until we encounter a vertex that is adjacent to a
vertex we have not accounted for. We then travel along a path accounting for new
vertices until we cannot travel any further. We then backtrack as we did before until
we find another vertex that is adjacent to a vertex we have not acounted for. We
continue this procedure until all vertices are accounted for. It is important to note
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that since we have a choice in which vertex we designate as the root vertex and
since we often have a choice of unaccounted vertices that are adjacent to a vertex
we are at, the spanning tree we produce using the depth-first search algorithm is
not unique.

EXAMPLE 2.3.17 Consider the graph below. Let’s designate vertex a to be the
root vertex.

Starting at vertex a, we can create a path by travelling to vertices b, f , j, i, then e.
At this point, e is not adjacent to any unaccounted vertices. So we backtrack until
we reach a vertex adjacent to an unaccounted vertex. The first such vertex we reach
when we backtrack is j. From j we create the path by travelling to vertices k, g, d,
then c. Since c is not adjacent to any accounted vertices, we backtrack to d. From
d we create the path by travelling to vertices h then l. We have now accounted for
all of the vertices of our graph. Below is the spanning tree we created using the
depth-first search algorithm:

The depth-first search algorithm got its name because, at each step, we create
the spanning tree by travelling as deep into the graph as possible. We now discuss the
breadth-first search algorithm. In the breadth-first search algorithm, we designate
a root vertex. However, instead of travelling deep into the graph, we choose all
vertices that are adjacent to the root vertex. We then go one by one through these
vertices and choose all of the vertices adjacent to these vertices that have not been
accounted for. We continue in this fashion creating additional levels of our spanning
tree until all vertices of the graph are accounted for. As with the depth-first search
algorithm, since there is a choice in which vertex is designated the root vertex,
and since there is often a choice in the order in which the subsequent vertices are
considered, the spanning tree we produce using the breadth-first search algorithm
is not unique.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

60 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

EXAMPLE 2.3.18 Consider the graph used in Example 2.3.17. Again, designate
a to be the root vertex. Since a is adjacent to b and e, let edges ab and ae be in
our spanning tree. Now we consider vertices b and e. The vertices adjacent to b
that we have not accounted for are c and f , hence we let edges bc and bf be in our
spanning tree. The only unaccounted vertex adjacent to vertex e is i, thus the edge
ei will be in our tree. Now we consider the vertices c, f , and i which are currently
at the bottom level of our spanning tree. The unaccounted vertices adjacent to c
are d and g, thus adding edges cd and dg to the tree; the unaccounted vertices
adjacent to f are j and k, thus adding edges fj and fk to the tree; and there are
no unaccounted vertices adjacent to i. Now vertices d, g, j, and k are at the bottom
level of our tree. Beginning with d, we see d is adjacent to the unaccounted vertex
h. Likewise, vertex k is adjacent to the unaccounted vertex l. Thus we complete our
tree by adding edges dh and kl. Below is the spanning tree we created using the
breadth-first search algorithm:

Spanning trees will be discussed in greater detail in Section 3.2 when we use
matrix theory to determine the number of spanning trees in a given graph. In
Chapter 7 it will be of interest to investigate spanning trees which are not connected.
Thus we close this section with the following definition which we make use of in the
exercises that follow.

DEFINITION 2.3.19 A forest is a disconnected graph in which each connected
component is a tree.

Exercises:

1. (a) Draw all trees on 6 vertices.

(b) Draw all forests on 6 vertices.

2. (See [11]) Find all trees T in which T c is also a tree.

3. (See [12]) Suppose a tree T has 21 vertices and the vertices have only degrees 1,
3, 5, and 6. If T has exactly 15 pendant vertices and one vertex of degree 6, how
many vertices of T have degree 5.

4. (See [12]) Suppose a tree T on 35 vertices has 25 pendant vertices, two ver-
tices of degree 2, three vertices of degree 4, one vertex of degree 5, and two vertices
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of degree 6. It also contains two vertices of the same unknown degree x. What is x?

5. Prove Theorem 2.3.8.

6. Let F be a forest on n vertices that consists of k components. Prove that F
has n− k edges.

7. Letting vertex a be the root vertex, create a spanning tree using each of the
depth-first search and breadth-first search algorithms.

2.4 Connectivity of Graphs

Connectivity of graphs will play a crucial role in later chapters of this book when
we study the algebraic connectivity of graphs. Therefore, it is helpful to us to have
a better understanding of connectivity in general. In Section 2.1 we said that a
graph G is connected if there exists a path between any pair of vertices of G. In
this section, we discuss ways of measuring how connected a connected graph is. We
begin our discussion by investigating graphs in which the removal of a vertex along
with its incident edges renders the graph disconnected. We define such vertices as
follows:

DEFINITION 2.4.1 A vertex v is a cut vertex of a connected graph G if G − v is
disconnected.

EXAMPLE 2.4.2 Consider the following graph G:
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Observe that the cut vertices are d, h, i, k, q, and r, as the removal of any of one
these vertices along with its incident edges will result in a disconnected graph.

To characterize cut vertices, we have the following theorem from [12]:

THEOREM 2.4.3 A vertex v is a cut vertex in a connected graph G if and only
if there exist vertices u and w distinct from v such that v lies on every u− w path
of G.

Proof: Suppose that v is a cut vertex of G. Then G − v is disconnected. Let u
and w be in different components of G − v. Since there does not exist a u−w path
in G − v but there does exist such a path in G, it follows that every u− w path in
G must contain v.

Suppose now that G contains two vertices u and w such that every u− w path
in G contains v. Then there is no u−w path in G − v. Hence G − v is disconnected.
Thus v is a cut vertex of G. 2

Looking at Example 2.4.2, we saw that h was a cut vertex. So by Theorem
2.4.3, there exists two vertices in G such that h lies on every path between them.
One example of such a pair of vertices is e and p as every e − p path contains h.
Conversely, we can discover cut vertices by finding pairs of vertices such that every
path contains a certain vertex. For example, observe that every d− k path contains
vertex i. Hence by Theorem 2.4.3, i is a cut vertex of G.

We now investigate more deeply the structure of graphs having cut vertices.
To this end, we need two definitions:

DEFINITION 2.4.4 A graph is nonseparable if it does not contain a cut vertex.

DEFINITION 2.4.5 A block of a graph G is a nonseparable subgraph of G that
is not a proper subgraph of any other nonseparable subgraph of G.
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EXAMPLE 2.4.6 Consider the graph G in Example 2.4.2. Observe that the sub-
graph induced by vertices a, b, c, and d is a block. Calling this subgraph H, we
see that H is nonseparable, yet any subgraph of G for which H is a subgraph is
not nonseparable for it will have d as a cut vertex. We see that the other blocks
of G are the subgraph induced by vertices d, e, f, g, h, i; the subgraph induced by
vertices i, j, k; the subgraph induced by vertices k, l,m, n; the subgraph induced by
vertices h, o, p, q; the subgraph induced by vertices q, r; and the subgraph induced
by vertices r, s, t.

Overall, we see that the basic structure of any graph with cut vertices is that such
a graph is a set of blocks with cut vertices separating them. Note that a vertex of a
graph belongs to more than one block if and only if it is a cut vertex of the graph.

At this point, we now investigate the structure of nonseparable graphs. To begin
our investigation, we require two definitions:

DEFINITION 2.4.7 Given a graph G, a vertex cut is a set of vertices U such that
G − U is disconnected.

DEFINITION 2.4.8 If the cardinality of vertices in a vertex cut U of a graph G
is the minimum number of vertices required to be removed from G (along with its
incident edges) to render G disconnected, we say that U is a minimal vertex cut.
This cardinality is known as the vertex connectivity of G and is denoted by v(G).

EXAMPLE 2.4.9 Consider the graph G below:

Observe that G contains no cut vertices. However, there exists a vertex cut U of
cardinality 2, namely U = {e, g}, since G − U is disconnected. Hence the vertex
connectivity of G is 2, i.e., v(G) = 2.

While the concept of the vertex connectivity is useful in measuring how con-
nected a connected graph is, we can also imply a similar concept of connectivity
regarding the edges of a graph. Our next definition concerns the edges of a graph
and is analagous to the definition of cut vertex:

DEFINITION 2.4.10 An edge e is a bridge of a connected graph G if G − e is
disconnected.
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EXAMPLE 2.4.11 In Example 2.4.2, the edge qr is a bridge since G − qr is
disconnected.

As with vertex cuts, edge cuts also play an important role in measuring the con-
nectivity of a graph. With this in mind, we have the following definitions which are
similar to that of a vertex cut:

DEFINITION 2.4.12 Given a graph G, an edge cut is a set of edges X such that
G −X is disconnected.

DEFINITION 2.4.13 If the cardinality of edges in an edge cut X of a graph
G is the minimum number of edges required to be removed from G to render G
disconnected, we say that X is a minimal edge cut. This cardinality is known as the
edge connectivity of G and is denoted by e(G).

EXAMPLE 2.4.14 Consider the graph G in Example 2.4.9. Observe that G has no
bridges. Also observe that removing any two edges of G will not render the graph
disconnected. However, there does exist an edge cut X of cardinality 3, namely
X = {dg, eg, eh} since G −X is disconnected. Thus e(G) = 3.

At this point, it is natural to ask if there is some relationship between the
vertex connectivity and edge connectivity of a graph. We close this section with the
following theorem from [12] which shows a relationship between these quantities
and also the minimum vertex degree, denoted δ(G).

THEOREM 2.4.15 For every graph G, we have v(G) ≤ e(G) ≤ δ(G).

Proof: If G is disconnected, then v(G) = e(G) = 0 ≤ δ(G). If G = Kn for n ≥ 2
then v(G) = e(G) = δ(G) = n− 1. So for the remainder of the proof, we will assume
that G is a connected noncomplete graph on n ≥ 3 vertices. Hence δ(G) ≤ n− 2.

Let’s first show e(G) ≤ δ(G). Let v be a vertex of G such that deg v = δ(G).
Since the set of δ(G) edges incident with v is an edge cut of G, it follows that
e(G) ≤ δ(G) ≤ n− 2.

To show v(G) ≤ e(G), let X be a minimum edge cut of G. Then |X| = e(G) ≤
n− 2. Observe G −X contains exactly two components, say G1 and G2. Suppose G1

has k ≥ 1 vertices; hence G2 has n − k ≥ 1 vertices. Since X is an edge cut, every
edge in X joins a vertex in G1 to a vertex in G2. We consider two cases:

Case I: G = G1 ∨ G2. In this case, |X| = k(n− k). Since (k − 1)(n− k − 1) ≥ 0 and
since (k−1)(n−k−1) = k(n−k)−n+1, it follows that k(n−k)−n+1 ≥ 0. Since X
is assumed to be a minimal edge cut, it follows that e(G) = |X| = k(n− k) ≥ n− 1.
However, e(G) ≤ n− 2, so this case cannot occur.

Case II: Suppose that G 6= G1 ∨ G2. Then there exists a vertex u ∈ G1 and a
vertex v ∈ G2 such that u and v are not adjacent in G. We now define a set of
vertices U . For each edge e ∈ X, we select a vertex for U in the following way: If u
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is incident with e, then choose the vertex in G2 incident with e as a vertex belonging
to U . Otherwise, select the vertex in G1 incident with e as a vertex belonging to
U . Since there may be more than one edge incident to a vertex in U , it follows
that |U | ≤ |X|. Since u, v /∈ U and there is no u− v path in G − U , it follows that
G−U is disconnected. Thus U is a vertex cut of G. Hence v(G) ≤ |U | ≤ |X| = e(G). 2

In Chapter 5 and subsequent chapters, we will use matrix theory to expand upon
the ideas of connectivity presented in this section when we study the algebraic con-
nectivity of a graph. The algebraic connectivity of a graph will also be a useful tool
in measuring how connected a graph is. We will study relationships between the
algebraic connectivity and the types of connectivity discussed in this section.

Exercises:

1. Determine the cut vertices, bridges, and blocks of the graph below:

2. (See [12]) Let G be a connected graph and let u be a fixed vertex in G. Prove
that if v is a vertex that is farthest from u, then v is not a cut vertex of G.

3. (See [12]) Prove that if v is a cut vertex of a graph G, then v is not a cut
vertex of Gc.

4. (See [12]) Prove that a connected graph G on n ≥ 3 vertices is nonseparable
if and only if any two adjacent edges of G lie on a common cycle.

5. (See [12]) Prove that if G is a graph on n ≥ 3 vertices such that deg v ≥ n/2 for
each vertex v ∈ G, then G is nonseparable.

6. Suppose that a graph contains b blocks and k cut vertices. What are the possible
values for k in terms of b?

7. (See [12]) Without using Theorem 2.4.15, prove that e(Kn) = n− 1.

8. Determine v(G) and e(G) for each of the following: Km,n, Cn, Wn.

9. (See [33]) Determine the vertex and edge connectivities of the following graph:
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10. (See [12]) Prove that if G is a graph on n vertices such that δ(G) ≥ (n − 1)/2,
then e(G) = δ(G).

2.5 Degree Sequences and Maximal Graphs

In this section, we explore the degrees of the individual vertices of a graph. Given a
finite sequence of nonnegative integers, we determine the sequences in which there
exists a graph such that the degrees of the vertices are that of the sequence. We
then define a partial ordering of such sequences and investigate graphs having a
degree sequence in which no graph has a degree sequence considered to be greater.
Before we begin, we need to give a formal definition of a degree sequence:

DEFINITION 2.5.1 Given a graph G, the degree sequence of G is the sequence
of the degrees of the vertices of G listed in nonincreasing order.

EXAMPLE 2.5.2 Consider the graph G:

The degree sequence of G is (5, 2, 2, 1, 1, 1).

Most often, we will be working in the other direction. In other words, we will
be given a finite nonincreasing sequence S of nonnegative integers and will then
want to find a graph, if any exist, whose degree sequence is S. This leads us to the
following definition:

DEFINITION 2.5.3 A finite nonincreasing sequence S of nonnegative integers is
graphical if there exists a graph whose degree sequence is S.

The first goal of this section is to determine which finite nonincreasing sequences
of nonnegative integers are graphical. At this point, we already know of some such
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sequences which are not graphical. For example, if a graph has n vertices, then a
vertex can have degree at most n− 1. This occurs when a vertex is adjacent to all
of the vertices other than itself. Hence if we have a nonincreasing sequence of n
nonnegative integers in which at least one of the integers is at least n, then that
sequence cannot be graphical. We also saw in Theorem 2.1.4 that the sum of the
degrees in any graph must be even. Hence if the sum of the integers in a given
sequence is odd, then Theorem 2.1.4 implies that the sequence is not graphical.
More specifically, if a given sequence has an odd number of odd terms, then the
sequence is not graphical.

While having the tools illustrated in the previous paragraph can be useful, we
see that they apply only in limited cases. Hence it will be useful to have a theorem
which allows us to determine which sequences are graphical and which are not.
The following theorem, known as the Havel-Hakimi Theorem, is a theorem proved
independently in [39] and [38]. We will use the proof found in [12]. Before presenting
this proof, we will assume without loss of generality that the graph contains no
isolated vertices for if the graph did, then the degree sequence would merely end
with a string of zeros which we can delete in order to consider the components which
are not isolated vertices. We now present the theorem:

THEOREM 2.5.4 A nonincreasing sequence S : (d1 ≥ d2 ≥ . . . ≥ dn) of non-
negative integers with n ≥ 2 and di ≥ 1 for each i is graphical if and only if the
sequence

S1 : (d2 − 1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn)

is graphical.

Before presenting the proof of this theorem, it is beneficial to discuss what this
theorem is saying. The theorem says that the original sequence S is graphical if
and only if the sequence obtained by deleting d1 and subtracting 1 from the next d1

entries (i.e., d2 through dd1+1) is graphical. With this in mind, we present the proof:

Proof: First assume that S1 is graphical. Then there exists a graph G1 with
vertices v2, . . . , vn such that

degG vi =


di − 1, if 2 ≤ i ≤ d1 + 1,

di, if d1 + 2 ≤ i ≤ n.

We now construct a graph G from G1 by adding a vertex v1 and adding d1 edges
joining v1 to each of v2, . . . , vd1+1. Observe that degG vi = di for i = 1, . . . , n. Thus
S is the degree sequence for G; hence S is graphical.

For the converse, assume that S is graphical. We will consider two cases concer-
ing a vertex of degree d1:

Case I: Suppose that G has degree sequence S and contains a vertex u of degree
d1 such that u is adjacent to vertices of degrees d2, . . . dd1+1. Then S1 is the degree
sequence of G − u, showing that S1 is graphical.
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Case II: Suppose that graph G has degree sequence S but there does not exist
a vertex u of degree d1 which is adjacent to vertices of degrees d2, . . . , dd1+1. Among
all graphs with degree sequence S, let G be the one on vertices v1, . . . , vn such that
deg vi = di for 1 ≤ i ≤ n and the sum of the degrees of the vertices adjacent to v1

is as large as possible. Since v1 is not adjacent to all of the vertices having degrees
d2, . . . , dd1+1, (i.e., all of the vertices of next highest degrees down through degree
dd1+1), it follows that v1 must be adjacent to a vertex vs having smaller degree than
a vertex vr to which v1 is not adjacent. In other words, there exist vertices vr and vs
with dr > ds such that v1 is adjacent to vs but not to vr. Since dr > ds, there exists
a vertex vt adjacent to vr but not to vs. Create the graph G′ from G by removing
edges v1vs and vrvt and adding edges v1vr and vsvt. Then G and G′ each have S as
its degree sequence. However, the sum of the degrees of the vertices adjacent to v1

in G′ is larger than the sum of the degrees of the vertices adjacent to v1 in G, thus
producing a contradiction. Hence Case II cannot hold and the theorem is proven. 2

We now illustrate Theorem 2.5.4 with the following two examples. It is impor-
tant to note that if the sequence we obtain from applying Theorem 2.5.4 is not
nonincreasing, then we rearrange the sequence so that it is nonincreasing before we
proceed.

EXAMPLE 2.5.5 Determine if the sequence S : (6, 5, 4, 3, 3, 3, 3, 1) is graphical.

Solution: Deleting 6 from S and subtracting 1 from the next six terms, we obtain

S1 : (4, 3, 2, 2, 2, 2, 1).

Theorem 2.5.4 states that S is graphical if and only if S1 is. So it suffices to determine
if S1 is graphical. To do this, apply Theorem 2.5.4 again by deleting 4 from S1,
subtracting 1 from the next four terms, then rearranging so the resulting sequence
is nonincreasing to obtain

S2 : (2, 2, 1, 1, 1, 1).

To determine if S2 is graphical, we apply Theorem 2.5.4 yet again. Thus we delete
the first 2 from S2, subtract 1 from the next two terms, and rearrange to obtain

S3 : (1, 1, 1, 1, 0).

We see that S3 is graphical since the graph G3 below is a graph whose degree
sequence is S3.
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We can then work backwards by adding one vertex at a time and the appropriate
edges to create graphs G2, G1, and G with the degree sequence S2, S1, and S,
respectively. To see this, since S3 was obtained from S2 by deleting a 2 and then
subtracting one each from the other 2 term and one of the 1 terms, it follows that
G2 is created from G3 by adding a vertex u of degree two which is adjacent to one
vertex of degree one and the vertex of degree zero:

Since S2 was obtained from S1 by deleting the 4 and subtracting one each from the
3 term and three of the 2 terms, it follows that G1 can be created from G2 by adding
a vertex u of degree four which is adjacent to one vertex of degree two and three
vertices of degreee one:

Finally, since S1 was obtained from S by deleting the 6 and subtracting one each
from the 5, 4, and all of the 3 terms, it follows that G can be created from G1 by
adding a vertex u of degree six which is adjacent to the vertex of degree four, the
vertex of degree three, and the four vertices of degree two:

EXAMPLE 2.5.6 Determine if the sequence S : (8, 8, 5, 5, 5, 4, 2, 2, 1) is graphi-
cal.

Solution: Deleting 8 from S and subtracting one from the next eight terms, we
obtain

S1 : (7, 4, 4, 4, 3, 1, 1, 0).
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Applying Theorem 2.5.4, we delete 7 from S1 and subtract one from the next seven
terms to obtain

S2 : (3, 3, 3, 2, 0, 0,−1)

Since a graph cannot have a vertex of negative degree, we see that S2 is not graph-
ical. Hence by Theorem 2.5.4, neither is S1 and consequently, neither is S.

At this point, we will define a partial ordering of degree sequences which will be
useful to us in subsequent chapters.

DEFINITION 2.5.7 Let (a) and (b) be sequences of nonincreasing nonnegative
integers where (a) contain r integers and (b) contains s integers. We say that (a)
majorizes (b) if

k∑
i=1

ai ≥
k∑
i=1

bi

for all 1 ≤ k ≤ min{r, s}, while

r∑
i=1

ai =
s∑
i=1

bi.

If a sequence (a) majorizes (b), we write (a) � (b).

EXAMPLE 2.5.8 Let (a) = (5, 2, 2, 1, 1, 1) and (b) = (4, 3, 1, 1, 1, 1, 1). Note that
r = 6, s = 7, and that the sum of the entries of (a) and the entries of (b) are each
12. Observe that for each k = 1, . . . , 6, that

∑k
i=1 ai ≥

∑k
i=1 bi. Thus (a) majorizes

(b) and we write (a) � (b).

Our goal is to construct degree sequences that are not majorized by any other
degree sequences. To this end, we will represent degree sequences as Ferrers-Sylvester
diagrams which we now define:

DEFINITION 2.5.9 A Ferrers-Sylvester diagram is a grid representing a degree
sequence (d) in which the ith row of the grid contains di boxes.

EXAMPLE 2.5.10 For the graph in Example 2.5.2 whose degree sequence is d =
(5, 2, 2, 1, 1, 1), the Ferrers-Sylvester diagram for this degree sequence is
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Ferrers-Sylvester diagrams will be useful in determining two important concepts:
the conjugate and the trace of a degree sequence. Both concepts will be useful to us
in achieving our goal of finding degree sequences which are not majorized by any
other degree sequence. We now define both terms:

DEFINITION 2.5.11 The conjugate of a degree sequence (d) is the sequence
(d∗) = (d∗1, d

∗
2, . . . , d

∗
k) where d∗i = |j : dj ≥ i|. In other words, d∗i is the number of

values in (d) that are greater than or equal to i.

Visually speaking, the value for d∗i is the number of boxes in the ith column of the
Ferrers-Sylvester diagram.

DEFINITION 2.5.12 The trace, f(d), of a degree sequence d = (d1, d2, . . . , dn)
is f(d) = |i : di ≥ i|.

In other words, the trace of a degree sequence is the largest integer i such that
di ≥ i. Visually speaking, the trace of a degree sequence is the number of boxes on
the main diagonal of its Ferrers-Sylvester diagram. Often, we will write f(G) instead
of f(d).

EXAMPLE 2.5.13 In Example 2.5.2, recall that the degree sequence is (d) =
(5, 2, 2, 1, 1, 1). Observe that there are six values in (d) greater than or equal to 1,
three values greater than or equal to 2, one value greater than or equal to 3, one
value greater than or equal to 4, and one value greater than or equal to 5. Thus
(d∗) = (6, 3, 1, 1, 1). Note that this sequence is precisely the number of boxes in each
column of the Ferrers-Sylvester diagram.

Observe the trace of this degree sequence is f(d) = 2 since 2 is the largest integer
i such that di ≥ i. Note that d1 = 5 ≥ 1 and d2 = 2 ≥ 2, but d3 = 2 < 3. Visually
speaking, there are 2 blocks on the main diagonal of the Ferres-Sylvester diagram.

Ferrers-Sylvester diagrams, the conjugate of a degree sequence, and the trace of
a degree sequence will be useful in achieving our goal of determining graphs whose
degree sequence is not majorized by any other degree sequence. Before continuing,
let us define such a graph:

DEFINITION 2.5.14 A graph is a maximal graph or a threshold graph if its
degree sequence is not majorized by any other degree sequence.

The following two lemmas from [73] will assist in determining precisely which
graphs are maximal. These lemmas also give us further insight into which non-
increasing sequences of nonnegative integers are graphical.

LEMMA 2.5.15 Let (a) and (b) be nonincreasing sequences of nonnegative inte-
gers such that

∑
ai =

∑
bi and (b) � (a). If (b) is graphical then so is (a).
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Proof: Assume that (b) is graphical let G be a graph whose degree sequence is
(b). Let (a) be a degree sequence satisfying the conditions of the statement of the
theorem. Let Fa and Fb be the Ferrers-Sylvester diagrams for the degree sequences
(a) and (b), respectively. Observe that Fa can be created from Fb by creating a
sequence of Ferrers-Sylvester diagrams Fb = Fb0 ,Fb1 , . . . ,Fbp = Fa where for each
h = 1, . . . , p− 1, the diagram Fbh+1

is created from Fbh by moving a box from row
i of Fbh to row j of Fbh where i and j such that bh,i ≥ bh,j − 2 with bh,i and bh,j
denoting the number of boxes in rows i and j, respectively, of Fbh . To show that
(a) is graphical, it suffices to show that the degree sequence represented by Fb1 is
graphical as we can then conclude that (a) is graphical by induction. Recalling that
G is a graph whose degree sequence is (b), since bi ≥ bj − 2, it follows that there
exists a vertex v in G that is adjacent to vertex i but not adjacent to vertex j. Let
H be the graph created from G by deleting the edge joining i to v and replacing it
with an edge joining j to v. Observe the Ferrers-Sylvester diagram for the degree
sequence of H is precisely Fb1 , thus proving the lemma. 2

LEMMA 2.5.16 Let (d) be a degree sequence whose sum
∑
di is even. Then (d)

is graphical if and only if

k∑
i=1

(di + 1) ≤
k∑
i=1

d∗i , for all 1 ≤ k ≤ f(d). (2.5.1)

Proof: Suppose that (d) is graphical. Let G be a graph with degree sequence
(d) and let F be the corresponding Ferrers-Sylvester diagram. For each row i of F ,
label the boxes in that row with the vertices adjacent to i such that the boxes get
labeled with increasing values from left to right. (See Example 2.5.17 following the
proof.) Then for each positive integer k, the labels 1 through k occur in the first
k columns of F . Additionally, since no row contains its own label as an index, any
row with k or more boxes must contain at least one label ` > k in one of the first k
boxes. Thus we can conlude that

k∑
i=1

di + k ≤
k∑
i=1

d∗i for all k ≤ dk

which implies (2.5.1).
Now suppose (2.5.1) holds and show that (d) is graphical. Suppose equality holds

in (2.5.1) for all 1 ≤ k ≤ f(d). Then di + 1 = d∗i for all i = 1, . . . , f(d). We will
create a graph that has such a degree sequence. To do this, start with vertex v1 being
adjacent to d1 vertices. Now take a vertex adjacent to v1, call it v2, and add edges
between v2 and d2 − 1 vertices that are adjacent to v1. Now take a vertex adjacent
to both v1 and v2, call it v3, and add edges between v3 and d3 − 2 vertices that are
adjacent to both v1 and v2. Continue this procedure until you take a vertex vf(d)

which is adjacent to v1, . . . , vf(d)−1 and add edges between vf(d) and df(d)−f(d)+1
vertices that are adjacent to v1, . . . , vf(d)−1. Because di + 1 = d∗i for each 1 ≤ i ≤ k,
it follows that this stepwise construction will lead to a unique graph whose degree
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sequence is (d). (See Example 2.5.18 following the proof.)
Now let (d) be a degree sequence in which equality does not hold in (2.5.1) for all

1 ≤ k ≤ f(d). We will show that such a corresponding degree sequence is majorized
by a degree sequence in which equality does hold in (2.5.1) for all 1 ≤ k ≤ f(d).
Let F0 be the Ferrers-Sylvester diagram for (d). Observe that since we don’t have
equality in (2.5.1) for all 1 ≤ k ≤ f(d), the first f(d) columns of F0 must contain at
least f(d) boxes more than the first f(d) rows of F0. Thus we can create a Ferrers-
Sylvester diagram F1 from F0 whose degree sequence (e) is such that ei + 1 ≤ e∗i
for all 1 ≤ i ≤ f(d) = f(e) by successively taking boxes from columns 1, . . . , i − 1
and adding them to column i. Observe that (e) � (d).

We now create F2 from F1 with degree sequence (g) by moving exclusively boxes
within the first f(e) rows of F1 such that

k∑
i=1

gi =


min

{∑k
i=1(e∗i − 1),

∑f(e)
i=1 ei − f(e)[f(e)− k]

}
, for all 1 ≤ k ≤ f(e),

∑k
i=1 ei, for all k > f(e).

Observe that (g) � (e) and that gi + 1 ≤ g∗i for all 1 ≤ i ≤ f(g) = f(e) = f(d).
Observe that the first f(g) columns of F2 have f(g) + p boxes more than the

first f(g) rows of F2 for some p ≥ 0. Note that F2 has [f(g)]2 + 2y + f(g) + p
boxes for some y ≥ 0. Since F2 and F0 have the same number of boxes and since
F0 has an even number of boxes (since

∑
di is even) it follows that F2 must have

an even number of boxes. Hence p must be even. We will now create F3 by moving
p/2 boxes from the first f(g) columns of F2 to the first f(g) rows of F2. Since we
know gi + 1 ≤ g∗i for all 1 ≤ i ≤ f(g), let r be the smallest integer such that the
inequality is strict. Hence gr + 1 < g∗r , gr−1 > gr if r > 1, and g∗f(g) > f(g) + 1. We
now remove a box from column i ≤ ` and add it to row r where ` is the smallest
integer such that

∑`−1
i=1(gi − g∗i + 1) >

∑f(g)
i=1 (gi − g∗i + 1). Keep doing this succes-

sively until we have equality for all 1 ≤ i ≤ f(g). (The creation of F1, F2, and F3

are illustrated in Example 2.5.19 following the proof.) Letting (h) be the degree
sequence for F3, observe that (h) � (g) and that equality in (2.5.1) holds for (h) for
all k ≤ f(h) = f(g). Thus by an earlier paragraph in this proof, (h) is graphical.
Also note that (h) � (d). Since both (h) and (d) have the same (even) number of
boxes, it follows from Lemma 2.5.15 that (d) is graphical. 2

Before continuing, we give some examples that illustrate various stages of the proof
of Lemma 2.5.16.

EXAMPLE 2.5.17 In this example, we illustrate how the boxes in the Ferrers-
Sylvester diagram should be labeled in accordance with the vertices that each vertex
is adjacent to. Consider the degree sequence (d) = (5, 4, 4, 3, 3, 2, 2, 1) and the graph
below whose degree sequence is (d). The vertices are labeled so that vertex i corre-
sponds to the ith entry in (d).
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Labelling the Ferrers-Sylvester diagram in accordance with the proof of Lemma
2.5.16 we obtain:

EXAMPLE 2.5.18 In this example, we will show how a graph with degree se-
quence (d) is constructed if equality in (2.5.1) holds for all 1 ≤ k ≤ f(d). Let
(d) = (7, 5, 5, 5, 4, 4, 1) and note that f(d) = 4. Below gives the sequence of creating
such a graph. Vertices v1, . . . , v4 are labeled in accordance with the proof of Lemma
2.5.16.

EXAMPLE 2.5.19 Let (d) = (6, 6, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1) and note that
equality in (2.5.1) does not hold for all 1 ≤ k ≤ f(d). Let F0 be the Ferrers-
Sylvester diagram for (d). We illustrate the sequence F1, F2, F3 described in the
proof of Lemma 2.5.16. Bold lines are placed separating boxes that lie simultane-
ously in the first f(d) = 3 rows and columns.
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Combining Lemmas 2.5.15 and 2.5.16, we see that equality holds in (2.5.1) for
all 1 ≤ k ≤ f(d) if and only if (d) is the degree sequence of a maximal graph.
This is equivalent to (d) being the degree sequence of a maximal graph if and only
if di + 1 = d∗i for all 1 ≤ i ≤ f(d). We state this more formally in the following
theorem from [59]:

THEOREM 2.5.20 Let G be a graph with degree sequence (d). Then G is a max-
imal graph if and only if di + 1 = d∗i for all integers 1 ≤ i ≤ f(d).

EXAMPLE 2.5.21 Consider the graph from Example 2.5.2. Recall that f(d) = 2.
Thus considering i = 1, . . . , f(d), we see that d1 + 1 = d∗1 and d2 + 1 = d∗2. Since the
conditions of Theorem 2.5.20 are satisfied, it follows that G is a maximal graph.

Theorem 2.5.20 lends itself to the following corollary from [59]:

COROLLARY 2.5.22 Let G be a maximal graph. Then di+1(G) = d∗i (G) for all
integers i > f(G).

Proof: Observe that if G = Kn, then this corollary is vacuously true. Suppose
G 6= Kn is a maximal graph with F as its Ferrers-Sylvester diagram. Let F1 be the
subdiagram of F lying in rows f(G) + 2 through n and columns 1 through f(d).
Let F2 be the subdiagram of F lying in rows 1 through f(G) and columns f(G) + 1
through n − 1. The geometric interpretation of Theorem 2.5.20 is that F1 and F2

are transposes of each other. The result now follows. 2

Now that we have an efficient way of determining if a graph is a maximal graph,
we are now interested in a convenient way to construct such graphs. To do this, we
prove a useful lemma from [59].

LEMMA 2.5.23 Let G 6= Kn be a maximal graph on n vertices. Let H be the
subgraph of Gc that remains after the isolated vertices have been removed. Then H
is maximal.

Proof: By Theorem 2.5.20, we need to show that

di(H) + 1 = d∗i (H) (2.5.2)
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for 1 ≤ i ≤ f(H). In the proof, we let F (G) and F (H) denote the Ferrers-Sylvester
diagrams for G and H, respectively. Let R1 be the rectangular array of n rows, each
consisting of n − 1 boxes, that is obtained by adding n − 1 − di(G) boxes to row i
of F (G), 1 ≤ i ≤ n. Then F (G) occupies the upper left corner of R1.

After rotating R1 through 180 degrees, F (G) can be found lying upside down and
backwards in the lower right corner. Moreover, F (H) = R1 \ F (G) which is the
diagram that is left after the boxes of F (G) have been removed from the rotated
R1.

Using the appropriate indices from each drawing, we can observe the following:

di(H) = n− 1− dn+1−i(G) (2.5.3)

and
d∗i (H) = n− d∗n−i(G) (2.5.4)

whenever the left-hand side exists. Because G is maximal, df(G)+1 = f(G) by defi-
nition of f(G). Thus f(H) = n− 1− f(G) (observe the lower right-hand block is a
square, the lengths of each side being f(H)):
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If i ≤ f(H), then f(G) + 1 = n − f(H) ≤ n − i. Therefore n − i > f(G) hence by
Corollary 2.5.22 we obtain d∗n−i(G) = dn+1−i(G). Thus by (2.5.3) and (2.5.4), we
obtain (2.5.2). 2

We now show how all maximal graphs can be constructed. This is done with a
technique discovered by Merris (see [59]) which classifies all maximal graphs into
disjoint families. This technique is described in the form of a theorem from [59]:

THEOREM 2.5.24 Let Γ1 = {Kn : n ≥ 1}, i.e., the family of complete graphs.
Let Γj+1 = {Gc ∨Kr : G ∈ Γj and r ≥ 1}. Then Γ :=

⋃
j≥1 Γj is equal to the set of

all maximal graphs.

Before proving this lemma, let’s use this technique to construct examples of
maximal graphs. Since Γ1 is merely the set of complete graphs, let’s consider, say,
K3 ∈ Γ1. To construct a maximal graph in Γ2, we take the complement of any graph
in Γ1 (we’ll use K3) and join it to any complete graph, say K1. Thus the following
graph, Kc

3 ∨K1, is a maximal graph in Γ2:

We can continue and create a graph in Γ3. To do this, we take the complement of
any graph in Γ2, say Kc

3 ∨K1 from above, and join it to any complete graph, say
K2. Thus the following graph, (Kc

3 ∨K1)c ∨K2, is a maximal graph in Γ3:

We can continue in this fashion, joining the complement of a graph in Γj to any
complete graph to create a maximal graph in Γj+1. Let’s now prove Theorem 2.5.24:

Proof: We will first show that Γ is contained in the set of maximal graphs. We
will consider each set Γj and do this by induction on j. When j = 1, we have the
set Γ1 which is the set of all complete graphs. Since a complete graph is a maximal
graph, the case j = 1 is settled. Now suppose for some positive integer k that if
j ≤ k then all graphs in Γj are maximal. Let H ∈ Γk+1. We need to show that H is
maximal. By Theorem 2.5.20, it suffices to show that

di(H) + 1 = d∗i (H) (2.5.5)
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for all integers 1 ≤ i ≤ f(H). Observe that H = Gc ∨ Kr for some graph G ∈ Γk
on n vertices and for some positive integer r. Let p = n+ r. Then H has p vertices
1, . . . , p where vertices 1, . . . , r correspond to the vertices in Kr. Since the r vertices
which correspond to Kr are each adjacent to all other vertices in H, it follows that
di(H) = p − 1 for 1 ≤ i ≤ r. Similarly, since the degree of every vertex in H is at
least r, it follows that d∗i (H) = p for 1 ≤ i ≤ r.

Therefore, (2.5.5) holds for 1 ≤ i ≤ r. Hence it remains to establish (2.5.5) for all
integers r + 1 ≤ i ≤ f(H).

To establish this, observe that the Ferrers-Sylvester diagram F (H) can be ob-
tained from F (Gc) by extending each row of F (Gc) by r boxes, then adding r rows
of p− 1 boxes to the top, and finally, for each isolated vertex of Gc, adding a row of
r boxes to the bottom:

Let R be the rectangular array of p rows, each consisting of p − 1 boxes, that is
obtained by adding p−1−di(H) boxes to row i of F (H) for each 1 ≤ i ≤ p. Rotating
R through 180 degrees, F (H) is in the lower right corner and F (G) = R \ F (H).
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From this drawing and the previous drawing, we see

dr+i(H) = p− 1− dn+1−i(G), 1 ≤ i ≤ n,

which is equivalent to

di(H) = p− 1− dp+1−i(G), r + 1 ≤ i ≤ p. (2.5.6)

Similarly,
d∗i (H) = p− d∗p−i(G), r + 1 ≤ i ≤ p− 1. (2.5.7)

By the inductive hypothesis, G is maximal. Using the same reasoning as in Lemma
2.5.23, we have df(G)+1 = f(G). Continuing with this reasoning, we see that
f(H) = df(H)+1 = p − 1 − f(G), and thus f(G) + 1 = p − f(H). If i ≤ f(H),
then f(G) + 1 ≤ p − i, i.e., p − i > f(G). Hence by Corollary 2.5.22, we get
d∗p−i(G) = dp+1−i(G). We now use (2.5.6) and (2.5.7) to conclude (2.5.5).

We will now show that the set of maximal graphs is contained in Γ. Suppose
this is false. Then there exists a graph G, having minimum number of vertices n,
such that G /∈ Γ. Then G 6= Kn and thus n 6= 1. Since G is maximal, we know that
d1(G) = n− 1. Hence Gc has r ≥ 1 isolated vertices. Since G is not complete, r < n.
By Lemma 2.5.23, the graph H obtained from Gc by deleting the r isolated vertices
is maximal. Since H has n − r < n vertices, it belongs to Γ and hence, to Γj for
some j. But then G = Hc ∨Kr ∈ Γj+1 ⊂ Γ which contradicts the fact that G /∈ Γ.
Hence the set of all maximal graphs is contained in Γ. 2

Now that we have an efficient way to construct maximal graphs, we close this
section with two theorems from [24] which help us better understand the structure
of maximal graphs. The first theorem explains the conditions of when two vertices
of equal degree in a maximal graph are adjacent. The second theorem explains
conditions in which we can add an edge joining two nonadjacent vertices so that
the resulting graph will also be a maximal graph.

THEOREM 2.5.25 Let G be a connected noncomplete maximal graph on n ver-
tices and let (d) be its degree sequence. Then

(a) If du = dv > f(d), then u and v are adjacent.
(b) If du = dv = f(d), then u and v are adjacent if and only if df(d) = f(d).
(c) If du = dv < f(d), then u and v are not adjacent.

Moreover, for Cases (b) and (c) with u and v not adjacent, it follows that N(u) =
N(v).

Proof: Let A be the adjacency matrix for G (see Section 3.1). Applying Theorem
2.5.20, it follows that for each 1 ≤ i ≤ n, the ith row of A has di entries that are
1 and these entries are left-justified (maintaining zeros on the diagonal, though).
Observe that if we partition A into a 2 × 2 block matrix where the (1, 1) block is
f(d)× f(d) and the (2, 2) block is (n− f(d))× (n− f(d)), then the (2, 2) block has



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

80 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

all zero entries while the (1, 1) block is the matrix J−I. Since the (2, 2) block is the
zero matrix, (c) immediately follows. Since the (1, 1) block is J−I, (a) immediately
follows.

Now suppose du = dv = f(d). If df(d) 6= f(d) then df(d) > f(d). Hence u, v >
f(d). Then u and v are not adjacent since the (2, 2) block of A is the zero matrix.
If df(d) = f(d), then let K be the set of all vertices x in G such that dx = f(d) and
x ≤ f(d). Then

Ax,j =


1, if x 6= j and x ≤ f(d) + 1,

0, otherwise,

.

By the symmetry of A, it follows that all vertices in G whose degree is f(d) are
adjacent if df(d) = f(d), thus proving (b).

If du = dv ≤ f(d) and u and v are not adjacent, then u, v ≥ f(d) + 1. By the
left-justification of the 1 entries of A as described in the first paragraph of this
proof, and by the fact that the (2, 2) block of A is the zero matrix, it follows that
N(u) = N(v). 2

THEOREM 2.5.26 Let G be a connected maximal graph and let (d) = (d1, . . . , dn)
be the degree sequence of G. Let u and v be nonadjacent vertices of G with du ≥ dv.
Let G + e be the graph created from G by adding an edge between u and v. Then
G + e is maximal if and only if du ≥ f(d) ≥ dv = ddu+2.

Proof: We will prove this by cases:

Case I: Suppose du > f(d). Then the Ferrers-Sylvester diagram F (G + e) can be
obtained from F (G) by adding one box each to rows u and v of F (G). By Theorem
2.5.20, G + e is maximal if and only if the box added to row v of F (G) occurs in
column u. Hence G + e is maximal if and only if u = dv + 1. In terms of adding a
box to row u of F (G), we see that u = d∗du+1 + 1. Therefore dv = d∗du+1. Also note
that G+e is maximal if and only if v = d∗u+1 = du+2, the latter equality following
from Theorem 2.5.20. Hence dv = ddu+2. Finally, du > f(d) implies that u ≤ f(d)
which implies dd∗u+1 ≤ f(d) − 1 and hence ddu+2 ≤ f(d) − 1 by Theorem 2.5.20.
Therefore dv = d∗du+1 = ddu+2 ≤ f(d)− 1 < f(d) < du.

Case II: Suppose du = f(d). Let f = f(d) and let f ′ denote the trace of the
degree sequence of G + e. Then the following hold:

(a) If d∗f+1 = f then f ′ = f + 1;
(b) If d∗f+1 = f − 1 and dv = f then f ′ = f + 1;
(c) f ′ = f otherwise.

Upon observing the diagram F (G + e), we see that (b) cannot happen if G + e
is maximal. For (a) and (c), by a discussion similar to that of Case I, G + e is max-
imal if and only if dv = d∗f+1 = df+2 ≤ f .
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Case III: Suppose du < f(d), and consequently dv < f(d). Then F (G + e) would
be created from F (G) by adding two boxes to rows below row f(d). By Theorem
2.5.20, G + e cannot be maximal. 2

Exercises:

1. Use Theorem 2.5.4 to determine if the following sequences are graphical. If so,
construct a graph whose degree sequence is the given sequence:

(a) S : (5, 4, 3, 3, 3, 3, 3, 2, 2)

(b) S : (6, 6, 6, 6, 3, 3, 2)

(c) S : (7, 7, 6, 5, 5, 3, 2, 1)

(d) S : (5, 5, 4, 4, 3, 2, 1)

2. Use Theorem 2.5.20 to verify that the following graphs are maximal graphs.

3. Using Theorem 2.5.26, between which pairs of nonadjacent vertices in the graphs
of the previous exercise will adding an edge result in a maximal graph?

2.6 Planar Graphs and Graphs of Higher Genus

We begin this section immediately with a definition:

DEFINITION 2.6.1 A graph is embedded on a surface if it is drawn on a surface
so that no two of its edges cross.

In this section, we explore which surfaces a given graph can be embedded on. This
gives rise to a second definition:
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DEFINITION 2.6.2 A graph is of genus k if it can be embedded on a surface Sk
of genus k but cannot be embedded on a surface Sk−1 of genus k− 1. In such a case
we write γ(G) = k.

Observe that a graph can be embedded on a plane if and only if it can be
embedded on a sphere. Thus such graphs have genus zero. Due to the importance
of such graphs, we present a formal definition regarding them:

DEFINITION 2.6.3 A graph is planar if it can be embedded on a plane (equiv-
alently a sphere). A planar graph has genus zero.

We will spend much of this section discussing planar graphs and will then generalize
these results to graphs of higher genus. Before continuing, we give an example of a
planar graph:

EXAMPLE 2.6.4 Consider the graph G on the left with its vertices labeled. Ob-
serve that G is drawn with edges crossing. However, G is isomorphic to the graph
on the right which is drawn without edges crossing. Since G can be drawn without
any two of its edges crossing, it is planar.

Therefore, if a graph can be drawn so that no two of its edges cross, it is consid-
ered planar even if it is being drawn with edges crossing. When a planar graph is
drawn with no two edges crossing, it is referred to as a plane graph and the graph
divides the plane into regions. In Example 2.6.4, the planar graph divides the plane
into three regions: the region bounded by edges ac, cd, and da; the region bounded
by edges cd, db, be, and ec; and the exterior region bounded by edges ad, db, be,
ec, and ca. The number of regions that a planar graph divides the plane into is
directly related to the number of edges and vertices in the graph. We now prove
this relation, known as Euler’s Formula, in the following theorem whose proof is
taken from [11].

THEOREM 2.6.5 Euler’s Formula: Let G be a connected plane graph with n
vertices, m edges, and r regions. Then n−m+ r = 2.
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Proof: We will prove this by induction on m. If m = 0, the G = K1, so n = 1,
m = 0, and r = 1, hence n−m+ r = 2. Thus the result is true for m = 0. Assume
now that the result holds for all connected plane graphs on k−1 edges where k ≥ 1,
and let G be a connected plane graph with k edges. Suppose the G has n vertices
and r regions. We will show that n− k + r = 2.

If G is a tree, then by Theorem 2.3.7, n = k + 1. Since r = 1 in this case, we
have

n− k + r = (k + 1)− k + 1 = 2,

which is our desired result. If G is not a tree, then some edge e is on a cycle. Hence
G − e is a connected plane graph on n vertices, k − 1 edges, and r − 1 regions. By
the inductive hypothesis,

n− (k − 1) + (r − 1) = 2

which is equivalent to n− k + r = 2, proving the theorem. 2

EXAMPLE 2.6.6 In Example 2.6.4, note that n = 5, m = 6 and r = 3, which is
consistent with Theorem 2.6.5.

Theorem 2.6.5 has many useful consequences which we will now prove. The first
consequence basically tells us something rather intuitive: if we are able to draw a
graph without any of its edges crossing, then we cannot have too many edges. The
following corollary, whose proof is taken from [12] gives us an upper bound on the
number of edges in a planar graph.

COROLLARY 2.6.7 If G is a planar graph on n ≥ 3 vertices and m edges, then
m ≤ 3n− 6.

Proof: First suppose G is connected. Observe that the only connected planar
graph on n ≥ 3 vertices and m ≤ 2 edges is P3 and the inequality holds for P3. So
we will now assume that G has m ≥ 3 edges. Drawing G as a plane graph, denote
the regions by R1, . . . , Rr. Let mi denote the number of edges on the boundary of
Ri for each 1 ≤ i ≤ r. Observe that mi ≥ 3, and therefore

M : =
r∑
i=1

mi ≥ 3r.

Since each edge is on the boundary of at most two regions, it follows that M ≤ 2m,
and therefore 3r ≤M ≤ 2m. Hence 3r ≤ 2m. Applying Theorem 2.6.5 we have

6 = 3n− 3m+ 3r ≤ 3n− 3m+ 2m = 3n−m.

Thus m ≤ 3n− 6.
If G is disconnected, then edges can be added to G to produce a connected plane

graph on n vertices and m′ > m edges. From the preceeding paragraph we have
m′ ≤ 3n− 6, and hence m < 3n− 6. 2

An immediate corollary gives a sufficient condition for a graph to be nonplanar:
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COROLLARY 2.6.8 If G is a graph on n ≥ 3 vertices with m > 3n − 6 edges,
then G is nonplanar.

We should note that Corollary 2.6.8 gives only a sufficient condition for a graph
to be nonplanar; it does not give a necessary condition. By the same token, Corollary
2.6.7 gives only a necessary condition for G to be planar, not a sufficient condition.
To understand this, consider the graph K3,3 which has n = 6 vertices and m = 9
edges. Yet we will soon see from Theorem 2.6.15 that K3,3 is nonplanar despite the
fact that m ≤ 3n− 6.

Another immediate consequence of Corollary 2.6.7 is the following whose proof
is adapted from [12]:

COROLLARY 2.6.9 If G is a planar graph, then the minimum degree δ ≤ 5.

Proof: Suppose that G is a graph in which δ ≥ 6. Let G have n vertices and m
edges. Then by Theorem 2.1.4 we have

2m =
∑
v∈G

deg v ≥ 6n.

Hence m ≥ 3n > 3n− 6. So by Corollary 2.6.8, G is nonplanar. 2

Suppose G is a planar graph and that equality holds in Corollary 2.6.7, i.e.,
m = 3n− 6. Then if an edge is added to G, the graph will no longer be planar. This
gives rise to our next definition:

DEFINITION 2.6.10 A graph is maximal planar if it is planar and the addition
of an edge joining any pair of nonadjacent vertices results in a nonplanar graph.

EXAMPLE 2.6.11 Observe the graph below is maximal planar. It is planar, yet
the addition and an edge joining nonadjacent vertices will render the graph nonpla-
nar.

OBSERVATION 2.6.12 If G is a maximal planar graph drawn as a plane graph,
then every region is bounded by three edges. Further, each vertex v is the center
of a wheel subgraph induced by v and all vertices adjacent to v. Thus δ(G) ≥ 3 for
maximal graphs.

While maximal graphs fit into our theme of planar graphs not being allowed
to have too many edges, it will be helpful to be able to easily determine precisely
which graphs are planar. To this end, we require a definition:
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DEFINITION 2.6.13 A subdivision of a graph G is a graph obtained by inserting
vertices into the edges of G.

EXAMPLE 2.6.14 Below on the left we have a graph G. The graph on the right
is a subdivision of G.

We now present Kuratowski’s Theorem which characterizes all planar graphs.
Because the proof is rather lengthy, we omit it but refer the reader to [53].

THEOREM 2.6.15 Kuratowski’s Theorem: A graph G is planar if and only
if G does not contain K5, K3,3, or any subdivision of K5 or K3,3 as a subgraph.

EXAMPLE 2.6.16 Consider the following graph G:

Observe that G is isomorphic to the graph H below. The vertices a, b, c, d, e, g, h
induce a subgraph that is a subdivision of K5. Thus by Kuratowski’s Theorem, G
is nonplanar.
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Using Kuratowski’s Theorem, not only can we determine if a given graph is
planar, but we can also determine if it is nonplanar. If a graph is nonplanar, then
its genus is at least one. While it is sometimes difficult to determine the genus of
a nonplanar graph, there are some techniques we can employ. For example, we can
determine if a nonplanar graph is of genus one by embedding it on a torus, i.e.,
showing that it can be drawn on a torus so that no two of its edges cross. To see
this, we must first show a convenient way to construct a torus. We begin with a
rectangle, each of whose sides are oriented (drawings taken from [82]).

We first identify side B with D by folding the torus as shown below. We then
identify side A with C to create the torus.

Therefore, we can draw a graph of genus one on a rectangle where the two horizon-
tal sides and two vertical sides are each identified with each other. Thus an edge
which passes through the top of the rectangle continues through the bottom of the
rectangle and we label the exit and entry points the same to signify that it is the
same edge. We do a similar labeling for edges which pass through the left side of
the rectangle and continue through the right side. By Kuratowski’s Theorem, we
know that K5 and K3,3 are nonplanar. However, they are of genus one as we will
see by the following two examples:

EXAMPLE 2.6.17 The graph K5 embedded on a torus:
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EXAMPLE 2.6.18 The graph K3,3 embedded on a torus:

We now generalize the earlier material in this section to graphs of higher genus.
To this end, we need a definition:

DEFINITION 2.6.19 A graph is 2-cell embedded on a surface if any closed curve
on the surface not intersecting the graph can be continuously contracted to a point.

Observe that the above embeddings of K5 and K3,3 on the torus are 2-cell em-
beddings. Below, we have an embedding of K4 on the torus that is not a 2-cell
embedding because the curve C cannot be continuously contracted to a point.

We now generalize Theorem 2.6.5 to obtain Euler’s Formula for graphs of higher
genus. Our proof is from [12].

THEOREM 2.6.20 Generalized Euler’s Formula: Let G be a connected graph
that is 2-cell embedded on the surface Sk for some k ≥ 0. If G has n vertices, m
edges, and the embedding creates r regions, then n−m+r = 2−2k. More specifically,
if G of genus γ(G) embedded on a surface Sγ(G), then n−m+ r = 2− 2γ(G).

Proof: We will prove this by induction on k. Let G be a graph that is 2-cell
embedded on a surface of genus zero. Then more simply put, G is a planar graph
embedded on a plane. By Theorem 2.6.5, n−m+ r = 2. Hence the theorem holds
for k = 0.

Assume now that every connected graph G′ having n′ vertices, m′ edges, and
r′ regions, when 2-cell embedded on Sk, is such that n′ − m′ + r′ = 2 − 2k. Let
G be a connected graph on n vertices and m edges that results in r regions when
2-cell embedded on Sk+1. Thinking of Sk+1 as a torus with k + 1 holes and k + 1
handles, let H be one of the handles. Assume no vertices of G lie on H. Since G
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is 2-cell embedded on Sk+1, there are edges of G lying on H. Moreover, any closed
curve C drawn around H must intersect t ≥ 1 edges of G. Create a graph G1 by
adding t vertices of degree two at all points where C intersects the edges of G,
letting the segments of C between these added vertices become edges, and adding
two additional vertices of degree two along C to produce two additional edges. Let
G1 have n1 vertices, m1 edges, and r1 regions. Observe that G1 is 2-cell embedded
on Sk+1 and that n1 = n+ t+ 2, m1 = m+ 2t+ 2. Further, since each portion of C
that became an edge of G1 is in a region of G, the addition of each such edge divides
that region into two regions. Therefore r1 = r + t.

Next cut the handle H along C and “patch” the two resulting holes, producing
two duplicate copies of the vertices and edges along C. Denote the resulting graph
G2 which is 2-cell embedded on Sk. Let G2 have n2 vertices, m2 edges, and let the
embedding of G2 on Sk result in r2 regions. Then n2 = n1 + t+ 2, m2 = m1 + t+ 2,
and r2 = r1 + 2. Therefore

n2 = n+ 2t+ 4, m2 = m+ 3t+ 4, and r2 = r + t+ 2.

By the induction hypothesis, n2 −m2 + r2 = 2− 2k and so

(n+ 2t+ 4)− (m+ 3t+ 4) + (r + t+ 2) = 2− 2k.

Simplifying we obtain n−m+ r+ 2 = 2− 2k, and hence n−m+ r = 2− 2(k+ 1).
2

As Theorem 2.6.5 implied that a planar graph cannot have too many edges,
Theorem 2.6.20 implies that for each k ≥ 1, a graph of genus k must have a limited
number of edges also. Conversely, if a graph G is of large genus, then G requires some
minimum number of edges to warrant the necessity of a surface of large genus for
the embedding of G upon. Hence Theorem 2.6.20 leads us to the following corollary
(see [12]) whose proof is left as an exercise.

COROLLARY 2.6.21 Let G be a connected graph on n ≥ 3 vertices and m edges.
Then

m ≤ 3n− 6(1− γ(G))

and
γ(G) ≥ m

6
− n

2
+ 1.

Loosely speaking, Corollary 2.6.21 says that graphs of large genus must have a
sufficient number of edges. From this idea, it is worth noting the genus of a complete
graph which we state formally as a theorem

THEOREM 2.6.22

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
.
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The proof of Theorem 2.6.22 is beyond the scope of this book, but can be found in
[72].

Exercises:

1. Use Corollary 2.6.7 to prove the K5 is nonplanar.

2. (See [12]) Without using Kuratowski’s Theorem, prove that K3,3 is nonplanar.
Hint: Since K3,3 is bipartite, each region must be bounded by at least 4 edges. Apply
Theorem 2.6.5 to obtain a contradiction.

3. Determine if each of the graphs is planar. Note that the first graph is the fa-
mous Petersen graph and the third graph is the famous Headwood graph [11].

4. (See [11]) Prove that a graph is planar if and only if each of its blocks is planar.

5. Show that each of the following nonplanar graphs is of genus one by embed-
ding them on a torus.

(a) K6

(b) K7

(c) K4,4

(d) K3,3,3.

5. Prove Corollary 2.6.21.
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Chapter 3

Introduction to Laplacian
Matrices

Since the focus of this book is on representing graphs as Laplacian matrices, we
dedicate this chapter to the foundations of Laplacian matrices. The goal of this
chapter is to provide an overview of Laplacian matrices before drilling into more
specific and rigorous topics in later chapters. We begin by providing a context of
Laplacian matrices in their relationship to other matrix representations of graphs.
We then proceed to the Matrix Tree Theorem which is a theorem that first motivated
the use of Laplacian matrices in graph theory. Since graphs are discrete objects, we
provide further context of Laplacian matrices by investigating the Laplace operator
which is the continuous version of the Laplacian matrix. The Laplace operator has
applications in energy flow, and we adapt these applications to graphs and learn
how to draw graphs which minimize energy. With this in mind, we close this section
by applying Laplacian matrices to network flow. Historically, network flow has been
a major motivation to studying Laplacian matrices.

3.1 Matrix Representations of Graphs

In graph theory, it is often desirable to represent graphs in terms of matrices. Not
only is it convenient, but often the properties of the matrix give us useful information
about the graph that the matrix is associated with. While this book focuses on the
Laplacian matrix, we will study two additional types of matrix representations of
graphs in this section: adjacency matrices and incidence matrices. Both types of
matrices are useful, not only in their own right, but also in the theory of Laplacian
matrices. We begin with the adjacency matrix.

DEFINITION 3.1.1 Let G be a graph on n vertices labelled 1, . . . , n. The adja-
cency matrix of G on n vertices is the n× n matrix A = [aij ] where

ai,j =


1, if i 6= j and i and j are adjacent,

0, if i = j, or i 6= j and i is not adjacent to j.

91
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92 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

EXAMPLE 3.1.2 Consider the following graph G:

Its adjacency matrix is

A =


0 1 0 0 1
1 0 1 0 1
0 1 0 1 0
0 0 1 0 1
1 1 0 1 0

 .
Before we continue, we make several observations. First, since we are not allowing

loops in our graphs, the diagonal entries of the adjacency matrix will always be zero.
As for the off-diagonal entries, since aij = 1 if and only if aji = 1, i.e., if and only
if vertices i and j are adjacent, it follows that the adjacency matrix is symmetric.
We also note the number of 1’s in each row and each column is the degree of the
corresponding vertex.

The powers of the adjacency matrix give us important information as to the
structure of the graph. We present this result as a theorem whose proof is adapted
from [12]:

THEOREM 3.1.3 Let G be a graph with vertices v1, . . . , vn and adjacency matrix

A = [aij ]. Then the entry a
(k)
ij in row i and column j of Ak is the number of distinct

vi − vj walks of length k in G.

Proof: We prove this by induction on k. For k = 1, we have the matrix A1 = A.

An entry of a
(1)
ij is 1 if vi and vj are adjacent, i.e., there is a vi − vj walk of length

one in G. Likewise, an entry of a
(1)
ij is 0 if vi and vj are not adjacent, i.e., there are

no vi − vj walks of length one in G. This proves the base step.
For the inductive hypothesis, assume that for a positive integer k, the number

of vi − vj walks of length k in G is a
(k)
ij . By matrix multiplication, the entry a

(k+1)
ij

of Ak+1 is the dot product of row i of Ak and column j of A. In other words

a
(k+1)
ij =

n∑
s=1

a
(k)
is asj = a

(k)
i1 a1j + a

(k)
i2 a2j + . . . a

(k)
in anj . (3.1.1)

Every vi − vj walk W of length k + 1 in G is produced by beginning with a vi − vs
walk W ′ of length k in G for some vertex vs adjacent to vj , then following W ′ by vj .

By the inductive hypothesis, the number of vi − vj walks of length k is a
(k)
ij , while
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Introduction to Laplacian Matrices 93

asj = 1 if and only if vs is adjacent to vj . Hence by (3.1.1), a
(k+1)
ij represents the

number of vi − vj walks of length k + 1 in G. 2

EXAMPLE 3.1.4 Consider the graph from Example 3.1.2. Observe that the sec-
ond and third powers of A are

A2 =


2 1 1 1 1
1 3 0 2 1
1 0 2 0 2
1 2 0 2 0
1 1 2 0 3

 and A3 =


2 4 2 2 4
4 2 5 1 6
2 5 0 4 1
2 1 4 0 5
4 6 1 5 2

 .

Thus, for example, since a
(2)
2,4 = 2, there are two v2− v4 walks of length two, namely

v2, v3, v4 and v2, v5, v4. Also, for example, since a
(3)
3,2 = 5, there are five v3 − v2

walks of length three, namely v3, v4, v5, v2; v3, v2, v3, v2; v3, v2, v5, v2; v3, v4, v3, v2;
and v3, v2, v1, v2.

Looking more closely at the powers of the adjacency matrix, we notice that
the diagonal entries of A2 are precisely the degrees of each vertex. This is because
the walks of length two from a vertex vi to itself are the walks vi, vj , vi where vj
is a vertex adjacent to vi. Thus the number of vertices vj where such a walk is
possible is precisely the number of vertices adjacent to vi, i.e., the degree of vertex
i. Similarly, a walk of length three from a vertex vi is a cycle of length three. Thus
for each i = 1, . . . , n, the ith diagonal entry of A3 are the number of cycles of length
three beginning and ending at vi.

Another type of matrix that can be used to represent a graph is the incidence
matrix. Unlike the adjacency matrix where both the rows and columns represent
the vertices of a graph, in the incidence matrix the rows represent the vertices while
the columns represent the edges. Hence the incidence matrix is based on which
edges and vertices are incident to each other. Each edge e in a graph is incident to
two vertices, say va and vb. Note that va and vb can be chosen arbitrarily, but it
is traditional to regard the vertex with the lower-numbered label as va. For each
vertex-edge pair (v, e) in which the vertex v is incident to the edge e, define a func-
tion p(v, e) where p(va, e) = 1 and p(vb, e) = −1. We now present a formal definition
of the incidence matrix.

DEFINITION 3.1.5 Let G be a graph on n vertices labeled v1, . . . , vn, and m
edges labeled e1, . . . , em. The incidence matrix F is the n×m matrix such that

fi,j =


p(vi, ej), if vi and ej are incident,

0, if vi and ej are not incident,
(3.1.2)
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94 Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

EXAMPLE 3.1.6 Revisiting the graph in Example 3.1.2, we show this graph
again with the same vertex labellings v1, . . . , v5, but now with the edges labeled
e1, . . . e6:

The incidence matrix F is

F =


1 0 0 0 1 0
−1 1 0 0 0 1

0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 −1 −1

 .

OBSERVATION 3.1.7 Each column j has exactly two non-zero entries. These
entries are in the rows corresponding to the two vertices that are incident to ej .
The row corresponding to the vertex with the lower-numbered label has an entry
of 1, while the row corresponding to the vertex with the larger-numbered label has
an entry of −1.

Given a graph G, since both the incidence matrix and the adjacency matrix are
based on the vertex-edge structure of the graph, it is plausible that these matrices
are related. Their relationship is decribed in the following theorem:

THEOREM 3.1.8 Let G be a graph on n vertices and m edges, and let F be its
incidence matrix. Let A be the adjacency matrix for L(G), the line graph of G. Then
A = |F TF − 2I|.

Proof: Observe that for i, j = 1, . . . ,m that the (i, j) entry of F TF is dot prod-
uct of the ith column of F with the jth column of F . Hence by Observation 3.1.7, it
follows that the diagonal entries of F TF are each 2 and hence the diagonal entries of
F TF −2I are each zero. For the off-diagonal entries of F TF (and hence F TF −2I),
the (i, j) entry is zero if and only if edges ei and ej are not incident with a common
vertex. Otherwise, the (i, j) entry of F TF is either 1 or −1. The conclusion follows. 2

We will see in the next section that incidence matrices will be very useful in
proving a result that determines the number of spanning trees that a graph has.
However, while incidence matrices are used in the proof of this result, the number
of spanning trees contained in a graph is actually directly related to the Laplacian
matrix which is the main focus of this book:
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DEFINITION 3.1.9 Let G be a graph on n vertices labelled 1, . . . , n. The Lapla-
cian matrix of G is the n× n matrix L = [`i,j ] where

`i,j =


−1, if i 6= j and i and j are adjacent,

0, if i 6= j and i is not adjacent to j,

di, if i = j.

EXAMPLE 3.1.10 Revisiting the graph G in Example 3.1.2, the Laplacian matrix
for this graph is:

L =


2 −1 0 0 −1
−1 3 −1 0 −1

0 −1 2 −1 0
0 0 −1 2 −1
−1 −1 0 −1 3

 .

At this point, we can notice that the Laplacian matrix is related to the other
two matrix representations that we have discussed so far. Most obviously, if D is
the diagonal matrix consisting of the degrees of the vertices of a graph G and A
is the adjacency matrix for G, then the Laplacian matrix L of G is L = D − A.
The Laplacian matrix is also related to the incidence matrix which we state more
formally in the following observation:

OBSERVATION 3.1.11 Since the number of nonzero entries in row i of the in-
cidence matrix F is the degree of vertex i, it follows that taking the dot product of
row i with itself will yield the degree of vertex i. Moreover, for i 6= j, taking the dot
product of row i and row j will yield −1 if vertices i and j are adjacent and zero
otherwise. Hence L = FF T .

In addition to being useful in determining the number of spanning trees of a
graph (which we discuss in greater detail in the next section), Laplacian matrices
have interesting spectral properties. First, since Laplacian matrices are symmetric,
all of the eigenvalues are real. Moreover, since the diagonal entry of each row is
equal to the sum of the absolute values of the off-diagonal entries, it follows from
Theorem 1.2.1 that all eigenvalues are nonnegative real numbers. Also, since the
row sums of the Laplacian matrix are each zero, it follows that zero is always the
smallest eigenvalue since the vector of all ones will be a corresponding eigenvector.
We will see in later chapters that the second smallest eigenvalue will be another
measure of the connectivity of the graph. We will also investigate in later chapters
many interesting properties of the other eigenvalues of the Laplacian matrix. For
now, we can relate the spectral properties of Laplacian matrices to that of incidence
matrices. We do so in the following theorem whose proof we leave as an exercise.

THEOREM 3.1.12 Let L be the Laplacian matrix for a graph G and F be its
incidence matrix. Then L = FF T and F TF have the same nonzero eigenvalues.
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We close this section by noting that the adjacency matrix, incidence matrix,
and Laplacian matrix can each be generalized to weighted graphs. Generalizing the
adjacency and Laplacian matrices to weighted graphs is straightforward in that we
simply replace the off-diagonal entries with w and −w, respectively, where w denotes
the weight of the corresponding edge. Further, in the Laplacian matrix of a weighted
graph, each diagonal entry is the sum of the weighted of the edges incident to the
corresponding vertex. Observe that with this definition of the Laplacian matrix for
weighted graphs, the spectral properties discussed earlier are preserved. Generalizing
the incidence matrix is less straightforward. To generalize the incidence matrix to
weighted graphs, alter the definition of p(vi, ej) by defining p(va, ej) =

√
w and

p(vb, ej) = −
√
w where va and vb are as before and where w is the weight of the

edge incident to va and vb. Then define the incidence matrix F using (3.1.2). By
defining F this way, Observation 3.1.11 still holds for weighted graphs.

EXAMPLE 3.1.13 Consider the weighted graph:

The adjacency matrix A, incidence matrix F , and Laplacian matrix L are as follows:

A =


0 2 0 0 2
2 0 5 0 0
0 5 0 1 4
0 0 1 0 3
2 0 4 3 0

 , F =



√
2 0 0 0

√
2 0

−
√

2
√

5 0 0 0 0

0 −
√

5
√

1 0 0
√

4

0 0 −
√

1
√

3 0 0

0 0 0 −
√

3 −
√

2 −
√

4

 ,

L =


4 −2 0 0 −2
−2 7 −5 0 0

0 −5 10 −1 −4
0 0 −1 4 −3
−2 0 −4 −3 9

 .

Exercises:

1. For each of the following graphs, compute A, A2, and A3 without performing
the matrix multiplications.
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2. Find the incidence and Laplacian matrices for the graphs in Exercise 1.

3. The ith diagonal entry of A3 represents the number of cycles of length three
beginning and ending at vi. Is it true that the ith diagonal entry of A4 represents
the number of cycles of length four beginning and ending at vi? Why or why not?

4. (See [33]) Recall the trace of a matrix A, denoted Tr(A), is the sum of the
diagonal entries of A. Let A be the adjacency matrix for a graph G having m edges
and t cycles of length three. Prove the following:

(i) Tr(A) = 0
(ii) Tr(A2) = 2m
(iii) Tr(A3) = 6t.

5. Prove Theorem 3.1.12.

6. Find the adjacency, incidence, and Laplacian matrices of the weighted graph
below:

3.2 The Matrix Tree Theorem

In the previous section, we stated that the incidence matrix and the Laplacian ma-
trix are useful in determining the number of spanning trees that a graph contains. In
this section, we investigate these results more rigorously and prove the famous Ma-
trix Tree Theorem. The Matrix Tree Theorem states that the number of spanning
trees of a graph G on n vertices is equal to the absolute value of the determinant of
any (n− 1)× (n− 1) submatrix of its Laplacian. Before stating this theorem more
formally and proving it, we need to introduce the Cauchy-Binet Theorem. To this
end, let Im denote the set of natural numbers {1, 2, . . . ,m}. Suppose S ⊂ Im where
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|S| = n ≤ m. For an n×m matrix A, let AS denote the n× n matrix created from
A by using the columns of A indexed by the elements in S. For an m×n matrix B,
let BS denote the n× n matrix created from B by using the rows of B indexed by
the elements in S. With this in mind, we now present the Cauchy-Binet Theorem
whose proof can be found in [54].

THEOREM 3.2.1 Let A be an n×m matrix and let B be an m×n matrix where
m ≥ n. Then

det(AB) =
∑
S

det(AS) det(BS)

where the sum is taken over all subsets S ⊂ Im where |S| = n.

First observe that if n = m, then this theorem merely reduces to det(AB) =
det(A) det(B) since the only subset S of Im such that |S| = n would be the entire
set Im. Secondly, we include the condition m ≥ n because if m < n, then there
would not exist any appropriate subsets S of Im. Thus det(AB) = 0 in this case.

At this point, we are now ready to prove the Matrix Tree Theorem for unweighted
graphs (see [7]).

THEOREM 3.2.2 Matrix Tree Theorem Let G be an unweighted graph on n
vertices labeled 1, . . . , n with Laplacian matrix L. Then the number of (connected)
spanning trees of G is the absolute value of the determinant of any (n− 1)× (n− 1)
submatrix of L.

Proof: First suppose that G is disconnected. Then by Theorem 4.1.1 it follows
that zero is an eigenvalue of L with multiplicity of at least two. Therefore any
(n− 1)× (n− 1) submatrix L̂ of L will be singular and thus det(L̂) = 0. Moreover,
if G is disconnected, then clearly it cannot have any spanning trees.

Now assume that G is connected. Then zero is a simple eigenvalue of L. Hence
the vector e is a basis for the eigenspace corresponding to zero. Let B = [bi,j ] be the
adjoint of L and thus bi,j = (−1)i+j det(L[j, i]) where L[j, i] is the (n− 1)× (n− 1)
matrix obtained from L by deleting row j and column i. Since L is an M-matrix of
rank n− 1, it follows from Lemma 1.4.9 that (−1)i+j det(L[j, i]) is always positive.
Thus the entries of B consist of the absolute values of all of the determinants of
the (n− 1)× (n− 1) submatrices of L. However, by the properties adjoint matrices,
LB = det(L)I = 0. Since LB = 0, it follows that every column of B is in the
eigenspace of L corresponding to zero. Since {e} is a basis for the eigenspace of
L corresponding to zero, it follows that all of the entries in any column of B are
identical. Similarly by the properties of adjoint matrices, BL = det(L)I = 0. Since
L is symmetric, it follows that every row of B is in the eigenspace of L corresponding
to zero, and hence all of the entries in any row of B are identical. Thus all entries
of B are identical.

It now remains to show that this common entry of B is the number of spanning
trees of G (in absolute value). Since all entries of B are identical, without loss of
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generality, we will consider the matrix L̂ formed by deleting the last row and last
column of L, i.e., L̂ = L[n, n]. Let F be the incidence matrix of G and let F̂ be
the matrix obtained from F by deleting its last row. By Observation 3.1.11 we have
FF T = L and F̂ F̂ T = L̂. By the Cauchy-Binet Theorem

det(L̂) = det(F̂ F̂ T ) =
∑
S

det(F̂S) det(F̂ TS ) (3.2.1)

where the sum is taken over all subsets S ⊂ Im such that |S| = n − 1. However,
since the determinant of any matrix is equal to the determinant of its transpose, we
can simplify (3.2.1) to

det(L̂) =
∑
S

det(F̂S)2 (3.2.2)

It now remains to show that for a given subset Sk ∈ Im where |Sk| = n − 1, we
have |det(F̂Sk)| = 1 if the edges corresponding to the columns of F̂ represented
by Sk form a spanning tree, and det(F̂Sk) = 0 otherwise. First suppose that the
set of edges E in the columns corresponding to F̂Sk do not form a spanning tree.
Then there exists at least one vertex in G that is not in the subgraph induced by
the edges in E. Let v be such a vertex. Recalling that L̂ = L[n, n], there are two
cases to consider: (i) if v 6= vn and (ii) if v = vn. If v 6= vn, then the row of F̂Sk
corresponding to v will contain all zeros. Thus det(F̂Sk) = 0. If v = vn, then observe
that for each edge e ∈ E, both vertices incident to e are repesented by rows in F̂Sk .
Thus each column has a zero sum since one entry in each column is 1, another is
−1, and the rest are zeros (the 1 and −1 corresponding to the vertices incident to
e). Hence F̂Sk is singular and therefore det(F̂Sk) = 0.

Now suppose that the edges in E corresponding to the columns of F̂Sk do form
a spanning tree of G. We will now show that | det(F̂Sk)| = 1. We will prove this
by induction on n. (Recall that a spanning tree will have n − 1 edges.) If n = 2,
then G = K2, and thus |det(F̂Sk)| = 1. For our inductive hypothesis, assume that
if G has n = t vertices and the edges in E corresponding to the columns of F̂Sk
form a spanning tree of G, then | det(F̂Sk)| = 1. Now suppose that G has n = t+ 1
vertices and the edges in E corresponding to the columns of F̂Sk form a spanning
tree T of G. Since every tree has at least two pendant vertices, it follows that T
has at least one pendant vertex v 6= vn. Then the row in F̂Sk corresponding to v
has only one nonzero entry (±1) and that entry will be in the column of the unique
edge e incident to v in T . Thus det(F̂Sk) will equal ±1 times the determinant of the
submatrix F̂ vSk of F̂Sk formed by eliminating the row corresponding to v and the

column corresponding to e. However, the edges corresponding to the columns in F̂ vSk
form a spanning tree of G−v. Since G−v has t vertices, by the inductive hypothesis,
|det(F̂ vSk)| = 1. Since det(F̂Sk) = ±1 det(F̂ vSk), it follows that | det(F̂Sk | = 1. 2

EXAMPLE 3.2.3 Consider the graph G below.
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Its Laplacian matrix L is:

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2


Observe that if any row and any column of L is deleted, the determinant of the re-
maining matrix (in absolute value) is 8. For example, if we delete row 2 and column
3 of L we obtain:

L[2, 3] =

 2 −1 0
−1 −1 −1

0 −1 2


It can easily be computed that det(L[2, 3]) = −8 in accordance with the Matrix
Tree Theorem. Thus G has 8 spanning trees. The 8 spanning trees are as follows:

To better understand the proof of the Matrix Tree Theorem, observe that the
incidence matrix F for G is

F =


1 1 0 0 0
−1 0 1 1 0

0 −1 −1 0 1
0 0 0 −1 −1

 .
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In the proof, we created F̂ by deleting the last row, i.e., the row corresponding to
v4 to obtain:

F̂ =

 1 1 0 0 0
−1 0 1 1 0

0 −1 −1 0 1

 .
Since G has four vertices, it follows that any spanning tree of G would necessarily
have exactly three edges. Therefore, we consider the 3 × 3 submatrices F̂Sk of F̂
where Sk denotes the columns of F̂ (or equivalently, the edges of G) that we use to
form the submatrix. If the edges represented by Sk do not form a spanning tree of
G, then det(F̂Sk) = 0 because either one of two things holds: (i) F̂Sk will contain a
row of all zeros or (ii) all of the column sums of F̂Sk are zero. In case (i), the induced
subgraph of G formed by the edges represented by Sk is missing at least one of the
vertices vi 6= v4 of G; hence it is not a spanning tree. For example, let Sk = {3, 4, 5}.
Then row 1 of F̂3,4,5 is a row of all zeros because the subgraph of G induced by edges
e3, e4, and e5 does not contain v1, and hence is not a spanning tree. In case (ii),
the induced subgraph of G formed by the edges represented by Sk does not contain
vertex v4; hence it is not a spanning tree. For example, let Sk = {1, 2, 3}. Since v4

is not a vertex in the subgraph of G induced by e1, e2, and e3, the two vertices that
each of these edges are incident to must be from the remaining three vertices, hence
causing each column of F̂1,2,3 to have a zero sum.

If the edges represented by Sk do form a spanning tree of G, then | det(F̂Sk)| = 1.
For example, let Sk = {1, 2, 4} and observe the subgraph of G induced by e1, e2, and
e4 is a spanning tree T of G. As stated in the proof, each spanning tree will have a
pendant vertex other than v4. In this case, v3 is such a pendant vertex of T . Observe
that the row of F̂1,2,4 corresponding to v3 has only one nonzero entry, namely −1.
Thus det(F̂1,2,4) is equal to −1 times the determinant of the submatrix created from
F̂1,2,4 by removing the row corresponding to v3 and the column corresponding to e2

which is the unique edge in T incident to v3. Calling this submatrix F̂ 3
1,2,4, we see

that

F̂ 3
1,2,4 =

[
1 0
−1 1

]
.

Observe now that the edges in G − v3 corresponding to the columns of F̂ 3
1,2,4 form

a spanning tree T ′ of G − v3. Thus by the inductive hypothesis of the proof, there
exists a pendant vertex of T ′ other than v4. We see that it is v1. Observe that the
row of F̂ 3

1,2,4 corresponding to v1 has exactly one nonzero entry, namely 1. Thus

det(F̂ 3
1,2,4) is equal to 1 times the determinant of the submatrix of F̂ 3

1,2,4 created by
removing the row corresponding to v1 and the column corresponding to e1 which is
the unique edge in T ′ incident to v1. Calling this submatrix F̂ 3,1

1,2,4, we see that

F̂ 3,1
1,2,4 =

[
1
]
.

Clearly det(F̂ 3,1
1,2,4) = 1. Hence, it follows that

det(F̂1,2,4) = (−1) • 1 • 1 = −1.
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We can actually extend the results of the Matrix Tree Theorem to weighted
graphs. To this end, we use the generalized version of the incidence matrix for
weighted graphs discussed in the previous section. In our investigation of the Matrix
Tree Theorem for weighted graphs, we require the concept of the weight of the entire
graph:

DEFINITION 3.2.4 If G is a weighted graph, we define the weight of G, denoted
w(G), as the product of the weights of the edges of G. A graph with no edges is
defined to have a weight of 1.

Thus in the above example, w(G) = 240. We now generalize Theorem 3.2.2 to
weighted graphs (see [7]).

THEOREM 3.2.5 Let G be a weighted graph on n vertices labeled 1, . . . , n with
Laplacian matrix L. Then the sum of the weights of the spanning trees of G is the
absolute value of the determinant of any (n− 1)× (n− 1) submatrix of L.

The proof of Theorem 3.2.5 follows similarly to the proof of Theorem 3.2.2. If B
is the adjoint matrix for L, then by similar reasoning to the proof of Theorem 3.2.2,
all entries of B will be identical and will be the absolute value of the determinant
of any (n − 1) × (n − 1) submatrix of L. To show that the absolute value of this
determinant is equal to the sum of the weights of the spanning trees of G, let L̂ and
F̂ be as in the proof of Theorem 3.2.2. We need to compute det(L̂). We do this using
(3.2.2). The only difference in the rest of the proof is when the edges corresponding
the columns of F̂Sk do form a spanning tree TSk of G. In this case, we use similar

reasoning to the proof of Theorem 3.2.2 to see that det(F̂Sk) =
√
w(TSk). Thus

det(F̂ F̂ T ) = w(TSk), and the rest of the proof follows from (3.2.1).

EXAMPLE 3.2.6 Consider the weighted graph G below.

Its Laplacian matrix is

L =


4 −2 0 0 −2
−2 7 −5 0 0

0 −5 10 −1 −4
0 0 −1 4 −3
−2 0 −4 −3 9


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Observe that the determinant of any 4 × 4 submatrix is either 536 of −536. Thus
by Theorem 3.2.5, the sum of the weights of the spanning trees of G is 536. Below
are the spanning trees of G, each denoted with their weights. Observe the sum of
these weights is indeed 536.

Exercises:

1. Using the Matrix Tree Theorem (Theorem 3.2.2), determine the number of span-
ning trees in the following graph:

2. Using Theorem 3.2.5 determine the sums of the weights of all spanning trees of
the following weighted graph:
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3. Prove Theorem 3.2.5.

4. Let G be a graph on n vertices and let 0 = λ1 ≤ . . . ≤ λn be the eigenvalues of
the Laplacian matrix. Prove that the number of spanning trees of G is (λ2 · · ·λn)/n.

3.3 The Continuous Version of the Laplacian

In this section, we discuss the idea of the Laplacian matrix defined in Section 3.1
being the discrete version of the continuous Laplacian operator. We begin first
by defining and motivating the use of the Laplacian operator. Starting with the
one-dimensional version (see [16]), consider a rod located on the x-axis. We will
investigate functions describing the temperature of this rod. Let u = u(x, t) denote
the temperature of the rod at position x at time t. Assume that the rod has a
uniform cross-section of area A perpendicular to the x-axis and that u is constant
on each cross-section (think of A being small). Consider a small portion of the rod
from x to x + ∆x. Then the total heat Q(t) in this portion of the rod at time t
can be seen as the temperature u(x, t) multiplied by the area A of a cross-section
multiplied by the length ∆x of the portion of the rod we are considering. Since
u(x, t) is not constant, it follows that

Q(t) =

∫ x+∆x

x
Au(x, t) dx. (3.3.1)

Therefore
Q′(t) = A[ux(x+ ∆x, t)− ux(x, t)].

By the mean value theorem for integrals, we also see from (3.3.1) that

Q′(t) = Aut(x, t)∆x

for some x ∈ (x, x+ ∆x). Hence

[ux(x+ ∆x, t)− ux(x, t)] = ut(x, t)∆x

for some x ∈ (x, x+ ∆x). Therefore

ut(x, t) =
ux(x+ ∆x, t)− ux(x, t)

∆x
.

Taking the limit as ∆x→ 0, we see that x→ x. Thus we obtain the one-dimensional
heat equation 1

ut = uxx. (3.3.2)

Often in this application, we look at a finite portion of the rod from x = x0 to
x = x1 and determine the temperature function based on (1) a fixed temperature

1In reality, ut and uxx are proportional, rather than equal, since we did not take into account
the density of the rod. Hence ut = kuxx. But for our purposes and for the sake of simplicity, we
will take k = 1.
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t0 a the endpoints and (2) the temperature function f(x) at time t = 0. Since all
temperature functions must satisfy (3.3.2), it follows that we obtain the boundary
value problem:

ut = uxx

u(x0, t) = u(x1, t) = t0

u(x, 0) = f(x).

EXAMPLE 3.3.1 (See [16]) Find the temperature equation of the rod extending
from x = 0 to x = π where the temperatures at x = 0 and x = 1 are both 0◦C and
the temperature at position x at time t = 0 is f(x) = 4 sin 4x cos 2x.

Solution: From (3.3.2) and the information given, we need to solve the boundary
value problem

ut = uxx

u(0, t) = u(π, t) = 0

u(x, 0) = 4 sin 4x cos 2x

Observe that u(x, t) = 2e−4t sin 2x+ 2e−36t sin 6x satisfies all three conditions.

The one-dimensional heat equation (3.3.2) can be extended to n > 1 dimen-
sions as follows [16]

ut =
n∑
i=1

uxi,xi . (3.3.3)

In many instances we have a steady-state temperature meaning the temperature
change varies only with location and not with time. Hence ut = 0 in this instance.
This leads us to the concept of the Laplace equation and the Laplacian of a function.

DEFINITION 3.3.2 The multi-dimensional Laplace equation occurs when we
take ut = 0 in (3.3.3), i.e.,

n∑
i=1

uxi,xi = 0. (3.3.4)

DEFINITION 3.3.3 The Laplacian of a function u(x1, . . . , xn), denoted ∆u is

∆u =
n∑
i=1

uxi,xi .

Hence (3.3.4) can be rewritten as

∆u = 0.

In multiple dimensions, instead of having a rod we have a region R bounded by
a piecewise smooth manifold C. Our goal is to determine the temperature function
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u(x1, . . . , xn) for the location (x1, . . . , xn) in R assuming a steady-state temperature
with respect to time. As in the one-dimensional case, we impose a fixed temperature
on each point of C.

EXAMPLE 3.3.4 (See [16]) In <2 (the xy plane), let the region R be the closed
rectangle [0, π]× [0, 1]. Suppose the temperature along the x-axis, 0 < x < π is 1◦C
while the temperature along each of the remaining boundary line segments is 0◦C.
Find the temperature function u(x, y).

Solution: From (3.3.4) and the information given, we need to solve the boundary
value problem

uxx + uyy = 0

u(0, y) = u(π, y) = u(x, 1) = 0

u(x, 0) = 1.

Observe that

u(x, y) =
∞∑
n=1

2[1− (−1)n]

nπ sinhn
sinnx sinhnπ(1− y)

satisfies all of the above conditions.

Given an n-dimensional region R bounded by a smooth manifold, the heat can
flow freely throughout. Hence the Laplacian operator ∆u that we have defined for
functions u : <n → < is a continuous operator. We now focus our attention on the
discrete version of the Laplacian operator. Thus instead of heat flowing through
an n-dimensional region R, we will investigate heat flowing through a graph on n
vertices. The edges will indicate paths on which heat can flow between vertices. Let
G be a graph on n vertices with vertex set V and edge set E. Let u be a real-valued
function on the vertices of G, i.e.,

u : V → <.

Since this is a discrete function, we can regard u(V ) as a column vector x where
each entry xi of x is the value u(vi) of the vertex vi ∈ V for i = 1, . . . , n. Hence the
discrete Laplacian operator defined for each vertex vi ∈ V is

∆u(vi) =
∑
vj

vi∼vj

[u(vi)− u(vj)] (3.3.5)

where vi ∼ vj signifies vi adjacent to vj . Since u(vi) = xi for all i = 1, . . . , n, it
follows (3.3.5) can be written as

∆u(vi) =
∑
j

vi∼vj

[xi − xj ]. (3.3.6)
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Letting di denote the degree of vi, and suppose vi is adjacent to vj1 , . . . , vjd , then
(3.3.6) can be written as

∆u(vi) = dixi −
d∑

k=1

xjk . (3.3.7)

However, (3.3.7) is precisely (Lx)i where L is the Laplacian matrix of the graph.
Hence we have proven the following:

THEOREM 3.3.5 Let G be an unweighted graph on n vertices with Laplacian
matrix L and vertex set V = {v1, . . . , vn}. Let u : V → < be a function represented
by the column vector x = [xi] where u(vi) = xi for all i = 1, . . . , n, and let ∆u be
the Laplacian of u as defined in (3.3.5). Then

(Lx)i = ∆u(vi)

for i = 1, . . . , n.

EXAMPLE 3.3.6 Consider the following graph G:

Observe that

L =


1 −1 0 0
−1 3 −1 −1

0 −1 2 −1
0 −1 −1 2


Letting x = [x1, x2, x3, x4]T , we have

Lx =


x1 − x2

−x1 + 3x2 − x3 − x4

−x2 + 2x3 − x4

−x2 − x3 + 2x4

 =


(x1 − x2)

(x2 − x1) + (x2 − x3) + (x2 − x4)
(x3 − x2) + (x3 − x4)
(x4 − x2) + (x4 − x3)

 = ∆u(V ).

Exercise:

1. Derive and prove a theorem analogous to Theorem 3.3.5 for weighted graphs.
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3.4 Graph Representations and Energy

In this section, we continue with the theme of the Laplacian matrix of a graph being
the discrete version of the continuous Laplacian operator. In the continuous case,
we prove that the energy functional is minimized over all functions whose Laplacian
is zero. Adapting the notion of energy to graph theory, we see that the eigenvalues
and eigenvectors of the Laplacian matrix will be vital in drawing the graph in <k so
that the energy of the graph is minimized. To further our comparison between the
continuous and disrete Laplacians, we have the following definition from [17] which
will be applicable to the continuous Laplacian operator.

DEFINITION 3.4.1 Let U be an open bounded region in <k. The energy func-
tional E(u) for a function u : U → < is

E(u) =
1

2

∫
U
‖∇u‖2 dx

where ∇u is the vector [ux1 , ux2 , . . . , uxm ].

