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Preface 

Engineering reliability concerns failure data analysis, the economics of mainte­
nance policies, and system reliability. The purpose of this book is to develop the 
use of probability in engineering reliability and maintenance problems. We use 
probability models in 

1) analysis of failure data, 
2) decision relative to planned maintenance, 
3) prediction relative to preliminary design. 
Engineering applications are emphasized and are used to motivate the 

methodology presented. 
The background required is at least a first course in probability. Although 

the probability calculus will be reviewed, it would be best to have had previous 
exposure. Some previous knowledge of engineering or physics at the beginning 
level would also be helpful. The academic level required is upper division under­
graduate or first year graduate, but no previous course in statistics or measure 
theory is needed. 

We will make extensive use of spreadsheets in the exercises. Spreadsheets 
such as EXCEL are now ubiquitous and contain most of the mathematical and 
statistical functions needed to solve many of the exercises in this book. They are 
also very useful for the graphical analysis of failure data contained in the book. 

Part I is devoted to the analysis of failure data, particularly lifetime data and 
failure counts. We begin by using a new approach to probability applications. 
The approach starts with finite populations and derives conditional probability 
models based on engineering and economic judgments. The infinite population 
conditional probability models that are most often used are approximations to 
these finite population models. The derived conditional probability models are 
then the basis for likelihood functions useful for the analysis of failure data. 

Part II addresses the economics of maintenance decisions. We begin with 
the economics of replacement decisions using a deterministic approach. Next 
we discuss Deming's ALL or NONE rule for inspection sampling. Optimal age 
replacement policies are considered with emphasis on the time value of money 
and discounting. 

xi 



xii PREFACE 

Part III focuses on system reliability. We begin with efficient algorithms 
for computing network reliability. Networks or "block diagrams" are abstract 
system representations useful for both reliability prediction and maintenance op­
timization. Fault tree analysis as presented in Chapter 7 is one of the most useful 
tools in identifying system failure scenarios. Chapters 6, 7, and 8 concentrate 
on network and system reliability, availability, and maintainability. 

The Bayesian approach is described in the introduction. It might be wise to 
cover this material before beginning Chapter 1. Part I and Chapters 9 and 10 of 
Part III use the Bayesian approach. The probabilistic foundation for influence 
diagrams is presented in Chapter 9. Fault trees are special cases of probabilistic 
influence diagrams. Influence diagrams are alternatives to decision trees and as 
such are useful in decision making. Chapter 10 presents a tutorial introduction 
to decision influence diagram construction and solution. Appendix A discusses 
the inconsistency of classical statistics, while Appendix B provides an axiomatic 
argument due to H. Rubin for the consistency of the Bayesian approach to deci­
sion analysis. The last section in each chapter consists of notes and references. 
Chapters marked with asterisks discuss specialized topics, and starred exercises 
are mathematically challenging. 

Some other related textbooks on system reliability are I. B. Gertsbakh (1989), 
A. H0yland and M. Rausand (1994), R. D. Leitch (1995). R. E. Barlow and 
F. Proschan (1981), and R. E. Barlow and F. Proschan (1990). 

See h t tp : / /www.ieor .berkeley .edu/~ieor265 regarding errata, answers 
to frequently asked questions, and links to relevant information sources. 

Richard E. Barlow 
Berkeley, CA 

http://www.ieor.berkeley.edu/~ieor265
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Introduction 

Engineering reliability is (or should be) failure oriented. The problem is to 
predict when or if failure will occur when a device is used. This information 
can then be used to determine inspection and maintenance policies as well as 
warranties. It can also be used to predict costs due to maintenance and eventual 
failure if failure occurs while the device is in operation. 

The commonly used definition of engineering reliability is "Reliability is the 
probability of a device performing its purpose adequately for the period of time 
intended under operating conditions encountered." 

Historical perspectives on reliability theory. The mathematical theory of 
reliability has grown out of the demands of modern technology and particularly 
out of the experiences with complex military systems. One of the first areas of 
reliability to be approached with any mathematical sophistication was the area 
of machine maintenance. Queuing and renewal theory techniques were used early 
on to solve problems involving repair and inspection. 

In 1939 Walodie Weibull, then a professor at the Royal Institute of Technol­
ogy in Sweden, proposed the distribution, later named after him, as an appro­
priate distribution to describe the breaking strength of materials. In Chapter 4 
we discuss Weibull's theory and propose new methods for analyzing the strength 
of materials. 

In 1951 Epstein and Sobel began work on the exponential distribution as a 
probability model for the study of item lifetimes [see Epstein and Sobel (1953)]. 
This probability model, as well as most others, is based on the concept of an infi­
nite or unbounded population size. In Chapter 1 we derive the finite population 
version of this probability model. Only in the limit, as population size approaches 
infinity, do we obtain the properties characteristic of the exponential distribu­
tion. Among these properties is the memoryless property or nonaging property. 
Although this property would seem to limit the usefulness of the exponential dis­
tribution for lifetime, it has continued to play a critical role in reliability calcu­
lations. A fundamental reason for the popularity of the exponential distribution 
and its widespread exploitation in reliability work is that it leads to simple addi­
tion of failure rates and makes it possible to compile design data in a simple form. 

XV 
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Research on coherent system structure functions (or general system reliabil­
ity) began with the 1961 paper by Birnbaum, Esary, and Saunders. It put the 
previous work by Moore-Shannon on super-reliable relays in a more abstract 
setting. The connection between coherent structures and the class of life prob­
ability distributions containing the exponential distributions was discovered by 
Birnbaum, Esary, and Marshall (1966). 

The engineering reliability emphasis in the 1970s was directed to fault tree 
analysis, which we discuss in Chapter 7. This was and still is motivated by 
nuclear-power reactor safety considerations among other engineering safety prob­
lems. 

In the 1980s, a great deal of reliability work was concerned with network 
reliability. This was motivated by the early Advanced Research Projects Agency 
(ARPA) network, the forerunner of today's Internet and world wide web. In 
Chapter 6 we discuss some of the most useful work in this area. Although the 
problem of computing the probability that distinguished nodes in a network are 
connected is an NP-hard problem, efficient algorithms do exist for special classes 
of networks. 

In the 1990s there has been reliability research in new directions led by 
M. B. Mendel. The motivation for this research is based on the belief that most 
sample space representations that have been considered in engineering statistics 
are not proper Euclidean spaces. Therefore, taking inspiration from physics, an 
approach to problems in engineering statistics based on differential geometry is 
needed. This point of view has led to a number of recent publications concerning 
engineering reliability problems, including Shortle and Mendel (1991) and (1996). 

W h a t is probabil i ty? We defined reliability as the probability of a device 
performing its purpose adequately for the period of time intended under oper­
ating conditions encountered. But what is probability? 

For the physicist, probability is defined as follows: "By the probability of a 
particular outcome of an observation we mean our estimate for the most likely 
fraction of a number of repeated observations that will yield that particular 
outcome" [Feynman,* The Feynman Lectures on Physics, Vol. I]. The physicist's 
idea is to imagine repeating an experiment which some of the time produces an 
event, say, A, and calculating and then setting 

where N is the number of experiments and NA is the number of times the event 
A occurs. Note that this definition requires repetition. There are at least two 
snags to this idea, namely, the following. 

(1) No event is exactly repeatable. At the very least, the occurrence times 
are different. 

(2) Our probability may change as our knowledge changes. 

*Feynman notes in Vol. I, p. 6-2 another rather "subjective" aspect of his definition of 
probability. 
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Nevertheless, it is useful to use this frequency idea of probability in many 
physical applications. We will see later that this idea breaks down in many cases 
(in quantum mechanics, for example). 

Another definition of probability is that "Probability is a degree of belief hold 
by an analyst or observer." The idea here is that probability is an analytical 
tool based on judgment useful for making decisions. Of course we are free to 
adopt observed frequencies as our probabilities if we are consistent, but observed 
frequencies are not otherwise probabilities according to this definition. Using 
either definition, probability P should satisfy certain computational "laws": 

(1) C o n v e x i t y law. If E is an event, then the probability of E, P(E), 
satisfies 

The reason for the name is that we will use convex combinations of probability 
weights in computing expectations. 

(2) A d d i t i o n law. If E1 and E2 are any two mutually exclusive events, then 

P(E1 or E2) = P(E1) + P(E2). 

This can be extended to any n mutually exclusive events. 
(3) M u l t i p l i c a t i o n law. If E1 and E2 are any two events, then 

P(E1 and E2) = P(E1 | E2)P(E2) = P(E2 | E 1 )P(E 1 ) . 

This too can be extended to include any n events. The event to the right of the 
vertical bar is either given or assumed. 

When writing P(E1 | E2), we mean the probability of E1 were E2 known. It 
is important to use the subjunctive tense to assess the conditional probability, 
since it is not necessary that E2 be known. Also it is important to emphasize 
tha t P(• | • ) is a probability function of the first argument but not the second. 

B a y e s ' Formula . 

Using the multiplication law, we can write 

This is Bayes' formula in its most simple form. If event E\ is observed and we 
wish to calculate the conditional probability of an event E2 tha t is unknown, then 
we can use the above formula to make this inference. P(E2) in the formula is 
our prior probability for the event E2. P(E1 | E2) is the conditional probability 
of E1 conditional on E2. However, since we suppose tha t E\ has been observed, 
P(E1 | E2) is called the likelihood of E2 given the da t a E\. It is important to 
remark t ha t the likelihood is not a probability function of its second argument E2 

but simply a nonnegative real valued function. P{E2 | E1) is called the posterior 
probability of E2 conditional on E1. 
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The Bayesian approach. 

Historically, the XVIII and XIX century Bayesian paradigm was based on 
Bayes' theorem and reference priors. It was thought (incorrectly) that com­
plete ignorance could be modeled by "noninformative" priors. R. A. Fisher 
in the 1920s pointed out that if a uniform prior for 
expresses ignorance, then the induced probability for should also be uni­
form since is just as uncertain as . But the induced probability distribution 
for is not uniform. 

There is no logically valid way to model "complete ignorance" nor is it de­
sirable to try to do so. The use of so-called flat or constant prior probability 
functions can, however, be justified in certain situations based on the analyst's 
judgment of what he/she knows relative to the "standardized likelihood." The 
standardized likelihood is the likelihood multiplied by a constant to make it sum 
or integrate to one as a function of its second argument. In this situation of rela­
tive ignorance, the standardized likelihood and posterior density are sufficiently 
close to be interchangeable. This is called the "principle of precise estimation" 
in DeGroot (1970) and, in general, the principle is not dependent on sample size. 

Bayesian statistics in the twentieth century has been greatly influenced by the 
ideas of de Finetti (1937). In his view, probability is based on personal judgment. 
But it is not arbitrary! The laws of probability must be obeyed, and various 
logical ways of thinking about uncertainty must be considered. In particular, 
the classical idea of randomness is replaced by the judgment of exchangeability. 
This judgment leads to de Finetti's famous representation theorem. Random 
quantities X1, X2,..., Xn are exchangeable for you if in your opinion their joint 
distribution is invariant under permutations of coordinates, i.e., 

F(x1, x2,..., xn) = F(x1, x2,..., xn), (1) 

where F ( • , • , . . . , • ) is a generic joint cumulative distribution for X1, X2,..., Xn 

and equality holds for all permutation vectors and vectors 
. For example, suppose a set of items were exchangeable for you 

relative to failure. Then, for you, their marginal probabilities of failure would 
be the same and, more generally, equation (1) would hold. If binary (0 or 1) 
random quantities or events are judged exchangeable and there is a conceptually 
infinite number of them, then the probability that k-out-of-n are 1 is necessarily 
of the form 

(2) 

for some density p(•) (or, more generally, a distribution). Bayesians would inter­
pret p(•) as a prior for . The parameter could be thought of as a "propensity" 
or "chance" and is related to the long-run ratio of occurrences to trials if such 
an infinite sequence of trials could be actually carried out. Given data, namely, 
x occurrences in N trials, the conditional probability of an additional k occur­
rences in an additional n trials looks like (2) with p(7r) replaced by the posterior 
density for 7r, namely, calculated via Bayes' formula using densities. 
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FlG. 1. The two-slit experiment. 

The Bayesian approach is characterized by the idea that all probabilities, 
likelihood models included, are based on judgment. To quote de Finetti. "Prob-
abilistic reasoning—always to be understood as subjective—merely stems from 
our being uncertain about something. It makes no difference whether the uncer­
tainty relates to an unforeseeable future, or to an unnoticed past, or to a past 
doubtfully reported or forgotten; it may even relate to something more or less 
knowable (by means of a computation, a logical deduction, etc.) but for which 
we are not willing to make the effort; and so on." 

In Einstein's theory of relativity, mass, velocity and time are relative to the 
observer. The same is true for probability; i.e., probabilities are relative to the 
observer or analyst. Also, probabilities are conditional, conditional on what 
is known. For this reason, conditional probabilities play a central role in this 
approach. 

The role of the observer (or analyst) and the second law. The three 
laws of probability considered earlier can actually be "proved" from more fun­
damental principles [cf. Lindley (1985)]. Feynman's conventional definition of 
probability satisfies these three laws except in the case of quantum mechanics. 
The second law, the addition law, holds in this case only if an observer could 
actually "observe" the objects in question. In the experiment described below, 
those objects are electrons. 

To understand this statement, consider the famous two-slit experiment of 
quantum mechanics [Feynman, Vol. 1. Chapter 37]. Imagine an electron gun 
shooting off electrons through a slit in a barrier as in Figure 1. To the right is 
another barrier with two slits. Finally, there is another track to the right of this 
with an electron detector. The detector counts the number of electrons arriving 
at a point a distance x from some origin. For each position x we calculate the 
ratio of the number arriving at x in a specified time interval to the number 
traveling through the initial slit. Let p(x) be this ratio for each x. 

If a detected electron is like a particle, then it has either gone through the 
first slit or the second slit but not both. If we close slit 2, then we get the ratio 
p1(x) for the frequency of electrons hitting position x after traveling through 
the first slit. Likewise if we close slit 1, we get a corresponding frequency p2(x). 
Now open both slits. If the electron behaves like a particle, we should find that 
p(x) = p1(x) + p2(x) since this is the addition law for mutually exclusive events. 
However, this is not at all what is detected. Figure 2 shows what is actually 
detected. 

FlG. 1. The two-slit experiment. 
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FlG. 2. Observed frequencies. 

Now suppose a light source is used to "see" each electron as it leaves the 
original slit and is used to determine which of the two slits to the right that 
it "goes through." In this case, when each electron event is observed at x, the 
addition law does hold! These are experimental results that we are describing. 

When we do not observe each electron's trajectory but only count frequencies 
in a kind of objective manner, the laws of probability annunciated above do 
not hold. When there is included in the experiment an observer who actually 
observes each electron, his frequencies at positions x now satisfy the addition 
law of probability. When we look, the distribution is different from that when 
we don't look! 

We may adopt a frequency as our probability, but it is a probability only after 
we adopt it. Probability must be considered a degree of belief relative to some 
observer or analyst even when we have large numbers of apparently repetitive 
events. However, a consensus on probabilities is sometimes possible, and that is 
usually what we desire. What is called "objectivity" is perhaps better described 
as "consensus." 
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CHAPTER 1 

The Finite Population Exponential 
Model 

1.1. F i n i t e p o p u l a t i o n s . 

Suppose we have exactly N items {1, 2, ,N}. That is all there arc. For exam­
ple, we could produce exactly N items to a "special order." For another example, 
there were only five space shuttles in 1996. All populations are actually finite, 
although it is often useful to consider unbounded populations. It is usual to start 
with the assumption tha t random quantities (also called random variables) are 
independent, identically distributed {iid). However, this cannot be justified for 
finite populations. 

We are interested in the unknown lifetimes (x1, x2,..., xN) of these items. 
To learn something about these lifetimes we may be willing to sacrifice say. n, of 
them. Having observed (x1, x2,..., xN) we may wish to infer something about 
the population average lifetime or to predict the remaining lifetimes. 

Suppose the parameter of interest to us is the average lifetime of all .V such 
items. Let 

be this average lifetime. Let xN = (x1, x2,..., xN) and suppose we are indif­

ferent to vectors of size N of such possible lifetimes conditional on ; i.e.. our 

generic joint probability function p for such vectors will satisfy 

p ( x N ) = p ( y N ) 

when . Since lifetime distributions will be considered 
absolutely continuous in this and following sections, p(• ) will be a joint proba­
bility density function. It is not a probability. We will use P ( • ) when referring 
to the probability of events. 

Note tha t when N = 2, (x 1 ,x 2 ) is restricted to the line segment as illustrated 
in Figure 1.1.1. 

Because p (x 1 , x 2 ) is constant on the manifold 
and , it follows tha t is a constant and this 

3 
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constant must be . In general, we can show that 

for The joint density is 0 elsewhere. The density is only 
valid for n = 1,2 N - 1. The density does not exist for n = N. 

Fix n and let N SO that 

/ 

since Note that we have conditional in­
dependence (conditional on ) only in the limit as the population size approaches 
infinity. 

THEOREM 1.1.1. Let N be the population size. and assume that 
we are indifferent to points on the manifold 

in the sense that, conditional on 0. our joint probability function p(•) satisfies 

p(xN) = p(yN) 

when Then 

This is not a rigorous proof. 
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Proof. Since p(x1, x2,..., xN) is constant when we must also 

constant 

(1.1.3) 

for 
Now consider and make the 

change of variable 

so that 

becomes 
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Letting n = N — 1, we see that (1.1.1) implies 

for Hence, conditional on , the joint conditional density 
for is uniform on the simplex 

The above density (1.1.1) is a so-called -isotropic density. The related 
Dirichlet probability distribution is discussed in DeGroot (1970). 

Applications of the finite population exponential model . The strength 
of structures, such as dikes, deteriorates with time due to environmental factors. 
Such structures are subject to cumulative deterioration. In the case of dikes, 
deterioration could be measured by the height of the dike, for example. If the 
height drops to a specified level, say, h0, there could be a danger of flooding. 
Extensive applications of £\-densities such as (1.1.1) to hydraulic structures are 
given in the Ph.D. thesis of Jan van Noortwijk (1996). 

Let xi denote the amount of deterioration in the ith unit time interval. The 
time unit could be months, years, etc. If h denotes the original height, then 

denotes the height after n unit time intervals. In this case, hn 

depends only on the cumulative deterioration and does not depend on the order in 
which the deterioration amounts appear. In practice, a lack of deterioration data 
is common. However, there may be engineering opinions concerning the average 
rate of deterioration per unit time 9. Using equation (1.1.1), the probability 
density for 

can be calculated and used to make decisions concerning inspection intervals and 
planned maintenance. The time horizon can be specified in terms of N equal 
time units. The probability density for s is 
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Exercises 

1.1.1. Using computer graphics and (1.1.1), plot 
versus for N = 2,5, and 10 on the same graph. Let = 10 

in all cases. 
1.1.2. Let X 1 , X 2 , . . . , X n be random quantities having joint probability 

density conditional on given by (1.1.1). 
(a) Show that X1 and X2 have the same univariate density. 
(b) Calculate the conditional mean and variance of the random quantity X1; 

i.e., and Var 
1.1.3. Using the definition of Euler's V prove (1.1.2). 
1.1.4*. Fix and let Use the joint density given 

by (1.1.1) to derive the density for . 
Show that 

This is the gamma density with parameters n and . 

1.2. Likelihood. 

The conditional density 

and considered as a function of is called the likelihood for . It is conventional 
to write 

evaluated at the n observed lifetimes 

for this likelihood. As a function of , it is not a probability density in 6. Also 
it is not, in this case, the product of univariate densities; i.e., the n lifetimes are 
not conditionally independent given 8. 

The reason for our interest in the likelihood is because of its role in Bayes' 
formula. Let p ( ) be our initial opinion for 6. Recall that, by Bayes' formula, 
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where indicates "proportional to," meaning that the right-hand side is missing 
a factor, not dependent on 6, required to make it a probability density. Since 
the denominator in equation (1.2.2) does not depend on 6, it can be ignored 
for most applications where data have been observed. However, in the case 
of experimental designs, where data have not yet been observed, we would be 
interested in the exact expression with the denominator intact. 

Large population approximation. For large populations, the finite popu­
lation exponential model (1.1.1) is approximately the infinite population expo­
nential model. In Chapter 2 we refer to the infinite population model as the 
"exponential model." From the previous section and equation (1.1.2), 

for N — 2,5, and 10 when 0 = 10. Note that when N = 2, the conditional 
density is the uniform density on [0,20], while for N = 10 the density is already 
approaching the limiting exponential form although it is only positive for the 
interval [0,100]. 

The likelihood for in the limiting case is 

(1.2.3) 

In the limiting form, the n lifetimes, before they are observed, are conditionally 
independent given 9. This is not true in the finite population case. 

Maximum likelihood. In analyzing data relative to the parameter of interest 
in this case, namely, 6, it is convenient to find an anchor or initial estimate. The 
maximum value of L($) provides such a useful location point. In the finite 

the posterior density for can be calculated as 
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population case, 

while in the limit as is achieved for at 

(1.2.5) 

is called the maximum likelihood estimator (MLE) for 9 and is the mode for 
the posterior density 

when p ( ) is constant over a sufficiently large interval for 9. 

Exercises 

1.2.1. Show that the MLE for in the finite population case is = 

1.2.2. Suppose there are only TV = 10 special switches produced for a par­
ticular space probe. Also suppose n = 2 have been tested and have failed after 
X\ = 3.5 weeks and x2 = 4.2 weeks, respectively. 

(a) What is 9 in this case? 

(b) Graph the likelihood as a function of 9 when 9 — N 
(c) Using a flat prior for 9 (i.e., p(9) = constant), graph the posterior density 

for given the data. 

1.3. Total time on test (TTT) for the finite population exponential 
model. 

Failures and survivors. Often failure data will consist of both item lifetimes 
and survival times for items that have not yet failed. Since survival times also 
constitute information, we would like to make use of them. To do this we need to 
calculate the appropriate likelihood function. This can be done using the follow­
ing result letting X1,X2,..., XN be the unknown (random) lifetime quantities 
corresponding to N labelled items. 

THEOREM 1.3.1. Let N be the population size. Fix > 0 and assume that 
we are indifferent to points on the manifold 

in the sense that, conditional on , our joint probability function p(•) satisfies 



10 ENGINEERING RELIABILITY 

for (The expression (1.3.1) is also valid when n = N.) 

Proof. Since the yi's are survival ages and not failure ages (i.e., the previous 
xi's) we have used a different notation. To show (1.3.1), take the n-fold partial 
derivative of multiplying by ( -1) n since 
is claimed to be the joint survival probability, we have 

Evaluating the partial derivative result at y1 = x1, y2 = x2,..., yn = xn we have 
the joint conditional density given in Theorem 1.1.1. This proves (1.3.1). D 

Again, suppose n devices are under observation with respect to lifetime, but 
now we are required to analyze the data obtained before all devices have failed. 
Suppose 

are the first r observed failure ages while n — r devices are still operating at age 
x ( r ) . (These are the first r order statistics.) 

We require the likelihood for with respect to the finite population expo­
nential model . In this case it is unnecessary 
to calculate the exact conditional probability for the event: r items fail at ages 

and n — r survive to age x ( r ) given . It 
is enough to assume that the first r labelled devices failed at ages x 1 , x 2 , . . . , x r 

and the remaining n — r devices survived to age xr and calculate the condi­
tional probability of this event. To obtain the exact conditional probability with 
respect to we need only multiply this calculation by 

where there are r terms 1! in the denominator. However, since this 
factor does not involve 8, it will cancel when we compute the posterior. 

Using (1.3.1) we take the r-fold partial derivative with respect to 
letting 
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The conditional joint probability density for the event 

and n — r survive to age given is now proportional to 

where we have included since (1.3.2) is actually a mixed prob­
ability density and a survival probability, namely the probability that r items 
individually fail in the intervals 

and that n — r items survive to age X(r). 
The likelihood satisfies 

The MLE for in this case is 

where is the total observed lifetime of all n 
devices under observation. We call T(x ( r )) the TTT statistic, so that is the 
TTT divided by the number of observed failures modified by the factor . 
TTT is merely our name for this quantity since not all items need be put on life 
test at the same time. 

The sufficient statistic for 8 in this case is 

( r ,T(x ( r ) ) ) , 

the number r of observed failures, and the TTT T(x ( r ) ) . The statistic is sufficient 
since these are the only quantities, based on the data, needed to evaluate the 
likelihood. 

Exercises 

1.3.1. Derive the MLE 

in equation (1.3.4). 
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1.3.2. Graph 

for when N = 5 and 10. We call the 
"failure rate" function for x1. In the finite population case, it is of no significance 
although it is considered useful in the infinite population case. 

1.3.3. For the finite population case and using 

for perform the following calculations. 
(a) Calculate the likelihood function for 0 when the data consists of r observed 

failure ages and n — r observed survival ages. Let x1 , x2 , , xr denote the failure 
ages and y r + 1 , yr+2 , • • •, yn the survival ages. Survival ages can be less than, 
equal to, or greater than failure ages. 

(b) Show that the MLE for in this case is 

where 
1.3.4. Using (1.1.1) calculate the exact joint probability density for the order 

statistics from a sample of size n given a population of 
size N and conditional on 

1.3.5*. Show that (1.3.1) still holds when n = N; i.e., show that 

1.4. Exchangeability. 

In Theorem 1.3.1, we derived the joint density of random quantities under the 
indifference judgment relative to sums. Obviously in calculating a sum, the order 
in which we do the sum is immaterial. The joint density in this case is said to 
be exchangeable. 

Let N items or devices be labelled {1,2,. . . , N}. Let X1, X 2 , . . . , XN be po­
tential measurements on these items with respect to some quantity of interest. 
Then the items are said to be exchangeable with respect to this quantity of interest 
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if in our judgment 

(1.4.1) 

for our generic joint survival probability function P(•) for any permutation 
of the integers {1 ,2 , . . . ,N} and all vectors x N . In other words, 

in our judgment items are similar, and so order does not count in the joint 
probability function. 

Notice that it is the items that are actually exchangeable and only with re­
spect to a specified quantity of interest such as lifetime. If we were, for example, 
interested in lifetimes, the colors of the items might not be relevant so far as ex­
changeability with respect to lifetime is concerned. Also, the measurements are 
potential. Once the measurements are known, the items are no longer necessarily 
exchangeable. Although exchangeability is a probabilistic expression of a certain 
degree of ignorance, it is a rather strong judgment and in the case of 0-1 ran­
dom quantities implies a joint probability function related to the hypergeometric­
distribution as we show in Chapter 3, section 3.1. 

The judgment of exchangeability implies that univariate, bivariate, etc. dis­
tributions are all the same. It does not imply that exchangeable random quanti­
ties are necessarily independent. However, iid random quantities are exchange­
able. 

Randomness . Randomness, like probability, of which it is a special case, is 
an expression of a relationship between the analyst and the world. It is not 
a property of the world, which is why mathematicians have had such trouble 
defining it. 

A sequence of 0's and 1's is random for the analyst if, given the values of 
the sequence at some places, the analyst would think another place is equally 
likely to be occupied by a 0 or a 1. In this case, the random quantities, the X1's, 
are the 0's and l's in a sequence. The random quantities are also exchangeable, 
but the concept is stronger since it implies independence and specific marginal 
probabilities, namely, 

By a random sample of lifetimes, we mean a sequence {X1,X2,..., Xn} that 
is exchangeable. Marginal distributions are unknown, and therefore the random 
quantities are dependent. Independence is impossible since knowledge of some 
lifetimes would imply partial knowledge of the univariate marginal distribution 
which would influence our prediction of future lifetimes. 

Exercises 

1.4.1. In the example concerning dike deterioration in section 1.1, what are 
the exchangeable "items," and with respect to what are they exchangeable? 
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1.4.2 (finite exchangeability). Let 
Show that X1 and X2 are negatively correlated and exchangeable. That 

is show that Cov{X1 , X2) = E[(X1 - E(X1))(X2 - E(X2))] < 0. 
1.4.3* (infinite exchangeability). Let X1, X2,... be an infinite sequence 

of binary (0 or 1) exchangeable random quantities. If binary (0 or 1) random 
quantities or events are judged exchangeable and there are a conceptually infinite 
number of them, then the probability that k-out-of-n are 1 is necessarily of the 
form 

where can be obtained using Bayes' formula (1.2.2). 

1.5. Notes and references. 

Section 1.1. The main reason for starting with the finite population expo­
nential model rather than with the infinite population exponential model is to 
better understand the judgmental basis for probability distribution models. 

Many of the ideas in this section and the chapter are due to M. B. Mendel. His 
1989 Ph.D. thesis, Development of Bayesian Parametric Theory with Applica­
tions to Control, contains a generalization of Theorem 1.1.1. J. M. van Noortwijk 

for some density p(•) (or, more generally, a distribution). Bayesians would in­
terpret p(•) as a prior for . This was proved by Bruno de Finetti (1937). 

Show that for infinite exchangeability for any i,j pair 
in the sequence. Cov(•, •) means covariance of the quantities in question. Hence 
random quantities in an infinite exchangeable sequence are positively correlated 
unless the sequence is iid, in which case 

Hint. You may want to use the following formula with respect to three related 
random quantities, X, Y, and Z: 

1.4.4. Let X1, X 2 , . . . be an infinite sequence of binary (0 or 1) exchangeable 
random quantities as in Exercise 1.4.3*. Suppose we observe x1,x2,..., xn and 
wish to predict xn+1,xn+2,..., xN. Let and 

Using (1.4.2) and the definition of conditional probability we have 

Show that this implies 
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in his 1996 Ph.D. thesis, Optimal Maintenance Decisions for Hydraulic Struc­
tures under Isotropic Deterioration applied many of the ideas of Mendel's thesis 
to maintenance problems involving dikes. Generic joint probability densities are 

isotropic if 

p(x1,x2,..., xN ) = p(y1,y2,..., yN ) 

when. When q = 1 and i = 1,2 N we have 
the finite population exponential probability distribution. 

Section 1.2. The idea of deriving the likelihood from indifference principles 
was the main theme in Mendel's 1989 thesis. This approach has been called the 
operational Bayesian approach. 

Section 1.3. In the case of the infinite population exponential model 
, the sufficient statistics for the parameter are also the number 

of observed failures together with the "TTT." 
Section 1.4. The concept of exchangeability, due to B. de Finetti (1937), 

replaces the usual iid assumption in many respects. It is used throughout Part 
I of this book. The discussion of randomness is due to Dennis Lindley. The 
importance of exchangeability in inference was discussed in a 1981 paper by 
Lindley and Novick, "The Role of Exchangeability in Inference." 

Nota t ion 

vector elements or arguments 
(not random quantities) 

order statistics based on 
x1,x2,..., xN (i.e., ordered 
observations) 

boldface denotes a vector; 
the vector has size N 

random quantities (also called 
random variables) 

probability of event E 

the conditional probability of the 
random quantity X given the 
random quantity 8; this is an abuse 
of notation wherein the arguments 
tell us which random quantities 
are being considered 

a joint probability density function 

parameters, usually = population 
mean and 

MLE of 
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a joint conditional probability 
density 

posterior density for 6 
predictive density 

expectation, i.e., if X has density 

p(•), E(X) = xp(x)dx 
likelihood, likelihood of 

TTT, TTT until x ( r ) 

independent, identically distributed 
refers to random quantities 

covariance of random quantities 
X,Y 

infinite population exponential 
model 

beta density for 

mean = variance = 



CHAPTER 2 

Lifetime Data Analysis 

In this chapter we assume that populations are effectively unbounded; i.e., we 
are assuming the limiting population case . 

2.1. Data analysis for the exponential model. 

In the previous chapter we derived the finite population exponential model for 
populations of size N. Only in the limit, as N , did we obtain the usual ex­
ponential model, i.e., in the one-dimensional case where is the limiting average 
lifetime 

(2.1.1) 

for and . We call (2.1.1) the "exponential model." 
The first idea in Chapter 1 was that the derivation should he based on a 

judgment of indifference on submanifolds. The importance of this derivation 
was due to the fact that we focused on the average lifetime of the population. 
Were we to focus on other aspects of the lifetimes of the population, we would 
have derived a different conditional probability model. 

