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Introduction

The present work is intended to develop three main results:

(1) An extension of the standard basis theorem, going back to Doubilet, Rota,
and Stein, and eventually to Capelli and Young, to algebras containing positively
signed and negatively signed variables, or superalgebras as we call them. Such
an extension has required a rethinking of some of the basic concepts of linear
algebra, such as “matrix” and “coordinate system,” along lines that we believe
to be new, and which we hope will lead to an extension to “signed” modules of
the entire apparatus of linear algebra. The standard basis theorem, which we
prove, is characteristic-free and includes, besides the classical case, straightening
algorithms, which apply to permanents as well as to determinants, as well as a
mixed generalization of the notion of both determinant and permanent, called
the biproduct, which differs from the Berezin determinant.

(2) A rigorous presentation of the symbolic method of invariant theory for
symmetric tensors, in characteristic zero. The results here offer no great novelty
over the nineteenth century, except rigor.

(3) A new symbolic method (foreshadowed by Weitzenbock) for the repre-
sentation of invariants of skew-symmetric tensors. Here, the results turn out to
be more satisfactory. Symbolic expressions for the invariants of skew-symmetric

 tensors are more manageable and easier to compute than those for symmetric

tensors. In fact, in contrast to symmetric tensors, the “meaning” of the vanish-
ing of an invariant can be more easily gleaned from the symbolic representation,
as we show by several examples.

In both instances, the actual invariant is obtained from the symbolic repre-
sentation by applying an operator which we call the umbral operator. Invariants
of symmetric tensors are obtained by applying the umbral operator to certain
polynomials in a commutative algebra, whereas invariants of skew-symmetric
tensors are obtained by applying the umbral operator to polynomials in an anti-
commutative algebra. Thus, the umbral operator can be viewed as mapping an
anticommutative algebra into a commutative algebra, and vice versa. It is an
instance of a Schur functor.
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The umbral operator thus establishes a cryptomorphism between commuta-
tive and anticommutative algebras, and can be used to systematically develop
anticommutative analogs of concepts of algebraic geometry. This, we believe,
may ultimately turn out to be the main byproduct of the present investigation.

In the exposition, we have preferred to use algebras generated by an alphabet
over algebras generated by a free module. The results can, however, be recast
in a basis-free language: the choice between these two equivalent languages is

largely a matter of taste and of the objectives at hand.

Synopsis

We prove two distinct but closely related results. The first is the extension
of the standard basis theorem to superalgebras (defined below). The second is
the application of the standard basis theorem to the computation of invariants
(and, more generally, of covariants) of symmetric and skew-symmetric tensors.
In this synopsis we give an informal description of the main ideas and results
which can be read independently of the body of the work and which can be used
as a guideline to the text.

We begin by recalling the three fundamental dlgebraic systems of invariant
theory: the symmetric algebra, the divided powers algebra, and the exterior
algebra.

Given an alphabet A° (that is, a set A? whose elements are
to be viewed as “variables”), the symmetric algebra Symm(A°)
generated by AY is the familiar commutative algebra of polyno-

(1) mials in the variables A°. The coefficients of these polynomials
will be integers, although (here and everywhere below) an arbi-
trary commutative ring with identity could be taken as the ring
of coefficients.

Given an alphabet A, the exterior algebra Ext(A~) is the al-
gebra generated by the variables A~, subject to the identities
ab = —ba and a® = 0 for a,b € A~. Thus, Ext(A™) is the
algebra of “polynomials in anticommutative variables A=.” A
nonzero monomial in Ext(A™) is a product of a finite sequence
of variables
(2) 1G9 " O, a; € A7,

where no two a; coincide, and two monomials are related by the
familiar “sign law”

0182 Op = (SEN0)Gr1052 ** * Qon

for any permutation o of the set {1,2,...,n}.

vii
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Given an alphabet AT, the divided powers algebra Div(A*)
is the commutative algebra generated by the variables a®, as
a ranges over A and as ¢ = 0,1,2,.... We set a(® = 1 and
a(!) = q. The idea is that a(? is to satisfy the same identities
(3) as a*/1!. Thus we impose the identities
() 200 = (" ﬂ) 4 (i+9)
)
(other identities usually impose in the definition of the divided
power algebra will not be needed, and need not be recalled here).

We wish to develop a suitable notation for the tensor product of these three
algebras, for three disjoint alphabets A%, A=, and AT. The usual notation of
tensor products proves unwieldy, and we choose to describe the tensor product
by a more direct route, namely, as the monoid algebra of a certain monoid to be
presently defined. Thus, after taking the disjoint sum A° & A~ @ AT = A we
consider a monoid Mon[A] which is “almost” the free monoid generated by A.
The words in Mon[A] shall be products of variables in A° and in A™, and of the
divided powers a® for @ € AT Thus a word appears as a product, e.g.,

w = abeMdel?).

The identities among these monomials are those that follow from the following
commutation relations ab = ba in all cases except when both a and b belong
to A~, in which case we set ab = —ba. Thus, if a,b € A™, if ¢,d € A°, and if
e, f € AT then we have, for example,

(+%) dacze(?’)bf(s) — —chf(“S)ae(s)d.

The product of two words is juxtaposition, except that products of divided pow-
ers are to be simplified by (#). Thus, for example, (ae)(be) = 2abe(?). The length
of a monomial is computed taking into account the fact that the divided power
a(® is to be considered of Length 7. Thus, the monomial (#x) is of length (= de-
gree) 13. With these conventions, the monoid algebra of Mon[A] is well defined
by taking formal linear combinations and products. We call it the superalgebra
Super|[A] generated by the signed alphabet A. The variables of the alphabet A will
be designated as neutral, negatively signed, and positively signed, respectively.
The superalgebra Super{A], although a worthwhile subject of investigation,
is not the immediate object of the present study. We need to define a more
complex structure, which will be called the fourfold algebra. To this end, we
consider two signed alphabets L = Lt @ L™ and P = P™ @ P, called proper,
because neither has neutral elements. Their elements will be called letters and
places, respectively. From these two alphabets we define a third signed alphabet
[L | P}, the letterplace alphabet. The definition of [L | P] is fundamental. The
elements of [L | P] will be pairs (z | ), where z € L and « € P; these pairs will
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sometimes be called letterplaces (the geometric motivation for this term will be
given shortly). Their signatures are determined by the following rules:
(@) (z|)elL|PITifze Lt and o € P,

(i) (z|a)e[L|P°ifze L™ anda e P,

(iii) (z | @) € [L | P]~ otherwise.

The Superalgebra Super[L | P] is called the fourfold algebra. Our objective will
be to show that the fourfold algebra is the suitable machinery to develop the
invariant theory of symmetric and skew-symmetric tensors, and, as a byproduct,
to formulate a “signed” generalization of linear algebra.

All theorems of linear and multilinear algebras can be viewed as consequences
of the Laplace expansions for determinants. This sweeping assertion is in part
made precise by the second fundamental theorem of invariant theory, and it will
serve as motivation for the generalization of some such theorem to superalgebras
that we shall develop below.

In ordinary linear algebra, one deals with vectors (here denoted by letters)
and coordinates (also known as linear functionals, here denoted by places). The
oth coordinate of a vector z is a scalar (here denoted by a neutral variable).
Thus, vectors must be taken as negatively signed letters, and coordinates must
be taken as negatively signed places. The value of a vector z at the coordinate
@ is denoted by (z | @) and is a scalar (that is, a neutral element). A matriz is a
set {(z | o);z € X, a € A} where X and A are respectively linearly ordered sets
of letters and places of the same size, i.e., | X| = |A| = n. Relabeling the letters
Z1,...,Tn and the places a1, ..., a, by their linear order, the determinant of a
matrix is then defined as usual (except for sign) as

(=) D2 S “(sgno) (21 | @) (w2 | aoz) - (2n | aon),

where o ranges over all permutations of the set {1,2,...,n} of indices. One
verifies that the above expression equals (expansion by columns instead of rows)

(=)™ D23 (sgna)(zo1 | 1) (202 | @2) - (o | ).

o

* We wish to recast this definition in a form that will be suitable for generaliza-

tion to the fourfold algebra. To this end, we write the above determinant by

~ the notation (z122 -+ 2, | @1 - - - @y,) and we note that this expression extends

to a bilinear map from the exterior algebra Ext(X) in the letters, and from
the exterior algebra Ext(A) in the places, with values in the symmetric algebra
in the letterplaces (z | o). We are thus led to generalize such a bilinear map
to superalgebras by suitably generalizing the notion of determinant and of the
Laplace expansion that characterizes it. We first have to recast the classical ,
Laplace expansions of a determinant in a language that is suitable for general-
ization. It turns out that the language of Hopf algebras is eminently suited to
this purpose. We first review this language in the (classical) case of two exterior
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algebras Ext(X) and Ext(A) or, what is equivalent, to the case of the super-
algebra Super[L | P] where L® = LT = P% = P* = &. In this special case,
the determinant can be viewed as a bilinear form from Super[L] x Super[P] to
Super|L | P]. Let w be a word in Mon[L] and let w’ be a word in Mon[P]. V\ie
shall define (w | w') as an element of Super[L | P]. The bilinear function (w | w')
shall satisfy the following conditions:

(i) (w | w') = 0 unless the words w and w' have the same length.

(i) (w | w') = (z | @) if w = and w' = o, that is, if the words are of length
one, that is, if the words reduce to a single letter and place.

(i) (1] 1) = 1, where 1, the identity of the algebra, can be identified with a
word of length zero.

Finally, we shall impose on (w | w') the analog of Laplace expansions. To
state these properly we recall that if w is a word in an exterior algebra, the

coproduct
Aw =) Jw() @ w)
w

is the sum over all pairs of such words w(;) and w(z) such that wywz) = w,
with suitable signs (incorporated in the notation) which need only be specified
in the text.

In the notation of Hopf algebras, the Laplace expansion of a determinant
(w | w'w'") takes the pleasing form

> E(way | w)(we |w"),

where again we do not yet worry about signs. There is a similar expansion “by
columns” that is similar to the present expansion by rows.

We now generalize this notation to an arbitrary fourfold algebra Super[L | P].
The fourfold algebra is the tensor product of four algebras, each one generated
by those letterplaces (z | &) where z is either positive or negative, and-a-either
positive or negative (recall that there are no neutral letters or places). Each
factor in such a tensor product is an exterior algebra, a divided powers algebra,
or a symmetric algebra.

Similarly, each of the superalgebras Super[L] and Super[P] is the tensor prod-
uct of an exterior algebra and a divided powers algebra.

We now extend the definition of a “determinant” (which we call a biproduct)
to the fourfold algebra as follows. If w € Super|L] and w’,w" € Super[P], we
again define a bilinear form (w | w') taking values in Super[L | P] (note that we
now allow L and P to be arbitrary proper alphabets, that is, alphabets without
neutral elements). The biproduct (w | w') will be subject to (i), (ii), and (iii)
exactly as above, and to the technical condition

(iv) (™ | a™) = (z | a)™ for divided powers of positively signed letters

and places.
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Finally, one assumes analogs of the Laplace expansions in the form
(*) (w | w'w") =" (wqy | w)(we | "),
w
with suitable signs, where
Aw = Z w(1) ® w(z)
w

is the coproduct in the Hopf algebra Super[L] (see below for further explana-
tions). One also assumes a similar Laplace expansion where the roles of letters
and places are interchanged.