In the following theorem from [17] known as Dirichlet’s Principle, let U and ∂U
denote the closure and boundary of the region U , respectively, and let C2(U) denote
the set of functions that are continuously twice differentiable on U .

THEOREM 3.4.2 Let U be an open bounded region in <k, let u : U → <, and
let A = {w ∈ C2(U) : w|∂U = 0}. Then ∆u = 0 on U if and only if E(u) =
minw∈AE(w).

Proof: First suppose ∆u = 0 on U . Then

0 =

∫
U

∆u(u− w) dx.

Integration by parts yields

0 =

∫
U
∇u · ∇(u− w) dx.

Expanding this we obtain

0 =

∫
U
∇u · (∇u−∇w) dx =

∫
U
‖∇u‖2 − (∇u · ∇w) dx.

Hence∫
U
‖∇u‖2 dx =

∫
U

(∇u · ∇w) dx ≤ 1

2

∫
U
‖∇u‖2 dx+

1

2

∫
U
‖∇w‖2 dx,

where the last inequality follows from the Cauchy-Shwarz inequality. Thus

E(u) =
1

2

∫
U
‖∇u‖2 dx ≤ 1

2

∫
U
‖∇w‖2 dx = E(w)
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as desired.
Now suppose u is a function which minimizes the function E(w) over all functions

in A. Fix an arbitrary function v ∈ A and define the function

g(t) : = E(u+ tv)

where t ∈ <. Observe

g(t) =
1

2

∫
U
‖∇u+ t∇v‖2 dx =

∫
U

1

2
‖∇u‖2 + t∇u · ∇v +

t2

2
‖∇v‖2 dx.

Since g(t) is minimized at T = 0, it follows that g′(0) = 0 provided this derivative
exists. Consequently,

0 = g′(0) =

∫
U
∇u · ∇v dx =

∫
U

(−∆u)v dx, (3.4.1)

where the last equality follows from integration by parts. Since v was arbitrary,
(3.4.1) holds for all v ∈ A. Hence ∆u = 0 on U . 2

We now turn our attention to graphs. Our focus will be drawing graphs in <k
where the energy function is minimized. Before generalizing the definition of the
energy function to graphs, we need a preliminary definition:

DEFINITION 3.4.3 [33] Let G be a graph with vertex set V . A representation
of G in <k is a function ρ : V → <k.

Loosely speaking, ρ represents the positions of the vertices when we draw G in <k.

EXAMPLE 3.4.4 Below is a representation of the wheel graph W4 in <3.

It is often convenient to represent a representation as a representation matrix R
where row i of R corresponds to ρ(i), the representation of vertex i. Thus in Example
3.4.4, we have

R =


−1 −1 −1

1 −1 −1
−1 1 −1

1 1 −1
0 0 4

 .
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Regarding the vertex set of a graph as a subset of <k in a similar way we regarded
U as a subset of <k earlier in this section, observe that ρ is a discrete function from
a subset of <k to < as u was a continuous such function. Therefore, we can define
the discrete version of energy of a function with respect to a domain. However, in
the discrete version, the domain is a vertex set of a graph rather than an open
bounded set U ⊂ <k.

DEFINITION 3.4.5 Let G be a graph with vertex set V represented in <k with
representation ρ : V → <. The energy ε(ρ) of the representation ρ with respect to
the graph G is the quantity

ε(ρ) : =
1

2

∑
v∈V
u∼v

‖ρ(u)− ρ(v)‖2

Given an edge ij of a graph, observe that in Definition 3.4.5 that each edge is
being accounted for twice, once when i = u and j = v and again when i = v and
j = u. Hence if E(G) is the edge set of G, we can rewrite Definition 3.4.5 as

ε(ρ) =
∑

uv∈E(G)

‖ρ(u)− ρ(v)‖2,

thus counting each edge exactly once. We now present a lemma from [33] which
gives us an efficient way to calculate the energy of a representation.

LEMMA 3.4.6 Let ρ be a representation of a graph G with R as the representation
matrix. Let L be the Laplacian matrix of G. Then

ε(ρ) = Tr(RTLR).

Proof: Recalling the L = FF T where F is the incidence matrix of G, let the
uvth row of F TR represent the edge uv ∈ G as the uvth row of F T represents the
edge uv ∈ G. Observe that the uvth row of F TR is ±(ρ(u) − ρ(v)). Therefore, the
uvth diagonal entry of F TRRTF is ‖ρ(u)− ρ(v)‖2. Hence

ε(ρ) = Tr(F TRRTF ) = Tr(RTFF TR) = Tr(RTLR).

2

EXAMPLE 3.4.7 Let G and ρ be the graph and representation, respectively, in
Example 3.4.4. Then

RTLR =

 12 0 0
0 12 0
0 0 100

 .
Since Tr(RTLR) = 124, it follows that ε(ρ) = 124.

Of course for a given graph G, the energy depends on its representation. How-
ever, some representations are more convenient than others. This leads us to the
following definition.
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DEFINITION 3.4.8 A represention ρ of a graph G with vertex set V is balanced
if
∑
v∈V ρ(v) = 0.

Thus if ρ is represented by R, then ρ is balanced if and only if eTR = 0. Observe
that the representation of the graph W4 in Example 3.4.4 is balanced.

Given a graph G on n vertices and a positive integer k ≤ n − 1, our goal is
to find a representation ρ that minimizes the energy. To this end, observe that if G
is drawn in <k, we can translate the graph so that it balanced without changing the
quantities ‖ρ(u)−ρ(v)‖2. Hence from this point on, we can assume that a graph G is
drawn so that its representation ρ is balanced. Letting R be the n×k representation
matrix, observe that if M is a k × k invertible matrix, then the representation of
G represented by the matrix RM provides us with the same information about the
graph G as ρ does. From this point of view, ρ is determined by the column space
of R (see [33]). Therefore, not only can we assume that ρ is balanced, but that
the columns of R are orthonormal, i.e., RTR = I. This gives rise to the following
definition:

DEFINITION 3.4.9 Let G be a graph and let ρ be a balanced representation with
R as the corresponding representation matrix. If RTR = I, then ρ is an orthogonal
representation of G.

Before presenting the main theorem of this section, we provide a matrix-theoretic
lemma from [33], which we state without proof:

LEMMA 3.4.10 Let M be a real symmetric n×n matrix. If R is an n×k matrix
such that RTR = I, then Tr(RTMR) is greater than or equal to the sum of the k
smallest eigenvalues of M . Equality holds if and only if the column space of R is
spanned by the eigenvectors belonging to these eigenspaces.

We now present the main theorem of this section which is from [33]. This theorem
shows that given a connected graph, the eigenvalues of the Laplacian matrix give
us insight into the minimum energy of a balanced orthogonal representation of a
graph G.

THEOREM 3.4.11 Let G be a connected graph on n vertices with Laplacian ma-
trix L. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of L. Then the minimum energy
of a balanced orthogonal representation of of G in <k equals

∑k+1
i=1 λi.

Before proving this theorem, we should note that we will see in Chapter 4 that
since G is connected that λ2 > 0 and e is the basis for the eigenspace corresponding
to the eigenvalue λ1 = 0.

Proof: By Lemma 3.4.6, the energy of a representation whose representation
matrix is R is Tr(RTLR). From Lemma 3.4.10, the energy of an orthogonal repre-
sentation in <k is bounded below by the k smallest eigenvalues of L. We can realize
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this lower bound by taking the columns of R to be the vectors x1, . . . , xk such that
Lxi = λixi for i = 1, . . . , k.

Since x1 = e, it follows that the set {x2, . . . , xk} gives a balanced orthogonal
representation of G in <k−1 with the same energy. Conversely, we can reverse this
process to obtain an orthogonal (but not necessarily balanced) representation in <k
from a balanced orthogonal representation in <k−1 such that these two represen-
tions have the same energy. Therefore, the minimum energy of a balanced orthogonal
representation on G in <k equals the minimum energy of an orthogonal (not neces-
sarily balanced) representation in <k+1. Applying Lemma 3.4.10, we see that this
mimimum equals

∑k+1
i=2 λi (noting λ1 = 0). 2

OBSERVATION 3.4.12 From Lemma 3.4.10 and the proof of Theorem 3.4.11,
we see that to represent a graph in an orthogonally balanced way in <k+1 so that its
energy is minimized, we merely compute an orthonormal basis for the space spanned
by the set of eigenvectors {x2, . . . , xk+1} of L and let the vectors in this basis be
the columns of the representation matrix R. It should be noted, as in the following
example, that this balanced orthogonal representation of minimum energy is not
unique because (1) we may reverse the sign of any vector in the basis and (2) it may
be that λk+1 = λk+2 in which we can take many appropriate linear combinations of
the eigenvectors corresponding to λk+1 = λk+2.

EXAMPLE 3.4.13 Consider the graph of W4 in Example 3.4.4. To represent this
graph in an orthogonally balanced way in <3 so that its energy is minimized, observe
first that

L =


3 −1 −1 0 −1
−1 3 0 −1 −1
−1 0 3 −1 −1

0 −1 −1 3 −1
−1 −1 −1 −1 4

 .

It can be calculated that λ1 = 0, λ2 = λ3 = 3, and λ4 = λ5 = 5. The corresponding
eigenvectors, normalized to unit length and made orthogonal to each other by use
of the Gram-Schmidt Process, are:

x1 =


0.447
0.447
0.447
0.447
0.447

 , x2 =


−0.707

0
0

0.707
0

 , x3 =


0

−0.707
0.707

0
0

 , x4 =


0

0.408
0.408

0
−0.816

 ,

x5 =


0.548
−0.365
−0.365

0.548
−0.365

 .
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Hence

R =


−0.707 0 0

0 −0.707 0.408
0 0.707 0.408

0.707 0 0
0 0 −0.816


Recalling that the rows of R represent the locations of each vertex of W4, this yields
the representation

By Theorem 3.4.11, the energy is
∑4
i=2 λi = 11 and this is the minimum energy of

any balanced orthogonal representation of W4 in <3.

Exercises:

1. Represent the graph below in each of <2 and <3 as a balanced orthogonal repre-
sentation of minimum energy. What is the energy in each case?

2. (See [33]) If G is a weighted graph where wuv represents weight of the edge uv,
then the energy of a representation ρ is

ε(ρ) =
∑

uv∈E(G)

wuv‖ρ(u)− ρ(v)‖2.
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Let F be the incidence matrix of G, R be the representation matrix, and W be the
diagonal matrix of the weights of the edges of G (where the rows and columns of W
are indexed in correspondence to the columns of F ). Prove that

ε(ρ) = Tr(RTFWF TR).

3. Use Exercise 2 to find the energy of the following weighted graph represented in
<3:

3.5 Laplacian Matrices and Networks

We close this chapter by investigating properties of Laplacian matrices for graphs
which represent networks. Loosely speaking, we define a network to be a system of
interacting entities. We represent networks as graphs where the vertices represent
the entities and edges are drawn between vertices whose corresponding entities
interact with each other. One example of a network is the World Wide Web. In this
network, the vertices represent websites and edges are placed between vertices whose
websites are linked to each other. Airline routes are another example of networks. In
this network, the vertices represent cities with airports and edges join vertices whose
corresponding cities have a direct flight between them. The human population (also
known as “six degrees of separation”) can be seen as a network where each person
is represented by a vertex and an edge is placed between two vertices if the two
corresponding people know each other. Citation networks are also common where
each vertex represents an academic source (e.g., a paper, book, website, etc.) and
an edge is placed between two sources if one source cites the other [80]. In this
section, we will focus on three types of networks and investigate the eigenvalues of
the Laplacian matrices of the graphs that represent these networks.

The first type of network we discuss are random graphs. We begin with a formal
definition:

DEFINITION 3.5.1 A random graph is a graph that is chosen with probability
p from all graphs on n vertices and m edges where n and m are fixed.

Oberve that there are Cn2 = n(n−1)
2 := N pairs of vertices between which to

place edges. There are two common random graph models. The first is G1(n,m)



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Introduction to Laplacian Matrices 115

where each graph on n vertices and m edges has equal probability of being cho-

sen, namely
(
CNm

)−1
. The second random graph model, G2(n, p), is where each of

the n(n − 1)/2 pairs of vertices has a probability p of there being an edge placed
between them. Given a graph G having n vertices and m edges, suppose we want
to find the probability that G will be chosen at random from the G2(n, p) model.
Then the probability that the m pairs of adjacent vertices of G will be chosen is pm

while the probability of the N −m pairs of nonadjacent vertices of G being chosen
is (1 − p)N−m. Hence the probability that G will be chosen is pm(1 − p)N−m (see
[80]). In applications, it is often the case that m ≈ np. In this case, G1(n,m) and
G2(n, p) are essentially equivalent when n is large [8].

On graphs with n vertices where n is large, it is impossible with today’s com-
puters to determine the eigenvalues of the Laplacian matrices of all possible graphs
on n vertices. In [81], 2000 graphs on n = 2500 vertices were chosen randomly using
the G2(n, p) model with probabilitly p = 0.08. The eigenvalues of the corresponding
Laplacian matrices were computed. Let (d1, . . . , dn) be the degree sequence of each
graph (degrees listed in nonincreasing order) and let λ1 ≤ . . . ≤ λn be the eigenval-
ues of the Laplacian matrix. The following trends were observed:

(a) For all graphs, d1 + 1 ≤ λn ≤ d1 +
√
d1.

(b) For all graphs, dn −
√
dn ≤ λ2 ≤ dn +

√
dn.

Thus λn and λ2 are strongly related to the largest and smallest vertex degrees,
respectively. It was also observed that for large n that λi ≈ dn−i+1. Hence in large
graphs, the eigenvalues are most affected by the degrees of the vertices rather than
the location of the edges connecting these vertices.

The next type of network we discuss are small world networks. Small world
networks are characterized by having a relatively small diameter. A common small
world network would be the human population and the idea of “six degrees of sep-
aration” [80]. In this network, we would represent each person as a vertex and join
two vertices with an edge if the two corresponding people know each other. The the-
ory is that this graph of approximately six billion vertices would have a diameter
of only six. Small world networks are created in two ways:

DEFINITION 3.5.2 [80] The Watts-Strogatz model (WS) starts with a cycle on
n vertices. In each step of the creation of the network, replace an edge of the existing
graph with a random edge with probability p.

DEFINITION 3.5.3 [80] The Newman-Watts model (NW) starts with a cycle on
n vertices. In each step of the creation of the network, add a random edge to the
existing graph with probability p.

Below are two graphs representing small-world networks. The graph in (a) is created
using the WS model while the graph in (b) is created using the NW model.
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In [81], 1000 graphs each were created using the SW and NW models. In both
cases, n = 2500 and 50 edges were replaced/added using probabilities p = 0.15 and
p = 0.02 for the SW and NW models, respectively. The following were observed in
both the SW and NW models:

(a) In 80% of the graphs, d1 ≤ λn ≤ d1 +
√
d1 while in the remaining 20% of

the graphs, λn > d1 +
√
d1.

(b) In all graphs, λ2 < dn −
√
dn.

Thus knowing only the values of n, p, and the number of edges replaced/added
are needed for estimating the eigenvalues of the Laplacian matrices. The manner in
which the edges are placed makes little difference in the eigenvalues of Laplacian
matrices of graphs representing small world networks.

The final type of network we investigate is the scale-free network. In graphs rep-
resenting scale-free networks, there is a higher proportion of vertices of large degree.
The number of vertices of degree k is proportional to kd for some exponent d [80].
Scale-free networks are often used to model citation networks where the vertices
represent references and edges are placed between references if one reference cites
another. In academia, it is often the case that references that have been cited more
often are more likely to be cited in the future [13, 14]. Hence in a graph modeling
a citation network, there will be a higher proportion of vertices of large degree.

To create a scale-free network, start with a connected graph on n0 vertices where
n0 is small. In each step t, introduce a new vertex and join it to k existing vertices
where 1 ≤ k ≤ n0. The new vertex is made adjacent to an existing vertex i of degree
di with probability

di∑n
j=1 dj

(3.5.1)

where n = n0 + (t − 1) vertices at the (t − 1)st step [81]. A convenient way to
understand which vertices a new vertex will be made adjacent to is to think of
putting di copies of each vertex in a hat, e.g., a vertex of degree 3 is placed in a hat
3 times. Then keep drawing vertices out of the hat until you have drawn k distinct
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vertices. Edges are then placed between the new vertex and each of the k vertices
drawn.

EXAMPLE 3.5.4 Consider the graph below.

We will let k = 2, i.e., for each new vertex v added, we will join v to two existing
vertices. Observe that d5 = 4, d2 = 3, d1 = d3 = d4 = 2, and d6 = 1. Letting P (vi)
denote the probability that vertex i is chosen, we see from (3.5.1) that P (v5) = 4/14,
P (v2) = 3/14, P (v1) = P (v3) = P (v4) = 2/14, and P (v6) = 1/14. Hence the vertices
with larger degree are more likely to be chosen. Suppose that vertices 4 and 5 are
chosen. Then the new vertex introduced will be made adjacent to vertices 4 and 5
thus creating:

Next we choose k = 2 vertices for a new vertex to be made adjacent to. Observe
now that P (v5) = 5/18, P (v2) = P (v4) = 3/18, P (v1) = P (v3) = P (v7) = 2/18,
and P (v6) = 1/18. Suppose that vertices 2 and 5 are chosen. Then the resulting
graph will be:

Observe that in each step, vertices with larger degree are more likely to be chosen.
Hence the degrees of these vertices are likely to increase in subsequent steps, while
vertices of small degree are likely to remain having a small degree.

In [81], 1000 graphs on n = 2500 vertices representing scale-free networks were
tested with n0 = 5 and k = 4. The results obtained were similar to the results
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obtained in the simulation involving random graphs. Hence the eigenvalues of the
Laplacian matrices for the graphs representing scale-free networks are strongly re-
lated to the degrees of the vertices, rather than the location of the edges. For large
scale-free networks, it was seen that λi ≈ dn−i+1.

We have investigated three types of networks that have numerous applications
outside of mathematics. Upon investigating random graph networks, small world
networks, and scale-free networks, we see that there is much interest in studying
the eigenvalues of the Laplacian matrices of the graphs representing these networks,
especially λ2 and λn. In the remaining chapters, we will focus much attention on
the eigenvalues of Laplacian matrices for graphs as they appear to provide us with
a wealth of information as to the structure of the graph.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Chapter 4

The Spectra of Laplacian
Matrices

In Chapter 3, we learned that one motivation for studying Laplacian matrices is
that their spectra can give us a great deal of information about the structure of
the graph. In this chapter, we investigate the overall spectra of Laplacian matrices.
We do this by first investigating the effects on the spectra when we perform certain
operations on graphs. We then continue our study more deeply by finding upper
bounds on the largest eigenvalue of the Laplacian matrix, hence bounding the set
of all eigenvalues of the Laplacian matrix. Once we do that, we are better able to
study how the eigenvalues of the Laplacian matrix are distributed. Since 1 is of-
ten an eigenvalue, we investigate the properties of graphs that lead to 1 being an
eigenvalue of the Laplacian matrix. We then deepen our investigation to see the dis-
tribution of eigenvalues less than 1 and eigenvalues greater than 1. By investigating
the distribution of the eigenvalues and having the knowledge of an upperbound on
the set of all eigenvalues of the Laplacian, we then prove the Grone-Merris Conjec-
ture which gives upper bounds on each eigenvalue individually. This leads us to the
study of maximal (threshold) graphs which are graphs in which the Grone-Merris
Conjecture is sharp for each eigenvalue. Since the bounds obtained from the Grone-
Merris Conjecture are integers, it becomes natural to investigate graphs which are
Laplacian integral, i.e., graphs whose Laplacian eigenvalues are all integers.

4.1 The Spectra of Laplacian Matrices under Certain
Graph Operations

In Section 3.1, we saw that Laplacian matrices are symmetric; hence, all Laplacian
eigenvalues are real numbers. Moreover, since the sum of the absolute values of
the off-diagonal entries in each row of a Laplacian matrix is equal to the diagonal
entry of the row, it follows by the Gersgorin Disc Theorem (Theorem 1.2.1) that all
eigenvalues of a Laplacian matrix lie in the right half of the complex plane. Thus
it follows that all eigenvalues of a Laplacian matrix are nonnegative real numbers
making it a postive semidefinite M-matrix. Since e, the vector of all one’s, is an

119
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eigenvector for a Laplacian matrix corresponding to the eigenvalue 0, it follows
that 0 is the smallest eigenvalue of a Laplacian matrix. Therefore we can order the
eigenvalues of Laplacian matrices as follows:

0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn.

Observe that if G is a disconnected graph, then we can permute its Laplacian
matrix L into a block diagonal matrix with each block corresponding to a compo-
nent of G. Therefore, if G has k components, we can obtain k linearly independent
eigenvectors corresponding to the eigenvalue zero. We state this more precisely in
the following theorem:

THEOREM 4.1.1 Let G be a weighted graph on n vertices with k components and
Laplacian matrix L. Then λ1 = . . . = λk = 0 and λk+1 > 0.

Proof: Letting L1, . . . , Lk be the Laplacian matrices for each of the k compo-
nents, we see that L can be permuted into a block diagonal matrix with L1, . . . , Lk
as the blocks. Letting e(i) be the vector consisting of ones in the entries correspond-
ing to the ith component of G and zeros elsewhere, observe that the set of vectors
{e(1), e(2), . . . , e(k)} is a linearly independent set of eigenvectors of L corresponding
to the eigenvalue zero. Since each block Li is an irreducible singular M-matrix, it
follows from Theorem 1.4.10 that zero is a simple eigenvalue of Li for each i. Thus
the set {e(1), e(2), . . . , e(k)} forms a basis for the eigenspace of L corresponding to
the eigenvalue zero. Since the algebraic and geometric multiplicities are equal for
each eigenvalue of a symmetric matrix, the result follows. 2

It is often of interest to observe how the eigenvalues of the Laplacian matrix
change when edges are added or deleted from a graph, or if the weight of an existing
edge changes. The following theorem gives us insight as to how the values of the
eigenvalues change in such cases:

THEOREM 4.1.2 Let G be a graph on n vertices, and let Ĝ be a graph on n
vertices created from G by adding a weighted edge joining two nonadjacent vertices
in G, or increasing the weight of an existing edge in G. Then for all i = 1, . . . , n,
we have λi(L(G)) ≤ λi(L(Ĝ)).

Proof: Observe that L(Ĝ) = L(G) +A for some positive semidefintie matrix A.
The result now follows immediately from Corollary 1.2.11. 2

Theorem 4.1.2 says that when we add an edge joining nonadjacent vertices, or if
we increase the weight of an existing edge, then the corresponding eigenvalues will
either increase or remain unchanged; they will never decrease.

EXAMPLE 4.1.3 Consider the unweighted graph G on the left below. Observe
the eigenvalues of the Laplacian matrix for G are λ1 = 0, λ2 = 1, λ3 = 2, λ4 = 4,
and λ5 = 5. Now suppose we create the graph Ĝ on the right by adding an edge
joining vertices 1 and 4 of G:
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We calculate the eigenvalues of the Laplacian matrix for Ĝ to be λ1 = 0, λ2 = 1.586,
λ3 = 3, λ4 = 4.414, and λ5 = 5. Observe that the values for λ2, λ3, and λ4 increase
when we add the edge joining vertices 1 and 4, and the values for λ1 and λ5 remain
unchanged. (Note: By Theorem 4.1.1 we expect λ1 = 0 in both cases.)

By Theorem 4.1.2, it follows that of all unweighted graphs on n vertices (for
fixed n), the graph with the largest eigenvalues is Kn, the complete graph on n
vertices. Observe that

L(Kn) = nI − J

where I is the identity matrix and J is the matrix of all one’s. As usual, e is an
eigenvector corresponding to λ1 = 0. As for the remaining eigenvalues, let f(i) be
the vector containing n entries with 1 in the first position, −1 in the ith position, and
zeros elsewhere. Observe that the set {f(i) | i = 2, . . . , n} is linearly independent.
Moreover, observe for each i = 2, . . . , n that

(L(Kn))f(i) = (nI − J)f(i) = nf(i)

Hence λ2 = λ3 = . . . = λn = n. This leads us to the following two corollaries for
unweighted graphs:

COROLLARY 4.1.4 Let G be an unweighted graph on n vertices with Laplacian
matrix L. If λ is an eigenvalue of L, then λ ≤ n.

Proof: Observe that every unweighted graph G on n vertices is a subgraph of
Kn. Since n is the largest eigenvalue of L(Kn), the result follows by Theorem 4.1.2. 2

COROLLARY 4.1.5 Let G be an unweighted graph on n vertices and L be its
Laplacian matrix with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. Then G = Kn if and only if
λ1 = 0 and λi = n for all 2 ≤ i ≤ n.

Proof: We saw earlier that if G = Kn, then λ1 = 0 and λi = n for all 2 ≤ i ≤ n.
For the converse, suppose G 6= Kn. Then G is a subgraph of Kn − e where e is any



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

122Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

edge. Without loss of generality, let e be the edge joining vertices 1 and 2 of G.
Letting L̂ be the Laplacian for Kn − e, we have

L̂ =



n− 2 0 −1 −1 . . . −1
0 n− 2 −1 −1 . . . −1
−1 −1 n− 1 −1 . . . −1
−1 −1 −1 n− 1 . . . −1
. . . . . . . . . . . . . . . . . .
−1 −1 −1 −1 . . . n− 1


Clearly λ1(L̂) = 0. Observe λ2 = n − 2 as [1,−1, 0, 0, . . . , 0]T is a corresponding
eigenvector. So by Theorem 4.1.2, λ2(L) ≤ n− 2 < n which proves the converse. 2

While Kn is the only (unweighted) graph on n vertices whose Laplacian matrix
is such that all eigenvalues other than λ1 are equal to n, we now investigate graphs
where at least one eigenvalue of the Laplacian matrix equals n. Recalling the con-
cept of the join of two graphs (Definition 2.2.9), we begin our investigation in the
following theorem which gives us all of the eigenvalues of the Laplacian matrix for
a graph which is the join of two graphs whose Laplacian spectra are known:

THEOREM 4.1.6 Let G1 and G2 be unweighted graphs on n1 and n2 vertices,
respectively. Let L1 and L2 be the Laplacian matrices for G1 and G2, respectively,
and let L be the Laplacian matrix for G1 ∨ G2. If 0 = α1 ≤ α2 ≤ . . . ≤ αn1 and
0 = β1 ≤ β2 ≤ . . . ≤ βn2 are the eigenvalues of L1 and L2, respectively. Then the
eigenvalues of L are

0, n2 + α2, n2 + α3, . . . , n2 + αn1 ,

n1 + β2, n1 + β3, . . . , n1 + βn2 , n1 + n2

Proof: Observe that

L =

[
L1 + n2I −J
−J L2 + n1I

]
(4.1.1)

where I is the identity matrix and J is the matrix of all ones, each matrix being
of the appropriate size. Let 0(k) and e(k) be the vectors consisting of k entries of
all zeros and ones, respectively. Observe that e(n1+n2) is an eigenvector of L corre-
sponding to 0. Similarly, [n2e

(n1) |n1e
(n2) ]T is an eigenvector of L corresponding to

n1 + n2.
If x(i) is an eigenvector of L1 corresponding to the eigenvalue αi for any

i = 2, . . . n1, then since the eigenvectors of a symmetric matrix are orthogonal,
it follows that (e(n1))Tx(i) = 0 and hence Jx(i) = 0(n1). Therefore, [x(i) | 0(n2) ]T is
an eigenvector of L corresponding to n2 +αi for i = 2, . . . , n1. By similar reasoning,
if y(j) is an eigenvector of L2 corresponding to the eigenvalue βj , then [ 0(n1) | y(j) ]T

is an eigenvector of L corresponding to n1 + βj for j = 2, . . . , n2. 2
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EXAMPLE 4.1.7 Let G1 and G2 be the cycles on four and five vertices, respec-
tively. Note that the eigenvalues of L(G1) are α1 = 0, α2 = 2, α3 = 2, α4 = 4, and
the eigenvalues of L(G2) are β1 = 0, β2 = 1.382, β3 = 1.382, β4 = 3.618, β5 = 3.618.
Also note that n1 = 4 and n2 = 5. Thus by Theorem 4.1.6, the eigenvalues of
L(G1 ∨ G2) are 0, 5.382, 5.382, 7, 7, 7.618, 7.618, 9, and 9.

Theorem 4.1.6 greatly helps us determine precisely which graphs have a Lapla-
cian matrix where n is an eigenvalue.

THEOREM 4.1.8 Let G be an unweighted connected graph on n vertices with
Laplacian matrix L. Then n is an eigenvalue of L if and only if G is the join of two
graphs.

Proof: If G is the join of two graphs, we see from Theorem 4.1.6 that n is an
eigenvalue of L. For the converse, suppose G is not the join of two graphs. Let
0 = λ1 < λ2 ≤ . . . ≤ λn be the eigenvalues of L. Consider the nonnegative matrix
L + J . Observe for i = 2, . . . , n that if x(i) is an eigenvector of L corresponding
to λi, then since Jx(i) = 0, it follows that x(i) is also an eigenvector of L + J
corresponding to λi. Also observe that n is an eigenvalue of L+ J corresponding to
e. Hence the eigenvalues of L + J are λ2 ≤ . . . ≤ λn ≤ n. Since G is not the join
of two graphs, L cannot be permuted to be of the form in (4.1.1). Therefore L+ J
is irreducible. Thus by Theorem 1.3.20(iv), n is a simple eigenvalue of L + J , and
therefore λn 6= n. 2

In Section 2.2, we saw that in addition to taking the join of two graphs, it is
often useful to take the product of two graphs. Hence it will be beneficial to have
a convenient way to find the eigenvalues of the Laplacian matrix for a graph which
is the product of two graphs whose Laplacian spectra are known. The following
theorem gives us the necessary information:

THEOREM 4.1.9 Let L(G) and L(H) be Laplacian matrices for G and H, respec-
tively. Let A = {α1, . . . , αn} and B = {β1, . . . , βp} be the eigenvalues of L(G) and
L(H), respectively. Then the eigenvalues of L(G ×H) are {αi + βj |αi ∈ A, βj ∈ B}.

Proof: Let v1, . . . , vp be vertices of H. Observe that

L(G ×H) =


L(G) + d1I F1,2 . . . F1,p

F2,1 L(G) + d2I F2,p

. . . . . . . . . . . .

Fn,1 Fn,2 . . . L(G) + dpI


where di is the degree of vertex vi ∈ H and where Fi,j = −I if vi and vj are
adjacent in H, and Fi,j = 0 otherwise. Suppose [x1, . . . , xn] is an eigenvector of L(G)
corresponding to α; suppose [y1, . . . , yp] is an eigenvector of L(H) corresponding to
β. Let

w = [y1x1 y1x2 . . . y1xn | y2x1 y2x2 . . . y2xn | . . . | ypx1 . . . ypxn]T .
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Then by matrix-vector multiplication, L(G ×H)w = (α+ β)w. 2

EXAMPLE 4.1.10 Consider the graphs G and H below:

Observe that the Laplacian matrices for G and H are:

L(G) =

 2 −1 −1
−1 2 −1
−1 −1 2


and

L(H) =


2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2

 .
Thus

L(G ×H) =



4 −1 −1 −1 0 0 0 0 0 −1 0 0
−1 4 −1 0 −1 0 0 0 0 0 −1 0
−1 −1 4 0 0 −1 0 0 0 0 0 −1

−1 0 0 4 −1 −1 −1 0 0 0 0 0
0 −1 0 −1 4 −1 0 −1 0 0 0 0
0 0 −1 −1 −1 4 0 0 −1 0 0 0

0 0 0 −1 0 0 4 −1 −1 −1 0 0
0 0 0 0 −1 0 −1 4 −1 0 −1 0
0 0 0 0 0 −1 −1 −1 4 0 0 −1

−1 0 0 0 0 0 −1 0 0 4 −1 −1
0 −1 0 0 0 0 0 −1 0 −1 4 −1
0 0 −1 0 0 0 0 0 −1 −1 −1 4



.

The eigenvalues of L(G) are 0, 3, 3; the eigenvalues of L(H) are 0, 2, 2, 4. From
Theorem 4.1.9, we see that the eigenvalues of L(G ×H) are 0, 2, 2, 3, 3, 4, 5, 5, 5,
5, 7, 7. To find an eigenvector of L(G × H), say corresponding to the eigenvalue 5,
we find an eigenvalue of L(G) and an eigenvalue of L(H) that add up to 5. Observe
that 3 and 2 are such eigenvalues. Note that an eigenvector of L(G) corresponding
to 3 is [1,−1, 0]T ; and eigenvector of L(H) corresponding to 2 is [1, 0,−1, 0]T . So
according to the proof of Theorem 4.1.9, an eigenvector of L(G ×H) corresponding
to 5 is [1,−1, 0 | 0, 0, 0 | − 1, 1, 0 | 0, 0, 0]T .

In keeping with the theme of determining the eigenvalues of Laplacian matrices
of graphs which are created from the operations of other graphs, we close this section
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by investigating the eigenvalues of the Laplacian matrix of the complement of a
graph (Definition 2.2.1). The spectrum of L(Gc) is closely related to the spectrum
of G, as we see from the following theorem:

THEOREM 4.1.11 Let G be an unweigted graph on n vertices with Laplacian
matrix L. Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of L. Then the eigenvalues
of L(Gc) are 0 ≤ n − λn ≤ n − λn−1 ≤ . . . ≤ n − λ2 with the same corresponding
eigenvectors.

Proof: Observe that L(Gc) = nI + J − L. Therefore, for i = 2, . . . n, if x is an
eigenvector of L corresponding to λi, then Jx = 0. Therefore

L(Gc)x = (nI + J − L)x = nIx+ Jx− Lx = (n− λi)x.

Thus (n− λi) is an eigenvalue with xi as a corresponding eigenvector. Finally, e is
an eigenvector of L(Gc) corresponding to 0. 2

EXAMPLE 4.1.12 Consider the following graph G and its complement Gc:

Note that

L(G) =


2 −1 0 0 −1
−1 3 −1 0 −1

0 −1 2 −1 0
0 0 −1 2 −1
−1 −1 0 −1 3


and that the eigenvalues for L(G) are 0, 1.382, 2.382, 3.618, 4.618. Since n = 5,
we obtain the eigenvalues for L(Gc) by subtracting these values λ2, . . . , λ5 from 5.
Therefore, the eigenvalues of L(Gc) are 0, 0.382, 1.382, 2.618, 3.618.

Exercises:

1. Using only the theorems concerning the eigenvalues of Laplacian matrices, prove
that if G is the join of two graphs then Gc is disconnected.

2. Let G be a graph whose Laplacian eigenvalues are 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
Find the eigenvalues of the Laplacian matrices of G ∨ G and G × G.

3. Find the eigenvalues of the Laplacian matrices of P2 ∨ P3 and P2 × P3.
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4.2 Upper Bounds on the Set of Laplacian Eigenvalues

We saw in Corollary 4.1.4 that for an unweighted graph G on n vertices, the set of
eigenvalues of the Laplacian matrix is bounded above by n. Moreover, by Theorem
4.1.8 the largest eigenvalue, λn, will equal n if and only if G is the join of two graphs.
In this section, we derive more precise upper bounds for the set of eigenvalues of
Laplacian matrices. Equivalently we will derive upper bounds on λn. We begin by
looking at a history of such upper bounds that have been discovered and we prove
the most recent discoveries. In all theorems, let (d) = (d1, d2, . . . , dn) be the degree
sequence of a graph where d1 ≥ d2 ≥ . . . ≥ dn, and let mv denote the average of the
degrees of the vertices adjacent to v.

We first begin with two upper bounds whose proofs are relatively simple. The
first upper bound comes from [2] and dates back to 1985.

THEOREM 4.2.1 Let G be an unweighted graph on n vertices with edge set E
and Laplacian matrix L. Then λn ≤ max{du + dv : uv ∈ E}.

Proof: Let F be the incidence matrix for G. Recall from Observation 3.1.11
that L = FF T and recall from Theorem 3.1.12 that N := F TF and L have the
same nonzero eigenvalues. Thus it suffices to show ρ(N) ≤ max{du + dv : uv ∈ E}.
Recall from Theorem 1.1.12 that ‖A‖∞ is the maximum row sum of |A|. By Lemma
1.1.13 we have ρ(N) ≤ ‖N‖∞. Yet each row of N corresponds to an edge uv of G
and the sum of the entries in such a row of |N | is deg u+ deg v. This establishes the
inequality. 2

An improvement of the upper bound in Theorem 4.2.1 was discovered in 1998
by Merris in [62]:

THEOREM 4.2.2 Let G be an unweighted graph on n vertices with vertex set v.
Then λn ≤ max{mv + dv : v ∈ V }.

Proof: Let L be the Laplacian matrix for G and let D be the diagonal matrix
consisting of the degrees of the vertices of G. Then the eigenvalues of L are the same
as the eigenvalues of the matrix C := D−1LD which is similar to L. Observe that
the ith diagonal entry ci,i of C is di and the off-diagonal entries ci,j are −dj/di if i
and v are adjacent, and zero otherwise. The result now follows by applying Theorem
1.2.1 to C. 2

Naturally, as results are improved, the proofs become more involved. In this
section, we present three modern results which are improvements over Theorem
4.2.2. The first two results apply to graphs while the third result is restricted to
trees. To prove our first result, we need a Lemma based on results from [57] and
[75]:

LEMMA 4.2.3 Let B be the adjacency matrix for the line graph of G and let ρ
be the largest eigenvalue of B + 2I. If λn is the largest eigenvalue of the Laplacian
matrix L, then λn ≤ ρ where equality holds if and only if G is bipartite.
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Proof: Let F be the incidence matrix of G. Recall from Theorem 3.1.12 that |L|
and |F TF | have the same nonzero eigenvalues. Since L = D − A and |L| = D + A
where D is the diagonal matrix of the vertex degrees of G and A is the adjacency
matrix of G, it follows from Corollary 1.1.19 that the largest eigenvalue of L cannot
be more than the largest eigenvalue of |L|. Since |F TF | = B + 2I the inequality
follows.

Let λn(L) and λn(|L|) denote the largest eigenvalues of L and |L|, respectively.
To complete the proof, since |L| and B + 2I have the same nonzero eigenvalues,
it suffices to prove λn(L) = λn(|L|) if and only if G is bipartite. First assume
λn(L) = λn(|L|). Let x be a unit eigenvector of L corresponding to λn(L) and let w
be a unit eigenvector of |L| corresponding to λn(|L|). Letting “∼” denote adjacency
and writing L as D −A, it follows from Theorem 1.2.4(ii) that

λn(L) = maxyT y=1 y
TLy

= maxyT y=1 Y
T (D −A)y

= maxyT y=1

∑
vi∼vj
i<j

(yi − yj)2

= xT (D −A)x

=
∑

vi∼vj
i<j

(xi − xj)2,

and
λn(|L|) = maxyT y=1 y

T |L|y

= maxyT y=1 Y
T (D +A)y

= maxyT y=1

∑
vi∼vj
i<j

(yi + yj)
2

= wT (D +A)w

=
∑

vi∼vj
i<j

(wi + wj)
2.

Since λn(L) = λn(|L|), it follows w = |x| and hence∑
vi∼vj
i<j

(xi − xj)2 =
∑
vi∼vj
i<j

(|xi|+ |xj |)2. (4.2.1)

Since for any pair of real numbers xi, xj we have (xi − xj)2 ≤ (|xi|+ |xj |)2, (4.2.1)
implies that (xi − xj)2 ≤ (|xi| + |xj |)2 whenever vertices vi and vj are adjacent.
Therefore, xi and xj are of opposite signs whenever vi and vj are adjacent. Let
W1 = {vi|xi > 0} and W2 = {vj |xj < 0}. For each edge e = vivj , since xi and xj
are of opposite signs, it follows that one of the vertices incident to e lies in W1 while
the other vertex incident to e lies in W2. Thus G is bipartite.
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For the converse, if G is bipartite with vertex partite sets V1 and V2, define the
diagonal matrix U such that uii = 1 if vertex i is in V1, and uii = −1 if vertex i is in
V2. Then |L| = U−1LU , thus L and |L| are unitarily similar. Hence if G is bipartite
then λn(L) = λn(|L|). 2

At this point, we begin to see that the adjacency matrix of the line graph will
play an important role in refining the upper bounds that we have obtained for
the eigenvalues of Laplacian matrices. We also see that bipartite graphs are good
candidates for the upper bounds being sharp. We now present our first modern
upper bound on λn whose proof is taken from [57].

THEOREM 4.2.4 Let G be an unweighted graph on n vertices with edge set E
and Laplacian matrix L. Then

λn ≤ max

{
du(du +mu) + dv(dv +mv)

du + dv
: uv ∈ E

}
. (4.2.2)

Equality occurs if G is a regular bipartite graph.

Proof: Let B be the adjacency matrix for the line graph of G. If uv and xy are
edges of G, then Buv,xy = 1 if uv and xy are adjacent, i.e., they are incident to a
common vertex. Likewise, Buv,xy = 0 if uv and xy are not adjacent. Let f be the
column vector whose entries are labeled in accordance with the labeling of B and
where the uvth entry of f is du + dv. Then the uvth component of (B + 2I)f is

((B + 2I)f)uv = 2(du + dv) +
∑
xy∼uv(dx + dy)

= 2(du + dv) +
∑
uy∼uv(du + dy) +

∑
xv∼uv(dx + dv)

= 2(du + dv) + d2
u +

∑
y∼u dy − (du + dv) + d2

v

+
∑
x∼v dx − (du + dv)

= d2
u +

∑
y∼u dy + d2

v +
∑
x∼v dx

= d2
u + dumu + d2

v + dvmv

= du(du +mu) + dv(dv +mv).

Therefore
((B + 2I)f)uv

fuv
=

du(du +mu) + dv(dv +mv)

du + dv
.

The inequality (4.2.2) now follows from Lemma 4.2.3 and Exercise 2 of Section 1.3.
Showing that equality holds when G is a regular bipartite graph is left as an

exercise. 2
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EXAMPLE 4.2.5 Consider the following graph G:

From G we create the following chart:

v dv mv dv(dv +mv)

1 2 3 10
2 3 2.33 16
3 2 2.5 9
4 2 2.5 9
5 3 2.33 16

Using this chart, we make the following chart for the edges of G with the bound
from Theorem 4.2.4:

edge bound

12 5.2
15 5.2
23 5
25 5.33
34 4.5
45 5

Thus if L is the Laplacian for G, then λn(L) ≤ 5.33 by Theorem 4.2.4. (Note: By
Corollary 4.1.4, we actually know that λn ≤ 5. However, we use this example for
the sake of simplicity. In subsequent examples, this bound will be better than that
of Corollary 4.1.4.)

REMARK 4.2.6 [57] to see that the bound in Theorem 4.2.4 is a better bound
than the bound in Theorem 4.2.2, suppose max{dv +mv : v ∈ G} = dx+mx. Then

du(du+mu)+dv(dv+mv)
du+dv

≤ du(dx+mx)+dv(dx+mx)
du+dv

= dx +mx

= max{dv +mv : v ∈ G}.

While the bound in Theorem 4.2.4 is a better bound than that of Theorem 4.2.2,
it should be noted that Theorem 4.2.2 is easier to apply, thus it is still relevant.
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Theorem 4.2.4 relies on the edges in a graph, making it cumbersome to use. We now
present a theorem from [55] which relies strictly on the degrees of the vertices and,
hence, will be easier to apply.

THEOREM 4.2.7 Let G be a connected unweighted graph on n vertices with
Laplacian matrix L. Then

λn ≤ max

{√
2dv(dv +mv) : v ∈ V (G)

}
, (4.2.3)

where equality holds if and only if G is a regular bipartite graph.

Proof: Let x = [x1, x2, . . . , xn]T be a unit eigenvector of L corresponding to λn.
Then Lx = λnx. Hence for u ∈ G we have

λnxu = duxu −
∑
v∈G

auvxv, (4.2.4)

where A = [auv] is the adjacency matrix of G. Therefore

λnxu =
∑
v∼u

(xu − xv).

By the Cauchy-Schwarz inequality, we have

λ2
nx

2
u ≤

(∑
v∼u 12

)∑
v∼u(xu − xv)2

= du
(∑

v∼u x
2
u − 2xu

∑
v∼u xv +

∑
v∼u x

2
v

)
.

Since ∑
v∼u

(xu + xv)
2 =

∑
v∼u

x2
u + 2xu

∑
v∼u

xv +
∑
v∼u

x2
v ≥ 0,

it follows that

−2xu
∑
v∼u

xv ≤
∑
v∼u

(x2
u + x2

v) = dux
2
u +

∑
v∼u

x2
v. (4.2.5)

Therefore
λ2
nx

2
u ≤ du

(∑
v∼u x

2
u + dux

2
u + 2

∑
v∼u x

2
v

)
= 2d2

ux
2
u + 2du

∑
v∼u x

2
v.

(4.2.6)

Because
∑
x2
u = 1 (since x is a unit vector), it follows from (4.2.6) that

λ2
n =

∑
u∈G λ

2
nx

2
u ≤ 2

∑
u∈G d

2
ux

2
u + 2

∑
u∈G du

(∑
u∼v x

2
v

)
= 2

∑
u∈G d

2
ux

2
u + 2

∑
u∈G x

2
u (
∑
u∼v dv)

= 2
∑
u∈G(d2

u +mudu)x2
u

≤ max{2du(du +mu) : u ∈ G}.
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This proves (4.2.3).
Suppose now that equality holds in (4.2.3). Then all inequalities in the above

argument must be equalities. In particular, we would have equality in (4.2.5) which
would imply

−2xu
∑
v∼u

xv =
∑
v∼u

(x2
u + x2

v)

which in turn implies

0 =
∑
v∼u

(x2
u + x2

v) + 2xu
∑
v∼u

xv =
∑
v∼u

(xu + xv)
2.

Therefore −xv = xu for each pair of adjacent vertices u and v. First note that no
entry xu in x can be zero, for if it were then all of vertices v adjacent to u would
be such that xv = 0. Because G is connected, this would force x = 0 which cannot
be an eigenvector. Since no entry of x is zero, we can define the vertex sets

V1 = {u ∈ G |xu > 0} and V2 = {u ∈ G |xu < 0}.

Then V1, V2 forms a partition of the vertices of G. Clearly there are no pairs of
vertices in V1 or V2 that are adjacent. Thus G is bipartite. For each vertex u ∈ G, it
follows from (4.2.4) that

(du − λn)xu =
∑
v∼u

xv = duxv = −duxu.

Thus du = λn/2 for each vertex u, hence G is regular. The converse is left as an
exercise. 2

EXAMPLE 4.2.8 Using the same graph and charts as in Example 4.2.5, we obtain
the following chart:

v
√

2dv(dv +mv)

1 4.47
2 5.66
3 4.24
4 4.24
5 5.66

Hence by Theorem 4.2.7, λn ≤ 5.66.

While the bounds in Theorem 4.2.4 is an improvement over that of Theorem 4.2.2,
it is incomparable to bound from Theorem 4.2.7 as we see in the following example:

EXAMPLE 4.2.9 Consider the following graphs (G1 is taken from [55]):
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λn Thm 4.2.2 Thm 4.2.4 Thm 4.2.7

G1 7.092 8.75 8.75 8.36

G2 4.481 5.33 5.33 5.66

G3 5.361 6.00 5.66 6.92

Note that for G1, the bound from Theorem 4.2.7 is a better bound than the bound
from Theorem 4.2.4; however, the bound from Theorem 4.2.4 is better than that of
Theorem 4.2.7 for G2 and G3.

We now turn our attention to trees and develop an upper bound on the largest
eigenvalue of the Laplacian matrix for a tree. Bethe trees will be important in the
development of such an upper bound. Recall in Section 2.3 that we defined a rooted
m-ary Bethe tree. We now recast this definition in light of our needs here. This
definition is from [40] and [77].

DEFINITION 4.2.10 A rooted Bethe tree, B∆,k, is a rooted tree on k levels where
the root vertex has degree ∆− 1, each vertex on levels 2 through k − 1 has degree
∆, and each vertex on level k is pendant.
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OBSERVATION 4.2.11 If we let bi denote the number of vertices of B∆,k whose
distance from the root is i (i.e., on level i− 1), then b0 = 1 and

bi = bi−1(∆− 1) for i = 1, . . . , k.

Since our proof of an upper bound on the largest eigenvalue of the Laplacian
for trees will involve the line graph of B∆,k, we should note that such a line graph
looks like:

From the drawing of B∆,k, we see that if T is a tree whose maximum vertex
degree is ∆ then there exists a natural number k such that T is an induced subgraph
of B∆,k. To see this, let u be a vertex in T such that du < ∆, and declare u to be the
root of T . Let k be the largest distance from u to any other vertex in T . Now create
B∆,k from T by adding the appropriate vertices and edges. Therefore, it follows from
Theorem 4.1.2 that λn(L(T )) ≤ λn(L(B∆,k)). This fact will assist us in proving our
next theorem from [77] which gives us an upper bound on the eigenvalues of the
Laplacian matrix of a tree.

THEOREM 4.2.12 Let L be the Laplacian matrix for a tree T with maximum
degree ∆. Then λn(L) < ∆ + 2

√
∆− 1.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

134Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Proof: Let k be a natural number so that T is an induced subgraph of B∆,k,
and let B∗ be the line graph of B∆,k. Let B be the adjacency matrix for B∗ and let
µ be the largest eigenvalue of B. Since all trees are bipartite, it follows from Lemma
4.2.3 that

λn(L(B∆,k)) = µ+ 2. (4.2.7)

By Theorem 4.1.2, it suffices to show µ + 2 < ∆ + 2
√

∆− 1. Let x be a unit
eigenvector of B corresponding to the eigenvalue µ.

Let e1 and e2 be edges of B∆,k having the same distance from the root vertex
of B∆,k. Then e1 and e2 are isomorphic in B∆,k and hence the vertices in B∗

corresponding to e1 and e2 are isomorphic. Since B is nonnegative and irreducible, it
follows from Theorem 1.3.20(iv) that µ is a simple eigenvalue of B. Hence xe1 = xe2 .
Therefore, from this point on, for i = 1, . . . , k, let xi denote any component of x
corresponding to any of the edges e of B∆,k for which the distances of vertices
incident with e are i − 1 and i from the root vertex of B∆,k. Letting bi denote the
number of edges with component xi as in Observation 4.2.11, it follows from x being
a unit vector that

b1x
2
1 + b2x

2
2 + . . .+ bkx

2
k = 1. (4.2.8)

Let E∗ be the set of edges in B∗ and let e1 and e2 be edges in B∆,k, hence
vertices in B∗. It follows from Theorem 1.2.4(ii) that

µ = 2
∑

(e1,e2)∈E∗
xe1xe2 . (4.2.9)

Noting that the edges in B∆,k sharing a common vertex form a complete subgraph,
it follows from (4.2.9) that

µ = 2
(∑k−1

i=0 bi
(∆−1

2

)
x2
i+1 +

∑k−1
i=1 bi(∆− 1)xixi+1

)
=
∑k−1
i=0 bi(∆− 1)(∆− 2)x2

i+1 + 2
∑k−1
i=1 bi(∆− 1)xixi+1

= (∆− 2)
∑k−1
i=0 bi+1x

2
i+1 + 2

∑k−1
i=1 bi+1xixi+1

= (∆− 2)
∑k
i=1 bix

2
i + 2

∑k−1
i=1 bi+1xixi+1

= ∆− 2 + 2
∑k−1
i=1 bi+1xixi+1,

(4.2.10)

where the third equality follows from Observation 4.2.11 and the last equality follows
from (4.2.8). Turning our attention to the summation, define the vectors

p : =
[√

b2x1,
√
b3x2, . . . ,

√
bkxk−1

]
and

q : =
[√

b2x2,
√
b3x3, . . . ,

√
bkxk

]
.
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Applying the Cauchy-Schwarz inequality to p and q we obtain

∑k−1
i=1 bi+1xixi+1 ≤

√
b2x2

1 + b3x2
2 + . . .+ bkx

2
k−1

√
b2x2

2 + b3x2
3 + . . .+ bkx

2
k

=
√

(∆− 1)(b1x2
1 + b2x2

2 + . . . bk−1x
2
k−1)

√
1− b1x2

1

=
√

(∆− 1)(1− bkx2
k)
√

1− b1x2
1

<
√

∆− 1,
(4.2.11)

where the first equality follows from Observation 4.2.11, the second equality follows
from (4.2.8), and the final inequality follows from the fact that x1 6= 0. (Note: We
know x1 6= 0 because if x1 = 0 then by induction on (4.2.9) it would follow that
xi = 0 for all i = 2, . . . , k.)

Plugging (4.2.11) into (4.2.10), we obtain

µ < ∆− 2 + 2
√

∆− 1.

From (4.2.7) we obtain

λn(L(B∆,k)) < ∆ + 2
√

∆− 1.

By Theorem 4.1.2 we have λn(L) ≤ λn(L(B∆,k)) which completes the proof. 2

EXAMPLE 4.2.13 Consider the tree G1 from Example 4.2.9. Observe that ∆ = 5.
Thus by Theorem 4.2.12, we have that λn(L(G1)) < 5 + 2

√
5− 1 = 9. While this

upper bound is slightly worse than the ones we got earlier, the bound in Theorem
4.2.12 is useful because of its simplicity to compute.

Exercises:

1. Prove that equality holds in Theorem 4.2.1 if and only if G is bipartite where the
vertices within each partite set have the same degree.

2. Use Theorems 4.2.4 and 4.2.7 to find upper bounds on the set of eigenvalues
for the Laplacian matrices of the following graphs.
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3. Use Theorems 4.2.4, 4.2.7, and 4.2.12 to find upper bounds on the set of eigen-
values for the Laplacian matrices of the following trees.

4. Show that equality holds in (4.2.2) when G is a regular bipartite graph.

5. Show that equality holds in Theorem 4.2.7 if G is a regular bipartite graph.

4.3 The Distribution of Eigenvalues Less than One and
Greater than One

In the previous section, we investigated upper bounds on the set of all eigenval-
ues of the Laplacian matrix. In this section, we investigate the distribution of such
eigenvalues. More specifically, we will investigate the number of eigenvalues in the
interval [0, 1), the multiplicy of the eigenvalue λ = 1, and the number of eigenvalues
in the interval (1,∞). The results we will obtain will assist us in understanding
the overall structure of the graph. Since adding edges to a graph typically increases
the eigenvalues according to Theorem 4.1.2, it follows that a graph having many
eigenvalues in [0, 1) is likely to not be “as connected” as graphs in which there are
more eigenvalues in (1,∞). In fact, we already saw from Theorem 4.1.1 that if zero
is an eigenvalue of multiplicity greater than one, then the graph is not connected.
Secondly, since we saw in Section 4.1 that graphs whose Laplacian eigenvalues are
integers tend to have predicatble structures, it follows that having eigenvalues in
the interval (1,∞) has the potential to be beneficial in prediciting the stucture of
the graph. Finally, we will see that the multiplicity of the eigenvalue λ = 1 gives
us insight into the number of pendant and quasipendant vertices of a graph. More
specifically, since trees often have a proportionally high number of pendant vertices,
we investigate the eigenvalues of the Laplacian matrices for trees and determine an
upper and lower bound for the multiplicity of the eigenvalue λ = 1.

For a graph G, let p(G) denote the number of pendant vertices of G; let q(G) de-
note the number of quasipendant vertices of G, that is, vertices that are adjacent to
pendant vertices. Let mG(λ) denote the multiplicity of the eigenvalue λ as an eigen-
value of the Laplacian matrix of G. Our first theorem from [26] gives a lower bound
on the multiplicity of the eigenvalue 1 as an eigenvalue of the Laplacian of any graph:

THEOREM 4.3.1 Let L be the Laplacian matrix for a graph G. Then mG(1) ≥
p(G)− q(G).
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Proof: Let G have n vertices. Let v1, . . . , vp be the p pendant vertices of G. Let
vn−q+1, vn−q+2, . . . , vn be the q quasipendant vertices of G where

vn is adjacent to v1, . . . , vk1 ,

vn−1 is adjacent to vk1+1, . . . , vk2 ,

vn−2 is adjacent to vk2+1, . . . , vk3 ,

. . .

vn−q+1 is adjacent to vkq−1+1, . . . vkq(= vp).

Hence the Laplacian matrix L for G is

1 0 −1
. . . 0 0 0 0 0 0 0 . . .

0 1 −1
1 0 −1

0 . . . 0 0 0 0 0 . . . 0
0 1 −1

. . . . . . . . . . . . . . . . . .
1 0 −1

0 0 . . . . . . 0 . . . 0 0 0
0 1 −1

0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 −1 . . . −1 ∗ dn−q+1 ∗
0 0 . . . 0 ∗ . . .
0 −1 . . . −1 0 0 ∗ dn−1

−1 . . . −1 0 0 0 ∗ ∗ dn


where the first q diagonal blocks are of dimension k1 × k1, . . . , kq × kq, and
where dj is the degree of vertex vj for j = n − q + 1, . . . , n. Let ea,b be the
vector on n entries where the ath entry is 1, the bth entry is −1, and all re-
maining entries are 0. Letting h0 = 0 and hi =

∑i
j=1 kj , observe that the sets

Ei := {ehi+1,hi+2, ehi+1,hi+3, . . . , ehi+1,hi+1
} are sets of eigenvectors corresponding

to the eigenvalue 1 for i = 0, 1, . . . , q − 1 if ki+1 ≥ 2. Observe that these sets yield
p− q linearly independent such eigenvectors. Thus mG(1) ≥ p(G)− q(G). 2

We should remark that we have inequality in Theorem 4.3.1 because it is possible
for there to be other linearly independent eigenvectors of L corresponding to the
eigenvalue 1. While this is rare, it does happen as in the following example from
[26]:
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EXAMPLE 4.3.2 Consider the graph G as follows:

Its Laplacian matrix is:

L =


1 −1 0 0 0
−1 4 −1 −1 −1

0 −1 1 0 0
0 −1 0 2 −1
0 −1 0 −1 2


Note that p(G) = 2 and q(G) = 1, hence p(G)−q(G) = 1. However, mG(1) = 2. In ad-
dition to the vectors listed in the proof of Theorem 4.3.1, the vector [−2, 0, 0, 1, 1]T

is also an eigenvector of L(G) corresponding to the eigenvalue 1.

Example 4.3.2 gives rise to the question of how many eigenvalues λ = 1 are
in excess of p(G)− q(G). As in [37], we define the spurious multiplicity of λ = 1 to
be

s(G) : = mG(1)− [p(G)− q(G)]. (4.3.1)

We now prove a theorem from [37] which gives us a relevant formula for s(G):

THEOREM 4.3.3 Let G be a graph containing p pendant vertices and q quasipen-
dant vertices, and let R be the set of vertices of G that are neither pendant nor
quasipendant. Let L be the Laplacian for G. Then s(G) = mL[R](1).

Proof: Let v1, . . . , vn be the vertices of G where v1, . . . , vr are the vertices of R,
vertices vr+1, . . . , vr+q are the quasipendant vertices, and vertices vn−p+1, . . . vn are
the pendant vertices. Assume that vr+i is adjacent to vn−p+i for each i = 1, . . . , q.
Then L has the form

L =

 L[R] X 0
XT Q C
0 CT I


where Q is the q × q matrix corresponding to the quasipendant vertices and I is
of order p corresponding to the p pendant vertices. Note that the submatrix of C
consisting of the first q columns of C is −I. Observe that L− I is row equivalent to L[R]− I 0 0

0 0 B
0 BT 0


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where B = [−Iq | 0]. Therefore

mG(1) = nullity[L− I]

= p− q + nullity(L[R]− I).

From this and (4.3.1), we see that s(G) = nullity(L[R]− I) = mL[R](1). 2

EXAMPLE 4.3.4 Revisiting the graph G in Example 4.3.2, we see that R =
{4, 5}. Note that

L[R] =

[
2 −1
−1 2

]
,

and that mL[R](1) = 1 as expected.

We now begin our discussion on the distribution of eigenvalues of the Lapla-
cian matrix in terms of the number of eigenvalues in the interval [0, 1) and the
number of eigenvalues in the inverval (1,∞). To this end we supply, without proof,
a necessary matrix-theoretic result from [37]:

LEMMA 4.3.5 (i) Suppose A is a 2q× 2q symmetric matrix and that det(A2k) =
(−1)k for all leading 2k × 2k principal submatrices A2k for k = 1, . . . , q. Then A
has q positive and q negative eigenvalues.

(ii) Suppose that B is a principal submatrix of the symmetric matrix A. Then the
number of eigenvalues of B that are greater than (respectively, greater than or equal
to, less than, less than or equal to) a given real number α is a lower bound for the
number of eigenvalues of A that are greater than (respectively, greater than or equal
to, less than, less than or equal to) α.

Now for the main result of this section which is also from [37]. For an inter-
val I, we will denote mG(I) as the number of eigenvalues of L(G) in I, counting
multiplicity.

THEOREM 4.3.6 Let G be a graph and L be its Laplacian. Suppose G has q
quasipendant vertices. Then mG [0, 1) ≥ q and mG(1,∞) ≥ q.

Proof: Number the quasipendant vertices of G as 1, 3, . . . 2q− 1. Let the vertex
numbered 2k be a pendant vertex adjacent to vertex 2k − 1 for k = 1, . . . , q. Let B
be the leading 2q × 2q principal submatrix of L. By Lemma 4.3.5(ii), it will suffice
to show that B has at least q eigenvalues greater than one and at least q eigenvalues
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less than one. To do this, let C = B−I; we will show that C satisfies the hypotheses
of Lemma 4.3.5(i). Observe

C =



(d1 − 1) −1 ∗ 0 . . . . . . ∗ 0
−1 0 0 0 . . . . . . 0 0

∗ 0 (d3 − 1) −1 . . . . . . ∗ 0
0 0 −1 0 . . . . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

∗ 0 ∗ 0 . . . . . . (d2q − 1) −1
0 0 0 0 . . . . . . −1 0


.

Since the even-numbered rows and columns each have a single nonzero entry, it
follows that using elementary row operations and column operations involving
adding even-numbered rows and columns to other rows and columns that C is

row/column equivalent to the direct sum of q copies of −P where P =

[
0 1
1 0

]
.

Hence det(C2k) = (−1)k for k = 1, . . . , q. By Lemma 4.3.5(i), it follows that C has
at least q positive and at least q negative eigenvalues. Recalling that C = B− I and
applying Lemma 4.3.5(ii) yield the desired result. 2

EXAMPLE 4.3.7 Observe that the graph below has q = 6 quasipendant vertices
and p = 10 pendant vertices:

Hence by Theorem 4.3.6, there will be at least six eigenvalues of L in the interval
[0, 1) and at least six eigenvalues of L in the interval (1,∞). Moreover, by Theorem
4.3.1 it follows that mG(1) ≥ p−q = 4. A computation verifies that there are exactly
six eigenvalues in [0, 1), the eigenvalue λ = 1 has multiplicity of four, and there are
seven eigenvalues in the interval (1,∞). Finally, since mG(1) = 4, it follows that
s(G) = 0. Note that L[R] = [3] and clearly mL[R](1) = s(G) = 0 as expected from
Theorem 4.3.3.

Since trees often have numerous pendant and quasipendant vertices, the spec-
trum of Laplacian matrices of trees is worth investigating in light of Theorem 4.3.1.
For a tree T , the quantity p(T )−q(T ) is typically much greater than 1. Thus in most
trees we expect 1 to appear often as an eigenvalue. However, it is often of interest to
investigate the multiplicities of other eigenvalues of trees. Our next theorem from
[37] discusses these ideas. Before proving this theorem, we need a matrix-theoretic
lemma:
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LEMMA 4.3.8 Let A be an n × n matrix of rank n − 1. Then the sum of the
determinants of all (n − 1) × (n − 1) principal submatrices is equal to the product
of the nonzero eigenvalues.

Proof: Let Φ(λ) be the characteristic polynomial of A. Since A has rank n− 1,
it follows that

Φ(λ) = λf(λ)

for some polynomial f where f(0) 6= 0. Thus

Φ′(λ) = λf ′(λ) + f(λ).

Hence Φ′(0) = f(0) and observe that f(0) is the product of the nonzero eigenvalues
of A.

Considering Φ(λ) from a determinant point of view, note that

Φ(λ) = det(A− λI).

By laborious calculations, we can conclude that

Φ′(λ) =
n∑
i=1

det(A[i]− λI)

where A[i] is the matrix obtained from A by deleting its ith row and ith column.
Hence

Φ′(0) =
n∑
i=1

det(A[i])

and the lemma is proven. 2

THEOREM 4.3.9 Suppose T is a tree on n vertices with Laplacian matrix L. If
λ > 1 is an integer eigenvalue of L with corresponding eigenvector x, then
(i) λ divides n
(ii) mT (λ) = 1
(iii) No coordinate of x is zero.

Proof: Since zero is an eigenvalue of L and L has all integer entries, it follows
that the characteristic polynomial of L is of the form xf(x) where f(x) is an integer
monic polynomial. By the Matrix Tree Theorem (Theorem 3.2.2) the determinant
of each (n − 1) × (n − 1) principal submatrix of L is 1. Thus the sum of the de-
terminants of all such submatrices of L is n. Hence by Lemma 4.3.8 the product
of the nonzero eigenvalues of L is n. Therefore f(0) = n. Since f(x) is an integer
monic polynomial, the integer roots of f(x) must all divide n by the Rational Zero
Theorem. This proves (i).

To prove (ii), we will first show that (iii) implies (ii). Using the contrapositive,
suppose that mT (λ) > 1. Then L has at least two linearly independent eigenvectors
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corresponding to λ. Thus we could take a linear combination of two of these eigen-
vectors to produce an eigenvector corresponding to λ with a zero coordinate in any
desired position. Thus (iii) implies (ii).

It now remains to show (iii). Let x be an eigenvector of L corresponding to λ
where the coordinates of x are labeled in correspondence with the vertices v1, . . . , vn
of T . By way of contradiction, assume that x has a zero coordinate. Without loss
of generality let xn = 0. Letting d be the degree of vn, we can write L in the form

B1 0 . . . 0 CT1
0 B2 . . . 0 CT2
. . . . . . . . . . . . . . .
0 0 . . . Bd CTd
C1 C2 . . . Cd d


where each Bi corresponds to a branch Ti at vn. Partitioning x conformally as
x = [x1, x2, . . . , xd, 0]T , we see that Lx = λx implies Bixi = λxi for all 1 ≤ i ≤ d.
Since at least one of these xi’s is nonzero, λ is an eigenvalue for some Bi, say B1

without loss of generality. Looking more closely at the branch T1, observe that the
matrices B1 and L(T1) differ by exactly one entry, namely that the diagonal entry
corresponding to the vertex adjacent in T to vn is one larger in B1 than it is in
L(T1). Without loss of generality, let v1 be the vertex adjacent in T to vn. Thus
B1 = L(T1) + E11 where E11 is the matrix whose only nonzero entry is one in the
(1, 1) position. Then detB1 = detL(T1) + detL11 where L11 is the submatrix of
L(T1) obtained by eliminating its first row and column. Since L(T1) is singular, it
follows that detL(T1) = 0. By the Matrix Tree Theorem it follows that detL11 = 1.
Thus detB1 = 1. Hence we see that λ > 1 is an integer eigenvalue the matrix B1

whose determinant is 1. Since the determinant of a matrix equals the product of
its eigenvalues, it follows that if g(x) is the characteristic polynomial of B1, then
g(0) = 1. Since g(x) is an integer monic polynomial whose constant term in one, it
follows from the Rational Zero Theorem that the only possible integer eigenvalues
of B1 are 1 and −1. Hence we have deduced a contradiction. 2

REMARK 4.3.10 We should note that Theorem 4.3.9 cannot be extended to
graphs in general. For example, consider C6, the cycle on 6 vertices. Letting L be
the Laplacian for C6. The eigenvalues of L, counting multiplicity, are 0, 1, 1, 3, 3, 4,
clearly defying (i), (ii), and (iii) of Theorem 4.3.9.

REMARK 4.3.11 In a tree T , λ = 1 is the only integer than can be an eigenvalue
of L of multiplicity greater than 1. All other integers, if they are eigenvalues of L,
must be simple.

For the Laplacian matrix of a tree, in addition to the integer eigenvalues greater
than one being simple, the next theorem from [37] shows that the largest eigenvalue
of such matrices is always simple.
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THEOREM 4.3.12 Let G be a connected bipartite graph with L as its Laplacian.
Then the maximum eigenvalue of L is simple. Specifically, if L is the Laplacian
matrix for a tree, then the maximum eigenvalue of L is simple.

Proof: Since G is bipartite, we can partition the vertices of G into two subsets
V1 and V2 so that no two vertices in Vi are adjacent for i = 1, 2. Let U be the
diagonal matrix in which the ith diagonal entry, uii, is as follows:

uii =


1, if vi ∈ V1

−1, if vi ∈ V2.

Observe that ULU−1 = |L|. Thus L and |L| are unitarily similar and, hence, have
the same spectrum. Since |L| is nonnegative and irreducible, it follows from Theo-
rem 1.3.8 that the maximum eigenvalue of |L| is simple. The result follows for all
bipartite graphs. Since all trees are bipartite, the result follows for trees. 2

We close this section with a theorem from [37] that further illustrates how the
multiplicity of eigenvalues for the Laplacian matrix of a tree is related to the number
of pendant vertices of a tree. This theorem applies to both integer and noninteger
eigenvalues.

THEOREM 4.3.13 Let T be a tree with Laplacian matrix L(T ). Let λ be an
eigenvalue of L(T ). If T has p pendant vertices, then mT (λ) ≤ p− 1.

Proof: Suppose that vn is a pendant vertex of T and let vn−1 be the quasipen-
dant vertex of T adjacent to vn. Let x = [x1, . . . , xn]T be an eigenvector of
L(T ) corresponding to λ. Then by the eigenvalue-eigenvector relationship we have
(1 − λ)xn = xn−1. First suppose that xn = 0. Then xn−1 = 0. In such a case, the
vector x′ = [x1, . . . , xn−1]T is an eigenvector of L(T ′) corresponding to λ where T ′
is the tree obtained from T by deleting vn and the edge incident to it. Thus if xr = 0
for all pendant vertices r, it would follow by induction that x = 0, a contradiction.
The same holds true if xr = 0 for all but one pendant vertices r. On the other hand,
if the eigenspace W of L(T ) corresponding to λ were to have dimension greater than
p − 1, then via linear combinations it would be possible to create an eigenvector
w ∈ W that is zero on all but (at most) one of its coordinates corresponding to
pendant vertices. 2

Theorems 4.3.13 and 4.3.1 yield the following immediate corollary which provides
upper and lower bounds on the algebraic multiplicity of the eigenvalue λ = 1 of a
tree.

COROLLARY 4.3.14 Let T be a tree with Laplacian matrix L and suppose T
has p pendant vertices and q quasipendant vertices, then p− q ≤ mT (1) ≤ p− 1.

Exercises:

1. Consider the following graph G:
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(a) Using Theorems 4.3.1 and 4.3.3, determine mG(1) exactly.

(b) Determine a lower bound on the number of eigenvalues in the interval [0, 1)
and in the interval (1,∞).

2. (See [37]) Let G be a graph on n vertices with p pendant vertices and q quasipen-
dant vertices. Define r = n − p − q. Let R be the subgraph of G induced by the r
vertices that are not pendant or quasipendant. Let α denote the maximum number
of vertices in any independent set of R. Letting s be the spurious multiplicity of the
eigenvalue λ = 1 of L as defined in (4.3.1), prove that s ≤ r − α.

3. (See [37]) Let G be a graph on n vertices and let H be the graph obtained
by making a vertex of G adjacent to a pendant vertex of P3, the path on three
vertices. Prove that mG(1) = mH(1).

4. Consider the following tree:

Let L be its Laplacian matrix. Find a lower bound for

(a) The multiplicity of the eigenvalue λ = 1.

(b) The multiplicity of each other integer 2, . . . , n as an eigenvalue of L. (Note
that the mulitiplicity is zero if such an integer is not an eigenvalue).

(c) Any noninteger eigenvalue λ.

5. Use Corollary 4.3.14 to find all of the eigenvalues for the Laplacian matrix of
a star on n vertices.
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4.4 The Grone-Merris Conjecture

The Grone-Merris conjecture gives an upper bound on each individual eigenvalue of
the Laplacian matrix of a graph in terms of the degrees of the vertices. It states that
the spectrum of the Laplacian matrix for any graph is majorized by the conjugate
of the degree sequence of the graph (see Definition 2.5.11). The Grone-Merris Con-
jecture is actually a misnomer in that it is now a theorem, proven in 2010 by Hau
Bai in [3]. The goal of this section, based mainly on [3] is to provide details of the
proof. To begin the process of proving the Grone-Merris Conjecture we begin with
a lemma from [3] concerning the Laplacian spectrum of split graphs (see Definition
2.2.17).

LEMMA 4.4.1 Let G be a split graph on n vertices whose clique contains N ver-
tices. Let L be the Laplacian of G. Then

λn−N+2 ≥ N ≥ ∆̃(G) ≥ λn−N (4.4.1)

where ∆̃(G) denotes the maximum degree of the vertices in the co-clique of G.

Proof: Let the co-clique of G contain M vertices, thus N + M = n. Let P be
the (N − 1)-dimensional subspace of <n consisting of vectors of the form

p :=

[
u
0

]

where u has N entries, 0 has M entries, and uT e = 0. Write L as

L =

[
L(KN ) +D1 −A

−A D2

]
where D1 and D2 are the appropriate diagonal matrices. Then for any unit vector
u, we have

pTLp = uT (L(KN ) +D1)u = uT (NI − J +D1)u

= NuTu− uTJu+ uTD1u

= N + uTD1u

≥ N.

Since p is a unit vector and P is an N − 1-dimensional subspace orthogonal to e, it
follows from Theorem 1.2.7 that

λn−N+2 = λn−(N−1)+1

= maxx∈P x
TLx

≥ pTLp

≥ N,
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proving the first inequality in (4.4.1). By similar reasoning, if we let Q denote the
M -dimensional subspace of <n consisting of vectors of the form

q :=

[
0
u

]

where u has u has M entries, 0 has N entries, and uT e = 0, then

λn−N ≤ qTLq = uTD2u ≤ ∆̃(G).

Since each vertex in the co-clique of G can be adjacent to at most N vertices, namely
the vertices in the clique of G, it follows that ∆̃(G) ≤ N . This completes the proof. 2

Observe that in the proof of Lemma 4.4.1 we labeled the eigenvalues in terms
of λn−i, the (i + 1)st largest, rather than λi, the ith smallest. This is because for
purposes of majorization, we require that a sequence of numbers be listed in non-
increasing order. Therefore we will denote the sequence of eigenvalues of L(G) by
λ(G) = (λn, λn−1, . . . , λ1).

We further our study of the spectrum of split graphs in the next lemma from [3]
which states a partial result of the Grone-Merris Conjecture. We state this lemma
without proof.

LEMMA 4.4.2 Let G be a split graph on n vertices whose clique has N vertices.
Let L be the Laplacian for G. If either λn−N+1 > N or λn−N+1 = N > ∆(G) (where
∆(G) denotes the maximum vertex degree in G), then

N∑
i=1

λn−i+1 ≤
N∑
i=1

d∗i .

When proving the Grone-Merris conjecture, we will investigate a split graph
created from a graph that is assumed to be a counterexample to the conjecture. In
essence, we will be proving the Grone-Merris conjecture by way of contradiction.
In the proof of the Grone-Merris conjecture, the counterexample we consider is the
graph on the fewest number of edges in which there exists an integer k defying Def-
inition 2.5.7. The following lemma from [3] gives us insight as to what the structure
of such a counterexample would be if such a counterexample exists.

LEMMA 4.4.3 Let G be the graph with the fewest number of edges containing a
minimum value k such that

k−1∑
i=1

λn−i+1 ≤
k−1∑
i=1

d∗i and
k∑
i=1

λn−i+1 >
k∑
i=1

d∗i

Suppose G has n vertices and that i and j are vertices such that di ≤ k and dj ≤ k.
Then i and j are not adjacent.
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Proof: We will prove this by contradiction. Assume this lemma is false, then
there exists a pair of adjacent vertices i and j where di ≤ k and dj ≤ k. Let G̃
be the graph obtained from G by deleting the edge ij. Since G is the graph on the
fewest number of edges which satisfies the statement of the lemma, it follows that

k∑
i=1

λn−i+1(G̃) ≤
k∑
i=1

d∗i (G̃).

Observing that L(G) = L(G̃) + Eij , it follows from the fact that λ(H1 +H2) �
λ(H1) + λ(H2) for any symmetric matrices H1 and H2 that∑k

i=1 λn−i+1(G) ≤
∑k
i=1 λn−i+1(G̃) +

∑k
i=1 λn−i+1(Eij)

≤
∑k
i=1 d

∗
i (G̃) + 2

=
[∑k

i=1 d
∗
i (G)− 2

]
+ 2

=
∑k
i=1 d

∗
i (G).

However, this contradicts the minimality assumptions of G in the statement of the
lemma, thus proving the lemma. 2

We are now ready to proceed with the main result of this section, the proof of
the Grone-Merris Conjecture. This proof is taken from [3].

THEOREM 4.4.4 The Grone-Merris Conjecture Let G be a graph on n ver-
tices with degree sequence d(G) and Laplacian spectrum λ(G). Then λ(G) � d∗(G).

Proof: We will prove this theorem by contradiction. Suppose that this theorem
is not true. Let G be a counterexample to the theorem. Then there exists an integer
k with 1 < k < n such that

k∑
i=1

λn−i+1 >
k∑
i=1

d∗i .

Without loss of generality, we assume that this integer k is minimum over all coun-
terexamples. Thus we have

k−1∑
i=1

λn−i+1 ≤
k−1∑
i=1

d∗i and λn−k+1 > d∗k.

We can assume further without loss of generality that the number of edges in G is
minimum over all counterexamples with the same k. Our goal will be to show that
no such graph G exists, thus establishing our contradiction.

We now create a new graph Ĝ by adding edges to G joining all pairs of nonad-
jacent vertices i, j in G such that both di ≥ k and dj ≥ k. By Lemma 4.4.3 we see



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

148Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

that in G, if vertices i and j are such that di < k and dj < k, then i and j are not
adjacent in G, hence not adjacent in Ĝ. Therefore G is a split graph where the clique
of Ĝ consists of the vertices in G whose degree (in G) is at least k. Thus the clique
contains N := d∗k(G) vertices. Also observe that the co-clique of Ĝ consists of the
vertices in G whose degree (in G) is less than k. Hence the maximum degree (in Ĝ)
of the vertices in Ĝ is ∆(Ĝ) ≤ k − 1. Note that

d∗i (Ĝ) = d∗i (G) for all i = 1, . . . , k

and by Theorem 4.1.2:

λi(Ĝ) ≥ λi(G) for all i = 1, . . . , n.

Therefore, it follows that

k∑
i=1

λn−i+1(Ĝ) >
k∑
i=1

d∗i (Ĝ) and λn−k+1(Ĝ) > d∗k(Ĝ) = N. (4.4.2)

The proof by contradiction will be complete when we show that none of N < k,
N = k, or N > k is possible. If N < k then since this is equivalent to N + 1 ≤ k,
we obtain λn−k+1(Ĝ) ≤ λn−(N+1)+1 ≤ N where the second inequality follows from

Lemma 4.4.1. Simplifying we obtain λn−k+1(Ĝ) ≤ N which contradicts (4.4.2). If
N = k then we have that Ĝ is a split graph with a clique of N vertices and

N∑
i=1

λn−i+1(Ĝ) >
N∑
i=1

d∗i (Ĝ) and λn−N+1(Ĝ) > N

by (4.4.2). But this contradicts Lemma 4.4.2.
The only remaining possibility is that N > k. Recall that Ĝ is a split graph

whose clique contains N vertices. Note that the minimum degree of the vertices in
the clique is at least N−1 while the maximum degree of the vertices in the co-clique
is at most k − 1. Since N > k, it follows that

d∗N−1(Ĝ) = . . . = d∗k+1(Ĝ) = d∗k(Ĝ) = N.

Recalling from Lemma 4.4.1 that λn−(N−1)+1(Ĝ) ≥ N , it follows that the inequality

k∑
i=1

λn−i+1(Ĝ) >
k∑
i=1

d∗i (Ĝ) can be extended to
N−1∑
i=1

λn−i+1(Ĝ) >
N−1∑
i=1

d∗i (Ĝ).

We complete the case of showing that N > k is not possible by considering the
relationship between λn−N+1(Ĝ) and N and showing that neither λn−N+1(Ĝ) ≥ N
nor λn−N+1(Ĝ) < N is possible. If λn−N+1(G) ≥ N , then since N = d∗N−1(Ĝ) ≥
d∗N (Ĝ), we have that

N∑
i=1

λn−i+1(Ĝ) >
N∑
i=1

d∗i (Ĝ) and λn−N+1(Ĝ) > N > ∆(Ĝ)
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which contradicts Lemma 4.4.2. If λn−N+1(Ĝ) < N , then we consider the comple-
ment of Ĝ which is also a split graph. Letting M be the number of vertices in the
clique of Ĝc and noting that there are N vertices in the co-clique of Gc, it follows
from Theorem 4.1.11 that

λn−M+1(Ĝc) = (N +M)− λn−N+1(Ĝ) > M.

Recall that if G is a graph on n vertices with conjugate degree sequence d∗(G) =
(d∗1, . . . , d

∗
n) then d∗(Gc) = (n− d∗n−1, . . . , n − d∗1, 0). Therefore for k = 1, . . . , n, we

have
k∑
i=1

λn−i+1(G) ≤
k∑
i=1

d∗i (G)

if and only if
n−1−k∑
j=1

λn−j+1(Gc) ≤
n−1−k∑
j=1

d∗j (Gc).

Therefore
M∑
i=1

λn−i+1(Ĝ) >
M∑
i=1

d∗i (Ĝ) and λn−M+1(Ĝc) > M

which contradicts Lemma 4.4.2.
We have proven that such a graph Ĝ, and hence a counterexample G, cannot

exist. This proves the theorem. 2

Theorem 4.4.4 shows that the spectrum of the Laplacian matrix of any graph
is majorized by the conjugate of the degree sequence. We now proceed with two
examples.

EXAMPLE 4.4.5 Consider the following graph G:

Observe that its degree sequence (d) = (3, 3, 2, 2, 2). Using a Ferrers-Sylvester di-
agram discussed in Section 2.5, we see that (d∗) = (5, 5, 2, 0, 0). Computing the
eigenvalues of L(G) to be λ(G) = (4.62, 3.62, 2.38, 1.38, 0), we obtain the following
chart:

k
∑k
i=1 λn−i+1

∑k
i=1 d

∗
i

1 4.62 5

2 8.24 10

3 10.62 12

4 12 12

5 12 12
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Observe that
∑k
i=1 λn−i+1 ≤

∑k
i=1 d

∗
i for all k = 1, . . . 5 and that equality holds

when k = 5. Thus λ(G) � d∗(G) as the Grone-Merris Conjecture states.

EXAMPLE 4.4.6 Consider the following graph G:

Observe that (d) = (5, 2, 2, 1, 1, 1) and that (d∗) = (6, 3, 1, 1, 1, 0). Computing the
eigenvalues of L(G), we see that λ(G) = (6, 3, 1, 1, 1, 0). Thus not only does the
Grone-Merris Conjecture hold, but we have equality in

∑k
i=1 λn−i+1 ≤

∑k
i=1 d

∗
i for

all k. Graphs in which equality holds for all k will be discussed in the next section.

Exercises:

1. Verify that the Grone-Merris Conjecture holds in the following graphs:

2. Find a graph such that λn−i+1 > d∗i for some 1 ≤ i ≤ n. This shows that while
the sum of the k largest eigenvalues is bounded above by the sum of the k largest
degree conjugates, the individual eigenvalues need not be bounded above by the
individual degree conjugates.

3. Prove that for complete graphs, equality holds in the Grone-Merris Conjecture
for all k.
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4. Let T be a tree. Prove that equality holds in the Grone-Merris Conjecture for all
k if and only if T is a star.

5. Prove that split graphs of the form Km ∨ (Kp)
c for some m and p are the only

split graphs in which equality holds in the Grone-Merris Conjecture for all k.

4.5 Maximal (Threshold) Graphs and Integer Spectra

In the previous section we proved the Grone-Merris Conjecture which states that
for all graphs, the spectrum is majorized by the conjugate of the degree sequence,
i.e.,

k∑
i=1

λn−i+1 ≤
k∑
i=1

d∗i (4.5.1)

for all k = 1, . . . , n. In this section, we investigate the conditions under which
equality holds in (4.5.1) for each k = 1, . . . , n and determine that equality holds
if and only if the graph is a maximal graph (see Definition 2.5.14). Recall that
Theorem 2.5.24 says the set of all maximal graphs can be partitioned in sets Γk
where Γ1 is the set of all complete graphs and Γk = {Gc ∨ Kr : G ∈ Γk−1} for
integers k ≥ 2. We apply this theorem to prove a theorem from [59] which shows
that the sequence of eigenvalues λ(G) of the Laplacian matrix for a maximal graph
is precisely the conjugate (d∗) of the degree sequence of G together with zero.

THEOREM 4.5.1 If G is a maximal graph on n vertices with Laplacian matrix
L, then all eigenvalues are integers. Moreover, if (d) = (d1, d2, . . . , dn) is the degree
sequence of G, and λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of L, then λ1 = 0 and
λn−i+1 = d∗i for 1 ≤ i ≤ n− 1.

Proof: Clearly λ1 = 0, by Theorem 4.1.1. By Theorem 2.5.24, it suffices to
prove this theorem for Γk for each integer k ≥ 1. We will prove by induction on k
that the entries in (d∗) are the remaining eigenvalues of L. For k = 1, we have Γ1

which is the family of complete graphs; the theorem is clearly true for this family
of graphs. Now suppose that the theorem is true for every graph in Γk for a fixed
k ≥ 1. Let G 6= Kn be a graph on n vertices such that G ∈ Γk+1. Then G = Hc ∨Kr

for some H ∈ Γk and for some r ≥ 1. To account for eigenvalues λn−i+1 of L(G)
where 1 ≤ i ≤ r, we consider the graphs Kr and Hc which are joined to create G.
Since Hc contains n− r vertices, and r is an eigenvalue of L(Kr) with multiplicity
r − 1, it follows from Theorem 4.1.6 that r + (n − r) = n is an eigenvalue of L(G)
with a multiplicity of r− 1 (so far). But since G is the join of two graphs, it follows
from Theorem 4.1.8 that λn(L(G)) = n. Hence n is an eigenvalue of L(G) with
multiplicity r, and therefore λn−i+1 = n for all 1 ≤ i ≤ r. But since G = H∨Kr, it
follows that there are exactly r vertices of G that are adjacent to every vertex in G.
Hence d∗i = n for 1 ≤ i ≤ r. Consequently λn−i+1 = d∗i for 1 ≤ i ≤ r.

We now account for eigenvalues λn−i+1 of L(G) where r + 1 ≤ i ≤ n− 1. Since
H consists of n− r vertices and H ∈ Γk, it follows by the inductive hypothesis,

λn−r−i+1(L(H)) = d∗i (H) (4.5.2)
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for all 1 ≤ i ≤ n − r − 1. Observe from the construction of the Ferres-Sylvester
diagram for G = Hc ∨Kr that

d∗i (H) = n− d∗n−i(G) (4.5.3)

for 1 ≤ i ≤ n− r − 1. Combining (4.5.2) and (4.5.3) we obtain

λn−r−i+1(L(H)) = n− d∗n−i(G) (4.5.4)

for 1 ≤ i ≤ n− r− 1. Since H is a graph on n− r vertices, it follows from Theorem
4.1.11 that

λi(L(H)) = n− r − λn−r−i+2(L(Hc)) (4.5.5)

for 2 ≤ i ≤ n− r. Combining (4.5.4) and (4.5.5) we obtain

n− r − λn−r−i+2(L(Hc)) = n− d∗r+i−1(G) (4.5.6)

for 2 ≤ i ≤ n− r, which simplifies to

r + λn−r−i+2(L(Hc)) = d∗r+i−1(G). (4.5.7)

Reindexing the subscripts, (4.5.7) can be rewritten as

r + λn−i+1(L(Hc)) = d∗i (G) (4.5.8)

for r + 1 ≤ i ≤ n − 1. Since Kr has r vertices and G = Hc ∨ Kr, it follows from
Theorem 4.1.6 that if λ is an eigenvalue of L(Hc) then r + λ is an eigenvalue of
L(G). Since λ ≤ n − r < n, it follows that the eigenvalues of L(G) of the form
r + λ are the eigenvalues λi of L(G) where 2 ≤ i ≤ n − r. Reindexing we obtain
r+λn−i+1(L(Hc)) = λn−i+1(L(G)) for r+ 1 ≤ i ≤ n− 1. This together with (4.5.8)
proves the theorem. 2

REMARK 4.5.2 While it may seem cumbersome to investigate the eigenvalues
in terms of λn−i+1 instead of in terms of λi, we do so to be consistent with the
previous section. In the previous section, we were concerned with the comparison
of the sum of the k largest eigenvalues with the sum of the k largest values in the
conjugate degree sequence. However, with maximal graphs these sums are equal for
all k. Hence each eigenvalue is equal to its corresponding term in the conjugate
degree sequence. Hence it is possible to study the eigenvalues of maximal graphs in
a less cumbersome manner. This leads us to the following corollary:

COROLLARY 4.5.3 Let G be a maximal graph on n vertices with degree sequence
(d) = (d1, d2, . . . , dn). Let L be the Laplacian matrix of G with eigenvalues λ1 ≤ λ2 ≤
. . . ≤ λn. Then λ1 = 0 and λi = d∗n−i+1 for 2 ≤ i ≤ n.

EXAMPLE 4.5.4 Let’s reconsider the graph G in Example 4.4.6:
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Observe that G = K1∨(Kc
2∨K3)c ∈ Γ3 and thus by Theorem 2.5.24 it follows that G

is maximal. Recall that we had equality in the Grone-Merris Conjecture for all k as
Theorem 4.5.1 verifies. Since (d∗) = (6, 3, 1, 1, 1), by Corollary 4.5.3 the eigenvalues
of L(G) are λ1 = 0, λ2 = 1, λ3 = 1, λ4 = 1, λ5 = 3, λ6 = 6.

Maximal graphs lead us to a convenient definition:

DEFINITION 4.5.5 A graph is Laplacian integral if all of the eigenvalues of its
Laplacian matrix are integers.