The second idea was that when we insert data in our conditional probability 
model, the corresponding function of , called the likelihood L{). provides the 
key tool in analyzing data. (In Chapter 1, 8 was the population lifetime average.) 
Using the likelihood and a prior opinion concerning 8 we can compute the pos­
terior probability function for 8 and from this answer any probability question 
we may have concerning 8 or future lifetimes. 

The influence of failures on the posterior density. Suppose NO failures 
are observed but all items have survived for some time t. How can we analyze 
item lifetimes in this case? To make the situation clear we will consider a partic­
ular case. We will show that, although survivors tend to increase our estimate 
for the mean life , lack of failures also increases our uncertainty concerning 8. 
While the engineer naturally wants to see no failures, the statistician-analyst 
wants to see failures in order to decrease the uncertainty in the analysis. 

17 
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Example 2.1.1. Failures and survivors and the exponential model. 
Suppose we put n = 10 devices on life test. Suppose furthermore that the first 
failure occurs at age x(1) = 1 and a second failure occurs at x(2) = 3. Let 
observation cease at time t. What can we say when t < 1? What if 1 < t < 3? 
How does our inferential opinion about 9 change as we go further into the life 
test? 

In general, as we shall see, observed failure times sharpen our posterior den­
sity for 9 while survivors tend to move the mode of the posterior density to the 
right but also result in a more diffuse probability function. 

To understand this phenomenon, we will consider the infinite population 
approximation, namely, the exponential model 

To illustrate, we will use the so-called natural conjugate prior density for 9, 
namely, 

(2.1.2) 

for a, b > 0. This is called the inverted gamma density, since, if is a random 
quantity with density then 

has a gamma density. We call A the failure rate. It only applies to the infinite 
population model. In this case, 

is the failure rate function. Note that r(x | ) = is constant in x. 
For a random sample of n lifetimes, let 

where only r of n possible lifetimes have been observed while n — r items survive 
the interval (0, t]. Observation stops at time t. The likelihood L(9) is propor­
tional to 

where is the total time on test (TTT) to age t. 
The sufficient statistic for is (r, T(t) = T). If is the inverted gamma 

prior for 9, then the posterior for 9 is again the inverted gamma but now with 
parameters 

a + r and b + T. 
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F I G . 2.1.1. Posterior mean, posterior standard deviation, and posterior coefficient of 
variation as a function of elapsed test time. 

For the inverted gamma posterior density in which the parameters are a + r (in 
place of a) and b + T (in place of 6), the corresponding mean takes the form 

where Thus, the mean of the posterior density may be written as a 
convex combination of the prior mean and the maximum likelihood estimate 
(MLE) of the exponential life distribution mean parameter. Note that, as r, 
the number of observed failures increases; the posterior mean attaches more 
weight to the MLE and less weight to the prior mean. 

Example 2.1.2. In order to provide an explicit answer to the questions posed 
in Example 2.1.1, let 6 have the inverted gamma prior with parameters a = 4 and 
b = 12. In Figure 2.1.1 we plot the posterior mean, posterior standard deviation, 
and posterior coefficient of variation as a function of t, the test time elapsed. 

Note that as we go into the test both the posterior mean and the posterior 
standard deviation increase with test time t. However, as soon as a failure 

The mean of the inverted gamma density is readily calculated: 
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FIG. 2.1.2. Posterior densities at selected test times (t). 

occurs, the posterior mean, the posterior standard deviation, and the coefficient 
of variation decrease. 

In Figure 2.1.2 we have plotted the posterior density for 8 at selected times 
during the life test. The posterior density for t = 0 is, of course, the prior 
density. Notice the shape of the posterior density at t = 1- (i.e., just before the 
first observed failure) and at t = 1 (i.e., just after the first failure). 

Table 2.1.1 summarizes the properties of the natural conjugate prior density 
and of the corresponding posterior density for the two possible parametrizations 
of the exponential model. 

T h e predict ive densi ty for t h e exponent ia l model . In the infinite pop­
ulation case, the univariate marginal density is . If the prior 
for , is the inverse gamma with parameters a and b (i.e., IVG(a,b)), then 

is IVG(a + r, b + T), where r is the number of observed failures and T 
is the TTT. The predictive density 
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TABLE 2.1.1 

21 

is Pareto(a,b); i.e., 

for x > 0. Having observed x1, p(x | x1) is Pareto(a + 1, b + x1) so that p(x | x1) 
is different from p(x). 

Suppose now that the lifetime X of an item is judged exponential and is 
observed to survive to time t. Then 

so that X — t conditional on survival to time t, conditional on 9, has the same 
distribution as X conditional on 6. But unconditional on 6 we have 
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so that X and X — t conditional on survival to time t do not have the same distri­
bution. Equation (2.1.5) is true for arbitrary nondegenerate prior distributions 
for 0 [Barlow and Proschan (1985)]. It is obvious in the case of the IVG(a,b) 
prior for 6. 

The result given by (2.1.4) is called the memoryless property of the expo­
nential model. It is only valid conditional on 0. It is not true for the finite 
population exponential model derived in Chapter 1. 

No planned replacement . A curious property of the infinite population ex­
ponential model is that, under this model judgment, we would never plan re­
placement before failure. We would only replace at failure. This is regardless of 
the cost of a failure during operation of the item. The result follows from (2.1.4) 
and (2.1.5). 

In the case of the finite population exponential model we would, in general, 
plan replacement, depending on costs involved. This is intuitively more reason­
able and should serve as a warning relative to the indiscriminate use of infinite 
population approximation models. 

Exercises 

2.1.1. Show that if 8 has the inverted gamma density 

This is called the Pareto probability density. 
2.1.3. Show that if 6 has an inverted gamma prior density, r failures are 

observed, and T is the "TTT," then is an inverted gamma density 
with parameters a + r and b + T. 

2.1.4. In Example 2.1.1 with n = 10 devices on life test, suppose that an 
additional failure is observed at age x(3) = 5. Graph the posterior density for 0 
at ages t = 5- and t = 5. 

then has a gamma density 

with mean and variance . (Hint. Start with ) 
2.1.2. Calculate the predictive density for X, i.e., 
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2.1.5. For the exponential model suppose we start with 
an arbitrary prior density, , for . Three alternative test plans are to be 
compared as follows. 

(1) Observe n units and cease observation at the r1th failure. Let the suf­
ficient statistic be (r1 ,T1). Compute the posterior density . Take 
a second sample of m units and cease observation at the r2th failure. Let the 
sufficient statistic be (r2,T2). Using as if it were a prior density, 
compute an updated posterior density 

(2) Proceed as in plan (1) but with the computations in the reverse order. 
(3) Finally, combine both samples obtaining (n , r 1 ,m, r 2 ) with sufficient 

statistic (r1 + r2,T1 +T 2 ) . Starting with the original prior density . obtain 
the posterior density for 6 using the data (n, r1, m, r2) from the pair of tests. 

Compare the posterior densities under the three test plans. 
2.1.6. Make a graph similar to Figure 2.1.1 including a withdrawal at time 

t = 2 as well as the failures at t = 1 and t = 3 in Example 2.1.1. A with­
drawal does not increase the number of observed failures since it is not a failure. 
How does this effect the posterior mean, standard deviation, and coefficient of 
variation? 

2.2. T T T plots . 

In the introduction we briefly discussed the frequency interpretation of proba­
bility. In this interpretation, lifetimes of items are considered to be outcomes of 
repetitive trials generated by some "probability mechanism." This is similar to 
the numbers that would be generated by Monte Carlo trials on a computer us­
ing a random number generator. This is the interpretation of probability which 
resulted from mathematical studies of gambling. 

In his fundamental paper on probability, "Foresight: Its Logical Laws, Its 
Subjective Sources" (1937), Bruno de Finetti found the connection between the 
subjective concept of probability and the frequentist concept of probability. The 
connection is based on the concept of exchangeable random quantities. Random 
quantities X1, X2,...,Xn are said to be exchangeable if and only if their joint 
probability measure is invariant relative to their order. That is, the joint cumu­
lative distribution of lifetimes is invariant under permutations of the arguments; 
i.e., It follows from this judgment 
that all univariate (and multivariate) marginal distributions are the same. Ex­
changeability does not imply independence. However, iid random quantities are 
exchangeable. 

In 1937 de Finetti showed that an infinite sequence of exchangeable ran­
dom quantities X1, X 2 , . . . , Xn,... are independent, conditional on the common 
univariate marginal distribution F. In introducing the concept of exchangeabil­
ity, de Finetti proves both the weak and strong laws of large numbers under 
the judgment of exchangeabihty and finite first and second cross moments of 
the exchangeable random quantities. These "laws" are valid conditional on the 
univariate marginal distribution F. This is the mathematical result which "jus­
tifies," to a very limited extent, the TTT plotting method for analyzing life data 
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TABLE 2.2.1 
Jet engine corrective maintenance removal times. 

Corrective 
maintenance 

removal times 

ABC123 
ABC124 
ABC 133 
ABC134 
ABC135 
ABC137 
ABC139 
ABC141 
ABC146 
ABC147 
ABC148 
ABC149 

389 
588 
840 
853 
868 
931 
997 
1060 
1200 
1258 
1337 
1411 

which we consider next. It doesn't really work since F is unknown. However 
it does provide an initial analysis of data without a priori judgment. Such an 
analysis should always be followed by a finer in-depth bayesian analysis. The 
following example illustrates the TTT plotting method. 

Example 2.2.1. J e t engine life. The turbofan jet engine entered service over 
20 years ago as the modern means of propulsion for commercial aircraft. It has 
provided a very economical and reliable way of transporting cargo and people 
throughout the world. Maintenance on such jet engines is determined partly 
by the operating time or the "time-on-wing" (TOW) measurement. If removal 
of an engine requires penetration into a module (standardized breakdown of 
the engine into workable sections), then it is classified as a shop visit. Such 
corrective maintenance removals will be considered failure times in our analysis. 
The following data on n = 12 corrective maintenance removal times in operating 
hours was recorded in a recent paper on the subject. See Table 2.2.1. 

The question we wish to answer is the following: Were we to observe a very 
large population of removal times exchangeable with these observations, would 
the empirical cumulative life distribution based on such a large population look 
like the exponential cumulative distribution? Obviously a definitive answer based 
on only 12 observations is not possible. However, there is a plotting technique 
that can at least give us a clue to the answer. 

Scaled T T T plots of data. A scaled TTT data plot is a graph based on the 
data that tends to look like the scaled TTT transform of some univariate distri­
bution. This univariate distribution may be suggestive of a suitable conditional 
distribution leading to a likelihood model. It may be useful in a preliminary data 
analysis. It is only conditional, however, since the plot is scale invariant; i.e., 
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multiplying all observations by the same constant would not change the plot. 
Hence we can only "identify" a probability distribution up to a scale parameter. 
It is important to emphasize that the plotting method depends on the a priori 
judgment that items are exchangeable with respect to lifetime. 

Consider the corrective maintenance removal data for jet engines in Ta­
ble 2.2.1. In that case n = 12. The ordered removal times correspond to the ages 
(measured in TOW hours) at which the jet engines were removed for corrective 
maintenance. To plot the sample data, first order the observed failure times in 
increasing order. Let be the n ordered failure 
ages. Let n(u) be the number of items "under test" at age u. i.e.. not in need of 
corrective removal. Then 

is the TTT to age t (actually T(t) is piecewise linear since n(u) is a step function). 
If then 

(2.2.1) 

Plot 

for i = 1,2,... ,n). The plot is a function on so that no 
additional scaling is necessary. Figure 2.2.1 is the scaled TTT plot of the data 
in Table 2.2.1 where we have joined plotted points by straight line segments. 

Scaled T T T plot for exponent ia l da ta . To get some idea of the meaning of 
the plot in Figure 2.2.1. suppose we generate random exponentially distributed 
numbers on a computer. If X is distributed as an exponential random quantity 

with distribution, then is distributed 
as a uniform random variable on [0.1]. Suppose we use this fact to generate 
n = 12 exponentially distributed random quantities. Such random outcomes are 
listed in Table 2.2.2. 

Figure 2.2.2 is a scaled TTT plot of the data in Table 2.2.2. Were we to gen­
erate another random sample from we would construct 
a plot somewhat different from Figure 2.2.2. However, as we shall show, such 
exponential plots tend to '"wind around" the 45° line. In contrast. Figure 2.2.1 
shows no such tendency. As we shall argue, a plot of the type shown in Fig­
ure 2.2.1 indicates wearout in the sense that older engines are more likely to fail 
than newer engines. 
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TTT Plot n = 12 

Series 1 
Series2 

FIG. 2.2.1. Scaled TTT plot of engine data (Series I) and exponential transform (Series 2). 

TABLE 2.2.2 

Ordered random quantities distributed as 

1 0.001 
2 0.17 
3 0.25 
4 0.41 
5 0.44 
6 0.71 
7 0.78 
8 0.97 
9 1.26 
10 1.44 
11 1.65 
12 1.78 

The empirical probability distribution. The empirical distribution is, by 
construction, a cumulative probability distribution. It is based on the order 
statistics 
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• Series1 
• Series2 

FlG. 2.2.2. Scaled TTT plot for exponential random quantities (Series 1) and exponential 
transform (Series 2). 

(2.2.2) 

Since it is a step function, it is hardly a good estimator for a continuous life 
distribution. It is, in a sense, a nonparametric MLE for a univariate cumulative 
distribution corresponding to the exchangeable sample. 

The scaled TTT plots correspond to a transform of the empirical cumulative 
distribution. There is likewise a corresponding transform for any cumulative 
probability distribution. For example. Figure 2.2.3 has graphs of transforms of 
Weibull distributions: 

(2.2.3) 

for In this case is a scale parameter while a governs the 
"shape" of the distribution and is therefore called a shape parameter. 

corresponding to an exchangeable sample, x1 , x2 , , xn. It is defined as 
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FIG. 2.2.3. Scaled TTT transforms (Weibull d i s t r i b u t i o n s ) . 

Comparison of Figures 2.2.1 and 2.2.3 suggests that perhaps a Weibull dis­
tribution could be used as a conditional probability model to analyze the data 
in Table 2.2.1. The shape parameter could also be inferred but not the scale 
parameter , since the plot is scale invariant. 

The T T T transform. Suppose that we were to observe an ordered sample of 
observations 

Suppose, furthermore, that in our judgment the distribution 

is consistent with our prior knowledge. 
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As we showed in section 1, if we only observe the first r ordered values, then 
the likelihood is proportional to 

It is useful to observe that we can also write T(x(r)) as 

T(x(r)) = nx (1 ) + ( n - l)(x (2 ) - x(1)) + ... + (n - r + l)(x(r) - x ( r - 1 ) ) , (2.2.4) 

the sum of all observed complete and incomplete lifetimes, or the TTT. This is 
also a very useful statistic for more general models. 

Now suppose that the life distribution F (F (0 - ) = 0) is arbitrary. Another 
interpretation of T(t) can be given in terms of the empirical distribution 

(2.2.5) 

Define Fn
 -1(u) = inf{x|Fn(x) > u} and note that 

(2.2.G) 

The last equality follows from the expression for the TTT (2.2.4). 
Assuming infinite exchangeability and conditional on F, 

where in this case t = x(r) The MLE for is 

uniformly in We call 



(2.2.8) 

is the failure rate function at x. It follows from (2.2.8) that if r(•) is increasing, 
then is concave in . 

Using (2.2.8) it is easy to see that HF determines F if F is absolutely con­
tinuous. Since absolutely continuous F's are dense in the class of all failure 
distributions, we see that HF determines F in general. 

The scaled T T T statistic for exponentially distributed random quanti­
ties. Inference using scaled TTT plots is based on properties of the exponential 
distribution. Let X1, X2, • • • ,Xn be n random quantities from G{x\0 = 1) = 
1 — e - x for x > 0. (We assume 9 = 1 for convenience only.) First note that G 
has the memoryless property; i.e., 

for all It follows that 

(2.2.9) 

This is the so-called memoryless property of the exponential distribution. It is 
not true for the finite population exponential distribution. 
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the TTT transform. It is easy to verify that the mean, , of F is given by 

As an example, let Then 

i.e., G is transformed into the 45° line on [0,1]. We call the scaled TTT 

transform. 
An important property of the transform is that 

where 
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THEOREM 2.2.1. Let 
be ordered random quantities from the distribution for 

Let 

Di = X(i) - X ( i -1) 

for i = 1,2,. . . , n be the spacings between order statistics. Then 
(a) for 
(b) D1,... ,Dn are mutually independent. 

Proof. 
(a) First note that P(D1 > t) = e - n t . so that (a) holds for i - 1. By the 

memoryless property (2.2.9) of the exponential distribution. D2 has the same 
marginal distribution as the first spacing D\. but now from a sample of size 
n— 1 so that (a) holds for i = 2. By repeated applications of this argument, (a) 
holds for i = 1,2,... ,n. 

(b) Using the joint probability density for the order statistics, the joint prob­
ability density for the n spacings is given by 

(2.2.10) 

Note that the ith factor (n - i + 1) e-(n - i + 1)d, represents the marginal density 
of Di obtained in (a) above. Since the joint density of D1 Dn factors into 
the product of the individual densities of the D1. then the quantities D1 ....................Dn 

are mutually independent. D 
It follows from Theorem 2.2.1 that since the normalized spacings 

nD1,(n - l)D2 (n - i + 1)D1 Dn 

are distributed with the exponential distribution , they 
are independently distributed with common exponential distribution. It follows 
that the TTT random quantity 

is distributed as the sum of r independent unit exponential distributions. 
We next show that the distribution of T(X(r)) is a gamma distribution with 

density 

for with a = r and 6 = 1 . 
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THEOREM 2.2.2. Let Y1 ,... ,Yn be independently and identically distributed 
with exponential distribution. Then 

Z = Y1 +
 .--- + Yr 

has density 

Hence the density of T(X(r)) is a gamma density with shape parameter r. 

Proof First note that (2.2.11) holds for n = 1. Assume (2.2.11) holds for 
n = k. Then for , 

where the integrand represents the joint probability density that 

Y1 +--- + Yk = x, 

Yk+1 = z—x, and the range [0. z] of integration corresponds to the set of mutually 
exclusive and exhaustive outcomes for Y1 +--- + Yk. Hence 

Thus (2.2.11) holds for n = k + 1 . By induction it follows that the theorem holds 
for n = 1,2,.. . . 

THEOREM 2.2.3. Let 
ordered random quantities from the distribution 
and 

Then 

are distributed as the order statistics from a uniform distribution on [0,1]. 

The proof depends on the connection between the gamma and beta distribu­
tions. If Y and Z are independent gamma distributed random quantities with 
shape parameters r and n — r, respectively, then the quotient 
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is a beta distributed random quantity with parameters r and n - r. This is 
also the density of the rth-order statistic from n - 1 independent, uniformly 
distributed random quantities on [0.1]. For a generalized proof, see Chapter 3. 
section 3.2, Theorem 3.2.1. 

Comments on graphical me thods . Graphical methods for plotting lifetimes 
are commonly based on the cumulative empirical distribution (2.2.2). Items must 
first be judged exchangeable with respect to lifetime before making the graph. 
This cumulative empirical distribution is. in a sense, an MLE of a univariate 
distribution assuming the population size . Since it is a step function, 
it is a poor estimator of distributions considered a priori continuous such as life 
distributions. We have suggested using transforms of the empirical distribution 
as a means of guessing appropriate conditional probability models, conditional 
on the scale parameter. The scale parameter must still be inferred based on 
bayesian methods. 

It is important to realize that the preceding argument has been deductive 
in nature rather than inductive. That is. we began our mathematical argument 
with the cumulative distribution F specified and then deduced properties of a 
transform of this distribution. This is deductive analysis. 

Based on data judged a priori exchangeable, we plotted the data as in Fig­
ure 2.2.1. From this data plot we then tried to make inferences about an unknown 
distribution F by comparing the data plot with transform plots of known dis­
tributions. Since samples are necessarily finite. F unknown, and our argument 
concerning properties of the transform of F are deductive in nature, we should 
not stop our statistical analysis at this point but go on to a full bayesian analysis 
using additional a priori engineering judgments. 

Ideally we should derive a likelihood model using engineering knowledge and 
indifference arguments based on judgments such as exchangeability. In Chapter 4 
we show how this can be done with respect to the strength of materials. 

Exercises 

2 .2 .1 . Show that if the random quantity X has distribution 

1 — e-x for then has a uniform distribution on [0. 1]. 
2.2.2. Generate n = 20 random exponentially distributed random quan­

tities using a random number generator with a computer using the result in 
Exercise 2.2.1. Construct a TTT data plot using the 20 numbers generated and 
count the number of crossings with respect to the 45° line. 

2.2.3. Construct a TTT data plot for the lifetimes of Kevlar 49/epoxy 
strands given in Table 2.2.3. The strands were put on life test at the 80% stress 
level, i.e., at 80% of mean rupture strength. Does the TTT plot suggest that 
an exponential model might be appropriate? If so, what calculations would you 
perform next? 
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TABLE 2.2.3 
Lifetimes of Kevlar 49/epoxy strands loaded at 80% of mean rupture strength. 

Rank Time to Rank Time to Rank Time to Rank Time to 
failure 

1.8 
3.1 
4.2 
6 
7.5 
8.2 
8.5 
10.3 

10.6 

24.2 

29.6 

31.7 

41.9 

44.1 

49.5 

50.1 

59.7 

61.7 

64.4 

69.7 

70 
77.8 

80.5 

82.3 

83.5 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

failure 

84.2 

87.1 

87.3 

93.2 

103.4 

104.6 

105.5 

108.8 

112.6 

116.8 

118 
122.3 

123.5 

124.4 

125.4 

129.5 

130.4 

131.6 

132.8 

133.8 

137 
140.2 

140.9 

148.5 

149.2 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

failure 

152.2 

152.8 

157.7 

160 
163.6 

166.9 

170.5 

174.9 

177.7 

179.2 

183.6 

183.8 

194.3 

195.1 

195.3 

202.6 

220.2 

221.3 

227.2 

251 
266.5 

267.9 

269.2 

270.4 

272.5 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

failure 

285.9 

292.6 

295.1 

301.1 

304.3 

316.8 

329.8 

334.1 

346.2 

351.2 

353.3 

369.3 

372.3 

381.3 

393.5 

451.3 

461.5 

574.2 

653.3 

663 
669.8 

739.7 

759.6 

894.7 

974.9 

Time to failure in hours, n = 100. 

2.2.4. Construct a TTT data plot of the breaking load strength data on 
Kevlar 49/epoxy strands in Table 2.2.4. What can you infer about the strength 
data? 

2.2.5. Assume that random quantities are exponentially distributed. Use 
Theorem 2.2.3 to calculate 

i.e., the probability that the first point on the TTT plot lies above the 45° line. 

What is 
2.2.6. State and prove Theorems 2.2.1 and 2.2.2 for the case 

i.e., is not necessarily 1. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
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TABLE 2.2.4 

Breaking load strength of individual Kevlar 49/epoxy strands. 

Specimen 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Load 
lb. 

22.0 
22.0 
22.0 
21.6 
21.6 
22.0 
22.0 
20.9 
22.5 
22.7 
22.9 
22.0 
22.5 
22.5 
21.6 
21.8 
22.0 
22.0 

Specimen 
number 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

Load 
lb. 

21.8 
22.9 
21.8 
23.1 
22.9 
22.0 
22.2 
22.5 
21.4 
22.2 
22.7 
22.7 
22.5 
22.2 
22.5 
22.0 
20.5 
22.5 

Specimen 
number 

37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 

Load 
lb. 

21.1 
22.2 
21.4 
22.5 
21.4 
21.6 
22.0 
21.4 
21.4 
22.7 
21.6 
21.6 
22.7 
21.8 
22.0 
22.2 
22.0 

2.2.7*. Compute the distribution of T(X(r)) when random quantities are 
from the finite population exponential distribution of Chapter 1 with N the 
population size, n the sample size, and r corresponding to the rth order statistic. 
(Hint. Compare with (1.1.4) of Chapter 1.) 

2.3. Weibull analysis. 

Perhaps the most widely used probability distribution in engineering reliability 
next to the exponential distribution is the Weibull distribution, named after a 
Swedish mechanical engineer by the name of Walodie Weibull [Weibull (1939)]. 
Weibull was primarily interested in the strength of materials. However, the 
distribution is just as often used in analyzing lifetime data. Let X be the lifetime 
of an item or device. The form of the Weibull survival distribution is 

for and 1 for x < 0 (2.3.1) 

with density 

Another function of interest in reliability is the failure rate function (sometimes 
called the "force of mortality"). If a cumulative probability distribution F has 
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density / , then the failure rate function is 

(2.3.2) 

The failure rate for the Weibull distribution is 

(2.3.3) 

for x > 0 and 0 otherwise. When , the failure rate is constant, and the 
Weibull distribution reduces to the exponential distribution. For a > 1 (a < 1) 
the failure rate is increasing (decreasing). The mean of the Weibull distribution 
is 

(2.3.4) 

while the variance is 

(2.3.5) 

Sometimes three parameters are used where the third parameter is the smallest 
possible judged value of X. 

Example 2.3.1. T O W engine failure da ta . High by-pass turbofan jet en­
gine corrective removal data were given in Table 2.2.1. The removal rates of 
such engines are of interest in assessing direct maintenance costs and planning 
preventive removals. We wish to analyze the data in Table 2.3.1 on engine re­
moval times including noncorrective removals (i.e., preventive removals). Weibull 
analysis is one way of doing this. The data is fairly "clean" except for the pres­
ence of survivals that were not failures. Note that most of the data are of this 
type. There were only 12 recorded "failures," i.e., service removals, out of the 
29 observations. 

The question we wish to answer is, How can we analyze data of this type? 
Perhaps the most distinguishing property of the class of Weibull distributions 

is that they are preserved under the operation of taking the minimum. Thus if 
X1, X2, • • • ,Xn are independent (conditional on a n d ) Weibull distributed 
random quantities with survival distribution (2.3.1), then 

where the new Weibull parameters are a n d . The connection with data 
analysis, however, is unclear! 

Gnedenko (1943) showed that there are only three possible limiting distri­
butions for n independent minima when the (arbitrary) survival distribution is 
normalized as 
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TABLE 2.3.1 

A 1 in the third column indicates a service removal while a 0 indicates survival and no 
need for removal. 

Engine shop visit removals 

Serial 
number 

ABC123 
ABC124 
ABC125 
ABC126 
ABC127 
ABC128 
ABC129 
ABC130 
ABC131 
ABC132 
ABC133 
ABC134 
ABC13.5 

ABC136 
ABC137 
ABC138 
ABC130 
ABC140 
ABC141 

ABC142 
ABC143 
ABC144 
ABC145 
ABC146 
ABC147 
ABC148 
ABC149 

ABC150 
ABC151 

T O T A L 

Flight 
hours 

389 
588 
665 
707 
715 
732 
768 

778 
796 
808 
840 
853 
868 
880 

931 
977 
997 
1020 
1060 
1074 

1091 
1122 
1153 
1200 
1258 

1337 
1411 
1467 
1829 

Number of 
removals 

1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
0 

1 
0 

1 
0 
1 
0 
0 
0 
0 

1 
1 
1 
1 

0 
0 

29 

where and are suitable norming constants depending on n and the par­
ticular F. One of these distributions (the only one with positive support) is the 
Weibull distribution. Again, it is not clear what, if any. connection exists with 
inferential data analysis. 

The likelihood principle. If we judge as our probability 
model for observations conditional on , then the likelihood can in 
principle be calculated for any data set. By the likelihood principle [cf. D. Basu 
(1988)], the likelihood contains all the information the data can give us about 
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the parameters. This has far-reaching consequences for the way in which data 
is analyzed, not only with respect to the Weibull distribution. But the Weibull 
distribution by its form makes the likelihood particularly easy to compute. How­
ever, before we calculate the likelihood for the type of data in Table 2.3.1, it will 
be convenient to calculate the likelihood for general failure rate functions 

The likelihood for general failure rate functions. Both the life distribu­
tion F and the density / can be represented in terms of the failure rate function 

To see this note that 

so that 

and 

while 

The following result will be very useful in computing the likelihood in the Weibull 
case. 

THEOREM 2.3.1. Given the failure rate function r(x), conditionally inde­
pendent observations are made. Let x1, x2, • • • ,xk denote k observed failure ages 
(in Table 2.3.1, k = 12) and the m survival ages (in Table 2.3.1, 
m = 17) The notation denotes loss, as lost from further observation. Let n(u) 
denote the number of items or devices under observation at age and 
let r(u) denote the failure rate function of the item at age u. Then the likelihood 
corresponding to the failure rate function considered as a continuous parameter, 
having observed data, is given by 

(2.3.8) 

Proof. To justify this likelihood expression, we first note that the underlying 
random events are the ages at failure or withdrawal. Thus the likelihood of the 
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observed outcome is specified by the likelihood of the failure ages and survival 
ages until withdrawal. 

To calculate the likelihood, we use the fact that given r(•) . 

Specifically, if an item is observed from age 0 until it is withdrawn at age . 
without having failed during the interval a factor 

is contributed to the likelihood. Thus, if no items fail during the test (i.e., k = 0), 
the likelihood of the observed outcome is proportional to the expression given 
for k = 0. 

On the other hand, if an item is observed from age 0 until it fails at age xs 

a factor 

is contributed to the likelihood. The exponential factor corresponds to the sur­
vival of the item during [0, xs], while r(xs) represents the rate of failure at age xs. 
(Note that if we had retained the differential element "dx," the corresponding 
expression r(xs)dxs would approximate an actual probability: the conditional 
probability of a failure during the interval (xs,xs + dxs) given survival to age xs.) 

The likelihood expression corresponding to the outcome k > 1 now is clear. 
The exponential factor corresponds to the survival intervals of both items that 
failed under observation and items that were withdrawn before failing: 

where the first sum is taken over items that failed while the second sum is taken 
over items that were withdrawn. The upper limit is for simplicity and 
introduces no technical difficulty, since n(u) = 0 after observation ends. D 

The likelihood we have calculated applies for any absolutely continuous 
life distribution. In the special case of an exponential life distribution model 

the likelihood of the observed outcome takes the simpler form 

(2.3.9) 
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Back to the Weibull example. Although failures and losses will usually be 
recorded in calendar time, for the purpose of analysis we relate all ages from the 
"birth" date of the item or the time at which the item was put into operation. 

Let x1, x2, • • • ,xk denote the unordered observed failure ages and n(u) the 
number of devices surviving to age u. (Note that since observation must stop at 
some finite time, n(u) = 0 for u sufficiently large. Furthermore, n(u) is a step 
function.) Using Theorem 2.3.1 we can compute the likelihood for the Weibull 
distribution, namely, 

(2.3.10) 

for and . Suppose there are m withdrawals and we pool observed 
failure and loss times and relabel them as 

If observation is confined to the age interval [0,t], then we have 

(2.3.11) 
Two important deductions can be made from this. 

(1) From the likelihood (2.3.10) we can see that the only sufficient statistic 
for all parameters in the case of Weibull distributions is the entire data set. In 
other words there is no lower-dimensional statistical summary of the data. 

(2) No natural conjugate family of priors is available for all parameters. Con­
sequently, the posterior distribution must be computed using numerical integra­
tion. 

Using three-dimensional graphics, contour plots for can be made cor­
responding to selected probability regions. Often .99, .95, .50 probability regions 
are used although there is no special reason for this selection. 

Example 2.3.1 (Continued). TOW engine failure data. A TTT plot of 
just the failure times of the engines given in Table 2.2.1 suggests that a Weibull 
distribution with could be used to analyze the complete set of failure 
times in Table 2.3.1. If we pursue a Weibull analysis using a = 3, we can utilize 
the additional information given in Table 2.3.1. In this case the parameter of 
interest is A. 

