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Preface

I have also omitted here the demonstration of most of my

statements, because . . . if you take the trouble to examine

them systematically the demonstrations will present them-

selves to you and it will be of much more value to you to

learn them in that way than by reading them.

—René Descartes [19, p. 192]

Every student learns the formula for the solution of a quadratic, or de-

gree two, polynomial equation in a high school algebra course. It is one

of the few mathematical topics that many adults remember years later, at

least by name. However, the study of cubic, or degree three, and quartic, or

degree four, polynomial equations has largely disappeared from the mathe-

matical curriculum. In the rush to calculus, high school students do not see

it. At the university level, undergraduate mathematics majors often crown

their algebraic studies with Galois theory, which provides the tools needed

to show that there is no formula for the solution of degree five equations

analogous to the quadratic formula for degree two equations. Galois The-

ory can also be used to show that formulas exist for solutions in degrees

three and four, but these may be skipped over.

What are the formulas? The answer is at the heart of this book. The re-

sults are both elementary and beautiful. Moreover, they are an essential part

of the history of mathematics, representing the high point in mathematical

developments of the sixteenth century.

This book has evolved from notes used in a class for in-service and

prospective secondary mathematics teachers. It is intended to be suitable

ix
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x Preface

for such an audience as well as for undergraduates who desire to look at

a topic they may have unwittingly skipped over, or anyone mathematically

curious and willing to do some work. Included in this category are high

school students eager to go beyond the standard curriculum. An important

feature of the book is the sections devoted to history. They are intended to

enrich the reader’s learning by revealing the key discoveries in the study of

polynomial equations as milestones in intellectual history across cultures.

The mathematical content of the book parallels that found in a few chap-

ters of a mathematical classic from 1914, Elementary Theory of Equations,

by Leonard Eugene Dickson [20]. Dickson was one of the leading Ameri-

can mathematicians of the first part of the twentieth century. This book is

more leisurely than Dickson’s, but is similar in approach and borrows some

of the examples.

The book is designed for self study. Much of the material is presented as

exercises, with outlines for working through them. Mathematics is learned

only by doing, and that is what is asked of the reader. Doing is not making

calculations. It is necessary to learn how to write results in organized, intel-

ligible, logical prose and, ideally, to practice describing the results to others

orally. In teaching, I try to keep lecturing to a minimum, asking students to

read the book on their own, to work through the ideas orally in class with

each other, and to present the results in writing.

In developing material on polynomial equations, how many of the foun-

dational results on real numbers and elementary calculus should we as-

sume? On occasion, it is useful to be able to refer to the intermediate value

theorem or basic results on turning points of a polynomial’s graph. For in-

stance, we need to know, given a positive integer n, that any positive real

number has an nth root, or that if the graph of a polynomial lies below the

horizontal axis at one point and above at another, then the graph crosses

the axis somewhere in between. From calculus, knowing the relationship

between a polynomial’s derivative and the behavior of its graph allows con-

clusions to be drawn about the connection between the discriminant of a

quadratic or cubic polynomial and its roots.

I answer this question by including two sections, Section 1.5 on the

intermediate value theorem and Section 1.6 on graphs of polynomial func-

tions, in which key ideas are sketched and theorems stated in a form that

makes them available for reference later. This allows us, for instance, to

treat discriminants early, with a small dose of calculus, returning later with

additional algebraic tools to study them purely algebraically and see them

in their proper light. Readers knowing calculus will already be familiar with

much of the material. Others I hope will be able to grasp the issues and be

comfortable using the theorems when the time comes.
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Let’s take a quick tour of the book.

Chapter 1 consists of definitions and basic results on polynomials. Some

of the material, such as the discussion of graphing, is more advanced or

abstract than the material in the rest of the book and need not be understood

in detail on a first reading. A first reading gives orientation, and the chapter

can be returned to as needed.

Chapter 2 treats the quadratic formula for the solution of degree two

equations and examines it from several perspectives. The chapter closes

with a selective history of the quadratic formula, focusing on the work of

the ancient Babylonians nearly 4000 years ago and Al-Khwarizmi around

825 C.E.

The heart of the book is Chapters 3 through 6, in which we study poly-

nomial equations of degrees three and four. The discovery of solutions to

them by several mathematicians in sixteenth-century Italy represents a high

point in mathematical history and was the most significant mathematical

accomplishment in Europe for centuries. It also makes for a good story.

Chapter 3 introduces the solution to (reduced) cubic equations that has

come to be known as Cardano’s formula, in honor of Girolamo Cardano, a

co-discoverer. Following the derivation of the formula and its use in some

examples, we discuss graphs of cubic polynomials and the discriminant of

a cubic, concluding with the dramatic story of the formula’s discovery and

publication.

One lesson of Chapter 3 is that Cardano’s formula, when applied to

certain cubic equations, expresses the solutions in terms of square roots of

negative real numbers, obliging us to make sense of them. We do this in

Chapter 4, learning how to work with an expansion of the system of real

numbers known as the complex numbers and how to compute nth roots of

complex numbers using trigonometry. The history of complex numbers is

interesting. We close with a short account.

With complex numbers, we return in Chapter 5 to cubic equations, refin-

ing Cardano’s formula and giving an algebraic description of the discrim-

inant. We see how trigonometry can be used for the most difficult family

of cubic equations to dispense with complex numbers altogether. Our his-

torical review of cubics picks up where it left off two chapters earlier, as

we learn how Cardano’s successors came to terms with the appearance of

complex numbers in his formula.

After our three-chapter-long struggle with the complexities of cubic

equations, we enter smoother waters in Chapter 6, which is devoted to quar-

tic equations. Out of respect for history, we begin with the original method

of solving them, due to Cardano’s assistant Lodovico Ferrari, but then turn
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xii Preface

to René Descartes’ approach of a few decades later and Leonhard Euler’s

formula from a little over a century after that. All three methods require

an intermediate step of solving a cubic equation that depends on the coef-

ficients of the quartic. This is why the quartic waters are so much calmer;

nearby, the cubic channel continues churning, but once we master the nav-

igation of its shoals, the quartic provides little in the way of new obstacles.

Euler’s formula for the solution of a quartic equation leads to the calculation

of the quartic’s discriminant.

A recurring theme of the book is the abundance of information the co-

efficients of a polynomial encode about its roots. The quadratic formula

is the first illustration, with more appearing throughout the discussion of

cubic polynomials. The theme reaches its climax in Chapter 6, where we

learn how the discriminant and other polynomial expressions in a quartic’s

coefficients can be used to determine the nature of its roots. The chapter

concludes with a section inviting the reader to consolidate understanding

of the material on cubic and quartic polynomials through a series of essay

questions, followed by a historical section on the contributions of Descartes

and Euler.

Chapter 7 is an introduction to some topics in the theory of polynomials

of higher degree: quintic polynomials, the fundamental theorem of algebra,

polynomial factorization, and symmetric polynomials. The level of diffi-

culty rises, but full understanding is not the aim. The treatment is intended

as a peek at what lies ahead, with results sketched, history surveyed, and

little proved. We conclude on a highpoint that draws many of the chapter’s

elements together: a proof of the fundamental theorem of algebra that is

essentially the one given by Pierre-Simon Laplace in 1795.

Acknowledgements: I thank my Math 497 students for working with early

versions of this material. Their responses guided my selection of topics and

my choice of emphasis. I am particularly grateful to Andrew Grzadzielewski

for his continued encouragement.

Another student, Spencer Hubbard, read the manuscript and did all the

exercises. His careful review and eye for detail led to many improvements,

as well as enjoyable conversations. I thank Spencer in particular for his

question about the roots of a quartic polynomial with zero discriminant,

which motivated an expansion of Section 6.6.

The panel of reviewers that the Mathematical Association of America

assembled to read an earlier version of the book did the most extraordinary

of jobs, entirely transforming my vision of what it could be. No doubt I have

fallen short, but the book is far better thanks to their advice and criticism, as
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well as later extensive comments by the copy editor, criticism of the history

sections by an anonymous MAA reader, and transformation of my primitive

diagrams by Beverly Ruedi. I am indebted as well to Don Albers and Jerry

Bryce for their willingness to consider this project and for their ongoing

support.

Exploring mathematics, even elementary mathematics, is a privilege,

connecting us to fellow humans across millennia and cultures in our search

for fundamental truth. (I hope this book illuminates these connections.) My

greatest debt is to the members of my family, who have allowed and encour-

aged me to enjoy this privilege. My parents, to whom I have dedicated this

book, arranged for me to arrive on a leap day, thereby inspiring my child-

hood interests in mathematics and astronomy. Their gift of Irving Adler’s

The Giant Golden Book of Mathematics [2] on my second birthday sealed

my fate.
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1
Polynomials

We will be studying polynomial equations throughout this book, especially

those of degrees 2, 3, and 4. In this chapter, we introduce terminology and

obtain some basic results that hold for all polynomials. The reader familiar

with this material may wish to skip ahead. Others may wish on first en-

counter to read through this chapter’s definitions and results, returning for a

closer reading as they are used.

1.1 Definitions

What is a polynomial? We know that

3x2 � 4x C 7

is one, as is

5x17 C 12x11 � 4x7 C 13x4 C x3 � x C 113:

So are
4

3
x100 C 2

5
x88 � 5

and p
2x333 � 2x200 C 1

3
x111 C x4 � �2:

But

x4 C sinx

is not a polynomial, and neither is

10x:

1
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2 1. Polynomials

(Why not? For now, we can agree that they certainly don’t look like poly-

nomials. We will return to this question in Exercises 1.12 and 1.14.)

The formal definition of a polynomial is: a polynomial is an expression

of the form

anx
n C an�1x

n�1 C an�2x
n�2 C � � � C a2x

2 C a1x C a0;

where n is a non-negative integer and an; an�1; : : : ; a1; a0 are numbers. As

indicated in the examples, the numbers might be integers, fractions, or more

generally real numbers. (The real numbers are those numbers that mark po-

sitions on a line.) The numbers are called the coefficients of the polynomial.

The coefficient a0 is the constant term of the polynomial. Real numbers are

themselves polynomials, the constant polynomials, with 0 called the zero

polynomial.

For a non-zero polynomial, the largest integer d for which there is a

non-zero coefficient ad is called the degree of the polynomial. The expres-

sion aix
i is the degree i term of the polynomial. By the definition of degree,

the non-zero real numbers, viewed as polynomials, are degree 0 polynomi-

als. By convention, 0 is said to have degree �1.

Ordinarily, when we write a polynomial as anx
n C � � � C a1x C a0,

we anticipate that n is its degree and an ¤ 0. Because this is not required

by the definitions, we must exercise some care. Two polynomials anx
n C

� � � C a1x C a0 and bmx
m C � � � C b1x C b0 are equal if the corresponding

coefficients are equal. More precisely, they have the same degree, d say,

and ai D bi for each i D 0; 1; : : : ; d . (If m or n is greater than d , then the

indices ai or bj with i > d or j > d will be 0, by definition of degree.)

Exercise 1.1. What are the degrees of the four polynomials displayed at

the start of the section?

Polynomials of low degree have special names: degree 1 polynomials

are linear polynomials, degree 2 polynomials are quadratic polynomials

or quadratics, degree 3 polynomials are cubics, degree 4 polynomials are

quartics, and degree 5 polynomials are quintics.

A polynomial can be regarded as a function, taking on numerical values

when numbers are substituted for x. This leads to the use of functional

notation, with polynomials represented by expressions such as f .x/. Given

a polynomial f .x/ and a number a, we write f .a/ for the number we get

when we replace x by a. For example, suppose f .x/ is the polynomial

x3 � 3x C 2:
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1.1. Definitions 3

Then

f .2/ D 23 � 3 � 2C 2 D 8 � 6C 2 D 4:

There is nothing special about x. We may write other letters for the

variable (also called the indeterminate) of a polynomial, or any symbol in

place of x. For example,

y3 � 3y C 2

is a polynomial, as are

t3 � 3t C 2

and

|3 � 3| C 2:

Although written differently, they describe the same function.

Exercise 1.2. Is

437 C 3
p
2411 � �4 C 3

7

a polynomial? If so, what is its degree? If not, why not?

Given a polynomial f .x/ and a real number c, there is a natural way to

form their product c � f .x/: we multiply each coefficient of f .x/ by c. For

example,

3 � .4x3 � 3x2 C 2x C 8/ D 12x3 � 9x2 C 6x C 24

and
1

4
� .4x3 � 3x2 C 2x C 8/ D x3 � 3

4
x2 C 1

2
x C 2:

A non-zero polynomial is monic if the coefficient of its highest-degree

term is 1. As we did in the example, we can multiply any non-zero polyno-

mial by a suitable real number to obtain a monic polynomial: Given

anx
n C an�1x

n�1 C � � � C a1x C a0

with an ¤ 0, multiply by 1=an.

Algebra has developed from the need to solve polynomial equations. A

polynomial equation is an equation of the form

f .x/ D 0;

with f .x/ a polynomial. A solution to this equation is a real number a

satisfying

f .a/ D 0:
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The number a is also called a root of f .x/. For example,

x5 � 3x3 � 6x C 4 D 0

is a polynomial equation, and one can check that x D 2 is a solution.

Polynomial equations need not have solutions. For example,

x2 C 1 D 0

doesn’t. Substituting any real number for x, we obtain as its square a posi-

tive real number or 0. Adding 1 yields a positive real number, which there-

fore can’t be 0.

In saying a polynomial equation has no solution, we are implicitly as-

suming that the domain of allowable solutions is the set of real numbers. In

Chapter 4, we will introduce complex numbers, and we will find that equa-

tions such as x2 C 1 D 0 have solutions in this expanded domain. It would

be more accurate to say that x2 C 1 D 0 has no real number solution rather

than that it has no solution.

For any non-zero polynomial f .x/ and non-zero real number c, the

polynomial equations

f .x/ D 0

and

c � f .x/ D 0

have the same solutions. If a is a real number satisfying f .a/ D 0, then

cf .a/ D 0 also, and similarly, if cf .a/ D 0, then since c is non-zero, f .a/

must be 0. Therefore, whenever we want to solve a polynomial equation

f .x/ D 0 (with f .x/ non-zero), we can replace f .x/ by its associated

monic polynomial and solve the resulting equation instead. We will make

use of this elementary observation throughout the book.

1.2 Multiplication and Degree

Adding and multiplying polynomials is done in a first class in algebra.

Nonetheless, it is important to state carefully what the operations are in

general. The notation may seem complex, but the ideas and the results will

be simple and should be familiar.

Two polynomials can be added and multiplied to obtain new polyno-

mials. Addition is easy to define: we simply combine terms of like degree.

Suppose r.x/ and s.x/ are polynomials given by

r.x/ D anx
n C an�1x

n�1 C � � � C a1x C a0
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1.2. Multiplication and Degree 5

and

s.x/ D bnx
n C bn�1x

n�1 C � � � C b1x C b0:

(We do not assume that n is the degree of r.x/ or of s.x/, so an or bn may

be 0.) The sum r.x/C s.x/ is defined to be the polynomial

.an C bn/x
n C .an�1 C bn�1/x

n�1 C � � � C .a1 C b1/x C .a0 C b0/:

The product is also as expected, but its description is more involved.

Given real numbers a and b and non-negative integers m and n, we define

the product of axm and bxn to be

.axm/ � .bxn/ D abxmCn:

If m D n D 0, we are multiplying the constant polynomials a and b,

and their product is the usual product ab. This rule, combined with the

distributive law, completely determines how two polynomials r.x/ and s.x/

are multiplied. If one polynomial is 0, the product is 0. Otherwise, their

product r.x/ � s.x/ is the sum of the terms obtained by multiplying each

term in r.x/ by a term in s.x/.

Exercise 1.3. Let us be more explicit about the coefficients of the product

of two polynomials. Suppose r.x/ is a non-zero polynomial of degree m,

with

r.x/ D amx
m C am�1x

m�1 C � � � C a1x C a0:

Suppose s.x/ is a non-zero polynomial of degree n, with

s.x/ D bnx
n C bn�1x

n�1 C � � � C b1x C b0:

(i) The coefficients am and bn are non-zero. Why?

(ii) Show that the constant coefficient of r.x/s.x/ is a0b0.

(iii) Show that the degree 1 coefficient of r.x/s.x/ is

a0b1 C a1b0:

(iv) Show that the degree 2 coefficient of r.x/s.x/ is

a0b2 C a1b1 C a2b0:
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6 1. Polynomials

(v) Show, for any non-negative integer k, that the coefficient of xk in the

product r.x/s.x/ is

akb0 C ak�1b1 C ak�2b2 C � � � C a2bk�2 C a1bk�1 C a0bk:

(It is understood that ai D 0 for i > m and bj D 0 for j > n.)

(vi) Check that the coefficient of xmCn in r.x/s.x/ is ambn.

(vii) Deduce Theorem 1.1.

Theorem 1.1. Supposem and n are non-negative integers, r.x/ is a poly-

nomial of degree m, and s.x/ is a polynomial of degree n. Then the product

r.x/s.x/ has degree mC n.

Exercise 1.4. Practice multiplying polynomials. Determine the product of

x12 C 3x7 C 4x2 � 2

and

4x5 � 3x4 C 12x:

Write other polynomials and multiply them.

Given polynomials f .x/ and r.x/, the polynomial r.x/ divides the

polynomial f .x/ if there is another polynomial s.x/ such that

f .x/ D r.x/s.x/:

We say that r.x/ is a factor of f .x/. As a consequence of Theorem 1.1, a

factor of a non-zero polynomial f .x/ has degree less than or equal to the

degree of f .x/.

Given two positive integers a and b, long division is an algorithm for

dividinga into b, yielding a quotient q and a remainder r , with q and r non-

negative and r < a. For example, if a D 17 and b D 892, long division

produces the quotient q D 52 and the remainder r D 8. We learn this

algorithm early in our mathematical studies. From the equation b D aqC r

and the fact that r < a, it follows that a divides b precisely when r D 0.

The long division process can be adapted to polynomials, as in high

school algebra. Given two non-zero polynomials a.x/ and b.x/, we divide

a.x/ into b.x/ to obtain a quotient q.x/ and a remainder r.x/, with r.x/

having lower degree than a.x/. The next exercise serves as review.
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1.2. Multiplication and Degree 7

Exercise 1.5. Let a.x/ and b.x/ be non-zero polynomials. Let q.x/ be the

quotient obtained by long division when one divides a.x/ into b.x/ and let

r.x/ be the remainder.

(i) By the definition of quotient and remainder,

b.x/ D a.x/q.x/ C r.x/:

(ii) Using the definition of divisibility, show that if r.x/ D 0, then a.x/

divides b.x/.

(iii) Suppose instead that a.x/ divides b.x/. Show that r.x/ must be 0.

(This requires a little care. Use the definition of divisibility to produce

a polynomial p.x/ for which b.x/ D a.x/p.x/. Compare with the

equation in the first part of the exercise and use Theorem 1.1 to deduce

that r.x/ D 0.)

(iv) Conclude that to test if a.x/ divides b.x/, carry out long division and

see if the remainder is 0.

(v) Decide if x � 2 divides x3 C 6x � 20.

(vi) Decide if x2 C 2x C 1 divides x5 C 4x2 C 2.

Let us collect some facts about multiplication and division that are ana-

logues of familiar facts about number multiplication and division.

Theorem 1.2. Suppose f .x/, g.x/, and r.x/ are polynomials.

(i) If f .x/ ¤ 0 and g.x/ ¤ 0, then f .x/g.x/ ¤ 0.

(ii) If f .x/g.x/ D 0, then at least one of f .x/ and g.x/ is 0.

(iii) If r.x/ ¤ 0 and r.x/f .x/ D r.x/g.x/, then f .x/ D g.x/.

Exercise 1.6. Prove Theorem 1.2.

(i) Prove the first part either directly from the definition of multiplication

or from Theorem 1.1.

(ii) Explain why the second part follows from the first part.

(iii) Use the second part to prove the third part.

The third part of Theorem 1.2 says that when we have an equality of

polynomial products, we can cancel a non-zero factor.
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8 1. Polynomials

1.3 Factorization and Roots

The material in this section connects finding the roots of a polynomial f .x/

with finding degree 1 factors of f .x/. We will work in greater generality

than we will need in our treatment of quadratic, cubic, and quartic equa-

tions. The generality allows us to see more clearly what the issues are,

though we do more than is needed in later chapters.

Suppose we are given a polynomial f .x/ and a real number a such that

x�a divides f .x/. According to the definition of division, this means there

is a polynomial s.x/ such that

f .x/ D .x � a/s.x/:

If we substitute a for x on both sides, we find that

f .a/ D .a � a/s.a/ D 0 � s.a/ D 0:

Let’s record what we have just found as a theorem:

Theorem 1.3. Given a polynomial f .x/ and a real number a, if x � a

divides f .x/, then f .a/ D 0.

Theorem 1.3 provides motivation for developing techniques to factor

polynomials, as is done in a first algebra course. To factor the quadratic

polynomial x2 �13xC 36, recognize that 36 D 4� 9 and 13 D 4C 9. This

leads to the factorization

x2 � 13x C 36 D .x � 4/.x � 9/

and shows that 4 and 9 are roots of x2 � 13x C 36.

Factorization problems in a first algebra course usually deal with poly-

nomials having integer coefficients. However, in this book we allow not just

integers as coefficients but all real numbers. Thus, when presented with the

polynomial x2 � 2, we are interested in factoring it as a product

.x � r/.x � s/

for real numbers r and s. If we allow integers only, there is no such factor-

ization, but with real numbers, we find the factorization

.x �
p
2/.x C

p
2/:

Theorem 1.3 then tells us (as is already evident) that
p
2 and �

p
2 are roots

of x2 � 2.
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1.3. Factorization and Roots 9

Given a polynomial f .x/ and a real number a, it is useful to know that

if x � a divides f .x/, then a is a root of f .x/. But will every root of f .x/

arise in this way? That is, if a is a root of f .x/, must x � a divide f .x/?

Before answering this, let us review a point of logic. Many mathematical

statements, such as Theorem 1.3, take the form, “If P is true, then Q is

true,” where P and Q are mathematical statements. For a statement of this

type, the new statement “If Q is true, then P is true” is called its converse.

A statement and its converse are logically independent of each other:

both may be true, one may be true while the other is false, or both may be

false. Thus the fact that a statement is true sheds no light on the truth of its

converse. For example, we know it is true that if an integer n is divisible by

10, then n is even. The converse states that if an integer n is even, then n is

divisible by 10, and this is not true. Care is needed never to assume that the

converse of a statement is true when the statement is true.

Theorem 1.3 is an example of a statement whose converse is true:

Theorem 1.4. Given a polynomial f .x/ and a real number a, if f .a/ D 0,

then x � a divides f .x/.

Theorem 1.4 allows us to limit the possibilities for roots. If we can find

all the factors of f .x/, we will be able to find its roots by examining the

degree-one factors. The proof of Theorem 1.4 is given in the next exercise.

Exercise 1.7. Let f .x/ be a polynomial of degree n and let a be a real

number. Let x D y C a.

(i) Suppose f .x/ D anx
n C � � � Ca1xCa0: SubstituteyCa for x to get

a polynomial in y:

g.y/ D an.y C a/n C � � � C a1.y C a/C a0:

(ii) Use Theorem 1.1 to show for each positive integer i that .y C a/i has

degree i .

(iii) Deduce that g.y/ has degree n and that therefore real numbers bn;

bn�1; : : : ; b1; b0 exist for which

g.y/ D bny
n C bn�1y

n�1 C � � � C b1y C b0:

(iv) From y D x � a, get a new expression for f .x/:

f .x/ D bn.x � a/n C bn�1.x � a/n�1 C � � � C b1.x � a/C b0:
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10 1. Polynomials

(v) Let’s determine b0. Substitute a for x on both sides and show that

f .a/ D b0:

(vi) Conclude that

f .x/ D f .a/C .x � a/
�

bn.x � a/n�1 C � � � C b2.x � a/C b1

�

:

That is, given f .x/ and a, there is a polynomial h.x/ such that

f .x/ D f .a/C .x � a/h.x/:

(vii) Using this, prove Theorem 1.4.

Given a root a of a polynomial f .x/, we can ask how high a power of

x � a divides f .x/. The root a is called a simple root if x � a divides f .x/

but no higher power does. It is a multiple or repeated root if a higher power

of x�a dividesf .x/. The largest integerm such that .x�a/m divides f .x/

is called the multiplicity of a as a root of f .x/; that is,m is the multiplicity

of a if f .x/ can be factored as .x�a/mg.x/ for some polynomial g.x/ but

not as .x � a/mC1h.x/ for any polynomial h.x/.

1.4 Bounding the Number of Roots

It is natural to pursue the ideas of Section 1.3 further, and we shall do so.

However, with two exceptions, we will not use the results of this section

until Section 7.3. The exceptions are the proofs of Theorems 1.15 and 4.18,

neither of which is essential for the development of the material in this book.

Thus, this section can be omitted on a first reading.

We begin with an extension of Theorem 1.4:

Theorem 1.5. Suppose f .x/ is a polynomial and a1; : : : ; ak are k distinct

real numbers that are roots of f .x/. Then the polynomial

.x � a1/.x � a2/ : : : .x � ak/

divides f .x/; that is, there is a polynomial g.x/ such that

f .x/ D .x � a1/.x � a2/ � � � .x � ak/g.x/:

We will prove Theorem 1.5 in a sequence of exercises. First we com-

ment on the use of the word or in logic or mathematics. Given two assertions

P and Q, the statement “P or Q” means that at least one of the two holds.
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1.4. Bounding the Number of Roots 11

The possibility that both hold is not excluded. For example, the statement

“6 is even or 7 is even” is correct, since 6 is even, and the statement “6 is

even or 8 is even” is correct also. If the statement “P orQ” is true but Q is

not true, then P must be true.

We prepare for the proof of Theorem 1.5 with some polynomial divisi-

bility facts.

Exercise 1.8. Let b and c be real numbers.

(i) Show that if c ¤ 0, then the only polynomials that divide c are non-

zero constant polynomials. (Use Theorem 1.1.)

(ii) Show that if x � b divides x � c, then b D c. (If x � c D .x � b/g.x/
for some polynomial g.x/, what must g.x/ be?)

Exercise 1.9. Suppose r.x/ and s.x/ are polynomials and a is a real num-

ber. If r.a/s.a/ D 0, then r.a/ D 0 or s.a/ D 0. (Why?) Use this and

Theorem 1.4 to deduce that if x � a divides r.x/s.x/, then x � a divides at

least one of r.x/ and s.x/.

We can now prove Theorem 1.5.

Exercise 1.10. Suppose f .x/ is a polynomial and a1; : : : ; ak are k distinct

real numbers that are roots of f .x/.

(i) Use Theorem 1.4 to show that there is a polynomial g1.x/ satisfying

f .x/ D .x � a1/g1.x/:

(ii) Suppose k > 1. Since a2 is a root of f .x/, use Theorem 1.4 and

Exercise 1.9 to deduce that x � a2 divides x � a1 or g1.x/.

(iii) By assumption, a1 and a2 are distinct. Use this and Exercise 1.8 to

deduce that x � a2 cannot divide x � a1, and so therefore x � a2

divides g1.x/.

(iv) Conclude that there is a polynomial g2.x/ satisfying g1.x/ D .x �
a2/g2.x/, and therefore that

f .x/ D .x � a1/.x � a2/g2.x/:

(v) Suppose k > 2. Make a similar argument to show that x � a3 divides

.x � a1/.x � a2/ or g2.x/. Show that the first possibility can’t hold,
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12 1. Polynomials

so that x � a3 must divide g2.x/. Conclude that there is a polynomial

g3.x/ satisfying g2.x/ D .x � a3/g3.x/, and therefore that

f .x/ D .x � a1/.x � a2/.x � a3/g3.x/:

(vi) Repeat k � 3 additional times to obtain a polynomial gk.x/ satisfying

f .x/ D .x � a1/.x � a2/ � � � .x � ak/gk.x/:

An immediate consequence of Theorem 1.5 is the following important

result about a polynomial and its roots:

Theorem 1.6. Suppose f .x/ is a polynomial of positive degree n. Then

f .x/ has at most n distinct roots.

Exercise 1.11. Prove Theorem 1.6 using Theorem 1.5 and a comparison

of degrees.

We noted in Section 1.1 that sinx is not a polynomial. This now follows

as a consequence of Theorem 1.6.

Exercise 1.12. Deduce from Theorem 1.6 that sinx cannot be equal to

a polynomial. (Hint: How many solutions are there to sinx D 0?) Show

similarly that cos x and tanx are not polynomials.

1.5 Real Numbers and the Intermediate

Value Theorem

In this section, we temporarily leave algebra to introduce the intermediate

value theorem. We will make no effort to prove it, since the proof depends

on foundational results about the real numbers whose development would

take us too far afield. But the theorem is easily stated, matches our intuition,

and will be useful to have for reference, as is explained in more detail at the

start of Section 1.6.

The primary question we wish to answer about a polynomial f .x/ is

whether it has a root. Viewing f .x/ as a function, we are asking whether

f .x/ takes on the value 0 when a real number is substituted for x, or equiv-

alently, whether the graph of y D f .x/ crosses the x-axis.

The answer to this question depends on an understanding of the prop-

erties of the real numbers. To see why, let’s consider the simplest non-

trivial example for which we may find ourselves searching for a root. Every
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1.5. Real Numbers and the Intermediate Value Theorem 13

degree-one polynomial ax C b has a root (what is it?), so we may turn to

degree 2. Given a positive real number r , does the polynomial x2 �r have a

root? Equivalently, does r have a square root? Let’s be specific: does 2 have

a square root?

The first numbers we learn about are the integers: 0; 1; 2; : : : ; and their

negatives. Next we learn about rational numbers, the ratios a=b of two in-

tegers a and b, with b ¤ 0. No integer has a square equal to 2. Nor is

there a rational number whose square is 2. This is a famous discovery often

credited to Pythagoras some 2500 years ago. You can rediscover it in the

following exercise.

Exercise 1.13. Prove that 2 does not have a rational square root.

(i) Suppose a and b are positive integers such that a=b is a square root

of 2. Assume further that a=b is a reduced fraction; that is, no positive

integer divides a and b other than 1. Square and clear denominators to

obtain a2 D 2b2.

(ii) Show that 2 must divide a.

(iii) Show that 2 must divide b.

(iv) This is a contradiction, proving that a and b can’t exist.

We learn early in our mathematical education that 2 does have a square

root, and that it is given by a decimal expansion that we can describe to as

many terms as we wish. Squaring 1 and 2, we find that 12 is less than 2 and

22 is greater than 2, so we anticipate that the square root, if it exists, lies

between them. With further testing, we find that 1:42 is too small and 1:52

is too large, so the square root should lie between them. Iterating, we get

better and better approximations to
p
2. For instance, after a few minutes

work (or almost no work at all, when armed with a calculator), we get the

approximation 1:4142, whose square is 1:99996164, or the poorer approxi-

mation 1:4143, whose square is 2:0002449, and we conclude that the square

root lies between the two numbers. Continuing, we obtain as many terms as

we wish of a decimal expansion that we take to be the desired square root.

The process of determining a square root of 2 in this way may seem nat-

ural, but its rigorous justification requires laying a proper foundation for the

definition and properties of the real numbers. This book is not the place to

lay such a foundation. We will instead review some essential facts about real

numbers and functions on real numbers, along with their consequences for

the study of polynomials. Many introductory real analysis texts cover this
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14 1. Polynomials

material. Our standard reference will be Steven G. Krantz’s Real Analysis

and Foundations [38].

We must start with a formal definition of the real numbers. We first

learn that a real number consists of an integer or whole number part and a

fractional part given by a possibly infinite decimal expansion. By moving

from rational numbers to this larger class, we fill the holes. Any real number

can be approximated by a rational number as closely as desired: we truncate

the real number’s decimal expansion farther and farther out to get better

and better approximations. But only by allowing the full infinite expansion

do we succeed in filling the holes, assigning a real number to every point

on the number line. We will omit a detailed development of this process,

relying instead on the reader’s intuition about real numbers as given by

decimal expansions. (Krantz provides a treatment in two parts, introducing

the properties of the set of real numbers and stating a theorem that such a

set of numbers exists [38, pp. 58–62], then providing the technical proof of

the theorem in an appendix [38, pp. 71–73].)

Given two real numbers a < b, we introduce two sets of real numbers

associated to a and b, the closed interval Œa; b�, which consists of all num-

bers x satisfying a � x � b, and the open interval .a; b/, consisting of all

numbers x satisfying a < x < b.

Once the real numbers are introduced, we can study properties that sets

of real numbers may satisfy, such as connectedness. We will omit the for-

mal definition, but from it we can prove two basic results [38, pp. 145–147]:

open and closed intervals are connected, and any connected set of real num-

bers that includes the numbers r < s will contain the entire closed interval

Œr; s�.

We also introduce the notion of continuity, for functions defined on

the real numbers or a suitable subset. We will not go into the details (see

[38, pp. 159–164]). Informally, a continuous function is one whose graph

doesn’t skip around or have gaps. From the formal definition, we can verify

that any constant function f .x/ D c is continuous, as is f .x/ D x. We can

also prove that sums and products of continuous functions are continuous,

from which it follows that any polynomial function is continuous. This is

sufficiently important to record as a theorem:

Theorem 1.7. A polynomial with real coefficients, regarded as a function

on the real numbers, is continuous.

Another key result in the study of continuous functions is the theorem

[38, pp. 169–170] that a continuous function takes a connected set of real
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1.5. Real Numbers and the Intermediate Value Theorem 15

numbers to a connected set. Combining this with the result that a connected

set of real numbers containing r and s contains all the numbers in between,

we can easily deduce the intermediate value theorem [38, p. 170].

Theorem 1.8 (intermediate value theorem). Let a < b be real numbers and

let f be a continuous function defined on the closed interval Œa; b�. Given

a real number d between f .a/ and f .b/, there is a real number c in Œa; b�

such that f .c/ D d .

Geometrically, the intermediate value theorem tells us that if the graph

of a continuous function goes through two different heights, then the graph

goes through every height in between as it passes from one height to the

other. Although the theorem is fundamental to the development of calculus,

its proof is usually deferred to an advanced calculus or real

analysis course.

Since polynomials are continuous functions, the intermediate value the-

orem applies to them, yielding the following result.

Theorem 1.9 (intermediate value theorem for polynomials). Let a < b be

real numbers and let f .x/ be a polynomial. Given a real number d between

f .a/ and f .b/, there is a real number c in Œa; b� such that f .c/ D d .

As an example of the intermediate value theorem in action, given a pos-

itive real number d that is not the square of an integer, we can find non-

negative integers a < b with a2 < d < b2. By the intermediate value

theorem, there is a real number c satisfying a < c < b and c2 D d . So it

is a consequence of the intermediate value theorem that every positive real

number has a positive square root. This is sufficiently important to record

as a theorem.

Theorem 1.10. Given a positive real number d , there exists a real number

c such that c2 D d , so every positive real number has a square root.

The same argument works when we replace the exponent 2 by any pos-

itive integer n, showing that every positive real number has a positive nth

root.

Here is another application of the intermediate value theorem, stated for

polynomials although it holds for any continuous function:

Theorem 1.11. Let a < b be real numbers and let f .x/ be a polynomial

for which f .a/ < 0 and f .b/ > 0. Then there is a real number c between

a and b such that f .c/ D 0.
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16 1. Polynomials

In terms of graphs, the theorem tells us that if there is a point on the

graph of y D f .x/ that is below the x-axis and another point that is above

the x-axis, then there must be a point of the graph on the x-axis.

1.6 Graphs

In Section 1.5, we introduced some results on real numbers. Here, we will

continue our excursion into realms beyond algebra, this time turning to an-

alytic geometry to study the shape of the graph of a polynomial function.

We will give merely an overview. Calculus gives the results of this section

as easy exercises. Some of the results can be obtained by more elementary

considerations, albeit at the cost of a little more work, but either way, foun-

dational theorems on the construction and properties of the real numbers

are essential for the proofs.

We will use the results of this section in Sections 2.4, 3.3, and 3.4, where

the discriminants of quadratic and cubic polynomials are studied. In Sec-

tions 4.2 and 5.3, the results will be proved again algebraically, so that their

derivation does not depend on the results of this section. Nonetheless, the

approach to discriminants using graphs in Sections 2.4 and 3.4 provides

additional insight and intuition.

The polynomial functions whose graphs are the simplest are the powers

of x. We know that the graph of y D x is the line forming a 45ı angle with

the x-axis. Suppose n is an integer greater than 1. For positive real numbers

a < b and r < s, the inequality ar < bs holds. Setting r D a and s D b,

we find that a2 < b2. For a positive integer n, we can repeat the argument

n times to obtain an < bn. This tells us that the graph of y D xn is always

increasing in height as x increases, for x � 0.

x

y

Figure 1.1. Graph of y D xn
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1.6. Graphs 17

We also know that the graph of y D xn increases in height without

bound; that is, for any positive numberN , there is a real number r for which

rn > N . (For N > 1, the inequality will hold if we take r to be an integer

greater than N .) We can use the intermediate value theorem, Theorem 1.9,

to deduce that as x increases, with x > 0, the function xn assumes all

possible positive real number values. This leads to the next theorem, and to

the sketch in Figure 1.1 illustrating the behavior of the graph of y D xn to

the right of the y-axis.

Theorem 1.12. Let n be an integer greater than 1.

(i) For x � 0, the graph of y D xn is strictly increasing; that is, an < bn

for any real numbers a and b with 0 � a < b.

(ii) The graph of y D xn goes through all non-negative heights; that is, for

any non-negative real number s, there is a non-negative real number r

satisfying rn D s.

One feature of the graph in Figure 1.1 that requires calculus to justify

is the way the shape has been drawn. It’s what is called concave up. Those

familiar with calculus will recognize that this follows from the fact that for

x > 0, the second derivative n.n � 1/xn�2 of xn is positive.

y = x3 3y = x4

y

x

Figure 1.2. Graphs of even and odd powers of x

We have discussed xn only for x � 0. If x < 0, then .�x/n D xn

for n even. This tells us that the graph to the left of the y-axis is a mirror

image of the graph to the right. Thus, as x increases, the graph falls steadily

from arbitrarily large heights to .0; 0/, then rises arbitrarily high. If instead

n is odd, then .�x/n D �xn, so that the graph to the left of the y-axis is
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18 1. Polynomials

obtained from the graph to the right by taking the mirror image across the

y-axis and then reflecting again across the x-axis. We see from this that the

graph rises steadily as x increases, from arbitrarily low heights to .0; 0/ and

then onwards to arbitrarily high heights. This is illustrated in Figure 1.2.

The graph of a general polynomial will be more complicated, but some

features remain unchanged from that of a simple power of x. For example,

consider the graph of the polynomial x7 � 6x5 C 11x3 � 6x depicted in

Figure 1.3. Like the graph of an odd power of x, it rises to infinity to the

right and drops to infinity to the left. The complicating feature is that it rises

and falls in between. Counting, we find that it makes six turns on its way

from minus infinity to infinity. (Those familiar with calculus will recognize

that a seventh-degree polynomial can have no more turns, though it may

have fewer. For instance, x7 has no turns.)

x

y

Figure 1.3. Graph of y D x7 � 6x5 C 11x3 � 6x

Let’s discuss the general picture. Suppose that f .x/ is a monic polyno-

mial of positive degree n,

xn C an�1x
n�1 C � � � C a1x C a0:

We can factor xn out to obtain

f .x/ D xn
�

1C an�1

x
C � � � C a1

xn�1
C a0

xn

�

:

For x very large, the terms other than 1 inside the parentheses will be small

in absolute value and f .x/ will be close to xn. Using estimate arguments

typical of calculus, we can convert this idea into a proof that there is a pos-

itive real number N such that for x � N , the graph of f .x/ rises steadily,

and without bound. Since the graph rises without bound, we can further

conclude by the intermediate value theorem that the graph goes through ev-

ery height above f .N /. For x negative but large in absolute value, the same



“IrvingBook” — 2013/5/22 — 15:39 — page 19 — #35
i

i

i

i

i

i

i

i

1.6. Graphs 19

argument allows us to show, if n is even, that the graph of f .x/ decreases

from unbounded heights as x increases through negative values and, if n

is odd, that the graph increases from arbitrarily low levels. We summarize

what we have found in the next theorem.

Theorem 1.13. Let f .x/ be a monic polynomial of positive degree n. There

exists a positive real number N for which f .x/ satisfies:

(i) Given real numbers b > a � N , we have f .a/ < f .b/.

(ii) For any real number s > f .N /, there is a real number r > N such

that f .r/ D s. That is, the graph of f .x/ increases for x � N and

goes through all heights above f .N /.

(iii) Given real numbers a < b � �N , we have f .a/ > f .b/ if n is even

and f .a/ < f .b/ if n is odd.

(iv) If n is even, then for any real number s > f .�N/, there is a real

number r < �N such that f .r/ D s; if n is odd, then for any real

number s < f .�N/, there is a real number r < �N such that f .r/ D
s. That is, if n is even (odd), the graph of f .x/ decreases (increases)

for x � �N and goes through all heights above (below) f .�N/.

When n is even, since the graph of f .x/ falls, then rises, it may never

cross the x-axis. This is the graphical way of stating that an even-degree

polynomial may have no roots. For instance, as we have seen, x2 C 1 has

no roots.

In contrast, by Theorem 1.13, an odd-degree polynomial will assume

negative values for x negative of large absolute value and positive values

for x positive and large. By Theorem 1.11, the polynomial must assume the

value 0 somewhere. This is important enough to record as a theorem:

Theorem 1.14. Let f .x/ be a polynomial of odd degree. Then there is a

real number r such that f .r/ D 0. That is, every odd-degree polynomial

has a root.

Theorem 1.13 tells us that the graph of a degree-n polynomial f .x/ be-

haves like the graph of xn in its extremes. Away from them, the graph may

behave differently from the graph of xn. It may shift from rising to falling to

rising multiple times, as illustrated by the seventh-degree polynomial graph

of Figure 1.3.

A graph changes from falling to rising or rising to falling at what are

called turning points. Let us define this precisely. A local maximum of a

function f .x/ is a point .a; f .a// on its graph with the property that there
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20 1. Polynomials

exists a positive number r such that every c in the open interval .a�r; aCr/
satisfies f .c/ � f .a/. Similarly, .b; f .b// is a local minimum if there is a

positive number s such that every c in the open interval .b � s; b C s/

satisfies f .b/ � f .c/. A turning point for f .x/ is a point that is either a

local maximum or a local minimum.

An example of a turning point is the point .0; 1/ on the graph of f .x/ D
x2 C 1, for which it is a local minimum. In fact, since f .x/ > 1 for any

x ¤ 0, the point .0; 1/ is more than a local minimum. It’s what is called a

global minimum.

Readers familiar with calculus will know, given a differentiable function

y D f .x/, that for .a; f .a// to be a turning point, f 0.a/ must equal 0.

Thus, the turning points, if there are any, will be among the points where the

derivative vanishes. The converse does not hold: f 0.a/may equal 0 without

.a; f .a// being a turning point. An example is x3, whose derivative at 0 is

0, but .0; 0/ is not a turning point, since the function f .x/ D x3 is always

increasing. (The graph is rising when x ¤ 0 but flat at x D 0.)

If f .x/ is a polynomial of positive degree n, we learn in calculus how to

compute its derivative f 0.x/, and find that f 0.x/ is itself a polynomial, of

degree n� 1. By Theorem 1.6, f 0.x/ can have at most n� 1 distinct roots;

that is, the derivative of f .x/ vanishes at at most n � 1 points. Since these

are the only candidates for turning points, we obtain the next theorem.

Theorem 1.15. A polynomial of positive degree n has at most n�1 turning

points.

We can use Theorems 1.13 and 1.15 to see again that the sine function

cannot be a polynomial, and to see that the exponential function 10x isn’t a

polynomial.

Exercise 1.14. This exercise assumes familiarity with sinx and 10x as

functions defined for all real values of x.

(i) The graph of y D sinx has the shape of an infinite wave, oscillating

between peaks of height 1 and valleys of height �1. Describe the turn-

ing points of sinx and deduce that it has infinitely many local minima

and infinitely many local maxima.

(ii) Deduce from Theorem 1.15 that sin x cannot be a polynomial.

(iii) Use Theorem 1.13 to give an alternative proof that sin x cannot be a

polynomial.

(iv) For x < 0, we have 0 < 10x < 1. Deduce from Theorem 1.13 that the

function y D 10x cannot be a polynomial.
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2
Quadratic Polynomials

The heart of this book is the study of solutions to cubic and quartic equa-

tions, which we will begin in Chapter 3. This chapter is devoted to quadratic

equations. Even though they are familiar from a first algebra course, a close

look is warranted, as a warmup before we tackle the greater difficulties of

cubic and quartic equations and to introduce themes that will recur as we

study cubics and quartics.

The general quadratic equation has the form

ax2 C bx C c D 0;

for real numbers a, b, and c, with a ¤ 0. The quadratic formula for the

solutions of this equation takes the form

x D � b

2a
˙

p
b2 � 4ac
2a

:

Since a ¤ 0, we are free to divide both sides of the equation ax2 C
bx C c D 0 by a before searching for solutions. This amounts to setting

a D 1 and studying quadratic equations of the form

x2 C bx C c D 0:

We will take this approach throughout this chapter. The quadratic formula

then takes the simpler form

x D �b
2

˙
p
b2 � 4c
2

:

We will obtain the quadratic formula (in this simpler form) by three

different approaches, and turn to some history at the end.

21
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22 2. Quadratic Polynomials

2.1 Sums and Products

Our initial approach to the quadratic formula depends on solving a seem-

ingly different problem, the determination of two numbers given their sum

and product. Let’s begin with a related but simpler problem.

Given the sum and difference of two numbers, can we determine the

numbers? For instance, suppose I tell you that I am 36 years older than my

son and that our ages sum to 84. Can you determine how old we are?

Exercise 2.1. Solve the age problem.

Exercise 2.2. Solve the general form of the age problem. Suppose r and s

are unknown numbers, with u D r C s and v D r � s. Determine r and s

in terms of u and v.

We see from the solution to Exercise 2.2 that we can determine two

numbers from their sum and difference. It is also possible to determine two

numbers from their sum and product. Doing so requires the calculation of

a square root, which leads to an ambiguity in sign. But it turns out to be

harmless, since the two solutions it yields are the two we seek.

Exercise 2.3. Given two numbers r and s, suppose that u D r C s and

v D r � s, as in Exercise 2.2. Set p D rs.

(i) Verify that

.r C s/2 � .r � s/2 D 4rs;

so

u2 � v2 D 4p:

(ii) Write this as

v2 D u2 � 4p
and take square roots to obtain a formula for v in terms of u and p,

correct up to an ambiguity in the sign.

(iii) Using Exercise 2.2, find r and s in terms of u and p and conclude that

Theorem 2.1 holds.

Theorem 2.1. Given two real numbers r and s, let u be their sum and p

their product. Then r and s are the two quantities

u

2
˙
p

u2 � 4p
2

:
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2.1. Sums and Products 23

Because of the uncertainty in sign arising from taking a square root, we

can’t specify which expression in Theorem 2.1 is r and which is s. However,

this doesn’t matter, since we are interested only in identifying the pair of

numbers r and s, not in knowing which is which.

Theorem 2.1 is essentially the quadratic formula. Before we see this,

we will obtain a general result about quadratic polynomials that is a con-

sequence of Theorem 1.4, which stated that if a polynomial f .x/ (of any

degree) has a root a, then x � a divides f .x/.

Exercise 2.4. Let b and c be real numbers and let f .x/ be the polynomial

x2 C bx C c.

(i) Suppose f .x/ factors as .x� r/.x � s/ for distinct real numbers r and

s. Show that r and s are the only roots of f .x/. (Hint: Suppose t is a

root. Substitute it for x.)

(ii) Conversely, show that if distinct real numbers r and s are roots of f .x/,

then f .x/ D .x � r/.x � s/. (Hint: Use Theorem 1.5.)

(iii) Suppose f .x/ factors as .x�r/2. Show that r is the only root of f .x/.

(iv) Conclude by proving Theorem 2.2.

Theorem 2.2. Let f .x/ D x2 C bx C c for real numbers b and c. Exactly

one of the three possibilities occurs:

(i) x2 C bx C c has two distinct real roots r and s, and factors as

.x � r/.x � s/:

(ii) x2 C bx C c has only one real root r , and factors as .x � r/2.

(iii) x2 C bx C c has no real roots, and cannot be factored as a product of

degree 1 polynomials.

Given a quadratic polynomial x2 CbxCc with real coefficients b and c

and with real roots r and s, to find a formula for r and s in terms of b and c,

it would suffice by Theorem 2.1 to find formulas for r C s and rs in terms

of b and c. We could then recover r and s from the values for r C s and rs.

This turns out to be easy to do.

Exercise 2.5. Suppose that the polynomial x2 C bx C c has real roots r

and s, distinct or equal. Theorem 2.2 yields a factorization of x2 C bx C c

as

.x � r/.x � s/:
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24 2. Quadratic Polynomials

(i) Multiply the expression .x � r/.x � s/ to show that

r C s D �b

and

rs D c:

(ii) Use Theorem 2.1 to obtain expressions for r and s in terms of b and c.

This proves Theorem 2.3.

Theorem 2.3 (Quadratic Formula). Let b and c be real numbers and sup-

pose x2 CbxCc has real roots r and s (distinct or coincident). Then r and

s are the two quantities

�b
2

˙
p
b2 � 4c
2

:

We see from Theorem 2.1 and Exercise 2.5 that the quadratic formula

is the expression for the roots of x2 C bx C c in terms of their sum �b and

their product c.

Let us consider how the quadratic formula of Theorem 2.3 provides

a solution for quadratic equations. In the simplest case, with b D 0, the

equation has the form

x2 C c D 0

and the quadratic formula tells us that the solution is x D ˙
p

�c. If c > 0,

then �c has no square roots and there is no solution. If c < 0, then �c is

positive and has two square roots. The quadratic formula does not tell us

how to compute them. It tells what we already know, that the solutions to

the equation are the square roots. Thus, rather than regarding the formula

as a way to solve an arbitrary quadratic equation, we should view it as a

reduction technique. It gets us to the point of having to do a square root

calculation, then leaves us on our own. As we saw in Section 1.5, calculating

square roots is not a problem of algebra.

