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Introduction 

The present work is intended to develop three main results: 

(1) An extension of the standard basis theorem, going back to Doubilet, Rota, 
and Stein, and eventually to Capelli and Young, to algebras containing positively 
signed and negatively signed variables, or superalgebras as we call them. Such 
an extension has required a rethinking of some of the basic concepts of linear 
algebra, such as "matrix" and "coordinate system," along lines that we believe 
to be new, and which we hope will lead to an extension to "signed" modules of 
the entire apparatus of linear algebra. The standard basis theorem, which we 
prove, is characteristic-free and includes, besides the classical case, straightening 
algorithms, which apply to permanents as well as to determinants, as well as a 
mixed generalization of the notion of both determinant and permanent, called 
the biproduct, which differs from the Berezin determinant. 

(2) A rigorous presentation of the symbolic method of invariant theory for 
symmetric tensors, in characteristic zero. The results here offer no great novelty 
over the nineteenth century, except rigor. 

(3) A new symbolic method (foreshadowed by Weitzenbock) for the repre­
sentation of invariants of skew-symmetric tensors. Here, the results turn out to 
be more satisfactory. Symbolic expressions for the invariants of skew-symmetric 

\ tensors are more manageable and easier to compute than those for symmetric 
tensors. In fact, in contrast to symmetric tensors, the "meaning" of the vanish­
ing of an invariant can be more easily gleaned from the symbolic representation, 
as we show by several examples. 

In both instances, the actual invariant is obtained from the symbolic repre­
sentation by applying an operator which we call the umbral operator. Invariants 
of symmetric tensors are obtained by applying the umbral operator to certain 
poly~omials in a commutative algebra, whereas invariants of skew-symmetric 
tensors are obtained by applying the umbral operator to polynomials in an anti­
commutative algebra. Thus, the umbral operator can be viewed as mapping an 
anticommutative algebra into a commutative algebra, and vice versa. It is an 
instance of a Schur functor. 

v 
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The umbral operator thus establishes a cryptomorphism between commuta­
tive and anticommutative algebras, and can be used to systematically develop 
anticommutative analogs of concepts of algebraic geometry. This, we believe, 
may ultimately turn out to be the main byproduct of the present investigation. 

In the exposition, we have preferred to use algebras generated by an alphabet 
over algebras generated by a free module. The results can, however, be recast 
in a basis-free language: the choice between these two equivalent languages is 
largely a matter of taste and of the objectives at hand. Synopsis 

We prove two distinct but closely related results. The first is the extension 
of the standard basis theorem to super algebras (defined below). The second is 
the application of the standard basis theorem to the computation of invariants 
(and, more generally, of covariants) of symmetric and skew-symmetric tensors. 
In this synopsis we give an informal description of the main ideas and results 
which can be read independently of the body of the work and which can be used 
as a guideline to the text. 

We begin by recalling the three fundamental a1gebraic systems of invariant 
theory: the symmetric algebra, the divided powers algebra, and the exterior 
algebra. 

(1) 

(2) 

Given an alphabet AO (that is, a set AO whose elements are 
to be viewed as "variables"), the symmetric algebra Symm(AO) 
generated by AO is the familiar commutative algebra of polyno­
mials in the variables A 0 . The coefficients of these polynomials 
will be integers, although (here and everywhere below) an arbi­
trary commutative ring with identity could be taken as the ring 
of coefficients. 

Given an alphabet A-, the exterior algebra Ext(A-) is the al­
gebra generated by the variables A -, subject to the identities 
ab = -ba and a2 = 0 for a, b E A-. Thus, Ext(A-) is the 
algebra of "polynomials in anticommutative variables A -." A 
nonzero monomial in Ext(A-) is a product of a finite sequence 
of variables 

w here no two ai coincide, and two monomials are related by the 
familiar "sign law" 

for any permutation (J of the set {I, 2, ... , n}. 

vii 
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(3) 
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Given an alphabet A+, the divided powers algebra Div(A+) 
is the commutative algebra generated by the variables a(i), as 
a ranges over A and as i = 0,1,2,.... We set a(O) = 1 and 
a(l) = a. The idea is that a(i) is to satisfy the same identities 
as a i Ii!. Thus we impose the identities 

(*) a(i)aU) = (i: i) a(i+J) 

(other identities usually impose in the definition of the divided 
power algebra will not be needed, and need not be recalled here). 

We wish to develop a suitable notation for the tensor product of these three 
algebras, for three disjoint alphabets A 0 , A -, and A +. The usual notation of 
tensor products proves unwieldy, and we choose to describe the tensor product 
by a more direct route, namely, as the monoid algebra of a certain monoid to be 
presently defined. Thus, after taking the disjoint sum AO EB A- EB A+ = A we 
consider a monoid Mon[A] which is "almost" the free monoid generated by A. 
The words in Mon[A] shall be products of variables in AO and in A -, and of the 
divided powers a(i) for a E A~ Thus a word appears as a product, e.g., 

w = abc(i)deU). 

The identities among these monomials are those that follow from the following 
commutation relations ab = ba in all cases except when both a and b belong 
to A-, in which case we set ab = -ba. Thus, if a, b E A-, if c, d E AO, and if 
e, f E A + then we have, for example, 

The product of two wor~ is juxtaposition, except that products of divided pow­
ers are to be simplified by (*). Thus, for example, (ae)(be) = 2abe(2). The length 
of a monomial is computed taking into account the fact that the divided power 
a(i) is to be considered of Length i. Thus, the monomial (**) is of length (= de­
gree) 13. With these conventions, the monoid algebra of Mon[A] is well defined 
by taking formal linear combinations and products. We call it the superalgebra 
Super[A] g~nerated by the signed alphabet A. The variables of the alphabet A will 
be designated as neutral, negatively signed, and positively signed, respectively. 

The superalgebra Supe~A], although a worthwhile subject of investigation, 
is not the immediate object of the present study. We need to define a more 
complex structure, which will be called the fourfold algebra. To this end, we 
consider two signed alphabets L = L + EB L - and P = p+ EB P-, called proper, 
because neither has neutral elements. Their elements will be called letters and 
places, respectively. From these two alphabets we define a third signed alphabet 
[L I P], the letterplace alphabet. The definition of [L I P] is fundamental. The 
elements of [L I P] will be pairs (x I a), where x ELand a E P; these pairs will 
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sometimes be called letterplaces (the geometric motivation for this term will be 
given shortly). Their signatures are determined by the following rules: 

(i) (x I a) E [L I P]+ if x E L+ and a E P+, 
(ii) (x I a) E [L I P]O if x E L - and a E P-, 
(iii) (x I a) E [L I P]- otherwise. 

The Superalgebra Super[L I P] is called the fourfold algebra. Our objective will 
be to show that the fourfold algebra is the suitable machinery to develop the 
invariant theory of symmetric and skew-symmetric tensors, and, as a byproduct, 
to formulate a "signed" generalization of linear algebra. 

All theorems of linear and multilinear algebras can be viewed as consequences 
of the Laplace expansions for determinants. This sweeping assertion is in part 
made precise by the second fundamental theorem of invariant theory, and it will 
serve as motivation for the generalization of some such theorem to superalgebras 
that we shall develop below. 

In ordinary linear algebra, one deals with vectors (here denoted by letters) 
and coordinates (also known as linear functionals, here denoted by places). The 
ath coordinate of a vector x is a scalar (here denoted by a neutral variable). 
Thus, vectors must be taken as negatively signed letters, and coordinates must 
be taken as negatively signed places. The value of a vector x at the coordinate 
a is denoted by (x I a) and is a scalar (that is, a neutral element). A matrix is a 
set {(xl a); x E X, a E A} where X and A are respectively linearly ordered sets 
of letters and places of the same size, i.e., IXI = IAI = n. Relabeling the letters 
XI, . .. , Xn and the places al, ... ,an by their linear order, the determinant of a 
matrix is then defined as usual (except for sign) as 

where (J ranges over all permutations of the set {I, 2, ... , n} of indices. One 
verifies that the above expression equals (expansion by columns instead of rows) 

We wish to recast this definition in a form that will be suitable for generaliza­
tion to the fourfold algebra. To this end, we write the above determinant by 
the notation (X1X2 ... Xn I ala2 ... an) and we note that this expression extends 
to a bilinear map from the exterior algebra Ext(X) in the letters, and from 
the exterior algebra Ext(A) in the places, with values in the symmetric algebra 
in the letterplaces (x I a). We are thus led to generalize such a bilinear map 
to superalgebras by suitably generalizing the notion of determinant and of the 
Laplace expansion that characterizes it. We first have to recast the classical 
Laplace expansions of a determinant in a language that is suitable for general­
ization. It turns out that the language of Hopf algebras is eminently suited to 
this purpose. We first review this language in the (classical) case of two exterior 
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algebras Ext(X) and Ext(A) or, what is equivalent, to the case of the super­
algebra Super[L I P] where L O = L + = pO = p+ = 0. In this special case, 
the determinant can be viewed as a bilinear form from Super[L] x Super[P] to 
Super[L I Pl. Let w be a word in Mon[L] and let WI be a word in Mon[P]. We 
shall define (w I WI) as an element of Super[L I Pl· The bilinear function (w I WI) 

shall satisfy the following conditions: 
(i) (w I WI) = 0 unless the words wand WI have the same length. 
(ii) (w I WI) = (x I a) if W = x and WI = a, that is, if the words are of length 

one, that is, if the words reduce to a single letter and place. 
(iii) (1 11) = 1, where 1, the identity of the algebra, can be identified with a 

word of length zero. 
Finally, we shall impose on (w I WI) the analog of Laplace expansions. To 

state these properly we recall that if w is a word in an exterior algebra, the 

coproduct 

w 

is the sum over all pairs of such words W(I) and W(2) such that W(I)W(2) = w, 

with suitable signs (incorporated in the notation) which need only be specified 

in the text. 
In the notation of Ropf algebras, the Laplace expansion of a determinant 

(w I w' w") takes the pleasing form 

I:±(W(I) I W' )(W(2) I tu"), 
w 

where again we do not yet worry about signs. There is a similar expansion "by 
columns" that is similar to the present expansion by rows. 

We now generalize this notation to an arbitrary fourfold algebra Super[L I Pl· 
The fourfold algebra is the tensor product of four algebras, each one generated 
by those letterplaces (x I a) where x is either positive or negative, and a either 
positive or negative (recall that there are no neutral letters or places). Each 
factor in such a tensor product is an exterior algebra, a divided powers algebra, 

or a symmetric algebra. 
Similarly, each of the superalgebras Super[L] and Super[P] is the tensor prod­

uct of an exterior algebra and a divided powers algebra. 
We now extend the definition of a "determinant" (which we call a biproduct) 

to the fourfold algebra as follows. If w E Super[L] and w', w" E Super[P], we 
again define a bilinear form (w I w') taking values in Super.[L I P] (note t~at we 
now allow Land P to be arbitrary proper alphabets, that IS, alphabets wIthout 
neutral elements). The biproduct (w I w') will be subject to (i), (ii), and (iii) 
exactly as above, and to the technical condition 

(iv) (x(n) I a(n)) = (x I a)(n) for divided powers of positively signed letters 

and places. 
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Finally, one assumes analogs of the Laplace expansions in the form 

(w I w'w") = L±(W(I) I WI
)(W(2) I w"), 

w 

with suitable signs, where 

is the coproduct in the Ropf algebra Super[L] (see below for further explana­
tions). One also assumes a similar Laplace expansion where the roles of letters 
and places are interchanged. 

The sum on the right of the Laplace expansion (*), as well as the sign of 
each term, can be understood without knowledge of Ropf algebras as follows. 
The sum on the right of (*) ranges over all distinct ordered pairs W(I), W(2) of 
subwords of w such that W(1)W(2) = W. By (i), the only nonzero terms are given 
by pairs W(I), W(2) such that Length(w(2)) = Length(w') and Length(w(2)) = 

Length( w"). The sign of each term on the right of (*) is determined by the 
following rule. In the monoid Mon[L EB P] generated by the disjoint sum of the 
alphabets Land P, consider the words ww'w" and W(1)W'W(2)W". Evidently the 
second word can be obtained from the first by a succession of transpositions of 
adj acent elements of L EB P (with proper care given to divided powers). The sign 
of the corresponding term on the right of (*) is then the parity of the number 
of such transpositions, for which the two adjacent elements of L EB P, which are 
being transposed, are both negatively signed. We stress the fact that of the two 
letters being transposed, one may belong to L and another to P. 

EXAMPLE. Suppose all letters are positively signed, and places are of arbi­
trary signature. Then 

(a(2)b I a{3l) = (a(2) I af3)(b II) + (ab I aj3)(a II)' 

(v) Finally, one assumes a dual Laplace expansion 

(w'w" I w) =L ±(w' I w(1)}(w" I W(2)) 

with a similar rule for the signs. 
We show in the text that these expansion rules are consistent. They define 

a bilinear form, which we call the biproduct, which can be viewed as a signed 
generalization of the determinant. When wand w' are products of distinct 
positively signed letters and places, then the biproduct (w I w') reduces to the 
permanent. This is not the case, however, for (w I w') when wand w' are 
arbitrary products of divided powers. In this case, the pair (w I w') can in no 
way be seen as the generalization of the determinant or permanent of a matrix 
(unless one is willing to consider the possibility that the set of rows and the set 
of columns of such a "matrix" shall be allowed to become multisets). 

The biproduct preserves all formal properties (that is, the Laplace expan­
sions) of a determinant, except for signs. As already remarked, all of linear and 
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multilinear algebra can be recast in terms of Laplace identities. It stands to rea­
son, therefore, to expect that the biproduct will yield a generalization of linear 
algebra to "signed" vector spaces and signed modules generally. In this paper 
we take two steps toward the realization of this program, which we now proceed 

to informally describe. 
The first step is the extension to the fourfold algebra of the standard basis 

theorem of Doubilet, Rota, and Stein (a special case of our result, which in 
the present notation corresponds to setting L = L - and P = P-). Such a 
generalization proceeds as follows. Define a Young diagram over L (and similarly 
over P) as a sequence D = (WI,W2,'" ,wn ) of words Wi in Mon[L]' such that 
Ai = Length( Wi) and Al 2:: A2 2:: ... 2:: An· The vector A = (AI, A2, ... ) is the 
shape of the Young diagram. If 

Xij E L, 

where we have written out each divided power by repeating the same letter 
(strictly speaking, this is an abuse of notation), then the words 

Wj = Xij X2J' ... x)..Ij 

define the dual diagram b of shape i 
A Young diagram Dover L (or over P) will be said to be standard when, for 

every pair of words 
Wi = XIX2 ... Xr , 

Wi = YIY2 ... Ys, 

XJ' E L, 

YJ'E L, 

where Wi is in D and Wi is in b the following conditions are satisfied. Let us 
refer to Wi as a row of the diagram and to Wi as a column of the diagram. Choose 
a linear order on the alphabet L, which will remain fixed from now on. Then 

(i) two successive letters Xi and Xi+l in the same row are in nondecreasing 
order (Xi ::; Xi+l) if they are both positively signed and in strictly increasing 
order (Xi < xi+d if they are both negatively signed. 

(ii) two successive letters Yi and Yi+l in the same column of the tableau D 
(Le., in the same row of the tableau b) are in strictly increasing order (Yi < Yi+ I) 
if they are both positively signed and in nondecreasing order (Yi :::; Yi+l) if they 
are both negatively signed. 

(iii) two successive letters in the same row (or in the same column) which are 
of different signatures are in strictly increasing order. 

A similar definition is given for Young diagrams made out of P. 
Now let D and E = [w~, ... ,w~] be Young diagrams of the same shape made 

out of the alphabets Land P, respectively. We define the Young tableau of the 

diagram pair D, E to be 

(This is a slight oversimplification, because of the possible occurrence of divided 
powers-the text gives the precise definition.) 
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A standard Young tableau Tab(D I E) is a Young tableau where both diagrams 
D and E are standard. Our main result states that standard Young tableaux 
are an integral basis of the superalgebra Super[L I Pl. Actually, the final result 
is stronger. It states that a (not necessarily standard) tableau Tab(D I E) is 
uniquely expressible as a linear combination with integer coefficients of standard 
Young tableaux. If Tab(D I E) is of shape A, then the only standard Young 
tableaux occurring with nonzero coefficients are, of shapes which are greater 
than A in the dominance order of shapes. Thus the submodules, spanned by all 
tableaux whose shapes form an order ideal in the partially ordered set of shapes 
under the dominance order, span an invariant submodule of Super[L I P], under 
permutations of both letters' and places. 

An immediate corollary of this theorem is that the number of standard Young 
diagrams is independent of the linear ordering chosen for the alphabet. No direct 
combinatorial proof of this surprising fact is known at present. 

The proof of the standard basis theorem proceeds in two steps. The fact that 
the standard tableaux span the superalgebra is a consequence of the following 
straightening formula 

L±(VW(I) I U')(W(2)W I u) == L±(WV(I) I U'U(1))(V(2)W' I U(2))' 
w u,v 

(For the actual computation of the signs, consult the text.) 
'fhe straightening formula leads to a recursive algorithm (ultimately going 

back to Alfred Young) to express any monomial in the superalgebra as an integral 
linear combination of standard tableaux. 

The fact that the standard tableaux are linearly independent is subtler; it is 
based on a refined duality. One defines a dual alphabet L* = L*+ U L*- with 
L*+ in bijective correspondence with L- and L*- with L+. Thus, if x is a 
letter, then x* is a letter of the opposite sign; similarly, for P*. One then defines 
a scalar bilinear form 

(p, q), P E Super[L* I P*], q E Super[L I P], 

by the following rules: 
(i) ((x* I a*), (y I fj)) = 0 if X =f: Y or a =f: fj, and 
(ii) ((x* I a*), (x I a)) = ±1, where the sign on the right is negative if and 

only if both x and a* are negatively signed. To see the motivation for this rule, 
we (quite unrigorously) rewrite the left side as 

(x* I a*)(x I a) =±(x* I x)(a* I a), 

and we see that the minus sign is due to the "fact" that the elements x and a* 
have, been commuted. 

(iii) Analogs of Laplace expansions. For example, if w'w" E Super[L* I P*] 
and W E Super[L I P], we set 

(w'w", w) = L ±(w', W(I))(W", W(2))' 
w 
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Here, the coproduct 

w 

is taken in the Hopf algebra Super[L I P], which is the tensor product of two 
Hopf algebras; that is, the pairs w(1) and W(2) range over all subwords of w, 

for w E Super[L I P], such that w = W(1)W(2)' Again, the signs on the right 
are determined according to the number of transpositions of adjacent negatively 
signed elements (letters or places). 

The byproduct of this seemingly unusual setup for duality of two algebras 
is the generalization to superalgebras of the celebrated result of A. Young (in 
Young's language, stating that P(12)N(12) = 0). In this present context, we 
prove that (( w* I u*), (w' I u')) = 0 whenever the length of the biproducts is two 
or more. This leads to a considerable simplification of the computation of 

(Tab(D* I E*), Tab(D' IE')). 

One finds upon evaluating that on the right side only sums of certain simple 
monomials appear (which we have called Gale-Ryser interpolants after a famous 
theorem of Gale and Ryser on the existence of O-l-matrices having given row and 
column sums). One goes on to establish a triangular biorthogonality property 
for standard tableaux, from which linear independence is inferred. 

In order to describe the invariant-theoretic results, we shall assume from now 
on that P = P- = {I, 2, ... , n}. We define a bracket (of length n) to be the 
element [w] = (w I 12··· n) of Super[L I Pl. Clearly the bracket will vanish 
unless the word w in Super[L] is of length n. From now on we shall separately 
consider either of the two special cases L = L - or L = L +. In the case L = L - , 
the bracket coincides with the classical bracket first defined by Cayley; that is, 
if w = X1X2 . 0 • Xn , the bracket is the determinant of the matrix of n row vectors 
Xi which have the entries 

Xi = ((Xi Il),(xi 12)"",(Xi In)). 

Note that because L = L - and P = P-, each entry is a neutral element, and thus 
can legitimately be called a scalar. The straightening formula now specializes to 
give identities on brackets of the form 

w v 

which, as is known, can be used for an abstract characterization of the bracket. 
All of linear algebra is "coded" in these identities. 

In the second case, L = L +, one obtains a remarkable generalization of the 
determinant. The bracket [w], for w E Super[L] = Super[L +], will now no longer 
be scalar valued but will take its value in an exterior algebra. We shall call it the 
skew bracket. It can no longer be viewed as the determinant or the permanent 
of a "matrix", unless w is a product of n distinct letters. One computes, for 
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example, [a(n)] = (a I l)(a I 2)··· (a I n), where each (a I i) is an element of 
degree one of an exterior algebra. More generally, one has 

[w][w'] = (-l)n[w'][w], 

and identities of the form (**) hold for skew brackets (with fewer signs) and in 
fact can be used to characterize skew brackets. Thus, the possibility arises that 
skew brackets are the syntax for a semantic construct which will be a "skew" 
analog of linear algebra. We shall leave this enticing possibility untouched for 
the moment, and proceed directly to the invariant-theoretic applications of the 
bracket (both classical and skew). 

For ease of exposition, we deal separately with symmetric and skew-symmetric 
tensors, keeping the narrative as informal as possible, at the cost of some inac­
curacies which are corrected in the text. 

Given a vector space V of dimension n over a field of characteristic zero, a 
symmetric tensor t over V (that is, a homogeneous element of the symmetric 
algebra S (V)) has, relative to a basis e1, e2, ... , en, the coordinates ajli2 00 o JOn , so 
that 

t - ~ ( k ) a 0 0 0 ejl eh 
0 • 0 ejn 

- ~ J·l,12, ... ,in ]1]2°
oo

Jn 1 2 n , 

where the sum ranges over all n-tuples (j1 ... in); note that almost all the terms 
equal zero (because the multinomial coefficient vanishes). The integer k is the 
degree or step of the tensor. An invariant I of t is a polynomial in the coordinates 
ajlhoo-jn which is independent of the choice of the basis, except for a constant 
factor. Thus, if I is an invariant, then the condition I = 0 is geometric; that is, 
it is independent of the coordinate system. The idea of invariant theory is to 
express by the vanishing of invariants certain logically or combinatorially defined 
properties of tensors such as decomposability, rank, divisibility by another tensor, 
etc. To this end, a slight extension of the notion of invariant is needed, namely, 
the notion of a covariant. 

Observe that a JOoint invariant of a set of tensors may be defined in the obvious 
way. When the coordinates of one or more of the tensors of such a set are allowed 
to be independent transcendentals (adjoined to the base field), a joint invariant 
will turn out to be a polynomial in these independent transcendentals. Such a 
polynomial is called a covariant, with the understanding that a covariant vanishes 
when it vanishes identically as a polynomial in its independent transcendentals. 

We next describe the symbolic method for the representation of all invariants 
(and hence all covariants) of symmetric tensors. To every (symmetric) tensor t 
we associate an indefinite supply of letters (or symbols) belonging to a negatively 
signed alphabet L -, and we say that a letter "belongs" to the tensor t. 

We next define an operator U, the umbral operator, from the superalgebra. 
Super[L I P] to the "scalar" coordinates of a tensor of step k. We simply set 
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where a is any of the letters of L belonging to a tensor t of step k, and where 
jl + h + ... + jn = k. If jl + j2 + ... + jn i= k, the right side is set equal to zero. 
Note that all (a I i) are neutral elements. 

If w is any monomial in Super[L I P] (a symmetric algebra) we can write 
w = w(a)w(b) ... when w(a) is the product of allietterplaces (a I i) containing 
the letter a, etc. We set 

(U, w) = (U, w(a)w(b)· .. ) = (U, w(a))(U, w(b)) .. · . 

Finally, we extend the definition of U to all of Super[L I P] by linearity. The main 
result states that a polynomial I is an invariant of a set of symmetric tensors if 
and only if I = (U,p), where p is a polynomial in brackets (in the present case 
of symmetric tensors, the brackets are nothing but ordinary determinants). 

The classification of invariants can be further simplified by applying the stan­
dard basis theorem. According to this theorem, any polynomial in brackets can 
be integrally expressed as an integral linear combination of bracket products 
which correspond to standard tableaux, in the given linear ordering of the al­
phabet L. Thus, it suffices (by and large) to consider the case where p is a 
standard tableau in Super[L I P], where each row is of length n (thus, the n 
places 1,2, ... ,n appear in each row on the right side of the tableau). If Xi is a 
transcendental, we can safely set 

(U, (x I i)j) = xi, 

thereby identifying x with a symbol. If we further agree that the linear order 
of L shall be chosen in such a way as to place last all symbols corresponding to 
transcendentals (that is, after all symbols corresponding to genuine tensors), then 
a standard tableau for a covariant is partitioned into an upper part, containing 
all symbols corresponding to the tensor( s), and a lower part, containing only 
(symbols for) transcendentals. For all practical purposes, only the upper part 
will matter in the description of the covariant. We thus succeed in associating 
to every covariant a standard Young diagram in the familiar form such as 

abed 
abe 
bfg· 

The invariant theory of symmetric tensors can be carried much farther by the 
symbolic method, but the present exposition now turns to the much less explored 
subject of skew-symmetric tensors, where previous work (done largely in the 
nineteenth century) was considerably more limited in scope. Our objectives will 
be, first, to develop a symbolic method that will be strikingly analogous to the 
symbolic method for symmetric tensors, and second, to show by examples that 
the method is (for skew-symmetric tensors better than for symmetric tensors) 
effective both for the construction and for the interpretation of invariants and 
covariants. 
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The method is "dual" to the one described above for symmetric tensors, in 
the sense that the words "commutative" and "anticommutative" are judiciously 
interchanged. It is not clear a priori, however, how such an interchange should 
be carried out, and in fac~ the method we are about to describe reveals new clues 
to how this interchange may be effective in disparate situations. 