The first calculation should be the MLE for A conditional on a. Note that 
in this case n = 29, 



LIFETIME DATA ANALYSIS 41 

where T* is the transformed TTT. The likelihood for A can be written as 

Calculating the MLE for we find 

Since the mean of the Weibull distribution is 

the MLE for the mean is 

when is specified. 
To determine accuracy of the MLE for A we plot the ratio of the likelihood 

divided by the likelihood evaluated at A: i.e.. 

for in a suitably chosen interval about A. This is the modified posterior for 
A corresponding to a fiat prior. 

Exercises 

2.3.1. Let X have a Weibull distribution with parameters . 
(a) Show that the distribution of given and are exponential. 
(b) What is the mean and variance of given ? 
2.3.2. Assume = 3. Use the data in Table 2.3.1 to calculate the NILE . 

Graph 

to assess the accuracy of What is the MLE for the mean of the Weibull 
distribution? 

2.3.3. Show that (2.3.4) and (2.3.5) are the mean and variance, respectively, 
of the Weibull distribution. 

2.3.4. Why is the entire data set the only sufficient statistic for both param­
eters A and a in the case of the Weibull distribution? 
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2.3.5. Calculate the exact likelihood expression f o r . The 
proportional likelihood is given by (2.3.8). 

2.3.6. Graph the scaled TTT 

when and the mean of F i s . 
2.3.7. Graph the predictive density for lifetime using the data in Table 2.3.1 

with = 3; i.e., graph 

where . It is convenient to use the proportional likelihood for rather 
than the likelihood for A since = 3. 

2.4. Notes and references. 

Section 2 .1 . The material on the influence of failures on the posterior den­
sity was taken from the 1985 paper, "Inference for the Exponential Life Distribu­
tion" by Barlow and Proschan. The appendix to that paper contains interesting 
proofs of similar results for the exponential model and arbitrary prior distribu­
tions for 0. 

Section 2.2. TTT plots were first described in a 1975 paper by Barlow 
and Campo, "Total Time on Test Processes and Applications to Failure Data 
Analysis." A 1977 paper by Bo Bergman derived the distribution for the number 
of crossings of the TTT plot in the case of the exponential distribution model. 
Further properties of the TTT transform were described in the 1979 paper by 
Barlow, "Geometry of the Total Time on Test Transform." 

The TTT plotting technique fails when data is incomplete. In the complete 
data case, the argument for the technique rests on the assumption of exchange­
ability, a stochastic comparison with the exponential case and convergence for 
infinite populations. The argument is not inductive. 

Section 2.3. The basis for the Weibull analysis presented here is the likeli­
hood principle [cf. Basu (1988)]. 

The likelihood principle: If two experiments E1 and E2 resulting in corre­
sponding data sets x1 and x2 generate equivalent likelihood functions for the 
parameter of interest, then the information provided by E1 is equal to the infor­
mation provided by E2. 

The likelihood functions are equivalent if they are equal up to a constant fac­
tor independent of the parameter of interest. Information is anything concerning 
the parameter of interest that changes belief, expressed as a probability, about 
the parameter. 
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The likelihood for general failure rate functions was described in the paper by 
Barlow and Proschan (1988), "Life Distribution Models and Incomplete Data." 

Notation 

coefficient of variation; is the 
mean and is the standard 
deviation 

gamma density 

inverted gamma density 

Pareto density 

TTT to time t 

Weibull cumulative distribution 
with shape parameter and scale 
parameter 

empirical cumulative distribution 

TTT transform 

failure rate function 





CHAPTER 3 

Counting the Number of Failures 

Often, the only failure information available for a particular item or device is the 
number of defectives in a given sample or the number that failed in a given time 
interval. In section 3.1 we derive conditional probability models for the number 
of defectives relative to both finite and infinite populations. In sections 3.2. 3.3. 
and 3.4 we consider conceptually infinite populations. In section 3.4 the number 
of failures may be observed in finite time intervals of length and relative to a 
finite time horizon T. 

3.1 . The hypergeometric and binomial distributions. 

The hypergeometric and binomial are two of the most useful probability models 
relative to counting failures. The hypergeometric is determined by the exchange­
ability judgment relative to 0 or 1 random quantities (sometimes called indicator 
random quantities). However, this is not obvious and we prove it from first prin­
ciples. The binomial is, in one case, an approximation based on a conceptually 
infinite exchangeable population of items. As noted elsewhere, exchangeability 
does not imply independence although iid does imply exchangeability. For ex­
changeability to imply independence, in the case of infinite populations, we need 
to specify the univariate marginal distribution. Except in the case of games of 
chance, this is not realistic. For example, suppose we randomly draw, with re­
placement, objects from an "urn" whose proportion is known. In this case, the 
drawing outcomes will be independent and the number drawn of one kind will 
have a binomial distribution. Were the proportion to be unknown, the outcomes 
of random drawings would not be independent. This is because, through drawing 
objects, we would gradually learn the value of the proportion. In this situation, 
drawing outcomes are dependent. 

Indicator random quantities. Suppose items are labeled {1 ,2 , . . . , N}. Let 
Xi = 1 if item i is defective and Xi = 0 otherwise. Suppose items are exchangeable 
with respect to whether or not they are defective. Of course, if we can visually 
inspect items before testing, we might not judge them exchangeable even though 
we might not know the test outcome for sure. Hence the judgment that items are 
exchangeable may not always be correct for us. The judgment of exchangeability 

45 
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is in fact a fairly strong judgment about items before they are tested. Of course, 
after testing, the items would no longer be considered exchangeable. 

Let X N = (x1, x2, • • • ,xN) and the parameter of interest be 

(3.1.2) 

Note that p(xn | S) remains exchangeable; i.e., any subsequence of an exchange­
able sequence is exchangeable. 

Since s and n are sufficient for S, we will only need the second derived dis­
tribution, the distribution for s conditional on S, namely, the hypergeometric 
distribution 

when and is 0 otherwise. 
If S is unknown, the problem is to infer S based on a sample of size n. Under 

exchangeability and conditional on S, we obtain the first derived distribution 

for s = 0 , 1 , . . . , min(n, S). 
Letting S, N in such a manner t h a t , we have the binomial 

approximation to the hypergeometric; namely, 

(3.1.4) 

when y N is a permutation of x N . Note that the principle of indifference holds; 
that is, all vectors xN that sum to S are equally likely in our judgment. It follows 
that, conditional on S, the probability function is determined; i.e., 

the number of defective items in the lot. Using this notation, p(xN) is invariant 
under permutations of the coordinates; i.e., 

(3.1.1) 
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for s = 0 , 1 , . . . , n. The limiting proportion of defectives p is sometimes referred 
to as the "chance" that a specified item will be defective. A chance, however, is 
not the analyst's probability but an unknown parameter of the binomial model 
based on the concept of a limiting proportion (which is not really observable). 

Note that in the limiting population case, any unexamined item would have 
the same a priori chance p of being defective irrespective of previous sample out­
comes. That is, indicator random quantities would be independent, conditional 
on p. 

Bayes' formula and the theorem of total probability. It is useful to 
represent random quantities by circles in a directed network (shown in Figure 
3.1.1), where p is the parameter of a binomial distribution. The number of 
defectives s in a sample of size n has distribution bi(n,p). and the arrow indicates 
that the distribution of s depends on p. In this situation we consider the sample 
size n known a priori. An unconditional distribution needs to be assigned to p. 
For convenience, suppose p is Be(A, B). 

Upon reversing the arrow, the distribution for p becomes a conditional distri­
bution dependent on s. See Figure 3.1.2. The distribution of p has been updated 
by Bayes' formula to Be(A + s,B + n - s); i.e., 

On the other hand, the distribution of s is now unconditional. It is calculated 
using the "theorem of total probability" by merely unconditioning the original 
binomial distribution which was conditional on p. The unconditional distribution 
of s is now beta-binomial with parameters (n, A, B); i.e., 

FlG. 3.1.1. Simple "influence diagram." 

FlG. 3.1.2. Reversing the arc in a simple influence diagram. 
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To motivate the beta-binomial prior for S, suppose we fix N,S,s and let S* 
be the number defective in N* > N. See Figure 3.1.3. Now suppose S*,N* 
in such a manner that . Then the number defective in N, namely, S, 
is binomially distributed with parameters {N,p). If we use the beta prior for p, 
namely, Be(A, B), then the unconditional probability distribution for S given N 

PN,A,B(S) 

will be the beta-binomial probability function given by (3.1.6) with N replacing 
n and S replacing s. 

In the same way, S - s given N, n, and p will be binomial with parameters 
(N—n, p). Having observed s defectives in a sample of size n, we update the prior 
for p to Be(A + s,B + n — s). Using this updated prior for p and the binomial for 
S—s with parameters (N—n,p), we obtain the posterior probability distribution 
for S—s given n, s as in (3.1.7), namely, the Bb(N—n, A+s, B+n—s) probability 
distribution. 

Failure diagnosis. Off-shore oil pipelines on the seabed corrode with time 
and need to be tested for significant internal corrosion. This can be done using 

FIG. 3.1.3. Relative sample and population sixes. 

The hypergeometric and the beta-binomial distributions. Suppose we 
have a unique lot of N exchangeable items; i.e., the population size is N. Let S 
be the number of items in the population that are defective. In order to learn 
about S, a sample of items of size n is examined and are found to 
be defective. If we judge the items exchangeable with respect to being defective, 
then 

for s = 0 , 1 , . . . , min(n, S). Having observed a we wish to predict the number of 
defectives S — s in the remainder consisting of N — n items. 

The natural conjugate prior for S in this case is the beta-binomial probability 
function, Bb(N, A, B); see (3.1.6). The posterior probability function for S — s 
given a is again beta-binomial but now with parameters N — n, A + s, B + n — s, 
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State of pipe 
section 

Corroded 
Not corroded 

Test response 
t = 1 t = 0 

x = 60 90 
9 y = 141 

Sample size 

m = 150 
n = 150 

an instrument called a "pig" which is pushed through the pipe. The accuracy of 
the pig is to be determined and the probability calculated that a specified pipe 
section is significantly corroded when this is indicated by the pig. 

Let 

and 

if there is significant pipe corrosion, 

otherwise 

if the test indicates significant corrosion, 

otherwise. 

We know that the test, although not perfect, depends on the state of the pipe 
section. Hence we want to reverse the arrow in Figure 3.1.4. But first, suppose 
we implement a planned experiment to determine the accuracy of the pig test. 
Suppose m pipe sections known to be corroded are tested and the test indicates 
that x = 60 of the m are corroded. Suppose also that n pipe sections known to 
be uncorroded are tested and the test indicates that y = 141 are uncorroded. 
Table 3.1.1 summarizes the experiment outcome. 

Let denote the proportion of times in a very large experiment that a 
corroded pipe section is correctly detected. Let 

pipe section is corroded]. 

Although we have used P[.] as if were a probability, this is an abuse of notation 
since is really a parameter, namely, a long run proportion (or chance). 

FlG. 3.1.4. Testing for corrosion. 

TABLE 3.1.1 

Pipe corrosion test data. 
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Likewise, let 

F I G . 3.1.5. Failure diagnosis influence diagram. 

| pipe section is not corroded]. 

In engineering parlance, 1 — is called the probability of a "false negative," 
while 1 - is called the probability of a "false positive." In biometry, is 
called the "sensitivity" of the test, while is called the "specificity" of the test. 
We will extend Figure 3.1.4 to include this additional information; see Figure 
3.1.5. 

Suppose that initially and also . Reversing 
the top arrows in Figure 3.1.5, and . Eliminating and by taking expectations, 

The test has increased the probability of corrosion from 0.10 to 0.40 if t = 1. 
Comments. In the 0-1 case, probability invariance with respect to permuta­

tions of vector components implies probability invariance with respect to sums 

Figure 3.1.5 is now transformed into Figure 3.1.6. Suppose that a priori we 
judge 

Reversing the arc from 6 to t and using Bayes' formula we finally calculate 

Using our tabulated values in Table 3.1.1, it follows that 
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FIG. 3.1.6. "Instantiating" the data. 

of vector components and vice versa. In Chapter 1 this was not true. Although 
probability invariance with respect to sums does imply probability invariance 
with respect to permutations of vector components, the converse is false in 
general. 

Exercises 

3.1.1. Failure diagnosis. Pipes on the sea floor are tested for significant 
internal corrosion using a magnetic flux pig. The accuracy of the pig is to 
be determined and the probability calculated that a specified pipe section is 
significantly corroded when this is indicated by the pig. 

Let 

1 if there is significant corrosion, 

0 otherwise, 

and 

if the test indicates significant corrosion, 

otherwise. 

Let denote the proportion of times in a very large experiment that correctly 
detects a corroded pipe section. Let 

pipe section is corroded]. 

Likewise, let 

| pipe section is not corroded]. 

Suppose n = 10 pipe sections on the sea floor are tested and the tests indicate 
that all n are corroded. An "autopsy" is performed on each of the pipes and it 
is found that x = 2 are not significantly corroded. 

(a) If a priori and , what are the posterior 
distributions of a n d . 
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(b) Let denote the indicator for a different pipe section not yet tested. If a 
priori , what is 

3.1.2. Inspection sampling. An inspector records x = 2 defectives from a 
sample but forgets to record the sample size n. The sample is from a production 
process considered to be in statistical control; i.e., observations are considered to 
be exchangeable and as a consequence each item has the same a priori chance 
of being defective. The inspector remembers that n is either 10 or 12 with equal 
probability. Suppose is judged to have a Be(l, 1) probability distribution. 

(a) Draw an influence diagram containing nodes x, and n by adding the ap­
propriate arrows together with the appropriate conditional probabilities. Using 
arc reversals, c a l c u l a t e . 

(b) Using the influence diagram and arc reversals find a computing expression 
f o r . 

3.1.3. The problem of two designs. There are two possible designs for 
constructing columns to be used in buildings. Each design involves the same 
construction cost. Let be the "chance" of failure of a column due to 
a large earthquake if design one (two) is used. Suppose some tests have been 
performed using a shaker table (an earthquake simulator) and is our 
probability function for . Suppose in addition that but 

. 
In each case below, let be the number of columns that fail in an earthquake 

if you use design i(i = 1,2). What is the probability function for if 
columns fail independently given the earthquake occurs? 

(a) Suppose you are considering building a structure requiring only one col­
umn. If an earthquake occurs and the column fails, you lose $1 million and 
nothing otherwise. Which design would you choose? 

(b) Suppose you are considering building another structure requiring two 
columns. If either or both columns fail in an earthquake, you lose $1 million 
and nothing otherwise. Which design would you choose? (Assume columns fail 
independently given the occurrence of an earthquake.) 

(c) Suppose you are considering constructing yet another building requiring 
three columns. Suppose is Be(4,6) and is Be(2,3) so that 
but. If any columns fail in an earthquake, you lose $1 million 
and nothing otherwise. Which design would you choose? 

3.1.4*. Conditional dependence and unconditional independence in 
the finite population binary case. Let and where 
xi is either 0 or 1 and 
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if and only if p(5) is bi(N, p). In this case conditionally dependent random quanti­
ties X1,X2,...,Xn with conditional density given by (3.1.2) are unconditionally 
independent when the prior distribution for S is binomial with parameters N 
(the population size) and p specified. 

3.1.5*. Conditional dependence and unconditional independence in 
the finite population exponential case. Let and show that 

3.2. Categorical d a t a analysis. 

In this section we consider exchangeable items which may be subjected to differ­
ent tests and/or which may exhibit more than one failure mode. The population 
size will be considered conceptually infinite. For example, we could present items 
one after another to two certifiers, certifier 1 and certifier 2. to determine whether 
the two certifiers give substantially the same results. Each certifier classifies an 
item as top grade or not top grade. Fifty tests are recorded. The population of 
such items is considered unbounded, i.e., N . The results of the tests are 
shown in Table 3.2.1. 

Corresponding to Table 3.2.1, consider the "chance* matrix in Table 3.2.2. 
What we call "chances" are not "probabilities" in our sense of probability. They 
are limiting proportions or so-called parameters. Although convenient concepts. 

TABLE 3.2.1 

Comparison of two certifiers. 

Certifier 2 
Top grade 

Not top grade 

Certifier 1 
Top grade Not top grade 
n11 = 21 n12 = 8 

n21 = 3 n22 = 18 

n01 = 24 n02 = 26 

n10 = 29 
n20 = 21 

n00 = 5 0 

TABLE 3.2.2 

Chance matrix of two certifiers. 

if and only if. In this case conditionally dependent 
random quantities X1,X2,...,Xn with conditional density given by (1.1.1) in 
Chapter 1 are unconditionally independent when the prior distribution for 5 = 
NO is a gamma density with shape parameter N (the population size) and A 
specified. 

Certifier 2 
Top grade 

Not top grade 

Certifier 1 
Top grade Not top grade 
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they can never be operationally observed since they involve infinite populations. 
In Table 3.2.2, is the chance that a future item, exchangeable with the 
recorded items, will be given the designation top grade by both certifier 1 and 
2. We are interested in estimating the chance that both certifiers 
will agree that a given item is either top grade or not top grade. To do this 
we need to first assign a joint prior probability function to. 
Note, however, that since only three chances are free 
variables. 

The Dirichlet probability distribution. Since, in general, categorical ta­
bles can be based on more than two categories, it will be convenient to use a 
different notation for the "chance" parameters. 

Let be the number of categories and let Yi(i = 1,2,. . . , k +1) be 
the chance that an item will fall in the category labelled i. In the example above 
we had two classifications and also two categories. We let be the chance that 
an item would fall in the category labelled (i,j). Instead of 
we now use the notation (Y1, Y2, Y3, Y4) because this notation will be convenient 
when considering more than two classifications. 

DEFINITION. Let > 0 (i = 1,2, ...,k + 1). The random quanti­
ties (Y1, Y2, Y3, Yk) are said to have a Dirichlet distribution with parameters 

denoted by 

if the joint probability distribution of (Y1, Y2, Y3, Yk) has joint probability density 
function 

over the k-dimensional simplex defined by the inequalities yi > 0, i — 1,2,. . . , k, 
Note that since Yk+1 = 1 — Y1 — Y1 — • • • — Yk+, Yk+1 is determined 

by (Y1, Y2, Y3, Yk). 
More generally, in this definition we can take for each i, and 

0. If for some i then the corresponding Yi = 0. 
For k =1, the Dirichlet distribution for Y1 is the familiar beta 

distribution with parameters and 

The multinomial probability distribution. Since, in general, categorical 
tables can be based on more than two categories, it will also be convenient to 
use a different notation for the number of observations in a given category. 

Let be the number of categories, and let Xi(i = 1,2, . . . , k + 1) 
be the number of items that fall in the category labelled i. In the example above 
we had two classifications and also two categories. We let nij be the number of 
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items t ha t fell in the category labeled (i,j). Instead of ( n 1 1 , n 1 2 , n 2 1 , n 2 2 ) , we 
now use the notat ion (X1, X2, X3, X4) because this notation will be convenient 
when considering more than two classifications. 

DEFINITION. The random quantities (X1,X2,... ,Xk+l) are said to have 
a multinomial probability distribution function with chance "probabilities" 
(y1,y2,---,yk+1) = yk+1 denoted by 

if the joint probability function is 

(3.2.2) 

for where. Note that the multinomial 
coefficient is just the total number of different ways in which n items 

can be arranged when there are xi items of type i (i = 1,2 k + 1). 

T h e p o s t e r i o r D i r i c h l e t d i s t r i b u t i o n . From the definitions of the multino­
mial and Dirichlet distributions it follows that 

Recall that a Be(A, B) probability density has mean and variance 

If we let corresponding to a 

It can be shown that the sum Y1 + Y2 + • • • + Ym given x 1 , x 2 , ... , x k + 1 has a 

probability density. Using this result we can finally answer the question posed at 
the beginning of this section. Namely, what is the posterior probability distribu­
tion o f , the chance that both certifiers will give the same classification 
to a future item exchangeable with the ones observed? 

If we use an initial Dirichlet prior the answer is 
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TABLE 3.2.3 
Missing failure mode data. 

TABLE 3.2.4 
Chance table for data Table 3.2.3. 

Ruptured 
Leaking 

Failure mode Failure mode 
reported not reported 

"reference prior," then using the data in Table 3.2.1 

and the standard deviation is 

so that there would not be much point in graphing the probability density. 

Missing da t a . We will illustrate how partial information can be utilized to 
analyze failure data containing information on the mode of failure. Suppose that 
failure data are available for underground pipes that have been in place for some 
30 years. In our example, pipe failure can be classified as either ruptured or 
leaking. Suppose in addition that some pipes known to have failed were not 
classified by failure mode. How can we make use of all the data to predict the 
proportion of ruptured pipes in the general population of such pipes? Table 3.2.3 
illustrates the type of data under consideration. 

The corresponding "chance" table is Table 3.2.4. 
In Table 3.2.4, is the proportion of ruptured pipes in an exchangeable 

infinite population of pipes whose failure mode would not be reported. We are 
interested in p r e d i c t i n g , which is similar to the previous example 
except for the missing data. 

Again we will use a Dirichlet prior for with parameters 
where. The trick is to make an 

Failure mode Failure mode 
reported not reported 

Ruptured n11 

n2 

Leaking n21 

n01 n 0 2 = n2 
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"appropriate" change of variable with respect to the chances. Let 

so that the random quantity of interest with respect to this change of variables 
is 

Next, it can be shown that 

and that and are independent. The likelihood in terms of the new 
variables is 

By matching the Dirichlet prior to this likelihood we obtain the posterior distri­
bution of. It can be shown that and are also independent 
a posteriori and 

It follows that 

where n = n11 + n21 +n 2 . However, it would be much more difficult to calculate 
the posterior density of 

The relationship between Dirichlet distributed random quantities and 
independent gamma distributed random quantities. The Dirichlet dis­
tribution can also be characterized in terms of mutually independent gamma 
random quantities. Recall that a random quantity Z has a gamma density g(z) 
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Consider the transformation 

i = 1,2,. . . , k + 1, the reverse transformation being , i = 1,2,..., k + 1 
and 

The Jacobian 

When are independent, ex­
ponentially distributed and (Y1,...,Yk) are independent uniform [0,1] random 
quantities. This proves Theorem 2.2.3 in Chapter 2. 

Exercises 

3.2.1. A cheap method versus a master method. Exchangeable items 
can be tested nondestructively using either a cheap method or a more expensive 
master method. The following table gives the data from a test wherein each of 
40 items were tested with both methods. 

THEOREM 3.2.1. Let Z 1 , Z 2 . . . , Z k + 1 be mutually independent gamma dis­
tributed random quantities with the common parameter 6 > 0 but with possibly 
different shape parameters 0, i = 1,2, . . . ,k + 1. Let Z = and 

. Then 

Also (Y1,Y2...,Yk) are independent of Z. 

Proof. The joint probability density function of the Z i 's is 

It follows then that the joint probability density function of (Z, Y1,... , Yk) is 
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Cheap 
method 

Go 
No go 

Master 
method 

Go No go 

23 6 
5 7 

Using the same Dirichlet prior employed for the example with two certifiers, 
calculate the expected proportion of times both methods would agree for a con­
ceptually infinite population exchangeable with the tested items. 

3.2.2. Some failure modes not reported. Calculate the expected pro­
portion of ruptured pipes in a conceptually infinite population exchangeable with 
the items in the following table. 

Ruptured 

Leaking 

Failure mode Failure mode 
reported not reported 

1 
6 

3 
4 6 

distribution. (Hint. Similar to Exercise 1.1.4.) 

3.3. Appl icat ions of t h e Poisson process. 

In this section, the population size and the time horizon are both conceptually 
infinite. We start with the Poisson process model and show how it can be applied 
to practical problems. 

A random process (or stochastic process) is a collection of random quantities, 
say, {X(t1),X(t2), . . . ,X(t n ) } , at time points (or epochs) t1 < t2 < ... < tn. 
In our modeling leading to the Poisson process in section 3.4, time intervals 
over which failures are recorded will originally have length (e.g., Figure 3.3.1), 
where is the time horizon. Consider the arbitrary time point t fixed. 

The following two examples are illustrative of the kinds of failure data we have 
in mind. We will analyze these examples using the Poisson process approximation 
(corresponding to and ). For the Poisson process approximation, let 

Using the same Dirichlet prior as used for the missing data example, calculate 
the standard deviation of the posterior distribution for 

3.2.3*. Sum of Dirichlet random quantities. If (Y1, Y 2 , . . . , Yk) 
, show that has a 
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FIG. 3.3.1. Time intervals for data records. 

TABLE 3.3.1 
(M denotes million seeks.) 

Hard disk failures 

Company 
A 

Company 
B 

Number 
of seeks 

250M 

1M 

Hard disk 
errors 
2500 

5 

(3.3.1) 

for k = 0 , 1 , . . . is the probability that k failures occur in [(),/] conditional on 
the failure rate A. Time can be measured in a number of ways. For example, 
automotive failures might be recorded relative to the number of miles driven. In 
the first example below, time is measured by the number of seeks of a computer 
hard disk. In the second example, time is measured by the number of laser 
shots. 

Example 3.3.1. Hard disk failures. Two hard disk manufacturers were 
competing for a very large government contract. One condition of the competi­
tion was that the winner should have a lower failure rate with respect to hard 
disk failures. In Table 3.3.1 we have the following data based on field experience 
for many hard disks. Company A claimed that since they had many more disks 
in use, the apparent superiority of Company B was void. Would you agree? How 
would you analyze this data? The number of seeks is a measure of time passage 
in this case. We have recorded the total number of seeks over all hard disks of a 
particular type. 

Example 3.3.2. Failure data for laser system components. A prototype 
laser system designed to generate and deliver high-power optical pulses to a 
target chamber to create fusion had the failure data for selected components as 
shown in Table 3.3.2. 

The fact that some components had no recorded failures should be good 
news. However, the maximum likelihood estimate (MLE) for the failure rate in 
these cases would be 0, which is not reasonable, since we actually would expect 
failures at some future time. Time in this case is measured in the number of 
shots used for nuclear physics experiments. 

N(t) denote the number of failures in [0, t] while 
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TABLE 3.3.2 

Failures in 700 shots 
# Failures 

= k 
3 
6 
0 
0 

# in system 
= n 
32 

288 
288 
512 

Description 

main bank charging supply 
fuse 
capacitor 
flashlamp 

TABLE 3.3.3 

Failures in 700 shots 
# Failures 

3 
6 
0 
0 

TTT 

22.400 
201.600 
201.600 
358.400 

MLE/1000 
shots 
0.13 
0.03 
0 
0 

In both examples, the time horizons T in terms of the number of seeks in the 
first example or the number of shots in the second example are very large. The 
total time on test (TTT) for all hard disks in the Held in the first example is 250 
million seeks for Company A and 1 million seeks for Company B. In the second 
example, we multiply the number of shots. 700. by the number of such devices 
in the system. Table 3.3.3 gives the MLEs per 1000 shots for the data in Table 
3.3.2. 

T h e Poisson probabil i ty model for a single component posit ion. Using 
the derivation that follows in section 3.4. we can argue that the Poisson process 
provides a convenient probability model approximation for analyzing this failure 
data. Assume that the item in a given component position in each case is re­
placed by an exchangeable item at failure so that the population of such items is 
conceptually infinite. Let N(t) be the number of failures in a single component 
position in time t. Let A be the failure rate. Then 

(3.3.2) 

k = 0 , 1 , . . . is the Poisson probability function approximation conditional on the 
failure rate A. This model is a useful probability approximation for analyzing 
both data sets. The MLE for A in (3.3.2) is 

where k is the number of observed failures and t corresponds to the system 
operating time. 



Using a spreadsheet such as EXCEL, it is easy to plot posterior densities 
corresponding to failure observations. 
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The posterior density for A (a single component position). Consider 
data for items in a single component position which has k recorded failures in 
[0, t). This can occur if the item is replaced at failure by exchangeable items. A 
useful calculation would be the posterior density for A conditional on the data. 
Using Bayes' formula we have 

In the absence of further information we could take 

constant. 

Remembering the form of the gamma density 

f o r , we calculate 

for A > 0, where we have identified b = t and a = k + 1. The posterior mean is 

Posterior density for exchangeable items in n component positions. 
Consider the case of n component positions using exchangeable items. If the 
system operates for time t with a total of k observed failures over all n component 
positions, the likelihood would be 

with MLE 

If we use a "flat prior," p(A) = constant, the posterior density for A would be 

with posterior mean 
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Comparing (3.3.6) and (3.3.7) we see that there is virtually no overlap in the 
posterior probability densities. It follows that the failure rate for hard disks 
from Company B is significantly better than the failure rate for hard disks from 
Company A. 

Figure 3.3.2 demonstrates graphically the differences in the failure rates of 
Companies A and B. 

Exercises 

Compute all posterior densities using the "flat" prior for A. 
3.3.1. Using the data in Table 3.3.2, compute and graph the posterior den­

sities for fuse and capacitor failure rates. For fuses, compute and graph 

P[N(t0) = j | fuse data] 

for j = 0 , 1 , . . . , 10 and t0 = 1000 shots. The fuse data consists of k = 6 failures 
in t = 700 shots for n = 288 fuses. 

3.3.2. In Example 3.3.1 we saw that the posterior densities for and 
will hardly overlap. However, it would be useful to compute the probability that 
failure rates, considered as random quantities s a t i s f y . 

Consider the random quantities conditionally independent given the data in 
Table 3.3.1 and compute using the normal approximation. 

3.3.3. For Company A and a single hard drive, compute and graph 

P[N(t0) = j | Company A data] 

with probability greater than 95%. 
The normal approximation for is still good in this case even though we 

now have only a = 6. For we have 

Example 3.3.1 (Continued). The normal approximation to the gamma. 
In Example 3.3.1, is gamma with shape parameter 
a = 2501. In this example, T = 250M is the total of all hard disk seeks in the 
field. 

It is neither practical nor desirable to graph a gamma density with a shape 
parameter so large. In this case, the mean based on the gamma distribution is 

, while the standard deviation is . 
Prom Theorem 2.2.2 we know that the sum of iid exponential random quantities 
has a gamma distribution. Hence with a = 2501 and = 0.025 x 10 - 5 we can 
appeal to the central limit theorem to approximate the gamma density by the 
normal density with the same mean and standard deviation as the gamma. 

Using the normal approximation, we calculate that the failure rate for Com­
pany A satisfies 
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(Failure rate per 105 seeks) 

F I G . 3.3.2. Company A: Series 1. Company B: Series 2. 

for j = 0 ,1 , . . . ,20 and t0 = 106 seeks. (Hint. Using the negative binomial 
distribution.) 

3.4*. Derivat ion of t h e Poisson process. 

In this section, the population size is again considered conceptually infinite, 
although the time interval and the time horizon T may be finite. In practice, 
the time horizon T of interest is always finite. Also the time interval in which 
failures are recorded cannot be arbitrarily small. When both and 
we obtain the Poisson process model. Although the Poisson process is a very 
convenient mathematical approximation for analyzing numbers of failures in time 
intervals, there are situations where other models might be more appropriate. 
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We will derive the Poisson process starting with finite time interval and finite 
time horizon models to show the assumptions underlying the Poisson process. 

A random process (or stochastic process) is a collection of random quantities, 
say, {X(t1),X(t2),..,X{tn)}, at time points (or epochs) t1< t2 < ... < tn. In 
our modeling leading to the Poisson process, time intervals will originally have 
length ; e.g., 

where T = is the time horizon and 9(T) is the total number of failures in 
the time interval [0, T\. 

Let be the number of failures in the ith time interval 
[ti-1,ti) where In our derivation of the Poisson process, we consider 
four related models depending on the finiteness of T and whether or not . 