The sum on the right of the Laplace expansion (x), as well as the sign of
each term, can be understood without knowledge of Hopf algebras as follows.
The sum on the right of (%) ranges over all distinct ordered pairs w(1), W(z) of
subwords of w such that w;yw(s) = w. By (i), the only nonzero terms are given
by pairs w(1), w(a) such that Length(w(g)) = Length(w’) and Length(w(g)) =
Length(w"). The sign of each term on the right of (*) is determined by the
following rule. In the monoid Mon[L ® P] generated by the disjoint sum of the
alphabets L and P, consider the words ww'w" and wyw'wzyw”. Evidently the
second word can be obtained from the first by a succession of transpositions of
adjacent elements of L@ P (with proper care given to divided powers). The sign
of the corresponding term on the right of () is then the parity of the number
of such transpositions, for which the two adjacent elements of L & P, which are
being transposed, are both negatively signed. We stress the fact that of the two
letters being transposed, one may belong to L and another to P.

EXAMPLE. Suppose all letters are positively signed, and places are of arbi-
trary signature. Then A

(@@b [ apy) = (a® [aB)(b] ) + (ab] aB)(a | ).

(v) Finally, one assumes a dual Laplace expansion

(w'w” | w) =} (' | w) W | w)

with a similar rule for the signs.

We show in the text that these expansion rules are consistent. They define
a bilinear form, which we call the biproduct, which can be viewed as a signed
generalization of the determinant. When w and w’ are products of distinct
positively signed letters and places, then the biproduct (w | w’) reduces to the
permanent. This is not the case, however, for (w | w') when w and w’ are
arbitrary products of divided powers. In this case, the pair (w | w') can in no
way be seen as the generalization of the determinant or permanent of a matrix
(unless one is willing to consider the possibility that the set of rows and the set
of columns of such a “matrix” shall be allowed to become multisets).
The biproduct preserves all formal properties (that is, the Laplace expan-
sions) of a determinant, except for signs. As already remarked, all of linear and
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multilinear algebra can be recast in terms of Laplace identities. It stands to rea-
son, therefore, to expect that the biproduct will yield a generalization of linear
algebra to “signed” vector spaces and signed modules generally. In this paper
we take two steps toward the realization of this program, which we now proceed
to informally describe.

The first step is the extension to the fourfold algebra of the standard basis
theorem of Doubilet, Rota, and Stein (a special case of our result, which in
the present notation corresponds to setting L = L™ and P = P7). Such a
generalization proceeds as follows. Define a Young diagram over L (and similarly
over P) as a sequence D = (w1, ws, ..., wy) of words w; in Mon[L], such that
A; = Length(w;) and Ay > Az > --- > An. The vector A= (A1, Ag,...) is the
shape of the Young diagram. If

Wi = Ti1T42 ° ** Tides zi € L,

where we have written out each divided power by repeating the same letter
(strictly speaking, this is an abuse of notation), then the words

Wj = TijT25 " Thjj

define the dual diagram D of shape A

A Young diagram D over L (or over P) will be said to be standard when, for

every pair of words

w; = T1T "+ T, z; €L,

Wi = Y1Y2 - Ys; y; € L,
where w; is in D and w; is in D the following conditions are satisfied. Let us
refer to w; as a row of the diagram and to @; as a column of the diagram. Choose
a linear order on the alphabet L, which will remain fixed from now on. Then

(i) two successive letters z; and z;+; in the same row are in nondecreasing
order (z; < z;4+1) if they are both positively signed and in strictly increasing
order (z; < z;+1) if they are both negatively signed.

(i) two successive letters y; and y;41 in the same column of the tableau D
(i.e., in the same row of the tableau D) are in strictly increasing order (y; < i+1)
if they are both positively signed and in nondecreasing order (y; < yiy1) if they
are both negatively signed.

(iii) two successive letters in the same row (or in the same column) which are
of different signatures are in strictly increasing order.

A similar definition is given for Young diagrams made out of P.

Now let D and E = [w),...,w/] be Young diagrams of the same shape made
out of the alphabets L and P, respectively. We define the Young tableau of the
diagram pair D, E to be

Tab(D | E) = (w1 | i) (w2 | wh) - (wn | wy,).

(This is a slight oversimplification, because of the possible occurrence of divided
powers—the text gives the precise definition.)
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A standard Young tableau Tab(D | E) is a Young tableau where both diagrams
D and E are standard. Our main result states that standard Young tableaux
are an integral basis of the superalgebra Super[L | P]. Actually, the final result
is stronger. It states that a (not necessarily standard) tableau Tab(D | E) is
uniquely expressible as a linear combination with integer coefficients of standard
Young tableaux. If Tab(D | E) is of shape ), then the only standard Young
tableaux occurring with nonzero coefficients are.of shapes which are greater
than ) in the dominance order of shapes. Thus the submodules, spanned by all
tableaux whose shapes form an order ideal in the partially ordered set of shapes
under the dominance order, span an invariant submodule of Super(L | P], under
permutations of both letters and places.

An immediate corollary of this theorem is that the number of standard Young
diagrams is independent of the linear ordering chosen for the alphabet. No direct
combinatorial proof of this surprising fact is known at present.

The proof of the standard basis theorem proceeds in two steps. The fact that
the standard tableaux span the superalgebra is a consequence of the following
straightening formula

Z:!: VW(1) | u) W)W | u) Z:t(wv ! u'u(l))(v(g)w’ l 'u,(g)).

(For the actual computation of the signs, consult the text.)

Ihe straightening formula leads to a recursive algorithm (ultimately going
back to Alfred Young) to express any monomial in the superalgebra as an integral
linear combination of standard tableaux.

The fact that the standard tableaux are linearly independent is subtler; it is
based on a refined duality. One defines a dual alphabet L* = L** U L*~ with
L** in bijective correspondence with L= and L*~ with L*. Thus, if z is a
letter, then z* is a letter of the opposite sign; similarly, for P*. One then defines
a scalar bilinear form

(p,q), p € Super[L* | P*], g € Super|[L | P],

by the following rules: : :

(i) ((z* |e*),(y [ B)) =0if £ #y or a # 3, and

(ii) ((z* | &*),(z | @)) = %1, where the sign on the right is negative if and
only if both z and a* are negatively signed. To see the motivation for this rule,
we (quite unrigorously) rewrite the left side as

(@™ | o*)(z ] @) = £(z" | 2)(” | @),
and we see that the minus sign is due to the “fact” that the elements z and o*
have been commuted. ,
(iii) Analogs of Laplace expansions. For example, if w'w” € Super[L* | P*|
and w € Super[L | P], we set

(w'w", w) Z (W', wiy Y w”, we))-
w
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Here, the coproduct
Aw = Z W(l) ® ’LU(Q)

is taken in the Hopf algebra Super[L | P], which is the tensor product of two
Hopf algebras; that is, the pairs w(;) and w(y) range over all subwords of w,
for w € Super[L | P], such that w = w(1)w(s). Again, the signs on the right
are determined according to the number of transpositions of adjacent negatively
signed elements (letters or places).

The byproduct of this seemingly unusual setup for duality of two algebras
is the generalization to superalgebras of the celebrated result of A. Young (in
Young’s language, stating that P(12)N(12) = 0). In this present context, we
prove that ((w* | u*), (w’ | v')) = 0 whenever the length of the biproducts is two
or more. This leads to a considerable simplification of the computation of

(Tab(D* | E*), Tab(D' | E')).

One finds upon evaluating that on the right side only sums of certain simple
monomials appear (which we have called Gale-Ryser interpolants after a famous
theorem of Gale and Ryser on the existence of 0-1-matrices having given row and
column sums). One goes on to establish a triangular biorthogonality property
for standard tableaux, from which linear independence is inferred.

In order to describe the invariant-theoretic results, we shall assume from now
on that P = P~ = {1,2,...,n}. We define a bracket (of length n) to be the
element [w] = (w | 12---n) of Super[L | P]. Clearly the bracket will vanish
unless the word w in Super[L] is of length n. From now on we shall separately
consider either of the two special cases L =L~ or L=L7. Inthecase L = L,
the bracket coincides with the classical bracket first defined by Cayley; that is,
if w= 125 - Zn, the bracket is the determinant of the matrix of n row vectors
x; which have the entries

z; = ((zi | 1),(zi | 2),...,(z; | m)).

Note that because L = L~ and P = P~ , each entry is a neutral element, and thus
can legitimately be called a scalar. The straightening formula now specializes to
give identities on brackets of the form

(+%) > tow|weyw] =) Efwvg)lvew,

which, as is known, can be used for an abstract characterization of the bracket.
All of linear algebra is “coded” in these identities.

In the second case, L = LT, one obtains a remarkable generalization of the
determinant. The bracket [w], for w € Super[L] = Super[LT], will now no longer
be scalar valued but will take its value in an exterior algebra. We shall call it the
skew bracket. It can no longer be viewed as the determinant or the permanent
of a “matrix”, unless w is a product of n distinct letters. One computes, for
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example, [a™] = (a | 1)(a | 2)---(a | n), where each (a | 1) is an element of

degree one of an exterior algebra. More generally, one has

[w]lw'] = (=1)"[w'][w),

and identities of the form (*x) hold for skew brackets (with fewer signs) and in
fact can be used to characterize skew brackets. Thus, the possibility arises that
skew brackets are the syntax for a semantic construct which will be a “skew”
analog of linear algebra. We shall leave this enticing possibility untouched for
the moment, and proceed directly to the invariant-theoretic applications of the
bracket (both classical and skew).

For ease of exposition, we deal separately with symmetric and skew-symmetric
tensors, keeping the narrative as informal as possible, at the cost of some inac-
curacies which are corrected in the text.

Given a vector space V of dimension n over a field of characteristic zero, a
symmetric tensor ¢ over V (that is, a homogeneous element of the symmetric
algebra S(V)) has, relative to a basis ey, ez, ..., €y, the coordinates aj, j,...5, , S0

that
k o .
t= L R L B
Z (.71’.725-';1.7n) J172rIn =L 72 "’

where the sum ranges over all n-tuples (J; - - - 7, }; note that almost all the terms
equal zero (because the multinomial coefficient vanishes). The integer k is the
degree or step of the tensor. An invariant I of ¢ is a polynomial in the coordinates
@j, j,-..j, Which is independent of the choice of the basis, except for a constant
factor. Thus, if I is an invariant, then the condition I = 0 is geometric; that is,
it is independent of the coordinate system. The idea of invariant theory is to
express by the vanishing of invariants certain logically or combinatorially defined
properties of tensors such as decomposability, rank, divisibility by another tensor,
etc. To this end, a slight extension of the notion of invariant is needed, namely,
the notion of a covariant.