A skew-symmetric tensor t of step k is a homogeneous element of the exterior 
. algebra I\(V). Relative to a basis et, e2,' .. , en of V, the tensor can be written 
in the form 

t= 

where the sum ranges over all subsets {it, i2, . .. , ik} of {1, 2, ... , n}, with the 
customary conventions relative to signs, namely. 

An invariant I of t is a polynomial in the coordinates ail i2 ... ik which is inde­
pendent of the coordinates, except for a constant factor, so that (again) the 
condition I = 0 is geometric. Joint invariants and covariants are defined as in 
the symmetric case. 

We now describe the delicate symbolic method by which all invariants (and 
covariants) of skew-symmetric tensors can be represented. Choose a linearly or­
dered alphabet L which is now positively signed (L = L+). Recall that the place 
alphabet P is the negatively signed set {1, 2, ... , n}. To every (skew-symmetric) 
tensor t we assign an infinite supply of letters "belonging" to it, and we assume , 
that the supply is ample enough for all purposes. In addition, we assume that L 
contains an indefinitely large supply of letters belonging to an indefinitely large 
supply of independent transcendentals that may be adjoined to the ground field if 
and when necessary. We next define an umbral operator U that (again) maps the 
superalgebra Super[L I P] to the field of scalars, eventually with transcendentals 
adjoined. 

If a is a letter belonging to the skew-symmetric tensor t of step k, we set 

(U,(a(k) li1i2 · .. ik)) =ai1 i2 ... ik' 

On the right side is the scalar component of the tensor t relative to the basis 
et, e2, . .. ,en, which will remain fixed from now on. On the left side, a(k) is the 

. kth divided power of the letter a, so that (by the properties of the byproduct) 

(a Ck ) I i 1i 2 ... ik) = (a I i1)(a I i 2 ) ... (a I ik). 

Note that for i i= j we have (a I i)(a I j) = -(a I j)(a I i), since (a I i) is 
negatively signed to all a ELand i E P. 

Ne~t, set (U, (a(j) I i 1i 2 ... i j )) = 0, if j i= k. 
Now let n be an arbitrary monomial in Super[L I Pl. By altering the sign of 

m, if necessary, we can write . 

m = ±m(a)m(b)··· , 
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where m(a) is the product of all letter places (a 1 i) containing the letter a, etc., 
and, what is essential, where a < b < ... in the linear order of L. Thus, 

m(a) = (a(j) 1 i1i2 ... ij) 

for some j, similarly for m (b), etc. 
Now set 

(U,m(a)m(b)···) = (U, m(a))(U, m(b)) ... , 

and extend to Super[L 1 P] by linearity. We prove that the operator U is well 
defined. For example, let a and b be both letters belonging to the tensor t, and 

suppose that a < b. Then 

(U, (a(k) 112 ... k)(b(k) 112 .. · k)) = (a12 ... k)2, 

but 
(U, (b (k) 1 12· .. k) ( a (k) 1 12 ... k)) = - ( a 12 ... k) 2 

. 

if k is odd. As another example, let u and v be vectors in V, that is, skew­

symmetric tensors of step one. Then we have 

(U, (a 1 i)) = Ui, (U, (b 1 i)) = Vi, 

if a belongs to U and b belongs to v. Thus, if a < b, then 

(U, (ab 1 ij)) = (U, (a 1 i)(b 1 j) + (b 1 i)(a 1 j)) = UiVj - UJ'Vi, 

and we find (spectacularly enough) that 

(U, (ab 1 ij)) = (U, (ba 1 ij)), 

as we might well expect, since (ab I ij) = (ba 1 ij) in Super[L 1 P], and since U 

is well defined. 
More generally, let u1, u2, .. . , un be vectors, and let a1 < a2 < ... < an be 

symbols (letters) belonging to each. Then we find 

(U, [a1 a2 ... an)) = [u1u2 ... un] 

where the left bracket is the bracket in Super[L 1 P], and the right bracket is the 
ordinary determinant of the vectors u1, ... , un relative to the basis e1,"" en' 
In particular, we find that 

(U, [ao-1 ao-2 ... ao-n)) = [U1u2 ... un] 

for any permutation (]'. This point is worth stressing, because it is the point at 
which Weitzenbock's attempt to develop a symbolic method for skew-symmetric 
tensors failed. Weitzenbock (like all other classical invariant theorists) failed to 
distinguish between a vector U and a symbol a representing u, and used the 
same notation for both. As a consequence, his brackets [u1u2 ... un] were to 
be taken sometimes as symmetric and sometimes as skew-symmetric relative to 
permutations of {1, 2, ... , n} depending on the context! Small wonder that few 
invariants (other than those previously known) should have been computed by 

such a technique. 
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Our main result is formally similar to the main theorem for symmetric tensors. 
It states that every invariant (or joint invariant) of a skew-symmetric tensor t 
can be written in the form (U, p), where p is a polynomial in skew brackets 
containing only symbols .belonging to t. 

Again, the listing of invariants is simplified by applying the standard basis 
theorem to the subalgebra of Super[L I P] spanned by polynomials in skew 
brackets. A skew bracket monomial, that is, a product of skew brackets 

where Wi is a word in Super[L] which is of Length n, stands for a Young diagram 
D = (W1,W2,'" ,Wj). Let us write n = Tab(D). (The tableaux in the places 
need not be written out, since they all consist of successions of the single word 
w' = 12· .. n.) By the standard basis theorem, those monomials m = Tab (D) , 
where D is a standard Young diagram, span the subspace of Super[L I P] of 
bracket polynomials. Since L = L +, a diagram D will be standard if along each 
row the letters appear in nondecreasing order, and along each column the letters 
appear in strictly increasing order. In other words, two successive letters a and 
b in a word Wi must satisfy the condition a ~ b, whereas the jth letters c and d 
of two successive words Wi and Wi+1 must satisfy the condition c < d. 

For covariants, it is again convenient to let the letters belonging to vectors 
(and tensors) with independent transcendental entries be last in the order of the 
alphabet L, so that D partitions into an upper and a lower part as before. The 
upper part of D suffices to define a covariant. In other words, a covariant is 
to be specified by a Young diagram D' = (w~, ... ,w;.) where Length(wD ~ n. 
The covariant will be Tab(w~w~, ... ,w;.w'j), where w~w~' is of length n, and 
where the words w~' are made up of symbols (letters) belonging to independent 
transcendentals. 

Contrary to what happens for symmetric tensors, the translation of a geo­
metric property into the vanishing of covariants turn out to be successful for 

, skew-symmetric tensors, and we devote Chapter 5 to the discussion of a number 
of such examples old and new. 

For a tensor t of step 2, or bivector, the only invariant is easily proved to be 
the P faffi an , which for n = 2k is symbolically represented by 

where ai are distinct letters belonging to t. The covariants of t are represented 
by incomplete Pfaffian 

j ~ It, 

and (as is well known) they give the rank of the tensor. 
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For a tensor of step k, the covariants 

(k-l) ap 

determine the rank of the tensor: if Or+ 1 vanishes but Or does not vanish, then 
the tensor is of rank r. 

The classical Grassmann conditions for a tensor to be decomposable translate 
into the vanishing of either of the two covariants 

a(k)b a(k)b(2) 

b(k-l) or b(k-2) 

where a and b are distinct letters belonging to the tensor. 
The condition that a tensor of step 3 be divisible by a vector is the vanishing 

of the covariant 

ac(3) 

where a, b, c are symbols belonging to the same tensor. These conditions are 
generalized in the text to give covariants specifying whether a given tensor of 
arbitrary step is divisible by one, two, etc., linearly independent vectors. 

In conclusion, we list those covariants which specify each of the canonical 
forms for a tensor of step 3 in dimension n = 6 and 7. 

For n = 6 the covariants that specify each of the four canonical forms are 
a(3) b(2) 

and 

b; 

a(3)b(2)c 

bc(2) ; 

a(3)b(2)C 

bc(2)d(3) . 

We find it remarkable that each of these turns out to be a standard Young 
diagram. A similar phenomenon happens for n = 7. 
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1. The Superalgebra Super[A] 

O. Introduction. We define in this chapter a generalization of the ordinary 
algebra of polynomials in a set of A variables with integer coefficients. Our 
variables shall be of three kinds: positively signed, neutral, and negatively signed: 
A=A+UAoUA-. 

Positively signed variables are the least familiar: they are the divided powers. 
To every positively signed variable a we assign a sequence a(l), a(2), a(3), ... of 
divided powers, which behave algebraically "as if" a(i) were to equal ai Ii! Then 
for example we have the "rules" 

and 

(a + b)(i) = L a(j)b(k). 

j+k=i 

, Positively signed variables and their divided powers commute. This seemingly 
artificial device is essential in making invariant theory characteristic-free. 

Neutral variables behave like ordinary polynomial variables; in particular they 
also commute. 

Negatively signed variables a, b anticommute: ab = -ba and a2 = b2 = O. 
However, we have ac = ca when a is negatively signed and c is a variable (or a 
divided power) of either of the two other kinds. 

The superalgebra Super[A] is the algebra spanned by monomials obtained by 
mUltiplying variables of each of the three kinds-for positively signed variables, 
one multiplies divided powers. The variables appearing in a monomial can be 
permuted at will, subject only to the condition that a minus sign be prefixed 
every time two negatively signed variables are permuted. 
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Much of the work in this chapter goes in showing that the structure of a Hopf 
algebra can be given to the superalgebra Super[A] by setting 

j+k=i 

!:l.a = 1 ® a + a ® 1, 

and extending !:l. so that it is an algebra homomorphism from Super [A] 
to Super[A EB A]. The only delicate point arises in the commutation rule 
(1 ® a)(b ® 1) = -b ® a when both a and b are negatively signed. Because 
of this feature, the superalgebra Super[A EB A] cannot be identified with the or­
dinary tensor product Super[A] ® Super[A] of commutative algebra, but rather 

it is a "signed" tensor product. 
In geometric and combinatorial interpretations, the neutral elements will not 

directly appear; they appear indirectly as "scalars." Remarkably, positively 
signed variables give the symbolic representation of skew-symmetric tensors, and 
negatively signed variables give the symbolic representation of symmetric tensors. 

Combinatorially, positively signed variables relate to the algebra of multisets 
(or bosons), and negatively signed variables relate to the algebra of sets (or 

fermions). 
The material in this chapter offers no great novelty. Readers acquainted with 

the techniques of Hopf algebras may simply skim over the definitions and proceed 

to the next chapter. 

1. Definitions. Let A be a set. We denote by Mon(A) the free monoid 
generated by A. We recall that the elements of Mon(A) are finite sequences of 
elements in A. If w E Mon(A) with w(l) = Xl, w(2) = X2,"" w(n) = Xn, 
then we shall call w a word and denote it by w = XIX2 ., . Xn· Two such words 
W = XIX2'" Xn and w' = YIY2'" Ym are equal when n = m and Xl = YI, X2 = 

Y2, ... ,Xn = Yn' 
If w = XIX2 ... Xn is a word in Mon(A), we shall call XIX2 ... Xn its display 

and n its length. The words having length 1 will be identified with the elements 
of A. We shall allow w to be the empty sequence, in this case taking n to be 0, 
and denoting this word by 1. (To avoid confusion, we shall always assume that 

1 ¢ A.) 
The product of two words w = XIX2 ... Xn and w' = YIY2 ... Ym is the word 

WW' = XIX2 ... XnYIY2 ... Ym' Endowed with this operation, Mon(A) is an asso­
ciatiave (but not commutative) semigroup with identity. 

A multiset on a set A is a function m: A --+ Z+ whe"re Z+ is the set of 
nonnegative integers. For a E A, the integer m(a) is called the multiplicity of 
the element a in the multiset m. There is a useful way to visualize multisets, 
which we shall often tacitly appeal to. Suppose, for example, that m( a) = 
2, m(b) = 1, m(c) = 3 and that m(x) = 0 for all other X EA. Then we describe 
the multiset by the display {a, b, c, a, c, c}. 
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Let w E Mon(A). We associate to w the multiset, cont(w), on A defined by 

cont(w; a) = cont(w)(a) = the number of occurrences of the 
element a among the elements Xi in the display of w. 
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Sometimes, in this situation, we say the content of the word w is the multiset 
cont(w). 

A signed set A is a set together with three disjoint subsets, denoted by A+, AO, 
and A -, whose union is A. We shall call the elements in A + "positive," those 
in AO "neutral," and those in A- "negative." A function f: A --+ B from a 
signed set A to a signed set B will always be assumed to satisfy the conditions 
f(A+) C B+, f(AO) c BO, and f(A-) c B-. The direct sum of two disjoint 
signed sets A and B is the signed set A U B, denoted by A EB B, where 

(AEBB)+=A+UB+, (AEBB)o=AoUBo, (AEBB)-=A-UB-. 

The signed set A is said to be proper if AO is empty. In this case, we define the 
adjoint of the signed set A in the following way. Let A * be a set isomorphic to 
A via a mapping ¢: A --+ A*. We make A* into a signed set by defining (A*)­
to be ¢(A+) and (A*)+ to be ¢(A-). The mapping ¢ induces a map (also 
denoted by ¢) from Mon(A) to Mon(A*), obtained by setting ¢(XIX2 ... xn) = 
¢(XI)¢(X2) ... ¢(xn) = xix2 ... x~. 

The basic concept we shall use is that of an extended signed set. Consider a 
signed set A. The extended signed set of A, denoted by Ad, is defined as follows: 

(Ad)- = A-, (Ad)O = AO, (Ad)+ = A+ X N 

where N = natural numbers = {I, 2, ... }. If a E A+, we shall write a instead 
of (a, 1) and, otherwise, a(n) instead of (a, n). We shall call a(n) the nth divided 
power of the element a. 

If A is a signed set, we denote by Div(A) the free monoid generated by the 
extended signed set Ad. A homomorphism Disp: Div(A) --+ Mon(A) is de­
fined as follows. If a E A- or a E AO, set Disp(a) = a. If a E A+, set 
Disp(a(n)) = aa· .. a (n-times). Using the homomorphism Disp, we define, for 
wE Div(A), Length(w) = length(Disp(w)) and Cont(w) = cont(Disp(w)). 

To illustrate these ideas, let w = bc(3)a(2)a(3)cd be in Div(A). Then, Disp(w) 
= bcccaaaaacd and Length(w) = 11. Also, w has a content m where m(a) = 
5, m(b) = 1, m(c) = 4, and m(d) = 1. 

Different words in Div(A) may have the same "display," i.e., Disp(w) may 
equal Disp( w') even though w =j:. w'. For example, take w as above and w' to 
be bc(3)a(5)cd. Nevertheless, one can define an inverse mapping from the set 
Mon(A) to the set Div(A), denoted by w--+ stand(w), which is however not a 
homomorphism of monoids. For w E Mon(A), define stand(w) to be the unique 
word 'in Div(A) such that 

(a) Disp(stand(w)) = w; 
(b) if stand(w) = YIY2'" Yk where Yi E Ad and if YJ" = a(i) for some a E A+,' 

i E N, then Yj-l =j:. aCT) and Yj+l "# a(s) for all integers rand s. 
So, with wand w' as in the above example, we have stand(Disp( w)) = w'. 
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The heart of many of the computations of invariant theory is the calculation 
of the sign of certain expressions. If W E Div(A), we define the parity of w, 
denoted by JwJ, to be 0 or 1 depending on whether 2:aEA- Cont(w; a) is even 
or odd. In the first case, we say that W is positive and in the second, negative. 
Arithmetical operations on the parity symbol will always be carried out in Z2; 

for example, we have Jww'J = JwJ + Jw'J. 
If k is an integer, we set sign( k) = (_1)k. 

2. Construction of the superalgebra Super[A]. Let A be a signed set. 
We construct a Z-algebra, Tens [A] , as follows: As a Z-module, Tens [A] is free 
with basis consisting of the words in Div(A). Thus, if p E Tens[A], then p can 
be written uniquely as a finite sum, p = 2: CiWi where Ci E Z and Wi E Div(A). 
Multiplication in Tens[A] is defined by extending the multiplication in Div(A). 
So, if p is as above and q = 2: djwj is another element in Tens[A], then pq = 
2: CidjWiWj where the product WiWj is taken as in Div(A). In this way, Tens[A] 
becomes an associative algebra with identity. 

In Tens[A], we define an ideal fA (or simply f) to be the ideal generated by 

all expressions of the following forms: 
(Il) uv - sign(JuJJvJ)vu for u, v E Div(A), 
(12) aa, where a E A -, 
(13) aCi)aCj ) - (i1 j )a(i+j) where a E A+. 
The quotient algebra Tens [A] I f will be denoted by Super[A]. 
When the signed set A is proper, then in the algebra Super[A] we define a 

sequence of many operations p ~ p(i), where p E Super[AJ, as follows. Such an 
element p can be written as a finite linear combination 

p = L cjmon(wj) 
j 

where Cj E Z and mon(wj) is the canonical image of Wj E Tens[A] in Super[A]. 
Whenever no confusion is possible, we shall write Wj in place of mon( Wj), thus 

p= LCjWj. 
j 

We set pCO) = 1, the identity of the superalgebra Super[A]; p(1) = p. If i is a 
positive integer other than 1, the definition of pCi) is accomplished in the following 

steps: 
Step 1. If p = a, with a E A -, a set pC i) = 0 if i > 1. 

Step 2. If p = aCk ) with a E A+, set 

P
Ci) = (aCk))Ci) = (ik)! aCki ) 

i!(k!)i . 

Step 3. If p = Y1Y2 ... Yn, with Yi E Ad, set pCi) = yii) y~i) ... y~i) . 
Step 4. If p = cmon(w), where C E Z and W E Div(A), set pCi) = ciwCi). 

THE SUPERALGEBRA Super[A] 

Step 5. If p = 2:7=1 CjWj = 2:7=1 Pj, where Pj = cJ"Wj, then set 

p(i) = LPii 1 ) p~i2) . .. p~in), 
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where the sum ranges over all n-tuples of nonnegative integers iI, i2 , ••• , in such 
that i1 + i2 + ... + in = i. 

When A is a signed set, the algebra Super[A] will be called the superalgebra 
generated by the signed set A. \Vhen A is a proper signed set, the superalgebra 
Super [A] will be tacitly assumed to be endowed with the operation p ~ pCi) 
where it will be called the divided power operation. ' 

Observe the following properties of Super[A]. 
(1) We :an set Cont(mon(w)) = Cont(w) and Length(mon(w)) = Length(w) 

for W E DIV[A], as well as Jmon(w)J = JwJ. Thus, fixing a multiset m on A, 
the set of all mon(w) for W E Div[A] with Cont(w) = m spans a submodule of 
Super[A], which we call the submodule of all monomials of content m. 

Indeed, let m be a multiset on A. We consider all words W E Div(A) so that 
Cont( w) = m. These words, together with 0, span a submodule Tensm [A] of 
Tens[A]. Furthermore, Tens[A] = 2:m Tensm[A] where the sum is a direct sum. 
Now, let i E f. Then i = 2:im where im E Tensm[A]. Each im is in f since this 
property holds for the generators of f. It follows that if w, w' E Div(A) with 
W == w' (modI) but W r/:. I, then Cont(w) = Cont(w') , Lengthw = Lengthw', 
and JwJ = Jw'J. We sometimes speak of the "parity of a word in Super[A]." 

(2) If a, bEAd, then ab = ba in Super[A] unless a and b are negative in which 
case ab = -ba. (This follows from (Il).) 

Examples. (1) If A = AO, then Super [A] = Symm(A) , the Z-algebra con­
sisting of all polynomials with "variables" the elements a E A, often called the 
symmetric algebra generated by the set A. 

(2) If A = A -, then Super [A] = Wedge (A), the exterior algebra generated 
by the set A, that is, the Z-algebra consisting of all skew-symmetric monomials 
in the "variables" A. Thus, a monomial in Super[A] , say a1a2 ... ak, satisfies 
the relation a1a2 ... ak = sgn(0-)aa1aa2'" aak where 0- is any permutation of 
{1, 2, ... ,k}. -

(3) If A = A+, then Super[A] is the divided powers algebra Divp[A] generated 
by the set A. We recall that, in characteristic zero (that is, over the field Q of 
rational numbers), the divided power a(i) can be identified with a i Ii!. 

We omit the proof of the following two elementary facts. 

PROPOSITION 1. An injection f: B ~ A induces an isomorphism 

j: Super[B] ~ Super[A]. 

PROPOSITION 2. For any signed set A, we have a natural isomorphism of 
Super [A] with the tensor product 

Divp[A+] ® Wedge[A-] ® Symm[AO]. 
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It follows from Proposition 2 that if aI, a2, ... ,ar are distinct elements in 
A +, bl , b2, ... ,bs are distinct elements in A -, and Cl, C2, ... ,Cu are distinct ele­
ments in AO, then a~el) a~e2) ... a~er) bl b2 ... bscTl C~2 ... c~1L is a nonzero element 

in Super[A]. 
In addition, all elements of the above form constitute a basis for Super[A]. 

3. Tensor products. 

PROPOSITION 3. Let A and B be disjoint signed sets. Then the Z-modules 
Super[A] ® Super[B] and Super[A EB B] are isomorphic. 

PROOF. By Proposition 1, we may consider Super[A] and Super[B] as subsets 
of Super[A EB B]. Then, the multiplication map 

Super [A] x Super[B] --t Super[A EB B], 

(u, v) --t uv, gives a mapping ¢ from Super[A] ® Super[B] onto Super[A EB B]. 
Clearly, a monomial in Super[A] can be written in many ways as a product 

of letters in At, A -, and A 0 . We call such a monomial "canonical" if it has the 

form 

where the ai are distinct elements in A +, the bi are distinct elements in A - , and 
the Ci are distinct elements in AO. Such monomials span the module Super[A]. 
Similarly, canonical monomials span the module Super[B]. 

To show that the mapping ¢ is one-to-one, suppose that ¢(E7=1 Ciri®Si) = 0, 
where Ci E Z, ri is a canonical monomial in Super[A], and Si is a canonical 
monomial in Super[B]. As remarked in §2, we may assume that all riSi have the 
same content. But then rl = ±r2 = ... = ±rn, Sl = ±S2 = ... = ±sn so that 
'n - 1. But ¢(r ® s) = rs '# 0 as remarked above. This completes the proof. 

Since Super[AEBB] is an algebra, we may use the isomorphism of the preceding 
proposition to define a multiplication on the tensor product Super [A] ®Super[B]. 

Namely, if 

then set 

r = LCiWi ®w~ and s = LdjwJ, ®w;" 
J' 

rs = L cidJ'sign(lw~llwjl)wiwj ® w~w;'. 
i,J' 

Note that the module structure on Super[A] ® Super[B] agrees with the usual 
tensor product module structure. But, the multiplication on Super[A]®Super[B] 
is not the usual multiplication on the tensor product, because of notable differ­

ences in sign. 
Some consequences of the preceding proposition will be frequently used below. 

First, let r be a monomial in Super[A] and s be a monomial in Super[B]. We 
may then define Ir ® sl to be Irl + lsI and Cont(r ® s) = Cont(r) * Cont(s). 
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Second, let A, B, and 0 be mutually disjoint signed sets. The Z-module 
Super[A] ® Super[B] ® Super[O] can be made into an algebra through its iden­
tification with either Super[A EB B] ® Super[C] or Super[A] ® Super[B EB 0]. In 
either case we have 

(WI ® W2 ® W3)(W~ ® W~ ® W~) = EWlW~ ® W2W~ ® W3W~, 

where E = sign(lw21lw~1 + IW311w~1 + IW31Iw~I)· Also, IWI ® W2 ® w31 = IWll + 
IW21 + IW31· 

Third, we may define a multiplication on the Z-module Super[A] ® Super[A] 
by (the device of) viewing B as a set isomorphic to but disjoint from A and 
proceeding as above to get 

(WI ®W2)(W~ ®W~) =sign(lw2"w~I)WlW~ ®W2W~, 

Again, IWI ® w21 = IWll + IW21. Similarly, we may define a multiplication on 
Super[A] ® Super[A] ® Super[A] (and longer tensor products) getting formulas 
similar to the above. 

4. The coproduct .6.. Let A be a signed set. We define an algebra homo-
morphism ¢: Tens [A] --t Super[A] ® Super[A] as follows: 

(a) ¢(1) = 1 ® 1, 
(b) if a E A - U A 0 , set ¢ ( a) = 1 ® a + a ® 1, 
(c) if a E A+, set ¢(a(n)) = 1 ® a(n) + a(l) ® a(n-l) + a(2) ® a(n-2) + ... + 

a(n-l) ® a(1) + a(n) ® 1. 

If u is a word in Tens[A], observe that ¢(u) is a sum of terms each of which 
has parity luI. We shall sometimes write 1¢(u)1 = luI. 

We next show that ¢ sends fA to O. Let u, v be words in Tens[A], say u = 
XlX2 ... Xn and v = YlY2 ... Ym' We show that ¢ sends uv - sign(lullvJ)vu to O. 
Now, ¢(u) = ¢(Xl)¢(X2)'" ¢(xn) is a sum of terms r ® s each of parity 

luI = IXII + IX21 + ... + IXnl = Ir ® sl = Irl + lsI· 
Similary, ¢( v) is a sum of terms r' ® s' each of parity 

Ivl = IYll + IY21 + ... + IYml = Ir' ® s'l = Ir'l + Is'l· 
Therefore, ¢(uv - sign(lullvl)vu) is a sum of terms of the following forms: 

(r ® s) (r' ® s') - sign (I u II v I) (r' ® s') (r ® s) 

= sign(lr'llsJ)rr' ® ss' - sign(lullvl + Is'llrl)r'r ® s's 

= (sign(lr'llsJ) - sign(lullvl + Is'llrl + Ir'llrl + Is'llsJ)rr' ® ss' 

= (sign(lr'llsJ) - sign(lr'llsl))rr' ® ss' = O. 