2.2 Completing the Square

We now turn to a second approach to deriving the quadratic formula, com-

pleting the square.

Exercise 2.6. Solve the quadratic equation

x2 C 10x � 39 D 0:
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2.2. Completing the Square 25

(i) Write the equation as

x2 C 10x D 39:

(ii) Divide 10 by 2 to get 5 and add 52 to both sides to obtain

x2 C 10x C 52 D 39C 52:

The left side is the square of x C 5.

(iii) Write the equation as

.x C 5/2 D 64;

take square roots on both sides, and conclude that the equation has

solutions x D 3 and x D �13.

We can now take up the general case.

Exercise 2.7. Let a, b, and c be real numbers.

(i) Verify that

.x C a/2 D x2 C 2ax C a2:

(ii) Deduce that the polynomial

x2 C bx C b2

4

is the square of a degree one polynomial.

(iii) Rewrite

x2 C bx C c

by adding and subtracting b2=4 and find that solving the equation x2 C
bx C c D 0 is equivalent to solving

.x C b=2/2 D d=4

for a suitable real number d . Write d in terms of b and c.

(iv) Deduce for d < 0 that there is no solution to x2 C bx C c D 0.

(v) Deduce for d D 0 that x2 C bxC c factors as .x C b=2/2 and the one

solution to x2 C bx C c D 0 is x D �b=2.

(vi) Deduce for d > 0 that there are two solutions to x2 C bx C c D 0,

involving the square root of d . Write the solutions in terms of b and c,

giving Theorem 2.4.
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26 2. Quadratic Polynomials

Theorem 2.4. Let b and c be real numbers.

(i) If b2 � 4c < 0, then the equation

x2 C bx C c D 0

has no solutions.

(ii) If b2 �4c D 0, then the only solution of x2 CbxCc D 0 is x D �b=2.

(iii) If b2 � 4c > 0, then the equation x2 C bx C c D 0 has two solutions,

given by

x D �b
2

˙
p
b2 � 4c
2

:

The quadratic formula takes on a simpler form if we alter how we write

the coefficients in our initial quadratic equation. Given the real numbers b

and c, let B D b=2 and C D �c. Then b D 2B , c D �C , and

x2 C bx C c D 0

can be written as

x2 C 2Bx � C D 0;

or

x2 C 2Bx D C:

For the remainder of the section, we take this as our standard form for

a quadratic equation. With this notation, we can appreciate the process of

completing the square geometrically.

Algebraically, to make the left side of x2 C 2Bx D C a perfect square,

we add B2 to both sides, yielding

x2 C 2Bx C B2 D B2 C C

or

.x C B/2 D B2 C C:

Taking square roots, we recover the quadratic formula, now in the form

x C B D ˙
p

B2 C C ;

or

x D �B ˙
p

B2 C C :

The change in our coefficients results in a quadratic formula without the

cluttering appearances of 2 and 4.
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2.2. Completing the Square 27

Let’s reconsider completing the square geometrically. Lengths can’t be

negative numbers. Let us assume, then, that B and C are positive, and in

taking the square root of a positive number, we allow only the positive

square root.

We begin with the equation

x2 C 10x D 39

of Exercise 2.6, so that B D 5 and C D 39. Draw a square whose sides

have an unknown length x and place rectangles atop it and to its right with

sides of lengths 5 and x, as in Figure 2.1.

x

x

5

5

5

5

Figure 2.1. Completing the Square

Since the square has area x2 and each rectangle has area 5x, the figure

drawn has area x2 C 10x. We are given that

x2 C 10x D 39;

so the area is also 39.

Looking at the figure, we can complete it by filling in the missing square

in the upper right corner, which has side length 5. If we do fill it in—thereby

completing the square—we get a square with side length x C 5. Its area is

.xC5/2. But also, since we are adding a 5�5 square to a figure that has area

39, we know that the area is 25 C 39, or 64. Equating the two expressions

for the area, we obtain

.x C 5/2 D 64:
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28 2. Quadratic Polynomials

The larger square has side length given by
p
64, so the original square has

side length x given by �5C
p
64, or 3. We have solved the quadratic equa-

tion geometrically, and we have seen that the algebraic process of complet-

ing the square has a geometric counterpart.

The general case is handled similarly. Given x2 C 2Bx D C , with B

and C arbitrary positive numbers, we draw the square whose sides have

an unknown length x, then place rectangles atop it and to the right with

sides of lengths B and x. The resulting figure has area x2 C 2Bx, which

we recognize as equal to C , thanks to the given equation. We complete

the square by placing a square of side length B in the upper right corner,

yielding a larger square with side length x C B . Its area is both .x C B/2

and B2 C C , yielding

.x C B/2 D B2 C C:

From this we obtain

x C B D
p

B2 C C

or

x D �B C
p

B2 C C :

We have derived the quadratic formula geometrically.

2.3 Changing Variables

Let us turn to our third approach for deriving the quadratic formula, the

technique known as change of variables. We begin with a now-familiar ex-

ample.

Exercise 2.8. Solve the equation

x2 C 10x � 39 D 0

by changing variables.

(i) Let y related to x by x D y � 5. Substitute y � 5 for x in the equation

and obtain an equation in y.

(ii) The new quadratic equation has the form y2 � d D 0 for a constant d .

We have a quadratic equation without a degree-one term.

(iii) Take square roots to obtain two values for y, then use x D y � 5 to

obtain two solutions to the original quadratic equation.
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2.4. A Discriminant 29

We now take up the general case, with the goal of finding a change of

variable that, as in Exercise 2.8, eliminates the degree-one term.

Exercise 2.9. Let f .x/ D x2 C bxC c. Let a be a real number. Introduce

a new variable y by x D y C a or y D x � a.

(i) Substitute y C a for x in f .x/ and get a polynomial g.y/ in y. Deter-

mine it explicitly in terms of a, b, and c.

(ii) Examine g.y/ and determine a, in terms of b and c, so that g.y/ has

the form y2 � d . The number d will be expressible in terms of b and

c.

(iii) With this a, the solutions to g.y/ D 0 are the square roots of d .

(iv) Use the relationship between x and y to obtain that x D a˙
p
d .

(v) Show that this is the quadratic formula.

We will use this technique in our treatment of cubic and quartic equa-

tions. It will allow us to drop the term of second-highest degree from the

polynomial, as here we were able to drop the degree-one term.

2.4 A Discriminant

A quadratic polynomial x2 C bx C c may have two distinct real roots, one

repeated real root, or no real roots, as we saw in Theorem 2.2. It is possible

to determine which occurs from b and c, without finding the roots.

This is evident from the quadratic formula, since the roots, if they exist,

are

�b
2

˙
p
b2 � 4c
2

:

We see that if b2 � 4c > 0, there are two distinct real roots, if b2 � 4c D 0,

there is one multiple root, and if b2 �4c < 0, there are no real roots. We can

obtain this independently of the roots by studying the shape of the graph of

y D x2 C bx C c.

To do so, we first need to review the shape of the graph of y D x2. This

was discussed in Section 1.6, where we saw that there is a turning point

at .0; 0/, with the graph falling to .0; 0/ as x increases through negative

values to 0 and rising as x increases through positive values, the shape being

concave up throughout. (See Figure 2.2.)

The graph has an alternative description from the theory of conic sec-

tions. We won’t be using it, but the issues are worth reviewing. The distance
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y

x

Figure 2.2. Graph of y D x2

between two points .a; b/ and .c; d / is the square root of .c�a/2 C.d�b/2.

(This is essentially the Pythagorean Theorem.) The distance from a pointP

to a line ` is defined to be the distance between P and the closest point Q

on ` to P , with Q being the intersection of ` and the line perpendicular to

` that passes through P .

Exercise 2.10. Verify that the points in the plane equidistant from .0; 1=4/

and the line y D �1=4 are precisely those satisfying the equation y D x2.

(Hint: Set the squared distances equal to each other rather than the dis-

tances.)

In the theory of conic sections, a parabola is defined as the locus of

points equidistant from a point, the parabola’s focus, and a line not contain-

ing the point, the parabola’s directrix. Using this language, Exercise 2.10

states that the graph of y D x2 is the parabola with focus .0; 1=4/ and

directrix y D �1=4.

The unique line that passes through a parabola’s focus and meets the

directrix at a right angle is the axis of symmetry for the parabola. The point

where the axis of symmetry intersects the parabola is the parabola’s vertex.

For the graph of y D x2, Exercise 2.10 shows that the focus is .0; 1=4/ and

the directrix is y D �1=4. It follows that the axis of symmetry is the y-axis

and the vertex is .0; 0/. (See Figure 2.3.)

The essential results about the behavior of the graph don’t require calcu-

lus or the theory of conic sections, but do require results on the real numbers

such as the intermediate value theorem. It lets us prove that x2 assumes all

positive real number values as x increases through positive real numbers,
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Directrix = –1/4y

Axis of symmetry = 0x

y x= 2

Focus

(0, 1/4)

Vertex (0, 0)

( )x, y

( , –1/4)x

x

y

Figure 2.3. Focus and Directrix of the Parabola y D x2

and similarly as x increases through all negative real numbers. Geometri-

cally, this means the graph of y D x2 goes through all positive heights as

it falls to .0; 0/ on the left side of the y-axis and goes again through all

positive heights as it rises on the right side of the y-axis.

Once we know the shape of the graph of y D x2, we can use it for

the graphs of other monic quadratic polynomials. Doing so depends on the

following result, which tells us how to obtain equations for graphs that are

obtained from known ones by horizontal or vertical translations.

Exercise 2.11. Suppose y D f .x/ is a function defined for all real number

values of x.

(i) Given a real number C , verify that the graph of y D f .x � C/ is

obtained from the graph of y D f .x/ by shifting every point to the

right a distance of C .

(ii) Given a real number D, verify that the graph of y D f .x/ C D is

obtained from the graph of y D f .x/ by shifting every point on it

upward a distance of D.

(iii) Combine (i) and (ii) to obtain the result that the graph of y D f .x �
C/ C D is obtained from the graph of y D f .x/ by shifting every

point to the right a distance of C and upward a distance of D.

By combining Exercise 2.11 with the technique of completing the square,

we can show that the graph of any monic quadratic polynomial is obtained

from the graph of y D x2 by vertical and horizontal translation.
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y = x2 + 4

y = x2

y = x2 – 4

y

x

Figure 2.4. Graphs of three parabolas

Exercise 2.12. Let b and c be real numbers. By completing the square, we

can write y D x2 C bx C c as

y D .x C b

2
/2 C

�

c � b2

4

�

:

Deduce by Exercise 2.11 that the graph of y D x2 C bx C c is obtained

from the graph of y D x2 by a shift �b=2 to the right and c�b2=4 upward.

Exercise 2.12 tells us that the graph of y D x2 C bx C c has the same

shape as the graph of y D x2, but is shifted up or down, left or right. Hence,

the graph, like that of y D x2, has a single turning point. This turning point

may lie above, on, or below the x-axis, as illustrated in Figure 2.4 for x2C4,

x2, and x2�4. To decide which, we compute the y-coordinate of the turning

point of y D x2 C bx C c, which Exercise 2.12 allows us to do.

Exercise 2.13. Let b and c be real numbers. Using Exercise 2.12, conclude

that the graph of y D x2 C bx C c has a local (and global) minimum at

.�b=2; c � b2=4/:

The graph of x2 C bx C c is the parabola with focus at .�b=2; c � b2=4C
1=4/, directrix y D c � b2=4 � 1=4, axis of symmetry x D �b=2, and

vertex at .�b=2; c � b2=4/.

Now that we have found the turning point on the graph of a monic

quadratic polynomial, we can use it to get information on the polynomial’s

roots.
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Exercise 2.14. Using Exercise 2.13, show that the nature of the roots of

x2 C bx C c is determined by the sign of c � b2=4:

(i) If c � b2=4 < 0, then the graph’s turning point is below the x-axis.

Conclude that the graph crosses the x-axis twice, so that x2 C bx C c

has two distinct real roots.

(ii) If c � b2=4 D 0, then the turning point is on the x-axis. Conclude that

the graph of x2 C bxC c touches the x-axis once, so that x2 C bxC c

has one real root. Since x2 C bxC c must factor as the product of two

degree-one polynomials, deduce that the real root has multiplicity 2.

(iii) If c � b2=4 > 0, then the turning point is above the x-axis. Conclude

that the graph of x2 C bx C c does not touch or cross the x-axis, so

that x2 C bx C c has no real roots.

(The three cases are illustrated in Figure 2.4.)

Exercise 2.14 shows that the nature of the roots of x2 C bx C c is

determined by the quantity c � b2=4. Any non-zero constant multiple of

c�b2=4 will determine their nature as well. Let’s multiply by �4, obtaining

the quantity b2 � 4c. We will write ı for this and call it the discriminant of

x2 C bxC c. We see that it is the product of �4 and the y-coordinate of the

turning point on the graph of y D x2 C bx C c. Exercise 2.14 yields the

result we are after:

Theorem 2.5. Let f .x/ D x2 C bx C c for real numbers b and c and let

ı be the associated discriminant b2 � 4c.

(i) If ı > 0, then f .x/ has two distinct real roots.

(ii) If ı D 0, then f .x/ has a repeated real root.

(iii) If ı < 0, then f .x/ has no real root.

2.5 History

In this section, we will look at the history of quadratic equations from an-

cient Babylonian civilization four millennia ago to Italy in 1500, touching

occasionally on developments in algebra beyond the quadratic formula.

Every ancient civilization developed a body of mathematical knowl-

edge, in part to serve the practical needs of measurement, construction,

and commerce. The work of the ancient Greeks may be the most familiar,

thanks to Euclid, but important contributions were made as well by Baby-

lonian, Egyptian, Indian, and Chinese civilizations. Mathematical problems
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and solutions were often described through words, and geometry was used

to express concepts that we might now address algebraically through nota-

tional systems not then available. General methods would be laid out im-

plicitly through the working of a series of examples. All these civilizations

addressed problems, in different guises, that we can now interpret as fitting

under the heading of solving quadratic equations.

Let’s begin with a look at some Babylonian work on problems reducible

to quadratic equations. The first Babylonian dynasty, in the years ranging

from around 1900 B.C.E. to 1600 B.C.E., made many contributions to hu-

man culture. Perhaps most notable is the code of Hammurabi, consisting of

282 laws that were written on clay tablets. Some of the earliest preserved

mathematical texts date to this time. Babylonians used cuneiform, a wedge-

like script that evolved from pictographs, for their writing. They also used

base 60 in writing numbers, a choice that persists today in our methods for

measuring time (minutes, seconds) and angle (degrees, minutes, seconds).

Surviving on tablets are examples of the mathematical problems that Baby-

lonians posed and solved. Many reduce to solving quadratic equations.

Our understanding of the mathematics on the cuneiform tablets owes

much to the pioneering work of Otto Neugebauer, an Austrian scholar who

studied mathematics at Munich and Göttingen in the 1920s. While at

Göttingen, Neugebauer shifted his interest from mathematics to its his-

tory and did his doctoral research on Egyptian mathematics. He stayed

on at Göttingen and began to study the Babylonian tablets that can be

found at many of the major museums in Europe and the United States.

His three-volume work Mathematische Keilschrift-Texte [44], published in

1935, translated and interpreted tablets found in museums from London and

Paris to Berlin and Istanbul.

Neugebauer came to the United States in 1939 and continued his work,

publishing Mathematical Cuneiform Texts [46] jointly with Abraham Sachs

in 1945. He provided an overview of his findings in The Exact Sciences

in Antiquity [45], published in 1952 based on a 1949 lecture series he pre-

sented at Cornell. These books are well worth a look, both for their content

and for the tablet photographs.

In surveying the Babylonian treatment of algebra, Neugebauer high-

lighted its abstract nature, divorced from both geometric considerations and

practical meaning:

[G]eometrical concepts play a very secondary part in Babylonian al-

gebra, however extensively a geometrical terminology may be used. It

suffices to quote the existence of examples in which areas and lengths

are added, or areas multiplied, thus excluding any geometrical inter-



“IrvingBook” — 2013/5/22 — 15:39 — page 35 — #51
i

i

i

i

i

i

i

i

2.5. History 35

pretation . . . . Indeed, still more drastic examples can be quoted for the

disregard of reality. We have many examples concerning wages to be

paid for labor according to a given quota per man and day. Again, prob-

lems are set up involving sums, differences, products of these numbers

and one does not hesitate to combine in this way the number of men

and the number of days. It is a lucky accident that if the unknown num-

ber of workmen, found by solving a quadratic equation, is an integer.

Obviously the algebraic relation is the only point of interest, exactly as

it is irrelevant for our algebra what the letters may signify.

Neugebauer further explained [45, p. 42] that some of the Babylonian

texts contain “collections of problems only, sometimes more than 200 on

a single tablet of the size of a small printed page. These collections of

problems are usually carefully arranged, beginning with very simple cases

. . . and expanding step by step to more complicated relations.” Regard-

ing one such series [45, p. 42], “one finds that they all have the same pair

x D 30; y D 20 as solutions. This indicates that it was of no concern to the

teacher that the result must have been known to the pupil. What he obvi-

ously had to learn was the method . . . . From actually computed examples

it becomes obvious that it was the general procedure, not the numerical re-

sult, which was considered important.”

A tablet of particular interest is one catalogued in the British Museum

as BM 13901. It originally contained twenty-four problems. Some are dam-

aged, but as A. E. Berriman notes in his article “The Babylonian quadratic

equation” [10, p. 185], “those that remain, however, are sufficient to reveal

a carefully graduated course of instruction.” Neugebauer studied the tablet

in the third volume of Mathematische Keilschrift-Texte [44]. A discussion

can also be found in the 2009 English translation of Jacques Sesiano’s 1999

French work, An Introduction to the History of Algebra: Solving Equations

from Mesopotamian Times to the Renaissance [59, pp. 10–16].

Let’s look at the first problem of BM 13901. We will use the Babylo-

nians’ sexagesimal number system, as Neugebauer did in his translations.

Commas separate the numbers in the 1 and 60 columns and a semi-colon

separates the integer part from the decimal part, with the first position after

the semi-colon being the number of sixtieths. For example, 1; 2 is sexages-

imal notation for the decimal number 62 and 0I 20 is the fraction 20=60, or

1=3.

The problem is stated simply [59, p. 10]: “I added the area and the side

of my square: 0I 45.” In standard fractional notation, this number is 45=60,

or 3=4. The unknown is the length of the side of the square. Thus, we are



“IrvingBook” — 2013/5/22 — 15:39 — page 36 — #52
i

i

i

i

i

i

i

i

36 2. Quadratic Polynomials

being asked to solve the quadratic equation

x2 C x D 3

4
:

What follows on the tablet is a recipe: “You put 1, the unit. You divide in

two 1: 0I 30. You multiply by 0I 30: 0I 15. You add 0I 15 to 0I 45: 1. It is

the square of 1. You subtract 0I 30, which you multiplied, from 1: 0I 30, the

side of the square.”

To make sense of this, it is perhaps better to think of the equation in the

form x2 C bx C c D 0, with b D 1 and c D �3=4. We are asked first to

divide b by 2, yielding b=2. We are then told to square it, obtaining b2=4.

We add this to �c, obtaining b2=4 � c. Finally we take the square root of

this,
p

b2=4 � c, and subtract the number we earlier multiplied, which was

b=2. The final answer, then, is

�b
2

C
r

b2

4
� c;

or 1=2. The recipe is the quadratic formula!

Let’s take the same approach to the second problem of BM 13901 [59,

p. 10]: “I subtracted from the area the side of my square: 14; 30.” The sexa-

gesimal number 14; 30, in decimal form, is 14 � 60C 30, or 870. Thus, we

are asked to solve the quadratic equation

x2 � x D 870:

The solution is laid out as follows: “You put 1, the unit. You divide in

two 1: 0I 30. You multiply by 0I 30: 0I 15. You add to 14; 30: 14; 30I 15. It

is the square of 29I 30. You add 0I 30, which you multiplied, to 29I 30: 30,

the side of the square.”

Once again thinking of the equation as x2 C bxC c D 0, this time with

b D �1 and c D �870, we can describe the solution as follows: We first

form the quantity �b=2. We then square it and add the result to �c to get

b2=4 � c. The next step is to determine the square root, to which we add

the number we earlier used for multiplying, which was �b=2. The result—

30—is the desired answer, and once again it is what we obtain by using the

quadratic formula.

It turns out that the two problems are not typical. Few examples of single

quadratic equations have been found. More common are problems involving

two variables and two equations, one equation having the form xy D 1, the

other being a linear equation in x and y. They can be reduced to solving a

single quadratic equation.
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Consider for instance Problem-Text T in Neugebauer and Sachs’s Math-

ematical Cuneiform Texts. They open their commentary [46, p. 116] with

the observation that the text “can best be compared to an extensive collec-

tion of problems from a chapter of a textbook. It is obvious that a collection

of this sort was used in teaching mathematical methods.” The student is

asked to reduce each problem to what Neugebauer and Sachs refer to [46,

p. 117] as “the ‘normal’ form of quadratic equations which gives the prod-

uct of the unknown quantities and their sum or difference. . . . The whole

system of a main example with all its variants serves the purpose of giving

the general rule of solution; this corresponds in a certain sense to an alge-

braic formula in which the letters can be replaced by special numbers in

each individual case.”

The normal form is the problem we studied in Section 2.1. A represen-

tative example is the first problem on tablet AO 8862 at the Louvre in Paris,

treated by Neugebauer in the first volume of Mathematische Keilschrift-

Texte [44, pp. 108–123] and by Sesiano as well [59, p. 12]. Van der Waerden

opens the chapter on Babylonian mathematics in Science Awakening with

this example [64, pp. 63–65]: “Length, width. I have multiplied length and

width, thus obtaining the area. Then I added to the area, the excess of the

length over the width: 3; 3 (i.e., 183 was the result). Moreover, I have added

length and width: 27. Required length, width and area.”

We are asked to solve the two equations

xy C .x � y/ D 183

and

x C y D 27:

The tablet then lays out a sequence of numerical calculations that lead to

the answer. They can be interpreted as instructing the student to add the

equations, yielding x.y C 2/ D 210, and to add 2 to both sides of the

second equation, yielding x C .y C 2/ D 29. This transforms the original

equations to normal form, x and y C 2 being two numbers whose product

is 210 and whose sum is 29.

It is important to note that scholarship on Babylonian mathematics in

recent decades has yielded a perspective sharply different from that en-

gendered by Neugebauer’s work. Jens Høyrup, in his 2002 study Lengths,

Widths, Surfaces: A Portrait of Old Babylonian Algebra and Its Kin [35],

observes that

The Babylonian algebra which most historians of mathematics found

in Neugebauer’s works looked astonishingly modern and similar to
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ours. It is the purpose of the present book to replace this standard inter-

pretation by a less modernizing reading. . . . The mathematical texts are

school texts. They contain no theorems and no theoretical investiga-

tions. . . . [Their authors] were teachers of computation, at times teach-

ers of pure, unapplicable computation . . . but they remained teachers,

teachers of scribe school students who were later to end up applying

mathematics to engineering, managerial, accounting, or notarial tasks.

Høyrup’s own analysis of the first problem on AO 8862 #1 [35, pp. 169–

170] emphasizes its concrete nature: “The text starts by stating that a rect-

angular surface or field is built, that is, marked out; after pacing off its di-

mensions, the speaker ‘appends’ the excess of the length over the width to

it; the outcome is 3; 3. Even this is done quite concretely in the terrain. Then

he ‘turns back’ and reports the accumulation of the length and the width to

be 27.”

In Mathematics in Ancient Iraq: A Social History [56], Eleanor Robson

offers an enlightening side-by-side comparison of van der Waerden’s and

Høyrup’s analyses [56, pp. 276–278]. “In van der Waerden’s translation of

1954 the problem is entirely numerical . . . In his reading ‘the Babylonians’

are just like modern mathematicians: they use ‘symbols’ and ‘equations,’

which means that the problem can ‘safely’ be expressed as modern alge-

bra. Høyrup, by contrast, opens his comments on the same problem with an

interpretative diagram that does not appear on the cuneiform tablet and con-

tinues [as quoted above]. All of van der Waerden’s apparently arithmetical

numbers turn out to have dimension: they are particular lengths and areas

that are manipulated physically.”

Another common form taken by problems on the tablets is to find two

numbers from known values of the sum of their squares and of their sum

(or difference). An example is problem 9 of BM 13901 [59, p. 15]: “I added

the area of my two squares: 1300. The side of one exceeds the side of the

other by 10.” Here we are asked to solve the equations

x2 C y2 D 1300

and

x � y D 10:

This is easily converted to a quadratic equation in one variable. In reinter-

preting the problem this way, we are placing a modern overlay on the data

of the tablet. Høyrup offers his own analysis [35, pp. 66–70], attempting to

interpret the tablet’s prescription as a series of instructions for tearing out,

inscribing, and appending squares of given dimensions.
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We have given more attention to Babylonian mathematics and the im-

plicit treatment within it of quadratic equations than might seem necessary.

However, it is difficult to avoid the temptation. As Eleanor Robson con-

cludes [56, p. 290]:

Compared to the difficulties of grappling with fragmentary and meagre

nth-generation sources from other ancient cultures the cuneiform evi-

dence is concrete, immediate, and richly contextualised. . . . This opens

a unique window onto the material, social, and intellectual world of

the mathematics of ancient Iraq that historians of other ancient cul-

tures can only dream of.

Around 600 B.C.E., a new mathematical current arose within the Greek

civilization of the Mediterranean, starting with the work of Thales and

Pythagoras. The Greek tradition would have enormous influence on the de-

velopment of mathematics, and much has been written about it. Perhaps

of greatest importance was the introduction of the axiomatic method and

deductive proof. For a concise introduction, William Berlinghoff and Fer-

nando Gouvêa have an informative survey [9, pp. 14–24]. (See S. Cuomo’s

Ancient Mathematics [15] for a more detailed study.) The most famous of

the Greek mathematicians is Euclid, who lived around 300 B.C.E. in Alexan-

dria. Little is known about him, or about the origins of his greatest work, the

Elements. For instance, no definitive answer can be given to the question of

how much of the Elements is due to him and how much is a compendium

of earlier work.

The Elements provided the model for the axiomatic method and laid the

basis for geometry for centuries. Most of its thirteen books are devoted to

geometry, with plane geometry treated first and regular polyhedra in three-

space covered in the concluding Book 13. Books 7 to 9 contain some of the

most famous results of elementary number theory, such as Euclid’s proof

that there are infinitely many prime numbers. Book 2 provides solutions to

geometric questions about area that amount to solving simultaneous equa-

tions x C y D a and xy D b for constants a and b [65, pp. 77–80]. As we

know, this reduces to solving a quadratic equation.

Jumping ahead five centuries to the late stages of the Greek tradition, we

come to Diophantus, another Alexandrian. Diophantus wrote Arithmetica,

a collection of about 200 problems and their solutions. Arithmetica con-

sisted of thirteen chapters, of which six were preserved in Greek and four in

an Arabic translation from the ninth century, but the Arabic chapters were

essentially lost until their rediscovery in 1968.

In contrast to Euclid’s geometric algebra, Diophantus works in a manner

we would recognize as more strictly algebraic, with symbols for the lower
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positive and negative powers of an unknown, rules of multiplication, and

rules of substitution. Many of his problems reduced to equations in two

unknowns. Among them were problems studied by the Babylonians, such

as finding two numbers whose sum and product are given. Solutions were

to be found in rational numbers.

The Greek chapters of Arithmetica had little influence until a revival of

interest in them among Italian mathematicians late in the sixteenth century

and even more so by the French mathematician Pierre de Fermat in the

seventeenth century. In Book II, Diophantus poses the problem to divide a

square into two squares, that is, to find solutions to x2 Cy2 D z2. Although

we have not discussed this problem, it has a history as long as that of the

quadratic equation. All ancient civilizations studied it, including two we

have not discussed, those of Egypt and China.

Fermat owned a copy of a 1621 Latin translation of Arithmetica made

by the French mathematician and scholar Claude-Gaspard Bachet (1581–

1638). (Bachet’s best known work is Problèmes plaisants et délectables qui

se font par les nombres [6], his 1612 collection of arithmetic puzzles and

tricks that was the basis for many subsequent books on recreational math-

ematics.) Some time around 1637, Fermat wrote the famous marginal note

that for integers n greater than 2, the equation xn C yn D zn has no ratio-

nal solution, adding the tantalizing remark that he had a “truly marvelous

proof” that his margin was too narrow to contain.

Whether Fermat’s statement was true would remain one of the great

open questions in mathematics until it was settled in the affirmative in 1995

by Andrew Wiles and Richard Taylor. In the meantime, Diophantus be-

came the eponym for an entire branch of mathematics, Diophantine anal-

ysis, which brings number-theoretic and geometric methods to bear on the

question of whether algebraic equations in several unknowns have integer

or rational solutions. (See [7], [8, pp. 35–57], and [59, pp. 31–51] for more

information on Diophantus’s work.)

In tracing the development of algebra, let us move east to India, where

the mathematician and astronomer Aryabhata lived from 476 C.E. to about

550 C.E. In his work Aryabhatiya, he solves some problems that reduce to

quadratic equations. Satya Prakash observes in a book on the later Indian

astronomer-mathematician Brahmagupta [53, p. 215] that Aryabhata has

“given the solutions of a few quadratic equations, but he nowhere gives the

procedure of solving these equations.”

Brahmagupta, who lived from around 598 to 665, wrote several ma-

jor works, including Brahmasphutasiddhanta. Some of his work on arith-

metic and algebra was translated into English in 1817 by H.T. Colebrooke
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[14]. Here is one problem Brahmagupta poses [14, p. 346]: “When does

the residue of revolutions of the sun, less one . . . equal to the square root of

two less than the residue of revolutions, less one, multiplied by ten and aug-

mented by two?” Translating into modern algebraic notation, Brahmagupta

is looking for a solution of the equation x2 � 86x D 249. Following Cole-

brooke in his translation, let us call 249 the “absolute number” and x the

“middle term.” With this terminology, Brahmagupta’s proposed solution

amounts to a statement of the quadratic formula:

Now, from the absolute number, multiplied by four times the coeffi-

cient of the square, and added to the square of the coefficient of the

middle term, the square root being extracted, and lessened by the co-

efficient of the middle term, the remainder is divided by twice the co-

efficient of the square, yields the value of the middle term.

Satya Prakash comments [53, p. 215] that Brahmagupta “undoubtedly is

not the discoverer of these rules, but perhaps for the first time in the history

of algebra we find the process of solving a quadratic equation so clearly

indicated.”

Brahmagupta’s greatest contribution to algebra is his study of integer

solutions to the equation x2 � ny2 D ˙1, where n is a positive integer that

is not a square. Such an equation is now known as Pell’s equation and arises

naturally in a variety of contexts. The twelfth century Indian mathematician

Bhaskara obtained more definitive results. More information on this work

can be found in V. S. Varadarajan’s Algebra in Ancient and Modern Times

[67], which has much to say about other cultures as well. See too B. L. van

der Waerden’s Geometry and Algebra in Ancient Civilizations [65].

The subsequent centuries were ones of exciting intellectual develop-

ments in the Islamic world. Most notable for us is the work of Muhammad

ben Musa al-Khwarizmi, a Persian who lived roughly between 780 and 850

near Baghdad. Al-Khwarizmi contributed to many fields, including mathe-

matics, astronomy, and geography. Perhaps his greatest work is his treatise

on algebra, The Compendious Book on Calculation by Completion and Bal-

ancing, written in Arabic around 825. In it, he systematically studied linear

and quadratic equations using the techniques of al-jabr and al-muqabala.

The process of al-jabr is that of adding equal terms to both sides of an equa-

tion in order to eliminate negative terms. In contrast, al-muqabala is the re-

duction of positive terms by subtracting equal amounts from both sides of

an equation.

Al-Khwarizmi’s work would have a significant influence on European

mathematics several centuries later, thanks to its translation into Latin in the
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twelfth century by Robert of Chester and Gerard of Cremona and in the thir-

teenth century by William of Luna. Robert of Chester’s version, Liber alge-

brae et almucabola, was translated into English in 1915 by Louis Charles

Karpinski, who also provided notes and an introduction [36]. Karpinski’s

edition is well worth a look, as is the more recent Al-Khwarizmi: The Be-

ginnings of Algebra [54] by Roshdi Rashed, which includes a translation

(with the original Arabic text on facing pages) and commentary. Rashed

also writes about the traditions of calculation in the eighth century and al-

Khwarizmi’s knowledge of Greek and Indian mathematical literature.

At the outset of his book, al-Khwarizmi introduces three types of quan-

tities: roots, squares, and numbers, the root being what we would label x,

the square being x2, and number being number. He then gets right to busi-

ness, classifying linear and quadratic equations into six forms and illustrat-

ing how to solve each with examples. We would regard all six types as one,

but since al-Khwarizmi does not use negative numbers or 0, he is obliged to

consider separate cases, with a, b, and c always positive:

(1) Squares equal roots, or what we would describe as ax2 D bx.

(2) Squares equal numbers, or ax2 D c.

(3) Roots equal numbers, or bx D c.

(4) Squares and roots equal numbers, or ax2 C bx D c.

(5) Squares and numbers equal roots, or ax2 C c D bx.

(6) Roots and numbers equal squares, or bx C c D ax2.

(In addition to [36] and [54], see also the discussion of al-Khwarizmi’s work

in The Beginnings and Evolution of Algebra by I.G. Bashmakova and G.S.

Smirnova, from which the above summary is drawn [8, p. 50].)

What is novel about the opening of al-Khwarizmi’s book is that in it he

lays out the mathematical issues in purely algebraic terms before turning to

the examples—drawn from commerce and inheritances—that fill the later

pages of the book. The focus is on equations in the abstract, classified by

degree. Rashed explains in the introductory essay to his translation [54,

p. 24] that what al-Khwarizmi

does cannot be reduced to anything to be found in other traditions,

such as those of the Babylonians, of Diophantus, of Heron of Alexan-

dria, of Aryabhata or of Brahmagupta. It is not in the course of solving

problems that al-Khwārizmı̄ finds these equations. The classification

in fact precedes the problems. It is introduced deliberately as the nec-

essary first step in the construction of a theory of equations of the first
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and second degree; and this theory will become the nucleus of a math-

ematical discipline.

The first of al-Khwarizmi’s six cases that interests us is .4/, and the

example he uses to illustrate it is none other than the quadratic equation

x2 C 10x D 39 that we studied in Sections 2.2. This equation is not dis-

tinguished in any mathematical sense, but since it is the first one for which

al-Khwarizmi employs the technique of completing the square, it has res-

onated through history. Or, as Karpinski suggests [36, p. 19], the equation

“runs like a thread of gold through the algebras for several centuries, appear-

ing in the algebras of the three writers mentioned, Abu Kamil, al-Karkhi and

Omar al-Khayyami, and frequently in the works of Christian writers, cen-

turies later.” Here is al-Khwarizmi’s own description of the example [54,

p. 100]:

“Squares plus roots are equal to a number”, as when you say: a square

plus ten roots are equal to thirty-nine dirhams [a unit of measure];

namely, if you add to any square [a quantity] equal to ten of its roots,

the total will be thirty-nine.

Procedure: you halve the number of the roots which, in this problem,

yields five; you multiply it by itself; the result is twenty-five; you add

it to thirty-nine; the result is sixty-four; you take the root, that is eight,

from which you subtract half the number of the roots, which is five.

The remainder is three, that is the root of the square you want, and the

square is nine.

Upon completing his treatment of the remaining types of quadratic equa-

tion, al-Khwarizmi returns to the equation x2 C 10x D 39 and illustrates

two ways of solving it geometrically. The second is the one we used in

Section 2.2.

Rashed concludes his introductory essay by turning to the question of

Indian influence on al-Khwarizmi. Two centuries ago, in translating the

work of the Indians, Colebrooke suggested [14, pp. xx–xxi] that al-Khwa-

rizmi was a mere borrower. This assessment is misguided, but the extent to

which Islamic mathematicians and astronomers were familiar with and in-

fluenced by Indian literature is an interesting question. Rashed emphasizes

what is original to al-Khwarizmi [54, p. 77]:

Comparing the two texts, that of Brahmagupta and that of al-Khwa-

rizmi, reveals irreducible differences. . . . Brahmagupta arrived at the

quadratic equation in one unknown in the course of solving a problem

in astronomy. In other words, he did not give himself the equation as
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such with a view to solving it. This link between problem and equation,

which is found in other mathematics, this as it were empirical ground-

ing for the equation, has vanished in al-Khwarizmi’s programme. From

the start, al-Khwarizmi proceeded by defining basic terms, which were

then combined to give him the ideal canonical equations with which his

theory is concerned. This new approach breaks the close link between

problems and equations. As for problems, al-Khwarizmi turns to them

later, as exercises in algebra, that is as providing an area in which he

can apply the theory of equations that he has already constructed. . . .

. . . al-Khwarizmi wanted to construct “a form of calculation” for un-

knowns that was independent of what they represented, that is a new

mathematical discipline, that by its very nature was subject to the rules

of proof. There is no trace of any such programme in the work of his

predecessors.

Al-Khwarizmi was one of several Islamic scholars who made important

contributions to algebra. Others include Thabit ibn Qurra, who spent much

of his career in Baghdad, studying medicine, philosophy, mathematics, and

astronomy as well as translating Euclid and other Greeks into Arabic. He

died in 901. Also worth mentioning is the famed Persian poet, philosopher,

and mathematician Omar Khayyam, who studied in Samarkand and worked

in Bukhara (both in modern-day Uzbekistan), dying in 1131. He wrote a

book on algebra, studying quadratic equations from a geometric viewpoint

as in Euclid. The work of Thabit and Omar Khayyam is discussed in detail

in van der Waerden’s A History of Algebra From Al-Khwarizmi to Emmy

Noether [66, pp. 15–31].

While mathematics was flourishing in Arabic, Persian, and Indian lands,

the medieval era in Europe was mathematically more quiescent. The revival

of significant European mathematical activity occurred first in Italy, per-

haps because its cities were major trade centers with connections to Arabic

ports along the Mediterranean. The great Italian mathematician Leonardo

da Pisa—better known to us as Fibonacci—provides testimony to this effect

in the prologue to his influential 1202 work Liber Abaci [28, pp. 15–16], or

the Book of Calculation:

As my father was a public official away from our homeland in the

Bugia [the Algerian port city of Bejaia] customshouse established for

the Pisan merchants who frequently gathered there, he had me in my

youth brought to him, looking to find for me a useful and comfortable

future; there he wanted me to be in the study of mathematics and to

be taught for some days. There from a marvelous instruction in the
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art of the nine Indian figures, the introduction and knowledge of the

art pleased me so much above all else, and I learnt from them, who-

ever was learned in it, from nearby Egypt, Syria, Greece, Sicily and

Provence, and their various methods, to which locations of business I

travelled considerably afterwards for much study, and I learnt from the

assembled disputations.

Fibonacci is best known for the sequence of numbers that bears his

name, the Fibonacci numbers, which arise in his solution to the following

problem [28, pp. 404–405]:

A certain man had one pair of rabbits together in a certain enclosed

place, and one wishes to know how many are created from the pair in

one year when it is the nature of them in a single month to bear another

pair, and in the second month those born to bear also.

This is sufficiently famous that we will take a moment to review

Fibonacci’s conclusion. He works out the numbers month by month, then

explains that “we added the first number to the second, namely the 1 to the

2, and the second to the third, and the third to the fourth, and the fourth to

the fifth, and thus one after another until we added the tenth to the eleventh,

namely the 144 to the 233, and we had the above written sum of rabbits,

namely 377, and thus you can in order find it for an unending number of

months.”

In Chapter 15 of Liber Abaci, Fibonacci examines the algebra of qua-

dratic equations, following al-Khwarizmi’s treatment closely. For example

[28, p. 554], Fibonacci introduces “roots, squares, and simple numbers” and

explains that “in the solutions of problems there are six modes of which

three are simple, and three are composite,” just as in al-Khwarizmi’s classi-

fication of quadratic equations. Of particular importance is Fibonacci’s use

of Hindu-Arabic numerals, which led to their adoption in Europe.

For a brief survey of the algebraic work of Italian mathematicians in

the subsequent three centuries, concluding with Luca Pacioli (1445–1514),

one can turn to [66, pp. 42–47]. Pacioli provided an overview of the math-

ematical knowledge of the time in his 1494 book Summa de arithmetica,

geometrica, proportioni e proportionalità [50], published in Venice. The

most influential material in this book would turn out to be his account of

double-entry bookkeeping, thanks to which he has been called the Father of

Accounting. We will return to Pacioli for a moment, in Section 3.5, to begin

our survey of sixteenth-century Italian contributions to the solving of cubic

equations.
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Let us close this historical discussion with an excerpt from Karpinski’s

introduction [36, pp. 11–12] to his translation of al-Khwarizmi, in which

he describes the study of quadratic equations as an inevitable stage in the

history of human thought.

Algebra is not, as often assumed, an artificial effort of human inge-

nuity, but rather the natural expression of man’s interest in the nu-

merical side of the universe of thought. Tables of square and cubic

numbers in Babylon; geometric progressions, involving the idea of

powers, together with linear and quadratic equations in Egypt; the so-

called Pythagorean theorem in India, and possibly in China, before the

time of Pythagoras; and the geometrical solution of quadratic equa-

tions even before Euclid in Greece, are not isolated facts of the history

of mathematics. While they do indeed mark stages in the development

of pure mathematics, this is only a small part of their significance.

More vital is the implication that the algebraical side of mathematics

has an intrinsic interest for the human mind not conditioned upon time

or place, but dependent simply upon the development of the reasoning

faculty. We may say that the study of powers of numbers, and the re-

lated study of quadratic equations, were an evolution out of a natural

interest in numbers; the facts which we have presented are traces of the

process of this evolution.
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Cubic Polynomials

In this chapter, we will take our first look at cubic equations and the famous

formula for their solution known as Cardano’s formula. Girolamo Cardano,

for whom the formula is named, was a sixteenth-century Italian scholar. The

story of the formula’s discovery is complex, as we will see in Section 3.5,

and credit must be shared with Scipione del Ferro and Niccolò Fontana.

Our results in this chapter will be imprecise, because we are lacking

what turns out to be an essential tool: complex numbers. However, it is this

first look that will reveal the need for complex numbers. After developing

the basic facts about them in Chapter 4, we will return to cubic equations in

Chapter 5 and treat them with appropriate care.

3.1 Reduced Cubics

Quadratic polynomials need not have roots. In contrast, a cubic polynomial

must have a root. This is a special case of Theorem 1.14, which stated that

any odd degree polynomial has a root. (Alternatively, once we have Car-

dano’s formula and complex numbers, the existence of a root will follow

automatically from algebra alone.) Let us record this as a theorem.

Theorem 3.1. Let f .x/ be a cubic polynomial. Then there is a real number

a such that f .a/ D 0.

Theorem 1.4 states that, given a polynomial f .x/ and a real number a,

if f .a/ D 0, then x � a divides f .x/. Combining this with Theorem 3.1,

we find that any cubic polynomial can be factored as a product of linear and

47
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48 3. Cubic Polynomials

quadratic polynomials.

Exercise 3.1. Suppose f .x/ is a monic cubic polynomial.

(i) Use Theorems 1.4 and 3.1 to deduce that f .x/ factors as

.x � a/.x2 Cmx C n/

for some real numbers a, m, and n.

(ii) Deduce that any real root of f .x/ besides a is a root of x2 Cmx C n.

(Hint: Suppose r is a root and r ¤ a. Substitute r in f .x/, using the

factorization in (i). What do you get?)

(iii) Apply Theorem 2.2 to x2 Cmx C n to prove Theorem 3.2.

Theorem 3.2. Let f .x/ be a monic, cubic polynomial. Exactly one of the

following occurs.

(i) f .x/ has one real root a, of multiplicity 3, and factors as

.x � a/3:

(ii) f .x/ has two distinct real roots a1 and a2, of multiplicities 1 and 2,

and factors as

.x � a1/.x � a2/
2:

(iii) f .x/ has three distinct simple real roots a1, a2, and a3, and factors as

.x � a1/.x � a2/.x � a3/:

(iv) f .x/ has one simple real root a and factors as

.x � a/s.x/;

where s.x/ is a quadratic polynomial that does not factor as a product

of linear polynomials.

A cubic polynomial of the form

y3 C py C q

is called a reduced cubic. In the next exercise, we will see that a change of

variable allows us to pass from an arbitrary cubic polynomial to a reduced

one. This is analogous to the change of variable used in Exercise 2.9 to pass

from a quadratic polynomial to a new one without a degree-one term, and

will simplify the task of solving cubic equations.
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Exercise 3.2. Let

f .x/ D x3 C bx2 C cx C d;

for real numbers b, c, and d . Given another real number a, let’s see what

happens under the change of variable x D y C a, or y D x � a.

(i) SubstituteyCa for x and obtain a polynomial g.y/ in the new variable

y. Write it as

y3 C By2 C Cy CD

and obtain formulas for the coefficients B , C , andD in terms of a and

the old coefficients b, c, and d .

(ii) Observe that there is a choice of a for which B D 0. Thus for this a,

changing variables provides a new polynomial g.y/ that is reduced.

(iii) Verify that g.y/ is the reduced polynomial described in Theorem 3.3.

(iv) What is the relation between a root of f .x/ and a root of g.y/? In

particular, given a root s of g.y/, describe a root r of f .x/.

(v) Conclude that solving g.y/ D 0 allows us to solve f .x/ D 0.

Theorem 3.3. Let b, c, and d be real numbers. Given a cubic polynomial

x3 C bx2 C cxCd , the change of variable x D y�b=3 yields the reduced

cubic polynomial

y3 C
�

�b
2

3
C c

�

y C
�

2b3

27
� bc

3
C d

�

:

We have shown that we can pass from the problem of solving an arbi-

trary cubic equation to the equivalent problem of solving a cubic equation

of the form

y3 C py C q D 0;

and that being able to solve equations of this simpler type allows us to solve

arbitrary cubic equations.

Exercise 3.3. Suppose we wish to solve the cubic equation

x3 � 3x2 � 4x C 12 D 0:

(i) What reduced cubic equation would we solve in order to find the solu-

tions?
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(ii) How are the solutions of the reduced cubic equation related to the so-

lutions of the original cubic equation?

In Section 3.2, we will solve the reduced cubic equation in Exercise 3.3,

allowing us to find the solutions of the original cubic equation.

There are two families of reduced cubic equations that take on an even

simpler form, those for which p D 0 and those for which q D 0. Let’s

discuss these.

Exercise 3.4. Consider the cubic equation y3 C py D 0.

(i) Observe that y D 0 is a solution and that the other solutions are solu-

tions to y2 C p D 0.

(ii) Deduce that if p > 0 then y D 0 is the only solution and 0 is a simple

root of y3 C py; if p D 0 then y D 0 is the only solution and is a

repeated root of y3 C py; and if p < 0 then there are three distinct

solutions: y D 0 and y D ˙p�p.

Exercise 3.5. Consider the cubic equation y3 C q D 0. If q D 0, we are

studying the equation y3 D 0. Obviously the only solution is 0, which has

multiplicity 3 as a root of y3. Assume for the remainder of this exercise that

q ¤ 0.

(i) By Theorem 3.1, the equation must have a solution, and any solution

is a cube root of �q.

(ii) Suppose r is such a cube root: r3 D �q. Thus, we can rewrite the

polynomial y3 C q as y3 � r3. Show that

y3 � r3 D .y � r/.y2 C ry C r2/:

(iii) Show that y2 C ry C r2 has no real roots. (What is its discriminant?)

(iv) Conclude that r is the lone root of y3 C q and that r has multiplicity

1.

3.2 Cardano’s Formula

We have seen in Section 3.1 that every cubic polynomial has at least one

root and that by change of variable we can reduce the problem of finding

a root of a given cubic polynomial x3 C bx2 C cx C d to the problem of
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finding a root of a cubic polynomial of the form y3 C pyC q. What would

be a suitable solution to the reduced problem?

At the end of Section 2.1, we observed that the quadratic formula does

not so much solve quadratic equations as provide a reduction procedure, one

that uses algebra to reduce the problem of solving a quadratic equation to

the problem of calculating square roots of real numbers. Algebra offers no

guidance on finding the square roots. Similarly, in solving cubic equations,

we should be content if we reduce the problem to one of calculating square

and cube roots. The calculation of cube roots of real numbers, like the cal-

culation of square roots, is not a problem we should expect algebra to solve.

In fact—and this is an essential part of our story—we will discover that we

must be content with something less: a reduction to square root calculations

of real numbers and cube root calculations of entities more general than real

numbers.

No point delaying. Here’s the formula—Cardano’s formula—for a so-

lution of the reduced cubic equation y3 C py C q D 0:

y D
3

s

�q
2

C
r

p3

27
C q2

4
C

3

s

�q
2

�
r

p3

27
C q2

4

We will explore its history in Section 3.5. For now, let us just note that

Cardano did not write down such a formula explicitly. Rather, he illustrated

how to solve reduced cubic equations through examples.

Exercise 3.6. Substitute the expression for y given by Cardano’s formula

into the polynomialy3CpyCq and verify, after expanding and simplifying,

that it equals 0.

Cardano’s formula expresses the solution to y3 C pyC q D 0 in terms

of the coefficients p and q, addition, multiplication, division by some con-

stants, and the taking of square and cube roots. Thus, just as the quadratic

formula reduces the solution of quadratic equations to square root calcula-

tions, Cardano’s formula reduces the solution of cubic equations to square

root and cube root calculations. Once we use Cardano’s formula to find a

real root r of y3 C py C q, we can divide y3 C py C q by y � r to obtain

a quadratic polynomial and use the quadratic formula to find any additional

real roots.