Recall from Theorem 4.1.2 that if an edge is added to a graph joining two
nonadjacent vertices, each eigenvalue of the Laplacian matrix will either increase or
remain unchanged. With this in mind, we now turn our attention to graphs (with
a distinct focus on maximal graphs) in which adding an edge causes all eigenvalues
to change by an integer (possibly zero). This leads us to another definition:

DEFINITION 4.5.6 Let G be a graph and suppose we add an edge e joining two
nonadjacent vertices. We say that a spectral integral variation occurs in k places if
adding e causes k of the eigenvalues of L(G) to increase by a positive integer.

If G is Laplacian integral and adding an edge e to G causes all of the eigenvalues
to increase by an integer, we have then created another Laplacian integral graph.
Observe that by adding an edge e, we are increasing two of the diagonal entries
of L(G) each by one. Thus Tr(L(G + e)) = Tr(L(G)) + 2. Hence if the eigenvalues
of L(G) increase only in integer increments then either (a) two eigenvalues of L(G)
each increase by one, or (b) one eigenvalue of L(G) increases by two. Thus if spectral
integral variation occurs by adding the edge e, then it can occur only in either one
or two places, and all of the remaining eigenvalues remain unchanged. The next goal
of this section is to determine the conditions for eigenvalues of the Laplacian matrix
to remain unchanged when an edge is added to a graph. To this end, we need three
matrix theoretic lemmas from [76].

LEMMA 4.5.7 Let A be a symmetric matrix partitioned

A =

[
a xT

x Z

]

where x is an (n− 1)-vector and Z is a symmetric (n− 1)× (n− 1) matrix. If the
spectrum of Z consists of n− 1 eigenvalues of A, then x = 0.
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Proof: Let {α1, . . . , αn} be the set of eigenvalues of A and suppose the set
of eigenvalues of Z is {α1, . . . , αk−1, αk+1, . . . , αn} for some 1 ≤ k ≤ n. Then
Tr(A2) − Tr(Z2) = α2

k and Tr(A) − Tr(Z) = αk. But observing the partition
of A we see that Tr(A2) = a2 + 2xTx + Tr(Z2) and Tr(A) − Tr(Z) = a. Conse-
quently, a = αk and therefore xTx = 0, which implies x = 0. 2

LEMMA 4.5.8 Let A be the symmetric matrix partitioned as in Lemma 4.5.7 and
let B = diag(β, 0, . . . , 0) where β 6= 0. Let {α1, . . . , αn} be the eigenvalues of A. If
the matrix C = A + B has eigenvalues {α1, . . . , αk + β, . . . , αn} for some k, then
x = 0.

Proof: Observe that the characteristic polynomials for A and C, respectively,
are

det(λI −A) = (λ− α1) · · · (λ− αn)

and
det(λI − C) = (λ− α1) · · · (λ− αk − β) · · · (λ− αn).

Therefore

det(λI − C) = det(λI −A)− β(λ− α1) · · · (λ− αk−1)(λ− αk+1) · · · (λ− αn).

From the partition of A, it follows that

det(λI − C) = det(λI −A)− β det(λI − Z).

Since β 6= 0, we have

det(λI − Z) = (λ− α1) · · · (λ− αk−1)(λ− αk+1) · · · (λ− αn).

Therefore the spectrum of Z consists of n− 1 eigenvalues of A. By Lemma 4.5.7 it
follows that x = 0. 2

LEMMA 4.5.9 Let A and B be symmetric matrices with spectra {α1, . . . , αn} and
{β, 0, . . . , 0}, respectively. Then the eigenvalues of A+B are {α1, . . . , αk+β, . . . , αn}
for some k if and only if AB = BA.

Proof: Without loss of generality, let B = diag(β, 0, . . . , 0). If β = 0 then
the result is trivially true, so assume β 6= 0. Let the eigenvalues of A + B be
{α1, . . . , αk +β, . . . , αn} for some k. By partitioning A as in Lemma 4.5.7, it follows
from Lemma 4.5.8 that x = 0. Therefore, clearly AB = BA. The converse is trivial.
2

We are now ready to investigate which eigenvalues remain unchanged when a
spectral integral variation occurs by adding an edge e to a graph G. If G + e is
created from G by adding the edge e joining the nonadjacent vertices i and j of G,
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then L(G + e) = L(G) + E for the appropriate matrix E. Note that the spectrum
of E is {2, 0, . . . , 0}. Our investigation will hinge upon the vertices in G to which
that i and j are adjacent. For a vertex v ∈ G, let N(v) denote the set of vertices
adjacent to v in G. We have the following observation from [76].

OBSERVATION 4.5.10 If i and j are vertices in G, then N(i) = N(j) if and
only if L(G)E = EL(G).

The following theorem from [76] characterizes the conditions on which eigenval-
ues remain unchanged when an edge e is added to a graph G.

THEOREM 4.5.11 Suppose G + e is created from G by adding an edge e between
two nonadjacent vertices i and j of G. Then the spectrum of L(G + e) overlaps the
spectrum of L(G) in n− 1 places if and only if N(i) = N(j).

Proof: By Lemma 4.5.9, the spectrum of L(G + e) overlaps the spectrum of
L(G) in n − 1 places if and only if L(G)E = EL(G). The result now follows from
Observation 4.5.10. 2

We should note that if n− 1 of the eigenvalues remain unchanged, then exactly
one eigenvalue changes. Since Tr(L(G + e)) = Tr(L(G)) + 2, it follows that the one
eigenvalue that changes increases by two.

EXAMPLE 4.5.12 Consider the following graph G:

The spectrum of L(G) is {0, 2, 2, 2, 4, 7, 7}. Observe that N(1) = N(2) = {4, 5}.
Therefore, if we add an edge between vertices 1 and 2 to create G+ e, the spectrum
of L(G + e), by Theorem 4.5.11, should differ from the spectrum of L(G) by only
one eigenvalue. Since Tr(L(G + e)) = Tr(L(G) + 2, the unique eigenvalue in L(G)
that changes should increase by two when creating G + e. Observe that this holds
as the spectrum of L(G + e) is {0, 2, 2, 4, 4, 7, 7}.

Since our focus is on maximal graphs, we note that Example 4.5.12 illustrates
the following corollary to Theorem 4.5.11 about graphs which are Laplacian integral
(see [76]):
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COROLLARY 4.5.13 Suppose G+e is created from G by adding an edge e between
two nonadjacent vertices i and j of G. If N(i) = N(j) then L(G + e) is Laplacian
integral if and only is L(G) is Laplacian integral.

The goal for the remainder of this section is to describe the conditions under
which adding an edge to a maximal graph results in a maximal graph, hence also
being Laplacian integral. To this end, we begin with a lemma from [23] which shows
the relationship between the two eigenvalues that change when a spectral integral
variation occurs in two places.

LEMMA 4.5.14 Let G be a graph on n vertices. If the spectral integral variation
of G occurs in two places by adding an edge e joining nonadjacent vertices i and j,
and if the changed eigenvalues are λk and λ`, then

λkλ` = didj + p

where p is the number of vertices in G adjacent to both i and j.

Proof: Without loss of generality, let i = 1 and j = 2. Then the Laplacian, L,
for G is of the form

L =



d1 0 −e(r)T 0(s)T −e(p)T 0(q)T

0 d2 0(r)T −e(s)T −e(p)T 0(q)T

−e(r) 0(r)

0(s) −e(s)

−e(p) −e(p)

0(q) 0(q)


Let L(G + e) = L + E where E is the appropriate matrix. In terms of diagonal
entries, observe

Tr((L+ E)2)− Tr(L2) = (d1 + 1)2 + 1 + (d2 + 1)2 + 1− d2
1 − d2

2

= 2d1 + 2d2 + 4.

However, in terms of eigenvalues, observe

Tr((L+ E)2)− Tr(L2) = (λk + 1)2 + (λ` + 1)2 − λ2
k − λ2

`

= 2λk + 2λ` + 2.

Therefore
λk + λ` = d1 + d2 + 1. (4.5.9)

Note that

Tr((L+E)3)−Tr(L3) = Tr(ELE)+Tr(LEL)+2Tr(LE2)+2Tr(L2E)+Tr(E3).
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In terms of diagonal entries, observe

Tr((L+ E)3)− Tr(L3) = 6(d1 + d2) + 3(d1 + d2)2 + 3(r + s) + 8.

In terms of the eigenvalues, observe

Tr((L+ E)3)− Tr(L3) = 3(λ2
k + λ2

` ) + 3(λk + λ`) + 2.

Setting these two quantities for Tr((L+E)3)− Tr(L3) equal and using (4.5.9), we
obtain

2λkλ` = 2d1d2 + d1 + d2 − r − s.

Using the fact that d1 = r + p and d2 = s+ p yields the desired result. 2

Lemma 4.5.14 gives rise to the following corollary:

COROLLARY 4.5.15 Let G1 and G2 be disjoint graphs and suppose that the spec-
tral integral variation of L(G1 + G2) occurs in two places by adding an edge joining
a vertex in G1 to a vertex in G2. Then either G1 or G2 is an isolated vertex.

We now present a theorem from [23] concerning graphs in general which will be
useful in our subsequent results involving maximal graphs.

THEOREM 4.5.16 Let G1 and G2 be connected graphs on n1 and n2 vertices,
respectively, where n1 ≤ n2. Let u ∈ G1 and v ∈ G2. Then the spectral integral
variation of L(G1 + G2) occurs in two places by adding the edge uv if and only if
G1 = {u}, n2 > 1, and the degree of v in G2 is n2 − 1.

Proof: Suppose the spectral integral variation occurs in two places. We know
from Theorem 4.1.1 that 0 is an eigenvalue of L(G1 +G2) of multiplicity 2 while 0 is
an eigenvalue of L(G1 + G2 + e) of multiplicity 1. Let T be the set of eigenvalues in
common, counting multiplicities, of L(G1 +G2) and L(G1 +G2 +e). Since one of the 0
eigenvalues of L(G1 +G2) becomes 1 in L(G1 +G2 +e) and since the spectral integral
variation occurs in two places, it follows that there exists an eigenvalue γ > 0 of
L(G1 + G2) such that γ /∈ T . Therefore σ(G1 + G2 + e) = {1, γ + 1} ∪ T .

By Corollary 4.5.15, we know that n1 = 1, i.e., G1 = {u}. Since the spectral
variation occurs in two places, it follows that n2 > 1, for otherwise G2 = {v} and
the spectral integral variation of L(G1 + G2) would only occur in one place (i.e.,
{0, 0} to {0, 2}). Since the number of spanning trees of G2 equals the number of
spanning trees of G1 + G2 + e, it follows from Exercise 4 of Section 3.2 that

1

n2

n2∏
i=2

λi(L(G2)) =
1

n2 + 1

n2+1∏
i=2

λi(L(G1 + G2 + e)).

Since the spectrum of σ(G2) equals σ(G1 + G2) less one eigenvalue of zero and since
σ(G1 + G2 + e) = {1, γ + 1} ∪ T , it follows that

1

n2
(τγ) =

1

n2 + 1
(τ(γ + 1)) .
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where τ is the product of all eigenvalues in T . This implies γ/(γ+ 1) = n2/(n2 + 1).
Therefore γ = n2. Since γ is an eigenvalue of L(G2) we see that n2 is an eigenvalue of
L(G2). But since G2 has n2 vertices, it follows from Theorem 4.1.8 that G2 is the join
of at least two graphs. Hence Gc2 is disconnected. Similarly, since G1+G2+e has n2+1
vertices and since n2+1 is an eigenvalue of L(G1+G2+e), it follows that (G1+G2+e)c

is also disconnected. Let H1, . . . ,Hk (k ≥ 2) be the connected components of Gc2 and
let v ∈ H1. Then G2 = Hc

1 ∨ . . .∨Hc
k and (G1 +G2 + e)c = {u}∨ (H1 + . . .+Hk)− e.

Since (G1+G2+e)c is disconnected, H1 is connected, and u is adjacent in (G1+G2+e)c

to every vertex in H1 except v, it follows that H1 = {v}. By the construction of G2,
v is adjacent to every other vertex in G2, hence the degree of v in G2 is n2 − 1.

For the converse, since the degree of the vertex v in G2 is n2 − 1, it fol-
lows that Gc2 is disconnected. We may assume that G2 = Hc

1 ∨ . . . ∨ Hc
k, where

H1 = {v}. Thus G1 + G2 + e = ({u} + Hc
2 ∨ . . . ∨ Hc

k) ∨ {v}. Let σ(Hc
2 ∨ . . . ∨

Hc
k) = {0, λ2, . . . , λn2−1}. Then σ(G2) = {0, λ2 + 1, λ3 + 1, . . . , λn2−1 + 1, n2}, and

σ(G1 + G2 + e) = {0, 1, λ2 + 1, λ3 + 1, . . . , λn2−1 + 1, n2 + 1}. Since σ(G1 + G2) =
{0, 0, λ2 + 1, λ3 + 1, . . . , λn2−1 + 1, n2}, the result follows. 2

EXAMPLE 4.5.17 Consider the graph G1 + G2 below

where G1 is u and G2 is the other component. Note that σ(G1 + G2) is
{0, 0, 1.59, 3, 4.41, 5}. Observe that v is adjacent to all other vertices in G2. Thus
if we add an edge e between u and v, by Theorem 4.5.16 the spectral integral
variation will occur in two places, namely at λ2 = 0 and λ6 = 5. As expected,
σ(G1 + G2 + e) is {0, 1, 1.59, 3, 4.41, 6}.

We now focus our attention on the spectral integral variation of maximal graphs.
We begin with a lemma from [24] whose proof we leave as an exercise.

LEMMA 4.5.18 For a graph G, the spectral integral variation occurs in k places
of L(G) by adding an edge e between two nonadjacent vertices if and only if the
spectral integral variation occurs in k places of L(Gc − e) by adding e.

We now prove the first of two theorems concerning the spectral integral variation
of maximal graphs. The first theorem from [24] characterizes when the spectral
integral variation of a maximal graph will occur in two places.

THEOREM 4.5.19 Let G be a connected maximal graph. Then the spectral in-
tegral variation occurs in two places by adding an edge e between two nonadjacent
vertices u and v if and only if G + e is maximal and du 6= dv.
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Proof: Suppose G and G + e are both maximal (hence Laplacian integral) and
du 6= dv. Then the spectral integral variation occurs in either one or two places by
adding an edge e. Since du 6= dv, it follows that N(u) 6= N(v). By Theorem 4.5.11,
it follows that the spectral integral variation must occur in two places.

For the converse, suppose the spectral integral variation in G occurs in two places
by adding the edge e. Then by Lemma 4.5.18, the spectral integral variation also
occurs in two places in Gc−e by adding e. Since G is maximal, then by Lemma 2.5.24
we have G := G0 = Gc1 ∨Kp1 for some p1 ≥ 1 and some maximal graph G1. Observe
e ∈ G1 since e /∈ G. Since σ(Gc) = σ(G1)∪σ(Kc

p1) and σ(Gc−e) = σ(G1−e)∪σ(Kc
p1),

the spectral integral variation of G1−e occurs in two places by adding e. By Theorem
4.5.11, N(u) 6= N(v) in G1− e, implying G1 is not complete. Thus G1 = Gc2 ∨Kp2 for
some p2 ≥ 1 and some maximal graph G2. By Theorem 4.5.11, e /∈ Kp2 , hence either
both u, v ∈ G2, or exactly one of u or v is in G2. By Lemma 4.5.18, the spectral
integral variation occurs in two places in Gc1 by adding e. Thus if both u, v ∈ G2,
then e ∈ Gc2 and hence e /∈ G2, and therefore the spectral integral variation would
occur in two places in G2 by adding e. In such a case, G2 has the same properties as
G. Repeating the above discussion for G2, we then obtain graphs G3 and G4. If both
u, v ∈ G4, then continue the above discussion for G4. Since there are only finitely
many vertices in G, this procedure must stop at the 2kth step for some positive
integer k. Thus in the decomposition of G = G0, the graphs G0,G1, . . . ,G2k−1 have
both of the following properties:

(a) For i = 0, 1, . . . , k − 1, both u, v ∈ G2i , e /∈ G2i, and the spectral integral
variation occurs in two places in G2i by adding e.

(b) For i = 0, 1, . . . , k − 1, both u, v ∈ G2i+1 , e ∈ G2i+1, and the spectral inte-
gral variation occurs in two places in G2i+1 − e by adding e.

Additionally, G2k−1 = Gc2k ∨ Kp2k where u, v cannot both belong to G2k. Further-
more, u, v cannot both belong to Kp2k ; otherwise by Theorem 4.5.11 the spectral
integral variation would occur in one place in G2k−1 − e by adding e, contradicting
(b). Without loss of generality, let u ∈ Kp2k and v ∈ G2k. By Lemma 4.5.18, the
spectral integral variation occurs in two places in Gc2k−1 = G2k +Kc

p2k
by adding e.

Therefore, it occurs in two places in G2k + u by adding e as

σ(Gc2k−1) = σ(G2k + u) ∪ σ(Kc
p2k
− u),

σ(Gc2k−1 + e) = σ(G2k + u+ e) ∪ σ(Kc
p2k
− u).

By Theorem 4.5.16, v is adjacent to every other vertex in G2k. By Lemma 2.5.24,
either G2k = Kp2k+1

or G2k = Gc2k+1 ∨ Kp2k+1
where G2k+1 is maximal, and hence,

connected. If v ∈ Gc2k+1, then v is adjacent to every other vertex in Gc2k+1, which
means v is an isolated vertex of G2k+1 rendering G2k+1 disconnected, a contradiction.
Therefore v ∈ Kp2k+1

.
Observing that Gc2k−1 = (Gc2k+1 ∨ Kc

p2k+1
) + Kc

p2k
, it follows that the degree of

v in Gc2k−1 is greater than 0 while the degree of u in Gc2k−1 is 0. Since Gc2k−2 =
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Gc2k−1 ∨Kp2k−1
, it follows that u and v have different degrees in Gc2k−2 (and hence

in G2k−2). By similar discussion and by decomposing G is accordance with Lemma
2.5.24, we find that in graphs Gc2k−3,Gc2k−4, . . . ,Gc1, and hence in G, that u and v
have different degrees. Observe that

Gc2k−1 + e = G2k +Kc
p2k

+ e

= (Gc2k+1 ∨Kp2k+1
) +Kc

p2k
+ e

= (Gc2k+1 ∨Kp2k+1−1 + u) ∨ v +Kc
p2k−1

= ((Gc2k+1 ∨Kp2k+1−1)c ∨ u)c ∨ v +Kc
p2k−1

:= H2k+1 +Kc
p2k−1.

Therefore,
G2k−1 − e = (H2k+1 +Kc

p2k−1)c

= Hc
2k+1 ∨Kp2k−1.

By Lemma 2.5.24, H2k+1 is maximal. Hence G2k−1 − e is maximal. Then
G2k−2 + e = Gc2k−1 ∨Kp2k−1

+ e = (G2k−1 − e)c ∨Kp2k−1
is also maximal. Repeating

this procedure, we eventually conclude that G + e is maximal. 2

Theorem 4.5.19 tells us that the spectral integral variation of a maximal graph
G will occur in two places if and only if G + e is maximal where e joins nonadja-
cent vertices u and v in G such that du 6= dv. In the next theorem from [24], we
develop an efficient way of choosing such vertices u and v in G so that a spectral
integral variation will occur in two places when an edge e is added between u and
v. Equivalently, we develop an efficient way of choosing u and v so that G + e will
be maximal. In this theorem, recall the definition of f(d) from Definition 2.5.12.

THEOREM 4.5.20 Let G be a connected maximal graph and let (d) = (d1, . . . , dn)
be the degree sequence of G. Let u and v be nonadjacent vertices of G with du ≥ dv.
Let G + e be the graph created from G by adding an edge between u and v. Then the
spectral integral variation of G occurs in two places if and only if du ≥ f(d) > dv =
ddu+2.

Proof: First suppose du ≥ f(d) > dv = ddu+2. Then by Theorem 2.5.26, G+e is
maximal. Since du 6= dv, Theorem 4.5.19 implies that the spectral integral variation
of G occurs in two places by adding e.

Now suppose the spectral integral variation of G occurs in two places by adding
e. Then by Theorem 4.5.19 G + e is maximal and du 6= dv. By Theorem 2.5.26 we
have du ≥ f(d) ≥ dv = ddu+2. It remains to show that f(d) > dv. We do this in two
cases: where du > f(d) and where du = f(d).

Case I: Suppose du > f(d). Then by Case I of Lemma 2.5.26, we have dv = ddu+2 =
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d∗du+1 ≤ f(d)− 1 < f(d).

Case II: Suppose du = f(d). We assume f(d) = dv and deduce a contradiction.
If f(d) = dv then du = f(d) = dv. By Theorem 2.5.26, dv = ddu+2. Therefore

f(d) = dv = dd(u)+2 = df(d)+2 ≤ df(d).

Since u and v are not adjacent, it follows by Theorem 2.5.25 that df(d) 6= f(d).
Therefore df(d) > f(d). Hence ddu , ddv > f(d). Therefore du, dv < f(d). Then by
Lemma 2.5.25 it follows that N(u) = N(v) since u and v are not adjacent. But since
the spectral integral variation of G occurs in two places, this contradicts Theorem
4.5.11. Therefore, if du = f(d) then f(d) > dv. 2

EXAMPLE 4.5.21 Consider the maximal graph G below.

Observe that the vertices are labeled in order of nonincreasing degrees. The degree
sequence (d) = (5, 2, 2, 1, 1, 1) and hence by Theorem 4.5.1 we have σ(G) = (d∗) =
(6, 3, 1, 1, 1, 0). Note that f(d) = 2. Observe that if we let u = 2 and v = 4, then the
conditions of Theorem 4.5.20 are satisfied. Hence adding an edge e joining vertices
2 and 4 will cause a spectral integral variation to occur in two places. Observe that
σ(G + e) = {0, 1, 1, 2, 4, 6}.

As we conclude this section, it is natural to ask if there are graphs other than
maximal graphs in which the eigenvalues of Laplacian matrices are all integers. We
will see in the next section that such graphs do exist.

Exercises:

1. Use Theorem 4.5.1 to find all eigenvalues of the Laplacian matrices of the follow-
ing maximal graphs.
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2. Let G be a maximal graph on n vertices with Laplacian matrix L. Prove that n
is an eigenvalue of L.

3. Show that all of the eigenvalues of the Laplacian matrix for the graph below
are integers. Then verify that this graph is not a maximal graph.

4. Prove Observation 4.5.10.

5. Prove Corollary 4.5.15.

6. Prove Lemma 4.5.18.

7. Use Theorem 4.5.20 to find all pairs of nonadjacent vertices u and v such that
adding an edge joining u and v will cause a spectral integral variation to occur in
two places.
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4.6 Graphs with Distinct Integer Spectra

We now broaden our investigation of Laplacian integral graphs. In this section based
largely on [19], we will focus on graphs whose Laplacian matrices have distinct
integer eigenvalues. Given a graph G on n vertices with Laplacian matrix L, if L
has distinct integer eigenvalues, then σ(G) = {0, 1, 2, . . . , i−1, i+1, . . . , n} for some
integer 1 ≤ i ≤ n. We will denote such a set as Si,n.

DEFINITION 4.6.1 If there exists a graph G on n vertices such that σ(G) = Si,n,
we say that the set Si,n is Laplacian realizable.

EXAMPLE 4.6.2 By an exhaustive search, there are exactly five sets Si,n that
are Laplacian realizable for n ≤ 5. Below are the graphs realizing each such set.

For a given n, our goal is to determine the values i for which is Si,n Laplacian
realizable. To do this it will help to eliminate some possibilities. First, recall that
the sum of the eigenvalues (counting multiplicity) of a square matrix is equal to the
sum of its diagonal entries. Since the diagonal entries of the Laplacian matrix are
the degrees of the vertices of the corresponding graph, it follows that the sum of
the eigenvalues of the Laplacian matrix is equal to the sum of the degrees of the
vertices of the graph. Since the sum of the degrees of the vertices of any graph must
be even (Theorem 2.1.4), we see that the sum of the eigenvalues must be even. This
gives us the following lemma from [19]:

LEMMA 4.6.3 Suppose for a given n ≥ 2 and integer 1 ≤ i ≤ n that Si,n is
Laplacian realizable. If n ≡ 0 mod 4 or n ≡ 3 mod 4, then i must be even. If n ≡
1 mod 4 or n ≡ 2 mod 4, then i must be odd.

It should be noted that if a graph G on n vertices realizes Si,n for some i 6= n,
then by Theorem 4.1.8, it follows that G is the join of two graphs. We investigate
the values for i in which Si,n is Laplacian realizable. Our first lemma, from [19],
gives us two sets which are always Laplacian realizable.

LEMMA 4.6.4 Suppose n ≥ 2.
(a) If n ≡ 2 mod 4 or n ≡ 3 mod 4, then Sn−1,n is Laplacian realizable.
(b) If n ≡ 1 modn or n ≡ 2 modn, then S1,n is Laplacian realizable.

Proof: (a) We use induction on n. Observe from Example 4.6.2 that the result
holds for n = 2, 3. Now suppose n is congruent to either 2 or 3 modulo 4. Let G
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be a graph that realizes Sn−1,n. We will show that we can create a graph from this
that realizes Sn+3,n+4. Observe that

σ(G +K1) = {0} ∪ Sn−1,n.

Therefore, by Theorem 4.1.11 it follows that (G ∪K1)c realizes S2,n+1. Now observe
that

σ(K2 + [G +K1]c) = {0, 0, 1, 2, 3, . . . , n+ 1}.

Hence by Theorem 4.1.6, K1 ∨ [K2 + (G +K1)c] realizes Sn+3,n+4.

(b) We use induction on n. Observe from Example 4.6.2 that the result holds for
n = 1, 2. Now suppose n is congruent to either 1 or 2 modulo 4. We will show that
we can create a graph that realizes S1,n+4. Note that n+ 1 is congruent to either 2
or 3 modulo 4. Thus by part (a), there exists a graph G that realizes Sn,n+1. Thus

σ(G +K1) = {0} ∪ Sn,n+1.

Hence by Theorem 4.1.6, the graph (K1 +K1) ∨ (G +K1) realizes S1,n+4. 2

Now that we have a basis of sets which are Laplacian realizable, our next lemma
from [19] gives us an inductive way to create sets which are Laplacian realizable.

LEMMA 4.6.5 If Si,n is Laplacian realizable, then so is Si+1,n+2.

Proof: Let G be a graph on n vertices that realizes Si,n. Observe that

σ (G +K1) = {0, 0, 1, 2, . . . , i− 1, i+ 1, . . . , n}.

By Theorem 4.1.6, it follows that

σ (K1 ∨ (G +K1)) = {0, 1, 2, . . . , i, i+ 2, . . . , n+ 1, n+ 2} = Si+1,n+2

2

We see from the proof of Lemma 4.6.5 that we can easily create a graph whose
Laplacian matrix has distinct integer eigenvalues by taking an existing such graph
G, an isolated vertex u, and joining an additional isolated vertex v to both u and
G.

EXAMPLE 4.6.6 Consider the following graph G. We know from Example 4.6.2
that σ(G) = {0, 1, 3, 4}.
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By Lemma 4.6.5, the Laplacian matrix for the following graph Ĝ will be such that
σ(Ĝ) = {0, 1, 2, 4, 5, 6}:

We see that we can use Lemma 4.6.5 to show which values i are such that Si,n
is Laplacian realizable. This leads us to the first main result of this section which
is from [19].

THEOREM 4.6.7 (i) If n ≡ 0 mod 4, then for each i = 1, 2, . . . , n−2
2 , S2i,n is

Laplacian realizable.
(ii) If n ≡ 1 mod 4, then for each i = 1, 2, . . . , n−1

2 , S2i−1,n is Laplacian realizable.
(iii) If n ≡ 2 mod 4, then for each i = 1, 2, . . . , n2 , S2i−1,n is Laplacian realizable.
(iv) If n ≡ 3 mod 4, then for each i = 1, 2, . . . , n−1

2 , S2i,n is Laplacian realizable.

Proof: We prove this using induction on n. Observe that the graphs in Exam-
ple 4.6.2 show that the base step holds for all n ≤ 5. For the inductive hypothesis,
assume (i)–(iv) hold for all n ≤ k−1. We now prove each part separately for n = k:

(i) Suppose k ≡ 0 mod 4. Then k − 2 ≡ 2 mod 4. Thus by the inductive hy-
pothesis, each of S1,k−2, S3,k−2, . . . Sk−3,k−2 is Laplacian realizable. Hence each of
S2,k, S4,k, . . . , Sk−2,k is realizable by Lemma 4.6.5.

(ii) Suppose k ≡ 1 mod 4. Then k − 2 ≡ 3 mod 4. Thus by the inductive hy-
pothesis, each of S2,k−2, S4,k−2, . . . Sk−3,k−2 is Laplacian realizable. Hence each of
S3,k, S5,k, . . . , Sk−2,k is realizable by Lemma 4.6.5. Also, S1,k is realizable by Lemma
4.6.4(b)

The proof of cases (iii) and (iv) are similar and thus omitted. 2

Between Lemma 4.6.3 and Theorem 4.6.7, we have determined exactly which
values i that Si,n is realized for a fixed n with the exception of i = n. Thus we now
need to determine if Sn,n is realizable, and if so, under what conditions. While it
is believed that Sn,n is not realizable, this remains an open question. However, we
will offer some partial results. Since i = n in this case, we begin with an immediate
consequence of Lemma 4.6.3 (see [19]):

OBSERVATION 4.6.8 If Sn,n is Laplacian realizable, then necessarily n ≡
0 mod 4 or n ≡ 1 mod 4.

We now present a lemma from [19] which further narrows down the possibilities for
n if Sn,n is Laplacian realizable.
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LEMMA 4.6.9 If a graph G on n vertices realizes Sn,n, then the number of edges
in G is equal to n(n−1)/4. Further, n|(n−1)! so that in particular, n is not a prime
number.

Proof: Let L be the Laplacian matrix for G. Since the sum of the degrees
of the vertices in G is equal to Tr(L), and since in the present case we have
Tr(L) = (n − 1)n/2, we find that the number of edges in G must be n(n − 1)/4.
Let the eigenvalues of L be given by 0, λ2, . . . , λn. By Lemma 4.3.8 and Exercise
4 of Section 3.2 the sum of the principle minors of L is λ2 · · ·λn. According to
the Matrix Tree Theorem, (Theorem 3.2.2), the number of spanning trees of G is
equal to any of the principal minors of L. Hence all principal minors are equal to
λ2 · · ·λn/n = (n−1)!/n which is the number of spanning trees of G. As the number
of spanning trees is an integer, n must divide (n−1)! and so, in particular, n cannot
be a prime number. 2

In the previous two sections when dealing with graphs whose Laplacian matrices
had integer eigenvalues, the degree sequence of the graph was very important in our
investigations. Our next two lemmas from [19] deal with the degree sequence of a
graph that realizes Sn,n.

LEMMA 4.6.10 Let G be a graph on n vertices that realizes Sn,n. Then for any
vertex v, we have 2 ≤ dv ≤ n− 3.

Proof: Suppose to the contrary that G has a vertex of degree 1. Then its alge-
braic and vertex connectivities are equal (see Theorem 5.1.10) which implies that G
is the join of two graphs. Therefore by Theorem 4.1.8, G must have n as an eigen-
value, contrary to our hypothesis. Thus dv ≥ 2 for any vertex v ∈ G. By considering
the complement of G, we also find by Theorem 4.1.11 that dv ≤ n− 3. 2

LEMMA 4.6.11 Let G be a graph on n vertices with degree sequence d1, . . . , dn.
If G realizes Sn,n, then

∑n
i=1 d

2
i = n(n−1)(n−2)

3 . Further, letting c3 and i3 denote the
number of three-cycles in G and the number of independent triples in G, respectively,

we have
∑n
i=1 d

3
i = n(n−1)(n2−5n+8)

4 +6c3 = n(n−1)(n2−3n−2)
4 −6i3. Finally, the number

of induced subgraphs of G on three vertices that are neither empty nor complete is
equal to n(n−1)(n+1)

12 .

Proof: Let L be the Laplacian matrix for G. Observe that the Frobenius norm
of L satisfies

‖L‖2F = Tr(L2) =
n−1∑
i=1

i2 =
n(n− 1)(2n− 1)

6
, (4.6.1)

where the second equality follows from the fact that Sn,n is the set of eigenvalues of
L. By Lemma 4.6.9, the number of edges in G is n(n− 1)/4, and hence the number
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of nonzero off–diagonal entries in L is n(n− 1)/2. Thus we have

‖L‖2F =
n∑
i=1

d2
i +

n(n− 1)

2
. (4.6.2)

Equating (4.6.1) and (4.6.2) we find that

n∑
i=1

d2
i =

n(n− 1)(2n− 1)

6
− n(n− 1)

2
=

n(n− 1)(n− 2)

3
. (4.6.3)

Let A be the adjacency matrix of G, and let D be the diagonal matrix of vertex
degrees. Since L = D − A, we have L3 = D3 − D2A − AD2 − DAD + A2D +
DA2 +ADA−A3. Since the trace of a product of matrices is invariant of the order
in which the product is taken, it follows that Tr(D2A) = Tr(AD2) = Tr(DAD) and
Tr(A2D) = Tr(DA2) = Tr(ADA). However, observe that Tr(D2A) = 0. Therefore

Tr(L3) = Tr(D3) + 3Tr(A2D)− Tr(A3) =
n∑
i=1

d3
i + 3

n∑
i=1

d2
i − 6c3,

where the last equality follows from Theorem 3.1.3. Since σ(G) = Sn,n, we have

Tr(L3) = n2(n−1)2

4 , and it follows from (4.6.3) and Theorem 3.1.3 that

n∑
i=1

d3
i =

n(n− 1)(n2 − 5n+ 8)

4
+ 6c3. (4.6.4)

Since G realizes Sn,n it follows from Theorem 4.1.11 that Gc also realizes Sn,n.
Observing that the degree sequence for Gc is (n−1−d1, . . . , n−1−dn), and letting
L̄ denote the Laplacian matrix for Gc, we have

Tr(L̄3) =
n∑
i=1

(n− 1− di)3 =
n(n− 1)(n2 − 5n+ 8)

4
+ 6ĉ3,

where ĉ3 is the number of 3-cycles in Gc. By definition of the complement of a graph,
ĉ3 = i3. Note that

n∑
i=1

(n− 1− di)3 =
n∑
i=1

[
(n− 1)3 − 3(n− 1)2di + 3(n− 1)d2

i − d3
i

]

= n(n− 1)3 − 3(n− 1)2
[
n(n− 1)

2

]
+ 3(n− 1)

[
n(n− 1)(n− 2)

3

]
−
n−1∑
i=1

d3
i

=
n(n− 1)2(n− 3)

2
−

n∑
i=1

d3
i .

Thus we have

n(n− 1)2(n− 3)

2
−

3∑
i=1

d3
i =

n(n− 1)(n2 − 5n+ 8)

4
+ 6i3,
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which now yields
n∑
i=1

d3
i =

n(n− 1)(n2 − 3n− 2)

4
− 6i3. (4.6.5)

Equating (4.6.4) and (4.6.5) it follows that c3 + i3 = n(n−1)(n−5)
12 . Since the

total number of triples of vertices in G is Cn,3 = n(n − 1)(n − 2)/6, it follows that
the number of induced subgraphs on three vertices which are neither empty nor
complete is n(n−1)(n+1)

12 . 2

Lemmas 4.6.9, 4.6.10, and 4.6.11 allow us to prove our second main result of
this section which shows that Sn,n is not Laplacian realizable for n < 12 (see [19]).

THEOREM 4.6.12 If Sn,n is Laplacian realizable, then n ≥ 12.

Proof: Suppose to the contrary that n ≤ 11. By Lemma 4.6.9, Sn,n is not
Laplacian realizable for n = 3, 5, 7, 11 as they are prime. By the same lemma, S4,4

is not Laplacian realizable as 4 is not a divisor of (4 − 1)! = 6. Finally, by Lemma
4.6.8, S6,6 and S10,10 are not Laplacian realizable as 6 and 10 both have a remainder
of 2 when divided by 4. Thus the only remaining cases to consider are n = 8 and
n = 9.

Suppose now that n = 8, and that G is a graph that realizes S8,8. By Lemma
4.6.10, the possible degrees for G are 2, 3, 4, and 5. For each i = 2, 3, 4, 5 let ai be
the number of vertices of degree i. By Theorem 3.1.3 we have a2 + a3 + a4 + a5 = 8,
2a2 + 3a3 + 4a4 + 5a5 =

∑8
i=1 di = n(n− 1)/2 = 28, and 4a2 + 9a3 + 16a4 + 25a5 =∑8

i=1 d
2
i = n(n− 1)(n− 2)/3 = 112. Thus the ai’s satisfy the linear system

 1 1 1 1
2 3 4 5
4 9 16 25



a2

a3

a4

a5

 =

 8
28
112

 .
Solving, we obtain that 

a2 = 6− a5,

a3 = −8 + 3a5,

a4 = 10− 3a5.

In particular, a5 must be an integer such that 10 ≥ 3a5 ≥ 8. Therefore a5 = 3. Thus
a2 = 3, a3 = 1, and a4 = 1. Hence the degree sequence of G is (2, 2, 2, 3, 4, 5, 5, 5).
From (4.6.4) and (4.6.5), we find that c3 = i3 = 7, where c3 and i3 are the number
of three-cycles and independent triples in G, respectively.

For a candidate graph on eight vertices with degree sequence (2, 2, 2, 3, 4, 5, 5, 5)
and with c3 = i3 = 7, it can be verified that each vertex of degree five must be
adjacent to a vertex with degree two. Using this observation, it follows that the
subgraph induced by the vertices of degree two must be empty. At this point we are
forced to consider (numerous) cases as described by:
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(i) the possible neighbors of the vertices of degree two, and then

(ii) the subgraph induced by the remaining vertices.

All such nonisomorphic graphs can be constructed and their respective Laplacian
eigenvalues can be obtained by a computation. In all cases (there are four such
graphs) the graphs were not Laplacian integral. Thus we conclude that S8,8 is not
Laplacian realizable.

Now suppose that n = 9 and that G is a graph that realizes S9,9. From Lemma
4.6.10, the possible degrees for the vertices of G are 2, 3, 4, 5, and 6. For each i =
2, 3, 4, 5, 6, let ai be the number of vertices of degree i. As in the case for n = 8, we
obtain  1 1 1 1 1

2 3 4 5 6
4 9 16 25 36



a2

a3

a4

a5

a6

 =

 9
36
168

 .
Solving for a2, a4, a6 in terms of a3 and a5, we find that

a2 = 3− 3

8
a3 +

1

8
a5

a4 = 3− 3

4
a3 −

3

4
a5

a6 = 3 +
1

8
a3 −

3

8
a5

Considering the expression for a4 we see that necessarily 4 divides a3 + a5, from
which we conclude that a3 +a5 is either 0 or 4. If a3 +a5 = 0, then a3 = a5 = 0 and
a2 = a4 = a6 = 3, so that the degree sequence is (2, 2, 2, 4, 4, 4, 6, 6, 6). Note that in
this case we have c3 = i3 = 12 by (4.6.4) and (4.6.5). If a3 + a5 = 4, then we have
a4 = 0, a2 = (7 − a3)/2 and a6 = (3 + a3)/2. Necessarily, a3 is odd and less than
4 so the two possible cases are a3 = 1 and a3 = 3. The former yields the degree
sequence (2, 2, 2, 3, 5, 5, 5, 6, 6), with c3 = 11 and i3 = 13, while the latter yields the
degree sequence (2, 2, 3, 3, 3, 5, 6, 6, 6), with c3 = 13 and i3 = 11. Observe that the
last two degree sequences are complementary, i.e., if G has one degree sequence then
its complement has the other.

Similar calculations to the ones required for the case n = 8 can also be used for
n = 9 with the above degree sequences and their corresponding values of c3 and
i3. In fact, it can be checked that, for either degree sequence, each vertex of degree
six must be adjacent to a vertex with degree two, and, in addition, for the degree
sequence (2,2,2,3,5,5,5,6,6) at least one vertex of degree five must be adjacent to
a vertex of degree two. Using this observation, again it follows that the subgraph
induced by the vertices of degree two must be empty. As in the previous case we
need to consider cases as described by:

(i) the possible neighbors of the vertices of degree two, and then
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(ii) the subgraph induced by the remaining vertices.

All such nonisomorphic graphs can be constructed and their respective Laplacian
eigenvalues can be obtained by a computation. In all cases (there are eight such
graphs), the graphs were not Laplacian integral. Thus we conclude that S9,9 is not
Laplacian realizable. 2

Exercises: Note that all exercises are based on [19].

1. (a) Suppose that n ≥ 6 and that G is a graph on n vertices such that for i 6= n,
G realizes Si,n. Prove that either G = K1 ∨H for some graph H on n− 1 vertices,
or G = (K1 +K1) ∨ (K1 +H) for some graph H realizing Sn−4,n−3.

(b) Prove that if H in part (a) realizes Sn−4,n−3 then necessarily i = 1.

2. Suppose that G is a graph on n ≥ 6 vertices. Prove that G realizes S1,n if and
only if G is formed in one of the following two ways:

(a) G = (K1 + K1) ∨ (K1 + G1) where G1 is a graph on n − 3 vertices that
realizes Sn−4,n−3.

(b) G = K1 ∨H where H is a graph on n− 1 vertices that realizes Sn−1,n−1.

3. Suppose that G is a graph on n ≥ 6 vertices. Prove that G realizes Sn−1,n if
and only if G is formed in one of the following two ways:

(a) G = K1 ∨ (K2 + G1) where G1 is a graph on n − 3 vertices that realizes
S2,n−3.

(b) G = K1 ∨ (K1 + H) where H is a graph on n − 2 vertices that realizes
Sn−2,n−2.

4. Suppose that G is a graph on n ≥ 6 vertices. Prove that G realizes Si,n if and
only if G = K1∨(K1+H) where H is a graph on n−2 vertices that realizes Si−1,n−2.

5. (a) Construct the four graphs on eight vertices that are alluded to in the proof
of Theorem 4.6.12.

(b) Construct the eight graphs on nine vertices that are alluded to in the proof
of Theorem 4.6.12.

6. (a) Prove that for each n ≤ 18 that if S1,n is realized, then it is realized by
a unique graph.

(b) Prove that for each n ≤ 19 that if Sn−1,n is realized, then it is realized
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by a unique graph.

For Exercises 7 and 8, let Gk−1,k be the unique graph which realizes Sk−1,k, for
each k = 2, 3, 6, 7, 10, 11, 14, 15, 19. Similarly, let H1,k, denote the unique graph that
realizes S1,k for each k = 2, 5, 6, 9, 10, 14, 18 (and of course G1,2 = H1,2 = K2).
From these core graphs, we inductively construct the following classes of graphs:
For each m = 2, 5, 6, 9, 10, 14, 18, let Am0 = H1,m and for each natural number `, let
Am` = K1 ∨ (K1 +Am`−1). For each m = 2, 3, 6, 7, 10, 11, 14, 15, 19, let Bm

0 = Gm−1,m

and for each natural number `, let Bm
` = K1 ∨ (K1 +Bm

`−1).

7. Let n be a positive integer. Prove the following:

(a) If n is even, i ∈ {0, 2, 4, 6, 8}, and n ≥ 2i + 2, then Sn
2
−i,n is uniquely

realized by A2i+2
n
2
−i−1.

(b) If n is even, i ∈ {2, 4}, and n ≥ 2i + 2, then Sn
2

+i,n is uniquely realized

by B2i+2
n
2
−i−1.

(c) If n is odd, i ∈ {2, 4}, and n ≥ 2i + 1, then Sn+1
2
−i,n is uniquely real-

ized by A2i+1
n−1
2
−i.

(d) If n is odd, i ∈ {0, 2, 4, 6, 8}, and n ≥ 2i + 3, then Sn+1
2

+i,n is uniquely

realized by B2i+3
n−3
2
−i.

8. In light of the previous exercises, why is it possible for S1,22 not to be uniquely
realizable?
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Chapter 5

The Algebraic Connectivity

Probably the most important property of a graph that we can obtain from the
Laplacian matrix is its algebraic connectivity. The algebraic connectivity of a graph
is simply the second smallest eigenvalue of the Laplacian matrix. We learned in
Chapter 1 that if we add a positive semidefinite matrix to an existing positive
semidefinite matrix, the eigenvalues will monotonically increase. Since adding edges
to an existing graph results in a Laplacian matrix obtained by adding a positive
semidefinite matrix to the existing Laplacian matrix, we saw from Theorem 4.1.2
that the second smallest eigenvalue (in fact all eigenvalues) monotonically increases.
Moreover, in light of Theorem 4.1.1, the second smallest eigenvalue of the Laplacian
matrix is positive if and only if the graph is connected, and is zero otherwise.
Hence the second smallest eigenvalue of the Laplacian matrix is a useful way of
measuring the connectivity of the graph. Section 5.1 gives us an introduction to the
algebraic connectivity of a graph. Here, we learn which graphs have maximum and
minimum algebraic connectivity, and also develop an upper bound on the algebraic
connectivity in terms of the vertex connectivity of a graph. Recalling that adding
an edge to a graph causes the algebraic connectivity to monotonically increase, this
motivates us to explore the effects that varying the edge weight has on the algebraic
connectivity. This we do in Section 5.2 where we learn that increasing the weight of
an edge causes the algebraic connectivity to increase in a concave downward fashion.
In Section 5.3 we develop upper and lower bounds on the algebraic connectivity of
graphs in terms of a graph’s diameter and mean distance. Since graphs with large
diameter and mean distance tend to have less edges, they are “less connected” and
thus have lower algebraic connectivity. Section 5.4 focuses on using the edge density
of a graph to give an upper bound on its algebraic connectivity. This leads us to
the concept the isoperimetric number of a graph which is helpful to us in determing
upper bounds on the algebraic connectivity in terms of the graph’s topological
properties. Section 5.5 focuses on planar graphs while Section 5.6 focuses on graphs
of higher genus.

173
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5.1 Introduction to the Algebraic Connectivity of
Graphs

Given the Laplacian matrix for a graph G on n vertices with eigenvalues 0 = λ1 ≤
λ2 ≤ . . . λn, we saw in Theorem 4.1.1 that λ2 = 0 if and only if G is disconnected.
Thus if G is a connected graph then λ2 > 0. We also saw in Theorem 4.1.2 that
λ2 monotonically increases as we add edges to an existing graph. Hence λ2 gives a
measure of the connectivity of G. This leads us to an important definition:

DEFINITION 5.1.1 The algebraic connectivity of G is the second smallest eigen-
value, λ2, of the Laplacian matrix L(G). We denote the algebraic connectivity of G
by a(G).

This term was coined by Fiedler in [28]. In light of the concept of algebraic connec-
tivity, we now present two corollaries to Theorem 4.1.2:

COROLLARY 5.1.2 Suppose we take a graph G and create a graph Ĝ by either
adding an edge joining a pair of nonadjacent vertices of G or increasing the weight
of an existing adge of G, then a(Ĝ) ≥ a(G).

If we focus our attention on unweighted graphs, we can use Corollary 5.1.2 together
with Corollary 4.1.5 to obtain another important corollary:

COROLLARY 5.1.3 Let n ≥ 2 be fixed. Then a(Kn) = n. Moreover, of all un-
weighted graphs on n vertices, Kn is the unique graph with the largest algebraic
connectivity.

We should note that we define a(K1) = 1.

OBSERVATION 5.1.4 If we delete an edge e from the graph Kn, then the alge-
braic connectivity of the resulting graph is n− 2. Thus if G is a noncomplete graph
on n vertices, then a(G) ≤ n− 2.

Since the algebraic connectivity of all disconnected graphs is zero while the
algebraic connectivity of all connected graphs is positive, Theorem 5.1.3 begs the
question: Of all connected graphs on n vertices where n is fixed, which graph(s)
have the smallest algebraic connectivity? In our efforts to answer this question, we
now present an important lemma from [31] which relates the edge connectivity (see
Definition 2.4.13) to the structure of Laplacian matrices:

LEMMA 5.1.5 Let G be an unweighted connected graph on n vertices with vertex
set V . Let L be the Laplacian matrix for G. Then

e(G) = min
W⊂V
W 6=∅,V

∑
i∈W

j∈V \W

|`i,j |.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i
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Proof: Fix a vertex set W such that W 6= ∅, V . Let EW be the set of edges in
G that are incident with one vertex in W and one vertex in V \W . Observe that
L(G − EW ) is permutationally similar to a block diagonal matrix with the vertices
of W corresponding to one block and the pW :=

∑
i∈W

j∈V \W
|`i,j | vertices of V \W

corresponding to the other block. Hence G −EW is disconnected. Observe the num-
ber of edges in EW is pW . The result now follows. 2

We now use Lemma 5.1.5 to provide a lower bound on the algebraic connectivity
of unweighted graphs in terms of the edge connectivity (see [31]):

LEMMA 5.1.6 For any unweighted graph G on n vertices, we have a(G) ≥
2e(G)(1− cos πn).

Proof: Let G be an unweighted graph on n vertices with L as its Laplacian. Let
∆ be the maximum degree of a vertex in G. Define the matrix S as

S = I − 1

∆
L. (5.1.1)

Observe that S is a symmetric, nonnegative, doubly stochastic matrix. Let 1 = γ1 ≥
γ2 ≥ . . . γn be the eigenvalues of S. Then

γ2 = 1− 1

∆
a(G).

By Lemma 5.1.5 and Definition 1.5.2, the measure of irreducibility of L is

µ(L) =
1

∆
e(G). (5.1.2)

From (5.1.1), (5.1.2), and Theorem 1.5.10 we obtain

1− γ2 =
1

∆
a(G) ≥ 2

(
1− cos

π

n

)
1

∆
e(G).

Multiplying through by ∆ gives the desired result. 2

We are now ready to present a theorem from [28] which shows us that, for fixed
n, the path on n vertices is the unique connected graph on n vertices with the
smallest algebraic connectivity:

THEOREM 5.1.7 Let n ≥ 2 be fixed. Then a(Pn) = 2(1−cos πn). Moreover, of all
unweighted graphs on n vertices, Pn is the unique graph with the smallest algebraic
connectivity.

Proof: Let L be the Laplacian matrix for Pn. By matrix-vector multiplication,
observe that for k = 2, . . . , n that λk = 2(1 − cos (k−1)π

n ) and the corresponding
eigenvector is[

cos
(k − 1)π

2n
, cos

3(k − 1)π

2n
, cos

5(k − 1)π

2n
, . . . , cos

(2n− 1)(k − 1)π

2n

]T
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(see [28] Lemma 2.3). Thus a(Pn) = λ2(L(Pn)) = 2(1 − cos πn). By Lemma 5.1.6
and the fact that e(Pn) = 1, it follows that Pn is a connected graph on n vertices
with minimum algebraic connectivity. Uniqueness follows from Remark 1.5.11 and
the fact that Pn is the only connected graph G on n vertices where L(G) is permu-
tationally similar to a tridiagonal matrix. 2

Now that we have a lower bound on the algebraic connectivity of connected
unweighted graphs and know that n is an upper bound on the algebraic connectivity
of such graphs, our next goal will be to determine more precise upper bounds on
the algebraic connectivity and to characterize all graphs in which this upper bound
is attained. To this end, we will use the concept of the vertex connectivity (see
Definition 2.4.8). To begin our investigation as to how the vertex connectivity gives
us insight into the algebraic connectivity, we first prove the following lemma from
[28]:

LEMMA 5.1.8 Let G be an unweighted graph and let G1 be a graph obtained from
G by removing k vertices from G and all incident edges. Then

a(G1) ≥ a(G)− k (5.1.3)

Proof: Let G have n vertices labeled 1, . . . , n, and let G1 be obtained from G
by removing one vertex, say n, without loss of generality. Define a new graph Ĝ by
adding a vertex to G1 that is adjacent to all other vertices in G1. Then

L(Ĝ) =

[
L(G1) + I −eT
−e n− 1

]
.

Let x ∈ <n−1 be an eigenvector of L(G1) corresponding to the eigenvalue a(G1), and
let x̂ be the vector in <n created from x by placing zero in the nth position (of x̂).
Then L(Ĝ)x̂ = [a(G1) + 1]x̂, thus a(G1) + 1 6= 0 is an eigenvalue of L(Ĝ). Therefore

a(Ĝ) ≤ a(G1) + 1, and thus a(G1) ≥ a(Ĝ) − 1. But since a(Ĝ) ≥ a(G) by Theorem
5.1.2, it follows that a(G1) ≥ a(G) − 1. Thus the theorem is true for k = 1. For
k > 1, the theorem follows by induction. 2

Lemma 5.1.8 gives us an immediate corollary from [28]:

COROLLARY 5.1.9 Let G be an unweighted graph with vertex set V . Let V =
V1∪V2 where V1 and V2 are disjoint. For i = 1, 2, let Gi be the subgraph of G induced
by Vi. Then

a(G) ≤ min{a(G1) + |V2|, a(G2) + |V1|}.

We are now ready to prove an important theorem from [28] and [46] (primarily
[46]) which shows that the vertex connectivity is an upper bound on the algebraic
connectivity. Moreover, we classify the graphs in which the vertex and algebraic
connectivities are equal.
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THEOREM 5.1.10 Let G be a noncomplete, connected, unweighted graph on n
vertices. Then a(G) ≤ v(G). Moreover, equality holds if and only if G can be written
as G1 ∨G2, where G1 is a disconnected graph on n− v(G) vertices and G2 is a graph
on v(G) vertices with a(G2) ≥ 2v(G)− n.

Proof: Let V be a set of v(G) vertices such that G − V is disconnected. Then
by Corollary 5.1.9 we have

a(G) ≤ a(G − V ) + |V | = v(G),

where equality follows from the fact that a(G −V ) = 0 since G −V is disconnected.
To prove the remainder of the theorem, first suppose that a(G) = v(G). Let V be
as above. Letting G1 = G − V and G2 be the subgraph of G induced by the vertices
of V , we see that by simultaneously permuting rows and columns, the Laplacian
matrix of G can be written as

L(G) =



L(H1) +D1 0 −X

0 L(H2) +D2 −Y

−XT −Y T L(G2) +D3


,

where the (1, 1), (1, 2), (2, 1), and (2, 2) blocks, together, form an (n− v(G))× (n−
v(G)) matrix; the (3, 3) block is a v(G) × v(G) matrix; and where H1 + H2 = G1,
L(H1) and L(H2) are the corresponding Laplacian matrices, and D1 and D2 are
suitable diagonal matrices. Suppose that H1 is a graph on n1 vertices and that H2

is a graph on n2 vertices with n1 + n2 = n− v(G). Let

wT = [ n2(e(n1))T | − n1(e(n2))T | 0T ]

and note that wT e = 0. Now

wTL(G)w = n2
2e(

(n1))T (L(H1) +D1)e(n1) + n2
1(e(n2))T (L(H2) +D2)e(n2) (5.1.4)

= n2
2(e(n1))TD1e

(n1) + n2
1(e(n2))TD2e

(n2),

where the last inequality follows from the fact that L(H1) and L(H2) have zero row
sums. Notice that each of D1 and D2 is a diagonal matrix with diagonal entries at
most v(G). Thus we have that

wTL(G)w ≤ n2
2n1v(G) + n2

1n2v(G) = v(G)n1n2(n1 + n2) = v(G)wTw, (5.1.5)

with equality if and only if D1 = v(G)In1 and D2 = v(G)In2 . Now, since wT e = 0,
it follows from Theorem 1.2.7 that a(G)wTw ≤ wTL(G)w. Hence, together with
(5.1.5) and recalling our assumption that a(G) = v(G), we can write that

v(G)wTw = a(G)wTw ≤ wTL(G)w ≤ v(G)wTw.
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Therefore a(G)wTw = wTL(G)w and so from (5.1.4) we must have that D1 =
v(G)In1 and D2 = v(G)In2 . Thus G = G1 ∨ G2, where G1 = H1 + H2 is a discon-
nected graph. As a result,

L(G) =


L(G1) + v(G)I −J

−J L(G2) + (n− v(G))I


. (5.1.6)

Now we will show that if a(G) = v(G), then a(G2) ≥ 2v(G)−n. Suppose that λ is
an eigenvalue of L(G1) having an eigenvector x such that xT e = 0. Then [ xT | 0 ]T is
an eigenvector for L(G) corresponding to λ+v(G). Similarly, if γ is an eigenvalue of
L(G2) having an eigenvector y such that yT e = 0, then [ 0 | yT ]T is an eigenvector
for L(G) corresponding to γ + n − v(G). Therefore, it follows that n − 2 of the
eigenvalues of L(G) are of the form λ+ v(G) where λ is an eigenvalue of L(G1) with
a corresponding eigenvector orthogonal to e, or of the form γ + n− v(G) where γ is
an eigenvalue of L(G2) with a corresponding eigenvector orthogonal to e. Observe
that 0 is also eigenvalue of L(G), as is n, the latter with eigenvector

[ v(G)(e(n−v(G)))T | − (n− v(G))(e(v(G)))T ]T .

Consequently,

a(G) = min{v(G) + a(G1), n− v(G) + a(G2)} = min{v(G), n− v(G) + a(G2)}

(since G1 is disconnected). Since a(G) = v(G), it follows that n−v(G)+a(G2) ≥ v(G).
We thus conclude that a(G2) ≥ 2v(G)− n.

Conversely, suppose that G = G1∨G2, where G1 is disconnected graph on n−v(G)
vertices and G2 is a graph on v(G) vertices with a(G2) ≥ 2v(G)− n. Then L(G) has
the form as in (5.1.6). Therefore, by the preceding analysis, we see that

a(G) = min{v(G) + a(G1), n− v(G) + a(G2)} = min{v(G), n− v(G) + a(G2)}

(since G1 is disconnected). Since a(G2) ≥ 2v(G)− n, it follows that a(G) = v(G). 2

EXAMPLE 5.1.11 Consider the following graphs G1 and G2.
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Observe the graph G := G1 ∨ G2 below:

Note that n = 8 and that v(G) = 3. Since G1 is a disconnected graph on n− v(G) =
n− 3 vertices and G2 is a graph on v(G) = 3 vertices where 1 = a(G2) ≥ 2v(G)− n,
it follows by Theorem 5.1.10 that a(G) = v(G) = 3.

Letting δ(G) denote the minimum degree of a vertex in G, recall from Theorem
2.4.15 that v(G) ≤ δ(G). Therefore we obtain the following corollary to Theorem
5.1.10.

COROLLARY 5.1.12 If G is a noncomplete unweighted graph on n vertices, then

a(G) ≤ v(G) ≤ δ(G) ≤ n− 1.

Since trees are a class of graphs that will be important to us in subsequent
chapters, we conclude this section with a corollary to Theorem 5.1.10 concerning
the algebraic connectivity of trees. Observing that v(T ) = 1 for any tree T on at
least three vertices, we have the following corollary to Theorem 5.1.10 whose proof
is left as an exercise:

COROLLARY 5.1.13 Let T be a tree on n ≥ 3 vertices. Then a(T ) ≤ 1. Equality
holds if and only if T is a star.

In summary, for fixed n, we have seen that the unique unweighted graph on
n vertices with largest algebraic connectivity is the complete graph Kn and that
a(Kn) = n. We have also seen that the unique unweighted connected graph on
n vertices with smallest algebraic connectivity is the path Pn and that a(Pn) =
2(1− cos πn). Intuitively speaking, complete graphs are the most difficult graphs to
“break apart,” hence they have the largest algebraic connectivity. Likewise, paths
are the easiest of the connected graphs to break apart; therefore, they have the
smallest algebraic connectivity. Further continuing with this idea, since trees do not
contain any cycles, intuitively they are easy to break apart, thus trees also have a
low algebraic connectivity. Using the fact that the algebraic connectivity is bounded
above by the vertex connectivity, it follows that the algebraic connectivity of a tree
is at most one. Hence the overarching idea of this section was that as we add edges
to an unweighted graph, the algebraic connectivity monotonically increases. In the
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next section, we will investigate the rate at which such an increase occurs.

Exercises:

1. Prove Observation 5.1.4.

2. (See [28]) Prove a(G1 × G2) = min{a(G1), a(G2)}.

3. Let Kp,q be the complete bipartite graph where the two partite sets contain
p and q vertices, respectively. Prove a(Kp.q) = min{p, q}.

4. Generalize the previous result by finding a(Kp1,p2,...,pk).

5. Let Cn be a cycle on n vertices. Prove a(Cn) = 2(1− cos 2π
n ).

6. Let Wn be the wheel on n vertices. Prove that a(Wn) = 1 + 2(1− cos 2π
n−1).

7. Prove Corollary 5.1.13.

5.2 The Algebraic Connectivity as a Function of Edge
Weight

We saw from Corollary 5.1.2 that if we take a graph and increase the weight of an
existing edge, then the resulting graph will have an algebraic connectivity greater
than or equal to the algebraic connectivity of the original graph. In this section, we
investigate the rate at which the algebraic connectivity increases as we increase the
weight of a fixed edge. We begin with a matrix theoretic result from [48]. In this
theorem, and in the subsequent theorems, we order the eigenvalues λ1 ≤ λ2 ≤ . . . ≤
λn.

LEMMA 5.2.1 Let A and E be n×n symmetric matrices and suppose that λ2(A)
is a simple eigenvalue of A. Then there exists t0 > 0 such that for each t ∈ [0, t0):

(i) The matrix At := A+ tE has λ2(At) as a simple eigenvalue.

(ii) There is an eigenvector vt corresponding to λ2(At) such that ‖vt‖2 = 1, and
with the property that vt is analytic in t on [0, t0).

(iii)
dλ2(At)

dt
≤ λn(E)

with equality holding if and only if vt is also an eigenvector for E corresponding to
λn(E).



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

The Algebraic Connectivity 181

Proof: To prove (i) (see [79], Chapter 2), denote the characteristic equation of
A by

det(λI −A) : = λn + cn−1λ
n−1 + cn−2λ

n−2 + . . .+ c0 = 0. (5.2.1)

Then the characteristic equation of A+ tE is

det(λI −A− tE) : = λn + cn−1(t)λn−1 + cn−2(t)λn−2 + . . .+ c0(t) = 0, (5.2.2)

where for r = 1, . . . , n − 1, cr(t) is a polynomial in t of degree (n − r) such that
cr(0) = cr. Since λ2(A) is a simple root of (5.2.1), it follows that for sufficiently
small t that there is a simple root λ2(At) of (5.2.2) given by the convergent power
series λ2(At) = λ2(A) + k1t+ k2t

2 + . . ..
To prove (ii), we use similar reasoning as in the proof of (i) to note that if v

is an eignvector of A corresponding to the simple eigenvalue λ2(A), then vt can be
written as the convergent power series

vt = v + tz1 + t2z2 + . . .

for appropriate vectors zi. Thus vt is analytic for sufficiently small t > 0.
To prove (iii), we note that since λ2(A) is a simple eigenvalue of A, there is

an open interval in < centered at t = 0 on which λ2(At) is an analytic function
of t. Similarly, there is an interval centered at t = 0 on which the corresponding
eigenvector vt is also analytic in t. Hence there exists t0 > 0 such that for all
t ∈ [0, t0), the derivatives of λ2(At) and of vt of all orders exist. We claim that

dλ2(At)

dt
=

vTt Evt
vTt vt

(5.2.3)

for all t ∈ [0, t0). To verify this claim (see [34], p. 323), let v(t) := vt and λ(t) :=
λ2(At) for notational simplicity. By the eigenvalue-eigenvector relationship, we have

(A+ tE)v(t) = λ(t)v(t)

which we express as
Av(t) + tEv(t) = λ(t)v(t).

Differentiating both sides with respect to t, we obtain

Av′(t) + E[tv′(t) + v(t)] = λ′(t)v(t) + λ(t)v′(t).

At t = 0, we have

Av′(0) + Ev(0) = λ′(0)v(0) + λ(0)v′(0).

Since Av′(0) = λ(0)v′(0) by the eigenvector-eigenvalue relationship, we simplify the
above expression as

Ev(0) = λ′(0)v(0).
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Since v(t) and λ(t) are analytic for all t ∈ [0, t0), we can express the above as

Ev(t) = λ′(t)v(t).

Multiplying both sides of the equality on the left by vT (t) and dividing through by
vT (t)v(t) gives us (5.2.3). By Theorem 1.2.4, the expression on the right of (5.2.3)
is at most λn(E), thus proving the theorem. 2

At this point, we know that the derivative of a simple eigenvalue with respect
to t is bounded above. We may now apply this result to Laplacian matrices. Let
E(i,j) be the n × n matrix whose (i, i) and (j, j) entries are 1 and whose (i, j) and
(j, i) entries are −1. Thus if L is the Laplacian matrix for G, then Lt := L + tE
is the Laplacian matrix for the graph obtained from G by increasing the weight of
the edge joining vertices i and j by t if i and j are adjacent, or by adding an edge
of weight t joining vertices i and j if i and j are not adjacent. Thus applying our
results to Laplacian matrices, we can rewrite Lemma 5.2.1 as follows (see [48]):

THEOREM 5.2.2 Let G be a connected weighted graph on n vertices with Lapla-
cian matrix L. Let = a(G), the algebraic connectivity of G, be a simple eigenvalue
of L. Fix a pair of distinct vertices i and j and put Lt := L + tE(i,j) with t ≥ 0.
Then there exists t0 > 0 such that for all t ∈ [0, t0):

da(Gt)
dt

= ((vt)i − (vt)j)
2 ≤ 2 (5.2.4)

where vt is an analytic eigenvector corresponding to a(Gt) such that ‖vt‖ = 1. More-
over, equality holds if and only if vt = ±(ei − ej)/

√
2.

At this point, it is natural to ask which graphs on n vertices have the property
that their algebraic connectivity is a simple eigenvalue and ei−ej is the correspond-
ing eigenvector. We answer this in the following theorem from [48]:

THEOREM 5.2.3 Let G be an unweighted connected graph on n ≥ 3 vertices with
Laplacian matrix L. Then G has the property that a(G) is a simple eigenvalue of L
with corresponding eigenvector ei − ej for some i 6= j if and only if G is the graph
obtained from the complete graph by deleting the edge joining vertices i and j.

Proof: First note that if G is formed by removing the edge between vertices
i and j from an unweighted complete graph on at least three vertices, then the
eigenvalues of L are 0, n− 2, and n with the eigenvalue n having multiplicity n− 2.
Then a(G) = n − 2 is a simple eigenvalue. Moreover ei − ej is a corresponding
eigenvector of L.

Now suppose that G is a connected graph on n ≥ 3 vertices having a(G) as a
simple eigenvalue and corresponding eigenvector ei− ej . Without loss of generality,
assume i = 1 and j = 2. We claim that G is the graph formed by removing the edge
joining vertices 1 and 2 in the complete graph. This claim is clearly true if G has
n = 3 vertices. Thus we will assume that G has n ≥ 4 vertices. Since a(G) is a simple
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eigenvalue of L with e1 − e2 as the corresponding eigenvector, then if k 6= 1, 2, it
follows by the eigenvalue-eigenvector relationship that either k is adjacent to both
vertices 1 and 2, or k is adjacent to neither vertices 1 or 2. Suppose that there are
d vertices (distinct from 1 and 2) that are adjacent to both vertices 1 and 2, and
that there are m ≥ 1 vertices that are adjacent to neither vertices 1 and 2. Then
the Laplacian L can be written L0 + dI −J 0

−J L1 +D1 −X
0 −XT L2 +D2


where the (1, 1) block is 2×2, the (2, 2) block is d×d, and the (3, 3) block is m×m;
where L0, L1, and L2 are the Laplacian matrices for the appropriate induced sub-
graphs G0, G1, and G2, respectively; and where D1 and D2 are appropriate diagonal
matrices. At this point we note:

(1) Since vertices in G2 can be adjacent to at most d vertices outside of G2, namely
the vertices in G1, it follows that D2 ≤ dI, and

(2) Since e1 − e2 is an eigenvector corresponding to a(G), it follows from the
eigenvalue-eigenvector relationship that a(G) = d + 2 if vertices 1 and 2 are ad-
jacent, and a(G) = d if vertices 1 and 2 are not adjacent.

We now consider the vector

x =


m/2
m/2

0(d)

−e(m)

 .
Note that xT e = 0 and xTx = m2

2 +m. Observe

xTLx = dm2

2 + eTD2em

≤ dm2

2 + dm

= dxTx

where the inequality follows from (1) above. Hence

xTLx

xTx
≤ d.

Recall by Theorem 1.2.7 that

a(G) = min
y 6=0

yT e=0

yTLy

yT y
.
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Thus it follows that a(G) ≤ d. Combining this with (2) above, we conclude that
a(G) = d and thus x must be a corresponding eigenvector. Hence there are two
linearly independent eigenvectors corresponding to a(G), namely x and e1 − e2.
This contradicts the hypothesis that a(G) is simple, hence our assumption that
m ≥ 1 is false. Therefore m = 0 and L can be written

L =

[
L0 + dI −J
−J L1 + 2I

]

where the (1, 1) block is 2× 2 and the (2, 2) block is d× d. As noted in (2) above,
a(G) = d or a(G) = d + 2. Since G has d + 2 vertices, if a(G) = d + 2 then G is
complete which violates our hypothesis. Thus a(G) = d which implies vertices 1 and
2 are not adjacent.

Write G as E2∨G1 where E2 is the graph consisting of two isolated vertices. The
proof will be complete once we show that G1 is complete, or equivalently a(G1) = d.
Let a(G1) = c and let w be the corresponding eigenvector of G1. From the structure
of L, we see that c + 2 is an eigenvalue of L with [0T2 wT ]T as a corresponding
eigenvector. Since a(G) = d is a simple eigenvector of L, it follows that c + 2 > d,
i.e., c > d − 2. Recalling Observation 5.1.4, since the algebraic connectivity of a
noncomplete graph on d vertices is never more than d− 2, it follows that c = d and
thus G1 is complete, hence the structure of G is as claimed. 2

EXAMPLE 5.2.4 Consider the graph Gt below for various values of t and note
that G0 = K5 − e. Thus by Theorems 5.2.2 and 5.2.3, we expect da(Gt)/dt = 2.
Observe that as t increases by 1, the value of a(Gt) increases by 2.

EXAMPLE 5.2.5 Consider the graph Gt below for various values of t and note
that Gt is not of the form Kn− e. Thus by Theorem 5.2.2, we expect da(Gt)/dt < 2.
In the graph below of a(Gt) as a function of t, observe that as t increases by 1 the
value of a(Gt) increases by less than 2.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

The Algebraic Connectivity 185

Thus far, we have obtained an upper bound of 2 on the derivative of the algebraic
connectivity as a function of edge weight. Naturally, by Theorem 5.1.2 the lower
bound on the derivative is zero. In the following theorem and corollaries from [48]
we show conditions for when the lower bound is achieved.

THEOREM 5.2.6 Let A and E be n × n positive semidefinite matrices with a
common null vector and suppose that λ2(A) > 0. For each t ≥ 0, let At = A+ tE. If
for some t∗ > 0, ut∗ is an eigenvector of At∗ corresponding to λ2(At∗) and Eut∗ = 0,
then λ2(At) = λ2(At∗) for all t ≥ t∗.

Proof: Since E is positive semidefinite, we see that for any t ≥ t∗ ≥ 0, it follows
that λ2(At) ≥ λ2(At∗). Additionally, since A and E have a common null vector, it
follows that λ1(At) = 0 for all t ≥ 0. Since Eut∗ = 0, we find that for all t ≥ t∗, we
have

λ2(At∗)ut∗ = At∗ut∗ = [At + (t∗ − t)E]ut∗ = Atut∗ + (t∗ − t)Eut∗ = Atut∗ .

Hence λ2(At∗) is a positive eigenvalue of At for all t ≥ t∗. Hence λ2(At∗) ≥ λ2(At).
We now conclude that λ2(At∗) = λ2(At) for all t ≥ t∗. 2

In light of Laplacian matrices, observe that E(i,j)ut∗ = 0 if and only if (ut∗)i =
(ut∗)j . This yields the following immediate corollaries:

COROLLARY 5.2.7 Suppose that G is a weighted graph on n ≥ 3 vertices with
Laplacian matrix L. Suppose that for some t∗ ≥ 0, ut∗ is an eigenvector of Lt∗ :=
L+ t∗E(i,j) corresponding to a(G) such that (ut∗)i = (ut∗)j. Then a(Gt) = a(G) for
all t ≥ t∗.

COROLLARY 5.2.8 Suppose that G is a weighted graph on n ≥ 3 vertices with
Laplacian matrix L and that a(G) is a multiple eigenvalue of L. Then for each pair
of distinct indices i and j and for any t ≥ 0, it follows that a(Gt) = a(G).

Proof: Since a(G) is a multiple eigenvalue of L, it follows that L has at least
two linearly independent eigenvectors corresponding to a(G), say x and y. Form the
eigenvector w = (yi − yj)x+ (xj − xi)y. Observe that wi = −xiyj + xjyi = wj . The
conclusion now follows from Corollary 5.2.7. 2
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EXAMPLE 5.2.9 Consider a star Sn on n ≥ 4 vertices. Since a(Sn) = 1 is a
multiple eigenvalue of L(Sn), it follows from Corollary 5.2.8 that adding an edge
of any positive weight joining two nonadjacent vertices of Sn will not increase the
algebraic connectivity.

We now turn our attention to the second derivative of the algebraic connectivity
of a graph. Since the first derivative is bounded above, this seems to suggest that
as t increases, the algebraic connectivity is increasing in a concave down manner.
The following theorem and corollary from [48] verify this:

THEOREM 5.2.10 Let A and E be n × n positive semidefinite matrices with a
common null vector. Then for t ≥ 0

d2λ2(At)

dt2
≤ 0.

That is, λ2(A+ tE) is a concave down function of t.

Proof: Let w 6= 0 be a common null vector to both A and E and let U be the
orthogonal complement of the subspace spanned by w. For any t ≥ 0, we have

λ2(A+ tE) = min x∈U
xT x=1

xT (A+ tE)x

= min x∈U
xT x=1

xT [(1− t)A+ t(A+ E)]x

≥ (1− t) min x∈U
xT x=1

xTAx+ tmin x∈U
xT x=1

xT (A+ E)x

= (1− t)λ2(A) + tλ2(A+ E).

The result follows. 2

COROLLARY 5.2.11 Let G be a connected weighted graph on n vertices with
Laplacian matrix L. Let a(G), the algebraic connectivity of G, be a simple eigenvalue
of L. Fix a pair of distinct vertices i and j and put Lt := L + tE(i,j) with t ≥ 0.
Then a(Gt) is a concave down function of t.

EXAMPLE 5.2.12 Observe that in the graph Gt in Example 5.2.5 that the al-
gebraic connectivity increases in a concave down fashion as expected by Corollary
5.2.11.

In Chapter 8, we introduce the concept of the group inverse of the Laplacian
matrix. Once this concept is introduced, we will be able to refine our results on the
second derivative of the algebraic connectivity. This we do in Section 8.4.
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Exercise:

1. (See [48]) Let L1 and L2 be Laplacian matrices for graphs G1 and G2 on k
and m vertices, respectively. Suppose that d is a number such that k > d > 0. Also
suppose that a(G1) > d −m − 2d/k. Consider the weighted graph G on k + m + 2
vertices whose Laplacian matrix is dI −(d/k)J 0

−(d/k)J L1 + (m+ 2d/k)I −J
0 −J L2 + kI


where the (1, 1) block is 2×2, the (2, 2) block is d×d, and the (3, 3) block is m×m.

(a) Show that d is an eigenvalue of L with correspondoing eigenvector e1 − e2.

(b) Show that a(G) = d and that d is simple.

5.3 The Algebraic Connectivity with Regard to Dis-
tances and Diameters

In the previous section, we saw the effect of edge weight on the algebraic connectiv-
ity of a graph. In this section, we consider the effects of distance on the algebraic
connectivity of unweighted graphs. Since graphs having great distances between
vertices tend to have less edges, we will ultimately be investigating the effect the
number of edges has on the algebraic connectivity of a graph. Recalling the defi-
nitions and examples of diameter and mean distance from Section 2.1, we see that
both the diameter and the mean distance of a graph will tend to be smaller for
graphs with more edges. Hence by Theorem 5.1.2, it stands to reason that as the
diameter and the mean distance decrease, the algebraic connectivity increases. In
this section, we will prove specific results to this effect by deriving lower bounds for
the algebraic connectivity in terms of the diameter and mean distance of a graph.
To this end, we begin with a graph theoretic lemma from [64]. In this lemma, let
E(G) and V (G) denote the edge set and vertex set, respectively, of G.

LEMMA 5.3.1 Let G be a connected unweighted graph on n vertices. For each
pair of distinct vertices u, v ∈ G, let Puv denote a shortest path from u to v. Then
any edge e ∈ E(G) belongs to at most n2/4 of such paths Puv.

Proof: For a fixed edge e = xy ∈ E(G), define the graph Γe as follows: V (Γe) =
V (G) and vertices u and v are adjacent in Γe if and only if e lies on Puv. We need
to show that |E(Γe)| ≤ n2/4.

First we prove that Γe has no triangles. Assume that e lies on Puw and Pvw, i.e.,
uw, vw ∈ E(Γe). We need to show that u and v are not adjacent in Γe. Without
loss of generality, we can orient Puw and Pvw so that d(u, y) = d(u, x) + 1 and
d(v, y) = d(v, x) + 1.
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From this and from the triangle inequality we have

d(u, v) ≤ d(u, x) + d(x, v) < d(u, x) + d(y, v)

and similarly

d(u, v) ≤ d(u, x) + d(x, v) < d(u, y) + d(x, v).

Either way, the shortest path in G from u to v cannot use the edge e = xy. Hence
u and v are not adjacent in Γe. Thus Γe has no triangles.

The proof will be complete when we show that any triangle free graph Γ on
order n has at most n2/4 edges. We prove this by induction on n. This is clearly
true for n ≤ 3. For the inductive hypothesis, assume that this is true for all triangle
free graphs Γ on n ≤ k vertices for some k ≥ 3. Now suppose Γ has n = k + 1
vertices and is triangle free. Take any two adjacent vertices u and v and observe
that since u and v have no common neighbors that degΓ(u) + degΓ(v) ≤ k + 1. By
the induction hypothesis

|E(Γ)| = |E(Γ−u−v)|+degΓ(u)+degΓ(v)−1 ≤ (k − 1)2

4
+k =

(k + 1)2

4
=

n2

4
.

2

Our next lemma from [28] is a matrix theoretic result which makes use of
the eigenvector x of the Laplacian matrix L corresponding to the algebraic con-
nectivity of the graph. Labelling the vertices of the graph 1, . . . , n and letting
x = [x1, . . . , xn]T , we have a natural correspondence between the vertices of G
and the entries of x.

LEMMA 5.3.2 Let G be a graph with Laplacian matrix L, algebraic connectivity
a, and corresponding eigenvector x. Then∑

uv∈E(G)

(xu − xv)2 = a
∑

v∈V (G)

x2
v.
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Proof:

a
∑
v∈V (G) x

2
v =

∑
v∈V (G)(axv)xv

=
∑
v∈V (G)(e

T
v Lx)xv

=
∑
v∈V (G)

(
xvdeg(v)−

∑
uv∈E(G) xu

)
xv

=
∑
v∈V (G)

(
x2
vdeg(v)−

∑
uv∈E(G) xuxv

)
=
∑
v∈V (G)

∑
uv∈E(G)(x

2
v − xuxv)

=
∑
uv∈E(G)(x

2
v − 2xuxv + x2

u)

=
∑
uv∈E(G)(xv − xu)2.

2

We now present a theorem from [64] which gives lower bounds on the diameter
and the mean distance, ρ, of G in terms of the algebraic connectivity. We then present
an immediate corollary which gives upper bounds on the algebraic connectivity.

THEOREM 5.3.3 Let G be an unweigted connected graph on n vertices with al-
gebraic connectivity a. Then

diam(G) ≥ 4

an
(5.3.1)

and

(n− 1)ρ(G) ≥ 2

a
+
n− 2

2
. (5.3.2)

Proof: For each pair of vertices u, v ∈ G, choose a shortest path Pu,v from u to
v. Let x be an eigenvector corresponding to a. Then

a
∑
u∈V (G)

∑
v∈V (G)(xu − xv)2 = a

∑
u∈V (G)

∑
v∈V (G)(x

2
u − 2xuxv + x2

v)

= a(
∑
u∈V (G)

∑
v∈V (G) x

2
u − 2a

∑
u∈V (G)

∑
v∈V (G) xuxv

+
∑
u∈V (G)

∑
v∈V (G) x

2
v)

= a

(
2n
(

1
a

)∑
uv∈E(G)(xu − xv)2

−2
∑
u∈V (G)

∑
v∈V (G) xuxv

)
= 2n

∑
uv∈E(G)(xu − xv)2

−2a
∑
u∈V (G) xu

(∑
v∈V (G) xv

)
= 2n

∑
uv∈E(G)(xu − xv)2

(5.3.3)
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where the third equality follows from Lemma 5.3.2 and last equality follows from
the fact that

∑
v∈V (G) xv = 0 (since xT e = 0). Letting Puv = u, v1, v2, . . . , vk−1, v

(thus d(u, v) = k), defining f(e) := xa − xb where the edge e = ab, and recalling
that (

∑k
i=1 ai)

2 ≤ k
∑k
i=1 a

2
i for any real numbers a1, . . . , ak, we see that

(xu− xv)2 = [(xu− xv1) + (xv1 − xv2) + . . .+ (xvk−1
− xv)]2 ≤ d(u, v)

∑
e∈Puv

f2(e).

(5.3.4)
Let χuv : E(G)→ {0, 1} be the characteristic function of Puv, i.e.,

χuv(e) =


1, if e ∈ Pu,v

0, otherwise
.

Thus by (5.3.4)∑
v∈V (G)

∑
u∈V (G)(xu − xv)2 ≤

∑
v∈V (G)

∑
u∈V (G)

(
d(u, v)

∑
e∈E(G) f

2(e)χuv(e)
)

=
∑
e∈E(G)

(
f2(e)

∑
v∈V (G)

∑
u∈V (G) d(u, v)χuv(e)

)
.

(5.3.5)
To show (5.3.1), we see from Lemma 5.3.1 that since e cannot belong to more than
n2/4 paths Puv, it follows that

∑
v∈V (G)

∑
u∈V (G)

χuv(e) ≤ 2

(
n2

4

)
=

n2

2
. (5.3.6)

Combining this, (5.3.3), (5.3.5), and using the fact that d(u, v) ≤ diam(G) for any
pair of vertices u, v, we obtain

2n
∑
e∈E(G) f

2(e) = 2n
∑
uv∈E(G)(xu − xv)2

= a
∑
v∈V (G)

∑
u∈V (G)(xu − xv)2

≤ a
∑
e∈E(G)

(
f2(e)

∑
v∈V (G)

∑
u∈V (G) d(u, v)χuv(e)

)
≤ a diam(G)n

2

2

∑
e∈E(G) f

2(e).

Dividing through by an
2

∑
e∈E(G) f

2(e) yields (5.3.1).
To prove (5.3.2) observe that for each edge e ∈ E(G) we have∑

u∈V (G)

∑
v∈V (G) d(u, v)χuv(e) ≤

∑
u∈V (G)

∑
v∈V (G) d(u, v)

−
∑
v∈V (G)

∑
u∈V (G)\{v}(1− χuv(e))

≤ n(n− 1)ρ(G)− 2
(n

2

)
+ n2

2

= n(n− 1)ρ(G)− n(n−2)
2

(5.3.7)
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where the last inequality follows from (5.3.6). Applying (5.3.3), (5.3.5), and (5.3.7),
we obtain

2n
∑
e∈E(G) f

2(e) = a
∑
v∈V (G)

∑
u∈V (G)(xu − xv)2

≤ a
∑
e∈E(G) f

2(e)
∑
v∈V (G)

∑
u∈V (G) d(u, v)χuv(e)

≤ a
(
n(n− 1)ρ(G)− n(n−2)

2

)∑
e∈E(G) f

2(e).

Dividing through by n
∑
e∈E(G) f

2(e) and rearranging yields (5.3.2). 2

Theorem 5.3.3 yields an immediate corollary which gives lower bounds on the
algebraic connectivity:

COROLLARY 5.3.4 Let G be an unweighted connected graph on n vertices with
algebraic connectivity a. Then

a ≥ 4

n diam(G)

and

a ≥ 4

2(n− 1)ρ− (n− 2)

Corollary 5.3.4 provides lower bounds for the algebraic connectivity in terms of
diam(G) and ρ(G). Recall that if a graph has more edges, then diam(G) and ρ(G)
are likely to be smaller. In such a case, since Corollary 5.3.4 shows that the lower
bounds for a(G) will be larger, hence yielding a larger algebraic connectivity as ex-
pected. Similarly, a graph containing fewer edges will likely have a larger diameter
and larger mean distance. In this case, Corollary 5.3.4 shows that the lower bounds
for a(G) will be smaller as expected.

Exercise:

1. Use Corollary 5.3.4 to find lower bounds on the algebraic connectivity of the
following graphs:
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5.4 The Algebraic Connectivity in Terms of Edge Den-
sity and the Isoperimetric Number

In the previous two sections, we investigated how the number of edges and weight
of the edges affect the algebraic connectivity of a graph. In this section, we consider
how the location of edges in a graph affects the algebraic connectivity. To this end,
we begin with a definition.

DEFINITION 5.4.1 Given a connected graph G, a set of edges F ⊂ E(G) is
called an edge-cut (or cut) if there exists a set of vertices X such that F is precisely
all edges of G that have one end in X and the other in Xc.

Given a set of vertices X, we let ∂X denote the edge cut that it induces.

DEFINITION 5.4.2 Let G be a graph on n vertices. The edge density of a cut
∂X is defined as

ρ(X) : =
n|∂X|
|X||Xc|

EXAMPLE 5.4.3 Consider the graph G below:

Let X be the set consisting of vertices 1 and 5. Then ∂X = {13, 14, 25, 35, 45}.
Hence |X| = 2, |Xc| = 3, |∂X| = 5 and n = 5. Thus ρ(X) = 25/6.

We now present a theorem from [65] which gives an upper bound on the al-
gebraic connectivity in terms of edge densities.

THEOREM 5.4.4 Let G be an unweighted connected graph on n vertices with al-
gebraic connectivity a. Let L be its Laplacian matrix with λn as its largest eigenvalue.
Then for any set of vertices X such that X 6= ∅ and X 6= V (G), we have

a ≤ ρ(X) ≤ λn (5.4.1)
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Proof: For a fixed set X ⊂ V , let x ∈ <n be the vector whose entries are

xv =


|Xc| if v ∈ X,

−|X| if v ∈ Xc,

Note that xT e = 0. Recalling that e is an eigenvector corresponding to the eigenvalue
λ1 = 0 of L, it follows from Theorem 1.2.7 that

a ≤ xTLx

xTx
≤ λn(G) (5.4.2)

for any such vector x. For a vertex v, let bdeg(v) denote the number of edges in ∂X
incident to v. Then

(Lx)v =


n bdeg(v) if v ∈ X,

−n bdeg(v) if v ∈ Xc,

and hence

xTLx = n|Xc||∂X|+ n|X||∂X| = n|∂X|(|Xc|+ |X|) = n2|∂X|. (5.4.3)

Also note that

xTx = |X||Xc|2 + |X|2|Xc| = |X||Xc|(|Xc|+ |X|) = |X||Xc|n. (5.4.4)

Substituting (5.4.3) and (5.4.4) into (5.4.2) yields (5.4.1). 2

REMARK 5.4.5 Theorem 5.4.4 is valid if the graph G is weighted. In this case,
|∂X| would merely denote the sum of the weights of the edges in ∂X.

Focusing our attention on the algebraic connectivity, we wish to determine what
characteristics a graph G must possess in order for a(G) = ρ(X) for some subset
X ⊂ V . We should first note that ρ(X) is not necessarily an eigenvalue of L(G).
However, if ρ(X) is indeed an eigenvalue and, moreover, if ρ(X) = a(G), then
a(G) would necessarily be an integer. This is due to the fact that a(G) would be a
rational root of the characteristic polynomial of L(G) which is a monic polynomial.
Consequently, there would exist a corresponding eigenvector y whose entries are all
integers. Hence if there exists a set of vertices X ⊂ V (G) inducing a cut such that
ρ(X) = a(G), then we have

L(G)y =

[
L1 +D1 −A
−AT L2 +D2

] [
|Xc|e(|X|)

−|X|e(|Xc|)

]
= a(G)y (5.4.5)

where L1 and L2 are the Laplacian matrices for the subgraphs induced by the
vertices in X and Xc, respectively. Since e is an eigenvector corresponding to the
eigenvalue λ1 = 0 of any Laplacian matrix, it follows that L1e = L2e = 0. Since
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L(G)e = 0, it follows that (L1 + D1)e(|X|) − Ae(|Xc|) = 0, thus forcing D1e = Ae.
Similarly, D2e = AT e. Thus (5.4.5) simplifies to[

nD1e
(|X|)

−nD2e
(|Xc|)

]
= a(G)

[
|Xc|e(|X|)

−|X|e(|Xc|)

]
. (5.4.6)

Since the vector on the left of (5.4.6) is merely an integral multiple of the vector
on the right of (5.4.6), it follows that since D1 and D2 are diagonal matrices, the
diagonal entries in each of these matrices must be constant. Hence if a(G) = ρ(X)
for some X ⊂ V (G), the each vertex in X is adjacent to the same number of vertices,
say d1, in Xc; and each vertex in Xc is adjacent to the same number of vertices,
say d2, in X. This is referred to (see [22]) as regularity across the cut.

Conversely, suppose that every vertex in X is adjacent to d1 vertices in Xc and
every vertex in Xc is adjacent to d2 vertices in X. Then ρ(X) is a nonzero eigenvalue
of L(G) (not necessarily corresponding to a(G), though) with eigenvector[

|Xc|e(|X|)

−|X|e(|Xc|)

]
.