Observe that a joint invariant of a set of tensors may be defined in the obvious
way. When the coordinates of one or more of the tensors of such a set are allowed
to be independent transcendentals (adjoined to the base field), a joint invariant
will turn out to be a polynomial in these independent transcendentals. Such a
polynomial is called a covariant, with the understanding that a covariant vanishes
when it vanishes identically as a polynomial in its independent transcendentals.

We next describe the symbolic method for the representation of all invariants
(and hence all covariants) of symmetric tensors. To every (symmetric) tensor ¢
we associate an indefinite supply of letters (or symbols) belonging to a negatively
signed alphabet L™, and we say that a letter “belongs” to the tensor ¢.

" We next define an operator U, the umbral operator, from the superalgebra
Super|[L | P] to the “scalar” coordinates of a tensor of step k. We simply set

(U@l 1 (@l 2) - (a | n)™) = 555050
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where a is any of the letters of L belonging to a tensor ¢ of step k, and where
it ++In =k If 51 +jo+- - +Jn # k, the right side is set equal to zero.
Note that all (a | 7) are neutral elements.

If w is any monomial in Super[L | P] (a symmetric algebra) we can write
w = w(a)w(d) - -~ when w(a) is the product of all letterplaces (a | #) containing
the letter a, etc. We set

<Ua w) = (Uv w(a)w(b) )= (U’w(a»(U, w(b)> .

Finally, we extend the definition of U to all of Super[L | P] by linearity. The main
result states that a polynomial I is an invariant of a set of symmetric tensors if
and only if I = (U,p), where p is a polynomial in brackets (in the present case
of symmetric tensors, the brackets are nothing but ordinary determinants).

The classification of invariants can be further simplified by applying the stan-
dard basis theorem. According to this theorem, any polynomial in brackets can
be integrally expressed as an integral linear combination of bracket products
which correspond to standard tableaux, in the given linear ordering of the al-
phabet L. Thus, it suffices (by and large) to consider the case where p is a
standard tableau in Super[L | P], where each row is of length n (thus, the n
places 1,2,...,n appear in each row on the right side of the tableau). If z; is a
transcendental, we can safely set

(U, (z]2)) ==,

thereby identifying = with a symbol. If we further agree that the linear order
of L shall be chosen in such a way as to place last all symbols corresponding to
transcendentals (that is, after all symbols corresponding to genuine tensors), then
a standard tableau for a covariant is partitioned into an upper part, containing
all symbols corresponding to the tensor(s), and a lower part, containing only
(symbols for) transcendentals. For all practical purposes, only the upper part
will matter in the description of the covariant. We thus succeed in associating
to every covariant a standard Young diagram in the familiar form such as

abed
abe

bfyg.

The invariant theory of symmetric tensors can be carried much farther by the
symbolic method, but the present exposition now turns to the much less explored
subject of skew-symmetric tensors, where previous work (done largely in the
nineteenth century) was considerably more limited in scope. Our objectives will
be, first, to develop a symbolic method that will be strikingly analogous to the
symbolic method for symmetric tensors, and second, to show by examples that
the method is (for skew-symmetric tensors better than for symmetric tensors)
effective both for the construction and for the interpretation of invariants and

covariants.
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The method is “dual” to the one described above for symmetric tensors, in
the sense that the words “commutative” and “anticommutative” are judiciously
interchanged. It is not clear a priori, however, how such an interchange should
be carried out, and in fact the method we are about to describe reveals new clues
to how this interchange may be effective in disparate situations.

A skew-symmetric tensor ¢ of step k is a homogeneous element of the exterior

_algebra A(V). Relative to a basis ej, es,...,e, of V, the tensor can be written
in the form
t= Z (ail’iT“ik)eil A €iqy A A €ir
i1 <ig <o <l ,

where the sum ranges over all subsets {71,%2,...,4%} of {1,2,...,n}, with the
customary conventions relative to signs, namely. :

Ggios0p = (SGLO)A12.. k-

An invariant I of ¢ is a polynomial in the coordinates a;,,..;, which is inde-
pendent of the coordinates, except for a constant factor, so that (again) the
condition I = 0 is geometric. Joint invariants and covariants are defined as in
the symmetric case.

We now describe the delicate symbolic method by which all invariants (and
covariants) of skew-symmetric tensors can be represented. Choose a linearly or-
dered alphabet L which is now positively signed (L = Lt). Recall that the place
alphabet P is the negatively signed set {1,2,...,n}. To every (skew-symmetric)
tensor t we assign an infinite supply of letters “belonging” to it, and we assume
that the supply is ample enough for all purposes. In addition, we assume that L
contains an indefinitely large supply of letters belonging to an indefinitely large
supply of independent transcendentals that may be adjoined to the ground field if
and when necessary. We next define an umbral operator U that (again) maps the
superalgebra Super[L | P] to the field of scalars, eventually with transcendentals
adjoined. ‘

- If a is a letter belonging to the skew-symmetric tensor ¢ of step k, we set

(U, (@® |d1da - ig)) = Girigis-
On the right side is the scalar component of the tensor ¢ relative to the basis
€1,€2,...,6n, which will remain fixed from now on. On the left side, a(¥) is the

‘kth divided power of the letter a, so that (by the properties of the byproduct)

(@® | d1iz--dk) = (a | i1)(a | d2) -+~ (a | ix)-
Note that for 1 # 7 we have (a | 72)(a | 7) = —(a | 7)(a | ©), since (a | 7) is
negatively signed to all a € L and 7 € P.
Next, set (U, (@) | iyiy---1;)) =0, if j # k.
Now let n be an arbitrary monomial in Super[L | P]. By altering the sign of
m, if necessary, we can write '

m = xma)m(b)---,
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where m(a) is the product of all letter places (a | 7) containing the letter a, etc.,
and, what is essential, where a < b <--- in the linear order of L. Thus,

m(a) = (a(j) | dqig - dj)
for some 7, similarly for m(b), etc.
Now set
(U, m(a)ym(b)---) = ({U,m(a)){U,m(b) -~
and extend to Super[L | P] by linearity. We prove that the operator U is well
defined. For example, let a and b be both letters belonging to the tensor ¢, and
suppose that a < b. Then

(U, (@® |12+ k)(0®) | 12---k)) = (a12..£)%,
but ,
(U, (b(’“) 1 12~~-k)(a(’°) |12---k)) = —(a12 - -k)*.
if k is odd. As another example, let u and v be vectors in V, that is, skew-
symmetric tensors of step one. Then we have

U, (ald)) =uw, (U,(b|2)=vi
if a belongs to v and b belongs to v. Thus, if a < b, then
(U, (ab | i5)) = (U, (a | 9) (5] 5) + (] 9)(a | 7)) = wivj — vy0s,
and we find (spectacularly enough) that
(U, (ab | 147)) = (U, (ba | i),
as we might well expect, since (ab | i5) = (ba | ¢7) in Super|L | P], and since U
is well defined.

More generally, let ul,u?,...,u" be vectors, and let a1 < az < -+ < an be
symbols (letters) belonging to each. Then we find

U, laraz - - az)) = [u'u? - - -u”]

where the left bracket is the bracket in Super[L | P}, and the right bracket is the
ordinary determinant of the vectors ul,...,u" relative to the basis e1,...,en.
In particular, we find that

(U,a01802 - - - Gon]) = [ulu2 ™

for any permutation ¢. This point is worth stressing, because it is the point at
which Weitzenbéck’s attempt to develop a symbolic method for skew-symmetric
tensors failed. Weitzenbock (like all other classical invariant theorists) failed to
distinguish between a vector u and a symbol a representing u, and used the
same notation for both. As a consequence, his brackets [utu? - --u™] were to
be taken sometimes as symmetric and sometimes as skew-symmetric relative to
permutations of {1,2,...,n} depending on the context! Small wonder that few
invariants (other than those previously known) should have been computed by

such a technique.

Our main result is formally similar to the main theorem for symmetric tensors.
It states that every invariant (or joint invariant) of a skew-symmetric tensor ¢
can be written in the form (U,p), where p is a polynomial in skew brackets
containing only symbols belonging to ¢.

Again, the listing of invariants is simplified by applying the standard basis
theorem to the subalgebra of Super[L | P] spanned by polynomials in skew
brackets. A skew bracket monomial, that is, a product of skew brackets

m = [wi][wy] - - - [wj],

where w; is a word in Super[L] which is of Length n, stands for a Young diagram
D = (w1, ws,...,w;). Let us write n = Tab(D). (The tableaux in the places
need not be written out, since they all consist of successions of the single word
w' = 12---n.) By the standard basis theorem, those monomials m = Tab(D),
where D is a standard Young diagram, span the subspace of Super[L | P] of
bracket polynomials. Since L = L, a diagram D will be standard if along each
row the letters appear in nondecreasing order, and along each column the letters
appear in strictly increasing order. In other words, two successive letters a and
b in a word w; must satisfy the condition a < b, whereas the jth letters ¢ and d
of two successive words w; and w;, ;1 must satisfy the condition ¢ < d.

For covariants, it is again convenient to let the letters belonging to vectors
(and tensors) with independent transcendental entries be last in the order of the
alphabet L, so that D partitions into an upper and a lower part as before. The
upper part of D suffices to define a covariant. In other words, a covariant is
to be specified by a Young diagram D’ = (wf,...,w}) where Length(w;) < n.
The covariant will be Tab(wjwy,...,w;w}), where wiw] is of length n, and
where the words w!’ are made up of symbols (letters) belonging to independent

transcendentals.
Contrary to what happens for symmetric tensors, the translation of a geo-

 metric property into the vanishing of covariants turn out to be successful for
" skew-symmetric tensors, and we devote Chapter 5 to the discussion of a number

of such examples old and new.

For a tensor t of step 2, or bivector, the only invariant is easily proved to be
the Pfaffian, which for n = 2k is symbolically represented by
@ ...a®,

where a; are distinct letters belonging to ¢. The covariants of t are represented
by incomplete Pfaffian

aa? o, i<k,

and (as is well known) they give the rank of the tensor.
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For a tensor of step k, the covariants
aiag - ap
agk—l)
Cyp:

(k—1)

determine the rank of the tensor: if Cr1 vanishes but C, does not vanish, then
the tensor is of rank r.
The classical Grassmann conditions for a tensor to be decomposable translate
into the vanishing of either of the two covariants
a®)p a®) p(2)
ple=1) 0T pk—2)

where a and b are distinct letters belonging to the tensor.
The condition that a tensor of step 3 be divisible by a vector is the vanishing

of the covariant a®p3)

ac®
where a,b,c are symbols belonging to the same tensor. These conditions are
generalized in the text to give covariants specifying whether a given tensor of
arbitrary step is divisible by one, two, etc., linearly independent vectors.
In conclusion, we list those covariants which specify each of the canonical
forms for a tensor of step 3 in dimension n =6 and 7.
For n = 6 the covariants that specify each of the four canonical forms are
a(®p@) '
b
a®p@e
be(2);

and a®p),

be(d®),
We find it remarkable that each of these turns out to be a standard Young
diagram. A similar phenomenon happens for n = 7.
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1. The Superalgebra Super|A]

0. Introduction. We define in this chapter a generalization of the ordinary

algebra of polynomials in a set of A variables with integer coefficients. Our
variables shall be of three kinds: positively signed, neutral, and negatively signed:
A=ATUAuAa-.
1 Positively signed variables are the least familiar: they are the divided powers.
i To every positively signed variable a we assign a sequence a(!),a(?) ¢®) . of
divided powers, which behave algebraically “as if” a(*) were to equal a?/i! Then
for example we have the “rules”

2 Dgl) = <Z ﬂ')a(z’m
1

o i)
(a(z))(J) — JE(Z,))] a(”),

and

(a+b)® = Z a@ple)
J+k=1

- Positively signed variables and their divided powers commute. This seemingly
+ artificial device is essential in making invariant theory characteristic-free.