The formula has one worrisome feature, the appearance of the square

root of p3=27 C q2=4. In the quadratic formula, whenever the quadratic

polynomial being studied has a real root, the quantity whose square root
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must be calculated is non-negative. Cubic polynomials, in contrast to quadrat-

ics, always have real roots. If the value of p3=27Cq2=4 for a reduced cubic

polynomial is negative, we may be in for trouble in attempting to use Car-

dano’s formula. We’ll soon see what issues arise.

Before using Cardano’s formula in specific examples, let’s see how we

might derive it. There are many ways. In the next exercise, we will work

through an approach described by François Viète in 1591. More will be

said about Viète in the historical discussion of Section 5.8.

Exercise 3.7. We begin with the cubic polynomial y3 C py C q. The key

idea (by no means obvious!) is to introduce a new variable z satisfying

y D z � p

3z
:

If p D 0, this change of variable accomplishes nothing, so let’s assume

until the last part of the exercise that p ¤ 0.

(i) Substitute z�p=3z for y in y3 CpyCq D 0, expand the cubed term,

simplify, and obtain an equation in z:

z3 � p3

27z3
C q D 0:

(ii) Multiply by z3 to clear denominators and obtain

z6 C qz3 � p3

27
D 0:

(iii) This is a quadratic equation in z3. Use the quadratic formula to obtain

z3 D �q
2

˙
p

q2 C .4p3=27/

2
:

(iv) Introduce R as an abbreviation for p3=27C q2=4 and rewrite the last

equality as

z3 D �q
2

˙
p
R:

(v) There are two possible values for z3, either �.q=2/C
p
R or �.q=2/�p

R. Multiply them and simplify to get

�

�q
2

C
p
R
��

�q
2

�
p
R
�

D
�

�p
3

�3

:
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(vi) Take cube roots of both sides and deduce that the two values of z have

a product satisfying

�

3

r

�q
2

C
p
R

��

3

r

�q
2

�
p
R

�

D �p
3
:

(vii) This means that if z is the cube root of �.q=2/C
p
R, then �p=3z is

the cube root of �.q=2/ �
p
R.

(viii) Recall that z was introduced to satisfy y D z�p=3z. The two terms on

the right of this equation, z and �p=3z, are the cube roots of �.q=2/Cp
R and of �.q=2/�

p
R.

(ix) Conclude that y is the sum of the two cube roots:

y D 3

r

�q
2

C
p
R C 3

r

�q
2

�
p
R :

(x) We have assumed that p ¤ 0. If p D 0, then the equation we are

solving is y3 C q D 0 and the formula still holds. (Check that one

summand becomes 0 and the other is the cube root of �q.)

We have obtained Cardano’s formula! That wasn’t hard at all. However,

in the derivation of the formula, we have not been precise on certain points.

The imprecisions will be addressed in Exercise 5.1, where we review the

derivation with the benefit of complex numbers. For now, let us ignore these

imprecisions and give the formula a try.

Exercise 3.8. Solve y3 � 3y C 2 D 0.

(i) Use Cardano’s formula to find one solution r .

(ii) Use it to factor y3 � 3y C 2 as the product of linear and quadratic

polynomials and find the other two solutions.

The next equation is a famous example of Cardano.

Exercise 3.9. Solve y3 C 6y � 20 D 0.

(i) Use Cardano’s formula and obtain

y D 3

q

10C 6
p
3C 3

q

10� 6
p
3:
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(ii) Observe that the function y3 C 6y�20 is always rising as y increases.

(Consider the behavior of the separate terms y3 and 6y.)

(iii) Deduce that the graph of y3C6y�20 crosses the y-axis (the horizontal

axis) only once, so that y3 C 6y � 20 D 0 has only one real solution.

(iv) Conclude that the expression we have obtained for y using Cardano’s

formula must be the lone real solution.

We can stop here, content that we have found the single real root of

y3 C6y�20. Or we can use a calculator to determine at least approximately

what the sum of the two cube roots is. If we do this, we discover that it is

close to 2. Substituting 2 for y in y3 C 6y � 20 to see how close to 0 we

are, we further discover that

23 C 6 � 2 � 20 D 8C 12 � 20 D 0:

In other words, 2 is not just approximately a root of y3 C 6y � 20. It is a

root! Since y3 C 6y�20 has only one real root, the complicated expression

we found in Exercise 3.9 for the root as a sum of cube roots must equal 2:

3

q

10C 6
p
3C 3

q

10 � 6
p
3 D 2:

This is at least a little disappointing. What if we didn’t recognize that

the sum of cube roots offered by Cardano’s formula is simply 2? It turns

out, for this example at least, that we can calculate the cube roots arising

as summands in Cardano’s formula explicitly as expressions involving
p
3

and then verify that their sum is 2. Let’s do so.

Exercise 3.10. We will calculate the cube roots that appear in Exercise 3.9

by guessing and verifying.

(i) Guess that the cube root of 10 C 6
p
3 has the form a C b

p
3. Cube

this. Combine terms that don’t involve
p
3 and terms that do to get two

equations in a and b with integer coefficients.

(ii) There’s no systematic way to solve two simultaneous equations such

as these in general. Instead, turn again to guessing. Try small integers

as values for a and b to find a solution.

(iii) Find a real cube root of 10 � 6
p
3 in a similar way.

(iv) Verify that the sum of the two cube roots is 2.
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Let’s try another example where the same difficulty arises.

Exercise 3.11. Solve y3 � 2y � 4 D 0.

(i) Use Cardano’s formula to obtain

y D 3

s

2C
r

100

27
C 3

s

2 �
r

100

27
:

(ii) Rewrite this as

3

r

2C 10

9

p
3C 3

r

2 � 10

9

p
3:

(iii) Taking a hint from Exercise 3.10, let’s see if we can obtain a simpler

expression. Find the cube root of 2 C 10
p
3=9 by guessing that it has

the form a C b
p
3. Cube this, set it equal to 2C 10

p
3=9, and obtain

two equations for a and b. Try small integers for a and possibly small

fractions for b to find cube roots.

(iv) Obtain a cube root of 2�10
p
3=9 as well, and deduce from Cardano’s

formula that 2 is a solution of y3 � 2y � 4 D 0.

(v) Factor y3 �2y�4 as the product of y�2 and a quadratic polynomial.

Because the quadratic polynomial has no real roots, 2 is the only real

root of y3 � 2y � 4.

Once again, Cardano’s formula has given us a solution to a cubic equa-

tion as a frightful sum of cube roots that turns out to be a simple number.

Let’s consider yet another example. A surprise awaits, one of the great

surprises in the history of mathematics.

Exercise 3.12. Solve y3 � 7y C 6 D 0.

(i) Use Cardano’s formula to obtain

y D 3

s

�3C
r

�100
27

C 3

s

�3 �
r

�100
27

as one root.

(ii) Rewrite this as

3

r

�3C 10

9

p
�3 C 3

r

�3 � 10

9

p
�3:
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The form of the solution in Exercise 3.12 is similar to the form of the

solution in Exercise 3.11, the only essential difference being the minus sign

under the square root. But what a difference! Because of the minus sign, the

solution makes no sense. After all, there is no square root of �3.

Let’s not worry about the meaninglessness of our solution just yet. In-

stead, taking a hint from Exercises 3.10 and 3.11, let’s treat
p

�3 the way

we did
p
3 and try to find cube roots that we might be able to add to ob-

tain a simpler answer. Even though we don’t know what
p

�3 means, let’s

assume in the exercises that when we square it, the result is the number �3.

Exercise 3.13. Let’s guess that �3 C 10
p

�3=9 has a cube root in the

form aC b
p

�3. We defer any concerns about the meaning of a C b
p

�3,

choosing for now just to work with it formally.

(i) Cube a C b
p

�3. Combine terms that don’t involve
p

�3 and terms

that do to get two equations in a and b with integer coefficients.

(ii) Make guesses for a and b. Small positive integers for a and fractions

involving thirds for b should give a solution quickly.

(iii) Find the cube root of �3 � 10
p

�3=9 similarly.

(iv) The expressions for the cube roots of �3C10
p

�3=9 and �3�10
p

�3=9
involve the square root of �3. Let’s not worry yet. Let’s proceed.

(v) Add the two cube roots: the troublesome
p

�3 terms cancel, leaving

us with a meaningful real number, 2. Verify that 2 is a solution to y3 �
7y C 6 D 0.

(vi) Conclude that Cardano’s formula has led us to a correct solution of the

equation y3 � 7y C 6 D 0, namely, y D 2.

(vii) Since 2 is a solution, the polynomial y3 �7yC6 factors as the product

of y � 2 and a quadratic polynomial. Divide y � 2 into y3 � 7yC 6 to

find the quadratic polynomial, then determine its roots, thereby finding

all three roots of y3 � 7y C 6.

Cardano’s formula has successfully produced the roots of y3 � 7y C 6,

provided we are willing to work formally with the meaningless expressionp
�3.

We can use Exercise 3.13 to solve the cubic equation introduced in Ex-

ercise 3.3.
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Exercise 3.14. Solve

x3 � 3x2 � 4x C 12 D 0

by using the change of variable of Theorem 3.3 and applying the result of

Exercise 3.13.

Let’s conclude this section with one more illustration of what becomes

possible once we open the door to
p

�3.

Exercise 3.15. Solve x3 � 1 D 0.

(i) Observe that 1 is a solution.

(ii) Factor x3 � 1 as .x � 1/.x2 Cmx C n/ and determine m and n.

(iii) Use the quadratic formula to solve x2 C mx C n D 0. Obtain in this

way two additional solutions of x3 D 1, the two “numbers”

�1
2

˙
p

�3
2

:

(iv) For the displayed numbers to make sense, there must be a square root

of �3. Let’s continue not to worry about this. It will be convenient to

have a special name for the hypothetical number

�1
2

C
p

�3
2

:

We will use the lower case Greek letter omega for this purpose and

write �1=2C
p

�3=2 as !.

(v) Verify that the other hypothetical number,

�
1

2
�

p
�3
2

;

is !2.

(vi) Multiply ! by !2 to get 1. In other words, verify that !3 D 1. Sim-

ilarly, verify that .!2/3 D 1. Thus, ! and !2 are both solutions to

x3 D 1.

(vii) Conclude that the three cube roots of 1 are 1, !, and !2.
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Exercise 3.16. Let c be any non-zero real number. From Exercise 3.5, c

has one real cube root. Call it a. Provided that the new number ! introduced

in the preceding exercise makes sense, show that !a and !2a are also cube

roots of c. Conclude that if we decide to treat ! as an allowable number, we

will find that the polynomial x3 �c has three distinct roots, one real and the

others of a new form.

3.3 Graphs

In this section, we will look at the shapes of cubic polynomial graphs. The

results of this section are needed only in Section 3.4, where we take our

first look at the discriminant of a cubic. We will return to the study of the

discriminant in Section 5.3 and obtain results purely algebraically, without

reference to this section. Thus, we might choose to omit both this section

and Section 3.4. However, the principal results enhance our visual or geo-

metric understanding of cubic polynomials.

To give full proofs of the results of this section, some background from

the foundations of real numbers and calculus is needed. Readers with that

background, including familiarity with the connection between derivatives

and turning points summarized in Section 1.6, will be able to prove the re-

sults easily. For those unfamiliar with calculus, we will indicate an approach

that reduces the calculus to a minimum, although some foundational theo-

rems on the real numbers are needed.

We will restrict ourselves to reduced cubic polynomials, those of the

form x3 C px C q. As we saw in Section 3.1, this is in fact no restriction

at all. Recall from Section 1.6 the notions of local maximum, local mini-

mum, and turning point for the graph of a function y D f .x/. We know

from Theorem 1.15 that the graph of x3 C px C q has at most two turning

points. We know from Theorem 1.13 that the graph rises from arbitrarily

low heights on the left of the y-axis to arbitrarily high heights on the right.

The theorems tell us that the graph of a cubic has two possible behaviors: it

will rise steadily as x increases or it will rise to a local maximum, fall to a

local minimum, then rise. Which one occurs depends on the sign of p.

The possibilities are illustrated in Figure 3.1, which shows the graphs of

the cubic polynomials y3 C px for p D �4;�2; 0; 2, and 4. For p D 2 or

4, (or, more generally, p positive), the graph rises steadily, with no turning

points. For p D �2 or �4 (or, more generally, for p negative), the graph

rises, then falls, then rises. An exceptional case occurs when p D 0. Here,

the graph never turns, but at x D 0, it stops rising for an instant, being

essentially flat. More precisely, the x-axis is tangent to the graph at .0; 0/,
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y = x + x3 4

y = x + x3 2

y = x3

y = x – x3 4

y = x – x3 2

x

y

Figure 3.1. Shapes of cubic polynomial graphs

so that the slope of the graph there is 0.

Let us return to arbitrary reduced cubic polynomials.

Exercise 3.17. Let p and q be real numbers with p � 0. Let f .x/ D
x3 C px C q.

(i) Show for any two real numbers a < b that f .a/ < f .b/.

(ii) Conclude, using Theorem 1.14, that Theorem 3.4 holds.

Theorem 3.4. Let p and q be real numbers with p � 0. Let f .x/ D
x3 C px C q.

(i) The graph of y D f .x/ never falls as x increases. In particular, the

graph of y D f .x/ has no turning point.

(ii) The graph crosses the x-axis exactly once, so that f .x/ has exactly

one real root.

The graph of y D x3 C px C q crosses the y-axis at .0; q/. Those

familiar with calculus will recognize that the slope of the graph at .0; q/ is

p. Thus, the larger p is, the steeper the graph is at .0; q/ and the smaller

p is, the flatter the graph is at .0; q/. In the extreme case that p D 0, the

polynomial f .x/ is just x3 C q and the slope at .0; q/ is 0. Thus, the graph

is flat there, with tangent line y D q.

When p < 0, the graph of x3 C pxC q has two turning points. We can

use elementary calculus to prove this and determine where they are:
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Theorem 3.5. Let p and q be real numbers with p < 0 and let f .x/ D
x3 C px C q. Let a be the positive square root of �p=3.

(i) The graph of y D f .x/ has two turning points, a local maximum at

x D �a and a local minimum at x D a.

(ii) As x increases, the graph rises to a turning point at

�

�a; q � 2ap

3

�

;

falls to a turning point at

�

a; qC 2ap

3

�

;

then rises.

Exercise 3.18. We can use elementary calculus to prove Theorem 3.5:

(i) Calculate where f 0.x/ takes on the value 0 and deduce that x D �a
and x D a are the only candidates for turning points.

(ii) Determine the sign of f 0.x/ for values of x satisfying x < �a, �a <
x < a, and a < x. Deduce that there are indeed turning points at

x D �a and x D a.

(iii) Calculate the heights f .�a/ and f .a/ of the turning points.

(iv) Deduce that the theorem holds.

We can prove much of Theorem 3.5 without calculus. Let’s do so, to

get an enhanced understanding of why Theorem 3.5 holds. The shape of the

graph of x3 C px C q is independent of q. As q varies, the graph slides up

and down (as described in Exercise 2.11), but otherwise remains unchanged.

Exercise 3.19. Let p and q be real numbers with p < 0 and let a be

the positive square root of �p=3. In this exercise, we will find two turning

points for the graph of y D x3 C px C q. We can rewrite the cubic as

x3 � 3a2x C q.

(i) Let g.x/ D x3 �3a2xC 2a3. Because a is a root, x�a divides g.x/.

Factor g.x/ as .x � a/2.x C 2a/. Use this factorization to verify for

x > a that as x increases, so does g.x/. Also check that g.a/ D 0, but

g.x/ > 0 for any x � 0 besides x D a.
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(ii) Deduce that .a; 0/ is a local minimum for g.x/ and that the graph of

g.x/ rises to the right of x D a as x increases.

(iii) Let h.x/ D x3 �3a2x�2a3. Because �a is a root, xCa dividesh.x/.

Factor h.x/ as .x C a/2.x � 2a/. Use this factorization to verify for

x < �a that as x increases, so does h.x/. Also check that h.�a/ D 0,

but h.x/ < 0 for any x � 0 besides x D �a.

(iv) Let q be a real number and let f .x/ D x3 � 3a2x C q. The graph of

f .x/ is just a vertical shift of the graphs of g.x/ and h.x/. Conclude

that f .x/ has a local maximum at .�a; q � 2ap=3/ and a local mini-

mum at .a; qC 2ap=3/, with the graph rising as x increases to �a and

as x increases from a.

Let’s continue with the notation of Exercise 3.19. We might guess from

the exercise that the graph of y D x3 CpxCq falls as x goes from �a to a.

Theorem 3.5 tells us that this is the case, as we easily check using calculus,

since we can verify that the derivative 3x2 C p of x3 C px C q is negative

for all values of x satisfying �a < x < a.

Without calculus, we can still show with a little more work (and an

appeal to basic facts from the foundations of real numbers) that x3 CpxCq
decreases as x goes from �a to a. For instance, we can show for each real

number r between �a and a that there is some open interval around r on

which x3 C px C q is decreasing. This local information, together with

basic results on the real numbers, shows x3 C px C q is decreasing across

the entire interval .�a; a/. Rather than pursuing this point further, we will

accept that it is true, as we already know from calculus.

3.4 A Discriminant

For a quadratic polynomial x2 C bx C c, we know that there are three

possibilities for the roots: two distinct real roots, one real root repeated, or

no real roots. We also know that we can decide which case holds from the

coefficients b and c, as we saw in Theorem 2.5. The three cases correspond

to the quantity b2 � 4c, the discriminant of x2 C bx C c, being positive,

zero, or negative. This can be proved by using elementary calculus or the

quadratic formula.

For a cubic polynomial x3 C bx2 C cx C d , as for a quadratic poly-

nomial, it is possible to determine from the coefficients the nature of the

cubic’s roots: whether the cubic has one simple real root, three distinct real

roots, or repeated real roots. This is governed by an expression in b, c, and
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d , known as the discriminant. We will discuss an algebraic approach to the

discriminant in Section 5.3. An alternative approach based on an under-

standing of the graph of a cubic polynomial (and therefore depending on

calculus) is also possible. In this section, we will describe this approach for

a reduced cubic polynomial, using the results of Section 3.3.

We continue to work with a cubic polynomial x3 CpxCq, where p and

q are real numbers, and we will write it as f .x/. Our analysis, as the results

of Section 3.3 would suggest, depends on whether p is positive, negative,

or 0. In case p D 0, we analyzed the polynomial x3 C q in Exercise 3.5.

It has one real root, the real cube root of �q, which is of multiplicity 3 if

q D 0 and of multiplicity 1 otherwise.

Exercise 3.20. Let f .x/ D x3 C px C q with p > 0.

(i) Recall from Theorem 3.4, or observe anew, that the graph of y D f .x/

is always increasing and that therefore f .x/ has only one real root.

(ii) Let r be the real root. From Theorem 3.2, either r has multiplicity 1 as

a root of f .x/, in which case f .x/ factors as the product of x � r and

a quadratic polynomial that is not a product of linear polynomials, or

r has multiplicity 3, in which case f .x/ factors as .x � r/3. Show that

f .x/ cannot factor as .x � r/3 and conclude that r has multiplicity 1.

We will handle the case p < 0 in Exercise 3.21, using Theorem 3.5.

It will be helpful to have a picture in mind of the possible behaviors of the

graphs. We will use Figure 3.2 as a guide. The figure shows the graphs of the

cubic polynomials x3 � 3xC q for q D �4;�2; 0; 2, and 4. All five graphs

y = x x3 – 3 + 4
y

y = x x3 – 3 + 2

y = x x3 – 3

y = x x3 – 3 – 2

y = x x3 – 3 – 4

x

Figure 3.2. Intersection of y D x3 � 3x C q with x-axis
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have the same shape, as we would expect. They are translations of each

other, up or down. How far each one is shifted determines how the x-axis

meets it and therefore how many roots the corresponding polynomial has.

Imagine a video showing the graph of y D x3 � 3x C q as q increases

from �10 to 10. At the start of the video, the graph of y D x3 � 3x � 10

is shown. As time goes by, the curve steadily rises, until at the end of the

video we arrive at the graph of y D x3 � 3x C 10.

As suggested in Figure 3.2 with q D �4, at the video’s start, the curve

will cross the x-axis only once. When q D �2, the curve will cross the

x-axis off to the right, but suddenly the turning point on the left makes

contact with the x-axis, producing a second root. Once q increases above

�2, the turning point rises above the x-axis and is replaced by two points

of intersection on the left, along with the point of intersection on the right.

Thus, as the figure illustrates in the case of q D 0, whenever �2 < q < 2

the graph of x3 � 3x C q crosses the x-axis three times and there are three

roots. The behavior changes when q D 2. If we were to watch the video as

q increases from �2 to 2, we would see the middle of the three intersection

points approach the rightmost intersection point, until they merge when q D
2. The graph of x3 � 3x C 2 therefore meets the x-axis only twice and the

polynomial has two roots. Finally, as q increases beyond 2, the graph no

longer makes contact with the x-axis to the right, crossing only on the left,

with x3 � 3x C q having only one root.

Exercise 3.21. Let f .x/ D x3 CpxCq with p < 0. Let a be the positive

square root of �p=3.

(i) Recall from Theorem 3.5 that the graph of y D f .x/ has two turning

points, a local maximum at .�a; q � 2ap=3/ and a local minimum at

.a; q C 2ap=3/.

(ii) The real roots of f .x/ occur at the x-coordinates of the points where

the graph of y D f .x/ meets the x-axis. Geometrically there are five

cases, as depicted in Figure 3.2 and described in the discussion that

preceded this exercise:

(a) The x-axis crosses the graph above the local maximum:

f .a/ < f .�a/ < 0:

(b) The x-axis crosses the graph at the local maximum:

f .a/ < f .�a/ D 0:
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(c) The x-axis crosses the graph between the local minimum and the

local maximum:

f .a/ < 0 < f .�a/:

(d) The x-axis crosses the graph at the local minimum:

0 D f .a/ < f .�a/

(e) The x-axis crosses the graph below the local minimum:

0 < f .a/ < f .�a/:

(iii) For each of these five cases, describe the number of real roots of f .x/

and their multiplicity, referring to Theorem 3.2 for guidance on the

options.

(iv) Express the last result by saying that there are three possibilities for

the nature of the roots, depending on whether f .�a/ and f .a/ have

opposite sign, f .�a/ and f .a/ have the same sign, or one of them is

0.

(v) The three cases can be described more compactly in terms of the sign

of the product of f .�a/ and f .a/:

(a) If f .�a/f .a/ < 0, then f .x/ has three distinct real roots.

(b) If f .�a/f .a/ > 0, then f .x/ has one real root, of multiplicity 1.

(c) If f .�a/f .a/ D 0, then f .x/ has two distinct real roots, of mul-

tiplicities 1 and 2.

(vi) Calculate the product f .�a/f .a/ to get

f .�a/f .a/ D q2 C 4p3

27
;

so

�27f .�a/f .a/ D �4p3 � 27q2:

Given the cubic polynomial x3 C px C q, whatever the sign of p, let’s

introduce a name and a notation for the quantity that appeared at the end of

Exercise 3.21. Set

ı D �4p3 � 27q2

and call ı the discriminant of x3 C px C q. We will discover an algebraic

interpretation of this quantity in Section 5.3.
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Exercise 3.22. Let’s continue the analysis of the roots of the cubic poly-

nomial x3 C px C q.

(i) Assume p D 0. Then x3 C px C q has one real root, which has

multiplicity 1 if q ¤ 0 and multiplicity 3 if q D 0. Verify that ı < 0 if

q ¤ 0 and ı D 0 if q D 0.

(ii) Assume p > 0. From Exercise 3.20, x3 Cpx C q has one simple real

root. Verify that ı < 0.

(iii) Assume p < 0. Deduce from Exercise 3.21 that when the graph of

y D x3 C pxC q crosses the x-axis three times, so that x3 C pxC q

has three distinct real roots, ı > 0. Deduce that when the graph crosses

the x-axis only once, so that x3 C px C q has one real root, ı < 0.

Deduce that when the graph crosses the x-axis once and is tangent to

the x-axis once, so that there is a repeated real root, ı D 0.

We have considered all possible cases. Reviewing them, we see that ı is

positive precisely when there are three distinct real roots, negative precisely

when there is only one simple real root, and 0 when there is a repeated real

root. Thus, we have proved the following theorem:

Theorem 3.6. Let f .x/ D x3 C px C q for real numbers p and q. Let

ı D �4p3 � 27q2, the discriminant of f .x/.

(i) If ı > 0, then f .x/ has three distinct real roots.

(ii) If ı D 0, then f .x/ has a repeated real root.

(iii) If ı < 0, then f .x/ has one simple real root.

Exercise 3.23. Using Theorem 3.6, describe the nature of the roots of each

of these polynomials:

(i) x3 � 3x C 2.

(ii) x3 C 6x � 20.

(iii) x3 � 2x � 4.

(iv) x3 � 7x � 6.

Cardano’s formula for a root of the reduced cubic polynomial x3CpxC
q includes the square root of the quantity p3=27Cq2=4, which we denoted

by R. The discriminant ı and R are constant multiples of each other:

ı D �108R:
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If R is negative, Cardano’s formula contains square roots of negative

numbers. Since R is negative when ı is positive, and ı is positive precisely

when f .x/ has three distinct real roots, we see that the troublesome sit-

uation of having to deal with square roots of negative numbers in using

Cardano’s formula arises precisely when f .x/ has three distinct real roots.

We will discuss this further in Section 5.4.

3.5 History

We closed our account of quadratic equations in Section 2.5 with Luca Paci-

oli, who summarized the mathematical knowledge of the time in 1494 [50].

Regarding cubic and quartic equations, Pacioli wrote [66, p. 47] that “it has

not been possible until now to form general rules.” This was the setting at

the dawn of the sixteenth century.

By the century’s end, general rules would be in place, thanks to the work

of Cardano and other Italian mathematicians. The story of these discoveries

is a wonderful one. Given the excellent accounts in [67] and [66], as well

as the 1953 biography Cardano: The Gambling Scholar [49] by the math-

ematician Øystein Ore, only a brief account will be given here. (Ore’s bi-

ography is unfortunately no longer in print. For more on Cardano, one can

also turn to Anthony Grafton’s Cardano’s cosmos: the worlds and works

of a Renaissance astrologer [33] as well as Cardano’s autobiography, The

Book of My Life [13], available in a 2002 edition that contains both Jean

Stoner’s 1929 English translation and an introduction by Grafton.)

An important point to keep in mind in preparation for the story is that

the academic culture at the time was not anything like that to which we are

accustomed. If someone were now to solve a centuries-long problem, he or

she would immediately announce it, lecture on it, and publish it, with the

written account being made available on the internet long before it actually

appears in print. Other mathematicians would study the solution, make sure

there are no errors, and pay close attention to the methods used for the solu-

tion, in anticipation that the methods and the new ideas they contain may be

applicable to other problems. In contrast, in sixteenth century Italy, scholars

would keep techniques of solution to themselves, perhaps employing them

to succeed at public competitions.

Scipione del Ferro was the first person to obtain a formula for solutions

to cubic equations. Del Ferro lived from 1465 until 1526, serving as a pro-

fessor at the University of Bologna for the final thirty years of his life. He

found a way to solve cubic equations of the form

x3 C px D q:
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Del Ferro and his contemporaries worked with positive numbers only, both

as coefficients and as solutions, so p and q are understood to be positive

and we seek positive values of x. An example would be x3 C 6x D 20, the

cubic equation of Exercise 3.9.

We saw in Section 2.5 that seven centuries earlier, al-Khwarizmi had

classified quadratic equations into three forms (excluding cases in which

one of the coefficients is 0). Similarly, because of the restriction to positive

coefficients, there are three forms for cubic equations with no degree 2 term,

the form x3 C px D q that del Ferro studied as well as

x3 D px C q

and

x3 C q D px:

Were 0 available, we might momentarily be tempted to add a fourth case,

x3 C px C q D 0:

But since p and q are positive, it cannot have a positive solution. Hence, we

are missing nothing by omitting it.

Del Ferro did not publish his solution, but he did communicate it to his

son-in-law, Annibale della Nave, and his colleague Antonio Maria Fior. In

1535, Fior challenged the Venetian mathematician Niccolò Fontana (1499–

1557) to a contest in which each would pose thirty problems to the other, the

loser paying for a banquet for thirty. Fontana, better known by his nickname

Tartaglia, or the stutterer, prepared problems of varying types. In contrast,

all of Fior’s problems were cubic equations of the type x3 C px D q, with

del Ferro’s solution as his secret weapon.

Just before time expired, on the night that ran from February 12 to 13,

Tartaglia found a way to solve the equation x3 C px D q on his own! So

much for Fior’s secret weapon. Tartaglia solved all thirty of Fior’s problems,

whereas Fior could solve only some of Tartaglia’s. Victory was sufficient

satisfaction for Tartaglia, who chose to forgo the banquet. Of course, he had

also won eternal fame as independent co-discoverer, with del Ferro, of the

cubic’s solution.

The story now shifts to another participant, the one for whom the so-

lution to the cubic equation is named, Girolamo Cardano. Cardano was a

prominent scholar in many fields, famous as a doctor, astrologer, philoso-

pher, and mathematician. He lived from 1501 to 1576 and spent most of

his life in the city of his birth, Milan. In 1539, having heard of Tartaglia’s

solution to the cubic, he asked Tartaglia through an intermediary what the
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solution was, but Tartaglia chose not to tell. Cardano then invited Tartaglia

to come to Milan as his guest, enticing him with the opportunity to meet Al-

fonso d’Avalos, the military commander of Milan, to whom Tartaglia would

be able to show some of his military inventions.

Like Cardano, Tartaglia was a man of many talents, including expertise

in ballistics and military engineering. In 1546, he would publish some of his

military work in Quesiti et Inventioni Diverse, or New Problems and Inven-

tions [63]. (Its drawings of cannons, cannonball paths, and fortifications are

reason enough to seek out a copy of the book.) Naturally, Tartaglia accepted

Cardano’s invitation. During his stay, Tartaglia told Cardano how he solved

the equation x3 C px D q, with Cardano swearing an oath on March 29,

1539 never to publish it.

We should note at this point that the principal source for many details

of this story, including Cardano’s oath, is Tartaglia himself, as he would

devote the final pages of Quesiti et Inventioni Diverse to an account of his

dealings with Cardano.

After Tartaglia left, Cardano saw how to use Tartaglia’s ideas in order

to obtain solutions to the cubic equations of the forms x3 D px C q and

x3 C q D px. Difficulties arise in these two cases because for certain

values of p and q, the solutions may contain expressions with square roots

of negative numbers, as we saw in Exercise 3.12. (In contrast, this cannot

occur in the expression for a solution of the cubic equation x3 C px D
q.) Nonetheless, in principle Cardano had found a solution to any cubic

equation without a degree 2 term, and as we know, it is then an elementary

matter to solve all cubic equations.

The fourth participant in our story is Lodovico Ferrari, who lived from

1522 to 1565. Ferrari came from Bologna to Milan at the age of 14 to work

as a servant in Cardano’s household. Cardano quickly realized Ferrari’s

talent, and Ferrari moved from servant to student to collaborator. Ferrari

learned from Cardano the method of solving cubic equations, then made

his own great contribution: the solution of quartic equations. What Ferrari

discovered is that one can reduce the problem of solving a quartic equation

to that of solving an auxiliary cubic equation, one whose coefficients are

expressed in terms of the coefficients of the original quartic. We will study

Ferrari’s discovery in Section 6.2.

Ferrari’s result was an advance of the greatest importance, but it posed

a difficulty for Cardano. He had given his oath to Tartaglia that he would

not publish Tartaglia’s solution to cubic equations of a special form. Yet,

Cardano had extended this to other cubic equations and his disciple Ferrari

had shown how to use it to solve quartic equations. This was too important
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to keep secret. Moreover, he may have had a way out, since the formula was

initially due to del Ferro, not Tartaglia.

Cardano decided to publish the solution, which he did in the book Ars

Magna, written in Latin and published in 1545. (It is available in an English

translation by T. Richard Witmer, with the title The Great Art; or, The Rules

of Algebra [12].) He states clearly at the beginning of Ars Magna [12, pp. 8–

9] that the solution to the cubic equation in the special form x3 C px D q

was discovered by del Ferro and re-discovered by Tartaglia:

In our own days Scoipione del Ferro of Bologna has solved the case

of the cube and first power equal to a constant, a very elegant and ad-

mirable accomplishment. Since this art surpasses all human subtlety

and the perspicuity of mortal talent and is a truly celestial gift and a

very clear test of the capacity of men’s minds, whoever applies him-

self to it will believe that there is nothing he cannot understand. In

emulation of him, my friend Niccolò Tartaglia of Brescia, wanting not

to be outdone, solved the same case when he got into a contest with

his [Scipioine’s] pupil, Antonio Maria Fior, and, moved by my many

entreaties, gave it to me. For I had been deceived by the words of Luca

Paccioli, who denied that any more general rule could be discovered

than his own. Notwithstanding the many things which I had already

discovered, as is well known, I had despaired and had not attempted

to look any further. Then, however, receiving Tartaglia’s solution and

seeking for the proof of it, I came to understand that there were a great

many other things that could also be had. Pursuing this thought and

with increased confidence, I discovered these others, partly by myself

and partly through Lodovico Ferrari, formerly my pupil. Hereinafter

those things which have been discovered by others have their names

attached to them; those to which no name is attached are mine. The

demonstrations, except for the three by [al-Khwarizmi] and the two by

Lodovico, are all mine.

Cardano turns to cubic equations in Chapter 11, “On the Cube and First

Power Equal to the Number,” which is devoted to equations of the form

x3 C px D q. At the start of the chapter, he once again credits del Ferro

and Tartaglia [12, p. 96]:

Scipio Ferro of Bologna well-nigh thirty years ago discovered this rule

and handed it on to Antonio Maria Fior of Venice, whose contest with

Niccolò Tartaglia of Brescia gave Niccolò occasion to discover it. He

[Tartaglia] gave it to me in response to my entreaties though with-

holding the demonstration. Armed with this assistance, I sought out its
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demonstration in [various] forms. This was very difficult. My version

of it follows.

By modern standards, Cardano had given proper credit for the results

on which he and Ferrari built, and had satisfied all scholarly expectations.

But this was a different era, and Tartaglia was furious. As already noted, he

told his side of the story a year later in Quesiti et Inventioni Diverse [63],

making the story of the oath—and its text—public.

Cardano did not respond to Tartaglia’s accusations, but Ferrari, on Car-

dano’s behalf, issued a public challenge. The dispute was argued in Milan

on August 10, 1548, with Tartaglia leaving before it was settled and evi-

dently being named the loser. (See Ore’s discussion [49, pp. 99–105] for an

attempt to sort out the details from the available records.)

These discoveries make for a richly entertaining story, worthy of the

greatness of the discoveries themselves. As Varadarajan notes in conclud-

ing his account of the dispute [67, p. 62], “Tartaglia, through his penchant

for secrecy, represents the middle ages, while Cardano, with his generous

views about authorship and sharing of knowledge, represents the modern

view. Mathematics was very fortunate that a person with the great vision

and world-view like Cardano was able to get his hands on the original dis-

covery and was then able to build a wonderful structure on top of it that led

to the beginning of Algebra as we know today.” Ore offers the following

conclusion [49, p. 106]:

Cardano and Ferrari represent by far the greater mathematical pene-

tration and wealth of novel ideas. Tartaglia was also, doubtless, an ex-

cellent mathematician, but his great tragedy was the head-on collision

with the only two opponents in the world who could be ranked above

him. Without them, he would most likely have been reckoned as the

foremost mathematician in the middle of the sixteenth century.

As for Cardano’s actual account of his formula, let us see what he says

in Chapter 11 of Ars Magna in his treatment of equations of the form x3 C
px D q [12, pp. 98–99]. Some of his terminology has been modernized

in the English translation. The terms binomium and apotome, which the

translation retains, refer to pairs of numbers such as
p
5C 3 and

p
5 � 3.

Cube one-third the coefficient of x; add to it the square of one-half the

constant of the equation; and take the square root of the whole. You

will duplicate this, and to one of the two you add one-half the number

you have already squared and from the other you subtract one-half the

same. You then have a binomium and its apotome. Then, subtracting
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the cube root of the apotome from the cube root of the binomium, the

remainder [or] that which is left is the value of x.

For example,

x3 C 6x D 20:

Cube 2, one-third of 6, making 8; square 10, one-half of the constant;

100 results. Add 100 and 8, making 108, the square root of which isp
108. This you will duplicate: to one add 10, one-half the constant,

and from the other subtract the same. Thus you will obtain the bi-

nomium
p
108C 10 and its apotome

p
108 � 10. Take the cube roots

of these. Subtract [the cube root of the] apotome from that of the bi-

nomium and you will have the value of x:

3

qp
108C 10� 3

qp
108 � 10:

One should compare this description with Exercise 3.9.

Cardano continues in Chapter 11 with two more examples [12, pp. 99–

100], the equations x3 C 3x D 10 and x3 C 6x D 2. He then returns to the

first example and notes that the complicated difference of cube roots can be

calculated to be 2.

We will return to the cubic equation’s history in Section 5.8. We con-

clude for now with the opening words of Grafton’s introduction to Car-

dano’s autobiography [13, p. ix]:

Cardano dazzled readers across sixteenth-century Europe. His original

and influential books dealt with medicine, astrology, natural philoso-

phy, mathematics, and morals—to say nothing of devices for raising

sunken ships and stopping chimneys from smoking. They won the at-

tention of popes and inquisitors, Catholics and Protestants, theologians

and playwrights. And nothing did more to enhance their appeal than

the polished stories about Cardano’s past that glittered like enticing

gems in his most technical treatises, or the longer, dramatic retellings

of his whole life story that he offered the public at suitable intervals.
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4
Complex Numbers

Our experience with Cardano’s formula has taught us that to solve cubic

equations, we need to work with numbers such as
p

�3, that is, square roots

of negative numbers. Cubic equations were where they were first encoun-

tered. They are now called complex numbers, and have been found to have

many important uses in mathematics and science. In this chapter, we will

introduce them and see how to calculate their nth powers and roots, which

is needed in our study of polynomial equations.

4.1 Complex Numbers

In this section we will develop the arithmetic of complex numbers. We be-

gin by introducing a new number,
p

�1, to serve as a square root of �1.

Once
p

�1 is admitted to the roll of allowable numbers, we are led to more

new numbers, such as 3
p

�1,
p
2 C

p
�1, and 4 � �

p
�1, when we try

to perform arithmetic operations that combine
p

�1 and our old numbers.

In general, given real numbers a and b, we must admit to the roll of num-

bers the new number a C b
p

�1. Numbers of this type are called complex

numbers. Real numbers are themselves complex numbers: the real number

a can be thought of as the complex number aC 0
p

�1.

Given a complex number a C b
p

�1, the real number a is called its

real part and the real number b is called its imaginary part. For example,

the real part of 2 C 3
p

�1 is 2 and the imaginary part is 3. Real numbers

are complex numbers with imaginary part 0. Also of note are the complex

numbers with real part 0, numbers of the form b
p

�1, called pure imaginary

numbers.

73
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Suppose we are given two complex numbers, aCb
p

�1 and cCd
p

�1.

How do we add and multiply them? Let’s do what comes naturally and see

what happens. This will lead us to definitions of sum and product.

For addition, if we rearrange and combine terms, we obtain

.a C b
p

�1/C .c C d
p

�1/ D aC c C b
p

�1C d
p

�1
D .aC c/C .b C d/

p
�1:

This would appear to be a sensible definition of addition, and it is what we

adopt. For example,

.2C 3
p

�1/C .8 C 2
p

�1/ D 10C 5
p

�1:

How about multiplication? Let’s use the distributive law and multiply

the same two numbers:

.2C 3
p

�1/ � .8C 2
p

�1/ D 2 � 8C 2 � 2
p

�1C 3
p

�1 � 8C 3
p

�1 � 2
p

�1:

It is natural to expect that
p

�1 should commute with real numbers so thatp
�1 � 8 D 8 �

p
�1. Assuming this and rearranging terms, we obtain

.2C 3
p

�1/ � .8C 2
p

�1/ D 2 � 8C 2 � 2
p

�1C 3 � 8
p

�1C 3 � 2.
p

�1/2:

If
p

�1 is to make sense as a number, then it must have the property that its

square is �1:

.
p

�1/2 D �1:
If we assume this, then we find that

.2C3
p

�1/�.8C2
p

�1/ D 16C4
p

�1C24
p

�1C6.�1/ D 10C28
p

�1:

More generally, suppose we wish to multiplyaCb
p

�1 and cCd
p

�1.

Proceeding in the same way, assuming
p

�1 � c D c �
p

�1 and .
p

�1/2 D
�1, we will obtain

.a C b
p

�1/ � .c C d
p

�1/ D .ac � bd/C .ad C bc/
p

�1:

Let us adopt this as our definition of multiplication. The product of two

complex numbers is again a complex number, as would need to be the case

if the definition is to be of any use.

Let’s summarize. Given complex numbers a C b
p

�1 and c C d
p

�1,

we have adopted the rules that their sum and product are given by

.a C b
p

�1/C .c C d
p

�1/ D .aC c/C .b C d/
p

�1

and

.a C b
p

�1/ � .c C d
p

�1/ D .ac � bd/C .ad C bc/
p

�1:
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Exercise 4.1. Our definition of multiplication for two complex numbers

was motivated by the assumptions that
p

�1 commutes with real numbers

and that .
p

�1/2 D �1. Now that we’ve defined multiplication, we should

verify that these properties actually hold.

(i) Given a real number a, use the definition of multiplication to prove

that

a �
p

�1 D
p

�1 � a:
(Hint: The real number a is the complex number a C 0 �

p
�1, whilep

�1 is the complex number 0C 1 �
p

�1.)

(ii) Use the definition of multiplication to prove that

.
p

�1/2 D �1:

Often the symbol i is used in place of
p

�1 to denote the square root

of �1. There’s no need to do this, but it does make our expressions easier

to write. In this notation, a complex number has the form a C bi , for real

numbers a and b, and i satisfies i2 D �1. The sum of two complex numbers

aC bi and c C di is

.aC bi/C .c C di/ D .a C c/C .b C d/i

and their product is

.aC bi/.c C di/ D .ac � bd/C .ad C bc/i:

Exercise 4.2. Add and multiply the pairs of complex numbers.

(i) 3 and 17 � 15i .
(ii) 3i and 17 � 15i .

(iii) i and �i .

(iv) 4C i and 3C 7i .

(v) �4C 5i and �3C 6i .

(vi) 2C 3i and 2 � i .

(vii) 5C 2i and 5 � 2i .

A positive real number r has a real square root
p
r . When we square

a pure imaginary number
p
r � i according to our multiplication rule, we

obtain

.
p
r � i/2 D �r:
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Thus
p
r � i is a square root of �r . By creating the new number i to serve

as a square root of �1, we have obtained square roots for all negative real

numbers.

A notion that we will need is that of complex conjugate. The complex

conjugate, or simply the conjugate, of a complex number a C bi is the

complex number a � bi . The conjugate of a complex number r is denoted

by putting a bar over r to get r . In this notation, we would write for example

that

2C 3i D 2 � 3i

and

�12i D 12i:

The complex conjugate of a real number a is a itself and the complex con-

jugate of a pure imaginary number bi is its opposite �bi .
A multiplicative inverse of a number r is a number s satisfying rs D 1.

For instance, the multiplicative inverse of �1 is �1 and the multiplicative

inverse of 2 is 1=2. What is the multiplicative inverse of �? It is 1=� , of

course. But this isn’t an answer. It’s a notation. The fact that there is a real

number s for which� �s D 1 is by no means obvious. It requires a proof, one

that depends on foundational results about the construction of real numbers.

(See, for instance, [38, pp. 71–73] for a discussion.)

Let us accept the truth of the statement that every non-zero real num-

ber r has a multiplicative inverse, which we will write as 1=r . Thanks to

conjugation, we can deduce from this that non-zero complex numbers have

multiplicative inverses.

Exercise 4.3. Let a and b be real numbers.

(i) Check that .a C bi/.a � bi/ D a2 C b2.

(ii) Assume that a C bi ¤ 0. Describe (in terms of a and b) the real and

imaginary parts of a complex number that is a multiplicative inverse of

a C bi .

Let’s derive the basic facts on conjugation and the arithmetic operations

for complex numbers.

Exercise 4.4. Let r and s be complex numbers.

(i) Show that

r C s D r C s
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and

r � s D rs:

(ii) Use this to show that

r2 D r2

and

r3 D r3:

(iii) We can use mathematical induction to show more generally that

rn D rn

for any positive integer n.

Let’s restate one part of Exercise 4.4 as a theorem, for later reference.

Theorem 4.1. Let r and s be complex numbers.

(i) If r2 D s, then r2 D s.

(ii) If r3 D s, then r3 D s.

One consequence of Exercise 4.4 is Theorem 4.2. We won’t use it until

Exercise 7.1, yet its proof is worth working out now as an exercise on con-

jugation facts. For quadratic, cubic, and quartic polynomials, we will obtain

Theorem 4.2 independently by direct determination of the roots.

Theorem 4.2. Let f .x/ be a positive-degree polynomial with real coeffi-

cients and let r be a root of f .x/ that is a non-real complex number. Then

r is also a root of f .x/.

Exercise 4.5. Prove Theorem 4.2. (Hint: Apply Exercise 4.4 to calculate

f .r/.)

4.2 Quadratic Polynomials and the

Discriminant

We can use complex numbers to obtain a better understanding of the roots

of quadratic polynomials.

Exercise 4.6. Consider the quadratic polynomial x2 C bx C c, with real

numbers b and c as coefficients. Assume that b2 � 4c < 0. In this case

x2 C bx C c has no real roots.
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(i) The quadratic formula gives as roots of x2 C bx C c the two numbers

�b
2

˙
p
b2 � 4c
2

:

Until now, we have viewed these as non-existent, since we had no

numbers available to serve as square roots of the negative real num-

ber b2 � 4c. With the introduction of complex numbers, we now have

square roots.

(ii) Rewrite the two roots of x2 C bx C c given in the previous part as

complex numbers, using i .

(iii) Substitute the resulting complex numbers into x2 C bxC c and verify

that they are roots of x2 C bx C c.

(iv) Draw the conclusion that if complex numbers are allowed, the quadratic

formula makes sense even when b2 � 4c < 0.

(v) The two roots we have obtained in this way are complex conjugates of

each other. Write the roots as r and r . Verify that

x2 C bx C c D .x � r/.x � r/

by multiplying out the right side of the equation.

(vi) Deduce that Theorem 4.3, a refinement of Theorem 2.2, holds.

Theorem 4.3. Let f .x/ D x2 C bx C c for real numbers b and c. Exactly

one of three possibilities occurs:

(i) x2 C bx C c has two distinct real roots a1 and a2, and factors as

.x � a1/.x � a2/:

(ii) x2 C bx C c has only one real root a, and factors as .x � a/2.

(iii) x2 C bx C c has two distinct complex roots r and r , and factors as

.x � r/.x � r/.

Moreover, the first possibility occurs if b2 � 4c > 0, the second possibility

occurs if b2 � 4c D 0, and the third possibility occurs if b2 � 4c < 0.

We saw in Theorem 2.5 that the nature of the roots of a quadratic poly-

nomial x2 CbxCc is determined by the sign of b2 �4c, which we denoted

ı. In the next exercise, we will see that the nature is determined by the sign

of the square of the difference of the polynomial’s roots.
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Exercise 4.7. Suppose b and c are real numbers. Write r1 and r2 for the

roots of x2 C bx C c and � for .r1 � r2/2.

(i) Conclude from Theorem 4.3 that there are three mutually exclusive

possibilities for r1 and r2: they are real and distinct, or real and coin-

cident, or distinct complex conjugates of each other.

(ii) If r1 D r2, then � D 0.

(iii) If r1 and r2 are real and distinct, then � > 0.

(iv) The only remaining possibility is that r1 and r2 are not real but are

complex numbers, each the conjugate of the other. Suppose r1 D mC
ni and r2 D m � ni , with m and n real numbers and with n ¤ 0. (If

n D 0, the roots are real.) Calculate � and show that it is a negative

real number.

(v) We wish to show that the converses of the results in (ii)-(iv) hold as

well; that is:

(a) If � > 0, then r1 and r2 are real and distinct;

(b) if � D 0, then r1 is a real number and r1 D r2;

(c) if � < 0, then r1 and r2 are non-real, complex numbers, each the

conjugate of the other.

(vi) Assume that � > 0. We are to prove that r1 and r2 are real and dis-

tinct. Suppose this is not the case and deduce from the first part of the

exercise that either r1 and r2 coincide and are real or they are non-real

complex conjugates. Use other parts of the proof to obtain the contra-

diction that � � 0. Conclude, as desired, that r1 and r2 are real and

distinct.

(vii) Make similar arguments to prove the other two converses.

(viii) Conclude that the sign of� determines the nature of the roots of x2 C
bx C c.

Both b2 � 4c, which we write as ı, and .r1 � r2/
2, which we write as

�, determine the nature of the roots of x2 C bxC c. Let’s compare the two

quantities.

Exercise 4.8. With the notation of Exercise 4.7, recall that x2 C bx C c

factors as .x � r1/.x � r2/. Use this to express b and c in terms of r1 and

r2 and deduce that .r1 � r2/2 D b2 � 4c, so that � and ı coincide.
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80 4. Complex Numbers

We see that the discriminant of x2 C bx C c has two descriptions. It is

the square of the difference of the roots and it is the quantity b2 �4c. We are

free to take either of these as the definition of the discriminant. However,

the more fundamental quantity is .r1 � r2/
2. One reason is that it can be

generalized for higher-degree polynomials. Hence, it is the one we adopt as

the defining expression for a quadratic polynomial’s discriminant.

The fact that .r1 � r2/
2 equals b2 � 4c can then be interpreted as the

statement that we can calculate the discriminant of x2 C bxC c, defined as

the square of the difference of the roots, in terms of the coefficients b and

c, without knowledge of the roots. We record this in the next theorem.

Theorem 4.4. Let b and c be real numbers and let r1 and r2 be the roots

(real or complex) of the quadratic polynomial x2 C bx C c, so that x2 C
bxCc factors as .x�r1/.x�r2/. Let� be the discriminant of x2 CbxCc,

which by definition is .r1 � r2/2.