Second, observe that if a E A -, then 

¢(a2) = ¢(a)¢(a) =:; (1 ® a + a ® 1)(1 ® a + a ® 1) 

= 1 ® a2 - a ® a + a ® a + a2 ® 1 = O. 
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Third, let us show that ¢(a(i)a(j)) = (i1
j
)¢(a(i+j )). Let n = i + j. Then 

¢( a (i) a (j)) equals 

[a(i) ® 1 + a(i-1) ® a + ... + 1 ® a(i)][a(j) ® 1 + a(j-1) ® a + ... + 1 ® a(j)], 

which is a sum of terms of the form 

(n ~ ~ ; I) e ~ I) a(n-k-l) <8> a(k+1) , 

where k = 0, ... ,i and l = 0, ... ,J'. The coefficient of a term a(n-u) ® a(u) is 

(easily) seen to be (7). 
Since ¢ sends the generators of fA to 0, it sends fA to 0 and defines an algebra 

homomorphism ~: Super[A] -+ Super[A] ® Super[A] such that: 

(a) ~(1) = 1 ® 1, 
(b) ~ (a) = 1 ® a + a ® 1 if a E A-or a E A 0 , 

(c) ~ ( a (n)) = a (n) ® 1 + a (n-1) ® a + ... + 1 ® a (n) if a E A + . 
If U is a word in Super[A], then ~u is a sum of terms of the form r ® s, say, 

~u = r1 ® Sl + r2 ® S2 + ... + rp ® sp-

We shall denote this series by the Sweedler notation, 

~u = L u(1) ® U(2)' 
u 

We turn to the question of uniqueness in this expansion. 

PROPOSITION 4. Let 1r: Tens[A] -+ Super[A] be the natural mapping. Then 

the mapping 1r ® 1r: Tens[A] ® Tens[A] -+ Super[A] ® Super[A] has kernel J A = 

fA ® Tens[A] + Tens[A] ® fA· 

PROOF. Clearly JA C ker(1r®1r). By Proposition.2, we may choose elements 
ell e2,'" in Tens [A] so that 1r(e1), 1r(e2),'" is a basis for Super[A]. Hence, 
each element in Tens[A] has the form a + C1e1 + ... + cnen where a E fA and 
Cj E Z. If v E Tens[A] ® Tens[A] but v tf. J A, then v = a + 2: Cijei ®ejwhere 

a E J A, Cij E Z, and some CiJ' # O. But then 1r( v) = 2: Cij1r( ei) ® 1r( ej) # O. 
The same reasoning shows that the kernel of 1r ® ... ® 1r (n-times): Tens [A] ® 

... ® Tens[A] -+ Super[A] ® ... ® Super[A] is fA ® Tens[A] ® ... ® Tens[A] + 
Tens[A] ® fA ® Tens[A] ® ... ® Tens[A] + ... + Tens[A] ® ... ® Tens[A] ® fA. 

Let m be a multiset on A; let Tensm[A] be the submodule of Tens [A] spanned 
by 0 and all words W E Div(A) such that Cont(w) = m. Then, Tens [A] is the 
direct sum of all the Tensm [A]. Furthermore, fA is the direct sum of all the 
fm = fA n Tensm[A] (as remarked in §2). Next, let m1 and m2 be multisets on 
A and set T(mll m2) = Tensm1 [A] ® Tensm2 [A]. Then, Tens[A] ® Tens [A] is the 
direct sum of the modules T(m1' m2) as m1 and m2 range over all multisets in 
A. Furthermore, J A = fA ® Tens[A] + Tens[A] ® fA is the direct sum of all the 

modules J(m1' m2) = JA n T(ml, m2). 
Now, let U be a word in Super[A]. By the definition of ~, we see that in 

~u = 2: u(1) ®U(2), the monomials u(1), U(2) may be chosen so that Cont( u(1)) + 
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Cont(U(2)) = Cont(u) for each term U(l) ®U(2)' Let ~u = 2:V(l) ®V(2) be 
another representation of ~u where the V(l), V(2) are words. Then, in Tens[A] ® 
Tens [A], 

L U(l) ® U(2) = L v(1) ® V(2) + j, 
where j is an element in the ideal JA = fA ®Tens[A] + Tens [A] ®fA. Comparing 
contents on both sides of this equation, we see that those terms V(l) ® V(2) with 
Cont(V(l) ® V(2)) # Cont(u) must be in JA and have image 0 under 1r ® 1r. So, 
these terms can be omitted from any expression for ~u. With this convention, 
we see that any representation of ~u as a sum of terms U(l) ® U(2) satisfies 
Cont(u(1) ® U(2)) = Cont(u(l)) + Cont(U(2)) = Cont(u). Similarly, we may 
suppose that Length(u(1))+Length(u(2)) = Length(u) and IU(1) I + IU(2)1 = lui· 

5. The Coassociative Law. Let A be a signed set. Then the homomor­
phisms 1 ® ~ and ~ ® 1 both send Super[A] ® Super [A] to Super[A] ® Super [A] ® 
Super[A]. 

PROPOSITION 5 (COASSOCIATIVE LAW). Let A be a signed set. The ho­

momorphisms (1®~)·~ and (~®1)·~ from Super[A] to Super [A] ®Super[A] ® 
Super [A] coincide. 

PROOF. Let w E Div(A), with w = X1X2 ..• X n . We show by induction on 
Length w that (~® l)(~w) = (1 ® ~)~w. If Length w = 1, this equality follows 
from the definition of ~ by a simple calculation. 

Now, suppose that Length( w) = n > 1 and that equality holds for all words 
of Length < n. If w = a(n), then one may check that 

where the sum ranges over all nonnegative integers i, j, k such that i + j + k = n. 
Otherwise, w = uv where both u and v have Length < n. Write 

~u = L U(l) ® U(2) and ~v = L V(l) ® V(2)' 
u 

By the induction hypothesis 

(1) 2:u ~U(l) ® U(2) = 2:u u(l) ® ~U(2) 
and 

(2) 2:v ~V(l) ® V(2) = 2:v v(1) ® ~V(2)' 
Now, 

u,v 

Hence, 

u,v 

v 
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and 

u,v 

These two previous expressions are equal as follows from multiplying (1) and 
(2) and recalling that I~V(l) 1 = IV(l) 1 and I~U(2) 1 = IU(2) I· This completes the 

proof. 
Next, define alg€bra homomorphisms c: Super[A] --+ Z and S: Super[A] --+ 

Super [A] as follows: c(w) = 1 if Length(w) = 0 and c(w) = 0 if Length(w) > 
0; S(w) = sign(Length(w))w. These maps along with ~ give Super[A] the struc­
ture of a Hopf algebra. In other words, the following diagrams are commutative: 

Super [A] 

71~~ 
g®l l®g 

Z ® Super[A] +------ Super[A] ® Super[A] --+ Super[A] ® Z 

~Super[A] 

z~ is 
~Super[A] 

~ Super[A] ® Super[A] 

ls®s 

~ Super[A] ® Super[A] 

Lastly, we define a sequence of algebra homomorphisms ~ (n) : Super[A] --+ 

Super[A] ® ... ® Super[A] (n-times) by repeatedly using the Coassociative Law. 
Set ~ (1) = id, ~ (2) = ~,~ (3) = (1 ®~) . ~ = (~® 1) . ~, ... ,~(n) = (1 ® ~) . 
~(n-l). We conclude with a property of the antipode S(w) which will be used 

repeatedly in Chapter 3. 

PROPOSITION 6. Let w be a word in Div(A). Let ~w = L:w W(l) ® W(2)· 

Then Ew W(1)S(W(2)) = c(w). 

PROOF. We use induction on Length(w); the case Length(w) S 1 follows at 
once from the definitions. In general, if w = a(n), then ~w = E7=0 a(i) ®a(n-i). 

Therefore, 

n 

L W(1)S(W(2)) = L sign(n - i)a(i)a(n-i) 

w i=O 

Otherwise, w = w'w" where Length(w') < nand Length(w") < n. Let us omit 
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the parentheses and write 

~(W') = L w~ ® w; and ~(W") = L w~ ® w~. 
Wi W" 

Then, 

So, 

LW(1)S(W(2)) = Lsign(lw;llw~1 +Length(w;w~))w~w~w;w~ 
w 

= L w~sign(Length(w;))w;w~sign(Length(w~))w~ = o. 



2. Laplace Pairings 

o. Introduction. In this chapter we introduce a far-reaching generalization 
of the classical notion of the determinant of a matrix. By way of motivation, we 
review the ordinary determinant in the present notation. 

Suppose we are given a matrix whose rows are labeled Xt, X2,' .. , Xn , where 
Xi E L - and where L is a proper signed set, and whose columns are labeled 
at, a2, . .. ,an, where ai E P- and where P is another proper signed set. The 
entries of the matrix are denoted by (Xi I aj); we consider them as neutral 
elements of another (improper!) signed set [L I Pl. Since neutral elements 
behave like "scalars," that is (Xi I ai) E [L I Plo, we operate with the "variables" 
(Xi I ai) as we do with ordinary numbers. 

We denote the determinant of the matrix (Xi I ai) by the expression 

(XlX2 ... Xn I ala2 ... an). 

Again, Xl'" Xn E Div[L-l and al ... an E Div[P-l. In the case at hand, we 
can define the determinant by the classical formula 

(T 

\ however, we shall follow another more circuitous route for what seems like an 
obvious definition. Let us recall the Laplace expansion of a determinant (by rows 
first) and express it in the present notation. Using the notation of Hopf algebras 
developed in the preceding chapter, set 

Xl ... Xi ='u, Xi+l ... Xn = u', 

One can then verify that a Laplace expansion by rows can be elegantly rewritten 
(forgetting about the signs for the moment) as 

(uu' I W) = L±(u I W(l))(U' I W(2))' 

w 

A similar identity holds for Laplace expansions by columns. 

13 
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Multiple Laplace expansions can be similarly expressed. On the right side of 
(**), expand (u I Wei)) by a further Laplace expansion, say writing u = u"u"', 

thus: 
(u I W(I)) = (u"u'" I W(I)) = L ±(u" I w(1I))(u'" I W(12))' 

W(1) 

Substituting in (**), we obtain 

(uu' I w) = L L ±(u" I w(1I))(u'" I W(12))(U' I W(2))' 
w wei) 

Using the Coassociative Law of the coproduct, the right side can be rewritten in 

the form 

w 

and it can be verified that the double Laplace expansion is consistent; that is, 
the same expression would have been obtained by expanding (u' I W(2)) first. 
Thus, by a succession of iterated Laplace expansions, we eventually arrive· at the 
ordinary expression (*) for the determinant, and it does not matter in what order 
we take our Laplace expansions. In other words, the fact that the determinant is 
well defined is tantamount to verifying that the order in which successive Laplace 
expansions of minors is carried out is immaterial, and all lead eventually to (*). 

In the present content, we wish to generalize the notion of determinant by 
allowing Xi E L + U L - and a J' E p+ U P-. Specifically, we wish to define a 
biproduct (w I u) where W is any word in Div[L] and u any word in Div[P]' pos­
itive or negative. One cannot do this by generalizing (*), because the algebraic 
properties of the divided powers xCi) for X E L+ all but force the definition 

(xCi) I ala2'" ai) = (x I ad(x I a2)'" (x I ai), 

where ai E P-, and (x(i) I a(i)) = (x I a)(i) where a E P+. We must resort 
therefore to another device: we define symbols (w I u) and subject them to suit­
able generalizations of the Laplace expansions which take the varying signs into 
account. The problem is then that of proving that successive Laplace expan­
sions can be carried out in any order, giving a consistent result. This is, in brief, 
the content of the present chapter. The assignment of signs is carried out by a 
simple idea. A biproduct (w I u) is given the sign Iwi + lui· Two biproducts 

-commute if not both of them have negative signs and anticommute if both have 
negative signs. One carries out a Laplace expansion by noting the number of 
commutations of negative letters in the biproducts that are necessary to carry 
out the expansion. For example, if x, y E L + and a, (3 E P- and we want to ex­
pand the biproduct (xy I a(3), we may choose to expand it by "rows" and obtain 
(x I a)(y 1(3) + (y I a)(x I (3); here all the signs are positive because x and y have 
been permuted in the expansion, and they are both positive. In other words, 
all the signs are + because no pairs of negative entries have been permuted. 
On the other hand, we may choose to expand by "columns" and then obtain 
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(x I a) (y I (3) - (x I (3) (V I a). Here, the minus sign arises from the fact that 
two negatively signed elements, namely a and (3, have been permuted. Because 
(x I (3) and (y I a) are negatively signed, we have (x I (3)(y I a) = -(y I a)(x I (3), 
and the two expressions, coincide, giving a consistent definition. 

The basic rule for Laplace expansions is the following: if u = u' u" then 

(w I u'u") = LSign(lw(2)llu'l)(w(1) I U')(W(2) I u"). 
w 

The "reason" for the sign can be viewed as follows. In passing from 
(W(I) ® W(2) I U' ® u") to (W(I) I u')( W(2) I u") one "commutes" the words 
W(2) and u'. 

There is a dual rule when the roles of wand u are exchanged. 
The resulting definition of a biproduct (w I u) includes not only the ordinary 

determinant, when all letters in wand u are negatively signed, and the perma­
nent, which occurs when all letters in both wand u are positively signed and 
distinct, but also a characteristic-free generalization of the permanent, which 
occurs when all letters in both wand u are positively signed but not necessarily 
distinct. 

The most interesting new special case, however, occurs when all letters in 
ware positively signed and all letters in u are negatively signed. We obtain 
then a generalization on the notion of determinant (foreshadowed, but only in 
characteristic zero, by Doubilet and Rota) which, as we shall see, plays a role 
at least as great as that of Cayley's "bracket" in invariant theory. The results 
in this chapter are believed to be new and are published here for the first time. 
The notion of Laplace pairing can be given in a more general context of Hopf 
algebras, but we have deliberately restricted the exposition to the cases needed 
in invariant theory. 

1. The fourfold algebra. Let Land P be disjoint proper signed sets (so 
that LO = pO = 0). We shall call the elements of L letters and the elements of 
P places. We define a new signed set, which is not proper, by [L I P] = {(x I 
a): x E L, a E Pl. Here, the elements of [L I P] are denoted by symbols (x I a). 
The positive, neutral, and negative elements in [L I P] are defined as follows: 

(i) ifxEL+, aEP+, then (x I a) E [L I P]+; 
(ii) if x E L -, a E P-, then (x I a) E [L I P]O; 
(iii) otherwise, (x I a) E [L I P]-. 
The Z-algebra Super[L I P] will be called the fourfold algebra. By Propositions 

2 and 3, we have an isomorphism of the fourfold algebra with the fourfold tensor 
product. 

Super[L I P] = Super[L - I P-] ® Super[L - I p+] 

® Super[L+ I P-] ® Super[L+ I P+]. 
In the fourfold algebra Super[L I P] we have (x I a)(y I (3) = ±(y I (3)(x I a) 

with a minus sign only when exactly one of x and a is negative and exactly one 
of y and (3 is negative. We shall use this fact often in what follows. 
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2. The Laplace pairing. Let A be any signed set. If k E Z+, we denote by 
Tensk [Aj the submodule of Tens[Aj spanned by ° and all W E Div(A) such that 
Length(w) = k, and similarly we define Superk[Aj. 

Let Land P be proper signed sets. For k, 1 E Z+ we define a bilinear mapping 
o from SuperdLj x Superz(Pj to Super[L I Pj. This will be done by first defining 
a mapping, which we also denote by 0, from TensdLj x Tensl [Pj to Super[L I 
Pj, and then by verifying that the required conditions are satisfied to induce a 
bilinear mapping on the superalgebras. The bilinear mapping 0 is defined by 

the following rules: 
Rule 1. If k i= l, then 0 == 0. 
For k = 1 = n, say, we define 0 inductively. It suffices to define O(w, u) for 

words wand u. We shall denote O(w,u) by (w I u), and we call (w I u) the" 

biproduct of wand u. 
In the inductive definition of 0, we shall check that the following two condi-

tions hold at each step n. 
(i) Ifw ElL andu E Tensn[P], thenO(w,u) = 0. Ifu E Ip andw E Tensn[Lj, 

then O(w, u) = 0. 
(ii) (Commutation rule for biproducts) Let w, w' , u, u' be words of Length ~ n. 

Then 
(w I u)(w' I u') = c(w' I u')(w I u), 

where c = sign(lw'llul + Iw'llwl + lu'llul + lu'llwl). 
Rule 2. (1 11) = 1. 
Rule 3. For x E L, a E P set O(x,a) = (x I a). 
Condition (i) holds for n = 0,1 since nonzero elements in IL or Ip are sums 

of words having Length ~ 2. Condition (ii) holds for n = 0,1 as remarked at 

the end of § 1. 
Suppose that 0 has been defined on Tensk[Lj x Tensk[Pj for k < n in such a 

way that conditions (i) and (ii) hold. We then define 0 on Tensn[Lj x Tensn[Pj 

by the following three rules: 
Rule 4. (x(n) I a(n)) = (x I a)(n). 
Rule 5. (w I u'u") = .L:w sign(lw(2) Ilu'I)(W(l) I U')(W(2) I u"), 

where ~w = .L:w W(l) 0 W(2)' 
Rule 6. (w'w" I u) = .L:u sign(lw"llu(l) I)(w' I U(l))(W" I U(2)), 

where ~u = .L:u U(l) 0 U(2)' 
We now.check that these rules give a consistent definition of 0 and then that 

conditions (i) and (ii) hold. To show that 0 is well defined, we need to establish 

the following facts. 
(1) Rule 5 does not depend on the representation of ~w as a sum, .L:w W(l) 0 

W(2)' Rule 6 does not depend on the representation of ~u. 
(2) Rule 5 does not depend on the particular factorization of u = u'u". 
Rule 6 does not depend on the particular factorization of w = w' w". 
(3) In computing (ww' I uu') the same answer is arrived at whether Rule 5 or 

Rule 6 is applied. 
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PROOF OF (1). We prove (1) for Rule 5, the proof for Rule 6 being similar. 
We begin by noting that since condjtion (i) holds, we may view wand u as 
elements of Super[L] and Super[P], respectively, when writing (w I u). Thus, 
the expressions (w(1) 11(,') and (W(2) I u" ) are well defined. 

Let Length( u') = kl < nand Length(u") = k2 < n. Then u' defines a 
linear mapping Tens[L] ---t Super[L I P], w ---t (w I u'). Similarly, u" defines a 
linear mapping Tens [L] ---t Super[ LIP] by w ---t (w I u"). These two linear 
mappings in turn define a linear map from Tens[L] 0 Tens[L] to Super[L I P] by 
WI 0 W2 ---t (WI I u')( W2 I u"). 

Now let ~w = .L:w W(l) 0W(2) = .L:w Vel) 0V(2) be two representations of ~w. 
V!e apply the remarks following Proposition 4. Considering these representations 
as elements in Tens[L] 0 Tens[L], we may equate terms in T(ml, m2) where 
ml, m2 are any two given.multisets on L. Then, there is an element J' E JL n 
T(ml, m2) so that 

~' , ~ (W(l) 0 W(2) = I: Vel) 0 V(2) + j, 
w w 

where the sums are restricted to terms in T( ml, m2), Applying the linear map­
ping defined by u' and u" to the equation above and recalling condition (i), we 
see that 

I:'(W(l) I U')(W(2) I u") = I:'(V(l) I U')(V(2) I u"). 

Since m2 is the content of each W(2) and V(2), we may multiply this equation by 
sign (Iu'l w(2) I). This completes the proof of (1). 

PROOF OF (2), To prove (2) for Rule 5, we shall show that (w I (ab)e) = 
(w I a(be)). First, we recall that if ~w = .L: W(l) 0 W(2), then 

(~01)(~w) = I: ~w(1) 0 W(2) = I: Well) 0 W(12) 0 W(2) 

= (10 ~)(~w) = I: W(l) 0 ~W(2) 

= I: w(1) 0 w(2l) 0 W(22)' 

Therefore, 

(w I (ab)e) = I:sign(l ab llw(2)1)(W(1) I ab)(W(2) I e) 
w 

Similarly, 

(w I a(be)) = I: sign(lallw(2) I) (W(l) I a) (W(2) I be) 
w 

= I: sign(lallw(2) I + Ibllw(22) I) (W(I) I a) (W(2l) I b){ W(22) I e). 

To see that these expressions are equal, let us change notation and set ~ (3) w = 

2:w W(l) 0 W(2) 0 W(3)' Each of the expressions above has the form (*) 

L sign(la llw(2) I + lallw(3) I + Ibllw(3) /) (W(l) I a) (W(2) I b)( W(3) I e) 
w 
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since IW(2) I = IW(2l) 1+ IW(22) I· But an argument just as in the proof of (1) shows 

that (*) does not depend on the representation of 6.(3)w. 
PROOF OF (3). In computing (ww' I uu') we may apply Rule 5 or Rule 6. 

Let us begin by using Rule 5. Then 

(ww' I uu') = Lsign(lull(ww')(2)1)((ww')(l) I u)((WW')(2) I u'). 

If 6.w = E W(l) 0 W(2) and 6.w' = E w(l) 0 W(2)' then 

6.( ww') = 6.w6.w' = L sign(lw(2) Ilw(l) I)W(l)W(l) 0 W(2)W(2)' 

Hence, applying Rule 6 we obtain 

(ww' I uu') = L sign(lu llw(2) I + lullw(2) I + IW(2) Ilw(l) I) 

x (W(1)W(l) I U)(W(2)We2) I u') 

= LC(W(l) I U(l))(w(l) I U(2))(W(2) I U(1))(WC2) I U(2)) 

where 

c = sign(lullw(2) 1+ lullw(2) 1+ IW(2) Ilwel) 1+ IU(l) I lWeI) 1+ IU(l) Ilw(2) I). 

Next, we begin with Rule 6. Then 

(ww' I uu') = Lsign(l(uu')(l)llw'I)(w I UU')(l))(W I (UU')(2))' 

We calculate 6.( uu') = 6.u6.u' and then apply Rule 5 and condition (ii) to 

(W(2) I U(l))(W{t) I U(2)) to conclude the proof. 
There are two useful formulas which follow by induction from these arguments. 

(a) 

(XlX2'" Xm I u) = L sign (~IXillu(j) I) (Xl I U(1))(X2 I U(2))'" (xm I U(m)), 
u ~>J 

where 6.(m)(u) = Eu U(l) 0 U(2) 0··' 0 U(m)' 

(b) 

(x I Ul U2 ... um) = L sign (~ IX(i) Iluj I) (X(l) I Ul)(X(2) I U2) ... (X(m) I Um), 
x ~>J 

where 6. (m) (x) = Ex X(l) 0 X(2) 0 .. ·0 x(m)' 
PROOF OF CONDITION (i). We shall prove that if u E Ip and if W is any· 

word in Tensn[L], then O(w, u) = O. The other statement in (i) is proved in the 
same way. We may assume that u E Ip n Tensn[P] by Rule 1. If W factors, say 
W = XlX2" ·Xm, then we see that O(w,u) = 0 by applying formula (a) above 
since 6.(m)(u) = 0 for m > O. Otherwise, W = x(n). Let r,u,v,s be words in 

Tens[P] of Lengths h, i, j, k so that h + i + j + k = n. Then, applying formula 

(b) and Rule 1, we see that 

O(x(n), ruvs) = (x(h) I r)(x(i) I u)(x(j) I v)(x(k) Is). 
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Also, 

O(x(n),rvus) = (x(h) I r)(x(j) I v)(x(i) I u)(x(k) Is) 

and, applying the comm~tation rule for biproducts, we see that this is 

sign(lullvl)(x(h} I r)(x(i) I u)(x(j) I v)(x(k) Is). 

Therefore, 

O(x(n), ruvs - sign(lullvl)rvus) = O. 

Furthermore, 

(x(n) I ra(i)c/j)s) = (x (h) Ir)(x(i) I a(i))(x(j) I a(j))(x(k) Is) 

= (x Ch ) I r)(x I a)(i)(x I a)(j) (x(k) Is) 

= (i~j)(x(h) I r)(x I a) (i+j) (x(k) Is) 

= (x(n) I re~j)aCi+j)s) .. 

19 

Sin:ilarly, if u E P- then (x Cn) I ru2s) = (x Ch) I r)(x I u)(x I u)(x(k) I s) = O. 
ThIS completes the proof of condition (i). 

PROOF OF CONDITION (ii). If either (w I u) or (w' I u') is (x(n) I a(n)) = 

(x I a)(~), the condition holds since (x I a)(n) is in the center of Super[L I Pl. 
OtherwIse, we may apply Rules 5 and 6 and use the induction hypothesis. This 
completes the proof of condition (ii). 

We have completed the argument showing that the bilinear mapping 0 from 

Tens[L] x Tens[P] t.o Super[L I ~]. is well defined. In fact, since condition (i) 
holds, we may conSIder 0 as a bIlInear mapping from Super[L] x Super[P] to 
Super[L I Pl· 

Notation. We shall denote sign (IW(2) Ilu'l) (W(l) lu')( W(2) I u") by 

(:~:~ I:;, ) 
\,and write Rule 5 as 

(W I u'u") = ~ (W(l) I u' ) . 
~ W(2) u" 

Similarly, Rule 6 may be written as 

(W'W" I u) = L (w:, I U(1)) . 
u W U(2) 

Extending this idea, we define the tableau 



20 LAPLACE PAIRINGS 

and formula (b) becomes 

3. Examples. 
EXAMPLE 1. Let us calculate (xy , a(3) where x, y E L+ and a, (3 E P-. 

First, we shall apply Rule 5. To use this, we begin by observing that 

L!t.w = L!t.xL!t.y = (10 x + x 01)(10 y + y 01) 

= 1 0 xy + x 0 y + y 0 x + xy 0 1. 