In the first case with both and T finite, we derive the finite population 
version of the geometric discrete distribution. This is the discrete version of 
the finite population joint exponential density presented in Chapter 1. The 
parameter 9(T) is now the total number of failures in the time interval [0,T]. 
Marginal random variables, Y1. Y2 ...YK dependent given . 

In the second case, we keep the length of an interval but allow the 
time horizon T to become infinite. In this fashion we derive the usual form of 
the geometric discrete distribution. This is the discrete version of the infinite 
population joint exponential density derived in Chapter 1. Note that when 

, Y1. Y2 ...YM are now conditionally independent given the parameter 

In the third case, the time horizon T is kept finite and fixed while the time in­
terval is allowed to approach zero. In this way we drive the multinomial discrete 
distribution with fixed parameter 9(T). Fix 0 < t1 < • • • < tm = T and let n(ti) 
be the number of failures in [ t i - 1 , t i ). Random quantities n(t1). n(t2) n(tm) 
are still dependent given 9(T) as in the first case. However, now we have a prop­
erty called orderliness. By orderliness we mean that two or more failures will 
not occur in the same "infinitesimal" time interval with probability one. 

In the fourth and final case, we have the Poisson process where the time 
horizon has become infinite and the time interval is allowed to approach zero. 
For Poisson processes, we have (1) independent increments Y(ti) = X(ti) -
X(ti-1), (2) orderliness, and (3) marginal random variables have the Poisson 
distribution; i.e., 

I. The finite population version of the geometric distribution. To 
obtain the finite population version of the geometric model we again make a 
stronger judgment than exchangeability. In the following derivation, K in Table 
3.4.1 is replaced by .N, while in Table 3.4.1 is replaced by S following our 
notation in section 3.1. 
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TABLE 3.4.1 

Derivation of the Poisson process. 

FIG. 3.4.1. Allocating defects to boxes. 

Imagine N boxes and S nondistinguishable defects. S can be greater than N. 
(The boxes are our intervals with = 1.) See Figure 3.4.1. Suppose now that 
defects are allocated to boxes in such a way that any box can have 0 , 1 , . . . , S 
defects subject to the total of defects in all boxes being S. Let yi be the number 
of defects in box i. Suppose we are indifferent regarding all possible vectors 
yN= (y1, y2, • • •. yN) with the same sum; i.e., 

To prove this we need only prove that there are exactly vectors 
whose sum of coordinates equals S. Denote the S defects by stars and indicate 

The conditional probability function is determined and is 

I 
Finite population 

version of the 
geometric 

II 
Independent 
geometrics 

(independent 
discrete increments) 

III 
Multinomial 
(orderliness) 

IV 
Poisson process 

(independent 
increments 

and 
orderliness) 
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the N partitioning (or cells) by the N spaces between N + 1 bars. Thus 

is used as a symbol for a distribution of S = 8 defects in N = 5 cells with 
occupancy numbers 

2,1,0,0,5. 

Such a symbol necessarily starts and ends with a bar, but the remaining N - 1 
bars and S stars can appear in an arbitrary order. In this way it becomes 
apparent that the number of distinguishable vectors equals the number of ways 
of selecting S places out of N + S — 1, namely, 

Using the same type of argument we can show that 

(3.4.2) 

(3.4.3) 

In general, fixing n and letting N become infinite in such a way that 
A > 0, we have 

(3.4.4) 

for yn = (y1 ,y2 , . . . ,yn) 
In the limit ( a s ) random quantities Y1, Y2,..., Yn,... are condition­

ally independent with univariate geometric probability function 

where Is exchangeable? 
For n = 1, 

for y1 = 0 , 1 , . . . . In this case E(Y1) = A, since 
S implies by exchangeability that Hence 
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Remark. Note that exchangeability alone does not imply that all vectors with 
the same sum have constant probability. 

Letting and using the same argument as above we can show that 

for Fixing n and taking the limit as and we obtain 
the negative binomial probability function 

I —> II. Independent geometric distributed random quantities. We 
assume that p(yk) is constant for and for every T > 0. 
To go from I to II in Table 3.4.1 we let while at the same time keeping 

where A is interpreted as the average number of events occurring per unit time. In 
general, fixing k and letting become infinite in such a way that , 
we have 

where yi = 0 , 1 , . . . . It follows from (3.4.7) that Y1, Y2 Yk.. are conditionally 
independent in the limit as given A. Also from (3.4.7) it follows that 

II —• IV. First derivation of the Poisson process. We now assume that 
the original p(yK) is constant for and for every T and 

Consider fixed time points 

t1 < t2 < • • • < tm. 

Let n(t i) be the number of failures in [ti-1ti), and for mathematical conve­
nience assume that ti's coincide with multiples of the so that 

Then n(ti) is approximately the sum of ki - ki-1 independent geometric dis­
tributed random quantities by II. We need only show that for the fixed interval 
[ti-1ti) 

Since ti - ti-1 = (ki — k i - 1 ) it follows that in taking the limit, ki — ki-1 must 
go to infinity as . 
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To show (3.4.8) we use generating functions. The generating function corre­
sponding to Y1, the number of events occurring i n , is 

The generating function corresponding to n(t1) = the number of events 
which occur in [0,t1), is 

since t1 = and t0 = 0. Letting as . we have 

which is the generating function of a Poisson random quantity with parameter 
Xt1 that is, 

as was to be shown. 
Independence of n(t1),n(t2) n(tm) is true for each where ti = 
> 0 in case II and therefore true in the limit as . 

I —• I I I . Derivat ion of t he mult inomial . Again we consider fixed 

where these coincide with multiples of the r"s. Let n(t i) be the number of events 
that occur in [ t i - 1 , t i ) . Since the ti's are integer multiples of the , 

for some integer . Let tm = KT = T. 
We claim that in the limit, as , the joint probability function for 

n(t1) ,n( t2) , • • • ,n ( t m ) is the multinomial; i.e., 

where and 
We will only give the result for m = 2 since the general result follows along 

similar lines. Fix t > T. We show that in the limit, as , n(t) given 6(t) and 
T is binomial with parameters a n d . 
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Let where t = . In our discussion of the finite population 
version of the geometric it was pointed out that 

In the numerator, the first factor has n(t) terms while the second factor has 
0(T) - n(t) terms. The denominator has 9(T) terms. Multiply numerator and 
denominator by and let . We have 

Note that as , n(t) tends to be either 0 or 1 with high probability. This 
corresponds to the property that we have called orderliness. D 

III —• IV. The second derivation of the Poisson process. We can derive 
the Poisson probability function from the multinomial. To see how that approach 
would work, fix m and t1 < t2 < ... < tm < tm < T. Since we are now going to 
let tm+1 while consider an additional interval [tm,T) so that 

t1 < t2 < ... < tm < tm+1 < T. 

As before, let n(ti) be the number of events in ti - ti-1 . We next let tm+1 = T 
while keeping 

f o r . The right-hand side can be written as 

Since and, we have 



which is the joint probability function for independent Poisson random quanti­
ties. 

Exercises 

3.4.1. For the finite population exponential model 

calculate P[N(t) = . Compare this expression 
with the corresponding infinite population exponential model which gives the 
Poisson probability 

3.5. No tes and references. 

Section 3 .1 . The material in this section is related to the material in section 
3.2. In particular, the multinomial in section 3.2 is the generalization of the 
binomial considered here, while the Dirichlet is the generalization of the beta. 
The material on failure diagnosis is similar to the medical example in the paper 
by Pereira (1990). 

Section 3.2. For generalizations of the example concerning missing data in 
this section, see Basu and Pereira (1982). 

COUNTING THE NUMBER OF FAILURES 71 

Let so that 

Letting while , we obtain 
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Section 3.3. Examples 3.3.1 and 3.3.2 are related to problems encountered 
in practice. 

Section 3.4. This section was motivated by the unpublished work of Hes-
selager, Mendel, and Shortle. The models considered here are also useful for 
predicting the number of arrivals to a server. 

Notation 

Random Probability 
quantity name 

A gamma 

cumulative 

Probability 
function 

a integer 

cumulative 
number of 
failures in [0, t] 

Poisson 

unconditional 
when A 

is gamma (a, b) 

(negative binomial) 

hypergeometric 

binomial 

beta 

Be(A,B) 

beta-binomial 

Bb[N,A,B] 



CHAPTER 4 * 

Strength of Materials 

4.1. Introduction. 

There are two basic kinds of failure: 
(1) wearout 

and 
(2) overstress. 
Wearout implies that a device or material becomes unusable through long or 

heavy use. It implies the using up or gradual consuming of material. We have 
already discussed the analysis of wearout data. The jet engine data analyzed in 
Chapter 2 are an example of the occurrence of wearout. 

Overstress, on the other hand, refers to the event that an applied stress 
exceeds the strength of a device or material. This is the type of failure examined 
in this chapter. The problem is to determine whether or not a specified or 
random load will exceed the strength of a device or material. Both the strength 
and the load may be random. However, they are usually considered independent 
of one another. In section 4.2 we consider the problem of assigning a probability 
distribution to the strength of a material based on test data. In section 4.3 
we discuss design reliability. That is, based on projected principal stresses, we 
calculate the maximum shear stress that could result. 

According to classical theory, the ultimate strength of a material is deter­
mined by the internal stresses at a point. We begin with a simple illustrative 
example, called a uniaxial tensile test. A coupon of material is stressed by pulling 
on it with an applied force until it yields (Figure 4.1.1). The applied force re­
quired to cause yielding is equivalent to the internal strength of the material. By 
repeating this experiment for a given type of material, aluminum, for example, 
we will obtain material strength data. However, experimental measurements will 
give many results that may hardly agree with any deterministic theory. For this 
reason, we require a probability distribution to predict strength. 

How can we predict failure? We will consider two criteria relevant to this 
prediction: 

(1) the distortion energy criterion due to von Mises 
and 

(2) the maximum shear stress criterion. This will be discussed in section 4.3. 

73 
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FlG. 4.1.1. Uniaxial tensile test. 

The distortion energy criterion is useful in relating uniaxial yield strength 
data to more realistic complex loading conditions. Also, test specimens are 
typically much smaller than the actual structural members. Hence the distortion 
energy criterion is useful for scaling test results up to full-scale members. 

In the isotropic linear theory of elasticity we can decompose the total elastic 
strain energy per unit volume of material as follows: 

total elastic energy = distortion energy + volumetric energy. (4.1.1) 

Volumetric energy is the energy stored in a material due to a pure volume change. 
For example, were we to submerge a cube of material at some depth in the ocean, 
the symmetric effect of hydrostatic pressure on the cube would result in a pure 
volume change. 

According to the von Mises-Hencky criterion, when the distortion energy of a 
material reaches a certain value, the material will yield. Since we are interested 
in material failure, the distortion energy component of total elastic energy is 
important to us. This is the only energy component relevant to a tensile test. A 
basic reference is The Feynman Lectures on Physics, Vol. II, Chapter 38. 

Hooke's law. Imagine pulling the coupon in Figure 4.1.1 until yielding occurs. 
The stress imposed is by definition the force imposed per unit area. Although we 
have given a two-dimensional picture of our coupon, it is really three dimensional, 
and the area in question is not shown. As we pull the coupon, it elongates and 
at the same time the widths contract. As the experiment proceeds, we obtain 
the graph in Figure 4.1.2. This is called Hooke's law and is based on empirical 
observations which indicate a linear relationship between stress and strain 

at the moment of yielding, i.e., Hooke's law 

(4.1.2) 
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FlG. 4 .1 .2 . Stress versus strain. 

where A is the bottom area of the coupon and E is the modulus of elasticity, a 
material constant. Since stress by definition is the force per unit area, we have 

total elastic energy (4.1.3) 

where E is Young's modulus or the modulus of elasticity. Since we are interested 
in failure due to yielding, we want to calculate the distortion energy. We show 
in section 4.3 that in this case 

distortion energy (4.1.4) 

where call the shear modulus, is related to both Young's modulus 
E and Poisson's ratio v. 

When you stretch a block of material, it also contracts at right angles to the 
stretch. Poisson's ratio relates these contractions to the strain. Namely, 
if stands for width, h stands for height, and stands for length, then 

(4.1.5) 

where v is Poisson's ratio. The constants E and v completely specify the elastic 
properties of a homogeneous isotropic (noncrystalline) material. (See Figure 
4.1.3.) 

The work done to effect yielding is equal to the total elastic energy corresponding 
to strength. This can be calculated as the area under the line in the graph to 
the point of yielding or 
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FIG. 4.1.3. Block of material. 

Exercises 

4.1.1. Calculate the total elastic energy in terms of when instead of Hooke's 
law we have 

where m > 0. 

4.2. Strength of materials and the Weibull distribution. 

In 1939, a Swedish mechanical engineer by the name of Walodie Weibull pub-
lished a very influential paper, "A Statistical Theory of the Strength of Materi­
als." In this paper he notes that the classical mechanical engineering theory of 
static failure is deterministic and is insufficient to explain experiment data. He 
"derived" a probability distribution for strength subsequently called the Weibull 
distribution. His "derivation" has been criticized in a paper by Lindquist (1994), 
and in what follows we follow Lindquist's derivation. 

Consider TV exchangeable items and the distortion energy required to cause 
yielding. For item i 

i = 1,2, . . . , .N is the distortion energy relative to yielding. As in Chapter 1, 
N is the finite population size. Let (u 1 , u 2 , . . . , u N ) be the vector of possible 
distortion energies for the N items. Suppose, furthermore, that we would be 
indifferent between (u1,u2,... ,uN) and (u'1,u'2,... ,u'N) if 

in the sense that in our judgment 



STRENGTH OF MATERIALS 

It follows from Theorem 1.1.1 that 

77 

(4.2.2) 

(4.2.3) 

Let Xi be the random stress leading to yielding and for item 
i so that 

and by equation (1.3.1), 

since is strictly increasing. Since we have 

Substituting for and taking the limit as we have 

Hence 

is the Weibull survival distribution with shape parameter 
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The Weibull shape parameter is not always 2. It does not follow, how­
ever, that a Weibull distribution with shape parameter 2, as in formula (4.2.3), 
can always be defended as the distribution for strength of a material. For exam­
ple, suppose we judge the following: 

(1) there exists a minimum distortion energy uo, which any specimen can 
absorb before yielding, and 

(2) the material is no longer linear elastic. The distortion energy for the ith 
specimen in uniform tension (or compression) is for this case represented as a 
more general function 

for where and K and m are positive constants for the 
material under consideration. 

In this case, it can be shown that 

for , where as before. 

Load application. Let the random quantity S denote the strength of a spec­
ified material. Suppose a "coupon" of this material is subjected to uniaxial 
loading as in Figure 4.1.1. Let the random quantity L denote the maximum 
loading from the beginning of application until the load is removed. We require 

P(S > L), 

i.e., the probability that the coupon does not yield under the random loading. 
Usually S and L are assumed to be independent random quantities. If 

as in formula (4.2.3), then we need to calculate 

where is the probability density for the loading. Often is assumed to be 
a normal probability density, although the loading in this case must be positive. 

Exercises 

4 .2 .1 . Suppose that instead of formula (4.2.1), the distortion energy based 
on Hooke's law, we use the formula 

where K and m are positive constants for the material in question. Following 
the method of deriving the Weibull distribution in this section where turned 
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(4.2.6) 

FIG. 4.3.1. Shear stress. 

out to be 2, show that in this case 

for 

4.2.2. The strength S of a certain material is judged to have a Weibull 
(a = 2,0) probability distribution. Suppose a maximum uniaxial load L is 
applied to a "coupon" of the material as in Figure 4.1.1. If S and L are judged 
independent and 

where now a is the standard deviation of the normal distribution and is its 
mean, then develop a computing formula for 

P(S > L) 

which can be easily calculated based on the cumulative normal probability dis­
tribution. 

4.3. Shear stress in biaxial stress. 

In this section we consider the effect of external loads on a material. Consider 
the face of a cube of material. Shearing stresses are forces that tend to distort 
right angles as illustrated in Figure 4.3.1. Again, according to the theory of 
linear elasticity, stress is equal to a constant times strain or 

where is call the shear modulus. 
The maximum shear stress theory assumes that yielding begins when the 

maximum shear stress in the material becomes equal to the maximum shear 
stress at the yield point in a simple tension test. 

Principal s t resses and strains. Consider an infinitesimal cube surrounding a 
point in an isotropic piece of material. Figure 4.3.2 illustrates the stress element 
in a two-dimensional state of stress. In Figure 4.3.2, the coordinate x, y, z system 
was chosen arbitrarily. In this figure, are the stresses along coordinate axes 
while Txy and Tyx are the equal shear stresses. By appropriate transformation 
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FIG. 4.3.2. Stress element showing two-dimensional state of stress. 

of the coordinate system we can eliminate the shear stresses, retaining only 
the principal stresses. The two stress-free surfaces of the element are by 
definition principal planes since they are subject to zero shear stress. 

In the tensile test experiment, there was only one nonzero principal stress, 
namely, . The other principal s t r e s s e s . In general, these principal 
stresses are not zero and may be oriented in any direction along the principal 
orthogonal coordinate axes. Assessing the distribution of the three principal 
stresses is essential for predicting static failure under multi-axial stress. 

According to the von Mises-Hencky criterion for failure, a material fails when 
the total distortion energy per unit volume due to external loads exceeds the 
internal distortion energy determined by a tensile test as in the previous section. 
The total distortion energy per unit volume due to external stresses is 

(4.3.2) 

Setting this equal to the internal distortion energy determined by a tensile test 
defines an ellipsoid within which external principal stresses can lie without caus­
ing failure. 

Why 6G in formulas (4.1.1) and (4.3.2) for distortion energy? For the 
block of material in Figure 4.1.3 let Ue be the total elastic energy, Udist be the 
distortion energy, and Uvol the volumetric energy. Then 

(4.3.3) 



STRENGTH OF MATERIALS 81 

where = 1,2,3 are the stresses and strains at the moment of yielding. 
Suppose 0; then by the principle of superposition, i.e., when a 

material is stretched it contracts at right angles to the stretch. 

(4.3.4) 

But in our tensile test 0 so that 

(4.3.5) 

where is called the shear modulus. 

Maximum shear s t ress . Failure theories generally state that yielding occurs 
whenever the combination of principal stresses acting at a point exceeds a critical 
value. The classical von Mises-Hencky criterion, which we used in section 2, 
postulates that yielding is caused by the distortion energy which is a function of 
the principal stresses. Another important criterion is the maximum shear stress 
criterion. Maximum shear stress can be found graphically using Mohr's circle. 

Mohr's circle. In the case of biaxial loading, all stresses on a stress element act 
on only two pairs of faces as shown in Figure 4.3.2. The two stress-free surfaces 
of the element are by definition principal planes since they are subjected to zero 

The volumetric energy can be shown to be 

It follows that 
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FIG. 4.3.3. Mohr's circle. 

shear stress. The axis normal to the two stress-free surfaces is a principal axis. 
The other two principal directions, therefore, are parallel to these stress-free 
surfaces, and the magnitudes of these two principal stresses are denoted by 
and as before. Mohr's circle provides a convenient means for representing 
the normal and shear stresses acting on planes perpendicular to the stress-free 
surfaces. 

Let and denote the normal stress and shear stress acting on the x-
plane that is perpendicular to the stress-free surfaces. Given and , Mohr's 
circle, Figure 4.3.3, corresponds to realizations of as we rotate the x-
and y-axes. Let be the angle between the positive direction of the x-axis and 
the first principal stress direction. The rotation angle in Mohr's circle is . 
The point on the circle corresponds to the state of stress acting on the 
x-plane. 

The state of stress on an infinitesimal cube surrounding a point in a piece of 
material can be represented by a matrix. In the biaxial case this matrix is 

In the isotropic case, 
Mohr's circle is another way of representing the state of stress on an in­

finitesimal cube surrounding a point in a piece of material. The magnitudes of 
the principal stresses and the orientation angle determine the point on 
the circle , where 

(4.3.6) 

(4.3.7) 

The radius and the center of Mohr's circle are determined by 
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which is invariant under rotations. Differentiating (4.3.6) with respect to we 
obtain 

for min max 
Since there are four possible orientations of the x- and y-axes that will result 

in observing the same normal stress and shear stress (see Figure 4.3.4 be­
low), the desired conditional probability is thus four times the invariant measure 
above; i.e., 

for min m a x . 

Exercises 

4.3.1. Justify equations (4.3.4) using the principle of superposition. 
4.3.2. Given that and and are determined, use Mohr's circle 

to calculate and in terms of and Assiune 

Changing to the coordinate the invariant probability measure on the circle 
becomes 

The maximum shear stress occurs when . In Figure 4.3.3, . 
To find and given and use . The line 

segment drawn from to determines the radius of Mohr's circle 

Indifference with respect to the x- and y-axis orientation. Conditioning 
on the magnitudes of the principal stresses and , suppose we are indifferent 
to the orientation of the x- and y-axes with respect to the principal axes; i.e., 
we may choose our x- and y-axes in an arbitrary manner. Since the angle is 
not specified, can only be determined probabilistically. This indifference with 
respect to corresponds to the invariant probability measure on Mohr's circle 
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4.4. Probability plots. 

In section 4.2 we derived the Weibull distribution starting from Hooke's law. 
However, it is more common to plot experimental data to "determine" whether 
or not a Weibull distribution is appropriate. These plots are called "probability 
plots." 

What is a probability plot? A probability plot is a graph based on the 
empirical distribution function and relative to a specified family of distributions 
such as the Weibull, normal, lognormal, etc. The objective is to "fit" a straight 
line using special probability paper. To illustrate, a Weibull probability plot uses 
the Weibull survival distribution; i.e., 

FlG. 4.3.4. Planes with the same states of stress. 

4.3.3. Calculate assuming indifference with respect to a;; i.e., 
assume the invariant probability measure on Mohr's circle 

Taking natural logarithms twice we obtain 

Substituting the empirical survival distribution for we have 
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the limiting result is mathematically true. For a small sample (*) is indeed a 
stretch! 

Engineering textbooks dealing with probability advocate using probability 
plots; see, e.g., Halm and Shapiro (1974). These authors feel that even with rel­
atively small sample sizes they can obtain estimates of probability distribution 
parameters as well as a graphic picture of how well the distribution fits the data. 
Statistics textbooks written by mathematical statisticians do not mention prob­
ability plots. Their reason may be that since estimates are not "true" parameter 
values, confidence limits need to be determined for the parameters. To obtain 
confidence limits they use other methods often likelihood methods. 

What is wrong with probability plots? To determine the relationship be­
tween physical variables of interest such as stress and strain in tensile tests, for 
example, the strain could be measured at various time points as the pulling force 
is slowly increased. The plot of stress versus strain will never be actually linear 
since the elasticity assumption is never fully obeyed. This is because a slightly 
larger amount of work is done in deforming the material than is returned by the 
material when it relaxes. Hence the linear elasticity assumption is never fully sat­
isfied. However, such plots are useful in determining approximate relationships 
which can be inferred by drawing a curve or straight line which "fits the data." 

This same idea applied to the problem of determining a probability distri­
bution, however, is not valid. In the case of stress and strain, the variables are 
operationally defined, while this is not the case with probability. Probability as 
a limiting frequency can never be observed. 

For both engineers and many mathematical statisticians, probability is con­
sidered to be an "objective" quantity. Furthermore, for engineers and most 
mathematical statisticians "parameters" usually have no operational meaning. 
In our approach, starting from a finite population, parameters of interest must 

The Weibull probability plot is then a plot of 

Plotted x's will be the order statistics, i.e., x = x ( i ) , i = 1,2 n. Let a 
straight line be fitted to the plot; call it 

y = a ln x + b. 

The slope of the line, a, "estimates" the shape parameter . while the scale 
parameter is "estimated" by . The justification for these estimates rests 
on the hope that 

for some . With exchangeability and conditional observations from 
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be functions of observable data. As such they have operational meaning. We 
feel that only in this case can the analyst have an opinion about parameters. 
This opinion should then be expressed through a probability distribution. We 
have tried to use engineering knowledge whenever possible to derive conditional 
probability models such as the Weibull distribution. In the case of the Weibull 
distribution, the shape parameter has no operational meaning in the case of a 
finite population as does the mean. Hence we advocate using physical approxi­
mations such as Hooke's law to determine the shape parameter rather than using 
data to "estimate" a. 

Things to remember. First, probability plots are based on a judgment of 
exchangeability. If, for example, there is a trend in time relative to observations, 
then exchangeability is not correct. So it is important to first make a "run chart" 
for observations as a function of the time order in which they are made. This 
can be useful relative to making the exchangeability judgment, if warranted. 

Second, the only justification for probability plots, conditional on exchange­
ability, is the limiting convergence of the empirical survival distribution . It 
is difficult to recommend probability plots for small samples and for very large 
samples; just use . 

Third, probability plots violate the likelihood principle relative to estimating 
parameters. That is, the likelihood contains all the information available in the 
data concerning parameters [D. Basu (1988)]. 

Fourth, probability plots are based on an eyeball assessment. By taking suf­
ficiently many logarithms we can usually get something that looks like a straight 
line. Least squares fits also have little or no justification. Probability plots can 
only be justified as a quick, very preliminary analysis of data. 

4.5. Notes and references. 

Section 4.1. See Feynman (1964) Chapter 38 for additional discussion of 
stress and strain. For more discussion of the engineering implications, see Hoff­
man and Sachs (1953). 

Section 4.2. Weibull (1939) derives a cumulative probability distribution of 
failure of the form 

and then makes the assumption that 

where is the stress, and xu, x0, and m are parameters. The only one of these 
parameters for which some physical interpretation applies is xu. The basis for 
this selection of is purely empirical since it is determined by curve fitting. 
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Section 4.3. For further discussion of Mohr's circles see Hoffman and Sachs 
(1953). The derivation of 

is due to Tsai (1994). See also Barlow and Mendel (1992). 
For additional discussion of a designer's approach to reliability in mechanical 

engineering see Vinogradov (1991). 
Section 4.4. For additional discussion of probability plots, see Hahn and 

Shapiro (1974). 

Notation 

stress, i.e., force per unit area 

strain, i.e., fractional change in length 

Young's modulus 

total elastic energy based on a tensile test 

distortion energy based on a tensile test 

Poisson's ratio 

shear modulus 

shear stress acting on the x-plane in the y-direction 
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CHAPTER 5 

The Economics of Maintenance 
and Inspection 

5.1. Introduction. 

So far we have only concentrated on the uncertainty relative to component and 
system lifetime. In practice, the cost of inspection and maintenance decisions 
are often of paramount importance. These too are of course not known with 
certainty, but it is conventional to use expected costs and compute expected 
present worth or expected future worth. First, in section 5.2, we discuss the 
economic analysis of replacement decisions based on discounted expected costs 
and present worth but without considering the uncertainty in lifetime. 

In Example 5.2.1, the impact of depreciation and other income tax consid­
erations relative to replacement decisions are not included as they should be in 
a realistic comprehensive analysis. Also, the revenues that might be generated 
by the machines considered are omitted. Due to the time value of money, it is 
necessary to use a discount rate (or interest rate), call it i. Let N be the time 
horizon under consideration. In our first example A' = 3. 

In section 5.3 we discuss Deming's ALL or NONE rule in inspection sampling. 
In section 5.4 we study age replacement when lifetimes are uncertain. In section 
5.4, we use the expected present worth criterion with respect to continuous 
discounting; i.e., the interest rate is calculated continuously for an unbounded 
time horizon. 

5.2. Deterministic economic analysis. 

First let us review discounting. If an amount P in, say, dollars, is put in the 
bank or invested at a compound interest rate i per time period, then at the end 
of the time period you will have the future amount F = P + iP = P(l +i) or P = 
F(l+i)-1. In general, if amounts Ai are deposited at the end of time periods i = 
1,2,. . . , N, the present worth of this cash flow at compound interest rate i will be 

where A0 is the present amount on hand. In deciding when to replace items 
based on maintenance considerations over more than one year, we should use 
discounting based on some relevant interest rate. 

91 
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FIG. 5.2.1. Cash flow if machine is not replaced. 

Example 5.2.1. Discounting over a finite time horizon. 

Cost of keeping an old machine. Suppose we are considering the problem 
of whether to keep an old machine or whether to sell it and buy a new machine. 
The machine could be a computer, or a truck, etc. The old machine needs an 
immediate overhaul (time t = 0), which we suppose would cost $1500 were we to 
plan on keeping the old machine. With overhaul, expected maintenance costs for 
the first year amount to $3000, for the second year $3500, and $3800 for the third 
year. Maintenance costs are listed for the end of each year although they may 
have been incurred during the year. The present salvage value of the old machine 
is $10,000, while at the end of the third year we expect that the machine will only 
have a salvage value of $2000 perhaps due partly to obsolescence. Notice that 
the expectations are what "we expect." They are not mathematical expectations 
based on repetitions. 

Figure 5.2.1 is a cash flow diagram illustrating the maintenance cost situation. 
Downward pointing arrows denote costs, while upward pointing arrows indicate 
income. In our example, we would realize only a $2000 salvage value were we to 
sell the old machine at the end of period 3, so that we would still have a loss of 
$1800 at the end of period 3. 

There are several figures of merit which could be used based on the same in­
terest (discount) rate i, all of which would result in the same decision concerning 
whether or not to replace the machine. Since we must make our decision now, 
before the overhaul possibility, we will compute the discounted present worth 
(PW) at discount rate i, i.e., PW(i). This can be calculated by bringing back 
to t = 0 the discounted cost of future actions. The present worth calculation if 
we do not replace is 

Cost of replacing with a new machine . Suppose the replacement cost of 
a new machine is $18,000 and maintenance costs for the new machine are $2500 
per year for three years. The salvage value of the new machine at the end of 
three years will be only $6000 due to obsolescence. 

Since we supposed the current salvage value of the old machine was $10,000 we 
have a total cost of only $8000 at time 0, while at the end of three years we have a 
salvage value minus operating costs for the third period of $6000 — $2500 = $3500 
profit. Hence the present worth of the replacement decision based on our interest 
rate i is 

(See Figure 5.2.2.) 
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FlG. 5.2.2. Cash flow if machine is replaced. 

TABLE 5.2.1 

Keep or replace policies. 

Cost comparisons 

Total 
PW(12%) 

Period 

0 
1 
2 
3 

Keep old 

-$1500 
-$3000 
-$3500 
-$1800 
-$9800 
-$8249 

Replace 

-$8000 
-$2500 
-$2500 
-$3500 
-$9500 
-$9733 

Optimal 
policy 

Replace 
Keep old 

To further bring our problem to life, suppose that our discount rate is i = 0.12 
or 12% per year. This may represent our minimum attractive rate of return, i.e., 
the interest rate we could or at least would like to achieve. Using a spreadsheet 
such as EXCEL, for example, P\V(i) is easy to calculate in this and in much 
more complicated situations. 

Table 5.2.1 summarizes our costs and calculations. The totals are the sums 
of costs without discounting. 

Since the discounted cost at rate i = 0.12 (or interest rate 12%) of keeping 
the old machine for three years is $8249, while the discounted cost of replacing 
the old machine with a new machine is $9733.90, it is clear that our decision 
should be to keep the old machine. 

Were we not to use discounting (i.e., i = 0) we would have computed $9800 
for the cost of keeping the old machine and a cost of only $9500 for replacing 
the old with a new machine. Hence without discounting we would have decided 
to replace the old machine, whereas with discounting we would keep the old 
machine. Cost decisions over more than one year should be based on discounting. 
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Present worth versus future worth. It is conventional to calculate PW. 
However, costs are really not known with certainty but are expected costs. Hence 
we have calculated expected PW for each policy. This sounds wrong since it does 
not make sense to talk about what we expect to have today. We know what we 
have today. It is the future that is uncertain. 

Expected future worth can be calculated using the factor (1 + i)t instead of 
( l + i ) - t . Expected present worth and expected future worth will differ. However, 
as long as the discount rate i is specified and is the same we will make the same 
decision concerning policies using either criterion. If the discount rate is also 
uncertain, this is not true and we should use the future worth figure of merit. 