(i) � determines the nature of the roots of x2 C bx C c: If � > 0, then

the roots are real and distinct; if� D 0, then there is one root, real of

multiplicity 2; if � < 0, then the roots are a pair of non-real complex

conjugates.

(ii) � can be calculated in terms of the coefficients:

� D b2 � 4c:

Complex numbers have allowed us to obtain the refinement Theorem

4.3 of Theorem 2.2. Similarly, we can refine Theorem 3.2 on the roots of

cubic polynomials.

Theorem 4.5. Let f .x/ be a monic, cubic polynomial. Exactly one of (i)–

(iv) occurs.

(i) f .x/ has one real root a, of multiplicity 3, and factors as

.x � a/3:

(ii) f .x/ has two distinct real roots a1 and a2, of multiplicities 1 and 2,

and factors as

.x � a1/.x � a2/
2:

(iii) f .x/ has three distinct simple real roots a1, a2, and a3, and factors as

.x � a1/.x � a2/.x � a3/:
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(iv) f .x/ has one real root a and two distinct non-real, complex roots r

and r , and factors as

.x � a/.x � r/.x � r/:

Exercise 4.9. Prove Theorem 4.5.

Exercise 4.10. Suppose x3 C px C q is a cubic polynomial. We saw in

Theorem 3.1 that it must have a real root. Suppose you have found such a

root, r , by using Cardano’s formula or other methods. Explain how you can

find the other two roots, whether real or complex.

4.3 Square and Cube Roots

At the end of Section 2.1, we saw that the quadratic formula reduces the

problem of solving a quadratic equation to that of calculating square roots

of real numbers. At the beginning of Section 3.2, we hoped that solving

cubic equations could be reduced, similarly, to the problem of calculating

square and cube roots of real numbers. Our initial experience with Car-

dano’s formula suggested that we might need to find cube roots of non-real

complex numbers as well. Let’s take a look at the problem of calculating

square and cube roots of complex numbers.

We begin with square roots. How do we find square roots of a complex

number aC bi? There are two issues here. Does aC bi have another com-

plex number as its square root? If so, can we calculate it? Regarding the

second question, we already have noted that algebraic techniques alone do

not allow us to compute square roots of positive real numbers. We must use

techniques of approximation. We cannot expect the calculation of square

roots of complex numbers to be any easier. We should be content if we can

reduce the problem of calculating square roots of complex numbers to the

problem of calculating square roots of positive real numbers.

Fix real numbers a and b; they should be regarded as known constants,

not as variables. Suppose we wish to find square roots of a C bi . If b D 0,

then finding the square roots of a C bi reduces to finding the square roots

of the real number a. This is trivial if a D 0. If a ¤ 0, it reduces to the

problem of finding the square root of a if a is positive or the square root

of �a if a is negative (in which case the square roots of a are i times the

square roots of �a). Thus, we can assume that b ¤ 0. Let’s deal with this

case in an exercise.
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Exercise 4.11. Let a and b be real numbers with b ¤ 0. We wish to find

a complex number r C si such that .r C si/2 D a C bi . We can introduce

variables x and y for the unknown real numbers r and s, so that finding a

square root amounts to solving the equation

.x C yi/2 D aC bi

for real values of the unknowns x and y. We view a and b as known, fixed

constants.

(i) Expand the equation .xCyi/2 D aC bi and obtain two simultaneous

equations for x and y with real coefficients.

(ii) Using one of the equations and the fact that b ¤ 0, show that if these

equations have solutions, x and y will be non-zero.

(iii) Using this, divide both sides of one equation by x to get an equation

expressing y in terms of x and substitute this into the other equation

to get a single equation in x.

(iv) To find a square root of aC bi , we need to solve a single equation in x

involving only real numbers. Clear denominators in this equation and

obtain a degree 4 or quartic equation in x.

(v) It can be regarded as a degree 2 or quadratic equation in x2. Use the

quadratic formula to obtain two values for x2 in terms of a and b.

(vi) We are looking for a real value of x that solves the equation. If one of

our expressions for x2 is a positive real number, then its two square

roots are our desired values for x. Verify that one of the expressions

for x2 is positive.

(vii) Take square roots to obtain two values of x. Using an equation you

obtained earlier in the problem, obtain the two corresponding values

for y.

(viii) Write the formulas for the two square roots of aC bi . Notice that each

is �1 times the other.

We have just shown that any non-zero complex number has two com-

plex numbers as its square roots, each the opposite of the other. We will

record part of this.

Theorem 4.6. Given a complex number s, there exists a complex number

r satisfying r2 D s; in other words, every complex number has a complex

square root.
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The existence of square roots allows us to extend the quadratic formula

to quadratic polynomials with complex coefficients. We won’t need the re-

sult for our analysis of cubic and quartic polynomials, but we will use it

in the final section, Section 7.5. In anticipation of that, let’s work out the

details here.

Exercise 4.12. Let b and c be complex numbers.

(i) Rework Exercise 2.7 to show that the roots of x2 C bx C c are

x D �b
2

˙
p
b2 � 4c

2
:

(ii) Use Theorem 4.6 to deduce that x2 C bxC c has a root in the complex

numbers, and so factors as a product of two linear polynomials.

(iii) Conclude that Theorem 4.7 holds.

Theorem 4.7. Let b and c be complex numbers. There exist complex num-

bers r1 and r2 (possibly coincident) such that

x2 C bx C c D .x � r1/.x � r2/:

In Exercise 4.11, we have proved that complex square roots exist and

shown how to determine them explicitly in terms of square roots of posi-

tive real numbers. We wish to be able to compute cube roots of complex

numbers as well, since this is essential in using Cardano’s formula. Our ex-

perience in Exercise 4.11 suggests that we should be able to calculate cube

roots of complex numbers in terms of cube roots of real numbers. Let’s

mimic what we did for square roots and see how far we can get.

Exercise 4.13. Fix real numbers a and b; they should be regarded as con-

stants, not as variables. Assume b ¤ 0. We wish to determine the cube roots

of the non-real complex number aC bi ; that is, we wish to find a complex

number mC ni such that .mC ni/3 D aC bi . We can introduce variables

x and y for the unknown real numbers m and n, so that finding a cube root

amounts to solving the equation

.x C yi/3 D aC bi

for real values of x and y.
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Expand the equation .x C yi/3 D aC bi and obtain two simultaneous

equations for x and y with real coefficients. Conclude that the problem of

finding a complex cube root of aCbi is equivalent to the problem of finding

real solutions to the two equations.

In Exercise 3.13, we solved the equations that arise in Exercise 4.13

by trial and error for certain choices of a and b. Now we want a general

solution, but there is no obvious way to proceed. Let’s experiment.

Exercise 4.14. Begin with the two equations for x and y obtained in Ex-

ercise 4.13.

(i) Using one of the equations and the assumption that b ¤ 0, show that

if these equations have solutions, then y will be non-zero.

(ii) Introduce a new variable s and set x D sy, so that s D x=y. This

makes sense, since we know that y can’t be 0. Substitute sy for x in

the two equations for x and y to get two equations in s and y. Write

them so that each is an expression in s times y3. Using the assumption

that b ¤ 0, show that 3s2 � 1 ¤ 0.

(iii) Solve one equation for y3, substitute in the other, and obtain a cubic

equation in s with coefficients involving a, b, and 3.

We have reduced the problem of finding a cube root of a C bi to the

problem of solving a cubic equation in s with real coefficients. If we can

solve the cubic equation for s, then we can determine y3, take cube roots,

find a value for y, and then a value for x. This is analogous to what hap-

pened in Exercise 4.11, where we reduced the problem of finding square

roots of aC bi to the problem of solving a quadratic equation with real co-

efficients. We could solve that equation using square roots of real numbers.

In our current situation, however, it is not clear how to proceed. Indeed,

we seem to have made a circle. We wish to compute cube roots of complex

numbers in order to solve cubic equations involving real numbers. Now we

find that computing cube roots of complex numbers leads us to the problem

of solving cubic equations with real number coefficients, and this may lead

us back to the calculation of the cube root of a complex number. We will

return to this issue in Section 5.5.

4.4 The Complex Plane

We discovered at the end of Section 4.3 that an algebraic approach to calcu-

lating cube roots of complex numbers does not seem to work, since it leads
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to the problem of finding roots of a cubic polynomial with real coefficients,

which leads back to the problem of computing cube roots of complex num-

bers. We need a new idea.

There is such an idea, one that will allow us to calculate not just cube

roots but nth roots of complex numbers for any positive integer n, provided

we supplement algebra with trigonometry. The idea depends on a geometric

interpretation of complex numbers, which we develop in this section.

A complex number aC bi is encoded by the two real numbers a and b,

its real and imaginary parts. This allows us to identify aC bi with the pair

.a; b/. But we can also regard .a; b/ as the cartesian coordinates of a point

on the plane: a, as usual, is the x-coordinate, specifying how far the point is

to the left or right of the y-axis, and b is the y-coordinate, specifying how

far the point is above or below the x-axis. For example, we can identify the

complex number 1 C
p
3i with the pair .1;

p
3/, which we think of as the

coordinates of the point on the plane depicted in Figure 4.1.

(0, 0) (1, 0)

2

p/3

Figure 4.1. The Point 1 C
p

3i in the Plane

Points in the plane can also be specified by their polar coordinates. The

polar coordinates of a point p in the plane are numbers r and � , with r rep-

resenting the distance from p to the origin of the plane and � representing

the angle formed by the positive ray of the x-axis and the line connecting p

to the origin. The angle � is measured in radians, proceeding counterclock-

wise from the x-axis to the line with p on it. Negative angles indicate that

we proceed in a clockwise direction from the x-axis.

Let’s write a pair of polar coordinates as Œr; ��, using the brackets to

indicate that the pair of numbers is not the usual cartesian coordinates. For

example, the point .1;
p
3/ (in cartesian coordinates) can be written in polar

coordinates as Œ2; �=3�. See Figure 4.1.

Polar coordinates have some disadvantages. The principal one is that a

point p is described by infinitely many different pairs of polar coordinates.

If we move around the plane along a circle, tracing an angle of 2� , we return

to the point at which we started. Thus, in addition to Œr; ��, the point p also
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has polar coordinates Œr; � C 2��. One more trip around the circle and we

return to the same point, but this time with polar coordinates Œr; � C 4��.

More generally, for any integer n, the point has polar coordinates Œr; � C
2n��. The origin can be described in still more ways, since it has polar

coordinates Œ0; �� for arbitrary � .

Polar coordinates have advantages as well (or else we would not intro-

duce them). One advantage is that certain figures in the plane can be de-

scribed as the graphs of equations that take on an especially simple form in

polar coordinates. For example, r D 1 is the equation in polar coordinates

of a circle of radius 1 with the origin as its center.

In cartesian coordinates, the circle is described by the equation x2 C
y2 D 1, and we can use it to define the cosine and sine functions for ar-

bitrary real numbers � . Given a point p on the circle such that the radius

from the origin to p forms an angle � with the x-axis (measured counter-

clockwise from the x-axis to the radius), the x and y coordinates of p are

the cosine and sine of � :

p D .cos �; sin �/:

This is the key to relating cartesian and polar coordinates.

Exercise 4.15. Let r be a non-negative real number.

(i) The equation of the circle with radius r and center the origin is x2 C
y2 D r2. Check that a point q on the circle for which the radius from

the origin to q forms an angle � with the x-axis (measured counter-

clockwise from the x-axis) has cartesian coordinates

.r cos �; r sin �/:

(ii) Conclude that a point with cartesian coordinates .a; b/ and polar coor-

dinates Œr; �� satisfies

a D r cos � I b D r sin �:

These equations show how to recover the cartesian coordinates of a

point from its polar coordinates.

To describe the polar coordinates of a point in terms of its cartesian

coordinates, we use inverse trigonometric functions. Any one will do. Let’s

choose the inverse cosine function, arccos t .

Given a real number t between �1 and 1, there are infinitely many an-

gles � for which cos � D t . Thus, there are infinitely many possibilities for
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arccos t . In defining arccos t , by convention we regard � as restricted to the

interval Œ0; ��. Within this interval, as � increases from 0 to � , its cosine

will decrease from 1 to �1, assuming all possible values in this range ex-

actly once. The inverse function arccos t is then defined, for t in Œ�1; 1�, as

the unique angle � between 0 and � for which cos � D t . It will decrease

from � to 0 as t increases from �1 to 1. It is positive for t < 1 and zero for

t D 1.

Exercise 4.16. Let a and b be real numbers. We wish to find polar coordi-

nates Œr; �� for the point described in cartesian coordinates by .a; b/.

(i) If .a; b/ has polar coordinates Œr; ��, explain why .a;�b/ has polar

coordinates Œr;���.

(ii) Describe r in terms of a, b, and square roots.

(iii) Assume b � 0. Describe � in terms of a, b, and the inverse cosine

function.

(iv) What is � if b < 0?

Exercise 4.17. Let a and b be real numbers.

(i) Using the identification of the complex number a C bi with the point

.a; b/ in the plane, show that a non-zero complex number a C bi can

be written as

r cos � C .r sin �/i

for some non-negative real number r and some real number � .

(ii) Write the following complex numbers in this form:

(a) 1 and �1.

(b) i and �i .
(c) The four complex numbers ˙1˙ i .

(d) The four complex numbers ˙1˙
p
3i . (See Figure 4.1.)

We have found that any complex number aC bi can be written as

r cos � C .r sin �/i

for real numbers r and � , with r and � chosen to be polar coordinates of the

point with cartesian coordinates .a; b/. Exercise 4.16 shows how to express

r and � explicitly in terms of a and b. We call r the length or magnitude of

the complex number aCbi and � the angle of inclination of aCbi , since it
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represents the angle at which the line through .a; b/ and .0; 0/ inclines with

respect to the x-axis. Often, � is called the argument of aC bi .

Recall that in Exercise 4.1 we proved that real numbers commute with

i under multiplication. Thus, the complex number a C bi is the same as

a C ib. Sometimes, when working with complicated expressions for the

imaginary part, the aC ib form is preferable, in that it eliminates the need

for extra parentheses. Thus, for example, we might prefer r cos � C ir sin �

to r cos �C .r sin �/i . Sometimes it’s convenient to write r cos �C ri sin � .

For example, we might write 2 cos.�=3/ C 2i sin.�=3/ rather than putting

the i before the 2 or after the sine term.

4.5 A Geometric Interpretation of

Multiplication

Having identified complex numbers with points on the plane, we will see

in this section how to interpret multiplication of complex numbers geomet-

rically. Let’s first review how to interpret multiplication of real numbers

geometrically. We identify real numbers with points on the line in the usual

way and wish to understand what multiplication by a non-zero real number

r does to the line. Begin with three special cases.

If r D 2, multiplication of a real number a on the line by 2 yields

the number 2a, which is twice as far from 0 as a is. Thus, multiplication

by 2 “expands” the line by a factor of 2. If r D 1=2, multiplication of a

by 1=2 yields the number a=2, which is half as far from 0 as a is. Thus,

multiplication by 1=2 “contracts” the line by a factor of 2. If r D �1,

multiplication of a by �1 yields the number �a, which is the mirror image

of a on the opposite side of the line from the origin, 0. Thus, multiplication

by �1 “reflects” the line across 0.

In general, given a positive real number r , we can interpret multiplica-

tion by r as an expansion of the real number line if r > 1, as a contraction

if r < 1, and as leaving the line unchanged if r D 1. Multiplication by �r
performs the same scale change on the line as well as reflecting it across 0.

Multiplication of complex numbers by a non-zero real number has a

similar geometric interpretation, but with the real line replaced by the plane.

We identify a complex number a C bi with the point .a; b/ on the plane.

Given a positive real number r , multiplication of the complex number aCbi
by r yields ra C rbi , which lies on the line through 0 and a C bi in the

plane but is r times as far from the origin as aC bi . Thus, multiplication by

r is an expansion of the plane if r > 1, a contraction if r < 1, and a fixing

of the points on the plane if r D 1.



“IrvingBook” — 2013/5/22 — 15:39 — page 89 — #105
i

i

i

i

i

i

i

i

4.5. A Geometric Interpretation of Multiplication 89

Let’s see what multiplication by �1 does to the plane. Suppose Œs; �� are

polar coordinates for the point .a; b/, so that

aC bi D s cos � C si sin �:

Using the trigonometric identities cos.� C�/ D � cos � and sin.� C�/ D
� sin � , we obtain

�.a C bi/ D s cos.� C �/C si sin.� C �/:

Thus, multiplication by �1 leaves the length of each point in the plane un-

changed and adds � to its angle of inclination. This results in a rotation of

the plane around the origin by � , or 180ı. Given a positive real number r ,

it follows that multiplication by �r is an expansion or contraction of the

plane followed by a 180ı rotation.

We wish to extend this analysis to obtain a geometric description of

multiplication of complex numbers by an arbitrary complex number. The

essential case to handle is that of multiplication by i , the most basic of

non-real complex numbers. First we check that multiplication of complex

numbers satisfies the associative law.

Exercise 4.18. Verify that multiplication of complex numbers is associa-

tive; that is, given complex numbers p, q, and r , verify that

.pq/r D p.qr/:

To do this, introduce real numbers a, b, c, d , e, and f with p D a C bi ,

q D cCdi , and r D eCf i , then carry out the multiplicationsand compare,

using the associative law for multiplication of real numbers. (The fact that

multiplication of real numbers is associative requires proof, but we will take

it as a known property of the reals.)

Thanks to associativity, whatever action multiplication by i performs on

the plane, performing it twice must produce the same action as multiplica-

tion by i2. The action of i on a complex number p followed by a second

action of i yields i � .i �p/, whereas the action of i2 on p is given by .i2/ �p,

and they are equal. But i2 D �1 and we just saw that multiplication by

�1 is a 180ı rotation. Thus, performing the action of i twice in succession

produces a 180ı rotation. This suggests a candidate for the action of multi-

plication by i on the complex plane: rotation by 90ı. There are two choices,

rotation clockwise and rotation counterclockwise. That’s good, since there

are two square roots of �1, the imaginary numbers i and �i . We might
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imagine that one rotation corresponds to multiplication by i , the other to

multiplication by �i . Let’s sort this out in the next exercise.

Exercise 4.19. Let’s identify a complex number a C bi with the point

.a; b/ on the plane and let Œs; �� be its polar coordinates.

(i) Using polar coordinates and the trigonometric identities

cos.� C �=2/ D � sin �; sin.� C �=2/ D cos �;

verify that

i.a C bi/ D i.s cos � C is sin �/

D �s sin � C is cos �

D s cos.� C �=2/C is sin.� C �=2/:

(ii) Conclude that multiplication by i rotates the complex plane counter-

clockwise 90ı.

(iii) Similarly, verify that

�i.a C bi/ D �i.s cos � C is sin �/

D s sin � � is cos �

D s cos.� � �=2/C is sin.� � �=2/

and conclude that multiplication by �i rotates the complex plane clock-

wise by 90ı (or counterclockwise by 270ı).

We introduced complex numbers as formal entities in order to deal with

the lack of a square root of �1, declaring i to be such a square root. Addi-

tional numbers were introduced so the ordinary rules of addition and mul-

tiplication hold, thereby bringing the complex numbers into existence. No

concrete meaning was attached to i . It was indeed imaginary. Now, how-

ever, having identified complex numbers with points on the plane and mul-

tiplication by non-zero real numbers with geometric actions on the plane,

we have found a meaning for i . No longer imaginary, it is revealed to be

the number that, when used to multiply other complex numbers, produces a

counterclockwise rotation by 90ı.

To complete our picture, we next need to extend our interpretation of

multiplication by i (and �i/ to multiplication by any complex numbers of

length 1. Geometrically, these are the numbers that lie on the unit circle

centered at the origin. The angle of inclination of i is 90ı and the angle
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of inclination of �i is 270ı. We have seen that multiplication by i and �i
produces rotations of exactly those angles. It is not difficult to guess the

general result.

Theorem 4.8. Let u be a complex number with length 1 and angle of incli-

nation � , so that
u D cos � C i sin �:

Let v be a complex number with length s and angle of inclination�, so that

v D s cos� C si sin �:

Then the product uv has length s and angle of inclination � C �:

uv D s cos.� C �/C si sin.� C �/:

Thus, multiplication by u effects a rotation of the complex plane counter-

clockwise through the angle � .

Theorem 4.8 will follow from the standard trigonometric identities for

the sine and cosine of the sum of two angles. These are sufficiently impor-

tant that we should record them.

Theorem 4.9. Let � and � be two real numbers. Then

sin.� C �/ D sin � cos� C cos � sin�

and
cos.� C �/ D cos � cos� � sin � sin �:

We should also take a moment to review how Theorem 4.9 is proved, to

ensure that we avoid any circularity in our reasoning. Some books provide

a proof of Theorem 4.9 as a consequence of de Moivre’s formula, which

we will prove in Section 4.6 as a consequence of Theorem 4.9. This is the

circularity we wish to avoid.

Fortunately, there are many other ways to prove Theorem 4.9. See Chap-

ter 6 of Eli Maor’s Trigonometric Delights [40, pp. 87–94] for one based

on the classical result of plane geometry known as Ptolemy’s theorem.

This states, for a quadrilateral inscribed in a circle, that the product of the

lengths of the quadrilateral’s two diagonals equals the sum of the products

of lengths of the two pairs of opposite sides. (Ptolemy is the great Alexan-

drian astronomer and mathematician of the second century C.E.)

Exercise 4.20. Use Theorem 4.9 to show that

.cos � C i sin �/ � .cos � C i sin�/ D cos.� C �/C i sin.� C �/:

Deduce that Theorem 4.8 holds.
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92 4. Complex Numbers

Let’s do some calculations to illustrate Theorem 4.8.

Exercise 4.21. Compute the product of each pair of numbers:

(i) cos.�=2/C i sin.�=2/ and cos.3�=2/C i sin.3�=2/.

(ii) cos.�=4/C i sin.�=4/ and cos.�=4/C i sin.�=4/.

(iii) cos.�=6/C i sin.�=6/ and cos.�=3/C i sin.�=3/.

(iv) cos.�=18/C i sin.�=18/ and cos.�=5/C i sin.�=5/.

For the first three examples, rewrite the numbers in more familiar terms,

using the explicit values of the trigonometric functions.

We conclude the sequence of ideas in this section with a description of

the product of two complex numbers.

Exercise 4.22. Suppose we are given a complex number u with length r

and angle of inclination � and a complex number v with length s and angle

of inclination �. Thus

u D r cos � C ri sin �

and
v D s cos� C si sin �:

Show that

.r cos �C ri sin �/ � .s cos �C si sin�/ D rs cos.� C�/C rs i sin.� C�/:

Reinterpret this to say that the product uv is the complex number whose

length is the product rs of the lengths r and s of u and v and whose angle

of inclination � C � is the sum of the angles of inclination � and � of u

and v.

We have found that multiplying two complex numbers amounts, geo-

metrically, to multiplying their lengths and adding their angles of inclina-

tion.

4.6 Euler’s and de Moivre’s Formulas

Our motivation in studying complex numbers is our desire to compute their

cube roots. The result that will allow us to do this—de Moivre’s formula—

provides at the same time a procedure for computing nth roots for any pos-

itive integer n. (The formula’s name honors Abraham de Moivre (1667–

1754), a French mathematician who spent much of his life in England.)
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Thus, we may as well consider the general case. However, we will lay out

the issues in such a way that the reader can ignore the general case and

focus on the cases n D 2 and n D 3.

One way to derive de Moivre’s formula is to use trigonometry and Theo-

rem 4.9. We will take this approach in a moment. But first let’s see how eas-

ily it follows from Euler’s formula, a result due to Leonhard Euler (1707–

1783), the greatest mathematician of the eighteenth century.

Euler’s formula involves the number e, whose central role in mathemat-

ics Euler first discovered and whose notation he introduced. Readers who

have studied calculus will be familiar with it as the number most naturally

used for exponentiation. What makes it so natural is that the exponential

function ex with base e is its own derivative, in contrast to other expo-

nential functions such as 2x and 10x. Another attractive feature is that its

inverse function loge x is the antiderivative of 1=x. For readers unfamiliar

with e, suffice to say that it is an irrational number with decimal expansion

that begins 2:71828 and that for theoretical reasons it is the best base for

studying exponentiation.

Euler’s formula relates exponential and trigonometric functions:

Theorem 4.10 (Euler’s formula). Let � be a real number. Then

ei� D cos � C i sin �:

At first glance, the formula may appear both mysterious and wondrous.

For those readers familiar with power series expansions of functions, the

mystery is easily addressed, but the wonder remains.

In a calculus course, it is shown that the sine and cosine functions have

power series expansions

cos x D 1 � x2

2Š
C x4

4Š
� x6

6Š
C � � �

and

sinx D x � x3

3Š
C x5

5Š
� x7

7Š
C � � � ;

and the exponential function satisfies

ex D 1C x

1Š
C x2

2Š
C x3

3Š
C x4

4Š
C x5

5Š
C � � � :

The expansions are valid for any real number x.

Once complex numbers are introduced, it is not a large leap to replace

real numbers in the power series expansion of ex with pure imaginary num-

bers. Suppose for instance that � is a real number and let x D i� . If we
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94 4. Complex Numbers

substitute i� for x in the power series expansion of ex and use the equali-

ties i2 D �1, i3 D �i , and i4 D 1, we find that

ei� D 1C i� � �2

2Š
� i �

3

3Š
C �4

4Š
C i

�5

5Š
C � � � :

Collecting real and imaginary terms on the right side of this equation, we

obtain cos � C i sin � , yielding Euler’s formula. That’s all there is to it.

Given a real number � and a positive integer n, the rules of exponentia-

tion yield

.ei�/n D ein� :

Reinterpreting the left and right sides of this equation via Euler’s formula,

we see that

.cos � C i sin �/n D cosn� C i sin n�:

This is de Moivre’s formula:

Theorem 4.11 (de Moivre’s formula). Let n be a positive integer and � a

real number. Then

.cos � C i sin �/n D cosn� C i sin n�:

In words, de Moivre’s formula says that the nth power of a complex

number of length 1 is the number obtained by multiplying the original num-

ber’s angle of inclination by n. In particular, squaring amounts to doubling

the angle and cubing amounts to tripling the angle.

We were led to de Moivre’s formula from Euler’s formula, but the proof

of Euler’s formula requires ideas from calculus. An alternative, more ele-

mentary proof of de Moivre’s formula is desirable. As de Moivre under-

stood, the underlying issue is one of trigonometry. The proof sketched in

Exercise 4.23 uses the classical angle sum formulas of Theorem 4.9 (and an

implicit induction argument). The cases n D 2 and n D 3, which are all we

need, are treated separately before we handle the general case.

Exercise 4.23. Prove de Moivre’s formula.

(i) The formula holds trivially for n D 1.

(ii) Square cos �Ci sin � , combine real and imaginary terms, and use The-

orem 4.9 to show that

.cos � C ri sin �/2 D cos 2� C i sin 2�:
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(iii) Multiply both sides of the last equality by cos � C i sin � and use The-

orem 4.9 to show that

.cos � C ri sin �/3 D cos 3� C i sin 3�:

(iv) We can continue this process step by step to obtain the general result.

Suppose k is a positive integer less than n and we know that

.cos � C i sin �/k D cos k� C i sink�:

Multiply both sides of this equality by cos �C i sin � and use Theorem

4.9 to deduce that

.cos � C i sin �/kC1 D cos.k C 1/� C i sin.k C 1/�:

(v) Deduce that we can make this argument n � 1 times successively to

obtain the formula for k D 2, then k D 3, then k D 4, and so on, until

we obtain the formula for k D n.

Exercise 4.24. Let’s do some computations using de Moivre’s formula.

(i) Compute

.cos.�=4/C i sin.�=4//n

for n D 2, 3, 4, and 8, thus finding

 p
2

2
C

p
2

2
i

!n

for these values of n.

(ii) Compute
 

1

2
C

p
3

2
i

!n

for n D 2, 3, and 6.

Exercise 4.25. As a minor extension of de Moivre’s formula, prove Theo-

rem 4.12, which describes the nth power of a non-zero complex number.

Theorem 4.12. Let n be a positive integer, r a positive real number, and �

a real number. Then

.r cos � C ri sin �/n D rn cosn� C rni sin n�:
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De Moivre’s formula and Theorem 4.12 allow us to compute nth powers

of complex numbers instantly, once the numbers are expressed in the form

r cos � C ri sin � . They also reveal how to calculate nth roots: we do the

reverse, calculating the real nth root of the length of a complex number and

dividing the angle of inclination by n.

The procedure has the drawback that it is not purely algebraic. It re-

quires trigonometry to determine the angle of inclination of a given com-

plex number and trigonometry again, once nth roots have been taken, to

calculate the real and imaginary parts.

Let’s work through the details, dealing first with square roots and cube

roots. We already found how to compute the two square roots of a non-

zero complex number in Exercise 4.11, using algebra, but now we’ll use the

trigonometric approach.

Exercise 4.26. Suppose we wish to compute the square root of a non-zero

complex number c. Write c as

r cos � C ri sin �

for some positive real number r and some real � . Write
p
r for the positive

real square root of r .

(i) Using Theorem 4.12, verify that the two complex numbers

p
r cos

�

2
C

p
r i sin

�

2

and
p
r cos.

�

2
C �/C

p
r i sin.

�

2
C �/

are square roots of c.

(ii) Check that each is the opposite of the other, as we would expect.

(iii) Use the formula to compute square roots of

(a) 4 and �4.

(b) i and �i .
(c) 1C i and �1C i .

Next let’s find cube roots.

Exercise 4.27. Suppose c is a non-zero complex number. Write it as

r cos � C ri sin �
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for some positive real number r and some real � .

(i) Recall that r has a unique real cube root. Write it as 3
p
r .

(ii) Using Theorem 4.12, show that

3
p
r cos

�

3
C 3

p
r i sin

�

3

is a cube root of c, as are

3
p
r cos.

�

3
C 2�

3
/C 3

p
r i sin.

�

3
C 2�

3
/

and
3
p
r cos.

�

3
C 4�

3
/C 3

p
r i sin.

�

3
C 4�

3
/:

(iii) As in Exercise 3.15, let

! D �1
2

C
p

�3
2

:

Show, using the formulas, that the three cube roots of 1 are 1, !, and

!2. (Hint: First express 1 as cos 0C i sin 0.)

(iv) Suppose d is one of the cube roots of c. Verify that the other two are

!d and !2d .

(v) Suppose c is a non-zero real number, with real cube root d . Conclude

that c has one real cube root, d , and two non-real cube roots, !d and

!2d .

We can use Exercise 4.27 to redo some cube root calculations that we

made earlier when we used Cardano’s formula, as illustrated next.

Exercise 4.28. In Exercise 3.13, we found a cube root of

�3C 10

9

p
�3

and a cube root of

�3 � 10

9

p
�3:

Let’s now find all three cube roots.

(i) Use the method of Exercise 4.27 and a calculator to find a cube root

of �3 C 10
p

�3=9. Then use Exercise 4.27 to find its other two cube

roots.
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98 4. Complex Numbers

(ii) In the same way, find the three cube roots of �3 � 10
p

�3=9.

(iii) Alternatively, use Theorem 4.1 to find its three cube roots.

(iv) Compare the results to those arising from the calculation of cube roots

in Exercise 3.13.

We have focused so far on finding square and cube roots of a non-zero

complex number, but the same approach allows us to find nth roots for any

positive integer n. As a consequence of Theorem 1.12, any positive real

number has a unique positive real nth root, which we write n
p
r . Here is the

general result:

Theorem 4.13. Let r be a positive real number. The complex number

r cos � C ri sin �

has n distinct nth roots, given by

n
p
r cos

�

�

n
C 2�j

n

�

C n
p
r i sin

�

�

n
C 2�j

n

�

as j D 0; 1; : : : ; n� 1.

Exercise 4.29. Prove Theorem 4.13:

(i) Verify that the n quantities are distinct.

(ii) Verify that they are nth roots.

4.7 Roots of Unity

The only result from this section that we will use later is Theorem 4.16,

which can be proved by direct calculation. Thus, the reader may wish to

go straight to Theorem 4.16, and its proof, and move ahead. However, a

natural generalization of Theorem 4.16 is easy to obtain, and it enhances

our understanding of nth roots.

A complex number that has an nth power equal to 1, where n is a

positive integer, is called a root of unity. Thanks to Theorem 4.13 (or de

Moivre’s formula), we have identified them all.

Theorem 4.14. The n distinct nth roots of unity are

cos

�

2�j

n

�

C i sin

�

2�j

n

�

;

as j D 0; 1; : : : ; n� 1.
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Exercise 4.30. Prove Theorem 4.14.

Exercise 4.31. For small n, we can write down the nth roots of unity as

ordinary complex numbers, without trigonometric functions in their expres-

sions. We have already done so in several cases. Let’s review and extend

what we know. Describe without cosines and sines the two square roots of

1, the three cube roots of 1, the four fourth roots of 1, the six sixth roots of

1, and the eight eighth roots of 1.

The two square roots of 1 are the powers of �1, the three cube roots of

1 are the powers of the number we have called !, and the four fourth roots

of 1 are the powers of i . For an arbitrary positive integer n, let �n be the

number

cos
2�

n
C i sin

2�

n
:

Here, � is the Greek letter zeta. Notice that �2 is �1 and �3 is !, while �4 is

i .

We learn different parts of Theorem 4.15 early in our mathematical ed-

ucation. One might not think to state it as a theorem, but it provides the

template for the results that follow.

Theorem 4.15. Let �2 be the number cos.2�=2/ C i sin.2�=2/. For sim-

plicity, write �2 in its more familiar form as �1.

(i) The two distinct square roots of 1 are 1 and �1, with .�1/2 D 1.

(ii) 1C .�1/ D 0.

(iii) x2 � 1 D .x � 1/.x � .�1//.

(iv) A2 � B2 D .A � B/.A � .�1/B/.

Theorem 4.15 has an analogue for any integer n > 2, with 1 and �1
replaced by the nth roots of unity. We will need the appropriate analogue

for n D 3 in Section 5.3.

Theorem 4.16. Let �3 be the number cos.2�=3/ C i sin.2�=3/. For sim-

plicity, write �3 in its more familiar form as !.

(i) The three distinct cube roots of 1 are 1, !, and !2, with !3 D 1.

(ii) 1C ! C !2 D 0.

(iii) x3 � 1 D .x � 1/.x � !/.x � !2/.

(iv) A3 � B3 D .A � B/.A � !B/.A � !2B/.
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Exercise 4.32. Prove Theorem 4.16. The first part has already been shown

in Exercise 3.15 (or Exercise 4.31). Verify the second part by direct calcu-

lation, and use it to prove the third and fourth parts.

The analogous result for n D 4 is even easier to prove.

Theorem 4.17. Let �4 be the number cos.2�=4/ C i sin.2�=4/. For sim-

plicity, write �4 in its more familiar form as i .

(i) The four distinct fourth roots of 1 are 1, i , i2, and i3, with i4 D 1.

(ii) 1C i C i2 C i3 D 0.

(iii) x4 �1 D .x�1/.x�i/.x�i2 /.x�i3/ D .x�1/.xC1/.x� i/.xCi/.

(iv) A4 � B4 D .A � B/.A � iB/.A � i2B/.A � i3B/
D .A � B/.AC B/.A � iB/.AC iB/.

Exercise 4.33. Prove Theorem 4.17.

Here is the theorem that generalizes Theorems 4.15, 4.16, and 4.17:

Theorem 4.18. Let n be a positive integer and let �n be the number cos.2�=n/C
i sin.2�=n/.

(i) The n distinct nth roots of unity are 1; �n; �
2
n; : : : ; �

n�1
n , with .�n/

n D
1.

(ii) 1C �n C �2
n C � � � C �n�2

n C �n�1
n D 0.

(iii) xn � 1 D .x � 1/.x � �n/.x � �2
n/ � � � .x � �n�1

n /.

(iv) An � Bn D .A � B/.A � �nB/.A � �2
nB/ � � � .A� �n�1

n B/.

Exercise 4.34. Prove Theorem 4.18.

(i) Use Theorem 4.14 and de Moivre’s formula to obtain the first part.

(ii) For the second part, verify that xn � 1 factors as

xn � 1 D .x � 1/.xn�1 C xn�2 C � � � C x2 C x C 1/:

Then substitute �n for x and use the fact that �n ¤ 1 to deduce the

desired result.
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(iii) The proof of Theorem 1.5 works just as well for complex roots of a

polynomial as for real roots. Deduce that Theorem 1.5 can be applied

to show that

.x � 1/.x � �n/.x � �2
n/ � � � .x � �n�1

n /

divides xn � 1. Compare degrees and deduce that xn � 1 must be a

constant multiple of the product. Then compare the coefficients of xn

and deduce that equality holds.

(iv) Deduce the fourth part from the third using the substitution x D A=B .

4.8 Converting Root Extraction to Division

Throughout our discussion of the quadratic formula and Cardano’s formula,

we have emphasized that the role of algebra is to reduce the problem of

solving quadratic and cubic equations to that of calculating square and cube

roots, but that algebra does not provide us with the means to make the root

calculations. Let’s discuss how we can in principle make the calculations

(and more generally nth root calculations) through the use of exponential

and trigonometric functions and their inverses. We will once again assume

familiarity with the exponential function ex, where the base e is Euler’s

number, which we met in Section 4.6. We will also use the inverse function

loge.x/, the natural logarithm function, which we’ll write as log.x/.

Exercise 4.35. Let r be a positive real number and n a positive integer.

Suppose we wish to calculate the real nth root of r .

(i) Set c D r1=n, the real nth root. Apply log.x/ to both sides to obtain

log.c/ D log.r/=n:

(ii) Exponentiate both sides to obtain

c D elog.c/ D elog.r/=n:

(iii) Rewrite this as

r1=n D elog.r/=n:

(iv) Conclude that this reduces the problem of calculating nth roots of posi-

tive real numbers to that of computing certain values of the exponential

and logarithm functions and dividing by n.
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The lesson of Exercise 4.35 is that applying the logarithm converts ex-

traction of an nth root of a real number to division by n.

Exercise 4.36. Let a and b be real numbers satisfying a2 Cb2 D 1 and let

n be a positive integer. Suppose we wish to calculate an nth root of aC bi .

For simplicity in the trigonometric considerations to follow, assume that

b � 0. Then aC bi can be written as cos �C i sin � for an angle � given by

� D arccos a:

(i) Use Theorem 4.13 to deduce that one nth root of cos � C i sin � is

cos.�=n/C i sin.�=n/:

(ii) By substitution, conclude that one nth root of aC bi is given by

cos..arccos a/=n/ C i sin..arccos a/=n/:

(iii) We may rewrite this in another way. The sine and cosine functions

satisfy

sin x D cos.x � �=2/:

Rewrite the expression for an nth root of aC bi as

cos..arccos a/=n/C i cos..arccos a/=n � �=2/:

(iv) Conclude that this reduces the problem of calculating nth roots of com-

plex numbers of length 1 to that of computing certain values of the

inverse cosine and cosine functions and dividing by n.

A non-zero complex number aCbi can be written in the form r.cos �C
i sin �/ for a positive real number r and a real number � . Exercises 4.35 and

4.36 give us procedures for computing the nth roots of r and cos �C i sin � ,

allowing us to compute an nth root of aC bi .

The calculational methods of the last two exercises have a common fea-

ture. In each nth root calculation, we make use of a familiar function f .x/

and its inverse f �1.x/, applying f �1 to a real number c, dividing what

we obtain by n, then calculating f on the result. Both times, this process

converts nth root extraction to division by n. The cost of this simplification

is the requirement that we have the means to compute f �1 and f on given

real numbers.



“IrvingBook” — 2013/5/22 — 15:39 — page 103 — #119
i

i

i

i

i

i

i

i

4.9. History 103

4.9 History

Complex numbers are so widely used that it can be difficult to understand

why their acceptance took centuries, stretching from their appearance in

Cardano’s Ars Magna [12] in 1545 to the development of the subject now

called complex analysis in the late nineteenth century. Two entertaining

accounts of the intellectual challenge complex numbers posed are Paul J.

Nahin’s An Imaginary Tale: The Story of
p

�1 [43] and Barry Mazur’s

Imagining Numbers (Particularly the Square Root of Minus Fifteen) [41].

They serve as natural complements to each other, with rich historical dis-

cussions that are especially worth reading. In this section, we will touch on

just a few historical highlights.

Let’s begin with de Moivre’s formula. It does not appear that de Moivre

wrote the formula down explicitly, but he surely knew it. Or at least he

understood that taking nth roots of complex numbers produces formulas

similar to trigonometric formulas for sines and cosines, allowing him to

relate taking nth roots with dividing angles by n. For instance, in a 1707

note with the title “The analytic solution of certain equations of the third,

fifth, seventh, ninth and other higher uneven powers, by rules similar to

those called Cardan’s,” he writes [16], [60, pp. 443–444]:

If the equation were

5y � 20y3 C 16y5 D 61

64
;

y D

1

2

5

s

61

64
C
r

�375
4096

C 1

2

5

s

61

64
�
r

�375
4096

:

And if by any means the fifth root of the binomial can be extracted the

root will come out true and possible, although the expression seems to

include an impossibility. Now the fifth root of the binomial

61

64
C
r

�375
4096

is
1

4
C 1

4

p
�15;

and of the binomial

61

64
�
r

�375
4096
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is
1

4
� 1

4

p
�15

whose semi-sum 1=4 D y. But if the extraction cannot be performed,

or should seem too difficult, the thing may always be effected by a

table of natural sines in the following manner.

To the radius 1 let a D 61=64 D 0:95112 be the sine of a certain

arc which therefore will be 72ı 230, the fifth part of which (because

n D 5) is 14ı 280; the sine of this is 0:24981; nearly D 1=4. So also

for equations of higher degree.

De Moivre recognizes that .61=64/C i
p

375=4096 has the form sin �C
i cos � for a suitable � , and adding the fifth roots of this number and its

conjugate amounts to computing the sine of �=5. As Mazur comments ([41,

p. 199]), “Although there were earlier hints of the link between the solu-

tion of polynomial equations and trigonometry, we know that Abraham De

Moivre, by 1707, had perceived the analogy between the geometric prob-

lem of cutting an arc of a circle into n equal parts and taking the nth root of

a complex number.”

In 1748, Leonhard Euler stated de Moivre’s formula in its standard

form, deriving it using the angle-sum formulas for sine and cosine. Here

is the start of his discussion:

Since .sin z/2 C .cos z/2 D 1, on decomposing into factors we get

.cos z C i sin z/.cos z � i sin z/ D 1:

These factors, although imaginary, are of great use in the combination

and multiplication of arcs. For example, let us seek the product of these

factors.

Euler then continues in a familiar way to find the square, the cube, and the

nth power of cos z ˙ i sin z.

Euler made many contributions to the understanding of complex num-

bers, including his famous formula relating the exponential, cosine, and

sine functions. Beyond the results themselves, he played an essential role

in bringing about the acceptance of their use. For example, in his 1770 text

Elements of Algebra [26], Euler introduces complex numbers early, in Chap-

ter XIII of Section 1, where he writes [26, pp. 42–43]:

When it is required, therefore, to extract the root of a negative number,

a great difficulty arises; since there is no assignable number, the square

of which would be a negative quantity. : : : it is evident that we cannot
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rank the square root of a negative number amongst the possible num-

bers, and we must therefore say that it is an impossible quantity. In this

manner we are led to the idea of numbers, which from their nature are

impossible; and therefore they are usually called imaginary quantities,

because they exist merely in the imagination. : : : But notwithstanding

this, these numbers present themselves to the mind; they exist in our

imagination, and we still have a sufficient idea of them; : : : for this

reason also, nothing prevents us from making use of these imaginary

numbers, and employing them in calculation.

Elements of Algebra would become an influential text. A translation

from German to French was prepared by Johann III Bernoulli, with about

one hundred pages of additions by Joseph-Louis Lagrange. An English

translation of the French edition was begun by Francis Horner, who also

wrote a short biography of Euler, and completed by Reverend John Hewlett.

The 1840 edition of the English translation containing Bernoulli’s notes,

Lagrange’s additions, and Horner’s biography remains available thanks to

Springer-Verlag.

A good account of Euler’s work on complex numbers can be found in

Chapter 5 of William Dunham’s Euler: The Master of Us All [23]. Dunham

concludes it with the observation [23, pp. 101–102] that “complex numbers

were here to stay. A concept only dimly understood for its role in solving

cubic equations had been legitimized by the discoveries and influence of

Leonhard Euler. Without apology or embarrassment, he treated these num-

bers as equal players on the mathematical stage and showed how to take

their roots, logs, sines, and cosines.”

As the eighteenth century gave way to the nineteenth, the geometric

description of complex numbers presented in Sections 4.4 and 4.5 first ap-

peared. How it did is a fascinating story, well told in the books of Nahin

[43] and Mazur [41]. We will provide a brief sketch. But first we should

note that an earlier effort to describe pure imaginary numbers as points on

the plane that lie off the real number line appears in a 1685 work on algebra

[69] by the English mathematician John Wallis (1616–1703). His approach

was inconclusive. We will return to some of the material in Wallis’s book in

Section 5.8.

The first person to describe complex numbers geometrically in the way

we now understand was the Norwegian Caspar Wessel (1745–1818). He

presented a paper to the Royal Danish Academy of Sciences in 1797 that

was published in Danish two years later in the Academy’s Memoires [70].

Wessel recognized that in multiplying two complex numbers, one adds their

angles of inclination. It appears, however, that Wessel’s work went unno-
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ticed for nearly a century, until it was rediscovered in 1895 [43, pp. 48–49,

243].

In 1806, the Swiss-born Jean-Robert Argand (1768–1822) published a

pamphlet, Essay on the Geometrical Interpretation of Imaginary Quanti-

ties, in which he also identified complex numbers with points on the plane.

(We will quote from A.S. Hardy’s 1881 translation [4].) Before tackling

complex numbers, Argand reviews the one-time challenge of making sense

of negative numbers [4, pp. 17–22], concluding that

the difficulty of the subject will not be questioned if we remember

that the exact sciences had been cultivated for many centuries, and had

made great progress before either a true conception of negative quan-

tities was reached or a general method for their use had been devised.

The notion of a negative number, Argand explains, might seem imaginary,

but when we compare two quantities, we consider not just the ratio of their

absolute values, but also “a relation of direction, or of the sense in which

they are estimated, a relation either of identity or opposition.”

Next Argand poses the problem [4, p. 23] of finding “the geometric

mean between two quantities of different signs, that is, to find the value of

x in the proportion C1 W x WW x W �1.” In effect, he asks for a a value of x

satisfying 1=x D x=.�1/, or x2 D �1.

Here we encounter a difficulty . . . ; but, as before, the quantity which

was imaginary, when applied to certain magnitudes, became real when

to the idea of absolute number we added that of direction, may it not

be possible to treat this quantity, which is regarded imaginary, because

we cannot assign it a place in the scale of positive and negative quan-

tities, with the same success? On reflection this has seemed possible,

provided we can devise a kind of quantity to which we may apply the

idea of direction, so that having chosen two opposite directions, one

for positive and one for negative values, there shall exist a third —

such that the positive direction shall stand in the same relation to it

that the latter does to the negative.

Having opened the door to additional directions, Argand explains that

the quantity x which is to be the geometric mean of 1 and �1 should be

perpendicular to the line containing them. This yields two choices, which

are “related to each other as C1 and �1. They are, therefore, what is ordi-

narily expressed by C
p

�1 and �
p

�1.” So begins Argand’s identification

of complex numbers with points on the plane.

Argand’s work was ignored initially. Guillaume-Jules Hoüel tells the

story in his preface to the 1876 reprint of Argand’s book [4, pp. iii–xvi]. (See
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also [43, pp. 73–74].) Argand was living in Paris at the time, and he sent a

copy to the great French mathematician Adrien-Marie Legendre. Without

mentioning Argand’s name, Legendre described Argand’s ideas in a letter

to François Français, a professor of mathematics. On François’s death in

1810, his younger brother Jacques inherited his papers. Jacques published

an article in 1813 in the Annales de Mathématiques describing Argand’s

ideas as well as Legendre’s letter, and asked who the unknown author of the

pamphlet might be. Argand saw Français’s article and identified himself,

receiving full credit from Français.

Carl Friedrich Gauss (1777–1855), the greatest mathematician of the

era, had come up with the same ideas, perhaps even earlier than Wessel. He

chose not to publish his work until 1831, yet he came to share naming rights

with Argand. The plane, when its points are identified with complex num-

bers, has come to be called the Gaussian plane, Argand plane, or Argand

diagram.
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Cubic Polynomials, II

We derived Cardano’s formula for roots of reduced cubic polynomials in

Section 3.2, only to discover that using it may require us to compute cube

roots of complex numbers. This phenomenon arose in Exercise 3.12, when

we tried to solve the cubic equation y3 � 7y C 6 D 0. Our study of the dis-

criminant in Section 3.4 revealed that this difficulty will occur whenever we

work with a cubic whose roots are real and distinct. With that, we brought

Chapter 3 to a close and turned to a study of complex numbers in Chapter 4.

Now that we have learned how to use trigonometry to compute cube roots

of complex numbers, we are ready for a more systematic treatment of cubic

polynomials.

5.1 Cardano’s formula

Given real numbers p and q, Cardano’s formula for a root of the reduced

cubic polynomial y3 C py C q takes the form

y D
3

s

�q
2

C
r

p3

27
C q2

4
C

3

s

�q
2

�
r

p3

27
C q2

4
:

Our derivation of the formula in Exercise 3.7 lacked precision, first because

we didn’t yet know how to interpret the expressions within the cube root

signs if p3=27 C q2=4 < 0 and second because we didn’t yet understand

that there are three possibilities for each cube root. We can proceed now

with confidence.

Let us once again writeR for p3=27Cq2=4 and ! for �1=2C
p

�3=2,

which is a cube root of 1. We learned in Exercise 4.27 how to compute cube

109
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roots of �q=2C
p
R. Let A be one of them. Then the other two are !A and

!2A. Similarly, if B is a cube root of �q=2 �
p
R, then the other two are

!B and !2B . In the next exercise, we determine which cube roots to add

together in order to obtain roots of y3 C py C q.