Then, Rule 5 along with Rule 1 gives 

(xy , a(3) = (x , a)(y , (3) + (y , a)(x , (3). 

Second, we shall do the same calculation but now using Rule 6. Here, 

L!t.u = L!t.a~(3 = (10 a + a 0 1)(10 fi + (301) 

= 1 0 a(3 + a 0 (3 - (30 a + a(30 1. 

So, (xy , a(3) = (x , a)(y , (3) - (x , (3)(y , a) which, according to the commuta­

tion rule for biproducts, is (x , a)(y , (3) + (y , a)(x , ~). 
EXAMPLE 2. Let Xl, ... ,Xn and aI, ... ,an be distinct elements in L + and 

P+, respectively. Then 

(XlX2'" Xn , ala2'" an) = I:)Xl , aud(x2 , a( 2)'" (xn , aun ), 

where a ranges over all permutations of {1, 2, ... , n}. 
PROOF. The proof is by induction on n and we sketch the details. (It is 

similar to the complete argument given for Example 5.) In Rule 6, we take 

w' = Xl and w" = X2X3 ... Xn· Now 
L!t.(ala2.' .. an) = al 0 a2 a3 ... an + a2 ® ala2 a3 ... an 

+ ... + an 0 ala2 ... an-l + (terms of wrong length). 

Here, the symbol ai means ai is not included in the product. Therefore, 

(XlX2 ... Xn , ala2 ... an) = (Xl' ad(X2 ... Xn , a2 ... an) 

+ (Xl' (2)(X2'" Xn , ala2 a3'" an) 

+ ... + (Xl' an)(X2 ... Xn , ala2 ... an-d 

= I)Xl , aud(X2 , a( 2)'" (Xn , aun ), 
u 
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using the induction hypothesis. We call (XlX2 ... Xn , ala2 ... an) the permanent 

of Xi, aj and denote it by perm(xi , aj}. 
EXAMPLE 3. Let Xl, ... ,Xn and aI, ... , an· be distinct elements in L - and 

P-, respectively. Then " 

(XlX2'" Xn , anan-l'" ad = L sgna(xl , aud(x2 , a( 2)'" (Xn , aun ), 

where a ranges over all permutations of {1,2, ... ,on}. 
PROOF. The proof is by induction on n and we sketch the details. We shall 

apply Rule 6 with w' = Xl and w" = X2'" Xn, noting that 'w"l = 0 or 1 
depending on whether n - 1 is even or odd. Now 

n 

L!t.(anan-l ... al) = L( _1)n-i ai 0 anan-l ... ai ... al + .... 
i=l 

Therefore, 
n 

(XlX2 ... Xn , anan-l ... al)= L( _l)i-l (Xl I ai)(X2 ... Xn I an" . ai'" ad 
i=l 

EXAMPLE 4. Let X E L+ and aI, a2, ... , an E P-. Then 

(x(n) , ala2'" an) = (x , al)(x , (2)'" (x I an). 

PROOF. The proof is by induction on n, the case n = 1 being trivial. In 
general, we apply Rule 5 with u' = al and u" = a2'" an. We recall that 
L!t.x(n) = l:~=o xCi) 0 x(n-i). Therefore, 

. (x(n) I ala2'" an) = (x I al)(X(n-l) , a2'" an) 

= (x , al)(x , a2) ... (x , an). 

EXAMPLE 5 (DOUBILET-ROTA, 1976). Let Xl, X2, ... , Xn E L+ and all 
.a2, ... , an E P-. Then 

(XlX2 ... Xn I ala2 ... an) = L sgna(xl , a;1)(x2 , a( 2) ... (xn , aun ) 

where a ranges over all permutations of {1, 2, ... ,n}. 
PROOF. We shall prove the first equality by induction on n, applying Rule 

6. The second equality is proved in a similar manner but by applying Rule 5. 

The cas.e n = 1 is trivial so we may suppose that the first equality holds for all 
positive integers < n. We now apply Rule 6 with w' = Xl and w" = X2 ... Xn. 
Now, 

n 

~(ala2 ... an) = 2::( -1)i-lai ® al ... ai ... an + (terms of wrong length). 
i=l 
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So, 

n 

= I)-I)i-I(XI I ai)(X2'" Xn I al'" G-i'" an) 
i=l 

n 

= L(-I)i-I(XI I ai) L(sgnr)(x21 arl)'" (Xn I arn ), 
i=l r 

where the second sum on the right-hand side is over all permutations r of 

{I, ... , i, ... , n}. 
Let us put 0- = r(li). We note that 0-(1) = i. Furthe:more, as i runs over 

1,2, ... , nand r runs through all permutations of {I, ... , i, ... , n}, the formula 
0- = r(li) gives back exactly once each permutation 0- of {I, 2, ... ,n}. In this 

notation, we have 

n 

= L:(-I)i-I(XI I ai) L(sgnr) 
i=l r 

X (X2 I arl)'" (Xi I ar(i-I))(Xi+1 I ar(i+l))'" (Xn I arn ) 

= L(XI I aad( -1)i(sgno-) 
a 

X (X2 I aai)'" (Xi I aa(i-I))(Xi+1 I aa(i+l))'" (Xn I aan). 

Now, let J.l = (i,i -1·· ·2). We note that sgnJ.l == (_I)i. The expression above 

becomes 

as desired. 
EXAMPLE 6. We shall calculate (X(2)y I a(2) (3) where y and (3 are negative. 

Now, 
~(a(2) (3) = a(2) 0 (3 + a{3 0 a + a(2) (3 0 1 + a 0 a{3 

+ 1 0 a(2) {3 + (3 0 a(2) . 

Hence, by Rule 6, 

(X(2) y I a(2) (3) = (X(2) I a(2)) (y I (3) - (X(2) I a(3) (y I a) 

= (x I a)(2)(y I (3) - (x I a)(x I (3)(y I a). 

4. The tableau of two words. In this section, we shall continue to let L 
and P be disjoint proper signed sets. Let w = XIX2 ... Xn and u = ala2 ... an 
be words in Mon(L) and Mon(P), respectively. Then stand(w) and stand(u) are 
words in Div(L) and Div(P), respectively. We define the tableau of wand u, 

written tab( w I u), by 

tab(w I u) = (stand(w) I stand(u)), 
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where the right-hand side is the Laplace pairing [2 from Super[L] x Super[P] to 
Super[L I Pl· 

Note. If each Xi E L+ and each aj EP+, we define the characteristic­
free permanent to be tab(xlx2 ... Xn I ala2 ... an). A calculation with such an 
expression was made in Example 2, above. 

Now, for a moment; let A be any signed set. We may take a basis for Super[A] 
over Z as remarked at the end of §2. Chapter 1, namely, elements of the form 

a(er) ... a(er)b
l 

... b cm ! ..• cmu 
Irs I u' 

where the a's (resp. c's) are distinct elements in A+ (resp. AO) and the b's 
are distinct elements in A -. We then may extend this basis to a Z-basis of 
Super[A] 0· .. 0 Super[A]. We shall call this basis the natural basis of Super[A] 0 
... 0 Super[A]. 

The purpose of this section is to examine ~(m)tab(w I u) in anticipation of 
some of the arguments in Chapter 3. We begin by noting two properties of ~. 
(Their easy proofs are omitted.) 

(1) If a E A - or A 0 , then 

~(m)(a) = a 010", 01 + 10 a 010'" 01 + ... + 10'" 010 a. 

If a E A+, then 
~ (m) (a(e)) = L a(ir) 0 ... 0 a(im), 

where the sum is over all m-tuples of nonnegative integers (il , ... , im ) such that 
i l + ... +im = e. 

(2) Let w be a word in Div(A) with 
(et) (e ) 

W = xl ... xr r YI ... Ys 

and where thex's (resp. y's) are distinct elements in A+ (resp. A-). Then 

. ~(w) = ~(xiet}) ... 8(ys) = L ±WI 0 W2, 

where WI and W2 range over all distinct words such that Cont ( WI) + Cont ( W2) = 
Cont(w). 

PROPOSITION 7. Let L arid P be disjoint proper signed sets. Let w E 

Mon(L), w =XIX2'" Xn , where w has no repeated negative letter. Let u E 

Mon(P), u = ala2 ... an, where u has no repeated negative letter. Let m ~ n 
and let ~(m)(stand(w) I stand(u)) be written as a linear combination of basis 
elements in the natural basis for Super[L I P] 0 ... 0 Super[L I P],say, 

~(m)(stand(w) I stand(u)) = LCvv,cv E Z. 

(a) If v = VI 0 ... 0 Vm where Length( Vi) :::; 1 for each i = 1, ... , m and if 
Cv f:. 0, then V has the following form. 

Let 0- be a permutation of {I, 2, ... ,n} and let {iI, i2, ... ,in} be 
(*) asubsetof{I,2, ... ,m}. LetjE{I,2, ... ,m}. Ifj=ik, put 

Vj = (Xk I aak)" otherwise; put Vj = 1. Let v = VI 0·· . 0 Vm. 

(b) Conversely, if v has the form (*), then Cv = ±1. 



24 LAPLACE PAIRINGS 

PROOF. We proceed by induction on n, the cases (x I a) and (x(n) I a(n)) fol­
lowing from property (1), above. Hence, we may assume, e.g., that stand(w) == 
w' w" where w', w" have no common letters and have Lengths smaller than 
Length(w). Apply Rule 6, §1, to see that 

D.(m)(w'w"l stand(u)) = 2: ±D.(m) (w' I U(1))D.(m)(w" I U(2))· 

The proof now follows by applying the induction hypothesis and property (2), 

above. 
An immediate consequence of part (b) of the Theorem is that tab( w I u) =1= 0 

if neither w nor U has repeated negative letters. 

3. The Standard Basis Theorem 

o. Introduction. In this chapter we derive a generalization of the classical 
~traightening algorithm whose idea goes back to Clebsch, Capelli, and Young. 
We consider double Young tableaux, namely, products 

of biproducts of Wi in Div[LJ and Ui in Div[PJ, where Land P are proper 
alphabets. If Length( Wi) = Ai and if A1 ~ A2 ~ ... ~ An, then such a product of 
biproducts can be viewed as an operation which assigns a member of Super[L I 
PJ to a pair of triangular arrays D-E (or Young diagrams) of the same shape 
A=(A1,A2, ... ). 

The rows of the diagrams D are the displays of the words W1, •.. , wn , lined up 
one beneath the other; in this way the columns of D are defined. The diagram· 
E is similarly made up out of the words Ul, U2, ... , Un. The two diagrams D 
and E are of the same display shape A, where Ai is the number of entries of 
the ith row. The novelty of the present approach consists in dealing with Young 
diagrams which are filled with both positively and negatively signed letters. This 
leads to a definition of a standard Young diagram (sometimes also called a Young 
tableau) which differs from the ones previously used, and which, as will be proved 
below, is the only one compatible with entires of two different signatures. The 

'- definition of a standard Young diagram requires both alphabets Land P to be 
linearly ordered sets. A diagram D filled with letters from the alphabet L, say, 
is defined to be standard where: 

(1) if two letters x, yare next to each other on the same row of the diagram, 
and y follows x, then we must have x ::; y unless both x and yare negatively 
signed, in which case we require x < y. 

(2) if two letters x, yare next to each other on the same column, and if y is 
on a lower row than x, then we have x ::; y unless both x and yare positively 
signed, in which case we require that x < y. 

Our main result (the general Standard Basis Theorem) states that double 
standard diagrams (standard in hoth letters and places) are an integral basis 
for the underlying module of the superalgebra Super[L I pJ. The elements of a 

25 



26 THE STANDARD BASIS THEOREM 

standard basis thus depend upon the linear orders assigned to Land P. Such 
orderings of both Land P can be chosen arbitrarily independently of the position 
of positively and negatively signed elements; thus, depending on this choice, the 
set of standard Young diagrams can strikingly differ. For example all positively 
signed letters may be placed before all negatively signed letters in the linear 
order, or the linear order may be so chosen that every letter is immediately 
followed by a letter of the opposite parity. By the invariance of a dimension of 
a free module, it follows from our Standard Basis Theorem that the number of 
standard Young diagrams is the same irrespective of the linear ordering chosen, 
a fact that is far from obvious combinatorially. Among several special cases 
of the Standard Basis Theorem, at least two are worthy of mention and lead 
to new results in the invariant theory of tensors. When all letters are positive 
and all places negative, we obtain a generalization of the determinant that will 
be useful to derive the invariant theory of skew-symmetric tensors in arbitrary 
characteristics in much the same way as the classical case (L = L - and P = P- , 
as in Doubilet-Rota-Stein) relates to the invariant theory of symmetric tensors 
(but in this latter case only in characteristic zero). 

Secondly, when all letters and places are positive, we obtain a straightening 
algorithm for permanents, applicable in arbitrary characteristic, a result which 
a priori may seem unexpected. 

1. Definitions, statement of theorem. In this chapter, we shall develop 
the main combinatoric tools to be applied to invariant theory. We begin with 
some important terminology. 

Let A (for a moment) be any set. A Young diagram on A, D = (WI, W2, ... , wn) 
is a sequence of words Wi E Mon(A) such that length ( WI) 2 length ( W2) 2 ... 2 
length(wn ). The integer rt is called the number of rows of the Young diagram D 
'and the vector A = (AI, A2, ... , An) is called the shape of D; here Ai = length( Wi)' 
We define "content" in this setting by cont(D) = cont(wd + cont(w2) + ... + 
cont(wn). 

If D = (WI, W2, . .. , wn) where WI = XlX2 ... XA1 ' W2 = YlY2 ... YA2' then we 
envision D as follows 

Xl X2 XA1 

D: Yl Y2 YA2 

The shapes of Young diagrams may be partially ordered. Indeed, if A = 
().1,A2, ... ,An) and A' = (Ai,A~, ... ,A~), then we write A ~).' when EiAi = 
Ei A~ and ).1 ~ Ai, Al + A2 ~ Ai + A~, and so on. 

Let D = (WI, W2, ... , wn ) be a Young diagram with.:vl = XllX12'" xu!' 
W2 = X2lX22" 'X2A2" ... We define a Young diagram D = (Wl,W2,'" ,Wk), 
called the dual of D, by 
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and so on. The shape of D is (~I, ~2' ... , ~k) where ~i is the number of Aj which 

are 2 i. We note here that D = D and cont(D) = cont(D). We call k = Al 
the number of columns of D. Furthermore, We say that two entries of D are in 
the same row (resp. column) if they are in the same Wi (resp. Wi). Also, in an 
obvious way, we may speak of "adjacent entries" in D. 

A linearly ordered proper signed set A is called an alphabet. 
Let A be an alphabet. Let D = (WI, W2, ... , wn) be a Young diagram on A 

and let D = (WI, W2,"" Wk) be its dual. The Young Diagram D is said to be 
standard when, for each of the words 

Wi = XlX2 ... Xr , 

Wi = YlY2 ... Ys, 

the following conditions are satisfied: 
(1) if X J" E A +, then X j ~ X J"+ 1, 
(2) if xJ" E A -, then Xj < xJ"+I, 
(3) if YJ" E A +, then Yj < YJ"+l, 
(4) if YJ' E A-, then YJ' ~ YJ"+l. 

Xj E A, 

Yj E A, 

Now, let Land P be disjoint alphabets. In Chapter 2, we defined the signed 
set [L I P] and constructed the Laplace pairing 

n: Super[L] x Super[P] --+ Super[L I P]. 

Let D = (WI, W2,· .. , wn) and E = (w~, w~, ... , w~) be Young diagrams, of 
the same shape, on Land P, respectively. The Young tableau of the diagram 
pair D-E is defined by Tab(D I E) = (stand(wl) I stand(wD)'" (stand(wn ) I 
stand ( w~)). With all this terminology in place, we may now state the main 
theorem in this chapter. 

THEOREM 8; Let Land P be disjoint alphabets. The Tab(Di lEi), 1phere 
Di and Ei are standard and have the same shape, form a basis of Super[L I P] 
over Z. In particular, let D and E be Young diagrams, having the same shape, 
on Land P, respectively. Then 

in Super[L I P] where 
(i) Di and Ei are standard on Land P, respectively; 
(ii) cont(Di) = cont(D) and cont(Ei) = cont(E); 
(iii) shape(D) ~ shape(Di); 
(iv) the integer coefficients Ci are unique. 

The existence of such a representation will be proved in §2. The uniqueness 
of the coefficients Ci will be proved in §§3, 4, and 5. 

" NOTES. (1) If L = L - and P = P-, we get the classical straightening 
formula proved by Doubilet, Rota, and Stein in 1974. 
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(2) The case where L = L + and P = P- was proved in characteristic zero 
only by Doubilet and Rota in 1976. The characteristic-free result given above is 

new. 
(3) Permanents may be' straightened by applying the theorem when L = 

L + and P = P+. Our result is however more general, since it applies to 

characteristic-free permanents as well. 
(4) The dimension of the space spanned by Tab(Di I Ei), where Di and Ei 

are standard of some given shape, is independent of the orderings on Land P. 
(It does depend, of course, on the choice of subsets L +, L -, P+, and P- .) One 

interesting order is when L + < L -. 
We conclude this section with some technical comments on a content function 

for L UP. These will be useful to us in the proofs to follow. 
Let wE Div([L I Pl). For x E L, we define 

Cont(w)(x) = L Cont(w)(x I a). 
aEP 

Similarly, for a E P we may define Cont ( w ) ( a ). In this way, we obtain a 
multiset, Cont(w), on L UP. The following properties 'of this multiset will be 
useful to us. (Their elementary proofs are omitted.) 

(1) If Z E L U P, then Cont(ww')(z) = Cont(w)(z) + Cont(w')(z). 
(2) Let m be a given multiset on LUP. We consider all words wE Div([L I PD 

such that Cont( w) = m. These words, together with 0, span a submodule of 
Tens[L I Pl which we shall denote by Tensm[L I Pl· Furthermore, Tens[L I Pl is 
the direct sum of all these submodules. 

Let I be the ideal in Tens[L I Pl defining Super[L I Pl· If i E I and i = l: im, 
where im E Tensm [L I Pl, then each im is in I since t~is is true for the generators 
of I. It follows that ifw, w' E Div([L.1 P]) and w == w' (mod 1) but w· ¢ I, then 
Cont(w)(z) = Cont(w')(z) for all z E L U P. 

(3) Let w, u be words of the same Length in Super[L] and Super[P], re­
spectively. Applying induction on Lengthw and Rules 4, 5, and 6 in Chap­
ter 2, §1, we may show that for each term W in the expansion of (w I u), 
Cont(W)(x) = Cont(w)(x) for all x ELand Cont(W)(a) = Cont(u)(a) for 
all a E P. Sometimes, we denote this by Cont(w I u)(x) = Cont(w)(x) and 

Cont(w I u)(a) = Cont(u) (a). 
(4) Let w E Super[L I P] and let 

~(m)(w) = L w(1) 0··' 0 W(m)' 

In Chapter 1, we saw that (we may assume that) 

L ContW(i) (x I a) = Cont(w)(x I a). 
i 

From this it follows that we may assume that 

L Cont(W(i))(Z) = Cont(w)(z) 

for all z E L UP. 
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Let D and E be Young diagrams, having the same shape, on Land P, re­
spectively. Let x E L. It follows from the preceding properties that 

Cont(Tab(D I E))(x) = cont(D)(x). 

Similarly, if a E P, then 

Cont(Tab(D / E))(a) = cont(E)(a). 

This has the following important consequence. The proof of Theorem 8 will be 
carried out in some fixed submodule of Super[L I P] of given Content on L U P. 

2. Spanning. In this section, we shall show that Tab(D I E) can be written 
as a linear combination of the Tab(Di I Ei), where Di and Ei are standard Young 
diagrams. For a moment, let A be any signed set. We recall that in Chapter 1, 
we defined a mapping S: Super [A] -+ Super [A] by Sew) = sign(Length(w))w. 
In this section, we shall denote Sew) by (w). We also defined sew) = 1 if 
Length(w) = ° and sew) = 0, otherwise. . 

In Chapter 2, we defined the tableau 

to be sign (l:i>j /Wi//UJ·I)(WI luI)··· (wn I un). We shall be working with such 
expressions throughout this section. 

Again, let A be any signed set. If z E Super[A], then we have written ~z = 
l:z Z(l) 0 Z(2)' In this section only, we change this notation and write 

~z = LZ10Z2. 

z 

Similarly, since ~ (3) (z) = (1 0 ~)~(z), we shall write 

~ (3) (z)= L Zl 0 Z21 0 Z22 

and so on. (We shall use repeatedly fact (1) following Rule 6 in Chapter 2.) 
REMARK. An induction argument on Length z shows that 

~z = L Zl 0 Z2 = L sign(l zll/Z21)Z2 0 Zl· 
z 

PROPOSITION 9. Let d,c be words in Super[Ll with ~(3)(d) = l:dd1 0d2 0 
d3 • Let y, z be words in Super[P] with ~ (3) (z) = l: Zl 0 Z2 0 Z3. Then 
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PROOF. The left-hand side of this equation may be rewritten as 

Applying Rule 6 in Chapter 2, we see this is equal to 

Relabeling the d-variables, the expression above is 

According to Proposition 6, we have Ld2 d2l (d22 ) =e(d2). So, the expression 

above becomes 

The only nonzero term of this sum occurs when d1 = d, d2 = 1, Zl = 1, and 
Z2 = z. This proves the Proposition. 

PROPOSITION 10. Let a, b, c be words in Super[L] with .6.a = La al 0 a2 
and .6.b = Lb bl 0 b2. Let x and Y be words in Super[P] with.6.y = Ly Yl 0 Y2· 

Then 

PROOF. We being by applying Rule 6, Chapter 2, §2, to the terms (ab l I x) 
and (b2 c I y). The left-hand side of the equation stated in the theorem then 

becomes 

""' (~ ::]. ~ b2 Yl 
b,x,y 

C Y2 

Permuting the first row with the second and third rows (via condition (ii) in §2 

of Chapter 2), this becomes 
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Next, we apply Proposition 9 to the last two rows with d = a, Y = xl, c = c, 
and z = Y2; we obtain 

b1 X2 
b2 Yl 

L L sign(lallbl) 
al Xl 

sign(lxlllx21 + IXIIIYII)· 
b,x,y Y2,a a2 Y2l 

(a3) Y22 
c Y23 

But, 

LYI 0 Y21 0 Y22 0 Y23 = LYI 0 Y2 0 Y3l 0 Y32· 

We apply Rule 6 to the last two rows of the expression above and relabel the 
y-variables (as allowed by fact (1) following Rule 6 in Chapter 2) to obtain 

a,b,x,y a2 Y2 
sign(lallbl) L (!; ~:J sign(lxlllx21 + IXlIIYII)· 

(a3)c Y3 

We relabel the a-variables to see this equals 

sign(lallbl) L (::, ~:J sign(l xlllx21 + IXlIIYll). 
a,b,x,y a12 Y2 

(a2)c Y3 

Two further applications of Rule 5 simplify this to 

sign(lallbl) L (:1 ::~:) sign(l xlllX21 + IXlIIYll)· 
a,x,y (a2)c Y3 

Relabeling the y-variables, we see that this equals 

sign(lallbl) L (:1 ~:~~:) sign(l xlllX21 + IXlIIYlll)· 
a,x,y (a2)c Y2 

Now, 

.6.(XYl) = (Lx Xl 0 X2) (LYll 0 Y12) = L sign(l x21lYlll)xlYll 0 X2Y12· 
Yl X,Yl 

We apply the remark made just before Proposition 9 to see that .6.(XYl) is also 

( ~ sign(lx21Ix,I)X2 ® x,) (~Yll ® Y'2 ) 
= L sign(l x21lxll + IXlIIYlll)X2Yll 0 XIY12· 
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Therefore, the expression above is 

sign(lallbl) L ( :1 
a,x,Y (a2)C 

One final application of Rule 6 shows that this equals 

'" (ba l I XYI ) sign(lallbl) ~ (a2)c Y2 
a,Y 

as desired. 
NOTE. Applying the same reasoning with the roles of the left and right 

tableaux interchanged, we see that 

'" (a I XYl) = sign(lxllyl) '" (ab l I yXl ). ~ b Y2Z ~ b2 (X2)Z 
Y x,b 

PROOF OF THEOREM 8, (i), (ii), AND (iii). Let D = (Wl,W2,."'Wn ) 
and E = (w~,w~, ... ,w~) be Young diagrams, having the same shape, on the 
alphabets Land P, respectively, Suppose that the shape of D = (AI, A2, . .. , An). 

If n = 1, then we are finished since in the expression (stand(wd I stand(wi)) 
terms can be rearranged in Super[L] or Super[P] and a(i)a(j) can be replaced by 
(i~j)a(i+j) . 

Next, suppose n > 1. As noted at the end of §1, we shall carry out this 
proof in a submodule of Super[L I P] of given Content on L UP. We may 
assume the theorem holds for all such Young diagrams of shape bigger than 

A = (A1, A2, ... , An). 
We now suppose that the theorem is false for some diagram pairs of shape 

A. We order such diagram pairs via the lexicographic ordering obtain~d by 
lining up the words. That is, suppose that D = (WI, W2, ... , wn ) and E = 

d I I I I Th (w~, w~, ... , w~) where Wi = XilXi2 ... XiAi an Wi = XiI Xi2 ... XiAi ' en, we 
apply the lexicographic order to the sequence 

I 
Xll,X12,···,XlAl,X2l"",XnAn· 

Among the diagram pairs D-E of shape A for which the theorem is false, we 
choose the smallest pair D-E in this lexicographic order. It follows that the rows 

of D and E are nondecreasing, i.e., 

XiI ~ Xi2 ~ . . . and X~l::; X~2 ~ .... 