Moreover,
|∂X| = |X|d1 = |Xc|d2. (5.4.7)

However, should a(G) = ρ(X), then

a(G) = ρ(X) = n|∂X|
|X||Xc|

= n|X|d1
|X||Xc|

= (|X|+|Xc|)d1
|Xc|

= |X|d1+|Xc|d1
|Xc|

= |Xc|(d2+d1)
|Xc|

= d1 + d2

We summarize these findings (mainly from [22]) in the following theorem:

THEOREM 5.4.6 Let G be a connected unweighted graph on n vertices with al-
gebraic connectivity a(G). If there exists a set of vertices X ⊂ V (G) such that
a(G) = ρ(X), then the following necessarily hold:

(i) Each vertex in X is adjacent to d1 vertices in Xc, and each vertex in Xc is
adjacent to d2 vertices in X, and

(ii) |X|d1 = |X|d2.

Moreover, a(G) = d1 + d2.
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We now turn our attention to a related concept, the isoperimetric number of a
graph:

DEFINITION 5.4.7 The quantity

i(G) = min

{ |∂X|
|X|

: X ⊆ V, 1 ≤ |X| ≤ n

2

}
is known as the isoperimetric number of G.

EXAMPLE 5.4.8 Consider the following graph G:

Since n = 4, we consider all sets of vertices X such that |X| = 1 and |X| = 2:

X |X| |∂X| |∂X|/|X|
{a} 1 2 2

{b} 1 3 3

{c} 1 3 3

{d} 1 2 2

{a, b} 2 3 1.5

{a, c} 2 3 1.5

{b, d} 2 3 1.5

{c, d} 2 3 1.5

{a, d} 2 4 2

{b, c} 2 4 2

From the chart, we see that i(G) = 1.5.

At this point, it seems reasonable that the concepts edge density and the isoperi-
metric number are related. To better understand this relation, we define

ik(G) : = min

{ |∂X|
k

: X ⊆ V, |X| = k

}
. (5.4.8)

OBSERVATION 5.4.9

i(G) = min

{
ik(G) : 1 ≤ k ≤

⌈
n

2

⌉}
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From (5.4.8) and Theorem 5.4.4 we have

a(G) ≤ min
n|∂X|
|X||Xc|

where the minimum is taken over all nonempty sets X ⊂ V such that |X| ≤ dn/2e.
Consequently, if |X| = k (hence |Xc| = n− k) then

a(G) ≤ n

n− k
ik(G).

Hence, we obtain an important upper bound from [63] on the algebraic connectivity
with respect to the isoperimetric number of a graph:

THEOREM 5.4.10 Let G be a connected graph on n vertices with isoperimetric
number i(G). Then for every k where 1 ≤ k ≤ dn/2e, we have

a(G) ≤ n

n− k
ik(G).

Consequently a ≤ 2i(G).

Since the isoperimetric number is a minimum over all vertex sets |X| such that
1 ≤ |X| ≤ dn/2e, we obtain a weaker, but sometimes more useful, corollary to
Theorem 5.4.10.

COROLLARY 5.4.11 Let G be a connected graph on n vertices. Then for every
vertex set |X| such that 1 ≤ |X| ≤ dn/2e, we have

a(G) ≤ 2|∂X|
|X|

.

This corollary will be useful in the next two sections when we investigate how
the genus of a graph affects the algebraic connectivity.

Exercises:

1. (See [22]) Let G be a graph with vertex set V where there exists a set X ⊂ V
such that (1) the subgraphs induced by the vertices in X and the vertices in Xc

are each complete subgraphs, and (2) conditions (a) and (b) of Theorem 5.4.6 are
satisfied. Show that a(G) = d1 + d2; in particular a(G) = ρ(X).

2. (See [63]) Show the following:
(i). i(Kn) = dn/2e
(ii). i(Cn) = 2/bn/2c
(iii). i(Pn) = 1/bn/2c
(iv). i(Km,n) = dmn/2e/b(m+ n)/2c.

3. Use Theorem 5.4.10 to find an upper bound on the algebraic connectivity of
the following graph:
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5.5 The Algebraic Connectivity of Planar Graphs

In this section and the next section, based largely on [67], we find upper bounds
on the algebraic connectivity in terms of topological properties of a graph. Finding
such bounds will make use of Theorem 5.4.10 and Corollary 5.4.11. In this section,
we deal with planar graphs. Recall from Section 2.6 that a graph is planar if it can
be drawn on a plane (equivalently a sphere) so that no two of its edges cross. We
saw in Theorem 2.6.7 that a planar graph cannot have too many edges. Thus by
Theorem 5.1.2, it follows that planar graphs have small algebraic connectivity. But
how small? In this section, our goal is to prove the following:

THEOREM 5.5.1 If G is a planar graph, then a(G) ≤ 4. Moreover, equality holds
if and only if G ∼= K4 or G ∼= K2,2,2.

Since our goal is to determine an upper bound on the algebraic connectivity
of planar graphs, by Theorem 5.1.2, we want to consider such planar graphs with
the maximum number of edges. Thus we will restrict our attention to maximal
planar graphs (see Definition 2.6.10). In order to prove Theorem 5.5.1, we recall
from Observation 2.6.12 that if G is a maximal planar graph on n ≥ 4 vertices,
then δ(G) ≥ 3. Also recall from Corollary 2.6.9 that for any planar graph G we
have δ(G) ≤ 5. Therefore, in order to determine the upper bound on the algebraic
connectivity of planar graphs, we need only consider three cases: δ(G) = 3, δ(G) = 4,
and δ(G) = 5 where G is maximal planar. However, note that the complete graph
on the largest number of vertices that is planar is K4 and that a(K4) = 4. Hence
by Corollary 5.1.12, we need only consider noncomplete planar graphs such that
δ(G) = 4 and δ(G) = 5. Thus we will prove Theorem 5.5.1 as two claims. Claim
5.5.2 will concern the case where δ(G) = 4, while Claim 5.5.8 will concern the case
where δ(G) = 5. We will first begin with Claim 5.5.2 from [67].

CLAIM 5.5.2 Let G be a noncomplete planar graph on n vertices such that δ(G) =
4, then a(G) ≤ 4 and equality holds if and only if G ∼= K2,2,2.

Proof: Suppose G is a noncomplete planar graph such that δ(G) = 4. Then
by Corollary 5.1.12, a(G) ≤ 4. If a(G) = 4 then Corollary 5.1.12 implies v(G) = 4
also. Thus by Theorem 5.1.10, G = G1 ∨ G2 where G1 is a disconnected graph n− 4
vertices, while G2 is a graph on four vertices with a(G2) ≥ n− 8. Since G is planar,
by Theorem 2.6.15 it follows that G cannot contain K3,3 as a subgraph. Therefore,
since G = G1 ∨ G2 and since G2 has four vertices, it follows that G1 has either one
vertex or two vertices. If G1 has one vertex, then G1 = K1. But, a(K1 ∨ G2) < 4
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for all graphs G2 on four vertices in which K1 ∨ G2 is planar. If G1 has two vertices,
then since G1 must be disconnected, it follows that G1 = E2, where E2 is the empty
graph on two vertices. However, a(E2 ∨G2) ≤ 4 for all graphs G2 on four vertices in
which E2 ∨ G2 is planar, and equality holds if and only if G2 = C4 where C4 is the
cycle on four vertices. But E2 ∨ C4 = K2,2,2 (which is planar). Since a(K2,2,2) = 4,
the claim is proven. 2

To prove Theorem 5.5.1, we need to now show that a(G) < 4 for all planar graphs
G in which δ(G) = 5. Recalling from Section 2.6 that planar graphs, when drawn
as a plane graph, divide the plane into regions, we present the following definition
that will help us prove Theorem 5.5.1:

DEFINITION 5.5.3 A planar graph G is outerplanar if it can be drawn with all
vertices of G placed on a circle such that all edges are drawn passing through the
interior of the circle with no two edges crossing.

The following graph theoretic lemma concerning outerplanar graphs is well-
known (see [78], p. 240), thus we state it without proof:

LEMMA 5.5.4 If G is outerplanar and there exists a cycle in G containing every
vertex of G, then there exists at least two nonadjacent vertices of degree two.

We now state another graph theoretic lemma from [67] for which we do provide
a proof:

LEMMA 5.5.5 Let G be a planar graph drawn in the plane. Let R be a region
bounded by a set of vertices forming a cycle C such that either

(a) For each vertex v ∈ C we have 2 ≤ deg(v) ≤ 4; or

(b) There exists exactly two adjacent vertices w, z ∈ C such that deg(w) ≥ deg(z) ≥
5, while for all remaining vertices v ∈ C we have 2 ≤ deg(v) ≤ 4.

Then it is impossible to create a graph H from G by adding edges joining non-
adjacent vertices of C, each of which passes through R, so that H is planar and all
vertices in C have degree five or greater in H.

Proof: Let Gc be the graph formed by C and the edges being added that pass
through R. Observe that Gc is outerplanar. Thus by Lemma 5.5.4 there exists at
least two nonadjacent vertices in Gc with degree two in Gc. If (a) holds, then such
vertices will have degree at most four in H. If (b) holds then since w and z are
adjacent, it follows from Lemma 5.5.4 that at least one vertex x in C other than w
or z will have degree two in Gc. Thus x ∈ C will have degree at most four in H. 2

Recall from Observation 2.6.12 that if a maximal planar graph is drawn so that
no edges cross, then every region created by the graph is bounded by three edges.
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Thus we say that every region of a maximal planar graph is a triangle and that each
vertex is the center of a wheel subgraph. With this in mind, we now prove the next
important lemma from [67] which deals explicitly with graphs G where δ(G) = 5
and G is maximal planar. In this lemma, let Adj(v) := v ∪N(v).

THEOREM 5.5.6 Let G be a maximal planar graph on n vertices such that δ(G) =
5. Then |Adj(v)| ≤ dn/2e for all v ∈ G. Moreover, for each vertex v ∈ G, there exists
a vertex w ∈ G such that d(v, w) ≥ 3.

Proof: Consider v ∈ G and let deg v = k. We need to show that k + 1 ≤ dn/2e.
Since G is maximal planar, v is the center of some wheel. Therefore let v be adjacent
to v1, . . . , vk where vi is adjacent to vi+1 for all 1 = 1, . . . , k − 1 and where vk is
adjacent to v1. Let Z be the set of vertices outside Adj(v) that are adjacent to
at least one of v1, . . . , vk. Since each edge in a maximal planar graph lies on the
boundary of two triangle regions, and since each vertex has degree at least five, it
follows that for each i = 1, . . . , k − 1, there exists a unique vertex wi ∈ Z such
that wi is adjacent to both vi and vi+1 (otherwise there would be a vertex of degree
four). Similarly, there exists a vertex wk ∈ Z adjacent to both vk and v1. There may
also be vertices in Z adjacent to exactly one vertex in Adj(v). Hence |Z| ≥ k. Let
Ĝ be the subgraph of G that is depicted in Figure 1 (where, in this case, k = 6 and
vertices v1, v2, v3, and v5 have other vertices in Z adjacent to them). The vertices of
Ĝ are precisely the vertices in Adj(v)

⋃
Z. (Note that we cannot conclude that Ĝ is

the subgraph induced by the vertices in Adj(v)
⋃
Z because there may be additional

edges joining pairs of these vertices.)

Therefore, |Ĝ| ≥ 2k + 1. The theorem is proven if there exists a vertex in G that is
not in Ĝ for that would imply n ≥ 2k + 2, and hence k + 1 ≤ dn/2e.

We first must show that the vertices in Z induce a cycle. Let’s suppose not and
deduce a contradiction. If the vertices of Z do not induce a cycle, then there are
two cases to consider:
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Case (i): There exist two vertices in Adj(v) that are adjacent in G but the edge
joining them is not an edge in Ĝ.

Case (ii): There exist two nonadjacent vertices in Adj(v) that are adjacent to a
common vertex in x ∈ Z.

First we consider Case (i). Let vp and vq where p < q be vertices in Adj(v) satisfying
the statement of Case (i) such that none of the vertices vi where p+ 1 ≤ i ≤ q − 1
satisfy Case (i) or Case (ii). Let Z ′ be the set of vertices in Z that are adjacent to
such vertices vi for p ≤ i ≤ q. Then since G is maximal planar, the vertices in Z ′

form a path P in G. Let H be the subgraph of G formed from Ĝ by adding the edges
of P (see Figure 2.) Observe that in H, the vertex vp followed by the vertices in Z ′

followed by vq followed by vp forms a cycle C. Let R denote the region that is the
interior of C.

Thus to create G from H, edges would need to be added which pass through R.
Observe that in H, that 2 ≤ deg(z) ≤ 4 for all z ∈ Z ′. Thus the only two vertices in
C which can possibly have a degree at least five in G are vp and vq which are adjacent
in C. Thus by Lemma 5.5.5(b), it is impossible to add edges passing through R to
create G such that all vertices in C will have degree at least five in G. Hence Case
(i) cannot hold.

Now we consider Case (ii). Let vp and vq where p < q be vertices in Adj(v)
satisfying the statement of Case (ii) such that none of the vertices vi where p+ 1 ≤
i ≤ q − 1 satisfy Case (i) or Case (ii). Let Z ′ be as in Case (i) and recall that the
vertices in Z ′ form a path P in G. Let H be the subgraph of G formed from Ĝ by
adding the edges of P . Observe that in H, the vertex vp followed by the vertices
in Z ′ followed by vq followed by x followed by vp forms a cycle C. Let R be the
interior of C and let u and y be the vertices besides x that are adjacent to vp and
vq, respectively in C.
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Thus to create G from H, edges would need to be added which pass through R. Ob-
serve that in H, that 2 ≤ deg(z) ≤ 4 for all z ∈ Z ′. Also note in H that deg(x) = 2,
and deg(u),deg(y) ≤ 3. Thus the only two vertices in C which can possibly have a
degree of at least five in G are vp and vq. We now have three subcases to consider.

Subcase (a): Vertices vp and vq are adjacent in G. Then the vertex vp followed
by the vertices in P followed by vq and then vp forms a cycle in G. Let R′ be the
region bounded by this cycle. Hence by the reasoning in Case (i), edges passing
through R′ cannot be added so that every vertex in the resulting graph has degree
five or greater.

Subcase (b): Vertex vp or vq, say vp, is adjacent to a vertex s ∈ Z ′. Then R is divided
into two regions. Consider the region R′ that is not bounded by x and observe that
vp and s are the only vertices whose degree can possibly be at least five. Thus by
the reasoning of Case (i), adding edges passing through this region cannot result in
a graph in which every vertex is of degree five or greater.
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Subcase (c): Neither vertices vp nor vq are adjacent to other vertices in Z ′ (except
for those on C). Then since G is maximal planar and thus every region in G is a
triangle, x is adjacent to both u and y in G. Since deg(u),deg(y) ≤ 3 in H, adding
such edges increases the degrees of u and y to at most four. Thus we have created
a cycle in which each vertex has degree at most four. Thus by Lemma 5.5.5(a), we
cannot add edges through R′ such that the resulting graph has all vertices of degree
five or greater.

Subcases (a) through (c) show that Case (ii) cannot hold. Therefore in G, the
vertices of Z induce a cycle where 3 ≤ deg(z) ≤ 4 for all vertices z ∈ Z. Suppose
that all vertices of G are also vertices of Ĝ. Since all the vertices of G have minimum
degree 5 and are vertices in Ĝ, in order to create G from Ĝ, edges joining nonadjacent
vertices of Z would have to be added. By the construction of Ĝ, all such edges would
have to pass through the same region. By Lemma 5.5.5(a), it is impossible to add
such edges so that the resulting graph would be both planar and have minimum
degree 5. Therefore there must exist a vertex in G that is not a vertex in Ĝ. Hence
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n ≥ 2k+2 and therefore k+1 ≤ dn/2e. Since |Adj(v)| ≤ dn/2e for all vertices v ∈ G,
then for each vertex v, there exists a vertex w /∈ Adj(v)

⋃
Z. Thus d(v, w) ≥ 3. 2

If G is a maximal planar graph on n ≥ 4 vertices, then every vertex of G is the
center of a wheel subgraph. Thus Lemma 5.5.6 says that if G is a maximal planar
graph such that δ(G) = 5, then there exist two vertices w1 and w2 that are the
centers of wheels W1 and W2, respectively, where W1 and W2 do not share any
common vertices or edges and such that one wheel consists of no more than dn/2e
vertices while the other wheel consists of no more than bn/2c vertices. Observe that
the vertices adjacent to w1 and w2 form disjoint cycles, C1 and C2, respectively.

Suppose |W1
⋃
W2| < n. Then there exists a vertex v /∈W1

⋃
W2 that is adjacent

to vertices in C1 or C2. Since deg(v) ≥ 5, it follows that v is adjacent to at least two
vertices of C1 or two vertices of C2. Without loss of generality, let v be adjacent to
at least two vertices of C1, say v1 and v2. Let v0 and v3 be the vertices on C1 not
adjacent to v such that v1 is adjacent to v0, and v2 is adjacent to v3. Hence we can
extend C1 to form the cycle Ĉ1 by beginning at v0, then traveling to v1, v, v2, v3 and
then traveling the remaining vertices of C1 returning to v0.

We can continue extending Ĉ1 and Ĉ2 in this manner until we have two disjoint
sets X and Y such that |X| = bn/2c, |Y | = dn/2e, and the vertices in each set that
are adjacent to the vertices in the other set each forms a cycle. We state this more
formally as an observation from [67]:

OBSERVATION 5.5.7 If G is a maximal planar graph on n vertices in which
δ(G) = 5, then there exist disjoint sets of vertices X and Y in which |X| = bn/2c,
|Y | = dn/2e such that all of the following hold:

(i) The vertices in X that are adjacent to vertices in Y form a cycle.
(ii) The vertices in Y that are adjacent to vertices in X form a cycle.
(iii) There exists a vertex x ∈ X that is not adjacent to any vertex in Y .
(iv) There exists a vertex y ∈ Y that is not adjacent to any vertex in X.

We can now prove Claim 5.5.8 which deals with the case of planar graphs where
δ(G) = 5. Before doing so, we introduce notation in order to make the proof more
transparent. In parts (i) and (ii), of Observation 5.5.7, we will let Xc and Yc de-
note the respective cycles formed. We let x1, . . . , xk be the vertices of Xc, and let
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y1, . . . , ym be the vertices of Yc. We will orient each cycle so that xi is the ith vertex
of Xc, and yi is the ith vertex of Yc. This allows us to use the idea of vertices being
consecutive. Thus, in Xc (Yc), we regard xi+1 (yi+1) as the vertex that directly
follows xi (yi) for i = 1, . . . , k − 1 (m − 1), and x1 (y1) as the vertex that directly
follows xk (ym). Hence in a set of consecutive vertices of either Xc or Yc, the words
“first” and “last” have meaning. We now proceed with the claim (see [67]) which
makes use of the concept of the isoperimetric number studied in Section 5.4.

CLAIM 5.5.8 Let G be a maximal planar graph on n vertices in which δ(G) = 5.
Then a(G) < 4.

Proof: Let X and Y be sets of vertices in G that are in accordance with Ob-
servation 5.5.7. Let Xc = x1, x2, . . . , xk, x1 be the (cycle of) vertices of X that are
adjacent to vertices in Y and let Yc = y1, y2, . . . , ym, y1 be the (cycle of) vertices of
Y that are adjacent to vertices in X. By Observation 5.5.7, k+m ≤ n− 2. We will
show that there are at most n− 2 edges joining vertices in X with vertices in Y .

Since G is maximal planar, every region is a triangle. Therefore, each xi ∈ Xc

is adjacent to consecutive vertices (possibly only one vertex) in Yc. Similarly, each
yi ∈ Yc is adjacent to consecutive vertices (possibly only one vertex) in Xc. We will
now label the edges joining vertices in Xc to vertices in Yc in correspondence with
the vertices in Xc and Yc; we will show that a one-to-one correspondence exists.
Since each vertex in Xc is adjacent to consecutive vertices in Yc, each vertex xi has
a last vertex in Yc to which it is adjacent. Label the edge joining xi to such a vertex
as xi (See Figure 5). (If a vertex xi is adjacent to all vertices in Yc, then label the
edge joining xi to ym as xi.) Similarly, considering the vertices in Yc, since each
is adjacent to consecutive vertices in Xc, each vertex yi has a last vertex in Xc to
which it is adjacent. Label the edge joining the yi to such a vertex as yi. (If a vertex
yi is adjacent to all vertices in Xc, then label the edge joining yi to xk as yi.) Thus
we have created a one-to-one correspondence between the vertices in Xc

⋃
Yc and

the edges joining the vertices in Xc to vertices in Yc. Hence |∂X| = k +m ≤ n− 2.
Therefore by Corollary 5.4.11.

a(G) ≤ 2|∂X|
|X|

≤ 2(n− 2)

bn/2c
≤ 2(n− 2)

(n− 1)/2
=

4(n− 2)

n− 1
< 4.

2
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Claims 5.5.2 and 5.5.8 show that if G is a noncomplete maximal planar graph,
then a(G) ≤ 4 where equality holds if and only if G = K2,2,2. Note that every planar
graph Q is the subgraph of some maximal planar graph G. Since Q is a subgraph
of G, it follows from Theorem 5.1.2 that a(Q) ≤ a(G). Finally, since no subgraph Q
of K2,2,2 is such that a(Q) = 4, Theorem 5.5.1 is proven.

5.6 The Algebraic Connectivity as a Function Genus k

Where k ≥ 1

In the previous section, we found an upper bound for the algebraic connectivity
of planar graphs, otherwise known as graphs of genus zero. In this section, based
largely on [67], we will investigate the algebraic connectivity of graphs of genus
k ≥ 1. Since graphs of higher genus will tend to have more edges, Theorem 5.1.2
implies that the upper bound for the algebraic connectivity of such graphs should be
greater. To achieve such an upper bound on the algebraic connectivity, we recall the
Generalized Euler’s Formula (Corollary 2.6.21) which states that if G is a connected
graph on n vertices, m edges, and of genus k, then

k ≥ m

6
− n

2
+ 1. (5.6.1)

Recall that for all graphs, the sum of the degrees of the vertices is 2m. Thus for
all graphs of genus k, it makes sense to rewrite (5.6.1) as 2m ≤ 6n+ 12(k− 1). If G
has n vertices, then since the degree of each vertex is at least δ(G), it follows that
nδ(G) ≤ 2m. Hence nδ(G) ≤ 2m ≤ 6n+12(k−1). Therefore, for a graph G of genus
k,

δ(G) ≤ 6 +

⌊
12(k − 1)

n

⌋
.

However, since δ(G) ≤ n−1 for all graphs on n vertices, we have proven the following
lemma from [67]:
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LEMMA 5.6.1 Let G be a graph on n vertices that is of genus k ≥ 1. Then

δ(G) ≤ min

{
n− 1, 6 +

⌊
12(k − 1)

n

⌋}
.

Since a(G) ≤ δ(G) for any noncomplete graph G (Corollary 5.1.12), and since
our goal is to find the best upper bound for a(G) for a given genus k ≥ 1, then for
such a given k we want to find the positive integer value(s) n such that equality in
Lemma 5.6.1 holds. We do this in the following lemma from [67]. For the sake of
simplicity, let

pk :=

⌊
7 +
√

1 + 48k

2

⌋
.

LEMMA 5.6.2 Let G be a graph of genus k ≥ 1. Then δ(G) ≤ pk − 1.

Proof: Observe that if

n− 1 = 6 +

⌊
12(k − 1)

n

⌋
then

n =

⌊
7 +
√

1 + 48k

2

⌋
= pk. (5.6.2)

In such a case,
δ(G) ≤ pk − 1 (5.6.3)

Otherwise, since n− 1 strictly increases in n while 6 + b12(k− 1)/nc monotonically
decreases in n, the result follows from Lemma 5.6.1. 2

We are now ready to prove the first main result of this section (see [67]) which
gives upper bounds on the algebraic connectivity of graphs of genus k ≥ 1. In this
theorem, γ(G) denotes the genus of the graph G and Sk denotes a surface of genus
k.

THEOREM 5.6.3 Let G be a graph of genus k where k ≥ 1. If G is the complete
graph on the largest number of vertices that can be embedded on Sk, then a(G) = pk.
Otherwise, a(G) ≤ pk − 1.

Proof: By Lemma 5.6.2, if G is a graph of genus k ≥ 1, then δ(G) ≤ pk − 1.
By Corollary 5.1.12, a(G) ≤ δ(G) if G is not complete. Thus a(G) ≤ pk − 1 for
all noncomplete graphs of genus k. If G is complete then a(G) = pk if and only if
G = Kpk . It remains to show that Kpk is the complete graph on the largest number
of vertices that can be embedded on Sk. It is known from Theorem 2.6.22 (see [71])
that

γ(Kn) =

⌈
(n− 4)(n− 3)

12

⌉
. (5.6.4)
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Letting n = pk, (5.6.4) shows that γ(Kpk) = k. Thus Kpk is the complete graph
on the largest number of vertices that can be embedded on Sk. This proves the
theorem. 2

Below is a chart giving the upper bounds for the algebraic connectivity of graphs
of genus k. As you would expect from Theorem 5.1.2, since graphs of larger genus
tend to have more edges, the upper bounds are larger for such graphs.

genus 0 1 2 3 4 5 6 7 8

upper bound 4 7 8 9 10 11 12 12 13

We see in Theorem 5.6.3 that if G is a noncomplete graph of genus k ≥ 1,
then a(G) ≤ pk− 1. An interesting question now arises: Does there necessarily exist
a noncomplete graph G of genus k such that this upper bound is achieved, i.e.,
a(G) = pk − 1? To begin answering this question, we prove the following lemma
from [67]:

LEMMA 5.6.4 If k ≥ 1 is an integer such that pk − 7 = 12(k − 1)/pk, then
a(G) < pk − 1 for all noncomplete graphs G of genus k.

Proof: Let G be a noncomplete graph on n vertices of genus k ≥ 1 where k is an
integer such that pk − 7 = 12(k − 1)/pk. Lemma 5.6.2 dictates that δ(G) ≤ pk − 1.
Suppose δ(G) = pk − 1. This implies that n ≥ pk. But since, G is noncomplete,
n ≥ pk + 1. Thus

pk − 1 = 6 +
12(k − 1)

pk
= 6 +

⌊
12(k − 1)

pk

⌋
> 6 +

⌊
12(k − 1)

n

⌋
where the second equality follows from the fact that 12(k − 1)/pk is an integer. So
by Lemma 5.6.1, if n ≥ pk + 1, then

δ(G) ≤ 6 +

⌊
12(k − 1)

n

⌋
< 6 +

⌊
12(k − 1)

pk

⌋
= pk − 1 (5.6.5)

This contradicts δ(G) = pk − 1. Hence δ(G) < pk − 1, and thus it follows that
δ(G) ≤ pk−2. Therefore, by Corollary 5.1.12, a(G) ≤ pk−2. Thus there does not exist
a noncomplete graph G of genus k ≥ 1 such that a(G) = pk−1 if pk−7 = 12(k−1)/pk.
2

REMARK 5.6.5 If k is an integer such that pk − 7 6= 12(k − 1)/pk, then 12(k −
1)/pk need not be an integer. Hence in this case, if n ≥ pk + 1, it would be possible
for b12(k − 1)/pkc to equal b12(k − 1)/nc in (5.6.5).

It now behooves us to determine which integers k ≥ 1 are such that pk − 7 =
12(k − 1)/pk. We determine this in the following claim from [67]:
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CLAIM 5.6.6 pk − 7 = 12(k − 1)/pk if and only if
√

1 + 48k is an integer.

Proof: Observe that 1 + 48k is an odd integer for all integers k ≥ 1. Thus if√
1 + 48k is an integer, it must also be odd. Hence (7 +

√
1 + 48k)/2 is an integer if

and only if
√

1 + 48k is an (odd) integer. Therefore, this claim is proven if we can
show (7 +

√
1 + 48k)/2 is an integer if and only if pk − 7 = 12(k − 1)/pk.

Suppose (7 +
√

1 + 48k)/2 is an integer. Then pk = (7 +
√

1 + 48k)/2. Thus,
rewriting this expression yields pk−7 = 12(k−1)/pk. Now suppose (7+

√
1 + 48k)/2

is not an integer. Then pk < (7 +
√

1 + 48k)/2. Rewriting this expression will yield
pk − 7 < 12(k − 1)/pk. 2

We are now ready to prove the second main result (see [67]) of this section which
shows values for k in which a(G) < pk − 1 for all graphs of genus k.

THEOREM 5.6.7 If any of the following hold for some positive integer c:
(a) k=c(12c-1)
(b) k=c(12c+1)
(c) k=(4c-1)(3c-1)
(d) k=(4c+1)(3c+1)
then a(G) < pk − 1 for all noncomplete graphs G of genus k.

Proof: From Claim 5.6.6, we see that pk − 7 = 12(k − 1)/pk if and only if√
1 + 48k is an integer. But

√
1 + 48k is an integer if and only if 1 + 48k is a perfect

square, i.e., 1+48k = x2 for some integer x. This is equivalent to (x+1)(x−1) = 48k
for some integer x. Letting y = x+ 1, we see that pk − 7 = 12(k− 1)/pk if and only
if there exists an integer y such that y(y − 2) is divisible by 48. In such a case,

k =
y(y − 2)

48
. (5.6.6)

Observe that y(y − 2) is divisible by 48 if and only if any of the following hold:

(i) y = 24c for some positive integer c
(ii) y = 24c+ 2 for some positive integer c
(iii) y = 24c− 6 for some positive integer c
(iv) y = 24c+ 8 for some positive integer c

Plugging (i), (ii), (iii), and (iv) into (5.6.6) yields (a), (b), (c), and (d), respec-
tively. This together with Lemma 5.6.4 proves the theorem. 2

The first nine values for k in which a(G) < pk − 1 for all noncomplete graphs of
genus k that Theorem 5.6.7 produces are 6, 11, 13, 20, 35, 46, 50, 63, 88. Theorem
5.6.7 leads us to two questions. First, are there values for k in which there exists a
noncomplete graph G such that a(G) = pk − 1? The answer is the affirmative. For
example γ(K3,3,3) = 1 (see drawing below), and observe that a(K3,3,3) = p1−1 = 6.
Similarly, γ(K4,4,4) = 3 and note that a(K4,4,4) = p3 − 1 = 8.
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The second question worth investigating is if there are other values for k, besides
those listed in Theorem 5.6.7, in which a(G) < pk − 1 for all noncomplete graphs G
of genus k. Since finding the genus of a graph can be very difficult, this remains an
open question.

Exercises:

1. Finding an upper bound on the algebraic connectivity of graphs of genus k ≥ 1
required extensive use of a graph’s minimum degree. Explain why using the idea
of a graph’s minimum degree cannot be extended to prove that a(G) ≤ 4 if G is a
planar graph.

2. Prove that for any k ≥ 0 that the lower bound on the algebraic connectivity
of graphs on genus k is zero.
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Chapter 6

The Fiedler Vector and
Bottleneck Matrices for Trees

In this chapter we focus on the eigenvector of the Laplacian matrix corresponding to
the algebraic connectivity. This eigenvector is known as a Fiedler vector. In Section
6.1 we investigate the entries of this eigenvector in relationship to the structure of
the graph. We study the entries of the Fiedler vector that correspond to cut vertices
of the graph and then investigate the entries that correspond to specific blocks of
the graph. In a tree, since every edge is a block, we apply the results of Section 6.1
to trees and focus the remainder of this chapter on trees. In Section 6.2 we use the
Fiedler vectors of trees to classify trees into two types based on the existence of zero
entries in such eigenvectors. This leads us to investigating the inverses of submatrices
of the Laplacian matrix obtained by deleting a row and column of the Laplacian
matrix corresponding to a specific vertex of the tree, espcially vertices corresponding
to a zero entry in the Fiedler vector. These inverses, known as bottleneck matrices,
give us useful information about the structure of the tree and also have interesting
properties that correspond to the two types of trees. Bottleneck matrices are a
vital tool in Section 6.3 when we go on an excursion of studying branches at various
vertices of certain unusual trees. Bottleneck matrices continue to be useful in Section
6.4 when we determine which trees of a given fixed diameter have minimum algebraic
connectivity. These results help us in Section 6.5 when we consider trees having an
edge of infinite weight. In Section 6.6 we generalize the results of this chapter to
eigenvectors of Laplacian matrices of trees corresponding to eigenvalues other than
the algebraic connectivity. Finally, in Section 6.7 we investigate the (n−1)× (n−1)
submatrices of the Laplacian matrix before taking their inverses and observe how
the spectral radius of these submatrices corresponding to different vertices varies.

6.1 The Characteristic Valuation of Vertices

Let G be a connected weighted graph on n vertices labeled 1, . . . , n, with Laplacian
matrix L. Then a(G) > 0 by Theroem 4.1.1. In this section, we are interested in the
eigenvectors corresponding to the eigenvalue a(G). To this end, we have a definition:

211
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212Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

DEFINITION 6.1.1 An eigenvector y corresponding to the eigenvalue a(G) of
the Laplacian matrix for a graph is called a Fiedler vector. This vector provides a
characteristic valuation of G. Labeling the entries of y as y1, . . . , yn in correspondence
to the labelings of the vertices of G, we will denote yk and the valuation of vertex k.

In this section, we will investigate the valuation of vertices in graphs which
contain cut vertices. We will prove theorems regarding the valuations of cut vertices
and also how the valuations of the vertices lying in different blocks compare. We
begin with two straightforward, but useful, theorems from [30].

THEOREM 6.1.2 Let G be a connected graph with Laplacian matrix L and char-
acteristic valuation y. Then

∑
yi = 0.

Proof: Since G is connected, it follows that 0 is a simple eigenvalue of L with e
as its corresponding eigenvector. Since L is symmetric, it follows that y is orthogo-
nal to e. Hence

∑
yi = 0. 2

THEOREM 6.1.3 Let G be a weighted graph with vertex set V = {1, . . . , n} and
edge set E. Let wik denote the weight of edge ik. Letting L be the Laplacian matrix
for G, if a(G) is the algebraic connectivity of G and y = (yi) is the characteristic
valuation, then

a(G)yi =
∑
k∈V

(i,k)∈E

wik(yi − yk).

Proof: This follows directly from matrix-vector multiplication and the fact that
Ly − a(G)y = 0. 2

OBSERVATION 6.1.4 From Theorem 6.1.3, if yi = 0 and i is adjacent to a
positively valuated vertex, then i must also be adjacent to a negatively valuated
vertex.

Since a(G) > 0 if G is connected, we have the following immediate corollary from
[30]:

COROLLARY 6.1.5 Let G be a connected weighted graph on n vertices labeled
1, . . . , n with Laplacian matrix L and characteristic valuation y = [yi]. If yi > 0,
then there exists a vertex j adjacent to i such that yj < yi.

We are beginning to understand the relationship between the Fiedler vector and
the structure of the graph. With this in mind, we further the results of Corollary
6.1.5 in the following lemma and theorem from [30]. The lemma is a matrix theoretic
result which is necessary in proving the theorem. The theorem illustrates how the
entries in the Fiedler vector can determine which subgraphs of a connected graph
are connected.
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LEMMA 6.1.6 Let A be an n×n nonnegative irreducible, symmetric matrix. Let
u = [ui] be an eigenvector corresponding to λn and let v = [vi] be an eigenvector
corresponding to λn−1. Then for any α ≥ 0, the submatrix A[Mα] is irreducible
where Mα = {i | vi + αui ≥ 0}.

THEOREM 6.1.7 Let G be a connected weighted graph with vertices V =
{1, . . . , n} and Laplacian matrix L. Let each edge ik have a positive weight wik.
For any r ≥ 0, let

M(r) = {i ∈ V |yi + r ≥ 0}.

Then the subgraph G(r) of G induced by the vertices of M(r) is connected.

Proof: Observe that for sufficiently large s, the matrix B := sI − L is non-
negative. Moreover, the eigenvectors of L are identical to those of B. Similarly,
the second smallest eigenvalue of L corresponds to the second largest eigenvalue of
B. Then by Lemma 6.1.6, the submatrix of B induced by the vertices of M(r) is
irreducible. Thus the corresponding submatrix of L is irreducible. Hence the corre-
sponding subgraph is connected. 2

The goal of this section will be to classify connected graphs with cut vertices
into two distinct classes based on their characteristic valuations. To this end, we will
use Theorem 6.1.7 to further our investigation of connected subgraphs of a given
connected graph G. The subgraphs of G that will be important for us to study are the
components of G−k where k is a cut vertex of G. We now prove the following lemma
from [30] which deals with the valuations of the vertices in each such component of
G − k. This lemma will be crucial to proving the main theorem of this section.

LEMMA 6.1.8 Let G be a graph and y = [yi] be its characteristic valuation. Let
k be a cut vertex of G and let G0,G1, . . . ,Gr be components of G − k. Then:

(i) If yk > 0, then exactly one of the components Gi contains a vertex (vertices)
with negative valuation. Additionally, ys > yk for all vertices s in the remaining
components.

(ii) If yk = 0 and there is a component Gi containing both positively and nega-
tively valuated vertices, then there is exactly one such component. All vertices in all
other components have zero valuation.

(iii) If yk = 0 and no component contains both positively and negatively valuated
vertices, then each component Gi contains either only positively valuated vertices,
only negatively valuated vertices, or only zero valuated vertices.

Note: We need not consider the case where yk < 0 since if that does occur,
we may simply multiply y by −1 to obtain a vector which is also a characteristic
valuation.
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Proof: To prove Case (i), let yk > 0. Since
∑
yi = 0 (Theorem 6.1.2), it follows

that there exists a vertex in G−k with negative valuation. Without loss of generality,
let G0 contain such a vertex. To complete the proof, we must show for all vertices
s ∈ G1∪G2∪ . . .∪Gr that ys > yk. Suppose that ys < yk for some vertex s ∈ G1∪G2∪
. . .∪Gr. Then there exists an ε > 0 such that yk−ε > 0 and yk−ε ≥ ys. By Theorem
6.1.7, the graph Ĝ induced by the set of vertices M = {v ∈ V (G) | yv ≤ yk − ε} is
connected. Since k /∈M , it follows that Ĝ is contained in exactly one of G0,G1, . . . ,Gr
since k is a cut vertex. However, since G0 has a vertex of negative valuation, such
a vertex must lie in M . Hence Ĝ is contained in G0. But we are assuming s ∈ M
(hence s ∈ Ĝ) and that s ∈ G1 ∪ G2 ∪ . . . ∪ Gr. Thus we have a contradiction. Now
suppose that ys = yk for some vertex s ∈ G1 ∪ G2 ∪ . . . ∪ Gr. Since ys = yk > 0, it
follows from Corollary 6.1.5 that there exists a vertex t ∈ G1 ∪ G2 ∪ . . . ∪ Gr, t 6= k
where t is adjacent to s such that yt < ys. Thus s and t lie in the same component
of G1 ∪ G2 ∪ . . . ∪ Gr. Since yt < yk, we can use the previous argument to deduce a
contradiction.

To prove Cases (ii) and (iii), assume that yk = 0. Without loss of generality, let
k = n and that

L : = L(G) =


L0 0 . . . . . . 0 c0

0 L1 . . . . . . 0 c1

. . . . . . . . . . . . . . . . . .
0 0 . . . . . . Lr cr
cT0 cT1 . . . . . . cTr deg(k)


where the rows and columns of Li correspond to the vertices in Gi for i = 0, . . . , r.
Letting a = a(G), then L− aI is singular and (L− aI)y = 0. Let

y =


y(0)

y(1)

. . .

y(r)

0


be the characteristic valuation partitioned in correspondence with the partitioning
of L. Then

(Li − aIi)y(i) = 0

for i = 0, . . . , r where Ii are the identity matrices of the appropriate size for each
i. We now break the proof into two subcases: Subcase (a) will prove Case (ii) and
Subcase (b) will prove Case (iii):

(a) There exists a component, say G0, which contains both positively and nega-
tively valuated vertices. Hence y(0) has both positive and negative entries. Since all
of the off-diagonal entries L0−aI0 are non-positive and since L0−aI0 is symmetric,
it follows that L0 − aI0 is not positive semidefinite (see [32]). Therefore it has at
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least one negative eigenvalue. Since

A : =


L0 − aI0

L1 − aI1

. . .
Lr − aIr


is a principal submatrix of L−aI and L−aI has one negative eigenvalue, it follows
from Corollary 1.2.10 that A has at most one negative eigenvalue. Therefore Li−aIi
are positive semidefinite matrices for i = 1, . . . , r. Assume y(j) 6= 0 for some j ∈
{1, . . . , r}. Since Lj − aI is irreducible, it follows that each y(j) is either positive
or negative. However, in the matrix L, we have cj ≤ 0. Therefore (y(j))T ci 6= 0.
Letting ŷT = [0, . . . , 0, (y(j))T , 0, . . . , 0]T and cT = [cT0 , . . . , c

T
r ], since (L− aI)ŷ = 0

and ŷT c 6= 0, it follows from Lemma 1.12 of [29] that

s(L− aI) =
r∑
i=0

s(Li − aIi) + [1, 1], (6.1.1)

where s(A) is the 1 × 2 row vector [p, q] with p denoting the number of positive
eigenvalues of A and q denoting the number of negative eigenvalues of A. Since
L0− aI0 has a negative eigenvalue, it follows from (6.1.1) that L− aI must have at
least two negative eigenvalues. But since a is the second smallest eigenvalue of L,
it follows that L − aI has one negative eigenvalue, thus a contradiction. Therefore
y(j) = 0 for all j ∈ {1, . . . , r}. This proves case (ii).

(b) None of the components G0,G1, . . . ,Gr contain both positively and negatively
valuated vertices. Since y 6= 0, there exists a vertex with nonzero valuation. Without
loss of generality, let G0 contain such a vertex. Therefore y(0) 6= 0, and hence either
y(0) ≥ 0 or y(0) ≤ 0. Suppose an entry of y(0) is zero. Then since (L0− aI0)y(0) = 0,
it would follow from Theorem 1.4.10(ii) that L0− aI0 is not an M-matrix. Then by
arguments similar to (a), we would obtain y(i) = 0 for all i ∈ {1, . . . , r}. But since
y(0) ≥ 0, this contradicts Theorem 6.1.2. Thus if y(0) ≥ 0 or y(0) ≤ 0 , then no entry
of y(0) can be zero. Hence y(0) > 0 or y(0) < 0 which proves (iii). 2

We are now about ready to prove the main theorem of this section. This theorem
from [30] classifies connected graphs with cut vertices into two classes depending if
there exists a block with both positively and negatively valuated vertices. If such
a block exists, this will be a point of interest. Otherwise, the theorem shows that
there will be a zero-valuated cut vertex of interest. Moreover, we learn from this
theorem that the valuations of the cut vertices as we travel away from the block /
cut vertex of interest increases in absolute value. In order to be able to state this
idea more precisely, we need a definition:

DEFINITION 6.1.9 A pure path P in a graph G is a path in which no block of
G contains more than two vertices of P .

Now for the main theorem of this section:
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THEOREM 6.1.10 Let G be a connected graph with at least one cut vertex and
let y be its characteristic valuation. Then exactly one of the following cases occurs:

(a) There is a single block B0 in G which contains both positively and nega-
tively valuated vertices. Each other block in G has either vertices with positive val-
uation only, vertices with negative valuation only, or vertices with zero valuation
only. Every pure path P starting at B0 and containing just one vertex k ∈ B0 has
the property that the valuations at the cut vertices contained in P form either an
increasing, decreasing, or zero sequence along this path.

(b) No block of G contains both positively and negatively valued vertices. There
exists a single vertex z which has zero valuation and is adjacent to a vertex of non-
zero valuation. Moreover, z is a cut vertex. Each block contains (with the exception
of z) either vertices with positive valuation only, vertices with negative valuation
only, or vertices with zero valuation only. Every pure path P starting at z has the
property that the valuations at the cut vertices contained in P form either an in-
creasing, decreasing, or zero sequence along this path.

Proof: Clearly these cases exclude each other. The examples that follow will
show that each case can occur. So now let G be a connected graph with y as its
characteristic valuation. To prove (a), let B0 and B1 be blocks of G in which there
exists a cut vertex k contained in B0 that separates B0 from B1. Let G0,G1, . . . ,Gr
be all components of the graph G − k where G0 contains the remaining vertices of
B0 and G1 contains the remaining vertices of B1. If yk > 0, it follows from Lemma
6.1.8 that all vertices in G1, and thus B1 have positive valuations. If yk = 0, it
follows from Lemma 6.1.8 that all vertices in G1, and thus B1 have zero valuation.
If yk < 0, then −y is also a characteristic valuation. Thus −yk > 0 and we apply
the argument above. This proves the first part of (a).

To prove the second part of (a), let P be a pure path and let k be the only vertex
of P in B0. Let k, k1, . . . , ks be cut vertices of G that lie on P in that order as we
travel away from k. First assume yk > 0. Then by Lemma 6.1.8, yk1 > yk. Applying
the same theorem to the cut vertex ykj with 1 ≤ j < s, we obtain from Lemma
6.1.8 that ykj+1

> ykj . Thus the sequence yk, yk1 , yk2 , . . . , yks increases. If yk < 0,
then applying this last result to −y yields that this sequence decreases. If yk = 0,
then from (ii) of Lemma 6.1.8, we see that this sequence is the zero sequence. This
completes the proof of (a).

To prove (b), suppose that no block contains both positively and negatively
valuated vertices. Observe in this case that there is no edge e in G such that one
vertex incident to e has positive valuation while the other vertex incident to e has
negative valuation. Thus if a path P contains a vertex with positive valuation and
a vertex with negative valuation, then P must contain a vertex of zero valuation
such that it is adjacent to a vertex in P with non-zero valuation. Since y 6= 0 and
since

∑
yi = 0, it follows that such a path P does exist in G. Therefore there exists

a vertex z with yz = 0 where z is adjacent to a vertex with non-zero valuation. By
Observation 6.1.4, z has neighbors with positive valuation as well as negative valu-
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ation. Since in this case these vertices cannot belong to the same block, it follows
that z is a cut vertex. By (ii) and (iii) in Lemma 6.1.8 it follows that z is the only
vertex with zero valuation that is adjacent to vertices of non-zero valuation. Hence
each block contains (with the exception of z) either vertices with positive valuation
only, vertices with negative valuation only, or vertices with zero valuation only.

To prove the final assertion of (b), let P be a pure path starting at z. By (iii)
of Lemma 6.1.8, it follows that if P contains a vertex of positive (negative) valu-
ation, then all vertices of P must be of positive (negative) valuation. Since −y is
also an eigenvector corresponding to a(G), we can assume without loss of generality
that P has vertices of positive valuation only (with the exception of z). Letting
z, k1, k2, . . . , ks be the cut vertices on P in the order in which they appear, we can
apply a similar argument used for (a) to obtain that ykj+1

> ykj for all j such that
1 ≤ j < s. This completes the proof. 2

OBSERVATION 6.1.11 If a graph satisfies Case B, then it follows from Theo-
rem 6.1.7 that the subgraph induced by the vertices with zero valuation forms a
connected graph.

OBSERVATION 6.1.12 If a graph G satisfies Case A, then a(G) must be a simple
eigenvalue. Otherwise, there would exist two linearly independent eigenvectors g and
h corresponding to a(G) and hence we could create a nontrivial linear combination
of g and h having a zero coordinate.

Let’s look at two examples of graphs, one satisfying Case (a) and the other
satisfying Case (b):

EXAMPLE 6.1.13 Consider the following graph:

The algebraic connectivity is a = 0.1705 and a corresponding eigenvector to a is

[−1.2490 −1.2490 −1.0370 −0.7360 −0.7360 −0.3092 0.5982 1 1 1.231 1.485]T .

Labeling each vertex of the graph with its characteristic valuation:
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we see that this graph is an example of Case (a) since there does not exist a cut ver-
tex whose characteristic valuation is zero. Furthermore, there is exactly one block,
namely the block consisting of the edge joining vertices 6 and 7, that has both
positively and negatively valuated vertices. As we travel away from that block, the
valuations of the cut vertices either strictly increase or strictly decrease.

EXAMPLE 6.1.14 Now consider the following graph:

The algebraic connectivity is a = 0.1783 and a corresponding eigenvector to a is

[0 − 1 − 0.8217 − 0.5599 − 0.7590 0 0.5599 0.8217 1 0.7590]T .

Labeling each vertex of the graph with its characteristic valuation:

we see that this graph is an example of Case (b) since there exists a cut vertex,
namely vertex 6, with valuation of zero. Notice that each block contains only ver-
tices with positive valuations, only vertices with negative valuation, or only vertices
with zero valuation. Also observe that as we travel away from vertex 6, the char-
acteristic valuations of the cut vertices either strictly increase, strictly decrease, or
are identically zero.

Exercise:

1. Classify each graph as satisfying Case (a) or Case (b) of Theorem 6.1.10. Also,
verify the statements regarding the pure paths described in each case.
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6.2 Bottleneck Matrices for Trees

The rest of this chapter will focus on trees. In this section, we show how the inverse
of submatrices of Laplacian matrices gives us insight as to the structure of trees.
These submatrices will have a direct relationship with the special vertex / block
described in Theorem 6.1.10 and with the algebraic connectivity of trees. To this
end, we apply the results of the previous section to trees by noting that in a tree, the
blocks are merely the edges and that all vertices, except for the pendant vertices,
are cut vertices. Therefore every path in a tree is a pure path. Hence, Theorem
6.1.10 yields the following corollary for trees:

COROLLARY 6.2.1 Let T be a tree and y = [yi] be its characteristic valuation.
Then exactly one of two cases can occur:

Case (a): All values yi are different from zero. In this case, T contains exactly
one edge pq such that yp > 0 and yq < 0. The valuations of the vertices on any path
in T that begins at p and does not contain q increase. Similarly, the valuations of
the vertices on any path in T that begins at q and does not contain p decrease.

Case (b): There exists exactly one vertex z where yz = 0 and z is adjacent to a
vertex of non-zero valuation. The valuations of the vertices along any path in T
beginning at z are either increasing, decreasing, or identically zero.

In [58], Merris coined the following definition:

DEFINITION 6.2.2 Trees that satisfy Case (b) are Type I trees; trees that satisfy
Case (a) are Type II trees.
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Since the vertices p and q in Case (a) and the vertex z in Case (b) are of extreme
importance, Fiedler coined the following definition in [30]:

DEFINITION 6.2.3 In a Type I tree, the vertex z described in Case (b) is the
characteristic vertex; in a Type II tree, the vertices p and q described in Case (a)
are the characteristic vertices.

We should note that there are infinitely many vectors in the eigenspace correspond-
ing to the algebraic connectivity of a tree. Thus before proceeding, we need to
investigate if the characteristic vertex (vertices) of a given tree can differ depending
on the Fiedler vector used. The next theorem from [58] shows that this will never
happen.

THEOREM 6.2.4 Let T be a tree with Laplacian matrix L. The characteristic
vertex (vertices) of T are independent of the eigenvector used as the characteristic
valuation.

Proof: Let a be the algebraic connectivity of T and let ξ(T ) be the set of eigen-
vectors for L corresponding to a. Suppose that g and h are eigenvectors in ξ(T ). If a
is simple, then g is merely a nonzero multiple of h, thus the theorem follows imme-
diately. So we will assume that a has algebraic multiplicity of at least 2 (and that T
is of Type I by Observation 6.1.12). Let V0 := {v ∈ V (T ) | fv = 0 for all f ∈ ξ(T )}.
We first claim that V0 is not empty. To see this, since L is symmetric, the geometric
multiplicity of a equals its algebraic multiplicity and thus is also at least 2. Thus
we can create an eigenvector in ξ(T ) which is a nontrivial linear combination of g
and h such that there exists a vertex v where fv = 0.

We now claim that among the vertices in V0, there is exactly one vertex, say z,
which is adjacent to a vertex not contained in V0. We know there must be at least
one such vertex because T is connected and V0 6= V (T ). Suppose there are two such
vertices, say z1 and z2. Let v1, v2 be vertices not in V0 such that v1 is adjacent to z1,
and v2 is adjacent to z2. Then there exists f ∈ ξ(T ) such that fv1 6= 0 and fv2 6= 0.
This contradicts Case (b) of Corollary 6.2.1.

The previous paragraph shows that for each vector f ∈ ξ(T ), there exists a
unique vertex z ∈ V0 such that fz = 0 and z is adjacent to a vertex not in V0,
thus making z the unique characteristic vertex of T with respect to f . To complete
the proof, we need to show that z is the unique characteristic vertex afforded by
all f ∈ ξ(T ). By the previous paragraph, z is the only element of V0 that has the
chance of being such a characteristic vertex. Suppose f (1) ∈ ξ(T ) affords character-

istic vertex x. Since f
(1)
z = 0 and since by Corollary 6.2.1 the characteristic vertex

x is unique, it follows that there exists a vertex y ∈ T adjacent to x such that

f
(1)
y 6= 0. If x 6= z, then x /∈ V0 for all eigenvectors f ∈ ξ(T ). Thus there must

exist f (2) ∈ ξ(T ) such that f
(2)
x 6= 0. Since x is on the unique path from y to z,

it follows from Corollary 6.2.1 that f
(2)
y 6= 0. But then there must be a nontriv-

ial linear combination f (3) of f (1) and f (2) such that f
(3)
y = 0 and f

(3)
x 6= 0. This

contradicts Observation 6.1.11 because f (3) ∈ ξ(T ) and x lies on the path from y
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to z, yet f
(3)
y = 0, f

(3)
x 6= 0, and f

(3)
z = 0. Thus x = z and our claim is established. 2

Now that we know that we can choose any eigenvector corresponding to the
algebraic connectivity when determining the characteristic vertex (vertices) of a
tree, we can proceed with the main ideas of this section which involve the inverses
of submatrices of Laplacian matrices. These inverses will be closely related to the
location of the characteristic vertex (vertices). We now prove the first major theorem
of this section (see [49]):

THEOREM 6.2.5 Suppose that T is a weighted tree on vertices 1, . . . , n with
Laplacian matrix L, and let L[k] be the principal submatrix of L formed by deleting
the kth row and column of L. Then L[k] is invertible and the (i, j) entry of (L[k])−1

is equal to ∑
e∈Pi,j

1

w(e)

where Pi,j is the set of edges of T which are simultaneously on the path from i to k
and on the path from j to k.

Proof: Since T is connected, L is a singular irreducible M-matrix. Thus by
Theorem 1.4.10(iii), L[k] is invertible for each k = 1, . . . , n. To determine the (i, j)
entry of (L[k])−1, we can let k = n without loss of generality. We will proceed by
induction on n, the number of vertices. The theorem is easily verified for n = 2.
Suppose that the result holds for all weighted trees on r−1 vertices, where r−1 ≥ 2,
and that T is a weighted tree on r vertices. To prove this result for T , we can assume
without loss of generality that vertex 1 is pendant and is adjacent to vertex 2. Let
α be the weight of the edge joining vertices 1 and 2.

Let L′ be the Laplacian matrix of the weighted tree T ′ induced by the vertices
2, . . . , r of T , and let L′[r] be the principal submatrix of L′ formed by deleting its
last row and column. Then it follows that:

L[r] =

[
α −αeT1
−αe1 L′[r] + αe1e

T
1

]

A straightforward computation yields:

(L[r])−1 =

[
1
α + eT1 (L′[r])−1e1 eT1 (L′[r])−1

(L′[r])−1e1 (L′[r])−1

]

Observing that the (1, 1) block of (L[r])−1 is just a single entry, we see that if
i, j ≥ 2, then the formula for the (i, j) entry (L[r])−1 is given in the (2, 2) block and
thus follows from the induction hypothesis. Note that if j ≥ 2, then the set P1,j is
the same as the set P2,j which is the same as the corresponding set of edges in T ′.
Thus the (1, j) and (j, 1) entries of (L[r])−1 follow from the inductive hypothesis
and from the (1, 2) and (2, 1) blocks of (L[r])−1, respectively. Finally, for the (1, 1)
entry of (L[r])−1, since vertex 1 is pendant and adjacent to vertex 2, it follows that
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P1,1 = P2,2 ∪ e1,2 where e1,2 denotes the edge joining vertices 1 and 2. Since the
weight of e1,2 is α, it follows that

∑
e∈P1,1

1

w(e)
=

1

α
+

∑
e∈P2,2

1

w(e)
=

1

α
+ eT1 (M [r])−1e1

where the equality
∑
e∈P2,2

1
w(e) = eT1 (L′[r])−1e1 follows from the inductive hypoth-

esis. This is precisely the (1, 1) block of (L[r])−1, thus completing the proof. 2

Theorem 6.2.5 states that the (i, j) entry of (L[k])−1 is the sum of the reciprocals
of the weights of the edges that lie simultaneously on the path from i to k and on
the path from j to k. We should note that when numbering the rows and columns
of (L[k])−1 in accordance with Theorem 6.2.5, we skip the number k.

We see from Theorem 6.2.5 (and Theorem 1.4.7) that (L[k])−1 is nonnegative.
Since there is exactly one path between any two vertices in a tree, it follows that
the (i, j) entry of (L[k])−1 is positive if and only if vertices i and j belong to the
same branch at vertex k. Otherwise Pi,j would be empty. Therefore, (L[k])−1 is
permutationally similar to a block diagonal matrix in which each block is positive
and corresponds to a branch at k. This leads us to the following important definition:

DEFINITION 6.2.6 The matrix (L[k])−1 is the bottleneck matrix at vertex k and
each diagonal block of (L[k])−1 is the bottleneck matrix for that branch at k.

OBSERVATION 6.2.7 If T is unweighted, then the (i, j) entry of (L[k])−1 is the
number of edges that lie simultaneously on the path from i to k and the path from
j to k.

EXAMPLE 6.2.8 Consider the following tree:
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The Laplacian matrix is

L =



1 0 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0
−1 −1 3 −1 0 0 0 0 0 0 0

0 0 −1 3 −1 0 −1 0 0 0 0
0 0 0 −1 1 −1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0
0 0 0 −1 0 0 3 −1 −1 0 0
0 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 0 3 −1 −1
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 0 1


A straightforward computation shows that

(L[4])−1 =



2 1 1 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 1 2 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 2 1 1 1
0 0 0 0 0 1 1 2 2 2
0 0 0 0 0 1 1 2 3 2
0 0 0 0 0 1 1 2 2 3


Since the degree of vertex 4 is three, we see that (L[4])−1 has three blocks, each
of which corresponds to a branch at vertex 4. Labelling the rows and columns of
(L[4])−1 from 1 to 11, skipping 4, observe that the (i, j) entry of (L[4])−1 denotes
the number of edges that lie simultaneously on the path from i to 4 and the path
from j to 4. This illustrates why if vertices i and j belong to different branches at
vertex 4, then the (i, j) entry in (L[4])−1 is zero as there are no common edges on
the paths from i to 4 and from j to 4. However, if vertices i and j belong to the
same branch at vertex 4, then the (i, j) entry of (L[4])−1 is positive. For example,
consider the (10, 11) entry of L−1

4 . Observe that it is two and that there are two
common edges lying on the path from 10 to 4 and the path from 11 to 4, namely
edges 4-7 and 7-9.

EXAMPLE 6.2.9 Consider the following weighted tree:
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Observe that its Laplacian matrix is

L =



3 0 −3 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0
−3 −1 10 −6 0 0 0 0 0 0 0

0 0 −6 12 −2 0 −4 0 0 0 0
0 0 0 −2 7 −5 0 0 0 0 0
0 0 0 0 −5 5 0 0 0 0 0
0 0 0 −4 0 0 9 −4 −1 0 0
0 0 0 0 0 0 −4 4 0 0 0
0 0 0 0 0 0 −1 0 11 −2 −8
0 0 0 0 0 0 0 0 −2 2 0
0 0 0 0 0 0 0 0 −8 0 8


A straightforward computation shows that

(L[4])−1 =



1
2

1
6

1
6 0 0 0 0 0 0 0

1
6

7
6

1
6 0 0 0 0 0 0 0

1
6

1
6

1
6 0 0 0 0 0 0 0

0 0 0 1
2

1
2 0 0 0 0 0

0 0 0 1
2

7
10 0 0 0 0 0

0 0 0 0 0 1
4

1
4

1
4

1
4

1
4

0 0 0 0 0 1
4

1
2

1
4

1
4

1
4

0 0 0 0 0 1
4

1
2

5
4

5
4

5
4

0 0 0 0 0 1
4

1
2

5
4

7
4

5
4

0 0 0 0 0 1
4

1
2

5
4

5
4

11
8


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As in the previous example, since vertex 4 has three branches, (L[4])−1 has three
diagonal blocks. However, since the graph here is weighted, the (i, j) entry is the
sum of the reciprocals of the weights of the edges that lie simultaneously on the
path from i to 4 and the path from j to 4. For example, consider the (10, 11) en-
try again. As in the previous example, the edges that lie on both the path from
10 to 4 and the path from 11 to 4 are 4-7 and 7-9. Since the weight of edge 4-7 is
4 and the weight of edge 7-9 is 1, it follows that the (10, 11) entry is 1/4+1/1 = 5/4.

Recall from Theorem 1.3.11 that the spectral radius of a positive matrix is
necessarily an eigenvalue (called the Perron value) of that matrix. Hence it follows
that the spectral radius of (L[k])−1 is equal to the Perron value of the bottleneck
matrix (matrices) for a branch at k whose Perron value is largest. This leads us to
the following definition:

DEFINITION 6.2.10 A branch at a vertex k whose bottleneck matrix has the
largest Perron value is a Perron branch at k.

EXAMPLE 6.2.11 In the tree in Example 6.2.9, observe that the bottleneck ma-
trix for the branch at vertex 4 containing vertices 7,8,9,10,11 is the bottleneck matrix
with the largest Perron value. Hence that branch is the Perron branch at vertex 4.

At this point, we can now relate the concept of Perron branches to the concept
of the algebraic connectivity of a tree and the characteristic vertex (vertices). We
do this in the following theorem from [49]:

THEOREM 6.2.12 Let T be a weighted tree on n vertices 1, . . . , n with Laplacian
matrix L. Suppose that i and j are adjacent vertices of T . Then T is a Type II tree
with characteristic vertices i and j if and only if the following condition holds:

There exists γ where 0 < γ < 1 such that

ρ

(
M1 − γ

(
1

θ

)
J

)
= ρ

(
M2 − (1− γ)

(
1

θ

)
J

)
where θ is the weight of the edge between i and j, M1 is the bottleneck matrix for
the branch at j containing i, and M2 is the bottleneck matrix for the branch at i
containing j.

Moreover, in the case that the condition holds, it follows that

1

a(T )
= ρ

(
M1 − γ

(
1

θ

)
J

)
= ρ

(
M2 − (1− γ)

(
1

θ

)
J

)
.

Additionally, any eigenvector of L corresponding to a(T ) can be permuted so it has
the form [−v1|v2]T , where v1 is the Perron vector for M1 − γ(1/θ)J) and v2 is the
Perron vector for ρ(M2 − (1− γ)(1/θ)J) such that eT v1 = eT v2.

Proof: Without loss of generality, we can permute L so it is of the form

L =

[
M−1

1 −θEk,1
−θETk,1 M−1

2

]
(6.2.1)
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where Ek,1 is the k × (n − k) matrix with the (k, 1) entry being 1 and all other
entries being 0. We should note that the partitioning is such that the last row of
M−1

1 corresponds to vertex i, while the first row of M−1
2 corresponds to vertex j.

If T is a Type II tree with characteristic vertices i and j, then it follows from Case
(a) of Theorem 6.1.10 and Corollary 6.2.1 that any eigenvector of L corresponding
to a := a(T ) can be written as [−v1|v2]T where both v1 and v2 are positive vectors.
Since by Theorem 6.1.2, the sum of the entries of [−v1|v2]T must be zero, we nec-
essarily have eT v1 = eT v2.

Let the last entry of v1 be β and the first entry of v2 be α. From the eigenvalue-
eigenvector relationship, we find that

−M−1
1 v1 − αθek = −av1 and M−1

2 v2 + βθe1 = av2.

Rewriting each of these equations we obtain

M−1
1 v1 = av1 − αθek and M−1

2 v2 = av2 − βθe1

which we further rewrite as

v1 = aM1v1 − αθM1ek and v2 = aM2v2 − βθM2e1.

From Theorem 6.2.5, we know that the last column of M1 and the first column of
M2 are each (1/θ)e. Consequently, we have

v1 = aM1v1 − αe and v2 = aM2v2 − βe

which yields

M1v1 −
α

a
e =

1

a
v1 and M2v2 −

β

a
e =

1

a
v2. (6.2.2)

Looking at the last entry in the vectors of the first equation and the first entry of
the vectors in the second equation, we obtain

eTk (M1v1)− α

a
=

β

a
and eT1 (M2v2)− β

a
=

α

a
.

Thus
α+ β

a
= eTk (M1v1) = eT1 (M2v2)

which by Theorem 6.2.5, yields

α+ β

a
=

1

θ
eT v1 =

1

θ
eT v2.

Hence
1

a
=

(1/θ)eT v1

α+ β
=

(1/θ)eT v2

α+ β
.

Combining this with (6.2.2), we obtain

M1v1 −
α

α+ β

(
1

θ

)
Jv1 =

1

a
v1 and M2v2 −

β

α+ β

(
1

θ

)
Jv2 =

1

a
v2. (6.2.3)
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From Theorem 6.2.5, it follows that M1 ≥ (1/θ)J and M2 ≥ (1/θ)J , since
the edge joining i and j is on every path which we use in computing the formula
(given in Theorem 6.2.5) for the entries of M1 and M2. Therefore, setting γ = α

α+β

and observing that 0 < γ < 1, we see that M1 − γ(1
θ )J and M2 − (1 − γ)(1

θ )J
are positive matrices. By (6.2.3), we see that v1 is a positive eigenvector of the
positive matrix M1−γ(1

θ )J , corresponding to the eigenvalue 1/a. Thus by Theorem
1.3.11, we have that 1/a = ρ(M1 − γ(1

θ )J). Similarly from (6.2.3), we obtain 1/a =
ρ(M2− (1− γ)(1

θ )J). This completes the proof of the first direction of the theorem.
Conversely, assume that there exists γ where 0 < γ < 1 such that ρ(M1 −

γ(1
θ )J) = ρ(M2 − (1− γ)(1

θ )J), and define a′ by

1

a′
= ρ

(
M1 − γ

(
1

θ

)
J

)
= ρ

(
M2 − (1− γ)

(
1

θ

)
J

)
. (6.2.4)

Let v1 and v2 be Perron vectors of M1− γ(1
θ )J and M2− (1− γ)(1

θ )J , respectively,
normalized so that eT v1 = eT v2. By the eigenvalue-eigenvector relationship, we have
that

M1v1 − γ
1

θ
Jv1 =

1

a′
v1. (6.2.5)

Looking at the kth entry of each vector, we obtain

eTkM1v1 − eTk γ
1

θ
Jv1 =

1

a′
eTk v1.

Using the fact that eTkM1v1 = 1
θe
T v1 and that eT v1 = eT v2, the above equation

yields (1−γ)(1/θ)eT v2 = (1/a′)eTk v1. Similarly, using the last portion of the equation
in (6.2.4), we obtain that γ(1/θ)eT v1 = (1/a′)eT1 v2, i.e., γ(1

θ )Jv1 = 1
a′ ee

T
1 v2. Using

(6.2.5) we obtain
1
a′ v1 = M1v1 − γ

(
1
θ

)
Jv1

= M1v1 − 1
a′ ee

T
1 v2

= M1v1 − 1
a′ θM1eke

T
1 v2

which yields −M−1
1 v1−θEk,1v2 = −a′v1. Similarly, we have M−1

2 v2+θE1,kv1 = a′v2.
Using (6.2.1), this shows that [−v1|v2]T is an eigenvector of L corresponding to the
eigenvalue a′. It remains to show that the algebraic connectivity, a, of T is in fact
equal to a′.

Recall that the last row of M−1
1 corresponds to vertex i and the first row of

M−1
2 corresponds to vertex j (where i and j are adjacent). Thus if we have vertices

b and c, both in the branch of T at j containing i, and if c is on the path from
i to b, then from Theorem 6.2.5 we see that row b of M1 dominates row c of M1

entrywise, with strict domination in at least one position. Hence by the relationship
M1v1 = a′v1, it follows that the entries of v1 are strictly increasing along any path
which starts at i, and similarly the entries of v2 are strictly increasing along any
path which starts at j. By multiplying all of the weights of the edges of T by a′/a,
we see there is a weighting of a tree on which T is based, say T ′, which has algebraic
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connectivity a′ and corresponding eigenvector [−v1|v2]T . In other words, there ex-
ists a symmetric M-matrix L′ with row sums of zero and the same graph as L such
that L′[−v1|v2]T = a′[−v1|v2]T where a′ is the smallest positive eigenvalue of L′. To
complete the proof, we need to show that L = L′. We do this by induction on the
number of vertices. Clearly, L = L′ if n = 2. Now suppose that n ≥ 3. Then at least
one of k and n−k is at least 2. Without loss of generality, let k ≥ 2. Thus the branch
at j containing i has at least two vertices, one of which is pendant. Let i1 be such a
pendant vertex, adjacent to i2. Let the weight of the edge joining i1 to i2 in T be β,
and let the weight of such an edge in T ′ be β′. From the eigenvalue-eigenvector re-
lationship for L and L′, we find that since a′eTi v1 = eTi1L[−v1|v2]T = eTi1L

′[−v1|v2]T ,
then we must have β(eTi1 − eTi2)v1 = β′(ei1 − ei2)v1. But since the entries in v1

are increasing along paths starting from i, and since i1 is pendant, we find that
(eTi1 − e

T
i2

)v1 > 0, and hence β = β′. By the inductive hypothesis, we necessarily
have that L = L′. Therefore T has algebraic connectivity a′, and that T is a Type
II tree with characteristic vertices i and j. 2

EXAMPLE 6.2.13 Consider the tree T from Example 6.2.8. It can be calculated
that a(T ) = 0.173 and that the corresponding Fiedler vector is

v = [1.48, 1.48, 0.511, 1.24, 0.827, 1, −0.619, −0.712, −1.52, −1.84, −1.84]T .

Since no entry of v is zero, we see that T is a Type II tree. Vertices 4 and 7 are the
only pair of adjacent vertices whose valuations have opposite signs. Therefore these
are the characteristic vertices. The bottleneck matrix M1 at vertex 4 was computed
in Example 6.2.8. We can compute the bottleneck matrix M2 for vertex 7 in a similar
fashion. The weight joining vertices 4 and 7 is θ = 1. By doing some computations,
we see that γ = 0.341, i.e., ρ(M1 − 0.341J) = ρ(M2 − 0.659J) = 1/a(T ).

We now prove a corollary (see [49]) to Theorem 6.2.12:

COROLLARY 6.2.14 Suppose that T is a weighted tree. Then T is a Type II
tree with characteristic vertices i and j if and only if i and j are adjacent and the
branch at vertex i containing vertex j is the unique Perron branch at i, while the
branch at vertex j containing vertex i is the unique Perron branch at j.

Proof: Using the notation of Theorem 6.2.12, T is a Type II tree with char-
acteristic vertices i and j if and only if there exists γ where 0 < γ < 1 such that
ρ(M1 − γ(1/θ)J) = ρ(M2 − (1 − γ)(1/θ)J). Observe that ρ(M1 − x(1/θ)J) is a
decreasing and continuous function of x for 0 ≤ x ≤ 1. Hence such a γ exists if and
only if ρ(M1) > ρ(M2− (1/θ)J) and ρ(M1− (1/θ)J) < ρ(M2). From Theorem 6.2.5,
it follows that M2−(1/θ)J is (permutationally similar to) the block diagonal matrix
whose diagonal blocks are the bottleneck matrices corresponding to the branches
of T at j which do not contain i. Therefore, if ρ(M1) > ρ(M2 − (1/θ)J), then the
bottleneck matrix at the branch at vertex j containing vertex i has larger spectral
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radius than the bottleneck matrices of all other branches at vertex j. Hence the
branch at j containing i is the unique Perron branch at j. A similar idea holds for
the inequality ρ(M1 − (1/θ)J) < ρ(M2), thus completing the proof. 2

We now shift our focus to Type I trees and prove an important theorem from
[49] concerning such trees:

THEOREM 6.2.15 Let T be a weighted tree on vertices 1, . . . , n with Laplacian
matrix L. Then T is a Type I tree with characteristic vertex k if and only if there
are two or more Perron branches of T at k. Moreover, in that case, the algebraic
connectivity of T is 1/ρ(L[k]−1), and if v is an eigenvector corresponding to the
algebraic connectivity, then v can be permuted and partitioned so that each of the
resulting nonzero subvectors is a Perron vector for the bottleneck matrix of a Perron
branch at k.

Proof: First, suppose that no vertex of T has at least two Perron branches,
i.e., each vertex in T has a unique Perron branch. We claim then that T is a Type
II tree. To see this, select a vertex i1 of T . Let i2 be the vertex adjacent to i1
that is on the unique Perron branch at i1. Inductively, for each j ≥ 2, let ij+1 be
the vertex adjacent to ij that is on the unique Perron branch at ij . The sequence
S : i1, i2, i3, . . . defines a walk in T . Since T has a finite number of vertices, our
sequence of vertices must contain a closed walk, hence a cycle. But since T is a
tree, the only possible cycles are those of length 2. Therefore, for some j, we have
ij+2 = ij . But by our construction of S, it follows that the branch at ij containing
ij+1 is the unique Perron branch at ij , while the branch at ij+1 containing ij+2 = ij
is the unique Perron branch at ij+1. Hence by Corollary 6.2.14, it follows that T is
a Type II tree with characteristic vertices ij and ij+1.

Now suppose there are two Perron branches, B1 and B2, of T at vertex k.
Let vertices a1 ∈ B1 and a2 ∈ B2 be vertices both adjacent to k. Since L[k]−1 is
(permutationally similar to) a block diagonal matrix where each (positive) block is
a bottleneck matrix corresponding to a branch at k, it follows that L[k]−1 has an
eigenvector w corresponding to ρ(L[k]−1) which can permuted to the form

w =

 −v1

v2

0


where v1 and v2 are the Perron vectors of the bottleneck matrices for B1 and B2.
Normalize w so that the product of the weight of the edge between a1 and k with
the entry in v1 corresponding to a1 is equal to the product of the weight of the
edge between a2 and k with the entry in v2 corresponding to a2. With this nor-
malization, it follows that by appending a 0 to w in position k, we can generate
an eigenvector of L corresponding to the eigenvalue 1/ρ(L[k]−1). It follows from
Theorem 1.2.8 that a(T ) ≥ 1/ρ(L[j]−1) for any vertex j. Furthermore, since a(T )
is the smallest positive eigenvalue of L, it follows that a(T ) ≤ 1/ρ(L[k]−1). There-
fore a(T ) = 1/ρ(L[k]−1). Since k is adjacent to a vertex whose corresponding entry
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in w is nonzero, it follows from Corollary 6.2.1 that T is of Type I with k as its
characteristic vertex.

Finally, we note that if v is an eigenvector of L corresponding to a(T ), then since
k is the unique characteristic vertex, it follows from Corollary 6.2.1 that vk = 0.
Hence the subvector of v formed by deleting vk is an eigenvector for L[k]−1 corre-
sponding to ρ(L[k]−1). Moreover, since L[k]−1 is (permutationally similar to) a block
diagonal matrix with each block corresponding to a bottleneck matrix at a branch
at k, it follows that v can be permuted and partitioned so that the resulting nonzero
subvectors are Perron vectors for the bottleneck matrices of Perron branches at k. 2

EXAMPLE 6.2.16 Consider the tree T below.

It can be calculated that a(T ) = 0.151 and that the corresponding Fiedler vector is

v = [0, −0.570, 0, 0.570, −0.672, −0.849, −0.672, 0, 0, 0.672, 0.849, 0.672, −1, 1]T .

Since the characteristic valuation of vertex 1 is zero, and this vertex is the only
vertex of valuation zero that is adjacent to vertices of nonzero valuation (namely
vertices 2 and 4), it follows that T is a Type I tree with characteristic vertex 1.
Observe that the bottleneck matrices, M1 and M2, for the branches at vertex 1
containing vertices 2 and 4, respectively, in each case are

M1 = M2 =


1 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 2
1 1 1 2 3


while the bottleneck matrix for the branch at vertex 1 containing vertex 3 is

M3 =

 1 1 1
1 2 1
1 1 2


Since ρ(M1) = ρ(M2) > ρ(M3), it follows that the branches containing vertices 2
and 4 are the Perron branches of T at vertex 1. Also observe that ρ(M1) = ρ(M2) =
6.61 = 1/a(T ).
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We can combine Corollary 6.2.14 and Theorem 6.2.15 to obtain the following
important theorem from [49]:

THEOREM 6.2.17 Let T be a weighted tree. T is a Type I tree if and only if
there is exactly one vertex at which there are two or more Perron branches. T is a
Type II tree if and only if at each vertex there is a unique Perron branch.

We now present a theorem from [35] which gives us useful information about
the number of Perron branches that a Type I tree has. For notational simplicity,
we will write y(v) instead of yv to denote the characteristic valuation of vertex v.

THEOREM 6.2.18 Let T be a Type I tree with characteristic vertex w and alge-
braic connectivity a. Let L be a Laplacian matrix for T . Suppose that as an eigen-
value of L, a has multiplicity k − 1. Then w has exactly k Perron branches.

Proof: Let y be an eigenvector of L corresponding to a such that y(v) = 0 if
and only if v = w or v is a vertex on a non-Perron branch at w. Let B1, B2, . . . , Bk
be the Perron branches at w and Bk+1, . . . , Bd be the non-Perron branches. We will
show that a has a multiplicity of k − 1 and an eigenvalue of L. Without loss of
generality, we can order the vertices of T so that L is of the form

L[B1] 0 . . . 0 z1

0 L[B2] . . . 0 z2

. . . . . . . . . . . . . . .
0 0 . . . L[Bd] zd
zT1 zT2 . . . zTd d


where for each 1 ≤ i ≤ d, the vector zi is the column vector of appropriate length
whose only nonzero entry is −1 in the last row. Further, for each 1 ≤ i ≤ d, let ri
be the vertex in Bi that is adjacent to w and let the vertices in Bi be labeled so
that ri is labeled the largest of all vertices in Bi. We see that for each Bi, 1 ≤ i ≤ k,
there exists a characteristic valuation fi ∈ ξ(T ) such that fi(ri) 6= 0. Thus by
Corollary 6.2.1, we may assume fi(ri) = 1 and fi(v) > 1 for all vertices v ∈ Bi
where v 6= ri. Again by Corollary 6.2.1, there must exist an eigenvector f ∈ ξ(T )
such that f(v) = 0 if and only if v = w or v lies on a non-Perron branch at w. Hence
we may partition f such that

f = [x(1), x(2), . . . , x(k), 0, . . . , 0]T

where each x(i) corresponds to the branch Bi. By Corollary 6.2.1 each x(i) is such
that either x(i) is strictly positive or x(i) is strictly negative. For each 1 ≤ i ≤ k,
create the vector y(i) by rescaling each x(i) so that the entry in the ri position is 1
(this is always possible because there are no zero entries in x(i)). Observe for each
i that y(i) is a positive eigenvector of L[Bi] corresponding to a. Partitioning in the
same manner as f is partitioned, define

gi = [y(1), 0, 0, . . . , 0,−y(i), 0, 0, . . . , 0]T
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for 2 ≤ i ≤ k. For each i, observe by matrix multiplication that Lgi = agi. Thus
{g2, . . . , gk} is a linearly independent set of k − 1 eigenvectors of L corresponding
to a.

It remains to show that any other eigenvector of L corresponding to a is in the
span of {g2, . . . , gk}. Let h ∈ ξ(T ) be an arbitrary but fixed eigenvector correspond-
ing to a. Then h(v) = 0 for all vertices such that v = w or v ∈ Bj for k+ 1 ≤ j ≤ d.
Thus we can partition h in accordance to the branches at w:

h = [u(1), u(2), . . . , u(k), 0, . . . , 0]T .

It follows from Corollary 6.2.1 that for a fixed 1 ≤ i ≤ k that exactly one of the
following holds: all entries in u(i) are zero, all entries in u(i) are positive, or all
entries in u(i) are negative. Moreover, since Lh = ah and since each L[Bi] is an
irreducible M-matrix, it follows by block multiplication that u(i) is an eigenvector
of L[Bi] corresponding to the simple eigenvalue a. Thus there exist constants ci such
that u(i) = ciy

(i), 1 ≤ i ≤ k. Considering the product Lh = ah and looking at the
portion of the matrix multiplication when we take the dot product of the last row
of L with h, we see that since the last entry in each y(i) is 1, then the sum of the
ci’s must be zero. Therefore

−c1y
(1) =

k∑
i=2

ciy
(i).

If we consider the sum
c2g2 + c3g3 + . . . ckgk

we see that
h = −c2g2 − c3g3 − . . .− ckgk

So {g2, . . . , gk} spans ξ(T ).
Since we have shown that {g2, . . . , gk} is a linearly independent set of eigenvec-

tors that spans ξ(T ), it follows that the algebraic multiplicity of a as an eigenvalue
of L is k − 1. 2

We have now completed our investigation of characteristic vertices of weighted
trees. We now consider vertices of weighted trees that are not characteristic vertices.
The following theorem from [49] helps us understand the structure behind the Perron
branches at non-characteristic vertices.

THEOREM 6.2.19 Let T be a weighted tree on vertices 1, . . . , n and suppose that
m is not a characteristic vertex of T . Then the unique Perron branch of T at m is
the branch which contains all of the characteristic vertices of T .

Proof: Since m is not a characteristic vertex of T , then by Theorem 6.2.15 there
is a unique Perron branch at m. Let m1 be the vertex adjacent to m on that Perron
branch. For i ≥ 1, consider the following inductively constructed path P : If there
are two or more Perron branches at mi, then stop the construction. If there is a
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unique Perron branch at mi, then let mi+1 be the vertex adjacent to mi on that
Perron branch, provided that mi+1 is distinct from m1, . . .mi; otherwise, stop the
construction.

Since T has only finitely many vertices and since our construction does not
allow vertices to be repeated, the construction must terminate. Observe that the
construction must terminate in one of two ways: (1) mi has at least two Perron
branches or (2) mi+1 has been encountered before. In Case (1), the vertex mi is
the characteristic vertex of the Type I tree T . In Case (2), since T has no cycles, it
follows that mi+1 = mi−1. Thus mi−1 and mi are the characteristic vertices of the
Type II tree T . In both cases, P is a path in the Perron branch at m that begins
at m and ends at the characteristic vertex (vertices) of T . Thus the Perron branch
at m contains the characteristic vertices of T . 2

Continuing with the theme of valuations and Perron branches at non-
characteristic vertices, we saw in the proof of Theorem 6.1.10 that in a tree T ,
if we traverse a path beginning at a characteristic vertex such that the path does
not contain the other characteristic vertex of T (if one exists), then the valuations
of the vertices either increase or decrease as we traverse such a path. We close this
section with the following theorem from [49] where we gain more insight into the
rate at which the valuations increase or decrease in the case where T is unweighted.

THEOREM 6.2.20 Let T be an unweighted tree with Laplacian matrix L and al-
gebraic connectivity a := a(T ).

(a) If T is a Type I tree with characteristic vertex k, and y is an eigenvector of
L corresponding to a, then along any path in T beginning at k, the corresponding
entries in y are either increasing and concave down, decreasing and concave up, or
identically zero.

(b) If T is a Type II tree with characteristic vertices i and j, and y is an eigenvector
of L corresponding to a, then one of two things occur: either (i) the corresponding
entries in y are increasing and concave down along any path starting at i and not
including j, while the corresponding entries in y are decreasing and concave up along
any path starting at j and not including i, or (ii) the corresponding entries in y are
decreasing and concave up along any path starting at i and not including j, while the
corresponding entries in y are increasing and concave down along any path starting
at j and not including i.

Proof: Let T be a Type I tree with characteristic vertex k, and choose a path
Q starting at k along which the entries in y are all positive. Suppose that i, i + 1,
and i + 2 are consecutive vertices on such a path, with vertex i being closest to
vertex k. Since we already saw in the proof of Theorem 6.2.12 that the values of
such vertices in y are increasing, we want to show that yi+2 − yi+1 < yi+1 − yi to
establish the fact that the values are increasing in a concave down fashion. To that
end, let M be the bottleneck matrix for the branch B at k containing Q. Recall
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from Theorem 6.2.15 that the subvector w of y corresponding to the vertices of B is
a Perron vector for M . Thus Mw = (1/a)w. From Theorem 6.2.12, it follows that
the entry in position j of the row vector (eTi+1− eTi )M is the number of edges (since
T is unweighted) which are on the path from i + 1 to j but not on the path from
i to j. Since i and i+ i are consecutive vertices on Q, this number is 1 if the path
from j to k goes through i+1, and 0 if not. Letting Si+1 be the set of vertices whose
path to k goes through i+ 1, we see that the jth entry of (eTi+1 − eTi )M is 1 if and
only if j ∈ Si+1, and 0 otherwise. Using the fact that Mw = (1/a)w and that w is
a positive subvector of y, it follows that

yi+1 − yi =
1

a

∑
j∈Si+1

yj .

Similarly,

yi+2 − yi+1 =
1

a

∑
j∈Si+2

yj .

Since Si+2 is a proper subvector of Si+1, it follows that yi+2 − yi+1 < yi+1 − yi.
Hence on a branch of T at k, the corresponding positive entries in y are increasing
and concave down. Since −y is also an eigenvector of L corresponding to a, we see
that on a branch of T at k, the corresponding negative entries in y are decreasing
and concave up.

If T is a Type II tree, then by appealing to Theorem 6.2.12, we can apply a
similar argument to the matrix M − γJ for the appropriate 0 < γ < 1 in order to
establish a similar result. 2

Exercises:

1. Find the bottleneck matrix for the tree in Example 6.2.8 at vertex 7.

2. Find the bottleneck matrix for the weighted tree in Example 6.2.9 at vertex
7.

3. (See [49]) Suppose that T1 and T2 are weighted trees and let T3 be the weighted
tree which results from identifying a vertex of T1 with a vertex of T2. Prove that
any characteristic vertices lie on the path joining the characteristic vertices of T1 to
the characteristic vertices of T2.

4. (See [49]) Take two copies of a weighted tree T and create a new tree T ′ by
joining a vertex of one copy of T to the corresponding vertex of the other copy of T
by a weighted edge. Prove that T ′ is of Type II. In the language of Theorem 6.2.12,
find γ.

5. (See [49]) Consider the sequence of Fibonacci trees Ti, i ≥ 1, where T1 con-
sists of a single vertex v1, T2 consists of a single vertex v2, T3 is formed by taking a
new vertex v3 and making it adjacent to both v1 and v2, and Ti (i ≥ 4) is formed by
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taking a new vertex vi and making it adjacent to vertices vi−1 of Ti−1 and vi−2 of
Ti−2. Show that for i ≥ 4, Ti is a Type II tree with characteristic vertices vi−1 and vi.

6. (See [35]) Let T be a Type I tree with characteristic vertex v. Create a tree
T ′ by adding a vertex p adjacent to v. Show that T ′ is a Type I tree with charac-
teristic vertex v.

7. (See [35]) Let T be a Type I tree with characteristic vertex w and algebraic
connectivity a. Let B be a non-Perron branch at w. Prove that λ1(L[B]) > a where
λ1 denotes the smallest eigenvalue of a matrix.

6.3 Excursion: Nonisomorphic Branches in Type I
Trees

In Example 6.2.16, we saw an unweighted Type I tree in which the Perron branches
at the characteristic vertex were isomorphic. From Theorem 6.2.17, it is clear that
the easiest way to construct a Type I tree T is to attach two isomorphic trees to a
vertex v. Then v has two Perron branches and hence v is the unique characteristic
vertex of T , thus making T a Type I tree. In this section based largely on [42], we
show how to construct unweighted Type I trees in which the Perron branches at
the characteristic vertex are not isomorphic. To this end, we first recall a matrix-
theoretic definition.

DEFINITION 6.3.1 For an m × n martix A and any matrix B, the Kronecker
product A⊗B is defined as

A⊗B =

 a11B . . . a1nB
. . . . . .
am1B . . . amnB

 .
We now begin with a useful lemma from [42]. In this lemma, let J(k) denote the

k × k matrix of all ones, and let e(k) denote the k-dimensional vector of all ones.

LEMMA 6.3.2 Let G be a connected weighted graph with Laplacian matrix L and
let C be a proper subset of vertices of G. Suppose that C1 ⊆ C and that the vertices
of G are numbered so that those in C1 come before those in C \C1. Partition L[C]−1

as

L[C]−1 =

[
L1 L2

LT2 L3

]
where the (1, 1) block corresponds to the vertices in C1 while the (2, 2) block corre-
sponds to the vertices in C \ C1. Now form a new graph as follows: for each vertex
v of C1, add j new vertices adjacent to v, giving each new edge a weight of 1. Let A
denote the set of new vertices, and let L̂ be the Laplacian matrix of the new graph.
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Then L̂[A ∪ C]−1 is permutationally similar to I + L1 ⊗ J(j) L1 ⊗ e(j) L2 ⊗ e(j)
L1 ⊗ e(j)T L1 L2

LT2 ⊗ e(j)T LT2 L3


where the (1, 1), (2, 2), and (3, 3) blocks correspond to the vertices in A, C1, and
C \ C1, respectively.

Proof: Partitioning L[C] as we did L[C]−1 in the statement of the lemma, we
have

L[C] =

[
U V

V T W

]

for appropriate matrices U , V , and W . Partitioning L̂[A∪C] as we did L̂[A∪C]−1

in the statement of lemma, we have

L̂[A ∪ C] =

 I −I ⊗ e(j) 0

−I ⊗ e(j)T U + jI V

0 V T W

 .
Using the fact that [

U V

V T W

] [
L1 L2

LT2 L3

]
= I,

it is a straightforward computation to verify that I −I ⊗ e(j) 0

−I ⊗ e(j)T U + jI V

0 V T W


 I + L1 ⊗ J(j) L1 ⊗ e(j) L2 ⊗ e(j)

L1 ⊗ e(j)T L1 L2

LT2 ⊗ e(j)T LT2 L3

 = I.

2

To proceed with our creation of Type I trees with nonisomorphic Perron
branches, we first inductively create the rooted trees that we will be needing. For
positive integers k1, . . . , km, let T (k1), be the star on k1 +1 vertices, and for m ≥ 2,
let T (k1, . . . , km) be the tree created from T (k1, . . . , km−1) by adding km pendant
vertices adjacent to each of the pendant vertices of T (k1, . . . , km−1). For example,
the tree T (4, 2, 3) is:
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Clearly T (k1, . . . , km) is not necessarily isomorphic to T (km, . . . , k1). Our goal will
be to show that if we create a tree consisting of a vertex v with two branches:
T (k1, . . . , km) and T (km, . . . , k1), then these branches will both be Perron branches.
Hence by Theorem 6.2.17 we will have created a Type I tree with nonisomorphic
Perron branches at characteristic vertex v. Thus we need to prove that the bottle-
neck matrices for T (k1, . . . , km) and T (km, . . . , k1) have the same spectral radius.
To this end, we prove another lemma and corollary from [42].