Exercises 

5.2.1. Using the data in Table 5.2.1 and an interest rate of i = 0.10, that 
is, 10%, determine the optimal policy regarding whether or not to keep the old 
machine. 

5.2.2. Using the data in Table 5.2.1 and an interest rate of i = 0.10, compute 
the annualized expected cost per time period starting with period number 1. 
(By annualized we mean that the discounted cost is the same at the end of each 
period, usually one year, and has equivalent PW.) What is the optimal policy 
regarding whether or not to keep the old machine in this case? 

5.2.3. Using the data in Table 5.2.1 and a random interest rate of either 
i = 0.10 or i = 0.12, each with equal probability, determine the optimal policy 
regarding whether or not to keep the old machine using the expected future worth 
criterion. What is the optimal decision now? 

5.2.4. Why are optimal decisions relative to alternative decision comparisons 
based on future worth in general different from those based on present worth? 

5.3. Sampling inspect ion. 

In this section we discuss a sampling inspection problem which Deming (1986) 
made famous. Periodically, lots of size N of similar items arrive and are put into 
assemblies in a production line. The decision problem is whether or not to inspect 
items before they are put into assemblies. If we opt for inspection, what sample 
size n of the lot size N should be inspected? In any event, haphazard or skip-lot 
sampling to check on the proportion defective in particular lots is prudent. 

Percent defective specified. Let be the percent defective over many lots 
obtained from the same vendor. Suppose we believe that the vendor's production 
of items is in statistical control. A sequence of measurements will be said to be 
in statistical control if it is (infinitely) exchangeable. That is, each item, in our 
judgment, has the same chance of being defective or good regardless of how 
many items we have already examined. Let p(7r) be our probability assessment 
for the parameter based on previous experience. It could, for example, be 
degenerate at, say, . Inspection results are independent only in the case that 

is degenerate at and is specified. 
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FlG. 5.3.1. Deming's inspection problem. 

Let k1 be the cost to inspect one item before installation. Let k2 be the cost 
of a defective item that gets into the production line. This cost will include the 
cost to tear down the assembly at the point where the defect is discovered. If 
an item is inspected and found defective, additional items from another lot are 
inspected until a good item is found. (We make this model assumption since 
all items that are found to be defective will be replaced at vendor's expense.) 
Figure 5.3.1 illustrates our production line problem. 

We assume the inspection process is perfect; i.e., if an item is inspected and 
found good then it will also be found good in the assembly test and if a defective 
item is not inspected, it will be found defective at assembly test. 

The all or none rule. It has been suggested [cf. Deming, 1986, Chapter 
15] that the optimal decision rule is always to either choose n = N or n = 0, 
depending on the costs involved and , the chance that an item is defective. 
Later we will show that this is not always valid when is unknown. 

In this example we consider the problem under the restriction that the initial 
inspection sample size is either n = N or n = 0. Assuming that is known, 
we cannot learn anything new about by sampling. On the other hand, we 
can discover defective units by inspecting all N. Hence the only decisions to be 
considered are n = N and n = 0. Figure 5.3.2 is an influence diagram for this 
problem, where 

x = number of defectives in the lot and 
y = number of additional inspections required to find good replacement items 

for bad items found either at the point of installation or the point of assembly 
test. These come from another lot. 

The value (loss) function is 

If is specified then inspection sampling cannot give us any new information 
a b o u t . There are at least two reasons for inspection sampling: 

(1) to find defective items, 
(2) to learn about when it is unknown. 
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F I G . 5.3.2. Influence diagram for Deming's inspection problem. 

If n = N we will find all the defective items. If we perform sampling inspec­
tion to learn about , then n = 0 since we are assuming that we already know . 
Hence the optimal decision in this case is either n = N or n = 0, depending on 
the costs involved. The double circle for indicates that it is specified and hence 
deterministic. The foundations for influence diagrams such as the one in Figure 
5.3.2 will be developed in Chapter 9. However, at this point it is not necessary 
to understand how to analyze such diagrams to solve our immediate problem. 

To determine whether n = 0 or n = N is best, we eliminate nodes x and y 
by calculating the expected value of the value function, first conditioning on . 
The expected value given 7r is 

Hence n = 0 is best if 

(5.3.1) 

and n = N is bast if 

In the case that is unknown and the only two decisions to be considered 
are either n = N or n = 0, then the solution is also valid if we replace b y . 
If or , then we may as well let n = N since we may obtain additional 
information without additional expected cost. 

Suppose now that we a l l o w . If we are certain that , i.e., 

for , then n = 0 is always best. On the other hand, if we are 

certain that then n = N is always best. 
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or n = 0 if 

(5.3.2) 

and n = N otherwise. 

In the intermediate case, when straddles 

the optimal sample inspection size may be neither 0 nor N. In section 10.4, we 
consider the optimal solution when can also be considered. 

Value added to substrate. Work is done on incoming material, the sub-
strate. The finished product will be classified as first grade, second grade, third 
grade, or scrap. If the incoming item is not defective, then it will result in a final 
product of first grade. Otherwise, if it is not inspected at the point of installation 
and if it is defective, then a final product of downgrade or scrap will be produced. 
Every final product is subject to assembly grading. The only difference between 
this model and the previous model is that no additional inspections occur at as­
sembly test. This is because the item (say a bag of cement) cannot be replaced 
at assembly test if it is not inspected at the point of installation but is found 
defective at the point of assembly test. As before, let k1 be the cost of inspecting 
an item. Let k2 be the average loss from downgrading the final product or for 
scrapping finished items. 

Again suppose that , the percent defective over many lots, is specified. 
Then the only inspection sampling sizes we need to consider are n = N or n = 0. 
Consider a typical item from the lot. If we inspect the item before installation 
we incur a cost k1. If it is found to be defective, we must inspect additional items 
(but not from the same lot since the vendor must make good on any defective 
items). The expected number of additional items that must be inspected is . 
If we inspect an item at the point of installation, the expected cost of inspection 
is 

If we do not inspect the item, the expected cost is . Hence n = 0 if 

and n = N otherwise. 
If 

if an item is defective, 

otherwise, 

then n = 0 if 
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The intuitive reason for the difference between (5.3.1) and (5.3.2) is as follows. 
If the variance is small, then is either close to zero or close to one. If the variance 
is close to zero, there will be few defective items, so we should not inspect before 
installation. On the other hand, if we believe is close to one, then there will be 
so many defective items that the cost of inspecting items before installation will 
tend to exceed the cost due to downgrading the item at the point of assembly 
test. 

Exercises 

5.3.1. Deming's inspection problem for a unique lot. Suppose we are 
considering whether or not to inspect items in a unique lot of size N. That is, 
there are no other items except those in this lot. Figure 5.3.1 still applies with 
some exceptions. There are no additional inspections in this case because the lot 
is unique. 

Let 8 be the (random) number defective in the lot of size N. If an inspection 
sample size of n is chosen and x are the number found defective in the sam­
ple, then we have a second decision to make, namely, either stop inspection or 
continue on and inspect all items. 

(i) If the decision is to stop inspecting, the total inspection cost is 
. 

(ii) If the decision is to continue on and inspect all remaining items, the total 
inspection cost is k\N. 

If the prior distribution for 9 is beta-binomial(N, A, B), determine the opti­
mal decision after inspecting (specified) items; i.e., when is it optimal 
to stop inspection and when is it optimal to continue on when x defectives are 
found in a sample of size n? 

Summary of discrete probability distributions. Let be the chance that 
an item is defective. 

Bernoulli 

with probability 

with probability 

Binomial . If Z1, Z2, ..., Zn are judged independent given 7r, then 

for k = 0 , 1 , . . . , n and Z1 + ... + Zn is the number of bad items in a lot of size 
n. Z1 + • • + Zn is b i n o m i a l . 

Geometric. Let W be the number of additional inspections required to 
find a good item after a bad item has been found. Then W has a geometric 
distribution 



THE ECONOMICS OF MAINTENANCE AND INSPECTION 99 

and 

Negative binomial. If W1 ,W2,..., Wx are judged independent given and 
x, then W(x) = W1 + W2 + +Wx will be the number of additional inspections 
required to find x good items: 

The expected number of additional inspections required is 

Beta-binomial with parameters (A, B, N) is the following: 

for x = 0 , 1 , . . . , N. The mean is 

5.4. Age replacement with discounting. 

In this section we assume that items are from a conceptually infinite population 
with life distribution F. Under an age replacement policy we replace an item 
at failure or at the end of a specified time interval, whichever occurs first. This 
makes sense if a failure replacement costs more than a planned replacement and 
the failure rate is strictly increasing. We assume that the cost of a planned 
(failure) replacement is c1(c2) where 0 < c1 < c2 These costs are assumed to be 
the same for each stage. (A stage is the period starting just after a replacement 
and ending just after the next replacement.) 

Continuous discounting is used, with the loss incurred at the time of replace­
ment and the total loss equal to the sum of the discounted losses incurred on 
the individual stages. Suppose that a stage starts at time t and we set a re­
placement interval T, where throughout we assume . If replacement 
actually occurs at t + x, then the loss incurred at that stage is 

if x = T, i.e., preventive replacement, 

if x < T, i.e., failure replacement, 

where is a positive discount (interest) rate. 
We will assume in this section that the planning horizon is unbounded. The 

total risk at each stage is the same, except for the discount factor. For con­
venience, we compute the risk starting at time 0. Assuming that the failure 
distribution is specified and continuous, there exists a replacement interval that 
minimizes the risk. Since the optimal replacement age interval T does not de­
pend on the starting time, there is some fixed replacement interval that is optimal 
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to set at each stage. That is to say, there is a stationary and nonrandomized 
optimal policy. 

Let F be the specified failure distribution with failure rate 

Let and define 

R(T) is the long run expected discounted cost when the replacement interval 
T is set at each stage. If r(x) is continuous and strictly increasing t o , then 

and is unique. Note that we need only specify the ratio of costs and 
not the costs separately. 

If we take the limit 

we obtain the long run average cost per unit of time. There is no discounting of 
costs, and the optimal replacement interval T minimizes long run average cost. 
If the failure rate r(x) is strictly increasing t o , the minimizing x = T* satisfies 

Note that we need only specify the ratio of costs and not the costs separately. 

Example 5.4.1. To illustrate the optimal solution when sup-
— 

pose c2 = 2c1 and , the Weibull distribution with shape parameter 
2 and scale 1. The mean of the life distribution is 0.89 years or 10.71 months. 
We can use the connection with the cumulative normal distribution. Let 

Then 
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TABLE 5.4.1 

Calculation of optimal replacement interval. 

x in 
years 
0.1 
0.2 
0.3 
0.4 
0.5 
0.53 
0.535 
0.54 
0.55 
0.6 
0.7 
0.8 

Cumulative 
normal 
0.54 
0.58 
0.62 
0.66 
0.69 
0.70 
0.70 
0.71 
0.71 
0.73 
0.76 
0.79 

Left-hand 
side 
0.03 
0.04 
0.09 
0.17 
0.28 
0.32 
0.33 
0.34 
0.35 
0.43 
0.63 
0.90 

Since r(x) = 2x, we have to solve the equation 

to find T*. 
This can be done using a spreadsheet such as EXCEL, for example. Table 

5.4.1 shows the calculations. From the table. T* = 0.535 years or 6.42 months 
compared with the mean life of 10.71 months. 

Exercises 

5.4.1. Solve for T* using 

5.4.2. Using (5.4.1) prove (5.4.2). 

5.5. Notes and references. 

Section 5.2. The material in this section is standard engineering economics. 

A good reference is Park (1997). 
Section 5.3. Deming (1986) discusses the sampling inspection problem in 

Chapter 15 of his book. We follow the discussion in Barlow and Zhang (1986) 
and (1987). 

Section 5.4. We follow the discussion of age replacement with discounting 
in Fox (1966). 





In Chapters 6, 7, and 8 we assume failure and repair events are independent, 
conditional on component failure and repair distributions. 

The purpose of a system reliability analysis is to acquire information about 
a system of interest relative to making decisions based on availability, reliability, 
and safety. In general it is best to be failure oriented in a system reliability 
analysis. There are several stages to such an analysis. 

(1) Inductive analysis stage. Gather and organize available information. Ask 
the question, What can happen? Hypothesize and guess. This is the hard part 
of a system reliability analysis. At this stage we may perform a failure modes 
and effects analysis (FMEA) on critical components. 

(2) Deductive analysis stage. This is the easier part. At this stage we ask the 
question, How can the system fail? To determine system reliability we use block 
(network) diagrams and fault tree construction. 

General rules for failure prediction 
(1) Look for human error possibilities. 
(2) Failure often occurs at interfaces, i.e., where different elements and ma­

terials are joined. 
A network and logic tree (or fault tree) representation is needed for reliability 

prediction and the calculation of availability. Although this is the easier part, we 
begin our discussion with a network model already formulated in the abstract 
and consider methods for calculating network reliability. 

A block diagram is a system representation based on subsystems and/or 
critical components. In this representation, nodes may fail while arcs joining 
pairs of nodes are usually considered perfect. In our network reliability analysis, 
arcs may fail but nodes are usually considered perfect. A block diagram can also 
be represented as a network and vice versa. 

PART I I I 

System Reliability 





CHAPTER 6 

Network Reliability 

6.1. Network reliability analysis: The factoring algorithm. 

In this section and the next, system reliability is with respect to a specified 
instant in time. In Chapter 8 we extend our discussion of system reliability 
to time until system failure. The factoring algorithm of this section has the 
advantage that it begins directly with the network representation. 

Consider the two terminal network in Figure 6.1.1. The distinguished nodes 
are the source node and the terminal node. The graph with nodes and arcs 
together with the distinguished nodes specifies the problem of interest. In this 
case, success corresponds to the event that there is at least one working path 
of nodes and arcs from source to terminal. To begin, we will assume nodes are 
perfect but that arcs can fail. Let 
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if arc i works. 

otherwise. 

Let the state vector corresponding to the state of arcs be 

Let 

if the system works, 
(6.1.1) 

otherwise. 

Such abstract systems are among a class of systems called coherent. The structure 
function is the system organizing function that relates component operation 
to system operation. 

DEFINITION. A system of components is called coherent if (a) its structure 
function is increasing coordinatewise and (b) each component is relevant. 

A physical system in general (there are exceptions) has the property that 
replacing a failed component by a functioning component causes the system to 
pass from a failed state to a nonfailed state, or at least the system is no worse 
than before the replacement. This is our justification for requirement (a). 
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F I G . 6.1.1. Two terminal network. 

FlG. 6.1.2. Example of an irrelevant arc. 

for all choices of ; i.e., it does not matter whether component i is working or 
not working. Component i is relevant otherwise. It follows that ( 1 , 1 , . . . , 1) = 1 
since all components in a coherent system are relevant. 

Figure 6.1.2 shows an example of a modified network that is not coherent 
because arc 9 is not relevant to the question regarding the existence of a working 
path from the source to the terminal. It may, however, be relevant in some other 
configuration of distinguished nodes. 

Let X1, X2, ..., X8 be binary random variables corresponding to arc success; 
i.e., 

1 if arc i works, 

0 otherwise. 

Given P(Xi = 1) = pi for i = 1 , . . . ,8 and assuming conditional independence 
given the p i 's, our problem is to compute the probability that there is at least 
one working path at a given instant in time between the distinguished nodes s 
and t. For a network with n arcs we will denote this probability by 

(6.1.2) 

It follows that (l, 1 , . . . , 1) = 1 since all components in a coherent system are 
relevant. 

The factoring algorithm for undirected networks. The factoring algo­
rithm is the most efficient algorithm based on series-parallel probability reduc-

Component i is irrelevant if 
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FlG. 6 . l . 6 . Reduced subnetwork. 

tions and pivoting for computing undirected network reliability when 
(1) arcs fail independently of one another and 
(2) nodes are deemed perfect. 

The first idea is that of series-parallel probability reductions. Consider the simple 
series subnetwork in Figure 6.1.3. In this case, arcs 1 and 2 constitute a simple 
series subnetwork. Since arcs fail independently we can replace arcs 1 and 2 by 
a single arc with probability p1p2 as in Figure 6.1.4. 

Figure 6.1.5 is a simple parallel subnetwork. Since arcs fail independently, we 
can replace arcs 1 and 2 by a single arc with probability 
as in Figure 6.1.6. 

The symbol II is the "ip" operator where In 
a computer program for calculating network reliability, the series and parallel 
probability reductions take relatively little computing time. On the other hand, 
the following pivoting operation does take appreciable computing time. 

The probability basis for the pivoting operation follows from the identity 
, valid when arcs fail independently. We use 

the notation and 

FIG. 6.1.3. Simple series subnetwork. 

FlG. 6.1.4. Reduced subnetwork. 

FlG. 6.1.5. Simple parallel subnetwork. 
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FIG. 6.1.7. Illustration of the pivoting algorithm: the binary computational tree. 

To illustrate the pivoting operation, consider the "bridge" example in Figure 
6.1.7. The top bridge network is the initial "node" in the illustrated algorithm. 
First note that the bridge network cannot be reduced to a single edge by series 
and parallel probability reductions. We pivot on arc 1. (Actually, we could just 
as well have pivoted on any other arc.) On the lower left we see the network 
with arc 1 perfect. On the lower right we see the network with arc 1 omitted. 
This diagram is the so-called binary computational tree illustrating our pivoting 
algorithm. The two networks at the bottom of the figure are the "leaves" of 
the binary computational tree. Were we to turn the diagram upside down, the 
top network "node" would become the "root" of the "tree" and the two bottom 
networks would look more like leaves. The two subnetworks created by the; 
pivoting operation are called minors of the graph on which we pivot. In our 
illustration the leaves are the minors of the original network. 

Since we can reduce both bottom networks by appropriate series and parallel 
probability reductions, we need not pivot again. Finally, we obtain the network 
reliability for the bridge 

If we let p1 = p 2 = • • • = p5 = p we have the reliability polynomial 

DEFINITION. The reliability polynomial h{p) is the network reliability func­
tion when we let all arc success probabilities equal p. 

The reliability polynomial for coherent systems can also be used to obtain 
bounds on system reliability when component reliabilities differ. Let 

and 



This is because h(p) is coordinatewise nondecreasing. 
DEFINITION. The coefficient of pn in the reliability polynomial is called the 

signed domination. The absolute value of the coefficient of pn is called the dom­
ination. 

The absolute value of the coefficient of pn in the reliability polynomial for 
an undirected network with n arcs corresponds to the number of leaves in the 
binary computational tree for the factoring algorithm. 

In the case of our bridge example, n = 5 and the coefficient of p5 in (6.1.3) is 
2. There are exactly two leaves in the binary computational tree in Figure 6.1.7. 
We stop with two leaves in this case since each can be reduced to a single edge 
by series-parallel probability reductions. 

It can be shown that the number of "nodes" in the binary computational tree 
is 2L - 1, where L is the number of leaves. Consequently, the number of pivots 
required is (2L — 1) — L = L — 1. 

T h e factoring a lgor i thm. To implement the factoring algorithm, first delete 
all irrelevant arcs. Then perform the following steps: 

(1) Perform all possible series-parallel probability reductions. 
(2) Pivot on an edge such that the minors created are coherent (i.e., contain 

no irrelevant arcs). 
(3) Again perforin all possible series-parallel probability reductions on the 

minors created. 
(4) Continue in this fashion until the only minors left are series-parallel 

graphs. These are the leaves of the binary computational tree. 
(5) Calculate network reliability by calculating the reliability of each of the 

leaves weighted by the sequence of probabilities leading to their creation. 

Exercises 

6.1.1. What is the sum of the coefficients of the reliability polynomial for an 
arbitrary undirected network with n arcs? 

6.1.2. Calculate the reliability polynomial for the two terminal undirected 
network in Figure 6.1.1 using the factoring algorithm. Show your work. 

6.1.3. Use the factoring algorithm to calculate the reliability polynomial 
for the all terminal undirected network below, i.e.. the probability that any 
node can communicate with any other node in the network when all arc success 
probabilities are set equal to p. In this case all nodes are distinguished and each 
needs to communicate with all other nodes. 
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Then 
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6.1.4. The network reliability problem for the figure below is source to 
terminal connectivity and arcs are unreliable. 

(a) Find the domination and signed domination for the undirected network 
below. 

(b) Is this network coherent? 
(c) Using the factoring algorithm, would it be permissible to first pivot on 

arc 6 and then on arc 7? Why or why not? 

6.1.5. Show that the domination of the undirected two-terminal graph below 
is 2 n - 1 . The point of this example is to show that the factoring algorithm is 
not a polynomial time algorithm. The intermediate nodes between s and t are 
labelled. 

6.1.6. Using the definition of coherent systems, prove that h(l, 1 , . . . , 1) = 1. 

6.2. General m e t h o d s for sys tem reliability calculation. 

In the previous section we assumed that arcs failed independently and that nodes 
were perfect. This need not be so, and therefore more general methods are 
required. 

Boolean reduction. A very general method called Boolean reduction starts 
with the minimal path and/or minimal cut sets for the network. In general, 
finding the minimal path or minimal cut sets is NP-hard in the language of 
computer complexity theory. This means that for a network with n arcs, the 
computing time necessary to find these sets is, in the worst case, exponential in 
n rather than, say, polynomial time in n. 

Consider the "bridge" example in Figure 6.2.1. For the bridge, the minimal 
path sets are 

P1 = {1,4}, P 2 = {2,5}, P 3 = {1,3,5}, P4 = {2,3,4}. (6.2.1) 
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F I G . 6.2.1. The "bridge. 

Flo. G.2.2. Minimal path representation. 

For example, if arcs 1 and 4 in P1 are working but all other arcs art' failed, then 
there is still a working path from source s to terminal t. In addition, the set P1 

cannot be reduced and still constitute a working path. So {1,4,3} would also 
constitute a path set but would not be minimal. 

Likewise for the bridge, the minimal cut sets are 

K1 = {l ,2}, K2 = {4,5}, K3 = {1,3,5}, A, = {2.3,4}. (0.2.2) 

If arcs 1 and 2 are failed, for example, then there is no path from s to t regardless 
of the state of other arcs and K1 is called a cut set. As in the case of path sets, 
we are only interested in minimal cut sets. 

Using either the minimal path sets or the minimal cut sets we can define a 
Boolean representation for a network that, although artificial, provides another 
method for calculating network reliability. 

The minimal path representation. Let P1, P2 Pp be the minimal path 
sets for a connected network with distinguished nodes. Then we can diagram a 
minimal path set representation as in Figure 6.2.2. It follows that 

(6.2.3) 

where is the system structure function for the j t h minimal path set. 
There are p minimal path sets. Minimal path sets are in turn connected in 
parallel. The representation is not necessarily physically realizable since the 
same arc (or component) can occur in several minimal path sets. 
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A similar representation holds with respect to minimal cut sets where now 
the network system structure function is 

and k is the number of minimal cut sets K1, K2,..., Kk 

To calculate the reliability function using Boolean reduction, 
(1) expand the Boolean expression, possibly obtaining integer powers of 

Boolean indicators; 
(2) replace powers of Boolean indicators by the indicator itself; e.g., replace 

xi
m by xi wherever a power of xi occurs thus obtaining a multilinear expression; 

(3) if arcs fail independently, replace xi wherever it occurs in the multilinear 
expression by pi to obtain the network reliability; 

(4) if arcs do not fail independently, take the expectation of the multilinear 
expression after replacing powers of Boolean indicators by the corresponding 
random indicator variable. For example, E(XiXj) may have to be calculated 
using the joint probability function for both Xi and Xj. 

Although the factoring algorithm does not work in the following directed 
network reliability problem, the Boolean reduction method does. 

The factoring algorithm does not work for rooted directed graphs. A 
directed graph (or digraph) has arcs with arrows indicating direction. Figure 
6.2.3 is a rooted directed graph. The "root" is vertex s, the unique node with no 
entering arcs. The problem is to compute the probability that s can communicate 
with both v and t. The topology for this problem is defined by the family of 
minimal path sets 

P = [{2,5},{1,3,5},{2,e,4},{1,3,4},{1,2,4}]. (6.2.5) 

Graphically, a minimal path for this problem is a "rooted tree." For example, 
the acyclic rooted directed graph in Figure 6.2.4 is a "tree" corresponding to 
a minimal path for the network in Figure 6.2.3. Unfortunately, the factoring 
algorithm is not valid for this problem or for directed graphs in general. The 
binary computational tree shown in Figure 6.2.5 illustrates what goes wrong. 

Note that arc 3 is now a self-loop after nodes u and v are coalesced. If arc e 
is perfect, then the corresponding minimal path sets are 

{2,5}, {1,3,5}, {2,4}, 

whereas from the leaf graph on the left we would infer that {1,4} is also a 
minimal path which is FALSE! 

Domination and the principle of inclusion-exclusion: Back to the fac­
toring algorithm. Let C = {1,2, . . . , n } be the components (or arcs in the 
case of a network) for an arbitrary coherent system. Let [ P 1 , P 2 , ..., Pp] be the 
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FlG. 6.2.3. Directed network with three distinguished nodes. 

F I G . 6.2.4. A rooted tret for Figure 6.2.3. 

FlG. 6.2.5. Pivoting on arc e. 

minimal path sets for the coherent system. Let Er, r = 1,2,... ,p be the event 
that all components (or arcs in the case of a network) in a minimal path set of 
the coherent system work. By the inclusion-exclusion principle, we can calculate 
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system reliability 

where is the event that both Ei and Ej occur. 
A formation is a set of minimal path sets whose union is the set of all com­

ponents (or arcs in the case of networks). For example, in the case of the bridge 
with minimal path sets given by (6.2.1) 

P1 = {1,4}, P2 = {2,5}, P3 = {1,3,5}, P4 = {2,3,4}, (6.2.1) 

all the formations of C = {1,2,3,4,5} are 

F0 = [{1,4}, {2,5}, {1,3,5}, {2,3,4}], 

F1 = [{2,5}, {1,3,5}, {2,3,4}], 

F2 = [{1,4},{2,5},{2,3,4}], 

F 3 = [{1,4},{2,5},{1,3,5}], 

F4 = [{1,3,5},{2,3,4}], 

F5 = [{1,4},{1,3,5},{2,3,4}]. 

A formation is said to be even (odd) if the number of minimal path sets is even 
(odd). 

In the reliability polynomial for the bridge, we repeat equation (6.1.3): 

h(p) = 2p5 - 5p4 + 2p3 + 2p2. (6.1.3) 

The coefficient of p5 , where n — 5 in this case, corresponds to the number of 
odd formations of C = {1,2,3,4,5} minus the number of even formations of 
C = {1,2,3,4,5}; i.e., 4 - 2 = 2. We call this the signed domination, and the 
absolute value of this coefficient we call the domination. In general, the coefficient 
of p n in the reliability polynomial corresponds to the signed domination and the 
absolute value of this coefficient is the domination. The domination is a measure 
of computational complexity for the factoring algorithm. 

Exercises 

6 .2 .1 . Use Boolean reduction to calculate the reliability for the network in 
Figure 6.2.3. 

6.2.2. What is the domination number for the directed graph in Figure 
6.2.3? 

6.2.3. Show that h(p) is nondecreasing coordinatewise for coherent systems. 
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6.3. Analysis of systems with two modes of failure: Switching and 
monitoring systems. 

Switching systems can not only fail to close when commanded to close but can 
also fail to open when commanded to open. Likewise, safety monitoring systems 
can not only fail to give warning when they should but can also give false alarms. 
In either case, the switching or the monitoring systems are not working properly. 
It is desirable to design switching and monitoring systems that are reliable and 
also do not have too many failures of the second type. The design of such systems 
can be analyzed using coherent system duality and the reliability polynomial. 

Dual coherent systems. Duality in mathematics is a principle whereby one 
true statement can be obtained from another by merely interchanging two words. 
In the case of a coherent system, the dual coherent system can be obtained from 
the coherent system by interchanging the OR and AND operations. When we do 
this, minimal path sets for the primal system, say, 0, become minimal cut sets 
for the dual system called . To see this, recall the minimal path and minimal 
cut set representations for coherent systems: 

where Pj and Kj are minimal path and minimal cut sets, respectively. If we 
interchange the OR (i.e., 11) and AND (i.e., II) operations to get , we have 

where now Pj is a minimal cut set for and Kj is a minimal path set f o r . 
It follows that 

since 

Example 6.3.1. 2-out-of-3 sys tems. Suppose a warning system consists 
of three exchangeable smoke detectors placed in close proximity but operating 
independently. Suppose furthermore that we construct our alarm system in such 
a way that an alarm sounds at a listening post if and only if at least two of the 
detectors are triggered. The minimal path sets are 

P1 = { 1 , 2 , } , P 2 = {1,3}, P3 = {2,3}, 
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which in turn implies from (6.3.2). Note that h(p) is 
S-shaped about p = 0.5 in this case. 

The dual coherent system and two modes of failure. First we consider 
a switching system which is subject to two modes of failure: failure to close 

F I G . 6.3.1. Reliability polynomial for a 2-out-of-3 system. 

and the minimal cut sets are also 

K1 = {1,2}, K2 = {1,3}, K3 = {2,3}, 

so that the coherent structure function in this case is self-dual; i.e., 

Let p be the probability that a detector alarms when smoke is present. Then the 
reliability polynomial for the 2-out-of-3 alarm system is 

Figure 6.3.1 is a graph of the reliability polynomial. Since in this case is 
self-dual we have 
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and failure to open. Similarly, circuits constructed of switches (to mitigate such 
failures) are subject to the same two modes of failure. 

Let be a coherent switching system with n exchangeable and statistically 
independent components. Let xi = 1 if the ith switch correctly closes when 
commanded to close and xi = 0 otherwise. Let if the circuit responds 
correctly to a command to close and 0 otherwise. Then represents the 
structure function representing the correct system response to a command to 
close. 

Now let yi = 1 if the ith switch responds correctly to a command to open 
(that is, opens) and 0 otherwise. Let be a similar structure function such that 

if the circuit responds correctly to a command to open (that is. opens) 
and 0 otherwise. Then 

from (6.3.1) and since the minimal cuts for are the minimal 
paths for . Recall that a minimal cut set of switches for is a set of switches 
whose failure to close means the switch system cannot close and therefore the 
system is open when the switches in a minimal cut set for are open. 

Let Xi = 1 with probability p so that 

Let Yi = 1 with probability ]>' so that 

Consequently, when we want or when . 
Hence the S-shaped characteristic of 2-out-of-3 systems, for example, is exactly 
what we need. 

By being S-shaped we mean that there is a value p0(0 < p0 < 1) such 
that and for 0 < p < p0 and for p0 < p < 1. 
Although this is generally true for coherent systems, it is most pronounced for 
k-out-of-n systems. 

Exactly the same reasoning applies to monitoring systems where monitoring 
detectors can fail to alarm when a threat such as smoke is present as well as false 
alarm when a threat is not present. 

Computing k-out-of-n system reliability. Coherent systems that are k-
out-of-n are especially useful in controlling the two modes of failure considered 
above. A system is k-out-of-n if it works whenever k or more components work. 
Although we have previously assumed that all components are exchangeable, 
this is not necessary. Let pi , i = 1,2,. . . , n be the probability that component i 
closes (alarms) when commanded to close (when a threat is present). To calculate 
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use the generating function 

where qi = 1 — pi. 
Expand and sum coefficients of zj for j = k,..., n to obtain the probability 

2 

that at least k components operate. Computing time is of the order for fixed 
k. A computer program written in BASIC follows: 

After program execution, A(J + 1) is the probability that exactly J compo­
nents operate. 

Exercises 

6.3.1. Verify equation (6.3.3). 
6.3.2. Calculate and graph when is a 4-out-of-5 system. Use 

to calculate and graph the dual system. 
6.3.3. Show that the dual of a k-out-of-n system is an n — k + 1-out-of-n 

system. 
6.3.4. Use the BASIC program above to calculate when is a 3-out-

of-5 system with component reliabilities 

p1 = 0.10, p2 = 0.30, p 3 = 0.50, p4 = 0.70, p 5 = 0.80. 