If either D or E has a row with a repeated negative letter, then Tab(D I E) = 0 
and the theorem holds. Otherwise, since either D or E is not standard, conditions 
(3) or (4) of the definition in §1 must be violated. We shall assume that the first 
such violation occurs in D. Changing notation, let us assume this first violation 

occurs in rows 

YlY2 ... YmYm+lYm+2 ... Yr 

when comparing Xm+l to Ym+l· 
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Case 1. Xm+l > Ym+l. We begin by noting that 

Xl ~ ... ~ Xm < Xm+ 1 ~ ., . ~ Xn , 

Yl ~ ... ~ Ym ~ Ym+l = ... = Ym+k < Ym+k+l ::; ... ::; Yr 

(where k ~ 1) and 

Yl ::; ... ~ Ym ~ Ym+l < Xm+l ::; ... ::; Xn · 

In the statement of Proposition 10, we take 

a = stand(xl ... xm), 

and b = de, where 

c = stand(Ym+k+l ' .. Yr), 

d = stand(xm+l ... xn), e = stand(Yl ' , 'Ym+k). 
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Let ~(de) = L: bl 0 b2 , Then (we may assume that) there is one and only one 
term with bl = d and b2 = e. 

We now examine both sides of the equation in Proposition 10, On the left­
hand side, the term with bl = d, b2 = e appears once. In all the other term~ 
on the left-hand side, bl must contain letters from e; the corresponding Young 
diagram is smaller than D in the lexicographic order. On the right-hand side, 
the length of the first row is 

Length(de) + Length(al) ~ Length(d) + Length(e) > Length(ad). 

All the corresponding Young diagrams have longer shapes than that of D. Com­
bining these two statements, we see that the theorem holds for D-E (which is a 
contradic tion) . 

Case 2. xm+l = Ym+l = Z = a positive element in L. Let us suppose that the 
rows in question are 

and 

where 

and 

i 
~ Xl ., 'Xm z· .. Z Xm+i+l ' ., Xn 

Yl" 'Yk~Yk+j+l" 'Yr, 
j 

Xl ~ , .. ::; Xm < Z < Xm+i+l ~ ... ::; Xn 

Yl ~ ... ::; Yk < Z < Yk+j+l ~ ... ~ Yr' 

Again, we use Proposition 10, but now with 

a = stand(Xl ... Xm), 

b = z(i+j) stand(Xm+i+l ' .. Xn) stand(Yl ' .. Yk), 

and 

c = stand(Yk+j+l ... Yr). 
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On the left-hand side, the term 

. (aZ(i) stand(xm +i+l ... xn ) ... ) 

stand(YI ... Yk)Z(j) c 

appears once; if there are any other terms on th~ left-ha~d side, they correspond 
to Young diagrams shorter than D in the LexIcographIc order. All the terms 
on the right-hand side correspond to Young diagrams having shape larger than 

that of D. This completes the proof of (i), (ii), and (iii). 

3. A bilinear Z-valued form. Let A be any proper signed set. Wedefine 

the adjoint of A in the following way. Let A * be a set which is iso~orphi~ ~o A 
via a mapping ¢: A ---+ A *. We make A * into a signed set by defimng (A) to 
be ¢(A+) and (A*)+ to be ¢(A-). The mapping ¢ induces a map (also denoted 

by ¢) from Mon(A) to Mon(A*) by 

) ~() * * * ¢(XIX2'" xn) = ¢(Xd¢(X2 ... \f' Xn = XI X2'" xn· 

If w E Mon(A), we shall denote ¢(w) by w*. For a Young diagram D = 
(w W2 W ) on A we set D* = ¢(D) = (wi,w;, ... ,w~). If D and E 1, , ... , n , h 
are Young diagrams, of the same shape, on disjoint alphabets Land P, t en we 

define 
Tab+(D I E) = Tab(D* I E*). 

As usual, let Land P be disjoint alphabets. If w E Div(L) and w' E Div(P) 
with Length(w) = Length(w'), then we define Length(w I w') = Length(w) = 
Length(w'). Indeed, according to (3), §1, we may assume that each nonzero term 

in the expansion of (w I w') has Length equal to Length( w). _ 

PROPOSITION 11. For pE Super[L* I P*] and q E Super[L I P], a bilinear 
Z-valued form is consistently defined by the following algorithm: 

(1) (p, q) = 0 if Length(p) f- Length(q); 

(2) (1,1) = 1; 

(3) ((x* I a*), (x I a)) = sign(lxlla*l), 

((x* I a*), (y I (3)) = 0 if y f- x or f3 f- a; 

(4) ((x* I a*)(n), (y I (3)(n)) = 0 if n 2:: 2; 

(5) (w,u',u") = L sign(lw(2)llu'I)(W(I),U')(W(2),U") 
w 

where b..w = Lw W(I) 0 W(2); 

u 

where b..u = Lu U(I) 0 U(2)' 
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The proof of Proposition 11 is just like that given for the mapping 11 in 
Chapter 2, §2, and we shall omit it except for four comments. First, both 
conditions (i) and (ii) must be checked at each step n. (Since Z is commutative, 
c can be -1 in condition (ii) only when both sides of the equation are 0.) Second, 
the analogues of Formulas ( a) and (b) hold and will be important to us later. 
Third, if (x* I a*) is positive, then (x I a) is neutral. Fourth, I(x I a)1 = Ixl + lal. 

PROPOSITION 12. Let w,w' E Div(L), let u,u' E Div(P), and let the 
Lengths of all four words be at least 2. Then ((w* I u*), (w' I u')) = O. 

PROOF. Suppose for a moment that we have proved the theorem when all 
the words have Length = 2. Then, applying (4), (5), and (6) in Proposition 11, 
we obtain the proof for any Length 2:: 3. So, we shall assume that all the words 
have Length = 2. The argument in this case is a long computation whose main 
points we shall indicate here. 

(I) Let A be any signed set and let x, YEA. Then 

b..(xy) = (x 01 + 10 x)(y 01 + 10 y) 

= xy 01 + sign(lxllyl)y 0 x 

+x 0y+ 10xy. 

(II) To prove the theorem, it is enough to show that 

((x'y' la' f3'), (xy I a(3)) = 0, 

where the letters and places above are not necessarily distinct. Now, applying 
Rule 5, Chapter 2, we see that 

so 

(xy I a(3) = sign(lxllyl + Ixllal)(y I a)(x I (3) 

+sign(IYllal)(x I a)(y I (3), 

((x'y' I a' f3'), (xy I a(3)) 

= ((x'y' I a' f3'), sign(lxllyl + Ixllal)(y I a)(x I (3) 

+ sign(IYllal)(x 1 a)(y 1 (3)). 

(III) We now apply (5), Proposition 11, calculating b..((x'y' 1 a' f3')) to be 

sign(lx'lly'l + Ix'lla'l)[sign(l(y' 1 a')II(x' 1 f3')1) 

x (x' 1 f3') 0 (y' 1 a') + (y' I a') 0 (x' I f3')] 
+ sign(ly'lla'l)[sign(l(x' I a')II(y' 1,8')1) 

x (y' 1 /3') 0 (x' 1 a') + (x' 1 a') 0 (y' 1/3')] 

+ (terms of wrong shape). 

When (5) is applied, we obtain eight terms. 

sign(lxllyl + Ixllal + Ix'lly'l + Ix'lla'l 

(1) + Hy' 1 a')II(x' 1/3')1 + I(y I a)ll(y' I a')1) 

x ((x' I /3'), (y I a))((y' I a'), (x I (3)); 



36 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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sign(lxllyl + Ixllal + Ix'lly'l + Ix'lla'l + I(y I a)ll(x' 1,8')\) 

X ((y' I a'), (y I a))((x' I ,8'), (x I ,8)); 

sign(lxllyl + Ixllal + ly'lla'l + I(x' I a')II(y' 1,8')1 + I(y I a)ll(x' I a')I) 

x ((y' 1,8'), (y I a))((x' I a'), (x I ,8)); 

sign(lxllyl + Ixllal + ly'lla'l + I(y I a)ll(y' 1,8')1) 

X ((x' I a'), (y I a))((y' I ,8'), (x I ,8)); 

sign(lyllal + Ix'lly'l + Ix'lla'l + I(y' I a')II(x' 1,8')1 + I(x I a)ll(y' I a')\) 

X ((x' 1,8'), (x I a))((y' I a'), (y I ,8)); 

sign(lyllal + Ix'lly'l + Ix'lla'l + I(x I a)ll(x' I ,8')1) 

X ((y' I a'), (x I a))((x' I ,8'), (y I ,8)); 

sign(lyllal + ly'lla'l + I(x' I a')II(y' 1,8')1 + I(x I a)ll(x' I a')\) 

X ((y' I ,8'), (x I a))((x' I a'), (y I ,8)); 

sign(lyllal + ly'lla'l + I(x I a)ll(y' 1,8')1) 

x ((x' I a'), (x I a))((y' 1,8'), (y I ,8)). 

(IV) Next, we pair off the eight terms above as follows: (1) and (7), (2) and 
(8), (3) and (5), (4) and (6). To see how the proof is concluded, let us focus in on 
terms (1) and (7). The inner products in question give 0 unless x' = y*, y' = x*, 
,8' = a*, and a' = ,8*. This is true for both terms (I)" and (7). If the terms are 
not zero, we calculate each one using (3), Proposition 11, and the equalities 

Ix*1 = Ixl + 1, I(x I a)1 = Ixl = lal· 

The net result is that these two terms always cancel each other. This completes 

the proof. 

4. Gale-Ryser interpolating matrices. For a moment, let A be any signed 
set. A matrix W = {Wij: i, i = 1,2,3, ... } is said to be a Gale-Ryser matrix when 

(1) Wij E- Mon(A) and length (Wij) :::; 1; 
(2) for fixed i, almost all Wij equal 1 and for fixed J', almost all Wij equal 1. 

Under these conditions, the row products 

ri = Wil Wi2'" , i = 1,2, ... 

and the column products 

i = 1,2, ... 
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are well defined. We display this as follows: 

r3 W3l W32 W33 

r2 W2l W22 W23 

rl Wl1 W12 W13 

Cl C2 C3 

A Gale-Ryser matrix W interpolates the pair of Young diagrams D = 
(Wb W2, ... ) and D' = (Ul' U2, ... ) on A when cont(wj) = cont(cJ") and cont(ui) 
= cont(ri) for all i and i. The pair (D, D') is a Gale-Ryser pair when there 
exists a Gale-Ryser matrix which interpolates (D, D'). 

PROPOSITION 13. Let D and D' be Young diagrams over A having shapes 
A and A', respectively. The pair (D, D') is a Gale-Ryser pair only if A :::; A'. 

PROOF. Let A = (Al' A2,"') and A' = (J-lb J-l2"")' Let W = (WiJ") be the 
~ale-Ryser matrix which interpolates the pair (D, IY). The number of rows in 
D' is J-ll; therefore in the display of W, J-ll is the smallest integer n so that each 
row above rn consists only of l's. On the other hand, Al is the number of entries, 
different from 1, in column 1, From this, we see that Al :::; J-ll· 

Next, suppose that Al :::; J-ll,"" Al + A2 + ... + AJ"-l :::; J-ll + J-l2 + ... + J-lJ"-l· 

We shall prove 

To do this, we need to describe J-lj and Aj as the cardinalities of certain sets of 
row indices. First, 

J-lj = number of words in Ii of length ~ i 
= Card {i: number of entires =1= 1 in row i is ~ i}· 

Second, 
Aj = Card{i: Wij =1= I}. 

Now, let i be a row index appearing for Aj (so that WiJ" =1= 1). We distinguish 

two cases. 
Case 1. Card {k: Wik =1= I} ~ i. In this case, i is an index appearing in the 

description of J-lJ"' 

Case 2. Card {k: Wik =1= I} = 1 + 1 < i. In this case, i appears in the 
descriptions of J-ll,"" J-ll+l but in only 1 of the Al,"" Aj-l. 

This completes the proof of the theorem. 
Let L be an alphabet. Let D = (Wb W2, .. " w n ) and D' = (w~, w~, ... , w~) 

be Young diagrams on L having the same shapes. Suppose that 

Wi = XilXi2 ... XiA" and w~ = X'"lX'"2 ... x'"' • t t t tAi' 

We order the row sequences (X~l' X~2"" , X~Al' X~l"") and (X11, X12,"" XlAl' 

X21, . .. ) lexicographically. We say that for D' < D if in this order, the sequence 
for D' is less than the sequence for D. 
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PROPOSITION 14. Let D = (Wl,W2, ... ,Wn ) and D' = (w~,w~, ... ,w~) 
be standard Young diagrams, having the same shape A = (Al, ... , An), on an 
alphabet L. Suppose that there exists a Gale-Ryser matrix W = (Wij) which 
interpolates D and iJ'. Then either D' < D or D' = D and Wj = WljW2j ... WAjj 
for each j = 1, ... ,n. 

PROOF. We proceed by induction on n, the case n = 1 being immediate. 
Otherwise, let 

W~ = X"IX"2 ... x'·, t t t tAi 

and iJ' = (ui, ... ,U~l) where u~ = xirx~r .. '. Since W exists, we note that D 
and D' have the same content. 

Let Xl, X2, ... ,Xm be the distinct elements in L appearing in D and suppose 
that Xl < X2 < ... < Xm . Since D is standard, negative elements cannot 
be repeated in the rows of D and positive elements cannot be repeated in the 
columns of D. (The same holds for D'.) 

If Xl is negative, then Xl can only appear once in WI; also, among the u~, Xl 
can only appear in u~. Therefore, Wll = Xl = Xll = X~l' 

If Xl is positive, then let cont(wl; xd = k ~ 1. if Xl appears in u~, r > k, then 
Xl = XiI = ... = xir and D' < D. Otherwise, Xl appears only in ui, ... , u~ and 

Xl = Wll = ... = Wkl = Xll = ... = Xlk = X~l = ... = X~k' 
Next, let Xi be the smallest element after Xl appearing in WI. We shall assume 

that 
, , 

Xl = Wll = ... = Wkl = Xll = ... = Xlk = Xll = ... = Xlk' 

where k = 1 if Xl is negative. 
First, suppose that Xi is negative. If Xi appears in u~, r > k + 1, then 

~~k+l < Xi and D' < D. Otherwise, Xi appears only in u~, .. . ,U~+l' Since (*) 
holds, we must have Wk+l,l = Xi. Now, x~k+l ::; Xi. If X~k+l < Xi then D' < D. 
Otherwise, we have x~k+l = Xlk+l = Wk+ll. 

Second, let us assume that Xi is positive and that cont( WI; Xi) = l ~ 1. If Xi 
appears in u~, r > k + l, then xir ::; Xi and D' < D. Otherwise, Xi only appears 
among u~., j = 1, ... , k + l. Since (*) holds, we must have 

Wk+ll = ... = Wk+ll = Xi = Xlk+l = ... = Xlk+l. 

Also, X~j ::; Xi for j = k + 1, ... , k + i. If some X~j < Xi, we have D' < D. 
We may continue on in this way to show that either D' < D or D' = D and 

WI = w~ = Wll ... WAll. In the latter case, the matrix (Wij), j ~ 2, interpolates 
DI = (W2,"" wn ) and jJ~ where D~ = (w~, ... , w~). We may now apply the 
induction hypothesis to complete the proof. 

5. Proof of Theorem 8, (iv). Throughout this section, we shall let Land 
P be disjoint alphabets. Before giving the proof of Theorem 8, (iv), we need one 
more result. 
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PROPOSITION 15. Let D, D' be standard Young diagrams on L and let E, E' 
be standard Young diagrams on P. 

(a) Then (Tab+(D' I E'), Tab(D I E)) = ° unless both (D,jJ') and (E,i') 
are Gale-Ryser pairs. 

(b) Also, (Tab+(D I E), Tab(D I E)) = ±l. 

PROOF. Let pI, P2, . .. ,pr be the biproducts such that Tab(D I E) = 
plp2 ... pr and, similarly, let Tab+(D' IE') = N IN 2 .. ·Ns. We apply formu­
las (a) and (b) of §3 to see that 

(Tab+(D' IE'), Tab(D I E)) 

= (N IN 2 ... N ws ,plp2 ... pr) 

L ±(N\ P?l) ... P[l))'" (NS, p?s) ... P[S)) , 
pl, ... ,pr 

where we used the fact that 

Continuing on, we see that this is the sum over all pI, ... ,pr, N I, ... , NS of 
terms 

± (Nell)' P?l)) (Ne
I
2), P?l)) ... (N?r) , P[l)) 

x (Ne
2
1), P?2)) (NC2) , P(22)) ... (N (r) , P[s)). 

(=I) 

According to Proposition 12, all the expressions (Ntj) , p(~)) are ° unless 

Length(Ntj)) Length(P&))::; 1. Furthermore, if this expression is not 0, 
then 

Ntj) = (x* I y*) and p(~) = (x I y). 

Now, let us suppose that (Tab+(D' IE'), Tab(D I E)) is not zero. Then, 
there is a nonzero term of the form (=I) in the expansion above. For such a term, 
let us put Wij = X if p&) = (x I y). We shall show that the matrix W = (Wij) 
interpolates the pair (D, jJ'). 

To see this, let D = (WI, W2, ... ), D' = (W~, w~, ... ), and jJ' = (u~, u~, ... ). 
Then, for each X E L, we have 

cont(WljW2j'" )(x) = L contwij(X) = L ContP(~)(x) 
i i 

= Cont(P(l) '" )(x) = Contpj(x) = contwj(x). 

Similarly, we have 

cont(wil wi2'" )(x) = L contwij(x) = L ContP(~)(x) 
j j 

= L ContNtj) (x*) = ContNi(x*) = contu~(x). 
j 
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Hence, Wij interpolates (D, iY). In a similar manner, we may find~a matrix 
which interpolates (E, jj;'). This completes the proof of (a). 

Next, we prove (b). First, let us introduce some notation and write D = 

(WI, ... , wn) and E = (U1,"" un), where Wi = XiI'" XiAi and Ui = ail'" aiAi' 
We shall use the notation introduced in the first part of this proof, e.g., 

pJ' = (stand(wJ·) I stand(uj)). 

Now, we apply Proposition 7 (Chapter 2) to the expansions of !::. (At) (pJ') and 
!::. (n) (N i ). According to Proposition 7, in these expansions there is one and only 
one nonzero term such that 

P{i) = (Xji I aji) and NtJ') = (xji I aji)' 

The corresponding term (#) in the expansion of (Tab+(D I E), Tab(D I E)) 
equals ±l. But this is the only possible nonzero term in the expansion according 
to Proposition 14. (Any nonzero term gives an interpolating matrix which is 
unique by Proposition 14.) 

This completes the proof of Proposition 15. 
PROOF OF THEOREM 8, (iv). We begin by ordering pairs (D, E) of Young 

diagrams, where D and E have the same shape, according to the following rules. 
(i) If D has shape A and D' has shape A' and if A < A', then (D, E) < (D', E'). 
(ii) If D and D' have the same shape, then (D,E) < (D',E') if in the lexico­

graphic ordering on the word sequences for (D, E) and (D' E'), (D, E) is larger 
than (D', E'). 

Now suppose (in the terminology of Theorem 8) that 

Tab(D I E) = L Ci Tab(Di lEi), 
i 

where the diagram pairs (Di I Ei) are ordered from smallest to largest. Then 

(Tab+(Dj I Ej), Tab(D I E)) = LCi(Tab+(DJ' I Ej), Tab(Di lEi)). 
i 

According to Propositions 13, 14, and 15 these equations for the Ci give a tri­
angular system of linear equations with ±1 entries on the diagonal. Thus, the 
system has a unique solution. This completes the proof. 

4. Invariant Theory 

o. Introduction. In this chapter we prove the fundamental result of in­
variant theory for both symmetric and skew-symmetric tensors, namely, the fact 
that all invariants can be symbolically represented by polynomials in brackets. 
Even though the field is assumed to be of characteristic zero, the result given 
below is new for skew-symmetric tensors (a previous attempt by Weitzenbock to 
develop a symbolic calculus contains an inconsistency, as we show in detail in 
the next chapter). We give here an informal description of the symbolic method. 
A symmetric tensor in a vector space V over a fixed K can be written, relative 
to a basis e1, e2, ... ,en of V, in the form 

t = L ( k ) t . . eh . , , ejn 
. . J1'''Jn 1 n . . J1 .. , In 

J1"'Jn 

= ~ (. k . ) (t I j1 ... jn) eJ'1 ••• eJ'n , 
.~ J1'" In 1 n 

J1"'Jn 

where t J'1 ,. ·jn = (t I j1 ... J".n) are the coordinates of the tensor t. The tensor is a 
homogeneous eleme.nt of degree k (or step k, as we shall say) of the symmetric 
algebra over the vector space V. 

Similarly, a skew-symmetric tensor is an element of step k of the exterior 
.algebra over the vector space V. Relative to the given basis, we can write 

t= 
j1 <i2 < ". <J'k 

where the exterior product is indicated by juxtaposition, 

The idea is to view the coordinates (t I J'l ... jk) as the images under the action 
of a linear functional, which we call the umbrallinear functional, of the letters of 
an alphabet Div[L I Pl· The set P = P- will consist of the letters {I, 2, .. " n}, 
the letters of L + will name the skew-symmetric tensors, and the letters of L­
will name the symmetric tensors. The crucial feature of the symbolic method is 
the use of several distinct letters for the same tensor. Thus, for a E L +, we set 
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and for a E L- we set 

U((a 11)it ... (a 1 n)jn) = (t 1 jl ... jn). 

We say that the letter a is a symbol for the tensor t. One defines the bracket 

[W] = (w 112 .. · n), WEL, 

and one proves that every invariant, or every joint invariant of a set of tensors, 
can be written as the image of a bracket polynomial under the action of the 
umbral linear functional. Detailed applications of the method are worked out in 
the next chapter. 

We note the fact that in the umbral representation skew-symmetric tensors 
are represented by positively signed letters and symmetric tensors by negatively 
signed letters. Because of this fact, the computation of invariants for skew­
symmetric tensors turns out to be simpler than for symmetric tensors. 

1. Definitions. Let K be an infinite field; let W be a finite-dimensional vec­
tor space over K; and let {WI," . ,wm} be any basis for W. Let K[XI, ... , Xm] 
be the polynomial algebra in m variables XI, ... , Xm over K. A function 
f: W ---+ K is called a polynomial function on W if there is a polynomial p E 

K[XI, ... ,Xm] such that for every W E W, W = 2:::1 aiwi, we have f( w) = 
p( aI, ... ,am)' It is easy to see that this definition does not depend on the 
choice of a basis for W. We shall denote the algebra of all polynomial functions 
on W by K[W). 

Next let G be a group which acts on W via a representation p: G ---+ GL(W). 
The action of G on W gives rise to an action of G on K [W] by defining (,' f) ( w) = 
f(p(,)-I W ) for all, E G, f E K[W], wE W. 

Note. The algebra K[W] is (naturally) isomorphic to K[X1 , ... ,Xm ]. Also, 
if p(,-I)Wi = 2:j=1 CjiWj; then " Xk = 2:::1 CkiXi· The action of G on K[W] 
has the following properites. 

(i) If e is the identity in G, then e· f = f for all f E K[W]. 
(ii) If ,I, ,2 E G, then (,1'2) . f = ,I . (,2 . f) for all f E K[W]. 
(iii) For each, E G, the mapping f ---+ I' f defines an automorphism of K[W). 
Let K* denote the multiplicative group of nonzero elements in K and let 

x: G ---+ K* be a homomorphism of G. An element f E K[W] is called a (relative) 
invariant, corresponding to X, if , . f = x(,)f for all , E G. If X = 1, we 
sometimes call f an absolute invariant. 

We shall be interested, here, in the group G = GLn(K) and certain (explicit) 
actions of G which we now describe. Let V be a vector space of dimension n 
over the field K and let {el' ... , en} be a given basis for V. In the usual way, we 
may identify GL(V) with GLn(K) using this basis. 

A skew-symmetric tensor t of step k is an element of the kth homogeneous 
component /\k(V) of the exterior algebra /\(V). Relative to the given basis, we 
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have 

where ail"'ik E K. We shall denote the corresponding coordinate functions by 
til"'ik so, in the notation just given, 

An element N E GLn(K) induces a linear transformation /\k(N):/\k(V) ---+ 

/\ k (V). We may rephrase our basic definition in this context as follows. A 
polynomial I(t) in the variables til'''ik is said to be an invariant when there is a 
positive integer 9 such that 

k 

1(/\ (N)t) = (det N)9 I(t) 

for all N E GLn(K), t E /\ k(V). Sometimes we call such a polynomial an 
invariant of skew-symmetric tensors t of step k or, more simply, an invariant 
of t. The major goal of these lectures will be to describe explicitly all such 
invariants. 

We shall also be interested in actions of GLn (K) on the symmetric algebra 
S(V). A symmetric tensor t of step k is an element of the kth homogeneous 
component Sk(V) of the symmetric algebra S(V). Relative to the given basis 
{eI, ... ,en} of V, we may write 

t= L 
it ,· .. ,jn 

it +· .. +jn=k 

where ajl· .. jn E K. We shall assume that each multinomial coefficient appearing 
above is nonzero in K. We shall denote the corresponding coordinate functions 
by tit .. ·jn so, in the notation just given, 

tjl···jn(t) = ajl ... jn' 

An element N E GLn(K) induces a linear transformation Sk(N): Sk(V) ---+ 

Sk(V). Then, a polynomial I(t) in the variables tit ... jn is said to be an invariant 
when there is a positive integer 9 such that 

I(Sk(N)t) = (det N)9 I(t) 

for all N E GLn(K), t E Sk(V). Sometimes we shall call such a polynomial an 
invariant of symmetric tensors of step k or, more simply, an invariant of t. 