LEMMA 6.3.3 Let M be a bottleneck matrix of a branch B at vertex v in some
weighted tree. Modify B as follows: for each vertex x ∈ B, take a distinct copy of
T (k1, . . . , km), and identify its root vertex with x. Then the bottleneck matrix of the
modified branch at v is permutationally similar to the (m+ 1)× (m+ 1) symmetric
block matrix where the (i, i) block is

I + {(. . . ((I +M ⊗ J(k1))⊗ J(k2) + I)⊗ J(k3) . . .+ I)} ⊗ J(ki),

where 1 ≤ i ≤ m, and the (i, j) block is

I+{(. . . ((I+M⊗J(k1))⊗J(k2)+I)⊗J(k3) . . .+I)}⊗J(ki)⊗e(ki+1)⊗ . . .⊗e(kj),

where 1 ≤ i < j ≤ m, and where the (i,m+1) block is M⊗e(k1)⊗e(k2)⊗. . .⊗e(ki).

Proof: We will prove this by induction on m. When m = 1, then by Lemma
6.3.2 it follows that the modified bottleneck matrix is permutationally similar to[

I +M ⊗ J(k1) M ⊗ e(k1)

M ⊗ e(k1)T M

]
. (6.3.1)

Thus the statement holds for m = 1. Now suppose the statement holds for
some m0 ≥ 1. Observe that for each vertex x ∈ B, taking a distinct copy of
T (k1, . . . , km0 , km0+1) and identifying x as its root vertex is the same as taking
a distinct copy of T (k1, . . . , km0), identifying x as its root vertex, and then adding
km0+1 pendant vertices adjacent to every pendant vertex of each of the new copies
of T (k1, . . . , km0). Applying the inductive hypothesis and using (6.3.1) yields the
desired result. 2

COROLLARY 6.3.4 Let B be a branch at a vertex v in a weighted tree, and
let the Perron value of B be ρ. Modify B as described in Lemma 6.3.3. Let
f(k1, . . . , ki) = ρki . . . k1 + ki . . . k2 + . . . + ki + 1 and form the matrix A of or-
der m+ 1 whose entries are as follows:

(1) In the (i, j) position where 1 ≤ i ≤ j ≤ m, the entries are f(k1, . . . , km+1−i).
(Note these entries depend only on i.)

(2) In the (i, j) position where 1 ≤ j < i ≤ m, the entries are
km+1−j . . . km+2−if(k1, . . . , km+1−i).
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(3) In the (m + 1, i) and (i,m + 1) positions, the entries are ρkm+1−i . . . k1 and
ρ, respectively.

Then the Perron value of the modified branch at v is the same as the Perron value
of A.

Proof: Let y be the Perron vector for the bottleneck matrix for B, and let
[a1, . . . , am+1]T be a Perron vector for A. From the block formula given in Lemma
6.3.3, we find that the vector 

a1y ⊗ e(k1 . . . km)
. . .

amy ⊗ e(k1)
am+1y


is a Perron vector for the bottleneck matrix of the modified branch, and that its
Perron value is the same as that of A. 2

We are now ready to prove the main result of this section which is a theorem
from [42]. This theorem tells us how to construct unweighted Type I trees with
nonisomorphic Perron branches.

THEOREM 6.3.5 For positive integers k1, . . . , km, form an unweigted tree T by
taking a vertex x and making it adjacent to the root vertices of both T (k1, . . . , km)
and T (km, . . . , k1). Then T is a Type I tree with characteristic vertex x.

Proof: From Theorem 6.2.17, it suffices to prove that the Perron value for
the rooted branch T (k1, . . . , km) is equal to the Perron value of the rooted
branch T (km, . . . , k1). From Corollary 6.3.4, the Perron value of the rooted branch
T (k1, . . . , km) is the same as that of the matrix A whose entries are described in
that corollary where ρ = 1. It now follows that A can be factored as XY1 where

X =


1 1 . . . 1
0 1 . . . 1
. . . . . . . . .
0 0 . . . 1

 and Y1 =


1 0 . . . 0 0
km 1

kmkm−1 km−1 . . . . . .
. . . . . . 1 0

km . . . k1 km−1 . . . k1 . . . k1 1


Similarly, the Perron value of the rooted branch T (km, . . . , k1) is the same as that
of XY2, where

Y2 =


1 0 . . . 0 0
k1 1
k1k2 k2 . . . . . .
. . . . . . 1 0

k1 . . . km k2 . . . km . . . km 1

 .
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But note that each of XY1, Y T
1 X

T , and XTY T
1 has the same Perron value. Further,

if P is the permutation matrix with 1’s on the back diagonal, then the common Per-
ron value coincides with the Perron value of PXTP TPY T

1 P
T . But PXTP T = X

and PY T
1 P

T = Y2, so we see that XY1 and XY2 have the same Perron value. 2

Note that the Perron branches at x are nonisomorphic if and only if ki 6= km−i+1

for some 1 ≤ i ≤ m. Thus we have shown how we can create unweighted Type I
trees in which the two Perron branches are nonisomorphic.

EXAMPLE 6.3.6 Consider the tree T below. Observe that the branches at vertex
x are T (1, 3) and T (3, 1). These branches are clearly nonisomorphic. Yet by Theorem
6.3.5, these branches will have the same Perron value, thus making T a Type I tree.

Note that the bottleneck matrices at x are


1 1 1 1 1
1 2 2 2 2
1 2 3 2 2
1 2 2 3 2
1 2 2 2 3

 and



1 1 1 1 1 1 1
1 2 1 1 2 1 1
1 1 2 1 1 2 1
1 1 1 2 1 1 2
1 2 1 1 3 1 1
1 1 2 1 1 3 1
1 1 1 2 1 1 3


and that the spectral radius of each of these matrices is 9.26. Also note by Theorem
6.2.15 that a(T ) = 1/9.26 = 0.108.

Exercise:

1. Explain why it would be trivial to describe weighted Type I trees with noni-
somorphic Perron branches.

6.4 Perturbation Results Applied to Extremizing the
Algebraic Connectivity of Trees

We saw in Section 6.2 that bottleneck matrices at characteristic vertices are closely
related to the algebraic connectivity of a tree. In this section, we use bottleneck
matrices to show which trees on a fixed number of vertices and fixed diameter have
the largest and smallest algebraic connectivities. We then broaden these results by
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showing the effects that perturbing branches has on the algebraic connectivity of a
tree. This will enable us to order trees by their algebraic connectivities. To achieve
this goal, we begin with an important theorem from [47] which explores the effects
of the algebraic connectivity of a tree and the location of its characteristic vertices
by altering a branch at a vertex not containing all of the characteristic vertices of
the tree. In this theorem, let Bx(y) and B̂x(y) denote the branches at x in T and
T̂ , respectively, containing y and we let ρ(Bx(y)) and ρ(B̂x(y)) denote the Perron
values of the bottleneck matrices of such branches.

THEOREM 6.4.1 Suppose that T is a weighted tree with algebraic connectivity a.
Let x be a vertex of T , and suppose B is a branch of T at x which does not contain
all of the characteristic vertices of T . Form a new tree T̂ from T by replacing the
branch B at x by some other branch B̂ at x (and possibly changing the weight of the
edge between x and the vertex in B which is adjacent to x). Let â be the algebraic
connectivity of T̂ . Let M be the bottleneck matrix for B at x in T , and let M̂ be
the bottleneck matrix for B̂ at x in T̂ . If M << M̂ then â ≤ a. Furthermore, the
characteristic vertices of T̂ are either on the path joining the characteristic vertices
of T to x, or they are located on the new branch B̂.

Proof: We first begin with the location of the characteristic vertices of T̂ . Let
P be the path in T̂ joining the characteristic vertices in T to x. Our goal is to show
that the characteristic vertices of T̂ lie in P ∪ B̂. Suppose that y is a vertex in T̂
that is not in P ∪ B̂; we will show that y cannot be a characteristic vertex of T̂
by deducing a contradiction. First note that by Theorem 6.2.19, the unique Perron
branch at y in T is the branch containing P . Since M << M̂ , it follows that the
unique Perron branch at y in T̂ is the branch containing P ∪ B̂.

Suppose that y is a characteristic vertex of T̂ . Since y has only one Perron
branch in T̂ , it follows by Theorem 6.2.17 that T̂ is a Type II tree and that the
other characteristic vertex, say z, is adjacent to y (see Corollary 6.2.14). Suppose
z /∈ P ∪ B̂, then by the above argument, the unique Perron branch at z in T̂ would
be the branch containing P ∪ B̂. However, by Corollary 6.2.14 if y and z were both
characteristic vertices of T̂ , then the unique Perron branch at each vertex should
contain the other, contradicting the earlier assertion that the unique Perron branch
at y in T̂ contains P . Therefore z ∈ P ∪ B̂; more specifically z ∈ P (hence the
path from y to x contains z). Furthermore, since y is a characteristic vertex of T̂
it follows that the unique Perron branch at z in T̂ must contain y. Moreover, since
M << M̂ , it follows that the branch at z containing B cannot be a Perron branch
at z in T . Hence the unique Perron branch at z in T must contain y. But since the
unique Perron branch at z in T must contain all characteristic vertices of T (The-
orem 6.2.19), it follows that y must lie on P . Yet this contradicts our assumption
that y /∈ P ∪ B̂. Hence our assumption that y is a characteristic vertex of T̂ is false.
Therefore any characteristic vertex of T̂ is in P ∪ B̂.

We will now show that â ≤ a. We consider two cases: when T is of Type I and
when T is of Type II.
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Case I: Let T be of Type I with characteristic vertex v. Thus by Theorem 6.2.15,
we have ρ(Bv(x)) ≤ 1/a. We will consider the cases when ρ(B̂v(x)) ≤ 1/a and
when ρ(B̂v(x)) > 1/a. First, suppose ρ(B̂v(x)) ≤ 1/a. Since M << M̂ , we have
ρ(Bv(x)) < ρ(B̂v(x)). Therefore since ρ(Bv(x)) < 1/a in this case, there must be at
least two Perron branches at v in T , none of which contains B. Thus, in T̂ there
are at least two Perron branches at v not containing B̂ that each have Perron value
1/a. Hence, T̂ is also Type I with characteristic vertex v and thus â = a.

Now we suppose that ρ(B̂v(x)) > 1/a, and let z be the characteristic vertex of
T̂ which is furthest from v. If T̂ is a Type I tree, say with Perron branch B1 at z,
then

1

â
= ρ(B1) ≥ ρ(B̂z(v)) > ρ(Bv) =

1

a
,

where Bv is some Perron branch at v in T which does not contain z. In particular,
a > â. If T̂ is a Type II tree, with w as the other characteristic vertex, and θ as the
weight of the edge between w and z, then by Theorem 6.2.12 we have

1

â
= ρ

(
B̂z(w)− γ

θ
J

)
for some 0 < γ < 1. But then we have

1

â
> ρ

(
B̂z(w)− 1

θ
J

)
≥ ρ(Bv) =

1

a
,

and again a > â.

Case II: Let T be a Type II tree with characteristic vertices u and v. Let θ be
the weight of the edge joining u and v. Without loss of generality, we can suppose
one of the following:

(i) x is on a branch at v which does not contain u.
(ii) x = v and u /∈ B, or
(iii) x = u and v ∈ B

Before continuing, note that the first two cases cover the possibility that B contains
no characteristic vertices of T , while the last is the case that B contains one charac-
teristic vertex of T . In any of these three cases, since M << M̂ , it follows that the
unique Perron branch at u in T̂ is the branch containing v. Also note that in any
of these cases we have B̂v(u) = Bv(u). By Theorem 6.2.12, for some 0 < γ0 < 1, we
have:

1

a
= ρ

(
Bu(v)− γ0

θ
J

)
= ρ

(
Bv(u)− 1− γ0

θ
J

)
.

Suppose that the unique Perron branch at v in T̂ is the branch containing u.
Then for some 0 < γ1 < 1, we have

1

â
= ρ

(
B̂u(v)− γ1

θ
J

)
= ρ

(
B̂v(u)− 1− γ1

θ
J

)
. (6.4.1)
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Since M << M̂ , we see that

ρ

(
B̂u(v)− γ

θ
J

)
> ρ

(
Bu(v)− γ

θ
J

)
for all 0 < γ < 1. Since

ρ

(
B̂v(u)− 1− γ0

θ
J

)
= ρ

(
Bv(u)− 1− γ0

θ
J

)
= ρ

(
Bu(v)− γ0

θ
J

)
< ρ

(
B̂u(v)− γ0

θ
J

)
,

we see from (6.4.1) that γ1 > γ0. Hence

1

â
= ρ

(
B̂v(u)− 1− γ1

θ
J

)
= ρ

(
Bv(u)− 1− γ1

θ
J

)
> ρ

(
Bv(u)− 1− γ0

θ
J

)
=

1

a
.

Thus a > â.
Now suppose that the branch at v containing u is not the unique Perron branch

at v in T̂ . Then, as above, we let z be the characteristic vertex of T̂ which is furthest
from v. If T̂ is of Type I, then

1

â
≥ ρ(B̂z(u)) > ρ

(
B̂v(u)− γ

θ
J

)
=

1

a
.

If T̂ is of Type II, then

1

â
≥ ρ

(
B̂z(v)− 1

θ
J

)
≥ ρ(B̂v(u)) >

1

a
.

In either case we find that a > â. 2

We should observe from the proof above that the only case where a = â is when
T is of Type I and ρ(B̂v(x)) ≤ 1/a. We now obtain several corollaries from Theorem
6.4.1, all of which are from [47].

COROLLARY 6.4.2 Suppose that T is a weighted tree with algebraic connectivity
a. Form T̂ from T by adding a new pendant vertex and a weighted edge, and denote
the algebraic connectivity of T̂ by â. Then â ≤ a and the characteristic vertices of T̂
lie on the path between the characteristic vertices of T and the new pendant vertex.

Applying Corollary 6.4.2 we obtain the following:

COROLLARY 6.4.3 Suppose that a weighted tree T is a weighted subtree of T̂ .
Denoting the algebraic connectivities of T and T̂ by a and â, respectively, we have
â ≤ a.

We also can easily obtain a corollary discussing the effects of perturbing the weight
of an existing edge on a tree:
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COROLLARY 6.4.4 Let T be a weighted tree and let e be an edge of T . Form
T̂ from T by decreasing the weight of e. Then the algebraic connectivity of T̂ is
at most that of T , and the characteristic vertices of T̂ lie on the path joining the
characteristic vertices of T to the vertices incident with e.

We now apply these results to show which unweighted trees of diameter d, for
fixed d, have the maximum and minimum algebraic connectivity. Let T (k, l, d) be
the unweighted tree on n vertices constructed by taking the path on vertices 1, . . . , d,
and adding k pendant vertices adjacent to vertex 1 and l vertices adjacent to vertex
d:

Let πr,s denote the unweighted tree formed by taking the path on r vertices and
adding s pendant vertices, all of which adjacent to one end of the path:

By induction on s, we can easily prove the following claim from [47]:

CLAIM 6.4.5 Let A be the bottleneck matrix for any unweighted branch with di-
ameter r + 1 having r + s vertices. If M is the bottleneck matrix for πr,s based at
the vertex adjacent to the end point of the path which is not adjacent to the s extra
vertices, then A << M .

Observe that the diameter of T (k, l, d) is d+1. We now prove a theorem from [47]
that shows that trees of the form T (k, l, d) have the smallest algebraic connectivity
over all unweighted trees on n vertices having diameter d+ 1.

THEOREM 6.4.6 Consider the set τn,d+1 of unweighted trees on n vertices having
diameter d+ 1. The algebraic connectivity is minimized over τn,d+1 by T (k, l, d) for
some 1 ≤ k, l ≤ n.

Proof: Suppose that T ∈ τn,d+1 but is not of the form T (k, l, d). Let the al-
gebraic connectivity of T be a. We will show that some tree of the form T (k, l, d)
has algebraic connectivity at most a. Suppose that at some characteristic vertex of
T , there is a branch B with r vertices and diameter f . If that branch is not of the
form πf−1,r−f+1, then by Claim 6.4.5 and Theorem 6.4.1 the algebraic connectivity
will not increase if we replace B by πf−1,r−f+1. Therefore, we can assume that each
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branch at a characteristic vertex of T is of the form πf−1,r−f+1. Hence if T is a
Type II tree or a Type I tree with just two branches at its characteristic vertex,
then T is of the form T (k, l, d).

Now suppose that T is of Type I with three or more branches at its characteristic
vertex v. Form a new tree T1 from T by discarding all of the non-Perron branches
at v, and all but two of the Perron branches at v. By Theorem 6.2.15, note that the
algebraic connectivity of T1 is still a. Also note that the two branches at v in T1 are
of the form πr1,s1 and πr2,s2 . From the fact that T has diameter d+ 1, we find that
r1 + r2 ≤ d − 1; since T has n vertices, it follows that s1 + s2 ≤ n − d. Thus form
a new tree T2 by replacing the branch πr2,s2 at v by πd−1−r1,n−d−s1 and note by
Theorem 6.4.1 that the algebraic connectivity of T2 is at most a. However, T2 is of
the form T (k, l, d). Thus for any tree in τn,d+1 with algebraic connectivity a, there
is a tree of the form T (k, l, d) whose algebraic connectivity is at most a. Hence, the
algebraic connectivity is minimized over τn,d+1 by T (k, l, d) for some 1 ≤ k, l ≤ n. 2

In the next theorem which is from [18], we determine the values of k and l in which
the minimum algebraic connectivity over all trees of the form T (k, l, d) occurs.

THEOREM 6.4.7 Among all unweighted trees in τn,d+1, the minimum algebraic
connectivity is attained by T (dn−d2 e, b

n−d
2 c, d).

Proof: By Theorem 6.4.6, we can restrict our attention to trees of the form
T (k, l, d). The Laplacian matrix for such a tree is

L =



Ik −e 0 0 . . . 0 0

−eT k + 1 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
0 0 . . . . . . . . . 0 0
0 0 0 −1 2 −1 0
. . . . . . 0 0 −1 l + 1 −eT
0 . . . 0 0 0 −e Il


.

Observe that the eigenvalues of L are: 1 with algebraic multiplicity k+ l− 2, along
with the eigenvalues of the (d+ 2)× (d+ 2) matrix

Mk,l,d =



1 −1 0 0 . . . 0 0
−k k + 1 −1 0 . . . 0 0
0 −1 2 −1 0 . . .
0 0 . . . . . . . . . 0 0
0 0 0 −1 2 −1 0
. . . . . . 0 0 −1 l + 1 −l
0 . . . 0 0 0 −1 1


To determine the eigenvalues of Mk,l,d, we need its characteristic polynomial which
we will denote by pk,l,d. Since we want to observe the effects of keeping the diameter
fixed but changing the number of vertices appended to each end vertex of the path
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(i.e., vertices 1 and d), we will consider the expression pk,l,d − pk−1,l+1,d. Since the
determinant is multilinear, it follows that

pk,l,d − pk−1,l,d = −λ det



λ− 2 1 0 0 0 0
1 λ− 2 1 0 0 0
0 . . . . . . . . . 0 0
0 0 1 λ− 2 1 0
0 0 0 1 λ− l − 1 l
0 0 0 0 1 λ− 1


where the above matrix is d× d. Similarly, we obtain

pk−1,l,d − pk−1,l+1,d = λ det



λ− 1 1 0 0 0 0
k − 1 λ− k 1 0 0 0

0 1 λ− 2 1 0 0
0 0 . . . . . . . . . 0
0 0 0 1 λ− 2 1
0 0 0 0 1 λ− 2


which, by permutational similarity, is equal to

λ det



λ− 2 1 0 0 0 0
1 λ− 2 1 0 0 0
0 . . . . . . . . . 0 0
0 0 1 λ− 2 1 0
0 0 0 1 λ− k k − 1
0 0 0 0 1 λ− 1


Thus

pk,l,d − pk−1,l+1,d = λ2(l + 1− k) det


λ− 2 1 0 0

1 . . . . . . 0
0 . . . . . . 1
0 0 1 λ− 2

 (6.4.2)

where this matrix is (d− 2)× (d− 2).
Observe that the linear term in det(λI−L) is the sum of all the (n−1)× (n−1)

principal minors of −L. By the Matrix Tree Theorem (Theorem 3.2.2), this sum is
equal to (−1)n−1n (recall n = k + l + d). Furthermore, since 1 is an eigenvalue of
L with algebraic multiplicity k + l − 2 and since the other eigenvalues of L are the
eigenvalues of Mk,l,d, it follows that det(λI−L) = (λ−1)k+l−2pk,l,d. Since pk,l,d has
a factor of λ (since L has a simple eigenvalue of 0), we find that the linear term of
pk,l,d is (−1)d+1n.

Let ak,l,d and ak−1,l+1,d be the algebraic connectivities of T (k, l, d) and T (k −
1, l + 1, d), respectively. Since we want to show that the algebraic connectivity is
minimized when k = dn−d2 e and l = bn−d2 c, the proof will be complete if we can show
that ak,l,d < ak−1,l+1,d when k < l+1, and ak,l,d > ak−1,l+1,d when k > l+1. To this
end, we recall that since the path on d+2 vertices is a subgraph of each of T (k, l, d)
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and T (k− 1, l+ 1, d), it follows from Theorem 5.1.7 that the algebraic connectivity
of each tree is at most that of such a path, i.e., 2(1− cos( π

d+2)). Applying Theorem
5.1.7 again, we can determine that the smallest eigenvalue of the (d− 2)× (d− 2)
matrix 

2 −1 0 0
−1 . . . . . . 0
0 . . . . . . −1
0 0 −1 2


is 2(1− cos( π

d−1)). Hence if 0 < λ < min(ak,l,d, ak−1,l+1,d), then we have

sgn

det


λ− 2 1 0 0

1 . . . . . . 0
0 . . . . . . 1
0 0 1 λ− 2


 = (−1)d−2. (6.4.3)

Suppose that 0 < λ < ak,l,d and note that pk,l,d(λ) is increasing (decreasing) at 0
when d is odd (even), as is pk−1,l+1,d(λ). Thus from (6.4.2) and (6.4.3), we see that
for such λ

sgn(pk,l,d − pk−1,l+1,d) = sgn((l + 1− k)λ2(−1)d−2).

If k < l+ 1, then sgn(pk,l,d− pk−1,l+1,d) is negative (positive) if d is odd (even) and
hence ak,l,d < ak−1,l+1,d. Likewise, If k > l+1, then sgn(pk,l,d−pk−1,l+1,d) is positive
(negative) if d is odd (even) and hence ak,l,d > ak−1,l+1,d. Thus we conclude that for
a tree on n vertices with diameter d+ 1, the tree which attains minimum algebraic
connectivity is T (dn−d2 e, b

n−d
2 c, d). 2

Now that we know which trees on n vertices of diameter d+1 yield the minimum
algebraic connectivity, we now determine the value of this algebraic connectivity.
Once this is done, we will have determined a lower bound on the algebraic connec-
tivity of all trees on n vertices with diameter d + 1. From Theorem 6.4.7, we see
that such a lower bound can be achieved by computing the algebraic connectivity
of T (dn−d2 e, b

n−d
2 c, d), or at least obtain a lower bound for such a tree. We do this

in a theorem based on results in [47]:

THEOREM 6.4.8 Let T be an unweighted tree on n vertices with diameter d+ 1
and algebraic connectivity a. Then a ≥ 1/p where

p =
(dd2e+ 1)(dd2e+ 2)

2
+

(⌊
n− d

2

⌋
− 1

)⌈
d

2

⌉
.

Proof: From Theorem 6.4.7, we see that we need to compute a lower bound
on the algebraic connectivity of T (dn−d2 e, b

n−d
2 c, d). We will do so using bottleneck

matrices. There are four cases to consider: (i) n and d are both odd, (ii) n and d are
both even, (iii) n is even and d is odd, and (iv) n is odd and d is even. In all four
cases, it can be seen that vertex dd2e is a characteristic vertex of T (k, l, d) and that
a Perron branch at this vertex contains vertex d and the l pendant vertices adjacent
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to it. Letting M be the bottleneck matrix for this branch at vertex dd2e, we see
that if T (k, l, d) is of Type I then a(T (k, l, d)) = 1/ρ(M) by Theorem 6.2.15, while
if T (k, l, d) is of Type II, then for some 0 < γ < 1 it follows that a(T (k, l, d)) =
1/ρ(M − γJ) > 1/ρ(M) by Theorem 6.2.12. In either case, a(T (k, l, d)) ≥ 1/ρ(M).
We now find an upper bound on ρ(M). Note that M is permutationally similar to

dd2e dd2e − 1 . . . 2 1

I + dd2eJ . . . . . .

dd2e dd2e − 1 . . . 2 1

dd2e . . . dd2e dd2e dd2e − 1 . . . 2 1

dd2e − 1 . . . dd2e − 1 dd2e − 1 dd2e − 1 . . . 2 1
. . . . . . . . . . . .
2 . . . 2 2 2 . . . 2 1
1 . . . 1 1 1 . . . 1 1


where the (1, 1) block of this matrix is bn−d2 c × b

n−d
2 c and corresponds to the pen-

dant vertices of πd d
2
e,bn−d

2
c which are adjacent to vertex d. Thus we find that the

maximum row sum of M (achieved from the first row) is p. Since M is a positive
matrix, by Theorem 1.1.13 this is an upper bound on ρ(M). Hence by the arguments
in the first paragraph of this proof, it follows that if T is a tree on n vertices with
diameter d+ 1, then a(T ) ≥ 1/p. 2

Now that we have shown which trees of fixed diameter have the smallest algebraic
connectivity, our goal for the remainder of this section will be to show the effects
that varying the diameter has on the algebraic connectivity of a tree. We will then
be able to order trees of fixed diameter and number of vertices by their algebraic
connectivities. To this end, we will continue to use the perturbation results that we
have established. First, we recall from Theorem 6.2.17 that a Type I tree T has at
least two Perron branches and consider the effects on the algebraic connectivity of
T when we keep at least two of the Perron branches intact but perturb the rest of
the tree. We do this in the following theorem from [36]:

THEOREM 6.4.9 Let T be a Type I tree whose characteristic vertex w has degree
d. Let B1, . . . , Bd be the branches of T at w. Let B1 and B2 be Perron branches.
Suppose B3, . . . , Bd (each of which may be Perron or non-Perron) contain a total of
p vertices. Let Γ be any graph on p vertices. Let G be the graph obtained from T by
discarding branches B3, . . . , Bd and then adjoining w to some or all of the vertices
of Γ by new edges. Then a(G) ≤ a(T ).

Proof: We may assume that T and G share the same vertex set V . Thus let
T = (V,E) and G = (V, F ) where E and F are the edges of T and G, respectively.
Then by Theorem 1.2.7:

a(G) = min
xT e=0

xT x=1

xTL(G)x,

where x is a real-valued vector with n entries. We saw in Theorem 6.2.18 that there
exists a characteristic valuation y of L(T ) which is positive on B1, negative on



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

248Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

B2, and zero elsewhere. Without loss of generality, assume y is a unit vector. Let
i3, . . . , id be the vertices of B3, . . . , Bd, respectively, that are adjacent to w in T .
Let F be obtained from E by deleting the edges {w, ir}, 3 ≤ r ≤ d, and adjoining
edges {w, js}, 1 ≤ s ≤ q, where j1, . . . , jq are the vertices of Γ joined to vertex w by
these new edges to form G. Then

yTL(G)y = yTL(T )y −
d∑
r=3

(yw − xir)2 +
q∑
r=1

(yw − xjr)2

= yTL(T )y = a(T ),

because yw = yi3 = . . . yid = yj1 = . . . yjq = 0. Therefore

a(T ) = yTL(G)y ≥ min
xT e=0

xT x=1

xTL(G)x = a(G).

2

EXAMPLE 6.4.10 Consider the Type I tree below:

Note that a(T ) = 0.268. Observe that w is the characteristic vertex, and that the
branches containing vertices w1 and w2 are the Perron branches while the pendant
vertices w3, . . . , w6 are the non-Perron branches. Theorem 6.4.9 says that if we create
a graph from vertices w3, . . . , w6 in any fashion and let w be adjacent to some or all
of w3, . . . , w6, then the algebraic connectivity of the resulting graph will not exceed
0.268. Looking at examples of such graphs below, observe that a(G1) = 0.1495 and
a(G2) = 0.268.
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In the next theorem from [36], we illustrate the effect of the algebraic connectiv-
ity of a Type I tree by moving Perron branches further away from the characteristic
vertex.

THEOREM 6.4.11 Let T = (V,E) be a Type I tree with characteristic vertex w.
Let B1, . . . , Br be r Perron branches at w. Suppose i is the vertex of Bi adjacent
in T to w for 1 ≤ i ≤ r. Let j1, . . . , jr be, not necessarily distinct, vertices oo the
non-Perron branches of T . Form the tree T ′ = (V,E′) by deleting edges w-i from
T and replacing them with new edges jii for 1 ≤ i ≤ r. Then a(T ′) ≤ a(T ), with
strict inequality if the total number of Perron branches of T is at least r + 1.

Proof: Let y be a unit vector of L(T ) corresponding to a(T ). Then

a(T ′) = min
xT e=0

xT x=1

xTL(T ′)x ≤ yTL(T ′)y = yTL(T )y−
r∑
i=1

(yv− yi)2 +
r∑
i=1

(yji − yi)2

= yTL(T )y = a(T ),

where the second-to-last equality follows from the fact that yw = 0 (since w is the
characteristic vertex) and yji = 0 for all 1 ≤ i ≤ r (since vertices ji lie on non-Perron
branches). Thus a(T ′) ≤ a(T ).

To show strict inequality when there are at least r+1 Perron branches, let Br+1

be the (r + 1)th Perron branch with vertex k ∈ Br+1 adjacent to v in both T and
T ′. As in the proof of Theorem 6.4.9 choose a unit eigenvector y corresponding to
a(T ) that is positive on Br+1 and negative on B2. If a(T ) = a(T ′), then y must
also be a characteristic valuation of T ′. Then yw = 0 = yj2 , but yk 6= 0 6= y2, yet wk
and j22 are edges of T ′, violating Corollary 6.2.1 which says there exists a unique
vertex with zero valuation adjacent to a vertex with nonzero valuation. 2

Theorem 6.4.11 states that if we delete edges in a Type I tree T joining the
characteristic vertex w to vertices in Perron branches and replace them with edges
joining such vertices in the Perron branches to vertices in non-Perron branches, the
algebraic connectivity of the resulting tree T ′ will never be more than the algebraic
connectivity of the original tree T . However, when making such a replacement, if we
do not delete all of the edges joining w to vertices in the Perron branches of T , the
the algebraic connectivity of T ′ will be strictly less than the algebraic connectivity
of T .

EXAMPLE 6.4.12 Consider the tree T from Example 6.4.10 and recall a(T ) =
0.268. According to Theorem 6.4.11, if we eliminate edges ww1 and ww2, and join
each of w1 and w2 to (not necessarily distinct) vertices of the non-Perron branches
of T , then the algebraic connectivity of the resulting tree will be less than or equal
to a(T ). Observe the drawings below:
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Note that T1 was created by removing edges ww1 and ww2 from T and replacing
them with edges w3w1 and w4w2 (the branch at w2 was moved below the pendant
vertices as to make the drawing more clear). Observe that a(T1) = 0.1387 < a(T ).
The tree T2 was created by removing edges ww1 and ww2 from T and replacing
them with edges w3w1 and w3w2. Observe that a(T2) = 0.268 = a(T ). In creating
both of these trees, we replaced all edges in T joining the characteristic vertex of T
to a vertex in an Perron branch. However, in T3, we did not replace all such edges
as the edge ww1 is kept. Observe that a(T3) = 0.1772 < a(T ), i.e., we have strict
inequality as expected.

Theorem 6.4.11 demonstrated the effects of moving Perron branches away from
the characteristic vertex. Our next theorem from [36] demonstrates the effects of
moving non-Perron branches away from the characteristic vertex.

THEOREM 6.4.13 Let T be a Type I tree on n vertices with characteristic vertex
w. Let B be a non-Perron branch and suppose v is the vertex of B adjacent to w.
Let j be a vertex of some Perron branch of T . Form a tree T ′ by deleting the edge
wv and replacing it with a new edge jv. Then a(T ′) < a(T ).

Proof: Let z be a unit eigenvector of L(T ) corresponding to a(T ) such that
zv = 0 = zw < zj . Create T ′ as stated in the statement of the theorem, with
the labels of z still intact. Then as in Theorem 6.4.11, we arrive at zTL(T ′)z =
zTL(T )z + z2

j . Suppose that B has a total of p vertices including vertex v. Form
vector y by changing each of the p entries of z corresponding to the vertices in
B from 0 to zj . Summing (ys − yt)2 over the edges st of T ′ produces yTL(T ′)y.
However, ys − yt = 0 for all pairs of vertices in B since in B we have ys = yt = zj .
Thus it follows that yTL(T ′)y = zTL(T )z = a(T ). Since eT z = 0, it follows that
eT y = pzj . Therefore, letting x = y − (pzj/n)e, we have xT e = 0. Thus

xTL(T ′)x = yTL(T ′)y − (pzj/n)2eTL(T ′)e = yTL(T ′)y = a(T ).

To complete the proof, we need only show that xTx > 1 because then

a(T ′) = min
u6=0

uTL(T ′)u
uTu

≤ xTL(T ′)x
xTx

=
a(T )

xTx
< a(T ).
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Observe that

xTx = p

(
n− p
n

zj

)2

+
∑
s/∈B

(
zs −

p

n
zj

)2

= p

(
n− p
n

zj

)2

+
n∑
s=1

z2
s −

2pzj
n

n∑
s=1

zs + (n− p) p
2

n2
z2
j

=
n∑
s=1

z2
s −

2pzj
n

n∑
s=1

zs +
p(n− p)

n
z2
j

the second equality resulting from the fact that zs = 0 for all s ∈ B. Since∑
z2
s = zT z = 1 and

∑
zs = zT e = 0, the right-hand side of this equation col-

lapses to 1 + p(n− p)z2
j /n. But this expression is greater than one since p < n and

since zj 6= 0. Thus xTx > 1. 2

EXAMPLE 6.4.14 Again, consider the tree T from Example 6.4.10 and recall
a(T ) = 0.268. Recall that w3, . . . , w6 were the pendant vertices of the non-Perron
branches of T adjacent to the characteristic vertex w. In the language of Theorem
6.4.13 let v = w3. The tree T ′ drawn below was created from T by removing the
edge wv and replacing it with the edge jv. Observe a(T ′) = 0.208 < 0.268 = a(T ).

Theorems 6.4.9, 6.4.11, and 6.4.13 lead us to an important theorem from [36]
which will help us order trees using their algebraic connectivities. In this theorem,
we investigate the effects on the algebraic connectivity of both Type I and Type II
trees when we alter the Perron branches by deleting and replacing edges.

THEOREM 6.4.15 (a) Let T be a Type I tree with characteristic vertex w and
let B be a Perron branch at w. Let i and j be two vertices of B such that i is on
the unique path from w to j. Let K be a branch at i containing neither vertices j
nor w. Let k be the vertex of K adjacent, in T , to i. If T ′ is the tree obtained from
T by deleting the edge i-k and adjoining a new edge j-k, then a(T ′) < a(T ).
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(b) Let T be a Type II tree with characteristic vertices v and w. Let i and j be
two vertices such that v is on the unique path from w to vertex j, and either i = v
or vertex i is on the path from v to j. Let K be a branch at i containing neither ver-
tices j nor w. Let k be the vertex of K adjacent, in T , to i. If T ′ is the tree obtained
from T by deleting the edge i-k and adjoining a new edge j-k, then a(T ′) < a(T ).

Proof: We prove parts (a) and (b) together. Corollary 6.2.1 guarantees the
existence of a unit vector z for a(T ) such that 0 < zi < zj and zi < zk. We proceed
as in Theorem 6.4.11, obtaining

zTL(T ′)z = zTL(T )z − (zi − zk)2 + (zj − zk)2.

Suppose that zk > (zi + zj)/2. Then a(T ′) ≤ zTL(T ′)z < zTL(T )z = a(T ) which
would complete the proof. So for the remainder of the proof, we assume zk ≤
(zi + zj)/2.

Suppose zk = (zi + zj)/2. Then zTL(T ′)z = zTL(T )z. But then by Corollary
6.2.1, z is not a characteristic valuation of T ′ because if it were, the path v → . . .→
i → . . . → j → k would be increasing in z, meaning zi < zk and zj < zk. This
contradicts zk = (zi + zj)/2. Thus a(T ′) 6= zTL(T ′)z and therefore

a(T ′) = min
uT u=1

uT e=0

uTL(T ′)u < zTL(T ′)z = zTL(T )z = a(T ).

Now suppose zk < (zi + zj)/2. Let α := (zj − zk) − (zk − zi) > 0. Suppose
that branch K has a total of p vertices incuding vertex k. Form a new vector y
by adding α to each of the p entries of z corresponding to the p vertices of K,
and let x = y − (pα/n)e. Then, as in the proof of Theorem 6.4.13, we obtain
xTL(T ′)x = a(T ). But xTx > 1 because zu > 0 for every vertex u of K. Hence by
similar reasoning as in the proof of Theorem 6.4.13, it follows that a(T ′) < a(T ). 2

EXAMPLE 6.4.16 To illustrate part (a) of Theorem 6.4.15, let us consider the
Type I tree used in Example 6.4.10. We will redraw it below as to label the vertices
in accordance with Theorem 6.4.15.

Observe that i, j, and k all lie on a Perron branch at w. Letting K be the branch
in T at i containing k, then according to Theorem 6.4.15 removing edge ij and
replacing it with edge jk will cause the algebraic connectivity to decrease.
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Observe that a(T ′) = 0.2213 < a(T ) = 0.268.

EXAMPLE 6.4.17 To illustrate part (b) of Theorem 6.4.15, consider the follow-
ing Type II tree with characteristic vertices v and w.

Note that a(T ) = 0.144 and observe that i, j, and k are as stated in Theorem 6.4.15.
Thus creating T ′ by removing edge ik and replacing it with edge jk will decrease
the algebraic connectivity. Note that a(T ′) = 0.1353.

Theorems 6.4.9 through 6.4.15 illustrate that for a fixed n, the algebraic con-
nectivity of a tree tends to decrease as the diameter increases. Observe that this
certainly holds true when considering all trees on n = 7 vertices [36]:
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Exercises:

1. Let T be a tree with diameter d. Prove that a(T ) ≤ 2(1− cos π
d+1).

2. (See [47]) Let T1 be an unweighted tree with algebraic connectivity a1. Let B be
a branch at vertex v of T1 with k vertices. Form T2 from T1 by replacing B by a star
on k vertices, with the center of the star adjacent to v. Prove that a2 ≥ a1 where
a2 denotes the algebraic connectivity of T2.

3. (See [47]) Let T1 be an unweighted tree with algebraic connectivity a1. Let B
be a branch at vertex v of T1 with k vertices. Form T2 from T1 by replacing B by
a path on k vertices, with a pendant vertex of the path adjacent to v. Prove that
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a2 ≤ a1 where a2 denotes the algebraic connectivity of T2.

4. Using the theorems of this section, order all trees on n = 6 vertices by their
algebraic connectivities.

5. (See [21]) Let T be a tree, y be a Fiedler vector, S be the set of characteris-
tic vertices of T , and B a positively valuated component at some vertex of T . Let
u, v ∈ B and suppose that u is closer to S than v. Let Bu be a positively valuated
component of T at u such that v /∈ Bu. Let T ′ be the tree obtained from T by
moving Bu to v, i.e., removing all edges between u and the vertices in Bu adjacent
to u and adding edges joining v to such vertices in Bu. Prove the following:

(i) a(T ′) < a(T )
(ii) The set S′ of characteristic vertices of T ′ lies on the path joining S and v.

If S′ consists only of a single vertex, then it is not v.

6. (See [21]) Suppose T is a tree, y is a Fiedler vector and S is the set of char-
acteristic vertices of T . Let u and v be two vertices of T such that yu > 0 and
yv < 0, so that S lies on the path P joining u and v. Let B1, . . . , Bk be nonneg-
atively valuated components of T − P and C1, . . . , Cr be the negatively valuated
components of T −P . Let T ′ be the tree obtained from T by moving all of the Bi’s
to u and all of the Cj ’s to v. Assume that in T , at least one Bi is not a component
at u, or at least one Cj is not a component at v. Prove the following:

(i) a(T ′) < a(T ) and the characteristic set S′ of T ′ lies on the path P .
(ii) If S′ consists of a single vertex, then it is neither u nor v.

7. (See [21]) Let T be a tree such that exactly one vertex v of T is of degree
3. Suppose that P1, P2, and P3 are components of T − v, where Pi are paths such
that |P3| ≥ |P2| ≥ |P1| ≥ k, for some positive integer k. Consider the tree T ′ de-
scribed below:

(i) |T ′| = |T |,
(ii) Exactly one vertex u of T ′ is of degree 3,
(iii) There are 3 components P ′1, P

′
2, P

′
3 of T ′ − u such that each of them is a

path and |P ′1| = |P ′2| = k.

Prove a(T ′) ≤ a(T ), and equality holds only when |P1| = |P2| = k.

8. (See [21]) Let T be a tree and let v be a vertex of degree k ≥ 3. Let Bi,
i = 1, 2, . . . , k be the branches of T at the vertex v. Let T ′ be the tree created from
T by replacing each branch Bi with the path on |Bi| vertices. Prove a(T ′) ≤ a(T ),
and the inequality is strict if one of the Perron branches at v in T is not a path.
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6.5 Application: Joining Two Trees by an Edge of Infi-
nite Weight

In this section based largely on [69], we let T1 and T2 be two trees, and we join the
trees at vertices x ∈ T1 and y ∈ T2 by an edge e of weight w to obtain a new tree T̂w.
We apply the results obtained in this section on bottleneck matrices to investigate
the algebraic connectivity of such a tree as the weight w tends to infinity, i.e.,

lim
w→∞

a
(
T̂w
)

(6.5.1)

We first need to define the concept of the type of tree at infinity.

DEFINITION 6.5.1 Let T1 and T2 be trees and join them by an edge e of weight
w to obtain a new tree T̂w. Letting w → ∞, we define the limit tree T̂∞ to be a
Type I tree at infinity with characteristic vertex v if there exists w0 > 0 such that
for all w ∈ (w0,∞), T̂w is a Type I tree with characteristic vertex v. Similarly, we
define T̂∞ to be a Type II tree at infinity with characteristic vertices i and j if there
exists w0 > 0 such that for all w ∈ (w0,∞), T̂w is a Type II tree with characteristic
vertices i and j.

In the remainder of this section, we shall write T̂ for T̂∞. When using bottle-
neck matrices in our investigation, the notation M(v−u)T will denote the bottleneck
matrix for the branch at vertex v containing vertex u in tree T . Likewise, M(v−e)T
will denote the bottleneck matrix for the branch at vertex v containing edge e in
tree T . MvT will denote the bottleneck matrix for the Perron branch(es) at v in
T . If v has more than one Perron branch in T , then MvT will be (permutationally
similar to) the block diagonal matrix where each block is the bottleneck matrix for
a Perron branch at v in T .

By Definition 6.5.1, in order for T̂ to be of Type I or of Type II at infinity, there
must exist an appropriate value w0 > 0 such that in (w0,∞), T̂w does not change
its type nor its characteristic vertices. In the next theorem from [69] we show that
such a w0 always exists:

THEOREM 6.5.2 Let T̂w be a tree obtained from joining two trees by T1 and T2

by an edge e of weight w. Then there exists a number w0 > 0 such that in (w0,∞),
T̂w does not change its type nor its characteristic vertex (vertices).

Proof: Let x > 0 and let v be a (not necessarily unique) characteristic vertex
of T̂x. Suppose first that at v, T̂x has at least two Perron branches which do not
contain e. Then if y > x, it follows from Exercise 1(ii) of Section 1.3 and Theorem
6.2.5 that

ρ

(
M(v−e)T̂y

)
< ρ

(
M(v−e)T̂x

)
. (6.5.2)
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Therefore, for all y ≥ x, at least two of the Perron branches at v in T̂x are identical
to at least two of the Perron branches at v in T̂y. Thus v has at least two Perron
branches in T̂y making T̂y a Type I tree with characteristic vertex v for all y ≥ x.

Suppose now that at v, T̂x has only one Perron branch which does not contain
e. Then by (6.5.2), v has only one Perron branch in T̂y if y > x. Let Sw be the set
of vertices such that s ∈ Sw if and only if any characteristic vertex of T̂w is on the
path from s to e. As the weight w of e is increased, the spectral radii of the bottle-
neck matrices at all vertices s ∈ Sw for the branch containing e decrease. Since the
spectral radii of the bottleneck matrices at all vertices s ∈ Sw for branches not con-
taining e (and hence not containing a characteristic vertex of T̂w) remain constant
as w increases, and since in T̂w the unique Perron branch at any non-characteristic
vertex s ∈ Sw contains a characteristic vertex of T̂w by Theorem 6.2.19, it follows
that if b > a, the characteristic vertex (vertices) of T̂b lie in Sa. Thus if b > a then
Sb ⊆ Sa. Therefore as w increases beyond x, the characteristic vertex (vertices) of
T̂w move from v away from e. Since for each w there are only finitely many vertices
in Sw and since Sb ⊆ Sa if b > a, it follows that for some w0 large enough, Sw
will equal Sw0 for all w > w0. Hence by definition of Sw, the characteristic vertex
(vertices) will not change as w is increased beyond w0. 2

REMARK 6.5.3 In Theorem 6.5.2, w0 cannot, in general, be taken to be 0. For
example, let T1 be a path on 3 vertices and T2 be a path on 2 vertices and let T̂w,
w > 0 be the tree created by joining a pendant vertex of T1 to a pendant vertex of
T2 by an edge of weight w:

Observe T̂w is a Type II tree with 3 and 4 as its characteristic vertices when
w ∈ (0, 1). T̂w is a Type I tree with 3 as its characteristic vertex when w = 1.
Yet when w ∈ (1,∞), T̂w is a Type II tree with 2 and 3 as its characteristic vertices.
Thus w0 = 1.

Since the main theorem of this section concerns the algebraic connectivity of the
tree T̂ := T̂∞, it is important to elaborate on how a(T̂ ) is computed. Suppose first
that T̂w is a tree of Type I with characteristic vertex v for all w ∈ (w0,∞). Then
for all w ∈ (w0,∞), v has at least two Perron branches in T̂w. Since ρ(M(v−e)T̂w

)

decreases as w increases, it follows that e is not on a Perron branch at v in T̂ .
Therefore by Theorem 6.2.15

a
(
T̂
)

=
1

ρ
(
MvT̂w

) , w ∈ (w0,∞).

Suppose next that T̂w is of Type II with characteristic vertices i and j for all
w ∈ (w0,∞). If e joins i and j, then by Theorem 6.2.12
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a
(
T̂
)

= lim
w→∞

a
(
T̂w
)

= lim
w→∞

1

ρ
(
M(i−j)T̂w

− γw
w J

) =
1

ρ
(
M(i−j)T̂

) ,
where 0 < γw < 1.

REMARK 6.5.4 If T̂ is of Type II and both its characteristic vertices i and
j are incident to e, then it is possible for i and j to have other Perron branches,
respectively, besides the branch that contains the other characteristic vertex. This is
due to the fact that since the Perron branch at i in T̂w contains e when w ∈ (w0,∞),
ρ(Mi−jT̂ ) decreases as w increases. Hence at infinity, it is possible for ρ(M(i−j)T̂ ) to

equal ρ(M(i−k)T̂
), where k is a vertex on another branch at i on T̂ . An example of

this would be when T1 and T2 are each paths on 2 vertices. If we join vertex i of T1

to vertex j of T2 with an edge of weight w to create T̂w, we see that T̂w is a Type II
tree with characteristic vertices i and j for all w > 0. Letting w tend to infinity, we
observe that T̂ is of Type II with both its characteristic vertices incident to e, yet
each characteristic vertex has two Perron branches.

Suppose now T̂ is of Type II with characteristic vertices i and j for all w ∈
(w0,∞) but i is not joined to j by e. Then either the path from i to e contains j or
the path from j to e contains i. Without loss of generality, let the path from i to e
contain j. Then by Theorem 6.2.12

a
(
T̂
)

= lim
w→∞

1

ρ
(
M(j−i)T̂w

− γw
θ J
)

for some 0 < γw < 1 (γw depends on w) where θ is the weight of the edge joining i
and j.

As stated in the beginning of this section, our goal is to determine a(T̂ ). We
will do this by comparing a(T̂ ) to a(T1) and a(T2). To this end, we begin with two
claims from [69]:

CLAIM 6.5.5 Let T1 and T2 be trees with algebraic connectivities a(T1) and a(T2),
respectively. Suppose that the tree T̂w is obtained by joining a vertex in T1 to a vertex
in T2 by an edge of weight w > 0. Then

a(T̂w) ≤ min{a(T1), a(T2)}. (6.5.3)

Proof: Let L1 and L2 be the Laplacian matrices for T1 and T2, respectively, and
form the 2 × 2 block matrix L with the (1, 1) and the (2, 2) blocks as L1 and L2,
respectively, and with the (1, 2) and (2, 1) blocks being the zeros matrices of the
appropriate sizes. Thus λ1(L) = λ2(L) = 0, while λ3(L) = min{a(T1), a(T2)}. Now
let L̂w be the Laplacian matrix of T̂w. As (L̂w) is a rank 1 perturbation of L we
have, by Corollary 1.2.9 that

a(T̂w) = λ2

(
L
(
T̂w
))
≤ λ3(L) = min{a(T1), a(T2)}.
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2

As w tends to infinity, our goal is to determine when equality holds in (6.5.3). The
next claim from [69] will be useful in proving the three subsequent lemmas which will
help us achieve this goal. In this claim and in the subsequent lemmas, let M(a−b)T
denote the bottleneck matrix of the branch at vertex a ∈ T containing vertex b.

CLAIM 6.5.6 Let T be a tree. Let i and j be adjacent vertices in T joined by an
edge of weight α1; let p and q be adjacent vertices in T joined by an edge of weight
α2. If the path from i to q contains j and p, and if 0 < γ1, γ2 < 1, then

ρ

(
M(j−i)T −

γ1

α1
J

)
< ρ

(
M(j−i)T

)
< ρ

(
M(q−p)T −

γ2

α2
J

)
< ρ

(
M(q−p)T

)
.

Proof: The first and third inequality follow from

M(j−i)T −
γ1

α1
J < M(j−i)T (6.5.4)

and

M(q−p)T −
γ2

α2
J < M(q−p)T (6.5.5)

and the fact that all matrices in (6.5.4) and (6.5.5) are nonnegative and irreducible.
To prove the second inequality, let (j − i)T be the subgraph of T that consists

of j and the branch at j containing i. Likewise, let (q − p)T be the subgraph of
T consisting of q as well as its branch containing p. Let β be the set of indices of
M(q−p)T that correspond to the vertices that determine M(j−i)T . Since (j − i)T is a
subgraph of (q − p)T and since p and q are joined by an edge of weight α2, then

M(j−i)T ≤ M(q−p)T [β]− 1

α2
J.

Since all the remaining entries of M(q−p)T − (1/α2)J are positive, it follows that

ρ
(
M(j−i)T

)
≤ ρ

(
M(q−p)T −

1

α2
J

)
.

But as

ρ

(
M(q−p)T −

1

α2
J

)
< ρ

(
M(q−p)T −

γ2

α2
J

)
,

the second inequality in this claim thus follows. 2

We are now ready to begin examining three possible cases of joining two trees
by an edge whose weight tends to infinity. We do this through three corresponding
lemmas from [69]. The first lemma examines the case of joining two trees by an edge
whose weight tends to infinity when one of the building trees, say T1, is of Type II.
In this lemma, θ1 will denote the weight of the edge joining the characteristic ver-
tices of T1, and γ1 ∈ (0, 1) will denote the value of γ referred to in Theorem 6.2.12(b).
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LEMMA 6.5.7 Let T1 be of Type II and let T̂w be obtained from T1 and T2 by
joining a vertex x of T1 to a vertex y of T2 by an edge of weight w. Then a(T̂ ) <
a(T1).

Proof: Let i and j be the characteristic vertices of T1 such that the path from i
to x contains j. Suppose T̂ is of Type I with v as its characteristic vertex. Then, by
Theorem 6.4.1, v lies on the path from i to any characteristic vertex of T2. Therefore,

a(T̂ ) = lim
w→∞

a(T̂w) = lim
w→∞

1

ρ(M(v−i)T̂w
)

≤ 1

ρ(M(j−i)T1 )
<

1

ρ(M(j−i)T1 −
γ1
θ1
J)

= a(T1).

Suppose now that T̂ is of Type II. Let p and q be the characteristic vertices of
T̂ and let p be on the path from q to i. Then

a(T̂ ) = lim
w→∞

a(T̂w) = lim
w→∞

1

ρ(M(q−p)T̂w
− γw

θ J)

≤ 1

ρ(M(j−i)T1 −
γ1
θ1
J)

= a(T1), (6.5.6)

where the inequality follows from the fact that a(T̂ ) ≤ a(T1). However, according
to Claim 6.5.6 the inequality in (6.5.6) is strict. Thus a(T̂ ) < a(T1) whenever T1 is
a Type II tree. 2

The next two lemmas from [69] examine the relationship between a(T̂ ) and a(T1)
when T1 is of Type I. The first of these two lemmas concerns the case when T1 and
T2 are joined by an edge e of weight w where e is not incident to the characteristic
vertex of T1. The second of these two lemmas will examine the case when e is
incident to the characteristic vertex of T1.

LEMMA 6.5.8 Suppose a(T1) ≤ a(T2) and T1 is of Type I with characteristic
vertex i. Let T̂w be obtained from T1 and T2 by joining a vertex x of T1 to a vertex
y of T2 by an edge e of weight w. If e is not incident to i, then a(T̂ ) = a(T1) if and
only if i is the only characteristic vertex of T̂ .

Proof: Suppose T̂ is of Type I with characteristic vertex v. It follows from
Theorem 6.4.1 that v lies on the path from i to any characteristic vertex of T2.
Thus

a(T̂ ) = lim
w→∞

a(Tw) = lim
w→∞

1

ρ(MvT̂w
)

=
1

ρ(MvT̂
)
≤ 1

ρ(MiT1
)

= a(T1),

where the inequality follows from the fact that a(T̂ ) ≤ a(T1). Since e is not incident
to i, equality holds if and only if v = i.
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Now suppose that T̂ is of Type II with characteristic vertices p and q with p on
the path from q to i. Therefore,

a(T̂ ) = lim
w→∞

a(T̂w) = lim
w→∞

1

ρ(M(q−p)T̂w
− γw

θ J)

=
1

ρ(M(q−p)T̂ −
γ
θJ)

≤ 1

ρ(MiT1
)

= a(T1), (6.5.7)

where, again, the inequality follows from a(T̂ ) ≤ a(T1). However by Claim 6.5.6,

ρ
(
MiT1

)
< ρ

(
M(q−p)T̂ −

γ

θ
J

)
.

Thus the inequality in (6.5.7) is strict. Hence a(T̂ ) < a(T1) if T̂ has more than one
characteristic vertex. 2

We see from Lemma 6.5.8 that in order for a(T̂ ) to equal a(T1) when T1 is a Type I
tree and e is not incident to the characteristic vertex of T1, the characteristic vertex
of T1 must be the only characteristic vertex of T̂ .

REMARK 6.5.9 Since y is the vertex in T2 that is incident to e, we see that
ρ(MyT2

) must be small if a(T̂ ) = a(T1).

The following lemma examines the relationship between a(T̂ ) and a(T1) when e
is incident to the characteristic vertex of T1.

LEMMA 6.5.10 Suppose a(T1) ≤ a(T2) and T1 is of Type I with characteristic
vertex i. Let T̂w be obtained from T1 and T2 by joining i to a vertex y of T2 by an
edge e of weight w. Then a(T̂ ) = a(T1) if and only if ρ(MyT2

) ≤ 1/a(T1).

Proof: We shall consider three cases:

Case I: If ρ(MyT2
) < 1/a(T1), then i is the unique vertex in T̂ that has more

than one Perron branch and so T̂ is of Type I and a(T̂ ) = a(T1).

Case II: If ρ(MyT2
) = 1/a(T1), then as w → ∞, it follows from Theorem 6.2.5

that

ρ(M(i−y)T̂
) = ρ(M(y−i)T̂ ) = 1/a(T1).

Hence T̂ is of Type II with i and y as its characteristic vertices. Thus

a(T̂ ) = lim
w→∞

a(T̂w) = lim
w→∞

1

ρ(M(i−y)T̂w
− γw

w J)

=
1

ρ(M(i−u)T̂
)

= a(T1).
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Case III: If ρ(MyT2
) > 1/a(T1), then by Theorem 6.4.1 the characteristic vertex

(vertices) of T̂ lies in T2. If T̂ is of Type I with characteristic vertex v, then

a(T̂ ) =
1

ρ(MvT̂
)
<

1

ρ(MiT1
)

= a(T1).

Now if T̂ is of Type II with characteristic vertices p and q where p lies on the path
from q to i, then

a(T̂ ) = lim
w→∞

a(T̂w) = lim
w→∞

1

ρ(M(q−p)T̂w
− γw

θ J)

=
1

ρ(M(q−p)T̂ −
γ
θJ)

<
1

ρ(MiT1
)

= a(T1).

where the strict inequality is due to Claim 6.5.6. The conclusion of this lemma now
follows. 2

The results we have proved in this section permit us now to proceed to the proof
of the main result of this section which is from [69]:

THEOREM 6.5.11 Let T1 and T2 be trees and suppose that T̂w is a tree formed
from joining a vertex v in T1 to a vertex u in T2 by an edge e of weight w. Then
for the tree T̂ at infinity we have that a(T̂ ) = min{a(T1), a(T2)} if and only if the
component tree, T1 or T2, with the lower algebraic connectivity, say T1, is of Type I
and one of the following conditions holds:

(i) The characteristic vertex of T1 is the only characteristic vertex of T̂ .

(ii) The characteristic vertex of T1 is incident to e and ρ(MuT2
) ≤ 1/a(T1).

Proof: Without loss of generality, let a(T1) ≤ a(T2). (Hence min{a(T1), a(T2)} =
a(T1)). The necessity of T1 being a Type I tree in order for a(T̂ ) to equal a(T1) fol-
lows from Lemma 6.5.7. Let i be the characteristic vertex of T1. If e is not incident
to i then by Lemma 6.5.8 a(T̂ ) = a(T1) if and only if i is the characteristic ver-
tex of T̂ . If e is incident to i, then by Lemma 6.5.10 a(T̂ ) = a(T1) if and only if
ρ(MuT2

) ≤ 1/a(T1). 2

REMARK 6.5.12 Suppose that equality holds in (6.5.3), namely, the algebraic
connectivity of the tree T̂ at infinity is equal to the minimum of the algebraic
connectivities of T1 and T2. Then it is possible to determine precisely what type of
tree we obtain for T̂ . Assume without loss of generality that a(T̂ ) = a(T1) ≤ a(T2).
Then by Lemma 6.5.7, T1 is a Type I tree. Let i be the characteristic vertex of T1.
If i is incident to e, then by Lemma 6.5.10, T̂ is of Type I if ρ(MyT2

) < 1/a(T1),

while T̂ is of Type II if ρ(MyT2
) = 1/a(T1), where y is the vertex in T2 which is

incident to e. Finally, if i is not incident to e, then by Lemma 6.5.8, i is the only
characteristic vertex of T̂ and thus T̂ is of Type I.
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Exercise:

1. For each edge in the tree below, let its weight tend to infinity while the weight of
the remaining edges remains fixed. Use Theorem 6.5.11 to determine if the resulting
tree at infinity is of Type I or Type II.

6.6 The Characteristic Elements of a Tree

In this section, we generalize the results from Section 6.2 to eigenvectors of the
Laplacian matrix corresponding to eigenvalues other than the algebraic connectiv-
ity. Recall from Section 6.2 that if y is an eigenvector corresponding to the algebraic
connectivity of G, then vertex v is the unique characteristic vertex of G if yv = 0
and there exists a vertex w in G adjacent to v such that yw 6= 0. A graph G has two
characteristic vertices if there exists adjacent vertices v and w such that yvyw < 0.
The edge incident to both vertices v and w is often referred to as the characteristic
edge. We now investigate the characteristic vertices and edges determined by eigen-
vectors corresponding to other eigenvalues of the Laplacian matrix. We restrict our
attention to trees and begin with some definitions.

DEFINITION 6.6.1 If λk > λk−1 (k ≥ 2), a k-vector is an eigenvector corre-
sponding to the kth smallest eigenvalue, λk, of L(G).

DEFINITION 6.6.2 The characteristic set of T with respect to y, denoted as
C(T , y), is the set of all characteristic vertices and edges of T with respect to the
eigenvector y of L(T ).

DEFINITION 6.6.3 A tree is k-simple if |C(T , y)| = 1 for all k-vectors y.

We should note here that in a characteristic set, vertices incident to a characteristic
edge are not considered part of the characteristic set (despite having been referred
to as characteristic vertices of a Type II tree in the earlier sections). Only the char-
acteristic edge incident to such vertices is considered to be part of the characteristic
set. Therefore:

REMARK 6.6.4 All trees are 2-simple.
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We begin with a lemma and a claim from [70]. The lemma gives a lower bound
on the nonzero eigenvalues of L. This lower bound is used to prove the subsequent
claim which begins to generalize Theorem 6.2.4 regarding zero-valuated vertices
determined by various eigenvectors of the Laplacian matrix corresponding to the
same eigenvalue.

LEMMA 6.6.5 Let G be a connected graph with Laplacian L and let y be an eigen-
vector of L corresponding to a nonzero eigenvalue λ. Let G1 be a connected subgraph
of G such that for each vertex v ∈ G1, yv > 0 and for each vertex w /∈ G1 adjacent
to any vertex in G1, yw ≤ 0. Then λ1(L[G1]) ≤ λ. Further, the inequality is strict if
for some such vertex w, yw < 0.

Proof: Let G2 = G \ G1. Consider the eigenvalue-eigenvector equation[
L[G1] L12

LT12 L[G2]

] [
y[G1]

y[G2]

]
= λ

[
y[G1]

y[G2]

]
.

From the fact that L[G1]y[G1] + L12y[G2] = λy[G1] and the fact that L12y[G2] ≥ 0,
we have

L[G1]y[G1] ≤ λy[G1] (6.6.1)

where stict inequality would hold if L22y[G2] is nonzero.
Observe that L[G1] is a proper principal submatrix of the irreducible singular

M-matrix L. Hence by Theorem 1.4.10 it follows that L[G1] is a nonsingular M-
matrix. Thus λ1(L[G1]) > 0 and the corresponding eigenvector, say z, is positive.
Thus multiplying (6.6.1) on the left by zT we obtain

λzT y[G1] ≥ zTL[G1]y[G1] = (L[G1]z)T y[G1] = λ1(L[G1])zT y[G1].

Since zT y[G1] > 0, it follows that λ ≥ λ1(L[G1]). If there is a vertex w /∈ G1 that
is adjacent to a vertex in G1 such that yw < 0, then L12y[G2] is nonzero and hence
strict inequality would follow. 2

CLAIM 6.6.6 Let G be a connected graph with Laplacian L and let y be an eigen-
vector of L corresponding to a nonzero eigenvalue λ. Let v be a vertex in C(G, y) such
that G − v has a positive component with respect to y. If z is any other eigenvector
corresponding to λ, then zv = 0.

Proof: Since v is a characteristic vertex with respect to the eigenvector y and
since G − v has a positive component, it follows that v is a cut vertex, for other-
wise G−v would only have one component and by a variation of Theorem 6.1.3 this
component must contain negatively and positively y-valuated vertices adjacent to v.
Also, by the eigenvalue-eigenvector relationship and the fact that yv = 0, it follows
that λ is an eigenvalue of L[B] corresponding to a positive eigenvector. Since L[B]
is a nonsingular M-matrix, it follows from Observation 1.4.2 that λ1(L[B])) = λ.

If zv 6= 0, then without loss of generality let zv < 0. Consider the vector x = εz+y
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for some ε > 0. First note that x is an eigenvector of L corresponding to λ and that
xv < 0. Choose ε so small so that x[B] > 0. Applying Lemma 6.6.5, it follows that
λ1(L[B]) < λ which is a contradiction. Thus zv = 0. 2

One of the goals of this section is to generalize Theorem 6.2.4 to all trees con-
taining a unique characteristic vertex with respect to a k-vector. To this end, we
prove the following lemmas from [25]. The first is a useful matrix theoretic result
based on Observation 1.4.2 and the second gives bounds on λk in terms of the
eigenvalues of the submatrices of L corresponding to components at a characteristic
vertex determined by a k-vector.

LEMMA 6.6.7 Let A be a symmetric, irreducible M-matrix. Then the smallest
eigenvalue λ1 of A is simple and the corresponding eigenvector is positive, unique up
to a scalar multiple. Moreover, if there exists a positive vector x such that Ax ≤ αx,
then λ1 ≤ α with equality if and only if x is an eigenvector of A corresponding to
the eigenvalue α.

Proof: Write A := sI − B where B is nonnegative (and irreducible) and
s ≥ ρ(B). Since B is nonnegative and irreducible, it follows from Theorem 1.3.20
that ρ(B) is a simple eigenvalue of B and that the corresponding eigenvector x is
positive (up to scalar multiplication). Hence λ1 = s − ρ(B) is the smallest eigen-
value of A with x as the corresponding eigenvector. Moreover, if Ax ≤ αx, then
Bx ≥ (s− α)x. The result now follows from Corollary 1.3.3. 2

LEMMA 6.6.8 Suppose that y is a k-vector (k ≥ 3) of a tree T and u is a vertex
in C(T , y). Suppose that |C(T , y)| ≤ 2. Then there exists m (1 ≤ m ≤ k − 2)
components T 1

0 , . . . , T
m
0 of T − u for which

λ1(L[T i0]) ≤ λk−2

(
m⊕
i=1

L[T i0]

)
< λk ≤ λk−1

(
m⊕
i=1

L[T i0]

)
for i = 1, . . . ,m. Moreover, there is at least one component T1 of T − u for which
λ1(L[T1]) = λk. For the rest of the components T2, . . . , Ts, we have λ1(L[Ti]) ≥ λk.
Further, if λk is not an eigenvalue of ⊕mi=1L[T i0], then there exists another component
T2 6= T1 such that λ1(L[T2]) = λk

Before proceeding with the proof, we show, for visual clarity, the structure of the
Laplacian matrix:

L =



L[T 1
0 ] 0 . . . 0 0 0 . . . 0 x(0)1

0 L[T 2
0 ] . . . 0 0 0 . . . 0 x(0)2

0 0 . . . 0 0 0 . . . 0 . . .

0 0 . . . L[Tm0 ] 0 0 . . . 0 x(0)m

0 0 . . . 0 L[T1] 0 . . . 0 x(1)

0 0 . . . 0 0 L[T2] . . . 0 x(2)

0 0 . . . 0 0 0 . . . 0 . . .

0 0 . . . 0 0 0 . . . L[Ts] x(s)

(x(0)1)T (x(0)2)T . . . (x(0)m)T x(1)T x(2)T . . . x(s)T deg(u)


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Proof: Let y be a k-vector giving a valuation of the vertices of T . Then T − u
has at least two nonzero components C1, C2. As |C(T , y)| ≤ 2, at least one of C1

and C2 is negative or positive, say C1. Note that

L[Ci]y[Ci] = λky[Ci] (6.6.2)

for i = 1, 2 which implies that λk is an eigenvalue of L[Ci]. Moreover, by Lemma
6.6.7, we obtain λ1(L[C1]) = λk as y[C1] is positive or negative.

Take z to be a vector such that z[C1] = y[C1] and zv = 0 for v ∈ V (T ) \ V (C1).
Let w be the unique vertex of C1 that is adjacent to the vertex u in T . Then

L[T − u]z[T − u] = λkz[T − u]

and
z[T − u]TL[T − u, u] = y[C1]TL[C1, u] = −yw 6= 0.

Considering the matrix L−λkI, its principal submatrix L[T−u]−λkI, and the vector
(L − λkI)[T − u, u], and letting λ−(F ) denote the number of negative eigenvalues
(counting multiplicity) of a matrix F , it follows from Lemma 1.12 of [29] that

λ−(L− λkI) = λ−(L[T − u]− λkI) + 1. (6.6.3)

Therefore, λ−(L[T − u]− λkI) = λ−(L− λkI)− 1 = k − 2 which implies

λk−2(L[T − u]) < λk (6.6.4)

and
λk−1(L[T − u]) ≥ λk (6.6.5)

By (6.6.4) and the fact that k ≥ 3, we may assume without loss of generality that
T 1

0 , . . . , T
m
0 (m ≥ 1) are those components of T − u such that λ1(L[T i0]) < λk for

i = 1, . . . ,m. Then m ≤ k− 2 by (6.6.5). For the other components Ti of T − u, we
have λ1(L[Ti]) ≥ λk. So

λk−2(L[T − u]) = λk−2

(
m⊕
i=1

L[T i0]

)
< λk

and

λk−1

(
m⊕
i=1

L[T i0]

)
≥ λk

and hence λ1(L[T i0]) ≤ λk−2(⊕mi=1L[T i0]) since λ1(L[T i0]) < λk.
To complete the proof, suppose that λk is not an eigenvalue of ⊕mi=1L[T i0]. Then

C2 6= T i0 for i = 1, . . . ,m, and hence C2 is one of the components Ti of T − u
with λ1(L[Ti]) ≥ λk. Therefore, λ1(L[C2]) ≥ λk, and hence λ1(L[C2]) = λk since by
(6.6.2) λk is an eigenvalue of L[C2]. 2
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REMARK 6.6.9 [25] Suppose that y is a k-vector of a tree T and u is a vertex in
C(T , y). Suppose also that |C(T , y)| ≤ 2. In the language of Lemma 6.6.8 consider
the components of T − u:

(i) T i0 for i = 1, . . . ,m where 1 ≤ m ≤ k − 2.
(ii) T j1 for j = 1, . . . , p where p ≥ 1.
(iii) T `2 for ` = 1, . . . , q where q ≥ 0. (If q = 0, that means these components do not
exist.)

By Lemma 6.6.8, these components can be ordered as follows:

λ1(L[T i0]) ≤ λk−2

(
m⊕
i=1

L[T i0]

)
< λ1(L[T j1 ]) =


λk ≤ λk−1

(⊕m
i=1 L[T i0]

)
λk < λ1(L[T `2 ])

EXAMPLE 6.6.10 Consider the tree T below:

It can be calculated that λ5 = 0.1985 > λ4 = 0.1649. Thus let us investigate the
eigenvector corresponding to λ5 = 0.1985 (i.e., let k = 5). Upon further calculations,
the corresponding eigenvector y is such that y5 = 0.445, y6 = −0.445, y12 = 0.802,
y13 = −0.802, y28 = 1, y29 = −1, and yi = 0 for all other values i = 1, . . . , 29.
Thus vertex u = 1 is the unique characteristic element in C(T , y). Considering the
branches at vertex 1, upon further computations (the results of which we give in
the next paragraph) we see that we can label the branch containing vertex 2 as T 1

0 ,
the branch containing vertex 3 as T 2

0 , the branch containing vertex 4 as T 3
0 , the

branch containing vertex 5 as T 1
1 , and the branch containing vertex 6 as T 2

1 .
We labeled the branches in the previous paragraph as such because the eigen-

values of L[T 1
0 ] = L[T 2

0 ] are 0.075, 0.208, 1, 1, 1, 1, 2.447, 4.792, 5.478. The eigen-
values of L[T 3

0 ] are 0.1387, 1, 1.746, 4.115. Finally, the eigenvalues of L[T 1
1 ] =

L[T 2
1 ] are 0.1985, 1.556, 3.247. Observe that λ1(L[T 1

0 ]) = λ1(L[T 2
0 ]) = 0.075

while λ1(L[T 3
0 ]) = 0.1387. Also observe that λ3

(⊕3
i=1 L[T i0]

)
= 0.1387. Thus

λ1(L[T i0]) ≤ λk−2

(⊕3
i=1 L[T i0]

)
for i = 1, 2, 3 in accordance with Remark 6.6.9. Also

observe that λ1(L[T j1 ]) = 0.1985 = λ5 for j = 1, 2. Therefore, λk−2

(⊕3
i=1 L[T i0]

)
<

λ1(L[T j1 ]) = λk for i = 1, . . . ,m in accordance with Remark 6.6.9. Finally,

λ4

(⊕3
i=1 L[T i0]

)
= 0.208. Hence λk ≤ λk−1

(⊕m
i=1 L[T i0]

)
as stated in Remark 6.6.9.

It should be noted that there are no branches of the form T `2 in this example.
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The following lemma from [25] gives us information as to the multiplicity mL(λk)
of λk as an eigenvalue of L. Note that if k = 2 then p = 0. Therefore this lemma is
a generalization of Theorem 6.2.18.

LEMMA 6.6.11 Let T be a tree and L be its Laplacian matrix. Suppose y is a
k-vector of a tree T and u is a vertex in C(T , y). Suppose also that |C(T , y)| ≤ 2.
Let T i0, T j1 , T `2 be the components of T − u as described in Remark 6.6.9. Then

mL(λk) = p− 1 +m⊕mi=1L[T i0](λk).

Proof: Let y be a vector giving a valuation of the vertices of T . Since |C(T , y)| ≤
2, it follows that T − u necessarily has a positive or a negative component. For any
k-vector x, xu = 0 by Claim 6.6.6, and for any component C of T − u we have

L[C]x[C] = λkx[C]. (6.6.6)

Let wi0 and wj1 be the unique vertices of T i0 and T j1 , respectively, which are adjacent
to u in T . We have the following two cases:

Case I: Suppose that λk is not an eigenvalue of ⊕mi=1L[T i0]. Then for any k-vector
x, by (6.6.6) we have x

[
∪mi=1T

i
0

]
= 0. Additionally, x[T `2 ] = 0 as λk is also not an

eigenvalue for ` = 1, . . . , q.
By Lemma 6.6.8, T −u has at least two components T1 and T2 with λ1(L[Ti]) =

λk for i = 1, 2. So using the order of components of T −u given in Remark 6.6.9, we
have p ≥ 2. For i = 1, . . . , p− 1, let zi,p be the vector such that zi,p[T

i
1] is a positive

eigenvector of L[T i1], zi,p[T
p
1 ] is a negative eigenvector of L[T p1 ], zi,p = 0 elsewhere,

and zi,p is normalized so that zi,p[w
i
1] = −zi,p[wp1]. Clearly x is in the span of the

linear independent set of k-vectors {zi,p, i = 1, . . . , p− 1}. The result follows.
Case II: Suppose that λk is an eigenvalue of ⊕mi=1L[T i0]. Suppose that w1, . . . , wr

are the linearly independent eigenvectors of ⊕mi=1L[T i0] corresponding to λk. We need
to show that mL(λk) = p − 1 + r. To this end, for j = 1, . . . , r, define zj,p to be
the vector such that zj,p

[
∪mi=1T

i
0

]
= wj , zj,p[T

p
1 ] is α times a positive eigenvector

v of L[T p1 ], and zj,p = 0 elsewhere, where α = −(
∑m
i=1wj [w

i
0])/v[wp1]. Combining

the vectors zj,p with the vectors zi,p defined in Case I, we get the set of vectors
{zj,p, zi,p : j = 1, . . . , r; i = 1, . . . , p − 1}. Clearly this set is a linearly independent
set of k-vectors and any k-vector x is a linear combination of the vectors in this set.
This proves Case II. 2

For the first main theorem of this section which is from [25], we now refine the
above result to k-simple trees, i.e., where |C(T , y)| = 1. Observe that part (ii) is a
generalization of Theorem 6.2.4.

THEOREM 6.6.12 Let T be a k-simple tree with Laplacian matrix L.

(i) For a given k-vector y of T with C(T , y) = {u}, let T i0 , T j1 , and T `2 be
components of T − u as described in Remark 6.6.9. Then p ≥ 2 in the order of
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the components of Remark 6.6.9, and λk is not an eigenvalue of ⊕mi=1L(T i0 ) so that

mL(λk) = p − 1 and y
[
∪mi=1T

i
0

]
= 0, y

[
∪q`=1T

`
2

]
= 0, y[T j1 ] is either positive or

negative or zero for j = 1, . . . , p. Moreover,

λk−2

(
m⊕
i=1

L[T i0]

)
< λk < λk−1

(
m⊕
i=1

L[T i0]

)

(ii) C(T , y) = {u} for any k-vector y. In other words, C(T , y) is invariant re-
gardless of the choice of k-vectors y.

Proof: Let y be a vector valuating the vertices of T . As C(T , y) = {u},
T − u contains a positive component T1 and a negative component T2. Also,
L[Ti]y[Ti] = λky[Ti] for i = 1, 2 so that λk = λ1(L[Ti]) = λ1(L[T2]) by Theo-
rem 1.3.20. Then in the order of the components of T − u in Remark 6.6.9 we have
p ≥ 2.

We now claim that λk is not an eigenvalue of ⊕mi=1L[T i0], and hence mL(λk) =
p−1 by Lemma 6.6.11. If λk were an eigenvalue of ⊕mi=1L[T i0], then by Case II of the
proof of Theorem 6.6.11, the eigenvectors wj (1 ≤ j ≤ r) of ⊕mi=1L[T i0] correspond-
ing to the eigenvalue λk contain both positive and negative entries by Lemma 6.6.7
as λk > λ1(L[T i0]) for i = 1, . . . ,m by Lemma 6.6.8. Therefore |C(T , z)| ≥ 2 for the
k-vectors z = zj,p as defined in the proof of Theorem 6.6.11, which contradicts the
definition of k-simple trees. Thus λk is not an eigenvalue of ⊕mi=1L[T i0], and hence
mL(λk) = p− 1.

For i = 1, . . . ,m, by the eigenvalue-eigenvector relationship L[T i0]y[T i0] =
λky[T i0], we obtain y[T i0] = 0 as λk is not an eigenvalue of L[T i0] by the previous
paragraph. Similarly, y[T `2 ] = 0 for ` = 1, . . . , q. Since L[T j1 ]y[T j1 ] = λky[T j1 ] =
λ1(L[T j1 ])y[T j1 ] for j = 1, . . . , p, it follows by Lemma 6.6.7 that y[T j1 ] is either posi-
tive, negative, or zero.

From the order of the component of T − u as in Remark 6.6.9, we obtain
λk+1(⊕mi=1L[T i0]) ≥ λk. But since λk is not an eigenvalue of ⊕mi=1L[T i0], it follows
that

λk−1

(
m⊕
i=1

L[T i0]

)
> λk > λk−2

(
m⊕
i=1

L[T i0]

)
.

For any k-vector z, zu = 0 by Claim 6.6.6. By a similar discussion as above, we
obtain z[T i0] = 0 for i = 1, . . . ,m, and z[T `2 ] = 0 for ` = 1, . . . , q. Also by Lemma
6.6.7 we find that z[T j1 ] is either positive of negative or zero for j = 1, . . . , p. Thus
with respect to z, u is the only zero-valuated vertex adjacent to nonzero valuated
vertices. Moreover, there are no pairs of adjacent vertices a and b in T such that
zazb < 0. Hence C(T , z) = {u} and the result follows. 2

REMARK 6.6.13 [25] Since C(T , y) is fixed for any k-vector y by Theorem 6.6.12,
we can let T be a k-simple tree and let C(T , y) = {u} for any k-vector y. Then by
Theorem 6.6.12, the components T i0, T j1 , T `2 , of T − u can be further ordered as:
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λ1(L[T i0]) ≤ λk−2

(
m⊕
i=1

L[T i0]

)
< λ1(L[T j1 ])

= λk < min

{
λk−1

(
m⊕
i=1

L[T i0]

)
, λ1(L[T `2 ])

}
.

where i = 1 . . .m with 1 ≤ m ≤ k − 2, j = 1 . . . p with p ≥ 2, and ` = 1 . . . q with
q ≥ 0.

At this point, we can characterize all k-simple trees. We do so here in the second
main theorem of this section which is from [25]:

THEOREM 6.6.14 A tree T is k-simple if and only if there exists a cut vertex u
in T such that the components of T − u can be ordered as

λ1(L[T i0]) ≤ λk−2

(
m⊕
i=1

L[T i0]

)
< λ1(L[T 1

1 ]) = . . . = λ1(L[T p1 ])

< min

{
λk−1

(
m⊕
i=1

L[T i0]

)
, λ1(L[T `2 ])

}
.

where i = 1 . . .m with 1 ≤ m ≤ k − 2, j = 1 . . . p with p ≥ 2, and ` = 1 . . . q with
q ≥ 0.

Proof: The necessity follows readily from Corollary 6.6.12 and Remark 6.6.13.
As for the sufficiency, let λ1(L(T j1 )) := α for j = 1, . . . , p. We need to show two
claims: (i) that T actually has k-vectors, i.e., that λk(T ) = α > λk−1(T ), and (ii)
that T is k-simple, i.e., that |C(T , y)| = 1 for any k-vector y.

Claim (i): To show that λk(T ) = α > λk−1(T ), we first note that since p ≥ 2, we
have that λk−1(L[T −u]) = λk(L[T −u]). By Theorem 1.2.8, it follows that λk(T ) =
α. By Lemma 6.6.7, there exists a positive eigenvector z1 such that L[T 1

1 ]z1 = αz1.
Let z be a vector such that z[T 1

1 ] = z1 and z is zero elsewhere. Then by the discussion
preceeding (6.6.3) it follows that

λ−(L(T )− αI) = λ−(L[T − u]− αI) + 1.

By the ordering of the components of T − u in the statement of this theorem, it
follows that λ−(L(T ) − αI) = k − 2 and therefore λ−(L[T − u] − αI) = k − 1.
This implies that λk(T ) ≥ α > λk−1(T ). Since we already saw that λk(T ) = α, we
obtain λk(T ) = α > λk−1(T ) as desired.

Claim (ii): To show that |C(T , y)| = 1 for any k-vector y, we see from Case I
of the proof of Theorem 6.6.11 that z1,p is a k-vector of T with z1,p[u] = 0. Ad-
ditionally, z1,p is positive on the component T 1

1 of T − u. By Claim 6.6.6, for any
k-vector y of T , we have yu = 0. As λk is not an eigenvalue of L[T i0] or L[T `2 ], we
get y[T i0] = y[T `2 ] = 0 for i = 1, . . . ,m and ` = 1, . . . , q. By Lemma 6.6.7, y[T j1 ] is
either positive, negative, or zero. Hence u is the unique vertex of T adjacent to a
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vertex with nonzero valuation via y. Moreover, there do not exist adjacent vertices
v and w such that yvyw < 0. Hence C(T , y) = {u}, and thus T is k-simple. 2

Recall from Corollary 5.1.13 that for a tree, λ2 ≤ 1 where equality holds if and
only if the tree is a star. The following theorem from [25] generalizes this result to
λk for k-simple trees.

THEOREM 6.6.15 Let T be a k-simple tree with the unique characteristic el-
ement (vertex) u. Then λk ≤ 1 with equality only if T − u consists of p ≥ 2
isolated vertices and m components each containing at least two vertices, where
1 ≤ m ≤ k − 2.

Moreover, a tree T is k-simple with characteristic vertex u and λk = 1 if and
only if T is obtained from the vertex u by appending to u, p ≥ 2 pendant vertices
and m (1 ≤ m ≤ k − 2) trees T1, T2, . . . , Tm each containing at least two vertices
such that for i = 1, . . . ,m

λ1(L[T i0]) ≤ λk−2

(
m⊕
i=1

L[T i0]

)
< 1 < λk−1

(
m⊕
i=1

L[T i0]

)
. (6.6.7)

Proof: Let C be a component of T −u and let w be the unique vertex in C that
is adjacent to u in T . Letting y := L[C]e, then yw = 1 and y is zero on the remain-
ing vertices of C. Thus L[C]e ≤ e. So by Lemma 6.6.7, we have λ1(L[C]) ≤ 1 with
equality if and only if e is an eigenvector of L[C] corresponding to the eigenvalue 1.
However, this happens if and only if C contains exactly one vertex.

Since for any component C of T − u we have λ1(L[C]) ≤ 1, it follows that in
the order of the components of T − u given in Remark 6.6.13, we have:

(i) For ` = 1, . . . , q, the trees T `2 do not exist, and hence q = 0.

(ii) For j = 1, . . . , p where p ≥ 2, it holds that λ1(L[T j1 ]) = 1, so that T j1
consists of an isolated vertex for each j.

(iii) For 1 ≤ i ≤ m where 1 ≤ m ≤ k − 2, the trees T i0 each contain at least two
vertices since λ1(L[T i0]) < λk = 1.

Items (i) through (iii) prove the first result. The second result follows from above
and from Theorem 6.6.14. 2

EXAMPLE 6.6.16 Consider the tree T below:
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It can be calulated that λ5 = 1 > λ4 = 0.581. Thus let us investigate the eigenvector
corresponding to λ5 = 1 (i.e. let k = 5). Upon further calculations, vertex u = 1 is
the unique characteristic element in C(T , y). Considering the branches at vertex 1,
clearly we can label the branches containing vertices 6, 7, and 8 as T 1

0 , T 2
0 , and T 3

0 ,
respectively. The eigenvalues of L[T i0] are 0.382 and 2.618 for each i = 1, 2, 3. Hence

λ1(L[T i0]) = 0.382 for each i, λ3

(⊕3
i=1 L[T i0]

)
= 0.382, and λ4

(⊕m
i=1 L[T i0]

)
= 2.618.

Thus (6.6.7) is satisfied.

We close this section with results from [70] and [25] which are generalizations of
Theorem 6.2.20 involving the entries of the eigenvectors corresponding to λk.

THEOREM 6.6.17 Let T be a tree and let y be an eigenvector of L(T ) cor-
responding to a nonzero eigenvalue λ. Let i-j be an edge of T . Suppose that the
valuations of the vertices (with respect to y) in the branch Tj at i containing j are
positive. Then along any path that starts at j and does not contain i, the entries of
y increase and are concave down.

Proof: Consider the vector u defined as follows: us = 1 if s ∈ Tj and us = 0 if
s /∈ Tj . Computing uTLy, we see on the one hand that

uTLy = λuT y = λ
∑
s∈Tj

ys.

On the other hand, uTLy = zT y where zi = −1, zj = 1, and zv = 0 for all other
vertices v. Thus uTLy = zT y = yj − yi and hence

yj − yi = λ
∑
s∈Tj

ys.

Since y is positive on Tj , it follows that yj > yi. Further, if jk is an edge in Tj then
a similar argument shows that

yk − yj = λ
∑
s∈Tk

ys

where Tk is the branch at j containing k. Since Tk is a proper subgraph of Tj , it
follows that yk − yj < yj − yi. Hence the entries in y are increasing in a concave
down fashion. 2

This along with Theorem 6.6.12 gives the following result from [25]:

COROLLARY 6.6.18 Let T be a k-simple tree with the unique characteristic
element (vertex) u and let y be any k vector. Then each component of T − u is
either zero, positive, or negative, and along any path in T which starts at u, the
entries of y either increase and are concave down, decrease and are concave up, or
identically zero.
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Exercises:

1. (See [25]) Let T be a k-simple tree on n vertices and let w be the number of
eigenvalues greater than 1 (counting multiplicity). Show that k ≤ n−w−mL(λk)+1.

2. (See [25]) The matching number µ(T ) for a tree is the cardinality of the largest
set S of edges of T in which no two edges in S share a common vertex. Show that
if T is a k-simple tree on n vertices then k ≤ n− µ(T ).

6.7 The Spectral Radius of Submatrices of Laplacian
Matrices for Trees

In Section 6.2, we investigated bottleneck matrices for weighted trees on n vertices
which were created by taking the inverse of the (n− 1)× (n− 1) submatrix of the
Laplacian matrix formed by deleting a row and column corresponding to a vertex of
the tree. In this section, based mainly on [66], we study the spectral radius of such
matrices prior to the inverse being taken. We will find many interesting properties
of the spectral radius that compare with the properties of bottleneck matrices.

Let v be a vertex of a weighted tree T on n vertices and let L be its Laplacian.
Define the function r(v) to be the spectral radius of L[v]. It is known from Corollary
1.2.10 that

λn−1 ≤ r(v) ≤ λn (6.7.1)

for each vertex v ∈ T . This inequality has two components: λn−1 ≤ r(v) and
r(v) ≤ λn. We begin our investigation by focusing on the latter component. To do
this, we need the following matrix theoretic result based off Proposition 1 of [29]
which we state without proof.

PROPOSITION 6.7.1 Let L be the Laplacian matrix for a connected weighted
tree T on n vertices and let λ be an eigenvalue of L. If λ is simple and if all
entries of the corresponding eigenvector are different from zero, then λ cannot be
an eigenvalue of any submatrix of L of order n− 1.

Since λn is simple by Theorem 4.3.12, it follows from Proposition 6.7.1 that r(v)
can equal λn only if an eigenvector corresponding to λn has a zero entry. To see
that this can never happen in the Laplacian matrix for a tree, we recall that all
nontrivial trees are bipartite and obtain the following definition:

DEFINITION 6.7.2 Let G be a bipartite graph and L be its Laplacian matrix.
Let B be the matrix created from L by taking the absolute value of each entry.
Then B is the bipartite complement of L.

We proved in Theorem 4.3.12 that if L is the Laplacian matrix for a bipartite
graph, then L and B are similar. Recalling that all trees are bipartite, it follows that
for any tree T that L and B are similar via the matrix U in Theorem 4.3.12. Since
similar matrices have the same eigenvalues, we obtain the following result from [66]:
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LEMMA 6.7.3 Let x be an eigenvector for L corresponding to the eigenvalue λ.
Then Ux is an eigenvector of B corresponding to λ. Moreover, for each entry xi of
x, it follows that xi = 0 if and only if (Ux)i = 0.