6.3.5. A safety alarm system is to be built of four identical, independent 
components. The following structures are under consideration: 

(i) 3-out-of-4 system; i.e., the system works if three or more components 
work; 

(ii) 2-out-of-4 system; 
(iii) "l-out-of-2-twice system; i.e., see the following diagram. 
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(a) Assuming each component has reliability p. compute the reliability func­
tion for each structure. 

(b) Which system is most reliable for p close to 1? 
(c) Which system is most prone to false alarms when the probability of a 

component false alarm is very low? 

6.4. Notes and references. 

Section 6.1. Coherent systems were first defined and discussed by Birn-
baum, Esary, and Saunders (1961). The factoring algorithm is due to Chang 
and Satyanarayana (1983). The role of domination in the factoring algorithm is 
discussed in Barlow and Iyer (1988). 

Section 6.2. See Colbourn (1987) and Rai and Agrawal (1990) for more 
recent additional material on network reliability. 

Section 6.3. Moore and Shannon (195G) were the first to show the "sharp­
ness" of the k-out-of-n systems. The program for computing k-out-of-n reliability 
appears in Barlow and Heidtmann (1984). 

Nota t ion 

system structure function 

reliability function for system 0 

minimal path representation of 

minimal cut representation of 

dual of 





7.1. System failure analysis. 

Network reliability is based on an abstract graphical representation of ft system. 
It is basically success oriented. In practice, as it turns out. it is best to be failure 
oriented. Once this position is taken, the number of events that can be thought 
about that could cause or result in system failure becomes very large. Hence it 
is necessary to set spatial and temporal bounds on the system. It is necessary 
to determine only those events absolutely relevant to the analysis. 

A fault tree (or logic tree) is often the best device for deducing how a major 
system failure event could possibly occur. Since the network graph is close to a 
system functional representation, it cannot capture abstract system failure and 
human-error events as well as the fault tree representation. The fault tree is 
a special case of a class of diagram representations called influence diagrams, 
developed in Chapter 9. In sections 7.2 and 7.3 we develop the background 
necessary for constructing and analyzing fault tree diagrams. However, their 
construction first depends on a thorough understanding of the system and the 
results of a system inductive analysis. 

Simulation versus fault t r ee analysis. Currently, simulation is perhaps 
more popular than fault tree analysis. Faster and faster computers make sim­
ulation very attractive. It also has the advantage that the dynamics of system 
operation can be studied, whereas the fault tree is essentially a static system 
representation. However, like the network representation, simulation tends to 
be success oriented. Possible but rare fault events may be overlooked or inad­
equately treated in simulation. Hence we still recommend that the fault tree 
approach be used first, followed by simulation. Fault tree has the advantage of 
concentrating attention on learning in depth about the system of interest. 

System inductive analysis. Initially we need to perform a system inductive 
analysis before we construct networks, fault trees, influence diagrams or employ 
simulation. This inductive analysis consists of 

(1) a system description, 
(2) a preliminary gross subsystems hazard analysis, 
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System Failure Analysis: Fault Trees 
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FIG. 7.1.1. Schematic of a domestic hot water system. 

(3) a component failure modes and effects analysis (FMEA). 
The system should be specified in terms of 
(a) its functional purpose, time period of use, and environmental conditions 

to be encountered; 
(b) its components as well as the people involved; 
(c) the functional order of the system such as inputs, outputs, the logic of its 

operation, etc. 
A very useful outline of the inductive analysis phase of a system analysis is 

given by the following safety analysis relative to possible rupture of a hot water 
tank; see Figure 7.1.1. 
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Outline of a system description: A domestic hot water system. 
1. Functional purpose of the system 

(a) What? Provide a supply of water heated to a preset temperature for 
household use on an automatic basis. 
Specify 

Volume stored 
Inlet and outlet temperature limits 
Inlet pressure limits 
Recovery rate 
Gas consumption (type of gas) limits 

(b) When? For a system lifetime of 20 years at 100% duty. etc. 
(c) Where? Domestic household environment. 

Specify 
Temperature extremes 
Location (indoor, outdoor, etc.) 
Ventilation 

2. Component identification 
(a) Subsystems. For example 

(i) Temperature measuring and controlling device 
(ii) Gas burner 

(iii) Storage and protective 
(iv) Distribution 

(b) Components. For example 
(i) Thermostatic device, controller, gas valve, piping, etc. 

(ii) Burner casting, air mixture control, pilot burner, etc. 
(iii) Water tank pressure relief valve, flue pipe, check valve 
(iv) Piping, faucets, etc. 

3. Functional order of the system 
(a) The gas valve is operated by the controller which in turn is operated by a 

temperature measuring and comparing device. The gas valve operates 
the main burner in full-on/full-off modes. 
The check valve in the water inlet prevents a reverse flow due to over­
pressure in the hot water system. 
The pressure relief valve opens when pressure in the system exceeds 
100 psi. 

(b) When the temperature of the water is below a preset level (140°F to 
180°F), the temperature measuring and comparing device signals the 
controller to open the gas valve and turn on the main gas burner which 
is lit by the pilot burner. When the water temperature reaches a preset 
level, the temperature measuring and comparing device signals the con­
troller to turn off the gas valve and thus turns off the main gas burner. 

Undesired system events. Before performing a deductive (fault tree) anal­
ysis, we need to understand what the undesired system events are from various 
standpoints, namely, 
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FlG. 7.2.1. Event symbols. 

1. Safety 
(a) Fire due to a system fault 
(b) Explosion due to a system fault 

(i) Tank rupture 
(ii) Gas air explosion 

(c) Toxic effects 
(i) Gas asphyxiation 

(ii) Carbon monoxide poisoning 
2. Reliability 

(a) Failure to supply heated water 
(b) Water supplied at excess temperature 
(c) Water supplied at excess pressure 

7.2. Fault tree construction. 

Fault tree construction and analysis is one of the principle methods of systems 
safety analysis. It evolved in the aerospace industry in the early 1960s. Fault 
tree analysis can be a valuable design tool. It can identify potential accidents in 
a system design and can help eliminate costly design changes and retrofits. It 
can also be a diagnostic tool that can predict the most likely causes of system 
failure in the event of system breakdown. 

A fault tree is a model that graphically and logically represents the various 
combinations of possible events, both fault and normal, occurring in a system 
that can lead to the "top event." The term "event" denotes a dynamic change 
of state that occurs in a system element. System elements include hardware, 
software, as well as human and environmental factors. 

Event symbols. The symbols shown in Figure 7.2.1 represent specific types 
of fault and normal events in fault tree analysis. The rectangle defines an event 
that is the output of a logic gate and is dependent on the type of logic gate and 
the inputs to the logic gate. A "fault event" is an abnormal system state. It is 
not necessarily due to a component failure event. For example, the fault event 
could occur due to a command or a communication error. 

The circle defines a basic inherent failure of a system element when operated 
within its design specifications. We refer to this event as a primary basic event or 
"end of life" failure event. The diamond represents a failure, other than a primary 
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failure that is purposely not developed further. We call this a secondary basic 
event. Basic events are either primary events (denoted by a circle) or secondary 
basic events (denoted by a diamond). The switch event represents an event that 
is expected to occur or to never occur because of design and normal conditions 
such as a phase change in the system. 

Logic ga tes . Fault trees use "OR gates" and "AND gates." OR gates are 
inclusive in the sense that the output occurs if one or more input events occur. 
The output event from an AND gate occurs only if all input events occur. In 
addition, there may be a NOT gate in a fault tree. A NOT gate has a single 
input event. The output occurs if the input event does not occur. Any logical 
proposition can be represented using OR and AND together with NOT logic-
symbols. 

Additional logic ga tes . In addition to the principal logic gates in Fig­
ure 7.2.2, it is sometimes useful to use a "PRIORITY AND" gate as well as 
a so-called EXCLUSIVE OR gate. For a PRIORITY AND gate, the output 
event occurs if and only if the input events occur in time sequence from the left 
to the right. Figure 7.2.2 (continued) has a PRIORITY AND gate as well as an 
EXCLUSIVE OR gate. 
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The output event from an EXCLUSIVE OR gate occurs in the case of two 
input events if either one input occurs or the other input occurs but not both. 

S teps in a fault t r ee analysis. The following outline describes the steps to 
be taken in a fault tree analysis. The sequence of events leading to the top event 
is called a cut set. 

Step 1. Define the top event (usually an undesired system event). 
Step 2. Acquire an understanding of the system (this is the inductive analysis 

phase). 
Step 3. Construct the fault tree (this is the deductive analysis phase). 
Step 4. Evaluate the fault tree 

(a) Qualitative 
Visual inspection 
Find minimal cut sets 

(b) Quantitative 
Find the Probability of the top event 
Identify "important" components or basic events 
Rank basic events by importance 

The fault tree in Figure 7.2.3 for the top event "rupture of a hot water tank" is 
an elaborate illustration of a fault tree together with notes explaining the events. 
The fault tree is developed using engineering knowledge and judgment. There 
may be many fault tree representations adequate for a given system analysis. 

The following useful rules for fault tree construction were first formulated by 
D. F. Haasl and published in the "Fault Tree Handbook" by the U.S. Nuclear 
Regulatory Commission as NUREG-0492 in 1981 (see Vesely et al.). 

Rules for fault t r e e cons t ruc t ion . 
I. Starting with the top event, determine the immediate necessary and suffi­

cient causes for the occurrence of the top event. It should be noted that these 
are not the basic causes of the event but the immediate causes or immediate 
mechanisms for the event. 

II. Write the statements that are entered in the event boxes as faults; state 
precisely what the fault is and when it occurs. A fault event is not necessarily 
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FlG. 7 . 2 . 3 . Fault tree for the hot water tank. 

a failure event It may just be that a mechanism has been commanded to do 
something that it should not, in which case the mechanism is at fault but may 
not have failed. 
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FIG. 7.2.3 (continued). 

III. For each event in a rectangle we ask the question, Can this fault consist 
of a component failure? If the answer is Yes, classify the event as a "state-
of-component fault." Add an OR gate below the event and look for primary, 
secondary, and command faults. 

If the answer is No, classify the event as a "state-of-system" fault event. 
In this case, the appropriate gate could be OR, AND, or perhaps no gate at 
all. In the last case, another rectangle is added to define the event more pre­
cisely. 

IV. The no miracles allowed rule. If the normal functioning of a component 
propagates a fault sequence, then it is assumed that the component functions 
normally. 

V. All inputs to a particular gate should be completely defined before further 
analysis of any one of them is undertaken. 
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F I G . 7.2.4. Pressure tank dcsign. 

VI. The no gate-to-gate connections rule. Gate inputs should be properly 
defined fault events, and gates should not be directly connected to other gates. 

The pressure tank fault t r ee example . Consider the pressure tank diagram 
in Figure 7.2.4. To upgrade system safety we want to develop a fault tree in which 
the top event is a pressure tank rupture. 

In the operational mode, to start the system pumping, the reset switch S1 is 
closed and then opened immediately. This allows current to How in the control 
branch circuit, activating relay coil K2. K2 contacts close and start the pump 
motor. 

After approximately 20 seconds, the pressure switch contacts should open 
(since excess pressure should be detected by the pressure switch), deactivating 
the control circuit, de-energizing the K2 coil, opening the K2 contacts, and 
thereby shutting the motor off. If there is a pressure switch hang-up (emergency 
shutdown mode), the timer relay contacts should open after 60 seconds, de-
energizing the K2 coil and shutting off the pump. We assume that the timer 
resets itself automatically after each trial, that the pump operates as specified, 
and that the tank is emptied of fluid after every run. 

The fault tree is shown in Figure 7.2.5. The top event, a pressure tank rup­
ture, is a state-of-component fault. The tree is developed to the K2 relay contact 
failure, again a state-of-component fault. We can see, therefore, that a primary 
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FIG. 7.2.5. Pressure tank fault tree. 

failure of the K2 contacts could lead to system failure, a very uncomfortable 
situation. We should propose design modifications to include the timer relay 
contacts in the pump motor circuit, thus eliminating a one-event system fail­
ure. Note, too, that safety devices should directly monitor the system and not 
monitor other safety devices as does the timer relay in this example. 

Exercises 

7 .2 .1 . Using the information on the hot water tank, construct a fault tree 
similar to Figure 7.2.3 for the top event: failure to supply heated water. 
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7.2.2. For the simple battery/motor diagram below, construct a fault tree 
for the top event: motor does not start. Assume the wires and connections are 
perfect. Consider two additional components of the motor: (1) the brushes and 
(2) the coil. Initially both switches are open. 

7.2.3. Redraw the pressure tank fault tree. Figure 7.2.5. with the following 
design modification. Put the timer contacts in both the control circuit and the 
pump circuit. 

7.2.4. Represent an EXCLUSIVE OR gate as a fault tree using only OK, 
AND, and NOT gates. Make a "truth table" for an EXCLUSIVE OH gate and 
see if the tree constructed satisfies the truth table. The following is a truth table 
for an INCLUSIVE OR gate. 

Input event 
A 

T 
T 
F 
F 

Input event 
B 

T 
F 
T 
F 

Output 
event 

T 
T 
T 
F 

7.3. Fault t r e e probabi l i ty analysis. 

In the fault tree of Figure 7.2.3, there are 15 basic and secondary events. If 
we assign probabilities to these events, we can calculate the probability of the 
top event by simply starting at the bottom of the tree and working our way up 
assigning probabilities to the gate events in succession. This is because, in this 
case, there are no replicated events in the tree, i.e.. events that appear in more 
than one place and also because there are no NOT gates. This simple calculation 
is not possible in general. We will illustrate algorithms for computing fault tree 
top event probability using the following abstract fault tree (see Figure 7.3.1). 
Note that event 6 is a replicated event since it appears twice in the tree. 

A method for obtaining minimal cut se ts ( M O C U S ) . A set of basic fault 
events constitutes a cut set if their occurrence causes the top event to occur. We 
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FIG. 7.3.1. Example fault tree. 

use the term "cut set" since the top event is usually a failure event even though 
the term "path set" may seem more natural. The set is minimal if it cannot be 
reduced and still cause the top event to occur. We can calculate the probability 
of the top event using the minimal cut sets and the probabilities of primary 
events and undeveloped events. 

An algorithm called MOCUS (method for obtaining cut sets) starts at the 
top and works its way down. Using Figure 7.3.1 to illustrate, start with the top 
event. Since the gate below it is an OR gate, list immediate input events in 
separate rows as follows: 

1 
2 

Gl 

Since Gl is an OR gate, replace Gl by two additional rows as follows: 

1 
2 

G2 
G3 
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Since G2 is an AND gate, put its input events in the same row. obtaining 

1 
2 

G4, G5 
G3 

We continue in this way, always 
(1) listing input events in separate rows if the gate is an OR gate, and 
(2) listing input events in the same row if the gate is an AND gate. 

Finally, we obtain 

1 
2 

4,6 
4,7 
5,6 
5.7 
3 
6 

These are the Boolean indicated cut sets (BICS). However, they are not the 
minimal cut sets since basic event 6 appears in three rows. We discard the 
supersets containing event 6 since they are not minimal, leaving the family of 
minimal cut sets: 

[{1}, {2},{4,7},{5.7}.{3}.{6}.{8}]. (7.3.1) 

Note that there are nine BICS but only seven minimal cut sets. The time required 
to find and discard supersets is the only drawback to this algorithm. 

Dual fault t r ees and B I C S . The dual tree to Figure 7.3.1 can be found by 
replacing OR gates by AND gates and AND gates by OR gates. Basic events and 
gate events are replaced by their negation. The minimal cut sets of either the 
primal tree or its dual can be used to calculate the probability of the top event. 
Sometimes it is advantageous to use the dual tree. We can quickly determine the 
number of BICS for both the primal tree and its dual and use this information 
to determine which tree to use to find the minimal cut sets. 

Calculating the number of BICS. To calculate the number of BICS, first 
assign weight 1 to each basic event in the tree. Starting at the bottom of the 
tree, assign a weight to each gate event as follows: 

(1) for each OR gate assign the SUM of the input weights; 
(2) for each AND gate assign the PRODUCT of the input weights. 
The final weight assigned to the top event is the number of BICS. This is a 

very fast algorithm. 
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Calculating the maximum size of BICS. We can also determine the max­
imum number of events in a BICS as follows. As before assign weight 1 to each 
basic event in the tree. Starting at the bottom of the tree, 

(1) for each OR gate assign the MAXIMUM of the input weights; 
(2) for each AND gate assign the SUM of the input weights. 
The final weight assigned to the top event is the maximum number of events 

in a BICS. This is a very fast algorithm. 

Calculating the probability of the top event. After assigning probabili­
ties to the primary and secondary basic events, the problem is to calculate the 
probability of the top event. If there are no replicated events or NOT gates, this 
is very easy. Starting with the basic events, calculate the probability of each 
gate event having basic events as inputs. Continue in this manner until the top 
event is reached. 

If there are no NOT gates but there are replicated basic events, then we 
find the minimal cuts for either the primal tree or the dual tree, whichever has 
the least number of BICS. With the minimal cuts in hand, we can develop the 
minimal path Boolean representation for the top event as in section 6.2. 

Note that although we use the term minimal cuts for the fault tree, they are 
really like path sets relative to the occurrence of the top event (usually a failure 
event). This confusion is due to the success orientation of the network as opposed 
to the failure orientation of the fault tree. 

With the Boolean representation for the top event we can use Boolean prob­
ability reduction to compute the probability of the top event. Another approach 
would be to use the principle of inclusion-exclusion with respect to the minimal 
cut events as in section 6.2. Again, the minimal cuts are interpreted as min­
imal paths as the way in which the principle of inclusion-exclusion is used in 
Chapter 6. 

Boolean reduction. If the fault tree has no NOT gates we can use the 
method of Boolean reduction to calculate the probability of the top event. Let 
K1, K2,..., Kk be the k minimal cut sets for a given fault tree. Then 

(7.3.2) 

The structure function in this case is 1 if the top event occurs (a failure event) 
and 0 otherwise. This was called the minimal path representation in Chapter 6, 
but because we are now failure oriented it is now the minimal cut representation 
for fault trees. 

Substituting random quantities Xi for xi and taking the expectation we ob­
tain 
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The principle of inclusion-exclusion. If the fault tree has no NOT gates 
we can use the principle of inclusion-exclusion to calculate the probability of the 
top event. Let Ei be the event in which all basic events in K, occur. Then by 
the principle of inclusion-exclusion we have 

Exercises 

7.3.1. Use the following probabilities of failure per hot water tank use for 
events in the fault tree in Figure 7.2.3 to calculate the probability of the top 
event. The probability for tank rupture is 10 - 6 per use. All other primary basic 
events (denoted by circles) have probability 10"4 per use. Diamond events or 
undeveloped events have probability 10-3 per use. 

7.3.2. For the pressure tank fault tree. Figure 7.2.5. find the minimal cuts 
using the MOCUS algorithm. Calculate the probability of the top event assuming 
the following probabilities. Pressure tank rupture is 10 - 8 per use while the event 
that the pressure switch contacts are jammed closed is 10 - 4 . All other primary 
(circle) events are 1 0 - 5 per use. Assume that secondary diamond events have 
probability 0 per use. 

7.3.3. (a) Apply both the number of the BICS algorithm and the maximum 
size of the BICS algorithm to Figure 7.3.1. 

(b) Give short proofs of both the number of the BICS algorithm and the 
maximum size of the BICS algorithm. 

7.3.4. Give the Boolean representation for the structure function correspond­
ing to an EXCLUSIVE OR gate. 

7.4. Notes and references. 

Section 7.1. One of the best references for fault tree construction is the 1981 
"Fault Tree Handbook" available from the U.S. Nuclear Regulatory Commission 
as NUREG-0492 (see Vesely et al. (1981)). 

Section 7.2. The fault tree construction approach is due to David Haasl. 
Common mistakes in fault tree construction are 

(1) to omit the system inductive analysis step that should include a table 
listing critical components' failure modes and effects and 

(2) to ignore the first rule of fault tree construction, namely, to determine 
the immediate necessary and sufficient causes for a gate event. 

Section 7.3. MOCUS and the BICS algorithms are due to Fussell and Vesely 

(1972). 





In this chapter we assume some familiarity with renewal theory although must of 
the formulas used will be intuitive. (See Barlow and Proschan (1996). Chapter 
3, section 2.) 

8.1. Introduction. 

Since many systems are subject to inspection and repair policies, availability is 
often the main reliability measure of interest. In sections 8.3 and 8.4 we discuss 
methodology for this calculation. 

As in Chapter 6, we start with a network representation of a system of in­
terest. In place of unreliable arcs we now refer to unreliable components. Again 
we assume that component failure events are statistically independent. However, 
now component indicator random variables will depend on time as the following 
notation suggests. We refer to component positions since with repair there may 
be many components used in a particular position, Let 

if the component in position i is working at time t, 
otherwise 

for i = 1,2,... , n. 
Let be a coherent system structure (organizing) function as in Chapter 6 

and let 

if the system is working at time t, 
otherwise. 

(8.1.2) 
Availability at time t, A(t), is defined as 

i.e., the probability that the system is working at time t. With repair possible, 
the system could have failed before time t but could also have been repaired 
before time t. Even assuming component failure events are independent, A(t) is 
in general difficult to calculate. For this reason we will obtain asymptotic 
results, which should provide good approximations for long time intervals or, at 
the very least, some rule-of-thumb measures. 
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CHAPTER 8 

System Availability 
and Maintainability 
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Consider a single component or a system considered as a single component 
having mean life and mean repair time v. In this case, where component 
uptimes are independent and also component downtimes are independent, the 
limiting availability is easy to compute. We have 

a s . This is intuitively true since, roughly, the probability that the system 
is up will be the mean uptime divided by the mean length of a cycle consisting 
of an uptime and a downtime. 

When we consider a complex system with many component positions with 
different component lifetimes and component repair times, it is not easy to cal­
culate system availability. 

8.2. Calculating system reliability in the absence of repair. 

Let Ti be the random time to failure of a component in position i and Fi(t) = 
. Components used in position i are considered exchangeable. We will 

also assume that 

i.e., the system is initially up. 
Let 

T = minimum 

Then, without the possibility of repair, which we assume at this point, T is the 
time to system failure. 

Given Fi(t), i = 1,2,... ,n, our first problem is to compute F(t) = P(T > 
t), the probability that the system survives t time units in the absence of any 
component repair. 

Fix t for the moment and let 

where pi stands for the probability that the component in the ith position is 
working at time t (or the arc reliability at time t as in Chapter 6). We claim 
that network system reliability at time t is, in our new notation, the same as the 
probability that the system survives to time t so that 

This is so since the system is coherent and thus fails as soon as the first network 
minimal cut set fails (in the sense that all components in some minimal cut set 
fail first before all components fail in any other minimal cut set). 

To compute F(t) = P(T > t), we need only employ a suitable network 
reliability algorithm from Chapter 6 to compute the system reliability at time 
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t, replacing pi by in . This can be easily 
graphed for selected values of . 

To compute E(T), it is sufficient to compute 

(8.2.G) 

Exercises 

8.2.1. Use the reliability function for the bridge from equation (6.1.3), 
namely, 

This is so since if , then and 
, using integration by parts. 

Series sys tems. Consider a series system with n component positions. Let 
failure rate functions be ri(t) for components in position and i = 
1,2,... ,n. Then the system survival probability without repair and in the case 
of independent failure events is 

In this case, the system failure rate function is 
If failure rate functions are constant, i.e., 

then the system failure rate function is also constant, say. A. and 

The mean time to system failure in this series case is 

(8.2.5) 

to graph the bridge survival probability when f o r , 
i = 1,2, . . . , 5 , and 9 = 10 hours. On the same graph display the survival 
distribution for the exponential survival distribution, for and 9 = 10. 
Do the two survival distributions cross? If so, where? 

Also compute the mean time to system failure. Is it less than or greater than 
9 = 10 hours? 
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8.2.2. Use the minimal path sets in section 6.2, 

P = [{2,5}, {1,3,5}, {2, e, 4}, {1,3,4}, {1,2,4}], 

to graph the system survival distribution for the rooted directed network in 
Figure 6.2.3 when 

(8.3.2) 

This can be computed using the network algorithms for calculating h(p) in Chap­
ter 6. 

and 6 = 10 hours. Assume independent failure events. 
8.2.3. Graph the system survival distribution for the hot water tank fault 

tree in Figure 7.2.3. Use the following exponential failure rate for events in the 
fault tree. The failure rate for tank rupture is 10~6 per use. All other primary 
basic events (denoted by circles) have failure rate 10 - 4 per use. Diamond events 
or undeveloped events have failure rate 1 0 - 3 per use. Consider time continuous, 
although it is really in the number of hot water tank usages. 

8.3. Coherent systems with separately maintained components. 

Let components used in position i have mean lifetime , with mean repair time 
vi. Furthermore, suppose that components are repaired immediately at failure 
while other nonfailed components continue to operate or at least remain "turned 
on." In this context, the system fails only when a minimal cut set of components 
requires repair. If the system is a series system, it fails as soon as any one 
component fails. However, even with one component under repair, other working 
components continue to operate and may fail during the repair of the original 
failed component. Because of these assumptions, system availability at time t 
for an arbitrary coherent structure will be 

where and Ai(t) is the availability of the com­
ponent in position i at time t. Assume that we have a renewal process in each 
component position; i.e., the sequence of failure times and repair times in a given 
component position are independent and identically distributed. It follows that 
for component position i, 

Since components in position i have mean lifetime and mean repair time 
vi and since components are separately maintained, system availability is, in the 
limit a s , 
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FlG. 8.3.1. Network with three component (arc) positions. 

Example. For the network in Figure 8.3.1. system availability at time t is 

and 

We may ask many more questions concerning system performance in the case 
of separately maintained components in coherent systems: 

(1) How often do components in position i fail and "cause" the system to 
fail? By "cause" we mean that the component in position i fails and the system 
then fails due to component i failure. 

(2) What is the long run (asymptotic a s ) system failure rate, i.e., the 
expected frequency of system failures per unit time? 

(3) What is the long run average system up- (down) time? 
In each component position we assume that we have a renewal counting 

process. The renewal counting process in component position i will be 
0}. Let Ni(t) be the number of times in [().t] that components in position * fail 
and cause system failure in [0, t]. We will show that, asymptotically, the expected 
frequency with which components in position i fail and cause system failure is 

(8.3.3) 

where and 
Proof of formula (8.3.3). To show (8.3.3) it is sufficient to note that since the 

system is assumed coherent 

If and are both 1 or both 0, the difference is 0. The 
difference is 1 if and only if and . By coherence we 
cannot have and . We say that the component in 
position i is critical at time t if 

This follows because if the component in position i were to fail in the next instant 
after time t, the system would also fail. 
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Now let Ni(t) be the cumulative number of renewals of components in position 
i by time t. Partition the time interval [0, t] as follows: 

For sufficiently small and Fi continuous, the number of failures in component 
position i during the time interval will be either 0 or 1; i.e., 

if a failure occurs in 

otherwise. 

w h e r e , since the component in position i causes system failure only if i 
fails and at the time of failure it is critical to the system. 

Thus, using independence of events in different component positions we have 

Hence 

Let Mi(t) = E[Ni(t)}, the renewal function for components in position i. Again, 
approximately 

is the probability that the component in position i fails in the interval [u, d + du). 
Hence, a s , 

Since and for fixed T (very large) with t > T, 

Since T is fixed, the first term goes to 0 a s . For large u, 
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and 

We have used the elementary renewal result, namely, 

to prove (8.3.4). D 
Let be the number of system failures in [0.t]. It follows 

that the long run expected frequency of system failures is 

by equation (8.3.3). 

System mean time between failures (MTBF) . Let be suc­
cessive system uptimes and be successive system downtimes. 
Prom (8.3.5) we can deduce the long run MTBF by considering the first k uptime 
downtime cycles and then l e t t i n g , namely. 

System uptimes and downtimes. At any one time the system may be down 
due to more than one component. Hence we cannot simply add up component 
downtimes contributing to system failure. 

Since are successive system uptimes and are 
successive system downtimes, then it can be shown that 

This is true by the strong law of large numbers and since we assume 
exists. 

Since 

by the strong law of large numbers we have 
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Also, the long run average of system downtimes can be similarly calculated, 
namely, 

(8.3.9) 

Example 8.3.1. Series sys tems with separately maintained compo­
nents. In the case of a series system, any component failure will cause system 
failure. The long run system availability is 

(8.3.10) 

while the long run series system expected frequency of system failures from 
(8.3.5) is 

(8.3.11) 

The asymptotic MTBF is 

(8.3.12) 

It is interesting that in the series case with separately maintained components, 
the average of system uptimes does not depend on mean component downtimes. 

The long run average of system downtimes, however, does depend on both 
mean component downtimes vi and mean component uptimes ; i.e., 

(8.3.13) 

Exercises 

8.3.1. For the network in Figure 8.3.1, calculate for each of 

the three components in the figure. Use these to c a l c u l a t e . What 

From (8.3.8) the long run average system uptime is 
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FIG. 8.4.1. Each component failure shuts down all components. 

FIG. 8.4.2. Components separately maintained. 

FlG. 8.4.3. Component 1 shuts down 2 and 3 (not vice versa). 

is the MTBF? What is the long run average of system downtimes? 
8.3.2. Parallel Systems. Let components in position i have mean lifetime 

with mean repair time vi. Furthermore suppose that components are repaired 
immediately at failure while other nonfailed components continue to operate or at 
least remain "turned on" and can fail. Just as we did for the series system, for a 
parallel system with n separately maintained components find the corresponding 
formulas for 

(1) the asymptotic expected system failure rate. 
(2) the asymptotic MTBF, 
(3) the asymptotic average system uptime. 
(4) the asymptotic average system downtime. 

8.4. Suspended animation for components in series sys tems 

In many cases, systems under consideration are essentially series systems. Al­
though this implies that failure of any component causes system failure, it may 
or may not imply that a component failure results in other system components 
being shut off. A component that is shut down (but not because of failure) will 
be assumed to be in suspended animation; that is, it cannot fail in this state but 
also it cannot age in this state. 

We illustrate the possible shut-off policies for series systems by the following 
diagrams. In Figure 8.4.1 the double-headed arrows indicate, for example, that 
component 1 shuts down component 2, which in turn shuts down component 3, 
etc. and vice versa. If components are separately maintained, there are no arrows 
at all. See Figure 8.4.2. If, for example, component 1 shuts down components 2 
and 3, but not vice versa, we have Figure 8.4.3. Our task is to develop availability 
formulas for series systems with different shut-off policies. We have already done 
this in Example 8.3.1 in the case of separately maintained components. 
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Each component failure shuts down all other components. We first 
calculate appropriate formulas for the case where each component shuts down 
all others as in Figure 8.4.1. In each component position we assume that we 
have a renewal counting process. The renewal counting process in component 
position i will b e . Let U(t) for be the total system uptime 
in the interval [0,t]. 

THEOREM 8.4.1. For series systems with independent component failure and 
repair events and the shut-off policy in Figure 8.4.1, we have the result 

(8.4.1) 

almost surely. (Recall that shut-off components are in a state of suspended ani­
mation.) For a proof, see Barlow and Proschan (1973). 

From (8.4.1) we can calculate the limiting average a v a i l a b i l i t y , namely, 

(8.4.2) 

Note that for n = 1, 

(8.4.3) 

be the limiting average of series system uptimes [cf. (8.3.12)]. Using Theorem 
8.4.1 we can prove the following corollary. 

COROLLARY 8.4.2. For series systems with independent component failure 
and repair events and the shut-off policy in Figure 8.4.1, the limiting average 
system downtime due to component i is 

while the limiting average system downtime due to all component failure events 

Sys tem M T B F . MTBF is the average of the sum of the successive system up-
and downtimes. We already know that is the limiting average 
of series system uptimes and that is the hmiting average of system 

so that for n = 1 (8.4.2) agrees with the availability formula (8.1.3) given at the 
beginning of this chapter. 