The actions above extend to actions of GLn (K) on products 

kl kr 

(+) W = I\(V) x ... x I\(V) X Shl (V) X ... X Shp(V); 

namely, 
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So, we may speak of invariants in this setting; namely, a polynomial I in K[W] 
is called invariant (or, in the classical terminology, joint invariant) if there is a 

positive integer 9 so that 

I (N w) = (det N) g I ( w ) 

for all N E GLn(K), wE W. In actions on such W, we shall aiways assume that 
each multinomial coefficient (, ,h , ) is nonzero in K if some Sh(V), h > 1, JIJ2"'Jn 
appears among the components of W. 

2. The action of GLn(K) on Super[L I Pl. Let L be a proper signed set 
(where L - may be empty). Let P = P- = {I, 2, ... , n} be a proper signed set, 
disjoint from L, with 1 < 2 < ... < n. We construct the algebra Super[L I P] 
as in Chapter 2. It is important to notice that there are no positive elements in 
[L I Pl. We shall now define an action of GLn(K) on Super[L I Pl· 

Let N E GLn(K) with, say, N- 1ej = 2:::~=1 aijei· We define a K-algebra 
automorphism of Tens[L I P] ® K by N(x I i) = 2:::7=1 aiJ'(x I j). We note in 
passing that Nt{N2(x I i)) = (N1N2)(x I i) for all Nt, N2 E GLn(K). 

Next, let I be the ideal in Tens [L I P] which defines Super[L I Pl. Then 
N sends I ® K to itself (as is easily checked) and, so, defines a mapping, also 

denoted by N, of Super[L I P] ® K to itself. 
Note. According to Theorem 8, a basis for the Z-algebra Super[L I P] consists 

of all Tab(D I E) where D, E are standard. Then (according to a standard 
theorem on tensor products), the Tab(D I E) forms a basis for the K-vector 

space Super[L I P] ® K. 

THEOREM 16. Let w be a word in Super[L] having Length = n. Let N E 

GLn(K). Then 

N(w 112 .. ·n) = (detN)-l(w I 12 .. ·n). 

PROOF. According to formula (b), Chapter 2, §2, we have 

(w 112 .. · n) = L ±(w(1) 11) .. · (W(n) In). 
w 

Hence, N(w /12 ... n) is 

L±a1jI···anjJW(1) Ijd",(w(n) Ijn), 

where the sum is over wand all j1, ... ,J~. This expression equals 

L a1jI'" anjn (w I j1 ... jn). 
jI",·dn 

Since all the j's are negative, the term (w I j1 ... jn) is 0 unless the j's are distinct, 
i.e., j1 = a(l), ... ,J·n = a(n), where a is some permutation of {1,2, ... ,n}. 
Therefore, the preceding sum is 

L a10'(1)" ·anO'(n)sgn(a)(w I 12 .. ·n) = (detN)-l(w I 12 .. ·n). 
0' 
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This completes the proof of Theorem 16. 

Let E = (U1, U2, ... , ug ) be the Young diagram on P where each Ui is 12 ... n. 
'Let D1"'" Dr be standard Young diagrams on L having the same shape as E. 
Let F' E Super[L I P] ® K, 

r 

F' = LCsTab(Dsl E) 
s=l 

where each Cs E K. Applying Theorem 16, we see that 

N· F' = (detN)-gF' 

for each N E GLn(K). 

THEOREM 17. Let F' E Super[L I P] ® K satisfy N . F' = (det N) -g F' for 
each N E GLn(K). Then F' has the form (*) above. 

PROOF. Using the straightening formula (Theorem 8), we may write 

s 

where Cs E K* and Ds, Es are standard. 

For fixed j, 1 ~ j ~ n, let j(s) be the number of times j appears in E s , that 
is (in the terminology of §1, Chapter 3), 

)'(s) = Cont(Tab(Ds I Es))(f) = cont(Es)(J'). 

Now, let b be any element in K* and define N E GLn(K) as 

N- 1ei = ei if ~ i= j and N- 1eJ' = beJ'. 

Then 

N(x I i) = (x I i) if i i= j and N(x I j) = b(x I j). 

We apply N to (**), always bearing in mind property (3), §1, Chapter 3. Then 

bg F' = L cslJ1'(s) Tab(Ds I Es). 
s 

Comparing coefficients of Tab(Ds I Es) and remembering that K is infinite, we 
see that each j( s) is equal to g. 

Since each j, 1 ~ j ~ n, appears 9 times in each E s , the minimum number of 
rows ,of Es is g. If each Es has exactly 9 rows, then Es = E and we are finished. 

Otherwise, let us look at an Es having more than 9 rows. Since Es is standard, 
all the 1 's occur in the first column. Let l be the first number in the first column 
following the run of 9 1 'so Then, all of the numbers 1 to l - 1 occur in the first 9 

rows of Es. Moreover, if q is the number of l's in the first column, the remaining 
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9 - q ['s must all occur in the first 9 - q rows. This situation is summarized by 

1 [-1 

1 [-1 

9 { 1 [- 1 m 

q 
1 [-1 

{ 
[ 

q 

where m ~ [ + 1. Such an Es will be called an [-critical diagram of parameter q. 

Let J' be the smallest index such that there exists a j-critical tableau in the 
expansion of F'. We break up the expansion of F' into 

F' = L Cs Tab(Ds I Es) + L ctTab(Dt lEt) + G, 
s t 

where the first summation is over all the indices s such that Es is j-critical, the 
second summation is over all t such that E t is [-critical for some I > j, and G is 
the linear combination of all the Tab(Ds I Es) where Es = E. 

Let bE K*. We define N E GLn(K) by N-1ej = bej-l + ej, N-1ek = ek for 
k =f:. j. Then, 

N(x I j - 1) = (x I j - 1) + b(x I j), N (x I k) = (x I k) for k =f:. j - 1. 

If w E Super[L], then N fixes an expression like (w I ... j - 1 j .. . ). Indeed, 
applying formula (b), §2, Chapter 2, we see that N sends (w I ... j - 1 j ... ) to 

(w I ... j - 1 j ... ) + b( wi" . J' j ... ). 

The second term is 0 since j2 = o. 
With this in mind, we apply N to F' and see that N fixes each term in the 

second summation and each term in G. For the j-critical Es , we have 

r 
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where E; has the form 

1 j-l J 

9 1 j-l j 

q { ~ * m 

* 

q 

(: 
where e(r) of the * are j, e(r) ~ 1, and the rest of the * are J' - 1. The largest 
e(r) is q and this occurs when all the * are chosen to be j; let us denote this 
(standard) Young diagram by E~. 

Now we consider the equation N . F' = F'. Since K is infinite, we may think 
of this as a polynomial in b and set the various coefficients equal to O. Let q' 
be the largest possible parameter appearing in the j-critical diagrams. Then the 
highest power of b is b

ql 
and its coefficient is 2:s Cs Tab ( D s I E~/) where the sum 

is over all pairs (Ds, Es) where Es is j-critical of parameter q'. We conclude that 
2:s Cs Tab(Ds I E~/) = 0; since all the Ds and E~' are standard, we have Cs = 0, 
contradicting our original assumption (i.e., Cs E K*). 

3. The umbral linear functional. Throughout this section, we fix an ac­
tion of GLn (K) on a vector space W having the form 

kl kr 

(+) W = /\(V) x ... x /\(V) X Shl (V) X ... x Shp(V). 

, As always, we shall assume that each Cl .~.jn ) is nonzero in K, if some Sh (V), h > 
1, appears among the components of W. Also, if V, itself, appears among the 
components of W, then we shall assume it is written as 1\ 1 (V). 

Given such an action, we shall assume that we have available an infinite 
alphabet L which satisfies the following conditions. 

(Ll) There is a subset Loo of L so that both Ltc and L~ are infinite. 
(L2) There is a subset L'oo of Ltc such that Ltc - L'oo is infinite. Furthermore, 

each a E (L - Loo) U L'oo is associated to one and only one of the components of 
W, Le.,. an Sh(V) or a 1\ k(V). We say that a belongs to this component. 

(L3) Each component of W has infinitely many elements belonging to it. 
(L4) If a E L belongs to an Sh(V), h > 1, then a E L -, a f}. Loo. 
(L5) If a E L belongs to a I\k(V),'k > 1, then a E L+,a f}. Loo. 
(L6) If a E L belongs to a copy of V (Le., some 1\ l(V)), then a E L'oo. 
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Let P = P' = {I, 2, ... , n} be a finite signed alphabet with 1 < 2 < ... < n. 
The umbral linear functional U: Super[L I P] 0 K -t K[W], denoted by f -t 

(U, f), is defined as follows. 
(1) Let a belong to some /\k(V). Then (U, (a(k) I i1 ·· ·ik)) is ~he coordinate 

function tit ... ik on that component /\k(V). If] =I- k, then (U, (a(J) I i1 ·· ·ij)) is 
O. ~ 

(2) Let a belong to some Sh(V). If]l +]2 + ... + J'-n = h, then 

(U,(a 11)it(a 12)12 · .. (a I n)jn) 

is the coordinate function tit12 ... jn on that component Sh(V). If J'l +h+" '+]n =I-
h, then (U, (a 11)it(a 12)12 ... (a I n)jn) is O. 

(3) Let a E Loo and suppose that a does not belong to any component of W. 
Then (U, (a I it) .. · (a I i k )) is O. 

(4) Let us order [L I P] by saying (x I a) < (x' I a') if either x < x' or x = x' 
and a < a'. As usual, we choose a basis of Super[L I P] consisting of words 
(Zl li1)'" (zn lin) but now we shall also assume that (Zl li1) ::; (Z2 li2) ::; 
... ::; (Zn lin). 

The umbral linear functional U is defined on such an element by: 

(U, (x lii t )'" (x liip)(Y lijt)'" (y lijq)''') 

= (U, (x lii t )'" (x liip))' (U, (y lijt)'" (y lijq))'" 

where x < Y < "', iit ::; ii2 ::; ... ::; iip' iit ::; ... ::; ijq"'" and .the 
individual terms are calculated using rules (1), (2), and (3). 

It follows that U is well defined by these rules. The following properties of U 
will also be important later. 

(VI) The mapping U is onto K[W]. 
(U2) For all N E GLn(K), f E Super[L I P] 0K, we have (U, N f) = N(U, f). 
PROOF. To prove (VI), we need only notice that the coordinate functions on 

/\ k(V) are the images under U of the various (a(k) I i1 ... i k) and that t?e coor­
dinate functions on Sh (V) are the images under U of the various (a I 1 )Jt ... (a I 
n)jn. 

To prove (2), we may assume that f is a monomial co.nsisting of ~roducts 
of terms having either the form (a(k) I i1 ·· ·ik) or (a 11)J1 ... (a I n)Jn. That 
(2) holds for such terms individually follows by a direct (and somewhat ted~o~s) 
computation which we omit. That (2) holds for f then follows from the defimtlOn 
of U, in particular (4). . 

4. The first fundamental theorem. We shall continue to follow the nota­
tion introduced in §3. In addition, througho'!t this section, we shall assume 
that the characteristic of the field K is O. If w E Super[L], let us define 
[w] E Super[L I P] to be (w I 12··· n). An element p E Super[L I. P~ ~ ~ 
is called a bracket monomial if p = [W1] ... [Wk] and a bracket polynomzalIf It IS 
a linear combination of bracket monomials. 
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THEOREM 18. If char K = 0, then every (joint, relative) invariant of 
GLn(K) acting on W can be written as (U, p) where p is a bracket polynomial in 
Super[L I P] 0 K. 

PROOF. Let F' E Super[L I P]0 K satisfy N . F' = (det N) -g F' for each N E 

GLn(K). According to Theorem 17, F' is a bracket polynomial. Furthermore, 

N(U,F') = (U,N· F') = (detN)-g(U,F'). 

To finish the proof, we need only show that each invariant polynomial in K[W] 
is the image under U of an invariant polynomial in Super[L I P] 0 K. This fact 
follows immediately from the complete reduciblity of GLn(K). However, we can 
give a complete proof, using the ideas developed in this monograph, and avoiding 
the appeal to representation theory. We turn to this argument now. 

1) There is a K-algebra homomorphism cP from Super[L I P] 0 K to 
Super[L* I P*] 0 K which extends the mapping (x I a) -t (x* I a*). Fur­
thermore, flcp = (cp 0 cp) fl. 

PROOF. The mapping (x I a) -t (x* I a*) gives a homomorphism of Tens 
[L I P] 0 K to Super[L * I P*] 0 K which factors through Super[L I P] 0 K. The 
equality flcp = (cp 0 cp) fl holds on the generators (x I a) of Super[ LIP] and, 
hence, is true in general since all the maps are algebra homomorphisms. 

2) For basis words w,w' E Super[L I P], we define (W,W') = (cp(w), w') where 
the expression on the right-hand side is the scalar product of §3, Chapter 3. We 
extend this scalar product to Super[L I P] 0 K. Let 

w = (Xl I (1)e t ... (xr I a r )er (Y1 I 13t) ... (Yk I 13k), 

where Xi E L -, Yj E L +, and the (Xl I (1), ... , (Yk I 13k) are distinct. Then 
(w, w') = 0 if w:j:. w' and 

(w,w) = ell·· ·er lsign(1/2(k -l)k). 

PROOF. If wand w' are of different Lengths, then (w, w') = O. So, we 
may assume that Length w = Length w' = n with, say, w' = w~ w~ ... w~ and 
Length w~ = 1 for all i = 1,2, ... ,no Then 

(w, w') = (cp(w) , w') 

= L sign (LICP(W)(i)llw;.I) (CP(W)(l),W~)···(cp(w)(n)'w~). 
rp(w) . i>j 

For a term in this summation to be nonzero, we need CP(W)(i) = cp(wD for each 
i = 1, ... ,n. But then 

Contcp(w) = LContcp(w)(i) = LContcp(w~) = Contcp(w' ) 

and, so, w = w'. Now we calculate (w, w). If x E L-, we have 

cp(x I a)e = (x* I a*) ... (x* I a*) = el(x* I a*)(e). 
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Therefore, in the expansion of ~(n)('P(w)), the term 

(x~ I a~) ® ... ® (x; I a;) ® (Y~ I 13~) ® ... ® (Yk I 13k) 

appears once and only once and has coefficient el!' .. er ! 
3) Let V be any finite-dimensional subspace of Super[L I P] ® K s~an~~d by 

basis words. The restriction of ( , ) to V is a nondegenerate, symmetnc, bIlmear 
form on V. (This follows from 2).) Furthermore, for any N E GLn(K), w, w' E 

Super[L I P], we have (tNw,w') = (w,Nw'). 
PROOF. The group GLn(K) acts on Super[L I P]®K and its tensor products. 

Furthermore, (N ®N)~ = ~N since this equality holds for the generators (x I i) 
of Super[L I Pl. We shall use this and the fact that ('P 0 'P)~ = ~'P in the 
computation that follows. In the Sweedler notation, we have 

L NW(l) 0 NW(2) = L(Nw)(1) 0 (NW)(2) 
w Nw 

and 
L 'PW(l) 0 'PW(2) = L ('P(W))(l) 0 ('P(W))(2)' 
w ~(w) 

We prove by induction on Length w that (tNw,w') = (w,Nw'). The case Length 
w = 1 is an easy calcul&.tion. Now in general, 

(t Nw, w'w") = ('P(t Nw), w'w") 

= LSign(lw'llw(2)I)(tNw(1),w')(tNw(2)'W") 
w 

w 

= (w, N(w'w")). 

4) Let F be an invariant polynomial in K[W]. We may choose a finite­
dimensional subspace V in Super[L I P] such that (i) V is spanned by basis 
words, (ii) V is stable under GLn(K), (iii) the image of V under U contains F. 
Let us denote this image by U(V) and the kernel of U on V by ker(U). 

The bilinear form' ( , ) is nondegenerate on ker U. Indeed, ker U has a basis 
consisting of expressions having two possible forms, namely: 

(i) words w E V such that U(w) = 0, 
(ii) differences WI - W2 where WI, W2 are words in V such that U( WI) = 

U(W2) # O. 
Since ( , ) is nondegenerate on V and ker U, we see that V = (ker U) ® 

(ker U)J... It follows from 3) that GLn (K) sends (ker U)J.. to itself. Hence, the 
GLn(K)-modules U(V) and (ker U)J.. are isomorphic and F is the image under 
U of an invariant polynomial in Super[L I Pl· 

What happens to the proof above if char K = P > O? First, in order that 
U send Super[L I P]0 K onto K[W] we need to require that the multinomial 
coefficients ( " h" ) be nonzero in K if Sh (V) is a component of W. With this 

Jl"'Jn 
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assumption, the entire argument goes through except the statement that ( , ) 
is nondegenerate on ker U. In fact, simple examples show that ( , ) may be 
degenerate on ker U.' (See Example 2, §4, Chapter 5.) 

Next, let R denote the subalgebra of K[W] generated by all invariant polyno­
mials. Is R finitely generated over K? That is, are there finitely many invariant 
polynomials It,···, 1m in R so that R = K[It, ... , 1m]? In 1939, H. Weyl 
showed that the answer is affirmative when K is the field of complex numbers. 
Weyl's result has been extended in recent times to arbitrary algebraically closed 
fields. This major accomplishment of Nagata, Mumford, and Haboush is part of 
modern geometric invariant theory. In this setting, Theorem 18 says that there 
are finitely many bracket monomials PI, ... ,Pm SO that R = K[It, ... ,1m] where 
Ii = (U, Pi). Of course, it would be desirable to have a constructive proof of the 
existence of PI, ... ,Pm' 

5. Covariants. Throughout" this section,we shall fix an action of GLn (K) 
0n a vector space W having the form" 

kl kr 

W = /\JV) x ... x /\JV) X Shl (V) X ... X Shp(V). 

We shall assume that V, itself, is not one of the components of W. Let L be the 
alphabet constructed for W as in §3 and let U: Super[L I P]0 K --+ K[W] be- the 
corresponding umbral linear functional. 

Let w E Div( L) with Length( w) = k < n. Let aI, a2, ... ,an-k be distinct 
symbols in Ltc· We extend U so that each ai belongs to a distinct copy of 
V. Then the expression (U, [wal ... an-k]) gives an invariant· polynomial on 
W x V x ... x V, where there are (n - k) copies of V. Since this invariant 
polynomial is alternating and multilinear on V x ... x V, we may view it as 
an invariant polynomial on W x /\ n-k (V) which is linear in the coordinates on 
/\ n-k(V). In this setting, the invariant polynomial will be denoted by cov(w). 

We may extend this construction as follows. Let D = (WI, W2, ... , Wk) be a 
Young diagram on L with length(wi) = Ai ~ n. Let us choose distinct symbols 
aii in Lt where 1 ~ i ~ k, 1 ~ j ~ n - Ai, and construct a new Young diagram 
D' = (w~, ... , wU where 

w~ = Wlall ... al,n-AI 
w~ = W2a2l " ... a2,n- A2 

We shall denote the expression [stand(wD]' ',' [stand(wU] in Super[L I P] by 
cov(D) and call it a covariant of W. Applying the umbral operator to cov(D), 
we obtain an invariant polynomial on W x /\ n-AI (V) X ... x /\ n-Ak (V) which 

is linear in the coordinate functions on the various /\n-Ai (V). This invariant 
polynomial may also be denoted (on occasion) by cov(D) if no confusion seems 
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possible. Let a E W. We shall write cov(D)(a) = 0 if for all Ii E I\n-Ai(V), we 

have cov(D)(a, Ill·· ., lk) = o. 
Note. In Chapter 5, we shall give many examples of covariants as just defined. 

For this note only, however, we shall adopt a slightly more general definition. 
Let V be a finite-dimensional vector space with dim V = n. Let W be a vector 

space having the form W = I\kl (V) X ... x 1\ kr (V) X Shl (V) X ... X Shp (V). A 
covariant of GL(V) acting on W is an invariant of GL(V) on W x V x ... xV. 
Let C be such a covariant with, say, m copies of V. Let a E W. We write C rv 0 
at a if for all 11, ... , 1m E V we have C(a, 11,"" 1m) = O. 

Let X be a GL(V) -stable subset of W. Suppose that there are polynomial 
functions II, ... , fr, fr+ 1, ... ,fr+$ on W so that 

X = {o: E W: fi(a) = 0 for each i = 1, ... ,r and 

there exists j, 1 ~ j ~ s, so that fr+j(a) =F O}. 

Then there exist covariants C 1, ... , Cr, Cr+ 1, ... ,Cr+$ on W x V x ... x V, where 
there are n copies of V, so that 

X = {o: E W: Ci rv 0 at a for each i = 1, ... , rand 

there exists J', 1 ~ J' ~ s, so that Cr+j f 0 at a}. 

PROOF. Let f be any polynomial function on W. We define a function f* on 
W x GL(V) by f*(a, N) = f(N- 1a) for all 0: E W, N E GL(V). The function f* 
is GL(V)-invariant, i.e., for any N' E GL(V) we have f*(N'a,N'N) = f*(a,N). 
The set W x GL(V) is open in W x V x ... x V, where there are n copies of V. 
In fact, 

W x GL(V) = {(a, III ... 'In) E W x V x··· x V:det(11, ... 'In) =F O}. 

According to a standard algebraic fact, there is an integer m so that the function 
detm f* is a polynomial function on W x V x ... x V. Let us call the invariant 
polynomial function detm f* the covariant associated to f. 

Let X be defined as above. Let Ci = detmi ft be the covariant associated to 
fi for i = 1, ... ,r, r + 1, ... , s. We shall show that these covariants define X. 

First, let a E x and N E GL(V). For each i, 1 ~ i ~ r we have 

Ci(a, N) = (det N)mi fi(N- 1a) = 0 

since N-1 a E X. Since Ci vanishes on {o:} x GL(V), we have Ci rv 0 at a. 
Next, suppose that fr+j(a) =F 0 for some J', 1 ~ j ~ s. Let e denote the identity 
element in G L (V). Then 

Cr+J·(a, e) = fr+J·(a) =F o. 
Secondly, let a E W; suppose that Ci rv 0 at a for each i = 1, ... , r and that 

there exists j, 1 ~ j ~ s, so that Cr+j f 0 at a. We shall show that a E X. 
Indeed, let N be any element in GL(V). Then for each i, 1 ~ i ~ r, we have 

o = Ci ( a, N) = (det N) mi fi (N- 1 a) 
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so each fi(N-1 a ) = O. Also, since Cr+j f 0 at a, there is an N in GL(V) so 
that Cr+j(o:, N) =F O. Then 

o =F Cr+j(a,N) = (detN)rhr+J·fr+J·(N-1a) 

so that fr+j(N- 10:) =F O. By definition, N- 1a E X. But X is GL(V)-stable so 
a EX. 

6. The classical groups. Throughout this section, we fix an action of 
GLn(K) on a vector space W having the form 

kl kr 
(+) W = !\ (V) x ... x !\ (V) X Shl (V) X ... X Shp (V). 

We shall assume that K is of characteristic O. Also, if V, itself, appears among 
. the components of W, then we shall assume it is written as 1\ 1 (V). 

Let G be any subgroup of GLn(K). Then G acts on W in the natural way. 
Later on in this section, it will be important to distinguish between the absolute 
invariants of G and the relative invariants of G. An element f E K[WJ is 
called an absolute invariant of G if f (N w) = f ( w) for all N in G. An element 
f E K[WJ is called a relative invariant of G if there is a positive integer g so that 
f (N w) = (det N) g f ( w) for all N in G. We shall be interested here in the case 
where G is one of the classical groups. 

The symplectic group. We assume here that n = 2m. An element ~ a,; ·e· /\ e . 
. 2· " . 6 oj ~ J 
III 1\ (V) can be IdentIfied WIth the skew-symmetric matrix (aij). The group 
GLn(K) acts on the vector space of n x n skew-symmetric matrices via N· J = 
N J(t N). The identification above establishes a GLn(K)-isomorphism between 
1\ 

2 
(V) and the vector space of n x n skew-symmetric matrices. 
Let va = 2: aiJ·ei/\ eJ· be defined as follows: if 1 ~ i ~ m and j = 2m - i + 1, 

then aij = 1; otherwise aij = O. The symplectic group, SP2m(K) , consists 
of all N E GLn(K) such that Nvo = Vo. If Jo is the skew-symmetric ma­
trix corresponding to vo, then SP2m (K) consists of all N E GLn (K) so that 
N Jo(t N) = Jo. It is known that det N = 1 for all N E SP2m (K). 

THEOREM 19. Let SP2m (K) act on the vector· space W. Let Super[L / PJ 
be constructed for the action of GL2m (K) on W x 1\ 2(V). Let U' be the cor­
responding umbral linear functional except if a is a symbol corresponding to the 
(added) component 1\ 2 (V), then 

(U', (a(2) / ij)) = 1 zJ 1 ~ i ~ m and j = 2m - i +1, 

(U', (a(2) / ij)) = 0 otherwise. 

Then every (absolute) invariant ofSP2m(K) actz'ng on W can be written as (U',p) 
where p is a bracket polynomial in Super[L , PJ x K. 

PROOF. The umbral linear functional U constructed in §3 sends Super[L / 
PJ®K onto K[W x 1\2(V)J. The operator U' sends Super[L' PJ®K ontoK[WJ 
since for each w E W,p E Super[L /PJ, we have (U',p)(w) = (U,p)(w,vo). 
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Now let p be a bracket polynomial in Super[L I P] @ K. Let F = (U,p) and 
define f E K[W] by f(w) = F(w,va). Let N E SP2m(K). Then 

f (N w) = F (N w, va) = F (N w, N va) 

= F ( w, va) (since det N = 1) = f ( w ) . 