Proof: Since L and B are unitarily similar via the matrix U from Theorem
4.3.12, we can write UL = BU . Hence ULx = BUx. Since x is an eigenvector of
L corresponding to λ, it follows that λUx = BUx. Thus Ux is an eigenvector of B
corresponding to λ. By the construction of U , it is clear that xi = 0 if and only if
(Ux)i = 0. 2

Lemma 6.7.3 leads us to our main result concerning the relationship between
r(v) and λn, showing that the inequality is actually strict (see [66]):

THEOREM 6.7.4 Let T be a weighted tree and L be its Laplacian matrix. Then
r(v) < λn for all vertices v ∈ T .

Proof: Let x be an eigenvector of L corresponding to λn. We see that since λn
is the largest eigenvalue of L, then by Theorem 4.3.12 it must also be the largest
eigenvalue for the bipartite complement B with Ux as its corresponding eigenvector.
Observe that B is a nonnegative, irreducible matrix. Thus by Theorem 1.3.8(ii) it
follows that Ux does not have a zero entry. Hence, by Lemma 6.7.3, x does not have
a zero entry. The conclusion now follows from Proposition 6.7.1. 2

We now focus our attention on the vertices v of T which yield a minimum value
for r(v). Recall from (6.7.1) that r(v) ≥ λn−1. Unlike λn, we will see that there
do exist trees which contain vertices in which this inequality is sharp. Consider the
following example.

EXAMPLE 6.7.5 [66] Each vertex v in the following unweighted tree is labeled
with its value r(v):

We see that λn−1 = 3.732 and there is a vertex v in this tree with r(v) = 3.732.
This leads us to the following definition:

DEFINITION 6.7.6 A weighted tree is of Type A if there exists a vertex v such
that r(v) = λn−1. A weighted tree is of Type B if no such vertex exists.
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This definition is strikingly similar to Definition 6.2.2 which is Merris’ classifi-
cation of trees (see [58]) into Type I and Type II based on the entries in the Fiedler
vector. As with the theorems concerning Merris’ classification of trees and bottle-
neck matrices found in Section 6.2, we will make use of the block diagonal structure
of the submatrices of L (and B). As we saw in Section 6.2, L[v] is permutationally
similar to a block diagonal matrix with each block corresponding to a branch at
v. Thus for a vertex v, r(v) attains its value from the block(s) of L[v] with the
maximum spectral radius. This leads us to the following definition:

DEFINITION 6.7.7 The block(s) of L[v] having the maximum spectral radius
is the spectral block(s) at v and the corresponding branch(es) of T is the spectral
branch(es) at v.

We now investigate Type A trees and the vertex v such that r(v) = λn−1. Before
continuing, we need the following definition:

DEFINITION 6.7.8 In a Type A tree, the vertex v such that r(v) = λn−1 is the
spectral vertex of the tree.

The following theorem from [66] gives useful properties of a spectral vertex:

THEOREM 6.7.9 Let v be a vertex in a weighted tree T . Then v has more than
one spectral branch if and only if r(v) = λn−1. Moreover, if such a vertex v exists,
then it is unique.

Proof: First suppose that r(v) = λn−1 and that, to the contrary, v has just
one spectral branch. Without loss of generality, let v = 1. Per Theorem 4.3.12,
we will prove this proposition using the bipartite complement, B. Permute B such
that v = 1 and recall B[1] is (permutationally similar to) a block diagonal with
each block Bi corresponding to the branch bi at v = 1. By Proposition 6.7.1, there
exists an eigenvector x of B corresponding to λn−1 such that the first entry is zero.
Partition x in accordance with the blocks of B as follows:

x = [ 0 | y1 | y2 | . . . | yk ]T

where for each i = 1, . . . , k, the vector yi is a Perron vector of Bi. Suppose that
v = 1 has only one spectral branch, say b1. Since each block Bi is nonnegative and
irreducible and since Biyi = λn−1yi for each i, it follows from Theorem 1.3.8(ii) that
y1 has strictly positive entries while yi = 0 for 2 ≤ i ≤ k. Hence

x = [ 0 | y1 | 0 | . . . | 0 ]T

Suppose y1 has, say, p entries. Since the (1, 1) entry of B is positive and since there
exists exactly one entry in the first p + 1 entries of the first row of B other than
the (1, 1) entry that is positive, it follows by matrix multiplication that (Bx)1 > 0
which contradicts the eigenvalue-eigenvector equation Bx = λn−1x. Hence v must
have at least two spectral branches.
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Now suppose v has m ≥ 2 spectral branches for some 2 ≤ m ≤ k, and show that
r(v) = λn−1. Without loss of generality, let v = 1. Using the bipartite complement
B, let B1, . . . , Bm be the spectral blocks of B at v = 1. Consider the vector

x = [ 0 | y1 | y2 | . . . | ym | 0 | . . . | 0 ]T

where 0 is the first entry, yi are the Perron vectors for the spectral blocks of B,
and the remaining entries of x are all zero. Observe Biyi = r(1)yi for each i. Since
m ≥ 2, and since every entry in each subvector yi is nonzero, it follows by matrix-
vector multiplication that we can normalize y1, . . . , ym to create a vector x̂ so that
Bx̂ = r(1)x̂. Thus r(1) is an eigenvalue of B. So by (6.7.1), Theorem 4.3.12, and
Theorem 6.7.4, it follows that r(1) = λn−1.

To show uniqueness, let v, w ∈ T be such that v 6= w and r(v) = r(w) = λn−1.
Then v and w must each have at least two spectral branches. Thus there exists
a spectral branch at w that does not contain v. Let C be the block of B[w] that
corresponds to such a branch. If we let Cw be the block in B[v] that contains the
row/column corresponding to vertex w, then upon observing the fact that C is
a proper submatrix of Cw and both matrices are nonnegative and irreducible, we
obtain via Exercise 1(ii) of Section 1.3 that

r(v) ≥ ρ(Cw) > ρ(C) = r(w) = λn−1

which contradicts the fact that r(v) = λn−1. Therefore, if there exists vertex such
that r(v) = λn−1, then such a vertex is unique. 2

Theorem 6.7.9 shows if a tree is of Type A, then the spectral vertex is the unique
vertex that has more than one spectral branch.

EXAMPLE 6.7.10 [66] Consider the tree T in Example 6.7.5. Since there exists
a vertex v such that r(v) = λn−1, we see that T is of Type A. Labeling the vertices
of T as follows

Considering the bipartite complement of L[1]:

B[1] =



3 1 1 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 3 1 1
0 0 0 0 1 1 0
0 0 0 0 1 0 1


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Observe that the branches containing vertices 2 and 6 are the spectral branches
at vertex 1 since the blocks of B corresponding to these branches have the largest
spectral radius, namely λn−1 = 3.732. Note that of all vertices v = 1, . . . , 8, B[1] is
the only such matrix B[v] that has more than one spectral block, hence v = 1 is the
unique vertex of T having more than one spectral branch per Theorem 6.7.9.

Observe that Theorem 6.7.9 is very similar in flavor to Theorem 6.2.15 con-
cerning the characteristic vertex and Perron branches of a Type I tree. Type I trees
have a unique characteristic vertex and that vertex has at least two Perron branches;
Type A trees have a unique spectral vertex and that vertex has at least two spectral
branches. Therefore, it is natural to investigate if there are analagous results for the
spectral vertices for trees of Type B. In the following theorem from [66], we show
such a result which parallels Theorem 6.2.17.

THEOREM 6.7.11 Let T be a weighted tree. Then there exists two adjacent ver-
tices v and w such that a spectral branch at v contains w and a spectral branch at
w contains v. Moreover, if T is of Type B, then this pair of vertices is unique.

Proof: Consider the graph G with vertices 1, 2, . . . , n created as follows: For
each vertex i, place an edge i, i′ where i′ is a vertex adjacent to i that lies on a
spectral branch at i. Since T has n− 1 edges and G has n edges, it follows that at
least one of these edges is duplicated. The vertices incident to a duplicated edge are
such vertices v and w, hence showing existence.

To show uniqueness in the Type B case, let x and y be another pair of adjacent
vertices such that the spectral branch at each of these vertices contains the other
vertex. Without loss of generality, let the path from w to x contain no other spectral
vertices of T . Let B be the bipartite complement of L. For distinct vertices i and j,
let Bj

i be the block of B[i] that contains the row/column corresponding to vertex

j. Thus by the definition of spectral vertices and by the fact that Bj
i is irreducible

for all i, j ∈ T , we see that

ρ(Bv
w) > ρ(Bx

w) > ρ(By
x) > ρ(Bw

x ) > ρ(Bv
w) (6.7.2)

where the second and fourth inequalities follow from Exercise 1(ii) of Section 1.3.
But (6.7.2) reduces to ρ(Bv

w) > ρ(Bv
w), a contradiction. Hence in a Type B tree,

such vertices v and w are unique. 2

Theorem 6.7.11 lends itself to the following definition which parallels Definition
6.2.3 concerning characteristic vertices.

DEFINITION 6.7.12 In a Type B tree, the spectral vertices are the unique pair
of adjacent vertices v and w such that the spectral branch at v contains w and the
spectral branch at w contains v.

The inequalities in (6.7.2) of Theorem 6.7.11 imply the following corollary from
[66] which concerns vertices that are not spectral vertices. Observe that this corollary
parallels Theorem 6.2.19 for characteristic vertices.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

278Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

COROLLARY 6.7.13 Let T be a weighted tree and suppose that m is not a spec-
tral vertex of T , then the unique spectral branch at m is the branch which contains
all of the spectral vertices of T .

At this point we summarize the results for Type A and Type B trees (see [66])
that parallel Theorem 6.2.17:

THEOREM 6.7.14 Let T be a weighted tree with L as its Laplacian matrix. Then:

(a) If k is the unique spectral vertex of a Type A tree, then k is the unique ver-
tex that has at least two spectral branches.

(b) If i and j are the spectral vertices of a Type B tree, then the unique spectral
branch at i contains j while the unique spectral branch at j contains i.

(c) If m is not a spectral vertex in T , then the unique spectral branch at m contains
all of the spectral vertices of T .

We can also summarize our results thus far (see [66]) which parallel Fiedler’s famous
result which is stated in Corollary 6.2.1.

THEOREM 6.7.15 Let T be a weighted tree on n vertices labeled 1, . . . , n with
Laplacian matrix L. Then exactly one of the following occurs:

(a) For the function r(v), we have r(k) = λn−1 for a unique vertex k ∈ T . In
addition, the value of the function r(v) increases along any path in T which starts
at k.

(b) The function r(v) never attains λn−1 for any vertex v ∈ T . In this case, there
exist a unique pair of adjacent vertices i and j such that the value of r(v) increases
along any path in T which starts at i and does not contain j, while the value of r(v)
increases along any path which starts at j and does not contain i.

Using the results from Theorem 6.7.14, observe that if condition (a) holds in Theo-
rem 6.7.15, then T is a Type A tree with k as its spectral vertex, while if condition
(b) holds, then T is a Type B tree with i and j as its spectral vertices.

REMARK 6.7.16 Theorem 6.7.15 implies that in any tree T , the function r(v) is
minimized at a spectral vertex and maximized at a pendant vertex. However, it is
important to note that the two spectral vertices of a Type B tree are not necessarily
the two vertices in which the function r(v) obtains its two smallest values. Observe
the following tree from [66]:
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The vertices v with values for r(v) of 4.261 and 4.958 are the two vertices with the
smallest values for r(v), yet the vertices with values 4.261 and 5.105 are the spectral
vertices.

Recall from Theorem 6.2.20 that as one travels away from the characteristic
vertex / vertices of an unweighted tree, the characteristic valuations either increase
in a concave down fashion, decrease in a concave up fashion, or are identically zero.
Focusing on the concavity aspect, if such vertices are not valuated identically zero,
then the absolute values of the valuations increase in a concave down fashion. Thus
it is natural to ask if this same idea holds true the function r(v) as we travel away
from the spectral vertex / vertices of an unweighted tree. While it is often the case
that the same idea holds true, it is not always the case as seen below in an example
from [66]:

Observe that this is a Type A tree where the vertex v with r(v) = 4.115 is the
unique spectral vertex. However, the values of r(v) for the vertices do not increase
in a concave downward fashion as one travels away from the spectral vertex.

In all of the examples shown thus far, it has been that case that a tree is both
Type I and Type A with one vertex being both the characteristic vertex and spectral
vertex, or that a tree is both Type II and Type B with a pair of adjacent vertices
being both the characteristic vertices and spectral vertices. Therefore, it is natural
to ask the following questions:

(1) If a tree is both of Type I and Type A, is the characteristic vertex necessarily
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the same as the spectral vertex?

(2) If a tree is both of Type II and Type B, is the pair of characteristic vertices
necessarily the same as the pair of spectral vertices?

(3) Are all Type A trees necessarily Type I trees, and are all Type B trees nec-
essarily Type II trees?

Questions (1) and (2) are similar, thus one would expect them to both have the
same answer. The answer to both questions is “no.” In fact, in regards to Question
(1), we can create a tree that is of both Type I and Type A in which the distance
from the characteristic vertex to the spectral vertex is arbitrarily large. We do so
by considering the following unweighted tree from [66]:

Observe that vertex s has two branches each consisting of one vertex adjacent to five
vertices (other than s). Letting L be the Laplacian matrix for this tree, note that
the spectral radius of the submatrix of L corresponding to each of these branches
is 6.854. Observe that in the remaining branch at s, the spectral radius of the sub-
matrix of L corresponding to this branch cannot be greater than 6 according to the
Geršgorin Disc Theorem (Theorem 1.2.1). Hence s has two spectral branches and
thus is the unique spectral vertex in accordance with Theorem 6.7.14. However, by
the construction of bottleneck matrices, as p increases the spectral radius of each
bottleneck matrix at vertex c containing each branch not containing s increases
without bound. Hence, for each fixed d, we can make p large enough such that each
of these branches are the characteristic branches at c. By Theorem 6.2.17, c would
be the characteristic vertex. Thus we have created a tree that is of Type I and Type
A where the distance between the spectral vertex and characteristic vertex is d.
Below, we see the minimum value that p must be in order for the distance between
the characteristic vertex and spectral vertex to be d.

d 1 2 3 4 5

p 7 9 11 12 14

Similarly, if a tree is of Type II and Type B, we can create a tree in which the
minimum distance between a characteristic vertex and a spectral vertex is as large
as we would like. Consider the following unweighted tree from [66]:
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Observe that the spectral radius of the submatrix of the Laplacian matrix cor-
responding to the branch at s1 containing the three pendant vertices is 1, while
the spectral radius of the submatrix corresponding to the other branch is clearly
larger than 1. Similarly, the spectral radius of the submatrix corresponding to the
branch at s2 containing the three pendant vertices is 4.792, while the submatrix
corresponding to the other branch at s2 is less than 4 by the Geršgorin Disc Theo-
rem (Theorem 1.2.1). Thus the unique spectral branch at s1 contains s2, and vice
versa. Therefore, s1 and s2 are the spectral vertices of the tree in accordance with
Theorem 6.7.11. Letting c1 and c2 be the characteristic vertices, it is clear by the
construction of bottleneck matrices that as p increases without bound, the distance
d between c1 and s2 increases without bound. Below, we see appropriate values of
p for each given distance d between s2 and c1:

d 1 2 3 4 5

p 7 9 11 13 15

Finally, the answer to Question (3) is also “no.” Consider the trees T1 and T2

from [66]:

In T1, vertex 1 is the unique characteristic vertex, yet vertices 1 and 2 are the spec-
tral vertices. Therefore T1 is of Type I and Type B. In T2, vertices 1 and 2 are the
characteristic vertices yet vertex 1 is the unique spectral vertex. Hence T2 is of Type
II and of Type A. As with the Type I-A trees and the Type II-B trees, we can create
trees in which the distance between the characteristic vertices and spectral vertices
is as large as we desire. Since the process is similar to the above processes, we omit
the details.
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Exercises:

1. Classify each of the following trees as Type A or Type B and label the spec-
tral vertex (vertices).

2. Let T be a weighted tree.

(i) Suppose T is symmetric about a vertex v. Show that T is of Type I and
of Type A with v being both the characteristic and spectral vertex.

(ii) Suppose T is symmetric about an edge e incident to vertices v and w. Show
that T is of Type II and of Type B with v and w being both the characteristic and
spectral vertices.

3. (See [66]) Suppose we create an unweighted tree T by taking a vertex v and
making it adjacent to the root vertices of T (k1, . . . , km) and T (km, . . . , k1) as in
Section 6.3. Show that T is a Type A tree with v as its spectral vertex. Thus we
have shown it is possible for a Type A tree to have nonisomorphic spectral branches.

4. Show that the distance between the characteristic vertex and the spectral ver-
tices of an unweighted Type I-B tree can be arbitrarily large. Show the same for an
unweighted Type II-A tree.
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Chapter 7

Bottleneck Matrices for Graphs

In the previous chapter we investigated the bottleneck matrices for trees. In this
chapter we generalize this concept to graphs which are not trees. We provide a brief
review of the group inverse of a matrix in Section 7.1 and discuss how bottleneck
matrices for graphs are constructed. We then apply these ideas in Section 7.2 to show
how the Perron components at cut vertices of a graph can be used to compute its
algebraic connectivity. In this section, we generalize much of Section 6.2. In Sections
7.3 and 7.4 we use bottleneck matrices for graphs to show which graphs of fixed girth
have the minimum and maximum algebraic connectivities. We see in Section 7.3 that
the graphs which have the minimum algebraic connectivity are certain unicyclic
graphs. Therefore in Section 7.4 we focus on determining the unicyclic graphs of
fixed girth that yield the maximum algebraic connectivity. Since unicyclic graphs
closely resemble trees, we will combine ideas from both this chapter and Chapter 6 in
order to prove our results. In Section 7.5 we apply the idea of bottleneck matrices to
find an upper bound on the algebraic connectivity of a graph in terms of the number
of cut vertices. Recall from Section 5.1 that the maximum algebraic connectivity of a
graph with a cut vertex is one. In this Section 7.5 we will refine these results. Finally
in Section 7.6 we generalize the results of Section 6.7 by investigating the spectral
radius of submatrices of the Laplacian matrices of graphs created by deleting a row
and column corresponding to a vertex of the graph. As in Chapter 6, taking the
inverse of these matrices yields bottleneck matrices. Hence we compare the results
concerning these submatrices to those of bottleneck matrices.

7.1 Constructing Bottleneck Matrices for Graphs

In order to construct bottleneck matrices at vertices of graphs which are not trees,
we will need to recall from Section 1.6 the concept of the group inverse of a square
matrix. We will discuss the group inverse of the Laplacian matrix in greater detail in
Chapter 8, but for now we will give the information necessary to construct bottleneck
matrices for graphs. Recall from Section 1.6 that for an n× n matrix A, the group
inverse of A, when it exists, is the unique n × n matrix X that satisfies all of the
following:

283
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(i) AXA = A
(ii) XAX = X
(iii) AX = XA

(7.1.1)

If the group inverse of A exists, we denote it by A#. Clearly, if A is nonsingular,
then A−1 = A#. However, it is possible for A# to exist even if A is singular, as is
the case for Laplacian matrices of connected graphs. While we can find the group
inverse of a matrix using (1.6.3), if A is an irreducible M-matrix we can apply the
formula for the group inverse of an irreducible singular M-matrix found in [50]:

THEOREM 7.1.1 Let A be a singular irreducible M-matrix with right null vector
x = [x1, x2, . . . , xn]T and left null vector y = [y1, y2, . . . , yn]T . Then

A# =
ŷTMx̂

(yTx)2
xyT +

[
M − 1

yT x
Mx̂ŷT − 1

yT x
x̂ŷTM −yn

yT x
Mx̂

−xn
yT x

ŷTM 0

]
(7.1.2)

where x̂ = [x1, x2, . . . , xn−1]T , ŷ = [y1, y2, . . . , yn]T , and M = A[n]−1.

Since Laplacian matrices of connected graphs are singular irreducible M-
matrices, Theorem 7.1.1 is relevant. Recall from Chapter 6 that M = L[i]−1 is
known as the bottleneck matrix of the Laplacian matrix L at vertex i. Since e is the
left and right null vector of any Laplacian matrix, we have an immediate corollary
from [50]:

COROLLARY 7.1.2 Let L be the Laplacian matrix of a connected weighted graph
with n vertices. Then

L# =
eTMe

n2
J +

[
M − 1

nMJ − 1
nJM − 1

nMe

− 1
ne

TM 0

]
(7.1.3)

where M is the bottleneck matrix at vertex n.

Since M = L[n]−1 = L[{n}, {n}]−1, we can use the cofactor formula for the inverse
to see that the (i, j) entry of the bottleneck matrix M of L based at n is

mi,j =
(−1)i+j detL[{j, n}, {i, n}]

detL[{n}, {n}]
. (7.1.4)

Before exploring the combinatorial aspects of (7.1.4), we need to establish some
notation. If E is a set of edges of G, the weight of E is denoted by w(E) and is the
product of the weights of the edges in E. If E is empty, then we define w(E) := 1.
The weight of a subgraph H of G is the weight of the set of edges in H. The set
of all spanning trees of G is denoted by S. Letting i, j, and k be (not necessarily
distinct) vertices of G, an ({i, j}, k)-spanning forest of G is a spanning forest of G
which has exactly two connected components, one of which contains vertex k and
the other of which contains the vertices i and j. The set of all ({i, j}, k)-spanning
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forests of G is denoted by S
{i,j}
k .

By the Matrix Tree Theorem (Theorem 3.2.2), we see that

detL[{n}, {n}] =
∑
T∈S

w(T )

and
detL[{j, n}, {i, n}] =

∑
F∈S{i,j}n

w(F )

where 1 ≤ 1, j,≤ n − 1. In light of this, we can rewrite (7.1.4) for entries of the
bottleneck matrix at vertex v as (see [50]):

mi,j =

∑
F∈S{i,j}v

w(F )∑
T∈S w(T )

. (7.1.5)

If G is an unweighted graph, then (7.1.5) implies that the entries for the bottleneck
matrix at vertex v are:

mi,j =
|S{i,j}v |
|S|

. (7.1.6)

EXAMPLE 7.1.3 Consider the unweighted graph G below:

Observe that the Laplacian matrix is

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1

0 −1 −1 2


Suppose we want to find the bottleneck matrix at vertex 4. First observe that G
contains 8 spanning trees:
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Thus |S| = 8. Now note all of the spanning forests of G that contain exactly two
components:

To compute the entries of the bottleneck matrix L[4]−1, we construct the following

chart. Since S
{i,j}
n = S

{j,i}
n for all i, j, we need only compute one of S

{i,j}
n or S

{j,i}
n .

set cardinality spanning forests

S
{1,1}
4 8 1, 2, 4, 5, 7, 8, 9, 10

S
{1,2}
4 4 4, 5, 8, 10

S
{1,3}
4 4 2, 5, 8, 10

S
{2,2}
4 5 3, 4, 5, 8, 10

S
{2,3}
4 3 5, 8, 10

S
{3,3}
4 5 2, 5, 6, 8, 10

(7.1.7)

Thus

L[4]−1 =
1

8

 8 4 4
4 5 3
4 3 5

 .
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EXAMPLE 7.1.4 Consider the weighted graph G below:

Observe that the Laplacian matrix is

L =


4 −1 −3 0
−1 7 −4 −2
−3 −4 8 −1

0 −2 −1 3


Suppose we want to find the bottleneck matrix at vertex 4. Recalling the 8 spanning
trees from the previous example, we see the weights of these spanning trees are

tree a b c d e f g h

weight 6 3 2 6 4 8 12 24

Thus
∑
T∈S w(T ) = 65. Recalling from the previous example the 10 spanning forests

containing exactly two components, observe that the weights of each of these forests
are

forest 1 2 3 4 5 6 7 8 9 10

weight 2 6 3 1 3 2 4 4 8 12

With the assistance of (7.1.7) and the fact that the numerator of the (i, j) entry of
the bottleneck matrix L[4]−1 is

∑
F∈S{i,j}4

w(F ), we see that

L[4]−1 =
1

65

 40 20 25
20 23 19
25 19 27

 .
REMARK 7.1.5 Note that (7.1.5) can be used to simplify our approach to The-
orem 6.2.5. Let T be a weighted tree on vertices 1, 2, . . . , n. Fix a vertex v and let i
and j be (not necessarily distinct) vertices of T other than v. Since T is a tree, every
spanning forest F of T with exactly two components can be obtained by removing
exactly one edge e from T . Therefore, F is an ({i, j}, v)-spanning forest of T if and
only if F is obtained from T by removing an edge e that lies concurrently on the
path from i to v and on the path from j to v. For such an edge e, we recall that
since T = F − e, it follows that w(T ) = w(e)w(F ). Thus for such an edge e, we

obtain w(F )
w(T ) = 1

w(e) . Thus (7.1.5) implies Theorem 6.2.5.
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Clearly, if two vertices belong to different components at a cut vertex v, then the
corresponding entry of the bottleneck matrix at v is zero. The following proposition
from [18] gives us insight into the construction of the bottleneck matrix at a vertex
in a specific component of a graph containing a cut vertex.

PROPOSITION 7.1.6 Let G be a connected graph, and suppose that v is a cut
vertex of G with connected components C1, . . . , Ck+1 at v. Let D be a proper subset
of the vertices of Ck+1. Without loss of generality, we can write L[C1 ∪ C2 ∪ . . . ∪
Ck ∪D ∪ {v}] as

L[C1] 0 0 0 −L[C1]e
0 . . . 0 . . . . . .
0 0 L[Ck] 0 −L[Ck]e

0 . . . 0 L[D] −θ
−eTL[C1] . . . −eTL[Ck] −θT d


where d ≥

∑k
i=1 e

TL[Ci]e. Then (L[C1 ∪C2 ∪ . . . ∪Ck ∪D ∪ {v}])−1 can be written
as  M + αJ αeθT (L[D])−1 αe

α(L[D])−1θeT (L[D])−1 + α(L[D])−1θθT (L[D])−1 α(L[D])−1θ

αeT αθT (L[D])−1 α


where α = 1/(d−

∑k
i=1 e

TL[Ci]e− θT (L[D])−1θ), and

M =

 (L[C1])−1 0 0
0 . . . 0
0 0 (L[Ck])

−1

 .
Proof: This follows by direct computation provided that α > 0 To show α > 0,

it suffices to show that d−
∑k
i=1 e

TL[Ci]e− θT (L[D])−1θ is positive. Note that the
entire Laplacian matrix can be written as

L[C1] 0 0 0 −L[C1]e 0
0 . . . 0 . . . . . . . . .
0 0 L[Ck] 0 −L[Ck]e 0

0 . . . 0 L[D] −θ −X
−eTL[C1] . . . −eTL[Ck] −θT d −yT

0 . . . 0 −XT −y L[Ck+1 −D]


.

Since the row sums of L are all zero, we see that L[D]e = θ + Xe. Multiplying
through on the left by θT (L[D])−1 and rearranging we obtain

θT (L[D])−1θ = θT e− θT (L[D])−1Xe. (7.1.8)

Again using the fact that the row sums of L are all zero, we see that d =∑k
i=1 e

TL[Ci]e+ θT e+ yT e. Using this together with (7.1.8) we see that

d−
k∑
i=1

eTL[Ci]e− θT (L[D])−1 = yT e+ θT (L[D])−1Xe.
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At this point, the proof is complete if we can show that yT e+θT (L[D])−1Xe is pos-
itive. Observe that yT e ≥ 0 and the inequality is strict if and only if v is adjacent to
some vertex in Ck+1−D. Looking at θT (L[D])−1Xe, since L[D] is a nonsingular M-
matrix, it follows from Theorem (1.4.7) that (L[D])−1 > 0. Thus θT (L[D]−1)Xe ≥ 0
where the inequality is strict if and only if there is a walk from v to a vertex in
Ck+1−D going through a vertex in D (since θ or X would be zero otherwise). But
since G is connected, it follows that at least one of these two quantities is positive,
thus yT e+ θT (L[D])−1Xe is positive. 2

We end this section with a theorem from [43] concerning the diagonal entries of
bottleneck matrices. This theorem will be useful to us later in the chapter.

THEOREM 7.1.7 Let G be an unweighted graph and let C be a component at a
cut vertex v of G where C has q vertices. If M is the bottleneck matrix for C, then
each diagonal entry of M is at least 2/(q + 1). Moreover, if mii = 2/(q + 1), then
vertex i is adjacent to v and to every vertex of C.

Proof: We will first show that adding an edge into C or between v and a vertex
of C cannot increase any diagonal entry of M . To verify this claim, suppose that
M ′ is the bottleneck matrix arising from the addition of the edge between vertices
i and j of C. Then (M ′)−1 = M−1 + (ei − ej)(eTi − eTj ), and therefore

M ′ = M − (Mei −Mej)(e
T
i M − eTj M)/(1 +mii +mjj − 2mij).

Thus for any vertex p, we have

m′pp = mpp −
(mpi −mpj)

2

1 +mii +mjj − 2mij
≤ mpp

where the inequality follows from the fact that since M is positive definite, the
expression mii + mjj − 2mij is nonnegative. This proves the claim in the case of
adding an edge joining two nonadjacent vertices of C. The proof of the case of
adding an edge joining v to a vertex in C is similar.

From the preceeding paragraph, since adding edges cannot increase any diagonal
entry of M , it follows that the diagonal entries of M are bounded below by the
diagonal entries of the bottleneck matrix for a component at v on q vertices where
such a component is the complete graph, Kq. But the bottleneck matrix for such a
component is clearly 1

q+1(I + J). Hence the diagonal entries are bounded below by
2/(q + 1).

To complete the proof, suppose that vertex i of C is not adjacent to a vertex j
of C. We claim then that mii > 2/(q+1). To verify this, we see from the preceeding
paragraph that the diagonal ofM is bounded below by that of the bottleneck matrix,
call it N , of the component in which the edge ij is missing, but all other possible
edges (including those involving v) are present. But

N =
1

q + 1
(I + J) +

1

q2 − 1
(ei − ej)(ei − ej)T .
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In particular,

mii =
2

q + 1
+

1

q2 − 1
>

2

q + 1
,

thus proving the theorem if i is not adjacent to j. A similar argument holds for i
not adjacent to v. 2

Exercises:

1. Find the bottleneck matrix at vertex v in the graph below. Then verify The-
orem 7.1.7.

2. Find the bottleneck matrix at any vertex in the graph above that is not a cut
vertex.

3. (See [45]) Let v be a cut vertex of a weighted graph G and let C be a com-
ponent at v with bottleneck matrix M . Fix two vertices x and y of C. Show that
as the weight of the edge joining x and y increases (assuming the weight is zero if
x and y are not adjacent) the Perron value of M is nonincreasing.

7.2 Perron Components of Graphs

In this section, we generalize many of the results of Section 6.2 to graphs which
are not trees. We use the bottleneck matrices described in the previous section to
compute the algebraic connectivity of a graph as we did with trees in Section 6.2.
We then use these results to generalize the perturbation results for trees found in
Section 6.4 to graphs. This will enable us to find upper and lower bounds on the
valuations of vertices that are not cut vertices. Since we are generalizing many of the
results found in Chapter 6, we need several definitions, many of which mimic those
found in that chapter. In these definitions we let y be a characteristic valuation
(Fiedler vector) of G and we consider only graphs which contain a cut vertex. We
refer the reader to Theorem 6.1.10 to show that these definitions are well defined.

DEFINITION 7.2.1 A graph G is of Type I with characteristic vertex z if z is
the unique cut vertex such that yz = 0 and z is adjacent to vertices with nonzero
valuation.
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DEFINITION 7.2.2 A graph G is of Type II with characteristic block B if B is
the unique block of G that contains both positively and negatively valuated vertices.

Since we are considering graphs with cut vertices, the idea of a Perron component
becomes relevant. We generalize the definition of Perron branch from Chapter 6
(Definition 6.2.10) as follows:

DEFINITION 7.2.3 Let v be a cut vertex of a graph G. A Perron component at
v is a component of G − v whose bottleneck matrix has the largest Perron value.

The following theorem from [45] generalizes some of the theorems from Section
6.2. Part (i) of the following theorem generalizes Theorem 6.2.15 saying that a
graph G with a cut vertex is of Type I if and only if there are at least two Perron
components at the cut vertex. Moreover, the algebraic connectivity of such graphs
are computed in a similar fashion as to Type I trees. Part (ii) of the theorem
generalizes Theorems 6.2.4 and 6.2.18 which give the multiplicity of the algebraic
connectivity in relation to the number of Perron components. This part of the
theorem also shows that the characteristic vertex of a Type I tree is invariant of the
Feidler vector used. Part (iii) of the theorem generalizes Theorem 6.2.19 which says
that if v is not a characteristic vertex of a Type I graph G, then the unique Perron
component at v contains the characteristic vertex of G.

THEOREM 7.2.4 Let G be a weighted graph with algebraic connectivity a.

(i) G is of Type I with characteristic vertex z if and only if there are two or more
Perron components at z. Further, a = 1/ρ(L[C]−1) for any Perron component C at
z.

(ii) If the Perron components at z are C1, . . . , Cm, let xi be the Perron vector of
L[Ci]

−1 for 1 ≤ i ≤ m normalized so that the entries sum to 1. For each 2 ≤ i ≤ m,
let bi−1 be the Fiedler vector which valuates the vertices of C1 by x1, valuates the
vertices of Ci by −xi, and valuates all other vertices 0. Then b1, . . . , bm−1 is a basis
for the eigenspace corresponding to a. In particular, if there are m Perron compo-
nents at z, then the multiplicity of a is m− 1, and every Fiedler vector has zeros in
the positions corresponding to z and to the vertices of the non-Perron components
at z.

(iii) For any cut vertex v 6= z, the unique Perron component at v is the compo-
nent containing z.

Proof: To prove (i), first suppose that G is of Type I. Let C1, . . . , Ck be the
connected components of G − z (note k ≥ m), and let y be the relevant Fiedler
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vector. Without loss of generality, we write the Laplacian matrix as

L =


L[C1] 0 0 0 f1

0 L[C2] 0 0 f2

0 0 . . . 0 . . .

0 0 . . . L[Ck] fk
fT1 fT2 . . . fTk d


and we partition y conformally as [y(1)T , . . . , y(k)T , 0]T . By matrix multiplication,
we then have for each 1 ≤ i ≤ k, L[Ci]y(i) = ayi. Since L[Ci] is an M-matrix and
a ≤ λ1(L[Ci]), it follows from Observation 1.4.2 that y(i) is either all positive, all
negative, or all zero. In the first two instances, we see that y(i) must be a Perron
vector for L[Ci]

−1 which necessarily has Perron value 1/a. Further, since eT y = 0,
we find there are at least two components, without loss of generality, C1 and C2,
whose Perron values are 1/a.

Suppose that C1 and C2 are not Perron components at z. Then there is another
component, without loss of generality C3, such that the Perron value of C3 is greater
than 1/a. Let x be a Perron vector for L[C3]−1, normalized so that eTx = 1, and
let u = y(1)/eT y(1). Consider the vector w = [u, 0,−x, 0, 0, . . . , 0]T . Observe that
eTu = eTx = 1 since w is orthogonal to e. Now

wTLw = auTu+
1

ρ(L[C3]−1)
xTx < auTu+ axTx = awTw,

which contradicts Theorem 1.2.7. Thus we find that C1 and C2 must be Perron
components at z which proves one direction of (i).

To prove the converse of (i), suppose that there are at least two Perron compo-
nents at z, say C1, . . . , Cm. Let x1 and x2 be Perron vectors for L[C1]−1 and L[C2]−1,
respectively, and normalize them so fT1 x1 + fT2 x2 = 0 (this is possible since f1 and
f2 are nonpositive and neither vector is the zero vector). Then by matrix multiplica-
tion, the vector y = [x1, x2, 0, 0, . . . , 0]T is an eigenvector for L corresponding to the
eigenvalue 1/ρ(L[C1]−1). It then follows from Theorem 1.2.7 and Corollary 1.2.10
that 1/ρ(L[C1]−1) is the smallest positive eigenvalue of L, i.e., it is the algebraic
connectivity of G. Hence y is a Fiedler vector of the type described in Definition
7.2.1 for Type I graphs. This proves the converse of (i).

To prove (ii), let z be the characteristic vertex of G and let y be any Fiedler
vector. Suppose that C1 is a Perron component at z. Since

L[C1]y(1) + yzf1 =
1

ρ(L[C1]−1)
y(1),

we multiply through on the left by ρ(L[C1]−1)L[C1]−1 and rearrange to obtain

L[C1]−1y(1)− ρ(L[C1]−1)yzL[C1]−1f1 = ρ(L[C1]−1)y(1).

Multiplying on the left by a left Perron vector for L[C1]−1 now yields that yz must
be zero. Let Ci be a component at z. Then L[Ci]y(i) = 1/ρ(L[Ci]

−1)y(i), which
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is equivalent to L[Ci]
−1y(i) = ρ(L[Ci]

−1)y(i). Thus if Ci is a Perron component,
then y(i) is a nonzero scalar multiple of the Perron vector for L[Ci]

−1, while if Ci
is not a Perron component, then necessarily y(i) must be the zero vector. It now
follows that for any Perron component Ci at z (with i ≥ 2), if x1 and xi are Per-
ron vectors for L[C1]−1 and L[Ci]

−1, respectively, and both are normalized so that
eTx1 = eTxi = 1, then [x1, 0, 0, . . . , 0, xi, 0, . . . , 0]T is a Fiedler vector. Moreover,
the collection of all such vectors ranging over all Perron components distinct from
C1 is a basis for the eigenspace corresponding to the algebraic connectivity. The
statements on multiplicity and the zero entries now follow.

To prove (iii), suppose v is a vertex of G with v 6= z, and that there are at least
two Perron components at z. Let Cv be the component of G − z which contains v.
Then for any component A of G − v which does not contain z, we have A ⊂ Cv. Let
B be the component at v which contains z. Since there are at least two Perron com-
ponents at z, one of them, say C0, is strictly contained in B. Since A ⊂ Cv, we find
that L[A]−1 is strictly dominated entrywise by the principle submatrix of L[Cv]

−1.
Thus by Exercise 1(ii) of Section 1.3, it follows that ρ(L[A]−1) < ρ(L[Cv]

−1). A
similar assertion follows from the fact that C0 ⊂ B. Thus

ρ(L[A]−1) < ρ(L[Cv]
−1) ≤ ρ(L[C0]−1) < ρ(L[B]−1).

Hence the unique Perron component at v is B, the component containing z. This
proves (iii). 2

We now have an immediate corollary from [45] which generalizes Theorem 6.2.17:

COROLLARY 7.2.5 Let G be a weighted graph. Then G is of Type II if and only
if there is a unique Perron component at every vertex of G. Moreover, G is of Type
I if and only if there is a unique vertex at which there are two or more Perron
components.

Proof: From Theorem 7.2.4(i), we see that if there are two or more Perron
components at some vertex, then Case (a) of Theorem 6.1.10 cannot hold for any
Fiedler vector. Conversely, if there is a unique Perron component at every vertex,
then Case (b) of Theorem 6.1.10 cannot hold for any Fiedler vector. Thus Case (a)
of Theorem 6.1.10 must hold for every Fiedler vector. The result follows. 2

We see from Theorem 7.2.4 that the algebraic connectivity of a Type I graph is
the reciprocal of the spectral radius of the bottleneck matrix of a Perron branch at
the characteristic vertex. This generalizes Theorem 6.2.15 regarding the algebraic
connectivity of Type I trees. Our goal now is to generalize such a result for Type
II graphs. In Theorem 6.2.12, we saw that if T is a Type II tree with characteristic
vertices i and j (hence the edge ij is the characteristic block), then the reciprocal
of the algebraic connectivity is the spectral radius of the matrix M − (γ/θ)J where
M is the bottleneck matrix at the branch at i containing j, θ is the weight of the
edge joining i and j, and γ is an appropriate value between 0 and 1. To generalize
our results to Type II graphs, we focus on an arbitrary cut vertex v (not necessarily



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

294Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

incident to the characteristic block as we considered in trees) and investigate the
component at v not containing the characteristic block. To this end, we will prove
a lemma and theorem from [45]. The observation from [45] below will be useful in
proving the lemma that follows and can be verified by direct calculation:

OBSERVATION 7.2.6 Suppose that A is an invertible matrix and that

B =

[
A −c
−cT d

]
Then

B−1 =

[
A−1 0
0T 0

]
+

1

(d− cTA−1c)

[
A−1c

1

]
[cTA−1 | 1].

LEMMA 7.2.7 Let G be a connected weighted graph and let C be a subset of
vertices which induces a proper connected subgraph of G. Let v ∈ C be a cut vertex
of G such that every path from a vertex in C to a vertex in G − C passes through
v. Let w be the sum of the weights of all edges between v and the vertices in G − C
adjacent to v. If the vertices are labeled so that v is the last among the vertices in
C, then

L[C]−1 =

[
L[C − v]−1 0

0T 0

]
+

1

w
J

Proof: Suppose that the connected components of C − v are A1, . . . , Am. Then

L[C] =


L[A1] −L[A1]e

. . . . . .

L[Am] −L[Am]e

−eTL[A1] . . . −eTL[Am] d


where

d = w + eTL[A1]e+ . . .+ eTL[Am]e = w + eTL[C − v]e.

The result now follows by applying Observation 7.2.6 with A = L[C − v] and
c = L[C − v]e. 2

EXAMPLE 7.2.8 Consider the graph G below.
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Let v = 8 and let C be the set of vertices that are numbered. Observe that C and
v satisfy the conditions of Lemma 7.2.19. Note

L[C] =



3 −1 −1 0 0 0 0 −1
−1 2 −1 0 0 0 0 0
−1 −1 3 0 0 0 0 −1

0 0 0 2 −1 0 0 −1
0 0 0 −1 4 −1 −1 −1
0 0 0 0 −1 2 0 −1
0 0 0 0 −1 0 1 0
−1 0 −1 −1 −1 −1 0 8


Observe that since G is unweighted and since v is adjacent to three vertices not in
C, we have w = 3. Observing the matrices L[C − v]−1 and L[C]−1 below, we see
that we obtain L[C]−1 from L[C − v]−1 by placing 1/w = 1/3 as the entries in row
8 and column 8, and then adding 1/3 to the entries of L[C − v]−1.

L[C − v]−1 =
1

8



5 4 3 0 0 0 0
4 8 4 0 0 0 0
3 4 5 0 0 0 0
0 0 0 5 2 1 2
0 0 0 2 4 2 4
0 0 0 1 2 5 2
0 0 0 2 4 2 12



L[C]−1 =
1

24



23 20 17 8 8 8 8 8
20 32 20 8 8 8 8 8
17 20 23 8 8 8 8 8
8 8 8 23 14 11 14 8
8 8 8 14 20 14 20 8
8 8 8 11 14 23 14 8
8 8 8 14 20 14 44 8
8 8 8 8 8 8 8 8


THEOREM 7.2.9 Suppose that G is a Type II weighted graph (thus there is a
unique Perron component at every vertex of G) with algebraic connectivity a. Let
y be a Fiedler vector and let B0 be the unique block (the characteristic block) of
G containing both positively and negatively valuated vertices in y. Let v be a cut
vertex of G, let C0 denote the set of vertices in the connected component of G − v
which contains vertices in B0, and let C1 denote the vertices in G − C0. Permute



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

296Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

and partition the Laplacian matrix as

0 . . . 0
. . . . . .

L[C1] . . . . . .
0 . . . 0

−θT
0 . . . . . . 0
. . . . . .
. . . . . . −θ L[C0]
0 . . . . . . 0


(7.2.1)

where vertex v corresponds to the last row of L[C1], and partition y as y =
[y(1)T , y(0)T ]T . Then

(i)

L[C1]−1 +
θT y(0)

θT e(θT eyv − θT y(0))
J

is a positive matrix whose Perron value is 1/a and whose Perron vector is a scalar
multiple of y(1).

(ii) At every vertex x of G, the unique Perron component at x is the component
containing vertices in B0.

Proof: To prove (i), first note that both C1 and C0 induce subgraphs of G.
Since G is of Type II, every block of G distinct from B0 is valuated all positively,
all negatively, or all zero by y. Without loss of generality, suppose yv > 0. Then
every block in C1 to which v belongs is valuated positively. Therefore, every vertex
in C1 is valuated positively by y. Thus y(1) > 0. Suppose there are m vertices in
C1. Then by the eigenvalue-eigenvector relationship, we have

L[C1]y(1)− θT y(0)em = ay(1). (7.2.2)

Since the column sums of L are each zero, we have eTL[C1] = θT eeTm. Dividing
through by θT e, taking the transpose of both sides, and then multiplying on the left
by L[C1]−1, we obtain

1

θT e
e = L[C1]−1em. (7.2.3)

We also see from the eigenvalue-eigenvector relationship, focusing on row m, that
θT eyv − θT y(0) = aeT y(1). Dividing through by eT y(1) and taking the reciprocal
we obtain

1

a
=

eT y(1)

θT eyv − θT y(0)
, (7.2.4)

Further, dividing (7.2.2) by a and multiplying through on the left by L[C1]−1, we
have

1

a
y(1)− θT y(0)

a
L[C1]−1em = L[C1]−1y(1). (7.2.5)
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Rearranging (7.2.5) and using (7.2.3) and (7.2.4) we find that(
L[C1]−1 +

θT y(0)

θT e(θT eyv − θT y(0))
J

)
y(1) =

1

a
y(1). (7.2.6)

By Lemma 7.2.7, we know L[C1]−1−1/(θT e)J is positive. Further, since yv, θ
T e, and

θT eyv − θT y(0) are positive (recall from (7.2.4) that the latter is equal to aeT y(1)),
it follows that

θT y(0)

θT e(θT eyv − θT y(0))
> − 1

θT e

and so by Lemma 7.2.7

L[C1]−1 +
θT y(0)

θT e(θT eyv − θT y(0))
J

is a positive matrix. Consequently from (7.2.6), a is the reciprocal of the Perron
value of that matrix and y(1) is a corresponding Perron vector.

To prove (ii), we begin by showing that for any cut vertex of G that lies in B0,
the unique Perron component is the one containing the vertices in B0. Let v ∈ B0

be a cut vertex of G where yv > 0. From the above, we see that 1/a is larger than
the maximum eigenvalue of L[C1]−1− 1/(θT e)J ; by Lemma 7.2.7 this last quantity
is the maximum of the Perron values of the components at v which do not have
vertices in B0. From Theorem 1.2.8, we know that a ≥ 1/ρ(L[G − v]−1), so that we
must have

ρ(L[G − v]−1) ≥ 1

a
> ρ

(
L[C1]−1 − 1

θT e
J

)
.

Since ρ(L[G − v]−1) is the Perron value of the Perron component at v, we find that
the Perron component at v must be the one containing vertices in B0. A similar
argument follows if v ∈ B0 is a cut vertex of G such that yv < 0.

Now suppose that v is a cut vertex of B0 such that yv = 0. Since G is of
Type II, we find that y(1) = 0 and so a is an eigenvalue of L[C0]. In particular,
a ≥ 1/ρ(L[C0]−1). Suppose that some component C2 at v has a larger Perron value
than that of C0. Let c be the Perron vector L[C0]−1 normalized so that cT e = 1,
and let b be the Perron vector for L[C2]−1 normalized so that bT e = 1. Form the
vector w by placing the entries in c in the positions corresponding to the vertices in
C0, placing the entries of −b in the positions correspondiing to the vertices in C2,
and placing zeros elsewhere. Then wT e = 0, and

wTLw =
1

ρ(L[C0]−1)
cT c+

1

ρ(L[C2]−1)
bT b <

1

ρ(L[C0]−1)
wTw ≤ awTw,

contradicting Theorem 1.2.7. Hence it must be the case that the Perron component
at v is the one containing the vertices in B0.

Finally, let x be any vertex of G. If x is not a cut vertex of G, then there is
just one connected component at x, it is the Perron component, and it contains the
vertices in B0. If x is a cut vertex of G and x ∈ B0, the result follows from the
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arguments above. Finally, if x is a cut vertex of G that is not in B0, let A be a
component at x not containing vertices of B0, and let B be the component which
does contain the vertices of B0. There is a cut vertex v of G lying in B0 such that
(using the earlier notation) A ⊂ C1 and C0 ⊂ B. But then we have

ρ(L[A]−1) < ρ(L[C1]−1) < ρ(L[C0]−1) < ρ(L[B]−1).

Hence the unique Perron component at x is B. 2

REMARK 7.2.10 [45] Suppose that G is of Type I and that v is any cut vertex
such that yv 6= 0. Let C0 be the vertex set of the connected component at v con-
taining the characteristic vertex z, and let C1 be the vertex set of G −C0. A minor
modification of the proof of Theorem 7.2.9 shows that

L[C1]−1 +
θT y(0)

θT e(θT eyv − θT y(0))
J

is a positive matrix with Perron value 1/a and Perron vector y(1).

REMARK 7.2.11 Since the property of being a Perron component at a vertex
v relies solely on the spectral radius of the block(s) of L[G − v]−1 and not on the
particular Fiedler vector, we see from Corollary 7.2.5 and Theorem 7.2.9 that for
a given graph G, any Fiedler vector will identify the same characteristic vertex if
G is of Type I, and the same characteristic block if G is of Type II. Thus we have
broadened Theorem 7.2.4 to Type II graphs.

At this point, we broaden the previous theorems to other eigenvalues of the
Laplacian matrix. We do this in a lemma from [18]:

LEMMA 7.2.12 Suppose G is a Type II weighted graph on n vertices with Lapla-
cian L. Let B0 be the characteristic block of G. Suppose v is a cut vertex of G. Let
C0 denote the set of vertices in the connected component of G − v which contains
the vertices in B0, and let C1 denote the vertices in G − C0. Assume, without loss
of generality, that L is partitioned as in (7.2.1) with v corresponding to the last row
of L[C1]. If there exists an γ > 0 such that

1

α
= ρ

(
L[C1]−1 − 1− γ

θT e
J

)
= ρ

(
L[C0]−1 − γ

θT e
J

)
.

then α is an eigenvalue of L.

Proof: Let y(1) and y(0) be eigenvectors corresponding to 1
α for the matrices

L[C1]−1 − 1−γ
θT e

J and L[C0]−1 − γ
θT e

J , respectively. First suppose eT y(0) = 0. Then
cJy(0) = 0 for any constant c. Hence

1

α
y(0) =

(
L[C0]−1 − γ

θT e
J

)
y(0) = L[C0]−1y(0). (7.2.7)
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Multiplying through on the left by θT we obtain

1

α
θT y(0) = θTL[C0]−1y(0) = eT y(0) = 0.

where the second-to-last equality follows from the fact that θTL[C0]−1 = eT (since
eTL[C0] = θT ). Hence θT y(0) = 0 and L[C0]y(0) = αy(0). Thus by matrix multipli-
cation, we see that

L

[
0

y(0)

]
=


0

L[C1]
−θT

0 − θ L[C0]


[

0
y(0)

]
= α

[
0

y(0)

]
.

Thus [0T , y(0)T ]T is an eigenvector of L corresponding to α.
Now suppose eT y(0) 6= 0, and normalize y(1) and y(0) so that eT y(0) = eT y(1).

We have

L[C1]−1y(1)− 1− γ
θT e

Jy(1) =
1

α
y(1). (7.2.8)

Recalling that L[C1]e = (θT e)ev, we see that by multiplying (7.2.8) through on the
left by αL[C1] and rearranging, we obtain

αy(1) = L[C1]y(1)− (γ − 1)αeve
T y(1). (7.2.9)

Also recall from (7.2.7) that(
L[C0]−1 − γ

θT e
J

)
y(0) =

1

α
y(0) (7.2.10)

which implies

αy(0) = L[C0]y(0) +
αγeT y(0)

θT e
θ (7.2.11)

when multiplying through on the left by αL[C0] and rearranging. Multiplying
(7.2.10) through on the left by θT we see that

θTL[C0]−1y(0)− γeT y(0) =
1

α
θT y(0).

Since θTL[C0]−1 = eT , we obtain

(1− γ)eT y(0) =
1

α
θT y(0).

Recalling that eT y(0) = −eT y(1), we now have from (7.2.9) that

αy(1) = L[C1]y(1)− (γ − 1)αeve
T y(1) = L[C1]y(1)− (θT y(0))ev. (7.2.12)

Also, multiplying (7.2.8) on the left by eTv we obtain

γ

θT e
eT y(1) =

1

α
yv.
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Plugging this into (7.2.11) and recalling that eT y(1) = −eT y(0) we obtain

αy(0) = L[C0]y(0)− yvθ. (7.2.13)

Putting together (7.2.12) and (7.2.13), we see that L[y(1)T , y(0)T ]T =
α[y(1)T , y(0)T ]T . Hence [y(1)T , y(0)T ]T is an eigenvector of L corresponding to the
eigenvalue α. 2

Lemma 7.2.12 can now be specialized to the algebraic connectivity of G. This is
done in the following lemma from [18]:

LEMMA 7.2.13 Suppose G is a Type II weighted graph on n vertices with Lapla-
cian L and algebraic connectivity a. Let B0 be the characteristic block of G. Suppose
v is a cut vertex of G. Let C0 denote the set of vertices in the connected compo-
nent of G − v which contains the vertices in B0, and let C1 denote the vertices in
G−C0. Assume, without loss of generality, that L is partitioned as in (7.2.1) where
v corresponds to the last row of L[C1]. Then there exists an γ > 0 such that

1

a
= ρ

(
L[C1]−1 − 1− γ

θT e
J

)
= ρ

(
L[C0]−1 − γ

θT e
J

)
.

Proof: Let y = [y(1)T , y(0)T ]T be a Fiedler vector and suppose yv 6= 0. By
Theorem 7.2.9,

ρ

(
L[C1]−1 +

θT y(0)

θT e(θT eyv − θT y(0))
J

)
=

1

a
. (7.2.14)

From the eigenvalue-eigenvector relationship,

L[C0]y(0) = ay(0) + yvθ. (7.2.15)

Since eTL[C0] = θT , it follows that by multiplying (7.2.15) on the left through by
1
aL[C0]−1 and rearranging we obtain

1

a
y(0) = L[C0]−1y(0) +

yv
a
e. (7.2.16)

Also, multiplying (7.2.15) on the left through by eT we obtain

eTL[C0]y(0) = θT y(0) = aeT y(0) + eT θyv. (7.2.17)

Note that eT y(0) 6= 0 (for otherwise G would be disconnected) and therefore rear-
ranging (7.2.17) we obtain

1

a
=

eT y(0)

θT y(0)− θT eyv
. (7.2.18)

Therefore, substituting (7.2.18) into (7.2.16) and normalizing y so that eT y(0) = 1,
we obtain (

L[C0]−1 +
yv

θT y(0)− θT eyv
J

)
y(0) =

1

a
y(0). (7.2.19)
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Next observe that

yv
θT y(0)− θT eyv

+
θT y(0)

θT e(θT eyv − θT y(0))
=

θT eyv − θT y(0)

θT e(θT y(0)− θT eyv)
= − 1

θT e
.

So setting

γ : = −θT e
(

yv
θT y(0)− θT eyv

)
,

we have from (7.2.14) and (7.2.19)

1
a = ρ

(
L[C1]−1 + θT y(0)

θT e(θT eyv−θT y(0))
J
)

= ρ
(
L[C1]−1 − 1−γ

θT e
J
)

= λi
(
L[C0]−1 − γ

θT e
J
)
,

(7.2.20)

for some integer 1 ≤ i ≤ n (here λn is the largest eigenvalue). Now if

λi
(
L[C0]−1 − γ

θT e
J
)
< λn

(
L[C0]−1 − γ

θT e
J
)
, then there exists γ̂ > γ such that

ρ

(
L[C1]−1 − 1− γ̂

θT e
J

)
= λn

(
L[C0]−1 − γ̂

θT e
J

)
=

1

α
,

since the left-hand side of (7.2.20) is increasing in γ and the right-hand side of
(7.2.20) is nonincreasing in γ̂, and so α is an eigenvalue of L by Lemma 7.2.12. But
then 0 < α < a which contradicts the fact that λ1(L) = 0 and λ2(L) = a. Hence
i = n as desired.

Finally, suppose that yv = 0. Then by Theorem 6.1.10, y(1) = 0 and thus
0 = eT y = eT y(0). We then have that L[C0]y(0) = ay(0), but more importantly
L[C0]−1y(0) = 1

ay(0). Moreover, for all γ > 0,(
L[C0]−1 − γ

θT e
J

)
y(0) =

1

a
y(0)

so that

λn

(
L[C0]−1 − γ

θT e
J

)
≥ 1

a
(7.2.21)

for all γ > 0. Now

ρ

(
L[C1]−1 − 1− γ

θT e
J

)
< λn

(
L[C0]−1 − γ

θT e
J

)
at γ = 0 since C0 is the unique Perron component at v. Observe the left-hand side
tends to ∞ as γ → ∞, while the right-hand side is nonincreasing in γ. Thus for
some γ

ρ

(
L[C1]−1 − 1− γ

θT e
J

)
= λn

(
L[C0]−1 − γ

θT e
J

)
=

1

α

where α 6= 0 is an eigenvalue of L (by Lemma 7.2.12). Hence from (7.2.21) we see
that α ≤ a. However, since λ2(L) = a and α 6= 0 = λ1(L), it follows that α ≥ a.
Thus we conclude α = a. 2
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OBSERVATION 7.2.14 Lemma 7.2.13 is a generalization of Theorem 6.2.12 con-
cerning the algebraic connectivity of Type II trees since θT e in Theorem 6.2.12 is
merely the weight of the edge joining the characteristic vertices of the tree.

We now use the previous two lemmas to generalize Theorem 6.4.1 to graphs. The
following two theorems from [18] investigate the effects on the algebraic connectivity
of graphs when we perturb components at certain cut vertices. The first theorem
deals with Type I graphs, while the second deals with Type II graphs.

THEOREM 7.2.15 Let G be a Type I weighted graph with Laplacian L and z
as the characteristic vertex. Let v be any cut vertex with connected components
C1, C2, . . . , Ck at v. Let Ci1 , Ci2 , . . . Cij be any collection of connected components

at v such that the vertex set C = ∪j`=1Ci` does not contain the vertex set of every

Perron component at v. Form a new graph Ĝ by replacing C with a single connected
component Ĉ at v. Let M := L[C]−1 and let M̂ denote the bottleneck matrix of Ĉ.
Denote the algebraic connectivities of G and Ĝ by a and â, respectively. If M << M̂ ,
then â ≤ a.

Proof: First, suppose v = z. If ρ(M̂) ≤ 1/a, then there are still two or more
Perron components at z. Thus z is still the characteristic vertex of Ĝ, and hence
a = â. Suppose now that ρ(M̂) > 1/a (and still v = z). Then in Ĝ, the unique
Perron component at z is Ĉ. If Ĝ is of Type I, then there exists a cut vertex w ∈ Ĉ
such that ρ(D) = 1/â for some Perron component at w with bottleneck matrix D.
But if C ′ is the component at w containing z with bottleneck matrix D′, then

1

â
= ρ(D) ≥ ρ(D′) > ρ(D0) =

1

a
,

where D0 is the bottleneck matrix for some Perron component at z in G not con-
taining w (the last inequality follows from the fact that D0 << D′). In this case
â < a. Finally, if Ĝ is of Type II, then at z, Ĉ is the characteristic block. Letting
C = Ĝ − Ĉ, then by Lemma 7.2.13 there exists an γ > 0 such that

1

â
= ρ

(
L[C]−1 − 1− γ

θT e
J

)
> ρ

(
L[C]−1 − 1

θT e
J

)
≥ ρ(D0) =

1

a

where D0 is the bottleneck matrix for some Perron component at z in G not con-
taining the vertices in Ĉ. Hence, again, â < a.

Finally, suppose v 6= z and assume without loss of generality that z ∈ Ck. By
the definition of C it follows that z /∈ C. Let C ′ be the component at z containing
v, and let D = C ′ ∩ Ck.
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Observe that

L[C]−1 = M =

 L[Ci1 ]−1 0 0
0 . . . 0
0 0 L[Cij ]

−1


Consider the matrix N = (L[C1∪ . . . Ck∪D∪{v}])−1 which is the bottleneck matrix
for the component at z containing v in G. Let K be the bottleneck matrix for the
component at z containing v in Ĝ. Using Proposition 7.1.6 and the assumption that
M << M̂ , we see that K >> N . The result follows by implementing the same
analysis as used above. 2

EXAMPLE 7.2.16 Consider the graph G below with z and v labeled in accor-
dance with Theorem 7.2.15.

Suppose we replace C with Ĉ to create the graph Ĝ:

Observe that

M =
1

5


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 and M̂ =
1

5


4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4


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and that M << M̂ . Hence Theorem 7.2.15 says that â ≤ a. Note that â = 0.1438
and a = 0.1590.

REMARK 7.2.17 [21] Suppose that in Theorem 7.2.15 that G has the single
characteristic vertex z, that one of the components Ci` is a Perron component at
z, but C does not include all of the Perron components at z. If M << M̂ , then in
fact a(Ĝ) < a(G). Similarly, suppose that G has a single characteristic edge which
is not on any cycle, and that z is a vertex incident to that edge. If C is the Perron
component at z and M << M̂ , then in fact a(Ĝ) < a(G).

We now prove a similar result to that of Theorem 7.2.15 for Type II graphs (see
[18]):

THEOREM 7.2.18 Let G be a Type II weighted graph with Laplacian L and
B0 as the characteristic block. Let v be any cut vertex with connected components
C0, A1, A2, . . . , Ak at v, where C0 is the unique Perron component at v (containing
the vertices in B0). Let C = ∪j`=1Ai` where i1, i2, . . . , ij ∈ {1, 2, . . . , k}. Form a new

graph Ĝ by replacing C with a single connected component Ĉ at v. Let M := L[C]−1

and let M̂ denote the bottleneck matrix of Ĉ. Denote the algebraic connectivities of
G and Ĝ by a and â, respectively. If M << M̂ , then â ≤ a.

Proof: We will prove this by cases: (i) ρ(M̂) = ρ(L[C0]−1), (ii) ρ(M̂) <
ρ(L[C0]−1), and (iii) ρ(M̂) > ρ(L[C0]−1). Let C1 = G −C0. Then by Lemma 7.2.13,
there exists γ > 0 such that

1

a
= ρ

(
L[C1]−1 − 1− γ

θT e
J

)
= λn

(
L[C0]−1 − γ

θT e
J

)
.

Suppose ρ(M̂) = ρ(L[C0]−1). Then Ĝ is a Type I graph with characteristic vertex
v, and C0 and Ĉ as Perron components. Thus

1

â
= ρ(L[C0]−1) > λn

(
L[C0]−1 − γ

θT e
J

)
=

1

a
.

Hence â < a.
Now suppose ρ(M̂) < ρ(L[C0]−1). Then the Perron component at v is still C0

and the Perron component at every other vertex contains vertices in B0. Letting
Ĉ1 = Ĝ − C0, we see from Lemma 7.2.13 that there exists γ̂ > 0 such that

1

â
= ρ

(
L[Ĉ1]−1 − 1− γ̂

θT e
J

)
= λn

(
L[C0]−1 − γ̂

θT e
J

)
. (7.2.22)

Noting that

ρ

(
L[Ĉ1]−1 − 1− γ̂

θT e
J

)
> ρ

(
L[C1]−1 − 1− γ̂

θT e
J

)
, (7.2.23)

we see that in order for the right-hand side of (7.2.22) to equal the right-hand side
of (7.2.23), it must be that γ̂ < γ since the left-hand side of (7.2.22) is increasing
in γ̂ and the right-hand side of (7.2.22) is nonincreasing in γ̂. Consequently,

1

â
= λn

(
L[C0]−1 − γ̂

θT e
J

)
≥ λn

(
L[C0]−1 − γ

θT e
J

)
=

1

a
.
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Hence â ≤ a.
Finally, suppose ρ(M̂) > ρ(L[C0]−1). Then if Ĝ is a Type I graph where the

characteristic vertex z ∈ Ĉ, then

1

â
= ρ(D) ≥ ρ(L[V ]−1),

where D is the bottleneck matrix for some Perron component at z in Ĝ and V is
the component at z containing v. But C0 ⊂ V , so

1

â
≥ ρ(L[V ]−1) > ρ(L[C0]−1) ≥ λn

(
L[C0]−1 − γ

θT e
J

)
=

1

a
, (7.2.24)

hence â < a. If Ĝ is of Type II, then at v, Ĉ is the characteristic block. Thus by
Lemma 7.2.13 there exists t > 0 such that

1

â
= λn

(
L[Ĉ]−1 − t

θT e
J

)
= ρ

(
L[Ĝ − Ĉ]−1 − 1− t

θT e
J

)
> ρ(L[C0]−1),

where the last inequality follows from the fact that C0 ∪ {v} ⊂ Ĝ − Ĉ, so that by
Proposition 7.1.6 (L[Ĝ − Ĉ]−1− 1−t

θT e
J) >> L[C0]−1. Continuing with (7.2.24), note

that

ρ(L[C0]−1) ≥ λn

(
L[C0]−1 − γ

θT e
J

)
=

1

a
.

Hence â < a. 2

We close this section by sharpening the results of Theorem 6.1.10 which shows
how the valuations of the cut vertices of a graph G increase / decrease as we travel
throughout the graph. In the lemma and theorem from [45] below, we investigate
the valuations of the vertices of G that are not cut vertices and their relationship
to the valuations of the cut vertices.

LEMMA 7.2.19 Let v be a cut vertex of a connected weighted graph G, and let
C1, . . . , Ck+1 be the connected components of G − v. Let C be the set of vertices of
G − Ck+1. Then for each vertex of Ci, 1 ≤ i ≤ k, the corresponding row of L[C]−1

dominates entrywise the row corresponding to the vertex v.

Proof: Let w be the sum of the weights of the edges which join v to a vertex
in Ck+1. From Lemma 7.2.7, we find that without loss of generality, L[C]−1 can be
written as

L[C]−1 =

[
L[C − v]−1 0

0T 0

]
+

1

w
J

where the last row and column correspond to vertex v. The result now follows from
the fact that L[C − v]−1 is nonnegative. 2
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THEOREM 7.2.20 Let G be a weighted graph and suppose B is a block of G such
that every vertex in B has positive valuation. Let v be the cut vertex in B such that
every path from a vertex in B to the characteristic vertex/block passes through v.
Then v is the unique vertex in B with minimum valuation.

Proof: From Theorems 7.2.4 and 7.2.9, and Remark 7.2.10, the vector of val-
uations of B is obtained from the Perron vector of a positive matrix of the form
L[C]−1 + xJ where C is the set of vertices corresponding to the complement of the
connected component at v containing vertices in B0 if G is of Type II, or containing
the vertex z if G is of Type I. From Lemma 7.2.19 we have that for each vertex u 6= v
of C, the row of L[C]−1 corresponding to u entrywise dominates the row of L[C]−1

which corresponds to vertex v. It now follows that the entry in the Perron vector for
L[C]−1 + xJ corresponding to the vertex u is larger than the entry corresponding
to v. 2

REMARK 7.2.21 We saw in Theorem 6.1.10 that as one travels away from the
characteristic vertex / block of a graph, the valuations of the vertices either increase,
decrease, or are identically zero. Theorem 7.2.20 expands upon this by showing that
the valuations of the vertices within a block B of a graph are bounded above and
below by the cut vertices of G in B that have maximum and minimum valuations,
respectively.

EXAMPLE 7.2.22 Consider the graph below where each vertex is labeled with
its characteristic valuation. Observe that the valuations of each non-cut vertex x
are bounded above and below by the valuations of the cut vertices of the block in
which x lies whose valuations are maximum and minimum.

Exercises:

1. (See [44]) (a) Let G be a connected graph having cut vertex v. Suppose that
the components at v are C1, . . . , Cm, with bottleneck matrices B1, . . . , Bm, respec-
tively. If Cm is a Perron component at v, show that there exists a unique γ ≥ 0 such
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that

ρ




B1 0 . . . 0 0
0 B2 . . . 0 0
. . . . . . . . . . . .
0 . . . 0 Bm−1 0

0 0 . . . 0 0

+ γJ

 = λn(Bm − γJ) =
1

a(G)
,

and that γ = 0 if and only if there are two or more Perron components at v.

(b) Show that y is a Fiedler vector for G if and only if y can be written
[y(1)|y(2)]T where y(1) is an eigenvector of

B : =


B1 0 . . . 0 0
0 B2 . . . 0 0
. . . . . . . . . . . .
0 . . . 0 Bm−1 0

0 0 . . . 0 0

+ γJ

corresponding to ρ(B), y(2) is an eigenvector of Bm− γJ corresponding to λn, and
where eT y(1) + eT y(2) = 0.

2. (See [44]) Let G be a connected graph with cut vertex v. Suppose that we have
two components C1, C2 at v with corresponding Perron values ρ1 and ρ2, respec-
tively. Show the following:

(a) If ρ1 ≤ ρ2, then a(G) ≤ 1/ρ1.

(b) If a(G) = 1/ρ1, then ρ1 = ρ2 and both C1 and C2 are Perron components at v.

3. (See [43]) Let G be a connected graph with algebraic connectivity a. Let v be a
cut vertex of G with components C1, . . . , Cm at v, and suppose that C1 is a Perron
component at v. Then there is a unique γ ≥ 0 such that

λn(L[C1]−1 − γJ) = ρ(L[C2]−1 ⊕ . . .⊕ L[Cm]−1 ⊕ [0] + γJ) =
1

a

4. (See [43]) Let G be a connected graph with cut vertex v. Suppose that the com-
ponents at v are C1, . . . , Cm, with bottleneck matrices B1, . . . , Bm, respectively.

(a) Suppose ρ(Bi) ≥ β for at least two distinct i’s between 1 and m. Show
that a(G) ≤ 1/β.

(b) Suppose ρ(Bi) > β for at least one i. Show that a(G) < 1/β.
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7.3 Minimizing the Algebraic Connectivity of Graphs
with Fixed Girth

Now that we are able to use bottleneck matrices to compute the algebraic con-
nectivity of graphs, we use these results along with the perturbation results from
the previous section to determine which graphs on n vertices and girth g, with
n ≥ 3g−1, will have the smallest algebraic connectivity. To this end we require two
important definitions:

DEFINITION 7.3.1 The girth of a graph is the length of its smallest cycle.

DEFINITION 7.3.2 A graph is unicyclic if it has exactly one cycle.

To achieve our goal of minimizing the algebraic connectivity of graphs with n
vertices and girth g, we will make use of the following observation from [18] which
is based off Theorems 7.2.15 and 7.2.18:

OBSERVATION 7.3.3 Let G be a connected unicyclic graph with Laplacian ma-
trix L and let C be a connected component at some vertex u which contains the
vertices on the cycle. For each vertex i on the cycle, suppose there are mi compo-
nents at vertex i not including the vertices on the cycle. Let Bi be the collection of
vertices of the mi components at vertex i. Modify C to form Ĉ by replacing those
mi components by a single path on |Bi| vertices at vertex i. Let the new graph be
denoted by Ĝ, and let L̂ denote its Laplacian. Then L[C]−1 << L̂[Ĉ]−1.

We now present a general proposition from [18] which shows which graphs of
fixed girth g have the minimum algebraic connectivity:

PROPOSITION 7.3.4 Among all connected graphs on n vertices with fixed girth
g, the algebraic connectivity is minimized by a unicyclic graph with girth g having
the following property: There are at most two connected components at every vertex
on the cycle, and the component not including the vertices on the cycle (if such a
component exists) is a path.

Below we present an illustration of what such a graph would look like:

(7.3.1)
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Proof: Recall from Theorem 5.1.2 that removing an edge from a graph cannot
increase the algebraic connectivity. Thus when considering graphs of girth g, we may
restrict ourselves to unicyclic graphs whose only cycle contains g vertices. There-
fore, let G be any connected unicyclic graph on n vertices with girth g. Suppose the
vertices on the cycle are labeled 1, 2, . . . , g. Since G is unicyclic, for each vertex j,
(1 ≤ j ≤ g), the connected components at j not containing the vertices on the cycle
are trees (possible empty). Thus the union of these components is a forest. Let Fj
be the union of the connected components at j not containing the other vertices on
the cycle. Fix j and suppose that Fj is not a path. If G is a Type I graph and the
characteristic vertex z is such that z /∈ Fj ∪ {j}, then replace Fj by a path on |Fj |
vertices. Similarly, if G is a Type II graph and the characteristic block B0 is such
that B0 ⊆\ Fj , then replace Fj by a path on |Fj | vertices. In either case, apply The-
orems 7.2.15 and 7.2.18 to produce a unicyclic graph whose algebraic connectivity
is at most that of G.

Suppose now that G is of Type I and z ∈ Fj∪{j}. Then one of the following holds:

(i) some component C at z not containing the vertices on the cycle is not a path,

(ii) z 6= j and in the component C at z containing the cycle, the tree at j con-
taining z is not a path, or

(iii) all of the components at z are either of form (i) or (ii), and deg z ≥ 3 (otherwise
Fj is a path).

In case (i), we apply Theorem 7.2.15 and replace such a component at z with a
path on |C| vertices. In case (ii), we apply Theorem 7.2.18 and and replace C by
a path in accordance with Observation 7.3.3. In case (iii), since G is of Type I, z
has at least two Perron components, thus at least one of which must be a path.
So replacing the remaining components at z by a single unicyclic graph in which
each of the remaining paths are adjoined to the end of the path connected to the
cycle, we form a unicyclic graph whose algebraic connectivity by Theorem 7.2.15 is
at most that of G.

Now suppose G is of Type II and B0 ⊆ Fj . In this case, B0 is an edge uv in Fj
(without loss of generality, let d(u, j) < d(v, j)). Since Fj is not a path, either the
component at u containing v is not a path, or in the component at v containing u,
the tree at j not containing the vertices on the cycle is not a path. In either case, we
can replace the corresponding components with a path and apply Theorem 7.2.18
to produce a unicyclic graph whose algebraic connectivity is at most that of G. 2

At this point, we know so far that of all connected graphs on n vertices with
girth g, the graph with the minimum algebraic connectivity will be in the form
of (7.3.1). The goal of this section is to refine Proposition 7.3.4 by showing which
subset of graphs of the form (7.3.1) have minimum algebraic connectivity. We will
show that of all graphs of girth g on n vertices, the graph with minimum algebraic
connectivity is the graph Cn,g below which is the g-cycle with a path of length n−g
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joined at exactly one vertex on the cycle:

(7.3.2)

We prove this theorem for several cases. We begin with the case g = 3. If g = 3,
then by Proposition 7.3.4, the graph with the minimum algebraic connectivity will
be of the form Gk,` pictured below:

(7.3.3)

Thus for the case g = 3, our aim is to show that the graph Gn−2,1 is the graph on
n vertices with minimum algebraic connectivity:

(7.3.4)

We now prove a lemma and corollary from [18] concerning the Perron components
of Gn−2,1.

LEMMA 7.3.5 For the graph Gn−2,1, if n is even, then vertices n
2 and n+2

2 have
mutual Perron components. If n is odd, then vertices n−1

2 and n+1
2 have mutual

Perron components.
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Proof: First we note that the Perron value of the bottleneck matrix for the
component B at vertex k (k = 1, 2, . . . , n− 2) containing vertices n− 1 and n is the
same as that for the component B′ at k containing vertices n−1 and n of the graph
G with the edge (n − 1), n deleted. This is because in B′, vertices n − 1 and n are
isomorphic, hence the entries in the Perron vector are equal, from which it follows
that the Perron vector for B′ also serves as the Perron vector for B. For even n, the
components at vertex n

2 are a path on n−2
2 vertices and the following graph:

The Perron value of the second component remains the same even if the edge (n−
1), n is deleted. But this component (with the edge deleted) is a tree which contains
a path on n−2

2 vertices. Thus it follows that the Perron component at vertex n
2

contains this component (pictured above) and this contains vertex n+2
2 . At vertex

n+2
2 , the components are a path on n

2 vertices, and the graph on n−2
2 vertices below:

Applying similar arguments as in the case above for vertex n
2 , it follows that the

path on n
2 vertices is a Perron component. So the Perron component at vertex n+2

2
contains vertex n

2 . The argument for the case where n is odd is similar. 2

In the following corollary from [18], let Pk be the bottleneck matrix for a component
which is a path on k vertices. This corollary follows directly from Theorem 6.2.12.

COROLLARY 7.3.6 Let a be the algebraic connectivity of Gn−2,1. If n is even,
then a = 1/ρ(Pn

2
−γJ) for some 0 < γ < 1, while if n is odd then a = 1/ρ(Pn−1

2
−γJ)

for some 0 < γ < 1.

In our attempt to show that Gn−2,1 is the graph on n vertices with girth g = 3
having minimum algebraic connectivity, we prove the following lemma from [18]
which gives us important insight as to the algebraic connectivity of Gk,k.

LEMMA 7.3.7 Suppose that some Fiedler vector of the Laplacian for Gk,` gives
vertices 1, 2, . . . , k a positive valuation, vertices k + 1, k + 2, . . . , k + ` a negative
valuation, and vertices k + `+ 1, k + `+ 2, . . . , n a zero valuation. Then k = ` and
the algebraic connectivity of Gk,k is given by a = 1/ρ(Pk − 2

3J).
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Proof: The Laplacian L for Gk,` can be written as

L =

 P−1
k + eke

T
k −ekeT` −ekeTn−`−k

−e`eTk P−1
` + e`e

T
` −e`eTn−`−k

−en−`−keTk −en−`−keT` P−1
n−`−k + en−`−ke

T
n−`−k


and the Fiedler vector as  u

−v
0


where u and v are entry-wise positive. Then by the eigenvalue-eigenvector relation-
ship, we have

P−1
k u+ (uk + v`)ek = au. (7.3.5)

Mulitiplying both sides by 1
aPk and recalling that Pkek = e, we obtain

Pku−
(
uk + v`
a

)
e =

1

a
u. (7.3.6)

Similarly,

P`v −
(
uk + v`
a

)
e =

1

a
v. (7.3.7)

Further, multiplying both sides of (7.3.5) by eT and recalling that eT ek = 1, we
have

eTP−1
k u+ (uk + v`) = aeTu.

Since eTP−1
k u = uk, it follows that 2uk + v` = aeTu, and similarly uk + 2v` = aeT v.

Thus we have [
2 1
1 2

] [
uk
v`

]
= a

[
eTu
eT v

]
.

Since eTu = eT v, it follows that uk = v` = a
3e
Tu. Consequently, uk+v`

a = 2
3e
Tu.

From (7.3.6) and (7.3.7) we obtain(
Pk −

2

3
J

)
u =

1

a
u and

(
P` −

2

3
J

)
v =

1

a
v.

Since u and v are Perron vectors and the corresponding Perron values are both 1
a ,

it follows that k = ` and a = 1/ρ(Pk − 2
3J). 2

We now use the above lemma to prove the following proposition from [18] which
shows that if Gk,` is of Type II with the 3-cycle as the characteristic block, then
Gn−2,1 is the unique graph of the form Gk,` having minimum algebraic connectivity.

PROPOSITION 7.3.8 Suppose that Gk,` is of Type II and that some Fiedler
vector has all nonzero entries, with the 3-cycle being the characteristic block. Let a
be the algebraic connectivity of Gk,` and let a′ be the algebraic connectivity of Gn−2,1.
Then a′ < a.
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Proof: The Laplacian L for Gk,` can be written as

L =

 P−1
k + eke

T
k −ekeT` −ekeTn−`−k

−e`eTk P−1
` + e`e

T
` −e`eTn−`−k

−en−`−keTk −en−`−keT` P−1
n−`−k + en−`−ke

T
n−`−k


and the Fiedler vector as [

u
−v

]
where u is positive and of order k + `, while v is positive and of order n − k − `.
Then by the eigenvalue-eigenvector relationship, we have([

P−1
k 0

0 P−1
`

]
+ (ek − ek+1)(ek − ek+1)T

)
u+ v1(ek + ek+1) = au (7.3.8)

and
P−1
n−k−`v + (v1 + uk + uk+1)e1 = av. (7.3.9)

Mulitplying (7.3.9) through on the left by 1
aPn−k−` and rearranging, we find that

Pn−k−`v −
(v1 + uk + uk+1)

a
e =

1

a
v. (7.3.10)

Multiplying (7.3.9) through on the left by eT we also find that eTP−1
n−k−`v+(v1+uk+

uk+1) = aeT v. Recalling that eTP−1
n−k−`v = v1, it follows that 2v1+uk+uk+1 = aeT v.

Substituting this into (7.3.10) we obtain(
Pn−k−` −

(
v1 + uk + uk+1

2v1 + uk + uk+1

)
J

)
v =

1

a
v. (7.3.11)

Since v1, uk, and uk+1 are all positive, we have the coefficient of J is between 1
2 and

1. Therefore a = 1/ρ(Pn−k−`− tJ) for some 1
2 < t < 1. Observe that for fixed t, the

value of a increases as n− k − ` decreases. In particular, for all 1
2 < t < 1, if

n− k − ` ≤


n−2

2 , if n is even

n−3
2 , if n is odd

(7.3.12)

then a′ < a by Corollary 7.3.6. Now consider (7.3.8) and observe that([
P−1
k 0

0 P−1
`

]
+ (ek − ek+1)(ek − ek+1)T

)−1

=

[
Pk 0
0 P`

]
− 1

3

[
J −J
−J J

]

From (7.3.8), we obtain([
Pk 0
0 P`

]
− 1

3

[
J −J
−J J

])
u− v1

a
e =

1

a
u.
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Using similar reasoning that we used to obtain (7.3.11), we see that([
Pk 0
0 P`

]
− 1

3

[
J −J
−J J

]
− v1

2v1 + uk + uk+1
J

)
u =

1

a
u.

Since v1, uk, and uk+1 are all positive, clearly the coefficient for J is between 0 and
1
2 . Therefore

a = 1/ρ

([
Pk 0
0 P`

]
− 1

3

[
J −J
−J J

]
− tJ

)
for some 0 < t < 1

2 . Note that

a = 1/ρ

([
Pk 0
0 P`

]
− 1

3

[
J −J
−J J

]
− tJ

)

< ρ

([
Pk 0
0 P`

]
− 1

3

[
J −J
−J J

])
≤ ρ

([
Pk 0
0 P`

])
.

Observing that the last expression is an increasing function of k and `, it follows
that if

max(k, `) ≤


n−2

2 , if n is even

n−3
2 , if n is odd

(7.3.13)

then a′ < a by Corollary 7.3.6. On the other hand, if

max(k, `) ≥


n
2 , if n is even

n−1
2 , if n is odd

then we have

n− k − ` ≤ n− 1−max(k, `) ≤


n−2

2 , if n is even

n−1
2 , if n is odd

. (7.3.14)

By (7.3.12) and (7.3.14), we see that the only case we have not considered is when n
is odd, min(k, `) = 1, and max(k, `) = n−1

2 . In this case, we have the graph (without
loss of generality, k = 1 and ` = n−1

2 ):



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Bottleneck Matrices for Graphs 315

It is not difficult to see that every Fiedler vector yields a valuation of zero for the
vertex on the triangle which is not a cut vertex, contrary to our hypothesis. Hence
a′ < a as desired. 2

At this point, to achieve our goal of proving that Gn−2,1 is the graph on n vertices
and girth g = 3 with minimum algebraic connectivity, we still must prove this for
the cases where (i) Gk,` is of Type I, and (ii) Gk,` is of Type II but the 3-cycle is not
the characteristic block. To this end, we need the following lemma from [18]:

LEMMA 7.3.9 Consider the graph H given below with Laplacian matrix L1, and
let C = {1, 2, . . . , k + `}. Consider also the graph given in (7.3.4) but relabeled via
i→ n− i+ 1 for 1 ≤ i ≤ n, with Laplacian matrix L2. Then L1[C]−1 << L2[C]−1.

(7.3.15)

Proof: We have

L1[C] =

[
P−1
k 0

0 P−1
`

]
+ (ek − ek+1)(ek − ek+1)T ,

so that

L1[C]−1 =

[
Pk − 1

3J
1
3J

1
3J P` − 1

3J

]
.

Also

L2[C]−1 = F − 1

3
F (e1 − e2)(e1 − e2)TF,

where

F =


k + `− 1 k + `− 2

eeT1 Pk+`+2

k + `− 2 k + `− 1

Pk+`+2e1e
T Pk+`+2

 .
It is now straightforward to verify that (L1[C])−1 << (L2[C])−1. 2

We now have enough information to prove that Gn−2,1 is the graph on n vertices
and girth g = 3 with minimum algebraic connectivity. We do so in the following
theorem from [18]:

THEOREM 7.3.10 The graph on n vertices with girth 3 of minimum algebraic
connectivity is Gn−2,1.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

316Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

Proof: From Proposition 7.3.4, we have that the graph of girth 3 with mini-
mum algebraic connectivity has the form of Gk,` as in (7.3.3). If some Fiedler vector
valuates the 3-cycle with both positive and negative valuations, then the algebraic
connectivity of Gk,` exceeds that for Gn−2,1 by Lemma 7.3.7 and Proposition 7.3.8.
It follows that the minimizer is either of Type I, or that there is an edge not on
the 3-cycle in which the vertices incident to that edge have mutual Perron com-
ponents. In either case, there is a vertex x on the 3-cycle with the property that
we may replace the component containing the other vertices on the 3-cycle at x by
the corresponding component at x of Gn−2,1 which, by Lemma 7.3.9 and Theorem
7.2.15, will lower the algebraic connectivity. Hence Gn−2,1 has minimum algebraic
connectivity. 2

We devote the remainder of this section to generalizing Theorem 7.3.10 to graphs
whose girth is g ≥ 4 (restricting ourselves to n ≥ 3g− 1.) To this end, we recall the
graph Cn,g in (7.3.2) and we begin with a lemma from [21] regarding the algebraic
connectivity of such graphs.

LEMMA 7.3.11 Fix n and suppose that n ≥ (3g−1)/2 with g ≥ 4. Then a(Cn,g) >
a(Cn,g−1).

Proof: Consider the graph Cn,g with n ≥ (3g−1)/2, and let v be the only vertex
of degree 3. At v there are exactly two components, say C1 and C2, and suppose C2

is the component that is a path. Since |C2| = n− g, it follows that

ρ(L[C1]−1) =
1

2[1− cos(πg )]
,

and

ρ(L[C2]−1) =
1

2[1− cos( π
2n−2g+1)]

.

(See the proof of Theorem 5.1.7 for ideas relating to these quantities.) Since n ≥
(3g−1)/2, it follows that C2 is the Perron component at v and so by Theorem 7.2.4
it follows that the characteristic vertex/block of Cn,g lies on the path. Replace C1

in Cn,g with C ′ pictured below, thus creating Cn,g−1.
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Let M and M ′ be the bottleneck matrices for C1 and C ′, respectively.
Letting Qg−1 be the bottleneck matrix for any vertex on a cycle of g−1 vertices,

we see that

M ′ =

[
J +Qg−1 e

eT 1

]
It is easy to check that M ′ dominates M entrywise and the domination is strict in
the last row. Thus by Remark 7.2.17, it follows that a(Cn,g) > a(Cn,g−1). 2

Our next lemma from [21] gives us insight as to how the algebraic connectivity
of a tree changes when paths within a tree are altered. Since unicylic graphs closely
resemble trees, this lemma will be useful to us in proving subsequent theorems. For
notational simplicity, we will let y(i) denote the ith entry of the vector y (instead
of yi as we normally do).

LEMMA 7.3.12 Let T be a tree with vertex v such that there are least two com-
ponents at v which are paths. Assume that there is a Fiedler vector y such that
y(v) > 0 and that both of these paths are positive components at v. Let the path
lengths be `1 and `2 with `1 ≥ `2. Then modifying T so that those paths at v have
lengths `1 + 1 and `2 − 1, respectively, strictly decreases the algebraic connectivity.

Proof: Suppose v is a vertex of T such that two of the components at v are paths,
say C1 = P`1 and C2 = P`2 . Label the vertices in C1 as v1, v2, . . . , v`1 (in increasing
order according to the distance from v), and the vertices in C2 as w1, w2, . . . , w`2 (in
the same manner). Suppose y is a Fiedler vector of T that valuates the vertices of C1

and C2 positively (the existence of such a vector is guaranteed by the hypothesis).
We claim that for each i = `1 − `2 + 1, . . . , `1 that

y(vi) ≥ y(wj), (7.3.16)

where j = 1, . . . , `2−`1 + i if `1 > `2, or j = 1, . . . , `2−`1 + i−1 if `1 = `2. Since the
vertices in C1 and C2 are valuated positively, we have the following list of equations:
y(v`1−1) = c1y(v`1), y(v`1−2) = c2y(v`1−1),....,y(v) = c`1y(v1), where c1, c2, . . . , c`
depend only on a and the entries of the Laplacian matrix L. It follows from Theorem
6.2.20 that 0 ≤ cj ≤ 1 for 1 ≤ j ≤ `1. Similarly we have y(w`2−1) = c1y(w`2),
y(w`2−2) = c2y(w`2−1),....,y(v) = c`2y(w1). We can now do back-substitution into
the previous equations in order to verify the claim.

Note that by the hypothesis, the characteristic vertex (vertices) of T does not
contain any vertices on C1 or C2. If T is of Type I let u be the characteristic vertex
while if T is of Type II let u be the characteristic vertex which is farther from v.
Let B be the bottleneck matrix at u containing v (and C1 and C2). Let B̂ be the
bottleneck matrix for the component obtained by deleting the edge w`2 , w`2−1 and
adding the edge w`2 , v`1 . We claim that ρ(B̂ − γJ) > ρ(B − γJ) for all 0 < γ < 1.
Let z be an eigenvector associated with ρ(B−γJ) := r. Since z is a subvector of the
Fiedler vector corresponding to T in the positions given by the component being
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perturbed, it follows that for a vertex x in that component we have z(x) = y(x).
Observe that we may write

B =

[
1 +Mw`2−1,w`2−1

eTw`2−1
M

MeTw`2−1
M

]
and B̂ =

[
1 +Mv`1 ,v`1

eTw`1
M

MeTw`1
M

]
where M is a fixed entry-wise nonnegative and positive definite matrix that corre-
sponds to the vertices which are not incident to the edge deleted or added (here the
first row of B and B̂ corresponds to the vertex w`2). Hence

zT (B̂ − γJ)z − zT (B − γJ)z = y(w`2)2(Mv`1 ,v`1
−Mw`2−1,`2−1

)

+2y(w`2)(eTv`1
Mŷ − eTv`1Mŷ), (7.3.17)

where z = [y(w`2)|ŷ]T is partitioned conformally with B and B̂. Moreover, from the
eigenvalue-eigenvector equation for r and B − γJ , it follows that

y(w`2)(Mew`2−1
− γe) + (M − γJ)ŷ = rŷ.