Exercise 5.1. Let p and q be real numbers with p ¤ 0. (We can handle

the p D 0 case directly.) Since any non-zero number has three distinct

cube roots, each summand on the right side of Cardano’s formula has three

possible values.

(i) Check, as in Exercise 3.7, that the product of �q=2C
p
R and �q=2�p

R is �p3=27.

(ii) The derivation in Exercise 3.7 showed that for the sum of the cube

roots of �q=2C
p
R and �q=2�

p
R to be a root of y3 CpyCq, the

two cube roots must be chosen so that their product is �p=3. Select

one of the three cube roots of �q=2C
p
R—any one, it doesn’t matter

which—and call it A.

(iii) Although A is chosen arbitrarily, we will exercise care in choosing a

cube root B of �q=2 �
p
R so that AC B is a root of y3 C py C q.

We have three choices for it. We will want to choose a specific one,

given the choice of A. For now, let us choose one arbitrarily and call it

B. The other two are !B and !2B.

(iv) Check that A3
B

3 D �p3=27 and deduce that AB equals one of the

numbers �p=3, �!p=3, and �!2p=3.

(v) If AB D �p=3, set B D B. If AB D �!p=3, set B D !2B; and if

AB D �!2p=3, set B D !B. Verify in all cases that AB D �p=3.

(vi) Show, withA and B chosen in this way, that the numbers !A and !2B

are cube roots of �q=2C
p
R and �q=2�

p
R with the property that

their product equals �p=3. Show also that the numbers !2A and !B

are cube roots of �q=2C
p
R and �q=2�

p
R with the property that

their product equals �p=3.

(vii) Conclude that if A and B are chosen as cube roots of �q=2C
p
R and

�q=2�
p
R satisfyingAB D �p=3, then the three roots of y3CpyCq

have the form

r1 D ACBI r2 D !AC !2BI r3 D !2AC !B:
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Exercise 5.1 removes the imprecision that was present in our earlier

derivation of Cardano’s formula. We can summarize what we have found in

a theorem.

Theorem 5.1 (Cardano’s formula). Supposep and q are real numbers, with

p ¤ 0. Let A be a cube root of

�q
2

C
r

p3

27
C q2

4

and let B be the unique cube root of

�q
2

�
r

p3

27
C q2

4

satisfying AB D �p=3. Let ! be the cube root �1=2C
p

�3=2 of 1. Then

the three roots of the polynomial y3 C py C q are

AC B; !AC !2B; !2AC !B:

Exercise 5.2. Use Cardano’s formula, as clarified in Theorem 5.1, to solve

the cubic equation

y3 C 6y � 20 D 0

that we first studied in Exercises 3.9 and 3.10. There’s no need to redo work

already done. Use the result of Exercise 3.10 to write a cube root for each

term in the formula. Then use what we have learned since then to write two

more cube roots for each term, pair them correctly, and take their sums to

find the three solutions to the equation. One solution is real and two are not.

Given a cubic polynomial y3 C py C q for which R is negative, the

numbers �q=2C
p
R and �q=2�

p
R will not be real, and the calculation

of the roots given by Cardano’s formula requires us to compute cube roots

of non-real numbers.

Exercise 5.3. Use Cardano’s formula to solve the cubic equation

y3 � 7y C 6 D 0

that we first studied in Exercise 3.13.

(i) Write the solution given by the formula as a sum of cube roots. It

involves the cube roots of

�3C 10

9

p
�3
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and

�3 � 10

9

p
�3:

(ii) Using the numbers ! and !2 and the determination of one cube root of

�3C 10
9

p
�3 in Exercise 3.13 or Exercise 4.28, write expressions for

the three complex numbers that are cube roots of �3C 10
9

p
�3. Write

also the three complex numbers that are cube roots of �3 � 10
9

p
�3.

(iii) Pair the cube roots of �3C 10
9

p
�3 and �3 � 10

9

p
�3 as specified in

Theorem 5.1 to get three pairs such that the product of the complex

numbers in each pair equals 7/3.

(iv) Add the complex numbers in each pair to obtain all three real solutions

of y3 � 7y C 6 D 0.

When making calculations of cube roots of complex numbers, ! can be

written as �1=2 C
p

�3=2 or as cos 120ı C i sin 120ı, depending on the

form used for complex numbers, and similarly for!2. It may be convenient,

given angles � and  that add up to 360ı, to view  not as 360ı � � but as

�� , keeping in mind that cos.360ı ��/ D cos.��/ D cos � and sin.360ı �
�/ D sin.��/ D � sin � .

Exercise 5.4. Solve the cubic equation

y3 � 3y C 1 D 0:

(i) Using Cardano’s formula, show that the solutions have the form

3

s

�
1

2
C

p
3

2
i C

3

s

�
1

2
�

p
3

2
i :

(ii) The numbers inside the cube roots signs are our familiar friends ! and

!2, the non-real cube roots of 1. Thus, the solution can be rewritten as

y D 3
p
! C 3

p
!2:

(iii) Find three cube roots of ! and three cube roots of !2, expressed in

terms of the cosine and sine of suitable angles.

(iv) Form pairs of cube roots in accordance with Exercise 5.1 and add them,

taking into account the advice that preceded this exercise.

(v) The three solutions to y3 �3yC 1 D 0 have the form 2 cos � , for three

particular angles � . What are they?
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(vi) We now have precise expressions for the three roots of y3 � 3y C
1, expressed in terms of cosines. To proceed further, use a calculator

to determine the values of the cosines, at least approximately. Then

substitute the approximate answers into the polynomial y3 � 3y C 1.

As the last part of Exercise 5.4 may suggest, once we turn to calculators,

we are settling for approximate answers, and these can be obtained in a

variety of ways independent of Cardano’s formula. For example, we can

solve cubic equations using Newton’s method—a standard application of

calculus—or turn to a selection of mathematical programs without even

worrying about the nature of the underlying algorithms.

The need to approximate already reared its head in our use of the qua-

dratic formula. The finding of square roots of positive real numbers is an

algorithmic process, one we carry out until we arrive at as close an approx-

imation to the answer as we wish.

What the quadratic formula does for us is reduce the problem of solving

arbitrary quadratic equations to that of calculating square roots. Likewise,

Cardano’s formula reduces solving cubic equations to the calculation of

square and cube roots. It is only at this stage, and because we may be cal-

culating cube roots of complex numbers, that we turn to trigonometry and

calculators.

In addition, both the quadratic formula and Cardano’s have theoretical

value, representing roots of polynomials in terms of their coefficients. We

will make use of this in Section 5.3 in obtaining a formula for the discrimi-

nant of a cubic polynomial.

5.2 The Resolvent

Given the reduced cubic polynomial y3 CpyCq, one can rewrite the terms

�q
2

˙
r

p3

27
C q2

4

whose cube roots we compute in using Cardano’s formula as

�
q

2
˙
p

q2 C 4p3=27

2
:

These are the roots of the quadratic polynomial t2 Cqt�p3=27, which has

q2 C 4p3=27 as its discriminant. This suggests an alternative approach to

the derivation of Cardano’s formula, one presented by Euler in Elements of

Algebra [26, pp. 263–264].
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Exercise 5.5. Let b and c be real numbers and let U , V be the roots of the

quadratic polynomial x2 C bxC c. From Exercise 2.5, b D �.U CV / and

c D UV .

(i) Let d be the real cube root of c. Choose cube roots A of U and B of

V so that AB D d .

(ii) Using the formulasA3 D U ,B3 D V , and AB D d , expand .ACB/3
and verify that

.AC B/3 D 3d.AC B/� b:

(iii) Conclude that Theorem 5.2 holds.

Theorem 5.2. Let b and c be real numbers and let 3
p
c be the real cube

root of c. Let U and V be the roots of the quadratic polynomial

x2 C bx C c:

Choose cube roots
3
p
U and

3
p
V of U and V so that

3
p
U � 3

p
V D 3

p
c.

Then the sum
3
p
U C 3

p
V

is a root of the cubic polynomial

y3 � 3 3
p
c y C b:

It is now an easy matter to rederive Cardano’s formula:

Theorem 5.3 (Cardano again). Let p and q be real numbers. Let U and V

be the roots of the quadratic polynomial

t2 C qt � p3

27
:

Choose cube roots
3
p
U and

3
p
V of U and V so that

3
p
U � 3

p
V D �p=3.

Then the sum
3
p
U C 3

p
V

is a root of the cubic polynomial

y3 C py C q:

Exercise 5.6. Verify that Theorem 5.3 is an immediate consequence of

Theorem 5.2. Verify also that Theorem 5.3 becomes Cardano’s formula in

its usual form once we use the quadratic formula to express U and V in

terms of p and q.
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The polynomial t2 Cqt �p3=27 associated with y3 CpyCq is called

its resolvent quadratic.

5.3 The Discriminant

For a quadratic polynomial x2 C bx C c with real or complex roots r1 and

r2, we saw in Exercise 4.8 and Theorem 4.4 that the squared difference

.r1 � r2/2 of the roots is expressible in terms of the coefficients:

.r1 � r2/2 D b2 � 4c:

This allows us to obtain information on the roots from the coefficients alone:

if b2 �4c is positive, the roots are real and distinct; if b2 �4c is 0, the roots

are real and coincide; and if b2 � 4c is negative, then the roots are a pair of

non-real, complex conjugate numbers.

We would like similarly to be able to obtain information about the roots

of a cubic polynomial in terms of its coefficients. The discussion that fol-

lowed Exercise 4.8 showed that the two quantities b2 � 4c and .r1 � r2/
2

associated with x2 C bx C c can both be regarded as its discriminant, but

.r1 � r2/
2 is the more fundamental quantity, the one we chose as the dis-

criminant’s definition.

Given a cubic polynomial x3 C bx2 C cx C d , let’s write r1; r2; r3 for

its roots, real or complex. In analogy with the quadratic case, we define the

discriminant of x3 C bx2 C cx C d to be

.r1 � r2/2.r1 � r3/2.r2 � r3/
2

and denote it by �.

For the special case of a reduced cubic polynomial x3 C px C q, we

introduced the quantity �4p3 � 27q2 in Section 3.4, denoted it by ı, and

called it the discriminant. We also saw, in Exercise 3.22 and Theorem 3.6,

that the nature of the roots of x3CpxCq is determined by ı: the polynomial

has three distinct real roots if ı is positive, a repeated real root if ı is 0,

and one simple real root plus two complex conjugate roots if ı is negative.

Let’s show for a general cubic polynomial that our newly introduced �

determines the nature of the roots in the same way.

Exercise 5.7. Let f .x/ D x3 C bx2 C cx C d . We will relate the sign of

the discriminant� of f .x/ to the nature of the roots of f .x/.

(i) Suppose f .x/ has a multiple root. Show that� D 0.

(ii) Suppose that the three roots are real and distinct. Show that � > 0.
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(iii) Suppose that one root is real and the other two are complex conjugates.

Show that � < 0. (Hint: Suppose the roots are r , a C bi , and a � bi ,
with r , a, and b all real numbers. Using this notation, calculate � by

calculating the product of the root differences before squaring.)

(iv) Prove the converses: if � D 0, then f .x/ has a multiple root and all

its roots are real; if � > 0, then f .x/ has three distinct real roots;

and if � < 0, then f .x/ has one real root and two non-real complex

conjugate roots. (Hint: These follow from the three statements by the

logical argument that we used in Exercise 4.7 to prove the quadratic

analogue.)

(v) Conclude that you can determine the nature of the roots of f .x/ from

the sign of the discriminant of f .x/, as described in Theorem 5.4.

Theorem 5.4. Let f .x/ be a degree 3 polynomial with discriminant�.

(i) If � is positive, then f .x/ has three distinct real roots.

(ii) If � D 0, then f .x/ has only real roots, one of which occurs with

multiplicity at least 2.

(iii) If� is negative, then f .x/ has three distinct roots. One is real and two

form a complex conjugate pair.

We would like to be able to compute the discriminant of a cubic polyno-

mial in terms of its coefficients, so that we can determine the nature of the

roots without computing them. Let’s first consider a reduced cubic polyno-

mial, one of the form y3 C py C q. We just reviewed that the nature of its

roots is determined by the sign of the quantity ı, with ı D �4p3 � 27q2. If

we can prove that ı D �, then we can put aside any concerns that the two

uses of the word “discriminant” conflict. At the same time, we will have an

algebraic proof that the quantity �4p3 � 27q2 determines the nature of the

roots. This would contrast with our proof of Theorem 3.6, which depended

on calculus.

Exercise 5.8. Suppose p and q are real numbers and consider the poly-

nomial y3 C py C q. We will use the notation and results of Exercise 5.1.

Accordingly, we choose A to be one of the three cube roots of �q=2C
p
R

and B to be the cube root of �q=2 �
p
R satisfying AB D �p=3. With

these choices the three roots of y3 C py C q are

r1 D AC B; r2 D !AC !2B; r3 D !2AC !B:
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(i) Verify that

r1 � r2 D .1 � !/.A � !2B/;

that

r1 � r3 D �!2.1 � !/.A � !B/;

and that

r2 � r3 D !.1 � !/.A � B/:

(ii) Verify that

.1 � !/3 D 3.!2 � !/ D �3
p
3i

and use Theorem 4.16 to deduce that

.r1 �r2/.r1 �r3/.r2 �r3/ D �.1�!/3.A3 �B3/ D 3
p
3i.A3 �B3/:

(iii) The definitions ofA andB yieldA3 D �q=2C
p
R andB3 D �q=2�p

R. Deduce that

A3 � B3 D 2
p
R

and that

.r1 � r2/.r1 � r3/.r2 � r3/ D 6
p
3i

p
R:

(iv) Deduce that the discriminant� of y3 CpyCq is given by the formula

� D �108R:

(v) Conclude that Theorem 5.5 holds.

Theorem 5.5. Given real numbers p and q, the discriminant� of the poly-

nomial y3 C py C q is

�4p3 � 27q2:

Exercise 5.9. Calculate the discriminant of each cubic polynomial and

state whether it has a multiple root, a real root and two non-real roots, or

three distinct real roots.

(i) y3 � 3y C 2.

(ii) y3 C 5y C 1.

(iii) y3 � 5y C 1.
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It remains to show for a general cubic polynomial x3 C bx2 C cx C d

that its discriminant � can be computed in terms of b, c, and d . This will

allow us, as in the quadratic case, to determine the nature of the roots of a

cubic from the coefficients alone.

Exercise 5.10. Consider the cubic polynomial x3 C bx2 C cx C d , with

real numbers b, c, and d as coefficients.

(i) From Exercise 3.2 and Theorem 3.3, the change of variable x D y �
.b=3/ transforms x3 C bx2 C cx C d into a polynomial of the form

y3 C py C q. Write the roots of y3 C py C q as r1, r2, and r3. In

terms of r1, r2, and r3, what are the roots of x3 C bx2 C cxC d? (See

Exercise 3.2.)

(ii) Observe that although the roots of x3 Cbx2 CcxCd and y3 CpxCq
differ, their differences are the same.

(iii) Deduce that the discriminant of x3Cbx2CcxCd and the discriminant

of y3 C px C q are equal.

(iv) Using the formulas of Theorem 3.3 for p and q in terms of b, c, and

d and the formula for the discriminant of y3 C px C q, obtain the

formula in Theorem 5.6 for the discriminant of x3 C bx2 C cxC d in

terms of b, c, and d .

(v) Conclude that the nature of the roots of x3 C bx2 C cx C d can be

determined in terms of b, c, and d , without explicit knowledge of the

roots.

Theorem 5.6. Given real numbers b, c, and d , the discriminant� of x3 C
bx2 C cx C d is

18bcd � 4b3d C b2c2 � 4c3 � 27d 2:

Exercise 5.11. Calculate the discriminant of each cubic polynomial and

state whether it has a multiple root, a real root and two non-real roots, or

three distinct real roots.

(i) x3 C 2x2 � 4.

(ii) x3 C 3x2 � 5x C 1.

The discriminant separates cubic polynomials into three families ac-

cording to the nature of their roots, as described in Theorem 5.4: there are



“IrvingBook” — 2013/5/22 — 15:39 — page 119 — #135
i

i

i

i

i

i

i

i

5.3. The Discriminant 119

three distinct real roots when � is positive, there is one real root along with

a distinct pair of complex conjugate roots when � is negative, and there is

a repeated root when � is zero. Theorem 5.6 allows us to determine which

occurs for a cubic polynomial from its coefficients alone. If � D 0, we can

use the coefficients to do a little more.

Theorem 5.7. The polynomialx3 Cbx2 CcxCd has one real root, of mul-

tiplicity 3, if� D 0 and b2 � 3c D 0. It has two real roots, of multiplicities

1 and 2, if � D 0 and b2 � 3c ¤ 0.

Exercise 5.12. Prove Theorem 5.7.

(i) Check that the only reduced cubic polynomial with a root of multiplic-

ity 3 is y3. (Hint: Given a real number r , what is the coefficient of y2

in .y � r/3?)

(ii) Deduce that y3 C py C q has a root of multiplicity 3 if � D 0 and

p D 0, but roots of multiplicities 1 and 2 if � D 0 and p ¤ 0.

(iii) Observe that x3 C bx2 C cxC d has a root of multiplicity 3 precisely

when the reduced cubic polynomial associated with it by the change

of variable of Theorem 3.3 does.

(iv) Show that the theorem follows.

The sign of a cubic’s discriminant determines whether or not we will

have to calculate cube roots of non-real complex numbers when using Car-

dano’s formula. We saw this at the conclusion of Section 3.4 in terms of

ı, the discriminant we obtained using calculus. Having now developed the

theory of the discriminant algebraically, we can restate the situation in terms

of �.

Exercise 5.13. Consider the reduced cubic polynomial y3 C py C q. As

usual, let R D p3=27C q2=4.

(i) Using Theorem 5.5, observe that � and R have opposite signs.

(ii) Review the relation of the sign of � to the nature of the roots and

rephrase it as a relation between the sign of R and the nature of the

roots.

(iii) Deduce that if y3 C py C q has one real root and two non-real roots,

then Cardano’s formula expresses the real root as the sum of cube roots

of real numbers.
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(iv) In contrast, deduce that if y3 CpyCq has three distinct real roots, then

Cardano’s formula for the roots expresses all three of them as sums of

cube roots of non-real complex numbers.

The appearance of cube roots of non-real complex numbers in Car-

dano’s formula when � is positive can be made explicit by rewriting Car-

dano’s formula with� in place of R:

y D 3

s

�q
2

C
p

��
6
p
3

C 3

s

�q
2

�
p

��
6
p
3
:

Our examples of polynomials for which such cube roots arose weren’t anoma-

lies. They were inevitable.

5.4 Cardano’s Formula Refined

The nature of a reduced cubic polynomial’s roots depends on the sign of

its discriminant. For each of the three possible cases—zero, negative, or

positive—we can obtain a refined version of Cardano’s formula. Let’s start

with the case of zero discriminant.

Exercise 5.14. Let y3 C py C q be a reduced cubic polynomial with dis-

criminant equal to 0; that is, �4p3 � 27q2 D 0. The case p D q D 0 is not

interesting, so let’s assume p and q are both non-zero.

(i) Show that p must be negative.

(ii) Solve the equation �4p3 � 27q2 D 0 for q in terms of p. Show that

q D ˙2p

3

r

�p
3
:

(iii) To simplify notation, let’s introduce a new constant a, with a D
p

�p=3; that is, a is the positive square root of �p=3. Check that

p D �3a2 and q D ˙2a3. The choice of sign in the expression for

q in terms of a is determined by the sign of q: if q is positive, then

q D 2a3; if q is negative, then q D �2a3.

(iv) Assume that q is positive. Rewrite the cubic polynomial y3 C py C q

as

y3 � 3a2y C 2a3:
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Verify that y D a and y D �2a are roots. Show that we have the

factorization

y3 � 3a2y C 2a3 D .y � a/2.y C 2a/:

(v) Assume that q is negative. Rewrite y3 C py C q as

y3 � 3a2y � 2a3:

Verify that its roots are �a and 2a, and that we have the factorization

y3 � 3a2y � 2a3 D .y C a/2.y � 2a/:

(vi) Deduce Theorem 5.8.

Theorem 5.8. Let y3 C py C q be a reduced cubic polynomial with dis-

criminant equal to 0.

(i) If q D 0, then p D 0 and 0 is a root of multiplicity 3.

(ii) If q > 0, then
p

�p=3 is a root of multiplicity 2 and �2
p

�p=3 is a

root of multiplicity 1.

(iii) If q < 0, then �
p

�p=3 is a root of multiplicity 2 and 2
p

�p=3 is a

root of multiplicity 1.

Let’s next consider the case of negative discriminant. We saw in Exer-

cise 4.27 that a real number c has one real cube root, say d , and two non-

real cube roots, !d and !2d . This allows us to be more explicit about our

choices of A and B in the version of Cardano’s formula stated as Theorem

5.1.

Exercise 5.15. Let y3 C py C q be a reduced cubic polynomial with

negative discriminant; that is, �4p3 � 27q2 < 0. Let R as usual equal

p3=27 C q2=4, so � D �108R and R > 0. In particular, the quantities

�q=2 C
p
R and �q=2 �

p
R are real. Let A be the real cube root of

�q=2C
p
R and let B be the real cube root of �q=2�

p
R.

(i) Verify thatAB D �p=3. (This can be done directly. Or, from Exercise

5.1, the product of A with one of B , !B , and !2B is �p=3. Consider

which product is a real number.)

(ii) Deduce in the case of negative discriminant that Theorem 5.1 takes on

the special form of Theorem 5.9.
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Theorem 5.9. Let y3CpyCq be a reduced cubic polynomial with negative

discriminant. Let A be the real cube root of

�q
2

C
r

p3

27
C q2

4
;

let B be the real cube root of

�q
2

�
r

p3

27
C q2

4
;

and let ! D �1=2C
p

�3=2. Then y3 CpyCq has one real root,ACB ,

and two non-real roots, !AC !2B and !2AC !B .

In using Cardano’s formula to find the roots of a cubic polynomial

y3 C py C q with positive discriminant, we can cut the work of cube root

calculations in half once we recognize that the two expressions whose cube

roots we need to calculate are complex conjugates of each other.

Exercise 5.16. Let y3 C pyC q be a reduced cubic polynomial with pos-

itive discriminant; that is, �4p3 � 27q2 > 0. Let R D p3=27 C q2=4, so

that R < 0.

(i) Since R is negative, �R has two real square roots,
p

�R and �
p

�R.

Observe that �q=2C
p

�R i and �q=2�
p

�R i are complex conju-

gates.

(ii) If s is a complex number and r is one of its cube roots, then Exercise

4.1 yields that r is a cube root of s. SupposeA is a cube root of �q=2Cp
�R i . Deduce that A is a cube root of �q=2 �

p
�R i .

(iii) Verify that AA D �p=3. (Use the fact that the product of A with one

ofA, !A, and !2A is �p=3. Consider which product is a real number.)

(iv) Use Exercise 4.4 to verify that !A and !2A are complex conjugates

and that !2A and !A are complex conjugates.

(v) Deduce that Theorem 5.1 takes on the special form of Theorem 5.10.

Theorem 5.10. Let y3CpyCq be a reduced cubic polynomial with positive

discriminant. Let A be a cube root of

�q
2

C
r

p3

27
C q2

4

and let ! be the cube root �1=2 C
p

�3=2 of 1. Then the three roots of

y3 C py C q are AC A, !AC !A, and !2AC !2A.
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Let us return to the cubic y3 � 7y C 6 and find its roots using Theorem

5.10.

Exercise 5.17. Use Cardano’s formula, as refined in Theorem 5.10, to

solve the cubic equation

y3 � 7y C 6 D 0:

(i) One cube root of �3C 10
p

�3=9 was determined in Exercise 3.13 or

Exercise 4.28. Add this cube root to its conjugate to obtain one solution

to y3 � 7y C 6 D 0.

(ii) Using ! and !2, write expressions for the other two cube roots of

�3 C 10
p

�3=9. Add each to its conjugate to obtain the other two

solutions.

We close this section with two exercises that provide an opportunity to

tie together the ideas we have learned so far.

Exercise 5.18. Solve the equation

x3 C 6x2 C 3x C 18 D 0:

The solution should be presented in essay form, with explanations of what is

being done at each step and why it is being done. The solution should not be

merely lines of calculation. There should be English prose. The following

steps should be included.

(i) Change variables to obtain a presumably simpler cubic equation to

solve.

(ii) State Cardano’s formula clearly in general and then explain how to

apply it.

(iii) Use Cardano’s formula to obtain a real solution.

(iv) Obtain the other two solutions in two ways. First use factorization and

the quadratic formula. Then obtain the other two solutions using cube

roots of 1 and Cardano’s formula again.

(v) Obtain three solutions to the original equation.

Exercise 5.19. Solve the equation

x3 � 3x2 � 10x C 24 D 0:
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Again the solution should be presented as an essay. The points listed in

Exercise 5.18 apply to this equation as well, but there are some differences

in the details:

(i) This time it may be necessary to calculate cube roots of non-real com-

plex numbers, which can be done using trigonometry, along with a

calculator.

(ii) Calculator solutions are only approximate. Point this out. Even though

the solution is approximate, it may in fact be correct. Check to see if it

is.

5.5 The Irreducible Case

Reduced cubic polynomials with positive discriminant are precisely those

with three distinct real roots, as we saw in Theorem 5.4. Thus, they factor as

products of three distinct linear polynomials and are said to be completely

reducible in modern terminology. Yet, they are also the polynomials whose

roots Cardano’s formula expresses as sums of cube roots of non-real com-

plex numbers. Cardano called this the irreducible case. To understand the

sense in which “irreducible” applies, let’s continue an analysis that we be-

gan in Exercises 4.13 and 4.14.

Exercise 5.20. Fix real numbers a and b with b ¤ 0. We wish to calculate

cube roots of a C bi . This amounts to solving the equation .x C yi/3 D
aC bi for real values of x and y,

(i) Review Exercises 4.13 and 4.14, where we found that the equation

.x C yi/3 D aC bi yields two equations for x and y:

x3 � 3xy2 D aI 3x2y � y3 D b:

(ii) The substitution x D sy led to a single equation in s,

s3 � 3a
b
s2 � 3s C a

b
D 0:

The equation is a cubic in s with coefficients expressed in terms of

a=b.

(iii) Using Cardano’s formula to solve a cubic equation of “irreducible”

type requires us to calculate a cube root of a non-real complex number.

We now find that calculating such a cube root leads to a new cubic

equation. Have we made progress? Let’s examine the new cubic.
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(iv) Introduce another variable t , with s D t C .a=b). Substitute t C .a=b/

for s in the equation for s to obtain a reduced cubic equation for t ,

t3 � 3kt � 2a
b
k D 0;

with k D 1C .a2=b2/.

(v) We can try to solve it using Cardano’s formula. Calculate R, or � for

this new reduced cubic. Verify thatR has the form �k2. This means the

new cubic, in t , is also of irreducible type, so that solving it will require

another calculation of the cube root of a non-real complex number.

(vi) Show that in fact using Cardano’s formula to solve the cubic in t re-

quires us to compute the cube root of

a

b
k C ki:

(vii) Write this as
k

b
� .a C bi/;

a real number times aC bi .

(viii) Conclude that in order to use Cardano’s formula to find roots of the

reduced cubic equation in t , we must be able to compute the cube root

of none other than a C bi , the complex number whose cube root we

were trying to calculate in the first place!

The calculation in the last exercise shows that we have come full circle.

To solve an “irreducible” cubic equation, we need to calculate the cube root

of a non-real complex number a C bi . To compute it, we are led to solve a

different cubic equation. Passing from this different cubic to its associated

reduced cubic equation and applying Cardano’s formula, we find that we

must compute the same cube root with which we began. It is in this sense

that the problem is irreducible.

We need not despair. We must accept that non-algebraic techniques are

needed. For example, we can use trigonometry to compute cube roots, as

worked out in Exercise 4.27.

5.6 Viete’s Formula

We closed Section 5.5 with the recognition that we must leave the realm of

algebra for trigonometry to find the roots of reduced cubic polynomials in



“IrvingBook” — 2013/5/22 — 15:39 — page 126 — #142
i

i

i

i

i

i

i

i

126 5. Cubic Polynomials, II

the irreducible case. We previously observed (Exercise 5.16 and Theorem

5.10) in this case that the two summands in Cardano’s formula are complex

conjugates of each other. The sum of a complex number and its conjugate

is twice the real part of the two numbers: .a C bi/ C .a � bi/ D 2a.

Thus, given a cubic polynomial y3 C py C q with positive discriminant,

if we can determine the real parts of the cube roots of �q=2 C
p
R in

terms of p and q, we will have a new formula for the cubic’s roots. We

will obtain such a formula, using the standard trigonometric functions and

inverse trigonometric functions.

From the discussion before Exercise 4.16, the inverse cosine function

arccos x is defined only for real numbers in the interval Œ�1; 1�. As x in-

creases from �1 to 1, the value arccos x decreases from � to 0, taking each

value once. The following inequality ensures that the inverse cosine is de-

fined on expressions that will arise in Exercise 5.22.

Exercise 5.21. Suppose p and q are real numbers. Assume p < 0 and let
p

�p=3 be the positive square root of �p=3. Show that

�1 <
3q

2p
p

�p=3
< 1

precisely when �4p3 � 27q2 > 0. (Hint: Use the fact, for a real number r ,

that �1 < r < 1 precisely when r2 < 1.)

Exercise 5.22. Supposep and q are real numbers satisfying �4p3�27q2 >

0. Let R D p3=27Cq2=4 (which is negative) and take
p

�R to be the pos-

itive square root of �R.

(i) Observe that p must be negative. Write
p

�p=3 for the the positive

square root of �p=3.

(ii) By Exercise 4.17, we can write

�q
2

C
p

�Ri

in the form

r cos � C .r sin �/i

for real numbers r and � , with r > 0. Using Exercise 4.16, show that

r D
r

�p
3

27
D �p

3

r

�p
3
;
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and that one choice of � is

� D arccos
�

� q

2r

�

D arccos

 

3q

2p
p

�p=3

!

:

(By Exercise 5.21, arccos is defined here.)

(iii) Let’s simplify our notation by introducing new constants a and b, with

a D
p

�p=3 and b D 3q=p. Then r D a3 and � D arccos.b=2a/.

(iv) From Exercise 4.27, one cube root of

r cos � C ri sin �

is
3
p
r cos

�

3
C 3

p
r i sin

�

3
:

Deduce, using our shorthand notation, that

a cos

�

1

3
arccos

�

b

2a

��

C ai sin

�

1

3
arccos

�

b

2a

��

is a cube root of �q=2C
p

�Ri .

(v) By Theorem 5.10, one root of y3 C py C q is given by adding the

complex number displayed in (iv) to its conjugate. Adding a complex

number and its complex conjugate yields twice the real part of the

complex number. Conclude that

2a cos

�

1

3
arccos

�

b

2a

��

is a root of y3 C py C q.

The formula for a root of the reduced cubic y3 C py C q in Exercise

5.22 is due to François Viète, whose work we will discuss further in Section

5.8. Let’s record it as a theorem, replacing a and b with the expressions in

p and q that they represent.

Theorem 5.11 (Viète). Supposep and q are real numbers. Let y3 CpyCq
be a cubic polynomial with positive discriminant. Then one of the roots of

y3 C py C q is given by the formula

2

r

�p
3

cos

 

1

3
arccos

 

3q

2p
p

�p=3

!!

:
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From Exercise 4.27, we can express the other two roots of y3 CpyC q

by similar expressions, by adding 2�=3 and 4�=3 to the argument of the

cosine.

Viète’s formula allows us to avoid calculating cube roots of non-real

complex numbers in finding roots of cubic polynomials of irreducible type.

This is reminiscent of the situation we discussed in Section 4.8, where we

examined how to calculate nth roots of real and complex numbers using the

exponential and logarithm functions or using the cosine and inverse cosine

functions. We concluded that discussion with the observation that in both

cases the calculation involved using a familiar function f —the exponential

or cosine function—in the same way. We calculate the value of f �1 for

some constant c, divide the resulting number by n, and then apply f to the

result or a minor variant. For example, the nth root of a positive real number

r is

elog.r/=n:

Viète’s formula fits into this theme, with the cosine function as f . We calcu-

late an inverse cosine, divide by 3, and calculate a cosine, thereby replacing

a cube root calculation (of a complex number!) with division by 3. Let’s try

it.

Exercise 5.23. Verify that y3 �7yC6 has positive discriminant. Then use

Viète’s formula and a calculator to solve

y3 � 7y C 6 D 0:

Exercise 5.24. Verify that y3 �3yC1 has positive discriminant. Then use

Viète’s formula to express one of the solutions to the equation

y3 � 3y C 1 D 0

in terms of cosines. We get the same answer as in Exercise 5.4 using Car-

dano’s and de Moivre’s formulas.

Viète’s formula applies also to a cubic y3 C py C q with zero dis-

criminant. We can rework Exercise 5.21 (still assuming p < 0) to find that

�4p3�27q2 D 0 precisely when 3q=2p
p

�p=3 equals 1 or �1 . We obtain

�1 when q is positive and 1 when q is negative. The inverse cosine of �1
is � and of 1 is 0. Thus, when q > 0, Viète’s formula yields y D

p

�p=3,
while when q < 0, the formula yields y D 2

p

�p=3. This proves again

part of Theorem 5.8.
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Although Viète’s formula allows us to bypass the calculation of cube

roots of non-real complex numbers, such cube roots did appear in its deriva-

tion. Once we know—or guess—that a formula for y exists expressing it as

twice a positive multiple of a cosine, we may wish to derive it directly, with-

out reference to Cardano’s formula or complex numbers. This can be done,

using the cosine triple angle formula:

Theorem 5.12. Let � be a real number. Then

cos 3� D 4 cos3 � � 3 cos �:

Exercise 5.25. Prove Theorem 5.12.

(i) Using the angle sum formulas of Theorem 4.9, write formulas for

sin 2� and cos 2� in terms of sin � and cos � .

(ii) Using Theorem 4.9 again, write cos 3� in terms of sines and cosines

of � and 2� .

(iii) Obtain the identity

cos 3� D cos3 � � 3 sin2 � cos �:

(iv) Use

cos2 � C sin2 � D 1

and the equality in (iii) to obtain the desired identity.

We can now use Theorem 5.12 to derive Viète’s formula independently

of Cardano’s formula.

Exercise 5.26. Let y3 C py C q be a cubic polynomial with positive dis-

criminant. Recall that p must be negative. We wish to find a solution in the

form y D 2a cos � , where a and � are real numbers expressed in terms of

p and q and a is positive. (We have been using a to represent
p

�p=3, but

for now we assume that a is unknown).

(i) Substitute 2a cos � for y in the equation y3 C py C q D 0 to obtain

8a3 cos3 � C 2ap cos � C q D 0:

If we can find values of a and � , in terms of p and q, for which this

holds, then we will have the desired formula.
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(ii) Use the triple angle formula and collect terms to rewrite the equation

as

.6a3 C 2ap/ cos � C 2a3 cos 3� C q D 0:

It will suffice to find values of a and � for which 6a3 C 2ap D 0 and

2a3 cos 3� C q D 0.

(iii) We have assumed that a is positive, so that a ¤ 0. Using this, solve

6a3 C 2ap D 0 for a and show that

a D
p

�p=3:

(iv) Substitute
p

�p=3 for a in the equation

2a3 cos 3� C q D 0;

solve for � , and show that

� D 1

3
arccos

 

3q

2p
p

�p=3

!

:

(v) Rewrite 2a cos � as an expression in p and q using the expressions we

have just obtained for a and � .

We have succeeded in deriving Viète’s formula directly, without intro-

ducing complex numbers.

5.7 The Signs of the Real Roots

We have seen how to compute the discriminant� of x3 C bx2 C cxC d in

terms of the coefficients b, c, and d . We have also seen how to use� to de-

cide whether x3 Cbx2CcxCd has a repeated root, three distinct real roots,

or one real root and two complex conjugate roots. Thus this information can

be determined using only the coefficients.

It is possible to obtain more information from the coefficients, such as

how many of the real roots are positive and how many are negative. We will

close our treatment of cubic polynomials by working this out, because it is

interesting in its own right and because we will need the result in our study

of quartic polynomials. We begin by obtaining analogous results for linear

and quadratic polynomials.

Exercise 5.27. Let c be a real number. Show that the only root of the linear

polynomial xC c is �c. Deduce that the sign of the root can be determined
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in terms of the sign of the constant coefficient. (Yes, this is trivial, but it is

the first in a sequence of results.)

Exercise 5.28. Let b and c be real numbers and let r1 and r2 be the roots

of the quadratic polynomial x2 CbxCc. Since we are interested in the case

that the roots are real, we assume that b2 � 4c � 0.

(i) If c D 0, the roots are 0 and �b, so their sign is determined by the sign

of the coefficient b.

(ii) Assume c ¤ 0. From Exercise 2.5, c D r1r2 and b D �.r1 C r2/.

Show that if r1 and r2 have the same sign, then c > 0, and if they have

opposite sign, then c < 0.

(iii) Assume that c is positive. Show that r1 and r2 are both positive pre-

cisely when b < 0 and both negative precisely when b > 0.

(iv) Deduce Theorem 5.13.

Theorem 5.13. Let b and c be real numbers satisfying b2 � 4c � 0 and

c ¤ 0.

(i) The polynomial x2 C bx C c has two real roots, both non-zero.

(ii) If c > 0 and b < 0, then both roots are positive.

(iii) If c < 0, then one root is positive and one is negative.

(iv) If c > 0 and b > 0, then both roots are negative.

To handle cubic polynomials, we need a cubic analogue of Exercise 2.5.

Theorem 5.14. Let x3 C bx2 C cx C d be a cubic polynomial with real

coefficients b, c, and d , and suppose its three roots are r1, r2, and r3. Then

b D �r1 � r2 � r3;
c D Cr1r2 C r1r3 C r2r3;

d D �r1r2r3:

Exercise 5.29. Prove Theorem 5.14. (Hint: Use the factorization of x3 C
bx2 C cx C d as .x � r1/.x � r2/.x � r3/.)

A cubic polynomial of the form x3 C bx2 C cx factors as the product

of x and x2 C bxC c, so that one of its roots is 0 and the others are roots of

x2 C bx C c. Thus, we can determine the signs of its roots using Theorem

5.13. We will exclude this case.

Let’s consider cubic polynomials that have non-real roots.
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Theorem 5.15. Let x3 C bx2 C cx C d be a cubic polynomial with real

coefficients b, c, and d whose discriminant is negative. Assume further that

d ¤ 0. Then the real root of x3 C bx2 C cx C d is positive if d is negative

and negative if d is positive.

Exercise 5.30. Prove Theorem 5.15. (Hint: Use Theorem 5.14 and the fact

that the product of a non-zero complex number and its conjugate is a posi-

tive real number.)

We now turn to cubic polynomials whose roots are all real.

Exercise 5.31. Assume that x3 Cbx2 CcxCd is a cubic polynomial with

real coefficients b, c, and d . Assume that d ¤ 0 and that the discriminant�

of x3 Cbx2 CcxCd is non-negative, so that the roots of x3 Cbx2 CcxCd
are all real (whatever their multiplicities).

(i) Show that if b, c, and d are positive, then all the roots are negative.

(Hint: If x > 0, what is the sign of x3 C bx2 C cx C d?)

(ii) Conversely, show that if all the roots are negative, then b, c, and d are

positive. (Hint: Examine the expressions for b, c, and d in terms of the

roots given in Theorem 5.14.)

(iii) Show that if b is negative, c is positive, and d is negative, then all the

roots are positive. (Hint: If x < 0, what is the sign of x3 Cbx2 CcxC
d?)

(iv) Conversely, show that if all the roots are positive, then b is negative, c

is positive, and d is negative.

(v) Show that d > 0 if there are 0 or 2 positive roots and d < 0 if there

are 1 or 3 positive roots.

(vi) Deduce Theorem 5.16.

Theorem 5.16. Let x3 C bx2 C cx C d be a cubic polynomial with real

coefficients b, c, and d whose discriminant is non-negative. Assume further

that d ¤ 0.

(i) If b, c, and d are positive, then all the roots are negative.

(ii) If b is negative, c is positive, and d is negative, then all the roots are

positive.

(iii) If neither condition holds, then there are both positive and negative

roots. In this case, if d > 0, then there are two positive roots; if d < 0,

then there is one positive root.
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In the next exercise, we will apply what we’ve learned.

Exercise 5.32. For the cubic polynomials in (i)-(iv), use Theorems 5.15

and 5.16 to determine from the coefficients how many real roots there are

and how many of them are positive or negative.

(i) x3 � 6x2 C 11x � 6.

(ii) x3 � 5x2 C 9x � 5.

(iii) x3 C 6x2 C 3x C 18.

(iv) x3 � 3x2 � 10x C 24.

Let’s extract one small piece of Theorems 5.15 and 5.16 that will play

an essential role in our study of quartic polynomials. (See Exercise 6.8.)

Theorem 5.17. Let f .x/ be a cubic polynomial with non-zero constant

coefficient d .

(i) If d > 0, then f .x/ has at least one negative real root.

(ii) If d < 0, then f .x/ has at least one positive real root.

Exercise 5.33. Verify that Theorem 5.17 follows from Theorems 5.15 and

5.16. It is valid regardless of whether f .x/ has one or three real roots.

5.8 History

We concluded Section 5.5 with the observation that we need not despair

when faced with a cubic equation to solve in the irreducible case. How did

Cardano react? Let’s find out, as we continue the historical account of cubic

equations that we began in Section 3.5.

The cubic equations whose solution Cardano learned from Tartaglia

have the special form

x3 C px D q

withp and q positive. Sincep is positive, the discriminant� is negative and

the formula of del Ferro and Tartaglia involves cube roots of real numbers.

Cardano, however, extended Tartaglia’s solution to cover cubic equations of

the additional forms

x3 D px C q

and

x3 C q D px:
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Again, the coefficients are taken to be positive. But then, rewriting them in

the form x3 C Px C Q D 0 by moving the appropriate terms to the left

side, we see that P is negative, so the discriminant �4P 3 � 27Q2 may

be positive. Thus Cardano opened the door to the irreducible case, with its

square roots of negative numbers and cube roots of non-real numbers.

Cardano was aware of the new difficulty. However, uncertain how to

handle it, he omitted examples of cubic equations of this type in Ars Magna

[12]. Thus, the answer to our opening question is that he suppressed the

irreducible case.

In an interesting passage later in Ars Magna, Cardano does make some

calculations with square roots of negative numbers. We know from Section

2.1 that solving a quadratic equation x2 � bx C c D 0 (the minus sign in

front of the b is intentional) is equivalent to finding two numbers whose

sum is b and whose product is c, and that special cases of this problem can

be found on Babylonian clay tablets from over three thousand years ago. In

Chapter 37, titled “On the Rule for Postulating a Negative,” Cardano poses

and solves just such a problem [12, p. 219]:

If it should be said, Divide 10 into two parts the product of which is

30 or 40, it is clear that this case is impossible. Nevertheless, we will

work thus: We divide 10 into two equal parts, making each 5. These we

square, making 25. Subtract 40 if you will, from the 25 thus produced

. . . leaving a remainder of �15, the square root of which added to or

subtracted from 5 gives parts the product of which is 40. These will be

5C
p

�15 and 5 �
p

�15.

By competing the square, Cardano has found two numbers that have

sum 10 and product 40. Equivalently, he has solved the quadratic equation

x2 � 10x C 40 D 0;

despite its discriminant being negative. Next Cardano writes [12, pp. 219–

220],

Putting aside the mental tortures involved, multiply 5C
p

�15 by 5�p
�15, making 25 � .�15/, which is C15. Hence this product is 40.

. . . This truly is sophisticated . . . . So progresses arithmetic subtlety

the end of which, as is said, is as refined as it is useless.

Recognizing that the problem makes no physical sense, Cardano is content

to label the result useless.

Complex numbers enter into the solving of quadratic equations pre-

cisely when the equations have no real solutions. Though sophisticated, the
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new numbers aren’t needed. What’s different about cubic equations is that

the new numbers appear precisely when the equations have only real (and

distinct) solutions. This was a puzzle Cardano was not prepared to address.

In contrast, Cardano’s near-contemporary Rafael Bombelli (1526–1572)

did not shy away from the irreducible case. In the influential three-volume

work L’Algebra [11], printed in 1572 and again in 1579, Bombelli set out to

present the results of Ars Magna in a manner more accessible to beginners.

Bombelli gives as one example the irreducible cubic equation

x3 D 15x C 4:

(See the discussion in [66, pp. 60–61].) Using Cardano’s formula, Bombelli

writes the solution

3

q

2C
p

�121C 3

q

2 �
p

�121:

He describes the imaginary square roots, following Cardano, as “sophistic,”

but he also notes that the cubic equation can be solved, since after all x D
4 is a solution. This motivates finding a way to make the formula work,

and Bombelli proceeds much as we did in Exercise 3.13 when we used

Cardano’s formula to solve the cubic equation y3 � 7y C 6 D 0.

Let’s write a C
p

�b as a possible cube root of 2 C
p

�121 and a �p
�b as the corresponding cube root of 2�

p
�121. By setting the cube of

aC
p

�b equal to 2C
p

�121 and collecting terms, we get

a3 � 3ab D 2:

By setting the product of a C
p

�b and a �
p

�b equal to the product of
3
p

2C
p

�121 and
3
p

2 �
p

�121, we get

a2 C b D 5:

Bombelli found the solution a D 2 and b D 1 to this pair of equations.

Adding 2 C
p

�1 and 2 �
p

�1, he obtained x D 4 as the solution to the

cubic equation, prompting him to comment, “At first, the thing seemed to

me to be based more on sophism than on truth, but I searched until I found

the proof.” [66, p. 61]

Bombelli also gave rules for the manipulation of these new numbers,

including the rule that p
�1 �

p
�1 D �1;

and provided examples of calculations involving them. He didn’t use our

notation, but the essential ideas were all there.
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We have focused on Italian mathematicians, but as the sixteenth-century

neared its end, the work of the French mathematician François Viète came

to the fore. Some of his writings are available in a 1983 translation by T.

Richard Witmer under the title The Analytic Art [68]. In In Artem Ana-

lyticem Isagoge, which appeared in 1591 and is translated by Witmer as

Introduction to the Analytic Art, Viète introduced the idea of using letters

for known and unknown quantities, differentiating between the two by us-

ing vowels for unknown quantities and consonants for the known quantities.

This allowed him to treat algebraic problems in generality rather than de-

scribing general methods implicitly through specific examples.

Another of Viète’s contributions, which we studied in Section 5.6, was

the development of a trigonometric approach to cubic equations in the irre-

ducible case that allows us to avoid complex numbers altogether. With A as

his variable and B andD as constants, he studies ([68, p. 174]) the equation

A3 � 3B2A D B2D

under the assumption that “B is greater than half of D.” Taking B and D

to be positive, we can check that the conditionB > D=2 is the requirement

that the given cubic’s discriminant is positive. He then describes how to

obtain a solution geometrically in terms of two right triangles, one having

an acute angle three times that of the second. Next, Viète illustrates the

method by solving the cubic equations

x3 � 300x D 432

and

x3 � 300x D �432:

In [48, pp. 203–205], R.W.D. Nickalls relates this passage of Viète’s

to our more familiar trigonometric view, explaining that “Viète’s approach

stems from his familiarity with the then equivalent of the trigonometric

triple-angle identities, since he himself had established formulae for chords

of multiple arcs in terms of chords of simple arcs, and hence he was aware

that solving a cubic with three real roots was analogous to trisecting an

angle.”

Before moving on, let us recognize the greater significance of Viète’s

work, as he was the first to write down cubic equations (in the irreducible

case) in general form and solve them.

Another French mathematician, Albert Girard (1595–1632), who would

spend most of his life in the Netherlands as a religious refugee, published In-

vention Nouvelle en l’Algèbre in 1629 [32]. It’s a short work, just 64 pages,
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with a central section on algebra that is full of new ideas. We will discuss

Girard’s contributions further in Sections 7.2 and 7.4. For now, we will be

content with a few words about his account of cubic equations.

Girard doesn’t use letters for constants or variables, yet his text is easy to

understand. For example, he divides cubic equations into a variety of cases,

one of which he describes as the equations with “1.3/ equal to .1/ C .0/.”

The parenthetical numbers should be interpreted as powers of x, so that

this refers to equations in which a cube equals a degree-one term plus a

constant, or x3 D pxCq. For this case, Girard provides a “rule for solving

the equation 1.3/ equal to .1/C .0/ when the cube of a third of the number

of .1/ is larger than the square of half of .0/ with the aid of a table of

sines.” This is, of course, the irreducible case. Without a general notation,

Girard must describe the rule by way of example. The example he uses is

“1.3/ equal to 13.1/C 12,” which we would write as x3 D 13x C 12. He

displays a series of calculations that leads to the solution x D 4, using what

is essentially Viète’s approach.

We mentioned John Wallis in passing in Section 4.9 with regard to his

early effort to provide a geometric description of complex numbers. This is

contained in his wonderfully titled 1685 book, A Treatise of Algebra, both

Historical and Practical: Shewing the original, progress, and advancement

thereof, from time to time, and by what steps it hath attained to the heighth

at which now it is; with some additional treatises, which would have great

influence. J.F. Scott’s The Mathematical Work of John Wallis, written in

1938, is a valuable guide to Wallis’s mathematical work, with a chapter

devoted to the Treatise of Algebra [58, pp. 133–165]. Scott’s concluding

appraisal [58, p. 165] is that Wallis’s book “constituted a reservoir from

which contemporary and later algebraists drew much inspiration. It may

be mentioned that this treatise did a great deal towards popularizing the

notation which was now rapidly becoming current in Europe.”