Therefore, f is an absolute invariant of SP2m (K) and we have f( w) = F( w, va) = 
(U,p)(w,va) = (U',p)(w). That any absolute invariant f E K[W] can be con­
structed in this manner follows immediately from [Gr, (1.2)] via standard argu-
ments in algebraic geometry. , 

The orthogonal group. An element L: aijeiej in 8 2 (V) can be identified with 
the .symmetric matrix (aij). The group GLn(K) acts on the vector space of 
n x n symmetric matrices via N . J = N J (t N). The identification just given 
establishes a GLn (K)-isomorphism between 8 2 (V) and the vector space of n x n 
symmetric matrices. 

Let Va = L: eiei· The orthogonal group, On(K), consists of all N E GLn(.l() 
such that NVa = Va. If we denote the n x n identity matrix by In, then On(k) 
consists of all N E GLn(K) such that Nln(tN) = In. It is easy to see that 
detN = ±1 for all N E On(K). 

THEOREM 20. Let On(K) act on the vector space W. Let Super[L I P] be 
constructed for the action of GLn (K) on W x 8 2 (V). Let U' be the correspond'ing 
umbral linear functional except zJ a is a symbol corresponding to the (added) 
component 8 2 (V), then 

(U', (a 11)jl(a 12)12 ... (a I n)jn) 

= 1 if some ik = 2 and il + 12 + ... + in = 2 

=0, otherwise. 

Then every absolute invariant of On (K) acting on W can be written as (U', p) 
where p is a bracket polynomial in Super[L I P] @K such that each monomial in 
p has an even number of brackets. 

This theorem is proved in a manner similar to the proof given for Theorem 
19. We may also be interested in the relative invariants of On(K) acting on 
W. These, together with the absolute invariants, give the absolute invariants of 
SOn(K) acting on W; here, SOn(K) = {N E On(K):detN = 1}. 

THEOREM 21. Let On (K) act on the vector space W. Let Super[L I P] be 
constructed for the action of GLn(K) on W x 8 2(V). Let U' be as in Theorem 
20. Then every relative invariant ofOn(K) acting on W can be written as (U',p) 
where p is a bracket polynomial in Super[ LIP] @ K such that each monomial in 
p has an odd number of brackets. 

Once again, we may prove this result by rewriting the proof for Theorem 19. 
We should also observe that any relative invariant f of On (K) acting on W gives 
an absolute invariant ti1 ... inf of On(K) acting on W x 1\ n(V). 

5. Examples 

1. Skew-symmetric tensors. Let K be an infinite field such that char K =I-
2. Let V be a finite-dimensional vector space over K with, say, dim V = n. We 
shall fix a basis {el, ... , en} of V. 

Let I\(V) be the exterior algebra over V. In general (with the exception 
of the ei's), we shall denote the elements of I\(V) by Greek letters a, 13, i, .... 
The product of two elements in 1\ (V) will denoted by juxtaposition instead of a 
wedge, i.e., the product of elements a,j3 in I\(V) will be denoted by aj3 instead 
of a A 13· (The wedge symbol will bellsed to denote another operation.) 

We saw in Example (2), §2, Chapter 1, that 1\ (V) can be written as Super[A]@ 
K where A = A- = {el, ... , en} . . So, I\(V) becomet3 a Hopf algebra with an 
algebra homomorphism ~: 1\ (V) ---+/\ (V) @ 1\ (V) such that for each {t in V, 
we have ~ ({t) = {t @ 1 + 1 @ {to 

Recall that a skew-symmetric tensor a of step k is an element of 1\ k(V). For 
such an a we sometimes write step( a) = k = length ( a). Relative to the given 
basis {el' .. : ,en} of V, we have the expansion 

a = L (0: IiI·· ·ik)eil .. ·eik' 
i1<···<ik 

,where the coefficients, denoted by (a I il . :. i k ), are in K. If a is of step n, then 
a = (a 11·· ·n)el·· ·en. 

If step (0:) = k and step(j3) = n-k, we shall often write the scalar (aj3I1·· . n) 
simply as 0:13. 

An element a E I\k (V) is said to be divisible by a vector 13 E V if there is 
an element i E 1\ k-l (V) so that a = j3i. The tensor a is called decomposable 
if there are vectors /31, ... ,13k in V so that 0: = 131 ... 13k. We shall repeatedly 
make use of the following facts concerning division of tensors: 

(D 1)· A vector {t E V divides an element 0: E 1\ k (V) if and only if {ta = o. 
(D2) Let 0: E 1\ k(V). Suppose there exist linearly independent vectors 

{tl, . .. ,{tr which divide a. Then there is an element i E 1\ k-r (V) so that 
a = {tl ... {trio 
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The proof of (D 1) follows from taking any basis of V containing J-l and ex­
pressing a in terms of the corresponding basis for 1\ k (V). The proof of (D2) is 
similar; choose any basis of V containing J-l1, ... , J-lr· 

PROPOSITION 22. Let a E I\k(V). Let Yo: = {J-l E V: aJ-l = o}. 
(i) dim Yo: ~ k. 
(ii) dim Yo: = k if and only if a is decomposable. 
(iii) If dim Yo: < k, then dim Yo: ~ k - 2. 

(iv) Let Wo: = {aJ-l: J-l E V}. Then dim Wo: ~ n - k. 
Furthermore, dim W 0: = n - k if and only if the tensor a is decomposable. If 

dim W 0: > n - k, then dim W 0: ~ n - k + 2. 

PROOF. According to (Dl), the vector space Yo: consists of all J-l which divide 
a. Statements (i) and (ii) follow from (D2). To prove (iii), let us assume that 
dim Yo: = k - 1 and that {lh, ... , ,8k-1} is basis for Yo:' Extending this to a 
basis for V and writing a in terms of this basis, we see that a = ,81 . , . ,8k-1,8 
for some ,8. in V. But then dim Yo: = k. Statement (iv) is a consequence of 
statements (i), (ii), (iii) applied to the mapping 'lj;: V -1-l\k+1(V),J-l-1- aJ-l. For 
n = dim(image 1jJ) + dim Vo:. 

2. The meet. Let a E l\i(V) and,8 E I\J' (V). The meet of a and,8, denoted 
by a /\ ,8, is that tensor defined as follows: 

(a) if i + J' < n, then a /\,8 = 0; 

(b) if i + i ~ n, then a /\,8 = Lo:(a(l),8 11··· n)a(2)' 
Since this operation will playa major role in what follows, perhaps a word 

of explanation as to why it is well defined is in order. For given ,8, formula (b) 
is a composite mapping: Super[A] -1- Super[A] 0 Super[A] -1- K 0 Super[A] -1-

Super[A]. Reading from left to right, the first map is.a -1- ~a, the second map 
is I 0 8 -1- (,,8 I 1· .. n) 0 8, and the third map is multiplication. 

The following properties of the meet operation are important; their proofs 
follow quickly from the definition and are omitted. 

(Ml) If step a + step,8 ~ n, then step (a /\ ,8) = step a + step ,8 - n. 
(M2) The mapping I\(V) x I\(V) -1-1\(V), (a,,8) -1- a /\,8, is bilinear. 
(M3) Let A = {il, ... , ik} be a subset of {I, ... ,n} with i1 <: ... < ik; let 

eA = eil ". eik' (If A = 0, put eA = 1.) 
(i) If A U B =P {I, ... , n}, then eA AeB = O. 

(ii) If AU B = {I, ... ,n}, then eA /\ eB = sign(k)eAnB where 
k is the number of inversions in the sequence obtained by first writing 
in order A - B and then writing in order B - A. 

(M4) Let step a= i and step,8 = i. Let p = i+J'-n. Then a/\,8 = sign(k),8/\a 
where k = (i - p)U - p). 

(M5) a /\ (,8 /\ I) = (a /\ ,8) /\ I' 
(M6) Let N E GLn(K). Then Na /\ N,8 = (detN) , N(a /\ ,8). 
(M7) a /\,8 = L~(a,8(2) 11,,· n),8(l)' 
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Let a E I\k(V). We define the span of a, denoted by span(a), to be the 
subspace of V consisting of all vectors~ having the form a /\,8 for ,8 E 1\ n-k+ 1 (V). 
~e. define rank a = dim(spana). If a is decomposable, say a =,81'" ,8k, then 
(It IS easy to show that) span a has a basis {,81,"" ,8k}. 

The relationship between the meet and the ordinary product of two skew­
symmetric tensors may be viewed using a mapping ¢ defined as follows. Let 
A = {il, ... , ip} be a subset of {I, ... , n} with i1 < ' .. < ip. Let A' be the 
complement of A in {I, ... , n}, say A' = {i1,'" ,J~} with i1 < ,., < J~. We 
de.fine a linear transformation ¢: I\(V) -1- I\(V) by ¢(eA) = sign(k)eAI, where 
k IS the number of inversions in the sequence iI, ... ,J~, iI, .. , , i p • We note that 
¢ is a vector space isomorphism which send.s I\P(V) to 1\ n-p(V). If a E 1\ k(V), 
then ¢(¢(a)) = sign(k(n - k))a. If ,8 E I\J (V), then ¢(a /\,8) = ¢(a)¢(,8) and 
¢(a,8) = ¢(a) /\ ¢(,8). 

PROPOSITION 23. Let a E 1\ k (V). Then 
(i) rank a ~ kj 

(ii) rank a = k if and only if a is decomposable; 
(iii) if rank a > k, then rank a ~ k + 2. 

. PROOF. We examine the kernel of the mapping 'lj;: I\n-k+1(V) -1- spana 
gIven by 'lj; ({3) = a /\ ,8. An element ,8 is in the kernel of 'lj; if and only if 
¢(a)¢(,8) = 0, i.e., if and only if for all J-l E V we have 0 = ¢(a)J-l¢(,8). Hence, 

dim(ker'lj;) = ( n ) - dim{¢(a)J-l: J-l E V} 
n-k+l 

and 

rank a = ( n ) - dim(ker'lj;) 
n-k+l 

= dim{¢(a)J-l: J-l E V}. 

We apply Proposition 22, (iv), to see that rank a = k or rank a > k + 2. 

, If a is decomposable, we noted above that rank a = k. If, on the other 
hand, rank a = k, then the equation above shows that ¢( a) ,is decomposable. 
Therefore, 

n-1 
dim{¢(a) /\ 8: 8 E 1\ (V)} = n - k. 

Indeed, if ¢( a) = 11 . , , In-kl then a basis for this vector space is 

12" 'In-k, ,1/3" 'In-k, 11;' 'In-k-1' 

But this vector space is isomorphic via ¢ to {aJ-l: J-l E V}. Thus, a is decompos-
able by Proposition 22, (iv). . 

Note. In the course of this proof, we showed that a is decomposable if and 
only if ¢( a) is decomposable. 

(M8) If a E 1\ n-1(V), then a is decomposable. 
PROOF. We note that ¢(a), being a vector, is decomposable. 
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(M9) Let a E 1\ k (V), (3 E 1\ n-l (V). Then a /\ (3/\(3 = O. 
PROOF. We apply ¢ to see that ¢(a)¢((3)¢((3) = ¢(a) ·0= O. 
(MI0) Let a E 1\ k (V) and, E 1\ n-l (V). Let f3 = a /\, E 1\ k-l (V). If a is 

decomposable, then so is j3. 
PROOF. First, span (3 C span a according to (M5). If a is decomposable, then 

rank a = k. Now, rank (3 = k -lor rank (3 ~ k + 1 according to Proposition 23. 

It follows that rank (3 = k - 1 since rank (3 ::; rank a. 

3. Covariants. Let W be a vector space having the form 

kl kr 
IVV) x ... x /\ (V). 

We shall assume that if V, itself, appears as a component of W, then it is written 
as 1\ I (V). let L be the alphabet constructed for W as in Chapter 4, §3. Let 
D = (WI,'" ,Wk) be a Young diagram on L with length(wi) = Ai ::; n. In 
Chapter 4, §5, we used D to define an invariant polynomial on 

n-Al n-Ak 
W x /\ (V) x ... x /\ (V), 

called cov(D). 
For a E W, we have defined cov(D)(a) = 0 to mean that for all ,i E 

1\ n-Ai (V), i = 1, ... , k, we have cov(D)(a,,1, ... , ,k) = O. We shall write 
D rv 0 at a instead of cov(D) (a) = O. 

This may also be interpreted as follows. In the expansion of cov(D), the 
coefficients of the various monomials in the ,i'S are given by the expressions 

(*) (U,(stand(wI) lil···iA1))···(U,(stand(wk) Ijl"'J'Ak))(a), 

where {il, ... ,iA1}, ... ,{jl, ... ,jAk} are any k subsets of {1,2, ... ,n}. (This 
follows from Rule 6, §2, Chapter 2.) Hence D rv 0 at a means that each term 

(*) is O. 
The relationship between the meet and certain covariants will be very im­

portant later. In stating the main result below, we (tacitly) take W to be 
I\k(V) x I\j(V) x I\P(V) where k + j > nand p = 2n - k - j. 

THEOREM 24. Let a, b, c be in L with a < b < c. Suppose that a belongs to 
1\ k (V), b belongs to I\j(V) , and c belongs to I\P (V) where p = 2n - k - J'. Let 
a E I\k(V),(3 E I\j(V)" E I\P(V). Let s = sign[(k + J' - n)j). 

(i) Let r = k + j - n and let {i l , ... , ir} be any subset of {I, ... , n} with 
i l < ... < ir . Then 

(U, [a(n-j)b(j)](a(r) 1 i l " ·ir))(a,(3) = s(a /\(31 i l · .. ir); 

(ii) (U, [a(n-j)b(j)][a(r)c(p)) > (a, (3,,) = s(a /\ (3),; 

(iii) (a /\ (3), = s'(a /\ ,)(3 where s' = sign[(n - j)(n - p)). 

PROOF. Let us introduce some notation. First, let a be any symbol and let 
A = {i1, ... , ik} be any subset of {I, ... , n} with i l < ... < ik. We shall denote 
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(a(k) I i l ... ik) by (a(k) I. A). Now, it is enough to prove (i) when a = eA and 
(3 = eB· Then 

(U, [a(n~j)b(j)](a(r) IiI" ·ir))(a,(3) 

= L±(U, (a(n-
j
) 1 h~ ... h~-J,)(b(j) I hI ,,·hJ')(a(r) 1 i l ,,·ir))(a,(3). 

The only possible nonzero term in this sum would have B = {hI, ... , hj }, A :­
B = {hi,···, h~-J-}' and A n B = {i1, ... , ir}. This term gives s(eA /\ eB I 
i l ... ir)' Statement (ii) is proved similarly and (iii) follows by interchanging the 
two brackets in (ii). 

The theorem above extends to more than two brackets. (Both the statement 
and proof are easily generalized.) For example, let a, b, c, d be symbols in L with 
a < b < c < d. Let a belong to I\k(V), b belong to I\P(V), c belong to I\r(V), 
a~d d belong to 1\8(V) where s = 3n - kp - r.Let a E 1\ key), (3 E I\P(V)" E 
1\ (V),8 E !\ 8(V). Then 

(U, [a(n- p) b(p)) [a(n-r) c(r)] [a (n"-8)d(8)]) 

at (a, (3",8) is ±(a /\ (3/\ ,)8 where the sign depends only on k,p, r, and s. 

4. Examples of invariants. 

EXAMPLE 1. Suppose char K = O. Let F be an invariant polynomial on 
!\ k(V)k homogeneous of degree d, such that F(N a) = (det Nt F(a) for all 
a E 1\ (V), N E GLn(K). Then rn = dk. (Recall that n = dim V.) 

PROOF. Let p be a bracket monomial in Super[L I P]0K, say p = [WI]'" [wr ]. 

There are rn symbols appearing in the words WI, ... , Wr and each symbol appears 
k times if (U, p) =1= O. The degree of (U, p) is rn/k and the example is proved by 
applying Theorem 18. 

EXAMPLE 2. Let dim V = n =' 2r, char K = O. If F is any homogeneous 
invariant polynomial in !\ 2 

(V), then the~e is a positive integer g so that F = cPfg 
where c E K and Pf is the Pfaffian. 

PROOF. We begin by recalling the definition of the Pfaffian, 

r!Pf = L sgna(a I o-l(2)(a I a3(4) ... (a I a2r - 10'2r), 

where the sum is over all permutations a of {I, ... ,2r} such that al < a2, a3 < 
a4, ... ,a(2r - 1) < a(2r}. We observe that each monomial in the sum appears 
r! times, each with the same sign, so that all the coefficients of Pf are ±1. 

Let al,· .. , ar be symbols belonging to !\ 2 (V) such that al < ... < ar' Ap­
plying formula (b), Chapter 2, §2, we see that (U, [a~2) '" a}2)]) = r!Pf and (by 
Theorem 16) that NPf = (detN)-IPf. 

It is well known that GLn(k) has an open orbit in !\2(V), say GLn(K)ao, 
where we may assume that Pf(ao) = 1. Let F be any invariant polynomial on 
!\2(V) with, say, F(Na) = (detN)gF(a). Then F = F(ao)Pfg. Indeed, 

F(Nao) = (detN)gF(ao) = (detN)gPf(ao)gF(ao) 

= F(ao) (Pf(N ao))g. 
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Thus, F(a) = F(ao)Pf(a)g for all a E GLn(K) . ao; since the orbit of ao is 
open, F(a) = F(ao)Pf(a)g everywhere. 

Note 1. Suppose char K = p < r. It still can be shown that Pf is in­
variant. Since its degree is r, it would only be the image of [a~2) ... a~2)] 
in Super[L I P] ® K. But (U, [a~2) ... a~2))) = r!Pf = O. We conclude that 
Theorem 18 cannot be true for char K = p > O. 

Note 2. Suppose char K f. 2 and dim V = n = 2r + 1. It can be shown that 
SLn(k) has an open orbit in /\2(V), say SL(K) . ao. Therefore, any invariant 
polynomial F is constant since F(Nao) = (detN)gF(ao) = I gF(ao) = F(ao). 

It is possible to give a combinatoric proof for Example 2 which avoids the use 
of orbits. We turn to this proof now, beginning with a lemma interesting in its 
own right. 

EXCHANGE LEMMA. Let u, v, W be words in Super[L]. Then 

I)U(1)V][U(2)W] = sign(k) I)V(1)U][V(2)W] , 
u v 

where k = n - Length(w). 

PROOF. This lemma follows at once from Proposition 10 by taking x = y = 
1· .. n, a = v, b = u, and c = w. 

PROOF OF EXAMPLE 2. Let F be a homogeneous, invariant polynomial on 
/\ 2(V). Then, by Theorem 18, F can be written as (U, p) where p is a bracket 
polynomial in Super[L I P] ® K. A typical bracket appearing in p has the 
form [ai2) ... a(2)aj+1 ... aJ'+k] where the ai's are distinct symbols belonging to 

J ' 

/\ 
2 (V) and 2i + k = n. If 2J' = '(1, in every such bracket, then we are finished. 

Otherwise, there are brackets with 2i < n; we shall say' that such a bracket 

"splits" the symbols aJ'+b' .. ,aj+k. 
Let ab"" am, a1 < ... < am, be all the symbols appearing in p. If ar is 

split by some bracket in p but aI, ... , ar-1 are not, then we shall say that p has 
property P(r-l). Let r be the largest integer so that F is the image of a bracket 
polynomial, say p, in a1, ... ,am satisfying P(r). Suppose that r < m + 1. 

Let [WI] ... [Wk] be a bracket monomial in p such that WI splits ar' We may 
assume that W2 also splits ar and that 

[WI] = [b~2) ~ .. b12) arv], [W2J = [d~2) ... d~2) arv'] 

where b1 ,. ',' , bs (resp. dl ,.,., dt) are all the symbols in WI (resp. W2) < ar , We 
apply the Exchange Lemma to [WI] [W2] taking U = b~2) . , ,bi2) aF), v = v, and 
W = d~2) ... d~2)V'. Then 

L[U(I)V][U(2)W][W3] ... [Wk] == ± I)V(I) U][V(2) W][W3] ... [Wk]' 
u v 

Each term on the left-hand side of this equation has image (U, [WI] ... [Wk)). 
Each term on the right-hand side satisfies property P(r + I), Hence, r = m + 1 
and the example is proved. 
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5. Examples of covariants. We shall assume that K is an infinite field 
and char K f. 2. 

EXAMPLE 1. Let p < n and let b d" . k - aI, ... , ap e p Istmct symbols belongmg. to 
/\ (V). Let Cp be the covariant defined by the diagram 

a1 a2 ... ap 
(k-1) a1 

a(k-1) 
p 

Let a E /\ k(V). Then a has rank r if and only if Cr ~ 0 at a but C
r
+

1 
"'-' 0 

at a. 

~ROOF. n~~~~s choose p distinct symbols bI, ... , bp belonging to p distinct 
copIes of /\ (V). For simplicity, let us suppose that a1 < b1 < a2 < b2 < 
... < ap < bp. Let (31, ... , (3p be p elements in the copies of /\ n-k+1 (V). We 
evaluate 

(U, [a~k-1) b~n-k+l)] ... [a~k-l) b~n-k+1)] (al ... ap I i l 
... ip)) 

at (a,(3I, ... ,/3p). By Example 5, Chapter 2, §3, 

(al . " ap / i1 ... ip) = L sgna(a1 / iO'l) ... (ap / iO'P) 
0' 

where a ranges over all permutations of {I, ... ,p}. So, the expression above is 

± " (U [ (k-1)b(n-k+1)j' ( 
L..,. sgna ,a1 1 (a1 I 'to'1))'" (U, [a/-1)b~n-k+1)](ap / iO'P)) 

0' 

at (a, /31, ... , (3p). By Theorem 24(i), this is 

± L sgna(a 1\ (31)iu ! '" (a 1\ (3p)i
up

• 

0' 

k~;AMPLE 2. Let a belong to I\k(V), b belong to /\r(V), and c belong to 
/\ (V). Suppose that a < b. Let a E /\k(V),(3 E /\r(V). Then 

(U, (c(k+r) IiI" ·ik+r ))(a(3) = (U, (a(k)b(r) IiI" 'ik+r))(a,(3). 

PROOF. The top expression is (by definition) (a/3/ i1 . " ik+r). We now apply 
Rule 6, Chapter 2, §2 to see that 

(a(k)b(r) IiI" ·ik+r) = L±(a(k) / i1' "Jk)(b(r) / hI' .. hr), 

where {i1,.:. ,ik}U{hI, ... , h~} ~ {iI, ... , ik+r}. Ifwe assume that i1 < '" < ik 
~nd hI < ... < hr, then the sIgn IS determined by the number of transpositions 
III the ~equence i1'··',J·k,hI, ... ,hr. If we apply U and evaluate at (a,/3), the 
expreSSIOn becomes , 
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EXAMPLE 3. Let a belong to I\k(V),b belong to I\j(V), c belong to l\i(V), 
and d belong to I\P (V) where i + J' + k + p = 2n. Let a E 1\ k (V), (3 E I\j (V)" E 
l\i(V), and 8 E I\P(V). Then 

(U, [a(n-i- j ) b(j) c(i)] [a(k+i+j-n) d(p)]) 

evaluated at (a, (3",8) is ±(a /\ (3,)8 = ±(a /\ 8)(3,. 
PROOF. Let ebelong to I\i+

j 
(V). We apply Theorem 24 and Example 2 to 

see that 
(U, [a(n~i-j) b(j) c(i)] [a(k+i+J'-n)d(p)]) 

evaluated at (a, (3",8) is 

±(U, [a(n-i-j)e(i+j)][a(k+i+J'-n)'d(p)]) (a, (3" 8) = ±(a /\ (3,)8. 

EXAMPLE 4. Let a belong tol\k(V),b belong toV. Let Cbe the covariant 
determined by (the word) a(k)b.- Let a E 1\ k(V), J-l EV. Then J-l divides a if and 
only if C "-' 0 at (a,J-l).' 

PROOF. This follows immediq,tely from (D1), §1, and Example 2. 
EXAMPLE 5 (THE GRASSMANN' CONDrrION). Let a, b belong to 1\ k(V). 

Let C be the covariant determined by the diagram. 

a(k)b 
C: 

b(k-1) . 

Let a E 1\ k(V). Then a is decomposable if and only ifC "-' 0 at a. 
PROOF. We apply Example 3 to see that C "-' 0 at a if and only if for any, 

,E I\n-k-1(V),8 E I\n-k+l(V), we have 

0= (a /\ a,)8 = (a /\ 8)cq. 

Now, suppose that a is decomposable, say, a = a1" ·ak. Then a /\ 8 Espana 
,and, so, is a linear combination of aI,'" ,ak. Hence, (a /\ 8)a = O. 

Conversely, if (a/\8)a, = 0 for all" 8, then every vector a/\8 divides a. Since 
rank a;:::: k, we see (using (D2), §1) that rank a = k and a is decomposable. 

EXAMPLE 6. Let a, b belong to distinct copies of 1\ k (V). Let C be the 
covariant defined by the diagram 

C: 
b(k-1) . 

Let a, (3 E 1\ k(V) with a, (3 # O. If C "-' 0 at (a, (3), then a is decomposable and 
(3 = ca for some c E K. 

PROOF. According to Example 3, C "-' 0 at (a, (3) if and only if for all 
,E I\n-k-1(V),8 E I\n~k+1(V), we have 

o = ((3/\ a,)8 = ((3/\ 8)a,. 

If (3 # 0, then a is divisible by each vector (3/\8 in span (3. But rank (3 ;:::: k and, 
applying (D2) in §1, we see that rank (3 = k. This shows (by Proposition 23) 
that (3 and, then, a are decomposable and (3 == ca. 
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EXAMPLE 7. (i) Let a E 1\ k(V) where k :::; n - 3. Then a is decomposable 
if and only jf aJ-l is decomposable for all J-l E V. 

, (ii) Let a E 1\ k (V) where k ;:::: 3. Then a is decomposable if and only if a /\ 8 
is decomposable for all E E 1\ n-1(V). 

PROOF. Statement (ii) follows from (i) by applying cP. To prove (i), it is 
(obviously) enough to show that a is decomposable if aJ-l is decomposable for all 
J-lEV. 