Rearranging and looking at the rows corresponding to v`1 and w`2−1, respectively,
we obtain

eTv`1
Mŷ = rŷ(v`1)− y(w`2)Mv`1,w`2−1

+ r + reT ŷ

and
eTv`2−1

Mŷ = rŷ(v`2−1)− y(w`2)Mv`2−1,w`2−1
+ r + reT ŷ.

Substituting these into (7.3.17) yields

zT (B̂ − γJ)z − zT (B − γJ)z =

y(w`2)2(Mv`1 ,v`1
+Mw`2−1,`2−1

− 2Mv`1 ,w`2−1
) + 2y(w`2)r(ŷ(v`1)− ŷ(w`2−1)) > 0

since ŷ(v`1) ≥ ŷ(w`2−1) by (7.3.16), and Mv`1 ,v`1
+ Mw`2−1,`2−1

> 2Mv`1 ,w`2−1
since

M is positive definite. Thus ρ(B̂ − γJ) > ρ(B − γJ). Therefore by Lemma 7.2.13 ,
the algebraic connectivity decreases. 2

We are now ready to prove two important claims from [21]. These claims consider
unicyclic graphs like those in Figure (7.3.1) and investigate the paths beginning at
specific vertices of the cycle. Since unicyclic graphs closely resemble trees, the proofs
of these claims make use of Exercises 6 to 8 from Section 6.4.

CLAIM 7.3.13 Let G be a unicyclic graph on n vertices with cycle [1, 2, . . . , g, 1]
and assume that G is not isomorphic to Cn,g. Suppose that for i = 1, . . . , g, the
component at vertex i not containing any vertex of the cycle is a path, say Pi. Let
|P1| = max{|Pi| : i = 1, . . . , g}, and suppose that |P1| ≥ (g − 1)/2.

(i) If g is odd, then a(G) ≥ a(Cn,g). The inequality is strict if either
(a) |P1| > (g − 1)/2 or
(b) |P1| = (g−1)/2 and |Pk| > 0, for some k ∈ {2, . . . , g}, k 6= (g+1)/2, (g+3)/2.

(ii) If g is even, assume that at least one of |Pi|, i = 1, . . . , g, i 6= (g + 2)/2, is pos-
itive. Then a(G) > a(Cn,g).
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Proof: (i) Let T be the tree obtained by deleting the edge (g+1)/2, (g+3)/2 from
G; note that a(G) ≥ a(T ). Let T ∗ be obtained from T by replacing the components
of T at vertex 1 by paths on the same number of vertices; applying Exercise 8 of Sec-
tion 6.4 to T at vertex 1 we get a(T ∗) ≤ a(T ). Let T1 be a tree on n vertices such that
T1 has exactly one vertex, call it 1, of degree 3 and the components of T1 at vertex
1 are paths P ′1, P ′2, and P ′3, where |P ′3| > |P ′2| = |P ′1| = (g− 1)/2. Applying Exercise
7 of Section 6.4 we have a(T1) ≤ a(T ∗). Thus we have a(T1) ≤ a(T ∗) ≤ a(T ). Note
that if (a) holds then necessarily there are at least two components in T (and hence
in T ∗) at vertex 1 with more than (g − 1)/2 vertices, so that in fact a(T1) < a(T ∗)
by Exercise 7 of Section 6.4. If (b) holds and there are at least two components in
T at vertex 1 with more than (g− 1)/2 vertices, then again a(T1) < a(T ∗), while if
(b) holds and there is just one component in T at vertex 1 with more than (g−1)/2
vertices, then by Exercise 8 of Section 6.4 it follows that a(T ∗) < a(T ) since the
Perron component at vertex 1 in T is not a path. Thus we see that if either (a) or
(b) holds, then a(T1) < a(T ). Case (i) is proven if we can show a(Cn,g) = a(T1).
To this end, observe that the characteristic vertex (vertices) of T1 lies on P ′3 since
P ′3 is the longest path (|P ′3| > (g − 1)/2) among the three. Thus any Fiedler vector
valuates the end vertices of P ′1 and P ′2 equally. Therefore adding an edge between
those two end vertices yields a graph with the same algebraic connectivity since by
the eigenvalue-eigenvector relationship the Fiedler vector would be the same. But
the graph created is precisely Cn,g, hence a(Cn,g) = a(T1), yielding the result in
Case (i).

(ii) Let |Pk| > 0 for some 2 ≤ k ≤ g/2. Let T be the tree obtained by deleting the
edge g/2, (g+2)/2 from G and note that a(G) ≥ a(T ). Now we proceed as in (i) above
to obtain a(T ) ≥ a(Cn,g+1). Applying Lemma 7.3.11 yields a(Cn,g) < a(Cn,g+1). 2

CLAIM 7.3.14 Let G be a unicyclic graph of girth g on n vertices with cycle
[1, 2, . . . , g, 1]. Suppose that n ≥ 3g − 1 and that for i = 1, . . . , g, the component
at vertex i not containing any vertex of the cycle is a path, say Pi. Suppose that
max{|Pi| : i = 1, . . . , g} < g/2. Then a(G) ≥ a(Cn,g) where equality holds if and
only if G is isomorphic to Cn,g.

Proof: Suppose that G is not isomorphic to Cn,g. Let T be the tree obtained
from G by deleting the edge 1, g from the cycle, and note that a(T ) ≤ a(G). Observe
that T is simply the path [1, . . . , g] with different paths Pi attached to each vertex i,
i = 1, . . . , g. Since |Pi| < g/2 for each i, it follows that the Perron branch at vertex
i is not Pi. Thus the characteristic vertex (vertices) of T is located on the path
[1, . . . , g]. Applying Exercise 6 of Section 6.4 reveals that there exists a vertex k
such that if T ′ is the tree obtained by taking the path [1, . . . , g] and then attaching
the paths P2, . . . , Pk to vertex 1 and attaching paths Pk+1, . . . , Pg−1 to vertex g,
then a(T ′) ≤ a(T ). Since n ≥ 3g − 1, it follows that at least one of P2, . . . Pg−1 is
nonempty. So by Remark 7.2.17 we actually have strict inequality, i.e. a(T ′) < a(T ).
Exercise 6 of Section 6.4 also shows that the characteristic vertex (vertices) of T ′
lies on the path [1, . . . , g] and if it is a single vertex, it is neither 1 or g. In particular,
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for a Fiedler vector y, we have y1yg < 0. Moreover, the vertices on the (non-Perron)
paths attached to vertex 1 all have positive characteristic valuation if and only if
y1 > 0. Similary, the vertices on the (non-Perron) paths attached to vertex g all
have negative characteristic valuation if and only if yg < 0.

Let n1 and n2 be the number of vertices in {P1, . . . , Pk} and {Pk+1, . . . , Pg}
respectively. Since n ≥ 3g − 1, it follows that either n1 ≥ g or n2 ≥ g. Without
loss of generality, suppose n1 ≥ g and that y1 > 0 so that the vertices on the paths
{P1, . . . , Pk} are all valuated positively. Again using the fact that n ≥ 3g − 1 but
also recalling max{|Pi| : i = 1, . . . , g} ≤ (g − 1)/2, we have k ≥ 3. Without loss of
generality, suppose that |P1| ≥ |P2| ≥ . . . ≥ |Pk|. Since the vertices on these paths
all have the same sign in their characteristic valuations, it follows from Lemma
7.3.12 that extending the length (by one) of a longer path (P1 or P2) while de-
creasing the length (by one) of a shorter path (any of P3, . . . , Pk) strictly decreases
the algebraic connectivity. Iterate this process until we have constructed a tree T ′′
whose non-Perron components at vertex 1 consist of two paths P ′′1 and P ′′2 each of
length bg/2c, and possibly some other paths P ′′3 , . . . , P

′′
j each of length less than

g/2, and such that the vertex sets P1 ∪ . . . ∪ Pk and P ′′1 ∪ . . . ∪ P ′′j have the same
number of vertices. Note that a(T ′′) < a(T ′). Denote the Perron component at
vertex 1 in T ′′ by C, and form T ∗ by replacing C at vertex 1 by a component
consisting of a path on |C| vertices; note that this path is the unique Perron com-
ponent at vertex 1 in T ∗. Applying Exercise 8 of Section 6.4 at vertex 1 of T ′′ we
find that a(T ∗) ≤ a(T ′′). Finally, construct T̂ from T ∗ by replacing the components
P ′′1 ∪ . . . ∪ P ′′j by a single component D on the same number of vertices such that
D has a single vertex v of degree 3, while all others have smaller degree, and such
that the two branches at v not containing vertex 1 are P ′′1 and P ′′2 . By Theorem
7.2.15, we conclude that a(T̂ ) ≤ a(T ∗). Further, at vertex v of T̂ , the two paths
P ′′1 and P ′′2 of length bg/2c are isomorphic and the vertices of which each have
positive valuation. Hence each pair of isomorphic vertices have the same valuation.
Therefore adding an edge joining their respective pendant vertices yields a graph
with the same algebraic connectivity since by the eigenvalue-eigenvector relation-
ship the Fiedler vector would be the same. But the graph created is precisely Cn,g.
Consequently, if g is odd we have a(Cn,g) = a(T̂ ) < a(G), while if g is even we
have a(Cn,g) < a(Cn,g+1) = a(T̂ ) < a(G), the first inequality following from Lemma
7.3.11. 2

Before we can prove the theorem that these claims are leading up to, we must
define the following graph: The graph G`1,`2,g refers to the graph with a cycle on g
vertices (g ≥ 4 and even) labelled 1, . . . , g, with a path on `1 vertices attached at
vertex 1, and a path on `2 vertices attached at vertex g+2

2 .
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We may now state the next lemma which concerns unicyclic graphs of the form
above. Since the proof of the following lemma is tedious and adds little to our
discussion, we omit it. The proof can be found in [21].

LEMMA 7.3.15 Suppose that k >
(

2√
2

+ 1
2

)
g with g ≥ 4, and let `1 + `2 = k,

where 1 ≤ `1, `2 ≤ k − 1. Then a(G`1,`2,g) > a(Cg+k,g).

We are now ready to prove the second main theorem of this section (from [21])
which concerns minimizing the algebraic connectivity of graphs with girth g ≥ 4
where n ≥ 3g − 1.

THEOREM 7.3.16 Let G be a connected graph on n vertices with girth g ≥ 4 such
that n ≥ 3g− 1. Then a(G) ≥ a(Cn,g). Equality holds if and only if G is isomorphic
to Cn,g.

Proof: Let Gn,g denote the class of all connected unicyclic graphs on n vertices
with fixed girth g that are of the from (7.3.1): there are at most two connected com-
ponents at every vertex on the cycle and the component not including the vertices
on the cycle (if such a component exists) is a path. From Proposition 7.3.4 we know
that there exists a graph H ∈ Gn,g such that a(H) ≤ a(G). Thus it is sufficient to
prove the desired result for any graph in Gn,g.

Let G ∈ Gn,g, [1, 2, . . . , g, 1] be the cycle in G and P1, P2, . . . , Pg be the paths
attached to the vertices 1, 2, . . . , g, respectively. Suppose that G is not isomorphic
to Cn,g. We will prove this theorem by cases on the order of Pi.

Case I: |Pi| ≥ g/2 for at least one i ∈ {1, 2, . . . , g}: Without loss of generality,
let |P1| ≥ g/2. If g is odd, then necessarily |P1| > (g− 1)/2. The result now follows
immediately from Claim 7.3.13(i-a). Now suppose g is even. First suppose the only
nonempty paths are P1 and P(g+2)/2. In the language of Lemma 7.3.15, observe

that k ≥ 2g − 1. Thus if 2g − 1 >
(

2√
2

+ 1
2

)
g, i.e., g ≥ 12, then the result fol-

lows from Lemma 7.3.15. If g ≤ 10 then since extending either path only decreases
the algebraic connectivity of the graph, it follows that the only other cases are:
g ∈ {4, 6, 8, 10} with n = 3g − 1 for each such g. These four cases can be verified
by direct computation (Exercise 1 below). Now supposing that there is a nonempty
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path Pk with k 6= (g + 2)/2, the result follows immediately from Claim 7.3.13(ii).
Case II: |Pi| < g/2 for each i = 1, . . . , g.: This case is precisely Claim 7.3.14. 2

Exercise:

1. In each of the following pairs below, verify Theorem 7.3.16.
(a) g = 4, n = 11
(b) g = 6, n = 17
(c) g = 8, n = 23
(d) g = 10, n = 29

7.4 Maximizing the Algebraic Connectivity of Uni-
cyclic Graphs with Fixed Girth

We saw in the previous section that given a graph on n vertices and girth g, the
graph that minimizes the algebraic connectivity is a unicyclic graph. To this end, it
is natural to ask which unicyclic graphs on n vertices with fixed girth g maximize
the algebraic connectivity. Let Un,g denote the class of connected unicyclic graphs
on n vertices with girth g. For a graph G ∈ Un,g, let Gg,n1,n2,...,ng be the graph
with a g-cycle whose vertices are labeled 1, 2, . . . , g and with nj pendant vertices
adjacent to vertex j (for 1 ≤ j ≤ g) where

∑
nj = n− g. For notational simplicity,

Gg,n−g = Gg,n−g,0,0,...,0.

We first present a lemma from [18] which will assist us in determining which
unicyclic graphs of girth g have maximum algebraic connectivity.

LEMMA 7.4.1 Among all graphs in Un,g, the algebraic connectivity is maximized
by a graph of the form Gg,n1,n2,...,ng .

Proof: Suppose G ∈ Un,g and let a be the algebraic connectivity of G. Label
the vertices on the cycle 1, 2, . . . , g. Let Fj denote the union of the connected com-
ponents at vertex j (for 1 ≤ j ≤ g) except for the unique component at j which
contains the vertices on the cycle. Fix j. Suppose Fj is not the union of |Fj | pendant
vertices. Form Ĝ by replacing Fj with |Fj | pendant vertices each adjacent to vertex
j; let â denote the algebraic connectivity of Ĝ. To complete the proof, we need to
show that a ≤ â. We will do so by cases:

Case I: Suppose in Ĝ that at least one of the |Fj | pendant vertices adjacent to
j is a Perron component at j. If Ĝ is of Type I then â = 1 by Theorem 7.2.4(i). If
Ĝ is of Type II, then by Lemma 7.2.13 it follows that â > 1. However, since G has
a cut vertex, it follows from Theorem 5.1.10 that a ≤ 1. Therefore a ≤ â.

Case II: Suppose in Ĝ that none of the |Fj | pendant vertices adjacent to j is
a Perron component at j. In this case, we can use entry-wise domination of the
bottleneck matrices for Fj for the |Fj | pendant vertices and apply Theorems 7.2.15
and 7.2.18 to obtain a ≤ â. 2
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Lemma 7.4.1 shows that when given a graph on n vertices of girth g, the can-
didates for graphs that would yield the maximum algebraic connectivity are those
graphs with n− g pendant vertices. In the case of g = 3, we show in the following
theorem from [18] that the maximum occurs when all n − 3 pendant vertices are
adjacent to the same vertex on the 3-cycle.

THEOREM 7.4.2 Let G = G3,n−3. Then a(G) = 1. Moreover, if H ∈ Un,3 is not
isomorphic to G, the a(H) < 1.

Note that this theorem says that G is the unique unicyclic graph on n vertices
with girth g = 3 of maximum algebraic connectivity, namely 1.

Proof: Let x denote the vertex of degree n − 1 in G. Clearly there are n − 2
Perron components at x, each with Perron value 1. Hence G is of Type I and by
Theorem 7.2.15 we have a(G) = 1. Now let H be a unicyclic graph on n vertices
with girth g = 3 that is not isomorphic to G. We may assume n ≥ 4. Since H
has a cut vertex, we know by Theorem 5.1.10 that a(H) ≤ 1. By Lemma 7.4.1, we
need only consider the case in which each vertex not on the 3-cycle is pendant, i.e.,
graphs of the form Gg,n1,n2,n3 . If there are two or more vertices on the 3-cycle which
are adjacent to pendant vertices, then by considering the Perron components we
see that the 3-cycle is the characteristic block of H, hence H being of Type II. By
Lemma 7.2.13, we see that a(H) < 1. 2

We now direct our attention to graphs in Un,4. It is not surprising that G4,n−4 will
be the graph in Un,4 whose algebraic connectivity is maximum. What is surprising
though is how different the proof is from that of Theorem 7.4.2. We begin with a
lemma from [20]:

LEMMA 7.4.3 For n ≥ 5, a(G4,n−4) > 2−
√

2.

Proof: Let vertex 1 be the vertex on the cycle that is adjacent to the n − 4
pendant vertices. Applying Exercise 3 from Section 7.2 at vertex 1, there exists
γ ≥ 0 such that

1

a(G4,n−4)
= ρ

([
In−4 + xJ γe

γeT γ

])
= λn




1 1

2
1
2

1
2

3
4

1
4

1
2

1
4

3
4

− γJ
 . (7.4.1)

Let ρ denote the number in the middle of (7.4.1), and let λn be the number on
the right-hand side of (7.4.1). Observing the characteristic polynomials of these
matrices, note that ρ solves the equation z2− [1 + (n− 3)γ]z+ γ = 0 and λn solves
the equation z2 − (2 − 3γ)z + 1/2 − γ = 0. Hence setting these equations equal to
each other and simplifying, we see that (nγ − 1)z = 2γ − 1/2.

Observe that γ 6= 0, for otherwise the spectral radius of the middle matrix is
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1, while the Perron value of the matrix on the right is approximately 1.707. Also
observe that if γ ≥ 1/4, then ρ > 1 but λn ≤ 1, thus making equality in (7.4.1)
impossible. Therefore 0 < γ < 1/4. This implies (nγ − 1)z < 0, but recalling that z
is positive (since it equals ρ and λn), it follows that (nγ − 1) < 0, or equivalently,
γ < 1/n. Therefore

ρ < ρ

([
In−4 + γJ (1/n)e

(1/n)eT (1/n)

])
=

1 + (n− 3)/n+
√

(1 + (n− 3)/n)2 − 4/n

2

<
2 +
√

2

2

Using (7.4.1) we conclude that a(G4,n−4) > 2−
√

2. 2

Before proving our main result concerning graphs in Un,4, we have the following
observations from [20]. The first observation can be checked by direct calculations;
the second is a direct consequence of Corollary 1.2.10.

OBSERVATION 7.4.4 a(G4,1,0,1,0) = 2−
√

2.

OBSERVATION 7.4.5 Given a graph G, form a new graph Ĝ by adding a pendant
vertex adjacent to some vertex of G. Then a(Ĝ) ≤ a(G).

Now for the main result from [20] regarding graphs of girth g = 4:

THEOREM 7.4.6 The unique maximizer of the algebraic connectivity over the
graphs in Un,4 is G4,n−4.

Proof: From Proposition 7.4.1, it suffices to consider graphs of the form
G4,n1,n2,n3,n4 , where, without loss of generality, n1 ≥ 1. Applying Observations 7.4.4
and 7.4.5, and Lemma 7.4.3, we see that if n3 ≥ 1, then G4,n1,n2,n3,n4 cannot max-
imize the algebraic connectivity. A similar argument applies if both n2 ≥ 1 and
n4 ≥ 1. Thus we deduce that up to a relabeling of the vertices, the only candi-
dates for maximizing the algebraic connectivity over graphs in Un,4 are of the form
G4,n1,n2,0,0.

Suppose that n2 ≥ 1. Note that LG4,n1,n2,0,0) has n − 6 eigenvalues equal to 1,
while the rest coincide with those of the matrix

A =



n1 + 2 −1 −1 0 −n1 0
−1 n2 + 2 0 −1 0 −n2

−1 0 2 −1 0 0
0 −1 −1 2 0 0
−1 0 0 0 1 0
0 −1 0 0 0 1


.

Let fn1,n2(λ) be the characteristic polynomial of A. Then

fn1,n2 − fn1+1,n2−1 = λ2(λ− 1)(λ− 3)(n1 + 1− n2).
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Being that we are interested in the eigenvalue associated with the algebraic con-
nectivity for these graphs which by Theorem 5.1.10 is between 0 and 1 (since these
graphs have a cut vertex), we assume 0 < λ < 1. In such a case, if n1 ≥ n2, then
fn1,n2(λ) > fn1+1,n2−1(λ). Since fn1,n2 is a sixth order polynomial which has 0 as its
smallest root, and since 0 is a simple root, we see that fn1,n2(λ) < 0 for λ between
0 and the smallest positive root of fn1,n2 . Similarly, we see that fn1+1,n2−1(λ) < 0
for λ between 0 and the smallest positive root of fn1+1,n2−1. Using the fact that
fn1,n2(λ) > fn1+1,n2−1(λ), it follows that the smallest positive root of fn1+1,n2−1 ex-
ceeds that of fn1,n2 . Consequently a(G4,n1+1,n2−1,0,0) > a(G4,n1,n2,0,0), which implies
that G4,n−4 is the unique maximizer of algebraic connectivity over Un,4. 2

At this point, we have seen that Gg,n−g maximizes the algebraic connectivity
over Un,g when g = 3 or when g = 4. So it is natural to ask whether Gg,n−g is
the unique maximizer of algebraic connectivity when g ≥ 5. This turns out to be
false. For example, take n = 7 and g = 5. Observe that a(G5,2) = 0.6086, yet
a(G5,1,1) = 0.6228, thus a(G5,2) < a(G5,1,1) (see [20]). However, we will see that the
trend of Gg,n−g being the maximizer of algebraic connectivity over Un,g continues
for fixed g ≥ 5 when n is sufficiently large. We begin with a useful lemma from [20]:

LEMMA 7.4.7 Let G be a graph with vertex v that is not a cut vertex. Let B be
the bottleneck matrix of G at v, i.e., B = L[v]−1. Construct Gk from G by adding
k pendant vertices adjacent to v. Then a(Gk) is a decreasing sequence with limit
1/ρ(B).

Proof: By Observation 7.4.5, it is clear that a(Gk) is nonincreasing in k. In
particular, by Exercise 3 of Section 7.2, for all natural numbers k, there exists
γk ≥ 0 such that

1

a(Gk)
= ρ

([
Ik + γkJ γke

xke
T xk

])
= λn(B − γkJ)

Since

ρ

([
Ik+1 + γkJ γke

γke
T γk

])
≥ ρ

([
Ik + γkJ γke

γke
T γk

])
= λn(B − γkJ)

we see that necessarily γk+1 ≤ γk.
To finish the proof, we need to show that γk → 0. Suppose not, then there exists

z > 0 such that γk > z for all natural numbers k. In this case, for all k we have

λn(B − zJ) ≥ λn(B − γkJ) = ρ

([
Ik + γkJ γke

γke
T γk

])

= ρ

([
1 + kγk γk
kγk γk

])
≥ ρ

([
1 + kz z

kz z

])
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This is a contradiction since the rightmost number increases without bound. Hence
γk → 0, so that a(Gk) = 1/λn(B − γkJ)→ 1/ρ(B). 2

We now prove a result from [20] which shows that when n is large enough, the
graph Gg,n−g is the graph in Un,g with maximum algebraic connectivity when g ≥ 5.

THEOREM 7.4.8 Fix g ≥ 5. Then there exists N such that n ≥ N implies Gg,n−g
is the unique maximizer of algebraic connectivity over graphs in Un,g.

Proof: Let M be the bottleneck matrix for the component at vertex 1 which
contains the vertices of the g-cycle. Thus by Lemma 7.4.7, a(Gg,n−g) decreases to
1/ρ(M) as n → ∞. Fix 2 ≤ ` ≤ g and consider the graph Hk,` which is obtained
from Gg,k by adding one pendant vertex to the vertex `. By Lemma 7.4.7,

lim
k→∞

a(Hk,`) =
1

ρ

([
1 +m`,` eT`M

Me` M

]) <
1

ρ(M)
(7.4.2)

In particular, there exists p such that if k ≥ p, then for each 2 ≤ ` ≤ g we have
a(Hk,`) ≤ 1/ρ(M).

Let ni, i = 1 . . . , g, be nonnegative integers such that
∑g

1 ni = n− g and assume
n1 = max{n1, n2, . . . , ng}, thus necessarily n1 ≥ (n−g)/g. By Proposition 7.4.1, we
need only consider the unicyclic graphs Gg,n1,n2,...,ng . If n` > 0 for some 2 ≤ ` ≤ g,
then a(Gg,n1,...,ng) ≤ a(Hn1,`) by Observation 7.4.5. Observe that if n ≥ g(p + 1),
then we have n1 ≥ (n − g)/g ≥ p. Since n1 ≥ p, we have from (7.4.2) and the line
following that a(Hn1,`) < 1/ρ(M). However, by Lemma 7.4.7, 1/ρ(M) ≤ a(Gg,n−g).
Putting these inequalities together, we see that if n ≥ N := g(p+ 1) we have

a(Gg,n1,...,ng) ≤ a(Hn1,`) <
1

ρ(M)
≤ a(Gg,n−g).

Thus Gg,n−g maximizes the algebraic connectivity over all graphs in Un,g when
n ≥ g(p+ 1). 2

The final goal if this section is to find the explicit value for g(p+1). This can be
done once we find the value for p. To this end, we introduce the following variable:

α̂ =
1

2g + g2/2(1− cosπ/g) + (g2/2)

(√
(1 + (g − 1)/g)2 + (2/3g)(g − 1)(2g − 1)− (1 + (g − 1)/g)

)
The derivation of this variable can be found in [20]. In an effort to find p explicitly,

we need the following lemma from [20].

LEMMA 7.4.9 Consider the graph Hk,i, i ≥ 2, and let its algebraic connectivity
be a. Set c = 1/2(1 − cosπ/g) = ρ(M), where M is the bottleneck matrix for the
g-cycle. If k ≥ (c2 − c− α̂/cα)− 1, then a < 1/ρ(M).
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Proof: Note that the Perron value of[
Ik + α̂J α̂e

α̂eT α̂

]

satisfies λ2 − (1 + (k + 1)α̂)λ+ α̂ = 0, hence the Perron value is

1 + (k + 1)α̂+
√

(1 + (k + 1)α̂)2 − 4α̂

2
.

Since our hypothesis states that k ≥ (c2− c− α̂/cα)− 1, we deduce that the Perron
value of the above matrix is at least c. Applying Exercise 3 of Section 7.2 at vertex
1 we see there exists β ≥ 0 such that

1

a
= λn(Ai − βJ) = ρ

([
Ik + βJ βe

βeT β

])

where

Ai =

[
1 +mii eTi M

Mei M

]
.

If β ≤ α̂, we have

1

a
= λn(Ai − βJ) ≥ λn(Ai − α̂J) > c,

while if β > α̂ we have

1

a
= ρ

([
Ik + βJ βe

βeT β

])
> ρ

([
Ik + α̂J α̂e

βeT α̂

])
≥ c.

In either case, a < 1/c = 1/ρ(M). 2

We are now ready to close this section by giving a precise value for p such that
n ≥ g(p + 1) implies Gg,n−g is the graph which uniquely maximizes the algebraic
connectivity over all unicyclic graphs on n vertices with girth g. We do this in the
following theorem from [20]:

THEOREM 7.4.10 Let p = (c2 − c − α̂/cα̂) − 1. If n ≥ g(p + 1), then Gg,n−g
uniquely maximizes the algebraic connectivity over all graphs in Un,g.

Proof: Let M be the bottleneck matrix for the g-cycle in Gg,n−g. Since n ≥
g(p + 1), there exists a vertex on the g-cycle, say vertex 1, with degree at least p.
By Proposition 7.4.1, we need only consider graphs of the form Gg;n1,...,ng in Un,g.
Consider such a graph and suppose ni ≥ 1 for some 2 ≤ i ≤ g. Then we have

a(Gg;n1,...,ng) ≤ a(Hk,i) < 1/ρ(M)

where the first inequality follows from Observation 7.4.5 and the second inequality
follows from Lemma 7.4.9. However, by Lemma 7.4.7, a(Gg,n−g) ≥ 1/ρ(M). The
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result now follows. 2

Setting N = g(p+1) as in the language of Theorem 7.4.8, we see in the following
chart the various values forN , i.e., the minimum number of vertices that are required
in order to guarantee that Gg,n−g maximizes the algebraic connectivity over graphs
in Un,g for fixed g.

g 5 6 7 8 9 10 20 50 100 1000

N 9 11 13 14 16 18 35 88 175 1750

Exercises:

1. (See [20]) Prove that if g ≥ 4, then a(Gg,1) < 2(1− cos(2π/g)).

2. (See [20]) Let L be the Laplacian matrix for Gg,k where g ≥ 4 and k > 1, and let
y be a Fiedler vector. Show that y1 6= 0 where vertex 1 is the vertex on the cycle
adjacent to the k pendant vertices. Conclude that a(Gg,1) is a simple eigenvalue of
L.

7.5 Application: The Algebraic Connectivity and the
Number of Cut Vertices

In Theorem 5.1.10, we learned that if G is a connected unweighted graph with a cut
vertex, then a(G) ≤ 1. In this section, we use the concepts of Perron components
and bottleneck matrices to generalize this theorem to unweighted graphs with many
cut vertices. We begin the process of generalizing Theorem 5.1.10 in the following
theorem and immediate corollary from [43]:

THEOREM 7.5.1 Let G be a connected unweighted graph with Laplacian matrix
L and cut vertex v. Let C be a connected component at v and let B be the bottleneck
matrix for C. Then ρ(B) ≥ 1 with equality holding if and only if v is adjacent to
every vertex of C.

Proof: Suppose C has k vertices and that v is adjacent to j of them. Let L[C]
be the Laplacian matrix for C. Observe that L[C] can be written as A+D where A
is the Laplacian matrix for the subgraph of G induced by the vertices of C, and D is
the diagonal matrix with 1’s in the j diagonal entries corresponding to the vertices
of C to which v is adjacent, and 0’s elsewhere. Let w be the Perron vector for B.
Then we have

eTw

ρ(B)
= eTL[C]w = eTAw + eTDw = eTDw

where the last equality follows from the fact that eTA = 0. Therefore ρ(B) =
eTw/eTDw ≥ 1. Since w is positive, we see that equality holds if and only if D = I,
i.e., if v is adjacent to every vertex in C. 2
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COROLLARY 7.5.2 Let G be a connected graph with cut vertex v. Then a(G) ≤ 1
with equality holding if and only if v is adjacent to very other vertex of G.

In this section, we consider connected unweighted graphs that have more than
one cut vertex. The goal of this section is to show that if G is a connected graph on
n vertices with k ≥ 2 cut vertices, then

a(G) ≤ 2(n− k)

n− k + 2 +
√

(n− k)2 + 4
.

We will also show the conditions when equality holds. In order to derive this upper
bound, we need to divide this problem into two cases. The first case will be when
2 ≤ k ≤ n/2, while the second case will be when k > n/2. We begin with the first
case, i.e., where 2 ≤ k ≤ n/2. To this end, we require two definitions:

DEFINITION 7.5.3 Let G be a connected graph with cut vertex v. Then C is a
pendant component at v if C contains no other cut vertices of G other than v.

DEFINITION 7.5.4 Let G be a connected graph with cut vertex v. Then C is a
complete component at v if the vertices in G induced by C form a complete graph
and if v is adjacent to all vertices in C.

Before proceeding, we recall from Section 6.2 that the bottleneck matrix for a path
on q vertices is

Pq =


q q − 1 q − 2 . . . 2 1

q − 1 q − 1 q − 2 . . . 2 1
. . . . . . . . . . . . . . .
2 2 . . . 2 1
1 1 . . . 1 1


From this, define P̃s to be the (s+ 1)× (s+ 1) matrix

P̃s : =

[
Ps O

O 0

]
.

We now begin with a lemma from [43]:

LEMMA 7.5.5 Let G be a connected graph with cut vertex v. Let C be a component
at v constructed as follows: start with a complete component on p+ q vertices, and
for each vertex i ∈ C with 1 ≤ i ≤ q, we add a complete component on mi vertices
(see drawing below). Then the bottleneck matrix for C is permutationally similar to

A1 + 2
p+q+1J

1
p+q+1J

1
p+q+1ee

T
1 (I + J)

. . . . . . . . . . . .
1

p+q+1J Aq + 2
p+q+1ee

T
q (I + J) 1

p+q+1ee
T
q (I + J)

1
p+q+1(I + J)e1e

T . . . . . . 1
p+q+1(I + J)eqe

T 1
p+q+1(I + J)

 (7.5.1)

where for each 1 ≤ i ≤ q, Ai = 1
mi+1(I + J) and Ai is mi ×mi.
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Proof: The submatrix of the Laplacian matrix for G corresponding to the ver-
tices of C can be written as

(m1 + 1)I − J 0 . . . 0 −eeT1
. . . . . . . . . . . .
0 . . . 0 (mq + 1)I − J −eeTq

−e1e
T . . . −eqeT (p+ q + 1)I − J +D


where D = diag{m1, . . . ,mq, 0 . . . , 0}. The result now follows by direct computa-
tion. 2

For the next two lemmas (see [43]), we need the following quantity

am : = 1/ρ

(
P̃1 +

1

m
J

)
=

2m

m+ 2 +
√
m2 + 4

Our goal is to show that if G is a graph on n vertices with k cut vertices where
2 ≤ k ≤ n/2, then a(G) ≤ an−k.

LEMMA 7.5.6 Suppose that G is a graph on n vertices with k cut vertices and
Laplacian L. Let v be a cut vertex of G. If C is a connected component at v which
contains a cut vertex, and M is the bottleneck matrix at v for C, then ρ(M) >
1/an−k.

Proof: First suppose that there exists a cut vertex w of G in C such that a
component C ′ at w not containing v is nonpendant. In such a case, we can find a
cut vertex x of G in C ′ such that all components at x not containing v are pendant.
Observe then that

ρ(M) = ρ(L[C]−1) ≥ ρ(L[C ′]−1)

where the inequality follows from the fact that L[C ′] is a principal submatrix of
L[C] which is an irreducible M-matrix. Therefore, for the remainder of the proof we
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can assume that at each cut vertex of G in C, the components not containing v are
pendant.

Suppose that C contains q cut vertices of G. Since, by Exercise 3 of Section 7.1,
adding edges into C cannot increase its Perron value, we can assume that at each
cut vertex w in C, there is a single component not containing v (thus making this
a pendant component at w) and that each such component is complete. Suppose
also that there are p vertices in C which are neither cut vertices nor in any pendant
component. Again, since adding edges into C cannot increase its Perron value, we
can assume that every pair of vertices in this collection of p vertices is adjacent and
that every cut vertex in C, as well as v itself, is adjacent to all p of these vertices.

Since C is of the form described in Lemma 7.5.5, we see that the bottleneck
matrix M for C is of the form in (7.5.1) where each Ai is of the form (1/(mi +
1))(I + J)mi where mi is the number of vertices in the complete component at the
ith cut vertex. Observe that M has the following matrix S has a principal submatrix:

S =

[
A1 + 2

p+q+1J
2

p+q+1e
2

p+q+1e
T 2

p+q+1

]
.

Clearly each block of S contains constant row sums. Therefore the Perron value of
S is the Perron value of the 2 × 2 matrix R where each entry of R is the row sum
of the corresponding block of S, i.e.,

R =

[
1 + 2m1

p+q+1
2

p+q+1
2m1
p+q+1

2
p+q+1

]
.

Therefore ρ(M) ≥ ρ(R).
Since the Perron value of a positive matrix increases as each entry is increased,

the proof will be complete when we show that 2/(p+ q + 1) > 1/(n− k), or equiv-
alently 2n− 2k > p+ q + 1. To see this, recall that n− k is the number of vertices
of G that are not cut vertices. In C, there is a set of p vertices that are not cut
vertices of G. Moreover, for each of the q cut vertices in C, there is at least one cor-
responding vertex which is not a cut vertex, i.e., a vertex on a pendant component
at q. Therefore, C contains at least p + q vertices which are not cut vertices of G.
Additionally, every other component at v must contain at least one vertex that is
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not a cut vertex of G. Therefore, there are at least p+ q+ 1 vertices in G which are
not cut vertices. Hence

2n− 2k > n− k ≥ p+ q + 1.

2

Before we can proceed to the next lemma, we need to introduce another class
of graphs. Fix k ≥ 2 and fix natural numbers m1, . . . ,mk, and suppose that n ≥
m1 + . . . + mk + k. Define Hm1,...,mk,n to be the graph constructed by (1) starting
with a complete graph on n − m1 − . . . − mk vertices, and (2) at each vertex i,
1 ≤ i ≤ k add a complete connected component on mi vertices. For example, the
graph H2,3,4,13 is as follows (note k = 3):

Observe that the condition n ≥ m1 + . . .+mk + k necessarily means that k ≤ n/2.
To continue our investigation of the case k ≤ n/2, we need the following lemma
from [43]:

LEMMA 7.5.7 a(Hm1,...,mk,n) ≤ an−k. Moreover, the inequality is strict if there
exists i (1 ≤ i ≤ k) such that mi ≥ 2.

Proof: Label Hm1,...,mk,n in accordance with the labeling used in Lemma 7.5.5
and without loss of generality let mi be minimized at i = 1. Hence at vertex 1,
the non-Perron component has bottleneck matrix A1 = 1

m1+1(I + J) (note A1 is
m1×m1) while by Lemma 7.5.5, the bottleneck matrix B for the Perron component
is given by

B =


A2 + 2

bJ
1
bJ

1
bee

T
2 (I + J)

. . . . . . . . . . . .
1
bJ Ak + 2

bJ
1
bee

T
k (I + J)

1
b (I + J)e2e

T . . . 1
b (I + J)eke

T 1
b (I + J)


where b = n−m1 − . . .−mk. Observe that

λn

(
B − 1

b
J

)
≥ ρ

([
A2 + 1

bJ
1
be

1
be
T 1

b

])
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since the latter matrix is a submatrix of the former. Observing that the blocks of[
A1 + 1

bJ
1
be

1
be
T 1

b

]
and

[
A2 + 1

bJ
1
be

1
be
T 1

b

]

have constant row sums, we see as in Lemma 7.5.6 that Perron value of these
matrices is the Perron value of the 2×2 respective matrices whose entries correspond
to row sums of the individual blocks, i.e.,

ρ

([
A1 + 1

bJ
1
be

1
be
T 1

b

])
= ρ

([
1 + m1

b
1
b

m1
b

1
b

])

and

ρ

([
A2 + 1

bJ
1
be

1
be
T 1

b

])
= ρ

([
1 + m2

b
1
b

m2
b

1
b

])
Since ρ(A2) ≥ ρ(A1), it follows that

λn

(
B − 1

b
J

)
≥ ρ

([
A1 + 1

bJ
1
be

1
be
T 1

b

])
.

By Exercise 1 of Section 7.2 it follows that

a(Hm1,...,mk,n) ≤ 1/ρ

([
A1 + 1

bJ
1
be

1
be
T 1

b

])
.

However, since

ρ

([
A1 + 1

bJ
1
be

1
be
T 1

b

])
≥ 1

ab
,

it follows that a(Hm1,...,mk,n) ≤ ab. Yet since b ≤ n − k, we have ab ≤ an−k which
is the desired result. Moreover, if mi ≥ 2 for some i, then b < n − k which yields
a(Hm1,...,mk,n) < ab. 2

We are now ready to prove the first main result of this section (see [43]) which
gives an upper bound on the algebraic connectivity of a graph with k ≤ n/2 cut
vertices.

THEOREM 7.5.8 Suppose G is a graph on n vertices with k cut vertices where
2 ≤ k ≤ n/2. Then a(G) ≤ an−k.

Proof: Let v be a cut vertex of G and suppose that there are at least two com-
ponents at v which contain cut vertices. Then by Lemma 7.5.6, the Perron values of
these components are bounded below by 1/an−k. The result then follows by Exercise
4 of Section 7.2.

Now label the cut vertices of G as 1, . . . , k. In light of our arguments from the
previous paragraph, we can now assume that at each cut vertex i, there is exactly
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one component which contains the other k−1 cut vertices of G, and that the remain-
ing components at i, comprising a total of, say, mi vertices are pendant components.
Observe that we can form Hm1,...,mk,n from G by adding edges to G. Since by The-
orem 4.1.2, adding edges to G cannot decrease the algebraic connectivity, we see
that

a(G) ≤ a(Hm1,...,mk,n) ≤ an−k

where the last inequality follows from Lemma 7.5.7. 2

At this point, it is natural to ask for which graphs on n vertices and k ≤ n/2
cut vertices is equality achieved in Theorem 7.5.8. We answer this question in the
following theorem from [43]:

THEOREM 7.5.9 Suppose that G is a graph on n vertices with k cut vertices
where 2 ≤ k ≤ n/2. Then a(G) = an−k if and only if both of the following hold:

(i) Each cut vertex is adjacent to every nonpendant vertex of G.
(ii) There are exactly two components at each cut vertex of G, one component

of which is a pendant vertex.

Proof: Suppose first that a(G) = an−k. We first claim that there are exactly
two components at each cut vertex, one of which is a pendant vertex. Suppose
this were not the case. Then recalling the proof of Theorem 7.5.8 we have a(G) ≤
a(Hm1,...,mk,n) for some m1, . . . ,mk where for at least one i we have mi ≥ 2. Lemma
7.5.7 then yields a contradiction. Hence our claim is established.

From here on, we now assume that there are exactly two components at each
cut vertex, one component of which is a pendant vertex. Let v be a cut vertex of G.
Then the bottleneck matrix for the non-Perron component (i.e., the pendant vertex)
is the 1× 1 matrix [1], while the bottleneck matrix M of the Perron component C
at v has the form

M =

 I +B B U
B B U
UT UT X


where

S : =

[
B U
UT X

]
is the bottleneck matrix of the component at v obtained by deleting the pendant
vertices of C, and where the rows and columns of B correspond to the k− 1 quasi-
pendant vertices of C. From Theorem 7.1.7 we know that each diagonal entry of B
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is at least 2/(n− k). Therefore, observing the (1, 1), (1, 2), (2, 1), and (2, 2) blocks
of M , we see that M− (1/(n−k))J has k−1 principal submatrices which entrywise
dominate

T : =

[
1 + 1

n−k
1

n−k
1

n−k
1

n−k

]
.

Therefore

λn

(
M − 1

n− k
J

)
≥ ρ(T ) = ρ

(
P̃1 +

1

n− k
J

)
,

with strict inequality if some diagonal entry of M is larger than 2/(n−k). However,
since we are assuming that a(G) = an−k, Exercise 1 of Section 7.2 implies that each
diagonal entry of M must equal 2/(n− k). Hence by Theorem 7.1.7, it follows that
each cut vertex must be adjacent to every nonpendant vertex of G. Since v was an
arbitrary cut vertex, the structure of G now follows.

Conversely, suppose that G has the structure described in (i) and (ii) of the
statement of this theorem. Let v be a cut vertex of of G. Then the bottleneck
matrix for the Perron component C at v is M as above, where S and B are as
above. Let A be the Laplacian matrix of the subgraph of G that is induced by the
n− 2k vertices of C which are neither pendant nor quasipendant. Observe from the
construction of G that

S−1 =

[
(n− k)I − J −J

−J (A+ kI)

]
,

i.e., the principal submatrix of L corresponding to the vertices of C. By direct
computation, we find that

S =

[
1

n−k (I + J) 1
n−kJ

1
n−kJ (A+ kI)−1 + k−1

k(n−k)J

]
.

Therefore, M − (1/(n− k))J is the direct sum of

N : =

[ (
1 + 1

n−k

)
I 1

n−kI
1

n−kI
1

n−kI

]

and (A + kI)−1 − 1/(k(n − k))J . Since A is the Laplacian matrix for a graph on
n − 2k vertices, it follows that all eigenvalues of A fall in the interval [0, n − 2k]
(by Corollary 4.1.4). Hence the eigenvalues of A+ kI fall in the interval [k, n− k],
which means that the eigenvalues of (A+ kI)−1 fall in the interval [ 1

n−k ,
1
k ]. Hence

all eigenvalues of (A+ kI)−1− 1/(k(n− k))J fall in the same interval (the smallest
eigenvalue being 1/(n− k)). Notably, the eigenvalues of (A+ kI)−1− 1/(k(n− k))J
are bounded above by 1/k. Therefore

λn

(
M − 1

n− k
J

)
= ρ(T ) = ρ

(
P̃1 +

1

n− k
J

)
.

Recalling that the non-Perron component at v has bottleneck matrix [1], it follows
from Exercise 1 of Section 7.2 that a(G) = an−k. 2
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This settles the case of n ≤ k/2. We now turn our attention to graphs on n
vertices and k cut vertices where n > k/2. We begin with a useful observation from
[18]:

OBSERVATION 7.5.10 Let G be a connected graph and suppose that C is a
connected component at some vertex v of G. Suppose further that C has p vertices,
and let M = [mi,j ]1≤i,j≤p be the bottleneck matrix for C. Construct a new component
Ĉ at v as follows: fix some integer 1 ≤ k ≤ p and select vertices i = 1, . . . , k of C
and for each 1 ≤ i ≤ k, add a component Ci with bottleneck matrix Bi at vertex
i and suppose that in Ci, vertices vj1(i), vj2(i), . . . , vjmi (i) are adjacent to vertex i.

Then the resulting component at v has bottleneck matrix L[Ĉ]−1 given by
B1 +m1,1J m1,2J . . . m1,kJ eeT1 M
m2,1J B2 +m2,2J . . . m2,kJ eeT2 M
. . . . . . . . . . . .

mk,1J . . . mk,k−1J . . . Bk +Mk,kJ eeTkM

Me1eT Me2e
T . . . Meke

T M


Proof: Note that L[Ĉ] can be written as

L[C1] 0 . . . 0 −
(∑m1

q=1 ejq(1)

)
eT1

0 L[C2] . . . 0 −
(∑m2

q=1 ejq(2)

)
eT1

. . . . . . . . . 0 . . .

0 0 . . . L[Ck] −
(∑mk

q=1 ejq(k)

)
eT1

−e1
(∑m1

q=1 e
T
jp(1)

)
−e2

(∑m2

q=1 e
T
jp(2)

)
. . . −ek

(∑mk

q=1 e
T
jp(k)

)
M−1 +

∑k
q=1mqeqe

T
q


The result now follows from direct computation recalling that L[Ci]e =

∑mi
q=1 ejq(i).

2

In order to find an upper bound on the algebraic connectivity in terms of the
number of cut vertices, we need the following classes of graphs found in [44]. In each
class, q and m are natural numbers with m ≥ 2.

(i) E0(q,m) is the graph formed by attaching a path on q vertices to each vertex
of the complete graph on m vertices. When convenient, we will refer to E0(q,m) as
a class of graphs.

EXAMPLE 7.5.11 Below is the graph E0(3, 5).
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(ii) E1(q,m) is the class of graphs created by taking a graph H on m + 1 ver-
tices having a special cut vertex v0 which is adjacent to all other vertices of H and
attaching a path on q vertices to each vertex of H other than v0.

EXAMPLE 7.5.12 Consider the following graph H with the vertex v0 labeled.

Then the graph E1(3, 5) is

(iii) For a fixed ` where m ≥ ` ≥ 2, the class E`(q,m) is the class of graphs
formed as follows: Begin with a graph H on m vertices which has at least r vertices
of degree m − 1 for some fixed r where m ≥ r ≥ `. Then select r such vertices of
degree m−1, and at each attach a path on q+1 vertices. Finally, at each remaining
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vertex i of H with 1 ≤ i ≤ m− r, attach a path on ji vertices where 0 ≤ ji ≤ q so
that

r +
m−r∑
i=1

(ji − q) = ` (7.5.2)

Since the classes of graphs descibed in (iii) are more difficult to visualize, we provide
several examples. For each of these examples, regard H as the graph below on m = 5
vertices. Vertices labeled r = 1, 2, 3 are the r = 3 vertices of degreem−1, and i = 1, 2
are the vertices labeled in accordance with the above explanation:

EXAMPLE 7.5.13 Let’s first construct graphs in E2(3, 5), i.e., ` = 2 and q = 3.
In this case, (7.5.2) becomes 3 +

∑2
i=1(ji − 3) = 2. Hence we require j1 = 2 and

j2 = 3, or j1 = 3 and j2 = 2. Below is each such graph.

(7.5.3)

EXAMPLE 7.5.14 Let’s now construct a graph in E3(3, 5), i.e., ` = 3 now. In
this case, (7.5.2) becomes 3 +

∑2
i=1(ji−3) = 3. This forces j1 = j2 = 3 hence giving

us the following graph:
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Before continuing, it is worth noting that we are not required to label all vertices
whose degree is m− 1 as an “r” vertex. For example, we can relabel the vertices in
H as follows:

Thus we are letting r = 2. Hence if we wanted to create a graph in E2(3, 5), then
(7.5.2) forces j1 = j2 = j3 = 3 giving us the following graph:

OBSERVATION 7.5.15 [44] Consider any graph G ∈ E`(q,m) where ` ≥ 0. Let
n denote the number of vertices of G and let k denote the number of cut vertices.
Then G necessarily has exactly k = (qn+ `)/(q + 1) cut vertices.

In order to establish the desired upper bounds on the algebraic connectivity of
graphs with k cut vertices, we need the following quantities which can be found in
[44].

a0,q,m = 1/ρ

(
P̃q +

1

m
J

)
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a1,q,m = 1/ρ (Pq+1)

and for 2 ≤ ` ≤ m:

a`,q,m = 1/ρ

(
P̃q+1 +

1

m
J

)
.

We are now ready to compute the algebraic connectivities of the graphs in classes
E`(q,m) for ` ≥ 0. We do so in the following proposition from [44]:

PROPOSITION 7.5.16 (i) a(E0(q,m)) = a0,q,m. Further, if any edge is deleted
from E0(q,m), then the resulting graph has algebraic connectivity strictly less than
a0,q,m.
(ii) For any graph G ∈ E1(q,m), we have a(G) = a1,q,m. Further, if any edge incident
with the special cut vertex v0 is deleted from G, then the resulting graph has algebraic
connectivity strictly less than a1,q,m.
(iii) If ` ≥ 2, then for any graph G ∈ E`(q,m) we have a(G) = a`,q,m. Further, if
any edge incident with a vertex of degree m is deleted from G, then the resulting
graph has algebraic connectivity strictly less than a`,q,m.

Proof: (i) We first show that a(E0(q,m)) = a0,q,m. To do this, let u be a vertex
of E0(q,m) which has degree m. Then the non-Perron component at u is the path
on q vertices, which has bottleneck matrix Pq. Thus it follows from Observation
7.5.10 that the bottleneck matrix for the Perron component at u is

B =


Pq + 2

mJ
1
mJ . . . 1

mJ
1
mee

T
1 (I + J)

1
mJ Pq + 2

mJ . . . 1
mJ

1
mee

T
2 (I + J)

. . . . . . . . . . . . . . .
1
mJ . . . 1

mJ Pq + 2
mJ

1
mee

T
m−1(I + J)

1
m(I + J)e1e

T 1
m(I + J)e2e

T . . . 1
m(I + J)em−1e

T 1
m(I + J)

 .

Observe that B − 1
mJ is permutationally similar to a direct sum of m− 1 copies of

P̃q + 1
mJ . Thus by Exercise 1(a) of Section 7.2, it follows that a(E0(q,m)) = a0,q,m.

We now show that the deletion of any edge from E0(q,m) results in a graph
with algebraic connectivity strictly less than a0,q,m. Removing any edges in one of
the paths on q vertices results in a disconnected graph, thus yielding a resulting
algebraic connectivity of zero. Hence we will only consider removing an edge from
the portion of E0(q,m) that is part of the complete graph. Let w 6= u be another
vertex of E0(q,m) with degree m and note in particular that w and u are adjacent.
We will consider the graph E0(q,m) − wu. From Exercise 1(b) of Section 7.2 we
see that the following construction yields a Fiedler vector y of E0(q,m): Let z be a
positive Perron vector of P̃q + 1

mJ . Now let the subvector of y corresponding to the
vertices in the Perron component at u, along with u itself, be given by z; let the
subvector of y corresponding to the direct summand of B− 1

mJ that includes vertex
w be given by −z; and let the remaining entries of y be zero. Note that yu > 0 > yw.
Therefore, if L is the Laplacian matrix of the graph E0(q,m)− wu, then

yTLy = a0,q,my
T y − (yu − yw)2 < a0,q,my

T y.
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Hence

a(E0(q,m)− wu) =
yTLy

yT y
< a0,q,m.

(ii) Consider the graph D1 formed by attaching m paths on q + 1 vertices to a
v0. Observe that D1 ∈ E1(q,m) (where H is the star on m+1 vertices whose center
is v0). From Exercise 1(a) of Section 7.2, it follows that a(D1) = a1,q,m. Moreover,
since any graph G ∈ E1(q,m) can be formed by adding edges to D1, it follows that
a(G) ≥ a1,q,m. Next, let C be a connected component at v0 in G. We claim that the
Perron value of C is at least ρ(Pq+1). Once this claim is proven, it will follow by
Exercise 2(a) of Section 7.2 that a(G) ≤ a1,q,m, thus yielding a(G) = a1,q,m which is
our desired result.

To prove the claim, begin by recalling from Exercise 1 of Section 7.1 that adding
edges to C can only decrease its Perron value. Therefore, we need only establish the
claim for the case that the vertices in C adjacent to v0 induce a complete subgraph,
say on c − 1 vertices. In this case, Observation 7.5.10 dictates that the bottleneck
matrix for C is

B =


Pq + 2

cJ
1
cJ . . . 1

cJ
1
cee

T
1 (I + J)

1
cJ Pq + 2

cJ . . . 1
cJ

1
cee

T
2 (I + J)

. . . . . . . . . . . . . . .
1
cJ . . . 1

cJ Pq + 2
cJ

1
cee

T
c (I + J)

1
c (I + J)e1e

T 1
c (I + J)e2e

T . . . 1
c (I + J)ece

T 1
c (I + J)

 .

which is permutationally similar to
qI + 1

c (I + J) (q − 1)I + 1
c (I + J) . . . I + 1

c (I + J) 1
c (I + J)

(q − 1)I + 1
c (I + J) (q − 1)I + 1

c (I + J) . . . I + 1
c (I + J) 1

c (I + J)
. . . . . . . . . . . . . . .

1
c (I + J) 1

c (I + J) . . . 1
c (I + J) 1

c (I + J)


where each block is (c− 1)× (c− 1). Since the rows of each block of this last matrix
sum to the corresponding entry of Pq+1, it follows that the Perron value of C is
ρ(Pq+1). By the arguments in the previous paragraph, we can now conclude that
a(G) = a1,q,m.

We now show that the deletion of any edge from a graph G ∈ E1(q,m) results
in a graph with algebraic connectivity strictly less than a1,q,m. Removing any edges
in one of the paths on q vertices results in a disconnected graph, thus yielding a
resulting algebraic connectivity of zero. Hence we will only consider removing an
edge from the portion of E1(q,m) that is part of the graph H. Let w be a vertex
adjacent to v0. We will consider the graph G − wv0. From Exercise 1(b) of Section
7.2, we see that the following construction yields a Fiedler vector y for G: Let z1 be a
positive Perron vector for the bottleneck matrix of the component at v0 containing
w, and let z2 be a negative Perron vector for the bottleneck matrix of some other
component at v0 normalized so that eT z1 + eT z2 = 0. Now let the subvectors of
y corresponding to those components at v0 be z1 and z2, respectively, and let the
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remaining entries of y be zero. Note that yw > 0 = yv0 . Therefore, if L is the
Laplacian matrix of the graph E1(q,m)− wv0, then

yTLy = a1,q,my
T y − (yv0 − yw)2 < a1,q,my

T y.

Hence

a(E1(q,m)− wv0) =
yTLy

yT y
< a1,q,m.

(iii) Let ` ≥ 2 and let G ∈ E`(q,m). Then G can be constructed by starting with
a graph H on m vertices in which vertices 1, . . . , r have degree m− 1 and attaching
paths of length q + 1 to vertices 1, . . . , r. Next attach paths of length 0 ≤ ji ≤ q to
vertex i for each i = r + 1, . . . ,m (the values ji are determined from (7.5.2)). Let
H1 be the complete graph on m vertices and construct G1 ∈ E`(q,m) from H1 via
the procedure parallel to the construction of G. Let H2 be the graph on m vertices
in which vertices 1, . . . , r have degree m−1 and vertices r+ 1, . . . ,m have degree r,
and construct G2 ∈ E`(q,m) from H2 via the procedure parallel to the construction
of G. Observing that G can be formed by adding edges to G2 or by deleting edges
from G1, we see that a(G1) ≥ a(G) ≥ a(G2). To prove our desired result, we will
prove a(G1) = a(G2) = a`,q,m.

[Aside: For example, let m = 5, q = 3, r = 3, and ` = 2 as in (7.5.3). Observe each
of the graphs in (7.5.3) can be created by removing edges from G1 or adding edges
to G2.]

To prove a(G1) = a`,q,m, let u be a vertex of G1 of degree m. Then the non-Perron
component at u is the path on q + 1 vertices, which has bottleneck matrix Pq+1.
Moreover, it follows from Observation 7.5.10 that the bottleneck matrix B1 for the



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Bottleneck Matrices for Graphs 343

Perron component at u is of the form

1
mee

T
1 (I + J)

A 1
mee

T
2 (I + J)

1
mJ . . .

1
mee

T
r−1(I + J)

1
mee

T
r (I + J)

B 1
mee

T
r+1(I + J)

1
mJ . . .

1
mee

T
m−1(I + J)

1
m (I + J)e1e

T 1
m (I + J)e2e

T . . . . . . 1
m (I + J)em−1e

T 1
m (I + J)


where

A =


Pq+1 + 2

mJ
1
mJ . . . 1

mJ
1
mJ Pq+1 + 2

mJ . . . 1
mJ

. . . . . . . . . . . .
1
mJ . . . 1

mJ Pq+1 + 2
mJ



B =


Pj1 + 2

mJ
1
mJ . . . 1

mJ
1
mJ Pj2 + 2

mJ . . . 1
mJ

. . . . . . . . . . . .
1
mJ . . . 1

mJ Pjm−r + 2
mJ


Note that B1 − 1

mJ is permutationally similar to a direct sum of r − 1 copies of

P̃q+1 + 1
mJ along with the matrices P̃ji + 1

mJ for 1 ≤ i ≤ m− r. It now follows from
Exercise 1(a) of Section 7.2 that a(G1) = a`,q,m.

To show that deleting an edge from G1 yields a graph whose algebraic connec-
tivity is strictly less than a`,q,m, we see from Exercise 1(b) of Section 7.2 that we
can create a Fiedler vector y for G1 as follows: Let z1 be a positive Perron vector
for P̃q+1 + 1

mJ , and let z2 be the eigenvector of B1 − 1
mJ corresponding to λn with

all nonpositive entries normalized so that eT z1 + eT z2 = 0. Let the subvector of y
corresponding to the vertices in the Perron component at u, along with u itself, be
z2 and let the remaining subvector of y be z1. Thus for each vertex w in the Perron
component at u in G1 we have yu > 0 ≥ yw, it now follows from similar arguments
from earlier in this proof that a(G1 − uw) < a`,q,m.

Next we consider the graph G2. Let u be a vertex of G2 of degree m. Like before,
the non-Perron component at u is a path on q + 1 vertices. Letting

M =

[
1
m (Ir−1 + J) 1

mJ
1
mJ

1
r Im−r + r−1

mr J

]
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we see from Observation 7.5.10 that the bottleneck matrix B2 for the Perron com-
ponent at u can be written as

A B . . .

eeTr−1M

C D . . .

eeTm−1M
Me1e

T Me2e
T . . . . . . Mem−1e

T M


where

A =


Pq+1 +M1,1J M1,2J . . . M1,r−1J M1,rJ

M2,1J Pq+1 +M2,2J . . . M2,r−1J

. . . Mr−2,r−1J

Mr−1,1J . . . Mr−1,r−2J Pq+1 +Mr−1,r−1J



B =


M1,r+1J . . . M1,m−1J eeT1 M

M2,rJ M2,r+1J . . . M2,m−1J

. . . . . .

Mr−1,rJ . . . Mr−1,m−1J



C =


M1,rJ M2,rJ . . . Mr−1,rJ

M1,r+1J M2,r+1J . . . Mr−1,r+1J

. . . . . . . . .

M1,m−1J . . . Mr−1,m−1J



D =


Pj1 +Mr,rJ Mr,r+1J . . . Mr,m−1J eeTrM

Mr+1,rJ Pj2 +Mr+1,r+1J . . . Mr+1,m−1J

Mm−2,m−1J

Mm−1,rJ . . . Mm−1,m−2J Pjm−r +Mm−1,m−1J


and Mi,j denotes the entry in row i and column j of M . Observe that B2 − 1

mJ is

permutationally similar to a direct sum of r− 1 copies of P̃q+1 + 1
mJ along with the

matrix

R =


Pj1 + 1

rJ O . . . O 1
ree

T
1

O . . . . . . . . .
. . . . . . Pjm−r + 1

r I
1
ree

T
m−r

1
re1e

T . . . . . . 1
rem−re

T 1
r I

− 1

mr
J

Observe that R + 1
mrJ is permutationally similar to a direct sum of the matrices

P̃ji + 1
rJ for 1 ≤ i ≤ m− r. Therefore

λn(R) ≤ λn

(
R+

1

mr
J

)
< ρ

(
P̃q+1 +

1

m
J

)
.
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Therefore

λn

(
B2 −

1

m
J

)
= ρ

(
P̃q+1 +

1

m
J

)
.

By considering the bottleneck matrices for the components at u, we apply Exercise
1(a) of Section 7.2 to see that a(G2) = a`,q,m. Since a(G1) ≥ a(G) ≥ a(G2), it follows
that a(G) = a`,q,m. Moreover, by a similar discussion as in the discussion of G1,
removing an edge from G2 incident with a vertex of degree m will result in a graph
with strictly lower algebraic connectivity. Again, the fact that a(G1) ≥ a(G) ≥ a(G2)
shows that the same holds true for G. 2

From the proof of Proposition 7.5.16, we are beginning to see that the graphs
E`(q,m) are likely candidates for yielding an attainable upperbound on the alge-
braic connectivity of graphs on n vertices with k > n/2 cut vertices. The following
theorem from [44] confirms this.

THEOREM 7.5.17 Let G be a connected graph on n vertices which has k cut
vertices. Suppose that k > n/2, say with k = (qn + `)/(q + 1) for some positive
integer q and nonnegative integer `. Then a(G) ≤ a`,q,n−k with equality holding if
and only if G ∈ E`(q, n− k).

Since the proof of this theorem is rather lengthy, we omit it but refer the reader
to [44] for the details. To assist the reader, we provide an outline of the proof here.
The proof is done by induction on n. Since (n + 1)/2 ≤ k ≤ n − 2, the smallest
admissible case is n = 5. This forces k = 3 which consequently yields q = ` = 1.
Therefore G is the path on 5 vertices. Observe a(G) = 1/ρ(P2) = a1,1,2 = a`,q,n−k.
Also observe, G ∈ E1(1, 2) = E`(q, n− k).

We then continue by assuming n ≥ 6 and that the result holds for all graphs on
at most n− 1 vertices. We investigate two major cases:

Case I: There exists a cut vertex v of G at which there is a component C con-
taining no cut vertices of G and where C has at least 2 vertices.

Case II: For any component C at a cut vertex v which contains no cut vertex
of G, C is necessarily a single vertex.

Within Case II, we have two cases: Case IIA is where ` ≥ 3, and Case IIB is
where 0 ≤ ` ≤ 2. Subsequently, within Case IIB there are two subcases: Case IIB1
is the case where there exists a cut vertex of G having at least three components,
while Case IIB2 is the case where each cut vertex has exactly two components.
Finally, Case IIB2 is divided into two further subcases. Both subcases deal with the
case where there exists a cut vertex u of G in which there exists a component K at
u which is not the unique Perron component at u. Case IIB2a is the case where K
is not a path, while in Case IIB2b we assume K is a path.

Summarizing the results of this section, suppose that we have a graph on n



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

346Applications of Combinatorial Matrix Theory to Laplacian Matrices of Graphs

vertices with k cut vertices. If k = 1, then a(G) ≤ 1 where equality holds if and only
if the cut vertex is adjacent to all other vertices of G (Corollary 7.5.2). Hence for
equality to hold, G must be of the form E1(0, n− 1). Thus in the language of Theo-
rem 7.5.17, a(G) ≤ 1/ρ(P1) = 1 as expected. Suppose now that G has 2 ≤ k < n/2
cut vertices. Observe that the upper bound on the algebraic connectivity of such
graphs occurs when G is of the form Ek(0, n− k) and note that this upper bound is
1/ρ(P̃1 + 1

n−kJ) which equals an−k. If G has k = n
2 cut vertices, then the maximum

algebraic connectivity of an
2

is achieved for graphs of the form En
2
(0, n2 ) = E0(1, n2 ).

Finally, if G has k = (qn + `)/(q + 1) cut vertices for integers q and ` such that
k > n/2, then the upper bound is achieved when we take a complete graph on n−k
vertices and attach paths of q vertices to each vertex of this complete graph. This
yields an algebraic connectivity of a`,q,n−k = 1/ρ(P̃q + 1

n−kJ). However, since this
quantity decreases as q increases, we see that it is maximized at q = 1 which yields
the value an−k. Therefore:

THEOREM 7.5.18 For all 1 ≤ k ≤ n, if G is a graph on n vertices with k cut
vertices, then a(G) ≤ an−k.

7.6 The Spectral Radius of Submatrices of Laplacian
Matrices for Graphs

This chapter has dealt primarily with generalizing the results of Chapter 6 to graphs.
We close this chapter with this section, based largely on [68], which generalizes the
results of Section 6.7. Recall that in Section 6.7 we investigated the spectral radius
of submatrices of Laplacian matrices at various vertices of a tree. For a vertex v in
a tree, we defined the function r(v) to be the spectral radius of the submatrix of the
Laplacian matrix L obtained by deleting the row and column of L corresponding to
v. In this section, we consider the values of the function r(v) at various vertices of
graphs which are not trees. Since these submatrices are inverses of the bottleneck
matrices that we have been studying, we investigate the values of r(v) in the context
of comparing such results with Fiedler’s famous theorem, Theorem 6.1.10. Before
we begin proving our results, let us generalize Definition 6.7.6:

DEFINITION 7.6.1 Let G be a weighted graph containing at least one cut vertex
and where λn 6= λn−1. Then G is of Type A if there exists a cut vertex v such that
r(v) = λn−1. A graph G is of Type B is no such cut vertex exits.

Note that when determining if a graph is of Type A or Type B, we consider only
the cut vertices. Consider the graph from [68]:
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which is labeled with its values for r(v). In this graph, we have λn−1 = 5. Yet this
graph is of Type B despite the fact that r(w) = λn−1 because w is not a cut vertex.

The goal of this section is to prove results for graphs that are analagous to
the results in Section 6.7 for trees. However, it is important to note that since not
all graphs are bipartite, we are unable to use the bipartite complement of the Lapla-
cian matrix as freely and as often as we did in Section 6.7. Thus the proofs of the
theorems in this section will be quite different. We begin with a theorem from [68]
which gives us an overview of the values of r(v) at cut vertices.

THEOREM 7.6.2 Let G be a connected weighted graph with Laplacian matrix L.
Let P be a path that begins at a cut vertex a in G in which the next cut vertex b on
P is such that r(b) > r(a). Then P has the property that the values of r(v) at the
cut vertices contained in P form an increasing sequence.

Proof: Consider the representation of a graph G below:

and consider its corresponding Laplacian matrix:

L =



A x 0 0 0 0 0

xT a yT α 0 0 0

0 y B z 0 0 0

0 α zT b wT β 0

0 0 0 w C v 0

0 0 0 β vT c uT

0 0 0 0 0 u D


.

Suppose that r(b) > r(a). Then it suffices to show that r(c) > r(b). For visual
clarity, observe the matrices L[a], L[b], and L[c] as follows:
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L[a] =



A 0 0 0 0 0

0 B z 0 0 0

0 zT b wT β 0

0 0 w C v 0

0 0 β vT c uT

0 0 0 0 u D


.

L[b] =



A x 0 0 0 0

xT a yT 0 0 0

0 y B 0 0 0

0 0 0 C v 0

0 0 0 vT c uT

0 0 0 0 u D


.

L[c] =



A x 0 0 0 0

xT a yT α 0 0

0 y B z 0 0

0 α zT b wT 0

0 0 0 w C 0

0 0 0 0 0 D


.

Each of these matrices can be partitioned into a 2 × 2 block matrix in which the
off-diagonal blocks are zero. Let A1 and A2 be the (1, 1) and (2, 2) blocks of L[a].
Define B1, B2, C1, and C2 in a similar fashion for L[b] and L[c], respectively. Observe
that r(b) > r(a) implies that

r(b) = max{ρ(B1), ρ(B2)} > max{ρ(A1), ρ(A2)} = r(a).

At this point, we will show that ρ(A2) > ρ(B2) which necessarily implies r(b) =
ρ(B1). Let Â be the matrix created from A2 by taking all entries which are also
entries in B2 and replacing them with zero. Let B̂ be the matrix that is the same
size as A that created from B2 by bordering the matrix with zeros that correspond
to the non-B2 entries of Â. In other words:

Â =



B z 0 0 0

zT b wT β 0

0 w 0 0 0

0 β 0 0 0

0 0 0 0 0


.
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and

B̂ =



0 0 0 0 0

0 0 0 0 0

0 0 C v 0

0 0 vT c uT

0 0 0 u D


.

Observe that λ1(Â) = 0 since the set of vectors of the form ei, where each i corre-
sponds to a row/column corresponding to the matrix D of B̂, forms a basis for the
eigenspace of Â corresponding to the eigenvalue zero. By Theorem 1.2.4 we see that

ρ(A2) = ρ(Â+ B̂) = maxxT x=1[xT (Â+ B̂)x]

= maxxT x=1[xT Âx+ xT B̂x]

≥ maxxT x=1[λ1(Â) + xT B̂x]

= maxxT x=1[xT B̂x]

= ρ(B̂)

= ρ(B2).

However, observe that the inequality in this case will be strict since no unit vector
which is in the eigenspace of Â corresponding to λ1(Â) = 0 is an eigenvector of B̂.
Thus ρ(Â+ B̂) > ρ(B̂) and hence ρ(A2) > ρ(B2). Therefore r(b) = ρ(B1). By using
a similar argument as above, r(c) = ρ(C1). Since B1 is a proper submatrix of C1, it
follows that

r(c) = ρ(C1) > ρ(B1) = r(b).

2

We see from Theorem 7.6.2 that if we chose a cut vertex u such that the value
of r(u) is minimized over all cut vertices, then any path P that begins at u that
contains cut vertices other than u will have the property that the values of r(v) at
the cut vertices in v ∈ P will be an increasing sequence as P is traversed. Observe
the example from [68]:

EXAMPLE 7.6.3 In the graph below, its vertices labeled with their values for
r(v):
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Observe that the cut vertex with the minimum value r(v) is the vertex such that
r(v) = 5.727. As we radiate out from this vertex, the values for r(v) at the cut
vertices strictly increase. This parallels Fiedler’s results in Theorem 6.1.10.

OBSERVATION 7.6.4 Theorem 6.1.10 implies that for each block B ∈ G, the
entries of the Fiedler vector corresponding to the vertices in B that are not cut
vertices in G are bounded above and below by the entries of the Fiedler vector
corresponding to the vertices in B that are cut vertices. However, as we can see
from the example above, this idea does not hold true when considering the function
r(v). Observe in one of the blocks, the minimum and maximum values for r(v) over
the cut vertices v are 5.727 and 6.129, respectively, but there is a vertex v in that
block such that r(v) = 6.165.

Now that we have an idea of how the values of r(v) for the cut vertices vary,
we now generalize our results from Section 6.7 to graphs that contain cut vertices.
We impose the condition of λn being simple because otherwise, λn = λn−1 and by
Corollary 1.2.10, it would follow that r(v) = λn−1 = λn for all vertices v. We begin
with two definitions concerning the structure of graphs that contain cut vertices:

DEFINITION 7.6.5 Two cut vertices u and v are block adjacent in a graph G if
there exists a path from u to v such that all edges on the path lie in a single block
of G.

DEFINITION 7.6.6 A block adjacent path of order k is a sequence of cut vertices
v1, . . . , vk such that vi is block adjacent to vi+1 for i = 1, . . . , k − 1.

With these definitions, we can rephrase Theorem 7.6.2 to say that if P is a block
adjacent path in G that begins at a cut vertex a in which the next cut vertex b on P
is such that r(b) > r(a), then P has the property that the values of r(v) at the cut
vertices contained in P form a strictly increasing sequence. Therefore, while there
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may be a set of block adjacent cut vertices where r(v) is minimized, once we travel
away from such vertices, the values of r(v) at the cut vertices strictly increase.

Observe that for each cut vertex v, the matrix L[v] is (permutationally similar
to) a block diagonal matrix in which each block of L[v] corresponds to a component
G − v. Therefore, for each cut vertex v, it follows that r(v) attains its value from
the block(s) of L[v] with the maximum spectral radius. As in Section 6.7, we will
refer to the corresponding component(s) of G − v as the spectral branch(es) at v.
We now prove a useful lemma from [68] concerning the number of spectral branches
at a cut vertex v:

LEMMA 7.6.7 Let G be a connected weighted graph where L is its Laplacian and
where λn is simple. Let v be a cut vertex of G. Then the multiplicity of r(v) as an
eigenvalue of the matrix L[v] is at least the number of spectral branches at v.

Proof: Recall that L[v] is (permutationally similar to) a block diagonal matrix
in which each block corresponds to a component of G − v (i.e., a branch at v). Since
the spectral branches at v correspond to the blocks of L[v] in which r(v) is attained,
it follows that the multiplicity of r(v) as an eigenvalue of L[v] must be at least the
number of spectral branches at v. 2

We saw in Theorem 6.7.9 that if G is a tree, then v has more than one spectral
branch if and only if r(v) = λn−1. We will now prove a similar theorem from [68]
for graphs in general. However, we will only prove the theorem in one direction:

THEOREM 7.6.8 Let G be a connected weighted graph where L is its Laplacian
and where λn is simple. Let v be a cut vertex of G that has more than one spectral
branch. Then r(v) = λn−1; hence G is of Type A.

Proof: We will assume r(v) 6= λn−1 for a cut vertex v and show that v must
have exactly one spectral branch. First, if r(v) = λn, then since λn is simple, it
follows from Lemma 7.6.7 that v has exactly one spectral branch. If r(v) 6= λn, then
since r(v) 6= λn−1, it follows that λn−1 < r(v) < λn. By Corollary 1.2.10 it follows
that r(v) is a simple eigenvalue of L(v). Thus by Lemma 7.6.7, we conclude that v
has exactly one spectral branch. 2

By Theorem 6.7.9, the converse of Theorem 7.6.8 is true if G is a tree. However,
the converse is not necessarily true for graphs in general. Consider the following
example from [68]:
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In this graph, we have λn−1 = 4.618. Labeling each vertex v with its value r(v), we
see that r(x) = 4.618 = λn−1, thus making this a graph of Type A. However, x has
only one spectral branch, namely the block on the left.

We should also note that unlike trees, if there exists a cut vertex v such that
r(v) = λn−1, then if G is not a tree, that cut vertex may not necessarily be the
unique cut vertex such that r(v) = λn−1. Consider the following example from [68]

In this graph, λn−1 = 4.618. Observe there are two cut vertices, w and x, whose
value r(v) = λn−1. In fact, it is possible to have a graph in which there are more
than two cut vertices v where r(v) = λn−1. We leave that for an exercise at the end
of this section.

In Theorem 6.7.11 we showed that if G is a tree, there must exist two adja-
cent vertices v and w such that a spectral branch at v contains w and a spectral
branch at w contains v, and that this pair of vertices is unique if the tree is of Type
B. We now generalize this to graphs, in general, containing cut vertices. We first
need a lemma from [68]:

LEMMA 7.6.9 Let G be a weighted graph with at least one cut vertex. Then given
any block B of G, there can exist at most one cut vertex v of G lying on B such that
B is not contained in any spectral branch at v.

Proof: Let B be a block of G containing cut vertices v and w of G such that no
spectral branch at v or w contains B. Let V and W be blocks of G that v and w
lie on that are spectral branches at v and w, respectively. Let LV and LB(v) be the
blocks of L[v] corresponding to V and B, respectively. Similarly, let LW and LB(w)

be the blocks of L[w] corresponding to W and B, respectively. Note that LW is a
proper submatrix of LB(v) and that LV is a proper submatrix of LB(w). Therefore:

r(v) = ρ(LV ) > ρ(LB(v)) ≥ ρ(LW ) > ρ(LB(w)) ≥ ρ(LV ) = r(v)

where the strict inequalities follow from the fact that B is not on a spectral branch
of v or w. However, we have obtained the contradiction r(v) > r(v). Hence for any
block B of G, there can exist at most one cut vertex on B in which no spectral
branch at that vertex contains B. 2

Lemma 7.6.9 leads us to the following definition:

DEFINITION 7.6.10 A spectral block of G is a block B of G such for each cut
vertex v of G lying in B, the block B is contained in a spectral branch at v.
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EXAMPLE 7.6.11 Consider the graph from Example 7.6.3 relabeled below:

Observe that in block A, the cut vertex of G is vertex 4 and the spectral branch at
this vertex does not contain A. In block B, the cut vertices of G are 4, 8, and 9.
The spectral branch at all three of these vertices contains B. In block C, the cut
vertices of G are 9 and 11. Observe that the spectral branch at 9 does not contain
C but the spectral branch at 11 does. For block D, the cut vertex of G is vertex 11
and the spectral branch at 11 does not contain D. For block E, the cut vertices of
G are 9 and 17. Observe that the spectral branch at 9 does not contain E but the
spectral branch at 17 does. In block F , the cut vertices of G are 17 and 18. Observe
that the spectral branch at 17 does not contain F but the spectral branch at 18
does. Finally, in block G the cut vertex of G is vertex 18 and the spectral branch
at 18 does not contain G. Hence we see that for each block X, there is at most one
cut vertex of G lying on X whose spectral branch does not contain X, as Lemma
7.6.9 states. Moreover, every cut vertex v of G lying in block B is such that B is
contained in a spectral branch at v. Hence B is a spectral block of G.

We now prove a generalization of Theorem 6.7.11. This generalization can be
found in [68]:

THEOREM 7.6.12 Let G be a weighted graph with at least one cut vertex where L
is the Laplacian for G and λn is simple. Then G contains a spectral block. Moreover,
if G is of Type B, then this block is unique.

Proof: Suppose G does not contain a spectral block. Then from Lemma 7.6.9,
each block in G contains exactly one cut vertex of G whose spectral branch does
not contain that block. Choose a block B1 of G. Let v1 be the vertex of B1 whose
spectral branch does not contain it. Now choose a block B2, adjacent to B1, such
that a spectral branch at v1 contains B2. Next choose the cut vertex v2 on B2

whose spectral branch does not contain B2. Choose a block B3, adjacent to B2,
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such that the spectral branch at v2 contains B3. Continuing in this fashion, we
obtain a sequence of blocks and cut vertices: B1, v1, B2, v2, B3, . . .. Since G is finite,
this sequence will terminate at a pendant block Bp (a block containing only one cut
vertex of G). Hence Bp would contain a cut vertex whose spectral branch contains
it. Since Bp contains only one cut vertex of G, it follows that all cut vertices of G
lying in Bp are such that the spectral branch at the cut vertices contains Bp. Thus
Bp is a spectral block, contradicting our original assumption. Hence G must contain
a spectral block.

To show uniqueness in the Type B case, suppose B and C are two spectral
blocks. Letting v ∈ B and w ∈ C be cut vertices, consider the block adjacent path
P : v = v1, v2, . . . , vk−1, vk = w from v to w, and let Bi be the block containing ver-
tices vi and vi+1 (thus B = B0 and C = Bk). Since B is a spectral block, it follows
that the unique spectral branch at v1 contains B. Since B1 is not on the spectral
branch at v1, it follows from Lemma 7.6.9 that the unique spectral branch at v2

contains B1. Following this reasoning, the unique spectral branch at vi contains
Bi−1 for all i = 1, . . . , k. However, since C is a spectral block, it follows that the
unique spectral branch at vk contains C, and thus by similar reasoning as before, it
would follow that the unique spectral branch at vi contains Bi for all i = 1, . . . , k.
This is a contradiction. Hence we have established uniqueness. 2

Theorem 6.7.11 says that if T is a tree of Type B, then there exits a unique
pair of adjacent vertices v and w such that the spectral branch at v contains w and
the spectral branch at w contains v. Theorem 7.6.12 generalizes this result to say
that if a graph is of Type B, then it necessarily has a unique set of mutually block
adjacent cut vertices such that the spectral branch at each such vertices contains all
of the other such vertices. In other words a graph of Type B has a unique spectral
block.

EXAMPLE 7.6.13 Consider the graph from Examples 7.6.3 and 7.6.11:

In this graph, we have λn−1 = 5.434. Observe that this graph is of Type B because
there do not exist any cut vertices v such that r(v) = λn−1. We saw earlier that B
is the spectral block of this graph. Note that the cut vertices of block B are vertices
4, 8, and 9, and that the spectral branch at each of these cut vertices contains the
other two as Theorem 7.6.12 states.

We see from the proof of Theorem 7.6.12 that if m is a cut vertex not lying
on a spectral block of G, then the unique spectral branch must contain the spec-
tral block(s) of G. We state this more formally as a corollary (from [68]) which
generalizes Corollary 6.7.13 to graphs.

COROLLARY 7.6.14 Let G be a connected weighted graph where L is its Lapla-
cian and λn is simple. Suppose m is a cut vertex that does not lie on a spectral block
of G. Then the unique spectral branch at m is the branch which contains all of the
spectral block(s) of G.
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At this point we summarize our results from Theorems 7.6.8, 7.6.12, and Corol-
lary 7.6.14 with a theorem from [68] to obtain a generalization of Theorem 6.7.14:

THEOREM 7.6.15 Let G be a connected weighted graph with at least one cut ver-
tex where L is the Laplacian for G and λn is simple. Then

(a) If there exists a cut vertex v having at least two spectral branches, then (i)
r(v) = λn−1, and (ii) such a graph is of Type A. We call v the spectral vertex of G.

(b) If G is of Type B, then there exists a unique set of mutually block adja-
cent cut vertices such that the spectral branch at each such vertex contains the other
such vertices. These vertices all lie on the same block of G known as the spectral
block of G.

(c) If a cut vertex m is not a spectral vertex of G, nor lies on a spectral block of
G, then the unique spectral branch at m contains the all spectral vertex/block(s) of
G.

Note that we established that the converse of (a-ii) is true when G is a tree, but
false otherwise.

In light of Theorem 7.6.15, we can make Theorem 7.6.2 more precise in light of
the results we have concerning the blocks of Type A and Type B trees. We note
that as we radiate away from the cut vertices of a weighted graph G such that the
value of r(v) is minimized, the values of r(v) at the subsequent cut vertices strictly
increase. Thus we combine the results from Theorem 7.6.2 and Theorems 7.6.8 and
7.6.12 to obtain a generalization of Theorem 6.7.15 (see [68]):

THEOREM 7.6.16 Let G be a connected weighted graph with a cut vertex where
L is its Laplacian and λn is simple. Then the values for r(v) increases (not neces-
sarily strictly) for cut vertices v along any block adjacent path which

(a) begins at a spectral vertex, or

(b) begins at a cut vertex in a spectral block and does not contain other cut
vertices of a spectral block.

REMARK 7.6.17 Note that in Theorem 7.6.16, that the values of r(v) are not
necessarily increasing strictly along said paths like they necessarily would if G is a
tree. Consider the following graph (see [68]):
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Labeling each vertex v with its value r(v), it can be seen that the block to the left
of x is the spectral block, yet the values of r(v) remain constant as one travels away
from x. It should be noted that in a graph, once the values for r(v) begin to strictly
increase along said block adjacent paths, the values will continue to strictly increase
according to Theorem 7.6.2.

REMARK 7.6.18 We saw in Section 6.7 that if G is a tree, then r(v) < λn for all
vertices v ∈ G. However, we see from the graph in Remark 7.6.17 that this inequality
does not hold for graphs in general. Observe that λn = 4.618 and that there exists
cut vertices (and a non-cut vertex) such that r(v) = λn.

We now turn our attention to vertices of graphs which are not cut vertices. We
begin with a theorem from [68] which concerns vertices that are neither cut vertices,
nor vertices lying on a spectral block of the graph.

THEOREM 7.6.19 Let G be a connected weighted graph where L is the Laplacian
for G and where λn is simple. Let v be a vertex that is not a cut vertex. Suppose v
lies on a block B of G that is not a spectral block of G. Then r(v) ≥ min r(w) where
the minimum is taken over all vertices w ∈ B that are cut vertices of G.

Proof: Suppose B is not a spectral block of G. Then by Theorem 7.6.2 and
Lemma 7.6.9, B contains a cut vertex x of G such that B is not contained in a
spectral branch at x. Letting L′(x) be the block of L[x] corresponding to a spectral
branch at x, we see that L′(x) is a positive definite submatrix of L[v]. Hence:

r(v) = ρ(L[v]) ≥ ρ(L′(x)) = ρ(L[x]) = r(x).

Thus there exists a cut vertex x of G that lies on B such that r(v) ≥ r(w). Hence
r(v) ≥ min r(w) where the minimum is taken over all vertices w ∈ B that are cut
vertices of G. 2

REMARK 7.6.20 The condition that B is not a spectral block cannot be elim-
inated. Observe in the graph G following Definition 7.6.1 that vertex w lies in the
spectral block of G yet the value for r(w) is less than of that of the cut vertices of
G that lie in the spectral block (which is the center block in this graph).
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So far we have been investigating graphs in which λn was simple. Therefore,
it is natural to investigate graphs in which λn is not simple. Clearly if λn = λn−1

then by (6.7.1) we have r(v) = λn = λn−1 for all vertices v. This leads us to two
immediate questions:

(1) Is the converse true, i.e., if the value for r(v) is constant for all vertices v ∈ G,
must λn = λn−1?

(2) Under what conditions will λn = λn−1?

The answer to the first question is that the converse is false. To obtain a family
of counterexamples, we prove the following claim from [68]:

CLAIM 7.6.21 Let G be a connected bipartite graph in which all vertices are iso-
morphic. Let L be its Laplacian matrix. Then the value for r(v) over all vertices
v ∈ G are equal, yet λn 6= λn−1.

Proof: The value of r(v) being constant over all vertices v ∈ G follows immedi-
ately from the fact that the vertices are all isomorphic. The inequality λn 6= λn−1

follows directly from Theorem 4.3.12. 2

EXAMPLE 7.6.22 Consider complete bipartite graph K3,3. Observe that r(v) =
5.449 for all vertices v ∈ K3,3, yet λn−1 6= λn since λn = 6 while λn−1 = 3.

REMARK 7.6.23 Claim 7.6.21 only gives us counterexamples to the converse
that is stated in Question (1); it does not claim that these are the only counterex-
amples.

To answer Question (2), recall from Theorem 4.1.11 that if λk is an eigenvalue
of L(G) for k = 2, . . . , n, then n − λk is an eigenvalue of L(Gc), where Gc is the
complement of G, with the same corresponding eigenvector(s). More specifically,
λ2(Gc) = n−λn(G) and λ3(Gc) = λn−1(G). Hence for the graph G, λn = λn−1 if and
only if λ2(Gc) is not a simple eigenvalue of L(Gc). Therefore, in order to attempt
to characterize all graphs G such that λn−1 = λn, we will rely heavily on Gc. When
investigating Gc, we will divide our investigation into three cases:

(a) Gc is not connected.

(b) Gc is connected and contains at least one cut vertex.

(c) Gc is connected but does not contain any cut vertices.

For Case (a), if Gc is not connected, then λ2(Gc) = 0. Hence in order to ob-
tain λn(G) = λn−1(G), Theorem 4.1.11 dictates that we would need λ3(Gc) = 0
also. Hence if Gc is disconnected, then by Theorem 4.1.1 it follows that Gc must
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contain at least three components. This implies that if G is the join of at least three
graphs, then λn(G) = λn−1(G).

EXAMPLE 7.6.24 [68] To illustrate Case (a), consider the following multipartite
graph K1,2,3:

Observe that K1,2,3 is the join of three graphs, namely the empty graphs on one,
two, and three vertices. Therefore, λn = λn−1 and hence the value of r(v) has the
same value (namely 6) for all vertices v of this graph.

For Case (b), if Gc is connected and contains at least one cut vertex, then in
order to have λ2(Gc) = λ3(Gc), we see from Theorem 7.2.4 and a generalization of
Theorem 6.2.18 that Gc must be a graph of Type I where its characteristic vertex
has at least three Perron branches.

EXAMPLE 7.6.25 [68] To illustrate Case (b), consider the following graph:

Observe that this graph is of Type I with z as its characteristic vertex. Also note
that z has three Perron branches. Thus the complement of this graph, i.e.,
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is such that λn = λn−1 and thus r(v) has the same value (namely 6.618) for all
vertices v of this graph.

We now summarize the results of Cases (a) and (b) in the following theorem
from [68]:

THEOREM 7.6.26 Let G be a graph and L(G) be its Laplacian. Then λn = λn−1

if either of the following holds:

(a) G is the join of at least three graphs.

(b) Gc is a graph of Type I such that its characteristic vertex has at least three
Perron branches.

Moving on to Case (c), we see again that Gc would have to be such that
λ2(Gc) = λ3(Gc). But since in this case we are not allowing Gc to have any cut
vertices, this means that in order to complete an investigation of Case (c), we
would have to characterize all graphs without cut vertices such that the algebraic
connectivity is not a simple eigenvalue of its Laplacian matrix. Unfortunately, no
such characterization is known. However, we can again rely on the concept of char-
acteristic vertices of Type I graphs in order to construct some examples. Often times
(but not always), we can create a graph in which λn = λn−1 by taking two copies
of the complement of a Type I graph, and joining the characteristic vertex of each
copy of such graph with a path. For example (see [68]):

Observe that we have taken two copies of (P5)c, the complement of the path on five
vertices, and joined them with a path beginning at the vertex in one copy of (P5)c

which is the characteristic vertex of P5 and ending at the corresponding vertex of
the other copy of (P5)c. In this graph, λn = λn−1 = 4.618. Thus r(v) = 4.618 for
all vertices in this graph.