Let Di(t) be the total system downtime in [0, t] due to failures of component 
i a n d . Let 
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downtimes. Therefore, it is not surprising that 

see Table 8.4.1. 

Exercises 

8.4.1. Verify that when n = 1, all formulas for systems with separately main­
tained components and systems with suspended animation components agree. 

8.4.2. Compare system availability when constant for i = 1,2, . . . , n 
using the formula for separately maintained components versus the formula for 
the case when shut-off components are in suspended animation. 

8.4.3* (this exercise presumes knowledge of Markov processes) . 
Suppose components 1 and 2 are in series. Component 1 shuts down compo­
nent 2 but not vice versa. When component 1 fails and shuts down component 
2, component 2 is in suspended animation and cannot fail. On the other hand, if 
component 2 fails, component 1 continues to operate and may fail while compo­
nent 2 is being repaired. Repair commences immediately upon failure of either 

The limiting expected system failure frequency A is or 
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or both components. The diagram is as follows: 

Assume all failure and repair distributions are exponential with failure rates 
Xi,9i for components i = 1,2. Remember that exponential distributions have the 
memoryless property. 

(a) Identify all possible system states. Let 0 denote the state when both 
components are working. Draw a sample space diagram of a possible scenario. 

(b) Draw a state space diagram with transition rates indicated. 
(c) If {Z(t),t > 0} is the system state process, how would you calculate 

8.5. Notes and references. 

Section 8.1. Availability theory as presented in this chapter was partly 
developed in a paper by Barlow and Proschan (1973). 

Section 8.2. The technique for calculating the distribution of time to system 
failure requires that the system be coherent. This is because only in this case 
can we be assured that the system reliability function is an increasing function 
of component reliabilities. 

Section 8.3. The asymptotic formulas for separately maintained compo­
nents were first developed by Ross (1975). The proof of formula (8.3.3) was 
developed in Barlow and Proschan (1975). 

Section 8.4. Suspended animation for components in series systems was 
first considered by Bazovsky et al. (1962). However, they only considered the 
exponential case. The development in this section follows that in Barlow and 
Proschan (1973). 

Notation 

A(t) system availability at time t 

A asymptotic expected system failure rate 

MTBF system mean time between failures 

asymptotic system MTBF 



CHAPTER 9 * 

Influence Diagrams 

9.1. Using influence d iagrams. 

Mathematically, fault trees are probabilistic influence diagrams. However, the 
fault tree approach was based on engineering considerations and was invented by 
mechanical engineers. Fault trees are based on principles similar to the reasoning 
used by engineers. 

Influence diagrams, on the other hand, were invented by decision analysts as 
an alternative to decision trees. Influence diagrams provide an excellent graphi­
cal tool for understanding probabilistic conditional independence. The influence 
diagram is a graphical representation of the relationships between random quan­
tities that are judged relevant to a real problem. 

For analyzing system failure events, the fault tree is the more useful rep­
resentation. For decision problems, and particularly those involving monetary 
considerations, the influence diagram is the more useful representation. In the 
following sections we provide a formal introduction to influence diagrams, em­
phasizing their probabilistic basis. 

9.2. Probabilistic influence d iagrams. 

Definitions and basic resul ts . An influence diagram is, first of all, a directed 
graph. A graph is a set V of nodes or vertices together with a set A of arcs 
joining the nodes. It is said to be directed if the arcs are arrows (directed arcs). 
Let V = {v1 ,v2 , . . . ,vn} and let A be a set of ordered pairs of elements of V, 
representing the directed arcs. That is, if f o r , then there 
is a directed arc (arrow) from vertex vi to vertex vj (the arrow is directed from 
vi to vj). I f , vi is said to be an adjacent predecessor of vj and vj is 
said to be an adjacent successor of vi. The direction of arcs is meant to denote 
influence (or possible dependence). 

Circles (or ovals) represent random quantities which may, at some time, be 
observed and consequently may change to data. Circle nodes are called proba­
bilistic nodes. Attached to each circle node is a conditional probability (density) 
function. This function is a function of the state of the node and also of the 
states of the adjacent predecessor nodes. 

149 
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FIG. 9.2.1. Influence diagram symbols. 

A double circle (or double oval) denotes a deterministic node, which is a node 
with only one possible state, given the states of the adjacent predecessor nodes; 
i.e., it denotes a deterministic function of all adjacent predecessors. Thus, to 
include the background information H in the graph, we would have to use a 
double circle around H. See Figure 9.2.1. 

The following concepts formalize the ideas used in drawing the diagrams. 
DEFINITION. A directed graph is cyclic and is called a cyclic directed graph, 

if there exists a sequence of ordered pairs in A such that the initial and terminal 
vertices are identical; i.e., there exists an integer and a sequence of k arcs 
of the following type: 

DEFINITION. An acyclic directed graph is a directed graph that is not cyclic. 
DEFINITION. A root node is a node with no adjacent predecessors. A sink 

node is a node with no adjacent successors. Note that any acyclic directed graph 
must have at least one root node and one sink node. 

DEFINITION. A probabilistic influence diagram is an acyclic directed graph in 
which 

(i) circle nodes represent random quantities while double circle nodes repre­
sent deterministic functions, 

(ii) directed arcs indicate possible dependence, and 
(iii) attached to each node is a conditional probability function (or determin­

istic function) for the node that depends on the states of adjacent predecessor 
nodes. 

Figure 9.2.2 illustrates the fault tree OR gate using the influence diagram 
symbols. Random quantities X1 and X2 are random indicators taking only 
the values 1 or 0. The deterministic function 6 depends on X1 and X2 where 

= maximum (X1,X2). 
Given a directed acyclic graph together with node conditional probabilities 

(i.e., a probabilistic influence diagram), there exists a unique joint probability 
function corresponding to the random quantities represented by the nodes of the 
graph. This is because a directed graph is acyclic if and only if there exists a list 
ordering of the nodes such that any successor of a node x in the graph follows 
node x in the list as well. Consequently, following the list ordering and taking 
the product of all node conditional probabilities we obtain the joint probability 
of the random quantities corresponding to the nodes in the graph. Note that in 
a cyclic graph the product of the conditional probability functions attached to 
the nodes would not determine the joint probability function. 

The following basic result shows that the absence of an arc connecting two 
nodes in the influence diagram denotes the judgment that the unknown quanti-



INFLUENCE DIAGRAMS 151 

FlG. 9.2.3. x and y are conditionally independent. 

ties associated with these nodes are conditionally independent given the states 
of all adjacent predecessor nodes. For example, in Figure 9.2.2 root node ran­
dom quantities X1 and X2 are independent, while the deterministic function 
depends on both X1 and X2. 

Remark. Let xi and xj represent two nodes in a probabilistic influence dia­
gram. If there is no arc connecting xi and xj. then xi and xj are conditionally 
independent given the states of the adjacent predecessor nodes; i.e., 

FlG. 9.2.2. Influence diagram for fault tree OR gate. 

where wi(wj) denotes the set of adjacent predecessor nodes to only xi(xj), while 
wij denotes the set of adjacent predecessor nodes to both xi and xj. 

Figure 9.2.3 illustrates conditional independence implied by the absence of 
an arc connecting x and y. In a probabilistic influence diagram, if two nodes, xi 

and xj , are root nodes then they are independent. 

Exercises 

9.2.1. In the following influence diagram, which nodes are root nodes? 
Which nodes are conditionally independent? Which nodes are independent? 
Which nodes are sink nodes? 
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9.2.2. In the following influence diagram, which nodes are root nodes? 
Which nodes are conditionally independent? Which nodes are independent? 
Which nodes are sink nodes? 

9.3. Probabilistic influence diagram opera t ions . 

The Bayesian approach to statistics is based on probability judgments and as 
such follows the laws of probability. You are said to be coherent if 

(i) you use probability to measure your uncertainty about quantities of in­
terest and 

(ii) you do not violate the laws of probability when stating your uncertainty 
concerning probability assessments. 

Probabilistic influence diagrams (and influence diagrams in general) are help­
ful in assuring coherence. Clearly, from coherence, any operation to be performed 
in a probabilistic influence diagram must not violate the laws of probability. The 
three basic probabilistic influence diagram operations that we discuss next are 
based on the addition and product laws. These operations are (1) splitting nodes, 
(2) merging nodes, and (3) arc reversal. 

Splitting nodes. In general, a node in a probabilistic influence diagram can 
denote a vector random quantity. It is always possible to split such a node 
into other nodes corresponding to the elements of the vector random quantity. 
To illustrate ideas, suppose that a node corresponds to a vector of two random 
quantities x and y with joint probability function p(x, y). From the product law 
of probability we know that 
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FlG. 9.3.1. Equivalent probabilistic influence diagrams for two random quantities. 

FlG. 9.3.2. Addition of a deterministic node. 

Hence, Figure 9.3.1 presents the three possible probabilistic influence diagrams 
that can be used in this case showing the two ways of splitting node (x, y). 

The following property is also a direct consequence of the laws of probability 
and it is of special interest for statistical applications. 

Property. Let x be a random quantity represented by a node of a probabilistic 
influence diagram and let f(x) be a (deterministic) function of x. Suppose we 
connect to the original diagram a deterministic node representing using a 
directed arc from x to f(x). Then the joint probability distributions for the two 
diagrams are equal. (Sec Figure 9.3.2 for illustration.) 
Proof. Let w and y represent the sets of random quantities that precede and 
succeed x, respectively, in a list ordering. Note that 
x) = 1 and consequently from the product law 
That is, node x may be replaced by node {x.f(x)) without changing the joint 
probability of the graph nodes. Using the splitting node operation in node 
{x,f(x)) with x preceding f(x), we obtain the original graph with the additional 
deterministic node f{x) and a directed arc from to Note also that 
no other arc is necessary since f(x) is determined by and 
Merging nodes. The second probabilistic influence diagram operation is the 
merging of nodes. Consider first a probabilistic influence diagram with two 
nodes x and y with a directed arc from x to y. The product law states that 
p{x,y) = p(x)p(y | x). Hence, without changing the joint probability of x and 
y, the original diagram can be replaced by a single node diagram representing 
the vector (x,y). The first two diagrams of Figure 9.3.1 in the reverse order 
illustrate this operation. In general, two nodes, x and y, can be replaced by a 
single node, representing the vector (x,y), if there is a list ordering such that x 
is an immediate predecessor or successor of y. 
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FIG. 9.3.3. Diagram with adjacent nodes w and y not allowed to be merged. 

It is not always possible to merge two adjacent nodes in a probabilistic in­
fluence diagram. Note that two adjacent nodes may not be neighbors in any 
list ordering. For example, consider the first diagram of Figure 9.3.3. Note that 
all pairs of nodes in this diagram constitute adjacent nodes. However, w and y 
cannot be merged into a node representing (w, y). Clearly the only list ordering 
here is w < x < y and w and y are not immediate neighbors in this ordering. The 
problem here is that to merge w and y we would need an arc from (w, , y) to x and 
another from x to (w,y). The reason for this is the existence of arcs [w,x] and 
[x, y] in the original graph. If we were to have arcs in both directions between 
(w, y) and x, we would not obtain, in general, the joint probability function from 
the diagram s i n c e . Also it can be seen from 
the first diagram of Figure 9.3.3 that there exist two paths from w to y. This is 
the graphical way to see that w and y cannot be merged into a single node. To 
construct a graphical technique to check if two nodes can be merged, we need 
the following definition and theorem. 

DEFINITION. A directed path from node xi to node xj is a chain of ordered 
pairs corresponding to directed arcs that lead from xi to xj. 

THEOREM 9.3.1 (merging nodes theorem). In a probabilistic influence dia­
gram, nodes x and y can be merged if either 

(1) the only directed path between x and y is a directed arc connecting x and 
y or 

(2) there is no directed path connecting x and y. 
Proof. To be definite, suppose that x precedes y in an associated list ordering 

corresponding to a probabilistic influence diagram. Let wx{wy) be the set of 
adjacent predecessors of x(y) but not of y(x), and let wxy be the set of nodes 
that are adjacent predecessors of both x and y. Since there is no directed path 
from x to y except, possibly, for a directed arc from x to y, we may add arcs 
from each node in wx to y and from each node in wy to x without creating any 
cycles. This is possible because directed arcs indicate possible dependence but 
not necessarily strict dependence. We have of course lost some graph information 
as a result of these arc additions. 

In the associated list ordering of nodes for our modified diagram, the family 
of nodes {wx,wy, wxy} precedes both x and y. Since there is no other directed 
path from x to y other than possibly a directed arc from x to y, there exists an 
associated list ordering of nodes for which x is an immediate predecessor of y in 
this list ordering. The product 
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FIG. 9.3.4. Reversing arc operation in a two node probabilistic influence diagram. 

must appear in the representation for the joint probability function for all prob­
abilistic nodes based on the list ordering. Since 

Revers ing arcs . The probabilistic influence diagram operation corresponding 
to Bayes' formula is that of arc reversal. Consider the diagram on the left 
in Figure 9.3.4. Using the merging nodes operation we obtain the single node 
diagram in the center where the probability function of the node (z, y) is obtained 
from the first diagram as p{x,y) = p(x)p(y | x). Using the splitting nodes 
operation we can obtain the diagram on the right of Figure 9.3.4. Note that to 
obtain the corresponding probability functions we use 

(1) the theorem of total probability f o r , where is 
the sum (or integral) over all possible values of x. and 

(2) the multiplication law for s i n c e . 
By substituting the appropriate expressions in we obtain Bayes' formula. 
That is, 

Hence, by using the theorem of total probability and Bayes' formula when 
performing an arc reversal operation, we can go directly from the left diagram 
to the right one in Figure 9.3.4 without having to consider the one in the center. 

Although the diagrams are different, they have the same joint probability 
function for node random quantities. This fact is formalized in the following 
definition. 

DEFINITION. TWO probabilistic influence diagrams are said to be equivalent 
in probability if they have the same joint probability function for node random 
quantities. 

Consider the diagram of Figure 9.3.5 where wx, wy, and wxy are sets of 
adjacent predecessors of x and (or) y as indicated by the figure. If arc [x, y] is 
the only directed path from node x to node y, we may add arcs [wx, y] and [wy, x] 
to the diagram without introducing any cycles. (See left diagram of Figure 9.3.6.) 

by the product law, we can merge x and y. 
Finally, suppose that there is a directed path from x to y other than a directed 

arc from x to y. In this case it is not difficult to see that merging x and y would 
create a cycle, which is not allowed. 

The above result is related to arc reversal, an important operation discussed 
next. 
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FIG. 9.3.5. 

FIG. 9.3.6. Equivalent probabilistic influence diagrams. 

Remember that a directed arc only indicates possible dependence. Probability 
nodes in the right diagram in Figure 9.3.6 are obtained from the left diagram by 
using Bayes' formula and the theorem of total probability. 

The following result introduces the conditions under which arc reversal op-
erations can be performed. 

THEOREM 9.3.2 (reversing arcs theorem). Suppose that arc [x,y] connects 
nodes x and y in a probabilistic influence diagram, [x, y] can be reversed to 
[y, x] without changing the joint probability function of the diagram if 

(1) there is no other directed path from x to y, 
(2) all the adjacent predecessors of x(y) in the original diagram become also 

adjacent predecessors of y(x) in the modified diagram and 
(3) the conditional probability functions attached to nodes x and y are also 

modified in accordance with the laws of probability. 

Proof. Let wx(wy) be the set of adjacent predecessors of x(y) but not of 
y{x), and let wxy be the set of adjacent predecessors of both x and y. Since arcs 
represent possible dependence, we can add arcs to the diagram in order to make 
the set (wx,wy,wxy) an adjacent predecessor of both x and y. Since there is no 
other directed path connecting x and y, there is a list ordering such that x is 
an immediate predecessor of y in the list. Note also that the elements of the set 
(wx, wy, wxy) are all predecessors of both x and y in the list ordering. To obtain 
the joint probability function corresponding to the first diagram, we consider the 
product, following the list ordering, of all node conditional probability functions. 
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As a factor of this product we have 

The first equality is due to the fact that x and wy are conditionally indepen­
dent given (wx,wy,wxy), and y and wx are conditionally independent given 
(wy,wx,wxy). (See Figure 9.3.5.) The other two equalities follow from the prod­
uct law. 

Replacing in the product of the conditional 
probability functions for the original diagram by 

we obtain the product of the conditional probability functions for the second 
diagram. This proves that the joint probability functions of the two diagrams 
are equal. Finally, we notice that if there were another directed path from x to 
y, we would create a cycle by reversing arc [x.y], which is not allowed. D 

In general, reversing an arc corresponds to applying Bayes' formula and the 
theorem of total probability. However, it may also involve the addition of arcs, 
and such arcs in some cases represent only pseudo dependencies. In this sense, 
some relevant information may have been lost after arc reversal. 

The following example of the influence diagram for a fault tree OR gate illus­
trates the arc reversal operation. The deterministic node becomes probabilistic 
after arc is reversed. 

Influence d iagram for fault t r ee O R gate . 
Let 

and The influence diagram representation for 
the OR gate fault tree is 
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now with 6 node conditional probabilities 

Reversing the a r c , we have 

with node probability 

and x2 conditional probability given by the table 

Exercises 

9.3 .1 . Fill in the conditional probabilities in the following influence dia­
gram for a fault tree A N D gate. The fill-in should be similar to the O R gate 
illustration. 

and x2 are independent 

and f o r , we have the table 

otherwise. 
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Fill in the table for 

For fill in the table 

9.3.2. Are x2 and x 3 conditionally independent of x3 given x1 in the following 
influence diagram? 

9.3.3. Suppose a lot of size N is taken from a production line. Assume in 

our judgment that 
(1) each item produced in this line has the same chance of being defective, 

and 
(2) for any given value of the items are independent relative to being 

defective. 

Calculate P(6 = 1) and fill in the table for 
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Let x be the number found defective in a sample of size n and y the number 
defective in the remainder. What are the initial distributions of and 

Reverse the relevant arcs in the right sequence in the following diagram to 
obtain p(n \ x) and p(y \ x). What are the distributions of and 

9.3.4. Unique lot example. Suppose a unique lot contains N items and 
that is all there are. Let 6 be the number defective in the lot. Suppose a sample 
of size n is taken and x are found to be defective. Initially we have the influence 
diagram 

The following diagram is an influence diagram constructed for this case. Note 

where is the number defective in the remainder and initially has 
a prior distribution. By a sequence of arc reversals calculate the 
distribution of p(y | x). (Hint. Review the beta-binomial distribution in section 
3.1 of Chapter 3.) 

9.3.5. Forensic science. A robbery has been committed and a suspect, a 
young man, is on trial. In the course of the robbery, a window pane was broken. 
The robber had apparently cut himself and a blood stain was left at the scene of 
the crime. Let x represent the blood type of the suspect, y the blood type of the 
blood stain found at the scene of the crime, and 9 the quantity of interest, "the 
state of culpability" (guilt or innocence) of the suspect. Formally, and before 
using the actual values of the observable quantities, let 

if the suspect's blood type is A, 
otherwise; 

if the suspect is guilty, 
otherwise. 

if the blood stain 
type is A, 
otherwise; 
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that the actual values of x and y that are known at the time of the analysis are 
not yet used. In fact, the diagram describes the dependence relations among 
these quantities and the conditional probabilities to be used. 

Using the influence diagram above and appropriate arc reversals, calculate the 
probability of guilt given the evidence, n a m e l y , . 

9.4*. Conditional independence. The objective of this section is to 
study the concept of conditional independence and introduce its basic proper­
ties. We believe that the simplest and most intuitive way that this study can 
be performed is by using the total visual force of the probabilistic influence 
diagrams. 

We now introduce the two most common definitions of conditional indepen­
dence. 

DEFINITION 9.4.1 (intuitive). Given random quantities x, y, and z, we say 
that y is conditionally independent of x given z if the conditional distribution of 
y given (x,z) is equal to the conditional distribution of y given z. 

The interpretation of this concept is that, if z is given, no additional infor­
mation about y can be extracted from x. The influence diagram representing this 
statement is presented in Figure 9.4.1. 

DEFINITION 9.4.2 (symmetric). Given random quantities x, y, and z, we say 
that x and y are conditionally independent given z if the conditional distribution 
of (x, y) given z is the product of the conditional distributions of x given z and 
that of y given z. 

The interpretation is that, if z is given, x and y share no additional infor­
mation. The influence diagram representing this statement is displayed in Fig­
ure 9.4.2. 

Influence diagram for a problem in forensic science. 

Let represent the proportion of people in the population with blood type A. 
and let represent any jury member's probability that the suspect is guilty 
before the juror has learned about the blood stain evidence. Use the following 
probability assignments: 
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FIG. 9.4.1. Intuitive definition of conditional independence. 

FlG. 9.4.2. Symmetric definition of conditional independence. 

Using the arc reversal operation, we can easily prove that the probabilistic 
influence diagrams in Figures 9.4.1 and 9.4.2 are equivalent. Thus, Definitions 
9.4.1 and 9.4.2 are equivalent, which means that in a specific problem we can use 
either one. To represent the conditional independence2 described by both Figures 
9.4.1 and 9.4.2, we can write either or . This is a very general 
notation since x, y, and z are general random quantities (scalars, vectors, events, 
etc.). If in place of we use , then x and y are said to be strictly dependent 
given z. We obtain independence (dependence) and write if 
z is an event that occurs with probability one. It is important to notice that 
the symbol _L corresponds to the absence of an arc in a probabilistic influence 
diagram. However, the existence of an arc only indicates possible dependence. 
Although is the negation of ±, the "absence of an arc" is included in the 
"presence of an arc." 

The following proposition introduces the essence of the DROP/ADD princi­
ples for conditional independence, which are briefly discussed in the sequel. 

PROPOSITION 9.4.3. If , then for every f = f(x) we have 
(i) and 

(ii) 
The proof of this property is the sequence of diagrams of Figure 9.4.3. First 

note that (by the splitting nodes operation) to obtain the second diagram from 
the first we can connect to x a deterministic node f using arc [x, f] without 
changing the joint probability function. Consequently, by reversing arc [x, / ] 
we obtain the third diagram. To obtain the last diagram from the third we 
use the merging nodes operation. Relations (i) and (ii) of Proposition 9.4.3 are 
represented by the second and the third diagrams of Figure 9.4.3. 

As direct consequences of Proposition 9.4.3 we have 
(C1) If g = g(z) then if and only i f . 
(C2) Let / = f(x,z) and g = g(y,z). If then and 

2In the literature, the symbol LI is often used instead of X. 
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FIG. 9.4.3. Proof of Proposition 9.4.3. 

The concept of conditional independence gives rise to many questions. 
Among them are the ones involving the DROP/ADD principles that we describe 
next. Suppose that x, y, z, w, f, and g are random objects such t h a t , 
f = f(x) and g = g{z). What can be said about the relation 1 if / is substituted 
for x, g substituted for z, (y, w) substituted for y. or (z, w) substituted for z? In 
other words, can x, y, and z be reduced or enlarged without destroying the 1 
relation? In general, the answer is no. However, for special kinds of reductions 
or enlargements the conditional independence relation is preserved. 

First, we present two simple examples to show that arbitrary enlargements 
of x, y, or z may destroy the 1 relation. Consider now that w1 and w2 are 
two independent standard normal random variables; i.e., w1 ~ w2 ~ N(0, 1). 
a n d . If x = w1 - w2 and y = w1 + w2, then but certainly 

. Note that if z is a constant and w = w1 we conclude that 

b u t . 
Second, we present an example to show that an arbitrary reduction of 

2, the conditioning quantity, can destroy the 1 relation. Let w1, w2, and 
w be three mutually independent standard normal random quantities; i.e., 

and 
w1 ~ w2 ~ w ~ N(0,1). Define x = wx - w2 + w, y = w1 + w2 + w, and note 
that b u t . As before, if z is a constant we can conclude that 

b u t . 
The destruction of the relation by reducing or enlarging its arguments is 

known as Simpson's paradox (for more details, see Lindley and Novick (1981)). 
The paradox, however, is much stronger since highly positively correlated ran­
dom variables could be highly negatively correlated after some DROP/ADD 
operations. For instance, let z and w be two independent normal random vari­
ables with zero means. Define x = z + w, y = z - w and note that the correlation 
between x and y is given by correlation (x,y) = (1 - r)( l + r) - 1, where r is 
equal to the variance of w divided by the variance of z. Also, if z is given it is 
clear that the conditional correlation is - 1 . In order to make COV(x, y) close to 
1, we can consider r arbitrarily small. This shows that we can have cases where 
x and y are strongly positive (negative) dependent but when z is given, x and 
y turn to be strongly negative (positive) conditionally dependent. 

The following is another important property of conditional independence. It 

is presented in Dawid (1979). 
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FIG. 9.4.4. Proof of Proposition 9.4.4. 

Figure 9.4.4 is the proof of Proposition 9.4.4. Again, only the basic prob­
abilistic influence diagrams operations are used. The second graph is obtained 
from the first by merging nodes w and y. The third graph is obtained from 
the second by splitting node (w,y), and the first is obtained from the third by 
reversing arc [w,y]. 

The above simple properties are very useful in some statistical applications, 
and they are related to the concept of sufficient statistic. 

9.5. Notes and references. 

Section 9.1. Influence diagrams with decision nodes were invented in 1976 
by Miller et al. (cf. Howard and Matheson (1984)). 

Section 9.2. The discussion in this chapter was developed together with 
Carlos Pereira and appeared in Barlow and Pereira (1991). 

Section 9.3. The arc reversal operation was extensively investigated by 
Shachter (1986). There have been a number of computer programs developed 
to analyze influence diagrams including decision nodes. One of the earliest was 
developed by Shachter and called DAVID. A decent free version and more or 
less a superset of DAVID's functionality is Netica. Netica runs on PCs and 
Macintoshes. Microsoft has a fairly nice system with a educational free license, 
but only for PCs, called MSBN. See http://www.auai.org/. 

Section 9.4. This discussion is related to the paper by Basu and Pereira 
(1982). 

PROPOSITION 9.4.4. The following statements are equivalent: 

Notation 

x and y are independent 
x and y are independent conditional on z 
x and y are dependent 
x and y are dependent given z 

http://www.auai.org/


CHAPTER 10 

Making Decisions Using Influence 
Diagrams 

10.1. Introduction. 

The previous chapter was restricted to questions that could be answered by 
computing conditional probabilities, that is. the calculation of probabilities on 
the receipt of data, or by information processing. This chapter is concerned with 
the evaluation and use of information through the use of influence diagrams with 
decision nodes and value nodes. In section 10.5 we compare influence diagrams 
and decision trees. Both can be used for decision making. 

In real life we are continually required to make decisions. Often these de­
cisions are made in the face of a great deal of uncertainty. However, time and 
resources (usually financial) are the forcing functions for decision. That is, de­
cisions must be made even though there may be a great deal of uncertainty 
regarding the unknown quantities related to our decision problem. 

In considering a decision problem, we must first consider those things that are 
known as well as those things that are unknown but are relevant to our decision 
problem. It is very important to restrict our analysis to those things that are 
relevant, since we cannot possibly make use of all that we know in considering a 
decision problem. So, the first step in formulating a decision problem is to limit 
the universe of discourse for the problem. 

A decision problem begins with a list of the possible alternative decisions that 
may be taken. We must seriously consider all the exclusive decision alternatives 
that are allowed. That is, the set of decisions should be exhaustive as well as 
exclusive. We then attempt to list the advantages and disadvantages of taking 
the various decisions. This requires consideration of the possible uncertain events 
related to the decision alternatives. From these considerations we determine the 
consequences corresponding to decisions and possible events. At this point, in 
most instances, the decisions are "weighed" and that decision is taken that is 
deemed to have the most "weight." It is this process of '-weighing" alternative 
decisions that concerns us in this chapter. 

An important distinction needs to be made between decision and outcome. 
A good outcome is a future state of the world that we prefer relative to other 
possibilities. A good decision is an action we take that is logically consistent with 
the alternatives we perceive, the information we have, and the preferences we feel 
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at the time of decision. In an uncertain world, good decisions could lead to bad 
outcomes and bad decisions can conceivably lead to good outcomes. Making the 
distinction allows us to separate action from consequence. The same distinction 
needs to be made between prior and posterior. In retrospect, a prior distribution 
may appear to have been very bad. However, based on prior knowledge alone, it 
may be the most logical assessment. The statement, "Suppose you have a 'bad' 
prior" is essentially meaningless unless "bad" means that a careful judgment was 
not used in prior assessment. 

The purpose of this chapter is to introduce a "rational method" for mak­
ing decisions. By a "rational method," we mean a method which is internally 
consistent—that is, it could never lead to a logical contradiction. The method 
we will use for making decisions can be described in terms of influence diagrams. 
So far we have only discussed probabilistic influence diagrams. 

10.2. Decision nodes. 

Probabilistic influence diagrams needed only probabilistic nodes, deterministic 
nodes, and directed arcs. For decision making we also need decision nodes and 
value nodes. The following example demonstrates the need for these additional 
nodes. 

Example 10.2.1 (two-headed coins). Suppose your friend tells you that he 
has a coin that is either a "fair" coin or a coin with two heads. He will toss the 
coin and you will see which side conies face up. If you correctly decide which 
kind of a coin it is, he will give you one dollar. Otherwise you will give him one 
dollar. If you accept his offer, what decision rule should you choose? That is, 
based on the outcome of the toss, what should your decision be? In terms of 
probabilistic influence diagrams we only have Figure 10.2.1, 

where 

fair if the coin is fair, 

two-headed otherwise; 

and 

if the toss results in a tail, 

otherwise. 

FIG. 10.2.1. 

Clearly, if x = T, you know the coin does not have two heads. The question 
is, what should you decide if x = H? To solve your problem, we introduce a 
decision node which is represented by a box or rectangle. The decision node 
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represents the set of decisions that can be taken; namely, 

d1: decide the coin is fair, 

d2: decide two-headed. 

Attached to the decision node is a set of allowed decision rules, which depend 
on the outcome of the toss x. For example, one decision rule might be 
d1 if x = T. 
d2 if x = H. 

Another decision rule might be 

= d1 for all x. 

The influence diagram helpful for solving our problem is Figure 10.2.2. 

FIG. 10.2.2. Two-headed coins. 

In this diagram, the double bordered node represents a value or utility node. 
The value node represents the set of consequences corresponding to possible pairs 
of decisions and states (d,6). Attached to the value node is the value function 
v(d, 6), a deterministic function of the states of adjacent predecessor nodes. In 
this example, 

{ $1 if d = d1 and = fair or d = d2 and = 2 heads, 

- $ 1 otherwise. 

The reason for initially drawing the arc rather than the arc is that, 
in general, it is easier to first assess p{8) and p{x \ 8) rather than to directly assess 
p(x) and p(6 | x). 

The optimal decision will depend on our initial information concerning 6, 
namely, p(9). However, since 6 is unknown at the time of decision, there is no 
a r c . At the time of decision, we know x but not 6. Input arcs to a decision 
node indicate the information available at the time of decision. In general, there 
can be more than one decision node, as the next example illustrates. 
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Example 10.2.2 (sequential decision making). Consider an urn containing 
white and black balls. Suppose we know that the proportion of white balls 9 is 
either or, but we do not know which. Our problem is to choose 
between two actions. One action, say, , would be to s a y , while would 
be to s a y . If we are wrong, we lose one dollar. Otherwise, we lose nothing. 
We can, if we choose, first draw a ball from the urn at cost $c so as to learn 
more about 9. After observing the color of the ball drawn, say, x, then we must 
choose either action or at cost $(1 + c) if we are wrong and only cost $c if 
we are right. 

The first decision can be either take action take a c t i o n , or 
: draw a ball from the urn. If we draw a ball from the urn, then our second 

decision after the drawing depends on the ball drawn x and must be either (1) 
taken action or (2) take a c t i o n . In this problem there are two decision 
points, and a second decision is needed only if the first decision is to continue 
sampling. Figure 10.2.3 is the decision influence diagram for our problem. 