Neutral variables behave like ordinary polynomial variables; in particular they
also commute.

Negatively signed variables a,b anticommute: ab = —ba and a? = b2 = 0.
However, we have ac = ca when a is negatively signed and ¢ is a variable (or a
divided power) of either of the two other kinds.

The superalgebra Super[A] is the algebra spanned by monomials obtained by
multiplying variables of each of the three kinds—for positively signed variables,
one multiplies divided powers. The variables appearing in a monomial can be .
permuted at will, subject only to the condition that a minus sign be prefixed
every time two negatively signed variables are permuted.

1
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Much of the work in this chapter goes in showing that the structure of a Hopf
algebra can be given to the superalgebra Super[A4] by setting

Ala)® = Z a?) @ a®), a€ A",
k=1
Ae=1®a+a®1l, acA’UA",

and extending A so that it is an algebra homomorphism from Super|[A4]
to Super[A @ A]. The only delicate point arises in the commutation rule
(1®a)(b® 1) = —b ® a when both a and b are negatively signed. Because
of this feature, the superalgebra Super[A @ A] cannot be identified with the or-
dinary tensor product Super[A] ® Super[A] of commutative algebra, but rather
it is a “signed” tensor product.

In geometric and combinatorial interpretations, the neutral elements will not
directly appear; they appear indirectly as “scalars.” Remarkably, positively
signed variables give the symbolic representation of skew-symmetric tensors, and
negatively signed variables give the symbolic representation of symmetric tensors.

Combinatorially, positively signed variables relate to the algebra of multisets
(or bosons), and negatively signed variables relate to the algebra of sets (or
fermions).

The material in this chapter offers no great novelty. Readers acquainted with
the techniques of Hopf algebras may simply skim over the definitions and proceed

to the next chapter.

1. Definitions. Let A be a set. We denote by Mon(A) the free monoid
generated by A. We recall that the elements of Mon(A) are finite sequences of
elements in A. If w € Mon(A4) with w(1) = z1, w(2) = z3,...,w(n) = Zn,
then we shall call w a word and denote it by w = z1%2 - Tn. Two such words
W= T1Ty - Tp and w' = yYi1Y2 - Ym are equal when n =m and z; = y1, T2 =
Y250 3Tn = Yn-

If w= 2172 - Zn is a word in Mon(A), we shall call 2122 - Zn its display
and n its length. The words having length 1 will be identified with the elements
of A. We shall allow w to be the empty sequence, in this case taking n to be 0,
and denoting this word by 1. (To avoid confusion, we shall always assume that
1¢A)

The product of two words w = 1%z Tn and w' = y1y2 - Ym is the word
ww' = T1Ta - TnY1Y2 - - Ym. Endowed with this operation, Mon(A) is an asso-
ciatiave (but not commutative) semigroup with identity.

A multiset on a set A is a function m: A — Z*+ where Z*1 is the set of
nonnegative integers. For a € A, the integer m(a) is called the multiplicity of
the element @ in the multiset m. There is a useful way to visualize multisets,
which we shall often tacitly appeal to. Suppose, for example, that m(a) =
2, m(b) = 1,m(c) = 3 and that m(z) = 0 for all other z € A. Then we describe

the multiset by the display {a,b,c¢,a,c,c}.
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Let w € Mon(A). We associate to w the multiset, cont(w), on A defined by
cont(w;a) = conf(w)(a) = the number of occurrences of the
element a among the elements z; in the display of w.

Sometimes, in this situation, we say the content of the word w is the multiset
cont{w).

A signed set A is a set together with three disjoint subsets, denoted by A+, A°,
and A~, whose union is A. We shall call the elements in AT “positive,” those
in AC “peutral,” and those in A~ “negative.” A function f: A — B from a
signed set A to a signed set B will always be assumed to satisfy the conditions
f(AT) c BT, f(A%) c B, and f(A~) C B~. The direct sum of two disjoint
signed sets A and B is the signed set A U B, denoted by A ® B, where

(Ao B)T = At UB™, (AeB)°=A4A°UB°, (A®B)"=A"UB".

The signed set A is said to be proper if A® is empty. In this case, we define the
adjoint of the signed set A in the following way. Let A* be a set isomorphic to
A via a mapping ¢: A — A*. We make A* into a signed set by defining (4*)~
to be #(AT) and (A*)* to be #(A~). The mapping ¢ induces a map (also
denoted by ¢) from Mon(A) to Mon(A*), obtained by setting ¢(z1z2 - z,) =
B(e1)8(es) - $(an) = Tz} - o,

The basic concept we shall use is that of an extended signed set. Consider a
signed set A. The extended signed set of A, denoted by Ay, is defined as follows:
(Ag)" =47, (Ad)o =AY, (Ad)+ =AT xN
where N = natural numbers = {1,2,...}. If a € A%, we shall write a instead
of (a,1) and, otherwise, a(™ instead of (a,n). We shall call (™ the nth divided

power of the element a.

If A is a signed set, we denote by Div(A) the free monoid generated by the
extended signed set A;. A homomorphism Disp: Div(4A) — Mon(A) is de-
fined as follows. If a € A~ or a € A?, set Disp(a) = a. If a € AT, set
Disp(a(")) = aa---a (n-times). Using the homomorphism Disp, we define, for

LW € Div(A), Length(w) = length(Disp(w)) and Cont(w) = cont(Disp(w)).

To illustrate these ideas, let w = bc(®)a(? a3 ¢d be in Div(A). Then, Disp(w)
= beccaaaaacd and Length(w) = 11. Also, w has a content m where m(a) =
5,m(b) =1,m(c) =4, and m(d) = 1.

Different words in Div(A) may have the same “display,” i.e., Disp(w) may
equal Disp(w’) even though w # w’. For example, take w as above and w' to
be bc(®a)ed. Nevertheless, one can define an inverse mapping from the set
Mon(A) to the set Div(A), denoted by w — stand(w), which is however not a
homomorphism of monoids. For w € Mon(A), define stand(w) to be the unique
word in Div(A) such that

(a) Disp(stand(w)) = w;

(b) if stand(w) = Y12 - - - yx Where y; € Aq and if y; = a(®) for some a € A7, ’

1€ N., then y;_; # a(”) and Yjr1 F a®) for all integers r and s.
- So, with w and w’ as in the above example, we have stand(Disp(w)) = w'.
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The heart of many of the computations of invariant theory is the calculation
of the sign of certain expressions. If w € Div(4), we define the parity of w,
denoted by |w|, to be 0 or 1 depending on whether ¢ 4 Cont(w; a) is even
or odd. In the first case, we say that w is positive and in the second, negative.
Arithmetical operations on the parity symbol will always be carried out in Zg;
for example, we have |ww'| = |w| + |w'].

If k is an integer, we set sign(k) = (—1)F.

9. Construction of the superalgebra Super[A]. Let A be a signed set.
We construct a Z-algebra, Tens[A], as follows: As a Z-module, Tens[A] is free
with basis consisting of the words in Div(A4). Thus, if p € Tens[A], then p can
be written uniquely as a finite sum, p = 3_ c;w; where ¢; € Z and w; € Div(4).
Multiplication in Tens[A] is defined by extending the multiplication in Div(A).
So, if p is as above and ¢ = Y. djw, is another element in Tens[A], then pg =
Y ¢;djw;w; where the product w;w; is taken as in Div(A). In this way, Tens[A]
becomes an associative algebra with identity.

In Tens[A], we define an ideal I4 (or simply I) to be the ideal generated by
all expressions of the following forms:

(11) wv — sign(|u| |v|)vu for u,v € Div(A),

(I2) aa, where a € A™,

(13) a@al@) — (*17)a (5+3) where a € AT.

The quotient algebra Tens[A]/I will be denoted by Super[A]

When the signed set A is proper, then in the algebra Super[A] we define a
sequence of many operations p — p@, where p € Super[A], as follows. Such an
element p can be written as a finite linear combination

p=Y c;mon(w;)
:

where ¢; € Z and mon(w;) is the canonical image of w; € Tens[A] in Super[A].
Whenever no confusion is possible, we shall write w; in place of mon(w;), thus

p= E CiWy.
7

We set p(© = 1, the identity of the superalgebra Super{d]; p!) = p. Ifiis a
positive integer other than 1, the definition of p(® is accomplished in the following
steps:

Step 1. If p=a, with a € A7, a set p =0ifi>1.

Step 2. If p = a'¥) with a € AT, set

@ — (006 — TR ki
P = (@) = nay

Step 3. If p=1y1y2 - Yn, With y; € Ag, set p(’ = y(z)y(l) O

Yn -

Step 4. If p= cmon( ), where ¢ € Z and w € Div(A), set p®) = ctw(®.
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Step 5. If p=3"7° | cw; = Y7, pj, where p; = ¢jwj, then set

(z)_zp(h) (t2) ,,pzn),

where the sum ranges over all n-tuples of nonnegative integers 1,12, ...,%, such
that 11 + 22+ + 1, = 1.

When A is a signed set, the algebra Super[A] will be called the superalgebra
generated by the signed set A. When A is a proper signed set, the superalgebra
Super[A] will be tacitly assumed to be endowed with the operation p — p(¥),
where it will be called the divided power operation.

Observe the following properties of Super[A].

(1) We can set Cont(mon(w)) = Cont(w) and Length(mon(w)) = Length(w)
for w € Div[A], as well as |mon(w)| = |w|. Thus, fixing a multiset m on A,
the set of all mon(w) for w € Div[A] with Cont(w) = m spans a submodule of
Super[A], which we call the submodule of all monomials of content m.

Indeed, let m be a multiset on A. We consider all words w € Div(A) so that
Cont(w) = m. These words, together with 0, span a submodule Tens,,[A] of
Tens[A]. Furthermore, Tens[A] = ), Tens,, [A] where the sum is a direct sum.
Now, let 7 € I. Then ¢ = Y 1,, where ¢,, € Tensy,[A]. Each %,, is in I since this
property holds for the generators of I. It follows that if w,w’ € Div(A) with
w = w' (modI) but w ¢ I, then Cont(w) = Cont(w'), Lengthw = Lengthw/’,
and |w| = |w'|. We sometimes speak of the “parity of a word in Super[A].”