We can construct a similar graph by taking two copies of (P7)c and joining them
with a path consisting of at least two intermediate vertices beginning at the vertex
in one copy of (P7)c which is the characteristic vertex of P7 and ending at the cor-
responding vertex of the other copy of (P7)c. In this graph λn = λn−1 = 6.802. At
this point it is tempting to conjecture that this method of creating graphs in which
λn = λn−1 will hold by using two copies of any Type I graph. Unfortunately, this is
not the case as P9 would be a counterexample. Hence it remains an open question
as to which graphs of Type I we can use to create a graph in this manner in which
λn = λn−1.
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Exercises:

1. Classify each of the following graphs G1 and G2 as Type A or Type B.

2. Construct a graph in which λn is simple and there are three cut vertices v such
that r(v) = λn−1.

3. Suppose G is a graph with at least three cut vertices v such that r(v) = λn−1.
Prove that the blocks containing such vertices are all spectral blocks.
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Chapter 8

The Group Inverse of the
Laplacian Matrix

In the beginning of Chapter 7, we briefly used the group inverse of the Laplacian
matrix of a graph in order to create bottleneck matrices. In this chapter, we in-
vestigate the group inverse of the Laplacian matrix much more deeply and study
the combinatorial aspects behind its construction. In Section 8.1, we show how the
structure of a tree can be used to construct the group inverse of the Laplacian ma-
trix. Distances between pairs of vertices in a weighted tree will be significant in our
construction of such matrices. We then use the group inverse in Section 8.2 to derive
a lower bound on the algebraic connectivity of graphs. We also show when equality
can occur between this lower bound and the algebraic connectivity. We then return
our focus to trees in Section 8.3 and investigate which vertices of trees contribute
to this lower bound. Finally, in Section 8.4 we refine our results from Section 5.2
concerning how varying the weight of the edges of a graph affects the algebraic
connectivity. The group inverse turns out to be very useful in this endeavor.

8.1 Constructing the Group Inverse for a Laplacian
Matrix of a Weighted Tree

As stated in Section 1.6 and restated in Section 7.1, the group inverse of n×n matrix
A, when it exists, is the unique n× n matrix X that satisfies all of the following:

(i) AXA = A
(ii) XAX = X
(iii) AX = XA

(8.1.1)

Recall from Theorem 7.1.1 that if A is an irreducible singular M-matrix with right
null vector x = [x1, x2, . . . , xn]T and left null vector y = [y1, y2, . . . , yn]T , then

A# =
ŷTMx̂

(yTx)2
xyT +

[
M − 1

yT x
Mx̂ŷT − 1

yT x
x̂ŷTM −yn

yT x
Mx̂

−xn
yT x

ŷTM 0

]
(8.1.2)

361
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where x̂ = [x1, x2, . . . , xn−1]T , ŷ = [y1, y2, . . . , yn−1]T , and M = A[n]−1. This imme-
diately gave rise to the formula for L#:

L# =
eTMe

n2
J +

[
M − 1

nMJ − 1
nJM − 1

nMe

− 1
ne

TM 0

]
(8.1.3)

The goal of this section will be to use (8.1.3) to develop a combinatorial description
of the entries in L# in terms of distances between vertices when L is the Laplacian
matrix for a weighted tree. Letting T be a weighted tree with vertices 1, 2, . . . , n, we
saw from Theorem 6.2.5 that the formula for the bottleneck matrix M of T based
at vertex v is

mi,j =
∑
e∈P̃i,j

1

w(e)
, (8.1.4)

where P̃i,j is the set of all edges e which lie concurrently on the path from i to v and
on the path from j to v. In developing a combinatorial description of the entries
in L# when L is the Laplacian matrix for a weighted tree, our first goal will be
to determine a formula for the diagonal entries of L#. To this end, for a weighted
tree T and edge e ∈ T , we define βi(e) to be the set of vertices in the connected
component of T − e which does not contain vertex i. We can now use Theorem
6.2.5 along with Corollary 7.1.2 to obtain the diagonal entries of L# when L is the
Laplacian matrix for a weighted tree. We do so in the following lemma from [50].

LEMMA 8.1.1 If L is the Laplacian matrix for a weighted tree T on n vertices,
then

L#
v,v =

1

n2

∑
e∈T

|βv(e)|2

w(e)
(8.1.5)

for v = 1, 2, . . . , n.

Proof: Without loss of generality, we may assume v = n. By Corollary 7.1.2,

L#
n,n =

eTMe

n2

where M is the bottleneck matrix at vertex n. Observe that eTMe is merely the
sum of the entries in M . Using Theorem 6.2.5, we see that

L#
n,n =

1

n2

∑
e∈T

f(e)

w(e)

where f(e) denotes the number of times an edge e is used to sum the entries of M .
From Theorem 6.2.5, an edge e is used for mi,j if e occurs concurrently on the paths
from i to n and from j to n. In other words, an edge e is used in the computing
of mi,j if and only if both i and j lie on the same component of T − e and on the
opposite component of n. Thus f(e) = |βn(e)|2. This proves the theorem. 2

While Lemma 8.1.1 is informative, ultimately we want to be able to determine
the diagonal entries of the Laplacian matrix in terms of distances between vertices
in the tree. To this end, we need the following definitions.
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DEFINITION 8.1.2 The inverse weighted distance from vertex i to vertex j is
the sum of the reciprocals of the weights of the edges of the unique path, Pi,j from
i to j, i.e.,

d̃(i, j) : =
∑
e∈Pi,j

1

w(e)
. (8.1.6)

DEFINITION 8.1.3 Letting d̃(i, i) = 0 for each i, we define the inverse status of
a vertex i as the sum

d̃i : =
∑
u∈T

d̃(u, i). (8.1.7)

In our attempt to construct the group inverse of the Laplacian matrix in terms of the
structural properties of a tree, we now derive a formula for the difference between
diagonal entries of L# in terms of the inverse status number of the corresponding
vertices. We do so with a lemma from [50]:

LEMMA 8.1.4 Let T be a weighted tree on n vertices. Let v0 and v` be vertices
in T . Then

d̃v0 − d̃v` = n
(
L#
v0,v0 − L

#
v`,v`

)
.

Proof: Let v1, v2, . . . , v`−1 be intermediate vertices on the path P joining v0 to
v`. For 1 ≤ i ≤ `, let ei be the edge between vi−1 and vi having weight θi. For
0 ≤ i ≤ `, let ti be the number of vertices, including vi, whose shortest path to P
has terminal vertex vi. For any one of the ti vertices u of T whose shortest path to
P ends at vi, we have that

d̃(u, v0)− d̃(u, v`) = d̃(vi, v0)− d̃(vi, v`).

Thus summing over all such i we obtain

d̃v0 − d̃v` =
∑̀
i=1

ti
[
d̃(vi, v0)− d̃(vi, v`)

]
.

Observing that

d̃(vi, v0)− d̃(vi, v`) =
i∑

m=1

1

θm
−

∑̀
m=i+1

1

θm
,

we obtain

d̃v0 − d̃v` =
∑̀
i=0

ti

 i∑
m=1

1

θm
−

∑̀
m=i+1

1

θm

 . (8.1.8)

We see from Lemma 8.1.1 that

n2L#
v,v =

∑
e∈T

|βv(e)|2

w(e)
.
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for each vertex v ∈ T . Hence

n2
(
L#
v0,v0 − L

#
v`,v`

)
=
∑
e∈T

1
w(e)(|βv0(e)|2 − |βv`(e)|2)

=
∑
e∈T (|βv0(e)|+ |βv`(e)|)

|βv0 (e)|−|βv` (e)|
w(e)

(8.1.9)

Observe that if e /∈ P then |βv0(e)| = |βv`(e)|, while if e = em for some m =
1, 2, . . . , ` then |βv0(em)| = tm + . . .+ t` and |βv`(em)| = t0 + . . .+ tm−1. Therefore,
we can rewrite (8.1.9) as

∑̀
m=1

(|βv0(em)|+ |βv`(em)|)
|βv0(em)| − |βv`m (em)|

θm

which equals (recalling that t1 + . . .+ t` = n)

n
∑̀
m=1

−t0 − . . .− tm−1 + tm + . . .+ t`
θm

.

Simplifying the last expression, we obtain

n2
(
L#
v0,v0 − L

#
v`,v`

)
= n

∑̀
i=0

ti

 i∑
m=1

1

θm
−

∑̀
m=i+1

1

θm

 .
Dividing through by n and then plugging into (8.1.8) gives the desired result. 2

From Lemma 8.1.4, we see that L#
v0,v0 − L

#
v`,v`

= 1
n(d̃v0 − d̃v`). We now obtain

the following corollary from [50] which makes use of vector notation:

COROLLARY 8.1.5 Let T be a weighted tree on n vertices with Laplacian matrix
L. Then for some constant c, we have[

L#
1,1 . . . L

#
n,n

]
=

1

n

[
d̃1 . . . d̃n

]
+ ceT .

Our ultimate goal is to obtain a formula for L#
v,v in terms of the inverse status

of the vertices. This goal will be achieved when we determine the constant c in
Corollary 8.1.5. To do this, we need to define some notation. For each edge e ∈ T
where T has n vertices, the graph T − e has two connected components: Je which
has je vertices and Jce which has n − je vertices. Now for our theorem from [50]
which determines the value of c:

THEOREM 8.1.6[
L#

1,1 . . . L
#
n,n

]
=

1

n

[
d̃1 . . . d̃n

]
−
(

1

2n2

n∑
i=1

d̃i

)
eT .
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Proof: From Corollary 8.1.5, we obtain

ceT =
[
L#

1,1 . . . L
#
n,n

]
− 1

n

[
d̃1 . . . d̃n

]
.

Summing the entries in each vector, we obtain

nc =
n∑
i=1

L#
i,i −

1

n

n∑
i=1

d̃i

and hence

c =
1

n

n∑
i=1

L#
i,i −

1

n2

n∑
i=1

d̃i.

Thus our theorem will be proved once we show that
∑n
i=1 L

#
i,i = 1

2n

∑n
i=1 d̃i.

From Lemma 8.1.1 we obtain
n∑
i=1

L#
i,i =

1

n2

∑
e∈T

∑
v∈T

|βv(e)|2

w(e)
. (8.1.10)

Using the notation that was described preceeding this theorem, we see that if v ∈ Je
then |βv(e)|2 = (n− je)2, while if v ∈ Jce then |βv(e)|2 = j2

e . Therefore∑
e∈T

∑
v∈T

|βv(e)|2
w(e) =

∑
e∈T

1
w(e)

(∑
v∈Je |βv(e)|

2 +
∑
v∈Jce |βv(e)|

2
)

∑
e∈T

1
w(e)((n− je)2je + j2

e (n− je))

∑
e∈T

nje(n−je)
w(e) .

(8.1.11)

From the definition of inverse status numbers, we have

n∑
i=1

d̃i =
∑
v∈T

∑
u∈T

∑
e∈Pu,v

1

w(e)
.

But for each edge e, there are 2je(n− je) unordered pairs of vertices u and v such
that e is on the path between them. Hence, each edge e contributes 2je(n−je)/w(e)
to the above sum so that

n∑
i=1

d̃i =
∑
e∈T

2je(n− je)
w(e)

.

Combining this with (8.1.11) we obtain

∑
e∈T

∑
v∈T

|βv(e)|2

w(e)
=

n

2

n∑
i=1

d̃i.

Plugging this into (8.1.10) yields the desired result. 2

We now have a formula for the diagonal entries of L# completely in terms of inverse
status numbers. We state this more formally as a corollary from [50]:
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COROLLARY 8.1.7 Let T be a weighted tree on n vertices and L be its Lapla-
cian. Then for each vertex v ∈ T , we have

L#
v,v =

1

n
d̃v −

1

2n2

n∑
i=1

d̃i.

OBSERVATION 8.1.8 For any two distinct vertices i and j, it follows that L#
i,i ≥

L#
j,j if and only if d̃i ≥ d̃j .

EXAMPLE 8.1.9 Consider the weighted tree below:

Below is a chart that gives the inverse weighted distance d̃(i, j) between each pair
of vertices i and j.

1 2 3 4 5 6 7

1 0 1 1 1
2

5
4

5
4

3
2

2 1 0 2 3
2

1
4

1
4

5
2

3 1 2 0 3
2

9
4

9
4

1
2

4 1
2

3
2

3
2 0 7

4
7
4 2

5 5
4

1
4

9
4

7
4 0 1

2
11
4

6 5
4

1
4

9
4

7
4

1
2 0 11

4

7 3
2

5
2

1
2 2 11

4
11
4 0

From the above chart, we can determine the values for d̃i for each i = 1, . . . , 7:

i 1 2 3 4 5 6 7

d̃i
13
2

15
2

19
2 9 35

4
35
4 12

Since n = 7 it follows that 1
2n2

∑
d̃i = 31

49 . Therefore, by Corollary 8.1.7 we have the

following values for L#
i,i:
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i 1 2 3 4 5 6 7

L#
i,i

29
98

43
98

71
98

32
49

121
196

121
196

53
49

Now that we have derived a formula for the diagonal entries of L# in terms of
inverse statuses of the vertices, our next goal is to do the same for the off diagonal
entries of L#. To this end, we need the following two claims from [50]:

CLAIM 8.1.10 Let T be a weighted tree and L be its Laplacian. For i 6= n, we
have

L#
i,i = d̃(i, n)− 2

n

∑
e∈Pi,n

|βn(e)|
w(e)

+ L#
n,n

Proof: We will consider the quantity L#
i,i−L#

n,n. In light of Lemma 8.1.1, observe

that if e /∈ Pi,n then its contribution to L#
i,i is the same as that to L#

n,n. Hence in

L#
i,i − L#

n,n we need only consider edges in T that lie on the path from i to n. For

such an edge e, its contribution to L#
n,n is |βn(e)|/(n ∗ w(e)), while its contribution

to L#
i,i is (n− |βn(e)|)/(n ∗ w(e)). Thus

L#
i,i − L

#
n,n =

1

n

∑
e∈Pi,j

n− 2|βn(e)|
w(e)

= d̃(i, n)− 2

n

∑
e∈Pi,n

|βn(e)|
w(e)

,

the last equality stemming from the fact that d̃(i, n) =
∑
e∈Pi,n 1/w(e). Solving for

L#
i,i proves the claim. 2

CLAIM 8.1.11 Let T be a weighted tree on n vertices with Laplacian matrix L.
Then for i, j = 1, . . . , n with i 6= j,

L#
i,j =

1

n2

∑
e∈T

|βj(e)|2

w(e)
− 1

n

∑
e∈P̃i,j

|βj(e)|
w(e)

.

Proof: Without loss of generality we can assume j = n and i = 1, . . . , n − 1.
From Theorem 7.1.2 we obtain

L#
i,n =

eTMe

n2
− 1

n
(eTM)i.

where M is the bottleneck matrix at vertex n. From Lemma 8.1.1 we saw that
eTMe
n2 = 1

n2

∑
e∈T

|βv(e)|2
w(e) . By similar reasoning as in the proof of Lemma 8.1.1, we

obtain that (eTM)i =
∑
e∈P̃i,n

|βn(e)|
w(e) . The result follows. 2

We are now able to prove a formula from [50] for the off diagonal entries of L#

in terms of inverse distances:
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THEOREM 8.1.12 For i 6= k where 1 ≤ i, k ≤ n, we have

L#
i,k =

d̃i + d̃k
2n

− 1

2
d̃(i, k)− 1

2n2

n∑
j=1

d̃j

Proof: Without loss of generality, we let k = n and 1 ≤ i ≤ n− 1. From Claim
8.1.10, we see that

L#
i,i − L

#
j,j = d̃(i, n)− d̃(j, n) + 2

 1

n

∑
e∈Pj,n

|βn(e)|
w(e)

− 1

n

∑
e∈Pi,n

|βn(e)|
w(e)

 .
Observe from Claim 8.1.11 that the expression in brackets is precisely L#

i,n − L
#
j,n.

Hence
L#
i,i − L

#
j,j = d̃(i, n)− d̃(j, n) + 2(L#

i,n − L
#
j,n).

Therefore
2L#

i,n = L#
i,i − d̃(i, n) + d̃(j, n)− L#

j,j + 2L#
j,n.

Since L#
i,n only depends on i and n, it follows that j is arbitrary. Thus let

α : = d̃(j, n)− L#
j,j + 2L#

j,n (8.1.12)

and rewrite 2L#
i,n as

2L#
i,n = L#

i,i − d̃(i, n) + α. (8.1.13)

Using the idea that j is arbitrary, we obtain from (8.1.12):

(n− 1)α =
n−1∑
j=1

d̃(j, n)−
n−1∑
j=1

L#
j,j + 2

n−1∑
j=1

L#
j,n.

The first summation equals d̃n by definition of d̃n. Moreover, recalling that the
column sums of L# are zero, we know that

∑n−1
j=1 L

#
j,n = −L#

n,n. Hence we rewrite
the above as

(n− 1)α = d̃n −
n−1∑
j=1

L#
j,j − 2L#

n,n = d̃n −
n∑
j=1

L#
j,j − L

#
n,n.

We can replace L#
n,n by the formula from Corollary 8.1.7. From the proof of Corollary

8.1.7, we see that the sum of the diagonal entries in L# equals 1
2n

∑n
j=1 d̃j . Therefore

(n− 1)α = − 1

n
d̃n +

1

2n2

n∑
j=1

d̃j −
1

2n

n∑
j=1

d̃j + d̃n =
n− 1

n
d̃n −

n− 1

2n2

n∑
j=1

d̃j .

Therefore

α =
1

n
d̃n −

1

2n2

n∑
j=1

d̃j .
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Plugging this into (8.1.13) and solving for L#
i,n yields

L#
i,n =

1

2

L#
i,i − d̃(i, n) +

1

n
d̃n −

1

2n2

n∑
j=1

d̃j


Using Corollary 8.1.7 to substitute for L#

i,i and then simplifying yields the result. 2

EXAMPLE 8.1.13 Consider the tree in Example 8.1.9. In this example, we had
found the diagonal entries of L#. Using the tables we used to find the diagonal
entries along with Theorem 8.1.12, we can now find the off-diagonal entries of L#.
Therefore, we now have the entire matrix L#:

L# =
1

196



58 −26 2 44 −33 −33 −12
−26 86 −82 −40 79 79 −96

2 −82 142 −12 −89 −89 128
44 −40 −12 128 −47 −47 −26
−33 79 −89 −47 121 72 −103
−33 79 −89 −47 72 121 −103
−12 −96 128 −26 −103 −103 212


OBSERVATION 8.1.14 If T is a tree, then for any vertex v ∈ T , the entries L#

v,i

in the vth row of L# decrease along any path beginning at v.

Exercises:

1. Use Corollary 8.1.7 and Theorem 8.1.12 to find L# for the following weighted
tree:

2. Prove Observation 8.1.14.

3. (See [50]) Let L be the Laplacian matrix of a weighted tree on n vertices. Show
that L# is an M-matrix if and only if for every pair of adjacent vertices i and j we
have that

d̃i + d̃j ≤
n

w(ei,j)
+

1

n

n∑
k=1

d̃k.

4. (See [50]) Let L be the Laplacian matrix for an unweighted tree T on n vertices.
Prove that L# is an M-matrix if and only if T is a star.
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8.2 The Zenger Function as a Lower Bound on the Al-
gebraic Connectivity

In this section, we use the group inverse to derive an important lower bound for the
algebraic connectivity of a graph. We then show the conditions when the algebraic
connectivity of a graph is equal to this lower bound. To begin this process, we have
the following definition:

DEFINITION 8.2.1 The Zenger of an m× n matrix B is the quantity

Z(B) =
1

2
max

1≤i,j≤m
‖eTi B − eTj B‖1

In other words, to compute the Zenger of a matrix B, subtract each pair of distinct
rows of B and take the one-norm of each difference. The Zenger is one half the
maximum of such one-norms.

EXAMPLE 8.2.2 Consider the matrix

B =

 2 6 4 −1
8 1 −3 0
−1 3 0 2


Observe that

‖eT1 B − eT2 B‖1 = 6 + 5 + 7 + 1 = 19,

‖eT1 B − eT3 B‖1 = 3 + 3 + 4 + 3 = 13,

‖eT2 B − eT3 B‖1 = 9 + 2 + 3 + 2 = 16.

Thus Z(B) = 1
2 • 19 = 9.5.

If B is an n×n matrix with constant row sums γ, then Z(B) provides an upper
bound for the eigenvalues of B other than γ. We state this more precisely as a
theorem from [74]:

THEOREM 8.2.3 Let B be an n × n matrix with constant row sums γ, and let
λ 6= γ be an eigenvalue of B. Then |λ| ≤ Z(B).

Before we can prove Theorem 8.2.3, we need the following lemma from [74]:

LEMMA 8.2.4 Suppose x ∈ <n, n ≥ 2, such that xT e = 0 and x 6= 0. Then there
exist suitable values ξi,j for 1 ≤ i, j ≤ n such that

x =
1

2

∑
1≤i,j,≤n

ξi,j(ei − ej)

where ξi,j ≥ 0, ξi,i = 0, and
∑
i,j ξi,j = ‖x‖1.
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Proof: We prove this by induction on n. If n = 2, then xT = [x1,−x1] for
some x1 6= 0. If x1 > 0 then ξ1,2 = 2x1 and ξ2,1 = 0; if x1 < 0 then ξ1,2 = 0 and
ξ2,1 = x1. Hence the lemma is true for n = 2. Now assume the lemma is true for
n = k for some k ≥ 2. Suppose n = k + 1. Then in xT = [x1, x2, . . . , xk+1], choose
p such that |xp| = max |xi|, and q such that xq 6= 0 and sgnxq = −sgnxp. Let
α = xq(eq− ep), and let y = x−α. Observe that yq 6= 0, but clearly y 6= 0, yT e = 0,
and ‖y‖1 = ‖x‖1− 2|xq|. We now can apply the induction hypothesis to ε to obtain
the required result for x, where ξp,q = 2|xq|. 2

We can now prove Theorem 8.2.3:

Proof: Let zT = [z1, z2, . . . , zn] be an arbitrary row vector of complex numbers.
Let x be an arbitrary nonzero vector in <n such that xT e = 0. By Lemma 8.2.4 we
have for appropriate ξi,j ,

zTx =
1

2

∑
1≤i,j≤n

ξi,j(zi − zj)

Thus

|zTx| ≤ 1

2

∑
i,j

ξi,j |zi − zj |

≤ 1

2
max
i,j
|zi − zj |

∑
i,j

ξi,j

=
1

2
max
i,j
|zi − zj |‖x‖1

=
1

2
f(z)‖x‖1 (8.2.1)

where f(z) := maxi,j |zi − zj |. Then

f(Bz) = max
i,j

∣∣∣∣∣
n∑
s=1

(bi,s − bj,s)zs

∣∣∣∣∣ . (8.2.2)

Observe that for any i, j, since B has constant row sums, the vector [(bi,1 −
bj,1), (bi,2 − bj,2), . . . , (bi,n − bj,n)] is such that the sum of its entries is zero. Let-
ting xT = [(bi,1 − bj,1), (bi,2 − bj,2), . . . , (bi,n − bj,n)], we see from (8.2.1) that∣∣∣∣∣

n∑
s=1

(bi,s − bj,s)zs

∣∣∣∣∣ ≤ 1

2
f(z)

n∑
s=1

|bi,s − bj,s|.

Combining this with (8.2.2) we obtain

f(Bz) ≤ 1

2
f(z) max

i,j

n∑
s=1

|bi,s − bj,s|.
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Note that if z is an eigenvector of B corresponding to the eigenvalue λ, then f(Bz) =
|λ|f(z). Since (8.2.2) holds for any vector z, it follows that for such an eigenvector
z that

|λ|f(z) ≤ 1

2
f(z) max

i,j

n∑
s=1

|bi,s − bj,s| (8.2.3)

Observe that f(z) can be zero only if all entries of z are identical. But if all entries
of z are identical, then z would be the eigenvector corresponding to the eigenvalue
γ. Since this contradicts the fact that λ 6= γ, it follows that not all entries of z are
identical. Thus f(z) 6= 0. Therefore, we divide (8.2.3) through by f(z) to obtain

|λ| ≤ 1

2
max
i,j

n∑
s=1

|bi,s − bj,s| =
1

2
max

1≤i,j≤n
‖eTi B − eTj B‖1 = Z(B)

which is our desired result. 2

Let L be the Laplacian matrix of a connected graph with 0 = λ1 < λ2 ≤ λ3 ≤
. . . ≤ λn as its eignenvalues. Recall from Section 1.6 that the nonzero eigenvalues of
L# are the reciprocals of the nonzero eigenvalues of L with the same corresponding
eigenvectors. Additionally, zero is also an eigenvector of L# with e as the corre-
sponding eigenvector (as e is the eigenvector of L corresponding to zero). Thus L#

has constant row sums of 0. Hence we can apply Theorem 8.2.3 to conclude that
1/λ2 ≤ Z(L#), and hence 1/Z(L#) ≤ λ2. Rewriting this inequality, we obtain the
following corollary which gives a lower bound for the algebraic connectivity a(G):

COROLLARY 8.2.5 Let G be a graph with L as its Laplacian. Then

1

Z(L#)
≤ a(G)

We can now combine Corollary 8.2.5 and Theorem 5.1.10 to obtain the follow-
ing string of inequalities involving the Zenger, algebraic connectivity, and vertex
connectivity:

1

Z(L#)
≤ a(G) ≤ v(G). (8.2.4)

Recall Theorem 5.1.10 states that the second inequality is sharp for a noncomplete
graph on n vertices if and only if G can be written as G1 ∨ G2, where G1 is a
disconnected graph on n − v(G) vertices and G2 is a graph on v(G) vertices with
a(G2) ≥ 2v(G) − n. The goal for the remainder of this section is to describe the
conditions under which the first inequality is sharp, i.e., when 1/Z(L#) = a(G).
Before showing this, we will first show the conditions under which 1/Z(L#) = v(G)
since this necessarily requires that a(G) = v(G). We begin with the following lemma
from [46].

LEMMA 8.2.6 Suppose that G is a graph on n vertices with vertex connectivity v
that is of the form G = G1 ∨ G2 where G1 and G2 are graphs on n− v vertices and v
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vertices, respectively, and where G1 is a disconnected graph. Then

L#(G) =


[L(G1) + vI]−1 −

n + v

vn2
J −

1

n2
J

−
1

n2
J [L(G2) + (n− v)I]−1 −

2n− v
(n− v)n2

J

 , (8.2.5)

where the (1, 1) block is an (n− v)× (n− v) matrix, and the (2, 2) block is a v × v
matrix.

Proof: We have

L(G) =


L(G1) + vI −J

−J L(G2) + (n− v)I


,

where the (1, 1) block is an (n− v)× (n− v) matrix and the (2, 2) block is a v × v
matrix. For the sake of notational simplicity, Let L = L(G) and X be the matrix
on the right of (8.2.5). We find that LX = XL = I − 1

nJ , XLX = X, LXL = L,
and XL = LX. Thus X satisfies (8.1.1). 2

Since computing the Zenger of a matrix involves subtracting rows, it is clear that
adding a constant to all entries of a matrix will not affect the value of the Zenger.
Therefore Z(A+ bJ) = Z(A) for any matrix A and scalar b, and thus Lemma 8.2.6
yields immediate the corollary from [46]:

COROLLARY 8.2.7 Let G be a graph on n vertices with vertex connectivity v of
the form G = G1 ∨ G2 where G1 and G2 are graphs on n− v vertices and v vertices,
respectively, and where G1 is a disconnected graph. Then

Z(L#(G)) = max
{
Z
(
[L(G1) + vI]−1

)
, Z

(
[L(G2) + (n− v)I]−1

)
,

max 1 ≤ i ≤ n− v
n− v + 1 ≤ j ≤ n

{
1

2

[∥∥∥∥eTi ((L(G1) + vI)−1 − 1

nv
J)

∥∥∥∥
1

+

∥∥∥∥eTj ((L(G2) + (n− v)I)−1 − 1

(n− v)n
J)

∥∥∥∥
1

]}}
.

(8.2.6)

In order to establish, under the conditions of Corollary 8.2.7, which of the
three expressions in the right-hand side of (8.2.6) yields the maximum we need
to establish more precise information about the matrices [L(G1) + vI]−1 and
[L(G2) + (n− v)I]−1. Observe that both of these matrices are inverses of matrices
in which the diagonal entries of a Laplacian matrix are perturbed. The following
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observation, lemma, and subsequent corollary, all from [46], give us useful informa-
tion about the diagonals of the inverses of these matrices.

OBSERVATION 8.2.8 Let A be an invertible matrix and let x be a vector. Then

[A+ xxT ]−1 = A−1 − 1

1 + xTA−1x
A−1xxTA−1

This formula can be verified merely by multiplying the expression on the right-hand
side of the equal sign by A+ xxT to obtain the identity.

LEMMA 8.2.9 Let H be a graph and m > 0. Form H′ from H by adding an edge.
Then

diag
([
L(H′) +mI

]−1
)
≤ diag

(
[L(H) +mI]−1

)
.

Proof: L(H′) = L(H) + xxT for some vector x, so[
L(H′) +mI

]−1
=
[
L(H) +mI + xxT

]−1

= [L(H) +mI]−1 − (L(H) +mI)−1xxT (L(H) +mI)−1

1 + xT (L(H) +mI)−1x

where the last equality follows from Observation 8.2.8, letting A = L(H) + mI.
Since L(H) +mI is symmetric, it follows that

(L(H) +mI)−1xxT (L(H) +mI)−1 = [(L(H) +mI)−1x][(L(H) +mI)−1x]T .

Since multiplying any real-valued column vector by its transpose yields a matrix
with nonnegative diagonal entries, it follows that diag[(L(H) +mI)−1xxT (L(H) +
mI)−1] ≥ 0. Moreover, since [L(H) +mI]−1 is positive definite, 1 + xT (L(H) +

mI)−1x > 0. Thus the diagonal entries of (L(H)+mI)−1xxT (L(H)+mI)−1

1+xT (L(H)+mI)−1x
are all non-

negative and the result follows. 2

COROLLARY 8.2.10 Let G be a graph on n vertices such that G = G1 ∨ G2,
where G1 and G2 are graphs on n − m vertices and m vertices, respectively, and
where m > 0. Then

diag
(
[L(G1) +mI]−1

)
>

m+ 1

nm
I.

Proof: By Lemma 8.2.9,

diag
(
[L(G1) +mI]−1

)
≥ diag

(
[L(Kn−m) +mI]−1

)
= diag

(
[nI − J ]−1

)
> diag

(
[(n+m)I − J ]−1

)
= diag

(
1

n

[
I +

1

m
J

])
=

m+ 1

nm
I

2

Lemma 8.2.9 and Corollary 8.2.10 gave us necessary information about the first
two quantities in the braces on the right-hand side of (8.2.6). We now consider the
third quantity. We do so in the following lemma from [46]:
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LEMMA 8.2.11 Let G be a graph on n vertices with vertex connectivity v of the
form G = G1 ∨ G2 where G1 and G2 are graphs on n − v vertices and v vertices,
respectively, and where G1 is a disconnected graph. Then

1

n
≤ max

1≤i≤n−v

∥∥∥∥eTi ([L(G1) + vI]−1 − 1

nv
J

)∥∥∥∥
1
≤ n− v − 2

nv
+

1

v
. (8.2.7)

and

1

n
≤ max

1≤j≤v

∥∥∥∥eTj ([L(G2) + (n− v)I]−1 − 1

n(n− v)
J

)∥∥∥∥
1

≤ v − 2

nv
+

1

(n− v)
. (8.2.8)

Proof: For the lower bound, note that

[L(G1) + vI]−1 − 1

nv
J = (L(G1) + vI + J)−1.

Hence

max1≤i≤n−v

∥∥∥∥eTi ([L(G1) + vI]−1 − 1

nv
J

)∥∥∥∥
1

≥ max1≤i≤n−v

{
eTi

(
[(L(G1) + vI]−1 − 1

nv
J

)
e

}

= max1≤i≤n−v
{
eTi [L(G1) + vI + J ]−1 e

}
=

1

n
.

Next we consider the upper bound in (8.2.7) We begin by noting that according to
Corollary 8.2.10, the i–th diagonal entry of (L(G1) + vI)−1 is at least (v + 1)/nv >
1/nv. Also, we have that eTi (L(G1) + vI)−1e = 1/v. Now write eTi (L(G1) + vI)−1 as
deTi + xT , where xT has a 0 in its i–th position and where xT ≥ 0. Then we have
that ∥∥∥∥eTi ([(L(G1) + vI]−1 − 1

nv
J

)∥∥∥∥
1

=

∥∥∥∥deTi + xT − 1

nv
eT
∥∥∥∥

1

=

∥∥∥∥(d− 1

nv

)
eTi + xT − 1

nv

(
eT − eTi

)∥∥∥∥
1

≤
(
d− 1

nv

)
+
∥∥∥xT ∥∥∥

1
+

∥∥∥∥ 1

nv

(
eT − eTi

)∥∥∥∥
1

=

(
d− 1

nv

)
+

(
1

v
− d

)
+
n− v − 1

nv

=
n− v − 2

nv
+

1

v
.
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proving (8.2.7). Using similar arguments, we can prove (8.2.8). Hence the proof is
complete. 2

We are now ready to prove the main result of this section which establishes the
conditions under which 1/Z(L#(G)) = v(G). We do this in a theorem from [46]:

THEOREM 8.2.12 Suppose that G is a noncomplete, connected graph on n ver-
tices, with algebraic connectivity a, vertex connectivity v, where n ≥ v2. Then a = v

if and only if 1/Z
(
L#(G)

)
= v.

Proof: Since from (8.2.4) we know that 1/Z(L#(G)) ≤ a ≤ v, we see that if
1/Z(L#(G)) = v, then necessarily a = v. Now suppose that a = v and we will prove
that Z(L#(G)) = 1/v. From Theorem 5.1.10 we know that G = G1∨G2, where G1 is
a disconnected disconnected graph on n−v vertices, and G2 is a graph on v vertices
with a(G2) ≥ 2v − n. By Corollary 8.2.7 we have have that

Z(L#(G)) = max
{
Z
(
[L(G1) + vI]−1

)
, Z

(
[L(G2) + (n− v)I]−1

)
,

max 1 ≤ i ≤ n− v
n− v + 1 ≤ j ≤ n

{
1

2

[∥∥∥∥eTi ((L(G1) + vI)−1 − 1

nv
J

)∥∥∥∥
1

+

∥∥∥∥eTj ((L(G2) + (n− v)I)−1 − 1

(n− v)n
J

)∥∥∥∥
1

]}}
.

Note that (L(G2) + (n − v)I)−1 is a nonnegative matrix with row sums 1/(n − v)
and that n ≥ v2 implies n− v ≥ v. Therefore

Z((L(G2) + (n− v)I)−1) ≤ 1

(n− v)
≤ 1

v
.

From Lemma 8.2.11 we find that for each pair i and j,

1

2

[∥∥∥∥eTi ([L(G1) + vI]−1 − 1

nv
J

)∥∥∥∥
1

+

∥∥∥∥eTj ([L(G2) + (n− v)I]−1 − 1

n(n− v)
J

)∥∥∥∥
1

]

≤ 1

2

[
n− v − 2

nv
+

1

v
+

v − 2

n(n− v)
+

1

n− v

]

=
1

v
+

1

2

[
n− v − 2

nv
− 1

v
+

v − 2

n(n− v)
+

1

n− v

]

=
1

v
+

1

2

[
2(v2 − n)

nv(n− v)

]
≤ 1

v
,
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the last inequality following from the hypothesis that n ≥ v2.

Finally, we claim that Z
(
[L(G1) + vI]−1

)
= 1/v. To see this note that

(L(G1) + vI)−1 is a direct sum of positive matrices each of which corresponds
to a connected component of G and each with constant row sums equal 1/v.
Hence ‖(eTi − eTj )(L(G1) + vI)−1‖1 ≤ 2/v for any pair of indices i and j. Fur-
thermore with i and j corresponding to rows in different direct summands,
‖(eTi − eTj )(L(G1) + vI)−1‖1 = 2/v. Hence Z((L(G1) + vI)−1) = 1/v, as claimed.

From all that we have established it now follows that Z(L#(G)) = 1/v, and hence
1/Z(L#(G)) = v. 2

EXAMPLE 8.2.13 Consider the bipartite graph K3,7. Observe that a(K3,7) =
v(K3,7) = 3. Since n = 10 > v2, it follows from Theorem 8.2.12 that Z(L#) = 1/3.
To see this, label the vertices of K3,7 so that vertices 1, 2, 3 are in one partite set
and vertices 4, . . . , 10 are in the other partite set. We can compute (via software)
that

L# =


1
7I −

17
700J − 1

100J

− 1
100J

1
3I −

13
300J


Thus if we take any two of the last seven rows and compute the 1-norm of the
difference between these rows, we see that the 1-norm would be 2/3 as expected.
(Note: computing the 1-norm of the difference between one of the first three rows
and any other row will yield a 1-norm of less that 2/3.)

The following example shows that the condition n ≥ v2 cannot be eliminated.

EXAMPLE 8.2.14 [46] Consider the graph G below:
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Observe that a(G) = v(G) = 3 but n = 6 < v2. Using software, we can compute L#

as follows:

L# =
1

180


48I − J 12I − 19J

12I − 19J 48I − J


Observe that Z(L#) = 1/2 where this quantity is achieved by computing the 1-
norm of the difference between one row from any of the first three rows and one row
from any of the last three rows. Hence 1/Z(L#) = 2 < v(G).

Exercise:

1. Let G be a maximal graph (recall Section 4.5). Prove that 1/Z(L#(G)) = a(G) =
v(G).

8.3 The Case of the Zenger Equalling the Algebraic
Connectivity in Trees

In this section, we turn our attention back to trees. Letting L be the Laplacian
matrix for a graph G, recall from Corollary 8.2.5 that

1

Z(L#)
≤ a(G). (8.3.1)

We saw in the previous section (Theorem 8.2.12) that for a graph G, equality occurs
in (8.3.1) if and only if 1/Z(L#) = v(G). The goal of this section is to determine
the structure that a tree T must have in order for 1/Z(L#) = a(G) = v(G). Fur-
thermore, we are intersted in the vertices of T , i.e., the rows of L# that contribute
to the value of 1/Z(L#). In other words, we are interested in the rows of L# that
cause the 1-norm to be maximized. Our first theorem from [51] gives us insight on
which rows we should focus.

THEOREM 8.3.1 Let T be a weighted tree on n vertices with Laplacian matrix
L. Let i and j be vertices of T . Then the maximum of the expression∥∥∥e(n)T

i L# − e(n)T
j L#

∥∥∥
1

(8.3.2)

can only be attained at a pair of pendant vertices.

Proof: Without loss of generality, we can assume that (8.3.2) is maximized for
some 1 ≤ i ≤ n− 1 and j = n. Let

L# =

[
(L#)1,1 (L#)1,2

(L#)2,1 (L#)2,2

]
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where the blocks of L# are as in (8.1.3) with M being the bottleneck matrix at
vertex n. Fix 1 ≤ i ≤ n− 1 and observe that

e
(n)T
i L# − e(n)T

n L# =

[
e

(n−1)T
i M − 1

n

(
e

(n−1)T
i Me(n−1)

)
e(n−1) |

− 1

n

(
e

(n−1)T
i Me(n−1)

) ]
.

Note that the last entry of this n-vector is negative. Therefore∥∥∥e(n)T
i L# − e(n)T

n L#
∥∥∥

1
=

∥∥∥∥e(n−1)T
i M − 1

n

(
e

(n−1)T
i Me(n−1)

)
e(n−1)

∥∥∥∥
1

+
1

n

(
e

(n−1)T
i Me(n−1)

)
(8.3.3)

Our goal is to show that i and n need both be pendant vertices when (8.3.2) is
maximized. Suppose now that i is not a pendant vertex of T . Then there is a vertex
i0 which is adjacent to i such that the path from i0 to n includes i. Let θ be the
weight of the edge between i and i0 and let S be the set of vertices in T whose path
to n includes the vertex i0. Let σ denote the cardinality of S and let vTS be the row
vector with 1/θ in position k if and only if k ∈ S, and 0 otherwise. By (8.1.4), it
follows that

e
(n−1)T
i0

M = e
(n−1)T
i M + vTS

and, if k ∈ S then the (i, k) and (i, i) entries of M are equal, i.e.,

e
(n−1)T
i Me

(n−1)
k = e

(n−1)T
i Me

(n−1)
i . (8.3.4)

Since
∥∥∥vTS ∥∥∥1

= σ/θ, by the triangle inequality, we have∥∥∥∥e(n−1)T
i M − 1

n
(e

(n−1)T
i Me(n−1))e(n−1)T + vTS

∥∥∥∥
1
≤∥∥∥∥e(n−1)T

i M − 1

n
(e

(n−1)T
i Me(n−1))e(n−1)T

∥∥∥∥
1

+
σ

θ
. (8.3.5)

Note that the ith entry of the vector e
(n−1)T
i M is a largest entry in the vector. Thus

the ith entry of e
(n−1)T
i M − 1

n(e
(n−1)T
i Me(n−1))e(n−1)T is positive. Since by (8.3.4),

the ith entry of the vector e
(n−1)T
i M equals its kth entry, it follows that the kth

entry of e
(n−1)T
i M − 1

n(e
(n−1)T
i Me(n−1))e(n−1)T is also positive. Therefore we have

equality in (8.3.5). Consequently, by calculations similar to (8.3.3) we have∥∥∥e(n)T
i0

L# − e(n)T
n L#

∥∥∥
1

=
1

n

(
e

(n−1)T
i0

Me(n−1)
)

+∥∥∥∥e(n−1)T
i0

M − 1

n

(
e

(n−1)T
i0

Me(n−1)
)
e(n−1)T

∥∥∥∥
1

=
1

n

(
(e

(n−1)T
i M + vTS )e(n−1)

)
+∥∥∥∥e(n−1)T

i M + vTS −
1

n

(
(e

(n−1)T
i M + vTS )e(n−1)

)
e(n−1)T

∥∥∥∥
1
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=
1

n

(
e

(n−1)T
i Me(n−1) +

σ

θ

)
+∥∥∥∥e(n−1)T

i M + vTS −
1

n

(
e

(n−1)T
i Me(n−1)

)
e(n−1)T − σ

nθ
e(n−1)T

∥∥∥∥
1

≥ 1

n

(
e

(n−1)T
i Me(n−1) +

σ

θ

)
+∥∥∥∥e(n−1)T

i M − 1

n

(
e

(n−1)T
i Me(n−1)

)
e(n−1)T

∥∥∥∥
1

+
σ

θ
− σ

nθ

∥∥∥e(n−1)T
∥∥∥

1

=
∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
+

σ

nθ
>

∥∥∥e(n)T
i L# − e(n)T

n L#
∥∥∥

1
.

where the last equality follows from (8.3.3). As a result we see that if i is not a
pendant vertex, then the expression in (8.3.2) is not maximal. Thus in order for
(8.3.2) to be maximal, i must be pendant, and by similar arguments, n must also
be pendant. 2

EXAMPLE 8.3.2 Consider the weighted tree below:

The group inverse for the Laplacian matrix is

L# =
1

196



58 −26 2 44 −33 −33 −12
−26 86 −82 −40 79 79 −96

2 −82 142 −12 −89 −89 128
44 −40 −12 128 −47 −47 −26
−33 79 −89 −47 121 72 −103
−33 79 −89 −47 72 121 −103
−12 −96 128 −26 −103 −103 212


Observe that Z(L#) = 41/14 and that this quantity is obtained from either rows
5 and 7 or rows 6 and 7. In either case, both rows correspond to pairs of pendant
vertices.

Theorem 8.3.1 shows us that in computing Z(L#), we need only consider rows
of L# corresponding to pendant vertices of a tree. In order to determine when the
inequality in (8.3.1) is sharp, we need some matrix-theoretic results. The first result
is a lemma from [74] which we state without proof:



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

The Group Inverse of the Laplacian Matrix 381

LEMMA 8.3.3 Let z = [z1, . . . , zn]T ∈ Cn. Then for any x ∈ <n with xT e = 0, it
follows that

|zTx| ≤ 1

2
max

1≤i,j,≤n
|zi − zj | ‖x‖1 (8.3.6)

Dertermining when equality occurs in (8.3.1) requires knowing when equality occurs
in (8.3.6). The following lemma from [51] shows when equality occurs in (8.3.6):

LEMMA 8.3.4 Let x ∈ <n be a vector such that xT e = 0 and let z ∈ Cn. Then
equality holds in (8.3.6), i.e.,

|zTx| =
1

2
max

1≤i,j,≤n
|zi − zj | ‖x‖1 (8.3.7)

if and only if z and x can be reordered simultaneoulsy such that

x = [ x1, . . . , xm, −xm+1, . . . , −xm+k, 0, . . . , 0 ]T

and

z = [ a, . . . , a, b, . . . , b, c1, . . . , cn−k−m ]T

(8.3.8)

and where

max
1≤i,j≤n

|zi − zj | = |a− b| and xi > 0, i = 1, . . . ,m+ k. (8.3.9)

Proof: First suppose conditions (8.3.8) and (8.3.9) hold. Then

|zTx| =
∣∣∣a∑m

i=1 xi − b
∑m+k
i=m+1 xi

∣∣∣
= 1

2

∣∣∣a∑m+k
i=1 xi − b

∑m+k
i=1 xi

∣∣∣
= 1

2 |a− b|
∑m+k
i=1 xi

= 1
2 max1≤i,j,≤n |zi − zj | ‖x‖1

where the second equality follows from the fact that xT e = 0, i.e.,
∑m
i=1 xi =∑m+k

m+1 xi. This proves the sufficiency of conditions (8.3.8) and (8.3.9).
To prove the necessity of conditions (8.3.8) and (8.3.9), we will assume (8.3.7)

true and prove conditions (8.3.8) and (8.3.9) by induction on the number of nonzero
entries in x. For the base step, suppose x has two nonzero entries. Then

x = [ x1, −x1, 0, . . . 0 ]T .

Therefore, observing that ‖x‖1 = 2x1 we see that∣∣∣zTx∣∣∣ = |a− b| |x1| = |a− b| ‖x‖1 .
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By assumption (8.3.7), it follows that max1≤i,j≤n |zi − zj | = |a − b|, thus proving
(8.3.9).

For the inductive hypothesis, assume that conditions (8.3.8) and (8.3.9) hold
when x has m+ k− 1 nonzero entries. We now need to prove that these conditions
hold when x has m + k nonzero entries. Assume without loss of generality that
x1 ≥ xm. Then

x = xm+1

(
e

(n)
1 − e(n)

m+1

)
+ x̂

where

x̂ = [ x1 − xm+1, x2, . . . , xm, 0, −xm+2, . . . , −xm+k, 0, . . . , 0 ]T (8.3.10)

has m + k − 1 nonzero entries. Note that ‖x‖1 = 2xm+1 + ‖x̂‖1, x̂T e(n) = 0, and
zTx = xm+1(z1 − zm+1) + zT x̂. Since we are assuming (8.3.7), we obtain∣∣∣zTx∣∣∣ =

∣∣∣xm+1(z1 − zm+1) + zT x̂
∣∣∣

≤ xm+1 |z1 − zm+1|+
∣∣∣zT x̂∣∣∣

≤ xm+1 max1≤1,j,≤n |zi − zj |+ 1
2 max1≤1,j,≤n |zi − zj | ‖x̂‖1

= 1
2 (2xm+1 + ‖x̂‖1) max1≤i,j≤n |zi − zj |

=
∣∣∣zTx∣∣∣ ,

(8.3.11)

where both the last inequality and the last equality follow from applying (8.3.7)
to zT x̂ and zTx, respectively. (Applying (8.3.7) to zT x̂ is allowed by the inductive
hypothesis since x̂ has m + k − 1 nonzero entries.) Observe that the first and last
expressions in (8.3.11) are identical, hence all expressions in (8.3.11) are equal. Thus
we can conclude the following:

(i)
∣∣∣zT x̂∣∣∣ = 1

2 max1≤i,j,≤n |zi − zj | ‖x̂‖1.

(ii) |z1 − zm+1| = max1≤i,j≤n |zi − zj |.

(iii) The argument of z1 − zm+1 is the same as the argument of zT x̂.

From the inductive hypothesis applied to x̂, we see that z is of the form

z = [ z1, a, . . . , a, zm+1, b, . . . , b, c1, . . . , cn−k−m ] .

where max1≤i,j≤n |zi − zj | = |a− b|. It remains to show that z1 = a and zm+1 = b.
If x1 > xm+1, then the first entry in x̂ is nonzero (see (8.3.10)). Since (i) holds, we
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can apply the inductive hypothesis to x̂ to obtain z1 = a. Observe then that

zT x̂ = a(x1 − xm+1) + a
∑m
i=2 xi − b

∑m+k
i=m+2 xi

= a(x1 − xm+1) + a
∑m
i=2 xi − b (

∑m
i=1 xi − xm+1)

= a(x1 − xm+1) + a
∑m
i=2 xi − b (x1 +

∑m
i=2 xi − xm+1)

= (a− b)(x1 − xm+1) + (a− b)
∑m
i=2 xi.

This shows that zT x̂ is a positive multiple of a−b. Hence arg(z1−zm+1) = arg(zT x̂)
Using this, (ii) from above, and the fact that max1≤i,j≤n |zi − zj | = |a− b| all to-
gether yield that zm+1 = b.

Hence if x1 > xm+1, we conclude that z1 = a and zm+1 = b. However, if
x1 = xm+1, then the first entry of x̂ is zero (see (8.3.10)). In this case, we repeat
the argument above using x1 and xm+2 or using x2 and xm+1 to deduce that z1 = a
and zm+1 = b. 2

We now use Lemma 8.3.4 together with the fact that (8.3.2) is maximized when
i and j are pendant vertices (Theorem 8.3.1) to help us determine when equality
can occur in (8.3.1). We do this in the following theorem from [51]. In this theorem,
let w(i, j) denote the weight of the edge between vertices i and j.

THEOREM 8.3.5 Let T be a weighted tree with Laplacian matrix L. Then there
is equality in (8.3.1) if and only if T is a Type I tree whose characteristic vertex u
has the property that two of its Perron branches consist of single edges adjacent to
pendant vertices v1 and v2, and

max
1≤i,j≤n

∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
=

2

w(u, v1)
=

2

w(u, v2)
. (8.3.12)

Proof: First assume:

(i) T is a Type I tree whose characteristic vertex u has the property that two
of its Perron branches consist of single edges adjacent to pendant vertices, v1 and
v2, and

(ii) The equation (8.3.12) holds.

We will show that under (i) and (ii) there is equality in (8.3.1). By (i) we have

a(T ) = w(u, v1),

and by (ii) we have

1

w(u, v1)
=

1

2
max

1≤i,j≤n

∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
.
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Thus 1/a(T ) = Z(L#) which completes this direction of the proof.
Now let us assume that 1/Z(L#) = a, i.e., Z(L#) = 1/a. For a vector z ∈ Cn,

define f(z) := max1≤i,j≤n |zi−zj |. Next, for any 1 ≤ i, j ≤ n let xTi,j = eTi L
#−eTj L#.

Finally, suppose y is an eigenvector of L corresponding to a. Then

1

a
f(y) =

1

2
f(y) max

1≤i,j≤n
‖xi,j‖1 . (8.3.13)

Without loss of generality, suppose that max1≤i,j≤n ‖xi,j‖1 is attained at i = 1 and
j = n. Then by Theorem 8.3.1, it follows that 1 and n are pendant vertices of T .
Furthermore,

1

a
f(y) =

1

a
|y1 − yn| =

∣∣∣xT1,ny∣∣∣ . (8.3.14)

Putting together (8.3.13) and (8.3.14) yields∣∣∣xT1,ny∣∣∣ =
1

2
f(y) max

1≤i,j≤n
‖xi,j‖1 .

so that Lemma 8.3.4 applies.
By Lemma 8.3.4, the vector y is constant on the indices where xT1,n is pos-

itive and constant on the indices where xT1,n is negative. Moreover, if the k1-th

and k2-th entries of xT1,n are positive and negative, respectively, then |yk1 − yk2 | =
max1≤i,j≤n |yi − yj |.

By Observation 8.1.14, the entries of eTnL
# are strictly decreasing along any

path which starts at n, while the entries of eT1 are strictly increasing along any path
which ends at 1. Hence the entries of xT1,n are strictly increasing as we move along
the path which starts at n and ends at 1. In particular, there is at most one vertex
on that path for which the corresponding entry in xT1,n is zero.

We saw in the proof of Theorem 8.3.1 that L#
1,1−L

#
n,1 is positive and L#

1,n−L#
n,n

is negative. Also, since the sum of the entries in y is zero, we can assume without loss
of generality that y1 > 0 and yn < 0. Suppose now that j is on the path from ver-
tex 1 to vertex n. Then from the previous two paragraphs we have three possibilities:

(a) L#
1,j − L

#
n,j > 0 and yj = y1 > 0.

(b) L#
1,j − L

#
n,j < 0 and yj = yn < 0.

(c) L#
1,j − L

#
n,j = 0 and |y1 − yj |, |yn − yj | ≤ y1 − yn (by Lemma 8.3.4).

Also note there is at most one index j for which (c) holds.
Recall from Corollary 6.2.1 that if T is a Type I tree, then along any path start-

ing from the characteristic vertex, the entries in y are either strictly increasing and
positive, or strictly decreasing and negative, or all zero. Since y1 > 0 > yn, we con-
clude that if T is a Type I tree, then the characteristic vertex must be on the path
from vertex 1 to vertex n. Similarly, if T is a Type II tree, then both characteristic
vertices must be on that path.
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Suppose first that T is a Type I tree whose characteristic vertex is k. Then
yk = 0, so necessarily (c) holds for j = k. Note that entries of y are strictly increas-
ing along the path from k to 1. Since k is on the path from n to 1, we saw earlier that
the entries of x1,n are also increasing on the path from k to 1. Thus for all vertices
j 6= k on the path from k to 1, it follows that (a) holds and therefore yj = y1 for all
such vertices j. Since the entries in y are strictly increasing on the path from k to 1,
we see that the path from k to 1 can only be of length one. Hence we conclude that
k is adjacent to 1, a pendant vertex. By similar arguments, we see that k is also
adjacent to n, a pendant vertex. Thus we see that the characteristic vertex k has
two Perron branches which consist of single edges adjacent to the pendant vertices
1 and n. It follows from (8.1.3) and (8.1.4) that

xT1,n =

[
1

w(1, k)
, 0, . . . , 0, − 1

w(1, k)

]
and hence

max
1≤i,j≤n

∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
=

2

w(1, k)
.

To complete the proof, we need to show that T cannot be a Type II tree. Sup-
pose that T is a Type II tree. Let i and j be the characteristic vertices of T where
the entries of y are increasing along the path from i to 1 and decreasing along the
path from j to n. But then there is at most one vertex on the path from 1 to n for
which (c) can hold. So either yi = y1 or yj = yn, both of which yield contradictions
since characteristic vertices cannot be pendant. Consequently, if T is a Type II tree,
then 1/Z(L#) 6= a. 2

In the unweighted case, the only unweighted tree of Type I whose characteris-
tic vertex has the property that two of its Perron branches consist of edges adja-
cent to pendant vertices is the star. Hence if 1/Z(L#) = a(T ) then T is a star.
Conversely, if T is a star then a(T ) = 1 and by simple calculations we obtain

max1≤i,j≤n
∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
= 2, and hence Z(L#) = 1/a(T ). Thus we just

proved the following corollary from [51]:

COROLLARY 8.3.6 Let T be an unweighted tree with Laplacian matrix L and
algebraic connectivity a. Then 1/Z(L#) = a(T ) if and only if T is a star.

In the weighted case, the conditions for equality in (8.3.1) are more relaxed.
We will see from the corollary below from [51] that any tree having two pendant
vertices adjacent to the same vertex can admit a weighting where equality in (8.3.1)
is achieved.

COROLLARY 8.3.7 Let T be a tree on n vertices with Laplacian matrix L. Sup-
pose T has two pendant vertices which are adjacent to the same vertex. Then there
is a weighting of T such that 1/Z(L#) = a(T ).

Proof: Without loss of generality we can relabel the vertices of T so that vertices
n and n− 1 are pendant and adjacent to vertex n− 2. Now weight the edges from
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n and n− 1 to n− 2 with ε > 0 and weight every other edge of of T with 1. We will
use the results of Theorem 8.3.5 to show that for a choice of ε sufficiently small, we
have 1/Z(L#) = a(T ).

Consider the branches of T at vertex n − 2. The branches at n − 2 containing
vertices n and n− 1 have a Perron value of 1/ε, while every other branch at n− 2
yields a Perron value which is independent of ε. As a result, when ε is sufficiently
small, we find that T is a Type I tree with characteristic vertex n− 2 and that the
branches at n− 1 containing n and n− 1 are Perron branches.

Now let L be the Laplacian matrix of this newly weighted tree. It remains to
show that

max
1≤i,j≤n

∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
=

2

ε
. (8.3.15)

As in the proof of Theorem 8.3.5, we find that

e
(n)T
n−1 L

# − e(n)T
n L# =

[
0, . . . , 0,

1

ε
, −1

ε

]
and so ∥∥∥e(n)T

n−1 L
# − e(n)T

n L#
∥∥∥

1
=

2

ε
.

To complete the proof, we need to show that the maximum in (8.3.15) is attained

at vertices n− 1 and n. We do this by considering the vectors e
(n)T
i L# − e(n)T

n L#,

e
(n)T
n−1 L

# − e(n)T
i L#, and e

(n)T
i L# − e(n)T

j L#, for 1 ≤ i, j ≤ n − 2. Considering the
first of these vectors, let M be the bottleneck matrix of T at vertex n. Looking
at the ith row of M , we see from Theorem 6.2.5 that there exists a positive vector
x ∈ <n−1 that is independent of ε > 0 such that

e
(n−1)T
i M = xT +

1

ε
e(n−1)T .

Hence

e
(n)T
i L#−e(n)T

n L# =

[
1

nε
e(n−1)T + xT − xT e(n−1)

n
e(n−1)T | − n− 1

nε
− xT e(n−1)

n

]
.

It follows that for ε > 0 sufficiently small,∥∥∥e(n)T
i L# − e(n)T

n L#
∥∥∥

1
=
∥∥∥ 1
nεe

(n−1)T + xT − xT e(n−1)

n e(n−1)T
∥∥∥

1
+ n−1

nε + xT e(n−1)

n

≤
∥∥∥ 1
nεe

(n−1)T
∥∥∥

1
+
∥∥∥xT ∥∥∥

1
+
∥∥∥xT e(n−1)

n e(n−1)T
∥∥∥

1
+ n−1

nε + xT e(n−1)

n

= n−1
nε + xT e(n−1) + (n−1)xT e(n−1)

n + n−1
nε + xT e(n−1)

n

= 2(n−1)
nε + 2xT e(n−1) < 2

ε .

An analogous argument also shows that∥∥∥e(n)T
i L# − e(n)T

n−1 L
#
∥∥∥

1
<

2

ε
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when ε > 0 is sufficiently small. Finally, suppose that 1 ≤ i, j ≤ n− 2. Then again
letting M be the bottleneck matrix at vertex n, we have

e
(n)T
i L# − e(n)T

j L# =

[ (
e

(n−1)T
i − e(n−1)T

j

)
M

(
I − 1

n
J

)
|

− 1

n

(
e

(n−1)T
i − e(n−1)T

j

)
Me(n−1)

]
.

Since by Theorem 6.2.5 there are positive vectors y, z ∈ <n−1 independent of ε > 0,

such that e
(n−1)T
i M = yT + (1/ε)e(n−1) and e

(n−1)T
j M = zT + (1/ε)e(n−1), we find

that
∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
is independent of ε. By similar arguments as earlier, we

deduce that ∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
<

2

ε

when ε > 0 is sufficiently small. Thus for such ε, the expression

max
1≤i,j≤n

∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1

is maximized at i = n− 1 and j = n. This completes the proof. 2

Exercises:

1. Find the pair of vertices i and j in the tree T below so that
∥∥∥e(n)T
i L# − e(n)T

j L#
∥∥∥

1
is maximized.

2. Find a weighting of the tree T below so that 1/Z(L#) = a(T ).
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8.4 Application: The Second Derivative of the Alge-
braic Connectivity as a Function of Edge Weight

Recall from Theorem 5.2.10 that if A and E are positive semi-definite matrices
with a common null vector, then setting At := A + tE, we have that λ2(At) is
an increasing function of t. The immediate corollary to this was that if a(G) is a
simple eigenvalue of L(G), then increasing the weight of an edge causes the algebraic
connectivity to increase in a concave down fashion. In this section, we use the group
inverse of a variation of the Laplacian matrix to refine these results. We begin with
a matrix-theoretic lemma from [15] which gives us the derivative of the eigenvector
corresponding to λ2.

LEMMA 8.4.1 Let A and E be n×n positive semidefinite matrices with a common
null vector and suppose that λ2(A) > 0 is a simple eigenvalue of A. Let At = A+tE
and let vt be an eigenvector of At corresponding to λ2(At). If Qt = λ2(At)I − At,
then (vt)

′ = Q#
t Evt.

Proof: Considering the eigenvalue-eigenvector relationship Atvt = λ2(At)vt and
differentiating both sides with respect to t, we obtain

(At)
′vt +At(vt)

′ = [λ2(At)]
′vt + [λ2(At)](vt)

′

hence
At(vt)

′ = −(At)
′vt + [λ2(At)]

′vt + [λ2(At)](vt)
′. (8.4.1)

Noting that Qt(vt)
′ = [λ2(At)](vt)

′ −At(vt)′, we substitute in (8.4.1) to obtain

Qt(vt)
′ = (At)

′vt − [λ2(At)]
′vt.

Therefore, recalling that Q#
t vt = 0 we obtain

(vt)
′ = Q#

t (At)
′vt − [λ2(At)]

′Q#
t vt

= Q#
t (At)

′vt

= Q#
t (A+ tE)′vt

= Q#
t Evt

2

OBSERVATION 8.4.2 [15] We should note that since we are taking the group

inverse of Qt (since Q−1
t does not exist), in general (vt)

′ = Q#
t (At)

′vt + αvt where
α is the constant of normalization. However, since e is the common null vector of A
and E, it follows that α = 0.
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We now use Lemma 8.4.1 to refine Theorem 5.2.10 by showing the conditions
under which the second derivative is equal to zero. We do this in a theorem from
[48].

THEOREM 8.4.3 Let A, E, At, and vt be as in Lemma 8.4.1. Then there exists
an interval [0, t0) such that

d2λ2(At)

dt2
≤ 0 (8.4.2)

for all t ∈ [0, t0). Moreover, equality holds if and only if vt is also an eigenvector
for E

Proof: Since λ2(A) is a simple eigenvalue of A, it follows from Lemma 5.2.1 that
there is a t0 > 0 such that for all t ∈ [0, t0), both λ2(At) and vt are analytic functions
of t. Therefore, differentiating the eigenvalue-eigenvector relation Atvt = λ2(At)vt
twice with respect to t, we find that

At(vt)
′′ + 2E(vt)

′ = [λ2(At)]
′′vt + 2[λ2(At)]

′(vt)
′ + λ2(At)(vt)

′′. (8.4.3)

Letting Qt = λ2(At)I −At, we know from Lemma 8.4.1 that (vt)
′ = Q#

t Evt. Multi-

plying both sides of (8.4.3) on the left by vTt , substituting Q#
t Evt in for (vt)

′, and
solving for [λ2(At)]

′′, we obtain

[λ2(At)]
′′ = 2 (Evt)

T Q#
t (Evt) . (8.4.4)

At this point we should note that we already proved in Theorem 5.2.10 that
[λ2(At)]

′′ ≤ 0 when t ∈ [0, t0). However, the goal of this theorem is to refine Theo-
rem 5.2.10 by distinguishing the cases of equality and inquality there. To this end,
observe that there are two nonnegative eigenvalues of Qt: λn(Qt) = λ2(At) > 0 and
λn−1(Qt) = 0, and that the remaining eigenvalues λn−i(Qt) = λ2(At)− λi(At), for
i = 3, . . . , n, are negative. Observe that if w is a null vector common to both A and
E, then w is an eigenvector of Q#

t corresponding to 1/(λ2(At)). Since the remaining

eigenvalues of Q#
t are nonpositive, it follows that Q#

t is negative semidefinite when
restricted to the orthogonal complement of w. Since vt, and hence Evt, is orthogonal
to w, it follows that (Evt)

TQ#
t (Evt) ≤ 0, hence proving (8.4.2).

Recalling that vt is an eigenvector of Qt (and hence Q#
t ) corresponding to the

eigenvalue 0, it follows that if vt is an eigenvector for E, then Evt = cvt for some
real number c. Hence

(Evt)
TQ#

t (Evt) = c2(vt)
TQ#

t (vt) = 0.

However, if vt is not an eigenvector of E, then Evt is a linear combination of vt and
the eigenvectors of Qt corresponding to the negative eigenvalues. This immediately
gives us (Evt)

TQ#
t (Evt) ≤ 0, but since Evt is not a scalar multiple of vt, it follows

that the inequality in (8.4.2) in this case is strict. 2

We now apply Theorem 8.4.3 to graphs in which we increase the weight of the
edge joining vertices i and j. We obtain an explicit formula for (L+ tE(i,j))′′ where
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E(i,j) is the matrix with 1 in the (i, i) and (j, j) entries, −1 in the (i, j) and (j, i)
entries, and 0 elsewhere. Moreover, we can determine the conditions this second
derivative equals zero. We do this in the following corollary from [48].

COROLLARY 8.4.4 Let G be a connected weighted graph on n vertices with
Laplacian matrix L. Suppose that a(G) is a simple eigenvalue of L. For a fixed
pair of distinct vertices i and j, let Lt = L+ tE(i,j) and let Qt = a(Gt)I −Lt. Then
there exists t0 > 0 such that for all t ∈ [0, t0) we have

(a(Gt))′′ = 2((vt)i − (vt)j)
2((Q#

t )i,i + (Q#
t )j,j − 2(Q#

t )i,j) ≤ 0 (8.4.5)

Moreover, equality holds if and only if either (vt)i = (vt)j or ei − ej is a Fiedler
vector for Lt.

Proof: We know from Theorem 5.2.2 that there exists a number t0 > 0 such
that in the interval [0, t0), both a(Gt) and vt are analytic functions of t. Substitut-
ing E(i,j) for E and a(Gt) for λ2(At) in (8.4.4) yields the equality in (8.4.5). The
inequality in (8.4.5) is a direct consequence of Theorem 8.4.3. Moreover, observe
from Theorem 8.4.3 that (a(Gt))′′ = 0 if and only if vt is an eigenvector of E(i,j).
This occurs if and only if either (vt)i = (vt)j or if vt is a scalar multiple of ei− ej . 2

EXAMPLE 8.4.5 Observe in Example 5.2.4 we begin with the graph K5− e and
note that a(K5 − e) = 3. It can be easily seen that if i and j are the unique pair of
nonadjacent vertices, then ei − ej is an eigenvector corresponding to the algebraic
connectivity. Observe that if we join vertices i and j by and edge of weight t, we
see that increasing t by increments of one causes the algebraic to increase by two.
Thus the algebraic connectivity is a linear function of t (i.e., (a(Gt))′ = 2), hence
(a(Gt))′′ = 0 as Corollary 8.4.4 states.

EXAMPLE 8.4.6 Consider the graph Gt given below

Observe that (vt)5 = (vt)6 for all t. Thus by Corollary 8.4.4 we expect (a(Gt))′′ = 0.
Observe that for all t we have a(Gt) = 0.764. Since a(Gt) is constant, it follows that
(a(Gt))′ = 0 and hence (a(Gt))′′ = 0 as expected from Corollary 8.4.4.

At this point, we know that 0 is an upper bound on (a(Gt))′′ and we know
the conditions when this upper bound is achieved. We now turn our attention to
finding a lower bound on (a(Gt))′′. To do this, we recall two matrix theoretic results
which we state as a lemma:
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LEMMA 8.4.7 Let A be a positive semidefinite n × n matrix with eigenvalues
λ1, . . . , λn and corresponding orthonormal eignenvectors x1, . . . , xn. Then

(i)
∑n
i=1 λixix

T
i = A, and

(ii)
∑n
i=1 xix

T
i = I.

We now prove our result from [48] concerning the lower bound on (a(Gt))′′:

THEOREM 8.4.8 Let G be a connected weighted graph on n vertices with Lapla-
cian matrix L. Suppose that a(G) is a simple eigenvalue of L. Fix a distinct pair
of vertices i and j, put Lt := L + tE(i,j), and suppose that [0, t0) is an interval in
which a(Gt) is analytic. Then

(a(Gt))′′ ≥
−2

λ3(Lt)− a(Gt)
(8.4.6)

for all t ∈ [0, t0). Equality holds if and only if Lt can be written as

Lt = λ3(Lt)

(
I − 1

n
J

)
− (λ3(Lt)− a(Gt))vtvTt ,

where vt has the property that (vt)i − (vt)j = 1.

Proof: Let vt be a Fiedler vector of Gt normalized so that ‖vt‖2 = 1 and (vt)i−
(vt)j ≥ 0. Letting Qt = a(Gt)I − Lt, recall from Corollary 8.4.4 that

(a(Gt))′′ = 2((vt)i − (vt)j)
2((Q#

t )i,i + (Q#
t )j,j − 2(Q#

t )i,j). (8.4.7)

For each p = 3, . . . , n, let wp,t be (orthogonal) eigenvectors of Lt corresponding to
λp(Lt) normalized so that wTp,twp,t = 1. Thus by Lemma 8.4.7(i) (also [5] and [9])

Q#
t = aw1,tw

T
1,t +

n∑
p=3

−1

λp(Lt)− a(Gt)
wp,tw

T
p,t.

Multiplying both sides on the left and right by (ei − ej)T and ei − ej , respectively,
and noting that all entries in aw1,tw

T
1,t are the same, we obtain

(Q#
t )i,i + (Q#

t )j,j − 2(Q#
t )i,j =

∑n
p=3

−1
λp(Lt)−a(Gt)((wp,t)i − (wp,t)j)

2

≥ −1
λ3(Lt)−a(Gt)

∑n
p=3((wp,t)i − (wp,t)j)

2.

(8.4.8)

By Lemma 8.4.7(ii), (1/n)J + vtv
T
t +

∑
p=3wp,tw

T
p,t = I. Thus considering the ith

diagonal entry of each matrix we have

1

n
+ (vt)

2
i +

n∑
p=3

(wp,t)
2
i = 1. (8.4.9)
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Similarly for the corresponding jth diagonal entry we have

1

n
+ (vt)

2
j +

n∑
p=3

(wp,t)
2
j = 1. (8.4.10)

Summing the corresponding (i, j) and (j, i) entries of each matrix we have

2

n
+ 2(vt)i(vt)j + 2

n∑
p=3

(wp,t)i(wp,t)j = 0. (8.4.11)

Adding (8.4.9) and (8.4.10) and then subtracting (8.4.11) we obtain

((vt)i − (vt)j)
2 +

n∑
p=3

((wp,t)i − (wp,t)j)
2 = 2

or equivalently,

n∑
p=3

((wp,t)i − (wp,t)j)
2 = 2− ((vt)i − (vt)j)

2.

Plugging this into (8.4.8) it follows that

(Q#
t )i,i + (Q#

t )j,j − 2(Q#
t )i,j ≥

−1

λ3(Lt)− a(Gt)
[2− ((vt)i − (vt)j)

2].

Thus by (8.4.7) we have

(a(Gt))′′ ≥
(

−1
λ3(Lt)−a(Gt)

)
2((vt)i − (vt)j)

2[2− ((vt)i − (vt)j)
2]

≥ −2
λ3(Lt)−a(Gt) .

If equality holds in (8.4.6), then from the argument above, we see that it neces-
sarily follows that λ3(Lt) = . . . = λn(Lt) and ((vt)i− (vt)j)

2[2− ((vt)i− (vt)j)
2] = 1,

from which it follows that (vt)i − (vt)j = ±1. But since we took (vt)i − (vt)j to be
nonnegative, we see that (vt)i − (vt)j = 1. Further, by Lemma 8.4.7(i) we have

Lt = a(Gt)vtvTt + λ3(Lt)
n∑
p=3

wp,tw
T
p,t.

Thus we obtain the desired form for Lt by noting that (1/n)J + vtv
T
t +∑n

p=3wp,tw
T
p,t = I. Finally, if Lt = λ3(Lt)(I − (1/n)J) − (λ3(Lt) − a(Gt))vtvTt ,

where vTt vt = 1 and vTt e = 0, and (vt)i− (vt)j = 1, then equality holds in (8.4.6). 2

OBSERVATION 8.4.9 [48] Given a suitable natural number n, and suitable real
numbers λ3 and a(G) such that λ3 > a(G) > 0, observe that constructing a weighted
graph whose Laplacian matrix L = λ3(L)(I − (1/n)J) − (λ3(L) − a(G))vvT is
equivalent to constructing a vector v such ‖v‖2 = 1, vT e = 0, and vi − vj = 1,
and with the property that for each pair of distinct indices p and q we have
−λ3/n − (λ3 − a(G))vpvq ≤ 0 (since L is an M-matrix, thus the off-diagonal en-
tries must be nonpositive).
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EXAMPLE 8.4.10 [48] Suppose that for n ≥ 3, we choose λ3 and a(G) where
λ3 > a(G) > 0 and

a(G)

λ3
≥

√
n/(n− 2)− 1√
n/(n− 2) + 1

. (8.4.12)

Let x = (1−
√

(n− 2)/n)/2 and let v be a vector such that vi = x, vj = x− 1, and
the remaining entries of v are all (1 − 2x)/(n − 2). Note that ‖v‖2 = 1, vT e = 0
and vi − vj = 1. By using (8.4.12) we can also observe that for each pair of distinct
indices p and q that λ3/n− (λ3 − a(G))vpvq ≤ 0. Hence the weighted graph whose
Laplacian matrix L = λ3(L)(I − (1/n)J) − (λ3(L) − a(G))vvT is a graph where
equality holds in (8.4.6).

Exercises:

1. (See [48]) Let G be a connected weighted graph on n vertices with Laplacian
matrix L. Suppose that a(G) is a simple eigenvalue of L. Fix a pair of distinct ver-
tices i and j. Let Lt = L+ tE(i,j) and Qt = a(Gt)I − Lt. Suppose that [0, t0) is an
interval in which a(Gt) remains a simple eigenvalue. Show that

λ3(Lt)− a(Gt) ≥
1

Z(Q#
t )
.

for all t ∈ [0, t0).

2. (See [48]) Let L, Lt, and Qt be as in the previous exercise, fixing a pair of
distinct vertices i and j. Suppose [0, t0) is an interval in which a(Gt) is analytic.
Show

d(vt)i
dt
− d(vt)j

dt
= ((vt)i − (vt)j)((Q

#
t )i,i + (Q#

t )j,j − 2(Q#
t )i,j)

for all t ∈ [0, t0). What does this tell us about |(vt)i−(vt)j | as a function of t in [0, t0)?

3. (See [48]) Let L be the Laplacian matrix for a connected graph G on n ver-
tices. Fix a pair of distinct vertices i and j and let Lt = L + tE(i,j). Prove the
following:

(i) If n = 2, then a(Gt)→∞ and t→∞.

(ii) If n ≥ 3, then a(Gt) converges at t→∞ and

lim
t→∞

a(Gt) = min{zTLz | zT z = 1, zT e = 0, zi = zj }.



This page intentionally left blankThis page intentionally left blank



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Bibliography

[1] N. Alon and V.D. Milman λ1, Isoperimetic inequalities for graphs and super-
concentrators. Journal of Combinatorial Theory, B38: 73–88, 1985.

[2] W.N. Anderson and T.D. Morley. Eigenvalues of the Laplacian of a graph.
Linear and Multilinear Algebra, 18:141–145, 1985.

[3] Hua Bai. The Grone-Merris Conjecture. Transactions of the American Math-
ematical Society, 363:4463–4474, 2011.

[4] R.B. Bapat and S. Pati. Algebraic connectivity and the characteristic set of a
graph. Linear and Multilinear Algebra, 45:247–273, 1998.

[5] A. Ben-Israel and T.N. Greville. Generalized Inverses: Theory and Applica-
tions. Academic Press, New York, 1973.

[6] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathematical
Sciences. SIAM, Philadelphia, 1994.

[7] N. Biggs. Algebraic Graph Theory, Second Edition. Cambridge University
Press, Cambridge, U.K., 1993.

[8] B. Bollobas. Random Graphs, Second Edition. Cambridge University Press,
Cambridge, U.K., 2001.

[9] S.L. Campbell and C.D. Meyer, Jr. Generalized Inverses of Linear Transfor-
mations. Dover Publications, New York, 1991.

[10] S. Chaiken. A combinatorial proof of the all minors matrix tree theorem. SIAM
Journal of Algebra and Discrete Mathematics, 3(3):319–329, 1982.

[11] G. Chartrand and O. Oellermann. Applied and Algorithmic Graph Theory.
McGraw-Hill, New York, 1993.

[12] G. Chartrand and P. Zhang. Introduction to Graph Theory. McGraw-Hill,
New York, 2005.

[13] D.J. de Solla Price. Networks of scientific papers. Science 149:510–515, 1965.

[14] D.J. de Solla Price. A general theory of bibliometric and other cumulative ad-
vantage processes. Journal of American Society Information Sciences 27:292–
306, 1976.

395



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

396 Bibliography

[15] E. Deutsch and M. Neumann. On the first and second order derivatives of the
Perron vector. Linear Algebra and its Applications 71:57–76, 1985.

[16] C. H. Edwards and D. E. Penney. Differential Equations and Boundary Value
Problems - Computing and Modeling, Fourth Edition. Prentice Hall, Upper
Saddle River, NJ, 2008.

[17] L. C. Evans. Partial Differential Equations. American Mathematical Society,
Providence, RI, 1998.

[18] S. Fallat and S.J. Kirkland. Extremizing algebraic connectivity subject to graph
theoretic constraints. Electronic Journal of Linear Algebra 3:48–74, 1998.

[19] S. Fallat, S.J. Kirkland, J.J. Molitierno, and M. Neumann. On graphs whose
Laplacian matrices have distinct integer eigenvalues. Journal of Graph Theory,
50:162–174, 2005.

[20] S. Fallat, S.J. Kirkland, and S. Pati. Maximizing algebraic connectivity over
unicyclic graphs. Linear and Multililnear Algebra 51:221–241, 2003.

[21] S. Fallat, S.J. Kirkland, and S. Pati. Minimizing algebraic connectivity over
connected graphs with fixed girth. Discrete Mathematics 254:115–142, 2002.

[22] S. Fallat, S.J. Kirkland, and S. Pati. On graphs with algebraic connectivity
equal to minimum edge density. Linear Algebra and its Applications 373:31–50,
2003.

[23] Fan Yizheng. On spectral integral variations of graphs. Linear and Multilinear
Algebra, 50:133–142, 2002.

[24] Fan Yizheng. Spectral integral variations of degree maximal graphs. Linear
and Multilinear Algebra, 51:147–154, 2003.

[25] Yi-Zheng Fan, Shi-Cai Gong, Yi Wang, and Yu-Bin Gao. On trees with exactly
one characteristic element. Linear Algebra and its Applications 412:233–242,
2007.

[26] I. Faria. Permanental roots and the star degree of a graph. Linear Algebra and
its Applications 64:255–265, 1985.

[27] M. Fiedler. Bounds for eigenvalues of doubly stochastic matrices. Linear Al-
gebra and its Applications, 5:299–310, 1972.

[28] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Jour-
nal, 23:298–305, 1973.

[29] M. Fiedler. Eigenvectors of Acyclic Matrices Czechoslovak Mathematical Jour-
nal, 25:607–618, 1975.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Bibliography 397

[30] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and
its applications to graph theory. Czechoslovak Mathematical Journal, 25:619–
633, 1975.

[31] M. Fiedler. Laplacian of graphs and algebraic connectivity. Combinatorics and
Graph Theory, 25:57–70, 1989.

[32] M. Fiedler and V. Ptak. On matrices with non-positive off-diagonal elements
and positive principal minors. Czechoslovak Mathematical Journal, 22(87):382–
400, 1962.

[33] C. Godsil and G. Royle. Algebraic Graph Theory. Springer-Verlag, New York,
2001.

[34] G.H. Golub and C.F. Van Loan. Matrix Computations, Third Edition. Johns
Hopkins University Press, Baltimore, 1996.

[35] R. Grone and R. Merris. Algebraic connectivity of trees. Czechoslovak Mathe-
matical Journal, 37(112):660–670, 1987.

[36] R. Grone and R. Merris. Ordering trees by algebraic connectivity. Graphs and
Combinatorics, 6:229–237, 1990.

[37] R. Grone, R. Merris, and V.S. Sunder. The Laplacian spectrum of a graph.
SIAM Journal of Matrix Analysis and Applications, 11:218–238, 1990.

[38] S.L. Hakimi. On the realizability of a set of integers as the degrees of the
vertices of a graph. SIAM Journal of Applied Math, 10:496–506, 1962.

[39] V. Havel. A remark on the existence of finite graphs. Casopis Pest. Mat.,
80:477–480, 1955.

[40] O.J. Heilmann and E.H. Lieb. Theory of monomer-dimer systems. Communi-
cations of Mathematics and Physics, 25:190–232, 1972.

[41] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
Cambridge, U.K., 1985.

[42] S. J. Kirkland. Constructions for type I trees with nonisomorphic Perron
branches. Czechoslovak Mathematical Journal, 49(124): 617–632, 1999.

[43] S. J. Kirkland. A bound on the algebraic connectivity of a graph in terms of
the number of cutpoints. Linear and Multilinear Algebra, 47: 93–103, 2000.

[44] S. J. Kirkland. An upper bound on the algebraic connectivity of graphs with
many cutpoints. Electronic Linear Algebra, 8: 94–109, 2001.

[45] S. J. Kirkland and S. Fallat. Perron Components and Algebraic Connectivity
for Weighted Graphs. Linear and Multilinear Algebra 44:131–148, 1998.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

398 Bibliography

[46] S. J. Kirkland, J. J. Molitierno, M. Neumann, and B. L. Shader. On graphs with
equal algebraic and vertex connectivity. Linear Algebra and its Applications,
341: 45–56, 2002.

[47] S. J. Kirkland and M. Neumann. Algebraic connectivity of weighted trees under
perturbation. Linear and Multilinear Algebra, 42: 187–203, 1997.

[48] S. J. Kirkland and M. Neumann. On algebraic connectivity as a function of an
edge weight. Linear and Multilinear Algebra, 52: 17–33, 2004.

[49] S. J. Kirkland, M. Neumann, and B. L. Shader. Characteristic vertices of
weighted trees via Perron values. Linear and Multilinear Algebra, 40:311–325,
1996.

[50] S. J. Kirkland, M. Neumann, and B. L. Shader. Distances in weighted trees
and group inverse of Laplacian matrices. SIAM Journal of Matrix Analysis
and Applications, 18(4): 827–841, 1997.

[51] S. J. Kirkland, M. Neumann, and B. L. Shader. On a bound on algebraic
connectivity, the case of equality. Czechoslovak Mathematical Journal, 48: 65–
76, 1998.

[52] S. J. Kirkland, M. Neumann, and B. L. Shader. Bounds on the subdominant
eigenvalue involving group inverses with applications to graphs. Czechoslovak
Mathematical Journal, 48(123):1–20, 1998.

[53] K. Kuratowski. Sur le problème des courbes gauches en topologie. Fund. Math.,
15: 271–283, 1930.

[54] P. Lancaster. Theory of Matrices. Academic Press, New York, 1969.

[55] J.S. Li and Y.L. Pan. de Caen’s inequality and bounds on the largest Laplacian
eigenvalue of a graph. Linear Algebra and its Applications, 328:153–160, 2001.

[56] J.S. Li and X.D. Zhang. A new upper bound for the eigenvalues of the Laplacian
matrix of a graph. Linear Algebra and its Applications, 265:93–100, 1997.

[57] J.S. Li and X.D. Zhang. On the Laplacian eigenvalues of a graph. Linear
Algebra and its Applications, 285:305–307, 1998.

[58] R. Merris. Characteristic vertices of trees. Linear and Multilinear Algebra,
22:115–131, 1987.

[59] R. Merris. Degree maximal graphs are Laplacian integral. Linear Algebra and
its Applications, 199:381–389, 1994.

[60] R. Merris. Laplacian matrices of graphs: a survey. Linear Algebra and its
Applications, 197,198:143–176, 1994.

[61] R. Merris. A survery of graph Laplacians. Linear and Multilinear Algebra,
39:19–31, 1995.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

Bibliography 399

[62] R. Merris. A note on Laplacian graph eigenvalues. Linear and Multilinear
Algebra, 285:33–35, 1998.

[63] B. Mohar. Isoperimetric Numbers of Graphs. Journal of Combinatorial Theory
B47: 274–291, 1989.

[64] B. Mohar. Eigenvalues, Diameter, and Mean Distance in Graphs. Graphs and
Combinatorics 7: 53–64, 1991.

[65] B. Mohar. Laplace eigenvalues of graphs – a survey. Discrete Mathematics 109:
171–183, 1992.

[66] J. J. Molitierno. The spectral radius of submatrices of Laplacian matrices
for trees and its comparison to the Fiedler vector. Linear Algebra and its
Applications 406: 253–271, 2005.

[67] J. J. Molitierno. On the algebraic connectivity of graphs as a function of genus.
Linear Algebra and its Applications 419: 519–531, 2006.

[68] J. J. Molitierno. The spectral radius of submatrices of Laplacian matrices for
graphs with cut vertices. Linear Algebra and its Applications 428: 1987–1999,
2008.

[69] J. J. Molitierno and M. Neumann. The algebraic connectivity of two trees
connected by an edge of infinite weight. Electronic Journal of Linear Algebra
8:1–13, 2001.

[70] S. Pati. The third smallest eigenvalue of the Laplacian matrix. Electronic
Journal of Linear Algebra 8:128–139, 2001.

[71] G. Ringel. Map Color Theorem. Springer-Verlag, New York, 1974.

[72] G. Ringel and J.W.T. Youngs. Solution to the Headwood map-coloring prob-
lem. Proceedings of the National Acadedemy of Science, USA 60:438–445, 1968.

[73] E. Ruch and I. Gutman. The branching extent of graphs. Journal of Combi-
natorics and Information System Sciences, 4:285–295, 1979.

[74] E. Seneta. Non-negative Matrices and Markov Chains, Second Edition.
Springer-Verlag, New York, 1981.

[75] Jin-Long Shu, Yuan Hong and Kai Wen-Ren. A sharp upper bound on the
largest eigenvalue of the Laplacian matrix of a graph. Linear Algebra and its
Applications 347: 123–129, 2002.

[76] W. So. Rank One Perturbation and its Application to the Laplacian Spectrum
of a Graph. Linear and Multilinear Algebra, 46:193–198, 1999.

[77] Dragan Stevanovic. Bounding the largest eigenvalue of trees in terms of the
largest vertex degree. Linear Algebra and its Applications 360: 35–42, 2003.



i
i

“molitierno˙01” — 2011/12/13 — 10:46 — i
i

i
i

i
i

400 Bibliography

[78] Douglas B. West. Introduction to Graph Theory, Second Edition. Prentice
Hall, Upper Saddle River, NJ, 2001.

[79] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,
New York, 1965.

[80] Chai Wah Wu. Synchronization in Complex Networks of Nonlinear Dynamical
Systems. World Scientific Publishing Co., Hackensack, NJ, 2007.

[81] Choujun Zhan, Guanrong Chen, and Lam F. Yueng. On the distribution of
Laplacian eigenvalues versus node degrees in complex networks. Physica A 389:
1779–1788, 2010.

[82] http : //3.bp.blogspot.com/swn7V cF−V qc/TCpcMmi8qII/AAAAAAAAAHw/
3QtMkZsikpY/s1600/part1(6).png



This page intentionally left blankThis page intentionally left blank



K12933

Mathematics

M
olitiern

o
A

PPLIC
A

T
IO

N
S O

F C
O

M
B

IN
A

T
O

R
IA

L  
M

A
T

R
IX

 T
H

EO
R

Y
 T

O
 LA

PLA
C

IA
N

 M
A

T
R

IC
ES O

F G
R

A
PH

S

APPLICATIONS OF  
COMBINATORIAL  

MATRIX THEORY TO  
LAPLACIAN MATRICES  

OF GRAPHS

DISCRETE MATHEMATICS AND ITS APPLICATIONS
Series Editor KENNETH H. ROSEN

DISCRETE MATHEMATICS AND ITS APPLICATIONS
Series Editor KENNETH H. ROSEN

On the surface, matrix theory and graph theory seem like very different branches 
of mathematics. However, adjacency, Laplacian, and incidence matrices are 
commonly used to represent graphs, and many properties of matrices can give 
us useful information about the structure of graphs.

Applications of Combinatorial Matrix Theory to Laplacian Matrices of 
Graphs is a compilation of many of the exciting results concerning Laplacian 
matrices developed since the mid 1970s by well-known mathematicians such 
as Fallat, Fiedler, Grone, Kirkland, Merris, Mohar, Neumann, Shader, Sunder, and 
more. The text is complemented by many examples and detailed calculations, 
and sections followed by exercises to aid the reader in gaining a deeper 
understanding of the material. Although some exercises are routine, others 
require a more in-depth analysis of the theorems and ask the reader to prove 
those that go beyond what was presented in the section. 

Matrix-graph theory is a fascinating subject that ties together two seemingly 
unrelated branches of mathematics. Because it makes use of both the 
combinatorial properties and the numerical properties of a matrix, this area 
of mathematics is fertile ground for research at the undergraduate, graduate, 
and professional levels. This book can serve as exploratory literature for the 
undergraduate student who is just learning how to do mathematical research, 
a useful “start-up” book for the graduate student beginning research in matrix-
graph theory, and a convenient reference for the more experienced researcher.

K12933_Cover_revised_b.indd   1 1/9/12   9:33 AM


	Front Cover
	Dedication
	Contents
	Preface
	Acknowledgments
	Notation
	1. Matrix Theory Preliminaries
	2. Graph Theory Preliminaries
	3. Introduction to Laplacian Matrices
	4. The Spectra of Laplacian Matrices
	5. The Algebraic Connectivity
	6. The Fiedler Vector and Bottleneck Matrices for Trees
	7. Bottleneck Matrices for Graphs
	8. The Group Inverse of the Laplacian Matrix
	Bibliography