Of particular significance is Wallis’s unreserved adoption of complex

numbers as solutions to algebraic equations. Scott writes [58, pp. 156–157],

“In his quadratic equations he discusses every type, and the rules he evolves

for determining the nature of the roots by a mere inspection of the equation

would not be out of place in a modern text-book. He was quite at home

with imaginaries, and he knew that such roots always occurred in pairs.

Moreover he would not allow the use of the word Impossible as applied to

an equation with imaginary roots. An equation, for example, such as

�aa C 8a D 25;

of which the roots are 4 C
p
16 � 25 and 4 �

p
16 � 25, ‘imaginaries’ —
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had hitherto been styled ‘Impossible’. Yet, avers Wallis” (and now we turn

to Wallis’s own writings [69, p. 174]):

Imaginary quantities, when they occur, have been taught to imply an

impossible case; and algebraists have been wont so to teach. Yet is

not this so to be understood . . . . For it was before thought (and so

delivered by diverse algebraists) that whenever (in pursuance of the

resolution) we are reduced to an impossible construction, (such as the

square root of a negative quantity), the case proposed is to be judged

impossible. Which is yet here discovered to be otherwise.

As for instance, the equation aaa � 7a D 6 should have for its root

3

s

3C
r

�100
27

C 3

s

3 �
r

�100
27
;

which should therefore be judged an impossible case. Yet hath it a real

root, a D 3, beside which it hath also two negatives, a D �1 and

a D �2. And if we change but the sign of the absolute number (which

is the only even place not vacant), the equation

aaa � 7a D �6

will have two affirmative roots, a D 1, a D 2 (and one negative root,

a D �3).

Wallis’s example, the equation aaa � 7a D �6, should look familiar. It is

the one we used in Exercise 3.12 to illustrate the appearance of complex

numbers in Cardano’s formula.

Half a century later, in the 1739 paper “On the reduction of radicals

to simpler terms, or the extraction of roots of any binomial a C
p

Cb or

aC
p

�b,” de Moivre sets himself the problem [17], [60, p. 447] “to extract

the cube root of the impossible binomialaC
p

�b.” He reduces this problem

to solving a reduced cubic equation, but in a different way from how we

proceeded in Exercises 4.13 and 4.14. Rather than quoting from his entirely

readable text [60, p. 447], let’s reproduce his approach as an exercise.

Exercise 5.34. Let a and b be real numbers with b ¤ 0 and suppose xCyi
is a cube root of aC bi .

(i) Set .xC yi/3 D aC bi , as in Exercise 4.13, and obtain two equations

in x and y by setting the real and imaginary parts equal to each other.
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(ii) Square both equations, take their sum, and obtain the equation

x6 C 3x4y2 C 3x2y4 C y6 D a2 C b2:

The left side is .x2 C y2/3.

(iii) Letm be the real cube root of a2 Cb2 and take cube roots of both sides

to obtain x2 C y2 D m.

(iv) Substitutem � x2 for y2 in one of the equations of the first part to get

a reduced cubic equation in x:

4x3 � 3mx � a D 0:

(v) Calculate the discriminant of .4x3 � 3mx � a/=4 and use the fact that

b ¤ 0 to show that it is positive.

(vi) Conclude that cube roots of complex numbers can be calculated by

solving reduced cubic equations in the irreducible case.

Following de Moivre, we have converted the calculation of the cube

root of a complex number to the solving of a reduced cubic equation of

irreducible type. At this point, de Moivre observes that “this will best be

done by means of a table of sines,” illustrating the process by determining

the cube roots of 81C
p

�2700. The cubic equation to be solved is

4x3 � 63x � 81 D 0:

De Moivre suggests that this be “compared with the equation for the cosines,

namely 4x3 � 3r2x D r2c.” To understand the sense in which this is an

equation for cosines, we can rewrite it as

4
�x

r

�3

� 3
x

r
D c

r
:

Taking x=r to be cos � and c=r to be cos 3� for a suitable angle � , the

equation becomes the trigonometric identity

4 cos3 � � 3 cos � D cos 3�

of Theorem 5.12.

Following de Moivre again, we use the comparison of 4x3 � 63x D 81

to 4x3 � 3r2x D r2c to obtain the values r D
p
21 and c D 27=7. To find

x, we use the triple cosine identity and the identifications x=r D cos � and

c=r D cos 3� . Applying the inverse cosine to c=r , dividing by 3, computing
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the cosine, and multiplying by r yields x. De Moivre does the equivalent,

thereby obtaining the equation’s three solutions. From these, he determines

three cube roots of 81C
p

�2700. (See [60, pp. 447–449] for the complete

discussion.)

In our approach to solving reduced cubic equations, we have relied on

Cardano’s formula to produce a number whose cube root we need to cal-

culate, and in the irreducible case applied de Moivre’s formula to make

the cube root calculation. In his 1739 paper, de Moivre has reversed the

flow. He starts from a complex number whose cube root we want to calcu-

late, produces a reduced cubic equation we wish to solve that falls under

the irreducible case, then takes Viète’s approach to solving the equation.

De Moivre concludes his discussion with the observation that the use of

trigonometry is essential [60, p. 449]:

There have been several authors, and among them the eminent Wallis,

who have thought that those cubic equations which are referred to the

circle, may be solved by the extraction of the cube root of an imaginary

quantity, and of 81C
p

�2700, without regard to the table of sines, but

that is a mere fiction and a begging of the question. For on attempting

it, the result always recurs back again to the same question as that first

proposed. And the thing cannot be done directly, without the help of

the table of sines.

He recognizes that computing cube roots of complex numbers and solving

cubic equations in the irreducible case are essentially the same problem. We

can loop back and forth between the two, but to break the cycle, we must

introduce trigonometry.

Let us close our historical account of the cubic by examining Euler’s

treatment in Elements of Algebra [26]. Euler derives Cardano’s formula in

Chapter XII of Section 4, “Of the Rule of Cardan, or of Scipio Ferreo.” His

approach is simple and elegant, relying on the introduction of an associated

quadratic polynomial. Compare the following excerpt [26, pp. 263–264]

with Theorems 5.2 and 5.3 (ignoring the regrettable clash of notation).

Whenever we meet with an equation of the form x3 D 3x 3
p
pq C

p C q, we know that one of the roots is 3
p
p C 3

p
q. Now, we can

determine p and q, in such a manner, that both 3 3
p
pq and p C q

may be quantities equal to determinate numbers; so that we can always

resolve an equation of the third degree, of the kind which we speak of

[i.e., reduced].

Let, in general, the equation x3 D f x C g be proposed. Here, it will

be necessary to compare f with 3 3
p
pq and g with p C q; that is, we
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must determine p and q in such a manner, that 3 3
p
pq may become

equal to f , and p C q D g; for we then know that one of the roots of

our equation will be x D 3 3
p
p C 3 3

p
q.

Following his derivation, Euler presents a sequence of examples of cu-

bic equations with negative discriminant, starting with two for which the

cube root calculations are trivial. He introduces a third example [26, p 265],

x3 D 6x C 40, with the immediate comment that “x D 4 is one of the

roots.” Applying Cardano’s formula, he expresses the same surprise we did

after Exercise 3.9 on comparing the complicated answer it produces with

the known simpler answer:

Consequently one of the roots will be . . .

x D 3

q

20C 14
p
2C

3

q

20 � 14
p
2I

which quantity is really = 4, although, upon inspection, we should not

suppose it. In fact, the cube of 2 C
p
2 being 20 C 14

p
2, we have,

reciprocally, the cube root of 20C 14
p
2 equal to 2C

p
2; in the same

manner,
3
p

20 � 14
p
2 D 2 �

p
2; wherefore our root x D 2C

p
2C

2�
p
2 D 4.

Next Euler solves a non-reduced cubic, discussing the need (in Hewlett’s

translation) to “destroy” the second term and illustrating how to do so. The

resulting reduced cubic is treated like the example above, after which Euler

observes [26, p 268]:

It was, however, by chance, as we have remarked, that we were able,

in the preceding example, to extract the cube root of the binomials that

we obtained, which is the case only when the equation has a rational

root; : : : But when there is no rational root, it is, on the other hand,

impossible to express the root which we obtain in any other way, than

according to the rule of Cardan; so that it is then impossible to apply

reductions. For example, in the equation x3 D 6xC4, we have : : : x D
3
p

2C 2
p

�1C 3
p

2 � 2
p

�1, which cannot be otherwise expressed.

Thus, on arriving at the irreducible case, Euler declares that we can go no

further than to leave the solution in such a complicated form.

In contrast to Cardano, Euler was comfortable with the use of complex

numbers. We already quoted a passage from earlier in his book [26, p. 43]

in which he wrote that “nothing prevents us from making use of these imag-

inary numbers, and employing them in calculation.” Perhaps he chose not

to pursue the example further because he preferred to avoid trigonometry as
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a tool. In a footnote [26, p 268] to Euler’s passage, Bernoulli explains that

the cubic is an example of

the well-known irreducible case; a case which is so much the more

remarkable, as the three roots are then always real. We cannot here

make use of Cardan’s formula, except by applying the methods of ap-

proximation. . . . In the present work of Euler, we are not to look for

all that might have been said on the direct and approximate resolutions

of equations. He had too many curious and important objects, to dwell

long upon this.

We have dwelled long upon this indeed. It is time to move beyond cubics.
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6
Quartic Polynomials

We learned in Section 3.5 that Lodovicio Ferrari discovered a way to solve

quartic equations not long after Cardano’s work on cubic equations, and that

Cardano presented Ferrari’s method in Ars Magna [12]. We will take a brief

look at Ferrari’s approach, then turn to the approach of René Descartes.

Both reduce the solving of a reduced quartic equation to the determination

of the roots of an auxiliary cubic polynomial. A closer look at Descartes’

solution will allow us to obtain a formula due to Euler that expresses the

roots of the reduced quartic in terms of the roots of the auxiliary cubic. In

turn, Euler’s solution leads to a formula for the discriminant of a quartic

polynomial. We will then have our final look at the effectiveness of coeffi-

cients as a tool to glean information about a polynomial’s roots.

6.1 Reduced Quartics

From our study of graphs of polynomials in Section 1.6, we have an idea of

what the graph of a quartic polynomial looks like and the number of roots

it may have. Assuming the quartic is monic, its graph will fall from infinity,

turn one or three times, then rise to infinity. The number of real roots will

depend on the number of turning points and their location above, on, or

below the x-axis. For instance, if there is one turning point, then we are in a

situation similar to that of quadratic polynomials, with two, one, or no real

roots depending on whether the turning point is below, on, or above the x-

axis. If there are three turning points, there are many possibilities. We will

not discuss them all, satisfying ourselves with those that can be illustrated

through one family of examples. The interested reader can use them as a

starting point and complete a survey of the options.

143
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144 6. Quartic Polynomials

x

y

Figure 6.1. Graph of y D x4 � x3 � 4x2 C 4x

Consider the infinite family of quartic polynomialsx4�x3�4x2C4xC
e, where e takes on all real number values. Figure 6.1 depicts the graph of

y D x4 � x3 � 4x2 C 4x, corresponding to e D 0. We see from the graph

that this polynomial has four distinct real roots. Or, we see it directly from

x4 � x3 � 4x2 C 4x D x.x C 2/.x � 1/.x � 2/:
Imagine allowing e to increase from negative values of e with large ab-

solute value to 0 and on through positive values of e. As e grows, the graph

moves upward in the plane. For a negative value of e that is large in absolute

value, the graph will meet the x-axis in two points and the quartic has two

real roots. As e increases, it assumes the value for which the graph’s one

local maximum is on the x-axis, the case of three real roots. As e increases

further, the local maximum rises above the x-axis, which then intersects the

graph in four points, as illustrated in Figure 6.1. This corresponds to the ex-

istence of four real roots. Then e assumes the value at which the higher of

the two local minima makes contact with the x-axis, giving us once again

a quartic with three real roots. As e continues to increase, the higher local

minimum rises above the x-axis and we have just two real roots. This re-

mains the case until e assumes the value at which the lower local minimum

makes contact with the x-axis. In this case, the quartic has one real root. For

larger e the graph lies entirely above the x-axis and the quartic has no real

roots.

Before analyzing quartic polynomials in general, we need some ele-

mentary facts that are similar to those we obtained to begin our treatment of

cubics.

Exercise 6.1. Given A and B , we know that

.AC B/2 D A2 C 2AB C B2
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6.1. Reduced Quartics 145

and

.AC B/3 D A3 C 3A2B C 3AB2 C B3:

Show that

.AC B/4 D A4 C 4A3B C 6A2B2 C 4AB3 C B4:

A quartic polynomial of the form

z4 C qz2 C rz C s

is called a reduced quartic.

Exercise 6.2. Let

f .x/ D x4 C bx3 C cx2 C dx C e;

for real numbers b, c, d , and e. Given another real number a, let’s see what

happens under the change of variable x D z C a, or z D x � a.

(i) Substitute zCa for x and obtain a polynomialg.z/ in the new variable

z. Write it as

z4 C Bz3 C Cz2 CDz C E

and obtain formulas for the coefficients B , C , D, and E in terms of a

and the coefficients b, c, d , and e.

(ii) There is a choice of a for which B D 0, giving a new polynomial g.z/

that is reduced. Verify that g.z/ is the reduced polynomial described

in Theorem 6.1.

(iii) What is the relation between a root of f .x/ and a root of g.z/?

(iv) Conclude that solving g.z/ D 0 gives solutions of f .x/ D 0.

Theorem 6.1. Let b, c, d , and e be real numbers. Given a quartic polyno-

mial x4 C bx3 C cx2 C dxC e, the change of variable x D z � b=4 yields

the reduced quartic polynomial

z4 C
�

�3b
2

8
C c

�

z2 C
�

b3

8
� bc

2
C d

�

zC
�

�3b
4

256
C b2c

16
� bd

4
C e

�

:

Exercise 6.3. What is the reduced quartic equation associated to the quar-

tic equation

x4 C 4x3 � 2x C 4 D 0‹

How are the solutions of the reduced quartic equation related to the solu-

tions of the original quartic equation?
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146 6. Quartic Polynomials

6.2 Ferrari’s Method

A method for solving quartic equations was first discovered Lodovico Fer-

rari. In recognition of the historical importance of Ferrari’s approach, we

devote this section to it. However, we will not use his approach in the re-

mainder of the chapter. Thus, this section can be omitted.

Suppose that we wish to solve the reduced quartic equation

z4 C qz2 C rz C s D 0

with real coefficients q, r , and s. Moving the lower-degree terms to the right

to obtain

z4 C qz2 D �rz � s;

we can regard the left side as a quadratic polynomial in z2 and complete the

square by adding qz2 C q2 to both sides. This yields

.z2 C q/2 D qz2 C q2 � rz � s:

Ferrari’s idea is to introduce an auxiliary term t , which is best thought

of not as a variable but as a to-be-determined real number, and use it to

change the left side from .z2 Cq/2 to .z2 CqC t/2. The goal then becomes

to find a value of t that makes the right side a square as well, allowing us

to take square roots of both sides and reduce to a simpler problem. Let’s do

this.

To begin, we add 2.z2 C q/t C t2 to both sides of .z2 C q/2 D qz2 C
q2 � rz � s. The left side becomes a square and we obtain the equation

.z2 C q C t/2 D qz2 C q2 � rz � s C 2.z2 C q/t C t2:

Keep in mind that q, r , and s are specific real numbers, as is t , although

we don’t yet know what t is. The only variable is z. It is natural, then, to

collect terms on the right side of the equation so that it is exhibited as a

quadratic polynomial in z with coefficients involving the constants q, r , s,

and t :

.z2 C q C t/2 D .q C 2t/z2 � rz C .q2 � s C 2qt C t2/:

Our goal is to find a value of t for which the right side becomes the square

of a linear polynomial in z.

We know that a monic quadratic polynomial z2 C bz C c is the square

of a linear polynomial precisely when it has a real root of multiplicity 2, or

equivalently, when its discriminant b2 � 4c is 0. A polynomial of the form
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az2 CbzCc, with a ¤ 0, will factor in the same way as z2 C.b=a/zCc=a.

Thus, it will be the square of a linear polynomial precisely when .b=a/2 �
4.c=a/ D 0, or b2 � 4ac D 0.

We can apply this to

.q C 2t/z2 � rz C .q2 � s C 2qt C t2/

viewed as a quadratic polynomial in z. It will be the square of a linear

polynomial in z if t is chosen so that

.�r/2 � 4.q C 2t/.q2 � s C 2qt C t2/ D 0:

Rewriting the expression on the left side as a cubic polynomial in the un-

known constant t and multiplying by �1, we find that t must satisfy

8t3 C .20q/t2 C .16q2 � 8s/t C .4q3 � 4qs � r2/ D 0:

Choosing such a t ensures that the quadratic polynomial in z is the square

of a degree-one polynomial, so that both sides of the earlier equation

.z2 C q C t/2 D .q C 2t/z2 � rz C .q2 � s C 2qt C t2/

are squares.

Using the techniques we have learned for solving cubic equations, we

can find t , then factor the quadratic in z as the square of a degree-one poly-

nomial dz C e. In this way, we obtain the quartic equation

.z2 C q C t/2 D .dz C e/2:

Taking square roots on both sides, we obtain quadratic equations

z2 C q C t D dz C e

and

z2 C q C t D �dz � e:

Solving for z yields four solutions to the original quartic equation. We (and

Ferrari) have reduced the problem of solving the original quartic equation

z4 C qz2 C rz C s D 0 to that of solving the cubic equation in t .

Let’s try Ferrari’s approach in an example, one we will pursue only to

the point of obtaining the reduced cubic equation that needs solving.

Exercise 6.4. Solve the equation

z4 C 6z2 � 60z C 36 D 0:
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(i) Use Ferrari’s method to show this can be done by finding t satisfying

t3 C 15t2 C 36t � 450 D 0:

(ii) Change variables to transform the cubic equation to a reduced cubic

equation,

u3 � 39u� 380 D 0:

(iii) Find a solution using Cardano’s formula.

(iv) Explain how to obtain a solution to the original quartic equation.

Let’s work out the next example to conclusion. It is missing both degree

three and degree two terms, so that the cubic equation to solve is already

reduced.

Exercise 6.5. Solve the quartic equation

z4 � 12z C 3 D 0:

(i) Following Ferrari’s procedure with q D 0, r D �12, and s D 3,

introduce a new variable t and show that the equation takes the form

.z2 C t/2 D 2tz2 C 12z C .t2 � 3/:

(ii) Show that the right side of this equation will be the square of a degree-

one polynomial in z if t is a solution of the cubic equation

8t3 � 24t � 144 D 0;

or

t3 � 3t � 18 D 0:

(iii) Use Cardano’s formula to show that one solution is

t D 3

q

9C 4
p
5C 3

q

9 � 4
p
5:

(iv) Use the method of Exercise 3.10 to guess that a cube root of 9C 4
p
5

has the form a C b
p
5, obtain two equations in a and b, and guess

values of a and b, leading to the discovery that the two cube roots we

want are 3=2C
p
5=2 and 3=2�

p
5=2. Alternatively, guess that there

is some small positive integer solution to the cubic equation, without

reference to Cardano’s formula, and find it.
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6.3. Descartes’ Method 149

(v) Substitute t into the equation in z and t at the start of the exercise to

obtain

.z2 C 3/2 D 6z2 C 12z C 6:

(vi) As Ferrari’s method ensures, the right side of this equation is the square

of a degree-one polynomial in z:

6z2 C 12z C 6 D 6.z C 1/2:

(vii) Using this, write the equation as

.z2 C 3/2 D 6.z C 1/2:

(viii) Take square roots on both sides to get

z2 �
p
6z C .3 �

p
6/ D 0

and

z2 C
p
6z C .3C

p
6/ D 0:

(ix) Solve them for z, thereby obtaining four solutions to

z4 � 12z C 3 D 0:

6.3 Descartes’ Method

We turn in this section to an approach to solving reduced quartic equations

introduced by René Descartes. The idea is to factor a reduced quartic poly-

nomial z4 C qz2 C rz C s as a product of quadratic polynomials with real

coefficients. If we can do this, then we can find the quartic’s roots by apply-

ing the quadratic formula to its quadratic factors.

Let’s first treat a special case, one for which we will find the desired

factorization, although the case is sufficiently simple that we could find the

roots directly.

Exercise 6.6. Let q and s be real numbers and consider the polynomial

z4 C qz2 C s.

(i) Assume that q2 � 4s � 0. Show that z4 C qz2 C s factors as .z2 C
l/.z2 Cm/.
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(ii) Assume that q2 � 4s < 0 and observe that this implies s > 0. Verify

that a factorization of the form .z2 C l/.z2 Cm/ can’t exist. Therefore,

to show that z4 Cqz2 Cs factors as a product of quadratic polynomials

with real coefficients, we will instead seek a factorization of the more

general form

z4 C qz2 C s D .z2 C kz C l/.z2 C k0z Cm/;

where the coefficients k, k0, l , and m are real and k and k0 are non-

zero. Our search will occupy the remainder of the exercise.

(iii) Multiply the two quadratic polynomials, obtain expressions for the co-

efficients of each power of z, and show that for equality to hold, we

must have k0 D �k and l D m. Thus, we can simplify our task and

look for a factorization of the form

z4 C qz2 C s D .z2 C kz C l/.z2 � kz C l/:

(iv) Show next that for equality to hold, k and l must satisfy l2 D s and

2l D k2 C q. We view these as equations in the unknowns k and l ,

with q and s regarded as known constants.

(v) Square both sides of 2l D k2 C q, substitute s for l2, and show that k

must satisfy

k4 C 2qk2 C .q2 � 4s/ D 0:

(vi) This is a quadratic equation in k2. Set j D k2 and write it as

j 2 C 2qj C .q2 � 4s/ D 0:

(vii) Check that the discriminant of j 2 C 2qj C .q2 � 4s/ as a quadratic

polynomial in j is 16s, which is positive. Deduce that the quadratic

polynomial’s roots are real and distinct. Using the assumption that q2�
4s < 0, deduce that there is a positive real root. (Recall Theorem 5.13.)

(viii) Let k and �k represent the square roots of the positive root. Conclude

that k and �k give a value for l and allow us to factor z4 C qz2 C s as

a product of quadratic polynomials with real coefficients.

Exercise 6.6 shows that a quartic polynomial of the form z4 C qz2 C s

factors as a product of quadratic polynomials. We can use the factorization

to find the roots of z4 C qz2 C s. Alternatively, we can find them directly.
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Exercise 6.7. Use the quadratic formula to show that the roots of z4 C
qz2 C s are

˙

s

�q
2

˙
p

q2 � 4s
2

:

The argument in Exercise 6.6 showing when q2 � 4s < 0 that z4 C
qz2 C s can be factored as a product of quadratic polynomials with real

coefficients can be extended to quartic polynomials with non-zero linear

term.

Exercise 6.8. Let q, r , and s be real numbers, with r ¤ 0, and consider

the polynomial z4 C qz2 C rz C s.

(i) We wish to find real numbers k, k0, l , and m for which z4 C qz2 C
rz C s factors as

.z2 C kz C l/.z2 C k0z Cm/:

Show that for this to hold, we must have k0 D �k. Thus we can look

for a factorization of the form

z4 C qz2 C rz C s D .z2 C kz C l/.z2 � kz Cm/:

Check also, since r ¤ 0, that k must be non-zero.

(ii) Multiply the two quadratic polynomials and show that for equality to

hold, k, l , and m must satisfy

l Cm� k2 D qI k.m � l/ D r I lm D s:

(iii) Since k can’t be zero, we are free to divide by it. Do so in the second

equation and obtain from the first two equations the new equations

mC l D q C k2I m� l D r

k
:

Using these, obtain

2m D q C k2 C r

k
I 2l D q C k2 � r

k
:

Conclude that l and m are determined once k is known.

(iv) We can multiply both sides of the equation lm D s by 4 to obtain

.2l/.2m/ D 4s. Substitute the expressions for 2l and 2m and obtain

k6 C 2qk4 C .q2 � 4s/k2 � r2 D 0:
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(v) This is a cubic equation in k2. Set j D k2 and write it as

j 3 C 2qj 2 C .q2 � 4s/j � r2 D 0:

(vi) Deduce from Theorem 5.17 that the cubic equation in j has a positive

real solution.

(vii) Let k and �k represent the square roots of this solution. Conclude that

k and �k give values for l and m and allow us to factor z4 C qz2 C
rzCs as a product of quadratic polynomials with real coefficients. The

roots of the quadratic polynomials yield the solutions of the original

quartic equation.

(viii) If s D 0, then solving the original quartic equation reduces to solving

z3 C qz C r D 0. The degree-six polynomial in k becomes k6 C
2qk4 C q2k2 � r2, which factors as .k3 C qk C r/.k3 C qk � r/.

Hence, setting it equal to 0 and solving for k is essentially the same as

solving the original equation.

We have obtained a procedure for finding roots of quartic polynomials.

First we pass from a quartic polynomial

x4 C bx3 C cx2 C dx C e

to its associated reduced quartic polynomial

z4 C qz2 C rz C s:

If r ¤ 0, we write the cubic polynomial

j 3 C 2qj 2 C .q2 � 4s/j � r2;

which is called the resolvent cubic of the quartic z4 Cqz2 CrzCs. If r D 0

and q2 � 4s < 0, we can work with the same cubic, or its quadratic factor

j 2 C 2qj C .q2 � 4s/. We find a positive real root of the resolvent cubic,

take its square roots, use them to factor the reduced quartic as a product

of quadratic polynomials with real coefficients, find their roots, and thereby

obtain the roots of the original quartic polynomial. If r D 0 and q2�4s � 0,

we obtain a factorization of z4 C qz2 C rz C s directly as a product of

quadratics, using the quadratic formula.

We restate some of this discussion in the next theorem.
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Theorem 6.2. Let z4 Cqz2 C rzC s be a reduced quartic polynomial with

real coefficients. Assume that r ¤ 0 or that r D 0 and q2 � 4s < 0. Let

j 3 C 2qj 2 C .q2 � 4s/j � r2

be the given quartic’s associated resolvent cubic polynomial and let k and

�k be square roots of a positive real root of the resolvent cubic. Then z4 C
qz2 C rz C s factors as

�

z2 C kz C
1

2

�

q C k2 �
r

k

�

��

z2 � kz C
1

2

�

q C k2 C
r

k

�

�

:

The roots of z4 Cqz2CrzCs are the roots of the two quadratic polynomials

in the factorization.

The procedure for finding roots of quartic polynomials can be long and

complicated, but in principle it works. The hardest part is likely to be the

calculation of roots of the resolvent cubic, a problem we already understand.

Let’s try the procedure on some examples. They are designed so that

the polynomials arising as resolvent cubics have positive real roots that are

easy to find. Thus, in solving the quartic equations, we can focus on the

new features of the procedure and not get distracted by the now-familiar

difficulties of the cubic.

Exercise 6.9. Find the four solutions of

z4 � 3z2 C 6z � 2 D 0:

To do so, write the resolvent cubic, find a real root by guessing (squares of

integers are good guesses), take its two square roots, factor z4 �3z2 C6z�2
as a product of two quadratic polynomials, and find their roots.

Exercise 6.10. Find the four solutions of

z4 � 2z2 � 8z � 3 D 0

by following the procedure outlined in Exercise 6.9.

Our third example is the quartic equation of Exercise 6.5. We will solve

it using Descartes’ method.

Exercise 6.11. Find the four solutions of

z4 � 12z C 3 D 0:
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In this case, since there is no square term, the resolvent cubic will be a

reduced cubic, so that Cardano’s formula can be applied directly. Find a

real root by using Cardano’s formula or by guessing. (Guessing may not

lead to a root that is the square of an integer, but it may lead to a positive

integer.) Then proceed as in the preceding exercises. Compare the solutions

to the result in Exercise 6.5 to make sure they are the same.

We have found that a reduced quartic polynomial

z4 C qz2 C rz C s

with real coefficients factors as a product of quadratic polynomials with real

coefficients. From this, we can obtain information on the nature of the roots

of any quartic polynomial.

Theorem 6.3. Any quartic polynomial f .x/ with real coefficients factors

as a product of quadratic polynomials with real coefficients. Exactly one of

the following possibilities occurs for the roots of f .x/:

(i) f .x/ has four distinct real roots.

(ii) f .x/ has two distinct real roots and a pair of non-real complex conju-

gate roots.

(iii) f .x/ has no real roots, but two pairs of distinct non-real complex con-

jugate roots.

(iv) f .x/ has repeated roots.

Exercise 6.12. Deduce Theorem 6.3 for reduced quartic polynomials from

Exercise 6.6 and Theorem 6.2. Then explain why it holds for quartic poly-

nomials in general.

6.4 Euler’s Formula

We can refine Descartes’ method of solving a reduced quartic equation (Ex-

ercise 6.8 and Theorem 6.2) to obtain a formula for its solutions in terms of

the solutions of the associated resolvent cubic equation. The formula is due

to Euler, who obtained it directly rather than as a consequence of Descartes’

result. We will be content to derive it from Descartes’ factorization. Euler’s

approach will be discussed at the end of Section 6.8.

We consider once again the reduced quartic equation

z4 C qz2 C rz C s D 0:
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In light of the explicit description of its solutions in Exercise 6.7 when r D
0, let’s assume that r ¤ 0. Suppose the three solutions of the resolvent cubic

equation

j 3 C 2qj 2 C .q2 � 4s/j � r2 D 0:

are j1, j2, and j3. Our goal is to describe the roots of z4 C qz2 C rzC s in

terms of j1, j2, and j3.

We have already shown that at least one of the resolvent cubic’s roots

is positive and real. Let’s assume it is j1, and let k1 and �k1 be its square

roots. Because j1 is positive, k1 and �k1 are real. The other two roots of

the resolvent cubic, j2 and j3, may be real or may be complex conjugates.

Whether or not j2 and j3 are real, their square roots are opposites of

each other. Thus we can write k2 and �k2 for the square roots of j2 and k3

and �k3 for the square roots of j3.

Do not be fooled by the notation. Seeing the pair ki and �ki , you should

not assume that ki is positive or that �ki is negative. In fact, they may not

even be real. The notation should convey only that whatever they are, each

is the opposite of the other.

Exercise 6.13. Use the notation and assumptions of the preceding discus-

sion.

(i) Explain why there are eight possible choices for the triple of numbers

.k1; k2; k3/, depending on choice of signs.

(ii) Show that

j1 C j2 C j3 D �2q; j1j2j3 D r2:

(Hint: Use Theorem 5.14 on how the roots and coefficients of a cubic

polynomial are related.)

(iii) Deduce that the product k1k2k3 equals either r or �r , depending on

which square roots of the ji ’s are chosen as the ki ’s. More precisely,

deduce that four of the eight choices of .k1; k2; k3/ result in k1k2k3 D
r and that the other four choices result in k1k2k3 D �r .

Exercise 6.14. Continue within the setting of Exercise 6.13. For definite-

ness, let’s fix the choice of triple of square roots .k1; k2; k3/ to be one of

the four satisfying k1k2k3 D �r .

(i) Given our choice of k1 as one of the square roots of the positive real

number j1, we obtain from Theorem 6.2 the factorization of z4Cqz2C
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rz C s as
�

z2 C k1z C 1

2

�

q C k2
1 � r

k1

���

z2 � k1z C 1

2

�

q C k2
1 C r

k1

��

:

Use the quadratic formula to obtain expressions for the roots of

z2 C k1z C 1

2

�

q C k2
1 � r

k1

�

:

Show that

z D �k1

2
˙ 1

2

s

k2
1 � 2

�

q C k2
1 � r

k1

�

:

(ii) Use the formulas from Exercise 6.13 for �2q and r in terms of the ki ’s

as well as the choice of the triple .k1; k2; k3/ to satisfy k1k2k3 D �r
to write this equality as

z D �k1

2
˙ 1

2

p

.k2 � k3/2:

(iii) Conclude that the roots of the quadratic factor are

z D 1

2
.�k1 C k2 � k3/ and z D 1

2
.�k1 � k2 C k3/:

(iv) Follow the same procedure to find the roots of

z2 � k1z C 1

2

�

q C k2
1 C r

k1

�

and show that you get

z D 1

2
.k1 C k2 C k3/ and z D 1

2
.k1 � k2 � k3/:

(v) Conclude that once the three roots j1, j2, j3 of the resolvent cubic

polynomial are found, the roots of the quartic polynomial can be ex-

pressed in terms of square roots of j1, j2, and j3, as described in The-

orem 6.4.

Theorem 6.4. Let q, r , and s be real numbers with r ¤ 0. Let j1, j2, and

j3 be the roots of the resolvent cubic polynomial

j 3 C 2qj 2 C .q2 � 4s/j � r2
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associated with the quartic polynomial

z4 C qz2 C rz C s:

Then the roots of z4 C qz2 C rz C s are the four sums

1

2

�

p

j1 C
p

j2 C
p

j3

�

arising from the choices of square roots
p
j1,

p
j2,

p
j3 that satisfy

p

j1 �
p

j2 �
p

j3 D �r:

Let’s solve two quartic equations using Theorem 6.4. The equations

have been chosen so that the roots of the resolvent cubic polynomials are

easily found by trial and error.

Exercise 6.15. Find all four solutions of

z4 � 3z2 C
p
6z � 1

2
D 0

and all four solutions of

z4 � 3z2 �
p
6z �

1

2
D 0:

In the last exercise, the two quartic equations have the same resolvent

cubic equation. This is a special case of a general phenomenon.

Exercise 6.16. Explain why the quartic equations

z4 C qz2 C rz C s D 0

and

z4 C qz2 � rz C s D 0

have the same resolvent cubic equation. Describe how the solutions of the

first are related to the solutions of the second.

6.5 The Discriminant

The discriminant of a quadratic or cubic polynomial is defined as the square

of the product of differences of the roots. The discriminant of a quartic

polynomial

x4 C bx3 C cx2 C dx C e
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is defined in the same way. Suppose its roots are r1, r2, r3, and r4. Then its

discriminant� is the product

.r1 � r2/2.r1 � r3/2.r1 � r4/
2.r2 � r3/2.r2 � r4/

2.r3 � r4/2:

Because the root differences are squared, we get the same result regardless

of how the roots are ordered.

For quadratic and cubic polynomials, the discriminant is important for

two reasons. First, its sign gives us information on the nature of the roots:

how many are real numbers and how many are non-real complex numbers.

Second, there is a formula expressing the discriminant in terms of the co-

efficients of the polynomial, allowing us to calculate the discriminant from

the coefficients and thereby obtain information about the roots from the co-

efficients alone.

We will show for a quartic polynomial that the discriminant gives in-

formation on the nature of the roots, although not as complete as in the

quadratic and cubic cases, and that it can be calculated from the coefficients.

Exercise 6.17. In this exercise, we will find out what the discriminant of

a quartic polynomial tells us about the nature of its roots. Let f .x/ be the

polynomial, with discriminant�, and let r1, r2, r3, and r4 be its roots.

(i) Check that� D 0 precisely when at least two of the roots coincide.

(ii) Assume in the remainder of the exercise that the four roots are dis-

tinct, so that � ¤ 0. From Theorem 6.3, there are three possibilities

for the roots: all are real, two are real and two are non-real complex

conjugates, or there are two pairs of non-real complex conjugates.

(iii) Show that if all four roots are real, then � > 0.

(iv) Suppose two roots are real and two are complex conjugates. Show that

� < 0. (Hint: The product of a non-zero complex number and its

conjugate is a positive real number. Name the four roots r , s, a C
bi , and a � bi , where r , s, a, and b are real numbers. There are six

root differences. Four of the six differences occur as pairs of conjugate

complex numbers, so that their products are real. One of the remaining

root differences is real and the other is pure imaginary. From this it

follows that � is negative.)

(v) Suppose that the four roots occur in two pairs of non-real complex

conjugates. Show that � > 0. (Hint: Pair four of the differences so

that they are conjugates and their products are real. The other two root

differences should be pure imaginary.)
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(vi) Show that the converses of the statements in (iii)–(v) hold; that is,

prove Theorem 6.5. (Hint: As in Exercises 4.7 and 5.7, these follow

from the statements themselves by an elementary logical argument.)

Theorem 6.5. Let f .x/ be a polynomial of degree 4 with discriminant�.

(i) If � is positive, then f .x/ has four distinct roots. Either they are all

real or they are all non-real, in which case they form two complex

conjugate pairs.

(ii) If � D 0, then f .x/ has a root occurring with multiplicity at least 2.

(iii) If � is negative, then f .x/ has four distinct roots. Two are real and

two form a complex conjugate pair.

When the discriminant is positive, Theorem 6.5 does not completely

settle the nature of the roots. Theorem 6.9 will describe how to make further

use of the coefficients to determine whether the roots are all real or all non-

real.

We wish to calculate � in terms of the coefficients of the polynomial.

We begin with the special case of a reduced quartic with no linear term.

Exercise 6.18. Let q and s be real numbers. Use the description of the

roots of

z4 C qz2 C s

in Exercise 6.7 to calculate the discriminant, obtaining Theorem 6.6.

Theorem 6.6. Let q and s be real numbers. The discriminant of z4Cqz2Cs
is given by

� D 16s.q2 � 4s/2 D �128q2s2 C 16q4s C 256s3:

The key to computing the discriminant of a general reduced quartic

polynomial is to relate it to the discriminant of the quartic’s resolvent cubic.

Exercise 6.19. Let q, r , and s be real numbers, with r ¤ 0.

(i) Using the notation we employed in Exercise 6.14, write the roots r1,

r2, r3, and r4 of z4 C qz2 C rz C s as halves of sums of ˙ki . Show

that the six root differences, up to sign, are

k1 C k2; k1 C k3; k2 C k3;

k1 � k2; k1 � k3; k2 � k3:
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(ii) Deduce that

� D .k2
1 � k2

2/
2.k2

1 � k2
3/

2.k2
2 � k2

3/
2:

(iii) The ki ’s are the square roots of the solutions j1, j2, j3 of the resolvent

cubic equation. Using the ji ’s, write the equation for � as

� D .j1 � j2/
2.j1 � j3/

2.j2 � j3/
2:

Since the ji ’s are by definition the roots of the resolvent cubic poly-

nomial, the product on the right side is in fact the discriminant of the

resolvent cubic.

Since the discriminant of z4 C qz2 C rzC s (r ¤ 0) coincides with the

discriminant of its resolvent cubic, we can compute it using our results on

discriminants of cubics. Let’s do this in a simple special case first.

Exercise 6.20. Let r and s be real numbers with r ¤ 0.

(i) Check that the resolvent cubic of z4 C rz C s is the reduced cubic

j 3 � 4sj � r2:

(ii) Use the formula for the discriminant of a reduced cubic polynomial

y3 C py C q in terms of p and q to show that its discriminant is

256s3 � 27r4:

(iii) Deduce that 256s3 � 27r4 is the discriminant of z4 C rz C s also.

Exercise 6.21. Compute the discriminants of the quartic polynomials be-

low and say what you can about their number of real roots.

(i) z4 C z C 1.

(ii) z4 C z � 1.

(iii) z4 C z C s. (The answer depends on s.)

We now obtain a formula for the discriminant of a general reduced quar-

tic polynomial.

Exercise 6.22. Let q, r , and s be real numbers, with r ¤ 0.

(i) The resolvent cubic of z4 C qz2 C rzC s has coefficients 2q, q2 � 4s,
and �r2. Use the formula in Theorem 5.6 for the discriminant of x3 C
bx2 C cx C d , substitute for b, c, and d , and obtain a complicated

expression in q, r , and s for the discriminant of the resolvent cubic.
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6.5. The Discriminant 161

(ii) Conclude that it is also the discriminant of the reduced quartic polyno-

mial z4 C qz2 C rz C s with which we began.

(iii) Expand and simplify the expression in q, r , and s. Combine with The-

orem 6.6 to conclude that Theorem 6.7 holds.

Theorem 6.7. The discriminant� of the reduced quartic polynomial z4 C
qz2 C rz C s is given by

� D 144qr2s � 128q2s2 � 4q3r2 C 16q4s � 27r4 C 256s3:

Exercise 6.23. Compute the discriminants of the cubic polynomials below.

What can be said about their number of real roots?

(i) z4 � 3z2 C 6z � 2.

(ii) z4 � 2z2 � 8z � 3.

(iii) z4 � 3z2 C
p
6z � 1

2
.

The discriminant of an arbitrary quartic polynomial can be computed,

although the process is laborious.

Exercise 6.24. Consider the quartic polynomial

x4 C bx3 C cx2 C dx C e:

From Exercise 6.2 and Theorem 6.1, the change of variable x D y � .b=4/
transforms x4 C bx3 C cx2 C dx C e into a polynomial of the form z4 C
qz2 C rz C s.

(i) Verify, as in Exercise 5.10, that although the roots of x4 C bx3 C
cx2 C dx C e and the roots of z4 C qz2 C rz C s are not the same,

their differences are.

(ii) Deduce that the discriminant of x4 C bx3 C cx2 C dxC e is the same

as the discriminant of z4 C qz2 C rz C s.

(iii) Conclude that a formula for the discriminant of x4Cbx3Ccx2CdxCe
in terms of b, c, d , and e can be found by substituting into the formula

for the discriminant of z4 C qz2 C rz C s the expressions given by

Theorem 6.1 for q, r , and s in terms of b, c, d , and e.

(iv) Carry out this calculation, simplify, and conclude that Theorem 6.8

holds.
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Theorem 6.8. The discriminant� of the quartic polynomial x4 C bx3 C
cx2 C dx C e is given by

� D 18bcd 3 C 18b3cde � 80bc2de � 6b2d 2e C 144cd 2e

C 144b2ce2 � 128c2e2 � 192bde2 C b2c2d 2 � 4b3d 3

� 4c3d 2 � 4b2c3e C 16c4e � 27d 4 � 27b4e2 C 256e3:

6.6 The Nature of the Roots

We saw in Theorem 6.5 that the discriminant of a quartic polynomial gives

us partial information on the nature of its roots. In this section, we will

do better by supplementing the discriminant with other expressions in the

coefficients. We know for example that a quartic with positive discriminant

has either four distinct real roots or four distinct non-real roots occurring in

complex conjugate pairs. We will refine this, then turn to a closer analysis

of quartic polynomials with zero discriminant.

Exercise 6.25. Consider the quartic polynomial

z4 C qz2 C s

and assume its discriminant � is positive. We wish to determine, in terms

of q and s, whether the roots are all real or all non-real.

(i) Use the fact that� > 0 and the formula for� (Theorem 6.6) to deduce

that s > 0.

(ii) Deduce that the roots of z4 C qz2 C s are non-zero, and that they

will all be real precisely when the roots of the quadratic polynomial

t2 C qt C s are real and positive.

(iii) Using Theorem 5.13 and the fact that s > 0, deduce that this occurs

precisely when q < 0 and q2 � 4s > 0.

Next we examine reduced quartic polynomials with non-zero linear term.

Exercise 6.26. Consider the quartic polynomial

z4 C qz2 C rz C s:

Assume that its discriminant� is positive and that r ¤ 0.
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(i) Deduce, since � is also the discriminant of the resolvent cubic poly-

nomial

j 3 C 2qj 2 C .q2 � 4s/j � r2;

that its roots j1, j2, and j3 are real and distinct.

(ii) From Theorem 5.14, deduce that

j1j2j3 D r2:

(iii) Conclude that either all the roots ji are positive or one is positive and

the other two are negative.

(iv) From Theorem 5.16, deduce that the ji are all positive precisely when

q < 0 and q2 � 4s > 0:

(v) If the ji are all positive, then their square roots ˙ki are all real num-

bers. Conclude from Theorem 6.4 that the four roots of the quartic

z4 C qz2 C rz C s are all real.

(vi) Suppose j1 is positive and j2 and j3 are negative. Conclude that the

two square roots ˙k1 are real while ˙k2 and ˙k3 are pure imaginary.

Show in this case that the four roots of z4 C qz2 C rz C s are all

non-real complex numbers.

(vii) Conclude that the roots of z4 Cqz2 CrzCs are all real precisely when

q < 0 and q2 � 4s > 0.

Combining the results of Exercises 6.25 and 6.26, we obtain:

Theorem 6.9. The roots of a reduced quartic polynomial z4 Cqz2 CrzCs
with positive discriminant are all real if q < 0 and q2 � 4s > 0, and all

non-real otherwise.

This result is due to Lagrange, who stated it in his Traité de la Résolution

des Équations Numériques de Tous les Degrés [39, p. 68], which first ap-

peared in 1798.

Exercise 6.27. For each of the quartic polynomials, use the discriminant

and the coefficients to decide how many roots are real.

(i) z4 C z C 1.

(ii) z4 C z � 1.
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(iii) z4 C z C s. (The answer depends on s.)

(iv) z4 � 3z2 C 6z � 2.

(v) z4 � 2z2 � 8z � 3.

(vi) z4 � 3z2 C
p
6z � 1

2
.

A version of Theorem 6.9 for arbitrary quartic polynomials is easily

derived. A polynomial x4 C bx3 C cx2 CdxC e has the same discriminant

as its associated reduced quartic polynomial z4 C qz2 C rzC s. Moreover,

the two are related through a change of variable by the real number �b=4,

as described in Theorem 6.1. Hence, if their shared discriminant is positive,

then both have all real roots or all non-real roots. Which of the two occurs,

according to Theorem 6.9, is determined by the signs of q and q2 � 4s, and

these can be expressed in terms of b, c, d , and e, as in Theorem 6.1. This

yields a theorem describing whether the roots of x4 C bx3 C cx2 C dxC e

are all real or all non-real in terms of b, c, d , and e.

Combining this with Theorem 6.5, we can decide from a quartic polyno-

mial’s coefficients when it has roots that are real and distinct, non-real and

distinct, or a mix of real and non-real but distinct. The remaining possibility,

which occurs when the quartic has zero discriminant, is that of a repeated

root. We conclude our development of the quartic with an examination of

this case, leaving many of the details for the reader to work out.

Once again, we look first at quartics whose linear term is zero, recalling

from Theorem 6.6 that z4 Cqz2 Cs has discriminant 16s.q2 �4s/2. Hence,

for the discriminant to be 0, either s D 0 or q2 � 4s D 0.

Theorem 6.10. Let z4 C qz2 C s be a quartic polynomial with zero dis-

criminant.

(i) Assume s D 0. Then z4 C qz2 factors as z2.z2 C q/.

(a) If q D 0, then 0 is a root of multiplicity 4.

(b) If q ¤ 0, then 0 is a root of multiplicity 2 and the square roots of

�q are roots of multiplicity 1, real if q < 0 and pure imaginary if

q > 0.

(ii) Assume s ¤ 0, so that q2 � 4s D 0 and q ¤ 0. Then z4 C qz2 C s

factors as .z2 C q=2/2.

(a) If q < 0, then z4 C qz2 C s has two real roots of multiplicity 2,

each the other’s opposite.

(b) If q > 0, then z4 C qz2 C s has two pure imaginary roots of

multiplicity 2, each the other’s opposite.
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Exercise 6.28. Prove Theorem 6.10

To continue, we need the quartic analogue of Theorem 5.14, which de-

scribes the coefficients of a cubic polynomial in terms of its roots.

Theorem 6.11. Let x4 Cbx3 Ccx2 CdxCe be a quartic polynomial with

real coefficients b, c, d , and e, and suppose its roots are r1, r2, r3, and r4.

Then

b D �r1 � r2 � r3 � r4;
c D Cr1r2 C r1r3 C r1r4 C r2r3 C r2r4 C r3r4;

d D �r1r2r3 � r1r2r4 � r1r3r4 � r2r3r4;

e D Cr1r2r3r4:

Exercise 6.29. Prove Theorem 6.11. (Hint: Use the factorization of x4 C
bx3 C cx2 C dx C e as .x � r1/.x � r2/.x � r3/.x � r4/.)

Theorem 6.11 tells us in particular that the sum of the roots of a reduced

quartic polynomial is 0. We can now complete our analysis of the roots of a

such a polynomial when it has zero discriminant.

Theorem 6.12. Let z4 C qz2 C rz C s be a reduced quartic polynomial

with zero discriminant.

(i) If z4 C qz2 C rz C s has a root of multiplicity 4, or two roots of

multiplicity 2, or 0 as a root of multiplicity 2, then r D 0 and the roots

are as described in Theorem 6.10.

(ii) Assume r ¤ 0. Then z4 Cqz2 C rzC s has either a non-zero real root

of multiplicity3 and a real root of multiplicity1 or a non-zero real root

of multiplicity 2 and two roots of multiplicity 1.

(a) If q < 0 and q2 � 4s > 0, the roots are all real. If q2 C 12s D 0,

there is a non-zero real root a of multiplicity 3 and �3a is a root

of multiplicity 1. If q2 C 12s ¤ 0, there is a non-zero real root a

of multiplicity 2 and there are two real roots of the form �a C c

and �a � c for some non-zero real number c with c ¤ ˙2a.

(b) If it is not the case that q < 0 and q2 � 4s > 0, then there is a

non-zero real root a of multiplicity 2 and there are two complex

conjugate roots of the form �a C bi and �a � bi , for some non-

zero real number b.
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Exercise 6.30. Prove Theorem 6.12.

(i) From Theorem 6.3, if a non-real complex number occurs as a quartic’s

root, so does its conjugate. Using this and Theorem 6.11, prove (i) by

calculating r in terms of the roots. (Remember, the roots add to 0.)

(ii) Assume r ¤ 0. Show that there is a non-zero real root a of multiplicity

2 or 3.

(iii) Show that if all the roots are real, they have the form a; a;�aCc;�a�
c for some non-zero real number c, but if they are not all real, they have

the form a; a;�aC bi;�a� bi for some non-zero real number b.

(iv) Use Theorem 6.11 to calculate q, r and s in terms of the roots. Verify

that q < 0 and q2 � 4s > 0 if the roots are all real, but not otherwise.

(v) Compute q2 C 12s in terms of the roots and show that it is the square

of a simple expression. Check that it can’t be 0 unless the roots are all

real, in which case it is 0 precisely when c D ˙2a. This is exactly the

case of a multiplicity 3 root.

In the case of a quartic polynomial z4 Cqz2 CrzCs with zero discrim-

inant and r ¤ 0, Theorem 6.12 focuses attention on the quantity q2 C 12s.