(2) If a,b € Ag4, then ab = ba in Super[A] unless a and b are negative in which
case ab = —ba. (This follows from (I1).)

Ezamples. (1) If A = A®, then Super[4] = Symm(A), the Z-algebra con-
sisting of all polynomials with “variables” the elements a € A, often called the
symmetric algebra generated by the set A.

(2) If A = A, then Super[4] = Wedge(A), the exterior algebra generated
by the set A, that is, the Z-algebra consisting of all skew-symmetric monomials
in the “variables” A. Thus, a monomial in Super[A], say aias...ak, satisfies
the relation ajas - --ar = sgn(o)ags1002 - aok Where o is any permutation of
{1,2,...,k}. '

(3) If A = A™*, then Super[A] is the divided powers algebra Divp[A] generated
by the set A. We recall that, in characteristic zero (that is, over the field Q of
rational numbers), the divided power ad can be identified with a’ /il

We omit the proof of the following two elementary facts.

PROPOSITION 1. An injection f: B — A induces an tsomorphism
f: Super[B] — Super[A].

PROPOSITION 2. For any signed set A, we have a natural isomorphism of

Super[A] with the tensor product

Divp[A*] ® Wedge[A~] ® Symm[A”].
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It follows from Proposition 2 that if aj,az,...,a, are distinct elements in

AT, by, bo,...,bs are distinct elements in A~, and ¢q,c2, ..., ¢y are distinct ele-
ments in A, then a{®a{® .. a{*byby - - - bycT e - - ¢+ is a nonzero element
in Super[A].

In addition, all elements of the above form constitute a basis for Super[A].

3. Tensor products.

PROPOSITION 3. Let A and B be disjoint signed sets. Then the Z-modules
Super[A] ® Super[B] and Super[A @ B are isomorphic.

PROOF. By Proposition 1, we may consider Super[A] and Super|[B] as subsets
of Super[A @ B|. Then, the multiplication map

Super|[A] x Super[B] — Super[A & B],

(u,v) — uv, gives a mapping ¢ from Super[A] ® Super[B] onto Super[4 & BJ.
Clearly, a monomial in Super[A] can be written in many ways as a product
of letters in A;i", A~ and A®. We call such a monomial “canonical” if it has the
form
ag‘“)ag‘”) e ale)byby - bR e

where the a; are distinct elements in AT, the b; are distinct elements in A~, and
the ¢; are distinct elements in A°. Such monomials span the module Super[A].
Similarly, canonical monomials span the module Super[B].

To show that the mapping ¢ is one-to-one, suppose that ¢(> ., c;ri®s;) =0,
where ¢; € Z, r; is a canonical monomial in Super[4], and s; is a canomical
monomial in Super[B]. As remarked in §2, we may assume that all 7;s; have the
same content. But then r; = £ry = -« = £r,, 8 = £89 = --- = %5, so that
n — 1. But ¢(r ® s) =rs # 0 as remarked above. This completes the proof.

Since Super[A® B] is an algebra, we may use the isomorphism of the preceding
proposition to define a multiplication on the tensor product Super[A]® Super|[B].
Namely, if

r= Zciwz- ®w, and s= Zdjwf ® w},
i J

then set
rs = Z cid;sign(|wg] |wj])wiw; ® wjwj.
1,7

Note that the module structure on Super[A] ® Super[B] agrees with the usual
tensor product module structure. But, the multiplication on Super[A]®Super|[B]
is not the usual multiplication on the tensor product, because of notable differ-
ences in sign.

Some consequences of the preceding proposition will be frequently used below.
First, let r be a monomial in Super[A] and s be a monomial in Super{B]. We
may then define |r ® s| to be |r| + |s| and Cont(r ® s) = Cont(r) * Cont(s).
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Second, let A, B, and C be mutually disjoint signed sets. The Z-module
Super[A] ® Super[B] ® Super[C] can be made into an algebra through its iden-
tification with either Super[A & B] ® Super[C] or Super[A] ® Super[B @ C]. In
either case we have

(w1 @ wy @ w3) (W) ® wh @ W) = ewr W] @ wowhy @ wawsh,

where € = sign(|wz| |w]| + |ws| |w]| + |ws| |wh]). Also, |wi ® we ® w3| = |w1| +
lwa| + [ws].

Third, we may define a multiplication on the Z-module Super[A] ® Super[A]
by (the device of) viewing B as a set isomorphic to but disjoint from A and
proceeding as above to get

(w1 @ wo)(w) ® wh) = sign(jwe| |w|)wiw] @ wawh.

Again, |w; ® wa| = |w1] + |ws|. Similarly, we may define a multiplication on
Super[A] ® Super[A] ® Super[A] (and longer tensor products) getting formulas
similar to the above.

4. The coproduct A. Let A be a signed set. We define an algebra homo-
morphism ¢: Tens[A] — Super[A] ® Super[A] as follows:

(a) p(1) =1®1,

(b)ifae A" UA% set ¢(a) =1®a+a®1,

(c) if a € AY, set p(a™) =1®a™ +aV) @ a1 + 0P @al=2 4 ... 4
am "V @a) +4M 1. '

If u is a word in Tens[A], observe that ¢(u) is a sum of terms each of which

" has parity |u|. We shall sometimes write |¢(u)| = |u.

We next show that ¢ sends I4 to 0. Let u,v be words in Tens[A], say u =
T1T3 -+ Tn and v = Y1¥y2 - - - Ym. We show that ¢ sends wv — sign(|u| |v]|)vu to 0.
Now, ¢(u) = ¢(z1)d(z2) - - #(zy) is a sum of terms r ® s each of parity

|ul = [za] +|m2| + - + |zn| = |[r @ 8| = || + [s].
Similary, ¢(v) is a sum of terms r’ ® s each of parity
ol = lysl + lyal + -+ lym| = | @ &'| = || +|5/].
Therefore, ¢(uv — sign(|u| |v|)vu) is a sum of terms of the following forms:
(r@s)(r' ®s') —sign(|ul [v])(r' ® §')(r @ )
= sign(|r'| |s|)rr’ ® ss’ — sign(|u| |[v| + |§'| |r|)r'r ® §'s
= (sign(|r’||s]) — sign([ul [v] +|8'] |r| + [r'| Ir] + |s'[ |s)rr’ @ &'
= (sign(|r'| |s]) — sign(|7’| |s]))r’ ® ss’ = 0.
Second, observe that if a € A~ then
$(a®) = ¢(a)g(a) = (1®a+a®1)(I1®a+a®1)
=1®a’-a®a+a®a+a?®1=0.
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Third, let us show that ¢(a@al)) = (*17)¢(ali+7)). Let n = i+ j. Then
$(aWal?) equals

[a(i) ®1+a(":—1) ®a+...+1®a(’i)}[a(ﬂ ®1+aU-D ®a+...+1®a(j)],

which is a sum of terms of the form

n—k—U\[(k+1\ m—k-t) o  (k+D)
( ik )( k )“ g

where k =0,...,7and [ = 0,...,7. The coefficient of a term am=%) @ a(® is
(easily) seen to be (7).

Since ¢ sends the generators of I4 to 0, it sends T4 to 0 and defines an algebra
homomorphism A: Super[A] — Super[A] ® Super[A] such that:

(a) A1) =101,

(b) Ale) =1®a+a®lifa€ A” orae€ A,

() A(a™)=a™ @1+ aV@a+---+1®al" ifac At

If u is a word in Super[A], then Au is a sum of terms of the form r ® s, say,
Au=ri®s1+r2®82+ - +715® Sp.

We shall denote this series by the Sweedler notation,

Au = Zum ® u(z)-

We turn to the question of uniqueness in this expansion.

PROPOSITION 4. Let m: Tens[A] — Super[A] be the natural mapping. Then
the mapping ™ ® m: Tens[A] ® Tens[A] — Super[A] ® Super[A] has kernel J4 =
I4 ® Tens[A] + Tens[A] ® I 4.

PROOF. Clearly J4 C ker(w ® 7). By Proposition 2, we may choose elements
e1,€2,... in Tens[A] so that 7(e1),7m(ez),... is a basis for Super[A]. Hence,
each-element in Tens[A] has the form a + c1e; + - + cne, Where a € Iy and
¢; € Z. If v € Tens[A] ® Tens[A] but v & Ja, then v = a + 3 cije; ® e; where
a € Ja,cij € Z, and some c;j # 0. But then n(v) = ¥ cijm(e;) ® w(e;) # 0.

The same reasoning shows that the kernel of 7® - - - @ 7 (n-times): Tens[A] ®
.- ® Tens[A] — Super[A] ® - - ® Super[A] is T4 ® Tens[A] ® - - ® Tens[A] +
Tens[A] ® 14 ® Tens[A] ® - - - ® Tens[A] + - - - + Tens[A] ® - - - ® Tens[A] ® 4.

Let m be a multiset on A; let Tens,,[A4] be the submodule of Tens[A] spanned
by 0 and all words w € Div(A) such that Cont(w) = m. Then, Tens[A] is the
direct sum of all the Tens,,[A]. Furthermore, I is the direct sum of all the
I, = I4 N Tens,,[A] (as remarked in §2). Next, let m; and ma be multisets on
A and set T(my,mz) = Tens,,, [A] ® Tens,,, [A]. Then, Tens[A] ® Tens[A] is the
direct sum of the modules T'(my, mz) as my and my range over all multisets in
A. Furthermore, J4 = I4 ® Tens[A] + Tens[A] ® I, is the direct sum of all the
modules J(m1,mg) = Ja NT(mq,mz).

Now, let u be a word in Super[A]. By the definition of A, we see that in
Au =) u()®u(a), the monomials (1), u(2) may be chosen so that Cont (u(1))+
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Cont(u(g)) = Cont(u) for each term wu(1) ® u(z). Let Au = Y v) ® v(z) be
another representation of Au where the v(y),v(2) are words. Then, in Tens[A] ®
Tens[A],

duw ®ue =Y v ®va) +7,

where j is an element in the ideal J4 = I4 ® Tens[A] + Tens[A]® I 4. Comparing
contents on both sides of this equation, we see that those terms v(y) ® v(g) with
Cont(v(;) ® v(z)) # Cont(u) must be in J4 and have image 0 under 7 ® 7. So,
these terms can be omitted from any expression for Au. With this convention,
we see that any representation of Au as a sum of terms u(;) ® ug) satisfies
Cont(u(y) ® u(z)) = Cont(u()) + Cont(uz)) = Cont(u). Similarly, we may
suppose that Length(u(y)) + Length(u(g)) = Length(u) and |u(y)| + |u(g)] = |ul.

5. The Coassociative Law. Let A be a signed set. Then the homomor-
phisms 1® A and A ®1 both send Super[A] ® Super|[A] to Super[A] ® Super[A] ®
Super[A4].