LEMMA. Let a, (3 E 1\ k (V) be decomposable tensors w£th a = a1 ' , 'ak and 
(3 = (31 ' , '(3k where ai, {3j E V, Then a + {3 £s decomposable zJ and only £1 
dim(span a n span (3) ;:::: k - 1. 

PROOF. Let W = span a n span (3. If dim W = k - 1, we choose a basis of W, 

say {,I, ... "k-l} and extend this to bases {,I, ... 'Ik-I, I'}, {II, . . , 'Ik-l, I"} 
of span a and span (3, respectively, so that 

a = II . "lk-1/' and {3 = II .. ·lk-1/". 

Then, a + (3 = II . , "k-1 (I' + ,"). 

On the other hand, suppose that dim W = r < k-1 but a+(3is decomposable. 
We may assume that ' 

where {aI, ... , ar} is a basis for W. Let a + {3 = a1 . ,. arlr+1 ., 'Ik for some ,i E V; we put 1= Ir+l, Then 

If {a1,"" ar, ar+I, .. " ak, {3r+1,"" (3k, I} is linearly independent, we obtain a 
contradiction at once from this equation. So, we may assume that 

for some Ci, c~, ci' in K. Then each of the terms appearing in a1 ' , 'arar+1 .. 'akl 
contains one (3J' while each of the terms appearing in a1 . , 'ar(3r+l ' , . (3kl con­
tains at least two {3/s (since r < k -1). 'Hence, each ci' = O. It then follows that 
each ci = 0 and, so, that lEW, which is a contradiction. 

We now prove Example 7. In tp.is argument, for convenience, we denote 
elements in V by a, b, ... ,u, v, .... First, let u E V be chosen so that au ,# O. 

, Let v E V satisfy auv = O. We shall show that there is a scalar c E K so that 
av = cO:u. If av = 0 we may take c = O. If v = CU, then av = cau. Otherwise, 
by assumption, au + av = a( u + v) is decomposable. Applying the previous 
lemma, we see that there are elements b', b", V2, ... ,Vk-l in V so that 
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If {b' , b", V2, ... , Vk-ll U, V} is linearly dependent, we have av = cau. Otherwise, 
we may extend this set to a basis of V, say {b', b", V2,"" Vk-l, U, V, WI, .... , wr } 

with r - n - k - 2 > O. Writing a in terms of this basis, we have 

a = b"V2'" Vk-IU + uv/3 - b'V2'" Vk-IV 

for some /3 E /\ k-2 (V). Then 

Let, = UW2 ... Wr . We calculate aWl A aWl,. First, 

b"V2'" Vk-IUWI A aWl, = CUV2'" Vk-IWI 

with c E K, c ::f. O. Second, each term appearing in UV/3WI A aWl, is divisible 
by UVWI· Third, b' V2 ... Vk-l VWI A aWl, = O. Hence, aWl A aWl, contains the 
term UV2 ... Vk-l WI and aWl A aWl, ::f. O. However, applying Example 5, we 
have aWl A aWl, = O. This contradiction shows that av = cau with c E K. 

Now, we show that a is decomposable. Let Va = {w E V: aw = O}. We 
shall show that dim Va = k. Let U be any vector in V so that au ::f. O. Let 
T: V -t /\k+2(V) be defined by T(v) = (au)v. Since au is decomposable, 
dim (kernel T) = k + 1. On the other hand, let v E kernel T. If av ::f. 0, then (by 
what was just proved), av = cau for some c E K and a(v - cu) = O. It follows 
that dim (kernel T IVa) = 1 and dim Va = k. 

EXAMPLE 8. Let a, b be symbols belonging to /\ k (V) where k = 2, ... , n - 2. 
Let Ok be the covariant defined by the diagram 

a(k)b(2) 

b(k-2) 

Let a E /\ k(V). Then a is decomposable if and only if Ok '" 0 at a. 
PROOF. We begin with a lemma which will also be used later. 
LEMMA. Let a E /\k(V),J-l E V,8 E /\n-k+I(V), and, E /\n-k-3(V). Then 

(aJ-l A 8) (aJ-l,) = (a A J-l8)(aJ-l'). 

PROOF. Since ~ is an algebra homomorphism, we have 

~("I') = ~"~I' = (~"(1) Gi "(2)) (I' Gil + 1 Gil') 

= I)±a(I)J-l ® a(2) + a(I) ® a(2)J-l). 

It follows that 

aJ-l A 8 = I)(aJ-lh 8 11· .. n)(aJ-l)(2) 
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The lemma follows immediately since J-l2 = O. 

To prove Example 8, we begin by noting that Ok r-..; 0 at a means that (a A 
a,)8 = 0 for all , E /\ n-k-2(V), 8 E /\ n-k+2(V). If a is decomposable, say 
a = al ... ak with ai E V, then 

a A a, = L(a(1)a, I 1· .. n)a(2)' 
a 

which is 0 since a(l) = aiaJ" and, so, a(1)a = O. 

We prove the converse by induction on k with k = n - 2, n - 3, ... ,2. For 
k = n - 2, we need to show that a is decomposable if a A a = O. Applying cP, 
we see that it is enough to show that a E /\ 2 (V) is decomposable if a 2 = O. 
According to Example 5, we need to show that 

o = (U, (a (2
) b I if k) (b I h)) ( a) = (*) 

where i < f < k. But, a (short) calculation shows that the coefficient of ei e "ekeh 
• 2' 2() S' J 
III a IS *. mce char K ::f. 2, (*) = 0 and a is decomposable. 

In general, let a E /\ k C\1) and suppose that Ok rv 0 at a. Let J-l E V. 
Applying the lemma, we see that Ok+l rv 0 at aJ-l since for, E /\ n-k-3(V) 8 E 

/\ n-k+I(V), we have (aJ-l A aJ-l,)8 = (aJ-l A 8) (aJ-l,) = (a A J-l8)(aJ-l,) = 0.' By 
induction, aJ-l is decomposable. We now apply Example 7. 

EXAMPLE 9. Let a,b,c belong to /\3(V) and let a E /\3(V). Let C be the 
covariant defined by the diagram 

0: 
a(2) b(3) 

ac(3) 

Then a is divisible by a vector if and only if 0 '" Oat a. 

PROOF. According to Example 3, C '" 0 at a if and only if (a A a,) (a8) = 0 
for a1l

2
, E/\ n-5(V), 8 E /\ n-4(V). Now, suppose that a = J-l/3 where J-l E V, 

/3E /\ (V). Then 

~a = ~J-l~/3 = (J-l ® 1 + 1 ® J-l) (/3 ® 1 + 1 ® /3 + L /3(1) ® /3(2)) 

where /3(1), /3(2) are all nonzero vectors. By definition, 

a A a, = L(a(I)a, I 1 ~ .. n)a(2)' 
a 

But each a(l) of step 2 is either /3 or of the form J-l/3(I)' In either case, a(I)a = O. 

If a !\ a, = 0 for all , E /\ n-5 (V), then a is decomposable by Example 
8. Otherwise, suppose that there is a ,* with a A a,* ::f. O. By assumption, 
(a A a,*)a = 0 so the vector a A a,* divides a. 

EXAMPLE 10. Let a E /\
3 (V). Suppose that a is not decomposable but is 

divisible by a vector J-l E V. Let a, b belong to /\ 3(V), and u belong to /\ n-5(V). 
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There is a "1* E A n-5 (V) so that the vector with ith coordinate 

is a nonzero scalar multiple of J-l. 

PROOF. This follows at once from the proof of Example 9. Indeed, C r-v 0 at 
a since J-l divides a. Since a is not decomposable, it is divisible by a vector of 
the form a /\ a,* . 

EXAMPLE 11. Suppose. dim V = 5. If a E A 3 (V), then a is divisible by a 
vector. 

PROOF. A direct computation shows that (a /\ a)a = O. We now apply 
Example 9. 

EXAMPLE 12. Let a, b, e, d belong to A (4) (V). Let C1 , C2 , C3 be the covari­
ants defined by the following diagrams: 

a(4)b(2) a(4)b(2) a(4) b(2) 

C1: C2: be(4) C3 : be(4) 

b(2) b bd(4) 

Let a E A 4(V). 

(i) If C1 '" 0 at a, then a is decomposable. 

(ii) If C1 "'" 0 at a but C2 '" 0 at a, then a is divisible by exactly two linearly 
independent vectors. 

(iii) If C1 "'" 0 at a and C2 "'" 0 at a, but C3 '" 0 at a then a is divisible by 
exactly one nonzero vector. 

PROOF. According to Example 8, C1 '" 0 at a if and only if a is decomposable. 
If C1 "'" 0 at a, then there is a ,* E A n-6(V) so that a /\ a,* I- o. Now, 
a /\ a,* E A 2 (V) and has rank ~ 2. If C2 '" 0 at a, then ((a /\ a,*) /\ 8') a8 = 0 
for all 8 E An- 5(V),8' E An- 1(V). Thus, a is divisible by each vector in the 
span of a /\ a,*. Since a is not decomposable, it is not divisible by three linearly 
independent vectors. Hence, rank (a /\ a,*) = 2 and (ii) is proved. 

We note that C2 '" 0 at a means that a /\ a,l/\ a"l2 = 0 for all ,1 E A n-6 (V), ,2 E A n-5(V). Now, suppose that a is divisible by two linearly independent 
vectors, say a = J-l1J-l2i3, J-li E V, i3 E A 2 (V). Then for ,I E A n-6(V) we have 

since either J-l1 or J-l2 or i3 appears in a(1). So, C2 '" 0 at a. 

Finally, suppose that C1 "'" 0 at a, C2 "'" 0 at a, but C3 '" 0 at a. Then, 
there are elements "Ii E A n-6(V), '2 E A n-5(V) so that the vector J-l = 

a /\ a"li /\ a'2 I- O. Since C3 '" 0 at a, we have 0 = (a /\ a,i /\ a"l2)a8 for 
all 8 E A~-5(V'), so J-l divides a. 
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EXAMPLE 13. Let a, b, e, d, e, ... belong to A k(V). let C1, C2, ... , Ck- 1 be 
the covariants defined by the diagrams 

Let a E A k (V) . 

a(k) b(2) 

b(k-2) 

a(k) b(2) 

C2: beCk) 

bCk - 3 ) 

aCk) b(2) 

beCk) 

C3 : bdCk ) 
bCk - 4 ) 

aCk )b(2) 

beCk) 

bdCk ) 

b 

a Ck )bC2 ) 

beCk) 

Ck-1: bdCk ) 

beCk) 

(i) If C1 '" 0 at a, then a is decomposable. 

(ii) If C1 "'" 0 at a but C2 '" 0 at a, then a is divisible by exactly k - 2 linearly 
independent vectors. 

(iii) If C1 "'" 0 at a, C2 "'" 0 at a, but C3 '"'-' 0 at a, then a is divisible by 
exactly k - 3 linearly independent vectors. 

PROOF. This is similar to that given when k = 4 so we omit it. 
EXAMPLE 14. Let a E 1\2 

(V). Then rank a is even, say, rank a = 2r. 
Furthermore, there is a basis {i31, ... , i32r} of span a so that a = i31 i32 + ... + 
i32r-1i32r. ' 

We begin by proving the following result, which will also be useful later. 
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LEMMA. Let a E /\ k (V), k 2: 2. There exist f.1, E V and 8 E /\ n-1 (V) so that 
the following conditions hold: 

(i) af.1,/\8 = (-I)ka+ (a/\8)f.1,; 
(ii) W = span(af.1, /\ 8) + span(a /\ 8) c span a; 

(iii) f.1, Eif W; 
(iv) dim W = rank a-I; 
(v) if a is not decomposable and if k 2: 3, then 8 may be chosen so that a /\ 8 

is not decomposable. 

PROOF. Let 8 E /\ n-1(V) be chosen so that a /\ 8 =1= o. If a is not decom­
posable, we may assume (by Example 7) that a /\ 8 is not decomposable. Let 
"1* E 1\ n-k+1 (V) be chosen so that 

(_I)k-1(a /\ 8),* = (a /\ ,*)8 = 1. 

Let f.1, = a /\ ,*. Statement (i) follows as in the proof of the Lemma, Example 8. 
We have span(a/\8) espana by (M5). To show that span(af.1,/\8) espana, 

let, E /\n-k+1(V). Then, using the Lemma, Example 8, we have 

(af.1, /\ 8) /\, = (-I)ka /\, + ((a /\ 8)f.1,) /\, 

= (-I)ka /\, - (a /\ 8 /\ f.1,') + (a /\ 8 /\ ,)f.1,. 

Since a /\ 8 /\ , is a scalar and f.1, = a /\ ,*, we may conclude that span( af.1, /\ 8) c 
spana. This proves (ii). Statement (iv) will follow from the equation above for 
(aJ-l/\ 8) /\ , once (iii) is proven. 

By definition, f.1, = a /\ ,* E span a and f.1,8 = 1. However, for any , E 
1\ n-k+1(V), we have 

(aJ-l/\ 8 /\ ,)8 = ±((aJ-l/\ 8) /\ 8), = ±(a/-lo/\ 8 /\ 8), = 0 

according to (M9). Similarly, for any, E 1\ n-k+2(V), we have 

(a /\ 8 /\ ,)8 = ±(a /\ 8 /\ 8), = O. 

PROOF OF EXAMPLE 14. We proceed by induction on rank a. If rank 
a = 2, then a is decomposable. Otherwise, let us choose 8 E /\ n-1 (V) and 
,* E 1\ n-1 (V) as in the proof of the lemma above. As before, let J-l = a /\ ,* . 
Then (3 = aJ-l /\ 8 is in /\2 (V) but rank (3 < rank a by (iv). By induction, 
rank (3 = 2r - 2. 

If J-l1 and °J-l2 are any elements in V and if 8' is any element in /\ n-1 (V), then 
(by the definition of the meet) we have 

Hence, 

J-l1J-l2 /\ 8' = (J-l1 8')J-l2 - (J-l28')J-l1. 

(3 /\ ,* = a /\ ,* + ((a /\ 8) J-l) /\ ,* 

= a /\ ,* + ((a /\ 8),*)J-l- (J-l,*)(a /\ 8) 

= J-l- J-l - (J-l,*)(a /\ 8). 
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Since ,* is in /\ n-1(V), it is decomposable and f.1,,* = (a /\ ,*),* = O. Hence, 
(3/\ ,* = O. Then, for any 8' E /\ n-1 (V), we have ((3/\8'),* = -((3/\ ,*)8' = O. 
S'ince (a/\8),* = -1, it follows that a/\8 is not in span (3. Applying statements 
(ii), (iii), and (iv) in the lemma, we see that rank a = 2r. We now apply the 
induction hypothesis to the equation a = (3 + (a /\ ,*) (a /\ 8). 

Note. The proof above gives something more which will be used later. Namely, 
let a E 1\2 

(V) with rank a = 2r. Let (31 = a /\ 81 and (32 = a /\ 82 be in span a. 
If (a /\ 81 )82 =1= 0, then there is a scalar c E K and vectors (33, ... ,(32r in span a so 
that a = c(31 (32 + ... + (32r-1 (32r. (To see this, just take 81 = 8 and ,* = -e82.) 

EXAMPLE 15. Let a E /\k(V) and W = spana. Then a E /\k(W). 
PROOF. We proceed by induction on step a and, for fixed step, by induction 

on rank a. If k = 1, the statement is trivial and if k = 2, the result follows from 
Example 14. So, let k 2: 3. If rank a = k, then a is decomposable with, say, 
a = (31 ... (3k. Since span a has basis {(31,'" ,13k}, our example holds. 

We may now assume a E /\ k(V) and rank a > k. We apply the Lemma, 
Example 14, to see that we may write aJ-l/\8 = (-I)ka+ (a/\8)f.1,. By induction, 
the example holds for aJ-l/\8 (since rank(af.1,/\8) < ranka) and a/\8 (since 
a/\8 E /\k-l(V)). Now, J-l Espana and span(aJ-l/\8) +span(a/\8) espana. 
Hence, a E /\ k(span a). 

EXAMPLE 16. We shall determine canonical forms for elements of /\3 (V) 
when dim V = 3,4,5, and 6. If a E /\ 3(V) and dim V = 3 or 4, then rank a = 3 
and a is decomposable. If dim V = 5, then a is divisible by a vector (Example 
11). Thus, we may assume that dim V = 6. 

It will simplify our notation if we abandon the Greek alphabet and, instead, 
denote elements in 1\ k (V) by symbols a(k). If k = 1, we write simply b, c, d, .... 
We shall prove that the following four canonical forms suffice. 

I. a (3) = bcd. 
II. a(3) = bed + bef. 
III. a(3) = bcd + bfg + eef. 
IV. a(3) = bed + efg. 

If rank a(3) = 3, then a(3) has form I. Hence, we may assume that rank 
a(3) = 5 or 6. Ifrank a = 5, then a has form I or II (by Example 15). So, we 
may assume rank a = 6. According to the previous lemma, we may write 

a(3) = bv(2) + e(3), 

where W = spane(3) + spanv(2) c spana(3), b Eif W, dimW = ranka(3) -1, 
and V(2) is not decomposable. Since v(2) is not decomposable, rank v(2) = 4 by 
Example 14. 

LEMMA 1. Let v(2) E /\2 (V) have rank 4. Let v and w be any linearly 
independent vectors in span v(2). Then there are vectors b, c, so that either 

(i) v(2) = Cl VW + be for some Cl E K or 
(ii) v(2) = vb + CWo 
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PROOF. We may assume that dim V = 4. Let v = v(2) /\ dP) and· w = 

V(2) /\ d~3) where dP) and d~3) are linearly independent elements in 1\ 3(V). 

If vd~3) =I 0, then we obtain (i) from the note following Example 14. So, let 

us assume that vd~3) = O. Let d~3) E 1\3 (V) be chosen so that vd~3) = 0 

and wd~3) = 1. Then, again by the note following Example 14, the tensor 

W(2) = v(2) - w(v(2) /\ d~3») has rank 2. To obtain case (ii), we need only prove 
that v is in span W(2). But 

w(2) /\ dP) = v(2) /\ d~3) - (w( v(2) /\ d~3»)) /\ dP) 

= v(2) /\ d~3) - (wd~3») (v(2) /\ d~3») + (( V(2) /\ d~3») dP»)w 

which is v(2) /\ dP) = v since 

wd~3) = (v(2) /\ d~3») d~3) = -( v(2) /\ dP») d~3) = 0 

and 
(V(2) /\ d~3») dP) = - (v(2) /\ d~3») d~3) = -vd~3) = O. 

Case 1. c(3) is decomposable. 
Since rank v(2) = 4 and rank c(3) = 3, we see that dim (span v(2) nspan c(3») = 

2. Let V1, V2 be a basis of this intersection. There is a vector d E V so that 
c(3) = dV1V2' Furthermore (by Lemma 1), we may find V3,V4 E spanv(2) so 
that either v(2) = V1 V2 + V3V4 or v(2) = V1 V3 + V2V4. In the first case, a(3) has 
the form IV and in the second case, form III. 

Case 2. c(3) is not decomposable. 
From the dimension identity 

dim span c(3) + dim span V(2) 

= dim((spanc(3») /\ (spanv(2»)) +dim((spanc(3») V (spanv(2»)) 

(where meets and joins here are meant in the lattice sense, as meets and joins of 
subspaces of a vector space) we infer 

5 + 4 = dim((spanc(3») /\ (spanv(2»)) + 5; 

hence dim( (span c(3») /\ (span v(2»)) = 4. This implies that span v(2) ~ span c(3). 
Since c(3) is of rank 5, it is divisible by a vector, say, c(3) = dw(2), where w(2) 

is a bivector of rank 4, which can be written as the sum of two decomposable 
bivectors w(2) = wi2) + W~2). Again from the dimension identity 

4 + 3 = dim((span V(2») V (span(dw;2»)) + dim((span v(2») /\ (span(dw;2»)), 

we infer that dim(span(v(2») V span(dw?»)) = 5 either for i = 1 or for i = 
2; for otherwise, if dim(span(v(2») V (span dW;2»)) = 4 for i = 1 and i = 2, 

it would follow that dim(span(v(2») /\ span(dw;2») = 3 for i = 1 and i = 2. 

This would in turn entail that span (dw;2») ~ span(v(2») for i = 1 and i = 2, 
whence span(dw(2») ~ span(v(2»), and span(c(3») ~ span(dw(2») V span(v(2») = 
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span ( v(2»). Thus, rank c(3) ~ rank v(2) = 4, contradicting the assumption that 
rank c(3) = 5. We therefore may and. will assume henceforth that 

dim(span(v(2») V span(dwi2»)) = 5, 

and, as a consequence, that 

dim((span(v(2») /\ span(dwi2»)) = 2. 

There are two subcases. 
Case 2.1. dim((span v(2») /\ (span dW~2»)) = 3. 

We then have that span(dw~2») ~ span(v(2»), and "hence d E span(v(2»). 
Choose a basis d, It, 12,13,14 of the subspace span(v(2») V span(dw(2») such 
that: 

(a) d, il span span(v(2)) /\ span(dwi2»), 

(b) d, 12, 13 span dw~2), 
(c) d, il, 14 span dwi2) 
(d) d, il, 12, 13 span span v(2). 
There are now two possibilities: either 
Case 2.1.1. v(2) = k1 dil + k2hh, for some scalars k1 and k2, or else 
Case 2.1.2. V(2) = k1 dh + k2ilh. 
In case 2.1.1 we find 

which gives canonical form IV, and in case 2.1.2 we find 

a(3) = (k1b + h) dh + k2bil/3 + dhl4, 

whence, setting !5 = k1b + k2h, 

a(3) = 15 dh + bil/5 + d1il/4, 

which gives canonical form III. 
Case 2.2. dim(span(v(2») /\ span(dw~2») = 2. 

Again we have two sub-subcases. 
Case 2.2.1. d tf. span ( V(2»). 

We can then choose il, 12 in span( v(2») so that dwi2) = dil 12 and 13, 14 in 

span(v(2») so that dw~2) = dhl4. The vectorsil, 12, 13, 14 are linearly indepen­
dent, hence they span span(v(2»). It follows that span(v(2») = span(w(2»). We 
can therefore find a basis 91,92,93,94 of span(v(2») such that, for suitable scalars 
ki: 

so that 

V(2) = k19192 + k29394, 

w(2) = k3 9192 + k49394' 

a(3) = (k1b + k3d)9192 + (k2b + k4d)9394' 

which is canonical form IV. 
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Case 2.2.2. dE span(V(2)). 
Then, for suitable gi, V(2) = dg1 + g2g3, and a(3) = bg2g3 + d(w(2) + bg1 ), 

which is, after a change of lettering, case 1. The proof is therefore complete. 
We can now proceed to express the preceding results in terms of the vanishing 

of covariants. Consider the covariants 
a(3) b(2) 

b 

a(3)b(2)c 

bc(2) 

a(3)b(2)c 

bc(2) d(3) 

when all symbols are equivalent. We again assume that n = 6. Clearly the 
vanishing of Oi implies the vanishing of Ci+1. If 0 3 ~ 0 then the tensor a(3) has 
the canonical form IV. One verifies that if a(3) has the canonical form III then 
C3 r-.J O. Conversely, suppose that 0 3 r-.J O. From our previous classification, we 
infer that the tensor must have one of the canonical forms I, II, or III. Similarly, 
C2 r-.J 0 if and only if the tensor has one of the canonical forces I or II, and 
C1 r-.J 0 if and only if the tensor has the canonical form I; that is, if and only if 
it is decomposable. 

Then we see that each of the canonical forms for a tensor of step 3 in dimension 
6 can be characterized by the vanishing or nonvanishing of a covariant. 

Consider now the following covariants: 

a (3) b(2) c(2) 

C4 : b 

c' 

a(3)b(2)C(2) 

b d(3) 

c 
a(3) b(2) c(2) 

b d(3) e(2) 

ce 

a(3) b(2) c(2) 

C7 : b d(3) e(2) j 

cej(2) 

a (3) b(2) C(2) 

C8 : b d(3) e(2) j 

cej(2) g(3) 
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We state without proof the classification of tensors of step 3 in dimension 7. To 
the previously found canonical forms we now add the following canonical forms: 

V. aqp + brp + esp. 

VI. qrs + aqp + brp + esp. 

VII. abe + qrs + aqp. 

VIII. abe + qrs + aqp + brp. 

IX. abc + qr s + aqp + brp + esp. 

Here all symbols are of step 1 and all symbols are equivalent. 
Again, one verifies directly that the most general tensor of step 3 in dimension 

7 is of the form IX. If C8 r-.J 0 but C7 ~ 0 then the canonical form is VIII; if 
0 7 r-.J 0 but C6 ~ 0 then the canonical form is VII, etc. The proof that these 
canonical forms are the only ones will not be given here. 

For a tensor of type IX; the value of the covariant C8 is the single term 

( aqp ) ( bc ) ( r s ) 

a(qrs)(bc)p 

qa(br)(csp). 

For a vector of step 3 in dimension 8 we have the following canonical forms: 
X. aqp + brp + csp + crt. 

XI. qrs + aqp + brp + csp + crt. 

XII. abc + qrs + aqp + crt. 

XIII. abc + qrs + aqp + brp + crt. 

XIV. abc + qrs + aqp + brp + csp + crt. 

XV. aqp + bst + crt. 

XVI. aqp + brp + bst + crt. 

XVII. qrs + aqp + lJrp + bst + crt. 

XVIII. aqp + brp + csp + bst + ert. 

XIX. qrs + aqp + brp + csp + bst + crt. 

XX. abc + qrs + aqp + bst + crt. 

XXI. abc + qrs + aqp + brp + bst + crt. 

XXII. abc + qrs + aqp + brp + csp + bst + crt. 

The covariants corresponding to each of these canonical forms will be described 
elsewhere. 
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