Whether it is zero or not determines whether the polynomial has a triple

root or not. A similar result holds for z4 C qz2 C s: for its discriminant to

be zero, either s D 0 or q2 � 4s D 0. Either way, if q2 C 12s D 0, then

q D s D 0, and conversely. Thus, q2C12s D 0 precisely when z4 Cqz2Cs
has a quadruple root. This yields the following theorem.

Theorem 6.13. The polynomial z4 Cqz2 CrzCs has a root of multiplicity

3 or 4 precisely when � D 0 and q2 C 12s D 0.

We can use Theorem 6.1 on change of variable to extend our results

on reduced quartic polynomials with zero discriminant to arbitrary quartic

polynomials with zero discriminant. As one example, we obtain:

Theorem 6.14. The polynomial x4 C bx3 C cx2 C dx C e has a root of

multiplicity 3 or 4 precisely when � D 0 and c2 � 3bd C 12e D 0.

Exercise 6.31. Prove Theorem 6.14.

These theorems provide our final illustration of the theme that a poly-

nomial’s coefficients encode rich information on its roots.
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6.7 Cubic and Quartic Reprise

We close our treatment of cubic and quartic polynomials with three exer-

cises that provide an opportunity to review what we have learned. In each

exercise, the reader is given a list of items to address and asked to write

an essay. The essay should be seamless, treating the items in an integrated

manner rather than separately and in isolation.

Exercise 6.32. Write an essay on solving cubic equations. Illustrate by

computing solutions to

x3 C 6x2 C 3x C 18 D 0

and
x3 � 3x2 � 10x C 24 D 0:

Interweave a concrete treatment of the equations with the general discus-

sion, including the following points.

(i) The reduction of arbitrary cubic equations to reduced cubic equations,

so that Cardano’s formula can be applied.

(ii) How Cardano’s formula can be used to obtain not just one but three

solutions to the reduced cubic equation. In particular, explain which

cube roots to pair in the formula in order to obtain the three solutions.

(iii) How to compute cube roots of non-real complex numbers.

(iv) How to sidestep such computations by relying instead on trigonometric

and inverse trigonometric functions.

Exercise 6.33. Write an essay on solving quartic equations. Illustrate by

computing solutions to the quartic equations

x4 � 4x3 C 3x2 C 8x � 10 D 0

and
x4 � 42x2 C 64x C 105 D 0:

Interweave a concrete treatment of the equations with the general discus-

sion, including the following points.

(i) The reduction of arbitrary quartic equations to reduced quartic equa-

tions, and its application to the first quartic.

(ii) The solving of a reduced quartic equation, such as the one obtained,

by writing the reduced quartic polynomial in it as a product of two
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quadratic polynomials with unknown coefficients, obtaining equations

that the coefficients must satisfy, and reducing the solution of the equa-

tions to the problem of solving a cubic equation.

(iii) Solving the cubic equation in the example by guessing, using the so-

lution to obtain a factorization of the quartic polynomial as a product

of quadratic polynomials, obtaining solutions to the reduced quartic

equation, and then finding solutions to the original quartic equation.

(iv) A description of the general form of the cubic equation to solve in

studying a reduced quartic polynomial, illustrating this with the second

example and obtaining

j 3 � 84j 2 C 1344j � 4096 D 0:

(v) The observation, after guessing a solution to this cubic equation, that

we can use the procedure described for the first quartic to factor the

second one as a product of two quadratic polynomials, followed by

an explanation that we can instead describe the roots of the reduced

quartic in terms of the three solutions of the cubic equation.

(vi) A list of eight candidates for solutions to the original quartic equation

in terms of the three solutions to the cubic equation, and an explanation

of which four to choose. (Provide an explanation that does not depend

on substituting all eight candidates in the original equation.)

(vii) A description of a quartic equation whose solutions are the other four

candidates, and an explanation of why they are solutions.

(viii) A discussion of how these ideas can be used to solve any quartic equa-

tion, once a method is available for solving cubic equations.

Exercise 6.34. Write an essay about the role the discriminant plays in un-

derstanding the solutions of quadratic, cubic, and quartic equations. Ad-

dress the following issues.

(i) The definition of the discriminant of a polynomial of degree 2, 3, or 4

in terms of its roots, and the information it gives about the roots.

(ii) The formula for the discriminant of a polynomial of degree 2, 3, or 4

in terms of its coefficients, and how the formulas make it possible to

obtain information about the roots from the coefficients.

(iii) The quadratic formula for the roots of a quadratic polynomial and the

appearance of the discriminant within the formula.
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(iv) Cardano’s formula for the roots of a reduced cubic polynomial and the

appearance of the discriminant within the formula.

(v) The way in which the sign of the discriminant of a cubic polynomial

affects the calculations in Cardano’s formula, with the need to compute

cube roots of non-real complex numbers in certain cases.

(vi) How to combine information from the discriminant of a quartic poly-

nomial with information from the quartic’s coefficients to refine our

understanding of the nature of the quartic’s roots.

6.8 History

Lodovico Ferrari was the first person to develop a method for solving quar-

tic equations. We already introduced him in Section 3.5, learning that he

was Cardano’s assistant, that Cardano described his quartic solution in Ars

Magna, and that he participated in the famous dispute in 1548 with Tartaglia.

Let us look at Cardano’s presentation of Ferrari’s work before moving on to

contributions of two intellectual giants from the following centuries, René

Descartes and Leonhard Euler.

Cardano presents the quartic solution in the penultimate chapter of Ars

Magna, making the following transition [12, p. 237]:

There is another rule, more noble than the preceding. It is Lodovico

Ferrari’s, who gave it to me on my request. Through it we have all the

solutions for equations of the fourth power, square, first power, and

number, or of the fourth power, cube, square, and number, and I set

them out here in order.

What Cardano sets out are twenty families of quartic equations, depending

on the signs of the coefficients.

After describing a procedure for handling the equations, Cardano works

nine examples. The first example is introduced by [12, p. 239]:

For example, divide 10 into three proportional parts, the product of the

first and second of which is 6. This was proposed by Zuanne de Tonini

de Coi, who said it would not be solved. I said it could, though I did not

yet know the method [for doing so]. This was discovered by Ferrari.

Let the mean be x. The first, then, will be 6=x and the third will be

x3=6. These equal 10. Multiplying all terms by 6x, we will have

60x D x4 C 6x2 C 36:



“IrvingBook” — 2013/5/22 — 15:39 — page 170 — #186
i

i

i

i

i

i

i

i

170 6. Quartic Polynomials

Cardano spends several pages on the details of this example’s solution.

It is the equation of Exercise 6.4. More examples follow, until he comes to

z4 C 3 D 12z;

which we encountered in Exercise 6.5, and to an example of a non-reduced

quartic. He concludes, “By this you know the methods for these rules if you

have paid careful attention to the examples and the operations.”

Let us turn to Descartes. He is one of the founders of both modern phi-

losophy and modern mathematics. It is impossible to do justice to his life,

his work, and his impact in a short space. We will have to be content with a

brief survey of his contributions to algebra. But first, a few words about the

broader context of his work and how algebra fit into it.

Descartes was born in 1596 in La Haye, France. In 1619 he had the now-

famous dreams that inspired him to find a new basis for scientific inquiry.

He moved to the Netherlands in 1628 and published Discours de la méthode

pour bien conduire sa raison et chercher la vérité dans les sciences, or A

Discourse on the Method of Correctly Conducting One’s Reason and Seek-

ing Truth in the Sciences [18], in 1637. Ian Maclean opens the introduc-

tion to his translation [18, p. vii] with the observation that it “marks one

of the pivotal moments of Western European thought; it was the work of

a formidably clever, radical, rigorous thinker, who in this short, informally

presented introduction to his work threatened the very foundations of many

prevailing philosophical beliefs, and set an agenda for enquiry into man and

nature whose effects have lasted up to the present day.”

The work consists of a preface and three essays. The preface, “A Dis-

course on the Method,” is the most famous part, for it is here that Descartes

seeks to “reform my own thoughts and build on a foundation which is mine

alone.” [18, p. 15]. Algebra is one of the areas to which he intends to apply

his new foundation [18, p. 17]:

As for ancient geometrical analysis and modern algebra, even apart

from the fact that they deal only in highly abstract matters that seem to

have no practical application, the former is so closely tied to the con-

sideration of figures that it is unable to exercise the intellect without

greatly tiring the imagination, while in the latter case one is so much

a slave to certain rules and symbols that it has been turned into a con-

fused and obscure art that bewilders the mind instead of being a form

of knowledge that cultivates it. This was why I thought that another

method had to be found.

In the next paragraph, he proposes his first precept, “never to accept

anything as true that I did not incontrovertibly know to be so.” This is a stiff
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challenge. Some pages later, in one of the most historic passages of western

literature, Descartes arrives at his first item of knowledge [18, p. 28]:

Because our senses sometimes deceive us, I decided to suppose that

nothing was such as they lead us to imagine it to be. And because

there are men who make mistakes in reasoning, even about the sim-

plest elements of geometry, and commit logical fallacies, I judged that

I was as prone to error as anyone else, and I rejected as false all the

reasoning I had hitherto accepted as valid proof. Finally, considering

that all the same thoughts which we have while awake can come to us

while asleep without any one of them being true, I resolved to pretend

that everything that had ever entered my head was no more true than

the illusions of my dreams. But immediately afterwards I noted that,

while I was trying to think of all things being false in this way, it was

necessarily the case that I, who was thinking them, had to be some-

thing; and observing this truth: I am thinking therefore I exist, was so

secure and certain that it could not be shaken by any of the most ex-

travagant suppositions of the skeptics, I judged that I could accept it

without scruple, as the first principle of the philosophy I was seeking.

This is Descartes’ famed statement of certainty, “Cogito, ergo sum,” tradi-

tionally translated as, “I think, therefore I am.”

Having developed a method for obtaining knowledge from secure foun-

dations, Descartes illustrates its effectiveness in three essays: La Dioptrique

(treating optics), Les Météores (treating meteorology), and La Géométrie

(treating, yes, geometry, but also algebra). Our interest is in La Géométrie.

There is much more to be said about Descartes’ philosophical work and his

life, but let us leave it at that, adding only that in 1649, he moved from the

Netherlands to Sweden to tutor Queen Christina, becoming ill a few months

later and dying in 1650.

We turn to La Géométrie. (An English translation by David Eugene

Smith and Marcia L. Latham with the title The Geometry of René Descartes

was published in 1925, the translated pages interleaved with a facsimile of

the original edition. It remains available in a reprinted version [19].) La

Géométrie has three parts. One might not guess from the third part’s title,

“On the Construction of Solid or Supersolid Problems,” that it is devoted

to algebra. This makes sense once one learns that in Descartes’ terminol-

ogy, solid refers to equations of degree 3 and supersolid to equations of

higher degree. This third part contains the first treatment of algebra written

with language and algebraic notation that we would recognize. Let’s survey

some of its highlights.
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In the fifth paragraph [19, p. 156], Descartes begins a sequence of “gen-

eral statements . . . concerning the nature of equations.” The next sentence

introduces a radical change in perspective: “An equation consists of several

terms, some known and some unknown, some of which are together equal

to the rest; or rather, all of which taken together are equal to nothing; for

this is often the best form to consider.”

What Descartes is proposing, and what we now take for granted, is that

polynomial equations are best written in the form of a polynomial on one

side of the equal sign and 0 on the other. Until this point equations would

be written with the restriction that coefficients are positive and terms should

be added, not subtracted, forcing the consideration of multiple forms of

quadratic and cubic equations, as we have seen.

Another of Descartes’ innovations is the use of letters near the end of the

alphabet for variables and letters near the beginning or middle as constants,

a notational convention that we take for granted. (Just before Descartes’

birth, Viète had taken the first step in this direction, using vowels for vari-

ables and consonants for constants.)

In the ensuing pages, Descartes makes the first-ever statements of a se-

ries of now-standard results about polynomials, and in language we would

find largely familiar. He speaks of the “dimension” of a polynomial or equa-

tion where we say “degree”. He distinguishes between positive and nega-

tive roots of a polynomial, calling the positive ones “true,” the negative ones

“false.” And, as we have seen, Descartes uses the word “nothing” in place

of “zero.” Given this terminology, the passage that comes after the sentence

about setting polynomials equal to nothing is completely understandable

[19, pp. 159–160]:

Every equation can have as many distinct roots (values of the unknown

quantity) as the number of dimensions of the unknown quantity in the

equation. . . . It often happens, however, that some of the roots are false

or less than nothing. . . . It is evident from the above that the sum of

an equation having several roots is always divisible by a binomial con-

sisting of the unknown quantity diminished by the value of one of the

true roots, or plus the value of one of the false roots. In this way, the di-

mension of an equation can be lowered. On the other hand, if the sum

of the terms of an equation is not divisible by a binomial consisting

of the unknown quantity plus or minus some other quantity, then this

latter quantity is not a root of the equation.

We find here the first statements of two of our theorems: Theorem 1.6, that

the number of roots of a polynomial is bounded by its degree, and Theorem

1.4, that if a is a root of the polynomial f .x/, then x � a divides f .x/.
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A few paragraphs later, Descartes explains how to pass from a polyno-

mial equation with a given set of roots to a new one with roots shifted by a

fixed quantity through a change of variable [19, pp. 163–164]:

If the roots of an equation are unknown and it be desired to increase or

diminish each of these roots by some known number, we must substi-

tute for the unknown quantity throughout the equation, another quan-

tity greater or less by the given number. Thus, if it be desired to in-

crease by 3 the value of each root of the equation

x4 C 4x3 � 19x2 � 106x � 120 D 0

put y in place of x, and let y exceed x by 3, so that y � 3 D x.

Then for x2 put the square of y � 3, or y2 � 6y C 9; for x3 put its

cube, y3 � 9y2 C 27y � 27; and for x4 put its fourth power, or y4 �
12y3 C 54y2 � 108y C 81: Substituting these values in the above

equation, and combining, we have . . . y4 � 8y3 � y2 C 8y D 0, or

y3 � 8y2 � y C 8 D 0, whose true root is now 8 instead of 5 since it

has been increased by 3.

New in this discussion is the abstract idea of transforming an equation

with one set of roots to an equation with a different set of roots without

knowing what the roots are. Descartes applies this procedure to pass from

an arbitrary polynomial equation to a reduced one [19, p. 167]:

Now this method of transforming the roots of an equation without de-

termining their values yields two results which will prove useful: First,

we can always remove the second term of an equation by diminishing

its true roots by the known quantity of the second term divided by the

number of dimensions of the first term, if these two terms have oppo-

site signs; or, if they have the same signs, by increasing the roots by

the same quantity.

Descartes works out some examples of this method, then explains how

to transform a polynomial equation to a new one whose roots are all mul-

tiplied or divided by a given quantity. It is exciting to read these pages and

see now-familiar algebraic notions and formulations coming to life for the

first time.

Just a few pages later [19, pp. 180–183], before discussing cubic equa-

tions, Descartes turns to factoring quartic polynomials as products of quadrat-

ics. He passes to a reduced quartic (with p, q, and r as coefficients rather

than our q, r , and s), then introduces the resolvent cubic without ado:
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Again, given an equation in which the unknown quantity has four di-

mensions . . . we must increase or diminish the roots so as to remove

the second term, in the way already explained, and then reduce it to

another of the third degree, in the following manner: Instead of

x4 ˙ px2 ˙ qx ˙ r D 0

write

y6 ˙ 2py4 C .p2 ˙ 4r/y2 � q2 D 0:

For the ambiguous sign put C2p in the second expression if Cp occurs

in the first; but if �p occurs in the first, write �2p in the second . . . .

For example, given

x4 � 4x2 � 8x C 35 D 0

replace it by

y6 � 8y4 � 124y2 � 64 D 0:

For since p D �4, we replace 2py4 by �8y4; . . . .

Similarly, instead of

x4 � 17x2 � 20x � 6 D 0

we must write

y6 � 34y4 C 313y2 � 400 D 0;

for 34 is twice 17, and 313 is the square of 17 increased by four times

6, and 400 is the square of 20.

We do not bother with the distinction Descartes maintains between positive

and negative coefficients, and therefore would dispense with his clarifica-

tions on how to choose signs in writing the resolvent cubic equation.

Descartes presents a third example of a quartic and its resolvent cu-

bic, one with coefficients that are algebraic expressions rather than specific

numbers, then explains how to use the resolvent cubic to factor a quartic

[19, p. 184]:

If, however, the value of y2 can be found, we can by means of it sepa-

rate the preceding equation into two others, each of the second dimen-

sion, whose roots will be the same as those of the original equation.

Instead of x4 ˙ px2 ˙ qx ˙ r D 0, write the two equations

Cx2 � yx C 1

2
y2 ˙ 1

2
p ˙ q

2y
D 0
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and

Cx2 C yx C 1

2
y2 ˙ 1

2
p˙ q

2y
D 0:

. . . It is then easy to determine all the roots of the proposed equation.

This is our Theorem 6.2.

Up to this point, Descartes has yet to discuss Cardano’s formula. It has

not been needed, as the values of y in his examples can be found directly

and the quartics then factored as products of quadratics, as he illustrates in

the sentences that immediately follow. Rather than continuing to read his

discussion, let’s do the work ourselves:

Exercise 6.35. Solve two quartic equations from La Géométrie. In both

cases, a root of the the resolvent cubic can be found by guessing. (Try

squares of small positive integers.)

(i) x4 � 4x2 � 8x C 35 D 0.

(ii) x4 � 17x2 � 20x � 6 D 0.

Descartes closes La Géométrie with a wish [19, p. 240]: “I hope that

posterity will judge me kindly, not only as to the things which I have ex-

plained, but also as to those which I have intentionally omitted so as to leave

to others the pleasure of discovery.”

A little over a century later, Euler gave his own account of quartic equa-

tions in Elements of Algebra [26]. In Section 5.8 we discussed his treat-

ment of Cardano’s formula, which appears in Chapter XII of Section 4. The

next three chapters treat the quartic. In Chapter XIII, Euler deals with some

special families of quartics, then in Chapter XIV he presents the “rule of

Bombelli,” which is actually Ferrari’s approach, misattributed by Euler. It

is in Chapter XV, “Of a new method of resolving equations of the fourth

degree,” that Euler obtains the result that constitutes our Theorem 6.4.

Rather than using Descartes’ approach, as given in Theorem 6.2, Euler

hypothesizes from the start [26, p. 283] that a reduced quartic equation has

a root that can be expressed as the sum of three square roots, then searches

for an expression for the cubic polynomial whose roots these would be:

We will suppose that the root of an equation of the fourth degree has

the form, x D p
pCp

qC
p
r , in which the letters p, q, r express the

roots of an equation of the third degree, such as z3 �f z2 Cgz�h D 0;

so that p C q C r D f ; pqC pr C qr D g; and pqr D h.
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We based our treatment of the quartic on Descartes’ resolvent cubic,

which led to the expression in Theorem 6.4 that is one-half the sum of

three square roots. We could instead have absorbed those pesky 2s into

the square root signs, obtaining three numbers that are one-fourth the roots

of Descartes’ resolvent. This would lead to a new resolvent cubic that is

slightly different, and that is the cubic that Euler obtains.

Euler proceeds much as we did in Section 5.2 when we derived Car-

dano’s formula for the roots of a reduced cubic polynomial from its resol-

vent quadratic. (See Theorems 5.2 and 5.3.) After a half-page of elementary

calculations [26, p. 283], which can be done as an exercise, Euler arrives at

the conclusion [26, p. 284]:

Since, therefore, the equation

x4 � ax2 � bx � c D 0;

gives the values of the letters f , g, and h, so that

f D 1

2
a; g D 1

16
a2 C 1

4
c; and h D 1

64
b2; or

p
h D 1

8
b;

we form from these values the equation of the third degree z3 �f z2 C
gz � h D 0, in order to obtain its roots by the known [Cardano’s] rule.

And if we suppose those roots, 1. z D p, 2. z D q, 3. z D r , one of the

roots of our equation of the fourth degree must be, by the supposition,

x D p
p C p

q C
p
r:

This method appears at first to furnish only one root of the given equa-

tion; but if we consider that every sign
p

may be taken negatively, as

well as positively, we immediately perceive that this formula contains

all the four roots.

A short discussion follows, like the last part of Exercise 6.14 and of Ex-

ercise 6.16. Euler explains that there are eight possibilities for the sum of

the three square roots, but the correct four are chosen by using the rule that

the square roots’ product must equal b=8. Euler’s notation doesn’t match

ours, nor does his resolvent cubic, but it is easy to check that with the ap-

propriate change in the coefficient labels and signs and a change of variable

by a factor of 4, his result coincides with Theorem 6.4.

Procedure in hand, Euler solves the equation x4 �25x2 C60x�36 D 0

[26, pp. 284–285]. Let’s do so too.
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Exercise 6.36. Solve

x4 � 25x2 C 60x � 36 D 0

using the version of Euler’s approach given in Theorem 6.4. One root of

its resolvent cubic can be found by testing various integer squares. Using

it, factor the cubic and find the other two roots. Euler constructed a very

simple example indeed.

After that example, Euler demonstrates how a general quartic equation

can be converted to a reduced quartic equation, thereby showing that his

new rule is applicable to all quartics. Next comes the following observation

[26, p. 286]:

This is the greatest length to which we have yet arrived in the res-

olution of algebraic equations. All the pains that have been taken in

order to resolve equations of the fifth degree, and those of higher di-

mensions, in the same manner, or, at least, to reduce them to inferior

degrees, have been unsuccessful: so that we cannot give any general

rule for finding the roots of equations, which exceed the fourth degree.

We will take up the story of the quintic next.
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7
Higher-Degree

Polynomials

We have devoted chapters to quadratic, cubic, and quartic polynomials. This

pattern cannot continue through all degrees, and not just because the re-

sulting book would be infinitely long. It turns out that results of the sort

we have obtained do not exist for polynomials in degree greater than four.

Therefore, we will content ourselves with a survey of some central results

about higher-degree polynomials, combining proof sketches (or no proofs

at all) with historical discussions. The chapter ends with a proof of the fun-

damental theorem of algebra.

7.1 Quintic Polynomials

We have obtained the quadratic formula, Cardano’s formula, and Euler’s

formula for solutions of polynomial equations up through degree four. What

about quintic polynomials? By Theorem 1.14, quintics have real roots. It is

natural to seek a formula for a root like our other formulas, one involving

the polynomial’s coefficients and the operations of sum, product, quotient,

and nth root extraction. If we had such an expression, we could solve quintic

equations by radicals, the word “radical” referring to an nth root. Through

the seventeenth and eighteenth centuries, progress was made in simplifying

the problem of solving quintic equations, but no solution by radicals was

found. Mathematicians began to suspect that a solution may not exist, and

this was shown to be true in the nineteenth century. In this section, we will

describe some of the highlights of the quintic’s history, sketching results but

providing no proofs.

Our first step in dealing with a cubic or quartic equation was to change

179
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variables to pass to a reduced equation, one in which the term of second

highest degree drops out. This can be done for quintics as well. In fact, it

can be done in general: Given

xn C an�1x
n�1 C � � � C a1x C a0 D 0;

we can replace x by y D x � .an�1=n/ to obtain

yn C bn�2y
n�2 C � � � C b1y C b0 D 0;

which has no yn�1 term. It is called a reduced equation of degree n. The

coefficients bi are expressible in terms of the ai . If we can solve the reduced

equation, we can add an�1=n to each solution to obtain the solutions of the

original equation.

The reduction of the problem of solving a quintic equation to that of

solving a reduced quintic equation is straightforward, relying on an obvi-

ous linear change of variable. Ehrenfried Walter von Tschirnhausen (1651–

1708) introduced the idea of using non-linear changes of variable to elimi-

nate additional terms in an equation. He showed how to pass from a reduced

equation of degree n to an equation of the form

zn C cn�3z
n�3 C � � � C c1z C c0 D 0;

where the new coefficients are expressible in terms of the old ones. The

equation has no terms of degrees n�1 or n�2 and is called a principal equa-

tion. If we can solve a principal equation, then Tschirnhausen’s change of

variable process allows us to pass back to solutions of the reduced equation,

perhaps having to calculate some square roots to do so. From the solutions

to the reduced equation, we get solutions of the original equation.

Applying Tschirnhausen’s idea to a reduced equation of degree 3, we

obtain a cubic equation of the form z3 C c D 0, which can be solved by

computing cube roots. Square root calculations lead to the roots of the re-

duced equation and adding a suitable constant leads to the roots of a general

cubic. Cardano’s formula can be derived in this way.

The process of passing from a reduced equation to a principal equation

is an example of a general process called a Tschirnhausen transformation.

Applying it to quintic polynomials, we are led to quintic equations of the

form

z5 C cz2 C dz C e D 0:

Erland Bring (1736–1798) used more complicated Tschirnhausen transfor-

mations to go one step further. He showed in 1786 that the problem of solv-

ing a quintic equation can be reduced to that of solving a quintic equation
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of the form

w5 C dw C e D 0:

Such equations are now called quintic equations in Bring-Jerrard form, in

honor of Bring and of George Jerrard (1804–1863), who used the same idea

to study equations of higher degree.

Several eighteenth-century mathematicians tried to solve the general

quintic equation, including Bring, Etienne Bézout, Edward Waring, La-

grange, and—no surprise—Euler. We saw in Section 5.2 that Euler solved

reduced cubic equations in Elements of Algebra [26] by determining, for a

quadratic polynomial with roots U and V , the coefficients of a cubic poly-

nomial whose roots have the form
3
p
U C 3

p
V . Going backwards, he as-

sociated to a reduced cubic polynomial its resolvent quadratic polynomial

and found the roots of the cubic as sums of cube roots of the roots of the

quadratic. He had a similar approach to solving reduced quartic equations

using resolvent cubics, as we discussed in Section 6.8. We concluded that

section with his remark that efforts (up to 1770) to resolve equations of the

fifth degree had been unsuccessful.

Earlier, in a 1732 paper, Euler had conjectured that the roots of a quintic

polynomial take the form

5
p

A1 C 5
p

A2 C 5
p

A3 C 5
p

A4;

where A1, A2, A3, and A4 are roots of a quartic polynomial associated to

the quintic. More generally, he conjectured such a result for polynomials

of degree n, each root being the sum of nth roots of n � 1 quantities that

would themselves be roots of an associated resolvent polynomial of degree

n � 1. This would be a powerful extension of his approach to cubic and

quartic polynomials. However, he was unable to make any progress on the

conjecture, except for special families of polynomials.

The Italian mathematician Paolo Ruffini (1765–1822) was the first to

put aside efforts to solve quintic equations and instead attempt to prove that

there is no general solution by radicals. The title of his 1799 work says it all:

General theory of equations in which it is shown that the algebraic solution

of the general equation of degree greater than 4 is impossible [57]. In the

introduction, Ruffini wrote [5, p.263]:

The algebraic solution of general equations of degree greater than 4 is

always impossible. Behold a very important theorem which I believe I

am able to assert (if I do not err); to present the proof of it is the main

reason for publishing this volume. The immortal Lagrange, with his

sublime reflections, has provided the basis of my proof.
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Ruffini sent Lagrange a copy of the book, but received no reply. In 1803,

Ruffini published a paper with another proof. In 1806, he published yet

another proof, and in 1813 he published a paper in which he expressed his

disappointment at the poor reception his work received. As it turns out,

Lagrange had read his work, but did not think the proof was complete and

chose not to express his approval. Other contemporaries also did not find

the proof complete or correct.

Raymond Ayoub has given an excellent appraisal of Ruffini’s work in

“Paolo Ruffini’s Contributions to the Quintic” [5], along with an account

of the work of Lagrange, Gauss, and others. It is clear in retrospect, as

emerges from Ayoub’s account, that Ruffini did not receive proper credit

for his contributions. One exception was the response of the great French

mathematician Augustin-Louis Cauchy, who wrote to Ruffini in 1821 [5,

p. 271] that “your memoir on the general resolution of equations is a work

which has always seemed to me worthy of the attention of mathematicians

and which, in my judgement, proves completely the insolvability of the

general equation of degree > 4.”

It fell to the Norwegian mathematician Niels Abel (1802–1829) to pro-

vide the first widely recognized proof that there can be no general solu-

tion of quintic equations by radicals. His result was published in 1824 [1].

A few years later, the French mathematician Évariste Galois (1811–1832)

provided another approach, one that would revolutionize algebra [31]. His

proof can be found in every graduate-level text on algebra (such as Abstract

Algebra, by David S. Dummit and Richard M. Foote [22, p. 629]) and some

undergraduate texts as well, and his ideas continue to influence mathematics

today.

The lives of Abel and Galois are of great interest. Both were mathemat-

ical geniuses of the first rank. Both died young. Galois is notorious for his

dramatic death at 20 from wounds incurred in a duel, and for the image of

him feverishly writing out his mathematical ideas in a letter on the eve of

the duel. In both cases, we can only dream of the glorious discoveries they

would have made had they lived longer, and reflect on the unfairness of life.

Since their stories are well told elsewhere, we will move on. Especially rec-

ommended for further reading is Peter Pesic’s Abel’s Proof: An Essay on

the Sources and Meaning of Mathematical Unsolvability [52].

There is one more twist to the tale. Ruffini deserves credit as the first

mathematician to focus attention on proving that the quintic cannot be solved

by radicals rather than searching for such a solution. But Gauss had similar

inklings. In his 1799 doctoral dissertation, Gauss wrote [5, pp. 262–263]:

After the labors of many geometers left little hope of ever arriving at

the resolution of the general equation algebraically, it appears more
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and more likely that this resolution is impossible and contradictory. . . .

Perhaps it will not be so difficult to prove, with all rigor, the impossi-

bility for the fifth degree. I shall set forth my investigations of this at

greater length in another place. Here it is enough to say that the general

solution of equations understood in this sense [i.e., by radicals] is far

from certain and this assumption [i.e., that any equation is solvable by

radicals] has no validity at the present time.

Gauss never pursued the matter. Ayoub speculates that Gauss “did not

attach very much importance to solvability by radicals,” referring again to

Gauss’s dissertation, in which he wrote [5, p. 275]:

what is called a solution to an equation is, in reality, nothing but the

reduction of the equation to prime equations — the solution is not

exhibited but symbolized — and if you express a root of the equation

xn D H by
n
p
H , you have not solved it nor done anything more

than if you devise some symbol to denote a root of the equation xn C
Axn�1 C � � � D 0 and place the root equal to this symbol . . . .

We made much the same point for quadratic equations at the end of Sec-

tion 2.1, describing the quadratic formula as providing not a solution to a

quadratic equation but a reduction of the solution to the problem of calculat-

ing square roots. Gauss dismisses the entire enterprise. His youthful views

notwithstanding, the work of Abel and Galois has been justly celebrated.

The story of quintic equations does not end with Abel and Galois. As

Gauss reminded us, a solution by radicals requires the extraction of nth

roots, a process that is a problem of analysis, not algebra. Using standard

functions of analysis, such as the exponential and logarithm, or cosine and

inverse cosine, we can calculate nth roots of real and complex numbers.

Perhaps by allowing an enlarged stock of functions from analysis, we can

use algebra to reduce the solution of quintic equations to a form that can be

handled. In the decades after the deaths of Abel and Galois, several mathe-

maticians did this.

The first was Gotthold Eisenstein (1823–1852), in 1844. We have seen

that the problem of solving the general quintic equation can be reduced by

Tschirnhausen transformations to that of solving the Bring-Jerrard equation

w5 C dw C e D 0:

One can reduce further to the problem of solving the quintic equation

v5 C v � f D 0;

where f is a constant.



“IrvingBook” — 2013/5/22 — 15:39 — page 184 — #200
i

i

i

i

i

i

i

i

184 7. Higher-Degree Polynomials

In a short note on solutions of equations of degree up to 4 [24], Eisen-

stein introduces functions � and  that satisfy �.�/2 D � and  .�/3 D �,

observing that � is defined up to multiples of ˙1 and  is defined up to

multiples of the powers of !. These are the square root and cube root func-

tions. He expresses solutions of general cubic and quartic equations in terms

of � and  . He then concludes his paper with the remark that the roots of a

general equation of degree 5 have a similar form, using in place of � and  

a function � satisfying

�.�/5 C �.�/ D �:

In a footnote, he offers a power series formula for �:

�.�/ D � � �5 C 10
�9

2Š
� 15 � 14�

13

3Š
C 20 � 19 � 18�

17

4Š
� � � � :

We can think of � as a generalized fifth-root function. Given a real num-

ber f , we can apply � to obtain a new number �.f / that is not quite a fifth-

root of f : rather than satisfying�.f /5 D f , it satisfies �.f /5C�.f / D f .

But this means that �.f / is a solution to our equation v5 Cv D f , and with

such a solution available, we can solve any quintic equation.

Although quintic equations can’t be solved by radicals, Eisenstein has

demonstrated that we can come close. We simply need his power series,

which lets us calculate a slight extension of fifth roots: the numbers v satis-

fying v5 C v D f .

Papers by S.J. Patterson [51] and John Stillwell [62] contain illuminat-

ing discussions of Tschirnhausen transformations, the Bring-Jerrard form

of the quintic, and Eisenstein’s solution of the quintic. Stillwell comments

[62, p 61] that Eisenstein added his solution to v5 C v D f “only as an

afterthought,” speculating that “Eisenstein may well have have considered

this solution to be child’s play, because it is based on a method he discov-

ered for himself at age 14.” (In another of Eisenstein’s 1844 papers [25], he

had described how a certain power series arose from his first mathematical

research, in his fifteenth year.)

In 1858, Charles Hermite (1822–1901) used the Bring-Jerrard reduc-

tion to solve quintic equations, but in terms of a type of function known

as a modular function [34]. Felix Klein (1849–1925) described another ap-

proach in his famous 1884 book Lectures on the Icosahedron [37].

A century later, Peter Doyle and Curt McMullen published a paper,

“Solving the quintic by iteration” [21], in which they showed that quin-

tic equations can be solved by a special iteration process involving “gen-

erally convergent” algorithms based on rational functions. (Rational func-

tions are quotients of polynomial functions.) This is a result in the relatively
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new theory of complex dynamics, a subject of great contemporary interest.

They also proved a modern analogue of the Abel-Galois unsolvability re-

sult, stating that polynomial equations of higher degree cannot be solved by

their iteration process. In 1998, McMullen was one of four recipients of the

Fields Medal at the International Congress of Mathematicians. The Fields

Medal is the highest honor a mathematician can receive and is regarded as

the equivalent in mathematics of the Nobel Prize.

7.2 The Fundamental Theorem of Algebra

The discovery of solutions to cubic equations in the sixteenth century led

to the introduction of complex numbers, which in turn led to the realiza-

tion that we can find solutions to all equations of degree four or less. What

happens for higher degrees? That’s the subject of this section.

The relevant mathematical result is known as the fundamental theorem

of algebra. It has several formulations, which we will discuss without pro-

viding proofs. What we do discuss, in place of proofs, is the need to bring

non-algebraic information to bear in order to find a proof. We then turn to

the fundamental theorem’s history, with special attention to a gap in some of

the early proofs that can be filled through the introduction of the algebraic

notion of a field. We will return to the fundamental theorem in Section 7.5,

in order to provide a proof.

A quadratic equation has either two real roots or a pair of conjugate

complex roots; a cubic equation always has a real root and either another

two real roots or a pair of conjugate complex roots; a quartic equation has

zero, two, or four real roots, any others occuring in conjugate complex pairs.

For higher degrees, we know that every odd degree polynomial has a real

root (Theorem 1.14), but we have no results for even degrees. Given our

experience with polynomials of degrees 2 and 4, we might expect that even

degree polynomials have roots provided we allow complex numbers as well

as real numbers. The truth of this is the fundamental theorem of algebra.

Theorem 7.1 (fundamental theorem of algebra). Any polynomial of positive

degree with real coefficients has a root in the complex numbers.

Theorem 4.2 states that if a complex number r is a root of a polynomial

with real coefficients, then so is r . We can use this to prove Theorem 7.2.

Theorem 7.2. Let f .x/ be a positive-degree polynomial with real coef-

ficients and let r a root of f .x/ that is a non-real complex number. Let
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b D �.r C r/ and c D rr . Then b and c are real and f .x/ factors as

.x2 C bx C c/g.x/;

for a polynomial g.x/ with real coefficients.

Exercise 7.1. Prove Theorem 7.2.

Theorem 7.2 has the following consequence:

Theorem 7.3. Let f .x/ be a polynomial of degree n > 0 with real coeffi-

cients.

(i) f .x/ factors as a constant multiple of a polynomial of the form

.x � r1/ : : : .x � rj /.x2 C b1x C c1/ : : : .x
2 C bkx C ck/;

where j and k are non-negative integers satisfying j C 2k D n and

the coefficients occurring are real numbers.

(ii) The numbers r1; : : : ; rj are the real roots of f .x/, each value occur-

ring as often as its multiplicity as a root.

(iii) The non-real roots of f .x/ are the roots of the quadratic factors x2 C
bix C ci . There are k conjugate pairs of such roots, allowing repeti-

tions.

The principal point of Theorem 7.3 is that any positive-degree polyno-

mial with real coefficients factors as a product of linear and quadratic poly-

nomials with real coefficients. This both follows from and implies Theorem

7.1, and is thus also called the fundamental theorem of algebra.

The fundamental theorem extends to polynomials with complex coeffi-

cients:

Theorem 7.4. Let f .x/ be a polynomial of degree n > 0 with real or

complex numbers as coefficients.

(i) f .x/ has a root in the complex numbers. In fact, f .x/ has exactly n

complex numbers as roots, counting multiplicities.

(ii) f .x/ factors as a constant multiple of a polynomial of the form

.x � r1/ : : : .x � rn/;

where r1; : : : ; rn are the complex numbers that are roots of f .x/.
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Theorem 7.4 appears at first to be a significant extension of the funda-

mental theorem, but it follows almost immediately via a simple trick. Write

f .x/ for the polynomial obtained by conjugating each of the coefficients of

f .x/. It’s easily checked that the product f .x/f .x/ is a polynomial with

real coefficients. But then Theorem 7.3 can be applied to it, yielding Theo-

rem 7.4.

Despite its name, the fundamental theorem cannot be proved by algebra

alone. This should not be surprising. Even proving that the polynomial x2 �
c has a real root for a positive real number c (Theorem 1.10) requires the

intermediate value theorem, which is also needed to prove that every cubic

polynomial with real coefficients has a real root (Theorem 1.14). We can

hardly expect to prove the full fundamental theorem with anything less than

the intermediate value theorem as a tool.

Typically, the more powerful the tools used from calculus or the broader

field of analysis, the shorter the proof of the fundamental theorem. For ex-

ample, the fundamental theorem can be proved in just two or three sen-

tences [3, p. 122] from Liouville’s theorem, which states that a bounded en-

tire function must be a constant. (Joseph Liouville was a nineteenth-century

French mathematician.) The hard work comes in proving Liouville’s theo-

rem. A proof also follows from the result from topology that a continuous

real-valued function on a disk in the plane takes on a minimum and a maxi-

mum value, but a longer argument is needed. See for example the proof that

Charles Fefferman published in 1967 while still an undergraduate [27].

From an algebraic perspective, the most attractive approach to proving

the fundamental theorem would be to rely on the intermediate value the-

orem to prove that every positive real number has a real square root and

every cubic polynomial with real coefficients has a real root, and then rely

on algebra alone for the full theorem. A short, elegant proof follows from

more advanced results of group theory and Galois theory, both of which

grew from Galois’s ideas in proving the unsolvability of quintic polynomi-

als. See, for example, the exposition in [22, pp. 615–617]. Alternatively, we

can give a proof using more elementary algebraic ideas. We will introduce

these ideas in Section 7.4, then discuss the proof in Section 7.5. A useful

reference is The Fundamental Theorem of Algebra, by Benjamin Fine and

Gerhard Rosenberger [29], which presents proofs of the fundamental theo-

rem using analysis, algebra, and topology.

Let’s turn to some high points in the history of the fundamental theorem.

Reinhold Remmert’s article on the theorem provides an excellent overview

[55, pp. 97–122]. See also Chapter 14 of John Stillwell’s Mathematics and

its History [61, p. 266] and Chapter 6 of Bashmakova and Smirnova’s The

Beginnings and Evolution of Algebra [8, pp. 98–99].
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The first mathematician to state the theorem was Albert Girard, in 1629,

in Invention Nouvelle en l’Algèbre [32]. We briefly examined Girard’s ac-

count of cubic equations in Section 5.8. After discussing cubics, he states

a theorem that begins, “All algebraic equations have as many solutions as

the size of the highest quantity.” Girard makes no effort to provide justi-

fication, but he illustrates the statement with examples. For the first one,

Girard writes, “Given the equation x4 D 4x3 C 7x2 � 34x� 24, the size of

the highest quantity is 4, which signifies that there are 4 certain solutions,

neither more nor less.” Girard’s final example is x4 D 4x � 3, for which

he lists the solutions 1; 1;�1C
p

�2;�1 �
p

�2. From this, we can infer

that Girard intends his theorem to be understood in the context of complex

numbers, with roots counted according to their multiplicities. Thus, he has

provided a correct statement of the fundamental theorem.

Several of the leading mathematicians of the eighteenth century—Jean-

le-Rond d’Alembert, Euler, Lagrange, and Pierre-Simon Laplace (1749–

1827)—attempted to prove the fundamental theorem, but their arguments

were not complete. (See Chapter 6 of Dunham’s Euler: The Master of Us

All [23] for an account of Euler’s efforts.) One problem with these early

proofs was their reliance on the implicit assumption that a polynomial has

roots somewhere, where not being clear. Within this mysterious domain,

they would then show that the roots actually lie in the complex numbers. As

Remmert puts it [55, pp. 98–99], “until Gauss all mathematicians believed

in the existence of solutions in some sort of no-man’s land . . . and tried

imaginatively to show that these solutions were in fact complex numbers.”

It was Gauss who first pointed out this problem, in his doctoral dissertation

of 1799 [55, p. 104]:

Gauss begins his dissertation by a detailed critical examination of all

previous attempts to prove the theorem known to him. This is not the

place to discuss in detail the objections raised by the twenty-two year

old student against the proofs of d’Alembert, Euler, and Lagrange—

and thus against the leading mathematicians of the time . . . . Gauss’s

main objection was that the existence of a point at which the poly-

nomials take the value zero is always assumed and that this existence

needs to be proved. Thus for example he reproaches Euler for using

hypothetical roots.

Gauss was not yet aware of Laplace’s proof. In 1815, he would subject

Laplace to the same criticism [55, p. 105]: “The ingenious way in which

Laplace dealt with this matter cannot be absolved from the main objections

affecting all these attempted proofs.”
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Gauss offered not just criticism in his 1799 dissertation, but also a proof

of his own, one that did not rely on the existence of roots in some unspeci-

fied domain. Rather, he set out to prove their existence from scratch, within

the complex numbers. Although Gauss avoided the error of his predeces-

sors, his proof, which is topological in nature, had gaps.

The first proof of the fundamental theorem that appears to be free of

error is one given by Argand in 1814, relying on the existence of a minimum

for a continuous function. He doesn’t justify the existence of the minimum,

something Cauchy would later do. Gauss would continue to give additional

proofs using a variety of methods. His second proof, from 1816, is algebraic

in nature, and correct. It completes Euler’s argument.

Regarding the gap in the proofs of Gauss’s predecessors, Remmert ob-

serves [55, p. 109]:

Nowadays one can only speculate about how mathematicians before

the beginning of the nineteenth century had visualized the solutions

of equations in their mind’s eye. It is difficult for us to understand

why, until the time of Gauss, they had an unshakable belief in a kind

of “extraterrestrial” existence of such solutions “somewhere or other,”

and then sought to show that these solutions were complex numbers.

With the development of algebra in the nineteenth century, it became a sim-

ple matter to construct the extraterrestrial solutions.

In studying polynomial equations, we typically wish to find solutions

in some familiar domain of numbers, such as the rational numbers, the real

numbers, or perhaps the complex numbers. As our historical discussion sug-

gests, it may be convenient, at least provisionally, to search for solutions in

a broader domain of numbers, one that may contain the complex numbers

and be large enough to contain roots of the polynomial. If we can introduce

such a domain, we can then work within it to show that the roots are in fact

complex numbers. This leads to the algebraic notion of a field.

The families of numbers with which we are most familiar—integers,

rationals, reals, and complexes—all have certain basic arithmetic properties

in common. To describe them, let us write K to denote any of these four

sets of numbers. Then K satisfies:

(1) Commutativity: Any two numbers a and b inK satisfy aC b D bC a

and a � b D b � a.

(2) Associativity: Any three numbers a, b, and c inK satisfy .aCb/Cc D
aC .b C c/ and .a � b/ � c D a � .b � c/.

(3) Distrtibutivity: Any three numbers a, b, and c inK satisfy a �.bCc/ D
a � b C a � c.
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(4) Additive Identity: There is an additive identity in K, that is, a number

o satisfying oC a D a D aC o for any number a.

(5) Additive Inverses: For any number a inK, there is an additive inverse;

that is, a number a0 in K such that aC a0 D o.

(6) Multiplicative Identity: There is a multiplicative identity in K, that is,

a number ` satisfying ` � a D a D a � ` for any number a.

There is a seventh property that K may satisfy:

(7) Multiplicative Inverses: For any number a inK other than the additive

identity o, there is a multiplicative inverse; that is, a number a00 in K

such that a � a00 D `.

Any setK of numbers that satisfies properties .1/ to .6/ is called a ring.

The integers, rationals, reals, and complexes all form rings, with 0 as the

additive identity, �a as the additive inverse of a number a, and 1 as the

multiplicative identity. If property .7/ is satisfied also, and if the additive

and multiplicative identities of K are distinct, then K is a field. The in-

tegers aren’t a field, since only 1 and �1 have multiplicative inverses. The

rational, real, and complex numbers are fields. (The existence of multiplica-

tive inverses for complex numbers was treated in Exercise 4.3.) It will be

convenient to use standard notations for these fields: Q is the field of ratio-

nal numbers, R is the field of real numbers, and C is the field of complex

numbers. The letter ‘Q’ is chosen for the rational numbers since they are

quotients of integers.

Rings and fields are treated in any standard undergraduate algebra course.

We will not pursue the derivation of the basic results on them here. What

matters for us is that a field is the natural setting in which to study polyno-

mials and their roots.

We now ask, given a polynomial f .x/ whose coefficients are real num-

bers, if we can construct a field K containing, but possibly larger than, C

that contains a root of f .x/. Once we have developed the basic results on

rings and fields, it is not difficult to prove this and more:

Theorem 7.5. Let f .x/ be a polynomial of positive degree n with real

coefficients. There exist a field K containing C and elements r1; r2; : : : ; rn
in K, repetitions allowed, such that

f .x/ D .x � r1/.x � r2/ � � � .x � rn/:

We call K a field extension of C and say that f .x/ splits into linear

factors over K. We may also call K a splitting field for f .x/, although this
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term is usually reserved for a field of this type that is minimal in a suitable

sense.

Theorem 7.5 is the result that the mathematicians of the eighteenth cen-

tury were missing, or unjustifiably took for granted. It is purely algebraic,

the proof requiring no property of the real numbers other than the fact that

they form a field. Once it is available, the proofs of the fundamental the-

orem that Gauss criticized can now be completed [55, pp. 107–108]: “The

Gaussian objection against the attempts of Euler-Lagrange and Laplace was

invalidated as soon as Algebra was able to guarantee the existence of a split-

ting field for every polynomial. From that moment on, as Adolf Kneser al-

ready observed in 1888, the attempted proofs became in effect fully valid.”

We will discuss Theorem 7.5 in Section 7.3 and use it in Section 7.5,

where we present Laplace’s 1795 proof of the fundamental theorem.

7.3 Polynomial Factorization

In studying roots of a polynomial f .x/, we have had occasion to look at

factorizations of f .x/ as a product of lower-degree polynomials. For in-

stance, our proof that a polynomial of degree n has at most n roots relied

on Theorem 1.5, which states that a polynomial f .x/ with distinct roots

a1; : : : ; ak can be factored as

.x � a1/.x � a2/ � � � .x � ak/g.x/

for a polynomial g.x/. In this section, we will study factorizations of f .x/

more generally. The principal theme that emerges is that polynomial fac-

torization is analogous to integer factorization. Moreover, a result on poly-

nomials can often be proved by mimicking the proof of the corresponding

integer result. A second theme is that the results do not require the poly-

nomial coefficients to be real numbers. As we will see, the coefficients can

come from any set satisfying the axioms of a field. Working with more

general fields will allow us to sketch a proof of Theorem 7.5, the missing

ingredient in some early proofs of the fundamental theorem of algebra.

Let’s begin our study of polynomial factorization by determining the

polynomial analogue to prime number. Given a non-zero polynomial f .x/

of degree n and a non-zero number c, we can factor f .x/ as the product

of the degree 0 polynomial c and the degree n polynomial c�1f .x/. This

is as interesting as the factorization of an integer n > 1 as n � 1. In both

cases, we call such factorizations trivial. A factorization of n as a product

rs of smaller positive integers is called non-trivial, as is a factorization of

f .x/ as a product of lower-degree polynomialsg.x/h.x/. An integer n > 1
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is prime if it has no non-trivial factorizations. Equivalently, n cannot be

factored as the product of two smaller positive integers. Similarly, we say

that a positive-degree polynomial f .x/ is irreducible if it has no non-trivial

factorizations; that is, it cannot be factored as the product of two lower-

degree polynomials.

Any degree 1 polynomial is irreducible, since constants are the only

lower-degree polynomials and no product of constants can have degree 1.

An example of an irreducible polynomial of degree 2 is x2 C 1. If it could

be factored as a product of lower degree polynomials, then the resulting

degree 1 factors would correspond to roots, but x2 C 1 has no real roots.

More generally, a quadratic polynomial x2 C bx C c either factors as a

product .x � r/.x � s/, corresponding to real roots r and s, or has no such

factorization. Which of the two cases occurs can be determined by the sign

of the discriminant b2 � 4c, allowing us to conclude that x2 C bx C c is

irreducible precisely when b2 � 4c < 0.