PROPOSITION 5 (COASSOCIATIVE LAW). Let A be a signed set. The ho-
momorphisms (1@ A)-A and (A®1)-A from Super[A] to Super[A]® Super[A]®
Super[A] coincide.

PROOF. Let w € Div(A), with w = #1292 ---z,. We show by induction on
Lengthw that (A®1)(Aw) = (1® A)Aw. If Length w = 1, this equality follows
from the definition of A by a simple calculation.

Now, suppose that Length(w) == n > 1 and that equality holds for all words
of Length < n. If w = a{™, then one may check that

(A®1)(Aw) = (18 A)(Aw) =" ¥ @ ®a,

where the sum ranges over all nonnegative integers 4, 7, k such that ¢+ 5+ k = n.
Otherwise, w = uv where both u and v have Length < n. Write

Au = ZUU) ® u(g) and Av= Z’U(l) ® v(2)-
_ u v

By the induction hypothesis
(1) Eu Au(l) ® U(2) = Zu U(l) & AU(Q)

and
(2) 22, Av() ®v(z) = 22, v(1) ® Av).
Now,
Aw = Aulv = Zsign(fu(2)| |’U(1) |)u(1)v(1) ® U(2)V(2)-
u,v
Hence,

(A®DAw =) sign(lu) | vy ) A(ea)vw) ® ue)ve),

u,v
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and
(1® A)Aw = Zsign(|u(2)| ‘v(l)Du(l)'U(l) ® A(U(z)’l)(g)).
u,
These two previous expressions are equal as follows from multiplying (1) and
(2) and recalling that |Avy| = |v)| and |Au(g)| = |u(g)|- This completes the
proof.

Next, define algebra homomorphisms €: Super[A] — Z and S: Super[A4] —
Super|[A] as follows: e(w) = 1 if Length(w) = 0 and e(w) = 0 if Length(w) >
0; S(w) = sign(Length(w))w. These maps along with A give Super[A] the struc-
ture of a Hopf algebra. In other words, the following diagrams are commutative:

Super[A]
id id
1A

Z ® Super[A] 2 Super[A] ® Super[A] 182, Super[4]® Z

/ Super[A] — 2, Super|A] ® Super|[A]
Z \ lS lS@S
€ Super[A] —2 _, Super[A] ® Super[4]

Lastly, we define a sequence of algebra homomorphisms A(™) : Super[4] —
Super[4] ® - - - ® Super[4] (n-times) by repeatedly using the Coassociative Law.
Set A =id, A® =AAB) =(10A) A= (A®1)-A,...,AM =18 A)
A1) We conclude with a property of the antipode S(w) which will be used
repeatedly in Chapter 3.

PROPOSITION 6. Let w be a word in Div(A). Let Aw = 32, ) ® w(2)-
Then 3, w»)S(w(z)) = e(w).

PROOF. We use induction on Length(w); the case Length(w) < 1 follows at
once from the definitions. In general, if w = a(™, then Aw =Y o) @an=7.
Therefore,

> wyS(we) = 3 sign(n — $)a® a(n=9)
w i=0

= o™ isign(n —4) (’Z) =0.

=0

Otherwise, w = w'w" where Length(w') < n and Length(w”) < n. Let us omit
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the parentheses and write

Alw') = Zw’l Qwh, and A(w')= Zwi’ ® wy.
Then, '
A(w) = A(w)A(w") = sign(jw| [w] Jwiwi ® whws.,
So

Y wwS(we) = ) sign(|w)| |w]| + Length(whwy ) Jw) wiwhw

= Z w}sign(Length(w}))whw'sign(Length(w)))w

11

"o
v =0.



2. Laplace Pairings

0. Introduction. In this chapter we introduce a far-reaching generalization
of the classical notion of the determinant of a matrix. By way of motivation, we
review the ordinary determinant in the present notation.

Suppose we are given a matrix whose rows are labeled z,z2,...,2,, where
z; € L™ and where L is a proper signed set, and whose columns are labeled
o1,Qz,...,0,, where o; € P~ and where P is another proper signed set. The

entries of the matrix are denoted by (z; | a;); we consider them as neutral
elements of another (improper!) signed set [L | P]. Since neutral elements
behave like “scalars,” that is (z; | ;) € [L | P]°, we operate with the “variables”
(z; | ;) as we do with ordinary numbers.

We denote the determinant of the matrix (z; | ;) by the expression

(Z1Z2 - Tn | @102 -+ ).

Again, z; - -z, € Div[L™] and o1 -+ an € Div[P~]. In the case at hand, we

can define the determinant by the classical formula

(*) (B1zn |01 an) =Y (201 | 01)(To2 | 02) -+ (Tom | @n)

= Zﬂ:((l)l | aal)(zz I aaz) v (xn | agn);

 however, we shall follow another more circuitous route for what seems like an

obvious definition. Let us recall the Laplace expansion of a determinant (by rows
first) and express it in the present notation. Using the notation of Hopf algebras
developed in the preceding chapter, set

g !
Ty Ty ="U, Tig1 Tp =, o1 Oy = W.

One can then vérify that a Laplace expansion by rows can be elegantly rewritten
(forgetting about the signs for the moment) as

(+%) (wu’ |w) = (u | wi) (W' | we).

* A similar identity holds for Laplace expansions by columns.

13
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Multiple Laplace expansions can be similarly expressed. On the right side of
(%%), expand (u | w(;)) by a further Laplace expansion, say writing u = u’'u"”,
thus: .
(] wey) = (@ Jway) = D £ [wan)@” | waz):

w(1)

Substituting in (**), we obtain

(“UI | w) = Z Z +(u” | ’w(n))(um | 'w(m))(ul | w(z))-

w W(s)
Using the Coassociative Law of the coproduct, the right side can be rewritten in

the form
D! | wy) W | we) W | we),
w

and it can be verified that the double Laplace expansion is consistent; that is,
the same expression would have been obtained by expanding (v’ | w(g)) first.
Thus, by a succession of iterated Laplace expansions, we eventually arrive at the
ordinary expression () for the determinant, and it does not matter in what order
we take our Laplace expansions. In other words, the fact that the determinant is
well defined is tantamount to verifying that the order in which successive Laplace
expansions of minors is carried out is immaterial, and all lead eventually to (*).
In the present content, we wish to generalize the notion .of determinant by
allowing z; € LY UL~ and o5 € P+ U P~. Specifically, we wish to define a
biproduct (w | u) where w is any word in Div[L] and u any word in Div[P], pos-
itive or negative. One cannot do this by generalizing (%), because the algebraic
properties of the divided powers z() for z € LT all but force the definition

(x(i) l a1g - .ai) = (m | al)(fl) I a2) ce ((L' 1 a’i)’

where o; € P—, and (z | a®) = (2 | o) where o € P*. We must resort
therefore to another device: we define symbols (w | u) and subject them to suit-
able generalizations of the Laplace expansions which take the varying signs into
account. The problem is then that of proving that successive Laplace expan-
sions can be carried out in any order, giving a consistent result. This is, in brief,
the content of the present chapter. The assignment of signs is carried out by a
simple idea. A biproduct (w | u) is given the sign |w| + |u|. Two biproducts
- commute if not both of them have negative signs and anticommute if both have
negative signs. One carries out a Laplace expansion by noting the number of
commutations of negative letters in the biproducts that are necessary to carry
out the expansion. For example, if z,y € Lt and o, 8 € P~ and we want to ex-
pand the biproduct (zy | @), we may choose to expand it by “rows” and obtain
(z| )(y | B)+ (y | @)(z | B); here all the signs are positive because z and y have
been permuted in the expansion, and they are both positive. In other words,
all the signs are + because no pairs of negative entries have been permuted.
On the other hand, we may choose to expand by “columns” and then obtain
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(m‘l a)(y | B) — (z | B)(y | @). Here, the minus sign arises from the fact that
two negatively signed elements, namely o and 3, have been permuted. Because
(z | B) and (y | @) are negatively signed, we have (z | 8)(y | @) = ~(y | &)(z | B),
and the two expressions coincide, giving a consistent definition.

The basic rule for Laplace expansions is the following: if u = v/u” then

(w | w'u”) =Y sign(jwey| [w']) (wa) | @) (wey | v").

The “reason” for the sign can be viewed as follows. In passing from
(wa) ® wzy | v ®u”) to (wqu) | v)(we) | ') one “commutes” the words
w(g) and u'.

There is a dual rule when the roles of w and u are exchanged.

The resulting definition of a biproduct (w | u) includes not only the ordinary
determinant, when all letters in w and v are negatively signed, and the perma-
nent, which occurs when all letters in both w and u are positively signed and
distinct, but also a characteristic-free generalization of the permanent, which
occurs when all letters in both w and u are positively signed but not necessarily
distinct.

The most interesting new special case, however, occurs when all letters in
w are positively signed and all letters in u are negatively signed. We obtain
then a generalization on the notion of determinant (foreshadowed, but only in
characteristic zero, by Doubilet and Rota) which, as we shall see, plays a role
at least as great as that of Cayley’s “bracket” in invariant theory. The results
in this chapter are believed to be new and are published here for the first time.
‘The notion of Laplace pairing can be given in a more general context of Hopf
algebras, but we have deliberately restricted the exposition to the cases needed
in invariant theory.

1. ’OI‘he fourfold algebra. Let L and P be disjoint proper signed sets (so
that L? = P? = ). We shall call the elements of L letters and the elements of
P places. We define a new signed set, which is not proper, by [L | P] = {(z |

a):iz € 9, o € P}. Here, the elements of [L | P] are denoted by symbols (z | ).
The positive, neutral, and negative elements in [L | P] are defined as follows:

(i)ifze€L*, a € P*, then (z | o) € [L | P|7;
(ii)ifz€ L™, a € P~, then (z | o) € [L | P]°%
(iii) otherwise, (z | a) € [L | P]™.
The Z-algebra Super[L | P] will be called the fourfold algebra. By Propositions
2 and 3, we have an isomorphism of the fourfold algebra with the fourfold tensor
product.
Super[L | P] = Super[L™ | P7] ® Super[L™ | PT]
® Super[L" | P7] ® Super[LT | PT].
In the fourfold algebra Super[L | P] we have (z | a)(y | 8) = £(y | B)(z | @)
with a minus sign only when exactly one of z and « is negative and exactly one
of y and # is negative. We shall use this fact often in what follows.
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2. The Laplace pairing. Let A be any signed set. If k € Z1, we denote by
Tensy|A] the submodule of Tens[A] spanned by 0 and all w € Div(A) such that
Length(w) = k, and similarly we define Super[A4]. _

Let L and P be proper signed sets. For k,! € Z* we define a bilinear mapping
Q from Super, L] x Super;(P] to Super|[L | P]. This will be done by first defining
a mapping, which we also denote by €, from Tensi[L] X Tens; [P] to Super[L |
PJ, and then by verifying that the required conditions are satisfled to induce a
bilinear mapping on the superalgebras. The bilinear mapping ) is defined by
the following rules:

Rule 1. If k # 1, then 1 = 0.