F I G . 10.2.3. Sequential decision making. 

Example 10.2.3 ( inspect ion sampl ing) . The following example is a deci­
sion problem of some practical importance and is based in part on Deming's 
inspection problem in Chapter 5, section 5.3. Periodically, lots of size N of sim­
ilar units arrive and are put into assemblies in a production line. The decision 
problem is whether or not to inspect units before they are put into assemblies. 
If we opt for inspection, what sample size n of the lot size N should be in­
spected? In any event, haphazard sampling to check on the proportion defective 
in particular lots is prudent. 

Let be the percent defective over many lots obtained from the same vendor. 
Suppose we believe that the vendor's production of units is in statistical control. 
That is, each unit, in our judgment, has the same chance of being defective 
or good regardless of how many units we examine. Let be our probability 
assessment for the parameter based on previous experience. It could, for 
example, be degenerate at, s a y , . 

Let be the cost to inspect one unit before installation. Let be the cost 
of a defective unit that gets into the production line. This cost will include the 
cost to tear down the assembly at the point where the defect is discovered. If 
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a unit is inspected and found defective, additional units from another lot are 
inspected until a good unit is found. (We make this model assumption since 
all defective units that are found will be replaced at vendor's expense.) Figure 
10.2.4 illustrates our production line problem. 

F I G . 10.2.4. Deming's inspection problem. 

We assume the inspection process is perfect; i.e., if a unit is inspected and found 
good, then it will also be found good in the assembly test. 

The all or none rule. It has been suggested [cf. Deming (l986)] that the 
optimal decision rule is always to either choose n = 0 or n = N, depending on 
the costs involved and , the chance that a unit is defective. Later we will show 
that this is not always valid. 

In this example we consider the problem under the restriction that the initial 
inspection sample size is either n = 0 or n = N. The decisions are n = 0 and 
n = N. Figure 10.2.5 is an influence diagram for this problem, where 

x = number of defectives in the lot and 
y = number of additional inspections required to find good 

replacement units for bad units. 

FlG. 10.2.5. Influence diagram for Deming's inspection problem. 
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We have already solved this problem in Chapter 5, section 5.3. The solution 
is that n = 0 is best if and n = N otherwise. See Figure 10.2.5. 

10.3. Formal definitions and influence diagram construction. 

Definitions and basic resul ts . A decision influence diagram (or influence 
diagram for short) is a diagram helpful in solving decision problems. We have 
introduced two new types of nodes, namely, decision nodes and value nodes. 
Figure 10.3.1 is a typical decision node with input and output arcs. 

FIG. 10.3.1. Decision node. 

DEFINITION 10.3.1. A decision node 
(1) represents the possible decisions that may be taken at a given point in 

time, 
(2) and attached to each decision node is a set of allowed decision rules or 

mappings from possible states of adjacent predecessor nodes to the set of possible 
alternative decisions represented by the node itself. 

For example, there could be only one allowed decision rule corresponding 
to a given decision node. In this case the decision node can be replaced by a 
deterministic node. 

DEFINITION 10.3.2. A decision rule 6 corresponding to a decision node is a 
mapping from possible states of adjacent predecessor nodes (deterministic and 
probabilistic as well as previous decisions) to a set of possible alternative deci­
sions. 

Decision nodes will, in general, have both directed input and directed output 
arcs. What makes decision nodes very different from probabilistic and deter­
ministic nodes is that these arcs may never by reversed. Adjacent predecessor 
nodes to a decision node indicate information available to the decision maker 
at the time of that particular decision. The value of an adjacent predecessor 
node to a decision node is known at the time of decision; it represents certain 

The value (loss) function is 
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FIG. 10.3.2. 

knowledge, not possible knowledge. In this sense the arc is different from arcs 
between probability nodes that can indicate only possible dependence. Since 
decision nodes imply a time ordering, the corresponding directed arcs can never 
be reversed. 

Directed arcs emanating from a decision node denote possible dependence of 
adjacent successor nodes on the decision taken. These arcs can likewise never be 
reversed. 

Example 10.3.3 (selling a car). Suppose you plan to sell your car tomorrow, 
but the finish on your car is bad. Your decision problem is whether or not to have 
your car painted today in order to increase the value of your car tomorrow. Note 
that tomorrow's selling price depends on today's decision d. Let x be yesterday's 
blue book value for your car and c the cost of a paint job. Let 0 be the price 
you will be able to obtain for your car tomorrow. Let v(d,8) be the value to 
you of today's decision d and tomorrow's selling price 0. The influence diagram 
associated with your decision problem is shown in Figure 10.3.2. Obviously you 
cannot reverse arc [x, d], since today's decision cannot alter yesterday's blue book 
value. Likewise, you cannot reverse a r c , since we cannot know today, for 
sure, what tomorrow will bring. 

The value node is similar to a deterministic node. What makes it different is 
that it has no successor nodes. 

DEFINITION 10.3.4. A value node is a sink node that 
(1) represents possible consequences corresponding to the states of adjacent 

predecessor nodes (a consequence can. for example, be a monetary loss or gain), 
(2) has an attached utility or loss function which is a deterministic function 

consequence represented by the value node itself. 

A value node shares with a decision node the property that input arcs cannot 
be reversed. However, if a value node v has a probabilistic adjacent predecessor 
node, say, , and v is the only adjacent successor of 8 (as in Figure 10.3.2), then 
node 8 can be eliminated. 

We now give a formal definition of a decision influence diagram. 
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DEFINITION 10.3.5. A decision influence diagram is an acyclic directed graph 
in which 

(i) nodes represent random quantities, deterministic functions, and deci­
sions; 

(ii) directed arcs into probabilistic and deterministic nodes indicate possible 
dependence, while directed arcs into decision nodes indicate information available 
at the time of decision; 

(iii) attached to each probabilistic (deterministic) node is a conditional prob­
ability (deterministic) function, while attached to each decision node is a set of 
allowed decision rules; 

(iv) decision nodes are totally ordered and there is a directed arc (perhaps 
implicitly) to each decision node from all predecessor decision nodes; 

(v) there is exactly one deterministic sink node called the value node. 

Using decision influence d iagrams t o model p roblems . In Example 
10.2.1 (two-headed coins) you were offered the opportunity to make a dollar 
also with the risk of losing a dollar. Your allowable decisions were 

d1: decide the coin is fair, 

d2: decide two-headed. 

Hence you might start by drawing the decision node d with the two allowable 
choices d1 and d2. You might then draw the value node v, since the value node 
denotes the objective of your decision analysis. Your objective is to calculate 
v(d), the unconditional value function, as a deterministic function of the deci­
sion taken d. However, it may be easier to first determine the conditional value 
function as a deterministic function of relevant unknown quantities as well as 
perhaps prior decisions relevant to your problem. 

DEFINITION 10.3.6. A value function is called unconditional if it only de­
pends on the decision taken and not on relevant unknown quantities. It is called 
conditional when it also depends on relevant unknown quantities. 

Since it is easier to think of the value function as a conditional deterministic 
function of your decision and the property of the coin, say, 0, you also need to 
draw a node for 0. Since 6 is unknown to you, node 0 is a probabilistic node. 
Since the value node v depends on both the decision taken d as well as the 
property of the coin 0, draw arcs [d, v] and [0, v\. Attach a deterministic function 

to node v. Figure 10.3.3 shows the influence diagram at this stage of the 
analysis. 

You are allowed to see the result of one coin toss, and this information is 
available at the time you make your decision. Hence draw a node x for the 
outcome of the toss. Since the outcome of the toss (before you see it) is an 
unknown random quantity for you, draw a probabilistic node for x. Since the 
probability function for x depends on 0, draw arc [0, x] and assess p(x | 0) and 

. Draw arc [x, 6] since you will know x at the time you make your decision 
d. The diagram now looks like Figure 10.2.2, which we repeat below. 
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FlG. 10.3.3. First stage of diagram development. 

FIG. 10.2.2 (repeated). 

10.4. Decision influence diagram operations. 

There are essentially two influence diagram graph operations that arc used to 
solve decision problems expressed as influence diagrams. They are 

(1) the elimination of probabilistic nodes and 
(2) the elimination of decision nodes. 
In the process of eliminating probability nodes you will obtain the uncondi­

tional value function v(d) as a function of decisions allowed. Having obtained 
v(d) you can determine the optimal decision with respect to the unconditional 
value function and in this sense eliminate the decision node. The justification 
for both graph operations is based on the idea that you should be self-consistent 
in making decisions. 

Solution of the two-headed coin problem. Having described how to con­
struct the influence diagram (Figure 10.2.2, for the two-headed coin Example 
10.2.1) we now discuss its solution. Our objective is to calculate v[6(x)\, where 
6(x) depends on x and is either 

d1: decide the coin is fair 

or 

d2: decide two-headed. 
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FIG. 10.4.1. Elimination of the decision node. 

You must eliminate 9 since, as it stands, the optimal decision would depend on 
9, which is unknown. If the arc [9, v] were the only arc emanating from 9 you 
would be able to do this immediately by summation or by integration. Since 
there is also another arc, namely, [9, x], emanating out of 9, this is not possible. 

Elimination of node 0. Since nodes x and 9 are probabilistic nodes, you can 
reverse arc [9, x] using the arc reversal operation. If you do this, p(x \ 9) attached 
to node x is changed to p(x) using the theorem of total probability while p(9) is 
changed to using Bayes' formula. After this arc reversal, arc is the 
only arc emanating from node 9 and node 9 can now be eliminated by summing 

with respect to p(9 \ x). This results in the influence diagram of Figure 
10.4.1. The deterministic function attached to node v is now 

See Figure 10.4.1. 
To solve your problem you need only eliminate the decision node. This is 

accomplished by maximizing over decision alternatives since you want to 
maximize your winnings. 

Example. Inspection sampling. In Chapter 5, section 5.3 and in Example 
10.2.3 in this chapter we discussed Deming's inspection problem under the re­
striction that the sample size n was either n = 0 or n = N, the lot size. Figure 
10.4.2 is the decision influence diagram for this problem when the sample size 
can be any integer between 0 and N. 

We leave the solution of this example to Exercise 10.4.2. 

Example. Value added to substrate. Deming has a variation of the in­
spection sampling problem called "value added to substrate." Work is done on 
incoming material, the substrate. The finished product will be classified as first 
grade, second grade, third grade, or scrap. If the incoming item is not defec­
tive, then it will result in a final product of first grade. Otherwise, if it is not 



MAKING DECISIONS USING INFLUENCE DIAGRAMS 175 

FlG. 10.4.2. Influence diagram for Deming's inspection problem. 

inspected at the point of installation and if it is defective, then a final product of 
downgrade or scrap will be produced. Every final product is subject to assembly 
grading. The only difference between this model and the previous model is that 
no additional inspections occur at assembly test. This is because the item (say 
a bag of cement) cannot be replaced at assembly test if it is not inspected at 
the point of installation but is found defective at the point of assembly test. As 
before, let k1 be the cost of inspecting an item. Let k2 be the average loss from 
downgrading the final product or for scrapping finished items. 

Suppose t h a t , the percent defective over many lots, has a prior Be(A, B) 
distribution. We will first modify the decision influence diagram in Figure 10.4.2 
and then, without numerically solving the problem, show the sequence of arc 
reversals and decision making required to calculate the optimal inspection sample 
size n. 

Solution of value added to substrate. Delete node y2 and all arcs into and 
out of this node in Deming's first model. Note that when n = N, the STOP or 
CONTINUE decision node does not apply since there is no remainder to inspect. 
Also when n = N, x2 = 0 since there can be no defectives in an empty sample. 

In general, we should not have an arc from a decision node to a probability 
node. In the case of the x2 node, the distribution of x2 does not depend on 
the decision taken but does depend on n a n d . The technical name of this 
requirement is the "sure thing principle" or axiom 0 in Appendix B. Node n is a 
special case since it is the initial condition determining sampling distributions. 
See Figure 10.4.3. 

Algorithm for solving influence diagram Figure 10.4.3. A list ordering 
of the nodes is Loss. Both n and are root nodes. 
The list ordering is not unique. 
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FlG. 10.4.3. Influence diagram for value added to substrate. 

FlG. 10.4.4. Influence diagram after reversal of a r c . 

First we e l i m i n a t e . Start by reversing arc and adding a r c . See 
Figure 10.4.4. 

Now reverse arc and add arc [n,y1]. Note that we could not have 
reversed before reversing arc since this would have created a cycle. 
See Figure 10.4.5. 

Now we can eliminate node by calculating the distribution of x2 given n 
and y1. If is Be(A, B), t h e n , given n and y1, is Be(A + y1 , B + n) while x2 , 
given y1 and n, is Bb(N — n,A + y1,B + n). Note that x2 does not depend on x1. 
Actually depends only on n (the total number of items inspected and found to 
be good) and y1 (the total number of defective items found by inspection). See 
Figure 10.4.6. 
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F I G . 10.4.5. Influence diagram after reversal of a r c . 

FlG. 10.4.6. Influence diagrarn after eliminating node. 

At this point we can calculate the expected loss if we STOP and also if we 
CONTINUE, namely, 

if we STOP, the LOSS is k1(n +y1) + k2E[x2 |n,y1]; 
if we CONTINUE, the LOSS is k1(N + y1). 
We take that decision that has minimum expected loss given n,y1, thus elim­

inating the STOP or CONTINUE decision node. See Figure 10.4.7. 
Next we calculate the minimum of the expected losses following either the 

STOP or CONTINUE policy: 

minimum[k1 (n+ y1)+ k2E[x2| n , y 1 ] , k 1 (N+ y1)]. 
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FlG. 10.4.7. Influence diagram after eliminating a decision node. 

The minimum value determines the optimal STOP or CONTINUE policy. 
We calculate the expected value of this minimum with respect to the distribution 
of y1 given x1 and n. 

Finally, we calculate the expected loss with respect to x1, thus eliminating 
node x1, and then calculate that value of n that minimizes the total expected 
loss. 

Exercises 

10.4.1. Two-headed coins. Let and determine your optimal 
decision rule as a function of the outcome of the coin toss x a n d . 

10.4.2. Deming's inspection problem. Figure 10.4.2 models Deming's inspec­
tion problem. Fix on n and N > n. Assume your prior for the percent defective 

is Be(A,B). The optimal solution should depend on the costs, N,n,x\, and 
y\. Note that at the time of decision, you do not know either x2 or y2. 

(a) Why i s ? 
(b) Determine the optimal inspection decision after sampling; i.e., should we 

STOP inspection or CONTINUE and inspect all of the remaining items? 
10.4.3. Find the optimal decisions for the sequential decision-making exam­

ple, Figure 10.2.3, as a function of the following prior for 6: 

10.5. Comparison of influence diagrams and decision trees. 

Decision trees provide another graphical representation of decision problems. 
In this case, the graph construction is based on the temporal order in which 
decisions are made and unknown quantities are actually or potentially revealed. 
The method is equivalent to enumerating all possible sample space outcomes; 
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FIG. 10.5.1. Temporal order of a sequential decision tree. 

i.e., it is equivalent to sample space enumeration. The decision tree provides a 
more concrete representation of the problem than the influence diagram. In this 
respect the beginner may understand it more easily and usually prefers it to the 
influence diagram representation. 

We will illustrate the decision tree methodology using the previous Example 
10.2.2 concerning sequential analysis discussed in section 10.2. 

Example 10.5.1. Sequential decision making. Consider an urn containing 
white and black balls. Suppose we know that the proportion of white balls 6 is 
either 3 o r , but we do not know which. Our problem is to choose 
between two actions. One action, say, a1 would be appropriate w e r e , 
while would be appropriate w e r e . If we are wrong, we lose one dollar. 
Otherwise, we lose nothing. We can, if we choose, first draw a ball from the 
urn at cost $c so as to learn more about 0. After observing the color of the ball 
drawn, say, x, then we must choose either action a1 or a2 at cost $(1 + c) if we 
are wrong and only cost $c if we are right. 

In this problem there are two decision points, and a second decision is needed 
only if the first decision is to continue sampling. Figure 10.5.1 presents the 
decision process in temporal order beginning with the initial decision to stop 
and decide or to continue. If you decide to stop, then of course the color x of 
the ball is not observed and decision d2 is not considered. 

A full decision tree representation for the sequential analysis example is pre­
sented in Figure 10.5.2. A decision tree, drawn in temporal order as shown in 
Figure 10.5.2 is in effect a connected directed graph, where each arc is directed 
from left to right. Considered as a directed tree it has exactly one root. In 
Figure 10.5.2 the root is the initial decision node on the left. The terminal nodes 
(L1, L2 , • • •, L12) are called the leaves of the directed graph. Unlike the influence 
diagram, the arcs in the decision tree carry the most information. Rectangles 
denote decision nodes while circles denote random nodes. Random node 8 in 
Figure 10.5.1 is actually represented by six circles on the right in Figure 10.5.2. 
The leaves in Figure 10.5.2 correspond to possible values of the value node in 
Figure 10.5.1. 

In order to give a formal definition of a decision tree, we first define a graph 

structure called a tree. 

DEFINITION 10.5.1. An undirected connected graph with nodes or vertices V 
and (undirected) arcs joining the nodes is called a tree if it has no cycles; i.e., 
there is no sequence of connected nodes such that nodes i1 and ik 
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FlG. 10.5.2. Decision tree for the sequential analysis example. 

are identical. A directed graph is a tree if the corresponding undirected graph is 
a tree. 

Influence diagram graphs are not, in general, trees in the graph theory sense 
since the corresponding undirected graph may contain cycles in the sense of 
Definition 10.5.1. 

A path to a node in a decision tree from the root node consists of a connected 
sequence of nodes and arcs from the root node to that node. The fundamental 
property of trees used in decision tree analysis is that there is a unique path 
from the root node to any other specified node. For example 

{ decision = continue, x = white, decision} 

is the unique path from the root node to the top right-hand leaf node in Figure 
10.5.2. There are 12 such paths corresponding to the 12 leaves in Figure 10.5.2. 
All possible paths corresponding to leaves constitute the sample space. The 
decision tree diagram can be used to enumerate all such possible states in the 
sample space. Obviously, the paths to leaf nodes constitute a set of mutually 
exclusive and exhaustive states corresponding to our decision problem. 

DEFINITION 10.5.2. A decision tree is a rooted directed graph that is a tree 
in the graph theory sense and in which 
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(i) nodes represent decisions, random quantities, and consequences: 
(ii) arcs emanating from a decision node correspond to the possible decisions 

which may be taken at that node (possible decisions corresponding to a decision 
node may depend on the unique path from the root node to that decision node): 

(iii) arcs emanating from a random node correspond to possible realizations 
of the corresponding random quantity (possible realizations may depend on the 
unique path from the root node to that random node): 

(iv) a leaf of the tree corresponds to a consequence resulting from the realiza­
tion of arc events on the path from the root node to that leaf node. 

Compar i son of decision t rees and influence diagrams. The decision tree 
will have many more nodes and arcs than the corresponding influence diagram. 
It is, however, more helpful in visualizing all possible outcomes of the decision 
problem. In the influence diagram, Figure 10.2.3, a decision or random quan­
tity is represented by one node. In the decision tree. Figure 10.5.2, it may be 
represented by many nodes. Also it is not as easy to recognize conditional in­
dependence in a decision tree as it is in the influence diagram. However, both 
representations can be used to solve decision problems, and the solution process 
is essentially the same. 

Note that the decision tree shown in Figure 10.5.2 is symmetric. An influence 
diagram corresponds to a symmetric decision tree. There are decision problems 
for which using the corresponding decision tree may be more efficient since there 
may be computational savings to be achieved through asymmetric decision tree 
processing. 

In general, we recommend the use of influence diagrams. Using decision trees 
it may be difficult to see the forest (the main influences in the decision problem) 
through the trees (the possible sample space path realizations). 

10.6. No te s and references. 

Sect ion 10.1 . An excellent discussion of decision influence diagrams is the 
paper, "From Influence to Relevance to Knowledge" by R. A. Howard (1990). 

Sect ion 10.2. The two-headed coin example is due to Carlos Pereira. Ex­
ample 10.2.2 on sequential decision making is considered in much greater detail 
in de Finetti (1954). He considers the problem of combining different opinions 
in that paper. 

Sect ion 10.3. The intent of this section is to demonstrate the thinking 
process behind influence diagram construction. 

Section 10.4. The intent of this section is to demonstrate the thinking 
process behind solving influence diagrams. The algorithmic process is called 
backward induction since we start with the value node. There are several com­
puter programs available for solving decision influence diagrams. We mentioned 
Netica and MSBN in Chapter 9, section 9.5. 

Section 10.5. An introduction to decision trees is also available in Lindley 
(1985). 





APPENDIX A 

Classical Statistics Is Logically 
Untenable 

We have not mentioned in this book most of the methodology of so-called clas­
sical statistics. The reason is that classical statistics is based on deductive anal­
ysis (the logic of mathematics), whereas statistical inference and decision theory 
are concerned with inductive analysis (probability judgments). Why is classical 
statistics logically untenable? D. Basu (1988). in his careful examination of the 
methodology due to R. A. Fisher, summed up his answer to this question as 
follows: "It took me the greater part of the next two decades to realize that 
statistics deals with the mental process of induction and is therefore essentially 
antimathematics. How can there be a deductive theory of statistics?" 

To be more concrete, we consider two favorite ideas of classical statistics, 
namely, unbiasedness and confidence intervals. 

Unbiasedness. The posterior mean is a Bayes estimator of a parameter, say, 
9, with respect to squared error loss. It is also a function of the data. No Bayes 
estimator (based on a corresponding proper prior) can be unbiased in the sense 
of classical statistics; see Bickel and Blackwell (1967). 

An estimator 9 (a function of data) is called unbiased in the sense of classical 
statistics if 

for e a c h . In this case, F is the probability distribution corresponding to 
sample data. 

Most unbiased estimators are in fact inadmissible with respect to squared 
error loss in the sense of classical statistics. D. Basu provides the following 
example. In the case of the exponential density 

is an unbiased estimator for 9 in the sense of classical statistics, where T is 
the total time on test (TTT) and k is the number of observed failures. However, 
it is inadmissible in the sense that there exists another estimator with 
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is minimum. This occurs for, which is clearly not 1. Hence 9 is 
inadmissible in the sense of classical statistics. 

Unbiasedness is not a viable criterion even for classical statisticians. Statis­
ticians who require unbiasedness and admissibility are not self-consistent. 

Confidence intervals. 100% confidence interval in the sense of clas­
sical statistics is one such that if the experiment is repeated infinitely often (and 
the interval recomputed each time), then 1 0 0 % of the time the interval 
will cover the fixed unknown "true" parameter 9. 

This is not what most engineers mean by the term "confidence interval." A 
posterior probability interval, conditional on the data, is what most engineers 
have in mind. 100% confidence interval is not a probability interval 
conditional on the data. 

Since confidence intervals do not produce a probability distribution on the 
parameter space for 9, they cannot provide the basis for action in the decision 
theory sense; i.e., a decision maker cannot use a confidence interval in the sense 
of classical statistics to compute an expected utility function which can then be 
maximized over the decision maker's set of possible decisions. 

Suppose we choose the improper prior for the parameter A of 
the exponential d e n s i t y . In this case, the chi-square smallest 1 0 0 % 
probability interval and the confidence interval, in the sense of classical statistics, 
agree. Unfortunately, such improper probability intervals can be shown to violate 
certain rules of logical behavior. Dennis Lindley provides the following simple 
illustration of this fact. 

Suppose n items are put on life test and we stop at the first failure, so that 
the TTT is T = nx ( 1 ) . Now T given A also has density so that is a 
50% improper upper probability limit on A; i.e., 

Suppose we accept this probability statement and that T is now observed. Con­
sider the following hypothetical bet: 

(i) if we lose the a m o u n t ; 
(ii) if we win the a m o u n t . 

such that for all 9, 

To find this c, c o n s i d e r , and note that E(Y) = 1. Then we need only find 
c such that 

so that and 
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We can pretend that the "true" is somehow revealed and bets are paid off. 
If we believe the probability statement above, then such a bet is certainly fair, 
given T. 

Now let us compute our expected gain before T is observed (preposterior 
analysis). This is easily seen to be (conditional on A) 

which is negative for all A > 0. Note that this is what we would expect were we 
to make this bet infinitely often. 

But this situation is again not self-consistent. Classical statistics is not self-
consistent though it does claim to be "objective" and "scientific." Objectivity 
is really nothing more than a consensus, and scientists use induction as well as 
deduction to extrapolate from experiments. 





APPENDIX B 

Bayesian Decision Analysis 
Is Self-Consistent 

The influence diagram operations developed in Section 10.4 depend on the prin­
ciple that you should be self-consistent in making decisions. Bayesian decision 
analysis is, above all, based on the premise that you should, at the very least, 
be self-consistent in the way in which you make decisions. Self-consistency in 
decision making has been defined by H. Rubin (1987) in terms of what he calls 
the axioms of rational behavior. 

Of course, by self-consistency we do not mean that you are not capable of 
revising your opinion and possibly changing your decision (if allowed) upon re­
ceipt of new information. The Bayesian approach to decision analysis, which we 
use in this book is self-consistent. But what is, perhaps, even more important is 
that self-consistency implies Bayesian behavior. 

The two influence diagram graph operations that we now justify are 
(1) the elimination of decision nodes and 
(2) the elimination of probability nodes. 

E l imina t ing decision nodes : Maximizing uncondi t ional utility. Self-
consistency in decision making has been defined by H. Rubin (1987) in terms 
of what he calls the weak axioms. Given a decision problem, i.e., a set of pos­
sible alternative decisions and relevant information associated with the decision 
problem, the weak axioms (or self-consistency) imply that there exists, for you, 
a single real valued function for decisions (up to positive linear transformations), 
which we call the unconditional value v(.), or your utility function, such that you 
will choose decision d2 and not decision d1 if and only i f . Thus, 
every decision problem can be reduced, in principle, to the decision influence 
diagram in Figure B.l. 

The value function is unconditional in the sense that it does not depend on 
the state of unknown quantities. We say that the value function is conditional 
when it does depend on unknown quantities. 

Self-consistency [H. Rubin (1987)]. Let A be the set of all possible actions 
that you may consider in your lifetime. Let a subset of actions correspond 
to a particular "decision problem" that you will face at some point in time. Let 
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FIG. B.l. 

be those actions that you will choose. (The operative phrase is 
"will choose" and the possibility that there may be more than one implies that 
you are indifferent between actions in C(D).) H(D) is the convex hull of D, i.e., 
the set D plus all possible randomized decisions based on D. Of course you are 
indifferent between choosing any particular action in H(D). In practice we would 
simply choose an action in a randomized strategy that has the largest attached 
probability; i.e., we would not use randomized strategies in practice. However, it 
is convenient to have this added generality for the definition of self-consistency. 

Call the set function your "choice set function" for decision problems. 
Self-consistency will be defined in terms of specific properties of this choice set 
function that you will employ for all decision problems. A person who always 
makes decisions by using a choice function that satisfies those properties is said 
to be "rational." 

(1) T h e res t r ic t ion of choices axiom. Suppose that for decision problem 
D you would choose the choice set C(D). Now suppose for some reason that 
the decision problem is reduced to D' C D but everything else is the same. If 
any of the old choices in C(D) are in H(D'), then C(D') would be exactly those 
choices from C(D) that are available for decision problem D'. 

(2) T h e weak condi t ional i ty axiom. If several decision problems are 
presented at random with known probabilities, the choices for each problem 
should be made independently of those known probabilities. 

Another way of expressing this idea is through what Basu (1988) calls the 
"weak conditionality principle." Suppose that two experiments E1 and E2 are 
contemplated so that you may learn about some unknown quantity 6. Suppose 
you choose which experiment to perform by using a random mechanism; that 
is, with specified probability p you will perform E\ and with probability 1 — p 
you will perform E2. Now suppose experiment E has been determined in this 
way, using a random mechanism, and the results from experiment E, say, x, are 
available. By the weak conditionality principle, any decision about 9 based on 
observing x should not depend on the known probability p used to determine 
the experiment E; i.e., knowing that it was a randomized experiment does not 
provide any information additional to that provided by x. What could have 
happened but did not should not influence your decision! 

(3) The continuity axiom (Archimedean axiom). Suppose that for the 
decision problem D — {x, y} you would choose x but not y; i.e., C({x, y}) = {x} 
and that given decision problem D' = {y,z} you would choose y but not z, 
i.e., C({y,z}) = {y}. By the continuity axiom we assume that there exists a 
probability p(0 < p < 1) such that you would be indifferent between the choice 
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FIG. B.2. 

y and a gamble, gp, where you would choose x with probability p and z with 
probability 1 -p. That is, c({y,gp}) = {y,gp}. 

In addition to the axioms above, there is an axiom stating that for every deci­
sion problem based on 1, 2, or 3 actions only, the choice set should be nonempty. 
This, together with the continuity axiom, is required for the construction of a 
utility function. In addition, H. Rubin has required two purely technical axioms 
to take care of the fact that we must deal with infinite sets since the use of 
randomization will result in conceptually infinite choice sets. He proves, using 
these five axioms, that if you are self-consistent in the sense of the axioms, then 
using your choice set function is equivalent to basing your decision on a utility 
function which is real valued and unique up to positive linear transformations. 

Rubin's first theorem states that to base your decision on a utility function 
v{d) means to prefer d' to d" if and only if v(d') > v(d"). 

The principle of maximizing unconditional utility. To determine the so­
lution to a decision problem in a self-consistent manner, we need only determine 
the unconditional utility function, a real-valued function of decisions contem­
plated, and take that decision (or those decisions) that maximize this function. 
The basic mathematical operation is that of maximizing unconditional utility 
with respect to possible decisions. Calculating the unconditional utility or value 
function is the main mathematical problem of decision analysis. 

Eliminating probabilistic nodes: Calculating unconditional utility. 
Let 9 be an unknown quantity related to a decision problem D. Let 
be the conditional value function for our decision problem, conditional on 9. See 
Figure B.2. 

We can eliminate node 9, obtaining the influence diagram in Figure B.l where 
node v now has unconditional value 

and where is the probability function attached to node 9. The math-
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FIG. B.3. 

ematical justification for this elimination operation depends on the sure thing 
principle or axiom 0 in Rubin's (1987) paper. 

The sure thing principle (axiom 0). If we prefer d1 to d2 given and 
we also prefer d1 to d2 g i v e n , then we will prefer d1 to d2 when we only 
know that either o r . 

As we have represented our decision problem in Figure B.2, the sure thing 
principle does not apply since 0 depends on the decision contemplated. The 
same situation held in our example of selling a car in Example 10.3.3. In order 
that the sure thing principle apply we need to represent our decision problem by 
an influence diagram where decision nodes do not have adjacent successor nodes 
that are probabilistic. This can be done by adding a deterministic node as we 
have done for the selling a car example (see Figure B.3). 

Example (Selling a car (Continued)). As in Example 10.3.3, there are two 
decisions. Namely, d1: paint your car before selling and d2: sell without painting. 
In Figure B.3 we have modified Figure 10.3.2 to include a deterministic node 
and additional probabilistic nodes corresponding to the selling price tomorrow 
of cars like yours. In Figure B.3 the random node is now the selling price 
tomorrow of cars like yours which have (have not) been painted. To apply the 
sure thing principle, the "state of nature" must correspond to something you 
can think about apart from any decisions that you are contemplating. Thus you 
do not think about the selling price of your car tomorrow after you make your 
decision but, instead, the selling price tomorrow of cars like yours corresponding 
to the two decisions. The point is very subtle but important. 

DEFINITION (the Howard canonical form). A decision influence diagram is 
said to be in "Howard canonical form" if there are no arcs from decision nodes to 
probabilistic nodes. A decision influence diagram can always be put in "Howard 
canonical form". R. A. Howard emphasized this point. 
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