We are assuming that the numbers we allow as coefficients are real num-

bers. However, we may wish to select the allowable coefficients from other

classes of numbers, and this will lead to different factorization results. For

example, if we allow complex numbers as coefficients, then x2 C bx C c

is never irreducible. If we allow only rational numbers as coefficients, then

x2 � 2 is irreducible, even though it factors as .x �
p
2/.x C

p
2/ when we

allow real numbers as coefficients.

If we choose to work with real coefficients, then the fundamental theo-

rem of algebra (in the form of Theorem 7.3) states that any polynomial of

positive degree factors as a product of degree 1 and degree 2 polynomials,

from which it follows that the irreducible polynomials are the degree 1 poly-

nomials and the degree 2 polynomials with negative discriminant. Theorem

7.4 implies that when we allow complex numbers as coefficients, the irre-

ducible polynomials are precisely the degree 1 polynomials. In contrast, if

we allow only rational numbers as coefficients, there are irreducible poly-

nomials of every positive degree. For instance, for any positive integer n,

xn � 2 is irreducible. These examples make it clear that the study of poly-

nomial factorization will depend on our choice of allowable coefficients.

It turns out that there are many natural choices besides the rational num-

bers, the real numbers, and the complex numbers. What they have in com-

mon is that they are examples of fields.

We have described fields as collections of numbers with addition and

multiplication rules that satisfy seven properties. A review of the proper-

ties reveals that nothing in their wording requires that what we are adding

and multiplying be numbers. They can be any sort of object—polynomials,
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M&M’s, Lego bricks—as long as addition and multiplication rules are in-

troduced that satisfy the properties. We will have a better perspective on the

notion of a field if we introduce two examples besides rational, real, and

complex numbers.

Binary arithmetic gives one example. Write F2 for the set of symbols 0

and 1 with the familiar addition rules 0 C 0 D 0 and 0 C 1 D 1 C 0 D 1

along with the not-so-familiar rule 1 C 1 D 0. For multiplication, we will

adopt the usual rules 0 � 0 D 0 � 1 D 1 � 0 D 0 and 1 � 1 D 1.

Exercise 7.2. Under the definitions for addition and multiplication, verify

that F2 is a field, with 0 as the additive identity and 1 as the multiplicative

identity.

We have constructed a field with just two elements. It is important to

recognize that the elements, 0 and 1, are not the usual numbers zero and

one shared by Q, R, and C. Rather, they are symbols satisfying the addition

and multiplication rules just introduced. We may wish to give them concrete

meaning, but F2 as described is a field whether we do so or not.

One way to give meaning to 0 and 1 is to regard 0 as a symbol for the

collection of all even integers and 1 as a symbol for the collection of all odd

integers. The addition and multiplication rules for 0 and 1 then represent

familiar arithmetic facts about the addition and multiplication of even and

odd integers. For example, 0C 1 D 1 represents the fact that the sum of an

even integer and an odd integer is odd, while 1 � 1 D 1 represents the fact

that the product of two odd integers is again odd. But we needn’t have this

in mind when working with F2.

A second example of a field is the set R.t/ of rational functions. A ratio-

nal function is a fraction f .t/=g.t/, where f .t/ and g.t/ are polynomials

with real coefficients and g.t/ is non-zero. Just as in describing rational

numbers as the fractions formed from integers, we have to be precise, iden-

tifying two fractions f .t/=g.t/ and h.t/=k.t/ as the same if f .t/k.t/ D
g.t/h.t/. Addition and multiplication are performed in the usual way, using

common denominators for addition. The fraction f .t/=g.t/ is 0 precisely

when f .t/ D 0. Assuming f .t/=g.t/ is non-zero, its multiplicative inverse

is g.t/=f .t/.

Once a field K is chosen, we can study polynomials with coefficients

in K. The standard notation for the set of polynomials is KŒx�. Thus, RŒx�

consists of polynomials whose coefficients are real numbers—the polyno-

mials with which we have worked for most of this book—and F2Œx� consists

of polynomials whose coefficients lie in the field F2.
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Given two polynomials f .x/ and g.x/ in KŒx�, the addition and mul-

tiplication laws for K allow us to add and multiply f .x/ and g.x/ in the

way defined in Section 1.2, obtaining new polynomials f .x/ C g.x/ and

f .x/g.x/ that also lie in KŒx�. (Under these addition and multiplication

rules, KŒx� satisfies the defining properties of a ring, the polynomial ring

with coefficients inK.) For example, we can add and multiply polynomials

whose coefficients lie in our new fields F2 and R.t/.

Exercise 7.3. Let x C 1 and x2 C x C 1 be polynomials in F2Œx�. (That

is, we regard the coefficients as elements of F2. Thus, 1 is not our usual

number 1. It is the element 1 of F2.)

(i) Verify that .x C 1/C .x2 C x C 1/ D x2.

(Hint: 1C 1 D 0.)

(ii) Verify that .x C 1/.x2 C x C 1/ D x3 C 1.

Exercise 7.4. Let

2tx2 � 1

t
x C 1 and

3t5 C 4t

t2 C 1
x4 C .3t2 � 5/x

be polynomials in R.t/Œx�. Compute their sum and product.

Given a fieldK, let’s write 0 for its additive identity. In all our examples

of fields besides F2, the additive identity is the actual number 0, but some-

times, as is the case with F2, we can’t identify 0 with a number. It is simply

a distinguished member of the field. We can define the notion of root for any

polynomial f .x/ in KŒx�: a root of f .x/ is an element a of K satisfying

f .a/ D 0. For example, the polynomial x2 C 1 in F2Œx� has 1 as a root,

since

12 C 1 D 1C 1 D 0:

The definition of irreducible polynomial makes sense for polynomials

with coefficients in any field: a polynomial f .x/ of positive degree inKŒx�

is irreducible if it cannot be factored as the product of two polynomials of

lower degree in KŒx�. In the next exercise, we determine the irreducible

polynomials of low degree in F2Œx�.

Exercise 7.5. Consider polynomials in F2Œx�.

(i) Show that x and x C 1 are the only polynomials of degree 1 in F2Œx�,

and that both are irreducible.
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(ii) Show that x2, x2 C x, and x2 C 1 are not irreducible. Show that x2 C
xC1 is the only other polynomial of degree 2 and that it is irreducible.

(iii) Write all eight polynomials of degree 3 in F2Œx�. Determine which

are irreducible. For those that are not, factor them as products of irre-

ducible polynomials of lower degree.

We can show, just as with QŒx�, that for every positive integer n, there

is an irreducible polynomial of degree n in F2Œx�.

Once we broaden the study of polynomials to allow any field as the set

of coefficients, we become interested in two types of theorems: those that

are specific to the choice of K, and those that hold no matter what field K

is chosen. The fundamental theorem of algebra is an example of the first

type of theorem, as it is a statement about polynomials with real or complex

coefficients. The results of Sections 1.2, 1.3, and 1.4 are examples of the

second type. They make sense for polynomials with coefficients in any field

K and the proofs work when real numbers are replaced by elements of

K. For example, combining Theorems 1.3 and 1.4, and extending them to

arbitrary fields, we obtain:

Theorem 7.6. Let K be a field and let f .x/ be a polynomial in KŒx�. If

x � a divides f .x/, then a is a root of f .x/. Conversely, if a is a root of

f .x/, then x � a divides f .x/.

Also, Theorem 1.5, which we restated at the beginning of this section,

holds for polynomials with coefficients in any field K:

Theorem 7.7. Let K be a field and let f .x/ be a polynomial in KŒx�. If

a1; : : : ; ak are distinct roots of f .x/ in K, then there is a polynomial g.x/

in KŒx� such that

f .x/ D .x � a1/.x � a2/ � � � .x � ak/g.x/:

In the remainder of this section, we will look at results on polynomial

factorization that, like these theorems, hold for any choice of coefficient

field K. Let us begin with a refinement of Theorem 7.7. The multiplicity

of an element a as a root of a polynomial f .x/ is the largest integer m for

which .x � a/m divides f .x/.

Theorem 7.8. Let K be a field and let f .x/ be a polynomial in KŒx� with

exactly k distinct roots a1; : : : ; ak in K. For 1 � i � k, let mi denote the

multiplicity of ai as a root of f .x/. Then f .x/ has a factorization

f .x/ D .x � a1/
m1 .x � a2/

m2 � � � .x � ak/
mkg.x/

for a polynomial g.x/ in KŒx� that itself has no roots in K.
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We might try to prove Theorem 7.8 by extending the argument in the

proof of Theorem 1.5. Certainly we can show by that argument that f .x/

factors as

.x � a1/
r1 .x � a2/

r2 � � � .x � ak/
rkg.x/

for some positive integers r1; : : : ; rk and for a polynomialg.x/ not divisible

by any of the x � ai . However, we must do a little more work to verify that

each exponent ri equals mi . Let’s sketch the argument, using Exercise 1.9.

We will take i D 1, but the argument is the same for any index.

By the definition of m1, there is a polynomial h.x/ not divisible by

x � a1 such that f .x/ D .x � a1/
m1h.x/. Also by the definition ofm1, we

must have r1 � m1. Setting our two factorizations of f .x/ equal to each

other and canceling .x � a1/
r1 , we obtain

.x � a2/
r2 � � � .x � ak/

rkg.x/ D .x � a1/
m1�r1h.x/:

If m1 D r1, we are done. Otherwise, we find that x � a1 divides the prod-

uct on the left side. Making an argument like the one used in the proof of

Theorem 1.6, we find that either x � a1 divides one of the factors x � ai

for i > 1, which is impossible, or it divides g.x/, which is also impossible.

Therefore we have m1 D r1.

Recall the following fact about factorization of integers:

Theorem 7.9. Any integer n > 1 can be factored as a product of prime

numbers.

It is easy to take this for granted. Yet, it requires proof. The proof is

straightforward. If n is prime, we are done. Otherwise, by the definition of

prime, n factors as a product rs for smaller positive integers r and s. If r

or s is prime, we leave it as is. If not, we factor it as the product of smaller

positive integers. We continue in this way as we test each new factor for

primeness. Any non-prime factors become smaller with each round, so that

after at most n � 1 rounds, we will have factored n as a product of prime

numbers.

Theorem 7.9 has a polynomial analogue, with essentially the same proof:

Theorem 7.10. Let K be a field. Any polynomial f .x/ of positive degree

in KŒx� can be factored inKŒx� as a product of irreducible polynomials.

Let’s sketch the argument. If f .x/ is itself irreducible, we are done.

Otherwise, by the definition of irreducibility, f .x/ factors as a product

g.x/h.x/ for lower-degree polynomials g.x/ and h.x/ in KŒx�. If g.x/

or h.x/ is irreducible, we leave it as is. If not, we factor it as the product
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of lower-degree polynomials in KŒx�. After at most n rounds, where n is

the degree of f .x/, we will have factored f .x/ as a product of irreducible

polynomials.

We can refine the statements of the last two theorems to obtain the next

two.

Theorem 7.11. Let n be an integer greater than 1. There exist prime num-

bers p1; : : : ; pk and positive integersm1; : : : ; mk satisfying

n D p
m1

1 � � �pmk

k
:

Theorem 7.12. Let K be a field and let f .x/ be a polynomial of positive

degree in KŒx�. Then there exist irreducible polynomials p1.x/; : : :, pk.x/

in KŒx� and positive integersm1; : : : ; mk satisfying

f .x/ D p1.x/
m1 � � �pk.x/

mk :

The irreducible factors of f .x/ of degree 1 in the factorization of The-

orem 7.12 correspond to roots, whereas irreducible factors of higher degree

have no roots.

A counterpart to the existence of prime factorizations for integers is the

famous theorem that such factorizations are unique. The formal statement

of this requires some care. Here’s one version:

Theorem 7.13. Let n be an integer greater than 1. Suppose

p
m1

1 � � �pmk

k

and

q
n1

1 � � �qn`

`

are two prime factorizations of n, for prime numbers p1 < p2 < � � � < pk

and q1 < q2 < � � � < q` and for positive integer exponentsmi and nj . Then

k D ` and for each i between 1 and k, we have the equalities pi D qi and

mi D ni .

The key to proving Theorem 7.13 is a property of prime numbers that

is analogous to the result we proved in Exercise 1.9 for polynomials of the

form x � a: if a prime number p divides a product rs of positive integers,

then p divides r or p divides s. This result goes back to Euclid. It is a

consequence of the result known as the euclidean algorithm for finding the

greatest common divisor of two positive integers. Given it, we can prove

Theorem 7.13 in much the same way as Theorem 7.8. The difficulties are

more ones of organization than of conception.
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Euclid’s key property of prime numbers has its counterpart for irre-

ducible polynomials: given a field K, if an irreducible polynomial p.x/

in KŒx� divides the product r.x/s.x/ of two polynomials r.x/ and s.x/

in KŒx�, then p.x/ divides r.x/ or s.x/. This is an extension of Exercise

1.9. We will not prove it. The proof is not difficult, paralleling as it does

the proof of the integer result. We introduce the notion of greatest common

divisor for polynomials, obtain a polynomial analogue of the euclidean al-

gorithm, and prove the result, mimicking the classical integer arguments.

Once this property of irreducible polynomials is available, we can mimic

the proof of Theorem 7.13 to obtain what is essentially an extension of The-

orem 7.8, a unique factorization theorem for polynomials. The statement is

more complicated than its integer counterpart because we can alter a fac-

torization of a polynomial by inserting constant factors without changing

it in an essential way, but this is the only issue: up to constant factors, the

same irreducible polynomials occur in any factorization of a polynomial

into irreducible polynomials with the same exponents.

With these general factorization theorems in place, we may next wish to

study factorization problems with particular fields of coefficients, such as Q

or F2. They turn out to be important, and difficult. Let us instead conclude

by returning to the issue that prompted us to introduce the notion of a field

in Section 7.2.

We saw that several eighteenth-century attempts to prove the fundamen-

tal theorem of algebra failed because of a missing ingredient, Theorem 7.5.

This states, given a polynomial f .x/ in RŒx� of positive degree n, that there

exists a field K containing C and elements r1; r2; : : : ; rn in K satisfying

f .x/ D .x � r1/.x � r2/ � � � .x � rn/:

The proof does not depend on working with the real numbers. It yields more

generally, with no additional work, the following theorem.

Theorem 7.14. LetK be a field and let f .x/ be a polynomial of positive de-

gree inKŒx�. There exists a fieldL containingK and elements r1; r2; : : : ; rn
in L, repetitions allowed, such that

f .x/ D .x � r1/.x � r2/ � � � .x � rn/

in LŒx�.

The proof is not difficult, and can be found in many algebra texts (for

example, [22, p. 536]). A full discussion would take us too far afield. Let us

take a brief look at the essential issue, which is the following partial result:



“IrvingBook” — 2013/5/22 — 15:39 — page 199 — #215
i

i

i

i

i

i

i

i

7.3. Polynomial Factorization 199

Theorem 7.15. Let K be a field and let f .x/ be a polynomial of positive

degree in KŒx�. There exists a field L containingK and a root r of f .x/ in

L.

If we can prove Theorem 7.15, we can iterate its construction to prove

Theorem 7.14.

The construction of L is surprisingly easy. All we need to do is mimic

the construction of C from R, which was done to build a field larger than

R that contains a root of x2 C 1. In that construction, we created a new

element, i , took C to be the set of polynomial expressions of degree at most

one in i with real coefficients, and defined addition and multiplication in the

obvious way, taking into account that i must satisfy i2 C1 D 0, or i2 D �1.

For Theorem 7.15 we can assume f .x/ is monic. Suppose it has the

form

xn � an�1x
n�1 � � � � � a1x � a0;

where we choose minus signs to simplify what follows. We introduce a new

element r that will be the analogue for f .x/ of i for x2 C 1. We want r to

be a root of f .x/, which means r satisfies

rn � an�1r
n�1 � � � � � a1r � a0 D 0;

or

rn D an�1r
n�1 C � � � C a1r C a0:

We then takeL to be the set of all polynomial-like expressions in r of degree

at most n � 1 with coefficients fromK.

Addition of expressions is defined in the obvious way. For multiplica-

tion, we first treat r as a polynomial indeterminate and multiply as usual.

The result will be a polynomial in r , but it may have degree n or greater. We

then use the last equation, which we can think of as a rewrite rule telling us

how to replace rn by a sum of lower-degree terms in r . Iterating, we can

write any polynomial in r as a polynomial in r of degree less than n. Having

defined addition and multiplication inL, we easily verify thatL satisfies the

defining conditions of a ring.

What requires closer examination is the additional requirement that fields

must satisfy: that every non-zero element has a multiplicative inverse. Is this

the case for L? It is not difficult to see that the answer is no whenever f .x/

fails to be irreducible. However, if f .x/ is irreducible, thenL is a field. The

proof of this, like the proof of unique factorization for polynomials, depends

on polynomial analogues of integer results on greatest common divisors and

the euclidean algorithm.
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Theorem 7.15 follows. If f .x/ is irreducible, L is a field and we are

done. Otherwise, we can replace f .x/ with one of its irreducible factors

g.x/ in KŒx� and apply the same construction to g.x/. The result will be a

field containing a root of g.x/ and hence a root of f .x/ as well.

The idea behind enlarging R in order to create a new field containing

a square root of �1 is a powerful one. We see now that it can be used to

expand any field to a larger one containing roots of a given polynomial.

7.4 Symmetric Polynomials

In our study of quadratic, cubic, and quartic polynomials, we found for-

mulas for the discriminant in terms of the polynomial’s coefficients. The

discriminant can be defined for a polynomial of any degree, and the lower-

degree examples suggest the possibility that it can again be written in terms

of the coefficients. There are two issues. Does such an expression exist? If

so, what is it? The answer to the first is yes, as we will see in this section.

Finding the formula turns out to be a more difficult problem, which we will

not pursue.

The theorem that the discriminant of a polynomial can be expressed in

terms of the polynomial’s coefficients is a special case of a far-reaching

result on symmetric expressions in the roots of a polynomial. An example

of a symmetric expression is r2s C rs2, which remains unchanged if we

swap r and s. In contrast, r2sC 2rs2 changes under the swap and therefore

is not symmetric. The general result—which will apply to discriminants—

is that any symmetric expression in a polynomial’s roots can be written in

terms of the polynomial’s coefficients. We will develop the relevant ideas in

this section, and conclude with some history.

Let’s begin by defining the discriminant. Suppose f .x/ is a polynomial

of positive degree n, of the form

xn � a1x
n�1 C a2x

n�2 � � � � C .�1/n�1an�1x C .�1/nan:

We index the coefficients so that the subscript of a coefficient and the expo-

nent of its associated power of x sum to n, and also we write the coefficients

with alternating signs. The convenience of these choices will soon be clear.

Assume that the coefficients are real numbers.

By the fundamental theorem of algebra, f .x/ factors as

.x � r1/.x � r2/ � � � .x � rn/;

where r1; : : : ; rn are the real or complex roots of f .x/, listed with possible

repetitions. The discriminant � of f .x/ is defined to be the square of the
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product of differences of all the pairs of roots. In product notation,

� D
Y

1�i<j �n

.ri � rj /2:

We take the product over all roots, with repetitions, not over the set of dis-

tinct roots. If there is a repeated root, which means there is a pair of indices

i and j with i ¤ j and ri D rj , then the difference ri �rj is 0 and� D 0. If

no root is repeated, then the factors in the product are non-zero and � ¤ 0.

We are assuming that coefficients are real numbers. We could choose to

work in the generality of Section 7.3, with an arbitrary fieldK as the field of

coefficients for the polynomial f .x/. Theorem 7.14 ensures the existence

of a larger field L that contains a set r1; : : : ; rn of roots for f .x/ for which

f .x/ factors in LŒx� as

f .x/ D .x � r1/.x � r2/ � � � .x � rn/:

We can then define the discriminant� of f .x/ as the product

� D
Y

1�i<j �n

.ri � rj /2:

However, we would have to prove that � doesn’t depend on the field L and

roots ri . This is a journey we choose not to take.

For polynomials f .x/ of degree 2, 3, or 4, we found formulas for the

discriminant that express it as a sum of integer multiples of products of the

coefficients. For example, we found in Theorem 5.6 that the discriminant of

x3 C bx2 C cx C d is

18bcd � 4b3d C b2c2 � 4c3 � 27d 2:

We wish to show for f .x/ of any degree n that a formula like this exists:

the discriminant of f .x/ can be written as a polynomial expression in the

coefficients of f .x/ with integer coefficients.

The discriminant is not the only expression in the roots of f .x/ that we

have written as a polynomial expression in its coefficients. In Theorem 5.14

we saw for a cubic polynomial x3 � a1x
2 C a2x � a3 with roots r1, r2, and

r3 that
a1 D r1 C r2 C r3;

a2 D r1r2 C r1r3 C r2r3;

a3 D r1r2r3:

The proof amounts to factoring the cubic as .x�r1/.x�r2/.x�r3/ and car-

rying out the multiplication of the degree-one terms. The simpler quadratic
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analogue was obtained for real roots in Exercise 2.5 and in general in Exer-

cise 4.8, and the quartic analogue was Theorem 6.11.

A similar result holds for polynomials of higher degree. We have fac-

tored a general degree n polynomial f .x/ as

.x � r1/.x � r2/ � � � .x � rn�1/.x � rn/:

When we carry out the multiplication of the n terms, the result is the sum

of the expressions we obtain by choosing from each term x � ri either the

x or the �ri and then multiplying them together. For an integer k between

1 and n, the coefficient of xn�k will be the sum of the terms we obtain

when we choose x from n � k of the factors and choose �ri ’s from k of

the factors. We might for instance choose constants from the factors with

indices i1; i2; : : : ; ik. This would yield

.�1/ri1 � .�1/ri2 � � � .�1/rik � xn�k;

or

.�1/kri1ri2 � � � rikxn�k :

To get the entire coefficient of xn�k , which we have written as .�1/kak ,

we need to add all these expressions together. The result is

ak D
X

1�i1<i2<���<ik�n

ri1ri2 � � � rik :

The notation is formidable, but what it says is that ak is the sum of

all products of k of the roots ri . This gives us a sequence of polynomial

expressions in the roots that equal the simplest of polynomial expressions

in the coefficients: the coefficients themselves, up to sign. Two special cases

are

a1 D r1 C r2 C � � � C rn

and

an D r1r2 � � � rn:

We have now introduced several polynomial expressions in the roots

of a polynomial f .x/ that can be written in terms of its coefficients: the

discriminant and the sums of products of roots. What connects them? Each

remains unchanged if we reorder the roots. The roots are specific complex

numbers, but we have assigned names to them—r1, r2, and so on—that do

not take into account which is which. Our naming is arbitrary. When we

sum them, or sum their two-by-two products, or sum their fifth powers, we

are forming quantities that are independent of our choice of names. This
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is the case as well for the discriminant, a point that is worth a moment of

thought.

By definition,

�.r1; : : : ; rn/ D
Y

1�i<j �n

.ri � rj /
2:

If we reorder the roots ri in some way, the order of the factors in the product

will change, but the list of factors is unchanged: we choose every possible

pair of roots, take its difference, square it, and multiply. Since multiplica-

tion doesn’t depend on the ordering, the product that defines �.r1; : : : ; rn/

doesn’t either. If we were to omit the squares in the product, the resulting

product
Y

1�i<j �n

.ri � rj /

would fail to be independent of the ordering of the ri ’s. For example, con-

sider what happens if we switch the order of r1 and r2 but leave the order

of r3; : : : ; rn intact. The factor r1 � r2 changes to its opposite, r2 � r1. For

any i > 2, the factors r1 � ri and r2 � ri switch with each other, but their

product is unchanged. The remaining factors ri � rj with i; j > 2 remain

unchanged. The product as a whole, then, is changed to its opposite.

Expressions in the roots of f .x/ that remain unchanged under re-naming

of the roots, such as the examples we have just examined, are called sym-

metric.

To proceed, we pass to a more abstract framework. The formulas we

have obtained relating roots and coefficients of a polynomial make sense

whatever the values of the coefficients are. In effect, we can regard them

as variables, to be replaced by particular real numbers when we identify

a specific polynomial of interest. If we are studying the polynomial x3 C
3x2 � 2xC 7, for example, then we substitute �3 for a1, �2 for a2 and �7
for a3 (keeping our sign convention in mind).

This suggests the path we should take, which is to start over, working

with a generic polynomial of degree n whose coefficients are variables or

indeterminates. We can in this way discuss all degree n polynomials at once,

specializing the variable coefficients to actual ones when we have a specific

polynomial in mind.

Let us begin anew, then. Not only should the coefficients of a degree

n polynomial be generic, but the roots should be too. In other words, we

replace the roots ri by variables. Fix a positive integer n and introduce the

new variables or indeterminates t1; t2; : : : ; tn, which we think of as stand-

ins for the roots of a degree n polynomial. We anticipate that when we study
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a specific polynomial, we will substitute the complex numbers that arise as

roots of the polynomial for the ti s.

We are interested in polynomial expressions in the ti s with integer co-

efficients. The most general such expression can be written as

X

ai1;i2 ;:::;in t
i1
1 t

i2
2 � � � t inn :

It is understood that the sum is finite and the coefficients ai1;i2;:::;in are in-

tegers, all but finitely many of them being 0. Just as the ti s are stand-ins for

the roots of a given degree n polynomial, the expressions are stand-ins for

polynomial expressions in the roots.

We already know some expressions that will interest us. For each k

between 1 and n, let’s define ek.t1; : : : ; tn/ by

ek.t1; : : : ; tn/ D
X

1�i1<i2<���<ik�n

ti1 ti2 � � � tik

and call it the kth elementary symmetric polynomial. Repeating the analysis

we made for sums of products of roots, we obtain:

Theorem 7.16. Let n be a positive integer and let t1; t2; : : : ; tn be n inde-

terminates. Then

.x � t1/.x � t2/ � � � .x � tn�1/.x � tn/ D xn C
n
X

kD1

.�1/kek.t1; : : : ; tn/x
n�k

We also introduce, for each positive integer k, the power sum polyno-

mials pk.t1; : : : ; tn/, defined by

pk.t1; : : : ; tn/ D tk1 C � � � C tkn ;

withp0.t1; : : : ; tn/ D 1. For n � 2, we introduce the polynomial�.t1; : : : ; tn/

defined by

�.t1; : : : ; tn/ D
Y

1�i<j �n

.ti � tj /2:

We call this the discriminant.

Let’s return for a moment to the polynomialf .x/with which we worked

earlier in this section. It had the form

f .x/ D xn � a1x
n�1 C a2x

n�2 � � � � C .�1/n�1an�1 C .�1/nan:

with roots r1; : : : ; rn and factorization

.x � r1/.x � r2/ � � � .x � rn/:
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If, for each index i from 1 to n, we substitute ri for ti , then we pass from

the generic polynomial

xn C
n
X

kD1

.�1/kek.t1; : : : ; tn/x
n�k

to the specific polynomial

f .x/ D xn � a1x
n�1 C a2x

n�2 � � � � C .�1/n�1an�1 C .�1/nan:

The coefficients ai , which are real numbers, can be expressed in terms of

the roots rj :

ai D ei.r1; : : : ; rn/:

Similarly, when we specialize the variables ti to be the roots ri of f .x/, the

resulting number

�.r1; : : : ; rn/

is the discriminant of f .x/.

We have observed that certain expressions in the roots of a polynomial,

such as its discriminant, remain unchanged when we reorder the roots. We

can now study such expressions.

We say a polynomialp.t1; : : : ; tn/ in the variables ti with integer coeffi-

cients is symmetric if any reordering of the variables leaves the polynomial

unchanged. We can introduce notation to make this more precise. We define

a permutation of the set of numbers 1; : : : ; n to be a function � that takes

the set to itself so that any two numbers i ¤ j are moved to two num-

bers �.i/ and �.j / that remain unequal: �.i/ ¤ �.j /. With that notation,

p.t1; : : : ; tn/ is symmetric if for every permutation � ,

p.t�.1/; : : : ; t�.n// D p.t1; : : : ; tn/:

Our earlier observations made for a specific polynomial’s roots carry

over: the elementary symmetric polynomials, power sum polynomials, and

discriminant are all examples of symmetric polynomials. In contrast, the

square root of the discriminant (obtained by omitting the squares in the

definition of the discriminant) fails to be symmetric, as will just about any

polynomial expression in the ti s with integer coefficients that we write down

at random.

It is easy to see that integer multiples, sums, and products of symmetric

polynomials are symmetric. We can form sums of integer multiples of prod-

ucts of the elementary symmetric polynomials and obtain new symmetric
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polynomials. For example, with n D 2, since e1.t1; t2/ and e2.t1; t2/ are

symmetric, so is

e1.t1; t2/
2 � 4e2.t1; t2/:

Expanding, we find that

e1.t1; t2/
2 � 4e2.t1; t2/ D .t1 C t2/

2 � 4t1t2 D .t1 � t2/2 D �.t1 ; t2/:

Thus, we have written the discriminant�.t1; t2/ as a polynomial expression

in elementary symmetric polynomials with integer coefficients.

This expression is familiar. What’s new is the context we have now es-

tablished in which we can ask whether such expressions exist for any n.

That is, for a positive integer n, is �.t1; : : : ; tn/ equal to a polynomial ex-

pression in the elementary symmetric polynomials ei .t1; : : : ; tn/ with inte-

ger coefficients? If such an expression exists, then when we specialize the

ti s to the roots ri of a polynomial f .x/, the elementary symmetric poly-

nomials specialize to the values ei.r1; : : : ; rn/, which are up to sign the

coefficients of f .x/.

Our main result is that every symmetric polynomial, not just the dis-

criminant, can be obtained as a polynomial expression in the elementary

symmetric polynomials. This is the fundamental theorem on symmetric

polynomials.

Theorem 7.17. Let n be a positive integer. Every symmetric polynomial

in the variables t1; : : : ; tn with integer coefficients is an integer-coefficient

polynomial expression in the elementary symmetric polynomials

e1.t1; : : : ; tn/; : : : ; en.t1; : : : ; tn/:

That is, given a symmetric polynomial p.t1; : : : ; tn/, there is an n-variable

integer-coefficient polynomial q for which

p.t1; : : : ; tn/ D q.e1.t1; : : : ; tn/; : : : ; en.t1; : : : ; tn//:

As a special case of Theorem 7.17, we obtain:

Theorem 7.18. Let n be an integer, n � 2. The discriminant

�.t1 ; : : : ; tn/ D
Y

1�i<j �n

.ti � tj /
2

is a polynomial expression in the elementary symmetric polynomials with

integer coefficients.



“IrvingBook” — 2013/5/22 — 15:39 — page 207 — #223
i

i

i

i

i

i

i

i

7.4. Symmetric Polynomials 207

We obtain the same result for power sum polynomials, too, but we can

say more, as we will later in the section.

To see the power of Theorem 7.18, let’s return to our standard degree n

polynomial

xn � a1x
n�1 C a2x

n�2 � � � � C .�1/n�1an�1 C .�1/nan

with roots r1; : : : ; rn. Suppose we are able to find the explicit n-variable

polynomial q for which

�.t1; : : : ; tn/ D q.e1.t1; : : : ; tn/; : : : ; en.t1; : : : ; tn//:

We know that when we substitute the roots ri for the variables ti , the ele-

mentary symmetric polynomials ek specialize to the coefficients ak :

ek.r1; : : : rn/ D ak . We can therefore use �.t1; : : : ; tn/ to calculate the

discriminant�.r1; : : : ; rn/ of f .x/ in terms of the coefficients ak :

�.r1; : : : ; rn/ D q.e1.r1; : : : ; rn/; : : : ; en.r1; : : : ; rn//

D q.a1; a2; : : : ; an/:

We have obtained expressions for�.t1 ; : : : ; tn/ in terms of the elemen-

tary symmetric polynomials for n D 2; 3; 4. Theorem 7.18 ensures that

there is such an expression for any n. They can be quite complicated. For

example, the discriminant of the principal quintic polynomial

x5 C cx2 C dx C e;

is given by

� D 108c5e � 27c4d 2 C 2250c2de2 � 1600cd 3eC 256d 5 C 3125e4:

The formula for the discriminant of a general quintic polynomial is a sum

of 59 terms! As n increases, it becomes increasingly difficult to determine

the expression for the discriminant.

The proof of Theorem 7.17 is not difficult conceptually, but requires a

good choice of notation. Let’s see how it is proved for n D 2.

Since we have only two variables, we will dispense with indices. Let’s

write the variables as t and u. The elementary symmetric polynomials are

t C u and tu. What we are to prove is that any symmetric polynomial in t

and u is a polynomial expression in t C u and tu.

Suppose p.t; u/ is a symmetric polynomial. Since there are only two

variables t and u, being symmetric means that if we switch t and u in the

expression for p.t; u/, we leave the polynomial unchanged. In particular, if
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tmun occurs in p.t; u/ with a non-zero coefficient a, then tnum must also

occur in p.t; u/ with coefficient a. It follows that p.t; u/ must be a sum of

integer multiples of terms of the form

tmun C tnum;

for non-negative integers m and n with m < n, and integer multiples of

terms of the form

tmum;

for non-negative integers m. Therefore, if we show that these expressions

can be written as polynomials in t C u and tu, it will follow that every

symmetric polynomial in t and u can be written in terms of t C u and tu.

We can simplify further. Given non-negative integers m < n, let n D
mC k. Then

tmun C tnum D tmum.tk C uk/ D .tu/m.tk C uk/:

Thus we can combine the two cases into one, and it suffices to show for all

non-negative integersm and k that

.tu/m.tk C uk/

is a polynomial expression in t C u and tu. Since .tu/m is already such

an expression, we need only show for every non-negative integer k that the

sum tk C uk is a polynomial expression in t C u and tu.

This is easily done. If k D 0, the sum t0 C u0 is 1, and if k D 1, it is

t C u. These are both polynomial expressions in t C u. Suppose we already

know for an integer k > 1 that tk�2 Cuk�2 and tk�1 Cuk�1 are polynomial

expressions in t C u and tu. Then

tk C uk D .tk�1 C uk�1/.t C u/ � tu.tk�2 C uk�2/

shows that tk C uk is also a polynomial expression in t C u and tu. In this

way, starting from the knowledge that our result holds for k D 0 and k D 1,

we can work our way through all possible positive integers k, concluding

for any positive integer k that the sum tk C uk is a polynomial expression

in t C u and tu. (We are implicitly using the principle of mathematical

induction, which will be discussed in Section 7.5.) By the earlier reductions,

we have proved that every symmetric polynomial in t and u is a polynomial

expression in t C u and tu. This proves Theorem 7.17 for polynomials in

two variables.
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Theorem 7.17 is proved for polynomials in more variables by a similar

bootstrap process. The organization of the proof is more complicated, but

the idea is the same. See [22, pp. 621–622] for an outline.

In proving Theorem 7.17 for two variables t and u, we were able to

reduce to the case of the power sum polynomials tk C uk , which we then

proved to be polynomial expressions in t C u and tu. For general n, The-

orem 7.17 guarantees that the power sum polynomials pk.t1; : : : ; tn/ can

be expressed as polynomials in e1.t1; : : : ; tn/; : : : ; en.t1; : : : ; tn/ with inte-

ger coefficients. But we can do better, obtaining an explicit formula that

relates power sum polynomials and elementary symmetric polynomials. In

this formula, Theorem 7.19, it is understood that e0.t1; : : : ; tn/ D 1 and

ek.t1; : : : ; tn/ D 0 for k > n. We omit the proof. (See [22, pp. 618–619]

for a discussion.)

Theorem 7.19 (Girard-Newton identities). Let k and n be positive integers.

Then

kek.t1; : : : ; tn/ D
k
X

iD1

.�1/i�1ek�i .t1; : : : ; tn/pi .t1; : : : ; tn/:

By using e0.t1; : : : ; tn/ D 1 and moving terms around, we can re-write

the kth Girard-Newton identity as

pk.t1; : : : ; tn/ D .�1/k�1kek.t1; : : : ; tn/

�
k�1
X

iD1

.�1/k�i ek�i.t1; : : : ; tn/pi .t1; : : : ; tn/:

When k D 1, this is

e1.t1; : : : ; tn/ D p1.t1; : : : ; tn/;

which holds since both sides are equal to t1 C � � � C tn by definition. From

this starting point, as k increases, the other Girard-Newton identities allow

us to express each power sum pk.t1; : : : ; tn/ recursively as a polynomial in

the elementary symmetric polynomials. When we specialize to a degree n

polynomial

xn � a1x
n�1 C a2x

n�2 � � � � C .�1/n�1an�1 C .�1/nan;

we are able to write the power sums pk.r1; : : : ; rk/ in terms of the coeffi-

cients ai . Girard wrote such formulas explicitly for k � 4. Let’s conclude

the section with a look at his work.
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Prior to Girard, Viète obtained formulas in special cases for the coeffi-

cients of a polynomial as sums of products of the roots. Girard was the first

to state such formulas in general. In his 1629 book Invention Nouvelle en

l’Algèbre [32], Girard stated the theorem that any polynomial of degree n

has n roots. Only with the presence of n roots can we even contemplate ex-

pressions for the coefficients of the polynomial in terms of the roots. Girard

provided them in the second part of the same theorem.

Before stating the theorem, Girard introduced a notion he called a fac-

tion:

When several numbers are proposed, their sum is called the first fac-

tion; the sum of all the products two-by-two is called the second fac-

tion; the sum of all the products three-by-three is called the third fac-

tion; and so on up to the end, with the product of all the numbers called

the last faction. There are as many factions as the numbers proposed.

The second part of the theorem then states:

The first faction of the solutions [of a polynomial equation] equals the

first coefficient, the second faction of the same is equal to the second

coefficient, the third the third, and so on, so that the last faction is equal

to the last, and this according to the signs, which one observes are in

alternating order.

Girard offers no proof. But the proof is clear, provided we understand a

polynomial of degree n to have n roots, as Girard states, and provided we

understand that the polynomial factors as the product of terms x � r , as r

runs through the n roots, which he surely did.

A few pages later, Girard introduces the expressions in the roots ri that

we call the power sum polynomials. He then writes formulas for them in

terms of the coefficients ai , for powers up to 4:

r1 C � � � C rn D a1;

r2
1 C � � � C r2

n D a2
1 � 2a2;

r3
1 C � � � C r3

n D a3
1 � 3a1a2 C 3a3;

r4
1 C � � � C r4

n D a4
1 � 4a2

1a2 C 4a1a3 C 2a2
2 � 4a4:

These are the first four Girard-Newton identities of Theorem 7.19. Girard

doesn’t continue with higher exponents, but it is clear that a sequence of

such formulas exists.

Isaac Newton (1643–1727) obtained the same result in 1707 [47, pp.

392–393], again without proof. (In supplementary notes immediately after

Newton’s statement of the result, Reverend Wilder provides a proof [47, pp.
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393–396].) The identities are often named after Newton alone, but credit is

due to both.

Girard’s observation that certain symmetric expressions in the roots of a

polynomial can be written in terms of the polynomial’s coefficients comes

in for praise in H. Gray Funkhouser’s 1930 paper, “A short account of the

history of symmetric functions of roots of equations” [30, pp. 358, 360]:

As is the case with the development of algebra as a whole, the sub-

ject of symmetric functions to a perhaps greater extent waited upon

the introduction and improvement of symbolism. It was hard to per-

ceive with any clarity relations between roots and coefficients when

the equation was wrapped up in a paragraph of words representing it.

Prior to the time of Franciscus Vieta, who was among the first to em-

ploy letters to represent numbers, we find very little trace of the thing

we are seeking. . . .

We can appreciate how great an advance Vieta made when there is

considered the few fragmentary statements that have come from his

predecessors. He paves the way and provides an introduction to the

first man who really has a place in the history of symmetric functions

of roots of equations, a man, who for clearness and grasp of material

at hand in not only this topic but also in other phases of algebra could

well hold his place a century later.

The man was Albert Girard and his work on algebra is a little 34-leaf

pamphlet called Invention Nouvelle en l’Algèbre, published in 1629.

7.5 A Proof of the Fundamental Theorem

The fundamental theorem of algebra states that every polynomial with real

coefficients has a root in the complex numbers. As we discussed in Section

7.2, the theorem’s name is misleading. Any proof depends on some infor-

mation about the real numbers, hence on results from calculus or analysis.

At the end of Section 7.2, we mentioned the existence of proofs that are en-

tirely algebraic if we take two results as given: every positive real number

has a real square root (Theorem 1.10) and every cubic polynomial with real

coefficients has a real root (Theorem 1.14). With the ideas of Section 7.4,

we can now describe one such proof, essentially due to Laplace in 1795.

That is the purpose of this section.

In addition to Theorems 1.10 and 1.14, our proof of the fundamental

theorem will use two results developed in this chapter: Theorem 7.5, which
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states for a polynomial f .x/ with real coefficients that a fieldK exists con-

taining both C and a set of roots of f .x/, so that f .x/ factors in KŒx� as

a product of linear factors, and Theorem 7.17, the fundamental theorem on

symmetric polynomials. We will also need the principle of mathematical

induction.

Induction has been used implicitly on occasion, for instance in the proof

of de Moivre’s formula in Exercise 4.23 and the proof of the two-variable

case of the fundamental theorem on symmetric polynomials in Section 7.4.

Its application in proving the fundamental theorem is more subtle. Hence, in

preparation for that proof, an explicit discussion of induction is warranted.

Let’s write N for the set of positive integers. (This is a traditional math-

ematical notation, the letter “N” suggesting the natural numbers, another

name for the positive integers.) Here is the statement of the principle:

Theorem 7.20 (principle of mathematical induction). Let S be a subset of

N. Assume that S contains 1 and that if S contains a positive integer k,

then S contains k C 1. Then S D N.

It is perhaps misleading to call the induction principle a theorem. In

developing the foundations of arithmetic, we typically adopt the principle

as an axiom to be satisfied by the positive integers rather than a theorem to

be proved about them. But this is a subject for another book (for instance,

[42, pp. 149–150]). Whatever the principle’s logical status, we will accept

it as a valid statement.

The principle becomes a proof technique when we want to verify a fam-

ily of statements indexed by the positive integers. De Moivre’s formula is

an example. We wish to prove for every positive n that

.cos � C i sin �/n D cosn� C i sin n�:

Let S be the set of positive integers for which the equality holds. We see im-

mediately that S contains 1. Suppose we can show for any positive integer

k that if k is in S , so is kC 1. Then the principle of mathematical induction

implies that S D N and de Moivre’s formula holds for all positive integers.

What we must show, then, is that if

.cos � C i sin �/k D cos k� C i sin k�;

then

.cos � C i sin �/kC1 D cos.k C 1/� C i sin.k C 1/�:

This is essentially what we checked in Exercise 4.23.
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Sometimes we wish to prove a family of statements indexed not by N

but by the set N [ f0g of non-negative integers. The principle of induction

works. We prove that the statement associated with 0 is true, then we prove

for any non-negative integer k that the validity of the .k C 1/st statement

follows from the validity of the kth statement.

We are ready to prove the fundamental theorem of algebra: any poly-

nomial f .x/ of positive degree in RŒx� has a root in C. We might think of

proceeding inductively using the degree of f .x/ as the induction index. But

we already know the fundamental theorem is true for odd-degree polynomi-

als, so induction on degree isn’t likely to be a successful strategy. Instead,

following Laplace, we do something more clever, applying induction not to

the degree of f .x/ but to its “degree of evenness.”

A positive integer n factors as 2ks for some non-negative integer k and

positive odd integer s. What interests us is the exponent k. The smaller k is,

the closer n is to being odd. Or, the larger k is, the more even (so to speak)

n is. This exponent k is the basis for our induction argument.

The starting point for our induction is the case k D 0. The positive

integers for which k is 0 are the odd ones. Thus, we begin by considering

the odd-degree polynomials in RŒx�. By Theorem 1.14, they have real roots,

so the fundamental theorem holds for them. Our induction argument is off

to a successful start.

We next choose an integer k � 0 and assume for all odd positive inte-

gers s that the fundamental theorem holds for polynomials of degree 2ks.

This is called the inductive hypothesis. Using it, we wish to prove for all

odd positive integers t that the fundamental theorem holds for polynomials

of degree 2kC1t . If we do, then by the principle of mathematical induction,

we will have shown that the fundamental theorem holds for polynomials of

degree 2`u, for all non-negative integers ` and all odd positive integers u.

In other words, it holds for all polynomials of positive degree, as desired.

Suppose f .x/ is a polynomial in RŒx� of degree n, with n of the form

2kC1t and t odd. The induction argument requires us to show that f .x/ has

a root in C. By Theorem 7.5, there is a field K containing C that contains

roots r1; r2; : : : ; rn of f .x/ (repetitions allowed), with f .x/ factoring in

KŒx� as

.x � r1/ � � � .x � rn/:

Fix an arbitrary integer m. For a pair of integers i and j satisfying 1 � i <

j � n, we can form in K the element

ri C rj Cmri rj :

Since there are n.n � 1/=2 pairs i and j , there will be n.n � 1/=2 such
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elements. Therefore, the polynomial

F.x/ D
Y

i<j

.x � .ri C rj Cmri rj //

in KŒx� has degree n.n � 1/=2.

If we permute the roots r1; : : : ; rn, we permute the n.n�1/=2 elements

ri C rj Cmri rj , leaving them unchanged as a set. Therefore we also leave

unchanged the coefficients of the polynomial F.x/. But these are polyno-

mial expressions in the roots r1; : : : ; rn of f .x/ with integer coefficients.

Therefore, by a suitable application of the fundamental theorem on sym-

metric polynomials, they are polynomial expressions in the coefficients of

f .x/ with integer coefficients, which is to say, they are real numbers.

We have proved that F.x/ lies in RŒx�. Recall that f .x/ has degree n,

with n D 2kC1t and t odd. Since k C 1 is positive, n is even. Hence, n� 1

and t.n � 1/ are odd. But F.x/ has degree n.n � 1/=2 and

n.n � 1/
2

D 2kC1t.n � 1/
2

D 2kt.n � 1/:

Thus, the degree of F.x/ is exactly of the form for which we assumed by

the inductive hypothesis that the fundamental theorem holds: the product of

2k and an odd number. We conclude that F.x/ has a root in C, which means

that there is a fixed pair fi; j g (depending onm) for which the element ri C
rj Cmri rj ofK lies in the smaller field C. At the risk of over-complicating

the notation, we might write this element as ri.m/ C rj.m/ Cmri.m/rj.m/ to

emphasize its dependence on the choice of the integer m.

We chose m arbitrarily. The argument we just made applies for each

choice of m, and there are infinitely many such choices. But there are only

n.n�1/=2 pairs of integers fi; j g between 1 and n. Therefore, there must be

distinct integersm andm0 yielding the same pair; that is, there exist integers

m ¤ m0 for which i.m/ D i.m0/ and j.m/ D j.m0/.

Let’s simplify our notation, writing i and j for the integers in this pair.

Then ri C rj Cmri rj and ri C rj Cm0ri rj are both complex numbers, so

their difference .m�m0/ri rj is as well. Since m�m0 is a non-zero integer,

we can divide by it to deduce that rirj is complex. Hencemri rj is complex

and we can subtract it from the complex number ri C rj Cmri rj to deduce

that ri C rj is complex. We have proved that f .x/ has two roots ri and rj
in the fieldK whose sum ri C rj and product rirj lie in the smaller field C.

There is one last step. The polynomial .x � ri/.x � rj / equals

x2 � .ri C rj /C ri rj :
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Since ri C rj and rirj are complex, it lies in CŒx�. By design, its roots are

ri and rj . We proved in Theorem 4.7 that any quadratic polynomial in CŒx�

has complex roots. Hence, ri and rj lie in C. But ri and rj are roots of

f .x/, so f .x/ has roots in C.

We have proved, under the assumption that polynomials whose degree

is a product of 2k and an odd number have roots in C, that polynomials

whose degree is a product of 2kC1 and an odd number also have roots in C.

We also proved the base case, that polynomials of odd degree have roots in

C. By the principle of mathematical induction, polynomials of any positive

degree have roots in C, proving the fundamental theorem.

Let’s review where we used our two assumptions. The existence of real

roots for odd-degree polynomials entered the stage at the beginning, as the

base case of the induction argument. The existence of real square roots for

positive real numbers was used, implicitly, at the end, when we quoted The-

orem 4.7 on quadratic polynomials in CŒx� having roots in C. This followed

by a completing-the-square argument from the existence in C of square

roots of complex numbers (Theorem 4.6), which followed from the exis-

tence of real square roots for positive real numbers.

What a beautiful proof! It depends on several of the ideas we have in-

troduced in this chapter, plus a touch of genius. It is a perfect peak on which

to bring our study of polynomials to a close.
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ton House Publishers, Farmington, Maine, 2002.

[10] A.E. Berriman, The Babylonian quadratic equation, The Mathematical

Gazette, 40 (1956) 185–192.

[11] Rafael Bombelli, l’Algebra, Giovanni Rossi, Bologna, 1579.

[12] Girolamo Cardano, The Great Art; or, The Rules of Algebra, translated and

edited by T. Richard Witmer, The M.I.T. Press, Cambridge, Massachusetts,

1968.

217



“IrvingBook” — 2013/5/22 — 15:39 — page 218 — #234
i

i

i

i

i

i

i

i

218 References

[13] Girolamo Cardano, The Book of My Life, translated by Jean Stoner with an

introduction by Anthony Grafton, New York Review Books, New York, 2002.

[14] Henry Thomas Colebrooke, Algebra with Arithmetic and Mensuration from

the Sanskrit of Brahmegupta and Bhascara, John Murray, London, 1817.

[15] S. Cuomo, Ancient Mathematics, Routledge, London, 2001.

[16] Abraham de Moivre, The analytic solution of certain equations of the third,

fifth, seventh, ninth and other higher uneven powers, by rules similar to those

called Cardan’s, Philosophical Transactions, 25 (1707) 2368–2371; portions

translated in [60, pp. 441–444].

[17] Abraham de Moivre, On the reduction of radicals to simpler terms, or the ex-

traction of roots of any binomial a C
p

Cb or a C
p

�b, Philosophical Trans-

actions, 40 (1739) 463-478; portions translated in [60, pp. 447–450].
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