For k = | = n, say, we define {1 inductively. It suffices to define Q(w, u) for
words w and u. We shall denote Q(w,u) by (w | u), and we call (w | u) the
biproduct of w and u.

In the inductive definition of 2, we shall check that the following two condi-
tions hold at each step n.

(i) If w € I, and u € Tens,[P], then Q(w,u) =0. fu € Ipandw € Tensy,, [L],
then Q(w,u) = 0.

(i) (Commutation rule for biproducts) Let w, w',u,u bewords of Length < n.
Then

(w|u)(w' | v)=e(w |v)(w]uv),
where ¢ = sign(|w'] [u] + |w'| |w| + || |u] + o] [w]).

Rule2. (1|1)=1.

Rule 3. For € L, o € P set Q(z,0) = (z | @)

Condition (i) holds for n = 0,1 since nonzero elements in I, or Ip are sums
of words having Length > 2. Condition (ii) holds for n = 0,1 as remarked at
the end of §1.

Suppose that 2 has been defined on Tensy[L] x Tensk[P] for & < n in such a
way that conditions (i) and (ii) hold. We then define (1 on Tens, [L] X Tensy[P]
by the following three rules:

Rule 4. (z(™ | a™) = (z | a)™.

Rule 5. (w | uw'u") = 5, sign(lwe) v/ (wa) [ ) (wee) [ ),

where Aw =3, w(1) ® w(a)-

Rule 6. (w'" | u) = ¥, sign(jw”|Jug ) (' | )" | ug):

where Au = ), u(1) ® u(2)-

We now check that these rules give a consistent definition of {1 and then that
conditions (i) and (ii) hold. To show that {2 is well defined, we need to establish
the following facts. ;

(1) Rule 5 does not depend on the representation of Aw as a sum, ), W) ®

w(z). Rule 6 does not depend on the representation of Au.
1o, 0

(2) Rule 5 does not depend on the particular factorization of u = u'u".
Rule 6 does not depend on the particular factorization of w = w'w".

(3) In computing (ww’ | uu') the same answer is arrived at whether Rule 5 or
Rule 6 is applied.
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PROOF OF (1). We prove (1) for Rule 5, the proof for Rule 6 being similar.
We begin by noting that since condition (i) holds, we may view w and u as
elements of Super[L] and Super[P], respectively, when writing (w | ). Thus,
the expressions (w(;y | «') and (w(z) | u”) are well defined.

Let Length(u') = k; < n and Length(u”) = k2 < n. Then ' defines a
linear mapping Tens[L] — Super[L | P],w — (w | «'). Similarly, u” defines a
linear mapping Tens[L] — Super[L | P] by w — (w | u”). These two linear
mappings in turn define a linear map from Tens[L] ® Tens[L] to Super[L | P] by
w1 @ wg — (w1 | v)(wa | u”).

Now let Aw =37 w1)®w(a) = Y, v(1) ®v(2) be two representations of Aw.
We apply the remarks following Proposition 4. Considerihg these representations
as elements in Tens[L] ® Tens[L], we may equate terms in T'(mi, my) where
my, mg are any two given multisets on L. Then, there is an element 5 € J;, N
T(my,mg) so that

/ I3
Y (way ®we =Y vy dv) +7,

w w
where the sums are restricted to terms in T(my, mg). Applying the linear map-
ping defined by «’ and " to the equation above and recalling condition (i), we

see that , ‘
li
> (way W) (wey [u") =Y (vay | v) (v | u”).

Since my is the content of each w(z) and v(sy, we may multiply this equation by
sign (|u’| w(g)|). This completes the proof of (1).

PROOF OF (2). To prove (2) for Rule 5, we shall show that (w | (ab)c) =
(w | a(be)). First, we recall that if Aw = Y w(1) ® w(g), then

(A®1)(Aw) =) Auy) ®w) =Y S war) ® wz) © we)
= (1 ® A)(Aw) = Zw(l) ® A'U)(Q)
=D (1) ® W(z1) ® Wiaa).

| Therefore,

(w | (ab)c) =‘Zsign(labl lwiz))(wi) | ab)(wes) | )

= sign(|ab| [wiz)| + lal [w(1z) ) (W) | @) (wiaz) | b)(weg) | €).
Similarly,

(w ] afbe)) = 3 sign(lal [way ) (wiay | a) (wez) | be)

= sign(Jal [wez)| + [b] |wiaz) ) (wry | @) (wiay | B)(wiag) | €).-

- To see that these expressions are equal, let us change notation and set A®)yw =

DI w(1) ® w(2) ® w(z). Each of the expressions above has the form (%)

- D sign(lal [wy| + lal fwg)| + [bl ) ) (wa) | a)(we) |5)(we) | <)
w
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since |w(z)| = [w(an)| +|w(22) |. But an argument just as in the proof of (1) shows
that () does not depend on the representation of AB)y,

PROOF OF (3). In computing (ww' | uu’) we may apply Rule 5 or Rule 6.
Let us begin by using Rule 5. Then

(ww' | uu') =Y sign(ful |(ww') @) ) ((ww') ) | w)(we') @) | o).
If Aw = Y w) ® wez) and Aw' = Y w(y) ® wig), then
A(ww') = AwAw' = Zsign(|w(2)| lwiyywa)ywiy ® W(2)Wig)-
Hence, applying Rule 6 we obtain
(wo' |w) = sign(|ul lwez)| + lul [wig) | + [we| 1wy
X (w(l)wél) | u)(w(z)w’(g) | )
= ZE(’W(U | U(l))(wfl) | u(z))(w(z) | U'(l))(wzz) | U'(z))
where
e = sign(|ul [weay | + [ul [w]ay | + )| [wisy| + e 1wy + uly T D-
Next, we begin with Rule 6. Then
(ww' | uu') = Y sign(j(uw) | [/ (w | ws) ) | (w)2))-
We calculate A(uw/) = AuAvw/ and then apply Rule 5 and condition (ii) to

wigy | ulpy)(wlqy | U(2)) to conclude the proof. .
( (’12‘)here(;)re tv&(/:)) useful formulas which follow by induction from these arguments.

(a)
(@132 Tm |0) = D _sign | Y || Iu(j)l) (z1 | u) (@2 | w@) - (@m | %m));
u i1>7
where A(™) (u) = Eu Uy @ upe) @ ® U(m)-
(b) |
(¢ | wruz - tm) = y_sign (Z |z |Uj|) (z(1) | u1) (@) | ua) - (T(m) | Um);
z >3

where A (z) =3 21y ®T(2) ® O T(m)-

PROOF OF CONDITION (i). We shall prove that if u € Ip and if w is any -

word in Tens,[L], then Q(w,u) = 0. The other statement in (i) is proved in the
same way. We may assume that u € Ip N Tens, [P] by Rule 1. If w factors, say
w = TiT2 - Tm, then we see that Q(w,u) = 0 by applying formula (a) aboYe
since A(™ (u) = 0 for m > 0. Otherwise, w = (™. Let r,u,v,s ‘t‘)e words in
Tens|P) of Lengths h,1,j,k so that h+1+ j+ k = n. Then, applying formula
(b) and Rule 1, we see that

Q(z™, ruvs) = @® | r)(z® | w)(z9) | v)(z® | 5).
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Also,
Q™ rvus) = (™ | r)(9) | 0) (2D | u)(a® | 5)
and, applying the commgtation rule for biproducts, we see that this is
sign(ful [v)) (™ | r)(c® | u)(@ | v)(z®) | 5).
Therefore,
Qz™, ruvs — sign(|ul |v])rvus) = 0.

Furthermore,

(z(™ | ra® o) = (z(W) [7)(@® | o)) | a)(z*) | 5)

= (

= (=™ |1z ] )P (@] )P E® |5
_ (z—i-g) (x(h) | 7)(z | a)(i-i-y) (x(k) | 5)
= (x(") l T(’itj)a(i—l-j)s). |

Similarly, if u € P~ then (2™ | ru2s) = (z(® | 7)(z | u)(z | u)(z® | s) = 0.
This completes the proof of condition (i).

PROOF OF CONDITION (ii). If either (w | u) or (v’ | ') is (z(™ | o) =
(z | @)™, the condition holds since (z | @)™ is in the center of Super[L | P].
Otherwise, we may apply Rules 5 and 6 and use the induction hypothesis. This
completes the proof of condition (ii).

We have completed the argument showing that the bilinear mapping Q from
Tens[L] x Tens[P] to Super[L | P] is well defined. In fact, since condition (i)
holds, we may consider () as a bilinear mapping from Super[L] x Super[P] to
Super[L | P].

Notation. We shall denote sign (Jw(q)| ['])(w(y)|u')(w(2) | u") by

way | o
w(2) u//
vf‘\.;‘and write Rule 5 as ,
' oy W(1) u’
(w ] u'u )—Zw:(w@) u//)'

‘Similarly, Rule 6 may be written as

w10 =3 (1,

“(1)) .
u(z)

Extending this idea, we define the tableau

w1 | Ug
Wo | U
Wy | Un
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to be sign (Y5 lwil [us]) (w1 | ur)(w | ug) -+ - (Wn, | up). Formula (a) can then
be written as

T U(1)
To U(g)
(z122 T | 1) =Z
. U
T | U(m)
and formula (b) becomes
.’L'(l) Ui
Z(z) Ug
(@ | wup - um) = ) .
T(m) | Um

3. Examples. .
EXAMPLE 1. Let us calculate (zy | af) where z,y € LT and o, 5 € P™.
First, we shall apply Rule 5. To use this, we begin by observing that

Aw=AzAy={(18z+2z®1)(1Qy+y®1)
=1Qzy+zQ@y+y®@z+ryq®Ll
Then, Rule 5 along with Rule 1 gives
(zylaB) =(z| )y | B)+ | a)(z] B
Second, we shall do the same calculation but now using Rule 6. Here,
Au=AcAf=(1®a+a®)(1®F+F®1)
, =1®aB+a®B-0@a+af®1.
So, (zy | af) = (z | @)(y | B) — (z | B)(y | @) which, according to the commuta-

tion rule for biproducts, is (z | @)(y | 8) + (v | &) (z | B)- .
EXAMPLE 2. Let z1,...,%, and aq,...,a, be distinct elements in Lt and

Pt respectively. Then

(2139 Tn | G102 0n) = D _ (71 | 201) (@2 | @g2) -+~ (2n | dom),
lod

where o ranges over all permutations of {1,2,... ,n}.

PROOF. The proof is by induction on n and we sketch the details. (It is
similar to the complete argument given for Example 5.) In Rule 6, we take
w = z; and w" = zox3 - T,. Now

Alogog: o) =01 ® 203 Qn + 0g ® 016203~ Qn

4+ ay ®ar0g - ap_1 + (terms of wrong length).
Here, the symbol &; means «; is not included in the product. Therefore,
(2122 Tn | 1@ - an) = (21 | 01)(Z2 - Tn [ a2+ an)
+ (21 | @2)(z2 - T | 1G203 - )

ot (21 | an) (@220 | 0102 0n—1)

= Z(:El I aol)(xg | atﬂ) (xn I aan),
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using the induction hypothesis. We call (z175 -z, | eqay - - - ap) the permanent
of z;,a; and denote it by perm(z; | aj).

EXAMPLE 3. Let zi,...,2, and oy, ..., a, be distinct elements in L~ and
P~ respectively. Then

(1131]}2 ce Ty, I Mgy Oy 1 * .-le) = ngno’(zl l aal)($2 ’ aa’2) . (xn ’ aon)a

where o ranges over all permutations of {1,2,...,n}.
- PROOF. The proof is by induction on n and we sketch the details. We shall
apply Rule 6 with w' = z; and w” = z5---z,, noting that |w”| = 0 or 1

depending on whether n — 1 is even or odd. Now

n
A(anan_l e al) = Z(——l)n_‘laz 024 Oy Q1 &’L RN 4+,
i=1
. Therefore,

n

(21Z2 - Tn | QpOp_y - -0p) = Z(_l)i_l(zl | o) (@ | Qn -6 01)
i=1 :

) = ngna($1 I adl)"'(xn | aan)-
o

EXAMPLE 4. Let z € L* and Q1,00,...,0, € P7. Then
(e™ | araz--an) = (x| a1)(@ | @) (z | am).

PROOF. The proof is by induction on n, the case n = 1 being trivial.. In
general, we apply Rule 5 with v = o3 and v” = ay---a,. We recall that
Az™ =37 2 @ £(*=9) Therefore,

(™ | agag - an) = (z]a)(z™ Y | ag---an)
= (| a)(e | 0z) (2] an).
EXAMPLE 5 (DOUBILET-ROTA, 1976). Let z1,22,...,2, € LT and oy,

» Q2,...,0n € P7. Then

(:clxz g l o109 - 'Oln) = ngna(zl | 04&1)(51?2 ’ a0'2) Ca (xn I aun)
: o

= Z(xal | 01)(zo2 | @2) - (Tom | ),

where o ranges over all permutations of {1,2,...,n}.

PROOF. We shall prove the first equality by induction on n, applying Rule

6. The second equality is proved in a similar manner but by applying Rule 5.

The case n = 1 is trivial so we may suppose that the first equality holds for all

positive integers < n. We now apply Rule 6 with ' = z; and w” = Ty Ty
Now,

n .
Alajag - ay) = Z(—l)"‘lai ® oy -+ ;- - ap + (terms of wrong length).

=1
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So,
(zlmz e Tp | Q1Qg - an)
n

Y (=1 Nz | i) (@a T | are Gy o)

1

o,
Il

(1) (a1 | i) Y (sgnr) (2 | @r1) -+ (2n | arn),

=1 T
where the second sum on the right-hand side is over all permutations 7 of
{1,...,%...,n}. ‘

Let us put o = 7(17). We note that o(1) = 1. Furthermore, as 4 runs over
1,2,...,n and 7 runs through all permutations of {1,...,7,...,n}, the formula
o = (1) gives back exactly once each permutation o of {1,2,...,n}. In this
notation, we have

Il

($1$2"'$n|6¥1a2"'an)

= i(—l)i_l(zl | &) Z(sgn T)

T

(@2 | r1) - (@i | @r(im)) (@i | Qrin)) - (@n | )

= Z(ﬁh | ao1)(—1)*(sgno)

o

Ll

=

X (22 | @)+ (@i | Co(i-1)) (Tit1 | Co(i41))  (Tn | Con)-

Now, let 4 = (¢,7 —1---2). We note that sgnu = (—1)’. The expression above
becomes
ESgn(oﬂ)(xl | aaul)(a:? [ aa;ﬂ) o (zn ‘ ao;m)

o

as desired. .
EXAMPLE 6. We shall calculate (z(2)y | «(?) ) where y and § are negative.

Now,
AP =a® @pf+ef®a+aPBel+a®af

+1®aPg+ e,
Hence, by Rule 6, 7
=Py ] @) = &® | a®)(y | B) - (=P | af)(y | )
=@ a)Py|6) - (=] a)z]B)y|a)
4. The tableau of two words. In this section, we shall continue to let L
and P be disjoint proper signed sets. Let w = z1z9 -2 and u = ayg -+ Qn
be words in Mon(L) and Mon(P), respectively. Then stand(w) and stand(u) are

words in Div(L) and Div(P), respectively. We define the tableau of w and v,
written tab(w | ), by

tab(w | u) = (stand(w) | stand(u)),
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where the right-hand side is the Laplace pairing (2 from Super[L] x Super[P] to
Super[L | P]. : ,
~ Note. If each z; € Lt and each o; € PT, we define the characteristic-
free permanent to be tab(ziz -z, | @1 @n). A calculation with such an
expression was made in Example 2, above.

Now, for a moment; let A be any signed set. We may take a basis for Super|[A]
over Z as remarked at the end of §2. Chapter 1, namely, elements of the form

agel) . .a'ge")bl . .bsch e CZLU',

where the a’s (resp. ¢’s) are distinct elements in A1 (resp. A°) and the b’s
are distinct elements in A~. We then may extend this basis to a Z-basis of
Super[A]®- - - ® Super[A]. We shall call this basis the natural basis of Super[A] ®
-+ ® Super|[A].

The purpose of this section is to examine A™)tab(w | u) in anticipation of
some of the arguments in Chapter 3. We begin by noting two properties of A.
(Their easy proofs are omitted.) '

(1) Ifa € A~ or A, then

AM™G@)=e®1® - ®1+19a01® @1+ +1® - ®lRa.
If a € AT, then
A (gl9)) = Za(il) ® - ®@alim),
where the sum is over all m-tuples of nonnegative integers (41, . .., %m) such that
4t im =e
(2) Let w be a word in Div(A4) with

w = mgel) . .xs‘ef)yl .. .ys

and where the z’s (resp. y’s) are distinct elements in A™ (resp. A~). Then

. A(w) P A(zgel)) R 6(y8) = Z:I:'wl ® wa,
where w; and w; range over all distinct words such that Cont(w; )+ Cont(ws) =
Cont(w).

PROPOSITION 7. Let L and P be disjoint proper signed sets. Let w €
Mon(L), w = z1z9 -+ T,, where w has no repeated negative letter. Let u €
Mon(P), u = araz - an, where u has no repeated negative letter. Let m > n
and let AU (stand(w) | stand(u)) be written as a linear combination of basis
elements in the natural basis for Super[L | P] ® - -- ® Super|[L | P],say,

- Al (stand(w) | stand(u)) = Z CyV, Cy € Z.
(a) If v =v1 ® - -+ ® vy, where Length(v;) < 1 for each i = 1,...,m and if
¢y # 0, then v has the following form.
Let o be a permutation of {1,2,...,n} and let {i1,%2,...,1,} be
(%) a subset of {1,2,...,m}. Let € {1,2,...,m}. If § = iy, put
vj = (T | aok); otherwise, put v; =1. Let v =101 ® - @ Upy,.
(b) Conversely, if v has the form (%), then ¢, = £1.
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PROOF. We proceed by induction on n, the cases (z | a) and (™ | (™) fol-
lowing from property (1), above. Hence, we may assume, e.g., that stand(w) =

w'w” where w',w"” have no common letters and have Lengths smaller than

Length(w). Apply Rule 6, §1, to see that
A (/" | stand(w)) = Y £A™ (W' | u)) A (" | u).
The proof now follows by applying the induction hypothesis and property (2),

above.
An immediate consequence of part (b) of the Theorem is that tab(w | u) # 0

if neither w nor u has repeated negative letters.

3. The Standard Basis Theorem

0. Introduction. In this chapter we derive a generalization of the classical
straightening algorithm whose idea goes back to Clebsch, Capelli, and Young.
We consider double Young tableaux, namely, products

(wy | u1)(we [ug) - (wn | un)

of biproducts of w; in Div[L] and u; in Div[P], where L and P are proper
alphabets. If Length(w;) = A; and if Ay > A > --+ > A, then such a product of
biproducts can be viewed as an operation which assigns a member of Super[L |
P] to a pair of triangular arrays D-E (or Young diagrams) of the same shape
A= (A, h,..0).

The rows of the diagrams D are the displays of the words wy, ..., w,, lined up
one beneath the other; in this way the columns of D are defined. The diagram.
E is similarly made up out of the words uj,us,...,u,. The two diagrams D

and E are of the same display shape A, where A; is the number of entries of
the 7th row. The novelty of the present approach consists in dealing with Young
diagrams which are filled with both positively and negatively signed letters. This
leads to a definition of a standard Young diagram (sometimes also called a Young
tableau) which differs from the ones previously used, and which, as will be proved
below, is the only one compatible with entires of two different signatures. The

definition of a standard Young diagram requires both alphabets L and P to be

linearly ordered sets. A diagram D filled with letters from the alphabet L, say,

~ is defined to be standard where:

(1) if two letters z,y are next to each other on the same row of the diagram,
and y follows z, then we must have 2 < y unless both z and y are negatively
signed, in which case we require z < .

(2) if two letters z,y are next to each other on the same column, and if y is
on a lower row than z, then we have z < y unless both z and y are positively
signed, in which case we require that z < y.

Our main result (the general Standard Basis Theorem) states that double’
standard diagrams (standard in both letters and places) are an integral basis

- for the underlying module of the superalgebra Super[L | P]. The elements of a
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standard basis thus depend upon the linear orders assigned to L and P. Such
orderings of both L and P can be chosen arbitrarily independently of the position
of positively and negatively signed elements; thus, depending on this choice, the
set of standard Young diagrams can strikingly differ. For example all positively
signed letters may be placed before all negatively signed letters in the linear
order, or the linear order may be so chosen that every letter is immediately
followed by a letter of the opposite parity. By the invariance of a dimension of
a free module, it follows from our Standard Basis Theorem that the number of
standard Young diagrams is the same irrespective of the linear ordering chosen,
a fact that is far from obvious combinatorially. Among several special cases
of the Standard Basis Theorem, at least two are worthy of mention and lead
to new results in the invariant theory of tensors. When all letters are positive
and all places negative, we obtain a generalization of the determinant that will
be useful to derive the invariant theory of skew-symmetric tensors in arbitrary
characteristics in much the same way as the classical case (L = L~ and P = P~,
as in Doubilet-Rota-Stein) relates to the invariant theory of symmetric tensors
(but in this latter case only in characteristic zero).

Secondly, when all letters and places are positive, we obtain a straightening
algorithm for permanents, applicable in arbitrary characteristic, a result which
a priori may seem unexpected.

1. Definitions, statement of theorem. In this chapter, we shall develop
the main combinatoric tools to be applied to invariant theory. We begin with
some important terminology.

Let A (for a moment) be any set. A Young diagramon A, D = (wy,ws, - . ., Wn)
is a sequence of words w; € Mon(A) such that length(w;) > length(wg) > -+ 2
length(wy). The integer 7 is called the number of rows of the Young diagram D

‘and the vector A = (A1, Ag, ..., A,) is 